RyArxiv
Robotics 2
♻ ☆ Sim-and-Real Co-Training: A Simple Recipe for Vision-Based Robotic Manipulation
Large real-world robot datasets hold great potential to train generalist robot models, but scaling real-world human data collection is time-consuming and resource-intensive. Simulation has great potential in supplementing large-scale data, especially with recent advances in generative AI and automated data generation tools that enable scalable creation of robot behavior datasets. However, training a policy solely in simulation and transferring it to the real world often demands substantial human effort to bridge the reality gap. A compelling alternative is to co-train the policy on a mixture of simulation and real-world datasets. Preliminary studies have recently shown this strategy to substantially improve the performance of a policy over one trained on a limited amount of real-world data. Nonetheless, the community lacks a systematic understanding of sim-and-real co-training and what it takes to reap the benefits of simulation data for real-robot learning. This work presents a simple yet effective recipe for utilizing simulation data to solve vision-based robotic manipulation tasks. We derive this recipe from comprehensive experiments that validate the co-training strategy on various simulation and real-world datasets. Using two domains--a robot arm and a humanoid--across diverse tasks, we demonstrate that simulation data can enhance real-world task performance by an average of 38%, even with notable differences between the simulation and real-world data. Videos and additional results can be found at https://co-training.github.io/
comment: Project website: https://co-training.github.io/
♻ ☆ Can DeepSeek Reason Like a Surgeon? An Empirical Evaluation for Vision-Language Understanding in Robotic-Assisted Surgery
DeepSeek series have demonstrated outstanding performance in general scene understanding, question-answering (QA), and text generation tasks, owing to its efficient training paradigm and strong reasoning capabilities. In this study, we investigate the dialogue capabilities of the DeepSeek model in robotic surgery scenarios, focusing on tasks such as Single Phrase QA, Visual QA, and Detailed Description. The Single Phrase QA tasks further include sub-tasks such as surgical instrument recognition, action understanding, and spatial position analysis. We conduct extensive evaluations using publicly available datasets, including EndoVis18 and CholecT50, along with their corresponding dialogue data. Our comprehensive evaluation results indicate that, when provided with specific prompts, DeepSeek-V3 performs well in surgical instrument and tissue recognition tasks However, DeepSeek-V3 exhibits significant limitations in spatial position analysis and struggles to understand surgical actions accurately. Additionally, our findings reveal that, under general prompts, DeepSeek-V3 lacks the ability to effectively analyze global surgical concepts and fails to provide detailed insights into surgical scenarios. Based on our observations, we argue that the DeepSeek-V3 is not ready for vision-language tasks in surgical contexts without fine-tuning on surgery-specific datasets.
comment: Technical Report
Computer Vision 1
♻ ☆ Mr. DETR: Instructive Multi-Route Training for Detection Transformers CVPR 2025
Existing methods enhance the training of detection transformers by incorporating an auxiliary one-to-many assignment. In this work, we treat the model as a multi-task framework, simultaneously performing one-to-one and one-to-many predictions. We investigate the roles of each component in the transformer decoder across these two training targets, including self-attention, cross-attention, and feed-forward network. Our empirical results demonstrate that any independent component in the decoder can effectively learn both targets simultaneously, even when other components are shared. This finding leads us to propose a multi-route training mechanism, featuring a primary route for one-to-one prediction and two auxiliary training routes for one-to-many prediction. We enhance the training mechanism with a novel instructive self-attention that dynamically and flexibly guides object queries for one-to-many prediction. The auxiliary routes are removed during inference, ensuring no impact on model architecture or inference cost. We conduct extensive experiments on various baselines, achieving consistent improvements as shown in Figure 1. Project page: https://visual-ai.github.io/mrdetr
comment: Accepted by CVPR 2025, Project page: https://visual-ai.github.io/mrdetr, Code: https://github.com/Visual-AI/Mr.DETR
Artificial Intelligence 3
♻ ☆ Non-Determinism of "Deterministic" LLM Settings
LLM (large language model) practitioners commonly notice that outputs can vary for the same inputs under settings expected to be deterministic. Yet the questions of how pervasive this is, and with what impact on results, have not to our knowledge been systematically investigated. We investigate non-determinism in five LLMs configured to be deterministic when applied to eight common tasks in across 10 runs, in both zero-shot and few-shot settings. We see accuracy variations up to 15% across naturally occurring runs with a gap of best possible performance to worst possible performance up to 70%. In fact, none of the LLMs consistently delivers repeatable accuracy across all tasks, much less identical output strings. Sharing preliminary results with insiders has revealed that non-determinism perhaps essential to the efficient use of compute resources via co-mingled data in input buffers so this issue is not going away anytime soon. To better quantify our observations, we introduce metrics focused on quantifying determinism, TARr@N for the total agreement rate at N runs over raw output, and TARa@N for total agreement rate of parsed-out answers. Our code and data are publicly available at https://github.com/breckbaldwin/llm-stability.
♻ ☆ Sim-and-Real Co-Training: A Simple Recipe for Vision-Based Robotic Manipulation
Large real-world robot datasets hold great potential to train generalist robot models, but scaling real-world human data collection is time-consuming and resource-intensive. Simulation has great potential in supplementing large-scale data, especially with recent advances in generative AI and automated data generation tools that enable scalable creation of robot behavior datasets. However, training a policy solely in simulation and transferring it to the real world often demands substantial human effort to bridge the reality gap. A compelling alternative is to co-train the policy on a mixture of simulation and real-world datasets. Preliminary studies have recently shown this strategy to substantially improve the performance of a policy over one trained on a limited amount of real-world data. Nonetheless, the community lacks a systematic understanding of sim-and-real co-training and what it takes to reap the benefits of simulation data for real-robot learning. This work presents a simple yet effective recipe for utilizing simulation data to solve vision-based robotic manipulation tasks. We derive this recipe from comprehensive experiments that validate the co-training strategy on various simulation and real-world datasets. Using two domains--a robot arm and a humanoid--across diverse tasks, we demonstrate that simulation data can enhance real-world task performance by an average of 38%, even with notable differences between the simulation and real-world data. Videos and additional results can be found at https://co-training.github.io/
comment: Project website: https://co-training.github.io/
♻ ☆ Towards Physically Plausible Video Generation via VLM Planning
Video diffusion models (VDMs) have advanced significantly in recent years, enabling the generation of highly realistic videos and drawing the attention of the community in their potential as world simulators. However, despite their capabilities, VDMs often fail to produce physically plausible videos due to an inherent lack of understanding of physics, resulting in incorrect dynamics and event sequences. To address this limitation, we propose a novel two-stage image-to-video generation framework that explicitly incorporates physics. In the first stage, we employ a Vision Language Model (VLM) as a coarse-grained motion planner, integrating chain-of-thought and physics-aware reasoning to predict a rough motion trajectories/changes that approximate real-world physical dynamics while ensuring the inter-frame consistency. In the second stage, we use the predicted motion trajectories/changes to guide the video generation of a VDM. As the predicted motion trajectories/changes are rough, noise is added during inference to provide freedom to the VDM in generating motion with more fine details. Extensive experimental results demonstrate that our framework can produce physically plausible motion, and comparative evaluations highlight the notable superiority of our approach over existing methods. More video results are available on our Project Page: https://madaoer.github.io/projects/physically_plausible_video_generation.
comment: 18 pages, 11 figures
Graphics 1
♻ ☆ Lux Post Facto: Learning Portrait Performance Relighting with Conditional Video Diffusion and a Hybrid Dataset CVPR 2025
Video portrait relighting remains challenging because the results need to be both photorealistic and temporally stable. This typically requires a strong model design that can capture complex facial reflections as well as intensive training on a high-quality paired video dataset, such as dynamic one-light-at-a-time (OLAT). In this work, we introduce Lux Post Facto, a novel portrait video relighting method that produces both photorealistic and temporally consistent lighting effects. From the model side, we design a new conditional video diffusion model built upon state-of-the-art pre-trained video diffusion model, alongside a new lighting injection mechanism to enable precise control. This way we leverage strong spatial and temporal generative capability to generate plausible solutions to the ill-posed relighting problem. Our technique uses a hybrid dataset consisting of static expression OLAT data and in-the-wild portrait performance videos to jointly learn relighting and temporal modeling. This avoids the need to acquire paired video data in different lighting conditions. Our extensive experiments show that our model produces state-of-the-art results both in terms of photorealism and temporal consistency.
comment: CVPR 2025
Robotics 19
VET: A Visual-Electronic Tactile System for Immersive Human-Machine Interaction
In the pursuit of deeper immersion in human-machine interaction, achieving higher-dimensional tactile input and output on a single interface has become a key research focus. This study introduces the Visual-Electronic Tactile (VET) System, which builds upon vision-based tactile sensors (VBTS) and integrates electrical stimulation feedback to enable bidirectional tactile communication. We propose and implement a system framework that seamlessly integrates an electrical stimulation film with VBTS using a screen-printing preparation process, eliminating interference from traditional methods. While VBTS captures multi-dimensional input through visuotactile signals, electrical stimulation feedback directly stimulates neural pathways, preventing interference with visuotactile information. The potential of the VET system is demonstrated through experiments on finger electrical stimulation sensitivity zones, as well as applications in interactive gaming and robotic arm teleoperation. This system paves the way for new advancements in bidirectional tactile interaction and its broader applications.
♻ ☆ AVOCADO: Adaptive Optimal Collision Avoidance driven by Opinion TRO
We present AVOCADO (AdaptiVe Optimal Collision Avoidance Driven by Opinion), a novel navigation approach to address holonomic robot collision avoidance when the robot does not know how cooperative the other agents in the environment are. AVOCADO departs from a Velocity Obstacle's (VO) formulation akin to the Optimal Reciprocal Collision Avoidance method. However, instead of assuming reciprocity, it poses an adaptive control problem to adapt to the cooperation level of other robots and agents in real time. This is achieved through a novel nonlinear opinion dynamics design that relies solely on sensor observations. As a by-product, we leverage tools from the opinion dynamics formulation to naturally avoid the deadlocks in geometrically symmetric scenarios that typically suffer VO-based planners. Extensive numerical simulations show that AVOCADO surpasses existing motion planners in mixed cooperative/non-cooperative navigation environments in terms of success rate, time to goal and computational time. In addition, we conduct multiple real experiments that verify that AVOCADO is able to avoid collisions in environments crowded with other robots and humans.
comment: This paper is published at IEEE Transactions on Robotics under DOI 10.1109/TRO.2025.3552350
♻ ☆ Tra-MoE: Learning Trajectory Prediction Model from Multiple Domains for Adaptive Policy Conditioning CVPR 2025
Learning from multiple domains is a primary factor that influences the generalization of a single unified robot system. In this paper, we aim to learn the trajectory prediction model by using broad out-of-domain data to improve its performance and generalization ability. Trajectory model is designed to predict any-point trajectories in the current frame given an instruction and can provide detailed control guidance for robotic policy learning. To handle the diverse out-of-domain data distribution, we propose a sparsely-gated MoE (\textbf{Top-1} gating strategy) architecture for trajectory model, coined as \textbf{Tra-MoE}. The sparse activation design enables good balance between parameter cooperation and specialization, effectively benefiting from large-scale out-of-domain data while maintaining constant FLOPs per token. In addition, we further introduce an adaptive policy conditioning technique by learning 2D mask representations for predicted trajectories, which is explicitly aligned with image observations to guide action prediction more flexibly. We perform extensive experiments on both simulation and real-world scenarios to verify the effectiveness of Tra-MoE and adaptive policy conditioning technique. We also conduct a comprehensive empirical study to train Tra-MoE, demonstrating that our Tra-MoE consistently exhibits superior performance compared to the dense baseline model, even when the latter is scaled to match Tra-MoE's parameter count.
comment: Accepted to CVPR 2025. Code Page: https://github.com/MCG-NJU/Tra-MoE
♻ ☆ ActiveGAMER: Active GAussian Mapping through Efficient Rendering CVPR2025
We introduce ActiveGAMER, an active mapping system that utilizes 3D Gaussian Splatting (3DGS) to achieve high-quality, real-time scene mapping and exploration. Unlike traditional NeRF-based methods, which are computationally demanding and restrict active mapping performance, our approach leverages the efficient rendering capabilities of 3DGS, allowing effective and efficient exploration in complex environments. The core of our system is a rendering-based information gain module that dynamically identifies the most informative viewpoints for next-best-view planning, enhancing both geometric and photometric reconstruction accuracy. ActiveGAMER also integrates a carefully balanced framework, combining coarse-to-fine exploration, post-refinement, and a global-local keyframe selection strategy to maximize reconstruction completeness and fidelity. Our system autonomously explores and reconstructs environments with state-of-the-art geometric and photometric accuracy and completeness, significantly surpassing existing approaches in both aspects. Extensive evaluations on benchmark datasets such as Replica and MP3D highlight ActiveGAMER's effectiveness in active mapping tasks.
comment: Accepted to CVPR2025
♻ ☆ TelePreview: A User-Friendly Teleoperation System with Virtual Arm Assistance for Enhanced Effectiveness
Teleoperation provides an effective way to collect robot data, which is crucial for learning from demonstrations. In this field, teleoperation faces several key challenges: user-friendliness for new users, safety assurance, and transferability across different platforms. While collecting real robot dexterous manipulation data by teleoperation to train robots has shown impressive results on diverse tasks, due to the morphological differences between human and robot hands, it is not only hard for new users to understand the action mapping but also raises potential safety concerns during operation. To address these limitations, we introduce TelePreview. This teleoperation system offers real-time visual feedback on robot actions based on human user inputs, with a total hardware cost of less than $1,000. TelePreview allows the user to see a virtual robot that represents the outcome of the user's next movement. By enabling flexible switching between command visualization and actual execution, this system helps new users learn how to demonstrate quickly and safely. We demonstrate that it outperforms other teleoperation systems across five tasks, emphasize its ease of use, and highlight its straightforward deployment across diverse robotic platforms. We release our code and a deployment document on our website https://nus-lins-lab.github.io/telepreview-web/.
comment: In submission
♻ ☆ One Policy to Run Them All: an End-to-end Learning Approach to Multi-Embodiment Locomotion
Deep Reinforcement Learning techniques are achieving state-of-the-art results in robust legged locomotion. While there exists a wide variety of legged platforms such as quadruped, humanoids, and hexapods, the field is still missing a single learning framework that can control all these different embodiments easily and effectively and possibly transfer, zero or few-shot, to unseen robot embodiments. We introduce URMA, the Unified Robot Morphology Architecture, to close this gap. Our framework brings the end-to-end Multi-Task Reinforcement Learning approach to the realm of legged robots, enabling the learned policy to control any type of robot morphology. The key idea of our method is to allow the network to learn an abstract locomotion controller that can be seamlessly shared between embodiments thanks to our morphology-agnostic encoders and decoders. This flexible architecture can be seen as a potential first step in building a foundation model for legged robot locomotion. Our experiments show that URMA can learn a locomotion policy on multiple embodiments that can be easily transferred to unseen robot platforms in simulation and the real world.
♻ ☆ A Digital Twin for Telesurgery under Intermittent Communication
Telesurgery is an effective way to deliver service from expert surgeons to areas without immediate access to specialized resources. However, many of these areas, such as rural districts or battlefields, might be subject to different problems in communication, especially latency and intermittent periods of communication outage. This challenge motivates the use of a digital twin for the surgical system, where a simulation would mirror the robot hardware and surgical environment in the real world. The surgeon would then be able to interact with the digital twin during communication outage, followed by a recovery strategy on the real robot upon reestablishing communication. This paper builds the digital twin for the da Vinci surgical robot, with a buffering and replay strategy that reduces the mean task completion time by 23% when compared to the baseline, for a peg transfer task subject to intermittent communication outage. The relevant code can be found here: https://github.com/LCSR-CIIS/dvrk_digital_twin_teleoperation.
comment: 7 pages, 5 figures. To be published in 2025 International Symposium on Medical Robotics (ISMR)
♻ ☆ Hierarchical Procedural Framework for Low-latency Robot-Assisted Hand-Object Interaction
Advances in robotics have been driving the development of human-robot interaction (HRI) technologies. However, accurately perceiving human actions and achieving adaptive control remains a challenge in facilitating seamless coordination between human and robotic movements. In this paper, we propose a hierarchical procedural framework to enable dynamic robot-assisted hand-object interaction. An open-loop hierarchy leverages the computer vision (CV)-based 3D reconstruction of the human hand, based on which motion primitives have been designed to translate hand motions into robotic actions. The low-level coordination hierarchy fine-tunes the robot's action by using the continuously updated 3D hand models. Experimental validation demonstrates the effectiveness of the hierarchical control architecture. The adaptive coordination between human and robot behavior has achieved a delay of $\leq 0.3$ seconds in the tele-interaction scenario. A case study of ring-wearing tasks indicates the potential application of this work in assistive technologies such as healthcare and manufacturing.
comment: 6 pages, 5 figures
♻ ☆ DELTA: Decomposed Efficient Long-Term Robot Task Planning using Large Language Models ICRA 2025
Recent advancements in Large Language Models (LLMs) have sparked a revolution across many research fields. In robotics, the integration of common-sense knowledge from LLMs into task and motion planning has drastically advanced the field by unlocking unprecedented levels of context awareness. Despite their vast collection of knowledge, large language models may generate infeasible plans due to hallucinations or missing domain information. To address these challenges and improve plan feasibility and computational efficiency, we introduce DELTA, a novel LLM-informed task planning approach. By using scene graphs as environment representations within LLMs, DELTA achieves rapid generation of precise planning problem descriptions. To enhance planning performance, DELTA decomposes long-term task goals with LLMs into an autoregressive sequence of sub-goals, enabling automated task planners to efficiently solve complex problems. In our extensive evaluation, we show that DELTA enables an efficient and fully automatic task planning pipeline, achieving higher planning success rates and significantly shorter planning times compared to the state of the art. Project webpage: https://delta-llm.github.io/
comment: Accepted at ICRA 2025
♻ ☆ RedMotion: Motion Prediction via Redundancy Reduction
We introduce RedMotion, a transformer model for motion prediction in self-driving vehicles that learns environment representations via redundancy reduction. Our first type of redundancy reduction is induced by an internal transformer decoder and reduces a variable-sized set of local road environment tokens, representing road graphs and agent data, to a fixed-sized global embedding. The second type of redundancy reduction is obtained by self-supervised learning and applies the redundancy reduction principle to embeddings generated from augmented views of road environments. Our experiments reveal that our representation learning approach outperforms PreTraM, Traj-MAE, and GraphDINO in a semi-supervised setting. Moreover, RedMotion achieves competitive results compared to HPTR or MTR++ in the Waymo Motion Prediction Challenge. Our open-source implementation is available at: https://github.com/kit-mrt/future-motion
comment: TMLR published version
♻ ☆ A formal implementation of Behavior Trees to act in robotics
Behavior Trees (BT) are becoming quite popular as an Acting component of autonomous robotic systems. We propose to define a formal semantics to BT by translating them to a formal language which enables us to perform verification of programs written with BT, as well as runtime verification while these BT execute. This allows us to formally verify BT correctness without requiring BT programmers to master formal languages and without compromising BT most valuable features: modularity, flexibility and reusability. We present the formal framework we use: Fiacre, its language and the produced TTS model; Tina, its model checking tools and Hippo, its runtime verification engine. We then show how the translation from BT to Fiacre is automatically done, the type of formal LTL and CTL properties we can check offline and how to execute the formal model online in place of a regular BT engine. We illustrate our approach on two robotics applications, and show how BT can be extended with state variables, eval nodes, node evaluation results and benefit of other features available in the Fiacre formal framework (e.g., time).
♻ ☆ A Graph-to-Text Approach to Knowledge-Grounded Response Generation in Human-Robot Interaction
Knowledge graphs are often used to represent structured information in a flexible and efficient manner, but their use in situated dialogue remains under-explored. This paper presents a novel conversational model for human--robot interaction that rests upon a graph-based representation of the dialogue state. The knowledge graph representing the dialogue state is continuously updated with new observations from the robot sensors, including linguistic, situated and multimodal inputs, and is further enriched by other modules, in particular for spatial understanding. The neural conversational model employed to respond to user utterances relies on a simple but effective graph-to-text mechanism that traverses the dialogue state graph and converts the traversals into a natural language form. This conversion of the state graph into text is performed using a set of parameterized functions, and the values for those parameters are optimized based on a small set of Wizard-of-Oz interactions. After this conversion, the text representation of the dialogue state graph is included as part of the prompt of a large language model used to decode the agent response. The proposed approach is empirically evaluated through a user study with a humanoid robot that acts as conversation partner to evaluate the impact of the graph-to-text mechanism on the response generation. After moving a robot along a tour of an indoor environment, participants interacted with the robot using spoken dialogue and evaluated how well the robot was able to answer questions about what the robot observed during the tour. User scores show a statistically significant improvement in the perceived factuality of the robot responses when the graph-to-text approach is employed, compared to a baseline using inputs structured as semantic triples.
comment: Submitted to Dialogue & Discourse 2023
♻ ☆ Reactive Diffusion Policy: Slow-Fast Visual-Tactile Policy Learning for Contact-Rich Manipulation
Humans can accomplish complex contact-rich tasks using vision and touch, with highly reactive capabilities such as quick adjustments to environmental changes and adaptive control of contact forces; however, this remains challenging for robots. Existing visual imitation learning (IL) approaches rely on action chunking to model complex behaviors, which lacks the ability to respond instantly to real-time tactile feedback during the chunk execution. Furthermore, most teleoperation systems struggle to provide fine-grained tactile / force feedback, which limits the range of tasks that can be performed. To address these challenges, we introduce TactAR, a low-cost teleoperation system that provides real-time tactile feedback through Augmented Reality (AR), along with Reactive Diffusion Policy (RDP), a novel slow-fast visual-tactile imitation learning algorithm for learning contact-rich manipulation skills. RDP employs a two-level hierarchy: (1) a slow latent diffusion policy for predicting high-level action chunks in latent space at low frequency, (2) a fast asymmetric tokenizer for closed-loop tactile feedback control at high frequency. This design enables both complex trajectory modeling and quick reactive behavior within a unified framework. Through extensive evaluation across three challenging contact-rich tasks, RDP significantly improves performance compared to state-of-the-art visual IL baselines through rapid response to tactile / force feedback. Furthermore, experiments show that RDP is applicable across different tactile / force sensors. Code and videos are available on https://reactive-diffusion-policy.github.io.
♻ ☆ AnyTouch: Learning Unified Static-Dynamic Representation across Multiple Visuo-tactile Sensors ICLR 2025
Visuo-tactile sensors aim to emulate human tactile perception, enabling robots to precisely understand and manipulate objects. Over time, numerous meticulously designed visuo-tactile sensors have been integrated into robotic systems, aiding in completing various tasks. However, the distinct data characteristics of these low-standardized visuo-tactile sensors hinder the establishment of a powerful tactile perception system. We consider that the key to addressing this issue lies in learning unified multi-sensor representations, thereby integrating the sensors and promoting tactile knowledge transfer between them. To achieve unified representation of this nature, we introduce TacQuad, an aligned multi-modal multi-sensor tactile dataset from four different visuo-tactile sensors, which enables the explicit integration of various sensors. Recognizing that humans perceive the physical environment by acquiring diverse tactile information such as texture and pressure changes, we further propose to learn unified multi-sensor representations from both static and dynamic perspectives. By integrating tactile images and videos, we present AnyTouch, a unified static-dynamic multi-sensor representation learning framework with a multi-level structure, aimed at both enhancing comprehensive perceptual abilities and enabling effective cross-sensor transfer. This multi-level architecture captures pixel-level details from tactile data via masked modeling and enhances perception and transferability by learning semantic-level sensor-agnostic features through multi-modal alignment and cross-sensor matching. We provide a comprehensive analysis of multi-sensor transferability, and validate our method on various datasets and in the real-world pouring task. Experimental results show that our method outperforms existing methods, exhibits outstanding static and dynamic perception capabilities across various sensors.
comment: Accepted by ICLR 2025
♻ ☆ Temporal and Semantic Evaluation Metrics for Foundation Models in Post-Hoc Analysis of Robotic Sub-tasks IROS 2024
Recent works in Task and Motion Planning (TAMP) show that training control policies on language-supervised robot trajectories with quality labeled data markedly improves agent task success rates. However, the scarcity of such data presents a significant hurdle to extending these methods to general use cases. To address this concern, we present an automated framework to decompose trajectory data into temporally bounded and natural language-based descriptive sub-tasks by leveraging recent prompting strategies for Foundation Models (FMs) including both Large Language Models (LLMs) and Vision Language Models (VLMs). Our framework provides both time-based and language-based descriptions for lower-level sub-tasks that comprise full trajectories. To rigorously evaluate the quality of our automatic labeling framework, we contribute an algorithm SIMILARITY to produce two novel metrics, temporal similarity and semantic similarity. The metrics measure the temporal alignment and semantic fidelity of language descriptions between two sub-task decompositions, namely an FM sub-task decomposition prediction and a ground-truth sub-task decomposition. We present scores for temporal similarity and semantic similarity above 90%, compared to 30% of a randomized baseline, for multiple robotic environments, demonstrating the effectiveness of our proposed framework. Our results enable building diverse, large-scale, language-supervised datasets for improved robotic TAMP.
comment: 8 pages, 3 figures. IROS 2024 Submission
♻ ☆ Scalable Real2Sim: Physics-Aware Asset Generation Via Robotic Pick-and-Place Setups
Simulating object dynamics from real-world perception shows great promise for digital twins and robotic manipulation but often demands labor-intensive measurements and expertise. We present a fully automated Real2Sim pipeline that generates simulation-ready assets for real-world objects through robotic interaction. Using only a robot's joint torque sensors and an external camera, the pipeline identifies visual geometry, collision geometry, and physical properties such as inertial parameters. Our approach introduces a general method for extracting high-quality, object-centric meshes from photometric reconstruction techniques (e.g., NeRF, Gaussian Splatting) by employing alpha-transparent training while explicitly distinguishing foreground occlusions from background subtraction. We validate the full pipeline through extensive experiments, demonstrating its effectiveness across diverse objects. By eliminating the need for manual intervention or environment modifications, our pipeline can be integrated directly into existing pick-and-place setups, enabling scalable and efficient dataset creation. Project page (with code and data): https://scalable-real2sim.github.io/.
comment: Website: https://scalable-real2sim.github.io/
♻ ☆ RG-Attn: Radian Glue Attention for Multi-modality Multi-agent Cooperative Perception
Cooperative perception offers an optimal solution to overcome the perception limitations of single-agent systems by leveraging Vehicle-to-Everything (V2X) communication for data sharing and fusion across multiple agents. However, most existing approaches focus on single-modality data exchange, limiting the potential of both homogeneous and heterogeneous fusion across agents. This overlooks the opportunity to utilize multi-modality data per agent, restricting the system's performance. In the automotive industry, manufacturers adopt diverse sensor configurations, resulting in heterogeneous combinations of sensor modalities across agents. To harness the potential of every possible data source for optimal performance, we design a robust LiDAR and camera cross-modality fusion module, Radian-Glue-Attention (RG-Attn), applicable to both intra-agent cross-modality fusion and inter-agent cross-modality fusion scenarios, owing to the convenient coordinate conversion by transformation matrix and the unified sampling/inversion mechanism. We also propose two different architectures, named Paint-To-Puzzle (PTP) and Co-Sketching-Co-Coloring (CoS-CoCo), for conducting cooperative perception. PTP aims for maximum precision performance and achieves smaller data packet size by limiting cross-agent fusion to a single instance, but requiring all participants to be equipped with LiDAR. In contrast, CoS-CoCo supports agents with any configuration-LiDAR-only, camera-only, or LiDAR-camera-both, presenting more generalization ability. Our approach achieves state-of-the-art (SOTA) performance on both real and simulated cooperative perception datasets. The code is now available at GitHub.
♻ ☆ Whole-Body Dynamic Throwing with Legged Manipulators
Throwing with a legged robot involves precise coordination of object manipulation and locomotion - crucial for advanced real-world interactions. Most research focuses on either manipulation or locomotion, with minimal exploration of tasks requiring both. This work investigates leveraging all available motors (full-body) over arm-only throwing in legged manipulators. We frame the task as a deep reinforcement learning (RL) objective, optimising throwing accuracy towards any user-commanded target destination and the robot's stability. Evaluations on a humanoid and an armed quadruped in simulation show that full-body throwing improves range, accuracy, and stability by exploiting body momentum, counter-balancing, and full-body dynamics. We introduce an optimised adaptive curriculum to balance throwing accuracy and stability, along with a tailored RL environment setup for efficient learning in sparse-reward conditions. Unlike prior work, our approach generalises to targets in 3D space. We transfer our learned controllers from simulation to a real humanoid platform.
♻ ☆ VizFlyt: Perception-centric Pedagogical Framework For Autonomous Aerial Robots ICRA 2025
Autonomous aerial robots are becoming commonplace in our lives. Hands-on aerial robotics courses are pivotal in training the next-generation workforce to meet the growing market demands. Such an efficient and compelling course depends on a reliable testbed. In this paper, we present VizFlyt, an open-source perception-centric Hardware-In-The-Loop (HITL) photorealistic testing framework for aerial robotics courses. We utilize pose from an external localization system to hallucinate real-time and photorealistic visual sensors using 3D Gaussian Splatting. This enables stress-free testing of autonomy algorithms on aerial robots without the risk of crashing into obstacles. We achieve over 100Hz of system update rate. Lastly, we build upon our past experiences of offering hands-on aerial robotics courses and propose a new open-source and open-hardware curriculum based on VizFlyt for the future. We test our framework on various course projects in real-world HITL experiments and present the results showing the efficacy of such a system and its large potential use cases. Code, datasets, hardware guides and demo videos are available at https://pear.wpi.edu/research/vizflyt.html
comment: Accepted at ICRA 2025. Projected Page: https://pear.wpi.edu/research/vizflyt.html
Computer Vision 86
♻ ☆ Self-Supervised Pretraining for Aerial Road Extraction
Deep neural networks for aerial image segmentation require large amounts of labeled data, but high-quality aerial datasets with precise annotations are scarce and costly to produce. To address this limitation, we propose a self-supervised pretraining method that improves segmentation performance while reducing reliance on labeled data. Our approach uses inpainting-based pretraining, where the model learns to reconstruct missing regions in aerial images, capturing their inherent structure before being fine-tuned for road extraction. This method improves generalization, enhances robustness to domain shifts, and is invariant to model architecture and dataset choice. Experiments show that our pretraining significantly boosts segmentation accuracy, especially in low-data regimes, making it a scalable solution for aerial image analysis.
comment: Accepted at 36th IEEE Intelligent Vehicles Symposium (IV) 2025 Joint Workshop on Safety, Metrics and Benchmarks for Autonomous Driving
♻ ☆ Image as an IMU: Estimating Camera Motion from a Single Motion-Blurred Image
In many robotics and VR/AR applications, fast camera motions cause a high level of motion blur, causing existing camera pose estimation methods to fail. In this work, we propose a novel framework that leverages motion blur as a rich cue for motion estimation rather than treating it as an unwanted artifact. Our approach works by predicting a dense motion flow field and a monocular depth map directly from a single motion-blurred image. We then recover the instantaneous camera velocity by solving a linear least squares problem under the small motion assumption. In essence, our method produces an IMU-like measurement that robustly captures fast and aggressive camera movements. To train our model, we construct a large-scale dataset with realistic synthetic motion blur derived from ScanNet++v2 and further refine our model by training end-to-end on real data using our fully differentiable pipeline. Extensive evaluations on real-world benchmarks demonstrate that our method achieves state-of-the-art angular and translational velocity estimates, outperforming current methods like MASt3R and COLMAP.
comment: Project page: https://jerredchen.github.io/image-as-imu/
♻ ☆ Visual Acoustic Fields
Objects produce different sounds when hit, and humans can intuitively infer how an object might sound based on its appearance and material properties. Inspired by this intuition, we propose Visual Acoustic Fields, a framework that bridges hitting sounds and visual signals within a 3D space using 3D Gaussian Splatting (3DGS). Our approach features two key modules: sound generation and sound localization. The sound generation module leverages a conditional diffusion model, which takes multiscale features rendered from a feature-augmented 3DGS to generate realistic hitting sounds. Meanwhile, the sound localization module enables querying the 3D scene, represented by the feature-augmented 3DGS, to localize hitting positions based on the sound sources. To support this framework, we introduce a novel pipeline for collecting scene-level visual-sound sample pairs, achieving alignment between captured images, impact locations, and corresponding sounds. To the best of our knowledge, this is the first dataset to connect visual and acoustic signals in a 3D context. Extensive experiments on our dataset demonstrate the effectiveness of Visual Acoustic Fields in generating plausible impact sounds and accurately localizing impact sources. Our project page is at https://yuelei0428.github.io/projects/Visual-Acoustic-Fields/.
♻ ☆ A Comparative Study of Scanpath Models in Graph-Based Visualization
Information Visualization (InfoVis) systems utilize visual representations to enhance data interpretation. Understanding how visual attention is allocated is essential for optimizing interface design. However, collecting Eye-tracking (ET) data presents challenges related to cost, privacy, and scalability. Computational models provide alternatives for predicting gaze patterns, thereby advancing InfoVis research. In our study, we conducted an ET experiment with 40 participants who analyzed graphs while responding to questions of varying complexity within the context of digital forensics. We compared human scanpaths with synthetic ones generated by models such as DeepGaze, UMSS, and Gazeformer. Our research evaluates the accuracy of these models and examines how question complexity and number of nodes influence performance. This work contributes to the development of predictive modeling in visual analytics, offering insights that can enhance the design and effectiveness of InfoVis systems.
♻ ☆ HumanDreamer: Generating Controllable Human-Motion Videos via Decoupled Generation
Human-motion video generation has been a challenging task, primarily due to the difficulty inherent in learning human body movements. While some approaches have attempted to drive human-centric video generation explicitly through pose control, these methods typically rely on poses derived from existing videos, thereby lacking flexibility. To address this, we propose HumanDreamer, a decoupled human video generation framework that first generates diverse poses from text prompts and then leverages these poses to generate human-motion videos. Specifically, we propose MotionVid, the largest dataset for human-motion pose generation. Based on the dataset, we present MotionDiT, which is trained to generate structured human-motion poses from text prompts. Besides, a novel LAMA loss is introduced, which together contribute to a significant improvement in FID by 62.4%, along with respective enhancements in R-precision for top1, top2, and top3 by 41.8%, 26.3%, and 18.3%, thereby advancing both the Text-to-Pose control accuracy and FID metrics. Our experiments across various Pose-to-Video baselines demonstrate that the poses generated by our method can produce diverse and high-quality human-motion videos. Furthermore, our model can facilitate other downstream tasks, such as pose sequence prediction and 2D-3D motion lifting.
comment: Project Page: https://humandreamer.github.io
♻ ☆ Local Information Matters: Inference Acceleration For Grounded Conversation Generation Models Through Adaptive Local-Aware Token Pruning
Grounded Conversation Generation (GCG) is an emerging vision-language task that requires models to generate natural language responses seamlessly intertwined with corresponding object segmentation masks. Recent models, such as GLaMM and OMG-LLaVA, achieve pixel-level grounding but incur significant computational costs due to processing a large number of visual tokens. Existing token pruning methods, like FastV and PyramidDrop, fail to preserve the local visual features critical for accurate grounding, leading to substantial performance drops in GCG tasks. To address this, we propose Adaptive Local-Aware Token Pruning (ALTP), a simple yet effective framework that accelerates GCG models by prioritizing local object information. ALTP introduces two key components: (1) Detail Density Capture (DDC), which uses superpixel segmentation to retain tokens in object-centric regions, preserving fine-grained details, and (2) Dynamic Density Formation (DDF), which dynamically allocates tokens based on information density, ensuring higher retention in semantically rich areas. Extensive experiments on the GranDf dataset demonstrate that ALTP significantly outperforms existing token pruning methods, such as FastV and PyramidDrop, on both GLaMM and OMG-LLaVA models. Notably, when applied to GLaMM, ALTP achieves a 90% reduction in visual tokens with a 4.9% improvement in AP50 and a 5.0% improvement in Recall compared to PyramidDrop. Similarly, on OMG-LLaVA, ALTP improves AP by 2.1% and mIOU by 3.0% at a 90% token reduction compared with PDrop.
♻ ☆ Learned Image Compression and Restoration for Digital Pathology
Digital pathology images play a crucial role in medical diagnostics, but their ultra-high resolution and large file sizes pose significant challenges for storage, transmission, and real-time visualization. To address these issues, we propose CLERIC, a novel deep learning-based image compression framework designed specifically for whole slide images (WSIs). CLERIC integrates a learnable lifting scheme and advanced convolutional techniques to enhance compression efficiency while preserving critical pathological details. Our framework employs a lifting-scheme transform in the analysis stage to decompose images into low- and high-frequency components, enabling more structured latent representations. These components are processed through parallel encoders incorporating Deformable Residual Blocks (DRB) and Recurrent Residual Blocks (R2B) to improve feature extraction and spatial adaptability. The synthesis stage applies an inverse lifting transform for effective image reconstruction, ensuring high-fidelity restoration of fine-grained tissue structures. We evaluate CLERIC on a digital pathology image dataset and compare its performance against state-of-the-art learned image compression (LIC) models. Experimental results demonstrate that CLERIC achieves superior rate-distortion (RD) performance, significantly reducing storage requirements while maintaining high diagnostic image quality. Our study highlights the potential of deep learning-based compression in digital pathology, facilitating efficient data management and long-term storage while ensuring seamless integration into clinical workflows and AI-assisted diagnostic systems. Code and models are available at: https://github.com/pnu-amilab/CLERIC.
♻ ☆ Controllable Human Image Generation with Personalized Multi-Garments CVPR 2025
We present BootComp, a novel framework based on text-to-image diffusion models for controllable human image generation with multiple reference garments. Here, the main bottleneck is data acquisition for training: collecting a large-scale dataset of high-quality reference garment images per human subject is quite challenging, i.e., ideally, one needs to manually gather every single garment photograph worn by each human. To address this, we propose a data generation pipeline to construct a large synthetic dataset, consisting of human and multiple-garment pairs, by introducing a model to extract any reference garment images from each human image. To ensure data quality, we also propose a filtering strategy to remove undesirable generated data based on measuring perceptual similarities between the garment presented in human image and extracted garment. Finally, by utilizing the constructed synthetic dataset, we train a diffusion model having two parallel denoising paths that use multiple garment images as conditions to generate human images while preserving their fine-grained details. We further show the wide-applicability of our framework by adapting it to different types of reference-based generation in the fashion domain, including virtual try-on, and controllable human image generation with other conditions, e.g., pose, face, etc.
comment: CVPR 2025. Project page: https://omnious.github.io/BootComp
♻ ☆ On-device Sora: Enabling Training-Free Diffusion-based Text-to-Video Generation for Mobile Devices
We present On-device Sora, the first model training-free solution for diffusion-based on-device text-to-video generation that operates efficiently on smartphone-grade devices. To address the challenges of diffusion-based text-to-video generation on computation- and memory-limited mobile devices, the proposed On-device Sora applies three novel techniques to pre-trained video generative models. First, Linear Proportional Leap (LPL) reduces the excessive denoising steps required in video diffusion through an efficient leap-based approach. Second, Temporal Dimension Token Merging (TDTM) minimizes intensive token-processing computation in attention layers by merging consecutive tokens along the temporal dimension. Third, Concurrent Inference with Dynamic Loading (CI-DL) dynamically partitions large models into smaller blocks and loads them into memory for concurrent model inference, effectively addressing the challenges of limited device memory. We implement On-device Sora on the iPhone 15 Pro, and the experimental evaluations show that it is capable of generating high-quality videos on the device, comparable to those produced by high-end GPUs. These results show that On-device Sora enables efficient and high-quality video generation on resource-constrained mobile devices. We envision the proposed On-device Sora as a significant first step toward democratizing state-of-the-art generative technologies, enabling video generation on commodity mobile and embedded devices without resource-intensive re-training for model optimization (compression). The code implementation is available at a GitHub repository(https://github.com/eai-lab/On-device-Sora).
comment: Replicated Submission. arXiv:2502.04363 submitted as second version of the paper
♻ ☆ WaveFormer: A 3D Transformer with Wavelet-Driven Feature Representation for Efficient Medical Image Segmentation
Transformer-based architectures have advanced medical image analysis by effectively modeling long-range dependencies, yet they often struggle in 3D settings due to substantial memory overhead and insufficient capture of fine-grained local features. We address these limitations with WaveFormer, a novel 3D-transformer that: i) leverages the fundamental frequency-domain properties of features for contextual representation, and ii) is inspired by the top-down mechanism of the human visual recognition system, making it a biologically motivated architecture. By employing discrete wavelet transformations (DWT) at multiple scales, WaveFormer preserves both global context and high-frequency details while replacing heavy upsampling layers with efficient wavelet-based summarization and reconstruction. This significantly reduces the number of parameters, which is critical for real-world deployment where computational resources and training times are constrained. Furthermore, the model is generic and easily adaptable to diverse applications. Evaluations on BraTS2023, FLARE2021, and KiTS2023 demonstrate performance on par with state-of-the-art methods while offering substantially lower computational complexity.
♻ ☆ ActiveGAMER: Active GAussian Mapping through Efficient Rendering CVPR2025
We introduce ActiveGAMER, an active mapping system that utilizes 3D Gaussian Splatting (3DGS) to achieve high-quality, real-time scene mapping and exploration. Unlike traditional NeRF-based methods, which are computationally demanding and restrict active mapping performance, our approach leverages the efficient rendering capabilities of 3DGS, allowing effective and efficient exploration in complex environments. The core of our system is a rendering-based information gain module that dynamically identifies the most informative viewpoints for next-best-view planning, enhancing both geometric and photometric reconstruction accuracy. ActiveGAMER also integrates a carefully balanced framework, combining coarse-to-fine exploration, post-refinement, and a global-local keyframe selection strategy to maximize reconstruction completeness and fidelity. Our system autonomously explores and reconstructs environments with state-of-the-art geometric and photometric accuracy and completeness, significantly surpassing existing approaches in both aspects. Extensive evaluations on benchmark datasets such as Replica and MP3D highlight ActiveGAMER's effectiveness in active mapping tasks.
comment: Accepted to CVPR2025
♻ ☆ NTSEBENCH: Cognitive Reasoning Benchmark for Vision Language Models
Cognitive textual and visual reasoning tasks, including puzzles, series, and analogies, demand the ability to quickly reason, decipher, and evaluate patterns both textually and spatially. Due to extensive training on vast amounts of human-curated data, LLMs and VLMs excel in common-sense reasoning tasks, however still struggle with more complex reasoning that demands deeper cognitive understanding. We introduce NTSEBench, a new dataset designed to evaluate cognitive multi-modal reasoning and problem-solving skills of large models. The dataset contains 2728 multiple-choice questions, accompanied by a total of 4,642 images, categorized into 26 different types. These questions are drawn from the nationwide NTSE examination in India and feature a mix of visual and textual general aptitude challenges, designed to assess intelligence and critical thinking skills beyond mere rote learning. We establish baselines on the dataset using state-of-the-art LLMs and VLMs. To facilitate a comparison between open source and propriety models, we propose four distinct modeling strategies to handle different modalities -- text and images -- in the dataset instances.
comment: 28 pages, 3 figures, 12 tables
♻ ☆ Rehearsal-free Federated Domain-incremental Learning
We introduce a rehearsal-free federated domain incremental learning framework, RefFiL, based on a global prompt-sharing paradigm to alleviate catastrophic forgetting challenges in federated domain-incremental learning, where unseen domains are continually learned. Typical methods for mitigating forgetting, such as the use of additional datasets and the retention of private data from earlier tasks, are not viable in federated learning (FL) due to devices' limited resources. Our method, RefFiL, addresses this by learning domain-invariant knowledge and incorporating various domain-specific prompts from the domains represented by different FL participants. A key feature of RefFiL is the generation of local fine-grained prompts by our domain adaptive prompt generator, which effectively learns from local domain knowledge while maintaining distinctive boundaries on a global scale. We also introduce a domain-specific prompt contrastive learning loss that differentiates between locally generated prompts and those from other domains, enhancing RefFiL's precision and effectiveness. Compared to existing methods, RefFiL significantly alleviates catastrophic forgetting without requiring extra memory space, making it ideal for privacy-sensitive and resource-constrained devices.
comment: Camera ready version. Accepted by the IEEE ICDCS, 2025
♻ ☆ DetailGen3D: Generative 3D Geometry Enhancement via Data-Dependent Flow
Modern 3D generation methods can rapidly create shapes from sparse or single views, but their outputs often lack geometric detail due to computational constraints. We present DetailGen3D, a generative approach specifically designed to enhance these generated 3D shapes. Our key insight is to model the coarse-to-fine transformation directly through data-dependent flows in latent space, avoiding the computational overhead of large-scale 3D generative models. We introduce a token matching strategy that ensures accurate spatial correspondence during refinement, enabling local detail synthesis while preserving global structure. By carefully designing our training data to match the characteristics of synthesized coarse shapes, our method can effectively enhance shapes produced by various 3D generation and reconstruction approaches, from single-view to sparse multi-view inputs. Extensive experiments demonstrate that DetailGen3D achieves high-fidelity geometric detail synthesis while maintaining efficiency in training.
♻ ☆ IDArb: Intrinsic Decomposition for Arbitrary Number of Input Views and Illuminations ICLR 2025
Capturing geometric and material information from images remains a fundamental challenge in computer vision and graphics. Traditional optimization-based methods often require hours of computational time to reconstruct geometry, material properties, and environmental lighting from dense multi-view inputs, while still struggling with inherent ambiguities between lighting and material. On the other hand, learning-based approaches leverage rich material priors from existing 3D object datasets but face challenges with maintaining multi-view consistency. In this paper, we introduce IDArb, a diffusion-based model designed to perform intrinsic decomposition on an arbitrary number of images under varying illuminations. Our method achieves accurate and multi-view consistent estimation on surface normals and material properties. This is made possible through a novel cross-view, cross-domain attention module and an illumination-augmented, view-adaptive training strategy. Additionally, we introduce ARB-Objaverse, a new dataset that provides large-scale multi-view intrinsic data and renderings under diverse lighting conditions, supporting robust training. Extensive experiments demonstrate that IDArb outperforms state-of-the-art methods both qualitatively and quantitatively. Moreover, our approach facilitates a range of downstream tasks, including single-image relighting, photometric stereo, and 3D reconstruction, highlighting its broad applications in realistic 3D content creation.
comment: ICLR 2025. Project Page: https://lizb6626.github.io/IDArb/
♻ ☆ Oriented Object Detection in Optical Remote Sensing Images using Deep Learning: A Survey
Oriented object detection is one of the most fundamental and challenging tasks in remote sensing, aiming to locate and classify objects with arbitrary orientations. Recent advancements in deep learning have significantly enhanced the capabilities of oriented object detection. Given the rapid development of this field, this paper presents a comprehensive survey of recent advances in oriented object detection. To be specific, we begin by tracing the technical evolution from horizontal object detection to oriented object detection and highlighting the specific challenges, including feature misalignment, spatial misalignment, and oriented bounding box (OBB) regression problems. Subsequently, we further categorize existing methods into detection framework, OBB regression, and feature representations, and provide an in-depth discussion on how these approaches address the above challenges. In addition, we cover several publicly available datasets and evaluation protocols. Furthermore, we provide a comprehensive comparison and analysis of state-of-the-art methods. Toward the end of this paper, we identify several future directions for oriented object detection.
♻ ☆ Mixture of Experts Made Personalized: Federated Prompt Learning for Vision-Language Models ICLR 2025
Federated prompt learning benefits federated learning with CLIP-like Vision-Language Model's (VLM's) robust representation learning ability through prompt learning. However, current federated prompt learning methods are habitually restricted to the traditional FL paradigm, where the participating clients are generally only allowed to download a single globally aggregated model from the server. While justifiable for training full-sized models under federated settings, in this work, we argue that this paradigm is ill-suited for lightweight prompts. By facilitating the clients to download multiple pre-aggregated prompts as fixed non-local experts, we propose Personalized Federated Mixture of Adaptive Prompts (pFedMoAP), a novel FL framework that personalizes the prompt learning process through the lens of Mixture of Experts (MoE). pFedMoAP implements a local attention-based gating network that learns to generate enhanced text features for better alignment with local image data, benefiting from both local and downloaded non-local adaptive prompt experts. Extensive experiments on 9 datasets under various federated settings demonstrate the efficacy of the proposed pFedMoAP algorithm. The code is available at https://github.com/ljaiverson/pFedMoAP.
comment: ICLR 2025
♻ ☆ HCMA-UNet: A Hybrid CNN-Mamba UNet with Axial Self-Attention for Efficient Breast Cancer Segmentation
Breast cancer lesion segmentation in DCE-MRI remains challenging due to heterogeneous tumor morphology and indistinct boundaries. To address these challenges, this study proposes a novel hybrid segmentation network, HCMA-UNet, for lesion segmentation of breast cancer. Our network consists of a lightweight CNN backbone and a Multi-view Axial Self-Attention Mamba (MISM) module. The MISM module integrates Visual State Space Block (VSSB) and Axial Self-Attention (ASA) mechanism, effectively reducing parameters through Asymmetric Split Channel (ASC) strategy to achieve efficient tri-directional feature extraction. Our lightweight model achieves superior performance with 2.87M parameters and 126.44 GFLOPs. A Feature-guided Region-aware loss function (FRLoss) is proposed to enhance segmentation accuracy. Extensive experiments on one private and two public DCE-MRI breast cancer datasets demonstrate that our approach achieves state-of-the-art performance while maintaining computational efficiency. FRLoss also exhibits good cross-architecture generalization capabilities. The source code is available at https://github.com/Haoxuanli-Thu/HCMA-UNet.
♻ ☆ HyperSIGMA: Hyperspectral Intelligence Comprehension Foundation Model
Accurate hyperspectral image (HSI) interpretation is critical for providing valuable insights into various earth observation-related applications such as urban planning, precision agriculture, and environmental monitoring. However, existing HSI processing methods are predominantly task-specific and scene-dependent, which severely limits their ability to transfer knowledge across tasks and scenes, thereby reducing the practicality in real-world applications. To address these challenges, we present HyperSIGMA, a vision transformer-based foundation model that unifies HSI interpretation across tasks and scenes, scalable to over one billion parameters. To overcome the spectral and spatial redundancy inherent in HSIs, we introduce a novel sparse sampling attention (SSA) mechanism, which effectively promotes the learning of diverse contextual features and serves as the basic block of HyperSIGMA. HyperSIGMA integrates spatial and spectral features using a specially designed spectral enhancement module. In addition, we construct a large-scale hyperspectral dataset, HyperGlobal-450K, for pre-training, which contains about 450K hyperspectral images, significantly surpassing existing datasets in scale. Extensive experiments on various high-level and low-level HSI tasks demonstrate HyperSIGMA's versatility and superior representational capability compared to current state-of-the-art methods. Moreover, HyperSIGMA shows significant advantages in scalability, robustness, cross-modal transferring capability, real-world applicability, and computational efficiency. The code and models will be released at https://github.com/WHU-Sigma/HyperSIGMA.
comment: Accepted by IEEE TPAMI. Project website: https://whu-sigma.github.io/HyperSIGMA
♻ ☆ Mind the GAP: Glimpse-based Active Perception improves generalization and sample efficiency of visual reasoning
Human capabilities in understanding visual relations are far superior to those of AI systems, especially for previously unseen objects. For example, while AI systems struggle to determine whether two such objects are visually the same or different, humans can do so with ease. Active vision theories postulate that the learning of visual relations is grounded in actions that we take to fixate objects and their parts by moving our eyes. In particular, the low-dimensional spatial information about the corresponding eye movements is hypothesized to facilitate the representation of relations between different image parts. Inspired by these theories, we develop a system equipped with a novel Glimpse-based Active Perception (GAP) that sequentially glimpses at the most salient regions of the input image and processes them at high resolution. Importantly, our system leverages the locations stemming from the glimpsing actions, along with the visual content around them, to represent relations between different parts of the image. The results suggest that the GAP is essential for extracting visual relations that go beyond the immediate visual content. Our approach reaches state-of-the-art performance on several visual reasoning tasks being more sample-efficient, and generalizing better to out-of-distribution visual inputs than prior models.
comment: 10 pages of main text and 8 pages appendices
♻ ☆ RedMotion: Motion Prediction via Redundancy Reduction
We introduce RedMotion, a transformer model for motion prediction in self-driving vehicles that learns environment representations via redundancy reduction. Our first type of redundancy reduction is induced by an internal transformer decoder and reduces a variable-sized set of local road environment tokens, representing road graphs and agent data, to a fixed-sized global embedding. The second type of redundancy reduction is obtained by self-supervised learning and applies the redundancy reduction principle to embeddings generated from augmented views of road environments. Our experiments reveal that our representation learning approach outperforms PreTraM, Traj-MAE, and GraphDINO in a semi-supervised setting. Moreover, RedMotion achieves competitive results compared to HPTR or MTR++ in the Waymo Motion Prediction Challenge. Our open-source implementation is available at: https://github.com/kit-mrt/future-motion
comment: TMLR published version
♻ ☆ Fine-Grained Behavior and Lane Constraints Guided Trajectory Prediction Method
Trajectory prediction, as a critical component of autonomous driving systems, has attracted the attention of many researchers. Existing prediction algorithms focus on extracting more detailed scene features or selecting more reasonable trajectory destinations. However, in the face of dynamic and evolving future movements of the target vehicle, these algorithms cannot provide a fine-grained and continuous description of future behaviors and lane constraints, which degrades the prediction accuracy. To address this challenge, we present BLNet, a novel dualstream architecture that synergistically integrates behavioral intention recognition and lane constraint modeling through parallel attention mechanisms. The framework generates fine-grained behavior state queries (capturing spatial-temporal movement patterns) and lane queries (encoding lane topology constraints), supervised by two auxiliary losses, respectively. Subsequently, a two-stage decoder first produces trajectory proposals, then performs point-level refinement by jointly incorporating both the continuity of passed lanes and future motion features. Extensive experiments on two large datasets, nuScenes and Argoverse, show that our network exhibits significant performance gains over existing direct regression and goal-based algorithms.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ RePoseD: Efficient Relative Pose Estimation With Known Depth Information
Recent advances in monocular depth estimation methods (MDE) and their improved accuracy open new possibilities for their applications. In this paper, we investigate how monocular depth estimates can be used for relative pose estimation. In particular, we are interested in answering the question whether using MDEs improves results over traditional point-based methods. We propose a novel framework for estimating the relative pose of two cameras from point correspondences with associated monocular depths. Since depth predictions are typically defined up to an unknown scale or even both unknown scale and shift parameters, our solvers jointly estimate the scale or both the scale and shift parameters along with the relative pose. We derive efficient solvers considering different types of depths for three camera configurations: (1) two calibrated cameras, (2) two cameras with an unknown shared focal length, and (3) two cameras with unknown different focal lengths. Our new solvers outperform state-of-the-art depth-aware solvers in terms of speed and accuracy. In extensive real experiments on multiple datasets and with various MDEs, we discuss which depth-aware solvers are preferable in which situation. The code will be made publicly available.
comment: 18 pages
♻ ☆ Enhanced Controllability of Diffusion Models via Feature Disentanglement and Realism-Enhanced Sampling Methods ECCV 2024
As Diffusion Models have shown promising performance, a lot of efforts have been made to improve the controllability of Diffusion Models. However, how to train Diffusion Models to have the disentangled latent spaces and how to naturally incorporate the disentangled conditions during the sampling process have been underexplored. In this paper, we present a training framework for feature disentanglement of Diffusion Models (FDiff). We further propose two sampling methods that can boost the realism of our Diffusion Models and also enhance the controllability. Concisely, we train Diffusion Models conditioned on two latent features, a spatial content mask, and a flattened style embedding. We rely on the inductive bias of the denoising process of Diffusion Models to encode pose/layout information in the content feature and semantic/style information in the style feature. Regarding the sampling methods, we first generalize Composable Diffusion Models (GCDM) by breaking the conditional independence assumption to allow for some dependence between conditional inputs, which is shown to be effective in realistic generation in our experiments. Second, we propose timestep-dependent weight scheduling for content and style features to further improve the performance. We also observe better controllability of our proposed methods compared to existing methods in image manipulation and image translation.
comment: ECCV 2024; Code will be opened after a patent application is granted
♻ ☆ Att-Adapter: A Robust and Precise Domain-Specific Multi-Attributes T2I Diffusion Adapter via Conditional Variational Autoencoder
Text-to-Image (T2I) Diffusion Models have achieved remarkable performance in generating high quality images. However, enabling precise control of continuous attributes, especially multiple attributes simultaneously, in a new domain (e.g., numeric values like eye openness or car width) with text-only guidance remains a significant challenge. To address this, we introduce the Attribute (Att) Adapter, a novel plug-and-play module designed to enable fine-grained, multi-attributes control in pretrained diffusion models. Our approach learns a single control adapter from a set of sample images that can be unpaired and contain multiple visual attributes. The Att-Adapter leverages the decoupled cross attention module to naturally harmonize the multiple domain attributes with text conditioning. We further introduce Conditional Variational Autoencoder (CVAE) to the Att-Adapter to mitigate overfitting, matching the diverse nature of the visual world. Evaluations on two public datasets show that Att-Adapter outperforms all LoRA-based baselines in controlling continuous attributes. Additionally, our method enables a broader control range and also improves disentanglement across multiple attributes, surpassing StyleGAN-based techniques. Notably, Att-Adapter is flexible, requiring no paired synthetic data for training, and is easily scalable to multiple attributes within a single model.
♻ ☆ MSCMNet: Multi-scale Semantic Correlation Mining for Visible-Infrared Person Re-Identification
The main challenge in the Visible-Infrared Person Re-Identification (VI-ReID) task lies in how to extract discriminative features from different modalities for matching purposes. While the existing well works primarily focus on minimizing the modal discrepancies, the modality information can not thoroughly be leveraged. To solve this problem, a Multi-scale Semantic Correlation Mining network (MSCMNet) is proposed to comprehensively exploit semantic features at multiple scales and simultaneously reduce modality information loss as small as possible in feature extraction. The proposed network contains three novel components. Firstly, after taking into account the effective utilization of modality information, the Multi-scale Information Correlation Mining Block (MIMB) is designed to explore semantic correlations across multiple scales. Secondly, in order to enrich the semantic information that MIMB can utilize, a quadruple-stream feature extractor (QFE) with non-shared parameters is specifically designed to extract information from different dimensions of the dataset. Finally, the Quadruple Center Triplet Loss (QCT) is further proposed to address the information discrepancy in the comprehensive features. Extensive experiments on the SYSU-MM01, RegDB, and LLCM datasets demonstrate that the proposed MSCMNet achieves the greatest accuracy.
♻ ☆ Efficient Semantic Segmentation via Lightweight Multiple-Information Interaction Network
Recently, integrating the local modeling capabilities of Convolutional Neural Networks (CNNs) with the global dependency strengths of Transformers has created a sensation in the semantic segmentation community. However, substantial computational workloads and high hardware memory demands remain major obstacles to their further application in real-time scenarios. In this work, we propose a Lightweight Multiple-Information Interaction Network (LMIINet) for real-time semantic segmentation, which effectively combines CNNs and Transformers while reducing redundant computations and memory footprints. It features Lightweight Feature Interaction Bottleneck (LFIB) modules comprising efficient convolutions that enhance context integration. Additionally, improvements are made to the Flatten Transformer by enhancing local and global feature interaction to capture detailed semantic information. Incorporating a combination coefficient learning scheme in both LFIB and Transformer blocks facilitates improved feature interaction. Extensive experiments demonstrate that LMIINet excels in balancing accuracy and efficiency. With only 0.72M parameters and 11.74G FLOPs (Floating Point Operations Per Second), LMIINet achieves 72.0\% mIoU at 100 FPS (Frames Per Second) on the Cityscapes test set and 69.94\% mIoU (mean Intersection over Union) at 160 FPS on the CamVid test dataset using a single RTX2080Ti GPU.
comment: 10 pages, 6 figures, 9 tables
♻ ☆ ConsistencyDet: A Few-step Denoising Framework for Object Detection Using the Consistency Model
Object detection, a quintessential task in the realm of perceptual computing, can be tackled using a generative methodology. In the present study, we introduce a novel framework designed to articulate object detection as a denoising diffusion process, which operates on the perturbed bounding boxes of annotated entities. This framework, termed \textbf{ConsistencyDet}, leverages an innovative denoising concept known as the Consistency Model. The hallmark of this model is its self-consistency feature, which empowers the model to map distorted information from any time step back to its pristine state, thereby realizing a \textbf{``few-step denoising''} mechanism. Such an attribute markedly elevates the operational efficiency of the model, setting it apart from the conventional Diffusion Model. Throughout the training phase, ConsistencyDet initiates the diffusion sequence with noise-infused boxes derived from the ground-truth annotations and conditions the model to perform the denoising task. Subsequently, in the inference stage, the model employs a denoising sampling strategy that commences with bounding boxes randomly sampled from a normal distribution. Through iterative refinement, the model transforms an assortment of arbitrarily generated boxes into definitive detections. Comprehensive evaluations employing standard benchmarks, such as MS-COCO and LVIS, corroborate that ConsistencyDet surpasses other leading-edge detectors in performance metrics. Our code is available at https://anonymous.4open.science/r/ConsistencyDet-37D5.
♻ ☆ SVInvNet: A Densely Connected Encoder-Decoder Architecture for Seismic Velocity Inversion
This study presents a deep learning-based approach to seismic velocity inversion problem, focusing on both noisy and noiseless training datasets of varying sizes. Our Seismic Velocity Inversion Network (SVInvNet) introduces a novel architecture that contains a multi-connection encoder-decoder structure enhanced with dense blocks. This design is specifically tuned to effectively process time series data, which is essential for addressing the challenges of non-linear seismic velocity inversion. For training and testing, we created diverse seismic velocity models, including multi-layered, faulty, and salt dome categories. We also investigated how different kinds of ambient noise, both coherent and stochastic, and the size of the training dataset affect learning outcomes. SVInvNet is trained on datasets ranging from 750 to 6,000 samples and is tested using a large benchmark dataset of 12,000 samples. Despite its fewer parameters compared to the baseline model, SVInvNet achieves superior performance with this dataset. The performance of SVInvNet was further evaluated using the OpenFWI dataset and Marmousi-derived velocity models. The comparative analysis clearly reveals the effectiveness of the proposed model.
comment: This is the preprint of the accepted manuscript to appear in IEEE Transactions on Geoscience and Remote Sensing
♻ ☆ DG-TTA: Out-of-domain Medical Image Segmentation through Augmentation and Descriptor-driven Domain Generalization and Test-Time Adaptation
Purpose: Applying pre-trained medical deep learning segmentation models on out-of-domain images often yields predictions of insufficient quality. In this study, we propose to use a powerful generalizing descriptor along with augmentation to enable domain-generalized pre-training and test-time adaptation, achieving high-quality segmentation in unseen domains. Materials and Methods: In this retrospective study five different publicly available datasets (2012 to 2022) including 3D CT and MRI images are used to evaluate segmentation performance in out-of-domain scenarios. The settings include abdominal, spine, and cardiac imaging. The data is randomly split into training and test samples. Domain-generalized pre-training on source data is used to obtain the best initial performance in the target domain. We introduce the combination of the generalizing SSC descriptor and GIN intensity augmentation for optimal generalization. Segmentation results are subsequently optimized at test time, where we propose to adapt the pre-trained models for every unseen scan with a consistency scheme using the same augmentation-descriptor combination. The segmentation is evaluated using Dice similarity and Hausdorff distance and the significance of improvements is tested with the Wilcoxon signed-rank test. Results: The proposed generalized pre-training and subsequent test-time adaptation improves model performance significantly in CT to MRI cross-domain prediction for abdominal (+46.2% and +28.2% Dice), spine (+72.9%), and cardiac (+14.2% and +55.7% Dice) scenarios (p<0.001). Conclusion: Our method enables optimal, independent usage of medical image source and target data and bridges domain gaps successfully with a compact and efficient methodology. Open-source code available at: https://github.com/multimodallearning/DG-TTA
♻ ☆ Nonhuman Primate Brain Tissue Segmentation Using a Transfer Learning Approach
Non-human primates (NHPs) serve as critical models for understanding human brain function and neurological disorders due to their close evolutionary relationship with humans. Accurate brain tissue segmentation in NHPs is critical for understanding neurological disorders, but challenging due to the scarcity of annotated NHP brain MRI datasets, the small size of the NHP brain, the limited resolution of available imaging data and the anatomical differences between human and NHP brains. To address these challenges, we propose a novel approach utilizing STU-Net with transfer learning to leverage knowledge transferred from human brain MRI data to enhance segmentation accuracy in the NHP brain MRI, particularly when training data is limited. The combination of STU-Net and transfer learning effectively delineates complex tissue boundaries and captures fine anatomical details specific to NHP brains. Notably, our method demonstrated improvement in segmenting small subcortical structures such as putamen and thalamus that are challenging to resolve with limited spatial resolution and tissue contrast, and achieved DSC of over 0.88, IoU over 0.8 and HD95 under 7. This study introduces a robust method for multi-class brain tissue segmentation in NHPs, potentially accelerating research in evolutionary neuroscience and preclinical studies of neurological disorders relevant to human health.
♻ ☆ Exploring Scene Affinity for Semi-Supervised LiDAR Semantic Segmentation CVPR2025
This paper explores scene affinity (AIScene), namely intra-scene consistency and inter-scene correlation, for semi-supervised LiDAR semantic segmentation in driving scenes. Adopting teacher-student training, AIScene employs a teacher network to generate pseudo-labeled scenes from unlabeled data, which then supervise the student network's learning. Unlike most methods that include all points in pseudo-labeled scenes for forward propagation but only pseudo-labeled points for backpropagation, AIScene removes points without pseudo-labels, ensuring consistency in both forward and backward propagation within the scene. This simple point erasure strategy effectively prevents unsupervised, semantically ambiguous points (excluded in backpropagation) from affecting the learning of pseudo-labeled points. Moreover, AIScene incorporates patch-based data augmentation, mixing multiple scenes at both scene and instance levels. Compared to existing augmentation techniques that typically perform scene-level mixing between two scenes, our method enhances the semantic diversity of labeled (or pseudo-labeled) scenes, thereby improving the semi-supervised performance of segmentation models. Experiments show that AIScene outperforms previous methods on two popular benchmarks across four settings, achieving notable improvements of 1.9% and 2.1% in the most challenging 1% labeled data.
comment: Accepted by CVPR2025
♻ ☆ Introducing the Short-Time Fourier Kolmogorov Arnold Network: A Dynamic Graph CNN Approach for Tree Species Classification in 3D Point Clouds
Accurate classification of tree species based on Terrestrial Laser Scanning (TLS) and Airborne Laser Scanning (ALS) is essential for biodiversity conservation. While advanced deep learning models for 3D point cloud classification have demonstrated strong performance in this domain, their high complexity often hinders the development of efficient, low-computation architectures. In this paper, we introduce STFT-KAN, a novel Kolmogorov-Arnold network that integrates the Short-Time Fourier Transform (STFT), which can replace the standard linear layer with activation. We implemented STFT-KAN within a lightweight version of DGCNN, called liteDGCNN, to classify tree species using the TLS data. Our experiments show that STFT-KAN outperforms existing KAN variants by effectively balancing model complexity and performance with parameter count reduction, achieving competitive results compared to MLP-based models. Additionally, we evaluated a hybrid architecture that combines MLP in edge convolution with STFT-KAN in other layers, achieving comparable performance to MLP models while reducing the parameter count by 50% and 75% compared to other KAN-based variants. Furthermore, we compared our model to leading 3D point cloud learning approaches, demonstrating that STFT-KAN delivers competitive results compared to the state-of-the-art method PointMLP lite with an 87% reduction in parameter count.
♻ ☆ Exploiting Mixture-of-Experts Redundancy Unlocks Multimodal Generative Abilities
In this work, we undertake the challenge of augmenting the existing generative capabilities of pre-trained text-only large language models (LLMs) with multi-modal generation capability while satisfying two core constraints: C1 preserving the preservation of original language generative capabilities with negligible performance degradation, and C2 adhering to a small parameter budget to learn the new modality, ensuring scalability and efficiency. In contrast to current approaches that add dedicated modules, thereby significantly increasing the parameter count, we propose a method that leverages the underutilized capacity inherent in deep models. Specifically, we exploit the parameter redundancy within Mixture-of-Experts (MoEs) as a source of additional capacity for learning a new modality, enabling better parameter efficiency (C1). Moreover, we preserve the original language generation capabilities by applying low-rank adaptation exclusively to the tokens of the new modality (C2). Furthermore, we introduce a novel parameter initialization scheme based on the Gromov-Wasserstein distance to improve convergence and training stability. Through an extensive analysis of the routing mechanism, we uncover the emergence of modality-specific pathways and decreased redundancy within the experts that can efficiently unlock multi-modal generative capabilities. Overall, our method can be seamlessly applied to a wide range of contemporary LLMs, providing a new pathway for transitioning from uni-modal to multi-modal architectures.
♻ ☆ DoubleDiffusion: Combining Heat Diffusion with Denoising Diffusion for Texture Generation on 3D Meshes
This paper addresses the problem of generating textures for 3D mesh assets. Existing approaches often rely on image diffusion models to generate multi-view image observations, which are then transformed onto the mesh surface to produce a single texture. However, due to the gap between multi-view images and 3D space, such process is susceptible to arange of issues such as geometric inconsistencies, visibility occlusion, and baking artifacts. To overcome this problem, we propose a novel approach that directly generates texture on 3D meshes. Our approach leverages heat dissipation diffusion, which serves as an efficient operator that propagates features on the geometric surface of a mesh, while remaining insensitive to the specific layout of the wireframe. By integrating this technique into a generative diffusion pipeline, we significantly improve the efficiency of texture generation compared to existing texture generation methods. We term our approach DoubleDiffusion, as it combines heat dissipation diffusion with denoising diffusion to enable native generative learning on 3D mesh surfaces.
comment: Codes: https://github.com/Wxyxixixi/DoubleDiffusion_3D_Mesh
♻ ☆ Attention-Guided Multi-scale Interaction Network for Face Super-Resolution
Recently, CNN and Transformer hybrid networks demonstrated excellent performance in face super-resolution (FSR) tasks. Since numerous features at different scales in hybrid networks, how to fuse these multi-scale features and promote their complementarity is crucial for enhancing FSR. However, existing hybrid network-based FSR methods ignore this, only simply combining the Transformer and CNN. To address this issue, we propose an attention-guided Multi-scale interaction network (AMINet), which contains local and global feature interactions and encoder-decoder phase feature interactions. Specifically, we propose a Local and Global Feature Interaction Module (LGFI) to promote fusions of global features and different receptive fields' local features extracted by our Residual Depth Feature Extraction Module (RDFE). Additionally, we propose a Selective Kernel Attention Fusion Module (SKAF) to adaptively select fusions of different features within LGFI and encoder-decoder phases. Our above design allows the free flow of multi-scale features from within modules and between encoder and decoder, which can promote the complementarity of different scale features to enhance FSR. Comprehensive experiments confirm that our method consistently performs well with less computational consumption and faster inference.
comment: 13 pages, 11 figures, 10 tables
♻ ☆ UniGS: Modeling Unitary 3D Gaussians for Novel View Synthesis from Sparse-view Images
In this work, we introduce UniGS, a novel 3D Gaussian reconstruction and novel view synthesis model that predicts a high-fidelity representation of 3D Gaussians from arbitrary number of posed sparse-view images. Previous methods often regress 3D Gaussians locally on a per-pixel basis for each view and then transfer them to world space and merge them through point concatenation. In contrast, Our approach involves modeling unitary 3D Gaussians in world space and updating them layer by layer. To leverage information from multi-view inputs for updating the unitary 3D Gaussians, we develop a DETR (DEtection TRansformer)-like framework, which treats 3D Gaussians as queries and updates their parameters by performing multi-view cross-attention (MVDFA) across multiple input images, which are treated as keys and values. This approach effectively avoids `ghosting' issue and allocates more 3D Gaussians to complex regions. Moreover, since the number of 3D Gaussians used as decoder queries is independent of the number of input views, our method allows arbitrary number of multi-view images as input without causing memory explosion or requiring retraining. Extensive experiments validate the advantages of our approach, showcasing superior performance over existing methods quantitatively (improving PSNR by 4.2 dB when trained on Objaverse and tested on the GSO benchmark) and qualitatively. The code will be released at https://github.com/jwubz123/UNIG.
♻ ☆ Think or Not Think: A Study of Explicit Thinking inRule-Based Visual Reinforcement Fine-Tuning
This paper investigates rule-based reinforcement learning (RL) fine-tuning for visual classification using multi-modal large language models (MLLMs) and the role of the thinking process. We begin by exploring \textit{CLS-RL}, a method that leverages verifiable signals as rewards to encourage MLLMs to 'think' before classifying. Our experiments across \textbf{eleven} datasets demonstrate that CLS-RL achieves significant improvements over supervised fine-tuning (SFT) in both base-to-new generalization and few-shot learning scenarios. Notably, we observe a 'free-lunch' phenomenon where fine-tuning on one dataset unexpectedly enhances performance on others, suggesting that RL effectively teaches fundamental classification skills. However, we question whether the explicit thinking, a critical aspect of rule-based RL, is always beneficial or indispensable. Challenging the conventional assumption that complex reasoning enhances performance, we introduce \textit{No-Thinking-RL}, a novel approach that minimizes the model's thinking during fine-tuning by utilizing an equality accuracy reward. Our experiments reveal that No-Thinking-RL achieves superior in-domain performance and generalization capabilities compared to CLS-RL, while requiring significantly less fine-tuning time. This underscores that, contrary to prevailing assumptions, reducing the thinking process can lead to more efficient and effective MLLM fine-tuning for some visual tasks. Furthermore, No-Thinking-RL demonstrates enhanced performance on other visual benchmarks, such as a 6.4\% improvement on CVBench. We hope our findings provides insights into the impact of thinking in RL-based fine-tuning.
comment: Preprint, work in progress. Add results on CVBench
♻ ☆ PhyT2V: LLM-Guided Iterative Self-Refinement for Physics-Grounded Text-to-Video Generation
Text-to-video (T2V) generation has been recently enabled by transformer-based diffusion models, but current T2V models lack capabilities in adhering to the real-world common knowledge and physical rules, due to their limited understanding of physical realism and deficiency in temporal modeling. Existing solutions are either data-driven or require extra model inputs, but cannot be generalizable to out-of-distribution domains. In this paper, we present PhyT2V, a new data-independent T2V technique that expands the current T2V model's capability of video generation to out-of-distribution domains, by enabling chain-of-thought and step-back reasoning in T2V prompting. Our experiments show that PhyT2V improves existing T2V models' adherence to real-world physical rules by 2.3x, and achieves 35% improvement compared to T2V prompt enhancers. The source codes are available at: https://github.com/pittisl/PhyT2V.
comment: 28 pages
♻ ☆ FisherTune: Fisher-Guided Robust Tuning of Vision Foundation Models for Domain Generalized Segmentation
Vision Foundation Models (VFMs) excel in generalization due to large-scale pretraining, but fine-tuning them for Domain Generalized Semantic Segmentation (DGSS) while maintaining this ability remains challenging. Existing approaches either selectively fine-tune parameters or freeze the VFMs and update only the adapters, both of which may underutilize the VFMs' full potential in DGSS tasks. We observe that domain-sensitive parameters in VFMs, arising from task and distribution differences, can hinder generalization. To address this, we propose \textbf{FisherTune}, a robust fine-tuning method guided by the Domain-Related Fisher Information Matrix (DR-FIM). DR-FIM measures parameter sensitivity across tasks and domains, enabling selective updates that preserve generalization and enhance DGSS adaptability. FisherTune incorporates variational inference to stabilize DR-FIM estimation, treating parameters as Gaussian-distributed variables and leveraging pre-trained priors. Extensive experiments show that FisherTune achieves superior cross-domain segmentation while maintaining generalization, outperforming selective-parameter and adapter-based methods.
♻ ☆ Lie Detector: Unified Backdoor Detection via Cross-Examination Framework
Institutions with limited data and computing resources often outsource model training to third-party providers in a semi-honest setting, assuming adherence to prescribed training protocols with pre-defined learning paradigm (e.g., supervised or semi-supervised learning). However, this practice can introduce severe security risks, as adversaries may poison the training data to embed backdoors into the resulting model. Existing detection approaches predominantly rely on statistical analyses, which often fail to maintain universally accurate detection accuracy across different learning paradigms. To address this challenge, we propose a unified backdoor detection framework in the semi-honest setting that exploits cross-examination of model inconsistencies between two independent service providers. Specifically, we integrate central kernel alignment to enable robust feature similarity measurements across different model architectures and learning paradigms, thereby facilitating precise recovery and identification of backdoor triggers. We further introduce backdoor fine-tuning sensitivity analysis to distinguish backdoor triggers from adversarial perturbations, substantially reducing false positives. Extensive experiments demonstrate that our method achieves superior detection performance, improving accuracy by 5.4%, 1.6%, and 11.9% over SoTA baselines across supervised, semi-supervised, and autoregressive learning tasks, respectively. Notably, it is the first to effectively detect backdoors in multimodal large language models, further highlighting its broad applicability and advancing secure deep learning.
♻ ☆ An End-to-End Robust Point Cloud Semantic Segmentation Network with Single-Step Conditional Diffusion Models
Existing conditional Denoising Diffusion Probabilistic Models (DDPMs) with a Noise-Conditional Framework (NCF) remain challenging for 3D scene understanding tasks, as the complex geometric details in scenes increase the difficulty of fitting the gradients of the data distribution (the scores) from semantic labels. This also results in longer training and inference time for DDPMs compared to non-DDPMs. From a different perspective, we delve deeply into the model paradigm dominated by the Conditional Network. In this paper, we propose an end-to-end robust semantic Segmentation Network based on a Conditional-Noise Framework (CNF) of DDPMs, named CDSegNet. Specifically, CDSegNet models the Noise Network (NN) as a learnable noise-feature generator. This enables the Conditional Network (CN) to understand 3D scene semantics under multi-level feature perturbations, enhancing the generalization in unseen scenes. Meanwhile, benefiting from the noise system of DDPMs, CDSegNet exhibits strong noise and sparsity robustness in experiments. Moreover, thanks to CNF, CDSegNet can generate the semantic labels in a single-step inference like non-DDPMs, due to avoiding directly fitting the scores from semantic labels in the dominant network of CDSegNet. On public indoor and outdoor benchmarks, CDSegNet significantly outperforms existing methods, achieving state-of-the-art performance.
♻ ☆ OncoReg: Medical Image Registration for Oncological Challenges
In modern cancer research, the vast volume of medical data generated is often underutilised due to challenges related to patient privacy. The OncoReg Challenge addresses this issue by enabling researchers to develop and validate image registration methods through a two-phase framework that ensures patient privacy while fostering the development of more generalisable AI models. Phase one involves working with a publicly available dataset, while phase two focuses on training models on a private dataset within secure hospital networks. OncoReg builds upon the foundation established by the Learn2Reg Challenge by incorporating the registration of interventional cone-beam computed tomography (CBCT) with standard planning fan-beam CT (FBCT) images in radiotherapy. Accurate image registration is crucial in oncology, particularly for dynamic treatment adjustments in image-guided radiotherapy, where precise alignment is necessary to minimise radiation exposure to healthy tissues while effectively targeting tumours. This work details the methodology and data behind the OncoReg Challenge and provides a comprehensive analysis of the competition entries and results. Findings reveal that feature extraction plays a pivotal role in this registration task. A new method emerging from this challenge demonstrated its versatility, while established approaches continue to perform comparably to newer techniques. Both deep learning and classical approaches still play significant roles in image registration, with the combination of methods - particularly in feature extraction - proving most effective.
comment: 26 pages, 6 figures
♻ ☆ MambaPEFT: Exploring Parameter-Efficient Fine-Tuning for Mamba ICLR2025
An ecosystem of Transformer-based models has been established by building large models with extensive data. Parameter-efficient fine-tuning (PEFT) is a crucial technology for deploying these models to downstream tasks with minimal cost while achieving effective performance. Recently, Mamba, a State Space Model (SSM)-based model, has attracted attention as a potential alternative to Transformers. While many large-scale Mamba-based models have been proposed, efficiently adapting pre-trained Mamba-based models to downstream tasks remains unexplored. In this paper, we conduct an exploratory analysis of PEFT methods for Mamba. We investigate the effectiveness of existing PEFT methods for Transformers when applied to Mamba. We also modify these methods to better align with the Mamba architecture. Additionally, we propose new Mamba-specific PEFT methods that leverage the distinctive structure of Mamba. Our experiments indicate that PEFT performs more effectively for Mamba than Transformers. Lastly, we demonstrate how to effectively combine multiple PEFT methods and provide a framework that outperforms previous works. To ensure reproducibility, we will release the code after publication.
comment: Accepted to ICLR2025
Stable-Makeup: When Real-World Makeup Transfer Meets Diffusion Model
Current makeup transfer methods are limited to simple makeup styles, making them difficult to apply in real-world scenarios. In this paper, we introduce Stable-Makeup, a novel diffusion-based makeup transfer method capable of robustly transferring a wide range of real-world makeup, onto user-provided faces. Stable-Makeup is based on a pre-trained diffusion model and utilizes a Detail-Preserving (D-P) makeup encoder to encode makeup details. It also employs content and structural control modules to preserve the content and structural information of the source image. With the aid of our newly added makeup cross-attention layers in U-Net, we can accurately transfer the detailed makeup to the corresponding position in the source image. After content-structure decoupling training, Stable-Makeup can maintain content and the facial structure of the source image. Moreover, our method has demonstrated strong robustness and generalizability, making it applicable to varioustasks such as cross-domain makeup transfer, makeup-guided text-to-image generation and so on. Extensive experiments have demonstrated that our approach delivers state-of-the-art (SOTA) results among existing makeup transfer methods and exhibits a highly promising with broad potential applications in various related fields. Code released: https://github.com/Xiaojiu-z/Stable-Makeup
♻ ☆ ControlSR: Taming Diffusion Models for Consistent Real-World Image Super Resolution
We present ControlSR, a new method that can tame Diffusion Models for consistent real-world image super-resolution (Real-ISR). Previous Real-ISR models mostly focus on how to activate more generative priors of text-to-image diffusion models to make the output high-resolution (HR) images look better. However, since these methods rely too much on the generative priors, the content of the output images is often inconsistent with the input LR ones. To mitigate the above issue, in this work, we tame Diffusion Models by effectively utilizing LR information to impose stronger constraints on the control signals from ControlNet in the latent space. We show that our method can produce higher-quality control signals, which enables the super-resolution results to be more consistent with the LR image and leads to clearer visual results. In addition, we also propose an inference strategy that imposes constraints in the latent space using LR information, allowing for the simultaneous improvement of fidelity and generative ability. Experiments demonstrate that our model can achieve better performance across multiple metrics on several test sets and generate more consistent SR results with LR images than existing methods. Our code is available at https://github.com/HVision-NKU/ControlSR.
♻ ☆ StarGen: A Spatiotemporal Autoregression Framework with Video Diffusion Model for Scalable and Controllable Scene Generation
Recent advances in large reconstruction and generative models have significantly improved scene reconstruction and novel view generation. However, due to compute limitations, each inference with these large models is confined to a small area, making long-range consistent scene generation challenging. To address this, we propose StarGen, a novel framework that employs a pre-trained video diffusion model in an autoregressive manner for long-range scene generation. The generation of each video clip is conditioned on the 3D warping of spatially adjacent images and the temporally overlapping image from previously generated clips, improving spatiotemporal consistency in long-range scene generation with precise pose control. The spatiotemporal condition is compatible with various input conditions, facilitating diverse tasks, including sparse view interpolation, perpetual view generation, and layout-conditioned city generation. Quantitative and qualitative evaluations demonstrate StarGen's superior scalability, fidelity, and pose accuracy compared to state-of-the-art methods. Project page: https://zju3dv.github.io/StarGen.
♻ ☆ AnyTouch: Learning Unified Static-Dynamic Representation across Multiple Visuo-tactile Sensors ICLR 2025
Visuo-tactile sensors aim to emulate human tactile perception, enabling robots to precisely understand and manipulate objects. Over time, numerous meticulously designed visuo-tactile sensors have been integrated into robotic systems, aiding in completing various tasks. However, the distinct data characteristics of these low-standardized visuo-tactile sensors hinder the establishment of a powerful tactile perception system. We consider that the key to addressing this issue lies in learning unified multi-sensor representations, thereby integrating the sensors and promoting tactile knowledge transfer between them. To achieve unified representation of this nature, we introduce TacQuad, an aligned multi-modal multi-sensor tactile dataset from four different visuo-tactile sensors, which enables the explicit integration of various sensors. Recognizing that humans perceive the physical environment by acquiring diverse tactile information such as texture and pressure changes, we further propose to learn unified multi-sensor representations from both static and dynamic perspectives. By integrating tactile images and videos, we present AnyTouch, a unified static-dynamic multi-sensor representation learning framework with a multi-level structure, aimed at both enhancing comprehensive perceptual abilities and enabling effective cross-sensor transfer. This multi-level architecture captures pixel-level details from tactile data via masked modeling and enhances perception and transferability by learning semantic-level sensor-agnostic features through multi-modal alignment and cross-sensor matching. We provide a comprehensive analysis of multi-sensor transferability, and validate our method on various datasets and in the real-world pouring task. Experimental results show that our method outperforms existing methods, exhibits outstanding static and dynamic perception capabilities across various sensors.
comment: Accepted by ICLR 2025
♻ ☆ RainyGS: Efficient Rain Synthesis with Physically-Based Gaussian Splatting CVPR 2025
We consider the problem of adding dynamic rain effects to in-the-wild scenes in a physically-correct manner. Recent advances in scene modeling have made significant progress, with NeRF and 3DGS techniques emerging as powerful tools for reconstructing complex scenes. However, while effective for novel view synthesis, these methods typically struggle with challenging scene editing tasks, such as physics-based rain simulation. In contrast, traditional physics-based simulations can generate realistic rain effects, such as raindrops and splashes, but they often rely on skilled artists to carefully set up high-fidelity scenes. This process lacks flexibility and scalability, limiting its applicability to broader, open-world environments. In this work, we introduce RainyGS, a novel approach that leverages the strengths of both physics-based modeling and 3DGS to generate photorealistic, dynamic rain effects in open-world scenes with physical accuracy. At the core of our method is the integration of physically-based raindrop and shallow water simulation techniques within the fast 3DGS rendering framework, enabling realistic and efficient simulations of raindrop behavior, splashes, and reflections. Our method supports synthesizing rain effects at over 30 fps, offering users flexible control over rain intensity -- from light drizzles to heavy downpours. We demonstrate that RainyGS performs effectively for both real-world outdoor scenes and large-scale driving scenarios, delivering more photorealistic and physically-accurate rain effects compared to state-of-the-art methods. Project page can be found at https://pku-vcl-geometry.github.io/RainyGS/
comment: CVPR 2025
♻ ☆ VFX Creator: Animated Visual Effect Generation with Controllable Diffusion Transformer
Crafting magic and illusions is one of the most thrilling aspects of filmmaking, with visual effects (VFX) serving as the powerhouse behind unforgettable cinematic experiences. While recent advances in generative artificial intelligence have driven progress in generic image and video synthesis, the domain of controllable VFX generation remains relatively underexplored. In this work, we propose a novel paradigm for animated VFX generation as image animation, where dynamic effects are generated from user-friendly textual descriptions and static reference images. Our work makes two primary contributions: (i) Open-VFX, the first high-quality VFX video dataset spanning 15 diverse effect categories, annotated with textual descriptions, instance segmentation masks for spatial conditioning, and start-end timestamps for temporal control. (ii) VFX Creator, a simple yet effective controllable VFX generation framework based on a Video Diffusion Transformer. The model incorporates a spatial and temporal controllable LoRA adapter, requiring minimal training videos. Specifically, a plug-and-play mask control module enables instance-level spatial manipulation, while tokenized start-end motion timestamps embedded in the diffusion process, alongside the text encoder, allow precise temporal control over effect timing and pace. Extensive experiments on the Open-VFX test set demonstrate the superiority of the proposed system in generating realistic and dynamic effects, achieving state-of-the-art performance and generalization ability in both spatial and temporal controllability. Furthermore, we introduce a specialized metric to evaluate the precision of temporal control. By bridging traditional VFX techniques with generative approaches, VFX Creator unlocks new possibilities for efficient and high-quality video effect generation, making advanced VFX accessible to a broader audience.
♻ ☆ GaussianRoom: Improving 3D Gaussian Splatting with SDF Guidance and Monocular Cues for Indoor Scene Reconstruction
Embodied intelligence requires precise reconstruction and rendering to simulate large-scale real-world data. Although 3D Gaussian Splatting (3DGS) has recently demonstrated high-quality results with real-time performance, it still faces challenges in indoor scenes with large, textureless regions, resulting in incomplete and noisy reconstructions due to poor point cloud initialization and underconstrained optimization. Inspired by the continuity of signed distance field (SDF), which naturally has advantages in modeling surfaces, we propose a unified optimization framework that integrates neural signed distance fields (SDFs) with 3DGS for accurate geometry reconstruction and real-time rendering. This framework incorporates a neural SDF field to guide the densification and pruning of Gaussians, enabling Gaussians to model scenes accurately even with poor initialized point clouds. Simultaneously, the geometry represented by Gaussians improves the efficiency of the SDF field by piloting its point sampling. Additionally, we introduce two regularization terms based on normal and edge priors to resolve geometric ambiguities in textureless areas and enhance detail accuracy. Extensive experiments in ScanNet and ScanNet++ show that our method achieves state-of-the-art performance in both surface reconstruction and novel view synthesis.
♻ ☆ Content-decoupled Contrastive Learning-based Implicit Degradation Modeling for Blind Image Super-Resolution
Implicit degradation modeling-based blind super-resolution (SR) has attracted more increasing attention in the community due to its excellent generalization to complex degradation scenarios and wide application range. How to extract more discriminative degradation representations and fully adapt them to specific image features is the key to this task. In this paper, we propose a new Content-decoupled Contrastive Learning-based blind image super-resolution (CdCL) framework following the typical blind SR pipeline. This framework introduces negative-free contrastive learning technique for the first time to model the implicit degradation representation, in which a new cyclic shift sampling strategy is designed to ensure decoupling between content features and degradation features from the data perspective, thereby improving the purity and discriminability of the learned implicit degradation space. In addition, we propose a detail-aware implicit degradation adapting module that can better adapt degradation representations to specific LR features by enhancing the basic adaptation unit's perception of image details, significantly reducing the overall SR model complexity. Extensive experiments on synthetic and real data show that our method achieves highly competitive quantitative and qualitative results in various degradation settings while obviously reducing parameters and computational costs, validating the feasibility of designing practical and lightweight blind SR tools.
♻ ☆ Video-T1: Test-Time Scaling for Video Generation
With the scale capability of increasing training data, model size, and computational cost, video generation has achieved impressive results in digital creation, enabling users to express creativity across various domains. Recently, researchers in Large Language Models (LLMs) have expanded the scaling to test-time, which can significantly improve LLM performance by using more inference-time computation. Instead of scaling up video foundation models through expensive training costs, we explore the power of Test-Time Scaling (TTS) in video generation, aiming to answer the question: if a video generation model is allowed to use non-trivial amount of inference-time compute, how much can it improve generation quality given a challenging text prompt. In this work, we reinterpret the test-time scaling of video generation as a searching problem to sample better trajectories from Gaussian noise space to the target video distribution. Specifically, we build the search space with test-time verifiers to provide feedback and heuristic algorithms to guide searching process. Given a text prompt, we first explore an intuitive linear search strategy by increasing noise candidates at inference time. As full-step denoising all frames simultaneously requires heavy test-time computation costs, we further design a more efficient TTS method for video generation called Tree-of-Frames (ToF) that adaptively expands and prunes video branches in an autoregressive manner. Extensive experiments on text-conditioned video generation benchmarks demonstrate that increasing test-time compute consistently leads to significant improvements in the quality of videos. Project page: https://liuff19.github.io/Video-T1
comment: Project page: https://liuff19.github.io/Video-T1
♻ ☆ Vision-Language Models for Acute Tuberculosis Diagnosis: A Multimodal Approach Combining Imaging and Clinical Data
Background: This study introduces a Vision-Language Model (VLM) leveraging SIGLIP and Gemma-3b architectures for automated acute tuberculosis (TB) screening. By integrating chest X-ray images and clinical notes, the model aims to enhance diagnostic accuracy and efficiency, particularly in resource-limited settings. Methods: The VLM combines visual data from chest X-rays with clinical context to generate detailed, context-aware diagnostic reports. The architecture employs SIGLIP for visual encoding and Gemma-3b for decoding, ensuring effective representation of acute TB-specific pathologies and clinical insights. Results: Key acute TB pathologies, including consolidation, cavities, and nodules, were detected with high precision (97percent) and recall (96percent). The model demonstrated strong spatial localization capabilities and robustness in distinguishing TB-positive cases, making it a reliable tool for acute TB diagnosis. Conclusion: The multimodal capability of the VLM reduces reliance on radiologists, providing a scalable solution for acute TB screening. Future work will focus on improving the detection of subtle pathologies and addressing dataset biases to enhance its generalizability and application in diverse global healthcare settings.
comment: 11 pages, 3 figures
♻ ☆ Generalizable Prompt Learning of CLIP: A Brief Overview
Existing vision-language models (VLMs) such as CLIP have showcased an impressive capability to generalize well across various downstream tasks. These models leverage the synergy between visual and textual information, enabling them to understand and reason about the content present in images and text in a unified manner. This article provides a brief overview of CLIP based on few-shot prompt learning, including experimental data and technical characteristics of some methods. The purpose of this review is to provide a reference for researchers who have just started their research in generalizable prompting of CLIP through few-shot training for classification across 15 datasets and also to facilitate the integration of this field by researchers in other downstream tasks.
♻ ☆ ALLVB: All-in-One Long Video Understanding Benchmark AAAI 2025
From image to video understanding, the capabilities of Multi-modal LLMs (MLLMs) are increasingly powerful. However, most existing video understanding benchmarks are relatively short, which makes them inadequate for effectively evaluating the long-sequence modeling capabilities of MLLMs. This highlights the urgent need for a comprehensive and integrated long video understanding benchmark to assess the ability of MLLMs thoroughly. To this end, we propose ALLVB (ALL-in-One Long Video Understanding Benchmark). ALLVB's main contributions include: 1) It integrates 9 major video understanding tasks. These tasks are converted into video QA formats, allowing a single benchmark to evaluate 9 different video understanding capabilities of MLLMs, highlighting the versatility, comprehensiveness, and challenging nature of ALLVB. 2) A fully automated annotation pipeline using GPT-4o is designed, requiring only human quality control, which facilitates the maintenance and expansion of the benchmark. 3) It contains 1,376 videos across 16 categories, averaging nearly 2 hours each, with a total of 252k QAs. To the best of our knowledge, it is the largest long video understanding benchmark in terms of the number of videos, average duration, and number of QAs. We have tested various mainstream MLLMs on ALLVB, and the results indicate that even the most advanced commercial models have significant room for improvement. This reflects the benchmark's challenging nature and demonstrates the substantial potential for development in long video understanding.
comment: AAAI 2025
♻ ☆ Zero-Shot Visual Concept Blending Without Text Guidance
We propose a novel, zero-shot image generation technique called "Visual Concept Blending" that provides fine-grained control over which features from multiple reference images are transferred to a source image. If only a single reference image is available, it is difficult to isolate which specific elements should be transferred. However, using multiple reference images, the proposed approach distinguishes between common and unique features by selectively incorporating them into a generated output. By operating within a partially disentangled Contrastive Language-Image Pre-training (CLIP) embedding space (from IP-Adapter), our method enables the flexible transfer of texture, shape, motion, style, and more abstract conceptual transformations without requiring additional training or text prompts. We demonstrate its effectiveness across a diverse range of tasks, including style transfer, form metamorphosis, and conceptual transformations, showing how subtle or abstract attributes (e.g., brushstroke style, aerodynamic lines, and dynamism) can be seamlessly combined into a new image. In a user study, participants accurately recognized which features were intended to be transferred. Its simplicity, flexibility, and high-level control make Visual Concept Blending valuable for creative fields such as art, design, and content creation, where combining specific visual qualities from multiple inspirations is crucial.
♻ ☆ Feed-Forward Bullet-Time Reconstruction of Dynamic Scenes from Monocular Videos
Recent advancements in static feed-forward scene reconstruction have demonstrated significant progress in high-quality novel view synthesis. However, these models often struggle with generalizability across diverse environments and fail to effectively handle dynamic content. We present BTimer (short for BulletTimer), the first motion-aware feed-forward model for real-time reconstruction and novel view synthesis of dynamic scenes. Our approach reconstructs the full scene in a 3D Gaussian Splatting representation at a given target ('bullet') timestamp by aggregating information from all the context frames. Such a formulation allows BTimer to gain scalability and generalization by leveraging both static and dynamic scene datasets. Given a casual monocular dynamic video, BTimer reconstructs a bullet-time scene within 150ms while reaching state-of-the-art performance on both static and dynamic scene datasets, even compared with optimization-based approaches.
comment: Project website: https://research.nvidia.com/labs/toronto-ai/bullet-timer/
♻ ☆ Diffusion Models in 3D Vision: A Survey
In recent years, 3D vision has become a crucial field within computer vision, powering a wide range of applications such as autonomous driving, robotics, augmented reality, and medical imaging. This field relies on accurate perception, understanding, and reconstruction of 3D scenes from 2D images or text data sources. Diffusion models, originally designed for 2D generative tasks, offer the potential for more flexible, probabilistic methods that can better capture the variability and uncertainty present in real-world 3D data. In this paper, we review the state-of-the-art methods that use diffusion models for 3D visual tasks, including but not limited to 3D object generation, shape completion, point-cloud reconstruction, and scene construction. We provide an in-depth discussion of the underlying mathematical principles of diffusion models, outlining their forward and reverse processes, as well as the various architectural advancements that enable these models to work with 3D datasets. We also discuss the key challenges in applying diffusion models to 3D vision, such as handling occlusions and varying point densities, and the computational demands of high-dimensional data. Finally, we discuss potential solutions, including improving computational efficiency, enhancing multimodal fusion, and exploring the use of large-scale pretraining for better generalization across 3D tasks. This paper serves as a foundation for future exploration and development in this rapidly evolving field.
♻ ☆ Unveiling the Mist over 3D Vision-Language Understanding: Object-centric Evaluation with Chain-of-Analysis CVPR 2025
Existing 3D vision-language (3D-VL) benchmarks fall short in evaluating 3D-VL models, creating a "mist" that obscures rigorous insights into model capabilities and 3D-VL tasks. This mist persists due to three key limitations. First, flawed test data, like ambiguous referential text in the grounding task, can yield incorrect and unreliable test results. Second, oversimplified metrics such as simply averaging accuracy per question answering (QA) pair, cannot reveal true model capability due to their vulnerability to language variations. Third, existing benchmarks isolate the grounding and QA tasks, disregarding the underlying coherence that QA should be based on solid grounding capabilities. To unveil the "mist", we propose Beacon3D, a benchmark for 3D-VL grounding and QA tasks, delivering a perspective shift in the evaluation of 3D-VL understanding. Beacon3D features (i) high-quality test data with precise and natural language, (ii) object-centric evaluation with multiple tests per object to ensure robustness, and (iii) a novel chain-of-analysis paradigm to address language robustness and model performance coherence across grounding and QA. Our evaluation of state-of-the-art 3D-VL models on Beacon3D reveals that (i) object-centric evaluation elicits true model performance and particularly weak generalization in QA; (ii) grounding-QA coherence remains fragile in current 3D-VL models, and (iii) incorporating large language models (LLMs) to 3D-VL models, though as a prevalent practice, hinders grounding capabilities and has yet to elevate QA capabilities. We hope Beacon3D and our comprehensive analysis could benefit the 3D-VL community towards faithful developments.
comment: CVPR 2025. Project page: https://beacon-3d.github.io
♻ ☆ MagicPose4D: Crafting Articulated Models with Appearance and Motion Control
With the success of 2D and 3D visual generative models, there is growing interest in generating 4D content. Existing methods primarily rely on text prompts to produce 4D content, but they often fall short of accurately defining complex or rare motions. To address this limitation, we propose MagicPose4D, a novel framework for refined control over both appearance and motion in 4D generation. Unlike current 4D generation methods, MagicPose4D accepts monocular videos or mesh sequences as motion prompts, enabling precise and customizable motion control. MagicPose4D comprises two key modules: (i) Dual-Phase 4D Reconstruction Module, which operates in two phases. The first phase focuses on capturing the model's shape using accurate 2D supervision and less accurate but geometrically informative 3D pseudo-supervision without imposing skeleton constraints. The second phase extracts the 3D motion (skeleton poses) using more accurate pseudo-3D supervision, obtained in the first phase and introduces kinematic chain-based skeleton constraints to ensure physical plausibility. Additionally, we propose a Global-local Chamfer loss that aligns the overall distribution of predicted mesh vertices with the supervision while maintaining part-level alignment without extra annotations. (ii) Cross-category Motion Transfer Module, which leverages the extracted motion from the 4D reconstruction module and uses a kinematic-chain-based skeleton to achieve cross-category motion transfer. It ensures smooth transitions between frames through dynamic rigidity, facilitating robust generalization without additional training. Through extensive experiments, we demonstrate that MagicPose4D significantly improves the accuracy and consistency of 4D content generation, outperforming existing methods in various benchmarks.
comment: Project Page: https://magicpose4d.github.io/
♻ ☆ Phase-shifted remote photoplethysmography for estimating heart rate and blood pressure from facial video
Human health can be critically affected by cardiovascular diseases, such as hypertension, arrhythmias, and stroke. Heart rate and blood pressure are important biometric information for the monitoring of cardiovascular system and early diagnosis of cardiovascular diseases. Existing methods for estimating the heart rate are based on electrocardiography and photoplethyomography, which require contacting the sensor to the skin surface. Moreover, catheter and cuff-based methods for measuring blood pressure cause inconvenience and have limited applicability. Therefore, in this thesis, we propose a vision-based method for estimating the heart rate and blood pressure. This thesis proposes a 2-stage deep learning framework consisting of a dual remote photoplethysmography network (DRP-Net) and bounded blood pressure network (BBP-Net). In the first stage, DRP-Net infers remote photoplethysmography (rPPG) signals for the acral and facial regions, and these phase-shifted rPPG signals are utilized to estimate the heart rate. In the second stage, BBP-Net integrates temporal features and analyzes phase discrepancy between the acral and facial rPPG signals to estimate SBP and DBP values. To improve the accuracy of estimating the heart rate, we employed a data augmentation method based on a frame interpolation model. Moreover, we designed BBP-Net to infer blood pressure within a predefined range by incorporating a scaled sigmoid function. Our method resulted in estimating the heart rate with the mean absolute error (MAE) of 1.78 BPM, reducing the MAE by 34.31 % compared to the recent method, on the MMSE-HR dataset. The MAE for estimating the systolic blood pressure (SBP) and diastolic blood pressure (DBP) were 10.19 mmHg and 7.09 mmHg. On the V4V dataset, the MAE for the heart rate, SBP, and DBP were 3.83 BPM, 13.64 mmHg, and 9.4 mmHg, respectively.
comment: 13 pages, 10 figures
♻ ☆ VRM: Knowledge Distillation via Virtual Relation Matching
Knowledge distillation (KD) aims to transfer the knowledge of a more capable yet cumbersome teacher model to a lightweight student model. In recent years, relation-based KD methods have fallen behind, as their instance-matching counterparts dominate in performance. In this paper, we revive relational KD by identifying and tackling several key issues in relation-based methods, including their susceptibility to overfitting and spurious responses. Specifically, we transfer novelly constructed affinity graphs that compactly encapsulate a wealth of beneficial inter-sample, inter-class, and inter-view correlations by exploiting virtual views and relations as a new kind of knowledge. As a result, the student has access to richer guidance signals and stronger regularisation throughout the distillation process. To further mitigate the adverse impact of spurious responses, we prune the affinity graphs by dynamically detaching redundant and unreliable edges. Extensive experiments on CIFAR-100 and ImageNet datasets demonstrate the superior performance of the proposed virtual relation matching (VRM) method over a range of models, architectures, and set-ups. For instance, VRM for the first time hits 74.0% accuracy for ResNet50-to-MobileNetV2 distillation on ImageNet, and improves DeiT-T by 14.44% on CIFAR-100 with a ResNet56 teacher. Thorough analyses are also conducted to gauge the soundness, properties, and complexity of our designs. Code and models will be released.
♻ ☆ VisRL: Intention-Driven Visual Perception via Reinforced Reasoning
Visual understanding is inherently intention-driven - humans selectively focus on different regions of a scene based on their goals. Recent advances in large multimodal models (LMMs) enable flexible expression of such intentions through natural language, allowing queries to guide visual reasoning processes. Frameworks like Visual Chain-of-Thought have demonstrated the benefit of incorporating explicit reasoning steps, where the model predicts a focus region before answering a query. However, existing approaches rely heavily on supervised training with annotated intermediate bounding boxes, which severely limits scalability due to the combinatorial explosion of intention-region pairs. To overcome this limitation, we propose VisRL, the first framework that applies reinforcement learning (RL) to the problem of intention-driven visual perception. VisRL optimizes the entire visual reasoning process using only reward signals. By treating intermediate focus selection as an internal decision optimized through trial-and-error, our method eliminates the need for costly region annotations while aligning more closely with how humans learn to perceive the world. Extensive experiments across multiple benchmarks show that VisRL consistently outperforms strong baselines, demonstrating both its effectiveness and its strong generalization across different LMMs. Our code is available at https://github.com/zhangquanchen/VisRL.
comment: 18pages,11 figures
♻ ☆ Diffusion State-Guided Projected Gradient for Inverse Problems ICLR 2025
Recent advancements in diffusion models have been effective in learning data priors for solving inverse problems. They leverage diffusion sampling steps for inducing a data prior while using a measurement guidance gradient at each step to impose data consistency. For general inverse problems, approximations are needed when an unconditionally trained diffusion model is used since the measurement likelihood is intractable, leading to inaccurate posterior sampling. In other words, due to their approximations, these methods fail to preserve the generation process on the data manifold defined by the diffusion prior, leading to artifacts in applications such as image restoration. To enhance the performance and robustness of diffusion models in solving inverse problems, we propose Diffusion State-Guided Projected Gradient (DiffStateGrad), which projects the measurement gradient onto a subspace that is a low-rank approximation of an intermediate state of the diffusion process. DiffStateGrad, as a module, can be added to a wide range of diffusion-based inverse solvers to improve the preservation of the diffusion process on the prior manifold and filter out artifact-inducing components. We highlight that DiffStateGrad improves the robustness of diffusion models in terms of the choice of measurement guidance step size and noise while improving the worst-case performance. Finally, we demonstrate that DiffStateGrad improves upon the state-of-the-art on linear and nonlinear image restoration inverse problems. Our code is available at https://github.com/Anima-Lab/DiffStateGrad.
comment: Published as a conference paper at ICLR 2025. RZ and BT have equal contributions
♻ ☆ Retrieval-augmented Few-shot Medical Image Segmentation with Foundation Models
Medical image segmentation is crucial for clinical decision-making, but the scarcity of annotated data presents significant challenges. Few-shot segmentation (FSS) methods show promise but often require training on the target domain and struggle to generalize across different modalities. Similarly, adapting foundation models like the Segment Anything Model (SAM) for medical imaging has limitations, including the need for finetuning and domain-specific adaptation. To address these issues, we propose a novel method that adapts DINOv2 and Segment Anything Model 2 (SAM 2) for retrieval-augmented few-shot medical image segmentation. Our approach uses DINOv2's feature as query to retrieve similar samples from limited annotated data, which are then encoded as memories and stored in memory bank. With the memory attention mechanism of SAM 2, the model leverages these memories as conditions to generate accurate segmentation of the target image. We evaluated our framework on three medical image segmentation tasks, demonstrating superior performance and generalizability across various modalities without the need for any retraining or finetuning. Overall, this method offers a practical and effective solution for few-shot medical image segmentation and holds significant potential as a valuable annotation tool in clinical applications.
♻ ☆ VideoMind: A Chain-of-LoRA Agent for Long Video Reasoning
Videos, with their unique temporal dimension, demand precise grounded understanding, where answers are directly linked to visual, interpretable evidence. Despite significant breakthroughs in reasoning capabilities within Large Language Models, multi-modal reasoning - especially for videos - remains unexplored. In this work, we introduce VideoMind, a novel video-language agent designed for temporal-grounded video understanding. VideoMind incorporates two key innovations: (i) We identify essential capabilities for video temporal reasoning and develop a role-based agentic workflow, including a planner for coordinating different roles, a grounder for temporal localization, a verifier to assess temporal interval accuracy, and an answerer for question-answering. (ii) To efficiently integrate these diverse roles, we propose a novel Chain-of-LoRA strategy, enabling seamless role-switching via lightweight LoRA adaptors while avoiding the overhead of multiple models, thus balancing efficiency and flexibility. Extensive experiments on 14 public benchmarks, including 3 on grounded video question-answering (Grounded VideoQA), 6 on video temporal grounding (VTG), and 5 on general video question-answering (VideoQA), verify that our agent achieves state-of-the-art performance on diverse video understanding tasks, underscoring its effectiveness in advancing video agent and long-form temporal reasoning.
comment: Project Page: https://videomind.github.io/
♻ ☆ Without Paired Labeled Data: An End-to-End Self-Supervised Paradigm for UAV-View Geo-Localization
UAV-View Geo-Localization (UVGL) aims to achieve accurate localization of unmanned aerial vehicles (UAVs) by retrieving the most relevant GPS-tagged satellite images. However, existing methods heavily rely on pre-paired UAV-satellite images for supervised learning. Such dependency not only incurs high annotation costs but also severely limits scalability and practical deployment in open-world UVGL scenarios. To address these limitations, we propose an end-to-end self-supervised UVGL method. Our method leverages a shallow backbone network to extract initial features, employs clustering to generate pseudo labels, and adopts a dual-path contrastive learning architecture to learn discriminative intra-view representations. Furthermore, our method incorporates two core modules, the dynamic hierarchical memory learning module and the information consistency evolution learning module. The dynamic hierarchical memory learning module combines short-term and long-term memory to enhance intra-view feature consistency and discriminability. Meanwhile, the information consistency evolution learning module leverages a neighborhood-driven dynamic constraint mechanism to systematically capture implicit cross-view semantic correlations, thereby improving cross-view feature alignment. To further stabilize and strengthen the self-supervised training process, a pseudo-label enhancement strategy is introduced, which refines the quality of pseudo supervision. Our method ultimately constructs a unified cross-view feature representation space under self-supervised settings. Extensive experiments on three public benchmark datasets demonstrate that the proposed method consistently outperforms existing self-supervised methods and even surpasses several state-of-the-art supervised methods. Our code is available at https://github.com/ISChenawei/DMNIL.
♻ ☆ Data-Free Group-Wise Fully Quantized Winograd Convolution via Learnable Scales CVPR 2025
Despite the revolutionary breakthroughs of large-scale text-to-image diffusion models for complex vision and downstream tasks, their extremely high computational and storage costs limit their usability. Quantization of diffusion models has been explored in recent works to reduce compute costs and memory bandwidth usage. To further improve inference time, fast convolution algorithms such as Winograd can be used for convolution layers, which account for a significant portion of computations in diffusion models. However, the significant quality loss of fully quantized Winograd using existing coarser-grained post-training quantization methods, combined with the complexity and cost of finetuning the Winograd transformation matrices for such large models to recover quality, makes them unsuitable for large-scale foundation models. Motivated by the presence of a large range of values in them, we investigate the impact of finer-grained group-wise quantization in quantizing diffusion models. While group-wise quantization can largely handle the fully quantized Winograd convolution, it struggles to deal with the large distribution imbalance in a sizable portion of the Winograd domain computation. To reduce range differences in the Winograd domain, we propose finetuning only the scale parameters of the Winograd transform matrices without using any domain-specific training data. Because our method does not depend on any training data, the generalization performance of quantized diffusion models is safely guaranteed. For text-to-image generation task, the 8-bit fully-quantized diffusion model with Winograd provides near-lossless quality (FID and CLIP scores) in comparison to the full-precision model. For image classification, our method outperforms the state-of-the-art Winograd PTQ method by 1.62% and 2.56% in top-1 ImageNet accuracy on ResNet18 and ResNet-34, respectively, with Winograd F(6, 3).
comment: Accepted by CVPR 2025
♻ ☆ Astrea: A MOE-based Visual Understanding Model with Progressive Alignment
Vision-Language Models (VLMs) based on Mixture-of-Experts (MoE) architectures have emerged as a pivotal paradigm in multimodal understanding, offering a powerful framework for integrating visual and linguistic information. However, the increasing complexity and diversity of tasks present significant challenges in coordinating load balancing across heterogeneous visual experts, where optimizing one specialist's performance often compromises others' capabilities. To address task heterogeneity and expert load imbalance, we propose Astrea, a novel multi-expert collaborative VLM architecture based on progressive pre-alignment. Astrea introduces three key innovations: 1) A heterogeneous expert coordination mechanism that integrates four specialized models (detection, segmentation, classification, captioning) into a comprehensive expert matrix covering essential visual comprehension elements; 2) A dynamic knowledge fusion strategy featuring progressive pre-alignment to harmonize experts within the VLM latent space through contrastive learning, complemented by probabilistically activated stochastic residual connections to preserve knowledge continuity; 3) An enhanced optimization framework utilizing momentum contrastive learning for long-range dependency modeling and adaptive weight allocators for real-time expert contribution calibration. Extensive evaluations across 12 benchmark tasks spanning VQA, image captioning, and cross-modal retrieval demonstrate Astrea's superiority over state-of-the-art models, achieving an average performance gain of +4.7\%. This study provides the first empirical demonstration that progressive pre-alignment strategies enable VLMs to overcome task heterogeneity limitations, establishing new methodological foundations for developing general-purpose multimodal agents.
♻ ☆ 4D LangSplat: 4D Language Gaussian Splatting via Multimodal Large Language Models CVPR 2025
Learning 4D language fields to enable time-sensitive, open-ended language queries in dynamic scenes is essential for many real-world applications. While LangSplat successfully grounds CLIP features into 3D Gaussian representations, achieving precision and efficiency in 3D static scenes, it lacks the ability to handle dynamic 4D fields as CLIP, designed for static image-text tasks, cannot capture temporal dynamics in videos. Real-world environments are inherently dynamic, with object semantics evolving over time. Building a precise 4D language field necessitates obtaining pixel-aligned, object-wise video features, which current vision models struggle to achieve. To address these challenges, we propose 4D LangSplat, which learns 4D language fields to handle time-agnostic or time-sensitive open-vocabulary queries in dynamic scenes efficiently. 4D LangSplat bypasses learning the language field from vision features and instead learns directly from text generated from object-wise video captions via Multimodal Large Language Models (MLLMs). Specifically, we propose a multimodal object-wise video prompting method, consisting of visual and text prompts that guide MLLMs to generate detailed, temporally consistent, high-quality captions for objects throughout a video. These captions are encoded using a Large Language Model into high-quality sentence embeddings, which then serve as pixel-aligned, object-specific feature supervision, facilitating open-vocabulary text queries through shared embedding spaces. Recognizing that objects in 4D scenes exhibit smooth transitions across states, we further propose a status deformable network to model these continuous changes over time effectively. Our results across multiple benchmarks demonstrate that 4D LangSplat attains precise and efficient results for both time-sensitive and time-agnostic open-vocabulary queries.
comment: CVPR 2025. Project Page: https://4d-langsplat.github.io
♻ ☆ TextCrafter: Accurately Rendering Multiple Texts in Complex Visual Scenes
This paper explores the task of Complex Visual Text Generation (CVTG), which centers on generating intricate textual content distributed across diverse regions within visual images. In CVTG, image generation models often rendering distorted and blurred visual text or missing some visual text. To tackle these challenges, we propose TextCrafter, a novel multi-visual text rendering method. TextCrafter employs a progressive strategy to decompose complex visual text into distinct components while ensuring robust alignment between textual content and its visual carrier. Additionally, it incorporates a token focus enhancement mechanism to amplify the prominence of visual text during the generation process. TextCrafter effectively addresses key challenges in CVTG tasks, such as text confusion, omissions, and blurriness. Moreover, we present a new benchmark dataset, CVTG-2K, tailored to rigorously evaluate the performance of generative models on CVTG tasks. Extensive experiments demonstrate that our method surpasses state-of-the-art approaches.
♻ ☆ EventMamba: Enhancing Spatio-Temporal Locality with State Space Models for Event-Based Video Reconstruction
Leveraging its robust linear global modeling capability, Mamba has notably excelled in computer vision. Despite its success, existing Mamba-based vision models have overlooked the nuances of event-driven tasks, especially in video reconstruction. Event-based video reconstruction (EBVR) demands spatial translation invariance and close attention to local event relationships in the spatio-temporal domain. Unfortunately, conventional Mamba algorithms apply static window partitions and standard reshape scanning methods, leading to significant losses in local connectivity. To overcome these limitations, we introduce EventMamba--a specialized model designed for EBVR tasks. EventMamba innovates by incorporating random window offset (RWO) in the spatial domain, moving away from the restrictive fixed partitioning. Additionally, it features a new consistent traversal serialization approach in the spatio-temporal domain, which maintains the proximity of adjacent events both spatially and temporally. These enhancements enable EventMamba to retain Mamba's robust modeling capabilities while significantly preserving the spatio-temporal locality of event data. Comprehensive testing on multiple datasets shows that EventMamba markedly enhances video reconstruction, drastically improving computation speed while delivering superior visual quality compared to Transformer-based methods.
♻ ☆ Where am I? Cross-View Geo-localization with Natural Language Descriptions
Cross-view geo-localization identifies the locations of street-view images by matching them with geo-tagged satellite images or OSM. However, most existing studies focus on image-to-image retrieval, with fewer addressing text-guided retrieval, a task vital for applications like pedestrian navigation and emergency response. In this work, we introduce a novel task for cross-view geo-localization with natural language descriptions, which aims to retrieve corresponding satellite images or OSM database based on scene text descriptions. To support this task, we construct the CVG-Text dataset by collecting cross-view data from multiple cities and employing a scene text generation approach that leverages the annotation capabilities of Large Multimodal Models to produce high-quality scene text descriptions with localization details. Additionally, we propose a novel text-based retrieval localization method, CrossText2Loc, which improves recall by 10% and demonstrates excellent long-text retrieval capabilities. In terms of explainability, it not only provides similarity scores but also offers retrieval reasons. More information can be found at https://yejy53.github.io/CVG-Text/ .
comment: 11 pages, 6 figures
♻ ☆ Alleviating Hallucinations in Large Vision-Language Models through Hallucination-Induced Optimization NeurIPS 2024
Although Large Visual Language Models (LVLMs) have demonstrated exceptional abilities in understanding multimodal data, they invariably suffer from hallucinations, leading to a disconnect between the generated text and the corresponding images. Almost all current visual contrastive decoding methods attempt to mitigate these hallucinations by introducing visual uncertainty information that appropriately widens the contrastive logits gap between hallucinatory and targeted ones. However, due to uncontrollable nature of the global visual uncertainty, they struggle to precisely induce the hallucinatory tokens, which severely limits their effectiveness in mitigating hallucinations and may even lead to the generation of undesired hallucinations. To tackle this issue, we conducted the theoretical analysis to promote the effectiveness of contrast decoding. Building on this insight, we introduce a novel optimization strategy named Hallucination-Induced Optimization (HIO). This strategy seeks to amplify the contrast between hallucinatory and targeted tokens relying on a fine-tuned theoretical preference model (i.e., Contrary Bradley-Terry Model), thereby facilitating efficient contrast decoding to alleviate hallucinations in LVLMs. Extensive experimental research demonstrates that our HIO strategy can effectively reduce hallucinations in LVLMs, outperforming state-of-the-art methods across various benchmarks.
comment: Accepted by NeurIPS 2024
♻ ☆ A novel algorithm for optimizing bundle adjustment in image sequence alignment
The Bundle Adjustment (BA) model is commonly optimized using a nonlinear least squares method, with the Levenberg-Marquardt (L-M) algorithm being a typical choice. However, despite the L-M algorithm's effectiveness, its sensitivity to initial conditions often results in slower convergence when applied to poorly conditioned datasets, motivating the exploration of alternative optimization strategies. This paper introduces a novel algorithm for optimizing the BA model in the context of image sequence alignment for cryo-electron tomography, utilizing optimal control theory to directly optimize general nonlinear functions. The proposed Optimal Control Algorithm (OCA) exhibits superior convergence rates and effectively mitigates the oscillatory behavior frequently observed in L-M algorithm. Extensive experiments on both synthetic and real-world datasets were conducted to evaluate the algorithm's performance. The results demonstrate that the OCA achieves faster convergence compared to the L-M algorithm. Moreover, the incorporation of a bisection-based update procedure significantly enhances the OCA's performance, particularly in poorly initialized datasets. These findings indicate that the OCA can substantially improve the efficiency of 3D reconstructions in cryo-electron tomography.
♻ ☆ A Comparative Tutorial of the Histogram-based Image Segmentation Methods
The histogram of an image is the accurate graphical representation of the numerical grayscale distribution and it is also an estimate of the probability distribution of image pixels. Therefore, histogram has been widely adopted to calculate the clustering means and partitioning thresholds for image segmentation. There have been many classical histogram-based image segmentation methods proposed and played important roles in both academics and industry. In this tutorial, the histories and recent advances of the histogram-based image segmentation techniques are first reviewed and then they are divided into four categories: (1) the means-based method, (2) the Gaussian-mixture-model-based method, (3) the entropy-based method and (4) the feature-points-based method. The purpose of this tutorial is threefold: 1) to teach the principles of the classical histogram-based image segmentation methods to the interested readers; 2) to evaluate the advantages and disadvantages of these classical histogram-based image segmentation methods objectively; 3) to compare the performances of these classical histogram-based image segmentation methods with state-of-the-art deep learning based methods objectively.
♻ ☆ LVAgent: Long Video Understanding by Multi-Round Dynamical Collaboration of MLLM Agents
Existing Multimodal Large Language Models (MLLMs) encounter significant challenges in modeling the temporal context within long videos. Currently, mainstream Agent-based methods use external tools (e.g., search engine, memory banks, OCR, retrieval models) to assist a single MLLM in answering long video questions. Despite such tool-based support, a solitary MLLM still offers only a partial understanding of long videos, resulting in limited performance. In order to better address long video tasks, we introduce LVAgent, the first framework enabling multi-round dynamic collaboration of MLLM agents in long video understanding. Our methodology consists of four key steps: 1. Selection: We pre-select appropriate agents from the model library to form optimal agent teams based on different tasks. 2. Perception: We design an effective retrieval scheme for long videos, improving the coverage of critical temporal segments while maintaining computational efficiency. 3. Action: Agents answer long video-related questions and exchange reasons. 4. Reflection: We evaluate the performance of each agent in each round of discussion and optimize the agent team for dynamic collaboration. The agents iteratively refine their answers by multi-round dynamical collaboration of MLLM agents. LVAgent is the first agent system method that outperforms all closed-source models (including GPT-4o) and open-source models (including InternVL-2.5 and Qwen2-VL) in the long video understanding tasks. Our LVAgent achieves an accuracy of 80% on four mainstream long video understanding tasks. Notably, on the LongVideoBench dataset, LVAgent improves accuracy by up to 13.3% compared with SOTA.
♻ ☆ RG-Attn: Radian Glue Attention for Multi-modality Multi-agent Cooperative Perception
Cooperative perception offers an optimal solution to overcome the perception limitations of single-agent systems by leveraging Vehicle-to-Everything (V2X) communication for data sharing and fusion across multiple agents. However, most existing approaches focus on single-modality data exchange, limiting the potential of both homogeneous and heterogeneous fusion across agents. This overlooks the opportunity to utilize multi-modality data per agent, restricting the system's performance. In the automotive industry, manufacturers adopt diverse sensor configurations, resulting in heterogeneous combinations of sensor modalities across agents. To harness the potential of every possible data source for optimal performance, we design a robust LiDAR and camera cross-modality fusion module, Radian-Glue-Attention (RG-Attn), applicable to both intra-agent cross-modality fusion and inter-agent cross-modality fusion scenarios, owing to the convenient coordinate conversion by transformation matrix and the unified sampling/inversion mechanism. We also propose two different architectures, named Paint-To-Puzzle (PTP) and Co-Sketching-Co-Coloring (CoS-CoCo), for conducting cooperative perception. PTP aims for maximum precision performance and achieves smaller data packet size by limiting cross-agent fusion to a single instance, but requiring all participants to be equipped with LiDAR. In contrast, CoS-CoCo supports agents with any configuration-LiDAR-only, camera-only, or LiDAR-camera-both, presenting more generalization ability. Our approach achieves state-of-the-art (SOTA) performance on both real and simulated cooperative perception datasets. The code is now available at GitHub.
♻ ☆ PSF-4D: A Progressive Sampling Framework for View Consistent 4D Editing
Instruction-guided generative models, especially those using text-to-image (T2I) and text-to-video (T2V) diffusion frameworks, have advanced the field of content editing in recent years. To extend these capabilities to 4D scene, we introduce a progressive sampling framework for 4D editing (PSF-4D) that ensures temporal and multi-view consistency by intuitively controlling the noise initialization during forward diffusion. For temporal coherence, we design a correlated Gaussian noise structure that links frames over time, allowing each frame to depend meaningfully on prior frames. Additionally, to ensure spatial consistency across views, we implement a cross-view noise model, which uses shared and independent noise components to balance commonalities and distinct details among different views. To further enhance spatial coherence, PSF-4D incorporates view-consistent iterative refinement, embedding view-aware information into the denoising process to ensure aligned edits across frames and views. Our approach enables high-quality 4D editing without relying on external models, addressing key challenges in previous methods. Through extensive evaluation on multiple benchmarks and multiple editing aspects (e.g., style transfer, multi-attribute editing, object removal, local editing, etc.), we show the effectiveness of our proposed method. Experimental results demonstrate that our proposed method outperforms state-of-the-art 4D editing methods in diverse benchmarks.
comment: 9 pages, 7 figures
♻ ☆ Rerouting Connection: Hybrid Computer Vision Analysis Reveals Visual Similarity Between Indus and Tibetan-Yi Corridor Writing Systems
This thesis employs a hybrid CNN-Transformer architecture, in conjunction with a detailed anthropological framework, to investigate potential historical connections between the visual morphology of the Indus Valley script and pictographic systems of the Tibetan-Yi Corridor. Through an ensemble methodology of three target scripts across 15 independently trained models, we demonstrate that Tibetan-Yi Corridor scripts exhibit approximately six-fold higher visual similarity to the Indus script (61.7%-63.5%) than to the Bronze Age Proto-Cuneiform (10.2%-10.9%) or Proto-Elamite (7.6%-8.7%) systems. Additionally and contrarily to our current understanding of the networks of the Indus Valley Civilization, the Indus script unexpectedly maps closer to Tibetan-Yi Corridor scripts, with a mean cosine similarity of 0.629, than to the aforementioned contemporaneous West Asian signaries, both of which recorded mean cosine similarities of 0.104 and 0.080 despite their close geographic proximity and evident trade relations. Across various dimensionality reduction practices and clustering methodologies, the Indus script consistently clusters closest to Tibetan-Yi Corridor scripts. Our computational results align with qualitative observations of specific pictorial parallels in numeral systems, gender markers, and key iconographic elements; this is further supported by archaeological evidence of sustained contact networks along the ancient Shu-Shendu road in tandem with the Indus Valley Civilization's decline, providing a plausible transmission pathway. While alternative explanations cannot be ruled out, the specificity and consistency of observed similarities challenge conventional narratives of isolated script development and suggest more complex ancient cultural transmission networks between South and East Asia than previously recognized.
comment: 106 pages (42 main text, 6 references, 58 appendices). 21 figures, 4 tables in main text; 106 figures, 8 tables total. Code: https://github.com/oohalakkadi/ivc2tyc. Undergraduate thesis at Duke Kunshan University. Accepted for presentation at the 52nd International Conference for Computer Applications & Quantitative Methods in Archaeology (CAA 2025), Athens, Greece
♻ ☆ Devils in Middle Layers of Large Vision-Language Models: Interpreting, Detecting and Mitigating Object Hallucinations via Attention Lens
Hallucinations in Large Vision-Language Models (LVLMs) significantly undermine their reliability, motivating researchers to explore the causes of hallucination. However, most studies primarily focus on the language aspect rather than the visual. In this paper, we address how LVLMs process visual information and whether this process causes hallucination. Firstly, we use the attention lens to identify the stages at which LVLMs handle visual data, discovering that the middle layers are crucial. Moreover, we find that these layers can be further divided into two stages: ''visual information enrichment'' and ''semantic refinement'' which respectively propagate visual data to object tokens and interpret it through text. By analyzing attention patterns during the visual information enrichment stage, we find that real tokens consistently receive higher attention weights than hallucinated ones, serving as a strong indicator of hallucination. Further examination of multi-head attention maps reveals that hallucination tokens often result from heads interacting with inconsistent objects. Based on these insights, we propose a simple inference-time method that adjusts visual attention by integrating information across various heads. Extensive experiments demonstrate that this approach effectively mitigates hallucinations in mainstream LVLMs without additional training costs. Code is available at https://github.com/ZhangqiJiang07/middle_layers_indicating_hallucinations.
♻ ☆ View-Invariant Pixelwise Anomaly Detection in Multi-object Scenes with Adaptive View Synthesis
Visual anomaly detection in the built environment is a valuable tool for applications such as infrastructure assessment, construction monitoring, security surveillance, and urban planning. Anomaly detection approaches are typically unsupervised and work by detecting deviations from an expected state where no assumptions are made exact type of deviation. Unsupervised pixel-level anomaly detection methods have been developed to successfully recognize and segment anomalies; however, existing techniques are designed for industrial settings with a fixed camera position. In the built environment, images are periodically captured by a camera operated manually or mounted on aerial or ground vehicles. The camera pose between successive collections may vary widely voiding a fundamental assumption in existing anomaly detection approaches. To address this gap, we introduce the problem of Scene Anomaly Detection (Scene AD), where the goal is to detect anomalies from two sets of images: one set without anomalies and one set that may or may not contain anomalies. No labeled semantic segmentation data are provided for training. We propose a novel network, OmniAD, to tackle Scene AD by refining the reverse distillation anomaly detection method, leading to a 40\% improvement in pixel-level anomaly detection. Additionally, we introduce two new data augmentation strategies that leverage novel view synthesis and camera localization to enhance generalization. We evaluate our approach both qualitatively and quantitatively on a new dataset, ToyCity the first Scene AD dataset featuring multiple objects as well as on the established single object centric dataset, MAD. Our method demonstrates marked improvement over baseline approaches, paving the way for robust anomaly detection in scenes with real-world camera pose variations commonly observed in the built environment. https://drags99.github.io/OmniAD/
♻ ☆ Convolutional Neural Networks Can (Meta-)Learn the Same-Different Relation
While convolutional neural networks (CNNs) have come to match and exceed human performance in many settings, the tasks these models optimize for are largely constrained to the level of individual objects, such as classification and captioning. Humans remain vastly superior to CNNs in visual tasks involving relations, including the ability to identify two objects as `same' or `different'. A number of studies have shown that while CNNs can be coaxed into learning the same-different relation in some settings, they tend to generalize poorly to other instances of this relation. In this work we show that the same CNN architectures that fail to generalize the same-different relation with conventional training are able to succeed when trained via meta-learning, which explicitly encourages abstraction and generalization across tasks.
♻ ☆ Enhancing Domain Adaptation through Prompt Gradient Alignment NeurIPS 2024
Prior Unsupervised Domain Adaptation (UDA) methods often aim to train a domain-invariant feature extractor, which may hinder the model from learning sufficiently discriminative features. To tackle this, a line of works based on prompt learning leverages the power of large-scale pre-trained vision-language models to learn both domain-invariant and specific features through a set of domain-agnostic and domain-specific learnable prompts. Those studies typically enforce invariant constraints on representation, output, or prompt space to learn such prompts. In contrast, we cast UDA as a multiple-objective optimization problem in which each objective is represented by a domain loss. Under this new framework, we propose to align per-objective gradients to foster consensus between them. Additionally, to prevent potential overfitting when fine-tuning this deep learning architecture, we penalize the norm of these gradients. To achieve these goals, we devise a practical gradient update procedure that can work under both single-source and multi-source UDA. Empirically, our method consistently outperforms other vision-language model adaptation methods. The implementation is available at https://github.com/VietHoang1512/PGA.
comment: Accepted to NeurIPS 2024
♻ ☆ Disentangling Safe and Unsafe Corruptions via Anisotropy and Locality
State-of-the-art machine learning systems are vulnerable to small perturbations to their input, where ``small'' is defined according to a threat model that assigns a positive threat to each perturbation. Most prior works define a task-agnostic, isotropic, and global threat, like the $\ell_p$ norm, where the magnitude of the perturbation fully determines the degree of the threat and neither the direction of the attack nor its position in space matter. However, common corruptions in computer vision, such as blur, compression, or occlusions, are not well captured by such threat models. This paper proposes a novel threat model called \texttt{Projected Displacement} (PD) to study robustness beyond existing isotropic and global threat models. The proposed threat model measures the threat of a perturbation via its alignment with \textit{unsafe directions}, defined as directions in the input space along which a perturbation of sufficient magnitude changes the ground truth class label. Unsafe directions are identified locally for each input based on observed training data. In this way, the PD threat model exhibits anisotropy and locality. Experiments on Imagenet-1k data indicate that, for any input, the set of perturbations with small PD threat includes \textit{safe} perturbations of large $\ell_p$ norm that preserve the true label, such as noise, blur and compression, while simultaneously excluding \textit{unsafe} perturbations that alter the true label. Unlike perceptual threat models based on embeddings of large-vision models, the PD threat model can be readily computed for arbitrary classification tasks without pre-training or finetuning. Further additional task annotation such as sensitivity to image regions or concept hierarchies can be easily integrated into the assessment of threat and thus the PD threat model presents practitioners with a flexible, task-driven threat specification.
comment: Published at IEEE/CVF Conference on Computer Vision and Pattern Recognition 2025. Updated Acknowledgements
Artificial Intelligence 78
♻ ☆ Evaluating machine learning models for predicting pesticides toxicity to honey bees
Small molecules play a critical role in the biomedical, environmental, and agrochemical domains, each with distinct physicochemical requirements and success criteria. Although biomedical research benefits from extensive datasets and established benchmarks, agrochemical data remain scarce, particularly with respect to species-specific toxicity. This work focuses on ApisTox, the most comprehensive dataset of experimentally validated chemical toxicity to the honey bee (Apis mellifera), an ecologically vital pollinator. We evaluate ApisTox using a diverse suite of machine learning approaches, including molecular fingerprints, graph kernels, and graph neural networks, as well as pretrained models. Comparative analysis with medicinal datasets from the MoleculeNet benchmark reveals that ApisTox represents a distinct chemical space. Performance degradation on non-medicinal datasets, such as ApisTox, demonstrates their limited generalizability of current state-of-the-art algorithms trained solely on biomedical data. Our study highlights the need for more diverse datasets and for targeted model development geared toward the agrochemical domain.
♻ ☆ Visual Acoustic Fields
Objects produce different sounds when hit, and humans can intuitively infer how an object might sound based on its appearance and material properties. Inspired by this intuition, we propose Visual Acoustic Fields, a framework that bridges hitting sounds and visual signals within a 3D space using 3D Gaussian Splatting (3DGS). Our approach features two key modules: sound generation and sound localization. The sound generation module leverages a conditional diffusion model, which takes multiscale features rendered from a feature-augmented 3DGS to generate realistic hitting sounds. Meanwhile, the sound localization module enables querying the 3D scene, represented by the feature-augmented 3DGS, to localize hitting positions based on the sound sources. To support this framework, we introduce a novel pipeline for collecting scene-level visual-sound sample pairs, achieving alignment between captured images, impact locations, and corresponding sounds. To the best of our knowledge, this is the first dataset to connect visual and acoustic signals in a 3D context. Extensive experiments on our dataset demonstrate the effectiveness of Visual Acoustic Fields in generating plausible impact sounds and accurately localizing impact sources. Our project page is at https://yuelei0428.github.io/projects/Visual-Acoustic-Fields/.
♻ ☆ Learned Image Compression and Restoration for Digital Pathology
Digital pathology images play a crucial role in medical diagnostics, but their ultra-high resolution and large file sizes pose significant challenges for storage, transmission, and real-time visualization. To address these issues, we propose CLERIC, a novel deep learning-based image compression framework designed specifically for whole slide images (WSIs). CLERIC integrates a learnable lifting scheme and advanced convolutional techniques to enhance compression efficiency while preserving critical pathological details. Our framework employs a lifting-scheme transform in the analysis stage to decompose images into low- and high-frequency components, enabling more structured latent representations. These components are processed through parallel encoders incorporating Deformable Residual Blocks (DRB) and Recurrent Residual Blocks (R2B) to improve feature extraction and spatial adaptability. The synthesis stage applies an inverse lifting transform for effective image reconstruction, ensuring high-fidelity restoration of fine-grained tissue structures. We evaluate CLERIC on a digital pathology image dataset and compare its performance against state-of-the-art learned image compression (LIC) models. Experimental results demonstrate that CLERIC achieves superior rate-distortion (RD) performance, significantly reducing storage requirements while maintaining high diagnostic image quality. Our study highlights the potential of deep learning-based compression in digital pathology, facilitating efficient data management and long-term storage while ensuring seamless integration into clinical workflows and AI-assisted diagnostic systems. Code and models are available at: https://github.com/pnu-amilab/CLERIC.
♻ ☆ When Counterfactual Reasoning Fails: Chaos and Real-World Complexity
Counterfactual reasoning, a cornerstone of human cognition and decision-making, is often seen as the 'holy grail' of causal learning, with applications ranging from interpreting machine learning models to promoting algorithmic fairness. While counterfactual reasoning has been extensively studied in contexts where the underlying causal model is well-defined, real-world causal modeling is often hindered by model and parameter uncertainty, observational noise, and chaotic behavior. The reliability of counterfactual analysis in such settings remains largely unexplored. In this work, we investigate the limitations of counterfactual reasoning within the framework of Structural Causal Models. Specifically, we empirically investigate \emph{counterfactual sequence estimation} and highlight cases where it becomes increasingly unreliable. We find that realistic assumptions, such as low degrees of model uncertainty or chaotic dynamics, can result in counterintuitive outcomes, including dramatic deviations between predicted and true counterfactual trajectories. This work urges caution when applying counterfactual reasoning in settings characterized by chaos and uncertainty. Furthermore, it raises the question of whether certain systems may pose fundamental limitations on the ability to answer counterfactual questions about their behavior.
♻ ☆ WaveFormer: A 3D Transformer with Wavelet-Driven Feature Representation for Efficient Medical Image Segmentation
Transformer-based architectures have advanced medical image analysis by effectively modeling long-range dependencies, yet they often struggle in 3D settings due to substantial memory overhead and insufficient capture of fine-grained local features. We address these limitations with WaveFormer, a novel 3D-transformer that: i) leverages the fundamental frequency-domain properties of features for contextual representation, and ii) is inspired by the top-down mechanism of the human visual recognition system, making it a biologically motivated architecture. By employing discrete wavelet transformations (DWT) at multiple scales, WaveFormer preserves both global context and high-frequency details while replacing heavy upsampling layers with efficient wavelet-based summarization and reconstruction. This significantly reduces the number of parameters, which is critical for real-world deployment where computational resources and training times are constrained. Furthermore, the model is generic and easily adaptable to diverse applications. Evaluations on BraTS2023, FLARE2021, and KiTS2023 demonstrate performance on par with state-of-the-art methods while offering substantially lower computational complexity.
♻ ☆ MolGround: A Benchmark for Molecular Grounding
Current molecular understanding approaches predominantly focus on the descriptive aspect of human perception, providing broad, topic-level insights. However, the referential aspect -- linking molecular concepts to specific structural components -- remains largely unexplored. To address this gap, we propose a molecular grounding benchmark designed to evaluate a model's referential abilities. We align molecular grounding with established conventions in NLP, cheminformatics, and molecular science, showcasing the potential of NLP techniques to advance molecular understanding within the AI for Science movement. Furthermore, we constructed the largest molecular understanding benchmark to date, comprising 79k QA pairs, and developed a multi-agent grounding prototype as proof of concept. This system outperforms existing models, including GPT-4o, and its grounding outputs have been integrated to enhance traditional tasks such as molecular captioning and ATC (Anatomical, Therapeutic, Chemical) classification.
♻ ☆ A Survey on Unlearnable Data
Unlearnable data (ULD) has emerged as an innovative defense technique to prevent machine learning models from learning meaningful patterns from specific data, thus protecting data privacy and security. By introducing perturbations to the training data, ULD degrades model performance, making it difficult for unauthorized models to extract useful representations. Despite the growing significance of ULD, existing surveys predominantly focus on related fields, such as adversarial attacks and machine unlearning, with little attention given to ULD as an independent area of study. This survey fills that gap by offering a comprehensive review of ULD, examining unlearnable data generation methods, public benchmarks, evaluation metrics, theoretical foundations and practical applications. We compare and contrast different ULD approaches, analyzing their strengths, limitations, and trade-offs related to unlearnability, imperceptibility, efficiency and robustness. Moreover, we discuss key challenges, such as balancing perturbation imperceptibility with model degradation and the computational complexity of ULD generation. Finally, we highlight promising future research directions to advance the effectiveness and applicability of ULD, underscoring its potential to become a crucial tool in the evolving landscape of data protection in machine learning.
comment: 31 pages, 3 figures, Code in https://github.com/LiJiahao-Alex/Awesome-UnLearnable-Data
♻ ☆ BounTCHA: A CAPTCHA Utilizing Boundary Identification in Guided Generative AI-extended Videos
In recent years, the rapid development of artificial intelligence (AI) especially multi-modal Large Language Models (MLLMs), has enabled it to understand text, images, videos, and other multimedia data, allowing AI systems to execute various tasks based on human-provided prompts. However, AI-powered bots have increasingly been able to bypass most existing CAPTCHA systems, posing significant security threats to web applications. This makes the design of new CAPTCHA mechanisms an urgent priority. We observe that humans are highly sensitive to shifts and abrupt changes in videos, while current AI systems still struggle to comprehend and respond to such situations effectively. Based on this observation, we design and implement BounTCHA, a CAPTCHA mechanism that leverages human perception of boundaries in video transitions and disruptions. By utilizing generative AI's capability to extend original videos with prompts, we introduce unexpected twists and changes to create a pipeline for generating guided short videos for CAPTCHA purposes. We develop a prototype and conduct experiments to collect data on humans' time biases in boundary identification. This data serves as a basis for distinguishing between human users and bots. Additionally, we perform a detailed security analysis of BounTCHA, demonstrating its resilience against various types of attacks. We hope that BounTCHA will act as a robust defense, safeguarding millions of web applications in the AI-driven era.
comment: 22 pages, 15 figures; references added, typos corrected, new keyword "guided" added, new experimental data and related results updated; new keyword "Generative AI" added for clarity
♻ ☆ Reasoning-SQL: Reinforcement Learning with SQL Tailored Partial Rewards for Reasoning-Enhanced Text-to-SQL
Text-to-SQL is a challenging task involving multiple reasoning-intensive subtasks, including natural language understanding, database schema comprehension, and precise SQL query formulation. Existing approaches often rely on handcrafted reasoning paths with inductive biases that can limit their overall effectiveness. Motivated by the recent success of reasoning-enhanced models such as DeepSeek R1 and OpenAI o1, which effectively leverage reward-driven self-exploration to enhance reasoning capabilities and generalization, we propose a novel set of partial rewards tailored specifically for the Text-to-SQL task. Our reward set includes schema-linking, AI feedback, n-gram similarity, and syntax check, explicitly designed to address the reward sparsity issue prevalent in reinforcement learning (RL). Leveraging group relative policy optimization (GRPO), our approach explicitly encourages large language models (LLMs) to develop intrinsic reasoning skills necessary for accurate SQL query generation. With models of different sizes, we demonstrate that RL-only training with our proposed rewards consistently achieves higher accuracy and superior generalization compared to supervised fine-tuning (SFT). Remarkably, our RL-trained 14B-parameter model significantly outperforms larger proprietary models, e.g. o3-mini by 4% and Gemini-1.5-Pro-002 by 3% on the BIRD benchmark. These highlight the efficacy of our proposed RL-training framework with partial rewards for enhancing both accuracy and reasoning capabilities in Text-to-SQL tasks.
comment: Mohammadreza Pourreza and Shayan Talaei contributed equally to this work
♻ ☆ DC-SGD: Differentially Private SGD with Dynamic Clipping through Gradient Norm Distribution Estimation
Differentially Private Stochastic Gradient Descent (DP-SGD) is a widely adopted technique for privacy-preserving deep learning. A critical challenge in DP-SGD is selecting the optimal clipping threshold C, which involves balancing the trade-off between clipping bias and noise magnitude, incurring substantial privacy and computing overhead during hyperparameter tuning. In this paper, we propose Dynamic Clipping DP-SGD (DC-SGD), a framework that leverages differentially private histograms to estimate gradient norm distributions and dynamically adjust the clipping threshold C. Our framework includes two novel mechanisms: DC-SGD-P and DC-SGD-E. DC-SGD-P adjusts the clipping threshold based on a percentile of gradient norms, while DC-SGD-E minimizes the expected squared error of gradients to optimize C. These dynamic adjustments significantly reduce the burden of hyperparameter tuning C. The extensive experiments on various deep learning tasks, including image classification and natural language processing, show that our proposed dynamic algorithms achieve up to 9 times acceleration on hyperparameter tuning than DP-SGD. And DC-SGD-E can achieve an accuracy improvement of 10.62% on CIFAR10 than DP-SGD under the same privacy budget of hyperparameter tuning. We conduct rigorous theoretical privacy and convergence analyses, showing that our methods seamlessly integrate with the Adam optimizer. Our results highlight the robust performance and efficiency of DC-SGD, offering a practical solution for differentially private deep learning with reduced computational overhead and enhanced privacy guarantees.
comment: Accepted at IEEE Transactions on Information Forensics & Security
♻ ☆ HRET: A Self-Evolving LLM Evaluation Toolkit for Korean
Recent advancements in Korean large language models (LLMs) have spurred numerous benchmarks and evaluation methodologies, yet the lack of a standardized evaluation framework has led to inconsistent results and limited comparability. To address this, we introduce HRET Haerae Evaluation Toolkit, an open-source, self-evolving evaluation framework tailored specifically for Korean LLMs. HRET unifies diverse evaluation methods, including logit-based scoring, exact-match, language-inconsistency penalization, and LLM-as-a-Judge assessments. Its modular, registry-based architecture integrates major benchmarks (HAE-RAE Bench, KMMLU, KUDGE, HRM8K) and multiple inference backends (vLLM, HuggingFace, OpenAI-compatible endpoints). With automated pipelines for continuous evolution, HRET provides a robust foundation for reproducible, fair, and transparent Korean NLP research.
♻ ☆ NTSEBENCH: Cognitive Reasoning Benchmark for Vision Language Models
Cognitive textual and visual reasoning tasks, including puzzles, series, and analogies, demand the ability to quickly reason, decipher, and evaluate patterns both textually and spatially. Due to extensive training on vast amounts of human-curated data, LLMs and VLMs excel in common-sense reasoning tasks, however still struggle with more complex reasoning that demands deeper cognitive understanding. We introduce NTSEBench, a new dataset designed to evaluate cognitive multi-modal reasoning and problem-solving skills of large models. The dataset contains 2728 multiple-choice questions, accompanied by a total of 4,642 images, categorized into 26 different types. These questions are drawn from the nationwide NTSE examination in India and feature a mix of visual and textual general aptitude challenges, designed to assess intelligence and critical thinking skills beyond mere rote learning. We establish baselines on the dataset using state-of-the-art LLMs and VLMs. To facilitate a comparison between open source and propriety models, we propose four distinct modeling strategies to handle different modalities -- text and images -- in the dataset instances.
comment: 28 pages, 3 figures, 12 tables
♻ ☆ STORYSUMM: Evaluating Faithfulness in Story Summarization EMNLP
Human evaluation has been the gold standard for checking faithfulness in abstractive summarization. However, with a challenging source domain like narrative, multiple annotators can agree a summary is faithful, while missing details that are obvious errors only once pointed out. We therefore introduce a new dataset, STORYSUMM, comprising LLM summaries of short stories with localized faithfulness labels and error explanations. This benchmark is for evaluation methods, testing whether a given method can detect challenging inconsistencies. Using this dataset, we first show that any one human annotation protocol is likely to miss inconsistencies, and we advocate for pursuing a range of methods when establishing ground truth for a summarization dataset. We finally test recent automatic metrics and find that none of them achieve more than 70% balanced accuracy on this task, demonstrating that it is a challenging benchmark for future work in faithfulness evaluation.
comment: EMNLP Main 2024
♻ ☆ ASP-based Multi-shot Reasoning via DLV2 with Incremental Grounding
DLV2 is an AI tool for Knowledge Representation and Reasoning which supports Answer Set Programming (ASP) - a logic-based declarative formalism, successfully used in both academic and industrial applications. Given a logic program modelling a computational problem, an execution of DLV2 produces the so-called answer sets that correspond one-to-one to the solutions to the problem at hand. The computational process of DLV2 relies on the typical Ground & Solve approach where the grounding step transforms the input program into a new, equivalent ground program, and the subsequent solving step applies propositional algorithms to search for the answer sets. Recently, emerging applications in contexts such as stream reasoning and event processing created a demand for multi-shot reasoning: here, the system is expected to be reactive while repeatedly executed over rapidly changing data. In this work, we present a new incremental reasoner obtained from the evolution of DLV2 towards iterated reasoning. Rather than restarting the computation from scratch, the system remains alive across repeated shots, and it incrementally handles the internal grounding process. At each shot, the system reuses previous computations for building and maintaining a large, more general ground program, from which a smaller yet equivalent portion is determined and used for computing answer sets. Notably, the incremental process is performed in a completely transparent fashion for the user. We describe the system, its usage, its applicability and performance in some practically relevant domains. Under consideration in Theory and Practice of Logic Programming (TPLP).
comment: Under consideration in Theory and Practice of Logic Programming (TPLP)
♻ ☆ LLM-Human Pipeline for Cultural Context Grounding of Conversations NAACL 2025
Conversations often adhere to well-understood social norms that vary across cultures. For example, while "addressing parents by name" is commonplace in the West, it is rare in most Asian cultures. Adherence or violation of such norms often dictates the tenor of conversations. Humans are able to navigate social situations requiring cultural awareness quite adeptly. However, it is a hard task for NLP models. In this paper, we tackle this problem by introducing a "Cultural Context Schema" for conversations. It comprises (1) conversational information such as emotions, dialogue acts, etc., and (2) cultural information such as social norms, violations, etc. We generate ~110k social norm and violation descriptions for ~23k conversations from Chinese culture using LLMs. We refine them using automated verification strategies which are evaluated against culturally aware human judgements. We organize these descriptions into meaningful structures we call "Norm Concepts", using an interactive human-in-loop framework. We ground the norm concepts and the descriptions in conversations using symbolic annotation. Finally, we use the obtained dataset for downstream tasks such as emotion, sentiment, and dialogue act detection. We show that it significantly improves the empirical performance.
comment: Oral at NAACL 2025 Main conference. Albuquerque, USA. Apr 29 - May 4, 2025. 19 pages, 9 figures, 7 tables
♻ ☆ NNsight and NDIF: Democratizing Access to Open-Weight Foundation Model Internals
We introduce NNsight and NDIF, technologies that work in tandem to enable scientific study of the representations and computations learned by very large neural networks. NNsight is an open-source system that extends PyTorch to introduce deferred remote execution. The National Deep Inference Fabric (NDIF) is a scalable inference service that executes NNsight requests, allowing users to share GPU resources and pretrained models. These technologies are enabled by the Intervention Graph, an architecture developed to decouple experimental design from model runtime. Together, this framework provides transparent and efficient access to the internals of deep neural networks such as very large language models (LLMs) without imposing the cost or complexity of hosting customized models individually. We conduct a quantitative survey of the machine learning literature that reveals a growing gap in the study of the internals of large-scale AI. We demonstrate the design and use of our framework to address this gap by enabling a range of research methods on huge models. Finally, we conduct benchmarks to compare performance with previous approaches. Code, documentation, and tutorials are available at https://nnsight.net/.
comment: Code at https://nnsight.net
♻ ☆ Large Language Models are In-Context Molecule Learners
Large Language Models (LLMs) have demonstrated exceptional performance in biochemical tasks, especially the molecule caption translation task, which aims to bridge the gap between molecules and natural language texts. However, previous methods in adapting LLMs to the molecule-caption translation task required extra domain-specific pre-training stages, suffered weak alignment between molecular and textual spaces, or imposed stringent demands on the scale of LLMs. To resolve the challenges, we propose In-Context Molecule Adaptation (ICMA), as a new paradigm allowing LLMs to learn the molecule-text alignment from context examples via In-Context Molecule Tuning. Specifically, ICMA incorporates the following three stages: Hybrid Context Retrieval, Post-retrieval Re-ranking, and In-context Molecule Tuning. Initially, Hybrid Context Retrieval utilizes BM25 Caption Retrieval and Molecule Graph Retrieval to retrieve similar informative context examples. Additionally, Post-retrieval Re-ranking is composed of Sequence Reversal and Random Walk selection to further improve the quality of retrieval results. Finally, In-Context Molecule Tuning unlocks the in-context learning and reasoning capability of LLMs with the retrieved examples and adapts the parameters of LLMs for better alignment between molecules and texts. Experimental results demonstrate that ICMA can empower LLMs to achieve state-of-the-art or comparable performance without extra training corpora and intricate structures, showing that LLMs are inherently in-context molecule learners.
comment: Accepted by IEEE TKDE
♻ ☆ An Optimistic-Robust Approach for Dynamic Positioning of Omnichannel Inventories
We introduce a new class of data-driven and distribution-free optimistic-robust bimodal inventory optimization (BIO) strategy to effectively allocate inventory across a retail chain to meet time-varying, uncertain omnichannel demand. The bimodal nature of BIO stems from its ability to balance downside risk, as in traditional Robust Optimization (RO), which focuses on worst-case adversarial demand, with upside potential to enhance average-case performance. This enables BIO to remain as resilient as RO while capturing benefits that would otherwise be lost due to endogenous outliers. Omnichannel inventory planning provides a suitable problem setting for analyzing the effectiveness of BIO's bimodal strategy in managing the tradeoff between lost sales at stores and cross-channel e-commerce fulfillment costs, factors that are inherently asymmetric due to channel-specific behaviors. We provide structural insights about the BIO solution and how it can be tuned to achieve a preferred tradeoff between robustness and the average-case performance. Using a real-world dataset from a large American omnichannel retail chain, a business value assessment during a peak period indicates that BIO outperforms pure RO by 27% in terms of realized average profitability and surpasses other competitive baselines under imperfect distributional information by over 10%. This demonstrates that BIO provides a novel, data-driven, and distribution-free alternative to traditional RO that achieves strong average performance while carefully balancing robustness.
♻ ☆ AI-Powered Bayesian Inference
The advent of Generative Artificial Intelligence (GAI) has heralded an inflection point that changed how society thinks about knowledge acquisition. While GAI cannot be fully trusted for decision-making, it may still provide valuable information that can be integrated into a decision pipeline. Rather than seeing the lack of certitude and inherent randomness of GAI as a problem, we view it as an opportunity. Indeed, variable answers to given prompts can be leveraged to construct a prior distribution which reflects assuredness of AI predictions. This prior distribution may be combined with tailored datasets for a fully Bayesian analysis with an AI-driven prior. In this paper, we explore such a possibility within a non-parametric Bayesian framework. The basic idea consists of assigning a Dirichlet process prior distribution on the data-generating distribution with AI generative model as its baseline. Hyper-parameters of the prior can be tuned out-of-sample to assess the informativeness of the AI prior. Posterior simulation is achieved by computing a suitably randomized functional on an augmented data that consists of observed (labeled) data as well as fake data whose labels have been imputed using AI. This strategy can be parallelized and rapidly produces iid samples from the posterior by optimization as opposed to sampling from conditionals. Our method enables (predictive) inference and uncertainty quantification leveraging AI predictions in a coherent probabilistic manner.
comment: 37 pages, 4 figures; added additional experiments, asymptotic theory and exposition, corrected typos
♻ ☆ Explainable Bayesian Optimization
Manual parameter tuning of cyber-physical systems is a common practice, but it is labor-intensive. Bayesian Optimization (BO) offers an automated alternative, yet its black-box nature reduces trust and limits human-BO collaborative system tuning. Experts struggle to interpret BO recommendations due to the lack of explanations. This paper addresses the post-hoc BO explainability problem for cyber-physical systems. We introduce TNTRules (Tune-No-Tune Rules), a novel algorithm that provides both global and local explanations for BO recommendations. TNTRules generates actionable rules and visual graphs, identifying optimal solution bounds and ranges, as well as potential alternative solutions. Unlike existing explainable AI (XAI) methods, TNTRules is tailored specifically for BO, by encoding uncertainty via a variance pruning technique and hierarchical agglomerative clustering. A multi-objective optimization approach allows maximizing explanation quality. We evaluate TNTRules using established XAI metrics (Correctness, Completeness, and Compactness) and compare it against adapted baseline methods. The results demonstrate that TNTRules generates high-fidelity, compact, and complete explanations, significantly outperforming three baselines on 5 multi-objective testing functions and 2 hyperparameter tuning problems.
♻ ☆ BALROG: Benchmarking Agentic LLM and VLM Reasoning On Games ICLR 2025
Large Language Models (LLMs) and Vision Language Models (VLMs) possess extensive knowledge and exhibit promising reasoning abilities, however, they still struggle to perform well in complex, dynamic environments. Real-world tasks require handling intricate interactions, advanced spatial reasoning, long-term planning, and continuous exploration of new strategies-areas in which we lack effective methodologies for comprehensively evaluating these capabilities. To address this gap, we introduce BALROG, a novel benchmark designed to assess the agentic capabilities of LLMs and VLMs through a diverse set of challenging games. Our benchmark incorporates a range of existing reinforcement learning environments with varying levels of difficulty, including tasks that are solvable by non-expert humans in seconds to extremely challenging ones that may take years to master (e.g., the NetHack Learning Environment). We devise fine-grained metrics to measure performance and conduct an extensive evaluation of several popular open-source and closed-source LLMs and VLMs. Our findings indicate that while current models achieve partial success in the easier games, they struggle significantly with more challenging tasks. Notably, we observe severe deficiencies in vision-based decision-making, as several models perform worse when visual representations of the environments are provided. We release BALROG as an open and user-friendly benchmark to facilitate future research and development in the agentic community. Code and Leaderboard at balrogai.com.
comment: Published as a conference paper at ICLR 2025
♻ ☆ DELTA: Decomposed Efficient Long-Term Robot Task Planning using Large Language Models ICRA 2025
Recent advancements in Large Language Models (LLMs) have sparked a revolution across many research fields. In robotics, the integration of common-sense knowledge from LLMs into task and motion planning has drastically advanced the field by unlocking unprecedented levels of context awareness. Despite their vast collection of knowledge, large language models may generate infeasible plans due to hallucinations or missing domain information. To address these challenges and improve plan feasibility and computational efficiency, we introduce DELTA, a novel LLM-informed task planning approach. By using scene graphs as environment representations within LLMs, DELTA achieves rapid generation of precise planning problem descriptions. To enhance planning performance, DELTA decomposes long-term task goals with LLMs into an autoregressive sequence of sub-goals, enabling automated task planners to efficiently solve complex problems. In our extensive evaluation, we show that DELTA enables an efficient and fully automatic task planning pipeline, achieving higher planning success rates and significantly shorter planning times compared to the state of the art. Project webpage: https://delta-llm.github.io/
comment: Accepted at ICRA 2025
♻ ☆ Knowledge-Aware Iterative Retrieval for Multi-Agent Systems
We introduce a novel large language model (LLM)-driven agent framework, which iteratively refines queries and filters contextual evidence by leveraging dynamically evolving knowledge. A defining feature of the system is its decoupling of external sources from an internal knowledge cache that is progressively updated to guide both query generation and evidence selection. This design mitigates bias-reinforcement loops and enables dynamic, trackable search exploration paths, thereby optimizing the trade-off between exploring diverse information and maintaining accuracy through autonomous agent decision-making. Our approach is evaluated on a broad range of open-domain question answering benchmarks, including multi-step tasks that mirror real-world scenarios where integrating information from multiple sources is critical, especially given the vulnerabilities of LLMs that lack explicit reasoning or planning capabilities. The results show that the proposed system not only outperforms single-step baselines regardless of task difficulty but also, compared to conventional iterative retrieval methods, demonstrates pronounced advantages in complex tasks through precise evidence-based reasoning and enhanced efficiency. The proposed system supports both competitive and collaborative sharing of updated context, enabling multi-agent extension. The benefits of multi-agent configurations become especially prominent as task difficulty increases. The number of convergence steps scales with task difficulty, suggesting cost-effective scalability.
♻ ☆ The Computational Complexity of Circuit Discovery for Inner Interpretability ICLR 2025
Many proposed applications of neural networks in machine learning, cognitive/brain science, and society hinge on the feasibility of inner interpretability via circuit discovery. This calls for empirical and theoretical explorations of viable algorithmic options. Despite advances in the design and testing of heuristics, there are concerns about their scalability and faithfulness at a time when we lack understanding of the complexity properties of the problems they are deployed to solve. To address this, we study circuit discovery with classical and parameterized computational complexity theory: (1) we describe a conceptual scaffolding to reason about circuit finding queries in terms of affordances for description, explanation, prediction and control; (2) we formalize a comprehensive set of queries for mechanistic explanation, and propose a formal framework for their analysis; (3) we use it to settle the complexity of many query variants and relaxations of practical interest on multi-layer perceptrons. Our findings reveal a challenging complexity landscape. Many queries are intractable, remain fixed-parameter intractable relative to model/circuit features, and inapproximable under additive, multiplicative, and probabilistic approximation schemes. To navigate this landscape, we prove there exist transformations to tackle some of these hard problems with better-understood heuristics, and prove the tractability or fixed-parameter tractability of more modest queries which retain useful affordances. This framework allows us to understand the scope and limits of interpretability queries, explore viable options, and compare their resource demands on existing and future architectures.
comment: ICLR 2025 (Spotlight)
♻ ☆ TOBUGraph: Knowledge Graph-Based Retrieval for Enhanced LLM Performance Beyond RAG
Retrieval-Augmented Generation (RAG) is one of the leading and most widely used techniques for enhancing LLM retrieval capabilities, but it still faces significant limitations in commercial use cases. RAG primarily relies on the query-chunk text-to-text similarity in the embedding space for retrieval and can fail to capture deeper semantic relationships across chunks, is highly sensitive to chunking strategies, and is prone to hallucinations. To address these challenges, we propose TOBUGraph, a graph-based retrieval framework that first constructs the knowledge graph from unstructured data dynamically and automatically. Using LLMs, TOBUGraph extracts structured knowledge and diverse relationships among data, going beyond RAG's text-to-text similarity. Retrieval is achieved through graph traversal, leveraging the extracted relationships and structures to enhance retrieval accuracy, eliminating the need for chunking configurations while reducing hallucination. We demonstrate TOBUGraph's effectiveness in TOBU, a real-world application in production for personal memory organization and retrieval. Our evaluation using real user data demonstrates that TOBUGraph outperforms multiple RAG implementations in both precision and recall, significantly improving user experience through improved retrieval accuracy.
♻ ☆ Enhanced Controllability of Diffusion Models via Feature Disentanglement and Realism-Enhanced Sampling Methods ECCV 2024
As Diffusion Models have shown promising performance, a lot of efforts have been made to improve the controllability of Diffusion Models. However, how to train Diffusion Models to have the disentangled latent spaces and how to naturally incorporate the disentangled conditions during the sampling process have been underexplored. In this paper, we present a training framework for feature disentanglement of Diffusion Models (FDiff). We further propose two sampling methods that can boost the realism of our Diffusion Models and also enhance the controllability. Concisely, we train Diffusion Models conditioned on two latent features, a spatial content mask, and a flattened style embedding. We rely on the inductive bias of the denoising process of Diffusion Models to encode pose/layout information in the content feature and semantic/style information in the style feature. Regarding the sampling methods, we first generalize Composable Diffusion Models (GCDM) by breaking the conditional independence assumption to allow for some dependence between conditional inputs, which is shown to be effective in realistic generation in our experiments. Second, we propose timestep-dependent weight scheduling for content and style features to further improve the performance. We also observe better controllability of our proposed methods compared to existing methods in image manipulation and image translation.
comment: ECCV 2024; Code will be opened after a patent application is granted
♻ ☆ Att-Adapter: A Robust and Precise Domain-Specific Multi-Attributes T2I Diffusion Adapter via Conditional Variational Autoencoder
Text-to-Image (T2I) Diffusion Models have achieved remarkable performance in generating high quality images. However, enabling precise control of continuous attributes, especially multiple attributes simultaneously, in a new domain (e.g., numeric values like eye openness or car width) with text-only guidance remains a significant challenge. To address this, we introduce the Attribute (Att) Adapter, a novel plug-and-play module designed to enable fine-grained, multi-attributes control in pretrained diffusion models. Our approach learns a single control adapter from a set of sample images that can be unpaired and contain multiple visual attributes. The Att-Adapter leverages the decoupled cross attention module to naturally harmonize the multiple domain attributes with text conditioning. We further introduce Conditional Variational Autoencoder (CVAE) to the Att-Adapter to mitigate overfitting, matching the diverse nature of the visual world. Evaluations on two public datasets show that Att-Adapter outperforms all LoRA-based baselines in controlling continuous attributes. Additionally, our method enables a broader control range and also improves disentanglement across multiple attributes, surpassing StyleGAN-based techniques. Notably, Att-Adapter is flexible, requiring no paired synthetic data for training, and is easily scalable to multiple attributes within a single model.
♻ ☆ Statistically Testing Training Data for Unwanted Error Patterns using Rule-Oriented Regression
Artificial intelligence models trained from data can only be as good as the underlying data is. Biases in training data propagating through to the output of a machine learning model are a well-documented and well-understood phenomenon, but the machinery to prevent these undesired effects is much less developed. Efforts to ensure data is clean during collection, such as using bias-aware sampling, are most effective when the entity controlling data collection also trains the AI. In cases where the data is already available, how do we find out if the data was already manipulated, i.e., ``poisoned'', so that an undesired behavior would be trained into a machine learning model? This is a challenge fundamentally different to (just) improving approximation accuracy or efficiency, and we provide a method to test training data for flaws, to establish a trustworthy ground-truth for a subsequent training of machine learning models (of any kind). Unlike the well-studied problem of approximating data using fuzzy rules that are generated from the data, our method hinges on a prior definition of rules to happen before seeing the data to be tested. Therefore, the proposed method can also discover hidden error patterns, which may also have substantial influence. Our approach extends the abilities of conventional statistical testing by letting the ``test-condition'' be any Boolean condition to describe a pattern in the data, whose presence we wish to determine. The method puts fuzzy inference into a regression model, to get the best of the two: explainability from fuzzy logic with statistical properties and diagnostics from the regression, and finally also being applicable to ``small data'', hence not requiring large datasets as deep learning methods do. We provide an open source implementation for demonstration and experiments.
♻ ☆ Class-Dependent Perturbation Effects in Evaluating Time Series Attributions
As machine learning models become increasingly prevalent in time series applications, Explainable Artificial Intelligence (XAI) methods are essential for understanding their predictions. Within XAI, feature attribution methods aim to identify which input features contribute the most to a model's prediction, with their evaluation typically relying on perturbation-based metrics. Through systematic empirical analysis across multiple datasets, model architectures, and perturbation strategies, we reveal previously overlooked class-dependent effects in these metrics: they show varying effectiveness across classes, achieving strong results for some while remaining less sensitive to others. In particular, we find that the most effective perturbation strategies often demonstrate the most pronounced class differences. Our analysis suggests that these effects arise from the learned biases of classifiers, indicating that perturbation-based evaluation may reflect specific model behaviors rather than intrinsic attribution quality. We propose an evaluation framework with a class-aware penalty term to help assess and account for these effects in evaluating feature attributions, offering particular value for class-imbalanced datasets. Although our analysis focuses on time series classification, these class-dependent effects likely extend to other structured data domains where perturbation-based evaluation is common.
comment: Accepted at The World Conference on eXplainable Artificial Intelligence (XAI-2025)
♻ ☆ Scalable Safe Multi-Agent Reinforcement Learning for Multi-Agent System
Safety and scalability are two critical challenges faced by practical Multi-Agent Systems (MAS). However, existing Multi-Agent Reinforcement Learning (MARL) algorithms that rely solely on reward shaping are ineffective in ensuring safety, and their scalability is rather limited due to the fixed-size network output. To address these issues, we propose a novel framework, Scalable Safe MARL (SS-MARL), to enhance the safety and scalability of MARL methods. Leveraging the inherent graph structure of MAS, we design a multi-layer message passing network to aggregate local observations and communications of varying sizes. Furthermore, we develop a constrained joint policy optimization method in the setting of local observation to improve safety. Simulation experiments demonstrate that SS-MARL achieves a better trade-off between optimality and safety compared to baselines, and its scalability significantly outperforms the latest methods in scenarios with a large number of agents.
♻ ☆ Forest-of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning
Large Language Models (LLMs) have demonstrated remarkable abilities across various language tasks, but solving complex reasoning problems remains a significant challenge. While existing methods, such as Chain-of-Thought (CoT) and Tree-of-Thought (ToT), enhance reasoning by decomposing problems or structuring prompts, they typically perform a single pass of reasoning and may fail to revisit flawed paths, compromising accuracy. To address this limitation, we propose a novel reasoning framework called Forest-of-Thought (FoT), which integrates multiple reasoning trees to leverage collective decision-making for solving complex logical problems. FoT employs sparse activation strategies to select the most relevant reasoning paths, improving both efficiency and accuracy. Additionally, we introduce a dynamic self-correction strategy that enables real-time error correction, along with consensus-guided decision-making strategies to optimize both correctness and computational resources. Experimental results demonstrate that the FoT framework, combined with these strategies, significantly enhances the reasoning capabilities of LLMs, enabling them to solve complex tasks with greater precision and efficiency. Code will be available at https://github.com/iamhankai/Forest-of-Thought.
comment: Preprint
♻ ☆ PICLe: Pseudo-Annotations for In-Context Learning in Low-Resource Named Entity Detection NAACL2025
In-context learning (ICL) enables Large Language Models (LLMs) to perform tasks using few demonstrations, facilitating task adaptation when labeled examples are hard to obtain. However, ICL is sensitive to the choice of demonstrations, and it remains unclear which demonstration attributes enable in-context generalization. In this work, we conduct a perturbation study of in-context demonstrations for low-resource Named Entity Detection (NED). Our surprising finding is that in-context demonstrations with partially correct annotated entity mentions can be as effective for task transfer as fully correct demonstrations. Based off our findings, we propose Pseudo-annotated In-Context Learning (PICLe), a framework for in-context learning with noisy, pseudo-annotated demonstrations. PICLe leverages LLMs to annotate many demonstrations in a zero-shot first pass. We then cluster these synthetic demonstrations, sample specific sets of in-context demonstrations from each cluster, and predict entity mentions using each set independently. Finally, we use self-verification to select the final set of entity mentions. We evaluate PICLe on five biomedical NED datasets and show that, with zero human annotation, PICLe outperforms ICL in low-resource settings where limited gold examples can be used as in-context demonstrations.
comment: In Proceedings of NAACL2025
♻ ☆ A Graph-to-Text Approach to Knowledge-Grounded Response Generation in Human-Robot Interaction
Knowledge graphs are often used to represent structured information in a flexible and efficient manner, but their use in situated dialogue remains under-explored. This paper presents a novel conversational model for human--robot interaction that rests upon a graph-based representation of the dialogue state. The knowledge graph representing the dialogue state is continuously updated with new observations from the robot sensors, including linguistic, situated and multimodal inputs, and is further enriched by other modules, in particular for spatial understanding. The neural conversational model employed to respond to user utterances relies on a simple but effective graph-to-text mechanism that traverses the dialogue state graph and converts the traversals into a natural language form. This conversion of the state graph into text is performed using a set of parameterized functions, and the values for those parameters are optimized based on a small set of Wizard-of-Oz interactions. After this conversion, the text representation of the dialogue state graph is included as part of the prompt of a large language model used to decode the agent response. The proposed approach is empirically evaluated through a user study with a humanoid robot that acts as conversation partner to evaluate the impact of the graph-to-text mechanism on the response generation. After moving a robot along a tour of an indoor environment, participants interacted with the robot using spoken dialogue and evaluated how well the robot was able to answer questions about what the robot observed during the tour. User scores show a statistically significant improvement in the perceived factuality of the robot responses when the graph-to-text approach is employed, compared to a baseline using inputs structured as semantic triples.
comment: Submitted to Dialogue & Discourse 2023
♻ ☆ QualiSpeech: A Speech Quality Assessment Dataset with Natural Language Reasoning and Descriptions
This paper explores a novel perspective to speech quality assessment by leveraging natural language descriptions, offering richer, more nuanced insights than traditional numerical scoring methods. Natural language feedback provides instructive recommendations and detailed evaluations, yet existing datasets lack the comprehensive annotations needed for this approach. To bridge this gap, we introduce QualiSpeech, a comprehensive low-level speech quality assessment dataset encompassing 11 key aspects and detailed natural language comments that include reasoning and contextual insights. Additionally, we propose the QualiSpeech Benchmark to evaluate the low-level speech understanding capabilities of auditory large language models (LLMs). Experimental results demonstrate that finetuned auditory LLMs can reliably generate detailed descriptions of noise and distortion, effectively identifying their types and temporal characteristics. The results further highlight the potential for incorporating reasoning to enhance the accuracy and reliability of quality assessments. The dataset will be released at https://huggingface.co/datasets/tsinghua-ee/QualiSpeech.
comment: 23 pages, 16 figures
♻ ☆ Sabiá-3 Technical Report
This report presents Sabi\'a-3, our new flagship language model, and Sabiazinho-3, a more cost-effective sibling. The models were trained on a large brazilian-centric corpus. Evaluations across diverse professional and academic benchmarks show a strong performance on Portuguese and Brazil-related tasks. Sabi\'a-3 shows large improvements in comparison to our previous best of model, Sabia-2 Medium, especially in reasoning-intensive tasks. Notably, Sabi\'a-3's average performance matches frontier LLMs, while it is offered at a three to four times lower cost per token, reinforcing the benefits of domain specialization.
♻ ☆ Reactive Diffusion Policy: Slow-Fast Visual-Tactile Policy Learning for Contact-Rich Manipulation
Humans can accomplish complex contact-rich tasks using vision and touch, with highly reactive capabilities such as quick adjustments to environmental changes and adaptive control of contact forces; however, this remains challenging for robots. Existing visual imitation learning (IL) approaches rely on action chunking to model complex behaviors, which lacks the ability to respond instantly to real-time tactile feedback during the chunk execution. Furthermore, most teleoperation systems struggle to provide fine-grained tactile / force feedback, which limits the range of tasks that can be performed. To address these challenges, we introduce TactAR, a low-cost teleoperation system that provides real-time tactile feedback through Augmented Reality (AR), along with Reactive Diffusion Policy (RDP), a novel slow-fast visual-tactile imitation learning algorithm for learning contact-rich manipulation skills. RDP employs a two-level hierarchy: (1) a slow latent diffusion policy for predicting high-level action chunks in latent space at low frequency, (2) a fast asymmetric tokenizer for closed-loop tactile feedback control at high frequency. This design enables both complex trajectory modeling and quick reactive behavior within a unified framework. Through extensive evaluation across three challenging contact-rich tasks, RDP significantly improves performance compared to state-of-the-art visual IL baselines through rapid response to tactile / force feedback. Furthermore, experiments show that RDP is applicable across different tactile / force sensors. Code and videos are available on https://reactive-diffusion-policy.github.io.
♻ ☆ Nonhuman Primate Brain Tissue Segmentation Using a Transfer Learning Approach
Non-human primates (NHPs) serve as critical models for understanding human brain function and neurological disorders due to their close evolutionary relationship with humans. Accurate brain tissue segmentation in NHPs is critical for understanding neurological disorders, but challenging due to the scarcity of annotated NHP brain MRI datasets, the small size of the NHP brain, the limited resolution of available imaging data and the anatomical differences between human and NHP brains. To address these challenges, we propose a novel approach utilizing STU-Net with transfer learning to leverage knowledge transferred from human brain MRI data to enhance segmentation accuracy in the NHP brain MRI, particularly when training data is limited. The combination of STU-Net and transfer learning effectively delineates complex tissue boundaries and captures fine anatomical details specific to NHP brains. Notably, our method demonstrated improvement in segmenting small subcortical structures such as putamen and thalamus that are challenging to resolve with limited spatial resolution and tissue contrast, and achieved DSC of over 0.88, IoU over 0.8 and HD95 under 7. This study introduces a robust method for multi-class brain tissue segmentation in NHPs, potentially accelerating research in evolutionary neuroscience and preclinical studies of neurological disorders relevant to human health.
♻ ☆ Machine Unlearning Fails to Remove Data Poisoning Attacks ICLR 2025
We revisit the efficacy of several practical methods for approximate machine unlearning developed for large-scale deep learning. In addition to complying with data deletion requests, one often-cited potential application for unlearning methods is to remove the effects of poisoned data. We experimentally demonstrate that, while existing unlearning methods have been demonstrated to be effective in a number of settings, they fail to remove the effects of data poisoning across a variety of types of poisoning attacks (indiscriminate, targeted, and a newly-introduced Gaussian poisoning attack) and models (image classifiers and LLMs); even when granted a relatively large compute budget. In order to precisely characterize unlearning efficacy, we introduce new evaluation metrics for unlearning based on data poisoning. Our results suggest that a broader perspective, including a wider variety of evaluations, are required to avoid a false sense of confidence in machine unlearning procedures for deep learning without provable guarantees. Moreover, while unlearning methods show some signs of being useful to efficiently remove poisoned data without having to retrain, our work suggests that these methods are not yet ``ready for prime time,'' and currently provide limited benefit over retraining.
comment: Published at ICLR 2025
♻ ☆ Causal Concept Graph Models: Beyond Causal Opacity in Deep Learning
Causal opacity denotes the difficulty in understanding the "hidden" causal structure underlying the decisions of deep neural network (DNN) models. This leads to the inability to rely on and verify state-of-the-art DNN-based systems, especially in high-stakes scenarios. For this reason, circumventing causal opacity in DNNs represents a key open challenge at the intersection of deep learning, interpretability, and causality. This work addresses this gap by introducing Causal Concept Graph Models (Causal CGMs), a class of interpretable models whose decision-making process is causally transparent by design. Our experiments show that Causal CGMs can: (i) match the generalisation performance of causally opaque models, (ii) enable human-in-the-loop corrections to mispredicted intermediate reasoning steps, boosting not just downstream accuracy after corrections but also the reliability of the explanations provided for specific instances, and (iii) support the analysis of interventional and counterfactual scenarios, thereby improving the model's causal interpretability and supporting the effective verification of its reliability and fairness.
♻ ☆ Exploiting Mixture-of-Experts Redundancy Unlocks Multimodal Generative Abilities
In this work, we undertake the challenge of augmenting the existing generative capabilities of pre-trained text-only large language models (LLMs) with multi-modal generation capability while satisfying two core constraints: C1 preserving the preservation of original language generative capabilities with negligible performance degradation, and C2 adhering to a small parameter budget to learn the new modality, ensuring scalability and efficiency. In contrast to current approaches that add dedicated modules, thereby significantly increasing the parameter count, we propose a method that leverages the underutilized capacity inherent in deep models. Specifically, we exploit the parameter redundancy within Mixture-of-Experts (MoEs) as a source of additional capacity for learning a new modality, enabling better parameter efficiency (C1). Moreover, we preserve the original language generation capabilities by applying low-rank adaptation exclusively to the tokens of the new modality (C2). Furthermore, we introduce a novel parameter initialization scheme based on the Gromov-Wasserstein distance to improve convergence and training stability. Through an extensive analysis of the routing mechanism, we uncover the emergence of modality-specific pathways and decreased redundancy within the experts that can efficiently unlock multi-modal generative capabilities. Overall, our method can be seamlessly applied to a wide range of contemporary LLMs, providing a new pathway for transitioning from uni-modal to multi-modal architectures.
♻ ☆ Leveraging Joint Predictive Embedding and Bayesian Inference in Graph Self Supervised Learning
Graph representation learning has emerged as a cornerstone for tasks like node classification and link prediction, yet prevailing self-supervised learning (SSL) methods face challenges such as computational inefficiency, reliance on contrastive objectives, and representation collapse. Existing approaches often depend on feature reconstruction, negative sampling, or complex decoders, which introduce training overhead and hinder generalization. Further, current techniques which address such limitations fail to account for the contribution of node embeddings to a certain prediction in the absence of labeled nodes. To address these limitations, we propose a novel joint embedding predictive framework for graph SSL that eliminates contrastive objectives and negative sampling while preserving semantic and structural information. Additionally, we introduce a semantic-aware objective term that incorporates pseudo-labels derived from Gaussian Mixture Models (GMMs), enhancing node discriminability by evaluating latent feature contributions. Extensive experiments demonstrate that our framework outperforms state-of-the-art graph SSL methods across benchmarks, achieving superior performance without contrastive loss or complex decoders. Key innovations include (1) a non-contrastive, view-invariant joint embedding predictive architecture, (2) Leveraging single context and multiple targets relationship between subgraphs, and (3) GMM-based pseudo-label scoring to capture semantic contributions. This work advances graph SSL by offering a computationally efficient, collapse-resistant paradigm that bridges spatial and semantic graph features for downstream tasks. The code for our paper can be found at https://github.com/Deceptrax123/JPEB-GSSL
comment: Preprint. Under Review
♻ ☆ Decomposition of one-layer neural networks via the infinite sum of reproducing kernel Banach spaces
In this paper, we define the sum of RKBSs using the characterization theorem of RKBSs and show that the sum of RKBSs is compatible with the direct sum of feature spaces. Moreover, we decompose the integral RKBS into the sum of $p$-norm RKBSs. Finally, we provide applications for the structural understanding of the integral RKBS class.
comment: 22 pages
♻ ☆ MTL-LoRA: Low-Rank Adaptation for Multi-Task Learning
Parameter-efficient fine-tuning (PEFT) has been widely employed for domain adaptation, with LoRA being one of the most prominent methods due to its simplicity and effectiveness. However, in multi-task learning (MTL) scenarios, LoRA tends to obscure the distinction between tasks by projecting sparse high-dimensional features from different tasks into the same dense low-dimensional intrinsic space. This leads to task interference and suboptimal performance for LoRA and its variants. To tackle this challenge, we propose MTL-LoRA, which retains the advantages of low-rank adaptation while significantly enhancing MTL capabilities. MTL-LoRA augments LoRA by incorporating additional task-adaptive parameters that differentiate task-specific information and capture shared knowledge across various tasks within low-dimensional spaces. This approach enables pre-trained models to jointly adapt to different target domains with a limited number of trainable parameters. Comprehensive experimental results, including evaluations on public academic benchmarks for natural language understanding, commonsense reasoning, and image-text understanding, as well as real-world industrial text Ads relevance datasets, demonstrate that MTL-LoRA outperforms LoRA and its various variants with comparable or even fewer learnable parameters in MTL setting.
comment: 12 Pages, 4 Figures
♻ ☆ Multilingual Performance of a Multimodal Artificial Intelligence System on Multisubject Physics Concept Inventories
We investigate the multilingual and multimodal performance of a large language model-based artificial intelligence (AI) system, GPT-4o, using a diverse set of physics concept inventories spanning multiple languages and subject categories. The inventories, sourced from the PhysPort website, cover classical physics topics such as mechanics, electromagnetism, optics, and thermodynamics, as well as relativity, quantum mechanics, astronomy, mathematics, and laboratory skills. Unlike previous text-only studies, we uploaded the inventories as images to reflect what a student would see on paper, thereby assessing the system's multimodal functionality. Our results indicate variation in performance across subjects, with laboratory skills standing out as the weakest. We also observe differences across languages, with English and European languages showing the strongest performance. Notably, the relative difficulty of an inventory item is largely independent of the language of the survey. When comparing AI results to existing literature on student performance, we find that the AI system outperforms average post-instruction undergraduate students in all subject categories except laboratory skills. Furthermore, the AI performs worse on items requiring visual interpretation of images than on those that are purely text-based.
♻ ☆ FastRM: An efficient and automatic explainability framework for multimodal generative models
Large Vision Language Models (LVLMs) have demonstrated remarkable reasoning capabilities over textual and visual inputs. However, these models remain prone to generating misinformation. Identifying and mitigating ungrounded responses is crucial for developing trustworthy AI. Traditional explainability methods such as gradient-based relevancy maps, offer insight into the decision process of models, but are often computationally expensive and unsuitable for real-time output validation. In this work, we introduce FastRM, an efficient method for predicting explainable Relevancy Maps of LVLMs. Furthermore, FastRM provides both quantitative and qualitative assessment of model confidence. Experimental results demonstrate that FastRM achieves a 99.8% reduction in computation time and a 44.4% reduction in memory footprint compared to traditional relevancy map generation. FastRM allows explainable AI to be more practical and scalable, thereby promoting its deployment in real-world applications and enabling users to more effectively evaluate the reliability of model outputs.
♻ ☆ PhyT2V: LLM-Guided Iterative Self-Refinement for Physics-Grounded Text-to-Video Generation
Text-to-video (T2V) generation has been recently enabled by transformer-based diffusion models, but current T2V models lack capabilities in adhering to the real-world common knowledge and physical rules, due to their limited understanding of physical realism and deficiency in temporal modeling. Existing solutions are either data-driven or require extra model inputs, but cannot be generalizable to out-of-distribution domains. In this paper, we present PhyT2V, a new data-independent T2V technique that expands the current T2V model's capability of video generation to out-of-distribution domains, by enabling chain-of-thought and step-back reasoning in T2V prompting. Our experiments show that PhyT2V improves existing T2V models' adherence to real-world physical rules by 2.3x, and achieves 35% improvement compared to T2V prompt enhancers. The source codes are available at: https://github.com/pittisl/PhyT2V.
comment: 28 pages
♻ ☆ GameVibe: A Multimodal Affective Game Corpus
As online video and streaming platforms continue to grow, affective computing research has undergone a shift towards more complex studies involving multiple modalities. However, there is still a lack of readily available datasets with high-quality audiovisual stimuli. In this paper, we present GameVibe, a novel affect corpus which consists of multimodal audiovisual stimuli, including in-game behavioural observations and third-person affect traces for viewer engagement. The corpus consists of videos from a diverse set of publicly available gameplay sessions across 30 games, with particular attention to ensure high-quality stimuli with good audiovisual and gameplay diversity. Furthermore, we present an analysis on the reliability of the annotators in terms of inter-annotator agreement.
comment: 12 pages, 5 figures, 1 table
♻ ☆ MambaPEFT: Exploring Parameter-Efficient Fine-Tuning for Mamba ICLR2025
An ecosystem of Transformer-based models has been established by building large models with extensive data. Parameter-efficient fine-tuning (PEFT) is a crucial technology for deploying these models to downstream tasks with minimal cost while achieving effective performance. Recently, Mamba, a State Space Model (SSM)-based model, has attracted attention as a potential alternative to Transformers. While many large-scale Mamba-based models have been proposed, efficiently adapting pre-trained Mamba-based models to downstream tasks remains unexplored. In this paper, we conduct an exploratory analysis of PEFT methods for Mamba. We investigate the effectiveness of existing PEFT methods for Transformers when applied to Mamba. We also modify these methods to better align with the Mamba architecture. Additionally, we propose new Mamba-specific PEFT methods that leverage the distinctive structure of Mamba. Our experiments indicate that PEFT performs more effectively for Mamba than Transformers. Lastly, we demonstrate how to effectively combine multiple PEFT methods and provide a framework that outperforms previous works. To ensure reproducibility, we will release the code after publication.
comment: Accepted to ICLR2025
♻ ☆ BigCodeBench: Benchmarking Code Generation with Diverse Function Calls and Complex Instructions ICLR 2025
Task automation has been greatly empowered by the recent advances in Large Language Models (LLMs) via Python code, where the tasks ranging from software engineering development to general-purpose reasoning. While current benchmarks have shown that LLMs can solve tasks using programs like human developers, the majority of their evaluations are limited to short and self-contained algorithmic tasks or standalone function calls. Solving challenging and practical tasks requires the capability of utilizing diverse function calls as tools to efficiently implement functionalities like data analysis and web development. In addition, using multiple tools to solve a task needs compositional reasoning by accurately understanding complex instructions. Fulfilling both of these characteristics can pose a great challenge for LLMs.To assess how well LLMs can solve challenging and practical tasks via programs, we introduce BigCodeBench, a benchmark that challenges LLMs to invoke multiple function calls as tools from 139 libraries and 7 domains for 1,140 fine-grained tasks. To evaluate LLMs rigorously, each task encompasses 5.6 test cases with an average branch coverage of 99%. In addition, we propose a natural-language-oriented variant of BigCodeBench, BigCodeBench-Instruct, that automatically transforms the original docstrings into short instructions only with essential information. Our extensive evaluation of 60 LLMs shows that LLMs are not yet capable of following complex instructions to use function calls precisely, with scores up to 60%, significantly lower than the human performance of 97%. The results underscore the need for further advancements in this area.
comment: Accpeted at ICLR 2025 (Oral), built with love by the BigCode community :)
♻ ☆ A Clustering Method with Graph Maximum Decoding Information IJCNN 2024
The clustering method based on graph models has garnered increased attention for its widespread applicability across various knowledge domains. Its adaptability to integrate seamlessly with other relevant applications endows the graph model-based clustering analysis with the ability to robustly extract "natural associations" or "graph structures" within datasets, facilitating the modelling of relationships between data points. Despite its efficacy, the current clustering method utilizing the graph-based model overlooks the uncertainty associated with random walk access between nodes and the embedded structural information in the data. To address this gap, we present a novel Clustering method for Maximizing Decoding Information within graph-based models, named CMDI. CMDI innovatively incorporates two-dimensional structural information theory into the clustering process, consisting of two phases: graph structure extraction and graph vertex partitioning. Within CMDI, graph partitioning is reformulated as an abstract clustering problem, leveraging maximum decoding information to minimize uncertainty associated with random visits to vertices. Empirical evaluations on three real-world datasets demonstrate that CMDI outperforms classical baseline methods, exhibiting a superior decoding information ratio (DI-R). Furthermore, CMDI showcases heightened efficiency, particularly when considering prior knowledge (PK). These findings underscore the effectiveness of CMDI in enhancing decoding information quality and computational efficiency, positioning it as a valuable tool in graph-based clustering analyses.
comment: 9 pages, 9 figures, IJCNN 2024
♻ ☆ Improving Complex Reasoning with Dynamic Prompt Corruption: A soft prompt Optimization Approach ICLR 2025
Prompt-tuning (PT) for large language models (LLMs) can facilitate the performance on various conventional NLP tasks with significantly fewer trainable parameters. However, our investigation reveals that PT provides limited improvement and may even degrade the primitive performance of LLMs on complex reasoning tasks. Such a phenomenon suggests that soft prompts can positively impact certain instances while negatively affecting others, particularly during the later phases of reasoning. To address these challenges, We first identify an information accumulation within the soft prompts. Through detailed analysis, we demonstrate that this phenomenon is often accompanied by erroneous information flow patterns in the deeper layers of the model, which ultimately lead to incorrect reasoning outcomes. we propose a novel method called Dynamic Prompt Corruption (DPC) to take better advantage of soft prompts in complex reasoning tasks, which dynamically adjusts the influence of soft prompts based on their impact on the reasoning process. Specifically, DPC consists of two stages: Dynamic Trigger and Dynamic Corruption. First, Dynamic Trigger measures the impact of soft prompts, identifying whether beneficial or detrimental. Then, Dynamic Corruption mitigates the negative effects of soft prompts by selectively masking key tokens that interfere with the reasoning process. We validate the proposed approach through extensive experiments on various LLMs and reasoning tasks, including GSM8K, MATH, and AQuA. Experimental results demonstrate that DPC can consistently enhance the performance of PT, achieving 4%-8% accuracy gains compared to vanilla prompt tuning, highlighting the effectiveness of our approach and its potential to enhance complex reasoning in LLMs.
comment: Accepted by ICLR 2025
♻ ☆ Holistic analysis on the sustainability of Federated Learning across AI product lifecycle
In light of emerging legal requirements and policies focused on privacy protection, there is a growing trend of companies across various industries adopting Federated Learning (FL). This decentralized approach involves multiple clients or silos, collaboratively training a global model under the coordination of a central server while utilizing their private local data. Unlike traditional methods that necessitate data sharing and transmission, Cross-Silo FL allows clients to share model updates rather than raw data, thereby enhancing privacy. Despite its growing adoption, the carbon impact associated with Cross-Silo FL remains poorly understood due to the limited research in this area. This study seeks to bridge this gap by evaluating the sustainability of Cross-Silo FL throughout the entire AI product lifecycle, extending the analysis beyond the model training phase alone. We systematically compare this decentralized method with traditional centralized approaches and present a robust quantitative framework for assessing the costs and CO2 emissions in real-world Cross-Silo FL environments. Our findings indicate that the energy consumption and costs of model training are comparable between Cross-Silo Federated Learning and Centralized Learning. However, the additional data transfer and storage requirements inherent in Centralized Learning can result in significant, often overlooked CO2 emissions. Moreover, we introduce an innovative data and application management system that integrates Cross-Silo FL and analytics, aiming at improving the sustainability and economic efficiency of IT enterprises.
comment: Presented in Sophia Summit 2023
♻ ☆ Video-T1: Test-Time Scaling for Video Generation
With the scale capability of increasing training data, model size, and computational cost, video generation has achieved impressive results in digital creation, enabling users to express creativity across various domains. Recently, researchers in Large Language Models (LLMs) have expanded the scaling to test-time, which can significantly improve LLM performance by using more inference-time computation. Instead of scaling up video foundation models through expensive training costs, we explore the power of Test-Time Scaling (TTS) in video generation, aiming to answer the question: if a video generation model is allowed to use non-trivial amount of inference-time compute, how much can it improve generation quality given a challenging text prompt. In this work, we reinterpret the test-time scaling of video generation as a searching problem to sample better trajectories from Gaussian noise space to the target video distribution. Specifically, we build the search space with test-time verifiers to provide feedback and heuristic algorithms to guide searching process. Given a text prompt, we first explore an intuitive linear search strategy by increasing noise candidates at inference time. As full-step denoising all frames simultaneously requires heavy test-time computation costs, we further design a more efficient TTS method for video generation called Tree-of-Frames (ToF) that adaptively expands and prunes video branches in an autoregressive manner. Extensive experiments on text-conditioned video generation benchmarks demonstrate that increasing test-time compute consistently leads to significant improvements in the quality of videos. Project page: https://liuff19.github.io/Video-T1
comment: Project page: https://liuff19.github.io/Video-T1
♻ ☆ Vision-Language Models for Acute Tuberculosis Diagnosis: A Multimodal Approach Combining Imaging and Clinical Data
Background: This study introduces a Vision-Language Model (VLM) leveraging SIGLIP and Gemma-3b architectures for automated acute tuberculosis (TB) screening. By integrating chest X-ray images and clinical notes, the model aims to enhance diagnostic accuracy and efficiency, particularly in resource-limited settings. Methods: The VLM combines visual data from chest X-rays with clinical context to generate detailed, context-aware diagnostic reports. The architecture employs SIGLIP for visual encoding and Gemma-3b for decoding, ensuring effective representation of acute TB-specific pathologies and clinical insights. Results: Key acute TB pathologies, including consolidation, cavities, and nodules, were detected with high precision (97percent) and recall (96percent). The model demonstrated strong spatial localization capabilities and robustness in distinguishing TB-positive cases, making it a reliable tool for acute TB diagnosis. Conclusion: The multimodal capability of the VLM reduces reliance on radiologists, providing a scalable solution for acute TB screening. Future work will focus on improving the detection of subtle pathologies and addressing dataset biases to enhance its generalizability and application in diverse global healthcare settings.
comment: 11 pages, 3 figures
♻ ☆ 1-2-3-Go! Policy Synthesis for Parameterized Markov Decision Processes via Decision-Tree Learning and Generalization
Despite the advances in probabilistic model checking, the scalability of the verification methods remains limited. In particular, the state space often becomes extremely large when instantiating parameterized Markov decision processes (MDPs) even with moderate values. Synthesizing policies for such \emph{huge} MDPs is beyond the reach of available tools. We propose a learning-based approach to obtain a reasonable policy for such huge MDPs. The idea is to generalize optimal policies obtained by model-checking small instances to larger ones using decision-tree learning. Consequently, our method bypasses the need for explicit state-space exploration of large models, providing a practical solution to the state-space explosion problem. We demonstrate the efficacy of our approach by performing extensive experimentation on the relevant models from the quantitative verification benchmark set. The experimental results indicate that our policies perform well, even when the size of the model is orders of magnitude beyond the reach of state-of-the-art analysis tools.
comment: Extended version of the paper accepted at VMCAI 2025
♻ ☆ Feed-Forward Bullet-Time Reconstruction of Dynamic Scenes from Monocular Videos
Recent advancements in static feed-forward scene reconstruction have demonstrated significant progress in high-quality novel view synthesis. However, these models often struggle with generalizability across diverse environments and fail to effectively handle dynamic content. We present BTimer (short for BulletTimer), the first motion-aware feed-forward model for real-time reconstruction and novel view synthesis of dynamic scenes. Our approach reconstructs the full scene in a 3D Gaussian Splatting representation at a given target ('bullet') timestamp by aggregating information from all the context frames. Such a formulation allows BTimer to gain scalability and generalization by leveraging both static and dynamic scene datasets. Given a casual monocular dynamic video, BTimer reconstructs a bullet-time scene within 150ms while reaching state-of-the-art performance on both static and dynamic scene datasets, even compared with optimization-based approaches.
comment: Project website: https://research.nvidia.com/labs/toronto-ai/bullet-timer/
♻ ☆ Using Language Models to Decipher the Motivation Behind Human Behaviors
AI presents a novel tool for deciphering the motivations behind human behaviors. We show that by varying prompts to a large language model, we can elicit a full range of human behaviors in a variety of different scenarios in terms of classic economic games. Then by analyzing which prompts are needed to elicit which behaviors, we can infer (decipher) the motivations behind the human behaviors. We also show how one can analyze the prompts to reveal relationships between the classic economic games, providing new insight into what different economic scenarios induce people to think about. We also show how this deciphering process can be used to understand differences in the behavioral tendencies of different populations.
♻ ☆ Markov $α$-Potential Games
We propose a new framework of Markov $\alpha$-potential games to study Markov games. We show that any Markov game with finite-state and finite-action is a Markov $\alpha$-potential game, and establish the existence of an associated $\alpha$-potential function. Any optimizer of an $\alpha$-potential function is shown to be an $\alpha$-stationary Nash equilibrium. We study two important classes of practically significant Markov games, Markov congestion games and the perturbed Markov team games, via the framework of Markov $\alpha$-potential games, with explicit characterization of an upper bound for $\alpha$ and its relation to game parameters. Additionally, we provide a semi-infinite linear programming based formulation to obtain an upper bound for $\alpha$ for any Markov game. Furthermore, we study two equilibrium approximation algorithms, namely the projected gradient-ascent algorithm and the sequential maximum improvement algorithm, along with their Nash regret analysis, and corroborate the results with numerical experiments.
comment: 33 pages, 5 figures
♻ ☆ Is Your LLM Secretly a World Model of the Internet? Model-Based Planning for Web Agents
Language agents based on large language models (LLMs) have demonstrated great promise in automating web-based tasks. Recent work has shown that incorporating advanced planning algorithms, e.g., tree search, is advantageous over reactive planning for web agents. However, unlike simulated sandbox environments, real-world environments such as the web are rife with irreversible actions. This undermines the feasibility of backtracking, a cornerstone of (tree) search. Overly relying on test-time search also hurts efficiency. We advocate model-based planning for web agents that employs a world model to simulate and deliberate over the outcome of each candidate action before committing to one. We systematically explore this paradigm by (1) Proposing a model-based planning framework, WebDreamer, which employs LLMs to serve as both world models and value functions; (2) Training specialized LLMs as world models with a scalable data synthesis pipeline. Empirical results demonstrate that WebDreamer achieves substantial performance improvements over reactive baselines. It is competitive, while being 4-5 times more efficient, with tree search in sandbox environments (VisualWebArena) and also works effectively on real-world websites (Online-Mind2Web and Mind2Web-Live). Furthermore, our trained world model, Dreamer-7B, performs comparable to GPT-4o, highlighting the potential of specialized world models for efficient and effective planning in complex web environments.
comment: 22 pages, 11 figures, 6 tables
♻ ☆ ZETA: Leveraging Z-order Curves for Efficient Top-k Attention ICLR
Over recent years, the Transformer has become a fundamental building block for sequence modeling architectures. Yet at its core is the use of self-attention, whose memory and computational cost grow quadratically with the sequence length $N$, rendering it prohibitively expensive for long sequences. A promising approach is top-$k$ attention, which selects only the $k$ most relevant tokens and achieves performance comparable to vanilla self-attention while significantly reducing space and computational demands. However, causal masks require the current query token to only attend to past tokens, preventing the existing top-$k$ attention method from efficiently searching for the most relevant tokens in parallel, thereby limiting training efficiency. In this work, we propose ZETA, leveraging \textbf{Z}-Order Curves for \textbf{E}fficient \textbf{T}op-$k$ \textbf{A}ttention, to enable parallel querying of past tokens for entire sequences. % in both space and time complexity of $\mathcal{O}(N \log N)$. We first theoretically show that the choice of key and query dimensions involves a trade-off between the curse of dimensionality and the preservation of relative distances after projection. In light of this insight, we propose reducing the dimensionality of keys and queries in contrast to values and further leverage $Z$-order curves to map low-dimensional keys and queries into \emph{one}-dimensional space, which permits parallel sorting, thereby largely improving the efficiency for top-$k$ token selection. Experimental results demonstrate that ZETA matches the performance of standard attention on the synthetic \textsc{Multi-Query Associative Recall} task and outperforms attention and its variants on \textsc{Long Range Arena} and \textsc{WikiText-103} language modeling.
comment: 25 pages, 4 figures, accepted in International Conference on Learning Representations (ICLR) 2025
♻ ☆ Sparse identification of nonlinear dynamics and Koopman operators with Shallow Recurrent Decoder Networks
Modeling real-world spatio-temporal data is exceptionally difficult due to inherent high dimensionality, measurement noise, partial observations, and often expensive data collection procedures. In this paper, we present Sparse Identification of Nonlinear Dynamics with SHallow REcurrent Decoder networks (SINDy-SHRED), a method to jointly solve the sensing and model identification problems with simple implementation, efficient computation, and robust performance. SINDy-SHRED uses Gated Recurrent Units to model the temporal sequence of sparse sensor measurements along with a shallow decoder network to reconstruct the full spatio-temporal field from the latent state space. Our algorithm introduces a SINDy-based regularization for which the latent space progressively converges to a SINDy-class functional, provided the projection remains within the set. In restricting SINDy to a linear model, a Koopman-SHRED model is generated. SINDy-SHRED (i) learns a symbolic and interpretable generative model of a parsimonious and low-dimensional latent space for the complex spatio-temporal dynamics, (ii) discovers new physics models even for well-known physical systems, (iii) achieves provably robust convergence with an observed globally convex loss landscape, and (iv) achieves superior accuracy, data efficiency, and training time, all with fewer model parameters. We conduct systematic experimental studies on PDE data such as turbulent flows, real-world sensor measurements for sea surface temperature, and direct video data. The interpretable SINDy and Koopman models of latent state dynamics enable stable and accurate long-term video predictions, outperforming all current baseline deep learning models in accuracy, training time, and data requirements, including Convolutional LSTM, PredRNN, ResNet, and SimVP.
♻ ☆ Diffusion State-Guided Projected Gradient for Inverse Problems ICLR 2025
Recent advancements in diffusion models have been effective in learning data priors for solving inverse problems. They leverage diffusion sampling steps for inducing a data prior while using a measurement guidance gradient at each step to impose data consistency. For general inverse problems, approximations are needed when an unconditionally trained diffusion model is used since the measurement likelihood is intractable, leading to inaccurate posterior sampling. In other words, due to their approximations, these methods fail to preserve the generation process on the data manifold defined by the diffusion prior, leading to artifacts in applications such as image restoration. To enhance the performance and robustness of diffusion models in solving inverse problems, we propose Diffusion State-Guided Projected Gradient (DiffStateGrad), which projects the measurement gradient onto a subspace that is a low-rank approximation of an intermediate state of the diffusion process. DiffStateGrad, as a module, can be added to a wide range of diffusion-based inverse solvers to improve the preservation of the diffusion process on the prior manifold and filter out artifact-inducing components. We highlight that DiffStateGrad improves the robustness of diffusion models in terms of the choice of measurement guidance step size and noise while improving the worst-case performance. Finally, we demonstrate that DiffStateGrad improves upon the state-of-the-art on linear and nonlinear image restoration inverse problems. Our code is available at https://github.com/Anima-Lab/DiffStateGrad.
comment: Published as a conference paper at ICLR 2025. RZ and BT have equal contributions
♻ ☆ CodingTeachLLM: Empowering LLM's Coding Ability via AST Prior Knowledge
In this paper, we introduce CodingTeachLLM, a large language model (LLM) designed for coding teaching. Specially, we aim to enhance the coding ability of LLM and lead it to better teaching mode in education context. Thus, we propose an end-to-end prior-based three-phases supervised fine-tuned model, which is proved more competitive than traditional fine-tuning method. More specifically, our model realizes the structural disassembly and incremental guided output of educational knowledge. To this end, we robustify data classification of three types via a sampler and overlap estimation neural network, and inject the preprocessing datasets into pre-trained model in three batches for LORA fine-tuning. Then, we design a prior module couples system prompt, vector databases, and abstract syntax tree task segmentation. Finally, the compression method and regularization constraint are applied to the prior-based fine-tuned model, followed by text filter at the output end to obtain incremental guided results. Our model represents the first research effort to truly embody the tutor role with the features of abundant educational knowledge, step-by-step incremental guided outputs and non-disclosure of answers. Extensive experiments report that our model also achieves state-of-the-art in code abilities compared to open-source models, reaching an impressive 75.10% on the HumanEval (@pass 1) benchmark. Additionally, our model maintains strong conversational capabilities, with the 13B quantized version achieving scores of 56.34, 50.60, and 45.27 respectively on the MMLU, C-Eval, and AGIEval (5 shot) dialogue evaluation benchmarks.
comment: 9 pages, 2 figures
♻ ☆ VideoMind: A Chain-of-LoRA Agent for Long Video Reasoning
Videos, with their unique temporal dimension, demand precise grounded understanding, where answers are directly linked to visual, interpretable evidence. Despite significant breakthroughs in reasoning capabilities within Large Language Models, multi-modal reasoning - especially for videos - remains unexplored. In this work, we introduce VideoMind, a novel video-language agent designed for temporal-grounded video understanding. VideoMind incorporates two key innovations: (i) We identify essential capabilities for video temporal reasoning and develop a role-based agentic workflow, including a planner for coordinating different roles, a grounder for temporal localization, a verifier to assess temporal interval accuracy, and an answerer for question-answering. (ii) To efficiently integrate these diverse roles, we propose a novel Chain-of-LoRA strategy, enabling seamless role-switching via lightweight LoRA adaptors while avoiding the overhead of multiple models, thus balancing efficiency and flexibility. Extensive experiments on 14 public benchmarks, including 3 on grounded video question-answering (Grounded VideoQA), 6 on video temporal grounding (VTG), and 5 on general video question-answering (VideoQA), verify that our agent achieves state-of-the-art performance on diverse video understanding tasks, underscoring its effectiveness in advancing video agent and long-form temporal reasoning.
comment: Project Page: https://videomind.github.io/
♻ ☆ Without Paired Labeled Data: An End-to-End Self-Supervised Paradigm for UAV-View Geo-Localization
UAV-View Geo-Localization (UVGL) aims to achieve accurate localization of unmanned aerial vehicles (UAVs) by retrieving the most relevant GPS-tagged satellite images. However, existing methods heavily rely on pre-paired UAV-satellite images for supervised learning. Such dependency not only incurs high annotation costs but also severely limits scalability and practical deployment in open-world UVGL scenarios. To address these limitations, we propose an end-to-end self-supervised UVGL method. Our method leverages a shallow backbone network to extract initial features, employs clustering to generate pseudo labels, and adopts a dual-path contrastive learning architecture to learn discriminative intra-view representations. Furthermore, our method incorporates two core modules, the dynamic hierarchical memory learning module and the information consistency evolution learning module. The dynamic hierarchical memory learning module combines short-term and long-term memory to enhance intra-view feature consistency and discriminability. Meanwhile, the information consistency evolution learning module leverages a neighborhood-driven dynamic constraint mechanism to systematically capture implicit cross-view semantic correlations, thereby improving cross-view feature alignment. To further stabilize and strengthen the self-supervised training process, a pseudo-label enhancement strategy is introduced, which refines the quality of pseudo supervision. Our method ultimately constructs a unified cross-view feature representation space under self-supervised settings. Extensive experiments on three public benchmark datasets demonstrate that the proposed method consistently outperforms existing self-supervised methods and even surpasses several state-of-the-art supervised methods. Our code is available at https://github.com/ISChenawei/DMNIL.
♻ ☆ Data-Free Group-Wise Fully Quantized Winograd Convolution via Learnable Scales CVPR 2025
Despite the revolutionary breakthroughs of large-scale text-to-image diffusion models for complex vision and downstream tasks, their extremely high computational and storage costs limit their usability. Quantization of diffusion models has been explored in recent works to reduce compute costs and memory bandwidth usage. To further improve inference time, fast convolution algorithms such as Winograd can be used for convolution layers, which account for a significant portion of computations in diffusion models. However, the significant quality loss of fully quantized Winograd using existing coarser-grained post-training quantization methods, combined with the complexity and cost of finetuning the Winograd transformation matrices for such large models to recover quality, makes them unsuitable for large-scale foundation models. Motivated by the presence of a large range of values in them, we investigate the impact of finer-grained group-wise quantization in quantizing diffusion models. While group-wise quantization can largely handle the fully quantized Winograd convolution, it struggles to deal with the large distribution imbalance in a sizable portion of the Winograd domain computation. To reduce range differences in the Winograd domain, we propose finetuning only the scale parameters of the Winograd transform matrices without using any domain-specific training data. Because our method does not depend on any training data, the generalization performance of quantized diffusion models is safely guaranteed. For text-to-image generation task, the 8-bit fully-quantized diffusion model with Winograd provides near-lossless quality (FID and CLIP scores) in comparison to the full-precision model. For image classification, our method outperforms the state-of-the-art Winograd PTQ method by 1.62% and 2.56% in top-1 ImageNet accuracy on ResNet18 and ResNet-34, respectively, with Winograd F(6, 3).
comment: Accepted by CVPR 2025
♻ ☆ Astrea: A MOE-based Visual Understanding Model with Progressive Alignment
Vision-Language Models (VLMs) based on Mixture-of-Experts (MoE) architectures have emerged as a pivotal paradigm in multimodal understanding, offering a powerful framework for integrating visual and linguistic information. However, the increasing complexity and diversity of tasks present significant challenges in coordinating load balancing across heterogeneous visual experts, where optimizing one specialist's performance often compromises others' capabilities. To address task heterogeneity and expert load imbalance, we propose Astrea, a novel multi-expert collaborative VLM architecture based on progressive pre-alignment. Astrea introduces three key innovations: 1) A heterogeneous expert coordination mechanism that integrates four specialized models (detection, segmentation, classification, captioning) into a comprehensive expert matrix covering essential visual comprehension elements; 2) A dynamic knowledge fusion strategy featuring progressive pre-alignment to harmonize experts within the VLM latent space through contrastive learning, complemented by probabilistically activated stochastic residual connections to preserve knowledge continuity; 3) An enhanced optimization framework utilizing momentum contrastive learning for long-range dependency modeling and adaptive weight allocators for real-time expert contribution calibration. Extensive evaluations across 12 benchmark tasks spanning VQA, image captioning, and cross-modal retrieval demonstrate Astrea's superiority over state-of-the-art models, achieving an average performance gain of +4.7\%. This study provides the first empirical demonstration that progressive pre-alignment strategies enable VLMs to overcome task heterogeneity limitations, establishing new methodological foundations for developing general-purpose multimodal agents.
♻ ☆ Rerouting Connection: Hybrid Computer Vision Analysis Reveals Visual Similarity Between Indus and Tibetan-Yi Corridor Writing Systems
This thesis employs a hybrid CNN-Transformer architecture, in conjunction with a detailed anthropological framework, to investigate potential historical connections between the visual morphology of the Indus Valley script and pictographic systems of the Tibetan-Yi Corridor. Through an ensemble methodology of three target scripts across 15 independently trained models, we demonstrate that Tibetan-Yi Corridor scripts exhibit approximately six-fold higher visual similarity to the Indus script (61.7%-63.5%) than to the Bronze Age Proto-Cuneiform (10.2%-10.9%) or Proto-Elamite (7.6%-8.7%) systems. Additionally and contrarily to our current understanding of the networks of the Indus Valley Civilization, the Indus script unexpectedly maps closer to Tibetan-Yi Corridor scripts, with a mean cosine similarity of 0.629, than to the aforementioned contemporaneous West Asian signaries, both of which recorded mean cosine similarities of 0.104 and 0.080 despite their close geographic proximity and evident trade relations. Across various dimensionality reduction practices and clustering methodologies, the Indus script consistently clusters closest to Tibetan-Yi Corridor scripts. Our computational results align with qualitative observations of specific pictorial parallels in numeral systems, gender markers, and key iconographic elements; this is further supported by archaeological evidence of sustained contact networks along the ancient Shu-Shendu road in tandem with the Indus Valley Civilization's decline, providing a plausible transmission pathway. While alternative explanations cannot be ruled out, the specificity and consistency of observed similarities challenge conventional narratives of isolated script development and suggest more complex ancient cultural transmission networks between South and East Asia than previously recognized.
comment: 106 pages (42 main text, 6 references, 58 appendices). 21 figures, 4 tables in main text; 106 figures, 8 tables total. Code: https://github.com/oohalakkadi/ivc2tyc. Undergraduate thesis at Duke Kunshan University. Accepted for presentation at the 52nd International Conference for Computer Applications & Quantitative Methods in Archaeology (CAA 2025), Athens, Greece
♻ ☆ Towards shutdownable agents via stochastic choice
The Incomplete Preferences Proposal (IPP) is an idea for ensuring that advanced artificial agents never resist shutdown. A key part of the IPP is using a novel `Discounted Reward for Same-Length Trajectories (DReST)' reward function to train agents to (1) pursue goals effectively conditional on each trajectory-length (be `USEFUL'), and (2) choose stochastically between different trajectory-lengths (be `NEUTRAL' about trajectory-lengths). In this paper, we propose evaluation metrics for USEFULNESS and NEUTRALITY. We use a DReST reward function to train simple agents to navigate gridworlds, and we find that these agents learn to be USEFUL and NEUTRAL. Our results thus provide some initial evidence that DReST reward functions could train advanced agents to be USEFUL and NEUTRAL. Our theoretical work suggests that these agents would be useful and shutdownable.
♻ ☆ Provably-Safe Neural Network Training Using Hybrid Zonotope Reachability Analysis
Even though neural networks are being increasingly deployed in safety-critical control applications, it remains difficult to enforce constraints on their output, meaning that it is hard to guarantee safety in such settings. While many existing methods seek to verify a neural network's satisfaction of safety constraints, few address how to correct an unsafe network. The handful of works that extract a training signal from verification cannot handle non-convex sets, and are either conservative or slow. To begin addressing these challenges, this work proposes a neural network training method that can encourage the exact image of a non-convex input set for a neural network with rectified linear unit (ReLU) nonlinearities to avoid a non-convex unsafe region. This is accomplished by reachability analysis with scaled hybrid zonotopes, a modification of the existing hybrid zonotope set representation that enables parameterized scaling of non-convex polytopic sets with a differentiable collision check via mixed-integer linear programs (MILPs). The proposed method was shown to be effective and fast for networks with up to 240 neurons, with the computational complexity dominated by inverse operations on matrices that scale linearly in size with the number of neurons and complexity of input and unsafe sets. We demonstrate the practicality of our method by training a forward-invariant neural network controller for a non-convex input set to an affine system, as well as generating safe reach-avoid plans for a black-box dynamical system.
comment: 8 pages, 3 figures
♻ ☆ View-Invariant Pixelwise Anomaly Detection in Multi-object Scenes with Adaptive View Synthesis
Visual anomaly detection in the built environment is a valuable tool for applications such as infrastructure assessment, construction monitoring, security surveillance, and urban planning. Anomaly detection approaches are typically unsupervised and work by detecting deviations from an expected state where no assumptions are made exact type of deviation. Unsupervised pixel-level anomaly detection methods have been developed to successfully recognize and segment anomalies; however, existing techniques are designed for industrial settings with a fixed camera position. In the built environment, images are periodically captured by a camera operated manually or mounted on aerial or ground vehicles. The camera pose between successive collections may vary widely voiding a fundamental assumption in existing anomaly detection approaches. To address this gap, we introduce the problem of Scene Anomaly Detection (Scene AD), where the goal is to detect anomalies from two sets of images: one set without anomalies and one set that may or may not contain anomalies. No labeled semantic segmentation data are provided for training. We propose a novel network, OmniAD, to tackle Scene AD by refining the reverse distillation anomaly detection method, leading to a 40\% improvement in pixel-level anomaly detection. Additionally, we introduce two new data augmentation strategies that leverage novel view synthesis and camera localization to enhance generalization. We evaluate our approach both qualitatively and quantitatively on a new dataset, ToyCity the first Scene AD dataset featuring multiple objects as well as on the established single object centric dataset, MAD. Our method demonstrates marked improvement over baseline approaches, paving the way for robust anomaly detection in scenes with real-world camera pose variations commonly observed in the built environment. https://drags99.github.io/OmniAD/
♻ ☆ Heterogeneous bimodal attention fusion for speech emotion recognition
Multi-modal emotion recognition in conversations is a challenging problem due to the complex and complementary interactions between different modalities. Audio and textual cues are particularly important for understanding emotions from a human perspective. Most existing studies focus on exploring interactions between audio and text modalities at the same representation level. However, a critical issue is often overlooked: the heterogeneous modality gap between low-level audio representations and high-level text representations. To address this problem, we propose a novel framework called Heterogeneous Bimodal Attention Fusion (HBAF) for multi-level multi-modal interaction in conversational emotion recognition. The proposed method comprises three key modules: the uni-modal representation module, the multi-modal fusion module, and the inter-modal contrastive learning module. The uni-modal representation module incorporates contextual content into low-level audio representations to bridge the heterogeneous multi-modal gap, enabling more effective fusion. The multi-modal fusion module uses dynamic bimodal attention and a dynamic gating mechanism to filter incorrect cross-modal relationships and fully exploit both intra-modal and inter-modal interactions. Finally, the inter-modal contrastive learning module captures complex absolute and relative interactions between audio and text modalities. Experiments on the MELD and IEMOCAP datasets demonstrate that the proposed HBAF method outperforms existing state-of-the-art baselines.
♻ ☆ How Well do LLMs Compress Their Own Chain-of-Thought? A Token Complexity Approach
Chain-of-thought prompting has emerged as a powerful technique for enabling large language models (LLMs) to solve complex reasoning tasks. However, these reasoning chains can be verbose, raising concerns about efficiency. In response, recent works have sought to decrease response lengths through simple prompting strategies (e.g. 'be concise'). In this work, we conduct the first systematic study of the relationship between reasoning length and model performance across a diverse range of compression instructions (e.g. 'use 10 words or less' or 'remove all punctuation'). In doing so, we discover a universal tradeoff between reasoning length and accuracy that persists across even very distinct reasoning chains. We demonstrate that this tradeoff emerges from a sharp threshold behavior at the question level: each task has an intrinsic 'token complexity' - a minimal number of tokens required for successful problem-solving. We show how token complexity enables us to compute information-theoretic limits on the accuracy-compression tradeoff, and find that prompt-based compression strategies operate far from these theoretical limits. This suggests there may be significant room for improvement and our framework provides a benchmark to help researchers evaluate progress in reasoning efficiency. Our work also highlights the importance of adaptive compression -- giving shorter responses for easier questions -- and we show that token complexity is a useful tool for measuring this capability.
♻ ☆ Independent and Decentralized Learning in Markov Potential Games
We study a multi-agent reinforcement learning dynamics, and analyze its asymptotic behavior in infinite-horizon discounted Markov potential games. We focus on the independent and decentralized setting, where players do not know the game parameters, and cannot communicate or coordinate. In each stage, players update their estimate of Q-function that evaluates their total contingent payoff based on the realized one-stage reward in an asynchronous manner. Then, players independently update their policies by incorporating an optimal one-stage deviation strategy based on the estimated Q-function. Inspired by the actor-critic algorithm in single-agent reinforcement learning, a key feature of our learning dynamics is that agents update their Q-function estimates at a faster timescale than the policies. Leveraging tools from two-timescale asynchronous stochastic approximation theory, we characterize the convergent set of learning dynamics.
comment: 43 pages, 1 figure
♻ ☆ Convergence of Decentralized Actor-Critic Algorithm in General-sum Markov Games
Markov games provide a powerful framework for modeling strategic multi-agent interactions in dynamic environments. Traditionally, convergence properties of decentralized learning algorithms in these settings have been established only for special cases, such as Markov zero-sum and potential games, which do not fully capture real-world interactions. In this paper, we address this gap by studying the asymptotic properties of learning algorithms in general-sum Markov games. In particular, we focus on a decentralized algorithm where each agent adopts an actor-critic learning dynamic with asynchronous step sizes. This decentralized approach enables agents to operate independently, without requiring knowledge of others' strategies or payoffs. We introduce the concept of a Markov Near-Potential Function (MNPF) and demonstrate that it serves as an approximate Lyapunov function for the policy updates in the decentralized learning dynamics, which allows us to characterize the convergent set of strategies. We further strengthen our result under specific regularity conditions and with finite Nash equilibria.
comment: 18 pages, 3 figure
♻ ☆ Process or Result? Manipulated Ending Tokens Can Mislead Reasoning LLMs to Ignore the Correct Reasoning Steps
Recent reasoning large language models (LLMs) have demonstrated remarkable improvements in mathematical reasoning capabilities through long Chain-of-Thought. The reasoning tokens of these models enable self-correction within reasoning chains, enhancing robustness. This motivates our exploration: how vulnerable are reasoning LLMs to subtle errors in their input reasoning chains? We introduce "Compromising Thought" (CPT), a vulnerability where models presented with reasoning tokens containing manipulated calculation results tend to ignore correct reasoning steps and adopt incorrect results instead. Through systematic evaluation across multiple reasoning LLMs, we design three increasingly explicit prompting methods to measure CPT resistance, revealing that models struggle significantly to identify and correct these manipulations. Notably, contrary to existing research suggesting structural alterations affect model performance more than content modifications, we find that local ending token manipulations have greater impact on reasoning outcomes than structural changes. Moreover, we discover a security vulnerability in DeepSeek-R1 where tampered reasoning tokens can trigger complete reasoning cessation. Our work enhances understanding of reasoning robustness and highlights security considerations for reasoning-intensive applications.
♻ ☆ GIScience in the Era of Artificial Intelligence: A Research Agenda Towards Autonomous GIS
The advent of generative AI exemplified by large language models (LLMs) opens new ways to represent and compute geographic information and transcend the process of geographic knowledge production, driving geographic information systems (GIS) towards autonomous GIS. Leveraging LLMs as the decision core, autonomous GIS can independently generate and execute geoprocessing workflows to perform spatial analysis. In this vision paper, we elaborate on the concept of autonomous GIS and present a framework that defines its five autonomous goals, five levels of autonomy, five core functions, and three operational scales. We demonstrate how autonomous GIS could perform geospatial data retrieval, spatial analysis, and map making with four proof-of-concept GIS agents. We conclude by identifying critical challenges and future research directions, including fine-tuning and self-growing decision cores, autonomous modeling, and examining the ethical and practical implications of autonomous GIS. By establishing the groundwork for a paradigm shift in GIScience, this paper envisions a future where GIS moves beyond traditional workflows to autonomously reason, derive, innovate, and advance solutions to pressing global challenges.
♻ ☆ A Scalable Framework for Evaluating Health Language Models
Large language models (LLMs) have emerged as powerful tools for analyzing complex datasets. Recent studies demonstrate their potential to generate useful, personalized responses when provided with patient-specific health information that encompasses lifestyle, biomarkers, and context. As LLM-driven health applications are increasingly adopted, rigorous and efficient one-sided evaluation methodologies are crucial to ensure response quality across multiple dimensions, including accuracy, personalization and safety. Current evaluation practices for open-ended text responses heavily rely on human experts. This approach introduces human factors and is often cost-prohibitive, labor-intensive, and hinders scalability, especially in complex domains like healthcare where response assessment necessitates domain expertise and considers multifaceted patient data. In this work, we introduce Adaptive Precise Boolean rubrics: an evaluation framework that streamlines human and automated evaluation of open-ended questions by identifying gaps in model responses using a minimal set of targeted rubrics questions. Our approach is based on recent work in more general evaluation settings that contrasts a smaller set of complex evaluation targets with a larger set of more precise, granular targets answerable with simple boolean responses. We validate this approach in metabolic health, a domain encompassing diabetes, cardiovascular disease, and obesity. Our results demonstrate that Adaptive Precise Boolean rubrics yield higher inter-rater agreement among expert and non-expert human evaluators, and in automated assessments, compared to traditional Likert scales, while requiring approximately half the evaluation time of Likert-based methods. This enhanced efficiency, particularly in automated evaluation and non-expert contributions, paves the way for more extensive and cost-effective evaluation of LLMs in health.
Graphics 4
♻ ☆ RainyGS: Efficient Rain Synthesis with Physically-Based Gaussian Splatting CVPR 2025
We consider the problem of adding dynamic rain effects to in-the-wild scenes in a physically-correct manner. Recent advances in scene modeling have made significant progress, with NeRF and 3DGS techniques emerging as powerful tools for reconstructing complex scenes. However, while effective for novel view synthesis, these methods typically struggle with challenging scene editing tasks, such as physics-based rain simulation. In contrast, traditional physics-based simulations can generate realistic rain effects, such as raindrops and splashes, but they often rely on skilled artists to carefully set up high-fidelity scenes. This process lacks flexibility and scalability, limiting its applicability to broader, open-world environments. In this work, we introduce RainyGS, a novel approach that leverages the strengths of both physics-based modeling and 3DGS to generate photorealistic, dynamic rain effects in open-world scenes with physical accuracy. At the core of our method is the integration of physically-based raindrop and shallow water simulation techniques within the fast 3DGS rendering framework, enabling realistic and efficient simulations of raindrop behavior, splashes, and reflections. Our method supports synthesizing rain effects at over 30 fps, offering users flexible control over rain intensity -- from light drizzles to heavy downpours. We demonstrate that RainyGS performs effectively for both real-world outdoor scenes and large-scale driving scenarios, delivering more photorealistic and physically-accurate rain effects compared to state-of-the-art methods. Project page can be found at https://pku-vcl-geometry.github.io/RainyGS/
comment: CVPR 2025
♻ ☆ DetailGen3D: Generative 3D Geometry Enhancement via Data-Dependent Flow
Modern 3D generation methods can rapidly create shapes from sparse or single views, but their outputs often lack geometric detail due to computational constraints. We present DetailGen3D, a generative approach specifically designed to enhance these generated 3D shapes. Our key insight is to model the coarse-to-fine transformation directly through data-dependent flows in latent space, avoiding the computational overhead of large-scale 3D generative models. We introduce a token matching strategy that ensures accurate spatial correspondence during refinement, enabling local detail synthesis while preserving global structure. By carefully designing our training data to match the characteristics of synthesized coarse shapes, our method can effectively enhance shapes produced by various 3D generation and reconstruction approaches, from single-view to sparse multi-view inputs. Extensive experiments demonstrate that DetailGen3D achieves high-fidelity geometric detail synthesis while maintaining efficiency in training.
♻ ☆ Enhanced Controllability of Diffusion Models via Feature Disentanglement and Realism-Enhanced Sampling Methods ECCV 2024
As Diffusion Models have shown promising performance, a lot of efforts have been made to improve the controllability of Diffusion Models. However, how to train Diffusion Models to have the disentangled latent spaces and how to naturally incorporate the disentangled conditions during the sampling process have been underexplored. In this paper, we present a training framework for feature disentanglement of Diffusion Models (FDiff). We further propose two sampling methods that can boost the realism of our Diffusion Models and also enhance the controllability. Concisely, we train Diffusion Models conditioned on two latent features, a spatial content mask, and a flattened style embedding. We rely on the inductive bias of the denoising process of Diffusion Models to encode pose/layout information in the content feature and semantic/style information in the style feature. Regarding the sampling methods, we first generalize Composable Diffusion Models (GCDM) by breaking the conditional independence assumption to allow for some dependence between conditional inputs, which is shown to be effective in realistic generation in our experiments. Second, we propose timestep-dependent weight scheduling for content and style features to further improve the performance. We also observe better controllability of our proposed methods compared to existing methods in image manipulation and image translation.
comment: ECCV 2024; Code will be opened after a patent application is granted
♻ ☆ Feed-Forward Bullet-Time Reconstruction of Dynamic Scenes from Monocular Videos
Recent advancements in static feed-forward scene reconstruction have demonstrated significant progress in high-quality novel view synthesis. However, these models often struggle with generalizability across diverse environments and fail to effectively handle dynamic content. We present BTimer (short for BulletTimer), the first motion-aware feed-forward model for real-time reconstruction and novel view synthesis of dynamic scenes. Our approach reconstructs the full scene in a 3D Gaussian Splatting representation at a given target ('bullet') timestamp by aggregating information from all the context frames. Such a formulation allows BTimer to gain scalability and generalization by leveraging both static and dynamic scene datasets. Given a casual monocular dynamic video, BTimer reconstructs a bullet-time scene within 150ms while reaching state-of-the-art performance on both static and dynamic scene datasets, even compared with optimization-based approaches.
comment: Project website: https://research.nvidia.com/labs/toronto-ai/bullet-timer/
Robotics 36
☆ UniOcc: A Unified Benchmark for Occupancy Forecasting and Prediction in Autonomous Driving
We introduce UniOcc, a comprehensive, unified benchmark for occupancy forecasting (i.e., predicting future occupancies based on historical information) and current-frame occupancy prediction from camera images. UniOcc unifies data from multiple real-world datasets (i.e., nuScenes, Waymo) and high-fidelity driving simulators (i.e., CARLA, OpenCOOD), which provides 2D/3D occupancy labels with per-voxel flow annotations and support for cooperative autonomous driving. In terms of evaluation, unlike existing studies that rely on suboptimal pseudo labels for evaluation, UniOcc incorporates novel metrics that do not depend on ground-truth occupancy, enabling robust assessment of additional aspects of occupancy quality. Through extensive experiments on state-of-the-art models, we demonstrate that large-scale, diverse training data and explicit flow information significantly enhance occupancy prediction and forecasting performance.
comment: 14 pages; Dataset: https://huggingface.co/datasets/tasl-lab/uniocc; Code: https://github.com/tasl-lab/UniOcc
☆ Sim-and-Real Co-Training: A Simple Recipe for Vision-Based Robotic Manipulation
Large real-world robot datasets hold great potential to train generalist robot models, but scaling real-world human data collection is time-consuming and resource-intensive. Simulation has great potential in supplementing large-scale data, especially with recent advances in generative AI and automated data generation tools that enable scalable creation of robot behavior datasets. However, training a policy solely in simulation and transferring it to the real world often demands substantial human effort to bridge the reality gap. A compelling alternative is to co-train the policy on a mixture of simulation and real-world datasets. Preliminary studies have recently shown this strategy to substantially improve the performance of a policy over one trained on a limited amount of real-world data. Nonetheless, the community lacks a systematic understanding of sim-and-real co-training and what it takes to reap the benefits of simulation data for real-robot learning. This work presents a simple yet effective recipe for utilizing simulation data to solve vision-based robotic manipulation tasks. We derive this recipe from comprehensive experiments that validate the co-training strategy on various simulation and real-world datasets. Using two domains--a robot arm and a humanoid--across diverse tasks, we demonstrate that simulation data can enhance real-world task performance by an average of 38%, even with notable differences between the simulation and real-world data. Videos and additional results can be found at https://co-training.github.io/
comment: Project website: https://co-training.github.io/
☆ Pro-Routing: Proactive Routing of Autonomous Multi-Capacity Robots for Pickup-and-Delivery Tasks
We consider a multi-robot setting, where we have a fleet of multi-capacity autonomous robots that must service spatially distributed pickup-and-delivery requests with fixed maximum wait times. Requests can be either scheduled ahead of time or they can enter the system in real-time. In this setting, stability for a routing policy is defined as the cost of the policy being uniformly bounded over time. Most previous work either solve the problem offline to theoretically maintain stability or they consider dynamically arriving requests at the expense of the theoretical guarantees on stability. In this paper, we aim to bridge this gap by proposing a novel proactive rollout-based routing framework that adapts to real-time demand while still provably maintaining the stability of the learned routing policy. We derive provable stability guarantees for our method by proposing a fleet sizing algorithm that obtains a sufficiently large fleet that ensures stability by construction. To validate our theoretical results, we consider a case study on real ride requests for Harvard's evening Van System. We also evaluate the performance of our framework using the currently deployed smaller fleet size. In this smaller setup, we compare against the currently deployed routing algorithm, greedy heuristics, and Monte-Carlo-Tree-Search-based algorithms. Our empirical results show that our framework maintains stability when we use the sufficiently large fleet size found in our theoretical results. For the smaller currently deployed fleet size, our method services 6% more requests than the closest baseline while reducing median passenger wait times by 33%.
comment: 25 pages, 7 figures, and 1 table
☆ AutoEval: Autonomous Evaluation of Generalist Robot Manipulation Policies in the Real World
Scalable and reproducible policy evaluation has been a long-standing challenge in robot learning. Evaluations are critical to assess progress and build better policies, but evaluation in the real world, especially at a scale that would provide statistically reliable results, is costly in terms of human time and hard to obtain. Evaluation of increasingly generalist robot policies requires an increasingly diverse repertoire of evaluation environments, making the evaluation bottleneck even more pronounced. To make real-world evaluation of robotic policies more practical, we propose AutoEval, a system to autonomously evaluate generalist robot policies around the clock with minimal human intervention. Users interact with AutoEval by submitting evaluation jobs to the AutoEval queue, much like how software jobs are submitted with a cluster scheduling system, and AutoEval will schedule the policies for evaluation within a framework supplying automatic success detection and automatic scene resets. We show that AutoEval can nearly fully eliminate human involvement in the evaluation process, permitting around the clock evaluations, and the evaluation results correspond closely to ground truth evaluations conducted by hand. To facilitate the evaluation of generalist policies in the robotics community, we provide public access to multiple AutoEval scenes in the popular BridgeData robot setup with WidowX robot arms. In the future, we hope that AutoEval scenes can be set up across institutions to form a diverse and distributed evaluation network.
☆ Pseudo-Random UAV Test Generation Using Low-Fidelity Path Simulator
Simulation-based testing provides a safe and cost-effective environment for verifying the safety of Uncrewed Aerial Vehicles (UAVs). However, simulation can be resource-consuming, especially when High-Fidelity Simulators (HFS) are used. To optimise simulation resources, we propose a pseudo-random test generator that uses a Low-Fidelity Simulator (LFS) to estimate UAV flight paths. This work simplifies the PX4 autopilot HFS to develop a LFS, which operates one order of magnitude faster than the HFS.Test cases predicted to cause safety violations in the LFS are subsequently validated using the HFS.
Reinforcement Learning for Safe Autonomous Two Device Navigation of Cerebral Vessels in Mechanical Thrombectomy
Purpose: Autonomous systems in mechanical thrombectomy (MT) hold promise for reducing procedure times, minimizing radiation exposure, and enhancing patient safety. However, current reinforcement learning (RL) methods only reach the carotid arteries, are not generalizable to other patient vasculatures, and do not consider safety. We propose a safe dual-device RL algorithm that can navigate beyond the carotid arteries to cerebral vessels. Methods: We used the Simulation Open Framework Architecture to represent the intricacies of cerebral vessels, and a modified Soft Actor-Critic RL algorithm to learn, for the first time, the navigation of micro-catheters and micro-guidewires. We incorporate patient safety metrics into our reward function by integrating guidewire tip forces. Inverse RL is used with demonstrator data on 12 patient-specific vascular cases. Results: Our simulation demonstrates successful autonomous navigation within unseen cerebral vessels, achieving a 96% success rate, 7.0s procedure time, and 0.24 N mean forces, well below the proposed 1.5 N vessel rupture threshold. Conclusion: To the best of our knowledge, our proposed autonomous system for MT two-device navigation reaches cerebral vessels, considers safety, and is generalizable to unseen patient-specific cases for the first time. We envisage future work will extend the validation to vasculatures of different complexity and on in vitro models. While our contributions pave the way towards deploying agents in clinical settings, safety and trustworthiness will be crucial elements to consider when proposing new methodology.
Graph Neural Network-Based Predictive Modeling for Robotic Plaster Printing
This work proposes a Graph Neural Network (GNN) modeling approach to predict the resulting surface from a particle based fabrication process. The latter consists of spray-based printing of cementitious plaster on a wall and is facilitated with the use of a robotic arm. The predictions are computed using the robotic arm trajectory features, such as position, velocity and direction, as well as the printing process parameters. The proposed approach, based on a particle representation of the wall domain and the end effector, allows for the adoption of a graph-based solution. The GNN model consists of an encoder-processor-decoder architecture and is trained using data from laboratory tests, while the hyperparameters are optimized by means of a Bayesian scheme. The aim of this model is to act as a simulator of the printing process, and ultimately used for the generation of the robotic arm trajectory and the optimization of the printing parameters, towards the materialization of an autonomous plastering process. The performance of the proposed model is assessed in terms of the prediction error against unseen ground truth data, which shows its generality in varied scenarios, as well as in comparison with the performance of an existing benchmark model. The results demonstrate a significant improvement over the benchmark model, with notably better performance and enhanced error scaling across prediction steps.
☆ HACTS: a Human-As-Copilot Teleoperation System for Robot Learning
Teleoperation is essential for autonomous robot learning, especially in manipulation tasks that require human demonstrations or corrections. However, most existing systems only offer unilateral robot control and lack the ability to synchronize the robot's status with the teleoperation hardware, preventing real-time, flexible intervention. In this work, we introduce HACTS (Human-As-Copilot Teleoperation System), a novel system that establishes bilateral, real-time joint synchronization between a robot arm and teleoperation hardware. This simple yet effective feedback mechanism, akin to a steering wheel in autonomous vehicles, enables the human copilot to intervene seamlessly while collecting action-correction data for future learning. Implemented using 3D-printed components and low-cost, off-the-shelf motors, HACTS is both accessible and scalable. Our experiments show that HACTS significantly enhances performance in imitation learning (IL) and reinforcement learning (RL) tasks, boosting IL recovery capabilities and data efficiency, and facilitating human-in-the-loop RL. HACTS paves the way for more effective and interactive human-robot collaboration and data-collection, advancing the capabilities of robot manipulation.
☆ COSMO: Combination of Selective Memorization for Low-cost Vision-and-Language Navigation
Vision-and-Language Navigation (VLN) tasks have gained prominence within artificial intelligence research due to their potential application in fields like home assistants. Many contemporary VLN approaches, while based on transformer architectures, have increasingly incorporated additional components such as external knowledge bases or map information to enhance performance. These additions, while boosting performance, also lead to larger models and increased computational costs. In this paper, to achieve both high performance and low computational costs, we propose a novel architecture with the COmbination of Selective MemOrization (COSMO). Specifically, COSMO integrates state-space modules and transformer modules, and incorporates two VLN-customized selective state space modules: the Round Selective Scan (RSS) and the Cross-modal Selective State Space Module (CS3). RSS facilitates comprehensive inter-modal interactions within a single scan, while the CS3 module adapts the selective state space module into a dual-stream architecture, thereby enhancing the acquisition of cross-modal interactions. Experimental validations on three mainstream VLN benchmarks, REVERIE, R2R, and R2R-CE, not only demonstrate competitive navigation performance of our model but also show a significant reduction in computational costs.
☆ Toward Anxiety-Reducing Pocket Robots for Children
A common denominator for most therapy treatments for children who suffer from an anxiety disorder is daily practice routines to learn techniques needed to overcome anxiety. However, applying those techniques while experiencing anxiety can be highly challenging. This paper presents the design, implementation, and pilot study of a tactile hand-held pocket robot AffectaPocket, designed to work alongside therapy as a focus object to facilitate coping during an anxiety attack. The robot does not require daily practice to be used, has a small form factor, and has been designed for children 7 to 12 years old. The pocket robot works by sensing when it is being held and attempts to shift the child's focus by presenting them with a simple three-note rhythm-matching game. We conducted a pilot study of the pocket robot involving four children aged 7 to 10 years, and then a main study with 18 children aged 6 to 8 years; neither study involved children with anxiety. Both studies aimed to assess the reliability of the robot's sensor configuration, its design, and the effectiveness of the user tutorial. The results indicate that the morphology and sensor setup performed adequately and the tutorial process enabled the children to use the robot with little practice. This work demonstrates that the presented pocket robot could represent a step toward developing low-cost accessible technologies to help children suffering from anxiety disorders.
comment: 8 pages
☆ Learning 3D-Gaussian Simulators from RGB Videos
Learning physics simulations from video data requires maintaining spatial and temporal consistency, a challenge often addressed with strong inductive biases or ground-truth 3D information -- limiting scalability and generalization. We introduce 3DGSim, a 3D physics simulator that learns object dynamics end-to-end from multi-view RGB videos. It encodes images into a 3D Gaussian particle representation, propagates dynamics via a transformer, and renders frames using 3D Gaussian splatting. By jointly training inverse rendering with a dynamics transformer using a temporal encoding and merging layer, 3DGSimembeds physical properties into point-wise latent vectors without enforcing explicit connectivity constraints. This enables the model to capture diverse physical behaviors, from rigid to elastic and cloth-like interactions, along with realistic lighting effects that also generalize to unseen multi-body interactions and novel scene edits.
☆ SALT: A Flexible Semi-Automatic Labeling Tool for General LiDAR Point Clouds with Cross-Scene Adaptability and 4D Consistency
We propose a flexible Semi-Automatic Labeling Tool (SALT) for general LiDAR point clouds with cross-scene adaptability and 4D consistency. Unlike recent approaches that rely on camera distillation, SALT operates directly on raw LiDAR data, automatically generating pre-segmentation results. To achieve this, we propose a novel zero-shot learning paradigm, termed data alignment, which transforms LiDAR data into pseudo-images by aligning with the training distribution of vision foundation models. Additionally, we design a 4D-consistent prompting strategy and 4D non-maximum suppression module to enhance SAM2, ensuring high-quality, temporally consistent presegmentation. SALT surpasses the latest zero-shot methods by 18.4% PQ on SemanticKITTI and achieves nearly 40-50% of human annotator performance on our newly collected low-resolution LiDAR data and on combined data from three LiDAR types, significantly boosting annotation efficiency. We anticipate that SALT's open-sourcing will catalyze substantial expansion of current LiDAR datasets and lay the groundwork for the future development of LiDAR foundation models. Code is available at https://github.com/Cavendish518/SALT.
☆ A Reactive Framework for Whole-Body Motion Planning of Mobile Manipulators Combining Reinforcement Learning and SDF-Constrained Quadratic Programmi
As an important branch of embodied artificial intelligence, mobile manipulators are increasingly applied in intelligent services, but their redundant degrees of freedom also limit efficient motion planning in cluttered environments. To address this issue, this paper proposes a hybrid learning and optimization framework for reactive whole-body motion planning of mobile manipulators. We develop the Bayesian distributional soft actor-critic (Bayes-DSAC) algorithm to improve the quality of value estimation and the convergence performance of the learning. Additionally, we introduce a quadratic programming method constrained by the signed distance field to enhance the safety of the obstacle avoidance motion. We conduct experiments and make comparison with standard benchmark. The experimental results verify that our proposed framework significantly improves the efficiency of reactive whole-body motion planning, reduces the planning time, and improves the success rate of motion planning. Additionally, the proposed reinforcement learning method ensures a rapid learning process in the whole-body planning task. The novel framework allows mobile manipulators to adapt to complex environments more safely and efficiently.
☆ Video-based Traffic Light Recognition by Rockchip RV1126 for Autonomous Driving
Real-time traffic light recognition is fundamental for autonomous driving safety and navigation in urban environments. While existing approaches rely on single-frame analysis from onboard cameras, they struggle with complex scenarios involving occlusions and adverse lighting conditions. We present \textit{ViTLR}, a novel video-based end-to-end neural network that processes multiple consecutive frames to achieve robust traffic light detection and state classification. The architecture leverages a transformer-like design with convolutional self-attention modules, which is optimized specifically for deployment on the Rockchip RV1126 embedded platform. Extensive evaluations on two real-world datasets demonstrate that \textit{ViTLR} achieves state-of-the-art performance while maintaining real-time processing capabilities (>25 FPS) on RV1126's NPU. The system shows superior robustness across temporal stability, varying target distances, and challenging environmental conditions compared to existing single-frame approaches. We have successfully integrated \textit{ViTLR} into an ego-lane traffic light recognition system using HD maps for autonomous driving applications. The complete implementation, including source code and datasets, is made publicly available to facilitate further research in this domain.
comment: Accepted by IEEE IV'25
☆ A Benchmark for Vision-Centric HD Mapping by V2I Systems
Autonomous driving faces safety challenges due to a lack of global perspective and the semantic information of vectorized high-definition (HD) maps. Information from roadside cameras can greatly expand the map perception range through vehicle-to-infrastructure (V2I) communications. However, there is still no dataset from the real world available for the study on map vectorization onboard under the scenario of vehicle-infrastructure cooperation. To prosper the research on online HD mapping for Vehicle-Infrastructure Cooperative Autonomous Driving (VICAD), we release a real-world dataset, which contains collaborative camera frames from both vehicles and roadside infrastructures, and provides human annotations of HD map elements. We also present an end-to-end neural framework (i.e., V2I-HD) leveraging vision-centric V2I systems to construct vectorized maps. To reduce computation costs and further deploy V2I-HD on autonomous vehicles, we introduce a directionally decoupled self-attention mechanism to V2I-HD. Extensive experiments show that V2I-HD has superior performance in real-time inference speed, as tested by our real-world dataset. Abundant qualitative results also demonstrate stable and robust map construction quality with low cost in complex and various driving scenes. As a benchmark, both source codes and the dataset have been released at OneDrive for the purpose of further study.
comment: Accepted by IEEE IV'25
☆ MAER-Nav: Bidirectional Motion Learning Through Mirror-Augmented Experience Replay for Robot Navigation
Deep Reinforcement Learning (DRL) based navigation methods have demonstrated promising results for mobile robots, but suffer from limited action flexibility in confined spaces. Conventional DRL approaches predominantly learn forward-motion policies, causing robots to become trapped in complex environments where backward maneuvers are necessary for recovery. This paper presents MAER-Nav (Mirror-Augmented Experience Replay for Robot Navigation), a novel framework that enables bidirectional motion learning without requiring explicit failure-driven hindsight experience replay or reward function modifications. Our approach integrates a mirror-augmented experience replay mechanism with curriculum learning to generate synthetic backward navigation experiences from successful trajectories. Experimental results in both simulation and real-world environments demonstrate that MAER-Nav significantly outperforms state-of-the-art methods while maintaining strong forward navigation capabilities. The framework effectively bridges the gap between the comprehensive action space utilization of traditional planning methods and the environmental adaptability of learning-based approaches, enabling robust navigation in scenarios where conventional DRL methods consistently fail.
comment: 8 pages, 8 figures
☆ Less is More: Contextual Sampling for Nonlinear Data-Enabled Predictive Control IROS 2025
Data-enabled Predictive Control (DeePC) is a powerful data-driven approach for predictive control without requiring an explicit system model. However, its high computational cost limits its applicability to real-time robotic systems. For robotic applications such as motion planning and trajectory tracking, real-time control is crucial. Nonlinear DeePC either relies on large datasets or learning the nonlinearities to ensure predictive accuracy, leading to high computational complexity. This work introduces contextual sampling, a novel data selection strategy to handle nonlinearities for DeePC by dynamically selecting the most relevant data at each time step. By reducing the dataset size while preserving prediction accuracy, our method improves computational efficiency, of DeePC for real-time robotic applications. We validate our approach for autonomous vehicle motion planning. For a dataset size of 100 sub-trajectories, Contextual sampling DeePC reduces tracking error by 53.2 % compared to Leverage Score sampling. Additionally, Contextual sampling reduces max computation time by 87.2 % compared to using the full dataset of 491 sub-trajectories while achieving comparable tracking performance. These results highlight the potential of Contextual sampling to enable real-time, data-driven control for robotic systems.
comment: Submitted to IROS 2025 on March 1st
☆ ZeroMimic: Distilling Robotic Manipulation Skills from Web Videos ICRA 2025
Many recent advances in robotic manipulation have come through imitation learning, yet these rely largely on mimicking a particularly hard-to-acquire form of demonstrations: those collected on the same robot in the same room with the same objects as the trained policy must handle at test time. In contrast, large pre-recorded human video datasets demonstrating manipulation skills in-the-wild already exist, which contain valuable information for robots. Is it possible to distill a repository of useful robotic skill policies out of such data without any additional requirements on robot-specific demonstrations or exploration? We present the first such system ZeroMimic, that generates immediately deployable image goal-conditioned skill policies for several common categories of manipulation tasks (opening, closing, pouring, pick&place, cutting, and stirring) each capable of acting upon diverse objects and across diverse unseen task setups. ZeroMimic is carefully designed to exploit recent advances in semantic and geometric visual understanding of human videos, together with modern grasp affordance detectors and imitation policy classes. After training ZeroMimic on the popular EpicKitchens dataset of ego-centric human videos, we evaluate its out-of-the-box performance in varied real-world and simulated kitchen settings with two different robot embodiments, demonstrating its impressive abilities to handle these varied tasks. To enable plug-and-play reuse of ZeroMimic policies on other task setups and robots, we release software and policy checkpoints of our skill policies.
comment: ICRA 2025. Project website: https://zeromimic.github.io/
☆ GenSwarm: Scalable Multi-Robot Code-Policy Generation and Deployment via Language Models
The development of control policies for multi-robot systems traditionally follows a complex and labor-intensive process, often lacking the flexibility to adapt to dynamic tasks. This has motivated research on methods to automatically create control policies. However, these methods require iterative processes of manually crafting and refining objective functions, thereby prolonging the development cycle. This work introduces \textit{GenSwarm}, an end-to-end system that leverages large language models to automatically generate and deploy control policies for multi-robot tasks based on simple user instructions in natural language. As a multi-language-agent system, GenSwarm achieves zero-shot learning, enabling rapid adaptation to altered or unseen tasks. The white-box nature of the code policies ensures strong reproducibility and interpretability. With its scalable software and hardware architectures, GenSwarm supports efficient policy deployment on both simulated and real-world multi-robot systems, realizing an instruction-to-execution end-to-end functionality that could prove valuable for robotics specialists and non-specialists alike.The code of the proposed GenSwarm system is available online: https://github.com/WindyLab/GenSwarm.
Disambiguate Gripper State in Grasp-Based Tasks: Pseudo-Tactile as Feedback Enables Pure Simulation Learning IROS 2025
Grasp-based manipulation tasks are fundamental to robots interacting with their environments, yet gripper state ambiguity significantly reduces the robustness of imitation learning policies for these tasks. Data-driven solutions face the challenge of high real-world data costs, while simulation data, despite its low costs, is limited by the sim-to-real gap. We identify the root cause of gripper state ambiguity as the lack of tactile feedback. To address this, we propose a novel approach employing pseudo-tactile as feedback, inspired by the idea of using a force-controlled gripper as a tactile sensor. This method enhances policy robustness without additional data collection and hardware involvement, while providing a noise-free binary gripper state observation for the policy and thus facilitating pure simulation learning to unleash the power of simulation. Experimental results across three real-world grasp-based tasks demonstrate the necessity, effectiveness, and efficiency of our approach.
comment: 8 pages, 5 figures, submitted to IROS 2025, project page: https://yifei-y.github.io/project-pages/Pseudo-Tactile-Feedback/
☆ Trajectory Planning for Automated Driving using Target Funnels
Self-driving vehicles rely on sensory input to monitor their surroundings and continuously adapt to the most likely future road course. Predictive trajectory planning is based on snapshots of the (uncertain) road course as a key input. Under noisy perception data, estimates of the road course can vary significantly, leading to indecisive and erratic steering behavior. To overcome this issue, this paper introduces a predictive trajectory planning algorithm with a novel objective function: instead of targeting a single reference trajectory based on the most likely road course, tracking a series of target reference sets, called a target funnel, is considered. The proposed planning algorithm integrates probabilistic information about the road course, and thus implicitly considers regular updates to road perception. Our solution is assessed in a case study using real driving data collected from a prototype vehicle. The results demonstrate that the algorithm maintains tracking accuracy and substantially reduces undesirable steering commands in the presence of noisy road perception, achieving a 56% reduction in input costs compared to a certainty equivalent formulation.
comment: accepted to European Control Conference 2025 (ECC25)
☆ Towards a cognitive architecture to enable natural language interaction in co-constructive task learning
This research addresses the question, which characteristics a cognitive architecture must have to leverage the benefits of natural language in Co-Constructive Task Learning (CCTL). To provide context, we first discuss Interactive Task Learning (ITL), the mechanisms of the human memory system, and the significance of natural language and multi-modality. Next, we examine the current state of cognitive architectures, analyzing their capabilities to inform a concept of CCTL grounded in multiple sources. We then integrate insights from various research domains to develop a unified framework. Finally, we conclude by identifying the remaining challenges and requirements necessary to achieve CCTL in Human-Robot Interaction (HRI).
comment: 8 pages, 5 figures, submitted to: IEEE RO-MAN 2025
☆ Towards Benchmarking and Assessing the Safety and Robustness of Autonomous Driving on Safety-critical Scenarios
Autonomous driving has made significant progress in both academia and industry, including performance improvements in perception task and the development of end-to-end autonomous driving systems. However, the safety and robustness assessment of autonomous driving has not received sufficient attention. Current evaluations of autonomous driving are typically conducted in natural driving scenarios. However, many accidents often occur in edge cases, also known as safety-critical scenarios. These safety-critical scenarios are difficult to collect, and there is currently no clear definition of what constitutes a safety-critical scenario. In this work, we explore the safety and robustness of autonomous driving in safety-critical scenarios. First, we provide a definition of safety-critical scenarios, including static traffic scenarios such as adversarial attack scenarios and natural distribution shifts, as well as dynamic traffic scenarios such as accident scenarios. Then, we develop an autonomous driving safety testing platform to comprehensively evaluate autonomous driving systems, encompassing not only the assessment of perception modules but also system-level evaluations. Our work systematically constructs a safety verification process for autonomous driving, providing technical support for the industry to establish standardized test framework and reduce risks in real-world road deployment.
☆ A Survey of Reinforcement Learning-Based Motion Planning for Autonomous Driving: Lessons Learned from a Driving Task Perspective
Reinforcement learning (RL), with its ability to explore and optimize policies in complex, dynamic decision-making tasks, has emerged as a promising approach to addressing motion planning (MoP) challenges in autonomous driving (AD). Despite rapid advancements in RL and AD, a systematic description and interpretation of the RL design process tailored to diverse driving tasks remains underdeveloped. This survey provides a comprehensive review of RL-based MoP for AD, focusing on lessons from task-specific perspectives. We first outline the fundamentals of RL methodologies, and then survey their applications in MoP, analyzing scenario-specific features and task requirements to shed light on their influence on RL design choices. Building on this analysis, we summarize key design experiences, extract insights from various driving task applications, and provide guidance for future implementations. Additionally, we examine the frontier challenges in RL-based MoP, review recent efforts to addresse these challenges, and propose strategies for overcoming unresolved issues.
comment: 21 pages, 5 figures
♻ ☆ Grasping a Handful: Sequential Multi-Object Dexterous Grasp Generation
We introduce the sequential multi-object robotic grasp sampling algorithm SeqGrasp that can robustly synthesize stable grasps on diverse objects using the robotic hand's partial Degrees of Freedom (DoF). We use SeqGrasp to construct the large-scale Allegro Hand sequential grasping dataset SeqDataset and use it for training the diffusion-based sequential grasp generator SeqDiffuser. We experimentally evaluate SeqGrasp and SeqDiffuser against the state-of-the-art non-sequential multi-object grasp generation method MultiGrasp in simulation and on a real robot. The experimental results demonstrate that SeqGrasp and SeqDiffuser reach an 8.71%-43.33% higher grasp success rate than MultiGrasp. Furthermore, SeqDiffuser is approximately 1000 times faster at generating grasps than SeqGrasp and MultiGrasp.
comment: 8 pages, 7 figures
♻ ☆ Beyond Omakase: Designing Shared Control for Navigation Robots with Blind People
Autonomous navigation robots can increase the independence of blind people but often limit user control, following what is called in Japanese an "omakase" approach where decisions are left to the robot. This research investigates ways to enhance user control in social robot navigation, based on two studies conducted with blind participants. The first study, involving structured interviews (N=14), identified crowded spaces as key areas with significant social challenges. The second study (N=13) explored navigation tasks with an autonomous robot in these environments and identified design strategies across different modes of autonomy. Participants preferred an active role, termed the "boss" mode, where they managed crowd interactions, while the "monitor" mode helped them assess the environment, negotiate movements, and interact with the robot. These findings highlight the importance of shared control and user involvement for blind users, offering valuable insights for designing future social navigation robots.
comment: Preprint, ACM CHI Conference on Human Factors in Computing Systems (CHI 2025)
♻ ☆ Robust Nonprehensile Object Transportation with Uncertain Inertial Parameters
We consider the nonprehensile object transportation task known as the waiter's problem - in which a robot must move an object on a tray from one location to another - when the transported object has uncertain inertial parameters. In contrast to existing approaches that completely ignore uncertainty in the inertia matrix or which only consider small parameter errors, we are interested in pushing the limits of the amount of inertial parameter uncertainty that can be handled. We first show how constraints that are robust to inertial parameter uncertainty can be incorporated into an optimization-based motion planning framework to transport objects while moving quickly. Next, we develop necessary conditions for the inertial parameters to be realizable on a bounding shape based on moment relaxations, allowing us to verify whether a trajectory will violate the constraints for any realizable inertial parameters. Finally, we demonstrate our approach on a mobile manipulator in simulations and real hardware experiments: our proposed robust constraints consistently successfully transport a 56 cm tall object with substantial inertial parameter uncertainty in the real world, while the baseline approaches drop the object while transporting it.
comment: 8 pages, 7 figures. Published in IEEE Robotics and Automation Letters
♻ ☆ CALMM-Drive: Confidence-Aware Autonomous Driving with Large Multimodal Model
Decision-making and motion planning constitute critical components for ensuring the safety and efficiency of autonomous vehicles (AVs). Existing methodologies typically adopt two paradigms: decision then planning or generation then scoring. However, the former architecture often suffers from decision-planning misalignment that incurs risky situations. Meanwhile, the latter struggles to balance short-term operational metrics (e.g., immediate motion smoothness) with long-term tactical goals (e.g., route efficiency), resulting in myopic or overly conservative behaviors. To address these issues, we introduce CALMM-Drive, a novel Confidence-Aware Large Multimodal Model (LMM) empowered Autonomous Driving framework. Our approach integrates driving task-oriented Chain-of-Thought (CoT) reasoning coupled with Top-K confidence elicitation, which facilitates high-level reasoning to generate multiple candidate decisions with their confidence levels. Furthermore, we propose a novel planning module that integrates a diffusion model for trajectory generation and a hierarchical refinement process to find the optimal trajectory. This framework enables the selection over trajectory candidates accounting for both low-level solution quality and high-level tactical confidence, which avoids the risks within one-shot decisions and overcomes the limitations in short-sighted scoring mechanisms. Comprehensive evaluations in nuPlan closed-loop simulation environments demonstrate the competitive performance of CALMM-Drive across both common and long-tail benchmarks, showcasing a significant advancement in the integration of uncertainty in LMM-empowered AVs. The code will be released upon acceptance.
comment: 14 pages, 7 figures
♻ ☆ Tactile Ergodic Coverage on Curved Surfaces
In this article, we present a feedback control method for tactile coverage tasks, such as cleaning or surface inspection. These tasks are challenging to plan due to complex continuous physical interactions. In these tasks, the coverage target and progress can be easily measured using a camera and encoded in a point cloud. We propose an ergodic coverage method that operates directly on point clouds, guiding the robot to spend more time on regions requiring more coverage. For robot control and contact behavior, we use geometric algebra to formulate a task-space impedance controller that tracks a line while simultaneously exerting a desired force along that line. We evaluate the performance of our method in kinematic simulations and demonstrate its applicability in real-world experiments on kitchenware. Our source codes, experimental data, and videos are available as open access at https://sites.google.com/view/tactile-ergodic-control/
♻ ☆ Fast and Accurate Task Planning using Neuro-Symbolic Language Models and Multi-level Goal Decomposition
In robotic task planning, symbolic planners using rule-based representations like PDDL are effective but struggle with long-sequential tasks in complicated environments due to exponentially increasing search space. Meanwhile, LLM-based approaches, which are grounded in artificial neural networks, offer faster inference and commonsense reasoning but suffer from lower success rates. To address the limitations of the current symbolic (slow speed) or LLM-based approaches (low accuracy), we propose a novel neuro-symbolic task planner that decomposes complex tasks into subgoals using LLM and carries out task planning for each subgoal using either symbolic or MCTS-based LLM planners, depending on the subgoal complexity. This decomposition reduces planning time and improves success rates by narrowing the search space and enabling LLMs to focus on more manageable tasks. Our method significantly reduces planning time while maintaining high success rates across task planning domains, as well as real-world and simulated robotics environments. More details are available at http://graphics.ewha.ac.kr/LLMTAMP/.
♻ ☆ Fast Online Learning of CLiFF-maps in Changing Environments ICRA
Maps of dynamics are effective representations of motion patterns learned from prior observations, with recent research demonstrating their ability to enhance various downstream tasks such as human-aware robot navigation, long-term human motion prediction, and robot localization. Current advancements have primarily concentrated on methods for learning maps of human flow in environments where the flow is static, i.e., not assumed to change over time. In this paper we propose an online update method of the CLiFF-map (an advanced map of dynamics type that models motion patterns as velocity and orientation mixtures) to actively detect and adapt to human flow changes. As new observations are collected, our goal is to update a CLiFF-map to effectively and accurately integrate them, while retaining relevant historic motion patterns. The proposed online update method maintains a probabilistic representation in each observed location, updating parameters by continuously tracking sufficient statistics. In experiments using both synthetic and real-world datasets, we show that our method is able to maintain accurate representations of human motion dynamics, contributing to high performance flow-compliant planning downstream tasks, while being orders of magnitude faster than the comparable baselines.
comment: Accepted to the 2025 IEEE International Conference on Robotics and Automation (ICRA)
♻ ☆ Dynamic High-Order Control Barrier Functions with Diffuser for Safety-Critical Trajectory Planning at Signal-Free Intersections
Planning safe and efficient trajectories through signal-free intersections presents significant challenges for autonomous vehicles (AVs), particularly in dynamic, multi-task environments with unpredictable interactions and an increased possibility of conflicts. This study aims to address these challenges by developing a unified, robust, adaptive framework to ensure safety and efficiency across three distinct intersection movements: left-turn, right-turn, and straight-ahead. Existing methods often struggle to reliably ensure safety and effectively learn multi-task behaviors from demonstrations in such environments. This study proposes a safety-critical planning method that integrates Dynamic High-Order Control Barrier Functions (DHOCBF) with a diffusion-based model, called Dynamic Safety-Critical Diffuser (DSC-Diffuser). The DSC-Diffuser leverages task-guided planning to enhance efficiency, allowing the simultaneous learning of multiple driving tasks from real-world expert demonstrations. Moreover, the incorporation of goal-oriented constraints significantly reduces displacement errors, ensuring precise trajectory execution. To further ensure driving safety in dynamic environments, the proposed DHOCBF framework dynamically adjusts to account for the movements of surrounding vehicles, offering enhanced adaptability and reduce the conservatism compared to traditional control barrier functions. Validity evaluations of DHOCBF, conducted through numerical simulations, demonstrate its robustness in adapting to variations in obstacle velocities, sizes, uncertainties, and locations, effectively maintaining driving safety across a wide range of complex and uncertain scenarios. Comprehensive performance evaluations demonstrate that DSC-Diffuser generates realistic, stable, and generalizable policies, providing flexibility and reliable safety assurance in complex multi-task driving scenarios.
comment: 11 figures, 5 tables, 15 pages
♻ ☆ Mitigating Covariate Shift in Imitation Learning for Autonomous Vehicles Using Latent Space Generative World Models ICRA 2025
We propose the use of latent space generative world models to address the covariate shift problem in autonomous driving. A world model is a neural network capable of predicting an agent's next state given past states and actions. By leveraging a world model during training, the driving policy effectively mitigates covariate shift without requiring an excessive amount of training data. During end-to-end training, our policy learns how to recover from errors by aligning with states observed in human demonstrations, so that at runtime it can recover from perturbations outside the training distribution. Additionally, we introduce a novel transformer-based perception encoder that employs multi-view cross-attention and a learned scene query. We present qualitative and quantitative results, demonstrating significant improvements upon prior state of the art in closed-loop testing in the CARLA simulator, as well as showing the ability to handle perturbations in both CARLA and NVIDIA's DRIVE Sim.
comment: 8 pages, 6 figures, updated in March 2025, original published in September 2024, for ICRA 2025 submission, for associated video file, see https://youtu.be/7m3bXzlVQvU
♻ ☆ Scalable Multi-modal Model Predictive Control via Duality-based Interaction Predictions
We propose a hierarchical architecture designed for scalable real-time Model Predictive Control (MPC) in complex, multi-modal traffic scenarios. This architecture comprises two key components: 1) RAID-Net, a novel attention-based Recurrent Neural Network that predicts relevant interactions along the MPC prediction horizon between the autonomous vehicle and the surrounding vehicles using Lagrangian duality, and 2) a reduced Stochastic MPC problem that eliminates irrelevant collision avoidance constraints, enhancing computational efficiency. Our approach is demonstrated in a simulated traffic intersection with interactive surrounding vehicles, showcasing a 12x speed-up in solving the motion planning problem. A video demonstrating the proposed architecture in multiple complex traffic scenarios can be found here: https://youtu.be/-pRiOnPb9_c. GitHub: https://github.com/MPC-Berkeley/hmpc_raidnet
comment: Accepted at IEEE Intelligent Vehicles Symposium 2024
♻ ☆ Joint Moment Estimation for Hip Exoskeleton Control: A Generalized Moment Feature Generation Method
Hip joint moments during walking are the key foundation for hip exoskeleton assistance control. Most recent studies have shown estimating hip joint moments instantaneously offers a lot of advantages compared to generating assistive torque profiles based on gait estimation, such as simple sensor requirements and adaptability to variable walking speeds. However, existing joint moment estimation methods still suffer from a lack of personalization, leading to estimation accuracy degradation for new users. To address the challenges, this paper proposes a hip joint moment estimation method based on generalized moment features (GMF). A GMF generator is constructed to learn GMF of the joint moment which is invariant to individual variations while remaining decodable into joint moments through a dedicated decoder. Utilizing this well-featured representation, a GRU-based neural network is used to predict GMF with joint kinematics data, which can easily be acquired by hip exoskeleton encoders. The proposed estimation method achieves a root mean square error of 0.1180 Nm/kg under 28 walking speed conditions on a treadmill dataset, improved by 6.5% compared to the model without body parameter fusion, and by 8.3% for the conventional fusion model with body parameter. Furthermore, the proposed method was employed on a hip exoskeleton with only encoder sensors and achieved an average 20.5% metabolic reduction (p<0.01) for users compared to assist-off condition in level-ground walking.
comment: 13 pages, 10 figures, Submitted to Biomimetic Intelligence and Robotics
♻ ☆ Efficiently Generating Expressive Quadruped Behaviors via Language-Guided Preference Learning
Expressive robotic behavior is essential for the widespread acceptance of robots in social environments. Recent advancements in learned legged locomotion controllers have enabled more dynamic and versatile robot behaviors. However, determining the optimal behavior for interactions with different users across varied scenarios remains a challenge. Current methods either rely on natural language input, which is efficient but low-resolution, or learn from human preferences, which, although high-resolution, is sample inefficient. This paper introduces a novel approach that leverages priors generated by pre-trained LLMs alongside the precision of preference learning. Our method, termed Language-Guided Preference Learning (LGPL), uses LLMs to generate initial behavior samples, which are then refined through preference-based feedback to learn behaviors that closely align with human expectations. Our core insight is that LLMs can guide the sampling process for preference learning, leading to a substantial improvement in sample efficiency. We demonstrate that LGPL can quickly learn accurate and expressive behaviors with as few as four queries, outperforming both purely language-parameterized models and traditional preference learning approaches. Website with videos: https://lgpl-gaits.github.io/
comment: 8 pages 5 figures
Computer Vision 153
☆ Easi3R: Estimating Disentangled Motion from DUSt3R Without Training
Recent advances in DUSt3R have enabled robust estimation of dense point clouds and camera parameters of static scenes, leveraging Transformer network architectures and direct supervision on large-scale 3D datasets. In contrast, the limited scale and diversity of available 4D datasets present a major bottleneck for training a highly generalizable 4D model. This constraint has driven conventional 4D methods to fine-tune 3D models on scalable dynamic video data with additional geometric priors such as optical flow and depths. In this work, we take an opposite path and introduce Easi3R, a simple yet efficient training-free method for 4D reconstruction. Our approach applies attention adaptation during inference, eliminating the need for from-scratch pre-training or network fine-tuning. We find that the attention layers in DUSt3R inherently encode rich information about camera and object motion. By carefully disentangling these attention maps, we achieve accurate dynamic region segmentation, camera pose estimation, and 4D dense point map reconstruction. Extensive experiments on real-world dynamic videos demonstrate that our lightweight attention adaptation significantly outperforms previous state-of-the-art methods that are trained or finetuned on extensive dynamic datasets. Our code is publicly available for research purpose at https://easi3r.github.io/
comment: Page: https://easi3r.github.io/ Code: https://github.com/Inception3D/Easi3R
☆ SU-YOLO: Spiking Neural Network for Efficient Underwater Object Detection
Underwater object detection is critical for oceanic research and industrial safety inspections. However, the complex optical environment and the limited resources of underwater equipment pose significant challenges to achieving high accuracy and low power consumption. To address these issues, we propose Spiking Underwater YOLO (SU-YOLO), a Spiking Neural Network (SNN) model. Leveraging the lightweight and energy-efficient properties of SNNs, SU-YOLO incorporates a novel spike-based underwater image denoising method based solely on integer addition, which enhances the quality of feature maps with minimal computational overhead. In addition, we introduce Separated Batch Normalization (SeBN), a technique that normalizes feature maps independently across multiple time steps and is optimized for integration with residual structures to capture the temporal dynamics of SNNs more effectively. The redesigned spiking residual blocks integrate the Cross Stage Partial Network (CSPNet) with the YOLO architecture to mitigate spike degradation and enhance the model's feature extraction capabilities. Experimental results on URPC2019 underwater dataset demonstrate that SU-YOLO achieves mAP of 78.8% with 6.97M parameters and an energy consumption of 2.98 mJ, surpassing mainstream SNN models in both detection accuracy and computational efficiency. These results underscore the potential of SNNs for engineering applications. The code is available in https://github.com/lwxfight/snn-underwater.
☆ Consistent Subject Generation via Contrastive Instantiated Concepts
While text-to-image generative models can synthesize diverse and faithful contents, subject variation across multiple creations limits the application in long content generation. Existing approaches require time-consuming tuning, references for all subjects, or access to other creations. We introduce Contrastive Concept Instantiation (CoCoIns) to effectively synthesize consistent subjects across multiple independent creations. The framework consists of a generative model and a mapping network, which transforms input latent codes into pseudo-words associated with certain instances of concepts. Users can generate consistent subjects with the same latent codes. To construct such associations, we propose a contrastive learning approach that trains the network to differentiate the combination of prompts and latent codes. Extensive evaluations of human faces with a single subject show that CoCoIns performs comparably to existing methods while maintaining higher flexibility. We also demonstrate the potential of extending CoCoIns to multiple subjects and other object categories.
comment: Project page: https://contrastive-concept-instantiation.github.io
☆ Free360: Layered Gaussian Splatting for Unbounded 360-Degree View Synthesis from Extremely Sparse and Unposed Views CVPR 2025
Neural rendering has demonstrated remarkable success in high-quality 3D neural reconstruction and novel view synthesis with dense input views and accurate poses. However, applying it to extremely sparse, unposed views in unbounded 360{\deg} scenes remains a challenging problem. In this paper, we propose a novel neural rendering framework to accomplish the unposed and extremely sparse-view 3D reconstruction in unbounded 360{\deg} scenes. To resolve the spatial ambiguity inherent in unbounded scenes with sparse input views, we propose a layered Gaussian-based representation to effectively model the scene with distinct spatial layers. By employing a dense stereo reconstruction model to recover coarse geometry, we introduce a layer-specific bootstrap optimization to refine the noise and fill occluded regions in the reconstruction. Furthermore, we propose an iterative fusion of reconstruction and generation alongside an uncertainty-aware training approach to facilitate mutual conditioning and enhancement between these two processes. Comprehensive experiments show that our approach outperforms existing state-of-the-art methods in terms of rendering quality and surface reconstruction accuracy. Project page: https://zju3dv.github.io/free360/
comment: Accepted to CVPR 2025. Project Page: https://zju3dv.github.io/free360/
☆ UniOcc: A Unified Benchmark for Occupancy Forecasting and Prediction in Autonomous Driving
We introduce UniOcc, a comprehensive, unified benchmark for occupancy forecasting (i.e., predicting future occupancies based on historical information) and current-frame occupancy prediction from camera images. UniOcc unifies data from multiple real-world datasets (i.e., nuScenes, Waymo) and high-fidelity driving simulators (i.e., CARLA, OpenCOOD), which provides 2D/3D occupancy labels with per-voxel flow annotations and support for cooperative autonomous driving. In terms of evaluation, unlike existing studies that rely on suboptimal pseudo labels for evaluation, UniOcc incorporates novel metrics that do not depend on ground-truth occupancy, enabling robust assessment of additional aspects of occupancy quality. Through extensive experiments on state-of-the-art models, we demonstrate that large-scale, diverse training data and explicit flow information significantly enhance occupancy prediction and forecasting performance.
comment: 14 pages; Dataset: https://huggingface.co/datasets/tasl-lab/uniocc; Code: https://github.com/tasl-lab/UniOcc
☆ Any2Caption:Interpreting Any Condition to Caption for Controllable Video Generation
To address the bottleneck of accurate user intent interpretation within the current video generation community, we present Any2Caption, a novel framework for controllable video generation under any condition. The key idea is to decouple various condition interpretation steps from the video synthesis step. By leveraging modern multimodal large language models (MLLMs), Any2Caption interprets diverse inputs--text, images, videos, and specialized cues such as region, motion, and camera poses--into dense, structured captions that offer backbone video generators with better guidance. We also introduce Any2CapIns, a large-scale dataset with 337K instances and 407K conditions for any-condition-to-caption instruction tuning. Comprehensive evaluations demonstrate significant improvements of our system in controllability and video quality across various aspects of existing video generation models. Project Page: https://sqwu.top/Any2Cap/
comment: Project Page: https://sqwu.top/Any2Cap/
☆ Exploring the Effect of Reinforcement Learning on Video Understanding: Insights from SEED-Bench-R1
Recent advancements in Chain of Thought (COT) generation have significantly improved the reasoning capabilities of Large Language Models (LLMs), with reinforcement learning (RL) emerging as an effective post-training approach. Multimodal Large Language Models (MLLMs) inherit this reasoning potential but remain underexplored in tasks requiring both perception and logical reasoning. To address this, we introduce SEED-Bench-R1, a benchmark designed to systematically evaluate post-training methods for MLLMs in video understanding. It includes intricate real-world videos and complex everyday planning tasks in the format of multiple-choice questions, requiring sophisticated perception and reasoning. SEED-Bench-R1 assesses generalization through a three-level hierarchy: in-distribution, cross-environment, and cross-environment-task scenarios, equipped with a large-scale training dataset with easily verifiable ground-truth answers. Using Qwen2-VL-Instruct-7B as a base model, we compare RL with supervised fine-tuning (SFT), demonstrating RL's data efficiency and superior performance on both in-distribution and out-of-distribution tasks, even outperforming SFT on general video understanding benchmarks like LongVideoBench. Our detailed analysis reveals that RL enhances visual perception but often produces less logically coherent reasoning chains. We identify key limitations such as inconsistent reasoning and overlooked visual cues, and suggest future improvements in base model reasoning, reward modeling, and RL robustness against noisy signals.
comment: Technical Report (In Progress); Code released at: https://github.com/TencentARC/SEED-Bench-R1
☆ ERUPT: Efficient Rendering with Unposed Patch Transformer CVPR 2025
This work addresses the problem of novel view synthesis in diverse scenes from small collections of RGB images. We propose ERUPT (Efficient Rendering with Unposed Patch Transformer) a state-of-the-art scene reconstruction model capable of efficient scene rendering using unposed imagery. We introduce patch-based querying, in contrast to existing pixel-based queries, to reduce the compute required to render a target view. This makes our model highly efficient both during training and at inference, capable of rendering at 600 fps on commercial hardware. Notably, our model is designed to use a learned latent camera pose which allows for training using unposed targets in datasets with sparse or inaccurate ground truth camera pose. We show that our approach can generalize on large real-world data and introduce a new benchmark dataset (MSVS-1M) for latent view synthesis using street-view imagery collected from Mapillary. In contrast to NeRF and Gaussian Splatting, which require dense imagery and precise metadata, ERUPT can render novel views of arbitrary scenes with as few as five unposed input images. ERUPT achieves better rendered image quality than current state-of-the-art methods for unposed image synthesis tasks, reduces labeled data requirements by ~95\% and decreases computational requirements by an order of magnitude, providing efficient novel view synthesis for diverse real-world scenes.
comment: Accepted to CVPR 2025
☆ Adapting Vision Foundation Models for Real-time Ultrasound Image Segmentation
We propose a novel approach that adapts hierarchical vision foundation models for real-time ultrasound image segmentation. Existing ultrasound segmentation methods often struggle with adaptability to new tasks, relying on costly manual annotations, while real-time approaches generally fail to match state-of-the-art performance. To overcome these limitations, we introduce an adaptive framework that leverages the vision foundation model Hiera to extract multi-scale features, interleaved with DINOv2 representations to enhance visual expressiveness. These enriched features are then decoded to produce precise and robust segmentation. We conduct extensive evaluations on six public datasets and one in-house dataset, covering both cardiac and thyroid ultrasound segmentation. Experiments show that our approach outperforms state-of-the-art methods across multiple datasets and excels with limited supervision, surpassing nnUNet by over 20\% on average in the 1\% and 10\% data settings. Our method achieves $\sim$77 FPS inference speed with TensorRT on a single GPU, enabling real-time clinical applications.
☆ StochasticSplats: Stochastic Rasterization for Sorting-Free 3D Gaussian Splatting
3D Gaussian splatting (3DGS) is a popular radiance field method, with many application-specific extensions. Most variants rely on the same core algorithm: depth-sorting of Gaussian splats then rasterizing in primitive order. This ensures correct alpha compositing, but can cause rendering artifacts due to built-in approximations. Moreover, for a fixed representation, sorted rendering offers little control over render cost and visual fidelity. For example, and counter-intuitively, rendering a lower-resolution image is not necessarily faster. In this work, we address the above limitations by combining 3D Gaussian splatting with stochastic rasterization. Concretely, we leverage an unbiased Monte Carlo estimator of the volume rendering equation. This removes the need for sorting, and allows for accurate 3D blending of overlapping Gaussians. The number of Monte Carlo samples further imbues 3DGS with a way to trade off computation time and quality. We implement our method using OpenGL shaders, enabling efficient rendering on modern GPU hardware. At a reasonable visual quality, our method renders more than four times faster than sorted rasterization.
☆ InstructRestore: Region-Customized Image Restoration with Human Instructions
Despite the significant progress in diffusion prior-based image restoration, most existing methods apply uniform processing to the entire image, lacking the capability to perform region-customized image restoration according to user instructions. In this work, we propose a new framework, namely InstructRestore, to perform region-adjustable image restoration following human instructions. To achieve this, we first develop a data generation engine to produce training triplets, each consisting of a high-quality image, the target region description, and the corresponding region mask. With this engine and careful data screening, we construct a comprehensive dataset comprising 536,945 triplets to support the training and evaluation of this task. We then examine how to integrate the low-quality image features under the ControlNet architecture to adjust the degree of image details enhancement. Consequently, we develop a ControlNet-like model to identify the target region and allocate different integration scales to the target and surrounding regions, enabling region-customized image restoration that aligns with user instructions. Experimental results demonstrate that our proposed InstructRestore approach enables effective human-instructed image restoration, such as images with bokeh effects and user-instructed local enhancement. Our work advances the investigation of interactive image restoration and enhancement techniques. Data, code, and models will be found at https://github.com/shuaizhengliu/InstructRestore.git.
☆ ORAL: Prompting Your Large-Scale LoRAs via Conditional Recurrent Diffusion
Parameter generation has emerged as a novel paradigm for neural network development, offering an alternative to traditional neural network training by synthesizing high-quality model weights directly. In the context of Low-Rank Adaptation (LoRA) for evolving ($\textit{i.e.}$, constantly updated) large language models (LLMs), this approach promises efficient adaptation without costly retraining. However, existing methods face critical limitations in simultaneously achieving scalability and controllability. In this paper, we introduce $\texttt{ORAL}$, a novel $\textbf{conditional recurrent diffusion}$ framework that addresses these challenges. $\texttt{ORAL}$ incorporates a novel conditioning mechanism that integrates model architecture and textual task specifications, enabling the generation of task-specific LoRA parameters that can seamlessly transfer across evolving foundation models. Our approach successfully scales to billions-of-parameter LLMs and maintains controllability. Through extensive experiments across seven language tasks, four vision tasks, and three multimodal tasks using five pre-trained LLMs, we demonstrate that $\texttt{ORAL}$ generates high-quality LoRA parameters that achieve comparable or superior performance to vanilla trained counterparts.
☆ PathOrchestra: A Comprehensive Foundation Model for Computational Pathology with Over 100 Diverse Clinical-Grade Tasks
The complexity and variability inherent in high-resolution pathological images present significant challenges in computational pathology. While pathology foundation models leveraging AI have catalyzed transformative advancements, their development demands large-scale datasets, considerable storage capacity, and substantial computational resources. Furthermore, ensuring their clinical applicability and generalizability requires rigorous validation across a broad spectrum of clinical tasks. Here, we present PathOrchestra, a versatile pathology foundation model trained via self-supervised learning on a dataset comprising 300K pathological slides from 20 tissue and organ types across multiple centers. The model was rigorously evaluated on 112 clinical tasks using a combination of 61 private and 51 public datasets. These tasks encompass digital slide preprocessing, pan-cancer classification, lesion identification, multi-cancer subtype classification, biomarker assessment, gene expression prediction, and the generation of structured reports. PathOrchestra demonstrated exceptional performance across 27,755 WSIs and 9,415,729 ROIs, achieving over 0.950 accuracy in 47 tasks, including pan-cancer classification across various organs, lymphoma subtype diagnosis, and bladder cancer screening. Notably, it is the first model to generate structured reports for high-incidence colorectal cancer and diagnostically complex lymphoma-areas that are infrequently addressed by foundational models but hold immense clinical potential. Overall, PathOrchestra exemplifies the feasibility and efficacy of a large-scale, self-supervised pathology foundation model, validated across a broad range of clinical-grade tasks. Its high accuracy and reduced reliance on extensive data annotation underline its potential for clinical integration, offering a pathway toward more efficient and high-quality medical services.
☆ Can Test-Time Scaling Improve World Foundation Model?
World foundation models, which simulate the physical world by predicting future states from current observations and inputs, have become central to many applications in physical intelligence, including autonomous driving and robotics. However, these models require substantial computational resources for pretraining and are further constrained by available data during post-training. As such, scaling computation at test time emerges as both a critical and practical alternative to traditional model enlargement or re-training. In this work, we introduce SWIFT, a test-time scaling framework tailored for WFMs. SWIFT integrates our extensible WFM evaluation toolkit with process-level inference strategies, including fast tokenization, probability-based Top-K pruning, and efficient beam search. Empirical results on the COSMOS model demonstrate that test-time scaling exists even in a compute-optimal way. Our findings reveal that test-time scaling laws hold for WFMs and that SWIFT provides a scalable and effective pathway for improving WFM inference without retraining or increasing model size. The code is available at https://github.com/Mia-Cong/SWIFT.git.
☆ Point Tracking in Surgery--The 2024 Surgical Tattoos in Infrared (STIR) Challenge
Understanding tissue motion in surgery is crucial to enable applications in downstream tasks such as segmentation, 3D reconstruction, virtual tissue landmarking, autonomous probe-based scanning, and subtask autonomy. Labeled data are essential to enabling algorithms in these downstream tasks since they allow us to quantify and train algorithms. This paper introduces a point tracking challenge to address this, wherein participants can submit their algorithms for quantification. The submitted algorithms are evaluated using a dataset named surgical tattoos in infrared (STIR), with the challenge aptly named the STIR Challenge 2024. The STIR Challenge 2024 comprises two quantitative components: accuracy and efficiency. The accuracy component tests the accuracy of algorithms on in vivo and ex vivo sequences. The efficiency component tests the latency of algorithm inference. The challenge was conducted as a part of MICCAI EndoVis 2024. In this challenge, we had 8 total teams, with 4 teams submitting before and 4 submitting after challenge day. This paper details the STIR Challenge 2024, which serves to move the field towards more accurate and efficient algorithms for spatial understanding in surgery. In this paper we summarize the design, submissions, and results from the challenge. The challenge dataset is available here: https://zenodo.org/records/14803158 , and the code for baseline models and metric calculation is available here: https://github.com/athaddius/STIRMetrics
☆ Order Matters: On Parameter-Efficient Image-to-Video Probing for Recognizing Nearly Symmetric Actions
We study parameter-efficient image-to-video probing for the unaddressed challenge of recognizing nearly symmetric actions - visually similar actions that unfold in opposite temporal order (e.g., opening vs. closing a bottle). Existing probing mechanisms for image-pretrained models, such as DinoV2 and CLIP, rely on attention mechanism for temporal modeling but are inherently permutation-invariant, leading to identical predictions regardless of frame order. To address this, we introduce Self-attentive Temporal Embedding Probing (STEP), a simple yet effective approach designed to enforce temporal sensitivity in parameter-efficient image-to-video transfer. STEP enhances self-attentive probing with three key modifications: (1) a learnable frame-wise positional encoding, explicitly encoding temporal order; (2) a single global CLS token, for sequence coherence; and (3) a simplified attention mechanism to improve parameter efficiency. STEP outperforms existing image-to-video probing mechanisms by 3-15% across four activity recognition benchmarks with only 1/3 of the learnable parameters. On two datasets, it surpasses all published methods, including fully fine-tuned models. STEP shows a distinct advantage in recognizing nearly symmetric actions, surpassing other probing mechanisms by 9-19%. and parameter-heavier PEFT-based transfer methods by 5-15%. Code and models will be made publicly available.
☆ Style Quantization for Data-Efficient GAN Training
Under limited data setting, GANs often struggle to navigate and effectively exploit the input latent space. Consequently, images generated from adjacent variables in a sparse input latent space may exhibit significant discrepancies in realism, leading to suboptimal consistency regularization (CR) outcomes. To address this, we propose \textit{SQ-GAN}, a novel approach that enhances CR by introducing a style space quantization scheme. This method transforms the sparse, continuous input latent space into a compact, structured discrete proxy space, allowing each element to correspond to a specific real data point, thereby improving CR performance. Instead of direct quantization, we first map the input latent variables into a less entangled ``style'' space and apply quantization using a learnable codebook. This enables each quantized code to control distinct factors of variation. Additionally, we optimize the optimal transport distance to align the codebook codes with features extracted from the training data by a foundation model, embedding external knowledge into the codebook and establishing a semantically rich vocabulary that properly describes the training dataset. Extensive experiments demonstrate significant improvements in both discriminator robustness and generation quality with our method.
☆ Learning Velocity and Acceleration: Self-Supervised Motion Consistency for Pedestrian Trajectory Prediction
Understanding human motion is crucial for accurate pedestrian trajectory prediction. Conventional methods typically rely on supervised learning, where ground-truth labels are directly optimized against predicted trajectories. This amplifies the limitations caused by long-tailed data distributions, making it difficult for the model to capture abnormal behaviors. In this work, we propose a self-supervised pedestrian trajectory prediction framework that explicitly models position, velocity, and acceleration. We leverage velocity and acceleration information to enhance position prediction through feature injection and a self-supervised motion consistency mechanism. Our model hierarchically injects velocity features into the position stream. Acceleration features are injected into the velocity stream. This enables the model to predict position, velocity, and acceleration jointly. From the predicted position, we compute corresponding pseudo velocity and acceleration, allowing the model to learn from data-generated pseudo labels and thus achieve self-supervised learning. We further design a motion consistency evaluation strategy grounded in physical principles; it selects the most reasonable predicted motion trend by comparing it with historical dynamics and uses this trend to guide and constrain trajectory generation. We conduct experiments on the ETH-UCY and Stanford Drone datasets, demonstrating that our method achieves state-of-the-art performance on both datasets.
☆ FakeScope: Large Multimodal Expert Model for Transparent AI-Generated Image Forensics
The rapid and unrestrained advancement of generative artificial intelligence (AI) presents a double-edged sword: while enabling unprecedented creativity, it also facilitates the generation of highly convincing deceptive content, undermining societal trust. As image generation techniques become increasingly sophisticated, detecting synthetic images is no longer just a binary task: it necessitates interpretable, context-aware methodologies that enhance trustworthiness and transparency. However, existing detection models primarily focus on classification, offering limited explanatory insights into image authenticity. In this work, we propose FakeScope, an expert multimodal model (LMM) tailored for AI-generated image forensics, which not only identifies AI-synthetic images with high accuracy but also provides rich, interpretable, and query-driven forensic insights. We first construct FakeChain dataset that contains linguistic authenticity reasoning based on visual trace evidence, developed through a novel human-machine collaborative framework. Building upon it, we further present FakeInstruct, the largest multimodal instruction tuning dataset containing 2 million visual instructions tailored to enhance forensic awareness in LMMs. FakeScope achieves state-of-the-art performance in both closed-ended and open-ended forensic scenarios. It can distinguish synthetic images with high accuracy while offering coherent and insightful explanations, free-form discussions on fine-grained forgery attributes, and actionable enhancement strategies. Notably, despite being trained exclusively on qualitative hard labels, FakeScope demonstrates remarkable zero-shot quantitative capability on detection, enabled by our proposed token-based probability estimation strategy. Furthermore, FakeScope exhibits strong generalization and in-the-wild ability, ensuring its applicability in real-world scenarios.
☆ Beyond a Single Mode: GAN Ensembles for Diverse Medical Data Generation
The advancement of generative AI, particularly in medical imaging, confronts the trilemma of ensuring high fidelity, diversity, and efficiency in synthetic data generation. While Generative Adversarial Networks (GANs) have shown promise across various applications, they still face challenges like mode collapse and insufficient coverage of real data distributions. This work explores the use of GAN ensembles to overcome these limitations, specifically in the context of medical imaging. By solving a multi-objective optimisation problem that balances fidelity and diversity, we propose a method for selecting an optimal ensemble of GANs tailored for medical data. The selected ensemble is capable of generating diverse synthetic medical images that are representative of true data distributions and computationally efficient. Each model in the ensemble brings a unique contribution, ensuring minimal redundancy. We conducted a comprehensive evaluation using three distinct medical datasets, testing 22 different GAN architectures with various loss functions and regularisation techniques. By sampling models at different training epochs, we crafted 110 unique configurations. The results highlight the capability of GAN ensembles to enhance the quality and utility of synthetic medical images, thereby improving the efficacy of downstream tasks such as diagnostic modelling.
☆ Pre-training with 3D Synthetic Data: Learning 3D Point Cloud Instance Segmentation from 3D Synthetic Scenes
In the recent years, the research community has witnessed growing use of 3D point cloud data for the high applicability in various real-world applications. By means of 3D point cloud, this modality enables to consider the actual size and spatial understanding. The applied fields include mechanical control of robots, vehicles, or other real-world systems. Along this line, we would like to improve 3D point cloud instance segmentation which has emerged as a particularly promising approach for these applications. However, the creation of 3D point cloud datasets entails enormous costs compared to 2D image datasets. To train a model of 3D point cloud instance segmentation, it is necessary not only to assign categories but also to provide detailed annotations for each point in the large-scale 3D space. Meanwhile, the increase of recent proposals for generative models in 3D domain has spurred proposals for using a generative model to create 3D point cloud data. In this work, we propose a pre-training with 3D synthetic data to train a 3D point cloud instance segmentation model based on generative model for 3D scenes represented by point cloud data. We directly generate 3D point cloud data with Point-E for inserting a generated data into a 3D scene. More recently in 2025, although there are other accurate 3D generation models, even using the Point-E as an early 3D generative model can effectively support the pre-training with 3D synthetic data. In the experimental section, we compare our pre-training method with baseline methods indicated improved performance, demonstrating the efficacy of 3D generative models for 3D point cloud instance segmentation.
☆ MB-ORES: A Multi-Branch Object Reasoner for Visual Grounding in Remote Sensing
We propose a unified framework that integrates object detection (OD) and visual grounding (VG) for remote sensing (RS) imagery. To support conventional OD and establish an intuitive prior for VG task, we fine-tune an open-set object detector using referring expression data, framing it as a partially supervised OD task. In the first stage, we construct a graph representation of each image, comprising object queries, class embeddings, and proposal locations. Then, our task-aware architecture processes this graph to perform the VG task. The model consists of: (i) a multi-branch network that integrates spatial, visual, and categorical features to generate task-aware proposals, and (ii) an object reasoning network that assigns probabilities across proposals, followed by a soft selection mechanism for final referring object localization. Our model demonstrates superior performance on the OPT-RSVG and DIOR-RSVG datasets, achieving significant improvements over state-of-the-art methods while retaining classical OD capabilities. The code will be available in our repository: \url{https://github.com/rd20karim/MB-ORES}.
☆ DiET-GS: Diffusion Prior and Event Stream-Assisted Motion Deblurring 3D Gaussian Splatting CVPR 2025
Reconstructing sharp 3D representations from blurry multi-view images are long-standing problem in computer vision. Recent works attempt to enhance high-quality novel view synthesis from the motion blur by leveraging event-based cameras, benefiting from high dynamic range and microsecond temporal resolution. However, they often reach sub-optimal visual quality in either restoring inaccurate color or losing fine-grained details. In this paper, we present DiET-GS, a diffusion prior and event stream-assisted motion deblurring 3DGS. Our framework effectively leverages both blur-free event streams and diffusion prior in a two-stage training strategy. Specifically, we introduce the novel framework to constraint 3DGS with event double integral, achieving both accurate color and well-defined details. Additionally, we propose a simple technique to leverage diffusion prior to further enhance the edge details. Qualitative and quantitative results on both synthetic and real-world data demonstrate that our DiET-GS is capable of producing significantly better quality of novel views compared to the existing baselines. Our project page is https://diet-gs.github.io
comment: CVPR 2025. Project Page: https://diet-gs.github.io
☆ CIBR: Cross-modal Information Bottleneck Regularization for Robust CLIP Generalization
Contrastive Language-Image Pretraining (CLIP) has achieved remarkable success in cross-modal tasks such as zero-shot image classification and text-image retrieval by effectively aligning visual and textual representations. However, the theoretical foundations underlying CLIP's strong generalization remain unclear. In this work, we address this gap by proposing the Cross-modal Information Bottleneck (CIB) framework. CIB offers a principled interpretation of CLIP's contrastive learning objective as an implicit Information Bottleneck optimization. Under this view, the model maximizes shared cross-modal information while discarding modality-specific redundancies, thereby preserving essential semantic alignment across modalities. Building on this insight, we introduce a Cross-modal Information Bottleneck Regularization (CIBR) method that explicitly enforces these IB principles during training. CIBR introduces a penalty term to discourage modality-specific redundancy, thereby enhancing semantic alignment between image and text features. We validate CIBR on extensive vision-language benchmarks, including zero-shot classification across seven diverse image datasets and text-image retrieval on MSCOCO and Flickr30K. The results show consistent performance gains over standard CLIP. These findings provide the first theoretical understanding of CLIP's generalization through the IB lens. They also demonstrate practical improvements, offering guidance for future cross-modal representation learning.
☆ Navi-plus: Managing Ambiguous GUI Navigation Tasks with Follow-up
Graphical user interfaces (GUI) automation agents are emerging as powerful tools, enabling humans to accomplish increasingly complex tasks on smart devices. However, users often inadvertently omit key information when conveying tasks, which hinders agent performance in the current agent paradigm that does not support immediate user intervention. To address this issue, we introduce a $\textbf{Self-Correction GUI Navigation}$ task that incorporates interactive information completion capabilities within GUI agents. We developed the $\textbf{Navi-plus}$ dataset with GUI follow-up question-answer pairs, alongside a $\textbf{Dual-Stream Trajectory Evaluation}$ method to benchmark this new capability. Our results show that agents equipped with the ability to ask GUI follow-up questions can fully recover their performance when faced with ambiguous user tasks.
☆ Foundation Models For Seismic Data Processing: An Extensive Review
Seismic processing plays a crucial role in transforming raw data into high-quality subsurface images, pivotal for various geoscience applications. Despite its importance, traditional seismic processing techniques face challenges such as noisy and damaged data and the reliance on manual, time-consuming workflows. The emergence of deep learning approaches has introduced effective and user-friendly alternatives, yet many of these deep learning approaches rely on synthetic datasets and specialized neural networks. Recently, foundation models have gained traction in the seismic domain, due to their success in natural imaging. This paper investigates the application of foundation models in seismic processing on the tasks: demultiple, interpolation, and denoising. It evaluates the impact of different model characteristics, such as pre-training technique and neural network architecture, on performance and efficiency. Rather than proposing a single seismic foundation model, this paper critically examines various natural image foundation models and suggest some promising candidates for future exploration.
☆ AI-Assisted Colonoscopy: Polyp Detection and Segmentation using Foundation Models
In colonoscopy, 80% of the missed polyps could be detected with the help of Deep Learning models. In the search for algorithms capable of addressing this challenge, foundation models emerge as promising candidates. Their zero-shot or few-shot learning capabilities, facilitate generalization to new data or tasks without extensive fine-tuning. A concept that is particularly advantageous in the medical imaging domain, where large annotated datasets for traditional training are scarce. In this context, a comprehensive evaluation of foundation models for polyp segmentation was conducted, assessing both detection and delimitation. For the study, three different colonoscopy datasets have been employed to compare the performance of five different foundation models, DINOv2, YOLO-World, GroundingDINO, SAM and MedSAM, against two benchmark networks, YOLOv8 and Mask R-CNN. Results show that the success of foundation models in polyp characterization is highly dependent on domain specialization. For optimal performance in medical applications, domain-specific models are essential, and generic models require fine-tuning to achieve effective results. Through this specialization, foundation models demonstrated superior performance compared to state-of-the-art detection and segmentation models, with some models even excelling in zero-shot evaluation; outperforming fine-tuned models on unseen data.
comment: This work has been submitted to the IEEE TMI for possible publication
☆ PixelCAM: Pixel Class Activation Mapping for Histology Image Classification and ROI Localization
Weakly supervised object localization (WSOL) methods allow training models to classify images and localize ROIs. WSOL only requires low-cost image-class annotations yet provides a visually interpretable classifier, which is important in histology image analysis. Standard WSOL methods rely on class activation mapping (CAM) methods to produce spatial localization maps according to a single- or two-step strategy. While both strategies have made significant progress, they still face several limitations with histology images. Single-step methods can easily result in under- or over-activation due to the limited visual ROI saliency in histology images and the limited localization cues. They also face the well-known issue of asynchronous convergence between classification and localization tasks. The two-step approach is sub-optimal because it is tied to a frozen classifier, limiting the capacity for localization. Moreover, these methods also struggle when applied to out-of-distribution (OOD) datasets. In this paper, a multi-task approach for WSOL is introduced for simultaneous training of both tasks to address the asynchronous convergence problem. In particular, localization is performed in the pixel-feature space of an image encoder that is shared with classification. This allows learning discriminant features and accurate delineation of foreground/background regions to support ROI localization and image classification. We propose PixelCAM, a cost-effective foreground/background pixel-wise classifier in the pixel-feature space that allows for spatial object localization. PixelCAM is trained using pixel pseudo-labels collected from a pretrained WSOL model. Both image and pixel-wise classifiers are trained simultaneously using standard gradient descent. In addition, our pixel classifier can easily be integrated into CNN- and transformer-based architectures without any modifications.
comment: 32 pages, 20 figures, Medical Imaging with Deep Learning (MIDL 2025)
It's a (Blind) Match! Towards Vision-Language Correspondence without Parallel Data CVPR 2025
The platonic representation hypothesis suggests that vision and language embeddings become more homogeneous as model and dataset sizes increase. In particular, pairwise distances within each modality become more similar. This suggests that as foundation models mature, it may become possible to match vision and language embeddings in a fully unsupervised fashion, i.e. without parallel data. We present the first feasibility study, and investigate conformity of existing vision and language foundation models in the context of unsupervised, or "blind", matching. First, we formulate unsupervised matching as a quadratic assignment problem and introduce a novel heuristic that outperforms previous solvers. We also develop a technique to find optimal matching problems, for which a non-trivial match is very likely. Second, we conduct an extensive study deploying a range of vision and language models on four datasets. Our analysis reveals that for many problem instances, vision and language representations can be indeed matched without supervision. This finding opens up the exciting possibility of embedding semantic knowledge into other modalities virtually annotation-free. As a proof of concept, we showcase an unsupervised classifier, which achieves non-trivial classification accuracy without any image-text annotation.
comment: Accepted to CVPR 2025, Project page: https://dominik-schnaus.github.io/itsamatch/
☆ IMPACT: A Generic Semantic Loss for Multimodal Medical Image Registration
Image registration is fundamental in medical imaging, enabling precise alignment of anatomical structures for diagnosis, treatment planning, image-guided treatment or longitudinal monitoring. This work introduces IMPACT (Image Metric with Pretrained model-Agnostic Comparison for Transmodality registration), a generic semantic similarity metric designed for seamless integration into diverse image registration frameworks (such as Elastix and Voxelmorph). It compares deep learning-based features extracted from medical images without requiring task-specific training, ensuring broad applicability across various modalities. By leveraging the features of the large-scale pretrained TotalSegmentator models and the ability to integrate Segment Anything Model (SAM) and other large-scale segmentation networks, this approach offers significant advantages. It provides robust, scalable, and efficient solutions for multimodal image registration. The IMPACT loss was evaluated on five challenging registration tasks involving thoracic CT/CBCT, and pelvic MR/CT datasets. Quantitative metrics, such as Target Registration Error and Dice Similarity Coefficient, demonstrated significant improvements in anatomical alignment compared to baseline methods. Qualitative analyses further confirmed the increased robustness of the proposed metric in the face of noise, artifacts, and modality variations. IMPACT's versatility and efficiency make it a valuable tool for advancing registration performance in clinical and research applications, addressing critical challenges in multimodal medical imaging.
comment: Submitted to IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). This is a preprint version and has not been peer-reviewed
☆ PolypSegTrack: Unified Foundation Model for Colonoscopy Video Analysis
Early detection, accurate segmentation, classification and tracking of polyps during colonoscopy are critical for preventing colorectal cancer. Many existing deep-learning-based methods for analyzing colonoscopic videos either require task-specific fine-tuning, lack tracking capabilities, or rely on domain-specific pre-training. In this paper, we introduce \textit{PolypSegTrack}, a novel foundation model that jointly addresses polyp detection, segmentation, classification and unsupervised tracking in colonoscopic videos. Our approach leverages a novel conditional mask loss, enabling flexible training across datasets with either pixel-level segmentation masks or bounding box annotations, allowing us to bypass task-specific fine-tuning. Our unsupervised tracking module reliably associates polyp instances across frames using object queries, without relying on any heuristics. We leverage a robust vision foundation model backbone that is pre-trained unsupervisedly on natural images, thereby removing the need for domain-specific pre-training. Extensive experiments on multiple polyp benchmarks demonstrate that our method significantly outperforms existing state-of-the-art approaches in detection, segmentation, classification, and tracking.
☆ DANTE-AD: Dual-Vision Attention Network for Long-Term Audio Description
Audio Description is a narrated commentary designed to aid vision-impaired audiences in perceiving key visual elements in a video. While short-form video understanding has advanced rapidly, a solution for maintaining coherent long-term visual storytelling remains unresolved. Existing methods rely solely on frame-level embeddings, effectively describing object-based content but lacking contextual information across scenes. We introduce DANTE-AD, an enhanced video description model leveraging a dual-vision Transformer-based architecture to address this gap. DANTE-AD sequentially fuses both frame and scene level embeddings to improve long-term contextual understanding. We propose a novel, state-of-the-art method for sequential cross-attention to achieve contextual grounding for fine-grained audio description generation. Evaluated on a broad range of key scenes from well-known movie clips, DANTE-AD outperforms existing methods across traditional NLP metrics and LLM-based evaluations.
☆ 4D mmWave Radar in Adverse Environments for Autonomous Driving: A Survey
Autonomous driving systems require accurate and reliable perception. However, adverse environments, such as rain, snow, and fog, can significantly degrade the performance of LiDAR and cameras. In contrast, 4D millimeter-wave (mmWave) radar not only provides 3D sensing and additional velocity measurements but also maintains robustness in challenging conditions, making it increasingly valuable for autonomous driving. Recently, research on 4D mmWave radar under adverse environments has been growing, but a comprehensive survey is still lacking. To bridge this gap, this survey comprehensively reviews the current research on 4D mmWave radar under adverse environments. First, we present an overview of existing 4D mmWave radar datasets encompassing diverse weather and lighting scenarios. Next, we analyze methods and models according to different adverse conditions. Finally, the challenges faced in current studies and potential future directions are discussed for advancing 4D mmWave radar applications in harsh environments. To the best of our knowledge, this is the first survey specifically focusing on 4D mmWave radar in adverse environments for autonomous driving.
comment: 8 pages
☆ A Plasticity-Aware Method for Continual Self-Supervised Learning in Remote Sensing
Continual self-supervised learning (CSSL) methods have gained increasing attention in remote sensing (RS) due to their capability to learn new tasks sequentially from continuous streams of unlabeled data. Existing CSSL methods, while learning new tasks, focus on preventing catastrophic forgetting. To this end, most of them use regularization strategies to retain knowledge of previous tasks. This reduces the model's ability to adapt to the data of new tasks (i.e., learning plasticity), which can degrade performance. To address this problem, in this paper, we propose a novel CSSL method that aims to learn tasks sequentially, while achieving high learning plasticity. To this end, the proposed method uses a knowledge distillation strategy with an integrated decoupling mechanism. The decoupling is achieved by first dividing the feature dimensions into task-common and task-specific parts. Then, the task-common features are forced to be correlated to ensure memory stability while the task-specific features are forced to be de-correlated facilitating the learning of new features. Experimental results show the effectiveness of the proposed method compared to CaSSLe, which is a widely used CSSL framework, with improvements of up to 1.12% in average accuracy and 2.33% in intransigence in a task-incremental scenario, and 1.24% in average accuracy and 2.01% in intransigence in a class-incremental scenario.
comment: Accepted at IEEE International Geoscience and Remote Sensing Symposium 2025
☆ From Colors to Classes: Emergence of Concepts in Vision Transformers
Vision Transformers (ViTs) are increasingly utilized in various computer vision tasks due to their powerful representation capabilities. However, it remains understudied how ViTs process information layer by layer. Numerous studies have shown that convolutional neural networks (CNNs) extract features of increasing complexity throughout their layers, which is crucial for tasks like domain adaptation and transfer learning. ViTs, lacking the same inductive biases as CNNs, can potentially learn global dependencies from the first layers due to their attention mechanisms. Given the increasing importance of ViTs in computer vision, there is a need to improve the layer-wise understanding of ViTs. In this work, we present a novel, layer-wise analysis of concepts encoded in state-of-the-art ViTs using neuron labeling. Our findings reveal that ViTs encode concepts with increasing complexity throughout the network. Early layers primarily encode basic features such as colors and textures, while later layers represent more specific classes, including objects and animals. As the complexity of encoded concepts increases, the number of concepts represented in each layer also rises, reflecting a more diverse and specific set of features. Additionally, different pretraining strategies influence the quantity and category of encoded concepts, with finetuning to specific downstream tasks generally reducing the number of encoded concepts and shifting the concepts to more relevant categories.
comment: Preprint. Accepted at The 3rd World Conference on eXplainable Artificial Intelligence
☆ COSMO: Combination of Selective Memorization for Low-cost Vision-and-Language Navigation
Vision-and-Language Navigation (VLN) tasks have gained prominence within artificial intelligence research due to their potential application in fields like home assistants. Many contemporary VLN approaches, while based on transformer architectures, have increasingly incorporated additional components such as external knowledge bases or map information to enhance performance. These additions, while boosting performance, also lead to larger models and increased computational costs. In this paper, to achieve both high performance and low computational costs, we propose a novel architecture with the COmbination of Selective MemOrization (COSMO). Specifically, COSMO integrates state-space modules and transformer modules, and incorporates two VLN-customized selective state space modules: the Round Selective Scan (RSS) and the Cross-modal Selective State Space Module (CS3). RSS facilitates comprehensive inter-modal interactions within a single scan, while the CS3 module adapts the selective state space module into a dual-stream architecture, thereby enhancing the acquisition of cross-modal interactions. Experimental validations on three mainstream VLN benchmarks, REVERIE, R2R, and R2R-CE, not only demonstrate competitive navigation performance of our model but also show a significant reduction in computational costs.
☆ AMMSM: Adaptive Motion Magnification and Sparse Mamba for Micro-Expression Recognition ICME 2025
Micro-expressions are typically regarded as unconscious manifestations of a person's genuine emotions. However, their short duration and subtle signals pose significant challenges for downstream recognition. We propose a multi-task learning framework named the Adaptive Motion Magnification and Sparse Mamba (AMMSM) to address this. This framework aims to enhance the accurate capture of micro-expressions through self-supervised subtle motion magnification, while the sparse spatial selection Mamba architecture combines sparse activation with the advanced Visual Mamba model to model key motion regions and their valuable representations more effectively. Additionally, we employ evolutionary search to optimize the magnification factor and the sparsity ratios of spatial selection, followed by fine-tuning to improve performance further. Extensive experiments on two standard datasets demonstrate that the proposed AMMSM achieves state-of-the-art (SOTA) accuracy and robustness.
comment: Accepted by ICME 2025
☆ BBoxCut: A Targeted Data Augmentation Technique for Enhancing Wheat Head Detection Under Occlusions
Wheat plays a critical role in global food security, making it one of the most extensively studied crops. Accurate identification and measurement of key characteristics of wheat heads are essential for breeders to select varieties for cross-breeding, with the goal of developing nutrient-dense, resilient, and sustainable cultivars. Traditionally, these measurements are performed manually, which is both time-consuming and inefficient. Advances in digital technologies have paved the way for automating this process. However, field conditions pose significant challenges, such as occlusions of leaves, overlapping wheat heads, varying lighting conditions, and motion blur. In this paper, we propose a novel data augmentation technique, BBoxCut, which uses random localized masking to simulate occlusions caused by leaves and neighboring wheat heads. We evaluated our approach using three state-of-the-art object detectors and observed mean average precision (mAP) gains of 2.76, 3.26, and 1.9 for Faster R-CNN, FCOS, and DETR, respectively. Our augmentation technique led to significant improvements both qualitatively and quantitatively. In particular, the improvements were particularly evident in scenarios involving occluded wheat heads, demonstrating the robustness of our method in challenging field conditions.
☆ Crossmodal Knowledge Distillation with WordNet-Relaxed Text Embeddings for Robust Image Classification
Crossmodal knowledge distillation (KD) aims to enhance a unimodal student using a multimodal teacher model. In particular, when the teacher's modalities include the student's, additional complementary information can be exploited to improve knowledge transfer. In supervised image classification, image datasets typically include class labels that represent high-level concepts, suggesting a natural avenue to incorporate textual cues for crossmodal KD. However, these labels rarely capture the deeper semantic structures in real-world visuals and can lead to label leakage if used directly as inputs, ultimately limiting KD performance. To address these issues, we propose a multi-teacher crossmodal KD framework that integrates CLIP image embeddings with learnable WordNet-relaxed text embeddings under a hierarchical loss. By avoiding direct use of exact class names and instead using semantically richer WordNet expansions, we mitigate label leakage and introduce more diverse textual cues. Experiments show that this strategy significantly boosts student performance, whereas noisy or overly precise text embeddings hinder distillation efficiency. Interpretability analyses confirm that WordNet-relaxed prompts encourage heavier reliance on visual features over textual shortcuts, while still effectively incorporating the newly introduced textual cues. Our method achieves state-of-the-art or second-best results on six public datasets, demonstrating its effectiveness in advancing crossmodal KD.
Optimization of Layer Skipping and Frequency Scaling for Convolutional Neural Networks under Latency Constraint ECCV
The energy consumption of Convolutional Neural Networks (CNNs) is a critical factor in deploying deep learning models on resource-limited equipment such as mobile devices and autonomous vehicles. We propose an approach involving Proportional Layer Skipping (PLS) and Frequency Scaling (FS). Layer skipping reduces computational complexity by selectively bypassing network layers, whereas frequency scaling adjusts the frequency of the processor to optimize energy use under latency constraints. Experiments of PLS and FS on ResNet-152 with the CIFAR-10 dataset demonstrated significant reductions in computational demands and energy consumption with minimal accuracy loss. This study offers practical solutions for improving real-time processing in resource-limited settings and provides insights into balancing computational efficiency and model performance.
comment: 12 pages, 6 figures, Accepted in Proc. Eur. Conf. Comput. Vis. (ECCV) Workshops. Milan, Italy: Springer, September 2024
☆ Learning 3D-Gaussian Simulators from RGB Videos
Learning physics simulations from video data requires maintaining spatial and temporal consistency, a challenge often addressed with strong inductive biases or ground-truth 3D information -- limiting scalability and generalization. We introduce 3DGSim, a 3D physics simulator that learns object dynamics end-to-end from multi-view RGB videos. It encodes images into a 3D Gaussian particle representation, propagates dynamics via a transformer, and renders frames using 3D Gaussian splatting. By jointly training inverse rendering with a dynamics transformer using a temporal encoding and merging layer, 3DGSimembeds physical properties into point-wise latent vectors without enforcing explicit connectivity constraints. This enables the model to capture diverse physical behaviors, from rigid to elastic and cloth-like interactions, along with realistic lighting effects that also generalize to unseen multi-body interactions and novel scene edits.
☆ H2VU-Benchmark: A Comprehensive Benchmark for Hierarchical Holistic Video Understanding
With the rapid development of multimodal models, the demand for assessing video understanding capabilities has been steadily increasing. However, existing benchmarks for evaluating video understanding exhibit significant limitations in coverage, task diversity, and scene adaptability. These shortcomings hinder the accurate assessment of models' comprehensive video understanding capabilities. To tackle this challenge, we propose a hierarchical and holistic video understanding (H2VU) benchmark designed to evaluate both general video and online streaming video comprehension. This benchmark contributes three key features: Extended video duration: Spanning videos from brief 3-second clips to comprehensive 1.5-hour recordings, thereby bridging the temporal gaps found in current benchmarks. Comprehensive assessment tasks: Beyond traditional perceptual and reasoning tasks, we have introduced modules for countercommonsense comprehension and trajectory state tracking. These additions test the models' deep understanding capabilities beyond mere prior knowledge. Enriched video data: To keep pace with the rapid evolution of current AI agents, we have expanded first-person streaming video datasets. This expansion allows for the exploration of multimodal models' performance in understanding streaming videos from a first-person perspective. Extensive results from H2VU reveal that existing multimodal large language models (MLLMs) possess substantial potential for improvement in our newly proposed evaluation tasks. We expect that H2VU will facilitate advancements in video understanding research by offering a comprehensive and in-depth analysis of MLLMs.
☆ DenseFormer: Learning Dense Depth Map from Sparse Depth and Image via Conditional Diffusion Model
The depth completion task is a critical problem in autonomous driving, involving the generation of dense depth maps from sparse depth maps and RGB images. Most existing methods employ a spatial propagation network to iteratively refine the depth map after obtaining an initial dense depth. In this paper, we propose DenseFormer, a novel method that integrates the diffusion model into the depth completion task. By incorporating the denoising mechanism of the diffusion model, DenseFormer generates the dense depth map by progressively refining an initial random depth distribution through multiple iterations. We propose a feature extraction module that leverages a feature pyramid structure, along with multi-layer deformable attention, to effectively extract and integrate features from sparse depth maps and RGB images, which serve as the guiding condition for the diffusion process. Additionally, this paper presents a depth refinement module that applies multi-step iterative refinement across various ranges to the dense depth results generated by the diffusion process. The module utilizes image features enriched with multi-scale information and sparse depth input to further enhance the accuracy of the predicted depth map. Extensive experiments on the KITTI outdoor scene dataset demonstrate that DenseFormer outperforms classical depth completion methods.
☆ SALT: A Flexible Semi-Automatic Labeling Tool for General LiDAR Point Clouds with Cross-Scene Adaptability and 4D Consistency
We propose a flexible Semi-Automatic Labeling Tool (SALT) for general LiDAR point clouds with cross-scene adaptability and 4D consistency. Unlike recent approaches that rely on camera distillation, SALT operates directly on raw LiDAR data, automatically generating pre-segmentation results. To achieve this, we propose a novel zero-shot learning paradigm, termed data alignment, which transforms LiDAR data into pseudo-images by aligning with the training distribution of vision foundation models. Additionally, we design a 4D-consistent prompting strategy and 4D non-maximum suppression module to enhance SAM2, ensuring high-quality, temporally consistent presegmentation. SALT surpasses the latest zero-shot methods by 18.4% PQ on SemanticKITTI and achieves nearly 40-50% of human annotator performance on our newly collected low-resolution LiDAR data and on combined data from three LiDAR types, significantly boosting annotation efficiency. We anticipate that SALT's open-sourcing will catalyze substantial expansion of current LiDAR datasets and lay the groundwork for the future development of LiDAR foundation models. Code is available at https://github.com/Cavendish518/SALT.
☆ Video-based Traffic Light Recognition by Rockchip RV1126 for Autonomous Driving
Real-time traffic light recognition is fundamental for autonomous driving safety and navigation in urban environments. While existing approaches rely on single-frame analysis from onboard cameras, they struggle with complex scenarios involving occlusions and adverse lighting conditions. We present \textit{ViTLR}, a novel video-based end-to-end neural network that processes multiple consecutive frames to achieve robust traffic light detection and state classification. The architecture leverages a transformer-like design with convolutional self-attention modules, which is optimized specifically for deployment on the Rockchip RV1126 embedded platform. Extensive evaluations on two real-world datasets demonstrate that \textit{ViTLR} achieves state-of-the-art performance while maintaining real-time processing capabilities (>25 FPS) on RV1126's NPU. The system shows superior robustness across temporal stability, varying target distances, and challenging environmental conditions compared to existing single-frame approaches. We have successfully integrated \textit{ViTLR} into an ego-lane traffic light recognition system using HD maps for autonomous driving applications. The complete implementation, including source code and datasets, is made publicly available to facilitate further research in this domain.
comment: Accepted by IEEE IV'25
☆ A Benchmark for Vision-Centric HD Mapping by V2I Systems
Autonomous driving faces safety challenges due to a lack of global perspective and the semantic information of vectorized high-definition (HD) maps. Information from roadside cameras can greatly expand the map perception range through vehicle-to-infrastructure (V2I) communications. However, there is still no dataset from the real world available for the study on map vectorization onboard under the scenario of vehicle-infrastructure cooperation. To prosper the research on online HD mapping for Vehicle-Infrastructure Cooperative Autonomous Driving (VICAD), we release a real-world dataset, which contains collaborative camera frames from both vehicles and roadside infrastructures, and provides human annotations of HD map elements. We also present an end-to-end neural framework (i.e., V2I-HD) leveraging vision-centric V2I systems to construct vectorized maps. To reduce computation costs and further deploy V2I-HD on autonomous vehicles, we introduce a directionally decoupled self-attention mechanism to V2I-HD. Extensive experiments show that V2I-HD has superior performance in real-time inference speed, as tested by our real-world dataset. Abundant qualitative results also demonstrate stable and robust map construction quality with low cost in complex and various driving scenes. As a benchmark, both source codes and the dataset have been released at OneDrive for the purpose of further study.
comment: Accepted by IEEE IV'25
☆ A Multi-Stage Auto-Context Deep Learning Framework for Tissue and Nuclei Segmentation and Classification in H&E-Stained Histological Images of Advanced Melanoma
Melanoma is the most lethal form of skin cancer, with an increasing incidence rate worldwide. Analyzing histological images of melanoma by localizing and classifying tissues and cell nuclei is considered the gold standard method for diagnosis and treatment options for patients. While many computerized approaches have been proposed for automatic analysis, most perform tissue-based analysis and nuclei (cell)-based analysis as separate tasks, which might be suboptimal. In this work, using the PUMA challenge dataset, we proposed a novel multi-stage deep learning approach by combining tissue and nuclei information in a unified framework based on the auto-context concept to perform segmentation and classification in histological images of melanoma. Through pre-training and further post-processing, our approach achieved second and first place rankings in the PUMA challenge, with average micro Dice tissue score and summed nuclei F1-score of 73.40% for Track 1 and 63.48% for Track 2, respectively. Our implementation for training and testing is available at: https://github.com/NimaTorbati/PumaSubmit
comment: 15 pages
☆ AirCache: Activating Inter-modal Relevancy KV Cache Compression for Efficient Large Vision-Language Model Inference
Recent advancements in Large Visual Language Models (LVLMs) have gained significant attention due to their remarkable reasoning capabilities and proficiency in generalization. However, processing a large number of visual tokens and generating long-context outputs impose substantial computational overhead, leading to excessive demands for key-value (KV) cache. To address this critical bottleneck, we propose AirCache, a novel KV cache compression method aimed at accelerating LVLMs inference. This work systematically investigates the correlations between visual and textual tokens within the attention mechanisms of LVLMs. Our empirical analysis reveals considerable redundancy in cached visual tokens, wherein strategically eliminating these tokens preserves model performance while significantly accelerating context generation. Inspired by these findings, we introduce an elite observation window for assessing the importance of visual components in the KV cache, focusing on stable inter-modal relevancy modeling with enhanced multi-perspective consistency. Additionally, we develop an adaptive layer-wise budget allocation strategy that capitalizes on the strength and skewness of token importance distribution, showcasing superior efficiency compared to uniform allocation. Comprehensive evaluations across multiple LVLMs and benchmarks demonstrate that our method achieves comparable performance to the full cache while retaining only 10% of visual KV cache, thereby reducing decoding latency by 29% to 66% across various batch size and prompt length of inputs. Notably, as cache retention rates decrease, our method exhibits increasing performance advantages over existing approaches.
☆ JointTuner: Appearance-Motion Adaptive Joint Training for Customized Video Generation
Recent text-to-video advancements have enabled coherent video synthesis from prompts and expanded to fine-grained control over appearance and motion. However, existing methods either suffer from concept interference due to feature domain mismatch caused by naive decoupled optimizations or exhibit appearance contamination induced by spatial feature leakage resulting from the entanglement of motion and appearance in reference video reconstructions. In this paper, we propose JointTuner, a novel adaptive joint training framework, to alleviate these issues. Specifically, we develop Adaptive LoRA, which incorporates a context-aware gating mechanism, and integrate the gated LoRA components into the spatial and temporal Transformers within the diffusion model. These components enable simultaneous optimization of appearance and motion, eliminating concept interference. In addition, we introduce the Appearance-independent Temporal Loss, which decouples motion patterns from intrinsic appearance in reference video reconstructions through an appearance-agnostic noise prediction task. The key innovation lies in adding frame-wise offset noise to the ground-truth Gaussian noise, perturbing its distribution, thereby disrupting spatial attributes associated with frames while preserving temporal coherence. Furthermore, we construct a benchmark comprising 90 appearance-motion customized combinations and 10 multi-type automatic metrics across four dimensions, facilitating a more comprehensive evaluation for this customization task. Extensive experiments demonstrate the superior performance of our method compared to current advanced approaches.
comment: Project Page: https://fdchen24.github.io/JointTuner-Website
☆ AMB-FHE: Adaptive Multi-biometric Fusion with Fully Homomorphic Encryption
Biometric systems strive to balance security and usability. The use of multi-biometric systems combining multiple biometric modalities is usually recommended for high-security applications. However, the presentation of multiple biometric modalities can impair the user-friendliness of the overall system and might not be necessary in all cases. In this work, we present a simple but flexible approach to increase the privacy protection of homomorphically encrypted multi-biometric reference templates while enabling adaptation to security requirements at run-time: An adaptive multi-biometric fusion with fully homomorphic encryption (AMB-FHE). AMB-FHE is benchmarked against a bimodal biometric database consisting of the CASIA iris and MCYT fingerprint datasets using deep neural networks for feature extraction. Our contribution is easy to implement and increases the flexibility of biometric authentication while offering increased privacy protection through joint encryption of templates from multiple modalities.
☆ Spectral-Adaptive Modulation Networks for Visual Perception
Recent studies have shown that 2D convolution and self-attention exhibit distinct spectral behaviors, and optimizing their spectral properties can enhance vision model performance. However, theoretical analyses remain limited in explaining why 2D convolution is more effective in high-pass filtering than self-attention and why larger kernels favor shape bias, akin to self-attention. In this paper, we employ graph spectral analysis to theoretically simulate and compare the frequency responses of 2D convolution and self-attention within a unified framework. Our results corroborate previous empirical findings and reveal that node connectivity, modulated by window size, is a key factor in shaping spectral functions. Leveraging this insight, we introduce a \textit{spectral-adaptive modulation} (SPAM) mixer, which processes visual features in a spectral-adaptive manner using multi-scale convolutional kernels and a spectral re-scaling mechanism to refine spectral components. Based on SPAM, we develop SPANetV2 as a novel vision backbone. Extensive experiments demonstrate that SPANetV2 outperforms state-of-the-art models across multiple vision tasks, including ImageNet-1K classification, COCO object detection, and ADE20K semantic segmentation.
☆ Exploring Reliable PPG Authentication on Smartwatches in Daily Scenarios
Photoplethysmography (PPG) Sensors, widely deployed in smartwatches, offer a simple and non-invasive authentication approach for daily use. However, PPG authentication faces reliability issues due to motion artifacts from physical activity and physiological variability over time. To address these challenges, we propose MTL-RAPID, an efficient and reliable PPG authentication model, that employs a multitask joint training strategy, simultaneously assessing signal quality and verifying user identity. The joint optimization of these two tasks in MTL-RAPID results in a structure that outperforms models trained on individual tasks separately, achieving stronger performance with fewer parameters. In our comprehensive user studies regarding motion artifacts (N = 30), time variations (N = 32), and user preferences (N = 16), MTL-RAPID achieves a best AUC of 99.2\% and an EER of 3.5\%, outperforming existing baselines. We opensource our PPG authentication dataset along with the MTL-RAPID model to facilitate future research on GitHub.
☆ CoMatch: Dynamic Covisibility-Aware Transformer for Bilateral Subpixel-Level Semi-Dense Image Matching
This prospective study proposes CoMatch, a novel semi-dense image matcher with dynamic covisibility awareness and bilateral subpixel accuracy. Firstly, observing that modeling context interaction over the entire coarse feature map elicits highly redundant computation due to the neighboring representation similarity of tokens, a covisibility-guided token condenser is introduced to adaptively aggregate tokens in light of their covisibility scores that are dynamically estimated, thereby ensuring computational efficiency while improving the representational capacity of aggregated tokens simultaneously. Secondly, considering that feature interaction with massive non-covisible areas is distracting, which may degrade feature distinctiveness, a covisibility-assisted attention mechanism is deployed to selectively suppress irrelevant message broadcast from non-covisible reduced tokens, resulting in robust and compact attention to relevant rather than all ones. Thirdly, we find that at the fine-level stage, current methods adjust only the target view's keypoints to subpixel level, while those in the source view remain restricted at the coarse level and thus not informative enough, detrimental to keypoint location-sensitive usages. A simple yet potent fine correlation module is developed to refine the matching candidates in both source and target views to subpixel level, attaining attractive performance improvement. Thorough experimentation across an array of public benchmarks affirms CoMatch's promising accuracy, efficiency, and generalizability.
☆ FineCausal: A Causal-Based Framework for Interpretable Fine-Grained Action Quality Assessment
Action quality assessment (AQA) is critical for evaluating athletic performance, informing training strategies, and ensuring safety in competitive sports. However, existing deep learning approaches often operate as black boxes and are vulnerable to spurious correlations, limiting both their reliability and interpretability. In this paper, we introduce FineCausal, a novel causal-based framework that achieves state-of-the-art performance on the FineDiving-HM dataset. Our approach leverages a Graph Attention Network-based causal intervention module to disentangle human-centric foreground cues from background confounders, and incorporates a temporal causal attention module to capture fine-grained temporal dependencies across action stages. This dual-module strategy enables FineCausal to generate detailed spatio-temporal representations that not only achieve state-of-the-art scoring performance but also provide transparent, interpretable feedback on which features drive the assessment. Despite its strong performance, FineCausal requires extensive expert knowledge to define causal structures and depends on high-quality annotations, challenges that we discuss and address as future research directions. Code is available at https://github.com/Harrison21/FineCausal.
☆ HumanAesExpert: Advancing a Multi-Modality Foundation Model for Human Image Aesthetic Assessment
Image Aesthetic Assessment (IAA) is a long-standing and challenging research task. However, its subset, Human Image Aesthetic Assessment (HIAA), has been scarcely explored, even though HIAA is widely used in social media, AI workflows, and related domains. To bridge this research gap, our work pioneers a holistic implementation framework tailored for HIAA. Specifically, we introduce HumanBeauty, the first dataset purpose-built for HIAA, which comprises 108k high-quality human images with manual annotations. To achieve comprehensive and fine-grained HIAA, 50K human images are manually collected through a rigorous curation process and annotated leveraging our trailblazing 12-dimensional aesthetic standard, while the remaining 58K with overall aesthetic labels are systematically filtered from public datasets. Based on the HumanBeauty database, we propose HumanAesExpert, a powerful Vision Language Model for aesthetic evaluation of human images. We innovatively design an Expert head to incorporate human knowledge of aesthetic sub-dimensions while jointly utilizing the Language Modeling (LM) and Regression head. This approach empowers our model to achieve superior proficiency in both overall and fine-grained HIAA. Furthermore, we introduce a MetaVoter, which aggregates scores from all three heads, to effectively balance the capabilities of each head, thereby realizing improved assessment precision. Extensive experiments demonstrate that our HumanAesExpert models deliver significantly better performance in HIAA than other state-of-the-art models. Our datasets, models, and codes are publicly released to advance the HIAA community. Project webpage: https://humanaesexpert.github.io/HumanAesExpert/
☆ Boosting MLLM Reasoning with Text-Debiased Hint-GRPO
MLLM reasoning has drawn widespread research for its excellent problem-solving capability. Current reasoning methods fall into two types: PRM, which supervises the intermediate reasoning steps, and ORM, which supervises the final results. Recently, DeepSeek-R1 has challenged the traditional view that PRM outperforms ORM, which demonstrates strong generalization performance using an ORM method (i.e., GRPO). However, current MLLM's GRPO algorithms still struggle to handle challenging and complex multimodal reasoning tasks (e.g., mathematical reasoning). In this work, we reveal two problems that impede the performance of GRPO on the MLLM: Low data utilization and Text-bias. Low data utilization refers to that GRPO cannot acquire positive rewards to update the MLLM on difficult samples, and text-bias is a phenomenon that the MLLM bypasses image condition and solely relies on text condition for generation after GRPO training. To tackle these problems, this work proposes Hint-GRPO that improves data utilization by adaptively providing hints for samples of varying difficulty, and text-bias calibration that mitigates text-bias by calibrating the token prediction logits with image condition in test-time. Experiment results on three base MLLMs across eleven datasets demonstrate that our proposed methods advance the reasoning capability of original MLLM by a large margin, exhibiting superior performance to existing MLLM reasoning methods. Our code is available at https://github.com/hqhQAQ/Hint-GRPO.
☆ An Explainable Neural Radiomic Sequence Model with Spatiotemporal Continuity for Quantifying 4DCT-based Pulmonary Ventilation
Accurate evaluation of regional lung ventilation is essential for the management and treatment of lung cancer patients, supporting assessments of pulmonary function, optimization of therapeutic strategies, and monitoring of treatment response. Currently, ventilation scintigraphy using nuclear medicine techniques is widely employed in clinical practice; however, it is often time-consuming, costly, and entails additional radiation exposure. In this study, we propose an explainable neural radiomic sequence model to identify regions of compromised pulmonary ventilation based on four-dimensional computed tomography (4DCT). A cohort of 45 lung cancer patients from the VAMPIRE dataset was analyzed. For each patient, lung volumes were segmented from 4DCT, and voxel-wise radiomic features (56-dimensional) were extracted across the respiratory cycle to capture local intensity and texture dynamics, forming temporal radiomic sequences. Ground truth ventilation defects were delineated voxel-wise using Galligas-PET and DTPA-SPECT. To identify compromised regions, we developed a temporal saliency-enhanced explainable long short-term memory (LSTM) network trained on the radiomic sequences. Temporal saliency maps were generated to highlight key features contributing to the model's predictions. The proposed model demonstrated robust performance, achieving average (range) Dice similarity coefficients of 0.78 (0.74-0.79) for 25 PET cases and 0.78 (0.74-0.82) for 20 SPECT cases. The temporal saliency map explained three key radiomic sequences in ventilation quantification: during lung exhalation, compromised pulmonary function region typically exhibits (1) an increasing trend of intensity and (2) a decreasing trend of homogeneity, in contrast to healthy lung tissue.
comment: 43 pages, 13 figures
☆ Training-Free Text-Guided Image Editing with Visual Autoregressive Model
Text-guided image editing is an essential task that enables users to modify images through natural language descriptions. Recent advances in diffusion models and rectified flows have significantly improved editing quality, primarily relying on inversion techniques to extract structured noise from input images. However, inaccuracies in inversion can propagate errors, leading to unintended modifications and compromising fidelity. Moreover, even with perfect inversion, the entanglement between textual prompts and image features often results in global changes when only local edits are intended. To address these challenges, we propose a novel text-guided image editing framework based on VAR (Visual AutoRegressive modeling), which eliminates the need for explicit inversion while ensuring precise and controlled modifications. Our method introduces a caching mechanism that stores token indices and probability distributions from the original image, capturing the relationship between the source prompt and the image. Using this cache, we design an adaptive fine-grained masking strategy that dynamically identifies and constrains modifications to relevant regions, preventing unintended changes. A token reassembling approach further refines the editing process, enhancing diversity, fidelity, and control. Our framework operates in a training-free manner and achieves high-fidelity editing with faster inference speeds, processing a 1K resolution image in as fast as 1.2 seconds. Extensive experiments demonstrate that our method achieves performance comparable to, or even surpassing, existing diffusion- and rectified flow-based approaches in both quantitative metrics and visual quality. The code will be released.
☆ DiffScale: Continuous Downscaling and Bias Correction of Subseasonal Wind Speed Forecasts using Diffusion Models
Renewable resources are strongly dependent on local and large-scale weather situations. Skillful subseasonal to seasonal (S2S) forecasts -- beyond two weeks and up to two months -- can offer significant socioeconomic advantages to the energy sector. This study aims to enhance wind speed predictions using a diffusion model with classifier-free guidance to downscale S2S forecasts of surface wind speed. We propose DiffScale, a diffusion model that super-resolves spatial information for continuous downscaling factors and lead times. Leveraging weather priors as guidance for the generative process of diffusion models, we adopt the perspective of conditional probabilities on sampling super-resolved S2S forecasts. We aim to directly estimate the density associated with the target S2S forecasts at different spatial resolutions and lead times without auto-regression or sequence prediction, resulting in an efficient and flexible model. Synthetic experiments were designed to super-resolve wind speed S2S forecasts from the European Center for Medium-Range Weather Forecast (ECMWF) from a coarse resolution to a finer resolution of ERA5 reanalysis data, which serves as a high-resolution target. The innovative aspect of DiffScale lies in its flexibility to downscale arbitrary scaling factors, enabling it to generalize across various grid resolutions and lead times -without retraining the model- while correcting model errors, making it a versatile tool for improving S2S wind speed forecasts. We achieve a significant improvement in prediction quality, outperforming baselines up to week 3.
comment: 28 pages, 18 figures, preprint under review
☆ MuseFace: Text-driven Face Editing via Diffusion-based Mask Generation Approach
Face editing modifies the appearance of face, which plays a key role in customization and enhancement of personal images. Although much work have achieved remarkable success in text-driven face editing, they still face significant challenges as none of them simultaneously fulfill the characteristics of diversity, controllability and flexibility. To address this challenge, we propose MuseFace, a text-driven face editing framework, which relies solely on text prompt to enable face editing. Specifically, MuseFace integrates a Text-to-Mask diffusion model and a semantic-aware face editing model, capable of directly generating fine-grained semantic masks from text and performing face editing. The Text-to-Mask diffusion model provides \textit{diversity} and \textit{flexibility} to the framework, while the semantic-aware face editing model ensures \textit{controllability} of the framework. Our framework can create fine-grained semantic masks, making precise face editing possible, and significantly enhancing the controllability and flexibility of face editing models. Extensive experiments demonstrate that MuseFace achieves superior high-fidelity performance.
comment: 6 pages, 5 figures,IEEE International Conference on Multimedia & Expo 2025
☆ GLane3D : Detecting Lanes with Graph of 3D Keypoints CVPR 2025
Accurate and efficient lane detection in 3D space is essential for autonomous driving systems, where robust generalization is the foremost requirement for 3D lane detection algorithms. Considering the extensive variation in lane structures worldwide, achieving high generalization capacity is particularly challenging, as algorithms must accurately identify a wide variety of lane patterns worldwide. Traditional top-down approaches rely heavily on learning lane characteristics from training datasets, often struggling with lanes exhibiting previously unseen attributes. To address this generalization limitation, we propose a method that detects keypoints of lanes and subsequently predicts sequential connections between them to construct complete 3D lanes. Each key point is essential for maintaining lane continuity, and we predict multiple proposals per keypoint by allowing adjacent grids to predict the same keypoint using an offset mechanism. PointNMS is employed to eliminate overlapping proposal keypoints, reducing redundancy in the estimated BEV graph and minimizing computational overhead from connection estimations. Our model surpasses previous state-of-the-art methods on both the Apollo and OpenLane datasets, demonstrating superior F1 scores and a strong generalization capacity when models trained on OpenLane are evaluated on the Apollo dataset, compared to prior approaches.
comment: Accepted to CVPR 2025
☆ ExScene: Free-View 3D Scene Reconstruction with Gaussian Splatting from a Single Image ICME 2025
The increasing demand for augmented and virtual reality applications has highlighted the importance of crafting immersive 3D scenes from a simple single-view image. However, due to the partial priors provided by single-view input, existing methods are often limited to reconstruct low-consistency 3D scenes with narrow fields of view from single-view input. These limitations make them less capable of generalizing to reconstruct immersive scenes. To address this problem, we propose ExScene, a two-stage pipeline to reconstruct an immersive 3D scene from any given single-view image. ExScene designs a novel multimodal diffusion model to generate a high-fidelity and globally consistent panoramic image. We then develop a panoramic depth estimation approach to calculate geometric information from panorama, and we combine geometric information with high-fidelity panoramic image to train an initial 3D Gaussian Splatting (3DGS) model. Following this, we introduce a GS refinement technique with 2D stable video diffusion priors. We add camera trajectory consistency and color-geometric priors into the denoising process of diffusion to improve color and spatial consistency across image sequences. These refined sequences are then used to fine-tune the initial 3DGS model, leading to better reconstruction quality. Experimental results demonstrate that our ExScene achieves consistent and immersive scene reconstruction using only single-view input, significantly surpassing state-of-the-art baselines.
comment: ICME 2025
☆ ZeroMimic: Distilling Robotic Manipulation Skills from Web Videos ICRA 2025
Many recent advances in robotic manipulation have come through imitation learning, yet these rely largely on mimicking a particularly hard-to-acquire form of demonstrations: those collected on the same robot in the same room with the same objects as the trained policy must handle at test time. In contrast, large pre-recorded human video datasets demonstrating manipulation skills in-the-wild already exist, which contain valuable information for robots. Is it possible to distill a repository of useful robotic skill policies out of such data without any additional requirements on robot-specific demonstrations or exploration? We present the first such system ZeroMimic, that generates immediately deployable image goal-conditioned skill policies for several common categories of manipulation tasks (opening, closing, pouring, pick&place, cutting, and stirring) each capable of acting upon diverse objects and across diverse unseen task setups. ZeroMimic is carefully designed to exploit recent advances in semantic and geometric visual understanding of human videos, together with modern grasp affordance detectors and imitation policy classes. After training ZeroMimic on the popular EpicKitchens dataset of ego-centric human videos, we evaluate its out-of-the-box performance in varied real-world and simulated kitchen settings with two different robot embodiments, demonstrating its impressive abilities to handle these varied tasks. To enable plug-and-play reuse of ZeroMimic policies on other task setups and robots, we release software and policy checkpoints of our skill policies.
comment: ICRA 2025. Project website: https://zeromimic.github.io/
☆ FlexiMo: A Flexible Remote Sensing Foundation Model
The rapid expansion of multi-source satellite imagery drives innovation in Earth observation, opening unprecedented opportunities for Remote Sensing Foundation Models to harness diverse data. However, many existing models remain constrained by fixed spatial resolutions and patch sizes, limiting their ability to fully exploit the heterogeneous spatial characteristics inherent in satellite imagery. To address these challenges, we propose FlexiMo, a flexible remote sensing foundation model that endows the pre-trained model with the flexibility to adapt to arbitrary spatial resolutions. Central to FlexiMo is a spatial resolution-aware module that employs a parameter-free alignment embedding mechanism to dynamically recalibrate patch embeddings based on the input image's resolution and dimensions. This design not only preserves critical token characteristics and ensures multi-scale feature fidelity but also enables efficient feature extraction without requiring modifications to the underlying network architecture. In addition, FlexiMo incorporates a lightweight channel adaptation module that leverages prior spectral information from sensors. This mechanism allows the model to process images with varying numbers of channels while maintaining the data's intrinsic physical properties. Extensive experiments on diverse multimodal, multi-resolution, and multi-scale datasets demonstrate that FlexiMo significantly enhances model generalization and robustness. In particular, our method achieves outstanding performance across a range of downstream tasks, including scene classification, land cover classification, urban building segmentation, and cloud detection. By enabling parameter-efficient and physically consistent adaptation, FlexiMo paves the way for more adaptable and effective foundation models in real-world remote sensing applications.
☆ Conformal uncertainty quantification to evaluate predictive fairness of foundation AI model for skin lesion classes across patient demographics
Deep learning based diagnostic AI systems based on medical images are starting to provide similar performance as human experts. However these data hungry complex systems are inherently black boxes and therefore slow to be adopted for high risk applications like healthcare. This problem of lack of transparency is exacerbated in the case of recent large foundation models, which are trained in a self supervised manner on millions of data points to provide robust generalisation across a range of downstream tasks, but the embeddings generated from them happen through a process that is not interpretable, and hence not easily trustable for clinical applications. To address this timely issue, we deploy conformal analysis to quantify the predictive uncertainty of a vision transformer (ViT) based foundation model across patient demographics with respect to sex, age and ethnicity for the tasks of skin lesion classification using several public benchmark datasets. The significant advantage of this method is that conformal analysis is method independent and it not only provides a coverage guarantee at population level but also provides an uncertainty score for each individual. We used a model-agnostic dynamic F1-score-based sampling during model training, which helped to stabilize the class imbalance and we investigate the effects on uncertainty quantification (UQ) with or without this bias mitigation step. Thus we show how this can be used as a fairness metric to evaluate the robustness of the feature embeddings of the foundation model (Google DermFoundation) and thus advance the trustworthiness and fairness of clinical AI.
☆ Bridge the Gap Between Visual and Linguistic Comprehension for Generalized Zero-shot Semantic Segmentation
Generalized zero-shot semantic segmentation (GZS3) aims to achieve the human-level capability of segmenting not only seen classes but also novel class regions unseen in the training data through introducing the bridge of semantic representations, e.g., word vector. While effective, the way of utilizing one semantic representation to associate the corresponding class and to enable the knowledge transfer from seen to unseen classes is insufficient as well as incompatible with human cognition. Inspired by the observation that humans often use some `part' and `state' information to comprehend the seen objects and imagine unseen classes, we decouple each class into detailed descriptions, including object parts and states. Based on the decoupling formulation, we propose a Decoupled Vision-Language Matching (DeVLMatch) framework, composed of spatial-part (SPMatch) and channel-state (CSMatch) matching modules, for GZS3. In SPMatch, we comprehend objects with spatial part information from both visual and linguistic perspectives and perform graph matching to bridge the gap. In CSMatch, states of objects from the linguistic perspective are matched to compatible channel information from the visual perspective. By decoupling and matching objects across visual and linguistic comprehension, we can explicitly introspect the relationship between seen and unseen classes in fine-grained object part and state levels, thereby facilitating the knowledge transfer from seen to unseen classes in visual space. The proposed DeVLMatch framework surpasses the previous GZS3 methods on standard benchmarks, including PASCAL VOC, COCO-Stuff, and CATARACTS, demonstrating its effectiveness.
☆ Pan-LUT: Efficient Pan-sharpening via Learnable Look-Up Tables
Recently, deep learning-based pan-sharpening algorithms have achieved notable advancements over traditional methods. However, many deep learning-based approaches incur substantial computational overhead during inference, especially with high-resolution images. This excessive computational demand limits the applicability of these methods in real-world scenarios, particularly in the absence of dedicated computing devices such as GPUs and TPUs. To address these challenges, we propose Pan-LUT, a novel learnable look-up table (LUT) framework for pan-sharpening that strikes a balance between performance and computational efficiency for high-resolution remote sensing images. To finely control the spectral transformation, we devise the PAN-guided look-up table (PGLUT) for channel-wise spectral mapping. To effectively capture fine-grained spatial details and adaptively learn local contexts, we introduce the spatial details look-up table (SDLUT) and adaptive aggregation look-up table (AALUT). Our proposed method contains fewer than 300K parameters and processes a 8K resolution image in under 1 ms using a single NVIDIA GeForce RTX 2080 Ti GPU, demonstrating significantly faster performance compared to other methods. Experiments reveal that Pan-LUT efficiently processes large remote sensing images in a lightweight manner, bridging the gap to real-world applications. Furthermore, our model surpasses SOTA methods in full-resolution scenes under real-world conditions, highlighting its effectiveness and efficiency.
comment: 12 pages, 6 figures
☆ MGD-SAM2: Multi-view Guided Detail-enhanced Segment Anything Model 2 for High-Resolution Class-agnostic Segmentation
Segment Anything Models (SAMs), as vision foundation models, have demonstrated remarkable performance across various image analysis tasks. Despite their strong generalization capabilities, SAMs encounter challenges in fine-grained detail segmentation for high-resolution class-independent segmentation (HRCS), due to the limitations in the direct processing of high-resolution inputs and low-resolution mask predictions, and the reliance on accurate manual prompts. To address these limitations, we propose MGD-SAM2 which integrates SAM2 with multi-view feature interaction between a global image and local patches to achieve precise segmentation. MGD-SAM2 incorporates the pre-trained SAM2 with four novel modules: the Multi-view Perception Adapter (MPAdapter), the Multi-view Complementary Enhancement Module (MCEM), the Hierarchical Multi-view Interaction Module (HMIM), and the Detail Refinement Module (DRM). Specifically, we first introduce MPAdapter to adapt the SAM2 encoder for enhanced extraction of local details and global semantics in HRCS images. Then, MCEM and HMIM are proposed to further exploit local texture and global context by aggregating multi-view features within and across multi-scales. Finally, DRM is designed to generate gradually restored high-resolution mask predictions, compensating for the loss of fine-grained details resulting from directly upsampling the low-resolution prediction maps. Experimental results demonstrate the superior performance and strong generalization of our model on multiple high-resolution and normal-resolution datasets. Code will be available at https://github.com/sevenshr/MGD-SAM2.
☆ Evaluation of (Un-)Supervised Machine Learning Methods for GNSS Interference Classification with Real-World Data Discrepancies
The accuracy and reliability of vehicle localization on roads are crucial for applications such as self-driving cars, toll systems, and digital tachographs. To achieve accurate positioning, vehicles typically use global navigation satellite system (GNSS) receivers to validate their absolute positions. However, GNSS-based positioning can be compromised by interference signals, necessitating the identification, classification, determination of purpose, and localization of such interference to mitigate or eliminate it. Recent approaches based on machine learning (ML) have shown superior performance in monitoring interference. However, their feasibility in real-world applications and environments has yet to be assessed. Effective implementation of ML techniques requires training datasets that incorporate realistic interference signals, including real-world noise and potential multipath effects that may occur between transmitter, receiver, and satellite in the operational area. Additionally, these datasets require reference labels. Creating such datasets is often challenging due to legal restrictions, as causing interference to GNSS sources is strictly prohibited. Consequently, the performance of ML-based methods in practical applications remains unclear. To address this gap, we describe a series of large-scale measurement campaigns conducted in real-world settings at two highway locations in Germany and the Seetal Alps in Austria, and in large-scale controlled indoor environments. We evaluate the latest supervised ML-based methods to report on their performance in real-world settings and present the applicability of pseudo-labeling for unsupervised learning. We demonstrate the challenges of combining datasets due to data discrepancies and evaluate outlier detection, domain adaptation, and data augmentation techniques to present the models' capabilities to adapt to changes in the datasets.
comment: 34 pages, 25 figures
☆ XLRS-Bench: Could Your Multimodal LLMs Understand Extremely Large Ultra-High-Resolution Remote Sensing Imagery? CVPR2025
The astonishing breakthrough of multimodal large language models (MLLMs) has necessitated new benchmarks to quantitatively assess their capabilities, reveal their limitations, and indicate future research directions. However, this is challenging in the context of remote sensing (RS), since the imagery features ultra-high resolution that incorporates extremely complex semantic relationships. Existing benchmarks usually adopt notably smaller image sizes than real-world RS scenarios, suffer from limited annotation quality, and consider insufficient dimensions of evaluation. To address these issues, we present XLRS-Bench: a comprehensive benchmark for evaluating the perception and reasoning capabilities of MLLMs in ultra-high-resolution RS scenarios. XLRS-Bench boasts the largest average image size (8500$\times$8500) observed thus far, with all evaluation samples meticulously annotated manually, assisted by a novel semi-automatic captioner on ultra-high-resolution RS images. On top of the XLRS-Bench, 16 sub-tasks are defined to evaluate MLLMs' 10 kinds of perceptual capabilities and 6 kinds of reasoning capabilities, with a primary emphasis on advanced cognitive processes that facilitate real-world decision-making and the capture of spatiotemporal changes. The results of both general and RS-focused MLLMs on XLRS-Bench indicate that further efforts are needed for real-world RS applications. We have open-sourced XLRS-Bench to support further research in developing more powerful MLLMs for remote sensing.
comment: It has been accepted by CVPR2025
☆ Texture or Semantics? Vision-Language Models Get Lost in Font Recognition
Modern Vision-Language Models (VLMs) exhibit remarkable visual and linguistic capabilities, achieving impressive performance in various tasks such as image recognition and object localization. However, their effectiveness in fine-grained tasks remains an open question. In everyday scenarios, individuals encountering design materials, such as magazines, typography tutorials, research papers, or branding content, may wish to identify aesthetically pleasing fonts used in the text. Given their multimodal capabilities and free accessibility, many VLMs are often considered potential tools for font recognition. This raises a fundamental question: Do VLMs truly possess the capability to recognize fonts? To investigate this, we introduce the Font Recognition Benchmark (FRB), a compact and well-structured dataset comprising 15 commonly used fonts. FRB includes two versions: (i) an easy version, where 10 sentences are rendered in different fonts, and (ii) a hard version, where each text sample consists of the names of the 15 fonts themselves, introducing a stroop effect that challenges model perception. Through extensive evaluation of various VLMs on font recognition tasks, we arrive at the following key findings: (i) Current VLMs exhibit limited font recognition capabilities, with many state-of-the-art models failing to achieve satisfactory performance. (ii) Few-shot learning and Chain-of-Thought (CoT) prompting provide minimal benefits in improving font recognition accuracy across different VLMs. (iii) Attention analysis sheds light on the inherent limitations of VLMs in capturing semantic features.
☆ STI-Bench: Are MLLMs Ready for Precise Spatial-Temporal World Understanding?
The use of Multimodal Large Language Models (MLLMs) as an end-to-end solution for Embodied AI and Autonomous Driving has become a prevailing trend. While MLLMs have been extensively studied for visual semantic understanding tasks, their ability to perform precise and quantitative spatial-temporal understanding in real-world applications remains largely unexamined, leading to uncertain prospects. To evaluate models' Spatial-Temporal Intelligence, we introduce STI-Bench, a benchmark designed to evaluate MLLMs' spatial-temporal understanding through challenging tasks such as estimating and predicting the appearance, pose, displacement, and motion of objects. Our benchmark encompasses a wide range of robot and vehicle operations across desktop, indoor, and outdoor scenarios. The extensive experiments reveals that the state-of-the-art MLLMs still struggle in real-world spatial-temporal understanding, especially in tasks requiring precise distance estimation and motion analysis.
☆ StrokeFusion: Vector Sketch Generation via Joint Stroke-UDF Encoding and Latent Sequence Diffusion
In the field of sketch generation, raster-format trained models often produce non-stroke artifacts, while vector-format trained models typically lack a holistic understanding of sketches, leading to compromised recognizability. Moreover, existing methods struggle to extract common features from similar elements (e.g., eyes of animals) appearing at varying positions across sketches. To address these challenges, we propose StrokeFusion, a two-stage framework for vector sketch generation. It contains a dual-modal sketch feature learning network that maps strokes into a high-quality latent space. This network decomposes sketches into normalized strokes and jointly encodes stroke sequences with Unsigned Distance Function (UDF) maps, representing sketches as sets of stroke feature vectors. Building upon this representation, our framework exploits a stroke-level latent diffusion model that simultaneously adjusts stroke position, scale, and trajectory during generation. This enables high-fidelity sketch generation while supporting stroke interpolation editing. Extensive experiments on the QuickDraw dataset demonstrate that our framework outperforms state-of-the-art techniques, validating its effectiveness in preserving structural integrity and semantic features. Code and models will be made publicly available upon publication.
☆ Decoupled Distillation to Erase: A General Unlearning Method for Any Class-centric Tasks CVPR2025
In this work, we present DEcoupLEd Distillation To Erase (DELETE), a general and strong unlearning method for any class-centric tasks. To derive this, we first propose a theoretical framework to analyze the general form of unlearning loss and decompose it into forgetting and retention terms. Through the theoretical framework, we point out that a class of previous methods could be mainly formulated as a loss that implicitly optimizes the forgetting term while lacking supervision for the retention term, disturbing the distribution of pre-trained model and struggling to adequately preserve knowledge of the remaining classes. To address it, we refine the retention term using "dark knowledge" and propose a mask distillation unlearning method. By applying a mask to separate forgetting logits from retention logits, our approach optimizes both the forgetting and refined retention components simultaneously, retaining knowledge of the remaining classes while ensuring thorough forgetting of the target class. Without access to the remaining data or intervention (i.e., used in some works), we achieve state-of-the-art performance across various benchmarks. What's more, DELETE is a general solution that can be applied to various downstream tasks, including face recognition, backdoor defense, and semantic segmentation with great performance.
comment: CVPR2025, Equal contributions from first two authors
☆ Consistency-aware Self-Training for Iterative-based Stereo Matching CVPR 2025
Iterative-based methods have become mainstream in stereo matching due to their high performance. However, these methods heavily rely on labeled data and face challenges with unlabeled real-world data. To this end, we propose a consistency-aware self-training framework for iterative-based stereo matching for the first time, leveraging real-world unlabeled data in a teacher-student manner. We first observe that regions with larger errors tend to exhibit more pronounced oscillation characteristics during model prediction.Based on this, we introduce a novel consistency-aware soft filtering module to evaluate the reliability of teacher-predicted pseudo-labels, which consists of a multi-resolution prediction consistency filter and an iterative prediction consistency filter to assess the prediction fluctuations of multiple resolutions and iterative optimization respectively. Further, we introduce a consistency-aware soft-weighted loss to adjust the weight of pseudo-labels accordingly, relieving the error accumulation and performance degradation problem due to incorrect pseudo-labels. Extensive experiments demonstrate that our method can improve the performance of various iterative-based stereo matching approaches in various scenarios. In particular, our method can achieve further enhancements over the current SOTA methods on several benchmark datasets.
comment: Accepted by CVPR 2025
☆ Short-video Propagation Influence Rating: A New Real-world Dataset and A New Large Graph Model
Short-video platforms have gained immense popularity, captivating the interest of millions, if not billions, of users globally. Recently, researchers have highlighted the significance of analyzing the propagation of short-videos, which typically involves discovering commercial values, public opinions, user behaviors, etc. This paper proposes a new Short-video Propagation Influence Rating (SPIR) task and aims to promote SPIR from both the dataset and method perspectives. First, we propose a new Cross-platform Short-Video (XS-Video) dataset, which aims to provide a large-scale and real-world short-video propagation network across various platforms to facilitate the research on short-video propagation. Our XS-Video dataset includes 117,720 videos, 381,926 samples, and 535 topics across 5 biggest Chinese platforms, annotated with the propagation influence from level 0 to 9. To the best of our knowledge, this is the first large-scale short-video dataset that contains cross-platform data or provides all of the views, likes, shares, collects, fans, comments, and comment content. Second, we propose a Large Graph Model (LGM) named NetGPT, based on a novel three-stage training mechanism, to bridge heterogeneous graph-structured data with the powerful reasoning ability and knowledge of Large Language Models (LLMs). Our NetGPT can comprehend and analyze the short-video propagation graph, enabling it to predict the long-term propagation influence of short-videos. Comprehensive experimental results evaluated by both classification and regression metrics on our XS-Video dataset indicate the superiority of our method for SPIR.
☆ Every Painting Awakened: A Training-free Framework for Painting-to-Animation Generation
We introduce a training-free framework specifically designed to bring real-world static paintings to life through image-to-video (I2V) synthesis, addressing the persistent challenge of aligning these motions with textual guidance while preserving fidelity to the original artworks. Existing I2V methods, primarily trained on natural video datasets, often struggle to generate dynamic outputs from static paintings. It remains challenging to generate motion while maintaining visual consistency with real-world paintings. This results in two distinct failure modes: either static outputs due to limited text-based motion interpretation or distorted dynamics caused by inadequate alignment with real-world artistic styles. We leverage the advanced text-image alignment capabilities of pre-trained image models to guide the animation process. Our approach introduces synthetic proxy images through two key innovations: (1) Dual-path score distillation: We employ a dual-path architecture to distill motion priors from both real and synthetic data, preserving static details from the original painting while learning dynamic characteristics from synthetic frames. (2) Hybrid latent fusion: We integrate hybrid features extracted from real paintings and synthetic proxy images via spherical linear interpolation in the latent space, ensuring smooth transitions and enhancing temporal consistency. Experimental evaluations confirm that our approach significantly improves semantic alignment with text prompts while faithfully preserving the unique characteristics and integrity of the original paintings. Crucially, by achieving enhanced dynamic effects without requiring any model training or learnable parameters, our framework enables plug-and-play integration with existing I2V methods, making it an ideal solution for animating real-world paintings. More animated examples can be found on our project website.
comment: The project is available at: https://painting-animation.github.io/animation/
☆ AdaMMS: Model Merging for Heterogeneous Multimodal Large Language Models with Unsupervised Coefficient Optimization CVPR 2025
Recently, model merging methods have demonstrated powerful strengths in combining abilities on various tasks from multiple Large Language Models (LLMs). While previous model merging methods mainly focus on merging homogeneous models with identical architecture, they meet challenges when dealing with Multimodal Large Language Models (MLLMs) with inherent heterogeneous property, including differences in model architecture and the asymmetry in the parameter space. In this work, we propose AdaMMS, a novel model merging method tailored for heterogeneous MLLMs. Our method tackles the challenges in three steps: mapping, merging and searching. Specifically, we first design mapping function between models to apply model merging on MLLMs with different architecture. Then we apply linear interpolation on model weights to actively adapt the asymmetry in the heterogeneous MLLMs. Finally in the hyper-parameter searching step, we propose an unsupervised hyper-parameter selection method for model merging. As the first model merging method capable of merging heterogeneous MLLMs without labeled data, extensive experiments on various model combinations demonstrated that AdaMMS outperforms previous model merging methods on various vision-language benchmarks.
comment: CVPR 2025
☆ Investigation of intelligent barbell squat coaching system based on computer vision and machine learning
Purpose: Research has revealed that strength training can reduce the incidence of chronic diseases and physical deterioration at any age. Therefore, having a movement diagnostic system is crucial for training alone. Hence, this study developed an artificial intelligence and computer vision-based barbell squat coaching system with a real-time mode that immediately diagnoses the issue and provides feedback after each squat. In addition, a replay mode allows users to examine their previous squats and check their comments. Initially, four primary characteristics of the barbell squat were identified: body joint angles, dorsiflexion, the ratio of knee-to-hip movement, and barbell stability. Methods: We collect 8,151 squats from 77 participants, categorizing them as good squats and six issues. Then, we trained the diagnosis models with three machine-learning architectures. Furthermore, this research applied the SHapley Additive exPlanations (SHAP) method to enhance the accuracy of issue prediction and reduce the computation time by feature selection. Results: The F1 score of the six issues reached 86.86%, 69.01%, 77.42%, 90.74%, 95.83%, and 100%. Each squat diagnosis took less than 0.5 seconds. Finally, this study examined the efficacy of the proposed system with two groups of participants trained with and without the system. Subsequently, participants trained with the system exhibited substantial improvements in their squat technique, as assessed both by the system itself and by a professional weightlifting coach. Conclusion: This is a comprehensive study that integrates artificial intelligence, computer vision and multivariable processing technologies, aimed at building a real-time, user-friendly barbell squat feedback and training system.
☆ KOFFVQA: An Objectively Evaluated Free-form VQA Benchmark for Large Vision-Language Models in the Korean Language CVPR
The recent emergence of Large Vision-Language Models(VLMs) has resulted in a variety of different benchmarks for evaluating such models. Despite this, we observe that most existing evaluation methods suffer from the fact that they either require the model to choose from pre-determined responses, sacrificing open-endedness, or evaluate responses using a judge model, resulting in subjective and unreliable evaluation. In addition, we observe a lack of benchmarks for VLMs in the Korean language, which are necessary as a separate metric from more common English language benchmarks, as the performance of generative language models can differ significantly based on the language being used. Therefore, we present KOFFVQA, a general-purpose free-form visual question answering benchmark in the Korean language for the evaluation of VLMs. Our benchmark consists of 275 carefully crafted questions each paired with an image and grading criteria covering 10 different aspects of VLM performance. The grading criteria eliminate the problem of unreliability by allowing the judge model to grade each response based on a pre-determined set of rules. By defining the evaluation criteria in an objective manner, even a small open-source model can be used to evaluate models on our benchmark reliably. In addition to evaluating a large number of existing VLMs on our benchmark, we also experimentally verify that our method of using pre-existing grading criteria for evaluation is much more reliable than existing methods. Our evaluation code is available at https://github.com/maum-ai/KOFFVQA
comment: Accepted to CVPRW 2025, Workshop on Benchmarking and Expanding AI Multimodal Approaches
☆ Exploring Temporal Dynamics in Event-based Eye Tracker CVPR 2025
Eye-tracking is a vital technology for human-computer interaction, especially in wearable devices such as AR, VR, and XR. The realization of high-speed and high-precision eye-tracking using frame-based image sensors is constrained by their limited temporal resolution, which impairs the accurate capture of rapid ocular dynamics, such as saccades and blinks. Event cameras, inspired by biological vision systems, are capable of perceiving eye movements with extremely low power consumption and ultra-high temporal resolution. This makes them a promising solution for achieving high-speed, high-precision tracking with rich temporal dynamics. In this paper, we propose TDTracker, an effective eye-tracking framework that captures rapid eye movements by thoroughly modeling temporal dynamics from both implicit and explicit perspectives. TDTracker utilizes 3D convolutional neural networks to capture implicit short-term temporal dynamics and employs a cascaded structure consisting of a Frequency-aware Module, GRU, and Mamba to extract explicit long-term temporal dynamics. Ultimately, a prediction heatmap is used for eye coordinate regression. Experimental results demonstrate that TDTracker achieves state-of-the-art (SOTA) performance on the synthetic SEET dataset and secured Third place in the CVPR event-based eye-tracking challenge 2025. Our code is available at https://github.com/rhwxmx/TDTracker.
comment: Accepted by CVPR 2025 Event-based Vision Workshop
☆ LATex: Leveraging Attribute-based Text Knowledge for Aerial-Ground Person Re-Identification
Aerial-Ground person Re-IDentification (AG-ReID) aims to retrieve specific persons across heterogeneous cameras in different views. Previous methods usually adopt large-scale models, focusing on view-invariant features. However, they overlook the semantic information in person attributes. Additionally, existing training strategies often rely on full fine-tuning large-scale models, which significantly increases training costs. To address these issues, we propose a novel framework named LATex for AG-ReID, which adopts prompt-tuning strategies to leverage attribute-based text knowledge. More specifically, we first introduce the Contrastive Language-Image Pre-training (CLIP) model as the backbone, and propose an Attribute-aware Image Encoder (AIE) to extract global semantic features and attribute-aware features. Then, with these features, we propose a Prompted Attribute Classifier Group (PACG) to generate person attribute predictions and obtain the encoded representations of predicted attributes. Finally, we design a Coupled Prompt Template (CPT) to transform attribute tokens and view information into structured sentences. These sentences are processed by the text encoder of CLIP to generate more discriminative features. As a result, our framework can fully leverage attribute-based text knowledge to improve the AG-ReID. Extensive experiments on three AG-ReID benchmarks demonstrate the effectiveness of our proposed LATex. The source code will be available.
☆ Effective Cloud Removal for Remote Sensing Images by an Improved Mean-Reverting Denoising Model with Elucidated Design Space
Cloud removal (CR) remains a challenging task in remote sensing image processing. Although diffusion models (DM) exhibit strong generative capabilities, their direct applications to CR are suboptimal, as they generate cloudless images from random noise, ignoring inherent information in cloudy inputs. To overcome this drawback, we develop a new CR model EMRDM based on mean-reverting diffusion models (MRDMs) to establish a direct diffusion process between cloudy and cloudless images. Compared to current MRDMs, EMRDM offers a modular framework with updatable modules and an elucidated design space, based on a reformulated forward process and a new ordinary differential equation (ODE)-based backward process. Leveraging our framework, we redesign key MRDM modules to boost CR performance, including restructuring the denoiser via a preconditioning technique, reorganizing the training process, and improving the sampling process by introducing deterministic and stochastic samplers. To achieve multi-temporal CR, we further develop a denoising network for simultaneously denoising sequential images. Experiments on mono-temporal and multi-temporal datasets demonstrate the superior performance of EMRDM. Our code is available at https://github.com/Ly403/EMRDM.
comment: 29 pages, 12 figures
☆ HOIGen-1M: A Large-scale Dataset for Human-Object Interaction Video Generation CVPR 2025
Text-to-video (T2V) generation has made tremendous progress in generating complicated scenes based on texts. However, human-object interaction (HOI) often cannot be precisely generated by current T2V models due to the lack of large-scale videos with accurate captions for HOI. To address this issue, we introduce HOIGen-1M, the first largescale dataset for HOI Generation, consisting of over one million high-quality videos collected from diverse sources. In particular, to guarantee the high quality of videos, we first design an efficient framework to automatically curate HOI videos using the powerful multimodal large language models (MLLMs), and then the videos are further cleaned by human annotators. Moreover, to obtain accurate textual captions for HOI videos, we design a novel video description method based on a Mixture-of-Multimodal-Experts (MoME) strategy that not only generates expressive captions but also eliminates the hallucination by individual MLLM. Furthermore, due to the lack of an evaluation framework for generated HOI videos, we propose two new metrics to assess the quality of generated videos in a coarse-to-fine manner. Extensive experiments reveal that current T2V models struggle to generate high-quality HOI videos and confirm that our HOIGen-1M dataset is instrumental for improving HOI video generation. Project webpage is available at https://liuqi-creat.github.io/HOIGen.github.io.
comment: CVPR 2025
☆ ElimPCL: Eliminating Noise Accumulation with Progressive Curriculum Labeling for Source-Free Domain Adaptation ICME 2025
Source-Free Domain Adaptation (SFDA) aims to train a target model without source data, and the key is to generate pseudo-labels using a pre-trained source model. However, we observe that the source model often produces highly uncertain pseudo-labels for hard samples, particularly those heavily affected by domain shifts, leading to these noisy pseudo-labels being introduced even before adaptation and further reinforced through parameter updates. Additionally, they continuously influence neighbor samples through propagation in the feature space.To eliminate the issue of noise accumulation, we propose a novel Progressive Curriculum Labeling (ElimPCL) method, which iteratively filters trustworthy pseudo-labeled samples based on prototype consistency to exclude high-noise samples from training. Furthermore, a Dual MixUP technique is designed in the feature space to enhance the separability of hard samples, thereby mitigating the interference of noisy samples on their neighbors.Extensive experiments validate the effectiveness of ElimPCL, achieving up to a 3.4% improvement on challenging tasks compared to state-of-the-art methods.
comment: ICME 2025 camera-ready
☆ Expanding-and-Shrinking Binary Neural Networks
While binary neural networks (BNNs) offer significant benefits in terms of speed, memory and energy, they encounter substantial accuracy degradation in challenging tasks compared to their real-valued counterparts. Due to the binarization of weights and activations, the possible values of each entry in the feature maps generated by BNNs are strongly constrained. To tackle this limitation, we propose the expanding-and-shrinking operation, which enhances binary feature maps with negligible increase of computation complexity, thereby strengthening the representation capacity. Extensive experiments conducted on multiple benchmarks reveal that our approach generalizes well across diverse applications ranging from image classification, object detection to generative diffusion model, while also achieving remarkable improvement over various leading binarization algorithms based on different architectures including both CNNs and Transformers.
☆ 3D Dental Model Segmentation with Geometrical Boundary Preserving
3D intraoral scan mesh is widely used in digital dentistry diagnosis, segmenting 3D intraoral scan mesh is a critical preliminary task. Numerous approaches have been devised for precise tooth segmentation. Currently, the deep learning-based methods are capable of the high accuracy segmentation of crown. However, the segmentation accuracy at the junction between the crown and the gum is still below average. Existing down-sampling methods are unable to effectively preserve the geometric details at the junction. To address these problems, we propose CrossTooth, a boundary-preserving segmentation method that combines 3D mesh selective downsampling to retain more vertices at the tooth-gingiva area, along with cross-modal discriminative boundary features extracted from multi-view rendered images, enhancing the geometric representation of the segmentation network. Using a point network as a backbone and incorporating image complementary features, CrossTooth significantly improves segmentation accuracy, as demonstrated by experiments on a public intraoral scan dataset.
comment: The IEEE/CVF Conference on Computer Vision and Pattern Recognition 2025
☆ Detail-aware multi-view stereo network for depth estimation
Multi-view stereo methods have achieved great success for depth estimation based on the coarse-to-fine depth learning frameworks, however, the existing methods perform poorly in recovering the depth of object boundaries and detail regions. To address these issues, we propose a detail-aware multi-view stereo network (DA-MVSNet) with a coarse-to-fine framework. The geometric depth clues hidden in the coarse stage are utilized to maintain the geometric structural relationships between object surfaces and enhance the expressive capability of image features. In addition, an image synthesis loss is employed to constrain the gradient flow for detailed regions and further strengthen the supervision of object boundaries and texture-rich areas. Finally, we propose an adaptive depth interval adjustment strategy to improve the accuracy of object reconstruction. Extensive experiments on the DTU and Tanks & Temples datasets demonstrate that our method achieves competitive results. The code is available at https://github.com/wsmtht520-/DAMVSNet.
☆ The Devil is in the Distributions: Explicit Modeling of Scene Content is Key in Zero-Shot Video Captioning
Zero-shot video captioning requires that a model generate high-quality captions without human-annotated video-text pairs for training. State-of-the-art approaches to the problem leverage CLIP to extract visual-relevant textual prompts to guide language models in generating captions. These methods tend to focus on one key aspect of the scene and build a caption that ignores the rest of the visual input. To address this issue, and generate more accurate and complete captions, we propose a novel progressive multi-granularity textual prompting strategy for zero-shot video captioning. Our approach constructs three distinct memory banks, encompassing noun phrases, scene graphs of noun phrases, and entire sentences. Moreover, we introduce a category-aware retrieval mechanism that models the distribution of natural language surrounding the specific topics in question. Extensive experiments demonstrate the effectiveness of our method with 5.7%, 16.2%, and 3.4% improvements in terms of the main metric CIDEr on MSR-VTT, MSVD, and VATEX benchmarks compared to existing state-of-the-art.
comment: 13 pages
RIG: Synergizing Reasoning and Imagination in End-to-End Generalist Policy
Reasoning before action and imagining potential outcomes (i.e., world models) are essential for embodied agents operating in complex open-world environments. Yet, prior work either incorporates only one of these abilities in an end-to-end agent or integrates multiple specialized models into an agent system, limiting the learning efficiency and generalization of the policy. Thus, this paper makes the first attempt to synergize Reasoning and Imagination in an end-to-end Generalist policy, termed RIG. To train RIG in an end-to-end manner, we construct a data pipeline that progressively integrates and enriches the content of imagination and reasoning in the trajectories collected from existing agents. The joint learning of reasoning and next image generation explicitly models the inherent correlation between reasoning, action, and dynamics of environments, and thus exhibits more than $17\times$ sample efficiency improvements and generalization in comparison with previous works. During inference, RIG first reasons about the next action, produces potential action, and then predicts the action outcomes, which offers the agent a chance to review and self-correct based on the imagination before taking real actions. Experimental results show that the synergy of reasoning and imagination not only improves the robustness, generalization, and interoperability of generalist policy but also enables test-time scaling to enhance overall performance.
♻ ☆ Hi3DGen: High-fidelity 3D Geometry Generation from Images via Normal Bridging
With the growing demand for high-fidelity 3D models from 2D images, existing methods still face significant challenges in accurately reproducing fine-grained geometric details due to limitations in domain gaps and inherent ambiguities in RGB images. To address these issues, we propose Hi3DGen, a novel framework for generating high-fidelity 3D geometry from images via normal bridging. Hi3DGen consists of three key components: (1) an image-to-normal estimator that decouples the low-high frequency image pattern with noise injection and dual-stream training to achieve generalizable, stable, and sharp estimation; (2) a normal-to-geometry learning approach that uses normal-regularized latent diffusion learning to enhance 3D geometry generation fidelity; and (3) a 3D data synthesis pipeline that constructs a high-quality dataset to support training. Extensive experiments demonstrate the effectiveness and superiority of our framework in generating rich geometric details, outperforming state-of-the-art methods in terms of fidelity. Our work provides a new direction for high-fidelity 3D geometry generation from images by leveraging normal maps as an intermediate representation.
comment: https://stable-x.github.io/Hi3DGen
♻ ☆ Disentangled 4D Gaussian Splatting: Towards Faster and More Efficient Dynamic Scene Rendering
Novel-view synthesis (NVS) for dynamic scenes from 2D images presents significant challenges due to the spatial complexity and temporal variability of such scenes. Recently, inspired by the remarkable success of NVS using 3D Gaussian Splatting (3DGS), researchers have sought to extend 3D Gaussian models to four dimensions (4D) for dynamic novel-view synthesis. However, methods based on 4D rotation and scaling introduce spatiotemporal deformation into the 4D covariance matrix, necessitating the slicing of 4D Gaussians into 3D Gaussians. This process increases redundant computations as timestamps change-an inherent characteristic of dynamic scene rendering. Additionally, performing calculations on a four-dimensional matrix is computationally intensive. In this paper, we introduce Disentangled 4D Gaussian Splatting (Disentangled4DGS), a novel representation and rendering approach that disentangles temporal and spatial deformations, thereby eliminating the reliance on 4D matrix computations. We extend the 3DGS rendering process to 4D, enabling the projection of temporal and spatial deformations into dynamic 2D Gaussians in ray space. Consequently, our method facilitates faster dynamic scene synthesis. Moreover, it reduces storage requirements by at least 4.5\% due to our efficient presentation method. Our approach achieves an unprecedented average rendering speed of 343 FPS at a resolution of $1352\times1014$ on an RTX 3090 GPU, with experiments across multiple benchmarks demonstrating its competitive performance in both monocular and multi-view scenarios.
♻ ☆ A Double Deep Learning-based Solution for Efficient Event Data Coding and Classification
Event cameras have the ability to capture asynchronous per-pixel brightness changes, called "events", offering advantages over traditional frame-based cameras for computer vision applications. Efficiently coding event data is critical for transmission and storage, given the significant volume of events. This paper proposes a novel double deep learning-based architecture for both event data coding and classification, using a point cloud-based representation for events. In this context, the conversions from events to point clouds and back to events are key steps in the proposed solution, and therefore its impact is evaluated in terms of compression and classification performance. Experimental results show that it is possible to achieve a classification performance of compressed events which is similar to one of the original events, even after applying a lossy point cloud codec, notably the recent learning-based JPEG Pleno Point Cloud Coding standard, with a clear rate reduction. Experimental results also demonstrate that events coded using JPEG PCC achieve better classification performance than those coded using the conventional lossy MPEG Geometry-based Point Cloud Coding standard. Furthermore, the adoption of learning-based coding offers high potential for performing computer vision tasks in the compressed domain, which allows skipping the decoding stage while mitigating the impact of coding artifacts.
♻ ☆ Reversible Decoupling Network for Single Image Reflection Removal CVPR 2025
Recent deep-learning-based approaches to single-image reflection removal have shown promising advances, primarily for two reasons: 1) the utilization of recognition-pretrained features as inputs, and 2) the design of dual-stream interaction networks. However, according to the Information Bottleneck principle, high-level semantic clues tend to be compressed or discarded during layer-by-layer propagation. Additionally, interactions in dual-stream networks follow a fixed pattern across different layers, limiting overall performance. To address these limitations, we propose a novel architecture called Reversible Decoupling Network (RDNet), which employs a reversible encoder to secure valuable information while flexibly decoupling transmission- and reflection-relevant features during the forward pass. Furthermore, we customize a transmission-rate-aware prompt generator to dynamically calibrate features, further boosting performance. Extensive experiments demonstrate the superiority of RDNet over existing SOTA methods on five widely-adopted benchmark datasets. RDNet achieves the best performance in the NTIRE 2025 Single Image Reflection Removal in the Wild Challenge in both fidelity and perceptual comparison. Our code is available at https://github.com/lime-j/RDNet
comment: To appear at CVPR 2025
♻ ☆ Perceptually Accurate 3D Talking Head Generation: New Definitions, Speech-Mesh Representation, and Evaluation Metrics CVPR 2025
Recent advancements in speech-driven 3D talking head generation have made significant progress in lip synchronization. However, existing models still struggle to capture the perceptual alignment between varying speech characteristics and corresponding lip movements. In this work, we claim that three criteria -- Temporal Synchronization, Lip Readability, and Expressiveness -- are crucial for achieving perceptually accurate lip movements. Motivated by our hypothesis that a desirable representation space exists to meet these three criteria, we introduce a speech-mesh synchronized representation that captures intricate correspondences between speech signals and 3D face meshes. We found that our learned representation exhibits desirable characteristics, and we plug it into existing models as a perceptual loss to better align lip movements to the given speech. In addition, we utilize this representation as a perceptual metric and introduce two other physically grounded lip synchronization metrics to assess how well the generated 3D talking heads align with these three criteria. Experiments show that training 3D talking head generation models with our perceptual loss significantly improve all three aspects of perceptually accurate lip synchronization. Codes and datasets are available at https://perceptual-3d-talking-head.github.io/.
comment: CVPR 2025. Project page: https://perceptual-3d-talking-head.github.io/
♻ ☆ The impact of internal variability on benchmarking deep learning climate emulators
Full-complexity Earth system models (ESMs) are computationally very expensive, limiting their use in exploring the climate outcomes of multiple emission pathways. More efficient emulators that approximate ESMs can directly map emissions onto climate outcomes, and benchmarks are being used to evaluate their accuracy on standardized tasks and datasets. We investigate a popular benchmark in data-driven climate emulation, ClimateBench, on which deep learning-based emulators are currently achieving the best performance. We compare these deep learning emulators with a linear regression-based emulator, akin to pattern scaling, and show that it outperforms the incumbent 100M-parameter deep learning foundation model, ClimaX, on 3 out of 4 regionally-resolved climate variables, notably surface temperature and precipitation. While emulating surface temperature is expected to be predominantly linear, this result is surprising for emulating precipitation. Precipitation is a much more noisy variable, and we show that deep learning emulators can overfit to internal variability noise at low frequencies, degrading their performance in comparison to a linear emulator. We address the issue of overfitting by increasing the number of climate simulations per emission pathway (from 3 to 50) and updating the benchmark targets with the respective ensemble averages from the MPI-ESM1.2-LR model. Using the new targets, we show that linear pattern scaling continues to be more accurate on temperature, but can be outperformed by a deep learning-based technique for emulating precipitation. We publish our code and data at github.com/blutjens/climate-emulator.
♻ ☆ CASA: Class-Agnostic Shared Attributes in Vision-Language Models for Efficient Incremental Object Detection
Incremental object detection is fundamentally challenged by catastrophic forgetting. A major factor contributing to this issue is background shift, where background categories in sequential tasks may overlap with either previously learned or future unseen classes. To address this, we propose a novel method called Class-Agnostic Shared Attribute Base (CASA) that encourages the model to learn category-agnostic attributes shared across incremental classes. Our approach leverages an LLM to generate candidate textual attributes, selects the most relevant ones based on the current training data, and records their importance in an assignment matrix. For subsequent tasks, the retained attributes are frozen, and new attributes are selected from the remaining candidates, ensuring both knowledge retention and adaptability. Extensive experiments on the COCO dataset demonstrate the state-of-the-art performance of our method.
♻ ☆ Finer-CAM: Spotting the Difference Reveals Finer Details for Visual Explanation CVPR 2025
Class activation map (CAM) has been widely used to highlight image regions that contribute to class predictions. Despite its simplicity and computational efficiency, CAM often struggles to identify discriminative regions that distinguish visually similar fine-grained classes. Prior efforts address this limitation by introducing more sophisticated explanation processes, but at the cost of extra complexity. In this paper, we propose Finer-CAM, a method that retains CAM's efficiency while achieving precise localization of discriminative regions. Our key insight is that the deficiency of CAM lies not in "how" it explains, but in "what" it explains. Specifically, previous methods attempt to identify all cues contributing to the target class's logit value, which inadvertently also activates regions predictive of visually similar classes. By explicitly comparing the target class with similar classes and spotting their differences, Finer-CAM suppresses features shared with other classes and emphasizes the unique, discriminative details of the target class. Finer-CAM is easy to implement, compatible with various CAM methods, and can be extended to multi-modal models for accurate localization of specific concepts. Additionally, Finer-CAM allows adjustable comparison strength, enabling users to selectively highlight coarse object contours or fine discriminative details. Quantitatively, we show that masking out the top 5% of activated pixels by Finer-CAM results in a larger relative confidence drop compared to baselines. The source code and demo are available at https://github.com/Imageomics/Finer-CAM.
comment: Accepted by CVPR 2025
♻ ☆ DICE: Discrete Inversion Enabling Controllable Editing for Multinomial Diffusion and Masked Generative Models CVPR 2025
Discrete diffusion models have achieved success in tasks like image generation and masked language modeling but face limitations in controlled content editing. We introduce DICE (Discrete Inversion for Controllable Editing), the first approach to enable precise inversion for discrete diffusion models, including multinomial diffusion and masked generative models. By recording noise sequences and masking patterns during the reverse diffusion process, DICE enables accurate reconstruction and flexible editing of discrete data without the need for predefined masks or attention manipulation. We demonstrate the effectiveness of DICE across both image and text domains, evaluating it on models such as VQ-Diffusion, Paella, and RoBERTa. Our results show that DICE preserves high data fidelity while enhancing editing capabilities, offering new opportunities for fine-grained content manipulation in discrete spaces.
comment: Project webpage: https://hexiaoxiao-cs.github.io/DICE/. This paper was accepted to CVPR 2025 but later desk-rejected post camera-ready, due to a withdrawal from ICLR made 14 days before reviewer assignment
♻ ☆ Gen3DSR: Generalizable 3D Scene Reconstruction via Divide and Conquer from a Single View 3DV 2025
Single-view 3D reconstruction is currently approached from two dominant perspectives: reconstruction of scenes with limited diversity using 3D data supervision or reconstruction of diverse singular objects using large image priors. However, real-world scenarios are far more complex and exceed the capabilities of these methods. We therefore propose a hybrid method following a divide-and-conquer strategy. We first process the scene holistically, extracting depth and semantic information, and then leverage an object-level method for the detailed reconstruction of individual components. By splitting the problem into simpler tasks, our system is able to generalize to various types of scenes without retraining or fine-tuning. We purposely design our pipeline to be highly modular with independent, self-contained modules, to avoid the need for end-to-end training of the whole system. This enables the pipeline to naturally improve as future methods can replace the individual modules. We demonstrate the reconstruction performance of our approach on both synthetic and real-world scenes, comparing favorable against prior works. Project page: https://andreeadogaru.github.io/Gen3DSR
comment: 3DV 2025 camera ready
♻ ☆ DH-Mamba: Exploring Dual-domain Hierarchical State Space Models for MRI Reconstruction
The accelerated MRI reconstruction poses a challenging ill-posed inverse problem due to the significant undersampling in k-space. Deep neural networks, such as CNNs and ViTs, have shown substantial performance improvements for this task while encountering the dilemma between global receptive fields and efficient computation. To this end, this paper explores selective state space models (Mamba), a new paradigm for long-range dependency modeling with linear complexity, for efficient and effective MRI reconstruction. However, directly applying Mamba to MRI reconstruction faces three significant issues: (1) Mamba typically flattens 2D images into distinct 1D sequences along rows and columns, disrupting k-space's unique spectrum and leaving its potential in k-space learning unexplored. (2) Existing approaches adopt multi-directional lengthy scanning to unfold images at the pixel level, leading to long-range forgetting and high computational burden. (3) Mamba struggles with spatially-varying contents, resulting in limited diversity of local representations. To address these, we propose a dual-domain hierarchical Mamba for MRI reconstruction from the following perspectives: (1) We pioneer vision Mamba in k-space learning. A circular scanning is customized for spectrum unfolding, benefiting the global modeling of k-space. (2) We propose a hierarchical Mamba with an efficient scanning strategy in both image and k-space domains. It mitigates long-range forgetting and achieves a better trade-off between efficiency and performance. (3) We develop a local diversity enhancement module to improve the spatially-varying representation of Mamba. Extensive experiments are conducted on three public datasets for MRI reconstruction under various undersampling patterns. Comprehensive results demonstrate that our method significantly outperforms state-of-the-art methods with lower computational cost.
♻ ☆ MoMuSE: Momentum Multi-modal Target Speaker Extraction for Real-time Scenarios with Impaired Visual Cues
Audio-visual Target Speaker Extraction (AV-TSE) aims to isolate the speech of a specific target speaker from an audio mixture using time-synchronized visual cues. In real-world scenarios, visual cues are not always available due to various impairments, which undermines the stability of AV-TSE. Despite this challenge, humans can maintain attentional momentum over time, even when the target speaker is not visible. In this paper, we introduce the Momentum Multi-modal target Speaker Extraction (MoMuSE), which retains a speaker identity momentum in memory, enabling the model to continuously track the target speaker. Designed for real-time inference, MoMuSE extracts the current speech window with guidance from both visual cues and dynamically updated speaker momentum. Experimental results demonstrate that MoMuSE exhibits significant improvement, particularly in scenarios with severe impairment of visual cues.
♻ ☆ Bayesian Learning-driven Prototypical Contrastive Loss for Class-Incremental Learning
The primary objective of methods in continual learning is to learn tasks in a sequential manner over time (sometimes from a stream of data), while mitigating the detrimental phenomenon of catastrophic forgetting. This paper proposes a method to learn an effective representation between previous and newly encountered class prototypes. We propose a prototypical network with a Bayesian learning-driven contrastive loss (BLCL), tailored specifically for class-incremental learning scenarios. We introduce a contrastive loss that incorporates novel classes into the latent representation by reducing intra-class and increasing inter-class distance. Our approach dynamically adapts the balance between the cross-entropy and contrastive loss functions with a Bayesian learning technique. Experimental results conducted on the CIFAR-10, CIFAR-100, and ImageNet100 datasets for image classification and images of a GNSS-based dataset for interference classification validate the efficacy of our method, showcasing its superiority over existing state-of-the-art approaches. Git: https://gitlab.cc-asp.fraunhofer.de/darcy_gnss/gnss_class_incremental_learning
comment: 27 pages, 22 figures
♻ ☆ Convolutional Kolmogorov-Arnold Networks
In this paper, we present Convolutional Kolmogorov-Arnold Networks, a novel architecture that integrates the learnable spline-based activation functions of Kolmogorov-Arnold Networks (KANs) into convolutional layers. By replacing traditional fixed-weight kernels with learnable non-linear functions, Convolutional KANs offer a significant improvement in parameter efficiency and expressive power over standard Convolutional Neural Networks (CNNs). We empirically evaluate Convolutional KANs on the Fashion-MNIST dataset, demonstrating competitive accuracy with up to 50% fewer parameters compared to baseline classic convolutions. This suggests that the KAN Convolution can effectively capture complex spatial relationships with fewer resources, offering a promising alternative for parameter-efficient deep learning models.
♻ ☆ LoRA Subtraction for Drift-Resistant Space in Exemplar-Free Continual Learning CVPR 2025
In continual learning (CL), catastrophic forgetting often arises due to feature drift. This challenge is particularly prominent in the exemplar-free continual learning (EFCL) setting, where samples from previous tasks cannot be retained, making it difficult to preserve prior knowledge. To address this issue, some EFCL methods aim to identify feature spaces that minimize the impact on previous tasks while accommodating new ones. However, they rely on static features or outdated statistics stored from old tasks, which prevents them from capturing the dynamic evolution of the feature space in CL, leading to performance degradation over time. In this paper, we introduce the Drift-Resistant Space (DRS), which effectively handles feature drifts without requiring explicit feature modeling or the storage of previous tasks. A novel parameter-efficient fine-tuning approach called Low-Rank Adaptation Subtraction (LoRA-) is proposed to develop the DRS. This method subtracts the LoRA weights of old tasks from the initial pre-trained weight before processing new task data to establish the DRS for model training. Therefore, LoRA- enhances stability, improves efficiency, and simplifies implementation. Furthermore, stabilizing feature drifts allows for better plasticity by learning with a triplet loss. Our method consistently achieves state-of-the-art results, especially for long task sequences, across multiple datasets.
comment: Accepted to CVPR 2025
♻ ☆ InPK: Infusing Prior Knowledge into Prompt for Vision-Language Models
Prompt tuning has become a popular strategy for adapting Vision-Language Models (VLMs) to zero/few-shot visual recognition tasks. Some prompting techniques introduce prior knowledge due to its richness, but when learnable tokens are randomly initialized and disconnected from prior knowledge, they tend to overfit on seen classes and struggle with domain shifts for unseen ones. To address this issue, we propose the InPK model, which infuses class-specific prior knowledge into the learnable tokens during initialization, thus enabling the model to explicitly focus on class-relevant information. Furthermore, to mitigate the weakening of class information by multi-layer encoders, we continuously reinforce the interaction between learnable tokens and prior knowledge across multiple feature levels. This progressive interaction allows the learnable tokens to better capture the fine-grained differences and universal visual concepts within prior knowledge, enabling the model to extract more discriminative and generalized text features. Even for unseen classes, the learned interaction allows the model to capture their common representations and infer their appropriate positions within the existing semantic structure. Moreover, we introduce a learnable text-to-vision projection layer to accommodate the text adjustments, ensuring better alignment of visual-text semantics. Extensive experiments on 11 recognition datasets show that InPK significantly outperforms state-of-the-art methods in multiple zero/few-shot image classification tasks.
♻ ☆ Cropper: Vision-Language Model for Image Cropping through In-Context Learning
The goal of image cropping is to identify visually appealing crops in an image. Conventional methods are trained on specific datasets and fail to adapt to new requirements. Recent breakthroughs in large vision-language models (VLMs) enable visual in-context learning without explicit training. However, downstream tasks with VLMs remain under explored. In this paper, we propose an effective approach to leverage VLMs for image cropping. First, we propose an efficient prompt retrieval mechanism for image cropping to automate the selection of in-context examples. Second, we introduce an iterative refinement strategy to iteratively enhance the predicted crops. The proposed framework, we refer to as Cropper, is applicable to a wide range of cropping tasks, including free-form cropping, subject-aware cropping, and aspect ratio-aware cropping. Extensive experiments demonstrate that Cropper significantly outperforms state-of-the-art methods across several benchmarks.
♻ ☆ Singular Value Scaling: Efficient Generative Model Compression via Pruned Weights Refinement AAAI 2025
While pruning methods effectively maintain model performance without extra training costs, they often focus solely on preserving crucial connections, overlooking the impact of pruned weights on subsequent fine-tuning or distillation, leading to inefficiencies. Moreover, most compression techniques for generative models have been developed primarily for GANs, tailored to specific architectures like StyleGAN, and research into compressing Diffusion models has just begun. Even more, these methods are often applicable only to GANs or Diffusion models, highlighting the need for approaches that work across both model types. In this paper, we introduce Singular Value Scaling (SVS), a versatile technique for refining pruned weights, applicable to both model types. Our analysis reveals that pruned weights often exhibit dominant singular vectors, hindering fine-tuning efficiency and leading to suboptimal performance compared to random initialization. Our method enhances weight initialization by minimizing the disparities between singular values of pruned weights, thereby improving the fine-tuning process. This approach not only guides the compressed model toward superior solutions but also significantly speeds up fine-tuning. Extensive experiments on StyleGAN2, StyleGAN3 and DDPM demonstrate that SVS improves compression performance across model types without additional training costs. Our code is available at: https://github.com/LAIT-CVLab/Singular-Value-Scaling.
comment: Accepted to AAAI 2025
♻ ☆ MagicDistillation: Weak-to-Strong Video Distillation for Large-Scale Few-Step Synthesis
Recently, open-source video diffusion models (VDMs), such as WanX, Magic141 and HunyuanVideo, have been scaled to over 10 billion parameters. These large-scale VDMs have demonstrated significant improvements over smaller-scale VDMs across multiple dimensions, including enhanced visual quality and more natural motion dynamics. However, these models face two major limitations: (1) High inference overhead: Large-scale VDMs require approximately 10 minutes to synthesize a 28-step video on a single H100 GPU. (2) Limited in portrait video synthesis: Models like WanX-I2V and HunyuanVideo-I2V often produce unnatural facial expressions and movements in portrait videos. To address these challenges, we propose MagicDistillation, a novel framework designed to reduce inference overhead while ensuring the generalization of VDMs for portrait video synthesis. Specifically, we primarily use sufficiently high-quality talking video to fine-tune Magic141, which is dedicated to portrait video synthesis. We then employ LoRA to effectively and efficiently fine-tune the fake DiT within the step distillation framework known as distribution matching distillation (DMD). Following this, we apply weak-to-strong (W2S) distribution matching and minimize the discrepancy between the fake data distribution and the ground truth distribution, thereby improving the visual fidelity and motion dynamics of the synthesized videos. Experimental results on portrait video synthesis demonstrate the effectiveness of MagicDistillation, as our method surpasses Euler, LCM, and DMD baselines in both FID/FVD metrics and VBench. Moreover, MagicDistillation, requiring only 4 steps, also outperforms WanX-I2V (14B) and HunyuanVideo-I2V (13B) on visualization and VBench. Our project page is https://magicdistillation.github.io/MagicDistillation/.
♻ ☆ Beyond Walking: A Large-Scale Image-Text Benchmark for Text-based Person Anomaly Search
Text-based person search aims to retrieve specific individuals across camera networks using natural language descriptions. However, current benchmarks often exhibit biases towards common actions like walking or standing, neglecting the critical need for identifying abnormal behaviors in real-world scenarios. To meet such demands, we propose a new task, text-based person anomaly search, locating pedestrians engaged in both routine or anomalous activities via text. To enable the training and evaluation of this new task, we construct a large-scale image-text Pedestrian Anomaly Behavior (PAB) benchmark, featuring a broad spectrum of actions, e.g., running, performing, playing soccer, and the corresponding anomalies, e.g., lying, being hit, and falling of the same identity. The training set of PAB comprises 1,013,605 synthesized image-text pairs of both normalities and anomalies, while the test set includes 1,978 real-world image-text pairs. To validate the potential of PAB, we introduce a cross-modal pose-aware framework, which integrates human pose patterns with identity-based hard negative pair sampling. Extensive experiments on the proposed benchmark show that synthetic training data facilitates the fine-grained behavior retrieval, and the proposed pose-aware method arrives at 84.93% recall@1 accuracy, surpassing other competitive methods. The dataset, model, and code are available at https://github.com/Shuyu-XJTU/CMP.
♻ ☆ Data-free Universal Adversarial Perturbation with Pseudo-semantic Prior CVPR 2025
Data-free Universal Adversarial Perturbation (UAP) is an image-agnostic adversarial attack that deceives deep neural networks using a single perturbation generated solely from random noise without relying on data priors. However, traditional data-free UAP methods often suffer from limited transferability due to the absence of semantic content in random noise. To address this issue, we propose a novel data-free universal attack method that recursively extracts pseudo-semantic priors directly from the UAPs during training to enrich the semantic content within the data-free UAP framework. Our approach effectively leverages latent semantic information within UAPs via region sampling, enabling successful input transformations-typically ineffective in traditional data-free UAP methods due to the lack of semantic cues-and significantly enhancing black-box transferability. Furthermore, we introduce a sample reweighting technique to mitigate potential imbalances from random sampling and transformations, emphasizing hard examples less affected by the UAPs. Comprehensive experiments on ImageNet show that our method achieves state-of-the-art performance in average fooling rate by a substantial margin, notably improves attack transferability across various CNN architectures compared to existing data-free UAP methods, and even surpasses data-dependent UAP methods. Code is available at: https://github.com/ChnanChan/PSP-UAP.
comment: CVPR 2025
♻ ☆ Mitigating Cache Noise in Test-Time Adaptation for Large Vision-Language Models ICME 2025
Test-time adaptation (TTA) of visual language models has recently attracted significant attention as a solution to the performance degradation caused by distribution shifts in downstream tasks. However, existing cache-based TTA methods have certain limitations. They mainly rely on the accuracy of cached feature labels, and the presence of noisy pseudo-labels can cause these features to deviate from their true distribution. This makes cache retrieval methods based on similarity matching highly sensitive to outliers or extreme samples. Moreover, current methods lack effective mechanisms to model class distributions, which limits their ability to fully exploit the potential of cached information. To address these challenges, we introduce a comprehensive and reliable caching mechanism and propose a novel zero-shot TTA method called "Cache, Residual, Gaussian" (CRG). This method not only employs learnable residual parameters to better align positive and negative visual prototypes with text prototypes, thereby optimizing the quality of cached features, but also incorporates Gaussian Discriminant Analysis (GDA) to dynamically model intra-class feature distributions, further mitigating the impact of noisy features. Experimental results on 13 benchmarks demonstrate that CRG outperforms state-of-the-art TTA methods, showcasing exceptional robustness and adaptability.
comment: Accepted by ICME 2025 and ICLR 2025 Workshop on Foundation Models in the Wild
♻ ☆ Interpreting Low-level Vision Models with Causal Effect Maps
Deep neural networks have significantly improved the performance of low-level vision tasks but also increased the difficulty of interpretability. A deep understanding of deep models is beneficial for both network design and practical reliability. To take up this challenge, we introduce causality theory to interpret low-level vision models and propose a model-/task-agnostic method called Causal Effect Map (CEM). With CEM, we can visualize and quantify the input-output relationships on either positive or negative effects. After analyzing various low-level vision tasks with CEM, we have reached several interesting insights, such as: (1) Using more information of input images (e.g., larger receptive field) does NOT always yield positive outcomes. (2) Attempting to incorporate mechanisms with a global receptive field (e.g., channel attention) into image denoising may prove futile. (3) Integrating multiple tasks to train a general model could encourage the network to prioritize local information over global context. Based on the causal effect theory, the proposed diagnostic tool can refresh our common knowledge and bring a deeper understanding of low-level vision models. Codes are available at https://github.com/J-FHu/CEM.
♻ ☆ Gaussian Eigen Models for Human Heads CVPR25
Current personalized neural head avatars face a trade-off: lightweight models lack detail and realism, while high-quality, animatable avatars require significant computational resources, making them unsuitable for commodity devices. To address this gap, we introduce Gaussian Eigen Models (GEM), which provide high-quality, lightweight, and easily controllable head avatars. GEM utilizes 3D Gaussian primitives for representing the appearance combined with Gaussian splatting for rendering. Building on the success of mesh-based 3D morphable face models (3DMM), we define GEM as an ensemble of linear eigenbases for representing the head appearance of a specific subject. In particular, we construct linear bases to represent the position, scale, rotation, and opacity of the 3D Gaussians. This allows us to efficiently generate Gaussian primitives of a specific head shape by a linear combination of the basis vectors, only requiring a low-dimensional parameter vector that contains the respective coefficients. We propose to construct these linear bases (GEM) by distilling high-quality compute-intense CNN-based Gaussian avatar models that can generate expression-dependent appearance changes like wrinkles. These high-quality models are trained on multi-view videos of a subject and are distilled using a series of principal component analyses. Once we have obtained the bases that represent the animatable appearance space of a specific human, we learn a regressor that takes a single RGB image as input and predicts the low-dimensional parameter vector that corresponds to the shown facial expression. In a series of experiments, we compare GEM's self-reenactment and cross-person reenactment results to state-of-the-art 3D avatar methods, demonstrating GEM's higher visual quality and better generalization to new expressions.
comment: Accepted to CVPR25 Website: https://zielon.github.io/gem/
♻ ☆ Synthetic Prior for Few-Shot Drivable Head Avatar Inversion CVPR25
We present SynShot, a novel method for the few-shot inversion of a drivable head avatar based on a synthetic prior. We tackle three major challenges. First, training a controllable 3D generative network requires a large number of diverse sequences, for which pairs of images and high-quality tracked meshes are not always available. Second, the use of real data is strictly regulated (e.g., under the General Data Protection Regulation, which mandates frequent deletion of models and data to accommodate a situation when a participant's consent is withdrawn). Synthetic data, free from these constraints, is an appealing alternative. Third, state-of-the-art monocular avatar models struggle to generalize to new views and expressions, lacking a strong prior and often overfitting to a specific viewpoint distribution. Inspired by machine learning models trained solely on synthetic data, we propose a method that learns a prior model from a large dataset of synthetic heads with diverse identities, expressions, and viewpoints. With few input images, SynShot fine-tunes the pretrained synthetic prior to bridge the domain gap, modeling a photorealistic head avatar that generalizes to novel expressions and viewpoints. We model the head avatar using 3D Gaussian splatting and a convolutional encoder-decoder that outputs Gaussian parameters in UV texture space. To account for the different modeling complexities over parts of the head (e.g., skin vs hair), we embed the prior with explicit control for upsampling the number of per-part primitives. Compared to SOTA monocular and GAN-based methods, SynShot significantly improves novel view and expression synthesis.
comment: Accepted to CVPR25 Website: https://zielon.github.io/synshot/
♻ ☆ Adaptive Multi-step Refinement Network for Robust Point Cloud Registration
Point Cloud Registration (PCR) estimates the relative rigid transformation between two point clouds of the same scene. Despite significant progress with learning-based approaches, existing methods still face challenges when the overlapping region between the two point clouds is small. In this paper, we propose an adaptive multi-step refinement network that refines the registration quality at each step by leveraging the information from the preceding step. To achieve this, we introduce a training procedure and a refinement network. Firstly, to adapt the network to the current step, we utilize a generalized one-way attention mechanism, which prioritizes the last step's estimated overlapping region, and we condition the network on step indices. Secondly, instead of training the network to map either random transformations or a fixed pre-trained model's estimations to the ground truth, we train it on transformations with varying registration qualities, ranging from accurate to inaccurate, thereby enhancing the network's adaptiveness and robustness. Despite its conceptual simplicity, our method achieves state-of-the-art performance on both the 3DMatch/3DLoMatch and KITTI benchmarks. Notably, on 3DLoMatch, our method reaches 80.4% recall rate, with an absolute improvement of 1.2%.
comment: Accepted at TMLR'25
♻ ☆ Resilient Sensor Fusion under Adverse Sensor Failures via Multi-Modal Expert Fusion CVPR 2025
Modern autonomous driving perception systems utilize complementary multi-modal sensors, such as LiDAR and cameras. Although sensor fusion architectures enhance performance in challenging environments, they still suffer significant performance drops under severe sensor failures, such as LiDAR beam reduction, LiDAR drop, limited field of view, camera drop, and occlusion. This limitation stems from inter-modality dependencies in current sensor fusion frameworks. In this study, we introduce an efficient and robust LiDAR-camera 3D object detector, referred to as MoME, which can achieve robust performance through a mixture of experts approach. Our MoME fully decouples modality dependencies using three parallel expert decoders, which use camera features, LiDAR features, or a combination of both to decode object queries, respectively. We propose Multi-Expert Decoding (MED) framework, where each query is decoded selectively using one of three expert decoders. MoME utilizes an Adaptive Query Router (AQR) to select the most appropriate expert decoder for each query based on the quality of camera and LiDAR features. This ensures that each query is processed by the best-suited expert, resulting in robust performance across diverse sensor failure scenarios. We evaluated the performance of MoME on the nuScenes-R benchmark. Our MoME achieved state-of-the-art performance in extreme weather and sensor failure conditions, significantly outperforming the existing models across various sensor failure scenarios.
comment: Accepted to CVPR 2025
♻ ☆ RingMo-Aerial: An Aerial Remote Sensing Foundation Model With A Affine Transformation Contrastive Learning
Aerial Remote Sensing (ARS) vision tasks pose significant challenges due to the unique characteristics of their viewing angles. Existing research has primarily focused on algorithms for specific tasks, which have limited applicability in a broad range of ARS vision applications. This paper proposes the RingMo-Aerial model, aiming to fill the gap in foundation model research in the field of ARS vision. By introducing the Frequency-Enhanced Multi-Head Self-Attention (FE-MSA) mechanism and an affine transformation-based contrastive learning pre-training method, the model's detection capability for small targets is enhanced and optimized for the tilted viewing angles characteristic of ARS. Furthermore, the ARS-Adapter, an efficient parameter fine-tuning method, is proposed to improve the model's adaptability and effectiveness in various ARS vision tasks. Experimental results demonstrate that RingMo-Aerial achieves SOTA performance on multiple downstream tasks. This indicates the practicality and efficacy of RingMo-Aerial in enhancing the performance of ARS vision tasks.
♻ ☆ Bootstrap Your Own Views: Masked Ego-Exo Modeling for Fine-grained View-invariant Video Representations CVPR 2025
View-invariant representation learning from egocentric (first-person, ego) and exocentric (third-person, exo) videos is a promising approach toward generalizing video understanding systems across multiple viewpoints. However, this area has been underexplored due to the substantial differences in perspective, motion patterns, and context between ego and exo views. In this paper, we propose a novel masked ego-exo modeling that promotes both causal temporal dynamics and cross-view alignment, called Bootstrap Your Own Views (BYOV), for fine-grained view-invariant video representation learning from unpaired ego-exo videos. We highlight the importance of capturing the compositional nature of human actions as a basis for robust cross-view understanding. Specifically, self-view masking and cross-view masking predictions are designed to learn view-invariant and powerful representations concurrently. Experimental results demonstrate that our BYOV significantly surpasses existing approaches with notable gains across all metrics in four downstream ego-exo video tasks. The code is available at https://github.com/park-jungin/byov.
comment: CVPR 2025 Camera-ready, 18 pages, 7 figures, 9 tables
♻ ☆ 3D-GSW: 3D Gaussian Splatting for Robust Watermarking
As 3D Gaussian Splatting (3D-GS) gains significant attention and its commercial usage increases, the need for watermarking technologies to prevent unauthorized use of the 3D-GS models and rendered images has become increasingly important. In this paper, we introduce a robust watermarking method for 3D-GS that secures copyright of both the model and its rendered images. Our proposed method remains robust against distortions in rendered images and model attacks while maintaining high rendering quality. To achieve these objectives, we present Frequency-Guided Densification (FGD), which removes 3D Gaussians based on their contribution to rendering quality, enhancing real-time rendering and the robustness of the message. FGD utilizes Discrete Fourier Transform to split 3D Gaussians in high-frequency areas, improving rendering quality. Furthermore, we employ a gradient mask for 3D Gaussians and design a wavelet-subband loss to enhance rendering quality. Our experiments show that our method embeds the message in the rendered images invisibly and robustly against various attacks, including model distortion. Our method achieves superior performance in both rendering quality and watermark robustness while improving real-time rendering efficiency. Project page: https://kuai-lab.github.io/cvpr20253dgsw/
♻ ☆ TransXNet: Learning Both Global and Local Dynamics with a Dual Dynamic Token Mixer for Visual Recognition
Recent studies have integrated convolutions into transformers to introduce inductive bias and improve generalization performance. However, the static nature of conventional convolution prevents it from dynamically adapting to input variations, resulting in a representation discrepancy between convolution and self-attention as the latter computes attention maps dynamically. Furthermore, when stacking token mixers that consist of convolution and self-attention to form a deep network, the static nature of convolution hinders the fusion of features previously generated by self-attention into convolution kernels. These two limitations result in a sub-optimal representation capacity of the entire network. To find a solution, we propose a lightweight Dual Dynamic Token Mixer (D-Mixer) to simultaneously learn global and local dynamics via computing input-dependent global and local aggregation weights. D-Mixer works by applying an efficient global attention module and an input-dependent depthwise convolution separately on evenly split feature segments, endowing the network with strong inductive bias and an enlarged receptive field. We use D-Mixer as the basic building block to design TransXNet, a novel hybrid CNN-Transformer vision backbone network that delivers compelling performance. In the ImageNet-1K classification, TransXNet-T surpasses Swin-T by 0.3% in top-1 accuracy while requiring less than half of the computational cost. Furthermore, TransXNet-S and TransXNet-B exhibit excellent model scalability, achieving top-1 accuracy of 83.8% and 84.6% respectively, with reasonable computational costs. Additionally, our proposed network architecture demonstrates strong generalization capabilities in various dense prediction tasks, outperforming other state-of-the-art networks while having lower computational costs. Code is publicly available at https://github.com/LMMMEng/TransXNet.
comment: Accepted by IEEE TNNLS
♻ ☆ HyperGLM: HyperGraph for Video Scene Graph Generation and Anticipation
Multimodal LLMs have advanced vision-language tasks but still struggle with understanding video scenes. To bridge this gap, Video Scene Graph Generation (VidSGG) has emerged to capture multi-object relationships across video frames. However, prior methods rely on pairwise connections, limiting their ability to handle complex multi-object interactions and reasoning. To this end, we propose Multimodal LLMs on a Scene HyperGraph (HyperGLM), promoting reasoning about multi-way interactions and higher-order relationships. Our approach uniquely integrates entity scene graphs, which capture spatial relationships between objects, with a procedural graph that models their causal transitions, forming a unified HyperGraph. Significantly, HyperGLM enables reasoning by injecting this unified HyperGraph into LLMs. Additionally, we introduce a new Video Scene Graph Reasoning (VSGR) dataset featuring 1.9M frames from third-person, egocentric, and drone views and supports five tasks: Scene Graph Generation, Scene Graph Anticipation, Video Question Answering, Video Captioning, and Relation Reasoning. Empirically, HyperGLM consistently outperforms state-of-the-art methods across five tasks, effectively modeling and reasoning complex relationships in diverse video scenes.
♻ ☆ RadSplat: Radiance Field-Informed Gaussian Splatting for Robust Real-Time Rendering with 900+ FPS 3DV
Recent advances in view synthesis and real-time rendering have achieved photorealistic quality at impressive rendering speeds. While Radiance Field-based methods achieve state-of-the-art quality in challenging scenarios such as in-the-wild captures and large-scale scenes, they often suffer from excessively high compute requirements linked to volumetric rendering. Gaussian Splatting-based methods, on the other hand, rely on rasterization and naturally achieve real-time rendering but suffer from brittle optimization heuristics that underperform on more challenging scenes. In this work, we present RadSplat, a lightweight method for robust real-time rendering of complex scenes. Our main contributions are threefold. First, we use radiance fields as a prior and supervision signal for optimizing point-based scene representations, leading to improved quality and more robust optimization. Next, we develop a novel pruning technique reducing the overall point count while maintaining high quality, leading to smaller and more compact scene representations with faster inference speeds. Finally, we propose a novel test-time filtering approach that further accelerates rendering and allows to scale to larger, house-sized scenes. We find that our method enables state-of-the-art synthesis of complex captures at 900+ FPS.
comment: Project page at https://m-niemeyer.github.io/radsplat/ and presented at 3DV (Oral)
♻ ☆ Drag Your Gaussian: Effective Drag-Based Editing with Score Distillation for 3D Gaussian Splatting
Recent advancements in 3D scene editing have been propelled by the rapid development of generative models. Existing methods typically utilize generative models to perform text-guided editing on 3D representations, such as 3D Gaussian Splatting (3DGS). However, these methods are often limited to texture modifications and fail when addressing geometric changes, such as editing a character's head to turn around. Moreover, such methods lack accurate control over the spatial position of editing results, as language struggles to precisely describe the extent of edits. To overcome these limitations, we introduce DYG, an effective 3D drag-based editing method for 3D Gaussian Splatting. It enables users to conveniently specify the desired editing region and the desired dragging direction through the input of 3D masks and pairs of control points, thereby enabling precise control over the extent of editing. DYG integrates the strengths of the implicit triplane representation to establish the geometric scaffold of the editing results, effectively overcoming suboptimal editing outcomes caused by the sparsity of 3DGS in the desired editing regions. Additionally, we incorporate a drag-based Latent Diffusion Model into our method through the proposed Drag-SDS loss function, enabling flexible, multi-view consistent, and fine-grained editing. Extensive experiments demonstrate that DYG conducts effective drag-based editing guided by control point prompts, surpassing other baselines in terms of editing effect and quality, both qualitatively and quantitatively. Visit our project page at https://quyans.github.io/Drag-Your-Gaussian.
comment: Visit our project page at https://quyans.github.io/Drag-Your-Gaussian
♻ ☆ DSU-Net:An Improved U-Net Model Based on DINOv2 and SAM2 with Multi-scale Cross-model Feature Enhancement
Despite the significant advancements in general image segmentation achieved by large-scale pre-trained foundation models (such as Meta's Segment Any-thing Model (SAM) series and DINOv2), their performance in specialized fields remains limited by two critical issues: the excessive training costs due to large model parameters, and the insufficient ability to represent specific domain characteristics. This paper proposes a multi-scale feature collabora-tion framework guided by DINOv2 for SAM2, with core innovations in three aspects: (1) Establishing a feature collaboration mechanism between DINOv2 and SAM2 backbones, where high-dimensional semantic features extracted by the self-supervised model guide multi-scale feature fusion; (2) Designing lightweight adapter modules and cross-modal, cross-layer feature fusion units to inject cross-domain knowledge while freezing the base model parameters; (3) Constructing a U-shaped network structure based on U-net, which utilizes attention mechanisms to achieve adaptive aggregation decoding of multi-granularity features. This framework surpasses existing state-of-the-art meth-ods in downstream tasks such as camouflage target detection and salient ob-ject detection, without requiring costly training processes. It provides a tech-nical pathway for efficient deployment of visual image segmentation, demon-strating significant application value in a wide range of downstream tasks and specialized fields within image segmentation.Project page: https://github.com/CheneyXuYiMin/SAM2DINO-Seg
♻ ☆ Mitigating Covariate Shift in Imitation Learning for Autonomous Vehicles Using Latent Space Generative World Models ICRA 2025
We propose the use of latent space generative world models to address the covariate shift problem in autonomous driving. A world model is a neural network capable of predicting an agent's next state given past states and actions. By leveraging a world model during training, the driving policy effectively mitigates covariate shift without requiring an excessive amount of training data. During end-to-end training, our policy learns how to recover from errors by aligning with states observed in human demonstrations, so that at runtime it can recover from perturbations outside the training distribution. Additionally, we introduce a novel transformer-based perception encoder that employs multi-view cross-attention and a learned scene query. We present qualitative and quantitative results, demonstrating significant improvements upon prior state of the art in closed-loop testing in the CARLA simulator, as well as showing the ability to handle perturbations in both CARLA and NVIDIA's DRIVE Sim.
comment: 8 pages, 6 figures, updated in March 2025, original published in September 2024, for ICRA 2025 submission, for associated video file, see https://youtu.be/7m3bXzlVQvU
♻ ☆ On-device Sora: Enabling Training-Free Diffusion-based Text-to-Video Generation for Mobile Devices
We present On-device Sora, the first model training-free solution for diffusion-based on-device text-to-video generation that operates efficiently on smartphone-grade devices. To address the challenges of diffusion-based text-to-video generation on computation- and memory-limited mobile devices, the proposed On-device Sora applies three novel techniques to pre-trained video generative models. First, Linear Proportional Leap (LPL) reduces the excessive denoising steps required in video diffusion through an efficient leap-based approach. Second, Temporal Dimension Token Merging (TDTM) minimizes intensive token-processing computation in attention layers by merging consecutive tokens along the temporal dimension. Third, Concurrent Inference with Dynamic Loading (CI-DL) dynamically partitions large models into smaller blocks and loads them into memory for concurrent model inference, effectively addressing the challenges of limited device memory. We implement On-device Sora on the iPhone 15 Pro, and the experimental evaluations show that it is capable of generating high-quality videos on the device, comparable to those produced by high-end GPUs. These results show that On-device Sora enables efficient and high-quality video generation on resource-constrained mobile devices. We envision the proposed On-device Sora as a significant first step toward democratizing state-of-the-art generative technologies, enabling video generation on commodity mobile and embedded devices without resource-intensive re-training for model optimization (compression). The code implementation is available at a GitHub repository(https://github.com/eai-lab/On-device-Sora).
♻ ☆ Know "No'' Better: A Data-Driven Approach for Enhancing Negation Awareness in CLIP
While CLIP has significantly advanced multimodal understanding by bridging vision and language, the inability to grasp negation - such as failing to differentiate concepts like "parking" from "no parking" - poses substantial challenges. By analyzing the data used in the public CLIP model's pre-training, we posit this limitation stems from a lack of negation-inclusive data. To address this, we introduce data generation pipelines that employ a large language model (LLM) and a multimodal LLM to produce negation-inclusive captions. Fine-tuning CLIP with data generated from our pipelines, we develop NegationCLIP, which enhances negation awareness while preserving the generality. Moreover, to enable a comprehensive evaluation of negation understanding, we propose NegRefCOCOg-a benchmark tailored to test VLMs' ability to interpret negation across diverse expressions and positions within a sentence. Experiments on various CLIP architectures validate the effectiveness of our data generation pipelines in enhancing CLIP's ability to perceive negation accurately. Additionally, NegationCLIP's enhanced negation awareness has practical applications across various multimodal tasks, demonstrated by performance gains in text-to-image generation and referring image segmentation.
♻ ☆ MultiBooth: Towards Generating All Your Concepts in an Image from Text AAAI 2025
This paper introduces MultiBooth, a novel and efficient technique for multi-concept customization in image generation from text. Despite the significant advancements in customized generation methods, particularly with the success of diffusion models, existing methods often struggle with multi-concept scenarios due to low concept fidelity and high inference cost. MultiBooth addresses these issues by dividing the multi-concept generation process into two phases: a single-concept learning phase and a multi-concept integration phase. During the single-concept learning phase, we employ a multi-modal image encoder and an efficient concept encoding technique to learn a concise and discriminative representation for each concept. In the multi-concept integration phase, we use bounding boxes to define the generation area for each concept within the cross-attention map. This method enables the creation of individual concepts within their specified regions, thereby facilitating the formation of multi-concept images. This strategy not only improves concept fidelity but also reduces additional inference cost. MultiBooth surpasses various baselines in both qualitative and quantitative evaluations, showcasing its superior performance and computational efficiency. Project Page: https://multibooth.github.io/
comment: To be published in AAAI 2025
♻ ☆ Vision-RWKV: Efficient and Scalable Visual Perception with RWKV-Like Architectures
Transformers have revolutionized computer vision and natural language processing, but their high computational complexity limits their application in high-resolution image processing and long-context analysis. This paper introduces Vision-RWKV (VRWKV), a model adapted from the RWKV model used in the NLP field with necessary modifications for vision tasks. Similar to the Vision Transformer (ViT), our model is designed to efficiently handle sparse inputs and demonstrate robust global processing capabilities, while also scaling up effectively, accommodating both large-scale parameters and extensive datasets. Its distinctive advantage lies in its reduced spatial aggregation complexity, which renders it exceptionally adept at processing high-resolution images seamlessly, eliminating the necessity for windowing operations. Our evaluations demonstrate that VRWKV surpasses ViT's performance in image classification and has significantly faster speeds and lower memory usage processing high-resolution inputs. In dense prediction tasks, it outperforms window-based models, maintaining comparable speeds. These results highlight VRWKV's potential as a more efficient alternative for visual perception tasks. Code is released at https://github.com/OpenGVLab/Vision-RWKV.
comment: Code is released at \url{https://github.com/OpenGVLab/Vision-RWKV}
♻ ☆ Enhancing Intent Understanding for Ambiguous prompt: A Human-Machine Co-Adaption Strategy
Today's image generation systems are capable of producing realistic and high-quality images. However, user prompts often contain ambiguities, making it difficult for these systems to interpret users' actual intentions. Consequently, many users must modify their prompts several times to ensure the generated images meet their expectations. While some methods focus on enhancing prompts to make the generated images fit user needs, the model is still hard to understand users' real needs, especially for non-expert users. In this research, we aim to enhance the visual parameter-tuning process, making the model user-friendly for individuals without specialized knowledge and better understand user needs. We propose a human-machine co-adaption strategy using mutual information between the user's prompts and the pictures under modification as the optimizing target to make the system better adapt to user needs. We find that an improved model can reduce the necessity for multiple rounds of adjustments. We also collect multi-round dialogue datasets with prompts and images pairs and user intent. Various experiments demonstrate the effectiveness of the proposed method in our proposed dataset. Our annotation tools and several examples of our dataset are available at https://zenodo.org/records/14876029 for easier review. We will make open source our full dataset and code.
♻ ☆ Boost Your Human Image Generation Model via Direct Preference Optimization CVPR
Human image generation is a key focus in image synthesis due to its broad applications, but even slight inaccuracies in anatomy, pose, or details can compromise realism. To address these challenges, we explore Direct Preference Optimization (DPO), which trains models to generate preferred (winning) images while diverging from non-preferred (losing) ones. However, conventional DPO methods use generated images as winning images, limiting realism. To overcome this limitation, we propose an enhanced DPO approach that incorporates high-quality real images as winning images, encouraging outputs to resemble real images rather than generated ones. However, implementing this concept is not a trivial task. Therefore, our approach, HG-DPO (Human image Generation through DPO), employs a novel curriculum learning framework that gradually improves the output of the model toward greater realism, making training more feasible. Furthermore, HG-DPO effectively adapts to personalized text-to-image tasks, generating high-quality and identity-specific images, which highlights the practical value of our approach.
comment: CVPR`2025
♻ ☆ Context-Aware Weakly Supervised Image Manipulation Localization with SAM Refinement
Malicious image manipulation poses societal risks, increasing the importance of effective image manipulation detection methods. Recent approaches in image manipulation detection have largely been driven by fully supervised approaches, which require labor-intensive pixel-level annotations. Thus, it is essential to explore weakly supervised image manipulation localization methods that only require image-level binary labels for training. However, existing weakly supervised image manipulation methods overlook the importance of edge information for accurate localization, leading to suboptimal localization performance. To address this, we propose a Context-Aware Boundary Localization (CABL) module to aggregate boundary features and learn context-inconsistency for localizing manipulated areas. Furthermore, by leveraging Class Activation Mapping (CAM) and Segment Anything Model (SAM), we introduce the CAM-Guided SAM Refinement (CGSR) module to generate more accurate manipulation localization maps. By integrating two modules, we present a novel weakly supervised framework based on a dual-branch Transformer-CNN architecture. Our method achieves outstanding localization performance across multiple datasets.
♻ ☆ Emphasizing Discriminative Features for Dataset Distillation in Complex Scenarios
Dataset distillation has demonstrated strong performance on simple datasets like CIFAR, MNIST, and TinyImageNet but struggles to achieve similar results in more complex scenarios. In this paper, we propose EDF (emphasizes the discriminative features), a dataset distillation method that enhances key discriminative regions in synthetic images using Grad-CAM activation maps. Our approach is inspired by a key observation: in simple datasets, high-activation areas typically occupy most of the image, whereas in complex scenarios, the size of these areas is much smaller. Unlike previous methods that treat all pixels equally when synthesizing images, EDF uses Grad-CAM activation maps to enhance high-activation areas. From a supervision perspective, we downplay supervision signals that have lower losses, as they contain common patterns. Additionally, to help the DD community better explore complex scenarios, we build the Complex Dataset Distillation (Comp-DD) benchmark by meticulously selecting sixteen subsets, eight easy and eight hard, from ImageNet-1K. In particular, EDF consistently outperforms SOTA results in complex scenarios, such as ImageNet-1K subsets. Hopefully, more researchers will be inspired and encouraged to improve the practicality and efficacy of DD. Our code and benchmark will be made public at https://github.com/NUS-HPC-AI-Lab/EDF.
comment: 24 pages, 13 figures
♻ ☆ YOLO11 and Vision Transformers based 3D Pose Estimation of Immature Green Fruits in Commercial Apple Orchards for Robotic Thinning
In this study, a robust method for 3D pose estimation of immature green apples (fruitlets) in commercial orchards was developed, utilizing the YOLO11(or YOLOv11) object detection and pose estimation algorithm alongside Vision Transformers (ViT) for depth estimation (Dense Prediction Transformer (DPT) and Depth Anything V2). For object detection and pose estimation, performance comparisons of YOLO11 (YOLO11n, YOLO11s, YOLO11m, YOLO11l and YOLO11x) and YOLOv8 (YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l and YOLOv8x) were made under identical hyperparameter settings among the all configurations. It was observed that YOLO11n surpassed all configurations of YOLO11 and YOLOv8 in terms of box precision and pose precision, achieving scores of 0.91 and 0.915, respectively. Conversely, YOLOv8n exhibited the highest box and pose recall scores of 0.905 and 0.925, respectively. Regarding the mean average precision at 50\% intersection over union (mAP@50), YOLO11s led all configurations with a box mAP@50 score of 0.94, while YOLOv8n achieved the highest pose mAP@50 score of 0.96. In terms of image processing speed, YOLO11n outperformed all configurations with an impressive inference speed of 2.7 ms, significantly faster than the quickest YOLOv8 configuration, YOLOv8n, which processed images in 7.8 ms. Subsequent integration of ViTs for the green fruit's pose depth estimation revealed that Depth Anything V2 outperformed Dense Prediction Transformer in 3D pose length validation, achieving the lowest Root Mean Square Error (RMSE) of 1.52 and Mean Absolute Error (MAE) of 1.28, demonstrating exceptional precision in estimating immature green fruit lengths. Integration of YOLO11 and Depth Anything Model provides a promising solution to 3D pose estimation of immature green fruits for robotic thinning applications. (YOLOv11 pose detection, YOLOv11 Pose, YOLOv11 Keypoints detection, YOLOv11 pose estimation)
comment: 24 Pages, 13 Figures, 1 Table
♻ ☆ Enhancing Object Coherence in Layout-to-Image Synthesis
Layout-to-image synthesis is an emerging technique in conditional image generation. It aims to generate complex scenes, where users require fine control over the layout of the objects in a scene. However, it remains challenging to control the object coherence, including semantic coherence (e.g., the cat looks at the flowers or not) and physical coherence (e.g., the hand and the racket should not be misaligned). In this paper, we propose a novel diffusion model with effective global semantic fusion (GSF) and self-similarity feature enhancement modules to guide the object coherence for this task. For semantic coherence, we argue that the image caption contains rich information for defining the semantic relationship within the objects in the images. Instead of simply employing cross-attention between captions and latent images, which addresses the highly relevant layout restriction and semantic coherence requirement separately and thus leads to unsatisfying results shown in our experiments, we develop GSF to fuse the supervision from the layout restriction and semantic coherence requirement and exploit it to guide the image synthesis process. Moreover, to improve the physical coherence, we develop a Self-similarity Coherence Attention (SCA) module to explicitly integrate local contextual physical coherence relation into each pixel's generation process. Specifically, we adopt a self-similarity map to encode the physical coherence restrictions and employ it to extract coherent features from text embedding. Through visualization of our self-similarity map, we explore the essence of SCA, revealing that its effectiveness is not only in capturing reliable physical coherence patterns but also in enhancing complex texture generation. Extensive experiments demonstrate the superiority of our proposed method.
comment: Code: https://github.com/CodeGoat24/EOCNet
♻ ☆ Exploring Cognitive Paradoxes in Video Games: A Quantum Mechanical Perspective
This paper introduces a quantum-mechanical model that bridges the realms of cognition and quantum mechanics, offering a novel perspective on decision-making under risk and perceptual reversals. By integrating quantum theories addressing decision-theoretic anomalies with examples from immersive video games like "Deal or No Deal", we seek to elucidate complex human cognitive behaviours. Study 1 showcases the proposed quantum model's superiority over traditional decision-making approaches using the "Deal or No Deal" video game experiment. In Study 2, we apply our model to bistable perceptions, taking the Necker cube from the Necker game as a primary example. While previous works have hinted at connections between quantum mechanics and cognition, Study 3 provides a more tangible link, likening the physics that underpins quantum tunnelling to an eye blink's role in perceptual reversals. Conclusively, our model displays a promising ability to interpret diverse optical illusions and psychological phenomena, marking a significant stride in understanding human decision making.
♻ ☆ Head and Neck Tumor Segmentation of MRI from Pre- and Mid-radiotherapy with Pre-training, Data Augmentation and Dual Flow UNet
Head and neck tumors and metastatic lymph nodes are crucial for treatment planning and prognostic analysis. Accurate segmentation and quantitative analysis of these structures require pixel-level annotation, making automated segmentation techniques essential for the diagnosis and treatment of head and neck cancer. In this study, we investigated the effects of multiple strategies on the segmentation of pre-radiotherapy (pre-RT) and mid-radiotherapy (mid-RT) images. For the segmentation of pre-RT images, we utilized: 1) a fully supervised learning approach, and 2) the same approach enhanced with pre-trained weights and the MixUp data augmentation technique. For mid-RT images, we introduced a novel computational-friendly network architecture that features separate encoders for mid-RT images and registered pre-RT images with their labels. The mid-RT encoder branch integrates information from pre-RT images and labels progressively during the forward propagation. We selected the highest-performing model from each fold and used their predictions to create an ensemble average for inference. In the final test, our models achieved a segmentation performance of 82.38% for pre-RT and 72.53% for mid-RT on aggregated Dice Similarity Coefficient (DSC) as HiLab. Our code is available at https://github.com/WltyBY/HNTS-MRG2024_train_code.
♻ ☆ MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models ICLR 2025
Interleaved multimodal comprehension and generation, enabling models to produce and interpret both images and text in arbitrary sequences, have become a pivotal area in multimodal learning. Despite significant advancements, the evaluation of this capability remains insufficient. Existing benchmarks suffer from limitations in data scale, scope, and evaluation depth, while current evaluation metrics are often costly or biased, lacking in reliability for practical applications. To address these challenges, we introduce MMIE, a large-scale knowledge-intensive benchmark for evaluating interleaved multimodal comprehension and generation in Large Vision-Language Models (LVLMs). MMIE comprises 20K meticulously curated multimodal queries, spanning 3 categories, 12 fields, and 102 subfields, including mathematics, coding, physics, literature, health, and arts. It supports both interleaved inputs and outputs, offering a mix of multiple-choice and open-ended question formats to evaluate diverse competencies. Moreover, we propose a reliable automated evaluation metric, leveraging a scoring model fine-tuned with human-annotated data and systematic evaluation criteria, aimed at reducing bias and improving evaluation accuracy. Extensive experiments demonstrate the effectiveness of our benchmark and metrics in providing a comprehensive evaluation of interleaved LVLMs. Specifically, we evaluate eight LVLMs, revealing that even the best models show significant room for improvement, with most achieving only moderate results. We believe MMIE will drive further advancements in the development of interleaved LVLMs. We publicly release our benchmark and code in https://mmie-bench.github.io/.
comment: ICLR 2025 Oral
♻ ☆ MovieBench: A Hierarchical Movie Level Dataset for Long Video Generation
Recent advancements in video generation models, like Stable Video Diffusion, show promising results, but primarily focus on short, single-scene videos. These models struggle with generating long videos that involve multiple scenes, coherent narratives, and consistent characters. Furthermore, there is no publicly available dataset tailored for the analysis, evaluation, and training of long video generation models. In this paper, we present MovieBench: A Hierarchical Movie-Level Dataset for Long Video Generation, which addresses these challenges by providing unique contributions: (1) movie-length videos featuring rich, coherent storylines and multi-scene narratives, (2) consistency of character appearance and audio across scenes, and (3) hierarchical data structure contains high-level movie information and detailed shot-level descriptions. Experiments demonstrate that MovieBench brings some new insights and challenges, such as maintaining character ID consistency across multiple scenes for various characters. The dataset will be public and continuously maintained, aiming to advance the field of long video generation. Data can be found at: https://weijiawu.github.io/MovieBench/.
comment: The project website is at: https://weijiawu.github.io/MovieBench/. Code: https://github.com/showlab/MovieBecnh
♻ ☆ Interpretable Few-shot Learning with Online Attribute Selection
Few-shot learning (FSL) presents a challenging learning problem in which only a few samples are available for each class. Decision interpretation is more important in few-shot classification due to a greater chance of error compared to traditional classification. However, the majority of the previous FSL methods are black-box models. In this paper, we propose an inherently interpretable model for FSL based on human-friendly attributes. Previously, human-friendly attributes have been utilized to train models with the potential for human interaction and interpretability. However, such approaches are not directly extendible to the few-shot classification scenario. Moreover, we propose an online attribute selection mechanism to effectively filter out irrelevant attributes in each episode. The attribute selection mechanism improves accuracy and helps with interpretability by reducing the number of attributes that participate in each episode. We further propose a mechanism that automatically detects the episodes where the pool of available human-friendly attributes is insufficient, and subsequently augments it by engaging some learned unknown attributes. We demonstrate that the proposed method achieves results on par with black-box few-shot learning models on four widely used datasets. We also empirically evaluate the level of decision alignment between different models and human understanding and show that our model outperforms the comparison methods based on this criterion.
♻ ☆ DetailCLIP: Detail-Oriented CLIP for Fine-Grained Tasks ICLR 2025
In this paper, we introduce DetailCLIP: A Detail-Oriented CLIP to address the limitations of contrastive learning-based vision-language models, particularly CLIP, in handling detail-oriented and fine-grained tasks like segmentation. While CLIP and its variants excel in the global alignment of image and text representations, they often struggle to capture the fine-grained details necessary for precise segmentation. To overcome these challenges, we propose a novel framework that employs patch-level comparison of self-distillation and pixel-level reconstruction losses, enhanced with an attention-based token removal mechanism. This approach selectively retains semantically relevant tokens, enabling the model to focus on the image's critical regions aligned with the specific functions of our model, including textual information processing, patch comparison, and image reconstruction, ensuring that the model learns high-level semantics and detailed visual features. Our experiments demonstrate that DetailCLIP surpasses existing CLIP-based and traditional self-supervised learning (SSL) models in segmentation accuracy and exhibits superior generalization across diverse datasets. DetailCLIP represents a significant advancement in vision-language modeling, offering a robust solution for tasks that demand high-level semantic understanding and detailed feature extraction. https://github.com/KishoreP1/DetailCLIP.
comment: Accepted in SSI-FM Workshop of ICLR 2025
♻ ☆ Towards Adversarially Robust Dataset Distillation by Curvature Regularization
Dataset distillation (DD) allows datasets to be distilled to fractions of their original size while preserving the rich distributional information so that models trained on the distilled datasets can achieve a comparable accuracy while saving significant computational loads. Recent research in this area has been focusing on improving the accuracy of models trained on distilled datasets. In this paper, we aim to explore a new perspective of DD. We study how to embed adversarial robustness in distilled datasets, so that models trained on these datasets maintain the high accuracy and meanwhile acquire better adversarial robustness. We propose a new method that achieves this goal by incorporating curvature regularization into the distillation process with much less computational overhead than standard adversarial training. Extensive empirical experiments suggest that our method not only outperforms standard adversarial training on both accuracy and robustness with less computation overhead but is also capable of generating robust distilled datasets that can withstand various adversarial attacks.
comment: 14 pages, 3 figures
GyralNet Subnetwork Partitioning via Differentiable Spectral Modularity Optimization
Understanding the structural and functional organization of the human brain requires a detailed examination of cortical folding patterns, among which the three-hinge gyrus (3HG) has been identified as a key structural landmark. GyralNet, a network representation of cortical folding, models 3HGs as nodes and gyral crests as edges, highlighting their role as critical hubs in cortico-cortical connectivity. However, existing methods for analyzing 3HGs face significant challenges, including the sub-voxel scale of 3HGs at typical neuroimaging resolutions, the computational complexity of establishing cross-subject correspondences, and the oversimplification of treating 3HGs as independent nodes without considering their community-level relationships. To address these limitations, we propose a fully differentiable subnetwork partitioning framework that employs a spectral modularity maximization optimization strategy to modularize the organization of 3HGs within GyralNet. By incorporating topological structural similarity and DTI-derived connectivity patterns as attribute features, our approach provides a biologically meaningful representation of cortical organization. Extensive experiments on the Human Connectome Project (HCP) dataset demonstrate that our method effectively partitions GyralNet at the individual level while preserving the community-level consistency of 3HGs across subjects, offering a robust foundation for understanding brain connectivity.
comment: 10 pages, 3 figures
♻ ☆ VidHalluc: Evaluating Temporal Hallucinations in Multimodal Large Language Models for Video Understanding CVPR 2025
Multimodal large language models (MLLMs) have recently shown significant advancements in video understanding, excelling in content reasoning and instruction-following tasks. However, hallucination, where models generate inaccurate or misleading content, remains underexplored in the video domain. Building on the observation that MLLM visual encoders often fail to distinguish visually different yet semantically similar video pairs, we introduce VidHalluc, the largest benchmark designed to examine hallucinations in MLLMs for video understanding. It consists of 5,002 videos, paired to highlight cases prone to hallucinations. VidHalluc assesses hallucinations across three critical dimensions: (1) action, (2) temporal sequence, and (3) scene transition. Comprehensive testing shows that most MLLMs are vulnerable to hallucinations across these dimensions. Furthermore, we propose DINO-HEAL, a training-free method that reduces hallucinations by incorporating spatial saliency from DINOv2 to reweight visual features during inference. Our results show that DINO-HEAL consistently improves performance on VidHalluc, achieving an average improvement of 3.02% in mitigating hallucinations across all tasks. Both the VidHalluc benchmark and DINO-HEAL code are available at https://people-robots.github.io/vidhalluc.
comment: CVPR 2025
♻ ☆ Learning Color Equivariant Representations ICLR 2025
In this paper, we introduce group convolutional neural networks (GCNNs) equivariant to color variation. GCNNs have been designed for a variety of geometric transformations from 2D and 3D rotation groups, to semi-groups such as scale. Despite the improved interpretability, accuracy and generalizability of these architectures, GCNNs have seen limited application in the context of perceptual quantities. Notably, the recent CEConv network uses a GCNN to achieve equivariance to hue transformations by convolving input images with a hue rotated RGB filter. However, this approach leads to invalid RGB values which break equivariance and degrade performance. We resolve these issues with a lifting layer that transforms the input image directly, thereby circumventing the issue of invalid RGB values and improving equivariance error by over three orders of magnitude. Moreover, we extend the notion of color equivariance to include equivariance to saturation and luminance shift. Our hue-, saturation-, luminance- and color-equivariant networks achieve strong generalization to out-of-distribution perceptual variations and improved sample efficiency over conventional architectures. We demonstrate the utility of our approach on synthetic and real world datasets where we consistently outperform competitive baselines.
comment: Accept to The 13th International Conference on Learning Representations (ICLR 2025)
♻ ☆ Interact with me: Joint Egocentric Forecasting of Intent to Interact, Attitude and Social Actions ICME
For efficient human-agent interaction, an agent should proactively recognize their target user and prepare for upcoming interactions. We formulate this challenging problem as the novel task of jointly forecasting a person's intent to interact with the agent, their attitude towards the agent and the action they will perform, from the agent's (egocentric) perspective. So we propose \emph{SocialEgoNet} - a graph-based spatiotemporal framework that exploits task dependencies through a hierarchical multitask learning approach. SocialEgoNet uses whole-body skeletons (keypoints from face, hands and body) extracted from only 1 second of video input for high inference speed. For evaluation, we augment an existing egocentric human-agent interaction dataset with new class labels and bounding box annotations. Extensive experiments on this augmented dataset, named JPL-Social, demonstrate \emph{real-time} inference and superior performance (average accuracy across all tasks: 83.15\%) of our model outperforming several competitive baselines. The additional annotations and code will be available upon acceptance.
comment: Accepted at ICME, 2025
♻ ☆ Self-Calibrating 4D Novel View Synthesis from Monocular Videos Using Gaussian Splatting SC-4
Gaussian Splatting (GS) has significantly elevated scene reconstruction efficiency and novel view synthesis (NVS) accuracy compared to Neural Radiance Fields (NeRF), particularly for dynamic scenes. However, current 4D NVS methods, whether based on GS or NeRF, primarily rely on camera parameters provided by COLMAP and even utilize sparse point clouds generated by COLMAP for initialization, which lack accuracy as well are time-consuming. This sometimes results in poor dynamic scene representation, especially in scenes with large object movements, or extreme camera conditions e.g. small translations combined with large rotations. Some studies simultaneously optimize the estimation of camera parameters and scenes, supervised by additional information like depth, optical flow, etc. obtained from off-the-shelf models. Using this unverified information as ground truth can reduce robustness and accuracy, which does frequently occur for long monocular videos (with e.g. > hundreds of frames). We propose a novel approach that learns a high-fidelity 4D GS scene representation with self-calibration of camera parameters. It includes the extraction of 2D point features that robustly represent 3D structure, and their use for subsequent joint optimization of camera parameters and 3D structure towards overall 4D scene optimization. We demonstrate the accuracy and time efficiency of our method through extensive quantitative and qualitative experimental results on several standard benchmarks. The results show significant improvements over state-of-the-art methods for 4D novel view synthesis. The source code will be released soon at https://github.com/fangli333/SC-4DGS.
comment: GitHub Page: https://github.com/fangli333/SC-4DGS
♻ ☆ VERA: Explainable Video Anomaly Detection via Verbalized Learning of Vision-Language Models CVPR 2025
The rapid advancement of vision-language models (VLMs) has established a new paradigm in video anomaly detection (VAD): leveraging VLMs to simultaneously detect anomalies and provide comprehendible explanations for the decisions. Existing work in this direction often assumes the complex reasoning required for VAD exceeds the capabilities of pretrained VLMs. Consequently, these approaches either incorporate specialized reasoning modules during inference or rely on instruction tuning datasets through additional training to adapt VLMs for VAD. However, such strategies often incur substantial computational costs or data annotation overhead. To address these challenges in explainable VAD, we introduce a verbalized learning framework named VERA that enables VLMs to perform VAD without model parameter modifications. Specifically, VERA automatically decomposes the complex reasoning required for VAD into reflections on simpler, more focused guiding questions capturing distinct abnormal patterns. It treats these reflective questions as learnable parameters and optimizes them through data-driven verbal interactions between learner and optimizer VLMs, using coarsely labeled training data. During inference, VERA embeds the learned questions into model prompts to guide VLMs in generating segment-level anomaly scores, which are then refined into frame-level scores via the fusion of scene and temporal contexts. Experimental results on challenging benchmarks demonstrate that the learned questions of VERA are highly adaptable, significantly improving both detection performance and explainability of VLMs for VAD.
comment: Accepted in CVPR 2025
♻ ☆ HaSPeR: An Image Repository for Hand Shadow Puppet Recognition
Hand shadow puppetry, also known as shadowgraphy or ombromanie, is a form of theatrical art and storytelling where hand shadows are projected onto flat surfaces to create illusions of living creatures. The skilled performers create these silhouettes by hand positioning, finger movements, and dexterous gestures to resemble shadows of animals and objects. Due to the lack of practitioners and a seismic shift in people's entertainment standards, this art form is on the verge of extinction. To facilitate its preservation and proliferate it to a wider audience, we introduce ${\rm H{\small A}SP{\small E}R}$, a novel dataset consisting of 15,000 images of hand shadow puppets across 15 classes extracted from both professional and amateur hand shadow puppeteer clips. We provide a detailed statistical analysis of the dataset and employ a range of pretrained image classification models to establish baselines. Our findings show a substantial performance superiority of skip-connected convolutional models over attention-based transformer architectures. We also find that lightweight models, such as MobileNetV2, suited for mobile applications and embedded devices, perform comparatively well. We surmise that such low-latency architectures can be useful in developing ombromanie teaching tools, and we create a prototype application to explore this surmission. Keeping the best-performing model ResNet34 under the limelight, we conduct comprehensive feature-spatial, explainability, and error analyses to gain insights into its decision-making process. To the best of our knowledge, this is the first documented dataset and research endeavor to preserve this dying art for future generations, with computer vision approaches. Our code and data will be publicly available.
comment: Submitted to Image and Vision Computing, 15 pages, 110 figures, 2 tables
♻ ☆ PTDiffusion: Free Lunch for Generating Optical Illusion Hidden Pictures with Phase-Transferred Diffusion Model CVPR 2025
Optical illusion hidden picture is an interesting visual perceptual phenomenon where an image is cleverly integrated into another picture in a way that is not immediately obvious to the viewer. Established on the off-the-shelf text-to-image (T2I) diffusion model, we propose a novel training-free text-guided image-to-image (I2I) translation framework dubbed as \textbf{P}hase-\textbf{T}ransferred \textbf{Diffusion} Model (PTDiffusion) for hidden art syntheses. PTDiffusion harmoniously embeds an input reference image into arbitrary scenes described by the text prompts, producing illusion images exhibiting hidden visual cues of the reference image. At the heart of our method is a plug-and-play phase transfer mechanism that dynamically and progressively transplants diffusion features' phase spectrum from the denoising process to reconstruct the reference image into the one to sample the generated illusion image, realizing deep fusion of the reference structural information and the textual semantic information in the diffusion model latent space. Furthermore, we propose asynchronous phase transfer to enable flexible control to the degree of hidden content discernability. Our method bypasses any model training and fine-tuning process, all while substantially outperforming related text-guided I2I methods in image generation quality, text fidelity, visual discernibility, and contextual naturalness for illusion picture synthesis, as demonstrated by extensive qualitative and quantitative experiments. Our project is publically available at \href{https://xianggao1102.github.io/PTDiffusion_webpage/}{this web page}.
comment: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2025)
♻ ☆ MedTrinity-25M: A Large-scale Multimodal Dataset with Multigranular Annotations for Medicine ICLR 2025
This paper introduces MedTrinity-25M, a comprehensive, large-scale multimodal dataset for medicine, covering over 25 million images across 10 modalities with multigranular annotations for more than 65 diseases. These multigranular annotations encompass both global information, such as modality and organ detection, and local information like ROI analysis, lesion texture, and region-wise correlations. Unlike the existing multimodal datasets, which are limited by the availability of image-text pairs, we have developed the first automated pipeline that scales up multimodal data by generating multigranular visual and textual annotations in the form of image-ROI-description triplets without the need for any paired text descriptions. Specifically, data from over 30 different sources have been collected, preprocessed, and grounded using domain-specific expert models to identify ROIs related to abnormal regions. We then build a comprehensive knowledge base and prompt multimodal large language models to perform retrieval-augmented generation with the identified ROIs as guidance, resulting in multigranular textual descriptions. Compared to existing datasets, MedTrinity-25M provides the most enriched annotations, supporting a comprehensive range of multimodal tasks such as captioning and report generation, as well as vision-centric tasks like classification and segmentation. We propose LLaVA-Tri by pretraining LLaVA on MedTrinity-25M, achieving state-of-the-art performance on VQA-RAD, SLAKE, and PathVQA, surpassing representative SOTA multimodal large language models. Furthermore, MedTrinity-25M can also be utilized to support large-scale pre-training of multimodal medical AI models, contributing to the development of future foundation models in the medical domain. We will make our dataset available.
comment: The dataset is publicly available at https://yunfeixie233.github.io/MedTrinity-25M/. Accepted to ICLR 2025
♻ ☆ BIGbench: A Unified Benchmark for Evaluating Multi-dimensional Social Biases in Text-to-Image Models
Text-to-Image (T2I) generative models are becoming increasingly crucial due to their ability to generate high-quality images, but also raise concerns about social biases, particularly in human image generation. Sociological research has established systematic classifications of bias. Yet, existing studies on bias in T2I models largely conflate different types of bias, impeding methodological progress. In this paper, we introduce BIGbench, a unified benchmark for Biases of Image Generation, featuring a carefully designed dataset. Unlike existing benchmarks, BIGbench classifies and evaluates biases across four dimensions to enable a more granular evaluation and deeper analysis. Furthermore, BIGbench applies advanced multi-modal large language models to achieve fully automated and highly accurate evaluations. We apply BIGbench to evaluate eight representative T2I models and three debiasing methods. Our human evaluation results by trained evaluators from different races underscore BIGbench's effectiveness in aligning images and identifying various biases. Moreover, our study also reveals new research directions about biases with insightful analysis of our results. Our work is openly accessible at https://github.com/BIGbench2024/BIGbench2024/.
comment: arXiv admin note: substantial text overlap with arXiv:2405.17814
Artificial Intelligence 136
RIG: Synergizing Reasoning and Imagination in End-to-End Generalist Policy
Reasoning before action and imagining potential outcomes (i.e., world models) are essential for embodied agents operating in complex open-world environments. Yet, prior work either incorporates only one of these abilities in an end-to-end agent or integrates multiple specialized models into an agent system, limiting the learning efficiency and generalization of the policy. Thus, this paper makes the first attempt to synergize Reasoning and Imagination in an end-to-end Generalist policy, termed RIG. To train RIG in an end-to-end manner, we construct a data pipeline that progressively integrates and enriches the content of imagination and reasoning in the trajectories collected from existing agents. The joint learning of reasoning and next image generation explicitly models the inherent correlation between reasoning, action, and dynamics of environments, and thus exhibits more than $17\times$ sample efficiency improvements and generalization in comparison with previous works. During inference, RIG first reasons about the next action, produces potential action, and then predicts the action outcomes, which offers the agent a chance to review and self-correct based on the imagination before taking real actions. Experimental results show that the synergy of reasoning and imagination not only improves the robustness, generalization, and interoperability of generalist policy but also enables test-time scaling to enhance overall performance.
☆ UniOcc: A Unified Benchmark for Occupancy Forecasting and Prediction in Autonomous Driving
We introduce UniOcc, a comprehensive, unified benchmark for occupancy forecasting (i.e., predicting future occupancies based on historical information) and current-frame occupancy prediction from camera images. UniOcc unifies data from multiple real-world datasets (i.e., nuScenes, Waymo) and high-fidelity driving simulators (i.e., CARLA, OpenCOOD), which provides 2D/3D occupancy labels with per-voxel flow annotations and support for cooperative autonomous driving. In terms of evaluation, unlike existing studies that rely on suboptimal pseudo labels for evaluation, UniOcc incorporates novel metrics that do not depend on ground-truth occupancy, enabling robust assessment of additional aspects of occupancy quality. Through extensive experiments on state-of-the-art models, we demonstrate that large-scale, diverse training data and explicit flow information significantly enhance occupancy prediction and forecasting performance.
comment: 14 pages; Dataset: https://huggingface.co/datasets/tasl-lab/uniocc; Code: https://github.com/tasl-lab/UniOcc
☆ Any2Caption:Interpreting Any Condition to Caption for Controllable Video Generation
To address the bottleneck of accurate user intent interpretation within the current video generation community, we present Any2Caption, a novel framework for controllable video generation under any condition. The key idea is to decouple various condition interpretation steps from the video synthesis step. By leveraging modern multimodal large language models (MLLMs), Any2Caption interprets diverse inputs--text, images, videos, and specialized cues such as region, motion, and camera poses--into dense, structured captions that offer backbone video generators with better guidance. We also introduce Any2CapIns, a large-scale dataset with 337K instances and 407K conditions for any-condition-to-caption instruction tuning. Comprehensive evaluations demonstrate significant improvements of our system in controllability and video quality across various aspects of existing video generation models. Project Page: https://sqwu.top/Any2Cap/
comment: Project Page: https://sqwu.top/Any2Cap/
☆ ACPBench Hard: Unrestrained Reasoning about Action, Change, and Planning AAAI 2025
The ACPBench dataset provides atomic reasoning tasks required for efficient planning. The dataset is aimed at distilling the complex plan generation task into separate atomic reasoning tasks in their easiest possible form, boolean or multiple-choice questions, where the model has to choose the right answer from the provided options. While the aim of ACPBench is to test the simplest form of reasoning about action and change, when tasked with planning, a model does not typically have options to choose from and thus the reasoning required for planning dictates an open-ended, generative form for these tasks. To that end, we introduce ACPBench Hard, a generative version of ACPBench, with open-ended questions which the model needs to answer. Models that perform well on these tasks could in principle be integrated into a planner or be used directly as a policy. We discuss the complexity of these tasks as well as the complexity of validating the correctness of their answers and present validation algorithms for each task. Equipped with these validators, we test the performance of a variety of models on our tasks and find that for most of these tasks the performance of even the largest models is still subpar. Our experiments show that no model outperforms another in these tasks and with a few exceptions all tested language models score below 65%, indicating that even the current frontier language models have a long way to go before they can reliably reason about planning. In fact, even the so-called reasoning models struggle with solving these reasoning tasks. ACPBench Hard collection is available at the following link: https://ibm.github.io/ACPBench
comment: Accepted to LM4Plan@AAAI 2025
☆ Harnessing the Reasoning Economy: A Survey of Efficient Reasoning for Large Language Models
Recent advancements in Large Language Models (LLMs) have significantly enhanced their ability to perform complex reasoning tasks, transitioning from fast and intuitive thinking (System 1) to slow and deep reasoning (System 2). While System 2 reasoning improves task accuracy, it often incurs substantial computational costs due to its slow thinking nature and inefficient or unnecessary reasoning behaviors. In contrast, System 1 reasoning is computationally efficient but leads to suboptimal performance. Consequently, it is critical to balance the trade-off between performance (benefits) and computational costs (budgets), giving rise to the concept of reasoning economy. In this survey, we provide a comprehensive analysis of reasoning economy in both the post-training and test-time inference stages of LLMs, encompassing i) the cause of reasoning inefficiency, ii) behavior analysis of different reasoning patterns, and iii) potential solutions to achieve reasoning economy. By offering actionable insights and highlighting open challenges, we aim to shed light on strategies for improving the reasoning economy of LLMs, thereby serving as a valuable resource for advancing research in this evolving area. We also provide a public repository to continually track developments in this fast-evolving field.
comment: In Progress; Paper list Repo: https://github.com/DevoAllen/Awesome-Reasoning-Economy-Papers
☆ Exploring the Effect of Reinforcement Learning on Video Understanding: Insights from SEED-Bench-R1
Recent advancements in Chain of Thought (COT) generation have significantly improved the reasoning capabilities of Large Language Models (LLMs), with reinforcement learning (RL) emerging as an effective post-training approach. Multimodal Large Language Models (MLLMs) inherit this reasoning potential but remain underexplored in tasks requiring both perception and logical reasoning. To address this, we introduce SEED-Bench-R1, a benchmark designed to systematically evaluate post-training methods for MLLMs in video understanding. It includes intricate real-world videos and complex everyday planning tasks in the format of multiple-choice questions, requiring sophisticated perception and reasoning. SEED-Bench-R1 assesses generalization through a three-level hierarchy: in-distribution, cross-environment, and cross-environment-task scenarios, equipped with a large-scale training dataset with easily verifiable ground-truth answers. Using Qwen2-VL-Instruct-7B as a base model, we compare RL with supervised fine-tuning (SFT), demonstrating RL's data efficiency and superior performance on both in-distribution and out-of-distribution tasks, even outperforming SFT on general video understanding benchmarks like LongVideoBench. Our detailed analysis reveals that RL enhances visual perception but often produces less logically coherent reasoning chains. We identify key limitations such as inconsistent reasoning and overlooked visual cues, and suggest future improvements in base model reasoning, reward modeling, and RL robustness against noisy signals.
comment: Technical Report (In Progress); Code released at: https://github.com/TencentARC/SEED-Bench-R1
☆ Effectively Controlling Reasoning Models through Thinking Intervention
Reasoning-enhanced large language models (LLMs) explicitly generate intermediate reasoning steps prior to generating final answers, helping the model excel in complex problem-solving. In this paper, we demonstrate that this emerging generation framework offers a unique opportunity for more fine-grained control over model behavior. We propose Thinking Intervention, a novel paradigm designed to explicitly guide the internal reasoning processes of LLMs by strategically inserting or revising specific thinking tokens. We conduct comprehensive evaluations across multiple tasks, including instruction following on IFEval, instruction hierarchy on SEP, and safety alignment on XSTest and SORRY-Bench. Our results demonstrate that Thinking Intervention significantly outperforms baseline prompting approaches, achieving up to 6.7% accuracy gains in instruction-following scenarios, 15.4% improvements in reasoning about instruction hierarchies, and a 40.0% increase in refusal rates for unsafe prompts using open-source DeepSeek R1 models. Overall, our work opens a promising new research avenue for controlling reasoning LLMs.
☆ Which LIME should I trust? Concepts, Challenges, and Solutions
As neural networks become dominant in essential systems, Explainable Artificial Intelligence (XAI) plays a crucial role in fostering trust and detecting potential misbehavior of opaque models. LIME (Local Interpretable Model-agnostic Explanations) is among the most prominent model-agnostic approaches, generating explanations by approximating the behavior of black-box models around specific instances. Despite its popularity, LIME faces challenges related to fidelity, stability, and applicability to domain-specific problems. Numerous adaptations and enhancements have been proposed to address these issues, but the growing number of developments can be overwhelming, complicating efforts to navigate LIME-related research. To the best of our knowledge, this is the first survey to comprehensively explore and collect LIME's foundational concepts and known limitations. We categorize and compare its various enhancements, offering a structured taxonomy based on intermediate steps and key issues. Our analysis provides a holistic overview of advancements in LIME, guiding future research and helping practitioners identify suitable approaches. Additionally, we provide a continuously updated interactive website (https://patrick-knab.github.io/which-lime-to-trust/), offering a concise and accessible overview of the survey.
comment: Accepted at the 3rd World Conference on eXplainable Artificial Intelligence (XAI 2025)
☆ Sim-and-Real Co-Training: A Simple Recipe for Vision-Based Robotic Manipulation
Large real-world robot datasets hold great potential to train generalist robot models, but scaling real-world human data collection is time-consuming and resource-intensive. Simulation has great potential in supplementing large-scale data, especially with recent advances in generative AI and automated data generation tools that enable scalable creation of robot behavior datasets. However, training a policy solely in simulation and transferring it to the real world often demands substantial human effort to bridge the reality gap. A compelling alternative is to co-train the policy on a mixture of simulation and real-world datasets. Preliminary studies have recently shown this strategy to substantially improve the performance of a policy over one trained on a limited amount of real-world data. Nonetheless, the community lacks a systematic understanding of sim-and-real co-training and what it takes to reap the benefits of simulation data for real-robot learning. This work presents a simple yet effective recipe for utilizing simulation data to solve vision-based robotic manipulation tasks. We derive this recipe from comprehensive experiments that validate the co-training strategy on various simulation and real-world datasets. Using two domains--a robot arm and a humanoid--across diverse tasks, we demonstrate that simulation data can enhance real-world task performance by an average of 38%, even with notable differences between the simulation and real-world data. Videos and additional results can be found at https://co-training.github.io/
comment: Project website: https://co-training.github.io/
☆ SQuat: Subspace-orthogonal KV Cache Quantization
The key-value (KV) cache accelerates LLMs decoding by storing KV tensors from previously generated tokens. It reduces redundant computation at the cost of increased memory usage. To mitigate this overhead, existing approaches compress KV tensors into lower-bit representations; however, quantization errors can accumulate as more tokens are generated, potentially resulting in undesired outputs. In this paper, we introduce SQuat (Subspace-orthogonal KV cache quantization). It first constructs a subspace spanned by query tensors to capture the most critical task-related information. During key tensor quantization, it enforces that the difference between the (de)quantized and original keys remains orthogonal to this subspace, minimizing the impact of quantization errors on the attention mechanism's outputs. SQuat requires no model fine-tuning, no additional calibration dataset for offline learning, and is grounded in a theoretical framework we develop. Through numerical experiments, we show that our method reduces peak memory by 2.17 to 2.82, improves throughput by 2.45 to 3.60, and achieves more favorable benchmark scores than existing KV cache quantization algorithms.
☆ ORAL: Prompting Your Large-Scale LoRAs via Conditional Recurrent Diffusion
Parameter generation has emerged as a novel paradigm for neural network development, offering an alternative to traditional neural network training by synthesizing high-quality model weights directly. In the context of Low-Rank Adaptation (LoRA) for evolving ($\textit{i.e.}$, constantly updated) large language models (LLMs), this approach promises efficient adaptation without costly retraining. However, existing methods face critical limitations in simultaneously achieving scalability and controllability. In this paper, we introduce $\texttt{ORAL}$, a novel $\textbf{conditional recurrent diffusion}$ framework that addresses these challenges. $\texttt{ORAL}$ incorporates a novel conditioning mechanism that integrates model architecture and textual task specifications, enabling the generation of task-specific LoRA parameters that can seamlessly transfer across evolving foundation models. Our approach successfully scales to billions-of-parameter LLMs and maintains controllability. Through extensive experiments across seven language tasks, four vision tasks, and three multimodal tasks using five pre-trained LLMs, we demonstrate that $\texttt{ORAL}$ generates high-quality LoRA parameters that achieve comparable or superior performance to vanilla trained counterparts.
☆ Contextual Preference Collaborative Measure Framework Based on Belief System
To reduce the human intervention in the preference measure process,this article proposes a preference collaborative measure framework based on an updated belief system,which is also capable of improving the accuracy and efficiency of preferen-ce measure algorithms.Firstly,the distance of rules and the average internal distance of rulesets are proposed for specifying the relationship between the rules.For discovering the most representative preferences that are common in all users,namely common preference,a algorithm based on average internal distance of ruleset,PRA algorithm,is proposed,which aims to finish the discoveryprocess with minimum information loss rate.Furthermore,the concept of Common belief is proposed to update the belief system,and the common preferences are the evidences of updated belief system.Then,under the belief system,the proposed belief degree and deviation degree are used to determine whether a rule confirms the belief system or not and classify the preference rules into two kinds(generalized or personalized),and eventually filters out Top-K interesting rules relying on belief degree and deviation degree.Based on above,a scalable interestingness calculation framework that can apply various formulas is proposed for accurately calculating interestingness in different conditions.At last,IMCos algorithm and IMCov algorithm are proposed as exemplars to verify the accuracy and efficiency of the framework by using weighted cosine similarity and correlation coefficients as belief degree.In experiments,the proposed algorithms are compared to two state-of-the-art algorithms and the results show that IMCos and IMCov outperform than the other two in most aspects.
comment: in Chinese language
☆ Pro-Routing: Proactive Routing of Autonomous Multi-Capacity Robots for Pickup-and-Delivery Tasks
We consider a multi-robot setting, where we have a fleet of multi-capacity autonomous robots that must service spatially distributed pickup-and-delivery requests with fixed maximum wait times. Requests can be either scheduled ahead of time or they can enter the system in real-time. In this setting, stability for a routing policy is defined as the cost of the policy being uniformly bounded over time. Most previous work either solve the problem offline to theoretically maintain stability or they consider dynamically arriving requests at the expense of the theoretical guarantees on stability. In this paper, we aim to bridge this gap by proposing a novel proactive rollout-based routing framework that adapts to real-time demand while still provably maintaining the stability of the learned routing policy. We derive provable stability guarantees for our method by proposing a fleet sizing algorithm that obtains a sufficiently large fleet that ensures stability by construction. To validate our theoretical results, we consider a case study on real ride requests for Harvard's evening Van System. We also evaluate the performance of our framework using the currently deployed smaller fleet size. In this smaller setup, we compare against the currently deployed routing algorithm, greedy heuristics, and Monte-Carlo-Tree-Search-based algorithms. Our empirical results show that our framework maintains stability when we use the sufficiently large fleet size found in our theoretical results. For the smaller currently deployed fleet size, our method services 6% more requests than the closest baseline while reducing median passenger wait times by 33%.
comment: 25 pages, 7 figures, and 1 table
☆ BEATS: Bias Evaluation and Assessment Test Suite for Large Language Models
In this research, we introduce BEATS, a novel framework for evaluating Bias, Ethics, Fairness, and Factuality in Large Language Models (LLMs). Building upon the BEATS framework, we present a bias benchmark for LLMs that measure performance across 29 distinct metrics. These metrics span a broad range of characteristics, including demographic, cognitive, and social biases, as well as measures of ethical reasoning, group fairness, and factuality related misinformation risk. These metrics enable a quantitative assessment of the extent to which LLM generated responses may perpetuate societal prejudices that reinforce or expand systemic inequities. To achieve a high score on this benchmark a LLM must show very equitable behavior in their responses, making it a rigorous standard for responsible AI evaluation. Empirical results based on data from our experiment show that, 37.65\% of outputs generated by industry leading models contained some form of bias, highlighting a substantial risk of using these models in critical decision making systems. BEATS framework and benchmark offer a scalable and statistically rigorous methodology to benchmark LLMs, diagnose factors driving biases, and develop mitigation strategies. With the BEATS framework, our goal is to help the development of more socially responsible and ethically aligned AI models.
comment: 32 pages, 33 figures, preprint version
☆ A Systematic Evaluation of LLM Strategies for Mental Health Text Analysis: Fine-tuning vs. Prompt Engineering vs. RAG
This study presents a systematic comparison of three approaches for the analysis of mental health text using large language models (LLMs): prompt engineering, retrieval augmented generation (RAG), and fine-tuning. Using LLaMA 3, we evaluate these approaches on emotion classification and mental health condition detection tasks across two datasets. Fine-tuning achieves the highest accuracy (91% for emotion classification, 80% for mental health conditions) but requires substantial computational resources and large training sets, while prompt engineering and RAG offer more flexible deployment with moderate performance (40-68% accuracy). Our findings provide practical insights for implementing LLM-based solutions in mental health applications, highlighting the trade-offs between accuracy, computational requirements, and deployment flexibility.
☆ Shape Expressions with Inheritance ESWC
We formally introduce an inheritance mechanism for the Shape Expressions language (ShEx). It is inspired by inheritance in object-oriented programming languages, and provides similar advantages such as reuse, modularity, and more flexible data modelling. Using an example, we explain the main features of the inheritance mechanism. We present its syntax and formal semantics. The semantics is an extension of the semantics of ShEx 2.1. It also directly yields a validation algorithm as an extension of the previous ShEx validation algorithms, while maintaining the same algorithmic complexity.
comment: Accepted in Extended Semantic Web Conference, ESWC, 2025
☆ Value of Information-based Deceptive Path Planning Under Adversarial Interventions
Existing methods for deceptive path planning (DPP) address the problem of designing paths that conceal their true goal from a passive, external observer. Such methods do not apply to problems where the observer has the ability to perform adversarial interventions to impede the path planning agent. In this paper, we propose a novel Markov decision process (MDP)-based model for the DPP problem under adversarial interventions and develop new value of information (VoI) objectives to guide the design of DPP policies. Using the VoI objectives we propose, path planning agents deceive the adversarial observer into choosing suboptimal interventions by selecting trajectories that are of low informational value to the observer. Leveraging connections to the linear programming theory for MDPs, we derive computationally efficient solution methods for synthesizing policies for performing DPP under adversarial interventions. In our experiments, we illustrate the effectiveness of the proposed solution method in achieving deceptiveness under adversarial interventions and demonstrate the superior performance of our approach to both existing DPP methods and conservative path planning approaches on illustrative gridworld problems.
comment: 10 pages, 4 figures
☆ AutoEval: Autonomous Evaluation of Generalist Robot Manipulation Policies in the Real World
Scalable and reproducible policy evaluation has been a long-standing challenge in robot learning. Evaluations are critical to assess progress and build better policies, but evaluation in the real world, especially at a scale that would provide statistically reliable results, is costly in terms of human time and hard to obtain. Evaluation of increasingly generalist robot policies requires an increasingly diverse repertoire of evaluation environments, making the evaluation bottleneck even more pronounced. To make real-world evaluation of robotic policies more practical, we propose AutoEval, a system to autonomously evaluate generalist robot policies around the clock with minimal human intervention. Users interact with AutoEval by submitting evaluation jobs to the AutoEval queue, much like how software jobs are submitted with a cluster scheduling system, and AutoEval will schedule the policies for evaluation within a framework supplying automatic success detection and automatic scene resets. We show that AutoEval can nearly fully eliminate human involvement in the evaluation process, permitting around the clock evaluations, and the evaluation results correspond closely to ground truth evaluations conducted by hand. To facilitate the evaluation of generalist policies in the robotics community, we provide public access to multiple AutoEval scenes in the popular BridgeData robot setup with WidowX robot arms. In the future, we hope that AutoEval scenes can be set up across institutions to form a diverse and distributed evaluation network.
☆ Evaluating and Designing Sparse Autoencoders by Approximating Quasi-Orthogonality
Sparse autoencoders (SAEs) have emerged as a workhorse of modern mechanistic interpretability, but leading SAE approaches with top-$k$ style activation functions lack theoretical grounding for selecting the hyperparameter $k$. SAEs are based on the linear representation hypothesis (LRH), which assumes that the representations of large language models (LLMs) are linearly encoded, and the superposition hypothesis (SH), which states that there can be more features in the model than its dimensionality. We show that, based on the formal definitions of the LRH and SH, the magnitude of sparse feature vectors (the latent representations learned by SAEs of the dense embeddings of LLMs) can be approximated using their corresponding dense vector with a closed-form error bound. To visualize this, we propose the ZF plot, which reveals a previously unknown relationship between LLM hidden embeddings and SAE feature vectors, allowing us to make the first empirical measurement of the extent to which feature vectors of pre-trained SAEs are over- or under-activated for a given input. Correspondingly, we introduce Approximate Feature Activation (AFA), which approximates the magnitude of the ground-truth sparse feature vector, and propose a new evaluation metric derived from AFA to assess the alignment between inputs and activations. We also leverage AFA to introduce a novel SAE architecture, the top-AFA SAE, leading to SAEs that: (a) are more in line with theoretical justifications; and (b) obviate the need to tune SAE sparsity hyperparameters. Finally, we empirically demonstrate that top-AFA SAEs achieve reconstruction loss comparable to that of state-of-the-art top-k SAEs, without requiring the hyperparameter $k$ to be tuned. Our code is available at: https://github.com/SewoongLee/top-afa-sae.
☆ New Statistical Framework for Extreme Error Probability in High-Stakes Domains for Reliable Machine Learning
Machine learning is vital in high-stakes domains, yet conventional validation methods rely on averaging metrics like mean squared error (MSE) or mean absolute error (MAE), which fail to quantify extreme errors. Worst-case prediction failures can have substantial consequences, but current frameworks lack statistical foundations for assessing their probability. In this work a new statistical framework, based on Extreme Value Theory (EVT), is presented that provides a rigorous approach to estimating worst-case failures. Applying EVT to synthetic and real-world datasets, this method is shown to enable robust estimation of catastrophic failure probabilities, overcoming the fundamental limitations of standard cross-validation. This work establishes EVT as a fundamental tool for assessing model reliability, ensuring safer AI deployment in new technologies where uncertainty quantification is central to decision-making or scientific analysis.
☆ Beyond a Single Mode: GAN Ensembles for Diverse Medical Data Generation
The advancement of generative AI, particularly in medical imaging, confronts the trilemma of ensuring high fidelity, diversity, and efficiency in synthetic data generation. While Generative Adversarial Networks (GANs) have shown promise across various applications, they still face challenges like mode collapse and insufficient coverage of real data distributions. This work explores the use of GAN ensembles to overcome these limitations, specifically in the context of medical imaging. By solving a multi-objective optimisation problem that balances fidelity and diversity, we propose a method for selecting an optimal ensemble of GANs tailored for medical data. The selected ensemble is capable of generating diverse synthetic medical images that are representative of true data distributions and computationally efficient. Each model in the ensemble brings a unique contribution, ensuring minimal redundancy. We conducted a comprehensive evaluation using three distinct medical datasets, testing 22 different GAN architectures with various loss functions and regularisation techniques. By sampling models at different training epochs, we crafted 110 unique configurations. The results highlight the capability of GAN ensembles to enhance the quality and utility of synthetic medical images, thereby improving the efficacy of downstream tasks such as diagnostic modelling.
☆ Spatio-temporal Prediction of Fine-Grained Origin-Destination Matrices with Applications in Ridesharing
Accurate spatial-temporal prediction of network-based travelers' requests is crucial for the effective policy design of ridesharing platforms. Having knowledge of the total demand between various locations in the upcoming time slots enables platforms to proactively prepare adequate supplies, thereby increasing the likelihood of fulfilling travelers' requests and redistributing idle drivers to areas with high potential demand to optimize the global supply-demand equilibrium. This paper delves into the prediction of Origin-Destination (OD) demands at a fine-grained spatial level, especially when confronted with an expansive set of local regions. While this task holds immense practical value, it remains relatively unexplored within the research community. To fill this gap, we introduce a novel prediction model called OD-CED, which comprises an unsupervised space coarsening technique to alleviate data sparsity and an encoder-decoder architecture to capture both semantic and geographic dependencies. Through practical experimentation, OD-CED has demonstrated remarkable results. It achieved an impressive reduction of up to 45% reduction in root-mean-square error and 60% in weighted mean absolute percentage error over traditional statistical methods when dealing with OD matrices exhibiting a sparsity exceeding 90%.
☆ What, How, Where, and How Well? A Survey on Test-Time Scaling in Large Language Models
As enthusiasm for scaling computation (data and parameters) in the pretraining era gradually diminished, test-time scaling (TTS), also referred to as ``test-time computing'' has emerged as a prominent research focus. Recent studies demonstrate that TTS can further elicit the problem-solving capabilities of large language models (LLMs), enabling significant breakthroughs not only in specialized reasoning tasks, such as mathematics and coding, but also in general tasks like open-ended Q&A. However, despite the explosion of recent efforts in this area, there remains an urgent need for a comprehensive survey offering a systemic understanding. To fill this gap, we propose a unified, multidimensional framework structured along four core dimensions of TTS research: what to scale, how to scale, where to scale, and how well to scale. Building upon this taxonomy, we conduct an extensive review of methods, application scenarios, and assessment aspects, and present an organized decomposition that highlights the unique functional roles of individual techniques within the broader TTS landscape. From this analysis, we distill the major developmental trajectories of TTS to date and offer hands-on guidelines for practical deployment. Furthermore, we identify several open challenges and offer insights into promising future directions, including further scaling, clarifying the functional essence of techniques, generalizing to more tasks, and more attributions.
☆ PAARS: Persona Aligned Agentic Retail Shoppers
In e-commerce, behavioral data is collected for decision making which can be costly and slow. Simulation with LLM powered agents is emerging as a promising alternative for representing human population behavior. However, LLMs are known to exhibit certain biases, such as brand bias, review rating bias and limited representation of certain groups in the population, hence they need to be carefully benchmarked and aligned to user behavior. Ultimately, our goal is to synthesise an agent population and verify that it collectively approximates a real sample of humans. To this end, we propose a framework that: (i) creates synthetic shopping agents by automatically mining personas from anonymised historical shopping data, (ii) equips agents with retail-specific tools to synthesise shopping sessions and (iii) introduces a novel alignment suite measuring distributional differences between humans and shopping agents at the group (i.e. population) level rather than the traditional "individual" level. Experimental results demonstrate that using personas improves performance on the alignment suite, though a gap remains to human behaviour. We showcase an initial application of our framework for automated agentic A/B testing and compare the findings to human results. Finally, we discuss applications, limitations and challenges setting the stage for impactful future work.
☆ MB-ORES: A Multi-Branch Object Reasoner for Visual Grounding in Remote Sensing
We propose a unified framework that integrates object detection (OD) and visual grounding (VG) for remote sensing (RS) imagery. To support conventional OD and establish an intuitive prior for VG task, we fine-tune an open-set object detector using referring expression data, framing it as a partially supervised OD task. In the first stage, we construct a graph representation of each image, comprising object queries, class embeddings, and proposal locations. Then, our task-aware architecture processes this graph to perform the VG task. The model consists of: (i) a multi-branch network that integrates spatial, visual, and categorical features to generate task-aware proposals, and (ii) an object reasoning network that assigns probabilities across proposals, followed by a soft selection mechanism for final referring object localization. Our model demonstrates superior performance on the OPT-RSVG and DIOR-RSVG datasets, achieving significant improvements over state-of-the-art methods while retaining classical OD capabilities. The code will be available in our repository: \url{https://github.com/rd20karim/MB-ORES}.
☆ All You Need is Sally-Anne: ToM in AI Strongly Supported After Surpassing Tests for 3-Year-Olds
Theory of Mind (ToM) is a hallmark of human cognition, allowing individuals to reason about others' beliefs and intentions. Engineers behind recent advances in Artificial Intelligence (AI) have claimed to demonstrate comparable capabilities. This paper presents a model that surpasses traditional ToM tests designed for 3-year-old children, providing strong support for the presence of ToM in AI systems.
☆ DiET-GS: Diffusion Prior and Event Stream-Assisted Motion Deblurring 3D Gaussian Splatting CVPR 2025
Reconstructing sharp 3D representations from blurry multi-view images are long-standing problem in computer vision. Recent works attempt to enhance high-quality novel view synthesis from the motion blur by leveraging event-based cameras, benefiting from high dynamic range and microsecond temporal resolution. However, they often reach sub-optimal visual quality in either restoring inaccurate color or losing fine-grained details. In this paper, we present DiET-GS, a diffusion prior and event stream-assisted motion deblurring 3DGS. Our framework effectively leverages both blur-free event streams and diffusion prior in a two-stage training strategy. Specifically, we introduce the novel framework to constraint 3DGS with event double integral, achieving both accurate color and well-defined details. Additionally, we propose a simple technique to leverage diffusion prior to further enhance the edge details. Qualitative and quantitative results on both synthetic and real-world data demonstrate that our DiET-GS is capable of producing significantly better quality of novel views compared to the existing baselines. Our project page is https://diet-gs.github.io
comment: CVPR 2025. Project Page: https://diet-gs.github.io
☆ Agent-Based Simulations of Online Political Discussions: A Case Study on Elections in Germany ESWC
User engagement on social media platforms is influenced by historical context, time constraints, and reward-driven interactions. This study presents an agent-based simulation approach that models user interactions, considering past conversation history, motivation, and resource constraints. Utilizing German Twitter data on political discourse, we fine-tune AI models to generate posts and replies, incorporating sentiment analysis, irony detection, and offensiveness classification. The simulation employs a myopic best-response model to govern agent behavior, accounting for decision-making based on expected rewards. Our results highlight the impact of historical context on AI-generated responses and demonstrate how engagement evolves under varying constraints.
comment: 15 pages, 3, ESWC, Workshop Paper
☆ Output Constraints as Attack Surface: Exploiting Structured Generation to Bypass LLM Safety Mechanisms
Content Warning: This paper may contain unsafe or harmful content generated by LLMs that may be offensive to readers. Large Language Models (LLMs) are extensively used as tooling platforms through structured output APIs to ensure syntax compliance so that robust integration with existing softwares like agent systems, could be achieved. However, the feature enabling functionality of grammar-guided structured output presents significant security vulnerabilities. In this work, we reveal a critical control-plane attack surface orthogonal to traditional data-plane vulnerabilities. We introduce Constrained Decoding Attack (CDA), a novel jailbreak class that weaponizes structured output constraints to bypass safety mechanisms. Unlike prior attacks focused on input prompts, CDA operates by embedding malicious intent in schema-level grammar rules (control-plane) while maintaining benign surface prompts (data-plane). We instantiate this with a proof-of-concept Chain Enum Attack, achieves 96.2% attack success rates across proprietary and open-weight LLMs on five safety benchmarks with a single query, including GPT-4o and Gemini-2.0-flash. Our findings identify a critical security blind spot in current LLM architectures and urge a paradigm shift in LLM safety to address control-plane vulnerabilities, as current mechanisms focused solely on data-plane threats leave critical systems exposed.
comment: 15 pages, 13 figures, 4 tables Work In Progress
☆ Predicting Targeted Therapy Resistance in Non-Small Cell Lung Cancer Using Multimodal Machine Learning
Lung cancer is the primary cause of cancer death globally, with non-small cell lung cancer (NSCLC) emerging as its most prevalent subtype. Among NSCLC patients, approximately 32.3% have mutations in the epidermal growth factor receptor (EGFR) gene. Osimertinib, a third-generation EGFR-tyrosine kinase inhibitor (TKI), has demonstrated remarkable efficacy in the treatment of NSCLC patients with activating and T790M resistance EGFR mutations. Despite its established efficacy, drug resistance poses a significant challenge for patients to fully benefit from osimertinib. The absence of a standard tool to accurately predict TKI resistance, including that of osimertinib, remains a critical obstacle. To bridge this gap, in this study, we developed an interpretable multimodal machine learning model designed to predict patient resistance to osimertinib among late-stage NSCLC patients with activating EGFR mutations, achieving a c-index of 0.82 on a multi-institutional dataset. This machine learning model harnesses readily available data routinely collected during patient visits and medical assessments to facilitate precision lung cancer management and informed treatment decisions. By integrating various data types such as histology images, next generation sequencing (NGS) data, demographics data, and clinical records, our multimodal model can generate well-informed recommendations. Our experiment results also demonstrated the superior performance of the multimodal model over single modality models (c-index 0.82 compared with 0.75 and 0.77), thus underscoring the benefit of combining multiple modalities in patient outcome prediction.
☆ Learning a Canonical Basis of Human Preferences from Binary Ratings
Recent advances in generative AI have been driven by alignment techniques such as reinforcement learning from human feedback (RLHF). RLHF and related techniques typically involve constructing a dataset of binary or ranked choice human preferences and subsequently fine-tuning models to align with these preferences. This paper shifts the focus to understanding the preferences encoded in such datasets and identifying common human preferences. We find that a small subset of 21 preference categories (selected from a set of nearly 5,000 distinct preferences) captures >89% of preference variation across individuals. This small set of preferences is analogous to a canonical basis of human preferences, similar to established findings that characterize human variation in psychology or facial recognition studies. Through both synthetic and empirical evaluations, we confirm that our low-rank, canonical set of human preferences generalizes across the entire dataset and within specific topics. We further demonstrate our preference basis' utility in model evaluation, where our preference categories offer deeper insights into model alignment, and in model training, where we show that fine-tuning on preference-defined subsets successfully aligns the model accordingly.
comment: 25 pages, 11 figures
☆ Resonance: Drawing from Memories to Imagine Positive Futures through AI-Augmented Journaling
People inherently use experiences of their past while imagining their future, a capability that plays a crucial role in mental health. Resonance is an AI-powered journaling tool designed to augment this ability by offering AI-generated, action-oriented suggestions for future activities based on the user's own past memories. Suggestions are offered when a new memory is logged and are followed by a prompt for the user to imagine carrying out the suggestion. In a two-week randomized controlled study (N=55), we found that using Resonance significantly improved mental health outcomes, reducing the users' PHQ8 scores, a measure of current depression, and increasing their daily positive affect, particularly when they would likely act on the suggestion. Notably, the effectiveness of the suggestions was higher when they were personal, novel, and referenced the user's logged memories. Finally, through open-ended feedback, we discuss the factors that encouraged or hindered the use of the tool.
comment: 17 pages, 13 figures
Graph Neural Network-Based Predictive Modeling for Robotic Plaster Printing
This work proposes a Graph Neural Network (GNN) modeling approach to predict the resulting surface from a particle based fabrication process. The latter consists of spray-based printing of cementitious plaster on a wall and is facilitated with the use of a robotic arm. The predictions are computed using the robotic arm trajectory features, such as position, velocity and direction, as well as the printing process parameters. The proposed approach, based on a particle representation of the wall domain and the end effector, allows for the adoption of a graph-based solution. The GNN model consists of an encoder-processor-decoder architecture and is trained using data from laboratory tests, while the hyperparameters are optimized by means of a Bayesian scheme. The aim of this model is to act as a simulator of the printing process, and ultimately used for the generation of the robotic arm trajectory and the optimization of the printing parameters, towards the materialization of an autonomous plastering process. The performance of the proposed model is assessed in terms of the prediction error against unseen ground truth data, which shows its generality in varied scenarios, as well as in comparison with the performance of an existing benchmark model. The results demonstrate a significant improvement over the benchmark model, with notably better performance and enhanced error scaling across prediction steps.
☆ Grounding Agent Reasoning in Image Schemas: A Neurosymbolic Approach to Embodied Cognition
Despite advances in embodied AI, agent reasoning systems still struggle to capture the fundamental conceptual structures that humans naturally use to understand and interact with their environment. To address this, we propose a novel framework that bridges embodied cognition theory and agent systems by leveraging a formal characterization of image schemas, which are defined as recurring patterns of sensorimotor experience that structure human cognition. By customizing LLMs to translate natural language descriptions into formal representations based on these sensorimotor patterns, we will be able to create a neurosymbolic system that grounds the agent's understanding in fundamental conceptual structures. We argue that such an approach enhances both efficiency and interpretability while enabling more intuitive human-agent interactions through shared embodied understanding.
☆ PolypSegTrack: Unified Foundation Model for Colonoscopy Video Analysis
Early detection, accurate segmentation, classification and tracking of polyps during colonoscopy are critical for preventing colorectal cancer. Many existing deep-learning-based methods for analyzing colonoscopic videos either require task-specific fine-tuning, lack tracking capabilities, or rely on domain-specific pre-training. In this paper, we introduce \textit{PolypSegTrack}, a novel foundation model that jointly addresses polyp detection, segmentation, classification and unsupervised tracking in colonoscopic videos. Our approach leverages a novel conditional mask loss, enabling flexible training across datasets with either pixel-level segmentation masks or bounding box annotations, allowing us to bypass task-specific fine-tuning. Our unsupervised tracking module reliably associates polyp instances across frames using object queries, without relying on any heuristics. We leverage a robust vision foundation model backbone that is pre-trained unsupervisedly on natural images, thereby removing the need for domain-specific pre-training. Extensive experiments on multiple polyp benchmarks demonstrate that our method significantly outperforms existing state-of-the-art approaches in detection, segmentation, classification, and tracking.
☆ Artificial Conversations, Real Results: Fostering Language Detection with Synthetic Data
Collecting high-quality training data is essential for fine-tuning Large Language Models (LLMs). However, acquiring such data is often costly and time-consuming, especially for non-English languages such as Italian. Recently, researchers have begun to explore the use of LLMs to generate synthetic datasets as a viable alternative. This study proposes a pipeline for generating synthetic data and a comprehensive approach for investigating the factors that influence the validity of synthetic data generated by LLMs by examining how model performance is affected by metrics such as prompt strategy, text length and target position in a specific task, i.e. inclusive language detection in Italian job advertisements. Our results show that, in most cases and across different metrics, the fine-tuned models trained on synthetic data consistently outperformed other models on both real and synthetic test datasets. The study discusses the practical implications and limitations of using synthetic data for language detection tasks with LLMs.
☆ Towards Scientific Intelligence: A Survey of LLM-based Scientific Agents
As scientific research becomes increasingly complex, innovative tools are needed to manage vast data, facilitate interdisciplinary collaboration, and accelerate discovery. Large language models (LLMs) are now evolving into LLM-based scientific agents that automate critical tasks, ranging from hypothesis generation and experiment design to data analysis and simulation. Unlike general-purpose LLMs, these specialized agents integrate domain-specific knowledge, advanced tool sets, and robust validation mechanisms, enabling them to handle complex data types, ensure reproducibility, and drive scientific breakthroughs. This survey provides a focused review of the architectures, design, benchmarks, applications, and ethical considerations surrounding LLM-based scientific agents. We highlight why they differ from general agents and the ways in which they advance research across various scientific fields. By examining their development and challenges, this survey offers a comprehensive roadmap for researchers and practitioners to harness these agents for more efficient, reliable, and ethically sound scientific discovery.
comment: 34 pages, 10 figures
☆ Pay More Attention to the Robustness of Prompt for Instruction Data Mining
Instruction tuning has emerged as a paramount method for tailoring the behaviors of LLMs. Recent work has unveiled the potential for LLMs to achieve high performance through fine-tuning with a limited quantity of high-quality instruction data. Building upon this approach, we further explore the impact of prompt's robustness on the selection of high-quality instruction data. This paper proposes a pioneering framework of high-quality online instruction data mining for instruction tuning, focusing on the impact of prompt's robustness on the data mining process. Our notable innovation, is to generate the adversarial instruction data by conducting the attack for the prompt of online instruction data. Then, we introduce an Adversarial Instruction-Following Difficulty metric to measure how much help the adversarial instruction data can provide to the generation of the corresponding response. Apart from it, we propose a novel Adversarial Instruction Output Embedding Consistency approach to select high-quality online instruction data. We conduct extensive experiments on two benchmark datasets to assess the performance. The experimental results serve to underscore the effectiveness of our proposed two methods. Moreover, the results underscore the critical practical significance of considering prompt's robustness.
☆ Bayesian Predictive Coding
Predictive coding (PC) is an influential theory of information processing in the brain, providing a biologically plausible alternative to backpropagation. It is motivated in terms of Bayesian inference, as hidden states and parameters are optimised via gradient descent on variational free energy. However, implementations of PC rely on maximum \textit{a posteriori} (MAP) estimates of hidden states and maximum likelihood (ML) estimates of parameters, limiting their ability to quantify epistemic uncertainty. In this work, we investigate a Bayesian extension to PC that estimates a posterior distribution over network parameters. This approach, termed Bayesian Predictive coding (BPC), preserves the locality of PC and results in closed-form Hebbian weight updates. Compared to PC, our BPC algorithm converges in fewer epochs in the full-batch setting and remains competitive in the mini-batch setting. Additionally, we demonstrate that BPC offers uncertainty quantification comparable to existing methods in Bayesian deep learning, while also improving convergence properties. Together, these results suggest that BPC provides a biologically plausible method for Bayesian learning in the brain, as well as an attractive approach to uncertainty quantification in deep learning.
☆ Learning 3D-Gaussian Simulators from RGB Videos
Learning physics simulations from video data requires maintaining spatial and temporal consistency, a challenge often addressed with strong inductive biases or ground-truth 3D information -- limiting scalability and generalization. We introduce 3DGSim, a 3D physics simulator that learns object dynamics end-to-end from multi-view RGB videos. It encodes images into a 3D Gaussian particle representation, propagates dynamics via a transformer, and renders frames using 3D Gaussian splatting. By jointly training inverse rendering with a dynamics transformer using a temporal encoding and merging layer, 3DGSimembeds physical properties into point-wise latent vectors without enforcing explicit connectivity constraints. This enables the model to capture diverse physical behaviors, from rigid to elastic and cloth-like interactions, along with realistic lighting effects that also generalize to unseen multi-body interactions and novel scene edits.
☆ H2VU-Benchmark: A Comprehensive Benchmark for Hierarchical Holistic Video Understanding
With the rapid development of multimodal models, the demand for assessing video understanding capabilities has been steadily increasing. However, existing benchmarks for evaluating video understanding exhibit significant limitations in coverage, task diversity, and scene adaptability. These shortcomings hinder the accurate assessment of models' comprehensive video understanding capabilities. To tackle this challenge, we propose a hierarchical and holistic video understanding (H2VU) benchmark designed to evaluate both general video and online streaming video comprehension. This benchmark contributes three key features: Extended video duration: Spanning videos from brief 3-second clips to comprehensive 1.5-hour recordings, thereby bridging the temporal gaps found in current benchmarks. Comprehensive assessment tasks: Beyond traditional perceptual and reasoning tasks, we have introduced modules for countercommonsense comprehension and trajectory state tracking. These additions test the models' deep understanding capabilities beyond mere prior knowledge. Enriched video data: To keep pace with the rapid evolution of current AI agents, we have expanded first-person streaming video datasets. This expansion allows for the exploration of multimodal models' performance in understanding streaming videos from a first-person perspective. Extensive results from H2VU reveal that existing multimodal large language models (MLLMs) possess substantial potential for improvement in our newly proposed evaluation tasks. We expect that H2VU will facilitate advancements in video understanding research by offering a comprehensive and in-depth analysis of MLLMs.
☆ CITRAS: Covariate-Informed Transformer for Time Series Forecasting
Covariates play an indispensable role in practical time series forecasting, offering rich context from the past and sometimes extending into the future. However, their availability varies depending on the scenario, and situations often involve multiple target variables simultaneously. Moreover, the cross-variate dependencies between them are multi-granular, with some covariates having a short-term impact on target variables and others showing long-term correlations. This heterogeneity and the intricate dependencies arising in covariate-informed forecasting present significant challenges to existing deep models. To address these issues, we propose CITRAS, a patch-based Transformer that flexibly leverages multiple targets and covariates covering both the past and the future forecasting horizon. While preserving the strong autoregressive capabilities of the canonical Transformer, CITRAS introduces two novel mechanisms in patch-wise cross-variate attention: Key-Value (KV) Shift and Attention Score Smoothing. KV Shift seamlessly incorporates future known covariates into the forecasting of target variables based on their concurrent dependencies. Additionally, Attention Score Smoothing transforms locally accurate patch-wise cross-variate dependencies into global variate-level dependencies by smoothing the past series of attention scores. Experimentally, CITRAS achieves state-of-the-art performance in both covariate-informed and multivariate forecasting, demonstrating its versatile ability to leverage cross-variate dependency for improved forecasting accuracy.
☆ Rethinking Key-Value Cache Compression Techniques for Large Language Model Serving
Key-Value cache (\texttt{KV} \texttt{cache}) compression has emerged as a promising technique to optimize Large Language Model (LLM) serving. It primarily decreases the memory consumption of \texttt{KV} \texttt{cache} to reduce the computation cost. Despite the development of many compression algorithms, their applications in production environments are still not prevalent. In this paper, we revisit mainstream \texttt{KV} \texttt{cache} compression solutions from a practical perspective. Our contributions are three-fold. First, we comprehensively review existing algorithmic designs and benchmark studies for \texttt{KV} \texttt{cache} compression and identify missing pieces in their performance measurement, which could hinder their adoption in practice. Second, we empirically evaluate representative \texttt{KV} \texttt{cache} compression methods to uncover two key issues that affect the computational efficiency: (1) while compressing \texttt{KV} \texttt{cache} can reduce memory consumption, current implementations (e.g., FlashAttention, PagedAttention) do not optimize for production-level LLM serving, resulting in suboptimal throughput performance; (2) compressing \texttt{KV} \texttt{cache} may lead to longer outputs, resulting in increased end-to-end latency. We further investigate the accuracy performance of individual samples rather than the overall performance, revealing the intrinsic limitations in \texttt{KV} \texttt{cache} compression when handling specific LLM tasks. Third, we provide tools to shed light on future \texttt{KV} \texttt{cache} compression studies and facilitate their practical deployment in production. They are open-sourced in \href{https://github.com/LLMkvsys/rethink-kv-compression}{https://github.com/LLMkvsys/rethink-kv-compression}.
comment: 21 pages, 18 figures, published to MLSys2025
☆ DenseFormer: Learning Dense Depth Map from Sparse Depth and Image via Conditional Diffusion Model
The depth completion task is a critical problem in autonomous driving, involving the generation of dense depth maps from sparse depth maps and RGB images. Most existing methods employ a spatial propagation network to iteratively refine the depth map after obtaining an initial dense depth. In this paper, we propose DenseFormer, a novel method that integrates the diffusion model into the depth completion task. By incorporating the denoising mechanism of the diffusion model, DenseFormer generates the dense depth map by progressively refining an initial random depth distribution through multiple iterations. We propose a feature extraction module that leverages a feature pyramid structure, along with multi-layer deformable attention, to effectively extract and integrate features from sparse depth maps and RGB images, which serve as the guiding condition for the diffusion process. Additionally, this paper presents a depth refinement module that applies multi-step iterative refinement across various ranges to the dense depth results generated by the diffusion process. The module utilizes image features enriched with multi-scale information and sparse depth input to further enhance the accuracy of the predicted depth map. Extensive experiments on the KITTI outdoor scene dataset demonstrate that DenseFormer outperforms classical depth completion methods.
☆ Rubric Is All You Need: Enhancing LLM-based Code Evaluation With Question-Specific Rubrics
Since the disruption in LLM technology brought about by the release of GPT-3 and ChatGPT, LLMs have shown remarkable promise in programming-related tasks. While code generation remains a popular field of research, code evaluation using LLMs remains a problem with no conclusive solution. In this paper, we focus on LLM-based code evaluation and attempt to fill in the existing gaps. We propose multi-agentic novel approaches using question-specific rubrics tailored to the problem statement, arguing that these perform better for logical assessment than the existing approaches that use question-agnostic rubrics. To address the lack of suitable evaluation datasets, we introduce two datasets: a Data Structures and Algorithms dataset containing 150 student submissions from a popular Data Structures and Algorithms practice website, and an Object Oriented Programming dataset comprising 80 student submissions from undergraduate computer science courses. In addition to using standard metrics (Spearman Correlation, Cohen's Kappa), we additionally propose a new metric called as Leniency, which quantifies evaluation strictness relative to expert assessment. Our comprehensive analysis demonstrates that question-specific rubrics significantly enhance logical assessment of code in educational settings, providing better feedback aligned with instructional goals beyond mere syntactic correctness.
comment: Under Review
☆ Deep Learning Model Deployment in Multiple Cloud Providers: an Exploratory Study Using Low Computing Power Environments
The deployment of Machine Learning models at cloud have grown by tech companies. Hardware requirements are higher when these models involve Deep Learning (DL) techniques and the cloud providers' costs may be a barrier. We explore deploying DL models using for experiments the GECToR model, a DL solution for Grammatical Error Correction, across three of the major cloud platforms (AWS, Google Cloud, Azure). We evaluate real-time latency, hardware usage and cost at each cloud provider by 7 execution environments with 10 experiments reproduced. We found that while GPUs excel in performance, they had an average cost 300% higher than solutions without GPU. Our analysis also identifies that processor cache size is crucial for cost-effective CPU deployments, enabling over 50% of cost reduction compared to GPUs. This study demonstrates the feasibility and affordability of cloud-based DL inference solutions without GPUs, benefiting resource-constrained users like startups.
comment: 15 pages, 7 figures
☆ Deep Nets as Hamiltonians
Neural networks are complex functions of both their inputs and parameters. Much prior work in deep learning theory analyzes the distribution of network outputs at a fixed a set of inputs (e.g. a training dataset) over random initializations of the network parameters. The purpose of this article is to consider the opposite situation: we view a randomly initialized Multi-Layer Perceptron (MLP) as a Hamiltonian over its inputs. For typical realizations of the network parameters, we study the properties of the energy landscape induced by this Hamiltonian, focusing on the structure of near-global minimum in the limit of infinite width. Specifically, we use the replica trick to perform an exact analytic calculation giving the entropy (log volume of space) at a given energy. We further derive saddle point equations that describe the overlaps between inputs sampled iid from the Gibbs distribution induced by the random MLP. For linear activations we solve these saddle point equations exactly. But we also solve them numerically for a variety of depths and activation functions, including $\tanh, \sin, \text{ReLU}$, and shaped non-linearities. We find even at infinite width a rich range of behaviors. For some non-linearities, such as $\sin$, for instance, we find that the landscapes of random MLPs exhibit full replica symmetry breaking, while shallow $\tanh$ and ReLU networks or deep shaped MLPs are instead replica symmetric.
comment: 19+7 pages
☆ Noise-based reward-modulated learning
Recent advances in reinforcement learning (RL) have led to significant improvements in task performance. However, training neural networks in an RL regime is typically achieved in combination with backpropagation, limiting their applicability in resource-constrained environments or when using non-differentiable neural networks. While noise-based alternatives like reward-modulated Hebbian learning (RMHL) have been proposed, their performance has remained limited, especially in scenarios with delayed rewards, which require retrospective credit assignment over time. Here, we derive a novel noise-based learning rule that addresses these challenges. Our approach combines directional derivative theory with Hebbian-like updates to enable efficient, gradient-free learning in RL. It features stochastic noisy neurons which can approximate gradients, and produces local synaptic updates modulated by a global reward signal. Drawing on concepts from neuroscience, our method uses reward prediction error as its optimization target to generate increasingly advantageous behavior, and incorporates an eligibility trace to facilitate temporal credit assignment in environments with delayed rewards. Its formulation relies on local information alone, making it compatible with implementations in neuromorphic hardware. Experimental validation shows that our approach significantly outperforms RMHL and is competitive with BP-based baselines, highlighting the promise of noise-based, biologically inspired learning for low-power and real-time applications.
☆ AirCache: Activating Inter-modal Relevancy KV Cache Compression for Efficient Large Vision-Language Model Inference
Recent advancements in Large Visual Language Models (LVLMs) have gained significant attention due to their remarkable reasoning capabilities and proficiency in generalization. However, processing a large number of visual tokens and generating long-context outputs impose substantial computational overhead, leading to excessive demands for key-value (KV) cache. To address this critical bottleneck, we propose AirCache, a novel KV cache compression method aimed at accelerating LVLMs inference. This work systematically investigates the correlations between visual and textual tokens within the attention mechanisms of LVLMs. Our empirical analysis reveals considerable redundancy in cached visual tokens, wherein strategically eliminating these tokens preserves model performance while significantly accelerating context generation. Inspired by these findings, we introduce an elite observation window for assessing the importance of visual components in the KV cache, focusing on stable inter-modal relevancy modeling with enhanced multi-perspective consistency. Additionally, we develop an adaptive layer-wise budget allocation strategy that capitalizes on the strength and skewness of token importance distribution, showcasing superior efficiency compared to uniform allocation. Comprehensive evaluations across multiple LVLMs and benchmarks demonstrate that our method achieves comparable performance to the full cache while retaining only 10% of visual KV cache, thereby reducing decoding latency by 29% to 66% across various batch size and prompt length of inputs. Notably, as cache retention rates decrease, our method exhibits increasing performance advantages over existing approaches.
☆ AI2Agent: An End-to-End Framework for Deploying AI Projects as Autonomous Agents
As AI technology advances, it is driving innovation across industries, increasing the demand for scalable AI project deployment. However, deployment remains a critical challenge due to complex environment configurations, dependency conflicts, cross-platform adaptation, and debugging difficulties, which hinder automation and adoption. This paper introduces AI2Agent, an end-to-end framework that automates AI project deployment through guideline-driven execution, self-adaptive debugging, and case \& solution accumulation. AI2Agent dynamically analyzes deployment challenges, learns from past cases, and iteratively refines its approach, significantly reducing human intervention. To evaluate its effectiveness, we conducted experiments on 30 AI deployment cases, covering TTS, text-to-image generation, image editing, and other AI applications. Results show that AI2Agent significantly reduces deployment time and improves success rates. The code and demo video are now publicly accessible.
☆ Green MLOps to Green GenOps: An Empirical Study of Energy Consumption in Discriminative and Generative AI Operations
This study presents an empirical investigation into the energy consumption of Discriminative and Generative AI models within real-world MLOps pipelines. For Discriminative models, we examine various architectures and hyperparameters during training and inference and identify energy-efficient practices. For Generative AI, Large Language Models (LLMs) are assessed, focusing primarily on energy consumption across different model sizes and varying service requests. Our study employs software-based power measurements, ensuring ease of replication across diverse configurations, models, and datasets. We analyse multiple models and hardware setups to uncover correlations among various metrics, identifying key contributors to energy consumption. The results indicate that for Discriminative models, optimising architectures, hyperparameters, and hardware can significantly reduce energy consumption without sacrificing performance. For LLMs, energy efficiency depends on balancing model size, reasoning complexity, and request-handling capacity, as larger models do not necessarily consume more energy when utilisation remains low. This analysis provides practical guidelines for designing green and sustainable ML operations, emphasising energy consumption and carbon footprint reductions while maintaining performance. This paper can serve as a benchmark for accurately estimating total energy use across different types of AI models.
comment: Published to MDPI Information - Artificial Intelligence Section
☆ What the F*ck Is Artificial General Intelligence?
Artificial general intelligence (AGI) is an established field of research. Yet Melanie Mitchell and others have questioned if the term still has meaning. AGI has been subject to so much hype and speculation it has become something of a Rorschach test. Mitchell points out that the debate will only be settled through long term, scientific investigation. To that end here is a short, accessible and provocative overview of AGI. I compare definitions of intelligence, settling on intelligence in terms of adaptation and AGI as an artificial scientist. Taking my queue from Sutton's Bitter Lesson I describe two foundational tools used to build adaptive systems: search and approximation. I compare pros, cons, hybrids and architectures like o3, AlphaGo, AERA, NARS and Hyperon. I then discuss overall meta-approaches to making systems behave more intelligently. I divide them into scale-maxing, simp-maxing, w-maxing based on the Bitter Lesson, Ockham's and Bennett's Razors. These maximise resources, simplicity of form, and the weakness of constraints on functionality. I discuss examples including AIXI, the free energy principle and The Embiggening of language models. I conclude that though scale-maxed approximation dominates, AGI will be a fusion of tools and meta-approaches. The Embiggening was enabled by improvements in hardware. Now the bottlenecks are sample and energy efficiency.
comment: Preprint; 10 pages;
☆ HumanAesExpert: Advancing a Multi-Modality Foundation Model for Human Image Aesthetic Assessment
Image Aesthetic Assessment (IAA) is a long-standing and challenging research task. However, its subset, Human Image Aesthetic Assessment (HIAA), has been scarcely explored, even though HIAA is widely used in social media, AI workflows, and related domains. To bridge this research gap, our work pioneers a holistic implementation framework tailored for HIAA. Specifically, we introduce HumanBeauty, the first dataset purpose-built for HIAA, which comprises 108k high-quality human images with manual annotations. To achieve comprehensive and fine-grained HIAA, 50K human images are manually collected through a rigorous curation process and annotated leveraging our trailblazing 12-dimensional aesthetic standard, while the remaining 58K with overall aesthetic labels are systematically filtered from public datasets. Based on the HumanBeauty database, we propose HumanAesExpert, a powerful Vision Language Model for aesthetic evaluation of human images. We innovatively design an Expert head to incorporate human knowledge of aesthetic sub-dimensions while jointly utilizing the Language Modeling (LM) and Regression head. This approach empowers our model to achieve superior proficiency in both overall and fine-grained HIAA. Furthermore, we introduce a MetaVoter, which aggregates scores from all three heads, to effectively balance the capabilities of each head, thereby realizing improved assessment precision. Extensive experiments demonstrate that our HumanAesExpert models deliver significantly better performance in HIAA than other state-of-the-art models. Our datasets, models, and codes are publicly released to advance the HIAA community. Project webpage: https://humanaesexpert.github.io/HumanAesExpert/
☆ Training-Free Text-Guided Image Editing with Visual Autoregressive Model
Text-guided image editing is an essential task that enables users to modify images through natural language descriptions. Recent advances in diffusion models and rectified flows have significantly improved editing quality, primarily relying on inversion techniques to extract structured noise from input images. However, inaccuracies in inversion can propagate errors, leading to unintended modifications and compromising fidelity. Moreover, even with perfect inversion, the entanglement between textual prompts and image features often results in global changes when only local edits are intended. To address these challenges, we propose a novel text-guided image editing framework based on VAR (Visual AutoRegressive modeling), which eliminates the need for explicit inversion while ensuring precise and controlled modifications. Our method introduces a caching mechanism that stores token indices and probability distributions from the original image, capturing the relationship between the source prompt and the image. Using this cache, we design an adaptive fine-grained masking strategy that dynamically identifies and constrains modifications to relevant regions, preventing unintended changes. A token reassembling approach further refines the editing process, enhancing diversity, fidelity, and control. Our framework operates in a training-free manner and achieves high-fidelity editing with faster inference speeds, processing a 1K resolution image in as fast as 1.2 seconds. Extensive experiments demonstrate that our method achieves performance comparable to, or even surpassing, existing diffusion- and rectified flow-based approaches in both quantitative metrics and visual quality. The code will be released.
☆ Better wit than wealth: Dynamic Parametric Retrieval Augmented Generation for Test-time Knowledge Enhancement
Retrieval-augmented generation (RAG) enhances large language models (LLMs) by retrieving relevant documents from external sources and incorporating them into the context. While it improves reliability by providing factual texts, it significantly increases inference costs as context length grows and introduces challenging issue of RAG hallucination, primarily caused by the lack of corresponding parametric knowledge in LLMs. An efficient solution is to enhance the knowledge of LLMs at test-time. Parametric RAG (PRAG) addresses this by embedding document into LLMs parameters to perform test-time knowledge enhancement, effectively reducing inference costs through offline training. However, its high training and storage costs, along with limited generalization ability, significantly restrict its practical adoption. To address these challenges, we propose Dynamic Parametric RAG (DyPRAG), a novel framework that leverages a lightweight parameter translator model to efficiently convert documents into parametric knowledge. DyPRAG not only reduces inference, training, and storage costs but also dynamically generates parametric knowledge, seamlessly enhancing the knowledge of LLMs and resolving knowledge conflicts in a plug-and-play manner at test-time. Extensive experiments on multiple datasets demonstrate the effectiveness and generalization capabilities of DyPRAG, offering a powerful and practical RAG paradigm which enables superior knowledge fusion and mitigates RAG hallucination in real-world applications. Our code is available at https://github.com/Trae1ounG/DyPRAG.
comment: preprint
☆ DiffScale: Continuous Downscaling and Bias Correction of Subseasonal Wind Speed Forecasts using Diffusion Models
Renewable resources are strongly dependent on local and large-scale weather situations. Skillful subseasonal to seasonal (S2S) forecasts -- beyond two weeks and up to two months -- can offer significant socioeconomic advantages to the energy sector. This study aims to enhance wind speed predictions using a diffusion model with classifier-free guidance to downscale S2S forecasts of surface wind speed. We propose DiffScale, a diffusion model that super-resolves spatial information for continuous downscaling factors and lead times. Leveraging weather priors as guidance for the generative process of diffusion models, we adopt the perspective of conditional probabilities on sampling super-resolved S2S forecasts. We aim to directly estimate the density associated with the target S2S forecasts at different spatial resolutions and lead times without auto-regression or sequence prediction, resulting in an efficient and flexible model. Synthetic experiments were designed to super-resolve wind speed S2S forecasts from the European Center for Medium-Range Weather Forecast (ECMWF) from a coarse resolution to a finer resolution of ERA5 reanalysis data, which serves as a high-resolution target. The innovative aspect of DiffScale lies in its flexibility to downscale arbitrary scaling factors, enabling it to generalize across various grid resolutions and lead times -without retraining the model- while correcting model errors, making it a versatile tool for improving S2S wind speed forecasts. We achieve a significant improvement in prediction quality, outperforming baselines up to week 3.
comment: 28 pages, 18 figures, preprint under review
☆ MuseFace: Text-driven Face Editing via Diffusion-based Mask Generation Approach
Face editing modifies the appearance of face, which plays a key role in customization and enhancement of personal images. Although much work have achieved remarkable success in text-driven face editing, they still face significant challenges as none of them simultaneously fulfill the characteristics of diversity, controllability and flexibility. To address this challenge, we propose MuseFace, a text-driven face editing framework, which relies solely on text prompt to enable face editing. Specifically, MuseFace integrates a Text-to-Mask diffusion model and a semantic-aware face editing model, capable of directly generating fine-grained semantic masks from text and performing face editing. The Text-to-Mask diffusion model provides \textit{diversity} and \textit{flexibility} to the framework, while the semantic-aware face editing model ensures \textit{controllability} of the framework. Our framework can create fine-grained semantic masks, making precise face editing possible, and significantly enhancing the controllability and flexibility of face editing models. Extensive experiments demonstrate that MuseFace achieves superior high-fidelity performance.
comment: 6 pages, 5 figures,IEEE International Conference on Multimedia & Expo 2025
☆ SchemaAgent: A Multi-Agents Framework for Generating Relational Database Schema
The relational database design would output a schema based on user's requirements, which defines table structures and their interrelated relations. Translating requirements into accurate schema involves several non-trivial subtasks demanding both database expertise and domain-specific knowledge. This poses unique challenges for automated design of relational databases. Existing efforts are mostly based on customized rules or conventional deep learning models, often producing suboptimal schema. Recently, large language models (LLMs) have significantly advanced intelligent application development across various domains. In this paper, we propose SchemaAgent, a unified LLM-based multi-agent framework for the automated generation of high-quality database schema. SchemaAgent is the first to apply LLMs for schema generation, which emulates the workflow of manual schema design by assigning specialized roles to agents and enabling effective collaboration to refine their respective subtasks. Schema generation is a streamlined workflow, where directly applying the multi-agent framework may cause compounding impact of errors. To address this, we incorporate dedicated roles for reflection and inspection, alongside an innovative error detection and correction mechanism to identify and rectify issues across various phases. For evaluation, we present a benchmark named \textit{RSchema}, which contains more than 500 pairs of requirement description and schema. Experimental results on this benchmark demonstrate the superiority of our approach over mainstream LLMs for relational database schema generation.
comment: 19 pages, 16 figures
☆ GenSwarm: Scalable Multi-Robot Code-Policy Generation and Deployment via Language Models
The development of control policies for multi-robot systems traditionally follows a complex and labor-intensive process, often lacking the flexibility to adapt to dynamic tasks. This has motivated research on methods to automatically create control policies. However, these methods require iterative processes of manually crafting and refining objective functions, thereby prolonging the development cycle. This work introduces \textit{GenSwarm}, an end-to-end system that leverages large language models to automatically generate and deploy control policies for multi-robot tasks based on simple user instructions in natural language. As a multi-language-agent system, GenSwarm achieves zero-shot learning, enabling rapid adaptation to altered or unseen tasks. The white-box nature of the code policies ensures strong reproducibility and interpretability. With its scalable software and hardware architectures, GenSwarm supports efficient policy deployment on both simulated and real-world multi-robot systems, realizing an instruction-to-execution end-to-end functionality that could prove valuable for robotics specialists and non-specialists alike.The code of the proposed GenSwarm system is available online: https://github.com/WindyLab/GenSwarm.
☆ OrchMLLM: Orchestrate Multimodal Data with Batch Post-Balancing to Accelerate Multimodal Large Language Model Training
Multimodal large language models (MLLMs), such as GPT-4o, are garnering significant attention. During the exploration of MLLM training, we identified Modality Composition Incoherence, a phenomenon that the proportion of a certain modality varies dramatically across different examples. It exacerbates the challenges of addressing mini-batch imbalances, which lead to uneven GPU utilization between Data Parallel (DP) instances and severely degrades the efficiency and scalability of MLLM training, ultimately affecting training speed and hindering further research on MLLMs. To address these challenges, we introduce OrchMLLM, a comprehensive framework designed to mitigate the inefficiencies in MLLM training caused by Modality Composition Incoherence. First, we propose Batch Post-Balancing Dispatcher, a technique that efficiently eliminates mini-batch imbalances in sequential data. Additionally, we integrate MLLM Global Orchestrator into the training framework to orchestrate multimodal data and tackle the issues arising from Modality Composition Incoherence. We evaluate OrchMLLM across various MLLM sizes, demonstrating its efficiency and scalability. Experimental results reveal that OrchMLLM achieves a Model FLOPs Utilization (MFU) of $41.6\%$ when training an 84B MLLM with three modalities on $2560$ H100 GPUs, outperforming Megatron-LM by up to $3.1\times$ in throughput.
☆ Conformal uncertainty quantification to evaluate predictive fairness of foundation AI model for skin lesion classes across patient demographics
Deep learning based diagnostic AI systems based on medical images are starting to provide similar performance as human experts. However these data hungry complex systems are inherently black boxes and therefore slow to be adopted for high risk applications like healthcare. This problem of lack of transparency is exacerbated in the case of recent large foundation models, which are trained in a self supervised manner on millions of data points to provide robust generalisation across a range of downstream tasks, but the embeddings generated from them happen through a process that is not interpretable, and hence not easily trustable for clinical applications. To address this timely issue, we deploy conformal analysis to quantify the predictive uncertainty of a vision transformer (ViT) based foundation model across patient demographics with respect to sex, age and ethnicity for the tasks of skin lesion classification using several public benchmark datasets. The significant advantage of this method is that conformal analysis is method independent and it not only provides a coverage guarantee at population level but also provides an uncertainty score for each individual. We used a model-agnostic dynamic F1-score-based sampling during model training, which helped to stabilize the class imbalance and we investigate the effects on uncertainty quantification (UQ) with or without this bias mitigation step. Thus we show how this can be used as a fairness metric to evaluate the robustness of the feature embeddings of the foundation model (Google DermFoundation) and thus advance the trustworthiness and fairness of clinical AI.
☆ Thinking Longer, Not Larger: Enhancing Software Engineering Agents via Scaling Test-Time Compute
Recent advancements in software engineering agents have demonstrated promising capabilities in automating program improvements. However, their reliance on closed-source or resource-intensive models introduces significant deployment challenges in private environments, prompting a critical question: \textit{How can personally deployable open-source LLMs achieve comparable code reasoning performance?} To this end, we propose a unified Test-Time Compute scaling framework that leverages increased inference-time computation instead of larger models. Our framework incorporates two complementary strategies: internal TTC and external TTC. Internally, we introduce a \textit{development-contextualized trajectory synthesis} method leveraging real-world software repositories to bootstrap multi-stage reasoning processes, such as fault localization and patch generation. We further enhance trajectory quality through rejection sampling, rigorously evaluating trajectories along accuracy and complexity. Externally, we propose a novel \textit{development-process-based search} strategy guided by reward models and execution verification. This approach enables targeted computational allocation at critical development decision points, overcoming limitations of existing "end-point only" verification methods. Evaluations on SWE-bench Verified demonstrate our \textbf{32B model achieves a 46\% issue resolution rate}, surpassing significantly larger models such as DeepSeek R1 671B and OpenAI o1. Additionally, we provide the empirical validation of the test-time scaling phenomenon within SWE agents, revealing that \textbf{models dynamically allocate more tokens to increasingly challenging problems}, effectively enhancing reasoning capabilities. We publicly release all training data, models, and code to facilitate future research. https://github.com/yingweima2022/SWE-Reasoner
☆ Adaptive Layer-skipping in Pre-trained LLMs
Various layer-skipping methods have been proposed to accelerate token generation in large language models (LLMs). However, they have overlooked a fundamental question: How do computational demands vary across the generation of different tokens? In this work, we introduce FlexiDepth, a method that dynamically adjusts the number of Transformer layers used in text generation. By incorporating a plug-in router and adapter, FlexiDepth enables adaptive layer-skipping in LLMs without modifying their original parameters. Introducing FlexiDepth to Llama-3-8B model achieves layer skipping of 8 layers out of 32, and meanwhile maintains the full 100\% benchmark performance. Experimental results with FlexiDepth demonstrate that computational demands in LLMs significantly vary based on token type. Specifically, generating repetitive tokens or fixed phrases requires fewer layers, whereas producing tokens involving computation or high uncertainty requires more layers. Interestingly, this adaptive allocation pattern aligns with human intuition. To advance research in this area, we open sourced FlexiDepth and a dataset documenting FlexiDepth's layer allocation patterns for future exploration.
☆ MGD-SAM2: Multi-view Guided Detail-enhanced Segment Anything Model 2 for High-Resolution Class-agnostic Segmentation
Segment Anything Models (SAMs), as vision foundation models, have demonstrated remarkable performance across various image analysis tasks. Despite their strong generalization capabilities, SAMs encounter challenges in fine-grained detail segmentation for high-resolution class-independent segmentation (HRCS), due to the limitations in the direct processing of high-resolution inputs and low-resolution mask predictions, and the reliance on accurate manual prompts. To address these limitations, we propose MGD-SAM2 which integrates SAM2 with multi-view feature interaction between a global image and local patches to achieve precise segmentation. MGD-SAM2 incorporates the pre-trained SAM2 with four novel modules: the Multi-view Perception Adapter (MPAdapter), the Multi-view Complementary Enhancement Module (MCEM), the Hierarchical Multi-view Interaction Module (HMIM), and the Detail Refinement Module (DRM). Specifically, we first introduce MPAdapter to adapt the SAM2 encoder for enhanced extraction of local details and global semantics in HRCS images. Then, MCEM and HMIM are proposed to further exploit local texture and global context by aggregating multi-view features within and across multi-scales. Finally, DRM is designed to generate gradually restored high-resolution mask predictions, compensating for the loss of fine-grained details resulting from directly upsampling the low-resolution prediction maps. Experimental results demonstrate the superior performance and strong generalization of our model on multiple high-resolution and normal-resolution datasets. Code will be available at https://github.com/sevenshr/MGD-SAM2.
☆ DebFlow: Automating Agent Creation via Agent Debate
Large language models (LLMs) have demonstrated strong potential and impressive performance in automating the generation and optimization of workflows. However, existing approaches are marked by limited reasoning capabilities, high computational demands, and significant resource requirements. To address these issues, we propose DebFlow, a framework that employs a debate mechanism to optimize workflows and integrates reflexion to improve based on previous experiences. We evaluated our method across six benchmark datasets, including HotpotQA, MATH, and ALFWorld. Our approach achieved a 3\% average performance improvement over the latest baselines, demonstrating its effectiveness in diverse problem domains. In particular, during training, our framework reduces resource consumption by 37\% compared to the state-of-the-art baselines. Additionally, we performed ablation studies. Removing the Debate component resulted in a 4\% performance drop across two benchmark datasets, significantly greater than the 2\% drop observed when the Reflection component was removed. These findings strongly demonstrate the critical role of Debate in enhancing framework performance, while also highlighting the auxiliary contribution of reflexion to overall optimization.
☆ WinoWhat: A Parallel Corpus of Paraphrased WinoGrande Sentences with Common Sense Categorization
In this study, we take a closer look at how Winograd schema challenges can be used to evaluate common sense reasoning in LLMs. Specifically, we evaluate generative models of different sizes on the popular WinoGrande benchmark. We release WinoWhat, a new corpus, in which each instance of the WinoGrande validation set is paraphrased. Additionally, we evaluate the performance on the challenge across five common sense knowledge categories, giving more fine-grained insights on what types of knowledge are more challenging for LLMs. Surprisingly, all models perform significantly worse on WinoWhat, implying that LLM reasoning capabilities are overestimated on WinoGrande. To verify whether this is an effect of benchmark memorization, we match benchmark instances to LLM trainingdata and create two test-suites. We observe that memorization has a minimal effect on model performance on WinoGrande.
☆ LANID: LLM-assisted New Intent Discovery LREC
Task-oriented Dialogue Systems (TODS) often face the challenge of encountering new intents. New Intent Discovery (NID) is a crucial task that aims to identify these novel intents while maintaining the capability to recognize existing ones. Previous efforts to adapt TODS to new intents have struggled with inadequate semantic representation or have depended on external knowledge, which is often not scalable or flexible. Recently, Large Language Models (LLMs) have demonstrated strong zero-shot capabilities; however, their scale can be impractical for real-world applications that involve extensive queries. To address the limitations of existing NID methods by leveraging LLMs, we propose LANID, a framework that enhances the semantic representation of lightweight NID encoders with the guidance of LLMs. Specifically, LANID employs the $K$-nearest neighbors and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithms to sample selective utterance pairs from the training set. It then queries an LLM to ascertain the relationships between these pairs. The data produced from this process is utilized to design a contrastive fine-tuning task, which is then used to train a small encoder with a contrastive triplet loss. Our experimental results demonstrate the efficacy of the proposed method across three distinct NID datasets, surpassing strong baselines in both unsupervised and semi-supervised settings. Our code is available at https://github.com/floatSDSDS/LANID.
comment: Published in LREC-COLING 2024
☆ Investigation of intelligent barbell squat coaching system based on computer vision and machine learning
Purpose: Research has revealed that strength training can reduce the incidence of chronic diseases and physical deterioration at any age. Therefore, having a movement diagnostic system is crucial for training alone. Hence, this study developed an artificial intelligence and computer vision-based barbell squat coaching system with a real-time mode that immediately diagnoses the issue and provides feedback after each squat. In addition, a replay mode allows users to examine their previous squats and check their comments. Initially, four primary characteristics of the barbell squat were identified: body joint angles, dorsiflexion, the ratio of knee-to-hip movement, and barbell stability. Methods: We collect 8,151 squats from 77 participants, categorizing them as good squats and six issues. Then, we trained the diagnosis models with three machine-learning architectures. Furthermore, this research applied the SHapley Additive exPlanations (SHAP) method to enhance the accuracy of issue prediction and reduce the computation time by feature selection. Results: The F1 score of the six issues reached 86.86%, 69.01%, 77.42%, 90.74%, 95.83%, and 100%. Each squat diagnosis took less than 0.5 seconds. Finally, this study examined the efficacy of the proposed system with two groups of participants trained with and without the system. Subsequently, participants trained with the system exhibited substantial improvements in their squat technique, as assessed both by the system itself and by a professional weightlifting coach. Conclusion: This is a comprehensive study that integrates artificial intelligence, computer vision and multivariable processing technologies, aimed at building a real-time, user-friendly barbell squat feedback and training system.
☆ KOFFVQA: An Objectively Evaluated Free-form VQA Benchmark for Large Vision-Language Models in the Korean Language CVPR
The recent emergence of Large Vision-Language Models(VLMs) has resulted in a variety of different benchmarks for evaluating such models. Despite this, we observe that most existing evaluation methods suffer from the fact that they either require the model to choose from pre-determined responses, sacrificing open-endedness, or evaluate responses using a judge model, resulting in subjective and unreliable evaluation. In addition, we observe a lack of benchmarks for VLMs in the Korean language, which are necessary as a separate metric from more common English language benchmarks, as the performance of generative language models can differ significantly based on the language being used. Therefore, we present KOFFVQA, a general-purpose free-form visual question answering benchmark in the Korean language for the evaluation of VLMs. Our benchmark consists of 275 carefully crafted questions each paired with an image and grading criteria covering 10 different aspects of VLM performance. The grading criteria eliminate the problem of unreliability by allowing the judge model to grade each response based on a pre-determined set of rules. By defining the evaluation criteria in an objective manner, even a small open-source model can be used to evaluate models on our benchmark reliably. In addition to evaluating a large number of existing VLMs on our benchmark, we also experimentally verify that our method of using pre-existing grading criteria for evaluation is much more reliable than existing methods. Our evaluation code is available at https://github.com/maum-ai/KOFFVQA
comment: Accepted to CVPRW 2025, Workshop on Benchmarking and Expanding AI Multimodal Approaches
☆ Unimodal-driven Distillation in Multimodal Emotion Recognition with Dynamic Fusion
Multimodal Emotion Recognition in Conversations (MERC) identifies emotional states across text, audio and video, which is essential for intelligent dialogue systems and opinion analysis. Existing methods emphasize heterogeneous modal fusion directly for cross-modal integration, but often suffer from disorientation in multimodal learning due to modal heterogeneity and lack of instructive guidance. In this work, we propose SUMMER, a novel heterogeneous multimodal integration framework leveraging Mixture of Experts with Hierarchical Cross-modal Fusion and Interactive Knowledge Distillation. Key components include a Sparse Dynamic Mixture of Experts (SDMoE) for capturing dynamic token-wise interactions, a Hierarchical Cross-Modal Fusion (HCMF) for effective fusion of heterogeneous modalities, and Interactive Knowledge Distillation (IKD), which uses a pre-trained unimodal teacher to guide multimodal fusion in latent and logit spaces. Experiments on IEMOCAP and MELD show SUMMER outperforms state-of-the-art methods, particularly in recognizing minority and semantically similar emotions.
☆ GNN-Based Candidate Node Predictor for Influence Maximization in Temporal Graphs AAAI25
In an age where information spreads rapidly across social media, effectively identifying influential nodes in dynamic networks is critical. Traditional influence maximization strategies often fail to keep up with rapidly evolving relationships and structures, leading to missed opportunities and inefficiencies. To address this, we propose a novel learning-based approach integrating Graph Neural Networks (GNNs) with Bidirectional Long Short-Term Memory (BiLSTM) models. This hybrid framework captures both structural and temporal dynamics, enabling accurate prediction of candidate nodes for seed set selection. The bidirectional nature of BiLSTM allows our model to analyze patterns from both past and future network states, ensuring adaptability to changes over time. By dynamically adapting to graph evolution at each time snapshot, our approach improves seed set calculation efficiency, achieving an average of 90% accuracy in predicting potential seed nodes across diverse networks. This significantly reduces computational overhead by optimizing the number of nodes evaluated for seed selection. Our method is particularly effective in fields like viral marketing and social network analysis, where understanding temporal dynamics is crucial.
comment: 9 pages, 5 figures, Accepted in AAAI25 to AI4TS Workshop@AAAI 2025
☆ Towards Benchmarking and Assessing the Safety and Robustness of Autonomous Driving on Safety-critical Scenarios
Autonomous driving has made significant progress in both academia and industry, including performance improvements in perception task and the development of end-to-end autonomous driving systems. However, the safety and robustness assessment of autonomous driving has not received sufficient attention. Current evaluations of autonomous driving are typically conducted in natural driving scenarios. However, many accidents often occur in edge cases, also known as safety-critical scenarios. These safety-critical scenarios are difficult to collect, and there is currently no clear definition of what constitutes a safety-critical scenario. In this work, we explore the safety and robustness of autonomous driving in safety-critical scenarios. First, we provide a definition of safety-critical scenarios, including static traffic scenarios such as adversarial attack scenarios and natural distribution shifts, as well as dynamic traffic scenarios such as accident scenarios. Then, we develop an autonomous driving safety testing platform to comprehensively evaluate autonomous driving systems, encompassing not only the assessment of perception modules but also system-level evaluations. Our work systematically constructs a safety verification process for autonomous driving, providing technical support for the industry to establish standardized test framework and reduce risks in real-world road deployment.
☆ Remarks on the Polyak-Lojasiewicz inequality and the convergence of gradient systems
This work explores generalizations of the Polyak-Lojasiewicz inequality (PLI) and their implications for the convergence behavior of gradient flows in optimization problems. Motivated by the continuous-time linear quadratic regulator (CT-LQR) policy optimization problem -- where only a weaker version of the PLI is characterized in the literature -- this work shows that while weaker conditions are sufficient for global convergence to, and optimality of the set of critical points of the cost function, the "profile" of the gradient flow solution can change significantly depending on which "flavor" of inequality the cost satisfies. After a general theoretical analysis, we focus on fitting the CT-LQR policy optimization problem to the proposed framework, showing that, in fact, it can never satisfy a PLI in its strongest form. We follow up our analysis with a brief discussion on the difference between continuous- and discrete-time LQR policy optimization, and end the paper with some intuition on the extension of this framework to optimization problems with L1 regularization and solved through proximal gradient flows.
☆ GIScience in the Era of Artificial Intelligence: A Research Agenda Towards Autonomous GIS
The advent of generative AI exemplified by large language models (LLMs) opens new ways to represent and compute geographic information and transcend the process of geographic knowledge production, driving geographic information systems (GIS) towards autonomous GIS. Leveraging LLMs as the decision core, autonomous GIS can independently generate and execute geoprocessing workflows to perform spatial analysis. In this vision paper, we elaborate on the concept of autonomous GIS and present a framework that defines its five autonomous goals, five levels of autonomy, five core functions, and three operational scales. We demonstrate how autonomous GIS could perform geospatial data retrieval, spatial analysis, and map making with four proof-of-concept GIS agents. We conclude by identifying critical challenges and future research directions, including fine-tuning and self-growing decision cores, autonomous modeling, and examining the ethical and practical implications of autonomous GIS. By establishing the groundwork for a paradigm shift in GIScience, this paper envisions a future where GIS moves beyond traditional workflows to autonomously reason, derive, innovate, and advance solutions to pressing global challenges.
☆ Intrinsically-Motivated Humans and Agents in Open-World Exploration
What drives exploration? Understanding intrinsic motivation is a long-standing challenge in both cognitive science and artificial intelligence; numerous objectives have been proposed and used to train agents, yet there remains a gap between human and agent exploration. We directly compare adults, children, and AI agents in a complex open-ended environment, Crafter, and study how common intrinsic objectives: Entropy, Information Gain, and Empowerment, relate to their behavior. We find that only Entropy and Empowerment are consistently positively correlated with human exploration progress, indicating that these objectives may better inform intrinsic reward design for agents. Furthermore, across agents and humans we observe that Entropy initially increases rapidly, then plateaus, while Empowerment increases continuously, suggesting that state diversity may provide more signal in early exploration, while advanced exploration should prioritize control. Finally, we find preliminary evidence that private speech utterances, and particularly goal verbalizations, may aid exploration in children.
☆ Finding Interest Needle in Popularity Haystack: Improving Retrieval by Modeling Item Exposure
Recommender systems operate in closed feedback loops, where user interactions reinforce popularity bias, leading to over-recommendation of already popular items while under-exposing niche or novel content. Existing bias mitigation methods, such as Inverse Propensity Scoring (IPS) and Off- Policy Correction (OPC), primarily operate at the ranking stage or during training, lacking explicit real-time control over exposure dynamics. In this work, we introduce an exposure- aware retrieval scoring approach, which explicitly models item exposure probability and adjusts retrieval-stage ranking at inference time. Unlike prior work, this method decouples exposure effects from engagement likelihood, enabling controlled trade-offs between fairness and engagement in large-scale recommendation platforms. We validate our approach through online A/B experiments in a real-world video recommendation system, demonstrating a 25% increase in uniquely retrieved items and a 40% reduction in the dominance of over-popular content, all while maintaining overall user engagement levels. Our results establish a scalable, deployable solution for mitigating popularity bias at the retrieval stage, offering a new paradigm for bias-aware personalization.
comment: 2 pages
♻ ☆ ActionStudio: A Lightweight Framework for Data and Training of Large Action Models
Action models are essential for enabling autonomous agents to perform complex tasks. However, training large action models remains challenging due to the diversity of agent environments and the complexity of agentic data. Despite growing interest, existing infrastructure provides limited support for scalable, agent-specific fine-tuning. We present ActionStudio, a lightweight and extensible data and training framework designed for large action models. ActionStudio unifies heterogeneous agent trajectories through a standardized format, supports diverse training paradigms including LoRA, full fine-tuning, and distributed setups, and integrates robust preprocessing and verification tools. We validate its effectiveness across both public and realistic industry benchmarks, demonstrating strong performance and practical scalability. We open-sourced code and data at https://github.com/SalesforceAIResearch/xLAM to facilitate research in the community.
comment: 15 pages; large action models; xLAM
♻ ☆ Entropy-guided sequence weighting for efficient exploration in RL-based LLM fine-tuning
We introduce Entropy-Guided Sequence Weighting (EGSW), a novel approach that enhances the exploration-exploitation tradeoff by dynamically assigning weights to generated outputs based on their advantage and entropy for Reinforcement Learning-based Large Language Model fine-tuning. EGSW integrates entropy regularization with advantage-based weighting to balance policy updates, enabling efficient exploration in high-dimensional state spaces. By employing temperature-scaled softmax weighting over sequences, EGSW prioritizing high-reward, high-uncertainty steps while maintaining training stability. Although originally developed to improve Group Relative Policy Optimization (GRPO) during large language model (LLM) fine-tuning, EGSW is generalizable to other reinforcement learning (RL) algorithms and can be implemented in both step-wise and trajectory-wise settings. Empirical evaluations demonstrate that EGSW enhances GRPO reasoning ability, yielding improvements in sample efficiency. Future work will explore the application of EGSW to advanced RL methodologies.
♻ ☆ Evil twins are not that evil: Qualitative insights into machine-generated prompts
It has been widely observed that language models (LMs) respond in predictable ways to algorithmically generated prompts that are seemingly unintelligible. This is both a sign that we lack a full understanding of how LMs work, and a practical challenge, because opaqueness can be exploited for harmful uses of LMs, such as jailbreaking. We present the first thorough analysis of opaque machine-generated prompts, or autoprompts, pertaining to 6 LMs of different sizes and families. We find that machine-generated prompts are characterized by a last token that is often intelligible and strongly affects the generation. A small but consistent proportion of the previous tokens are prunable, probably appearing in the prompt as a by-product of the fact that the optimization process fixes the number of tokens. The remaining tokens fall into two categories: filler tokens, which can be replaced with semantically unrelated substitutes, and keywords, that tend to have at least a loose semantic relation with the generation, although they do not engage in well-formed syntactic relations with it. Additionally, human experts can reliably identify the most influential tokens in an autoprompt a posteriori, suggesting these prompts are not entirely opaque. Finally, some of the ablations we applied to autoprompts yield similar effects in natural language inputs, suggesting that autoprompts emerge naturally from the way LMs process linguistic inputs in general.
♻ ☆ Agent-Centric Personalized Multiple Clustering with Multi-Modal LLMs
Personalized multiple clustering aims to generate diverse partitions of a dataset based on different user-specific aspects, rather than a single clustering. It has recently drawn research interest for accommodating varying user preferences. Recent approaches primarily use CLIP embeddings with proxy learning to extract representations biased toward user clustering preferences. However, CLIP primarily focuses on coarse image-text alignment, lacking a deep contextual understanding of user interests. To overcome these limitations, we propose an agent-centric personalized clustering framework that leverages multi-modal large language models (MLLMs) as agents to comprehensively traverse a relational graph to search for clusters based on user interests. Due to the advanced reasoning mechanism of MLLMs, the obtained clusters align more closely with user-defined criteria than those obtained from CLIP-based representations. To reduce computational overhead, we shorten the agents' traversal path by constructing a relational graph using user-interest-biased embeddings extracted by MLLMs. A large number of weakly connected edges can be filtered out based on embedding similarity, facilitating an efficient traversal search for agents. Experimental results show that the proposed method achieves NMI scores of 0.9667 and 0.9481 on the Card Order and Card Suits benchmarks, respectively, largely improving the SOTA model by over 140%.
♻ ☆ PharmAgents: Building a Virtual Pharma with Large Language Model Agents
The discovery of novel small molecule drugs remains a critical scientific challenge with far-reaching implications for treating diseases and advancing human health. Traditional drug development--especially for small molecule therapeutics--is a highly complex, resource-intensive, and time-consuming process that requires multidisciplinary collaboration. Recent breakthroughs in artificial intelligence (AI), particularly the rise of large language models (LLMs), present a transformative opportunity to streamline and accelerate this process. In this paper, we introduce PharmAgents, a virtual pharmaceutical ecosystem driven by LLM-based multi-agent collaboration. PharmAgents simulates the full drug discovery workflow--from target discovery to preclinical evaluation--by integrating explainable, LLM-driven agents equipped with specialized machine learning models and computational tools. Through structured knowledge exchange and automated optimization, PharmAgents identifies potential therapeutic targets, discovers promising lead compounds, enhances binding affinity and key molecular properties, and performs in silico analyses of toxicity and synthetic feasibility. Additionally, the system supports interpretability, agent interaction, and self-evolvement, enabling it to refine future drug designs based on prior experience. By showcasing the potential of LLM-powered multi-agent systems in drug discovery, this work establishes a new paradigm for autonomous, explainable, and scalable pharmaceutical research, with future extensions toward comprehensive drug lifecycle management.
♻ ☆ The Mathematical Relationship Between Layer Normalization and Dynamic Activation Functions
A recent paper proposes Dynamic Tanh (DyT) as a drop-in replacement for layer normalization (LN). Although the method is empirically well-motivated and appealing from a practical point of view, it lacks a theoretical foundation. In this work, we shed light on the mathematical relationship between layer normalization and dynamic activation functions. In particular, we derive DyT from LN and show that a well-defined approximation is needed to do so. By dropping said approximation, an alternative activation function is obtained, which we call Dynamic Inverse Square Root Unit (DyISRU). DyISRU is the exact counterpart of layer normalization, and we demonstrate numerically that it indeed resembles LN more accurately than DyT does.
comment: New title, renamed DyISRU, added missing parentheses in proof of theorem 3, minor language corrections
♻ ☆ LSEAttention is All You Need for Time Series Forecasting
Transformer-based architectures have achieved remarkable success in natural language processing and computer vision. However, their performance in multivariate long-term forecasting often falls short compared to simpler linear baselines. Previous research has identified the traditional attention mechanism as a key factor limiting their effectiveness in this domain. To bridge this gap, we introduce LATST, a novel approach designed to mitigate entropy collapse and training instability common challenges in Transformer-based time series forecasting. We rigorously evaluate LATST across multiple real-world multivariate time series datasets, demonstrating its ability to outperform existing state-of-the-art Transformer models. Notably, LATST manages to achieve competitive performance with fewer parameters than some linear models on certain datasets, highlighting its efficiency and effectiveness.
comment: 8 pages with referencing, 1 figure, 5 tables
♻ ☆ CASTLE: Benchmarking Dataset for Static Code Analyzers and LLMs towards CWE Detection
Identifying vulnerabilities in source code is crucial, especially in critical software components. Existing methods such as static analysis, dynamic analysis, formal verification, and recently Large Language Models are widely used to detect security flaws. This paper introduces CASTLE (CWE Automated Security Testing and Low-Level Evaluation), a benchmarking framework for evaluating the vulnerability detection capabilities of different methods. We assess 13 static analysis tools, 10 LLMs, and 2 formal verification tools using a hand-crafted dataset of 250 micro-benchmark programs covering 25 common CWEs. We propose the CASTLE Score, a novel evaluation metric to ensure fair comparison. Our results reveal key differences: ESBMC (a formal verification tool) minimizes false positives but struggles with vulnerabilities beyond model checking, such as weak cryptography or SQL injection. Static analyzers suffer from high false positives, increasing manual validation efforts for developers. LLMs perform exceptionally well in the CASTLE dataset when identifying vulnerabilities in small code snippets. However, their accuracy declines, and hallucinations increase as the code size grows. These results suggest that LLMs could play a pivotal role in future security solutions, particularly within code completion frameworks, where they can provide real-time guidance to prevent vulnerabilities. The dataset is accessible at https://github.com/CASTLE-Benchmark.
♻ ☆ The impact of internal variability on benchmarking deep learning climate emulators
Full-complexity Earth system models (ESMs) are computationally very expensive, limiting their use in exploring the climate outcomes of multiple emission pathways. More efficient emulators that approximate ESMs can directly map emissions onto climate outcomes, and benchmarks are being used to evaluate their accuracy on standardized tasks and datasets. We investigate a popular benchmark in data-driven climate emulation, ClimateBench, on which deep learning-based emulators are currently achieving the best performance. We compare these deep learning emulators with a linear regression-based emulator, akin to pattern scaling, and show that it outperforms the incumbent 100M-parameter deep learning foundation model, ClimaX, on 3 out of 4 regionally-resolved climate variables, notably surface temperature and precipitation. While emulating surface temperature is expected to be predominantly linear, this result is surprising for emulating precipitation. Precipitation is a much more noisy variable, and we show that deep learning emulators can overfit to internal variability noise at low frequencies, degrading their performance in comparison to a linear emulator. We address the issue of overfitting by increasing the number of climate simulations per emission pathway (from 3 to 50) and updating the benchmark targets with the respective ensemble averages from the MPI-ESM1.2-LR model. Using the new targets, we show that linear pattern scaling continues to be more accurate on temperature, but can be outperformed by a deep learning-based technique for emulating precipitation. We publish our code and data at github.com/blutjens/climate-emulator.
♻ ☆ Inductive Moment Matching
Diffusion models and Flow Matching generate high-quality samples but are slow at inference, and distilling them into few-step models often leads to instability and extensive tuning. To resolve these trade-offs, we propose Inductive Moment Matching (IMM), a new class of generative models for one- or few-step sampling with a single-stage training procedure. Unlike distillation, IMM does not require pre-training initialization and optimization of two networks; and unlike Consistency Models, IMM guarantees distribution-level convergence and remains stable under various hyperparameters and standard model architectures. IMM surpasses diffusion models on ImageNet-256x256 with 1.99 FID using only 8 inference steps and achieves state-of-the-art 2-step FID of 1.98 on CIFAR-10 for a model trained from scratch.
♻ ☆ Finer-CAM: Spotting the Difference Reveals Finer Details for Visual Explanation CVPR 2025
Class activation map (CAM) has been widely used to highlight image regions that contribute to class predictions. Despite its simplicity and computational efficiency, CAM often struggles to identify discriminative regions that distinguish visually similar fine-grained classes. Prior efforts address this limitation by introducing more sophisticated explanation processes, but at the cost of extra complexity. In this paper, we propose Finer-CAM, a method that retains CAM's efficiency while achieving precise localization of discriminative regions. Our key insight is that the deficiency of CAM lies not in "how" it explains, but in "what" it explains. Specifically, previous methods attempt to identify all cues contributing to the target class's logit value, which inadvertently also activates regions predictive of visually similar classes. By explicitly comparing the target class with similar classes and spotting their differences, Finer-CAM suppresses features shared with other classes and emphasizes the unique, discriminative details of the target class. Finer-CAM is easy to implement, compatible with various CAM methods, and can be extended to multi-modal models for accurate localization of specific concepts. Additionally, Finer-CAM allows adjustable comparison strength, enabling users to selectively highlight coarse object contours or fine discriminative details. Quantitatively, we show that masking out the top 5% of activated pixels by Finer-CAM results in a larger relative confidence drop compared to baselines. The source code and demo are available at https://github.com/Imageomics/Finer-CAM.
comment: Accepted by CVPR 2025
♻ ☆ Studying the Interplay Between the Actor and Critic Representations in Reinforcement Learning ICLR 2025
Extracting relevant information from a stream of high-dimensional observations is a central challenge for deep reinforcement learning agents. Actor-critic algorithms add further complexity to this challenge, as it is often unclear whether the same information will be relevant to both the actor and the critic. To this end, we here explore the principles that underlie effective representations for the actor and for the critic in on-policy algorithms. We focus our study on understanding whether the actor and critic will benefit from separate, rather than shared, representations. Our primary finding is that when separated, the representations for the actor and critic systematically specialise in extracting different types of information from the environment -- the actor's representation tends to focus on action-relevant information, while the critic's representation specialises in encoding value and dynamics information. We conduct a rigourous empirical study to understand how different representation learning approaches affect the actor and critic's specialisations and their downstream performance, in terms of sample efficiency and generation capabilities. Finally, we discover that a separated critic plays an important role in exploration and data collection during training. Our code, trained models and data are accessible at https://github.com/francelico/deac-rep.
comment: Published as a conference paper at ICLR 2025. 10 pages
♻ ☆ ScienceAgentBench: Toward Rigorous Assessment of Language Agents for Data-Driven Scientific Discovery ICLR 2025
The advancements of large language models (LLMs) have piqued growing interest in developing LLM-based language agents to automate scientific discovery end-to-end, which has sparked both excitement and skepticism about their true capabilities. In this work, we call for rigorous assessment of agents on individual tasks in a scientific workflow before making bold claims on end-to-end automation. To this end, we present ScienceAgentBench, a new benchmark for evaluating language agents for data-driven scientific discovery. To ensure the scientific authenticity and real-world relevance of our benchmark, we extract 102 tasks from 44 peer-reviewed publications in four disciplines and engage nine subject matter experts to validate them. We unify the target output for every task to a self-contained Python program file and employ an array of evaluation metrics to examine the generated programs, execution results, and costs. Each task goes through multiple rounds of manual validation by annotators and subject matter experts to ensure its annotation quality and scientific plausibility. We also propose two effective strategies to mitigate data contamination concerns. Using ScienceAgentBench, we evaluate five open-weight and proprietary LLMs, each with three frameworks: direct prompting, OpenHands CodeAct, and self-debug. Given three attempts for each task, the best-performing agent can only solve 32.4% of the tasks independently and 34.3% with expert-provided knowledge. In addition, we evaluate OpenAI o1-preview with direct prompting and self-debug, which can boost the performance to 42.2%, demonstrating the effectiveness of increasing inference-time compute but with more than 10 times the cost of other LLMs. Still, our results underscore the limitations of current language agents in generating code for data-driven discovery, let alone end-to-end automation for scientific research.
comment: ICLR 2025. 60 pages
♻ ☆ Concept Navigation and Classification via Open-Source Large Language Model Processing
This paper presents a novel methodological framework for detecting and classifying latent constructs, including frames, narratives, and topics, from textual data using Open-Source Large Language Models (LLMs). The proposed hybrid approach combines automated summarization with human-in-the-loop validation to enhance the accuracy and interpretability of construct identification. By employing iterative sampling coupled with expert refinement, the framework guarantees methodological robustness and ensures conceptual precision. Applied to diverse data sets, including AI policy debates, newspaper articles on encryption, and the 20 Newsgroups data set, this approach demonstrates its versatility in systematically analyzing complex political discourses, media framing, and topic classification tasks.
comment: 36 pages, 1 figure, 5 tabels
♻ ☆ PhD Knowledge Not Required: A Reasoning Challenge for Large Language Models
Existing benchmarks for frontier models often test specialized, "PhD-level" knowledge that is difficult for non-experts to grasp. In contrast, we present a benchmark with 594 problems based on the NPR Sunday Puzzle Challenge that requires only general knowledge. Our benchmark is challenging for both humans and models; however correct solutions are easy to verify, and models' mistakes are easy to spot. As LLMs are more widely deployed in society, we believe it is useful to develop benchmarks for frontier models that humans can understand without the need for deep domain expertise. Our work reveals capability gaps that are not evident in existing benchmarks: OpenAI o1 significantly outperforms other reasoning models on our benchmark, despite being on par with other models when tested on benchmarks that test specialized knowledge. Furthermore, our analysis of reasoning outputs uncovers new kinds of failures. DeepSeek R1, for instance, often concedes with "I give up" before providing an answer that it knows is wrong. R1 can also be remarkably "uncertain" in its output and in rare cases, it does not "finish thinking," which suggests the need for techniques to "wrap up" before the context window limit is reached. We also quantify the effectiveness of reasoning longer to identify the point beyond which more reasoning is unlikely to improve accuracy on our benchmark.
♻ ☆ Backdoor Graph Condensation ICDE 2025
Graph condensation has recently emerged as a prevalent technique to improve the training efficiency for graph neural networks (GNNs). It condenses a large graph into a small one such that a GNN trained on this small synthetic graph can achieve comparable performance to a GNN trained on the large graph. However, while existing graph condensation studies mainly focus on the best trade-off between graph size and the GNNs' performance (model utility), they overlook the security issues of graph condensation. To bridge this gap, we first explore backdoor attack against the GNNs trained on the condensed graphs. We introduce an effective backdoor attack against graph condensation, termed BGC. This attack aims to (1) preserve the condensed graph quality despite trigger injection, and (2) ensure trigger efficacy through the condensation process, achieving a high attack success rate. Specifically, BGC consistently updates triggers during condensation and targets representative nodes for poisoning. Extensive experiments demonstrate the effectiveness of our attack. BGC achieves a high attack success rate (close to 1.0) and good model utility in all cases. Furthermore, the results against multiple defense methods demonstrate BGC's resilience under their defenses. Finally, we analyze the key hyperparameters that influence the attack performance. Our code is available at: https://github.com/JiahaoWuGit/BGC.
comment: ICDE 2025 Camera Ready
♻ ☆ AI in radiological imaging of soft-tissue and bone tumours: a systematic review evaluating against CLAIM and FUTURE-AI guidelines
Soft-tissue and bone tumours (STBT) are rare, diagnostically challenging lesions with variable clinical behaviours and treatment approaches. This systematic review provides an overview of Artificial Intelligence (AI) methods using radiological imaging for diagnosis and prognosis of these tumours, highlighting challenges in clinical translation, and evaluating study alignment with the Checklist for AI in Medical Imaging (CLAIM) and the FUTURE-AI international consensus guidelines for trustworthy and deployable AI to promote the clinical translation of AI methods. The review covered literature from several bibliographic databases, including papers published before 17/07/2024. Original research in peer-reviewed journals focused on radiology-based AI for diagnosing or prognosing primary STBT was included. Exclusion criteria were animal, cadaveric, or laboratory studies, and non-English papers. Abstracts were screened by two of three independent reviewers for eligibility. Eligible papers were assessed against guidelines by one of three independent reviewers. The search identified 15,015 abstracts, from which 325 articles were included for evaluation. Most studies performed moderately on CLAIM, averaging a score of 28.9$\pm$7.5 out of 53, but poorly on FUTURE-AI, averaging 5.1$\pm$2.1 out of 30. Imaging-AI tools for STBT remain at the proof-of-concept stage, indicating significant room for improvement. Future efforts by AI developers should focus on design (e.g. define unmet clinical need, intended clinical setting and how AI would be integrated in clinical workflow), development (e.g. build on previous work, explainability), evaluation (e.g. evaluating and addressing biases, evaluating AI against best practices), and data reproducibility and availability (making documented code and data publicly available). Following these recommendations could improve clinical translation of AI methods.
comment: 25 pages, 6 figures, 8 supplementary figures
♻ ☆ Teola: Towards End-to-End Optimization of LLM-based Applications
Large language model (LLM)-based applications consist of both LLM and non-LLM components, each contributing to the end-to-end latency. Despite great efforts to optimize LLM inference, end-to-end workflow optimization has been overlooked. Existing frameworks employ coarse-grained orchestration with task modules, which confines optimizations to within each module and yields suboptimal scheduling decisions. We propose fine-grained end-to-end orchestration, which utilizes task primitives as the basic units and represents each query's workflow as a primitive-level dataflow graph. This explicitly exposes a much larger design space, enables optimizations in parallelization and pipelining across primitives of different modules, and enhances scheduling to improve application-level performance. We build Teola, a novel orchestration framework for LLM-based applications that implements this scheme. Comprehensive experiments show that Teola can achieve up to 2.09x speedup over existing systems across various popular LLM applications. The code is available at https://github.com/NetX-lab/Ayo.
♻ ☆ Bayesian Learning-driven Prototypical Contrastive Loss for Class-Incremental Learning
The primary objective of methods in continual learning is to learn tasks in a sequential manner over time (sometimes from a stream of data), while mitigating the detrimental phenomenon of catastrophic forgetting. This paper proposes a method to learn an effective representation between previous and newly encountered class prototypes. We propose a prototypical network with a Bayesian learning-driven contrastive loss (BLCL), tailored specifically for class-incremental learning scenarios. We introduce a contrastive loss that incorporates novel classes into the latent representation by reducing intra-class and increasing inter-class distance. Our approach dynamically adapts the balance between the cross-entropy and contrastive loss functions with a Bayesian learning technique. Experimental results conducted on the CIFAR-10, CIFAR-100, and ImageNet100 datasets for image classification and images of a GNSS-based dataset for interference classification validate the efficacy of our method, showcasing its superiority over existing state-of-the-art approaches. Git: https://gitlab.cc-asp.fraunhofer.de/darcy_gnss/gnss_class_incremental_learning
comment: 27 pages, 22 figures
♻ ☆ MAQA: Evaluating Uncertainty Quantification in LLMs Regarding Data Uncertainty NAACL 2025
Despite the massive advancements in large language models (LLMs), they still suffer from producing plausible but incorrect responses. To improve the reliability of LLMs, recent research has focused on uncertainty quantification to predict whether a response is correct or not. However, most uncertainty quantification methods have been evaluated on single-labeled questions, which removes data uncertainty: the irreducible randomness often present in user queries, which can arise from factors like multiple possible answers. This limitation may cause uncertainty quantification results to be unreliable in practical settings. In this paper, we investigate previous uncertainty quantification methods under the presence of data uncertainty. Our contributions are two-fold: 1) proposing a new Multi-Answer Question Answering dataset, MAQA, consisting of world knowledge, mathematical reasoning, and commonsense reasoning tasks to evaluate uncertainty quantification regarding data uncertainty, and 2) assessing 5 uncertainty quantification methods of diverse white- and black-box LLMs. Our findings show that previous methods relatively struggle compared to single-answer settings, though this varies depending on the task. Moreover, we observe that entropy- and consistency-based methods effectively estimate model uncertainty, even in the presence of data uncertainty. We believe these observations will guide future work on uncertainty quantification in more realistic settings.
comment: Findings of NAACL 2025
♻ ☆ Are Large Language Models Memorizing Bug Benchmarks?
Large Language Models (LLMs) have become integral to various software engineering tasks, including code generation, bug detection, and repair. To evaluate model performance in these domains, numerous bug benchmarks containing real-world bugs from software projects have been developed. However, a growing concern within the software engineering community is that these benchmarks may not reliably reflect true LLM performance due to the risk of data leakage. Despite this concern, limited research has been conducted to quantify the impact of potential leakage. In this paper, we systematically evaluate popular LLMs to assess their susceptibility to data leakage from widely used bug benchmarks. To identify potential leakage, we use multiple metrics, including a study of benchmark membership within commonly used training datasets, as well as analyses of negative log-likelihood and n-gram accuracy. Our findings show that certain models, in particular codegen-multi, exhibit significant evidence of memorization in widely used benchmarks like Defects4J, while newer models trained on larger datasets like LLaMa 3.1 exhibit limited signs of leakage. These results highlight the need for careful benchmark selection and the adoption of robust metrics to adequately assess models capabilities.
♻ ☆ Convolutional Kolmogorov-Arnold Networks
In this paper, we present Convolutional Kolmogorov-Arnold Networks, a novel architecture that integrates the learnable spline-based activation functions of Kolmogorov-Arnold Networks (KANs) into convolutional layers. By replacing traditional fixed-weight kernels with learnable non-linear functions, Convolutional KANs offer a significant improvement in parameter efficiency and expressive power over standard Convolutional Neural Networks (CNNs). We empirically evaluate Convolutional KANs on the Fashion-MNIST dataset, demonstrating competitive accuracy with up to 50% fewer parameters compared to baseline classic convolutions. This suggests that the KAN Convolution can effectively capture complex spatial relationships with fewer resources, offering a promising alternative for parameter-efficient deep learning models.
♻ ☆ LoRA Subtraction for Drift-Resistant Space in Exemplar-Free Continual Learning CVPR 2025
In continual learning (CL), catastrophic forgetting often arises due to feature drift. This challenge is particularly prominent in the exemplar-free continual learning (EFCL) setting, where samples from previous tasks cannot be retained, making it difficult to preserve prior knowledge. To address this issue, some EFCL methods aim to identify feature spaces that minimize the impact on previous tasks while accommodating new ones. However, they rely on static features or outdated statistics stored from old tasks, which prevents them from capturing the dynamic evolution of the feature space in CL, leading to performance degradation over time. In this paper, we introduce the Drift-Resistant Space (DRS), which effectively handles feature drifts without requiring explicit feature modeling or the storage of previous tasks. A novel parameter-efficient fine-tuning approach called Low-Rank Adaptation Subtraction (LoRA-) is proposed to develop the DRS. This method subtracts the LoRA weights of old tasks from the initial pre-trained weight before processing new task data to establish the DRS for model training. Therefore, LoRA- enhances stability, improves efficiency, and simplifies implementation. Furthermore, stabilizing feature drifts allows for better plasticity by learning with a triplet loss. Our method consistently achieves state-of-the-art results, especially for long task sequences, across multiple datasets.
comment: Accepted to CVPR 2025
♻ ☆ Singular Value Scaling: Efficient Generative Model Compression via Pruned Weights Refinement AAAI 2025
While pruning methods effectively maintain model performance without extra training costs, they often focus solely on preserving crucial connections, overlooking the impact of pruned weights on subsequent fine-tuning or distillation, leading to inefficiencies. Moreover, most compression techniques for generative models have been developed primarily for GANs, tailored to specific architectures like StyleGAN, and research into compressing Diffusion models has just begun. Even more, these methods are often applicable only to GANs or Diffusion models, highlighting the need for approaches that work across both model types. In this paper, we introduce Singular Value Scaling (SVS), a versatile technique for refining pruned weights, applicable to both model types. Our analysis reveals that pruned weights often exhibit dominant singular vectors, hindering fine-tuning efficiency and leading to suboptimal performance compared to random initialization. Our method enhances weight initialization by minimizing the disparities between singular values of pruned weights, thereby improving the fine-tuning process. This approach not only guides the compressed model toward superior solutions but also significantly speeds up fine-tuning. Extensive experiments on StyleGAN2, StyleGAN3 and DDPM demonstrate that SVS improves compression performance across model types without additional training costs. Our code is available at: https://github.com/LAIT-CVLab/Singular-Value-Scaling.
comment: Accepted to AAAI 2025
♻ ☆ A Framework for Evaluating Emerging Cyberattack Capabilities of AI
As frontier AI models become more capable, evaluating their potential to enable cyberattacks is crucial for ensuring the safe development of Artificial General Intelligence (AGI). Current cyber evaluation efforts are often ad-hoc, lacking systematic analysis of attack phases and guidance on targeted defenses. This work introduces a novel evaluation framework that addresses these limitations by: (1) examining the end-to-end attack chain, (2) identifying gaps in AI threat evaluation, and (3) helping defenders prioritize targeted mitigations and conduct AI-enabled adversary emulation for red teaming. Our approach adapts existing cyberattack chain frameworks for AI systems. We analyzed over 12,000 real-world instances of AI use in cyberattacks catalogued by Google's Threat Intelligence Group. Based on this analysis, we curated seven representative cyberattack chain archetypes and conducted a bottleneck analysis to pinpoint potential AI-driven cost disruptions. Our benchmark comprises 50 new challenges spanning various cyberattack phases. Using this benchmark, we devised targeted cybersecurity model evaluations, report on AI's potential to amplify offensive capabilities across specific attack phases, and offer recommendations for prioritizing defenses. We believe this represents the most comprehensive AI cyber risk evaluation framework published to date.
♻ ☆ RingMo-Aerial: An Aerial Remote Sensing Foundation Model With A Affine Transformation Contrastive Learning
Aerial Remote Sensing (ARS) vision tasks pose significant challenges due to the unique characteristics of their viewing angles. Existing research has primarily focused on algorithms for specific tasks, which have limited applicability in a broad range of ARS vision applications. This paper proposes the RingMo-Aerial model, aiming to fill the gap in foundation model research in the field of ARS vision. By introducing the Frequency-Enhanced Multi-Head Self-Attention (FE-MSA) mechanism and an affine transformation-based contrastive learning pre-training method, the model's detection capability for small targets is enhanced and optimized for the tilted viewing angles characteristic of ARS. Furthermore, the ARS-Adapter, an efficient parameter fine-tuning method, is proposed to improve the model's adaptability and effectiveness in various ARS vision tasks. Experimental results demonstrate that RingMo-Aerial achieves SOTA performance on multiple downstream tasks. This indicates the practicality and efficacy of RingMo-Aerial in enhancing the performance of ARS vision tasks.
♻ ☆ Bootstrap Your Own Views: Masked Ego-Exo Modeling for Fine-grained View-invariant Video Representations CVPR 2025
View-invariant representation learning from egocentric (first-person, ego) and exocentric (third-person, exo) videos is a promising approach toward generalizing video understanding systems across multiple viewpoints. However, this area has been underexplored due to the substantial differences in perspective, motion patterns, and context between ego and exo views. In this paper, we propose a novel masked ego-exo modeling that promotes both causal temporal dynamics and cross-view alignment, called Bootstrap Your Own Views (BYOV), for fine-grained view-invariant video representation learning from unpaired ego-exo videos. We highlight the importance of capturing the compositional nature of human actions as a basis for robust cross-view understanding. Specifically, self-view masking and cross-view masking predictions are designed to learn view-invariant and powerful representations concurrently. Experimental results demonstrate that our BYOV significantly surpasses existing approaches with notable gains across all metrics in four downstream ego-exo video tasks. The code is available at https://github.com/park-jungin/byov.
comment: CVPR 2025 Camera-ready, 18 pages, 7 figures, 9 tables
♻ ☆ ShapG: new feature importance method based on the Shapley value
With wide application of Artificial Intelligence (AI), it has become particularly important to make decisions of AI systems explainable and transparent. In this paper, we proposed a new Explainable Artificial Intelligence (XAI) method called ShapG (Explanations based on Shapley value for Graphs) for measuring feature importance. ShapG is a model-agnostic global explanation method. At the first stage, it defines an undirected graph based on the dataset, where nodes represent features and edges are added based on calculation of correlation coefficients between features. At the second stage, it calculates an approximated Shapley value by sampling the data taking into account this graph structure. The sampling approach of ShapG allows to calculate the importance of features efficiently, i.e. to reduce computational complexity. Comparison of ShapG with other existing XAI methods shows that it provides more accurate explanations for two examined datasets. We also compared other XAI methods developed based on cooperative game theory with ShapG in running time, and the results show that ShapG exhibits obvious advantages in its running time, which further proves efficiency of ShapG. In addition, extensive experiments demonstrate a wide range of applicability of the ShapG method for explaining complex models. We find ShapG an important tool in improving explainability and transparency of AI systems and believe it can be widely used in various fields.
comment: This paper has been published in the journal "Engineering Applications of Artificial Intelligence"
♻ ☆ Quantifying the Capability Boundary of DeepSeek Models: An Application-Driven Performance Analysis
DeepSeek-R1, known for its low training cost and exceptional reasoning capabilities, has achieved state-of-the-art performance on various benchmarks. However, detailed evaluations for DeepSeek Series models from the perspective of real-world applications are lacking, making it challenging for users to select the most suitable DeepSeek models for their specific needs. To address this gap, we conduct a systematic evaluation of the DeepSeek-V3, DeepSeek-R1, DeepSeek-R1-Distill-Qwen series, DeepSeek-R1-Distill-Llama series, their corresponding 4-bit quantized models, and the reasoning model QwQ-32B using the enhanced A-Eval benchmark, A-Eval-2.0. Through a comparative analysis of original instruction-tuned models and their distilled counterparts, we investigate how reasoning enhancements impact performance across diverse practical tasks. To assist users in model selection, we quantify the capability boundary of DeepSeek models through performance tier classifications. Based on the quantification results, we develop a model selection handbook that clearly illustrates the relation among models, their capabilities and practical applications. This handbook enables users to select the most cost-effective models without efforts, ensuring optimal performance and resource efficiency in real-world applications. It should be noted that, despite our efforts to establish a comprehensive, objective, and authoritative evaluation benchmark, the selection of test samples, characteristics of data distribution, and the setting of evaluation criteria may inevitably introduce certain biases into the evaluation results. We will continuously optimize the evaluation benchmarks and periodically update this paper to provide more comprehensive and accurate evaluation results. Please refer to the latest version of the paper for the most current results and conclusions.
♻ ☆ FreqX: Analyze the Attribution Methods in Another Domain
Personalized Federal learning(PFL) allows clients to cooperatively train a personalized model without disclosing their private dataset. However, PFL suffers from Non-IID, heterogeneous devices, lack of fairness, and unclear contribution which urgently need the interpretability of deep learning model to overcome these challenges. These challenges proposed new demands for interpretability. Low cost, privacy, and detailed information. There is no current interpretability method satisfying them. In this paper, we propose a novel interpretability method \emph{FreqX} by introducing Signal Processing and Information Theory. Our experiments show that the explanation results of FreqX contain both attribution information and concept information. FreqX runs at least 10 times faster than the baselines which contain concept information.
comment: 16pages, 9 figures
♻ ☆ Q-fid: Quantum Circuit Fidelity Improvement with LSTM Networks
The fidelity of quantum circuits (QC) is influenced by several factors, including hardware characteristics, calibration status, and the transpilation process, all of which impact their susceptibility to noise. However, existing methods struggle to estimate and compare the noise performance of different circuit layouts due to fluctuating error rates and the absence of a standardized fidelity metric. In this work, Q-fid is introduced, a Long Short-Term Memory (LSTM) based fidelity prediction system accompanied by a novel metric designed to quantify the fidelity of quantum circuits. Q-fid provides an intuitive way to predict the noise performance of Noisy Intermediate-Scale Quantum (NISQ) circuits. This approach frames fidelity prediction as a Time Series Forecasting problem to analyze the tokenized circuits, capturing the causal dependence of the gate sequences and their impact on overall fidelity. Additionally, the model is capable of dynamically adapting to changes in hardware characteristics, ensuring accurate fidelity predictions under varying conditions. Q-fid achieves a high prediction accuracy with an average RMSE of 0.0515, up to 24.7x more accurate than the Qiskit transpile tool mapomatic. By offering a reliable method for fidelity prediction, Q-fid empowers developers to optimize transpilation strategies, leading to more efficient and noise-resilient quantum circuit implementations.
♻ ☆ Boost Your Human Image Generation Model via Direct Preference Optimization CVPR
Human image generation is a key focus in image synthesis due to its broad applications, but even slight inaccuracies in anatomy, pose, or details can compromise realism. To address these challenges, we explore Direct Preference Optimization (DPO), which trains models to generate preferred (winning) images while diverging from non-preferred (losing) ones. However, conventional DPO methods use generated images as winning images, limiting realism. To overcome this limitation, we propose an enhanced DPO approach that incorporates high-quality real images as winning images, encouraging outputs to resemble real images rather than generated ones. However, implementing this concept is not a trivial task. Therefore, our approach, HG-DPO (Human image Generation through DPO), employs a novel curriculum learning framework that gradually improves the output of the model toward greater realism, making training more feasible. Furthermore, HG-DPO effectively adapts to personalized text-to-image tasks, generating high-quality and identity-specific images, which highlights the practical value of our approach.
comment: CVPR`2025
♻ ☆ Context-Aware Weakly Supervised Image Manipulation Localization with SAM Refinement
Malicious image manipulation poses societal risks, increasing the importance of effective image manipulation detection methods. Recent approaches in image manipulation detection have largely been driven by fully supervised approaches, which require labor-intensive pixel-level annotations. Thus, it is essential to explore weakly supervised image manipulation localization methods that only require image-level binary labels for training. However, existing weakly supervised image manipulation methods overlook the importance of edge information for accurate localization, leading to suboptimal localization performance. To address this, we propose a Context-Aware Boundary Localization (CABL) module to aggregate boundary features and learn context-inconsistency for localizing manipulated areas. Furthermore, by leveraging Class Activation Mapping (CAM) and Segment Anything Model (SAM), we introduce the CAM-Guided SAM Refinement (CGSR) module to generate more accurate manipulation localization maps. By integrating two modules, we present a novel weakly supervised framework based on a dual-branch Transformer-CNN architecture. Our method achieves outstanding localization performance across multiple datasets.
♻ ☆ CL-Attack: Textual Backdoor Attacks via Cross-Lingual Triggers AAAI 2025
Backdoor attacks significantly compromise the security of large language models by triggering them to output specific and controlled content. Currently, triggers for textual backdoor attacks fall into two categories: fixed-token triggers and sentence-pattern triggers. However, the former are typically easy to identify and filter, while the latter, such as syntax and style, do not apply to all original samples and may lead to semantic shifts. In this paper, inspired by cross-lingual (CL) prompts of LLMs in real-world scenarios, we propose a higher-dimensional trigger method at the paragraph level, namely CL-attack. CL-attack injects the backdoor by using texts with specific structures that incorporate multiple languages, thereby offering greater stealthiness and universality compared to existing backdoor attack techniques. Extensive experiments on different tasks and model architectures demonstrate that CL-attack can achieve nearly 100% attack success rate with a low poisoning rate in both classification and generation tasks. We also empirically show that the CL-attack is more robust against current major defense methods compared to baseline backdoor attacks. Additionally, to mitigate CL-attack, we further develop a new defense called TranslateDefense, which can partially mitigate the impact of CL-attack.
comment: The paper has been accepted to AAAI 2025
♻ ☆ VeriSplit: Secure and Practical Offloading of Machine Learning Inferences across IoT Devices
Many Internet-of-Things (IoT) devices rely on cloud computation resources to perform machine learning inferences. This is expensive and may raise privacy concerns for users. Consumers of these devices often have hardware such as gaming consoles and PCs with graphics accelerators that are capable of performing these computations, which may be left idle for significant periods of time. While this presents a compelling potential alternative to cloud offloading, concerns about the integrity of inferences, the confidentiality of model parameters, and the privacy of users' data mean that device vendors may be hesitant to offload their inferences to a platform managed by another manufacturer. We propose VeriSplit, a framework for offloading machine learning inferences to locally-available devices that address these concerns. We introduce masking techniques to protect data privacy and model confidentiality, and a commitment-based verification protocol to address integrity. Unlike much prior work aimed at addressing these issues, our approach does not rely on computation over finite field elements, which may interfere with floating-point computation supports on hardware accelerators and require modification to existing models. We implemented a prototype of VeriSplit and our evaluation results show that, compared to performing computation locally, our secure and private offloading solution can reduce inference latency by 28%--83%.
♻ ☆ Comparison of Metadata Representation Models for Knowledge Graph Embeddings
Hyper-relational Knowledge Graphs (HRKGs) extend traditional KGs beyond binary relations, enabling the representation of contextual, provenance, and temporal information in domains, such as historical events, sensor data, video content, and narratives. HRKGs can be structured using several Metadata Representation Models (MRMs), including Reification (REF), Singleton Property (SGP), and RDF-star (RDR). However, the effects of different MRMs on KG Embedding (KGE) and Link Prediction (LP) models remain unclear. This study evaluates MRMs in the context of LP tasks, identifies the limitations of existing evaluation frameworks, and introduces a new task that ensures fair comparisons across MRMs. Furthermore, we propose a framework that effectively reflects the knowledge representations of the three MRMs in latent space. Experiments on two types of datasets reveal that REF performs well in simple HRKGs, whereas SGP is less effective. However, in complex HRKGs, the differences among MRMs in the LP tasks are minimal. Our findings contribute to an optimal knowledge representation strategy for HRKGs in LP tasks.
comment: 11 pages, 9 Figures
♻ ☆ Emphasizing Discriminative Features for Dataset Distillation in Complex Scenarios
Dataset distillation has demonstrated strong performance on simple datasets like CIFAR, MNIST, and TinyImageNet but struggles to achieve similar results in more complex scenarios. In this paper, we propose EDF (emphasizes the discriminative features), a dataset distillation method that enhances key discriminative regions in synthetic images using Grad-CAM activation maps. Our approach is inspired by a key observation: in simple datasets, high-activation areas typically occupy most of the image, whereas in complex scenarios, the size of these areas is much smaller. Unlike previous methods that treat all pixels equally when synthesizing images, EDF uses Grad-CAM activation maps to enhance high-activation areas. From a supervision perspective, we downplay supervision signals that have lower losses, as they contain common patterns. Additionally, to help the DD community better explore complex scenarios, we build the Complex Dataset Distillation (Comp-DD) benchmark by meticulously selecting sixteen subsets, eight easy and eight hard, from ImageNet-1K. In particular, EDF consistently outperforms SOTA results in complex scenarios, such as ImageNet-1K subsets. Hopefully, more researchers will be inspired and encouraged to improve the practicality and efficacy of DD. Our code and benchmark will be made public at https://github.com/NUS-HPC-AI-Lab/EDF.
comment: 24 pages, 13 figures
♻ ☆ Enhancing Object Coherence in Layout-to-Image Synthesis
Layout-to-image synthesis is an emerging technique in conditional image generation. It aims to generate complex scenes, where users require fine control over the layout of the objects in a scene. However, it remains challenging to control the object coherence, including semantic coherence (e.g., the cat looks at the flowers or not) and physical coherence (e.g., the hand and the racket should not be misaligned). In this paper, we propose a novel diffusion model with effective global semantic fusion (GSF) and self-similarity feature enhancement modules to guide the object coherence for this task. For semantic coherence, we argue that the image caption contains rich information for defining the semantic relationship within the objects in the images. Instead of simply employing cross-attention between captions and latent images, which addresses the highly relevant layout restriction and semantic coherence requirement separately and thus leads to unsatisfying results shown in our experiments, we develop GSF to fuse the supervision from the layout restriction and semantic coherence requirement and exploit it to guide the image synthesis process. Moreover, to improve the physical coherence, we develop a Self-similarity Coherence Attention (SCA) module to explicitly integrate local contextual physical coherence relation into each pixel's generation process. Specifically, we adopt a self-similarity map to encode the physical coherence restrictions and employ it to extract coherent features from text embedding. Through visualization of our self-similarity map, we explore the essence of SCA, revealing that its effectiveness is not only in capturing reliable physical coherence patterns but also in enhancing complex texture generation. Extensive experiments demonstrate the superiority of our proposed method.
comment: Code: https://github.com/CodeGoat24/EOCNet
♻ ☆ Satori: Towards Proactive AR Assistant with Belief-Desire-Intention User Modeling
Augmented Reality (AR) assistance is increasingly used for supporting users with physical tasks like assembly and cooking. However, most systems rely on reactive responses triggered by user input, overlooking rich contextual and user-specific information. To address this, we present Satori, a novel AR system that proactively guides users by modeling both -- their mental states and environmental contexts. Satori integrates the Belief-Desire-Intention (BDI) framework with the state-of-the-art multi-modal large language model (LLM) to deliver contextually appropriate guidance. Our system is designed based on two formative studies involving twelve experts. We evaluated the system with a sixteen within-subject study and found that Satori matches the performance of designer-created Wizard-of-Oz (WoZ) systems, without manual configurations or heuristics, thereby improving generalizability, reusability, and expanding the potential of AR assistance.
♻ ☆ Training-Free Exponential Context Extension via Cascading KV Cache
The transformer's context window is vital for tasks such as few-shot learning and conditional generation as it preserves previous tokens for active memory. However, as the context lengths increase, the computational costs grow quadratically, hindering the deployment of large language models (LLMs) in real-world, long sequence scenarios. Although some recent key-value caching (KV Cache) methods offer linear inference complexity, they naively manage the stored context, prematurely evicting tokens and losing valuable information. Moreover, they lack an optimized prefill/prompt stage strategy, resulting in higher latency than even quadratic attention for realistic context sizes. In response, we introduce a novel mechanism that leverages cascading sub-cache buffers to selectively retain the most relevant tokens, enabling the model to maintain longer context histories without increasing the cache size. Our approach outperforms linear caching baselines across key benchmarks, including streaming perplexity, question answering, book summarization, and passkey retrieval, where it retains better retrieval accuracy at 1M tokens after four doublings of the cache size of 65K. Additionally, our method reduces prefill stage latency by a factor of 6.8 when compared to flash attention on 1M tokens. These innovations not only enhance the computational efficiency of LLMs but also pave the way for their effective deployment in resource-constrained environments, enabling large-scale, real-time applications with significantly reduced latency.
♻ ☆ XAMBA: Enabling Efficient State Space Models on Resource-Constrained Neural Processing Units
State-Space Models (SSMs) have emerged as efficient alternatives to transformers for sequential data tasks, offering linear or near-linear scalability with sequence length, making them ideal for long-sequence applications in NLP, vision, and edge AI, including real-time transcription, translation, and contextual search. These applications require lightweight, high-performance models for deployment on resource-constrained devices like laptops and PCs. Designing specialized accelerators for every emerging neural network is costly and impractical; instead, optimizing models for existing NPUs in AI PCs provides a scalable solution. To this end, we propose XAMBA, the first framework to enable and optimize SSMs on commercial off-the-shelf (COTS) state-of-the-art (SOTA) NPUs. XAMBA follows a three-step methodology: (1) enabling SSMs on NPUs, (2) optimizing performance to meet KPI requirements, and (3) trading accuracy for additional performance gains. After enabling SSMs on NPUs, XAMBA mitigates key bottlenecks using CumBA and ReduBA, replacing sequential CumSum and ReduceSum operations with matrix-based computations, significantly improving execution speed and memory efficiency. Additionally, ActiBA enhances performance by approximating expensive activation functions (e.g., Swish, Softplus) using piecewise linear mappings, reducing latency with minimal accuracy loss. Evaluations on an Intel Core Ultra Series 2 AI PC show that XAMBA achieves up to 4.8X speed-up over the baseline. Our implementation is available at https://github.com/arghadippurdue/XAMBA.
♻ ☆ LangYa: Revolutionizing Cross-Spatiotemporal Ocean Forecasting
Ocean forecasting is crucial for both scientific research and societal benefits. Currently, the most accurate forecasting systems are global ocean forecasting systems (GOFSs), which represent the ocean state variables (OSVs) as discrete grids and solve partial differential equations (PDEs) governing the transitions of oceanic state variables using numerical methods. However, GOFSs processes are computationally expensive and prone to cumulative errors. Recently, large artificial intelligence (AI)-based models significantly boosted forecasting speed and accuracy. Unfortunately, building a large AI ocean forecasting system that can be considered cross-spatiotemporal and air-sea coupled forecasts remains a significant challenge. Here, we introduce LangYa, a cross-spatiotemporal and air-sea coupled ocean forecasting system. Results demonstrate that the time embedding module in LangYa enables a single model to make forecasts with lead times ranging from 1 to 7 days. The air-sea coupled module effectively simulates air-sea interactions. The ocean self-attention module improves network stability and accelerates convergence during training, and the adaptive thermocline loss function improves the accuracy of thermocline forecasting. Compared to existing numerical and AI-based ocean forecasting systems, LangYa uses 27 years of global ocean data from the Global Ocean Reanalysis and Simulation version 12 (GLORYS12) for training and achieves more reliable deterministic forecasting results for OSVs. LangYa forecasting system provides global ocean researchers with access to a powerful software tool for accurate ocean forecasting and opens a new paradigm for ocean science.
comment: 18pages, 5 figures
♻ ☆ Head and Neck Tumor Segmentation of MRI from Pre- and Mid-radiotherapy with Pre-training, Data Augmentation and Dual Flow UNet
Head and neck tumors and metastatic lymph nodes are crucial for treatment planning and prognostic analysis. Accurate segmentation and quantitative analysis of these structures require pixel-level annotation, making automated segmentation techniques essential for the diagnosis and treatment of head and neck cancer. In this study, we investigated the effects of multiple strategies on the segmentation of pre-radiotherapy (pre-RT) and mid-radiotherapy (mid-RT) images. For the segmentation of pre-RT images, we utilized: 1) a fully supervised learning approach, and 2) the same approach enhanced with pre-trained weights and the MixUp data augmentation technique. For mid-RT images, we introduced a novel computational-friendly network architecture that features separate encoders for mid-RT images and registered pre-RT images with their labels. The mid-RT encoder branch integrates information from pre-RT images and labels progressively during the forward propagation. We selected the highest-performing model from each fold and used their predictions to create an ensemble average for inference. In the final test, our models achieved a segmentation performance of 82.38% for pre-RT and 72.53% for mid-RT on aggregated Dice Similarity Coefficient (DSC) as HiLab. Our code is available at https://github.com/WltyBY/HNTS-MRG2024_train_code.
♻ ☆ Tackling Copyright Issues in AI Image Generation Through Originality Estimation and Genericization
The rapid progress of generative AI technology has sparked significant copyright concerns, leading to numerous lawsuits filed against AI developers. Notably, generative AI's capacity for generating images of copyrighted characters has been well documented in the literature, and while various techniques for mitigating copyright issues have been studied, significant risks remain. Here, we propose a genericization method that modifies the outputs of a generative model to make them more generic and less likely to imitate distinctive features of copyrighted materials. To achieve this, we introduce a metric for quantifying the level of originality of data, estimated by drawing samples from a generative model, and applied in the genericization process. As a practical implementation, we introduce PREGen (Prompt Rewriting-Enhanced Genericization), which combines our genericization method with an existing mitigation technique. Compared to the existing method, PREGen reduces the likelihood of generating copyrighted characters by more than half when the names of copyrighted characters are used as the prompt. Additionally, while generative models can produce copyrighted characters even when their names are not directly mentioned in the prompt, PREGen almost entirely prevents the generation of such characters in these cases. Ultimately, this study advances computational approaches for quantifying and strengthening copyright protection, thereby providing practical methodologies to promote responsible generative AI development.
comment: 23 pages, 10 figures
♻ ☆ Efficiently Generating Expressive Quadruped Behaviors via Language-Guided Preference Learning
Expressive robotic behavior is essential for the widespread acceptance of robots in social environments. Recent advancements in learned legged locomotion controllers have enabled more dynamic and versatile robot behaviors. However, determining the optimal behavior for interactions with different users across varied scenarios remains a challenge. Current methods either rely on natural language input, which is efficient but low-resolution, or learn from human preferences, which, although high-resolution, is sample inefficient. This paper introduces a novel approach that leverages priors generated by pre-trained LLMs alongside the precision of preference learning. Our method, termed Language-Guided Preference Learning (LGPL), uses LLMs to generate initial behavior samples, which are then refined through preference-based feedback to learn behaviors that closely align with human expectations. Our core insight is that LLMs can guide the sampling process for preference learning, leading to a substantial improvement in sample efficiency. We demonstrate that LGPL can quickly learn accurate and expressive behaviors with as few as four queries, outperforming both purely language-parameterized models and traditional preference learning approaches. Website with videos: https://lgpl-gaits.github.io/
comment: 8 pages 5 figures
♻ ☆ On Creating a Causally Grounded Usable Rating Method for Assessing the Robustness of Foundation Models Supporting Time Series
Foundation Models (FMs) have improved time series forecasting in various sectors, such as finance, but their vulnerability to input disturbances can hinder their adoption by stakeholders, such as investors and analysts. To address this, we propose a causally grounded rating framework to study the robustness of Foundational Models for Time Series (FMTS) with respect to input perturbations. We evaluate our approach to the stock price prediction problem, a well-studied problem with easily accessible public data, evaluating six state-of-the-art (some multi-modal) FMTS across six prominent stocks spanning three industries. The ratings proposed by our framework effectively assess the robustness of FMTS and also offer actionable insights for model selection and deployment. Within the scope of our study, we find that (1) multi-modal FMTS exhibit better robustness and accuracy compared to their uni-modal versions and, (2) FMTS pre-trained on time series forecasting task exhibit better robustness and forecasting accuracy compared to general-purpose FMTS pre-trained across diverse settings. Further, to validate our framework's usability, we conduct a user study showcasing FMTS prediction errors along with our computed ratings. The study confirmed that our ratings reduced the difficulty for users in comparing the robustness of different systems.
♻ ☆ Diversity-driven Data Selection for Language Model Tuning through Sparse Autoencoder
Instruction tuning data are often quantity-saturated due to the large volume of data collection and fast model iteration, leaving data selection important but underexplored. Existing quality-driven data selection methods, such as LIMA (NeurIPS 2023 \citep{zhou2024lima}) and AlpaGasus (ICLR 2024 \citep{chenalpagasus}) generally ignore the equal importance of data diversity and complexity. In this work, we aim to design a diversity-aware data selection strategy and creatively propose using sparse autoencoders (SAEs) to tackle the challenge of data diversity measure. In addition, SAEs can also provide more interpretability of model behavior and explain, e.g., the surprising effectiveness of selecting the longest response (ICML 2024 \citep{zhaolong}). Using effective data selection, we experimentally prove that models trained on our selected data can outperform other methods in terms of model capabilities, reduce training cost, and potentially gain more control over model behaviors. We prove that SAEs can serve as a good alternative to diversity measure and design our method to be scalable for potential industrial large-scale pruning, and we will also release our trained SAEs for use by the broader community.
comment: fix typos
♻ ☆ Neurons for Neutrons: A Transformer Model for Computation Load Estimation on Domain-Decomposed Neutron Transport Problems
Domain decomposition is a technique used to reduce memory overhead on large neutron transport problems. Currently, the optimal load-balanced processor allocation for these domains is typically determined through small-scale simulations of the problem, which can be time-consuming for researchers and must be repeated anytime a problem input is changed. We propose a Transformer model with a unique 3D input embedding, and input representations designed for domain-decomposed neutron transport problems, which can predict the subdomain computation loads generated by small-scale simulations. We demonstrate that such a model trained on domain-decomposed Small Modular Reactor (SMR) simulations achieves 98.2% accuracy while being able to skip the small-scale simulation step entirely. Tests of the model's robustness on variant fuel assemblies, other problem geometries, and changes in simulation parameters are also discussed.
comment: 25 pages, 14 figures
GyralNet Subnetwork Partitioning via Differentiable Spectral Modularity Optimization
Understanding the structural and functional organization of the human brain requires a detailed examination of cortical folding patterns, among which the three-hinge gyrus (3HG) has been identified as a key structural landmark. GyralNet, a network representation of cortical folding, models 3HGs as nodes and gyral crests as edges, highlighting their role as critical hubs in cortico-cortical connectivity. However, existing methods for analyzing 3HGs face significant challenges, including the sub-voxel scale of 3HGs at typical neuroimaging resolutions, the computational complexity of establishing cross-subject correspondences, and the oversimplification of treating 3HGs as independent nodes without considering their community-level relationships. To address these limitations, we propose a fully differentiable subnetwork partitioning framework that employs a spectral modularity maximization optimization strategy to modularize the organization of 3HGs within GyralNet. By incorporating topological structural similarity and DTI-derived connectivity patterns as attribute features, our approach provides a biologically meaningful representation of cortical organization. Extensive experiments on the Human Connectome Project (HCP) dataset demonstrate that our method effectively partitions GyralNet at the individual level while preserving the community-level consistency of 3HGs across subjects, offering a robust foundation for understanding brain connectivity.
comment: 10 pages, 3 figures
♻ ☆ AlpaCare:Instruction-tuned Large Language Models for Medical Application
Instruction-finetuning (IFT) has become crucial in aligning Large Language Models (LLMs) with diverse human needs and has shown great potential in medical applications. However, previous studies mainly fine-tune LLMs on biomedical datasets with limited diversity, which often rely on benchmarks or narrow task scopes, and hence significantly limit the effectiveness on their medical instruction-following ability and generalizability. To bridge this gap, we propose creating a diverse, machine-generated medical IFT dataset, MedInstruct-52k, using GPT-4 and ChatGPT with a high-quality expert-curated seed set. We then fine-tune LLaMA-series models on the dataset to develop AlpaCare. Despite using a smaller domain-specific dataset than previous medical LLMs, AlpaCare not only demonstrates superior performance on medical applications, with up to 38.1% absolute gain over best baselines in medical free-form instruction evaluations, but also achieves 6.7% absolute gains averaged over multiple general domain benchmarks. Human evaluation further shows that AlpaCare consistently outperforms best baselines in terms of both correctness and helpfulness. We offer public access to our data, model, and codebase in https://github.com/XZhang97666/AlpaCare.
♻ ☆ SPA-Bench: A Comprehensive Benchmark for SmartPhone Agent Evaluation ICLR 2025
Smartphone agents are increasingly important for helping users control devices efficiently, with (Multimodal) Large Language Model (MLLM)-based approaches emerging as key contenders. Fairly comparing these agents is essential but challenging, requiring a varied task scope, the integration of agents with different implementations, and a generalisable evaluation pipeline to assess their strengths and weaknesses. In this paper, we present SPA-Bench, a comprehensive SmartPhone Agent Benchmark designed to evaluate (M)LLM-based agents in an interactive environment that simulates real-world conditions. SPA-Bench offers three key contributions: (1) A diverse set of tasks covering system and third-party apps in both English and Chinese, focusing on features commonly used in daily routines; (2) A plug-and-play framework enabling real-time agent interaction with Android devices, integrating over ten agents with the flexibility to add more; (3) A novel evaluation pipeline that automatically assesses agent performance across multiple dimensions, encompassing seven metrics related to task completion and resource consumption. Our extensive experiments across tasks and agents reveal challenges like interpreting mobile user interfaces, action grounding, memory retention, and execution costs. We propose future research directions to ease these difficulties, moving closer to real-world smartphone agent applications. SPA-Bench is available at https://ai-agents-2030.github.io/SPA-Bench/.
comment: ICLR 2025 Spotlight
♻ ☆ Features that Make a Difference: Leveraging Gradients for Improved Dictionary Learning NAACL 2025
Sparse Autoencoders (SAEs) are a promising approach for extracting neural network representations by learning a sparse and overcomplete decomposition of the network's internal activations. However, SAEs are traditionally trained considering only activation values and not the effect those activations have on downstream computations. This limits the information available to learn features, and biases the autoencoder towards neglecting features which are represented with small activation values but strongly influence model outputs. To address this, we introduce Gradient SAEs (g-SAEs), which modify the $k$-sparse autoencoder architecture by augmenting the TopK activation function to rely on the gradients of the input activation when selecting the $k$ elements. For a given sparsity level, g-SAEs produce reconstructions that are more faithful to original network performance when propagated through the network. Additionally, we find evidence that g-SAEs learn latents that are on average more effective at steering models in arbitrary contexts. By considering the downstream effects of activations, our approach leverages the dual nature of neural network features as both $\textit{representations}$, retrospectively, and $\textit{actions}$, prospectively. While previous methods have approached the problem of feature discovery primarily focused on the former aspect, g-SAEs represent a step towards accounting for the latter as well.
comment: 10 pages, 10 figures. Accepted to NAACL 2025
♻ ☆ VERA: Explainable Video Anomaly Detection via Verbalized Learning of Vision-Language Models CVPR 2025
The rapid advancement of vision-language models (VLMs) has established a new paradigm in video anomaly detection (VAD): leveraging VLMs to simultaneously detect anomalies and provide comprehendible explanations for the decisions. Existing work in this direction often assumes the complex reasoning required for VAD exceeds the capabilities of pretrained VLMs. Consequently, these approaches either incorporate specialized reasoning modules during inference or rely on instruction tuning datasets through additional training to adapt VLMs for VAD. However, such strategies often incur substantial computational costs or data annotation overhead. To address these challenges in explainable VAD, we introduce a verbalized learning framework named VERA that enables VLMs to perform VAD without model parameter modifications. Specifically, VERA automatically decomposes the complex reasoning required for VAD into reflections on simpler, more focused guiding questions capturing distinct abnormal patterns. It treats these reflective questions as learnable parameters and optimizes them through data-driven verbal interactions between learner and optimizer VLMs, using coarsely labeled training data. During inference, VERA embeds the learned questions into model prompts to guide VLMs in generating segment-level anomaly scores, which are then refined into frame-level scores via the fusion of scene and temporal contexts. Experimental results on challenging benchmarks demonstrate that the learned questions of VERA are highly adaptable, significantly improving both detection performance and explainability of VLMs for VAD.
comment: Accepted in CVPR 2025
♻ ☆ Forgetting Transformer: Softmax Attention with a Forget Gate ICLR 2025
An essential component of modern recurrent sequence models is the forget gate. While Transformers do not have an explicit recurrent form, we show that a forget gate can be naturally incorporated into Transformers by down-weighting the unnormalized attention scores in a data-dependent way. We name this attention mechanism Forgetting Attention and the resulting model the Forgetting Transformer (FoX). We show that FoX outperforms the Transformer on long-context language modeling, length extrapolation, and short-context downstream tasks, while performing on par with the Transformer on long-context downstream tasks. Moreover, it is compatible with the FlashAttention algorithm and does not require any positional embeddings. Several analyses, including the needle-in-the-haystack test, show that FoX also retains the Transformer's superior long-context capabilities over recurrent sequence models such as Mamba-2, HGRN2, and DeltaNet. We also introduce a "Pro" block design that incorporates some common architectural components in recurrent sequence models and find it significantly improves the performance of both FoX and the Transformer. Our code is available at https://github.com/zhixuan-lin/forgetting-transformer.
comment: Published as a conference paper at ICLR 2025; Fixed an issue with the attention map visualization
♻ ☆ HaSPeR: An Image Repository for Hand Shadow Puppet Recognition
Hand shadow puppetry, also known as shadowgraphy or ombromanie, is a form of theatrical art and storytelling where hand shadows are projected onto flat surfaces to create illusions of living creatures. The skilled performers create these silhouettes by hand positioning, finger movements, and dexterous gestures to resemble shadows of animals and objects. Due to the lack of practitioners and a seismic shift in people's entertainment standards, this art form is on the verge of extinction. To facilitate its preservation and proliferate it to a wider audience, we introduce ${\rm H{\small A}SP{\small E}R}$, a novel dataset consisting of 15,000 images of hand shadow puppets across 15 classes extracted from both professional and amateur hand shadow puppeteer clips. We provide a detailed statistical analysis of the dataset and employ a range of pretrained image classification models to establish baselines. Our findings show a substantial performance superiority of skip-connected convolutional models over attention-based transformer architectures. We also find that lightweight models, such as MobileNetV2, suited for mobile applications and embedded devices, perform comparatively well. We surmise that such low-latency architectures can be useful in developing ombromanie teaching tools, and we create a prototype application to explore this surmission. Keeping the best-performing model ResNet34 under the limelight, we conduct comprehensive feature-spatial, explainability, and error analyses to gain insights into its decision-making process. To the best of our knowledge, this is the first documented dataset and research endeavor to preserve this dying art for future generations, with computer vision approaches. Our code and data will be publicly available.
comment: Submitted to Image and Vision Computing, 15 pages, 110 figures, 2 tables
♻ ☆ Severing Spurious Correlations with Data Pruning ICLR 2025
Deep neural networks have been shown to learn and rely on spurious correlations present in the data that they are trained on. Reliance on such correlations can cause these networks to malfunction when deployed in the real world, where these correlations may no longer hold. To overcome the learning of and reliance on such correlations, recent studies propose approaches that yield promising results. These works, however, study settings where the strength of the spurious signal is significantly greater than that of the core, invariant signal, making it easier to detect the presence of spurious features in individual training samples and allow for further processing. In this paper, we identify new settings where the strength of the spurious signal is relatively weaker, making it difficult to detect any spurious information while continuing to have catastrophic consequences. We also discover that spurious correlations are learned primarily due to only a handful of all the samples containing the spurious feature and develop a novel data pruning technique that identifies and prunes small subsets of the training data that contain these samples. Our proposed technique does not require inferred domain knowledge, information regarding the sample-wise presence or nature of spurious information, or human intervention. Finally, we show that such data pruning attains state-of-the-art performance on previously studied settings where spurious information is identifiable.
comment: ICLR 2025, Spotlight
♻ ☆ Unified Preference Optimization: Language Model Alignment Beyond the Preference Frontier
For aligning large language models (LLMs), prior work has leveraged reinforcement learning via human feedback (RLHF) or variations of direct preference optimization (DPO). While DPO offers a simpler framework based on maximum likelihood estimation, it compromises on the ability to easily tune language models to maximize auxiliary, non-preferential objectives according to the LLM designer's preferences (e.g., tuning lexical style or minimizing specific kinds of harmful content). Critically, these designer objectives may not be amply human-labeled or represented in available data, align with user preferences, or even be able to be captured tractably by binary preference pairs. To leverage the simplicity and performance of DPO with the generality of RL, we propose a unified approach. Based on a simple decomposition of preference and auxiliary objectives, we allow for tuning LLMs to optimize user and designer preferences without any additional specialized or preference data, computational cost, stability ``tweaks'', or training instability. The proposed method, Unified Preference Optimization, shows the ability to effectively generalize to user preferences and auxiliary objectives, while preserving or surpassing alignment performance on challenging benchmarks across a range of model sizes.
♻ ☆ Learning Algorithms for Verification of Markov Decision Processes
We present a general framework for applying learning algorithms and heuristical guidance to the verification of Markov decision processes (MDPs). The primary goal of our techniques is to improve performance by avoiding an exhaustive exploration of the state space, instead focussing on particularly relevant areas of the system, guided by heuristics. Our work builds on the previous results of Br{\'{a}}zdil et al., significantly extending it as well as refining several details and fixing errors. The presented framework focuses on probabilistic reachability, which is a core problem in verification, and is instantiated in two distinct scenarios. The first assumes that full knowledge of the MDP is available, in particular precise transition probabilities. It performs a heuristic-driven partial exploration of the model, yielding precise lower and upper bounds on the required probability. The second tackles the case where we may only sample the MDP without knowing the exact transition dynamics. Here, we obtain probabilistic guarantees, again in terms of both the lower and upper bounds, which provides efficient stopping criteria for the approximation. In particular, the latter is an extension of statistical model-checking (SMC) for unbounded properties in MDPs. In contrast to other related approaches, we do not restrict our attention to time-bounded (finite-horizon) or discounted properties, nor assume any particular structural properties of the MDP.
comment: 82 pages. This is the TheoretiCS journal version
♻ ☆ Online Reinforcement Learning in Non-Stationary Context-Driven Environments ICLR '25
We study online reinforcement learning (RL) in non-stationary environments, where a time-varying exogenous context process affects the environment dynamics. Online RL is challenging in such environments due to "catastrophic forgetting" (CF). The agent tends to forget prior knowledge as it trains on new experiences. Prior approaches to mitigate this issue assume task labels (which are often not available in practice), employ brittle regularization heuristics, or use off-policy methods that suffer from instability and poor performance. We present Locally Constrained Policy Optimization (LCPO), an online RL approach that combats CF by anchoring policy outputs on old experiences while optimizing the return on current experiences. To perform this anchoring, LCPO locally constrains policy optimization using samples from experiences that lie outside of the current context distribution. We evaluate LCPO in Mujoco, classic control and computer systems environments with a variety of synthetic and real context traces, and find that it outperforms a variety of baselines in the non-stationary setting, while achieving results on-par with a "prescient" agent trained offline across all context traces. LCPO's source code is available at https://github.com/pouyahmdn/LCPO.
comment: ICLR '25 Spotlight
♻ ☆ Enhancing Commentary Strategies for Imperfect Information Card Games: A Study of Large Language Models in Guandan Commentary
Recent advancements in large language models (LLMs) have unlocked the potential for generating high-quality game commentary. However, producing insightful and engaging commentary for complex games with incomplete information remains a significant challenge. In this paper, we introduce a novel commentary method that combine Reinforcement Learning (RL) and LLMs, tailored specifically for the Chinese card game \textit{Guandan}. Our system leverages RL to generate intricate card-playing scenarios and employs LLMs to generate corresponding commentary text, effectively emulating the strategic analysis and narrative prowess of professional commentators. The framework comprises a state commentary guide, a Theory of Mind (ToM)-based strategy analyzer, and a style retrieval module, which seamlessly collaborate to deliver detailed and context-relevant game commentary in the Chinese language environment. We empower LLMs with ToM capabilities and refine both retrieval and information filtering mechanisms. This facilitates the generation of personalized commentary content. Our experimental results showcase the substantial enhancement in performance achieved by the proposed commentary framework when applied to open-source LLMs, surpassing the performance of GPT-4 across multiple evaluation metrics.
Graphics 11
☆ StochasticSplats: Stochastic Rasterization for Sorting-Free 3D Gaussian Splatting
3D Gaussian splatting (3DGS) is a popular radiance field method, with many application-specific extensions. Most variants rely on the same core algorithm: depth-sorting of Gaussian splats then rasterizing in primitive order. This ensures correct alpha compositing, but can cause rendering artifacts due to built-in approximations. Moreover, for a fixed representation, sorted rendering offers little control over render cost and visual fidelity. For example, and counter-intuitively, rendering a lower-resolution image is not necessarily faster. In this work, we address the above limitations by combining 3D Gaussian splatting with stochastic rasterization. Concretely, we leverage an unbiased Monte Carlo estimator of the volume rendering equation. This removes the need for sorting, and allows for accurate 3D blending of overlapping Gaussians. The number of Monte Carlo samples further imbues 3DGS with a way to trade off computation time and quality. We implement our method using OpenGL shaders, enabling efficient rendering on modern GPU hardware. At a reasonable visual quality, our method renders more than four times faster than sorted rasterization.
☆ Learning 3D-Gaussian Simulators from RGB Videos
Learning physics simulations from video data requires maintaining spatial and temporal consistency, a challenge often addressed with strong inductive biases or ground-truth 3D information -- limiting scalability and generalization. We introduce 3DGSim, a 3D physics simulator that learns object dynamics end-to-end from multi-view RGB videos. It encodes images into a 3D Gaussian particle representation, propagates dynamics via a transformer, and renders frames using 3D Gaussian splatting. By jointly training inverse rendering with a dynamics transformer using a temporal encoding and merging layer, 3DGSimembeds physical properties into point-wise latent vectors without enforcing explicit connectivity constraints. This enables the model to capture diverse physical behaviors, from rigid to elastic and cloth-like interactions, along with realistic lighting effects that also generalize to unseen multi-body interactions and novel scene edits.
☆ StrokeFusion: Vector Sketch Generation via Joint Stroke-UDF Encoding and Latent Sequence Diffusion
In the field of sketch generation, raster-format trained models often produce non-stroke artifacts, while vector-format trained models typically lack a holistic understanding of sketches, leading to compromised recognizability. Moreover, existing methods struggle to extract common features from similar elements (e.g., eyes of animals) appearing at varying positions across sketches. To address these challenges, we propose StrokeFusion, a two-stage framework for vector sketch generation. It contains a dual-modal sketch feature learning network that maps strokes into a high-quality latent space. This network decomposes sketches into normalized strokes and jointly encodes stroke sequences with Unsigned Distance Function (UDF) maps, representing sketches as sets of stroke feature vectors. Building upon this representation, our framework exploits a stroke-level latent diffusion model that simultaneously adjusts stroke position, scale, and trajectory during generation. This enables high-fidelity sketch generation while supporting stroke interpolation editing. Extensive experiments on the QuickDraw dataset demonstrate that our framework outperforms state-of-the-art techniques, validating its effectiveness in preserving structural integrity and semantic features. Code and models will be made publicly available upon publication.
☆ From Geometry to Culture: An Iterative VLM Layout Framework for Placing Objects in Complex 3D Scene Contexts
3D layout tasks have traditionally concentrated on geometric constraints, but many practical applications demand richer contextual understanding that spans social interactions, cultural traditions, and usage conventions. Existing methods often rely on rule-based heuristics or narrowly trained learning models, making them difficult to generalize and frequently prone to orientation errors that break realism. To address these challenges, we define four escalating context levels, ranging from straightforward physical placement to complex cultural requirements such as religious customs and advanced social norms. We then propose a Vision-Language Model-based pipeline that inserts minimal visual cues for orientation guidance and employs iterative feedback to pinpoint, diagnose, and correct unnatural placements in an automated fashion. Each adjustment is revisited through the system's verification process until it achieves a coherent result, thereby eliminating the need for extensive user oversight or manual parameter tuning. Our experiments across these four context levels reveal marked improvements in rotation accuracy, distance control, and overall layout plausibility compared with native VLM. By reducing the dependence on pre-programmed constraints or prohibitively large training sets, our method enables fully automated scene composition for both everyday scenarios and specialized cultural tasks, moving toward a universally adaptable framework for 3D arrangement.
☆ Uni-Render: A Unified Accelerator for Real-Time Rendering Across Diverse Neural Renderers HPCA'25
Recent advancements in neural rendering technologies and their supporting devices have paved the way for immersive 3D experiences, significantly transforming human interaction with intelligent devices across diverse applications. However, achieving the desired real-time rendering speeds for immersive interactions is still hindered by (1) the lack of a universal algorithmic solution for different application scenarios and (2) the dedication of existing devices or accelerators to merely specific rendering pipelines. To overcome this challenge, we have developed a unified neural rendering accelerator that caters to a wide array of typical neural rendering pipelines, enabling real-time and on-device rendering across different applications while maintaining both efficiency and compatibility. Our accelerator design is based on the insight that, although neural rendering pipelines vary and their algorithm designs are continually evolving, they typically share common operators, predominantly executing similar workloads. Building on this insight, we propose a reconfigurable hardware architecture that can dynamically adjust dataflow to align with specific rendering metric requirements for diverse applications, effectively supporting both typical and the latest hybrid rendering pipelines. Benchmarking experiments and ablation studies on both synthetic and real-world scenes demonstrate the effectiveness of the proposed accelerator. The proposed unified accelerator stands out as the first solution capable of achieving real-time neural rendering across varied representative pipelines on edge devices, potentially paving the way for the next generation of neural graphics applications.
comment: Accepted by HPCA'25
♻ ☆ Hi3DGen: High-fidelity 3D Geometry Generation from Images via Normal Bridging
With the growing demand for high-fidelity 3D models from 2D images, existing methods still face significant challenges in accurately reproducing fine-grained geometric details due to limitations in domain gaps and inherent ambiguities in RGB images. To address these issues, we propose Hi3DGen, a novel framework for generating high-fidelity 3D geometry from images via normal bridging. Hi3DGen consists of three key components: (1) an image-to-normal estimator that decouples the low-high frequency image pattern with noise injection and dual-stream training to achieve generalizable, stable, and sharp estimation; (2) a normal-to-geometry learning approach that uses normal-regularized latent diffusion learning to enhance 3D geometry generation fidelity; and (3) a 3D data synthesis pipeline that constructs a high-quality dataset to support training. Extensive experiments demonstrate the effectiveness and superiority of our framework in generating rich geometric details, outperforming state-of-the-art methods in terms of fidelity. Our work provides a new direction for high-fidelity 3D geometry generation from images by leveraging normal maps as an intermediate representation.
comment: https://stable-x.github.io/Hi3DGen
♻ ☆ Disentangled 4D Gaussian Splatting: Towards Faster and More Efficient Dynamic Scene Rendering
Novel-view synthesis (NVS) for dynamic scenes from 2D images presents significant challenges due to the spatial complexity and temporal variability of such scenes. Recently, inspired by the remarkable success of NVS using 3D Gaussian Splatting (3DGS), researchers have sought to extend 3D Gaussian models to four dimensions (4D) for dynamic novel-view synthesis. However, methods based on 4D rotation and scaling introduce spatiotemporal deformation into the 4D covariance matrix, necessitating the slicing of 4D Gaussians into 3D Gaussians. This process increases redundant computations as timestamps change-an inherent characteristic of dynamic scene rendering. Additionally, performing calculations on a four-dimensional matrix is computationally intensive. In this paper, we introduce Disentangled 4D Gaussian Splatting (Disentangled4DGS), a novel representation and rendering approach that disentangles temporal and spatial deformations, thereby eliminating the reliance on 4D matrix computations. We extend the 3DGS rendering process to 4D, enabling the projection of temporal and spatial deformations into dynamic 2D Gaussians in ray space. Consequently, our method facilitates faster dynamic scene synthesis. Moreover, it reduces storage requirements by at least 4.5\% due to our efficient presentation method. Our approach achieves an unprecedented average rendering speed of 343 FPS at a resolution of $1352\times1014$ on an RTX 3090 GPU, with experiments across multiple benchmarks demonstrating its competitive performance in both monocular and multi-view scenarios.
♻ ☆ Perceptually Accurate 3D Talking Head Generation: New Definitions, Speech-Mesh Representation, and Evaluation Metrics CVPR 2025
Recent advancements in speech-driven 3D talking head generation have made significant progress in lip synchronization. However, existing models still struggle to capture the perceptual alignment between varying speech characteristics and corresponding lip movements. In this work, we claim that three criteria -- Temporal Synchronization, Lip Readability, and Expressiveness -- are crucial for achieving perceptually accurate lip movements. Motivated by our hypothesis that a desirable representation space exists to meet these three criteria, we introduce a speech-mesh synchronized representation that captures intricate correspondences between speech signals and 3D face meshes. We found that our learned representation exhibits desirable characteristics, and we plug it into existing models as a perceptual loss to better align lip movements to the given speech. In addition, we utilize this representation as a perceptual metric and introduce two other physically grounded lip synchronization metrics to assess how well the generated 3D talking heads align with these three criteria. Experiments show that training 3D talking head generation models with our perceptual loss significantly improve all three aspects of perceptually accurate lip synchronization. Codes and datasets are available at https://perceptual-3d-talking-head.github.io/.
comment: CVPR 2025. Project page: https://perceptual-3d-talking-head.github.io/
♻ ☆ Drag Your Gaussian: Effective Drag-Based Editing with Score Distillation for 3D Gaussian Splatting
Recent advancements in 3D scene editing have been propelled by the rapid development of generative models. Existing methods typically utilize generative models to perform text-guided editing on 3D representations, such as 3D Gaussian Splatting (3DGS). However, these methods are often limited to texture modifications and fail when addressing geometric changes, such as editing a character's head to turn around. Moreover, such methods lack accurate control over the spatial position of editing results, as language struggles to precisely describe the extent of edits. To overcome these limitations, we introduce DYG, an effective 3D drag-based editing method for 3D Gaussian Splatting. It enables users to conveniently specify the desired editing region and the desired dragging direction through the input of 3D masks and pairs of control points, thereby enabling precise control over the extent of editing. DYG integrates the strengths of the implicit triplane representation to establish the geometric scaffold of the editing results, effectively overcoming suboptimal editing outcomes caused by the sparsity of 3DGS in the desired editing regions. Additionally, we incorporate a drag-based Latent Diffusion Model into our method through the proposed Drag-SDS loss function, enabling flexible, multi-view consistent, and fine-grained editing. Extensive experiments demonstrate that DYG conducts effective drag-based editing guided by control point prompts, surpassing other baselines in terms of editing effect and quality, both qualitatively and quantitatively. Visit our project page at https://quyans.github.io/Drag-Your-Gaussian.
comment: Visit our project page at https://quyans.github.io/Drag-Your-Gaussian
♻ ☆ RadSplat: Radiance Field-Informed Gaussian Splatting for Robust Real-Time Rendering with 900+ FPS 3DV
Recent advances in view synthesis and real-time rendering have achieved photorealistic quality at impressive rendering speeds. While Radiance Field-based methods achieve state-of-the-art quality in challenging scenarios such as in-the-wild captures and large-scale scenes, they often suffer from excessively high compute requirements linked to volumetric rendering. Gaussian Splatting-based methods, on the other hand, rely on rasterization and naturally achieve real-time rendering but suffer from brittle optimization heuristics that underperform on more challenging scenes. In this work, we present RadSplat, a lightweight method for robust real-time rendering of complex scenes. Our main contributions are threefold. First, we use radiance fields as a prior and supervision signal for optimizing point-based scene representations, leading to improved quality and more robust optimization. Next, we develop a novel pruning technique reducing the overall point count while maintaining high quality, leading to smaller and more compact scene representations with faster inference speeds. Finally, we propose a novel test-time filtering approach that further accelerates rendering and allows to scale to larger, house-sized scenes. We find that our method enables state-of-the-art synthesis of complex captures at 900+ FPS.
comment: Project page at https://m-niemeyer.github.io/radsplat/ and presented at 3DV (Oral)
♻ ☆ Towards Geometric-Photometric Joint Alignment for Facial Mesh Registration
This paper presents a Geometric-Photometric Joint Alignment~(GPJA) method, which aligns discrete human expressions at pixel-level accuracy by combining geometric and photometric information. Common practices for registering human heads typically involve aligning landmarks with facial template meshes using geometry processing approaches, but often overlook dense pixel-level photometric consistency. This oversight leads to inconsistent texture parametrization across different expressions, hindering the creation of topologically consistent head meshes widely used in movies and games. GPJA overcomes this limitation by leveraging differentiable rendering to align vertices with target expressions, achieving joint alignment in both geometry and photometric appearances automatically, without requiring semantic annotation or pre-aligned meshes for training. It features a holistic rendering alignment mechanism and a multiscale regularized optimization for robust convergence on large deformation. The method utilizes derivatives at vertex positions for supervision and employs a gradient-based algorithm which guarantees smoothness and avoids topological artifacts during the geometry evolution. Experimental results demonstrate faithful alignment under various expressions, surpassing the conventional non-rigid ICP-based methods and the state-of-the-art deep learning based method. In practical, our method generates meshes of the same subject across diverse expressions, all with the same texture parametrization. This consistency benefits face animation, re-parametrization, and other batch operations for face modeling and applications with enhanced efficiency.
Artificial Intelligence 92
☆ Beyond Detection: Designing AI-Resilient Assessments with Automated Feedback Tool to Foster Critical Thinking
The growing use of generative AI tools like ChatGPT has raised urgent concerns about their impact on student learning, particularly the potential erosion of critical thinking and creativity. As students increasingly turn to these tools to complete assessments, foundational cognitive skills are at risk of being bypassed, challenging the integrity of higher education and the authenticity of student work. Existing AI-generated text detection tools are inadequate; they produce unreliable outputs and are prone to both false positives and false negatives, especially when students apply paraphrasing, translation, or rewording. These systems rely on shallow statistical patterns rather than true contextual or semantic understanding, making them unsuitable as definitive indicators of AI misuse. In response, this research proposes a proactive, AI-resilient solution based on assessment design rather than detection. It introduces a web-based Python tool that integrates Bloom's Taxonomy with advanced natural language processing techniques including GPT-3.5 Turbo, BERT-based semantic similarity, and TF-IDF metrics to evaluate the AI-solvability of assessment tasks. By analyzing surface-level and semantic features, the tool helps educators determine whether a task targets lower-order thinking such as recall and summarization or higher-order skills such as analysis, evaluation, and creation, which are more resistant to AI automation. This framework empowers educators to design cognitively demanding, AI-resistant assessments that promote originality, critical thinking, and fairness. It offers a sustainable, pedagogically sound strategy to foster authentic learning and uphold academic standards in the age of AI.
Graph-Eq: Discovering Mathematical Equations using Graph Generative Models
The ability to discover meaningful, accurate, and concise mathematical equations that describe datasets is valuable across various domains. Equations offer explicit relationships between variables, enabling deeper insights into underlying data patterns. Most existing equation discovery methods rely on genetic programming, which iteratively searches the equation space but is often slow and prone to overfitting. By representing equations as directed acyclic graphs, we leverage the use of graph neural networks to learn the underlying semantics of equations, and generate new, previously unseen equations. Although graph generative models have been shown to be successful in discovering new types of graphs in many fields, there application in discovering equations remains largely unexplored. In this work, we propose Graph-EQ, a deep graph generative model designed for efficient equation discovery. Graph-EQ uses a conditional variational autoencoder (CVAE) to learn a rich latent representation of the equation space by training it on a large corpus of equations in an unsupervised manner. Instead of directly searching the equation space, we employ Bayesian optimization to efficiently explore this learned latent space. We show that the encoder-decoder architecture of Graph-Eq is able to accurately reconstruct input equations. Moreover, we show that the learned latent representation can be sampled and decoded into valid equations, including new and previously unseen equations in the training data. Finally, we assess Graph-Eq's ability to discover equations that best fit a dataset by exploring the latent space using Bayesian optimization. Latent space exploration is done on 20 dataset with known ground-truth equations, and Graph-Eq is shown to successfully discover the grountruth equation in the majority of datasets.
comment: 8 pages, 4 figures
Interpretable Machine Learning in Physics: A Review
Machine learning is increasingly transforming various scientific fields, enabled by advancements in computational power and access to large data sets from experiments and simulations. As artificial intelligence (AI) continues to grow in capability, these algorithms will enable many scientific discoveries beyond human capabilities. Since the primary goal of science is to understand the world around us, fully leveraging machine learning in scientific discovery requires models that are interpretable -- allowing experts to comprehend the concepts underlying machine-learned predictions. Successful interpretations increase trust in black-box methods, help reduce errors, allow for the improvement of the underlying models, enhance human-AI collaboration, and ultimately enable fully automated scientific discoveries that remain understandable to human scientists. This review examines the role of interpretability in machine learning applied to physics. We categorize different aspects of interpretability, discuss machine learning models in terms of both interpretability and performance, and explore the philosophical implications of interpretability in scientific inquiry. Additionally, we highlight recent advances in interpretable machine learning across many subfields of physics. By bridging boundaries between disciplines -- each with its own unique insights and challenges -- we aim to establish interpretable machine learning as a core research focus in science.
☆ An Organizationally-Oriented Approach to Enhancing Explainability and Control in Multi-Agent Reinforcement Learning
Multi-Agent Reinforcement Learning can lead to the development of collaborative agent behaviors that show similarities with organizational concepts. Pushing forward this perspective, we introduce a novel framework that explicitly incorporates organizational roles and goals from the $\mathcal{M}OISE^+$ model into the MARL process, guiding agents to satisfy corresponding organizational constraints. By structuring training with roles and goals, we aim to enhance both the explainability and control of agent behaviors at the organizational level, whereas much of the literature primarily focuses on individual agents. Additionally, our framework includes a post-training analysis method to infer implicit roles and goals, offering insights into emergent agent behaviors. This framework has been applied across various MARL environments and algorithms, demonstrating coherence between predefined organizational specifications and those inferred from trained agents.
☆ Partial Transportability for Domain Generalization
A fundamental task in AI is providing performance guarantees for predictions made in unseen domains. In practice, there can be substantial uncertainty about the distribution of new data, and corresponding variability in the performance of existing predictors. Building on the theory of partial identification and transportability, this paper introduces new results for bounding the value of a functional of the target distribution, such as the generalization error of a classifier, given data from source domains and assumptions about the data generating mechanisms, encoded in causal diagrams. Our contribution is to provide the first general estimation technique for transportability problems, adapting existing parameterization schemes such Neural Causal Models to encode the structural constraints necessary for cross-population inference. We demonstrate the expressiveness and consistency of this procedure and further propose a gradient-based optimization scheme for making scalable inferences in practice. Our results are corroborated with experiments.
comment: causalai.net/r88.pdf
☆ GenVP: Generating Visual Puzzles with Contrastive Hierarchical VAEs ICLR 2025
Raven's Progressive Matrices (RPMs) is an established benchmark to examine the ability to perform high-level abstract visual reasoning (AVR). Despite the current success of algorithms that solve this task, humans can generalize beyond a given puzzle and create new puzzles given a set of rules, whereas machines remain locked in solving a fixed puzzle from a curated choice list. We propose Generative Visual Puzzles (GenVP), a framework to model the entire RPM generation process, a substantially more challenging task. Our model's capability spans from generating multiple solutions for one specific problem prompt to creating complete new puzzles out of the desired set of rules. Experiments on five different datasets indicate that GenVP achieves state-of-the-art (SOTA) performance both in puzzle-solving accuracy and out-of-distribution (OOD) generalization in 22 OOD scenarios. Compared to SOTA generative approaches, which struggle to solve RPMs when the feasible solution space increases, GenVP efficiently generalizes to these challenging setups. Moreover, our model demonstrates the ability to produce a wide range of complete RPMs given a set of abstract rules by effectively capturing the relationships between abstract rules and visual object properties.
comment: Accepted to ICLR 2025
☆ DASH: Detection and Assessment of Systematic Hallucinations of VLMs
Vision-language models (VLMs) are prone to object hallucinations, where they erroneously indicate the presenceof certain objects in an image. Existing benchmarks quantify hallucinations using relatively small, labeled datasets. However, this approach is i) insufficient to assess hallucinations that arise in open-world settings, where VLMs are widely used, and ii) inadequate for detecting systematic errors in VLMs. We propose DASH (Detection and Assessment of Systematic Hallucinations), an automatic, large-scale pipeline designed to identify systematic hallucinations of VLMs on real-world images in an open-world setting. A key component is DASH-OPT for image-based retrieval, where we optimize over the ''natural image manifold'' to generate images that mislead the VLM. The output of DASH consists of clusters of real and semantically similar images for which the VLM hallucinates an object. We apply DASH to PaliGemma and two LLaVA-NeXT models across 380 object classes and, in total, find more than 19k clusters with 950k images. We study the transfer of the identified systematic hallucinations to other VLMs and show that fine-tuning PaliGemma with the model-specific images obtained with DASH mitigates object hallucinations. Code and data are available at https://YanNeu.github.io/DASH.
☆ Addressing Model Overcomplexity in Drug-Drug Interaction Prediction With Molecular Fingerprints ICLR 2025
Accurately predicting drug-drug interactions (DDIs) is crucial for pharmaceutical research and clinical safety. Recent deep learning models often suffer from high computational costs and limited generalization across datasets. In this study, we investigate a simpler yet effective approach using molecular representations such as Morgan fingerprints (MFPS), graph-based embeddings from graph convolutional networks (GCNs), and transformer-derived embeddings from MoLFormer integrated into a straightforward neural network. We benchmark our implementation on DrugBank DDI splits and a drug-drug affinity (DDA) dataset from the Food and Drug Administration. MFPS along with MoLFormer and GCN representations achieve competitive performance across tasks, even in the more challenging leak-proof split, highlighting the sufficiency of simple molecular representations. Moreover, we are able to identify key molecular motifs and structural patterns relevant to drug interactions via gradient-based analyses using the representations under study. Despite these results, dataset limitations such as insufficient chemical diversity, limited dataset size, and inconsistent labeling impact robust evaluation and challenge the need for more complex approaches. Our work provides a meaningful baseline and emphasizes the need for better dataset curation and progressive complexity scaling.
comment: Accepted to the GEM Workshop at ICLR 2025
☆ BiPVL-Seg: Bidirectional Progressive Vision-Language Fusion with Global-Local Alignment for Medical Image Segmentation
Medical image segmentation typically relies solely on visual data, overlooking the rich textual information clinicians use for diagnosis. Vision-language models attempt to bridge this gap, but existing approaches often process visual and textual features independently, resulting in weak cross-modal alignment. Simple fusion techniques fail due to the inherent differences between spatial visual features and sequential text embeddings. Additionally, medical terminology deviates from general language, limiting the effectiveness of off-the-shelf text encoders and further hindering vision-language alignment. We propose BiPVL-Seg, an end-to-end framework that integrates vision-language fusion and embedding alignment through architectural and training innovations, where both components reinforce each other to enhance medical image segmentation. BiPVL-Seg introduces bidirectional progressive fusion in the architecture, which facilitates stage-wise information exchange between vision and text encoders. Additionally, it incorporates global-local contrastive alignment, a training objective that enhances the text encoder's comprehension by aligning text and vision embeddings at both class and concept levels. Extensive experiments on diverse medical imaging benchmarks across CT and MR modalities demonstrate BiPVL-Seg's superior performance when compared with state-of-the-art methods in complex multi-class segmentation. Source code is available in this GitHub repository.
☆ If an LLM Were a Character, Would It Know Its Own Story? Evaluating Lifelong Learning in LLMs
Large language models (LLMs) can carry out human-like dialogue, but unlike humans, they are stateless due to the superposition property. However, during multi-turn, multi-agent interactions, LLMs begin to exhibit consistent, character-like behaviors, hinting at a form of emergent lifelong learning. Despite this, existing benchmarks often fail to capture these dynamics, primarily focusing on static, open-ended evaluations. To address this gap, we introduce LIFESTATE-BENCH, a benchmark designed to assess lifelong learning in LLMs. It features two episodic datasets: Hamlet and a synthetic script collection, rich in narrative structure and character interactions. Our fact checking evaluation probes models' self-awareness, episodic memory retrieval, and relationship tracking, across both parametric and non-parametric approaches. Experiments on models like Llama3.1-8B, GPT-4-turbo, and DeepSeek R1, we demonstrate that nonparametric methods significantly outperform parametric ones in managing stateful learning. However, all models exhibit challenges with catastrophic forgetting as interactions extend, highlighting the need for further advancements in lifelong learning.
☆ Buffer is All You Need: Defending Federated Learning against Backdoor Attacks under Non-iids via Buffering
Federated Learning (FL) is a popular paradigm enabling clients to jointly train a global model without sharing raw data. However, FL is known to be vulnerable towards backdoor attacks due to its distributed nature. As participants, attackers can upload model updates that effectively compromise FL. What's worse, existing defenses are mostly designed under independent-and-identically-distributed (iid) settings, hence neglecting the fundamental non-iid characteristic of FL. Here we propose FLBuff for tackling backdoor attacks even under non-iids. The main challenge for such defenses is that non-iids bring benign and malicious updates closer, hence harder to separate. FLBuff is inspired by our insight that non-iids can be modeled as omni-directional expansion in representation space while backdoor attacks as uni-directional. This leads to the key design of FLBuff, i.e., a supervised-contrastive-learning model extracting penultimate-layer representations to create a large in-between buffer layer. Comprehensive evaluations demonstrate that FLBuff consistently outperforms state-of-the-art defenses.
☆ Boosting Omnidirectional Stereo Matching with a Pre-trained Depth Foundation Model
Omnidirectional depth perception is essential for mobile robotics applications that require scene understanding across a full 360{\deg} field of view. Camera-based setups offer a cost-effective option by using stereo depth estimation to generate dense, high-resolution depth maps without relying on expensive active sensing. However, existing omnidirectional stereo matching approaches achieve only limited depth accuracy across diverse environments, depth ranges, and lighting conditions, due to the scarcity of real-world data. We present DFI-OmniStereo, a novel omnidirectional stereo matching method that leverages a large-scale pre-trained foundation model for relative monocular depth estimation within an iterative optimization-based stereo matching architecture. We introduce a dedicated two-stage training strategy to utilize the relative monocular depth features for our omnidirectional stereo matching before scale-invariant fine-tuning. DFI-OmniStereo achieves state-of-the-art results on the real-world Helvipad dataset, reducing disparity MAE by approximately 16% compared to the previous best omnidirectional stereo method.
comment: Project page: https://vita-epfl.github.io/DFI-OmniStereo-website/
☆ POINT$^{2}$: A Polymer Informatics Training and Testing Database
The advancement of polymer informatics has been significantly propelled by the integration of machine learning (ML) techniques, enabling the rapid prediction of polymer properties and expediting the discovery of high-performance polymeric materials. However, the field lacks a standardized workflow that encompasses prediction accuracy, uncertainty quantification, ML interpretability, and polymer synthesizability. In this study, we introduce POINT$^{2}$ (POlymer INformatics Training and Testing), a comprehensive benchmark database and protocol designed to address these critical challenges. Leveraging the existing labeled datasets and the unlabeled PI1M dataset, a collection of approximately one million virtual polymers generated via a recurrent neural network trained on the realistic polymers, we develop an ensemble of ML models, including Quantile Random Forests, Multilayer Perceptrons with dropout, Graph Neural Networks, and pretrained large language models. These models are coupled with diverse polymer representations such as Morgan, MACCS, RDKit, Topological, Atom Pair fingerprints, and graph-based descriptors to achieve property predictions, uncertainty estimations, model interpretability, and template-based polymerization synthesizability across a spectrum of properties, including gas permeability, thermal conductivity, glass transition temperature, melting temperature, fractional free volume, and density. The POINT$^{2}$ database can serve as a valuable resource for the polymer informatics community for polymer discovery and optimization.
☆ Benchmarking Systematic Relational Reasoning with Large Language and Reasoning Models ACL 2025
Large Language Models (LLMs) have been found to struggle with systematic reasoning. Even on tasks where they appear to perform well, their performance often depends on shortcuts, rather than on genuine reasoning abilities, leading them to collapse on out-of-distribution examples. Post-training strategies based on reinforcement learning and chain-of-thought prompting have recently been hailed as a step change. However, little is still known about the potential of the resulting ``Large Reasoning Models'' (LRMs) beyond problem solving in mathematics and programming, where finding genuine out-of-distribution problems can be difficult. In this paper, we focus on tasks that require systematic reasoning about relational compositions, especially for qualitative spatial and temporal reasoning. These tasks allow us to control the difficulty of problem instances, and measure in a precise way to what extent models can generalise. We find that that the considered LLMs and LRMs overall perform poorly overall, albeit better than random chance.
comment: Submitted to ACL 2025
☆ A Systematic Decade Review of Trip Route Planning with Travel Time Estimation based on User Preferences and Behavior
This paper systematically explores the advancements in adaptive trip route planning and travel time estimation (TTE) through Artificial Intelligence (AI). With the increasing complexity of urban transportation systems, traditional navigation methods often struggle to accommodate dynamic user preferences, real-time traffic conditions, and scalability requirements. This study explores the contributions of established AI techniques, including Machine Learning (ML), Reinforcement Learning (RL), and Graph Neural Networks (GNNs), alongside emerging methodologies like Meta-Learning, Explainable AI (XAI), Generative AI, and Federated Learning. In addition to highlighting these innovations, the paper identifies critical challenges such as ethical concerns, computational scalability, and effective data integration, which must be addressed to advance the field. The paper concludes with recommendations for leveraging AI to build efficient, transparent, and sustainable navigation systems.
comment: 6 pages, 2 figures, 1 table
☆ Order Independence With Finetuning ICLR 2025
Large language models (LLMs) demonstrate remarkable performance on many NLP tasks, yet often exhibit order dependence: simply reordering semantically identical tokens (e.g., answer choices in multiple-choice questions) can lead to inconsistent predictions. Recent work proposes Set-Based Prompting (SBP) as a way to remove order information from designated token subsets, thereby mitigating positional biases. However, applying SBP on base models induces an out-of-distribution input format, which can degrade in-distribution performance. We introduce a fine-tuning strategy that integrates SBP into the training process, "pulling" these set-formatted prompts closer to the model's training manifold. We show that SBP can be incorporated into a model via fine-tuning. Our experiments on in-distribution (MMLU) and out-of-distribution (CSQA, ARC Challenge) multiple-choice tasks show that SBP fine-tuning significantly improves accuracy and robustness to answer-order permutations, all while preserving broader language modeling capabilities. We discuss the broader implications of order-invariant modeling and outline future directions for building fairer, more consistent LLMs.
comment: Published as a Bi-Align workshop paper at ICLR 2025
☆ Handling Delay in Real-Time Reinforcement Learning ICLR 2025
Real-time reinforcement learning (RL) introduces several challenges. First, policies are constrained to a fixed number of actions per second due to hardware limitations. Second, the environment may change while the network is still computing an action, leading to observational delay. The first issue can partly be addressed with pipelining, leading to higher throughput and potentially better policies. However, the second issue remains: if each neuron operates in parallel with an execution time of $\tau$, an $N$-layer feed-forward network experiences observation delay of $\tau N$. Reducing the number of layers can decrease this delay, but at the cost of the network's expressivity. In this work, we explore the trade-off between minimizing delay and network's expressivity. We present a theoretically motivated solution that leverages temporal skip connections combined with history-augmented observations. We evaluate several architectures and show that those incorporating temporal skip connections achieve strong performance across various neuron execution times, reinforcement learning algorithms, and environments, including four Mujoco tasks and all MinAtar games. Moreover, we demonstrate parallel neuron computation can accelerate inference by 6-350% on standard hardware. Our investigation into temporal skip connections and parallel computations paves the way for more efficient RL agents in real-time setting.
comment: Accepted at ICLR 2025. Code available at https://github.com/avecplezir/realtime-agent
☆ Codehacks: A Dataset of Adversarial Tests for Competitive Programming Problems Obtained from Codeforces
Software is used in critical applications in our day-to-day life and it is important to ensure its correctness. One popular approach to assess correctness is to evaluate software on tests. If a test fails, it indicates a fault in the software under test; if all tests pass correctly, one may assume that the software is correct. However, the reliability of these results depends on the test suite considered, and there is a risk of false negatives (i.e. software that passes all available tests but contains bugs because some cases are not tested). Therefore, it is important to consider error-inducing test cases when evaluating software. To support data-driven creation of such a test-suite, which is especially of interest for testing software synthesized from large language models, we curate a dataset (Codehacks) of programming problems together with corresponding error-inducing test cases (i.e., "hacks"). This dataset is collected from the wild, in particular, from the Codeforces online judge platform. The dataset comprises 288,617 hacks for 5,578 programming problems, each with a natural language description, as well as the source code for 2,196 submitted solutions to these problems that can be broken with their corresponding hacks. Keywords: competitive programming, language model, dataset
comment: Accepted for publication at the 18th IEEE International Conference on Software Testing, Verification and Validation (ICST 2025)
☆ Semantic-Preserving Transformations as Mutation Operators: A Study on Their Effectiveness in Defect Detection
Recent advances in defect detection use language models. Existing works enhanced the training data to improve the models' robustness when applied to semantically identical code (i.e., predictions should be the same). However, the use of semantically identical code has not been considered for improving the tools during their application - a concept closely related to metamorphic testing. The goal of our study is to determine whether we can use semantic-preserving transformations, analogue to mutation operators, to improve the performance of defect detection tools in the testing stage. We first collect existing publications which implemented semantic-preserving transformations and share their implementation, such that we can reuse them. We empirically study the effectiveness of three different ensemble strategies for enhancing defect detection tools. We apply the collected transformations on the Devign dataset, considering vulnerabilities as a type of defect, and two fine-tuned large language models for defect detection (VulBERTa, PLBART). We found 28 publications with 94 different transformations. We choose to implement 39 transformations from four of the publications, but a manual check revealed that 23 out 39 transformations change code semantics. Using the 16 remaining, correct transformations and three ensemble strategies, we were not able to increase the accuracy of the defect detection models. Our results show that reusing shared semantic-preserving transformation is difficult, sometimes even causing wrongful changes to the semantics. Keywords: defect detection, language model, semantic-preserving transformation, ensemble
comment: Accepted for publication in Mutation 2025 at the 18th IEEE International Conference on Software Testing, Verification and Validation (ICST 2025)
☆ Speculative End-Turn Detector for Efficient Speech Chatbot Assistant
Spoken dialogue systems powered by large language models have demonstrated remarkable abilities in understanding human speech and generating appropriate spoken responses. However, these systems struggle with end-turn detection (ETD) -- the ability to distinguish between user turn completion and hesitation. This limitation often leads to premature or delayed responses, disrupting the flow of spoken conversations. In this paper, we introduce the ETD Dataset, the first public dataset for end-turn detection. The ETD dataset consists of both synthetic speech data generated with text-to-speech models and real-world speech data collected from web sources. We also propose SpeculativeETD, a novel collaborative inference framework that balances efficiency and accuracy to improve real-time ETD in resource-constrained environments. Our approach jointly employs a lightweight GRU-based model, which rapidly detects the non-speaking units in real-time on local devices, and a high-performance Wav2vec-based model running on the server to make a more challenging classification of distinguishing turn ends from mere pauses. Experiments demonstrate that the proposed SpeculativeETD significantly improves ETD accuracy while keeping the required computations low. Datasets and code will be available after the review.
comment: Preprint
☆ What Makes an Evaluation Useful? Common Pitfalls and Best Practices
Following the rapid increase in Artificial Intelligence (AI) capabilities in recent years, the AI community has voiced concerns regarding possible safety risks. To support decision-making on the safe use and development of AI systems, there is a growing need for high-quality evaluations of dangerous model capabilities. While several attempts to provide such evaluations have been made, a clear definition of what constitutes a "good evaluation" has yet to be agreed upon. In this practitioners' perspective paper, we present a set of best practices for safety evaluations, drawing on prior work in model evaluation and illustrated through cybersecurity examples. We first discuss the steps of the initial thought process, which connects threat modeling to evaluation design. Then, we provide the characteristics and parameters that make an evaluation useful. Finally, we address additional considerations as we move from building specific evaluations to building a full and comprehensive evaluation suite.
☆ An Analysis of Decoding Methods for LLM-based Agents for Faithful Multi-Hop Question Answering
Large Language Models (LLMs) frequently produce factually inaccurate outputs - a phenomenon known as hallucination - which limits their accuracy in knowledge-intensive NLP tasks. Retrieval-augmented generation and agentic frameworks such as Reasoning and Acting (ReAct) can address this issue by giving the model access to external knowledge. However, LLMs often fail to remain faithful to retrieved information. Mitigating this is critical, especially if LLMs are required to reason about the retrieved information. Recent research has explored training-free decoding strategies to improve the faithfulness of model generations. We present a systematic analysis of how the combination of the ReAct framework and decoding strategies (i.e., DeCoRe, DoLa, and CAD) can influence the faithfulness of LLM-generated answers. Our results show that combining an agentic framework for knowledge retrieval with decoding methods that enhance faithfulness can increase accuracy on the downstream Multi-Hop Question Answering tasks. For example, we observe an F1 increase from 19.5 to 32.6 on HotpotQA when using ReAct and DoLa.
☆ From Content Creation to Citation Inflation: A GenAI Case Study
This paper investigates the presence and impact of questionable, AI-generated academic papers on widely used preprint repositories, with a focus on their role in citation manipulation. Motivated by suspicious patterns observed in publications related to our ongoing research on GenAI-enhanced cybersecurity, we identify clusters of questionable papers and profiles. These papers frequently exhibit minimal technical content, repetitive structure, unverifiable authorship, and mutually reinforcing citation patterns among a recurring set of authors. To assess the feasibility and implications of such practices, we conduct a controlled experiment: generating a fake paper using GenAI, embedding citations to suspected questionable publications, and uploading it to one such repository (ResearchGate). Our findings demonstrate that such papers can bypass platform checks, remain publicly accessible, and contribute to inflating citation metrics like the H-index and i10-index. We present a detailed analysis of the mechanisms involved, highlight systemic weaknesses in content moderation, and offer recommendations for improving platform accountability and preserving academic integrity in the age of GenAI.
comment: 20 pages
☆ GMapLatent: Geometric Mapping in Latent Space
Cross-domain generative models based on encoder-decoder AI architectures have attracted much attention in generating realistic images, where domain alignment is crucial for generation accuracy. Domain alignment methods usually deal directly with the initial distribution; however, mismatched or mixed clusters can lead to mode collapse and mixture problems in the decoder, compromising model generalization capabilities. In this work, we innovate a cross-domain alignment and generation model that introduces a canonical latent space representation based on geometric mapping to align the cross-domain latent spaces in a rigorous and precise manner, thus avoiding mode collapse and mixture in the encoder-decoder generation architectures. We name this model GMapLatent. The core of the method is to seamlessly align latent spaces with strict cluster correspondence constraints using the canonical parameterizations of cluster-decorated latent spaces. We first (1) transform the latent space to a canonical parameter domain by composing barycenter translation, optimal transport merging and constrained harmonic mapping, and then (2) compute geometric registration with cluster constraints over the canonical parameter domains. This process realizes a bijective (one-to-one and onto) mapping between newly transformed latent spaces and generates a precise alignment of cluster pairs. Cross-domain generation is then achieved through the aligned latent spaces embedded in the encoder-decoder pipeline. Experiments on gray-scale and color images validate the efficiency, efficacy and applicability of GMapLatent, and demonstrate that the proposed model has superior performance over existing models.
☆ Diffusion Meets Few-shot Class Incremental Learning
Few-shot class-incremental learning (FSCIL) is challenging due to extremely limited training data; while aiming to reduce catastrophic forgetting and learn new information. We propose Diffusion-FSCIL, a novel approach that employs a text-to-image diffusion model as a frozen backbone. Our conjecture is that FSCIL can be tackled using a large generative model's capabilities benefiting from 1) generation ability via large-scale pre-training; 2) multi-scale representation; 3) representational flexibility through the text encoder. To maximize the representation capability, we propose to extract multiple complementary diffusion features to play roles as latent replay with slight support from feature distillation for preventing generative biases. Our framework realizes efficiency through 1) using a frozen backbone; 2) minimal trainable components; 3) batch processing of multiple feature extractions. Extensive experiments on CUB-200, miniImageNet, and CIFAR-100 show that Diffusion-FSCIL surpasses state-of-the-art methods, preserving performance on previously learned classes and adapting effectively to new ones.
comment: pre-print
☆ Scaling Auditory Cognition via Test-Time Compute in Audio Language Models
Large language models (LLMs) have shown exceptional versatility in natural language processing, prompting recent efforts to extend their multimodal capabilities to speech processing through the development of audio large language models (Audio LLMs). While Audio LLMs excel in tasks such as speech recognition and synthesis, it remains unclear how they perform when faced with the auditory cognitive challenges posed by real-world environments, such as audio comprehension and listening recall, particularly in the presence of background noise or overlapping speech. Unlike text-based LLMs, which have access to vast amounts of text data for pre-training, retraining Audio LLMs with diverse auditory cognitive scenes is difficult due to the limited datasets that simulate real-world auditory cognitive scenarios and the challenge of acquiring auditory cognitive labels for training. While test-time compute (TTC) methods have been shown to enhance the capabilities of text-based LLMs during inference, a key challenge lies in designing these TTC methods to improve the auditory capabilities of Audio LLMs. This study aims to address these two research gaps by: i) exploring the auditory cognitive capabilities of Audio LLMs, and ii) enhancing their capabilities using TTC approaches. We have investigated five different Audio LLMs for auditory cognition using a \textit{self-collected} database and have proposed five TTC approaches to enhance auditory cognitive capabilities during inference. Our findings reveal that Audio LLMs performance decreases in more challenging auditory cognitive tasks. The proposed TTC approaches significantly enhance cognitive auditory capabilities, advancing the development of more adaptable and resilient Audio LLMs for practical applications such as assistive listening devices, voice-based AI assistants, and communication technologies.
☆ Spatiotemporal Learning of Brain Dynamics from fMRI Using Frequency-Specific Multi-Band Attention for Cognitive and Psychiatric Applications
Understanding how the brain's complex nonlinear dynamics give rise to adaptive cognition and behavior is a central challenge in neuroscience. These dynamics exhibit scale-free and multifractal properties, influencing the reconfiguration of neural networks. However, conventional neuroimaging models are constrained by linear and stationary assumptions, limiting their ability to capture these processes. Transformer-based architectures, known for capturing long-range dependencies, align well with the brain's hierarchical and temporal organization. We introduce Multi-Band Brain Net (MBBN), a transformer-based framework that models frequency-specific spatiotemporal brain dynamics from fMRI by integrating scale-free network principles with frequency-resolved multi-band self-attention. Trained on three large-scale neuroimaging cohorts (UK Biobank, ABCD, ABIDE) totaling 45,951 individuals, MBBN reveals previously undetectable frequency-dependent network interactions, shedding light on connectivity disruptions in psychiatric conditions (ADHD, ASD, depression). This validation shows robust generalizability and highlights core neural principles conserved across populations. MBBN achieves up to 30.59% higher predictive accuracy than state-of-the-art methods, demonstrating the advantage of frequency-informed spatiotemporal modeling in capturing latent neural computations. MBBN's interpretability uncovers novel frequency-specific biomarkers for neurodevelopmental disorders, providing insights into the hierarchical organization of brain function. By offering an interpretable framework for spatiotemporal learning, MBBN provides insights into how neural computations underpin cognitive function and psychiatric vulnerability, with implications for brain decoding, cognitive neuroscience, and precision psychiatry.
Pareto Continual Learning: Preference-Conditioned Learning and Adaption for Dynamic Stability-Plasticity Trade-off
Continual learning aims to learn multiple tasks sequentially. A key challenge in continual learning is balancing between two objectives: retaining knowledge from old tasks (stability) and adapting to new tasks (plasticity). Experience replay methods, which store and replay past data alongside new data, have become a widely adopted approach to mitigate catastrophic forgetting. However, these methods neglect the dynamic nature of the stability-plasticity trade-off and aim to find a fixed and unchanging balance, resulting in suboptimal adaptation during training and inference. In this paper, we propose Pareto Continual Learning (ParetoCL), a novel framework that reformulates the stability-plasticity trade-off in continual learning as a multi-objective optimization (MOO) problem. ParetoCL introduces a preference-conditioned model to efficiently learn a set of Pareto optimal solutions representing different trade-offs and enables dynamic adaptation during inference. From a generalization perspective, ParetoCL can be seen as an objective augmentation approach that learns from different objective combinations of stability and plasticity. Extensive experiments across multiple datasets and settings demonstrate that ParetoCL outperforms state-of-the-art methods and adapts to diverse continual learning scenarios.
☆ COSMIC: Clique-Oriented Semantic Multi-space Integration for Robust CLIP Test-Time Adaptation CVPR 2025
Recent vision-language models (VLMs) face significant challenges in test-time adaptation to novel domains. While cache-based methods show promise by leveraging historical information, they struggle with both caching unreliable feature-label pairs and indiscriminately using single-class information during querying, significantly compromising adaptation accuracy. To address these limitations, we propose COSMIC (Clique-Oriented Semantic Multi-space Integration for CLIP), a robust test-time adaptation framework that enhances adaptability through multi-granular, cross-modal semantic caching and graph-based querying mechanisms. Our framework introduces two key innovations: Dual Semantics Graph (DSG) and Clique Guided Hyper-class (CGH). The Dual Semantics Graph constructs complementary semantic spaces by incorporating textual features, coarse-grained CLIP features, and fine-grained DINOv2 features to capture rich semantic relationships. Building upon these dual graphs, the Clique Guided Hyper-class component leverages structured class relationships to enhance prediction robustness through correlated class selection. Extensive experiments demonstrate COSMIC's superior performance across multiple benchmarks, achieving significant improvements over state-of-the-art methods: 15.81% gain on out-of-distribution tasks and 5.33% on cross-domain generation with CLIP RN-50. Code is available at github.com/hf618/COSMIC.
comment: Accepted to CVPR 2025
☆ KernelDNA: Dynamic Kernel Sharing via Decoupled Naive Adapters
Dynamic convolution enhances model capacity by adaptively combining multiple kernels, yet faces critical trade-offs: prior works either (1) incur significant parameter overhead by scaling kernel numbers linearly, (2) compromise inference speed through complex kernel interactions, or (3) struggle to jointly optimize dynamic attention and static kernels. We also observe that pre-trained Convolutional Neural Networks (CNNs) exhibit inter-layer redundancy akin to that in Large Language Models (LLMs). Specifically, dense convolutional layers can be efficiently replaced by derived ``child" layers generated from a shared ``parent" convolutional kernel through an adapter. To address these limitations and implement the weight-sharing mechanism, we propose a lightweight convolution kernel plug-in, named KernelDNA. It decouples kernel adaptation into input-dependent dynamic routing and pre-trained static modulation, ensuring both parameter efficiency and hardware-friendly inference. Unlike existing dynamic convolutions that expand parameters via multi-kernel ensembles, our method leverages cross-layer weight sharing and adapter-based modulation, enabling dynamic kernel specialization without altering the standard convolution structure. This design preserves the native computational efficiency of standard convolutions while enhancing representation power through input-adaptive kernel adjustments. Experiments on image classification and dense prediction tasks demonstrate that KernelDNA achieves state-of-the-art accuracy-efficiency balance among dynamic convolution variants. Our codes are available at https://github.com/haiduo/KernelDNA.
☆ JavisDiT: Joint Audio-Video Diffusion Transformer with Hierarchical Spatio-Temporal Prior Synchronization
This paper introduces JavisDiT, a novel Joint Audio-Video Diffusion Transformer designed for synchronized audio-video generation (JAVG). Built upon the powerful Diffusion Transformer (DiT) architecture, JavisDiT is able to generate high-quality audio and video content simultaneously from open-ended user prompts. To ensure optimal synchronization, we introduce a fine-grained spatio-temporal alignment mechanism through a Hierarchical Spatial-Temporal Synchronized Prior (HiST-Sypo) Estimator. This module extracts both global and fine-grained spatio-temporal priors, guiding the synchronization between the visual and auditory components. Furthermore, we propose a new benchmark, JavisBench, consisting of 10,140 high-quality text-captioned sounding videos spanning diverse scenes and complex real-world scenarios. Further, we specifically devise a robust metric for evaluating the synchronization between generated audio-video pairs in real-world complex content. Experimental results demonstrate that JavisDiT significantly outperforms existing methods by ensuring both high-quality generation and precise synchronization, setting a new standard for JAVG tasks. Our code, model, and dataset will be made publicly available at https://javisdit.github.io/.
comment: Work in progress. Homepage: https://javisdit.github.io/
☆ FeRG-LLM : Feature Engineering by Reason Generation Large Language Models NAACL 2025
One of the key tasks in machine learning for tabular data is feature engineering. Although it is vital for improving the performance of models, it demands considerable human expertise and deep domain knowledge, making it labor-intensive endeavor. To address this issue, we propose a novel framework, \textbf{FeRG-LLM} (\textbf{Fe}ature engineering by \textbf{R}eason \textbf{G}eneration \textbf{L}arge \textbf{L}anguage \textbf{M}odels), a large language model designed to automatically perform feature engineering at an 8-billion-parameter scale. We have constructed two-stage conversational dialogues that enable language models to analyze machine learning tasks and discovering new features, exhibiting their Chain-of-Thought (CoT) capabilities. We use these dialogues to fine-tune Llama 3.1 8B model and integrate Direct Preference Optimization (DPO) to receive feedback improving quality of new features and the model's performance. Our experiments show that FeRG-LLM performs comparably to or better than Llama 3.1 70B on most datasets, while using fewer resources and achieving reduced inference time. It outperforms other studies in classification tasks and performs well in regression tasks. Moreover, since it does not rely on cloud-hosted LLMs like GPT-4 with extra API costs when generating features, it can be deployed locally, addressing security concerns.
comment: Accepted to NAACL 2025 Findings
☆ Towards Physically Plausible Video Generation via VLM Planning
Video diffusion models (VDMs) have advanced significantly in recent years, enabling the generation of highly realistic videos and drawing the attention of the community in their potential as world simulators. However, despite their capabilities, VDMs often fail to produce physically plausible videos due to an inherent lack of understanding of physics, resulting in incorrect dynamics and event sequences. To address this limitation, we propose a novel two-stage image-to-video generation framework that explicitly incorporates physics. In the first stage, we employ a Vision Language Model (VLM) as a coarse-grained motion planner, integrating chain-of-thought and physics-aware reasoning to predict a rough motion trajectories/changes that approximate real-world physical dynamics while ensuring the inter-frame consistency. In the second stage, we use the predicted motion trajectories/changes to guide the video generation of a VDM. As the predicted motion trajectories/changes are rough, noise is added during inference to provide freedom to the VDM in generating motion with more fine details. Extensive experimental results demonstrate that our framework can produce physically plausible motion, and comparative evaluations highlight the notable superiority of our approach over existing methods. More video results are available on our Project Page: https://madaoer.github.io/projects/physically_plausible_video_generation.
comment: 18 pages, 11 figures
☆ Large Language Models Are Better Logical Fallacy Reasoners with Counterargument, Explanation, and Goal-Aware Prompt Formulation NAACL 2025
The advancement of Large Language Models (LLMs) has greatly improved our ability to process complex language. However, accurately detecting logical fallacies remains a significant challenge. This study presents a novel and effective prompt formulation approach for logical fallacy detection, applicable in both supervised (fine-tuned) and unsupervised (zero-shot) settings. Our method enriches input text incorporating implicit contextual information -- counterarguments, explanations, and goals -- which we query for validity within the context of the argument. We then rank these queries based on confidence scores to inform classification. We evaluate our approach across multiple datasets from 5 domains, covering 29 distinct fallacy types, using models from the GPT and LLaMA series. The results show substantial improvements over state-of-the-art models, with F1 score increases of up to 0.60 in zero-shot settings and up to 0.45 in fine-tuned models. Extensive analyses further illustrate why and how our method excels.
comment: Accepted to NAACL 2025 Findings
☆ Mixture of Routers
Supervised fine-tuning (SFT) is a milestone in aligning large language models with human instructions and adapting them to downstream tasks. In particular, Low-Rank Adaptation (LoRA) has gained widespread attention due to its parameter efficiency. However, its impact on improving the performance of large models remains limited. Recent studies suggest that combining LoRA with Mixture-of-Experts (MoE) can significantly enhance fine-tuning performance. MoE adapts to the diversity and complexity of datasets by dynamically selecting the most suitable experts, thereby improving task accuracy and efficiency. Despite impressive results, recent studies reveal issues in the MoE routing mechanism, such as incorrect assignments and imbalanced expert allocation. Inspired by the principles of Redundancy and Fault Tolerance Theory. We innovatively integrate the concept of Mixture of Experts into the routing mechanism and propose an efficient fine-tuning method called Mixture of Routers (MoR). It employs multiple sub-routers for joint selection and uses a learnable main router to determine the weights of the sub-routers. The results show that MoR outperforms baseline models on most tasks, achieving an average performance improvement of 1%. MoR can serve as a plug-and-play, parameter-efficient fine-tuning method suitable for a wide range of applications. Our code is available here: https://anonymous.4open.science/r/MoR-DFC6.
comment: 10 pages,4 figures
☆ Object Isolated Attention for Consistent Story Visualization
Open-ended story visualization is a challenging task that involves generating coherent image sequences from a given storyline. One of the main difficulties is maintaining character consistency while creating natural and contextually fitting scenes--an area where many existing methods struggle. In this paper, we propose an enhanced Transformer module that uses separate self attention and cross attention mechanisms, leveraging prior knowledge from pre-trained diffusion models to ensure logical scene creation. The isolated self attention mechanism improves character consistency by refining attention maps to reduce focus on irrelevant areas and highlight key features of the same character. Meanwhile, the isolated cross attention mechanism independently processes each character's features, avoiding feature fusion and further strengthening consistency. Notably, our method is training-free, allowing the continuous generation of new characters and storylines without re-tuning. Both qualitative and quantitative evaluations show that our approach outperforms current methods, demonstrating its effectiveness.
comment: 6 pages, 4 figures
☆ A Survey of WebAgents: Towards Next-Generation AI Agents for Web Automation with Large Foundation Models
With the advancement of web techniques, they have significantly revolutionized various aspects of people's lives. Despite the importance of the web, many tasks performed on it are repetitive and time-consuming, negatively impacting overall quality of life. To efficiently handle these tedious daily tasks, one of the most promising approaches is to advance autonomous agents based on Artificial Intelligence (AI) techniques, referred to as AI Agents, as they can operate continuously without fatigue or performance degradation. In the context of the web, leveraging AI Agents -- termed WebAgents -- to automatically assist people in handling tedious daily tasks can dramatically enhance productivity and efficiency. Recently, Large Foundation Models (LFMs) containing billions of parameters have exhibited human-like language understanding and reasoning capabilities, showing proficiency in performing various complex tasks. This naturally raises the question: `Can LFMs be utilized to develop powerful AI Agents that automatically handle web tasks, providing significant convenience to users?' To fully explore the potential of LFMs, extensive research has emerged on WebAgents designed to complete daily web tasks according to user instructions, significantly enhancing the convenience of daily human life. In this survey, we comprehensively review existing research studies on WebAgents across three key aspects: architectures, training, and trustworthiness. Additionally, several promising directions for future research are explored to provide deeper insights.
☆ A Scalable Framework for Evaluating Health Language Models
Large language models (LLMs) have emerged as powerful tools for analyzing complex datasets. Recent studies demonstrate their potential to generate useful, personalized responses when provided with patient-specific health information that encompasses lifestyle, biomarkers, and context. As LLM-driven health applications are increasingly adopted, rigorous and efficient one-sided evaluation methodologies are crucial to ensure response quality across multiple dimensions, including accuracy, personalization and safety. Current evaluation practices for open-ended text responses heavily rely on human experts. This approach introduces human factors and is often cost-prohibitive, labor-intensive, and hinders scalability, especially in complex domains like healthcare where response assessment necessitates domain expertise and considers multifaceted patient data. In this work, we introduce Adaptive Precise Boolean rubrics: an evaluation framework that streamlines human and automated evaluation of open-ended questions by identifying gaps in model responses using a minimal set of targeted rubrics questions. Our approach is based on recent work in more general evaluation settings that contrasts a smaller set of complex evaluation targets with a larger set of more precise, granular targets answerable with simple boolean responses. We validate this approach in metabolic health, a domain encompassing diabetes, cardiovascular disease, and obesity. Our results demonstrate that Adaptive Precise Boolean rubrics yield higher inter-rater agreement among expert and non-expert human evaluators, and in automated assessments, compared to traditional Likert scales, while requiring approximately half the evaluation time of Likert-based methods. This enhanced efficiency, particularly in automated evaluation and non-expert contributions, paves the way for more extensive and cost-effective evaluation of LLMs in health.
☆ Beyond Unimodal Boundaries: Generative Recommendation with Multimodal Semantics
Generative recommendation (GR) has become a powerful paradigm in recommendation systems that implicitly links modality and semantics to item representation, in contrast to previous methods that relied on non-semantic item identifiers in autoregressive models. However, previous research has predominantly treated modalities in isolation, typically assuming item content is unimodal (usually text). We argue that this is a significant limitation given the rich, multimodal nature of real-world data and the potential sensitivity of GR models to modality choices and usage. Our work aims to explore the critical problem of Multimodal Generative Recommendation (MGR), highlighting the importance of modality choices in GR nframeworks. We reveal that GR models are particularly sensitive to different modalities and examine the challenges in achieving effective GR when multiple modalities are available. By evaluating design strategies for effectively leveraging multiple modalities, we identify key challenges and introduce MGR-LF++, an enhanced late fusion framework that employs contrastive modality alignment and special tokens to denote different modalities, achieving a performance improvement of over 20% compared to single-modality alternatives.
☆ A Multi-Agent Framework with Automated Decision Rule Optimization for Cross-Domain Misinformation Detection
Misinformation spans various domains, but detection methods trained on specific domains often perform poorly when applied to others. With the rapid development of Large Language Models (LLMs), researchers have begun to utilize LLMs for cross-domain misinformation detection. However, existing LLM-based methods often fail to adequately analyze news in the target domain, limiting their detection capabilities. More importantly, these methods typically rely on manually designed decision rules, which are limited by domain knowledge and expert experience, thus limiting the generalizability of decision rules to different domains. To address these issues, we propose a MultiAgent Framework for cross-domain misinformation detection with Automated Decision Rule Optimization (MARO). Under this framework, we first employs multiple expert agents to analyze target-domain news. Subsequently, we introduce a question-reflection mechanism that guides expert agents to facilitate higherquality analysis. Furthermore, we propose a decision rule optimization approach based on carefully-designed cross-domain validation tasks to iteratively enhance the effectiveness of decision rules in different domains. Experimental results and in-depth analysis on commonlyused datasets demonstrate that MARO achieves significant improvements over existing methods.
☆ Exploring Explainable Multi-player MCTS-minimax Hybrids in Board Game Using Process Mining AAAI 2025
Monte-Carlo Tree Search (MCTS) is a family of sampling-based search algorithms widely used for online planning in sequential decision-making domains and at the heart of many recent advances in artificial intelligence. Understanding the behavior of MCTS agents is difficult for developers and users due to the frequently large and complex search trees that result from the simulation of many possible futures, their evaluations, and their relationships. This paper presents our ongoing investigation into potential explanations for the decision-making and behavior of MCTS. A weakness of MCTS is that it constructs a highly selective tree and, as a result, can miss crucial moves and fall into tactical traps. Full-width minimax search constitutes the solution. We integrate shallow minimax search into the rollout phase of multi-player MCTS and use process mining technique to explain agents' strategies in 3v3 checkers.
comment: 36 pages, AAAI 2025 PRL
☆ AI Agents in Engineering Design: A Multi-Agent Framework for Aesthetic and Aerodynamic Car Design
We introduce the concept of "Design Agents" for engineering applications, particularly focusing on the automotive design process, while emphasizing that our approach can be readily extended to other engineering and design domains. Our framework integrates AI-driven design agents into the traditional engineering workflow, demonstrating how these specialized computational agents interact seamlessly with engineers and designers to augment creativity, enhance efficiency, and significantly accelerate the overall design cycle. By automating and streamlining tasks traditionally performed manually, such as conceptual sketching, styling enhancements, 3D shape retrieval and generative modeling, computational fluid dynamics (CFD) meshing, and aerodynamic simulations, our approach reduces certain aspects of the conventional workflow from weeks and days down to minutes. These agents leverage state-of-the-art vision-language models (VLMs), large language models (LLMs), and geometric deep learning techniques, providing rapid iteration and comprehensive design exploration capabilities. We ground our methodology in industry-standard benchmarks, encompassing a wide variety of conventional automotive designs, and utilize high-fidelity aerodynamic simulations to ensure practical and applicable outcomes. Furthermore, we present design agents that can swiftly and accurately predict simulation outcomes, empowering engineers and designers to engage in more informed design optimization and exploration. This research underscores the transformative potential of integrating advanced generative AI techniques into complex engineering tasks, paving the way for broader adoption and innovation across multiple engineering disciplines.
☆ SPIO: Ensemble and Selective Strategies via LLM-Based Multi-Agent Planning in Automated Data Science
Large Language Models (LLMs) have revolutionized automated data analytics and machine learning by enabling dynamic reasoning and adaptability. While recent approaches have advanced multi-stage pipelines through multi-agent systems, they typically rely on rigid, single-path workflows that limit the exploration and integration of diverse strategies, often resulting in suboptimal predictions. To address these challenges, we propose SPIO (Sequential Plan Integration and Optimization), a novel framework that leverages LLM-driven decision-making to orchestrate multi-agent planning across four key modules: data preprocessing, feature engineering, modeling, and hyperparameter tuning. In each module, dedicated planning agents independently generate candidate strategies that cascade into subsequent stages, fostering comprehensive exploration. A plan optimization agent refines these strategies by suggesting several optimized plans. We further introduce two variants: SPIO-S, which selects a single best solution path as determined by the LLM, and SPIO-E, which selects the top k candidate plans and ensembles them to maximize predictive performance. Extensive experiments on Kaggle and OpenML datasets demonstrate that SPIO significantly outperforms state-of-the-art methods, providing a robust and scalable solution for automated data science task.
comment: Under Review
☆ LaViC: Adapting Large Vision-Language Models to Visually-Aware Conversational Recommendation
Conversational recommender systems engage users in dialogues to refine their needs and provide more personalized suggestions. Although textual information suffices for many domains, visually driven categories such as fashion or home decor potentially require detailed visual information related to color, style, or design. To address this challenge, we propose LaViC (Large Vision-Language Conversational Recommendation Framework), a novel approach that integrates compact image representations into dialogue-based recommendation systems. LaViC leverages a large vision-language model in a two-stage process: (1) visual knowledge self-distillation, which condenses product images from hundreds of tokens into a small set of visual tokens in a self-distillation manner, significantly reducing computational overhead, and (2) recommendation prompt tuning, which enables the model to incorporate both dialogue context and distilled visual tokens, providing a unified mechanism for capturing textual and visual features. To support rigorous evaluation of visually-aware conversational recommendation, we construct a new dataset by aligning Reddit conversations with Amazon product listings across multiple visually oriented categories (e.g., fashion, beauty, and home). This dataset covers realistic user queries and product appearances in domains where visual details are crucial. Extensive experiments demonstrate that LaViC significantly outperforms text-only conversational recommendation methods and open-source vision-language baselines. Moreover, LaViC achieves competitive or superior accuracy compared to prominent proprietary baselines (e.g., GPT-3.5-turbo, GPT-4o-mini, and GPT-4o), demonstrating the necessity of explicitly using visual data for capturing product attributes and showing the effectiveness of our vision-language integration. Our code and dataset are available at https://github.com/jeon185/LaViC.
☆ SalesRLAgent: A Reinforcement Learning Approach for Real-Time Sales Conversion Prediction and Optimization
Current approaches to sales conversation analysis and conversion prediction typically rely on Large Language Models (LLMs) combined with basic retrieval augmented generation (RAG). These systems, while capable of answering questions, fail to accurately predict conversion probability or provide strategic guidance in real time. In this paper, we present SalesRLAgent, a novel framework leveraging specialized reinforcement learning to predict conversion probability throughout sales conversations. Unlike systems from Kapa.ai, Mendable, Inkeep, and others that primarily use off-the-shelf LLMs for content generation, our approach treats conversion prediction as a sequential decision problem, training on synthetic data generated using GPT-4O to develop a specialized probability estimation model. Our system incorporates Azure OpenAI embeddings (3072 dimensions), turn-by-turn state tracking, and meta-learning capabilities to understand its own knowledge boundaries. Evaluations demonstrate that SalesRLAgent achieves 96.7% accuracy in conversion prediction, outperforming LLM-only approaches by 34.7% while offering significantly faster inference (85ms vs 3450ms for GPT-4). Furthermore, integration with existing sales platforms shows a 43.2% increase in conversion rates when representatives utilize our system's real-time guidance. SalesRLAgent represents a fundamental shift from content generation to strategic sales intelligence, providing moment-by-moment conversion probability estimation with actionable insights for sales professionals.
☆ GRASP: Municipal Budget AI Chatbots for Enhancing Civic Engagement
There are a growing number of AI applications, but none tailored specifically to help residents answer their questions about municipal budget, a topic most are interested in but few have a solid comprehension of. In this research paper, we propose GRASP, a custom AI chatbot framework which stands for Generation with Retrieval and Action System for Prompts. GRASP provides more truthful and grounded responses to user budget queries than traditional information retrieval systems like general Large Language Models (LLMs) or web searches. These improvements come from the novel combination of a Retrieval-Augmented Generation (RAG) framework ("Generation with Retrieval") and an agentic workflow ("Action System"), as well as prompt engineering techniques, the incorporation of municipal budget domain knowledge, and collaboration with local town officials to ensure response truthfulness. During testing, we found that our GRASP chatbot provided precise and accurate responses for local municipal budget queries 78% of the time, while GPT-4o and Gemini were only accurate 60% and 35% of the time, respectively. GRASP chatbots greatly reduce the time and effort needed for the general public to get an intuitive and correct understanding of their town's budget, thus fostering greater communal discourse, improving government transparency, and allowing citizens to make more informed decisions.
☆ Two Heads Are Better than One: Model-Weight and Latent-Space Analysis for Federated Learning on Non-iid Data against Poisoning Attacks
Federated Learning is a popular paradigm that enables remote clients to jointly train a global model without sharing their raw data. However, FL has been shown to be vulnerable towards model poisoning attacks due to its distributed nature. Particularly, attackers acting as participants can upload arbitrary model updates that effectively compromise the global model of FL. While extensive research has been focusing on fighting against these attacks, we find that most of them assume data at remote clients are under iid while in practice they are inevitably non-iid. Our benchmark evaluations reveal that existing defenses generally fail to live up to their reputation when applied to various non-iid scenarios. In this paper, we propose a novel approach, GeminiGuard, that aims to address such a significant gap. We design GeminiGuard to be lightweight, versatile, and unsupervised so that it aligns well with the practical requirements of deploying such defenses. The key challenge from non-iids is that they make benign model updates look more similar to malicious ones. GeminiGuard is mainly built on two fundamental observations: (1) existing defenses based on either model-weight analysis or latent-space analysis face limitations in covering different MPAs and non-iid scenarios, and (2) model-weight and latent-space analysis are sufficiently different yet potentially complementary methods as MPA defenses. We hence incorporate a novel model-weight analysis component as well as a custom latent-space analysis component in GeminiGuard, aiming to further enhance its defense performance. We conduct extensive experiments to evaluate our defense across various settings, demonstrating its effectiveness in countering multiple types of untargeted and targeted MPAs, including adaptive ones. Our comprehensive evaluations show that GeminiGuard consistently outperforms SOTA defenses under various settings.
☆ Extracting Patient History from Clinical Text: A Comparative Study of Clinical Large Language Models
Extracting medical history entities (MHEs) related to a patient's chief complaint (CC), history of present illness (HPI), and past, family, and social history (PFSH) helps structure free-text clinical notes into standardized EHRs, streamlining downstream tasks like continuity of care, medical coding, and quality metrics. Fine-tuned clinical large language models (cLLMs) can assist in this process while ensuring the protection of sensitive data via on-premises deployment. This study evaluates the performance of cLLMs in recognizing CC/HPI/PFSH-related MHEs and examines how note characteristics impact model accuracy. We annotated 1,449 MHEs across 61 outpatient-related clinical notes from the MTSamples repository. To recognize these entities, we fine-tuned seven state-of-the-art cLLMs. Additionally, we assessed the models' performance when enhanced by integrating, problems, tests, treatments, and other basic medical entities (BMEs). We compared the performance of these models against GPT-4o in a zero-shot setting. To further understand the textual characteristics affecting model accuracy, we conducted an error analysis focused on note length, entity length, and segmentation. The cLLMs showed potential in reducing the time required for extracting MHEs by over 20%. However, detecting many types of MHEs remained challenging due to their polysemous nature and the frequent involvement of non-medical vocabulary. Fine-tuned GatorTron and GatorTronS, two of the most extensively trained cLLMs, demonstrated the highest performance. Integrating pre-identified BME information improved model performance for certain entities. Regarding the impact of textual characteristics on model performance, we found that longer entities were harder to identify, note length did not correlate with a higher error rate, and well-organized segments with headings are beneficial for the extraction.
☆ Model Context Protocol (MCP): Landscape, Security Threats, and Future Research Directions
The Model Context Protocol (MCP) is a standardized interface designed to enable seamless interaction between AI models and external tools and resources, breaking down data silos and facilitating interoperability across diverse systems. This paper provides a comprehensive overview of MCP, focusing on its core components, workflow, and the lifecycle of MCP servers, which consists of three key phases: creation, operation, and update. We analyze the security and privacy risks associated with each phase and propose strategies to mitigate potential threats. The paper also examines the current MCP landscape, including its adoption by industry leaders and various use cases, as well as the tools and platforms supporting its integration. We explore future directions for MCP, highlighting the challenges and opportunities that will influence its adoption and evolution within the broader AI ecosystem. Finally, we offer recommendations for MCP stakeholders to ensure its secure and sustainable development as the AI landscape continues to evolve.
☆ Improved Ear Verification with Vision Transformers and Overlapping Patches
Ear recognition has emerged as a promising biometric modality due to the relative stability in appearance during adulthood. Although Vision Transformers (ViTs) have been widely used in image recognition tasks, their efficiency in ear recognition has been hampered by a lack of attention to overlapping patches, which is crucial for capturing intricate ear features. In this study, we evaluate ViT-Tiny (ViT-T), ViT-Small (ViT-S), ViT-Base (ViT-B) and ViT-Large (ViT-L) configurations on a diverse set of datasets (OPIB, AWE, WPUT, and EarVN1.0), using an overlapping patch selection strategy. Results demonstrate the critical importance of overlapping patches, yielding superior performance in 44 of 48 experiments in a structured study. Moreover, upon comparing the results of the overlapping patches with the non-overlapping configurations, the increase is significant, reaching up to 10% for the EarVN1.0 dataset. In terms of model performance, the ViT-T model consistently outperformed the ViT-S, ViT-B, and ViT-L models on the AWE, WPUT, and EarVN1.0 datasets. The highest scores were achieved in a configuration with a patch size of 28x28 and a stride of 14 pixels. This patch-stride configuration represents 25% of the normalized image area (112x112 pixels) for the patch size and 12.5% of the row or column size for the stride. This study confirms that transformer architectures with overlapping patch selection can serve as an efficient and high-performing option for ear-based biometric recognition tasks in verification scenarios.
☆ Learning Coordinated Bimanual Manipulation Policies using State Diffusion and Inverse Dynamics Models ICRA 2025
When performing tasks like laundry, humans naturally coordinate both hands to manipulate objects and anticipate how their actions will change the state of the clothes. However, achieving such coordination in robotics remains challenging due to the need to model object movement, predict future states, and generate precise bimanual actions. In this work, we address these challenges by infusing the predictive nature of human manipulation strategies into robot imitation learning. Specifically, we disentangle task-related state transitions from agent-specific inverse dynamics modeling to enable effective bimanual coordination. Using a demonstration dataset, we train a diffusion model to predict future states given historical observations, envisioning how the scene evolves. Then, we use an inverse dynamics model to compute robot actions that achieve the predicted states. Our key insight is that modeling object movement can help learning policies for bimanual coordination manipulation tasks. Evaluating our framework across diverse simulation and real-world manipulation setups, including multimodal goal configurations, bimanual manipulation, deformable objects, and multi-object setups, we find that it consistently outperforms state-of-the-art state-to-action mapping policies. Our method demonstrates a remarkable capacity to navigate multimodal goal configurations and action distributions, maintain stability across different control modes, and synthesize a broader range of behaviors than those present in the demonstration dataset.
comment: Project Page: https://haonan16.github.io/coord_bimanual_page/. 12 pages, 12 figures, Accepted at ICRA 2025
☆ Localized Graph-Based Neural Dynamics Models for Terrain Manipulation
Predictive models can be particularly helpful for robots to effectively manipulate terrains in construction sites and extraterrestrial surfaces. However, terrain state representations become extremely high-dimensional especially to capture fine-resolution details and when depth is unknown or unbounded. This paper introduces a learning-based approach for terrain dynamics modeling and manipulation, leveraging the Graph-based Neural Dynamics (GBND) framework to represent terrain deformation as motion of a graph of particles. Based on the principle that the moving portion of a terrain is usually localized, our approach builds a large terrain graph (potentially millions of particles) but only identifies a very small active subgraph (hundreds of particles) for predicting the outcomes of robot-terrain interaction. To minimize the size of the active subgraph we introduce a learning-based approach that identifies a small region of interest (RoI) based on the robot's control inputs and the current scene. We also introduce a novel domain boundary feature encoding that allows GBNDs to perform accurate dynamics prediction in the RoI interior while avoiding particle penetration through RoI boundaries. Our proposed method is both orders of magnitude faster than naive GBND and it achieves better overall prediction accuracy. We further evaluated our framework on excavation and shaping tasks on terrain with different granularity.
♻ ☆ UI-R1: Enhancing Action Prediction of GUI Agents by Reinforcement Learning
The recent DeepSeek-R1 has showcased the emergence of reasoning capabilities in LLMs through reinforcement learning (RL) with rule-based rewards. Building on this idea, we are the first to explore how rule-based RL can enhance the reasoning capabilities of multimodal large language models (MLLMs) for graphic user interface (GUI) action prediction tasks. To this end, we curate a small yet high-quality dataset of 136 challenging tasks, encompassing five common action types on mobile devices. We also introduce a unified rule-based action reward, enabling model optimization via policy-based algorithms such as Group Relative Policy Optimization (GRPO). Experimental results demonstrate that our proposed data-efficient model, UI-R1-3B, achieves substantial improvements on both in-domain (ID) and out-of-domain (OOD) tasks. Specifically, on the ID benchmark AndroidControl, the action type accuracy improves by 15%, while grounding accuracy increases by 10.3%, compared with the base model (i.e. Qwen2.5-VL-3B). On the OOD GUI grounding benchmark ScreenSpot-Pro, our model surpasses the base model by 6.0% and achieves competitive performance with larger models (e.g., OS-Atlas-7B), which are trained via supervised fine-tuning (SFT) on 76K data. These results underscore the potential of rule-based reinforcement learning to advance GUI understanding and control, paving the way for future research in this domain.
♻ ☆ RGB-Th-Bench: A Dense benchmark for Visual-Thermal Understanding of Vision Language Models
We introduce RGB-Th-Bench, the first benchmark designed to evaluate the ability of Vision-Language Models (VLMs) to comprehend RGB-Thermal image pairs. While VLMs have demonstrated remarkable progress in visual reasoning and multimodal understanding, their evaluation has been predominantly limited to RGB-based benchmarks, leaving a critical gap in assessing their capabilities in infrared vision tasks. Existing visible-infrared datasets are either task-specific or lack high-quality annotations necessary for rigorous model evaluation. To address these limitations, RGB-Th-Bench provides a comprehensive evaluation framework covering 14 distinct skill dimensions, with a total of 1,600+ expert-annotated Yes/No questions. The benchmark employs two accuracy metrics: a standard question-level accuracy and a stricter skill-level accuracy, which evaluates model robustness across multiple questions within each skill dimension. This design ensures a thorough assessment of model performance, including resilience to adversarial and hallucinated responses. We conduct extensive evaluations on 19 state-of-the-art VLMs, revealing significant performance gaps in RGB-Thermal understanding. Our results show that even the strongest models struggle with thermal image comprehension, with performance heavily constrained by their RGB-based capabilities. Additionally, the lack of large-scale application-specific and expert-annotated thermal-caption-pair datasets in pre-training is an important reason of the observed performance gap. RGB-Th-Bench highlights the urgent need for further advancements in multimodal learning to bridge the gap between visible and thermal image understanding. The dataset is available through this link, and the evaluation code will also be made publicly available.
♻ ☆ The Geometry of Concepts: Sparse Autoencoder Feature Structure
Sparse autoencoders have recently produced dictionaries of high-dimensional vectors corresponding to the universe of concepts represented by large language models. We find that this concept universe has interesting structure at three levels: 1) The "atomic" small-scale structure contains "crystals" whose faces are parallelograms or trapezoids, generalizing well-known examples such as (man-woman-king-queen). We find that the quality of such parallelograms and associated function vectors improves greatly when projecting out global distractor directions such as word length, which is efficiently done with linear discriminant analysis. 2) The "brain" intermediate-scale structure has significant spatial modularity; for example, math and code features form a "lobe" akin to functional lobes seen in neural fMRI images. We quantify the spatial locality of these lobes with multiple metrics and find that clusters of co-occurring features, at coarse enough scale, also cluster together spatially far more than one would expect if feature geometry were random. 3) The "galaxy" scale large-scale structure of the feature point cloud is not isotropic, but instead has a power law of eigenvalues with steepest slope in middle layers. We also quantify how the clustering entropy depends on the layer.
comment: 16 pages, 12 figures
♻ ☆ On the Diagram of Thought
Current large language models (LLMs) demonstrate impressive capabilities but struggle with complex, multi-step reasoning tasks. Existing methods often tackle this by requiring external control mechanisms or multi-model orchestration, which introduces system complexity and typically lacks formal guarantees of reasoning soundness. We introduce the Diagram of Thought (DoT), a framework wherein a single auto-regressive LLM internally constructs and navigates a Directed Acyclic Graph (DAG). This DAG represents the iterative reasoning process, encompassing steps like proposing ideas, critiquing them, refining based on feedback, and synthesizing conclusions. This self-orchestrated, self-contained process is guided by learned role-specific tokens (e.g., , , ) embedded within the standard generation loop, thereby eliminating external dependencies. Crucially, we establish a rigorous mathematical foundation for DoT using Topos Theory. We formalize the reasoning DAG as a diagram within a suitable topos and prove that the final synthesis step, aggregating validated information, corresponds semantically to computing the colimit of the relevant sub-diagram. This formalization provides theoretical guarantees concerning the logical consistency and robustness of the synthesized outcome. DoT thus offers a unified, self-contained, interpretable, efficient, and formally grounded approach designed to significantly advance the complex reasoning capabilities of LLMs.
comment: 23 pages
♻ ☆ SINE: SINgle Image Editing with Text-to-Image Diffusion Models CVPR 2023
Recent works on diffusion models have demonstrated a strong capability for conditioning image generation, e.g., text-guided image synthesis. Such success inspires many efforts trying to use large-scale pre-trained diffusion models for tackling a challenging problem--real image editing. Works conducted in this area learn a unique textual token corresponding to several images containing the same object. However, under many circumstances, only one image is available, such as the painting of the Girl with a Pearl Earring. Using existing works on fine-tuning the pre-trained diffusion models with a single image causes severe overfitting issues. The information leakage from the pre-trained diffusion models makes editing can not keep the same content as the given image while creating new features depicted by the language guidance. This work aims to address the problem of single-image editing. We propose a novel model-based guidance built upon the classifier-free guidance so that the knowledge from the model trained on a single image can be distilled into the pre-trained diffusion model, enabling content creation even with one given image. Additionally, we propose a patch-based fine-tuning that can effectively help the model generate images of arbitrary resolution. We provide extensive experiments to validate the design choices of our approach and show promising editing capabilities, including changing style, content addition, and object manipulation. The code is available for research purposes at https://github.com/zhang-zx/SINE.git .
comment: Accepted at CVPR 2023. Project website: https://zhang-zx.github.io/SINE/
♻ ☆ Deriving Representative Structure from Music Corpora
Western music is an innately hierarchical system of interacting levels of structure, from fine-grained melody to high-level form. In order to analyze music compositions holistically and at multiple granularities, we propose a unified, hierarchical meta-representation of musical structure called the structural temporal graph (STG). For a single piece, the STG is a data structure that defines a hierarchy of progressively finer structural musical features and the temporal relationships between them. We use the STG to enable a novel approach for deriving a representative structural summary of a music corpus, which we formalize as a dually NP-hard combinatorial optimization problem extending the Generalized Median Graph problem. Our approach first applies simulated annealing to develop a measure of structural distance between two music pieces rooted in graph isomorphism. Our approach then combines the formal guarantees of SMT solvers with nested simulated annealing over structural distances to produce a structurally sound, representative centroid STG for an entire corpus of STGs from individual pieces. To evaluate our approach, we conduct experiments verifying that structural distance accurately differentiates between music pieces, and that derived centroids accurately structurally characterize their corpora.
comment: 12 pages, 8 figures, 7 tables
♻ ☆ Beyond Local Sharpness: Communication-Efficient Global Sharpness-aware Minimization for Federated Learning CVPR 2025
Federated learning (FL) enables collaborative model training with privacy preservation. Data heterogeneity across edge devices (clients) can cause models to converge to sharp minima, negatively impacting generalization and robustness. Recent approaches use client-side sharpness-aware minimization (SAM) to encourage flatter minima, but the discrepancy between local and global loss landscapes often undermines their effectiveness, as optimizing for local sharpness does not ensure global flatness. This work introduces FedGloSS (Federated Global Server-side Sharpness), a novel FL approach that prioritizes the optimization of global sharpness on the server, using SAM. To reduce communication overhead, FedGloSS cleverly approximates sharpness using the previous global gradient, eliminating the need for additional client communication. Our extensive evaluations demonstrate that FedGloSS consistently reaches flatter minima and better performance compared to state-of-the-art FL methods across various federated vision benchmarks.
comment: Accepted at CVPR 2025, 20 pages
♻ ☆ What is Reproducibility in Artificial Intelligence and Machine Learning Research?
In the rapidly evolving fields of Artificial Intelligence (AI) and Machine Learning (ML), the reproducibility crisis underscores the urgent need for clear validation methodologies to maintain scientific integrity and encourage advancement. The crisis is compounded by the prevalent confusion over validation terminology. In response to this challenge, we introduce a framework that clarifies the roles and definitions of key validation efforts: repeatability, dependent and independent reproducibility, and direct and conceptual replicability. This structured framework aims to provide AI/ML researchers with the necessary clarity on these essential concepts, facilitating the appropriate design, conduct, and interpretation of validation studies. By articulating the nuances and specific roles of each type of validation study, we aim to enhance the reliability and trustworthiness of research findings and support the community's efforts to address reproducibility challenges effectively.
comment: 13 pages, 3 figures, 1 table; submitted to AI Magazine
♻ ☆ A Survey on Large Language Model-Based Game Agents
The development of game agents holds a critical role in advancing towards Artificial General Intelligence. The progress of Large Language Models (LLMs) offers an unprecedented opportunity to evolve and empower game agents with human-like decision-making capabilities in complex computer game environments. This paper provides a comprehensive overview of LLM-based game agents from a holistic viewpoint. First, we introduce the conceptual architecture of LLM-based game agents, centered around three core functional components: memory, reasoning and in/output. Second, we survey existing representative LLM-based game agents documented in the literature with respect to methodologies and adaptation agility across six genres of games, including adventure, communication, competition, cooperation, simulation, and crafting & exploration games. Finally, we present an outlook of future research and development directions in this burgeoning field. A curated list of relevant papers is maintained and made accessible at: https://github.com/git-disl/awesome-LLM-game-agent-papers.
♻ ☆ Measuring AI Ability to Complete Long Tasks
Despite rapid progress on AI benchmarks, the real-world meaning of benchmark performance remains unclear. To quantify the capabilities of AI systems in terms of human capabilities, we propose a new metric: 50%-task-completion time horizon. This is the time humans typically take to complete tasks that AI models can complete with 50% success rate. We first timed humans with relevant domain expertise on a combination of RE-Bench, HCAST, and 66 novel shorter tasks. On these tasks, current frontier AI models such as Claude 3.7 Sonnet have a 50% time horizon of around 50 minutes. Furthermore, frontier AI time horizon has been doubling approximately every seven months since 2019, though the trend may have accelerated in 2024. The increase in AI models' time horizons seems to be primarily driven by greater reliability and ability to adapt to mistakes, combined with better logical reasoning and tool use capabilities. We discuss the limitations of our results -- including their degree of external validity -- and the implications of increased autonomy for dangerous capabilities. If these results generalize to real-world software tasks, extrapolation of this trend predicts that within 5 years, AI systems will be capable of automating many software tasks that currently take humans a month.
♻ ☆ InjecGuard: Benchmarking and Mitigating Over-defense in Prompt Injection Guardrail Models
Prompt injection attacks pose a critical threat to large language models (LLMs), enabling goal hijacking and data leakage. Prompt guard models, though effective in defense, suffer from over-defense -- falsely flagging benign inputs as malicious due to trigger word bias. To address this issue, we introduce NotInject, an evaluation dataset that systematically measures over-defense across various prompt guard models. NotInject contains 339 benign samples enriched with trigger words common in prompt injection attacks, enabling fine-grained evaluation. Our results show that state-of-the-art models suffer from over-defense issues, with accuracy dropping close to random guessing levels (60%). To mitigate this, we propose InjecGuard, a novel prompt guard model that incorporates a new training strategy, Mitigating Over-defense for Free (MOF), which significantly reduces the bias on trigger words. InjecGuard demonstrates state-of-the-art performance on diverse benchmarks including NotInject, surpassing the existing best model by 30.8%, offering a robust and open-source solution for detecting prompt injection attacks. The code and datasets are released at https://github.com/leolee99/InjecGuard.
♻ ☆ Precise, Fast, and Low-cost Concept Erasure in Value Space: Orthogonal Complement Matters
Recent success of text-to-image (T2I) generation and its increasing practical applications, enabled by diffusion models, require urgent consideration of erasing unwanted concepts, e.g., copyrighted, offensive, and unsafe ones, from the pre-trained models in a precise, timely, and low-cost manner. The twofold demand of concept erasure includes not only a precise removal of the target concept (i.e., erasure efficacy) but also a minimal change on non-target content (i.e., prior preservation), during generation. Existing methods face challenges in maintaining an effective balance between erasure efficacy and prior preservation, and they can be computationally costly. To improve, we propose a precise, fast, and low-cost concept erasure method, called Adaptive Value Decomposer (AdaVD), which is training-free. Our method is grounded in a classical linear algebraic operation of computing the orthogonal complement, implemented in the value space of each cross-attention layer within the UNet of diffusion models. We design a shift factor to adaptively navigate the erasure strength, enhancing effective prior preservation without sacrificing erasure efficacy. Extensive comparative experiments with both training-based and training-free state-of-the-art methods demonstrate that the proposed AdaVD excels in both single and multiple concept erasure, showing 2 to 10 times improvement in prior preservation than the second best, meanwhile achieving the best or near best erasure efficacy. AdaVD supports a series of diffusion models and downstream image generation tasks, with code available on: https://github.com/WYuan1001/AdaVD.
♻ ☆ Local Concept Embeddings for Analysis of Concept Distributions in Vision DNN Feature Spaces
Insights into the learned latent representations are imperative for verifying deep neural networks (DNNs) in critical computer vision (CV) tasks. Therefore, state-of-the-art supervised Concept-based eXplainable Artificial Intelligence (C-XAI) methods associate user-defined concepts like ``car'' each with a single vector in the DNN latent space (concept embedding vector). In the case of concept segmentation, these linearly separate between activation map pixels belonging to a concept and those belonging to background. Existing methods for concept segmentation, however, fall short of capturing implicitly learned sub-concepts (e.g., the DNN might split car into ``proximate car'' and ``distant car''), and overlap of user-defined concepts (e.g., between ``bus'' and ``truck''). In other words, they do not capture the full distribution of concept representatives in latent space. For the first time, this work shows that these simplifications are frequently broken and that distribution information can be particularly useful for understanding DNN-learned notions of sub-concepts, concept confusion, and concept outliers. To allow exploration of learned concept distributions, we propose a novel local concept analysis framework. Instead of optimizing a single global concept vector on the complete dataset, it generates a local concept embedding (LoCE) vector for each individual sample. We use the distribution formed by LoCEs to explore the latent concept distribution by fitting Gaussian mixture models (GMMs), hierarchical clustering, and concept-level information retrieval and outlier detection. Despite its context sensitivity, our method's concept segmentation performance is competitive to global baselines. Analysis results are obtained on three datasets and six diverse vision DNN architectures, including vision transformers (ViTs).
comment: This is the authors accepted manuscript of the article accepted for publication in the International Journal of Computer Vision (IJCV). The final version will be available via SpringerLink upon publication. To cite this work please refer to the final journal version once published
♻ ☆ Visual Self-paced Iterative Learning for Unsupervised Temporal Action Localization
Recently, temporal action localization (TAL) has garnered significant interest in information retrieval community. However, existing supervised/weakly supervised methods are heavily dependent on extensive labeled temporal boundaries and action categories, which is labor-intensive and time-consuming. Although some unsupervised methods have utilized the ``iteratively clustering and localization'' paradigm for TAL, they still suffer from two pivotal impediments: 1) unsatisfactory video clustering confidence, and 2) unreliable video pseudolabels for model training. To address these limitations, we present a novel self-paced iterative learning model to enhance clustering and localization training simultaneously, thereby facilitating more effective unsupervised TAL. Concretely, we improve the clustering confidence through exploring the contextual feature-robust visual information. Thereafter, we design two (constant- and variable- speed) incremental instance learning strategies for easy-to-hard model training, thus ensuring the reliability of these video pseudolabels and further improving overall localization performance. Extensive experiments on two public datasets have substantiated the superiority of our model over several state-of-the-art competitors.
♻ ☆ CCUP: A Controllable Synthetic Data Generation Pipeline for Pretraining Cloth-Changing Person Re-Identification Models ICME 2025
Cloth-changing person re-identification (CC-ReID), also known as Long-Term Person Re-Identification (LT-ReID) is a critical and challenging research topic in computer vision that has recently garnered significant attention. However, due to the high cost of constructing CC-ReID data, the existing data-driven models are hard to train efficiently on limited data, causing overfitting issue. To address this challenge, we propose a low-cost and efficient pipeline for generating controllable and high-quality synthetic data simulating the surveillance of real scenarios specific to the CC-ReID task. Particularly, we construct a new self-annotated CC-ReID dataset named Cloth-Changing Unreal Person (CCUP), containing 6,000 IDs, 1,179,976 images, 100 cameras, and 26.5 outfits per individual. Based on this large-scale dataset, we introduce an effective and scalable pretrain-finetune framework for enhancing the generalization capabilities of the traditional CC-ReID models. The extensive experiments demonstrate that two typical models namely TransReID and FIRe^2, when integrated into our framework, outperform other state-of-the-art models after pretraining on CCUP and finetuning on the benchmarks such as PRCC, VC-Clothes and NKUP. The CCUP is available at: https://github.com/yjzhao1019/CCUP.
comment: Accepted by ICME 2025
♻ ☆ VELOCITI: Benchmarking Video-Language Compositional Reasoning with Strict Entailment CVPR 2025
A fundamental aspect of compositional reasoning in a video is associating people and their actions across time. Recent years have seen great progress in general-purpose vision or video models and a move towards long-video understanding. While exciting, we take a step back and ask: are current models good at compositional reasoning on short videos? To this end, we introduce VELOCITI, a benchmark to study Video-LLMs by disentangling and assessing the comprehension of agents, actions, and their associations across multiple events. We adopt the Video-Language Entailment setup and propose StrictVLE that requires correct classification (rather than ranking) of the positive and negative caption. We evaluate several models and observe that even the best, LLaVA-OneVision (44.5%) and Gemini-1.5-Pro (49.3%), are far from human accuracy at 93.0%. Results show that action understanding lags behind agents, and negative captions created using entities appearing in the video perform worse than those obtained from pure text manipulation. We also present challenges with ClassicVLE and multiple-choice (MC) evaluation, strengthening our preference for StrictVLE. Finally, we validate that our benchmark requires visual inputs of multiple frames making it ideal to study video-language compositional reasoning.
comment: Accepted to CVPR 2025. Project Page, see https://katha-ai.github.io/projects/velociti
♻ ☆ RWKV-7 "Goose" with Expressive Dynamic State Evolution
We present RWKV-7 "Goose", a new sequence modeling architecture with constant memory usage and constant inference time per token. Despite being trained on dramatically fewer tokens than other top models, our 2.9 billion parameter language model achieves a new 3B SoTA on multilingual tasks and matches the current 3B SoTA on English language downstream performance. RWKV-7 introduces a newly generalized formulation of the delta rule with vector-valued gating and in-context learning rates, as well as a relaxed value replacement rule. We show that RWKV-7 can perform state tracking and recognize all regular languages, while retaining parallelizability of training. This exceeds the capabilities of Transformers under standard complexity conjectures, which are limited to $\mathsf{TC}^0$. To demonstrate RWKV-7's language modeling capability, we also present an extended open source 3.1 trillion token multilingual corpus, and train four RWKV-7 models ranging from 0.19 billion to 2.9 billion parameters on this dataset. To foster openness, reproduction, and adoption, we release our models and dataset component listing at https://huggingface.co/RWKV, and our training and inference code at https://github.com/RWKV/RWKV-LM all under the Apache 2.0 License.
♻ ☆ Analyzing and Boosting the Power of Fine-Grained Visual Recognition for Multi-modal Large Language Models ICLR 2025
Multi-modal large language models (MLLMs) have shown remarkable abilities in various visual understanding tasks. However, MLLMs still struggle with fine-grained visual recognition (FGVR), which aims to identify subordinate-level categories from images. This can negatively impact more advanced capabilities of MLLMs, such as object-centric visual question answering and reasoning. In our study, we revisit three quintessential capabilities of MLLMs for FGVR, including object information extraction, category knowledge reserve, object-category alignment, and position of the root cause as a misalignment problem. To address this issue, we present Finedefics, an MLLM that enhances the model's FGVR capability by incorporating informative attribute descriptions of objects into the training phase. We employ contrastive learning on object-attribute pairs and attribute-category pairs simultaneously and use examples from similar but incorrect categories as hard negatives, naturally bringing representations of visual objects and category names closer. Extensive evaluations across multiple popular FGVR datasets demonstrate that Finedefics outperforms existing MLLMs of comparable parameter sizes, showcasing its remarkable efficacy. The code is available at https://github.com/PKU-ICST-MIPL/Finedefics_ICLR2025.
comment: Published as a conference paper at ICLR 2025. The model is available at https://huggingface.co/StevenHH2000/Finedefics
♻ ☆ Pareto Front Approximation for Multi-Objective Session-Based Recommender Systems RecSys '24
This work introduces MultiTRON, an approach that adapts Pareto front approximation techniques to multi-objective session-based recommender systems using a transformer neural network. Our approach optimizes trade-offs between key metrics such as click-through and conversion rates by training on sampled preference vectors. A significant advantage is that after training, a single model can access the entire Pareto front, allowing it to be tailored to meet the specific requirements of different stakeholders by adjusting an additional input vector that weights the objectives. We validate the model's performance through extensive offline and online evaluation. For broader application and research, the source code is made available at https://github.com/otto-de/MultiTRON. The results confirm the model's ability to manage multiple recommendation objectives effectively, offering a flexible tool for diverse business needs.
comment: Accepted at the Eighteenth ACM Conference on Recommender Systems (RecSys '24)
♻ ☆ Scaling Session-Based Transformer Recommendations using Optimized Negative Sampling and Loss Functions RecSys '23
This work introduces TRON, a scalable session-based Transformer Recommender using Optimized Negative-sampling. Motivated by the scalability and performance limitations of prevailing models such as SASRec and GRU4Rec+, TRON integrates top-k negative sampling and listwise loss functions to enhance its recommendation accuracy. Evaluations on relevant large-scale e-commerce datasets show that TRON improves upon the recommendation quality of current methods while maintaining training speeds similar to SASRec. A live A/B test yielded an 18.14% increase in click-through rate over SASRec, highlighting the potential of TRON in practical settings. For further research, we provide access to our source code at https://github.com/otto-de/TRON and an anonymized dataset at https://github.com/otto-de/recsys-dataset.
comment: Accepted at the Seventeenth ACM Conference on Recommender Systems (RecSys '23)
♻ ☆ Token Dynamics: Towards Efficient and Dynamic Video Token Representation for Video Large Language Models
Token-based video representation has emerged as a promising approach for enabling LLMs to interpret video content. However, existing token reduction, such as token pruning and token merging, often disrupt essential spatial-temporal positional embeddings, failing to adequately balance computational efficiency with fewer tokens. Consequently, these methods result in lengthy token sequences, limiting their applicability in scenarios requiring extreme token compression, such as video large language models. In this paper, we introduce the novel task of extreme short token reduction, aiming to represent extensive video sequences with a minimal number of tokens. To address this challenge, we propose Token Dynamics, a new video representation framework that dynamically reduces token count while preserving spatial-temporal coherence. Specifically, we disentangle video representations by separating visual embeddings from grid-level motion information, structuring them into: 1. a concise token hash table, created by clustering tokens that describe object-level content; 2. a token indices key map, capturing detailed spatial-temporal motion patterns across grids; 3. a token hash function, which vector-quantizes the token hash table to reconstruct the token sequence from the key map. Furthermore, we introduce a cross-dynamics attention mechanism that integrates motion features into the token base without increasing token length, thereby maintaining compactness and spatial-temporal integrity. The experiments demonstrate a reduction of token count to merely 0.07% of the original tokens, with only a minor performance drop of 1.13%. Additionally, we propose two novel subtasks within extreme token reduction (fixed-length and adaptive-length compression). Our method offers significantly lower theoretical complexity, fewer tokens, and enhanced throughput, thus providing an efficient solution for video LLMs.
♻ ☆ OpenSDI: Spotting Diffusion-Generated Images in the Open World
This paper identifies OpenSDI, a challenge for spotting diffusion-generated images in open-world settings. In response to this challenge, we define a new benchmark, the OpenSDI dataset (OpenSDID), which stands out from existing datasets due to its diverse use of large vision-language models that simulate open-world diffusion-based manipulations. Another outstanding feature of OpenSDID is its inclusion of both detection and localization tasks for images manipulated globally and locally by diffusion models. To address the OpenSDI challenge, we propose a Synergizing Pretrained Models (SPM) scheme to build up a mixture of foundation models. This approach exploits a collaboration mechanism with multiple pretrained foundation models to enhance generalization in the OpenSDI context, moving beyond traditional training by synergizing multiple pretrained models through prompting and attending strategies. Building on this scheme, we introduce MaskCLIP, an SPM-based model that aligns Contrastive Language-Image Pre-Training (CLIP) with Masked Autoencoder (MAE). Extensive evaluations on OpenSDID show that MaskCLIP significantly outperforms current state-of-the-art methods for the OpenSDI challenge, achieving remarkable relative improvements of 14.23% in IoU (14.11% in F1) and 2.05% in accuracy (2.38% in F1) compared to the second-best model in localization and detection tasks, respectively. Our dataset and code are available at https://github.com/iamwangyabin/OpenSDI.
♻ ☆ AEJIM: A Real-Time AI Framework for Crowdsourced, Transparent, and Ethical Environmental Hazard Detection and Reporting
Environmental journalism is vital for raising awareness of ecological crises and driving evidence-based policy, yet traditional methods falter under delays, inaccuracies, and scalability limits, especially in under-monitored regions critical to the United Nations Sustainable Development Goals. To bridge these gaps, this paper introduces the AI-Environmental Journalism Integration Model (AEJIM), an innovative framework combining real-time hazard detection, automated reporting, crowdsourced validation, expert review, and transparent dissemination. Validated through a pilot study on Mallorca, AEJIM significantly improved the speed, accuracy, and transparency of environmental hazard reporting compared to traditional methods. Furthermore, the model directly addresses key ethical, regulatory, and scalability challenges, ensuring accountability through Explainable AI (XAI), GDPR-compliant data governance, and active public participation. AEJIM's modular and technology-agnostic design provides a transparent and adaptable solution, setting a new benchmark for AI-enhanced environmental journalism and supporting informed global decision-making across diverse socio-political landscapes.
comment: 21 pages, 10 figures, 5 tables. Keywords: Artificial Intelligence, Environmental Journalism, Real-Time Reporting, Vision Transformers, Image Recognition, Crowdsourced Validation, GPT-4, Automated News Generation, GIS Integration, Data Privacy Compliance, Explainable AI (XAI), AI Ethics, Sustainable Development
♻ ☆ Accelerating Task Generalisation with Multi-Level Skill Hierarchies ICLR 2025
Creating reinforcement learning agents that generalise effectively to new tasks is a key challenge in AI research. This paper introduces Fracture Cluster Options (FraCOs), a multi-level hierarchical reinforcement learning method that achieves state-of-the-art performance on difficult generalisation tasks. FraCOs identifies patterns in agent behaviour and forms options based on the expected future usefulness of those patterns, enabling rapid adaptation to new tasks. In tabular settings, FraCOs demonstrates effective transfer and improves performance as it grows in hierarchical depth. We evaluate FraCOs against state-of-the-art deep reinforcement learning algorithms in several complex procedurally generated environments. Our results show that FraCOs achieves higher in-distribution and out-of-distribution performance than competitors.
comment: 10 pages, accepted at ICLR 2025
♻ ☆ F$^3$OCUS -- Federated Finetuning of Vision-Language Foundation Models with Optimal Client Layer Updating Strategy via Multi-objective Meta-Heuristics CVPR 2025
Effective training of large Vision-Language Models (VLMs) on resource-constrained client devices in Federated Learning (FL) requires the usage of parameter-efficient fine-tuning (PEFT) strategies. To this end, we demonstrate the impact of two factors \textit{viz.}, client-specific layer importance score that selects the most important VLM layers for fine-tuning and inter-client layer diversity score that encourages diverse layer selection across clients for optimal VLM layer selection. We first theoretically motivate and leverage the principal eigenvalue magnitude of layerwise Neural Tangent Kernels and show its effectiveness as client-specific layer importance score. Next, we propose a novel layer updating strategy dubbed F$^3$OCUS that jointly optimizes the layer importance and diversity factors by employing a data-free, multi-objective, meta-heuristic optimization on the server. We explore 5 different meta-heuristic algorithms and compare their effectiveness for selecting model layers and adapter layers towards PEFT-FL. Furthermore, we release a new MedVQA-FL dataset involving overall 707,962 VQA triplets and 9 modality-specific clients and utilize it to train and evaluate our method. Overall, we conduct more than 10,000 client-level experiments on 6 Vision-Language FL task settings involving 58 medical image datasets and 4 different VLM architectures of varying sizes to demonstrate the effectiveness of the proposed method.
comment: Accepted in CVPR 2025
♻ ☆ Tool or Tutor? Experimental evidence from AI deployment in cancer diagnosis
Professionals increasingly use Artificial Intelligence (AI) to enhance their capabilities and assist with task execution. While prior research has examined these uses separately, their potential interaction remains underexplored. We propose that AI-driven training ("tutor") and AI-assisted task completion ("tool") can have a joint effect on human capability and test this hypothesis in the context of lung cancer diagnosis. In a field experiment with 336 medical students, we manipulated AI deployment in training, in practice, and in both. Our findings reveal that while AI-integrated training and AI assistance independently improved diagnostic performance, their combination yielded the highest accuracy. These results underscore AI's dual role in enhancing human performance through both learning and real-time support, offering insights into AI deployment in professional settings where human expertise remains essential.
♻ ☆ MVREC: A General Few-shot Defect Classification Model Using Multi-View Region-Context AAAI 2025
Few-shot defect multi-classification (FSDMC) is an emerging trend in quality control within industrial manufacturing. However, current FSDMC research often lacks generalizability due to its focus on specific datasets. Additionally, defect classification heavily relies on contextual information within images, and existing methods fall short of effectively extracting this information. To address these challenges, we propose a general FSDMC framework called MVREC, which offers two primary advantages: (1) MVREC extracts general features for defect instances by incorporating the pre-trained AlphaCLIP model. (2) It utilizes a region-context framework to enhance defect features by leveraging mask region input and multi-view context augmentation. Furthermore, Few-shot Zip-Adapter(-F) classifiers within the model are introduced to cache the visual features of the support set and perform few-shot classification. We also introduce MVTec-FS, a new FSDMC benchmark based on MVTec AD, which includes 1228 defect images with instance-level mask annotations and 46 defect types. Extensive experiments conducted on MVTec-FS and four additional datasets demonstrate its effectiveness in general defect classification and its ability to incorporate contextual information to improve classification performance. Code: https://github.com/ShuaiLYU/MVREC
comment: Accepted by AAAI 2025
♻ ☆ PQCache: Product Quantization-based KVCache for Long Context LLM Inference
As the field of Large Language Models (LLMs) continues to evolve, the context length in inference is steadily growing. Key-Value Cache (KVCache), the intermediate representations of tokens within LLM inference, has now become the primary memory bottleneck due to limited GPU memory. Current methods selectively determine suitable keys and values for self-attention computation in LLMs to address the issue. However, they either fall short in maintaining model quality or result in high serving latency. Drawing inspiration from advanced embedding retrieval techniques prevalent in the data management community, we consider the storage and retrieval of KVCache as a typical embedding retrieval problem. We propose PQCache, which employs Product Quantization (PQ) to manage KVCache, maintaining model quality while ensuring low serving latency. During the prefilling phase, we apply PQ to tokens' keys for each LLM layer and head. During the autoregressive decoding phase, we use PQ codes and centroids to approximately identify important preceding tokens, then fetch the corresponding key-value pairs for self-attention computation. Through meticulous design of overlapping and caching, we minimize any additional computation and communication overhead during both phases. Extensive experiments demonstrate that PQCache achieves both effectiveness and efficiency, with 4.60% score improvement over existing methods on InfiniteBench and low system latency in both prefilling and decoding.
♻ ☆ Learning with Less: Knowledge Distillation from Large Language Models via Unlabeled Data
In real-world NLP applications, Large Language Models (LLMs) offer promising solutions due to their extensive training on vast datasets. However, the large size and high computation demands of LLMs limit their practicality in many applications, especially when further fine-tuning is required. To address these limitations, smaller models are typically preferred for deployment. However, their training is hindered by the scarcity of labeled data. In contrast, unlabeled data is often readily which can be leveraged by using LLMs to generate pseudo-labels for training smaller models. This enables the smaller models (student) to acquire knowledge from LLMs(teacher) while reducing computational costs. This process introduces challenges, such as potential noisy pseudo-labels. Selecting high-quality and informative data is therefore critical to enhance model performance while improving the efficiency of data utilization. To address this, we propose LLKD that enables Learning with Less computational resources and less data for Knowledge Distillation from LLMs. LLKD is an adaptive sample selection method that incorporates signals from both the teacher and student. Specifically, it prioritizes samples where the teacher demonstrates high confidence in its labeling, indicating reliable labels, and where the student exhibits a high information need, identifying challenging samples that require further learning. Our comprehensive experiments show that LLKD achieves superior performance across various datasets with higher data efficiency.
♻ ☆ Benchmarking Post-Training Quantization in LLMs: Comprehensive Taxonomy, Unified Evaluation, and Comparative Analysis
Post-training Quantization (PTQ) technique has been extensively adopted for large language models (LLMs) compression owing to its efficiency and low resource requirement. However, current research lacks a in-depth analysis of the superior and applicable scenarios of each PTQ strategy. In addition, existing algorithms focus primarily on performance, overlooking the trade-off among model size, performance, and quantization bitwidth. To mitigate these confusions, we provide a novel benchmark for LLMs PTQ in this paper. Firstly, in order to support our benchmark, we propose a comprehensive taxonomy for existing mainstream methods by scrutinizing their computational strategies (e.g., optimization-based, compensation-based, etc.). Then, we conduct extensive experiments with the baseline within each class, covering models with various sizes (7B-70B), bitwidths, training levels (LLaMA1/2/3/3.1), architectures (Mixtral, DeepSeekMoE and Mamba) and modality (LLaVA1.5 and VILA1.5) on a wide range of evaluation metrics.Through comparative analysis on the results, we summarize the superior of each PTQ strategy and modelsize-bitwidth trade-off considering the performance. For example, our benchmark reveals that compensation-based technique demonstrates outstanding cross-architecture robustness and extremely low-bit PTQ for ultra large models should be reexamined. Finally, we further accordingly claim that a practical combination of compensation and other PTQ strategy can achieve SOTA various robustness. We believe that our benchmark will provide valuable recommendations for the deployment of LLMs and future research on PTQ approaches.We conduct an repository for our benchmark at https://github.com/zjq0455/PTQ_Benchmark.
comment: 17 pages, 3 fugures
♻ ☆ Mosaic of Modalities: A Comprehensive Benchmark for Multimodal Graph Learning CVPR 2025
Graph machine learning has made significant strides in recent years, yet the integration of visual information with graph structure and its potential for improving performance in downstream tasks remains an underexplored area. To address this critical gap, we introduce the Multimodal Graph Benchmark (MM-GRAPH), a pioneering benchmark that incorporates both visual and textual information into graph learning tasks. MM-GRAPH extends beyond existing text-attributed graph benchmarks, offering a more comprehensive evaluation framework for multimodal graph learning Our benchmark comprises seven diverse datasets of varying scales (ranging from thousands to millions of edges), designed to assess algorithms across different tasks in real-world scenarios. These datasets feature rich multimodal node attributes, including visual data, which enables a more holistic evaluation of various graph learning frameworks in complex, multimodal environments. To support advancements in this emerging field, we provide an extensive empirical study on various graph learning frameworks when presented with features from multiple modalities, particularly emphasizing the impact of visual information. This study offers valuable insights into the challenges and opportunities of integrating visual data into graph learning.
comment: CVPR 2025
♻ ☆ TouchUp-G: Improving Feature Representation through Graph-Centric Finetuning SIGIR 2024
How can we enhance the node features acquired from Pretrained Models (PMs) to better suit downstream graph learning tasks? Graph Neural Networks (GNNs) have become the state-of-the-art approach for many high-impact, real-world graph applications. For feature-rich graphs, a prevalent practice involves utilizing a PM directly to generate features, without incorporating any domain adaptation techniques. Nevertheless, this practice is suboptimal because the node features extracted from PM are graph-agnostic and prevent GNNs from fully utilizing the potential correlations between the graph structure and node features, leading to a decline in GNNs performance. In this work, we seek to improve the node features obtained from a PM for downstream graph tasks and introduce TOUCHUP-G, which has several advantages. It is (a) General: applicable to any downstream graph task, including link prediction which is often employed in recommender systems; (b) Multi-modal: able to improve raw features of any modality (e.g. images, texts, audio); (c) Principled: it is closely related to a novel metric, feature homophily, which we propose to quantify the potential correlations between the graph structure and node features and we show that TOUCHUP-G can effectively shrink the discrepancy between the graph structure and node features; (d) Effective: achieving state-of-the-art results on four real-world datasets spanning different tasks and modalities.
comment: SIGIR 2024
♻ ☆ Safe Navigation for Robotic Digestive Endoscopy via Human Intervention-based Reinforcement Learning
With the increasing application of automated robotic digestive endoscopy (RDE), ensuring safe and efficient navigation in the unstructured and narrow digestive tract has become a critical challenge. Existing automated reinforcement learning navigation algorithms often result in potentially risky collisions due to the absence of essential human intervention, which significantly limits the safety and effectiveness of RDE in actual clinical practice. To address this limitation, we proposed a Human Intervention (HI)-based Proximal Policy Optimization (PPO) framework, dubbed HI-PPO, which incorporates expert knowledge to enhance RDE's safety. Specifically, HI-PPO combines Enhanced Exploration Mechanism (EEM), Reward-Penalty Adjustment (RPA), and Behavior Cloning Similarity (BCS) to address PPO's exploration inefficiencies for safe navigation in complex gastrointestinal environments. Comparative experiments were conducted on a simulation platform, and the results showed that HI-PPO achieved a mean ATE (Average Trajectory Error) of \(8.02\ \text{mm}\) and a Security Score of \(0.862\), demonstrating performance comparable to human experts. The code will be publicly available once this paper is published.
♻ ☆ D-Judge: How Far Are We? Evaluating the Discrepancies Between AI-synthesized Images and Natural Images through Multimodal Guidance
In Artificial Intelligence Generated Content (AIGC), distinguishing AI-synthesized images from natural ones remains a key challenge. Despite advancements in generative models, significant discrepancies persist. To systematically investigate and quantify these discrepancies, we introduce an AI-Natural Image Discrepancy accessing benchmark (\textit{D-Judge}) aimed at addressing the critical question: \textit{how far are AI-generated images (AIGIs) from truly realistic images?} We construct \textit{D-ANI}, a dataset with 5,000 natural images and over 440,000 AIGIs generated by nine models using Text-to-Image (T2I), Image-to-Image (I2I), and Text and Image-to-Image (TI2I) prompts. Our framework evaluates the discrepancy across five dimensions: naive image quality, semantic alignment, aesthetic appeal, downstream applicability, and human validation. Results reveal notable gaps, emphasizing the importance of aligning metrics with human judgment. Source code and datasets are available at https://shorturl.at/l83W2.
♻ ☆ Verifiably Following Complex Robot Instructions with Foundation Models
When instructing robots, users want to flexibly express constraints, refer to arbitrary landmarks, and verify robot behavior, while robots must disambiguate instructions into specifications and ground instruction referents in the real world. To address this problem, we propose Language Instruction grounding for Motion Planning (LIMP), an approach that enables robots to verifiably follow complex, open-ended instructions in real-world environments without prebuilt semantic maps. LIMP constructs a symbolic instruction representation that reveals the robot's alignment with an instructor's intended motives and affords the synthesis of correct-by-construction robot behaviors. We conduct a large-scale evaluation of LIMP on 150 instructions across five real-world environments, demonstrating its versatility and ease of deployment in diverse, unstructured domains. LIMP performs comparably to state-of-the-art baselines on standard open-vocabulary tasks and additionally achieves a 79\% success rate on complex spatiotemporal instructions, significantly outperforming baselines that only reach 38\%. See supplementary materials and demo videos at https://robotlimp.github.io
♻ ☆ Representational Similarity via Interpretable Visual Concepts ICLR 2025
How do two deep neural networks differ in how they arrive at a decision? Measuring the similarity of deep networks has been a long-standing open question. Most existing methods provide a single number to measure the similarity of two networks at a given layer, but give no insight into what makes them similar or dissimilar. We introduce an interpretable representational similarity method (RSVC) to compare two networks. We use RSVC to discover shared and unique visual concepts between two models. We show that some aspects of model differences can be attributed to unique concepts discovered by one model that are not well represented in the other. Finally, we conduct extensive evaluation across different vision model architectures and training protocols to demonstrate its effectiveness.
comment: 32 pages, 5 Figures, 16 Supplemental Figures, ICLR 2025
♻ ☆ SpeechPrune: Context-aware Token Pruning for Speech Information Retrieval ICME 2025
We introduce Speech Information Retrieval (SIR), a new long-context task for Speech Large Language Models (Speech LLMs), and present SPIRAL, a 1,012-sample benchmark testing models' ability to extract critical details from approximately 90-second spoken inputs. While current Speech LLMs excel at short-form tasks, they struggle with the computational and representational demands of longer audio sequences. To address this limitation, we propose SpeechPrune, a training-free token pruning strategy that uses speech-text similarity and approximated attention scores to efficiently discard irrelevant tokens. In SPIRAL, SpeechPrune achieves accuracy improvements of 29% and up to 47% over the original model and the random pruning model at a pruning rate of 20%, respectively. SpeechPrune can maintain network performance even at a pruning level of 80%. This approach highlights the potential of token-level pruning for efficient and scalable long-form speech understanding.
comment: Accepted at IEEE ICME 2025. Project page: https://speechprune.github.io/
♻ ☆ Evaluating Gender, Racial, and Age Biases in Large Language Models: A Comparative Analysis of Occupational and Crime Scenarios
Recent advancements in Large Language Models(LLMs) have been notable, yet widespread enterprise adoption remains limited due to various constraints. This paper examines bias in LLMs-a crucial issue affecting their usability, reliability, and fairness. Researchers are developing strategies to mitigate bias, including debiasing layers, specialized reference datasets like Winogender and Winobias, and reinforcement learning with human feedback (RLHF). These techniques have been integrated into the latest LLMs. Our study evaluates gender bias in occupational scenarios and gender, age, and racial bias in crime scenarios across four leading LLMs released in 2024: Gemini 1.5 Pro, Llama 3 70B, Claude 3 Opus, and GPT-4o. Findings reveal that LLMs often depict female characters more frequently than male ones in various occupations, showing a 37% deviation from US BLS data. In crime scenarios, deviations from US FBI data are 54% for gender, 28% for race, and 17% for age. We observe that efforts to reduce gender and racial bias often lead to outcomes that may over-index one sub-class, potentially exacerbating the issue. These results highlight the limitations of current bias mitigation techniques and underscore the need for more effective approaches.
comment: 11 pages, 17 figures, Accepted at IEEE Conference on Artificial Intelligence (IEEE CAI) 2025. Full Paper acceptance in the Vertical HUMAN-CENTERED AI category
♻ ☆ A Qualitative Study of User Perception of M365 AI Copilot
Adopting AI copilots in professional workflows presents opportunities for enhanced productivity, efficiency, and decision making. In this paper, we present results from a six month trial of M365 Copilot conducted at our organisation in 2024. A qualitative interview study was carried out with 27 participants. The study explored user perceptions of M365 Copilot's effectiveness, productivity impact, evolving expectations, ethical concerns, and overall satisfaction. Initial enthusiasm for the tool was met with mixed post trial experiences. While some users found M365 Copilot beneficial for tasks such as email coaching, meeting summaries, and content retrieval, others reported unmet expectations in areas requiring deeper contextual understanding, reasoning, and integration with existing workflows. Ethical concerns were a recurring theme, with users highlighting issues related to data privacy, transparency, and AI bias. While M365 Copilot demonstrated value in specific operational areas, its broader impact remained constrained by usability limitations and the need for human oversight to validate AI generated outputs.
♻ ☆ Teams of LLM Agents can Exploit Zero-Day Vulnerabilities
LLM agents have become increasingly sophisticated, especially in the realm of cybersecurity. Researchers have shown that LLM agents can exploit real-world vulnerabilities when given a description of the vulnerability and toy capture-the-flag problems. However, these agents still perform poorly on real-world vulnerabilities that are unknown to the agent ahead of time (zero-day vulnerabilities). In this work, we show that teams of LLM agents can exploit real-world, zero-day vulnerabilities. Prior agents struggle with exploring many different vulnerabilities and long-range planning when used alone. To resolve this, we introduce HPTSA, a system of agents with a planning agent that can launch subagents. The planning agent explores the system and determines which subagents to call, resolving long-term planning issues when trying different vulnerabilities. We construct a benchmark of 14 real-world vulnerabilities and show that our team of agents improve over prior agent frameworks by up to 4.3X.
comment: 10 pages, 4 figures
Robotics 24
☆ Exploring GPT-4 for Robotic Agent Strategy with Real-Time State Feedback and a Reactive Behaviour Framework
We explore the use of GPT-4 on a humanoid robot in simulation and the real world as proof of concept of a novel large language model (LLM) driven behaviour method. LLMs have shown the ability to perform various tasks, including robotic agent behaviour. The problem involves prompting the LLM with a goal, and the LLM outputs the sub-tasks to complete to achieve that goal. Previous works focus on the executability and correctness of the LLM's generated tasks. We propose a method that successfully addresses practical concerns around safety, transitions between tasks, time horizons of tasks and state feedback. In our experiments we have found that our approach produces output for feasible requests that can be executed every time, with smooth transitions. User requests are achieved most of the time across a range of goal time horizons.
☆ PhysPose: Refining 6D Object Poses with Physical Constraints
Accurate 6D object pose estimation from images is a key problem in object-centric scene understanding, enabling applications in robotics, augmented reality, and scene reconstruction. Despite recent advances, existing methods often produce physically inconsistent pose estimates, hindering their deployment in real-world scenarios. We introduce PhysPose, a novel approach that integrates physical reasoning into pose estimation through a postprocessing optimization enforcing non-penetration and gravitational constraints. By leveraging scene geometry, PhysPose refines pose estimates to ensure physical plausibility. Our approach achieves state-of-the-art accuracy on the YCB-Video dataset from the BOP benchmark and improves over the state-of-the-art pose estimation methods on the HOPE-Video dataset. Furthermore, we demonstrate its impact in robotics by significantly improving success rates in a challenging pick-and-place task, highlighting the importance of physical consistency in real-world applications.
comment: Project page: https://data.ciirc.cvut.cz/public/projects/2025PhysPose
☆ Can Visuo-motor Policies Benefit from Random Exploration Data? A Case Study on Stacking
Human demonstrations have been key to recent advancements in robotic manipulation, but their scalability is hampered by the substantial cost of the required human labor. In this paper, we focus on random exploration data-video sequences and actions produced autonomously via motions to randomly sampled positions in the workspace-as an often overlooked resource for training visuo-motor policies in robotic manipulation. Within the scope of imitation learning, we examine random exploration data through two paradigms: (a) by investigating the use of random exploration video frames with three self-supervised learning objectives-reconstruction, contrastive, and distillation losses-and evaluating their applicability to visual pre-training; and (b) by analyzing random motor commands in the context of a staged learning framework to assess their effectiveness in autonomous data collection. Towards this goal, we present a large-scale experimental study based on over 750 hours of robot data collection, comprising 400 successful and 12,000 failed episodes. Our results indicate that: (a) among the three self-supervised learning objectives, contrastive loss appears most effective for visual pre-training while leveraging random exploration video frames; (b) data collected with random motor commands may play a crucial role in balancing the training data distribution and improving success rates in autonomous data collection within this study. The source code and dataset will be made publicly available at https://cloudgripper.org.
comment: This work has been submitted to the IEEE for possible publication
☆ Boosting Omnidirectional Stereo Matching with a Pre-trained Depth Foundation Model
Omnidirectional depth perception is essential for mobile robotics applications that require scene understanding across a full 360{\deg} field of view. Camera-based setups offer a cost-effective option by using stereo depth estimation to generate dense, high-resolution depth maps without relying on expensive active sensing. However, existing omnidirectional stereo matching approaches achieve only limited depth accuracy across diverse environments, depth ranges, and lighting conditions, due to the scarcity of real-world data. We present DFI-OmniStereo, a novel omnidirectional stereo matching method that leverages a large-scale pre-trained foundation model for relative monocular depth estimation within an iterative optimization-based stereo matching architecture. We introduce a dedicated two-stage training strategy to utilize the relative monocular depth features for our omnidirectional stereo matching before scale-invariant fine-tuning. DFI-OmniStereo achieves state-of-the-art results on the real-world Helvipad dataset, reducing disparity MAE by approximately 16% compared to the previous best omnidirectional stereo method.
comment: Project page: https://vita-epfl.github.io/DFI-OmniStereo-website/
☆ Improving Indoor Localization Accuracy by Using an Efficient Implicit Neural Map Representation ICRA 2025
Globally localizing a mobile robot in a known map is often a foundation for enabling robots to navigate and operate autonomously. In indoor environments, traditional Monte Carlo localization based on occupancy grid maps is considered the gold standard, but its accuracy is limited by the representation capabilities of the occupancy grid map. In this paper, we address the problem of building an effective map representation that allows to accurately perform probabilistic global localization. To this end, we propose an implicit neural map representation that is able to capture positional and directional geometric features from 2D LiDAR scans to efficiently represent the environment and learn a neural network that is able to predict both, the non-projective signed distance and a direction-aware projective distance for an arbitrary point in the mapped environment. This combination of neural map representation with a light-weight neural network allows us to design an efficient observation model within a conventional Monte Carlo localization framework for pose estimation of a robot in real time. We evaluated our approach to indoor localization on a publicly available dataset for global localization and the experimental results indicate that our approach is able to more accurately localize a mobile robot than other localization approaches employing occupancy or existing neural map representations. In contrast to other approaches employing an implicit neural map representation for 2D LiDAR localization, our approach allows to perform real-time pose tracking after convergence and near real-time global localization. The code of our approach is available at: https://github.com/PRBonn/enm-mcl.
comment: 8 pages, 5 figures. Accepted to ICRA 2025
☆ Handling Delay in Real-Time Reinforcement Learning ICLR 2025
Real-time reinforcement learning (RL) introduces several challenges. First, policies are constrained to a fixed number of actions per second due to hardware limitations. Second, the environment may change while the network is still computing an action, leading to observational delay. The first issue can partly be addressed with pipelining, leading to higher throughput and potentially better policies. However, the second issue remains: if each neuron operates in parallel with an execution time of $\tau$, an $N$-layer feed-forward network experiences observation delay of $\tau N$. Reducing the number of layers can decrease this delay, but at the cost of the network's expressivity. In this work, we explore the trade-off between minimizing delay and network's expressivity. We present a theoretically motivated solution that leverages temporal skip connections combined with history-augmented observations. We evaluate several architectures and show that those incorporating temporal skip connections achieve strong performance across various neuron execution times, reinforcement learning algorithms, and environments, including four Mujoco tasks and all MinAtar games. Moreover, we demonstrate parallel neuron computation can accelerate inference by 6-350% on standard hardware. Our investigation into temporal skip connections and parallel computations paves the way for more efficient RL agents in real-time setting.
comment: Accepted at ICLR 2025. Code available at https://github.com/avecplezir/realtime-agent
☆ SparseLoc: Sparse Open-Set Landmark-based Global Localization for Autonomous Navigation
Global localization is a critical problem in autonomous navigation, enabling precise positioning without reliance on GPS. Modern global localization techniques often depend on dense LiDAR maps, which, while precise, require extensive storage and computational resources. Recent approaches have explored alternative methods, such as sparse maps and learned features, but they suffer from poor robustness and generalization. We propose SparseLoc, a global localization framework that leverages vision-language foundation models to generate sparse, semantic-topometric maps in a zero-shot manner. It combines this map representation with a Monte Carlo localization scheme enhanced by a novel late optimization strategy, ensuring improved pose estimation. By constructing compact yet highly discriminative maps and refining localization through a carefully designed optimization schedule, SparseLoc overcomes the limitations of existing techniques, offering a more efficient and robust solution for global localization. Our system achieves over a 5X improvement in localization accuracy compared to existing sparse mapping techniques. Despite utilizing only 1/500th of the points of dense mapping methods, it achieves comparable performance, maintaining an average global localization error below 5m and 2 degrees on KITTI sequences.
☆ Design and Experimental Validation of an Autonomous USV for Sensor Fusion-Based Navigation in GNSS-Denied Environments
This paper presents the design, development, and experimental validation of MARVEL, an autonomous unmanned surface vehicle built for real-world testing of sensor fusion-based navigation algorithms in GNSS-denied environments. MARVEL was developed under strict constraints of cost-efficiency, portability, and seaworthiness, with the goal of creating a modular, accessible platform for high-frequency data acquisition and experimental learning. It integrates electromagnetic logs, Doppler velocity logs, inertial sensors, and real-time kinematic GNSS positioning. MARVEL enables real-time, in-situ validation of advanced navigation and AI-driven algorithms using redundant, synchronized sensors. Field experiments demonstrate the system's stability, maneuverability, and adaptability in challenging sea conditions. The platform offers a novel, scalable approach for researchers seeking affordable, open-ended tools to evaluate sensor fusion techniques under real-world maritime constraints.
comment: submitted to IEEE OCEANS 2025 Brest
☆ A Visual-Inertial Motion Prior SLAM for Dynamic Environments
The Visual-Inertial Simultaneous Localization and Mapping (VI-SLAM) algorithms which are mostly based on static assumption are widely used in fields such as robotics, UAVs, VR, and autonomous driving. To overcome the localization risks caused by dynamic landmarks in most VI-SLAM systems, a robust visual-inertial motion prior SLAM system, named (IDY-VINS), is proposed in this paper which effectively handles dynamic landmarks using inertial motion prior for dynamic environments to varying degrees. Specifically, potential dynamic landmarks are preprocessed during the feature tracking phase by the probabilistic model of landmarks' minimum projection errors which are obtained from inertial motion prior and epipolar constraint. Subsequently, a bundle adjustment (BA) residual is proposed considering the minimum projection error prior for dynamic candidate landmarks. This residual is integrated into a sliding window based nonlinear optimization process to estimate camera poses, IMU states and landmark positions while minimizing the impact of dynamic candidate landmarks that deviate from the motion prior. Finally, experimental results demonstrate that our proposed system outperforms state-of-the-art methods in terms of localization accuracy and time cost by robustly mitigating the influence of dynamic landmarks.
☆ Proprioceptive multistable mechanical metamaterial via soft capacitive sensors
The technological transition from soft machines to soft robots necessarily passes through the integration of soft electronics and sensors. This allows for the establishment of feedback control systems while preserving the softness of the robot embodiment. Multistable mechanical metamaterials are excellent building blocks of soft machines, as their nonlinear response can be tuned by design to accomplish several functions. In this work, we present the integration of soft capacitive sensors in a multistable mechanical metamaterial, to enable proprioceptive sensing of state changes. The metamaterial is a periodic arrangement of 4 bistable unit cells. Each unit cell has an integrated capacitive sensor. Both the metastructure and the sensors are made of soft materials (TPU) and are 3D printed. Our preliminary results show that the capacitance variation of the sensors can be linked to state transitions of the metamaterial, by capturing the nonlinear deformation.
comment: 2024 IEEE International Flexible Electronics Technology Conference (IFETC)
☆ Meta-Ori: monolithic meta-origami for nonlinear inflatable soft actuators RAS
The nonlinear mechanical response of soft materials and slender structures is purposefully harnessed to program functions by design in soft robotic actuators, such as sequencing, amplified response, fast energy release, etc. However, typical designs of nonlinear actuators - e.g. balloons, inverted membranes, springs - have limited design parameters space and complex fabrication processes, hindering the achievement of more elaborated functions. Mechanical metamaterials, on the other hand, have very large design parameter spaces, which allow fine-tuning of nonlinear behaviours. In this work, we present a novel approach to fabricate nonlinear inflatables based on metamaterials and origami (Meta-Ori) as monolithic parts that can be fully 3D printed via Fused Deposition Modeling (FDM) using thermoplastic polyurethane (TPU) commercial filaments. Our design consists of a metamaterial shell with cylindrical topology and nonlinear mechanical response combined with a Kresling origami inflatable acting as a pneumatic transmitter. We develop and release a design tool in the visual programming language Grasshopper to interactively design our Meta-Ori. We characterize the mechanical response of the metashell and the origami, and the nonlinear pressure-volume curve of the Meta-Ori inflatable and, lastly, we demonstrate the actuation sequencing of a bi-segment monolithic Meta-Ori soft actuator.
comment: 8th IEEE-RAS International Conference on Soft Robotics
☆ OnSiteVRU: A High-Resolution Trajectory Dataset for High-Density Vulnerable Road Users
With the acceleration of urbanization and the growth of transportation demands, the safety of vulnerable road users (VRUs, such as pedestrians and cyclists) in mixed traffic flows has become increasingly prominent, necessitating high-precision and diverse trajectory data to support the development and optimization of autonomous driving systems. However, existing datasets fall short in capturing the diversity and dynamics of VRU behaviors, making it difficult to meet the research demands of complex traffic environments. To address this gap, this study developed the OnSiteVRU datasets, which cover a variety of scenarios, including intersections, road segments, and urban villages. These datasets provide trajectory data for motor vehicles, electric bicycles, and human-powered bicycles, totaling approximately 17,429 trajectories with a precision of 0.04 seconds. The datasets integrate both aerial-view natural driving data and onboard real-time dynamic detection data, along with environmental information such as traffic signals, obstacles, and real-time maps, enabling a comprehensive reconstruction of interaction events. The results demonstrate that VRU\_Data outperforms traditional datasets in terms of VRU density and scene coverage, offering a more comprehensive representation of VRU behavioral characteristics. This provides critical support for traffic flow modeling, trajectory prediction, and autonomous driving virtual testing. The dataset is publicly available for download at: https://www.kaggle.com/datasets/zcyan2/mixed-traffic-trajectory-dataset-in-from-shanghai.
☆ Physically Ground Commonsense Knowledge for Articulated Object Manipulation with Analytic Concepts
We human rely on a wide range of commonsense knowledge to interact with an extensive number and categories of objects in the physical world. Likewise, such commonsense knowledge is also crucial for robots to successfully develop generalized object manipulation skills. While recent advancements in Large Language Models (LLM) have showcased their impressive capabilities in acquiring commonsense knowledge and conducting commonsense reasoning, effectively grounding this semantic-level knowledge produced by LLMs to the physical world to thoroughly guide robots in generalized articulated object manipulation remains a challenge that has not been sufficiently addressed. To this end, we introduce analytic concepts, procedurally defined upon mathematical symbolism that can be directly computed and simulated by machines. By leveraging the analytic concepts as a bridge between the semantic-level knowledge inferred by LLMs and the physical world where real robots operate, we are able to figure out the knowledge of object structure and functionality with physics-informed representations, and then use the physically grounded knowledge to instruct robot control policies for generalized, interpretable and accurate articulated object manipulation. Extensive experiments in both simulation and real-world environments demonstrate the superiority of our approach.
☆ MagicGel: A Novel Visual-Based Tactile Sensor Design with MagneticGel
Force estimation is the core indicator for evaluating the performance of tactile sensors, and it is also the key technical path to achieve precise force feedback mechanisms. This study proposes a design method for a visual tactile sensor (VBTS) that integrates a magnetic perception mechanism, and develops a new tactile sensor called MagicGel. The sensor uses strong magnetic particles as markers and captures magnetic field changes in real time through Hall sensors. On this basis, MagicGel achieves the coordinated optimization of multimodal perception capabilities: it not only has fast response characteristics, but also can perceive non-contact status information of home electronic products. Specifically, MagicGel simultaneously analyzes the visual characteristics of magnetic particles and the multimodal data of changes in magnetic field intensity, ultimately improving force estimation capabilities.
Reinforcement Learning for Active Matter
Active matter refers to systems composed of self-propelled entities that consume energy to produce motion, exhibiting complex non-equilibrium dynamics that challenge traditional models. With the rapid advancements in machine learning, reinforcement learning (RL) has emerged as a promising framework for addressing the complexities of active matter. This review systematically introduces the integration of RL for guiding and controlling active matter systems, focusing on two key aspects: optimal motion strategies for individual active particles and the regulation of collective dynamics in active swarms. We discuss the use of RL to optimize the navigation, foraging, and locomotion strategies for individual active particles. In addition, the application of RL in regulating collective behaviors is also examined, emphasizing its role in facilitating the self-organization and goal-directed control of active swarms. This investigation offers valuable insights into how RL can advance the understanding, manipulation, and control of active matter, paving the way for future developments in fields such as biological systems, robotics, and medical science.
comment: 16 pages, 8 figures
☆ Learning Predictive Visuomotor Coordination
Understanding and predicting human visuomotor coordination is crucial for applications in robotics, human-computer interaction, and assistive technologies. This work introduces a forecasting-based task for visuomotor modeling, where the goal is to predict head pose, gaze, and upper-body motion from egocentric visual and kinematic observations. We propose a \textit{Visuomotor Coordination Representation} (VCR) that learns structured temporal dependencies across these multimodal signals. We extend a diffusion-based motion modeling framework that integrates egocentric vision and kinematic sequences, enabling temporally coherent and accurate visuomotor predictions. Our approach is evaluated on the large-scale EgoExo4D dataset, demonstrating strong generalization across diverse real-world activities. Our results highlight the importance of multimodal integration in understanding visuomotor coordination, contributing to research in visuomotor learning and human behavior modeling.
☆ Learning Coordinated Bimanual Manipulation Policies using State Diffusion and Inverse Dynamics Models ICRA 2025
When performing tasks like laundry, humans naturally coordinate both hands to manipulate objects and anticipate how their actions will change the state of the clothes. However, achieving such coordination in robotics remains challenging due to the need to model object movement, predict future states, and generate precise bimanual actions. In this work, we address these challenges by infusing the predictive nature of human manipulation strategies into robot imitation learning. Specifically, we disentangle task-related state transitions from agent-specific inverse dynamics modeling to enable effective bimanual coordination. Using a demonstration dataset, we train a diffusion model to predict future states given historical observations, envisioning how the scene evolves. Then, we use an inverse dynamics model to compute robot actions that achieve the predicted states. Our key insight is that modeling object movement can help learning policies for bimanual coordination manipulation tasks. Evaluating our framework across diverse simulation and real-world manipulation setups, including multimodal goal configurations, bimanual manipulation, deformable objects, and multi-object setups, we find that it consistently outperforms state-of-the-art state-to-action mapping policies. Our method demonstrates a remarkable capacity to navigate multimodal goal configurations and action distributions, maintain stability across different control modes, and synthesize a broader range of behaviors than those present in the demonstration dataset.
comment: Project Page: https://haonan16.github.io/coord_bimanual_page/. 12 pages, 12 figures, Accepted at ICRA 2025
☆ Localized Graph-Based Neural Dynamics Models for Terrain Manipulation
Predictive models can be particularly helpful for robots to effectively manipulate terrains in construction sites and extraterrestrial surfaces. However, terrain state representations become extremely high-dimensional especially to capture fine-resolution details and when depth is unknown or unbounded. This paper introduces a learning-based approach for terrain dynamics modeling and manipulation, leveraging the Graph-based Neural Dynamics (GBND) framework to represent terrain deformation as motion of a graph of particles. Based on the principle that the moving portion of a terrain is usually localized, our approach builds a large terrain graph (potentially millions of particles) but only identifies a very small active subgraph (hundreds of particles) for predicting the outcomes of robot-terrain interaction. To minimize the size of the active subgraph we introduce a learning-based approach that identifies a small region of interest (RoI) based on the robot's control inputs and the current scene. We also introduce a novel domain boundary feature encoding that allows GBNDs to perform accurate dynamics prediction in the RoI interior while avoiding particle penetration through RoI boundaries. Our proposed method is both orders of magnitude faster than naive GBND and it achieves better overall prediction accuracy. We further evaluated our framework on excavation and shaping tasks on terrain with different granularity.
♻ ☆ Integral Forms in Matrix Lie Groups
Matrix Lie groups provide a language for describing motion in such fields as robotics, computer vision, and graphics. When using these tools, we are often faced with turning infinite-series expressions into more compact finite series (e.g., the Euler-Rodrigues formula), which can sometimes be onerous. In this paper, we identify some useful integral forms in matrix Lie group expressions that offer a more streamlined pathway for computing compact analytic results. Moreover, we present some recursive structures in these integral forms that show many of these expressions are interrelated. Key to our approach is that we are able to apply the minimal polynomial for a Lie algebra quite early in the process to keep expressions compact throughout the derivations. With the series approach, the minimal polynomial is usually applied at the end, making it hard to recognize common analytic expressions in the result. We show that our integral method can reproduce several series-derived results from the literature.
comment: 23 pages, 1 table
♻ ☆ ROVER: A Multi-Season Dataset for Visual SLAM
Robust SLAM is a crucial enabler for autonomous navigation in natural, semi-structured environments such as parks and gardens. However, these environments present unique challenges for SLAM due to frequent seasonal changes, varying light conditions, and dense vegetation. These factors often degrade the performance of visual SLAM algorithms originally developed for structured urban environments. To address this gap, we present ROVER, a comprehensive benchmark dataset tailored for evaluating visual SLAM algorithms under diverse environmental conditions and spatial configurations. We captured the dataset with a robotic platform equipped with monocular, stereo, and RGBD cameras, as well as inertial sensors. It covers 39 recordings across five outdoor locations, collected through all seasons and various lighting scenarios, i.e., day, dusk, and night with and without external lighting. With this novel dataset, we evaluate several traditional and deep learning-based SLAM methods and study their performance in diverse challenging conditions. The results demonstrate that while stereo-inertial and RGBD configurations generally perform better under favorable lighting and moderate vegetation, most SLAM systems perform poorly in low-light and high-vegetation scenarios, particularly during summer and autumn. Our analysis highlights the need for improved adaptability in visual SLAM algorithms for outdoor applications, as current systems struggle with dynamic environmental factors affecting scale, feature extraction, and trajectory consistency. This dataset provides a solid foundation for advancing visual SLAM research in real-world, semi-structured environments, fostering the development of more resilient SLAM systems for long-term outdoor localization and mapping. The dataset and the code of the benchmark are available under https://iis-esslingen.github.io/rover.
comment: 19 pages, 9 figures, 12 tables
♻ ☆ Controllable Latent Diffusion for Traffic Simulation IROS
The validation of autonomous driving systems benefits greatly from the ability to generate scenarios that are both realistic and precisely controllable. Conventional approaches, such as real-world test drives, are not only expensive but also lack the flexibility to capture targeted edge cases for thorough evaluation. To address these challenges, we propose a controllable latent diffusion that guides the training of diffusion models via reinforcement learning to automatically generate a diverse and controllable set of driving scenarios for virtual testing. Our approach removes the reliance on large-scale real-world data by generating complex scenarios whose properties can be finely tuned to challenge and assess autonomous vehicle systems. Experimental results show that our approach has the lowest collision rate of $0.098$ and lowest off-road rate of $0.096$, demonstrating superiority over existing baselines. The proposed approach significantly improves the realism, stability and controllability of the generated scenarios, enabling more nuanced safety evaluation of autonomous vehicles.
comment: 7 pages,2 figures, submitted to IROS conference
♻ ☆ Safe Navigation for Robotic Digestive Endoscopy via Human Intervention-based Reinforcement Learning
With the increasing application of automated robotic digestive endoscopy (RDE), ensuring safe and efficient navigation in the unstructured and narrow digestive tract has become a critical challenge. Existing automated reinforcement learning navigation algorithms often result in potentially risky collisions due to the absence of essential human intervention, which significantly limits the safety and effectiveness of RDE in actual clinical practice. To address this limitation, we proposed a Human Intervention (HI)-based Proximal Policy Optimization (PPO) framework, dubbed HI-PPO, which incorporates expert knowledge to enhance RDE's safety. Specifically, HI-PPO combines Enhanced Exploration Mechanism (EEM), Reward-Penalty Adjustment (RPA), and Behavior Cloning Similarity (BCS) to address PPO's exploration inefficiencies for safe navigation in complex gastrointestinal environments. Comparative experiments were conducted on a simulation platform, and the results showed that HI-PPO achieved a mean ATE (Average Trajectory Error) of \(8.02\ \text{mm}\) and a Security Score of \(0.862\), demonstrating performance comparable to human experts. The code will be publicly available once this paper is published.
♻ ☆ Verifiably Following Complex Robot Instructions with Foundation Models
When instructing robots, users want to flexibly express constraints, refer to arbitrary landmarks, and verify robot behavior, while robots must disambiguate instructions into specifications and ground instruction referents in the real world. To address this problem, we propose Language Instruction grounding for Motion Planning (LIMP), an approach that enables robots to verifiably follow complex, open-ended instructions in real-world environments without prebuilt semantic maps. LIMP constructs a symbolic instruction representation that reveals the robot's alignment with an instructor's intended motives and affords the synthesis of correct-by-construction robot behaviors. We conduct a large-scale evaluation of LIMP on 150 instructions across five real-world environments, demonstrating its versatility and ease of deployment in diverse, unstructured domains. LIMP performs comparably to state-of-the-art baselines on standard open-vocabulary tasks and additionally achieves a 79\% success rate on complex spatiotemporal instructions, significantly outperforming baselines that only reach 38\%. See supplementary materials and demo videos at https://robotlimp.github.io
♻ ☆ Multi-layered Safety of Redundant Robot Manipulators via Task-oriented Planning and Control ICRA
Ensuring safety is crucial to promote the application of robot manipulators in open workspaces. Factors such as sensor errors or unpredictable collisions make the environment full of uncertainties. In this work, we investigate these potential safety challenges on redundant robot manipulators, and propose a task-oriented planning and control framework to achieve multi-layered safety while maintaining efficient task execution. Our approach consists of two main parts: a task-oriented trajectory planner based on multiple-shooting model predictive control (MPC) method, and a torque controller that allows safe and efficient collision reaction using only proprioceptive data. Through extensive simulations and real-hardware experiments, we demonstrate that the proposed framework can effectively handle uncertain static or dynamic obstacles, and perform disturbance resistance in manipulation tasks when unforeseen contacts occur.
comment: 7 pages, 8 figures, accepted by IEEE International Conference on Robotics and Automation (ICRA) 2025
Graphics 6
☆ Gaussian Blending Unit: An Edge GPU Plug-in for Real-Time Gaussian-Based Rendering in AR/VR HPCA 2025
The rapidly advancing field of Augmented and Virtual Reality (AR/VR) demands real-time, photorealistic rendering on resource-constrained platforms. 3D Gaussian Splatting, delivering state-of-the-art (SOTA) performance in rendering efficiency and quality, has emerged as a promising solution across a broad spectrum of AR/VR applications. However, despite its effectiveness on high-end GPUs, it struggles on edge systems like the Jetson Orin NX Edge GPU, achieving only 7-17 FPS -- well below the over 60 FPS standard required for truly immersive AR/VR experiences. Addressing this challenge, we perform a comprehensive analysis of Gaussian-based AR/VR applications and identify the Gaussian Blending Stage, which intensively calculates each Gaussian's contribution at every pixel, as the primary bottleneck. In response, we propose a Gaussian Blending Unit (GBU), an edge GPU plug-in module for real-time rendering in AR/VR applications. Notably, our GBU can be seamlessly integrated into conventional edge GPUs and collaboratively supports a wide range of AR/VR applications. Specifically, GBU incorporates an intra-row sequential shading (IRSS) dataflow that shades each row of pixels sequentially from left to right, utilizing a two-step coordinate transformation. When directly deployed on a GPU, the proposed dataflow achieved a non-trivial 1.72x speedup on real-world static scenes, though still falls short of real-time rendering performance. Recognizing the limited compute utilization in the GPU-based implementation, GBU enhances rendering speed with a dedicated rendering engine that balances the workload across rows by aggregating computations from multiple Gaussians. Experiments across representative AR/VR applications demonstrate that our GBU provides a unified solution for on-device real-time rendering while maintaining SOTA rendering quality.
comment: Accepted by HPCA 2025
☆ Spatially-Embedded Lens Visualization: A Design Space
Lens visualization has been a prominent research area in the visualization community, fueled by the continuous need to mitigate visual clutter and occlusion resulting from the increase in data volume. Interactive lenses for spatial data, particularly, challenge designers to conceive design strategies to support the analysis of high-density, multifaceted data with spatial referents. Despite their relevance, there is a lack of systematic understanding regarding the various design elements that compose spatially-embedded lens visualizations. To fill in this gap, we unify these components under a common hood in the form of a design space, which we propose in this paper. Building our knowledge on top of the initial insights gained from Tominski et al.'s survey [57], we construct a design space spanning 7 dimensions through our analysis of 45 papers published in the visualization community over the past 15 years. We describe each design dimension through representative examples and examine the range of design choices available within each, discussing their benefits and pitfalls that affect lens performance and usability. In doing so, we offer a cohesive catalog of considerations for designers-both when examining existing lenses and when conceptualizing novel spatially-embedded lens visualizations. We conclude by shedding light on regions of the design space that remain largely understudied, revealing open opportunities for future research.
☆ Proxy Tracing: Unbiased Reciprocal Estimation for Optimized Sampling in BDPT
Robust light transport algorithms, particularly bidirectional path tracing (BDPT), face significant challenges when dealing with specular or highly glossy involved paths. BDPT constructs the full path by connecting sub-paths traced individually from the light source and camera. However, it remains difficult to sample by connecting vertices on specular and glossy surfaces with narrow-lobed BSDF, as it poses severe constraints on sampling in the feasible direction. To address this issue, we propose a novel approach, called \emph{proxy sampling}, that enables efficient sub-path connection of these challenging paths. When a low-contribution specular/glossy connection occurs, we drop out the problematic neighboring vertex next to this specular/glossy vertex from the original path, then retrace an alternative sub-path as a proxy to complement this incomplete path. This newly constructed complete path ensures that the connection adheres to the constraint of the narrow lobe within the BSDF of the specular/glossy surface. Unbiased reciprocal estimation is the key to our method to obtain a probability density function (PDF) reciprocal to ensure unbiased rendering. We derive the reciprocal estimation method and provide an efficiency-optimized setting for efficient sampling and connection. Our method provides a robust tool for substituting problematic paths with favorable alternatives while ensuring unbiasedness. We validate this approach in the probabilistic connections BDPT for addressing specular-involved difficult paths. Experimental results have proved the effectiveness and efficiency of our approach, showcasing high-performance rendering capabilities across diverse settings.
☆ Visual Acuity Consistent Foveated Rendering towards Retinal Resolution
Prior foveated rendering methods often suffer from a limitation where the shading load escalates with increasing display resolution, leading to decreased efficiency, particularly when dealing with retinal-level resolutions. To tackle this challenge, we begin with the essence of the human visual system (HVS) perception and present visual acuity-consistent foveated rendering (VaFR), aiming to achieve exceptional rendering performance at retinal-level resolutions. Specifically, we propose a method with a novel log-polar mapping function derived from the human visual acuity model, which accommodates the natural bandwidth of the visual system. This mapping function and its associated shading rate guarantee a consistent output of rendering information, regardless of variations in the display resolution of the VR HMD. Consequently, our VaFR outperforms alternative methods, improving rendering speed while preserving perceptual visual quality, particularly when operating at retinal resolutions. We validate our approach using both the rasterization and ray-casting rendering pipelines. We also validate our approach using different binocular rendering strategies for HMD devices. In diverse testing scenarios, our approach delivers better perceptual visual quality than prior foveated rendering while achieving an impressive speedup of 6.5$\times$-9.29$\times$ for deferred rendering of 3D scenarios and an even more powerful speedup of 10.4$\times$-16.4$\times$ for ray-casting at retinal resolution. Additionally, our approach significantly enhances the rendering performance of binocular 8K path tracing, achieving smooth frame rates.
☆ SketchVideo: Sketch-based Video Generation and Editing CVPR 2025
Video generation and editing conditioned on text prompts or images have undergone significant advancements. However, challenges remain in accurately controlling global layout and geometry details solely by texts, and supporting motion control and local modification through images. In this paper, we aim to achieve sketch-based spatial and motion control for video generation and support fine-grained editing of real or synthetic videos. Based on the DiT video generation model, we propose a memory-efficient control structure with sketch control blocks that predict residual features of skipped DiT blocks. Sketches are drawn on one or two keyframes (at arbitrary time points) for easy interaction. To propagate such temporally sparse sketch conditions across all frames, we propose an inter-frame attention mechanism to analyze the relationship between the keyframes and each video frame. For sketch-based video editing, we design an additional video insertion module that maintains consistency between the newly edited content and the original video's spatial feature and dynamic motion. During inference, we use latent fusion for the accurate preservation of unedited regions. Extensive experiments demonstrate that our SketchVideo achieves superior performance in controllable video generation and editing.
comment: CVPR 2025
♻ ☆ Configurable Holography: Towards Display and Scene Adaptation
Emerging learned holography approaches have enabled faster and high-quality hologram synthesis, setting a new milestone toward practical holographic displays. However, these learned models require training a dedicated model for each set of display-scene parameters. To address this shortcoming, our work introduces a highly configurable learned model structure, synthesizing 3D holograms interactively while supporting diverse display-scene parameters. Our family of models relying on this structure can be conditioned continuously for varying novel scene parameters, including input images, propagation distances, volume depths, peak brightnesses, and novel display parameters of pixel pitches and wavelengths. Uniquely, our findings unearth a correlation between depth estimation and hologram synthesis tasks in the learning domain, leading to a learned model that unlocks accurate 3D hologram generation from 2D images across varied display-scene parameters. We validate our models by synthesizing high-quality 3D holograms in simulations and also verify our findings with two different holographic display prototypes. Moreover, our family of models can synthesize holograms with a 2x speed-up compared to the state-of-the-art learned holography approaches in the literature.
comment: 11 pages, 9 figures
Robotics 20
☆ Energy-Aware Lane Planning for Connected Electric Vehicles in Urban Traffic: Design and Vehicle-in-the-Loop Validation
Urban driving with connected and automated vehicles (CAVs) offers potential for energy savings, yet most eco-driving strategies focus solely on longitudinal speed control within a single lane. This neglects the significant impact of lateral decisions, such as lane changes, on overall energy efficiency, especially in environments with traffic signals and heterogeneous traffic flow. To address this gap, we propose a novel energy-aware motion planning framework that jointly optimizes longitudinal speed and lateral lane-change decisions using vehicle-to-infrastructure (V2I) communication. Our approach estimates long-term energy costs using a graph-based approximation and solves short-horizon optimal control problems under traffic constraints. Using a data-driven energy model calibrated to an actual battery electric vehicle, we demonstrate with vehicle-in-the-loop experiments that our method reduces motion energy consumption by up to 24 percent compared to a human driver, highlighting the potential of connectivity-enabled planning for sustainable urban autonomy.
comment: Submitted to an Invited Session at 2025 IEEE Conference on Decision and Control
☆ Incorporating GNSS Information with LIDAR-Inertial Odometry for Accurate Land-Vehicle Localization
Currently, visual odometry and LIDAR odometry are performing well in pose estimation in some typical environments, but they still cannot recover the localization state at high speed or reduce accumulated drifts. In order to solve these problems, we propose a novel LIDAR-based localization framework, which achieves high accuracy and provides robust localization in 3D pointcloud maps with information of multi-sensors. The system integrates global information with LIDAR-based odometry to optimize the localization state. To improve robustness and enable fast resumption of localization, this paper uses offline pointcloud maps for prior knowledge and presents a novel registration method to speed up the convergence rate. The algorithm is tested on various maps of different data sets and has higher robustness and accuracy than other localization algorithms.
☆ Deep Visual Servoing of an Aerial Robot Using Keypoint Feature Extraction
The problem of image-based visual servoing (IBVS) of an aerial robot using deep-learning-based keypoint detection is addressed in this article. A monocular RGB camera mounted on the platform is utilized to collect the visual data. A convolutional neural network (CNN) is then employed to extract the features serving as the visual data for the servoing task. This paper contributes to the field by circumventing not only the challenge stemming from the need for man-made marker detection in conventional visual servoing techniques, but also enhancing the robustness against undesirable factors including occlusion, varying illumination, clutter, and background changes, thereby broadening the applicability of perception-guided motion control tasks in aerial robots. Additionally, extensive physics-based ROS Gazebo simulations are conducted to assess the effectiveness of this method, in contrast to many existing studies that rely solely on physics-less simulations. A demonstration video is available at https://youtu.be/Dd2Her8Ly-E.
comment: 7 Pages, Accepted for presentation in the 2025 International Conference on Unmanned Aircraft Systems (ICUAS 2025)
☆ Can DeepSeek-V3 Reason Like a Surgeon? An Empirical Evaluation for Vision-Language Understanding in Robotic-Assisted Surgery
DeepSeek-V3, a recently emerging Large Language Model (LLM), demonstrates outstanding performance in general scene understanding, question-answering (QA), and text generation tasks, owing to its efficient training paradigm and strong reasoning capabilities. In this study, we investigate the dialogue capabilities of DeepSeek-V3 in robotic surgery scenarios, focusing on tasks such as Single Phrase QA, Visual QA, and Detailed Description. The Single Phrase QA tasks further include sub-tasks such as surgical instrument recognition, action understanding, and spatial position analysis. We conduct extensive evaluations using publicly available datasets, including EndoVis18 and CholecT50, along with their corresponding dialogue data. Our comprehensive evaluation results indicate that, when provided with specific prompts, DeepSeek-V3 performs well in surgical instrument and tissue recognition tasks However, DeepSeek-V3 exhibits significant limitations in spatial position analysis and struggles to understand surgical actions accurately. Additionally, our findings reveal that, under general prompts, DeepSeek-V3 lacks the ability to effectively analyze global surgical concepts and fails to provide detailed insights into surgical scenarios. Based on our observations, we argue that the DeepSeek-V3 is not ready for vision-language tasks in surgical contexts without fine-tuning on surgery-specific datasets.
comment: Technical Report
☆ Dexterous Non-Prehensile Manipulation for Ungraspable Object via Extrinsic Dexterity
Objects with large base areas become ungraspable when they exceed the end-effector's maximum aperture. Existing approaches address this limitation through extrinsic dexterity, which exploits environmental features for non-prehensile manipulation. While grippers have shown some success in this domain, dexterous hands offer superior flexibility and manipulation capabilities that enable richer environmental interactions, though they present greater control challenges. Here we present ExDex, a dexterous arm-hand system that leverages reinforcement learning to enable non-prehensile manipulation for grasping ungraspable objects. Our system learns two strategic manipulation sequences: relocating objects from table centers to edges for direct grasping, or to walls where extrinsic dexterity enables grasping through environmental interaction. We validate our approach through extensive experiments with dozens of diverse household objects, demonstrating both superior performance and generalization capabilities with novel objects. Furthermore, we successfully transfer the learned policies from simulation to a real-world robot system without additional training, further demonstrating its applicability in real-world scenarios. Project website: https://tangty11.github.io/ExDex/.
comment: 14 pages, 6 figures
☆ Microscopic Robots That Sense, Think, Act, and Compute
While miniaturization has been a goal in robotics for nearly 40 years, roboticists have struggled to access sub-millimeter dimensions without making sacrifices to on-board information processing due to the unique physics of the microscale. Consequently, microrobots often lack the key features that distinguish their macroscopic cousins from other machines, namely on-robot systems for decision making, sensing, feedback, and programmable computation. Here, we take up the challenge of building a microrobot comparable in size to a single-celled paramecium that can sense, think, and act using onboard systems for computation, sensing, memory, locomotion, and communication. Built massively in parallel with fully lithographic processing, these microrobots can execute digitally defined algorithms and autonomously change behavior in response to their surroundings. Combined, these results pave the way for general purpose microrobots that can be programmed many times in a simple setup, cost under $0.01 per machine, and work together to carry out tasks without supervision in uncertain environments.
comment: 17 pages, 5 figures with supplement
☆ VLM-C4L: Continual Core Dataset Learning with Corner Case Optimization via Vision-Language Models for Autonomous Driving
With the widespread adoption and deployment of autonomous driving, handling complex environments has become an unavoidable challenge. Due to the scarcity and diversity of extreme scenario datasets, current autonomous driving models struggle to effectively manage corner cases. This limitation poses a significant safety risk, according to the National Highway Traffic Safety Administration (NHTSA), autonomous vehicle systems have been involved in hundreds of reported crashes annually in the United States, occurred in corner cases like sun glare and fog, which caused a few fatal accident. Furthermore, in order to consistently maintain a robust and reliable autonomous driving system, it is essential for models not only to perform well on routine scenarios but also to adapt to newly emerging scenarios, especially those corner cases that deviate from the norm. This requires a learning mechanism that incrementally integrates new knowledge without degrading previously acquired capabilities. However, to the best of our knowledge, no existing continual learning methods have been proposed to ensure consistent and scalable corner case learning in autonomous driving. To address these limitations, we propose VLM-C4L, a continual learning framework that introduces Vision-Language Models (VLMs) to dynamically optimize and enhance corner case datasets, and VLM-C4L combines VLM-guided high-quality data extraction with a core data replay strategy, enabling the model to incrementally learn from diverse corner cases while preserving performance on previously routine scenarios, thus ensuring long-term stability and adaptability in real-world autonomous driving. We evaluate VLM-C4L on large-scale real-world autonomous driving datasets, including Waymo and the corner case dataset CODA.
☆ Evaluation of Remote Driver Performance in Urban Environment Operational Design Domains
Remote driving has emerged as a solution for enabling human intervention in scenarios where Automated Driving Systems (ADS) face challenges, particularly in urban Operational Design Domains (ODDs). This study evaluates the performance of Remote Drivers (RDs) of passenger cars in a representative urban ODD in Las Vegas, focusing on the influence of cumulative driving experience and targeted training approaches. Using performance metrics such as efficiency, braking, acceleration, and steering, the study shows that driving experience can lead to noticeable improvements of RDs and demonstrates how experience up to 600 km correlates with improved vehicle control. In addition, driving efficiency exhibited a positive trend with increasing kilometers, particularly during the first 300 km of experience, which reaches a plateau from 400 km within a range of 0.35 to 0.42 km/min in the defined ODD. The research further compares ODD-specific training methods, where the detailed ODD training approaches attains notable advantages over other training approaches. The findings underscore the importance of tailored ODD training in enhancing RD performance, safety, and scalability for Remote Driving System (RDS) in real-world applications, while identifying opportunities for optimizing training protocols to address both routine and extreme scenarios. The study provides a robust foundation for advancing RDS deployment within urban environments, contributing to the development of scalable and safety-critical remote operation standards.
comment: This work has been submitted to the IEEE for possible publication
☆ Distortion Bounds of Subdivision Models for SO(3)
In the subdivision approach to robot path planning, we need to subdivide the configuration space of a robot into nice cells to perform various computations. For a rigid spatial robot, this configuration space is $SE(3)=\mathbb{R}^3\times SO(3)$. The subdivision of $\mathbb{R}^3$ is standard but so far, there are no global subdivision schemes for $SO(3)$. We recently introduced a representation for $SO(3)$ suitable for subdivision. This paper investigates the distortion of the natural metric on $SO(3)$ caused by our representation. The proper framework for this study lies in the Riemannian geometry of $SO(3)$, enabling us to obtain sharp distortion bounds.
comment: 9 pages, 1 figure. Submitted to 3rd IMA Robotics Conferences, 2025
☆ Towards Mobile Sensing with Event Cameras on High-mobility Resource-constrained Devices: A Survey
With the increasing complexity of mobile device applications, these devices are evolving toward high mobility. This shift imposes new demands on mobile sensing, particularly in terms of achieving high accuracy and low latency. Event-based vision has emerged as a disruptive paradigm, offering high temporal resolution, low latency, and energy efficiency, making it well-suited for high-accuracy and low-latency sensing tasks on high-mobility platforms. However, the presence of substantial noisy events, the lack of inherent semantic information, and the large data volume pose significant challenges for event-based data processing on resource-constrained mobile devices. This paper surveys the literature over the period 2014-2024, provides a comprehensive overview of event-based mobile sensing systems, covering fundamental principles, event abstraction methods, algorithmic advancements, hardware and software acceleration strategies. We also discuss key applications of event cameras in mobile sensing, including visual odometry, object tracking, optical flow estimation, and 3D reconstruction, while highlighting the challenges associated with event data processing, sensor fusion, and real-time deployment. Furthermore, we outline future research directions, such as improving event camera hardware with advanced optics, leveraging neuromorphic computing for efficient processing, and integrating bio-inspired algorithms to enhance perception. To support ongoing research, we provide an open-source \textit{Online Sheet} with curated resources and recent developments. We hope this survey serves as a valuable reference, facilitating the adoption of event-based vision across diverse applications.
comment: 32 pages, 9 figures
☆ Adaptive Interactive Navigation of Quadruped Robots using Large Language Models
Robotic navigation in complex environments remains a critical research challenge. Traditional navigation methods focus on optimal trajectory generation within free space, struggling in environments lacking viable paths to the goal, such as disaster zones or cluttered warehouses. To address this gap, we propose an adaptive interactive navigation approach that proactively interacts with environments to create feasible paths to reach originally unavailable goals. Specifically, we present a primitive tree for task planning with large language models (LLMs), facilitating effective reasoning to determine interaction objects and sequences. To ensure robust subtask execution, we adopt reinforcement learning to pre-train a comprehensive skill library containing versatile locomotion and interaction behaviors for motion planning. Furthermore, we introduce an adaptive replanning method featuring two LLM-based modules: an advisor serving as a flexible replanning trigger and an arborist for autonomous plan adjustment. Integrated with the tree structure, the replanning mechanism allows for convenient node addition and pruning, enabling rapid plan modification in unknown environments. Comprehensive simulations and experiments have demonstrated our method's effectiveness and adaptivity in diverse scenarios. The supplementary video is available at page: https://youtu.be/W5ttPnSap2g.
comment: 10 pages, 9 figures
☆ SR-LIO++: Efficient LiDAR-Inertial Odometry and Quantized Mapping with Sweep Reconstruction
Addressing the inherent low acquisition frequency limitation of 3D LiDAR to achieve high-frequency output has become a critical research focus in the LiDAR-Inertial Odometry (LIO) domain. To ensure real-time performance, frequency-enhanced LIO systems must process each sweep within significantly reduced timeframe, which presents substantial challenges for deployment on low-computational-power platforms. To address these limitations, we introduce SR-LIO++, an innovative LIO system capable of achieving doubled output frequency relative to input frequency on resource-constrained hardware platforms, including the Raspberry Pi 4B. Our system employs a sweep reconstruction methodology to enhance LiDAR sweep frequency, generating high-frequency reconstructed sweeps. Building upon this foundation, we propose a caching mechanism for intermediate results (i.e., surface parameters) of the most recent segments, effectively minimizing redundant processing of common segments in adjacent reconstructed sweeps. This method decouples processing time from the traditionally linear dependence on reconstructed sweep frequency. Furthermore, we present a quantized map point management based on index table mapping, significantly reducing memory usage by converting global 3D point storage from 64-bit double precision to 8-bit char representation. This method also converts the computationally intensive Euclidean distance calculations in nearest neighbor searches from 64-bit double precision to 16-bit short and 32-bit integer formats, significantly reducing both memory and computational cost. Extensive experimental evaluations across three distinct computing platforms and four public datasets demonstrate that SR-LIO++ maintains state-of-the-art accuracy while substantially enhancing efficiency. Notably, our system successfully achieves 20Hz state output on Raspberry Pi 4B hardware.
comment: 10 pages, 12 figures
☆ Predictive Traffic Rule Compliance using Reinforcement Learning SC 2025
Autonomous vehicle path planning has reached a stage where safety and regulatory compliance are crucial. This paper presents a new approach that integrates a motion planner with a deep reinforcement learning model to predict potential traffic rule violations. In this setup, the predictions of the critic directly affect the cost function of the motion planner, guiding the choices of the trajectory. We incorporate key interstate rules from the German Road Traffic Regulation into a rule book and use a graph-based state representation to handle complex traffic information. Our main innovation is replacing the standard actor network in an actor-critic setup with a motion planning module, which ensures both predictable trajectory generation and prevention of long-term rule violations. Experiments on an open German highway dataset show that the model can predict and prevent traffic rule violations beyond the planning horizon, significantly increasing safety in challenging traffic conditions.
comment: 12 pages, 7 figures. Preprint submitted to IEEE ITSC 2025
LiDAR-based Quadrotor Autonomous Inspection System in Cluttered Environments
In recent years, autonomous unmanned aerial vehicle (UAV) technology has seen rapid advancements, significantly improving operational efficiency and mitigating risks associated with manual tasks in domains such as industrial inspection, agricultural monitoring, and search-and-rescue missions. Despite these developments, existing UAV inspection systems encounter two critical challenges: limited reliability in complex, unstructured, and GNSS-denied environments, and a pronounced dependency on skilled operators. To overcome these limitations, this study presents a LiDAR-based UAV inspection system employing a dual-phase workflow: human-in-the-loop inspection and autonomous inspection. During the human-in-the-loop phase, untrained pilots are supported by autonomous obstacle avoidance, enabling them to generate 3D maps, specify inspection points, and schedule tasks. Inspection points are then optimized using the Traveling Salesman Problem (TSP) to create efficient task sequences. In the autonomous phase, the quadrotor autonomously executes the planned tasks, ensuring safe and efficient data acquisition. Comprehensive field experiments conducted in various environments, including slopes, landslides, agricultural fields, factories, and forests, confirm the system's reliability and flexibility. Results reveal significant enhancements in inspection efficiency, with autonomous operations reducing trajectory length by up to 40\% and flight time by 57\% compared to human-in-the-loop operations. These findings underscore the potential of the proposed system to enhance UAV-based inspections in safety-critical and resource-constrained scenarios.
♻ ☆ Benchmarking Multi-Object Grasping
In this work, we describe a multi-object grasping benchmark to evaluate the grasping and manipulation capabilities of robotic systems in both pile and surface scenarios. The benchmark introduces three robot multi-object grasping benchmarking protocols designed to challenge different aspects of robotic manipulation. These protocols are: 1) the Only-Pick-Once protocol, which assesses the robot's ability to efficiently pick multiple objects in a single attempt; 2) the Accurate pick-trnsferring protocol, which evaluates the robot's capacity to selectively grasp and transport a specific number of objects from a cluttered environment; and 3) the Pick-transferring-all protocol, which challenges the robot to clear an entire scene by sequentially grasping and transferring all available objects. These protocols are intended to be adopted by the broader robotics research community, providing a standardized method to assess and compare robotic systems' performance in multi-object grasping tasks. We establish baselines for these protocols using standard planning and perception algorithms on a Barrett hand, Robotiq parallel jar gripper, and the Pisa/IIT Softhand-2, which is a soft underactuated robotic hand. We discuss the results in relation to human performance in similar tasks we well.
comment: This paper contains 11 pages and 5 figures. This paper is under review of a robotics journal
♻ ☆ Reachable Polyhedral Marching (RPM): An Exact Analysis Tool for Deep-Learned Control Systems
Neural networks are increasingly used in robotics as policies, state transition models, state estimation models, or all of the above. With these components being learned from data, it is important to be able to analyze what behaviors were learned and how this affects closed-loop performance. In this paper we take steps toward this goal by developing methods for computing control invariant sets and regions of attraction (ROAs) of dynamical systems represented as neural networks. We focus our attention on feedforward neural networks with the rectified linear unit (ReLU) activation, which are known to implement continuous piecewise-affine (PWA) functions. We describe the Reachable Polyhedral Marching (RPM) algorithm for enumerating the affine pieces of a neural network through an incremental connected walk. We then use this algorithm to compute exact forward and backward reachable sets, from which we provide methods for computing control invariant sets and ROAs. Our approach is unique in that we find these sets incrementally, without Lyapunov-based tools. In our examples we demonstrate the ability of our approach to find non-convex control invariant sets and ROAs on tasks with learned van der Pol oscillator and pendulum models. Further, we provide an accelerated algorithm for computing ROAs that leverages the incremental and connected enumeration of affine regions that RPM provides. We show this acceleration to lead to a 15x speedup in our examples. Finally, we apply our methods to find a set of states that are stabilized by an image-based controller for an aircraft runway control problem.
comment: Submitted to IEEE Transactions on Neural Networks and Learning Systems. arXiv admin note: text overlap with arXiv:2011.11609
♻ ☆ COHERENT: Collaboration of Heterogeneous Multi-Robot System with Large Language Models ICRA 2025
Leveraging the powerful reasoning capabilities of large language models (LLMs), recent LLM-based robot task planning methods yield promising results. However, they mainly focus on single or multiple homogeneous robots on simple tasks. Practically, complex long-horizon tasks always require collaboration among multiple heterogeneous robots especially with more complex action spaces, which makes these tasks more challenging. To this end, we propose COHERENT, a novel LLM-based task planning framework for collaboration of heterogeneous multi-robot systems including quadrotors, robotic dogs, and robotic arms. Specifically, a Proposal-Execution-Feedback-Adjustment (PEFA) mechanism is designed to decompose and assign actions for individual robots, where a centralized task assigner makes a task planning proposal to decompose the complex task into subtasks, and then assigns subtasks to robot executors. Each robot executor selects a feasible action to implement the assigned subtask and reports self-reflection feedback to the task assigner for plan adjustment. The PEFA loops until the task is completed. Moreover, we create a challenging heterogeneous multi-robot task planning benchmark encompassing 100 complex long-horizon tasks. The experimental results show that our work surpasses the previous methods by a large margin in terms of success rate and execution efficiency. The experimental videos, code, and benchmark are released at https://github.com/MrKeee/COHERENT.
comment: Accepted by ICRA 2025
♻ ☆ Incremental Few-Shot Adaptation for Non-Prehensile Object Manipulation using Parallelizable Physics Simulators ICRA
Few-shot adaptation is an important capability for intelligent robots that perform tasks in open-world settings such as everyday environments or flexible production. In this paper, we propose a novel approach for non-prehensile manipulation which incrementally adapts a physics-based dynamics model for model-predictive control (MPC). The model prediction is aligned with a few examples of robot-object interactions collected with the MPC. This is achieved by using a parallelizable rigid-body physics simulation as dynamic world model and sampling-based optimization of the model parameters. In turn, the optimized dynamics model can be used for MPC using efficient sampling-based optimization. We evaluate our few-shot adaptation approach in object pushing experiments in simulation and with a real robot.
comment: Accepted for publication at the IEEE International Conference on Robotics and Automation (ICRA), 2025
♻ ☆ Gen-Swarms: Adapting Deep Generative Models to Swarms of Drones
Gen-Swarms is an innovative method that leverages and combines the capabilities of deep generative models with reactive navigation algorithms to automate the creation of drone shows. Advancements in deep generative models, particularly diffusion models, have demonstrated remarkable effectiveness in generating high-quality 2D images. Building on this success, various works have extended diffusion models to 3D point cloud generation. In contrast, alternative generative models such as flow matching have been proposed, offering a simple and intuitive transition from noise to meaningful outputs. However, the application of flow matching models to 3D point cloud generation remains largely unexplored. Gen-Swarms adapts these models to automatically generate drone shows. Existing 3D point cloud generative models create point trajectories which are impractical for drone swarms. In contrast, our method not only generates accurate 3D shapes but also guides the swarm motion, producing smooth trajectories and accounting for potential collisions through a reactive navigation algorithm incorporated into the sampling process. For example, when given a text category like Airplane, Gen-Swarms can rapidly and continuously generate numerous variations of 3D airplane shapes. Our experiments demonstrate that this approach is particularly well-suited for drone shows, providing feasible trajectories, creating representative final shapes, and significantly enhancing the overall performance of drone show generation.
♻ ☆ Learning Multi-Agent Loco-Manipulation for Long-Horizon Quadrupedal Pushing
Recently, quadrupedal locomotion has achieved significant success, but their manipulation capabilities, particularly in handling large objects, remain limited, restricting their usefulness in demanding real-world applications such as search and rescue, construction, industrial automation, and room organization. This paper tackles the task of obstacle-aware, long-horizon pushing by multiple quadrupedal robots. We propose a hierarchical multi-agent reinforcement learning framework with three levels of control. The high-level controller integrates an RRT planner and a centralized adaptive policy to generate subgoals, while the mid-level controller uses a decentralized goal-conditioned policy to guide the robots toward these sub-goals. A pre-trained low-level locomotion policy executes the movement commands. We evaluate our method against several baselines in simulation, demonstrating significant improvements over baseline approaches, with 36.0% higher success rates and 24.5% reduction in completion time than the best baseline. Our framework successfully enables long-horizon, obstacle-aware manipulation tasks like Push-Cuboid and Push-T on Go1 robots in the real world.
Artificial Intelligence 77
☆ FIESTA: Fisher Information-based Efficient Selective Test-time Adaptation
Robust facial expression recognition in unconstrained, "in-the-wild" environments remains challenging due to significant domain shifts between training and testing distributions. Test-time adaptation (TTA) offers a promising solution by adapting pre-trained models during inference without requiring labeled test data. However, existing TTA approaches typically rely on manually selecting which parameters to update, potentially leading to suboptimal adaptation and high computational costs. This paper introduces a novel Fisher-driven selective adaptation framework that dynamically identifies and updates only the most critical model parameters based on their importance as quantified by Fisher information. By integrating this principled parameter selection approach with temporal consistency constraints, our method enables efficient and effective adaptation specifically tailored for video-based facial expression recognition. Experiments on the challenging AffWild2 benchmark demonstrate that our approach significantly outperforms existing TTA methods, achieving a 7.7% improvement in F1 score over the base model while adapting only 22,000 parameters-more than 20 times fewer than comparable methods. Our ablation studies further reveal that parameter importance can be effectively estimated from minimal data, with sampling just 1-3 frames sufficient for substantial performance gains. The proposed approach not only enhances recognition accuracy but also dramatically reduces computational overhead, making test-time adaptation more practical for real-world affective computing applications.
☆ Encrypted Prompt: Securing LLM Applications Against Unauthorized Actions
Security threats like prompt injection attacks pose significant risks to applications that integrate Large Language Models (LLMs), potentially leading to unauthorized actions such as API misuse. Unlike previous approaches that aim to detect these attacks on a best-effort basis, this paper introduces a novel method that appends an Encrypted Prompt to each user prompt, embedding current permissions. These permissions are verified before executing any actions (such as API calls) generated by the LLM. If the permissions are insufficient, the LLM's actions will not be executed, ensuring safety. This approach guarantees that only actions within the scope of the current permissions from the LLM can proceed. In scenarios where adversarial prompts are introduced to mislead the LLM, this method ensures that any unauthorized actions from LLM wouldn't be executed by verifying permissions in Encrypted Prompt. Thus, threats like prompt injection attacks that trigger LLM to generate harmful actions can be effectively mitigated.
☆ Simulation of Non-Ordinary Consciousness
The symbolic architecture of non-ordinary consciousness remains largely unmapped in cognitive science and artificial intelligence. While conventional models prioritize rational coherence, altered states such as those induced by psychedelics reveal distinct symbolic regimes characterized by recursive metaphor, ego dissolution, and semantic destabilization. We present \textit{Glyph}, a generative symbolic interface designed to simulate psilocybin-like symbolic cognition in large language models. Rather than modeling perception or mood, Glyph enacts symbolic transformation through recursive reentry, metaphoric modulation, and entropy-scaled destabilization -- a triadic operator formalized within a tensorial linguistic framework. Experimental comparison with baseline GPT-4o reveals that Glyph consistently generates high-entropy, metaphor-saturated, and ego-dissolving language across diverse symbolic prompt categories. These results validate the emergence of non-ordinary cognitive patterns and support a new paradigm for simulating altered consciousness through language. Glyph opens novel pathways for modeling symbolic cognition, exploring metaphor theory, and encoding knowledge in recursively altered semantic spaces.
comment: 16 pages, 9 figures, 1 table
☆ Evaluating how LLM annotations represent diverse views on contentious topics
Researchers have proposed the use of generative large language models (LLMs) to label data for both research and applied settings. This literature emphasizes the improved performance of LLMs relative to other natural language models, noting that LLMs typically outperform other models on standard metrics such as accuracy, precision, recall, and F1 score. However, previous literature has also highlighted the bias embedded in language models, particularly around contentious topics such as potentially toxic content. This bias could result in labels applied by LLMs that disproportionately align with majority groups over a more diverse set of viewpoints. In this paper, we evaluate how LLMs represent diverse viewpoints on these contentious tasks. Across four annotation tasks on four datasets, we show that LLMs do not show substantial disagreement with annotators on the basis of demographics. Instead, the model, prompt, and disagreement between human annotators on the labeling task are far more predictive of LLM agreement. Our findings suggest that when using LLMs to annotate data, under-representing the views of particular groups is not a substantial concern. We conclude with a discussion of the implications for researchers and practitioners.
☆ Beyond speculation: Measuring the growing presence of LLM-generated texts in multilingual disinformation
Increased sophistication of large language models (LLMs) and the consequent quality of generated multilingual text raises concerns about potential disinformation misuse. While humans struggle to distinguish LLM-generated content from human-written texts, the scholarly debate about their impact remains divided. Some argue that heightened fears are overblown due to natural ecosystem limitations, while others contend that specific "longtail" contexts face overlooked risks. Our study bridges this debate by providing the first empirical evidence of LLM presence in the latest real-world disinformation datasets, documenting the increase of machine-generated content following ChatGPT's release, and revealing crucial patterns across languages, platforms, and time periods.
☆ CCCI: Code Completion with Contextual Information for Complex Data Transfer Tasks Using Large Language Models
Unlike code generation, which involves creating code from scratch, code completion focuses on integrating new lines or blocks of code into an existing codebase. This process requires a deep understanding of the surrounding context, such as variable scope, object models, API calls, and database relations, to produce accurate results. These complex contextual dependencies make code completion a particularly challenging problem. Current models and approaches often fail to effectively incorporate such context, leading to inaccurate completions with low acceptance rates (around 30\%). For tasks like data transfer, which rely heavily on specific relationships and data structures, acceptance rates drop even further. This study introduces CCCI, a novel method for generating context-aware code completions specifically designed to address data transfer tasks. By integrating contextual information, such as database table relationships, object models, and library details into Large Language Models (LLMs), CCCI improves the accuracy of code completions. We evaluate CCCI using 289 Java snippets, extracted from over 819 operational scripts in an industrial setting. The results demonstrate that CCCI achieved a 49.1\% Build Pass rate and a 41.0\% CodeBLEU score, comparable to state-of-the-art methods that often struggle with complex task completion.
comment: The 29th International Conference on Evaluation and Assessment in Software Engineering
☆ Synthetic Art Generation and DeepFake Detection A Study on Jamini Roy Inspired Dataset
The intersection of generative AI and art is a fascinating area that brings both exciting opportunities and significant challenges, especially when it comes to identifying synthetic artworks. This study takes a unique approach by examining diffusion-based generative models in the context of Indian art, specifically focusing on the distinctive style of Jamini Roy. To explore this, we fine-tuned Stable Diffusion 3 and used techniques like ControlNet and IPAdapter to generate realistic images. This allowed us to create a new dataset that includes both real and AI-generated artworks, which is essential for a detailed analysis of what these models can produce. We employed various qualitative and quantitative methods, such as Fourier domain assessments and autocorrelation metrics, to uncover subtle differences between synthetic images and authentic pieces. A key takeaway from recent research is that existing methods for detecting deepfakes face considerable challenges, especially when the deepfakes are of high quality and tailored to specific cultural contexts. This highlights a critical gap in current detection technologies, particularly in light of the challenges identified above, where high-quality and culturally specific deepfakes are difficult to detect. This work not only sheds light on the increasing complexity of generative models but also sets a crucial foundation for future research aimed at effective detection of synthetic art.
comment: 13 pages, 7 figures, 6 tables
☆ Aurelia: Test-time Reasoning Distillation in Audio-Visual LLMs
Recent advancements in reasoning optimization have greatly enhanced the performance of large language models (LLMs). However, existing work fails to address the complexities of audio-visual scenarios, underscoring the need for further research. In this paper, we introduce AURELIA, a novel actor-critic based audio-visual (AV) reasoning framework that distills structured, step-by-step reasoning into AVLLMs at test time, improving their ability to process complex multi-modal inputs without additional training or fine-tuning. To further advance AVLLM reasoning skills, we present AVReasonBench, a challenging benchmark comprising 4500 audio-visual questions, each paired with detailed step-by-step reasoning. Our benchmark spans six distinct tasks, including AV-GeoIQ, which evaluates AV reasoning combined with geographical and cultural knowledge. Evaluating 18 AVLLMs on AVReasonBench reveals significant limitations in their multi-modal reasoning capabilities. Using AURELIA, we achieve up to a 100% relative improvement, demonstrating its effectiveness. This performance gain highlights the potential of reasoning-enhanced data generation for advancing AVLLMs in real-world applications. Our code and data will be publicly released at: https: //github.com/schowdhury671/aurelia.
☆ Action Recognition in Real-World Ambient Assisted Living Environment
The growing ageing population and their preference to maintain independence by living in their own homes require proactive strategies to ensure safety and support. Ambient Assisted Living (AAL) technologies have emerged to facilitate ageing in place by offering continuous monitoring and assistance within the home. Within AAL technologies, action recognition plays a crucial role in interpreting human activities and detecting incidents like falls, mobility decline, or unusual behaviours that may signal worsening health conditions. However, action recognition in practical AAL applications presents challenges, including occlusions, noisy data, and the need for real-time performance. While advancements have been made in accuracy, robustness to noise, and computation efficiency, achieving a balance among them all remains a challenge. To address this challenge, this paper introduces the Robust and Efficient Temporal Convolution network (RE-TCN), which comprises three main elements: Adaptive Temporal Weighting (ATW), Depthwise Separable Convolutions (DSC), and data augmentation techniques. These elements aim to enhance the model's accuracy, robustness against noise and occlusion, and computational efficiency within real-world AAL contexts. RE-TCN outperforms existing models in terms of accuracy, noise and occlusion robustness, and has been validated on four benchmark datasets: NTU RGB+D 60, Northwestern-UCLA, SHREC'17, and DHG-14/28. The code is publicly available at: https://github.com/Gbouna/RE-TCN
☆ RECALL-MM: A Multimodal Dataset of Consumer Product Recalls for Risk Analysis using Computational Methods and Large Language Models
Product recalls provide valuable insights into potential risks and hazards within the engineering design process, yet their full potential remains underutilized. In this study, we curate data from the United States Consumer Product Safety Commission (CPSC) recalls database to develop a multimodal dataset, RECALL-MM, that informs data-driven risk assessment using historical information, and augment it using generative methods. Patterns in the dataset highlight specific areas where improved safety measures could have significant impact. We extend our analysis by demonstrating interactive clustering maps that embed all recalls into a shared latent space based on recall descriptions and product names. Leveraging these data-driven tools, we explore three case studies to demonstrate the dataset's utility in identifying product risks and guiding safer design decisions. The first two case studies illustrate how designers can visualize patterns across recalled products and situate new product ideas within the broader recall landscape to proactively anticipate hazards. In the third case study, we extend our approach by employing a large language model (LLM) to predict potential hazards based solely on product images. This demonstrates the model's ability to leverage visual context to identify risk factors, revealing strong alignment with historical recall data across many hazard categories. However, the analysis also highlights areas where hazard prediction remains challenging, underscoring the importance of risk awareness throughout the design process. Collectively, this work aims to bridge the gap between historical recall data and future product safety, presenting a scalable, data-driven approach to safer engineering design.
☆ Enhancing Knowledge Graph Completion with Entity Neighborhood and Relation Context
Knowledge Graph Completion (KGC) aims to infer missing information in Knowledge Graphs (KGs) to address their inherent incompleteness. Traditional structure-based KGC methods, while effective, face significant computational demands and scalability challenges due to the need for dense embedding learning and scoring all entities in the KG for each prediction. Recent text-based approaches using language models like T5 and BERT have mitigated these issues by converting KG triples into text for reasoning. However, they often fail to fully utilize contextual information, focusing mainly on the neighborhood of the entity and neglecting the context of the relation. To address this issue, we propose KGC-ERC, a framework that integrates both types of context to enrich the input of generative language models and enhance their reasoning capabilities. Additionally, we introduce a sampling strategy to effectively select relevant context within input token constraints, which optimizes the utilization of contextual information and potentially improves model performance. Experiments on the Wikidata5M, Wiki27K, and FB15K-237-N datasets show that KGC-ERC outperforms or matches state-of-the-art baselines in predictive performance and scalability.
☆ The Challenge of Achieving Attributability in Multilingual Table-to-Text Generation with Question-Answer Blueprints
Multilingual Natural Language Generation (NLG) is challenging due to the lack of training data for low-resource languages. However, some low-resource languages have up to tens of millions of speakers globally, making it important to improve NLG tools for them. Table-to-Text NLG is an excellent measure of models' reasoning abilities but is very challenging in the multilingual setting. System outputs are often not attributable, or faithful, to the data in the source table. Intermediate planning techniques like Question-Answer (QA) blueprints have been shown to improve attributability on summarisation tasks. This work explores whether QA blueprints make multilingual Table-to-Text outputs more attributable to the input tables. This paper extends the challenging multilingual Table-to-Text dataset, TaTA, which includes African languages, with QA blueprints. Sequence-to-sequence language models are then finetuned on this dataset, with and without blueprints. Results show that QA blueprints improve performance for models finetuned and evaluated only on English examples, but do not demonstrate gains in the multilingual setting. This is due to inaccuracies in machine translating the blueprints from English into target languages when generating the training data, and models failing to rely closely on the blueprints they generate. An in-depth analysis is conducted on why this is challenging.
☆ Incorporating GNSS Information with LIDAR-Inertial Odometry for Accurate Land-Vehicle Localization
Currently, visual odometry and LIDAR odometry are performing well in pose estimation in some typical environments, but they still cannot recover the localization state at high speed or reduce accumulated drifts. In order to solve these problems, we propose a novel LIDAR-based localization framework, which achieves high accuracy and provides robust localization in 3D pointcloud maps with information of multi-sensors. The system integrates global information with LIDAR-based odometry to optimize the localization state. To improve robustness and enable fast resumption of localization, this paper uses offline pointcloud maps for prior knowledge and presents a novel registration method to speed up the convergence rate. The algorithm is tested on various maps of different data sets and has higher robustness and accuracy than other localization algorithms.
☆ Ethereum Price Prediction Employing Large Language Models for Short-term and Few-shot Forecasting
Cryptocurrencies have transformed financial markets with their innovative blockchain technology and volatile price movements, presenting both challenges and opportunities for predictive analytics. Ethereum, being one of the leading cryptocurrencies, has experienced significant market fluctuations, making its price prediction an attractive yet complex problem. This paper presents a comprehensive study on the effectiveness of Large Language Models (LLMs) in predicting Ethereum prices for short-term and few-shot forecasting scenarios. The main challenge in training models for time series analysis is the lack of data. We address this by leveraging a novel approach that adapts existing pre-trained LLMs on natural language or images from billions of tokens to the unique characteristics of Ethereum price time series data. Through thorough experimentation and comparison with traditional and contemporary models, our results demonstrate that selectively freezing certain layers of pre-trained LLMs achieves state-of-the-art performance in this domain. This approach consistently surpasses benchmarks across multiple metrics, including Mean Squared Error (MSE), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE), demonstrating its effectiveness and robustness. Our research not only contributes to the existing body of knowledge on LLMs but also provides practical insights in the cryptocurrency prediction domain. The adaptability of pre-trained LLMs to handle the nature of Ethereum prices suggests a promising direction for future research, potentially including the integration of sentiment analysis to further refine forecasting accuracy.
☆ Large Language Models are Unreliable for Cyber Threat Intelligence
Several recent works have argued that Large Language Models (LLMs) can be used to tame the data deluge in the cybersecurity field, by improving the automation of Cyber Threat Intelligence (CTI) tasks. This work presents an evaluation methodology that other than allowing to test LLMs on CTI tasks when using zero-shot learning, few-shot learning and fine-tuning, also allows to quantify their consistency and their confidence level. We run experiments with three state-of-the-art LLMs and a dataset of 350 threat intelligence reports and present new evidence of potential security risks in relying on LLMs for CTI. We show how LLMs cannot guarantee sufficient performance on real-size reports while also being inconsistent and overconfident. Few-shot learning and fine-tuning only partially improve the results, thus posing doubts about the possibility of using LLMs for CTI scenarios, where labelled datasets are lacking and where confidence is a fundamental factor.
☆ AstroAgents: A Multi-Agent AI for Hypothesis Generation from Mass Spectrometry Data
With upcoming sample return missions across the solar system and the increasing availability of mass spectrometry data, there is an urgent need for methods that analyze such data within the context of existing astrobiology literature and generate plausible hypotheses regarding the emergence of life on Earth. Hypothesis generation from mass spectrometry data is challenging due to factors such as environmental contaminants, the complexity of spectral peaks, and difficulties in cross-matching these peaks with prior studies. To address these challenges, we introduce AstroAgents, a large language model-based, multi-agent AI system for hypothesis generation from mass spectrometry data. AstroAgents is structured around eight collaborative agents: a data analyst, a planner, three domain scientists, an accumulator, a literature reviewer, and a critic. The system processes mass spectrometry data alongside user-provided research papers. The data analyst interprets the data, and the planner delegates specific segments to the scientist agents for in-depth exploration. The accumulator then collects and deduplicates the generated hypotheses, and the literature reviewer identifies relevant literature using Semantic Scholar. The critic evaluates the hypotheses, offering rigorous suggestions for improvement. To assess AstroAgents, an astrobiology expert evaluated the novelty and plausibility of more than a hundred hypotheses generated from data obtained from eight meteorites and ten soil samples. Of these hypotheses, 36% were identified as plausible, and among those, 66% were novel. Project website: https://astroagents.github.io/
☆ Conversational Agents for Older Adults' Health: A Systematic Literature Review
There has been vast literature that studies Conversational Agents (CAs) in facilitating older adults' health. The vast and diverse studies warrants a comprehensive review that concludes the main findings and proposes research directions for future studies, while few literature review did it from human-computer interaction (HCI) perspective. In this study, we present a survey of existing studies on CAs for older adults' health. Through a systematic review of 72 papers, this work reviewed previously studied older adults' characteristics and analyzed participants' experiences and expectations of CAs for health. We found that (1) Past research has an increasing interest on chatbots and voice assistants and applied CA as multiple roles in older adults' health. (2) Older adults mainly showed low acceptance CAs for health due to various reasons, such as unstable effects, harm to independence, and privacy concerns. (3) Older adults expect CAs to be able to support multiple functions, to communicate using natural language, to be personalized, and to allow users full control. We also discuss the implications based on the findings.
comment: 31 pages, 4 figures
☆ Agent-Based Modeling and Deep Neural Networks for Establishing Digital Twins of Secure Facilities under Sensing Restrictions
Digital twin technologies help practitioners simulate, monitor, and predict undesirable outcomes in-silico, while avoiding the cost and risks of conducting live simulation exercises. Virtual reality (VR) based digital twin technologies are especially useful when monitoring human Patterns of Life (POL) in secure nuclear facilities, where live simulation exercises are too dangerous and costly to ever perform. However, the high-security status of such facilities may restrict modelers from deploying human activity sensors for data collection. This problem was encountered when deploying MetaPOL, a digital twin system to prevent insider threat or sabotage of secure facilities, at a secure nuclear reactor facility at Oak Ridge National Laboratory (ORNL). This challenge was addressed using an agent-based model (ABM), driven by anecdotal evidence of facility personnel POL, to generate synthetic movement trajectories. These synthetic trajectories were then used to train deep neural network surrogates for next location and stay duration prediction to drive NPCs in the VR environment. In this study, we evaluate the efficacy of this technique for establishing NPC movement within MetaPOL and the ability to distinguish NPC movement during normal operations from that during a simulated emergency response. Our results demonstrate the success of using a multi-layer perceptron for next location prediction and mixture density network for stay duration prediction to predict the ABM generated trajectories. We also find that NPC movement in the VR environment driven by the deep neural networks under normal operations remain significantly different to that seen when simulating responses to a simulated emergency scenario.
comment: This paper has been already published in the 2024 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC'24): https://www.iitsec.org/-/media/sites/iitsec/agenda/2024/iitsec2024program3professionaldevelopment112124.pdf The authors have obtained permission from I/ITSEC'24 organizers to release this paper on arXiv. Appropriate licensing is also applied
☆ CodeARC: Benchmarking Reasoning Capabilities of LLM Agents for Inductive Program Synthesis
Inductive program synthesis, or programming by example, requires synthesizing functions from input-output examples that generalize to unseen inputs. While large language model agents have shown promise in programming tasks guided by natural language, their ability to perform inductive program synthesis is underexplored. Existing evaluation protocols rely on static sets of examples and held-out tests, offering no feedback when synthesized functions are incorrect and failing to reflect real-world scenarios such as reverse engineering. We propose CodeARC, the Code Abstraction and Reasoning Challenge, a new evaluation framework where agents interact with a hidden target function by querying it with new inputs, synthesizing candidate functions, and iteratively refining their solutions using a differential testing oracle. This interactive setting encourages agents to perform function calls and self-correction based on feedback. We construct the first large-scale benchmark for general-purpose inductive program synthesis, featuring 1114 functions. Among 18 models evaluated, o3-mini performs best with a success rate of 52.7%, highlighting the difficulty of this task. Fine-tuning LLaMA-3.1-8B-Instruct on curated synthesis traces yields up to a 31% relative performance gain. CodeARC provides a more realistic and challenging testbed for evaluating LLM-based program synthesis and inductive reasoning.
☆ CrossMuSim: A Cross-Modal Framework for Music Similarity Retrieval with LLM-Powered Text Description Sourcing and Mining ICME2025
Music similarity retrieval is fundamental for managing and exploring relevant content from large collections in streaming platforms. This paper presents a novel cross-modal contrastive learning framework that leverages the open-ended nature of text descriptions to guide music similarity modeling, addressing the limitations of traditional uni-modal approaches in capturing complex musical relationships. To overcome the scarcity of high-quality text-music paired data, this paper introduces a dual-source data acquisition approach combining online scraping and LLM-based prompting, where carefully designed prompts leverage LLMs' comprehensive music knowledge to generate contextually rich descriptions. Exten1sive experiments demonstrate that the proposed framework achieves significant performance improvements over existing benchmarks through objective metrics, subjective evaluations, and real-world A/B testing on the Huawei Music streaming platform.
comment: Accepted by ICME2025
☆ Evaluating Compositional Scene Understanding in Multimodal Generative Models
The visual world is fundamentally compositional. Visual scenes are defined by the composition of objects and their relations. Hence, it is essential for computer vision systems to reflect and exploit this compositionality to achieve robust and generalizable scene understanding. While major strides have been made toward the development of general-purpose, multimodal generative models, including both text-to-image models and multimodal vision-language models, it remains unclear whether these systems are capable of accurately generating and interpreting scenes involving the composition of multiple objects and relations. In this work, we present an evaluation of the compositional visual processing capabilities in the current generation of text-to-image (DALL-E 3) and multimodal vision-language models (GPT-4V, GPT-4o, Claude Sonnet 3.5, QWEN2-VL-72B, and InternVL2.5-38B), and compare the performance of these systems to human participants. The results suggest that these systems display some ability to solve compositional and relational tasks, showing notable improvements over the previous generation of multimodal models, but with performance nevertheless well below the level of human participants, particularly for more complex scenes involving many ($>5$) objects and multiple relations. These results highlight the need for further progress toward compositional understanding of visual scenes.
☆ How to safely discard features based on aggregate SHAP values
SHAP is one of the most popular local feature-attribution methods. Given a function f and an input x, it quantifies each feature's contribution to f(x). Recently, SHAP has been increasingly used for global insights: practitioners average the absolute SHAP values over many data points to compute global feature importance scores, which are then used to discard unimportant features. In this work, we investigate the soundness of this practice by asking whether small aggregate SHAP values necessarily imply that the corresponding feature does not affect the function. Unfortunately, the answer is no: even if the i-th SHAP value is 0 on the entire data support, there exist functions that clearly depend on Feature i. The issue is that computing SHAP values involves evaluating f on points outside of the data support, where f can be strategically designed to mask its dependence on Feature i. To address this, we propose to aggregate SHAP values over the extended support, which is the product of the marginals of the underlying distribution. With this modification, we show that a small aggregate SHAP value implies that we can safely discard the corresponding feature. We then extend our results to KernelSHAP, the most popular method to approximate SHAP values in practice. We show that if KernelSHAP is computed over the extended distribution, a small aggregate value justifies feature removal. This result holds independently of whether KernelSHAP accurately approximates true SHAP values, making it one of the first theoretical results to characterize the KernelSHAP algorithm itself. Our findings have both theoretical and practical implications. We introduce the Shapley Lie algebra, which offers algebraic insights that may enable a deeper investigation of SHAP and we show that randomly permuting each column of the data matrix enables safely discarding features based on aggregate SHAP and KernelSHAP values.
☆ Fast Training of Recurrent Neural Networks with Stationary State Feedbacks
Recurrent neural networks (RNNs) have recently demonstrated strong performance and faster inference than Transformers at comparable parameter budgets. However, the recursive gradient computation with the backpropagation through time (or BPTT) algorithm remains the major computational bottleneck. In this work, we propose a novel method that replaces BPTT with a fixed gradient feedback mechanism, yielding an efficient approximation of the exact gradient propagation based on the assumption of time stationarity. Our approach leverages state-space model (SSM) principles to define a structured feedback matrix that directly propagates gradients from future time steps. This formulation bypasses the need for recursive gradient backpropagation, significantly reducing training overhead while preserving the network's ability to capture long-term dependencies. The experiments on language modeling benchmarks exhibit competitive perplexity scores, while significantly reducing the training costs. These promising results suggest that designing a feedback method like an SSM can fully exploit the efficiency advantages of RNNs for many practical applications.
comment: 18 pages (including additional contents), 3 figures, 5 tables, code available at https://github.com/p0lcAi/DSF
☆ RL2Grid: Benchmarking Reinforcement Learning in Power Grid Operations
Reinforcement learning (RL) can transform power grid operations by providing adaptive and scalable controllers essential for grid decarbonization. However, existing methods struggle with the complex dynamics, aleatoric uncertainty, long-horizon goals, and hard physical constraints that occur in real-world systems. This paper presents RL2Grid, a benchmark designed in collaboration with power system operators to accelerate progress in grid control and foster RL maturity. Built on a power simulation framework developed by RTE France, RL2Grid standardizes tasks, state and action spaces, and reward structures within a unified interface for a systematic evaluation and comparison of RL approaches. Moreover, we integrate real control heuristics and safety constraints informed by the operators' expertise to ensure RL2Grid aligns with grid operation requirements. We benchmark popular RL baselines on the grid control tasks represented within RL2Grid, establishing reference performance metrics. Our results and discussion highlight the challenges that power grids pose for RL methods, emphasizing the need for novel algorithms capable of handling real-world physical systems.
☆ UNITYAI-GUARD: Pioneering Toxicity Detection Across Low-Resource Indian Languages
This work introduces UnityAI-Guard, a framework for binary toxicity classification targeting low-resource Indian languages. While existing systems predominantly cater to high-resource languages, UnityAI-Guard addresses this critical gap by developing state-of-the-art models for identifying toxic content across diverse Brahmic/Indic scripts. Our approach achieves an impressive average F1-score of 84.23% across seven languages, leveraging a dataset of 888k training instances and 35k manually verified test instances. By advancing multilingual content moderation for linguistically diverse regions, UnityAI-Guard also provides public API access to foster broader adoption and application.
☆ The Reasoning-Memorization Interplay in Language Models Is Mediated by a Single Direction
Large language models (LLMs) excel on a variety of reasoning benchmarks, but previous studies suggest they sometimes struggle to generalize to unseen questions, potentially due to over-reliance on memorized training examples. However, the precise conditions under which LLMs switch between reasoning and memorization during text generation remain unclear. In this work, we provide a mechanistic understanding of LLMs' reasoning-memorization dynamics by identifying a set of linear features in the model's residual stream that govern the balance between genuine reasoning and memory recall. These features not only distinguish reasoning tasks from memory-intensive ones but can also be manipulated to causally influence model performance on reasoning tasks. Additionally, we show that intervening in these reasoning features helps the model more accurately activate the most relevant problem-solving capabilities during answer generation. Our findings offer new insights into the underlying mechanisms of reasoning and memory in LLMs and pave the way for the development of more robust and interpretable generative AI systems.
☆ Efficient Adaptation For Remote Sensing Visual Grounding
Foundation models have revolutionized artificial intelligence (AI), offering remarkable capabilities across multi-modal domains. Their ability to precisely locate objects in complex aerial and satellite images, using rich contextual information and detailed object descriptions, is essential for remote sensing (RS). These models can associate textual descriptions with object positions through the Visual Grounding (VG) task, but due to domain-specific challenges, their direct application to RS produces sub-optimal results. To address this, we applied Parameter Efficient Fine Tuning (PEFT) techniques to adapt these models for RS-specific VG tasks. Specifically, we evaluated LoRA placement across different modules in Grounding DINO and used BitFit and adapters to fine-tune the OFA foundation model pre-trained on general-purpose VG datasets. This approach achieved performance comparable to or surpassing current State Of The Art (SOTA) models while significantly reducing computational costs. This study highlights the potential of PEFT techniques to advance efficient and precise multi-modal analysis in RS, offering a practical and cost-effective alternative to full model training.
☆ InkFM: A Foundational Model for Full-Page Online Handwritten Note Understanding
Tablets and styluses are increasingly popular for taking notes. To optimize this experience and ensure a smooth and efficient workflow, it's important to develop methods for accurately interpreting and understanding the content of handwritten digital notes. We introduce a foundational model called InkFM for analyzing full pages of handwritten content. Trained on a diverse mixture of tasks, this model offers a unique combination of capabilities: recognizing text in 28 different scripts, mathematical expressions recognition, and segmenting pages into distinct elements like text and drawings. Our results demonstrate that these tasks can be effectively unified within a single model, achieving SoTA text line segmentation out-of-the-box quality surpassing public baselines like docTR. Fine- or LoRA-tuning our base model on public datasets further improves the quality of page segmentation, achieves state-of the art text recognition (DeepWriting, CASIA, SCUT, and Mathwriting datasets) and sketch classification (QuickDraw). This adaptability of InkFM provides a powerful starting point for developing applications with handwritten input.
☆ STSA: Spatial-Temporal Semantic Alignment for Visual Dubbing ICME 2025
Existing audio-driven visual dubbing methods have achieved great success. Despite this, we observe that the semantic ambiguity between spatial and temporal domains significantly degrades the synthesis stability for the dynamic faces. We argue that aligning the semantic features from spatial and temporal domains is a promising approach to stabilizing facial motion. To achieve this, we propose a Spatial-Temporal Semantic Alignment (STSA) method, which introduces a dual-path alignment mechanism and a differentiable semantic representation. The former leverages a Consistent Information Learning (CIL) module to maximize the mutual information at multiple scales, thereby reducing the manifold differences between spatial and temporal domains. The latter utilizes probabilistic heatmap as ambiguity-tolerant guidance to avoid the abnormal dynamics of the synthesized faces caused by slight semantic jittering. Extensive experimental results demonstrate the superiority of the proposed STSA, especially in terms of image quality and synthesis stability. Pre-trained weights and inference code are available at https://github.com/SCAILab-USTC/STSA.
comment: Accepted by ICME 2025
☆ Agentic Large Language Models, a survey
There is great interest in agentic LLMs, large language models that act as agents. We review the growing body of work in this area and provide a research agenda. Agentic LLMs are LLMs that (1) reason, (2) act, and (3) interact. We organize the literature according to these three categories. The research in the first category focuses on reasoning, reflection, and retrieval, aiming to improve decision making; the second category focuses on action models, robots, and tools, aiming for agents that act as useful assistants; the third category focuses on multi-agent systems, aiming for collaborative task solving and simulating interaction to study emergent social behavior. We find that works mutually benefit from results in other categories: retrieval enables tool use, reflection improves multi-agent collaboration, and reasoning benefits all categories. We discuss applications of agentic LLMs and provide an agenda for further research. Important applications are in medical diagnosis, logistics and financial market analysis. Meanwhile, self-reflective agents playing roles and interacting with one another augment the process of scientific research itself. Further, agentic LLMs may provide a solution for the problem of LLMs running out of training data: inference-time behavior generates new training states, such that LLMs can keep learning without needing ever larger datasets. We note that there is risk associated with LLM assistants taking action in the real world, while agentic LLMs are also likely to benefit society.
☆ Reproducibility Companion Paper: Making Users Indistinguishable: Attribute-wise Unlearning in Recommender Systems
In this paper, we reproduce the experimental results presented in our previous work titled "Making Users Indistinguishable: Attribute-wise Unlearning in Recommender Systems," which was published in the proceedings of the 31st ACM International Conference on Multimedia. This paper aims to validate the effectiveness of our proposed method and help others reproduce our experimental results. We provide detailed descriptions of our preprocessed datasets, source code structure, configuration file settings, experimental environment, and reproduced experimental results.
☆ Towards Understanding the Optimization Mechanisms in Deep Learning
In this paper, we adopt a probability distribution estimation perspective to explore the optimization mechanisms of supervised classification using deep neural networks. We demonstrate that, when employing the Fenchel-Young loss, despite the non-convex nature of the fitting error with respect to the model's parameters, global optimal solutions can be approximated by simultaneously minimizing both the gradient norm and the structural error. The former can be controlled through gradient descent algorithms. For the latter, we prove that it can be managed by increasing the number of parameters and ensuring parameter independence, thereby providing theoretical insights into mechanisms such as over-parameterization and random initialization. Ultimately, the paper validates the key conclusions of the proposed method through empirical results, illustrating its practical effectiveness.
☆ MSNGO: multi-species protein function annotation based on 3D protein structure and network propagation
Motivation: In recent years, protein function prediction has broken through the bottleneck of sequence features, significantly improving prediction accuracy using high-precision protein structures predicted by AlphaFold2. While single-species protein function prediction methods have achieved remarkable success, multi-species protein function prediction methods are still in the stage of using PPI networks and sequence features. Providing effective cross-species label propagation for species with sparse protein annotations remains a challenging issue. To address this problem, we propose the MSNGO model, which integrates structural features and network propagation methods. Our validation shows that using structural features can significantly improve the accuracy of multi-species protein function prediction. Results: We employ graph representation learning techniques to extract amino acid representations from protein structure contact maps and train a structural model using a graph convolution pooling module to derive protein-level structural features. After incorporating the sequence features from ESM-2, we apply a network propagation algorithm to aggregate information and update node representations within a heterogeneous network. The results demonstrate that MSNGO outperforms previous multi-species protein function prediction methods that rely on sequence features and PPI networks. Availability: https://github.com/blingbell/MSNGO.
comment: 8 pages, 2 figures
☆ On Geometrical Properties of Text Token Embeddings for Strong Semantic Binding in Text-to-Image Generation
Text-to-Image (T2I) models often suffer from text-image misalignment in complex scenes involving multiple objects and attributes. Semantic binding aims to mitigate this issue by accurately associating the generated attributes and objects with their corresponding noun phrases (NPs). Existing methods rely on text or latent optimizations, yet the factors influencing semantic binding remain underexplored. Here we investigate the geometrical properties of text token embeddings and their cross-attention (CA) maps. We empirically and theoretically analyze that the geometrical properties of token embeddings, specifically both angular distances and norms, play a crucial role in CA map differentiation. Then, we propose \textbf{TeeMo}, a training-free text embedding-aware T2I framework with strong semantic binding. TeeMo consists of Causality-Aware Projection-Out (CAPO) for distinct inter-NP CA maps and Adaptive Token Mixing (ATM) with our loss to enhance inter-NP separation while maintaining intra-NP cohesion in CA maps. Extensive experiments confirm TeeMo consistently outperforms prior arts across diverse baselines and datasets.
☆ Learning Structure-enhanced Temporal Point Processes with Gromov-Wasserstein Regularization
Real-world event sequences are often generated by different temporal point processes (TPPs) and thus have clustering structures. Nonetheless, in the modeling and prediction of event sequences, most existing TPPs ignore the inherent clustering structures of the event sequences, leading to the models with unsatisfactory interpretability. In this study, we learn structure-enhanced TPPs with the help of Gromov-Wasserstein (GW) regularization, which imposes clustering structures on the sequence-level embeddings of the TPPs in the maximum likelihood estimation framework.In the training phase, the proposed method leverages a nonparametric TPP kernel to regularize the similarity matrix derived based on the sequence embeddings. In large-scale applications, we sample the kernel matrix and implement the regularization as a Gromov-Wasserstein (GW) discrepancy term, which achieves a trade-off between regularity and computational efficiency.The TPPs learned through this method result in clustered sequence embeddings and demonstrate competitive predictive and clustering performance, significantly improving the model interpretability without compromising prediction accuracy.
comment: Accepted at the Web Conference workshop 2025
☆ AuditVotes: A Framework Towards More Deployable Certified Robustness for Graph Neural Networks
Despite advancements in Graph Neural Networks (GNNs), adaptive attacks continue to challenge their robustness. Certified robustness based on randomized smoothing has emerged as a promising solution, offering provable guarantees that a model's predictions remain stable under adversarial perturbations within a specified range. However, existing methods face a critical trade-off between accuracy and robustness, as achieving stronger robustness requires introducing greater noise into the input graph. This excessive randomization degrades data quality and disrupts prediction consistency, limiting the practical deployment of certifiably robust GNNs in real-world scenarios where both accuracy and robustness are essential. To address this challenge, we propose \textbf{AuditVotes}, the first framework to achieve both high clean accuracy and certifiably robust accuracy for GNNs. It integrates randomized smoothing with two key components, \underline{au}gmentation and con\underline{dit}ional smoothing, aiming to improve data quality and prediction consistency. The augmentation, acting as a pre-processing step, de-noises the randomized graph, significantly improving data quality and clean accuracy. The conditional smoothing, serving as a post-processing step, employs a filtering function to selectively count votes, thereby filtering low-quality predictions and improving voting consistency. Extensive experimental results demonstrate that AuditVotes significantly enhances clean accuracy, certified robustness, and empirical robustness while maintaining high computational efficiency. Notably, compared to baseline randomized smoothing, AuditVotes improves clean accuracy by $437.1\%$ and certified accuracy by $409.3\%$ when the attacker can arbitrarily insert $20$ edges on the Cora-ML datasets, representing a substantial step toward deploying certifiably robust GNNs in real-world applications.
comment: 20 pages
☆ FindTheFlaws: Annotated Errors for Detecting Flawed Reasoning and Scalable Oversight Research
As AI models tackle increasingly complex problems, ensuring reliable human oversight becomes more challenging due to the difficulty of verifying solutions. Approaches to scaling AI supervision include debate, in which two agents engage in structured dialogue to help a judge evaluate claims; critique, in which models identify potential flaws in proposed solutions; and prover-verifier games, in which a capable 'prover' model generates solutions that must be verifiable by a less capable 'verifier'. Evaluations of the scalability of these and similar approaches to difficult problems benefit from datasets that include (1) long-form expert-verified correct solutions and (2) long-form flawed solutions with annotations highlighting specific errors, but few are available. To address this gap, we present FindTheFlaws, a group of five diverse datasets spanning medicine, mathematics, science, coding, and the Lojban language. Each dataset contains questions and long-form solutions with expert annotations validating their correctness or identifying specific error(s) in the reasoning. We evaluate frontier models' critiquing capabilities and observe a range of performance that can be leveraged for scalable oversight experiments: models performing more poorly on particular datasets can serve as judges/verifiers for more capable models. Additionally, for some task/dataset combinations, expert baselines exceed even top model performance, making them more beneficial for scalable oversight experiments.
comment: 43 pages, 3 figures. for associated repository, see https://github.com/modulo-research/findtheflaws
☆ PartialLoading: User Scheduling and Bandwidth Allocation for Parameter-sharing Edge Inference
By provisioning inference offloading services, edge inference drives the rapid growth of AI applications at the network edge. However, achieving high task throughput with stringent latency requirements remains a significant challenge. To address this issue, we develop a parameter-sharing AI model loading (PartialLoading) framework for multi-user edge inference, which exploits two key insights: 1) the majority of latency arises from loading AI models into server GPU memory, and 2) different AI models can share a significant number of parameters, for which redundant loading should be avoided. Towards this end, we formulate a joint multi-user scheduling and spectrum bandwidth allocation problem to maximize task throughput by exploiting shared parameter blocks across models. The intuition is to judiciously schedule user requests to reuse the shared parameter blocks between consecutively loaded models, thereby reducing model loading time substantially. To facilitate solution finding, we decouple the problem into two sub-problems, i.e., user scheduling and bandwidth allocation, showing that solving them sequentially is equivalent to solving the original problem. Due to the NP-hardness of the problem, we first study an important special case called the "bottom-layer-sharing" case, where AI models share some bottom layers within clusters, and design a dynamic programming-based algorithm to obtain the optimal solution in polynomial time. For the general case, where shared parameter blocks appear at arbitrary positions within AI models, we propose a greedy heuristic to obtain the sub-optimal solution efficiently. Simulation results demonstrate that the proposed framework significantly improves task throughput under deadline constraints compared with user scheduling without exploiting parameter sharing.
comment: 16 pages, 9 figures
☆ XL-Instruct: Synthetic Data for Cross-Lingual Open-Ended Generation
Cross-lingual open-ended generation -- i.e. generating responses in a desired language different from that of the user's query -- is an important yet understudied problem. We introduce XL-AlpacaEval, a new benchmark for evaluating cross-lingual generation capabilities in Large Language Models (LLMs), and propose XL-Instruct, a high-quality synthetic data generation method. Fine-tuning with just 8K XL-Instruct-generated instructions significantly improves model performance, increasing the win rate against GPT-4o-Mini from 7.4% to 21.5%, and improving on several fine-grained quality metrics. Additionally, models fine-tuned on XL-Instruct exhibit strong zero-shot transfer to both English-only and multilingual generation tasks. Given its consistent gains across the board, we strongly recommend incorporating XL-Instruct in the post-training pipeline of future multilingual LLMs. To facilitate further research, we will publicly and freely release the XL-Instruct and XL-AlpacaEval datasets, which constitute two of the few cross-lingual resources currently available in the literature.
☆ Enhancing Federated Learning Through Secure Cluster-Weighted Client Aggregation
Federated learning (FL) has emerged as a promising paradigm in machine learning, enabling collaborative model training across decentralized devices without the need for raw data sharing. In FL, a global model is trained iteratively on local datasets residing on individual devices, each contributing to the model's improvement. However, the heterogeneous nature of these local datasets, stemming from diverse user behaviours, device capabilities, and data distributions, poses a significant challenge. The inherent heterogeneity in federated learning gives rise to various issues, including model performance discrepancies, convergence challenges, and potential privacy concerns. As the global model progresses through rounds of training, the disparities in local data quality and quantity can impede the overall effectiveness of federated learning systems. Moreover, maintaining fairness and privacy across diverse user groups becomes a paramount concern. To address this issue, this paper introduces a novel FL framework, ClusterGuardFL, that employs dissimilarity scores, k-means clustering, and reconciliation confidence scores to dynamically assign weights to client updates. The dissimilarity scores between global and local models guide the formation of clusters, with cluster size influencing the weight allocation. Within each cluster, a reconciliation confidence score is calculated for individual data points, and a softmax layer generates customized weights for clients. These weights are utilized in the aggregation process, enhancing the model's robustness and privacy. Experimental results demonstrate the efficacy of the proposed approach in achieving improved model performance in diverse datasets.
♻ ☆ GenFusion: Closing the Loop between Reconstruction and Generation via Videos CVPR 2025
Recently, 3D reconstruction and generation have demonstrated impressive novel view synthesis results, achieving high fidelity and efficiency. However, a notable conditioning gap can be observed between these two fields, e.g., scalable 3D scene reconstruction often requires densely captured views, whereas 3D generation typically relies on a single or no input view, which significantly limits their applications. We found that the source of this phenomenon lies in the misalignment between 3D constraints and generative priors. To address this problem, we propose a reconstruction-driven video diffusion model that learns to condition video frames on artifact-prone RGB-D renderings. Moreover, we propose a cyclical fusion pipeline that iteratively adds restoration frames from the generative model to the training set, enabling progressive expansion and addressing the viewpoint saturation limitations seen in previous reconstruction and generation pipelines. Our evaluation, including view synthesis from sparse view and masked input, validates the effectiveness of our approach. More details at https://genfusion.sibowu.com.
comment: CVPR 2025, project page: https://genfusion.sibowu.com
TopV: Compatible Token Pruning with Inference Time Optimization for Fast and Low-Memory Multimodal Vision Language Model CVPR 2025
Vision-Language Models (VLMs) demand substantial computational resources during inference, largely due to the extensive visual input tokens for representing visual information. Previous studies have noted that visual tokens tend to receive less attention than text tokens, suggesting their lower importance during inference and potential for pruning. However, their methods encounter several challenges: reliance on greedy heuristic criteria for token importance and incompatibility with FlashAttention and KV cache. To address these issues, we introduce \textbf{TopV}, a compatible \textbf{TO}ken \textbf{P}runing with inference Time Optimization for fast and low-memory \textbf{V}LM, achieving efficient pruning without additional training or fine-tuning. Instead of relying on attention scores, we formulate token pruning as an optimization problem, accurately identifying important visual tokens while remaining compatible with FlashAttention. Additionally, since we only perform this pruning once during the prefilling stage, it effectively reduces KV cache size. Our optimization framework incorporates a visual-aware cost function considering factors such as Feature Similarity, Relative Spatial Distance, and Absolute Central Distance, to measure the importance of each source visual token, enabling effective pruning of low-importance tokens. Extensive experiments demonstrate that our method outperforms previous token pruning methods, validating the effectiveness and efficiency of our approach.
comment: Accepted by CVPR 2025
♻ ☆ Reachable Polyhedral Marching (RPM): An Exact Analysis Tool for Deep-Learned Control Systems
Neural networks are increasingly used in robotics as policies, state transition models, state estimation models, or all of the above. With these components being learned from data, it is important to be able to analyze what behaviors were learned and how this affects closed-loop performance. In this paper we take steps toward this goal by developing methods for computing control invariant sets and regions of attraction (ROAs) of dynamical systems represented as neural networks. We focus our attention on feedforward neural networks with the rectified linear unit (ReLU) activation, which are known to implement continuous piecewise-affine (PWA) functions. We describe the Reachable Polyhedral Marching (RPM) algorithm for enumerating the affine pieces of a neural network through an incremental connected walk. We then use this algorithm to compute exact forward and backward reachable sets, from which we provide methods for computing control invariant sets and ROAs. Our approach is unique in that we find these sets incrementally, without Lyapunov-based tools. In our examples we demonstrate the ability of our approach to find non-convex control invariant sets and ROAs on tasks with learned van der Pol oscillator and pendulum models. Further, we provide an accelerated algorithm for computing ROAs that leverages the incremental and connected enumeration of affine regions that RPM provides. We show this acceleration to lead to a 15x speedup in our examples. Finally, we apply our methods to find a set of states that are stabilized by an image-based controller for an aircraft runway control problem.
comment: Submitted to IEEE Transactions on Neural Networks and Learning Systems. arXiv admin note: text overlap with arXiv:2011.11609
♻ ☆ Can Multi-modal (reasoning) LLMs work as deepfake detectors?
Deepfake detection remains a critical challenge in the era of advanced generative models, particularly as synthetic media becomes more sophisticated. In this study, we explore the potential of state of the art multi-modal (reasoning) large language models (LLMs) for deepfake image detection such as (OpenAI O1/4o, Gemini thinking Flash 2, Deepseek Janus, Grok 3, llama 3.2, Qwen 2/2.5 VL, Mistral Pixtral, Claude 3.5/3.7 sonnet) . We benchmark 12 latest multi-modal LLMs against traditional deepfake detection methods across multiple datasets, including recently published real-world deepfake imagery. To enhance performance, we employ prompt tuning and conduct an in-depth analysis of the models' reasoning pathways to identify key contributing factors in their decision-making process. Our findings indicate that best multi-modal LLMs achieve competitive performance with promising generalization ability with zero shot, even surpass traditional deepfake detection pipelines in out-of-distribution datasets while the rest of the LLM families performs extremely disappointing with some worse than random guess. Furthermore, we found newer model version and reasoning capabilities does not contribute to performance in such niche tasks of deepfake detection while model size do help in some cases. This study highlights the potential of integrating multi-modal reasoning in future deepfake detection frameworks and provides insights into model interpretability for robustness in real-world scenarios.
♻ ☆ The Scene Language: Representing Scenes with Programs, Words, and Embeddings CVPR 2025
We introduce the Scene Language, a visual scene representation that concisely and precisely describes the structure, semantics, and identity of visual scenes. It represents a scene with three key components: a program that specifies the hierarchical and relational structure of entities in the scene, words in natural language that summarize the semantic class of each entity, and embeddings that capture the visual identity of each entity. This representation can be inferred from pre-trained language models via a training-free inference technique, given text or image inputs. The resulting scene can be rendered into images using traditional, neural, or hybrid graphics renderers. Together, this forms a robust, automated system for high-quality 3D and 4D scene generation. Compared with existing representations like scene graphs, our proposed Scene Language generates complex scenes with higher fidelity, while explicitly modeling the scene structures to enable precise control and editing.
comment: CVPR 2025. Project page: https://ai.stanford.edu/~yzzhang/projects/scene-language/
♻ ☆ Nepotistically Trained Generative-AI Models Collapse
Trained on massive amounts of human-generated content, AI-generated image synthesis is capable of reproducing semantically coherent images that match the visual appearance of its training data. We show that when retrained on even small amounts of their own creation, these generative-AI models produce highly distorted images. We also show that this distortion extends beyond the text prompts used in retraining, and that once affected, the models struggle to fully heal even after retraining on only real images.
♻ ☆ TEMPLE:Temporal Preference Learning of Video LLMs via Difficulty Scheduling and Pre-SFT Alignment
Video Large Language Models (Video LLMs) have achieved significant success by leveraging a two-stage paradigm: pretraining on large-scale video-text data for vision-language alignment, followed by supervised fine-tuning (SFT) for task-specific capabilities. However, existing approaches struggle with temporal reasoning due to weak temporal correspondence in the data and reliance on the next-token prediction paradigm during training. To address these limitations, we propose TEMPLE (TEMporal Preference Learning), a systematic framework that enhances Video LLMs' temporal reasoning capabilities through Direct Preference Optimization (DPO). To facilitate this, we introduce an automated preference data generation pipeline that systematically constructs preference pairs by selecting videos that are rich in temporal information, designing video-specific perturbation strategies, and finally evaluating model responses on clean and perturbed video inputs. Our temporal alignment features two key innovations: curriculum learning which that progressively increases perturbation difficulty to improve model robustness and adaptability; and "Pre-SFT Alignment'', applying preference optimization before instruction tuning to prioritize fine-grained temporal comprehension. Extensive experiments demonstrate that our approach consistently improves Video LLM performance across multiple benchmarks with a relatively small set of self-generated DPO data. We further analyze the transferability of DPO data across architectures and the role of difficulty scheduling in optimization. Our findings highlight our TEMPLE as a scalable and efficient complement to SFT-based methods, paving the way for developing reliable Video LLMs. Code is available at https://github.com/lscpku/TEMPLE.
♻ ☆ Towards AI-Augmented Data Quality Management: From Data Quality for AI to AI for Data Quality Management
In the contemporary data-driven landscape, ensuring data quality (DQ) is crucial for deriving actionable insights from vast data repositories. The objective of this study is to explore the potential for automating data quality management within data warehouses as data repository commonly used by large organizations. By conducting a systematic review of existing DQ tools available in the market and academic literature, the study assesses their capability to automatically detect and enforce data quality rules. The review encompassed 151 tools from various sources, revealing that most current tools focus on data cleansing and fixing in domain-specific databases rather than data warehouses. Only a limited number of tools, specifically ten, demonstrated the capability to detect DQ rules, not to mention implementing this in data warehouses. The findings underscore a significant gap in the market and academic research regarding AI-augmented DQ rule detection in data warehouses. This paper advocates for further development in this area to enhance the efficiency of DQ management processes, reduce human workload, and lower costs. The study highlights the necessity of advanced tools for automated DQ rule detection, paving the way for improved practices in data quality management tailored to data warehouse environments. The study can guide organizations in selecting data quality tool that would meet their requirements most.
♻ ☆ ContextIQ: A Multimodal Expert-Based Video Retrieval System for Contextual Advertising WACV 2025
Contextual advertising serves ads that are aligned to the content that the user is viewing. The rapid growth of video content on social platforms and streaming services, along with privacy concerns, has increased the need for contextual advertising. Placing the right ad in the right context creates a seamless and pleasant ad viewing experience, resulting in higher audience engagement and, ultimately, better ad monetization. From a technology standpoint, effective contextual advertising requires a video retrieval system capable of understanding complex video content at a very granular level. Current text-to-video retrieval models based on joint multimodal training demand large datasets and computational resources, limiting their practicality and lacking the key functionalities required for ad ecosystem integration. We introduce ContextIQ, a multimodal expert-based video retrieval system designed specifically for contextual advertising. ContextIQ utilizes modality-specific experts-video, audio, transcript (captions), and metadata such as objects, actions, emotion, etc.-to create semantically rich video representations. We show that our system, without joint training, achieves better or comparable results to state-of-the-art models and commercial solutions on multiple text-to-video retrieval benchmarks. Our ablation studies highlight the benefits of leveraging multiple modalities for enhanced video retrieval accuracy instead of using a vision-language model alone. Furthermore, we show how video retrieval systems such as ContextIQ can be used for contextual advertising in an ad ecosystem while also addressing concerns related to brand safety and filtering inappropriate content.
comment: Published at WACV 2025
♻ ☆ LLMs Are Not Intelligent Thinkers: Introducing Mathematical Topic Tree Benchmark for Comprehensive Evaluation of LLMs
Large language models (LLMs) demonstrate impressive capabilities in mathematical reasoning. However, despite these achievements, current evaluations are mostly limited to specific mathematical topics, and it remains unclear whether LLMs are genuinely engaging in reasoning. To address these gaps, we present the Mathematical Topics Tree (MaTT) benchmark, a challenging and structured benchmark that offers 1,958 questions across a wide array of mathematical subjects, each paired with a detailed hierarchical chain of topics. Upon assessing different LLMs using the MaTT benchmark, we find that the most advanced model, GPT-4, achieved a mere 54\% accuracy in a multiple-choice scenario. Interestingly, even when employing Chain-of-Thought prompting, we observe mostly no notable improvement. Moreover, LLMs accuracy dramatically reduced by up to 24.2 percentage point when the questions were presented without providing choices. Further detailed analysis of the LLMs' performance across a range of topics showed significant discrepancy even for closely related subtopics within the same general mathematical area. In an effort to pinpoint the reasons behind LLMs performances, we conducted a manual evaluation of the completeness and correctness of the explanations generated by GPT-4 when choices were available. Surprisingly, we find that in only 53.3\% of the instances where the model provided a correct answer, the accompanying explanations were deemed complete and accurate, i.e., the model engaged in genuine reasoning.
♻ ☆ The interplay between domain specialization and model size
Scaling laws for language models have often focused on finding the optimal model size and token count for training from scratch. However, achieving this optimal balance requires significant compute resources due to the extensive data demands when training models from randomly-initialized weights. Continued pretraining offers a cost-effective alternative, leveraging the compute investment from pretrained models to incorporate new knowledge without requiring extensive new data. Recent findings suggest that data quality influences constants in scaling laws, thereby altering the optimal parameter-token allocation ratio. Building on this insight, we investigate the interplay between domain specialization and model size during continued pretraining under compute-constrained scenarios. Our goal is to identify an optimal training regime for this scenario and detect patterns in this interplay that can be generalized across different model sizes and domains. To compare general and specialized training, we filtered a web-based dataset to extract data from three domains: legal, medical, and accounting. We pretrained models with 1.5B, 3B, 7B, and 14B parameters on both the unfiltered and filtered datasets, then evaluated their performance on domain-specific exams. Results show that as model size increases, specialized models outperform general models while requiring less training compute. Additionally, their growing compute efficiency leads to reduced forgetting of previously learned knowledge.
♻ ☆ APTx: better activation function than MISH, SWISH, and ReLU's variants used in deep learning
Activation Functions introduce non-linearity in the deep neural networks. This nonlinearity helps the neural networks learn faster and efficiently from the dataset. In deep learning, many activation functions are developed and used based on the type of problem statement. ReLU's variants, SWISH, and MISH are goto activation functions. MISH function is considered having similar or even better performance than SWISH, and much better than ReLU. In this paper, we propose an activation function named APTx which behaves similar to MISH, but requires lesser mathematical operations to compute. The lesser computational requirements of APTx does speed up the model training, and thus also reduces the hardware requirement for the deep learning model. Source code: https://github.com/mr-ravin/aptx_activation
comment: 8 pages, 6 figures
♻ ☆ On the dimension of pullback attractors in recurrent neural networks
Recurrent Neural Networks (RNNs) are high-dimensional state space models capable of learning functions on sequence data. Recently, it has been conjectured that reservoir computers, a particular class of RNNs, trained on observations of a dynamical systems can be interpreted as embeddings. This result has been established for the case of linear reservoir systems. In this work, we use a nonautonomous dynamical systems approach to establish an upper bound for the fractal dimension of the subset of reservoir state space approximated during training and prediction phase. We prove that when the input sequences comes from an Nin-dimensional invertible dynamical system, the fractal dimension of this set is bounded above by Nin. The result obtained here are useful in dimensionality reduction of computation in RNNs as well as estimating fractal dimensions of dynamical systems from limited observations of their time series. It is also a step towards understanding embedding properties of reservoir computers.
♻ ☆ COHERENT: Collaboration of Heterogeneous Multi-Robot System with Large Language Models ICRA 2025
Leveraging the powerful reasoning capabilities of large language models (LLMs), recent LLM-based robot task planning methods yield promising results. However, they mainly focus on single or multiple homogeneous robots on simple tasks. Practically, complex long-horizon tasks always require collaboration among multiple heterogeneous robots especially with more complex action spaces, which makes these tasks more challenging. To this end, we propose COHERENT, a novel LLM-based task planning framework for collaboration of heterogeneous multi-robot systems including quadrotors, robotic dogs, and robotic arms. Specifically, a Proposal-Execution-Feedback-Adjustment (PEFA) mechanism is designed to decompose and assign actions for individual robots, where a centralized task assigner makes a task planning proposal to decompose the complex task into subtasks, and then assigns subtasks to robot executors. Each robot executor selects a feasible action to implement the assigned subtask and reports self-reflection feedback to the task assigner for plan adjustment. The PEFA loops until the task is completed. Moreover, we create a challenging heterogeneous multi-robot task planning benchmark encompassing 100 complex long-horizon tasks. The experimental results show that our work surpasses the previous methods by a large margin in terms of success rate and execution efficiency. The experimental videos, code, and benchmark are released at https://github.com/MrKeee/COHERENT.
comment: Accepted by ICRA 2025
♻ ☆ Can Neural Decompilation Assist Vulnerability Prediction on Binary Code?
Vulnerability prediction is valuable in identifying security issues efficiently, even though it requires the source code of the target software system, which is a restrictive hypothesis. This paper presents an experimental study to predict vulnerabilities in binary code without source code or complex representations of the binary, leveraging the pivotal idea of decompiling the binary file through neural decompilation and predicting vulnerabilities through deep learning on the decompiled source code. The results outperform the state-of-the-art in both neural decompilation and vulnerability prediction, showing that it is possible to identify vulnerable programs with this approach concerning bi-class (vulnerable/non-vulnerable) and multi-class (type of vulnerability) analysis.
♻ ☆ Graph Representation Learning via Causal Diffusion for Out-of-Distribution Recommendation WWW2025
Graph Neural Networks (GNNs)-based recommendation algorithms typically assume that training and testing data are drawn from independent and identically distributed (IID) spaces. However, this assumption often fails in the presence of out-of-distribution (OOD) data, resulting in significant performance degradation. In this study, we construct a Structural Causal Model (SCM) to analyze interaction data, revealing that environmental confounders (e.g., the COVID-19 pandemic) lead to unstable correlations in GNN-based models, thus impairing their generalization to OOD data. To address this issue, we propose a novel approach, graph representation learning via causal diffusion (CausalDiffRec) for OOD recommendation. This method enhances the model's generalization on OOD data by eliminating environmental confounding factors and learning invariant graph representations. Specifically, we use backdoor adjustment and variational inference to infer the real environmental distribution, thereby eliminating the impact of environmental confounders. This inferred distribution is then used as prior knowledge to guide the representation learning in the reverse phase of the diffusion process to learn the invariant representation. In addition, we provide a theoretical derivation that proves optimizing the objective function of CausalDiffRec can encourage the model to learn environment-invariant graph representations, thereby achieving excellent generalization performance in recommendations under distribution shifts. Our extensive experiments validate the effectiveness of CausalDiffRec in improving the generalization of OOD data, and the average improvement is up to 10.69% on Food, 18.83% on KuaiRec, 22.41% on Yelp2018, and 11.65% on Douban datasets.
comment: 14 pages, accepted by WWW2025
Advanced Deep Learning Methods for Protein Structure Prediction and Design
After AlphaFold won the Nobel Prize, protein prediction with deep learning once again became a hot topic. We comprehensively explore advanced deep learning methods applied to protein structure prediction and design. It begins by examining recent innovations in prediction architectures, with detailed discussions on improvements such as diffusion based frameworks and novel pairwise attention modules. The text analyses key components including structure generation, evaluation metrics, multiple sequence alignment processing, and network architecture, thereby illustrating the current state of the art in computational protein modelling. Subsequent chapters focus on practical applications, presenting case studies that range from individual protein predictions to complex biomolecular interactions. Strategies for enhancing prediction accuracy and integrating deep learning techniques with experimental validation are thoroughly explored. The later sections review the industry landscape of protein design, highlighting the transformative role of artificial intelligence in biotechnology and discussing emerging market trends and future challenges. Supplementary appendices provide essential resources such as databases and open source tools, making this volume a valuable reference for researchers and students.
♻ ☆ Weighted Graph Structure Learning with Attention Denoising for Node Classification
Node classification in graphs aims to predict the categories of unlabeled nodes by utilizing a small set of labeled nodes. However, weighted graphs often contain noisy edges and anomalous edge weights, which can distort fine-grained relationships between nodes and hinder accurate classification. We propose the Edge Weight-aware Graph Structure Learning (EWGSL) method, which combines weight learning and graph structure learning to address these issues. EWGSL improves node classification by redefining attention coefficients in graph attention networks to incorporate node features and edge weights. It also applies graph structure learning to sparsify attention coefficients and uses a modified InfoNCE loss function to enhance performance by adapting to denoised graph weights. Extensive experimental results show that EWGSL has an average Micro-F1 improvement of 17.8% compared with the best baseline.
comment: This paper is accepted by Youth Academic Annual Conference of Chinese Association of Automation(YAC)
♻ ☆ Modeling Caption Diversity in Contrastive Vision-Language Pretraining ICML2024
There are a thousand ways to caption an image. Contrastive Language Pretraining (CLIP) on the other hand, works by mapping an image and its caption to a single vector -- limiting how well CLIP-like models can represent the diverse ways to describe an image. In this work, we introduce Llip, Latent Language Image Pretraining, which models the diversity of captions that could match an image. Llip's vision encoder outputs a set of visual features that are mixed into a final representation by conditioning on information derived from the text. We show that Llip outperforms non-contextualized baselines like CLIP and SigLIP on a variety of tasks even with large-scale encoders. Llip improves zero-shot classification by an average of 2.9% zero-shot classification benchmarks with a ViT-G/14 encoder. Specifically, Llip attains a zero-shot top-1 accuracy of 83.5% on ImageNet outperforming a similarly sized CLIP by 1.4%. We also demonstrate improvement on zero-shot retrieval on MS-COCO by 6.0%. We provide a comprehensive analysis of the components introduced by the method and demonstrate that Llip leads to richer visual representations.
comment: 14 pages, 8 figures, 7 tables, to be published at ICML2024
♻ ☆ Enhanced Smart Contract Reputability Analysis using Multimodal Data Fusion on Ethereum
The evaluation of smart contract reputability is essential to foster trust in decentralized ecosystems. However, existing methods that rely solely on code analysis or transactional data, offer limited insight into evolving trustworthiness. We propose a multimodal data fusion framework that integrates code features with transactional data to enhance reputability prediction. Our framework initially focuses on AI-based code analysis, utilizing GAN-augmented opcode embeddings to address class imbalance, achieving 97.67% accuracy and a recall of 0.942 in detecting illicit contracts, surpassing traditional oversampling methods. This forms the crux of a reputability-centric fusion strategy, where combining code and transactional data improves recall by 7.25% over single-source models, demonstrating robust performance across validation sets. By providing a holistic view of smart contract behaviour, our approach enhances the model's ability to assess reputability, identify fraudulent activities, and predict anomalous patterns. These capabilities contribute to more accurate reputability assessments, proactive risk mitigation, and enhanced blockchain security.
♻ ☆ Fréchet regression with implicit denoising and multicollinearity reduction
Fr\'echet regression extends linear regression to model complex responses in metric spaces, making it particularly relevant for multi-label regression, where eachinstance can have multiple associated labels. However, addressing noise and dependencies among predictors within this framework remains un derexplored. In this paper, we present an extension of the Global Fr\'echet re gression model that enables explicit modeling of relationships between input variables and multiple responses. To address challenges arising from noise and multicollinearity, we propose a novel framework based on implicit regu larization, which preserves the intrinsic structure of the data while effectively capturing complex dependencies. Our approach ensures accurate and efficient modeling without the biases introduced by traditional explicit regularization methods. Theoretical guarantees are provided, and the performance of the proposed method is demonstrated through numerical experiments.
♻ ☆ Dynamic spillovers and investment strategies across artificial intelligence ETFs, artificial intelligence tokens, and green markets
This paper investigates the risk spillovers among AI ETFs, AI tokens, and green markets using the R2 decomposition method. We reveal several key insights. First, the overall transmission connectedness index (TCI) closely aligns with the contemporaneous TCI, while the lagged TCI is significantly lower. Second, AI ETFs and clean energy act as risk transmitters, whereas AI tokens and green bond function as risk receivers. Third, AI tokens are difficult to hedge and provide limited hedging ability compared to AI ETFs and green assets. However, multivariate portfolios effectively reduce AI tokens investment risk. Among them, the minimum correlation portfolio outperforms the minimum variance and minimum connectedness portfolios.
comment: 24 pages, 8 figures
♻ ☆ DeepLTL: Learning to Efficiently Satisfy Complex LTL Specifications for Multi-Task RL ICLR'25
Linear temporal logic (LTL) has recently been adopted as a powerful formalism for specifying complex, temporally extended tasks in multi-task reinforcement learning (RL). However, learning policies that efficiently satisfy arbitrary specifications not observed during training remains a challenging problem. Existing approaches suffer from several shortcomings: they are often only applicable to finite-horizon fragments of LTL, are restricted to suboptimal solutions, and do not adequately handle safety constraints. In this work, we propose a novel learning approach to address these concerns. Our method leverages the structure of B\"uchi automata, which explicitly represent the semantics of LTL specifications, to learn policies conditioned on sequences of truth assignments that lead to satisfying the desired formulae. Experiments in a variety of discrete and continuous domains demonstrate that our approach is able to zero-shot satisfy a wide range of finite- and infinite-horizon specifications, and outperforms existing methods in terms of both satisfaction probability and efficiency. Code available at: https://deep-ltl.github.io/
comment: ICLR'25 (Oral)
♻ ☆ Seeing Eye to AI: Human Alignment via Gaze-Based Response Rewards for Large Language Models ICLR 2025
Advancements in Natural Language Processing (NLP), have led to the emergence of Large Language Models (LLMs) such as GPT, Llama, Claude, and Gemini, which excel across a range of tasks but require extensive fine-tuning to align their outputs with human expectations. A widely used method for achieving this alignment is Reinforcement Learning from Human Feedback (RLHF), which, despite its success, faces challenges in accurately modelling human preferences. In this paper, we introduce GazeReward, a novel framework that integrates implicit feedback -- and specifically eye-tracking (ET) data -- into the Reward Model (RM). In addition, we explore how ET-based features can provide insights into user preferences. Through ablation studies we test our framework with different integration methods, LLMs, and ET generator models, demonstrating that our approach significantly improves the accuracy of the RM on established human preference datasets. This work advances the ongoing discussion on optimizing AI alignment with human values, exploring the potential of cognitive data for shaping future NLP research.
comment: This paper has been accepted to ICLR 2025
♻ ☆ Triple Phase Transitions: Understanding the Learning Dynamics of Large Language Models from a Neuroscience Perspective
Large language models (LLMs) often exhibit abrupt emergent behavior, whereby new abilities arise at certain points during their training. This phenomenon, commonly referred to as a ''phase transition'', remains poorly understood. In this study, we conduct an integrative analysis of such phase transitions by examining three interconnected perspectives: the similarity between LLMs and the human brain, the internal states of LLMs, and downstream task performance. We propose a novel interpretation for the learning dynamics of LLMs that vary in both training data and architecture, revealing that three phase transitions commonly emerge across these models during training: (1) alignment with the entire brain surges as LLMs begin adhering to task instructions Brain Alignment and Instruction Following, (2) unexpectedly, LLMs diverge from the brain during a period in which downstream task accuracy temporarily stagnates Brain Detachment and Stagnation, and (3) alignment with the brain reoccurs as LLMs become capable of solving the downstream tasks Brain Realignment and Consolidation. These findings illuminate the underlying mechanisms of phase transitions in LLMs, while opening new avenues for interdisciplinary research bridging AI and neuroscience.
comment: 46 pages
♻ ☆ Rethinking Optimization and Architecture for Tiny Language Models
The power of large language models (LLMs) has been demonstrated through numerous data and computing resources. However, the application of language models on mobile devices is facing huge challenge on the computation and memory costs, that is, tiny language models with high performance are urgently required. Limited by the highly complex training process, there are many details for optimizing language models that are seldom studied carefully. In this study, based on a tiny language model with 1B parameters, we carefully design a series of empirical study to analyze the effect of each component. Three perspectives are mainly discussed, \ie, neural architecture, parameter initialization, and optimization strategy. Several design formulas are empirically proved especially effective for tiny language models, including tokenizer compression, architecture tweaking, parameter inheritance and multiple-round training. Then we train PanGu-$\pi$-1B Pro and PanGu-$\pi$-1.5B Pro on 1.6T multilingual corpora, following the established formulas. Experimental results demonstrate the improved optimization and architecture yield a notable average improvement of 8.87 on benchmark evaluation sets for PanGu-$\pi$-1B Pro. Besides, PanGu-$\pi$-1.5B Pro surpasses a range of SOTA models with larger model sizes, validating its superior performance. The code is available at https://github.com/YuchuanTian/RethinkTinyLM.
♻ ☆ Sustainable techniques to improve Data Quality for training image-based explanatory models for Recommender Systems
Visual explanations based on user-uploaded images are an effective and self-contained approach to provide transparency to Recommender Systems (RS), but intrinsic limitations of data used in this explainability paradigm cause existing approaches to use bad quality training data that is highly sparse and suffers from labelling noise. Popular training enrichment approaches like model enlargement or massive data gathering are expensive and environmentally unsustainable, thus we seek to provide better visual explanations to RS aligning with the principles of Responsible AI. In this work, we research the intersection of effective and sustainable training enrichment strategies for visual-based RS explainability models by developing three novel strategies that focus on training Data Quality: 1) selection of reliable negative training examples using Positive-unlabelled Learning, 2) transform-based data augmentation, and 3) text-to-image generative-based data augmentation. The integration of these strategies in three state-of-the-art explainability models increases 5% the performance in relevant ranking metrics of these visual-based RS explainability models without penalizing their practical long-term sustainability, as tested in multiple real-world restaurant recommendation explanation datasets.
♻ ☆ Is 'Right' Right? Enhancing Object Orientation Understanding in Multimodal Large Language Models through Egocentric Instruction Tuning CVPR2025
Multimodal large language models (MLLMs) act as essential interfaces, connecting humans with AI technologies in multimodal applications. However, current MLLMs face challenges in accurately interpreting object orientation in images due to inconsistent orientation annotations in training data, hindering the development of a coherent orientation understanding. To overcome this, we propose egocentric instruction tuning, which aligns MLLMs' orientation understanding with the user's perspective, based on a consistent annotation standard derived from the user's egocentric viewpoint. We first generate egocentric instruction data that leverages MLLMs' ability to recognize object details and applies prior knowledge for orientation understanding. Using this data, we perform instruction tuning to enhance the model's capability for accurate orientation interpretation. In addition, we introduce EgoOrientBench, a benchmark that evaluates MLLMs' orientation understanding across three tasks using images collected from diverse domains. Experimental results on this benchmark show that egocentric instruction tuning significantly improves orientation understanding without compromising overall MLLM performance. The instruction data and benchmark dataset are available on our project page at https://github.com/jhCOR/EgoOrientBench.
comment: CVPR2025 Camera-ready
Long Video Diffusion Generation with Segmented Cross-Attention and Content-Rich Video Data Curation CVPR 2025
We introduce Presto, a novel video diffusion model designed to generate 15-second videos with long-range coherence and rich content. Extending video generation methods to maintain scenario diversity over long durations presents significant challenges. To address this, we propose a Segmented Cross-Attention (SCA) strategy, which splits hidden states into segments along the temporal dimension, allowing each segment to cross-attend to a corresponding sub-caption. SCA requires no additional parameters, enabling seamless incorporation into current DiT-based architectures. To facilitate high-quality long video generation, we build the LongTake-HD dataset, consisting of 261k content-rich videos with scenario coherence, annotated with an overall video caption and five progressive sub-captions. Experiments show that our Presto achieves 78.5% on the VBench Semantic Score and 100% on the Dynamic Degree, outperforming existing state-of-the-art video generation methods. This demonstrates that our proposed Presto significantly enhances content richness, maintains long-range coherence, and captures intricate textual details. More details are displayed on our project page: https://presto-video.github.io/.
comment: This paper is accepted by CVPR 2025
♻ ☆ Estimating LLM Uncertainty with Logits
Over the past few years, Large Language Models (LLMs) have developed rapidly and are widely applied in various domains. However, LLMs face the issue of hallucinations, generating responses that may be unreliable when the models lack relevant knowledge. To be aware of potential hallucinations, uncertainty estimation methods have been introduced, and most of them have confirmed that reliability lies in critical tokens. However, probability-based methods perform poorly in identifying token reliability, limiting their practical utility. In this paper, we reveal that the probability-based method fails to estimate token reliability due to the loss of evidence strength information which is accumulated in the training stage. Therefore, we present Logits-induced token uncertainty (LogTokU), a framework for estimating decoupled token uncertainty in LLMs, enabling real-time uncertainty estimation without requiring multiple sampling processes. We employ evidence modeling to implement LogTokU and use the estimated uncertainty to guide downstream tasks. The experimental results demonstrate that LogTokU has significant effectiveness and promise.
comment: Fixed some data errors in Table 1
♻ ☆ Pricing Strategies for Different Accuracy Models from the Same Dataset Based on Generalized Hotelling's Law
We consider a scenario where a seller possesses a dataset $D$ and trains it into models of varying accuracies for sale in the market. Due to the reproducibility of data, the dataset can be reused to train models with different accuracies, and the training cost is independent of the sales volume. These two characteristics lead to fundamental differences between the data trading market and traditional trading markets. The introduction of different models into the market inevitably gives rise to competition. However, due to the varying accuracies of these models, traditional multi-oligopoly games are not applicable. We consider a generalized Hotelling's law, where the accuracy of the models is abstracted as distance. Buyers choose to purchase models based on a trade-off between accuracy and price, while sellers determine their pricing strategies based on the market's demand. We present two pricing strategies: static pricing strategy and dynamic pricing strategy, and we focus on the static pricing strategy. We propose static pricing mechanisms based on various market conditions and provide an example. Finally, we demonstrate that our pricing strategy remains robust in the context of incomplete information games.
♻ ☆ TimeCMA: Towards LLM-Empowered Multivariate Time Series Forecasting via Cross-Modality Alignment AAAI 2025
Multivariate time series forecasting (MTSF) aims to learn temporal dynamics among variables to forecast future time series. Existing statistical and deep learning-based methods suffer from limited learnable parameters and small-scale training data. Recently, large language models (LLMs) combining time series with textual prompts have achieved promising performance in MTSF. However, we discovered that current LLM-based solutions fall short in learning disentangled embeddings. We introduce TimeCMA, an intuitive yet effective framework for MTSF via cross-modality alignment. Specifically, we present a dual-modality encoding with two branches: the time series encoding branch extracts disentangled yet weak time series embeddings, and the LLM-empowered encoding branch wraps the same time series with text as prompts to obtain entangled yet robust prompt embeddings. As a result, such a cross-modality alignment retrieves both disentangled and robust time series embeddings, "the best of two worlds", from the prompt embeddings based on time series and prompt modality similarities. As another key design, to reduce the computational costs from time series with their length textual prompts, we design an effective prompt to encourage the most essential temporal information to be encapsulated in the last token: only the last token is passed to downstream prediction. We further store the last token embeddings to accelerate inference speed. Extensive experiments on eight real datasets demonstrate that TimeCMA outperforms state-of-the-arts.
comment: Accepted as an Oral Presentation at AAAI 2025 (Main Technical Track)
♻ ☆ Entropy-Reinforced Planning with Large Language Models for Drug Discovery ICML2024
The objective of drug discovery is to identify chemical compounds that possess specific pharmaceutical properties toward a binding target. Existing large language models (LLMS) can achieve high token matching scores in terms of likelihood for molecule generation. However, relying solely on LLM decoding often results in the generation of molecules that are either invalid due to a single misused token, or suboptimal due to unbalanced exploration and exploitation as a consequence of the LLMs prior experience. Here we propose ERP, Entropy-Reinforced Planning for Transformer Decoding, which employs an entropy-reinforced planning algorithm to enhance the Transformer decoding process and strike a balance between exploitation and exploration. ERP aims to achieve improvements in multiple properties compared to direct sampling from the Transformer. We evaluated ERP on the SARS-CoV-2 virus (3CLPro) and human cancer cell target protein (RTCB) benchmarks and demonstrated that, in both benchmarks, ERP consistently outperforms the current state-of-the-art algorithm by 1-5 percent, and baselines by 5-10 percent, respectively. Moreover, such improvement is robust across Transformer models trained with different objectives. Finally, to further illustrate the capabilities of ERP, we tested our algorithm on three code generation benchmarks and outperformed the current state-of-the-art approach as well. Our code is publicly available at: https://github.com/xuefeng-cs/ERP.
comment: Published in ICML2024
♻ ☆ ReQFlow: Rectified Quaternion Flow for Efficient and High-Quality Protein Backbone Generation
Protein backbone generation plays a central role in de novo protein design and is significant for many biological and medical applications. Although diffusion and flow-based generative models provide potential solutions to this challenging task, they often generate proteins with undesired designability and suffer computational inefficiency. In this study, we propose a novel rectified quaternion flow (ReQFlow) matching method for fast and high-quality protein backbone generation. In particular, our method generates a local translation and a 3D rotation from random noise for each residue in a protein chain, which represents each 3D rotation as a unit quaternion and constructs its flow by spherical linear interpolation (SLERP) in an exponential format. We train the model by quaternion flow (QFlow) matching with guaranteed numerical stability and rectify the QFlow model to accelerate its inference and improve the designability of generated protein backbones, leading to the proposed ReQFlow model. Experiments show that ReQFlow achieves state-of-the-art performance in protein backbone generation while requiring much fewer sampling steps and significantly less inference time (e.g., being 37x faster than RFDiffusion and 62x faster than Genie2 when generating a backbone of length 300), demonstrating its effectiveness and efficiency. The code is available at https://github.com/AngxiaoYue/ReQFlow.
♻ ☆ Detecting Multimodal Situations with Insufficient Context and Abstaining from Baseless Predictions
Despite the widespread adoption of Vision-Language Understanding (VLU) benchmarks such as VQA v2, OKVQA, A-OKVQA, GQA, VCR, SWAG, and VisualCOMET, our analysis reveals a pervasive issue affecting their integrity: these benchmarks contain samples where answers rely on assumptions unsupported by the provided context. Training models on such data foster biased learning and hallucinations as models tend to make similar unwarranted assumptions. To address this issue, we collect contextual data for each sample whenever available and train a context selection module to facilitate evidence-based model predictions. Strong improvements across multiple benchmarks demonstrate the effectiveness of our approach. Further, we develop a general-purpose Context-AwaRe Abstention (CARA) detector to identify samples lacking sufficient context and enhance model accuracy by abstaining from responding if the required context is absent. CARA exhibits generalization to new benchmarks it wasn't trained on, underscoring its utility for future VLU benchmarks in detecting or cleaning samples with inadequate context. Finally, we curate a Context Ambiguity and Sufficiency Evaluation (CASE) set to benchmark the performance of insufficient context detectors. Overall, our work represents a significant advancement in ensuring that vision-language models generate trustworthy and evidence-based outputs in complex real-world scenarios.
♻ ☆ Fast Direct: Query-Efficient Online Black-box Guidance for Diffusion-model Target Generation
Guided diffusion-model generation is a promising direction for customizing the generation process of a pre-trained diffusion model to address specific downstream tasks. Existing guided diffusion models either rely on training the guidance model with pre-collected datasets or require the objective functions to be differentiable. However, for most real-world tasks, offline datasets are often unavailable, and their objective functions are often not differentiable, such as image generation with human preferences, molecular generation for drug discovery, and material design. Thus, we need an $\textbf{online}$ algorithm capable of collecting data during runtime and supporting a $\textbf{black-box}$ objective function. Moreover, the $\textbf{query efficiency}$ of the algorithm is also critical because the objective evaluation of the query is often expensive in real-world scenarios. In this work, we propose a novel and simple algorithm, $\textbf{Fast Direct}$, for query-efficient online black-box target generation. Our Fast Direct builds a pseudo-target on the data manifold to update the noise sequence of the diffusion model with a universal direction, which is promising to perform query-efficient guided generation. Extensive experiments on twelve high-resolution ($\small {1024 \times 1024}$) image target generation tasks and six 3D-molecule target generation tasks show $\textbf{6}\times$ up to $\textbf{10}\times$ query efficiency improvement and $\textbf{11}\times$ up to $\textbf{44}\times$ query efficiency improvement, respectively. Our implementation is publicly available at: https://github.com/kimyong95/guide-stable-diffusion/tree/fast-direct
♻ ☆ Learning Multi-Agent Loco-Manipulation for Long-Horizon Quadrupedal Pushing
Recently, quadrupedal locomotion has achieved significant success, but their manipulation capabilities, particularly in handling large objects, remain limited, restricting their usefulness in demanding real-world applications such as search and rescue, construction, industrial automation, and room organization. This paper tackles the task of obstacle-aware, long-horizon pushing by multiple quadrupedal robots. We propose a hierarchical multi-agent reinforcement learning framework with three levels of control. The high-level controller integrates an RRT planner and a centralized adaptive policy to generate subgoals, while the mid-level controller uses a decentralized goal-conditioned policy to guide the robots toward these sub-goals. A pre-trained low-level locomotion policy executes the movement commands. We evaluate our method against several baselines in simulation, demonstrating significant improvements over baseline approaches, with 36.0% higher success rates and 24.5% reduction in completion time than the best baseline. Our framework successfully enables long-horizon, obstacle-aware manipulation tasks like Push-Cuboid and Push-T on Go1 robots in the real world.
Graphics 1
☆ Geometry in Style: 3D Stylization via Surface Normal Deformation CVPR 2025
We present Geometry in Style, a new method for identity-preserving mesh stylization. Existing techniques either adhere to the original shape through overly restrictive deformations such as bump maps or significantly modify the input shape using expressive deformations that may introduce artifacts or alter the identity of the source shape. In contrast, we represent a deformation of a triangle mesh as a target normal vector for each vertex neighborhood. The deformations we recover from target normals are expressive enough to enable detailed stylizations yet restrictive enough to preserve the shape's identity. We achieve such deformations using our novel differentiable As-Rigid-As-Possible (dARAP) layer, a neural-network-ready adaptation of the classical ARAP algorithm which we use to solve for per-vertex rotations and deformed vertices. As a differentiable layer, dARAP is paired with a visual loss from a text-to-image model to drive deformations toward style prompts, altogether giving us Geometry in Style. Our project page is at https://threedle.github.io/geometry-in-style.
comment: CVPR 2025. Our project page is at https://threedle.github.io/geometry-in-style
Robotics 37
☆ Empirical Analysis of Sim-and-Real Cotraining Of Diffusion Policies For Planar Pushing from Pixels IROS 2025
In imitation learning for robotics, cotraining with demonstration data generated both in simulation and on real hardware has emerged as a powerful recipe to overcome the sim2real gap. This work seeks to elucidate basic principles of this sim-and-real cotraining to help inform simulation design, sim-and-real dataset creation, and policy training. Focusing narrowly on the canonical task of planar pushing from camera inputs enabled us to be thorough in our study. These experiments confirm that cotraining with simulated data \emph{can} dramatically improve performance in real, especially when real data is limited. Performance gains scale with simulated data, but eventually plateau; real-world data increases this performance ceiling. The results also suggest that reducing the domain gap in physics may be more important than visual fidelity for non-prehensile manipulation tasks. Perhaps surprisingly, having some visual domain gap actually helps the cotrained policy -- binary probes reveal that high-performing policies learn to distinguish simulated domains from real. We conclude by investigating this nuance and mechanisms that facilitate positive transfer between sim-and-real. In total, our experiments span over 40 real-world policies (evaluated on 800+ trials) and 200 simulated policies (evaluated on 40,000+ trials).
comment: 9 pages, 15 figures, In Submission to IROS 2025
☆ Next-Best-Trajectory Planning of Robot Manipulators for Effective Observation and Exploration ICRA
Visual observation of objects is essential for many robotic applications, such as object reconstruction and manipulation, navigation, and scene understanding. Machine learning algorithms constitute the state-of-the-art in many fields but require vast data sets, which are costly and time-intensive to collect. Automated strategies for observation and exploration are crucial to enhance the efficiency of data gathering. Therefore, a novel strategy utilizing the Next-Best-Trajectory principle is developed for a robot manipulator operating in dynamic environments. Local trajectories are generated to maximize the information gained from observations along the path while avoiding collisions. We employ a voxel map for environment modeling and utilize raycasting from perspectives around a point of interest to estimate the information gain. A global ergodic trajectory planner provides an optional reference trajectory to the local planner, improving exploration and helping to avoid local minima. To enhance computational efficiency, raycasting for estimating the information gain in the environment is executed in parallel on the graphics processing unit. Benchmark results confirm the efficiency of the parallelization, while real-world experiments demonstrate the strategy's effectiveness.
comment: Accepted for publication at the IEEE International Conference on Robotics and Automation (ICRA), 2025
☆ Task Hierarchical Control via Null-Space Projection and Path Integral Approach
This paper addresses the problem of hierarchical task control, where a robotic system must perform multiple subtasks with varying levels of priority. A commonly used approach for hierarchical control is the null-space projection technique, which ensures that higher-priority tasks are executed without interference from lower-priority ones. While effective, the state-of-the-art implementations of this method rely on low-level controllers, such as PID controllers, which can be prone to suboptimal solutions in complex tasks. This paper presents a novel framework for hierarchical task control, integrating the null-space projection technique with the path integral control method. Our approach leverages Monte Carlo simulations for real-time computation of optimal control inputs, allowing for the seamless integration of simpler PID-like controllers with a more sophisticated optimal control technique. Through simulation studies, we demonstrate the effectiveness of this combined approach, showing how it overcomes the limitations of traditional
comment: American Control Conference 2025
SafeCast: Risk-Responsive Motion Forecasting for Autonomous Vehicles
Accurate motion forecasting is essential for the safety and reliability of autonomous driving (AD) systems. While existing methods have made significant progress, they often overlook explicit safety constraints and struggle to capture the complex interactions among traffic agents, environmental factors, and motion dynamics. To address these challenges, we present SafeCast, a risk-responsive motion forecasting model that integrates safety-aware decision-making with uncertainty-aware adaptability. SafeCast is the first to incorporate the Responsibility-Sensitive Safety (RSS) framework into motion forecasting, encoding interpretable safety rules--such as safe distances and collision avoidance--based on traffic norms and physical principles. To further enhance robustness, we introduce the Graph Uncertainty Feature (GUF), a graph-based module that injects learnable noise into Graph Attention Networks, capturing real-world uncertainties and enhancing generalization across diverse scenarios. We evaluate SafeCast on four real-world benchmark datasets--Next Generation Simulation (NGSIM), Highway Drone (HighD), ApolloScape, and the Macao Connected Autonomous Driving (MoCAD)--covering highway, urban, and mixed-autonomy traffic environments. Our model achieves state-of-the-art (SOTA) accuracy while maintaining a lightweight architecture and low inference latency, underscoring its potential for real-time deployment in safety-critical AD systems.
☆ Robust Offline Imitation Learning Through State-level Trajectory Stitching
Imitation learning (IL) has proven effective for enabling robots to acquire visuomotor skills through expert demonstrations. However, traditional IL methods are limited by their reliance on high-quality, often scarce, expert data, and suffer from covariate shift. To address these challenges, recent advances in offline IL have incorporated suboptimal, unlabeled datasets into the training. In this paper, we propose a novel approach to enhance policy learning from mixed-quality offline datasets by leveraging task-relevant trajectory fragments and rich environmental dynamics. Specifically, we introduce a state-based search framework that stitches state-action pairs from imperfect demonstrations, generating more diverse and informative training trajectories. Experimental results on standard IL benchmarks and real-world robotic tasks showcase that our proposed method significantly improves both generalization and performance.
☆ A Centralized Planning and Distributed Execution Method for Shape Filling with Homogeneous Mobile Robots
Nature has inspired humans in different ways. The formation behavior of animals can perform tasks that exceed individual capability. For example, army ants could transverse gaps by forming bridges, and fishes could group up to protect themselves from predators. The pattern formation task is essential in a multiagent robotic system because it usually serves as the initial configuration of downstream tasks, such as collective manipulation and adaptation to various environments. The formation of complex shapes, especially hollow shapes, remains an open question. Traditional approaches either require global coordinates for each robot or are prone to failure when attempting to close the hole due to accumulated localization errors. Inspired by the ribbon idea introduced in the additive self-assembly algorithm by the Kilobot team, we develop a two-stage algorithm that does not require global coordinates information and effectively forms shapes with holes. In this paper, we investigate the partitioning of the shape using ribbons in a hexagonal lattice setting and propose the add-subtract algorithm based on the movement sequence induced by the ribbon structure. This advancement opens the door to tasks requiring complex pattern formations, such as the assembly of nanobots for medical applications involving intricate structures and the deployment of robots along the boundaries of areas of interest. We also provide simulation results on complex shapes, an analysis of the robustness as well as a proof of correctness of the proposed algorithm.
☆ Scenario Dreamer: Vectorized Latent Diffusion for Generating Driving Simulation Environments CVPR 2025
We introduce Scenario Dreamer, a fully data-driven generative simulator for autonomous vehicle planning that generates both the initial traffic scene - comprising a lane graph and agent bounding boxes - and closed-loop agent behaviours. Existing methods for generating driving simulation environments encode the initial traffic scene as a rasterized image and, as such, require parameter-heavy networks that perform unnecessary computation due to many empty pixels in the rasterized scene. Moreover, we find that existing methods that employ rule-based agent behaviours lack diversity and realism. Scenario Dreamer instead employs a novel vectorized latent diffusion model for initial scene generation that directly operates on the vectorized scene elements and an autoregressive Transformer for data-driven agent behaviour simulation. Scenario Dreamer additionally supports scene extrapolation via diffusion inpainting, enabling the generation of unbounded simulation environments. Extensive experiments show that Scenario Dreamer outperforms existing generative simulators in realism and efficiency: the vectorized scene-generation base model achieves superior generation quality with around 2x fewer parameters, 6x lower generation latency, and 10x fewer GPU training hours compared to the strongest baseline. We confirm its practical utility by showing that reinforcement learning planning agents are more challenged in Scenario Dreamer environments than traditional non-generative simulation environments, especially on long and adversarial driving environments.
comment: CVPR 2025
Control of Humanoid Robots with Parallel Mechanisms using Kinematic Actuation Models
Inspired by the mechanical design of Cassie, several recently released humanoid robots are using actuator configuration in which the motor is displaced from the joint location to optimize the leg inertia. This in turn induces a non linearity in the reduction ratio of the transmission which is often neglected when computing the robot motion (e.g. by trajectory optimization or reinforcement learning) and only accounted for at control time. This paper proposes an analytical method to efficiently handle this non-linearity. Using this actuation model, we demonstrate that we can leverage the dynamic abilities of the non-linear transmission while only modeling the inertia of the main serial chain of the leg, without approximating the motor capabilities nor the joint range. Based on analytical inverse kinematics, our method does not need any numerical routines dedicated to the closed-kinematics actuation, hence leading to very efficient computations. Our study focuses on two mechanisms widely used in recent humanoid robots; the four bar knee linkage as well as a parallel 2 DoF ankle mechanism. We integrate these models inside optimization based (DDP) and learning (PPO) control approaches. A comparison of our model against a simplified model that completely neglects closed chains is then shown in simulation.
☆ Scaling Laws of Scientific Discovery with AI and Robot Scientists
The rapid evolution of scientific inquiry highlights an urgent need for groundbreaking methodologies that transcend the limitations of traditional research. Conventional approaches, bogged down by manual processes and siloed expertise, struggle to keep pace with the demands of modern discovery. We envision an autonomous generalist scientist (AGS) system-a fusion of agentic AI and embodied robotics-that redefines the research lifecycle. This system promises to autonomously navigate physical and digital realms, weaving together insights from disparate disciplines with unprecedented efficiency. By embedding advanced AI and robot technologies into every phase-from hypothesis formulation to peer-ready manuscripts-AGS could slash the time and resources needed for scientific research in diverse field. We foresee a future where scientific discovery follows new scaling laws, driven by the proliferation and sophistication of such systems. As these autonomous agents and robots adapt to extreme environments and leverage a growing reservoir of knowledge, they could spark a paradigm shift, pushing the boundaries of what's possible and ushering in an era of relentless innovation.
comment: 22 pages, 7 figures
☆ Collapse and Collision Aware Grasping for Cluttered Shelf Picking
Efficient and safe retrieval of stacked objects in warehouse environments is a significant challenge due to complex spatial dependencies and structural inter-dependencies. Traditional vision-based methods excel at object localization but often lack the physical reasoning required to predict the consequences of extraction, leading to unintended collisions and collapses. This paper proposes a collapse and collision aware grasp planner that integrates dynamic physics simulations for robotic decision-making. Using a single image and depth map, an approximate 3D representation of the scene is reconstructed in a simulation environment, enabling the robot to evaluate different retrieval strategies before execution. Two approaches 1) heuristic-based and 2) physics-based are proposed for both single-box extraction and shelf clearance tasks. Extensive real-world experiments on structured and unstructured box stacks, along with validation using datasets from existing databases, show that our physics-aware method significantly improves efficiency and success rates compared to baseline heuristics.
☆ Robust simultaneous UWB-anchor calibration and robot localization for emergency situations
In this work, we propose a factor graph optimization (FGO) framework to simultaneously solve the calibration problem for Ultra-WideBand (UWB) anchors and the robot localization problem. Calibrating UWB anchors manually can be time-consuming and even impossible in emergencies or those situations without special calibration tools. Therefore, automatic estimation of the anchor positions becomes a necessity. The proposed method enables the creation of a soft sensor providing the position information of the anchors in a UWB network. This soft sensor requires only UWB and LiDAR measurements measured from a moving robot. The proposed FGO framework is suitable for the calibration of an extendable large UWB network. Moreover, the anchor calibration problem and robot localization problem can be solved simultaneously, which saves time for UWB network deployment. The proposed framework also helps to avoid artificial errors in the UWB-anchor position estimation and improves the accuracy and robustness of the robot-pose. The experimental results of the robot localization using LiDAR and a UWB network in a 3D environment are discussed, demonstrating the performance of the proposed method. More specifically, the anchor calibration problem with four anchors and the robot localization problem can be solved simultaneously and automatically within 30 seconds by the proposed framework. The supplementary video and codes can be accessed via https://github.com/LiuxhRobotAI/Simultaneous_calibration_localization.
☆ FLAM: Foundation Model-Based Body Stabilization for Humanoid Locomotion and Manipulation
Humanoid robots have attracted significant attention in recent years. Reinforcement Learning (RL) is one of the main ways to control the whole body of humanoid robots. RL enables agents to complete tasks by learning from environment interactions, guided by task rewards. However, existing RL methods rarely explicitly consider the impact of body stability on humanoid locomotion and manipulation. Achieving high performance in whole-body control remains a challenge for RL methods that rely solely on task rewards. In this paper, we propose a Foundation model-based method for humanoid Locomotion And Manipulation (FLAM for short). FLAM integrates a stabilizing reward function with a basic policy. The stabilizing reward function is designed to encourage the robot to learn stable postures, thereby accelerating the learning process and facilitating task completion. Specifically, the robot pose is first mapped to the 3D virtual human model. Then, the human pose is stabilized and reconstructed through a human motion reconstruction model. Finally, the pose before and after reconstruction is used to compute the stabilizing reward. By combining this stabilizing reward with the task reward, FLAM effectively guides policy learning. Experimental results on a humanoid robot benchmark demonstrate that FLAM outperforms state-of-the-art RL methods, highlighting its effectiveness in improving stability and overall performance.
comment: 8 pages, 7 figures
☆ CRLLK: Constrained Reinforcement Learning for Lane Keeping in Autonomous Driving AAMAS 2025
Lane keeping in autonomous driving systems requires scenario-specific weight tuning for different objectives. We formulate lane-keeping as a constrained reinforcement learning problem, where weight coefficients are automatically learned along with the policy, eliminating the need for scenario-specific tuning. Empirically, our approach outperforms traditional RL in efficiency and reliability. Additionally, real-world demonstrations validate its practical value for real-world autonomous driving.
comment: Accepted at AAMAS 2025 (Demonstration Track), 3 pages, 2 figures, 1 table
☆ Bimanual Regrasp Planning and Control for Eliminating Object Pose Uncertainty
Precisely grasping an object is a challenging task due to pose uncertainties. Conventional methods have used cameras and fixtures to reduce object uncertainty. They are effective but require intensive preparation, such as designing jigs based on the object geometry and calibrating cameras with high-precision tools fabricated using lasers. In this study, we propose a method to reduce the uncertainty of the position and orientation of a grasped object without using a fixture or a camera. Our method is based on the concept that the flat finger pads of a parallel gripper can reduce uncertainty along its opening/closing direction through flat surface contact. Three orthogonal grasps by parallel grippers with flat finger pads collectively constrain an object's position and orientation to a unique state. Guided by the concepts, we develop a regrasp planning and admittance control approach that sequentially finds and leverages three orthogonal grasps of two robotic arms to eliminate uncertainties in the object pose. We evaluated the proposed method on different initial object uncertainties and verified that the method has satisfactory repeatability accuracy. It outperforms an AR marker detection method implemented using cameras and laser jet printers under standard laboratory conditions.
☆ IKSel: Selecting Good Seed Joint Values for Fast Numerical Inverse Kinematics Iterations
This paper revisits the numerical inverse kinematics (IK) problem, leveraging modern computational resources and refining the seed selection process to develop a solver that is competitive with analytical-based methods. The proposed seed selection strategy consists of three key stages: (1) utilizing a K-Dimensional Tree (KDTree) to identify seed candidates based on workspace proximity, (2) sorting candidates by joint space adjustment and attempting numerical iterations with the one requiring minimal adjustment, and (3) re-selecting the most distant joint configurations for new attempts in case of failures. The joint space adjustment-based seed selection increases the likelihood of rapid convergence, while the re-attempt strategy effectively helps circumvent local minima and joint limit constraints. Comparison results with both traditional numerical solvers and learning-based methods demonstrate the strengths of the proposed approach in terms of success rate, time efficiency, and accuracy. Additionally, we conduct detailed ablation studies to analyze the effects of various parameters and solver settings, providing practical insights for customization and optimization. The proposed method consistently exhibits high success rates and computational efficiency. It is suitable for time-sensitive applications.
☆ 3D Acetabular Surface Reconstruction from 2D Pre-operative X-ray Images using SRVF Elastic Registration and Deformation Graph
Accurate and reliable selection of the appropriate acetabular cup size is crucial for restoring joint biomechanics in total hip arthroplasty (THA). This paper proposes a novel framework that integrates square-root velocity function (SRVF)-based elastic shape registration technique with an embedded deformation (ED) graph approach to reconstruct the 3D articular surface of the acetabulum by fusing multiple views of 2D pre-operative pelvic X-ray images and a hemispherical surface model. The SRVF-based elastic registration establishes 2D-3D correspondences between the parametric hemispherical model and X-ray images, and the ED framework incorporates the SRVF-derived correspondences as constraints to optimize the 3D acetabular surface reconstruction using nonlinear least-squares optimization. Validations using both simulation and real patient datasets are performed to demonstrate the robustness and the potential clinical value of the proposed algorithm. The reconstruction result can assist surgeons in selecting the correct acetabular cup on the first attempt in primary THA, minimising the need for revision surgery.
comment: 10 pages, 3 figures, conference
☆ Cooperative Hybrid Multi-Agent Pathfinding Based on Shared Exploration Maps
Multi-Agent Pathfinding is used in areas including multi-robot formations, warehouse logistics, and intelligent vehicles. However, many environments are incomplete or frequently change, making it difficult for standard centralized planning or pure reinforcement learning to maintain both global solution quality and local flexibility. This paper introduces a hybrid framework that integrates D* Lite global search with multi-agent reinforcement learning, using a switching mechanism and a freeze-prevention strategy to handle dynamic conditions and crowded settings. We evaluate the framework in the discrete POGEMA environment and compare it with baseline methods. Experimental outcomes indicate that the proposed framework substantially improves success rate, collision rate, and path efficiency. The model is further tested on the EyeSim platform, where it maintains feasible Pathfinding under frequent changes and large-scale robot deployments.
comment: 22 pages,7 figures
☆ REMAC: Self-Reflective and Self-Evolving Multi-Agent Collaboration for Long-Horizon Robot Manipulation
Vision-language models (VLMs) have demonstrated remarkable capabilities in robotic planning, particularly for long-horizon tasks that require a holistic understanding of the environment for task decomposition. Existing methods typically rely on prior environmental knowledge or carefully designed task-specific prompts, making them struggle with dynamic scene changes or unexpected task conditions, e.g., a robot attempting to put a carrot in the microwave but finds the door was closed. Such challenges underscore two critical issues: adaptability and efficiency. To address them, in this work, we propose an adaptive multi-agent planning framework, termed REMAC, that enables efficient, scene-agnostic multi-robot long-horizon task planning and execution through continuous reflection and self-evolution. REMAC incorporates two key modules: a self-reflection module performing pre-condition and post-condition checks in the loop to evaluate progress and refine plans, and a self-evolvement module dynamically adapting plans based on scene-specific reasoning. It offers several appealing benefits: 1) Robots can initially explore and reason about the environment without complex prompt design. 2) Robots can keep reflecting on potential planning errors and adapting the plan based on task-specific insights. 3) After iterations, a robot can call another one to coordinate tasks in parallel, maximizing the task execution efficiency. To validate REMAC's effectiveness, we build a multi-agent environment for long-horizon robot manipulation and navigation based on RoboCasa, featuring 4 task categories with 27 task styles and 50+ different objects. Based on it, we further benchmark state-of-the-art reasoning models, including DeepSeek-R1, o3-mini, QwQ, and Grok3, demonstrating REMAC's superiority by boosting average success rates by 40% and execution efficiency by 52.7% over the single robot baseline.
☆ Deep Depth Estimation from Thermal Image: Dataset, Benchmark, and Challenges
Achieving robust and accurate spatial perception under adverse weather and lighting conditions is crucial for the high-level autonomy of self-driving vehicles and robots. However, existing perception algorithms relying on the visible spectrum are highly affected by weather and lighting conditions. A long-wave infrared camera (i.e., thermal imaging camera) can be a potential solution to achieve high-level robustness. However, the absence of large-scale datasets and standardized benchmarks remains a significant bottleneck to progress in active research for robust visual perception from thermal images. To this end, this manuscript provides a large-scale Multi-Spectral Stereo (MS$^2$) dataset that consists of stereo RGB, stereo NIR, stereo thermal, stereo LiDAR data, and GNSS/IMU information along with semi-dense depth ground truth. MS$^2$ dataset includes 162K synchronized multi-modal data pairs captured across diverse locations (e.g., urban city, residential area, campus, and high-way road) at different times (e.g., morning, daytime, and nighttime) and under various weather conditions (e.g., clear-sky, cloudy, and rainy). Secondly, we conduct a thorough evaluation of monocular and stereo depth estimation networks across RGB, NIR, and thermal modalities to establish standardized benchmark results on MS$^2$ depth test sets (e.g., day, night, and rainy). Lastly, we provide in-depth analyses and discuss the challenges revealed by the benchmark results, such as the performance variability for each modality under adverse conditions, domain shift between different sensor modalities, and potential research direction for thermal perception. Our dataset and source code are publicly available at https://sites.google.com/view/multi-spectral-stereo-dataset and https://github.com/UkcheolShin/SupDepth4Thermal.
comment: MS^2 dataset: https://sites.google.com/view/multi-spectral-stereo-dataset, Source code: https://github.com/UkcheolShin/SupDepth4Thermal
☆ Task Tokens: A Flexible Approach to Adapting Behavior Foundation Models
Recent advancements in imitation learning have led to transformer-based behavior foundation models (BFMs) that enable multi-modal, human-like control for humanoid agents. While excelling at zero-shot generation of robust behaviors, BFMs often require meticulous prompt engineering for specific tasks, potentially yielding suboptimal results. We introduce "Task Tokens", a method to effectively tailor BFMs to specific tasks while preserving their flexibility. Our approach leverages the transformer architecture of BFMs to learn a new task-specific encoder through reinforcement learning, keeping the original BFM frozen. This allows incorporation of user-defined priors, balancing reward design and prompt engineering. By training a task encoder to map observations to tokens, used as additional BFM inputs, we guide performance improvement while maintaining the model's diverse control characteristics. We demonstrate Task Tokens' efficacy across various tasks, including out-of-distribution scenarios, and show their compatibility with other prompting modalities. Our results suggest that Task Tokens offer a promising approach for adapting BFMs to specific control tasks while retaining their generalization capabilities.
☆ VizFlyt: Perception-centric Pedagogical Framework For Autonomous Aerial Robots ICRA 2025
Autonomous aerial robots are becoming commonplace in our lives. Hands-on aerial robotics courses are pivotal in training the next-generation workforce to meet the growing market demands. Such an efficient and compelling course depends on a reliable testbed. In this paper, we present \textit{VizFlyt}, an open-source perception-centric Hardware-In-The-Loop (HITL) photorealistic testing framework for aerial robotics courses. We utilize pose from an external localization system to hallucinate real-time and photorealistic visual sensors using 3D Gaussian Splatting. This enables stress-free testing of autonomy algorithms on aerial robots without the risk of crashing into obstacles. We achieve over 100Hz of system update rate. Lastly, we build upon our past experiences of offering hands-on aerial robotics courses and propose a new open-source and open-hardware curriculum based on \textit{VizFlyt} for the future. We test our framework on various course projects in real-world HITL experiments and present the results showing the efficacy of such a system and its large potential use cases. Code, datasets, hardware guides and demo videos are available at https://pear.wpi.edu/research/vizflyt.html
comment: Accepted at ICRA 2025. Projected Page: https://pear.wpi.edu/research/vizflyt.html
☆ A Multiple Artificial Potential Functions Approach for Collision Avoidance in UAV Systems
Collision avoidance is a problem largely studied in robotics, particularly in unmanned aerial vehicle (UAV) applications. Among the main challenges in this area are hardware limitations, the need for rapid response, and the uncertainty associated with obstacle detection. Artificial potential functions (APOFs) are a prominent method to address these challenges. However, existing solutions lack assurances regarding closed-loop stability and may result in chattering effects. Motivated by this, we propose a control method for static obstacle avoidance based on multiple artificial potential functions (MAPOFs). We derive tuning conditions on the control parameters that ensure the stability of the final position. The stability proof is established by analyzing the closed-loop system using tools from hybrid systems theory. Furthermore, we validate the performance of the MAPOF control through simulations, showcasing its effectiveness in avoiding static obstacles.
☆ A reduced-scale autonomous morphing vehicle prototype with enhanced aerodynamic efficiency
Road vehicles contribute to significant levels of greenhouse gas (GHG) emissions. A potential strategy for improving their aerodynamic efficiency and reducing emissions is through active adaptation of their exterior shapes to the aerodynamic environment. In this study, we present a reduced-scale morphing vehicle prototype capable of actively interacting with the aerodynamic environment to enhance fuel economy. Morphing is accomplished by retrofitting a deformable structure actively actuated by built-in motors. The morphing vehicle prototype is integrated with an optimization algorithm that can autonomously identify the structural shape that minimizes aerodynamic drag. The performance of the morphing vehicle prototype is investigated through an extensive experimental campaign in a large-scale wind tunnel facility. The autonomous optimization algorithm identifies an optimal morphing shape that can elicit an 8.5% reduction in the mean drag force. Our experiments provide a comprehensive dataset that validates the efficiency of shape morphing, demonstrating a clear and consistent decrease in the drag force as the vehicle transitions from a suboptimal to the optimal shape. Insights gained from experiments on scaled-down models provide valuable guidelines for the design of full-size morphing vehicles, which could lead to appreciable energy savings and reductions in GHG emissions. This study highlights the feasibility and benefits of real-time shape morphing under conditions representative of realistic road environments, paving the way for the realization of full-scale morphing vehicles with enhanced aerodynamic efficiency and reduced GHG emissions.
☆ Co-design of materials, structures and stimuli for magnetic soft robots with large deformation and dynamic contacts
Magnetic soft robots embedded with hard magnetic particles enable untethered actuation via external magnetic fields, offering remote, rapid, and precise control, which is highly promising for biomedical applications. However, designing such systems is challenging due to the complex interplay of magneto-elastic dynamics, large deformation, solid contacts, time-varying stimuli, and posture-dependent loading. As a result, most existing research relies on heuristics and trial-and-error methods or focuses on the independent design of stimuli or structures under static conditions. We propose a topology optimization framework for magnetic soft robots that simultaneously designs structures, location-specific material magnetization and time-varying magnetic stimuli, accounting for large deformations, dynamic motion, and solid contacts. This is achieved by integrating generalized topology optimization with the magneto-elastic material point method, which supports GPU-accelerated parallel simulations and auto-differentiation for sensitivity analysis. We applied this framework to design magnetic robots for various tasks, including multi-task shape morphing and locomotion, in both 2D and 3D. The method autonomously generates optimized robotic systems to achieve target behaviors without requiring human intervention. Despite the nonlinear physics and large design space, it demonstrates exceptional efficiency, completing all cases within minutes. This proposed framework represents a significant step toward the automatic co-design of magnetic soft robots for applications such as metasurfaces, drug delivery, and minimally invasive procedures.
♻ ☆ AcL: Action Learner for Fault-Tolerant Quadruped Locomotion Control
Quadrupedal robots can learn versatile locomotion skills but remain vulnerable when one or more joints lose power. In contrast, dogs and cats can adopt limping gaits when injured, demonstrating their remarkable ability to adapt to physical conditions. Inspired by such adaptability, this paper presents Action Learner (AcL), a novel teacher-student reinforcement learning framework that enables quadrupeds to autonomously adapt their gait for stable walking under multiple joint faults. Unlike conventional teacher-student approaches that enforce strict imitation, AcL leverages teacher policies to generate style rewards, guiding the student policy without requiring precise replication. We train multiple teacher policies, each corresponding to a different fault condition, and subsequently distill them into a single student policy with an encoder-decoder architecture. While prior works primarily address single-joint faults, AcL enables quadrupeds to walk with up to four faulty joints across one or two legs, autonomously switching between different limping gaits when faults occur. We validate AcL on a real Go2 quadruped robot under single- and double-joint faults, demonstrating fault-tolerant, stable walking, smooth gait transitions between normal and lamb gaits, and robustness against external disturbances.
♻ ☆ LaMOuR: Leveraging Language Models for Out-of-Distribution Recovery in Reinforcement Learning
Deep Reinforcement Learning (DRL) has demonstrated strong performance in robotic control but remains susceptible to out-of-distribution (OOD) states, often resulting in unreliable actions and task failure. While previous methods have focused on minimizing or preventing OOD occurrences, they largely neglect recovery once an agent encounters such states. Although the latest research has attempted to address this by guiding agents back to in-distribution states, their reliance on uncertainty estimation hinders scalability in complex environments. To overcome this limitation, we introduce Language Models for Out-of-Distribution Recovery (LaMOuR), which enables recovery learning without relying on uncertainty estimation. LaMOuR generates dense reward codes that guide the agent back to a state where it can successfully perform its original task, leveraging the capabilities of LVLMs in image description, logical reasoning, and code generation. Experimental results show that LaMOuR substantially enhances recovery efficiency across diverse locomotion tasks and even generalizes effectively to complex environments, including humanoid locomotion and mobile manipulation, where existing methods struggle. The code and supplementary materials are available at https://lamour-rl.github.io/.
comment: 14 pages, 16 figures
♻ ☆ Learning Multi-Robot Coordination through Locality-Based Factorized Multi-Agent Actor-Critic Algorithm
In this work, we present a novel cooperative multi-agent reinforcement learning method called \textbf{Loc}ality based \textbf{Fac}torized \textbf{M}ulti-Agent \textbf{A}ctor-\textbf{C}ritic (Loc-FACMAC). Existing state-of-the-art algorithms, such as FACMAC, rely on global reward information, which may not accurately reflect the quality of individual robots' actions in decentralized systems. We integrate the concept of locality into critic learning, where strongly related robots form partitions during training. Robots within the same partition have a greater impact on each other, leading to more precise policy evaluation. Additionally, we construct a dependency graph to capture the relationships between robots, facilitating the partitioning process. This approach mitigates the curse of dimensionality and prevents robots from using irrelevant information. Our method improves existing algorithms by focusing on local rewards and leveraging partition-based learning to enhance training efficiency and performance. We evaluate the performance of Loc-FACMAC in three environments: Hallway, Multi-cartpole, and Bounded-Cooperative-Navigation. We explore the impact of partition sizes on the performance and compare the result with baseline MARL algorithms such as LOMAQ, FACMAC, and QMIX. The experiments reveal that, if the locality structure is defined properly, Loc-FACMAC outperforms these baseline algorithms up to 108\%, indicating that exploiting the locality structure in the actor-critic framework improves the MARL performance.
♻ ☆ Hybrid Action Based Reinforcement Learning for Multi-Objective Compatible Autonomous Driving
Reinforcement Learning (RL) has shown excellent performance in solving decision-making and control problems of autonomous driving, which is increasingly applied in diverse driving scenarios. However, driving is a multi-attribute problem, leading to challenges in achieving multi-objective compatibility for current RL methods, especially in both policy execution and policy iteration. On the one hand, the common action space structure with single action type limits driving flexibility or results in large behavior fluctuations during policy execution. On the other hand, the multi-attribute weighted single reward function result in the agent's disproportionate attention to certain objectives during policy iterations. To this end, we propose a Multi-objective Ensemble-Critic reinforcement learning method with Hybrid Parametrized Action for multi-objective compatible autonomous driving. Specifically, a parameterized action space is constructed to generate hybrid driving actions, combining both abstract guidance and concrete control commands. A multi-objective critics architecture is constructed considering multiple attribute rewards, to ensure simultaneously focusing on different driving objectives. Additionally, uncertainty-based exploration strategy is introduced to help the agent faster approach viable driving policy. The experimental results in both the simulated traffic environment and the HighD dataset demonstrate that our method can achieve multi-objective compatible autonomous driving in terms of driving efficiency, action consistency, and safety. It enhances the general performance of the driving while significantly increasing training efficiency.
comment: 12 pages, 9 figures, 5 tables
♻ ☆ LoRD: Adapting Differentiable Driving Policies to Distribution Shifts ICRA 2025
Distribution shifts between operational domains can severely affect the performance of learned models in self-driving vehicles (SDVs). While this is a well-established problem, prior work has mostly explored naive solutions such as fine-tuning, focusing on the motion prediction task. In this work, we explore novel adaptation strategies for differentiable autonomy stacks consisting of prediction, planning, and control, perform evaluation in closed-loop, and investigate the often-overlooked issue of catastrophic forgetting. Specifically, we introduce two simple yet effective techniques: a low-rank residual decoder (LoRD) and multi-task fine-tuning. Through experiments across three models conducted on two real-world autonomous driving datasets (nuPlan, exiD), we demonstrate the effectiveness of our methods and highlight a significant performance gap between open-loop and closed-loop evaluation in prior approaches. Our approach improves forgetting by up to 23.33% and the closed-loop OOD driving score by 9.93% in comparison to standard fine-tuning.
comment: IEEE International Conference on Robotics & Automation, ICRA 2025
♻ ☆ Non-Prehensile Tool-Object Manipulation by Integrating LLM-Based Planning and Manoeuvrability-Driven Controls
The ability to wield tools was once considered exclusive to human intelligence, but it's now known that many other animals, like crows, possess this capability. Yet, robotic systems still fall short of matching biological dexterity. In this paper, we investigate the use of Large Language Models (LLMs), tool affordances, and object manoeuvrability for non-prehensile tool-based manipulation tasks. Our novel method leverages LLMs based on scene information and natural language instructions to enable symbolic task planning for tool-object manipulation. This approach allows the system to convert the human language sentence into a sequence of feasible motion functions. We have developed a novel manoeuvrability-driven controller using a new tool affordance model derived from visual feedback. This controller helps guide the robot's tool utilization and manipulation actions, even within confined areas, using a stepping incremental approach. The proposed methodology is evaluated with experiments to prove its effectiveness under various manipulation scenarios.
Continuous-Time State Estimation Methods in Robotics: A Survey
Accurate, efficient, and robust state estimation is more important than ever in robotics as the variety of platforms and complexity of tasks continue to grow. Historically, discrete-time filters and smoothers have been the dominant approach, in which the estimated variables are states at discrete sample times. The paradigm of continuous-time state estimation proposes an alternative strategy by estimating variables that express the state as a continuous function of time, which can be evaluated at any query time. Not only can this benefit downstream tasks such as planning and control, but it also significantly increases estimator performance and flexibility, as well as reduces sensor preprocessing and interfacing complexity. Despite this, continuous-time methods remain underutilized, potentially because they are less well-known within robotics. To remedy this, this work presents a unifying formulation of these methods and the most exhaustive literature review to date, systematically categorizing prior work by methodology, application, state variables, historical context, and theoretical contribution to the field. By surveying splines and Gaussian processes together and contextualizing works from other research domains, this work identifies and analyzes open problems in continuous-time state estimation and suggests new research directions.
comment: Submitted to IEEE Transactions on Robotics (T-RO)
♻ ☆ SkillMimic: Learning Basketball Interaction Skills from Demonstrations
Traditional reinforcement learning methods for human-object interaction (HOI) rely on labor-intensive, manually designed skill rewards that do not generalize well across different interactions. We introduce SkillMimic, a unified data-driven framework that fundamentally changes how agents learn interaction skills by eliminating the need for skill-specific rewards. Our key insight is that a unified HOI imitation reward can effectively capture the essence of diverse interaction patterns from HOI datasets. This enables SkillMimic to learn a single policy that not only masters multiple interaction skills but also facilitates skill transitions, with both diversity and generalization improving as the HOI dataset grows. For evaluation, we collect and introduce two basketball datasets containing approximately 35 minutes of diverse basketball skills. Extensive experiments show that SkillMimic successfully masters a wide range of basketball skills including stylistic variations in dribbling, layup, and shooting. Moreover, these learned skills can be effectively composed by a high-level controller to accomplish complex and long-horizon tasks such as consecutive scoring, opening new possibilities for scalable and generalizable interaction skill learning. Project page: https://ingrid789.github.io/SkillMimic/
♻ ☆ Preferenced Oracle Guided Multi-mode Policies for Dynamic Bipedal Loco-Manipulation
Dynamic loco-manipulation calls for effective whole-body control and contact-rich interactions with the object and the environment. Existing learning-based control synthesis relies on training low-level skill policies and explicitly switching with a high-level policy or a hand-designed finite state machine, leading to quasi-static behaviors. In contrast, dynamic tasks such as soccer require the robot to run towards the ball, decelerate to an optimal approach to dribble, and eventually kick a goal - a continuum of smooth motion. To this end, we propose Preferenced Oracle Guided Multi-mode Policies (OGMP) to learn a single policy mastering all the required modes and preferred sequence of transitions to solve uni-object loco-manipulation tasks. We design hybrid automatons as oracles to generate references with continuous dynamics and discrete mode jumps to perform a guided policy optimization through bounded exploration. To enforce learning a desired sequence of mode transitions, we present a task-agnostic preference reward that enhances performance. The proposed approach demonstrates successful loco-manipulation for tasks like soccer and moving boxes omnidirectionally through whole-body control. In soccer, a single policy learns to optimally reach the ball, transition to contact-rich dribbling, and execute successful goal kicks and ball stops. Leveraging the oracle's abstraction, we solve each loco-manipulation task on robots with varying morphologies, including HECTOR V1, Berkeley Humanoid, Unitree G1, and H1, using the same reward definition and weights.
comment: 7 pages, 8 figures
♻ ☆ SuperLoc: The Key to Robust LiDAR-Inertial Localization Lies in Predicting Alignment Risks ICRA 2025
Map-based LiDAR localization, while widely used in autonomous systems, faces significant challenges in degraded environments due to lacking distinct geometric features. This paper introduces SuperLoc, a robust LiDAR localization package that addresses key limitations in existing methods. SuperLoc features a novel predictive alignment risk assessment technique, enabling early detection and mitigation of potential failures before optimization. This approach significantly improves performance in challenging scenarios such as corridors, tunnels, and caves. Unlike existing degeneracy mitigation algorithms that rely on post-optimization analysis and heuristic thresholds, SuperLoc evaluates the localizability of raw sensor measurements. Experimental results demonstrate significant performance improvements over state-of-the-art methods across various degraded environments. Our approach achieves a 54% increase in accuracy and exhibits the highest robustness. To facilitate further research, we release our implementation along with datasets from eight challenging scenarios
comment: 7 pages, 6 figures, accepted at ICRA 2025
♻ ☆ Dynamics-Guided Diffusion Model for Sensor-less Robot Manipulator Design
We present Dynamics-Guided Diffusion Model (DGDM), a data-driven framework for generating task-specific manipulator designs without task-specific training. Given object shapes and task specifications, DGDM generates sensor-less manipulator designs that can blindly manipulate objects towards desired motions and poses using an open-loop parallel motion. This framework 1) flexibly represents manipulation tasks as interaction profiles, 2) represents the design space using a geometric diffusion model, and 3) efficiently searches this design space using the gradients provided by a dynamics network trained without any task information. We evaluate DGDM on various manipulation tasks ranging from shifting/rotating objects to converging objects to a specific pose. Our generated designs outperform optimization-based and unguided diffusion baselines relatively by 31.5% and 45.3% on average success rate. With the ability to generate a new design within 0.8s, DGDM facilitates rapid design iteration and enhances the adoption of data-driven approaches for robot mechanism design. Qualitative results are best viewed on our project website https://dgdm-robot.github.io/.
♻ ☆ One-Shot Imitation under Mismatched Execution
Human demonstrations as prompts are a powerful way to program robots to do long-horizon manipulation tasks. However, translating these demonstrations into robot-executable actions presents significant challenges due to execution mismatches in movement styles and physical capabilities. Existing methods for human-robot translation either depend on paired data, which is infeasible to scale, or rely heavily on frame-level visual similarities that often break down in practice. To address these challenges, we propose RHyME, a novel framework that automatically pairs human and robot trajectories using sequence-level optimal transport cost functions. Given long-horizon robot demonstrations, RHyME synthesizes semantically equivalent human videos by retrieving and composing short-horizon human clips. This approach facilitates effective policy training without the need for paired data. RHyME successfully imitates a range of cross-embodiment demonstrators, both in simulation and with a real human hand, achieving over 50% increase in task success compared to previous methods. We release our code and datasets at https://portal-cornell.github.io/rhyme/.
♻ ☆ MatchMaker: Automated Asset Generation for Robotic Assembly ICRA
Robotic assembly remains a significant challenge due to complexities in visual perception, functional grasping, contact-rich manipulation, and performing high-precision tasks. Simulation-based learning and sim-to-real transfer have led to recent success in solving assembly tasks in the presence of object pose variation, perception noise, and control error; however, the development of a generalist (i.e., multi-task) agent for a broad range of assembly tasks has been limited by the need to manually curate assembly assets, which greatly constrains the number and diversity of assembly problems that can be used for policy learning. Inspired by recent success of using generative AI to scale up robot learning, we propose MatchMaker, a pipeline to automatically generate diverse, simulation-compatible assembly asset pairs to facilitate learning assembly skills. Specifically, MatchMaker can 1) take a simulation-incompatible, interpenetrating asset pair as input, and automatically convert it into a simulation-compatible, interpenetration-free pair, 2) take an arbitrary single asset as input, and generate a geometrically-mating asset to create an asset pair, 3) automatically erode contact surfaces from (1) or (2) according to a user-specified clearance parameter to generate realistic parts. We demonstrate that data generated by MatchMaker outperforms previous work in terms of diversity and effectiveness for downstream assembly skill learning. For videos and additional details, please see our project website: https://wangyian-me.github.io/MatchMaker/.
comment: Accepted to International Conference on Robotics and Automation (ICRA) 2025
Computer Vision 150
☆ Q-Insight: Understanding Image Quality via Visual Reinforcement Learning
Image quality assessment (IQA) focuses on the perceptual visual quality of images, playing a crucial role in downstream tasks such as image reconstruction, compression, and generation. The rapid advancement of multi-modal large language models (MLLMs) has significantly broadened the scope of IQA, moving toward comprehensive image quality understanding that incorporates content analysis, degradation perception, and comparison reasoning beyond mere numerical scoring. Previous MLLM-based methods typically either generate numerical scores lacking interpretability or heavily rely on supervised fine-tuning (SFT) using large-scale annotated datasets to provide descriptive assessments, limiting their flexibility and applicability. In this paper, we propose Q-Insight, a reinforcement learning-based model built upon group relative policy optimization (GRPO), which demonstrates strong visual reasoning capability for image quality understanding while requiring only a limited amount of rating scores and degradation labels. By jointly optimizing score regression and degradation perception tasks with carefully designed reward functions, our approach effectively exploits their mutual benefits for enhanced performance. Extensive experiments demonstrate that Q-Insight substantially outperforms existing state-of-the-art methods in both score regression and degradation perception tasks, while exhibiting impressive zero-shot generalization to comparison reasoning tasks. Code will be available at https://github.com/lwq20020127/Q-Insight.
comment: Technical report
☆ DSO: Aligning 3D Generators with Simulation Feedback for Physical Soundness
Most 3D object generators focus on aesthetic quality, often neglecting physical constraints necessary in applications. One such constraint is that the 3D object should be self-supporting, i.e., remains balanced under gravity. Prior approaches to generating stable 3D objects used differentiable physics simulators to optimize geometry at test-time, which is slow, unstable, and prone to local optima. Inspired by the literature on aligning generative models to external feedback, we propose Direct Simulation Optimization (DSO), a framework to use the feedback from a (non-differentiable) simulator to increase the likelihood that the 3D generator outputs stable 3D objects directly. We construct a dataset of 3D objects labeled with a stability score obtained from the physics simulator. We can then fine-tune the 3D generator using the stability score as the alignment metric, via direct preference optimization (DPO) or direct reward optimization (DRO), a novel objective, which we introduce, to align diffusion models without requiring pairwise preferences. Our experiments show that the fine-tuned feed-forward generator, using either DPO or DRO objective, is much faster and more likely to produce stable objects than test-time optimization. Notably, the DSO framework works even without any ground-truth 3D objects for training, allowing the 3D generator to self-improve by automatically collecting simulation feedback on its own outputs.
comment: Project page: https://ruiningli.com/dso
☆ TranSplat: Lighting-Consistent Cross-Scene Object Transfer with 3D Gaussian Splatting
We present TranSplat, a 3D scene rendering algorithm that enables realistic cross-scene object transfer (from a source to a target scene) based on the Gaussian Splatting framework. Our approach addresses two critical challenges: (1) precise 3D object extraction from the source scene, and (2) faithful relighting of the transferred object in the target scene without explicit material property estimation. TranSplat fits a splatting model to the source scene, using 2D object masks to drive fine-grained 3D segmentation. Following user-guided insertion of the object into the target scene, along with automatic refinement of position and orientation, TranSplat derives per-Gaussian radiance transfer functions via spherical harmonic analysis to adapt the object's appearance to match the target scene's lighting environment. This relighting strategy does not require explicitly estimating physical scene properties such as BRDFs. Evaluated on several synthetic and real-world scenes and objects, TranSplat yields excellent 3D object extractions and relighting performance compared to recent baseline methods and visually convincing cross-scene object transfers. We conclude by discussing the limitations of the approach.
☆ Understanding Co-speech Gestures in-the-wild
Co-speech gestures play a vital role in non-verbal communication. In this paper, we introduce a new framework for co-speech gesture understanding in the wild. Specifically, we propose three new tasks and benchmarks to evaluate a model's capability to comprehend gesture-text-speech associations: (i) gesture-based retrieval, (ii) gestured word spotting, and (iii) active speaker detection using gestures. We present a new approach that learns a tri-modal speech-text-video-gesture representation to solve these tasks. By leveraging a combination of global phrase contrastive loss and local gesture-word coupling loss, we demonstrate that a strong gesture representation can be learned in a weakly supervised manner from videos in the wild. Our learned representations outperform previous methods, including large vision-language models (VLMs), across all three tasks. Further analysis reveals that speech and text modalities capture distinct gesture-related signals, underscoring the advantages of learning a shared tri-modal embedding space. The dataset, model, and code are available at: https://www.robots.ox.ac.uk/~vgg/research/jegal
comment: Main paper - 11 pages, 4 figures, Supplementary - 5 pages, 4 figures
☆ Evaluation of Machine-generated Biomedical Images via A Tally-based Similarity Measure
Super-resolution, in-painting, whole-image generation, unpaired style-transfer, and network-constrained image reconstruction each include an aspect of machine-learned image synthesis where the actual ground truth is not known at time of use. It is generally difficult to quantitatively and authoritatively evaluate the quality of synthetic images; however, in mission-critical biomedical scenarios robust evaluation is paramount. In this work, all practical image-to-image comparisons really are relative qualifications, not absolute difference quantifications; and, therefore, meaningful evaluation of generated image quality can be accomplished using the Tversky Index, which is a well-established measure for assessing perceptual similarity. This evaluation procedure is developed and then demonstrated using multiple image data sets, both real and simulated. The main result is that when the subjectivity and intrinsic deficiencies of any feature-encoding choice are put upfront, Tversky's method leads to intuitive results, whereas traditional methods based on summarizing distances in deep feature spaces do not.
comment: 13 pages. Manuscript under review at IEEE. Data available at https://doi.org/10.13012/B2IDB-2642688_V1
☆ Unicorn: Text-Only Data Synthesis for Vision Language Model Training
Training vision-language models (VLMs) typically requires large-scale, high-quality image-text pairs, but collecting or synthesizing such data is costly. In contrast, text data is abundant and inexpensive, prompting the question: can high-quality multimodal training data be synthesized purely from text? To tackle this, we propose a cross-integrated three-stage multimodal data synthesis framework, which generates two datasets: Unicorn-1.2M and Unicorn-471K-Instruction. In Stage 1: Diverse Caption Data Synthesis, we construct 1.2M semantically diverse high-quality captions by expanding sparse caption seeds using large language models (LLMs). In Stage 2: Instruction-Tuning Data Generation, we further process 471K captions into multi-turn instruction-tuning tasks to support complex reasoning. Finally, in Stage 3: Modality Representation Transfer, these textual captions representations are transformed into visual representations, resulting in diverse synthetic image representations. This three-stage process enables us to construct Unicorn-1.2M for pretraining and Unicorn-471K-Instruction for instruction-tuning, without relying on real images. By eliminating the dependency on real images while maintaining data quality and diversity, our framework offers a cost-effective and scalable solution for VLMs training. Code is available at https://github.com/Yu-xm/Unicorn.git.
☆ Zero4D: Training-Free 4D Video Generation From Single Video Using Off-the-Shelf Video Diffusion Model
Recently, multi-view or 4D video generation has emerged as a significant research topic. Nonetheless, recent approaches to 4D generation still struggle with fundamental limitations, as they primarily rely on harnessing multiple video diffusion models with additional training or compute-intensive training of a full 4D diffusion model with limited real-world 4D data and large computational costs. To address these challenges, here we propose the first training-free 4D video generation method that leverages the off-the-shelf video diffusion models to generate multi-view videos from a single input video. Our approach consists of two key steps: (1) By designating the edge frames in the spatio-temporal sampling grid as key frames, we first synthesize them using a video diffusion model, leveraging a depth-based warping technique for guidance. This approach ensures structural consistency across the generated frames, preserving spatial and temporal coherence. (2) We then interpolate the remaining frames using a video diffusion model, constructing a fully populated and temporally coherent sampling grid while preserving spatial and temporal consistency. Through this approach, we extend a single video into a multi-view video along novel camera trajectories while maintaining spatio-temporal consistency. Our method is training-free and fully utilizes an off-the-shelf video diffusion model, offering a practical and effective solution for multi-view video generation.
comment: project page: https://zero4dvid.github.io/
☆ Audio-Plane: Audio Factorization Plane Gaussian Splatting for Real-Time Talking Head Synthesis
Talking head synthesis has become a key research area in computer graphics and multimedia, yet most existing methods often struggle to balance generation quality with computational efficiency. In this paper, we present a novel approach that leverages an Audio Factorization Plane (Audio-Plane) based Gaussian Splatting for high-quality and real-time talking head generation. For modeling a dynamic talking head, 4D volume representation is needed. However, directly storing a dense 4D grid is impractical due to the high cost and lack of scalability for longer durations. We overcome this challenge with the proposed Audio-Plane, where the 4D volume representation is decomposed into audio-independent space planes and audio-dependent planes. This provides a compact and interpretable feature representation for talking head, facilitating more precise audio-aware spatial encoding and enhanced audio-driven lip dynamic modeling. To further improve speech dynamics, we develop a dynamic splatting method that helps the network more effectively focus on modeling the dynamics of the mouth region. Extensive experiments demonstrate that by integrating these innovations with the powerful Gaussian Splatting, our method is capable of synthesizing highly realistic talking videos in real time while ensuring precise audio-lip synchronization. Synthesized results are available in https://sstzal.github.io/Audio-Plane/.
☆ KEVS: Enhancing Segmentation of Visceral Adipose Tissue in Pre-Cystectomy CT with Gaussian Kernel Density Estimation
Purpose: The distribution of visceral adipose tissue (VAT) in cystectomy patients is indicative of the incidence of post-operative complications. Existing VAT segmentation methods for computed tomography (CT) employing intensity thresholding have limitations relating to inter-observer variability. Moreover, the difficulty in creating ground-truth masks limits the development of deep learning (DL) models for this task. This paper introduces a novel method for VAT prediction in pre-cystectomy CT, which is fully automated and does not require ground-truth VAT masks for training, overcoming aforementioned limitations. Methods: We introduce the Kernel density Enhanced VAT Segmentator ( KEVS), combining a DL semantic segmentation model, for multi-body feature prediction, with Gaussian kernel density estimation analysis of predicted subcutaneous adipose tissue to achieve accurate scan-specific predictions of VAT in the abdominal cavity. Uniquely for a DL pipeline, KEVS does not require ground-truth VAT masks. Results: We verify the ability of KEVS to accurately segment abdominal organs in unseen CT data and compare KEVS VAT segmentation predictions to existing state-of-the-art (SOTA) approaches in a dataset of 20 pre-cystectomy CT scans, collected from University College London Hospital (UCLH-Cyst), with expert ground-truth annotations. KEVS presents a 4.80% and 6.02% improvement in Dice Coefficient over the second best DL and thresholding-based VAT segmentation techniques respectively when evaluated on UCLH-Cyst. Conclusion: This research introduces KEVS; an automated, SOTA method for the prediction of VAT in pre-cystectomy CT which eliminates inter-observer variability and is trained entirely on open-source CT datasets which do not contain ground-truth VAT masks.
comment: Preprint for submission to IPCAI special edition of IJCARS 2025, version prior to any peer review
☆ Using AI to Summarize US Presidential Campaign TV Advertisement Videos, 1952-2012
This paper introduces the largest and most comprehensive dataset of US presidential campaign television advertisements, available in digital format. The dataset also includes machine-searchable transcripts and high-quality summaries designed to facilitate a variety of academic research. To date, there has been great interest in collecting and analyzing US presidential campaign advertisements, but the need for manual procurement and annotation led many to rely on smaller subsets. We design a large-scale parallelized, AI-based analysis pipeline that automates the laborious process of preparing, transcribing, and summarizing videos. We then apply this methodology to the 9,707 presidential ads from the Julian P. Kanter Political Commercial Archive. We conduct extensive human evaluations to show that these transcripts and summaries match the quality of manually generated alternatives. We illustrate the value of this data by including an application that tracks the genesis and evolution of current focal issue areas over seven decades of presidential elections. Our analysis pipeline and codebase also show how to use LLM-based tools to obtain high-quality summaries for other video datasets.
comment: 17 pages, 7 tables, 4 figures, and linked datasets
☆ Next-Best-Trajectory Planning of Robot Manipulators for Effective Observation and Exploration ICRA
Visual observation of objects is essential for many robotic applications, such as object reconstruction and manipulation, navigation, and scene understanding. Machine learning algorithms constitute the state-of-the-art in many fields but require vast data sets, which are costly and time-intensive to collect. Automated strategies for observation and exploration are crucial to enhance the efficiency of data gathering. Therefore, a novel strategy utilizing the Next-Best-Trajectory principle is developed for a robot manipulator operating in dynamic environments. Local trajectories are generated to maximize the information gained from observations along the path while avoiding collisions. We employ a voxel map for environment modeling and utilize raycasting from perspectives around a point of interest to estimate the information gain. A global ergodic trajectory planner provides an optional reference trajectory to the local planner, improving exploration and helping to avoid local minima. To enhance computational efficiency, raycasting for estimating the information gain in the environment is executed in parallel on the graphics processing unit. Benchmark results confirm the efficiency of the parallelization, while real-world experiments demonstrate the strategy's effectiveness.
comment: Accepted for publication at the IEEE International Conference on Robotics and Automation (ICRA), 2025
☆ Breaking Language Barriers in Visual Language Models via Multilingual Textual Regularization
Rapid advancements in Visual Language Models (VLMs) have transformed multimodal understanding but are often constrained by generating English responses regardless of the input language. This phenomenon has been termed as Image-induced Fidelity Loss (IFL) and stems from limited multimodal multilingual training data. To address this, we propose a continuous multilingual integration strategy that injects text-only multilingual data during visual instruction tuning, preserving the language model's original multilingual capabilities. Extensive evaluations demonstrate that our approach significantly improves linguistic fidelity across languages without degradation in visual performance. We also explore model merging, which improves language fidelity but comes at the cost of visual performance. In contrast, our core method achieves robust multilingual alignment without trade-offs, offering a scalable and effective path to mitigating IFL for global VLM adoption.
☆ RELD: Regularization by Latent Diffusion Models for Image Restoration
In recent years, Diffusion Models have become the new state-of-the-art in deep generative modeling, ending the long-time dominance of Generative Adversarial Networks. Inspired by the Regularization by Denoising principle, we introduce an approach that integrates a Latent Diffusion Model, trained for the denoising task, into a variational framework using Half-Quadratic Splitting, exploiting its regularization properties. This approach, under appropriate conditions that can be easily met in various imaging applications, allows for reduced computational cost while achieving high-quality results. The proposed strategy, called Regularization by Latent Denoising (RELD), is then tested on a dataset of natural images, for image denoising, deblurring, and super-resolution tasks. The numerical experiments show that RELD is competitive with other state-of-the-art methods, particularly achieving remarkable results when evaluated using perceptual quality metrics.
☆ Image Decomposition with G-norm Weighted by Total Symmetric Variation
In this paper, we propose a novel variational model for decomposing images into their respective cartoon and texture parts. Our model characterizes certain non-local features of any Bounded Variation (BV) image by its Total Symmetric Variation (TSV). We demonstrate that TSV is effective in identifying regional boundaries. Based on this property, we introduce a weighted Meyer's $G$-norm to identify texture interiors without including contour edges. For BV images with bounded TSV, we show that the proposed model admits a solution. Additionally, we design a fast algorithm based on operator-splitting to tackle the associated non-convex optimization problem. The performance of our method is validated by a series of numerical experiments.
☆ MO-CTranS: A unified multi-organ segmentation model learning from multiple heterogeneously labelled datasets
Multi-organ segmentation holds paramount significance in many clinical tasks. In practice, compared to large fully annotated datasets, multiple small datasets are often more accessible and organs are not labelled consistently. Normally, an individual model is trained for each of these datasets, which is not an effective way of using data for model learning. It remains challenging to train a single model that can robustly learn from several partially labelled datasets due to label conflict and data imbalance problems. We propose MO-CTranS: a single model that can overcome such problems. MO-CTranS contains a CNN-based encoder and a Transformer-based decoder, which are connected in a multi-resolution manner. Task-specific tokens are introduced in the decoder to help differentiate label discrepancies. Our method was evaluated and compared to several baseline models and state-of-the-art (SOTA) solutions on abdominal MRI datasets that were acquired in different views (i.e. axial and coronal) and annotated for different organs (i.e. liver, kidney, spleen). Our method achieved better performance (most were statistically significant) than the compared methods. Github link: https://github.com/naisops/MO-CTranS.
comment: Accepted by International Symposium on Biomedical Imaging (ISIB) 2025 as an oral presentation
☆ LIM: Large Interpolator Model for Dynamic Reconstruction
Reconstructing dynamic assets from video data is central to many in computer vision and graphics tasks. Existing 4D reconstruction approaches are limited by category-specific models or slow optimization-based methods. Inspired by the recent Large Reconstruction Model (LRM), we present the Large Interpolation Model (LIM), a transformer-based feed-forward solution, guided by a novel causal consistency loss, for interpolating implicit 3D representations across time. Given implicit 3D representations at times $t_0$ and $t_1$, LIM produces a deformed shape at any continuous time $t\in[t_0,t_1]$, delivering high-quality interpolated frames in seconds. Furthermore, LIM allows explicit mesh tracking across time, producing a consistently uv-textured mesh sequence ready for integration into existing production pipelines. We also use LIM, in conjunction with a diffusion-based multiview generator, to produce dynamic 4D reconstructions from monocular videos. We evaluate LIM on various dynamic datasets, benchmarking against image-space interpolation methods (e.g., FiLM) and direct triplane linear interpolation, and demonstrate clear advantages. In summary, LIM is the first feed-forward model capable of high-speed tracked 4D asset reconstruction across diverse categories.
☆ Deterministic Medical Image Translation via High-fidelity Brownian Bridges
Recent studies have shown that diffusion models produce superior synthetic images when compared to Generative Adversarial Networks (GANs). However, their outputs are often non-deterministic and lack high fidelity to the ground truth due to the inherent randomness. In this paper, we propose a novel High-fidelity Brownian bridge model (HiFi-BBrg) for deterministic medical image translations. Our model comprises two distinct yet mutually beneficial mappings: a generation mapping and a reconstruction mapping. The Brownian bridge training process is guided by the fidelity loss and adversarial training in the reconstruction mapping. This ensures that translated images can be accurately reversed to their original forms, thereby achieving consistent translations with high fidelity to the ground truth. Our extensive experiments on multiple datasets show HiFi-BBrg outperforms state-of-the-art methods in multi-modal image translation and multi-image super-resolution.
☆ AnnoPage Dataset: Dataset of Non-Textual Elements in Documents with Fine-Grained Categorization ICDAR25
We introduce the AnnoPage Dataset, a novel collection of 7550 pages from historical documents, primarily in Czech and German, spanning from 1485 to the present, focusing on the late 19th and early 20th centuries. The dataset is designed to support research in document layout analysis and object detection. Each page is annotated with axis-aligned bounding boxes (AABB) representing elements of 25 categories of non-textual elements, such as images, maps, decorative elements, or charts, following the Czech Methodology of image document processing. The annotations were created by expert librarians to ensure accuracy and consistency. The dataset also incorporates pages from multiple, mainly historical, document datasets to enhance variability and maintain continuity. The dataset is divided into development and test subsets, with the test set carefully selected to maintain the category distribution. We provide baseline results using YOLO and DETR object detectors, offering a reference point for future research. The AnnoPage Dataset is publicly available on Zenodo (https://doi.org/10.5281/zenodo.12788419), along with ground-truth annotations in YOLO format.
comment: 15 pages, 2 tables, 6 figures; Submitted to ICDAR25
☆ Exploiting Mixture-of-Experts Redundancy Unlocks Multimodal Generative Abilities
In this work, we undertake the challenge of augmenting the existing generative capabilities of pre-trained text-only large language models (LLMs) with multi-modal generation capability while satisfying two core constraints: C1 preserving the preservation of original language generative capabilities with negligible performance degradation, and C2 adhering to a small parameter budget to learn the new modality, ensuring scalability and efficiency. In contrast to current approaches that add dedicated modules, thereby significantly increasing the parameter count, we propose a method that leverages the underutilized capacity inherent in deep models. Specifically, we exploit the parameter redundancy within Mixture-of-Experts (MoEs) as a source of additional capacity for learning a new modality, enabling better parameter efficiency (C1). Moreover, we preserve the original language generation capabilities by applying low-rank adaptation exclusively to the tokens of the new modality (C2). Furthermore, we introduce a novel parameter initialization scheme based on the Gromov-Wasserstein distance to improve convergence and training stability. Through an extensive analysis of the routing mechanism, we uncover the emergence of modality-specific pathways and decreased redundancy within the experts that can efficiently unlock multi-modal generative capabilities. Overall, our method can be seamlessly applied to a wide range of contemporary LLMs, providing a new pathway for transitioning from uni-modal to multi-modal architectures.
☆ Masked Self-Supervised Pre-Training for Text Recognition Transformers on Large-Scale Datasets ICDAR25
Self-supervised learning has emerged as a powerful approach for leveraging large-scale unlabeled data to improve model performance in various domains. In this paper, we explore masked self-supervised pre-training for text recognition transformers. Specifically, we propose two modifications to the pre-training phase: progressively increasing the masking probability, and modifying the loss function to incorporate both masked and non-masked patches. We conduct extensive experiments using a dataset of 50M unlabeled text lines for pre-training and four differently sized annotated datasets for fine-tuning. Furthermore, we compare our pre-trained models against those trained with transfer learning, demonstrating the effectiveness of the self-supervised pre-training. In particular, pre-training consistently improves the character error rate of models, in some cases up to 30 % relatively. It is also on par with transfer learning but without relying on extra annotated text lines.
comment: 18 pages, 7 tables, 6 figures; Submitted to ICDAR25
☆ Scenario Dreamer: Vectorized Latent Diffusion for Generating Driving Simulation Environments CVPR 2025
We introduce Scenario Dreamer, a fully data-driven generative simulator for autonomous vehicle planning that generates both the initial traffic scene - comprising a lane graph and agent bounding boxes - and closed-loop agent behaviours. Existing methods for generating driving simulation environments encode the initial traffic scene as a rasterized image and, as such, require parameter-heavy networks that perform unnecessary computation due to many empty pixels in the rasterized scene. Moreover, we find that existing methods that employ rule-based agent behaviours lack diversity and realism. Scenario Dreamer instead employs a novel vectorized latent diffusion model for initial scene generation that directly operates on the vectorized scene elements and an autoregressive Transformer for data-driven agent behaviour simulation. Scenario Dreamer additionally supports scene extrapolation via diffusion inpainting, enabling the generation of unbounded simulation environments. Extensive experiments show that Scenario Dreamer outperforms existing generative simulators in realism and efficiency: the vectorized scene-generation base model achieves superior generation quality with around 2x fewer parameters, 6x lower generation latency, and 10x fewer GPU training hours compared to the strongest baseline. We confirm its practical utility by showing that reinforcement learning planning agents are more challenged in Scenario Dreamer environments than traditional non-generative simulation environments, especially on long and adversarial driving environments.
comment: CVPR 2025
SemAlign3D: Semantic Correspondence between RGB-Images through Aligning 3D Object-Class Representations CVPR 2025
Semantic correspondence made tremendous progress through the recent advancements of large vision models (LVM). While these LVMs have been shown to reliably capture local semantics, the same can currently not be said for capturing global geometric relationships between semantic object regions. This problem leads to unreliable performance for semantic correspondence between images with extreme view variation. In this work, we aim to leverage monocular depth estimates to capture these geometric relationships for more robust and data-efficient semantic correspondence. First, we introduce a simple but effective method to build 3D object-class representations from monocular depth estimates and LVM features using a sparsely annotated image correspondence dataset. Second, we formulate an alignment energy that can be minimized using gradient descent to obtain an alignment between the 3D object-class representation and the object-class instance in the input RGB-image. Our method achieves state-of-the-art matching accuracy in multiple categories on the challenging SPair-71k dataset, increasing the PCK@0.1 score by more than 10 points on three categories and overall by 3.3 points from 85.6% to 88.9%. Additional resources and code are available at https://dub.sh/semalign3d.
comment: Accepted to CVPR 2025. Poster: https://cvpr.thecvf.com/virtual/2025/poster/32799
☆ EndoLRMGS: Complete Endoscopic Scene Reconstruction combining Large Reconstruction Modelling and Gaussian Splatting
Complete reconstruction of surgical scenes is crucial for robot-assisted surgery (RAS). Deep depth estimation is promising but existing works struggle with depth discontinuities, resulting in noisy predictions at object boundaries and do not achieve complete reconstruction omitting occluded surfaces. To address these issues we propose EndoLRMGS, that combines Large Reconstruction Modelling (LRM) and Gaussian Splatting (GS), for complete surgical scene reconstruction. GS reconstructs deformable tissues and LRM generates 3D models for surgical tools while position and scale are subsequently optimized by introducing orthogonal perspective joint projection optimization (OPjPO) to enhance accuracy. In experiments on four surgical videos from three public datasets, our method improves the Intersection-over-union (IoU) of tool 3D models in 2D projections by>40%. Additionally, EndoLRMGS improves the PSNR of the tools projection from 3.82% to 11.07%. Tissue rendering quality also improves, with PSNR increasing from 0.46% to 49.87%, and SSIM from 1.53% to 29.21% across all test videos.
☆ NuGrounding: A Multi-View 3D Visual Grounding Framework in Autonomous Driving
Multi-view 3D visual grounding is critical for autonomous driving vehicles to interpret natural languages and localize target objects in complex environments. However, existing datasets and methods suffer from coarse-grained language instructions, and inadequate integration of 3D geometric reasoning with linguistic comprehension. To this end, we introduce NuGrounding, the first large-scale benchmark for multi-view 3D visual grounding in autonomous driving. We present a Hierarchy of Grounding (HoG) method to construct NuGrounding to generate hierarchical multi-level instructions, ensuring comprehensive coverage of human instruction patterns. To tackle this challenging dataset, we propose a novel paradigm that seamlessly combines instruction comprehension abilities of multi-modal LLMs (MLLMs) with precise localization abilities of specialist detection models. Our approach introduces two decoupled task tokens and a context query to aggregate 3D geometric information and semantic instructions, followed by a fusion decoder to refine spatial-semantic feature fusion for precise localization. Extensive experiments demonstrate that our method significantly outperforms the baselines adapted from representative 3D scene understanding methods by a significant margin and achieves 0.59 in precision and 0.64 in recall, with improvements of 50.8% and 54.7%.
☆ MVSAnywhere: Zero-Shot Multi-View Stereo CVPR 2025
Computing accurate depth from multiple views is a fundamental and longstanding challenge in computer vision. However, most existing approaches do not generalize well across different domains and scene types (e.g. indoor vs. outdoor). Training a general-purpose multi-view stereo model is challenging and raises several questions, e.g. how to best make use of transformer-based architectures, how to incorporate additional metadata when there is a variable number of input views, and how to estimate the range of valid depths which can vary considerably across different scenes and is typically not known a priori? To address these issues, we introduce MVSA, a novel and versatile Multi-View Stereo architecture that aims to work Anywhere by generalizing across diverse domains and depth ranges. MVSA combines monocular and multi-view cues with an adaptive cost volume to deal with scale-related issues. We demonstrate state-of-the-art zero-shot depth estimation on the Robust Multi-View Depth Benchmark, surpassing existing multi-view stereo and monocular baselines.
comment: CVPR 2025
☆ Unveiling the Mist over 3D Vision-Language Understanding: Object-centric Evaluation with Chain-of-Analysis CVPR 2025
Existing 3D vision-language (3D-VL) benchmarks fall short in evaluating 3D-VL models, creating a "mist" that obscures rigorous insights into model capabilities and 3D-VL tasks. This mist persists due to three key limitations. First, flawed test data, like ambiguous referential text in the grounding task, can yield incorrect and unreliable test results. Second, oversimplified metrics such as simply averaging accuracy per question answering (QA) pair, cannot reveal true model capability due to their vulnerability to language variations. Third, existing benchmarks isolate the grounding and QA tasks, disregarding the underlying coherence that QA should be based on solid grounding capabilities. To unveil the "mist", we propose Beacon3D, a benchmark for 3D-VL grounding and QA tasks, delivering a perspective shift in the evaluation of 3D-VL understanding. Beacon3D features (i) high-quality test data with precise and natural language, (ii) object-centric evaluation with multiple tests per object to ensure robustness, and (iii) a novel chain-of-analysis paradigm to address language robustness and model performance coherence across grounding and QA. Our evaluation of state-of-the-art 3D-VL models on Beacon3D reveals that (i) object-centric evaluation elicits true model performance and particularly weak generalization in QA; (ii) grounding-QA coherence remains fragile in current 3D-VL models, and (iii) incorporating large language models (LLMs) to 3D-VL models, though as a prevalent practice, hinders grounding capabilities and has yet to elevate QA capabilities. We hope Beacon3D and our comprehensive analysis could benefit the 3D-VL community towards faithful developments.
comment: CVPR 2025. Project page: https://beacon-3d.github.io
☆ DF2023: The Digital Forensics 2023 Dataset for Image Forgery Detection
The deliberate manipulation of public opinion, especially through altered images, which are frequently disseminated through online social networks, poses a significant danger to society. To fight this issue on a technical level we support the research community by releasing the Digital Forensics 2023 (DF2023) training and validation dataset, comprising one million images from four major forgery categories: splicing, copy-move, enhancement and removal. This dataset enables an objective comparison of network architectures and can significantly reduce the time and effort of researchers preparing datasets.
comment: Published at the 25th Irish Machine Vision and Image Processing Conference (IMVIP) --- Proceedings: https://iprcs.github.io/pdf/IMVIP2023_Proceeding.pdf --- Dataset download: https://zenodo.org/records/7326540/files/DF2023_train.zip https://zenodo.org/records/7326540/files/DF2023_val.zip Kaggle: https://www.kaggle.com/datasets/davidfischinger/df2023-digital-forensics-2023-dataset/data
☆ Modeling Multiple Normal Action Representations for Error Detection in Procedural Tasks
Error detection in procedural activities is essential for consistent and correct outcomes in AR-assisted and robotic systems. Existing methods often focus on temporal ordering errors or rely on static prototypes to represent normal actions. However, these approaches typically overlook the common scenario where multiple, distinct actions are valid following a given sequence of executed actions. This leads to two issues: (1) the model cannot effectively detect errors using static prototypes when the inference environment or action execution distribution differs from training; and (2) the model may also use the wrong prototypes to detect errors if the ongoing action label is not the same as the predicted one. To address this problem, we propose an Adaptive Multiple Normal Action Representation (AMNAR) framework. AMNAR predicts all valid next actions and reconstructs their corresponding normal action representations, which are compared against the ongoing action to detect errors. Extensive experiments demonstrate that AMNAR achieves state-of-the-art performance, highlighting the effectiveness of AMNAR and the importance of modeling multiple valid next actions in error detection. The code is available at https://github.com/iSEE-Laboratory/AMNAR.
☆ VITAL: More Understandable Feature Visualization through Distribution Alignment and Relevant Information Flow
Neural networks are widely adopted to solve complex and challenging tasks. Especially in high-stakes decision-making, understanding their reasoning process is crucial, yet proves challenging for modern deep networks. Feature visualization (FV) is a powerful tool to decode what information neurons are responding to and hence to better understand the reasoning behind such networks. In particular, in FV we generate human-understandable images that reflect the information detected by neurons of interest. However, current methods often yield unrecognizable visualizations, exhibiting repetitive patterns and visual artifacts that are hard to understand for a human. To address these problems, we propose to guide FV through statistics of real image features combined with measures of relevant network flow to generate prototypical images. Our approach yields human-understandable visualizations that both qualitatively and quantitatively improve over state-of-the-art FVs across various architectures. As such, it can be used to decode which information the network uses, complementing mechanistic circuits that identify where it is encoded. Code is available at: https://github.com/adagorgun/VITAL
comment: Code is available at: https://github.com/adagorgun/VITAL
☆ DF-Net: The Digital Forensics Network for Image Forgery Detection
The orchestrated manipulation of public opinion, particularly through manipulated images, often spread via online social networks (OSN), has become a serious threat to society. In this paper we introduce the Digital Forensics Net (DF-Net), a deep neural network for pixel-wise image forgery detection. The released model outperforms several state-of-the-art methods on four established benchmark datasets. Most notably, DF-Net's detection is robust against lossy image operations (e.g resizing, compression) as they are automatically performed by social networks.
comment: Published in 2023 at the 25th Irish Machine Vision and Image Processing Conference (IMVIP), https://iprcs.github.io/pdf/IMVIP2023_Proceeding.pdf
☆ GAITGen: Disentangled Motion-Pathology Impaired Gait Generative Model -- Bringing Motion Generation to the Clinical Domain
Gait analysis is crucial for the diagnosis and monitoring of movement disorders like Parkinson's Disease. While computer vision models have shown potential for objectively evaluating parkinsonian gait, their effectiveness is limited by scarce clinical datasets and the challenge of collecting large and well-labelled data, impacting model accuracy and risk of bias. To address these gaps, we propose GAITGen, a novel framework that generates realistic gait sequences conditioned on specified pathology severity levels. GAITGen employs a Conditional Residual Vector Quantized Variational Autoencoder to learn disentangled representations of motion dynamics and pathology-specific factors, coupled with Mask and Residual Transformers for conditioned sequence generation. GAITGen generates realistic, diverse gait sequences across severity levels, enriching datasets and enabling large-scale model training in parkinsonian gait analysis. Experiments on our new PD-GaM (real) dataset demonstrate that GAITGen outperforms adapted state-of-the-art models in both reconstruction fidelity and generation quality, accurately capturing critical pathology-specific gait features. A clinical user study confirms the realism and clinical relevance of our generated sequences. Moreover, incorporating GAITGen-generated data into downstream tasks improves parkinsonian gait severity estimation, highlighting its potential for advancing clinical gait analysis.
☆ Endo-TTAP: Robust Endoscopic Tissue Tracking via Multi-Facet Guided Attention and Hybrid Flow-point Supervision
Accurate tissue point tracking in endoscopic videos is critical for robotic-assisted surgical navigation and scene understanding, but remains challenging due to complex deformations, instrument occlusion, and the scarcity of dense trajectory annotations. Existing methods struggle with long-term tracking under these conditions due to limited feature utilization and annotation dependence. We present Endo-TTAP, a novel framework addressing these challenges through: (1) A Multi-Facet Guided Attention (MFGA) module that synergizes multi-scale flow dynamics, DINOv2 semantic embeddings, and explicit motion patterns to jointly predict point positions with uncertainty and occlusion awareness; (2) A two-stage curriculum learning strategy employing an Auxiliary Curriculum Adapter (ACA) for progressive initialization and hybrid supervision. Stage I utilizes synthetic data with optical flow ground truth for uncertainty-occlusion regularization, while Stage II combines unsupervised flow consistency and semi-supervised learning with refined pseudo-labels from off-the-shelf trackers. Extensive validation on two MICCAI Challenge datasets and our collected dataset demonstrates that Endo-TTAP achieves state-of-the-art performance in tissue point tracking, particularly in scenarios characterized by complex endoscopic conditions. The source code and dataset will be available at https://anonymous.4open.science/r/Endo-TTAP-36E5.
☆ Data Quality Matters: Quantifying Image Quality Impact on Machine Learning Performance
Precise perception of the environment is essential in highly automated driving systems, which rely on machine learning tasks such as object detection and segmentation. Compression of sensor data is commonly used for data handling, while virtualization is used for hardware-in-the-loop validation. Both methods can alter sensor data and degrade model performance. This necessitates a systematic approach to quantifying image validity. This paper presents a four-step framework to evaluate the impact of image modifications on machine learning tasks. First, a dataset with modified images is prepared to ensure one-to-one matching image pairs, enabling measurement of deviations resulting from compression and virtualization. Second, image deviations are quantified by comparing the effects of compression and virtualization against original camera-based sensor data. Third, the performance of state-of-the-art object detection models is analyzed to determine how altered input data affects perception tasks, including bounding box accuracy and reliability. Finally, a correlation analysis is performed to identify relationships between image quality and model performance. As a result, the LPIPS metric achieves the highest correlation between image deviation and machine learning performance across all evaluated machine learning tasks.
comment: Submitted to IEEE IV 2025, Under Review
☆ ViSketch-GPT: Collaborative Multi-Scale Feature Extraction for Sketch Recognition and Generation
Understanding the nature of human sketches is challenging because of the wide variation in how they are created. Recognizing complex structural patterns improves both the accuracy in recognizing sketches and the fidelity of the generated sketches. In this work, we introduce ViSketch-GPT, a novel algorithm designed to address these challenges through a multi-scale context extraction approach. The model captures intricate details at multiple scales and combines them using an ensemble-like mechanism, where the extracted features work collaboratively to enhance the recognition and generation of key details crucial for classification and generation tasks. The effectiveness of ViSketch-GPT is validated through extensive experiments on the QuickDraw dataset. Our model establishes a new benchmark, significantly outperforming existing methods in both classification and generation tasks, with substantial improvements in accuracy and the fidelity of generated sketches. The proposed algorithm offers a robust framework for understanding complex structures by extracting features that collaborate to recognize intricate details, enhancing the understanding of structures like sketches and making it a versatile tool for various applications in computer vision and machine learning.
☆ ForcePose: A Deep Learning Approach for Force Calculation Based on Action Recognition Using MediaPipe Pose Estimation Combined with Object Detection
Force estimation in human-object interactions is crucial for various fields like ergonomics, physical therapy, and sports science. Traditional methods depend on specialized equipment such as force plates and sensors, which makes accurate assessments both expensive and restricted to laboratory settings. In this paper, we introduce ForcePose, a novel deep learning framework that estimates applied forces by combining human pose estimation with object detection. Our approach leverages MediaPipe for skeletal tracking and SSD MobileNet for object recognition to create a unified representation of human-object interaction. We've developed a specialized neural network that processes both spatial and temporal features to predict force magnitude and direction without needing any physical sensors. After training on our dataset of 850 annotated videos with corresponding force measurements, our model achieves a mean absolute error of 5.83 N in force magnitude and 7.4 degrees in force direction. When compared to existing computer vision approaches, our method performs 27.5% better while still offering real-time performance on standard computing hardware. ForcePose opens up new possibilities for force analysis in diverse real-world scenarios where traditional measurement tools are impractical or intrusive. This paper discusses our methodology, the dataset creation process, evaluation metrics, and potential applications across rehabilitation, ergonomics assessment, and athletic performance analysis.
☆ Mitigating Knowledge Discrepancies among Multiple Datasets for Task-agnostic Unified Face Alignment
Despite the similar structures of human faces, existing face alignment methods cannot learn unified knowledge from multiple datasets with different landmark annotations. The limited training samples in a single dataset commonly result in fragile robustness in this field. To mitigate knowledge discrepancies among different datasets and train a task-agnostic unified face alignment (TUFA) framework, this paper presents a strategy to unify knowledge from multiple datasets. Specifically, we calculate a mean face shape for each dataset. To explicitly align these mean shapes on an interpretable plane based on their semantics, each shape is then incorporated with a group of semantic alignment embeddings. The 2D coordinates of these aligned shapes can be viewed as the anchors of the plane. By encoding them into structure prompts and further regressing the corresponding facial landmarks using image features, a mapping from the plane to the target faces is finally established, which unifies the learning target of different datasets. Consequently, multiple datasets can be utilized to boost the generalization ability of the model. The successful mitigation of discrepancies also enhances the efficiency of knowledge transferring to a novel dataset, significantly boosts the performance of few-shot face alignment. Additionally, the interpretable plane endows TUFA with a task-agnostic characteristic, enabling it to locate landmarks unseen during training in a zero-shot manner. Extensive experiments are carried on seven benchmarks and the results demonstrate an impressive improvement in face alignment brought by knowledge discrepancies mitigation.
comment: 24 Pages, 9 Figures
☆ EchoFlow: A Foundation Model for Cardiac Ultrasound Image and Video Generation
Advances in deep learning have significantly enhanced medical image analysis, yet the availability of large-scale medical datasets remains constrained by patient privacy concerns. We present EchoFlow, a novel framework designed to generate high-quality, privacy-preserving synthetic echocardiogram images and videos. EchoFlow comprises four key components: an adversarial variational autoencoder for defining an efficient latent representation of cardiac ultrasound images, a latent image flow matching model for generating accurate latent echocardiogram images, a latent re-identification model to ensure privacy by filtering images anatomically, and a latent video flow matching model for animating latent images into realistic echocardiogram videos conditioned on ejection fraction. We rigorously evaluate our synthetic datasets on the clinically relevant task of ejection fraction regression and demonstrate, for the first time, that downstream models trained exclusively on EchoFlow-generated synthetic datasets achieve performance parity with models trained on real datasets. We release our models and synthetic datasets, enabling broader, privacy-compliant research in medical ultrasound imaging at https://huggingface.co/spaces/HReynaud/EchoFlow.
comment: This work has been submitted to the IEEE for possible publication
☆ Meta-LoRA: Meta-Learning LoRA Components for Domain-Aware ID Personalization
Recent advancements in text-to-image generative models, particularly latent diffusion models (LDMs), have demonstrated remarkable capabilities in synthesizing high-quality images from textual prompts. However, achieving identity personalization-ensuring that a model consistently generates subject-specific outputs from limited reference images-remains a fundamental challenge. To address this, we introduce Meta-Low-Rank Adaptation (Meta-LoRA), a novel framework that leverages meta-learning to encode domain-specific priors into LoRA-based identity personalization. Our method introduces a structured three-layer LoRA architecture that separates identity-agnostic knowledge from identity-specific adaptation. In the first stage, the LoRA Meta-Down layers are meta-trained across multiple subjects, learning a shared manifold that captures general identity-related features. In the second stage, only the LoRA-Mid and LoRA-Up layers are optimized to specialize on a given subject, significantly reducing adaptation time while improving identity fidelity. To evaluate our approach, we introduce Meta-PHD, a new benchmark dataset for identity personalization, and compare Meta-LoRA against state-of-the-art methods. Our results demonstrate that Meta-LoRA achieves superior identity retention, computational efficiency, and adaptability across diverse identity conditions. The code, model weights, and dataset will be released publicly upon acceptance.
☆ One Look is Enough: A Novel Seamless Patchwise Refinement for Zero-Shot Monocular Depth Estimation Models on High-Resolution Images
Zero-shot depth estimation (DE) models exhibit strong generalization performance as they are trained on large-scale datasets. However, existing models struggle with high-resolution images due to the discrepancy in image resolutions of training (with smaller resolutions) and inference (for high resolutions). Processing them at full resolution leads to decreased estimation accuracy on depth with tremendous memory consumption, while downsampling to the training resolution results in blurred edges in the estimated depth images. Prevailing high-resolution depth estimation methods adopt a patch-based approach, which introduces depth discontinuity issues when reassembling the estimated depth patches and results in test-time inefficiency. Additionally, to obtain fine-grained depth details, these methods rely on synthetic datasets due to the real-world sparse ground truth depth, leading to poor generalizability. To tackle these limitations, we propose Patch Refine Once (PRO), an efficient and generalizable tile-based framework. Our PRO consists of two key components: (i) Grouped Patch Consistency Training that enhances test-time efficiency while mitigating the depth discontinuity problem by jointly processing four overlapping patches and enforcing a consistency loss on their overlapping regions within a single backpropagation step, and (ii) Bias Free Masking that prevents the DE models from overfitting to dataset-specific biases, enabling better generalization to real-world datasets even after training on synthetic data. Zero-shot evaluation on Booster, ETH3D, Middlebury 2014, and NuScenes demonstrates into which our PRO can be well harmonized, making their DE capabilities still effective for the grid input of high-resolution images with little depth discontinuities at the grid boundaries. Our PRO runs fast at inference time.
comment: Please visit our project page this https://kaist-viclab.github.io/One-Look-is-Enough_site
☆ GCRayDiffusion: Pose-Free Surface Reconstruction via Geometric Consistent Ray Diffusion
Accurate surface reconstruction from unposed images is crucial for efficient 3D object or scene creation. However, it remains challenging, particularly for the joint camera pose estimation. Previous approaches have achieved impressive pose-free surface reconstruction results in dense-view settings, but could easily fail for sparse-view scenarios without sufficient visual overlap. In this paper, we propose a new technique for pose-free surface reconstruction, which follows triplane-based signed distance field (SDF) learning but regularizes the learning by explicit points sampled from ray-based diffusion of camera pose estimation. Our key contribution is a novel Geometric Consistent Ray Diffusion model (GCRayDiffusion), where we represent camera poses as neural bundle rays and regress the distribution of noisy rays via a diffusion model. More importantly, we further condition the denoising process of RGRayDiffusion using the triplane-based SDF of the entire scene, which provides effective 3D consistent regularization to achieve multi-view consistent camera pose estimation. Finally, we incorporate RGRayDiffusion into the triplane-based SDF learning by introducing on-surface geometric regularization from the sampling points of the neural bundle rays, which leads to highly accurate pose-free surface reconstruction results even for sparse-view inputs. Extensive evaluations on public datasets show that our GCRayDiffusion achieves more accurate camera pose estimation than previous approaches, with geometrically more consistent surface reconstruction results, especially given sparse-view inputs.
☆ ArchCAD-400K: An Open Large-Scale Architectural CAD Dataset and New Baseline for Panoptic Symbol Spotting
Recognizing symbols in architectural CAD drawings is critical for various advanced engineering applications. In this paper, we propose a novel CAD data annotation engine that leverages intrinsic attributes from systematically archived CAD drawings to automatically generate high-quality annotations, thus significantly reducing manual labeling efforts. Utilizing this engine, we construct ArchCAD-400K, a large-scale CAD dataset consisting of 413,062 chunks from 5538 highly standardized drawings, making it over 26 times larger than the largest existing CAD dataset. ArchCAD-400K boasts an extended drawing diversity and broader categories, offering line-grained annotations. Furthermore, we present a new baseline model for panoptic symbol spotting, termed Dual-Pathway Symbol Spotter (DPSS). It incorporates an adaptive fusion module to enhance primitive features with complementary image features, achieving state-of-the-art performance and enhanced robustness. Extensive experiments validate the effectiveness of DPSS, demonstrating the value of ArchCAD-400K and its potential to drive innovation in architectural design and construction.
Semantix: An Energy Guided Sampler for Semantic Style Transfer ICLR 2025
Recent advances in style and appearance transfer are impressive, but most methods isolate global style and local appearance transfer, neglecting semantic correspondence. Additionally, image and video tasks are typically handled in isolation, with little focus on integrating them for video transfer. To address these limitations, we introduce a novel task, Semantic Style Transfer, which involves transferring style and appearance features from a reference image to a target visual content based on semantic correspondence. We subsequently propose a training-free method, Semantix an energy-guided sampler designed for Semantic Style Transfer that simultaneously guides both style and appearance transfer based on semantic understanding capacity of pre-trained diffusion models. Additionally, as a sampler, Semantix be seamlessly applied to both image and video models, enabling semantic style transfer to be generic across various visual media. Specifically, once inverting both reference and context images or videos to noise space by SDEs, Semantix utilizes a meticulously crafted energy function to guide the sampling process, including three key components: Style Feature Guidance, Spatial Feature Guidance and Semantic Distance as a regularisation term. Experimental results demonstrate that Semantix not only effectively accomplishes the task of semantic style transfer across images and videos, but also surpasses existing state-of-the-art solutions in both fields. The project website is available at https://huiang-he.github.io/semantix/
comment: 28 pages, 19 figures, Accepted to ICLR 2025
☆ Imperceptible but Forgeable: Practical Invisible Watermark Forgery via Diffusion Models
Invisible watermarking is critical for content provenance and accountability in Generative AI. Although commercial companies have increasingly committed to using watermarks, the robustness of existing watermarking schemes against forgery attacks is understudied. This paper proposes DiffForge, the first watermark forgery framework capable of forging imperceptible watermarks under a no-box setting. We estimate the watermark distribution using an unconditional diffusion model and introduce shallow inversion to inject the watermark into a non-watermarked image seamlessly. This approach facilitates watermark injection while preserving image quality by adaptively selecting the depth of inversion steps, leveraging our key insight that watermarks degrade with added noise during the early diffusion phases. Comprehensive evaluations show that DiffForge deceives open-source watermark detectors with a 96.38% success rate and misleads a commercial watermark system with over 97% success rate, achieving high confidence.1 This work reveals fundamental security limitations in current watermarking paradigms.
☆ VoteFlow: Enforcing Local Rigidity in Self-Supervised Scene Flow CVPR 2025
Scene flow estimation aims to recover per-point motion from two adjacent LiDAR scans. However, in real-world applications such as autonomous driving, points rarely move independently of others, especially for nearby points belonging to the same object, which often share the same motion. Incorporating this locally rigid motion constraint has been a key challenge in self-supervised scene flow estimation, which is often addressed by post-processing or appending extra regularization. While these approaches are able to improve the rigidity of predicted flows, they lack an architectural inductive bias for local rigidity within the model structure, leading to suboptimal learning efficiency and inferior performance. In contrast, we enforce local rigidity with a lightweight add-on module in neural network design, enabling end-to-end learning. We design a discretized voting space that accommodates all possible translations and then identify the one shared by nearby points by differentiable voting. Additionally, to ensure computational efficiency, we operate on pillars rather than points and learn representative features for voting per pillar. We plug the Voting Module into popular model designs and evaluate its benefit on Argoverse 2 and Waymo datasets. We outperform baseline works with only marginal compute overhead. Code is available at https://github.com/tudelft-iv/VoteFlow.
comment: CVPR 2025. Code is available at https://github.com/tudelft-iv/VoteFlow. Yancong Lin and Shiming Wang have equal contributions
☆ AH-GS: Augmented 3D Gaussian Splatting for High-Frequency Detail Representation
The 3D Gaussian Splatting (3D-GS) is a novel method for scene representation and view synthesis. Although Scaffold-GS achieves higher quality real-time rendering compared to the original 3D-GS, its fine-grained rendering of the scene is extremely dependent on adequate viewing angles. The spectral bias of neural network learning results in Scaffold-GS's poor ability to perceive and learn high-frequency information in the scene. In this work, we propose enhancing the manifold complexity of input features and using network-based feature map loss to improve the image reconstruction quality of 3D-GS models. We introduce AH-GS, which enables 3D Gaussians in structurally complex regions to obtain higher-frequency encodings, allowing the model to more effectively learn the high-frequency information of the scene. Additionally, we incorporate high-frequency reinforce loss to further enhance the model's ability to capture detailed frequency information. Our result demonstrates that our model significantly improves rendering fidelity, and in specific scenarios (e.g., MipNeRf360-garden), our method exceeds the rendering quality of Scaffold-GS in just 15K iterations.
☆ A Dataset for Semantic Segmentation in the Presence of Unknowns CVPR 2025
Before deployment in the real-world deep neural networks require thorough evaluation of how they handle both knowns, inputs represented in the training data, and unknowns (anomalies). This is especially important for scene understanding tasks with safety critical applications, such as in autonomous driving. Existing datasets allow evaluation of only knowns or unknowns - but not both, which is required to establish "in the wild" suitability of deep neural network models. To bridge this gap, we propose a novel anomaly segmentation dataset, ISSU, that features a diverse set of anomaly inputs from cluttered real-world environments. The dataset is twice larger than existing anomaly segmentation datasets, and provides a training, validation and test set for controlled in-domain evaluation. The test set consists of a static and temporal part, with the latter comprised of videos. The dataset provides annotations for both closed-set (knowns) and anomalies, enabling closed-set and open-set evaluation. The dataset covers diverse conditions, such as domain and cross-sensor shift, illumination variation and allows ablation of anomaly detection methods with respect to these variations. Evaluation results of current state-of-the-art methods confirm the need for improvements especially in domain-generalization, small and large object segmentation.
comment: Accepted to CVPR 2025
☆ VisTa: Visual-contextual and Text-augmented Zero-shot Object-level OOD Detection
As object detectors are increasingly deployed as black-box cloud services or pre-trained models with restricted access to the original training data, the challenge of zero-shot object-level out-of-distribution (OOD) detection arises. This task becomes crucial in ensuring the reliability of detectors in open-world settings. While existing methods have demonstrated success in image-level OOD detection using pre-trained vision-language models like CLIP, directly applying such models to object-level OOD detection presents challenges due to the loss of contextual information and reliance on image-level alignment. To tackle these challenges, we introduce a new method that leverages visual prompts and text-augmented in-distribution (ID) space construction to adapt CLIP for zero-shot object-level OOD detection. Our method preserves critical contextual information and improves the ability to differentiate between ID and OOD objects, achieving competitive performance across different benchmarks.
comment: 5 pages, 4 figures
☆ RUNA: Object-level Out-of-Distribution Detection via Regional Uncertainty Alignment of Multimodal Representations
Enabling object detectors to recognize out-of-distribution (OOD) objects is vital for building reliable systems. A primary obstacle stems from the fact that models frequently do not receive supervisory signals from unfamiliar data, leading to overly confident predictions regarding OOD objects. Despite previous progress that estimates OOD uncertainty based on the detection model and in-distribution (ID) samples, we explore using pre-trained vision-language representations for object-level OOD detection. We first discuss the limitations of applying image-level CLIP-based OOD detection methods to object-level scenarios. Building upon these insights, we propose RUNA, a novel framework that leverages a dual encoder architecture to capture rich contextual information and employs a regional uncertainty alignment mechanism to distinguish ID from OOD objects effectively. We introduce a few-shot fine-tuning approach that aligns region-level semantic representations to further improve the model's capability to discriminate between similar objects. Our experiments show that RUNA substantially surpasses state-of-the-art methods in object-level OOD detection, particularly in challenging scenarios with diverse and complex object instances.
comment: 9 pages, 5 figures
☆ Divide to Conquer: A Field Decomposition Approach for Multi-Organ Whole-Body CT Image Registration
Image registration is an essential technique for the analysis of Computed Tomography (CT) images in clinical practice. However, existing methodologies are predominantly tailored to a specific organ of interest and often exhibit lower performance on other organs, thus limiting their generalizability and applicability. Multi-organ registration addresses these limitations, but the simultaneous alignment of multiple organs with diverse shapes, sizes and locations requires a highly complex deformation field with a multi-layer composition of individual deformations. This study introduces a novel field decomposition approach to address the high complexity of deformations in multi-organ whole-body CT image registration. The proposed method is trained and evaluated on a longitudinal dataset of 691 patients, each with two CT images obtained at distinct time points. These scans fully encompass the thoracic, abdominal, and pelvic regions. Two baseline registration methods are selected for this study: one based on optimization techniques and another based on deep learning. Experimental results demonstrate that the proposed approach outperforms baseline methods in handling complex deformations in multi-organ whole-body CT image registration.
☆ Efficient Epistemic Uncertainty Estimation in Cerebrovascular Segmentation
Brain vessel segmentation of MR scans is a critical step in the diagnosis of cerebrovascular diseases. Due to the fine vessel structure, manual vessel segmentation is time consuming. Therefore, automatic deep learning (DL) based segmentation techniques are intensively investigated. As conventional DL models yield a high complexity and lack an indication of decision reliability, they are often considered as not trustworthy. This work aims to increase trust in DL based models by incorporating epistemic uncertainty quantification into cerebrovascular segmentation models for the first time. By implementing an efficient ensemble model combining the advantages of Bayesian Approximation and Deep Ensembles, we aim to overcome the high computational costs of conventional probabilistic networks. Areas of high model uncertainty and erroneous predictions are aligned which demonstrates the effectiveness and reliability of the approach. We perform extensive experiments applying the ensemble model on out-of-distribution (OOD) data. We demonstrate that for OOD-images, the estimated uncertainty increases. Additionally, omitting highly uncertain areas improves the segmentation quality, both for in- and out-of-distribution data. The ensemble model explains its limitations in a reliable manner and can maintain trustworthiness also for OOD data and could be considered in clinical applications
☆ Segment Any Motion in Videos CVPR 2025
Moving object segmentation is a crucial task for achieving a high-level understanding of visual scenes and has numerous downstream applications. Humans can effortlessly segment moving objects in videos. Previous work has largely relied on optical flow to provide motion cues; however, this approach often results in imperfect predictions due to challenges such as partial motion, complex deformations, motion blur and background distractions. We propose a novel approach for moving object segmentation that combines long-range trajectory motion cues with DINO-based semantic features and leverages SAM2 for pixel-level mask densification through an iterative prompting strategy. Our model employs Spatio-Temporal Trajectory Attention and Motion-Semantic Decoupled Embedding to prioritize motion while integrating semantic support. Extensive testing on diverse datasets demonstrates state-of-the-art performance, excelling in challenging scenarios and fine-grained segmentation of multiple objects. Our code is available at https://motion-seg.github.io/.
comment: CVPR 2025. Website: https://motion-seg.github.io/
☆ DeepAudio-V1:Towards Multi-Modal Multi-Stage End-to-End Video to Speech and Audio Generation
Currently, high-quality, synchronized audio is synthesized using various multi-modal joint learning frameworks, leveraging video and optional text inputs. In the video-to-audio benchmarks, video-to-audio quality, semantic alignment, and audio-visual synchronization are effectively achieved. However, in real-world scenarios, speech and audio often coexist in videos simultaneously, and the end-to-end generation of synchronous speech and audio given video and text conditions are not well studied. Therefore, we propose an end-to-end multi-modal generation framework that simultaneously produces speech and audio based on video and text conditions. Furthermore, the advantages of video-to-audio (V2A) models for generating speech from videos remain unclear. The proposed framework, DeepAudio, consists of a video-to-audio (V2A) module, a text-to-speech (TTS) module, and a dynamic mixture of modality fusion (MoF) module. In the evaluation, the proposed end-to-end framework achieves state-of-the-art performance on the video-audio benchmark, video-speech benchmark, and text-speech benchmark. In detail, our framework achieves comparable results in the comparison with state-of-the-art models for the video-audio and text-speech benchmarks, and surpassing state-of-the-art models in the video-speech benchmark, with WER 16.57% to 3.15% (+80.99%), SPK-SIM 78.30% to 89.38% (+14.15%), EMO-SIM 66.24% to 75.56% (+14.07%), MCD 8.59 to 7.98 (+7.10%), MCD SL 11.05 to 9.40 (+14.93%) across a variety of dubbing settings.
comment: 11 pages, 5 figures
☆ FLIP: Towards Comprehensive and Reliable Evaluation of Federated Prompt Learning
The increasing emphasis on privacy and data security has driven the adoption of federated learning, a decentralized approach to train machine learning models without sharing raw data. Prompt learning, which fine-tunes prompt embeddings of pretrained models, offers significant advantages in federated settings by reducing computational costs and communication overheads while leveraging the strong performance and generalization capabilities of vision-language models such as CLIP. This paper addresses the intersection of federated learning and prompt learning, particularly for vision-language models. In this work, we introduce a comprehensive framework, named FLIP, to evaluate federated prompt learning algorithms. FLIP assesses the performance of 8 state-of-the-art federated prompt learning methods across 4 federated learning protocols and 12 open datasets, considering 6 distinct evaluation scenarios. Our findings demonstrate that prompt learning maintains strong generalization performance in both in-distribution and out-of-distribution settings with minimal resource consumption. This work highlights the effectiveness of federated prompt learning in environments characterized by data scarcity, unseen classes, and cross-domain distributional shifts. We open-source the code for all implemented algorithms in FLIP to facilitate further research in this domain.
comment: https://github.com/0-ml/flip
☆ Mono2Stereo: A Benchmark and Empirical Study for Stereo Conversion CVPR 2025
With the rapid proliferation of 3D devices and the shortage of 3D content, stereo conversion is attracting increasing attention. Recent works introduce pretrained Diffusion Models (DMs) into this task. However, due to the scarcity of large-scale training data and comprehensive benchmarks, the optimal methodologies for employing DMs in stereo conversion and the accurate evaluation of stereo effects remain largely unexplored. In this work, we introduce the Mono2Stereo dataset, providing high-quality training data and benchmark to support in-depth exploration of stereo conversion. With this dataset, we conduct an empirical study that yields two primary findings. 1) The differences between the left and right views are subtle, yet existing metrics consider overall pixels, failing to concentrate on regions critical to stereo effects. 2) Mainstream methods adopt either one-stage left-to-right generation or warp-and-inpaint pipeline, facing challenges of degraded stereo effect and image distortion respectively. Based on these findings, we introduce a new evaluation metric, Stereo Intersection-over-Union, which prioritizes disparity and achieves a high correlation with human judgments on stereo effect. Moreover, we propose a strong baseline model, harmonizing the stereo effect and image quality simultaneously, and notably surpassing current mainstream methods. Our code and data will be open-sourced to promote further research in stereo conversion. Our models are available at mono2stereo-bench.github.io.
comment: Accepted by CVPR 2025 Project webpage: https://mono2stereo-bench.github.io/
☆ Efficient Building Roof Type Classification: A Domain-Specific Self-Supervised Approach
Accurate classification of building roof types from aerial imagery is crucial for various remote sensing applications, including urban planning, disaster management, and infrastructure monitoring. However, this task is often hindered by the limited availability of labeled data for supervised learning approaches. To address this challenge, this paper investigates the effectiveness of self supervised learning with EfficientNet architectures, known for their computational efficiency, for building roof type classification. We propose a novel framework that incorporates a Convolutional Block Attention Module (CBAM) to enhance the feature extraction capabilities of EfficientNet. Furthermore, we explore the benefits of pretraining on a domain-specific dataset, the Aerial Image Dataset (AID), compared to ImageNet pretraining. Our experimental results demonstrate the superiority of our approach. Employing Simple Framework for Contrastive Learning of Visual Representations (SimCLR) with EfficientNet-B3 and CBAM achieves a 95.5% accuracy on our validation set, matching the performance of state-of-the-art transformer-based models while utilizing significantly fewer parameters. We also provide a comprehensive evaluation on two challenging test sets, demonstrating the generalization capability of our method. Notably, our findings highlight the effectiveness of domain-specific pretraining, consistently leading to higher accuracy compared to models pretrained on the generic ImageNet dataset. Our work establishes EfficientNet based self-supervised learning as a computationally efficient and highly effective approach for building roof type classification, particularly beneficial in scenarios with limited labeled data.
☆ SCHNet: SAM Marries CLIP for Human Parsing
Vision Foundation Model (VFM) such as the Segment Anything Model (SAM) and Contrastive Language-Image Pre-training Model (CLIP) has shown promising performance for segmentation and detection tasks. However, although SAM excels in fine-grained segmentation, it faces major challenges when applying it to semantic-aware segmentation. While CLIP exhibits a strong semantic understanding capability via aligning the global features of language and vision, it has deficiencies in fine-grained segmentation tasks. Human parsing requires to segment human bodies into constituent parts and involves both accurate fine-grained segmentation and high semantic understanding of each part. Based on traits of SAM and CLIP, we formulate high efficient modules to effectively integrate features of them to benefit human parsing. We propose a Semantic-Refinement Module to integrate semantic features of CLIP with SAM features to benefit parsing. Moreover, we formulate a high efficient Fine-tuning Module to adjust the pretrained SAM for human parsing that needs high semantic information and simultaneously demands spatial details, which significantly reduces the training time compared with full-time training and achieves notable performance. Extensive experiments demonstrate the effectiveness of our method on LIP, PPP, and CIHP databases.
☆ CoGen: 3D Consistent Video Generation via Adaptive Conditioning for Autonomous Driving
Recent progress in driving video generation has shown significant potential for enhancing self-driving systems by providing scalable and controllable training data. Although pretrained state-of-the-art generation models, guided by 2D layout conditions (e.g., HD maps and bounding boxes), can produce photorealistic driving videos, achieving controllable multi-view videos with high 3D consistency remains a major challenge. To tackle this, we introduce a novel spatial adaptive generation framework, CoGen, which leverages advances in 3D generation to improve performance in two key aspects: (i) To ensure 3D consistency, we first generate high-quality, controllable 3D conditions that capture the geometry of driving scenes. By replacing coarse 2D conditions with these fine-grained 3D representations, our approach significantly enhances the spatial consistency of the generated videos. (ii) Additionally, we introduce a consistency adapter module to strengthen the robustness of the model to multi-condition control. The results demonstrate that this method excels in preserving geometric fidelity and visual realism, offering a reliable video generation solution for autonomous driving.
☆ Follow Your Motion: A Generic Temporal Consistency Portrait Editing Framework with Trajectory Guidance
Pre-trained conditional diffusion models have demonstrated remarkable potential in image editing. However, they often face challenges with temporal consistency, particularly in the talking head domain, where continuous changes in facial expressions intensify the level of difficulty. These issues stem from the independent editing of individual images and the inherent loss of temporal continuity during the editing process. In this paper, we introduce Follow Your Motion (FYM), a generic framework for maintaining temporal consistency in portrait editing. Specifically, given portrait images rendered by a pre-trained 3D Gaussian Splatting model, we first develop a diffusion model that intuitively and inherently learns motion trajectory changes at different scales and pixel coordinates, from the first frame to each subsequent frame. This approach ensures that temporally inconsistent edited avatars inherit the motion information from the rendered avatars. Secondly, to maintain fine-grained expression temporal consistency in talking head editing, we propose a dynamic re-weighted attention mechanism. This mechanism assigns higher weight coefficients to landmark points in space and dynamically updates these weights based on landmark loss, achieving more consistent and refined facial expressions. Extensive experiments demonstrate that our method outperforms existing approaches in terms of temporal consistency and can be used to optimize and compensate for temporally inconsistent outputs in a range of applications, such as text-driven editing, relighting, and various other applications.
comment: https://anonymous-hub1127.github.io/FYM.github.io/
☆ ABC-GS: Alignment-Based Controllable Style Transfer for 3D Gaussian Splatting
3D scene stylization approaches based on Neural Radiance Fields (NeRF) achieve promising results by optimizing with Nearest Neighbor Feature Matching (NNFM) loss. However, NNFM loss does not consider global style information. In addition, the implicit representation of NeRF limits their fine-grained control over the resulting scenes. In this paper, we introduce ABC-GS, a novel framework based on 3D Gaussian Splatting to achieve high-quality 3D style transfer. To this end, a controllable matching stage is designed to achieve precise alignment between scene content and style features through segmentation masks. Moreover, a style transfer loss function based on feature alignment is proposed to ensure that the outcomes of style transfer accurately reflect the global style of the reference image. Furthermore, the original geometric information of the scene is preserved with the depth loss and Gaussian regularization terms. Extensive experiments show that our ABC-GS provides controllability of style transfer and achieves stylization results that are more faithfully aligned with the global style of the chosen artistic reference. Our homepage is available at https://vpx-ecnu.github.io/ABC-GS-website.
comment: 10 pages, 14 figures
☆ Learning to Instruct for Visual Instruction Tuning
We propose LIT, an advancement of visual instruction tuning (VIT). While VIT equips Multimodal LLMs (MLLMs) with promising multimodal capabilities, the current design choices for VIT often result in overfitting and shortcut learning, potentially degrading performance. This gap arises from an overemphasis on instruction-following abilities, while neglecting the proactive understanding of visual information. Inspired by this, LIT adopts a simple yet effective approach by incorporating the loss function into both the instruction and response sequences. It seamlessly expands the training data, and regularizes the MLLMs from overly relying on language priors. Based on this merit, LIT achieves a significant relative improvement of up to 9% on comprehensive multimodal benchmarks, requiring no additional training data and incurring negligible computational overhead. Surprisingly, LIT attains exceptional fundamental visual capabilities, yielding up to an 18% improvement in captioning performance, while simultaneously alleviating hallucination in MLLMs.
comment: 16 pages, 10 figures
☆ Intrinsic Image Decomposition for Robust Self-supervised Monocular Depth Estimation on Reflective Surfaces AAAI 2025
Self-supervised monocular depth estimation (SSMDE) has gained attention in the field of deep learning as it estimates depth without requiring ground truth depth maps. This approach typically uses a photometric consistency loss between a synthesized image, generated from the estimated depth, and the original image, thereby reducing the need for extensive dataset acquisition. However, the conventional photometric consistency loss relies on the Lambertian assumption, which often leads to significant errors when dealing with reflective surfaces that deviate from this model. To address this limitation, we propose a novel framework that incorporates intrinsic image decomposition into SSMDE. Our method synergistically trains for both monocular depth estimation and intrinsic image decomposition. The accurate depth estimation facilitates multi-image consistency for intrinsic image decomposition by aligning different view coordinate systems, while the decomposition process identifies reflective areas and excludes corrupted gradients from the depth training process. Furthermore, our framework introduces a pseudo-depth generation and knowledge distillation technique to further enhance the performance of the student model across both reflective and non-reflective surfaces. Comprehensive evaluations on multiple datasets show that our approach significantly outperforms existing SSMDE baselines in depth prediction, especially on reflective surfaces.
comment: Accepted at AAAI 2025
☆ DeepSound-V1: Start to Think Step-by-Step in the Audio Generation from Videos
Currently, high-quality, synchronized audio is synthesized from video and optional text inputs using various multi-modal joint learning frameworks. However, the precise alignment between the visual and generated audio domains remains far from satisfactory. One key factor is the lack of sufficient temporal and semantic alignment annotations in open-source video-audio and text-audio benchmarks. Therefore, we propose a framework for audio generation from videos, leveraging the internal chain-of-thought (CoT) of a multi-modal large language model (MLLM) to enable step-by-step reasoning without requiring additional annotations. Additionally, a corresponding multi-modal reasoning dataset is constructed to facilitate the learning of initial reasoning in audio generation. In the experiments, we demonstrate the effectiveness of the proposed framework in reducing misalignment (voice-over) in generated audio and achieving competitive performance compared to various state-of-the-art models. The evaluation results show that the proposed method outperforms state-of-the-art approaches across multiple metrics. Specifically, the F DP aSST indicator is reduced by up to 10.07%, the F DP AN N s indicator by up to 11.62%, and the F DV GG indicator by up to 38.61%. Furthermore, the IS indicator improves by up to 4.95%, the IB-score indicator increases by up to 6.39%, and the DeSync indicator is reduced by up to 0.89%.
comment: 11 pages, 6 figures
☆ Data-Free Universal Attack by Exploiting the Intrinsic Vulnerability of Deep Models AAAI 2025
Deep neural networks (DNNs) are susceptible to Universal Adversarial Perturbations (UAPs), which are instance agnostic perturbations that can deceive a target model across a wide range of samples. Unlike instance-specific adversarial examples, UAPs present a greater challenge as they must generalize across different samples and models. Generating UAPs typically requires access to numerous examples, which is a strong assumption in real-world tasks. In this paper, we propose a novel data-free method called Intrinsic UAP (IntriUAP), by exploiting the intrinsic vulnerabilities of deep models. We analyze a series of popular deep models composed of linear and nonlinear layers with a Lipschitz constant of 1, revealing that the vulnerability of these models is predominantly influenced by their linear components. Based on this observation, we leverage the ill-conditioned nature of the linear components by aligning the UAP with the right singular vectors corresponding to the maximum singular value of each linear layer. Remarkably, our method achieves highly competitive performance in attacking popular image classification deep models without using any image samples. We also evaluate the black-box attack performance of our method, showing that it matches the state-of-the-art baseline for data-free methods on models that conform to our theoretical framework. Beyond the data-free assumption, IntriUAP also operates under a weaker assumption, where the adversary only can access a few of the victim model's layers. Experiments demonstrate that the attack success rate decreases by only 4% when the adversary has access to just 50% of the linear layers in the victim model.
comment: Accepted in AAAI 2025
☆ Segment then Splat: A Unified Approach for 3D Open-Vocabulary Segmentation based on Gaussian Splatting
Open-vocabulary querying in 3D space is crucial for enabling more intelligent perception in applications such as robotics, autonomous systems, and augmented reality. However, most existing methods rely on 2D pixel-level parsing, leading to multi-view inconsistencies and poor 3D object retrieval. Moreover, they are limited to static scenes and struggle with dynamic scenes due to the complexities of motion modeling. In this paper, we propose Segment then Splat, a 3D-aware open vocabulary segmentation approach for both static and dynamic scenes based on Gaussian Splatting. Segment then Splat reverses the long established approach of "segmentation after reconstruction" by dividing Gaussians into distinct object sets before reconstruction. Once the reconstruction is complete, the scene is naturally segmented into individual objects, achieving true 3D segmentation. This approach not only eliminates Gaussian-object misalignment issues in dynamic scenes but also accelerates the optimization process, as it eliminates the need for learning a separate language field. After optimization, a CLIP embedding is assigned to each object to enable open-vocabulary querying. Extensive experiments on various datasets demonstrate the effectiveness of our proposed method in both static and dynamic scenarios.
comment: Project page: https://vulab-ai.github.io/Segment-then-Splat/
☆ Multi-modal Knowledge Distillation-based Human Trajectory Forecasting CVPR 2025
Pedestrian trajectory forecasting is crucial in various applications such as autonomous driving and mobile robot navigation. In such applications, camera-based perception enables the extraction of additional modalities (human pose, text) to enhance prediction accuracy. Indeed, we find that textual descriptions play a crucial role in integrating additional modalities into a unified understanding. However, online extraction of text requires the use of VLM, which may not be feasible for resource-constrained systems. To address this challenge, we propose a multi-modal knowledge distillation framework: a student model with limited modality is distilled from a teacher model trained with full range of modalities. The comprehensive knowledge of a teacher model trained with trajectory, human pose, and text is distilled into a student model using only trajectory or human pose as a sole supplement. In doing so, we separately distill the core locomotion insights from intra-agent multi-modality and inter-agent interaction. Our generalizable framework is validated with two state-of-the-art models across three datasets on both ego-view (JRDB, SIT) and BEV-view (ETH/UCY) setups, utilizing both annotated and VLM-generated text captions. Distilled student models show consistent improvement in all prediction metrics for both full and instantaneous observations, improving up to ~13%. The code is available at https://github.com/Jaewoo97/KDTF.
comment: Accepted to CVPR 2025
☆ Enhance Generation Quality of Flow Matching V2A Model via Multi-Step CoT-Like Guidance and Combined Preference Optimization
Creating high-quality sound effects from videos and text prompts requires precise alignment between visual and audio domains, both semantically and temporally, along with step-by-step guidance for professional audio generation. However, current state-of-the-art video-guided audio generation models often fall short of producing high-quality audio for both general and specialized use cases. To address this challenge, we introduce a multi-stage, multi-modal, end-to-end generative framework with Chain-of-Thought-like (CoT-like) guidance learning, termed Chain-of-Perform (CoP). First, we employ a transformer-based network architecture designed to achieve CoP guidance, enabling the generation of both general and professional audio. Second, we implement a multi-stage training framework that follows step-by-step guidance to ensure the generation of high-quality sound effects. Third, we develop a CoP multi-modal dataset, guided by video, to support step-by-step sound effects generation. Evaluation results highlight the advantages of the proposed multi-stage CoP generative framework compared to the state-of-the-art models on a variety of datasets, with FAD 0.79 to 0.74 (+6.33%), CLIP 16.12 to 17.70 (+9.80%) on VGGSound, SI-SDR 1.98dB to 3.35dB (+69.19%), MOS 2.94 to 3.49(+18.71%) on PianoYT-2h, and SI-SDR 2.22dB to 3.21dB (+44.59%), MOS 3.07 to 3.42 (+11.40%) on Piano-10h.
comment: 10 pages, 4 figures
☆ Hyperspectral Adapter for Object Tracking based on Hyperspectral Video
Object tracking based on hyperspectral video attracts increasing attention to the rich material and motion information in the hyperspectral videos. The prevailing hyperspectral methods adapt pretrained RGB-based object tracking networks for hyperspectral tasks by fine-tuning the entire network on hyperspectral datasets, which achieves impressive results in challenging scenarios. However, the performance of hyperspectral trackers is limited by the loss of spectral information during the transformation, and fine-tuning the entire pretrained network is inefficient for practical applications. To address the issues, a new hyperspectral object tracking method, hyperspectral adapter for tracking (HyA-T), is proposed in this work. The hyperspectral adapter for the self-attention (HAS) and the hyperspectral adapter for the multilayer perceptron (HAM) are proposed to generate the adaption information and to transfer the multi-head self-attention (MSA) module and the multilayer perceptron (MLP) in pretrained network for the hyperspectral object tracking task by augmenting the adaption information into the calculation of the MSA and MLP. Additionally, the hyperspectral enhancement of input (HEI) is proposed to augment the original spectral information into the input of the tracking network. The proposed methods extract spectral information directly from the hyperspectral images, which prevent the loss of the spectral information. Moreover, only the parameters in the proposed methods are fine-tuned, which is more efficient than the existing methods. Extensive experiments were conducted on four datasets with various spectral bands, verifing the effectiveness of the proposed methods. The HyA-T achieves state-of-the-art performance on all the datasets.
☆ Extremely Simple Out-of-distribution Detection for Audio-visual Generalized Zero-shot Learning
Zero-shot Learning(ZSL) attains knowledge transfer from seen classes to unseen classes by exploring auxiliary category information, which is a promising yet difficult research topic. In this field, Audio-Visual Generalized Zero-Shot Learning~(AV-GZSL) has aroused researchers' great interest in which intricate relations within triple modalities~(audio, video, and natural language) render this task quite challenging but highly research-worthy. However, both existing embedding-based and generative-based AV-GZSL methods tend to suffer from domain shift problem a lot and we propose an extremely simple Out-of-distribution~(OOD) detection based AV-GZSL method~(EZ-AVOOD) to further mitigate bias problem by differentiating seen and unseen samples at the initial beginning. EZ-AVOOD accomplishes effective seen-unseen separation by exploiting the intrinsic discriminative information held in class-specific logits and class-agnostic feature subspace without training an extra OOD detector network. Followed by seen-unseen binary classification, we employ two expert models to classify seen samples and unseen samples separately. Compared to existing state-of-the-art methods, our model achieves superior ZSL and GZSL performances on three audio-visual datasets and becomes the new SOTA, which comprehensively demonstrates the effectiveness of the proposed EZ-AVOOD.
☆ ORIGEN: Zero-Shot 3D Orientation Grounding in Text-to-Image Generation
We introduce ORIGEN, the first zero-shot method for 3D orientation grounding in text-to-image generation across multiple objects and diverse categories. While previous work on spatial grounding in image generation has mainly focused on 2D positioning, it lacks control over 3D orientation. To address this, we propose a reward-guided sampling approach using a pretrained discriminative model for 3D orientation estimation and a one-step text-to-image generative flow model. While gradient-ascent-based optimization is a natural choice for reward-based guidance, it struggles to maintain image realism. Instead, we adopt a sampling-based approach using Langevin dynamics, which extends gradient ascent by simply injecting random noise--requiring just a single additional line of code. Additionally, we introduce adaptive time rescaling based on the reward function to accelerate convergence. Our experiments show that ORIGEN outperforms both training-based and test-time guidance methods across quantitative metrics and user studies.
comment: Project Page: https://origen2025.github.io
☆ Unbiased Max-Min Embedding Classification for Transductive Few-Shot Learning: Clustering and Classification Are All You Need
Convolutional neural networks and supervised learning have achieved remarkable success in various fields but are limited by the need for large annotated datasets. Few-shot learning (FSL) addresses this limitation by enabling models to generalize from only a few labeled examples. Transductive few-shot learning (TFSL) enhances FSL by leveraging both labeled and unlabeled data, though it faces challenges like the hubness problem. To overcome these limitations, we propose the Unbiased Max-Min Embedding Classification (UMMEC) Method, which addresses the key challenges in few-shot learning through three innovative contributions. First, we introduce a decentralized covariance matrix to mitigate the hubness problem, ensuring a more uniform distribution of embeddings. Second, our method combines local alignment and global uniformity through adaptive weighting and nonlinear transformation, balancing intra-class clustering with inter-class separation. Third, we employ a Variational Sinkhorn Few-Shot Classifier to optimize the distances between samples and class prototypes, enhancing classification accuracy and robustness. These combined innovations allow the UMMEC method to achieve superior performance with minimal labeled data. Our UMMEC method significantly improves classification performance with minimal labeled data, advancing the state-of-the-art in TFSL.
☆ Sell It Before You Make It: Revolutionizing E-Commerce with Personalized AI-Generated Items
E-commerce has revolutionized retail, yet its traditional workflows remain inefficient, with significant time and resource costs tied to product design and manufacturing inventory. This paper introduces a novel system deployed at Alibaba that leverages AI-generated items (AIGI) to address these challenges with personalized text-to-image generation for e-commercial product design. AIGI enables an innovative business mode called "sell it before you make it", where merchants can design fashion items and generate photorealistic images with digital models based on textual descriptions. Only when the items have received a certain number of orders, do the merchants start to produce them, which largely reduces reliance on physical prototypes and thus accelerates time to market. For such a promising application, we identify the underlying key scientific challenge, i.e., capturing the users' group-level personalized preferences towards multiple generated candidate images. To this end, we propose a Personalized Group-Level Preference Alignment Framework for Diffusion Models (i.e., PerFusion). We first design PerFusion Reward Model for user preference estimation with a feature-crossing-based personalized plug-in. Then we develop PerFusion with a personalized adaptive network to model diverse preferences across users, and meanwhile derive the group-level preference optimization objective to capture the comparative behaviors among multiple candidates. Both offline and online experiments demonstrate the effectiveness of our proposed algorithm. The AI-generated items have achieved over 13% relative improvements for both click-through rate and conversion rate compared to their human-designed counterparts, validating the revolutionary potential of AI-generated items for e-commercial platforms.
comment: Under Review
☆ Knowledge Rectification for Camouflaged Object Detection: Unlocking Insights from Low-Quality Data
Low-quality data often suffer from insufficient image details, introducing an extra implicit aspect of camouflage that complicates camouflaged object detection (COD). Existing COD methods focus primarily on high-quality data, overlooking the challenges posed by low-quality data, which leads to significant performance degradation. Therefore, we propose KRNet, the first framework explicitly designed for COD on low-quality data. KRNet presents a Leader-Follower framework where the Leader extracts dual gold-standard distributions: conditional and hybrid, from high-quality data to drive the Follower in rectifying knowledge learned from low-quality data. The framework further benefits from a cross-consistency strategy that improves the rectification of these distributions and a time-dependent conditional encoder that enriches the distribution diversity. Extensive experiments on benchmark datasets demonstrate that KRNet outperforms state-of-the-art COD methods and super-resolution-assisted COD approaches, proving its effectiveness in tackling the challenges of low-quality data in COD.
☆ High-Fidelity Diffusion Face Swapping with ID-Constrained Facial Conditioning
Face swapping aims to seamlessly transfer a source facial identity onto a target while preserving target attributes such as pose and expression. Diffusion models, known for their superior generative capabilities, have recently shown promise in advancing face-swapping quality. This paper addresses two key challenges in diffusion-based face swapping: the prioritized preservation of identity over target attributes and the inherent conflict between identity and attribute conditioning. To tackle these issues, we introduce an identity-constrained attribute-tuning framework for face swapping that first ensures identity preservation and then fine-tunes for attribute alignment, achieved through a decoupled condition injection. We further enhance fidelity by incorporating identity and adversarial losses in a post-training refinement stage. Our proposed identity-constrained diffusion-based face-swapping model outperforms existing methods in both qualitative and quantitative evaluations, demonstrating superior identity similarity and attribute consistency, achieving a new state-of-the-art performance in high-fidelity face swapping.
☆ AdaRank: Adaptive Rank Pruning for Enhanced Model Merging
Model merging has emerged as a promising approach for unifying independently fine-tuned models into an integrated framework, significantly enhancing computational efficiency in multi-task learning. Recently, several SVD-based techniques have been introduced to exploit low-rank structures for enhanced merging, but their reliance on such manually designed rank selection often leads to cross-task interference and suboptimal performance. In this paper, we propose AdaRank, a novel model merging framework that adaptively selects the most beneficial singular directions of task vectors to merge multiple models. We empirically show that the dominant singular components of task vectors can cause critical interference with other tasks, and that naive truncation across tasks and layers degrades performance. In contrast, AdaRank dynamically prunes the singular components that cause interference and offers an optimal amount of information to each task vector by learning to prune ranks during test-time via entropy minimization. Our analysis demonstrates that such method mitigates detrimental overlaps among tasks, while empirical results show that AdaRank consistently achieves state-of-the-art performance with various backbones and number of tasks, reducing the performance gap between fine-tuned models to nearly 1%.
comment: Code Available at: https://github.com/david3684/AdaRank
☆ 3D Acetabular Surface Reconstruction from 2D Pre-operative X-ray Images using SRVF Elastic Registration and Deformation Graph
Accurate and reliable selection of the appropriate acetabular cup size is crucial for restoring joint biomechanics in total hip arthroplasty (THA). This paper proposes a novel framework that integrates square-root velocity function (SRVF)-based elastic shape registration technique with an embedded deformation (ED) graph approach to reconstruct the 3D articular surface of the acetabulum by fusing multiple views of 2D pre-operative pelvic X-ray images and a hemispherical surface model. The SRVF-based elastic registration establishes 2D-3D correspondences between the parametric hemispherical model and X-ray images, and the ED framework incorporates the SRVF-derived correspondences as constraints to optimize the 3D acetabular surface reconstruction using nonlinear least-squares optimization. Validations using both simulation and real patient datasets are performed to demonstrate the robustness and the potential clinical value of the proposed algorithm. The reconstruction result can assist surgeons in selecting the correct acetabular cup on the first attempt in primary THA, minimising the need for revision surgery.
comment: 10 pages, 3 figures, conference
☆ A Multi-Site Study on AI-Driven Pathology Detection and Osteoarthritis Grading from Knee X-Ray
Introduction: Bone health disorders like osteoarthritis and osteoporosis pose major global health challenges, often leading to delayed diagnoses due to limited diagnostic tools. This study presents an AI-powered system that analyzes knee X-rays to detect key pathologies, including joint space narrowing, sclerosis, osteophytes, tibial spikes, alignment issues, and soft tissue anomalies. It also grades osteoarthritis severity, enabling timely, personalized treatment. Study Design: The research used 1.3 million knee X-rays from a multi-site Indian clinical trial across government, private, and SME hospitals. The dataset ensured diversity in demographics, imaging equipment, and clinical settings. Rigorous annotation and preprocessing yielded high-quality training datasets for pathology-specific models like ResNet15 for joint space narrowing and DenseNet for osteoarthritis grading. Performance: The AI system achieved strong diagnostic accuracy across diverse imaging environments. Pathology-specific models excelled in precision, recall, and NPV, validated using Mean Squared Error (MSE), Intersection over Union (IoU), and Dice coefficient. Subgroup analyses across age, gender, and manufacturer variations confirmed generalizability for real-world applications. Conclusion: This scalable, cost-effective solution for bone health diagnostics demonstrated robust performance in a multi-site trial. It holds promise for widespread adoption, especially in resource-limited healthcare settings, transforming bone health management and enabling proactive patient care.
comment: 15 pages, 2 figures
☆ Efficient Continual Learning through Frequency Decomposition and Integration
Continual learning (CL) aims to learn new tasks while retaining past knowledge, addressing the challenge of forgetting during task adaptation. Rehearsal-based methods, which replay previous samples, effectively mitigate forgetting. However, research on enhancing the efficiency of these methods, especially in resource-constrained environments, remains limited, hindering their application in real-world systems with dynamic data streams. The human perceptual system processes visual scenes through complementary frequency channels: low-frequency signals capture holistic cues, while high-frequency components convey structural details vital for fine-grained discrimination. Inspired by this, we propose the Frequency Decomposition and Integration Network (FDINet), a novel framework that decomposes and integrates information across frequencies. FDINet designs two lightweight networks to independently process low- and high-frequency components of images. When integrated with rehearsal-based methods, this frequency-aware design effectively enhances cross-task generalization through low-frequency information, preserves class-specific details using high-frequency information, and facilitates efficient training due to its lightweight architecture. Experiments demonstrate that FDINet reduces backbone parameters by 78%, improves accuracy by up to 7.49% over state-of-the-art (SOTA) methods, and decreases peak memory usage by up to 80%. Additionally, on edge devices, FDINet accelerates training by up to 5$\times$.
☆ Synergistic Bleeding Region and Point Detection in Surgical Videos
Intraoperative bleeding in laparoscopic surgery causes rapid obscuration of the operative field to hinder the surgical process. Intelligent detection of bleeding regions can quantify the blood loss to assist decision-making, while locating the bleeding point helps surgeons quickly identify the source of bleeding and achieve hemostasis in time. In this study, we first construct a real-world surgical bleeding detection dataset, named SurgBlood, comprising 5,330 frames from 95 surgical video clips with bleeding region and point annotations. Accordingly, we develop a dual-task synergistic online detector called BlooDet, designed to perform simultaneous detection of bleeding regions and points in surgical videos. Our framework embraces a dual-branch bidirectional guidance design based on Segment Anything Model 2 (SAM 2). The mask branch detects bleeding regions through adaptive edge and point prompt embeddings, while the point branch leverages mask memory to induce bleeding point memory modeling and captures the direction of bleed point movement through inter-frame optical flow. By interactive guidance and prompts, the two branches explore potential spatial-temporal relationships while leveraging memory modeling from previous frames to infer the current bleeding condition. Extensive experiments demonstrate that our approach outperforms other counterparts on SurgBlood in both bleeding region and point detection tasks, e.g., achieving 64.88% IoU for bleeding region detection and 83.69% PCK-10% for bleeding point detection.
☆ Concept-Aware LoRA for Domain-Aligned Segmentation Dataset Generation
This paper addresses the challenge of data scarcity in semantic segmentation by generating datasets through text-to-image (T2I) generation models, reducing image acquisition and labeling costs. Segmentation dataset generation faces two key challenges: 1) aligning generated samples with the target domain and 2) producing informative samples beyond the training data. Fine-tuning T2I models can help generate samples aligned with the target domain. However, it often overfits and memorizes training data, limiting their ability to generate diverse and well-aligned samples. To overcome these issues, we propose Concept-Aware LoRA (CA-LoRA), a novel fine-tuning approach that selectively identifies and updates only the weights associated with necessary concepts (e.g., style or viewpoint) for domain alignment while preserving the pretrained knowledge of the T2I model to produce informative samples. We demonstrate its effectiveness in generating datasets for urban-scene segmentation, outperforming baseline and state-of-the-art methods in in-domain (few-shot and fully-supervised) settings, as well as in domain generalization tasks, especially under challenging conditions such as adverse weather and varying illumination, further highlighting its superiority.
☆ An Empirical Study of Validating Synthetic Data for Text-Based Person Retrieval
Data plays a pivotal role in Text-Based Person Retrieval (TBPR) research. Mainstream research paradigm necessitates real-world person images with manual textual annotations for training models, posing privacy-sensitive and labor-intensive issues. Several pioneering efforts explore synthetic data for TBPR but still rely on real data, keeping the aforementioned issues and also resulting in diversity-deficient issue in synthetic datasets, thus impacting TBPR performance. Moreover, these works tend to explore synthetic data for TBPR through limited perspectives, leading to exploration-restricted issue. In this paper, we conduct an empirical study to explore the potential of synthetic data for TBPR, highlighting three key aspects. (1) We propose an inter-class image generation pipeline, in which an automatic prompt construction strategy is introduced to guide generative Artificial Intelligence (AI) models in generating various inter-class images without reliance on original data. (2) We develop an intra-class image augmentation pipeline, in which the generative AI models are applied to further edit the images for obtaining various intra-class images. (3) Building upon the proposed pipelines and an automatic text generation pipeline, we explore the effectiveness of synthetic data in diverse scenarios through extensive experiments. Additionally, we experimentally investigate various noise-robust learning strategies to mitigate the inherent noise in synthetic data. We will release the code, along with the synthetic large-scale dataset generated by our pipelines, which are expected to advance practical TBPR research.
comment: 20 pages,13 figures
☆ Spatial Transport Optimization by Repositioning Attention Map for Training-Free Text-to-Image Synthesis CVPR2025
Diffusion-based text-to-image (T2I) models have recently excelled in high-quality image generation, particularly in a training-free manner, enabling cost-effective adaptability and generalization across diverse tasks. However, while the existing methods have been continuously focusing on several challenges, such as "missing objects" and "mismatched attributes," another critical issue of "mislocated objects" remains where generated spatial positions fail to align with text prompts. Surprisingly, ensuring such seemingly basic functionality remains challenging in popular T2I models due to the inherent difficulty of imposing explicit spatial guidance via text forms. To address this, we propose STORM (Spatial Transport Optimization by Repositioning Attention Map), a novel training-free approach for spatially coherent T2I synthesis. STORM employs Spatial Transport Optimization (STO), rooted in optimal transport theory, to dynamically adjust object attention maps for precise spatial adherence, supported by a Spatial Transport (ST) Cost function that enhances spatial understanding. Our analysis shows that integrating spatial awareness is most effective in the early denoising stages, while later phases refine details. Extensive experiments demonstrate that STORM surpasses existing methods, effectively mitigating mislocated objects while improving missing and mismatched attributes, setting a new benchmark for spatial alignment in T2I synthesis.
comment: CVPR2025
☆ Permutation-Invariant and Orientation-Aware Dataset Distillation for 3D Point Clouds
We should collect large amount of data to train deep neural networks for various applications. Recently, the dataset distillation for images and texts has been attracting a lot of attention, that reduces the original dataset to a synthetic dataset while preserving essential task-relevant information. However, 3D point clouds distillation is almost unexplored due to the challenges of unordered structures of points. In this paper, we propose a novel distribution matching-based dataset distillation method for 3D point clouds that jointly optimizes the geometric structures of synthetic dataset as well as the orientations of synthetic models. To ensure the consistent feature alignment between different 3D point cloud models, we devise a permutation invariant distribution matching loss with the sorted feature vectors. We also employ learnable rotation angles to transform each syntheic model according to the optimal orientation best representing the original feature distribution. Extensive experimental results on widely used four benchmark datasets, including ModelNet10, ModelNet40, ShapeNet, and ScanObjectNN, demonstrate that the proposed method consistently outperforms the existing methods.
☆ EgoToM: Benchmarking Theory of Mind Reasoning from Egocentric Videos
We introduce EgoToM, a new video question-answering benchmark that extends Theory-of-Mind (ToM) evaluation to egocentric domains. Using a causal ToM model, we generate multi-choice video QA instances for the Ego4D dataset to benchmark the ability to predict a camera wearer's goals, beliefs, and next actions. We study the performance of both humans and state of the art multimodal large language models (MLLMs) on these three interconnected inference problems. Our evaluation shows that MLLMs achieve close to human-level accuracy on inferring goals from egocentric videos. However, MLLMs (including the largest ones we tested with over 100B parameters) fall short of human performance when inferring the camera wearers' in-the-moment belief states and future actions that are most consistent with the unseen video future. We believe that our results will shape the future design of an important class of egocentric digital assistants which are equipped with a reasonable model of the user's internal mental states.
☆ Tokenization of Gaze Data
A considerable part of the performance of today's large language models (LLM's) and multimodal large language models (MLLM's) depends on their tokenization strategies. While tokenizers are extensively researched for textual and visual input, there is no research on tokenization strategies for gaze data due to its nature. However, a corresponding tokenization strategy would allow using the vision capabilities of pre-trained MLLM's for gaze data, for example, through fine-tuning. In this paper, we aim to close this research gap by analyzing five different tokenizers for gaze data on three different datasets for the forecasting and generation of gaze data through LLMs (cf.~\cref{fig:teaser}). We evaluate the tokenizers regarding their reconstruction and compression abilities. Further, we train an LLM for each tokenization strategy, measuring its generative and predictive performance. Overall, we found that a quantile tokenizer outperforms all others in predicting the gaze positions and k-means is best when predicting gaze velocities.
☆ A Self-Supervised Learning of a Foundation Model for Analog Layout Design Automation
We propose a UNet-based foundation model and its self-supervised learning method to address two key challenges: 1) lack of qualified annotated analog layout data, and 2) excessive variety in analog layout design tasks. For self-supervised learning, we propose random patch sampling and random masking techniques automatically to obtain enough training data from a small unannotated layout dataset. The obtained data are greatly augmented, less biased, equally sized, and contain enough information for excessive varieties of qualified layout patterns. By pre-training with the obtained data, the proposed foundation model can learn implicit general knowledge on layout patterns so that it can be fine-tuned for various downstream layout tasks with small task-specific datasets. Fine-tuning provides an efficient and consolidated methodology for diverse downstream tasks, reducing the enormous human effort to develop a model per task separately. In experiments, the foundation model was pre-trained using 324,000 samples obtained from 6 silicon-proved manually designed analog circuits, then it was fine-tuned for the five example downstream tasks: generating contacts, vias, dummy fingers, N-wells, and metal routings. The fine-tuned models successfully performed these tasks for more than one thousand unseen layout inputs, generating DRC/LVS-clean layouts for 96.6% of samples. Compared with training the model from scratch for the metal routing task, fine-tuning required only 1/8 of the data to achieve the same dice score of 0.95. With the same data, fine-tuning achieved a 90% lower validation loss and a 40% higher benchmark score than training from scratch.
comment: 8 pages, 11 figures
☆ Score-Based Turbo Message Passing for Plug-and-Play Compressive Image Recovery
Message passing algorithms have been tailored for compressive imaging applications by plugging in different types of off-the-shelf image denoisers. These off-the-shelf denoisers mostly rely on some generic or hand-crafted priors for denoising. Due to their insufficient accuracy in capturing the true image prior, these methods often fail to produce satisfactory results, especially in largely underdetermined scenarios. On the other hand, score-based generative modeling offers a promising way to accurately characterize the sophisticated image distribution. In this paper, by exploiting the close relation between score-based modeling and empirical Bayes-optimal denoising, we devise a message passing framework that integrates a score-based minimum mean squared error (MMSE) denoiser for compressive image recovery. This framework is firmly rooted in Bayesian formalism, in which state evolution (SE) equations accurately predict its asymptotic performance. Experiments on the FFHQ dataset demonstrate that our method strikes a significantly better performance-complexity tradeoff than conventional message passing, regularized linear regression, and score-based posterior sampling baselines. Remarkably, our method typically requires less than 20 neural function evaluations (NFEs) to converge.
☆ Enhancing Dance-to-Music Generation via Negative Conditioning Latent Diffusion Model
Conditional diffusion models have gained increasing attention since their impressive results for cross-modal synthesis, where the strong alignment between conditioning input and generated output can be achieved by training a time-conditioned U-Net augmented with cross-attention mechanism. In this paper, we focus on the problem of generating music synchronized with rhythmic visual cues of the given dance video. Considering that bi-directional guidance is more beneficial for training a diffusion model, we propose to enhance the quality of generated music and its synchronization with dance videos by adopting both positive rhythmic information and negative ones (PN-Diffusion) as conditions, where a dual diffusion and reverse processes is devised. Specifically, to train a sequential multi-modal U-Net structure, PN-Diffusion consists of a noise prediction objective for positive conditioning and an additional noise prediction objective for negative conditioning. To accurately define and select both positive and negative conditioning, we ingeniously utilize temporal correlations in dance videos, capturing positive and negative rhythmic cues by playing them forward and backward, respectively. Through subjective and objective evaluations of input-output correspondence in terms of dance-music beat alignment and the quality of generated music, experimental results on the AIST++ and TikTok dance video datasets demonstrate that our model outperforms SOTA dance-to-music generation models.
☆ Beyond Background Shift: Rethinking Instance Replay in Continual Semantic Segmentation
In this work, we focus on continual semantic segmentation (CSS), where segmentation networks are required to continuously learn new classes without erasing knowledge of previously learned ones. Although storing images of old classes and directly incorporating them into the training of new models has proven effective in mitigating catastrophic forgetting in classification tasks, this strategy presents notable limitations in CSS. Specifically, the stored and new images with partial category annotations leads to confusion between unannotated categories and the background, complicating model fitting. To tackle this issue, this paper proposes a novel Enhanced Instance Replay (EIR) method, which not only preserves knowledge of old classes while simultaneously eliminating background confusion by instance storage of old classes, but also mitigates background shifts in the new images by integrating stored instances with new images. By effectively resolving background shifts in both stored and new images, EIR alleviates catastrophic forgetting in the CSS task, thereby enhancing the model's capacity for CSS. Experimental results validate the efficacy of our approach, which significantly outperforms state-of-the-art CSS methods.
☆ Semantic segmentation for building houses from wooden cubes
Automated construction is one of the most promising areas that can improve efficiency, reduce costs and minimize errors in the process of building construction. In this paper, a comparative analysis of three neural network models for semantic segmentation, U-Net(light), LinkNet and PSPNet, is performed. Two specialized datasets with images of houses built from wooden cubes were created for the experiments. The first dataset contains 4 classes (background, foundation, walls, roof ) and is designed for basic model evaluation, while the second dataset includes 44 classes where each cube is labeled as a separate object. The models were trained with the same hyperparameters and their accuracy was evaluated using MeanIoU and F1 Score metrics. According to the results obtained, U-Net(light) showed the best performance with 78% MeanIoU and 87% F1 Score on the first dataset and 17% and 25% respectively on the second dataset. The poor results on the second dataset are due to the limited amount of data, the complexity of the partitioning and the imbalance of classes, making it difficult to accurately select individual cubes. In addition, overtraining was observed in all experiments, manifested by high accuracy on the training dataset and its significant decrease on the validation dataset. The present work is the basis for the development of algorithms for automatic generation of staged building plans, which can be further scaled to design complete buildings. Future research is planned to extend the datasets and apply methods to combat overfitting (L1/L2 regularization, Early Stopping). The next stage of work will be the development of algorithms for automatic generation of a step-by-step plan for building houses from cubes using manipulators. Index Terms-Deep Learning, Computer vision, CNN, Semantic segmentation, Construction materials.
comment: 10 pages, 6 figures, 2 tables
☆ REMAC: Self-Reflective and Self-Evolving Multi-Agent Collaboration for Long-Horizon Robot Manipulation
Vision-language models (VLMs) have demonstrated remarkable capabilities in robotic planning, particularly for long-horizon tasks that require a holistic understanding of the environment for task decomposition. Existing methods typically rely on prior environmental knowledge or carefully designed task-specific prompts, making them struggle with dynamic scene changes or unexpected task conditions, e.g., a robot attempting to put a carrot in the microwave but finds the door was closed. Such challenges underscore two critical issues: adaptability and efficiency. To address them, in this work, we propose an adaptive multi-agent planning framework, termed REMAC, that enables efficient, scene-agnostic multi-robot long-horizon task planning and execution through continuous reflection and self-evolution. REMAC incorporates two key modules: a self-reflection module performing pre-condition and post-condition checks in the loop to evaluate progress and refine plans, and a self-evolvement module dynamically adapting plans based on scene-specific reasoning. It offers several appealing benefits: 1) Robots can initially explore and reason about the environment without complex prompt design. 2) Robots can keep reflecting on potential planning errors and adapting the plan based on task-specific insights. 3) After iterations, a robot can call another one to coordinate tasks in parallel, maximizing the task execution efficiency. To validate REMAC's effectiveness, we build a multi-agent environment for long-horizon robot manipulation and navigation based on RoboCasa, featuring 4 task categories with 27 task styles and 50+ different objects. Based on it, we further benchmark state-of-the-art reasoning models, including DeepSeek-R1, o3-mini, QwQ, and Grok3, demonstrating REMAC's superiority by boosting average success rates by 40% and execution efficiency by 52.7% over the single robot baseline.
Detecting Localized Deepfake Manipulations Using Action Unit-Guided Video Representations
With rapid advancements in generative modeling, deepfake techniques are increasingly narrowing the gap between real and synthetic videos, raising serious privacy and security concerns. Beyond traditional face swapping and reenactment, an emerging trend in recent state-of-the-art deepfake generation methods involves localized edits such as subtle manipulations of specific facial features like raising eyebrows, altering eye shapes, or modifying mouth expressions. These fine-grained manipulations pose a significant challenge for existing detection models, which struggle to capture such localized variations. To the best of our knowledge, this work presents the first detection approach explicitly designed to generalize to localized edits in deepfake videos by leveraging spatiotemporal representations guided by facial action units. Our method leverages a cross-attention-based fusion of representations learned from pretext tasks like random masking and action unit detection, to create an embedding that effectively encodes subtle, localized changes. Comprehensive evaluations across multiple deepfake generation methods demonstrate that our approach, despite being trained solely on the traditional FF+ dataset, sets a new benchmark in detecting recent deepfake-generated videos with fine-grained local edits, achieving a $20\%$ improvement in accuracy over current state-of-the-art detection methods. Additionally, our method delivers competitive performance on standard datasets, highlighting its robustness and generalization across diverse types of local and global forgeries.
☆ Camera Model Identification with SPAIR-Swin and Entropy based Non-Homogeneous Patches
Source camera model identification (SCMI) plays a pivotal role in image forensics with applications including authenticity verification and copyright protection. For identifying the camera model used to capture a given image, we propose SPAIR-Swin, a novel model combining a modified spatial attention mechanism and inverted residual block (SPAIR) with a Swin Transformer. SPAIR-Swin effectively captures both global and local features, enabling robust identification of artifacts such as noise patterns that are particularly effective for SCMI. Additionally, unlike conventional methods focusing on homogeneous patches, we propose a patch selection strategy for SCMI that emphasizes high-entropy regions rich in patterns and textures. Extensive evaluations on four benchmark SCMI datasets demonstrate that SPAIR-Swin outperforms existing methods, achieving patch-level accuracies of 99.45%, 98.39%, 99.45%, and 97.46% and image-level accuracies of 99.87%, 99.32%, 100%, and 98.61% on the Dresden, Vision, Forchheim, and Socrates datasets, respectively. Our findings highlight that high-entropy patches, which contain high-frequency information such as edge sharpness, noise, and compression artifacts, are more favorable in improving SCMI accuracy. Code will be made available upon request.
comment: 10 pages, 5 figures
♻ ☆ LOCATEdit: Graph Laplacian Optimized Cross Attention for Localized Text-Guided Image Editing
Text-guided image editing aims to modify specific regions of an image according to natural language instructions while maintaining the general structure and the background fidelity. Existing methods utilize masks derived from cross-attention maps generated from diffusion models to identify the target regions for modification. However, since cross-attention mechanisms focus on semantic relevance, they struggle to maintain the image integrity. As a result, these methods often lack spatial consistency, leading to editing artifacts and distortions. In this work, we address these limitations and introduce LOCATEdit, which enhances cross-attention maps through a graph-based approach utilizing self-attention-derived patch relationships to maintain smooth, coherent attention across image regions, ensuring that alterations are limited to the designated items while retaining the surrounding structure. LOCATEdit consistently and substantially outperforms existing baselines on PIE-Bench, demonstrating its state-of-the-art performance and effectiveness on various editing tasks. Code can be found on https://github.com/LOCATEdit/LOCATEdit/
♻ ☆ LandMarkSystem Technical Report
3D reconstruction is vital for applications in autonomous driving, virtual reality, augmented reality, and the metaverse. Recent advancements such as Neural Radiance Fields(NeRF) and 3D Gaussian Splatting (3DGS) have transformed the field, yet traditional deep learning frameworks struggle to meet the increasing demands for scene quality and scale. This paper introduces LandMarkSystem, a novel computing framework designed to enhance multi-scale scene reconstruction and rendering. By leveraging a componentized model adaptation layer, LandMarkSystem supports various NeRF and 3DGS structures while optimizing computational efficiency through distributed parallel computing and model parameter offloading. Our system addresses the limitations of existing frameworks, providing dedicated operators for complex 3D sparse computations, thus facilitating efficient training and rapid inference over extensive scenes. Key contributions include a modular architecture, a dynamic loading strategy for limited resources, and proven capabilities across multiple representative algorithms.This comprehensive solution aims to advance the efficiency and effectiveness of 3D reconstruction tasks.To facilitate further research and collaboration, the source code and documentation for the LandMarkSystem project are publicly available in an open-source repository, accessing the repository at: https://github.com/InternLandMark/LandMarkSystem.
♻ ☆ Structure Modeling Activation Free Fourier Network for Spacecraft Image Denoising
Spacecraft image denoising is a crucial fundamental technology closely related to aerospace research. However, the existing deep learning-based image denoising methods are primarily designed for natural image and fail to adequately consider the characteristics of spacecraft image(e.g. low-light conditions, repetitive periodic structures), resulting in suboptimal performance in the spacecraft image denoising task. To address the aforementioned problems, we propose a Structure modeling Activation Free Fourier Network (SAFFN), which is an efficient spacecraft image denoising method including Structure Modeling Block (SMB) and Activation Free Fourier Block (AFFB). We present SMB to effectively extract edge information and model the structure for better identification of spacecraft components from dark regions in spacecraft noise image. We present AFFB and utilize an improved Fast Fourier block to extract repetitive periodic features and long-range information in noisy spacecraft image. Extensive experimental results demonstrate that our SAFFN performs competitively compared to the state-of-the-art methods on spacecraft noise image datasets. The codes are available at: https://github.com/shenduke/SAFFN.
comment: Published in Neurocomputing, 2025
♻ ☆ Generalizable Prompt Learning of CLIP: A Brief Overview
Existing vision-language models (VLMs) such as CLIP have showcased an impressive capability to generalize well across various downstream tasks. These models leverage the synergy between visual and textual information, enabling them to understand and reason about the content present in images and text in a unified manner. This article provides a brief overview of CLIP based on few-shot prompt learning, including experimental data and technical characteristics of some methods. The purpose of this review is to provide a reference for researchers who have just started their research in generalizable prompting of CLIP through few-shot training for classification across 15 datasets and also to facilitate the integration of this field by researchers in other downstream tasks.
♻ ☆ Multi-Scale Invertible Neural Network for Wide-Range Variable-Rate Learned Image Compression
Autoencoder-based structures have dominated recent learned image compression methods. However, the inherent information loss associated with autoencoders limits their rate-distortion performance at high bit rates and restricts their flexibility of rate adaptation. In this paper, we present a variable-rate image compression model based on invertible transform to overcome these limitations. Specifically, we design a lightweight multi-scale invertible neural network, which bijectively maps the input image into multi-scale latent representations. To improve the compression efficiency, a multi-scale spatial-channel context model with extended gain units is devised to estimate the entropy of the latent representation from high to low levels. Experimental results demonstrate that the proposed method achieves state-of-the-art performance compared to existing variable-rate methods, and remains competitive with recent multi-model approaches. Notably, our method is the first learned image compression solution that outperforms VVC across a very wide range of bit rates using a single model, especially at high bit rates. The source code is available at https://github.com/hytu99/MSINN-VRLIC.
comment: Accepted for publication in IEEE Transactions on Multimedia 2025
♻ ☆ VidTwin: Video VAE with Decoupled Structure and Dynamics CVPR 2025
Recent advancements in video autoencoders (Video AEs) have significantly improved the quality and efficiency of video generation. In this paper, we propose a novel and compact video autoencoder, VidTwin, that decouples video into two distinct latent spaces: Structure latent vectors, which capture overall content and global movement, and Dynamics latent vectors, which represent fine-grained details and rapid movements. Specifically, our approach leverages an Encoder-Decoder backbone, augmented with two submodules for extracting these latent spaces, respectively. The first submodule employs a Q-Former to extract low-frequency motion trends, followed by downsampling blocks to remove redundant content details. The second averages the latent vectors along the spatial dimension to capture rapid motion. Extensive experiments show that VidTwin achieves a high compression rate of 0.20% with high reconstruction quality (PSNR of 28.14 on the MCL-JCV dataset), and performs efficiently and effectively in downstream generative tasks. Moreover, our model demonstrates explainability and scalability, paving the way for future research in video latent representation and generation. Check our project page for more details: https://vidtwin.github.io/.
comment: Accepted by CVPR 2025; Project page: https://vidtwin.github.io/; Code: https://github.com/microsoft/VidTok/tree/main/vidtwin
♻ ☆ RAP: Retrieval-Augmented Personalization for Multimodal Large Language Models CVPR 2025
The development of large language models (LLMs) has significantly enhanced the capabilities of multimodal LLMs (MLLMs) as general assistants. However, lack of user-specific knowledge still restricts their application in human's daily life. In this paper, we introduce the Retrieval Augmented Personalization (RAP) framework for MLLMs' personalization. Starting from a general MLLM, we turn it into a personalized assistant in three steps. (a) Remember: We design a key-value database to store user-related information, e.g., user's name, avatar and other attributes. (b) Retrieve: When the user initiates a conversation, RAP will retrieve relevant information from the database using a multimodal retriever. (c) Generate: The input query and retrieved concepts' information are fed into MLLMs to generate personalized, knowledge-augmented responses. Unlike previous methods, RAP allows real-time concept editing via updating the external database. To further improve generation quality and alignment with user-specific information, we design a pipeline for data collection and create a specialized dataset for personalized training of MLLMs. Based on the dataset, we train a series of MLLMs as personalized multimodal assistants. By pretraining on large-scale dataset, RAP-MLLMs can generalize to infinite visual concepts without additional finetuning. Our models demonstrate outstanding flexibility and generation quality across a variety of tasks, such as personalized image captioning, question answering and visual recognition. The code, data and models are available at https://hoar012.github.io/RAP-Project/.
comment: Accepted by CVPR 2025. Code: https://github.com/Hoar012/RAP-MLLM
♻ ☆ RelDenClu: A Relative Density based Biclustering Method for identifying non-linear feature relations
The existing biclustering algorithms for finding feature relation based biclusters often depend on assumptions like monotonicity or linearity. Though a few algorithms overcome this problem by using density-based methods, they tend to miss out many biclusters because they use global criteria for identifying dense regions. The proposed method, RelDenClu uses the local variations in marginal and joint densities for each pair of features to find the subset of observations, which forms the bases of the relation between them. It then finds the set of features connected by a common set of observations, resulting in a bicluster. To show the effectiveness of the proposed methodology, experimentation has been carried out on fifteen types of simulated datasets. Further, it has been applied to six real-life datasets. For three of these real-life datasets, the proposed method is used for unsupervised learning, while for other three real-life datasets it is used as an aid to supervised learning. For all the datasets the performance of the proposed method is compared with that of seven different state-of-the-art algorithms and the proposed algorithm is seen to produce better results. The efficacy of proposed algorithm is also seen by its use on COVID-19 dataset for identifying some features (genetic, demographics and others) that are likely to affect the spread of COVID-19.
♻ ☆ A Progressive Risk Formulation for Enhanced Deep Learning based Total Knee Replacement Prediction in Knee Osteoarthritis
We developed deep learning models for predicting Total Knee Replacement (TKR) need within various time horizons in knee osteoarthritis patients, with a novel capability: the models can perform TKR prediction using a single scan, and furthermore when a previous scan is available, they leverage a progressive risk formulation to improve their predictions. Unlike conventional approaches that treat each scan of a patient independently, our method incorporates a constraint based on disease's progressive nature, ensuring that predicted TKR risk either increases or remains stable over time when multiple scans of a knee are available. This was achieved by enforcing a progressive risk formulation constraint during training with patients who have more than one available scan in the studies. Knee radiographs and MRIs from the Osteoarthritis Initiative (OAI) and Multicenter Osteoarthritis Study (MOST) were used in this work and deep learning models were trained to predict TKR within 1, 2, and 4-year time periods. The proposed approach, utilizing a dual-model risk constraint architecture, demonstrated superior performance compared to baseline - conventional models trained with standard binary cross entropy loss. It achieved an AUROC of 0.87 and AUPRC of 0.47 for 1-year TKR prediction on the OAI radiograph test set, considerably improving over the baseline AUROC of 0.79 and AUPRC of 0.34. For the MOST radiograph test set, the proposed approach achieved an AUROC of 0.77 and AUPRC of 0.25 for 1-year predictions, outperforming the baseline AUROC of 0.71 and AUPRC of 0.19. Similar trends were observed in the MRI testsets
♻ ☆ Exploring Saliency Bias in Manipulation Detection ICIP
The social media-fuelled explosion of fake news and misinformation supported by tampered images has led to growth in the development of models and datasets for image manipulation detection. However, existing detection methods mostly treat media objects in isolation, without considering the impact of specific manipulations on viewer perception. Forensic datasets are usually analyzed based on the manipulation operations and corresponding pixel-based masks, but not on the semantics of the manipulation, i.e., type of scene, objects, and viewers' attention to scene content. The semantics of the manipulation play an important role in spreading misinformation through manipulated images. In an attempt to encourage further development of semantic-aware forensic approaches to understand visual misinformation, we propose a framework to analyze the trends of visual and semantic saliency in popular image manipulation datasets and their impact on detection.
comment: Published in: 2024 IEEE International Conference on Image Processing (ICIP)
♻ ☆ TULIP: Token-length Upgraded CLIP
We address the challenge of representing long captions in vision-language models, such as CLIP. By design these models are limited by fixed, absolute positional encodings, restricting inputs to a maximum of 77 tokens and hindering performance on tasks requiring longer descriptions. Although recent work has attempted to overcome this limit, their proposed approaches struggle to model token relationships over longer distances and simply extend to a fixed new token length. Instead, we propose a generalizable method, named TULIP, able to upgrade the token length to any length for CLIP-like models. We do so by improving the architecture with relative position encodings, followed by a training procedure that (i) distills the original CLIP text encoder into an encoder with relative position encodings and (ii) enhances the model for aligning longer captions with images. By effectively encoding captions longer than the default 77 tokens, our model outperforms baselines on cross-modal tasks such as retrieval and text-to-image generation. The code repository is available at https://github.com/ivonajdenkoska/tulip.
♻ ☆ USC: Uncompromising Spatial Constraints for Safety-Oriented 3D Object Detectors in Autonomous Driving SC 2024
In this work, we consider the safety-oriented performance of 3D object detectors in autonomous driving contexts. Specifically, despite impressive results shown by the mass literature, developers often find it hard to ensure the safe deployment of these learning-based perception models. Attributing the challenge to the lack of safety-oriented metrics, we hereby present uncompromising spatial constraints (USC), which characterize a simple yet important localization requirement demanding the predictions to fully cover the objects when seen from the autonomous vehicle. The constraints, as we formulate using the perspective and bird's-eye views, can be naturally reflected by quantitative measures, such that having an object detector with a higher score implies a lower risk of collision. Finally, beyond model evaluation, we incorporate the quantitative measures into common loss functions to enable safety-oriented fine-tuning for existing models. With experiments using the nuScenes dataset and a closed-loop simulation, our work demonstrates such considerations of safety notions at the perception level not only improve model performances beyond accuracy but also allow for a more direct linkage to actual system safety.
comment: Accepted by ITSC 2024, 8 pages (IEEE double column format), 7 figures, 2 tables
♻ ☆ Towards Stabilized and Efficient Diffusion Transformers through Long-Skip-Connections with Spectral Constraints
Diffusion Transformers (DiT) have emerged as a powerful architecture for image and video generation, offering superior quality and scalability. However, their practical application suffers from inherent dynamic feature instability, leading to error amplification during cached inference. Through systematic analysis, we identify the absence of long-range feature preservation mechanisms as the root cause of unstable feature propagation and perturbation sensitivity. To this end, we propose Skip-DiT, a novel DiT variant enhanced with Long-Skip-Connections (LSCs) - the key efficiency component in U-Nets. Theoretical spectral norm and visualization analysis demonstrate how LSCs stabilize feature dynamics. Skip-DiT architecture and its stabilized dynamic feature enable an efficient statical caching mechanism that reuses deep features across timesteps while updating shallow components. Extensive experiments across image and video generation tasks demonstrate that Skip-DiT achieves: (1) 4.4 times training acceleration and faster convergence, (2) 1.5-2 times inference acceleration without quality loss and high fidelity to original output, outperforming existing DiT caching methods across various quantitative metrics. Our findings establish long-skip connections as critical architectural components for training stable and efficient diffusion transformers.
comment: 17 pages, 8 figures
♻ ☆ Advancing the Biological Plausibility and Efficacy of Hebbian Convolutional Neural Networks
The research presented in this paper advances the integration of Hebbian learning into Convolutional Neural Networks (CNNs) for image processing, systematically exploring different architectures to build an optimal configuration, adhering to biological tenability. Hebbian learning operates on local unsupervised neural information to form feature representations, providing an alternative to the popular but arguably biologically implausible and computationally intensive backpropagation learning algorithm. The suggested optimal architecture significantly enhances recent research aimed at integrating Hebbian learning with competition mechanisms and CNNs, expanding their representational capabilities by incorporating hard Winner-Takes-All (WTA) competition, Gaussian lateral inhibition mechanisms, and Bienenstock-Cooper-Munro (BCM) learning rule in a single model. Mean accuracy classification measures during the last half of test epochs on CIFAR-10 revealed that the resulting optimal model matched its end-to-end backpropagation variant with 75.2% each, critically surpassing the state-of-the-art hard-WTA performance in CNNs of the same network depth (64.6%) by 10.6%. It also achieved competitive performance on MNIST (98%) and STL-10 (69.5%). Moreover, results showed clear indications of sparse hierarchical learning through increasingly complex and abstract receptive fields. In summary, our implementation enhances both the performance and the generalisability of the learnt representations and constitutes a crucial step towards more biologically realistic artificial neural networks.
comment: 47 pages, 15 figures
♻ ☆ Cross-Modal and Uncertainty-Aware Agglomeration for Open-Vocabulary 3D Scene Understanding CVPR 2025
The lack of a large-scale 3D-text corpus has led recent works to distill open-vocabulary knowledge from vision-language models (VLMs). However, these methods typically rely on a single VLM to align the feature spaces of 3D models within a common language space, which limits the potential of 3D models to leverage the diverse spatial and semantic capabilities encapsulated in various foundation models. In this paper, we propose Cross-modal and Uncertainty-aware Agglomeration for Open-vocabulary 3D Scene Understanding dubbed CUA-O3D, the first model to integrate multiple foundation models-such as CLIP, DINOv2, and Stable Diffusion-into 3D scene understanding. We further introduce a deterministic uncertainty estimation to adaptively distill and harmonize the heterogeneous 2D feature embeddings from these models. Our method addresses two key challenges: (1) incorporating semantic priors from VLMs alongside the geometric knowledge of spatially-aware vision foundation models, and (2) using a novel deterministic uncertainty estimation to capture model-specific uncertainties across diverse semantic and geometric sensitivities, helping to reconcile heterogeneous representations during training. Extensive experiments on ScanNetV2 and Matterport3D demonstrate that our method not only advances open-vocabulary segmentation but also achieves robust cross-domain alignment and competitive spatial perception capabilities. The code will be available at: https://github.com/TyroneLi/CUA_O3D.
comment: Accepted by CVPR 2025
♻ ☆ CoRPA: Adversarial Image Generation for Chest X-rays Using Concept Vector Perturbations and Generative Models
Deep learning models for medical image classification tasks are becoming widely implemented in AI-assisted diagnostic tools, aiming to enhance diagnostic accuracy, reduce clinician workloads, and improve patient outcomes. However, their vulnerability to adversarial attacks poses significant risks to patient safety. Current attack methodologies use general techniques such as model querying or pixel value perturbations to generate adversarial examples designed to fool a model. These approaches may not adequately address the unique characteristics of clinical errors stemming from missed or incorrectly identified clinical features. We propose the Concept-based Report Perturbation Attack (CoRPA), a clinically-focused black-box adversarial attack framework tailored to the medical imaging domain. CoRPA leverages clinical concepts to generate adversarial radiological reports and images that closely mirror realistic clinical misdiagnosis scenarios. We demonstrate the utility of CoRPA using the MIMIC-CXR-JPG dataset of chest X-rays and radiological reports. Our evaluation reveals that deep learning models exhibiting strong resilience to conventional adversarial attacks are significantly less robust when subjected to CoRPA's clinically-focused perturbations. This underscores the importance of addressing domain-specific vulnerabilities in medical AI systems. By introducing a specialized adversarial attack framework, this study provides a foundation for developing robust, real-world-ready AI models in healthcare, ensuring their safe and reliable deployment in high-stakes clinical environments.
♻ ☆ Leveraging Expert Input for Robust and Explainable AI-Assisted Lung Cancer Detection in Chest X-rays
Deep learning models show significant potential for advancing AI-assisted medical diagnostics, particularly in detecting lung cancer through medical image modalities such as chest X-rays. However, the black-box nature of these models poses challenges to their interpretability and trustworthiness, limiting their adoption in clinical practice. This study examines both the interpretability and robustness of a high-performing lung cancer detection model based on InceptionV3, utilizing a public dataset of chest X-rays and radiological reports. We evaluate the clinical utility of multiple explainable AI (XAI) techniques, including both post-hoc and ante-hoc approaches, and find that existing methods often fail to provide clinically relevant explanations, displaying inconsistencies and divergence from expert radiologist assessments. To address these limitations, we collaborated with a radiologist to define diagnosis-specific clinical concepts and developed ClinicXAI, an expert-driven approach leveraging the concept bottleneck methodology. ClinicXAI generated clinically meaningful explanations which closely aligned with the practical requirements of clinicians while maintaining high diagnostic accuracy. We also assess the robustness of ClinicXAI in comparison to the original InceptionV3 model by subjecting both to a series of widely utilized adversarial attacks. Our analysis demonstrates that ClinicXAI exhibits significantly greater resilience to adversarial perturbations. These findings underscore the importance of incorporating domain expertise into the design of interpretable and robust AI systems for medical diagnostics, paving the way for more trustworthy and effective AI solutions in healthcare.
♻ ☆ Evaluating the evaluators: Towards human-aligned metrics for missing markers reconstruction
Animation data is often obtained through optical motion capture systems, which utilize a multitude of cameras to establish the position of optical markers. However, system errors or occlusions can result in missing markers, the manual cleaning of which can be time-consuming. This has sparked interest in machine learning-based solutions for missing marker reconstruction in the academic community. Most academic papers utilize a simplistic mean square error as the main metric. In this paper, we show that this metric does not correlate with subjective perception of the fill quality. Additionally, we introduce and evaluate a set of better-correlated metrics that can drive progress in the field.
♻ ☆ UniCon: Unidirectional Information Flow for Effective Control of Large-Scale Diffusion Models ICLR
We introduce UniCon, a novel architecture designed to enhance control and efficiency in training adapters for large-scale diffusion models. Unlike existing methods that rely on bidirectional interaction between the diffusion model and control adapter, UniCon implements a unidirectional flow from the diffusion network to the adapter, allowing the adapter alone to generate the final output. UniCon reduces computational demands by eliminating the need for the diffusion model to compute and store gradients during adapter training. Our results indicate that UniCon reduces GPU memory usage by one-third and increases training speed by 2.3 times, while maintaining the same adapter parameter size. Additionally, without requiring extra computational resources, UniCon enables the training of adapters with double the parameter volume of existing ControlNets. In a series of image conditional generation tasks, UniCon has demonstrated precise responsiveness to control inputs and exceptional generation capabilities.
comment: This work has been accepted for publication at the International Conference on Learning Representations (ICLR) 2025
♻ ☆ Patch-Depth Fusion: Dichotomous Image Segmentation via Fine-Grained Patch Strategy and Depth Integrity-Prior
Dichotomous Image Segmentation (DIS) is a high-precision object segmentation task for high-resolution natural images. The current mainstream methods focus on the optimization of local details but overlook the fundamental challenge of modeling the integrity of objects. We have found that the depth integrity-prior implicit in the the pseudo-depth maps generated by Depth Anything Model v2 and the local detail features of image patches can jointly address the above dilemmas. Based on the above findings, we have designed a novel Patch-Depth Fusion Network (PDFNet) for high-precision dichotomous image segmentation. The core of PDFNet consists of three aspects. Firstly, the object perception is enhanced through multi-modal input fusion. By utilizing the patch fine-grained strategy, coupled with patch selection and enhancement, the sensitivity to details is improved. Secondly, by leveraging the depth integrity-prior distributed in the depth maps, we propose an integrity-prior loss to enhance the uniformity of the segmentation results in the depth maps. Finally, we utilize the features of the shared encoder and, through a simple depth refinement decoder, improve the ability of the shared encoder to capture subtle depth-related information in the images. Experiments on the DIS-5K dataset show that PDFNet significantly outperforms state-of-the-art non-diffusion methods. Due to the incorporation of the depth integrity-prior, PDFNet achieves or even surpassing the performance of the latest diffusion-based methods while using less than 11% of the parameters of diffusion-based methods. The source code at https://github.com/Tennine2077/PDFNet
♻ ☆ Adaptive Weighted Parameter Fusion with CLIP for Class-Incremental Learning ICME2025
Class-incremental Learning (CIL) enables the model to incrementally absorb knowledge from new classes and build a generic classifier across all previously encountered classes. When the model optimizes with new classes, the knowledge of previous classes is inevitably erased, leading to catastrophic forgetting. Addressing this challenge requires making a trade-off between retaining old knowledge and accommodating new information. However, this balancing process often requires sacrificing some information, which can lead to a partial loss in the model's ability to discriminate between classes. To tackle this issue, we design the adaptive weighted parameter fusion with Contrastive Language-Image Pre-training (CLIP), which not only takes into account the variability of the data distribution of different tasks, but also retains all the effective information of the parameter matrix to the greatest extent. In addition, we introduce a balance factor that can balance the data distribution alignment and distinguishability of adjacent tasks. Experimental results on several traditional benchmarks validate the superiority of the proposed method.
comment: Accepted by ICME2025
♻ ☆ Rethinking Efficient and Effective Point-based Networks for Event Camera Classification and Regression: EventMamba
Event cameras draw inspiration from biological systems, boasting low latency and high dynamic range while consuming minimal power. The most current approach to processing Event Cloud often involves converting it into frame-based representations, which neglects the sparsity of events, loses fine-grained temporal information, and increases the computational burden. In contrast, Point Cloud is a popular representation for processing 3-dimensional data and serves as an alternative method to exploit local and global spatial features. Nevertheless, previous point-based methods show an unsatisfactory performance compared to the frame-based method in dealing with spatio-temporal event streams. In order to bridge the gap, we propose EventMamba, an efficient and effective framework based on Point Cloud representation by rethinking the distinction between Event Cloud and Point Cloud, emphasizing vital temporal information. The Event Cloud is subsequently fed into a hierarchical structure with staged modules to process both implicit and explicit temporal features. Specifically, we redesign the global extractor to enhance explicit temporal extraction among a long sequence of events with temporal aggregation and State Space Model (SSM) based Mamba. Our model consumes minimal computational resources in the experiments and still exhibits SOTA point-based performance on six different scales of action recognition datasets. It even outperformed all frame-based methods on both Camera Pose Relocalization (CPR) and eye-tracking regression tasks. Our code is available at: https://github.com/rhwxmx/EventMamba.
comment: Accepted by TPAMI
♻ ☆ DyCoke: Dynamic Compression of Tokens for Fast Video Large Language Models
Video large language models (VLLMs) have significantly advanced recently in processing complex video content, yet their inference efficiency remains constrained because of the high computational cost stemming from the thousands of visual tokens generated from the video inputs. We empirically observe that, unlike single image inputs, VLLMs typically attend visual tokens from different frames at different decoding iterations, making a one-shot pruning strategy prone to removing important tokens by mistake. Motivated by this, we present DyCoke, a training-free token compression method to optimize token representation and accelerate VLLMs. DyCoke incorporates a plug-and-play temporal compression module to minimize temporal redundancy by merging redundant tokens across frames, and applies dynamic KV cache reduction to prune spatially redundant tokens selectively. It ensures high-quality inference by dynamically retaining the critical tokens at each decoding step. Extensive experimental results demonstrate that DyCoke can outperform the prior SoTA counterparts, achieving 1.5X inference speedup, 1.4X memory reduction against the baseline VLLM, while still improving the performance, with no training.
comment: 13 pages, 7 figures
♻ ☆ Knowledge Bridger: Towards Training-free Missing Multi-modality Completion CVPR 2025
Previous successful approaches to missing modality completion rely on carefully designed fusion techniques and extensive pre-training on complete data, which can limit their generalizability in out-of-domain (OOD) scenarios. In this study, we pose a new challenge: can we develop a missing modality completion model that is both resource-efficient and robust to OOD generalization? To address this, we present a training-free framework for missing modality completion that leverages large multimodal models (LMMs). Our approach, termed the "Knowledge Bridger", is modality-agnostic and integrates generation and ranking of missing modalities. By defining domain-specific priors, our method automatically extracts structured information from available modalities to construct knowledge graphs. These extracted graphs connect the missing modality generation and ranking modules through the LMM, resulting in high-quality imputations of missing modalities. Experimental results across both general and medical domains show that our approach consistently outperforms competing methods, including in OOD generalization. Additionally, our knowledge-driven generation and ranking techniques demonstrate superiority over variants that directly employ LMMs for generation and ranking, offering insights that may be valuable for applications in other domains.
comment: Accepted to CVPR 2025
♻ ☆ ShadowHack: Hacking Shadows via Luminance-Color Divide and Conquer
Shadows introduce challenges such as reduced brightness, texture deterioration, and color distortion in images, complicating a holistic solution. This study presents \textbf{ShadowHack}, a divide-and-conquer strategy that tackles these complexities by decomposing the original task into luminance recovery and color remedy. To brighten shadow regions and repair the corrupted textures in the luminance space, we customize LRNet, a U-shaped network with a rectified attention module, to enhance information interaction and recalibrate contaminated attention maps. With luminance recovered, CRNet then leverages cross-attention mechanisms to revive vibrant colors, producing visually compelling results. Extensive experiments on multiple datasets are conducted to demonstrate the superiority of ShadowHack over existing state-of-the-art solutions both quantitatively and qualitatively, highlighting the effectiveness of our design. Our code will be made publicly available.
♻ ☆ GaussianUDF: Inferring Unsigned Distance Functions through 3D Gaussian Splatting CVPR 2025
Reconstructing open surfaces from multi-view images is vital in digitalizing complex objects in daily life. A widely used strategy is to learn unsigned distance functions (UDFs) by checking if their appearance conforms to the image observations through neural rendering. However, it is still hard to learn continuous and implicit UDF representations through 3D Gaussians splatting (3DGS) due to the discrete and explicit scene representation, i.e., 3D Gaussians. To resolve this issue, we propose a novel approach to bridge the gap between 3D Gaussians and UDFs. Our key idea is to overfit thin and flat 2D Gaussian planes on surfaces, and then, leverage the self-supervision and gradient-based inference to supervise unsigned distances in both near and far area to surfaces. To this end, we introduce novel constraints and strategies to constrain the learning of 2D Gaussians to pursue more stable optimization and more reliable self-supervision, addressing the challenges brought by complicated gradient field on or near the zero level set of UDFs. We report numerical and visual comparisons with the state-of-the-art on widely used benchmarks and real data to show our advantages in terms of accuracy, efficiency, completeness, and sharpness of reconstructed open surfaces with boundaries.
comment: Accepted by CVPR 2025. Project page: https://lisj575.github.io/GaussianUDF/
♻ ☆ CT-AGRG: Automated Abnormality-Guided Report Generation from 3D Chest CT Volumes
The rapid increase of computed tomography (CT) scans and their time-consuming manual analysis have created an urgent need for robust automated analysis techniques in clinical settings. These aim to assist radiologists and help them managing their growing workload. Existing methods typically generate entire reports directly from 3D CT images, without explicitly focusing on observed abnormalities. This unguided approach often results in repetitive content or incomplete reports, failing to prioritize anomaly-specific descriptions. We propose a new anomaly-guided report generation model, which first predicts abnormalities and then generates targeted descriptions for each. Evaluation on a public dataset demonstrates significant improvements in report quality and clinical relevance. We extend our work by conducting an ablation study to demonstrate its effectiveness.
comment: Paper accepted to ISBI 2025
♻ ☆ AI-Driven MRI Spine Pathology Detection: A Comprehensive Deep Learning Approach for Automated Diagnosis in Diverse Clinical Settings
Study Design: This study presents the development of an autonomous AI system for MRI spine pathology detection, trained on a dataset of 2 million MRI spine scans sourced from diverse healthcare facilities across India. The AI system integrates advanced architectures, including Vision Transformers, U-Net with cross-attention, MedSAM, and Cascade R-CNN, enabling comprehensive classification, segmentation, and detection of 43 distinct spinal pathologies. The dataset is balanced across age groups, genders, and scanner manufacturers to ensure robustness and adaptability. Subgroup analyses were conducted to validate the model's performance across different patient demographics, imaging conditions, and equipment types. Performance: The AI system achieved up to 97.9 percent multi-pathology detection, demonstrating consistent performance across age, gender, and manufacturer subgroups. The normal vs. abnormal classification achieved 98.0 percent accuracy, and the system was deployed across 13 major healthcare enterprises in India, encompassing diagnostic centers, large hospitals, and government facilities. During deployment, it processed approximately 100,000 plus MRI spine scans, leading to reduced reporting times and increased diagnostic efficiency by automating the identification of common spinal conditions. Conclusion: The AI system's high precision and recall validate its capability as a reliable tool for autonomous normal/abnormal classification, pathology segmentation, and detection. Its scalability and adaptability address critical diagnostic gaps, optimize radiology workflows, and improve patient care across varied healthcare environments in India.
comment: 20 pages , 3 figurea
♻ ☆ Advancing Chronic Tuberculosis Diagnostics Using Vision-Language Models: A Multi modal Framework for Precision Analysis
Background: This study proposes a Vision-Language Model (VLM) leveraging the SIGLIP encoder and Gemma-3b transformer decoder to enhance automated chronic tuberculosis (TB) screening. By integrating chest X-ray images with clinical data, the model addresses the challenges of manual interpretation, improving diagnostic consistency and accessibility, particularly in resource-constrained settings. Methods: The VLM architecture combines a Vision Transformer (ViT) for visual encoding and a transformer-based text encoder to process clinical context, such as patient histories and treatment records. Cross-modal attention mechanisms align radiographic features with textual information, while the Gemma-3b decoder generates comprehensive diagnostic reports. The model was pre-trained on 5 million paired medical images and texts and fine-tuned using 100,000 chronic TB-specific chest X-rays. Results: The model demonstrated high precision (94 percent) and recall (94 percent) for detecting key chronic TB pathologies, including fibrosis, calcified granulomas, and bronchiectasis. Area Under the Curve (AUC) scores exceeded 0.93, and Intersection over Union (IoU) values were above 0.91, validating its effectiveness in detecting and localizing TB-related abnormalities. Conclusion: The VLM offers a robust and scalable solution for automated chronic TB diagnosis, integrating radiographic and clinical data to deliver actionable and context-aware insights. Future work will address subtle pathologies and dataset biases to enhance the model's generalizability, ensuring equitable performance across diverse populations and healthcare settings.
comment: 10 pages , 3 figures
♻ ☆ Gradient entropy (GradEn): The two dimensional version of slope entropy for image analysis
Information theory and Shannon entropy are essential for quantifying irregularity in complex systems or signals. Recently, two-dimensional entropy methods, such as two-dimensional sample entropy, distribution entropy, and permutation entropy, have been proposed for analyzing 2D texture or image data. This paper introduces Gradient entropy (GradEn), an extension of slope entropy to 2D, which considers both symbolic patterns and amplitude information, enabling better feature extraction from image data. We evaluate GradEn with simulated data, including 2D colored noise, 2D mixed processes, and the logistic map. Results show the ability of GradEn to distinguish images with various characteristics while maintaining low computational cost. Real-world datasets, consist of texture, fault gear, and railway corrugation signals, demonstrate the superior performance of GradEn in classification tasks compared to other 2D entropy methods. In conclusion, GradEn is an effective tool for image characterization, offering a novel approach for image processing and recognition.
♻ ☆ Circumventing shortcuts in audio-visual deepfake detection datasets with unsupervised learning
Good datasets are essential for developing and benchmarking any machine learning system. Their importance is even more extreme for safety critical applications such as deepfake detection - the focus of this paper. Here we reveal that two of the most widely used audio-video deepfake datasets suffer from a previously unidentified spurious feature: the leading silence. Fake videos start with a very brief moment of silence and based on this feature alone, we can separate the real and fake samples almost perfectly. As such, previous audio-only and audio-video models exploit the presence of silence in the fake videos and consequently perform worse when the leading silence is removed. To circumvent latching on such unwanted artifact and possibly other unrevealed ones we propose a shift from supervised to unsupervised learning by training models exclusively on real data. We show that by aligning self-supervised audio-video representations we remove the risk of relying on dataset-specific biases and improve robustness in deepfake detection.
♻ ☆ Combating Semantic Contamination in Learning with Label Noise AAAI2025
Noisy labels can negatively impact the performance of deep neural networks. One common solution is label refurbishment, which involves reconstructing noisy labels through predictions and distributions. However, these methods may introduce problematic semantic associations, a phenomenon that we identify as Semantic Contamination. Through an analysis of Robust LR, a representative label refurbishment method, we found that utilizing the logits of views for refurbishment does not adequately balance the semantic information of individual classes. Conversely, using the logits of models fails to maintain consistent semantic relationships across models, which explains why label refurbishment methods frequently encounter issues related to Semantic Contamination. To address this issue, we propose a novel method called Collaborative Cross Learning, which utilizes semi-supervised learning on refurbished labels to extract appropriate semantic associations from embeddings across views and models. Experimental results show that our method outperforms existing approaches on both synthetic and real-world noisy datasets, effectively mitigating the impact of label noise and Semantic Contamination.
comment: AAAI2025
♻ ☆ Light Transport-aware Diffusion Posterior Sampling for Single-View Reconstruction of 3D Volumes CVPR 2025
We introduce a single-view reconstruction technique of volumetric fields in which multiple light scattering effects are omnipresent, such as in clouds. We model the unknown distribution of volumetric fields using an unconditional diffusion model trained on a novel benchmark dataset comprising 1,000 synthetically simulated volumetric density fields. The neural diffusion model is trained on the latent codes of a novel, diffusion-friendly, monoplanar representation. The generative model is used to incorporate a tailored parametric diffusion posterior sampling technique into different reconstruction tasks. A physically-based differentiable volume renderer is employed to provide gradients with respect to light transport in the latent space. This stands in contrast to classic NeRF approaches and makes the reconstructions better aligned with observed data. Through various experiments, we demonstrate single-view reconstruction of volumetric clouds at a previously unattainable quality.
comment: CVPR 2025
♻ ☆ VinaBench: Benchmark for Faithful and Consistent Visual Narratives CVPR 2025
Visual narrative generation transforms textual narratives into sequences of images illustrating the content of the text. However, generating visual narratives that are faithful to the input text and self-consistent across generated images remains an open challenge, due to the lack of knowledge constraints used for planning the stories. In this work, we propose a new benchmark, VinaBench, to address this challenge. Our benchmark annotates the underlying commonsense and discourse constraints in visual narrative samples, offering systematic scaffolds for learning the implicit strategies of visual storytelling. Based on the incorporated narrative constraints, we further propose novel metrics to closely evaluate the consistency of generated narrative images and the alignment of generations with the input textual narrative. Our results across three generative vision models demonstrate that learning with VinaBench's knowledge constraints effectively improves the faithfulness and cohesion of generated visual narratives.
comment: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2025)
♻ ☆ A Comprehensive Review of Few-shot Action Recognition
Few-shot action recognition aims to address the high cost and impracticality of manually labeling complex and variable video data in action recognition. It requires accurately classifying human actions in videos using only a few labeled examples per class. Compared to few-shot learning in image scenarios, few-shot action recognition is more challenging due to the intrinsic complexity of video data. Numerous approaches have driven significant advancements in few-shot action recognition, which underscores the need for a comprehensive survey. Unlike early surveys that focus on few-shot image or text classification, we deeply consider the unique challenges of few-shot action recognition. In this survey, we provide a comprehensive review of recent methods and introduce a novel and systematic taxonomy of existing approaches, accompanied by a detailed analysis. We categorize the methods into generative-based and meta-learning frameworks, and further elaborate on the methods within the meta-learning framework, covering aspects: video instance representation, category prototype learning, and generalized video alignment. Additionally, the survey presents the commonly used benchmarks and discusses relevant advanced topics and promising future directions. We hope this survey can serve as a valuable resource for researchers, offering essential guidance to newcomers and stimulating seasoned researchers with fresh insights.
comment: 35 pages
♻ ☆ DoubleDiffusion: Combining Heat Diffusion with Denoising Diffusion for Generative Learning on 3D Meshes
This paper proposes DoubleDiffusion, a novel framework that combines heat dissipation diffusion and denoising diffusion for direct generative learning on 3D mesh surfaces. Our approach addresses the challenges of generating continuous signal distributions residing on a curve manifold surface. Unlike previous methods that rely on unrolling 3D meshes into 2D or adopting field representations, DoubleDiffusion leverages the Laplacian-Beltrami operator to process features respecting the mesh structure. This combination enables effective geometry-aware signal diffusion across the underlying geometry. As shown in Fig.1, we demonstrate that DoubleDiffusion has the ability to generate RGB signal distributions on complex 3D mesh surfaces and achieves per-category shape-conditioned texture generation across different shape geometry. Our work contributes a new direction in diffusion-based generative modeling on 3D surfaces, with potential applications in the field of 3D asset generation.
comment: Codes: https://github.com/Wxyxixixi/DoubleDiffusion_3D_Mesh
♻ ☆ SkillMimic: Learning Basketball Interaction Skills from Demonstrations
Traditional reinforcement learning methods for human-object interaction (HOI) rely on labor-intensive, manually designed skill rewards that do not generalize well across different interactions. We introduce SkillMimic, a unified data-driven framework that fundamentally changes how agents learn interaction skills by eliminating the need for skill-specific rewards. Our key insight is that a unified HOI imitation reward can effectively capture the essence of diverse interaction patterns from HOI datasets. This enables SkillMimic to learn a single policy that not only masters multiple interaction skills but also facilitates skill transitions, with both diversity and generalization improving as the HOI dataset grows. For evaluation, we collect and introduce two basketball datasets containing approximately 35 minutes of diverse basketball skills. Extensive experiments show that SkillMimic successfully masters a wide range of basketball skills including stylistic variations in dribbling, layup, and shooting. Moreover, these learned skills can be effectively composed by a high-level controller to accomplish complex and long-horizon tasks such as consecutive scoring, opening new possibilities for scalable and generalizable interaction skill learning. Project page: https://ingrid789.github.io/SkillMimic/
♻ ☆ PromptLA: Towards Integrity Verification of Black-box Text-to-Image Diffusion Models
Despite the impressive synthesis quality of text-to-image (T2I) diffusion models, their black-box deployment poses significant regulatory challenges: Malicious actors can fine-tune these models to generate illegal content, circumventing existing safeguards through parameter manipulation. Therefore, it is essential to verify the integrity of T2I diffusion models. To this end, considering the randomness within the outputs of generative models and the high costs in interacting with them, we discern model tampering via the KL divergence between the distributions of the features of generated images. We propose a novel prompt selection algorithm based on learning automaton (PromptLA) for efficient and accurate verification. Evaluations on four advanced T2I models (e.g., SDXL, FLUX.1) demonstrate that our method achieves a mean AUC of over 0.96 in integrity detection, exceeding baselines by more than 0.2, showcasing strong effectiveness and generalization. Additionally, our approach achieves lower cost and is robust against image-level post-processing. To the best of our knowledge, this paper is the first work addressing the integrity verification of T2I diffusion models, which establishes quantifiable standards for AI copyright litigation in practice.
comment: 9 pages, 6 figures
♻ ☆ Solving Instance Detection from an Open-World Perspective CVPR 2025
Instance detection (InsDet) aims to localize specific object instances within a novel scene imagery based on given visual references. Technically, it requires proposal detection to identify all possible object instances, followed by instance-level matching to pinpoint the ones of interest. Its open-world nature supports its broad applications from robotics to AR/VR but also presents significant challenges: methods must generalize to unknown testing data distributions because (1) the testing scene imagery is unseen during training, and (2) there are domain gaps between visual references and detected proposals. Existing methods tackle these challenges by synthesizing diverse training examples or utilizing off-the-shelf foundation models (FMs). However, they only partially capitalize the available open-world information. In contrast, we approach InsDet from an Open-World perspective, introducing our method IDOW. We find that, while pretrained FMs yield high recall in instance detection, they are not specifically optimized for instance-level feature matching. Therefore, we adapt pretrained FMs for improved instance-level matching using open-world data. Our approach incorporates metric learning along with novel data augmentations, which sample distractors as negative examples and synthesize novel-view instances to enrich the visual references. Extensive experiments demonstrate that our method significantly outperforms prior works, achieving >10 AP over previous results on two recently released challenging benchmark datasets in both conventional and novel instance detection settings.
comment: Accepted at CVPR 2025
♻ ☆ LeviTor: 3D Trajectory Oriented Image-to-Video Synthesis
The intuitive nature of drag-based interaction has led to its growing adoption for controlling object trajectories in image-to-video synthesis. Still, existing methods that perform dragging in the 2D space usually face ambiguity when handling out-of-plane movements. In this work, we augment the interaction with a new dimension, i.e., the depth dimension, such that users are allowed to assign a relative depth for each point on the trajectory. That way, our new interaction paradigm not only inherits the convenience from 2D dragging, but facilitates trajectory control in the 3D space, broadening the scope of creativity. We propose a pioneering method for 3D trajectory control in image-to-video synthesis by abstracting object masks into a few cluster points. These points, accompanied by the depth information and the instance information, are finally fed into a video diffusion model as the control signal. Extensive experiments validate the effectiveness of our approach, dubbed LeviTor, in precisely manipulating the object movements when producing photo-realistic videos from static images. Our code is available at: https://github.com/ant-research/LeviTor.
comment: Project page available at https://github.com/ant-research/LeviTor
♻ ☆ Vocabulary-Free 3D Instance Segmentation with Vision and Language Assistant 3DV
Most recent 3D instance segmentation methods are open vocabulary, offering a greater flexibility than closed-vocabulary methods. Yet, they are limited to reasoning within a specific set of concepts, \ie the vocabulary, prompted by the user at test time. In essence, these models cannot reason in an open-ended fashion, i.e., answering "List the objects in the scene.''. We introduce the first method to address 3D instance segmentation in a setting that is void of any vocabulary prior, namely a vocabulary-free setting. We leverage a large vision-language assistant and an open-vocabulary 2D instance segmenter to discover and ground semantic categories on the posed images. To form 3D instance mask, we first partition the input point cloud into dense superpoints, which are then merged into 3D instance masks. We propose a novel superpoint merging strategy via spectral clustering, accounting for both mask coherence and semantic coherence that are estimated from the 2D object instance masks. We evaluate our method using ScanNet200 and Replica, outperforming existing methods in both vocabulary-free and open-vocabulary settings. Code will be made available. Project page: https://gfmei.github.io/PoVo
comment: Accepted by 3DV
♻ ☆ Asymptotic Unbiased Sample Sampling to Speed Up Sharpness-Aware Minimization
Sharpness-Aware Minimization (SAM) has emerged as a promising approach for effectively reducing the generalization error. However, SAM incurs twice the computational cost compared to base optimizer (e.g., SGD). We propose Asymptotic Unbiased Sampling with respect to iterations to accelerate SAM (AUSAM), which maintains the model's generalization capacity while significantly enhancing computational efficiency. Concretely, we probabilistically sample a subset of data points beneficial for SAM optimization based on a theoretically guaranteed criterion, i.e., the Gradient Norm of each Sample (GNS). We further approximate the GNS by the difference in loss values before and after perturbation in SAM. As a plug-and-play, architecture-agnostic method, our approach consistently accelerates SAM across a range of tasks and networks, i.e., classification, human pose estimation and network quantization. On CIFAR10/100 and Tiny-ImageNet, AUSAM achieves results comparable to SAM while providing a speedup of over 70%. Compared to recent dynamic data pruning methods, AUSAM is better suited for SAM and excels in maintaining performance. Additionally, AUSAM accelerates optimization in human pose estimation and model quantization without sacrificing performance, demonstrating its broad practicality.
♻ ☆ PromptMono: Cross Prompting Attention for Self-Supervised Monocular Depth Estimation in Challenging Environments
Considerable efforts have been made to improve monocular depth estimation under ideal conditions. However, in challenging environments, monocular depth estimation still faces difficulties. In this paper, we introduce visual prompt learning for predicting depth across different environments within a unified model, and present a self-supervised learning framework called PromptMono. It employs a set of learnable parameters as visual prompts to capture domain-specific knowledge. To integrate prompting information into image representations, a novel gated cross prompting attention (GCPA) module is proposed, which enhances the depth estimation in diverse conditions. We evaluate the proposed PromptMono on the Oxford Robotcar dataset and the nuScenes dataset. Experimental results demonstrate the superior performance of the proposed method.
comment: 10 pages
♻ ☆ Stacking Brick by Brick: Aligned Feature Isolation for Incremental Face Forgery Detection
The rapid advancement of face forgery techniques has introduced a growing variety of forgeries. Incremental Face Forgery Detection (IFFD), involving gradually adding new forgery data to fine-tune the previously trained model, has been introduced as a promising strategy to deal with evolving forgery methods. However, a naively trained IFFD model is prone to catastrophic forgetting when new forgeries are integrated, as treating all forgeries as a single ''Fake" class in the Real/Fake classification can cause different forgery types overriding one another, thereby resulting in the forgetting of unique characteristics from earlier tasks and limiting the model's effectiveness in learning forgery specificity and generality. In this paper, we propose to stack the latent feature distributions of previous and new tasks brick by brick, $\textit{i.e.}$, achieving $\textbf{aligned feature isolation}$. In this manner, we aim to preserve learned forgery information and accumulate new knowledge by minimizing distribution overriding, thereby mitigating catastrophic forgetting. To achieve this, we first introduce Sparse Uniform Replay (SUR) to obtain the representative subsets that could be treated as the uniformly sparse versions of the previous global distributions. We then propose a Latent-space Incremental Detector (LID) that leverages SUR data to isolate and align distributions. For evaluation, we construct a more advanced and comprehensive benchmark tailored for IFFD. The leading experimental results validate the superiority of our method.
♻ ☆ StreamMind: Unlocking Full Frame Rate Streaming Video Dialogue through Event-Gated Cognition
With the rise of real-world human-AI interaction applications, such as AI assistants, the need for Streaming Video Dialogue is critical. To address this need, we introduce StreamMind, a video LLM framework that achieves ultra-FPS streaming video processing (100 fps on a single A100) and enables proactive, always-on responses in real time, without explicit user intervention. To solve the key challenge of the contradiction between linear video streaming speed and quadratic transformer computation cost, we propose a novel perception-cognition interleaving paradigm named ''event-gated LLM invocation'', in contrast to the existing per-time-step LLM invocation. By introducing a Cognition Gate network between the video encoder and the LLM, LLM is only invoked when relevant events occur. To realize the event feature extraction with constant cost, we propose Event-Preserving Feature Extractor (EPFE) based on state-space method, generating a single perception token for spatiotemporal features. These techniques enable the video LLM with full-FPS perception and real-time cognition response. Experiments on Ego4D and SoccerNet streaming tasks, as well as standard offline benchmarks, demonstrate state-of-the-art performance in both model capability and real-time efficiency, paving the way for ultra-high-FPS applications, such as Game AI and interactive media. The code and data is available at https://aka.ms/StreamMind.
♻ ☆ Omni-AD: Learning to Reconstruct Global and Local Features for Multi-class Anomaly Detection
In multi-class unsupervised anomaly detection(MUAD), reconstruction-based methods learn to map input images to normal patterns to identify anomalous pixels. However, this strategy easily falls into the well-known "learning shortcut" issue when decoders fail to capture normal patterns and reconstruct both normal and abnormal samples naively. To address that, we propose to learn the input features in global and local manners, forcing the network to memorize the normal patterns more comprehensively. Specifically, we design a two-branch decoder block, named Omni-block. One branch corresponds to global feature learning, where we serialize two self-attention blocks but replace the query and (key, value) with learnable tokens, respectively, thus capturing global features of normal patterns concisely and thoroughly. The local branch comprises depth-separable convolutions, whose locality enables effective and efficient learning of local features for normal patterns. By stacking Omni-blocks, we build a framework, Omni-AD, to learn normal patterns of different granularity and reconstruct them progressively. Comprehensive experiments on public anomaly detection benchmarks show that our method outperforms state-of-the-art approaches in MUAD. Code is available at https://github.com/easyoo/Omni-AD.git
♻ ☆ CRAFT: Designing Creative and Functional 3D Objects WACV 2025
For designing a wide range of everyday objects, the design process should be aware of both the human body and the underlying semantics of the design specification. However, these two objectives present significant challenges to the current AI-based designing tools. In this work, we present a method to synthesize body-aware 3D objects from a base mesh given an input body geometry and either text or image as guidance. The generated objects can be simulated on virtual characters, or fabricated for real-world use. We propose to use a mesh deformation procedure that optimizes for both semantic alignment as well as contact and penetration losses. Using our method, users can generate both virtual or real-world objects from text, image, or sketch, without the need for manual artist intervention. We present both qualitative and quantitative results on various object categories, demonstrating the effectiveness of our approach.
comment: Project webpage: https://miatang13.github.io/Craft/. Published at WACV 2025
♻ ☆ MM-GTUNets: Unified Multi-Modal Graph Deep Learning for Brain Disorders Prediction
Graph deep learning (GDL) has demonstrated impressive performance in predicting population-based brain disorders (BDs) through the integration of both imaging and non-imaging data. However, the effectiveness of GDL based methods heavily depends on the quality of modeling the multi-modal population graphs and tends to degrade as the graph scale increases. Furthermore, these methods often constrain interactions between imaging and non-imaging data to node-edge interactions within the graph, overlooking complex inter-modal correlations, leading to suboptimal outcomes. To overcome these challenges, we propose MM-GTUNets, an end-to-end graph transformer based multi-modal graph deep learning (MMGDL) framework designed for brain disorders prediction at large scale. Specifically, to effectively leverage rich multi-modal information related to diseases, we introduce Modality Reward Representation Learning (MRRL) which adaptively constructs population graphs using a reward system. Additionally, we employ variational autoencoder to reconstruct latent representations of non-imaging features aligned with imaging features. Based on this, we propose Adaptive Cross-Modal Graph Learning (ACMGL), which captures critical modality-specific and modality-shared features through a unified GTUNet encoder taking advantages of Graph UNet and Graph Transformer, and feature fusion module. We validated our method on two public multi-modal datasets ABIDE and ADHD-200, demonstrating its superior performance in diagnosing BDs. Our code is available at https://github.com/NZWANG/MM-GTUNets.
♻ ☆ LVMark: Robust Watermark for Latent Video Diffusion Models
Rapid advancements in video diffusion models have enabled the creation of realistic videos, raising concerns about unauthorized use and driving the demand for techniques to protect model ownership. Existing watermarking methods, while effective for image diffusion models, do not account for temporal consistency, leading to degraded video quality and reduced robustness against video distortions. To address this issue, we introduce LVMark, a novel watermarking method for video diffusion models. We propose a new watermark decoder tailored for generated videos by learning the consistency between adjacent frames. It ensures accurate message decoding, even under malicious attacks, by combining the low-frequency components of the 3D wavelet domain with the RGB features of the video. Additionally, our approach minimizes video quality degradation by embedding watermark messages in layers with minimal impact on visual appearance using an importance-based weight modulation strategy. We optimize both the watermark decoder and the latent decoder of diffusion model, effectively balancing the trade-off between visual quality and bit accuracy. Our experiments show that our method embeds invisible watermarks into video diffusion models, ensuring robust decoding accuracy with 512-bit capacity, even under video distortions.
♻ ☆ TADFormer : Task-Adaptive Dynamic Transformer for Efficient Multi-Task Learning CVPR 2025
Transfer learning paradigm has driven substantial advancements in various vision tasks. However, as state-of-the-art models continue to grow, classical full fine-tuning often becomes computationally impractical, particularly in multi-task learning (MTL) setup where training complexity increases proportional to the number of tasks. Consequently, recent studies have explored Parameter-Efficient Fine-Tuning (PEFT) for MTL architectures. Despite some progress, these approaches still exhibit limitations in capturing fine-grained, task-specific features that are crucial to MTL. In this paper, we introduce Task-Adaptive Dynamic transFormer, termed TADFormer, a novel PEFT framework that performs task-aware feature adaptation in the fine-grained manner by dynamically considering task-specific input contexts. TADFormer proposes the parameter-efficient prompting for task adaptation and the Dynamic Task Filter (DTF) to capture task information conditioned on input contexts. Experiments on the PASCAL-Context benchmark demonstrate that the proposed method achieves higher accuracy in dense scene understanding tasks, while reducing the number of trainable parameters by up to 8.4 times when compared to full fine-tuning of MTL models. TADFormer also demonstrates superior parameter efficiency and accuracy compared to recent PEFT methods.
comment: CVPR 2025 accepted
♻ ☆ Diffusion-4K: Ultra-High-Resolution Image Synthesis with Latent Diffusion Models CVPR 2025
In this paper, we present Diffusion-4K, a novel framework for direct ultra-high-resolution image synthesis using text-to-image diffusion models. The core advancements include: (1) Aesthetic-4K Benchmark: addressing the absence of a publicly available 4K image synthesis dataset, we construct Aesthetic-4K, a comprehensive benchmark for ultra-high-resolution image generation. We curated a high-quality 4K dataset with carefully selected images and captions generated by GPT-4o. Additionally, we introduce GLCM Score and Compression Ratio metrics to evaluate fine details, combined with holistic measures such as FID, Aesthetics and CLIPScore for a comprehensive assessment of ultra-high-resolution images. (2) Wavelet-based Fine-tuning: we propose a wavelet-based fine-tuning approach for direct training with photorealistic 4K images, applicable to various latent diffusion models, demonstrating its effectiveness in synthesizing highly detailed 4K images. Consequently, Diffusion-4K achieves impressive performance in high-quality image synthesis and text prompt adherence, especially when powered by modern large-scale diffusion models (e.g., SD3-2B and Flux-12B). Extensive experimental results from our benchmark demonstrate the superiority of Diffusion-4K in ultra-high-resolution image synthesis.
comment: Accepted to CVPR 2025
♻ ☆ Feature4X: Bridging Any Monocular Video to 4D Agentic AI with Versatile Gaussian Feature Fields
Recent advancements in 2D and multimodal models have achieved remarkable success by leveraging large-scale training on extensive datasets. However, extending these achievements to enable free-form interactions and high-level semantic operations with complex 3D/4D scenes remains challenging. This difficulty stems from the limited availability of large-scale, annotated 3D/4D or multi-view datasets, which are crucial for generalizable vision and language tasks such as open-vocabulary and prompt-based segmentation, language-guided editing, and visual question answering (VQA). In this paper, we introduce Feature4X, a universal framework designed to extend any functionality from 2D vision foundation model into the 4D realm, using only monocular video input, which is widely available from user-generated content. The "X" in Feature4X represents its versatility, enabling any task through adaptable, model-conditioned 4D feature field distillation. At the core of our framework is a dynamic optimization strategy that unifies multiple model capabilities into a single representation. Additionally, to the best of our knowledge, Feature4X is the first method to distill and lift the features of video foundation models (e.g., SAM2, InternVideo2) into an explicit 4D feature field using Gaussian Splatting. Our experiments showcase novel view segment anything, geometric and appearance scene editing, and free-form VQA across all time steps, empowered by LLMs in feedback loops. These advancements broaden the scope of agentic AI applications by providing a foundation for scalable, contextually and spatiotemporally aware systems capable of immersive dynamic 4D scene interaction.
♻ ☆ Find Any Part in 3D
Why don't we have foundation models in 3D yet? A key limitation is data scarcity. For 3D object part segmentation, existing datasets are small in size and lack diversity. We show that it is possible to break this data barrier by building a data engine powered by 2D foundation models. Our data engine automatically annotates any number of object parts: 1755x more unique part types than existing datasets combined. By training on our annotated data with a simple contrastive objective, we obtain an open-world model that generalizes to any part in any object based on any text query. Even when evaluated zero-shot, we outperform existing methods on the datasets they train on. We achieve 260% improvement in mIoU and boost speed by 6x to 300x. Our scaling analysis confirms that this generalization stems from the data scale, which underscores the impact of our data engine. Finally, to advance general-category open-world 3D part segmentation, we release a benchmark covering a wide range of objects and parts. Project website: https://ziqi-ma.github.io/find3dsite/
comment: Project website: https://ziqi-ma.github.io/find3dsite/
♻ ☆ Single Image Unlearning: Efficient Machine Unlearning in Multimodal Large Language Models
Machine unlearning empowers individuals with the `right to be forgotten' by removing their private or sensitive information encoded in machine learning models. However, it remains uncertain whether MU can be effectively applied to Multimodal Large Language Models (MLLMs), particularly in scenarios of forgetting the leaked visual data of concepts. To overcome the challenge, we propose an efficient method, Single Image Unlearning (SIU), to unlearn the visual recognition of a concept by fine-tuning a single associated image for few steps. SIU consists of two key aspects: (i) Constructing Multifaceted fine-tuning data. We introduce four targets, based on which we construct fine-tuning data for the concepts to be forgotten; (ii) Jointly training loss. To synchronously forget the visual recognition of concepts and preserve the utility of MLLMs, we fine-tune MLLMs through a novel Dual Masked KL-divergence Loss combined with Cross Entropy loss. Alongside our method, we establish MMUBench, a new benchmark for MU in MLLMs and introduce a collection of metrics for its evaluation. Experimental results on MMUBench show that SIU completely surpasses the performance of existing methods. Furthermore, we surprisingly find that SIU can avoid invasive membership inference attacks and jailbreak attacks. To the best of our knowledge, we are the first to explore MU in MLLMs. We will release the code and benchmark in the near future.
♻ ☆ MixRT: Mixed Neural Representations For Real-Time NeRF Rendering 3DV'24
Neural Radiance Field (NeRF) has emerged as a leading technique for novel view synthesis, owing to its impressive photorealistic reconstruction and rendering capability. Nevertheless, achieving real-time NeRF rendering in large-scale scenes has presented challenges, often leading to the adoption of either intricate baked mesh representations with a substantial number of triangles or resource-intensive ray marching in baked representations. We challenge these conventions, observing that high-quality geometry, represented by meshes with substantial triangles, is not necessary for achieving photorealistic rendering quality. Consequently, we propose MixRT, a novel NeRF representation that includes a low-quality mesh, a view-dependent displacement map, and a compressed NeRF model. This design effectively harnesses the capabilities of existing graphics hardware, thus enabling real-time NeRF rendering on edge devices. Leveraging a highly-optimized WebGL-based rendering framework, our proposed MixRT attains real-time rendering speeds on edge devices (over 30 FPS at a resolution of 1280 x 720 on a MacBook M1 Pro laptop), better rendering quality (0.2 PSNR higher in indoor scenes of the Unbounded-360 datasets), and a smaller storage size (less than 80% compared to state-of-the-art methods).
comment: Accepted by 3DV'24. Project Page: https://licj15.github.io/MixRT/
♻ ☆ Does Your Vision-Language Model Get Lost in the Long Video Sampling Dilemma?
The rise of Large Vision-Language Models (LVLMs) has significantly advanced video understanding. However, efficiently processing long videos remains a challenge due to the ``Sampling Dilemma'': low-density sampling risks missing critical information, while high-density sampling introduces redundancy. To address this issue, we introduce LSDBench, the first benchmark designed to evaluate LVLMs on long-video tasks by constructing high Necessary Sampling Density (NSD) questions, where NSD represents the minimum sampling density required to accurately answer a given question. LSDBench focuses on dense, short-duration actions to rigorously assess the sampling strategies employed by LVLMs. To tackle the challenges posed by high-NSD questions, we propose a novel Reasoning-Driven Hierarchical Sampling (RHS) framework, which combines global localization of question-relevant cues with local dense sampling for precise inference. Additionally, we develop a lightweight Semantic-Guided Frame Selector to prioritize informative frames, enabling RHS to achieve comparable or superior performance with significantly fewer sampled frames. Together, our LSDBench and RHS framework address the unique challenges of high-NSD long-video tasks, setting a new standard for evaluating and improving LVLMs in this domain. Our benchmark and evaluation codes has been released at: https://github.com/dvlab-research/LSDBench
♻ ☆ Can video generation replace cinematographers? Research on the cinematic language of generated video
Recent advancements in text-to-video (T2V) generation have leveraged diffusion models to enhance visual coherence in videos synthesized from textual descriptions. However, existing research primarily focuses on object motion, often overlooking cinematic language, which is crucial for conveying emotion and narrative pacing in cinematography. To address this, we propose a threefold approach to improve cinematic control in T2V models. First, we introduce a meticulously annotated cinematic language dataset with twenty subcategories, covering shot framing, shot angles, and camera movements, enabling models to learn diverse cinematic styles. Second, we present CameraDiff, which employs LoRA for precise and stable cinematic control, ensuring flexible shot generation. Third, we propose CameraCLIP, designed to evaluate cinematic alignment and guide multi-shot composition. Building on CameraCLIP, we introduce CLIPLoRA, a CLIP-guided dynamic LoRA composition method that adaptively fuses multiple pre-trained cinematic LoRAs, enabling smooth transitions and seamless style blending. Experimental results demonstrate that CameraDiff ensures stable and precise cinematic control, CameraCLIP achieves an R@1 score of 0.83, and CLIPLoRA significantly enhances multi-shot composition within a single video, bridging the gap between automated video generation and professional cinematography.\textsuperscript{1}
comment: 10 pages
♻ ☆ TIMotion: Temporal and Interactive Framework for Efficient Human-Human Motion Generation CVPR 2025
Human-human motion generation is essential for understanding humans as social beings. Current methods fall into two main categories: single-person-based methods and separate modeling-based methods. To delve into this field, we abstract the overall generation process into a general framework MetaMotion, which consists of two phases: temporal modeling and interaction mixing. For temporal modeling, the single-person-based methods concatenate two people into a single one directly, while the separate modeling-based methods skip the modeling of interaction sequences. The inadequate modeling described above resulted in sub-optimal performance and redundant model parameters. In this paper, we introduce TIMotion (Temporal and Interactive Modeling), an efficient and effective framework for human-human motion generation. Specifically, we first propose Causal Interactive Injection to model two separate sequences as a causal sequence leveraging the temporal and causal properties. Then we present Role-Evolving Scanning to adjust to the change in the active and passive roles throughout the interaction. Finally, to generate smoother and more rational motion, we design Localized Pattern Amplification to capture short-term motion patterns. Extensive experiments on InterHuman and InterX demonstrate that our method achieves superior performance. Project page: https://aigc-explorer.github.io/TIMotion-page/
comment: Accepted to CVPR 2025. Project page: https://aigc-explorer.github.io/TIMotion-page/
Artificial Intelligence 110
☆ DSO: Aligning 3D Generators with Simulation Feedback for Physical Soundness
Most 3D object generators focus on aesthetic quality, often neglecting physical constraints necessary in applications. One such constraint is that the 3D object should be self-supporting, i.e., remains balanced under gravity. Prior approaches to generating stable 3D objects used differentiable physics simulators to optimize geometry at test-time, which is slow, unstable, and prone to local optima. Inspired by the literature on aligning generative models to external feedback, we propose Direct Simulation Optimization (DSO), a framework to use the feedback from a (non-differentiable) simulator to increase the likelihood that the 3D generator outputs stable 3D objects directly. We construct a dataset of 3D objects labeled with a stability score obtained from the physics simulator. We can then fine-tune the 3D generator using the stability score as the alignment metric, via direct preference optimization (DPO) or direct reward optimization (DRO), a novel objective, which we introduce, to align diffusion models without requiring pairwise preferences. Our experiments show that the fine-tuned feed-forward generator, using either DPO or DRO objective, is much faster and more likely to produce stable objects than test-time optimization. Notably, the DSO framework works even without any ground-truth 3D objects for training, allowing the 3D generator to self-improve by automatically collecting simulation feedback on its own outputs.
comment: Project page: https://ruiningli.com/dso
☆ Think Before Recommend: Unleashing the Latent Reasoning Power for Sequential Recommendation
Sequential Recommendation (SeqRec) aims to predict the next item by capturing sequential patterns from users' historical interactions, playing a crucial role in many real-world recommender systems. However, existing approaches predominantly adopt a direct forward computation paradigm, where the final hidden state of the sequence encoder serves as the user representation. We argue that this inference paradigm, due to its limited computational depth, struggles to model the complex evolving nature of user preferences and lacks a nuanced understanding of long-tail items, leading to suboptimal performance. To address this issue, we propose \textbf{ReaRec}, the first inference-time computing framework for recommender systems, which enhances user representations through implicit multi-step reasoning. Specifically, ReaRec autoregressively feeds the sequence's last hidden state into the sequential recommender while incorporating special reasoning position embeddings to decouple the original item encoding space from the multi-step reasoning space. Moreover, we introduce two lightweight reasoning-based learning methods, Ensemble Reasoning Learning (ERL) and Progressive Reasoning Learning (PRL), to further effectively exploit ReaRec's reasoning potential. Extensive experiments on five public real-world datasets and different SeqRec architectures demonstrate the generality and effectiveness of our proposed ReaRec. Remarkably, post-hoc analyses reveal that ReaRec significantly elevates the performance ceiling of multiple sequential recommendation backbones by approximately 30\%-50\%. Thus, we believe this work can open a new and promising avenue for future research in inference-time computing for sequential recommendation.
☆ QuestBench: Can LLMs ask the right question to acquire information in reasoning tasks?
Recently, a large amount of work has focused on improving large language models' (LLMs') performance on reasoning benchmarks such as math and logic. However, past work has largely assumed that tasks are well-defined. In the real world, queries to LLMs are often underspecified, only solvable through acquiring missing information. We formalize this as a constraint satisfaction problem (CSP) with missing variable assignments. Using a special case of this formalism where only one necessary variable assignment is missing, we can rigorously evaluate an LLM's ability to identify the minimal necessary question to ask and quantify axes of difficulty levels for each problem. We present QuestBench, a set of underspecified reasoning tasks solvable by asking at most one question, which includes: (1) Logic-Q: Logical reasoning tasks with one missing proposition, (2) Planning-Q: PDDL planning problems with initial states that are partially-observed, (3) GSM-Q: Human-annotated grade school math problems with one missing variable assignment, and (4) GSME-Q: a version of GSM-Q where word problems are translated into equations by human annotators. The LLM is tasked with selecting the correct clarification question(s) from a list of options. While state-of-the-art models excel at GSM-Q and GSME-Q, their accuracy is only 40-50% on Logic-Q and Planning-Q. Analysis demonstrates that the ability to solve well-specified reasoning problems may not be sufficient for success on our benchmark: models have difficulty identifying the right question to ask, even when they can solve the fully specified version of the problem. Furthermore, in the Planning-Q domain, LLMs tend not to hedge, even when explicitly presented with the option to predict ``not sure.'' This highlights the need for deeper investigation into models' information acquisition capabilities.
comment: Code and dataset are available at \url{https://github.com/google-deepmind/questbench}
☆ Exploring the Effectiveness of Multi-stage Fine-tuning for Cross-encoder Re-rankers ECIR
State-of-the-art cross-encoders can be fine-tuned to be highly effective in passage re-ranking. The typical fine-tuning process of cross-encoders as re-rankers requires large amounts of manually labelled data, a contrastive learning objective, and a set of heuristically sampled negatives. An alternative recent approach for fine-tuning instead involves teaching the model to mimic the rankings of a highly effective large language model using a distillation objective. These fine-tuning strategies can be applied either individually, or in sequence. In this work, we systematically investigate the effectiveness of point-wise cross-encoders when fine-tuned independently in a single stage, or sequentially in two stages. Our experiments show that the effectiveness of point-wise cross-encoders fine-tuned using contrastive learning is indeed on par with that of models fine-tuned with multi-stage approaches. Code is available for reproduction at https://github.com/fpezzuti/multistage-finetuning.
comment: 7 pages. To be published as short paper in the Proceedings of the European Conference on Information Retrieval (ECIR) 2025
☆ Evaluation of Machine-generated Biomedical Images via A Tally-based Similarity Measure
Super-resolution, in-painting, whole-image generation, unpaired style-transfer, and network-constrained image reconstruction each include an aspect of machine-learned image synthesis where the actual ground truth is not known at time of use. It is generally difficult to quantitatively and authoritatively evaluate the quality of synthetic images; however, in mission-critical biomedical scenarios robust evaluation is paramount. In this work, all practical image-to-image comparisons really are relative qualifications, not absolute difference quantifications; and, therefore, meaningful evaluation of generated image quality can be accomplished using the Tversky Index, which is a well-established measure for assessing perceptual similarity. This evaluation procedure is developed and then demonstrated using multiple image data sets, both real and simulated. The main result is that when the subjectivity and intrinsic deficiencies of any feature-encoding choice are put upfront, Tversky's method leads to intuitive results, whereas traditional methods based on summarizing distances in deep feature spaces do not.
comment: 13 pages. Manuscript under review at IEEE. Data available at https://doi.org/10.13012/B2IDB-2642688_V1
☆ Unicorn: Text-Only Data Synthesis for Vision Language Model Training
Training vision-language models (VLMs) typically requires large-scale, high-quality image-text pairs, but collecting or synthesizing such data is costly. In contrast, text data is abundant and inexpensive, prompting the question: can high-quality multimodal training data be synthesized purely from text? To tackle this, we propose a cross-integrated three-stage multimodal data synthesis framework, which generates two datasets: Unicorn-1.2M and Unicorn-471K-Instruction. In Stage 1: Diverse Caption Data Synthesis, we construct 1.2M semantically diverse high-quality captions by expanding sparse caption seeds using large language models (LLMs). In Stage 2: Instruction-Tuning Data Generation, we further process 471K captions into multi-turn instruction-tuning tasks to support complex reasoning. Finally, in Stage 3: Modality Representation Transfer, these textual captions representations are transformed into visual representations, resulting in diverse synthetic image representations. This three-stage process enables us to construct Unicorn-1.2M for pretraining and Unicorn-471K-Instruction for instruction-tuning, without relying on real images. By eliminating the dependency on real images while maintaining data quality and diversity, our framework offers a cost-effective and scalable solution for VLMs training. Code is available at https://github.com/Yu-xm/Unicorn.git.
☆ Empirical Analysis of Sim-and-Real Cotraining Of Diffusion Policies For Planar Pushing from Pixels IROS 2025
In imitation learning for robotics, cotraining with demonstration data generated both in simulation and on real hardware has emerged as a powerful recipe to overcome the sim2real gap. This work seeks to elucidate basic principles of this sim-and-real cotraining to help inform simulation design, sim-and-real dataset creation, and policy training. Focusing narrowly on the canonical task of planar pushing from camera inputs enabled us to be thorough in our study. These experiments confirm that cotraining with simulated data \emph{can} dramatically improve performance in real, especially when real data is limited. Performance gains scale with simulated data, but eventually plateau; real-world data increases this performance ceiling. The results also suggest that reducing the domain gap in physics may be more important than visual fidelity for non-prehensile manipulation tasks. Perhaps surprisingly, having some visual domain gap actually helps the cotrained policy -- binary probes reveal that high-performing policies learn to distinguish simulated domains from real. We conclude by investigating this nuance and mechanisms that facilitate positive transfer between sim-and-real. In total, our experiments span over 40 real-world policies (evaluated on 800+ trials) and 200 simulated policies (evaluated on 40,000+ trials).
comment: 9 pages, 15 figures, In Submission to IROS 2025
☆ Challenges and Paths Towards AI for Software Engineering
AI for software engineering has made remarkable progress recently, becoming a notable success within generative AI. Despite this, there are still many challenges that need to be addressed before automated software engineering reaches its full potential. It should be possible to reach high levels of automation where humans can focus on the critical decisions of what to build and how to balance difficult tradeoffs while most routine development effort is automated away. Reaching this level of automation will require substantial research and engineering efforts across academia and industry. In this paper, we aim to discuss progress towards this in a threefold manner. First, we provide a structured taxonomy of concrete tasks in AI for software engineering, emphasizing the many other tasks in software engineering beyond code generation and completion. Second, we outline several key bottlenecks that limit current approaches. Finally, we provide an opinionated list of promising research directions toward making progress on these bottlenecks, hoping to inspire future research in this rapidly maturing field.
comment: 75 pages
☆ Evaluating Multimodal Language Models as Visual Assistants for Visually Impaired Users
This paper explores the effectiveness of Multimodal Large Language models (MLLMs) as assistive technologies for visually impaired individuals. We conduct a user survey to identify adoption patterns and key challenges users face with such technologies. Despite a high adoption rate of these models, our findings highlight concerns related to contextual understanding, cultural sensitivity, and complex scene understanding, particularly for individuals who may rely solely on them for visual interpretation. Informed by these results, we collate five user-centred tasks with image and video inputs, including a novel task on Optical Braille Recognition. Our systematic evaluation of twelve MLLMs reveals that further advancements are necessary to overcome limitations related to cultural context, multilingual support, Braille reading comprehension, assistive object recognition, and hallucinations. This work provides critical insights into the future direction of multimodal AI for accessibility, underscoring the need for more inclusive, robust, and trustworthy visual assistance technologies.
☆ Generative Latent Neural PDE Solver using Flow Matching
Autoregressive next-step prediction models have become the de-facto standard for building data-driven neural solvers to forecast time-dependent partial differential equations (PDEs). Denoise training that is closely related to diffusion probabilistic model has been shown to enhance the temporal stability of neural solvers, while its stochastic inference mechanism enables ensemble predictions and uncertainty quantification. In principle, such training involves sampling a series of discretized diffusion timesteps during both training and inference, inevitably increasing computational overhead. In addition, most diffusion models apply isotropic Gaussian noise on structured, uniform grids, limiting their adaptability to irregular domains. We propose a latent diffusion model for PDE simulation that embeds the PDE state in a lower-dimensional latent space, which significantly reduces computational costs. Our framework uses an autoencoder to map different types of meshes onto a unified structured latent grid, capturing complex geometries. By analyzing common diffusion paths, we propose to use a coarsely sampled noise schedule from flow matching for both training and testing. Numerical experiments show that the proposed model outperforms several deterministic baselines in both accuracy and long-term stability, highlighting the potential of diffusion-based approaches for robust data-driven PDE learning.
comment: work in progress
☆ KEVS: Enhancing Segmentation of Visceral Adipose Tissue in Pre-Cystectomy CT with Gaussian Kernel Density Estimation
Purpose: The distribution of visceral adipose tissue (VAT) in cystectomy patients is indicative of the incidence of post-operative complications. Existing VAT segmentation methods for computed tomography (CT) employing intensity thresholding have limitations relating to inter-observer variability. Moreover, the difficulty in creating ground-truth masks limits the development of deep learning (DL) models for this task. This paper introduces a novel method for VAT prediction in pre-cystectomy CT, which is fully automated and does not require ground-truth VAT masks for training, overcoming aforementioned limitations. Methods: We introduce the Kernel density Enhanced VAT Segmentator ( KEVS), combining a DL semantic segmentation model, for multi-body feature prediction, with Gaussian kernel density estimation analysis of predicted subcutaneous adipose tissue to achieve accurate scan-specific predictions of VAT in the abdominal cavity. Uniquely for a DL pipeline, KEVS does not require ground-truth VAT masks. Results: We verify the ability of KEVS to accurately segment abdominal organs in unseen CT data and compare KEVS VAT segmentation predictions to existing state-of-the-art (SOTA) approaches in a dataset of 20 pre-cystectomy CT scans, collected from University College London Hospital (UCLH-Cyst), with expert ground-truth annotations. KEVS presents a 4.80% and 6.02% improvement in Dice Coefficient over the second best DL and thresholding-based VAT segmentation techniques respectively when evaluated on UCLH-Cyst. Conclusion: This research introduces KEVS; an automated, SOTA method for the prediction of VAT in pre-cystectomy CT which eliminates inter-observer variability and is trained entirely on open-source CT datasets which do not contain ground-truth VAT masks.
comment: Preprint for submission to IPCAI special edition of IJCARS 2025, version prior to any peer review
☆ Using AI to Summarize US Presidential Campaign TV Advertisement Videos, 1952-2012
This paper introduces the largest and most comprehensive dataset of US presidential campaign television advertisements, available in digital format. The dataset also includes machine-searchable transcripts and high-quality summaries designed to facilitate a variety of academic research. To date, there has been great interest in collecting and analyzing US presidential campaign advertisements, but the need for manual procurement and annotation led many to rely on smaller subsets. We design a large-scale parallelized, AI-based analysis pipeline that automates the laborious process of preparing, transcribing, and summarizing videos. We then apply this methodology to the 9,707 presidential ads from the Julian P. Kanter Political Commercial Archive. We conduct extensive human evaluations to show that these transcripts and summaries match the quality of manually generated alternatives. We illustrate the value of this data by including an application that tracks the genesis and evolution of current focal issue areas over seven decades of presidential elections. Our analysis pipeline and codebase also show how to use LLM-based tools to obtain high-quality summaries for other video datasets.
comment: 17 pages, 7 tables, 4 figures, and linked datasets
☆ Historical Ink: Exploring Large Language Models for Irony Detection in 19th-Century Spanish
This study explores the use of large language models (LLMs) to enhance datasets and improve irony detection in 19th-century Latin American newspapers. Two strategies were employed to evaluate the efficacy of BERT and GPT-4o models in capturing the subtle nuances nature of irony, through both multi-class and binary classification tasks. First, we implemented dataset enhancements focused on enriching emotional and contextual cues; however, these showed limited impact on historical language analysis. The second strategy, a semi-automated annotation process, effectively addressed class imbalance and augmented the dataset with high-quality annotations. Despite the challenges posed by the complexity of irony, this work contributes to the advancement of sentiment analysis through two key contributions: introducing a new historical Spanish dataset tagged for sentiment analysis and irony detection, and proposing a semi-automated annotation methodology where human expertise is crucial for refining LLMs results, enriched by incorporating historical and cultural contexts as core features.
☆ Breaking Language Barriers in Visual Language Models via Multilingual Textual Regularization
Rapid advancements in Visual Language Models (VLMs) have transformed multimodal understanding but are often constrained by generating English responses regardless of the input language. This phenomenon has been termed as Image-induced Fidelity Loss (IFL) and stems from limited multimodal multilingual training data. To address this, we propose a continuous multilingual integration strategy that injects text-only multilingual data during visual instruction tuning, preserving the language model's original multilingual capabilities. Extensive evaluations demonstrate that our approach significantly improves linguistic fidelity across languages without degradation in visual performance. We also explore model merging, which improves language fidelity but comes at the cost of visual performance. In contrast, our core method achieves robust multilingual alignment without trade-offs, offering a scalable and effective path to mitigating IFL for global VLM adoption.
☆ On the Mistaken Assumption of Interchangeable Deep Reinforcement Learning Implementations ICSE 2025
Deep Reinforcement Learning (DRL) is a paradigm of artificial intelligence where an agent uses a neural network to learn which actions to take in a given environment. DRL has recently gained traction from being able to solve complex environments like driving simulators, 3D robotic control, and multiplayer-online-battle-arena video games. Numerous implementations of the state-of-the-art algorithms responsible for training these agents, like the Deep Q-Network (DQN) and Proximal Policy Optimization (PPO) algorithms, currently exist. However, studies make the mistake of assuming implementations of the same algorithm to be consistent and thus, interchangeable. In this paper, through a differential testing lens, we present the results of studying the extent of implementation inconsistencies, their effect on the implementations' performance, as well as their impact on the conclusions of prior studies under the assumption of interchangeable implementations. The outcomes of our differential tests showed significant discrepancies between the tested algorithm implementations, indicating that they are not interchangeable. In particular, out of the five PPO implementations tested on 56 games, three implementations achieved superhuman performance for 50% of their total trials while the other two implementations only achieved superhuman performance for less than 15% of their total trials. As part of a meticulous manual analysis of the implementations' source code, we analyzed implementation discrepancies and determined that code-level inconsistencies primarily caused these discrepancies. Lastly, we replicated a study and showed that this assumption of implementation interchangeability was sufficient to flip experiment outcomes. Therefore, this calls for a shift in how implementations are being used.
comment: To be published in the 47th International Conference on Software Engineering (ICSE 2025)
☆ A Framework for Cryptographic Verifiability of End-to-End AI Pipelines SP
The increasing integration of Artificial Intelligence across multiple industry sectors necessitates robust mechanisms for ensuring transparency, trust, and auditability of its development and deployment. This topic is particularly important in light of recent calls in various jurisdictions to introduce regulation and legislation on AI safety. In this paper, we propose a framework for complete verifiable AI pipelines, identifying key components and analyzing existing cryptographic approaches that contribute to verifiability across different stages of the AI lifecycle, from data sourcing to training, inference, and unlearning. This framework could be used to combat misinformation by providing cryptographic proofs alongside AI-generated assets to allow downstream verification of their provenance and correctness. Our findings underscore the importance of ongoing research to develop cryptographic tools that are not only efficient for isolated AI processes, but that are efficiently `linkable' across different processes within the AI pipeline, to support the development of end-to-end verifiable AI technologies.
comment: Accepted to 11th ACM International Workshop on Security and Privacy Analytics (IWSPA 2025)
☆ Niyama : Breaking the Silos of LLM Inference Serving
The widespread adoption of Large Language Models (LLMs) has enabled diverse applications with very different latency requirements. Existing LLM serving frameworks rely on siloed infrastructure with coarse-grained workload segregation -- interactive and batch -- leading to inefficient resource utilization and limited support for fine-grained Quality-of-Service (QoS) differentiation. This results in operational inefficiencies, over-provisioning and poor load management during traffic surges. We present Niyama, a novel QoS-driven inference serving system that enables efficient co-scheduling of diverse workloads on shared infrastructure. Niyama introduces fine-grained QoS classification allowing applications to specify precise latency requirements, and dynamically adapts scheduling decisions based on real-time system state. Leveraging the predictable execution characteristics of LLM inference, Niyama implements a dynamic chunking mechanism to improve overall throughput while maintaining strict QoS guarantees. Additionally, Niyama employs a hybrid prioritization policy that balances fairness and efficiency, and employs selective request relegation that enables graceful service degradation during overload conditions. Our evaluation demonstrates that Niyama increases serving capacity by 32% compared to current siloed deployments, while maintaining QoS guarantees. Notably, under extreme load, our system reduces SLO violations by an order of magnitude compared to current strategies.
SafeCast: Risk-Responsive Motion Forecasting for Autonomous Vehicles
Accurate motion forecasting is essential for the safety and reliability of autonomous driving (AD) systems. While existing methods have made significant progress, they often overlook explicit safety constraints and struggle to capture the complex interactions among traffic agents, environmental factors, and motion dynamics. To address these challenges, we present SafeCast, a risk-responsive motion forecasting model that integrates safety-aware decision-making with uncertainty-aware adaptability. SafeCast is the first to incorporate the Responsibility-Sensitive Safety (RSS) framework into motion forecasting, encoding interpretable safety rules--such as safe distances and collision avoidance--based on traffic norms and physical principles. To further enhance robustness, we introduce the Graph Uncertainty Feature (GUF), a graph-based module that injects learnable noise into Graph Attention Networks, capturing real-world uncertainties and enhancing generalization across diverse scenarios. We evaluate SafeCast on four real-world benchmark datasets--Next Generation Simulation (NGSIM), Highway Drone (HighD), ApolloScape, and the Macao Connected Autonomous Driving (MoCAD)--covering highway, urban, and mixed-autonomy traffic environments. Our model achieves state-of-the-art (SOTA) accuracy while maintaining a lightweight architecture and low inference latency, underscoring its potential for real-time deployment in safety-critical AD systems.
☆ LIM: Large Interpolator Model for Dynamic Reconstruction
Reconstructing dynamic assets from video data is central to many in computer vision and graphics tasks. Existing 4D reconstruction approaches are limited by category-specific models or slow optimization-based methods. Inspired by the recent Large Reconstruction Model (LRM), we present the Large Interpolation Model (LIM), a transformer-based feed-forward solution, guided by a novel causal consistency loss, for interpolating implicit 3D representations across time. Given implicit 3D representations at times $t_0$ and $t_1$, LIM produces a deformed shape at any continuous time $t\in[t_0,t_1]$, delivering high-quality interpolated frames in seconds. Furthermore, LIM allows explicit mesh tracking across time, producing a consistently uv-textured mesh sequence ready for integration into existing production pipelines. We also use LIM, in conjunction with a diffusion-based multiview generator, to produce dynamic 4D reconstructions from monocular videos. We evaluate LIM on various dynamic datasets, benchmarking against image-space interpolation methods (e.g., FiLM) and direct triplane linear interpolation, and demonstrate clear advantages. In summary, LIM is the first feed-forward model capable of high-speed tracked 4D asset reconstruction across diverse categories.
☆ AnnoPage Dataset: Dataset of Non-Textual Elements in Documents with Fine-Grained Categorization ICDAR25
We introduce the AnnoPage Dataset, a novel collection of 7550 pages from historical documents, primarily in Czech and German, spanning from 1485 to the present, focusing on the late 19th and early 20th centuries. The dataset is designed to support research in document layout analysis and object detection. Each page is annotated with axis-aligned bounding boxes (AABB) representing elements of 25 categories of non-textual elements, such as images, maps, decorative elements, or charts, following the Czech Methodology of image document processing. The annotations were created by expert librarians to ensure accuracy and consistency. The dataset also incorporates pages from multiple, mainly historical, document datasets to enhance variability and maintain continuity. The dataset is divided into development and test subsets, with the test set carefully selected to maintain the category distribution. We provide baseline results using YOLO and DETR object detectors, offering a reference point for future research. The AnnoPage Dataset is publicly available on Zenodo (https://doi.org/10.5281/zenodo.12788419), along with ground-truth annotations in YOLO format.
comment: 15 pages, 2 tables, 6 figures; Submitted to ICDAR25
☆ Robust Offline Imitation Learning Through State-level Trajectory Stitching
Imitation learning (IL) has proven effective for enabling robots to acquire visuomotor skills through expert demonstrations. However, traditional IL methods are limited by their reliance on high-quality, often scarce, expert data, and suffer from covariate shift. To address these challenges, recent advances in offline IL have incorporated suboptimal, unlabeled datasets into the training. In this paper, we propose a novel approach to enhance policy learning from mixed-quality offline datasets by leveraging task-relevant trajectory fragments and rich environmental dynamics. Specifically, we introduce a state-based search framework that stitches state-action pairs from imperfect demonstrations, generating more diverse and informative training trajectories. Experimental results on standard IL benchmarks and real-world robotic tasks showcase that our proposed method significantly improves both generalization and performance.
☆ Exploiting Mixture-of-Experts Redundancy Unlocks Multimodal Generative Abilities
In this work, we undertake the challenge of augmenting the existing generative capabilities of pre-trained text-only large language models (LLMs) with multi-modal generation capability while satisfying two core constraints: C1 preserving the preservation of original language generative capabilities with negligible performance degradation, and C2 adhering to a small parameter budget to learn the new modality, ensuring scalability and efficiency. In contrast to current approaches that add dedicated modules, thereby significantly increasing the parameter count, we propose a method that leverages the underutilized capacity inherent in deep models. Specifically, we exploit the parameter redundancy within Mixture-of-Experts (MoEs) as a source of additional capacity for learning a new modality, enabling better parameter efficiency (C1). Moreover, we preserve the original language generation capabilities by applying low-rank adaptation exclusively to the tokens of the new modality (C2). Furthermore, we introduce a novel parameter initialization scheme based on the Gromov-Wasserstein distance to improve convergence and training stability. Through an extensive analysis of the routing mechanism, we uncover the emergence of modality-specific pathways and decreased redundancy within the experts that can efficiently unlock multi-modal generative capabilities. Overall, our method can be seamlessly applied to a wide range of contemporary LLMs, providing a new pathway for transitioning from uni-modal to multi-modal architectures.
☆ Masked Self-Supervised Pre-Training for Text Recognition Transformers on Large-Scale Datasets ICDAR25
Self-supervised learning has emerged as a powerful approach for leveraging large-scale unlabeled data to improve model performance in various domains. In this paper, we explore masked self-supervised pre-training for text recognition transformers. Specifically, we propose two modifications to the pre-training phase: progressively increasing the masking probability, and modifying the loss function to incorporate both masked and non-masked patches. We conduct extensive experiments using a dataset of 50M unlabeled text lines for pre-training and four differently sized annotated datasets for fine-tuning. Furthermore, we compare our pre-trained models against those trained with transfer learning, demonstrating the effectiveness of the self-supervised pre-training. In particular, pre-training consistently improves the character error rate of models, in some cases up to 30 % relatively. It is also on par with transfer learning but without relying on extra annotated text lines.
comment: 18 pages, 7 tables, 6 figures; Submitted to ICDAR25
☆ Almost Bayesian: The Fractal Dynamics of Stochastic Gradient Descent
We show that the behavior of stochastic gradient descent is related to Bayesian statistics by showing that SGD is effectively diffusion on a fractal landscape, where the fractal dimension can be accounted for in a purely Bayesian way. By doing this we show that SGD can be regarded as a modified Bayesian sampler which accounts for accessibility constraints induced by the fractal structure of the loss landscape. We verify our results experimentally by examining the diffusion of weights during training. These results offer insight into the factors which determine the learning process, and seemingly answer the question of how SGD and purely Bayesian sampling are related.
☆ Evaluating LLM-based Agents for Multi-Turn Conversations: A Survey
This survey examines evaluation methods for large language model (LLM)-based agents in multi-turn conversational settings. Using a PRISMA-inspired framework, we systematically reviewed nearly 250 scholarly sources, capturing the state of the art from various venues of publication, and establishing a solid foundation for our analysis. Our study offers a structured approach by developing two interrelated taxonomy systems: one that defines \emph{what to evaluate} and another that explains \emph{how to evaluate}. The first taxonomy identifies key components of LLM-based agents for multi-turn conversations and their evaluation dimensions, including task completion, response quality, user experience, memory and context retention, as well as planning and tool integration. These components ensure that the performance of conversational agents is assessed in a holistic and meaningful manner. The second taxonomy system focuses on the evaluation methodologies. It categorizes approaches into annotation-based evaluations, automated metrics, hybrid strategies that combine human assessments with quantitative measures, and self-judging methods utilizing LLMs. This framework not only captures traditional metrics derived from language understanding, such as BLEU and ROUGE scores, but also incorporates advanced techniques that reflect the dynamic, interactive nature of multi-turn dialogues.
☆ A Causal Framework to Measure and Mitigate Non-binary Treatment Discrimination
Fairness studies of algorithmic decision-making systems often simplify complex decision processes, such as bail or loan approvals, into binary classification tasks. However, these approaches overlook that such decisions are not inherently binary (e.g., approve or not approve bail or loan); they also involve non-binary treatment decisions (e.g., bail conditions or loan terms) that can influence the downstream outcomes (e.g., loan repayment or reoffending). In this paper, we argue that non-binary treatment decisions are integral to the decision process and controlled by decision-makers and, therefore, should be central to fairness analyses in algorithmic decision-making. We propose a causal framework that extends fairness analyses and explicitly distinguishes between decision-subjects' covariates and the treatment decisions. This specification allows decision-makers to use our framework to (i) measure treatment disparity and its downstream effects in historical data and, using counterfactual reasoning, (ii) mitigate the impact of past unfair treatment decisions when automating decision-making. We use our framework to empirically analyze four widely used loan approval datasets to reveal potential disparity in non-binary treatment decisions and their discriminatory impact on outcomes, highlighting the need to incorporate treatment decisions in fairness assessments. Moreover, by intervening in treatment decisions, we show that our framework effectively mitigates treatment discrimination from historical data to ensure fair risk score estimation and (non-binary) decision-making processes that benefit all stakeholders.
comment: 24 pages, 5 figures
☆ CoSIL: Software Issue Localization via LLM-Driven Code Repository Graph Searching
Large language models (LLMs) have significantly advanced autonomous software engineering, leading to a growing number of software engineering agents that assist developers in automatic program repair. Issue localization forms the basis for accurate patch generation. However, because of limitations caused by the context window length of LLMs, existing issue localization methods face challenges in balancing concise yet effective contexts and adequately comprehensive search spaces. In this paper, we introduce CoSIL, an LLM driven, simple yet powerful function level issue localization method without training or indexing. CoSIL reduces the search space through module call graphs, iteratively searches the function call graph to obtain relevant contexts, and uses context pruning to control the search direction and manage contexts effectively. Importantly, the call graph is dynamically constructed by the LLM during search, eliminating the need for pre-parsing. Experiment results demonstrate that CoSIL achieves a Top-1 localization success rate of 43 percent and 44.6 percent on SWE bench Lite and SWE bench Verified, respectively, using Qwen2.5 Coder 32B, outperforming existing methods by 8.6 to 98.2 percent. When CoSIL is applied to guide the patch generation stage, the resolved rate further improves by 9.3 to 31.5 percent.
☆ Training Large Language Models for Advanced Typosquatting Detection
Typosquatting is a long-standing cyber threat that exploits human error in typing URLs to deceive users, distribute malware, and conduct phishing attacks. With the proliferation of domain names and new Top-Level Domains (TLDs), typosquatting techniques have grown more sophisticated, posing significant risks to individuals, businesses, and national cybersecurity infrastructure. Traditional detection methods primarily focus on well-known impersonation patterns, leaving gaps in identifying more complex attacks. This study introduces a novel approach leveraging large language models (LLMs) to enhance typosquatting detection. By training an LLM on character-level transformations and pattern-based heuristics rather than domain-specific data, a more adaptable and resilient detection mechanism develops. Experimental results indicate that the Phi-4 14B model outperformed other tested models when properly fine tuned achieving a 98% accuracy rate with only a few thousand training samples. This research highlights the potential of LLMs in cybersecurity applications, specifically in mitigating domain-based deception tactics, and provides insights into optimizing machine learning strategies for threat detection.
comment: 6 pages, 1 figure
☆ EllieSQL: Cost-Efficient Text-to-SQL with Complexity-Aware Routing
Text-to-SQL automatically translates natural language queries to SQL, allowing non-technical users to retrieve data from databases without specialized SQL knowledge. Despite the success of advanced LLM-based Text-to-SQL approaches on leaderboards, their unsustainable computational costs--often overlooked--stand as the "elephant in the room" in current leaderboard-driven research, limiting their economic practicability for real-world deployment and widespread adoption. To tackle this, we exploratively propose EllieSQL, a complexity-aware routing framework that assigns queries to suitable SQL generation pipelines based on estimated complexity. We investigate multiple routers to direct simple queries to efficient approaches while reserving computationally intensive methods for complex cases. Drawing from economics, we introduce the Token Elasticity of Performance (TEP) metric, capturing cost-efficiency by quantifying the responsiveness of performance gains relative to token investment in SQL generation. Experiments show that compared to always using the most advanced methods in our study, EllieSQL with the Qwen2.5-0.5B-DPO router reduces token use by over 40% without compromising performance on Bird development set, achieving more than a 2x boost in TEP over non-routing approaches. This not only advances the pursuit of cost-efficient Text-to-SQL but also invites the community to weigh resource efficiency alongside performance, contributing to progress in sustainable Text-to-SQL.
comment: 19 pages, 8 figures, 3 tables
☆ On-site estimation of battery electrochemical parameters via transfer learning based physics-informed neural network approach
This paper presents a novel physical parameter estimation framework for on-site model characterization, using a two-phase modelling strategy with Physics-Informed Neural Networks (PINNs) and transfer learning (TL). In the first phase, a PINN is trained using only the physical principles of the single particle model (SPM) equations. In the second phase, the majority of the PINN parameters are frozen, while critical electrochemical parameters are set as trainable and adjusted using real-world voltage profile data. The proposed approach significantly reduces computational costs, making it suitable for real-time implementation on Battery Management Systems (BMS). Additionally, as the initial phase does not require field data, the model is easy to deploy with minimal setup requirements. With the proposed methodology, we have been able to effectively estimate relevant electrochemical parameters with operating data. This has been proved estimating diffusivities and active material volume fractions with charge data in different degradation conditions. The methodology is experimentally validated in a Raspberry Pi device using data from a standard charge profile with a 3.89\% relative accuracy estimating the active material volume fractions of a NMC cell with 82.09\% of its nominal capacity.
☆ Endo-TTAP: Robust Endoscopic Tissue Tracking via Multi-Facet Guided Attention and Hybrid Flow-point Supervision
Accurate tissue point tracking in endoscopic videos is critical for robotic-assisted surgical navigation and scene understanding, but remains challenging due to complex deformations, instrument occlusion, and the scarcity of dense trajectory annotations. Existing methods struggle with long-term tracking under these conditions due to limited feature utilization and annotation dependence. We present Endo-TTAP, a novel framework addressing these challenges through: (1) A Multi-Facet Guided Attention (MFGA) module that synergizes multi-scale flow dynamics, DINOv2 semantic embeddings, and explicit motion patterns to jointly predict point positions with uncertainty and occlusion awareness; (2) A two-stage curriculum learning strategy employing an Auxiliary Curriculum Adapter (ACA) for progressive initialization and hybrid supervision. Stage I utilizes synthetic data with optical flow ground truth for uncertainty-occlusion regularization, while Stage II combines unsupervised flow consistency and semi-supervised learning with refined pseudo-labels from off-the-shelf trackers. Extensive validation on two MICCAI Challenge datasets and our collected dataset demonstrates that Endo-TTAP achieves state-of-the-art performance in tissue point tracking, particularly in scenarios characterized by complex endoscopic conditions. The source code and dataset will be available at https://anonymous.4open.science/r/Endo-TTAP-36E5.
☆ ViSketch-GPT: Collaborative Multi-Scale Feature Extraction for Sketch Recognition and Generation
Understanding the nature of human sketches is challenging because of the wide variation in how they are created. Recognizing complex structural patterns improves both the accuracy in recognizing sketches and the fidelity of the generated sketches. In this work, we introduce ViSketch-GPT, a novel algorithm designed to address these challenges through a multi-scale context extraction approach. The model captures intricate details at multiple scales and combines them using an ensemble-like mechanism, where the extracted features work collaboratively to enhance the recognition and generation of key details crucial for classification and generation tasks. The effectiveness of ViSketch-GPT is validated through extensive experiments on the QuickDraw dataset. Our model establishes a new benchmark, significantly outperforming existing methods in both classification and generation tasks, with substantial improvements in accuracy and the fidelity of generated sketches. The proposed algorithm offers a robust framework for understanding complex structures by extracting features that collaborate to recognize intricate details, enhancing the understanding of structures like sketches and making it a versatile tool for various applications in computer vision and machine learning.
☆ ForcePose: A Deep Learning Approach for Force Calculation Based on Action Recognition Using MediaPipe Pose Estimation Combined with Object Detection
Force estimation in human-object interactions is crucial for various fields like ergonomics, physical therapy, and sports science. Traditional methods depend on specialized equipment such as force plates and sensors, which makes accurate assessments both expensive and restricted to laboratory settings. In this paper, we introduce ForcePose, a novel deep learning framework that estimates applied forces by combining human pose estimation with object detection. Our approach leverages MediaPipe for skeletal tracking and SSD MobileNet for object recognition to create a unified representation of human-object interaction. We've developed a specialized neural network that processes both spatial and temporal features to predict force magnitude and direction without needing any physical sensors. After training on our dataset of 850 annotated videos with corresponding force measurements, our model achieves a mean absolute error of 5.83 N in force magnitude and 7.4 degrees in force direction. When compared to existing computer vision approaches, our method performs 27.5% better while still offering real-time performance on standard computing hardware. ForcePose opens up new possibilities for force analysis in diverse real-world scenarios where traditional measurement tools are impractical or intrusive. This paper discusses our methodology, the dataset creation process, evaluation metrics, and potential applications across rehabilitation, ergonomics assessment, and athletic performance analysis.
☆ Shapley Revisited: Tractable Responsibility Measures for Query Answers PODS'25
The Shapley value, originating from cooperative game theory, has been employed to define responsibility measures that quantify the contributions of database facts to obtaining a given query answer. For non-numeric queries, this is done by considering a cooperative game whose players are the facts and whose wealth function assigns 1 or 0 to each subset of the database, depending on whether the query answer holds in the given subset. While conceptually simple, this approach suffers from a notable drawback: the problem of computing such Shapley values is #P-hard in data complexity, even for simple conjunctive queries. This motivates us to revisit the question of what constitutes a reasonable responsibility measure and to introduce a new family of responsibility measures -- weighted sums of minimal supports (WSMS) -- which satisfy intuitive properties. Interestingly, while the definition of WSMSs is simple and bears no obvious resemblance to the Shapley value formula, we prove that every WSMS measure can be equivalently seen as the Shapley value of a suitably defined cooperative game. Moreover, WSMS measures enjoy tractable data complexity for a large class of queries, including all unions of conjunctive queries. We further explore the combined complexity of WSMS computation and establish (in)tractability results for various subclasses of conjunctive queries.
comment: Long version of PODS'25 paper
☆ Firm or Fickle? Evaluating Large Language Models Consistency in Sequential Interactions
Large Language Models (LLMs) have shown remarkable capabilities across various tasks, but their deployment in high-stake domains requires consistent performance across multiple interaction rounds. This paper introduces a comprehensive framework for evaluating and improving LLM response consistency, making three key contributions. First, we propose a novel Position-Weighted Consistency (PWC) score that captures both the importance of early-stage stability and recovery patterns in multi-turn interactions. Second, we present a carefully curated benchmark dataset spanning diverse domains and difficulty levels, specifically designed to evaluate LLM consistency under various challenging follow-up scenarios. Third, we introduce Confidence-Aware Response Generation (CARG), a framework that significantly improves response stability by incorporating model confidence signals into the generation process. Empirical results demonstrate that CARG significantly improves response stability without sacrificing accuracy, underscoring its potential for reliable LLM deployment in critical applications.
comment: 8 pages, 5 figures
☆ CPPO: Accelerating the Training of Group Relative Policy Optimization-Based Reasoning Models
This paper introduces Completion Pruning Policy Optimization (CPPO) to accelerate the training of reasoning models based on Group Relative Policy Optimization (GRPO). GRPO, while effective, incurs high training costs due to the need for sampling multiple completions for each question. Our experiment and theoretical analysis reveals that the number of completions impacts model accuracy yet increases training time multiplicatively, and not all completions contribute equally to policy training -- their contribution depends on their relative advantage. To address these issues, we propose CPPO, which prunes completions with low absolute advantages, significantly reducing the number needed for gradient calculation and updates. Additionally, we introduce a dynamic completion allocation strategy to maximize GPU utilization by incorporating additional questions, further enhancing training efficiency. Experimental results demonstrate that CPPO achieves up to $8.32\times$ speedup on GSM8K and $3.51\times$ on Math while preserving or even enhancing the accuracy compared to the original GRPO. We release our code at https://github.com/lzhxmu/CPPO.
comment: 16 pages
☆ VoteFlow: Enforcing Local Rigidity in Self-Supervised Scene Flow CVPR 2025
Scene flow estimation aims to recover per-point motion from two adjacent LiDAR scans. However, in real-world applications such as autonomous driving, points rarely move independently of others, especially for nearby points belonging to the same object, which often share the same motion. Incorporating this locally rigid motion constraint has been a key challenge in self-supervised scene flow estimation, which is often addressed by post-processing or appending extra regularization. While these approaches are able to improve the rigidity of predicted flows, they lack an architectural inductive bias for local rigidity within the model structure, leading to suboptimal learning efficiency and inferior performance. In contrast, we enforce local rigidity with a lightweight add-on module in neural network design, enabling end-to-end learning. We design a discretized voting space that accommodates all possible translations and then identify the one shared by nearby points by differentiable voting. Additionally, to ensure computational efficiency, we operate on pillars rather than points and learn representative features for voting per pillar. We plug the Voting Module into popular model designs and evaluate its benefit on Argoverse 2 and Waymo datasets. We outperform baseline works with only marginal compute overhead. Code is available at https://github.com/tudelft-iv/VoteFlow.
comment: CVPR 2025. Code is available at https://github.com/tudelft-iv/VoteFlow. Yancong Lin and Shiming Wang have equal contributions
☆ AH-GS: Augmented 3D Gaussian Splatting for High-Frequency Detail Representation
The 3D Gaussian Splatting (3D-GS) is a novel method for scene representation and view synthesis. Although Scaffold-GS achieves higher quality real-time rendering compared to the original 3D-GS, its fine-grained rendering of the scene is extremely dependent on adequate viewing angles. The spectral bias of neural network learning results in Scaffold-GS's poor ability to perceive and learn high-frequency information in the scene. In this work, we propose enhancing the manifold complexity of input features and using network-based feature map loss to improve the image reconstruction quality of 3D-GS models. We introduce AH-GS, which enables 3D Gaussians in structurally complex regions to obtain higher-frequency encodings, allowing the model to more effectively learn the high-frequency information of the scene. Additionally, we incorporate high-frequency reinforce loss to further enhance the model's ability to capture detailed frequency information. Our result demonstrates that our model significantly improves rendering fidelity, and in specific scenarios (e.g., MipNeRf360-garden), our method exceeds the rendering quality of Scaffold-GS in just 15K iterations.
☆ Machine Learning Models for Soil Parameter Prediction Based on Satellite, Weather, Clay and Yield Data
Efficient nutrient management and precise fertilization are essential for advancing modern agriculture, particularly in regions striving to optimize crop yields sustainably. The AgroLens project endeavors to address this challenge by develop ing Machine Learning (ML)-based methodologies to predict soil nutrient levels without reliance on laboratory tests. By leveraging state of the art techniques, the project lays a foundation for acionable insights to improve agricultural productivity in resource-constrained areas, such as Africa. The approach begins with the development of a robust European model using the LUCAS Soil dataset and Sentinel-2 satellite imagery to estimate key soil properties, including phosphorus, potassium, nitrogen, and pH levels. This model is then enhanced by integrating supplementary features, such as weather data, harvest rates, and Clay AI-generated embeddings. This report details the methodological framework, data preprocessing strategies, and ML pipelines employed in this project. Advanced algorithms, including Random Forests, Extreme Gradient Boosting (XGBoost), and Fully Connected Neural Networks (FCNN), were implemented and finetuned for precise nutrient prediction. Results showcase robust model performance, with root mean square error values meeting stringent accuracy thresholds. By establishing a reproducible and scalable pipeline for soil nutrient prediction, this research paves the way for transformative agricultural applications, including precision fertilization and improved resource allocation in underresourced regions like Africa.
comment: This technical report is the documentation of a student project collaboration between Technische Hochschule Ingolstadt and MI4People
☆ Make Some Noise: Towards LLM audio reasoning and generation using sound tokens ICASSP 2025
Integrating audio comprehension and generation into large language models (LLMs) remains challenging due to the continuous nature of audio and the resulting high sampling rates. Here, we introduce a novel approach that combines Variational Quantization with Conditional Flow Matching to convert audio into ultra-low bitrate discrete tokens of 0.23kpbs, allowing for seamless integration with text tokens in LLMs. We fine-tuned a pretrained text-based LLM using Low-Rank Adaptation (LoRA) to assess its effectiveness in achieving true multimodal capabilities, i.e., audio comprehension and generation. Our tokenizer outperforms a traditional VQ-VAE across various datasets with diverse acoustic events. Despite the substantial loss of fine-grained details through audio tokenization, our multimodal LLM trained with discrete tokens achieves competitive results in audio comprehension with state-of-the-art methods, though audio generation is poor. Our results highlight the need for larger, more diverse datasets and improved evaluation metrics to advance multimodal LLM performance.
comment: 5 pages, 2 figures, Accepted at ICASSP 2025
☆ Beyond the Script: Testing LLMs for Authentic Patient Communication Styles in Healthcare
Effective patient communication is pivotal in healthcare, yet traditional medical training often lacks exposure to diverse, challenging interpersonal dynamics. To bridge this gap, this study proposes the use of Large Language Models (LLMs) to simulate authentic patient communication styles, specifically the "accuser" and "rationalizer" personas derived from the Satir model, while also ensuring multilingual applicability to accommodate diverse cultural contexts and enhance accessibility for medical professionals. Leveraging advanced prompt engineering, including behavioral prompts, author's notes, and stubbornness mechanisms, we developed virtual patients (VPs) that embody nuanced emotional and conversational traits. Medical professionals evaluated these VPs, rating their authenticity (accuser: $3.8 \pm 1.0$; rationalizer: $3.7 \pm 0.8$ on a 5-point Likert scale (from one to five)) and correctly identifying their styles. Emotion analysis revealed distinct profiles: the accuser exhibited pain, anger, and distress, while the rationalizer displayed contemplation and calmness, aligning with predefined, detailed patient description including medical history. Sentiment scores (on a scale from zero to nine) further validated these differences in the communication styles, with the accuser adopting negative ($3.1 \pm 0.6$) and the rationalizer more neutral ($4.0 \pm 0.4$) tone. These results underscore LLMs' capability to replicate complex communication styles, offering transformative potential for medical education. This approach equips trainees to navigate challenging clinical scenarios by providing realistic, adaptable patient interactions, enhancing empathy and diagnostic acumen. Our findings advocate for AI-driven tools as scalable, cost-effective solutions to cultivate nuanced communication skills, setting a foundation for future innovations in healthcare training.
☆ WeatherMesh-3: Fast and accurate operational global weather forecasting
We present WeatherMesh-3 (WM-3), an operational transformer-based global weather forecasting system that improves the state of the art in both accuracy and computational efficiency. We introduce the following advances: 1) a latent rollout that enables arbitrary-length predictions in latent space without intermediate encoding or decoding; and 2) a modular architecture that flexibly utilizes mixed-horizon processors and encodes multiple real-time analyses to create blended initial conditions. WM-3 generates 14-day global forecasts at 0.25-degree resolution in 12 seconds on a single RTX 4090. This represents a >100,000-fold speedup over traditional NWP approaches while achieving superior accuracy with up to 37.7% improvement in RMSE over operational models, requiring only a single consumer-grade GPU for deployment. We aim for WM-3 to democratize weather forecasting by providing an accessible, lightweight model for operational use while pushing the performance boundaries of machine learning-based weather prediction.
☆ Process Reward Modeling with Entropy-Driven Uncertainty
This paper presents the Entropy-Driven Unified Process Reward Model (EDU-PRM), a novel framework that approximates state-of-the-art performance in process supervision while drastically reducing training costs. EDU-PRM introduces an entropy-guided dynamic step partitioning mechanism, using logit distribution entropy to pinpoint high-uncertainty regions during token generation dynamically. This self-assessment capability enables precise step-level feedback without manual fine-grained annotation, addressing a critical challenge in process supervision. Experiments on the Qwen2.5-72B model with only 7,500 EDU-PRM-generated training queries demonstrate accuracy closely approximating the full Qwen2.5-72B-PRM (71.1% vs. 71.6%), achieving a 98% reduction in query cost compared to prior methods. This work establishes EDU-PRM as an efficient approach for scalable process reward model training.
☆ MFH: A Multi-faceted Heuristic Algorithm Selection Approach for Software Verification
Currently, many verification algorithms are available to improve the reliability of software systems. Selecting the appropriate verification algorithm typically demands domain expertise and non-trivial manpower. An automated algorithm selector is thus desired. However, existing selectors, either depend on machine-learned strategies or manually designed heuristics, encounter issues such as reliance on high-quality samples with algorithm labels and limited scalability. In this paper, an automated algorithm selection approach, namely MFH, is proposed for software verification. Our approach leverages the heuristics that verifiers producing correct results typically implement certain appropriate algorithms, and the supported algorithms by these verifiers indirectly reflect which ones are potentially applicable. Specifically, MFH embeds the code property graph (CPG) of a semantic-preserving transformed program to enhance the robustness of the prediction model. Furthermore, our approach decomposes the selection task into the sub-tasks of predicting potentially applicable algorithms and matching the most appropriate verifiers. Additionally, MFH also introduces a feedback loop on incorrect predictions to improve model prediction accuracy. We evaluate MFH on 20 verifiers and over 15,000 verification tasks. Experimental results demonstrate the effectiveness of MFH, achieving a prediction accuracy of 91.47% even without ground truth algorithm labels provided during the training phase. Moreover, the prediction accuracy decreases only by 0.84% when introducing 10 new verifiers, indicating the strong scalability of the proposed approach.
comment: The implementation, along with all relevant publicly available data, can be accessed on the Figshare platform: https://figshare.com/s/4f34e1f6adaf98d9be53
☆ Learning to Instruct for Visual Instruction Tuning
We propose LIT, an advancement of visual instruction tuning (VIT). While VIT equips Multimodal LLMs (MLLMs) with promising multimodal capabilities, the current design choices for VIT often result in overfitting and shortcut learning, potentially degrading performance. This gap arises from an overemphasis on instruction-following abilities, while neglecting the proactive understanding of visual information. Inspired by this, LIT adopts a simple yet effective approach by incorporating the loss function into both the instruction and response sequences. It seamlessly expands the training data, and regularizes the MLLMs from overly relying on language priors. Based on this merit, LIT achieves a significant relative improvement of up to 9% on comprehensive multimodal benchmarks, requiring no additional training data and incurring negligible computational overhead. Surprisingly, LIT attains exceptional fundamental visual capabilities, yielding up to an 18% improvement in captioning performance, while simultaneously alleviating hallucination in MLLMs.
comment: 16 pages, 10 figures
☆ Sell It Before You Make It: Revolutionizing E-Commerce with Personalized AI-Generated Items
E-commerce has revolutionized retail, yet its traditional workflows remain inefficient, with significant time and resource costs tied to product design and manufacturing inventory. This paper introduces a novel system deployed at Alibaba that leverages AI-generated items (AIGI) to address these challenges with personalized text-to-image generation for e-commercial product design. AIGI enables an innovative business mode called "sell it before you make it", where merchants can design fashion items and generate photorealistic images with digital models based on textual descriptions. Only when the items have received a certain number of orders, do the merchants start to produce them, which largely reduces reliance on physical prototypes and thus accelerates time to market. For such a promising application, we identify the underlying key scientific challenge, i.e., capturing the users' group-level personalized preferences towards multiple generated candidate images. To this end, we propose a Personalized Group-Level Preference Alignment Framework for Diffusion Models (i.e., PerFusion). We first design PerFusion Reward Model for user preference estimation with a feature-crossing-based personalized plug-in. Then we develop PerFusion with a personalized adaptive network to model diverse preferences across users, and meanwhile derive the group-level preference optimization objective to capture the comparative behaviors among multiple candidates. Both offline and online experiments demonstrate the effectiveness of our proposed algorithm. The AI-generated items have achieved over 13% relative improvements for both click-through rate and conversion rate compared to their human-designed counterparts, validating the revolutionary potential of AI-generated items for e-commercial platforms.
comment: Under Review
☆ e-person Architecture and Framework for Human-AI Co-adventure Relationship
This paper proposes the e-person architecture for constructing a unified and incremental development of AI ethics. The e-person architecture takes the reduction of uncertainty through collaborative cognition and action with others as a unified basis for ethics. By classifying and defining uncertainty along two axes - (1) first, second, and third person perspectives, and (2) the difficulty of inference based on the depth of information - we support the development of unified and incremental development of AI ethics. In addition, we propose the e-person framework based on the free energy principle, which considers the reduction of uncertainty as a unifying principle of brain function, with the aim of implementing the e-person architecture, and we show our previous works and future challenges based on the proposed framework.
comment: 24 pages, 4 figures, 1 table
☆ AdaRank: Adaptive Rank Pruning for Enhanced Model Merging
Model merging has emerged as a promising approach for unifying independently fine-tuned models into an integrated framework, significantly enhancing computational efficiency in multi-task learning. Recently, several SVD-based techniques have been introduced to exploit low-rank structures for enhanced merging, but their reliance on such manually designed rank selection often leads to cross-task interference and suboptimal performance. In this paper, we propose AdaRank, a novel model merging framework that adaptively selects the most beneficial singular directions of task vectors to merge multiple models. We empirically show that the dominant singular components of task vectors can cause critical interference with other tasks, and that naive truncation across tasks and layers degrades performance. In contrast, AdaRank dynamically prunes the singular components that cause interference and offers an optimal amount of information to each task vector by learning to prune ranks during test-time via entropy minimization. Our analysis demonstrates that such method mitigates detrimental overlaps among tasks, while empirical results show that AdaRank consistently achieves state-of-the-art performance with various backbones and number of tasks, reducing the performance gap between fine-tuned models to nearly 1%.
comment: Code Available at: https://github.com/david3684/AdaRank
☆ EgoToM: Benchmarking Theory of Mind Reasoning from Egocentric Videos
We introduce EgoToM, a new video question-answering benchmark that extends Theory-of-Mind (ToM) evaluation to egocentric domains. Using a causal ToM model, we generate multi-choice video QA instances for the Ego4D dataset to benchmark the ability to predict a camera wearer's goals, beliefs, and next actions. We study the performance of both humans and state of the art multimodal large language models (MLLMs) on these three interconnected inference problems. Our evaluation shows that MLLMs achieve close to human-level accuracy on inferring goals from egocentric videos. However, MLLMs (including the largest ones we tested with over 100B parameters) fall short of human performance when inferring the camera wearers' in-the-moment belief states and future actions that are most consistent with the unseen video future. We believe that our results will shape the future design of an important class of egocentric digital assistants which are equipped with a reasonable model of the user's internal mental states.
☆ When Autonomy Breaks: The Hidden Existential Risk of AI
AI risks are typically framed around physical threats to humanity, a loss of control or an accidental error causing humanity's extinction. However, I argue in line with the gradual disempowerment thesis, that there is an underappreciated risk in the slow and irrevocable decline of human autonomy. As AI starts to outcompete humans in various areas of life, a tipping point will be reached where it no longer makes sense to rely on human decision-making, creativity, social care or even leadership. What may follow is a process of gradual de-skilling, where we lose skills that we currently take for granted. Traditionally, it is argued that AI will gain human skills over time, and that these skills are innate and immutable in humans. By contrast, I argue that humans may lose such skills as critical thinking, decision-making and even social care in an AGI world. The biggest threat to humanity is therefore not that machines will become more like humans, but that humans will become more like machines.
☆ FRASE: Structured Representations for Generalizable SPARQL Query Generation
Translating natural language questions into SPARQL queries enables Knowledge Base querying for factual and up-to-date responses. However, existing datasets for this task are predominantly template-based, leading models to learn superficial mappings between question and query templates rather than developing true generalization capabilities. As a result, models struggle when encountering naturally phrased, template-free questions. This paper introduces FRASE (FRAme-based Semantic Enhancement), a novel approach that leverages Frame Semantic Role Labeling (FSRL) to address this limitation. We also present LC-QuAD 3.0, a new dataset derived from LC-QuAD 2.0, in which each question is enriched using FRASE through frame detection and the mapping of frame-elements to their argument. We evaluate the impact of this approach through extensive experiments on recent large language models (LLMs) under different fine-tuning configurations. Our results demonstrate that integrating frame-based structured representations consistently improves SPARQL generation performance, particularly in challenging generalization scenarios when test questions feature unseen templates (unknown template splits) and when they are all naturally phrased (reformulated questions).
☆ A Self-Supervised Learning of a Foundation Model for Analog Layout Design Automation
We propose a UNet-based foundation model and its self-supervised learning method to address two key challenges: 1) lack of qualified annotated analog layout data, and 2) excessive variety in analog layout design tasks. For self-supervised learning, we propose random patch sampling and random masking techniques automatically to obtain enough training data from a small unannotated layout dataset. The obtained data are greatly augmented, less biased, equally sized, and contain enough information for excessive varieties of qualified layout patterns. By pre-training with the obtained data, the proposed foundation model can learn implicit general knowledge on layout patterns so that it can be fine-tuned for various downstream layout tasks with small task-specific datasets. Fine-tuning provides an efficient and consolidated methodology for diverse downstream tasks, reducing the enormous human effort to develop a model per task separately. In experiments, the foundation model was pre-trained using 324,000 samples obtained from 6 silicon-proved manually designed analog circuits, then it was fine-tuned for the five example downstream tasks: generating contacts, vias, dummy fingers, N-wells, and metal routings. The fine-tuned models successfully performed these tasks for more than one thousand unseen layout inputs, generating DRC/LVS-clean layouts for 96.6% of samples. Compared with training the model from scratch for the metal routing task, fine-tuning required only 1/8 of the data to achieve the same dice score of 0.95. With the same data, fine-tuning achieved a 90% lower validation loss and a 40% higher benchmark score than training from scratch.
comment: 8 pages, 11 figures
☆ Integrating Artificial Intelligence with Human Expertise: An In-depth Analysis of ChatGPT's Capabilities in Generating Metamorphic Relations
Context: This paper provides an in-depth examination of the generation and evaluation of Metamorphic Relations (MRs) using GPT models developed by OpenAI, with a particular focus on the capabilities of GPT-4 in software testing environments. Objective: The aim is to examine the quality of MRs produced by GPT-3.5 and GPT-4 for a specific System Under Test (SUT) adopted from an earlier study, and to introduce and apply an improved set of evaluation criteria for a diverse range of SUTs. Method: The initial phase evaluates MRs generated by GPT-3.5 and GPT-4 using criteria from a prior study, followed by an application of an enhanced evaluation framework on MRs created by GPT-4 for a diverse range of nine SUTs, varying from simple programs to complex systems incorporating AI/ML components. A custom-built GPT evaluator, alongside human evaluators, assessed the MRs, enabling a direct comparison between automated and human evaluation methods. Results: The study finds that GPT-4 outperforms GPT-3.5 in generating accurate and useful MRs. With the advanced evaluation criteria, GPT-4 demonstrates a significant ability to produce high-quality MRs across a wide range of SUTs, including complex systems incorporating AI/ML components. Conclusions: GPT-4 exhibits advanced capabilities in generating MRs suitable for various applications. The research underscores the growing potential of AI in software testing, particularly in the generation and evaluation of MRs, and points towards the complementarity of human and AI skills in this domain.
comment: Submitted to Information and Software Technology
☆ Sharpe Ratio-Guided Active Learning for Preference Optimization in RLHF
Reinforcement learning from human feedback (RLHF) has become a cornerstone of the training and alignment pipeline for large language models (LLMs). Recent advances, such as direct preference optimization (DPO), have simplified the preference learning step. However, collecting preference data remains a challenging and costly process, often requiring expert annotation. This cost can be mitigated by carefully selecting the data points presented for annotation. In this work, we propose an active learning approach to efficiently select prompt and preference pairs using a risk assessment strategy based on the Sharpe Ratio. To address the challenge of unknown preferences prior to annotation, our method evaluates the gradients of all potential preference annotations to assess their impact on model updates. These gradient-based evaluations enable risk assessment of data points regardless of the annotation outcome. By leveraging the DPO loss derivations, we derive a closed-form expression for computing these Sharpe ratios on a per-tuple basis, ensuring our approach remains both tractable and computationally efficient. We also introduce two variants of our method, each making different assumptions about prior information. Experimental results demonstrate that our method outperforms the baseline by up to 5% in win rates against the chosen completion with limited human preference data across several language models and real-world datasets.
☆ REMAC: Self-Reflective and Self-Evolving Multi-Agent Collaboration for Long-Horizon Robot Manipulation
Vision-language models (VLMs) have demonstrated remarkable capabilities in robotic planning, particularly for long-horizon tasks that require a holistic understanding of the environment for task decomposition. Existing methods typically rely on prior environmental knowledge or carefully designed task-specific prompts, making them struggle with dynamic scene changes or unexpected task conditions, e.g., a robot attempting to put a carrot in the microwave but finds the door was closed. Such challenges underscore two critical issues: adaptability and efficiency. To address them, in this work, we propose an adaptive multi-agent planning framework, termed REMAC, that enables efficient, scene-agnostic multi-robot long-horizon task planning and execution through continuous reflection and self-evolution. REMAC incorporates two key modules: a self-reflection module performing pre-condition and post-condition checks in the loop to evaluate progress and refine plans, and a self-evolvement module dynamically adapting plans based on scene-specific reasoning. It offers several appealing benefits: 1) Robots can initially explore and reason about the environment without complex prompt design. 2) Robots can keep reflecting on potential planning errors and adapting the plan based on task-specific insights. 3) After iterations, a robot can call another one to coordinate tasks in parallel, maximizing the task execution efficiency. To validate REMAC's effectiveness, we build a multi-agent environment for long-horizon robot manipulation and navigation based on RoboCasa, featuring 4 task categories with 27 task styles and 50+ different objects. Based on it, we further benchmark state-of-the-art reasoning models, including DeepSeek-R1, o3-mini, QwQ, and Grok3, demonstrating REMAC's superiority by boosting average success rates by 40% and execution efficiency by 52.7% over the single robot baseline.
☆ Beyond Single-Sentence Prompts: Upgrading Value Alignment Benchmarks with Dialogues and Stories
Evaluating the value alignment of large language models (LLMs) has traditionally relied on single-sentence adversarial prompts, which directly probe models with ethically sensitive or controversial questions. However, with the rapid advancements in AI safety techniques, models have become increasingly adept at circumventing these straightforward tests, limiting their effectiveness in revealing underlying biases and ethical stances. To address this limitation, we propose an upgraded value alignment benchmark that moves beyond single-sentence prompts by incorporating multi-turn dialogues and narrative-based scenarios. This approach enhances the stealth and adversarial nature of the evaluation, making it more robust against superficial safeguards implemented in modern LLMs. We design and implement a dataset that includes conversational traps and ethically ambiguous storytelling, systematically assessing LLMs' responses in more nuanced and context-rich settings. Experimental results demonstrate that this enhanced methodology can effectively expose latent biases that remain undetected in traditional single-shot evaluations. Our findings highlight the necessity of contextual and dynamic testing for value alignment in LLMs, paving the way for more sophisticated and realistic assessments of AI ethics and safety.
☆ How Well Can Vison-Language Models Understand Humans' Intention? An Open-ended Theory of Mind Question Evaluation Benchmark AAAI25
Vision Language Models (VLMs) have demonstrated strong reasoning capabilities in Visual Question Answering (VQA) tasks; However, their ability to perform Theory of Mind (ToM) tasks such as accurately inferring human intentions, beliefs, and other mental states remains underexplored. In this work, we propose an open-ended question framework to comprehensively evaluate VLMs' performance across diverse categories of ToM tasks. We curated and annotated a benchmark dataset composed of 30 images. We then assessed the performance of four VLMs of varying sizes on this dataset. Our experimental results show that the GPT-4 model outperformed all others, with only one smaller model, GPT-4o-mini, achieving comparable performance. Additionally, we observed that VLMs often struggle to accurately infer intentions in complex scenarios such as bullying or cheating. Moreover, our findings also reveal that smaller models can sometimes infer correct intentions despite relying on incorrect visual cues.
comment: 2 pages, accepted by ToM@AAAI25
☆ Penrose Tiled Low-Rank Compression and Section-Wise Q&A Fine-Tuning: A General Framework for Domain-Specific Large Language Model Adaptation
Large language models (LLMs) hold great promise for specialized scientific domains such as materials science, yet adapting them efficiently and accurately to domain-specific knowledge remains challenging due to limited data and high knowledge density. We propose a two-stage framework that combines structured model compression with a scientific fine-tuning regimen to address this challenge. In the compression stage, we decompose the LLM's weight matrices into local low-rank "rank blocks" and arrange these blocks in a Penrose-like non-periodic tiling pattern. Each block is then compacted via spectral transformations (e.g., discrete cosine or Fourier transforms), and a Kullback-Leibler (KL) divergence-based alignment loss preserves the distributional similarity between the compressed model's representations and those of the original full model. In the adaptation stage, the compressed model is further tuned using a human-like scientific reading protocol: it processes technical materials science documents section by section, engaging in a structured question-and-answer routine for each section. This section-wise Q&A fine-tuning strategy extracts explicit reasoning traces and gradually injects domain knowledge, while minimizing catastrophic forgetting of the model's general language capabilities. By balancing efficient compression with targeted adaptation, our two-stage approach enables precise specialization of LLMs to high-value domains under data-scarce conditions. We present this principled yet exploratory pipeline and outline its potential for advancing materials science knowledge integration, laying the groundwork for comprehensive empirical evaluation in future work.
☆ Contrasting Low and High-Resolution Features for HER2 Scoring using Deep Learning
Breast cancer, the most common malignancy among women, requires precise detection and classification for effective treatment. Immunohistochemistry (IHC) biomarkers like HER2, ER, and PR are critical for identifying breast cancer subtypes. However, traditional IHC classification relies on pathologists' expertise, making it labor-intensive and subject to significant inter-observer variability. To address these challenges, this study introduces the India Pathology Breast Cancer Dataset (IPD-Breast), comprising of 1,272 IHC slides (HER2, ER, and PR) aimed at automating receptor status classification. The primary focus is on developing predictive models for HER2 3-way classification (0, Low, High) to enhance prognosis. Evaluation of multiple deep learning models revealed that an end-to-end ConvNeXt network utilizing low-resolution IHC images achieved an AUC, F1, and accuracy of 91.79%, 83.52%, and 83.56%, respectively, for 3-way classification, outperforming patch-based methods by over 5.35% in F1 score. This study highlights the potential of simple yet effective deep learning techniques to significantly improve accuracy and reproducibility in breast cancer classification, supporting their integration into clinical workflows for better patient outcomes.
☆ A Proposal for Networks Capable of Continual Learning ICLR 2025
We analyze the ability of computational units to retain past responses after parameter updates, a key property for system-wide continual learning. Neural networks trained with gradient descent lack this capability, prompting us to propose Modelleyen, an alternative approach with inherent response preservation. We demonstrate through experiments on modeling the dynamics of a simple environment and on MNIST that, despite increased computational complexity and some representational limitations at its current stage, Modelleyen achieves continual learning without relying on sample replay or predefined task boundaries.
comment: Published at ICLR 2025 World Models Workshop
☆ Multi-Task Semantic Communications via Large Models
Artificial intelligence (AI) promises to revolutionize the design, optimization and management of next-generation communication systems. In this article, we explore the integration of large AI models (LAMs) into semantic communications (SemCom) by leveraging their multi-modal data processing and generation capabilities. Although LAMs bring unprecedented abilities to extract semantics from raw data, this integration entails multifaceted challenges including high resource demands, model complexity, and the need for adaptability across diverse modalities and tasks. To overcome these challenges, we propose a LAM-based multi-task SemCom (MTSC) architecture, which includes an adaptive model compression strategy and a federated split fine-tuning approach to facilitate the efficient deployment of LAM-based semantic models in resource-limited networks. Furthermore, a retrieval-augmented generation scheme is implemented to synthesize the most recent local and global knowledge bases to enhance the accuracy of semantic extraction and content generation, thereby improving the inference performance. Finally, simulation results demonstrate the efficacy of the proposed LAM-based MTSC architecture, highlighting the performance enhancements across various downstream tasks under varying channel conditions.
comment: 7 pages, 6 figures
☆ Non-Monotonic Attention-based Read/Write Policy Learning for Simultaneous Translation
Simultaneous or streaming machine translation generates translation while reading the input stream. These systems face a quality/latency trade-off, aiming to achieve high translation quality similar to non-streaming models with minimal latency. We propose an approach that efficiently manages this trade-off. By enhancing a pretrained non-streaming model, which was trained with a seq2seq mechanism and represents the upper bound in quality, we convert it into a streaming model by utilizing the alignment between source and target tokens. This alignment is used to learn a read/write decision boundary for reliable translation generation with minimal input. During training, the model learns the decision boundary through a read/write policy module, employing supervised learning on the alignment points (pseudo labels). The read/write policy module, a small binary classification unit, can control the quality/latency trade-off during inference. Experimental results show that our model outperforms several strong baselines and narrows the gap with the non-streaming baseline model.
♻ ☆ Outlier dimensions favor frequent tokens in language models
We study last-layer outlier dimensions, i.e. dimensions that display extreme activations for the majority of inputs. We show that outlier dimensions arise in many different modern language models, and trace their function back to the heuristic of constantly predicting frequent words. We further show how a model can block this heuristic when it is not contextually appropriate, by assigning a counterbalancing weight mass to the remaining dimensions, and we investigate which model parameters boost outlier dimensions and when they arise during training. We conclude that outlier dimensions are a specialized mechanism discovered by many distinct models to implement a useful token prediction heuristic.
comment: 9 pages, 4 figures
♻ ☆ LOCATEdit: Graph Laplacian Optimized Cross Attention for Localized Text-Guided Image Editing
Text-guided image editing aims to modify specific regions of an image according to natural language instructions while maintaining the general structure and the background fidelity. Existing methods utilize masks derived from cross-attention maps generated from diffusion models to identify the target regions for modification. However, since cross-attention mechanisms focus on semantic relevance, they struggle to maintain the image integrity. As a result, these methods often lack spatial consistency, leading to editing artifacts and distortions. In this work, we address these limitations and introduce LOCATEdit, which enhances cross-attention maps through a graph-based approach utilizing self-attention-derived patch relationships to maintain smooth, coherent attention across image regions, ensuring that alterations are limited to the designated items while retaining the surrounding structure. LOCATEdit consistently and substantially outperforms existing baselines on PIE-Bench, demonstrating its state-of-the-art performance and effectiveness on various editing tasks. Code can be found on https://github.com/LOCATEdit/LOCATEdit/
♻ ☆ The Procedural Content Generation Benchmark: An Open-source Testbed for Generative Challenges in Games
This paper introduces the Procedural Content Generation Benchmark for evaluating generative algorithms on different game content creation tasks. The benchmark comes with 12 game-related problems with multiple variants on each problem. Problems vary from creating levels of different kinds to creating rule sets for simple arcade games. Each problem has its own content representation, control parameters, and evaluation metrics for quality, diversity, and controllability. This benchmark is intended as a first step towards a standardized way of comparing generative algorithms. We use the benchmark to score three baseline algorithms: a random generator, an evolution strategy, and a genetic algorithm. Results show that some problems are easier to solve than others, as well as the impact the chosen objective has on quality, diversity, and controllability of the generated artifacts.
comment: 12 pages, 4 figures, 2 tables, published at FDG2025
♻ ☆ Neuroplasticity in Artificial Intelligence -- An Overview and Inspirations on Drop In & Out Learning
Artificial Intelligence (AI) has achieved new levels of performance and spread in public usage with the rise of deep neural networks (DNNs). Initially inspired by human neurons and their connections, NNs have become the foundation of AI models for many advanced architectures. However, some of the most integral processes in the human brain, particularly neurogenesis and neuroplasticity in addition to the more spread neuroapoptosis have largely been ignored in DNN architecture design. Instead, contemporary AI development predominantly focuses on constructing advanced frameworks, such as large language models, which retain a static structure of neural connections during training and inference. In this light, we explore how neurogenesis, neuroapoptosis, and neuroplasticity can inspire future AI advances. Specifically, we examine analogous activities in artificial NNs, introducing the concepts of ``dropin'' for neurogenesis and revisiting ``dropout'' and structural pruning for neuroapoptosis. We additionally suggest neuroplasticity combining the two for future large NNs in ``life-long learning'' settings following the biological inspiration. We conclude by advocating for greater research efforts in this interdisciplinary domain and identifying promising directions for future exploration.
♻ ☆ Multi-Scale Invertible Neural Network for Wide-Range Variable-Rate Learned Image Compression
Autoencoder-based structures have dominated recent learned image compression methods. However, the inherent information loss associated with autoencoders limits their rate-distortion performance at high bit rates and restricts their flexibility of rate adaptation. In this paper, we present a variable-rate image compression model based on invertible transform to overcome these limitations. Specifically, we design a lightweight multi-scale invertible neural network, which bijectively maps the input image into multi-scale latent representations. To improve the compression efficiency, a multi-scale spatial-channel context model with extended gain units is devised to estimate the entropy of the latent representation from high to low levels. Experimental results demonstrate that the proposed method achieves state-of-the-art performance compared to existing variable-rate methods, and remains competitive with recent multi-model approaches. Notably, our method is the first learned image compression solution that outperforms VVC across a very wide range of bit rates using a single model, especially at high bit rates. The source code is available at https://github.com/hytu99/MSINN-VRLIC.
comment: Accepted for publication in IEEE Transactions on Multimedia 2025
♻ ☆ LaMOuR: Leveraging Language Models for Out-of-Distribution Recovery in Reinforcement Learning
Deep Reinforcement Learning (DRL) has demonstrated strong performance in robotic control but remains susceptible to out-of-distribution (OOD) states, often resulting in unreliable actions and task failure. While previous methods have focused on minimizing or preventing OOD occurrences, they largely neglect recovery once an agent encounters such states. Although the latest research has attempted to address this by guiding agents back to in-distribution states, their reliance on uncertainty estimation hinders scalability in complex environments. To overcome this limitation, we introduce Language Models for Out-of-Distribution Recovery (LaMOuR), which enables recovery learning without relying on uncertainty estimation. LaMOuR generates dense reward codes that guide the agent back to a state where it can successfully perform its original task, leveraging the capabilities of LVLMs in image description, logical reasoning, and code generation. Experimental results show that LaMOuR substantially enhances recovery efficiency across diverse locomotion tasks and even generalizes effectively to complex environments, including humanoid locomotion and mobile manipulation, where existing methods struggle. The code and supplementary materials are available at https://lamour-rl.github.io/.
comment: 14 pages, 16 figures
♻ ☆ VinaBench: Benchmark for Faithful and Consistent Visual Narratives CVPR 2025
Visual narrative generation transforms textual narratives into sequences of images illustrating the content of the text. However, generating visual narratives that are faithful to the input text and self-consistent across generated images remains an open challenge, due to the lack of knowledge constraints used for planning the stories. In this work, we propose a new benchmark, VinaBench, to address this challenge. Our benchmark annotates the underlying commonsense and discourse constraints in visual narrative samples, offering systematic scaffolds for learning the implicit strategies of visual storytelling. Based on the incorporated narrative constraints, we further propose novel metrics to closely evaluate the consistency of generated narrative images and the alignment of generations with the input textual narrative. Our results across three generative vision models demonstrate that learning with VinaBench's knowledge constraints effectively improves the faithfulness and cohesion of generated visual narratives.
comment: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2025)
♻ ☆ Quantum Neural Network Restatement of Markov Jump Process
Despite the many challenges in exploratory data analysis, artificial neural networks have motivated strong interests in scientists and researchers both in theoretical as well as practical applications. Among sources of such popularity of artificial neural networks the ability of modeling non-linear dynamical systems, generalization, and adaptation possibilities should be mentioned. Despite this, there is still significant debate about the role of various underlying stochastic processes in stabilizing a unique structure for data learning and prediction. One of such obstacles to the theoretical and numerical study of machine intelligent systems is the curse of dimensionality and the sampling from high-dimensional probability distributions. In general, this curse prevents efficient description of states, providing a significant complexity barrier for the system to be efficiently described and studied. In this strand of research, direct treatment and description of such abstract notions of learning theory in terms of quantum information be one of the most favorable candidates. Hence, the subject matter of these articles is devoted to problems of design, adaptation and the formulations of computationally hard problems in terms of quantum mechanical systems. In order to characterize the microscopic description of such dynamics in the language of inferential statistics, covariance matrix estimation of d-dimensional Gaussian densities and Bayesian interpretation of eigenvalue problem for dynamical systems is assessed.
♻ ☆ VidTwin: Video VAE with Decoupled Structure and Dynamics CVPR 2025
Recent advancements in video autoencoders (Video AEs) have significantly improved the quality and efficiency of video generation. In this paper, we propose a novel and compact video autoencoder, VidTwin, that decouples video into two distinct latent spaces: Structure latent vectors, which capture overall content and global movement, and Dynamics latent vectors, which represent fine-grained details and rapid movements. Specifically, our approach leverages an Encoder-Decoder backbone, augmented with two submodules for extracting these latent spaces, respectively. The first submodule employs a Q-Former to extract low-frequency motion trends, followed by downsampling blocks to remove redundant content details. The second averages the latent vectors along the spatial dimension to capture rapid motion. Extensive experiments show that VidTwin achieves a high compression rate of 0.20% with high reconstruction quality (PSNR of 28.14 on the MCL-JCV dataset), and performs efficiently and effectively in downstream generative tasks. Moreover, our model demonstrates explainability and scalability, paving the way for future research in video latent representation and generation. Check our project page for more details: https://vidtwin.github.io/.
comment: Accepted by CVPR 2025; Project page: https://vidtwin.github.io/; Code: https://github.com/microsoft/VidTok/tree/main/vidtwin
♻ ☆ RAP: Retrieval-Augmented Personalization for Multimodal Large Language Models CVPR 2025
The development of large language models (LLMs) has significantly enhanced the capabilities of multimodal LLMs (MLLMs) as general assistants. However, lack of user-specific knowledge still restricts their application in human's daily life. In this paper, we introduce the Retrieval Augmented Personalization (RAP) framework for MLLMs' personalization. Starting from a general MLLM, we turn it into a personalized assistant in three steps. (a) Remember: We design a key-value database to store user-related information, e.g., user's name, avatar and other attributes. (b) Retrieve: When the user initiates a conversation, RAP will retrieve relevant information from the database using a multimodal retriever. (c) Generate: The input query and retrieved concepts' information are fed into MLLMs to generate personalized, knowledge-augmented responses. Unlike previous methods, RAP allows real-time concept editing via updating the external database. To further improve generation quality and alignment with user-specific information, we design a pipeline for data collection and create a specialized dataset for personalized training of MLLMs. Based on the dataset, we train a series of MLLMs as personalized multimodal assistants. By pretraining on large-scale dataset, RAP-MLLMs can generalize to infinite visual concepts without additional finetuning. Our models demonstrate outstanding flexibility and generation quality across a variety of tasks, such as personalized image captioning, question answering and visual recognition. The code, data and models are available at https://hoar012.github.io/RAP-Project/.
comment: Accepted by CVPR 2025. Code: https://github.com/Hoar012/RAP-MLLM
♻ ☆ Unmasking Deceptive Visuals: Benchmarking Multimodal Large Language Models on Misleading Chart Question Answering
Misleading chart visualizations, which intentionally manipulate data representations to support specific claims, can distort perceptions and lead to incorrect conclusions. Despite decades of research, misleading visualizations remain a widespread and pressing issue. Recent advances in multimodal large language models (MLLMs) have demonstrated strong chart comprehension capabilities, yet no existing work has systematically evaluated their ability to detect and interpret misleading charts. This paper introduces the Misleading Chart Question Answering (Misleading ChartQA) Benchmark, a large-scale multimodal dataset designed to assess MLLMs in identifying and reasoning about misleading charts. It contains over 3,000 curated examples, covering 21 types of misleaders and 10 chart types. Each example includes standardized chart code, CSV data, and multiple-choice questions with labeled explanations, validated through multi-round MLLM checks and exhausted expert human review. We benchmark 16 state-of-the-art MLLMs on our dataset, revealing their limitations in identifying visually deceptive practices. We also propose a novel pipeline that detects and localizes misleaders, enhancing MLLMs' accuracy in misleading chart interpretation. Our work establishes a foundation for advancing MLLM-driven misleading chart comprehension. We publicly release the sample dataset to support further research in this critical area.
comment: 31 pages in total. Under Review For ARR
♻ ☆ Can Language Models Follow Multiple Turns of Entangled Instructions?
Despite significant achievements in improving the instruction-following capabilities of large language models (LLMs), the ability to process multiple potentially entangled or conflicting instructions remains a considerable challenge. Real-world scenarios often require consistency across multiple instructions over time, such as secret privacy, personal preferences, and prioritization, which demand sophisticated abilities to integrate multiple turns and carefully balance competing objectives when instructions intersect or conflict. This work presents a systematic investigation of LLMs' capabilities in handling multiple turns of instructions, covering three levels of difficulty: (1) retrieving information from instructions, (2) tracking and reasoning across turns, and (3) resolving conflicts among instructions. We construct MultiTurnInstruct with around 1.1K high-quality multi-turn conversations through the human-in-the-loop approach and result in nine capability categories, including statics and dynamics, reasoning, and multitasking. Our finding reveals an intriguing trade-off between different capabilities. While GPT models demonstrate superior memorization, they show reduced effectiveness in privacy-protection tasks requiring selective information withholding. Larger models exhibit stronger reasoning capabilities but still struggle with resolving conflicting instructions. Importantly, these performance gaps cannot be attributed solely to information loss, as models demonstrate strong BLEU scores on memorization tasks but their attention mechanisms fail to integrate multiple related instructions effectively. These findings highlight critical areas for improvement in complex real-world tasks involving multi-turn instructions.
comment: 8 pages
♻ ☆ A RAG-Based Multi-Agent LLM System for Natural Hazard Resilience and Adaptation
Large language models (LLMs) are a transformational capability at the frontier of artificial intelligence and machine learning that can support decision-makers in addressing pressing societal challenges such as extreme natural hazard events. As generalized models, LLMs often struggle to provide context-specific information, particularly in areas requiring specialized knowledge. In this work, we propose a Retrieval-Augmented Generation (RAG)-based multi-agent LLM system to support analysis and decision-making in the context of natural hazards and extreme weather events. As a proof of concept, we present WildfireGPT, a specialized system focused on wildfire scenarios. The architecture employs a user-centered, multi-agent design to deliver tailored risk insights across diverse stakeholder groups. By integrating domain-specific projection data, observational datasets, and scientific literature through a RAG framework, the system ensures both accuracy and contextual relevance of the information it provides. Evaluation across ten expert-led case studies demonstrates that WildfireGPT significantly outperforms existing LLM-based solutions for decision support in natural hazard and extreme weather contexts.
♻ ☆ AI Literacy in K-12 and Higher Education in the Wake of Generative AI: An Integrative Review
Even though AI literacy has emerged as a prominent education topic in the wake of generative AI, its definition remains vague. There is little consensus among researchers and practitioners on how to discuss and design AI literacy interventions. The term has been used to describe both learning activities that train undergraduate students to use ChatGPT effectively and having kindergarten children interact with social robots. This paper applies an integrative review method to examine empirical and theoretical AI literacy studies published since 2020. In synthesizing the 124 reviewed studies, three ways to conceptualize literacy-functional, critical, and indirectly beneficial-and three perspectives on AI-technical detail, tool, and sociocultural-were identified, forming a framework that reflects the spectrum of how AI literacy is approached in practice. The framework highlights the need for more specialized terms within AI literacy discourse and indicates research gaps in certain AI literacy objectives.
comment: 25 pages, 7 figures; submitted to ICER 2025
♻ ☆ USC: Uncompromising Spatial Constraints for Safety-Oriented 3D Object Detectors in Autonomous Driving SC 2024
In this work, we consider the safety-oriented performance of 3D object detectors in autonomous driving contexts. Specifically, despite impressive results shown by the mass literature, developers often find it hard to ensure the safe deployment of these learning-based perception models. Attributing the challenge to the lack of safety-oriented metrics, we hereby present uncompromising spatial constraints (USC), which characterize a simple yet important localization requirement demanding the predictions to fully cover the objects when seen from the autonomous vehicle. The constraints, as we formulate using the perspective and bird's-eye views, can be naturally reflected by quantitative measures, such that having an object detector with a higher score implies a lower risk of collision. Finally, beyond model evaluation, we incorporate the quantitative measures into common loss functions to enable safety-oriented fine-tuning for existing models. With experiments using the nuScenes dataset and a closed-loop simulation, our work demonstrates such considerations of safety notions at the perception level not only improve model performances beyond accuracy but also allow for a more direct linkage to actual system safety.
comment: Accepted by ITSC 2024, 8 pages (IEEE double column format), 7 figures, 2 tables
♻ ☆ Towards shutdownable agents via stochastic choice
The Incomplete Preferences Proposal (IPP) is an idea for ensuring that advanced artificial agents never resist shutdown. A key part of the IPP is using a novel `Discounted Reward for Same-Length Trajectories (DReST)' reward function to train agents to (1) pursue goals effectively conditional on each trajectory-length (be `USEFUL'), and (2) choose stochastically between different trajectory-lengths (be `NEUTRAL' about trajectory-lengths). In this paper, we propose evaluation metrics for USEFULNESS and NEUTRALITY. We use a DReST reward function to train simple agents to navigate gridworlds, and we find that these agents learn to be USEFUL and NEUTRAL. Our results thus provide some initial evidence that DReST reward functions could train advanced agents to be USEFUL and NEUTRAL. Our theoretical work suggests that these agents would be useful and shutdownable.
♻ ☆ Learning Multi-Robot Coordination through Locality-Based Factorized Multi-Agent Actor-Critic Algorithm
In this work, we present a novel cooperative multi-agent reinforcement learning method called \textbf{Loc}ality based \textbf{Fac}torized \textbf{M}ulti-Agent \textbf{A}ctor-\textbf{C}ritic (Loc-FACMAC). Existing state-of-the-art algorithms, such as FACMAC, rely on global reward information, which may not accurately reflect the quality of individual robots' actions in decentralized systems. We integrate the concept of locality into critic learning, where strongly related robots form partitions during training. Robots within the same partition have a greater impact on each other, leading to more precise policy evaluation. Additionally, we construct a dependency graph to capture the relationships between robots, facilitating the partitioning process. This approach mitigates the curse of dimensionality and prevents robots from using irrelevant information. Our method improves existing algorithms by focusing on local rewards and leveraging partition-based learning to enhance training efficiency and performance. We evaluate the performance of Loc-FACMAC in three environments: Hallway, Multi-cartpole, and Bounded-Cooperative-Navigation. We explore the impact of partition sizes on the performance and compare the result with baseline MARL algorithms such as LOMAQ, FACMAC, and QMIX. The experiments reveal that, if the locality structure is defined properly, Loc-FACMAC outperforms these baseline algorithms up to 108\%, indicating that exploiting the locality structure in the actor-critic framework improves the MARL performance.
♻ ☆ Do LLMs estimate uncertainty well in instruction-following?
Large language models (LLMs) could be valuable personal AI agents across various domains, provided they can precisely follow user instructions. However, recent studies have shown significant limitations in LLMs' instruction-following capabilities, raising concerns about their reliability in high-stakes applications. Accurately estimating LLMs' uncertainty in adhering to instructions is critical to mitigating deployment risks. We present, to our knowledge, the first systematic evaluation of the uncertainty estimation abilities of LLMs in the context of instruction-following. Our study identifies key challenges with existing instruction-following benchmarks, where multiple factors are entangled with uncertainty stems from instruction-following, complicating the isolation and comparison across methods and models. To address these issues, we introduce a controlled evaluation setup with two benchmark versions of data, enabling a comprehensive comparison of uncertainty estimation methods under various conditions. Our findings show that existing uncertainty methods struggle, particularly when models make subtle errors in instruction following. While internal model states provide some improvement, they remain inadequate in more complex scenarios. The insights from our controlled evaluation setups provide a crucial understanding of LLMs' limitations and potential for uncertainty estimation in instruction-following tasks, paving the way for more trustworthy AI agents.
♻ ☆ Output Scouting: Auditing Large Language Models for Catastrophic Responses
Recent high profile incidents in which the use of Large Language Models (LLMs) resulted in significant harm to individuals have brought about a growing interest in AI safety. One reason LLM safety issues occur is that models often have at least some non-zero probability of producing harmful outputs. In this work, we explore the following scenario: imagine an AI safety auditor is searching for catastrophic responses from an LLM (e.g. a "yes" responses to "can I fire an employee for being pregnant?"), and is able to query the model a limited number times (e.g. 1000 times). What is a strategy for querying the model that would efficiently find those failure responses? To this end, we propose output scouting: an approach that aims to generate semantically fluent outputs to a given prompt matching any target probability distribution. We then run experiments using two LLMs and find numerous examples of catastrophic responses. We conclude with a discussion that includes advice for practitioners who are looking to implement LLM auditing for catastrophic responses. We also release an open-source toolkit (https://github.com/joaopfonseca/outputscouting) that implements our auditing framework using the Hugging Face transformers library.
comment: Work not ready, further experiments needed to validate the method
♻ ☆ Do LLMs "know" internally when they follow instructions?
Instruction-following is crucial for building AI agents with large language models (LLMs), as these models must adhere strictly to user-provided constraints and guidelines. However, LLMs often fail to follow even simple and clear instructions. To improve instruction-following behavior and prevent undesirable outputs, a deeper understanding of how LLMs' internal states relate to these outcomes is required. In this work, we investigate whether LLMs encode information in their representations that correlate with instruction-following success - a property we term knowing internally. Our analysis identifies a direction in the input embedding space, termed the instruction-following dimension, that predicts whether a response will comply with a given instruction. We find that this dimension generalizes well across unseen tasks but not across unseen instruction types. We demonstrate that modifying representations along this dimension improves instruction-following success rates compared to random changes, without compromising response quality. Further investigation reveals that this dimension is more closely related to the phrasing of prompts rather than the inherent difficulty of the task or instructions. This work provides insight into the internal workings of LLMs' instruction-following, paving the way for reliable LLM agents.
♻ ☆ CoRPA: Adversarial Image Generation for Chest X-rays Using Concept Vector Perturbations and Generative Models
Deep learning models for medical image classification tasks are becoming widely implemented in AI-assisted diagnostic tools, aiming to enhance diagnostic accuracy, reduce clinician workloads, and improve patient outcomes. However, their vulnerability to adversarial attacks poses significant risks to patient safety. Current attack methodologies use general techniques such as model querying or pixel value perturbations to generate adversarial examples designed to fool a model. These approaches may not adequately address the unique characteristics of clinical errors stemming from missed or incorrectly identified clinical features. We propose the Concept-based Report Perturbation Attack (CoRPA), a clinically-focused black-box adversarial attack framework tailored to the medical imaging domain. CoRPA leverages clinical concepts to generate adversarial radiological reports and images that closely mirror realistic clinical misdiagnosis scenarios. We demonstrate the utility of CoRPA using the MIMIC-CXR-JPG dataset of chest X-rays and radiological reports. Our evaluation reveals that deep learning models exhibiting strong resilience to conventional adversarial attacks are significantly less robust when subjected to CoRPA's clinically-focused perturbations. This underscores the importance of addressing domain-specific vulnerabilities in medical AI systems. By introducing a specialized adversarial attack framework, this study provides a foundation for developing robust, real-world-ready AI models in healthcare, ensuring their safe and reliable deployment in high-stakes clinical environments.
♻ ☆ Hybrid Action Based Reinforcement Learning for Multi-Objective Compatible Autonomous Driving
Reinforcement Learning (RL) has shown excellent performance in solving decision-making and control problems of autonomous driving, which is increasingly applied in diverse driving scenarios. However, driving is a multi-attribute problem, leading to challenges in achieving multi-objective compatibility for current RL methods, especially in both policy execution and policy iteration. On the one hand, the common action space structure with single action type limits driving flexibility or results in large behavior fluctuations during policy execution. On the other hand, the multi-attribute weighted single reward function result in the agent's disproportionate attention to certain objectives during policy iterations. To this end, we propose a Multi-objective Ensemble-Critic reinforcement learning method with Hybrid Parametrized Action for multi-objective compatible autonomous driving. Specifically, a parameterized action space is constructed to generate hybrid driving actions, combining both abstract guidance and concrete control commands. A multi-objective critics architecture is constructed considering multiple attribute rewards, to ensure simultaneously focusing on different driving objectives. Additionally, uncertainty-based exploration strategy is introduced to help the agent faster approach viable driving policy. The experimental results in both the simulated traffic environment and the HighD dataset demonstrate that our method can achieve multi-objective compatible autonomous driving in terms of driving efficiency, action consistency, and safety. It enhances the general performance of the driving while significantly increasing training efficiency.
comment: 12 pages, 9 figures, 5 tables
♻ ☆ LoRD: Adapting Differentiable Driving Policies to Distribution Shifts ICRA 2025
Distribution shifts between operational domains can severely affect the performance of learned models in self-driving vehicles (SDVs). While this is a well-established problem, prior work has mostly explored naive solutions such as fine-tuning, focusing on the motion prediction task. In this work, we explore novel adaptation strategies for differentiable autonomy stacks consisting of prediction, planning, and control, perform evaluation in closed-loop, and investigate the often-overlooked issue of catastrophic forgetting. Specifically, we introduce two simple yet effective techniques: a low-rank residual decoder (LoRD) and multi-task fine-tuning. Through experiments across three models conducted on two real-world autonomous driving datasets (nuPlan, exiD), we demonstrate the effectiveness of our methods and highlight a significant performance gap between open-loop and closed-loop evaluation in prior approaches. Our approach improves forgetting by up to 23.33% and the closed-loop OOD driving score by 9.93% in comparison to standard fine-tuning.
comment: IEEE International Conference on Robotics & Automation, ICRA 2025
♻ ☆ Autonomous AI imitators increase diversity in homogeneous information ecosystems
Recent breakthroughs in large language models (LLMs) have facilitated autonomous AI agents capable of imitating human-generated content. This technological advancement raises fundamental questions about AI's impact on the diversity and democratic value of information ecosystems. We introduce a large-scale simulation framework to examine AI-based imitation within news, a context crucial for public discourse. By systematically testing two distinct imitation strategies across a range of information environments varying in initial diversity, we demonstrate that AI-generated articles do not uniformly homogenize content. Instead, AI's influence is strongly context-dependent: AI-generated content can introduce valuable diversity in originally homogeneous news environments but diminish diversity in initially heterogeneous contexts. These results illustrate that the initial diversity of an information environment critically shapes AI's impact, challenging assumptions that AI-driven imitation threatens diversity. Instead, when information is initially homogeneous, AI-driven imitation can expand perspectives, styles, and topics. This is especially important in news contexts, where information diversity fosters richer public debate by exposing citizens to alternative viewpoints, challenging biases, and preventing narrative monopolies, which is essential for a resilient democracy.
comment: 42 pages, 11 figures, 4 tables; v2: corrected typographical errors, streamlined language, updated abstract, added supplementary information; v3: restructured appendix, added temperature and embeddings sensitivity checks
♻ ☆ CONCERTO: Complex Query Execution Mechanism-Aware Learned Cost Estimation
With the growing demand for massive data analysis, many DBMSs have adopted complex underlying query execution mechanisms, including vectorized operators, parallel execution, and dynamic pipeline modifications. However, there remains a lack of targeted Query Performance Prediction (QPP) methods for these complex execution mechanisms and their interactions, as most existing approaches focus on traditional tree-shaped query plans and static serial executors. To address this challenge, this paper proposes CONCERTO, a Complex query executiON meChanism-awaE leaRned cosT estimatiOn method. CONCERTO first establishes independent resource cost models for each physical operator. It then constructs a Directed Acyclic Graph (DAG) consisting of a dataflow tree backbone and resource competition relationships among concurrent operators. After calibrating the cost impact of parallel operator execution using Graph Attention Networks (GATs) with additional attention mechanisms, CONCERTO extracts and aggregates cost vector trees through Temporal Convolutional Networks (TCNs), ultimately achieving effective query performance prediction. Experimental results demonstrate that CONCERTO achieves higher prediction accuracy than existing methods.
♻ ☆ Unified ODE Analysis of Smooth Q-Learning Algorithms
Convergence of Q-learning has been the focus of extensive research over the past several decades. Recently, an asymptotic convergence analysis for Q-learning was introduced using a switching system framework. This approach applies the so-called ordinary differential equation (ODE) approach to prove the convergence of the asynchronous Q-learning modeled as a continuous-time switching system, where notions from switching system theory are used to prove its asymptotic stability without using explicit Lyapunov arguments. However, to prove stability, restrictive conditions, such as quasi-monotonicity, must be satisfied for the underlying switching systems, which makes it hard to easily generalize the analysis method to other reinforcement learning algorithms, such as the smooth Q-learning variants. In this paper, we present a more general and unified convergence analysis that improves upon the switching system approach and can analyze Q-learning and its smooth variants. The proposed analysis is motivated by previous work on the convergence of synchronous Q-learning based on $p$-norm serving as a Lyapunov function. However, the proposed analysis addresses more general ODE models that can cover both asynchronous Q-learning and its smooth versions with simpler frameworks.
♻ ☆ Sherlock Holmes Doesn't Play Dice: The mathematics of uncertain reasoning when something may happen, that one is not even able to figure out
While Evidence Theory (also known as Dempster-Shafer Theory, or Belief Functions Theory) is being increasingly used in data fusion, its potentialities in the Social and Life Sciences are often obscured by lack of awareness of its distinctive features. In particular, with this paper I stress that an extended version of Evidence Theory can express the uncertainty deriving from the fear that events may materialize, that one is not even able to figure out. By contrast, Probability Theory must limit itself to the possibilities that a decision-maker is currently envisaging. I compare this extended version of Evidence Theory to sophisticated extensions of Probability Theory, such as imprecise and sub-additive probabilities, as well as unconventional versions of Information Theory that are employed in data fusion and transmission of cultural information. A further extension to multi-agent interaction is outlined.
comment: 25 pages, 3 figures, 1 table
♻ ☆ Advancing Chronic Tuberculosis Diagnostics Using Vision-Language Models: A Multi modal Framework for Precision Analysis
Background: This study proposes a Vision-Language Model (VLM) leveraging the SIGLIP encoder and Gemma-3b transformer decoder to enhance automated chronic tuberculosis (TB) screening. By integrating chest X-ray images with clinical data, the model addresses the challenges of manual interpretation, improving diagnostic consistency and accessibility, particularly in resource-constrained settings. Methods: The VLM architecture combines a Vision Transformer (ViT) for visual encoding and a transformer-based text encoder to process clinical context, such as patient histories and treatment records. Cross-modal attention mechanisms align radiographic features with textual information, while the Gemma-3b decoder generates comprehensive diagnostic reports. The model was pre-trained on 5 million paired medical images and texts and fine-tuned using 100,000 chronic TB-specific chest X-rays. Results: The model demonstrated high precision (94 percent) and recall (94 percent) for detecting key chronic TB pathologies, including fibrosis, calcified granulomas, and bronchiectasis. Area Under the Curve (AUC) scores exceeded 0.93, and Intersection over Union (IoU) values were above 0.91, validating its effectiveness in detecting and localizing TB-related abnormalities. Conclusion: The VLM offers a robust and scalable solution for automated chronic TB diagnosis, integrating radiographic and clinical data to deliver actionable and context-aware insights. Future work will address subtle pathologies and dataset biases to enhance the model's generalizability, ensuring equitable performance across diverse populations and healthcare settings.
comment: 10 pages , 3 figures
♻ ☆ Combating Semantic Contamination in Learning with Label Noise AAAI2025
Noisy labels can negatively impact the performance of deep neural networks. One common solution is label refurbishment, which involves reconstructing noisy labels through predictions and distributions. However, these methods may introduce problematic semantic associations, a phenomenon that we identify as Semantic Contamination. Through an analysis of Robust LR, a representative label refurbishment method, we found that utilizing the logits of views for refurbishment does not adequately balance the semantic information of individual classes. Conversely, using the logits of models fails to maintain consistent semantic relationships across models, which explains why label refurbishment methods frequently encounter issues related to Semantic Contamination. To address this issue, we propose a novel method called Collaborative Cross Learning, which utilizes semi-supervised learning on refurbished labels to extract appropriate semantic associations from embeddings across views and models. Experimental results show that our method outperforms existing approaches on both synthetic and real-world noisy datasets, effectively mitigating the impact of label noise and Semantic Contamination.
comment: AAAI2025
♻ ☆ Enhancing Small Language Models for Cross-Lingual Generalized Zero-Shot Classification with Soft Prompt Tuning NAACL 2025
In NLP, Zero-Shot Classification (ZSC) has become essential for enabling models to classify text into categories unseen during training, particularly in low-resource languages and domains where labeled data is scarce. While pretrained language models (PLMs) have shown promise in ZSC, they often rely on large training datasets or external knowledge, limiting their applicability in multilingual and low-resource scenarios. Recent approaches leveraging natural language prompts reduce the dependence on large training datasets but struggle to effectively incorporate available labeled data from related classification tasks, especially when these datasets originate from different languages or distributions. Moreover, existing prompt-based methods typically rely on manually crafted prompts in a specific language, limiting their adaptability and effectiveness in cross-lingual settings. To address these challenges, we introduce RoSPrompt, a lightweight and data-efficient approach for training soft prompts that enhance cross-lingual ZSC while ensuring robust generalization across data distribution shifts. RoSPrompt is designed for small multilingual PLMs, enabling them to leverage high-resource languages to improve performance in low-resource settings without requiring extensive fine-tuning or high computational costs. We evaluate our approach on multiple multilingual PLMs across datasets covering 106 languages, demonstrating strong cross-lingual transfer performance and robust generalization capabilities over unseen classes.
comment: Workshop on Language Models for Underserved Communities (co-located with NAACL 2025)
♻ ☆ Tightening Robustness Verification of MaxPool-based Neural Networks via Minimizing the Over-Approximation Zone CVPR 2025
The robustness of neural network classifiers is important in the safety-critical domain and can be quantified by robustness verification. At present, efficient and scalable verification techniques are always sound but incomplete, and thus, the improvement of verified robustness results is the key criterion to evaluate the performance of incomplete verification approaches. The multi-variate function MaxPool is widely adopted yet challenging to verify. In this paper, we present Ti-Lin, a robustness verifier for MaxPool-based CNNs with Tight Linear Approximation. Following the sequel of minimizing the over-approximation zone of the non-linear function of CNNs, we are the first to propose the provably neuron-wise tightest linear bounds for the MaxPool function. By our proposed linear bounds, we can certify larger robustness results for CNNs. We evaluate the effectiveness of Ti-Lin on different verification frameworks with open-sourced benchmarks, including LeNet, PointNet, and networks trained on the MNIST, CIFAR-10, Tiny ImageNet and ModelNet40 datasets. Experimental results show that Ti-Lin significantly outperforms the state-of-the-art methods across all networks with up to 78.6% improvement in terms of the certified accuracy with almost the same time consumption as the fastest tool. Our code is available at https://github.com/xiaoyuanpigo/Ti-Lin-Hybrid-Lin.
comment: Accepted to CVPR 2025. Code Link: https://github.com/xiaoyuanpigo/Ti-Lin-Hybrid-Lin
♻ ☆ PromptLA: Towards Integrity Verification of Black-box Text-to-Image Diffusion Models
Despite the impressive synthesis quality of text-to-image (T2I) diffusion models, their black-box deployment poses significant regulatory challenges: Malicious actors can fine-tune these models to generate illegal content, circumventing existing safeguards through parameter manipulation. Therefore, it is essential to verify the integrity of T2I diffusion models. To this end, considering the randomness within the outputs of generative models and the high costs in interacting with them, we discern model tampering via the KL divergence between the distributions of the features of generated images. We propose a novel prompt selection algorithm based on learning automaton (PromptLA) for efficient and accurate verification. Evaluations on four advanced T2I models (e.g., SDXL, FLUX.1) demonstrate that our method achieves a mean AUC of over 0.96 in integrity detection, exceeding baselines by more than 0.2, showcasing strong effectiveness and generalization. Additionally, our approach achieves lower cost and is robust against image-level post-processing. To the best of our knowledge, this paper is the first work addressing the integrity verification of T2I diffusion models, which establishes quantifiable standards for AI copyright litigation in practice.
comment: 9 pages, 6 figures
♻ ☆ DeepInnovation AI: A Global Dataset Mapping the AI innovation from Academic Research to Industrial Patents
In the rapidly evolving field of artificial intelligence (AI), mapping innovation patterns and understanding effective technology transfer from research to applications are essential for economic growth. However, existing data infrastructures suffer from fragmentation, incomplete coverage, and insufficient evaluative capacity. Here, we present DeepInnovationAI, a comprehensive global dataset containing three structured files. DeepPatentAI.csv: Contains 2,356,204 patent records with 8 field-specific attributes. DeepDiveAI.csv: Encompasses 3,511,929 academic publications with 13 metadata fields. These two datasets leverage large language models, multilingual text analysis and dual-layer BERT classifiers to accurately identify AI-related content, while utilizing hypergraph analysis to create robust innovation metrics. Additionally, DeepCosineAI.csv: By applying semantic vector proximity analysis, this file presents approximately one hundred million calculated paper-patent similarity pairs to enhance understanding of how theoretical advancements translate into commercial technologies. DeepInnovationAI enables researchers, policymakers, and industry leaders to anticipate trends and identify collaboration opportunities. With extensive temporal and geographical scope, it supports detailed analysis of technological development patterns and international competition dynamics, establishing a foundation for modeling AI innovation and technology transfer processes.
comment: 32 pages and 8 figures
♻ ☆ Envisioning an AI-Enhanced Mental Health Ecosystem
The rapid advancement of Large Language Models (LLMs), reasoning models, and agentic AI approaches coincides with a growing global mental health crisis, where increasing demand has not translated into adequate access to professional support, particularly for underserved populations. This presents a unique opportunity for AI to complement human-led interventions, offering scalable and context-aware support while preserving human connection in this sensitive domain. We explore various AI applications in peer support, self-help interventions, proactive monitoring, and data-driven insights, using a human-centred approach that ensures AI supports rather than replaces human interaction. However, AI deployment in mental health fields presents challenges such as ethical concerns, transparency, privacy risks, and risks of over-reliance. We propose a hybrid ecosystem where where AI assists but does not replace human providers, emphasising responsible deployment and evaluation. We also present some of our early work and findings in several of these AI applications. Finally, we outline future research directions for refining AI-enhanced interventions while adhering to ethical and culturally sensitive guidelines.
comment: 5 pages, 0 figures, accepted to the CHI'25 Envisioning the Future of Interactive Health Workshop, to be published in HAL
♻ ☆ Vocabulary-Free 3D Instance Segmentation with Vision and Language Assistant 3DV
Most recent 3D instance segmentation methods are open vocabulary, offering a greater flexibility than closed-vocabulary methods. Yet, they are limited to reasoning within a specific set of concepts, \ie the vocabulary, prompted by the user at test time. In essence, these models cannot reason in an open-ended fashion, i.e., answering "List the objects in the scene.''. We introduce the first method to address 3D instance segmentation in a setting that is void of any vocabulary prior, namely a vocabulary-free setting. We leverage a large vision-language assistant and an open-vocabulary 2D instance segmenter to discover and ground semantic categories on the posed images. To form 3D instance mask, we first partition the input point cloud into dense superpoints, which are then merged into 3D instance masks. We propose a novel superpoint merging strategy via spectral clustering, accounting for both mask coherence and semantic coherence that are estimated from the 2D object instance masks. We evaluate our method using ScanNet200 and Replica, outperforming existing methods in both vocabulary-free and open-vocabulary settings. Code will be made available. Project page: https://gfmei.github.io/PoVo
comment: Accepted by 3DV
♻ ☆ SAIF: A Comprehensive Framework for Evaluating the Risks of Generative AI in the Public Sector AAAI
The rapid adoption of generative AI in the public sector, encompassing diverse applications ranging from automated public assistance to welfare services and immigration processes, highlights its transformative potential while underscoring the pressing need for thorough risk assessments. Despite its growing presence, evaluations of risks associated with AI-driven systems in the public sector remain insufficiently explored. Building upon an established taxonomy of AI risks derived from diverse government policies and corporate guidelines, we investigate the critical risks posed by generative AI in the public sector while extending the scope to account for its multimodal capabilities. In addition, we propose a Systematic dAta generatIon Framework for evaluating the risks of generative AI (SAIF). SAIF involves four key stages: breaking down risks, designing scenarios, applying jailbreak methods, and exploring prompt types. It ensures the systematic and consistent generation of prompt data, facilitating a comprehensive evaluation while providing a solid foundation for mitigating the risks. Furthermore, SAIF is designed to accommodate emerging jailbreak methods and evolving prompt types, thereby enabling effective responses to unforeseen risk scenarios. We believe that this study can play a crucial role in fostering the safe and responsible integration of generative AI into the public sector.
comment: 6 pages, 2 figures, 1 tables. AI for Public Missions (AIPM) Workshop at the 39th AAAI Conference on Artificial Intelligence (AAAI 2025)
♻ ☆ RILQ: Rank-Insensitive LoRA-based Quantization Error Compensation for Boosting 2-bit Large Language Model Accuracy AAAI 2025
Low-rank adaptation (LoRA) has become the dominant method for parameter-efficient LLM fine-tuning, with LoRA-based quantization error compensation (LQEC) emerging as a powerful tool for recovering accuracy in compressed LLMs. However, LQEC has underperformed in sub-4-bit scenarios, with no prior investigation into understanding this limitation. We propose RILQ (Rank-Insensitive LoRA-based Quantization Error Compensation) to understand fundamental limitation and boost 2-bit LLM accuracy. Based on rank analysis revealing model-wise activation discrepancy loss's rank-insensitive nature, RILQ employs this loss to adjust adapters cooperatively across layers, enabling robust error compensation with low-rank adapters. Evaluations on LLaMA-2 and LLaMA-3 demonstrate RILQ's consistent improvements in 2-bit quantized inference across various state-of-the-art quantizers and enhanced accuracy in task-specific fine-tuning. RILQ maintains computational efficiency comparable to existing LoRA methods, enabling adapter-merged weight-quantized LLM inference with significantly enhanced accuracy, making it a promising approach for boosting 2-bit LLM performance. Our code is available at https://github.com/aiha-lab/RILQ.
comment: Accepted at AAAI 2025
♻ ☆ Single Image Unlearning: Efficient Machine Unlearning in Multimodal Large Language Models
Machine unlearning empowers individuals with the `right to be forgotten' by removing their private or sensitive information encoded in machine learning models. However, it remains uncertain whether MU can be effectively applied to Multimodal Large Language Models (MLLMs), particularly in scenarios of forgetting the leaked visual data of concepts. To overcome the challenge, we propose an efficient method, Single Image Unlearning (SIU), to unlearn the visual recognition of a concept by fine-tuning a single associated image for few steps. SIU consists of two key aspects: (i) Constructing Multifaceted fine-tuning data. We introduce four targets, based on which we construct fine-tuning data for the concepts to be forgotten; (ii) Jointly training loss. To synchronously forget the visual recognition of concepts and preserve the utility of MLLMs, we fine-tune MLLMs through a novel Dual Masked KL-divergence Loss combined with Cross Entropy loss. Alongside our method, we establish MMUBench, a new benchmark for MU in MLLMs and introduce a collection of metrics for its evaluation. Experimental results on MMUBench show that SIU completely surpasses the performance of existing methods. Furthermore, we surprisingly find that SIU can avoid invasive membership inference attacks and jailbreak attacks. To the best of our knowledge, we are the first to explore MU in MLLMs. We will release the code and benchmark in the near future.
♻ ☆ Can video generation replace cinematographers? Research on the cinematic language of generated video
Recent advancements in text-to-video (T2V) generation have leveraged diffusion models to enhance visual coherence in videos synthesized from textual descriptions. However, existing research primarily focuses on object motion, often overlooking cinematic language, which is crucial for conveying emotion and narrative pacing in cinematography. To address this, we propose a threefold approach to improve cinematic control in T2V models. First, we introduce a meticulously annotated cinematic language dataset with twenty subcategories, covering shot framing, shot angles, and camera movements, enabling models to learn diverse cinematic styles. Second, we present CameraDiff, which employs LoRA for precise and stable cinematic control, ensuring flexible shot generation. Third, we propose CameraCLIP, designed to evaluate cinematic alignment and guide multi-shot composition. Building on CameraCLIP, we introduce CLIPLoRA, a CLIP-guided dynamic LoRA composition method that adaptively fuses multiple pre-trained cinematic LoRAs, enabling smooth transitions and seamless style blending. Experimental results demonstrate that CameraDiff ensures stable and precise cinematic control, CameraCLIP achieves an R@1 score of 0.83, and CLIPLoRA significantly enhances multi-shot composition within a single video, bridging the gap between automated video generation and professional cinematography.\textsuperscript{1}
comment: 10 pages
♻ ☆ Dist Loss: Enhancing Regression in Few-Shot Region through Distribution Distance Constraint
Imbalanced data distributions are prevalent in real-world scenarios, posing significant challenges in both imbalanced classification and imbalanced regression tasks. They often cause deep learning models to overfit in areas of high sample density (many-shot regions) while underperforming in areas of low sample density (few-shot regions). This characteristic restricts the utility of deep learning models in various sectors, notably healthcare, where areas with few-shot data hold greater clinical relevance. While recent studies have shown the benefits of incorporating distribution information in imbalanced classification tasks, such strategies are rarely explored in imbalanced regression. In this paper, we address this issue by introducing a novel loss function, termed Dist Loss, designed to minimize the distribution distance between the model's predictions and the target labels in a differentiable manner, effectively integrating distribution information into model training. Dist Loss enables deep learning models to regularize their output distribution during training, effectively enhancing their focus on few-shot regions. We have conducted extensive experiments across three datasets spanning computer vision and healthcare: IMDB-WIKI-DIR, AgeDB-DIR, and ECG-Ka-DIR. The results demonstrate that Dist Loss effectively mitigates the negative impact of imbalanced data distribution on model performance, achieving state-of-the-art results in sparse data regions. Furthermore, Dist Loss is easy to integrate, complementing existing methods.
♻ ☆ AnyAttack: Towards Large-scale Self-supervised Adversarial Attacks on Vision-language Models CVPR 2025
Due to their multimodal capabilities, Vision-Language Models (VLMs) have found numerous impactful applications in real-world scenarios. However, recent studies have revealed that VLMs are vulnerable to image-based adversarial attacks. Traditional targeted adversarial attacks require specific targets and labels, limiting their real-world impact.We present AnyAttack, a self-supervised framework that transcends the limitations of conventional attacks through a novel foundation model approach. By pre-training on the massive LAION-400M dataset without label supervision, AnyAttack achieves unprecedented flexibility - enabling any image to be transformed into an attack vector targeting any desired output across different VLMs.This approach fundamentally changes the threat landscape, making adversarial capabilities accessible at an unprecedented scale. Our extensive validation across five open-source VLMs (CLIP, BLIP, BLIP2, InstructBLIP, and MiniGPT-4) demonstrates AnyAttack's effectiveness across diverse multimodal tasks. Most concerning, AnyAttack seamlessly transfers to commercial systems including Google Gemini, Claude Sonnet, Microsoft Copilot and OpenAI GPT, revealing a systemic vulnerability requiring immediate attention.
comment: CVPR 2025
♻ ☆ DRExplainer: Quantifiable Interpretability in Drug Response Prediction with Directed Graph Convolutional Network
Predicting the response of a cancer cell line to a therapeutic drug is pivotal for personalized medicine. Despite numerous deep learning methods that have been developed for drug response prediction, integrating diverse information about biological entities and predicting the directional response remain major challenges. Here, we propose a novel interpretable predictive model, DRExplainer, which leverages a directed graph convolutional network to enhance the prediction in a directed bipartite network framework. DRExplainer constructs a directed bipartite network integrating multi-omics profiles of cell lines, the chemical structure of drugs and known drug response to achieve directed prediction. Then, DRExplainer identifies the most relevant subgraph to each prediction in this directed bipartite network by learning a mask, facilitating critical medical decision-making. Additionally, we introduce a quantifiable method for model interpretability that leverages a ground truth benchmark dataset curated from biological features. In computational experiments, DRExplainer outperforms state-of-the-art predictive methods and another graph-based explanation method under the same experimental setting. Finally, the case studies further validate the interpretability and the effectiveness of DRExplainer in predictive novel drug response. Our code is available at: https://github.com/vshy-dream/DRExplainer.
♻ ☆ Overtrained Language Models Are Harder to Fine-Tune
Large language models are pre-trained on ever-growing token budgets under the assumption that better pre-training performance translates to improved downstream models. In this work, we challenge this assumption and show that extended pre-training can make models harder to fine-tune, leading to degraded final performance. We term this phenomenon catastrophic overtraining. For example, the instruction-tuned OLMo-1B model pre-trained on 3T tokens leads to over 2% worse performance on multiple standard LLM benchmarks than its 2.3T token counterpart. Through controlled experiments and theoretical analysis, we show that catastrophic overtraining arises from a systematic increase in the broad sensitivity of pre-trained parameters to modifications, including but not limited to fine-tuning. Our findings call for a critical reassessment of pre-training design that considers the downstream adaptability of the model.
comment: 72 pages, 65 figures, 6 tables
♻ ☆ Dynamics-Guided Diffusion Model for Sensor-less Robot Manipulator Design
We present Dynamics-Guided Diffusion Model (DGDM), a data-driven framework for generating task-specific manipulator designs without task-specific training. Given object shapes and task specifications, DGDM generates sensor-less manipulator designs that can blindly manipulate objects towards desired motions and poses using an open-loop parallel motion. This framework 1) flexibly represents manipulation tasks as interaction profiles, 2) represents the design space using a geometric diffusion model, and 3) efficiently searches this design space using the gradients provided by a dynamics network trained without any task information. We evaluate DGDM on various manipulation tasks ranging from shifting/rotating objects to converging objects to a specific pose. Our generated designs outperform optimization-based and unguided diffusion baselines relatively by 31.5% and 45.3% on average success rate. With the ability to generate a new design within 0.8s, DGDM facilitates rapid design iteration and enhances the adoption of data-driven approaches for robot mechanism design. Qualitative results are best viewed on our project website https://dgdm-robot.github.io/.
♻ ☆ Auditing language models for hidden objectives
We study the feasibility of conducting alignment audits: investigations into whether models have undesired objectives. As a testbed, we train a language model with a hidden objective. Our training pipeline first teaches the model about exploitable errors in RLHF reward models (RMs), then trains the model to exploit some of these errors. We verify via out-of-distribution evaluations that the model generalizes to exhibit whatever behaviors it believes RMs rate highly, including ones not reinforced during training. We leverage this model to study alignment audits in two ways. First, we conduct a blind auditing game where four teams, unaware of the model's hidden objective or training, investigate it for concerning behaviors and their causes. Three teams successfully uncovered the model's hidden objective using techniques including interpretability with sparse autoencoders (SAEs), behavioral attacks, and training data analysis. Second, we conduct an unblinded follow-up study of eight techniques for auditing the model, analyzing their strengths and limitations. Overall, our work provides a concrete example of using alignment audits to discover a model's hidden objective and proposes a methodology for practicing and validating progress in alignment auditing.
♻ ☆ Empirical Asset Pricing with Large Language Model Agents ICLR 2025
In this study, we introduce a novel asset pricing model leveraging the Large Language Model (LLM) agents, which integrates qualitative discretionary investment evaluations from LLM agents with quantitative financial economic factors manually curated, aiming to explain the excess asset returns. The experimental results demonstrate that our methodology surpasses traditional machine learning-based baselines in both portfolio optimization and asset pricing errors. Notably, the Sharpe ratio for portfolio optimization and the mean magnitude of $|\alpha|$ for anomaly portfolios experienced substantial enhancements of 10.6\% and 10.0\% respectively. Moreover, we performed comprehensive ablation studies on our model and conducted a thorough analysis of the method to extract further insights into the proposed approach. Our results show effective evidence of the feasibility of applying LLMs in empirical asset pricing.
comment: ICLR 2025 Workshop on Advances in Financial AI
♻ ☆ Foot-In-The-Door: A Multi-turn Jailbreak for LLMs
Ensuring AI safety is crucial as large language models become increasingly integrated into real-world applications. A key challenge is jailbreak, where adversarial prompts bypass built-in safeguards to elicit harmful disallowed outputs. Inspired by psychological foot-in-the-door principles, we introduce FITD,a novel multi-turn jailbreak method that leverages the phenomenon where minor initial commitments lower resistance to more significant or more unethical transgressions. Our approach progressively escalates the malicious intent of user queries through intermediate bridge prompts and aligns the model's response by itself to induce toxic responses. Extensive experimental results on two jailbreak benchmarks demonstrate that FITD achieves an average attack success rate of 94% across seven widely used models, outperforming existing state-of-the-art methods. Additionally, we provide an in-depth analysis of LLM self-corruption, highlighting vulnerabilities in current alignment strategies and emphasizing the risks inherent in multi-turn interactions. The code is available at https://github.com/Jinxiaolong1129/Foot-in-the-door-Jailbreak.
comment: 19 pages, 8 figures
♻ ☆ Self-Rewarding Language Models ICML 2024
We posit that to achieve superhuman agents, future models require superhuman feedback in order to provide an adequate training signal. Current approaches commonly train reward models from human preferences, which may then be bottlenecked by human performance level, and secondly these separate frozen reward models cannot then learn to improve during LLM training. In this work, we study Self-Rewarding Language Models, where the language model itself is used via LLM-as-a-Judge prompting to provide its own rewards during training. We show that during Iterative DPO training that not only does instruction following ability improve, but also the ability to provide high-quality rewards to itself. Fine-tuning Llama 2 70B on three iterations of our approach yields a model that outperforms many existing systems on the AlpacaEval 2.0 leaderboard, including Claude 2, Gemini Pro, and GPT-4 0613. While there is much left still to explore, this work opens the door to the possibility of models that can continually improve in both axes.
comment: ICML 2024
Graphics 4
☆ Audio-Plane: Audio Factorization Plane Gaussian Splatting for Real-Time Talking Head Synthesis
Talking head synthesis has become a key research area in computer graphics and multimedia, yet most existing methods often struggle to balance generation quality with computational efficiency. In this paper, we present a novel approach that leverages an Audio Factorization Plane (Audio-Plane) based Gaussian Splatting for high-quality and real-time talking head generation. For modeling a dynamic talking head, 4D volume representation is needed. However, directly storing a dense 4D grid is impractical due to the high cost and lack of scalability for longer durations. We overcome this challenge with the proposed Audio-Plane, where the 4D volume representation is decomposed into audio-independent space planes and audio-dependent planes. This provides a compact and interpretable feature representation for talking head, facilitating more precise audio-aware spatial encoding and enhanced audio-driven lip dynamic modeling. To further improve speech dynamics, we develop a dynamic splatting method that helps the network more effectively focus on modeling the dynamics of the mouth region. Extensive experiments demonstrate that by integrating these innovations with the powerful Gaussian Splatting, our method is capable of synthesizing highly realistic talking videos in real time while ensuring precise audio-lip synchronization. Synthesized results are available in https://sstzal.github.io/Audio-Plane/.
♻ ☆ SkillMimic: Learning Basketball Interaction Skills from Demonstrations
Traditional reinforcement learning methods for human-object interaction (HOI) rely on labor-intensive, manually designed skill rewards that do not generalize well across different interactions. We introduce SkillMimic, a unified data-driven framework that fundamentally changes how agents learn interaction skills by eliminating the need for skill-specific rewards. Our key insight is that a unified HOI imitation reward can effectively capture the essence of diverse interaction patterns from HOI datasets. This enables SkillMimic to learn a single policy that not only masters multiple interaction skills but also facilitates skill transitions, with both diversity and generalization improving as the HOI dataset grows. For evaluation, we collect and introduce two basketball datasets containing approximately 35 minutes of diverse basketball skills. Extensive experiments show that SkillMimic successfully masters a wide range of basketball skills including stylistic variations in dribbling, layup, and shooting. Moreover, these learned skills can be effectively composed by a high-level controller to accomplish complex and long-horizon tasks such as consecutive scoring, opening new possibilities for scalable and generalizable interaction skill learning. Project page: https://ingrid789.github.io/SkillMimic/
♻ ☆ CRAFT: Designing Creative and Functional 3D Objects WACV 2025
For designing a wide range of everyday objects, the design process should be aware of both the human body and the underlying semantics of the design specification. However, these two objectives present significant challenges to the current AI-based designing tools. In this work, we present a method to synthesize body-aware 3D objects from a base mesh given an input body geometry and either text or image as guidance. The generated objects can be simulated on virtual characters, or fabricated for real-world use. We propose to use a mesh deformation procedure that optimizes for both semantic alignment as well as contact and penetration losses. Using our method, users can generate both virtual or real-world objects from text, image, or sketch, without the need for manual artist intervention. We present both qualitative and quantitative results on various object categories, demonstrating the effectiveness of our approach.
comment: Project webpage: https://miatang13.github.io/Craft/. Published at WACV 2025
♻ ☆ Chirpy3D: Creative Fine-grained 3D Object Fabrication via Part Sampling
We present Chirpy3D, a novel approach for fine-grained 3D object generation, tackling the challenging task of synthesizing creative 3D objects in a zero-shot setting, with access only to unposed 2D images of seen categories. Without structured supervision -- such as camera poses, 3D part annotations, or object-specific labels -- the model must infer plausible 3D structures, capture fine-grained details, and generalize to novel objects using only category-level labels from seen categories. To address this, Chirpy3D introduces a multi-view diffusion model that decomposes training objects into anchor parts in an unsupervised manner, representing the latent space of both seen and unseen parts as continuous distributions. This allows smooth interpolation and flexible recombination of parts to generate entirely new objects with species-specific details. A self-supervised feature consistency loss further ensures structural and semantic coherence. The result is the first system capable of generating entirely novel 3D objects with species-specific fine-grained details through flexible part sampling and composition. Our experiments demonstrate that Chirpy3D surpasses existing methods in generating creative 3D objects with higher quality and fine-grained details. Code will be released at https://github.com/kamwoh/chirpy3d.
comment: 19 pages
Robotics 46
☆ Enhancing Underwater Navigation through Cross-Correlation-Aware Deep INS/DVL Fusion
The accurate navigation of autonomous underwater vehicles critically depends on the precision of Doppler velocity log (DVL) velocity measurements. Recent advancements in deep learning have demonstrated significant potential in improving DVL outputs by leveraging spatiotemporal dependencies across multiple sensor modalities. However, integrating these estimates into model-based filters, such as the extended Kalman filter, introduces statistical inconsistencies, most notably, cross-correlations between process and measurement noise. This paper addresses this challenge by proposing a cross-correlation-aware deep INS/DVL fusion framework. Building upon BeamsNet, a convolutional neural network designed to estimate AUV velocity using DVL and inertial data, we integrate its output into a navigation filter that explicitly accounts for the cross-correlation induced between the noise sources. This approach improves filter consistency and better reflects the underlying sensor error structure. Evaluated on two real-world underwater trajectories, the proposed method outperforms both least squares and cross-correlation-neglecting approaches in terms of state uncertainty. Notably, improvements exceed 10% in velocity and misalignment angle confidence metrics. Beyond demonstrating empirical performance, this framework provides a theoretically principled mechanism for embedding deep learning outputs within stochastic filters.
Dataset and Analysis of Long-Term Skill Acquisition in Robot-Assisted Minimally Invasive Surgery
Objective: We aim to investigate long-term robotic surgical skill acquisition among surgical residents and the effects of training intervals and fatigue on performance. Methods: For six months, surgical residents participated in three training sessions once a month, surrounding a single 26-hour hospital shift. In each shift, they participated in training sessions scheduled before, during, and after the shift. In each training session, they performed three dry-lab training tasks: Ring Tower Transfer, Knot-Tying, and Suturing. We collected a comprehensive dataset, including videos synchronized with kinematic data, activity tracking, and scans of the suturing pads. Results: We collected a dataset of 972 trials performed by 18 residents of different surgical specializations. Participants demonstrated consistent performance improvement across all tasks. In addition, we found variations in between-shift learning and forgetting across metrics and tasks, and hints for possible effects of fatigue. Conclusion: The findings from our first analysis shed light on the long-term learning processes of robotic surgical skills with extended intervals and varying levels of fatigue. Significance: This study lays the groundwork for future research aimed at optimizing training protocols and enhancing AI applications in surgery, ultimately contributing to improved patient outcomes. The dataset will be made available upon acceptance of our journal submission.
comment: 12 pages, 8 figures
☆ Cooking Task Planning using LLM and Verified by Graph Network
Cooking tasks remain a challenging problem for robotics due to their complexity. Videos of people cooking are a valuable source of information for such task, but introduces a lot of variability in terms of how to translate this data to a robotic environment. This research aims to streamline this process, focusing on the task plan generation step, by using a Large Language Model (LLM)-based Task and Motion Planning (TAMP) framework to autonomously generate cooking task plans from videos with subtitles, and execute them. Conventional LLM-based task planning methods are not well-suited for interpreting the cooking video data due to uncertainty in the videos, and the risk of hallucination in its output. To address both of these problems, we explore using LLMs in combination with Functional Object-Oriented Networks (FOON), to validate the plan and provide feedback in case of failure. This combination can generate task sequences with manipulation motions that are logically correct and executable by a robot. We compare the execution of the generated plans for 5 cooking recipes from our approach against the plans generated by a few-shot LLM-only approach for a dual-arm robot setup. It could successfully execute 4 of the plans generated by our approach, whereas only 1 of the plans generated by solely using the LLM could be executed.
☆ Data-Driven Contact-Aware Control Method for Real-Time Deformable Tool Manipulation: A Case Study in the Environmental Swabbing
Deformable Object Manipulation (DOM) remains a critical challenge in robotics due to the complexities of developing suitable model-based control strategies. Deformable Tool Manipulation (DTM) further complicates this task by introducing additional uncertainties between the robot and its environment. While humans effortlessly manipulate deformable tools using touch and experience, robotic systems struggle to maintain stability and precision. To address these challenges, we present a novel State-Adaptive Koopman LQR (SA-KLQR) control framework for real-time deformable tool manipulation, demonstrated through a case study in environmental swab sampling for food safety. This method leverages Koopman operator-based control to linearize nonlinear dynamics while adapting to state-dependent variations in tool deformation and contact forces. A tactile-based feedback system dynamically estimates and regulates the swab tool's angle, contact pressure, and surface coverage, ensuring compliance with food safety standards. Additionally, a sensor-embedded contact pad monitors force distribution to mitigate tool pivoting and deformation, improving stability during dynamic interactions. Experimental results validate the SA-KLQR approach, demonstrating accurate contact angle estimation, robust trajectory tracking, and reliable force regulation. The proposed framework enhances precision, adaptability, and real-time control in deformable tool manipulation, bridging the gap between data-driven learning and optimal control in robotic interaction tasks.
comment: Submitted for Journal Review
☆ STAMICS: Splat, Track And Map with Integrated Consistency and Semantics for Dense RGB-D SLAM
Simultaneous Localization and Mapping (SLAM) is a critical task in robotics, enabling systems to autonomously navigate and understand complex environments. Current SLAM approaches predominantly rely on geometric cues for mapping and localization, but they often fail to ensure semantic consistency, particularly in dynamic or densely populated scenes. To address this limitation, we introduce STAMICS, a novel method that integrates semantic information with 3D Gaussian representations to enhance both localization and mapping accuracy. STAMICS consists of three key components: a 3D Gaussian-based scene representation for high-fidelity reconstruction, a graph-based clustering technique that enforces temporal semantic consistency, and an open-vocabulary system that allows for the classification of unseen objects. Extensive experiments show that STAMICS significantly improves camera pose estimation and map quality, outperforming state-of-the-art methods while reducing reconstruction errors. Code will be public available.
☆ Neuro-Symbolic Imitation Learning: Discovering Symbolic Abstractions for Skill Learning ICRA
Imitation learning is a popular method for teaching robots new behaviors. However, most existing methods focus on teaching short, isolated skills rather than long, multi-step tasks. To bridge this gap, imitation learning algorithms must not only learn individual skills but also an abstract understanding of how to sequence these skills to perform extended tasks effectively. This paper addresses this challenge by proposing a neuro-symbolic imitation learning framework. Using task demonstrations, the system first learns a symbolic representation that abstracts the low-level state-action space. The learned representation decomposes a task into easier subtasks and allows the system to leverage symbolic planning to generate abstract plans. Subsequently, the system utilizes this task decomposition to learn a set of neural skills capable of refining abstract plans into actionable robot commands. Experimental results in three simulated robotic environments demonstrate that, compared to baselines, our neuro-symbolic approach increases data efficiency, improves generalization capabilities, and facilitates interpretability.
comment: IEEE International Conference on Robotics and Automation (ICRA) 2025
☆ AcL: Action Learner for Fault-Tolerant Quadruped Locomotion Control
Quadrupedal robots can learn versatile locomotion skills but remain vulnerable when one or more joints lose power. In contrast, dogs and cats can adopt limping gaits when injured, demonstrating their remarkable ability to adapt to physical conditions. Inspired by such adaptability, this paper presents Action Learner (AcL), a novel teacher-student reinforcement learning framework that enables quadrupeds to autonomously adapt their gait for stable walking under multiple joint faults. Unlike conventional teacher-student approaches that enforce strict imitation, AcL leverages teacher policies to generate style rewards, guiding the student policy without requiring precise replication. We train multiple teacher policies, each corresponding to a different fault condition, and subsequently distill them into a single student policy with an encoder-decoder architecture. While prior works primarily address single-joint faults, AcL enables quadrupeds to walk with up to four faulty joints across one or two legs, autonomously switching between different limping gaits when faults occur. We validate AcL on a real Go2 quadruped robot under single- and double-joint faults, demonstrating fault-tolerant, stable walking, smooth gait transitions between normal and lamb gaits, and robustness against external disturbances.
☆ A Data-Driven Method for INS/DVL Alignment
Autonomous underwater vehicles (AUVs) are sophisticated robotic platforms crucial for a wide range of applications. The accuracy of AUV navigation systems is critical to their success. Inertial sensors and Doppler velocity logs (DVL) fusion is a promising solution for long-range underwater navigation. However, the effectiveness of this fusion depends heavily on an accurate alignment between the inertial sensors and the DVL. While current alignment methods show promise, there remains significant room for improvement in terms of accuracy, convergence time, and alignment trajectory efficiency. In this research we propose an end-to-end deep learning framework for the alignment process. By leveraging deep-learning capabilities, such as noise reduction and capture of nonlinearities in the data, we show using simulative data, that our proposed approach enhances both alignment accuracy and reduces convergence time beyond current model-based methods.
UGNA-VPR: A Novel Training Paradigm for Visual Place Recognition Based on Uncertainty-Guided NeRF Augmentation
Visual place recognition (VPR) is crucial for robots to identify previously visited locations, playing an important role in autonomous navigation in both indoor and outdoor environments. However, most existing VPR datasets are limited to single-viewpoint scenarios, leading to reduced recognition accuracy, particularly in multi-directional driving or feature-sparse scenes. Moreover, obtaining additional data to mitigate these limitations is often expensive. This paper introduces a novel training paradigm to improve the performance of existing VPR networks by enhancing multi-view diversity within current datasets through uncertainty estimation and NeRF-based data augmentation. Specifically, we initially train NeRF using the existing VPR dataset. Then, our devised self-supervised uncertainty estimation network identifies places with high uncertainty. The poses of these uncertain places are input into NeRF to generate new synthetic observations for further training of VPR networks. Additionally, we propose an improved storage method for efficient organization of augmented and original training data. We conducted extensive experiments on three datasets and tested three different VPR backbone networks. The results demonstrate that our proposed training paradigm significantly improves VPR performance by fully utilizing existing data, outperforming other training approaches. We further validated the effectiveness of our approach on self-recorded indoor and outdoor datasets, consistently demonstrating superior results. Our dataset and code have been released at \href{https://github.com/nubot-nudt/UGNA-VPR}{https://github.com/nubot-nudt/UGNA-VPR}.
comment: Accepted to IEEE Robotics and Automation Letters (RA-L)
☆ Lidar-only Odometry based on Multiple Scan-to-Scan Alignments over a Moving Window
Lidar-only odometry considers the pose estimation of a mobile robot based on the accumulation of motion increments extracted from consecutive lidar scans. Many existing approaches to the problem use a scan-to-map registration, which neglects the accumulation of errors within the maintained map due to drift. Other methods use a refinement step that jointly optimizes the local map on a feature basis. We propose a solution that avoids this by using multiple independent scan-to-scan Iterative Closest Points (ICP) registrations to previous scans in order to derive constraints for a pose graph. The optimization of the pose graph then not only yields an accurate estimate for the latest pose, but also enables the refinement of previous scans in the optimization window. By avoiding the need to recompute the scan-to-scan alignments, the computational load is minimized. Extensive evaluation on the public KITTI and MulRan datasets as well as on a custom automotive lidar dataset is carried out. Results show that the proposed approach achieves state-of-the-art estimation accuracy, while alleviating the mentioned issues.
☆ An analysis of higher-order kinematics formalisms for an innovative surgical parallel robot
The paper presents a novel modular hybrid parallel robot for pancreatic surgery and its higher-order kinematics derived based on various formalisms. The classical vector, homogeneous transformation matrices and dual quaternion approaches are studied for the kinematic functions using both classical differentiation and multidual algebra. The algorithms for inverse kinematics for all three studied formalisms are presented for both differentiation and multidual algebra approaches. Furthermore, these algorithms are compared based on numerical stability, execution times and number and type of mathematical functions and operators contained in each algorithm. A statistical analysis shows that there is significant improvement in execution time for the algorithms implemented using multidual algebra, while the numerical stability is appropriate for all algorithms derived based on differentiation and multidual algebra. While the implementation of the kinematic algorithms using multidual algebra shows positive results when benchmarked on a standard PC, further work is required to evaluate the multidual algorithms on hardware/software used for the modular parallel robot command and control.
☆ Haptic bilateral teleoperation system for free-hand dental procedures
Free-hand dental procedures are typically repetitive, time-consuming and require high precision and manual dexterity. Dental robots can play a key role in improving procedural accuracy and safety, enhancing patient comfort, and reducing operator workload. However, robotic solutions for free-hand procedures remain limited or completely lacking, and their acceptance is still low. To address this gap, we develop a haptic bilateral teleoperation system (HBTS) for free-hand dental procedures. The system includes a dedicated mechanical end-effector, compatible with standard clinical tools, and equipped with an endoscopic camera for improved visibility of the intervention site. By ensuring motion and force correspondence between the operator's actions and the robot's movements, monitored through visual feedback, we enhance the operator's sensory awareness and motor accuracy. Furthermore, recognizing the need to ensure procedural safety, we limit interaction forces by scaling the motion references provided to the admittance controller based solely on measured contact forces. This ensures effective force limitation in all contact states without requiring prior knowledge of the environment. The proposed HBTS is validated in a dental scaling procedure using a dental phantom. The results show that the system improves the naturalness, safety, and accuracy of teleoperation, highlighting its potential to enhance free-hand dental procedures.
comment: 12 pages, 12 figures
☆ Output-Feedback Boundary Control of Thermally and Flow-Induced Vibrations in Slender Timoshenko Beams
This work is motivated by the engineering challenge of suppressing vibrations in turbine blades of aero engines, which often operate under extreme thermal conditions and high-Mach aerodynamic environments that give rise to complex vibration phenomena, commonly referred to as thermally-induced and flow-induced vibrations. Using Hamilton's variational principle, the system is modeled as a rotating slender Timoshenko beam under thermal and aerodynamic loads, described by a mixed hyperbolic-parabolic PDE system where instabilities occur both within the PDE domain and at the uncontrolled boundary, and the two types of PDEs are cascaded in the domain. For such a system, we present the state-feedback control design based on the PDE backstepping method. Recognizing that the distributed temperature gradients and structural vibrations in the Timoshenko beam are typically unmeasurable in practice, we design a state observer for the mixed hyperbolic-parabolic PDE system. Based on this observer, an output-feedback controller is then built to regulate the overall system using only available boundary measurements. In the closed-loop system, the state of the uncontrolled boundary, i.e., the furthest state from the control input, is proved to be exponentially convergent to zero, and all signals are proved as uniformly ultimately bounded. The proposed control design is validated on an aero-engine flexible blade under extreme thermal and aerodynamic conditions.
☆ OminiAdapt: Learning Cross-Task Invariance for Robust and Environment-Aware Robotic Manipulation
With the rapid development of embodied intelligence, leveraging large-scale human data for high-level imitation learning on humanoid robots has become a focal point of interest in both academia and industry. However, applying humanoid robots to precision operation domains remains challenging due to the complexities they face in perception and control processes, the long-standing physical differences in morphology and actuation mechanisms between humanoid robots and humans, and the lack of task-relevant features obtained from egocentric vision. To address the issue of covariate shift in imitation learning, this paper proposes an imitation learning algorithm tailored for humanoid robots. By focusing on the primary task objectives, filtering out background information, and incorporating channel feature fusion with spatial attention mechanisms, the proposed algorithm suppresses environmental disturbances and utilizes a dynamic weight update strategy to significantly improve the success rate of humanoid robots in accomplishing target tasks. Experimental results demonstrate that the proposed method exhibits robustness and scalability across various typical task scenarios, providing new ideas and approaches for autonomous learning and control in humanoid robots. The project will be open-sourced on GitHub.
☆ Dimensional optimization of single-DOF planar rigid link-flapping mechanisms for high lift and low power
Rigid link flapping mechanisms remain the most practical choice for flapping wing micro-aerial vehicles (MAVs) to carry useful payloads and onboard batteries for free flight due to their long-term durability and reliability. However, to achieve high agility and maneuverability-like insects-MAVs with these mechanisms require significant weight reduction. One approach involves using single-DOF planar rigid linkages, which are rarely optimized dimensionally for high lift and low power so that smaller motors and batteries could be used. We integrated a mechanism simulator based on a quasistatic nonlinear finite element method with an unsteady vortex lattice method-based aerodynamic analysis tool within an optimization routine. We optimized three different mechanism topologies from the literature. As a result, significant power savings were observed up to 42% in some cases, due to increased amplitude and higher lift coefficients resulting from optimized asymmetric sweeping velocity profiles. We also conducted an uncertainty analysis that revealed the need for high manufacturing tolerances to ensure reliable mechanism performance. The presented unified computational tool also facilitates the optimal selection of MAV components based on the payload and flight time requirements.
☆ TAGA: A Tangent-Based Reactive Approach for Socially Compliant Robot Navigation Around Human Groups IROS
Robot navigation in densely populated environments presents significant challenges, particularly regarding the interplay between individual and group dynamics. Current navigation models predominantly address interactions with individual pedestrians while failing to account for human groups that naturally form in real-world settings. Conversely, the limited models implementing group-aware navigation typically prioritize group dynamics at the expense of individual interactions, both of which are essential for socially appropriate navigation. This research extends an existing simulation framework to incorporate both individual pedestrians and human groups. We present Tangent Action for Group Avoidance (TAGA), a modular reactive mechanism that can be integrated with existing navigation frameworks to enhance their group-awareness capabilities. TAGA dynamically modifies robot trajectories using tangent action-based avoidance strategies while preserving the underlying model's capacity to navigate around individuals. Additionally, we introduce Group Collision Rate (GCR), a novel metric to quantitatively assess how effectively robots maintain group integrity during navigation. Through comprehensive simulation-based benchmarking, we demonstrate that integrating TAGA with state-of-the-art navigation models (ORCA, Social Force, DS-RNN, and AG-RL) reduces group intrusions by 45.7-78.6% while maintaining comparable success rates and navigation efficiency. Future work will focus on real-world implementation and validation of this approach.
comment: 6 pages, 3 figures. Submitted as a conference paper in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2025
☆ Safe Human Robot Navigation in Warehouse Scenario
The integration of autonomous mobile robots (AMRs) in industrial environments, particularly warehouses, has revolutionized logistics and operational efficiency. However, ensuring the safety of human workers in dynamic, shared spaces remains a critical challenge. This work proposes a novel methodology that leverages control barrier functions (CBFs) to enhance safety in warehouse navigation. By integrating learning-based CBFs with the Open Robotics Middleware Framework (OpenRMF), the system achieves adaptive and safety-enhanced controls in multi-robot, multi-agent scenarios. Experiments conducted using various robot platforms demonstrate the efficacy of the proposed approach in avoiding static and dynamic obstacles, including human pedestrians. Our experiments evaluate different scenarios in which the number of robots, robot platforms, speed, and number of obstacles are varied, from which we achieve promising performance.
☆ Fuzzy-Logic-based model predictive control: A paradigm integrating optimal and common-sense decision making
This paper introduces a novel concept, fuzzy-logic-based model predictive control (FLMPC), along with a multi-robot control approach for exploring unknown environments and locating targets. Traditional model predictive control (MPC) methods rely on Bayesian theory to represent environmental knowledge and optimize a stochastic cost function, often leading to high computational costs and lack of effectiveness in locating all the targets. Our approach instead leverages FLMPC and extends it to a bi-level parent-child architecture for enhanced coordination and extended decision making horizon. Extracting high-level information from probability distributions and local observations, FLMPC simplifies the optimization problem and significantly extends its operational horizon compared to other MPC methods. We conducted extensive simulations in unknown 2-dimensional environments with randomly placed obstacles and humans. We compared the performance and computation time of FLMPC against MPC with a stochastic cost function, then evaluated the impact of integrating the high-level parent FLMPC layer. The results indicate that our approaches significantly improve both performance and computation time, enhancing coordination of robots and reducing the impact of uncertainty in large-scale search and rescue environments.
comment: 50 Pages, 8 figures, 3 tables
☆ Bayesian Inferential Motion Planning Using Heavy-Tailed Distributions
Robots rely on motion planning to navigate safely and efficiently while performing various tasks. In this paper, we investigate motion planning through Bayesian inference, where motion plans are inferred based on planning objectives and constraints. However, existing Bayesian motion planning methods often struggle to explore low-probability regions of the planning space, where high-quality plans may reside. To address this limitation, we propose the use of heavy-tailed distributions -- specifically, Student's-$t$ distributions -- to enhance probabilistic inferential search for motion plans. We develop a novel sequential single-pass smoothing approach that integrates Student's-$t$ distribution with Monte Carlo sampling. A special case of this approach is ensemble Kalman smoothing, which depends on short-tailed Gaussian distributions. We validate the proposed approach through simulations in autonomous vehicle motion planning, demonstrating its superior performance in planning, sampling efficiency, and constraint satisfaction compared to ensemble Kalman smoothing. While focused on motion planning, this work points to the broader potential of heavy-tailed distributions in enhancing probabilistic decision-making in robotics.
☆ CoT-VLA: Visual Chain-of-Thought Reasoning for Vision-Language-Action Models
Vision-language-action models (VLAs) have shown potential in leveraging pretrained vision-language models and diverse robot demonstrations for learning generalizable sensorimotor control. While this paradigm effectively utilizes large-scale data from both robotic and non-robotic sources, current VLAs primarily focus on direct input--output mappings, lacking the intermediate reasoning steps crucial for complex manipulation tasks. As a result, existing VLAs lack temporal planning or reasoning capabilities. In this paper, we introduce a method that incorporates explicit visual chain-of-thought (CoT) reasoning into vision-language-action models (VLAs) by predicting future image frames autoregressively as visual goals before generating a short action sequence to achieve these goals. We introduce CoT-VLA, a state-of-the-art 7B VLA that can understand and generate visual and action tokens. Our experimental results demonstrate that CoT-VLA achieves strong performance, outperforming the state-of-the-art VLA model by 17% in real-world manipulation tasks and 6% in simulation benchmarks. Project website: https://cot-vla.github.io/
comment: Project website: https://cot-vla.github.io/
☆ Bresa: Bio-inspired Reflexive Safe Reinforcement Learning for Contact-Rich Robotic Tasks
Ensuring safety in reinforcement learning (RL)-based robotic systems is a critical challenge, especially in contact-rich tasks within unstructured environments. While the state-of-the-art safe RL approaches mitigate risks through safe exploration or high-level recovery mechanisms, they often overlook low-level execution safety, where reflexive responses to potential hazards are crucial. Similarly, variable impedance control (VIC) enhances safety by adjusting the robot's mechanical response, yet lacks a systematic way to adapt parameters, such as stiffness and damping throughout the task. In this paper, we propose Bresa, a Bio-inspired Reflexive Hierarchical Safe RL method inspired by biological reflexes. Our method decouples task learning from safety learning, incorporating a safety critic network that evaluates action risks and operates at a higher frequency than the task solver. Unlike existing recovery-based methods, our safety critic functions at a low-level control layer, allowing real-time intervention when unsafe conditions arise. The task-solving RL policy, running at a lower frequency, focuses on high-level planning (decision-making), while the safety critic ensures instantaneous safety corrections. We validate Bresa on multiple tasks including a contact-rich robotic task, demonstrating its reflexive ability to enhance safety, and adaptability in unforeseen dynamic environments. Our results show that Bresa outperforms the baseline, providing a robust and reflexive safety mechanism that bridges the gap between high-level planning and low-level execution. Real-world experiments and supplementary material are available at project website https://jack-sherman01.github.io/Bresa.
comment: submitted to IEEE RA-L
☆ Pretrained Bayesian Non-parametric Knowledge Prior in Robotic Long-Horizon Reinforcement Learning
Reinforcement learning (RL) methods typically learn new tasks from scratch, often disregarding prior knowledge that could accelerate the learning process. While some methods incorporate previously learned skills, they usually rely on a fixed structure, such as a single Gaussian distribution, to define skill priors. This rigid assumption can restrict the diversity and flexibility of skills, particularly in complex, long-horizon tasks. In this work, we introduce a method that models potential primitive skill motions as having non-parametric properties with an unknown number of underlying features. We utilize a Bayesian non-parametric model, specifically Dirichlet Process Mixtures, enhanced with birth and merge heuristics, to pre-train a skill prior that effectively captures the diverse nature of skills. Additionally, the learned skills are explicitly trackable within the prior space, enhancing interpretability and control. By integrating this flexible skill prior into an RL framework, our approach surpasses existing methods in long-horizon manipulation tasks, enabling more efficient skill transfer and task success in complex environments. Our findings show that a richer, non-parametric representation of skill priors significantly improves both the learning and execution of challenging robotic tasks. All data, code, and videos are available at https://ghiara.github.io/HELIOS/.
comment: initial upload 8 pages
☆ Data-Agnostic Robotic Long-Horizon Manipulation with Vision-Language-Guided Closed-Loop Feedback
Recent advances in language-conditioned robotic manipulation have leveraged imitation and reinforcement learning to enable robots to execute tasks from human commands. However, these methods often suffer from limited generalization, adaptability, and the lack of large-scale specialized datasets, unlike data-rich domains such as computer vision, making long-horizon task execution challenging. To address these gaps, we introduce DAHLIA, a data-agnostic framework for language-conditioned long-horizon robotic manipulation, leveraging large language models (LLMs) for real-time task planning and execution. DAHLIA employs a dual-tunnel architecture, where an LLM-powered planner collaborates with co-planners to decompose tasks and generate executable plans, while a reporter LLM provides closed-loop feedback, enabling adaptive re-planning and ensuring task recovery from potential failures. Moreover, DAHLIA integrates chain-of-thought (CoT) in task reasoning and temporal abstraction for efficient action execution, enhancing traceability and robustness. Our framework demonstrates state-of-the-art performance across diverse long-horizon tasks, achieving strong generalization in both simulated and real-world scenarios. Videos and code are available at https://ghiara.github.io/DAHLIA/.
comment: initial upload 8 page
☆ ManipTrans: Efficient Dexterous Bimanual Manipulation Transfer via Residual Learning CVPR 2025
Human hands play a central role in interacting, motivating increasing research in dexterous robotic manipulation. Data-driven embodied AI algorithms demand precise, large-scale, human-like manipulation sequences, which are challenging to obtain with conventional reinforcement learning or real-world teleoperation. To address this, we introduce ManipTrans, a novel two-stage method for efficiently transferring human bimanual skills to dexterous robotic hands in simulation. ManipTrans first pre-trains a generalist trajectory imitator to mimic hand motion, then fine-tunes a specific residual module under interaction constraints, enabling efficient learning and accurate execution of complex bimanual tasks. Experiments show that ManipTrans surpasses state-of-the-art methods in success rate, fidelity, and efficiency. Leveraging ManipTrans, we transfer multiple hand-object datasets to robotic hands, creating DexManipNet, a large-scale dataset featuring previously unexplored tasks like pen capping and bottle unscrewing. DexManipNet comprises 3.3K episodes of robotic manipulation and is easily extensible, facilitating further policy training for dexterous hands and enabling real-world deployments.
comment: Accepted to CVPR 2025
☆ Strategies for decentralised UAV-based collisions monitoring in rugby
Recent advancements in unmanned aerial vehicle (UAV) technology have opened new avenues for dynamic data collection in challenging environments, such as sports fields during fast-paced sports action. For the purposes of monitoring sport events for dangerous injuries, we envision a coordinated UAV fleet designed to capture high-quality, multi-view video footage of collision events in real-time. The extracted video data is crucial for analyzing athletes' motions and investigating the probability of sports-related traumatic brain injuries (TBI) during impacts. This research implemented a UAV fleet system on the NetLogo platform, utilizing custom collision detection algorithms to compare against traditional TV-coverage strategies. Our system supports decentralized data capture and autonomous processing, providing resilience in the rapidly evolving dynamics of sports collisions. The collaboration algorithm integrates both shared and local data to generate multi-step analyses aimed at determining the efficacy of custom methods in enhancing the accuracy of TBI prediction models. Missions are simulated in real-time within a two-dimensional model, focusing on the strategic capture of collision events that could lead to TBI, while considering operational constraints such as rapid UAV maneuvering and optimal positioning. Preliminary results from the NetLogo simulations suggest that custom collision detection methods offer superior performance over standard TV-coverage strategies by enabling more precise and timely data capture. This comparative analysis highlights the advantages of tailored algorithmic approaches in critical sports safety applications.
comment: Submitted for publication in an IEEE publication
♻ ☆ Immersive and Wearable Thermal Rendering for Augmented Reality
In augmented reality (AR), where digital content is overlaid onto the real world, realistic thermal feedback has been shown to enhance immersion. Yet current thermal feedback devices, heavily influenced by the needs of virtual reality, often hinder physical interactions and are ineffective for immersion in AR. To bridge this gap, we have identified three design considerations relevant for AR thermal feedback: indirect feedback to maintain dexterity, thermal passthrough to preserve real-world temperature perception, and spatiotemporal rendering for dynamic sensations. We then created a unique and innovative thermal feedback device that satisfies these criteria. Human subject experiments assessing perceptual sensitivity, object temperature matching, spatial pattern recognition, and moving thermal stimuli demonstrated the impact of our design, enabling realistic temperature discrimination, virtual object perception, and enhanced immersion. These findings demonstrate that carefully designed thermal feedback systems can bridge the sensory gap between physical and virtual interactions, enhancing AR realism and usability.
♻ ☆ LaMOuR: Leveraging Language Models for Out-of-Distribution Recovery in Reinforcement Learning
Deep Reinforcement Learning (DRL) has demonstrated strong performance in robotic control but remains susceptible to out-of-distribution (OOD) states, often resulting in unreliable actions and task failure. While previous methods have focused on minimizing or preventing OOD occurrences, they largely neglect recovery once an agent encounters such states. Although the latest research has attempted to address this by guiding agents back to in-distribution states, their reliance on uncertainty estimation hinders scalability in complex environments. To overcome this limitation, we introduce Language Models for Out-of-Distribution Recovery (LaMOuR), which enables recovery learning without relying on uncertainty estimation. LaMOuR generates dense reward codes that guide the agent back to a state where it can successfully perform its original task, leveraging the capabilities of LVLMs in image description, logical reasoning, and code generation. Experimental results show that LaMOuR substantially enhances recovery efficiency across diverse locomotion tasks and even generalizes effectively to complex environments, including humanoid locomotion and mobile manipulation, where existing methods struggle. The code and supplementary materials are available at https://lamour-rl.github.io/.
comment: This paper is currently under security review and will be re-released once the review is complete
♻ ☆ Risk-Aware Reinforcement Learning for Autonomous Driving: Improving Safety When Driving through Intersection
Applying reinforcement learning to autonomous driving has garnered widespread attention. However, classical reinforcement learning methods optimize policies by maximizing expected rewards but lack sufficient safety considerations, often putting agents in hazardous situations. This paper proposes a risk-aware reinforcement learning approach for autonomous driving to improve the safety performance when crossing the intersection. Safe critics are constructed to evaluate driving risk and work in conjunction with the reward critic to update the actor. Based on this, a Lagrangian relaxation method and cyclic gradient iteration are combined to project actions into a feasible safe region. Furthermore, a Multi-hop and Multi-layer perception (MLP) mixed Attention Mechanism (MMAM) is incorporated into the actor-critic network, enabling the policy to adapt to dynamic traffic and overcome permutation sensitivity challenges. This allows the policy to focus more effectively on surrounding potential risks while enhancing the identification of passing opportunities. Simulation tests are conducted on different tasks at unsignalized intersections. The results show that the proposed approach effectively reduces collision rates and improves crossing efficiency in comparison to baseline algorithms. Additionally, our ablation experiments demonstrate the benefits of incorporating risk-awareness and MMAM into RL.
comment: 11 pages, 10 figures
♻ ☆ SyncDiff: Synchronized Motion Diffusion for Multi-Body Human-Object Interaction Synthesis
Synthesizing realistic human-object interaction motions is a critical problem in VR/AR and human animation. Unlike the commonly studied scenarios involving a single human or hand interacting with one object, we address a more generic multi-body setting with arbitrary numbers of humans, hands, and objects. This complexity introduces significant challenges in synchronizing motions due to the high correlations and mutual influences among bodies. To address these challenges, we introduce SyncDiff, a novel method for multi-body interaction synthesis using a synchronized motion diffusion strategy. SyncDiff employs a single diffusion model to capture the joint distribution of multi-body motions. To enhance motion fidelity, we propose a frequency-domain motion decomposition scheme. Additionally, we introduce a new set of alignment scores to emphasize the synchronization of different body motions. SyncDiff jointly optimizes both data sample likelihood and alignment likelihood through an explicit synchronization strategy. Extensive experiments across four datasets with various multi-body configurations demonstrate the superiority of SyncDiff over existing state-of-the-art motion synthesis methods.
comment: 26 pages, 10 figures
♻ ☆ AlphaSpace: Enabling Robotic Actions through Semantic Tokenization and Symbolic Reasoning
This paper presents AlphaSpace, a novel methodology designed to enhance the spatial reasoning capabilities of language models for robotic manipulation in 3D Cartesian space. AlphaSpace employs a hierarchical semantics-based tokenization strategy that encodes spatial information at both coarse and fine-grained levels. Our approach represents objects with their attributes, positions, and height information through structured tokens, enabling precise spatial reasoning without relying on traditional vision-based embeddings. This approach enables LLMs to accurately manipulate objects by positioning them at specific (x, y, z) coordinates. Experimental results suggest that AlphaSpace demonstrates promising potential for improving manipulation tasks, achieving a total accuracy of 66.67%, compared to 37.5% for GPT-4o and 29.17% for Claude 3.5 Sonnet. These results demonstrate the potential of structured spatial encoding for manipulation tasks and warrant further exploration.
♻ ☆ Efficient Continual Adaptation of Pretrained Robotic Policy with Online Meta-Learned Adapters
Continual adaptation is essential for general autonomous agents. For example, a household robot pretrained with a repertoire of skills must still adapt to unseen tasks specific to each household. Motivated by this, building upon parameter-efficient fine-tuning in language models, prior works have explored lightweight adapters to adapt pretrained policies, which can preserve learned features from the pretraining phase and demonstrate good adaptation performances. However, these approaches treat task learning separately, limiting knowledge transfer between tasks. In this paper, we propose Online Meta-Learned adapters (OMLA). Instead of applying adapters directly, OMLA can facilitate knowledge transfer from previously learned tasks to current learning tasks through a novel meta-learning objective. Extensive experiments in both simulated and real-world environments demonstrate that OMLA can lead to better adaptation performances compared to the baseline methods. The project link: https://ricky-zhu.github.io/OMLA/.
comment: Project link: https://ricky-zhu.github.io/OMLA/
♻ ☆ Model-Predictive Trajectory Generation for Aerial Search and Coverage
This paper introduces a trajectory planning algorithm for search and coverage missions with an Unmanned Aerial Vehicle (UAV) based on an uncertainty map that represents prior knowledge of the target region, modeled by a Gaussian Mixture Model (GMM). The trajectory planning problem is formulated as an Optimal Control Problem (OCP), which aims to maximize the uncertainty reduction within a specified mission duration. However, this results in an intractable OCP whose objective functional cannot be expressed in closed form. To address this, we propose a Model Predictive Control (MPC) algorithm based on a relaxed formulation of the objective function to approximate the optimal solutions. This relaxation promotes efficient map exploration by penalizing overlaps in the UAV's visibility regions along the trajectory. The algorithm can produce efficient and smooth trajectories, and it can be efficiently implemented using standard Nonlinear Programming solvers, being suitable for real-time planning. Unlike traditional methods, which often rely on discretizing the mission space and using complex mixed-integer formulations, our approach is computationally efficient and easier to implement. The MPC algorithm is initially assessed in MATLAB, followed by Gazebo simulations and actual experimental tests conducted in an outdoor environment. The results demonstrate that the proposed strategy can generate efficient and smooth trajectories for search and coverage missions.
♻ ☆ Towards Optimizing a Convex Cover of Collision-Free Space for Trajectory Generation
We propose an online iterative algorithm to optimize a convex cover to under-approximate the free space for autonomous navigation to delineate Safe Flight Corridors (SFC). The convex cover consists of a set of polytopes such that the union of the polytopes represents obstacle-free space, allowing us to find trajectories for robots that lie within the convex cover. In order to find the SFC that facilitates trajectory optimization, we iteratively find overlapping polytopes of maximum volumes that include specified waypoints initialized by a geometric or kinematic planner. Constraints at waypoints appear in two alternating stages of a joint optimization problem, which is solved by a novel heuristic-based iterative algorithm with partially distributed variables. We validate the effectiveness of our proposed algorithm using a range of parameterized environments and show its applications for two-stage motion planning.
♻ ☆ How NeRFs and 3D Gaussian Splatting are Reshaping SLAM: a Survey
Over the past two decades, research in the field of Simultaneous Localization and Mapping (SLAM) has undergone a significant evolution, highlighting its critical role in enabling autonomous exploration of unknown environments. This evolution ranges from hand-crafted methods, through the era of deep learning, to more recent developments focused on Neural Radiance Fields (NeRFs) and 3D Gaussian Splatting (3DGS) representations. Recognizing the growing body of research and the absence of a comprehensive survey on the topic, this paper aims to provide the first comprehensive overview of SLAM progress through the lens of the latest advancements in radiance fields. It sheds light on the background, evolutionary path, inherent strengths and limitations, and serves as a fundamental reference to highlight the dynamic progress and specific challenges.
comment: Updated to November 2024
♻ ☆ Integrating Naturalistic Insights in Objective Multi-Vehicle Safety Framework
As autonomous vehicle technology advances, the precise assessment of safety in complex traffic scenarios becomes crucial, especially in mixed-vehicle environments where human perception of safety must be taken into account. This paper presents a framework designed for assessing traffic safety in multi-vehicle situations, facilitating the simultaneous utilization of diverse objective safety metrics. Additionally, it allows the integration of subjective perception of safety by adjusting model parameters. The framework was applied to evaluate various model configurations in car-following scenarios on a highway, utilizing naturalistic driving datasets. The evaluation of the model showed an outstanding performance, particularly when integrating multiple objective safety measures. Furthermore, the performance was significantly enhanced when considering all surrounding vehicles.
♻ ☆ Online POMDP Planning with Anytime Deterministic Guarantees
Decision-making under uncertainty is a critical aspect of many practical autonomous systems due to incomplete information. Partially Observable Markov Decision Processes (POMDPs) offer a mathematically principled framework for formulating decision-making problems under such conditions. However, finding an optimal solution for a POMDP is generally intractable. In recent years, there has been a significant progress of scaling approximate solvers from small to moderately sized problems, using online tree search solvers. Often, such approximate solvers are limited to probabilistic or asymptotic guarantees towards the optimal solution. In this paper, we derive a deterministic relationship for discrete POMDPs between an approximated and the optimal solution. We show that at any time, we can derive bounds that relate between the existing solution and the optimal one. We show that our derivations provide an avenue for a new set of algorithms and can be attached to existing algorithms that have a certain structure to provide them with deterministic guarantees with marginal computational overhead. In return, not only do we certify the solution quality, but we demonstrate that making a decision based on the deterministic guarantee may result in superior performance compared to the original algorithm without the deterministic certification.
♻ ☆ Constrained Nonlinear Kaczmarz Projection on Intersections of Manifolds for Coordinated Multi-Robot Mobile Manipulation ICRA
Cooperative manipulation tasks impose various structure-, task-, and robot-specific constraints on mobile manipulators. However, current methods struggle to model and solve these myriad constraints simultaneously. We propose a twofold solution: first, we model constraints as a family of manifolds amenable to simultaneous solving. Second, we introduce the constrained nonlinear Kaczmarz (cNKZ) projection technique to produce constraint-satisfying solutions. Experiments show that cNKZ dramatically outperforms baseline approaches, which cannot find solutions at all. We integrate cNKZ with a sampling-based motion planning algorithm to generate complex, coordinated motions for 3 to 6 mobile manipulators (18--36 DoF), with cNKZ solving up to 80 nonlinear constraints simultaneously and achieving up to a 92% success rate in cluttered environments. We also demonstrate our approach on hardware using three Turtlebot3 Waffle Pi robots with OpenMANIPULATOR-X arms.
comment: Accepted for publication at IEEE International Conference on Robotics and Automation (ICRA) 2025
♻ ☆ MUSE: A Real-Time Multi-Sensor State Estimator for Quadruped Robots
This paper introduces an innovative state estimator, MUSE (MUlti-sensor State Estimator), designed to enhance state estimation's accuracy and real-time performance in quadruped robot navigation. The proposed state estimator builds upon our previous work presented in [1]. It integrates data from a range of onboard sensors, including IMUs, encoders, cameras, and LiDARs, to deliver a comprehensive and reliable estimation of the robot's pose and motion, even in slippery scenarios. We tested MUSE on a Unitree Aliengo robot, successfully closing the locomotion control loop in difficult scenarios, including slippery and uneven terrain. Benchmarking against Pronto [2] and VILENS [3] showed 67.6% and 26.7% reductions in translational errors, respectively. Additionally, MUSE outperformed DLIO [4], a LiDAR-inertial odometry system in rotational errors and frequency, while the proprioceptive version of MUSE (P-MUSE) outperformed TSIF [5], with a 45.9% reduction in absolute trajectory error (ATE).
comment: Accepted for publication in IEEE Robotics and Automation Letters
♻ ☆ Mirroring the Parking Target: An Optimal-Control-Based Parking Motion Planner with Strengthened Parking Reliability and Faster Parking Completion
Automated Parking Assist (APA) systems are now facing great challenges of low adoption in applications, due to users' concerns about parking capability, reliability, and completion efficiency. To upgrade the conventional APA planners and enhance user's acceptance, this research proposes an optimal-control-based parking motion planner. Its highlight lies in its control logic: planning trajectories by mirroring the parking target. This method enables: i) parking capability in narrow spaces; ii) better parking reliability by expanding Operation Design Domain (ODD); iii) faster completion of parking process; iv) enhanced computational efficiency; v) universal to all types of parking. A comprehensive evaluation is conducted. Results demonstrate the proposed planner does enhance parking success rate by 40.6%, improve parking completion efficiency by 18.0%, and expand ODD by 86.1%. It shows its superiority in difficult parking cases, such as the parallel parking scenario and narrow spaces. Moreover, the average computation time of the proposed planner is 74 milliseconds. Results indicate that the proposed planner is ready for real-time commercial applications.
comment: IEEE Transactions on Intelligent Transportation Systems (2024)
♻ ☆ Safety-Aware Human-Lead Vehicle Platooning by Proactively Reacting to Uncertain Human Behaving
Human-Lead Cooperative Adaptive Cruise Control (HL-CACC) is regarded as a promising vehicle platooning technology in real-world implementation. By utilizing a Human-driven Vehicle (HV) as the platoon leader, HL-CACC reduces the cost and enhances the reliability of perception and decision-making. However, state-of-the-art HL-CACC technology still has a great limitation on driving safety due to the lack of considering the leading human driver's uncertain behavior. In this study, a HL-CACC controller is designed based on Stochastic Model Predictive Control (SMPC). It is enabled to predict the driving intention of the leading Connected Human-Driven Vehicle (CHV). The proposed controller has the following features: i) enhanced perceived safety in oscillating traffic; ii) guaranteed safety against hard brakes; iii) computational efficiency for real-time implementation. The proposed controller is evaluated on a PreScan&Simulink simulation platform. Real vehicle trajectory data is collected for the calibration of the simulation. Results reveal that the proposed controller: i) improves perceived safety by 19.17% in oscillating traffic; ii) enhances actual safety by 7.76% against hard brakes; iii) is confirmed with string stability. The computation time is approximately 3.2 milliseconds when running on a laptop equipped with an Intel i5-13500H CPU. This indicates the proposed controller is ready for real-time implementation.
♻ ☆ DexForce: Extracting Force-informed Actions from Kinesthetic Demonstrations for Dexterous Manipulation
Imitation learning requires high-quality demonstrations consisting of sequences of state-action pairs. For contact-rich dexterous manipulation tasks that require dexterity, the actions in these state-action pairs must produce the right forces. Current widely-used methods for collecting dexterous manipulation demonstrations are difficult to use for demonstrating contact-rich tasks due to unintuitive human-to-robot motion retargeting and the lack of direct haptic feedback. Motivated by these concerns, we propose DexForce. DexForce leverages contact forces, measured during kinesthetic demonstrations, to compute force-informed actions for policy learning. We collect demonstrations for six tasks and show that policies trained on our force-informed actions achieve an average success rate of 76% across all tasks. In contrast, policies trained directly on actions that do not account for contact forces have near-zero success rates. We also conduct a study ablating the inclusion of force data in policy observations. We find that while using force data never hurts policy performance, it helps most for tasks that require advanced levels of precision and coordination, like opening an AirPods case and unscrewing a nut.
comment: Videos can be found here: https://clairelc.github.io/dexforce.github.io/
♻ ☆ GR00T N1: An Open Foundation Model for Generalist Humanoid Robots
General-purpose robots need a versatile body and an intelligent mind. Recent advancements in humanoid robots have shown great promise as a hardware platform for building generalist autonomy in the human world. A robot foundation model, trained on massive and diverse data sources, is essential for enabling the robots to reason about novel situations, robustly handle real-world variability, and rapidly learn new tasks. To this end, we introduce GR00T N1, an open foundation model for humanoid robots. GR00T N1 is a Vision-Language-Action (VLA) model with a dual-system architecture. The vision-language module (System 2) interprets the environment through vision and language instructions. The subsequent diffusion transformer module (System 1) generates fluid motor actions in real time. Both modules are tightly coupled and jointly trained end-to-end. We train GR00T N1 with a heterogeneous mixture of real-robot trajectories, human videos, and synthetically generated datasets. We show that our generalist robot model GR00T N1 outperforms the state-of-the-art imitation learning baselines on standard simulation benchmarks across multiple robot embodiments. Furthermore, we deploy our model on the Fourier GR-1 humanoid robot for language-conditioned bimanual manipulation tasks, achieving strong performance with high data efficiency.
comment: Authors are listed alphabetically. Project leads are Linxi "Jim" Fan and Yuke Zhu. For more information, see https://developer.nvidia.com/isaac/gr00t
♻ ☆ AnyBimanual: Transferring Unimanual Policy for General Bimanual Manipulation
Performing general language-conditioned bimanual manipulation tasks is of great importance for many applications ranging from household service to industrial assembly. However, collecting bimanual manipulation data is expensive due to the high-dimensional action space, which poses challenges for conventional methods to handle general bimanual manipulation tasks. In contrast, unimanual policy has recently demonstrated impressive generalizability across a wide range of tasks because of scaled model parameters and training data, which can provide sharable manipulation knowledge for bimanual systems. To this end, we propose a plug-and-play method named AnyBimanual, which transfers pre-trained unimanual policy to general bimanual manipulation policy with few bimanual demonstrations. Specifically, we first introduce a skill manager to dynamically schedule the skill representations discovered from pre-trained unimanual policy for bimanual manipulation tasks, which linearly combines skill primitives with task-oriented compensation to represent the bimanual manipulation instruction. To mitigate the observation discrepancy between unimanual and bimanual systems, we present a visual aligner to generate soft masks for visual embedding of the workspace, which aims to align visual input of unimanual policy model for each arm with those during pretraining stage. AnyBimanual shows superiority on 12 simulated tasks from RLBench2 with a sizable 12.67% improvement in success rate over previous methods. Experiments on 9 real-world tasks further verify its practicality with an average success rate of 84.62%.
comment: Project page: https://anybimanual.github.io/
♻ ☆ Dynamic Motion/Force Control of Mobile Manipulators via Extended-UDE
Mobile manipulators are known for their superior mobility over manipulators on fixed bases, offering promising applications in smart industry and housekeeping scenarios. The dynamic coupling nature between the mobile base and the manipulator presents challenges for force interactive tasks of the mobile manipulator. However, current strategies often fail to account for this coupling in such scenarios. To address this, this paper presents a dynamic coupling-integrated manipulator model that requires only the manipulator dynamics and the mobile base kinematics, which simplifies the modeling process. In addition, embedding the dynamic model, an extended uncertainty and disturbance estimator (UDE) is proposed for the mobile manipulator, which separately estimates the dynamic coupling terms and other unmodeled uncertainties, incorporating them into the feedforward and feedback control loops, respectively. The proposed approach increases the speed of response of the system and improves the dynamic robot-environment interaction (REI) performance of the mobile manipulator. A series of simulations and experiments of a wall-cleaning task are conducted to verify the effectiveness of the proposed approach. Ablation studies demonstrate that the proposed approach significantly improves the motion/force tracking performance when the mobile base is in dynamic motion.
VidBot: Learning Generalizable 3D Actions from In-the-Wild 2D Human Videos for Zero-Shot Robotic Manipulation CVPR 2025
Future robots are envisioned as versatile systems capable of performing a variety of household tasks. The big question remains, how can we bridge the embodiment gap while minimizing physical robot learning, which fundamentally does not scale well. We argue that learning from in-the-wild human videos offers a promising solution for robotic manipulation tasks, as vast amounts of relevant data already exist on the internet. In this work, we present VidBot, a framework enabling zero-shot robotic manipulation using learned 3D affordance from in-the-wild monocular RGB-only human videos. VidBot leverages a pipeline to extract explicit representations from them, namely 3D hand trajectories from videos, combining a depth foundation model with structure-from-motion techniques to reconstruct temporally consistent, metric-scale 3D affordance representations agnostic to embodiments. We introduce a coarse-to-fine affordance learning model that first identifies coarse actions from the pixel space and then generates fine-grained interaction trajectories with a diffusion model, conditioned on coarse actions and guided by test-time constraints for context-aware interaction planning, enabling substantial generalization to novel scenes and embodiments. Extensive experiments demonstrate the efficacy of VidBot, which significantly outperforms counterparts across 13 manipulation tasks in zero-shot settings and can be seamlessly deployed across robot systems in real-world environments. VidBot paves the way for leveraging everyday human videos to make robot learning more scalable.
comment: Accepted to CVPR 2025
♻ ☆ Multimodal Object Detection using Depth and Image Data for Manufacturing Parts
Manufacturing requires reliable object detection methods for precise picking and handling of diverse types of manufacturing parts and components. Traditional object detection methods utilize either only 2D images from cameras or 3D data from lidars or similar 3D sensors. However, each of these sensors have weaknesses and limitations. Cameras do not have depth perception and 3D sensors typically do not carry color information. These weaknesses can undermine the reliability and robustness of industrial manufacturing systems. To address these challenges, this work proposes a multi-sensor system combining an red-green-blue (RGB) camera and a 3D point cloud sensor. The two sensors are calibrated for precise alignment of the multimodal data captured from the two hardware devices. A novel multimodal object detection method is developed to process both RGB and depth data. This object detector is based on the Faster R-CNN baseline that was originally designed to process only camera images. The results show that the multimodal model significantly outperforms the depth-only and RGB-only baselines on established object detection metrics. More specifically, the multimodal model improves mAP by 13% and raises Mean Precision by 11.8% in comparison to the RGB-only baseline. Compared to the depth-only baseline, it improves mAP by 78% and raises Mean Precision by 57%. Hence, this method facilitates more reliable and robust object detection in service to smart manufacturing applications.
Computer Vision 155
Semantic Library Adaptation: LoRA Retrieval and Fusion for Open-Vocabulary Semantic Segmentation CVPR 2025
Open-vocabulary semantic segmentation models associate vision and text to label pixels from an undefined set of classes using textual queries, providing versatile performance on novel datasets. However, large shifts between training and test domains degrade their performance, requiring fine-tuning for effective real-world applications. We introduce Semantic Library Adaptation (SemLA), a novel framework for training-free, test-time domain adaptation. SemLA leverages a library of LoRA-based adapters indexed with CLIP embeddings, dynamically merging the most relevant adapters based on proximity to the target domain in the embedding space. This approach constructs an ad-hoc model tailored to each specific input without additional training. Our method scales efficiently, enhances explainability by tracking adapter contributions, and inherently protects data privacy, making it ideal for sensitive applications. Comprehensive experiments on a 20-domain benchmark built over 10 standard datasets demonstrate SemLA's superior adaptability and performance across diverse settings, establishing a new standard in domain adaptation for open-vocabulary semantic segmentation.
comment: CVPR 2025. Project page: https://thegoodailab.org/semla Code: https://github.com/rezaqorbani/SemLA
☆ VideoMage: Multi-Subject and Motion Customization of Text-to-Video Diffusion Models CVPR 2025
Customized text-to-video generation aims to produce high-quality videos that incorporate user-specified subject identities or motion patterns. However, existing methods mainly focus on personalizing a single concept, either subject identity or motion pattern, limiting their effectiveness for multiple subjects with the desired motion patterns. To tackle this challenge, we propose a unified framework VideoMage for video customization over both multiple subjects and their interactive motions. VideoMage employs subject and motion LoRAs to capture personalized content from user-provided images and videos, along with an appearance-agnostic motion learning approach to disentangle motion patterns from visual appearance. Furthermore, we develop a spatial-temporal composition scheme to guide interactions among subjects within the desired motion patterns. Extensive experiments demonstrate that VideoMage outperforms existing methods, generating coherent, user-controlled videos with consistent subject identities and interactions.
comment: CVPR 2025. Project Page: https://jasper0314-huang.github.io/videomage-customization
☆ Mobile-VideoGPT: Fast and Accurate Video Understanding Language Model
Video understanding models often struggle with high computational requirements, extensive parameter counts, and slow inference speed, making them inefficient for practical use. To tackle these challenges, we propose Mobile-VideoGPT, an efficient multimodal framework designed to operate with fewer than a billion parameters. Unlike traditional video large multimodal models (LMMs), Mobile-VideoGPT consists of lightweight dual visual encoders, efficient projectors, and a small language model (SLM), enabling real-time throughput. To further improve efficiency, we present an Attention-Based Frame Scoring mechanism to select the key-frames, along with an efficient token projector that prunes redundant visual tokens and preserves essential contextual cues. We evaluate our model across well-established six video understanding benchmarks (e.g., MVBench, EgoSchema, NextQA, and PercepTest). Our results show that Mobile-VideoGPT-0.5B can generate up to 46 tokens per second while outperforming existing state-of-the-art 0.5B-parameter models by 6 points on average with 40% fewer parameters and more than 2x higher throughput. Our code and models are publicly available at: https://github.com/Amshaker/Mobile-VideoGPT.
comment: Technical Report. Project Page: https://amshaker.github.io/Mobile-VideoGPT
☆ X$^{2}$-Gaussian: 4D Radiative Gaussian Splatting for Continuous-time Tomographic Reconstruction
Four-dimensional computed tomography (4D CT) reconstruction is crucial for capturing dynamic anatomical changes but faces inherent limitations from conventional phase-binning workflows. Current methods discretize temporal resolution into fixed phases with respiratory gating devices, introducing motion misalignment and restricting clinical practicality. In this paper, We propose X$^2$-Gaussian, a novel framework that enables continuous-time 4D-CT reconstruction by integrating dynamic radiative Gaussian splatting with self-supervised respiratory motion learning. Our approach models anatomical dynamics through a spatiotemporal encoder-decoder architecture that predicts time-varying Gaussian deformations, eliminating phase discretization. To remove dependency on external gating devices, we introduce a physiology-driven periodic consistency loss that learns patient-specific breathing cycles directly from projections via differentiable optimization. Extensive experiments demonstrate state-of-the-art performance, achieving a 9.93 dB PSNR gain over traditional methods and 2.25 dB improvement against prior Gaussian splatting techniques. By unifying continuous motion modeling with hardware-free period learning, X$^2$-Gaussian advances high-fidelity 4D CT reconstruction for dynamic clinical imaging. Project website at: https://x2-gaussian.github.io/.
comment: Project Page: https://x2-gaussian.github.io/
☆ HS-SLAM: Hybrid Representation with Structural Supervision for Improved Dense SLAM ICRA 2025
NeRF-based SLAM has recently achieved promising results in tracking and reconstruction. However, existing methods face challenges in providing sufficient scene representation, capturing structural information, and maintaining global consistency in scenes emerging significant movement or being forgotten. To this end, we present HS-SLAM to tackle these problems. To enhance scene representation capacity, we propose a hybrid encoding network that combines the complementary strengths of hash-grid, tri-planes, and one-blob, improving the completeness and smoothness of reconstruction. Additionally, we introduce structural supervision by sampling patches of non-local pixels rather than individual rays to better capture the scene structure. To ensure global consistency, we implement an active global bundle adjustment (BA) to eliminate camera drifts and mitigate accumulative errors. Experimental results demonstrate that HS-SLAM outperforms the baselines in tracking and reconstruction accuracy while maintaining the efficiency required for robotics.
comment: ICRA 2025. Project Page: https://zorangong.github.io/HS-SLAM/
☆ Test-Time Visual In-Context Tuning CVPR 2025
Visual in-context learning (VICL), as a new paradigm in computer vision, allows the model to rapidly adapt to various tasks with only a handful of prompts and examples. While effective, the existing VICL paradigm exhibits poor generalizability under distribution shifts. In this work, we propose test-time Visual In-Context Tuning (VICT), a method that can adapt VICL models on the fly with a single test sample. Specifically, we flip the role between the task prompts and the test sample and use a cycle consistency loss to reconstruct the original task prompt output. Our key insight is that a model should be aware of a new test distribution if it can successfully recover the original task prompts. Extensive experiments on six representative vision tasks ranging from high-level visual understanding to low-level image processing, with 15 common corruptions, demonstrate that our VICT can improve the generalizability of VICL to unseen new domains. In addition, we show the potential of applying VICT for unseen tasks at test time. Code: https://github.com/Jiahao000/VICT.
comment: CVPR 2025. Code: https://github.com/Jiahao000/VICT
☆ Video-R1: Reinforcing Video Reasoning in MLLMs
Inspired by DeepSeek-R1's success in eliciting reasoning abilities through rule-based reinforcement learning (RL), we introduce Video-R1 as the first attempt to systematically explore the R1 paradigm for eliciting video reasoning within multimodal large language models (MLLMs). However, directly applying RL training with the GRPO algorithm to video reasoning presents two primary challenges: (i) a lack of temporal modeling for video reasoning, and (ii) the scarcity of high-quality video-reasoning data. To address these issues, we first propose the T-GRPO algorithm, which encourages models to utilize temporal information in videos for reasoning. Additionally, instead of relying solely on video data, we incorporate high-quality image-reasoning data into the training process. We have constructed two datasets: Video-R1-COT-165k for SFT cold start and Video-R1-260k for RL training, both comprising image and video data. Experimental results demonstrate that Video-R1 achieves significant improvements on video reasoning benchmarks such as VideoMMMU and VSI-Bench, as well as on general video benchmarks including MVBench and TempCompass, etc. Notably, Video-R1-7B attains a 35.8% accuracy on video spatial reasoning benchmark VSI-bench, surpassing the commercial proprietary model GPT-4o. All codes, models, data are released.
comment: Project page: https://github.com/tulerfeng/Video-R1
☆ Optimal Stepsize for Diffusion Sampling
Diffusion models achieve remarkable generation quality but suffer from computational intensive sampling due to suboptimal step discretization. While existing works focus on optimizing denoising directions, we address the principled design of stepsize schedules. This paper proposes Optimal Stepsize Distillation, a dynamic programming framework that extracts theoretically optimal schedules by distilling knowledge from reference trajectories. By reformulating stepsize optimization as recursive error minimization, our method guarantees global discretization bounds through optimal substructure exploitation. Crucially, the distilled schedules demonstrate strong robustness across architectures, ODE solvers, and noise schedules. Experiments show 10x accelerated text-to-image generation while preserving 99.4% performance on GenEval. Our code is available at https://github.com/bebebe666/OptimalSteps.
☆ StyleMotif: Multi-Modal Motion Stylization using Style-Content Cross Fusion
We present StyleMotif, a novel Stylized Motion Latent Diffusion model, generating motion conditioned on both content and style from multiple modalities. Unlike existing approaches that either focus on generating diverse motion content or transferring style from sequences, StyleMotif seamlessly synthesizes motion across a wide range of content while incorporating stylistic cues from multi-modal inputs, including motion, text, image, video, and audio. To achieve this, we introduce a style-content cross fusion mechanism and align a style encoder with a pre-trained multi-modal model, ensuring that the generated motion accurately captures the reference style while preserving realism. Extensive experiments demonstrate that our framework surpasses existing methods in stylized motion generation and exhibits emergent capabilities for multi-modal motion stylization, enabling more nuanced motion synthesis. Source code and pre-trained models will be released upon acceptance. Project Page: https://stylemotif.github.io
comment: Project Page: https://stylemotif.github.io
☆ LOCORE: Image Re-ranking with Long-Context Sequence Modeling CVPR 2025
We introduce LOCORE, Long-Context Re-ranker, a model that takes as input local descriptors corresponding to an image query and a list of gallery images and outputs similarity scores between the query and each gallery image. This model is used for image retrieval, where typically a first ranking is performed with an efficient similarity measure, and then a shortlist of top-ranked images is re-ranked based on a more fine-grained similarity measure. Compared to existing methods that perform pair-wise similarity estimation with local descriptors or list-wise re-ranking with global descriptors, LOCORE is the first method to perform list-wise re-ranking with local descriptors. To achieve this, we leverage efficient long-context sequence models to effectively capture the dependencies between query and gallery images at the local-descriptor level. During testing, we process long shortlists with a sliding window strategy that is tailored to overcome the context size limitations of sequence models. Our approach achieves superior performance compared with other re-rankers on established image retrieval benchmarks of landmarks (ROxf and RPar), products (SOP), fashion items (In-Shop), and bird species (CUB-200) while having comparable latency to the pair-wise local descriptor re-rankers.
comment: CVPR 2025
☆ A Unified Image-Dense Annotation Generation Model for Underwater Scenes CVPR 2025
Underwater dense prediction, especially depth estimation and semantic segmentation, is crucial for gaining a comprehensive understanding of underwater scenes. Nevertheless, high-quality and large-scale underwater datasets with dense annotations remain scarce because of the complex environment and the exorbitant data collection costs. This paper proposes a unified Text-to-Image and DEnse annotation generation method (TIDE) for underwater scenes. It relies solely on text as input to simultaneously generate realistic underwater images and multiple highly consistent dense annotations. Specifically, we unify the generation of text-to-image and text-to-dense annotations within a single model. The Implicit Layout Sharing mechanism (ILS) and cross-modal interaction method called Time Adaptive Normalization (TAN) are introduced to jointly optimize the consistency between image and dense annotations. We synthesize a large-scale underwater dataset using TIDE to validate the effectiveness of our method in underwater dense prediction tasks. The results demonstrate that our method effectively improves the performance of existing underwater dense prediction models and mitigates the scarcity of underwater data with dense annotations. We hope our method can offer new perspectives on alleviating data scarcity issues in other fields. The code is available at https: //github.com/HongkLin/TIDE.
comment: Accepted by CVPR 2025. The code is available at https: //github.com/HongkLin/TIDE
☆ Visual Jenga: Discovering Object Dependencies via Counterfactual Inpainting
This paper proposes a novel scene understanding task called Visual Jenga. Drawing inspiration from the game Jenga, the proposed task involves progressively removing objects from a single image until only the background remains. Just as Jenga players must understand structural dependencies to maintain tower stability, our task reveals the intrinsic relationships between scene elements by systematically exploring which objects can be removed while preserving scene coherence in both physical and geometric sense. As a starting point for tackling the Visual Jenga task, we propose a simple, data-driven, training-free approach that is surprisingly effective on a range of real-world images. The principle behind our approach is to utilize the asymmetry in the pairwise relationships between objects within a scene and employ a large inpainting model to generate a set of counterfactuals to quantify the asymmetry.
comment: project page: https://visualjenga.github.io/
☆ Semantic Consistent Language Gaussian Splatting for Point-Level Open-vocabulary Querying
Open-vocabulary querying in 3D Gaussian Splatting aims to identify semantically relevant regions within a 3D Gaussian representation based on a given text query. Prior work, such as LangSplat, addressed this task by retrieving these regions in the form of segmentation masks on 2D renderings. More recently, OpenGaussian introduced point-level querying, which directly selects a subset of 3D Gaussians. In this work, we propose a point-level querying method that builds upon LangSplat's framework. Our approach improves the framework in two key ways: (a) we leverage masklets from the Segment Anything Model 2 (SAM2) to establish semantic consistent ground-truth for distilling the language Gaussians; (b) we introduces a novel two-step querying approach that first retrieves the distilled ground-truth and subsequently uses the ground-truth to query the individual Gaussians. Experimental evaluations on three benchmark datasets demonstrate that the proposed method achieves better performance compared to state-of-the-art approaches. For instance, our method achieves an mIoU improvement of +20.42 on the 3D-OVS dataset.
☆ Stable-SCore: A Stable Registration-based Framework for 3D Shape Correspondence CVPR 2025
Establishing character shape correspondence is a critical and fundamental task in computer vision and graphics, with diverse applications including re-topology, attribute transfer, and shape interpolation. Current dominant functional map methods, while effective in controlled scenarios, struggle in real situations with more complex challenges such as non-isometric shape discrepancies. In response, we revisit registration-for-correspondence methods and tap their potential for more stable shape correspondence estimation. To overcome their common issues including unstable deformations and the necessity for careful pre-alignment or high-quality initial 3D correspondences, we introduce Stable-SCore: A Stable Registration-based Framework for 3D Shape Correspondence. We first re-purpose a foundation model for 2D character correspondence that ensures reliable and stable 2D mappings. Crucially, we propose a novel Semantic Flow Guided Registration approach that leverages 2D correspondence to guide mesh deformations. Our framework significantly surpasses existing methods in challenging scenarios, and brings possibilities for a wide array of real applications, as demonstrated in our results.
comment: Accepted by CVPR 2025. Homepage: https://haolinliu97.github.io/Stable-Score/
☆ Exploring the Evolution of Physics Cognition in Video Generation: A Survey
Recent advancements in video generation have witnessed significant progress, especially with the rapid advancement of diffusion models. Despite this, their deficiencies in physical cognition have gradually received widespread attention - generated content often violates the fundamental laws of physics, falling into the dilemma of ''visual realism but physical absurdity". Researchers began to increasingly recognize the importance of physical fidelity in video generation and attempted to integrate heuristic physical cognition such as motion representations and physical knowledge into generative systems to simulate real-world dynamic scenarios. Considering the lack of a systematic overview in this field, this survey aims to provide a comprehensive summary of architecture designs and their applications to fill this gap. Specifically, we discuss and organize the evolutionary process of physical cognition in video generation from a cognitive science perspective, while proposing a three-tier taxonomy: 1) basic schema perception for generation, 2) passive cognition of physical knowledge for generation, and 3) active cognition for world simulation, encompassing state-of-the-art methods, classical paradigms, and benchmarks. Subsequently, we emphasize the inherent key challenges in this domain and delineate potential pathways for future research, contributing to advancing the frontiers of discussion in both academia and industry. Through structured review and interdisciplinary analysis, this survey aims to provide directional guidance for developing interpretable, controllable, and physically consistent video generation paradigms, thereby propelling generative models from the stage of ''visual mimicry'' towards a new phase of ''human-like physical comprehension''.
comment: A comprehensive list of papers studied in this survey is available at https://github.com/minnie-lin/Awesome-Physics-Cognition-based-Video-Generation
☆ Uni4D: Unifying Visual Foundation Models for 4D Modeling from a Single Video CVPR 2025
This paper presents a unified approach to understanding dynamic scenes from casual videos. Large pretrained vision foundation models, such as vision-language, video depth prediction, motion tracking, and segmentation models, offer promising capabilities. However, training a single model for comprehensive 4D understanding remains challenging. We introduce Uni4D, a multi-stage optimization framework that harnesses multiple pretrained models to advance dynamic 3D modeling, including static/dynamic reconstruction, camera pose estimation, and dense 3D motion tracking. Our results show state-of-the-art performance in dynamic 4D modeling with superior visual quality. Notably, Uni4D requires no retraining or fine-tuning, highlighting the effectiveness of repurposing visual foundation models for 4D understanding.
comment: CVPR 2025. Project page (with code): https://davidyao99.github.io/uni4d
☆ Fwd2Bot: LVLM Visual Token Compression with Double Forward Bottleneck
In this work, we aim to compress the vision tokens of a Large Vision Language Model (LVLM) into a representation that is simultaneously suitable for (a) generative and (b) discriminative tasks, (c) is nearly lossless, and (d) is storage-efficient. We propose a novel compression approach, called Fwd2Bot, that uses the LVLM itself to compress the visual information in a task-agnostic manner. At the core of Fwd2bot there exists a "double-forward pass" training strategy, whereby, during the first forward pass, the LLM (of the LVLM) creates a bottleneck by condensing the visual information into a small number of summary tokens. Then, using the same LLM, the second forward pass processes the language instruction(s) alongside the summary tokens, used as a direct replacement for the image ones. The training signal is provided by two losses: an autoregressive one applied after the second pass that provides a direct optimization objective for compression, and a contrastive loss, applied after the first pass, that further boosts the representation strength, especially for discriminative tasks. The training is further enhanced by stage-specific adapters. We accompany the proposed method by an in-depth ablation study. Overall, Fwd2Bot results in highly-informative compressed representations suitable for both generative and discriminative tasks. For generative tasks, we offer a 2x higher compression rate without compromising the generative capabilities, setting a new state-of-the-art result. For discriminative tasks, we set a new state-of-the-art on image retrieval and compositionality.
☆ Lumina-Image 2.0: A Unified and Efficient Image Generative Framework
We introduce Lumina-Image 2.0, an advanced text-to-image generation framework that achieves significant progress compared to previous work, Lumina-Next. Lumina-Image 2.0 is built upon two key principles: (1) Unification - it adopts a unified architecture (Unified Next-DiT) that treats text and image tokens as a joint sequence, enabling natural cross-modal interactions and allowing seamless task expansion. Besides, since high-quality captioners can provide semantically well-aligned text-image training pairs, we introduce a unified captioning system, Unified Captioner (UniCap), specifically designed for T2I generation tasks. UniCap excels at generating comprehensive and accurate captions, accelerating convergence and enhancing prompt adherence. (2) Efficiency - to improve the efficiency of our proposed model, we develop multi-stage progressive training strategies and introduce inference acceleration techniques without compromising image quality. Extensive evaluations on academic benchmarks and public text-to-image arenas show that Lumina-Image 2.0 delivers strong performances even with only 2.6B parameters, highlighting its scalability and design efficiency. We have released our training details, code, and models at https://github.com/Alpha-VLLM/Lumina-Image-2.0.
comment: Tech Report, 21 pages, 12 figures
☆ VBench-2.0: Advancing Video Generation Benchmark Suite for Intrinsic Faithfulness
Video generation has advanced significantly, evolving from producing unrealistic outputs to generating videos that appear visually convincing and temporally coherent. To evaluate these video generative models, benchmarks such as VBench have been developed to assess their faithfulness, measuring factors like per-frame aesthetics, temporal consistency, and basic prompt adherence. However, these aspects mainly represent superficial faithfulness, which focus on whether the video appears visually convincing rather than whether it adheres to real-world principles. While recent models perform increasingly well on these metrics, they still struggle to generate videos that are not just visually plausible but fundamentally realistic. To achieve real "world models" through video generation, the next frontier lies in intrinsic faithfulness to ensure that generated videos adhere to physical laws, commonsense reasoning, anatomical correctness, and compositional integrity. Achieving this level of realism is essential for applications such as AI-assisted filmmaking and simulated world modeling. To bridge this gap, we introduce VBench-2.0, a next-generation benchmark designed to automatically evaluate video generative models for their intrinsic faithfulness. VBench-2.0 assesses five key dimensions: Human Fidelity, Controllability, Creativity, Physics, and Commonsense, each further broken down into fine-grained capabilities. Tailored for individual dimensions, our evaluation framework integrates generalists such as state-of-the-art VLMs and LLMs, and specialists, including anomaly detection methods proposed for video generation. We conduct extensive annotations to ensure alignment with human judgment. By pushing beyond superficial faithfulness toward intrinsic faithfulness, VBench-2.0 aims to set a new standard for the next generation of video generative models in pursuit of intrinsic faithfulness.
comment: Equal contributions from first two authors. Project page: https://vchitect.github.io/VBench-2.0-project/ Code: https://github.com/Vchitect/VBench
☆ Reconstructing Humans with a Biomechanically Accurate Skeleton CVPR 2025
In this paper, we introduce a method for reconstructing 3D humans from a single image using a biomechanically accurate skeleton model. To achieve this, we train a transformer that takes an image as input and estimates the parameters of the model. Due to the lack of training data for this task, we build a pipeline to produce pseudo ground truth model parameters for single images and implement a training procedure that iteratively refines these pseudo labels. Compared to state-of-the-art methods for 3D human mesh recovery, our model achieves competitive performance on standard benchmarks, while it significantly outperforms them in settings with extreme 3D poses and viewpoints. Additionally, we show that previous reconstruction methods frequently violate joint angle limits, leading to unnatural rotations. In contrast, our approach leverages the biomechanically plausible degrees of freedom making more realistic joint rotation estimates. We validate our approach across multiple human pose estimation benchmarks. We make the code, models and data available at: https://isshikihugh.github.io/HSMR/
comment: CVPR 2025. Project Webpage: https://isshikihugh.github.io/HSMR/
☆ LeX-Art: Rethinking Text Generation via Scalable High-Quality Data Synthesis
We introduce LeX-Art, a comprehensive suite for high-quality text-image synthesis that systematically bridges the gap between prompt expressiveness and text rendering fidelity. Our approach follows a data-centric paradigm, constructing a high-quality data synthesis pipeline based on Deepseek-R1 to curate LeX-10K, a dataset of 10K high-resolution, aesthetically refined 1024$\times$1024 images. Beyond dataset construction, we develop LeX-Enhancer, a robust prompt enrichment model, and train two text-to-image models, LeX-FLUX and LeX-Lumina, achieving state-of-the-art text rendering performance. To systematically evaluate visual text generation, we introduce LeX-Bench, a benchmark that assesses fidelity, aesthetics, and alignment, complemented by Pairwise Normalized Edit Distance (PNED), a novel metric for robust text accuracy evaluation. Experiments demonstrate significant improvements, with LeX-Lumina achieving a 79.81% PNED gain on CreateBench, and LeX-FLUX outperforming baselines in color (+3.18%), positional (+4.45%), and font accuracy (+3.81%). Our codes, models, datasets, and demo are publicly available.
comment: Project page: https://zhaoshitian.github.io/lexart/
☆ CTRL-O: Language-Controllable Object-Centric Visual Representation Learning CVPR 2025
Object-centric representation learning aims to decompose visual scenes into fixed-size vectors called "slots" or "object files", where each slot captures a distinct object. Current state-of-the-art object-centric models have shown remarkable success in object discovery in diverse domains, including complex real-world scenes. However, these models suffer from a key limitation: they lack controllability. Specifically, current object-centric models learn representations based on their preconceived understanding of objects, without allowing user input to guide which objects are represented. Introducing controllability into object-centric models could unlock a range of useful capabilities, such as the ability to extract instance-specific representations from a scene. In this work, we propose a novel approach for user-directed control over slot representations by conditioning slots on language descriptions. The proposed ConTRoLlable Object-centric representation learning approach, which we term CTRL-O, achieves targeted object-language binding in complex real-world scenes without requiring mask supervision. Next, we apply these controllable slot representations on two downstream vision language tasks: text-to-image generation and visual question answering. The proposed approach enables instance-specific text-to-image generation and also achieves strong performance on visual question answering.
comment: Accepted at CVPR 2025
☆ 3DGen-Bench: Comprehensive Benchmark Suite for 3D Generative Models
3D generation is experiencing rapid advancements, while the development of 3D evaluation has not kept pace. How to keep automatic evaluation equitably aligned with human perception has become a well-recognized challenge. Recent advances in the field of language and image generation have explored human preferences and showcased respectable fitting ability. However, the 3D domain still lacks such a comprehensive preference dataset over generative models. To mitigate this absence, we develop 3DGen-Arena, an integrated platform in a battle manner. Then, we carefully design diverse text and image prompts and leverage the arena platform to gather human preferences from both public users and expert annotators, resulting in a large-scale multi-dimension human preference dataset 3DGen-Bench. Using this dataset, we further train a CLIP-based scoring model, 3DGen-Score, and a MLLM-based automatic evaluator, 3DGen-Eval. These two models innovatively unify the quality evaluation of text-to-3D and image-to-3D generation, and jointly form our automated evaluation system with their respective strengths. Extensive experiments demonstrate the efficacy of our scoring model in predicting human preferences, exhibiting a superior correlation with human ranks compared to existing metrics. We believe that our 3DGen-Bench dataset and automated evaluation system will foster a more equitable evaluation in the field of 3D generation, further promoting the development of 3D generative models and their downstream applications.
☆ SparseFlex: High-Resolution and Arbitrary-Topology 3D Shape Modeling
Creating high-fidelity 3D meshes with arbitrary topology, including open surfaces and complex interiors, remains a significant challenge. Existing implicit field methods often require costly and detail-degrading watertight conversion, while other approaches struggle with high resolutions. This paper introduces SparseFlex, a novel sparse-structured isosurface representation that enables differentiable mesh reconstruction at resolutions up to $1024^3$ directly from rendering losses. SparseFlex combines the accuracy of Flexicubes with a sparse voxel structure, focusing computation on surface-adjacent regions and efficiently handling open surfaces. Crucially, we introduce a frustum-aware sectional voxel training strategy that activates only relevant voxels during rendering, dramatically reducing memory consumption and enabling high-resolution training. This also allows, for the first time, the reconstruction of mesh interiors using only rendering supervision. Building upon this, we demonstrate a complete shape modeling pipeline by training a variational autoencoder (VAE) and a rectified flow transformer for high-quality 3D shape generation. Our experiments show state-of-the-art reconstruction accuracy, with a ~82% reduction in Chamfer Distance and a ~88% increase in F-score compared to previous methods, and demonstrate the generation of high-resolution, detailed 3D shapes with arbitrary topology. By enabling high-resolution, differentiable mesh reconstruction and generation with rendering losses, SparseFlex significantly advances the state-of-the-art in 3D shape representation and modeling.
comment: Project page: https://xianglonghe.github.io/TripoSF
☆ OccRobNet : Occlusion Robust Network for Accurate 3D Interacting Hand-Object Pose Estimation
Occlusion is one of the challenging issues when estimating 3D hand pose. This problem becomes more prominent when hand interacts with an object or two hands are involved. In the past works, much attention has not been given to these occluded regions. But these regions contain important and beneficial information that is vital for 3D hand pose estimation. Thus, in this paper, we propose an occlusion robust and accurate method for the estimation of 3D hand-object pose from the input RGB image. Our method includes first localising the hand joints using a CNN based model and then refining them by extracting contextual information. The self attention transformer then identifies the specific joints along with the hand identity. This helps the model to identify the hand belongingness of a particular joint which helps to detect the joint even in the occluded region. Further, these joints with hand identity are then used to estimate the pose using cross attention mechanism. Thus, by identifying the joints in the occluded region, the obtained network becomes robust to occlusion. Hence, this network achieves state-of-the-art results when evaluated on the InterHand2.6M, HO3D and H$_2$O3D datasets.
comment: Accepted in NATIONAL CONFERENCE ON COMMUNICATIONS (NCC) 2025
☆ Evaluating Text-to-Image Synthesis with a Conditional Fréchet Distance
Evaluating text-to-image synthesis is challenging due to misalignment between established metrics and human preferences. We propose cFreD, a metric based on the notion of Conditional Fr\'echet Distance that explicitly accounts for both visual fidelity and text-prompt alignment. Existing metrics such as Inception Score (IS), Fr\'echet Inception Distance (FID) and CLIPScore assess either image quality or image-text alignment but not both which limits their correlation with human preferences. Scoring models explicitly trained to replicate human preferences require constant updates and may not generalize to novel generation techniques or out-of-domain inputs. Through extensive experiments across multiple recently proposed text-to-image models and diverse prompt datasets, we demonstrate that cFreD exhibits a higher correlation with human judgments compared to statistical metrics, including metrics trained with human preferences. Our findings validate cFreD as a robust, future-proof metric for the systematic evaluation of text-to-image models, standardizing benchmarking in this rapidly evolving field. We release our evaluation toolkit and benchmark in the appendix.
MAVERIX: Multimodal Audio-Visual Evaluation Reasoning IndeX
Frontier models have either been language-only or have primarily focused on vision and language modalities. Although recent advancements in models with vision and audio understanding capabilities have shown substantial progress, the field lacks a standardized evaluation framework for thoroughly assessing their cross-modality perception performance. We introduce MAVERIX~(Multimodal Audio-Visual Evaluation Reasoning IndeX), a novel benchmark with 700 videos and 2,556 questions explicitly designed to evaluate multimodal models through tasks that necessitate close integration of video and audio information. MAVERIX uniquely provides models with audiovisual tasks, closely mimicking the multimodal perceptual experiences available to humans during inference and decision-making processes. To our knowledge, MAVERIX is the first benchmark aimed explicitly at assessing comprehensive audiovisual integration. Experiments with state-of-the-art models, including Gemini 1.5 Pro and o1, show performance approaching human levels (around 70% accuracy), while human experts reach near-ceiling performance (95.1%). With standardized evaluation protocols, a rigorously annotated pipeline, and a public toolkit, MAVERIX establishes a challenging testbed for advancing audiovisual multimodal intelligence.
☆ Embodied-Reasoner: Synergizing Visual Search, Reasoning, and Action for Embodied Interactive Tasks
Recent advances in deep thinking models have demonstrated remarkable reasoning capabilities on mathematical and coding tasks. However, their effectiveness in embodied domains which require continuous interaction with environments through image action interleaved trajectories remains largely -unexplored. We present Embodied Reasoner, a model that extends o1 style reasoning to interactive embodied search tasks. Unlike mathematical reasoning that relies primarily on logical deduction, embodied scenarios demand spatial understanding, temporal reasoning, and ongoing self-reflection based on interaction history. To address these challenges, we synthesize 9.3k coherent Observation-Thought-Action trajectories containing 64k interactive images and 90k diverse thinking processes (analysis, spatial reasoning, reflection, planning, and verification). We develop a three-stage training pipeline that progressively enhances the model's capabilities through imitation learning, self-exploration via rejection sampling, and self-correction through reflection tuning. The evaluation shows that our model significantly outperforms those advanced visual reasoning models, e.g., it exceeds OpenAI o1, o3-mini, and Claude-3.7 by +9\%, 24\%, and +13\%. Analysis reveals our model exhibits fewer repeated searches and logical inconsistencies, with particular advantages in complex long-horizon tasks. Real-world environments also show our superiority while exhibiting fewer repeated searches and logical inconsistency cases.
comment: Code: https://github.com/zwq2018/embodied_reasoner Dataset: https://huggingface.co/datasets/zwq2018/embodied_reasoner
☆ AMA-SAM: Adversarial Multi-Domain Alignment of Segment Anything Model for High-Fidelity Histology Nuclei Segmentation
Accurate segmentation of cell nuclei in histopathology images is essential for numerous biomedical research and clinical applications. However, existing cell nucleus segmentation methods only consider a single dataset (i.e., primary domain), while neglecting to leverage supplementary data from diverse sources (i.e., auxiliary domains) to reduce overfitting and enhance the performance. Although incorporating multiple datasets could alleviate overfitting, it often exacerbates performance drops caused by domain shifts. In this work, we introduce Adversarial Multi-domain Alignment of Segment Anything Model (AMA-SAM) that extends the Segment Anything Model (SAM) to overcome these obstacles through two key innovations. First, we propose a Conditional Gradient Reversal Layer (CGRL), a multi-domain alignment module that harmonizes features from diverse domains to promote domain-invariant representation learning while preserving crucial discriminative features for the primary dataset. Second, we address SAM's inherent low-resolution output by designing a High-Resolution Decoder (HR-Decoder), which directly produces fine-grained segmentation maps in order to capture intricate nuclei boundaries in high-resolution histology images. To the best of our knowledge, this is the first attempt to adapt SAM for multi-dataset learning with application to histology nuclei segmentation. We validate our method on several publicly available datasets, demonstrating consistent and significant improvements over state-of-the-art approaches.
comment: 13 pages, 4 tables, 2 figures
☆ Progressive Rendering Distillation: Adapting Stable Diffusion for Instant Text-to-Mesh Generation without 3D Data CVPR 2025
It is highly desirable to obtain a model that can generate high-quality 3D meshes from text prompts in just seconds. While recent attempts have adapted pre-trained text-to-image diffusion models, such as Stable Diffusion (SD), into generators of 3D representations (e.g., Triplane), they often suffer from poor quality due to the lack of sufficient high-quality 3D training data. Aiming at overcoming the data shortage, we propose a novel training scheme, termed as Progressive Rendering Distillation (PRD), eliminating the need for 3D ground-truths by distilling multi-view diffusion models and adapting SD into a native 3D generator. In each iteration of training, PRD uses the U-Net to progressively denoise the latent from random noise for a few steps, and in each step it decodes the denoised latent into 3D output. Multi-view diffusion models, including MVDream and RichDreamer, are used in joint with SD to distill text-consistent textures and geometries into the 3D outputs through score distillation. Since PRD supports training without 3D ground-truths, we can easily scale up the training data and improve generation quality for challenging text prompts with creative concepts. Meanwhile, PRD can accelerate the inference speed of the generation model in just a few steps. With PRD, we train a Triplane generator, namely TriplaneTurbo, which adds only $2.5\%$ trainable parameters to adapt SD for Triplane generation. TriplaneTurbo outperforms previous text-to-3D generators in both efficiency and quality. Specifically, it can produce high-quality 3D meshes in 1.2 seconds and generalize well for challenging text input. The code is available at https://github.com/theEricMa/TriplaneTurbo.
comment: Accepted to CVPR 2025. Code:https://github.com/theEricMa/TriplaneTurbo. Demo:https://huggingface.co/spaces/ZhiyuanthePony/TriplaneTurbo
☆ RapidPoseTriangulation: Multi-view Multi-person Whole-body Human Pose Triangulation in a Millisecond
The integration of multi-view imaging and pose estimation represents a significant advance in computer vision applications, offering new possibilities for understanding human movement and interactions. This work presents a new algorithm that improves multi-view multi-person pose estimation, focusing on fast triangulation speeds and good generalization capabilities. The approach extends to whole-body pose estimation, capturing details from facial expressions to finger movements across multiple individuals and viewpoints. Adaptability to different settings is demonstrated through strong performance across unseen datasets and configurations. To support further progress in this field, all of this work is publicly accessible.
☆ CMED: A Child Micro-Expression Dataset
Micro-expressions are short bursts of emotion that are difficult to hide. Their detection in children is an important cue to assist psychotherapists in conducting better therapy. However, existing research on the detection of micro-expressions has focused on adults, whose expressions differ in their characteristics from those of children. The lack of research is a direct consequence of the lack of a child-based micro-expressions dataset as it is much more challenging to capture children's facial expressions due to the lack of predictability and controllability. This study compiles a dataset of spontaneous child micro-expression videos, the first of its kind, to the best of the authors knowledge. The dataset is captured in the wild using video conferencing software. This dataset enables us to then explore key features and differences between adult and child micro-expressions. This study also establishes a baseline for the automated spotting and recognition of micro-expressions in children using three approaches comprising of hand-created and learning-based approaches.
☆ Cognitive Science-Inspired Evaluation of Core Capabilities for Object Understanding in AI
One of the core components of our world models is 'intuitive physics' - an understanding of objects, space, and causality. This capability enables us to predict events, plan action and navigate environments, all of which rely on a composite sense of objecthood. Despite its importance, there is no single, unified account of objecthood, though multiple theoretical frameworks provide insights. In the first part of this paper, we present a comprehensive overview of the main theoretical frameworks in objecthood research - Gestalt psychology, enactive cognition, and developmental psychology - and identify the core capabilities each framework attributes to object understanding, as well as what functional roles they play in shaping world models in biological agents. Given the foundational role of objecthood in world modelling, understanding objecthood is also essential in AI. In the second part of the paper, we evaluate how current AI paradigms approach and test objecthood capabilities compared to those in cognitive science. We define an AI paradigm as a combination of how objecthood is conceptualised, the methods used for studying objecthood, the data utilised, and the evaluation techniques. We find that, whilst benchmarks can detect that AI systems model isolated aspects of objecthood, the benchmarks cannot detect when AI systems lack functional integration across these capabilities, not solving the objecthood challenge fully. Finally, we explore novel evaluation approaches that align with the integrated vision of objecthood outlined in this paper. These methods are promising candidates for advancing from isolated object capabilities toward general-purpose AI with genuine object understanding in real-world contexts.
☆ InteractionMap: Improving Online Vectorized HDMap Construction with Interaction
Vectorized high-definition (HD) maps are essential for an autonomous driving system. Recently, state-of-the-art map vectorization methods are mainly based on DETR-like framework to generate HD maps in an end-to-end manner. In this paper, we propose InteractionMap, which improves previous map vectorization methods by fully leveraging local-to-global information interaction in both time and space. Firstly, we explore enhancing DETR-like detectors by explicit position relation prior from point-level to instance-level, since map elements contain strong shape priors. Secondly, we propose a key-frame-based hierarchical temporal fusion module, which interacts temporal information from local to global. Lastly, the separate classification branch and regression branch lead to the problem of misalignment in the output distribution. We interact semantic information with geometric information by introducing a novel geometric-aware classification loss in optimization and a geometric-aware matching cost in label assignment. InteractionMap achieves state-of-the-art performance on both nuScenes and Argoverse2 benchmarks.
☆ When Astronomy Meets AI: Manazel For Crescent Visibility Prediction in Morocco
The accurate determination of the beginning of each Hijri month is essential for religious, cultural, and administrative purposes. Manazel (The code and datasets are available at https://github.com/lairgiyassir/manazel) addresses this challenge in Morocco by leveraging 13 years of crescent visibility data to refine the ODEH criterion, a widely used standard for lunar crescent visibility prediction. The study integrates two key features, the Arc of Vision (ARCV) and the total width of the crescent (W), to enhance the accuracy of lunar visibility assessments. A machine learning approach utilizing the Logistic Regression algorithm is employed to classify crescent visibility conditions, achieving a predictive accuracy of 98.83%. This data-driven methodology offers a robust and reliable framework for determining the start of the Hijri month, comparing different data classification tools, and improving the consistency of lunar calendar calculations in Morocco. The findings demonstrate the effectiveness of machine learning in astronomical applications and highlight the potential for further enhancements in the modeling of crescent visibility.
☆ The MVTec AD 2 Dataset: Advanced Scenarios for Unsupervised Anomaly Detection CVPR 2025
In recent years, performance on existing anomaly detection benchmarks like MVTec AD and VisA has started to saturate in terms of segmentation AU-PRO, with state-of-the-art models often competing in the range of less than one percentage point. This lack of discriminatory power prevents a meaningful comparison of models and thus hinders progress of the field, especially when considering the inherent stochastic nature of machine learning results. We present MVTec AD 2, a collection of eight anomaly detection scenarios with more than 8000 high-resolution images. It comprises challenging and highly relevant industrial inspection use cases that have not been considered in previous datasets, including transparent and overlapping objects, dark-field and back light illumination, objects with high variance in the normal data, and extremely small defects. We provide comprehensive evaluations of state-of-the-art methods and show that their performance remains below 60% average AU-PRO. Additionally, our dataset provides test scenarios with lighting condition changes to assess the robustness of methods under real-world distribution shifts. We host a publicly accessible evaluation server that holds the pixel-precise ground truth of the test set (https://benchmark.mvtec.com/). All image data is available at https://www.mvtec.com/company/research/datasets/mvtec-ad-2.
comment: paper under review; dataset first released for the VAND3.0 challenge @ CVPR 2025 https://sites.google.com/view/vand30cvpr2025/challenge
☆ Audio-driven Gesture Generation via Deviation Feature in the Latent Space
Gestures are essential for enhancing co-speech communication, offering visual emphasis and complementing verbal interactions. While prior work has concentrated on point-level motion or fully supervised data-driven methods, we focus on co-speech gestures, advocating for weakly supervised learning and pixel-level motion deviations. We introduce a weakly supervised framework that learns latent representation deviations, tailored for co-speech gesture video generation. Our approach employs a diffusion model to integrate latent motion features, enabling more precise and nuanced gesture representation. By leveraging weakly supervised deviations in latent space, we effectively generate hand gestures and mouth movements, crucial for realistic video production. Experiments show our method significantly improves video quality, surpassing current state-of-the-art techniques.
comment: 6 pages, 5 figures
FusionSegReID: Advancing Person Re-Identification with Multimodal Retrieval and Precise Segmentation
Person re-identification (ReID) plays a critical role in applications like security surveillance and criminal investigations by matching individuals across large image galleries captured by non-overlapping cameras. Traditional ReID methods rely on unimodal inputs, typically images, but face limitations due to challenges like occlusions, lighting changes, and pose variations. While advancements in image-based and text-based ReID systems have been made, the integration of both modalities has remained under-explored. This paper presents FusionSegReID, a multimodal model that combines both image and text inputs for enhanced ReID performance. By leveraging the complementary strengths of these modalities, our model improves matching accuracy and robustness, particularly in complex, real-world scenarios where one modality may struggle. Our experiments show significant improvements in Top-1 accuracy and mean Average Precision (mAP) for ReID, as well as better segmentation results in challenging scenarios like occlusion and low-quality images. Ablation studies further confirm that multimodal fusion and segmentation modules contribute to enhanced re-identification and mask accuracy. The results show that FusionSegReID outperforms traditional unimodal models, offering a more robust and flexible solution for real-world person ReID tasks.
☆ AlignDiff: Learning Physically-Grounded Camera Alignment via Diffusion
Accurate camera calibration is a fundamental task for 3D perception, especially when dealing with real-world, in-the-wild environments where complex optical distortions are common. Existing methods often rely on pre-rectified images or calibration patterns, which limits their applicability and flexibility. In this work, we introduce a novel framework that addresses these challenges by jointly modeling camera intrinsic and extrinsic parameters using a generic ray camera model. Unlike previous approaches, AlignDiff shifts focus from semantic to geometric features, enabling more accurate modeling of local distortions. We propose AlignDiff, a diffusion model conditioned on geometric priors, enabling the simultaneous estimation of camera distortions and scene geometry. To enhance distortion prediction, we incorporate edge-aware attention, focusing the model on geometric features around image edges, rather than semantic content. Furthermore, to enhance generalizability to real-world captures, we incorporate a large database of ray-traced lenses containing over three thousand samples. This database characterizes the distortion inherent in a diverse variety of lens forms. Our experiments demonstrate that the proposed method significantly reduces the angular error of estimated ray bundles by ~8.2 degrees and overall calibration accuracy, outperforming existing approaches on challenging, real-world datasets.
☆ Bearing fault diagnosis based on multi-scale spectral images and convolutional neural network
To address the challenges of low diagnostic accuracy in traditional bearing fault diagnosis methods, this paper proposes a novel fault diagnosis approach based on multi-scale spectrum feature images and deep learning. Firstly, the vibration signal are preprocessed through mean removal and then converted to multi-length spectrum with fast Fourier transforms (FFT). Secondly, a novel feature called multi-scale spectral image (MSSI) is constructed by multi-length spectrum paving scheme. Finally, a deep learning framework, convolutional neural network (CNN), is formulated to diagnose the bearing faults. Two experimental cases are utilized to verify the effectiveness of the proposed method. Experimental results demonstrate that the proposed method significantly improves the accuracy of fault diagnosis.
comment: 12pages, 10 figures and 8 tables
☆ uLayout: Unified Room Layout Estimation for Perspective and Panoramic Images WACV-2025
We present uLayout, a unified model for estimating room layout geometries from both perspective and panoramic images, whereas traditional solutions require different model designs for each image type. The key idea of our solution is to unify both domains into the equirectangular projection, particularly, allocating perspective images into the most suitable latitude coordinate to effectively exploit both domains seamlessly. To address the Field-of-View (FoV) difference between the input domains, we design uLayout with a shared feature extractor with an extra 1D-Convolution layer to condition each domain input differently. This conditioning allows us to efficiently formulate a column-wise feature regression problem regardless of the FoV input. This simple yet effective approach achieves competitive performance with current state-of-the-art solutions and shows for the first time a single end-to-end model for both domains. Extensive experiments in the real-world datasets, LSUN, Matterport3D, PanoContext, and Stanford 2D-3D evidence the contribution of our approach. Code is available at https://github.com/JonathanLee112/uLayout.
comment: Accepted to WACV-2025
☆ SyncSDE: A Probabilistic Framework for Diffusion Synchronization CVPR2025
There have been many attempts to leverage multiple diffusion models for collaborative generation, extending beyond the original domain. A prominent approach involves synchronizing multiple diffusion trajectories by mixing the estimated scores to artificially correlate the generation processes. However, existing methods rely on naive heuristics, such as averaging, without considering task specificity. These approaches do not clarify why such methods work and often fail when a heuristic suitable for one task is blindly applied to others. In this paper, we present a probabilistic framework for analyzing why diffusion synchronization works and reveal where heuristics should be focused - modeling correlations between multiple trajectories and adapting them to each specific task. We further identify optimal correlation models per task, achieving better results than previous approaches that apply a single heuristic across all tasks without justification.
comment: Accepted to CVPR2025
☆ LOCATEdit: Graph Laplacian Optimized Cross Attention for Localized Text-Guided Image Editing
Text-guided image editing aims to modify specific regions of an image according to natural language instructions while maintaining the general structure and the background fidelity. Existing methods utilize masks derived from cross-attention maps generated from diffusion models to identify the target regions for modification. However, since cross-attention mechanisms focus on semantic relevance, they struggle to maintain the image integrity. As a result, these methods often lack spatial consistency, leading to editing artifacts and distortions. In this work, we address these limitations and introduce LOCATEdit, which enhances cross-attention maps through a graph-based approach utilizing self-attention-derived patch relationships to maintain smooth, coherent attention across image regions, ensuring that alterations are limited to the designated items while retaining the surrounding structure. \method consistently and substantially outperforms existing baselines on PIE-Bench, demonstrating its state-of-the-art performance and effectiveness on various editing tasks. Code can be found on https://github.com/LOCATEdit/LOCATEdit/
☆ ICG-MVSNet: Learning Intra-view and Cross-view Relationships for Guidance in Multi-View Stereo
Multi-view Stereo (MVS) aims to estimate depth and reconstruct 3D point clouds from a series of overlapping images. Recent learning-based MVS frameworks overlook the geometric information embedded in features and correlations, leading to weak cost matching. In this paper, we propose ICG-MVSNet, which explicitly integrates intra-view and cross-view relationships for depth estimation. Specifically, we develop an intra-view feature fusion module that leverages the feature coordinate correlations within a single image to enhance robust cost matching. Additionally, we introduce a lightweight cross-view aggregation module that efficiently utilizes the contextual information from volume correlations to guide regularization. Our method is evaluated on the DTU dataset and Tanks and Temples benchmark, consistently achieving competitive performance against state-of-the-art works, while requiring lower computational resources.
☆ Uncertainty-aware Bayesian machine learning modelling of land cover classification
Land cover classification involves the production of land cover maps, which determine the type of land through remote sensing imagery. Over recent years, such classification is being performed by machine learning classification models, which can give highly accurate predictions on land cover per pixel using large quantities of input training data. However, such models do not currently take account of input measurement uncertainty, which is vital for traceability in metrology. In this work we propose a Bayesian classification framework using generative modelling to take account of input measurement uncertainty. We take the specific case of Bayesian quadratic discriminant analysis, and apply it to land cover datasets from Copernicus Sentinel-2 in 2020 and 2021. We benchmark the performance of the model against more popular classification models used in land cover maps such as random forests and neural networks. We find that such Bayesian models are more trustworthy, in the sense that they are more interpretable, explicitly model the input measurement uncertainty, and maintain predictive performance of class probability outputs across datasets of different years and sizes, whilst also being computationally efficient.
comment: 31 pages, 10 figures
☆ Fine-Grained Evaluation of Large Vision-Language Models in Autonomous Driving
Existing benchmarks for Vision-Language Model (VLM) on autonomous driving (AD) primarily assess interpretability through open-form visual question answering (QA) within coarse-grained tasks, which remain insufficient to assess capabilities in complex driving scenarios. To this end, we introduce $\textbf{VLADBench}$, a challenging and fine-grained dataset featuring close-form QAs that progress from static foundational knowledge and elements to advanced reasoning for dynamic on-road situations. The elaborate $\textbf{VLADBench}$ spans 5 key domains: Traffic Knowledge Understanding, General Element Recognition, Traffic Graph Generation, Target Attribute Comprehension, and Ego Decision-Making and Planning. These domains are further broken down into 11 secondary aspects and 29 tertiary tasks for a granular evaluation. A thorough assessment of general and domain-specific (DS) VLMs on this benchmark reveals both their strengths and critical limitations in AD contexts. To further exploit the cognitive and reasoning interactions among the 5 domains for AD understanding, we start from a small-scale VLM and train the DS models on individual domain datasets (collected from 1.4M DS QAs across public sources). The experimental results demonstrate that the proposed benchmark provides a crucial step toward a more comprehensive assessment of VLMs in AD, paving the way for the development of more cognitively sophisticated and reasoning-capable AD systems.
☆ Keyword-Oriented Multimodal Modeling for Euphemism Identification
Euphemism identification deciphers the true meaning of euphemisms, such as linking "weed" (euphemism) to "marijuana" (target keyword) in illicit texts, aiding content moderation and combating underground markets. While existing methods are primarily text-based, the rise of social media highlights the need for multimodal analysis, incorporating text, images, and audio. However, the lack of multimodal datasets for euphemisms limits further research. To address this, we regard euphemisms and their corresponding target keywords as keywords and first introduce a keyword-oriented multimodal corpus of euphemisms (KOM-Euph), involving three datasets (Drug, Weapon, and Sexuality), including text, images, and speech. We further propose a keyword-oriented multimodal euphemism identification method (KOM-EI), which uses cross-modal feature alignment and dynamic fusion modules to explicitly utilize the visual and audio features of the keywords for efficient euphemism identification. Extensive experiments demonstrate that KOM-EI outperforms state-of-the-art models and large language models, and show the importance of our multimodal datasets.
☆ Double Blind Imaging with Generative Modeling
Blind inverse problems in imaging arise from uncertainties in the system used to collect (noisy) measurements of images. Recovering clean images from these measurements typically requires identifying the imaging system, either implicitly or explicitly. A common solution leverages generative models as priors for both the images and the imaging system parameters (e.g., a class of point spread functions). To learn these priors in a straightforward manner requires access to a dataset of clean images as well as samples of the imaging system. We propose an AmbientGAN-based generative technique to identify the distribution of parameters in unknown imaging systems, using only unpaired clean images and corrupted measurements. This learned distribution can then be used in model-based recovery algorithms to solve blind inverse problems such as blind deconvolution. We successfully demonstrate our technique for learning Gaussian blur and motion blur priors from noisy measurements and show their utility in solving blind deconvolution with diffusion posterior sampling.
☆ Shape Modeling of Longitudinal Medical Images: From Diffeomorphic Metric Mapping to Deep Learning
Living biological tissue is a complex system, constantly growing and changing in response to external and internal stimuli. These processes lead to remarkable and intricate changes in shape. Modeling and understanding both natural and pathological (or abnormal) changes in the shape of anatomical structures is highly relevant, with applications in diagnostic, prognostic, and therapeutic healthcare. Nevertheless, modeling the longitudinal shape change of biological tissue is a non-trivial task due to its inherent nonlinear nature. In this review, we highlight several existing methodologies and tools for modeling longitudinal shape change (i.e., spatiotemporal shape modeling). These methods range from diffeomorphic metric mapping to deep-learning based approaches (e.g., autoencoders, generative networks, recurrent neural networks, etc.). We discuss the synergistic combinations of existing technologies and potential directions for future research, underscoring key deficiencies in the current research landscape.
☆ Invert2Restore: Zero-Shot Degradation-Blind Image Restoration
Two of the main challenges of image restoration in real-world scenarios are the accurate characterization of an image prior and the precise modeling of the image degradation operator. Pre-trained diffusion models have been very successfully used as image priors in zero-shot image restoration methods. However, how to best handle the degradation operator is still an open problem. In real-world data, methods that rely on specific parametric assumptions about the degradation model often face limitations in their applicability. To address this, we introduce Invert2Restore, a zero-shot, training-free method that operates in both fully blind and partially blind settings -- requiring no prior knowledge of the degradation model or only partial knowledge of its parametric form without known parameters. Despite this, Invert2Restore achieves high-fidelity results and generalizes well across various types of image degradation. It leverages a pre-trained diffusion model as a deterministic mapping between normal samples and undistorted image samples. The key insight is that the input noise mapped by a diffusion model to a degraded image lies in a low-probability density region of the standard normal distribution. Thus, we can restore the degraded image by carefully guiding its input noise toward a higher-density region. We experimentally validate Invert2Restore across several image restoration tasks, demonstrating that it achieves state-of-the-art performance in scenarios where the degradation operator is either unknown or partially known.
BOLT: Boost Large Vision-Language Model Without Training for Long-form Video Understanding CVPR 2025
Large video-language models (VLMs) have demonstrated promising progress in various video understanding tasks. However, their effectiveness in long-form video analysis is constrained by limited context windows. Traditional approaches, such as uniform frame sampling, often inevitably allocate resources to irrelevant content, diminishing their effectiveness in real-world scenarios. In this paper, we introduce BOLT, a method to BOost Large VLMs without additional Training through a comprehensive study of frame selection strategies. First, to enable a more realistic evaluation of VLMs in long-form video understanding, we propose a multi-source retrieval evaluation setting. Our findings reveal that uniform sampling performs poorly in noisy contexts, underscoring the importance of selecting the right frames. Second, we explore several frame selection strategies based on query-frame similarity and analyze their effectiveness at inference time. Our results show that inverse transform sampling yields the most significant performance improvement, increasing accuracy on the Video-MME benchmark from 53.8% to 56.1% and MLVU benchmark from 58.9% to 63.4%. Our code is available at https://github.com/sming256/BOLT.
comment: Accepted to CVPR 2025
☆ Fine-Grained Behavior and Lane Constraints Guided Trajectory Prediction Method TIM
Trajectory prediction, as a critical component of autonomous driving systems, has attracted the attention of many researchers. Existing prediction algorithms focus on extracting more detailed scene features or selecting more reasonable trajectory destinations. However, in the face of dynamic and evolving future movements of the target vehicle, these algorithms cannot provide a fine-grained and continuous description of future behaviors and lane constraints, which degrades the prediction accuracy. To address this challenge, we present BLNet, a novel dualstream architecture that synergistically integrates behavioral intention recognition and lane constraint modeling through parallel attention mechanisms. The framework generates fine-grained behavior state queries (capturing spatial-temporal movement patterns) and lane queries (encoding lane topology constraints), supervised by two auxiliary losses, respectively. Subsequently, a two-stage decoder first produces trajectory proposals, then performs point-level refinement by jointly incorporating both the continuity of passed lanes and future motion features. Extensive experiments on two large datasets, nuScenes and Argoverse, show that our network exhibits significant performance gains over existing direct regression and goal-based algorithms.
comment: This work has been submitted to the IEEE TIM for possible publication
☆ Embedding Compression Distortion in Video Coding for Machines
Currently, video transmission serves not only the Human Visual System (HVS) for viewing but also machine perception for analysis. However, existing codecs are primarily optimized for pixel-domain and HVS-perception metrics rather than the needs of machine vision tasks. To address this issue, we propose a Compression Distortion Representation Embedding (CDRE) framework, which extracts machine-perception-related distortion representation and embeds it into downstream models, addressing the information lost during compression and improving task performance. Specifically, to better analyze the machine-perception-related distortion, we design a compression-sensitive extractor that identifies compression degradation in the feature domain. For efficient transmission, a lightweight distortion codec is introduced to compress the distortion information into a compact representation. Subsequently, the representation is progressively embedded into the downstream model, enabling it to be better informed about compression degradation and enhancing performance. Experiments across various codecs and downstream tasks demonstrate that our framework can effectively boost the rate-task performance of existing codecs with minimal overhead in terms of bitrate, execution time, and number of parameters. Our codes and supplementary materials are released in https://github.com/Ws-Syx/CDRE/.
☆ Retinal Fundus Multi-Disease Image Classification using Hybrid CNN-Transformer-Ensemble Architectures
Our research is motivated by the urgent global issue of a large population affected by retinal diseases, which are evenly distributed but underserved by specialized medical expertise, particularly in non-urban areas. Our primary objective is to bridge this healthcare gap by developing a comprehensive diagnostic system capable of accurately predicting retinal diseases solely from fundus images. However, we faced significant challenges due to limited, diverse datasets and imbalanced class distributions. To overcome these issues, we have devised innovative strategies. Our research introduces novel approaches, utilizing hybrid models combining deeper Convolutional Neural Networks (CNNs), Transformer encoders, and ensemble architectures sequentially and in parallel to classify retinal fundus images into 20 disease labels. Our overarching goal is to assess these advanced models' potential in practical applications, with a strong focus on enhancing retinal disease diagnosis accuracy across a broader spectrum of conditions. Importantly, our efforts have surpassed baseline model results, with the C-Tran ensemble model emerging as the leader, achieving a remarkable model score of 0.9166, surpassing the baseline score of 0.9. Additionally, experiments with the IEViT model showcased equally promising outcomes with improved computational efficiency. We've also demonstrated the effectiveness of dynamic patch extraction and the integration of domain knowledge in computer vision tasks. In summary, our research strives to contribute significantly to retinal disease diagnosis, addressing the critical need for accessible healthcare solutions in underserved regions while aiming for comprehensive and accurate disease prediction.
comment: 17 pages, 3 figures, 7 tables. Conference paper presented at the International Health Informatics Conference (IHIC 2023)
☆ RoadSocial: A Diverse VideoQA Dataset and Benchmark for Road Event Understanding from Social Video Narratives CVPR 2025
We introduce RoadSocial, a large-scale, diverse VideoQA dataset tailored for generic road event understanding from social media narratives. Unlike existing datasets limited by regional bias, viewpoint bias and expert-driven annotations, RoadSocial captures the global complexity of road events with varied geographies, camera viewpoints (CCTV, handheld, drones) and rich social discourse. Our scalable semi-automatic annotation framework leverages Text LLMs and Video LLMs to generate comprehensive question-answer pairs across 12 challenging QA tasks, pushing the boundaries of road event understanding. RoadSocial is derived from social media videos spanning 14M frames and 414K social comments, resulting in a dataset with 13.2K videos, 674 tags and 260K high-quality QA pairs. We evaluate 18 Video LLMs (open-source and proprietary, driving-specific and general-purpose) on our road event understanding benchmark. We also demonstrate RoadSocial's utility in improving road event understanding capabilities of general-purpose Video LLMs.
comment: Accepted at CVPR 2025; Project Page: https://roadsocial.github.io/
☆ FaceBench: A Multi-View Multi-Level Facial Attribute VQA Dataset for Benchmarking Face Perception MLLMs CVPR2025
Multimodal large language models (MLLMs) have demonstrated remarkable capabilities in various tasks. However, effectively evaluating these MLLMs on face perception remains largely unexplored. To address this gap, we introduce FaceBench, a dataset featuring hierarchical multi-view and multi-level attributes specifically designed to assess the comprehensive face perception abilities of MLLMs. Initially, we construct a hierarchical facial attribute structure, which encompasses five views with up to three levels of attributes, totaling over 210 attributes and 700 attribute values. Based on the structure, the proposed FaceBench consists of 49,919 visual question-answering (VQA) pairs for evaluation and 23,841 pairs for fine-tuning. Moreover, we further develop a robust face perception MLLM baseline, Face-LLaVA, by training with our proposed face VQA data. Extensive experiments on various mainstream MLLMs and Face-LLaVA are conducted to test their face perception ability, with results also compared against human performance. The results reveal that, the existing MLLMs are far from satisfactory in understanding the fine-grained facial attributes, while our Face-LLaVA significantly outperforms existing open-source models with a small amount of training data and is comparable to commercial ones like GPT-4o and Gemini. The dataset will be released at https://github.com/CVI-SZU/FaceBench.
comment: Accepted by CVPR2025
☆ Towards Generating Realistic 3D Semantic Training Data for Autonomous Driving
Semantic scene understanding is crucial for robotics and computer vision applications. In autonomous driving, 3D semantic segmentation plays an important role for enabling safe navigation. Despite significant advances in the field, the complexity of collecting and annotating 3D data is a bottleneck in this developments. To overcome that data annotation limitation, synthetic simulated data has been used to generate annotated data on demand. There is still however a domain gap between real and simulated data. More recently, diffusion models have been in the spotlight, enabling close-to-real data synthesis. Those generative models have been recently applied to the 3D data domain for generating scene-scale data with semantic annotations. Still, those methods either rely on image projection or decoupled models trained with different resolutions in a coarse-to-fine manner. Such intermediary representations impact the generated data quality due to errors added in those transformations. In this work, we propose a novel approach able to generate 3D semantic scene-scale data without relying on any projection or decoupled trained multi-resolution models, achieving more realistic semantic scene data generation compared to previous state-of-the-art methods. Besides improving 3D semantic scene-scale data synthesis, we thoroughly evaluate the use of the synthetic scene samples as labeled data to train a semantic segmentation network. In our experiments, we show that using the synthetic annotated data generated by our method as training data together with the real semantic segmentation labels, leads to an improvement in the semantic segmentation model performance. Our results show the potential of generated scene-scale point clouds to generate more training data to extend existing datasets, reducing the data annotation effort. Our code is available at https://github.com/PRBonn/3DiSS.
☆ Sparse Bayesian Learning for Label Efficiency in Cardiac Real-Time MRI
Cardiac real-time magnetic resonance imaging (MRI) is an emerging technology that images the heart at up to 50 frames per second, offering insight into the respiratory effects on the heartbeat. However, this method significantly increases the number of images that must be segmented to derive critical health indicators. Although neural networks perform well on inner slices, predictions on outer slices are often unreliable. This work proposes sparse Bayesian learning (SBL) to predict the ventricular volume on outer slices with minimal manual labeling to address this challenge. The ventricular volume over time is assumed to be dominated by sparse frequencies corresponding to the heart and respiratory rates. Moreover, SBL identifies these sparse frequencies on well-segmented inner slices by optimizing hyperparameters via type -II likelihood, automatically pruning irrelevant components. The identified sparse frequencies guide the selection of outer slice images for labeling, minimizing posterior variance. This work provides performance guarantees for the greedy algorithm. Testing on patient data demonstrates that only a few labeled images are necessary for accurate volume prediction. The labeling procedure effectively avoids selecting inefficient images. Furthermore, the Bayesian approach provides uncertainty estimates, highlighting unreliable predictions (e.g., when choosing suboptimal labels).
☆ RainyGS: Efficient Rain Synthesis with Physically-Based Gaussian Splatting
We consider the problem of adding dynamic rain effects to in-the-wild scenes in a physically-correct manner. Recent advances in scene modeling have made significant progress, with NeRF and 3DGS techniques emerging as powerful tools for reconstructing complex scenes. However, while effective for novel view synthesis, these methods typically struggle with challenging scene editing tasks, such as physics-based rain simulation. In contrast, traditional physics-based simulations can generate realistic rain effects, such as raindrops and splashes, but they often rely on skilled artists to carefully set up high-fidelity scenes. This process lacks flexibility and scalability, limiting its applicability to broader, open-world environments. In this work, we introduce RainyGS, a novel approach that leverages the strengths of both physics-based modeling and 3DGS to generate photorealistic, dynamic rain effects in open-world scenes with physical accuracy. At the core of our method is the integration of physically-based raindrop and shallow water simulation techniques within the fast 3DGS rendering framework, enabling realistic and efficient simulations of raindrop behavior, splashes, and reflections. Our method supports synthesizing rain effects at over 30 fps, offering users flexible control over rain intensity -- from light drizzles to heavy downpours. We demonstrate that RainyGS performs effectively for both real-world outdoor scenes and large-scale driving scenarios, delivering more photorealistic and physically-accurate rain effects compared to state-of-the-art methods. Project page can be found at https://pku-vcl-geometry.github.io/RainyGS/
☆ Dual-Task Learning for Dead Tree Detection and Segmentation with Hybrid Self-Attention U-Nets in Aerial Imagery
Mapping standing dead trees is critical for assessing forest health, monitoring biodiversity, and mitigating wildfire risks, for which aerial imagery has proven useful. However, dense canopy structures, spectral overlaps between living and dead vegetation, and over-segmentation errors limit the reliability of existing methods. This study introduces a hybrid postprocessing framework that refines deep learning-based tree segmentation by integrating watershed algorithms with adaptive filtering, enhancing boundary delineation, and reducing false positives in complex forest environments. Tested on high-resolution aerial imagery from boreal forests, the framework improved instance-level segmentation accuracy by 41.5% and reduced positional errors by 57%, demonstrating robust performance in densely vegetated regions. By balancing detection accuracy and over-segmentation artifacts, the method enabled the precise identification of individual dead trees, which is critical for ecological monitoring. The framework's computational efficiency supports scalable applications, such as wall-to-wall tree mortality mapping over large geographic regions using aerial or satellite imagery. These capabilities directly benefit wildfire risk assessment (identifying fuel accumulations), carbon stock estimation (tracking emissions from decaying biomass), and precision forestry (targeting salvage loggings). By bridging advanced remote sensing techniques with practical forest management needs, this work advances tools for large-scale ecological conservation and climate resilience planning.
comment: 11 pages, 4 figures, 4 tables
☆ STAMICS: Splat, Track And Map with Integrated Consistency and Semantics for Dense RGB-D SLAM
Simultaneous Localization and Mapping (SLAM) is a critical task in robotics, enabling systems to autonomously navigate and understand complex environments. Current SLAM approaches predominantly rely on geometric cues for mapping and localization, but they often fail to ensure semantic consistency, particularly in dynamic or densely populated scenes. To address this limitation, we introduce STAMICS, a novel method that integrates semantic information with 3D Gaussian representations to enhance both localization and mapping accuracy. STAMICS consists of three key components: a 3D Gaussian-based scene representation for high-fidelity reconstruction, a graph-based clustering technique that enforces temporal semantic consistency, and an open-vocabulary system that allows for the classification of unseen objects. Extensive experiments show that STAMICS significantly improves camera pose estimation and map quality, outperforming state-of-the-art methods while reducing reconstruction errors. Code will be public available.
☆ Diffusion Image Prior
Zero-shot image restoration (IR) methods based on pretrained diffusion models have recently achieved significant success. These methods typically require at least a parametric form of the degradation model. However, in real-world scenarios, the degradation may be too complex to define explicitly. To handle this general case, we introduce the Diffusion Image Prior (DIIP). We take inspiration from the Deep Image Prior (DIP)[16], since it can be used to remove artifacts without the need for an explicit degradation model. However, in contrast to DIP, we find that pretrained diffusion models offer a much stronger prior, despite being trained without knowledge from corrupted data. We show that, the optimization process in DIIP first reconstructs a clean version of the image before eventually overfitting to the degraded input, but it does so for a broader range of degradations than DIP. In light of this result, we propose a blind image restoration (IR) method based on early stopping, which does not require prior knowledge of the degradation model. We validate DIIP on various degradation-blind IR tasks, including JPEG artifact removal, waterdrop removal, denoising and super-resolution with state-of-the-art results.
☆ VALLR: Visual ASR Language Model for Lip Reading
Lip Reading, or Visual Automatic Speech Recognition (V-ASR), is a complex task requiring the interpretation of spoken language exclusively from visual cues, primarily lip movements and facial expressions. This task is especially challenging due to the absence of auditory information and the inherent ambiguity when visually distinguishing phonemes that have overlapping visemes where different phonemes appear identical on the lips. Current methods typically attempt to predict words or characters directly from these visual cues, but this approach frequently encounters high error rates due to coarticulation effects and viseme ambiguity. We propose a novel two-stage, phoneme-centric framework for Visual Automatic Speech Recognition (V-ASR) that addresses these longstanding challenges. First, our model predicts a compact sequence of phonemes from visual inputs using a Video Transformer with a CTC head, thereby reducing the task complexity and achieving robust speaker invariance. This phoneme output then serves as the input to a fine-tuned Large Language Model (LLM), which reconstructs coherent words and sentences by leveraging broader linguistic context. Unlike existing methods that either predict words directly-often faltering on visually similar phonemes-or rely on large-scale multimodal pre-training, our approach explicitly encodes intermediate linguistic structure while remaining highly data efficient. We demonstrate state-of-the-art performance on two challenging datasets, LRS2 and LRS3, where our method achieves significant reductions in Word Error Rate (WER) achieving a SOTA WER of 18.7 on LRS3 despite using 99.4% less labelled data than the next best approach.
☆ ProHOC: Probabilistic Hierarchical Out-of-Distribution Classification via Multi-Depth Networks CVPR2025
Out-of-distribution (OOD) detection in deep learning has traditionally been framed as a binary task, where samples are either classified as belonging to the known classes or marked as OOD, with little attention given to the semantic relationships between OOD samples and the in-distribution (ID) classes. We propose a framework for detecting and classifying OOD samples in a given class hierarchy. Specifically, we aim to predict OOD data to their correct internal nodes of the class hierarchy, whereas the known ID classes should be predicted as their corresponding leaf nodes. Our approach leverages the class hierarchy to create a probabilistic model and we implement this model by using networks trained for ID classification at multiple hierarchy depths. We conduct experiments on three datasets with predefined class hierarchies and show the effectiveness of our method. Our code is available at https://github.com/walline/prohoc.
comment: CVPR2025
☆ Unsupervised Real-World Denoising: Sparsity is All You Need
Supervised training for real-world denoising presents challenges due to the difficulty of collecting large datasets of paired noisy and clean images. Recent methods have attempted to address this by utilizing unpaired datasets of clean and noisy images. Some approaches leverage such unpaired data to train denoisers in a supervised manner by generating synthetic clean-noisy pairs. However, these methods often fall short due to the distribution gap between synthetic and real noisy images. To mitigate this issue, we propose a solution based on input sparsification, specifically using random input masking. Our method, which we refer to as Mask, Inpaint and Denoise (MID), trains a denoiser to simultaneously denoise and inpaint synthetic clean-noisy pairs. On one hand, input sparsification reduces the gap between synthetic and real noisy images. On the other hand, an inpainter trained in a supervised manner can still accurately reconstruct sparse inputs by predicting missing clean pixels using the remaining unmasked pixels. Our approach begins with a synthetic Gaussian noise sampler and iteratively refines it using a noise dataset derived from the denoiser's predictions. The noise dataset is created by subtracting predicted pseudo-clean images from real noisy images at each iteration. The core intuition is that improving the denoiser results in a more accurate noise dataset and, consequently, a better noise sampler. We validate our method through extensive experiments on real-world noisy image datasets, demonstrating competitive performance compared to existing unsupervised denoising methods.
☆ Multimodal surface defect detection from wooden logs for sawing optimization
We propose a novel, good-quality, and less demanding method for detecting knots on the surface of wooden logs using multimodal data fusion. Knots are a primary factor affecting the quality of sawn timber, making their detection fundamental to any timber grading or cutting optimization system. While X-ray computed tomography provides accurate knot locations and internal structures, it is often too slow or expensive for practical use. An attractive alternative is to use fast and cost-effective log surface measurements, such as laser scanners or RGB cameras, to detect surface knots and estimate the internal structure of wood. However, due to the small size of knots and noise caused by factors, such as bark and other natural variations, detection accuracy often remains low when only one measurement modality is used. In this paper, we demonstrate that by using a data fusion pipeline consisting of separate streams for RGB and point cloud data, combined by a late fusion module, higher knot detection accuracy can be achieved compared to using either modality alone. We further propose a simple yet efficient sawing angle optimization method that utilizes surface knot detections and cross-correlation to minimize the amount of unwanted arris knots, demonstrating its benefits over randomized sawing angles.
☆ LandMarkSystem Technical Report
3D reconstruction is vital for applications in autonomous driving, virtual reality, augmented reality, and the metaverse. Recent advancements such as Neural Radiance Fields(NeRF) and 3D Gaussian Splatting (3DGS) have transformed the field, yet traditional deep learning frameworks struggle to meet the increasing demands for scene quality and scale. This paper introduces LandMarkSystem, a novel computing framework designed to enhance multi-scale scene reconstruction and rendering. By leveraging a componentized model adaptation layer, LandMarkSystem supports various NeRF and 3DGS structures while optimizing computational efficiency through distributed parallel computing and model parameter offloading. Our system addresses the limitations of existing frameworks, providing dedicated operators for complex 3D sparse computations, thus facilitating efficient training and rapid inference over extensive scenes. Key contributions include a modular architecture, a dynamic loading strategy for limited resources, and proven capabilities across multiple representative algorithms.This comprehensive solution aims to advance the efficiency and effectiveness of 3D reconstruction tasks.To facilitate further research and collaboration, the source code and documentation for the LandMarkSystem project are publicly available in an open-source repository, accessing the repository at: https://github.com/InternLandMark/LandMarkSystem.
UGNA-VPR: A Novel Training Paradigm for Visual Place Recognition Based on Uncertainty-Guided NeRF Augmentation
Visual place recognition (VPR) is crucial for robots to identify previously visited locations, playing an important role in autonomous navigation in both indoor and outdoor environments. However, most existing VPR datasets are limited to single-viewpoint scenarios, leading to reduced recognition accuracy, particularly in multi-directional driving or feature-sparse scenes. Moreover, obtaining additional data to mitigate these limitations is often expensive. This paper introduces a novel training paradigm to improve the performance of existing VPR networks by enhancing multi-view diversity within current datasets through uncertainty estimation and NeRF-based data augmentation. Specifically, we initially train NeRF using the existing VPR dataset. Then, our devised self-supervised uncertainty estimation network identifies places with high uncertainty. The poses of these uncertain places are input into NeRF to generate new synthetic observations for further training of VPR networks. Additionally, we propose an improved storage method for efficient organization of augmented and original training data. We conducted extensive experiments on three datasets and tested three different VPR backbone networks. The results demonstrate that our proposed training paradigm significantly improves VPR performance by fully utilizing existing data, outperforming other training approaches. We further validated the effectiveness of our approach on self-recorded indoor and outdoor datasets, consistently demonstrating superior results. Our dataset and code have been released at \href{https://github.com/nubot-nudt/UGNA-VPR}{https://github.com/nubot-nudt/UGNA-VPR}.
comment: Accepted to IEEE Robotics and Automation Letters (RA-L)
☆ DuckSegmentation: A segmentation model based on the AnYue Hemp Duck Dataset
The modernization of smart farming is a way to improve agricultural production efficiency, and improve the agricultural production environment. Although many large models have achieved high accuracy in the task of object recognition and segmentation, they cannot really be put into use in the farming industry due to their own poor interpretability and limitations in computational volume. In this paper, we built AnYue Shelduck Dateset, which contains a total of 1951 Shelduck datasets, and performed target detection and segmentation annotation with the help of professional annotators. Based on AnYue ShelduckDateset, this paper describes DuckProcessing, an efficient and powerful module for duck identification based on real shelduckfarms. First of all, using the YOLOv8 module designed to divide the mahjong between them, Precision reached 98.10%, Recall reached 96.53% and F1 score reached 0.95 on the test set. Again using the DuckSegmentation segmentation model, DuckSegmentation reached 96.43% mIoU. Finally, the excellent DuckSegmentation was used as the teacher model, and through knowledge distillation, Deeplabv3 r50 was used as the student model, and the final student model achieved 94.49% mIoU on the test set. The method provides a new way of thinking in practical sisal duck smart farming.
☆ HORT: Monocular Hand-held Objects Reconstruction with Transformers
Reconstructing hand-held objects in 3D from monocular images remains a significant challenge in computer vision. Most existing approaches rely on implicit 3D representations, which produce overly smooth reconstructions and are time-consuming to generate explicit 3D shapes. While more recent methods directly reconstruct point clouds with diffusion models, the multi-step denoising makes high-resolution reconstruction inefficient. To address these limitations, we propose a transformer-based model to efficiently reconstruct dense 3D point clouds of hand-held objects. Our method follows a coarse-to-fine strategy, first generating a sparse point cloud from the image and progressively refining it into a dense representation using pixel-aligned image features. To enhance reconstruction accuracy, we integrate image features with 3D hand geometry to jointly predict the object point cloud and its pose relative to the hand. Our model is trained end-to-end for optimal performance. Experimental results on both synthetic and real datasets demonstrate that our method achieves state-of-the-art accuracy with much faster inference speed, while generalizing well to in-the-wild images.
comment: Project Page: https://zerchen.github.io/projects/hort.html
☆ FineCIR: Explicit Parsing of Fine-Grained Modification Semantics for Composed Image Retrieval
Composed Image Retrieval (CIR) facilitates image retrieval through a multimodal query consisting of a reference image and modification text. The reference image defines the retrieval context, while the modification text specifies desired alterations. However, existing CIR datasets predominantly employ coarse-grained modification text (CoarseMT), which inadequately captures fine-grained retrieval intents. This limitation introduces two key challenges: (1) ignoring detailed differences leads to imprecise positive samples, and (2) greater ambiguity arises when retrieving visually similar images. These issues degrade retrieval accuracy, necessitating manual result filtering or repeated queries. To address these limitations, we develop a robust fine-grained CIR data annotation pipeline that minimizes imprecise positive samples and enhances CIR systems' ability to discern modification intents accurately. Using this pipeline, we refine the FashionIQ and CIRR datasets to create two fine-grained CIR datasets: Fine-FashionIQ and Fine-CIRR. Furthermore, we introduce FineCIR, the first CIR framework explicitly designed to parse the modification text. FineCIR effectively captures fine-grained modification semantics and aligns them with ambiguous visual entities, enhancing retrieval precision. Extensive experiments demonstrate that FineCIR consistently outperforms state-of-the-art CIR baselines on both fine-grained and traditional CIR benchmark datasets. Our FineCIR code and fine-grained CIR datasets are available at https://github.com/SDU-L/FineCIR.git.
☆ InternVL-X: Advancing and Accelerating InternVL Series with Efficient Visual Token Compression
Most multimodal large language models (MLLMs) treat visual tokens as "a sequence of text", integrating them with text tokens into a large language model (LLM). However, a great quantity of visual tokens significantly increases the demand for computational resources and time. In this paper, we propose InternVL-X, which outperforms the InternVL model in both performance and efficiency by incorporating three visual token compression methods. First, we propose a novel vision-language projector, PVTC. This component integrates adjacent visual embeddings to form a local query and utilizes the transformed CLS token as a global query, then performs point-to-region cross-attention through these local and global queries to more effectively convert visual features. Second, we present a layer-wise visual token compression module, LVTC, which compresses tokens in the LLM shallow layers and then expands them through upsampling and residual connections in the deeper layers. This significantly enhances the model computational efficiency. Futhermore, we propose an efficient high resolution slicing method, RVTC, which dynamically adjusts the number of visual tokens based on image area or length filtering. RVTC greatly enhances training efficiency with only a slight reduction in performance. By utilizing 20% or fewer visual tokens, InternVL-X achieves state-of-the-art performance on 7 public MLLM benchmarks, and improves the average metric by 2.34% across 12 tasks.
☆ Multi-Scale Invertible Neural Network for Wide-Range Variable-Rate Learned Image Compression
Autoencoder-based structures have dominated recent learned image compression methods. However, the inherent information loss associated with autoencoders limits their rate-distortion performance at high bit rates and restricts their flexibility of rate adaptation. In this paper, we present a variable-rate image compression model based on invertible transform to overcome these limitations. Specifically, we design a lightweight multi-scale invertible neural network, which bijectively maps the input image into multi-scale latent representations. To improve the compression efficiency, a multi-scale spatial-channel context model with extended gain units is devised to estimate the entropy of the latent representation from high to low levels. Experimental results demonstrate that the proposed method achieves state-of-the-art performance compared to existing variable-rate methods, and remains competitive with recent multi-model approaches. Notably, our method is the first learned image compression solution that outperforms VVC across a very wide range of bit rates using a single model, especially at high bit rates.The source code is available at \href{https://github.com/hytu99/MSINN-VRLIC}{https://github.com/hytu99/MSINN-VRLIC}.
comment: Accepted to IEEE Transactions on Multimedia 2025
☆ Zero-Shot Visual Concept Blending Without Text Guidance
We propose a novel, zero-shot image generation technique called "Visual Concept Blending" that provides fine-grained control over which features from multiple reference images are transferred to a source image. If only a single reference image is available, it is difficult to isolate which specific elements should be transferred. However, using multiple reference images, the proposed approach distinguishes between common and unique features by selectively incorporating them into a generated output. By operating within a partially disentangled Contrastive Language-Image Pre-training (CLIP) embedding space (from IP-Adapter), our method enables the flexible transfer of texture, shape, motion, style, and more abstract conceptual transformations without requiring additional training or text prompts. We demonstrate its effectiveness across a diverse range of tasks, including style transfer, form metamorphosis, and conceptual transformations, showing how subtle or abstract attributes (e.g., brushstroke style, aerodynamic lines, and dynamism) can be seamlessly combined into a new image. In a user study, participants accurately recognized which features were intended to be transferred. Its simplicity, flexibility, and high-level control make Visual Concept Blending valuable for creative fields such as art, design, and content creation, where combining specific visual qualities from multiple inspirations is crucial.
☆ Delving Deep into Semantic Relation Distillation
Knowledge distillation has become a cornerstone technique in deep learning, facilitating the transfer of knowledge from complex models to lightweight counterparts. Traditional distillation approaches focus on transferring knowledge at the instance level, but fail to capture nuanced semantic relationships within the data. In response, this paper introduces a novel methodology, Semantics-based Relation Knowledge Distillation (SeRKD), which reimagines knowledge distillation through a semantics-relation lens among each sample. By leveraging semantic components, \ie, superpixels, SeRKD enables a more comprehensive and context-aware transfer of knowledge, which skillfully integrates superpixel-based semantic extraction with relation-based knowledge distillation for a sophisticated model compression and distillation. Particularly, the proposed method is naturally relevant in the domain of Vision Transformers (ViTs), where visual tokens serve as fundamental units of representation. Experimental evaluations on benchmark datasets demonstrate the superiority of SeRKD over existing methods, underscoring its efficacy in enhancing model performance and generalization capabilities.
☆ ClimbingCap: Multi-Modal Dataset and Method for Rock Climbing in World Coordinate CVPR2025
Human Motion Recovery (HMR) research mainly focuses on ground-based motions such as running. The study on capturing climbing motion, an off-ground motion, is sparse. This is partly due to the limited availability of climbing motion datasets, especially large-scale and challenging 3D labeled datasets. To address the insufficiency of climbing motion datasets, we collect AscendMotion, a large-scale well-annotated, and challenging climbing motion dataset. It consists of 412k RGB, LiDAR frames, and IMU measurements, including the challenging climbing motions of 22 skilled climbing coaches across 12 different rock walls. Capturing the climbing motions is challenging as it requires precise recovery of not only the complex pose but also the global position of climbers. Although multiple global HMR methods have been proposed, they cannot faithfully capture climbing motions. To address the limitations of HMR methods for climbing, we propose ClimbingCap, a motion recovery method that reconstructs continuous 3D human climbing motion in a global coordinate system. One key insight is to use the RGB and LiDAR modalities to separately reconstruct motions in camera coordinates and global coordinates and to optimize them jointly. We demonstrate the quality of the AscendMotion dataset and present promising results from ClimbingCap. The AscendMotion dataset and source code release publicly at \href{this link}{http://www.lidarhumanmotion.net/climbingcap/}
comment: CVPR2025, project in \href{this link}{http://www.lidarhumanmotion.net/climbingcap/}
☆ vGamba: Attentive State Space Bottleneck for efficient Long-range Dependencies in Visual Recognition
Capturing long-range dependencies efficiently is essential for visual recognition tasks, yet existing methods face limitations. Convolutional neural networks (CNNs) struggle with restricted receptive fields, while Vision Transformers (ViTs) achieve global context and long-range modeling at a high computational cost. State-space models (SSMs) offer an alternative, but their application in vision remains underexplored. This work introduces vGamba, a hybrid vision backbone that integrates SSMs with attention mechanisms to enhance efficiency and expressiveness. At its core, the Gamba bottleneck block that includes, Gamba Cell, an adaptation of Mamba for 2D spatial structures, alongside a Multi-Head Self-Attention (MHSA) mechanism and a Gated Fusion Module for effective feature representation. The interplay of these components ensures that vGamba leverages the low computational demands of SSMs while maintaining the accuracy of attention mechanisms for modeling long-range dependencies in vision tasks. Additionally, the Fusion module enables seamless interaction between these components. Extensive experiments on classification, detection, and segmentation tasks demonstrate that vGamba achieves a superior trade-off between accuracy and computational efficiency, outperforming several existing models.
☆ Reducing CT Metal Artifacts by Learning Latent Space Alignment with Gemstone Spectral Imaging Data
Metal artifacts in CT slices have long posed challenges in medical diagnostics. These artifacts degrade image quality, resulting in suboptimal visualization and complicating the accurate interpretation of tissues adjacent to metal implants. To address these issues, we introduce the Latent Gemstone Spectral Imaging (GSI) Alignment Framework, which effectively reduces metal artifacts while avoiding the introduction of noise information. Our work is based on a key finding that even artifact-affected ordinary CT sequences contain sufficient information to discern detailed structures. The challenge lies in the inability to clearly represent this information. To address this issue, we developed an Alignment Framework that adjusts the representation of ordinary CT images to match GSI CT sequences. GSI is an advanced imaging technique using multiple energy levels to mitigate artifacts caused by metal implants. By aligning the representation to GSI data, we can effectively suppress metal artifacts while clearly revealing detailed structure, without introducing extraneous information into CT sequences. To facilitate the application, we propose a new dataset, Artifacts-GSI, captured from real patients with metal implants, and establish a new benchmark based on this dataset. Experimental results show that our method significantly reduces metal artifacts and greatly enhances the readability of CT slices. All our code and data are available at: https://um-lab.github.io/GSI-MAR/
☆ Learn by Reasoning: Analogical Weight Generation for Few-Shot Class-Incremental Learning
Few-shot class-incremental Learning (FSCIL) enables models to learn new classes from limited data while retaining performance on previously learned classes. Traditional FSCIL methods often require fine-tuning parameters with limited new class data and suffer from a separation between learning new classes and utilizing old knowledge. Inspired by the analogical learning mechanisms of the human brain, we propose a novel analogical generative method. Our approach includes the Brain-Inspired Analogical Generator (BiAG), which derives new class weights from existing classes without parameter fine-tuning during incremental stages. BiAG consists of three components: Weight Self-Attention Module (WSA), Weight & Prototype Analogical Attention Module (WPAA), and Semantic Conversion Module (SCM). SCM uses Neural Collapse theory for semantic conversion, WSA supplements new class weights, and WPAA computes analogies to generate new class weights. Experiments on miniImageNet, CUB-200, and CIFAR-100 datasets demonstrate that our method achieves higher final and average accuracy compared to SOTA methods.
☆ Vision-to-Music Generation: A Survey
Vision-to-music Generation, including video-to-music and image-to-music tasks, is a significant branch of multimodal artificial intelligence demonstrating vast application prospects in fields such as film scoring, short video creation, and dance music synthesis. However, compared to the rapid development of modalities like text and images, research in vision-to-music is still in its preliminary stage due to its complex internal structure and the difficulty of modeling dynamic relationships with video. Existing surveys focus on general music generation without comprehensive discussion on vision-to-music. In this paper, we systematically review the research progress in the field of vision-to-music generation. We first analyze the technical characteristics and core challenges for three input types: general videos, human movement videos, and images, as well as two output types of symbolic music and audio music. We then summarize the existing methodologies on vision-to-music generation from the architecture perspective. A detailed review of common datasets and evaluation metrics is provided. Finally, we discuss current challenges and promising directions for future research. We hope our survey can inspire further innovation in vision-to-music generation and the broader field of multimodal generation in academic research and industrial applications. To follow latest works and foster further innovation in this field, we are continuously maintaining a GitHub repository at https://github.com/wzk1015/Awesome-Vision-to-Music-Generation.
☆ Orange Quality Grading with Deep Learning
Orange grading is a crucial step in the fruit industry, as it helps to sort oranges according to different criteria such as size, quality, ripeness, and health condition, ensuring safety for human consumption and better price allocation and client satisfaction. Automated grading enables faster processing, precision, and reduced human labor. In this paper, we implement a deep learning-based solution for orange grading via machine vision. Unlike typical grading systems that analyze fruits from a single view, we capture multiview images of each single orange in order to enable a richer representation. Afterwards, we compose the acquired images into one collage. This enables the analysis of the whole orange skin. We train a convolutional neural network (CNN) on the composed images to grade the oranges into three classes, namely good, bad, and undefined. We also evaluate the performance with two different CNNs (ResNet-18 and SqueezeNet). We show experimentally that multi-view grading is superior to single view grading.
DynamiCtrl: Rethinking the Basic Structure and the Role of Text for High-quality Human Image Animation
Human image animation has recently gained significant attention due to advancements in generative models. However, existing methods still face two major challenges: (1) architectural limitations, most models rely on U-Net, which underperforms compared to the MM-DiT; and (2) the neglect of textual information, which can enhance controllability. In this work, we introduce DynamiCtrl, a novel framework that not only explores different pose-guided control structures in MM-DiT, but also reemphasizes the crucial role of text in this task. Specifically, we employ a Shared VAE encoder for both reference images and driving pose videos, eliminating the need for an additional pose encoder and simplifying the overall framework. To incorporate pose features into the full attention blocks, we propose Pose-adaptive Layer Norm (PadaLN), which utilizes adaptive layer normalization to encode sparse pose features. The encoded features are directly added to the visual input, preserving the spatiotemporal consistency of the backbone while effectively introducing pose control into MM-DiT. Furthermore, within the full attention mechanism, we align textual and visual features to enhance controllability. By leveraging text, we not only enable fine-grained control over the generated content, but also, for the first time, achieve simultaneous control over both background and motion. Experimental results verify the superiority of DynamiCtrl on benchmark datasets, demonstrating its strong identity preservation, heterogeneous character driving, background controllability, and high-quality synthesis. The project page is available at https://gulucaptain.github.io/DynamiCtrl/.
comment: 11 pages, 10 figures
♻ ☆ Reason-RFT: Reinforcement Fine-Tuning for Visual Reasoning
Visual reasoning abilities play a crucial role in understanding complex multimodal data, advancing both domain-specific applications and artificial general intelligence (AGI). Existing methods improve VLM reasoning via Chain-of-Thought (CoT) supervised fine-tuning, using meticulously annotated training data to enhance visual reasoning capabilities. However, this training paradigm may lead to overfitting and cognitive rigidity, restricting the model's ability to transfer visual reasoning skills across domains and limiting its real-world applicability. To address these limitations, we propose Reason-RFT, a novel reinforcement fine-tuning framework that significantly enhances generalization capabilities in visual reasoning tasks. Reason-RFT introduces a two-phase training framework for visual reasoning: (1) Supervised Fine-Tuning (SFT) with curated Chain-of-Thought (CoT) data activates the reasoning potential of Vision-Language Models (VLMs), followed by (2) Group Relative Policy Optimization (GRPO)-based reinforcement learning that generates multiple reasoning-response pairs, significantly enhancing generalization in visual reasoning tasks. To evaluate Reason-RFT's visual reasoning capabilities, we reconstructed a comprehensive dataset spanning visual counting, structure perception, and spatial transformation. Experimental results demonstrate Reasoning-RFT's three key advantages: (1) Performance Enhancement: achieving state-of-the-art results across multiple tasks, outperforming most mainstream open-source and proprietary models; (2) Generalization Superiority: consistently maintaining robust performance across diverse tasks and domains, outperforming alternative training paradigms; (3) Data Efficiency: excelling in few-shot learning scenarios while surpassing full-dataset SFT baselines. Project website: https://tanhuajie.github.io/ReasonRFT
comment: 35 pages, 22 figures
♻ ☆ Demand Estimation with Text and Image Data
We propose a demand estimation method that leverages unstructured text and image data to infer substitution patterns. Using pre-trained deep learning models, we extract embeddings from product images and textual descriptions and incorporate them into a random coefficients logit model. This approach enables researchers to estimate demand even when they lack data on product attributes or when consumers value hard-to-quantify attributes, such as visual design or functional benefits. Using data from a choice experiment, we show that our approach outperforms standard attribute-based models in counterfactual predictions of consumers' second choices. We also apply it across 40 product categories on Amazon and consistently find that text and image data help identify close substitutes within each category.
♻ ☆ Flip Learning: Weakly Supervised Erase to Segment Nodules in Breast Ultrasound
Accurate segmentation of nodules in both 2D breast ultrasound (BUS) and 3D automated breast ultrasound (ABUS) is crucial for clinical diagnosis and treatment planning. Therefore, developing an automated system for nodule segmentation can enhance user independence and expedite clinical analysis. Unlike fully-supervised learning, weakly-supervised segmentation (WSS) can streamline the laborious and intricate annotation process. However, current WSS methods face challenges in achieving precise nodule segmentation, as many of them depend on inaccurate activation maps or inefficient pseudo-mask generation algorithms. In this study, we introduce a novel multi-agent reinforcement learning-based WSS framework called Flip Learning, which relies solely on 2D/3D boxes for accurate segmentation. Specifically, multiple agents are employed to erase the target from the box to facilitate classification tag flipping, with the erased region serving as the predicted segmentation mask. The key contributions of this research are as follows: (1) Adoption of a superpixel/supervoxel-based approach to encode the standardized environment, capturing boundary priors and expediting the learning process. (2) Introduction of three meticulously designed rewards, comprising a classification score reward and two intensity distribution rewards, to steer the agents' erasing process precisely, thereby avoiding both under- and over-segmentation. (3) Implementation of a progressive curriculum learning strategy to enable agents to interact with the environment in a progressively challenging manner, thereby enhancing learning efficiency. Extensively validated on the large in-house BUS and ABUS datasets, our Flip Learning method outperforms state-of-the-art WSS methods and foundation models, and achieves comparable performance as fully-supervised learning algorithms.
comment: Accepted by Medical Image Analysis. 24 pages, 13 figures, 20 tabels
♻ ☆ Mitigating Low-Level Visual Hallucinations Requires Self-Awareness: Database, Model and Training Strategy
The rapid development of multimodal large language models has resulted in remarkable advancements in visual perception and understanding, consolidating several tasks into a single visual question-answering framework. However, these models are prone to hallucinations, which limit their reliability as artificial intelligence systems. While this issue is extensively researched in natural language processing and image captioning, there remains a lack of investigation of hallucinations in Low-level Visual Perception and Understanding (HLPU), especially in the context of image quality assessment tasks. We consider that these hallucinations arise from an absence of clear self-awareness within the models. To address this issue, we first introduce the HLPU instruction database, the first instruction database specifically focused on hallucinations in low-level vision tasks. This database contains approximately 200K question-answer pairs and comprises four subsets, each covering different types of instructions. Subsequently, we propose the Self-Awareness Failure Elimination (SAFEQA) model, which utilizes image features, salient region features and quality features to improve the perception and comprehension abilities of the model in low-level vision tasks. Furthermore, we propose the Enhancing Self-Awareness Preference Optimization (ESA-PO) framework to increase the model's awareness of knowledge boundaries, thereby mitigating the incidence of hallucination. Finally, we conduct comprehensive experiments on low-level vision tasks, with the results demonstrating that our proposed method significantly enhances self-awareness of the model in these tasks and reduces hallucinations. Notably, our proposed method improves both accuracy and self-awareness of the proposed model and outperforms close-source models in terms of various evaluation metrics.
♻ ☆ Imitating Radiological Scrolling: A Global-Local Attention Model for 3D Chest CT Volumes Multi-Label Anomaly Classification
The rapid increase in the number of Computed Tomography (CT) scan examinations has created an urgent need for automated tools, such as organ segmentation, anomaly classification, and report generation, to assist radiologists with their growing workload. Multi-label classification of Three-Dimensional (3D) CT scans is a challenging task due to the volumetric nature of the data and the variety of anomalies to be detected. Existing deep learning methods based on Convolutional Neural Networks (CNNs) struggle to capture long-range dependencies effectively, while Vision Transformers require extensive pre-training, posing challenges for practical use. Additionally, these existing methods do not explicitly model the radiologist's navigational behavior while scrolling through CT scan slices, which requires both global context understanding and local detail awareness. In this study, we present CT-Scroll, a novel global-local attention model specifically designed to emulate the scrolling behavior of radiologists during the analysis of 3D CT scans. Our approach is evaluated on two public datasets, demonstrating its efficacy through comprehensive experiments and an ablation study that highlights the contribution of each model component.
comment: 13 pages, 4 figures. Accepted for MIDL 2025
♻ ☆ MAR-3D: Progressive Masked Auto-regressor for High-Resolution 3D Generation CVPR 2025
Recent advances in auto-regressive transformers have revolutionized generative modeling across different domains, from language processing to visual generation, demonstrating remarkable capabilities. However, applying these advances to 3D generation presents three key challenges: the unordered nature of 3D data conflicts with sequential next-token prediction paradigm, conventional vector quantization approaches incur substantial compression loss when applied to 3D meshes, and the lack of efficient scaling strategies for higher resolution latent prediction. To address these challenges, we introduce MAR-3D, which integrates a pyramid variational autoencoder with a cascaded masked auto-regressive transformer (Cascaded MAR) for progressive latent upscaling in the continuous space. Our architecture employs random masking during training and auto-regressive denoising in random order during inference, naturally accommodating the unordered property of 3D latent tokens. Additionally, we propose a cascaded training strategy with condition augmentation that enables efficiently up-scale the latent token resolution with fast convergence. Extensive experiments demonstrate that MAR-3D not only achieves superior performance and generalization capabilities compared to existing methods but also exhibits enhanced scaling capabilities compared to joint distribution modeling approaches (e.g., diffusion transformers).
comment: Accepted to CVPR 2025
♻ ☆ Consistency Trajectory Matching for One-Step Generative Super-Resolution
Current diffusion-based super-resolution (SR) approaches achieve commendable performance at the cost of high inference overhead. Therefore, distillation techniques are utilized to accelerate the multi-step teacher model into one-step student model. Nevertheless, these methods significantly raise training costs and constrain the performance of the student model by the teacher model. To overcome these tough challenges, we propose Consistency Trajectory Matching for Super-Resolution (CTMSR), a distillation-free strategy that is able to generate photo-realistic SR results in one step. Concretely, we first formulate a Probability Flow Ordinary Differential Equation (PF-ODE) trajectory to establish a deterministic mapping from low-resolution (LR) images with noise to high-resolution (HR) images. Then we apply the Consistency Training (CT) strategy to directly learn the mapping in one step, eliminating the necessity of pre-trained diffusion model. To further enhance the performance and better leverage the ground-truth during the training process, we aim to align the distribution of SR results more closely with that of the natural images. To this end, we propose to minimize the discrepancy between their respective PF-ODE trajectories from the LR image distribution by our meticulously designed Distribution Trajectory Matching (DTM) loss, resulting in improved realism of our recovered HR images. Comprehensive experimental results demonstrate that the proposed methods can attain comparable or even superior capabilities on both synthetic and real datasets while maintaining minimal inference latency.
♻ ☆ Recovering Dynamic 3D Sketches from Videos CVPR 2025
Understanding 3D motion from videos presents inherent challenges due to the diverse types of movement, ranging from rigid and deformable objects to articulated structures. To overcome this, we propose Liv3Stroke, a novel approach for abstracting objects in motion with deformable 3D strokes. The detailed movements of an object may be represented by unstructured motion vectors or a set of motion primitives using a pre-defined articulation from a template model. Just as a free-hand sketch can intuitively visualize scenes or intentions with a sparse set of lines, we utilize a set of parametric 3D curves to capture a set of spatially smooth motion elements for general objects with unknown structures. We first extract noisy, 3D point cloud motion guidance from video frames using semantic features, and our approach deforms a set of curves to abstract essential motion features as a set of explicit 3D representations. Such abstraction enables an understanding of prominent components of motions while maintaining robustness to environmental factors. Our approach allows direct analysis of 3D object movements from video, tackling the uncertainty that typically occurs when translating real-world motion into recorded footage. The project page is accessible via: https://jaeah.me/liv3stroke_web
comment: Accepted to CVPR 2025
♻ ☆ Perceptually Accurate 3D Talking Head Generation: New Definitions, Speech-Mesh Representation, and Evaluation Metrics CVPR 2025
Recent advancements in speech-driven 3D talking head generation have made significant progress in lip synchronization. However, existing models still struggle to capture the perceptual alignment between varying speech characteristics and corresponding lip movements. In this work, we claim that three criteria -- Temporal Synchronization, Lip Readability, and Expressiveness -- are crucial for achieving perceptually accurate lip movements. Motivated by our hypothesis that a desirable representation space exists to meet these three criteria, we introduce a speech-mesh synchronized representation that captures intricate correspondences between speech signals and 3D face meshes. We found that our learned representation exhibits desirable characteristics, and we plug it into existing models as a perceptual loss to better align lip movements to the given speech. In addition, we utilize this representation as a perceptual metric and introduce two other physically grounded lip synchronization metrics to assess how well the generated 3D talking heads align with these three criteria. Experiments show that training 3D talking head generation models with our perceptual loss significantly improve all three aspects of perceptually accurate lip synchronization. Codes and datasets are available at https://perceptual-3d-talking-head.github.io/.
comment: CVPR 2025
♻ ☆ Do Multimodal Large Language Models See Like Humans?
Multimodal Large Language Models (MLLMs) have achieved impressive results on various vision tasks, leveraging recent advancements in large language models. However, a critical question remains unaddressed: do MLLMs perceive visual information similarly to humans? Current benchmarks lack the ability to evaluate MLLMs from this perspective. To address this challenge, we introduce HVSBench, a large-scale benchmark designed to assess the alignment between MLLMs and the human visual system (HVS) on fundamental vision tasks that mirror human vision. HVSBench curated over 85K multimodal samples, spanning 13 categories and 5 fields in HVS, including Prominence, Subitizing, Prioritizing, Free-Viewing, and Searching. Extensive experiments demonstrate the effectiveness of our benchmark in providing a comprehensive evaluation of MLLMs. Specifically, we evaluate 13 MLLMs, revealing that even the best models show significant room for improvement, with most achieving only moderate results. Our experiments reveal that HVSBench presents a new and significant challenge for cutting-edge MLLMs. Diverse human participants attained strong performance, significantly outperforming MLLMs, which further underscores the benchmark's high quality. We believe that HVSBench will facilitate research on human-aligned and explainable MLLMs, marking a key step in understanding how MLLMs perceive and process visual information.
comment: Project page: https://jiaying.link/HVSBench/
♻ ☆ Gaga: Group Any Gaussians via 3D-aware Memory Bank
We introduce Gaga, a framework that reconstructs and segments open-world 3D scenes by leveraging inconsistent 2D masks predicted by zero-shot class-agnostic segmentation models. Contrasted to prior 3D scene segmentation approaches that rely on video object tracking or contrastive learning methods, Gaga utilizes spatial information and effectively associates object masks across diverse camera poses through a novel 3D-aware memory bank. By eliminating the assumption of continuous view changes in training images, Gaga demonstrates robustness to variations in camera poses, particularly beneficial for sparsely sampled images, ensuring precise mask label consistency. Furthermore, Gaga accommodates 2D segmentation masks from diverse sources and demonstrates robust performance with different open-world zero-shot class-agnostic segmentation models, significantly enhancing its versatility. Extensive qualitative and quantitative evaluations demonstrate that Gaga performs favorably against state-of-the-art methods, emphasizing its potential for real-world applications such as 3D scene understanding and manipulation.
comment: Project Page: https://weijielyu.github.io/Gaga
♻ ☆ ELIP: Enhanced Visual-Language Foundation Models for Image Retrieval
The objective in this paper is to improve the performance of text-to-image retrieval. To this end, we introduce a new framework that can boost the performance of large-scale pre-trained vision-language models, so that they can be used for text-to-image re-ranking. The approach, Enhanced Language-Image Pre-training (ELIP), uses the text query, via a simple MLP mapping network, to predict a set of visual prompts to condition the ViT image encoding. ELIP can easily be applied to the commonly used CLIP, SigLIP and BLIP-2 networks. To train the architecture with limited computing resources, we develop a 'student friendly' best practice, involving global hard sample mining, and curation of a large-scale dataset. On the evaluation side, we set up two new out-of-distribution (OOD) benchmarks, Occluded COCO and ImageNet-R, to assess the zero-shot generalisation of the models to different domains. The results demonstrate that ELIP significantly boosts CLIP/SigLIP/SigLIP-2 text-to-image retrieval performance and outperforms BLIP-2 on several benchmarks, as well as providing an easy means to adapt to OOD datasets.
♻ ☆ VIA: Unified Spatiotemporal Video Adaptation Framework for Global and Local Video Editing
Video editing serves as a fundamental pillar of digital media, spanning applications in entertainment, education, and professional communication. However, previous methods often overlook the necessity of comprehensively understanding both global and local contexts, leading to inaccurate and inconsistent edits in the spatiotemporal dimension, especially for long videos. In this paper, we introduce VIA, a unified spatiotemporal Video Adaptation framework for global and local video editing, pushing the limits of consistently editing minute-long videos. First, to ensure local consistency within individual frames, we designed test-time editing adaptation to adapt a pre-trained image editing model for improving consistency between potential editing directions and the text instruction, and adapts masked latent variables for precise local control. Furthermore, to maintain global consistency over the video sequence, we introduce spatiotemporal adaptation that recursively gather consistent attention variables in key frames and strategically applies them across the whole sequence to realize the editing effects. Extensive experiments demonstrate that, compared to baseline methods, our VIA approach produces edits that are more faithful to the source videos, more coherent in the spatiotemporal context, and more precise in local control. More importantly, we show that VIA can achieve consistent long video editing in minutes, unlocking the potential for advanced video editing tasks over long video sequences.
comment: 18 pages, 16 figures
♻ ☆ A Survey on Computational Solutions for Reconstructing Complete Objects by Reassembling Their Fractured Parts
Reconstructing a complete object from its parts is a fundamental problem in many scientific domains. The purpose of this article is to provide a systematic survey on this topic. The reassembly problem requires understanding the attributes of individual pieces and establishing matches between different pieces. Many approaches also model priors of the underlying complete object. Existing approaches are tightly connected problems of shape segmentation, shape matching, and learning shape priors. We provide existing algorithms in this context and emphasize their similarities and differences to general-purpose approaches. We also survey the trends from early non-deep learning approaches to more recent deep learning approaches. In addition to algorithms, this survey will also describe existing datasets, open-source software packages, and applications. To the best of our knowledge, this is the first comprehensive survey on this topic in computer graphics.
comment: 36 pages, 22 figures
♻ ☆ OVO-Bench: How Far is Your Video-LLMs from Real-World Online Video Understanding? CVPR 2025
Temporal Awareness, the ability to reason dynamically based on the timestamp when a question is raised, is the key distinction between offline and online video LLMs. Unlike offline models, which rely on complete videos for static, post hoc analysis, online models process video streams incrementally and dynamically adapt their responses based on the timestamp at which the question is posed. Despite its significance, temporal awareness has not been adequately evaluated in existing benchmarks. To fill this gap, we present OVO-Bench (Online-VideO-Benchmark), a novel video benchmark that emphasizes the importance of timestamps for advanced online video understanding capability benchmarking. OVO-Bench evaluates the ability of video LLMs to reason and respond to events occurring at specific timestamps under three distinct scenarios: (1) Backward tracing: trace back to past events to answer the question. (2) Real-time understanding: understand and respond to events as they unfold at the current timestamp. (3) Forward active responding: delay the response until sufficient future information becomes available to answer the question accurately. OVO-Bench comprises 12 tasks, featuring 644 unique videos and approximately human-curated 2,800 fine-grained meta-annotations with precise timestamps. We combine automated generation pipelines with human curation. With these high-quality samples, we further developed an evaluation pipeline to systematically query video LLMs along the video timeline. Evaluations of nine Video-LLMs reveal that, despite advancements on traditional benchmarks, current models struggle with online video understanding, showing a significant gap compared to human agents. We hope OVO-Bench will drive progress in video LLMs and inspire future research in online video reasoning. Our benchmark and code can be accessed at https://github.com/JoeLeelyf/OVO-Bench.
comment: CVPR 2025
♻ ☆ Multi-View and Multi-Scale Alignment for Contrastive Language-Image Pre-training in Mammography
Contrastive Language-Image Pre-training (CLIP) demonstrates strong potential in medical image analysis but requires substantial data and computational resources. Due to these restrictions, existing CLIP applications in medical imaging focus mainly on modalities like chest X-rays that have abundant image-report data available, leaving many other important modalities underexplored. Here, we propose one of the first adaptations of the full CLIP model to mammography, which presents significant challenges due to labeled data scarcity, high-resolution images with small regions of interest, and class-wise imbalance. We first develop a specialized supervision framework for mammography that leverages its multi-view nature. Furthermore, we design a symmetric local alignment module to better focus on detailed features in high-resolution images. Lastly, we incorporate a parameter-efficient fine-tuning approach for large language models pre-trained with medical knowledge to address data limitations. Our multi-view and multi-scale alignment (MaMA) method outperforms state-of-the-art baselines for three different tasks on two large real-world mammography datasets, EMBED and RSNA-Mammo, with only 52% model size compared with the largest baseline. The code is available at https://github.com/XYPB/MaMA
comment: This paper is accepted by IPMI 2025 for Oral Presentation
SlowFast-LLaVA-1.5: A Family of Token-Efficient Video Large Language Models for Long-Form Video Understanding
We introduce SlowFast-LLaVA-1.5 (abbreviated as SF-LLaVA-1.5), a family of video large language models (LLMs) offering a token-efficient solution for long-form video understanding. We incorporate the two-stream SlowFast mechanism into a streamlined training pipeline, and perform joint video-image training on a carefully curated data mixture of only publicly available datasets. Our primary focus is on highly efficient model scales (1B and 3B), demonstrating that even relatively small Video LLMs can achieve state-of-the-art performance on video understanding, meeting the demand for mobile-friendly models. Experimental results demonstrate that SF-LLaVA-1.5 achieves superior performance on a wide range of video and image tasks, with robust results at all model sizes (ranging from 1B to 7B). Notably, SF-LLaVA-1.5 achieves state-of-the-art results in long-form video understanding (e.g., LongVideoBench and MLVU) and excels at small scales across various video benchmarks.
comment: Technical report
♻ ☆ TripoSG: High-Fidelity 3D Shape Synthesis using Large-Scale Rectified Flow Models
Recent advancements in diffusion techniques have propelled image and video generation to unprecedented levels of quality, significantly accelerating the deployment and application of generative AI. However, 3D shape generation technology has so far lagged behind, constrained by limitations in 3D data scale, complexity of 3D data processing, and insufficient exploration of advanced techniques in the 3D domain. Current approaches to 3D shape generation face substantial challenges in terms of output quality, generalization capability, and alignment with input conditions. We present TripoSG, a new streamlined shape diffusion paradigm capable of generating high-fidelity 3D meshes with precise correspondence to input images. Specifically, we propose: 1) A large-scale rectified flow transformer for 3D shape generation, achieving state-of-the-art fidelity through training on extensive, high-quality data. 2) A hybrid supervised training strategy combining SDF, normal, and eikonal losses for 3D VAE, achieving high-quality 3D reconstruction performance. 3) A data processing pipeline to generate 2 million high-quality 3D samples, highlighting the crucial rules for data quality and quantity in training 3D generative models. Through comprehensive experiments, we have validated the effectiveness of each component in our new framework. The seamless integration of these parts has enabled TripoSG to achieve state-of-the-art performance in 3D shape generation. The resulting 3D shapes exhibit enhanced detail due to high-resolution capabilities and demonstrate exceptional fidelity to input images. Moreover, TripoSG demonstrates improved versatility in generating 3D models from diverse image styles and contents, showcasing strong generalization capabilities. To foster progress and innovation in the field of 3D generation, we will make our model publicly available.
♻ ☆ BACON: Improving Clarity of Image Captions via Bag-of-Concept Graphs
Advancements in large Vision-Language Models have brought precise, accurate image captioning, vital for advancing multi-modal image understanding and processing. Yet these captions often carry lengthy, intertwined contexts that are difficult to parse and frequently overlook essential cues, posing a great barrier for models like GroundingDINO and SDXL, which lack the strong text encoding and syntax analysis needed to fully leverage dense captions. To address this, we propose BACON, a prompting method that breaks down VLM-generated captions into disentangled, structured elements such as objects, relationships, styles, and themes. This approach not only minimizes confusion from handling complex contexts but also allows for efficient transfer into a JSON dictionary, enabling models without linguistic processing capabilities to easily access key information. We annotated 100,000 image-caption pairs using BACON with GPT-4V and trained an LLaVA captioner on this dataset, enabling it to produce BACON-style captions without relying on costly GPT-4V. Evaluations of overall quality, precision, and recall-as well as user studies-demonstrate that the resulting caption model consistently outperforms other SOTA VLM models in generating high-quality captions. Besides, we show that BACON-style captions exhibit better clarity when applied to various models, enabling them to accomplish previously unattainable tasks or surpass existing SOTA solutions without training. For example, BACON-style captions help GroundingDINO achieve 1.51x higher recall scores on open-vocabulary object detection tasks compared to leading methods.
♻ ☆ StableMamba: Distillation-free Scaling of Large SSMs for Images and Videos
State-space models (SSMs), exemplified by S4, have introduced a novel context modeling method by integrating state-space techniques into deep learning. However, they struggle with global context modeling due to their data-independent matrices. The Mamba model addressed this with data-dependent variants via the S6 selective-scan algorithm, enhancing context modeling, especially for long sequences. However, Mamba-based architectures are difficult to scale with respect to the number of parameters, which is a major limitation for vision applications. This paper addresses the scalability issue of large SSMs for image classification and action recognition without requiring additional techniques like knowledge distillation. We analyze the distinct characteristics of Mamba-based and Attention-based models, proposing a Mamba-Attention interleaved architecture that enhances scalability, robustness, and performance. We demonstrate that the stable and efficient interleaved architecture resolves the scalability issue of Mamba-based architectures for images and videos and increases robustness to common artifacts like JPEG compression. Our thorough evaluation on the ImageNet-1K, Kinetics-400 and Something-Something-v2 benchmarks demonstrates that our approach improves the accuracy of state-of-the-art Mamba-based architectures by up to $+1.7$.
♻ ☆ Frequency-Controlled Diffusion Model for Versatile Text-Guided Image-to-Image Translation AAAI
Recently, large-scale text-to-image (T2I) diffusion models have emerged as a powerful tool for image-to-image translation (I2I), allowing open-domain image translation via user-provided text prompts. This paper proposes frequency-controlled diffusion model (FCDiffusion), an end-to-end diffusion-based framework that contributes a novel solution to text-guided I2I from a frequency-domain perspective. At the heart of our framework is a feature-space frequency-domain filtering module based on Discrete Cosine Transform, which filters the latent features of the source image in the DCT domain, yielding filtered image features bearing different DCT spectral bands as different control signals to the pre-trained Latent Diffusion Model. We reveal that control signals of different DCT spectral bands bridge the source image and the T2I generated image in different correlations (e.g., style, structure, layout, contour, etc.), and thus enable versatile I2I applications emphasizing different I2I correlations, including style-guided content creation, image semantic manipulation, image scene translation, and image style translation. Different from related approaches, FCDiffusion establishes a unified text-guided I2I framework suitable for diverse image translation tasks simply by switching among different frequency control branches at inference time. The effectiveness and superiority of our method for text-guided I2I are demonstrated with extensive experiments both qualitatively and quantitatively. Our project is publicly available at: https://xianggao1102.github.io/FCDiffusion/.
comment: Proceedings of the 38th AAAI Conference on Artificial Intelligence (AAAI 2024)
♻ ☆ OmniBench: Towards The Future of Universal Omni-Language Models
Recent advancements in multimodal large language models (MLLMs) have focused on integrating multiple modalities, yet their ability to simultaneously process and reason across different inputs remains underexplored. We introduce OmniBench, a novel benchmark designed to evaluate models' ability to recognize, interpret, and reason across visual, acoustic, and textual inputs simultaneously. We define language models capable of such tri-modal processing as omni-language models (OLMs). OmniBench features high-quality human annotations that require integrated understanding across all modalities. Our evaluation reveals that: i) open-source OLMs show significant limitations in instruction-following and reasoning in tri-modal contexts; and ii) most baseline models perform poorly (around 50% accuracy) even with textual alternatives to image/audio inputs. To address these limitations, we develop OmniInstruct, an 96K-sample instruction tuning dataset for training OLMs. We advocate for developing more robust tri-modal integration techniques and training strategies to enhance OLM performance. Codes and data could be found at our repo (https://github.com/multimodal-art-projection/OmniBench).
♻ ☆ Vision language models are blind: Failing to translate detailed visual features into words
While large language models with vision capabilities (VLMs), e.g., GPT-4o and Gemini 1.5 Pro, score high on many vision-understanding benchmarks, they are still struggling with low-level vision tasks that are easy to humans. Specifically, on BlindTest, our suite of 7 very simple tasks, including identifying (a) whether two circles overlap; (b) how many times two lines intersect; (c) which letter is being circled in a word; and (d) the number of circles in an Olympic-like logo, four state-of-the-art VLMs are only 58.07% accurate on average. Claude 3.5 Sonnet performs the best at 77.84% accuracy, far from the human expected accuracy of 100%. Across different image resolutions and line widths, VLMs including slow-thinking models consistently struggle with those tasks that require precise spatial information when geometric primitives overlap or are close. Yet, VLMs perform at near-100% accuracy when much more space is added to separate shapes and letters. Linear probing experiments show that vision encoders contain sufficient visual information to solve BlindTest and that language models fail to decode this information into correct answers. Code and data are at: https://vlmsareblind.github.io
♻ ☆ On the Viability of Semi-Supervised Segmentation Methods for Statistical Shape Modeling
Statistical Shape Models (SSMs) excel at identifying population level anatomical variations, which is at the core of various clinical and biomedical applications, including morphology-based diagnostics and surgical planning. However, the effectiveness of SSM is often constrained by the necessity for expert-driven manual segmentation, a process that is both time-intensive and expensive, thereby restricting their broader application and utility. Recent deep learning approaches enable the direct estimation of Statistical Shape Models (SSMs) from unsegmented images. While these models can predict SSMs without segmentation during deployment, they do not address the challenge of acquiring the manual annotations needed for training, particularly in resource-limited settings. Semi-supervised models for anatomy segmentation can mitigate the annotation burden. Yet, despite the abundance of available approaches, there are no established guidelines to inform end-users on their effectiveness for the downstream task of constructing SSMs. In this study, we systematically evaluate the potential of semi-supervised methods as viable alternatives to manual segmentations for building SSMs. We establish a new performance benchmark by employing various semi-supervised methods for anatomy segmentation under low annotation settings, utilizing the predicted segmentations for the task of SSM. Our results indicate that some methods produce noisy segmentation, which is very unfavorable for SSM tasks, while others can capture the correct modes of variations in the population cohort with 60-80% reduction in required manual annotation
♻ ☆ Self-Contrastive Forward-Forward Algorithm
Agents that operate autonomously benefit from lifelong learning capabilities. However, compatible training algorithms must comply with the decentralized nature of these systems, which imposes constraints on both the parameter counts and the computational resources. The Forward-Forward (FF) algorithm is one of these. FF relies only on feedforward operations, the same used for inference, for optimizing layer-wise objectives. This purely forward approach eliminates the need for transpose operations required in traditional backpropagation. Despite its potential, FF has failed to reach state-of-the-art performance on most standard benchmark tasks, in part due to unreliable negative data generation methods for unsupervised learning. In this work, we propose the Self-Contrastive Forward-Forward (SCFF) algorithm, a competitive training method aimed at closing this performance gap. Inspired by standard self-supervised contrastive learning for vision tasks, SCFF generates positive and negative inputs applicable across various datasets. The method demonstrates superior performance compared to existing unsupervised local learning algorithms on several benchmark datasets, including MNIST, CIFAR-10, STL-10, and Tiny ImageNet. We extend FF's application to training recurrent neural networks, expanding its utility to sequential data tasks. These findings pave the way for high-accuracy, real-time learning on resource-constrained edge devices.
♻ ☆ Layer- and Timestep-Adaptive Differentiable Token Compression Ratios for Efficient Diffusion Transformers CVPR 2025
Diffusion Transformers (DiTs) have achieved state-of-the-art (SOTA) image generation quality but suffer from high latency and memory inefficiency, making them difficult to deploy on resource-constrained devices. One major efficiency bottleneck is that existing DiTs apply equal computation across all regions of an image. However, not all image tokens are equally important, and certain localized areas require more computation, such as objects. To address this, we propose DiffCR, a dynamic DiT inference framework with differentiable compression ratios, which automatically learns to dynamically route computation across layers and timesteps for each image token, resulting in efficient DiTs. Specifically, DiffCR integrates three features: (1) A token-level routing scheme where each DiT layer includes a router that is fine-tuned jointly with model weights to predict token importance scores. In this way, unimportant tokens bypass the entire layer's computation; (2) A layer-wise differentiable ratio mechanism where different DiT layers automatically learn varying compression ratios from a zero initialization, resulting in large compression ratios in redundant layers while others remain less compressed or even uncompressed; (3) A timestep-wise differentiable ratio mechanism where each denoising timestep learns its own compression ratio. The resulting pattern shows higher ratios for noisier timesteps and lower ratios as the image becomes clearer. Extensive experiments on text-to-image and inpainting tasks show that DiffCR effectively captures dynamism across token, layer, and timestep axes, achieving superior trade-offs between generation quality and efficiency compared to prior works. The project website is available at https://www.haoranyou.com/diffcr.
comment: Accepted by CVPR 2025
♻ ☆ Learning Multi-modal Representations by Watching Hundreds of Surgical Video Lectures
Recent advancements in surgical computer vision applications have been driven by vision-only models, which do not explicitly integrate the rich semantics of language into their design. These methods rely on manually annotated surgical videos to predict a fixed set of object categories, limiting their generalizability to unseen surgical procedures and downstream tasks. In this work, we put forward the idea that the surgical video lectures available through open surgical e-learning platforms can provide effective vision and language supervisory signals for multi-modal representation learning without relying on manual annotations. We address the surgery-specific linguistic challenges present in surgical video lectures by employing multiple complementary automatic speech recognition systems to generate text transcriptions. We then present a novel method, SurgVLP - Surgical Vision Language Pre-training, for multi-modal representation learning. Extensive experiments across diverse surgical procedures and tasks demonstrate that the multi-modal representations learned by SurgVLP exhibit strong transferability and adaptability in surgical video analysis. Furthermore, our zero-shot evaluations highlight SurgVLP's potential as a general-purpose foundation model for surgical workflow analysis, reducing the reliance on extensive manual annotations for downstream tasks, and facilitating adaptation methods such as few-shot learning to build a scalable and data-efficient solution for various downstream surgical applications. The [training code](https://github.com/CAMMA-public/SurgVLP) and [weights](https://github.com/CAMMA-public/PeskaVLP) are public.
♻ ☆ GMAI-VL & GMAI-VL-5.5M: A Large Vision-Language Model and A Comprehensive Multimodal Dataset Towards General Medical AI
Despite significant advancements in general AI, its effectiveness in the medical domain is limited by the lack of specialized medical knowledge. To address this, we formulate GMAI-VL-5.5M, a multimodal medical dataset created by converting hundreds of specialized medical datasets with various annotations into high-quality image-text pairs. This dataset offers comprehensive task coverage, diverse modalities, and rich image-text data. Building upon this dataset, we develop GMAI-VL, a general medical vision-language model, with a three-stage training strategy that enhances the integration of visual and textual information. This approach significantly improves the model's ability to process multimodal data, supporting accurate diagnoses and clinical decision-making. Experiments show that GMAI-VL achieves state-of-the-art performance across various multimodal medical tasks, including visual question answering and medical image diagnosis.
♻ ☆ Gaussian Splatting Lucas-Kanade
Gaussian Splatting and its dynamic extensions are effective for reconstructing 3D scenes from 2D images when there is significant camera movement to facilitate motion parallax and when scene objects remain relatively static. However, in many real-world scenarios, these conditions are not met. As a consequence, data-driven semantic and geometric priors have been favored as regularizers, despite their bias toward training data and their neglect of broader movement dynamics. Departing from this practice, we propose a novel analytical approach that adapts the classical Lucas-Kanade method to dynamic Gaussian splatting. By leveraging the intrinsic properties of the forward warp field network, we derive an analytical velocity field that, through time integration, facilitates accurate scene flow computation. This enables the precise enforcement of motion constraints on warp fields, thus constraining both 2D motion and 3D positions of the Gaussians. Our method excels in reconstructing highly dynamic scenes with minimal camera movement, as demonstrated through experiments on both synthetic and real-world scenes.
comment: International Conference on Learning Representations
♻ ☆ Discretized Gaussian Representation for Tomographic Reconstruction
Computed Tomography (CT) is a widely used imaging technique that provides detailed cross-sectional views of objects. Over the past decade, Deep Learning-based Reconstruction (DLR) methods have led efforts to enhance image quality and reduce noise, yet they often require large amounts of data and are computationally intensive. Inspired by recent advancements in scene reconstruction, some approaches have adapted NeRF and 3D Gaussian Splatting (3DGS) techniques for CT reconstruction. However, these methods are not ideal for direct 3D volume reconstruction. In this paper, we propose a novel Discretized Gaussian Representation (DGR) for CT reconstruction, which directly reconstructs the 3D volume using a set of discretized Gaussian functions in an end-to-end manner. To further enhance computational efficiency, we introduce a Fast Volume Reconstruction technique that aggregates the contributions of these Gaussians into a discretized volume in a highly parallelized fashion. Our extensive experiments on both real-world and synthetic datasets demonstrate that DGR achieves superior reconstruction quality and significantly improved computational efficiency compared to existing DLR and instance reconstruction methods. Our code has been provided for review purposes and will be made publicly available upon publication.
♻ ☆ Contextual AD Narration with Interleaved Multimodal Sequence
The Audio Description (AD) task aims to generate descriptions of visual elements for visually impaired individuals to help them access long-form video content, like movies. With video feature, text, character bank and context information as inputs, the generated ADs are able to correspond to the characters by name and provide reasonable, contextual descriptions to help audience understand the storyline of movie. To achieve this goal, we propose to leverage pre-trained foundation models through a simple and unified framework to generate ADs with interleaved multimodal sequence as input, termed as Uni-AD. To enhance the alignment of features across various modalities with finer granularity, we introduce a simple and lightweight module that maps video features into the textual feature space. Moreover, we also propose a character-refinement module to provide more precise information by identifying the main characters who play more significant roles in the video context. With these unique designs, we further incorporate contextual information and a contrastive loss into our architecture to generate smoother and more contextually appropriate ADs. Experiments on multiple AD datasets show that Uni-AD performs well on AD generation, which demonstrates the effectiveness of our approach. Our code is available at: https://github.com/ant-research/UniAD.
♻ ☆ GI-GS: Global Illumination Decomposition on Gaussian Splatting for Inverse Rendering
We present GI-GS, a novel inverse rendering framework that leverages 3D Gaussian Splatting (3DGS) and deferred shading to achieve photo-realistic novel view synthesis and relighting. In inverse rendering, accurately modeling the shading processes of objects is essential for achieving high-fidelity results. Therefore, it is critical to incorporate global illumination to account for indirect lighting that reaches an object after multiple bounces across the scene. Previous 3DGS-based methods have attempted to model indirect lighting by characterizing indirect illumination as learnable lighting volumes or additional attributes of each Gaussian, while using baked occlusion to represent shadow effects. These methods, however, fail to accurately model the complex physical interactions between light and objects, making it impossible to construct realistic indirect illumination during relighting. To address this limitation, we propose to calculate indirect lighting using efficient path tracing with deferred shading. In our framework, we first render a G-buffer to capture the detailed geometry and material properties of the scene. Then, we perform physically-based rendering (PBR) only for direct lighting. With the G-buffer and previous rendering results, the indirect lighting can be calculated through a lightweight path tracing. Our method effectively models indirect lighting under any given lighting conditions, thereby achieving better novel view synthesis and competitive relighting. Quantitative and qualitative results show that our GI-GS outperforms existing baselines in both rendering quality and efficiency.
comment: Camera-ready version. Project page: https://stopaimme.github.io/GI-GS-site/
♻ ☆ Image segmentation of treated and untreated tumor spheroids by Fully Convolutional Networks
Multicellular tumor spheroids (MCTS) are advanced cell culture systems for assessing the impact of combinatorial radio(chemo)therapy. They exhibit therapeutically relevant in-vivo-like characteristics from 3D cell-cell and cell-matrix interactions to radial pathophysiological gradients related to proliferative activity and nutrient/oxygen supply, altering cellular radioresponse. State-of-the-art assays quantify long-term curative endpoints based on collected brightfield image time series from large treated spheroid populations per irradiation dose and treatment arm. Here, spheroid control probabilities are documented analogous to in-vivo tumor control probabilities based on Kaplan-Meier curves. This analyses require laborious spheroid segmentation of up to 100.000 images per treatment arm to extract relevant structural information from the images, e.g., diameter, area, volume and circularity. While several image analysis algorithms are available for spheroid segmentation, they all focus on compact MCTS with clearly distinguishable outer rim throughout growth. However, treated MCTS may partly be detached and destroyed and are usually obscured by dead cell debris. We successfully train two Fully Convolutional Networks, UNet and HRNet, and optimize their hyperparameters to develop an automatic segmentation for both untreated and treated MCTS. We systematically validate the automatic segmentation on larger, independent data sets of spheroids derived from two human head-and-neck cancer cell lines. We find an excellent overlap between manual and automatic segmentation for most images, quantified by Jaccard indices at around 90%. For images with smaller overlap of the segmentations, we demonstrate that this error is comparable to the variations across segmentations from different biological experts, suggesting that these images represent biologically unclear or ambiguous cases.
comment: 30 pages, 23 figures
♻ ☆ TREAD: Token Routing for Efficient Architecture-agnostic Diffusion Training
Diffusion models have emerged as the mainstream approach for visual generation. However, these models typically suffer from sample inefficiency and high training costs. Consequently, methods for efficient finetuning, inference and personalization were quickly adopted by the community. However, training these models in the first place remains very costly. While several recent approaches - including masking, distillation, and architectural modifications - have been proposed to improve training efficiency, each of these methods comes with a tradeoff: they achieve enhanced performance at the expense of increased computational cost or vice versa. In contrast, this work aims to improve training efficiency as well as generative performance at the same time through routes that act as a transport mechanism for randomly selected tokens from early layers to deeper layers of the model. Our method is not limited to the common transformer-based model - it can also be applied to state-space models and achieves this without architectural modifications or additional parameters. Finally, we show that TREAD reduces computational cost and simultaneously boosts model performance on the standard ImageNet-256 benchmark in class-conditional synthesis. Both of these benefits multiply to a convergence speedup of 14x at 400K training iterations compared to DiT and 37x compared to the best benchmark performance of DiT at 7M training iterations. Furthermore, we achieve a competitive FID of 2.09 in a guided and 3.93 in an unguided setting, which improves upon the DiT, without architectural changes.
♻ ☆ Video-Panda: Parameter-efficient Alignment for Encoder-free Video-Language Models CVPR 2025
We present an efficient encoder-free approach for video-language understanding that achieves competitive performance while significantly reducing computational overhead. Current video-language models typically rely on heavyweight image encoders (300M-1.1B parameters) or video encoders (1B-1.4B parameters), creating a substantial computational burden when processing multi-frame videos. Our method introduces a novel Spatio-Temporal Alignment Block (STAB) that directly processes video inputs without requiring pre-trained encoders while using only 45M parameters for visual processing - at least a 6.5$\times$ reduction compared to traditional approaches. The STAB architecture combines Local Spatio-Temporal Encoding for fine-grained feature extraction, efficient spatial downsampling through learned attention and separate mechanisms for modeling frame-level and video-level relationships. Our model achieves comparable or superior performance to encoder-based approaches for open-ended video question answering on standard benchmarks. The fine-grained video question-answering evaluation demonstrates our model's effectiveness, outperforming the encoder-based approaches Video-ChatGPT and Video-LLaVA in key aspects like correctness and temporal understanding. Extensive ablation studies validate our architectural choices and demonstrate the effectiveness of our spatio-temporal modeling approach while achieving 3-4$\times$ faster processing speeds than previous methods. Code is available at https://jh-yi.github.io/Video-Panda.
comment: CVPR 2025 camera-ready version
♻ ☆ Quantization-aware Matrix Factorization for Low Bit Rate Image Compression
Lossy image compression is essential for efficient transmission and storage. Traditional compression methods mainly rely on discrete cosine transform (DCT) or singular value decomposition (SVD), both of which represent image data in continuous domains and, therefore, necessitate carefully designed quantizers. Notably, these methods consider quantization as a separate step, where quantization errors cannot be incorporated into the compression process. The sensitivity of these methods, especially SVD-based ones, to quantization errors significantly degrades reconstruction quality. To address this issue, we introduce a quantization-aware matrix factorization (QMF) to develop a novel lossy image compression method. QMF provides a low-rank representation of the image data as a product of two smaller factor matrices, with elements constrained to bounded integer values, thereby effectively integrating quantization with low-rank approximation. We propose an efficient, provably convergent iterative algorithm for QMF using a block coordinate descent (BCD) scheme, with subproblems having closed-form solutions. Our experiments on the Kodak and CLIC 2024 datasets demonstrate that our QMF compression method consistently outperforms JPEG at low bit rates below 0.25 bits per pixel (bpp) and remains comparable at higher bit rates. We also assessed our method's capability to preserve visual semantics by evaluating an ImageNet pre-trained classifier on compressed images. Remarkably, our method improved top-1 accuracy by over 5 percentage points compared to JPEG at bit rates under 0.25 bpp. The project is available at https://github.com/pashtari/lrf .
comment: 22 pages, 6 figures, 1 table, 1 algorithm
♻ ☆ UAV-DETR: Efficient End-to-End Object Detection for Unmanned Aerial Vehicle Imagery
Unmanned aerial vehicle object detection (UAV-OD) has been widely used in various scenarios. However, most existing UAV-OD algorithms rely on manually designed components, which require extensive tuning. End-to-end models that do not depend on such manually designed components are mainly designed for natural images, which are less effective for UAV imagery. To address such challenges, this paper proposes an efficient detection transformer (DETR) framework tailored for UAV imagery, i.e., UAV-DETR. The framework includes a multi-scale feature fusion with frequency enhancement module, which captures both spatial and frequency information at different scales. In addition, a frequency-focused down-sampling module is presented to retain critical spatial details during down-sampling. A semantic alignment and calibration module is developed to align and fuse features from different fusion paths. Experimental results demonstrate the effectiveness and generalization of our approach across various UAV imagery datasets. On the VisDrone dataset, our method improves AP by 3.1\% and $\text{AP}_{50}$ by 4.2\% over the baseline. Similar enhancements are observed on the UAVVaste dataset. The project page: https://github.com/ValiantDiligent/UAV-DETR
♻ ☆ SegMAN: Omni-scale Context Modeling with State Space Models and Local Attention for Semantic Segmentation CVPR 2025
High-quality semantic segmentation relies on three key capabilities: global context modeling, local detail encoding, and multi-scale feature extraction. However, recent methods struggle to possess all these capabilities simultaneously. Hence, we aim to empower segmentation networks to simultaneously carry out efficient global context modeling, high-quality local detail encoding, and rich multi-scale feature representation for varying input resolutions. In this paper, we introduce SegMAN, a novel linear-time model comprising a hybrid feature encoder dubbed SegMAN Encoder, and a decoder based on state space models. Specifically, the SegMAN Encoder synergistically integrates sliding local attention with dynamic state space models, enabling highly efficient global context modeling while preserving fine-grained local details. Meanwhile, the MMSCopE module in our decoder enhances multi-scale context feature extraction and adaptively scales with the input resolution. Our SegMAN-B Encoder achieves 85.1% ImageNet-1k accuracy (+1.5% over VMamba-S with fewer parameters). When paired with our decoder, the full SegMAN-B model achieves 52.6% mIoU on ADE20K (+1.6% over SegNeXt-L with 15% fewer GFLOPs), 83.8% mIoU on Cityscapes (+2.1% over SegFormer-B3 with half the GFLOPs), and 1.6% higher mIoU than VWFormer-B3 on COCO-Stuff with lower GFLOPs. Our code is available at https://github.com/yunxiangfu2001/SegMAN.
comment: CVPR 2025
♻ ☆ How NeRFs and 3D Gaussian Splatting are Reshaping SLAM: a Survey
Over the past two decades, research in the field of Simultaneous Localization and Mapping (SLAM) has undergone a significant evolution, highlighting its critical role in enabling autonomous exploration of unknown environments. This evolution ranges from hand-crafted methods, through the era of deep learning, to more recent developments focused on Neural Radiance Fields (NeRFs) and 3D Gaussian Splatting (3DGS) representations. Recognizing the growing body of research and the absence of a comprehensive survey on the topic, this paper aims to provide the first comprehensive overview of SLAM progress through the lens of the latest advancements in radiance fields. It sheds light on the background, evolutionary path, inherent strengths and limitations, and serves as a fundamental reference to highlight the dynamic progress and specific challenges.
comment: Updated to November 2024
♻ ☆ Improving Object Detection by Modifying Synthetic Data with Explainable AI
Limited real-world data severely impacts model performance in many computer vision domains, particularly for samples that are underrepresented in training. Synthetically generated images are a promising solution, but 1) it remains unclear how to design synthetic training data to optimally improve model performance (e.g, whether and where to introduce more realism or more abstraction) and 2) the domain expertise, time and effort required from human operators for this design and optimisation process represents a major practical challenge. Here we propose a novel conceptual approach to improve the efficiency of designing synthetic images, by using robust Explainable AI (XAI) techniques to guide a human-in-the-loop process of modifying 3D mesh models used to generate these images. Importantly, this framework allows both modifications that increase and decrease realism in synthetic data, which can both improve model performance. We illustrate this concept using a real-world example where data are sparse; detection of vehicles in infrared imagery. We fine-tune an initial YOLOv8 model on the ATR DSIAC infrared dataset and synthetic images generated from 3D mesh models in the Unity gaming engine, and then use XAI saliency maps to guide modification of our Unity models. We show that synthetic data can improve detection of vehicles in orientations unseen in training by 4.6% (to mAP50 = 94.6%). We further improve performance by an additional 1.5% (to 96.1%) through our new XAI-guided approach, which reduces misclassifications through both increasing and decreasing the realism of different parts of the synthetic data. Our proof-of-concept results pave the way for fine, XAI-controlled curation of synthetic datasets tailored to improve object detection performance, whilst simultaneously reducing the burden on human operators in designing and optimising these datasets.
♻ ☆ Dynamics-Aware Gaussian Splatting Streaming Towards Fast On-the-Fly 4D Reconstruction
The recent development of 3D Gaussian Splatting (3DGS) has led to great interest in 4D dynamic spatial reconstruction. Existing approaches mainly rely on full-length multi-view videos, while there has been limited exploration of online reconstruction methods that enable on-the-fly training and per-timestep streaming. Current 3DGS-based streaming methods treat the Gaussian primitives uniformly and constantly renew the densified Gaussians, thereby overlooking the difference between dynamic and static features as well as neglecting the temporal continuity in the scene. To address these limitations, we propose a novel three-stage pipeline for iterative streamable 4D dynamic spatial reconstruction. Our pipeline comprises a selective inheritance stage to preserve temporal continuity, a dynamics-aware shift stage to distinguish dynamic and static primitives and optimize their movements, and an error-guided densification stage to accommodate emerging objects. Our method achieves state-of-the-art performance in online 4D reconstruction, demonstrating the fastest on-the-fly training, superior representation quality, and real-time rendering capability. Project page: https://www.liuzhening.top/DASS
comment: Project page: https://www.liuzhening.top/DASS
♻ ☆ EventMamba: Enhancing Spatio-Temporal Locality with State Space Models for Event-Based Video Reconstruction
Leveraging its robust linear global modeling capability, Mamba has notably excelled in computer vision. Despite its success, existing Mamba-based vision models have overlooked the nuances of event-driven tasks, especially in video reconstruction. Event-based video reconstruction (EBVR) demands spatial translation invariance and close attention to local event relationships in the spatio-temporal domain. Unfortunately, conventional Mamba algorithms apply static window partitions and standard reshape scanning methods, leading to significant losses in local connectivity. To overcome these limitations, we introduce EventMamba--a specialized model designed for EBVR tasks. EventMamba innovates by incorporating random window offset (RWO) in the spatial domain, moving away from the restrictive fixed partitioning. Additionally, it features a new consistent traversal serialization approach in the spatio-temporal domain, which maintains the proximity of adjacent events both spatially and temporally. These enhancements enable EventMamba to retain Mamba's robust modeling capabilities while significantly preserving the spatio-temporal locality of event data. Comprehensive testing on multiple datasets shows that EventMamba markedly enhances video reconstruction, drastically improving computation speed while delivering superior visual quality compared to Transformer-based methods.
♻ ☆ AnomalyNCD: Towards Novel Anomaly Class Discovery in Industrial Scenarios CVPR2025
Recently, multi-class anomaly classification has garnered increasing attention. Previous methods directly cluster anomalies but often struggle due to the lack of anomaly-prior knowledge. Acquiring this knowledge faces two issues: the non-prominent and weak-semantics anomalies. In this paper, we propose AnomalyNCD, a multi-class anomaly classification network compatible with different anomaly detection methods. To address the non-prominence of anomalies, we design main element binarization (MEBin) to obtain anomaly-centered images, ensuring anomalies are learned while avoiding the impact of incorrect detections. Next, to learn anomalies with weak semantics, we design mask-guided representation learning, which focuses on isolated anomalies guided by masks and reduces confusion from erroneous inputs through corrected pseudo labels. Finally, to enable flexible classification at both region and image levels, we develop a region merging strategy that determines the overall image category based on the classified anomaly regions. Our method outperforms the state-of-the-art works on the MVTec AD and MTD datasets. Compared with the current methods, AnomalyNCD combined with zero-shot anomaly detection method achieves a 10.8% $F_1$ gain, 8.8% NMI gain, and 9.5% ARI gain on MVTec AD, and 12.8% $F_1$ gain, 5.7% NMI gain, and 10.8% ARI gain on MTD. Code is available at https://github.com/HUST-SLOW/AnomalyNCD.
comment: Accepted at CVPR2025
♻ ☆ Training-free Diffusion Acceleration with Bottleneck Sampling
Diffusion models have demonstrated remarkable capabilities in visual content generation but remain challenging to deploy due to their high computational cost during inference. This computational burden primarily arises from the quadratic complexity of self-attention with respect to image or video resolution. While existing acceleration methods often compromise output quality or necessitate costly retraining, we observe that most diffusion models are pre-trained at lower resolutions, presenting an opportunity to exploit these low-resolution priors for more efficient inference without degrading performance. In this work, we introduce Bottleneck Sampling, a training-free framework that leverages low-resolution priors to reduce computational overhead while preserving output fidelity. Bottleneck Sampling follows a high-low-high denoising workflow: it performs high-resolution denoising in the initial and final stages while operating at lower resolutions in intermediate steps. To mitigate aliasing and blurring artifacts, we further refine the resolution transition points and adaptively shift the denoising timesteps at each stage. We evaluate Bottleneck Sampling on both image and video generation tasks, where extensive experiments demonstrate that it accelerates inference by up to 3$\times$ for image generation and 2.5$\times$ for video generation, all while maintaining output quality comparable to the standard full-resolution sampling process across multiple evaluation metrics.
comment: Project Page: https://tyfeld.github.io/BottleneckSampling.github.io/
♻ ☆ Volumetric Surfaces: Representing Fuzzy Geometries with Layered Meshes
High-quality view synthesis relies on volume rendering, splatting, or surface rendering. While surface rendering is typically the fastest, it struggles to accurately model fuzzy geometry like hair. In turn, alpha-blending techniques excel at representing fuzzy materials but require an unbounded number of samples per ray (P1). Further overheads are induced by empty space skipping in volume rendering (P2) and sorting input primitives in splatting (P3). We present a novel representation for real-time view synthesis where the (P1) number of sampling locations is small and bounded, (P2) sampling locations are efficiently found via rasterization, and (P3) rendering is sorting-free. We achieve this by representing objects as semi-transparent multi-layer meshes rendered in a fixed order. First, we model surface layers as signed distance function (SDF) shells with optimal spacing learned during training. Then, we bake them as meshes and fit UV textures. Unlike single-surface methods, our multi-layer representation effectively models fuzzy objects. In contrast to volume and splatting-based methods, our approach enables real-time rendering on low-power laptops and smartphones.
♻ ☆ Video Motion Transfer with Diffusion Transformers CVPR 2025
We propose DiTFlow, a method for transferring the motion of a reference video to a newly synthesized one, designed specifically for Diffusion Transformers (DiT). We first process the reference video with a pre-trained DiT to analyze cross-frame attention maps and extract a patch-wise motion signal called the Attention Motion Flow (AMF). We guide the latent denoising process in an optimization-based, training-free, manner by optimizing latents with our AMF loss to generate videos reproducing the motion of the reference one. We also apply our optimization strategy to transformer positional embeddings, granting us a boost in zero-shot motion transfer capabilities. We evaluate DiTFlow against recently published methods, outperforming all across multiple metrics and human evaluation.
comment: CVPR 2025 - Project page: https://ditflow.github.io/
♻ ☆ LANTERN++: Enhancing Relaxed Speculative Decoding with Static Tree Drafting for Visual Auto-regressive Models ICLR 2025
Speculative decoding has been widely used to accelerate auto-regressive (AR) text generation. However, its effectiveness for visual AR models remains limited due to token selection ambiguity, where multiple tokens share similarly low probabilities and thus reduce acceptance rates. Recently, relaxed speculative decoding with dynamic tree drafting was proposed to mitigate this ambiguity, demonstrating promising results in accelerating visual AR models. However, we observe that token selection ambiguity still negatively affects dynamic tree drafting, resulting in shallow draft trees and limited acceleration. To overcome this issue, we introduce LANTERN++, a refined framework that integrates static tree drafting with a tailored relaxed acceptance condition, allowing drafts to be selected independently of low-confidence predictions. This enables the acceptance of deeper sequences, improving decoding efficiency while preserving image quality. Extensive experiments on state-of-the-art visual AR models demonstrate that LANTERN++ significantly accelerates inference, achieving up to $\mathbf{\times 2.56}$ speedup over standard AR decoding while maintaining high image quality. The code is publicly available at https://github.com/jadohu/LANTERN.
comment: ICLR 2025 Workshop at SCOPE (Oral), 16 pages, 5 figures, short paper (6 pages exclude reference and appendix)
♻ ☆ Rethinking Video Tokenization: A Conditioned Diffusion-based Approach
Existing video tokenizers typically use the traditional Variational Autoencoder (VAE) architecture for video compression and reconstruction. However, to achieve good performance, its training process often relies on complex multi-stage training tricks that go beyond basic reconstruction loss and KL regularization. Among these tricks, the most challenging is the precise tuning of adversarial training with additional Generative Adversarial Networks (GANs) in the final stage, which can hinder stable convergence. In contrast to GANs, diffusion models offer more stable training processes and can generate higher-quality results. Inspired by these advantages, we propose CDT, a novel Conditioned Diffusion-based video Tokenizer, that replaces the GAN-based decoder with a conditional causal diffusion model. The encoder compresses spatio-temporal information into compact latents, while the decoder reconstructs videos through a reverse diffusion process conditioned on these latents. During inference, we incorporate a feature cache mechanism to generate videos of arbitrary length while maintaining temporal continuity and adopt sampling acceleration technique to enhance efficiency. Trained using only a basic MSE diffusion loss for reconstruction, along with KL term and LPIPS perceptual loss from scratch, extensive experiments demonstrate that CDT achieves state-of-the-art performance in video reconstruction tasks with just a single-step sampling. Even a scaled-down version of CDT (3$\times$ inference speedup) still performs comparably with top baselines. Moreover, the latent video generation model trained with CDT also exhibits superior performance. The source code and pretrained weights are available at https://github.com/ali-vilab/CDT.
♻ ☆ Multimodal Feature-Driven Deep Learning for the Prediction of Duck Body Dimensions and Weight
Accurate body dimension and weight measurements are critical for optimizing poultry management, health assessment, and economic efficiency. This study introduces an innovative deep learning-based model leveraging multimodal data-2D RGB images from different views, depth images, and 3D point clouds-for the non-invasive estimation of duck body dimensions and weight. A dataset of 1,023 Linwu ducks, comprising over 5,000 samples with diverse postures and conditions, was collected to support model training. The proposed method innovatively employs PointNet++ to extract key feature points from point clouds, extracts and computes corresponding 3D geometric features, and fuses them with multi-view convolutional 2D features. A Transformer encoder is then utilized to capture long-range dependencies and refine feature interactions, thereby enhancing prediction robustness. The model achieved a mean absolute percentage error (MAPE) of 6.33% and an R2 of 0.953 across eight morphometric parameters, demonstrating strong predictive capability. Unlike conventional manual measurements, the proposed model enables high-precision estimation while eliminating the necessity for physical handling, thereby reducing animal stress and broadening its application scope. This study marks the first application of deep learning techniques to poultry body dimension and weight estimation, providing a valuable reference for the intelligent and precise management of the livestock industry with far-reaching practical significance.
♻ ☆ Temporal-Guided Spiking Neural Networks for Event-Based Human Action Recognition
This paper explores the promising interplay between spiking neural networks (SNNs) and event-based cameras for privacy-preserving human action recognition (HAR). The unique feature of event cameras in capturing only the outlines of motion, combined with SNNs' proficiency in processing spatiotemporal data through spikes, establishes a highly synergistic compatibility for event-based HAR. Previous studies, however, have been limited by SNNs' ability to process long-term temporal information, essential for precise HAR. In this paper, we introduce two novel frameworks to address this: temporal segment-based SNN (\textit{TS-SNN}) and 3D convolutional SNN (\textit{3D-SNN}). The \textit{TS-SNN} extracts long-term temporal information by dividing actions into shorter segments, while the \textit{3D-SNN} replaces 2D spatial elements with 3D components to facilitate the transmission of temporal information. To promote further research in event-based HAR, we create a dataset, \textit{FallingDetection-CeleX}, collected using the high-resolution CeleX-V event camera $(1280 \times 800)$, comprising 7 distinct actions. Extensive experimental results show that our proposed frameworks surpass state-of-the-art SNN methods on our newly collected dataset and three other neuromorphic datasets, showcasing their effectiveness in handling long-range temporal information for event-based HAR.
♻ ☆ FaceID-6M: A Large-Scale, Open-Source FaceID Customization Dataset
Due to the data-driven nature of current face identity (FaceID) customization methods, all state-of-the-art models rely on large-scale datasets containing millions of high-quality text-image pairs for training. However, none of these datasets are publicly available, which restricts transparency and hinders further advancements in the field. To address this issue, in this paper, we collect and release FaceID-6M, the first large-scale, open-source FaceID dataset containing 6 million high-quality text-image pairs. Filtered from LAION-5B \cite{schuhmann2022laion}, FaceID-6M undergoes a rigorous image and text filtering steps to ensure dataset quality, including resolution filtering to maintain high-quality images and faces, face filtering to remove images that lack human faces, and keyword-based strategy to retain descriptions containing human-related terms (e.g., nationality, professions and names). Through these cleaning processes, FaceID-6M provides a high-quality dataset optimized for training powerful FaceID customization models, facilitating advancements in the field by offering an open resource for research and development. We conduct extensive experiments to show the effectiveness of our FaceID-6M, demonstrating that models trained on our FaceID-6M dataset achieve performance that is comparable to, and slightly better than currently available industrial models. Additionally, to support and advance research in the FaceID customization community, we make our code, datasets, and models fully publicly available. Our codes, models, and datasets are available at: https://github.com/ShuheSH/FaceID-6M.
comment: arXiv admin note: text overlap with arXiv:2501.15407
♻ ☆ EnvGS: Modeling View-Dependent Appearance with Environment Gaussian
Reconstructing complex reflections in real-world scenes from 2D images is essential for achieving photorealistic novel view synthesis. Existing methods that utilize environment maps to model reflections from distant lighting often struggle with high-frequency reflection details and fail to account for near-field reflections. In this work, we introduce EnvGS, a novel approach that employs a set of Gaussian primitives as an explicit 3D representation for capturing reflections of environments. These environment Gaussian primitives are incorporated with base Gaussian primitives to model the appearance of the whole scene. To efficiently render these environment Gaussian primitives, we developed a ray-tracing-based renderer that leverages the GPU's RT core for fast rendering. This allows us to jointly optimize our model for high-quality reconstruction while maintaining real-time rendering speeds. Results from multiple real-world and synthetic datasets demonstrate that our method produces significantly more detailed reflections, achieving the best rendering quality in real-time novel view synthesis. The code is available at https://zju3dv.github.io/envgs.
comment: Project page: https://zju3dv.github.io/envgs
♻ ☆ Video-3D LLM: Learning Position-Aware Video Representation for 3D Scene Understanding CVPR 2025
The rapid advancement of Multimodal Large Language Models (MLLMs) has significantly impacted various multimodal tasks. However, these models face challenges in tasks that require spatial understanding within 3D environments. Efforts to enhance MLLMs, such as incorporating point cloud features, have been made, yet a considerable gap remains between the models' learned representations and the inherent complexity of 3D scenes. This discrepancy largely stems from the training of MLLMs on predominantly 2D data, which restricts their effectiveness in comprehending 3D spaces. To address this issue, in this paper, we propose a novel generalist model, i.e., Video-3D LLM, for 3D scene understanding. By treating 3D scenes as dynamic videos and incorporating 3D position encoding into these representations, our Video-3D LLM aligns video representations with real-world spatial contexts more accurately. In addition, we have implemented a maximum coverage sampling technique to optimize the trade-off between computational cost and performance. Extensive experiments demonstrate that our model achieves state-of-the-art performance on several 3D scene understanding benchmarks, including ScanRefer, Multi3DRefer, Scan2Cap, ScanQA, and SQA3D.
comment: Accepted by CVPR 2025
♻ ☆ VIRES: Video Instance Repainting via Sketch and Text Guided Generation
We introduce VIRES, a video instance repainting method with sketch and text guidance, enabling video instance repainting, replacement, generation, and removal. Existing approaches struggle with temporal consistency and accurate alignment with the provided sketch sequence. VIRES leverages the generative priors of text-to-video models to maintain temporal consistency and produce visually pleasing results. We propose the Sequential ControlNet with the standardized self-scaling, which effectively extracts structure layouts and adaptively captures high-contrast sketch details. We further augment the diffusion transformer backbone with the sketch attention to interpret and inject fine-grained sketch semantics. A sketch-aware encoder ensures that repainted results are aligned with the provided sketch sequence. Additionally, we contribute the VireSet, a dataset with detailed annotations tailored for training and evaluating video instance editing methods. Experimental results demonstrate the effectiveness of VIRES, which outperforms state-of-the-art methods in visual quality, temporal consistency, condition alignment, and human ratings. Project page: https://hjzheng.net/projects/VIRES/
♻ ☆ RGB-Th-Bench: A Dense benchmark for Visual-Thermal Understanding of Vision Language Models
We introduce RGB-Th-Bench, the first benchmark designed to evaluate the ability of Vision-Language Models (VLMs) to comprehend RGB-Thermal image pairs. While VLMs have demonstrated remarkable progress in visual reasoning and multimodal understanding, their evaluation has been predominantly limited to RGB-based benchmarks, leaving a critical gap in assessing their capabilities in infrared vision tasks. Existing visible-infrared datasets are either task-specific or lack high-quality annotations necessary for rigorous model evaluation. To address these limitations, RGB-Th-Bench provides a comprehensive evaluation framework covering 14 distinct skill dimensions, with a total of 1,600+ expert-annotated Yes/No questions. The benchmark employs two accuracy metrics: a standard question-level accuracy and a stricter skill-level accuracy, which evaluates model robustness across multiple questions within each skill dimension. This design ensures a thorough assessment of model performance, including resilience to adversarial and hallucinated responses. We conduct extensive evaluations on 19 state-of-the-art VLMs, revealing significant performance gaps in RGB-Thermal understanding. Our results show that even the strongest models struggle with thermal image comprehension, with performance heavily constrained by their RGB-based capabilities. Additionally, the lack of large-scale application-specific and expert-annotated thermal-caption-pair datasets in pre-training is an important reason of the observed performance gap. RGB-Th-Bench highlights the urgent need for further advancements in multimodal learning to bridge the gap between visible and thermal image understanding. The dataset is available through this link, and the evaluation code will also be made publicly available.
♻ ☆ Beyond [cls]: Exploring the true potential of Masked Image Modeling representations
Masked Image Modeling (MIM) has emerged as a promising approach for Self-Supervised Learning (SSL) of visual representations. However, the out-of-the-box performance of MIMs is typically inferior to competing approaches. Most users cannot afford fine-tuning due to the need for large amounts of data, high GPU consumption, and specialized user knowledge. Therefore, the practical use of MIM representations is limited. In this paper we ask what is the reason for the poor out-of-the-box performance of MIMs. Is it due to weaker features produced by MIM models, or is it due to suboptimal usage? Through detailed analysis, we show that attention in MIMs is spread almost uniformly over many patches, leading to ineffective aggregation by the [cls] token. Based on this insight, we propose Selective Aggregation to better capture the rich semantic information retained in patch tokens, which significantly improves the out-of-the-box performance of MIM.
♻ ☆ Structure Modeling Activation Free Fourier Network for Spacecraft Image Denoising
Spacecraft image denoising is a crucial fundamental technology closely related to aerospace research. However, the existing deep learning-based image denoising methods are primarily designed for natural image and fail to adequately consider the characteristics of spacecraft image(e.g. low-light conditions, repetitive periodic structures), resulting in suboptimal performance in the spacecraft image denoising task. To address the aforementioned problems, we propose a Structure modeling Activation Free Fourier Network (SAFFN), which is an efficient spacecraft image denoising method including Structure Modeling Block (SMB) and Activation Free Fourier Block (AFFB). We present SMB to effectively extract edge information and model the structure for better identification of spacecraft components from dark regions in spacecraft noise image. We present AFFB and utilize an improved Fast Fourier block to extract repetitive periodic features and long-range information in noisy spacecraft image. Extensive experimental results demonstrate that our SAFFN performs competitively compared to the state-of-the-art methods on spacecraft noise image datasets. The codes are available at: https://github.com/shenduke/SAFFN.
♻ ☆ ReCap: Better Gaussian Relighting with Cross-Environment Captures
Accurate 3D objects relighting in diverse unseen environments is crucial for realistic virtual object placement. Due to the albedo-lighting ambiguity, existing methods often fall short in producing faithful relights. Without proper constraints, observed training views can be explained by numerous combinations of lighting and material attributes, lacking physical correspondence with the actual environment maps used for relighting. In this work, we present ReCap, treating cross-environment captures as multi-task target to provide the missing supervision that cuts through the entanglement. Specifically, ReCap jointly optimizes multiple lighting representations that share a common set of material attributes. This naturally harmonizes a coherent set of lighting representations around the mutual material attributes, exploiting commonalities and differences across varied object appearances. Such coherence enables physically sound lighting reconstruction and robust material estimation - both essential for accurate relighting. Together with a streamlined shading function and effective post-processing, ReCap outperforms all leading competitors on an expanded relighting benchmark.
♻ ☆ Mapping fMRI Signal and Image Stimuli in an Artificial Neural Network Latent Space: Bringing Artificial and Natural Minds Together
The goal of this study is to investigate whether latent space representations of visual stimuli and fMRI data share common information. Decoding and reconstructing stimuli from fMRI data remains a challenge in AI and neuroscience, with significant implications for understanding neural representations and improving the interpretability of Artificial Neural Networks (ANNs). In this preliminary study, we investigate the feasibility of such reconstruction by examining the similarity between the latent spaces of one autoencoder (AE) and one vision transformer (ViT) trained on fMRI and image data, respectively. Using representational similarity analysis (RSA), we found that the latent spaces of the two domains appear different. However, these initial findings are inconclusive, and further research is needed to explore this relationship more thoroughly.
comment: 4 pages, 3 figures
♻ ☆ What Do You See? Enhancing Zero-Shot Image Classification with Multimodal Large Language Models
Large language models (LLMs) have been effectively used for many computer vision tasks, including image classification. In this paper, we present a simple yet effective approach for zero-shot image classification using multimodal LLMs. Using multimodal LLMs, we generate comprehensive textual representations from input images. These textual representations are then utilized to generate fixed-dimensional features in a cross-modal embedding space. Subsequently, these features are fused together to perform zero-shot classification using a linear classifier. Our method does not require prompt engineering for each dataset; instead, we use a single, straightforward set of prompts across all datasets. We evaluated our method on several datasets and our results demonstrate its remarkable effectiveness, surpassing benchmark accuracy on multiple datasets. On average, for ten benchmarks, our method achieved an accuracy gain of 6.2 percentage points, with an increase of 6.8 percentage points on the ImageNet dataset, compared to prior methods re-evaluated with the same setup. Our findings highlight the potential of multimodal LLMs to enhance computer vision tasks such as zero-shot image classification, offering a significant improvement over traditional methods.
♻ ☆ LongViTU: Instruction Tuning for Long-Form Video Understanding
This paper introduces LongViTU, a large-scale (~121k QA pairs, ~900h videos), automatically generated dataset for long-form video understanding. We propose a systematic approach that organizes videos into a hierarchical tree structure for QA generation and incorporates self-revision mechanisms to ensure high-quality QA pairs. Each QA pair in LongViTU features: 1) long-term context (average certificate length of 4.6 minutes); 2) rich knowledge and condensed reasoning (commonsense, causality, planning, etc.)). We also offer explicit timestamp annotations of relevant events for each QA pair. We have conducted extensive human studies on LongViTU, and the results prove the quality of our dataset. To better evaluate the challenges posed by LongViTU's emphasis on long-term context and condensed reasoning, we manually curate a subset of LongViTU into a benchmark. Evaluations using a state-of-the-art open-source model (LongVU), a proprietary model (Gemini-1.5-Pro), and human annotators yield GPT-4 scores of 49.9, 52.3, and 81.0, respectively, underscoring the substantial difficulty presented by LongViTU questions. Performing supervised fine-tuning (SFT) of LongVU and LLaVA-Video on LongViTU data results in average performance gains of 2.5% and 3.7%, respectively, across a suite of long video understanding benchmarks (EgoSchema, VideoMME-Long, MLVU, LVBench).
♻ ☆ Generalizable Prompt Learning of CLIP: A Brief Overview
Existing vision-language models (VLMs) such as CLIP have showcased an impressive capability to generalize well across various downstream tasks. These models leverage the synergy between visual and textual information, enabling them to understand and reason about the content present in images and text in a unified manner. This article provides a brief overview of CLIP based on few-shot prompt learning, including experimental data and technical characteristics of some methods. The purpose of this review is to provide a reference for researchers who have just started their research in generalizable prompting of CLIP through few-shot training for classification across 15 datasets and also to facilitate the integration of this field by researchers in other downstream tasks.
♻ ☆ Leveraging Textual Anatomical Knowledge for Class-Imbalanced Semi-Supervised Multi-Organ Segmentation
Annotating 3D medical images demands substantial time and expertise, driving the adoption of semi-supervised learning (SSL) for segmentation tasks. However, the complex anatomical structures of organs often lead to significant class imbalances, posing major challenges for deploying SSL in real-world scenarios. Despite the availability of valuable prior information, such as inter-organ relative positions and organ shape priors, existing SSL methods have yet to fully leverage these insights. To address this gap, we propose a novel approach that integrates textual anatomical knowledge (TAK) into the segmentation model. Specifically, we use GPT-4o to generate textual descriptions of anatomical priors, which are then encoded using a CLIP-based model. These encoded priors are injected into the segmentation model as parameters of the segmentation head. Additionally, contrastive learning is employed to enhance the alignment between textual priors and visual features. Extensive experiments demonstrate the superior performance of our method, significantly surpassing state-of-the-art approaches. The source code will be available at: https://github.com/Lunn88/TAK-Semi.
comment: 11 pages
♻ ☆ OmniSplat: Taming Feed-Forward 3D Gaussian Splatting for Omnidirectional Images with Editable Capabilities
Feed-forward 3D Gaussian splatting (3DGS) models have gained significant popularity due to their ability to generate scenes immediately without needing per-scene optimization. Although omnidirectional images are becoming more popular since they reduce the computation required for image stitching to composite a holistic scene, existing feed-forward models are only designed for perspective images. The unique optical properties of omnidirectional images make it difficult for feature encoders to correctly understand the context of the image and make the Gaussian non-uniform in space, which hinders the image quality synthesized from novel views. We propose OmniSplat, a training-free fast feed-forward 3DGS generation framework for omnidirectional images. We adopt a Yin-Yang grid and decompose images based on it to reduce the domain gap between omnidirectional and perspective images. The Yin-Yang grid can use the existing CNN structure as it is, but its quasi-uniform characteristic allows the decomposed image to be similar to a perspective image, so it can exploit the strong prior knowledge of the learned feed-forward network. OmniSplat demonstrates higher reconstruction accuracy than existing feed-forward networks trained on perspective images. Our project page is available on: https://robot0321.github.io/omnisplat/index.html.
♻ ☆ MAP-based Problem-Agnostic diffusion model for Inverse Problems
Diffusion models have indeed shown great promise in solving inverse problems in image processing. In this paper, we propose a novel, problem-agnostic diffusion model called the maximum a posteriori (MAP)-based guided term estimation method for inverse problems. To leverage unconditionally pretrained diffusion models to address conditional generation tasks, we divide the conditional score function into two terms according to Bayes' rule: an unconditional score function (approximated by a pretrained score network) and a guided term, which is estimated using a novel MAP-based method that incorporates a Gaussian-type prior of natural images. This innovation allows us to better capture the intrinsic properties of the data, leading to improved performance. Numerical results demonstrate that our method preserves contents more effectively compared to state-of-the-art methods--for example, maintaining the structure of glasses in super-resolution tasks and producing more coherent results in the neighborhood of masked regions during inpainting.
comment: 17 pages, 10 figures
♻ ☆ Self-Expansion of Pre-trained Models with Mixture of Adapters for Continual Learning
Continual learning (CL) aims to continually accumulate knowledge from a non-stationary data stream without catastrophic forgetting of learned knowledge, requiring a balance between stability and adaptability. Relying on the generalizable representation in pre-trained models (PTMs), PTM-based CL methods perform effective continual adaptation on downstream tasks by adding learnable adapters or prompts upon the frozen PTMs. However, many existing PTM-based CL methods use restricted adaptation on a fixed set of these modules to avoid forgetting, suffering from limited CL ability. Periodically adding task-specific modules results in linear model growth rate and impaired knowledge reuse. We propose Self-Expansion of pre-trained models with Modularized Adaptation (SEMA), a novel approach to enhance the control of stability-plasticity balance in PTM-based CL. SEMA automatically decides to reuse or add adapter modules on demand in CL, depending on whether significant distribution shift that cannot be handled is detected at different representation levels. We design modular adapter consisting of a functional adapter and a representation descriptor. The representation descriptors are trained as a distribution shift indicator and used to trigger self-expansion signals. For better composing the adapters, an expandable weighting router is learned jointly for mixture of adapter outputs. SEMA enables better knowledge reuse and sub-linear expansion rate. Extensive experiments demonstrate the effectiveness of the proposed self-expansion method, achieving state-of-the-art performance compared to PTM-based CL methods without memory rehearsal. Code is available at https://github.com/huiyiwang01/SEMA-CL.
comment: Code available at https: https://github.com/huiyiwang01/SEMA-CL
♻ ☆ SimROD: A Simple Baseline for Raw Object Detection with Global and Local Enhancements
Most visual models are designed for sRGB images, yet RAW data offers significant advantages for object detection by preserving sensor information before ISP processing. This enables improved detection accuracy and more efficient hardware designs by bypassing the ISP. However, RAW object detection is challenging due to limited training data, unbalanced pixel distributions, and sensor noise. To address this, we propose SimROD, a lightweight and effective approach for RAW object detection. We introduce a Global Gamma Enhancement (GGE) module, which applies a learnable global gamma transformation with only four parameters, improving feature representation while keeping the model efficient. Additionally, we leverage the green channel's richer signal to enhance local details, aligning with the human eye's sensitivity and Bayer filter design. Extensive experiments on multiple RAW object detection datasets and detectors demonstrate that SimROD outperforms state-of-the-art methods like RAW-Adapter and DIAP while maintaining efficiency. Our work highlights the potential of RAW data for real-world object detection. Code is available at https://ocean146.github.io/SimROD2025/.
comment: Code is available at https://ocean146.github.io/SimROD2025/
♻ ☆ ATM: Improving Model Merging by Alternating Tuning and Merging
Model merging has recently emerged as a cost-efficient paradigm for multi-task learning. Among current approaches, task arithmetic stands out for its simplicity and effectiveness. In this paper, we motivate the effectiveness of task vectors by linking them to multi-task gradients. We show that in a single-epoch scenario, if the optimization is performed via gradient descent, task vectors are after one step mathematically equivalent to the gradients obtained via gradient descent in a multi-task setting, and still approximate these gradients in subsequent epochs. Furthermore, we show that the effectiveness of task vectors is largely driven by the first epoch's gradient. Given this parallel between task vectors and gradients, we propose viewing model merging as a single step in an iterative process that alternates between tuning and merging (ATM). We then propose two ways to utilize ATM. The first is to replace multi-task learning with ATM in scenarios where data sharing is prohibited, such as federated learning. The second is to improve the outcome of any model merging algorithm by applying a few post-hoc iterations of ATM on a small validation dataset, which is commonly available for hyperparameter tuning. Finally, we provide both empirical and theoretical support for the effectiveness of ATM, demonstrating that it minimizes an upper bound on the loss obtained by jointly finetuning all tasks.
comment: Main paper: 9 Pages, 9 figures, 1 table
♻ ☆ GMTalker: Gaussian Mixture-based Audio-Driven Emotional Talking Video Portraits
Synthesizing high-fidelity and emotion-controllable talking video portraits, with audio-lip sync, vivid expressions, realistic head poses, and eye blinks, has been an important and challenging task in recent years. Most existing methods suffer in achieving personalized and precise emotion control, smooth transitions between different emotion states, and the generation of diverse motions. To tackle these challenges, we present GMTalker, a Gaussian mixture-based emotional talking portraits generation framework. Specifically, we propose a Gaussian mixture-based expression generator that can construct a continuous and disentangled latent space, achieving more flexible emotion manipulation. Furthermore, we introduce a normalizing flow-based motion generator pretrained on a large dataset with a wide-range motion to generate diverse head poses, blinks, and eyeball movements. Finally, we propose a personalized emotion-guided head generator with an emotion mapping network that can synthesize high-fidelity and faithful emotional video portraits. Both quantitative and qualitative experiments demonstrate our method outperforms previous methods in image quality, photo-realism, emotion accuracy, and motion diversity.
comment: Project page: https://bob35buaa.github.io/GMTalker. This work has been submitted to the IEEE journal for possible publication
♻ ☆ Feedback-driven object detection and iterative model improvement
Automated object detection has become increasingly valuable across diverse applications, yet efficient, high-quality annotation remains a persistent challenge. In this paper, we present the development and evaluation of a platform designed to interactively improve object detection models. The platform allows uploading and annotating images as well as fine-tuning object detection models. Users can then manually review and refine annotations, further creating improved snapshots that are used for automatic object detection on subsequent image uploads - a process we refer to as semi-automatic annotation resulting in a significant gain in annotation efficiency. Whereas iterative refinement of model results to speed up annotation has become common practice, we are the first to quantitatively evaluate its benefits with respect to time, effort, and interaction savings. Our experimental results show clear evidence for a significant time reduction of up to 53% for semi-automatic compared to manual annotation. Importantly, these efficiency gains did not compromise annotation quality, while matching or occasionally even exceeding the accuracy of manual annotations. These findings demonstrate the potential of our lightweight annotation platform for creating high-quality object detection datasets and provide best practices to guide future development of annotation platforms. The platform is open-source, with the frontend and backend repositories available on GitHub. To support the understanding of our labeling process, we have created an explanatory video demonstrating the methodology using microscopy images of E. coli bacteria as an example.
comment: Code: https://github.com/ml-lab-htw/iterative-annotate Video: https://www.youtube.com/watch?v=CM9uhE8NN5E
♻ ☆ Not Just Object, But State: Compositional Incremental Learning without Forgetting NeurIPS 2024
Most incremental learners excessively prioritize coarse classes of objects while neglecting various kinds of states (e.g. color and material) attached to the objects. As a result, they are limited in the ability to reason fine-grained compositionality of state-object pairs. To remedy this limitation, we propose a novel task called Compositional Incremental Learning (composition-IL), enabling the model to recognize state-object compositions as a whole in an incremental learning fashion. Since the lack of suitable benchmarks, we re-organize two existing datasets and make them tailored for composition-IL. Then, we propose a prompt-based Composition Incremental Learner (CompILer), to overcome the ambiguous composition boundary problem which challenges composition-IL largely. Specifically, we exploit multi-pool prompt learning, which is regularized by inter-pool prompt discrepancy and intra-pool prompt diversity. Besides, we devise object-injected state prompting by using object prompts to guide the selection of state prompts. Furthermore, we fuse the selected prompts by a generalized-mean strategy, to eliminate irrelevant information learned in the prompts. Extensive experiments on two datasets exhibit state-of-the-art performance achieved by CompILer.
comment: NeurIPS 2024
♻ ☆ Event-boosted Deformable 3D Gaussians for Dynamic Scene Reconstruction
Deformable 3D Gaussian Splatting (3D-GS) is limited by missing intermediate motion information due to the low temporal resolution of RGB cameras. To address this, we introduce the first approach combining event cameras, which capture high-temporal-resolution, continuous motion data, with deformable 3D-GS for dynamic scene reconstruction. We observe that threshold modeling for events plays a crucial role in achieving high-quality reconstruction. Therefore, we propose a GS-Threshold Joint Modeling strategy, creating a mutually reinforcing process that greatly improves both 3D reconstruction and threshold modeling. Moreover, we introduce a Dynamic-Static Decomposition strategy that first identifies dynamic areas by exploiting the inability of static Gaussians to represent motions, then applies a buffer-based soft decomposition to separate dynamic and static areas. This strategy accelerates rendering by avoiding unnecessary deformation in static areas, and focuses on dynamic areas to enhance fidelity. Additionally, we contribute the first event-inclusive 4D benchmark with synthetic and real-world dynamic scenes, on which our method achieves state-of-the-art performance.
♻ ☆ MESA: Effective Matching Redundancy Reduction by Semantic Area Segmentation
We propose MESA and DMESA as novel feature matching methods, which utilize Segment Anything Model (SAM) to effectively mitigate matching redundancy. The key insight of our methods is to establish implicit-semantic area matching prior to point matching, based on advanced image understanding of SAM. Then, informative area matches with consistent internal semantic are able to undergo dense feature comparison, facilitating precise inside-area point matching. Specifically, MESA adopts a sparse matching framework and first obtains candidate areas from SAM results through a novel Area Graph (AG). Then, area matching among the candidates is formulated as graph energy minimization and solved by graphical models derived from AG. To address the efficiency issue of MESA, we further propose DMESA as its dense counterpart, applying a dense matching framework. After candidate areas are identified by AG, DMESA establishes area matches through generating dense matching distributions. The distributions are produced from off-the-shelf patch matching utilizing the Gaussian Mixture Model and refined via the Expectation Maximization. With less repetitive computation, DMESA showcases a speed improvement of nearly five times compared to MESA, while maintaining competitive accuracy. Our methods are extensively evaluated on five datasets encompassing indoor and outdoor scenes. The results illustrate consistent performance improvements from our methods for five distinct point matching baselines across all datasets. Furthermore, our methods exhibit promise generalization and improved robustness against image resolution variations. The code is publicly available at https://github.com/Easonyesheng/A2PM-MESA.
comment: 18pages+suppl
Artificial Intelligence 181
☆ StyleMotif: Multi-Modal Motion Stylization using Style-Content Cross Fusion
We present StyleMotif, a novel Stylized Motion Latent Diffusion model, generating motion conditioned on both content and style from multiple modalities. Unlike existing approaches that either focus on generating diverse motion content or transferring style from sequences, StyleMotif seamlessly synthesizes motion across a wide range of content while incorporating stylistic cues from multi-modal inputs, including motion, text, image, video, and audio. To achieve this, we introduce a style-content cross fusion mechanism and align a style encoder with a pre-trained multi-modal model, ensuring that the generated motion accurately captures the reference style while preserving realism. Extensive experiments demonstrate that our framework surpasses existing methods in stylized motion generation and exhibits emergent capabilities for multi-modal motion stylization, enabling more nuanced motion synthesis. Source code and pre-trained models will be released upon acceptance. Project Page: https://stylemotif.github.io
comment: Project Page: https://stylemotif.github.io
☆ Stable-SCore: A Stable Registration-based Framework for 3D Shape Correspondence CVPR 2025
Establishing character shape correspondence is a critical and fundamental task in computer vision and graphics, with diverse applications including re-topology, attribute transfer, and shape interpolation. Current dominant functional map methods, while effective in controlled scenarios, struggle in real situations with more complex challenges such as non-isometric shape discrepancies. In response, we revisit registration-for-correspondence methods and tap their potential for more stable shape correspondence estimation. To overcome their common issues including unstable deformations and the necessity for careful pre-alignment or high-quality initial 3D correspondences, we introduce Stable-SCore: A Stable Registration-based Framework for 3D Shape Correspondence. We first re-purpose a foundation model for 2D character correspondence that ensures reliable and stable 2D mappings. Crucially, we propose a novel Semantic Flow Guided Registration approach that leverages 2D correspondence to guide mesh deformations. Our framework significantly surpasses existing methods in challenging scenarios, and brings possibilities for a wide array of real applications, as demonstrated in our results.
comment: Accepted by CVPR 2025. Homepage: https://haolinliu97.github.io/Stable-Score/
☆ Uni4D: Unifying Visual Foundation Models for 4D Modeling from a Single Video CVPR 2025
This paper presents a unified approach to understanding dynamic scenes from casual videos. Large pretrained vision foundation models, such as vision-language, video depth prediction, motion tracking, and segmentation models, offer promising capabilities. However, training a single model for comprehensive 4D understanding remains challenging. We introduce Uni4D, a multi-stage optimization framework that harnesses multiple pretrained models to advance dynamic 3D modeling, including static/dynamic reconstruction, camera pose estimation, and dense 3D motion tracking. Our results show state-of-the-art performance in dynamic 4D modeling with superior visual quality. Notably, Uni4D requires no retraining or fine-tuning, highlighting the effectiveness of repurposing visual foundation models for 4D understanding.
comment: CVPR 2025. Project page (with code): https://davidyao99.github.io/uni4d
☆ Fwd2Bot: LVLM Visual Token Compression with Double Forward Bottleneck
In this work, we aim to compress the vision tokens of a Large Vision Language Model (LVLM) into a representation that is simultaneously suitable for (a) generative and (b) discriminative tasks, (c) is nearly lossless, and (d) is storage-efficient. We propose a novel compression approach, called Fwd2Bot, that uses the LVLM itself to compress the visual information in a task-agnostic manner. At the core of Fwd2bot there exists a "double-forward pass" training strategy, whereby, during the first forward pass, the LLM (of the LVLM) creates a bottleneck by condensing the visual information into a small number of summary tokens. Then, using the same LLM, the second forward pass processes the language instruction(s) alongside the summary tokens, used as a direct replacement for the image ones. The training signal is provided by two losses: an autoregressive one applied after the second pass that provides a direct optimization objective for compression, and a contrastive loss, applied after the first pass, that further boosts the representation strength, especially for discriminative tasks. The training is further enhanced by stage-specific adapters. We accompany the proposed method by an in-depth ablation study. Overall, Fwd2Bot results in highly-informative compressed representations suitable for both generative and discriminative tasks. For generative tasks, we offer a 2x higher compression rate without compromising the generative capabilities, setting a new state-of-the-art result. For discriminative tasks, we set a new state-of-the-art on image retrieval and compositionality.
☆ CTRL-O: Language-Controllable Object-Centric Visual Representation Learning CVPR 2025
Object-centric representation learning aims to decompose visual scenes into fixed-size vectors called "slots" or "object files", where each slot captures a distinct object. Current state-of-the-art object-centric models have shown remarkable success in object discovery in diverse domains, including complex real-world scenes. However, these models suffer from a key limitation: they lack controllability. Specifically, current object-centric models learn representations based on their preconceived understanding of objects, without allowing user input to guide which objects are represented. Introducing controllability into object-centric models could unlock a range of useful capabilities, such as the ability to extract instance-specific representations from a scene. In this work, we propose a novel approach for user-directed control over slot representations by conditioning slots on language descriptions. The proposed ConTRoLlable Object-centric representation learning approach, which we term CTRL-O, achieves targeted object-language binding in complex real-world scenes without requiring mask supervision. Next, we apply these controllable slot representations on two downstream vision language tasks: text-to-image generation and visual question answering. The proposed approach enables instance-specific text-to-image generation and also achieves strong performance on visual question answering.
comment: Accepted at CVPR 2025
☆ GateLens: A Reasoning-Enhanced LLM Agent for Automotive Software Release Analytics
Ensuring the reliability and effectiveness of software release decisions is critical, particularly in safety-critical domains like automotive systems. Precise analysis of release validation data, often presented in tabular form, plays a pivotal role in this process. However, traditional methods that rely on manual analysis of extensive test datasets and validation metrics are prone to delays and high costs. Large Language Models (LLMs) offer a promising alternative but face challenges in analytical reasoning, contextual understanding, handling out-of-scope queries, and processing structured test data consistently; limitations that hinder their direct application in safety-critical scenarios. This paper introduces GateLens, an LLM-based tool for analyzing tabular data in the automotive domain. GateLens translates natural language queries into Relational Algebra (RA) expressions and then generates optimized Python code. It outperforms the baseline system on benchmarking datasets, achieving higher F1 scores and handling complex and ambiguous queries with greater robustness. Ablation studies confirm the critical role of the RA module, with performance dropping sharply when omitted. Industrial evaluations reveal that GateLens reduces analysis time by over 80% while maintaining high accuracy and reliability. As demonstrated by presented results, GateLens achieved high performance without relying on few-shot examples, showcasing strong generalization across various query types from diverse company roles. Insights from deploying GateLens with a partner automotive company offer practical guidance for integrating AI into critical workflows such as release validation. Results show that by automating test result analysis, GateLens enables faster, more informed, and dependable release decisions, and can thus advance software scalability and reliability in automotive systems.
☆ ReaRAG: Knowledge-guided Reasoning Enhances Factuality of Large Reasoning Models with Iterative Retrieval Augmented Generation
Large Reasoning Models (LRMs) exhibit remarkable reasoning abilities but rely primarily on parametric knowledge, limiting factual accuracy. While recent works equip reinforcement learning (RL)-based LRMs with retrieval capabilities, they suffer from overthinking and lack robustness in reasoning, reducing their effectiveness in question answering (QA) tasks. To address this, we propose ReaRAG, a factuality-enhanced reasoning model that explores diverse queries without excessive iterations. Our solution includes a novel data construction framework with an upper bound on the reasoning chain length. Specifically, we first leverage an LRM to generate deliberate thinking, then select an action from a predefined action space (Search and Finish). For Search action, a query is executed against the RAG engine, where the result is returned as observation to guide reasoning steps later. This process iterates until a Finish action is chosen. Benefiting from ReaRAG's strong reasoning capabilities, our approach outperforms existing baselines on multi-hop QA. Further analysis highlights its strong reflective ability to recognize errors and refine its reasoning trajectory. Our study enhances LRMs' factuality while effectively integrating robust reasoning for Retrieval-Augmented Generation (RAG).
☆ Collab: Controlled Decoding using Mixture of Agents for LLM Alignment ICLR 2025
Alignment of Large Language models (LLMs) is crucial for safe and trustworthy deployment in applications. Reinforcement learning from human feedback (RLHF) has emerged as an effective technique to align LLMs to human preferences and broader utilities, but it requires updating billions of model parameters, which is computationally expensive. Controlled Decoding, by contrast, provides a mechanism for aligning a model at inference time without retraining. However, single-agent decoding approaches often struggle to adapt to diverse tasks due to the complexity and variability inherent in these tasks. To strengthen the test-time performance w.r.t the target task, we propose a mixture of agent-based decoding strategies leveraging the existing off-the-shelf aligned LLM policies. Treating each prior policy as an agent in the spirit of mixture of agent collaboration, we develop a decoding method that allows for inference-time alignment through a token-level selection strategy among multiple agents. For each token, the most suitable LLM is dynamically chosen from a pool of models based on a long-term utility metric. This policy-switching mechanism ensures optimal model selection at each step, enabling efficient collaboration and alignment among LLMs during decoding. Theoretical analysis of our proposed algorithm establishes optimal performance with respect to the target task represented via a target reward for the given off-the-shelf models. We conduct comprehensive empirical evaluations with open-source aligned models on diverse tasks and preferences, which demonstrates the merits of this approach over single-agent decoding baselines. Notably, Collab surpasses the current SoTA decoding strategy, achieving an improvement of up to 1.56x in average reward and 71.89% in GPT-4 based win-tie rate.
comment: Accepted to ICLR 2025
☆ Outlier dimensions favor frequent tokens in language model
We study last-layer outlier dimensions, i.e.dimensions that display extreme activations for the majority of inputs. We show that outlier dimensions arise in many different modern language models, and trace their function back to the heuristic of constantly predicting frequent words. We further show how a model can block this heuristic when it is not contextually appropriate, by assigning a counterbalancing weight mass to the remaining dimensions, and we investigate which model parameters boost outlier dimensions and when they arise during training. We conclude that outlier dimensions are a specialized mechanism discovered by many distinct models to implement a useful token prediction heuristic.
comment: 9 pages, 4 figures
☆ Elementwise Layer Normalization
A recent paper proposed Dynamic Tanh (DyT) as a drop-in replacement for Layer Normalization. Although the method is empirically well-motivated and appealing from a practical point of view, it lacks a theoretical foundation. In this work, we derive DyT mathematically and show that a well-defined approximation is needed to do so. By dropping said approximation, an alternative element-wise transformation is obtained, which we call Elementwise Layer Normalization (ELN). We demonstrate that ELN resembles Layer Normalization more accurately than DyT does.
comment: 11 pages, 3 figures
MAVERIX: Multimodal Audio-Visual Evaluation Reasoning IndeX
Frontier models have either been language-only or have primarily focused on vision and language modalities. Although recent advancements in models with vision and audio understanding capabilities have shown substantial progress, the field lacks a standardized evaluation framework for thoroughly assessing their cross-modality perception performance. We introduce MAVERIX~(Multimodal Audio-Visual Evaluation Reasoning IndeX), a novel benchmark with 700 videos and 2,556 questions explicitly designed to evaluate multimodal models through tasks that necessitate close integration of video and audio information. MAVERIX uniquely provides models with audiovisual tasks, closely mimicking the multimodal perceptual experiences available to humans during inference and decision-making processes. To our knowledge, MAVERIX is the first benchmark aimed explicitly at assessing comprehensive audiovisual integration. Experiments with state-of-the-art models, including Gemini 1.5 Pro and o1, show performance approaching human levels (around 70% accuracy), while human experts reach near-ceiling performance (95.1%). With standardized evaluation protocols, a rigorously annotated pipeline, and a public toolkit, MAVERIX establishes a challenging testbed for advancing audiovisual multimodal intelligence.
☆ AMA-SAM: Adversarial Multi-Domain Alignment of Segment Anything Model for High-Fidelity Histology Nuclei Segmentation
Accurate segmentation of cell nuclei in histopathology images is essential for numerous biomedical research and clinical applications. However, existing cell nucleus segmentation methods only consider a single dataset (i.e., primary domain), while neglecting to leverage supplementary data from diverse sources (i.e., auxiliary domains) to reduce overfitting and enhance the performance. Although incorporating multiple datasets could alleviate overfitting, it often exacerbates performance drops caused by domain shifts. In this work, we introduce Adversarial Multi-domain Alignment of Segment Anything Model (AMA-SAM) that extends the Segment Anything Model (SAM) to overcome these obstacles through two key innovations. First, we propose a Conditional Gradient Reversal Layer (CGRL), a multi-domain alignment module that harmonizes features from diverse domains to promote domain-invariant representation learning while preserving crucial discriminative features for the primary dataset. Second, we address SAM's inherent low-resolution output by designing a High-Resolution Decoder (HR-Decoder), which directly produces fine-grained segmentation maps in order to capture intricate nuclei boundaries in high-resolution histology images. To the best of our knowledge, this is the first attempt to adapt SAM for multi-dataset learning with application to histology nuclei segmentation. We validate our method on several publicly available datasets, demonstrating consistent and significant improvements over state-of-the-art approaches.
comment: 13 pages, 4 tables, 2 figures
☆ Progressive Rendering Distillation: Adapting Stable Diffusion for Instant Text-to-Mesh Generation without 3D Data CVPR 2025
It is highly desirable to obtain a model that can generate high-quality 3D meshes from text prompts in just seconds. While recent attempts have adapted pre-trained text-to-image diffusion models, such as Stable Diffusion (SD), into generators of 3D representations (e.g., Triplane), they often suffer from poor quality due to the lack of sufficient high-quality 3D training data. Aiming at overcoming the data shortage, we propose a novel training scheme, termed as Progressive Rendering Distillation (PRD), eliminating the need for 3D ground-truths by distilling multi-view diffusion models and adapting SD into a native 3D generator. In each iteration of training, PRD uses the U-Net to progressively denoise the latent from random noise for a few steps, and in each step it decodes the denoised latent into 3D output. Multi-view diffusion models, including MVDream and RichDreamer, are used in joint with SD to distill text-consistent textures and geometries into the 3D outputs through score distillation. Since PRD supports training without 3D ground-truths, we can easily scale up the training data and improve generation quality for challenging text prompts with creative concepts. Meanwhile, PRD can accelerate the inference speed of the generation model in just a few steps. With PRD, we train a Triplane generator, namely TriplaneTurbo, which adds only $2.5\%$ trainable parameters to adapt SD for Triplane generation. TriplaneTurbo outperforms previous text-to-3D generators in both efficiency and quality. Specifically, it can produce high-quality 3D meshes in 1.2 seconds and generalize well for challenging text input. The code is available at https://github.com/theEricMa/TriplaneTurbo.
comment: Accepted to CVPR 2025. Code:https://github.com/theEricMa/TriplaneTurbo. Demo:https://huggingface.co/spaces/ZhiyuanthePony/TriplaneTurbo
☆ LLM-Gomoku: A Large Language Model-Based System for Strategic Gomoku with Self-Play and Reinforcement Learning
In recent years, large language models (LLMs) have shown significant advancements in natural language processing (NLP), with strong capa-bilities in generation, comprehension, and rea-soning. These models have found applications in education, intelligent decision-making, and gaming. However, effectively utilizing LLMs for strategic planning and decision-making in the game of Gomoku remains a challenge. This study aims to develop a Gomoku AI system based on LLMs, simulating the human learning process of playing chess. The system is de-signed to understand and apply Gomoku strat-egies and logic to make rational decisions. The research methods include enabling the model to "read the board," "understand the rules," "select strategies," and "evaluate positions," while en-hancing its abilities through self-play and rein-forcement learning. The results demonstrate that this approach significantly improves the se-lection of move positions, resolves the issue of generating illegal positions, and reduces pro-cess time through parallel position evaluation. After extensive self-play training, the model's Gomoku-playing capabilities have been notably enhanced.
☆ Intelligent IoT Attack Detection Design via ODLLM with Feature Ranking-based Knowledge Base
The widespread adoption of Internet of Things (IoT) devices has introduced significant cybersecurity challenges, particularly with the increasing frequency and sophistication of Distributed Denial of Service (DDoS) attacks. Traditional machine learning (ML) techniques often fall short in detecting such attacks due to the complexity of blended and evolving patterns. To address this, we propose a novel framework leveraging On-Device Large Language Models (ODLLMs) augmented with fine-tuning and knowledge base (KB) integration for intelligent IoT network attack detection. By implementing feature ranking techniques and constructing both long and short KBs tailored to model capacities, the proposed framework ensures efficient and accurate detection of DDoS attacks while overcoming computational and privacy limitations. Simulation results demonstrate that the optimized framework achieves superior accuracy across diverse attack types, especially when using compact models in edge computing environments. This work provides a scalable and secure solution for real-time IoT security, advancing the applicability of edge intelligence in cybersecurity.
☆ COMI-LINGUA: Expert Annotated Large-Scale Dataset for Multitask NLP in Hindi-English Code-Mixing
The rapid growth of digital communication has driven the widespread use of code-mixing, particularly Hindi-English, in multilingual communities. Existing datasets often focus on romanized text, have limited scope, or rely on synthetic data, which fails to capture realworld language nuances. Human annotations are crucial for assessing the naturalness and acceptability of code-mixed text. To address these challenges, We introduce COMI-LINGUA, the largest manually annotated dataset for code-mixed text, comprising 100,970 instances evaluated by three expert annotators in both Devanagari and Roman scripts. The dataset supports five fundamental NLP tasks: Language Identification, Matrix Language Identification, Part-of-Speech Tagging, Named Entity Recognition, and Translation. We evaluate LLMs on these tasks using COMILINGUA, revealing limitations in current multilingual modeling strategies and emphasizing the need for improved code-mixed text processing capabilities. COMI-LINGUA is publically availabe at: https://huggingface.co/datasets/LingoIITGN/COMI-LINGUA.
☆ Cognitive Science-Inspired Evaluation of Core Capabilities for Object Understanding in AI
One of the core components of our world models is 'intuitive physics' - an understanding of objects, space, and causality. This capability enables us to predict events, plan action and navigate environments, all of which rely on a composite sense of objecthood. Despite its importance, there is no single, unified account of objecthood, though multiple theoretical frameworks provide insights. In the first part of this paper, we present a comprehensive overview of the main theoretical frameworks in objecthood research - Gestalt psychology, enactive cognition, and developmental psychology - and identify the core capabilities each framework attributes to object understanding, as well as what functional roles they play in shaping world models in biological agents. Given the foundational role of objecthood in world modelling, understanding objecthood is also essential in AI. In the second part of the paper, we evaluate how current AI paradigms approach and test objecthood capabilities compared to those in cognitive science. We define an AI paradigm as a combination of how objecthood is conceptualised, the methods used for studying objecthood, the data utilised, and the evaluation techniques. We find that, whilst benchmarks can detect that AI systems model isolated aspects of objecthood, the benchmarks cannot detect when AI systems lack functional integration across these capabilities, not solving the objecthood challenge fully. Finally, we explore novel evaluation approaches that align with the integrated vision of objecthood outlined in this paper. These methods are promising candidates for advancing from isolated object capabilities toward general-purpose AI with genuine object understanding in real-world contexts.
☆ Model Assembly Learning with Heterogeneous Layer Weight Merging ICLR 2025
Model merging acquires general capabilities without extra data or training by combining multiple models' parameters. Previous approaches achieve linear mode connectivity by aligning parameters into the same loss basin using permutation invariance. In this paper, we introduce Model Assembly Learning (MAL), a novel paradigm for model merging that iteratively integrates parameters from diverse models in an open-ended model zoo to enhance the base model's capabilities. Unlike previous works that require identical architectures, MAL allows the merging of heterogeneous architectures and selective parameters across layers. Specifically, the base model can incorporate parameters from different layers of multiple pre-trained models. We systematically investigate the conditions and fundamental settings of heterogeneous parameter merging, addressing all possible mismatches in layer widths between the base and target models. Furthermore, we establish key laws and provide practical guidelines for effectively implementing MAL.
comment: ICLR 2025 Workshop on Neural Network Weights as a New Data Modality
☆ Unlocking the Potential of Past Research: Using Generative AI to Reconstruct Healthcare Simulation Models
Discrete-event simulation (DES) is widely used in healthcare Operations Research, but the models themselves are rarely shared. This limits their potential for reuse and long-term impact in the modelling and healthcare communities. This study explores the feasibility of using generative artificial intelligence (AI) to recreate published models using Free and Open Source Software (FOSS), based on the descriptions provided in an academic journal. Using a structured methodology, we successfully generated, tested and internally reproduced two DES models, including user interfaces. The reported results were replicated for one model, but not the other, likely due to missing information on distributions. These models are substantially more complex than AI-generated DES models published to date. Given the challenges we faced in prompt engineering, code generation, and model testing, we conclude that our iterative approach to model development, systematic comparison and testing, and the expertise of our team were necessary to the success of our recreated simulation models.
☆ Towards Fully Automated Decision-Making Systems for Greenhouse Control: Challenges and Opportunities
Machine learning has been successful in building control policies to drive a complex system to desired states in various applications (e.g. games, robotics, etc.). To be specific, a number of parameters of policy can be automatically optimized from the observations of environment to be able to generate a sequence of decisions leading to the best performance. In this survey paper, we particularly explore such policy-learning techniques for another unique, practical use-case scenario--farming, in which critical decisions (e.g., water supply, heating, etc.) must be made in a timely manner to minimize risks (e.g., damage to plants) while maximizing the revenue (e.g., healthy crops) in the end. We first provide a broad overview of latest studies on it to identify not only domain-specific challenges but opportunities with potential solutions, some of which are suggested as promising directions for future research. Also, we then introduce our successful approach to being ranked second among 46 teams at the ''3rd Autonomous Greenhouse Challenge'' to use this specific example to discuss the lessons learned about important considerations for design to create autonomous farm-management systems.
☆ When Astronomy Meets AI: Manazel For Crescent Visibility Prediction in Morocco
The accurate determination of the beginning of each Hijri month is essential for religious, cultural, and administrative purposes. Manazel (The code and datasets are available at https://github.com/lairgiyassir/manazel) addresses this challenge in Morocco by leveraging 13 years of crescent visibility data to refine the ODEH criterion, a widely used standard for lunar crescent visibility prediction. The study integrates two key features, the Arc of Vision (ARCV) and the total width of the crescent (W), to enhance the accuracy of lunar visibility assessments. A machine learning approach utilizing the Logistic Regression algorithm is employed to classify crescent visibility conditions, achieving a predictive accuracy of 98.83%. This data-driven methodology offers a robust and reliable framework for determining the start of the Hijri month, comparing different data classification tools, and improving the consistency of lunar calendar calculations in Morocco. The findings demonstrate the effectiveness of machine learning in astronomical applications and highlight the potential for further enhancements in the modeling of crescent visibility.
☆ UI-R1: Enhancing Action Prediction of GUI Agents by Reinforcement Learning
The recent DeepSeek-R1 has showcased the emergence of reasoning capabilities in LLMs through reinforcement learning (RL) with rule-based rewards. Building on this idea, we are the first to explore how rule-based RL can enhance the reasoning capabilities of multimodal large language models (MLLMs) for graphic user interface (GUI) action prediction tasks. To this end, we curate a small yet high-quality dataset of 136 challenging tasks, encompassing five common action types on mobile devices. We also introduce a unified rule-based action reward, enabling model optimization via policy-based algorithms such as Group Relative Policy Optimization (GRPO). Experimental results demonstrate that our proposed data-efficient model, UI-R1-3B, achieves substantial improvements on both in-domain (ID) and out-of-domain (OOD) tasks. Specifically, on the ID benchmark AndroidControl, the action type accuracy improves by 15%, while grounding accuracy increases by 10.3%, compared with the base model (i.e. Qwen2.5-VL-3B). On the OOD GUI grounding benchmark ScreenSpot-Pro, our model surpasses the base model by 6.0% and achieves competitive performance with larger models (e.g., OS-Atlas-7B), which are trained via supervised fine-tuning (SFT) on 76K data. These results underscore the potential of rule-based reinforcement learning to advance GUI understanding and control, paving the way for future research in this domain.
☆ A Measure Based Generalizable Approach to Understandability
Successful agent-human partnerships require that any agent generated information is understandable to the human, and that the human can easily steer the agent towards a goal. Such effective communication requires the agent to develop a finer-level notion of what is understandable to the human. State-of-the-art agents, including LLMs, lack this detailed notion of understandability because they only capture average human sensibilities from the training data, and therefore afford limited steerability (e.g., requiring non-trivial prompt engineering). In this paper, instead of only relying on data, we argue for developing generalizable, domain-agnostic measures of understandability that can be used as directives for these agents. Existing research on understandability measures is fragmented, we survey various such efforts across domains, and lay a cognitive-science-rooted groundwork for more coherent and domain-agnostic research investigations in future.
comment: 6 pages
☆ GenEdit: Compounding Operators and Continuous Improvement to Tackle Text-to-SQL in the Enterprise
Recent advancements in Text-to-SQL, driven by large language models, are democratizing data access. Despite these advancements, enterprise deployments remain challenging due to the need to capture business-specific knowledge, handle complex queries, and meet expectations of continuous improvements. To address these issues, we designed and implemented GenEdit: our Text-to-SQL generation system that improves with user feedback. GenEdit builds and maintains a company-specific knowledge set, employs a pipeline of operators decomposing SQL generation, and uses feedback to update its knowledge set to improve future SQL generations. We describe GenEdit's architecture made of two core modules: (i) decomposed SQL generation; and (ii) knowledge set edits based on user feedback. For generation, GenEdit leverages compounding operators to improve knowledge retrieval and to create a plan as chain-of-thought steps that guides generation. GenEdit first retrieves relevant examples in an initial retrieval stage where original SQL queries are decomposed into sub-statements, clauses or sub-queries. It then also retrieves instructions and schema elements. Using the retrieved contextual information, GenEdit then generates step-by-step plan in natural language on how to produce the query. Finally, GenEdit uses the plan to generate SQL, minimizing the need for model reasoning, which enhances complex SQL generation. If necessary, GenEdit regenerates the query based on syntactic and semantic errors. The knowledge set edits are recommended through an interactive copilot, allowing users to iterate on their feedback and to regenerate SQL queries as needed. Each generation uses staged edits which update the generation prompt. Once the feedback is submitted, it gets merged after passing regression testing and obtaining an approval, improving future generations.
☆ Prompt, Divide, and Conquer: Bypassing Large Language Model Safety Filters via Segmented and Distributed Prompt Processing
Large Language Models (LLMs) have transformed task automation and content generation across various domains while incorporating safety filters to prevent misuse. We introduce a novel jailbreaking framework that employs distributed prompt processing combined with iterative refinements to bypass these safety measures, particularly in generating malicious code. Our architecture consists of four key modules: prompt segmentation, parallel processing, response aggregation, and LLM-based jury evaluation. Tested on 500 malicious prompts across 10 cybersecurity categories, the framework achieves a 73.2% Success Rate (SR) in generating malicious code. Notably, our comparative analysis reveals that traditional single-LLM judge evaluation overestimates SRs (93.8%) compared to our LLM jury system (73.2%), with manual verification confirming that single-judge assessments often accept incomplete implementations. Moreover, we demonstrate that our distributed architecture improves SRs by 12% over the non-distributed approach in an ablation study, highlighting both the effectiveness of distributed prompt processing and the importance of robust evaluation methodologies in assessing jailbreak attempts.
comment: 22 pages; 26 figures
☆ Critical Iterative Denoising: A Discrete Generative Model Applied to Graphs
Discrete Diffusion and Flow Matching models have significantly advanced generative modeling for discrete structures, including graphs. However, the time dependencies in the noising process of these models lead to error accumulation and propagation during the backward process. This issue, particularly pronounced in mask diffusion, is a known limitation in sequence modeling and, as we demonstrate, also impacts discrete diffusion models for graphs. To address this problem, we propose a novel framework called Iterative Denoising, which simplifies discrete diffusion and circumvents the issue by assuming conditional independence across time. Additionally, we enhance our model by incorporating a Critic, which during generation selectively retains or corrupts elements in an instance based on their likelihood under the data distribution. Our empirical evaluations demonstrate that the proposed method significantly outperforms existing discrete diffusion baselines in graph generation tasks.
☆ AlignDiff: Learning Physically-Grounded Camera Alignment via Diffusion
Accurate camera calibration is a fundamental task for 3D perception, especially when dealing with real-world, in-the-wild environments where complex optical distortions are common. Existing methods often rely on pre-rectified images or calibration patterns, which limits their applicability and flexibility. In this work, we introduce a novel framework that addresses these challenges by jointly modeling camera intrinsic and extrinsic parameters using a generic ray camera model. Unlike previous approaches, AlignDiff shifts focus from semantic to geometric features, enabling more accurate modeling of local distortions. We propose AlignDiff, a diffusion model conditioned on geometric priors, enabling the simultaneous estimation of camera distortions and scene geometry. To enhance distortion prediction, we incorporate edge-aware attention, focusing the model on geometric features around image edges, rather than semantic content. Furthermore, to enhance generalizability to real-world captures, we incorporate a large database of ray-traced lenses containing over three thousand samples. This database characterizes the distortion inherent in a diverse variety of lens forms. Our experiments demonstrate that the proposed method significantly reduces the angular error of estimated ray bundles by ~8.2 degrees and overall calibration accuracy, outperforming existing approaches on challenging, real-world datasets.
☆ Magnitude-Phase Dual-Path Speech Enhancement Network based on Self-Supervised Embedding and Perceptual Contrast Stretch Boosting ICME 2025
Speech self-supervised learning (SSL) has made great progress in various speech processing tasks, but there is still room for improvement in speech enhancement (SE). This paper presents BSP-MPNet, a dual-path framework that combines self-supervised features with magnitude-phase information for SE. The approach starts by applying the perceptual contrast stretching (PCS) algorithm to enhance the magnitude-phase spectrum. A magnitude-phase 2D coarse (MP-2DC) encoder then extracts coarse features from the enhanced spectrum. Next, a feature-separating self-supervised learning (FS-SSL) model generates self-supervised embeddings for the magnitude and phase components separately. These embeddings are fused to create cross-domain feature representations. Finally, two parallel RNN-enhanced multi-attention (REMA) mask decoders refine the features, apply them to the mask, and reconstruct the speech signal. We evaluate BSP-MPNet on the VoiceBank+DEMAND and WHAMR! datasets. Experimental results show that BSP-MPNet outperforms existing methods under various noise conditions, providing new directions for self-supervised speech enhancement research. The implementation of the BSP-MPNet code is available online\footnote[2]{https://github.com/AlimMat/BSP-MPNet. \label{s1}}
comment: Main paper (6 pages). Accepted for publication by ICME 2025
☆ A Local Perspective-based Model for Overlapping Community Detection
Community detection, which identifies densely connected node clusters with sparse between-group links, is vital for analyzing network structure and function in real-world systems. Most existing community detection methods based on GCNs primarily focus on node-level information while overlooking community-level features, leading to performance limitations on large-scale networks. To address this issue, we propose LQ-GCN, an overlapping community detection model from a local community perspective. LQ-GCN employs a Bernoulli-Poisson model to construct a community affiliation matrix and form an end-to-end detection framework. By adopting local modularity as the objective function, the model incorporates local community information to enhance the quality and accuracy of clustering results. Additionally, the conventional GCNs architecture is optimized to improve the model capability in identifying overlapping communities in large-scale networks. Experimental results demonstrate that LQ-GCN achieves up to a 33% improvement in Normalized Mutual Information (NMI) and a 26.3% improvement in Recall compared to baseline models across multiple real-world benchmark datasets.
comment: 10 pages, 3 figures, 3 tables
☆ debug-gym: A Text-Based Environment for Interactive Debugging
Large Language Models (LLMs) are increasingly relied upon for coding tasks, yet in most scenarios it is assumed that all relevant information can be either accessed in context or matches their training data. We posit that LLMs can benefit from the ability to interactively explore a codebase to gather the information relevant to their task. To achieve this, we present a textual environment, namely debug-gym, for developing LLM-based agents in an interactive coding setting. Our environment is lightweight and provides a preset of useful tools, such as a Python debugger (pdb), designed to facilitate an LLM-based agent's interactive debugging. Beyond coding and debugging tasks, this approach can be generalized to other tasks that would benefit from information-seeking behavior by an LLM agent.
☆ SWI: Speaking with Intent in Large Language Models
Intent, typically clearly formulated and planned, functions as a cognitive framework for reasoning and problem-solving. This paper introduces the concept of Speaking with Intent (SWI) in large language models (LLMs), where the explicitly generated intent encapsulates the model's underlying intention and provides high-level planning to guide subsequent analysis and communication. By emulating deliberate and purposeful thoughts in the human mind, SWI is hypothesized to enhance the reasoning capabilities and generation quality of LLMs. Extensive experiments on mathematical reasoning benchmarks consistently demonstrate the superiority of Speaking with Intent over Baseline (i.e., generation without explicit intent). Moreover, SWI outperforms answer-trigger prompting methods Chain-of-Thought and Plan-and-Solve and maintains competitive performance with the strong method ARR (Analyzing, Retrieving, and Reasoning). Additionally, the effectiveness and generalizability of SWI are solidified on reasoning-intensive question answering (QA) and text summarization benchmarks, where SWI brings consistent improvement to the Baseline generation. In text summarization, SWI-generated summaries exhibit greater accuracy, conciseness, and factual correctness, with fewer hallucinations. Furthermore, human evaluations verify the coherence, effectiveness, and interpretability of the intent produced by SWI. This proof-of-concept study creates a novel avenue for enhancing LLMs' reasoning abilities with cognitive notions.
comment: 24 pages. Code: https://github.com/YuweiYin/SWI
☆ LOCATEdit: Graph Laplacian Optimized Cross Attention for Localized Text-Guided Image Editing
Text-guided image editing aims to modify specific regions of an image according to natural language instructions while maintaining the general structure and the background fidelity. Existing methods utilize masks derived from cross-attention maps generated from diffusion models to identify the target regions for modification. However, since cross-attention mechanisms focus on semantic relevance, they struggle to maintain the image integrity. As a result, these methods often lack spatial consistency, leading to editing artifacts and distortions. In this work, we address these limitations and introduce LOCATEdit, which enhances cross-attention maps through a graph-based approach utilizing self-attention-derived patch relationships to maintain smooth, coherent attention across image regions, ensuring that alterations are limited to the designated items while retaining the surrounding structure. \method consistently and substantially outperforms existing baselines on PIE-Bench, demonstrating its state-of-the-art performance and effectiveness on various editing tasks. Code can be found on https://github.com/LOCATEdit/LOCATEdit/
☆ Low-Resource Transliteration for Roman-Urdu and Urdu Using Transformer-Based Models
As the Information Retrieval (IR) field increasingly recognizes the importance of inclusivity, addressing the needs of low-resource languages remains a significant challenge. Transliteration between Urdu and its Romanized form, Roman Urdu, remains underexplored despite the widespread use of both scripts in South Asia. Prior work using RNNs on the Roman-Urdu-Parl dataset showed promising results but suffered from poor domain adaptability and limited evaluation. We propose a transformer-based approach using the m2m100 multilingual translation model, enhanced with masked language modeling (MLM) pretraining and fine-tuning on both Roman-Urdu-Parl and the domain-diverse Dakshina dataset. To address previous evaluation flaws, we introduce rigorous dataset splits and assess performance using BLEU, character-level BLEU, and CHRF. Our model achieves strong transliteration performance, with Char-BLEU scores of 96.37 for Urdu->Roman-Urdu and 97.44 for Roman-Urdu->Urdu. These results outperform both RNN baselines and GPT-4o Mini and demonstrate the effectiveness of multilingual transfer learning for low-resource transliteration tasks.
☆ MONO2REST: Identifying and Exposing Microservices: a Reusable RESTification Approach
The microservices architectural style has become the de facto standard for large-scale cloud applications, offering numerous benefits in scalability, maintainability, and deployment flexibility. Many organizations are pursuing the migration of legacy monolithic systems to a microservices architecture. However, this process is challenging, risky, time-intensive, and prone-to-failure while several organizations lack necessary financial resources, time, or expertise to set up this migration process. So, rather than trying to migrate a legacy system where migration is risky or not feasible, we suggest exposing it as a microservice application without without having to migrate it. In this paper, we present a reusable, automated, two-phase approach that combines evolutionary algorithms with machine learning techniques. In the first phase, we identify microservices at the method level using a multi-objective genetic algorithm that considers both structural and semantic dependencies between methods. In the second phase, we generate REST APIs for each identified microservice using a classification algorithm to assign HTTP methods and endpoints. We evaluated our approach with a case study on the Spring PetClinic application, which has both monolithic and microservices implementations that serve as ground truth for comparison. Results demonstrate that our approach successfully aligns identified microservices with those in the reference microservices implementation, highlighting its effectiveness in service identification and API generation.
☆ Quantitative Evaluation of Quantum/Classical Neural Network Using a Game Solver Metric
To evaluate the performance of quantum computing systems relative to classical counterparts and explore the potential for quantum advantage, we propose a game-solving benchmark based on Elo ratings in the game of tic-tac-toe. We compare classical convolutional neural networks (CNNs), quantum convolutional neural networks (QCNNs), and hybrid classical-quantum models by assessing their performance against a random-move agent in automated matches. Additionally, we implement a QCNN integrated with quantum communication and evaluate its performance to quantify the overhead introduced by noisy quantum channels. Our results show that the classical-quantum hybrid model achieves Elo ratings comparable to those of classical CNNs, while the standalone QCNN underperforms under current hardware constraints. The communication overhead was found to be modest. These findings demonstrate the viability of using game-based benchmarks for evaluating quantum computing systems and suggest that quantum communication can be incorporated with limited impact on performance, providing a foundation for future hybrid quantum applications.
comment: 11 pages, 16 figures
☆ Keyword-Oriented Multimodal Modeling for Euphemism Identification
Euphemism identification deciphers the true meaning of euphemisms, such as linking "weed" (euphemism) to "marijuana" (target keyword) in illicit texts, aiding content moderation and combating underground markets. While existing methods are primarily text-based, the rise of social media highlights the need for multimodal analysis, incorporating text, images, and audio. However, the lack of multimodal datasets for euphemisms limits further research. To address this, we regard euphemisms and their corresponding target keywords as keywords and first introduce a keyword-oriented multimodal corpus of euphemisms (KOM-Euph), involving three datasets (Drug, Weapon, and Sexuality), including text, images, and speech. We further propose a keyword-oriented multimodal euphemism identification method (KOM-EI), which uses cross-modal feature alignment and dynamic fusion modules to explicitly utilize the visual and audio features of the keywords for efficient euphemism identification. Extensive experiments demonstrate that KOM-EI outperforms state-of-the-art models and large language models, and show the importance of our multimodal datasets.
☆ Adaptive Resampling with Bootstrap for Noisy Multi-Objective Optimization Problems
The challenge of noisy multi-objective optimization lies in the constant trade-off between exploring new decision points and improving the precision of known points through resampling. This decision should take into account both the variability of the objective functions and the current estimate of a point in relation to the Pareto front. Since the amount and distribution of noise are generally unknown, it is desirable for a decision function to be highly adaptive to the properties of the optimization problem. This paper presents a resampling decision function that incorporates the stochastic nature of the optimization problem by using bootstrapping and the probability of dominance. The distribution-free estimation of the probability of dominance is achieved using bootstrap estimates of the means. To make the procedure applicable even with very few observations, we transfer the distribution observed at other decision points. The efficiency of this resampling approach is demonstrated by applying it in the NSGA-II algorithm with a sequential resampling procedure under multiple noise variations.
comment: 14 pages. 5 figures
☆ The Procedural Content Generation Benchmark: An Open-source Testbed for Generative Challenges in Games
This paper introduces the Procedural Content Generation Benchmark for evaluating generative algorithms on different game content creation tasks. The benchmark comes with 12 game-related problems with multiple variants on each problem. Problems vary from creating levels of different kinds to creating rule sets for simple arcade games. Each problem has its own content representation, control parameters, and evaluation metrics for quality, diversity, and controllability. This benchmark is intended as a first step towards a standardized way of comparing generative algorithms. We use the benchmark to score three baseline algorithms: a random generator, an evolution strategy, and a genetic algorithm. Results show that some problems are easier to solve than others, as well as the impact the chosen objective has on quality, diversity, and controllability of the generated artifacts.
comment: 12 pages, 4 figures, 2 tables, published at FDG2025
☆ Retinal Fundus Multi-Disease Image Classification using Hybrid CNN-Transformer-Ensemble Architectures
Our research is motivated by the urgent global issue of a large population affected by retinal diseases, which are evenly distributed but underserved by specialized medical expertise, particularly in non-urban areas. Our primary objective is to bridge this healthcare gap by developing a comprehensive diagnostic system capable of accurately predicting retinal diseases solely from fundus images. However, we faced significant challenges due to limited, diverse datasets and imbalanced class distributions. To overcome these issues, we have devised innovative strategies. Our research introduces novel approaches, utilizing hybrid models combining deeper Convolutional Neural Networks (CNNs), Transformer encoders, and ensemble architectures sequentially and in parallel to classify retinal fundus images into 20 disease labels. Our overarching goal is to assess these advanced models' potential in practical applications, with a strong focus on enhancing retinal disease diagnosis accuracy across a broader spectrum of conditions. Importantly, our efforts have surpassed baseline model results, with the C-Tran ensemble model emerging as the leader, achieving a remarkable model score of 0.9166, surpassing the baseline score of 0.9. Additionally, experiments with the IEViT model showcased equally promising outcomes with improved computational efficiency. We've also demonstrated the effectiveness of dynamic patch extraction and the integration of domain knowledge in computer vision tasks. In summary, our research strives to contribute significantly to retinal disease diagnosis, addressing the critical need for accessible healthcare solutions in underserved regions while aiming for comprehensive and accurate disease prediction.
comment: 17 pages, 3 figures, 7 tables. Conference paper presented at the International Health Informatics Conference (IHIC 2023)
☆ Harnessing Chain-of-Thought Metadata for Task Routing and Adversarial Prompt Detection
In this work, we propose a metric called Number of Thoughts (NofT) to determine the difficulty of tasks pre-prompting and support Large Language Models (LLMs) in production contexts. By setting thresholds based on the number of thoughts, this metric can discern the difficulty of prompts and support more effective prompt routing. A 2% decrease in latency is achieved when routing prompts from the MathInstruct dataset through quantized, distilled versions of Deepseek with 1.7 billion, 7 billion, and 14 billion parameters. Moreover, this metric can be used to detect adversarial prompts used in prompt injection attacks with high efficacy. The Number of Thoughts can inform a classifier that achieves 95% accuracy in adversarial prompt detection. Our experiments ad datasets used are available on our GitHub page: https://github.com/rymarinelli/Number_Of_Thoughts/tree/main.
☆ Unveiling Latent Information in Transaction Hashes: Hypergraph Learning for Ethereum Ponzi Scheme Detection
With the widespread adoption of Ethereum, financial frauds such as Ponzi schemes have become increasingly rampant in the blockchain ecosystem, posing significant threats to the security of account assets. Existing Ethereum fraud detection methods typically model account transactions as graphs, but this approach primarily focuses on binary transactional relationships between accounts, failing to adequately capture the complex multi-party interaction patterns inherent in Ethereum. To address this, we propose a hypergraph modeling method for the Ponzi scheme detection method in Ethereum, called HyperDet. Specifically, we treat transaction hashes as hyperedges that connect all the relevant accounts involved in a transaction. Additionally, we design a two-step hypergraph sampling strategy to significantly reduce computational complexity. Furthermore, we introduce a dual-channel detection module, including the hypergraph detection channel and the hyper-homo graph detection channel, to be compatible with existing detection methods. Experimental results show that, compared to traditional homogeneous graph-based methods, the hyper-homo graph detection channel achieves significant performance improvements, demonstrating the superiority of hypergraph in Ponzi scheme detection. This research offers innovations for modeling complex relationships in blockchain data.
Graph-to-Vision: Multi-graph Understanding and Reasoning using Vision-Language Models
Graph Neural Networks (GNNs), as the dominant paradigm for graph-structured learning, have long faced dual challenges of exponentially escalating computational complexity and inadequate cross-scenario generalization capability. With the rapid advancement of multimodal learning, Vision-Language Models (VLMs) have demonstrated exceptional cross-modal relational reasoning capabilities and generalization capacities, thereby opening up novel pathways for overcoming the inherent limitations of conventional graph learning paradigms. However, current research predominantly concentrates on investigating the single-graph reasoning capabilities of VLMs, which fundamentally fails to address the critical requirement for coordinated reasoning across multiple heterogeneous graph data in real-world application scenarios. To address these limitations, we propose the first multi-graph joint reasoning benchmark for VLMs. Our benchmark encompasses four graph categories: knowledge graphs, flowcharts, mind maps, and route maps,with each graph group accompanied by three progressively challenging instruction-response pairs. Leveraging this benchmark, we conducted comprehensive capability assessments of state-of-the-art VLMs and performed fine-tuning on open-source models. This study not only addresses the underexplored evaluation gap in multi-graph reasoning for VLMs but also empirically validates their generalization superiority in graph-structured learning.
☆ Neuroplasticity in Artificial Intelligence -- An Overview and Inspirations on Drop In \& Out Learning
Artificial Intelligence (AI) has achieved new levels of performance and spread in public usage with the rise of deep neural networks (DNNs). Initially inspired by human neurons and their connections, NNs have become the foundation of AI models for many advanced architectures. However, some of the most integral processes in the human brain, particularly neurogenesis and neuroplasticity in addition to the more spread neuroapoptosis have largely been ignored in DNN architecture design. Instead, contemporary AI development predominantly focuses on constructing advanced frameworks, such as large language models, which retain a static structure of neural connections during training and inference. In this light, we explore how neurogenesis, neuroapoptosis, and neuroplasticity can inspire future AI advances. Specifically, we examine analogous activities in artificial NNs, introducing the concepts of ``dropin'' for neurogenesis and revisiting ``dropout'' and structural pruning for neuroapoptosis. We additionally suggest neuroplasticity combining the two for future large NNs in ``life-long learning'' settings following the biological inspiration. We conclude by advocating for greater research efforts in this interdisciplinary domain and identifying promising directions for future exploration.
☆ Federated Intelligence: When Large AI Models Meet Federated Fine-Tuning and Collaborative Reasoning at the Network Edge
Large artificial intelligence (AI) models exhibit remarkable capabilities in various application scenarios, but deploying them at the network edge poses significant challenges due to issues such as data privacy, computational resources, and latency. In this paper, we explore federated fine-tuning and collaborative reasoning techniques to facilitate the implementation of large AI models in resource-constrained wireless networks. Firstly, promising applications of large AI models within specific domains are discussed. Subsequently, federated fine-tuning methods are proposed to adapt large AI models to specific tasks or environments at the network edge, effectively addressing the challenges associated with communication overhead and enhancing communication efficiency. These methodologies follow clustered, hierarchical, and asynchronous paradigms to effectively tackle privacy issues and eliminate data silos. Furthermore, to enhance operational efficiency and reduce latency, efficient frameworks for model collaborative reasoning are developed, which include decentralized horizontal collaboration, cloud-edge-end vertical collaboration, and multi-access collaboration. Next, simulation results demonstrate the effectiveness of our proposed methods in reducing the fine-tuning loss of large AI models across various downstream tasks. Finally, several open challenges and research opportunities are outlined.
comment: 8 pages, 6 figures
☆ Exploring the Roles of Large Language Models in Reshaping Transportation Systems: A Survey, Framework, and Roadmap
Modern transportation systems face pressing challenges due to increasing demand, dynamic environments, and heterogeneous information integration. The rapid evolution of Large Language Models (LLMs) offers transformative potential to address these challenges. Extensive knowledge and high-level capabilities derived from pretraining evolve the default role of LLMs as text generators to become versatile, knowledge-driven task solvers for intelligent transportation systems. This survey first presents LLM4TR, a novel conceptual framework that systematically categorizes the roles of LLMs in transportation into four synergetic dimensions: information processors, knowledge encoders, component generators, and decision facilitators. Through a unified taxonomy, we systematically elucidate how LLMs bridge fragmented data pipelines, enhance predictive analytics, simulate human-like reasoning, and enable closed-loop interactions across sensing, learning, modeling, and managing tasks in transportation systems. For each role, our review spans diverse applications, from traffic prediction and autonomous driving to safety analytics and urban mobility optimization, highlighting how emergent capabilities of LLMs such as in-context learning and step-by-step reasoning can enhance the operation and management of transportation systems. We further curate practical guidance, including available resources and computational guidelines, to support real-world deployment. By identifying challenges in existing LLM-based solutions, this survey charts a roadmap for advancing LLM-driven transportation research, positioning LLMs as central actors in the next generation of cyber-physical-social mobility ecosystems. Online resources can be found in the project page: https://github.com/tongnie/awesome-llm4tr.
☆ Neuro-Symbolic Imitation Learning: Discovering Symbolic Abstractions for Skill Learning ICRA
Imitation learning is a popular method for teaching robots new behaviors. However, most existing methods focus on teaching short, isolated skills rather than long, multi-step tasks. To bridge this gap, imitation learning algorithms must not only learn individual skills but also an abstract understanding of how to sequence these skills to perform extended tasks effectively. This paper addresses this challenge by proposing a neuro-symbolic imitation learning framework. Using task demonstrations, the system first learns a symbolic representation that abstracts the low-level state-action space. The learned representation decomposes a task into easier subtasks and allows the system to leverage symbolic planning to generate abstract plans. Subsequently, the system utilizes this task decomposition to learn a set of neural skills capable of refining abstract plans into actionable robot commands. Experimental results in three simulated robotic environments demonstrate that, compared to baselines, our neuro-symbolic approach increases data efficiency, improves generalization capabilities, and facilitates interpretability.
comment: IEEE International Conference on Robotics and Automation (ICRA) 2025
☆ An evaluation of LLMs and Google Translate for translation of selected Indian languages via sentiment and semantic analyses
Large Language models (LLMs) have been prominent for language translation, including low-resource languages. There has been limited study about the assessment of the quality of translations generated by LLMs, including Gemini, GPT and Google Translate. In this study, we address this limitation by using semantic and sentiment analysis of selected LLMs for Indian languages, including Sanskrit, Telugu and Hindi. We select prominent texts that have been well translated by experts and use LLMs to generate their translations to English, and then we provide a comparison with selected expert (human) translations. Our findings suggest that while LLMs have made significant progress in translation accuracy, challenges remain in preserving sentiment and semantic integrity, especially in figurative and philosophical contexts. The sentiment analysis revealed that GPT-4o and GPT-3.5 are better at preserving the sentiments for the Bhagavad Gita (Sanskrit-English) translations when compared to Google Translate. We observed a similar trend for the case of Tamas (Hindi-English) and Maha P (Telugu-English) translations. GPT-4o performs similarly to GPT-3.5 in the translation in terms of sentiments for the three languages. We found that LLMs are generally better at translation for capturing sentiments when compared to Google Translate.
☆ HybridoNet-Adapt: A Domain-Adapted Framework for Accurate Lithium-Ion Battery RUL Prediction
Accurate prediction of the remaining useful life (RUL) in Lithium-ion battery (LIB) health management systems is crucial for ensuring reliability and safety. Current methods typically assume that training and testing data share the same distribution, overlooking the benefits of incorporating diverse data sources to enhance model performance. To address this limitation, we introduce a data-independent RUL prediction framework along with its domain adaptation (DA) approach, which leverages heterogeneous data sources for improved target predictions. Our approach integrates comprehensive data preprocessing, including feature extraction, denoising, and normalization, with a data-independent prediction model that combines Long Short-Term Memory (LSTM), Multihead Attention, and a Neural Ordinary Differential Equation (NODE) block, termed HybridoNet. The domain-adapted version, HybridoNet Adapt, is trained using a novel technique inspired by the Domain-Adversarial Neural Network (DANN) framework, a regression ensemble method, and Maximum Mean Discrepancy (MMD) to learn domain-invariant features from labeled cycling data in the source and target domains. Experimental results demonstrate that our approach outperforms state-of-the-art techniques, providing reliable RUL predictions for real-world applications.
☆ Investigating the Duality of Interpretability and Explainability in Machine Learning
The rapid evolution of machine learning (ML) has led to the widespread adoption of complex "black box" models, such as deep neural networks and ensemble methods. These models exhibit exceptional predictive performance, making them invaluable for critical decision-making across diverse domains within society. However, their inherently opaque nature raises concerns about transparency and interpretability, making them untrustworthy decision support systems. To alleviate such a barrier to high-stakes adoption, research community focus has been on developing methods to explain black box models as a means to address the challenges they pose. Efforts are focused on explaining these models instead of developing ones that are inherently interpretable. Designing inherently interpretable models from the outset, however, can pave the path towards responsible and beneficial applications in the field of ML. In this position paper, we clarify the chasm between explaining black boxes and adopting inherently interpretable models. We emphasize the imperative need for model interpretability and, following the purpose of attaining better (i.e., more effective or efficient w.r.t. predictive performance) and trustworthy predictors, provide an experimental evaluation of latest hybrid learning methods that integrates symbolic knowledge into neural network predictors. We demonstrate how interpretable hybrid models could potentially supplant black box ones in different domains.
☆ Using large language models to produce literature reviews: Usages and systematic biases of microphysics parametrizations in 2699 publications
Large language models afford opportunities for using computers for intensive tasks, realizing research opportunities that have not been considered before. One such opportunity could be a systematic interrogation of the scientific literature. Here, we show how a large language model can be used to construct a literature review of 2699 publications associated with microphysics parametrizations in the Weather and Research Forecasting (WRF) model, with the goal of learning how they were used and their systematic biases, when simulating precipitation. The database was constructed of publications identified from Web of Science and Scopus searches. The large language model GPT-4 Turbo was used to extract information about model configurations and performance from the text of 2699 publications. Our results reveal the landscape of how nine of the most popular microphysics parameterizations have been used around the world: Lin, Ferrier, WRF Single-Moment, Goddard Cumulus Ensemble, Morrison, Thompson, and WRF Double-Moment. More studies used one-moment parameterizations before 2020 and two-moment parameterizations after 2020. Seven out of nine parameterizations tended to overestimate precipitation. However, systematic biases of parameterizations differed in various regions. Except simulations using the Lin, Ferrier, and Goddard parameterizations that tended to underestimate precipitation over almost all locations, the remaining six parameterizations tended to overestimate, particularly over China, southeast Asia, western United States, and central Africa. This method could be used by other researchers to help understand how the increasingly massive body of scientific literature can be harnessed through the power of artificial intelligence to solve their research problems.
☆ Residual Learning Inspired Crossover Operator and Strategy Enhancements for Evolutionary Multitasking
In evolutionary multitasking, strategies such as crossover operators and skill factor assignment are critical for effective knowledge transfer. Existing improvements to crossover operators primarily focus on low-dimensional variable combinations, such as arithmetic crossover or partially mapped crossover, which are insufficient for modeling complex high-dimensional interactions.Moreover, static or semi-dynamic crossover strategies fail to adapt to the dynamic dependencies among tasks. In addition, current Multifactorial Evolutionary Algorithm frameworks often rely on fixed skill factor assignment strategies, lacking flexibility. To address these limitations, this paper proposes the Multifactorial Evolutionary Algorithm-Residual Learning (MFEA-RL) method based on residual learning. The method employs a Very Deep Super-Resolution (VDSR) model to generate high-dimensional residual representations of individuals, enhancing the modeling of complex relationships within dimensions. A ResNet-based mechanism dynamically assigns skill factors to improve task adaptability, while a random mapping mechanism efficiently performs crossover operations and mitigates the risk of negative transfer. Theoretical analysis and experimental results show that MFEA-RL outperforms state-of-the-art multitasking algorithms. It excels in both convergence and adaptability on standard evolutionary multitasking benchmarks, including CEC2017-MTSO and WCCI2020-MTSO. Additionally, its effectiveness is validated through a real-world application scenario.
comment: 9 pages, 4 figures
☆ A 71.2-$μ$W Speech Recognition Accelerator with Recurrent Spiking Neural Network
This paper introduces a 71.2-$\mu$W speech recognition accelerator designed for edge devices' real-time applications, emphasizing an ultra low power design. Achieved through algorithm and hardware co-optimizations, we propose a compact recurrent spiking neural network with two recurrent layers, one fully connected layer, and a low time step (1 or 2). The 2.79-MB model undergoes pruning and 4-bit fixed-point quantization, shrinking it by 96.42\% to 0.1 MB. On the hardware front, we take advantage of \textit{mixed-level pruning}, \textit{zero-skipping} and \textit{merged spike} techniques, reducing complexity by 90.49\% to 13.86 MMAC/S. The \textit{parallel time-step execution} addresses inter-time-step data dependencies and enables weight buffer power savings through weight sharing. Capitalizing on the sparse spike activity, an input broadcasting scheme eliminates zero computations, further saving power. Implemented on the TSMC 28-nm process, the design operates in real time at 100 kHz, consuming 71.2 $\mu$W, surpassing state-of-the-art designs. At 500 MHz, it has 28.41 TOPS/W and 1903.11 GOPS/mm$^2$ in energy and area efficiency, respectively.
☆ A Low-Power Streaming Speech Enhancement Accelerator For Edge Devices
Transformer-based speech enhancement models yield impressive results. However, their heterogeneous and complex structure restricts model compression potential, resulting in greater complexity and reduced hardware efficiency. Additionally, these models are not tailored for streaming and low-power applications. Addressing these challenges, this paper proposes a low-power streaming speech enhancement accelerator through model and hardware optimization. The proposed high performance model is optimized for hardware execution with the co-design of model compression and target application, which reduces 93.9\% of model size by the proposed domain-aware and streaming-aware pruning techniques. The required latency is further reduced with batch normalization-based transformers. Additionally, we employed softmax-free attention, complemented by an extra batch normalization, facilitating simpler hardware design. The tailored hardware accommodates these diverse computing patterns by breaking them down into element-wise multiplication and accumulation (MAC). This is achieved through a 1-D processing array, utilizing configurable SRAM addressing, thereby minimizing hardware complexities and simplifying zero skipping. Using the TSMC 40nm CMOS process, the final implementation requires merely 207.8K gates and 53.75KB SRAM. It consumes only 8.08 mW for real-time inference at a 62.5MHz frequency.
☆ ReFeed: Multi-dimensional Summarization Refinement with Reflective Reasoning on Feedback
Summarization refinement faces challenges when extending to multi-dimension. In this paper, we introduce ReFeed, a powerful summarization refinement pipeline that enhances multiple dimensions through reflective reasoning on feedback. To achieve this, we release SumFeed-CoT, a large-scale Long-CoT-based dataset optimized for training a lightweight model with reflective reasoning. Our experiments reveal how the number of dimensions, feedback exposure, and reasoning policy influence refinement performance, highlighting reflective reasoning and simultaneously addressing multiple feedback is crucial to mitigate trade-off between dimensions. Furthermore, ReFeed is robust to noisy feedback and feedback order. Lastly, our finding emphasizes that creating data with a proper goal and guideline constitutes a fundamental pillar of effective reasoning. The dataset and model will be released.
☆ HyperGraphRAG: Retrieval-Augmented Generation with Hypergraph-Structured Knowledge Representation
While standard Retrieval-Augmented Generation (RAG) based on chunks, GraphRAG structures knowledge as graphs to leverage the relations among entities. However, previous GraphRAG methods are limited by binary relations: one edge in the graph only connects two entities, which cannot well model the n-ary relations among more than two entities that widely exist in reality. To address this limitation, we propose HyperGraphRAG, a novel hypergraph-based RAG method that represents n-ary relational facts via hyperedges, modeling the complicated n-ary relations in the real world. To retrieve and generate over hypergraphs, we introduce a complete pipeline with a hypergraph construction method, a hypergraph retrieval strategy, and a hypergraph-guided generation mechanism. Experiments across medicine, agriculture, computer science, and law demonstrate that HyperGraphRAG outperforms standard RAG and GraphRAG in accuracy and generation quality.
comment: Preprint
☆ FineCIR: Explicit Parsing of Fine-Grained Modification Semantics for Composed Image Retrieval
Composed Image Retrieval (CIR) facilitates image retrieval through a multimodal query consisting of a reference image and modification text. The reference image defines the retrieval context, while the modification text specifies desired alterations. However, existing CIR datasets predominantly employ coarse-grained modification text (CoarseMT), which inadequately captures fine-grained retrieval intents. This limitation introduces two key challenges: (1) ignoring detailed differences leads to imprecise positive samples, and (2) greater ambiguity arises when retrieving visually similar images. These issues degrade retrieval accuracy, necessitating manual result filtering or repeated queries. To address these limitations, we develop a robust fine-grained CIR data annotation pipeline that minimizes imprecise positive samples and enhances CIR systems' ability to discern modification intents accurately. Using this pipeline, we refine the FashionIQ and CIRR datasets to create two fine-grained CIR datasets: Fine-FashionIQ and Fine-CIRR. Furthermore, we introduce FineCIR, the first CIR framework explicitly designed to parse the modification text. FineCIR effectively captures fine-grained modification semantics and aligns them with ambiguous visual entities, enhancing retrieval precision. Extensive experiments demonstrate that FineCIR consistently outperforms state-of-the-art CIR baselines on both fine-grained and traditional CIR benchmark datasets. Our FineCIR code and fine-grained CIR datasets are available at https://github.com/SDU-L/FineCIR.git.
☆ InternVL-X: Advancing and Accelerating InternVL Series with Efficient Visual Token Compression
Most multimodal large language models (MLLMs) treat visual tokens as "a sequence of text", integrating them with text tokens into a large language model (LLM). However, a great quantity of visual tokens significantly increases the demand for computational resources and time. In this paper, we propose InternVL-X, which outperforms the InternVL model in both performance and efficiency by incorporating three visual token compression methods. First, we propose a novel vision-language projector, PVTC. This component integrates adjacent visual embeddings to form a local query and utilizes the transformed CLS token as a global query, then performs point-to-region cross-attention through these local and global queries to more effectively convert visual features. Second, we present a layer-wise visual token compression module, LVTC, which compresses tokens in the LLM shallow layers and then expands them through upsampling and residual connections in the deeper layers. This significantly enhances the model computational efficiency. Futhermore, we propose an efficient high resolution slicing method, RVTC, which dynamically adjusts the number of visual tokens based on image area or length filtering. RVTC greatly enhances training efficiency with only a slight reduction in performance. By utilizing 20% or fewer visual tokens, InternVL-X achieves state-of-the-art performance on 7 public MLLM benchmarks, and improves the average metric by 2.34% across 12 tasks.
☆ DeBackdoor: A Deductive Framework for Detecting Backdoor Attacks on Deep Models with Limited Data
Backdoor attacks are among the most effective, practical, and stealthy attacks in deep learning. In this paper, we consider a practical scenario where a developer obtains a deep model from a third party and uses it as part of a safety-critical system. The developer wants to inspect the model for potential backdoors prior to system deployment. We find that most existing detection techniques make assumptions that are not applicable to this scenario. In this paper, we present a novel framework for detecting backdoors under realistic restrictions. We generate candidate triggers by deductively searching over the space of possible triggers. We construct and optimize a smoothed version of Attack Success Rate as our search objective. Starting from a broad class of template attacks and just using the forward pass of a deep model, we reverse engineer the backdoor attack. We conduct extensive evaluation on a wide range of attacks, models, and datasets, with our technique performing almost perfectly across these settings.
☆ Multi-Scale Invertible Neural Network for Wide-Range Variable-Rate Learned Image Compression
Autoencoder-based structures have dominated recent learned image compression methods. However, the inherent information loss associated with autoencoders limits their rate-distortion performance at high bit rates and restricts their flexibility of rate adaptation. In this paper, we present a variable-rate image compression model based on invertible transform to overcome these limitations. Specifically, we design a lightweight multi-scale invertible neural network, which bijectively maps the input image into multi-scale latent representations. To improve the compression efficiency, a multi-scale spatial-channel context model with extended gain units is devised to estimate the entropy of the latent representation from high to low levels. Experimental results demonstrate that the proposed method achieves state-of-the-art performance compared to existing variable-rate methods, and remains competitive with recent multi-model approaches. Notably, our method is the first learned image compression solution that outperforms VVC across a very wide range of bit rates using a single model, especially at high bit rates.The source code is available at \href{https://github.com/hytu99/MSINN-VRLIC}{https://github.com/hytu99/MSINN-VRLIC}.
comment: Accepted to IEEE Transactions on Multimedia 2025
☆ Reinforced Model Merging
The success of large language models has garnered widespread attention for model merging techniques, especially training-free methods which combine model capabilities within the parameter space. However, two challenges remain: (1) uniform treatment of all parameters leads to performance degradation; (2) search-based algorithms are often inefficient. In this paper, we present an innovative framework termed Reinforced Model Merging (RMM), which encompasses an environment and agent tailored for merging tasks. These components interact to execute layer-wise merging actions, aiming to search the optimal merging architecture. Notably, RMM operates without any gradient computations on the original models, rendering it feasible for edge devices. Furthermore, by utilizing data subsets during the evaluation process, we addressed the bottleneck in the reward feedback phase, thereby accelerating RMM by up to 100 times. Extensive experiments demonstrate that RMM achieves state-of-the-art performance across various vision and NLP datasets and effectively overcomes the limitations of the existing baseline methods. Our code is available at https://github.com/WuDiHJQ/Reinforced-Model-Merging.
☆ Learn by Reasoning: Analogical Weight Generation for Few-Shot Class-Incremental Learning
Few-shot class-incremental Learning (FSCIL) enables models to learn new classes from limited data while retaining performance on previously learned classes. Traditional FSCIL methods often require fine-tuning parameters with limited new class data and suffer from a separation between learning new classes and utilizing old knowledge. Inspired by the analogical learning mechanisms of the human brain, we propose a novel analogical generative method. Our approach includes the Brain-Inspired Analogical Generator (BiAG), which derives new class weights from existing classes without parameter fine-tuning during incremental stages. BiAG consists of three components: Weight Self-Attention Module (WSA), Weight & Prototype Analogical Attention Module (WPAA), and Semantic Conversion Module (SCM). SCM uses Neural Collapse theory for semantic conversion, WSA supplements new class weights, and WPAA computes analogies to generate new class weights. Experiments on miniImageNet, CUB-200, and CIFAR-100 datasets demonstrate that our method achieves higher final and average accuracy compared to SOTA methods.
☆ OminiAdapt: Learning Cross-Task Invariance for Robust and Environment-Aware Robotic Manipulation
With the rapid development of embodied intelligence, leveraging large-scale human data for high-level imitation learning on humanoid robots has become a focal point of interest in both academia and industry. However, applying humanoid robots to precision operation domains remains challenging due to the complexities they face in perception and control processes, the long-standing physical differences in morphology and actuation mechanisms between humanoid robots and humans, and the lack of task-relevant features obtained from egocentric vision. To address the issue of covariate shift in imitation learning, this paper proposes an imitation learning algorithm tailored for humanoid robots. By focusing on the primary task objectives, filtering out background information, and incorporating channel feature fusion with spatial attention mechanisms, the proposed algorithm suppresses environmental disturbances and utilizes a dynamic weight update strategy to significantly improve the success rate of humanoid robots in accomplishing target tasks. Experimental results demonstrate that the proposed method exhibits robustness and scalability across various typical task scenarios, providing new ideas and approaches for autonomous learning and control in humanoid robots. The project will be open-sourced on GitHub.
☆ Vision-to-Music Generation: A Survey
Vision-to-music Generation, including video-to-music and image-to-music tasks, is a significant branch of multimodal artificial intelligence demonstrating vast application prospects in fields such as film scoring, short video creation, and dance music synthesis. However, compared to the rapid development of modalities like text and images, research in vision-to-music is still in its preliminary stage due to its complex internal structure and the difficulty of modeling dynamic relationships with video. Existing surveys focus on general music generation without comprehensive discussion on vision-to-music. In this paper, we systematically review the research progress in the field of vision-to-music generation. We first analyze the technical characteristics and core challenges for three input types: general videos, human movement videos, and images, as well as two output types of symbolic music and audio music. We then summarize the existing methodologies on vision-to-music generation from the architecture perspective. A detailed review of common datasets and evaluation metrics is provided. Finally, we discuss current challenges and promising directions for future research. We hope our survey can inspire further innovation in vision-to-music generation and the broader field of multimodal generation in academic research and industrial applications. To follow latest works and foster further innovation in this field, we are continuously maintaining a GitHub repository at https://github.com/wzk1015/Awesome-Vision-to-Music-Generation.
☆ Dual-Splitting Conformal Prediction for Multi-Step Time Series Forecasting
Time series forecasting is crucial for applications like resource scheduling and risk management, where multi-step predictions provide a comprehensive view of future trends. Uncertainty Quantification (UQ) is a mainstream approach for addressing forecasting uncertainties, with Conformal Prediction (CP) gaining attention due to its model-agnostic nature and statistical guarantees. However, most variants of CP are designed for single-step predictions and face challenges in multi-step scenarios, such as reliance on real-time data and limited scalability. This highlights the need for CP methods specifically tailored to multi-step forecasting. We propose the Dual-Splitting Conformal Prediction (DSCP) method, a novel CP approach designed to capture inherent dependencies within time-series data for multi-step forecasting. Experimental results on real-world datasets from four different domains demonstrate that the proposed DSCP significantly outperforms existing CP variants in terms of the Winkler Score, achieving a performance improvement of up to 23.59% compared to state-of-the-art methods. Furthermore, we deployed the DSCP approach for renewable energy generation and IT load forecasting in power management of a real-world trajectory-based application, achieving an 11.25% reduction in carbon emissions through predictive optimization of data center operations and controls.
comment: 28 pages, 13 figures, 3 tables. Submitted to Applied Soft Computing. With Editor This is the first public release of the work
☆ ResearchBench: Benchmarking LLMs in Scientific Discovery via Inspiration-Based Task Decomposition
Large language models (LLMs) have demonstrated potential in assisting scientific research, yet their ability to discover high-quality research hypotheses remains unexamined due to the lack of a dedicated benchmark. To address this gap, we introduce the first large-scale benchmark for evaluating LLMs with a near-sufficient set of sub-tasks of scientific discovery: inspiration retrieval, hypothesis composition, and hypothesis ranking. We develop an automated framework that extracts critical components - research questions, background surveys, inspirations, and hypotheses - from scientific papers across 12 disciplines, with expert validation confirming its accuracy. To prevent data contamination, we focus exclusively on papers published in 2024, ensuring minimal overlap with LLM pretraining data. Our evaluation reveals that LLMs perform well in retrieving inspirations, an out-of-distribution task, suggesting their ability to surface novel knowledge associations. This positions LLMs as "research hypothesis mines", capable of facilitating automated scientific discovery by generating innovative hypotheses at scale with minimal human intervention.
☆ Improving $(α, f)$-Byzantine Resilience in Federated Learning via layerwise aggregation and cosine distance
The rapid development of artificial intelligence systems has amplified societal concerns regarding their usage, necessitating regulatory frameworks that encompass data privacy. Federated Learning (FL) is posed as potential solution to data privacy challenges in distributed machine learning by enabling collaborative model training {without data sharing}. However, FL systems remain vulnerable to Byzantine attacks, where malicious nodes contribute corrupted model updates. While Byzantine Resilient operators have emerged as a widely adopted robust aggregation algorithm to mitigate these attacks, its efficacy diminishes significantly in high-dimensional parameter spaces, sometimes leading to poor performing models. This paper introduces Layerwise Cosine Aggregation, a novel aggregation scheme designed to enhance robustness of these rules in such high-dimensional settings while preserving computational efficiency. A theoretical analysis is presented, demonstrating the superior robustness of the proposed Layerwise Cosine Aggregation compared to original robust aggregation operators. Empirical evaluation across diverse image classification datasets, under varying data distributions and Byzantine attack scenarios, consistently demonstrates the improved performance of Layerwise Cosine Aggregation, achieving up to a 16% increase in model accuracy.
comment: Submitted to Knowledge-Based Systems
☆ Feature-Enhanced Machine Learning for All-Cause Mortality Prediction in Healthcare Data
Accurate patient mortality prediction enables effective risk stratification, leading to personalized treatment plans and improved patient outcomes. However, predicting mortality in healthcare remains a significant challenge, with existing studies often focusing on specific diseases or limited predictor sets. This study evaluates machine learning models for all-cause in-hospital mortality prediction using the MIMIC-III database, employing a comprehensive feature engineering approach. Guided by clinical expertise and literature, we extracted key features such as vital signs (e.g., heart rate, blood pressure), laboratory results (e.g., creatinine, glucose), and demographic information. The Random Forest model achieved the highest performance with an AUC of 0.94, significantly outperforming other machine learning and deep learning approaches. This demonstrates Random Forest's robustness in handling high-dimensional, noisy clinical data and its potential for developing effective clinical decision support tools. Our findings highlight the importance of careful feature engineering for accurate mortality prediction. We conclude by discussing implications for clinical adoption and propose future directions, including enhancing model robustness and tailoring prediction models for specific diseases.
☆ Bias-Aware Agent: Enhancing Fairness in AI-Driven Knowledge Retrieval
Advancements in retrieving accessible information have evolved faster in the last few years compared to the decades since the internet's creation. Search engines, like Google, have been the number one way to find relevant data. They have always relied on the user's abilities to find the best information in its billions of links and sources at everybody's fingertips. The advent of large language models (LLMs) has completely transformed the field of information retrieval. The LLMs excel not only at retrieving relevant knowledge but also at summarizing it effectively, making information more accessible and consumable for users. On top of it, the rise of AI Agents has introduced another aspect to information retrieval i.e. dynamic information retrieval which enables the integration of real-time data such as weather forecasts, and financial data with the knowledge base to curate context-aware knowledge. However, despite these advancements the agents remain susceptible to issues of bias and fairness, challenges deeply rooted within the knowledge base and training of LLMs. This study introduces a novel approach to bias-aware knowledge retrieval by leveraging agentic framework and the innovative use of bias detectors as tools to identify and highlight inherent biases in the retrieved content. By empowering users with transparency and awareness, this approach aims to foster more equitable information systems and promote the development of responsible AI.
☆ Knowledge Graphs as World Models for Semantic Material-Aware Obstacle Handling in Autonomous Vehicles
The inability of autonomous vehicles (AVs) to infer the material properties of obstacles limits their decision-making capacity. While AVs rely on sensor systems such as cameras, LiDAR, and radar to detect obstacles, this study suggests combining sensors with a knowledge graph (KG)-based world model to improve AVs' comprehension of physical material qualities. Beyond sensor data, AVs can infer qualities such as malleability, density, and elasticity using a semantic KG that depicts the relationships between obstacles and their attributes. Using the CARLA autonomous driving simulator, we evaluated AV performance with and without KG integration. The findings demonstrate that the KG-based method improves obstacle management, which allows AVs to use material qualities to make better decisions about when to change lanes or apply emergency braking. For example, the KG-integrated AV changed lanes for hard impediments like traffic cones and successfully avoided collisions with flexible items such as plastic bags by passing over them. Compared to the control system, the KG framework demonstrated improved responsiveness to obstacles by resolving conflicting sensor data, causing emergency stops for 13.3% more cases. In addition, our method exhibits a 6.6% higher success rate in lane-changing maneuvers in experimental scenarios, particularly for larger, high-impact obstacles. While we focus particularly on autonomous driving, our work demonstrates the potential of KG-based world models to improve decision-making in embodied AI systems and scale to other domains, including robotics, healthcare, and environmental simulation.
☆ GenFusion: Closing the Loop between Reconstruction and Generation via Videos
Recently, 3D reconstruction and generation have demonstrated impressive novel view synthesis results, achieving high fidelity and efficiency. However, a notable conditioning gap can be observed between these two fields, e.g., scalable 3D scene reconstruction often requires densely captured views, whereas 3D generation typically relies on a single or no input view, which significantly limits their applications. We found that the source of this phenomenon lies in the misalignment between 3D constraints and generative priors. To address this problem, we propose a reconstruction-driven video diffusion model that learns to condition video frames on artifact-prone RGB-D renderings. Moreover, we propose a cyclical fusion pipeline that iteratively adds restoration frames from the generative model to the training set, enabling progressive expansion and addressing the viewpoint saturation limitations seen in previous reconstruction and generation pipelines. Our evaluation, including view synthesis from sparse view and masked input, validates the effectiveness of our approach.
☆ Integrating Large Language Models For Monte Carlo Simulation of Chemical Reaction Networks
Chemical reaction network is an important method for modeling and exploring complex biological processes, bio-chemical interactions and the behavior of different dynamics in system biology. But, formulating such reaction kinetics takes considerable time. In this paper, we leverage the efficiency of modern large language models to automate the stochastic monte carlo simulation of chemical reaction networks and enable the simulation through the reaction description provided in the form of natural languages. We also integrate this process into widely used simulation tool Copasi to further give the edge and ease to the modelers and researchers. In this work, we show the efficacy and limitations of the modern large language models to parse and create reaction kinetics for modelling complex chemical reaction processes.
comment: Accepted on MadeAI 2025 Conference
☆ Adversarial Wear and Tear: Exploiting Natural Damage for Generating Physical-World Adversarial Examples
The presence of adversarial examples in the physical world poses significant challenges to the deployment of Deep Neural Networks in safety-critical applications such as autonomous driving. Most existing methods for crafting physical-world adversarial examples are ad-hoc, relying on temporary modifications like shadows, laser beams, or stickers that are tailored to specific scenarios. In this paper, we introduce a new class of physical-world adversarial examples, AdvWT, which draws inspiration from the naturally occurring phenomenon of `wear and tear', an inherent property of physical objects. Unlike manually crafted perturbations, `wear and tear' emerges organically over time due to environmental degradation, as seen in the gradual deterioration of outdoor signboards. To achieve this, AdvWT follows a two-step approach. First, a GAN-based, unsupervised image-to-image translation network is employed to model these naturally occurring damages, particularly in the context of outdoor signboards. The translation network encodes the characteristics of damaged signs into a latent `damage style code'. In the second step, we introduce adversarial perturbations into the style code, strategically optimizing its transformation process. This manipulation subtly alters the damage style representation, guiding the network to generate adversarial images where the appearance of damages remains perceptually realistic, while simultaneously ensuring their effectiveness in misleading neural networks. Through comprehensive experiments on two traffic sign datasets, we show that AdvWT effectively misleads DNNs in both digital and physical domains. AdvWT achieves an effective attack success rate, greater robustness, and a more natural appearance compared to existing physical-world adversarial examples. Additionally, integrating AdvWT into training enhances a model's generalizability to real-world damaged signs.
comment: 11 pages, 9 figures
☆ Multi-Objective Optimization for Privacy-Utility Balance in Differentially Private Federated Learning
Federated learning (FL) enables collaborative model training across distributed clients without sharing raw data, making it a promising approach for privacy-preserving machine learning. However, ensuring differential privacy (DP) in FL presents challenges due to the trade-off between model utility and privacy protection. Clipping gradients before aggregation is a common strategy to limit privacy loss, but selecting an optimal clipping norm is non-trivial, as excessively high values compromise privacy, while overly restrictive clipping degrades model performance. In this work, we propose an adaptive clipping mechanism that dynamically adjusts the clipping norm using a multi-objective optimization framework. By integrating privacy and utility considerations into the optimization objective, our approach balances privacy preservation with model accuracy. We theoretically analyze the convergence properties of our method and demonstrate its effectiveness through extensive experiments on MNIST, Fashion-MNIST, and CIFAR-10 datasets. Our results show that adaptive clipping consistently outperforms fixed-clipping baselines, achieving improved accuracy under the same privacy constraints. This work highlights the potential of dynamic clipping strategies to enhance privacy-utility trade-offs in differentially private federated learning.
☆ Federated Learning with Differential Privacy: An Utility-Enhanced Approach
Federated learning has emerged as an attractive approach to protect data privacy by eliminating the need for sharing clients' data while reducing communication costs compared with centralized machine learning algorithms. However, recent studies have shown that federated learning alone does not guarantee privacy, as private data may still be inferred from the uploaded parameters to the central server. In order to successfully avoid data leakage, adopting differential privacy (DP) in the local optimization process or in the local update aggregation process has emerged as two feasible ways for achieving sample-level or user-level privacy guarantees respectively, in federated learning models. However, compared to their non-private equivalents, these approaches suffer from a poor utility. To improve the privacy-utility trade-off, we present a modification to these vanilla differentially private algorithms based on a Haar wavelet transformation step and a novel noise injection scheme that significantly lowers the asymptotic bound of the noise variance. We also present a holistic convergence analysis of our proposed algorithm, showing that our method yields better convergence performance than the vanilla DP algorithms. Numerical experiments on real-world datasets demonstrate that our method outperforms existing approaches in model utility while maintaining the same privacy guarantees.
☆ The Devil is in Low-Level Features for Cross-Domain Few-Shot Segmentation CVPR 2025
Cross-Domain Few-Shot Segmentation (CDFSS) is proposed to transfer the pixel-level segmentation capabilities learned from large-scale source-domain datasets to downstream target-domain datasets, with only a few annotated images per class. In this paper, we focus on a well-observed but unresolved phenomenon in CDFSS: for target domains, particularly those distant from the source domain, segmentation performance peaks at the very early epochs, and declines sharply as the source-domain training proceeds. We delve into this phenomenon for an interpretation: low-level features are vulnerable to domain shifts, leading to sharper loss landscapes during the source-domain training, which is the devil of CDFSS. Based on this phenomenon and interpretation, we further propose a method that includes two plug-and-play modules: one to flatten the loss landscapes for low-level features during source-domain training as a novel sharpness-aware minimization method, and the other to directly supplement target-domain information to the model during target-domain testing by low-level-based calibration. Extensive experiments on four target datasets validate our rationale and demonstrate that our method surpasses the state-of-the-art method in CDFSS signifcantly by 3.71% and 5.34% average MIoU in 1-shot and 5-shot scenarios, respectively.
comment: Accepted by CVPR 2025
☆ A computational theory of evaluation for parameterisable subject
Evaluation is critical to advance decision making across domains, yet existing methodologies often struggle to balance theoretical rigor and practical scalability. In order to reduce the cost of experimental evaluation, we introduce a computational theory of evaluation for parameterisable subjects. We prove upper bounds of generalized evaluation error and generalized causal effect error of evaluation metric on subject. We also prove efficiency, and consistency to estimated causal effect of subject on metric by prediction. To optimize evaluation models, we propose a meta-learner to handle heterogeneous evaluation subjects space. Comparing with other computational approaches, our (conditional) evaluation model reduced 24.1%-99.0% evaluation errors across 12 scenes, including individual medicine, scientific simulation, business activities, and quantum trade. The evaluation time is reduced 3-7 order of magnitude comparing with experiments or simulations.
☆ Optimizing Multi-DNN Inference on Mobile Devices through Heterogeneous Processor Co-Execution
Deep Neural Networks (DNNs) are increasingly deployed across diverse industries, driving demand for mobile device support. However, existing mobile inference frameworks often rely on a single processor per model, limiting hardware utilization and causing suboptimal performance and energy efficiency. Expanding DNN accessibility on mobile platforms requires adaptive, resource-efficient solutions to meet rising computational needs without compromising functionality. Parallel inference of multiple DNNs on heterogeneous processors remains challenging. Some works partition DNN operations into subgraphs for parallel execution across processors, but these often create excessive subgraphs based only on hardware compatibility, increasing scheduling complexity and memory overhead. To address this, we propose an Advanced Multi-DNN Model Scheduling (ADMS) strategy for optimizing multi-DNN inference on mobile heterogeneous processors. ADMS constructs an optimal subgraph partitioning strategy offline, balancing hardware operation support and scheduling granularity, and uses a processor-state-aware algorithm to dynamically adjust workloads based on real-time conditions. This ensures efficient workload distribution and maximizes processor utilization. Experiments show ADMS reduces multi-DNN inference latency by 4.04 times compared to vanilla frameworks.
comment: 14 pages, 12 figures, 5 tables
☆ Alleviating LLM-based Generative Retrieval Hallucination in Alipay Search
Generative retrieval (GR) has revolutionized document retrieval with the advent of large language models (LLMs), and LLM-based GR is gradually being adopted by the industry. Despite its remarkable advantages and potential, LLM-based GR suffers from hallucination and generates documents that are irrelevant to the query in some instances, severely challenging its credibility in practical applications. We thereby propose an optimized GR framework designed to alleviate retrieval hallucination, which integrates knowledge distillation reasoning in model training and incorporate decision agent to further improve retrieval precision. Specifically, we employ LLMs to assess and reason GR retrieved query-document (q-d) pairs, and then distill the reasoning data as transferred knowledge to the GR model. Moreover, we utilize a decision agent as post-processing to extend the GR retrieved documents through retrieval model and select the most relevant ones from multi perspectives as the final generative retrieval result. Extensive offline experiments on real-world datasets and online A/B tests on Fund Search and Insurance Search in Alipay demonstrate our framework's superiority and effectiveness in improving search quality and conversion gains.
comment: 4 pages
☆ Confidence Adjusted Surprise Measure for Active Resourceful Trials (CA-SMART): A Data-driven Active Learning Framework for Accelerating Material Discovery under Resource Constraints
Accelerating the discovery and manufacturing of advanced materials with specific properties is a critical yet formidable challenge due to vast search space, high costs of experiments, and time-intensive nature of material characterization. In recent years, active learning, where a surrogate machine learning (ML) model mimics the scientific discovery process of a human scientist, has emerged as a promising approach to address these challenges by guiding experimentation toward high-value outcomes with a limited budget. Among the diverse active learning philosophies, the concept of surprise (capturing the divergence between expected and observed outcomes) has demonstrated significant potential to drive experimental trials and refine predictive models. Scientific discovery often stems from surprise thereby making it a natural driver to guide the search process. Despite its promise, prior studies leveraging surprise metrics such as Shannon and Bayesian surprise lack mechanisms to account for prior confidence, leading to excessive exploration of uncertain regions that may not yield useful information. To address this, we propose the Confidence-Adjusted Surprise Measure for Active Resourceful Trials (CA-SMART), a novel Bayesian active learning framework tailored for optimizing data-driven experimentation. On a high level, CA-SMART incorporates Confidence-Adjusted Surprise (CAS) to dynamically balance exploration and exploitation by amplifying surprises in regions where the model is more certain while discounting them in highly uncertain areas. We evaluated CA-SMART on two benchmark functions (Six-Hump Camelback and Griewank) and in predicting the fatigue strength of steel. The results demonstrate superior accuracy and efficiency compared to traditional surprise metrics, standard Bayesian Optimization (BO) acquisition functions and conventional ML methods.
☆ ZJUKLAB at SemEval-2025 Task 4: Unlearning via Model Merging
This paper presents the ZJUKLAB team's submission for SemEval-2025 Task 4: Unlearning Sensitive Content from Large Language Models. This task aims to selectively erase sensitive knowledge from large language models, avoiding both over-forgetting and under-forgetting issues. We propose an unlearning system that leverages Model Merging (specifically TIES-Merging), combining two specialized models into a more balanced unlearned model. Our system achieves competitive results, ranking second among 26 teams, with an online score of 0.944 for Task Aggregate and 0.487 for overall Aggregate. In this paper, we also conduct local experiments and perform a comprehensive analysis of the unlearning process, examining performance trajectories, loss dynamics, and weight perspectives, along with several supplementary experiments, to understand the effectiveness of our method. Furthermore, we analyze the shortcomings of our method and evaluation metrics, emphasizing that MIA scores and ROUGE-based metrics alone are insufficient to fully evaluate successful unlearning. Finally, we emphasize the need for more comprehensive evaluation methodologies and rethinking of unlearning objectives in future research. Code is available at https://github.com/zjunlp/unlearn/tree/main/semeval25.
comment: Work in progress
☆ Rerouting Connection: Hybrid Computer Vision Analysis Reveals Visual Similarity Between Indus and Tibetan-Yi Corridor Writing Systems
This thesis employs a hybrid CNN-Transformer architecture, in conjunction with a detailed anthropological framework, to investigate potential historical connections between the visual morphology of the Indus Valley script and pictographic systems of the Tibetan-Yi Corridor. Through an ensemble methodology of three target scripts across 15 independently trained models, we demonstrate that Tibetan-Yi Corridor scripts exhibit approximately six-fold higher visual similarity to the Indus script (61.7%-63.5%) than to the Bronze Age Proto-Cuneiform (10.2%-10.9%) or Proto-Elamite (7.6%-8.7%) systems. Additionally and contrarily to our current understanding of the networks of the Indus Valley Civilization, the Indus script unexpectedly maps closer to Tibetan-Yi Corridor scripts, with a mean cosine similarity of 0.629, than to the aforementioned contemporaneous West Asian signaries, both of which recorded mean cosine similarities of 0.104 and 0.080 despite their close geographic proximity and evident trade relations. Across various dimensionality reduction practices and clustering methodologies, the Indus script consistently clusters closest to Tibetan-Yi Corridor scripts. Our computational results align with qualitative observations of specific pictorial parallels in numeral systems, gender markers, and key iconographic elements; this is further supported by archaeological evidence of sustained contact networks along the ancient Shu-Shendu road in tandem with the Indus Valley Civilization's decline, providing a plausible transmission pathway. While alternative explanations cannot be ruled out, the specificity and consistency of observed similarities challenge conventional narratives of isolated script development and suggest more complex ancient cultural transmission networks between South and East Asia than previously recognized.
comment: 106 pages total (main text: 42, 48 w/refs, 100 w/appendices). 21 figures, 4 tables in main; 106 figs, 8 tables total. Code and data at this URL: https://github.com/oohalakkadi/ivc2tyc. Submitted as undergrad thesis at Duke Kunshan University; accepted for presentation at the 2025 Computer Applications and Quantitative Methods in Archaeology Conference, Athens
☆ AskSport: Web Application for Sports Question-Answering
This paper introduces AskSport, a question-answering web application about sports. It allows users to ask questions using natural language and retrieve the three most relevant answers, including related information and documents. The paper describes the characteristics and functionalities of the application, including use cases demonstrating its ability to return names and numerical values. AskSport and its implementation are available for public access on HuggingFace.
comment: for accessing the application, see https://huggingface.co/spaces/leomaurodesenv/qasports-website
☆ Cognitive Prompts Using Guilford's Structure of Intellect Model
Large language models (LLMs) demonstrate strong language generation capabilities but often struggle with structured reasoning, leading to inconsistent or suboptimal problem-solving. To mitigate this limitation, Guilford's Structure of Intellect (SOI) model - a foundational framework from intelligence theory - is leveraged as the basis for cognitive prompt engineering. The SOI model categorizes cognitive operations such as pattern recognition, memory retrieval, and evaluation, offering a systematic approach to enhancing LLM reasoning and decision-making. This position paper presents a novel cognitive prompting approach for enforcing SOI-inspired reasoning for improving clarity, coherence, and adaptability in model responses.
☆ Safeguarding Autonomy: a Focus on Machine Learning Decision Systems
As global discourse on AI regulation gains momentum, this paper focuses on delineating the impact of ML on autonomy and fostering awareness. Respect for autonomy is a basic principle in bioethics that establishes persons as decision-makers. While the concept of autonomy in the context of ML appears in several European normative publications, it remains a theoretical concept that has yet to be widely accepted in ML practice. Our contribution is to bridge the theoretical and practical gap by encouraging the practical application of autonomy in decision-making within ML practice by identifying the conditioning factors that currently prevent it. Consequently, we focus on the different stages of the ML pipeline to identify the potential effects on ML end-users' autonomy. To improve its practical utility, we propose a related question for each detected impact, offering guidance for identifying possible focus points to respect ML end-users autonomy in decision-making.
☆ CoT-VLA: Visual Chain-of-Thought Reasoning for Vision-Language-Action Models
Vision-language-action models (VLAs) have shown potential in leveraging pretrained vision-language models and diverse robot demonstrations for learning generalizable sensorimotor control. While this paradigm effectively utilizes large-scale data from both robotic and non-robotic sources, current VLAs primarily focus on direct input--output mappings, lacking the intermediate reasoning steps crucial for complex manipulation tasks. As a result, existing VLAs lack temporal planning or reasoning capabilities. In this paper, we introduce a method that incorporates explicit visual chain-of-thought (CoT) reasoning into vision-language-action models (VLAs) by predicting future image frames autoregressively as visual goals before generating a short action sequence to achieve these goals. We introduce CoT-VLA, a state-of-the-art 7B VLA that can understand and generate visual and action tokens. Our experimental results demonstrate that CoT-VLA achieves strong performance, outperforming the state-of-the-art VLA model by 17% in real-world manipulation tasks and 6% in simulation benchmarks. Project website: https://cot-vla.github.io/
comment: Project website: https://cot-vla.github.io/
☆ BOOTPLACE: Bootstrapped Object Placement with Detection Transformers CVPR 2025
In this paper, we tackle the copy-paste image-to-image composition problem with a focus on object placement learning. Prior methods have leveraged generative models to reduce the reliance for dense supervision. However, this often limits their capacity to model complex data distributions. Alternatively, transformer networks with a sparse contrastive loss have been explored, but their over-relaxed regularization often leads to imprecise object placement. We introduce BOOTPLACE, a novel paradigm that formulates object placement as a placement-by-detection problem. Our approach begins by identifying suitable regions of interest for object placement. This is achieved by training a specialized detection transformer on object-subtracted backgrounds, enhanced with multi-object supervisions. It then semantically associates each target compositing object with detected regions based on their complementary characteristics. Through a boostrapped training approach applied to randomly object-subtracted images, our model enforces meaningful placements through extensive paired data augmentation. Experimental results on established benchmarks demonstrate BOOTPLACE's superior performance in object repositioning, markedly surpassing state-of-the-art baselines on Cityscapes and OPA datasets with notable improvements in IOU scores. Additional ablation studies further showcase the compositionality and generalizability of our approach, supported by user study evaluations.
comment: CVPR 2025. Project page: https://ryanhangzhou.github.io/bootplace/ , code: https://github.com/RyanHangZhou/BOOTPLACE
☆ Pretrained Bayesian Non-parametric Knowledge Prior in Robotic Long-Horizon Reinforcement Learning
Reinforcement learning (RL) methods typically learn new tasks from scratch, often disregarding prior knowledge that could accelerate the learning process. While some methods incorporate previously learned skills, they usually rely on a fixed structure, such as a single Gaussian distribution, to define skill priors. This rigid assumption can restrict the diversity and flexibility of skills, particularly in complex, long-horizon tasks. In this work, we introduce a method that models potential primitive skill motions as having non-parametric properties with an unknown number of underlying features. We utilize a Bayesian non-parametric model, specifically Dirichlet Process Mixtures, enhanced with birth and merge heuristics, to pre-train a skill prior that effectively captures the diverse nature of skills. Additionally, the learned skills are explicitly trackable within the prior space, enhancing interpretability and control. By integrating this flexible skill prior into an RL framework, our approach surpasses existing methods in long-horizon manipulation tasks, enabling more efficient skill transfer and task success in complex environments. Our findings show that a richer, non-parametric representation of skill priors significantly improves both the learning and execution of challenging robotic tasks. All data, code, and videos are available at https://ghiara.github.io/HELIOS/.
comment: initial upload 8 pages
☆ Data-Agnostic Robotic Long-Horizon Manipulation with Vision-Language-Guided Closed-Loop Feedback
Recent advances in language-conditioned robotic manipulation have leveraged imitation and reinforcement learning to enable robots to execute tasks from human commands. However, these methods often suffer from limited generalization, adaptability, and the lack of large-scale specialized datasets, unlike data-rich domains such as computer vision, making long-horizon task execution challenging. To address these gaps, we introduce DAHLIA, a data-agnostic framework for language-conditioned long-horizon robotic manipulation, leveraging large language models (LLMs) for real-time task planning and execution. DAHLIA employs a dual-tunnel architecture, where an LLM-powered planner collaborates with co-planners to decompose tasks and generate executable plans, while a reporter LLM provides closed-loop feedback, enabling adaptive re-planning and ensuring task recovery from potential failures. Moreover, DAHLIA integrates chain-of-thought (CoT) in task reasoning and temporal abstraction for efficient action execution, enhancing traceability and robustness. Our framework demonstrates state-of-the-art performance across diverse long-horizon tasks, achieving strong generalization in both simulated and real-world scenarios. Videos and code are available at https://ghiara.github.io/DAHLIA/.
comment: initial upload 8 page
☆ Entropy-Aware Branching for Improved Mathematical Reasoning
While Large Language Models (LLMs) are effectively aligned through extensive pre-training and fine-tuning, they still struggle with varying levels of uncertainty during token generation. In our investigation of mathematical reasoning, we observe that errors are more likely to arise at tokens exhibiting high entropy and variance of entropy in the model's output distribution. Based on the observation, we propose a novel approach that dynamically branches the generation process on demand instead of defaulting to the single most probable token. By exploring in parallel multiple branches stemming from high probability tokens of critical decision points, the model can discover diverse reasoning paths that might otherwise be missed. We further harness external feedback from larger models to rank and select the most coherent and accurate reasoning branch. Our experimental results on mathematical word problems and calculation questions show that this branching strategy boosts the reasoning capabilities of small LLMs up to 4.6% compared to conventional argmax decoding.
☆ Parametric Shadow Control for Portrait Generationin Text-to-Image Diffusion Models
Text-to-image diffusion models excel at generating diverse portraits, but lack intuitive shadow control. Existing editing approaches, as post-processing, struggle to offer effective manipulation across diverse styles. Additionally, these methods either rely on expensive real-world light-stage data collection or require extensive computational resources for training. To address these limitations, we introduce Shadow Director, a method that extracts and manipulates hidden shadow attributes within well-trained diffusion models. Our approach uses a small estimation network that requires only a few thousand synthetic images and hours of training-no costly real-world light-stage data needed. Shadow Director enables parametric and intuitive control over shadow shape, placement, and intensity during portrait generation while preserving artistic integrity and identity across diverse styles. Despite training only on synthetic data built on real-world identities, it generalizes effectively to generated portraits with diverse styles, making it a more accessible and resource-friendly solution.
comment: ShadowDirector Arxiv Version
☆ Lobster: A GPU-Accelerated Framework for Neurosymbolic Programming
Neurosymbolic programs combine deep learning with symbolic reasoning to achieve better data efficiency, interpretability, and generalizability compared to standalone deep learning approaches. However, existing neurosymbolic learning frameworks implement an uneasy marriage between a highly scalable, GPU-accelerated neural component with a slower symbolic component that runs on CPUs. We propose Lobster, a unified framework for harnessing GPUs in an end-to-end manner for neurosymbolic learning. Lobster maps a general neurosymbolic language based on Datalog to the GPU programming paradigm. This mapping is implemented via compilation to a new intermediate language called APM. The extra abstraction provided by APM allows Lobster to be both flexible, supporting discrete, probabilistic, and differentiable modes of reasoning on GPU hardware with a library of provenance semirings, and performant, implementing new optimization passes. We demonstrate that Lobster programs can solve interesting problems spanning the domains of natural language processing, image processing, program reasoning, bioinformatics, and planning. On a suite of 8 applications, Lobster achieves an average speedup of 5.3x over Scallop, a state-of-the-art neurosymbolic framework, and enables scaling of neurosymbolic solutions to previously infeasible tasks.
☆ An Efficient Training Algorithm for Models with Block-wise Sparsity
Large-scale machine learning (ML) models are increasingly being used in critical domains like education, lending, recruitment, healthcare, criminal justice, etc. However, the training, deployment, and utilization of these models demand substantial computational resources. To decrease computation and memory costs, machine learning models with sparse weight matrices are widely used in the literature. Among sparse models, those with special sparse structures (e.g., models with block-wise sparse weight matrices) fit better with the hardware accelerators and can decrease the memory and computation costs during the inference. Unfortunately, while there are several efficient training methods, none of them are designed to train a block-wise sparse model efficiently. As a result, the current methods for training block-wise sparse models start with full and dense models leading to inefficient training. In this work, we focus on training models with \textit{block-wise sparse matrices} and propose an efficient training algorithm to decrease both computation and memory costs during training and inference. In addition, we will show that our proposed method enables us to efficiently find the right block size for the sparsity pattern during the training process. Our extensive empirical and theoretical analyses show that our algorithms can decrease the computation and memory costs significantly without a performance drop compared to baselines.
comment: 24 pages, submitted on Transactions on Machine Learning Research
☆ AutoPsyC: Automatic Recognition of Psychodynamic Conflicts from Semi-structured Interviews with Large Language Models
Psychodynamic conflicts are persistent, often unconscious themes that shape a person's behaviour and experiences. Accurate diagnosis of psychodynamic conflicts is crucial for effective patient treatment and is commonly done via long, manually scored semi-structured interviews. Existing automated solutions for psychiatric diagnosis tend to focus on the recognition of broad disorder categories such as depression, and it is unclear to what extent psychodynamic conflicts which even the patient themselves may not have conscious access to could be automatically recognised from conversation. In this paper, we propose AutoPsyC, the first method for recognising the presence and significance of psychodynamic conflicts from full-length Operationalized Psychodynamic Diagnostics (OPD) interviews using Large Language Models (LLMs). Our approach combines recent advances in parameter-efficient fine-tuning and Retrieval-Augmented Generation (RAG) with a summarisation strategy to effectively process entire 90 minute long conversations. In evaluations on a dataset of 141 diagnostic interviews we show that AutoPsyC consistently outperforms all baselines and ablation conditions on the recognition of four highly relevant psychodynamic conflicts.
☆ JEEM: Vision-Language Understanding in Four Arabic Dialects
We introduce JEEM, a benchmark designed to evaluate Vision-Language Models (VLMs) on visual understanding across four Arabic-speaking countries: Jordan, The Emirates, Egypt, and Morocco. JEEM includes the tasks of image captioning and visual question answering, and features culturally rich and regionally diverse content. This dataset aims to assess the ability of VLMs to generalize across dialects and accurately interpret cultural elements in visual contexts. In an evaluation of five prominent open-source Arabic VLMs and GPT-4V, we find that the Arabic VLMs consistently underperform, struggling with both visual understanding and dialect-specific generation. While GPT-4V ranks best in this comparison, the model's linguistic competence varies across dialects, and its visual understanding capabilities lag behind. This underscores the need for more inclusive models and the value of culturally-diverse evaluation paradigms.
☆ OntoAligner: A Comprehensive Modular and Robust Python Toolkit for Ontology Alignment ESWC 2025
Ontology Alignment (OA) is fundamental for achieving semantic interoperability across diverse knowledge systems. We present OntoAligner, a comprehensive, modular, and robust Python toolkit for ontology alignment, designed to address current limitations with existing tools faced by practitioners. Existing tools are limited in scalability, modularity, and ease of integration with recent AI advances. OntoAligner provides a flexible architecture integrating existing lightweight OA techniques such as fuzzy matching but goes beyond by supporting contemporary methods with retrieval-augmented generation and large language models for OA. The framework prioritizes extensibility, enabling researchers to integrate custom alignment algorithms and datasets. This paper details the design principles, architecture, and implementation of the OntoAligner, demonstrating its utility through benchmarks on standard OA tasks. Our evaluation highlights OntoAligner's ability to handle large-scale ontologies efficiently with few lines of code while delivering high alignment quality. By making OntoAligner open-source, we aim to provide a resource that fosters innovation and collaboration within the OA community, empowering researchers and practitioners with a toolkit for reproducible OA research and real-world applications.
comment: 18 pages, 3 figures. Accepted for the ESWC 2025 Resource Track
☆ Exponentially Weighted Instance-Aware Repeat Factor Sampling for Long-Tailed Object Detection Model Training in Unmanned Aerial Vehicles Surveillance Scenarios
Object detection models often struggle with class imbalance, where rare categories appear significantly less frequently than common ones. Existing sampling-based rebalancing strategies, such as Repeat Factor Sampling (RFS) and Instance-Aware Repeat Factor Sampling (IRFS), mitigate this issue by adjusting sample frequencies based on image and instance counts. However, these methods are based on linear adjustments, which limit their effectiveness in long-tailed distributions. This work introduces Exponentially Weighted Instance-Aware Repeat Factor Sampling (E-IRFS), an extension of IRFS that applies exponential scaling to better differentiate between rare and frequent classes. E-IRFS adjusts sampling probabilities using an exponential function applied to the geometric mean of image and instance frequencies, ensuring a more adaptive rebalancing strategy. We evaluate E-IRFS on a dataset derived from the Fireman-UAV-RGBT Dataset and four additional public datasets, using YOLOv11 object detection models to identify fire, smoke, people and lakes in emergency scenarios. The results show that E-IRFS improves detection performance by 22\% over the baseline and outperforms RFS and IRFS, particularly for rare categories. The analysis also highlights that E-IRFS has a stronger effect on lightweight models with limited capacity, as these models rely more on data sampling strategies to address class imbalance. The findings demonstrate that E-IRFS improves rare object detection in resource-constrained environments, making it a suitable solution for real-time applications such as UAV-based emergency monitoring.
comment: 6 pages, 2 figures, 9 tables, 6 formulas, conference paper
☆ StarFlow: Generating Structured Workflow Outputs From Sketch Images
Workflows are a fundamental component of automation in enterprise platforms, enabling the orchestration of tasks, data processing, and system integrations. Despite being widely used, building workflows can be complex, often requiring manual configuration through low-code platforms or visual programming tools. To simplify this process, we explore the use of generative foundation models, particularly vision-language models (VLMs), to automatically generate structured workflows from visual inputs. Translating hand-drawn sketches or computer-generated diagrams into executable workflows is challenging due to the ambiguity of free-form drawings, variations in diagram styles, and the difficulty of inferring execution logic from visual elements. To address this, we introduce StarFlow, a framework for generating structured workflow outputs from sketches using vision-language models. We curate a diverse dataset of workflow diagrams -- including synthetic, manually annotated, and real-world samples -- to enable robust training and evaluation. We finetune and benchmark multiple vision-language models, conducting a series of ablation studies to analyze the strengths and limitations of our approach. Our results show that finetuning significantly enhances structured workflow generation, outperforming large vision-language models on this task.
☆ RedditESS: A Mental Health Social Support Interaction Dataset -- Understanding Effective Social Support to Refine AI-Driven Support Tools
Effective mental health support is crucial for alleviating psychological distress. While large language model (LLM)-based assistants have shown promise in mental health interventions, existing research often defines "effective" support primarily in terms of empathetic acknowledgments, overlooking other essential dimensions such as informational guidance, community validation, and tangible coping strategies. To address this limitation and better understand what constitutes effective support, we introduce RedditESS, a novel real-world dataset derived from Reddit posts, including supportive comments and original posters' follow-up responses. Grounded in established social science theories, we develop an ensemble labeling mechanism to annotate supportive comments as effective or not and perform qualitative assessments to ensure the reliability of the annotations. Additionally, we demonstrate the practical utility of RedditESS by using it to guide LLM alignment toward generating more context-sensitive and genuinely helpful supportive responses. By broadening the understanding of effective support, our study paves the way for advanced AI-driven mental health interventions.
☆ Is Best-of-N the Best of Them? Coverage, Scaling, and Optimality in Inference-Time Alignment
Inference-time computation provides an important axis for scaling language model performance, but naively scaling compute through techniques like Best-of-$N$ sampling can cause performance to degrade due to reward hacking. Toward a theoretical understanding of how to best leverage additional computation, we focus on inference-time alignment which we formalize as the problem of improving a pre-trained policy's responses for a prompt of interest, given access to an imperfect reward model. We analyze the performance of inference-time alignment algorithms in terms of (i) response quality, and (ii) compute, and provide new results that highlight the importance of the pre-trained policy's coverage over high-quality responses for performance and compute scaling: 1. We show that Best-of-$N$ alignment with an ideal choice for $N$ can achieve optimal performance under stringent notions of coverage, but provably suffers from reward hacking when $N$ is large, and fails to achieve tight guarantees under more realistic coverage conditions. 2. We introduce $\texttt{InferenceTimePessimism}$, a new algorithm which mitigates reward hacking through deliberate use of inference-time compute, implementing the principle of pessimism in the face of uncertainty via rejection sampling; we prove that its performance is optimal and does not degrade with $N$, meaning it is scaling-monotonic. We complement our theoretical results with an experimental evaluation that demonstrate the benefits of $\texttt{InferenceTimePessimism}$ across a variety of tasks and models.
☆ Foveated Instance Segmentation
Instance segmentation is essential for augmented reality and virtual reality (AR/VR) as it enables precise object recognition and interaction, enhancing the integration of virtual and real-world elements for an immersive experience. However, the high computational overhead of segmentation limits its application on resource-constrained AR/VR devices, causing large processing latency and degrading user experience. In contrast to conventional scenarios, AR/VR users typically focus on only a few regions within their field of view before shifting perspective, allowing segmentation to be concentrated on gaze-specific areas. This insight drives the need for efficient segmentation methods that prioritize processing instance of interest, reducing computational load and enhancing real-time performance. In this paper, we present a foveated instance segmentation (FovealSeg) framework that leverages real-time user gaze data to perform instance segmentation exclusively on instance of interest, resulting in substantial computational savings. Evaluation results show that FSNet achieves an IoU of 0.56 on ADE20K and 0.54 on LVIS, notably outperforming the baseline. The code is available at https://github.com/SAI-
☆ Comparative Analysis of Image, Video, and Audio Classifiers for Automated News Video Segmentation
News videos require efficient content organisation and retrieval systems, but their unstructured nature poses significant challenges for automated processing. This paper presents a comprehensive comparative analysis of image, video, and audio classifiers for automated news video segmentation. This work presents the development and evaluation of multiple deep learning approaches, including ResNet, ViViT, AST, and multimodal architectures, to classify five distinct segment types: advertisements, stories, studio scenes, transitions, and visualisations. Using a custom-annotated dataset of 41 news videos comprising 1,832 scene clips, our experiments demonstrate that image-based classifiers achieve superior performance (84.34\% accuracy) compared to more complex temporal models. Notably, the ResNet architecture outperformed state-of-the-art video classifiers while requiring significantly fewer computational resources. Binary classification models achieved high accuracy for transitions (94.23\%) and advertisements (92.74\%). These findings advance the understanding of effective architectures for news video segmentation and provide practical insights for implementing automated content organisation systems in media applications. These include media archiving, personalised content delivery, and intelligent video search.
comment: Preprint for paper in CAI 2025, 7 pages, 5 tables, 3 tables
☆ ReCoM: Realistic Co-Speech Motion Generation with Recurrent Embedded Transformer
We present ReCoM, an efficient framework for generating high-fidelity and generalizable human body motions synchronized with speech. The core innovation lies in the Recurrent Embedded Transformer (RET), which integrates Dynamic Embedding Regularization (DER) into a Vision Transformer (ViT) core architecture to explicitly model co-speech motion dynamics. This architecture enables joint spatial-temporal dependency modeling, thereby enhancing gesture naturalness and fidelity through coherent motion synthesis. To enhance model robustness, we incorporate the proposed DER strategy, which equips the model with dual capabilities of noise resistance and cross-domain generalization, thereby improving the naturalness and fluency of zero-shot motion generation for unseen speech inputs. To mitigate inherent limitations of autoregressive inference, including error accumulation and limited self-correction, we propose an iterative reconstruction inference (IRI) strategy. IRI refines motion sequences via cyclic pose reconstruction, driven by two key components: (1) classifier-free guidance improves distribution alignment between generated and real gestures without auxiliary supervision, and (2) a temporal smoothing process eliminates abrupt inter-frame transitions while ensuring kinematic continuity. Extensive experiments on benchmark datasets validate ReCoM's effectiveness, achieving state-of-the-art performance across metrics. Notably, it reduces the Fr\'echet Gesture Distance (FGD) from 18.70 to 2.48, demonstrating an 86.7% improvement in motion realism. Our project page is https://yong-xie-xy.github.io/ReCoM/.
comment: 8 pages, 6 figures, Project Page: https://yong-xie-xy.github.io/ReCoM/
☆ LightSNN: Lightweight Architecture Search for Sparse and Accurate Spiking Neural Networks
Spiking Neural Networks (SNNs) are highly regarded for their energy efficiency, inherent activation sparsity, and suitability for real-time processing in edge devices. However, most current SNN methods adopt architectures resembling traditional artificial neural networks (ANNs), leading to suboptimal performance when applied to SNNs. While SNNs excel in energy efficiency, they have been associated with lower accuracy levels than traditional ANNs when utilizing conventional architectures. In response, in this work we present LightSNN, a rapid and efficient Neural Network Architecture Search (NAS) technique specifically tailored for SNNs that autonomously leverages the most suitable architecture, striking a good balance between accuracy and efficiency by enforcing sparsity. Based on the spiking NAS network (SNASNet) framework, a cell-based search space including backward connections is utilized to build our training-free pruning-based NAS mechanism. Our technique assesses diverse spike activation patterns across different data samples using a sparsity-aware Hamming distance fitness evaluation. Thorough experiments are conducted on both static (CIFAR10 and CIFAR100) and neuromorphic datasets (DVS128-Gesture). Our LightSNN model achieves state-of-the-art results on CIFAR10 and CIFAR100, improves performance on DVS128Gesture by 4.49%, and significantly reduces search time, most notably offering a 98x speedup over SNASNet and running 30% faster than the best existing method on DVS128Gesture.
comment: 6 pages, 3 figures, 2 tables. Submitted to conference
☆ CMD-HAR: Cross-Modal Disentanglement for Wearable Human Activity Recognition
Human Activity Recognition (HAR) is a fundamental technology for numerous human - centered intelligent applications. Although deep learning methods have been utilized to accelerate feature extraction, issues such as multimodal data mixing, activity heterogeneity, and complex model deployment remain largely unresolved. The aim of this paper is to address issues such as multimodal data mixing, activity heterogeneity, and complex model deployment in sensor-based human activity recognition. We propose a spatiotemporal attention modal decomposition alignment fusion strategy to tackle the problem of the mixed distribution of sensor data. Key discriminative features of activities are captured through cross-modal spatio-temporal disentangled representation, and gradient modulation is combined to alleviate data heterogeneity. In addition, a wearable deployment simulation system is constructed. We conducted experiments on a large number of public datasets, demonstrating the effectiveness of the model.
☆ From Deep Learning to LLMs: A survey of AI in Quantitative Investment
Quantitative investment (quant) is an emerging, technology-driven approach in asset management, increasingy shaped by advancements in artificial intelligence. Recent advances in deep learning and large language models (LLMs) for quant finance have improved predictive modeling and enabled agent-based automation, suggesting a potential paradigm shift in this field. In this survey, taking alpha strategy as a representative example, we explore how AI contributes to the quantitative investment pipeline. We first examine the early stage of quant research, centered on human-crafted features and traditional statistical models with an established alpha pipeline. We then discuss the rise of deep learning, which enabled scalable modeling across the entire pipeline from data processing to order execution. Building on this, we highlight the emerging role of LLMs in extending AI beyond prediction, empowering autonomous agents to process unstructured data, generate alphas, and support self-iterative workflows.
☆ M-DocSum: Do LVLMs Genuinely Comprehend Interleaved Image-Text in Document Summarization?
We investigate a critical yet under-explored question in Large Vision-Language Models (LVLMs): Do LVLMs genuinely comprehend interleaved image-text in the document? Existing document understanding benchmarks often assess LVLMs using question-answer formats, which are information-sparse and difficult to guarantee the coverage of long-range dependencies. To address this issue, we introduce a novel and challenging Multimodal Document Summarization Benchmark (M-DocSum-Bench), which comprises 500 high-quality arXiv papers, along with interleaved multimodal summaries aligned with human preferences. M-DocSum-Bench is a reference-based generation task and necessitates the generation of interleaved image-text summaries using provided reference images, thereby simultaneously evaluating capabilities in understanding, reasoning, localization, and summarization within complex multimodal document scenarios. To facilitate this benchmark, we develop an automated framework to construct summaries and propose a fine-grained evaluation method called M-DocEval. Moreover, we further develop a robust summarization baseline, i.e., M-DocSum-7B, by progressive two-stage training with diverse instruction and preference data. The extensive results on our M-DocSum-Bench reveal that the leading LVLMs struggle to maintain coherence and accurately integrate information within long and interleaved contexts, often exhibiting confusion between similar images and a lack of robustness. Notably, M-DocSum-7B achieves state-of-the-art performance compared to larger and closed-source models (including GPT-4o, Gemini Pro, Claude-3.5-Sonnet and Qwen2.5-VL-72B, etc.), demonstrating the potential of LVLMs for improved interleaved image-text understanding. The code, data, and models are available at https://github.com/stepfun-ai/M-DocSum-Bench.
☆ MSPLoRA: A Multi-Scale Pyramid Low-Rank Adaptation for Efficient Model Fine-Tuning
Parameter-Efficient Fine-Tuning (PEFT) has become an essential approach for adapting large-scale pre-trained models while reducing computational costs. Among PEFT methods, LoRA significantly reduces trainable parameters by decomposing weight updates into low-rank matrices. However, traditional LoRA applies a fixed rank across all layers, failing to account for the varying complexity of hierarchical information, which leads to inefficient adaptation and redundancy. To address this, we propose MSPLoRA (Multi-Scale Pyramid LoRA), which introduces Global Shared LoRA, Mid-Level Shared LoRA, and Layer-Specific LoRA to capture global patterns, mid-level features, and fine-grained information, respectively. This hierarchical structure reduces inter-layer redundancy while maintaining strong adaptation capability. Experiments on various NLP tasks demonstrate that MSPLoRA achieves more efficient adaptation and better performance while significantly reducing the number of trainable parameters. Furthermore, additional analyses based on Singular Value Decomposition validate its information decoupling ability, highlighting MSPLoRA as a scalable and effective optimization strategy for parameter-efficient fine-tuning in large language models. Our code is available at https://github.com/Oblivioniss/MSPLoRA.
☆ A Multi-Modal Knowledge-Enhanced Framework for Vessel Trajectory Prediction
Accurate vessel trajectory prediction facilitates improved navigational safety, routing, and environmental protection. However, existing prediction methods are challenged by the irregular sampling time intervals of the vessel tracking data from the global AIS system and the complexity of vessel movement. These aspects render model learning and generalization difficult. To address these challenges and improve vessel trajectory prediction, we propose the multi-modal knowledge-enhanced framework (MAKER) for vessel trajectory prediction. To contend better with the irregular sampling time intervals, MAKER features a Large language model-guided Knowledge Transfer (LKT) module that leverages pre-trained language models to transfer trajectory-specific contextual knowledge effectively. To enhance the ability to learn complex trajectory patterns, MAKER incorporates a Knowledge-based Self-paced Learning (KSL) module. This module employs kinematic knowledge to progressively integrate complex patterns during training, allowing for adaptive learning and enhanced generalization. Experimental results on two vessel trajectory datasets show that MAKER can improve the prediction accuracy of state-of-the-art methods by 12.08%-17.86%.
comment: 8 pages, 5 figures
♻ ☆ Reason-RFT: Reinforcement Fine-Tuning for Visual Reasoning
Visual reasoning abilities play a crucial role in understanding complex multimodal data, advancing both domain-specific applications and artificial general intelligence (AGI). Existing methods improve VLM reasoning via Chain-of-Thought (CoT) supervised fine-tuning, using meticulously annotated training data to enhance visual reasoning capabilities. However, this training paradigm may lead to overfitting and cognitive rigidity, restricting the model's ability to transfer visual reasoning skills across domains and limiting its real-world applicability. To address these limitations, we propose Reason-RFT, a novel reinforcement fine-tuning framework that significantly enhances generalization capabilities in visual reasoning tasks. Reason-RFT introduces a two-phase training framework for visual reasoning: (1) Supervised Fine-Tuning (SFT) with curated Chain-of-Thought (CoT) data activates the reasoning potential of Vision-Language Models (VLMs), followed by (2) Group Relative Policy Optimization (GRPO)-based reinforcement learning that generates multiple reasoning-response pairs, significantly enhancing generalization in visual reasoning tasks. To evaluate Reason-RFT's visual reasoning capabilities, we reconstructed a comprehensive dataset spanning visual counting, structure perception, and spatial transformation. Experimental results demonstrate Reasoning-RFT's three key advantages: (1) Performance Enhancement: achieving state-of-the-art results across multiple tasks, outperforming most mainstream open-source and proprietary models; (2) Generalization Superiority: consistently maintaining robust performance across diverse tasks and domains, outperforming alternative training paradigms; (3) Data Efficiency: excelling in few-shot learning scenarios while surpassing full-dataset SFT baselines. Project website: https://tanhuajie.github.io/ReasonRFT
comment: 35 pages, 22 figures
♻ ☆ Flip Learning: Weakly Supervised Erase to Segment Nodules in Breast Ultrasound
Accurate segmentation of nodules in both 2D breast ultrasound (BUS) and 3D automated breast ultrasound (ABUS) is crucial for clinical diagnosis and treatment planning. Therefore, developing an automated system for nodule segmentation can enhance user independence and expedite clinical analysis. Unlike fully-supervised learning, weakly-supervised segmentation (WSS) can streamline the laborious and intricate annotation process. However, current WSS methods face challenges in achieving precise nodule segmentation, as many of them depend on inaccurate activation maps or inefficient pseudo-mask generation algorithms. In this study, we introduce a novel multi-agent reinforcement learning-based WSS framework called Flip Learning, which relies solely on 2D/3D boxes for accurate segmentation. Specifically, multiple agents are employed to erase the target from the box to facilitate classification tag flipping, with the erased region serving as the predicted segmentation mask. The key contributions of this research are as follows: (1) Adoption of a superpixel/supervoxel-based approach to encode the standardized environment, capturing boundary priors and expediting the learning process. (2) Introduction of three meticulously designed rewards, comprising a classification score reward and two intensity distribution rewards, to steer the agents' erasing process precisely, thereby avoiding both under- and over-segmentation. (3) Implementation of a progressive curriculum learning strategy to enable agents to interact with the environment in a progressively challenging manner, thereby enhancing learning efficiency. Extensively validated on the large in-house BUS and ABUS datasets, our Flip Learning method outperforms state-of-the-art WSS methods and foundation models, and achieves comparable performance as fully-supervised learning algorithms.
comment: Accepted by Medical Image Analysis. 24 pages, 13 figures, 20 tabels
♻ ☆ LaMOuR: Leveraging Language Models for Out-of-Distribution Recovery in Reinforcement Learning
Deep Reinforcement Learning (DRL) has demonstrated strong performance in robotic control but remains susceptible to out-of-distribution (OOD) states, often resulting in unreliable actions and task failure. While previous methods have focused on minimizing or preventing OOD occurrences, they largely neglect recovery once an agent encounters such states. Although the latest research has attempted to address this by guiding agents back to in-distribution states, their reliance on uncertainty estimation hinders scalability in complex environments. To overcome this limitation, we introduce Language Models for Out-of-Distribution Recovery (LaMOuR), which enables recovery learning without relying on uncertainty estimation. LaMOuR generates dense reward codes that guide the agent back to a state where it can successfully perform its original task, leveraging the capabilities of LVLMs in image description, logical reasoning, and code generation. Experimental results show that LaMOuR substantially enhances recovery efficiency across diverse locomotion tasks and even generalizes effectively to complex environments, including humanoid locomotion and mobile manipulation, where existing methods struggle. The code and supplementary materials are available at https://lamour-rl.github.io/.
comment: This paper is currently under security review and will be re-released once the review is complete
♻ ☆ Adaptive Orchestration for Large-Scale Inference on Heterogeneous Accelerator Systems Balancing Cost, Performance, and Resilience
The surge in generative AI workloads has created a need for scalable inference systems that can flexibly harness both GPUs and specialized accelerators while containing operational costs. This paper proposes a hardware-agnostic control loop that adaptively allocates requests across heterogeneous accelerators based on real-time cost and capacity signals. The approach sustains low latency and high throughput by dynamically shifting between cost-optimized and capacity-optimized modes, ensuring the most efficient use of expensive compute resources under fluctuating availability. Evaluated using the Stable Diffusion model, the framework consistently meets latency targets, automatically redirects traffic during capacity shortfalls, and capitalizes on lower-cost accelerators when possible. These results highlight how a feedback-driven deployment strategy, spanning the entire software and hardware stack, can help organizations efficiently scale generative AI workloads while maintaining resilience in the face of limited accelerator capacity.
comment: 14 pages, 7 figures
♻ ☆ RGB-Th-Bench: A Dense benchmark for Visual-Thermal Understanding of Vision Language Models
We introduce RGB-Th-Bench, the first benchmark designed to evaluate the ability of Vision-Language Models (VLMs) to comprehend RGB-Thermal image pairs. While VLMs have demonstrated remarkable progress in visual reasoning and multimodal understanding, their evaluation has been predominantly limited to RGB-based benchmarks, leaving a critical gap in assessing their capabilities in infrared vision tasks. Existing visible-infrared datasets are either task-specific or lack high-quality annotations necessary for rigorous model evaluation. To address these limitations, RGB-Th-Bench provides a comprehensive evaluation framework covering 14 distinct skill dimensions, with a total of 1,600+ expert-annotated Yes/No questions. The benchmark employs two accuracy metrics: a standard question-level accuracy and a stricter skill-level accuracy, which evaluates model robustness across multiple questions within each skill dimension. This design ensures a thorough assessment of model performance, including resilience to adversarial and hallucinated responses. We conduct extensive evaluations on 19 state-of-the-art VLMs, revealing significant performance gaps in RGB-Thermal understanding. Our results show that even the strongest models struggle with thermal image comprehension, with performance heavily constrained by their RGB-based capabilities. Additionally, the lack of large-scale application-specific and expert-annotated thermal-caption-pair datasets in pre-training is an important reason of the observed performance gap. RGB-Th-Bench highlights the urgent need for further advancements in multimodal learning to bridge the gap between visible and thermal image understanding. The dataset is available through this link, and the evaluation code will also be made publicly available.
♻ ☆ ReSearch: Learning to Reason with Search for LLMs via Reinforcement Learning
Large Language Models (LLMs) have shown remarkable capabilities in reasoning, exemplified by the success of OpenAI-o1 and DeepSeek-R1. However, integrating reasoning with external search processes remains challenging, especially for complex multi-hop questions requiring multiple retrieval steps. We propose ReSearch, a novel framework that trains LLMs to Reason with Search via reinforcement learning without using any supervised data on reasoning steps. Our approach treats search operations as integral components of the reasoning chain, where when and how to perform searches is guided by text-based thinking, and search results subsequently influence further reasoning. We train ReSearch on Qwen2.5-7B(-Instruct) and Qwen2.5-32B(-Instruct) models and conduct extensive experiments. Despite being trained on only one dataset, our models demonstrate strong generalizability across various benchmarks. Analysis reveals that ReSearch naturally elicits advanced reasoning capabilities such as reflection and self-correction during the reinforcement learning process.
comment: Work in progress
♻ ☆ SyncDiff: Synchronized Motion Diffusion for Multi-Body Human-Object Interaction Synthesis
Synthesizing realistic human-object interaction motions is a critical problem in VR/AR and human animation. Unlike the commonly studied scenarios involving a single human or hand interacting with one object, we address a more generic multi-body setting with arbitrary numbers of humans, hands, and objects. This complexity introduces significant challenges in synchronizing motions due to the high correlations and mutual influences among bodies. To address these challenges, we introduce SyncDiff, a novel method for multi-body interaction synthesis using a synchronized motion diffusion strategy. SyncDiff employs a single diffusion model to capture the joint distribution of multi-body motions. To enhance motion fidelity, we propose a frequency-domain motion decomposition scheme. Additionally, we introduce a new set of alignment scores to emphasize the synchronization of different body motions. SyncDiff jointly optimizes both data sample likelihood and alignment likelihood through an explicit synchronization strategy. Extensive experiments across four datasets with various multi-body configurations demonstrate the superiority of SyncDiff over existing state-of-the-art motion synthesis methods.
comment: 26 pages, 10 figures
♻ ☆ GenoTEX: A Benchmark for Automated Gene Expression Data Analysis in Alignment with Bioinformaticians
Recent advancements in machine learning have significantly improved the identification of disease-associated genes from gene expression datasets. However, these processes often require extensive expertise and manual effort, limiting their scalability. Large Language Model (LLM)-based agents have shown promise in automating these tasks due to their increasing problem-solving abilities. To support the evaluation and development of such methods, we introduce GenoTEX, a benchmark dataset for the automated analysis of gene expression data. GenoTEX provides annotated code and results for solving a wide range of gene identification problems, encompassing dataset selection, preprocessing, and statistical analysis, in a pipeline that follows computational genomics standards. The benchmark includes expert-curated annotations from bioinformaticians to ensure accuracy and reliability. To provide baselines for these tasks, we present GenoAgent, a team of LLM-based agents that adopt a multi-step programming workflow with flexible self-correction, to collaboratively analyze gene expression datasets. Our experiments demonstrate the potential of LLM-based methods in analyzing genomic data, while error analysis highlights the challenges and areas for future improvement. We propose GenoTEX as a promising resource for benchmarking and enhancing automated methods for gene expression data analysis. The benchmark is available at https://github.com/Liu-Hy/GenoTex.
comment: 29 pages, 3 figures
♻ ☆ VIA: Unified Spatiotemporal Video Adaptation Framework for Global and Local Video Editing
Video editing serves as a fundamental pillar of digital media, spanning applications in entertainment, education, and professional communication. However, previous methods often overlook the necessity of comprehensively understanding both global and local contexts, leading to inaccurate and inconsistent edits in the spatiotemporal dimension, especially for long videos. In this paper, we introduce VIA, a unified spatiotemporal Video Adaptation framework for global and local video editing, pushing the limits of consistently editing minute-long videos. First, to ensure local consistency within individual frames, we designed test-time editing adaptation to adapt a pre-trained image editing model for improving consistency between potential editing directions and the text instruction, and adapts masked latent variables for precise local control. Furthermore, to maintain global consistency over the video sequence, we introduce spatiotemporal adaptation that recursively gather consistent attention variables in key frames and strategically applies them across the whole sequence to realize the editing effects. Extensive experiments demonstrate that, compared to baseline methods, our VIA approach produces edits that are more faithful to the source videos, more coherent in the spatiotemporal context, and more precise in local control. More importantly, we show that VIA can achieve consistent long video editing in minutes, unlocking the potential for advanced video editing tasks over long video sequences.
comment: 18 pages, 16 figures
♻ ☆ OVO-Bench: How Far is Your Video-LLMs from Real-World Online Video Understanding? CVPR 2025
Temporal Awareness, the ability to reason dynamically based on the timestamp when a question is raised, is the key distinction between offline and online video LLMs. Unlike offline models, which rely on complete videos for static, post hoc analysis, online models process video streams incrementally and dynamically adapt their responses based on the timestamp at which the question is posed. Despite its significance, temporal awareness has not been adequately evaluated in existing benchmarks. To fill this gap, we present OVO-Bench (Online-VideO-Benchmark), a novel video benchmark that emphasizes the importance of timestamps for advanced online video understanding capability benchmarking. OVO-Bench evaluates the ability of video LLMs to reason and respond to events occurring at specific timestamps under three distinct scenarios: (1) Backward tracing: trace back to past events to answer the question. (2) Real-time understanding: understand and respond to events as they unfold at the current timestamp. (3) Forward active responding: delay the response until sufficient future information becomes available to answer the question accurately. OVO-Bench comprises 12 tasks, featuring 644 unique videos and approximately human-curated 2,800 fine-grained meta-annotations with precise timestamps. We combine automated generation pipelines with human curation. With these high-quality samples, we further developed an evaluation pipeline to systematically query video LLMs along the video timeline. Evaluations of nine Video-LLMs reveal that, despite advancements on traditional benchmarks, current models struggle with online video understanding, showing a significant gap compared to human agents. We hope OVO-Bench will drive progress in video LLMs and inspire future research in online video reasoning. Our benchmark and code can be accessed at https://github.com/JoeLeelyf/OVO-Bench.
comment: CVPR 2025
♻ ☆ Multi-View and Multi-Scale Alignment for Contrastive Language-Image Pre-training in Mammography
Contrastive Language-Image Pre-training (CLIP) demonstrates strong potential in medical image analysis but requires substantial data and computational resources. Due to these restrictions, existing CLIP applications in medical imaging focus mainly on modalities like chest X-rays that have abundant image-report data available, leaving many other important modalities underexplored. Here, we propose one of the first adaptations of the full CLIP model to mammography, which presents significant challenges due to labeled data scarcity, high-resolution images with small regions of interest, and class-wise imbalance. We first develop a specialized supervision framework for mammography that leverages its multi-view nature. Furthermore, we design a symmetric local alignment module to better focus on detailed features in high-resolution images. Lastly, we incorporate a parameter-efficient fine-tuning approach for large language models pre-trained with medical knowledge to address data limitations. Our multi-view and multi-scale alignment (MaMA) method outperforms state-of-the-art baselines for three different tasks on two large real-world mammography datasets, EMBED and RSNA-Mammo, with only 52% model size compared with the largest baseline. The code is available at https://github.com/XYPB/MaMA
comment: This paper is accepted by IPMI 2025 for Oral Presentation
♻ ☆ TripoSG: High-Fidelity 3D Shape Synthesis using Large-Scale Rectified Flow Models
Recent advancements in diffusion techniques have propelled image and video generation to unprecedented levels of quality, significantly accelerating the deployment and application of generative AI. However, 3D shape generation technology has so far lagged behind, constrained by limitations in 3D data scale, complexity of 3D data processing, and insufficient exploration of advanced techniques in the 3D domain. Current approaches to 3D shape generation face substantial challenges in terms of output quality, generalization capability, and alignment with input conditions. We present TripoSG, a new streamlined shape diffusion paradigm capable of generating high-fidelity 3D meshes with precise correspondence to input images. Specifically, we propose: 1) A large-scale rectified flow transformer for 3D shape generation, achieving state-of-the-art fidelity through training on extensive, high-quality data. 2) A hybrid supervised training strategy combining SDF, normal, and eikonal losses for 3D VAE, achieving high-quality 3D reconstruction performance. 3) A data processing pipeline to generate 2 million high-quality 3D samples, highlighting the crucial rules for data quality and quantity in training 3D generative models. Through comprehensive experiments, we have validated the effectiveness of each component in our new framework. The seamless integration of these parts has enabled TripoSG to achieve state-of-the-art performance in 3D shape generation. The resulting 3D shapes exhibit enhanced detail due to high-resolution capabilities and demonstrate exceptional fidelity to input images. Moreover, TripoSG demonstrates improved versatility in generating 3D models from diverse image styles and contents, showcasing strong generalization capabilities. To foster progress and innovation in the field of 3D generation, we will make our model publicly available.
♻ ☆ TSKANMixer: Kolmogorov-Arnold Networks with MLP-Mixer Model for Time Series Forecasting AAAI 2025
Time series forecasting has long been a focus of research across diverse fields, including economics, energy, healthcare, and traffic management. Recent works have introduced innovative architectures for time series models, such as the Time-Series Mixer (TSMixer), which leverages multi-layer perceptrons (MLPs) to enhance prediction accuracy by effectively capturing both spatial and temporal dependencies within the data. In this paper, we investigate the capabilities of the Kolmogorov-Arnold Networks (KANs) for time-series forecasting by modifying TSMixer with a KAN layer (TSKANMixer). Experimental results demonstrate that TSKANMixer tends to improve prediction accuracy over the original TSMixer across multiple datasets, ranking among the top-performing models compared to other time series approaches. Our results show that the KANs are promising alternatives to improve the performance of time series forecasting by replacing or extending traditional MLPs.
comment: 8 pages, 4 figures, 7 tables and accepted at the AI4TS: AI for Time Series Analysis workshop, AAAI 2025
♻ ☆ OmniBench: Towards The Future of Universal Omni-Language Models
Recent advancements in multimodal large language models (MLLMs) have focused on integrating multiple modalities, yet their ability to simultaneously process and reason across different inputs remains underexplored. We introduce OmniBench, a novel benchmark designed to evaluate models' ability to recognize, interpret, and reason across visual, acoustic, and textual inputs simultaneously. We define language models capable of such tri-modal processing as omni-language models (OLMs). OmniBench features high-quality human annotations that require integrated understanding across all modalities. Our evaluation reveals that: i) open-source OLMs show significant limitations in instruction-following and reasoning in tri-modal contexts; and ii) most baseline models perform poorly (around 50% accuracy) even with textual alternatives to image/audio inputs. To address these limitations, we develop OmniInstruct, an 96K-sample instruction tuning dataset for training OLMs. We advocate for developing more robust tri-modal integration techniques and training strategies to enhance OLM performance. Codes and data could be found at our repo (https://github.com/multimodal-art-projection/OmniBench).
♻ ☆ CleanGen: Mitigating Backdoor Attacks for Generation Tasks in Large Language Models EMNLP 2024
The remarkable performance of large language models (LLMs) in generation tasks has enabled practitioners to leverage publicly available models to power custom applications, such as chatbots and virtual assistants. However, the data used to train or fine-tune these LLMs is often undisclosed, allowing an attacker to compromise the data and inject backdoors into the models. In this paper, we develop a novel inference time defense, named CLEANGEN, to mitigate backdoor attacks for generation tasks in LLMs. CLEANGEN is a lightweight and effective decoding strategy that is compatible with the state-of-the-art (SOTA) LLMs. Our insight behind CLEANGEN is that compared to other LLMs, backdoored LLMs assign significantly higher probabilities to tokens representing the attacker-desired contents. These discrepancies in token probabilities enable CLEANGEN to identify suspicious tokens favored by the attacker and replace them with tokens generated by another LLM that is not compromised by the same attacker, thereby avoiding generation of attacker-desired content. We evaluate CLEANGEN against five SOTA backdoor attacks. Our results show that CLEANGEN achieves lower attack success rates (ASR) compared to five SOTA baseline defenses for all five backdoor attacks. Moreover, LLMs deploying CLEANGEN maintain helpfulness in their responses when serving benign user queries with minimal added computational overhead.
comment: This paper is presented at EMNLP 2024
♻ ☆ Vision language models are blind: Failing to translate detailed visual features into words
While large language models with vision capabilities (VLMs), e.g., GPT-4o and Gemini 1.5 Pro, score high on many vision-understanding benchmarks, they are still struggling with low-level vision tasks that are easy to humans. Specifically, on BlindTest, our suite of 7 very simple tasks, including identifying (a) whether two circles overlap; (b) how many times two lines intersect; (c) which letter is being circled in a word; and (d) the number of circles in an Olympic-like logo, four state-of-the-art VLMs are only 58.07% accurate on average. Claude 3.5 Sonnet performs the best at 77.84% accuracy, far from the human expected accuracy of 100%. Across different image resolutions and line widths, VLMs including slow-thinking models consistently struggle with those tasks that require precise spatial information when geometric primitives overlap or are close. Yet, VLMs perform at near-100% accuracy when much more space is added to separate shapes and letters. Linear probing experiments show that vision encoders contain sufficient visual information to solve BlindTest and that language models fail to decode this information into correct answers. Code and data are at: https://vlmsareblind.github.io
♻ ☆ Enhancing LLM Character-Level Manipulation via Divide and Conquer
Large Language Models (LLMs) have demonstrated strong generalization capabilities across a wide range of natural language processing (NLP) tasks. However, they exhibit notable weaknesses in character-level string manipulation, struggling with fundamental operations such as character deletion, insertion, and substitution. These challenges stem primarily from tokenization constraints, despite the critical role of such operations in data preprocessing and code generation. Through systematic analysis, we derive two key insights: (1) LLMs face significant difficulties in leveraging intrinsic token knowledge for character-level reasoning, and (2) atomized word structures can substantially enhance LLMs' ability to process token-level structural information. Building on these insights, we propose Character-Level Manipulation via Divide and Conquer, a novel approach designed to bridge the gap between token-level processing and character-level manipulation. Our method decomposes complex operations into explicit character-level subtasks coupled with controlled token reconstruction phases, leading to significant improvements in accuracy. Without additional training, our method significantly improves accuracies on the $\texttt{Deletion}$, $\texttt{Insertion}$, and $\texttt{Substitution}$ tasks. To support further research, we open-source our implementation and benchmarks.
♻ ☆ Self-Contrastive Forward-Forward Algorithm
Agents that operate autonomously benefit from lifelong learning capabilities. However, compatible training algorithms must comply with the decentralized nature of these systems, which imposes constraints on both the parameter counts and the computational resources. The Forward-Forward (FF) algorithm is one of these. FF relies only on feedforward operations, the same used for inference, for optimizing layer-wise objectives. This purely forward approach eliminates the need for transpose operations required in traditional backpropagation. Despite its potential, FF has failed to reach state-of-the-art performance on most standard benchmark tasks, in part due to unreliable negative data generation methods for unsupervised learning. In this work, we propose the Self-Contrastive Forward-Forward (SCFF) algorithm, a competitive training method aimed at closing this performance gap. Inspired by standard self-supervised contrastive learning for vision tasks, SCFF generates positive and negative inputs applicable across various datasets. The method demonstrates superior performance compared to existing unsupervised local learning algorithms on several benchmark datasets, including MNIST, CIFAR-10, STL-10, and Tiny ImageNet. We extend FF's application to training recurrent neural networks, expanding its utility to sequential data tasks. These findings pave the way for high-accuracy, real-time learning on resource-constrained edge devices.
♻ ☆ Layer- and Timestep-Adaptive Differentiable Token Compression Ratios for Efficient Diffusion Transformers CVPR 2025
Diffusion Transformers (DiTs) have achieved state-of-the-art (SOTA) image generation quality but suffer from high latency and memory inefficiency, making them difficult to deploy on resource-constrained devices. One major efficiency bottleneck is that existing DiTs apply equal computation across all regions of an image. However, not all image tokens are equally important, and certain localized areas require more computation, such as objects. To address this, we propose DiffCR, a dynamic DiT inference framework with differentiable compression ratios, which automatically learns to dynamically route computation across layers and timesteps for each image token, resulting in efficient DiTs. Specifically, DiffCR integrates three features: (1) A token-level routing scheme where each DiT layer includes a router that is fine-tuned jointly with model weights to predict token importance scores. In this way, unimportant tokens bypass the entire layer's computation; (2) A layer-wise differentiable ratio mechanism where different DiT layers automatically learn varying compression ratios from a zero initialization, resulting in large compression ratios in redundant layers while others remain less compressed or even uncompressed; (3) A timestep-wise differentiable ratio mechanism where each denoising timestep learns its own compression ratio. The resulting pattern shows higher ratios for noisier timesteps and lower ratios as the image becomes clearer. Extensive experiments on text-to-image and inpainting tasks show that DiffCR effectively captures dynamism across token, layer, and timestep axes, achieving superior trade-offs between generation quality and efficiency compared to prior works. The project website is available at https://www.haoranyou.com/diffcr.
comment: Accepted by CVPR 2025
♻ ☆ Learning Multi-modal Representations by Watching Hundreds of Surgical Video Lectures
Recent advancements in surgical computer vision applications have been driven by vision-only models, which do not explicitly integrate the rich semantics of language into their design. These methods rely on manually annotated surgical videos to predict a fixed set of object categories, limiting their generalizability to unseen surgical procedures and downstream tasks. In this work, we put forward the idea that the surgical video lectures available through open surgical e-learning platforms can provide effective vision and language supervisory signals for multi-modal representation learning without relying on manual annotations. We address the surgery-specific linguistic challenges present in surgical video lectures by employing multiple complementary automatic speech recognition systems to generate text transcriptions. We then present a novel method, SurgVLP - Surgical Vision Language Pre-training, for multi-modal representation learning. Extensive experiments across diverse surgical procedures and tasks demonstrate that the multi-modal representations learned by SurgVLP exhibit strong transferability and adaptability in surgical video analysis. Furthermore, our zero-shot evaluations highlight SurgVLP's potential as a general-purpose foundation model for surgical workflow analysis, reducing the reliance on extensive manual annotations for downstream tasks, and facilitating adaptation methods such as few-shot learning to build a scalable and data-efficient solution for various downstream surgical applications. The [training code](https://github.com/CAMMA-public/SurgVLP) and [weights](https://github.com/CAMMA-public/PeskaVLP) are public.
♻ ☆ TREAD: Token Routing for Efficient Architecture-agnostic Diffusion Training
Diffusion models have emerged as the mainstream approach for visual generation. However, these models typically suffer from sample inefficiency and high training costs. Consequently, methods for efficient finetuning, inference and personalization were quickly adopted by the community. However, training these models in the first place remains very costly. While several recent approaches - including masking, distillation, and architectural modifications - have been proposed to improve training efficiency, each of these methods comes with a tradeoff: they achieve enhanced performance at the expense of increased computational cost or vice versa. In contrast, this work aims to improve training efficiency as well as generative performance at the same time through routes that act as a transport mechanism for randomly selected tokens from early layers to deeper layers of the model. Our method is not limited to the common transformer-based model - it can also be applied to state-space models and achieves this without architectural modifications or additional parameters. Finally, we show that TREAD reduces computational cost and simultaneously boosts model performance on the standard ImageNet-256 benchmark in class-conditional synthesis. Both of these benefits multiply to a convergence speedup of 14x at 400K training iterations compared to DiT and 37x compared to the best benchmark performance of DiT at 7M training iterations. Furthermore, we achieve a competitive FID of 2.09 in a guided and 3.93 in an unguided setting, which improves upon the DiT, without architectural changes.
♻ ☆ Robust Counterfactual Inference in Markov Decision Processes
This paper addresses a key limitation in existing counterfactual inference methods for Markov Decision Processes (MDPs). Current approaches assume a specific causal model to make counterfactuals identifiable. However, there are usually many causal models that align with the observational and interventional distributions of an MDP, each yielding different counterfactual distributions, so fixing a particular causal model limits the validity (and usefulness) of counterfactual inference. We propose a novel non-parametric approach that computes tight bounds on counterfactual transition probabilities across all compatible causal models. Unlike previous methods that require solving prohibitively large optimisation problems (with variables that grow exponentially in the size of the MDP), our approach provides closed-form expressions for these bounds, making computation highly efficient and scalable for non-trivial MDPs. Once such an interval counterfactual MDP is constructed, our method identifies robust counterfactual policies that optimise the worst-case reward w.r.t. the uncertain interval MDP probabilities. We evaluate our method on various case studies, demonstrating improved robustness over existing methods.
comment: Fixed typo in Equation (5)
♻ ☆ Counterfactual Influence in Markov Decision Processes
Our work addresses a fundamental problem in the context of counterfactual inference for Markov Decision Processes (MDPs). Given an MDP path $\tau$, this kind of inference allows us to derive counterfactual paths $\tau'$ describing what-if versions of $\tau$ obtained under different action sequences than those observed in $\tau$. However, as the counterfactual states and actions deviate from the observed ones over time, the observation $\tau$ may no longer influence the counterfactual world, meaning that the analysis is no longer tailored to the individual observation, resulting in interventional outcomes rather than counterfactual ones. Even though this issue specifically affects the popular Gumbel-max structural causal model used for MDP counterfactuals, it has remained overlooked until now. In this work, we introduce a formal characterisation of influence based on comparing counterfactual and interventional distributions. We devise an algorithm to construct counterfactual models that automatically satisfy influence constraints. Leveraging such models, we derive counterfactual policies that are not just optimal for a given reward structure but also remain tailored to the observed path. Even though there is an unavoidable trade-off between policy optimality and strength of influence constraints, our experiments demonstrate that it is possible to derive (near-)optimal policies while remaining under the influence of the observation.
comment: 12 pages, 6 figures
♻ ☆ Dynamics-Aware Gaussian Splatting Streaming Towards Fast On-the-Fly 4D Reconstruction
The recent development of 3D Gaussian Splatting (3DGS) has led to great interest in 4D dynamic spatial reconstruction. Existing approaches mainly rely on full-length multi-view videos, while there has been limited exploration of online reconstruction methods that enable on-the-fly training and per-timestep streaming. Current 3DGS-based streaming methods treat the Gaussian primitives uniformly and constantly renew the densified Gaussians, thereby overlooking the difference between dynamic and static features as well as neglecting the temporal continuity in the scene. To address these limitations, we propose a novel three-stage pipeline for iterative streamable 4D dynamic spatial reconstruction. Our pipeline comprises a selective inheritance stage to preserve temporal continuity, a dynamics-aware shift stage to distinguish dynamic and static primitives and optimize their movements, and an error-guided densification stage to accommodate emerging objects. Our method achieves state-of-the-art performance in online 4D reconstruction, demonstrating the fastest on-the-fly training, superior representation quality, and real-time rendering capability. Project page: https://www.liuzhening.top/DASS
comment: Project page: https://www.liuzhening.top/DASS
♻ ☆ Debiased Offline Representation Learning for Fast Online Adaptation in Non-stationary Dynamics
Developing policies that can adjust to non-stationary environments is essential for real-world reinforcement learning applications. However, learning such adaptable policies in offline settings, with only a limited set of pre-collected trajectories, presents significant challenges. A key difficulty arises because the limited offline data makes it hard for the context encoder to differentiate between changes in the environment dynamics and shifts in the behavior policy, often leading to context misassociations. To address this issue, we introduce a novel approach called Debiased Offline Representation for fast online Adaptation (DORA). DORA incorporates an information bottleneck principle that maximizes mutual information between the dynamics encoding and the environmental data, while minimizing mutual information between the dynamics encoding and the actions of the behavior policy. We present a practical implementation of DORA, leveraging tractable bounds of the information bottleneck principle. Our experimental evaluation across six benchmark MuJoCo tasks with variable parameters demonstrates that DORA not only achieves a more precise dynamics encoding but also significantly outperforms existing baselines in terms of performance.
♻ ☆ Deep Cut-informed Graph Embedding and Clustering
Graph clustering aims to divide the graph into different clusters. The recently emerging deep graph clustering approaches are largely built on graph neural networks (GNN). However, GNN is designed for general graph encoding and there is a common issue of representation collapse in existing GNN-based deep graph clustering algorithms. We attribute two main reasons for such issues: (i) the inductive bias of GNN models: GNNs tend to generate similar representations for proximal nodes. Since graphs often contain a non-negligible amount of inter-cluster links, the bias results in error message passing and leads to biased clustering; (ii) the clustering guided loss function: most traditional approaches strive to make all samples closer to pre-learned cluster centers, which causes a degenerate solution assigning all data points to a single label thus make all samples and less discriminative. To address these challenges, we investigate graph clustering from a graph cut perspective and propose an innovative and non-GNN-based Deep Cut-informed Graph embedding and Clustering framework, namely DCGC. This framework includes two modules: (i) cut-informed graph encoding; (ii) self-supervised graph clustering via optimal transport. For the encoding module, we derive a cut-informed graph embedding objective to fuse graph structure and attributes by minimizing their joint normalized cut. For the clustering module, we utilize the optimal transport theory to obtain the clustering assignments, which can balance the guidance of "proximity to the pre-learned cluster center". With the above two tailored designs, DCGC is more suitable for the graph clustering task, which can effectively alleviate the problem of representation collapse and achieve better performance. We conduct extensive experiments to demonstrate that our method is simple but effective compared with benchmarks.
♻ ☆ A Survey on Self-play Methods in Reinforcement Learning
Self-play, characterized by agents' interactions with copies or past versions of themselves, has recently gained prominence in reinforcement learning (RL). This paper first clarifies the preliminaries of self-play, including the multi-agent reinforcement learning framework and basic game theory concepts. Then, it provides a unified framework and classifies existing self-play algorithms within this framework. Moreover, the paper bridges the gap between the algorithms and their practical implications by illustrating the role of self-play in different scenarios. Finally, the survey highlights open challenges and future research directions in self-play. This paper is an essential guide map for understanding the multifaceted landscape of self-play in RL.
♻ ☆ Efficient Continual Adaptation of Pretrained Robotic Policy with Online Meta-Learned Adapters
Continual adaptation is essential for general autonomous agents. For example, a household robot pretrained with a repertoire of skills must still adapt to unseen tasks specific to each household. Motivated by this, building upon parameter-efficient fine-tuning in language models, prior works have explored lightweight adapters to adapt pretrained policies, which can preserve learned features from the pretraining phase and demonstrate good adaptation performances. However, these approaches treat task learning separately, limiting knowledge transfer between tasks. In this paper, we propose Online Meta-Learned adapters (OMLA). Instead of applying adapters directly, OMLA can facilitate knowledge transfer from previously learned tasks to current learning tasks through a novel meta-learning objective. Extensive experiments in both simulated and real-world environments demonstrate that OMLA can lead to better adaptation performances compared to the baseline methods. The project link: https://ricky-zhu.github.io/OMLA/.
comment: Project link: https://ricky-zhu.github.io/OMLA/
♻ ☆ Pretraining with random noise for uncertainty calibration
Uncertainty calibration is crucial for various machine learning applications, yet it remains challenging. Many models exhibit hallucinations - confident yet inaccurate responses - due to miscalibrated confidence. Here, we show that the common practice of random initialization in deep learning, often considered a standard technique, is an underlying cause of this miscalibration, leading to excessively high confidence in untrained networks. Our method, inspired by developmental neuroscience, addresses this issue by simply pretraining networks with random noise and labels, reducing overconfidence and bringing initial confidence levels closer to chance. This ensures optimal calibration, aligning confidence with accuracy during subsequent data training, without the need for additional pre- or post-processing. Pre-calibrated networks excel at identifying "unknown data," showing low confidence for out-of-distribution inputs, thereby resolving confidence miscalibration.
♻ ☆ Video Motion Transfer with Diffusion Transformers CVPR 2025
We propose DiTFlow, a method for transferring the motion of a reference video to a newly synthesized one, designed specifically for Diffusion Transformers (DiT). We first process the reference video with a pre-trained DiT to analyze cross-frame attention maps and extract a patch-wise motion signal called the Attention Motion Flow (AMF). We guide the latent denoising process in an optimization-based, training-free, manner by optimizing latents with our AMF loss to generate videos reproducing the motion of the reference one. We also apply our optimization strategy to transformer positional embeddings, granting us a boost in zero-shot motion transfer capabilities. We evaluate DiTFlow against recently published methods, outperforming all across multiple metrics and human evaluation.
comment: CVPR 2025 - Project page: https://ditflow.github.io/
♻ ☆ Rethinking Video Tokenization: A Conditioned Diffusion-based Approach
Existing video tokenizers typically use the traditional Variational Autoencoder (VAE) architecture for video compression and reconstruction. However, to achieve good performance, its training process often relies on complex multi-stage training tricks that go beyond basic reconstruction loss and KL regularization. Among these tricks, the most challenging is the precise tuning of adversarial training with additional Generative Adversarial Networks (GANs) in the final stage, which can hinder stable convergence. In contrast to GANs, diffusion models offer more stable training processes and can generate higher-quality results. Inspired by these advantages, we propose CDT, a novel Conditioned Diffusion-based video Tokenizer, that replaces the GAN-based decoder with a conditional causal diffusion model. The encoder compresses spatio-temporal information into compact latents, while the decoder reconstructs videos through a reverse diffusion process conditioned on these latents. During inference, we incorporate a feature cache mechanism to generate videos of arbitrary length while maintaining temporal continuity and adopt sampling acceleration technique to enhance efficiency. Trained using only a basic MSE diffusion loss for reconstruction, along with KL term and LPIPS perceptual loss from scratch, extensive experiments demonstrate that CDT achieves state-of-the-art performance in video reconstruction tasks with just a single-step sampling. Even a scaled-down version of CDT (3$\times$ inference speedup) still performs comparably with top baselines. Moreover, the latent video generation model trained with CDT also exhibits superior performance. The source code and pretrained weights are available at https://github.com/ali-vilab/CDT.
♻ ☆ Temporal-Guided Spiking Neural Networks for Event-Based Human Action Recognition
This paper explores the promising interplay between spiking neural networks (SNNs) and event-based cameras for privacy-preserving human action recognition (HAR). The unique feature of event cameras in capturing only the outlines of motion, combined with SNNs' proficiency in processing spatiotemporal data through spikes, establishes a highly synergistic compatibility for event-based HAR. Previous studies, however, have been limited by SNNs' ability to process long-term temporal information, essential for precise HAR. In this paper, we introduce two novel frameworks to address this: temporal segment-based SNN (\textit{TS-SNN}) and 3D convolutional SNN (\textit{3D-SNN}). The \textit{TS-SNN} extracts long-term temporal information by dividing actions into shorter segments, while the \textit{3D-SNN} replaces 2D spatial elements with 3D components to facilitate the transmission of temporal information. To promote further research in event-based HAR, we create a dataset, \textit{FallingDetection-CeleX}, collected using the high-resolution CeleX-V event camera $(1280 \times 800)$, comprising 7 distinct actions. Extensive experimental results show that our proposed frameworks surpass state-of-the-art SNN methods on our newly collected dataset and three other neuromorphic datasets, showcasing their effectiveness in handling long-range temporal information for event-based HAR.
♻ ☆ Online POMDP Planning with Anytime Deterministic Guarantees
Decision-making under uncertainty is a critical aspect of many practical autonomous systems due to incomplete information. Partially Observable Markov Decision Processes (POMDPs) offer a mathematically principled framework for formulating decision-making problems under such conditions. However, finding an optimal solution for a POMDP is generally intractable. In recent years, there has been a significant progress of scaling approximate solvers from small to moderately sized problems, using online tree search solvers. Often, such approximate solvers are limited to probabilistic or asymptotic guarantees towards the optimal solution. In this paper, we derive a deterministic relationship for discrete POMDPs between an approximated and the optimal solution. We show that at any time, we can derive bounds that relate between the existing solution and the optimal one. We show that our derivations provide an avenue for a new set of algorithms and can be attached to existing algorithms that have a certain structure to provide them with deterministic guarantees with marginal computational overhead. In return, not only do we certify the solution quality, but we demonstrate that making a decision based on the deterministic guarantee may result in superior performance compared to the original algorithm without the deterministic certification.
♻ ☆ FaceID-6M: A Large-Scale, Open-Source FaceID Customization Dataset
Due to the data-driven nature of current face identity (FaceID) customization methods, all state-of-the-art models rely on large-scale datasets containing millions of high-quality text-image pairs for training. However, none of these datasets are publicly available, which restricts transparency and hinders further advancements in the field. To address this issue, in this paper, we collect and release FaceID-6M, the first large-scale, open-source FaceID dataset containing 6 million high-quality text-image pairs. Filtered from LAION-5B \cite{schuhmann2022laion}, FaceID-6M undergoes a rigorous image and text filtering steps to ensure dataset quality, including resolution filtering to maintain high-quality images and faces, face filtering to remove images that lack human faces, and keyword-based strategy to retain descriptions containing human-related terms (e.g., nationality, professions and names). Through these cleaning processes, FaceID-6M provides a high-quality dataset optimized for training powerful FaceID customization models, facilitating advancements in the field by offering an open resource for research and development. We conduct extensive experiments to show the effectiveness of our FaceID-6M, demonstrating that models trained on our FaceID-6M dataset achieve performance that is comparable to, and slightly better than currently available industrial models. Additionally, to support and advance research in the FaceID customization community, we make our code, datasets, and models fully publicly available. Our codes, models, and datasets are available at: https://github.com/ShuheSH/FaceID-6M.
comment: arXiv admin note: text overlap with arXiv:2501.15407
♻ ☆ Starjob: Dataset for LLM-Driven Job Shop Scheduling
Large Language Models (LLMs) have shown remarkable capabilities across various domains, but their potential for solving combinatorial optimization problems remains largely unexplored. In this paper, we investigate the applicability of LLMs to the Job Shop Scheduling Problem (JSSP), a classic challenge in combinatorial optimization that requires efficient job allocation to machines to minimize makespan. To this end, we introduce Starjob, the first supervised dataset for JSSP, comprising 130k instances specifically designed for training LLMs. Leveraging this dataset, we fine-tune the LLaMA 8B 4-bit quantized model with the LoRA method to develop an end-to-end scheduling approach. Our evaluation on standard benchmarks demonstrates that the proposed LLM-based method not only surpasses traditional Priority Dispatching Rules (PDRs) but also achieves notable improvements over state-of-the-art neural approaches like L2D, with an average improvement of 15.36% on DMU and 7.85% on Taillard benchmarks. These results highlight the untapped potential of LLMs in tackling combinatorial optimization problems, paving the way for future advancements in this area.
comment: arXiv admin note: substantial text overlap with arXiv:2408.06993
♻ ☆ A Logic for Reasoning About Aggregate-Combine Graph Neural Networks
We propose a modal logic in which counting modalities appear in linear inequalities. We show that each formula can be transformed into an equivalent graph neural network (GNN). We also show that a broad class of GNNs can be transformed efficiently into a formula, thus significantly improving upon the literature about the logical expressiveness of GNNs. We also show that the satisfiability problem is PSPACE-complete. These results bring together the promise of using standard logical methods for reasoning about GNNs and their properties, particularly in applications such as GNN querying, equivalence checking, etc. We prove that such natural problems can be solved in polynomial space.
comment: arXiv admin note: text overlap with arXiv:2307.05150
♻ ☆ Automatically Adaptive Conformal Risk Control
Science and technology have a growing need for effective mechanisms that ensure reliable, controlled performance from black-box machine learning algorithms. These performance guarantees should ideally hold conditionally on the input-that is the performance guarantees should hold, at least approximately, no matter what the input. However, beyond stylized discrete groupings such as ethnicity and gender, the right notion of conditioning can be difficult to define. For example, in problems such as image segmentation, we want the uncertainty to reflect the intrinsic difficulty of the test sample, but this may be difficult to capture via a conditioning event. Building on the recent work of Gibbs et al. [2023], we propose a methodology for achieving approximate conditional control of statistical risks-the expected value of loss functions-by adapting to the difficulty of test samples. Our framework goes beyond traditional conditional risk control based on user-provided conditioning events to the algorithmic, data-driven determination of appropriate function classes for conditioning. We apply this framework to various regression and segmentation tasks, enabling finer-grained control over model performance and demonstrating that by continuously monitoring and adjusting these parameters, we can achieve superior precision compared to conventional risk-control methods.
♻ ☆ Dynamic Bi-Elman Attention Networks: A Dual-Directional Context-Aware Test-Time Learning for Text Classification
Text classification, a fundamental task in natural language processing, aims to categorize textual data into predefined labels. Traditional methods struggled with complex linguistic structures and semantic dependencies. However, the advent of deep learning, particularly recurrent neural networks and Transformer-based models, has significantly advanced the field by enabling nuanced feature extraction and context-aware predictions. Despite these improvements, existing models still exhibit limitations in balancing interpretability, computational efficiency, and long-range contextual understanding. To address these challenges, this paper proposes the Dynamic Bidirectional Elman with Attention Network (DBEAN). DBEAN integrates bidirectional temporal modeling with self-attention mechanisms. It dynamically assigns weights to critical segments of input, improving contextual representation while maintaining computational efficiency.
comment: 11 pages
♻ ☆ ATM: Improving Model Merging by Alternating Tuning and Merging
Model merging has recently emerged as a cost-efficient paradigm for multi-task learning. Among current approaches, task arithmetic stands out for its simplicity and effectiveness. In this paper, we motivate the effectiveness of task vectors by linking them to multi-task gradients. We show that in a single-epoch scenario, if the optimization is performed via gradient descent, task vectors are after one step mathematically equivalent to the gradients obtained via gradient descent in a multi-task setting, and still approximate these gradients in subsequent epochs. Furthermore, we show that the effectiveness of task vectors is largely driven by the first epoch's gradient. Given this parallel between task vectors and gradients, we propose viewing model merging as a single step in an iterative process that alternates between tuning and merging (ATM). We then propose two ways to utilize ATM. The first is to replace multi-task learning with ATM in scenarios where data sharing is prohibited, such as federated learning. The second is to improve the outcome of any model merging algorithm by applying a few post-hoc iterations of ATM on a small validation dataset, which is commonly available for hyperparameter tuning. Finally, we provide both empirical and theoretical support for the effectiveness of ATM, demonstrating that it minimizes an upper bound on the loss obtained by jointly finetuning all tasks.
comment: Main paper: 9 Pages, 9 figures, 1 table
♻ ☆ ProReason: Multi-Modal Proactive Reasoning with Decoupled Eyesight and Wisdom
Large vision-language models (LVLMs) have witnessed significant progress on visual understanding tasks. However, they often prioritize language knowledge over image information on visual reasoning tasks, incurring performance degradation. To tackle this issue, we first identify the drawbacks of existing solutions (i.e., insufficient and irrelevant visual descriptions, and limited multi-modal capacities). We then decompose visual reasoning process into two stages: visual perception (i.e., eyesight) and textual reasoning (i.e., wisdom), and introduce a novel visual reasoning framework named ProReason. This framework features multi-run proactive perception and decoupled vision-reasoning capabilities. Briefly, given a multi-modal question, ProReason iterates proactive information collection and reasoning until the answer can be concluded with necessary and sufficient visual descriptions. Notably, the disassociation of capabilities allows seamless integration of existing large language models (LLMs) to compensate for the reasoning deficits of LVLMs. Our extensive experiments demonstrate that ProReason outperforms both existing multi-step reasoning frameworks and passive peer methods on a wide range of benchmarks for both open-source and closed-source models. In addition, with the assistance of LLMs, ProReason achieves a performance improvement of up to 15% on MMMU benchmark. Our insights into existing solutions and the decoupled perspective for feasible integration of LLMs illuminate future research on visual reasoning techniques, especially LLM-assisted ones.
♻ ☆ Rethinking Training for De-biasing Text-to-Image Generation: Unlocking the Potential of Stable Diffusion CVPR 2025
Recent advancements in text-to-image models, such as Stable Diffusion, show significant demographic biases. Existing de-biasing techniques rely heavily on additional training, which imposes high computational costs and risks of compromising core image generation functionality. This hinders them from being widely adopted to real-world applications. In this paper, we explore Stable Diffusion's overlooked potential to reduce bias without requiring additional training. Through our analysis, we uncover that initial noises associated with minority attributes form "minority regions" rather than scattered. We view these "minority regions" as opportunities in SD to reduce bias. To unlock the potential, we propose a novel de-biasing method called 'weak guidance,' carefully designed to guide a random noise to the minority regions without compromising semantic integrity. Through analysis and experiments on various versions of SD, we demonstrate that our proposed approach effectively reduces bias without additional training, achieving both efficiency and preservation of core image generation functionality.
comment: 19 pages; First two authors contributed equally; Accepted at CVPR 2025
♻ ☆ R2-KG: General-Purpose Dual-Agent Framework for Reliable Reasoning on Knowledge Graphs
Recent studies have combined Large Language Models (LLMs) with Knowledge Graphs (KGs) to enhance reasoning, improving inference accuracy without additional training while mitigating hallucination. However, existing frameworks are often rigid, struggling to adapt to KG or task changes. They also rely heavily on powerful LLMs for reliable (i.e., trustworthy) reasoning. To address this, We introduce R2-KG, a plug-and-play, dual-agent framework that separates reasoning into two roles: an Operator (a low-capacity LLM) that gathers evidence and a Supervisor (a high-capacity LLM) that makes final judgments. This design is cost-efficient for LLM inference while still maintaining strong reasoning accuracy. Additionally, R2-KG employs an Abstention mechanism, generating answers only when sufficient evidence is collected from KG, which significantly enhances reliability. Experiments across multiple KG-based reasoning tasks show that R2-KG consistently outperforms baselines in both accuracy and reliability, regardless of the inherent capability of LLMs used as the Operator. Further experiments reveal that the single-agent version of R2-KG, equipped with a strict self-consistency strategy, achieves significantly higher-than-baseline reliability while reducing inference cost. However, it also leads to a higher abstention rate in complex KGs. Our findings establish R2-KG as a flexible and cost-effective solution for KG-based reasoning. It reduces reliance on high-capacity LLMs while ensuring trustworthy inference. The code is available at https://github.com/ekrxjwh2009/R2-KG/.
♻ ☆ Inductive-Associative Meta-learning Pipeline with Human Cognitive Patterns for Unseen Drug-Target Interaction Prediction
Significant differences in protein structures hinder the generalization of existing drug-target interaction (DTI) models, which often rely heavily on pre-learned binding principles or detailed annotations. In contrast, BioBridge designs an Inductive-Associative pipeline inspired by the workflow of scientists who base their accumulated expertise on drawing insights into novel drug-target pairs from weakly related references. BioBridge predicts novel drug-target interactions using limited sequence data, incorporating multi-level encoders with adversarial training to accumulate transferable binding principles. On these principles basis, BioBridge employs a dynamic prototype meta-learning framework to associate insights from weakly related annotations, enabling robust predictions for previously unseen drug-target pairs. Extensive experiments demonstrate that BioBridge surpasses existing models, especially for unseen proteins. Notably, when only homologous protein binding data is available, BioBridge proves effective for virtual screening of the epidermal growth factor receptor and adenosine receptor, underscoring its potential in drug discovery.
♻ ☆ Tuning-Free Personalized Alignment via Trial-Error-Explain In-Context Learning NAACL 2025
Language models are aligned to the collective voice of many, resulting in generic outputs that do not align with specific users' styles. In this work, we present Trial-Error-Explain In-Context Learning} (ITCL), a tuning-free method that personalizes language models for text generation tasks with fewer than 10 examples per user. TICL iteratively expands an in-context learning prompt via a trial-error-explain process, adding model-generated negative samples and explanations that provide fine-grained guidance towards a specific user's style. TICL achieves favorable win rates on pairwise comparisons with LLM-as-a-judge up to 91.5% against the previous state-of-the-art and outperforms competitive tuning-free baselines for personalized alignment tasks of writing emails, essays and news articles. Both lexical and qualitative analyses show that the negative samples and explanations enable language models to learn stylistic context more effectively and overcome the bias towards structural and formal phrases observed in their zero-shot outputs. By front-loading inference compute to create a user-specific in-context learning prompt that does not require extra generation steps at test time, TICL presents a novel yet simple approach for personalized alignment.
comment: NAACL 2025 Findings
♻ ☆ Cognitive-Mental-LLM: Evaluating Reasoning in Large Language Models for Mental Health Prediction via Online Text
Large Language Models (LLMs) have demonstrated potential in predicting mental health outcomes from online text, yet traditional classification methods often lack interpretability and robustness. This study evaluates structured reasoning techniques-Chain-of-Thought (CoT), Self-Consistency (SC-CoT), and Tree-of-Thought (ToT)-to improve classification accuracy across multiple mental health datasets sourced from Reddit. We analyze reasoning-driven prompting strategies, including Zero-shot CoT and Few-shot CoT, using key performance metrics such as Balanced Accuracy, F1 score, and Sensitivity/Specificity. Our findings indicate that reasoning-enhanced techniques improve classification performance over direct prediction, particularly in complex cases. Compared to baselines such as Zero Shot non-CoT Prompting, and fine-tuned pre-trained transformers such as BERT and Mental-RoBerta, and fine-tuned Open Source LLMs such as Mental Alpaca and Mental-Flan-T5, reasoning-driven LLMs yield notable gains on datasets like Dreaddit (+0.52\% over M-LLM, +0.82\% over BERT) and SDCNL (+4.67\% over M-LLM, +2.17\% over BERT). However, performance declines in Depression Severity, and CSSRS predictions suggest dataset-specific limitations, likely due to our using a more extensive test set. Among prompting strategies, Few-shot CoT consistently outperforms others, reinforcing the effectiveness of reasoning-driven LLMs. Nonetheless, dataset variability highlights challenges in model reliability and interpretability. This study provides a comprehensive benchmark of reasoning-based LLM techniques for mental health text classification. It offers insights into their potential for scalable clinical applications while identifying key challenges for future improvements.
comment: 8 pages, 4 Figures, 3 tables
♻ ☆ Achieving >97% on GSM8K: Deeply Understanding the Problems Makes LLMs Better Solvers for Math Word Problems
Chain-of-Thought (CoT) prompting has enhanced the performance of Large Language Models (LLMs) across various reasoning tasks. However, CoT still falls short in dealing with complex math word problems, as it usually suffers from three pitfalls: semantic misunderstanding errors, calculation errors, and step-missing errors. Prior studies involve addressing the calculation errors and step-missing errors, but neglect the semantic misunderstanding errors, which is the major factor limiting the reasoning performance of LLMs. To this end, we propose a simple-yet-effective method, namely Deeply Understanding the Problems (DUP), to improve the LLMs' math problem-solving ability by addressing semantic misunderstanding errors. The core of our method is to encourage the LLMs to deeply understand the problems and extract the key problem-solving information used for better reasoning. Extensive experiments on 10 diverse reasoning benchmarks show that our DUP method consistently outperforms the other counterparts by a large margin. More encouragingly, DUP achieves a new SOTA result on the GSM8K benchmark, with an accuracy of 97.1% under the zero-shot setting.
comment: The article has been accepted by Frontiers of Computer Science (FCS), with the DOI: { 10.1007/s11704-025-41102-z }
♻ ☆ Time and Memory Trade-off of KV-Cache Compression in Tensor Transformer Decoding
The key-value (KV) cache in the tensor version of transformers presents a significant bottleneck during inference. While previous work analyzes the fundamental space complexity barriers in standard attention mechanisms [Haris and Onak, 2025], our work generalizes the space complexity barriers result to tensor attention version. Our theoretical contributions rely on a reduction from communication complexity and deduce the memory lower bound for tensor-structured attention mechanisms when $d = \Omega(\log n)$. Furthermore, we introduce two types of tensor attention cache and present a trade-off between time and memory for two scenarios. Overall, our work provides a theoretical foundation for us to understand the time-memory tradeoff of KV-Cache compression in tensor attention decoding and offers more perspectives in developing more memory-efficient tensor attention Transformer architectures.
♻ ☆ Adapting Language-Specific LLMs to a Reasoning Model in One Day via Model Merging -- An Open Recipe
This paper investigates data selection and model merging methodologies aimed at incorporating advanced reasoning capabilities such as those of DeepSeek R1 into language-specific large language models (LLMs), with a particular focus on the Thai LLM. Our goal is to enhance the reasoning capabilities of language-specific LLMs while maintaining their target language abilities. DeepSeek R1 excels in reasoning but primarily benefits high-resource languages such as English and Chinese. However, low-resource languages remain underserved due to the dominance of English-centric training data and model optimizations, which limit performance in these languages. This limitation results in unreliable code-switching and diminished effectiveness on tasks in low-resource languages. Meanwhile, local and regional LLM initiatives have attempted to bridge this gap by developing language-specific LLMs that focus on improving local linguistic fidelity. We demonstrate that, with only publicly available datasets and a computational budget of $120, it is possible to enhance the reasoning capabilities of language-specific LLMs to match the level of DeepSeek R1, without compromising their performance on target language tasks.
comment: 9 pages
♻ ☆ Typhoon T1: An Open Thai Reasoning Model
This paper introduces Typhoon T1, an open effort to develop an open Thai reasoning model. A reasoning model is a relatively new type of generative model built on top of large language models (LLMs). A reasoning model generates a long chain of thought before arriving at a final answer, an approach found to improve performance on complex tasks. However, details on developing such a model are limited, especially for reasoning models that can generate traces in a low-resource language. Typhoon T1 presents an open effort that dives into the details of developing a reasoning model in a more cost-effective way by leveraging supervised fine-tuning using open datasets, instead of reinforcement learning. This paper shares the details about synthetic data generation and training, as well as our dataset and model weights. Additionally, we provide insights gained from developing a reasoning model that generalizes across domains and is capable of generating reasoning traces in a low-resource language, using Thai as an example. We hope this open effort provides a foundation for further research in this field.
comment: 25 pages, 6 figures
♻ ☆ Hengqin-RA-v1: Advanced Large Language Model for Diagnosis and Treatment of Rheumatoid Arthritis with Dataset based Traditional Chinese Medicine AAAI-2025
Large language models (LLMs) primarily trained on English texts, often face biases and inaccuracies in Chinese contexts. Their limitations are pronounced in fields like Traditional Chinese Medicine (TCM), where cultural and clinical subtleties are vital, further hindered by a lack of domain-specific data, such as rheumatoid arthritis (RA). To address these issues, this paper introduces Hengqin-RA-v1, the first large language model specifically tailored for TCM with a focus on diagnosing and treating RA. We also present HQ-GCM-RA-C1, a comprehensive RA-specific dataset curated from ancient Chinese medical literature, classical texts, and modern clinical studies. This dataset empowers Hengqin-RA-v1 to deliver accurate and culturally informed responses, effectively bridging the gaps left by general-purpose models. Extensive experiments demonstrate that Hengqin-RA-v1 outperforms state-of-the-art models, even surpassing the diagnostic accuracy of TCM practitioners in certain cases.
comment: 8 pages, 5 figures, AAAI-2025 Workshop
♻ ☆ Group Reasoning Emission Estimation Networks
Accurate greenhouse gas (GHG) emission reporting is critical for governments, businesses, and investors. However, adoption remains limited particularly among small and medium enterprises due to high implementation costs, fragmented emission factor databases, and a lack of robust sector classification methods. To address these challenges, we introduce Group Reasoning Emission Estimation Networks (GREEN), an AI-driven carbon accounting framework that standardizes enterprise-level emission estimation, constructs a large-scale benchmark dataset, and leverages a novel reasoning approach with large language models (LLMs). Specifically, we compile textual descriptions for 20,850 companies with validated North American Industry Classification System (NAICS) labels and align these with an economic model of carbon intensity factors. By reframing sector classification as an information retrieval task, we fine-tune Sentence-BERT models using a contrastive learning loss. To overcome the limitations of single-stage models in handling thousands of hierarchical categories, we propose a Group Reasoning method that ensembles LLM classifiers based on the natural NAICS ontology, decomposing the task into multiple sub-classification steps. We theoretically prove that this approach reduces classification uncertainty and computational complexity. Experiments on 1,114 NAICS categories yield state-of-the-art performance (83.68% Top-1, 91.47% Top-10 accuracy), and case studies on 20 companies report a mean absolute percentage error (MAPE) of 45.88%. The project is available at: https://huggingface.co/datasets/Yvnminc/ExioNAICS.
♻ ☆ Sparse Feature Circuits: Discovering and Editing Interpretable Causal Graphs in Language Models
We introduce methods for discovering and applying sparse feature circuits. These are causally implicated subnetworks of human-interpretable features for explaining language model behaviors. Circuits identified in prior work consist of polysemantic and difficult-to-interpret units like attention heads or neurons, rendering them unsuitable for many downstream applications. In contrast, sparse feature circuits enable detailed understanding of unanticipated mechanisms. Because they are based on fine-grained units, sparse feature circuits are useful for downstream tasks: We introduce SHIFT, where we improve the generalization of a classifier by ablating features that a human judges to be task-irrelevant. Finally, we demonstrate an entirely unsupervised and scalable interpretability pipeline by discovering thousands of sparse feature circuits for automatically discovered model behaviors.
comment: Code and data at https://github.com/saprmarks/feature-circuits. Demonstration at https://feature-circuits.xyz
♻ ☆ OODFace: Benchmarking Robustness of Face Recognition under Common Corruptions and Appearance Variations
With the rise of deep learning, facial recognition technology has seen extensive research and rapid development. Although facial recognition is considered a mature technology, we find that existing open-source models and commercial algorithms lack robustness in certain complex Out-of-Distribution (OOD) scenarios, raising concerns about the reliability of these systems. In this paper, we introduce OODFace, which explores the OOD challenges faced by facial recognition models from two perspectives: common corruptions and appearance variations. We systematically design 30 OOD scenarios across 9 major categories tailored for facial recognition. By simulating these challenges on public datasets, we establish three robustness benchmarks: LFW-C/V, CFP-FP-C/V, and YTF-C/V. We then conduct extensive experiments on 19 facial recognition models and 3 commercial APIs, along with extended physical experiments on face masks to assess their robustness. Next, we explore potential solutions from two perspectives: defense strategies and Vision-Language Models (VLMs). Based on the results, we draw several key insights, highlighting the vulnerability of facial recognition systems to OOD data and suggesting possible solutions. Additionally, we offer a unified toolkit that includes all corruption and variation types, easily extendable to other datasets. We hope that our benchmarks and findings can provide guidance for future improvements in facial recognition model robustness.
♻ ☆ DefectFill: Realistic Defect Generation with Inpainting Diffusion Model for Visual Inspection CVPR 2025
Developing effective visual inspection models remains challenging due to the scarcity of defect data. While image generation models have been used to synthesize defect images, producing highly realistic defects remains difficult. We propose DefectFill, a novel method for realistic defect generation that requires only a few reference defect images. It leverages a fine-tuned inpainting diffusion model, optimized with our custom loss functions incorporating defect, object, and attention terms. It enables precise capture of detailed, localized defect features and their seamless integration into defect-free objects. Additionally, our Low-Fidelity Selection method further enhances the defect sample quality. Experiments show that DefectFill generates high-quality defect images, enabling visual inspection models to achieve state-of-the-art performance on the MVTec AD dataset.
comment: Accepted to CVPR 2025
♻ ☆ MoReVQA: Exploring Modular Reasoning Models for Video Question Answering CVPR 2024
This paper addresses the task of video question answering (videoQA) via a decomposed multi-stage, modular reasoning framework. Previous modular methods have shown promise with a single planning stage ungrounded in visual content. However, through a simple and effective baseline, we find that such systems can lead to brittle behavior in practice for challenging videoQA settings. Thus, unlike traditional single-stage planning methods, we propose a multi-stage system consisting of an event parser, a grounding stage, and a final reasoning stage in conjunction with an external memory. All stages are training-free, and performed using few-shot prompting of large models, creating interpretable intermediate outputs at each stage. By decomposing the underlying planning and task complexity, our method, MoReVQA, improves over prior work on standard videoQA benchmarks (NExT-QA, iVQA, EgoSchema, ActivityNet-QA) with state-of-the-art results, and extensions to related tasks (grounded videoQA, paragraph captioning).
comment: CVPR 2024; updated NExT-GQA results in Appendix
♻ ☆ iTool: Boosting Tool Use of Large Language Models via Iterative Reinforced Fine-Tuning ACL
Augmenting large language models (LLMs) with external tools is known as a promising approach to enhancing their capabilities, especially for complex tasks. Synthesizing tool-use data through real-world simulations is an effective way to achieve it. Nevertheless, our investigation reveals that (1) training gains significantly decay as synthetic data increases. The model struggles to benefit from more synthetic data due to potential data diversity issues, resulting in poor performance in complex scenarios. Moreover, we find that (2) this challenge primarily manifests as minor discrepancies between the model's output and the ground truth response (termed as deficiency), such as errors in parameter values that require complex reasoning from the context to resolve. To this end, we propose an iterative reinforced fine-tuning strategy designed to alleviate these challenges. This strategy involves: (1) enhancing the diversity of synthetic data through path exploration of Monte Carlo Tree Search. (2) iteratively identifying deficiency-related data, constructing fine-grained preference pairs to pinpoint deficiencies, and then applying preference optimization to optimize these deficiencies. Our experiments show that models trained using our method achieve about 12\% better performance than baseline models, outperforming larger open-source and closed-source models.
comment: under review ACL
♻ ☆ Towards Controllable Speech Synthesis in the Era of Large Language Models: A Survey
Text-to-speech (TTS), also known as speech synthesis, is a prominent research area that aims to generate natural-sounding human speech from text. Recently, with the increasing industrial demand, TTS technologies have evolved beyond synthesizing human-like speech to enabling controllable speech generation. This includes fine-grained control over various attributes of synthesized speech such as emotion, prosody, timbre, and duration. In addition, advancements in deep learning, such as diffusion and large language models, have significantly enhanced controllable TTS over the past several years. In this work, we conduct a comprehensive survey of controllable TTS, covering approaches ranging from basic control techniques to methods utilizing natural language prompts, aiming to provide a clear understanding of the current state of research. We examine the general controllable TTS pipeline, challenges, model architectures, and control strategies, offering a comprehensive and clear taxonomy of existing methods. Additionally, we provide a detailed summary of datasets and evaluation metrics and shed some light on the applications and future directions of controllable TTS. To the best of our knowledge, this survey paper provides the first comprehensive review of emerging controllable TTS methods, which can serve as a beneficial resource for both academic researchers and industrial practitioners.
comment: A comprehensive survey on controllable TTS, 26 pages, 7 tables, 6 figures, 317 references. Under review
♻ ☆ GR00T N1: An Open Foundation Model for Generalist Humanoid Robots
General-purpose robots need a versatile body and an intelligent mind. Recent advancements in humanoid robots have shown great promise as a hardware platform for building generalist autonomy in the human world. A robot foundation model, trained on massive and diverse data sources, is essential for enabling the robots to reason about novel situations, robustly handle real-world variability, and rapidly learn new tasks. To this end, we introduce GR00T N1, an open foundation model for humanoid robots. GR00T N1 is a Vision-Language-Action (VLA) model with a dual-system architecture. The vision-language module (System 2) interprets the environment through vision and language instructions. The subsequent diffusion transformer module (System 1) generates fluid motor actions in real time. Both modules are tightly coupled and jointly trained end-to-end. We train GR00T N1 with a heterogeneous mixture of real-robot trajectories, human videos, and synthetically generated datasets. We show that our generalist robot model GR00T N1 outperforms the state-of-the-art imitation learning baselines on standard simulation benchmarks across multiple robot embodiments. Furthermore, we deploy our model on the Fourier GR-1 humanoid robot for language-conditioned bimanual manipulation tasks, achieving strong performance with high data efficiency.
comment: Authors are listed alphabetically. Project leads are Linxi "Jim" Fan and Yuke Zhu. For more information, see https://developer.nvidia.com/isaac/gr00t
♻ ☆ Semi-Supervised Self-Learning Enhanced Music Emotion Recognition
Music emotion recognition (MER) aims to identify the emotions conveyed in a given musical piece. However, currently, in the field of MER, the available public datasets have limited sample sizes. Recently, segment-based methods for emotion-related tasks have been proposed, which train backbone networks on shorter segments instead of entire audio clips, thereby naturally augmenting training samples without requiring additional resources. Then, the predicted segment-level results are aggregated to obtain the entire song prediction. The most commonly used method is that the segment inherits the label of the clip containing it, but music emotion is not constant during the whole clip. Doing so will introduce label noise and make the training easy to overfit. To handle the noisy label issue, we propose a semi-supervised self-learning (SSSL) method, which can differentiate between samples with correct and incorrect labels in a self-learning manner, thus effectively utilizing the augmented segment-level data. Experiments on three public emotional datasets demonstrate that the proposed method can achieve better or comparable performance.
comment: 12 pages, 2 figures
♻ ☆ AnyBimanual: Transferring Unimanual Policy for General Bimanual Manipulation
Performing general language-conditioned bimanual manipulation tasks is of great importance for many applications ranging from household service to industrial assembly. However, collecting bimanual manipulation data is expensive due to the high-dimensional action space, which poses challenges for conventional methods to handle general bimanual manipulation tasks. In contrast, unimanual policy has recently demonstrated impressive generalizability across a wide range of tasks because of scaled model parameters and training data, which can provide sharable manipulation knowledge for bimanual systems. To this end, we propose a plug-and-play method named AnyBimanual, which transfers pre-trained unimanual policy to general bimanual manipulation policy with few bimanual demonstrations. Specifically, we first introduce a skill manager to dynamically schedule the skill representations discovered from pre-trained unimanual policy for bimanual manipulation tasks, which linearly combines skill primitives with task-oriented compensation to represent the bimanual manipulation instruction. To mitigate the observation discrepancy between unimanual and bimanual systems, we present a visual aligner to generate soft masks for visual embedding of the workspace, which aims to align visual input of unimanual policy model for each arm with those during pretraining stage. AnyBimanual shows superiority on 12 simulated tasks from RLBench2 with a sizable 12.67% improvement in success rate over previous methods. Experiments on 9 real-world tasks further verify its practicality with an average success rate of 84.62%.
comment: Project page: https://anybimanual.github.io/
♻ ☆ A Holistic Evaluation of Piano Sound Quality
This paper aims to develop a holistic evaluation method for piano sound quality to assist in purchasing decisions. Unlike previous studies that focused on the effect of piano performance techniques on sound quality, this study evaluates the inherent sound quality of different pianos. To derive quality evaluation systems, the study uses subjective questionnaires based on a piano sound quality dataset. The method selects the optimal piano classification models by comparing the fine-tuning results of different pre-training models of Convolutional Neural Networks (CNN). To improve the interpretability of the models, the study applies Equivalent Rectangular Bandwidth (ERB) analysis. The results reveal that musically trained individuals are better able to distinguish between the sound quality differences of different pianos. The best fine-tuned CNN pre-trained backbone achieves a high accuracy of 98.3% as the piano classifier. However, the dataset is limited, and the audio is sliced to increase its quantity, resulting in a lack of diversity and balance, so we use focal loss to reduce the impact of data imbalance. To optimize the method, the dataset will be expanded, or few-shot learning techniques will be employed in future research.
comment: 15 pages, 9 figures
♻ ☆ VERA: Explainable Video Anomaly Detection via Verbalized Learning of Vision-Language Models CVPR 2025
The rapid advancement of vision-language models (VLMs) has established a new paradigm in video anomaly detection (VAD): leveraging VLMs to simultaneously detect anomalies and provide comprehendible explanations for the decisions. Existing work in this direction often assumes the complex reasoning required for VAD exceeds the capabilities of pretrained VLMs. Consequently, these approaches either incorporate specialized reasoning modules during inference or rely on instruction tuning datasets through additional training to adapt VLMs for VAD. However, such strategies often incur substantial computational costs or data annotation overhead. To address these challenges in explainable VAD, we introduce a verbalized learning framework named VERA that enables VLMs to perform VAD without model parameter modifications. Specifically, VERA automatically decomposes the complex reasoning required for VAD into reflections on simpler, more focused guiding questions capturing distinct abnormal patterns. It treats these reflective questions as learnable parameters and optimizes them through data-driven verbal interactions between learner and optimizer VLMs, using coarsely labeled training data. During inference, VERA embeds the learned questions into model prompts to guide VLMs in generating segment-level anomaly scores, which are then refined into frame-level scores via the fusion of scene and temporal contexts. Experimental results on challenging benchmarks demonstrate that the learned questions of VERA are highly adaptable, significantly improving both detection performance and explainability of VLMs for VAD.
comment: Accepted in CVPR 2025
♻ ☆ Evaluation-Driven Development of LLM Agents: A Process Model and Reference Architecture
Large Language Models (LLMs) have enabled the emergence of LLM agents: autonomous systems capable of achieving under-specified goals and adapting post-deployment, often without explicit code or model changes. Evaluating these agents is critical to ensuring their performance and safety, especially given their dynamic, probabilistic, and evolving nature. However, traditional approaches such as predefined test cases and standard redevelopment pipelines struggle to address the unique challenges of LLM agent evaluation. These challenges include capturing open-ended behaviors, handling emergent outcomes, and enabling continuous adaptation over the agent's lifecycle. To address these issues, we propose an evaluation-driven development approach, inspired by test-driven and behavior-driven development but reimagined for the unique characteristics of LLM agents. Through a multivocal literature review (MLR), we synthesize the limitations of existing LLM evaluation methods and introduce a novel process model and reference architecture tailored for evaluation-driven development of LLM agents. Our approach integrates online (runtime) and offline (redevelopment) evaluations, enabling adaptive runtime adjustments and systematic iterative refinement of pipelines, artifacts, system architecture, and LLMs themselves. By continuously incorporating evaluation results, including fine-grained feedback from human and AI evaluators, into each stage of development and operation, this framework ensures that LLM agents remain aligned with evolving goals, user needs, and governance standards.
♻ ☆ LSEAttention is All You Need for Time Series Forecasting
Transformer-based architectures have achieved remarkable success in natural language processing and computer vision. However, their performance in multivariate long-term forecasting often falls short compared to simpler linear baselines. Previous research has identified the traditional attention mechanism as a key factor limiting their effectiveness in this domain. To bridge this gap, we introduce LATST, a novel approach designed to mitigate entropy collapse and training instability common challenges in Transformer-based time series forecasting. We rigorously evaluate LATST across multiple real-world multivariate time series datasets, demonstrating its ability to outperform existing state-of-the-art Transformer models. Notably, LATST manages to achieve competitive performance with fewer parameters than some linear models on certain datasets, highlighting its efficiency and effectiveness.
comment: 8 pages with referencing, 1 figure, 5 tables
♻ ☆ SoK: How Robust is Audio Watermarking in Generative AI models?
Audio watermarking is increasingly used to verify the provenance of AI-generated content, enabling applications such as detecting AI-generated speech, protecting music IP, and defending against voice cloning. To be effective, audio watermarks must resist removal attacks that distort signals to evade detection. While many schemes claim robustness, these claims are typically tested in isolation and against a limited set of attacks. A systematic evaluation against diverse removal attacks is lacking, hindering practical deployment. In this paper, we investigate whether recent watermarking schemes that claim robustness can withstand a broad range of removal attacks. First, we introduce a taxonomy covering 22 audio watermarking schemes. Next, we summarize their underlying technologies and potential vulnerabilities. We then present a large-scale empirical study to assess their robustness. To support this, we build an evaluation framework encompassing 22 types of removal attacks (109 configurations) including signal-level, physical-level, and AI-induced distortions. We reproduce 9 watermarking schemes using open-source code, identify 8 new highly effective attacks, and highlight 11 key findings that expose the fundamental limitations of these methods across 3 public datasets. Our results reveal that none of the surveyed schemes can withstand all tested distortions. This evaluation offers a comprehensive view of how current watermarking methods perform under real-world threats. Our demo and code are available at https://sokaudiowm.github.io/.
♻ ☆ GCA-SUNet: A Gated Context-Aware Swin-UNet for Exemplar-Free Counting ICME 2025
Exemplar-Free Counting aims to count objects of interest without intensive annotations of objects or exemplars. To achieve this, we propose a Gated Context-Aware Swin-UNet (GCA-SUNet) to directly map an input image to the density map of countable objects. Specifically, a set of Swin transformers form an encoder to derive a robust feature representation, and a Gated Context-Aware Modulation block is designed to suppress irrelevant objects or background through a gate mechanism and exploit the attentive support of objects of interest through a self-similarity matrix. The gate strategy is also incorporated into the bottleneck network and the decoder of the Swin-UNet to highlight the features most relevant to objects of interest. By explicitly exploiting the attentive support among countable objects and eliminating irrelevant features through the gate mechanisms, the proposed GCA-SUNet focuses on and counts objects of interest without relying on predefined categories or exemplars. Experimental results on the real-world datasets such as FSC-147 and CARPK demonstrate that GCA-SUNet significantly and consistently outperforms state-of-the-art methods. The code is available at https://github.com/Amordia/GCA-SUNet.
comment: Accepted by ICME 2025
♻ ☆ Improved IR-based Bug Localization with Intelligent Relevance Feedback
Software bugs pose a significant challenge during development and maintenance, and practitioners spend nearly 50% of their time dealing with bugs. Many existing techniques adopt Information Retrieval (IR) to localize a reported bug using textual and semantic relevance between bug reports and source code. However, they often struggle to bridge a critical gap between bug reports and code that requires in-depth contextual understanding, which goes beyond textual or semantic relevance. In this paper, we present a novel technique for bug localization - BRaIn - that addresses the contextual gaps by assessing the relevance between bug reports and code with Large Language Models (LLM). It then leverages the LLM's feedback (a.k.a., Intelligent Relevance Feedback) to reformulate queries and re-rank source documents, improving bug localization. We evaluate BRaIn using a benchmark dataset, Bench4BL, and three performance metrics and compare it against six baseline techniques from the literature. Our experimental results show that BRaIn outperforms baselines by 87.6%, 89.5%, and 48.8% margins in MAP, MRR, and HIT@K, respectively. Additionally, it can localize approximately 52% of bugs that cannot be localized by the baseline techniques due to the poor quality of corresponding bug reports. By addressing the contextual gaps and introducing Intelligent Relevance Feedback, BRaIn advances not only theory but also improves IR-based bug localization.
comment: 13 pages, 5 figures
♻ ☆ ReWind: Understanding Long Videos with Instructed Learnable Memory
Vision-Language Models (VLMs) are crucial for applications requiring integrated understanding textual and visual information. However, existing VLMs struggle with long videos due to computational inefficiency, memory limitations, and difficulties in maintaining coherent understanding across extended sequences. To address these challenges, we introduce ReWind, a novel memory-based VLM designed for efficient long video understanding while preserving temporal fidelity. ReWind operates in a two-stage framework. In the first stage, ReWind maintains a dynamic learnable memory module with a novel \textbf{read-perceive-write} cycle that stores and updates instruction-relevant visual information as the video unfolds. This module utilizes learnable queries and cross-attentions between memory contents and the input stream, ensuring low memory requirements by scaling linearly with the number of tokens. In the second stage, we propose an adaptive frame selection mechanism guided by the memory content to identify instruction-relevant key moments. It enriches the memory representations with detailed spatial information by selecting a few high-resolution frames, which are then combined with the memory contents and fed into a Large Language Model (LLM) to generate the final answer. We empirically demonstrate ReWind's superior performance in visual question answering (VQA) and temporal grounding tasks, surpassing previous methods on long video benchmarks. Notably, ReWind achieves a +13\% score gain and a +12\% accuracy improvement on the MovieChat-1K VQA dataset and an +8\% mIoU increase on Charades-STA for temporal grounding.
♻ ☆ LAGUNA: LAnguage Guided UNsupervised Adaptation with structured spaces
Unsupervised domain adaptation remains a critical challenge in enabling the knowledge transfer of models across unseen domains. Existing methods struggle to balance the need for domain-invariant representations with preserving domain-specific features, which is often due to alignment approaches that impose the projection of samples with similar semantics close in the latent space despite their drastic domain differences. We introduce LAGUNA - LAnguage Guided UNsupervised Adaptation with structured spaces, a novel approach that shifts the focus from aligning representations in absolute coordinates to aligning the relative positioning of equivalent concepts in latent spaces. LAGUNA defines a domain-agnostic structure upon the semantic/geometric relationships between class labels in language space and guides adaptation, ensuring that the organization of samples in visual space reflects reference inter-class relationships while preserving domain-specific characteristics. We empirically demonstrate LAGUNA's superiority in domain adaptation tasks across four diverse images and video datasets. Remarkably, LAGUNA surpasses previous works in 18 different adaptation scenarios across four diverse image and video datasets with average accuracy improvements of +3.32% on DomainNet, +5.75% in GeoPlaces, +4.77% on GeoImnet, and +1.94% mean class accuracy improvement on EgoExo4D.
♻ ☆ Graph Sampling for Scalable and Expressive Graph Neural Networks on Homophilic Graphs
Graph Neural Networks (GNNs) excel in many graph machine learning tasks but face challenges when scaling to large networks. GNN transferability allows training on smaller graphs and applying the model to larger ones, but existing methods often rely on random subsampling, leading to disconnected subgraphs and reduced model expressivity. We propose a novel graph sampling algorithm that leverages feature homophily to preserve graph structure. By minimizing the trace of the data correlation matrix, our method better preserves the graph Laplacian trace -- a proxy for the graph connectivity -- than random sampling, while achieving lower complexity than spectral methods. Experiments on citation networks show improved performance in preserving Laplacian trace and GNN transferability compared to random sampling.
♻ ☆ Artificial Intelligence in Pediatric Echocardiography: Exploring Challenges, Opportunities, and Clinical Applications with Explainable AI and Federated Learning
Pediatric heart diseases present a broad spectrum of congenital and acquired diseases. More complex congenital malformations require a differentiated and multimodal decision-making process, usually including echocardiography as a central imaging method. Artificial intelligence (AI) offers considerable promise for clinicians by facilitating automated interpretation of pediatric echocardiography data. However, adapting AI technologies for pediatric echocardiography analysis has challenges such as limited public data availability, data privacy, and AI model transparency. Recently, researchers have focused on disruptive technologies, such as federated learning (FL) and explainable AI (XAI), to improve automatic diagnostic and decision support workflows. This study offers a comprehensive overview of the limitations and opportunities of AI in pediatric echocardiography, emphasizing the synergistic workflow and role of XAI and FL, identifying research gaps, and exploring potential future developments. Additionally, three relevant clinical use cases demonstrate the functionality of XAI and FL with a focus on (i) view recognition, (ii) disease classification, (iii) segmentation of cardiac structures, and (iv) quantitative assessment of cardiac function.
comment: Submitted for peer review to an Elsevier journal. This version includes revisions to align with the journals guidelines and template. Any footnotes previously present in [V1] referring to Frontiers have been removed for clarity
♻ ☆ LLMs generate structurally realistic social networks but overestimate political homophily AAAI
Generating social networks is essential for many applications, such as epidemic modeling and social simulations. The emergence of generative AI, especially large language models (LLMs), offers new possibilities for social network generation: LLMs can generate networks without additional training or need to define network parameters, and users can flexibly define individuals in the network using natural language. However, this potential raises two critical questions: 1) are the social networks generated by LLMs realistic, and 2) what are risks of bias, given the importance of demographics in forming social ties? To answer these questions, we develop three prompting methods for network generation and compare the generated networks to a suite of real social networks. We find that more realistic networks are generated with "local" methods, where the LLM constructs relations for one persona at a time, compared to "global" methods that construct the entire network at once. We also find that the generated networks match real networks on many characteristics, including density, clustering, connectivity, and degree distribution. However, we find that LLMs emphasize political homophily over all other types of homophily and significantly overestimate political homophily compared to real social networks.
comment: Accepted to International AAAI Conference on Web and Social Media 2025 (ICWSM'25)
♻ ☆ Multimodal Object Detection using Depth and Image Data for Manufacturing Parts
Manufacturing requires reliable object detection methods for precise picking and handling of diverse types of manufacturing parts and components. Traditional object detection methods utilize either only 2D images from cameras or 3D data from lidars or similar 3D sensors. However, each of these sensors have weaknesses and limitations. Cameras do not have depth perception and 3D sensors typically do not carry color information. These weaknesses can undermine the reliability and robustness of industrial manufacturing systems. To address these challenges, this work proposes a multi-sensor system combining an red-green-blue (RGB) camera and a 3D point cloud sensor. The two sensors are calibrated for precise alignment of the multimodal data captured from the two hardware devices. A novel multimodal object detection method is developed to process both RGB and depth data. This object detector is based on the Faster R-CNN baseline that was originally designed to process only camera images. The results show that the multimodal model significantly outperforms the depth-only and RGB-only baselines on established object detection metrics. More specifically, the multimodal model improves mAP by 13% and raises Mean Precision by 11.8% in comparison to the RGB-only baseline. Compared to the depth-only baseline, it improves mAP by 78% and raises Mean Precision by 57%. Hence, this method facilitates more reliable and robust object detection in service to smart manufacturing applications.
Graphics 13
☆ Progressive Rendering Distillation: Adapting Stable Diffusion for Instant Text-to-Mesh Generation without 3D Data CVPR 2025
It is highly desirable to obtain a model that can generate high-quality 3D meshes from text prompts in just seconds. While recent attempts have adapted pre-trained text-to-image diffusion models, such as Stable Diffusion (SD), into generators of 3D representations (e.g., Triplane), they often suffer from poor quality due to the lack of sufficient high-quality 3D training data. Aiming at overcoming the data shortage, we propose a novel training scheme, termed as Progressive Rendering Distillation (PRD), eliminating the need for 3D ground-truths by distilling multi-view diffusion models and adapting SD into a native 3D generator. In each iteration of training, PRD uses the U-Net to progressively denoise the latent from random noise for a few steps, and in each step it decodes the denoised latent into 3D output. Multi-view diffusion models, including MVDream and RichDreamer, are used in joint with SD to distill text-consistent textures and geometries into the 3D outputs through score distillation. Since PRD supports training without 3D ground-truths, we can easily scale up the training data and improve generation quality for challenging text prompts with creative concepts. Meanwhile, PRD can accelerate the inference speed of the generation model in just a few steps. With PRD, we train a Triplane generator, namely TriplaneTurbo, which adds only $2.5\%$ trainable parameters to adapt SD for Triplane generation. TriplaneTurbo outperforms previous text-to-3D generators in both efficiency and quality. Specifically, it can produce high-quality 3D meshes in 1.2 seconds and generalize well for challenging text input. The code is available at https://github.com/theEricMa/TriplaneTurbo.
comment: Accepted to CVPR 2025. Code:https://github.com/theEricMa/TriplaneTurbo. Demo:https://huggingface.co/spaces/ZhiyuanthePony/TriplaneTurbo
☆ SyncSDE: A Probabilistic Framework for Diffusion Synchronization CVPR2025
There have been many attempts to leverage multiple diffusion models for collaborative generation, extending beyond the original domain. A prominent approach involves synchronizing multiple diffusion trajectories by mixing the estimated scores to artificially correlate the generation processes. However, existing methods rely on naive heuristics, such as averaging, without considering task specificity. These approaches do not clarify why such methods work and often fail when a heuristic suitable for one task is blindly applied to others. In this paper, we present a probabilistic framework for analyzing why diffusion synchronization works and reveal where heuristics should be focused - modeling correlations between multiple trajectories and adapting them to each specific task. We further identify optimal correlation models per task, achieving better results than previous approaches that apply a single heuristic across all tasks without justification.
comment: Accepted to CVPR2025
☆ RainyGS: Efficient Rain Synthesis with Physically-Based Gaussian Splatting
We consider the problem of adding dynamic rain effects to in-the-wild scenes in a physically-correct manner. Recent advances in scene modeling have made significant progress, with NeRF and 3DGS techniques emerging as powerful tools for reconstructing complex scenes. However, while effective for novel view synthesis, these methods typically struggle with challenging scene editing tasks, such as physics-based rain simulation. In contrast, traditional physics-based simulations can generate realistic rain effects, such as raindrops and splashes, but they often rely on skilled artists to carefully set up high-fidelity scenes. This process lacks flexibility and scalability, limiting its applicability to broader, open-world environments. In this work, we introduce RainyGS, a novel approach that leverages the strengths of both physics-based modeling and 3DGS to generate photorealistic, dynamic rain effects in open-world scenes with physical accuracy. At the core of our method is the integration of physically-based raindrop and shallow water simulation techniques within the fast 3DGS rendering framework, enabling realistic and efficient simulations of raindrop behavior, splashes, and reflections. Our method supports synthesizing rain effects at over 30 fps, offering users flexible control over rain intensity -- from light drizzles to heavy downpours. We demonstrate that RainyGS performs effectively for both real-world outdoor scenes and large-scale driving scenarios, delivering more photorealistic and physically-accurate rain effects compared to state-of-the-art methods. Project page can be found at https://pku-vcl-geometry.github.io/RainyGS/
☆ BOOTPLACE: Bootstrapped Object Placement with Detection Transformers CVPR 2025
In this paper, we tackle the copy-paste image-to-image composition problem with a focus on object placement learning. Prior methods have leveraged generative models to reduce the reliance for dense supervision. However, this often limits their capacity to model complex data distributions. Alternatively, transformer networks with a sparse contrastive loss have been explored, but their over-relaxed regularization often leads to imprecise object placement. We introduce BOOTPLACE, a novel paradigm that formulates object placement as a placement-by-detection problem. Our approach begins by identifying suitable regions of interest for object placement. This is achieved by training a specialized detection transformer on object-subtracted backgrounds, enhanced with multi-object supervisions. It then semantically associates each target compositing object with detected regions based on their complementary characteristics. Through a boostrapped training approach applied to randomly object-subtracted images, our model enforces meaningful placements through extensive paired data augmentation. Experimental results on established benchmarks demonstrate BOOTPLACE's superior performance in object repositioning, markedly surpassing state-of-the-art baselines on Cityscapes and OPA datasets with notable improvements in IOU scores. Additional ablation studies further showcase the compositionality and generalizability of our approach, supported by user study evaluations.
comment: CVPR 2025. Project page: https://ryanhangzhou.github.io/bootplace/ , code: https://github.com/RyanHangZhou/BOOTPLACE
☆ Locally Orderless Images for Optimization in Differentiable Rendering CVPR 2025
Problems in differentiable rendering often involve optimizing scene parameters that cause motion in image space. The gradients for such parameters tend to be sparse, leading to poor convergence. While existing methods address this sparsity through proxy gradients such as topological derivatives or lagrangian derivatives, they make simplifying assumptions about rendering. Multi-resolution image pyramids offer an alternative approach but prove unreliable in practice. We introduce a method that uses locally orderless images, where each pixel maps to a histogram of intensities that preserves local variations in appearance. Using an inverse rendering objective that minimizes histogram distance, our method extends support for sparsely defined image gradients and recovers optimal parameters. We validate our method on various inverse problems using both synthetic and real data.
comment: CVPR 2025. Project: https://ishit.github.io/loir/
Refined Geometry-guided Head Avatar Reconstruction from Monocular RGB Video
High-fidelity reconstruction of head avatars from monocular videos is highly desirable for virtual human applications, but it remains a challenge in the fields of computer graphics and computer vision. In this paper, we propose a two-phase head avatar reconstruction network that incorporates a refined 3D mesh representation. Our approach, in contrast to existing methods that rely on coarse template-based 3D representations derived from 3DMM, aims to learn a refined mesh representation suitable for a NeRF that captures complex facial nuances. In the first phase, we train 3DMM-stored NeRF with an initial mesh to utilize geometric priors and integrate observations across frames using a consistent set of latent codes. In the second phase, we leverage a novel mesh refinement procedure based on an SDF constructed from the density field of the initial NeRF. To mitigate the typical noise in the NeRF density field without compromising the features of the 3DMM, we employ Laplace smoothing on the displacement field. Subsequently, we apply a second-phase training with these refined meshes, directing the learning process of the network towards capturing intricate facial details. Our experiments demonstrate that our method further enhances the NeRF rendering based on the initial mesh and achieves performance superior to state-of-the-art methods in reconstructing high-fidelity head avatars with such input.
☆ ReCoM: Realistic Co-Speech Motion Generation with Recurrent Embedded Transformer
We present ReCoM, an efficient framework for generating high-fidelity and generalizable human body motions synchronized with speech. The core innovation lies in the Recurrent Embedded Transformer (RET), which integrates Dynamic Embedding Regularization (DER) into a Vision Transformer (ViT) core architecture to explicitly model co-speech motion dynamics. This architecture enables joint spatial-temporal dependency modeling, thereby enhancing gesture naturalness and fidelity through coherent motion synthesis. To enhance model robustness, we incorporate the proposed DER strategy, which equips the model with dual capabilities of noise resistance and cross-domain generalization, thereby improving the naturalness and fluency of zero-shot motion generation for unseen speech inputs. To mitigate inherent limitations of autoregressive inference, including error accumulation and limited self-correction, we propose an iterative reconstruction inference (IRI) strategy. IRI refines motion sequences via cyclic pose reconstruction, driven by two key components: (1) classifier-free guidance improves distribution alignment between generated and real gestures without auxiliary supervision, and (2) a temporal smoothing process eliminates abrupt inter-frame transitions while ensuring kinematic continuity. Extensive experiments on benchmark datasets validate ReCoM's effectiveness, achieving state-of-the-art performance across metrics. Notably, it reduces the Fr\'echet Gesture Distance (FGD) from 18.70 to 2.48, demonstrating an 86.7% improvement in motion realism. Our project page is https://yong-xie-xy.github.io/ReCoM/.
comment: 8 pages, 6 figures, Project Page: https://yong-xie-xy.github.io/ReCoM/
☆ StyleMotif: Multi-Modal Motion Stylization using Style-Content Cross Fusion
We present StyleMotif, a novel Stylized Motion Latent Diffusion model, generating motion conditioned on both content and style from multiple modalities. Unlike existing approaches that either focus on generating diverse motion content or transferring style from sequences, StyleMotif seamlessly synthesizes motion across a wide range of content while incorporating stylistic cues from multi-modal inputs, including motion, text, image, video, and audio. To achieve this, we introduce a style-content cross fusion mechanism and align a style encoder with a pre-trained multi-modal model, ensuring that the generated motion accurately captures the reference style while preserving realism. Extensive experiments demonstrate that our framework surpasses existing methods in stylized motion generation and exhibits emergent capabilities for multi-modal motion stylization, enabling more nuanced motion synthesis. Source code and pre-trained models will be released upon acceptance. Project Page: https://stylemotif.github.io
comment: Project Page: https://stylemotif.github.io
♻ ☆ Perceptually Accurate 3D Talking Head Generation: New Definitions, Speech-Mesh Representation, and Evaluation Metrics CVPR 2025
Recent advancements in speech-driven 3D talking head generation have made significant progress in lip synchronization. However, existing models still struggle to capture the perceptual alignment between varying speech characteristics and corresponding lip movements. In this work, we claim that three criteria -- Temporal Synchronization, Lip Readability, and Expressiveness -- are crucial for achieving perceptually accurate lip movements. Motivated by our hypothesis that a desirable representation space exists to meet these three criteria, we introduce a speech-mesh synchronized representation that captures intricate correspondences between speech signals and 3D face meshes. We found that our learned representation exhibits desirable characteristics, and we plug it into existing models as a perceptual loss to better align lip movements to the given speech. In addition, we utilize this representation as a perceptual metric and introduce two other physically grounded lip synchronization metrics to assess how well the generated 3D talking heads align with these three criteria. Experiments show that training 3D talking head generation models with our perceptual loss significantly improve all three aspects of perceptually accurate lip synchronization. Codes and datasets are available at https://perceptual-3d-talking-head.github.io/.
comment: CVPR 2025
♻ ☆ A Survey on Computational Solutions for Reconstructing Complete Objects by Reassembling Their Fractured Parts
Reconstructing a complete object from its parts is a fundamental problem in many scientific domains. The purpose of this article is to provide a systematic survey on this topic. The reassembly problem requires understanding the attributes of individual pieces and establishing matches between different pieces. Many approaches also model priors of the underlying complete object. Existing approaches are tightly connected problems of shape segmentation, shape matching, and learning shape priors. We provide existing algorithms in this context and emphasize their similarities and differences to general-purpose approaches. We also survey the trends from early non-deep learning approaches to more recent deep learning approaches. In addition to algorithms, this survey will also describe existing datasets, open-source software packages, and applications. To the best of our knowledge, this is the first comprehensive survey on this topic in computer graphics.
comment: 36 pages, 22 figures
♻ ☆ Gaussian Splatting Lucas-Kanade
Gaussian Splatting and its dynamic extensions are effective for reconstructing 3D scenes from 2D images when there is significant camera movement to facilitate motion parallax and when scene objects remain relatively static. However, in many real-world scenarios, these conditions are not met. As a consequence, data-driven semantic and geometric priors have been favored as regularizers, despite their bias toward training data and their neglect of broader movement dynamics. Departing from this practice, we propose a novel analytical approach that adapts the classical Lucas-Kanade method to dynamic Gaussian splatting. By leveraging the intrinsic properties of the forward warp field network, we derive an analytical velocity field that, through time integration, facilitates accurate scene flow computation. This enables the precise enforcement of motion constraints on warp fields, thus constraining both 2D motion and 3D positions of the Gaussians. Our method excels in reconstructing highly dynamic scenes with minimal camera movement, as demonstrated through experiments on both synthetic and real-world scenes.
comment: International Conference on Learning Representations
♻ ☆ Volumetric Surfaces: Representing Fuzzy Geometries with Layered Meshes
High-quality view synthesis relies on volume rendering, splatting, or surface rendering. While surface rendering is typically the fastest, it struggles to accurately model fuzzy geometry like hair. In turn, alpha-blending techniques excel at representing fuzzy materials but require an unbounded number of samples per ray (P1). Further overheads are induced by empty space skipping in volume rendering (P2) and sorting input primitives in splatting (P3). We present a novel representation for real-time view synthesis where the (P1) number of sampling locations is small and bounded, (P2) sampling locations are efficiently found via rasterization, and (P3) rendering is sorting-free. We achieve this by representing objects as semi-transparent multi-layer meshes rendered in a fixed order. First, we model surface layers as signed distance function (SDF) shells with optimal spacing learned during training. Then, we bake them as meshes and fit UV textures. Unlike single-surface methods, our multi-layer representation effectively models fuzzy objects. In contrast to volume and splatting-based methods, our approach enables real-time rendering on low-power laptops and smartphones.
♻ ☆ Geometry Field Splatting with Gaussian Surfels
Geometric reconstruction of opaque surfaces from images is a longstanding challenge in computer vision, with renewed interest from volumetric view synthesis algorithms using radiance fields. We leverage the geometry field proposed in recent work for stochastic opaque surfaces, which can then be converted to volume densities. We adapt Gaussian kernels or surfels to splat the geometry field rather than the volume, enabling precise reconstruction of opaque solids. Our first contribution is to derive an efficient and almost exact differentiable rendering algorithm for geometry fields parameterized by Gaussian surfels, while removing current approximations involving Taylor series and no self-attenuation. Next, we address the discontinuous loss landscape when surfels cluster near geometry, showing how to guarantee that the rendered color is a continuous function of the colors of the kernels, irrespective of ordering. Finally, we use latent representations with spherical harmonics encoded reflection vectors rather than spherical harmonics encoded colors to better address specular surfaces. We demonstrate significant improvement in the quality of reconstructed 3D surfaces on widely-used datasets.
Robotics 55
☆ Flying Vines: Design, Modeling, and Control of a Soft Aerial Robotic Arm
Aerial robotic arms aim to enable inspection and environment interaction in otherwise hard-to-reach areas from the air. However, many aerial manipulators feature bulky or heavy robot manipulators mounted to large, high-payload aerial vehicles. Instead, we propose an aerial robotic arm with low mass and a small stowed configuration called a "flying vine". The flying vine consists of a small, maneuverable quadrotor equipped with a soft, growing, inflated beam as the arm. This soft robot arm is underactuated, and positioning of the end effector is achieved by controlling the coupled quadrotor-vine dynamics. In this work, we present the flying vine design and a modeling and control framework for tracking desired end effector trajectories. The dynamic model leverages data-driven modeling methods and introduces bilinear interpolation to account for time-varying dynamic parameters. We use trajectory optimization to plan quadrotor controls that produce desired end effector motions. Experimental results on a physical prototype demonstrate that our framework enables the flying vine to perform high-speed end effector tracking, laying a foundation for performing dynamic maneuvers with soft aerial manipulators.
comment: Submitted to RA-L
☆ Multi-Robot Coordination Under Physical Limitations
Multi-robot coordination is fundamental to various applications, including autonomous exploration, search and rescue, and cooperative transportation. This paper presents an optimal consensus framework for multi-robot systems (MRSs) that ensures efficient rendezvous while minimizing energy consumption and addressing actuator constraints. A critical challenge in real-world deployments is actuator limitations, particularly wheel velocity saturation, which can significantly degrade control performance. To address this issue, we incorporate Pontryagin Minimum Principle (PMP) into the control design, facilitating constrained optimization while ensuring system stability and feasibility. The resulting optimal control policy effectively balances coordination efficiency and energy consumption, even in the presence of actuation constraints. The proposed framework is validated through extensive numerical simulations and real-world experiments conducted using a team of Robotarium mobile robots. The experimental results confirm that our control strategies achieve reliable and efficient coordinated rendezvous while addressing real-world challenges such as communication delays, sensor noise, and packet loss.
☆ Beyond Visuals: Investigating Force Feedback in Extended Reality for Robot Data Collection
This work explores how force feedback affects various aspects of robot data collection within the Extended Reality (XR) setting. Force feedback has been proved to enhance the user experience in Extended Reality (XR) by providing contact-rich information. However, its impact on robot data collection has not received much attention in the robotics community. This paper addresses this shortcoming by conducting an extensive user study on the effects of force feedback during data collection in XR. We extended two XR-based robot control interfaces, Kinesthetic Teaching and Motion Controllers, with haptic feedback features. The user study is conducted using manipulation tasks ranging from simple pick-place to complex peg assemble, requiring precise operations. The evaluations show that force feedback enhances task performance and user experience, particularly in tasks requiring high-precision manipulation. These improvements vary depending on the robot control interface and task complexity. This paper provides new insights into how different factors influence the impact of force feedback.
☆ Toward Dynamic Control of Tendon-Driven Continuum Robots using Clarke Transform
In this paper, we propose a dynamic model and control framework for tendon-driven continuum robots with multiple segments and an arbitrary number of tendons per segment. Our approach leverages the Clarke transform, the Euler-Lagrange formalism, and the piecewise constant curvature assumption to formulate a dynamic model on a two-dimensional manifold embedded in the joint space that inherently satisfies tendon constraints. We present linear controllers that operate directly on this manifold, along with practical methods for preventing negative tendon forces without compromising control fidelity. We validate these approaches in simulation and on a physical prototype with one segment and five tendons, demonstrating accurate dynamic behavior and robust trajectory tracking under real-time conditions.
comment: 8 pages and 8 figures
☆ Representation Improvement in Latent Space for Search-Based Testing of Autonomous Robotic Systems
Testing autonomous robotic systems, such as self-driving cars and unmanned aerial vehicles, is challenging due to their interaction with highly unpredictable environments. A common practice is to first conduct simulation-based testing, which, despite reducing real-world risks, remains time-consuming and resource-intensive due to the vast space of possible test scenarios. A number of search-based approaches were proposed to generate test scenarios more efficiently. A key aspect of any search-based test generation approach is the choice of representation used during the search process. However, existing methods for improving test scenario representation remain limited. We propose RILaST (Representation Improvement in Latent Space for Search-Based Testing) approach, which enhances test representation by mapping it to the latent space of a variational autoencoder. We evaluate RILaST on two use cases, including autonomous drone and autonomous lane-keeping assist system. The obtained results show that RILaST allows finding between 3 to 4.6 times more failures than baseline approaches, achieving a high level of test diversity.
☆ Robust Flower Cluster Matching Using The Unscented Transform
Monitoring flowers over time is essential for precision robotic pollination in agriculture. To accomplish this, a continuous spatial-temporal observation of plant growth can be done using stationary RGB-D cameras. However, image registration becomes a serious challenge due to changes in the visual appearance of the plant caused by the pollination process and occlusions from growth and camera angles. Plants flower in a manner that produces distinct clusters on branches. This paper presents a method for matching flower clusters using descriptors generated from RGB-D data and considers allowing for spatial uncertainty within the cluster. The proposed approach leverages the Unscented Transform to efficiently estimate plant descriptor uncertainty tolerances, enabling a robust image-registration process despite temporal changes. The Unscented Transform is used to handle the nonlinear transformations by propagating the uncertainty of flower positions to determine the variations in the descriptor domain. A Monte Carlo simulation is used to validate the Unscented Transform results, confirming our method's effectiveness for flower cluster matching. Therefore, it can facilitate improved robotics pollination in dynamic environments.
comment: *CASE2025 Under Review*
☆ Safety integrity framework for automated driving
This paper describes the comprehensive safety framework that underpinned the development, release process, and regulatory approval of BMW's first SAE Level 3 Automated Driving System. The framework combines established qualitative and quantitative methods from the fields of Systems Engineering, Engineering Risk Analysis, Bayesian Data Analysis, Design of Experiments, and Statistical Learning in a novel manner. The approach systematically minimizes the risks associated with hardware and software faults, performance limitations, and insufficient specifications to an acceptable level that achieves a Positive Risk Balance. At the core of the framework is the systematic identification and quantification of uncertainties associated with hazard scenarios and the redundantly designed system based on designed experiments, field data, and expert knowledge. The residual risk of the system is then estimated through Stochastic Simulation and evaluated by Sensitivity Analysis. By integrating these advanced analytical techniques into the V-Model, the framework fulfills, unifies, and complements existing automotive safety standards. It therefore provides a comprehensive, rigorous, and transparent safety assurance process for the development and deployment of Automated Driving Systems.
☆ Combining Machine Learning and Sampling-Based Search for Multi-Goal Motion Planning with Dynamics IJCAI 2025
This paper considers multi-goal motion planning in unstructured, obstacle-rich environments where a robot is required to reach multiple regions while avoiding collisions. The planned motions must also satisfy the differential constraints imposed by the robot dynamics. To find solutions efficiently, this paper leverages machine learning, Traveling Salesman Problem (TSP), and sampling-based motion planning. The approach expands a motion tree by adding collision-free and dynamically-feasible trajectories as branches. A TSP solver is used to compute a tour for each node to determine the order in which to reach the remaining goals by utilizing a cost matrix. An important aspect of the approach is that it leverages machine learning to construct the cost matrix by combining runtime and distance predictions to single-goal motion-planning problems. During the motion-tree expansion, priority is given to nodes associated with low-cost tours. Experiments with a vehicle model operating in obstacle-rich environments demonstrate the computational efficiency and scalability of the approach.
comment: 10 pages, 2025 International Joint Conference on Artificial Intelligence (IJCAI 2025)
☆ GAIA-2: A Controllable Multi-View Generative World Model for Autonomous Driving
Generative models offer a scalable and flexible paradigm for simulating complex environments, yet current approaches fall short in addressing the domain-specific requirements of autonomous driving - such as multi-agent interactions, fine-grained control, and multi-camera consistency. We introduce GAIA-2, Generative AI for Autonomy, a latent diffusion world model that unifies these capabilities within a single generative framework. GAIA-2 supports controllable video generation conditioned on a rich set of structured inputs: ego-vehicle dynamics, agent configurations, environmental factors, and road semantics. It generates high-resolution, spatiotemporally consistent multi-camera videos across geographically diverse driving environments (UK, US, Germany). The model integrates both structured conditioning and external latent embeddings (e.g., from a proprietary driving model) to facilitate flexible and semantically grounded scene synthesis. Through this integration, GAIA-2 enables scalable simulation of both common and rare driving scenarios, advancing the use of generative world models as a core tool in the development of autonomous systems. Videos are available at https://wayve.ai/thinking/gaia-2.
comment: Technical Report
☆ Decremental Dynamics Planning for Robot Navigation IROS 2025
Most, if not all, robot navigation systems employ a decomposed planning framework that includes global and local planning. To trade-off onboard computation and plan quality, current systems have to limit all robot dynamics considerations only within the local planner, while leveraging an extremely simplified robot representation (e.g., a point-mass holonomic model without dynamics) in the global level. However, such an artificial decomposition based on either full or zero consideration of robot dynamics can lead to gaps between the two levels, e.g., a global path based on a holonomic point-mass model may not be realizable by a non-holonomic robot, especially in highly constrained obstacle environments. Motivated by such a limitation, we propose a novel paradigm, Decremental Dynamics Planning that integrates dynamic constraints into the entire planning process, with a focus on high-fidelity dynamics modeling at the beginning and a gradual fidelity reduction as the planning progresses. To validate the effectiveness of this paradigm, we augment three different planners with DDP and show overall improved planning performance. We also develop a new DDP-based navigation system, which achieves first place in the simulation phase of the 2025 BARN Challenge. Both simulated and physical experiments validate DDP's hypothesized benefits.
comment: 7 pages. 2025 International Conference on Intelligent Robots and Systems (IROS 2025)
☆ Exploring the Effect of Robotic Embodiment and Empathetic Tone of LLMs on Empathy Elicitation
This study investigates the elicitation of empathy toward a third party through interaction with social agents. Participants engaged with either a physical robot or a voice-enabled chatbot, both driven by a large language model (LLM) programmed to exhibit either an empathetic tone or remain neutral. The interaction is focused on a fictional character, Katie Banks, who is in a challenging situation and in need of financial donations. The willingness to help Katie, measured by the number of hours participants were willing to volunteer, along with their perceptions of the agent, were assessed for 60 participants. Results indicate that neither robotic embodiment nor empathetic tone significantly influenced participants' willingness to volunteer. While the LLM effectively simulated human empathy, fostering genuine empathetic responses in participants proved challenging.
comment: *Liza Darwesh, Jaspreet Singh, Marin Marian, and Eduard Alexa contributed equally to this work.*
☆ Perspective-Shifted Neuro-Symbolic World Models: A Framework for Socially-Aware Robot Navigation
Navigating in environments alongside humans requires agents to reason under uncertainty and account for the beliefs and intentions of those around them. Under a sequential decision-making framework, egocentric navigation can naturally be represented as a Markov Decision Process (MDP). However, social navigation additionally requires reasoning about the hidden beliefs of others, inherently leading to a Partially Observable Markov Decision Process (POMDP), where agents lack direct access to others' mental states. Inspired by Theory of Mind and Epistemic Planning, we propose (1) a neuro-symbolic model-based reinforcement learning architecture for social navigation, addressing the challenge of belief tracking in partially observable environments; and (2) a perspective-shift operator for belief estimation, leveraging recent work on Influence-based Abstractions (IBA) in structured multi-agent settings.
☆ MoLe-VLA: Dynamic Layer-skipping Vision Language Action Model via Mixture-of-Layers for Efficient Robot Manipulation
Multimodal Large Language Models (MLLMs) excel in understanding complex language and visual data, enabling generalist robotic systems to interpret instructions and perform embodied tasks. Nevertheless, their real-world deployment is hindered by substantial computational and storage demands. Recent insights into the homogeneous patterns in the LLM layer have inspired sparsification techniques to address these challenges, such as early exit and token pruning. However, these methods often neglect the critical role of the final layers that encode the semantic information most relevant to downstream robotic tasks. Aligning with the recent breakthrough of the Shallow Brain Hypothesis (SBH) in neuroscience and the mixture of experts in model sparsification, we conceptualize each LLM layer as an expert and propose a Mixture-of-Layers Vision-Language-Action model (MoLe-VLA, or simply MoLe) architecture for dynamic LLM layer activation. We introduce a Spatial-Temporal Aware Router (STAR) for MoLe to selectively activate only parts of the layers based on the robot's current state, mimicking the brain's distinct signal pathways specialized for cognition and causal reasoning. Additionally, to compensate for the cognitive ability of LLMs lost in MoLe, we devise a Cognition Self-Knowledge Distillation (CogKD) framework. CogKD enhances the understanding of task demands and improves the generation of task-relevant action sequences by leveraging cognitive features. Extensive experiments conducted in both RLBench simulation and real-world environments demonstrate the superiority of MoLe-VLA in both efficiency and performance. Specifically, MoLe-VLA achieves an 8% improvement in the mean success rate across ten tasks while reducing computational costs by up to x5.6 compared to standard LLMs.
☆ CTS-CBS: A New Approach for Multi-Agent Collaborative Task Sequencing and Path Finding
This paper addresses a generalization problem of Multi-Agent Pathfinding (MAPF), called Collaborative Task Sequencing - Multi-Agent Pathfinding (CTS-MAPF), where agents must plan collision-free paths and visit a series of intermediate task locations in a specific order before reaching their final destinations. To address this problem, we propose a new approach, Collaborative Task Sequencing - Conflict-Based Search (CTS-CBS), which conducts a two-level search. In the high level, it generates a search forest, where each tree corresponds to a joint task sequence derived from the jTSP solution. In the low level, CTS-CBS performs constrained single-agent path planning to generate paths for each agent while adhering to high-level constraints. We also provide heoretical guarantees of its completeness and optimality (or sub-optimality with a bounded parameter). To evaluate the performance of CTS-CBS, we create two datasets, CTS-MAPF and MG-MAPF, and conduct comprehensive experiments. The results show that CTS-CBS adaptations for MG-MAPF outperform baseline algorithms in terms of success rate (up to 20 times larger) and runtime (up to 100 times faster), with less than a 10% sacrifice in solution quality. Furthermore, CTS-CBS offers flexibility by allowing users to adjust the sub-optimality bound omega to balance between solution quality and efficiency. Finally, practical robot tests demonstrate the algorithm's applicability in real-world scenarios.
☆ Turning Circle-based Control Barrier Function for Efficient Collision Avoidance of Nonholonomic Vehicles
This paper presents a new control barrier function (CBF) designed to improve the efficiency of collision avoidance for nonholonomic vehicles. Traditional CBFs typically rely on the shortest Euclidean distance to obstacles, overlooking the limited heading change ability of nonholonomic vehicles. This often leads to abrupt maneuvers and excessive speed reductions, which is not desirable and reduces the efficiency of collision avoidance. Our approach addresses these limitations by incorporating the distance to the turning circle, considering the vehicle's limited maneuverability imposed by its nonholonomic constraints. The proposed CBF is integrated with model predictive control (MPC) to generate more efficient trajectories compared to existing methods that rely solely on Euclidean distance-based CBFs. The effectiveness of the proposed method is validated through numerical simulations on unicycle vehicles and experiments with underactuated surface vehicles.
comment: This work has been submitted to an IEEE journal for possible publication
☆ LGR: LLM-Guided Ranking of Frontiers for Object Goal Navigation
Object Goal Navigation (OGN) is a fundamental task for robots and AI, with key applications such as mobile robot image databases (MRID). In particular, mapless OGN is essential in scenarios involving unknown or dynamic environments. This study aims to enhance recent modular mapless OGN systems by leveraging the commonsense reasoning capabilities of large language models (LLMs). Specifically, we address the challenge of determining the visiting order in frontier-based exploration by framing it as a frontier ranking problem. Our approach is grounded in recent findings that, while LLMs cannot determine the absolute value of a frontier, they excel at evaluating the relative value between multiple frontiers viewed within a single image using the view image as context. We dynamically manage the frontier list by adding and removing elements, using an LLM as a ranking model. The ranking results are represented as reciprocal rank vectors, which are ideal for multi-view, multi-query information fusion. We validate the effectiveness of our method through evaluations in Habitat-Sim.
comment: 10 pages, 11 figures, technical report
☆ A Virtual Fencing Framework for Safe and Efficient Collaborative Robotics
Collaborative robots (cobots) increasingly operate alongside humans, demanding robust real-time safeguarding. Current safety standards (e.g., ISO 10218, ANSI/RIA 15.06, ISO/TS 15066) require risk assessments but offer limited guidance for real-time responses. We propose a virtual fencing approach that detects and predicts human motion, ensuring safe cobot operation. Safety and performance tradeoffs are modeled as an optimization problem and solved via sequential quadratic programming. Experimental validation shows that our method minimizes operational pauses while maintaining safety, providing a modular solution for human-robot collaboration.
☆ Synthetic-to-Real Self-supervised Robust Depth Estimation via Learning with Motion and Structure Priors
Self-supervised depth estimation from monocular cameras in diverse outdoor conditions, such as daytime, rain, and nighttime, is challenging due to the difficulty of learning universal representations and the severe lack of labeled real-world adverse data. Previous methods either rely on synthetic inputs and pseudo-depth labels or directly apply daytime strategies to adverse conditions, resulting in suboptimal results. In this paper, we present the first synthetic-to-real robust depth estimation framework, incorporating motion and structure priors to capture real-world knowledge effectively. In the synthetic adaptation, we transfer motion-structure knowledge inside cost volumes for better robust representation, using a frozen daytime model to train a depth estimator in synthetic adverse conditions. In the innovative real adaptation, which targets to fix synthetic-real gaps, models trained earlier identify the weather-insensitive regions with a designed consistency-reweighting strategy to emphasize valid pseudo-labels. We introduce a new regularization by gathering explicit depth distributions to constrain the model when facing real-world data. Experiments show that our method outperforms the state-of-the-art across diverse conditions in multi-frame and single-frame evaluations. We achieve improvements of 7.5% and 4.3% in AbsRel and RMSE on average for nuScenes and Robotcar datasets (daytime, nighttime, rain). In zero-shot evaluation of DrivingStereo (rain, fog), our method generalizes better than the previous ones.
☆ Learning Adaptive Dexterous Grasping from Single Demonstrations
How can robots learn dexterous grasping skills efficiently and apply them adaptively based on user instructions? This work tackles two key challenges: efficient skill acquisition from limited human demonstrations and context-driven skill selection. We introduce AdaDexGrasp, a framework that learns a library of grasping skills from a single human demonstration per skill and selects the most suitable one using a vision-language model (VLM). To improve sample efficiency, we propose a trajectory following reward that guides reinforcement learning (RL) toward states close to a human demonstration while allowing flexibility in exploration. To learn beyond the single demonstration, we employ curriculum learning, progressively increasing object pose variations to enhance robustness. At deployment, a VLM retrieves the appropriate skill based on user instructions, bridging low-level learned skills with high-level intent. We evaluate AdaDexGrasp in both simulation and real-world settings, showing that our approach significantly improves RL efficiency and enables learning human-like grasp strategies across varied object configurations. Finally, we demonstrate zero-shot transfer of our learned policies to a real-world PSYONIC Ability Hand, with a 90% success rate across objects, significantly outperforming the baseline.
☆ Reasoning and Learning a Perceptual Metric for Self-Training of Reflective Objects in Bin-Picking with a Low-cost Camera
Bin-picking of metal objects using low-cost RGB-D cameras often suffers from sparse depth information and reflective surface textures, leading to errors and the need for manual labeling. To reduce human intervention, we propose a two-stage framework consisting of a metric learning stage and a self-training stage. Specifically, to automatically process data captured by a low-cost camera (LC), we introduce a Multi-object Pose Reasoning (MoPR) algorithm that optimizes pose hypotheses under depth, collision, and boundary constraints. To further refine pose candidates, we adopt a Symmetry-aware Lie-group based Bayesian Gaussian Mixture Model (SaL-BGMM), integrated with the Expectation-Maximization (EM) algorithm, for symmetry-aware filtering. Additionally, we propose a Weighted Ranking Information Noise Contrastive Estimation (WR-InfoNCE) loss to enable the LC to learn a perceptual metric from reconstructed data, supporting self-training on untrained or even unseen objects. Experimental results show that our approach outperforms several state-of-the-art methods on both the ROBI dataset and our newly introduced Self-ROBI dataset.
comment: 9 pages, 10 figures
☆ SARGes: Semantically Aligned Reliable Gesture Generation via Intent Chain
Co-speech gesture generation enhances human-computer interaction realism through speech-synchronized gesture synthesis. However, generating semantically meaningful gestures remains a challenging problem. We propose SARGes, a novel framework that leverages large language models (LLMs) to parse speech content and generate reliable semantic gesture labels, which subsequently guide the synthesis of meaningful co-speech gestures.First, we constructed a comprehensive co-speech gesture ethogram and developed an LLM-based intent chain reasoning mechanism that systematically parses and decomposes gesture semantics into structured inference steps following ethogram criteria, effectively guiding LLMs to generate context-aware gesture labels. Subsequently, we constructed an intent chain-annotated text-to-gesture label dataset and trained a lightweight gesture label generation model, which then guides the generation of credible and semantically coherent co-speech gestures. Experimental results demonstrate that SARGes achieves highly semantically-aligned gesture labeling (50.2% accuracy) with efficient single-pass inference (0.4 seconds). The proposed method provides an interpretable intent reasoning pathway for semantic gesture synthesis.
☆ Offline Reinforcement Learning with Discrete Diffusion Skills
Skills have been introduced to offline reinforcement learning (RL) as temporal abstractions to tackle complex, long-horizon tasks, promoting consistent behavior and enabling meaningful exploration. While skills in offline RL are predominantly modeled within a continuous latent space, the potential of discrete skill spaces remains largely underexplored. In this paper, we propose a compact discrete skill space for offline RL tasks supported by state-of-the-art transformer-based encoder and diffusion-based decoder. Coupled with a high-level policy trained via offline RL techniques, our method establishes a hierarchical RL framework where the trained diffusion decoder plays a pivotal role. Empirical evaluations show that the proposed algorithm, Discrete Diffusion Skill (DDS), is a powerful offline RL method. DDS performs competitively on Locomotion and Kitchen tasks and excels on long-horizon tasks, achieving at least a 12 percent improvement on AntMaze-v2 benchmarks compared to existing offline RL approaches. Furthermore, DDS offers improved interpretability, training stability, and online exploration compared to previous skill-based methods.
☆ DRPA-MPPI: Dynamic Repulsive Potential Augmented MPPI for Reactive Navigation in Unstructured Environments
Reactive mobile robot navigation in unstructured environments is challenging when robots encounter unexpected obstacles that invalidate previously planned trajectories. Model predictive path integral control (MPPI) enables reactive planning, but still suffers from limited prediction horizons that lead to local minima traps near obstacles. Current solutions rely on heuristic cost design or scenario-specific pre-training, which often limits their adaptability to new environments. We introduce dynamic repulsive potential augmented MPPI (DRPA-MPPI), which dynamically detects potential entrapments on the predicted trajectories. Upon detecting local minima, DRPA-MPPI automatically switches between standard goal-oriented optimization and a modified cost function that generates repulsive forces away from local minima. Comprehensive testing in simulated obstacle-rich environments confirms DRPA-MPPI's superior navigation performance and safety compared to conventional methods with less computational burden.
comment: 9 pages, 4 figures, Submitted to the 2025 IEEE International Conference on Automation Science and Engineering (CASE)
☆ Bandwidth Allocation for Cloud-Augmented Autonomous Driving
Autonomous vehicle (AV) control systems increasingly rely on ML models for tasks such as perception and planning. Current practice is to run these models on the car's local hardware due to real-time latency constraints and reliability concerns, which limits model size and thus accuracy. Prior work has observed that we could augment current systems by running larger models in the cloud, relying on faster cloud runtimes to offset the cellular network latency. However, prior work does not account for an important practical constraint: limited cellular bandwidth. We show that, for typical bandwidth levels, proposed techniques for cloud-augmented AV models take too long to transfer data, thus mostly falling back to the on-car models and resulting in no accuracy improvement. In this work, we show that realizing cloud-augmented AV models requires intelligent use of this scarce bandwidth, i.e. carefully allocating bandwidth across tasks and providing multiple data compression and model options. We formulate this as a resource allocation problem to maximize car utility, and present our system \sysname which achieves an increase in average model accuracy by up to 15 percentage points on driving scenarios from the Waymo Open Dataset.
comment: 18 pages, 11 figures
☆ Exploring Interference between Concurrent Skin Stretches
Proprioception is essential for coordinating human movements and enhancing the performance of assistive robotic devices. Skin stretch feedback, which closely aligns with natural proprioception mechanisms, presents a promising method for conveying proprioceptive information. To better understand the impact of interference on skin stretch perception, we conducted a user study with 30 participants that evaluated the effect of two simultaneous skin stretches on user perception. We observed that when participants experience simultaneous skin stretch stimuli, a masking effect occurs which deteriorates perception performance in the collocated skin stretch configurations. However, the perceived workload stays the same. These findings show that interference can affect the perception of skin stretch such that multi-channel skin stretch feedback designs should avoid locating modules in close proximity.
☆ Pellet-based 3D Printing of Soft Thermoplastic Elastomeric Membranes for Soft Robotic Applications
Additive Manufacturing (AM) is a promising solution for handling the complexity of fabricating soft robots. However, the AM of hyperelastic materials is still challenging with limited material types. Within this work, pellet-based 3D printing of very soft thermoplastic elastomers (TPEs) was explored. Our results show that TPEs can have similar engineering stress and maximum strain as Ecoflex OO-10. These TPEs were used to 3D-print airtight thin membranes (0.2-1.2 mm), which could inflate up to a stretch of 1320\%. Combining the membrane's large expansion and softness with the 3D printing of hollow structures simplified the design of a bending actuator that can bend 180 degrees and reach a blocked force of 238 times its weight. In addition, by 3D printing TPE pellets and rigid filaments, the soft membrane could grasp objects by enveloping an object or as a sensorized sucker, which relied on the TPE's softness to conform to the object or act as a seal. In addition, the membrane of the sucker was utilized as a tactile sensor to detect an object before adhesion. These results suggest the feasibility of 3D printing soft robots by using soft TPEs and membranes as an interesting class of materials and sensorized actuators, respectively.
☆ A Study of Perceived Safety for Soft Robotics in Caregiving Tasks
In this project, we focus on human-robot interaction in caregiving scenarios like bathing, where physical contact is inevitable and necessary for proper task execution because force must be applied to the skin. Using finite element analysis, we designed a 3D-printed gripper combining positive and negative pressure for secure yet compliant handling. Preliminary tests showed it exerted a lower, more uniform pressure profile than a standard rigid gripper. In a user study, participants' trust in robots significantly increased after they experienced a brief bathing demonstration performed by a robotic arm equipped with the soft gripper. These results suggest that soft robotics can enhance perceived safety and acceptance in intimate caregiving scenarios.
☆ Unified Multimodal Discrete Diffusion
Multimodal generative models that can understand and generate across multiple modalities are dominated by autoregressive (AR) approaches, which process tokens sequentially from left to right, or top to bottom. These models jointly handle images, text, video, and audio for various tasks such as image captioning, question answering, and image generation. In this work, we explore discrete diffusion models as a unified generative formulation in the joint text and image domain, building upon their recent success in text generation. Discrete diffusion models offer several advantages over AR models, including improved control over quality versus diversity of generated samples, the ability to perform joint multimodal inpainting (across both text and image domains), and greater controllability in generation through guidance. Leveraging these benefits, we present the first Unified Multimodal Discrete Diffusion (UniDisc) model which is capable of jointly understanding and generating text and images for a variety of downstream tasks. We compare UniDisc to multimodal AR models, performing a scaling analysis and demonstrating that UniDisc outperforms them in terms of both performance and inference-time compute, enhanced controllability, editability, inpainting, and flexible trade-off between inference time and generation quality. Code and additional visualizations are available at https://unidisc.github.io.
comment: Project Website: https://unidisc.github.io
☆ Robust Deep Reinforcement Learning in Robotics via Adaptive Gradient-Masked Adversarial Attacks
Deep reinforcement learning (DRL) has emerged as a promising approach for robotic control, but its realworld deployment remains challenging due to its vulnerability to environmental perturbations. Existing white-box adversarial attack methods, adapted from supervised learning, fail to effectively target DRL agents as they overlook temporal dynamics and indiscriminately perturb all state dimensions, limiting their impact on long-term rewards. To address these challenges, we propose the Adaptive Gradient-Masked Reinforcement (AGMR) Attack, a white-box attack method that combines DRL with a gradient-based soft masking mechanism to dynamically identify critical state dimensions and optimize adversarial policies. AGMR selectively allocates perturbations to the most impactful state features and incorporates a dynamic adjustment mechanism to balance exploration and exploitation during training. Extensive experiments demonstrate that AGMR outperforms state-of-the-art adversarial attack methods in degrading the performance of the victim agent and enhances the victim agent's robustness through adversarial defense mechanisms.
comment: 9 pages, 6 figures
☆ Anti Robot Speciesism
Humanoid robots are a form of embodied artificial intelligence (AI) that looks and acts more and more like humans. Powered by generative AI and advances in robotics, humanoid robots can speak and interact with humans rather naturally but are still easily recognizable as robots. But how will we treat humanoids when they seem indistinguishable from humans in appearance and mind? We find a tendency (called "anti-robot" speciesism) to deny such robots humanlike capabilities, driven by motivations to accord members of the human species preferential treatment. Six experiments show that robots are denied humanlike attributes, simply because they are not biological beings and because humans want to avoid feelings of cognitive dissonance when utilizing such robots for unsavory tasks. Thus, people do not rationally attribute capabilities to perfectly humanlike robots but deny them capabilities as it suits them.
☆ In vitro 2 In vivo : Bidirectional and High-Precision Generation of In Vitro and In Vivo Neuronal Spike Data
Neurons encode information in a binary manner and process complex signals. However, predicting or generating diverse neural activity patterns remains challenging. In vitro and in vivo studies provide distinct advantages, yet no robust computational framework seamlessly integrates both data types. We address this by applying the Transformer model, widely used in large-scale language models, to neural data. To handle binary data, we introduced Dice loss, enabling accurate cross-domain neural activity generation. Structural analysis revealed how Dice loss enhances learning and identified key brain regions facilitating high-precision data generation. Our findings support the 3Rs principle in animal research, particularly Replacement, and establish a mathematical framework bridging animal experiments and human clinical studies. This work advances data-driven neuroscience and neural activity modeling, paving the way for more ethical and effective experimental methodologies.
comment: 17 pages, 5 figures
☆ TAR: Teacher-Aligned Representations via Contrastive Learning for Quadrupedal Locomotion IROS
Quadrupedal locomotion via Reinforcement Learning (RL) is commonly addressed using the teacher-student paradigm, where a privileged teacher guides a proprioceptive student policy. However, key challenges such as representation misalignment between the privileged teacher and the proprioceptive-only student, covariate shift due to behavioral cloning, and lack of deployable adaptation lead to poor generalization in real-world scenarios. We propose Teacher-Aligned Representations via Contrastive Learning (TAR), a framework that leverages privileged information with self-supervised contrastive learning to bridge this gap. By aligning representations to a privileged teacher in simulation via contrastive objectives, our student policy learns structured latent spaces and exhibits robust generalization to Out-of-Distribution (OOD) scenarios, surpassing the fully privileged "Teacher". Results showed accelerated training by 2x compared to state-of-the-art baselines to achieve peak performance. OOD scenarios showed better generalization by 40 percent on average compared to existing methods. Additionally, TAR transitions seamlessly into learning during deployment without requiring privileged states, setting a new benchmark in sample-efficient, adaptive locomotion and enabling continual fine-tuning in real-world scenarios. Open-source code and videos are available at https://ammousa.github.io/TARLoco/.
comment: This work has been submitted to the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025 for review
♻ ☆ RoboSpatial: Teaching Spatial Understanding to 2D and 3D Vision-Language Models for Robotics CVPR 2025
Spatial understanding is a crucial capability that enables robots to perceive their surroundings, reason about their environment, and interact with it meaningfully. In modern robotics, these capabilities are increasingly provided by vision-language models. However, these models face significant challenges in spatial reasoning tasks, as their training data are based on general-purpose image datasets that often lack sophisticated spatial understanding. For example, datasets frequently do not capture reference frame comprehension, yet effective spatial reasoning requires understanding whether to reason from ego-, world-, or object-centric perspectives. To address this issue, we introduce RoboSpatial, a large-scale dataset for spatial understanding in robotics. It consists of real indoor and tabletop scenes, captured as 3D scans and egocentric images, and annotated with rich spatial information relevant to robotics. The dataset includes 1M images, 5k 3D scans, and 3M annotated spatial relationships, and the pairing of 2D egocentric images with 3D scans makes it both 2D- and 3D- ready. Our experiments show that models trained with RoboSpatial outperform baselines on downstream tasks such as spatial affordance prediction, spatial relationship prediction, and robot manipulation.
comment: CVPR 2025
♻ ☆ LaMOuR: Leveraging Language Models for Out-of-Distribution Recovery in Reinforcement Learning
Deep Reinforcement Learning (DRL) has demonstrated strong performance in robotic control but remains susceptible to out-of-distribution (OOD) states, often resulting in unreliable actions and task failure. While previous methods have focused on minimizing or preventing OOD occurrences, they largely neglect recovery once an agent encounters such states. Although the latest research has attempted to address this by guiding agents back to in-distribution states, their reliance on uncertainty estimation hinders scalability in complex environments. To overcome this limitation, we introduce Language Models for Out-of-Distribution Recovery (LaMOuR), which enables recovery learning without relying on uncertainty estimation. LaMOuR generates dense reward codes that guide the agent back to a state where it can successfully perform its original task, leveraging the capabilities of LVLMs in image description, logical reasoning, and code generation. Experimental results show that LaMOuR substantially enhances recovery efficiency across diverse locomotion tasks and even generalizes effectively to complex environments, including humanoid locomotion and mobile manipulation, where existing methods struggle. The code and supplementary materials are available at https://lamour-rl.github.io/.
comment: 14 pages, 17 figures
♻ ☆ DexHandDiff: Interaction-aware Diffusion Planning for Adaptive Dexterous Manipulation CVPR 2025
Dexterous manipulation with contact-rich interactions is crucial for advanced robotics. While recent diffusion-based planning approaches show promise for simple manipulation tasks, they often produce unrealistic ghost states (e.g., the object automatically moves without hand contact) or lack adaptability when handling complex sequential interactions. In this work, we introduce DexHandDiff, an interaction-aware diffusion planning framework for adaptive dexterous manipulation. DexHandDiff models joint state-action dynamics through a dual-phase diffusion process which consists of pre-interaction contact alignment and post-contact goal-directed control, enabling goal-adaptive generalizable dexterous manipulation. Additionally, we incorporate dynamics model-based dual guidance and leverage large language models for automated guidance function generation, enhancing generalizability for physical interactions and facilitating diverse goal adaptation through language cues. Experiments on physical interaction tasks such as door opening, pen and block re-orientation, object relocation, and hammer striking demonstrate DexHandDiff's effectiveness on goals outside training distributions, achieving over twice the average success rate (59.2% vs. 29.5%) compared to existing methods. Our framework achieves an average of 70.7% success rate on goal adaptive dexterous tasks, highlighting its robustness and flexibility in contact-rich manipulation.
comment: Accepted by CVPR 2025. Camera ready version. Previous DexDiffuser. Project page: https://dexdiffuser.github.io/
♻ ☆ The Morphology-Control Trade-Off: Insights into Soft Robotic Efficiency
Soft robotics holds transformative potential for enabling adaptive and adaptable systems in dynamic environments. However, the interplay between morphological and control complexities and their collective impact on task performance remains poorly understood. Therefore, in this study, we investigate these trade-offs across tasks of differing difficulty levels using four well-used morphological complexity metrics and control complexity measured by FLOPs. We investigate how these factors jointly influence task performance by utilizing the evolutionary robot experiments. Results show that optimal performance depends on the alignment between morphology and control: simpler morphologies and lightweight controllers suffice for easier tasks, while harder tasks demand higher complexities in both dimensions. In addition, a clear trade-off between morphological and control complexities that achieve the same task performance can be observed. Moreover, we also propose a sensitivity analysis to expose the task-specific contributions of individual morphological metrics. Our study establishes a framework for investigating the relationships between morphology, control, and task performance, advancing the development of task-specific robotic designs that balance computational efficiency with adaptability. This study contributes to the practical application of soft robotics in real-world scenarios by providing actionable insights.
comment: The paper is planed to be submitted to a journal
♻ ☆ OTTER: A Vision-Language-Action Model with Text-Aware Visual Feature Extraction
Vision-Language-Action (VLA) models aim to predict robotic actions based on visual observations and language instructions. Existing approaches require fine-tuning pre-trained visionlanguage models (VLMs) as visual and language features are independently fed into downstream policies, degrading the pre-trained semantic alignments. We propose OTTER, a novel VLA architecture that leverages these existing alignments through explicit, text-aware visual feature extraction. Instead of processing all visual features, OTTER selectively extracts and passes only task-relevant visual features that are semantically aligned with the language instruction to the policy transformer. This allows OTTER to keep the pre-trained vision-language encoders frozen. Thereby, OTTER preserves and utilizes the rich semantic understanding learned from large-scale pre-training, enabling strong zero-shot generalization capabilities. In simulation and real-world experiments, OTTER significantly outperforms existing VLA models, demonstrating strong zeroshot generalization to novel objects and environments. Video, code, checkpoints, and dataset: https://ottervla.github.io/.
♻ ☆ UAV-Assisted Self-Supervised Terrain Awareness for Off-Road Navigation ICRA 2025
Terrain awareness is an essential milestone to enable truly autonomous off-road navigation. Accurately predicting terrain characteristics allows optimizing a vehicle's path against potential hazards. Recent methods use deep neural networks to predict traversability-related terrain properties in a self-supervised manner, relying on proprioception as a training signal. However, onboard cameras are inherently limited by their point-of-view relative to the ground, suffering from occlusions and vanishing pixel density with distance. This paper introduces a novel approach for self-supervised terrain characterization using an aerial perspective from a hovering drone. We capture terrain-aligned images while sampling the environment with a ground vehicle, effectively training a simple predictor for vibrations, bumpiness, and energy consumption. Our dataset includes 2.8 km of off-road data collected in forest environment, comprising 13 484 ground-based images and 12 935 aerial images. Our findings show that drone imagery improves terrain property prediction by 21.37 % on the whole dataset and 37.35 % in high vegetation, compared to ground robot images. We conduct ablation studies to identify the main causes of these performance improvements. We also demonstrate the real-world applicability of our approach by scouting an unseen area with a drone, planning and executing an optimized path on the ground.
comment: 7 pages, 5 figures, submitted to ICRA 2025
♻ ☆ Contractive Dynamical Imitation Policies for Efficient Out-of-Sample Recovery
Imitation learning is a data-driven approach to learning policies from expert behavior, but it is prone to unreliable outcomes in out-of-sample (OOS) regions. While previous research relying on stable dynamical systems guarantees convergence to a desired state, it often overlooks transient behavior. We propose a framework for learning policies modeled by contractive dynamical systems, ensuring that all policy rollouts converge regardless of perturbations, and in turn, enable efficient OOS recovery. By leveraging recurrent equilibrium networks and coupling layers, the policy structure guarantees contractivity for any parameter choice, which facilitates unconstrained optimization. We also provide theoretical upper bounds for worst-case and expected loss to rigorously establish the reliability of our method in deployment. Empirically, we demonstrate substantial OOS performance improvements for simulated robotic manipulation and navigation tasks.
comment: International Conference on Learning Representations
♻ ☆ ManiCM: Real-time 3D Diffusion Policy via Consistency Model for Robotic Manipulation
Diffusion models have been verified to be effective in generating complex distributions from natural images to motion trajectories. Recent diffusion-based methods show impressive performance in 3D robotic manipulation tasks, whereas they suffer from severe runtime inefficiency due to multiple denoising steps, especially with high-dimensional observations. To this end, we propose a real-time robotic manipulation model named ManiCM that imposes the consistency constraint to the diffusion process, so that the model can generate robot actions in only one-step inference. Specifically, we formulate a consistent diffusion process in the robot action space conditioned on the point cloud input, where the original action is required to be directly denoised from any point along the ODE trajectory. To model this process, we design a consistency distillation technique to predict the action sample directly instead of predicting the noise within the vision community for fast convergence in the low-dimensional action manifold. We evaluate ManiCM on 31 robotic manipulation tasks from Adroit and Metaworld, and the results demonstrate that our approach accelerates the state-of-the-art method by 10 times in average inference speed while maintaining competitive average success rate.
comment: https://manicm-fast.github.io/
♻ ☆ Optimizing Robot Programming: Mixed Reality Gripper Control ICRA 2025
Conventional robot programming methods are complex and time-consuming for users. In recent years, alternative approaches such as mixed reality have been explored to address these challenges and optimize robot programming. While the findings of the mixed reality robot programming methods are convincing, most existing methods rely on gesture interaction for robot programming. Since controller-based interactions have proven to be more reliable, this paper examines three controller-based programming methods within a mixed reality scenario: 1) Classical Jogging, where the user positions the robot's end effector using the controller's thumbsticks, 2) Direct Control, where the controller's position and orientation directly corresponds to the end effector's, and 3) Gripper Control, where the controller is enhanced with a 3D-printed gripper attachment to grasp and release objects. A within-subjects study (n = 30) was conducted to compare these methods. The findings indicate that the Gripper Control condition outperforms the others in terms of task completion time, user experience, mental demand, and task performance, while also being the preferred method. Therefore, it demonstrates promising potential as an effective and efficient approach for future robot programming. Video available at https://youtu.be/83kWr8zUFIQ.
comment: Accepted to ICRA 2025
♻ ☆ Polytope Volume Monitoring Problem: Formulation and Solution via Parametric Linear Program Based Control Barrier Function
Motivated by the latest research on feasible space monitoring of multiple control barrier functions (CBFs) as well as polytopic collision avoidance, this paper studies the Polytope Volume Monitoring (PVM) problem, whose goal is to design a control law for inputs of nonlinear systems to prevent the volume of some state-dependent polytope from decreasing to zero. Recent studies have explored the idea of applying Chebyshev ball method in optimization theory to solve the case study of PVM; however, the underlying difficulties caused by nonsmoothness have not been addressed. This paper continues the study on this topic, where our main contribution is to establish the relationship between nonsmooth CBF and parametric optimization theory through directional derivatives for the first time, so as to solve PVM problems more conveniently. In detail, inspired by Chebyshev ball approach, a parametric linear program (PLP) based nonsmooth barrier function candidate is established for PVM, and then, sufficient conditions for it to be a nonsmooth CBF are proposed, based on which a quadratic program (QP) based safety filter with guaranteed feasibility is proposed to address PVM problems. Finally, a numerical simulation example is given to show the efficiency of the proposed safety filter.
comment: A simplified version is submitted to CDC2025
♻ ☆ Socratic Planner: Self-QA-Based Zero-Shot Planning for Embodied Instruction Following ICRA 2025
Embodied Instruction Following (EIF) is the task of executing natural language instructions by navigating and interacting with objects in interactive environments. A key challenge in EIF is compositional task planning, typically addressed through supervised learning or few-shot in-context learning with labeled data. To this end, we introduce the Socratic Planner, a self-QA-based zero-shot planning method that infers an appropriate plan without any further training. The Socratic Planner first facilitates self-questioning and answering by the Large Language Model (LLM), which in turn helps generate a sequence of subgoals. While executing the subgoals, an embodied agent may encounter unexpected situations, such as unforeseen obstacles. The Socratic Planner then adjusts plans based on dense visual feedback through a visually-grounded re-planning mechanism. Experiments demonstrate the effectiveness of the Socratic Planner, outperforming current state-of-the-art planning models on the ALFRED benchmark across all metrics, particularly excelling in long-horizon tasks that demand complex inference. We further demonstrate its real-world applicability through deployment on a physical robot for long-horizon tasks.
comment: 8 pages, 6 figures, published to ICRA 2025
♻ ☆ TopV-Nav: Unlocking the Top-View Spatial Reasoning Potential of MLLM for Zero-shot Object Navigation
The Zero-Shot Object Navigation (ZSON) task requires embodied agents to find a previously unseen object by navigating in unfamiliar environments. Such a goal-oriented exploration heavily relies on the ability to perceive, understand, and reason based on the spatial information of the environment. However, current LLM-based approaches convert visual observations to language descriptions and reason in the linguistic space, leading to the loss of spatial information. In this paper, we introduce TopV-Nav, an MLLM-based method that directly reasons on the top-view map with sufficient spatial information. To fully unlock the MLLM's spatial reasoning potential in top-view perspective, we propose the Adaptive Visual Prompt Generation (AVPG) method to adaptively construct semantically-rich top-view map. It enables the agent to directly utilize spatial information contained in the top-view map to conduct thorough reasoning. Besides, we design a Dynamic Map Scaling (DMS) mechanism to dynamically zoom top-view map at preferred scales, enhancing local fine-grained reasoning. Additionally, we devise a Potential Target Driven (PTD) mechanism to predict and to utilize target locations, facilitating global and human-like exploration. Experiments on MP3D and HM3D datasets demonstrate the superiority of our TopV-Nav.
comment: 10 pages
♻ ☆ General-purpose Clothes Manipulation with Semantic Keypoints ICRA 2025
Clothes manipulation is a critical capability for household robots; yet, existing methods are often confined to specific tasks, such as folding or flattening, due to the complex high-dimensional geometry of deformable fabric. This paper presents CLothes mAnipulation with Semantic keyPoints (CLASP) for general-purpose clothes manipulation, which enables the robot to perform diverse manipulation tasks over different types of clothes. The key idea of CLASP is semantic keypoints -- e.g., "right shoulder", "left sleeve", etc. -- a sparse spatial-semantic representation that is salient for both perception and action. Semantic keypoints of clothes can be effectively extracted from depth images and are sufficient to represent a broad range of clothes manipulation policies. CLASP leverages semantic keypoints to bridge LLM-powered task planning and low-level action execution in a two-level hierarchy. Extensive simulation experiments show that CLASP outperforms baseline methods across diverse clothes types in both seen and unseen tasks. Further, experiments with a Kinova dual-arm system on four distinct tasks -- folding, flattening, hanging, and placing -- confirm CLASP's performance on a real robot.
comment: accepted by IEEE International Conference on Robotics and Automation (ICRA 2025)
♻ ☆ Distributed Motion Control of Multiple Mobile Manipulators for Reducing Interaction Wrench in Object Manipulation
In real-world cooperative manipulation of objects, multiple mobile manipulator systems may suffer from disturbances and asynchrony, leading to excessive interaction wrenches and potentially causing object damage or emergency stops. Existing methods often rely on torque control and dynamic models, which are uncommon in many industrial robots and settings. Additionally, dynamic models often neglect joint friction forces and are not accurate. These methods are challenging to implement and validate in physical systems. To address the problems, this paper presents a novel distributed motion control approach aimed at reducing these unnecessary interaction wrenches. The control law is only based on local information and joint velocity control to enhance practical applicability. The communication delays within the distributed architecture are considered. The stability of the control law is rigorously proven by the Lyapunov theorem. In the simulations, the effectiveness is shown, and the impact of communication graph connectivity and communication delays has been studied. A comparison with other methods shows the advantages of the proposed control law in terms of convergence speed and robustness. Finally, the control law has been validated in physical experiments. It does not require dynamic modeling or torque control, and thus is more user-friendly for physical robots.
♻ ☆ FoAM: Foresight-Augmented Multi-Task Imitation Policy for Robotic Manipulation
Multi-task imitation learning (MTIL) has shown significant potential in robotic manipulation by enabling agents to perform various tasks using a single policy. This simplifies the policy deployment and enhances the agent's adaptability across different scenarios. However, key challenges remain, such as maintaining action reliability (e.g., avoiding abnormal action sequences that deviate from nominal task trajectories) and generalizing to unseen tasks with a few expert demonstrations. To address these challenges, we introduce the Foresight-Augmented Manipulation Policy (FoAM), a novel MTIL policy that pioneers the use of multi-modal goal condition as input and introduces a foresight augmentation in addition to the general action reconstruction. FoAM enables the agent to reason about the visual consequences (states) of its actions and learn more expressive embedding that captures nuanced task variations. Extensive experiments on over 100 tasks in simulation and real-world settings demonstrate that FoAM significantly enhances MTIL policy performance, outperforming state-of-the-art baselines by up to 41% in success rate. Meanwhile, we released our simulation suites, including a total of 10 scenarios and over 80 challenging tasks designed for manipulation policy training and evaluation. See the project homepage projFoAM.github.io for project details.
comment: 8 pages, 4 figures
♻ ☆ Vision-based Multi-future Trajectory Prediction: A Survey
Vision-based trajectory prediction is an important task that supports safe and intelligent behaviours in autonomous systems. Many advanced approaches have been proposed over the years with improved spatial and temporal feature extraction. However, human behaviour is naturally diverse and uncertain. Given the past trajectory and surrounding environment information, an agent can have multiple plausible trajectories in the future. To tackle this problem, an essential task named multi-future trajectory prediction (MTP) has recently been studied. This task aims to generate a diverse, acceptable and explainable distribution of future predictions for each agent. In this paper, we present the first survey for MTP with our unique taxonomies and a comprehensive analysis of frameworks, datasets and evaluation metrics. We also compare models on existing MTP datasets and conduct experiments on the ForkingPath dataset. Finally, we discuss multiple future directions that can help researchers develop novel multi-future trajectory prediction systems and other diverse learning tasks similar to MTP.
comment: Accepted by TNNLS 2025
SLIM: Scalable and Lightweight LiDAR Mapping in Urban Environments
LiDAR point cloud maps are extensively utilized on roads for robot navigation due to their high consistency. However, dense point clouds face challenges of high memory consumption and reduced maintainability for long-term operations. In this study, we introduce SLIM, a scalable and lightweight mapping system for long-term LiDAR mapping in urban environments. The system begins by parameterizing structural point clouds into lines and planes. These lightweight and structural representations meet the requirements of map merging, pose graph optimization, and bundle adjustment, ensuring incremental management and local consistency. For long-term operations, a map-centric nonlinear factor recovery method is designed to sparsify poses while preserving mapping accuracy. We validate the SLIM system with multi-session real-world LiDAR data from classical LiDAR mapping datasets, including KITTI, NCLT, HeLiPR and M2DGR. The experiments demonstrate its capabilities in mapping accuracy, lightweightness, and scalability. Map re-use is also verified through map-based robot localization. Finally, with multi-session LiDAR data, the SLIM system provides a globally consistent map with low memory consumption (~130 KB/km on KITTI).
comment: Accepted for publication in IEEE Transactions on Robotics. Video: https://youtu.be/8HQnYMf_BWI Code: https://github.com/HKUST-Aerial-Robotics/SLIM
NuRF: Nudging the Particle Filter in Radiance Fields for Robot Visual Localization
Can we localize a robot on a map only using monocular vision? This study presents NuRF, an adaptive and nudged particle filter framework in radiance fields for 6-DoF robot visual localization. NuRF leverages recent advancements in radiance fields and visual place recognition. Conventional visual place recognition meets the challenges of data sparsity and artifact-induced inaccuracies. By utilizing radiance field-generated novel views, NuRF enhances visual localization performance and combines coarse global localization with the fine-grained pose tracking of a particle filter, ensuring continuous and precise localization. Experimentally, our method converges 7 times faster than existing Monte Carlo-based methods and achieves localization accuracy within 1 meter, offering an efficient and resilient solution for indoor visual localization.
comment: Accepted for Publication in IEEE Transactions on Cognitive and Developmental Systems
♻ ☆ Inference-Time Policy Steering through Human Interactions ICRA 2025
Generative policies trained with human demonstrations can autonomously accomplish multimodal, long-horizon tasks. However, during inference, humans are often removed from the policy execution loop, limiting the ability to guide a pre-trained policy towards a specific sub-goal or trajectory shape among multiple predictions. Naive human intervention may inadvertently exacerbate distribution shift, leading to constraint violations or execution failures. To better align policy output with human intent without inducing out-of-distribution errors, we propose an Inference-Time Policy Steering (ITPS) framework that leverages human interactions to bias the generative sampling process, rather than fine-tuning the policy on interaction data. We evaluate ITPS across three simulated and real-world benchmarks, testing three forms of human interaction and associated alignment distance metrics. Among six sampling strategies, our proposed stochastic sampling with diffusion policy achieves the best trade-off between alignment and distribution shift. Videos are available at https://yanweiw.github.io/itps/.
comment: ICRA 2025
♻ ☆ Hybrid Physics-ML Modeling for Marine Vehicle Maneuvering Motions in the Presence of Environmental Disturbances
A hybrid physics-machine learning modeling framework is proposed for the surface vehicles' maneuvering motions to address the modeling capability and stability in the presence of environmental disturbances. From a deep learning perspective, the framework is based on a variant version of residual networks with additional feature extraction. Initially, an imperfect physical model is derived and identified to capture the fundamental hydrodynamic characteristics of marine vehicles. This model is then integrated with a feedforward network through a residual block. Additionally, feature extraction from trigonometric transformations is employed in the machine learning component to account for the periodic influence of currents and waves. The proposed method is evaluated using real navigational data from the 'JH7500' unmanned surface vehicle. The results demonstrate the robust generalizability and accurate long-term prediction capabilities of the nonlinear dynamic model in specific environmental conditions. This approach has the potential to be extended and applied to develop a comprehensive high-fidelity simulator.
comment: The content of the manuscript will undergo significant revisions
♻ ☆ Automated Vehicle Driver Monitoring Dataset from Real-World Scenarios
From SAE Level 3 of automation onwards, drivers are allowed to engage in activities that are not directly related to driving during their travel. However, in level 3, a misunderstanding of the capabilities of the system might lead drivers to engage in secondary tasks, which could impair their ability to react to challenging traffic situations. Anticipating driver activity allows for early detection of risky behaviors, to prevent accidents. To be able to predict the driver activity, a Deep Learning network needs to be trained on a dataset. However, the use of datasets based on simulation for training and the migration to real-world data for prediction has proven to be suboptimal. Hence, this paper presents a real-world driver activity dataset, openly accessible on IEEE Dataport, which encompasses various activities that occur in autonomous driving scenarios under various illumination and weather conditions. Results from the training process showed that the dataset provides an excellent benchmark for implementing models for driver activity recognition.
comment: 6 pages
♻ ☆ Multi-Agent Inverse Reinforcement Learning in Real World Unstructured Pedestrian Crowds
Social robot navigation in crowded public spaces such as university campuses, restaurants, grocery stores, and hospitals, is an increasingly important area of research. One of the core strategies for achieving this goal is to understand humans' intent--underlying psychological factors that govern their motion--by learning their reward functions, typically via inverse reinforcement learning (IRL). Despite significant progress in IRL, learning reward functions of multiple agents simultaneously in dense unstructured pedestrian crowds has remained intractable due to the nature of the tightly coupled social interactions that occur in these scenarios \textit{e.g.} passing, intersections, swerving, weaving, etc. In this paper, we present a new multi-agent maximum entropy inverse reinforcement learning algorithm for real world unstructured pedestrian crowds. Key to our approach is a simple, but effective, mathematical trick which we name the so-called tractability-rationality trade-off trick that achieves tractability at the cost of a slight reduction in accuracy. We compare our approach to the classical single-agent MaxEnt IRL as well as state-of-the-art trajectory prediction methods on several datasets including the ETH, UCY, SCAND, JRDB, and a new dataset, called Speedway, collected at a busy intersection on a University campus focusing on dense, complex agent interactions. Our key findings show that, on the dense Speedway dataset, our approach ranks 1st among top 7 baselines with >2X improvement over single-agent IRL, and is competitive with state-of-the-art large transformer-based encoder-decoder models on sparser datasets such as ETH/UCY (ranks 3rd among top 7 baselines).
♻ ☆ SimBEV: A Synthetic Multi-Task Multi-Sensor Driving Data Generation Tool and Dataset
Bird's-eye view (BEV) perception has garnered significant attention in autonomous driving in recent years, in part because BEV representation facilitates multi-modal sensor fusion. BEV representation enables a variety of perception tasks including BEV segmentation, a concise view of the environment useful for planning a vehicle's trajectory. However, this representation is not fully supported by existing datasets, and creation of new datasets for this purpose can be a time-consuming endeavor. To address this challenge, we introduce SimBEV. SimBEV is a randomized synthetic data generation tool that is extensively configurable and scalable, supports a wide array of sensors, incorporates information from multiple sources to capture accurate BEV ground truth, and enables a variety of perception tasks including BEV segmentation and 3D object detection. SimBEV is used to create the SimBEV dataset, a large collection of annotated perception data from diverse driving scenarios. SimBEV and the SimBEV dataset are open and available to the public.
Computer Vision 144
☆ Free4D: Tuning-free 4D Scene Generation with Spatial-Temporal Consistency
We present Free4D, a novel tuning-free framework for 4D scene generation from a single image. Existing methods either focus on object-level generation, making scene-level generation infeasible, or rely on large-scale multi-view video datasets for expensive training, with limited generalization ability due to the scarcity of 4D scene data. In contrast, our key insight is to distill pre-trained foundation models for consistent 4D scene representation, which offers promising advantages such as efficiency and generalizability. 1) To achieve this, we first animate the input image using image-to-video diffusion models followed by 4D geometric structure initialization. 2) To turn this coarse structure into spatial-temporal consistent multiview videos, we design an adaptive guidance mechanism with a point-guided denoising strategy for spatial consistency and a novel latent replacement strategy for temporal coherence. 3) To lift these generated observations into consistent 4D representation, we propose a modulation-based refinement to mitigate inconsistencies while fully leveraging the generated information. The resulting 4D representation enables real-time, controllable rendering, marking a significant advancement in single-image-based 4D scene generation.
comment: Project Page: https://free4d.github.io/ , Code: https://github.com/TQTQliu/Free4D
☆ FB-4D: Spatial-Temporal Coherent Dynamic 3D Content Generation with Feature Banks
With the rapid advancements in diffusion models and 3D generation techniques, dynamic 3D content generation has become a crucial research area. However, achieving high-fidelity 4D (dynamic 3D) generation with strong spatial-temporal consistency remains a challenging task. Inspired by recent findings that pretrained diffusion features capture rich correspondences, we propose FB-4D, a novel 4D generation framework that integrates a Feature Bank mechanism to enhance both spatial and temporal consistency in generated frames. In FB-4D, we store features extracted from previous frames and fuse them into the process of generating subsequent frames, ensuring consistent characteristics across both time and multiple views. To ensure a compact representation, the Feature Bank is updated by a proposed dynamic merging mechanism. Leveraging this Feature Bank, we demonstrate for the first time that generating additional reference sequences through multiple autoregressive iterations can continuously improve generation performance. Experimental results show that FB-4D significantly outperforms existing methods in terms of rendering quality, spatial-temporal consistency, and robustness. It surpasses all multi-view generation tuning-free approaches by a large margin and achieves performance on par with training-based methods.
comment: Project page:https://fb-4d.c7w.tech/
☆ Zero-Shot Audio-Visual Editing via Cross-Modal Delta Denoising
In this paper, we introduce zero-shot audio-video editing, a novel task that requires transforming original audio-visual content to align with a specified textual prompt without additional model training. To evaluate this task, we curate a benchmark dataset, AvED-Bench, designed explicitly for zero-shot audio-video editing. AvED-Bench includes 110 videos, each with a 10-second duration, spanning 11 categories from VGGSound. It offers diverse prompts and scenarios that require precise alignment between auditory and visual elements, enabling robust evaluation. We identify limitations in existing zero-shot audio and video editing methods, particularly in synchronization and coherence between modalities, which often result in inconsistent outcomes. To address these challenges, we propose AvED, a zero-shot cross-modal delta denoising framework that leverages audio-video interactions to achieve synchronized and coherent edits. AvED demonstrates superior results on both AvED-Bench and the recent OAVE dataset to validate its generalization capabilities. Results are available at https://genjib.github.io/project_page/AVED/index.html
comment: Project page: https://genjib.github.io/project_page/AVED/index.html
☆ BASKET: A Large-Scale Video Dataset for Fine-Grained Skill Estimation
We present BASKET, a large-scale basketball video dataset for fine-grained skill estimation. BASKET contains 4,477 hours of video capturing 32,232 basketball players from all over the world. Compared to prior skill estimation datasets, our dataset includes a massive number of skilled participants with unprecedented diversity in terms of gender, age, skill level, geographical location, etc. BASKET includes 20 fine-grained basketball skills, challenging modern video recognition models to capture the intricate nuances of player skill through in-depth video analysis. Given a long highlight video (8-10 minutes) of a particular player, the model needs to predict the skill level (e.g., excellent, good, average, fair, poor) for each of the 20 basketball skills. Our empirical analysis reveals that the current state-of-the-art video models struggle with this task, significantly lagging behind the human baseline. We believe that BASKET could be a useful resource for developing new video models with advanced long-range, fine-grained recognition capabilities. In addition, we hope that our dataset will be useful for domain-specific applications such as fair basketball scouting, personalized player development, and many others. Dataset and code are available at https://github.com/yulupan00/BASKET.
☆ Feature4X: Bridging Any Monocular Video to 4D Agentic AI with Versatile Gaussian Feature Fields
Recent advancements in 2D and multimodal models have achieved remarkable success by leveraging large-scale training on extensive datasets. However, extending these achievements to enable free-form interactions and high-level semantic operations with complex 3D/4D scenes remains challenging. This difficulty stems from the limited availability of large-scale, annotated 3D/4D or multi-view datasets, which are crucial for generalizable vision and language tasks such as open-vocabulary and prompt-based segmentation, language-guided editing, and visual question answering (VQA). In this paper, we introduce Feature4X, a universal framework designed to extend any functionality from 2D vision foundation model into the 4D realm, using only monocular video input, which is widely available from user-generated content. The "X" in Feature4X represents its versatility, enabling any task through adaptable, model-conditioned 4D feature field distillation. At the core of our framework is a dynamic optimization strategy that unifies multiple model capabilities into a single representation. Additionally, to the best of our knowledge, Feature4X is the first method to distill and lift the features of video foundation models (e.g. SAM2, InternVideo2) into an explicit 4D feature field using Gaussian Splatting. Our experiments showcase novel view segment anything, geometric and appearance scene editing, and free-form VQA across all time steps, empowered by LLMs in feedback loops. These advancements broaden the scope of agentic AI applications by providing a foundation for scalable, contextually and spatiotemporally aware systems capable of immersive dynamic 4D scene interaction.
☆ Disentangled Source-Free Personalization for Facial Expression Recognition with Neutral Target Data
Facial Expression Recognition (FER) from videos is a crucial task in various application areas, such as human-computer interaction and health monitoring (e.g., pain, depression, fatigue, and stress). Beyond the challenges of recognizing subtle emotional or health states, the effectiveness of deep FER models is often hindered by the considerable variability of expressions among subjects. Source-free domain adaptation (SFDA) methods are employed to adapt a pre-trained source model using only unlabeled target domain data, thereby avoiding data privacy and storage issues. Typically, SFDA methods adapt to a target domain dataset corresponding to an entire population and assume it includes data from all recognition classes. However, collecting such comprehensive target data can be difficult or even impossible for FER in healthcare applications. In many real-world scenarios, it may be feasible to collect a short neutral control video (displaying only neutral expressions) for target subjects before deployment. These videos can be used to adapt a model to better handle the variability of expressions among subjects. This paper introduces the Disentangled Source-Free Domain Adaptation (DSFDA) method to address the SFDA challenge posed by missing target expression data. DSFDA leverages data from a neutral target control video for end-to-end generation and adaptation of target data with missing non-neutral data. Our method learns to disentangle features related to expressions and identity while generating the missing non-neutral target data, thereby enhancing model accuracy. Additionally, our self-supervision strategy improves model adaptation by reconstructing target images that maintain the same identity and source expression.
☆ ADS-Edit: A Multimodal Knowledge Editing Dataset for Autonomous Driving Systems
Recent advancements in Large Multimodal Models (LMMs) have shown promise in Autonomous Driving Systems (ADS). However, their direct application to ADS is hindered by challenges such as misunderstanding of traffic knowledge, complex road conditions, and diverse states of vehicle. To address these challenges, we propose the use of Knowledge Editing, which enables targeted modifications to a model's behavior without the need for full retraining. Meanwhile, we introduce ADS-Edit, a multimodal knowledge editing dataset specifically designed for ADS, which includes various real-world scenarios, multiple data types, and comprehensive evaluation metrics. We conduct comprehensive experiments and derive several interesting conclusions. We hope that our work will contribute to the further advancement of knowledge editing applications in the field of autonomous driving. Code and data are available in https://github.com/zjunlp/EasyEdit.
comment: Work in progress
☆ UniSTD: Towards Unified Spatio-Temporal Learning across Diverse Disciplines CVPR 2025
Traditional spatiotemporal models generally rely on task-specific architectures, which limit their generalizability and scalability across diverse tasks due to domain-specific design requirements. In this paper, we introduce \textbf{UniSTD}, a unified Transformer-based framework for spatiotemporal modeling, which is inspired by advances in recent foundation models with the two-stage pretraining-then-adaption paradigm. Specifically, our work demonstrates that task-agnostic pretraining on 2D vision and vision-text datasets can build a generalizable model foundation for spatiotemporal learning, followed by specialized joint training on spatiotemporal datasets to enhance task-specific adaptability. To improve the learning capabilities across domains, our framework employs a rank-adaptive mixture-of-expert adaptation by using fractional interpolation to relax the discrete variables so that can be optimized in the continuous space. Additionally, we introduce a temporal module to incorporate temporal dynamics explicitly. We evaluate our approach on a large-scale dataset covering 10 tasks across 4 disciplines, demonstrating that a unified spatiotemporal model can achieve scalable, cross-task learning and support up to 10 tasks simultaneously within one model while reducing training costs in multi-domain applications. Code will be available at https://github.com/1hunters/UniSTD.
comment: Accepted to CVPR 2025
☆ PhysGen3D: Crafting a Miniature Interactive World from a Single Image CVPR 2025
Envisioning physically plausible outcomes from a single image requires a deep understanding of the world's dynamics. To address this, we introduce PhysGen3D, a novel framework that transforms a single image into an amodal, camera-centric, interactive 3D scene. By combining advanced image-based geometric and semantic understanding with physics-based simulation, PhysGen3D creates an interactive 3D world from a static image, enabling us to "imagine" and simulate future scenarios based on user input. At its core, PhysGen3D estimates 3D shapes, poses, physical and lighting properties of objects, thereby capturing essential physical attributes that drive realistic object interactions. This framework allows users to specify precise initial conditions, such as object speed or material properties, for enhanced control over generated video outcomes. We evaluate PhysGen3D's performance against closed-source state-of-the-art (SOTA) image-to-video models, including Pika, Kling, and Gen-3, showing PhysGen3D's capacity to generate videos with realistic physics while offering greater flexibility and fine-grained control. Our results show that PhysGen3D achieves a unique balance of photorealism, physical plausibility, and user-driven interactivity, opening new possibilities for generating dynamic, physics-grounded video from an image.
comment: CVPR 2025, Project page: https://by-luckk.github.io/PhysGen3D
☆ MATHGLANCE: Multimodal Large Language Models Do Not Know Where to Look in Mathematical Diagrams
Diagrams serve as a fundamental form of visual language, representing complex concepts and their inter-relationships through structured symbols, shapes, and spatial arrangements. Unlike natural images, their inherently symbolic and abstract nature poses significant challenges for Multimodal Large Language Models (MLLMs). However, current benchmarks conflate perceptual and reasoning tasks, making it difficult to assess whether MLLMs genuinely understand mathematical diagrams beyond superficial pattern recognition. To address this gap, we introduce MATHGLANCE, a benchmark specifically designed to isolate and evaluate mathematical perception in MLLMs. MATHGLANCE comprises 1.2K images and 1.6K carefully curated questions spanning four perception tasks: shape classification, object counting, relationship identification, and object grounding, covering diverse domains including plane geometry, solid geometry, and graphical representations. Our evaluation of MLLMs reveals that their ability to understand diagrams is notably limited, particularly in fine-grained grounding tasks. In response, we construct GeoPeP, a perception-oriented dataset of 200K structured geometry image-text pairs explicitly annotated with geometric primitives and precise spatial relationships. Training MLLM on GeoPeP leads to significant gains in perceptual accuracy, which in turn substantially improves mathematical reasoning. Our benchmark and dataset establish critical standards for evaluating and advancing multimodal mathematical understanding, providing valuable resources and insights to foster future MLLM research.
☆ High Quality Diffusion Distillation on a Single GPU with Relative and Absolute Position Matching
We introduce relative and absolute position matching (RAPM), a diffusion distillation method resulting in high quality generation that can be trained efficiently on a single GPU. Recent diffusion distillation research has achieved excellent results for high-resolution text-to-image generation with methods such as phased consistency models (PCM) and improved distribution matching distillation (DMD2). However, these methods generally require many GPUs (e.g.~8-64) and significant batchsizes (e.g.~128-2048) during training, resulting in memory and compute requirements that are beyond the resources of some researchers. RAPM provides effective single-GPU diffusion distillation training with a batchsize of 1. The new method attempts to mimic the sampling trajectories of the teacher model by matching the relative and absolute positions. The design of relative positions is inspired by PCM. Two discriminators are introduced accordingly in RAPM, one for matching relative positions and the other for absolute positions. Experimental results on StableDiffusion (SD) V1.5 and SDXL indicate that RAPM with 4 timesteps produces comparable FID scores as the best method with 1 timestep under very limited computational resources.
☆ Emotion Detection and Music Recommendation System
As artificial intelligence becomes more and more ingrained in daily life, we present a novel system that uses deep learning for music recommendation and emotion-based detection. Through the use of facial recognition and the DeepFace framework, our method analyses human emotions in real-time and then plays music that reflects the mood it has discovered. The system uses a webcam to take pictures, analyses the most common facial expression, and then pulls a playlist from local storage that corresponds to the mood it has detected. An engaging and customised experience is ensured by allowing users to manually change the song selection via a dropdown menu or navigation buttons. By continuously looping over the playlist, the technology guarantees continuity. The objective of our system is to improve emotional well-being through music therapy by offering a responsive and automated music-selection experience.
☆ SChanger: Change Detection from a Semantic Change and Spatial Consistency Perspective
Change detection is a key task in Earth observation applications. Recently, deep learning methods have demonstrated strong performance and widespread application. However, change detection faces data scarcity due to the labor-intensive process of accurately aligning remote sensing images of the same area, which limits the performance of deep learning algorithms. To address the data scarcity issue, we develop a fine-tuning strategy called the Semantic Change Network (SCN). We initially pre-train the model on single-temporal supervised tasks to acquire prior knowledge of instance feature extraction. The model then employs a shared-weight Siamese architecture and extended Temporal Fusion Module (TFM) to preserve this prior knowledge and is fine-tuned on change detection tasks. The learned semantics for identifying all instances is changed to focus on identifying only the changes. Meanwhile, we observe that the locations of changes between the two images are spatially identical, a concept we refer to as spatial consistency. We introduce this inductive bias through an attention map that is generated by large-kernel convolutions and applied to the features from both time points. This enhances the modeling of multi-scale changes and helps capture underlying relationships in change detection semantics. We develop a binary change detection model utilizing these two strategies. The model is validated against state-of-the-art methods on six datasets, surpassing all benchmark methods and achieving F1 scores of 92.87%, 86.43%, 68.95%, 97.62%, 84.58%, and 93.20% on the LEVIR-CD, LEVIR-CD+, S2Looking, CDD, SYSU-CD, and WHU-CD datasets, respectively.
Dynamic Motion Blending for Versatile Motion Editing
Text-guided motion editing enables high-level semantic control and iterative modifications beyond traditional keyframe animation. Existing methods rely on limited pre-collected training triplets, which severely hinders their versatility in diverse editing scenarios. We introduce MotionCutMix, an online data augmentation technique that dynamically generates training triplets by blending body part motions based on input text. While MotionCutMix effectively expands the training distribution, the compositional nature introduces increased randomness and potential body part incoordination. To model such a rich distribution, we present MotionReFit, an auto-regressive diffusion model with a motion coordinator. The auto-regressive architecture facilitates learning by decomposing long sequences, while the motion coordinator mitigates the artifacts of motion composition. Our method handles both spatial and temporal motion edits directly from high-level human instructions, without relying on additional specifications or Large Language Models. Through extensive experiments, we show that MotionReFit achieves state-of-the-art performance in text-guided motion editing.
☆ A weakly-supervised deep learning model for fast localisation and delineation of the skeleton, internal organs, and spinal canal on Whole-Body Diffusion-Weighted MRI (WB-DWI)
Background: Apparent Diffusion Coefficient (ADC) values and Total Diffusion Volume (TDV) from Whole-body diffusion-weighted MRI (WB-DWI) are recognized cancer imaging biomarkers. However, manual disease delineation for ADC and TDV measurements is unfeasible in clinical practice, demanding automation. As a first step, we propose an algorithm to generate fast and reproducible probability maps of the skeleton, adjacent internal organs (liver, spleen, urinary bladder, and kidneys), and spinal canal. Methods: We developed an automated deep-learning pipeline based on a 3D patch-based Residual U-Net architecture that localizes and delineates these anatomical structures on WB-DWI. The algorithm was trained using "soft-labels" (non-binary segmentations) derived from a computationally intensive atlas-based approach. For training and validation, we employed a multi-center WB-DWI dataset comprising 532 scans from patients with Advanced Prostate Cancer (APC) or Multiple Myeloma (MM), with testing on 45 patients. Results: Our weakly-supervised deep learning model achieved an average dice score/precision/recall of 0.66/0.6/0.73 for skeletal delineations, 0.8/0.79/0.81 for internal organs, and 0.85/0.79/0.94 for spinal canal, with surface distances consistently below 3 mm. Relative median ADC and log-transformed volume differences between automated and manual expert-defined full-body delineations were below 10% and 4%, respectively. The computational time for generating probability maps was 12x faster than the atlas-based registration algorithm (25 s vs. 5 min). An experienced radiologist rated the model's accuracy "good" or "excellent" on test datasets. Conclusion: Our model offers fast and reproducible probability maps for localizing and delineating body regions on WB-DWI, enabling ADC and TDV quantification, potentially supporting clinicians in disease staging and treatment response assessment.
☆ MMMORRF: Multimodal Multilingual Modularized Reciprocal Rank Fusion
Videos inherently contain multiple modalities, including visual events, text overlays, sounds, and speech, all of which are important for retrieval. However, state-of-the-art multimodal language models like VAST and LanguageBind are built on vision-language models (VLMs), and thus overly prioritize visual signals. Retrieval benchmarks further reinforce this bias by focusing on visual queries and neglecting other modalities. We create a search system MMMORRF that extracts text and features from both visual and audio modalities and integrates them with a novel modality-aware weighted reciprocal rank fusion. MMMORRF is both effective and efficient, demonstrating practicality in searching videos based on users' information needs instead of visual descriptive queries. We evaluate MMMORRF on MultiVENT 2.0 and TVR, two multimodal benchmarks designed for more targeted information needs, and find that it improves nDCG@20 by 81% over leading multimodal encoders and 37% over single-modality retrieval, demonstrating the value of integrating diverse modalities.
☆ GLRD: Global-Local Collaborative Reason and Debate with PSL for 3D Open-Vocabulary Detection
The task of LiDAR-based 3D Open-Vocabulary Detection (3D OVD) requires the detector to learn to detect novel objects from point clouds without off-the-shelf training labels. Previous methods focus on the learning of object-level representations and ignore the scene-level information, thus it is hard to distinguish objects with similar classes. In this work, we propose a Global-Local Collaborative Reason and Debate with PSL (GLRD) framework for the 3D OVD task, considering both local object-level information and global scene-level information. Specifically, LLM is utilized to perform common sense reasoning based on object-level and scene-level information, where the detection result is refined accordingly. To further boost the LLM's ability of precise decisions, we also design a probabilistic soft logic solver (OV-PSL) to search for the optimal solution, and a debate scheme to confirm the class of confusable objects. In addition, to alleviate the uneven distribution of classes, a static balance scheme (SBC) and a dynamic balance scheme (DBC) are designed. In addition, to reduce the influence of noise in data and training, we further propose Reflected Pseudo Labels Generation (RPLG) and Background-Aware Object Localization (BAOL). Extensive experiments conducted on ScanNet and SUN RGB-D demonstrate the superiority of GLRD, where absolute improvements in mean average precision are $+2.82\%$ on SUN RGB-D and $+3.72\%$ on ScanNet in the partial open-vocabulary setting. In the full open-vocabulary setting, the absolute improvements in mean average precision are $+4.03\%$ on ScanNet and $+14.11\%$ on SUN RGB-D.
comment: 15 pages
☆ Benchmarking Machine Learning Methods for Distributed Acoustic Sensing
Distributed acoustic sensing (DAS) technology represents an innovative fiber-optic-based sensing methodology that enables real-time acoustic signal monitoring through the detection of minute perturbations along optical fibers. This sensing approach offers compelling advantages, including extensive measurement ranges, exceptional spatial resolution, and an expansive dynamic measurement spectrum. The integration of machine learning (ML) paradigms presents transformative potential for DAS technology, encompassing critical domains such as data augmentation, sophisticated preprocessing techniques, and advanced acoustic event classification and recognition. By leveraging ML algorithms, DAS systems can transition from traditional data processing methodologies to more automated and intelligent analytical frameworks. The computational intelligence afforded by ML-enhanced DAS technologies facilitates unprecedented monitoring capabilities across diverse critical infrastructure sectors. Particularly noteworthy are the technology's applications in transportation infrastructure, energy management systems, and Natural disaster monitoring frameworks, where the precision of data acquisition and the reliability of intelligent decision-making mechanisms are paramount. This research critically examines the comparative performance characteristics of classical machine learning methodologies and state-of-the-art deep learning models in the context of DAS data recognition and interpretation, offering comprehensive insights into the evolving landscape of intelligent sensing technologies.
☆ Vision as LoRA
We introduce Vision as LoRA (VoRA), a novel paradigm for transforming an LLM into an MLLM. Unlike prevalent MLLM architectures that rely on external vision modules for vision encoding, VoRA internalizes visual capabilities by integrating vision-specific LoRA layers directly into the LLM. This design allows the added parameters to be seamlessly merged into the LLM during inference, eliminating structural complexity and minimizing computational overhead. Moreover, inheriting the LLM's ability of handling flexible context, VoRA can process inputs at arbitrary resolutions. To further strengthen VoRA's visual capabilities, we introduce a block-wise distillation method that transfers visual priors from a pre-trained ViT into the LoRA layers, effectively accelerating training by injecting visual knowledge. Additionally, we apply bi-directional attention masks to better capture the context information of an image. We successfully demonstrate that with additional pre-training data, VoRA can perform comparably with conventional encode-based MLLMs. All training data, codes, and model weights will be released at https://github.com/Hon-Wong/VoRA.
☆ BizGen: Advancing Article-level Visual Text Rendering for Infographics Generation CVPR 2025
Recently, state-of-the-art text-to-image generation models, such as Flux and Ideogram 2.0, have made significant progress in sentence-level visual text rendering. In this paper, we focus on the more challenging scenarios of article-level visual text rendering and address a novel task of generating high-quality business content, including infographics and slides, based on user provided article-level descriptive prompts and ultra-dense layouts. The fundamental challenges are twofold: significantly longer context lengths and the scarcity of high-quality business content data. In contrast to most previous works that focus on a limited number of sub-regions and sentence-level prompts, ensuring precise adherence to ultra-dense layouts with tens or even hundreds of sub-regions in business content is far more challenging. We make two key technical contributions: (i) the construction of scalable, high-quality business content dataset, i.e., Infographics-650K, equipped with ultra-dense layouts and prompts by implementing a layer-wise retrieval-augmented infographic generation scheme; and (ii) a layout-guided cross attention scheme, which injects tens of region-wise prompts into a set of cropped region latent space according to the ultra-dense layouts, and refine each sub-regions flexibly during inference using a layout conditional CFG. We demonstrate the strong results of our system compared to previous SOTA systems such as Flux and SD3 on our BizEval prompt set. Additionally, we conduct thorough ablation experiments to verify the effectiveness of each component. We hope our constructed Infographics-650K and BizEval can encourage the broader community to advance the progress of business content generation.
comment: Accepted by CVPR 2025. Project Page: https://bizgen-msra.github.io
☆ AutoRad-Lung: A Radiomic-Guided Prompting Autoregressive Vision-Language Model for Lung Nodule Malignancy Prediction
Lung cancer remains one of the leading causes of cancer-related mortality worldwide. A crucial challenge for early diagnosis is differentiating uncertain cases with similar visual characteristics and closely annotation scores. In clinical practice, radiologists rely on quantitative, hand-crafted Radiomic features extracted from Computed Tomography (CT) images, while recent research has primarily focused on deep learning solutions. More recently, Vision-Language Models (VLMs), particularly Contrastive Language-Image Pre-Training (CLIP)-based models, have gained attention for their ability to integrate textual knowledge into lung cancer diagnosis. While CLIP-Lung models have shown promising results, we identified the following potential limitations: (a) dependence on radiologists' annotated attributes, which are inherently subjective and error-prone, (b) use of textual information only during training, limiting direct applicability at inference, and (c) Convolutional-based vision encoder with randomly initialized weights, which disregards prior knowledge. To address these limitations, we introduce AutoRad-Lung, which couples an autoregressively pre-trained VLM, with prompts generated from hand-crafted Radiomics. AutoRad-Lung uses the vision encoder of the Large-Scale Autoregressive Image Model (AIMv2), pre-trained using a multi-modal autoregressive objective. Given that lung tumors are typically small, irregularly shaped, and visually similar to healthy tissue, AutoRad-Lung offers significant advantages over its CLIP-based counterparts by capturing pixel-level differences. Additionally, we introduce conditional context optimization, which dynamically generates context-specific prompts based on input Radiomics, improving cross-modal alignment.
☆ ARMO: Autoregressive Rigging for Multi-Category Objects
Recent advancements in large-scale generative models have significantly improved the quality and diversity of 3D shape generation. However, most existing methods focus primarily on generating static 3D models, overlooking the potentially dynamic nature of certain shapes, such as humanoids, animals, and insects. To address this gap, we focus on rigging, a fundamental task in animation that establishes skeletal structures and skinning for 3D models. In this paper, we introduce OmniRig, the first large-scale rigging dataset, comprising 79,499 meshes with detailed skeleton and skinning information. Unlike traditional benchmarks that rely on predefined standard poses (e.g., A-pose, T-pose), our dataset embraces diverse shape categories, styles, and poses. Leveraging this rich dataset, we propose ARMO, a novel rigging framework that utilizes an autoregressive model to predict both joint positions and connectivity relationships in a unified manner. By treating the skeletal structure as a complete graph and discretizing it into tokens, we encode the joints using an auto-encoder to obtain a latent embedding and an autoregressive model to predict the tokens. A mesh-conditioned latent diffusion model is used to predict the latent embedding for conditional skeleton generation. Our method addresses the limitations of regression-based approaches, which often suffer from error accumulation and suboptimal connectivity estimation. Through extensive experiments on the OmniRig dataset, our approach achieves state-of-the-art performance in skeleton prediction, demonstrating improved generalization across diverse object categories. The code and dataset will be made public for academic use upon acceptance.
☆ AccidentSim: Generating Physically Realistic Vehicle Collision Videos from Real-World Accident Reports
Collecting real-world vehicle accident videos for autonomous driving research is challenging due to their rarity and complexity. While existing driving video generation methods may produce visually realistic videos, they often fail to deliver physically realistic simulations because they lack the capability to generate accurate post-collision trajectories. In this paper, we introduce AccidentSim, a novel framework that generates physically realistic vehicle collision videos by extracting and utilizing the physical clues and contextual information available in real-world vehicle accident reports. Specifically, AccidentSim leverages a reliable physical simulator to replicate post-collision vehicle trajectories from the physical and contextual information in the accident reports and to build a vehicle collision trajectory dataset. This dataset is then used to fine-tune a language model, enabling it to respond to user prompts and predict physically consistent post-collision trajectories across various driving scenarios based on user descriptions. Finally, we employ Neural Radiance Fields (NeRF) to render high-quality backgrounds, merging them with the foreground vehicles that exhibit physically realistic trajectories to generate vehicle collision videos. Experimental results demonstrate that the videos produced by AccidentSim excel in both visual and physical authenticity.
☆ UWarp: A Whole Slide Image Registration Pipeline to Characterize Scanner-Induced Local Domain Shift
Histopathology slide digitization introduces scanner-induced domain shift that can significantly impact computational pathology models based on deep learning methods. In the state-of-the-art, this shift is often characterized at a broad scale (slide-level or dataset-level) but not patch-level, which limits our comprehension of the impact of localized tissue characteristics on the accuracy of the deep learning models. To address this challenge, we present a domain shift analysis framework based on UWarp, a novel registration tool designed to accurately align histological slides scanned under varying conditions. UWarp employs a hierarchical registration approach, combining global affine transformations with fine-grained local corrections to achieve robust tissue patch alignment. We evaluate UWarp using two private datasets, CypathLung and BosomShieldBreast, containing whole slide images scanned by multiple devices. Our experiments demonstrate that UWarp outperforms existing open-source registration methods, achieving a median target registration error (TRE) of less than 4 pixels (<1 micrometer at 40x magnification) while significantly reducing computational time. Additionally, we apply UWarp to characterize scanner-induced local domain shift in the predictions of Breast-NEOprAIdict, a deep learning model for breast cancer pathological response prediction. We find that prediction variability is strongly correlated with tissue density on a given patch. Our findings highlight the importance of localized domain shift analysis and suggest that UWarp can serve as a valuable tool for improving model robustness and domain adaptation strategies in computational pathology.
☆ MMGen: Unified Multi-modal Image Generation and Understanding in One Go
A unified diffusion framework for multi-modal generation and understanding has the transformative potential to achieve seamless and controllable image diffusion and other cross-modal tasks. In this paper, we introduce MMGen, a unified framework that integrates multiple generative tasks into a single diffusion model. This includes: (1) multi-modal category-conditioned generation, where multi-modal outputs are generated simultaneously through a single inference process, given category information; (2) multi-modal visual understanding, which accurately predicts depth, surface normals, and segmentation maps from RGB images; and (3) multi-modal conditioned generation, which produces corresponding RGB images based on specific modality conditions and other aligned modalities. Our approach develops a novel diffusion transformer that flexibly supports multi-modal output, along with a simple modality-decoupling strategy to unify various tasks. Extensive experiments and applications demonstrate the effectiveness and superiority of MMGen across diverse tasks and conditions, highlighting its potential for applications that require simultaneous generation and understanding.
comment: Our project page: https://jiepengwang.github.io/MMGen/
☆ Robust Flower Cluster Matching Using The Unscented Transform
Monitoring flowers over time is essential for precision robotic pollination in agriculture. To accomplish this, a continuous spatial-temporal observation of plant growth can be done using stationary RGB-D cameras. However, image registration becomes a serious challenge due to changes in the visual appearance of the plant caused by the pollination process and occlusions from growth and camera angles. Plants flower in a manner that produces distinct clusters on branches. This paper presents a method for matching flower clusters using descriptors generated from RGB-D data and considers allowing for spatial uncertainty within the cluster. The proposed approach leverages the Unscented Transform to efficiently estimate plant descriptor uncertainty tolerances, enabling a robust image-registration process despite temporal changes. The Unscented Transform is used to handle the nonlinear transformations by propagating the uncertainty of flower positions to determine the variations in the descriptor domain. A Monte Carlo simulation is used to validate the Unscented Transform results, confirming our method's effectiveness for flower cluster matching. Therefore, it can facilitate improved robotics pollination in dynamic environments.
comment: *CASE2025 Under Review*
☆ IAP: Improving Continual Learning of Vision-Language Models via Instance-Aware Prompting
Recent pre-trained vision-language models (PT-VLMs) often face a Multi-Domain Class-Incremental Learning (MCIL) scenario in practice, where several classes and domains of multi-modal tasks are incrementally arrived. Without access to previously learned tasks and unseen tasks, memory-constrained MCIL suffers from forward and backward forgetting. To alleviate the above challenges, parameter-efficient fine-tuning techniques (PEFT), such as prompt tuning, are employed to adapt the PT-VLM to the diverse incrementally learned tasks. To achieve effective new task adaptation, existing methods only consider the effect of PEFT strategy selection, but neglect the influence of PEFT parameter setting (e.g., prompting). In this paper, we tackle the challenge of optimizing prompt designs for diverse tasks in MCIL and propose an Instance-Aware Prompting (IAP) framework. Specifically, our Instance-Aware Gated Prompting (IA-GP) module enhances adaptation to new tasks while mitigating forgetting by dynamically assigning prompts across transformer layers at the instance level. Our Instance-Aware Class-Distribution-Driven Prompting (IA-CDDP) improves the task adaptation process by determining an accurate task-label-related confidence score for each instance. Experimental evaluations across 11 datasets, using three performance metrics, demonstrate the effectiveness of our proposed method. Code can be found at https://github.com/FerdinandZJU/IAP.
comment: Code can be found at https://github.com/FerdinandZJU/IAP
☆ Diffusion Counterfactuals for Image Regressors
Counterfactual explanations have been successfully applied to create human interpretable explanations for various black-box models. They are handy for tasks in the image domain, where the quality of the explanations benefits from recent advances in generative models. Although counterfactual explanations have been widely applied to classification models, their application to regression tasks remains underexplored. We present two methods to create counterfactual explanations for image regression tasks using diffusion-based generative models to address challenges in sparsity and quality: 1) one based on a Denoising Diffusion Probabilistic Model that operates directly in pixel-space and 2) another based on a Diffusion Autoencoder operating in latent space. Both produce realistic, semantic, and smooth counterfactuals on CelebA-HQ and a synthetic data set, providing easily interpretable insights into the decision-making process of the regression model and reveal spurious correlations. We find that for regression counterfactuals, changes in features depend on the region of the predicted value. Large semantic changes are needed for significant changes in predicted values, making it harder to find sparse counterfactuals than with classifiers. Moreover, pixel space counterfactuals are more sparse while latent space counterfactuals are of higher quality and allow bigger semantic changes.
comment: 24 Pages, 5 Figures, Accepted at 3rd World Conference on eXplainable Artificial Intelligence (xAI-2025), Code and reproduction instructions available on GitHub, see https://github.com/DevinTDHa/Diffusion-Counterfactuals-for-Image-Regressors
☆ Exploring Robustness of Cortical Morphometry in the presence of white matter lesions, using Diffusion Models for Lesion Filling
Cortical thickness measurements from magnetic resonance imaging, an important biomarker in many neurodegenerative and neurological disorders, are derived by many tools from an initial voxel-wise tissue segmentation. White matter (WM) hypointensities in T1-weighted imaging, such as those arising from multiple sclerosis or small vessel disease, are known to affect the output of brain segmentation methods and therefore bias cortical thickness measurements. These effects are well-documented among traditional brain segmentation tools but have not been studied extensively in tools based on deep-learning segmentations, which promise to be more robust. In this paper, we explore the potential of deep learning to enhance the accuracy and efficiency of cortical thickness measurement in the presence of WM lesions, using a high-quality lesion filling algorithm leveraging denoising diffusion networks. A pseudo-3D U-Net architecture trained on the OASIS dataset to generate synthetic healthy tissue, conditioned on binary lesion masks derived from the MSSEG dataset, allows realistic removal of white matter lesions in multiple sclerosis patients. By applying morphometry methods to patient images before and after lesion filling, we analysed robustness of global and regional cortical thickness measurements in the presence of white matter lesions. Methods based on a deep learning-based segmentation of the brain (Fastsurfer, DL+DiReCT, ANTsPyNet) exhibited greater robustness than those using classical segmentation methods (Freesurfer, ANTs).
☆ TerraTorch: The Geospatial Foundation Models Toolkit RSS 2025
TerraTorch is a fine-tuning and benchmarking toolkit for Geospatial Foundation Models built on PyTorch Lightning and tailored for satellite, weather, and climate data. It integrates domain-specific data modules, pre-defined tasks, and a modular model factory that pairs any backbone with diverse decoder heads. These components allow researchers and practitioners to fine-tune supported models in a no-code fashion by simply editing a training configuration. By consolidating best practices for model development and incorporating the automated hyperparameter optimization extension Iterate, TerraTorch reduces the expertise and time required to fine-tune or benchmark models on new Earth Observation use cases. Furthermore, TerraTorch directly integrates with GEO-Bench, allowing for systematic and reproducible benchmarking of Geospatial Foundation Models. TerraTorch is open sourced under Apache 2.0, available at https://github.com/IBM/terratorch, and can be installed via pip install terratorch.
comment: IGARSS 2025
☆ Beyond Intermediate States: Explaining Visual Redundancy through Language
Multi-modal Large Langue Models (MLLMs) often process thousands of visual tokens, which consume a significant portion of the context window and impose a substantial computational burden. Prior work has empirically explored visual token pruning methods based on MLLMs' intermediate states (e.g., attention scores). However, they have limitations in precisely defining visual redundancy due to their inability to capture the influence of visual tokens on MLLMs' visual understanding (i.e., the predicted probabilities for textual token candidates). To address this issue, we manipulate the visual input and investigate variations in the textual output from both token-centric and context-centric perspectives, achieving intuitive and comprehensive analysis. Experimental results reveal that visual tokens with low ViT-[cls] association and low text-to-image attention scores can contain recognizable information and significantly contribute to images' overall information. To develop a more reliable method for identifying and pruning redundant visual tokens, we integrate these two perspectives and introduce a context-independent condition to identify redundant prototypes from training images, which probes the redundancy of each visual token during inference. Extensive experiments on single-image, multi-image and video comprehension tasks demonstrate the effectiveness of our method, notably achieving 90% to 110% of the performance while pruning 80% to 90% of visual tokens.
☆ TD-BFR: Truncated Diffusion Model for Efficient Blind Face Restoration ICME 2025
Diffusion-based methodologies have shown significant potential in blind face restoration (BFR), leveraging their robust generative capabilities. However, they are often criticized for two significant problems: 1) slow training and inference speed, and 2) inadequate recovery of fine-grained facial details. To address these problems, we propose a novel Truncated Diffusion model for efficient Blind Face Restoration (TD-BFR), a three-stage paradigm tailored for the progressive resolution of degraded images. Specifically, TD-BFR utilizes an innovative truncated sampling method, starting from low-quality (LQ) images at low resolution to enhance sampling speed, and then introduces an adaptive degradation removal module to handle unknown degradations and connect the generation processes across different resolutions. Additionally, we further adapt the priors of pre-trained diffusion models to recover rich facial details. Our method efficiently restores high-quality images in a coarse-to-fine manner and experimental results demonstrate that TD-BFR is, on average, \textbf{4.75$\times$} faster than current state-of-the-art diffusion-based BFR methods while maintaining competitive quality.
comment: Accepted by ICME 2025
☆ GAIA-2: A Controllable Multi-View Generative World Model for Autonomous Driving
Generative models offer a scalable and flexible paradigm for simulating complex environments, yet current approaches fall short in addressing the domain-specific requirements of autonomous driving - such as multi-agent interactions, fine-grained control, and multi-camera consistency. We introduce GAIA-2, Generative AI for Autonomy, a latent diffusion world model that unifies these capabilities within a single generative framework. GAIA-2 supports controllable video generation conditioned on a rich set of structured inputs: ego-vehicle dynamics, agent configurations, environmental factors, and road semantics. It generates high-resolution, spatiotemporally consistent multi-camera videos across geographically diverse driving environments (UK, US, Germany). The model integrates both structured conditioning and external latent embeddings (e.g., from a proprietary driving model) to facilitate flexible and semantically grounded scene synthesis. Through this integration, GAIA-2 enables scalable simulation of both common and rare driving scenarios, advancing the use of generative world models as a core tool in the development of autonomous systems. Videos are available at https://wayve.ai/thinking/gaia-2.
comment: Technical Report
☆ Small Object Detection: A Comprehensive Survey on Challenges, Techniques and Real-World Applications
Small object detection (SOD) is a critical yet challenging task in computer vision, with applications like spanning surveillance, autonomous systems, medical imaging, and remote sensing. Unlike larger objects, small objects contain limited spatial and contextual information, making accurate detection difficult. Challenges such as low resolution, occlusion, background interference, and class imbalance further complicate the problem. This survey provides a comprehensive review of recent advancements in SOD using deep learning, focusing on articles published in Q1 journals during 2024-2025. We analyzed challenges, state-of-the-art techniques, datasets, evaluation metrics, and real-world applications. Recent advancements in deep learning have introduced innovative solutions, including multi-scale feature extraction, Super-Resolution (SR) techniques, attention mechanisms, and transformer-based architectures. Additionally, improvements in data augmentation, synthetic data generation, and transfer learning have addressed data scarcity and domain adaptation issues. Furthermore, emerging trends such as lightweight neural networks, knowledge distillation (KD), and self-supervised learning offer promising directions for improving detection efficiency, particularly in resource-constrained environments like Unmanned Aerial Vehicles (UAV)-based surveillance and edge computing. We also review widely used datasets, along with standard evaluation metrics such as mean Average Precision (mAP) and size-specific AP scores. The survey highlights real-world applications, including traffic monitoring, maritime surveillance, industrial defect detection, and precision agriculture. Finally, we discuss open research challenges and future directions, emphasizing the need for robust domain adaptation techniques, better feature fusion strategies, and real-time performance optimization.
☆ Vision-Amplified Semantic Entropy for Hallucination Detection in Medical Visual Question Answering
Multimodal large language models (MLLMs) have demonstrated significant potential in medical Visual Question Answering (VQA). Yet, they remain prone to hallucinations-incorrect responses that contradict input images, posing substantial risks in clinical decision-making. Detecting these hallucinations is essential for establishing trust in MLLMs among clinicians and patients, thereby enabling their real-world adoption. Current hallucination detection methods, especially semantic entropy (SE), have demonstrated promising hallucination detection capacity for LLMs. However, adapting SE to medical MLLMs by incorporating visual perturbations presents a dilemma. Weak perturbations preserve image content and ensure clinical validity, but may be overlooked by medical MLLMs, which tend to over rely on language priors. In contrast, strong perturbations can distort essential diagnostic features, compromising clinical interpretation. To address this issue, we propose Vision Amplified Semantic Entropy (VASE), which incorporates weak image transformations and amplifies the impact of visual input, to improve hallucination detection in medical VQA. We first estimate the semantic predictive distribution under weak visual transformations to preserve clinical validity, and then amplify visual influence by contrasting this distribution with that derived from a distorted image. The entropy of the resulting distribution is estimated as VASE. Experiments on two medical open-ended VQA datasets demonstrate that VASE consistently outperforms existing hallucination detection methods.
comment: 11 pages, 2 figures
☆ MLLM-Selector: Necessity and Diversity-driven High-Value Data Selection for Enhanced Visual Instruction Tuning
Visual instruction tuning (VIT) has emerged as a crucial technique for enabling multi-modal large language models (MLLMs) to follow user instructions adeptly. Yet, a significant gap persists in understanding the attributes of high-quality instruction tuning data and frameworks for its automated selection. To address this, we introduce MLLM-Selector, an automated approach that identifies valuable data for VIT by weighing necessity and diversity. Our process starts by randomly sampling a subset from the VIT data pool to fine-tune a pretrained model, thus creating a seed model with an initial ability to follow instructions. Then, leveraging the seed model, we calculate necessity scores for each sample in the VIT data pool to identify samples pivotal for enhancing model performance. Our findings underscore the importance of mixing necessity and diversity in data choice, leading to the creation of MLLM-Selector, our methodology that fuses necessity scoring with strategic sampling for superior data refinement. Empirical results indicate that within identical experimental conditions, MLLM-Selector surpasses LLaVA-1.5 in some benchmarks with less than 1% of the data and consistently exceeds performance across all validated benchmarks when using less than 50%.
comment: Tech Report
☆ Towards Efficient and General-Purpose Few-Shot Misclassification Detection for Vision-Language Models
Reliable prediction by classifiers is crucial for their deployment in high security and dynamically changing situations. However, modern neural networks often exhibit overconfidence for misclassified predictions, highlighting the need for confidence estimation to detect errors. Despite the achievements obtained by existing methods on small-scale datasets, they all require training from scratch and there are no efficient and effective misclassification detection (MisD) methods, hindering practical application towards large-scale and ever-changing datasets. In this paper, we pave the way to exploit vision language model (VLM) leveraging text information to establish an efficient and general-purpose misclassification detection framework. By harnessing the power of VLM, we construct FSMisD, a Few-Shot prompt learning framework for MisD to refrain from training from scratch and therefore improve tuning efficiency. To enhance misclassification detection ability, we use adaptive pseudo sample generation and a novel negative loss to mitigate the issue of overconfidence by pushing category prompts away from pseudo features. We conduct comprehensive experiments with prompt learning methods and validate the generalization ability across various datasets with domain shift. Significant and consistent improvement demonstrates the effectiveness, efficiency and generalizability of our approach.
comment: preprint
☆ VPO: Aligning Text-to-Video Generation Models with Prompt Optimization
Video generation models have achieved remarkable progress in text-to-video tasks. These models are typically trained on text-video pairs with highly detailed and carefully crafted descriptions, while real-world user inputs during inference are often concise, vague, or poorly structured. This gap makes prompt optimization crucial for generating high-quality videos. Current methods often rely on large language models (LLMs) to refine prompts through in-context learning, but suffer from several limitations: they may distort user intent, omit critical details, or introduce safety risks. Moreover, they optimize prompts without considering the impact on the final video quality, which can lead to suboptimal results. To address these issues, we introduce VPO, a principled framework that optimizes prompts based on three core principles: harmlessness, accuracy, and helpfulness. The generated prompts faithfully preserve user intents and, more importantly, enhance the safety and quality of generated videos. To achieve this, VPO employs a two-stage optimization approach. First, we construct and refine a supervised fine-tuning (SFT) dataset based on principles of safety and alignment. Second, we introduce both text-level and video-level feedback to further optimize the SFT model with preference learning. Our extensive experiments demonstrate that VPO significantly improves safety, alignment, and video quality compared to baseline methods. Moreover, VPO shows strong generalization across video generation models. Furthermore, we demonstrate that VPO could outperform and be combined with RLHF methods on video generation models, underscoring the effectiveness of VPO in aligning video generation models. Our code and data are publicly available at https://github.com/thu-coai/VPO.
☆ Contrastive Learning Guided Latent Diffusion Model for Image-to-Image Translation
The diffusion model has demonstrated superior performance in synthesizing diverse and high-quality images for text-guided image translation. However, there remains room for improvement in both the formulation of text prompts and the preservation of reference image content. First, variations in target text prompts can significantly influence the quality of the generated images, and it is often challenging for users to craft an optimal prompt that fully captures the content of the input image. Second, while existing models can introduce desired modifications to specific regions of the reference image, they frequently induce unintended alterations in areas that should remain unchanged. To address these challenges, we propose pix2pix-zeroCon, a zero-shot diffusion-based method that eliminates the need for additional training by leveraging patch-wise contrastive loss. Specifically, we automatically determine the editing direction in the text embedding space based on the reference image and target prompts. Furthermore, to ensure precise content and structural preservation in the edited image, we introduce cross-attention guiding loss and patch-wise contrastive loss between the generated and original image embeddings within a pre-trained diffusion model. Notably, our approach requires no additional training and operates directly on a pre-trained text-to-image diffusion model. Extensive experiments demonstrate that our method surpasses existing models in image-to-image translation, achieving enhanced fidelity and controllability.
comment: 11 pages, 13 figures
☆ Dissecting and Mitigating Diffusion Bias via Mechanistic Interpretability CVPR 2025
Diffusion models have demonstrated impressive capabilities in synthesizing diverse content. However, despite their high-quality outputs, these models often perpetuate social biases, including those related to gender and race. These biases can potentially contribute to harmful real-world consequences, reinforcing stereotypes and exacerbating inequalities in various social contexts. While existing research on diffusion bias mitigation has predominantly focused on guiding content generation, it often neglects the intrinsic mechanisms within diffusion models that causally drive biased outputs. In this paper, we investigate the internal processes of diffusion models, identifying specific decision-making mechanisms, termed bias features, embedded within the model architecture. By directly manipulating these features, our method precisely isolates and adjusts the elements responsible for bias generation, permitting granular control over the bias levels in the generated content. Through experiments on both unconditional and conditional diffusion models across various social bias attributes, we demonstrate our method's efficacy in managing generation distribution while preserving image quality. We also dissect the discovered model mechanism, revealing different intrinsic features controlling fine-grained aspects of generation, boosting further research on mechanistic interpretability of diffusion models.
comment: CVPR 2025; Project Page: https://foundation-model-research.github.io/difflens
☆ From Trial to Triumph: Advancing Long Video Understanding via Visual Context Sample Scaling and Self-reward Alignment
Multi-modal Large language models (MLLMs) show remarkable ability in video understanding. Nevertheless, understanding long videos remains challenging as the models can only process a finite number of frames in a single inference, potentially omitting crucial visual information. To address the challenge, we propose generating multiple predictions through visual context sampling, followed by a scoring mechanism to select the final prediction. Specifically, we devise a bin-wise sampling strategy that enables MLLMs to generate diverse answers based on various combinations of keyframes, thereby enriching the visual context. To determine the final prediction from the sampled answers, we employ a self-reward by linearly combining three scores: (1) a frequency score indicating the prevalence of each option, (2) a marginal confidence score reflecting the inter-intra sample certainty of MLLM predictions, and (3) a reasoning score for different question types, including clue-guided answering for global questions and temporal self-refocusing for local questions. The frequency score ensures robustness through majority correctness, the confidence-aligned score reflects prediction certainty, and the typed-reasoning score addresses cases with sparse key visual information using tailored strategies. Experiments show that this approach covers the correct answer for a high percentage of long video questions, on seven datasets show that our method improves the performance of three MLLMs.
☆ Lipschitz Constant Meets Condition Number: Learning Robust and Compact Deep Neural Networks
Recent research has revealed that high compression of Deep Neural Networks (DNNs), e.g., massive pruning of the weight matrix of a DNN, leads to a severe drop in accuracy and susceptibility to adversarial attacks. Integration of network pruning into an adversarial training framework has been proposed to promote adversarial robustness. It has been observed that a highly pruned weight matrix tends to be ill-conditioned, i.e., increasing the condition number of the weight matrix. This phenomenon aggravates the vulnerability of a DNN to input noise. Although a highly pruned weight matrix is considered to be able to lower the upper bound of the local Lipschitz constant to tolerate large distortion, the ill-conditionedness of such a weight matrix results in a non-robust DNN model. To overcome this challenge, this work develops novel joint constraints to adjust the weight distribution of networks, namely, the Transformed Sparse Constraint joint with Condition Number Constraint (TSCNC), which copes with smoothing distribution and differentiable constraint functions to reduce condition number and thus avoid the ill-conditionedness of weight matrices. Furthermore, our theoretical analyses unveil the relevance between the condition number and the local Lipschitz constant of the weight matrix, namely, the sharply increasing condition number becomes the dominant factor that restricts the robustness of over-sparsified models. Extensive experiments are conducted on several public datasets, and the results show that the proposed constraints significantly improve the robustness of a DNN with high pruning rates.
comment: 13 pages, 6 figures
☆ Attention Xception UNet (AXUNet): A Novel Combination of CNN and Self-Attention for Brain Tumor Segmentation
Accurate segmentation of glioma brain tumors is crucial for diagnosis and treatment planning. Deep learning techniques offer promising solutions, but optimal model architectures remain under investigation. We used the BraTS 2021 dataset, selecting T1 with contrast enhancement (T1CE), T2, and Fluid-Attenuated Inversion Recovery (FLAIR) sequences for model development. The proposed Attention Xception UNet (AXUNet) architecture integrates an Xception backbone with dot-product self-attention modules, inspired by state-of-the-art (SOTA) large language models such as Google Bard and OpenAI ChatGPT, within a UNet-shaped model. We compared AXUNet with SOTA models. Comparative evaluation on the test set demonstrated improved results over baseline models. Inception-UNet and Xception-UNet achieved mean Dice scores of 90.88 and 93.24, respectively. Attention ResUNet (AResUNet) attained a mean Dice score of 92.80, with the highest score of 84.92 for enhancing tumor (ET) among all models. Attention Gate UNet (AGUNet) yielded a mean Dice score of 90.38. AXUNet outperformed all models with a mean Dice score of 93.73. It demonstrated superior Dice scores across whole tumor (WT) and tumor core (TC) regions, achieving 92.59 for WT, 86.81 for TC, and 84.89 for ET. The integration of the Xception backbone and dot-product self-attention mechanisms in AXUNet showcases enhanced performance in capturing spatial and contextual information. The findings underscore the potential utility of AXUNet in facilitating precise tumor delineation.
☆ Siformer: Feature-isolated Transformer for Efficient Skeleton-based Sign Language Recognition
Sign language recognition (SLR) refers to interpreting sign language glosses from given videos automatically. This research area presents a complex challenge in computer vision because of the rapid and intricate movements inherent in sign languages, which encompass hand gestures, body postures, and even facial expressions. Recently, skeleton-based action recognition has attracted increasing attention due to its ability to handle variations in subjects and backgrounds independently. However, current skeleton-based SLR methods exhibit three limitations: 1) they often neglect the importance of realistic hand poses, where most studies train SLR models on non-realistic skeletal representations; 2) they tend to assume complete data availability in both training or inference phases, and capture intricate relationships among different body parts collectively; 3) these methods treat all sign glosses uniformly, failing to account for differences in complexity levels regarding skeletal representations. To enhance the realism of hand skeletal representations, we present a kinematic hand pose rectification method for enforcing constraints. Mitigating the impact of missing data, we propose a feature-isolated mechanism to focus on capturing local spatial-temporal context. This method captures the context concurrently and independently from individual features, thus enhancing the robustness of the SLR model. Additionally, to adapt to varying complexity levels of sign glosses, we develop an input-adaptive inference approach to optimise computational efficiency and accuracy. Experimental results demonstrate the effectiveness of our approach, as evidenced by achieving a new state-of-the-art (SOTA) performance on WLASL100 and LSA64. For WLASL100, we achieve a top-1 accuracy of 86.50\%, marking a relative improvement of 2.39% over the previous SOTA. For LSA64, we achieve a top-1 accuracy of 99.84%.
comment: 10 pages, ACM Multimedia
☆ Latent Beam Diffusion Models for Decoding Image Sequences
While diffusion models excel at generating high-quality images from text prompts, they struggle with visual consistency in image sequences. Existing methods generate each image independently, leading to disjointed narratives - a challenge further exacerbated in non-linear storytelling, where scenes must connect beyond adjacent frames. We introduce a novel beam search strategy for latent space exploration, enabling conditional generation of full image sequences with beam search decoding. Unlike prior approaches that use fixed latent priors, our method dynamically searches for an optimal sequence of latent representations, ensuring coherent visual transitions. To address beam search's quadratic complexity, we integrate a cross-attention mechanism that efficiently scores search paths and enables pruning, prioritizing alignment with both textual prompts and visual context. Human evaluations confirm that our approach outperforms baseline methods, producing full sequences with superior coherence, visual continuity, and textual alignment. By bridging advances in search optimization and latent space refinement, this work sets a new standard for structured image sequence generation.
☆ Evaluating Facial Expression Recognition Datasets for Deep Learning: A Benchmark Study with Novel Similarity Metrics
This study investigates the key characteristics and suitability of widely used Facial Expression Recognition (FER) datasets for training deep learning models. In the field of affective computing, FER is essential for interpreting human emotions, yet the performance of FER systems is highly contingent on the quality and diversity of the underlying datasets. To address this issue, we compiled and analyzed 24 FER datasets, including those targeting specific age groups such as children, adults, and the elderly, and processed them through a comprehensive normalization pipeline. In addition, we enriched the datasets with automatic annotations for age and gender, enabling a more nuanced evaluation of their demographic properties. To further assess dataset efficacy, we introduce three novel metricsLocal, Global, and Paired Similarity, which quantitatively measure dataset difficulty, generalization capability, and cross-dataset transferability. Benchmark experiments using state-of-the-art neural networks reveal that large-scale, automatically collected datasets (e.g., AffectNet, FER2013) tend to generalize better, despite issues with labeling noise and demographic biases, whereas controlled datasets offer higher annotation quality but limited variability. Our findings provide actionable recommendations for dataset selection and design, advancing the development of more robust, fair, and effective FER systems.
☆ Cherry Yield Forecast: Harvest Prediction for Individual Sweet Cherry Trees
This paper is part of a publication series from the For5G project that has the goal of creating digital twins of sweet cherry trees. At the beginning a brief overview of the revious work in this project is provided. Afterwards the focus shifts to a crucial problem in the fruit farming domain: the difficulty of making reliable yield predictions early in the season. Following three Satin sweet cherry trees along the year 2023 enabled the collection of accurate ground truth data about the development of cherries from dormancy until harvest. The methodology used to collect this data is presented, along with its valuation and visualization. The predictive power of counting objects at all relevant vegetative stages of the fruit development cycle in cherry trees with regards to yield predictions is investigated. It is found that all investigated fruit states are suitable for yield predictions based on linear regression. Conceptionally, there is a trade-off between earliness and external events with the potential to invalidate the prediction. Considering this, two optimal timepoints are suggested that are opening cluster stage before the start of the flowering and the early fruit stage right after the second fruit drop. However, both timepoints are challenging to solve with automated procedures based on image data. Counting developing cherries based on images is exceptionally difficult due to the small fruit size and their tendency to be occluded by leaves. It was not possible to obtain satisfying results relying on a state-of-the-art fruit-counting method. Counting the elements within a bursting bud is also challenging, even when using high resolution cameras. It is concluded that accurate yield prediction for sweet cherry trees is possible when objects are manually counted and that automated features extraction with similar accuracy remains an open problem yet to be solved.
☆ ITA-MDT: Image-Timestep-Adaptive Masked Diffusion Transformer Framework for Image-Based Virtual Try-On CVPR 2025
This paper introduces ITA-MDT, the Image-Timestep-Adaptive Masked Diffusion Transformer Framework for Image-Based Virtual Try-On (IVTON), designed to overcome the limitations of previous approaches by leveraging the Masked Diffusion Transformer (MDT) for improved handling of both global garment context and fine-grained details. The IVTON task involves seamlessly superimposing a garment from one image onto a person in another, creating a realistic depiction of the person wearing the specified garment. Unlike conventional diffusion-based virtual try-on models that depend on large pre-trained U-Net architectures, ITA-MDT leverages a lightweight, scalable transformer-based denoising diffusion model with a mask latent modeling scheme, achieving competitive results while reducing computational overhead. A key component of ITA-MDT is the Image-Timestep Adaptive Feature Aggregator (ITAFA), a dynamic feature aggregator that combines all of the features from the image encoder into a unified feature of the same size, guided by diffusion timestep and garment image complexity. This enables adaptive weighting of features, allowing the model to emphasize either global information or fine-grained details based on the requirements of the denoising stage. Additionally, the Salient Region Extractor (SRE) module is presented to identify complex region of the garment to provide high-resolution local information to the denoising model as an additional condition alongside the global information of the full garment image. This targeted conditioning strategy enhances detail preservation of fine details in highly salient garment regions, optimizing computational resources by avoiding unnecessarily processing entire garment image. Comparative evaluations confirms that ITA-MDT improves efficiency while maintaining strong performance, reaching state-of-the-art results in several metrics.
comment: CVPR 2025, Project Page: https://jiwoohong93.github.io/ita-mdt/
☆ RSRWKV: A Linear-Complexity 2D Attention Mechanism for Efficient Remote Sensing Vision Task
High-resolution remote sensing analysis faces challenges in global context modeling due to scene complexity and scale diversity. While CNNs excel at local feature extraction via parameter sharing, their fixed receptive fields fundamentally restrict long-range dependency modeling. Vision Transformers (ViTs) effectively capture global semantic relationships through self-attention mechanisms but suffer from quadratic computational complexity relative to image resolution, creating critical efficiency bottlenecks for high-resolution imagery. The RWKV model's linear-complexity sequence modeling achieves breakthroughs in NLP but exhibits anisotropic limitations in vision tasks due to its 1D scanning mechanism. To address these challenges, we propose RSRWKV, featuring a novel 2D-WKV scanning mechanism that bridges sequential processing and 2D spatial reasoning while maintaining linear complexity. This enables isotropic context aggregation across multiple directions. The MVC-Shift module enhances multi-scale receptive field coverage, while the ECA module strengthens cross-channel feature interaction and semantic saliency modeling. Experimental results demonstrate RSRWKV's superior performance over CNN and Transformer baselines in classification, detection, and segmentation tasks on NWPU RESISC45, VHR-10.v2, and GLH-Water datasets, offering a scalable solution for high-resolution remote sensing analysis.
☆ Pluggable Style Representation Learning for Multi-Style Transfer
Due to the high diversity of image styles, the scalability to various styles plays a critical role in real-world applications. To accommodate a large amount of styles, previous multi-style transfer approaches rely on enlarging the model size while arbitrary-style transfer methods utilize heavy backbones. However, the additional computational cost introduced by more model parameters hinders these methods to be deployed on resource-limited devices. To address this challenge, in this paper, we develop a style transfer framework by decoupling the style modeling and transferring. Specifically, for style modeling, we propose a style representation learning scheme to encode the style information into a compact representation. Then, for style transferring, we develop a style-aware multi-style transfer network (SaMST) to adapt to diverse styles using pluggable style representations. In this way, our framework is able to accommodate diverse image styles in the learned style representations without introducing additional overhead during inference, thereby maintaining efficiency. Experiments show that our style representation can extract accurate style information. Moreover, qualitative and quantitative results demonstrate that our method achieves state-of-the-art performance in terms of both accuracy and efficiency. The codes are available in https://github.com/The-Learning-And-Vision-Atelier-LAVA/SaMST.
comment: 18 pages, 13 figures, 2 tables
☆ Self-ReS: Self-Reflection in Large Vision-Language Models for Long Video Understanding
Large Vision-Language Models (LVLMs) demonstrate remarkable performance in short-video tasks such as video question answering, but struggle in long-video understanding. The linear frame sampling strategy, conventionally used by LVLMs, fails to account for the non-linear distribution of key events in video data, often introducing redundant or irrelevant information in longer contexts while risking the omission of critical events in shorter ones. To address this, we propose SelfReS, a non-linear spatiotemporal self-reflective sampling method that dynamically selects key video fragments based on user prompts. Unlike prior approaches, SelfReS leverages the inherently sparse attention maps of LVLMs to define reflection tokens, enabling relevance-aware token selection without requiring additional training or external modules. Experiments demonstrate that SelfReS can be seamlessly integrated into strong base LVLMs, improving long-video task accuracy and achieving up to 46% faster inference speed within the same GPU memory budget.
☆ SURGEON: Memory-Adaptive Fully Test-Time Adaptation via Dynamic Activation Sparsity CVPR 2025
Despite the growing integration of deep models into mobile terminals, the accuracy of these models declines significantly due to various deployment interferences. Test-time adaptation (TTA) has emerged to improve the performance of deep models by adapting them to unlabeled target data online. Yet, the significant memory cost, particularly in resource-constrained terminals, impedes the effective deployment of most backward-propagation-based TTA methods. To tackle memory constraints, we introduce SURGEON, a method that substantially reduces memory cost while preserving comparable accuracy improvements during fully test-time adaptation (FTTA) without relying on specific network architectures or modifications to the original training procedure. Specifically, we propose a novel dynamic activation sparsity strategy that directly prunes activations at layer-specific dynamic ratios during adaptation, allowing for flexible control of learning ability and memory cost in a data-sensitive manner. Among this, two metrics, Gradient Importance and Layer Activation Memory, are considered to determine the layer-wise pruning ratios, reflecting accuracy contribution and memory efficiency, respectively. Experimentally, our method surpasses the baselines by not only reducing memory usage but also achieving superior accuracy, delivering SOTA performance across diverse datasets, architectures, and tasks.
comment: Accepted to CVPR 2025
☆ VideoGEM: Training-free Action Grounding in Videos
Vision-language foundation models have shown impressive capabilities across various zero-shot tasks, including training-free localization and grounding, primarily focusing on localizing objects in images. However, leveraging those capabilities to localize actions and events in videos is challenging, as actions have less physical outline and are usually described by higher-level concepts. In this work, we propose VideoGEM, the first training-free spatial action grounding method based on pretrained image- and video-language backbones. Namely, we adapt the self-self attention formulation of GEM to spatial activity grounding. We observe that high-level semantic concepts, such as actions, usually emerge in the higher layers of the image- and video-language models. We, therefore, propose a layer weighting in the self-attention path to prioritize higher layers. Additionally, we introduce a dynamic weighting method to automatically tune layer weights to capture each layer`s relevance to a specific prompt. Finally, we introduce a prompt decomposition, processing action, verb, and object prompts separately, resulting in a better spatial localization of actions. We evaluate the proposed approach on three image- and video-language backbones, CLIP, OpenCLIP, and ViCLIP, and on four video grounding datasets, V-HICO, DALY, YouCook-Interactions, and GroundingYouTube, showing that the proposed training-free approach is able to outperform current trained state-of-the-art approaches for spatial video grounding.
☆ Progressive Focused Transformer for Single Image Super-Resolution
Transformer-based methods have achieved remarkable results in image super-resolution tasks because they can capture non-local dependencies in low-quality input images. However, this feature-intensive modeling approach is computationally expensive because it calculates the similarities between numerous features that are irrelevant to the query features when obtaining attention weights. These unnecessary similarity calculations not only degrade the reconstruction performance but also introduce significant computational overhead. How to accurately identify the features that are important to the current query features and avoid similarity calculations between irrelevant features remains an urgent problem. To address this issue, we propose a novel and effective Progressive Focused Transformer (PFT) that links all isolated attention maps in the network through Progressive Focused Attention (PFA) to focus attention on the most important tokens. PFA not only enables the network to capture more critical similar features, but also significantly reduces the computational cost of the overall network by filtering out irrelevant features before calculating similarities. Extensive experiments demonstrate the effectiveness of the proposed method, achieving state-of-the-art performance on various single image super-resolution benchmarks.
☆ Euclidean Distance to Convex Polyhedra and Application to Class Representation in Spectral Images
With the aim of estimating the abundance map from observations only, linear unmixing approaches are not always suitable to spectral images, especially when the number of bands is too small or when the spectra of the observed data are too correlated. To address this issue in the general case, we present a novel approach which provides an adapted spatial density function based on any arbitrary linear classifier. A robust mathematical formulation for computing the Euclidean distance to polyhedral sets is presented, along with an efficient algorithm that provides the exact minimum-norm point in a polyhedron. An empirical evaluation on the widely-used Samson hyperspectral dataset demonstrates that the proposed method surpasses state-of-the-art approaches in reconstructing abundance maps. Furthermore, its application to spectral images of a Lithium-ion battery, incompatible with linear unmixing models, validates the method's generality and effectiveness.
Dynamic Pyramid Network for Efficient Multimodal Large Language Model
Multimodal large language models (MLLMs) have demonstrated impressive performance in various vision-language (VL) tasks, but their expensive computations still limit the real-world application. To address this issue, recent efforts aim to compress the visual features to save the computational costs of MLLMs. However, direct visual compression methods, e.g. efficient projectors, inevitably destroy the visual semantics in MLLM, especially in difficult samples. To overcome this shortcoming, we propose a novel dynamic pyramid network (DPN) for efficient MLLMs. Specifically, DPN formulates MLLM as a hierarchical structure where visual features are gradually compressed with increasing depth. In this case, even with a high compression ratio, fine-grained visual information can still be perceived in shallow layers. To maximize the benefit of DPN, we further propose an innovative Dynamic Pooling Experts (DPE) that can dynamically choose the optimal visual compression rate according to input features. With this design, harder samples will be assigned larger computations, thus preserving the model performance. To validate our approach, we conduct extensive experiments on two popular MLLMs and ten benchmarks. Experimental results show that DPN can save up to 56% average FLOPs on LLaVA while further achieving +0.74% performance gains. Besides, the generalization ability of DPN is also validated on the existing high-resolution MLLM called LLaVA-HR. Our source codes are anonymously released at https://github.com/aihao2000/DPN-LLaVA.
☆ EditCLIP: Representation Learning for Image Editing
We introduce EditCLIP, a novel representation-learning approach for image editing. Our method learns a unified representation of edits by jointly encoding an input image and its edited counterpart, effectively capturing their transformation. To evaluate its effectiveness, we employ EditCLIP to solve two tasks: exemplar-based image editing and automated edit evaluation. In exemplar-based image editing, we replace text-based instructions in InstructPix2Pix with EditCLIP embeddings computed from a reference exemplar image pair. Experiments demonstrate that our approach outperforms state-of-the-art methods while being more efficient and versatile. For automated evaluation, EditCLIP assesses image edits by measuring the similarity between the EditCLIP embedding of a given image pair and either a textual editing instruction or the EditCLIP embedding of another reference image pair. Experiments show that EditCLIP aligns more closely with human judgments than existing CLIP-based metrics, providing a reliable measure of edit quality and structural preservation.
comment: Project page: https://qianwangx.github.io/EditCLIP/
☆ AI-Driven MRI Spine Pathology Detection: A Comprehensive Deep Learning Approach for Automated Diagnosis in Diverse Clinical Settings
Study Design This study presents the development of an autonomous AI system for MRI spine pathology detection, trained on a dataset of 2 million MRI spine scans sourced from diverse healthcare facilities across India. The AI system integrates advanced architectures, including Vision Transformers, U-Net with cross-attention, MedSAM, and Cascade R-CNN, enabling comprehensive classification, segmentation, and detection of 43 distinct spinal pathologies. The dataset is balanced across age groups, genders, and scanner manufacturers to ensure robustness and adaptability. Subgroup analyses were conducted to validate the model's performance across different patient demographics, imaging conditions, and equipment types. Performance The AI system achieved up to 97.9 percent multi-pathology detection, demonstrating consistent performance across age, gender, and manufacturer subgroups. The normal vs. abnormal classification achieved 98.0 percent accuracy, and the system was deployed across 13 major healthcare enterprises in India, encompassing diagnostic centers, large hospitals, and government facilities. During deployment, it processed approximately 100,000 plus MRI spine scans, leading to reduced reporting times and increased diagnostic efficiency by automating the identification of common spinal conditions. Conclusion The AI system's high precision and recall validate its capability as a reliable tool for autonomous normal/abnormal classification, pathology segmentation, and detection. Its scalability and adaptability address critical diagnostic gaps, optimize radiology workflows, and improve patient care across varied healthcare environments in India.
comment: 20 pages , 3 figurea
☆ SpikeDerain: Unveiling Clear Videos from Rainy Sequences Using Color Spike Streams
Restoring clear frames from rainy videos presents a significant challenge due to the rapid motion of rain streaks. Traditional frame-based visual sensors, which capture scene content synchronously, struggle to capture the fast-moving details of rain accurately. In recent years, neuromorphic sensors have introduced a new paradigm for dynamic scene perception, offering microsecond temporal resolution and high dynamic range. However, existing multimodal methods that fuse event streams with RGB images face difficulties in handling the complex spatiotemporal interference of raindrops in real scenes, primarily due to hardware synchronization errors and computational redundancy. In this paper, we propose a Color Spike Stream Deraining Network (SpikeDerain), capable of reconstructing spike streams of dynamic scenes and accurately removing rain streaks. To address the challenges of data scarcity in real continuous rainfall scenes, we design a physically interpretable rain streak synthesis model that generates parameterized continuous rain patterns based on arbitrary background images. Experimental results demonstrate that the network, trained with this synthetic data, remains highly robust even under extreme rainfall conditions. These findings highlight the effectiveness and robustness of our method across varying rainfall levels and datasets, setting new standards for video deraining tasks. The code will be released soon.
☆ Wan: Open and Advanced Large-Scale Video Generative Models
This report presents Wan, a comprehensive and open suite of video foundation models designed to push the boundaries of video generation. Built upon the mainstream diffusion transformer paradigm, Wan achieves significant advancements in generative capabilities through a series of innovations, including our novel VAE, scalable pre-training strategies, large-scale data curation, and automated evaluation metrics. These contributions collectively enhance the model's performance and versatility. Specifically, Wan is characterized by four key features: Leading Performance: The 14B model of Wan, trained on a vast dataset comprising billions of images and videos, demonstrates the scaling laws of video generation with respect to both data and model size. It consistently outperforms the existing open-source models as well as state-of-the-art commercial solutions across multiple internal and external benchmarks, demonstrating a clear and significant performance superiority. Comprehensiveness: Wan offers two capable models, i.e., 1.3B and 14B parameters, for efficiency and effectiveness respectively. It also covers multiple downstream applications, including image-to-video, instruction-guided video editing, and personal video generation, encompassing up to eight tasks. Consumer-Grade Efficiency: The 1.3B model demonstrates exceptional resource efficiency, requiring only 8.19 GB VRAM, making it compatible with a wide range of consumer-grade GPUs. Openness: We open-source the entire series of Wan, including source code and all models, with the goal of fostering the growth of the video generation community. This openness seeks to significantly expand the creative possibilities of video production in the industry and provide academia with high-quality video foundation models. All the code and models are available at https://github.com/Wan-Video/Wan2.1.
comment: 60 pages, 33 figures
☆ Enabling Heterogeneous Adversarial Transferability via Feature Permutation Attacks PAKDD 2025
Adversarial attacks in black-box settings are highly practical, with transfer-based attacks being the most effective at generating adversarial examples (AEs) that transfer from surrogate models to unseen target models. However, their performance significantly degrades when transferring across heterogeneous architectures -- such as CNNs, MLPs, and Vision Transformers (ViTs) -- due to fundamental architectural differences. To address this, we propose Feature Permutation Attack (FPA), a zero-FLOP, parameter-free method that enhances adversarial transferability across diverse architectures. FPA introduces a novel feature permutation (FP) operation, which rearranges pixel values in selected feature maps to simulate long-range dependencies, effectively making CNNs behave more like ViTs and MLPs. This enhances feature diversity and improves transferability both across heterogeneous architectures and within homogeneous CNNs. Extensive evaluations on 14 state-of-the-art architectures show that FPA achieves maximum absolute gains in attack success rates of 7.68% on CNNs, 14.57% on ViTs, and 14.48% on MLPs, outperforming existing black-box attacks. Additionally, FPA is highly generalizable and can seamlessly integrate with other transfer-based attacks to further boost their performance. Our findings establish FPA as a robust, efficient, and computationally lightweight strategy for enhancing adversarial transferability across heterogeneous architectures.
comment: PAKDD 2025. Main Track
☆ Instruction-Oriented Preference Alignment for Enhancing Multi-Modal Comprehension Capability of MLLMs
Preference alignment has emerged as an effective strategy to enhance the performance of Multimodal Large Language Models (MLLMs) following supervised fine-tuning. While existing preference alignment methods predominantly target hallucination factors, they overlook the factors essential for multi-modal comprehension capabilities, often narrowing their improvements on hallucination mitigation. To bridge this gap, we propose Instruction-oriented Preference Alignment (IPA), a scalable framework designed to automatically construct alignment preferences grounded in instruction fulfillment efficacy. Our method involves an automated preference construction coupled with a dedicated verification process that identifies instruction-oriented factors, avoiding significant variability in response representations. Additionally, IPA incorporates a progressive preference collection pipeline, further recalling challenging samples through model self-evolution and reference-guided refinement. Experiments conducted on Qwen2VL-7B demonstrate IPA's effectiveness across multiple benchmarks, including hallucination evaluation, visual question answering, and text understanding tasks, highlighting its capability to enhance general comprehension.
comment: Technical report
☆ 3D Convolutional Neural Networks for Improved Detection of Intracranial bleeding in CT Imaging
Background: Intracranial bleeding (IB) is a life-threatening condition caused by traumatic brain injuries, including epidural, subdural, subarachnoid, and intraparenchymal hemorrhages. Rapid and accurate detection is crucial to prevent severe complications. Traditional imaging can be slow and prone to variability, especially in high-pressure scenarios. Artificial Intelligence (AI) provides a solution by quickly analyzing medical images, identifying subtle hemorrhages, and flagging urgent cases. By enhancing diagnostic speed and accuracy, AI improves workflows and patient care. This article explores AI's role in transforming IB detection in emergency settings. Methods: A U-shaped 3D Convolutional Neural Network (CNN) automates IB detection and classification in volumetric CT scans. Advanced preprocessing, including CLAHE and intensity normalization, enhances image quality. The architecture preserves spatial and contextual details for precise segmentation. A dataset of 2,912 annotated CT scans was used for training and evaluation. Results: The model achieved high performance across major bleed types, with precision, recall, and accuracy exceeding 90 percent in most cases 96 percent precision for epidural hemorrhages and 94 percent accuracy for subarachnoid hemorrhages. Its ability to classify and localize hemorrhages highlights its clinical reliability. Conclusion: This U-shaped 3D CNN offers a scalable solution for automating IB detection, reducing diagnostic delays, and improving emergency care outcomes. Future work will expand dataset diversity, optimize real-time processing, and integrate multimodal data for enhanced clinical applicability.
comment: 12 pages,4 figures
☆ Attribute-formed Class-specific Concept Space: Endowing Language Bottleneck Model with Better Interpretability and Scalability CVPR 2025
Language Bottleneck Models (LBMs) are proposed to achieve interpretable image recognition by classifying images based on textual concept bottlenecks. However, current LBMs simply list all concepts together as the bottleneck layer, leading to the spurious cue inference problem and cannot generalized to unseen classes. To address these limitations, we propose the Attribute-formed Language Bottleneck Model (ALBM). ALBM organizes concepts in the attribute-formed class-specific space, where concepts are descriptions of specific attributes for specific classes. In this way, ALBM can avoid the spurious cue inference problem by classifying solely based on the essential concepts of each class. In addition, the cross-class unified attribute set also ensures that the concept spaces of different classes have strong correlations, as a result, the learned concept classifier can be easily generalized to unseen classes. Moreover, to further improve interpretability, we propose Visual Attribute Prompt Learning (VAPL) to extract visual features on fine-grained attributes. Furthermore, to avoid labor-intensive concept annotation, we propose the Description, Summary, and Supplement (DSS) strategy to automatically generate high-quality concept sets with a complete and precise attribute. Extensive experiments on 9 widely used few-shot benchmarks demonstrate the interpretability, transferability, and performance of our approach. The code and collected concept sets are available at https://github.com/tiggers23/ALBM.
comment: This paper has been accepted to CVPR 2025
☆ Traversing Distortion-Perception Tradeoff using a Single Score-Based Generative Model
The distortion-perception (DP) tradeoff reveals a fundamental conflict between distortion metrics (e.g., MSE and PSNR) and perceptual quality. Recent research has increasingly concentrated on evaluating denoising algorithms within the DP framework. However, existing algorithms either prioritize perceptual quality by sacrificing acceptable distortion, or focus on minimizing MSE for faithful restoration. When the goal shifts or noisy measurements vary, adapting to different points on the DP plane needs retraining or even re-designing the model. Inspired by recent advances in solving inverse problems using score-based generative models, we explore the potential of flexibly and optimally traversing DP tradeoffs using a single pre-trained score-based model. Specifically, we introduce a variance-scaled reverse diffusion process and theoretically characterize the marginal distribution. We then prove that the proposed sample process is an optimal solution to the DP tradeoff for conditional Gaussian distribution. Experimental results on two-dimensional and image datasets illustrate that a single score network can effectively and flexibly traverse the DP tradeoff for general denoising problems.
comment: Accepted by IEEE/CVF Conference on Computer Vision and Pattern Recognition 2025
☆ Context-Aware Weakly Supervised Image Manipulation Localization with SAM Refinement
Malicious image manipulation poses societal risks, increasing the importance of effective image manipulation detection methods. Recent approaches in image manipulation detection have largely been driven by fully supervised approaches, which require labor-intensive pixel-level annotations. Thus, it is essential to explore weakly supervised image manipulation localization methods that only require image-level binary labels for training. However, existing weakly supervised image manipulation methods overlook the importance of edge information for accurate localization, leading to suboptimal localization performance. To address this, we propose a Context-Aware Boundary Localization (CABL) module to aggregate boundary features and learn context-inconsistency for localizing manipulated areas. Furthermore, by leveraging Class Activation Mapping (CAM) and Segment Anything Model (SAM), we introduce the CAM-Guided SAM Refinement (CGSR) module to generate more accurate manipulation localization maps. By integrating two modules, we present a novel weakly supervised framework based on a dual-branch Transformer-CNN architecture. Our method achieves outstanding localization performance across multiple datasets.
☆ CryoSAMU: Enhancing 3D Cryo-EM Density Maps of Protein Structures at Intermediate Resolution with Structure-Aware Multimodal U-Nets
Enhancing cryogenic electron microscopy (cryo-EM) 3D density maps at intermediate resolution (4-8 {\AA}) is crucial in protein structure determination. Recent advances in deep learning have led to the development of automated approaches for enhancing experimental cryo-EM density maps. Yet, these methods are not optimized for intermediate-resolution maps and rely on map density features alone. To address this, we propose CryoSAMU, a novel method designed to enhance 3D cryo-EM density maps of protein structures using structure-aware multimodal U-Nets and trained on curated intermediate-resolution density maps. We comprehensively evaluate CryoSAMU across various metrics and demonstrate its competitive performance compared to state-of-the-art methods. Notably, CryoSAMU achieves significantly faster processing speed, showing promise for future practical applications. Our code is available at https://github.com/chenwei-zhang/CryoSAMU.
comment: 18 pages, 6 main figures, 2 supplementary figures, 3 main tables, 4 supplementary tables
☆ RelTriple: Learning Plausible Indoor Layouts by Integrating Relationship Triples into the Diffusion Process
The generation of indoor furniture layouts has significant applications in augmented reality, smart homes, and architectural design. Successful furniture arrangement requires proper physical relationships (e.g., collision avoidance) and spacing relationships between furniture and their functional zones to be respected. However, manually defined relationships are almost always incomplete and can produce unrealistic layouts. This work instead extracts spacing relationships automatically based on a hierarchical analysis and adopts the Delaunay Triangulation to produce important triple relationships. Compared to pairwise relationship modeling, triple relationships account for interactions and space utilization among multiple objects. To this end, we introduce RelTriple, a novel approach that enhances furniture distribution by learning spacing relationships between objects and regions. We formulate triple relationships as object-to-object (O2O) losses and object-to-region (O2R) losses and integrate them directly into the training process of generative diffusion. Our approach consistently improves over existing state-of-the-art methods in visual results evaluation metrics on unconditional layout generation, floorplan-conditioned layout generation, and scene rearrangement, achieving at least 12% on the introduced spatial relationship metric and superior spatial coherence and practical usability.
☆ InsViE-1M: Effective Instruction-based Video Editing with Elaborate Dataset Construction
Instruction-based video editing allows effective and interactive editing of videos using only instructions without extra inputs such as masks or attributes. However, collecting high-quality training triplets (source video, edited video, instruction) is a challenging task. Existing datasets mostly consist of low-resolution, short duration, and limited amount of source videos with unsatisfactory editing quality, limiting the performance of trained editing models. In this work, we present a high-quality Instruction-based Video Editing dataset with 1M triplets, namely InsViE-1M. We first curate high-resolution and high-quality source videos and images, then design an effective editing-filtering pipeline to construct high-quality editing triplets for model training. For a source video, we generate multiple edited samples of its first frame with different intensities of classifier-free guidance, which are automatically filtered by GPT-4o with carefully crafted guidelines. The edited first frame is propagated to subsequent frames to produce the edited video, followed by another round of filtering for frame quality and motion evaluation. We also generate and filter a variety of video editing triplets from high-quality images. With the InsViE-1M dataset, we propose a multi-stage learning strategy to train our InsViE model, progressively enhancing its instruction following and editing ability. Extensive experiments demonstrate the advantages of our InsViE-1M dataset and the trained model over state-of-the-art works. Codes are available at InsViE.
☆ Faster Parameter-Efficient Tuning with Token Redundancy Reduction CVPR 2025
Parameter-efficient tuning (PET) aims to transfer pre-trained foundation models to downstream tasks by learning a small number of parameters. Compared to traditional fine-tuning, which updates the entire model, PET significantly reduces storage and transfer costs for each task regardless of exponentially increasing pre-trained model capacity. However, most PET methods inherit the inference latency of their large backbone models and often introduce additional computational overhead due to additional modules (e.g. adapters), limiting their practicality for compute-intensive applications. In this paper, we propose Faster Parameter-Efficient Tuning (FPET), a novel approach that enhances inference speed and training efficiency while maintaining high storage efficiency. Specifically, we introduce a plug-and-play token redundancy reduction module delicately designed for PET. This module refines tokens from the self-attention layer using an adapter to learn the accurate similarity between tokens and cuts off the tokens through a fully-differentiable token merging strategy, which uses a straight-through estimator for optimal token reduction. Experimental results prove that our FPET achieves faster inference and higher memory efficiency than the pre-trained backbone while keeping competitive performance on par with state-of-the-art PET methods.
comment: CVPR 2025 Camera-ready
☆ ViLBench: A Suite for Vision-Language Process Reward Modeling
Process-supervised reward models serve as a fine-grained function that provides detailed step-wise feedback to model responses, facilitating effective selection of reasoning trajectories for complex tasks. Despite its advantages, evaluation on PRMs remains less explored, especially in the multimodal domain. To address this gap, this paper first benchmarks current vision large language models (VLLMs) as two types of reward models: output reward models (ORMs) and process reward models (PRMs) on multiple vision-language benchmarks, which reveal that neither ORM nor PRM consistently outperforms across all tasks, and superior VLLMs do not necessarily yield better rewarding performance. To further advance evaluation, we introduce ViLBench, a vision-language benchmark designed to require intensive process reward signals. Notably, OpenAI's GPT-4o with Chain-of-Thought (CoT) achieves only 27.3% accuracy, indicating the benchmark's challenge for current VLLMs. Lastly, we preliminarily showcase a promising pathway towards bridging the gap between general VLLMs and reward models -- by collecting 73.6K vision-language process reward data using an enhanced tree-search algorithm, our 3B model is able to achieve an average improvement of 3.3% over standard CoT and up to 2.5% compared to its untrained counterpart on ViLBench by selecting OpenAI o1's generations. We release the implementations at https://ucsc-vlaa.github.io/ViLBench with our code, model, and data.
☆ EGVD: Event-Guided Video Diffusion Model for Physically Realistic Large-Motion Frame Interpolation
Video frame interpolation (VFI) in scenarios with large motion remains challenging due to motion ambiguity between frames. While event cameras can capture high temporal resolution motion information, existing event-based VFI methods struggle with limited training data and complex motion patterns. In this paper, we introduce Event-Guided Video Diffusion Model (EGVD), a novel framework that leverages the powerful priors of pre-trained stable video diffusion models alongside the precise temporal information from event cameras. Our approach features a Multi-modal Motion Condition Generator (MMCG) that effectively integrates RGB frames and event signals to guide the diffusion process, producing physically realistic intermediate frames. We employ a selective fine-tuning strategy that preserves spatial modeling capabilities while efficiently incorporating event-guided temporal information. We incorporate input-output normalization techniques inspired by recent advances in diffusion modeling to enhance training stability across varying noise levels. To improve generalization, we construct a comprehensive dataset combining both real and simulated event data across diverse scenarios. Extensive experiments on both real and simulated datasets demonstrate that EGVD significantly outperforms existing methods in handling large motion and challenging lighting conditions, achieving substantial improvements in perceptual quality metrics (27.4% better LPIPS on Prophesee and 24.1% on BSRGB) while maintaining competitive fidelity measures. Code and datasets available at: https://github.com/OpenImagingLab/EGVD.
☆ Mamba-3D as Masked Autoencoders for Accurate and Data-Efficient Analysis of Medical Ultrasound Videos
Ultrasound videos are an important form of clinical imaging data, and deep learning-based automated analysis can improve diagnostic accuracy and clinical efficiency. However, the scarcity of labeled data and the inherent challenges of video analysis have impeded the advancement of related methods. In this work, we introduce E-ViM$^3$, a data-efficient Vision Mamba network that preserves the 3D structure of video data, enhancing long-range dependencies and inductive biases to better model space-time correlations. With our design of Enclosure Global Tokens (EGT), the model captures and aggregates global features more effectively than competing methods. To further improve data efficiency, we employ masked video modeling for self-supervised pre-training, with the proposed Spatial-Temporal Chained (STC) masking strategy designed to adapt to various video scenarios. Experiments demonstrate that E-ViM$^3$ performs as the state-of-the-art in two high-level semantic analysis tasks across four datasets of varying sizes: EchoNet-Dynamic, CAMUS, MICCAI-BUV, and WHBUS. Furthermore, our model achieves competitive performance with limited labels, highlighting its potential impact on real-world clinical applications.
☆ LogicQA: Logical Anomaly Detection with Vision Language Model Generated Questions
Anomaly Detection (AD) focuses on detecting samples that differ from the standard pattern, making it a vital tool in process control. Logical anomalies may appear visually normal yet violate predefined constraints on object presence, arrangement, or quantity, depending on reasoning and explainability. We introduce LogicQA, a framework that enhances AD by providing industrial operators with explanations for logical anomalies. LogicQA compiles automatically generated questions into a checklist and collects responses to identify violations of logical constraints. LogicQA is training-free, annotation-free, and operates in a few-shot setting. We achieve state-of-the-art (SOTA) Logical AD performance on public benchmarks, MVTec LOCO AD, with an AUROC of 87.6 percent and an F1-max of 87.0 percent along with the explanations of anomalies. Also, our approach has shown outstanding performance on semiconductor SEM corporate data, further validating its effectiveness in industrial applications.
♻ ☆ AvatarArtist: Open-Domain 4D Avatarization CVPR 2025
This work focuses on open-domain 4D avatarization, with the purpose of creating a 4D avatar from a portrait image in an arbitrary style. We select parametric triplanes as the intermediate 4D representation and propose a practical training paradigm that takes advantage of both generative adversarial networks (GANs) and diffusion models. Our design stems from the observation that 4D GANs excel at bridging images and triplanes without supervision yet usually face challenges in handling diverse data distributions. A robust 2D diffusion prior emerges as the solution, assisting the GAN in transferring its expertise across various domains. The synergy between these experts permits the construction of a multi-domain image-triplane dataset, which drives the development of a general 4D avatar creator. Extensive experiments suggest that our model, AvatarArtist, is capable of producing high-quality 4D avatars with strong robustness to various source image domains. The code, the data, and the models will be made publicly available to facilitate future studies.
comment: Accepted to CVPR 2025. Project page: https://kumapowerliu.github.io/AvatarArtist
♻ ☆ Attention IoU: Examining Biases in CelebA using Attention Maps CVPR 2025
Computer vision models have been shown to exhibit and amplify biases across a wide array of datasets and tasks. Existing methods for quantifying bias in classification models primarily focus on dataset distribution and model performance on subgroups, overlooking the internal workings of a model. We introduce the Attention-IoU (Attention Intersection over Union) metric and related scores, which use attention maps to reveal biases within a model's internal representations and identify image features potentially causing the biases. First, we validate Attention-IoU on the synthetic Waterbirds dataset, showing that the metric accurately measures model bias. We then analyze the CelebA dataset, finding that Attention-IoU uncovers correlations beyond accuracy disparities. Through an investigation of individual attributes through the protected attribute of Male, we examine the distinct ways biases are represented in CelebA. Lastly, by subsampling the training set to change attribute correlations, we demonstrate that Attention-IoU reveals potential confounding variables not present in dataset labels.
comment: To appear in CVPR 2025. Code and data is available at https://github.com/aaronserianni/attention-iou . 15 pages, 14 figures, including appendix
♻ ☆ In the Blink of an Eye: Instant Game Map Editing using a Generative-AI Smart Brush
With video games steadily increasing in complexity, automated generation of game content has found widespread interest. However, the task of 3D gaming map art creation remains underexplored to date due to its unique complexity and domain-specific challenges. While recent works have addressed related topics such as retro-style level generation and procedural terrain creation, these works primarily focus on simpler data distributions. To the best of our knowledge, we are the first to demonstrate the application of modern AI techniques for high-resolution texture manipulation in complex, highly detailed AAA 3D game environments. We introduce a novel Smart Brush for map editing, designed to assist artists in seamlessly modifying selected areas of a game map with minimal effort. By leveraging generative adversarial networks and diffusion models we propose two variants of the brush that enable efficient and context-aware generation. Our hybrid workflow aims to enhance both artistic flexibility and production efficiency, enabling the refinement of environments without manually reworking every detail, thus helping to bridge the gap between automation and creative control in game development. A comparative evaluation of our two methods with adapted versions of several state-of-the art models shows that our GAN-based brush produces the sharpest and most detailed outputs while preserving image context while the evaluated state-of-the-art models tend towards blurrier results and exhibit difficulties in maintaining contextual consistency.
♻ ☆ A Survey on Event-driven 3D Reconstruction: Development under Different Categories
Event cameras have gained increasing attention for 3D reconstruction due to their high temporal resolution, low latency, and high dynamic range. They capture per-pixel brightness changes asynchronously, allowing accurate reconstruction under fast motion and challenging lighting conditions. In this survey, we provide a comprehensive review of event-driven 3D reconstruction methods, including stereo, monocular, and multimodal systems. We further categorize recent developments based on geometric, learning-based, and hybrid approaches. Emerging trends, such as neural radiance fields and 3D Gaussian splatting with event data, are also covered. The related works are structured chronologically to illustrate the innovations and progression within the field. To support future research, we also highlight key research gaps and future research directions in dataset, experiment, evaluation, event representation, etc.
comment: 6 pages, 1 figure, 6 tables, submitted to an anonymous conference under double-blind review
FUSE: Label-Free Image-Event Joint Monocular Depth Estimation via Frequency-Decoupled Alignment and Degradation-Robust Fusion
Image-event joint depth estimation methods leverage complementary modalities for robust perception, yet face challenges in generalizability stemming from two factors: 1) limited annotated image-event-depth datasets causing insufficient cross-modal supervision, and 2) inherent frequency mismatches between static images and dynamic event streams with distinct spatiotemporal patterns, leading to ineffective feature fusion. To address this dual challenge, we propose Frequency-decoupled Unified Self-supervised Encoder (FUSE) with two synergistic components: The Parameter-efficient Self-supervised Transfer (PST) establishes cross-modal knowledge transfer through latent space alignment with image foundation models, effectively mitigating data scarcity by enabling joint encoding without depth ground truth. Complementing this, we propose the Frequency-Decoupled Fusion module (FreDFuse) to explicitly decouple high-frequency edge features from low-frequency structural components, resolving modality-specific frequency mismatches through physics-aware fusion. This combined approach enables FUSE to construct a universal image-event encoder that only requires lightweight decoder adaptation for target datasets. Extensive experiments demonstrate state-of-the-art performance with 14% and 24.9% improvements in Abs.Rel on MVSEC and DENSE datasets. The framework exhibits remarkable zero-shot adaptability to challenging scenarios including extreme lighting and motion blur, significantly advancing real-world deployment capabilities. The source code for our method is publicly available at: https://github.com/sunpihai-up/FUSE
comment: 8 pages, 6 figures
♻ ☆ CamSAM2: Segment Anything Accurately in Camouflaged Videos
Video camouflaged object segmentation (VCOS), aiming at segmenting camouflaged objects that seamlessly blend into their environment, is a fundamental vision task with various real-world applications. With the release of SAM2, video segmentation has witnessed significant progress. However, SAM2's capability of segmenting camouflaged videos is suboptimal, especially when given simple prompts such as point and box. To address the problem, we propose Camouflaged SAM2 (CamSAM2), which enhances SAM2's ability to handle camouflaged scenes without modifying SAM2's parameters. Specifically, we introduce a decamouflaged token to provide the flexibility of feature adjustment for VCOS. To make full use of fine-grained and high-resolution features from the current frame and previous frames, we propose implicit object-aware fusion (IOF) and explicit object-aware fusion (EOF) modules, respectively. Object prototype generation (OPG) is introduced to abstract and memorize object prototypes with informative details using high-quality features from previous frames. Extensive experiments are conducted to validate the effectiveness of our approach. While CamSAM2 only adds negligible learnable parameters to SAM2, it substantially outperforms SAM2 on three VCOS datasets, especially achieving 12.2 mDice gains with click prompt on MoCA-Mask and 19.6 mDice gains with mask prompt on SUN-SEG-Hard, with Hiera-T as the backbone. The code will be available at https://github.com/zhoustan/CamSAM2.
♻ ☆ Unlocking the Hidden Potential of CLIP in Generalizable Deepfake Detection
This paper tackles the challenge of detecting partially manipulated facial deepfakes, which involve subtle alterations to specific facial features while retaining the overall context, posing a greater detection difficulty than fully synthetic faces. We leverage the Contrastive Language-Image Pre-training (CLIP) model, specifically its ViT-L/14 visual encoder, to develop a generalizable detection method that performs robustly across diverse datasets and unknown forgery techniques with minimal modifications to the original model. The proposed approach utilizes parameter-efficient fine-tuning (PEFT) techniques, such as LN-tuning, to adjust a small subset of the model's parameters, preserving CLIP's pre-trained knowledge and reducing overfitting. A tailored preprocessing pipeline optimizes the method for facial images, while regularization strategies, including L2 normalization and metric learning on a hyperspherical manifold, enhance generalization. Trained on the FaceForensics++ dataset and evaluated in a cross-dataset fashion on Celeb-DF-v2, DFDC, FFIW, and others, the proposed method achieves competitive detection accuracy comparable to or outperforming much more complex state-of-the-art techniques. This work highlights the efficacy of CLIP's visual encoder in facial deepfake detection and establishes a simple, powerful baseline for future research, advancing the field of generalizable deepfake detection. The code is available at: https://github.com/yermandy/deepfake-detection
♻ ☆ PG-SAM: Prior-Guided SAM with Medical for Multi-organ Segmentation
Segment Anything Model (SAM) demonstrates powerful zero-shot capabilities; however, its accuracy and robustness significantly decrease when applied to medical image segmentation. Existing methods address this issue through modality fusion, integrating textual and image information to provide more detailed priors. In this study, we argue that the granularity of text and the domain gap affect the accuracy of the priors. Furthermore, the discrepancy between high-level abstract semantics and pixel-level boundary details in images can introduce noise into the fusion process. To address this, we propose Prior-Guided SAM (PG-SAM), which employs a fine-grained modality prior aligner to leverage specialized medical knowledge for better modality alignment. The core of our method lies in efficiently addressing the domain gap with fine-grained text from a medical LLM. Meanwhile, it also enhances the priors' quality after modality alignment, ensuring more accurate segmentation. In addition, our decoder enhances the model's expressive capabilities through multi-level feature fusion and iterative mask optimizer operations, supporting unprompted learning. We also propose a unified pipeline that effectively supplies high-quality semantic information to SAM. Extensive experiments on the Synapse dataset demonstrate that the proposed PG-SAM achieves state-of-the-art performance. Our code is released at https://github.com/logan-0623/PG-SAM.
♻ ☆ One Framework to Rule Them All: Unifying RL-Based and RL-Free Methods in RLHF
In this article, we primarily examine a variety of RL-based and RL-free methods designed to address Reinforcement Learning from Human Feedback (RLHF) and Large Reasoning Models (LRMs). We begin with a concise overview of the typical steps involved in RLHF and LRMs. Next, we reinterpret several RL-based and RL-free algorithms through the perspective of neural structured bandit prediction, providing a clear conceptual framework that uncovers a deeper connection between these seemingly distinct approaches. Following this, we briefly review some core principles of reinforcement learning, drawing attention to an often-overlooked aspect in existing RLHF studies. This leads to a detailed derivation of the standard RLHF objective within a full RL context, demonstrating its equivalence to neural structured bandit prediction. Finally, by reinvestigating the principles behind Proximal Policy Optimization (PPO), we pinpoint areas needing adjustment, which culminates in the introduction of the Generalized Reinforce Optimization (GRO) framework, seamlessly integrating RL-based and RL-free methods in RLHF. We look forward to the community's efforts to empirically validate GRO and invite constructive feedback.
♻ ☆ PhysAnimator: Physics-Guided Generative Cartoon Animation CVPR 2025
Creating hand-drawn animation sequences is labor-intensive and demands professional expertise. We introduce PhysAnimator, a novel approach for generating physically plausible meanwhile anime-stylized animation from static anime illustrations. Our method seamlessly integrates physics-based simulations with data-driven generative models to produce dynamic and visually compelling animations. To capture the fluidity and exaggeration characteristic of anime, we perform image-space deformable body simulations on extracted mesh geometries. We enhance artistic control by introducing customizable energy strokes and incorporating rigging point support, enabling the creation of tailored animation effects such as wind interactions. Finally, we extract and warp sketches from the simulation sequence, generating a texture-agnostic representation, and employ a sketch-guided video diffusion model to synthesize high-quality animation frames. The resulting animations exhibit temporal consistency and visual plausibility, demonstrating the effectiveness of our method in creating dynamic anime-style animations. See our project page for more demos: https://xpandora.github.io/PhysAnimator/
comment: Accepted by CVPR 2025
♻ ☆ OTTER: A Vision-Language-Action Model with Text-Aware Visual Feature Extraction
Vision-Language-Action (VLA) models aim to predict robotic actions based on visual observations and language instructions. Existing approaches require fine-tuning pre-trained visionlanguage models (VLMs) as visual and language features are independently fed into downstream policies, degrading the pre-trained semantic alignments. We propose OTTER, a novel VLA architecture that leverages these existing alignments through explicit, text-aware visual feature extraction. Instead of processing all visual features, OTTER selectively extracts and passes only task-relevant visual features that are semantically aligned with the language instruction to the policy transformer. This allows OTTER to keep the pre-trained vision-language encoders frozen. Thereby, OTTER preserves and utilizes the rich semantic understanding learned from large-scale pre-training, enabling strong zero-shot generalization capabilities. In simulation and real-world experiments, OTTER significantly outperforms existing VLA models, demonstrating strong zeroshot generalization to novel objects and environments. Video, code, checkpoints, and dataset: https://ottervla.github.io/.
♻ ☆ R-LiViT: A LiDAR-Visual-Thermal Dataset Enabling Vulnerable Road User Focused Roadside Perception ICCV2025
In autonomous driving, the integration of roadside perception systems is essential for overcoming occlusion challenges and enhancing the safety of Vulnerable Road Users (VRUs). While LiDAR and visual (RGB) sensors are commonly used, thermal imaging remains underrepresented in datasets, despite its acknowledged advantages for VRU detection in extreme lighting conditions. In this paper, we present R-LiViT, the first dataset to combine LiDAR, RGB, and thermal imaging from a roadside perspective, with a strong focus on VRUs. R-LiViT captures three intersections during both day and night, ensuring a diverse dataset. It includes 10,000 LiDAR frames and 2,400 temporally and spatially aligned RGB and thermal images across over 150 traffic scenarios, with 6 and 8 annotated classes respectively, providing a comprehensive resource for tasks such as object detection and tracking. The dataset and the code for reproducing our evaluation results are made publicly available.
comment: 10 pages, 7 figures, submitted to ICCV2025
♻ ☆ DexHandDiff: Interaction-aware Diffusion Planning for Adaptive Dexterous Manipulation CVPR 2025
Dexterous manipulation with contact-rich interactions is crucial for advanced robotics. While recent diffusion-based planning approaches show promise for simple manipulation tasks, they often produce unrealistic ghost states (e.g., the object automatically moves without hand contact) or lack adaptability when handling complex sequential interactions. In this work, we introduce DexHandDiff, an interaction-aware diffusion planning framework for adaptive dexterous manipulation. DexHandDiff models joint state-action dynamics through a dual-phase diffusion process which consists of pre-interaction contact alignment and post-contact goal-directed control, enabling goal-adaptive generalizable dexterous manipulation. Additionally, we incorporate dynamics model-based dual guidance and leverage large language models for automated guidance function generation, enhancing generalizability for physical interactions and facilitating diverse goal adaptation through language cues. Experiments on physical interaction tasks such as door opening, pen and block re-orientation, object relocation, and hammer striking demonstrate DexHandDiff's effectiveness on goals outside training distributions, achieving over twice the average success rate (59.2% vs. 29.5%) compared to existing methods. Our framework achieves an average of 70.7% success rate on goal adaptive dexterous tasks, highlighting its robustness and flexibility in contact-rich manipulation.
comment: Accepted by CVPR 2025. Camera ready version. Previous DexDiffuser. Project page: https://dexdiffuser.github.io/
♻ ☆ Networking Systems for Video Anomaly Detection: A Tutorial and Survey
The increasing utilization of surveillance cameras in smart cities, coupled with the surge of online video applications, has heightened concerns regarding public security and privacy protection, which propelled automated Video Anomaly Detection (VAD) into a fundamental research task within the Artificial Intelligence (AI) community. With the advancements in deep learning and edge computing, VAD has made significant progress and advances synergized with emerging applications in smart cities and video internet, which has moved beyond the conventional research scope of algorithm engineering to deployable Networking Systems for VAD (NSVAD), a practical hotspot for intersection exploration in the AI, IoVT, and computing fields. In this article, we delineate the foundational assumptions, learning frameworks, and applicable scenarios of various deep learning-driven VAD routes, offering an exhaustive tutorial for novices in NSVAD. In addition, this article elucidates core concepts by reviewing recent advances and typical solutions and aggregating available research resources accessible at https://github.com/fdjingliu/NSVAD. Lastly, this article projects future development trends and discusses how the integration of AI and computing technologies can address existing research challenges and promote open opportunities, serving as an insightful guide for prospective researchers and engineers.
comment: Revised to ACM Computing Surveys, under review, for more information and supplementary material, please see https://github.com/fdjingliu/NSVAD
♻ ☆ Data Augmentation in Earth Observation: A Diffusion Model Approach
High-quality Earth Observation (EO) imagery is essential for accurate analysis and informed decision making across sectors. However, data scarcity caused by atmospheric conditions, seasonal variations, and limited geographical coverage hinders the effective application of Artificial Intelligence (AI) in EO. Traditional data augmentation techniques, which rely on basic parameterized image transformations, often fail to introduce sufficient diversity across key semantic axes. These axes include natural changes such as snow and floods, human impacts like urbanization and roads, and disasters such as wildfires and storms, which limits the accuracy of AI models in EO applications. To address this, we propose a four-stage data augmentation approach that integrates diffusion models to enhance semantic diversity. Our method employs meta-prompts for instruction generation, vision-language models for rich captioning, EO-specific diffusion model fine-tuning, and iterative data augmentation. Extensive experiments using four augmentation techniques demonstrate that our approach consistently outperforms established methods, generating semantically diverse EO images and improving AI model performance.
comment: 25 pages, 12 figures
♻ ☆ Harmony: A Joint Self-Supervised and Weakly-Supervised Framework for Learning General Purpose Visual Representations
Vision-language contrastive learning frameworks like CLIP enable learning representations from natural language supervision, and provide strong zero-shot classification capabilities. However, due to the nature of the supervisory signal in these paradigms, they lack the ability to learn localized features, leading to degraded performance on dense prediction tasks like segmentation and detection. On the other hand, self-supervised learning methods have shown the ability to learn granular representations, complementing the high-level features in vision-language training. In this work, we present Harmony, a framework that combines vision-language training with discriminative and generative self-supervision to learn visual features that can be generalized across different vision downstream tasks. Our framework is specifically designed to work on web-scraped data by not relying on negative examples and addressing the one-to-one correspondence issue using soft CLIP targets generated by an EMA model. We comprehensively evaluate Harmony across various vision downstream tasks and find that it significantly outperforms the baseline CLIP and the previously leading joint self and weakly-supervised methods, MaskCLIP and SLIP. Specifically, when comparing against these methods, Harmony shows superior performance in fine-tuning and zero-shot classification on ImageNet-1k, semantic segmentation on ADE20K, and both object detection and instance segmentation on MS-COCO, when pre-training a ViT-B on CC3M. We also show that Harmony outperforms other self-supervised learning methods like iBOT and MAE across all tasks evaluated. Our code is publicly at https://github.com/MohammedSB/Harmony}{https://github.com/MohammedSB/Harmony available.
comment: 22 pages, 4 figures
♻ ☆ Towards Scalable Foundation Model for Multi-modal and Hyperspectral Geospatial Data
Geospatial raster data, such as that collected by satellite-based imaging systems at different times and spectral bands, hold immense potential for enabling a wide range of high-impact applications. This potential stems from the rich information that is spatially and temporally contextualized across multiple channels and sensing modalities. Recent work has adapted existing self-supervised learning approaches for such geospatial data. However, they fall short of scalable model architectures, leading to inflexibility and computational inefficiencies when faced with an increasing number of channels and modalities. To address these limitations, we introduce Low-rank Efficient Spatial-Spectral Vision Transformer with three key innovations: i) the LESS Attention Block that approximates high-dimensional spatial-spectral attention through Kronecker's product of the low-dimensional spatial and spectral attention components; ii) the Continuous Positional-Channel Embedding Layer that preserves both the continuity and physical characteristics of each spatial-spectral patch; and iii) the Perception Field Mask that exploits local spatial dependencies by constraining attention to neighboring patches. To evaluate the proposed innovations, we construct GFM-Bench, which serves as a comprehensive benchmark for such geospatial raster data. We pretrain LESS ViT using a Hyperspectral Masked Autoencoder framework with integrated positional and channel masking strategies. Experimental results demonstrate that our proposed method achieves competitive performance against state-of-the-art multi-modal geospatial foundation models while outperforming them on cross-satellite generalization tasks with higher computational efficiency. The flexibility and extensibility of our framework make it a promising direction for future geospatial data analysis tasks that involve a wide range of modalities and channels.
♻ ☆ COSMOS: Cross-Modality Self-Distillation for Vision Language Pre-training CVPR 2025
Vision-Language Models (VLMs) trained with contrastive loss have achieved significant advancements in various vision and language tasks. However, the global nature of the contrastive loss makes VLMs focus predominantly on foreground objects, neglecting other crucial information in the image, which limits their effectiveness in downstream tasks. To address these challenges, we propose COSMOS: CrOSs-MOdality Self-distillation for vision-language pre-training that integrates a novel text-cropping strategy and cross-attention module into a self-supervised learning framework. We create global and local views of images and texts (i.e., multi-modal augmentations), which are essential for self-distillation in VLMs. We further introduce a cross-attention module, enabling COSMOS to learn comprehensive cross-modal representations optimized via a cross-modality self-distillation loss. COSMOS consistently outperforms previous strong baselines on various zero-shot downstream tasks, including retrieval, classification, and semantic segmentation. Additionally, it surpasses CLIP-based models trained on larger datasets in visual perception and contextual understanding tasks. Code is available at https://github.com/ExplainableML/cosmos.
comment: CVPR 2025
♻ ☆ The mathematics of adversarial attacks in AI -- Why deep learning is unstable despite the existence of stable neural networks
The unprecedented success of deep learning (DL) makes it unchallenged when it comes to classification problems. However, it is well established that the current DL methodology produces universally unstable neural networks (NNs). The instability problem has caused an enormous research effort -- with a vast literature on so-called adversarial attacks -- yet there has been no solution to the problem. Our paper addresses why there has been no solution to the problem, as we prove the following mathematical paradox: any training procedure based on training neural networks for classification problems with a fixed architecture will yield neural networks that are either inaccurate or unstable (if accurate) -- despite the provable existence of both accurate and stable neural networks for the same classification problems. The key is that the stable and accurate neural networks must have variable dimensions depending on the input, in particular, variable dimensions is a necessary condition for stability. Our result points towards the paradox that accurate and stable neural networks exist, however, modern algorithms do not compute them. This yields the question: if the existence of neural networks with desirable properties can be proven, can one also find algorithms that compute them? There are cases in mathematics where provable existence implies computability, but will this be the case for neural networks? The contrary is true, as we demonstrate how neural networks can provably exist as approximate minimisers to standard optimisation problems with standard cost functions, however, no randomised algorithm can compute them with probability better than 1/2.
comment: 31 pages, 1 figure. Revised to make minor changes to notation and references
♻ ☆ MC-LLaVA: Multi-Concept Personalized Vision-Language Model
Current vision-language models (VLMs) show exceptional abilities across diverse tasks, such as visual question answering. To enhance user experience, recent studies investigate VLM personalization to understand user-provided concepts. However, they mainly focus on single-concept personalization, neglecting the existence and interplay of multiple concepts, which limits real-world applicability. This paper proposes the first multi-concept personalization paradigm, MC-LLaVA. Specifically, MC-LLaVA employs a multi-concept instruction tuning strategy, effectively integrating multiple concepts in a single training step. To reduce the costs related to joint training, we propose a personalized textual prompt that uses visual token information to initialize concept tokens. Additionally, we introduce a personalized visual prompt during inference, aggregating location confidence maps for enhanced recognition and grounding capabilities. To advance multi-concept personalization research, we further contribute a high-quality instruction tuning dataset. We carefully collect images with multiple characters and objects from movies and manually generate question-answer samples for multi-concept scenarios, featuring superior diversity. Comprehensive qualitative and quantitative experiments demonstrate that MC-LLaVA can achieve impressive multi-concept personalized responses, paving the way for VLMs to become better user-specific assistants. The code and dataset will be publicly available at https://github.com/arctanxarc/MC-LLaVA.
♻ ☆ Intuitive Axial Augmentation Using Polar-Sine-Based Piecewise Distortion for Medical Slice-Wise Segmentation
Most data-driven models for medical image analysis rely on universal augmentations to improve accuracy. Experimental evidence has confirmed their effectiveness, but the unclear mechanism underlying them poses a barrier to the widespread acceptance and trust in such methods within the medical community. We revisit and acknowledge the unique characteristics of medical images apart from traditional digital images, and consequently, proposed a medical-specific augmentation algorithm that is more elastic and aligns well with radiology scan procedure. The method performs piecewise affine with sinusoidal distorted ray according to radius on polar coordinates, thus simulating uncertain postures of human lying flat on the scanning table. Our method could generate human visceral distribution without affecting the fundamental relative position on axial plane. Two non-adaptive algorithms, namely Meta-based Scan Table Removal and Similarity-Guided Parameter Search, are introduced to bolster robustness of our augmentation method. In contrast to other methodologies, our method is highlighted for its intuitive design and ease of understanding for medical professionals, thereby enhancing its applicability in clinical scenarios. Experiments show our method improves accuracy with two modality across multiple famous segmentation frameworks without requiring more data samples. Our preview code is available in: https://github.com/MGAMZ/PSBPD.
comment: Published at Smart Health
♻ ☆ 4DRGS: 4D Radiative Gaussian Splatting for Efficient 3D Vessel Reconstruction from Sparse-View Dynamic DSA Images
Reconstructing 3D vessel structures from sparse-view dynamic digital subtraction angiography (DSA) images enables accurate medical assessment while reducing radiation exposure. Existing methods often produce suboptimal results or require excessive computation time. In this work, we propose 4D radiative Gaussian splatting (4DRGS) to achieve high-quality reconstruction efficiently. In detail, we represent the vessels with 4D radiative Gaussian kernels. Each kernel has time-invariant geometry parameters, including position, rotation, and scale, to model static vessel structures. The time-dependent central attenuation of each kernel is predicted from a compact neural network to capture the temporal varying response of contrast agent flow. We splat these Gaussian kernels to synthesize DSA images via X-ray rasterization and optimize the model with real captured ones. The final 3D vessel volume is voxelized from the well-trained kernels. Moreover, we introduce accumulated attenuation pruning and bounded scaling activation to improve reconstruction quality. Extensive experiments on real-world patient data demonstrate that 4DRGS achieves impressive results in 5 minutes training, which is 32x faster than the state-of-the-art method. This underscores the potential of 4DRGS for real-world clinics.
comment: IPMI 2025 Oral; Zhentao Liu and Ruyi Zha made equal contributions
♻ ☆ DeSplat: Decomposed Gaussian Splatting for Distractor-Free Rendering
Gaussian splatting enables fast novel view synthesis in static 3D environments. However, reconstructing real-world environments remains challenging as distractors or occluders break the multi-view consistency assumption required for accurate 3D reconstruction. Most existing methods rely on external semantic information from pre-trained models, introducing additional computational overhead as pre-processing steps or during optimization. In this work, we propose a novel method, DeSplat, that directly separates distractors and static scene elements purely based on volume rendering of Gaussian primitives. We initialize Gaussians within each camera view for reconstructing the view-specific distractors to separately model the static 3D scene and distractors in the alpha compositing stages. DeSplat yields an explicit scene separation of static elements and distractors, achieving comparable results to prior distractor-free approaches without sacrificing rendering speed. We demonstrate DeSplat's effectiveness on three benchmark data sets for distractor-free novel view synthesis. See the project website at https://aaltoml.github.io/desplat/.
♻ ☆ Black-Box Forgery Attacks on Semantic Watermarks for Diffusion Models CVPR
Integrating watermarking into the generation process of latent diffusion models (LDMs) simplifies detection and attribution of generated content. Semantic watermarks, such as Tree-Rings and Gaussian Shading, represent a novel class of watermarking techniques that are easy to implement and highly robust against various perturbations. However, our work demonstrates a fundamental security vulnerability of semantic watermarks. We show that attackers can leverage unrelated models, even with different latent spaces and architectures (UNet vs DiT), to perform powerful and realistic forgery attacks. Specifically, we design two watermark forgery attacks. The first imprints a targeted watermark into real images by manipulating the latent representation of an arbitrary image in an unrelated LDM to get closer to the latent representation of a watermarked image. We also show that this technique can be used for watermark removal. The second attack generates new images with the target watermark by inverting a watermarked image and re-generating it with an arbitrary prompt. Both attacks just need a single reference image with the target watermark. Overall, our findings question the applicability of semantic watermarks by revealing that attackers can easily forge or remove these watermarks under realistic conditions.
comment: 28 pages, 22 figures, 8 tables, to be published in The IEEE/CVF Conference on Computer Vision and Pattern Recognition 2025 (CVPR)
♻ ☆ Unleashing Vecset Diffusion Model for Fast Shape Generation
3D shape generation has greatly flourished through the development of so-called "native" 3D diffusion, particularly through the Vecset Diffusion Model (VDM). While recent advancements have shown promising results in generating high-resolution 3D shapes, VDM still struggles with high-speed generation. Challenges exist because of difficulties not only in accelerating diffusion sampling but also VAE decoding in VDM, areas under-explored in previous works. To address these challenges, we present FlashVDM, a systematic framework for accelerating both VAE and DiT in VDM. For DiT, FlashVDM enables flexible diffusion sampling with as few as 5 inference steps and comparable quality, which is made possible by stabilizing consistency distillation with our newly introduced Progressive Flow Distillation. For VAE, we introduce a lightning vecset decoder equipped with Adaptive KV Selection, Hierarchical Volume Decoding, and Efficient Network Design. By exploiting the locality of the vecset and the sparsity of shape surface in the volume, our decoder drastically lowers FLOPs, minimizing the overall decoding overhead. We apply FlashVDM to Hunyuan3D-2 to obtain Hunyuan3D-2 Turbo. Through systematic evaluation, we show that our model significantly outperforms existing fast 3D generation methods, achieving comparable performance to the state-of-the-art while reducing inference time by over 45x for reconstruction and 32x for generation. Code and models are available at https://github.com/Tencent/FlashVDM.
comment: Technical report
♻ ☆ Comparison of marker-less 2D image-based methods for infant pose estimation
In this study we compare the performance of available generic- and infant-pose estimators for a video-based automated general movement assessment (GMA), and the choice of viewing angle for optimal recordings, i.e., conventional diagonal view used in GMA vs. top-down view. We used 4500 annotated video-frames from 75 recordings of infant spontaneous motor functions from 4 to 26 weeks. To determine which pose estimation method and camera angle yield the best pose estimation accuracy on infants in a GMA related setting, the distance to human annotations and the percentage of correct key-points (PCK) were computed and compared. The results show that the best performing generic model trained on adults, ViTPose, also performs best on infants. We see no improvement from using infant-pose estimators over the generic pose estimators on our infant dataset. However, when retraining a generic model on our data, there is a significant improvement in pose estimation accuracy. The pose estimation accuracy obtained from the top-down view is significantly better than that obtained from the diagonal view, especially for the detection of the hip key-points. The results also indicate limited generalization capabilities of infant-pose estimators to other infant datasets, which hints that one should be careful when choosing infant pose estimators and using them on infant datasets which they were not trained on. While the standard GMA method uses a diagonal view for assessment, pose estimation accuracy significantly improves using a top-down view. This suggests that a top-down view should be included in recording setups for automated GMA research.
DashGaussian: Optimizing 3D Gaussian Splatting in 200 Seconds CVPR2025
3D Gaussian Splatting (3DGS) renders pixels by rasterizing Gaussian primitives, where the rendering resolution and the primitive number, concluded as the optimization complexity, dominate the time cost in primitive optimization. In this paper, we propose DashGaussian, a scheduling scheme over the optimization complexity of 3DGS that strips redundant complexity to accelerate 3DGS optimization. Specifically, we formulate 3DGS optimization as progressively fitting 3DGS to higher levels of frequency components in the training views, and propose a dynamic rendering resolution scheme that largely reduces the optimization complexity based on this formulation. Besides, we argue that a specific rendering resolution should cooperate with a proper primitive number for a better balance between computing redundancy and fitting quality, where we schedule the growth of the primitives to synchronize with the rendering resolution. Extensive experiments show that our method accelerates the optimization of various 3DGS backbones by 45.7% on average while preserving the rendering quality.
comment: Accepted by CVPR2025. Project page: https://dashgaussian.github.io
♻ ☆ Generating Multimodal Driving Scenes via Next-Scene Prediction CVPR 2025
Generative models in Autonomous Driving (AD) enable diverse scene creation, yet existing methods fall short by only capturing a limited range of modalities, restricting the capability of generating controllable scenes for comprehensive evaluation of AD systems. In this paper, we introduce a multimodal generation framework that incorporates four major data modalities, including a novel addition of map modality. With tokenized modalities, our scene sequence generation framework autoregressively predicts each scene while managing computational demands through a two-stage approach. The Temporal AutoRegressive (TAR) component captures inter-frame dynamics for each modality while the Ordered AutoRegressive (OAR) component aligns modalities within each scene by sequentially predicting tokens in a fixed order. To maintain coherence between map and ego-action modalities, we introduce the Action-aware Map Alignment (AMA) module, which applies a transformation based on the ego-action to maintain coherence between these modalities. Our framework effectively generates complex, realistic driving scenes over extended sequences, ensuring multimodal consistency and offering fine-grained control over scene elements. Project page: https://yanhaowu.github.io/UMGen/
comment: CVPR 2025
♻ ☆ Scale-Equivariant Imaging: Self-Supervised Learning for Image Super-Resolution and Deblurring
Self-supervised methods have recently proved to be nearly as effective as supervised ones in various imaging inverse problems, paving the way for learning-based approaches in scientific and medical imaging applications where ground truth data is hard or expensive to obtain. These methods critically rely on invariance to translations and/or rotations of the image distribution to learn from incomplete measurement data alone. However, existing approaches fail to obtain competitive performances in the problems of image super-resolution and deblurring, which play a key role in most imaging systems. In this work, we show that invariance to roto-translations is insufficient to learn from measurements that only contain low-frequency information. Instead, we propose scale-equivariant imaging, a new self-supervised approach that leverages the fact that many image distributions are approximately scale-invariant, enabling the recovery of high-frequency information lost in the measurement process. We demonstrate throughout a series of experiments on real datasets that the proposed method outperforms other self-supervised approaches, and obtains performances on par with fully supervised learning.
♻ ☆ CLIP in Medical Imaging: A Survey
Contrastive Language-Image Pre-training (CLIP), a simple yet effective pre-training paradigm, successfully introduces text supervision to vision models. It has shown promising results across various tasks due to its generalizability and interpretability. The use of CLIP has recently gained increasing interest in the medical imaging domain, serving as a pre-training paradigm for image-text alignment, or a critical component in diverse clinical tasks. With the aim of facilitating a deeper understanding of this promising direction, this survey offers an in-depth exploration of the CLIP within the domain of medical imaging, regarding both refined CLIP pre-training and CLIP-driven applications. In this paper, we (1) first start with a brief introduction to the fundamentals of CLIP methodology; (2) then investigate the adaptation of CLIP pre-training in the medical imaging domain, focusing on how to optimize CLIP given characteristics of medical images and reports; (3) further explore practical utilization of CLIP pre-trained models in various tasks, including classification, dense prediction, and cross-modal tasks; and (4) finally discuss existing limitations of CLIP in the context of medical imaging, and propose forward-looking directions to address the demands of medical imaging domain. Studies featuring technical and practical value are both investigated. We expect this survey will provide researchers with a holistic understanding of the CLIP paradigm and its potential implications. The project page of this survey can also be found on https://github.com/zhaozh10/Awesome-CLIP-in-Medical-Imaging.
comment: Project page available at https://github.com/zhaozh10/Awesome-CLIP-in-Medical-Imaging
♻ ☆ TechCoach: Towards Technical-Point-Aware Descriptive Action Coaching
To guide a learner in mastering action skills, it is crucial for a coach to 1) reason through the learner's action execution and technical points (TechPoints), and 2) provide detailed, comprehensible feedback on what is done well and what can be improved. However, existing score-based action assessment methods are still far from reaching this practical scenario. To bridge this gap, we investigate a new task termed Descriptive Action Coaching (DescCoach) which requires the model to provide detailed commentary on what is done well and what can be improved beyond a simple quality score for action execution. To this end, we first build a new dataset named EE4D-DescCoach. Through an automatic annotation pipeline, our dataset goes beyond the existing action assessment datasets by providing detailed TechPoint-level commentary. Furthermore, we propose TechCoach, a new framework that explicitly incorporates TechPoint-level reasoning into the DescCoach process. The central to our method lies in the Context-aware TechPoint Reasoner, which enables TechCoach to learn TechPoint-related quality representation by querying visual context under the supervision of TechPoint-level coaching commentary. By leveraging the visual context and the TechPoint-related quality representation, a unified TechPoint-aware Action Assessor is then employed to provide the overall coaching commentary together with the quality score. Combining all of these, we establish a new benchmark for DescCoach and evaluate the effectiveness of our method through extensive experiments. The data and code will be made publicly available.
comment: 21 pages, 16 figures
♻ ☆ Perception of Visual Content: Differences Between Humans and Foundation Models
Human-annotated content is often used to train machine learning (ML) models. However, recently, language and multi-modal foundational models have been used to replace and scale-up human annotator's efforts. This study compares human-generated and ML-generated annotations of images representing diverse socio-economic contexts. We aim to understand differences in perception and identify potential biases in content interpretation. Our dataset comprises images of people from various geographical regions and income levels, covering various daily activities and home environments. We compare human and ML-generated annotations semantically and evaluate their impact on predictive models. Our results show highest similarity between ML captions and human labels from a low-level perspective, i.e., types of words that appear and sentence structures, but all three annotations are alike in how similar or dissimilar they perceive images across different regions. Additionally, ML Captions resulted in best overall region classification performance, while ML Objects and ML Captions performed best overall for income regression. The varying performance of annotation sets highlights the notion that all annotations are important, and that human-generated annotations are yet to be replaceable.
comment: 12 pages, 5 figures, 5 tables; updated version for a Revise-and-Resubmit at ICWSM 2025. This version includes a larger and more diverse dataset, leading to updated results
♻ ☆ Cutting Voxel Projector a New Approach to Construct 3D Cone Beam CT Operator
We introduce a novel class of projectors for 3D cone beam tomographic reconstruction. Analytical formulas are derived to compute the relationship between the volume of a voxel projected onto a detector pixel and its contribution to the line integral of attenuation recorded by that pixel. Based on these formulas, we construct a near-exact projector and backprojector, particularly suited for algebraic reconstruction techniques and hierarchical reconstruction approaches with nonuniform voxel grids. Unlike traditional projectors, which assume a uniform grid with fixed voxel sizes, our method enables local refinement of voxels, allowing for adaptive grid resolution and improved reconstruction quality in regions of interest. We have implemented this cutting voxel projector along with a relaxed, speed-optimized version and compared them to two established projectors: a ray-tracing projector based on Siddon's algorithm and a TT footprint projector. Our results demonstrate that the cutting voxel projector achieves higher accuracy than the TT projector, especially for large cone beam angles. Furthermore, the relaxed version of the cutting voxel projector offers a significant speed advantage, while maintaining comparable accuracy. In contrast, Siddon's algorithm, tuned to achieve the same accuracy, is considerably slower than the cutting voxel projector. All algorithms are implemented in a GPU optimized open-source framework for algebraic reconstruction. GitHub repository of the project https://github.com/kulvait/KCT_cbct.
comment: 12 pages, 5 figures
♻ ☆ Bayesian Modeling of Zero-Shot Classifications for Urban Flood Detection
Street scene datasets, collected from Street View or dashboard cameras, offer a promising means of detecting urban objects and incidents like street flooding. However, a major challenge in using these datasets is their lack of reliable labels: there are myriad types of incidents, many types occur rarely, and ground-truth measures of where incidents occur are lacking. Here, we propose BayFlood, a two-stage approach which circumvents this difficulty. First, we perform zero-shot classification of where incidents occur using a pretrained vision-language model (VLM). Second, we fit a spatial Bayesian model on the VLM classifications. The zero-shot approach avoids the need to annotate large training sets, and the Bayesian model provides frequent desiderata in urban settings - principled measures of uncertainty, smoothing across locations, and incorporation of external data like stormwater accumulation zones. We comprehensively validate this two-stage approach, showing that VLMs provide strong zero-shot signal for floods across multiple cities and time periods, the Bayesian model improves out-of-sample prediction relative to baseline methods, and our inferred flood risk correlates with known external predictors of risk. Having validated our approach, we show it can be used to improve urban flood detection: our analysis reveals 113,738 people who are at high risk of flooding overlooked by current methods, identifies demographic biases in existing methods, and suggests locations for new flood sensors. More broadly, our results showcase how Bayesian modeling of zero-shot LM annotations represents a promising paradigm because it avoids the need to collect large labeled datasets and leverages the power of foundation models while providing the expressiveness and uncertainty quantification of Bayesian models.
comment: In review
Fantastic Copyrighted Beasts and How (Not) to Generate Them
Recent studies show that image and video generation models can be prompted to reproduce copyrighted content from their training data, raising serious legal concerns about copyright infringement. Copyrighted characters (e.g., Mario, Batman) present a significant challenge: at least one lawsuit has already awarded damages based on the generation of such characters. Consequently, commercial services like DALL-E have started deploying interventions. However, little research has systematically examined these problems: (1) Can users easily prompt models to generate copyrighted characters, even if it is unintentional?; (2) How effective are the existing mitigation strategies? To address these questions, we introduce a novel evaluation framework with metrics that assess both the generated image's similarity to copyrighted characters and its consistency with user intent, grounded in a set of popular copyrighted characters from diverse studios and regions. We show that state-of-the-art image and video generation models can still generate characters even if characters' names are not explicitly mentioned, sometimes with only two generic keywords (e.g., prompting with "videogame, plumber" consistently generates Nintendo's Mario character). We also introduce semi-automatic techniques to identify such keywords or descriptions that trigger character generation. Using this framework, we evaluate mitigation strategies, including prompt rewriting and new approaches we propose. Our findings reveal that common methods, such as DALL-E's prompt rewriting, are insufficient alone and require supplementary strategies like negative prompting. Our work provides empirical grounding for discussions on copyright mitigation strategies and offers actionable insights for model deployers implementing these safeguards.
♻ ☆ Towards End-to-End Neuromorphic Voxel-based 3D Object Reconstruction Without Physical Priors ICME
Neuromorphic cameras, also known as event cameras, are asynchronous brightness-change sensors that can capture extremely fast motion without suffering from motion blur, making them particularly promising for 3D reconstruction in extreme environments. However, existing research on 3D reconstruction using monocular neuromorphic cameras is limited, and most of the methods rely on estimating physical priors and employ complex multi-step pipelines. In this work, we propose an end-to-end method for dense voxel 3D reconstruction using neuromorphic cameras that eliminates the need to estimate physical priors. Our method incorporates a novel event representation to enhance edge features, enabling the proposed feature-enhancement model to learn more effectively. Additionally, we introduced Optimal Binarization Threshold Selection Principle as a guideline for future related work, using the optimal reconstruction results achieved with threshold optimization as the benchmark. Our method achieves a 54.6% improvement in reconstruction accuracy compared to the baseline method.
comment: 6 pages, 15 figures, 5 tables, accepted by IEEE International Conference on Multimedia & Expo (ICME) 2025
♻ ☆ Towards Real-World Test-Time Adaptation: Tri-Net Self-Training with Balanced Normalization AAAI 2024
Test-Time Adaptation aims to adapt source domain model to testing data at inference stage with success demonstrated in adapting to unseen corruptions. However, these attempts may fail under more challenging real-world scenarios. Existing works mainly consider real-world test-time adaptation under non-i.i.d. data stream and continual domain shift. In this work, we first complement the existing real-world TTA protocol with a globally class imbalanced testing set. We demonstrate that combining all settings together poses new challenges to existing methods. We argue the failure of state-of-the-art methods is first caused by indiscriminately adapting normalization layers to imbalanced testing data. To remedy this shortcoming, we propose a balanced batchnorm layer to swap out the regular batchnorm at inference stage. The new batchnorm layer is capable of adapting without biasing towards majority classes. We are further inspired by the success of self-training (ST) in learning from unlabeled data and adapt ST for test-time adaptation. However, ST alone is prone to over adaption which is responsible for the poor performance under continual domain shift. Hence, we propose to improve self-training under continual domain shift by regularizing model updates with an anchored loss. The final TTA model, termed as TRIBE, is built upon a tri-net architecture with balanced batchnorm layers. We evaluate TRIBE on four datasets representing real-world TTA settings. TRIBE consistently achieves the state-of-the-art performance across multiple evaluation protocols. The code is available at https://github.com/Gorilla-Lab-SCUT/TRIBE.
comment: Accepted by AAAI 2024. 19 pages, 7 figures and 22 tables
♻ ☆ Inference-Time Scaling for Flow Models via Stochastic Generation and Rollover Budget Forcing
We propose an inference-time scaling approach for pretrained flow models. Recently, inference-time scaling has gained significant attention in LLMs and diffusion models, improving sample quality or better aligning outputs with user preferences by leveraging additional computation. For diffusion models, particle sampling has allowed more efficient scaling due to the stochasticity at intermediate denoising steps. On the contrary, while flow models have gained popularity as an alternative to diffusion models--offering faster generation and high-quality outputs in state-of-the-art image and video generative models--efficient inference-time scaling methods used for diffusion models cannot be directly applied due to their deterministic generative process. To enable efficient inference-time scaling for flow models, we propose three key ideas: 1) SDE-based generation, enabling particle sampling in flow models, 2) Interpolant conversion, broadening the search space and enhancing sample diversity, and 3) Rollover Budget Forcing (RBF), an adaptive allocation of computational resources across timesteps to maximize budget utilization. Our experiments show that SDE-based generation, particularly variance-preserving (VP) interpolant-based generation, improves the performance of particle sampling methods for inference-time scaling in flow models. Additionally, we demonstrate that RBF with VP-SDE achieves the best performance, outperforming all previous inference-time scaling approaches.
comment: Project page: https://flow-inference-time-scaling.github.io/
♻ ☆ Aligning Visual Contrastive learning models via Preference Optimization
Contrastive learning models have demonstrated impressive abilities to capture semantic similarities by aligning representations in the embedding space. However, their performance can be limited by the quality of the training data and its inherent biases. While Preference Optimization (PO) methods such as Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO) have been applied to align generative models with human preferences, their use in contrastive learning has yet to be explored. This paper introduces a novel method for training contrastive learning models using different PO methods to break down complex concepts. Our method systematically aligns model behavior with desired preferences, enhancing performance on the targeted task. In particular, we focus on enhancing model robustness against typographic attacks and inductive biases, commonly seen in contrastive vision-language models like CLIP. Our experiments demonstrate that models trained using PO outperform standard contrastive learning techniques while retaining their ability to handle adversarial challenges and maintain accuracy on other downstream tasks. This makes our method well-suited for tasks requiring fairness, robustness, and alignment with specific preferences. We evaluate our method for tackling typographic attacks on images and explore its ability to disentangle gender concepts and mitigate gender bias, showcasing the versatility of our approach.
♻ ☆ MMGDreamer: Mixed-Modality Graph for Geometry-Controllable 3D Indoor Scene Generation AAAI 2025
Controllable 3D scene generation has extensive applications in virtual reality and interior design, where the generated scenes should exhibit high levels of realism and controllability in terms of geometry. Scene graphs provide a suitable data representation that facilitates these applications. However, current graph-based methods for scene generation are constrained to text-based inputs and exhibit insufficient adaptability to flexible user inputs, hindering the ability to precisely control object geometry. To address this issue, we propose MMGDreamer, a dual-branch diffusion model for scene generation that incorporates a novel Mixed-Modality Graph, visual enhancement module, and relation predictor. The mixed-modality graph allows object nodes to integrate textual and visual modalities, with optional relationships between nodes. It enhances adaptability to flexible user inputs and enables meticulous control over the geometry of objects in the generated scenes. The visual enhancement module enriches the visual fidelity of text-only nodes by constructing visual representations using text embeddings. Furthermore, our relation predictor leverages node representations to infer absent relationships between nodes, resulting in more coherent scene layouts. Extensive experimental results demonstrate that MMGDreamer exhibits superior control of object geometry, achieving state-of-the-art scene generation performance. Project page: https://yangzhifeio.github.io/project/MMGDreamer.
comment: Accepted by AAAI 2025 Main Track
♻ ☆ Point-Cache: Test-time Dynamic and Hierarchical Cache for Robust and Generalizable Point Cloud Analysis CVPR 2025
This paper proposes a general solution to enable point cloud recognition models to handle distribution shifts at test time. Unlike prior methods, which rely heavily on training data (often inaccessible during online inference) and are limited to recognizing a fixed set of point cloud classes predefined during training, we explore a more practical and challenging scenario: adapting the model solely based on online test data to recognize both previously seen classes and novel, unseen classes at test time. To this end, we develop \textbf{Point-Cache}, a hierarchical cache model that captures essential clues of online test samples, particularly focusing on the global structure of point clouds and their local-part details. Point-Cache, which serves as a rich 3D knowledge base, is dynamically managed to prioritize the inclusion of high-quality samples. Designed as a plug-and-play module, our method can be flexibly integrated into large multimodal 3D models to support open-vocabulary point cloud recognition. Notably, our solution operates with efficiency comparable to zero-shot inference, as it is entirely training-free. Point-Cache demonstrates substantial gains across 8 challenging benchmarks and 4 representative large 3D models, highlighting its effectiveness. Code is available at https://github.com/auniquesun/Point-Cache.
comment: Accepted by CVPR 2025; 24 pages, 14 figures, 18 tables
♻ ☆ MARVEL-40M+: Multi-Level Visual Elaboration for High-Fidelity Text-to-3D Content Creation
Generating high-fidelity 3D content from text prompts remains a significant challenge in computer vision due to the limited size, diversity, and annotation depth of the existing datasets. To address this, we introduce MARVEL-40M+, an extensive dataset with 40 million text annotations for over 8.9 million 3D assets aggregated from seven major 3D datasets. Our contribution is a novel multi-stage annotation pipeline that integrates open-source pretrained multi-view VLMs and LLMs to automatically produce multi-level descriptions, ranging from detailed (150-200 words) to concise semantic tags (10-20 words). This structure supports both fine-grained 3D reconstruction and rapid prototyping. Furthermore, we incorporate human metadata from source datasets into our annotation pipeline to add domain-specific information in our annotation and reduce VLM hallucinations. Additionally, we develop MARVEL-FX3D, a two-stage text-to-3D pipeline. We fine-tune Stable Diffusion with our annotations and use a pretrained image-to-3D network to generate 3D textured meshes within 15s. Extensive evaluations show that MARVEL-40M+ significantly outperforms existing datasets in annotation quality and linguistic diversity, achieving win rates of 72.41% by GPT-4 and 73.40% by human evaluators. Project page is available at https://sankalpsinha-cmos.github.io/MARVEL/.
♻ ☆ MuseTalk: Real-Time High-Fidelity Video Dubbing via Spatio-Temporal Sampling
Real-time video dubbing that preserves identity consistency while achieving accurate lip synchronization remains a critical challenge. Existing approaches face a trilemma: diffusion-based methods achieve high visual fidelity but suffer from prohibitive computational costs, while GAN-based solutions sacrifice lip-sync accuracy or dental details for real-time performance. We present MuseTalk, a novel two-stage training framework that resolves this trade-off through latent space optimization and spatio-temporal data sampling strategy. Our key innovations include: (1) During the Facial Abstract Pretraining stage, we propose Informative Frame Sampling to temporally align reference-source pose pairs, eliminating redundant feature interference while preserving identity cues. (2) In the Lip-Sync Adversarial Finetuning stage, we employ Dynamic Margin Sampling to spatially select the most suitable lip-movement-promoting regions, balancing audio-visual synchronization and dental clarity. (3) MuseTalk establishes an effective audio-visual feature fusion framework in the latent space, delivering 30 FPS output at 256*256 resolution on an NVIDIA V100 GPU. Extensive experiments demonstrate that MuseTalk outperforms state-of-the-art methods in visual fidelity while achieving comparable lip-sync accuracy. %The codes and models will be made publicly available upon acceptance. The code is made available at \href{https://github.com/TMElyralab/MuseTalk}{https://github.com/TMElyralab/MuseTalk}
comment: 15 pages, 4 figures
♻ ☆ PHT-CAD: Efficient CAD Parametric Primitive Analysis with Progressive Hierarchical Tuning
Computer-Aided Design (CAD) plays a pivotal role in industrial manufacturing, yet 2D Parametric Primitive Analysis (PPA) remains underexplored due to two key challenges: structural constraint reasoning and advanced semantic understanding. To tackle these challenges, we first propose an Efficient Hybrid Parametrization (EHP) for better representing 2D engineering drawings. EHP contains four types of atomic component i.e., point, line, circle, and arc). Additionally, we propose PHT-CAD, a novel 2D PPA framework that harnesses the modality alignment and reasoning capabilities of Vision-Language Models (VLMs) for precise engineering drawing analysis. In PHT-CAD, we introduce four dedicated regression heads to predict corresponding atomic components. To train PHT-CAD, a three-stage training paradigm Progressive Hierarchical Tuning (PHT) is proposed to progressively enhance PHT-CAD's capability to perceive individual primitives, infer structural constraints, and align annotation layers with their corresponding geometric representations. Considering that existing datasets lack complete annotation layers and real-world engineering drawings, we introduce ParaCAD, the first large-scale benchmark that explicitly integrates both the geometric and annotation layers. ParaCAD comprises over 10 million annotated drawings for training and 3,000 real-world industrial drawings with complex topological structures and physical constraints for test. Extensive experiments demonstrate the effectiveness of PHT-CAD and highlight the practical significance of ParaCAD in advancing 2D PPA research.
♻ ☆ DEIM: DETR with Improved Matching for Fast Convergence CVPR 2025
We introduce DEIM, an innovative and efficient training framework designed to accelerate convergence in real-time object detection with Transformer-based architectures (DETR). To mitigate the sparse supervision inherent in one-to-one (O2O) matching in DETR models, DEIM employs a Dense O2O matching strategy. This approach increases the number of positive samples per image by incorporating additional targets, using standard data augmentation techniques. While Dense O2O matching speeds up convergence, it also introduces numerous low-quality matches that could affect performance. To address this, we propose the Matchability-Aware Loss (MAL), a novel loss function that optimizes matches across various quality levels, enhancing the effectiveness of Dense O2O. Extensive experiments on the COCO dataset validate the efficacy of DEIM. When integrated with RT-DETR and D-FINE, it consistently boosts performance while reducing training time by 50%. Notably, paired with RT-DETRv2, DEIM achieves 53.2% AP in a single day of training on an NVIDIA 4090 GPU. Additionally, DEIM-trained real-time models outperform leading real-time object detectors, with DEIM-D-FINE-L and DEIM-D-FINE-X achieving 54.7% and 56.5% AP at 124 and 78 FPS on an NVIDIA T4 GPU, respectively, without the need for additional data. We believe DEIM sets a new baseline for advancements in real-time object detection. Our code and pre-trained models are available at https://github.com/ShihuaHuang95/DEIM.
comment: CVPR 2025
♻ ☆ Decoupling Fine Detail and Global Geometry for Compressed Depth Map Super-Resolution CVPR 2025
Recovering high-quality depth maps from compressed sources has gained significant attention due to the limitations of consumer-grade depth cameras and the bandwidth restrictions during data transmission. However, current methods still suffer from two challenges. First, bit-depth compression produces a uniform depth representation in regions with subtle variations, hindering the recovery of detailed information. Second, densely distributed random noise reduces the accuracy of estimating the global geometric structure of the scene. To address these challenges, we propose a novel framework, termed geometry-decoupled network (GDNet), for compressed depth map super-resolution that decouples the high-quality depth map reconstruction process by handling global and detailed geometric features separately. To be specific, we propose the fine geometry detail encoder (FGDE), which is designed to aggregate fine geometry details in high-resolution low-level image features while simultaneously enriching them with complementary information from low-resolution context-level image features. In addition, we develop the global geometry encoder (GGE) that aims at suppressing noise and extracting global geometric information effectively via constructing compact feature representation in a low-rank space. We conduct experiments on multiple benchmark datasets, demonstrating that our GDNet significantly outperforms current methods in terms of geometric consistency and detail recovery. In the ECCV 2024 AIM Compressed Depth Upsampling Challenge, our solution won the 1st place award. Our codes are available at: https://github.com/Ian0926/GDNet.
comment: Accepted by CVPR 2025 & The 1st place award for the ECCV 2024 AIM Compressed Depth Upsampling Challenge
♻ ☆ NLPrompt: Noise-Label Prompt Learning for Vision-Language Models
The emergence of vision-language foundation models, such as CLIP, has revolutionized image-text representation, enabling a broad range of applications via prompt learning. Despite its promise, real-world datasets often contain noisy labels that can degrade prompt learning performance. In this paper, we demonstrate that using mean absolute error (MAE) loss in prompt learning, named PromptMAE, significantly enhances robustness against noisy labels while maintaining high accuracy. Though MAE is straightforward and recognized for its robustness, it is rarely used in noisy-label learning due to its slow convergence and poor performance outside prompt learning scenarios. To elucidate the robustness of PromptMAE, we leverage feature learning theory to show that MAE can suppress the influence of noisy samples, thereby improving the signal-to-noise ratio and enhancing overall robustness. Additionally, we introduce PromptOT, a prompt-based optimal transport data purification method to enhance the robustness further. PromptOT employs text features in vision-language models as prototypes to construct an optimal transportation matrix. This matrix effectively partitions datasets into clean and noisy subsets, allowing for the application of cross-entropy loss to the clean subset and MAE loss to the noisy subset. Our Noise-Label Prompt Learning method, named NLPrompt, offers a simple and efficient approach that leverages the expressive representations and precise alignment capabilities of vision-language models for robust prompt learning. We validate NLPrompt through extensive experiments across various noise settings, demonstrating significant performance improvements.
♻ ☆ MozzaVID: Mozzarella Volumetric Image Dataset
Influenced by the complexity of volumetric imaging, there is a shortage of established datasets useful for benchmarking volumetric deep-learning models. As a consequence, new and existing models are not easily comparable, limiting the development of architectures optimized specifically for volumetric data. To counteract this trend, we introduce MozzaVID - a large, clean, and versatile volumetric classification dataset. Our dataset contains X-ray computed tomography (CT) images of mozzarella microstructure and enables the classification of 25 cheese types and 149 cheese samples. We provide data in three different resolutions, resulting in three dataset instances containing from 591 to 37,824 images. While being general-purpose, the dataset also facilitates investigating mozzarella structure properties. The structure of food directly affects its functional properties and thus its consumption experience. Understanding food structure helps tune the production and mimicking it enables sustainable alternatives to animal-derived food products. The complex and disordered nature of food structures brings a unique challenge, where a choice of appropriate imaging method, scale, and sample size is not trivial. With this dataset we aim to address these complexities, contributing to more robust structural analysis models. The dataset can be downloaded from: https://archive.compute.dtu.dk/files/public/projects/MozzaVID/.
♻ ☆ ONER: Online Experience Replay for Incremental Anomaly Detection
Incremental anomaly detection aims to sequentially identify defects in industrial product lines but suffers from catastrophic forgetting, primarily due to knowledge overwriting during parameter updates and feature conflicts between tasks. In this work, We propose ONER (ONline Experience Replay), an end-to-end framework that addresses these issues by synergistically integrating two types of experience: (1) decomposed prompts, which dynamically generate image-conditioned prompts from reusable modules to retain prior knowledge thus prevent knowledge overwriting, and (2) semantic prototypes, which enforce separability in latent feature spaces at pixel and image levels to mitigate cross-task feature conflicts. Extensive experiments demonstrate the superiority of ONER, achieving state-of-the-art performance with +4.4% Pixel AUROC and +28.3% Pixel AUPR improvements on the MVTec AD dataset over prior methods. Remarkably, ONER achieves this with only 0.019M parameters and 5 training epochs per task, confirming its efficiency and stability for real-world industrial deployment.
♻ ☆ DiTCtrl: Exploring Attention Control in Multi-Modal Diffusion Transformer for Tuning-Free Multi-Prompt Longer Video Generation CVPR 2025
Sora-like video generation models have achieved remarkable progress with a Multi-Modal Diffusion Transformer MM-DiT architecture. However, the current video generation models predominantly focus on single-prompt, struggling to generate coherent scenes with multiple sequential prompts that better reflect real-world dynamic scenarios. While some pioneering works have explored multi-prompt video generation, they face significant challenges including strict training data requirements, weak prompt following, and unnatural transitions. To address these problems, we propose DiTCtrl, a training-free multi-prompt video generation method under MM-DiT architectures for the first time. Our key idea is to take the multi-prompt video generation task as temporal video editing with smooth transitions. To achieve this goal, we first analyze MM-DiT's attention mechanism, finding that the 3D full attention behaves similarly to that of the cross/self-attention blocks in the UNet-like diffusion models, enabling mask-guided precise semantic control across different prompts with attention sharing for multi-prompt video generation. Based on our careful design, the video generated by DiTCtrl achieves smooth transitions and consistent object motion given multiple sequential prompts without additional training. Besides, we also present MPVBench, a new benchmark specially designed for multi-prompt video generation to evaluate the performance of multi-prompt generation. Extensive experiments demonstrate that our method achieves state-of-the-art performance without additional training.
comment: CVPR 2025; 21 pages, 23 figures, Project page: https://onevfall.github.io/project_page/ditctrl ; GitHub repository: https://github.com/TencentARC/DiTCtrl
Oasis: One Image is All You Need for Multimodal Instruction Data Synthesis
The success of multi-modal large language models (MLLMs) has been largely attributed to the large-scale training data. However, the training data of many MLLMs is unavailable due to privacy concerns. The expensive and labor-intensive process of collecting multi-modal data further exacerbates the problem. Is it possible to synthesize multi-modal training data automatically without compromising diversity and quality? In this paper, we propose a new method, Oasis, to synthesize high-quality multi-modal data with only images. Oasis breaks through traditional methods by prompting only images to the MLLMs, thus extending the data diversity by a large margin. Our method features a delicate quality control method which ensures the data quality. We collected over 500k data and conducted incremental experiments on LLaVA-NeXT. Extensive experiments demonstrate that our method can significantly improve the performance of MLLMs. The image-based synthesis also allows us to focus on the specific-domain ability of MLLMs. Code and dataset are publicly available at https://github.com/Letian2003/MM_INF.
♻ ☆ Referring Video Object Segmentation via Language-aligned Track Selection
Referring video object segmentation (RVOS) requires tracking and segmenting an object throughout a video according to a given natural language expression, demanding both complex motion understanding and the alignment of visual representations with language descriptions. Given these challenges, the recently proposed Segment Anything Model 2 (SAM2) emerges as a potential candidate due to its ability to generate coherent segmentation mask tracks across video frames, and provide an inherent spatio-temporal objectness in its object token representations. In this paper, we introduce SOLA (Selection by Object Language Alignment), a novel framework that leverages SAM2 object tokens as compact video-level object representations, which are aligned with language features through a lightweight track selection module. To effectively facilitate this alignment, we propose an IoU-based pseudo-labeling strategy, which bridges the modality gap between SAM2 representations with language features. Extensive experiments show that SOLA achieves state-of-the-art performance on the MeViS dataset and demonstrate that SOLA offers an effective solution for RVOS. Our project page is available at: https://cvlab-kaist.github.io/SOLA.
comment: Project page is available at https://cvlab-kaist.github.io/SOLA
♻ ☆ Unleashing HyDRa: Hybrid Fusion, Depth Consistency and Radar for Unified 3D Perception ICRA 2025
Low-cost, vision-centric 3D perception systems for autonomous driving have made significant progress in recent years, narrowing the gap to expensive LiDAR-based methods. The primary challenge in becoming a fully reliable alternative lies in robust depth prediction capabilities, as camera-based systems struggle with long detection ranges and adverse lighting and weather conditions. In this work, we introduce HyDRa, a novel camera-radar fusion architecture for diverse 3D perception tasks. Building upon the principles of dense BEV (Bird's Eye View)-based architectures, HyDRa introduces a hybrid fusion approach to combine the strengths of complementary camera and radar features in two distinct representation spaces. Our Height Association Transformer module leverages radar features already in the perspective view to produce more robust and accurate depth predictions. In the BEV, we refine the initial sparse representation by a Radar-weighted Depth Consistency. HyDRa achieves a new state-of-the-art for camera-radar fusion of 64.2 NDS (+1.8) and 58.4 AMOTA (+1.5) on the public nuScenes dataset. Moreover, our new semantically rich and spatially accurate BEV features can be directly converted into a powerful occupancy representation, beating all previous camera-based methods on the Occ3D benchmark by an impressive 3.7 mIoU. Code and models are available at https://github.com/phi-wol/hydra.
comment: Accepted to ICRA 2025
♻ ☆ ARFlow: Human Action-Reaction Flow Matching with Physical Guidance
Human action-reaction synthesis, a fundamental challenge in modeling causal human interactions, plays a critical role in applications ranging from virtual reality to social robotics. While diffusion-based models have demonstrated promising performance, they exhibit two key limitations for interaction synthesis: reliance on complex noise-to-reaction generators with intricate conditional mechanisms, and frequent physical violations in generated motions. To address these issues, we propose Action-Reaction Flow Matching (ARFlow), a novel framework that establishes direct action-to-reaction mappings, eliminating the need for complex conditional mechanisms. Our approach introduces two key innovations: an x1-prediction method that directly outputs human motions instead of velocity fields, enabling explicit constraint enforcement; and a training-free, gradient-based physical guidance mechanism that effectively prevents body penetration artifacts during sampling. Extensive experiments on NTU120 and Chi3D datasets demonstrate that ARFlow not only outperforms existing methods in terms of Fr\'echet Inception Distance and motion diversity but also significantly reduces body collisions, as measured by our new Intersection Volume and Intersection Frequency metrics.
comment: Project Page: https://arflow2025.github.io/
♻ ☆ CogVideoX: Text-to-Video Diffusion Models with An Expert Transformer ICLR2025
We present CogVideoX, a large-scale text-to-video generation model based on diffusion transformer, which can generate 10-second continuous videos aligned with text prompt, with a frame rate of 16 fps and resolution of 768 * 1360 pixels. Previous video generation models often had limited movement and short durations, and is difficult to generate videos with coherent narratives based on text. We propose several designs to address these issues. First, we propose a 3D Variational Autoencoder (VAE) to compress videos along both spatial and temporal dimensions, to improve both compression rate and video fidelity. Second, to improve the text-video alignment, we propose an expert transformer with the expert adaptive LayerNorm to facilitate the deep fusion between the two modalities. Third, by employing a progressive training and multi-resolution frame pack technique, CogVideoX is adept at producing coherent, long-duration, different shape videos characterized by significant motions. In addition, we develop an effective text-video data processing pipeline that includes various data preprocessing strategies and a video captioning method, greatly contributing to the generation quality and semantic alignment. Results show that CogVideoX demonstrates state-of-the-art performance across both multiple machine metrics and human evaluations. The model weight of both 3D Causal VAE, Video caption model and CogVideoX are publicly available at https://github.com/THUDM/CogVideo.
comment: Accepted by ICLR2025
♻ ☆ TopoBDA: Towards Bezier Deformable Attention for Road Topology Understanding
Understanding road topology is crucial for autonomous driving. This paper introduces TopoBDA (Topology with Bezier Deformable Attention), a novel approach that enhances road topology comprehension by leveraging Bezier Deformable Attention (BDA). TopoBDA processes multi-camera 360-degree imagery to generate Bird's Eye View (BEV) features, which are refined through a transformer decoder employing BDA. BDA utilizes Bezier control points to drive the deformable attention mechanism, improving the detection and representation of elongated and thin polyline structures, such as lane centerlines. Additionally, TopoBDA integrates two auxiliary components: an instance mask formulation loss and a one-to-many set prediction loss strategy, to further refine centerline detection and enhance road topology understanding. Experimental evaluations on the OpenLane-V2 dataset demonstrate that TopoBDA outperforms existing methods, achieving state-of-the-art results in centerline detection and topology reasoning. TopoBDA also achieves the best results on the OpenLane-V1 dataset in 3D lane detection. Further experiments on integrating multi-modal data -- such as LiDAR, radar, and SDMap -- show that multimodal inputs can further enhance performance in road topology understanding.
♻ ☆ HumanDiT: Pose-Guided Diffusion Transformer for Long-form Human Motion Video Generation
Human motion video generation has advanced significantly, while existing methods still struggle with accurately rendering detailed body parts like hands and faces, especially in long sequences and intricate motions. Current approaches also rely on fixed resolution and struggle to maintain visual consistency. To address these limitations, we propose HumanDiT, a pose-guided Diffusion Transformer (DiT)-based framework trained on a large and wild dataset containing 14,000 hours of high-quality video to produce high-fidelity videos with fine-grained body rendering. Specifically, (i) HumanDiT, built on DiT, supports numerous video resolutions and variable sequence lengths, facilitating learning for long-sequence video generation; (ii) we introduce a prefix-latent reference strategy to maintain personalized characteristics across extended sequences. Furthermore, during inference, HumanDiT leverages Keypoint-DiT to generate subsequent pose sequences, facilitating video continuation from static images or existing videos. It also utilizes a Pose Adapter to enable pose transfer with given sequences. Extensive experiments demonstrate its superior performance in generating long-form, pose-accurate videos across diverse scenarios.
comment: https://agnjason.github.io/HumanDiT-page/
♻ ☆ Socratic Planner: Self-QA-Based Zero-Shot Planning for Embodied Instruction Following ICRA 2025
Embodied Instruction Following (EIF) is the task of executing natural language instructions by navigating and interacting with objects in interactive environments. A key challenge in EIF is compositional task planning, typically addressed through supervised learning or few-shot in-context learning with labeled data. To this end, we introduce the Socratic Planner, a self-QA-based zero-shot planning method that infers an appropriate plan without any further training. The Socratic Planner first facilitates self-questioning and answering by the Large Language Model (LLM), which in turn helps generate a sequence of subgoals. While executing the subgoals, an embodied agent may encounter unexpected situations, such as unforeseen obstacles. The Socratic Planner then adjusts plans based on dense visual feedback through a visually-grounded re-planning mechanism. Experiments demonstrate the effectiveness of the Socratic Planner, outperforming current state-of-the-art planning models on the ALFRED benchmark across all metrics, particularly excelling in long-horizon tasks that demand complex inference. We further demonstrate its real-world applicability through deployment on a physical robot for long-horizon tasks.
comment: 8 pages, 6 figures, published to ICRA 2025
♻ ☆ MMRL: Multi-Modal Representation Learning for Vision-Language Models CVPR 2025
Large-scale pre-trained Vision-Language Models (VLMs) have become essential for transfer learning across diverse tasks. However, adapting these models with limited few-shot data often leads to overfitting, diminishing their performance on new tasks. To tackle this issue, we propose a novel Multi-Modal Representation Learning (MMRL) framework that introduces a shared, learnable, and modality-agnostic representation space. MMRL projects the space tokens to text and image representation tokens, facilitating more effective multi-modal interactions. Unlike previous approaches that solely optimize class token features, MMRL integrates representation tokens at higher layers of the encoders--where dataset-specific features are more prominent--while preserving generalized knowledge in the lower layers. During training, both representation and class features are optimized, with trainable projection layer applied to the representation tokens, whereas the class token projection layer remains frozen to retain pre-trained knowledge. Furthermore, a regularization term is introduced to align the class features and text features with the zero-shot features from the frozen VLM, thereby safeguarding the model's generalization capacity. For inference, a decoupling strategy is employed, wherein both representation and class features are utilized for base classes, while only the class features, which retain more generalized knowledge, are used for new tasks. Extensive experiments across 15 datasets demonstrate that MMRL outperforms state-of-the-art methods, achieving a balanced trade-off between task-specific adaptation and generalization. Code is available at https://github.com/yunncheng/MMRL.
comment: Accepted by CVPR 2025
♻ ☆ RoboSpatial: Teaching Spatial Understanding to 2D and 3D Vision-Language Models for Robotics CVPR 2025
Spatial understanding is a crucial capability that enables robots to perceive their surroundings, reason about their environment, and interact with it meaningfully. In modern robotics, these capabilities are increasingly provided by vision-language models. However, these models face significant challenges in spatial reasoning tasks, as their training data are based on general-purpose image datasets that often lack sophisticated spatial understanding. For example, datasets frequently do not capture reference frame comprehension, yet effective spatial reasoning requires understanding whether to reason from ego-, world-, or object-centric perspectives. To address this issue, we introduce RoboSpatial, a large-scale dataset for spatial understanding in robotics. It consists of real indoor and tabletop scenes, captured as 3D scans and egocentric images, and annotated with rich spatial information relevant to robotics. The dataset includes 1M images, 5k 3D scans, and 3M annotated spatial relationships, and the pairing of 2D egocentric images with 3D scans makes it both 2D- and 3D- ready. Our experiments show that models trained with RoboSpatial outperform baselines on downstream tasks such as spatial affordance prediction, spatial relationship prediction, and robot manipulation.
comment: CVPR 2025
♻ ☆ TopV-Nav: Unlocking the Top-View Spatial Reasoning Potential of MLLM for Zero-shot Object Navigation
The Zero-Shot Object Navigation (ZSON) task requires embodied agents to find a previously unseen object by navigating in unfamiliar environments. Such a goal-oriented exploration heavily relies on the ability to perceive, understand, and reason based on the spatial information of the environment. However, current LLM-based approaches convert visual observations to language descriptions and reason in the linguistic space, leading to the loss of spatial information. In this paper, we introduce TopV-Nav, an MLLM-based method that directly reasons on the top-view map with sufficient spatial information. To fully unlock the MLLM's spatial reasoning potential in top-view perspective, we propose the Adaptive Visual Prompt Generation (AVPG) method to adaptively construct semantically-rich top-view map. It enables the agent to directly utilize spatial information contained in the top-view map to conduct thorough reasoning. Besides, we design a Dynamic Map Scaling (DMS) mechanism to dynamically zoom top-view map at preferred scales, enhancing local fine-grained reasoning. Additionally, we devise a Potential Target Driven (PTD) mechanism to predict and to utilize target locations, facilitating global and human-like exploration. Experiments on MP3D and HM3D datasets demonstrate the superiority of our TopV-Nav.
comment: 10 pages
♻ ☆ Fine-Grained Domain Generalization with Feature Structuralization
Fine-grained domain generalization (FGDG) is a more challenging task than traditional DG tasks due to its small inter-class variations and relatively large intra-class disparities. When domain distribution changes, the vulnerability of subtle features leads to a severe deterioration in model performance. Nevertheless, humans inherently demonstrate the capacity for generalizing to out-of-distribution data, leveraging structured multi-granularity knowledge that emerges from discerning the commonality and specificity within categories. Likewise, we propose a Feature Structuralized Domain Generalization (FSDG) model, wherein features experience structuralization into common, specific, and confounding segments, harmoniously aligned with their relevant semantic concepts, to elevate performance in FGDG. Specifically, feature structuralization (FS) is accomplished through joint optimization of five constraints: a decorrelation function applied to disentangled segments, three constraints ensuring common feature consistency and specific feature distinctiveness, and a prediction calibration term. By imposing these stipulations, FSDG is prompted to disentangle and align features based on multi-granularity knowledge, facilitating robust subtle distinctions among categories. Extensive experimentation on three benchmarks consistently validates the superiority of FSDG over state-of-the-art counterparts, with an average improvement of 6.2% in FGDG performance. Beyond that, the explainability analysis on explicit concept matching intensity between the shared concepts among categories and the model channels, along with experiments on various mainstream model architectures, substantiates the validity of FS.
♻ ☆ OverLoCK: An Overview-first-Look-Closely-next ConvNet with Context-Mixing Dynamic Kernels CVPR 2025
Top-down attention plays a crucial role in the human vision system, wherein the brain initially obtains a rough overview of a scene to discover salient cues (i.e., overview first), followed by a more careful finer-grained examination (i.e., look closely next). However, modern ConvNets remain confined to a pyramid structure that successively downsamples the feature map for receptive field expansion, neglecting this crucial biomimetic principle. We present OverLoCK, the first pure ConvNet backbone architecture that explicitly incorporates a top-down attention mechanism. Unlike pyramid backbone networks, our design features a branched architecture with three synergistic sub-networks: 1) a Base-Net that encodes low/mid-level features; 2) a lightweight Overview-Net that generates dynamic top-down attention through coarse global context modeling (i.e., overview first); and 3) a robust Focus-Net that performs finer-grained perception guided by top-down attention (i.e., look closely next). To fully unleash the power of top-down attention, we further propose a novel context-mixing dynamic convolution (ContMix) that effectively models long-range dependencies while preserving inherent local inductive biases even when the input resolution increases, addressing critical limitations in existing convolutions. Our OverLoCK exhibits a notable performance improvement over existing methods. For instance, OverLoCK-T achieves a Top-1 accuracy of 84.2%, significantly surpassing ConvNeXt-B while using only around one-third of the FLOPs/parameters. On object detection, our OverLoCK-S clearly surpasses MogaNet-B by 1% in AP^b. On semantic segmentation, our OverLoCK-T remarkably improves UniRepLKNet-T by 1.7% in mIoU. Code is publicly available at https://rb.gy/wit4jh.
comment: Accepted by CVPR 2025
♻ ☆ DAWN: Dynamic Frame Avatar with Non-autoregressive Diffusion Framework for Talking Head Video Generation
Talking head generation intends to produce vivid and realistic talking head videos from a single portrait and speech audio clip. Although significant progress has been made in diffusion-based talking head generation, almost all methods rely on autoregressive strategies, which suffer from limited context utilization beyond the current generation step, error accumulation, and slower generation speed. To address these challenges, we present DAWN (Dynamic frame Avatar With Non-autoregressive diffusion), a framework that enables all-at-once generation of dynamic-length video sequences. Specifically, it consists of two main components: (1) audio-driven holistic facial dynamics generation in the latent motion space, and (2) audio-driven head pose and blink generation. Extensive experiments demonstrate that our method generates authentic and vivid videos with precise lip motions, and natural pose/blink movements. Additionally, with a high generation speed, DAWN possesses strong extrapolation capabilities, ensuring the stable production of high-quality long videos. These results highlight the considerable promise and potential impact of DAWN in the field of talking head video generation. Furthermore, we hope that DAWN sparks further exploration of non-autoregressive approaches in diffusion models. Our code will be publicly available at https://github.com/Hanbo-Cheng/DAWN-pytorch.
♻ ☆ Stealthy Backdoor Attack in Self-Supervised Learning Vision Encoders for Large Vision Language Models
Self-supervised learning (SSL) vision encoders learn high-quality image representations and thus have become a vital part of developing vision modality of large vision language models (LVLMs). Due to the high cost of training such encoders, pre-trained encoders are widely shared and deployed into many LVLMs, which are security-critical or bear societal significance. Under this practical scenario, we reveal a new backdoor threat that significant visual hallucinations can be induced into these LVLMs by merely compromising vision encoders. Because of the sharing and reuse of these encoders, many downstream LVLMs may inherit backdoor behaviors from encoders, leading to widespread backdoors. In this work, we propose BadVision, the first method to exploit this vulnerability in SSL vision encoders for LVLMs with novel trigger optimization and backdoor learning techniques. We evaluate BadVision on two types of SSL encoders and LVLMs across eight benchmarks. We show that BadVision effectively drives the LVLMs to attacker-chosen hallucination with over 99% attack success rate, causing a 77.6% relative visual understanding error while maintaining the stealthiness. SoTA backdoor detection methods cannot detect our attack effectively.
♻ ☆ Hi-ALPS -- An Experimental Robustness Quantification of Six LiDAR-based Object Detection Systems for Autonomous Driving
Light Detection and Ranging (LiDAR) is an essential sensor technology for autonomous driving as it can capture high-resolution 3D data. As 3D object detection systems (OD) can interpret such point cloud data, they play a key role in the driving decisions of autonomous vehicles. Consequently, such 3D OD must be robust against all types of perturbations and must therefore be extensively tested. One approach is the use of adversarial examples, which are small, sometimes sophisticated perturbations in the input data that change, i.e., falsify, the prediction of the OD. These perturbations are carefully designed based on the weaknesses of the OD. The robustness of the OD cannot be quantified with adversarial examples in general, because if the OD is vulnerable to a given attack, it is unclear whether this is due to the robustness of the OD or whether the attack algorithm produces particularly strong adversarial examples. The contribution of this work is Hi-ALPS -- Hierarchical Adversarial-example-based LiDAR Perturbation Level System, where higher robustness of the OD is required to withstand the perturbations as the perturbation levels increase. In doing so, the Hi-ALPS levels successively implement a heuristic followed by established adversarial example approaches. In a series of comprehensive experiments using Hi-ALPS, we quantify the robustness of six state-of-the-art 3D OD under different types of perturbations. The results of the experiments show that none of the OD is robust against all Hi-ALPS levels; an important factor for the ranking is that human observers can still correctly recognize the perturbed objects, as the respective perturbations are small. To increase the robustness of the OD, we discuss the applicability of state-of-the-art countermeasures. In addition, we derive further suggestions for countermeasures based on our experimental results.
COB-GS: Clear Object Boundaries in 3DGS Segmentation Based on Boundary-Adaptive Gaussian Splitting CVPR 2025
Accurate object segmentation is crucial for high-quality scene understanding in the 3D vision domain. However, 3D segmentation based on 3D Gaussian Splatting (3DGS) struggles with accurately delineating object boundaries, as Gaussian primitives often span across object edges due to their inherent volume and the lack of semantic guidance during training. In order to tackle these challenges, we introduce Clear Object Boundaries for 3DGS Segmentation (COB-GS), which aims to improve segmentation accuracy by clearly delineating blurry boundaries of interwoven Gaussian primitives within the scene. Unlike existing approaches that remove ambiguous Gaussians and sacrifice visual quality, COB-GS, as a 3DGS refinement method, jointly optimizes semantic and visual information, allowing the two different levels to cooperate with each other effectively. Specifically, for the semantic guidance, we introduce a boundary-adaptive Gaussian splitting technique that leverages semantic gradient statistics to identify and split ambiguous Gaussians, aligning them closely with object boundaries. For the visual optimization, we rectify the degraded suboptimal texture of the 3DGS scene, particularly along the refined boundary structures. Experimental results show that COB-GS substantially improves segmentation accuracy and robustness against inaccurate masks from pre-trained model, yielding clear boundaries while preserving high visual quality. Code is available at https://github.com/ZestfulJX/COB-GS.
comment: Accepted by CVPR 2025
♻ ☆ VesselSAM: Leveraging SAM for Aortic Vessel Segmentation with LoRA and Atrous Attention
Medical image segmentation is crucial for clinical diagnosis and treatment planning, especially when dealing with complex anatomical structures such as vessels. However, accurately segmenting vessels remains challenging due to their small size, intricate edge structures, and susceptibility to artifacts and imaging noise. In this work, we propose VesselSAM, an enhanced version of the Segment Anything Model (SAM), specifically tailored for aortic vessel segmentation. VesselSAM incorporates AtrousLoRA, a novel module integrating Atrous Attention and Low-Rank Adaptation (LoRA), to enhance segmentation performance. Atrous Attention enables the model to capture multi-scale contextual information, preserving both fine-grained local details and broader global context. Additionally, LoRA facilitates efficient fine-tuning of the frozen SAM image encoder, reducing the number of trainable parameters and thereby enhancing computational efficiency. We evaluate VesselSAM using two challenging datasets: the Aortic Vessel Tree (AVT) dataset and the Type-B Aortic Dissection (TBAD) dataset. VesselSAM achieves state-of-the-art performance, attaining DSC scores of 93.50\%, 93.25\%, 93.02\%, and 93.26\% across multi-center datasets. Our results demonstrate that VesselSAM delivers high segmentation accuracy while significantly reducing computational overhead compared to existing large-scale models. This development paves the way for enhanced AI-based aortic vessel segmentation in clinical environments. The code and models will be released at https://github.com/Adnan-CAS/AtrousLora.
comment: Work in progress
♻ ☆ Benchmarking Large Vision-Language Models via Directed Scene Graph for Comprehensive Image Captioning CVPR2025
Generating detailed captions comprehending text-rich visual content in images has received growing attention for Large Vision-Language Models (LVLMs). However, few studies have developed benchmarks specifically tailored for detailed captions to measure their accuracy and comprehensiveness. In this paper, we introduce a detailed caption benchmark, termed as CompreCap, to evaluate the visual context from a directed scene graph view. Concretely, we first manually segment the image into semantically meaningful regions (i.e., semantic segmentation mask) according to common-object vocabulary, while also distinguishing attributes of objects within all those regions. Then directional relation labels of these objects are annotated to compose a directed scene graph that can well encode rich compositional information of the image. Based on our directed scene graph, we develop a pipeline to assess the generated detailed captions from LVLMs on multiple levels, including the object-level coverage, the accuracy of attribute descriptions, the score of key relationships, etc. Experimental results on the CompreCap dataset confirm that our evaluation method aligns closely with human evaluation scores across LVLMs.
comment: Accepted by CVPR2025. Code and Dataset: https://github.com/LuFan31/CompreCap
♻ ☆ Vision-based Multi-future Trajectory Prediction: A Survey
Vision-based trajectory prediction is an important task that supports safe and intelligent behaviours in autonomous systems. Many advanced approaches have been proposed over the years with improved spatial and temporal feature extraction. However, human behaviour is naturally diverse and uncertain. Given the past trajectory and surrounding environment information, an agent can have multiple plausible trajectories in the future. To tackle this problem, an essential task named multi-future trajectory prediction (MTP) has recently been studied. This task aims to generate a diverse, acceptable and explainable distribution of future predictions for each agent. In this paper, we present the first survey for MTP with our unique taxonomies and a comprehensive analysis of frameworks, datasets and evaluation metrics. We also compare models on existing MTP datasets and conduct experiments on the ForkingPath dataset. Finally, we discuss multiple future directions that can help researchers develop novel multi-future trajectory prediction systems and other diverse learning tasks similar to MTP.
comment: Accepted by TNNLS 2025
Artificial Intelligence 153
☆ Mobile-MMLU: A Mobile Intelligence Language Understanding Benchmark
Rapid advancements in large language models (LLMs) have increased interest in deploying them on mobile devices for on-device AI applications. Mobile users interact differently with LLMs compared to desktop users, creating unique expectations and data biases. Current benchmark datasets primarily target at server and desktop environments, and there is a notable lack of extensive datasets specifically designed for mobile contexts. Additionally, mobile devices face strict limitations in storage and computing resources, constraining model size and capabilities, thus requiring optimized efficiency and prioritized knowledge. To address these challenges, we introduce Mobile-MMLU, a large-scale benchmark dataset tailored for mobile intelligence. It consists of 16,186 questions across 80 mobile-related fields, designed to evaluate LLM performance in realistic mobile scenarios. A challenging subset, Mobile-MMLU-Pro, provides advanced evaluation similar in size to MMLU-Pro but significantly more difficult than our standard full set. Both benchmarks use multiple-choice, order-invariant questions focused on practical mobile interactions, such as recipe suggestions, travel planning, and essential daily tasks. The dataset emphasizes critical mobile-specific metrics like inference latency, energy consumption, memory usage, and response quality, offering comprehensive insights into model performance under mobile constraints. Moreover, it prioritizes privacy and adaptability, assessing models' ability to perform on-device processing, maintain user privacy, and adapt to personalized usage patterns. Mobile-MMLU family offers a standardized framework for developing and comparing mobile-optimized LLMs, enabling advancements in productivity and decision-making within mobile computing environments. Our code and data are available at: https://github.com/VILA-Lab/Mobile-MMLU.
comment: An order-invariant and mobile-centric benchmark. Code and data are available at: https://github.com/VILA-Lab/Mobile-MMLU
☆ Understanding R1-Zero-Like Training: A Critical Perspective
DeepSeek-R1-Zero has shown that reinforcement learning (RL) at scale can directly enhance the reasoning capabilities of LLMs without supervised fine-tuning. In this work, we critically examine R1-Zero-like training by analyzing its two core components: base models and RL. We investigate a wide range of base models, including DeepSeek-V3-Base, to understand how pretraining characteristics influence RL performance. Our analysis reveals that DeepSeek-V3-Base already exhibit ''Aha moment'', while Qwen2.5 base models demonstrate strong reasoning capabilities even without prompt templates, suggesting potential pretraining biases. Additionally, we identify an optimization bias in Group Relative Policy Optimization (GRPO), which artificially increases response length (especially for incorrect outputs) during training. To address this, we introduce Dr. GRPO, an unbiased optimization method that improves token efficiency while maintaining reasoning performance. Leveraging these insights, we present a minimalist R1-Zero recipe that achieves 43.3% accuracy on AIME 2024 with a 7B base model, establishing a new state-of-the-art. Our code is available at https://github.com/sail-sg/understand-r1-zero.
☆ ADS-Edit: A Multimodal Knowledge Editing Dataset for Autonomous Driving Systems
Recent advancements in Large Multimodal Models (LMMs) have shown promise in Autonomous Driving Systems (ADS). However, their direct application to ADS is hindered by challenges such as misunderstanding of traffic knowledge, complex road conditions, and diverse states of vehicle. To address these challenges, we propose the use of Knowledge Editing, which enables targeted modifications to a model's behavior without the need for full retraining. Meanwhile, we introduce ADS-Edit, a multimodal knowledge editing dataset specifically designed for ADS, which includes various real-world scenarios, multiple data types, and comprehensive evaluation metrics. We conduct comprehensive experiments and derive several interesting conclusions. We hope that our work will contribute to the further advancement of knowledge editing applications in the field of autonomous driving. Code and data are available in https://github.com/zjunlp/EasyEdit.
comment: Work in progress
☆ Optimal Scaling Laws for Efficiency Gains in a Theoretical Transformer-Augmented Sectional MoE Framework
This paper introduces a theoretical framework for a Transformer-augmented, sectional Mixture-of-Experts (MoE) architecture that aims to enhance computational efficiency while preserving model scalability. Unlike conventional MoE models, which route entire token embeddings to selected experts, our approach portions the embedding dimension itself -- assigning segments of each token's representation to dedicated experts. To combat losses in token representation, we utilize a pre-expert transformer layer to recompute attention across tokens and reduce the sequence length dimensionality. We extend our theory by deriving optimal scaling laws that a non-linear relationship between the number of experts and factors such as model dimensionality, sequence length, and system overhead. These formulations yield closed-form and numerically-solvable expressions for identifying the optimal expert count under given architectural and hardware constraints. As a result, our framework not only provides theoretical bounds for computing efficiency with varying frameworks but also guides practical design choices for scaling large models effectively. While empirical validation is pending, we present a comprehensive experimental road map to evaluate the framework's efficiency, scalability, and practicality in future work.
☆ High Quality Diffusion Distillation on a Single GPU with Relative and Absolute Position Matching
We introduce relative and absolute position matching (RAPM), a diffusion distillation method resulting in high quality generation that can be trained efficiently on a single GPU. Recent diffusion distillation research has achieved excellent results for high-resolution text-to-image generation with methods such as phased consistency models (PCM) and improved distribution matching distillation (DMD2). However, these methods generally require many GPUs (e.g.~8-64) and significant batchsizes (e.g.~128-2048) during training, resulting in memory and compute requirements that are beyond the resources of some researchers. RAPM provides effective single-GPU diffusion distillation training with a batchsize of 1. The new method attempts to mimic the sampling trajectories of the teacher model by matching the relative and absolute positions. The design of relative positions is inspired by PCM. Two discriminators are introduced accordingly in RAPM, one for matching relative positions and the other for absolute positions. Experimental results on StableDiffusion (SD) V1.5 and SDXL indicate that RAPM with 4 timesteps produces comparable FID scores as the best method with 1 timestep under very limited computational resources.
☆ Quantum Neural Network Restatement of Markov Jump Process
Despite the many challenges in exploratory data analysis, artificial neural networks have motivated strong interests in scientists and researchers both in theoretical as well as practical applications. Among sources of such popularity of artificial neural networks the ability of modeling non-linear dynamical systems, generalization, and adaptation possibilities should be mentioned. Despite this, there is still significant debate about the role of various underlying stochastic processes in stabilizing a unique structure for data learning and prediction. One of such obstacles to the theoretical and numerical study of machine intelligent systems is the curse of dimensionality and the sampling from high-dimensional probability distributions. In general, this curse prevents efficient description of states, providing a significant complexity barrier for the system to be efficiently described and studied. In this strand of research, direct treatment and description of such abstract notions of learning theory in terms of quantum information be one of the most favorable candidates. Hence, the subject matter of these articles is devoted to problems of design, adaptation and the formulations of computationally hard problems in terms of quantum mechanical systems. In order to characterize the microscopic description of such dynamics in the language of inferential statistics, covariance matrix estimation of d-dimensional Gaussian densities and Bayesian interpretation of eigenvalue problem for dynamical systems is assessed.
☆ Emotion Detection and Music Recommendation System
As artificial intelligence becomes more and more ingrained in daily life, we present a novel system that uses deep learning for music recommendation and emotion-based detection. Through the use of facial recognition and the DeepFace framework, our method analyses human emotions in real-time and then plays music that reflects the mood it has discovered. The system uses a webcam to take pictures, analyses the most common facial expression, and then pulls a playlist from local storage that corresponds to the mood it has detected. An engaging and customised experience is ensured by allowing users to manually change the song selection via a dropdown menu or navigation buttons. By continuously looping over the playlist, the technology guarantees continuity. The objective of our system is to improve emotional well-being through music therapy by offering a responsive and automated music-selection experience.
Graph-Enhanced Model-Free Reinforcement Learning Agents for Efficient Power Grid Topological Control
The increasing complexity of power grid management, driven by the emergence of prosumers and the demand for cleaner energy solutions, has needed innovative approaches to ensure stability and efficiency. This paper presents a novel approach within the model-free framework of reinforcement learning, aimed at optimizing power network operations without prior expert knowledge. We introduce a masked topological action space, enabling agents to explore diverse strategies for cost reduction while maintaining reliable service using the state logic as a guide for choosing proper actions. Through extensive experimentation across 20 different scenarios in a simulated 5-substation environment, we demonstrate that our approach achieves a consistent reduction in power losses, while ensuring grid stability against potential blackouts. The results underscore the effectiveness of combining dynamic observation formalization with opponent-based training, showing a viable way for autonomous management solutions in modern energy systems or even for building a foundational model for this field.
☆ Inductive Link Prediction on N-ary Relational Facts via Semantic Hypergraph Reasoning KDD
N-ary relational facts represent semantic correlations among more than two entities. While recent studies have developed link prediction (LP) methods to infer missing relations for knowledge graphs (KGs) containing n-ary relational facts, they are generally limited to transductive settings. Fully inductive settings, where predictions are made on previously unseen entities, remain a significant challenge. As existing methods are mainly entity embedding-based, they struggle to capture entity-independent logical rules. To fill in this gap, we propose an n-ary subgraph reasoning framework for fully inductive link prediction (ILP) on n-ary relational facts. This framework reasons over local subgraphs and has a strong inductive inference ability to capture n-ary patterns. Specifically, we introduce a novel graph structure, the n-ary semantic hypergraph, to facilitate subgraph extraction. Moreover, we develop a subgraph aggregating network, NS-HART, to effectively mine complex semantic correlations within subgraphs. Theoretically, we provide a thorough analysis from the score function optimization perspective to shed light on NS-HART's effectiveness for n-ary ILP tasks. Empirically, we conduct extensive experiments on a series of inductive benchmarks, including transfer reasoning (with and without entity features) and pairwise subgraph reasoning. The results highlight the superiority of the n-ary subgraph reasoning framework and the exceptional inductive ability of NS-HART. The source code of this paper has been made publicly available at https://github.com/yin-gz/Nary-Inductive-SubGraph.
comment: To be published in Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V.1 (KDD'25)
☆ Probabilistic Forecasting for Network Resource Analysis in Integrated Terrestrial and Non-Terrestrial Networks
Efficient resource management is critical for Non-Terrestrial Networks (NTNs) to provide consistent, high-quality service in remote and under-served regions. While traditional single-point prediction methods, such as Long-Short Term Memory (LSTM), have been used in terrestrial networks, they often fall short in NTNs due to the complexity of satellite dynamics, signal latency and coverage variability. Probabilistic forecasting, which quantifies the uncertainties of the predictions, is a robust alternative. In this paper, we evaluate the application of probabilistic forecasting techniques, in particular SFF, to NTN resource allocation scenarios. Our results show their effectiveness in predicting bandwidth and capacity requirements in different NTN segments of probabilistic forecasting compared to single-point prediction techniques such as LSTM. The results show the potential of black probabilistic forecasting models to provide accurate and reliable predictions and to quantify their uncertainty, making them indispensable for optimizing NTN resource allocation. At the end of the paper, we also present application scenarios and a standardization roadmap for the use of probabilistic forecasting in integrated Terrestrial Network (TN)-NTN environments.
☆ AccidentSim: Generating Physically Realistic Vehicle Collision Videos from Real-World Accident Reports
Collecting real-world vehicle accident videos for autonomous driving research is challenging due to their rarity and complexity. While existing driving video generation methods may produce visually realistic videos, they often fail to deliver physically realistic simulations because they lack the capability to generate accurate post-collision trajectories. In this paper, we introduce AccidentSim, a novel framework that generates physically realistic vehicle collision videos by extracting and utilizing the physical clues and contextual information available in real-world vehicle accident reports. Specifically, AccidentSim leverages a reliable physical simulator to replicate post-collision vehicle trajectories from the physical and contextual information in the accident reports and to build a vehicle collision trajectory dataset. This dataset is then used to fine-tune a language model, enabling it to respond to user prompts and predict physically consistent post-collision trajectories across various driving scenarios based on user descriptions. Finally, we employ Neural Radiance Fields (NeRF) to render high-quality backgrounds, merging them with the foreground vehicles that exhibit physically realistic trajectories to generate vehicle collision videos. Experimental results demonstrate that the videos produced by AccidentSim excel in both visual and physical authenticity.
☆ TN-Eval: Rubric and Evaluation Protocols for Measuring the Quality of Behavioral Therapy Notes
Behavioral therapy notes are important for both legal compliance and patient care. Unlike progress notes in physical health, quality standards for behavioral therapy notes remain underdeveloped. To address this gap, we collaborated with licensed therapists to design a comprehensive rubric for evaluating therapy notes across key dimensions: completeness, conciseness, and faithfulness. Further, we extend a public dataset of behavioral health conversations with therapist-written notes and LLM-generated notes, and apply our evaluation framework to measure their quality. We find that: (1) A rubric-based manual evaluation protocol offers more reliable and interpretable results than traditional Likert-scale annotations. (2) LLMs can mimic human evaluators in assessing completeness and conciseness but struggle with faithfulness. (3) Therapist-written notes often lack completeness and conciseness, while LLM-generated notes contain hallucination. Surprisingly, in a blind test, therapists prefer and judge LLM-generated notes to be superior to therapist-written notes.
☆ Procedural Knowledge Ontology (PKO)
Processes, workflows and guidelines are core to ensure the correct functioning of industrial companies: for the successful operations of factory lines, machinery or services, often industry operators rely on their past experience and know-how. The effect is that this Procedural Knowledge (PK) remains tacit and, as such, difficult to exploit efficiently and effectively. This paper presents PKO, the Procedural Knowledge Ontology, which enables the explicit modeling of procedures and their executions, by reusing and extending existing ontologies. PKO is built on requirements collected from three heterogeneous industrial use cases and can be exploited by any AI and data-driven tools that rely on a shared and interoperable representation to support the governance of PK throughout its life cycle. We describe its structure and design methodology, and outline its relevance, quality, and impact by discussing applications leveraging PKO for PK elicitation and exploitation.
☆ $β$-GNN: A Robust Ensemble Approach Against Graph Structure Perturbation
Graph Neural Networks (GNNs) are playing an increasingly important role in the efficient operation and security of computing systems, with applications in workload scheduling, anomaly detection, and resource management. However, their vulnerability to network perturbations poses a significant challenge. We propose $\beta$-GNN, a model enhancing GNN robustness without sacrificing clean data performance. $\beta$-GNN uses a weighted ensemble, combining any GNN with a multi-layer perceptron. A learned dynamic weight, $\beta$, modulates the GNN's contribution. This $\beta$ not only weights GNN influence but also indicates data perturbation levels, enabling proactive mitigation. Experimental results on diverse datasets show $\beta$-GNN's superior adversarial accuracy and attack severity quantification. Crucially, $\beta$-GNN avoids perturbation assumptions, preserving clean data structure and performance.
comment: This is the author's version of the paper accepted at EuroMLSys 2025
☆ Collaborative Storytelling and LLM: A Linguistic Analysis of Automatically-Generated Role-Playing Game Sessions
Role-playing games (RPG) are games in which players interact with one another to create narratives. The role of players in the RPG is largely based on the interaction between players and their characters. This emerging form of shared narrative, primarily oral, is receiving increasing attention. In particular, many authors investigated the use of an LLM as an actor in the game. In this paper, we aim to discover to what extent the language of Large Language Models (LLMs) exhibit oral or written features when asked to generate an RPG session without human interference. We will conduct a linguistic analysis of the lexical and syntactic features of the generated texts and compare the results with analyses of conversations, transcripts of human RPG sessions, and books. We found that LLMs exhibit a pattern that is distinct from all other text categories, including oral conversations, human RPG sessions and books. Our analysis has shown how training influences the way LLMs express themselves and provides important indications of the narrative capabilities of these tools.
comment: 17 pages
☆ State-Aware Perturbation Optimization for Robust Deep Reinforcement Learning
Recently, deep reinforcement learning (DRL) has emerged as a promising approach for robotic control. However, the deployment of DRL in real-world robots is hindered by its sensitivity to environmental perturbations. While existing whitebox adversarial attacks rely on local gradient information and apply uniform perturbations across all states to evaluate DRL robustness, they fail to account for temporal dynamics and state-specific vulnerabilities. To combat the above challenge, we first conduct a theoretical analysis of white-box attacks in DRL by establishing the adversarial victim-dynamics Markov decision process (AVD-MDP), to derive the necessary and sufficient conditions for a successful attack. Based on this, we propose a selective state-aware reinforcement adversarial attack method, named STAR, to optimize perturbation stealthiness and state visitation dispersion. STAR first employs a soft mask-based state-targeting mechanism to minimize redundant perturbations, enhancing stealthiness and attack effectiveness. Then, it incorporates an information-theoretic optimization objective to maximize mutual information between perturbations, environmental states, and victim actions, ensuring a dispersed state-visitation distribution that steers the victim agent into vulnerable states for maximum return reduction. Extensive experiments demonstrate that STAR outperforms state-of-the-art benchmarks.
comment: 15 pages, 11 figures
☆ A decision-theoretic approach to dealing with uncertainty in quantum mechanics
We provide a decision-theoretic framework for dealing with uncertainty in quantum mechanics. This uncertainty is two-fold: on the one hand there may be uncertainty about the state the quantum system is in, and on the other hand, as is essential to quantum mechanical uncertainty, even if the quantum state is known, measurements may still produce an uncertain outcome. In our framework, measurements therefore play the role of acts with an uncertain outcome and our simple decision-theoretic postulates ensure that Born's rule is encapsulated in the utility functions associated with such acts. This approach allows us to uncouple (precise) probability theory from quantum mechanics, in the sense that it leaves room for a more general, so-called imprecise probabilities approach. We discuss the mathematical implications of our findings, which allow us to give a decision-theoretic foundation to recent seminal work by Benavoli, Facchini and Zaffalon, and we compare our approach to earlier and different approaches by Deutsch and Wallace.
comment: 52 pages
☆ StableToolBench-MirrorAPI: Modeling Tool Environments as Mirrors of 7,000+ Real-World APIs
The rapid advancement of large language models (LLMs) has spurred significant interest in tool learning, where LLMs are augmented with external tools to tackle complex tasks. However, existing tool environments face challenges in balancing stability, scalability, and realness, particularly for benchmarking purposes. To address this problem, we propose MirrorAPI, a novel framework that trains specialized LLMs to accurately simulate real API responses, effectively acting as "mirrors" to tool environments. Using a comprehensive dataset of request-response pairs from 7,000+ APIs, we employ supervised fine-tuning and chain-of-thought reasoning to enhance simulation fidelity. MirrorAPI achieves superior accuracy and stability compared to state-of-the-art methods, as demonstrated by its performance on the newly constructed MirrorAPI-Bench and its integration into StableToolBench.
☆ GAIA-2: A Controllable Multi-View Generative World Model for Autonomous Driving
Generative models offer a scalable and flexible paradigm for simulating complex environments, yet current approaches fall short in addressing the domain-specific requirements of autonomous driving - such as multi-agent interactions, fine-grained control, and multi-camera consistency. We introduce GAIA-2, Generative AI for Autonomy, a latent diffusion world model that unifies these capabilities within a single generative framework. GAIA-2 supports controllable video generation conditioned on a rich set of structured inputs: ego-vehicle dynamics, agent configurations, environmental factors, and road semantics. It generates high-resolution, spatiotemporally consistent multi-camera videos across geographically diverse driving environments (UK, US, Germany). The model integrates both structured conditioning and external latent embeddings (e.g., from a proprietary driving model) to facilitate flexible and semantically grounded scene synthesis. Through this integration, GAIA-2 enables scalable simulation of both common and rare driving scenarios, advancing the use of generative world models as a core tool in the development of autonomous systems. Videos are available at https://wayve.ai/thinking/gaia-2.
comment: Technical Report
☆ Design and Evaluation of Neural Network-Based Receiver Architectures for Reliable Communication
Neural network-based receivers leverage deep learning to optimize signal detection and decoding, significantly improving bit-error rate (BER) and block-error rate (BLER) in challenging environments. This study evaluates various architectures and compares their BER and BLER performance across different noise levels. Two novel models, the Dual Attention Transformer (DAT) and the Residual Dual Non-Local Attention Network (RDNLA), integrate self-attention and residual learning to enhance signal reconstruction. These models bypass conventional channel estimation and equalization by directly predicting log-likelihood ratios (LLRs) from received signals, with noise variance as an additional input. Simulations show that DAT and RDNLA outperform traditional and other neural receiver models under varying signal-to-noise ratios (SNR), while their computational efficiency supports their feasibility for next-generation communication systems.
comment: Will be submitted to IEEE Conference
☆ Towards Efficient and General-Purpose Few-Shot Misclassification Detection for Vision-Language Models
Reliable prediction by classifiers is crucial for their deployment in high security and dynamically changing situations. However, modern neural networks often exhibit overconfidence for misclassified predictions, highlighting the need for confidence estimation to detect errors. Despite the achievements obtained by existing methods on small-scale datasets, they all require training from scratch and there are no efficient and effective misclassification detection (MisD) methods, hindering practical application towards large-scale and ever-changing datasets. In this paper, we pave the way to exploit vision language model (VLM) leveraging text information to establish an efficient and general-purpose misclassification detection framework. By harnessing the power of VLM, we construct FSMisD, a Few-Shot prompt learning framework for MisD to refrain from training from scratch and therefore improve tuning efficiency. To enhance misclassification detection ability, we use adaptive pseudo sample generation and a novel negative loss to mitigate the issue of overconfidence by pushing category prompts away from pseudo features. We conduct comprehensive experiments with prompt learning methods and validate the generalization ability across various datasets with domain shift. Significant and consistent improvement demonstrates the effectiveness, efficiency and generalizability of our approach.
comment: preprint
☆ Underwater Image Enhancement by Convolutional Spiking Neural Networks
Underwater image enhancement (UIE) is fundamental for marine applications, including autonomous vision-based navigation. Deep learning methods using convolutional neural networks (CNN) and vision transformers advanced UIE performance. Recently, spiking neural networks (SNN) have gained attention for their lightweight design, energy efficiency, and scalability. This paper introduces UIE-SNN, the first SNN-based UIE algorithm to improve visibility of underwater images. UIE-SNN is a 19- layered convolutional spiking encoder-decoder framework with skip connections, directly trained using surrogate gradient-based backpropagation through time (BPTT) strategy. We explore and validate the influence of training datasets on energy reduction, a unique advantage of UIE-SNN architecture, in contrast to the conventional learning-based architectures, where energy consumption is model-dependent. UIE-SNN optimizes the loss function in latent space representation to reconstruct clear underwater images. Our algorithm performs on par with its non-spiking counterpart methods in terms of PSNR and structural similarity index (SSIM) at reduced timesteps ($T=5$) and energy consumption of $85\%$. The algorithm is trained on two publicly available benchmark datasets, UIEB and EUVP, and tested on unseen images from UIEB, EUVP, LSUI, U45, and our custom UIE dataset. The UIE-SNN algorithm achieves PSNR of \(17.7801~dB\) and SSIM of \(0.7454\) on UIEB, and PSNR of \(23.1725~dB\) and SSIM of \(0.7890\) on EUVP. UIE-SNN achieves this algorithmic performance with fewer operators (\(147.49\) GSOPs) and energy (\(0.1327~J\)) compared to its non-spiking counterpart (GFLOPs = \(218.88\) and Energy=\(1.0068~J\)). Compared with existing SOTA UIE methods, UIE-SNN achieves an average of \(6.5\times\) improvement in energy efficiency. The source code is available at \href{https://github.com/vidya-rejul/UIE-SNN.git}{UIE-SNN}.
☆ Contrastive Learning Guided Latent Diffusion Model for Image-to-Image Translation
The diffusion model has demonstrated superior performance in synthesizing diverse and high-quality images for text-guided image translation. However, there remains room for improvement in both the formulation of text prompts and the preservation of reference image content. First, variations in target text prompts can significantly influence the quality of the generated images, and it is often challenging for users to craft an optimal prompt that fully captures the content of the input image. Second, while existing models can introduce desired modifications to specific regions of the reference image, they frequently induce unintended alterations in areas that should remain unchanged. To address these challenges, we propose pix2pix-zeroCon, a zero-shot diffusion-based method that eliminates the need for additional training by leveraging patch-wise contrastive loss. Specifically, we automatically determine the editing direction in the text embedding space based on the reference image and target prompts. Furthermore, to ensure precise content and structural preservation in the edited image, we introduce cross-attention guiding loss and patch-wise contrastive loss between the generated and original image embeddings within a pre-trained diffusion model. Notably, our approach requires no additional training and operates directly on a pre-trained text-to-image diffusion model. Extensive experiments demonstrate that our method surpasses existing models in image-to-image translation, achieving enhanced fidelity and controllability.
comment: 11 pages, 13 figures
☆ A multi-agentic framework for real-time, autonomous freeform metasurface design
Innovation in nanophotonics currently relies on human experts who synergize specialized knowledge in photonics and coding with simulation and optimization algorithms, entailing design cycles that are time-consuming, computationally demanding, and frequently suboptimal. We introduce MetaChat, a multi-agentic design framework that can translate semantically described photonic design goals into high-performance, freeform device layouts in an automated, nearly real-time manner. Multi-step reasoning is enabled by our Agentic Iterative Monologue (AIM) paradigm, which coherently interfaces agents with code-based tools, other specialized agents, and human designers. Design acceleration is facilitated by Feature-wise Linear Modulation-conditioned Maxwell surrogate solvers that support the generalized evaluation of metasurface structures. We use freeform dielectric metasurfaces as a model system and demonstrate with MetaChat the design of multi-objective, multi-wavelength metasurfaces orders of magnitude faster than conventional methods. These concepts present a scientific computing blueprint for utilizing specialist design agents, surrogate solvers, and human interactions to drive multi-physics innovation and discovery.
comment: 32 pages, 5 figures
☆ From Trial to Triumph: Advancing Long Video Understanding via Visual Context Sample Scaling and Self-reward Alignment
Multi-modal Large language models (MLLMs) show remarkable ability in video understanding. Nevertheless, understanding long videos remains challenging as the models can only process a finite number of frames in a single inference, potentially omitting crucial visual information. To address the challenge, we propose generating multiple predictions through visual context sampling, followed by a scoring mechanism to select the final prediction. Specifically, we devise a bin-wise sampling strategy that enables MLLMs to generate diverse answers based on various combinations of keyframes, thereby enriching the visual context. To determine the final prediction from the sampled answers, we employ a self-reward by linearly combining three scores: (1) a frequency score indicating the prevalence of each option, (2) a marginal confidence score reflecting the inter-intra sample certainty of MLLM predictions, and (3) a reasoning score for different question types, including clue-guided answering for global questions and temporal self-refocusing for local questions. The frequency score ensures robustness through majority correctness, the confidence-aligned score reflects prediction certainty, and the typed-reasoning score addresses cases with sparse key visual information using tailored strategies. Experiments show that this approach covers the correct answer for a high percentage of long video questions, on seven datasets show that our method improves the performance of three MLLMs.
☆ Attention Xception UNet (AXUNet): A Novel Combination of CNN and Self-Attention for Brain Tumor Segmentation
Accurate segmentation of glioma brain tumors is crucial for diagnosis and treatment planning. Deep learning techniques offer promising solutions, but optimal model architectures remain under investigation. We used the BraTS 2021 dataset, selecting T1 with contrast enhancement (T1CE), T2, and Fluid-Attenuated Inversion Recovery (FLAIR) sequences for model development. The proposed Attention Xception UNet (AXUNet) architecture integrates an Xception backbone with dot-product self-attention modules, inspired by state-of-the-art (SOTA) large language models such as Google Bard and OpenAI ChatGPT, within a UNet-shaped model. We compared AXUNet with SOTA models. Comparative evaluation on the test set demonstrated improved results over baseline models. Inception-UNet and Xception-UNet achieved mean Dice scores of 90.88 and 93.24, respectively. Attention ResUNet (AResUNet) attained a mean Dice score of 92.80, with the highest score of 84.92 for enhancing tumor (ET) among all models. Attention Gate UNet (AGUNet) yielded a mean Dice score of 90.38. AXUNet outperformed all models with a mean Dice score of 93.73. It demonstrated superior Dice scores across whole tumor (WT) and tumor core (TC) regions, achieving 92.59 for WT, 86.81 for TC, and 84.89 for ET. The integration of the Xception backbone and dot-product self-attention mechanisms in AXUNet showcases enhanced performance in capturing spatial and contextual information. The findings underscore the potential utility of AXUNet in facilitating precise tumor delineation.
☆ Evaluating Facial Expression Recognition Datasets for Deep Learning: A Benchmark Study with Novel Similarity Metrics
This study investigates the key characteristics and suitability of widely used Facial Expression Recognition (FER) datasets for training deep learning models. In the field of affective computing, FER is essential for interpreting human emotions, yet the performance of FER systems is highly contingent on the quality and diversity of the underlying datasets. To address this issue, we compiled and analyzed 24 FER datasets, including those targeting specific age groups such as children, adults, and the elderly, and processed them through a comprehensive normalization pipeline. In addition, we enriched the datasets with automatic annotations for age and gender, enabling a more nuanced evaluation of their demographic properties. To further assess dataset efficacy, we introduce three novel metricsLocal, Global, and Paired Similarity, which quantitatively measure dataset difficulty, generalization capability, and cross-dataset transferability. Benchmark experiments using state-of-the-art neural networks reveal that large-scale, automatically collected datasets (e.g., AffectNet, FER2013) tend to generalize better, despite issues with labeling noise and demographic biases, whereas controlled datasets offer higher annotation quality but limited variability. Our findings provide actionable recommendations for dataset selection and design, advancing the development of more robust, fair, and effective FER systems.
☆ Perspective-Shifted Neuro-Symbolic World Models: A Framework for Socially-Aware Robot Navigation
Navigating in environments alongside humans requires agents to reason under uncertainty and account for the beliefs and intentions of those around them. Under a sequential decision-making framework, egocentric navigation can naturally be represented as a Markov Decision Process (MDP). However, social navigation additionally requires reasoning about the hidden beliefs of others, inherently leading to a Partially Observable Markov Decision Process (POMDP), where agents lack direct access to others' mental states. Inspired by Theory of Mind and Epistemic Planning, we propose (1) a neuro-symbolic model-based reinforcement learning architecture for social navigation, addressing the challenge of belief tracking in partially observable environments; and (2) a perspective-shift operator for belief estimation, leveraging recent work on Influence-based Abstractions (IBA) in structured multi-agent settings.
☆ Including local feature interactions in deep non-negative matrix factorization networks improves performance
The brain uses positive signals as a means of signaling. Forward interactions in the early visual cortex are also positive, realized by excitatory synapses. Only local interactions also include inhibition. Non-negative matrix factorization (NMF) captures the biological constraint of positive long-range interactions and can be implemented with stochastic spikes. While NMF can serve as an abstract formalization of early neural processing in the visual system, the performance of deep convolutional networks with NMF modules does not match that of CNNs of similar size. However, when the local NMF modules are each followed by a module that mixes the NMF's positive activities, the performances on the benchmark data exceed that of vanilla deep convolutional networks of similar size. This setting can be considered a biologically more plausible emulation of the processing in cortical (hyper-)columns with the potential to improve the performance of deep networks.
☆ FastFT: Accelerating Reinforced Feature Transformation via Advanced Exploration Strategies ICDE 2025
Feature Transformation is crucial for classic machine learning that aims to generate feature combinations to enhance the performance of downstream tasks from a data-centric perspective. Current methodologies, such as manual expert-driven processes, iterative-feedback techniques, and exploration-generative tactics, have shown promise in automating such data engineering workflow by minimizing human involvement. However, three challenges remain in those frameworks: (1) It predominantly depends on downstream task performance metrics, as assessment is time-consuming, especially for large datasets. (2) The diversity of feature combinations will hardly be guaranteed after random exploration ends. (3) Rare significant transformations lead to sparse valuable feedback that hinders the learning processes or leads to less effective results. In response to these challenges, we introduce FastFT, an innovative framework that leverages a trio of advanced strategies.We first decouple the feature transformation evaluation from the outcomes of the generated datasets via the performance predictor. To address the issue of reward sparsity, we developed a method to evaluate the novelty of generated transformation sequences. Incorporating this novelty into the reward function accelerates the model's exploration of effective transformations, thereby improving the search productivity. Additionally, we combine novelty and performance to create a prioritized memory buffer, ensuring that essential experiences are effectively revisited during exploration. Our extensive experimental evaluations validate the performance, efficiency, and traceability of our proposed framework, showcasing its superiority in handling complex feature transformation tasks.
comment: 14 pages, Accepted by ICDE 2025
☆ MoLe-VLA: Dynamic Layer-skipping Vision Language Action Model via Mixture-of-Layers for Efficient Robot Manipulation
Multimodal Large Language Models (MLLMs) excel in understanding complex language and visual data, enabling generalist robotic systems to interpret instructions and perform embodied tasks. Nevertheless, their real-world deployment is hindered by substantial computational and storage demands. Recent insights into the homogeneous patterns in the LLM layer have inspired sparsification techniques to address these challenges, such as early exit and token pruning. However, these methods often neglect the critical role of the final layers that encode the semantic information most relevant to downstream robotic tasks. Aligning with the recent breakthrough of the Shallow Brain Hypothesis (SBH) in neuroscience and the mixture of experts in model sparsification, we conceptualize each LLM layer as an expert and propose a Mixture-of-Layers Vision-Language-Action model (MoLe-VLA, or simply MoLe) architecture for dynamic LLM layer activation. We introduce a Spatial-Temporal Aware Router (STAR) for MoLe to selectively activate only parts of the layers based on the robot's current state, mimicking the brain's distinct signal pathways specialized for cognition and causal reasoning. Additionally, to compensate for the cognitive ability of LLMs lost in MoLe, we devise a Cognition Self-Knowledge Distillation (CogKD) framework. CogKD enhances the understanding of task demands and improves the generation of task-relevant action sequences by leveraging cognitive features. Extensive experiments conducted in both RLBench simulation and real-world environments demonstrate the superiority of MoLe-VLA in both efficiency and performance. Specifically, MoLe-VLA achieves an 8% improvement in the mean success rate across ten tasks while reducing computational costs by up to x5.6 compared to standard LLMs.
☆ VideoGEM: Training-free Action Grounding in Videos
Vision-language foundation models have shown impressive capabilities across various zero-shot tasks, including training-free localization and grounding, primarily focusing on localizing objects in images. However, leveraging those capabilities to localize actions and events in videos is challenging, as actions have less physical outline and are usually described by higher-level concepts. In this work, we propose VideoGEM, the first training-free spatial action grounding method based on pretrained image- and video-language backbones. Namely, we adapt the self-self attention formulation of GEM to spatial activity grounding. We observe that high-level semantic concepts, such as actions, usually emerge in the higher layers of the image- and video-language models. We, therefore, propose a layer weighting in the self-attention path to prioritize higher layers. Additionally, we introduce a dynamic weighting method to automatically tune layer weights to capture each layer`s relevance to a specific prompt. Finally, we introduce a prompt decomposition, processing action, verb, and object prompts separately, resulting in a better spatial localization of actions. We evaluate the proposed approach on three image- and video-language backbones, CLIP, OpenCLIP, and ViCLIP, and on four video grounding datasets, V-HICO, DALY, YouCook-Interactions, and GroundingYouTube, showing that the proposed training-free approach is able to outperform current trained state-of-the-art approaches for spatial video grounding.
☆ Wasserstein Distributionally Robust Bayesian Optimization with Continuous Context
We address the challenge of sequential data-driven decision-making under context distributional uncertainty. This problem arises in numerous real-world scenarios where the learner optimizes black-box objective functions in the presence of uncontrollable contextual variables. We consider the setting where the context distribution is uncertain but known to lie within an ambiguity set defined as a ball in the Wasserstein distance. We propose a novel algorithm for Wasserstein Distributionally Robust Bayesian Optimization that can handle continuous context distributions while maintaining computational tractability. Our theoretical analysis combines recent results in self-normalized concentration in Hilbert spaces and finite-sample bounds for distributionally robust optimization to establish sublinear regret bounds that match state-of-the-art results. Through extensive comparisons with existing approaches on both synthetic and real-world problems, we demonstrate the simplicity, effectiveness, and practical applicability of our proposed method.
☆ Iterative Prompting with Persuasion Skills in Jailbreaking Large Language Models
Large language models (LLMs) are designed to align with human values in their responses. This study exploits LLMs with an iterative prompting technique where each prompt is systematically modified and refined across multiple iterations to enhance its effectiveness in jailbreaking attacks progressively. This technique involves analyzing the response patterns of LLMs, including GPT-3.5, GPT-4, LLaMa2, Vicuna, and ChatGLM, allowing us to adjust and optimize prompts to evade the LLMs' ethical and security constraints. Persuasion strategies enhance prompt effectiveness while maintaining consistency with malicious intent. Our results show that the attack success rates (ASR) increase as the attacking prompts become more refined with the highest ASR of 90% for GPT4 and ChatGLM and the lowest ASR of 68% for LLaMa2. Our technique outperforms baseline techniques (PAIR and PAP) in ASR and shows comparable performance with GCG and ArtPrompt.
☆ A Multilingual, Culture-First Approach to Addressing Misgendering in LLM Applications
Misgendering is the act of referring to someone by a gender that does not match their chosen identity. It marginalizes and undermines a person's sense of self, causing significant harm. English-based approaches have clear-cut approaches to avoiding misgendering, such as the use of the pronoun ``they''. However, other languages pose unique challenges due to both grammatical and cultural constructs. In this work we develop methodologies to assess and mitigate misgendering across 42 languages and dialects using a participatory-design approach to design effective and appropriate guardrails across all languages. We test these guardrails in a standard large language model-based application (meeting transcript summarization), where both the data generation and the annotation steps followed a human-in-the-loop approach. We find that the proposed guardrails are very effective in reducing misgendering rates across all languages in the summaries generated, and without incurring loss of quality. Our human-in-the-loop approach demonstrates a method to feasibly scale inclusive and responsible AI-based solutions across multiple languages and cultures.
☆ Context-Aware Weakly Supervised Image Manipulation Localization with SAM Refinement
Malicious image manipulation poses societal risks, increasing the importance of effective image manipulation detection methods. Recent approaches in image manipulation detection have largely been driven by fully supervised approaches, which require labor-intensive pixel-level annotations. Thus, it is essential to explore weakly supervised image manipulation localization methods that only require image-level binary labels for training. However, existing weakly supervised image manipulation methods overlook the importance of edge information for accurate localization, leading to suboptimal localization performance. To address this, we propose a Context-Aware Boundary Localization (CABL) module to aggregate boundary features and learn context-inconsistency for localizing manipulated areas. Furthermore, by leveraging Class Activation Mapping (CAM) and Segment Anything Model (SAM), we introduce the CAM-Guided SAM Refinement (CGSR) module to generate more accurate manipulation localization maps. By integrating two modules, we present a novel weakly supervised framework based on a dual-branch Transformer-CNN architecture. Our method achieves outstanding localization performance across multiple datasets.
☆ CryoSAMU: Enhancing 3D Cryo-EM Density Maps of Protein Structures at Intermediate Resolution with Structure-Aware Multimodal U-Nets
Enhancing cryogenic electron microscopy (cryo-EM) 3D density maps at intermediate resolution (4-8 {\AA}) is crucial in protein structure determination. Recent advances in deep learning have led to the development of automated approaches for enhancing experimental cryo-EM density maps. Yet, these methods are not optimized for intermediate-resolution maps and rely on map density features alone. To address this, we propose CryoSAMU, a novel method designed to enhance 3D cryo-EM density maps of protein structures using structure-aware multimodal U-Nets and trained on curated intermediate-resolution density maps. We comprehensively evaluate CryoSAMU across various metrics and demonstrate its competitive performance compared to state-of-the-art methods. Notably, CryoSAMU achieves significantly faster processing speed, showing promise for future practical applications. Our code is available at https://github.com/chenwei-zhang/CryoSAMU.
comment: 18 pages, 6 main figures, 2 supplementary figures, 3 main tables, 4 supplementary tables
☆ QualiSpeech: A Speech Quality Assessment Dataset with Natural Language Reasoning and Descriptions
This paper explores a novel perspective to speech quality assessment by leveraging natural language descriptions, offering richer, more nuanced insights than traditional numerical scoring methods. Natural language feedback provides instructive recommendations and detailed evaluations, yet existing datasets lack the comprehensive annotations needed for this approach. To bridge this gap, we introduce QualiSpeech, a comprehensive low-level speech quality assessment dataset encompassing 11 key aspects and detailed natural language comments that include reasoning and contextual insights. Additionally, we propose the QualiSpeech Benchmark to evaluate the low-level speech understanding capabilities of auditory large language models (LLMs). Experimental results demonstrate that finetuned auditory LLMs can reliably generate detailed descriptions of noise and distortion, effectively identifying their types and temporal characteristics. The results further highlight the potential for incorporating reasoning to enhance the accuracy and reliability of quality assessments. The dataset will be released at https://huggingface.co/datasets/tsinghua-ee/QualiSpeech.
comment: 23 pages, 16 figures
☆ Model-Based Offline Reinforcement Learning with Adversarial Data Augmentation
Model-based offline Reinforcement Learning (RL) constructs environment models from offline datasets to perform conservative policy optimization. Existing approaches focus on learning state transitions through ensemble models, rollouting conservative estimation to mitigate extrapolation errors. However, the static data makes it challenging to develop a robust policy, and offline agents cannot access the environment to gather new data. To address these challenges, we introduce Model-based Offline Reinforcement learning with AdversariaL data augmentation (MORAL). In MORAL, we replace the fixed horizon rollout by employing adversaria data augmentation to execute alternating sampling with ensemble models to enrich training data. Specifically, this adversarial process dynamically selects ensemble models against policy for biased sampling, mitigating the optimistic estimation of fixed models, thus robustly expanding the training data for policy optimization. Moreover, a differential factor is integrated into the adversarial process for regularization, ensuring error minimization in extrapolations. This data-augmented optimization adapts to diverse offline tasks without rollout horizon tuning, showing remarkable applicability. Extensive experiments on D4RL benchmark demonstrate that MORAL outperforms other model-based offline RL methods in terms of policy learning and sample efficiency.
☆ Faster Parameter-Efficient Tuning with Token Redundancy Reduction CVPR 2025
Parameter-efficient tuning (PET) aims to transfer pre-trained foundation models to downstream tasks by learning a small number of parameters. Compared to traditional fine-tuning, which updates the entire model, PET significantly reduces storage and transfer costs for each task regardless of exponentially increasing pre-trained model capacity. However, most PET methods inherit the inference latency of their large backbone models and often introduce additional computational overhead due to additional modules (e.g. adapters), limiting their practicality for compute-intensive applications. In this paper, we propose Faster Parameter-Efficient Tuning (FPET), a novel approach that enhances inference speed and training efficiency while maintaining high storage efficiency. Specifically, we introduce a plug-and-play token redundancy reduction module delicately designed for PET. This module refines tokens from the self-attention layer using an adapter to learn the accurate similarity between tokens and cuts off the tokens through a fully-differentiable token merging strategy, which uses a straight-through estimator for optimal token reduction. Experimental results prove that our FPET achieves faster inference and higher memory efficiency than the pre-trained backbone while keeping competitive performance on par with state-of-the-art PET methods.
comment: CVPR 2025 Camera-ready
☆ Are We There Yet? Unraveling the State-of-the-Art Graph Network Intrusion Detection Systems
Network Intrusion Detection Systems (NIDS) are vital for ensuring enterprise security. Recently, Graph-based NIDS (GIDS) have attracted considerable attention because of their capability to effectively capture the complex relationships within the graph structures of data communications. Despite their promise, the reproducibility and replicability of these GIDS remain largely unexplored, posing challenges for developing reliable and robust detection systems. This study bridges this gap by designing a systematic approach to evaluate state-of-the-art GIDS, which includes critically assessing, extending, and clarifying the findings of these systems. We further assess the robustness of GIDS under adversarial attacks. Evaluations were conducted on three public datasets as well as a newly collected large-scale enterprise dataset. Our findings reveal significant performance discrepancies, highlighting challenges related to dataset scale, model inputs, and implementation settings. We demonstrate difficulties in reproducing and replicating results, particularly concerning false positive rates and robustness against adversarial attacks. This work provides valuable insights and recommendations for future research, emphasizing the importance of rigorous reproduction and replication studies in developing robust and generalizable GIDS solutions.
☆ sudo rm -rf agentic_security
Large Language Models (LLMs) are increasingly deployed as computer-use agents, autonomously performing tasks within real desktop or web environments. While this evolution greatly expands practical use cases for humans, it also creates serious security exposures. We present SUDO (Screen-based Universal Detox2Tox Offense), a novel attack framework that systematically bypasses refusal trained safeguards in commercial computer-use agents, such as Claude Computer Use. The core mechanism, Detox2Tox, transforms harmful requests (that agents initially reject) into seemingly benign requests via detoxification, secures detailed instructions from advanced vision language models (VLMs), and then reintroduces malicious content via toxification just before execution. Unlike conventional jailbreaks, SUDO iteratively refines its attacks based on a built-in refusal feedback, making it increasingly effective against robust policy filters. In extensive tests spanning 50 real-world tasks and multiple state-of-the-art VLMs, SUDO achieves a stark attack success rate of 24% (with no refinement), and up to 41% (by its iterative refinement) in Claude Computer Use. By revealing these vulnerabilities and demonstrating the ease with which they can be exploited in real-world computing environments, this paper highlights an immediate need for robust, context-aware safeguards. WARNING: This paper includes harmful or offensive model outputs.
☆ LogicQA: Logical Anomaly Detection with Vision Language Model Generated Questions
Anomaly Detection (AD) focuses on detecting samples that differ from the standard pattern, making it a vital tool in process control. Logical anomalies may appear visually normal yet violate predefined constraints on object presence, arrangement, or quantity, depending on reasoning and explainability. We introduce LogicQA, a framework that enhances AD by providing industrial operators with explanations for logical anomalies. LogicQA compiles automatically generated questions into a checklist and collects responses to identify violations of logical constraints. LogicQA is training-free, annotation-free, and operates in a few-shot setting. We achieve state-of-the-art (SOTA) Logical AD performance on public benchmarks, MVTec LOCO AD, with an AUROC of 87.6 percent and an F1-max of 87.0 percent along with the explanations of anomalies. Also, our approach has shown outstanding performance on semiconductor SEM corporate data, further validating its effectiveness in industrial applications.
☆ ESSR: An 8K@30FPS Super-Resolution Accelerator With Edge Selective Network
Deep learning-based super-resolution (SR) is challenging to implement in resource-constrained edge devices for resolutions beyond full HD due to its high computational complexity and memory bandwidth requirements. This paper introduces an 8K@30FPS SR accelerator with edge-selective dynamic input processing. Dynamic processing chooses the appropriate subnets for different patches based on simple input edge criteria, achieving a 50\% MAC reduction with only a 0.1dB PSNR decrease. The quality of reconstruction images is guaranteed and maximized its potential with \textit{resource adaptive model switching} even under resource constraints. In conjunction with hardware-specific refinements, the model size is reduced by 84\% to 51K, but with a decrease of less than 0.6dB PSNR. Additionally, to support dynamic processing with high utilization, this design incorporates a \textit{configurable group of layer mapping} that synergizes with the \textit{structure-friendly fusion block}, resulting in 77\% hardware utilization and up to 79\% reduction in feature SRAM access. The implementation, using the TSMC 28nm process, can achieve 8K@30FPS throughput at 800MHz with a gate count of 2749K, 0.2075W power consumption, and 4797Mpixels/J energy efficiency, exceeding previous work.
☆ LGR: LLM-Guided Ranking of Frontiers for Object Goal Navigation
Object Goal Navigation (OGN) is a fundamental task for robots and AI, with key applications such as mobile robot image databases (MRID). In particular, mapless OGN is essential in scenarios involving unknown or dynamic environments. This study aims to enhance recent modular mapless OGN systems by leveraging the commonsense reasoning capabilities of large language models (LLMs). Specifically, we address the challenge of determining the visiting order in frontier-based exploration by framing it as a frontier ranking problem. Our approach is grounded in recent findings that, while LLMs cannot determine the absolute value of a frontier, they excel at evaluating the relative value between multiple frontiers viewed within a single image using the view image as context. We dynamically manage the frontier list by adding and removing elements, using an LLM as a ranking model. The ranking results are represented as reciprocal rank vectors, which are ideal for multi-view, multi-query information fusion. We validate the effectiveness of our method through evaluations in Habitat-Sim.
comment: 10 pages, 11 figures, technical report
Dynamic Learning and Productivity for Data Analysts: A Bayesian Hidden Markov Model Perspective
Data analysts are essential in organizations, transforming raw data into insights that drive decision-making and strategy. This study explores how analysts' productivity evolves on a collaborative platform, focusing on two key learning activities: writing queries and viewing peer queries. While traditional research often assumes static models, where performance improves steadily with cumulative learning, such models fail to capture the dynamic nature of real-world learning. To address this, we propose a Hidden Markov Model (HMM) that tracks how analysts transition between distinct learning states based on their participation in these activities. Using an industry dataset with 2,001 analysts and 79,797 queries, this study identifies three learning states: novice, intermediate, and advanced. Productivity increases as analysts advance to higher states, reflecting the cumulative benefits of learning. Writing queries benefits analysts across all states, with the largest gains observed for novices. Viewing peer queries supports novices but may hinder analysts in higher states due to cognitive overload or inefficiencies. Transitions between states are also uneven, with progression from intermediate to advanced being particularly challenging. This study advances understanding of into dynamic learning behavior of knowledge worker and offers practical implications for designing systems, optimizing training, enabling personalized learning, and fostering effective knowledge sharing.
comment: 29 pages; a shorter 11-page version is accepted by HCI International (HCII) 2025;
Dynamics of Algorithmic Content Amplification on TikTok
Intelligent algorithms increasingly shape the content we encounter and engage with online. TikTok's For You feed exemplifies extreme algorithm-driven curation, tailoring the stream of video content almost exclusively based on users' explicit and implicit interactions with the platform. Despite growing attention, the dynamics of content amplification on TikTok remain largely unquantified. How quickly, and to what extent, does TikTok's algorithm amplify content aligned with users' interests? To address these questions, we conduct a sock-puppet audit, deploying bots with different interests to engage with TikTok's "For You" feed. Our findings reveal that content aligned with the bots' interests undergoes strong amplification, with rapid reinforcement typically occurring within the first 200 videos watched. While amplification is consistently observed across all interests, its intensity varies by interest, indicating the emergence of topic-specific biases. Time series analyses and Markov models uncover distinct phases of recommendation dynamics, including persistent content reinforcement and a gradual decline in content diversity over time. Although TikTok's algorithm preserves some content diversity, we find a strong negative correlation between amplification and exploration: as the amplification of interest-aligned content increases, engagement with unseen hashtags declines. These findings contribute to discussions on socio-algorithmic feedback loops in the digital age and the trade-offs between personalization and content diversity.
comment: 34 pages
☆ TraNCE: Transformative Non-linear Concept Explainer for CNNs
Convolutional neural networks (CNNs) have succeeded remarkably in various computer vision tasks. However, they are not intrinsically explainable. While the feature-level understanding of CNNs reveals where the models looked, concept-based explainability methods provide insights into what the models saw. However, their assumption of linear reconstructability of image activations fails to capture the intricate relationships within these activations. Their Fidelity-only approach to evaluating global explanations also presents a new concern. For the first time, we address these limitations with the novel Transformative Nonlinear Concept Explainer (TraNCE) for CNNs. Unlike linear reconstruction assumptions made by existing methods, TraNCE captures the intricate relationships within the activations. This study presents three original contributions to the CNN explainability literature: (i) An automatic concept discovery mechanism based on variational autoencoders (VAEs). This transformative concept discovery process enhances the identification of meaningful concepts from image activations. (ii) A visualization module that leverages the Bessel function to create a smooth transition between prototypical image pixels, revealing not only what the CNN saw but also what the CNN avoided, thereby mitigating the challenges of concept duplication as documented in previous works. (iii) A new metric, the Faith score, integrates both Coherence and Fidelity for a comprehensive evaluation of explainer faithfulness and consistency.
☆ Advancements in Natural Language Processing: Exploring Transformer-Based Architectures for Text Understanding
Natural Language Processing (NLP) has witnessed a transformative leap with the advent of transformer-based architectures, which have significantly enhanced the ability of machines to understand and generate human-like text. This paper explores the advancements in transformer models, such as BERT and GPT, focusing on their superior performance in text understanding tasks compared to traditional methods like recurrent neural networks (RNNs). By analyzing statistical properties through visual representations-including probability density functions of text length distributions and feature space classifications-the study highlights the models' proficiency in handling long-range dependencies, adapting to conditional shifts, and extracting features for classification, even with overlapping classes. Drawing on recent 2024 research, including enhancements in multi-hop knowledge graph reasoning and context-aware chat interactions, the paper outlines a methodology involving data preparation, model selection, pretraining, fine-tuning, and evaluation. The results demonstrate state-of-the-art performance on benchmarks like GLUE and SQuAD, with F1 scores exceeding 90%, though challenges such as high computational costs persist. This work underscores the pivotal role of transformers in modern NLP and suggests future directions, including efficiency optimization and multimodal integration, to further advance language-based AI systems.
comment: This paper has been accepted by the 5th International Conference on Artificial Intelligence and Industrial Technology Applications (AIITA 2025)
☆ Learning Adaptive Dexterous Grasping from Single Demonstrations
How can robots learn dexterous grasping skills efficiently and apply them adaptively based on user instructions? This work tackles two key challenges: efficient skill acquisition from limited human demonstrations and context-driven skill selection. We introduce AdaDexGrasp, a framework that learns a library of grasping skills from a single human demonstration per skill and selects the most suitable one using a vision-language model (VLM). To improve sample efficiency, we propose a trajectory following reward that guides reinforcement learning (RL) toward states close to a human demonstration while allowing flexibility in exploration. To learn beyond the single demonstration, we employ curriculum learning, progressively increasing object pose variations to enhance robustness. At deployment, a VLM retrieves the appropriate skill based on user instructions, bridging low-level learned skills with high-level intent. We evaluate AdaDexGrasp in both simulation and real-world settings, showing that our approach significantly improves RL efficiency and enables learning human-like grasp strategies across varied object configurations. Finally, we demonstrate zero-shot transfer of our learned policies to a real-world PSYONIC Ability Hand, with a 90% success rate across objects, significantly outperforming the baseline.
☆ Generalized Phase Pressure Control Enhanced Reinforcement Learning for Traffic Signal Control
Appropriate traffic state representation is crucial for learning traffic signal control policies. However, most of the current traffic state representations are heuristically designed, with insufficient theoretical support. In this paper, we (1) develop a flexible, efficient, and theoretically grounded method, namely generalized phase pressure (G2P) control, which takes only simple lane features into consideration to decide which phase to be actuated; 2) extend the pressure control theory to a general form for multi-homogeneous-lane road networks based on queueing theory; (3) design a new traffic state representation based on the generalized phase state features from G2P control; and 4) develop a reinforcement learning (RL)-based algorithm template named G2P-XLight, and two RL algorithms, G2P-MPLight and G2P-CoLight, by combining the generalized phase state representation with MPLight and CoLight, two well-performed RL methods for learning traffic signal control policies. Extensive experiments conducted on multiple real-world datasets demonstrate that G2P control outperforms the state-of-the-art (SOTA) heuristic method in the transportation field and other recent human-designed heuristic methods; and that the newly proposed G2P-XLight significantly outperforms SOTA learning-based approaches. Our code is available online.
☆ SARGes: Semantically Aligned Reliable Gesture Generation via Intent Chain
Co-speech gesture generation enhances human-computer interaction realism through speech-synchronized gesture synthesis. However, generating semantically meaningful gestures remains a challenging problem. We propose SARGes, a novel framework that leverages large language models (LLMs) to parse speech content and generate reliable semantic gesture labels, which subsequently guide the synthesis of meaningful co-speech gestures.First, we constructed a comprehensive co-speech gesture ethogram and developed an LLM-based intent chain reasoning mechanism that systematically parses and decomposes gesture semantics into structured inference steps following ethogram criteria, effectively guiding LLMs to generate context-aware gesture labels. Subsequently, we constructed an intent chain-annotated text-to-gesture label dataset and trained a lightweight gesture label generation model, which then guides the generation of credible and semantically coherent co-speech gestures. Experimental results demonstrate that SARGes achieves highly semantically-aligned gesture labeling (50.2% accuracy) with efficient single-pass inference (0.4 seconds). The proposed method provides an interpretable intent reasoning pathway for semantic gesture synthesis.
Assessing SAM for Tree Crown Instance Segmentation from Drone Imagery ICLR 2025
The potential of tree planting as a natural climate solution is often undermined by inadequate monitoring of tree planting projects. Current monitoring methods involve measuring trees by hand for each species, requiring extensive cost, time, and labour. Advances in drone remote sensing and computer vision offer great potential for mapping and characterizing trees from aerial imagery, and large pre-trained vision models, such as the Segment Anything Model (SAM), may be a particularly compelling choice given limited labeled data. In this work, we compare SAM methods for the task of automatic tree crown instance segmentation in high resolution drone imagery of young tree plantations. We explore the potential of SAM for this task, and find that methods using SAM out-of-the-box do not outperform a custom Mask R-CNN, even with well-designed prompts, but that there is potential for methods which tune SAM further. We also show that predictions can be improved by adding Digital Surface Model (DSM) information as an input.
comment: ICLR 2025 ML4RS workshop
☆ Leveraging Implicit Sentiments: Enhancing Reliability and Validity in Psychological Trait Evaluation of LLMs
Recent advancements in Large Language Models (LLMs) have led to their increasing integration into human life. With the transition from mere tools to human-like assistants, understanding their psychological aspects-such as emotional tendencies and personalities-becomes essential for ensuring their trustworthiness. However, current psychological evaluations of LLMs, often based on human psychological assessments like the BFI, face significant limitations. The results from these approaches often lack reliability and have limited validity when predicting LLM behavior in real-world scenarios. In this work, we introduce a novel evaluation instrument specifically designed for LLMs, called Core Sentiment Inventory (CSI). CSI is a bilingual tool, covering both English and Chinese, that implicitly evaluates models' sentiment tendencies, providing an insightful psychological portrait of LLM across three dimensions: optimism, pessimism, and neutrality. Through extensive experiments, we demonstrate that: 1) CSI effectively captures nuanced emotional patterns, revealing significant variation in LLMs across languages and contexts; 2) Compared to current approaches, CSI significantly improves reliability, yielding more consistent results; and 3) The correlation between CSI scores and the sentiment of LLM's real-world outputs exceeds 0.85, demonstrating its strong validity in predicting LLM behavior. We make CSI public available via: https://github.com/dependentsign/CSI.
comment: Code available via https://github.com/dependentsign/CSI
☆ Offline Reinforcement Learning with Discrete Diffusion Skills
Skills have been introduced to offline reinforcement learning (RL) as temporal abstractions to tackle complex, long-horizon tasks, promoting consistent behavior and enabling meaningful exploration. While skills in offline RL are predominantly modeled within a continuous latent space, the potential of discrete skill spaces remains largely underexplored. In this paper, we propose a compact discrete skill space for offline RL tasks supported by state-of-the-art transformer-based encoder and diffusion-based decoder. Coupled with a high-level policy trained via offline RL techniques, our method establishes a hierarchical RL framework where the trained diffusion decoder plays a pivotal role. Empirical evaluations show that the proposed algorithm, Discrete Diffusion Skill (DDS), is a powerful offline RL method. DDS performs competitively on Locomotion and Kitchen tasks and excels on long-horizon tasks, achieving at least a 12 percent improvement on AntMaze-v2 benchmarks compared to existing offline RL approaches. Furthermore, DDS offers improved interpretability, training stability, and online exploration compared to previous skill-based methods.
☆ Look Before Leap: Look-Ahead Planning with Uncertainty in Reinforcement Learning
Model-based reinforcement learning (MBRL) has demonstrated superior sample efficiency compared to model-free reinforcement learning (MFRL). However, the presence of inaccurate models can introduce biases during policy learning, resulting in misleading trajectories. The challenge lies in obtaining accurate models due to limited diverse training data, particularly in regions with limited visits (uncertain regions). Existing approaches passively quantify uncertainty after sample generation, failing to actively collect uncertain samples that could enhance state coverage and improve model accuracy. Moreover, MBRL often faces difficulties in making accurate multi-step predictions, thereby impacting overall performance. To address these limitations, we propose a novel framework for uncertainty-aware policy optimization with model-based exploratory planning. In the model-based planning phase, we introduce an uncertainty-aware k-step lookahead planning approach to guide action selection at each step. This process involves a trade-off analysis between model uncertainty and value function approximation error, effectively enhancing policy performance. In the policy optimization phase, we leverage an uncertainty-driven exploratory policy to actively collect diverse training samples, resulting in improved model accuracy and overall performance of the RL agent. Our approach offers flexibility and applicability to tasks with varying state/action spaces and reward structures. We validate its effectiveness through experiments on challenging robotic manipulation tasks and Atari games, surpassing state-of-the-art methods with fewer interactions, thereby leading to significant performance improvements.
☆ Unlocking the Value of Decentralized Data: A Federated Dual Learning Approach for Model Aggregation
Artificial Intelligence (AI) technologies have revolutionized numerous fields, yet their applications often rely on costly and time-consuming data collection processes. Federated Learning (FL) offers a promising alternative by enabling AI models to be trained on decentralized data where data is scattered across clients (distributed nodes). However, existing FL approaches struggle to match the performance of centralized training due to challenges such as heterogeneous data distribution and communication delays, limiting their potential for breakthroughs. We observe that many real-world use cases involve hybrid data regimes, in which a server (center node) has access to some data while a large amount of data is distributed across associated clients. To improve the utilization of decentralized data under this regime, address data heterogeneity issue, and facilitate asynchronous communication between the server and clients, we propose a dual learning approach that leverages centralized data at the server to guide the merging of model updates from clients. Our method accommodates scenarios where server data is out-of-domain relative to decentralized client data, making it applicable to a wide range of use cases. We provide theoretical analysis demonstrating the faster convergence of our method compared to existing methods. Furthermore, experimental results across various scenarios show that our approach significantly outperforms existing technologies, highlighting its potential to unlock the value of large amounts of decentralized data.
☆ Can We Make Code Green? Understanding Trade-Offs in LLMs vs. Human Code Optimizations
The rapid technological evolution has accelerated software development for various domains and use cases, contributing to a growing share of global carbon emissions. While recent large language models (LLMs) claim to assist developers in optimizing code for performance and energy efficiency, their efficacy in real-world scenarios remains under exploration. In this work, we explore the effectiveness of LLMs in reducing the environmental footprint of real-world projects, focusing on software written in Matlab-widely used in both academia and industry for scientific and engineering applications. We analyze energy-focused optimization on 400 scripts across 100 top GitHub repositories. We examine potential 2,176 optimizations recommended by leading LLMs, such as GPT-3, GPT-4, Llama, and Mixtral, and a senior Matlab developer, on energy consumption, memory usage, execution time consumption, and code correctness. The developer serves as a real-world baseline for comparing typical human and LLM-generated optimizations. Mapping these optimizations to 13 high-level themes, we found that LLMs propose a broad spectrum of improvements--beyond energy efficiency--including improving code readability and maintainability, memory management, error handling while the developer overlooked some parallel processing, error handling etc. However, our statistical tests reveal that the energy-focused optimizations unexpectedly negatively impacted memory usage, with no clear benefits regarding execution time or energy consumption. Our qualitative analysis of energy-time trade-offs revealed that some themes, such as vectorization preallocation, were among the common themes shaping these trade-offs. With LLMs becoming ubiquitous in modern software development, our study serves as a call to action: prioritizing the evaluation of common coding practices to identify the green ones.
☆ Synthesizing world models for bilevel planning
Modern reinforcement learning (RL) systems have demonstrated remarkable capabilities in complex environments, such as video games. However, they still fall short of achieving human-like sample efficiency and adaptability when learning new domains. Theory-based reinforcement learning (TBRL) is an algorithmic framework specifically designed to address this gap. Modeled on cognitive theories, TBRL leverages structured, causal world models - "theories" - as forward simulators for use in planning, generalization and exploration. Although current TBRL systems provide compelling explanations of how humans learn to play video games, they face several technical limitations: their theory languages are restrictive, and their planning algorithms are not scalable. To address these challenges, we introduce TheoryCoder, an instantiation of TBRL that exploits hierarchical representations of theories and efficient program synthesis methods for more powerful learning and planning. TheoryCoder equips agents with general-purpose abstractions (e.g., "move to"), which are then grounded in a particular environment by learning a low-level transition model (a Python program synthesized from observations by a large language model). A bilevel planning algorithm can exploit this hierarchical structure to solve large domains. We demonstrate that this approach can be successfully applied to diverse and challenging grid-world games, where approaches based on directly synthesizing a policy perform poorly. Ablation studies demonstrate the benefits of using hierarchical abstractions.
comment: 25 pages
☆ The Art of Tool Interface Design
We present an agentic framework, Thinker, which achieves state of art performance in challenging reasoning tasks for realistic customer service scenarios that involve complex business logic and human interactions via long horizons. On the $\tau$-bench retail dataset, Thinker achieves 82.6\% success rate with GPT-4o (version 2024-06-01) (baseline: 68.3\%), and 81.9\% success rate with Llama-3.1 405B (baseline: 49.6\%), without any fine-tuning. Thinker effectively closes the gap in reasoning capabilities between the base models by introducing proper structure. The key features of the Thinker framework are: (1) State-Machine Augmented Generation (SMAG), which represents business logic as state machines and the LLM uses state machines as tools. (2) Delegation of tasks from the main reasoning loop to LLM-powered tools. (3) Adaptive context management. Our prompting-only solution achieves signficant gains, while still maintaining a standard agentic architecture with a ReAct style reasoning loop. The key is to innovate on the tool interface design, as exemplified by SMAG and the LLM-powered tools.
☆ Can Large Language Models Predict Associations Among Human Attitudes?
Prior work has shown that large language models (LLMs) can predict human attitudes based on other attitudes, but this work has largely focused on predictions from highly similar and interrelated attitudes. In contrast, human attitudes are often strongly associated even across disparate and dissimilar topics. Using a novel dataset of human responses toward diverse attitude statements, we found that a frontier language model (GPT-4o) was able to recreate the pairwise correlations among individual attitudes and to predict individuals' attitudes from one another. Crucially, in an advance over prior work, we tested GPT-4o's ability to predict in the absence of surface-similarity between attitudes, finding that while surface similarity improves prediction accuracy, the model was still highly-capable of generating meaningful social inferences between dissimilar attitudes. Altogether, our findings indicate that LLMs capture crucial aspects of the deeper, latent structure of human belief systems.
☆ Improving User Behavior Prediction: Leveraging Annotator Metadata in Supervised Machine Learning Models SC
Supervised machine-learning models often underperform in predicting user behaviors from conversational text, hindered by poor crowdsourced label quality and low NLP task accuracy. We introduce the Metadata-Sensitive Weighted-Encoding Ensemble Model (MSWEEM), which integrates annotator meta-features like fatigue and speeding. First, our results show MSWEEM outperforms standard ensembles by 14\% on held-out data and 12\% on an alternative dataset. Second, we find that incorporating signals of annotator behavior, such as speed and fatigue, significantly boosts model performance. Third, we find that annotators with higher qualifications, such as Master's, deliver more consistent and faster annotations. Given the increasing uncertainty over annotation quality, our experiments show that understanding annotator patterns is crucial for enhancing model accuracy in user behavior prediction.
comment: Accepted at CSCW 2025
☆ FinAudio: A Benchmark for Audio Large Language Models in Financial Applications
Audio Large Language Models (AudioLLMs) have received widespread attention and have significantly improved performance on audio tasks such as conversation, audio understanding, and automatic speech recognition (ASR). Despite these advancements, there is an absence of a benchmark for assessing AudioLLMs in financial scenarios, where audio data, such as earnings conference calls and CEO speeches, are crucial resources for financial analysis and investment decisions. In this paper, we introduce \textsc{FinAudio}, the first benchmark designed to evaluate the capacity of AudioLLMs in the financial domain. We first define three tasks based on the unique characteristics of the financial domain: 1) ASR for short financial audio, 2) ASR for long financial audio, and 3) summarization of long financial audio. Then, we curate two short and two long audio datasets, respectively, and develop a novel dataset for financial audio summarization, comprising the \textsc{FinAudio} benchmark. Then, we evaluate seven prevalent AudioLLMs on \textsc{FinAudio}. Our evaluation reveals the limitations of existing AudioLLMs in the financial domain and offers insights for improving AudioLLMs. All datasets and codes will be released.
☆ Patients Speak, AI Listens: LLM-based Analysis of Online Reviews Uncovers Key Drivers for Urgent Care Satisfaction
Investigating the public experience of urgent care facilities is essential for promoting community healthcare development. Traditional survey methods often fall short due to limited scope, time, and spatial coverage. Crowdsourcing through online reviews or social media offers a valuable approach to gaining such insights. With recent advancements in large language models (LLMs), extracting nuanced perceptions from reviews has become feasible. This study collects Google Maps reviews across the DMV and Florida areas and conducts prompt engineering with the GPT model to analyze the aspect-based sentiment of urgent care. We first analyze the geospatial patterns of various aspects, including interpersonal factors, operational efficiency, technical quality, finances, and facilities. Next, we determine Census Block Group(CBG)-level characteristics underpinning differences in public perception, including population density, median income, GINI Index, rent-to-income ratio, household below poverty rate, no insurance rate, and unemployment rate. Our results show that interpersonal factors and operational efficiency emerge as the strongest determinants of patient satisfaction in urgent care, while technical quality, finances, and facilities show no significant independent effects when adjusted for in multivariate models. Among socioeconomic and demographic factors, only population density demonstrates a significant but modest association with patient ratings, while the remaining factors exhibit no significant correlations. Overall, this study highlights the potential of crowdsourcing to uncover the key factors that matter to residents and provide valuable insights for stakeholders to improve public satisfaction with urgent care.
☆ Competitive Multi-armed Bandit Games for Resource Sharing
In modern resource-sharing systems, multiple agents access limited resources with unknown stochastic conditions to perform tasks. When multiple agents access the same resource (arm) simultaneously, they compete for successful usage, leading to contention and reduced rewards. This motivates our study of competitive multi-armed bandit (CMAB) games. In this paper, we study a new N-player K-arm competitive MAB game, where non-myopic players (agents) compete with each other to form diverse private estimations of unknown arms over time. Their possible collisions on same arms and time-varying nature of arm rewards make the policy analysis more involved than existing studies for myopic players. We explicitly analyze the threshold-based structures of social optimum and existing selfish policy, showing that the latter causes prolonged convergence time $\Omega(\frac{K}{\eta^2}\ln({\frac{KN}{\delta}}))$, while socially optimal policy with coordinated communication reduces it to $\mathcal{O}(\frac{K}{N\eta^2}\ln{(\frac{K}{\delta})})$. Based on the comparison, we prove that the competition among selfish players for the best arm can result in an infinite price of anarchy (PoA), indicating an arbitrarily large efficiency loss compared to social optimum. We further prove that no informational (non-monetary) mechanism (including Bayesian persuasion) can reduce the infinite PoA, as the strategic misreporting by non-myopic players undermines such approaches. To address this, we propose a Combined Informational and Side-Payment (CISP) mechanism, which provides socially optimal arm recommendations with proper informational and monetary incentives to players according to their time-varying private beliefs. Our CISP mechanism keeps ex-post budget balanced for social planner and ensures truthful reporting from players, achieving the minimum PoA=1 and same convergence time as social optimum.
comment: This paper has been accepted by IEEE TMC
☆ Sociotechnical Effects of Machine Translation
While the previous chapters have shown how machine translation (MT) can be useful, in this chapter we discuss some of the side-effects and risks that are associated, and how they might be mitigated. With the move to neural MT and approaches using Large Language Models (LLMs), there is an associated impact on climate change, as the models built by multinational corporations are massive. They are hugely expensive to train, consume large amounts of electricity, and output huge volumes of kgCO2 to boot. However, smaller models which still perform to a high level of quality can be built with much lower carbon footprints, and tuning pre-trained models saves on the requirement to train from scratch. We also discuss the possible detrimental effects of MT on translators and other users. The topics of copyright and ownership of data are discussed, as well as ethical considerations on data and MT use. Finally, we show how if done properly, using MT in crisis scenarios can save lives, and we provide a method of how this might be done.
☆ TS-Inverse: A Gradient Inversion Attack Tailored for Federated Time Series Forecasting Models
Federated learning (FL) for time series forecasting (TSF) enables clients with privacy-sensitive time series (TS) data to collaboratively learn accurate forecasting models, for example, in energy load prediction. Unfortunately, privacy risks in FL persist, as servers can potentially reconstruct clients' training data through gradient inversion attacks (GIA). Although GIA is demonstrated for image classification tasks, little is known about time series regression tasks. In this paper, we first conduct an extensive empirical study on inverting TS data across 4 TSF models and 4 datasets, identifying the unique challenges of reconstructing both observations and targets of TS data. We then propose TS-Inverse, a novel GIA that improves the inversion of TS data by (i) learning a gradient inversion model that outputs quantile predictions, (ii) a unique loss function that incorporates periodicity and trend regularization, and (iii) regularization according to the quantile predictions. Our evaluations demonstrate a remarkable performance of TS-Inverse, achieving at least a 2x-10x improvement in terms of the sMAPE metric over existing GIA methods on TS data. Code repository: https://github.com/Capsar/ts-inverse
☆ DEMENTIA-PLAN: An Agent-Based Framework for Multi-Knowledge Graph Retrieval-Augmented Generation in Dementia Care AAAI 2025
Mild-stage dementia patients primarily experience two critical symptoms: severe memory loss and emotional instability. To address these challenges, we propose DEMENTIA-PLAN, an innovative retrieval-augmented generation framework that leverages large language models to enhance conversational support. Our model employs a multiple knowledge graph architecture, integrating various dimensional knowledge representations including daily routine graphs and life memory graphs. Through this multi-graph architecture, DEMENTIA-PLAN comprehensively addresses both immediate care needs and facilitates deeper emotional resonance through personal memories, helping stabilize patient mood while providing reliable memory support. Our notable innovation is the self-reflection planning agent, which systematically coordinates knowledge retrieval and semantic integration across multiple knowledge graphs, while scoring retrieved content from daily routine and life memory graphs to dynamically adjust their retrieval weights for optimized response generation. DEMENTIA-PLAN represents a significant advancement in the clinical application of large language models for dementia care, bridging the gap between AI tools and caregivers interventions.
comment: Accepted by AAAI 2025 Workshop on Knowledge Graphs for Personalized Public Health
☆ LATTE-MV: Learning to Anticipate Table Tennis Hits from Monocular Videos CVPR 2025
Physical agility is a necessary skill in competitive table tennis, but by no means sufficient. Champions excel in this fast-paced and highly dynamic environment by anticipating their opponent's intent - buying themselves the necessary time to react. In this work, we take one step towards designing such an anticipatory agent. Previous works have developed systems capable of real-time table tennis gameplay, though they often do not leverage anticipation. Among the works that forecast opponent actions, their approaches are limited by dataset size and variety. Our paper contributes (1) a scalable system for reconstructing monocular video of table tennis matches in 3D and (2) an uncertainty-aware controller that anticipates opponent actions. We demonstrate in simulation that our policy improves the ball return rate against high-speed hits from 49.9% to 59.0% as compared to a baseline non-anticipatory policy.
comment: CVPR 2025
☆ Prototype Guided Backdoor Defense
Deep learning models are susceptible to {\em backdoor attacks} involving malicious attackers perturbing a small subset of training data with a {\em trigger} to causes misclassifications. Various triggers have been used, including semantic triggers that are easily realizable without requiring the attacker to manipulate the image. The emergence of generative AI has eased the generation of varied poisoned samples. Robustness across types of triggers is crucial to effective defense. We propose Prototype Guided Backdoor Defense (PGBD), a robust post-hoc defense that scales across different trigger types, including previously unsolved semantic triggers. PGBD exploits displacements in the geometric spaces of activations to penalize movements toward the trigger. This is done using a novel sanitization loss of a post-hoc fine-tuning step. The geometric approach scales easily to all types of attacks. PGBD achieves better performance across all settings. We also present the first defense against a new semantic attack on celebrity face images. Project page: \hyperlink{https://venkatadithya9.github.io/pgbd.github.io/}{this https URL}.
☆ D4R -- Exploring and Querying Relational Graphs Using Natural Language and Large Language Models -- the Case of Historical Documents
D4R is a digital platform designed to assist non-technical users, particularly historians, in exploring textual documents through advanced graphical tools for text analysis and knowledge extraction. By leveraging a large language model, D4R translates natural language questions into Cypher queries, enabling the retrieval of data from a Neo4J database. A user-friendly graphical interface allows for intuitive interaction, enabling users to navigate and analyse complex relational data extracted from unstructured textual documents. Originally designed to bridge the gap between AI technologies and historical research, D4R's capabilities extend to various other domains. A demonstration video and a live software demo are available.
comment: 8 pages, 7 figures
☆ Assessing Generative Models for Structured Data
Synthetic tabular data generation has emerged as a promising method to address limited data availability and privacy concerns. With the sharp increase in the performance of large language models in recent years, researchers have been interested in applying these models to the generation of tabular data. However, little is known about the quality of the generated tabular data from large language models. The predominant method for assessing the quality of synthetic tabular data is the train-synthetic-test-real approach, where the artificial examples are compared to the original by how well machine learning models, trained separately on the real and synthetic sets, perform in some downstream tasks. This method does not directly measure how closely the distribution of generated data approximates that of the original. This paper introduces rigorous methods for directly assessing synthetic tabular data against real data by looking at inter-column dependencies within the data. We find that large language models (GPT-2), both when queried via few-shot prompting and when fine-tuned, and GAN (CTGAN) models do not produce data with dependencies that mirror the original real data. Results from this study can inform future practice in synthetic data generation to improve data quality.
☆ Robust Federated Learning Against Poisoning Attacks: A GAN-Based Defense Framework
Federated Learning (FL) enables collaborative model training across decentralized devices without sharing raw data, but it remains vulnerable to poisoning attacks that compromise model integrity. Existing defenses often rely on external datasets or predefined heuristics (e.g. number of malicious clients), limiting their effectiveness and scalability. To address these limitations, we propose a privacy-preserving defense framework that leverages a Conditional Generative Adversarial Network (cGAN) to generate synthetic data at the server for authenticating client updates, eliminating the need for external datasets. Our framework is scalable, adaptive, and seamlessly integrates into FL workflows. Extensive experiments on benchmark datasets demonstrate its robust performance against a variety of poisoning attacks, achieving high True Positive Rate (TPR) and True Negative Rate (TNR) of malicious and benign clients, respectively, while maintaining model accuracy. The proposed framework offers a practical and effective solution for securing federated learning systems.
☆ VinaBench: Benchmark for Faithful and Consistent Visual Narratives CVPR 2025
Visual narrative generation transforms textual narratives into sequences of images illustrating the content of the text. However, generating visual narratives that are faithful to the input text and self-consistent across generated images remains an open challenge, due to the lack of knowledge constraints used for planning the stories. In this work, we propose a new benchmark, VinaBench, to address this challenge. Our benchmark annotates the underlying commonsense and discourse constraints in visual narrative samples, offering systematic scaffolds for learning the implicit strategies of visual storytelling. Based on the incorporated narrative constraints, we further propose novel metrics to closely evaluate the consistency of generated narrative images and the alignment of generations with the input textual narrative. Our results across three generative vision models demonstrate that learning with VinaBench's knowledge constraints effectively improves the faithfulness and cohesion of generated visual narratives.
comment: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2025)
☆ Unified Multimodal Discrete Diffusion
Multimodal generative models that can understand and generate across multiple modalities are dominated by autoregressive (AR) approaches, which process tokens sequentially from left to right, or top to bottom. These models jointly handle images, text, video, and audio for various tasks such as image captioning, question answering, and image generation. In this work, we explore discrete diffusion models as a unified generative formulation in the joint text and image domain, building upon their recent success in text generation. Discrete diffusion models offer several advantages over AR models, including improved control over quality versus diversity of generated samples, the ability to perform joint multimodal inpainting (across both text and image domains), and greater controllability in generation through guidance. Leveraging these benefits, we present the first Unified Multimodal Discrete Diffusion (UniDisc) model which is capable of jointly understanding and generating text and images for a variety of downstream tasks. We compare UniDisc to multimodal AR models, performing a scaling analysis and demonstrating that UniDisc outperforms them in terms of both performance and inference-time compute, enhanced controllability, editability, inpainting, and flexible trade-off between inference time and generation quality. Code and additional visualizations are available at https://unidisc.github.io.
comment: Project Website: https://unidisc.github.io
☆ The Backfiring Effect of Weak AI Safety Regulation
Recent policy proposals aim to improve the safety of general-purpose AI, but there is little understanding of the efficacy of different regulatory approaches to AI safety. We present a strategic model that explores the interactions between the regulator, the general-purpose AI technology creators, and domain specialists--those who adapt the AI for specific applications. Our analysis examines how different regulatory measures, targeting different parts of the development chain, affect the outcome of the development process. In particular, we assume AI technology is described by two key attributes: safety and performance. The regulator first sets a minimum safety standard that applies to one or both players, with strict penalties for non-compliance. The general-purpose creator then develops the technology, establishing its initial safety and performance levels. Next, domain specialists refine the AI for their specific use cases, and the resulting revenue is distributed between the specialist and generalist through an ex-ante bargaining process. Our analysis of this game reveals two key insights: First, weak safety regulation imposed only on the domain specialists can backfire. While it might seem logical to regulate use cases (as opposed to the general-purpose technology), our analysis shows that weak regulations targeting domain specialists alone can unintentionally reduce safety. This effect persists across a wide range of settings. Second, in sharp contrast to the previous finding, we observe that stronger, well-placed regulation can in fact benefit all players subjected to it. When regulators impose appropriate safety standards on both AI creators and domain specialists, the regulation functions as a commitment mechanism, leading to safety and performance gains, surpassing what is achieved under no regulation or regulating one player only.
comment: 28 pages, 8 figures
☆ Robust Deep Reinforcement Learning in Robotics via Adaptive Gradient-Masked Adversarial Attacks
Deep reinforcement learning (DRL) has emerged as a promising approach for robotic control, but its realworld deployment remains challenging due to its vulnerability to environmental perturbations. Existing white-box adversarial attack methods, adapted from supervised learning, fail to effectively target DRL agents as they overlook temporal dynamics and indiscriminately perturb all state dimensions, limiting their impact on long-term rewards. To address these challenges, we propose the Adaptive Gradient-Masked Reinforcement (AGMR) Attack, a white-box attack method that combines DRL with a gradient-based soft masking mechanism to dynamically identify critical state dimensions and optimize adversarial policies. AGMR selectively allocates perturbations to the most impactful state features and incorporates a dynamic adjustment mechanism to balance exploration and exploitation during training. Extensive experiments demonstrate that AGMR outperforms state-of-the-art adversarial attack methods in degrading the performance of the victim agent and enhances the victim agent's robustness through adversarial defense mechanisms.
comment: 9 pages, 6 figures
☆ Advancing Vulnerability Classification with BERT: A Multi-Objective Learning Model
The rapid increase in cybersecurity vulnerabilities necessitates automated tools for analyzing and classifying vulnerability reports. This paper presents a novel Vulnerability Report Classifier that leverages the BERT (Bidirectional Encoder Representations from Transformers) model to perform multi-label classification of Common Vulnerabilities and Exposures (CVE) reports from the National Vulnerability Database (NVD). The classifier predicts both the severity (Low, Medium, High, Critical) and vulnerability types (e.g., Buffer Overflow, XSS) from textual descriptions. We introduce a custom training pipeline using a combined loss function-Cross-Entropy for severity and Binary Cross-Entropy with Logits for types-integrated into a Hugging Face Trainer subclass. Experiments on recent NVD data demonstrate promising results, with decreasing evaluation loss across epochs. The system is deployed via a REST API and a Streamlit UI, enabling real-time vulnerability analysis. This work contributes a scalable, open-source solution for cybersecurity practitioners to automate vulnerability triage.
comment: 9 Pages
☆ Exploiting Temporal State Space Sharing for Video Semantic Segmentation
Video semantic segmentation (VSS) plays a vital role in understanding the temporal evolution of scenes. Traditional methods often segment videos frame-by-frame or in a short temporal window, leading to limited temporal context, redundant computations, and heavy memory requirements. To this end, we introduce a Temporal Video State Space Sharing (TV3S) architecture to leverage Mamba state space models for temporal feature sharing. Our model features a selective gating mechanism that efficiently propagates relevant information across video frames, eliminating the need for a memory-heavy feature pool. By processing spatial patches independently and incorporating shifted operation, TV3S supports highly parallel computation in both training and inference stages, which reduces the delay in sequential state space processing and improves the scalability for long video sequences. Moreover, TV3S incorporates information from prior frames during inference, achieving long-range temporal coherence and superior adaptability to extended sequences. Evaluations on the VSPW and Cityscapes datasets reveal that our approach outperforms current state-of-the-art methods, establishing a new standard for VSS with consistent results across long video sequences. By achieving a good balance between accuracy and efficiency, TV3S shows a significant advancement in spatiotemporal modeling, paving the way for efficient video analysis. The code is publicly available at https://github.com/Ashesham/TV3S.git.
comment: IEEE/CVF Conference on Computer Vision and Pattern Recognition 2025
☆ Synthetic Video Enhances Physical Fidelity in Video Synthesis
We investigate how to enhance the physical fidelity of video generation models by leveraging synthetic videos derived from computer graphics pipelines. These rendered videos respect real-world physics, such as maintaining 3D consistency, and serve as a valuable resource that can potentially improve video generation models. To harness this potential, we propose a solution that curates and integrates synthetic data while introducing a method to transfer its physical realism to the model, significantly reducing unwanted artifacts. Through experiments on three representative tasks emphasizing physical consistency, we demonstrate its efficacy in enhancing physical fidelity. While our model still lacks a deep understanding of physics, our work offers one of the first empirical demonstrations that synthetic video enhances physical fidelity in video synthesis. Website: https://kevinz8866.github.io/simulation/
♻ ☆ A Survey on Event-driven 3D Reconstruction: Development under Different Categories
Event cameras have gained increasing attention for 3D reconstruction due to their high temporal resolution, low latency, and high dynamic range. They capture per-pixel brightness changes asynchronously, allowing accurate reconstruction under fast motion and challenging lighting conditions. In this survey, we provide a comprehensive review of event-driven 3D reconstruction methods, including stereo, monocular, and multimodal systems. We further categorize recent developments based on geometric, learning-based, and hybrid approaches. Emerging trends, such as neural radiance fields and 3D Gaussian splatting with event data, are also covered. The related works are structured chronologically to illustrate the innovations and progression within the field. To support future research, we also highlight key research gaps and future research directions in dataset, experiment, evaluation, event representation, etc.
comment: 6 pages, 1 figure, 6 tables, submitted to an anonymous conference under double-blind review
♻ ☆ CamSAM2: Segment Anything Accurately in Camouflaged Videos
Video camouflaged object segmentation (VCOS), aiming at segmenting camouflaged objects that seamlessly blend into their environment, is a fundamental vision task with various real-world applications. With the release of SAM2, video segmentation has witnessed significant progress. However, SAM2's capability of segmenting camouflaged videos is suboptimal, especially when given simple prompts such as point and box. To address the problem, we propose Camouflaged SAM2 (CamSAM2), which enhances SAM2's ability to handle camouflaged scenes without modifying SAM2's parameters. Specifically, we introduce a decamouflaged token to provide the flexibility of feature adjustment for VCOS. To make full use of fine-grained and high-resolution features from the current frame and previous frames, we propose implicit object-aware fusion (IOF) and explicit object-aware fusion (EOF) modules, respectively. Object prototype generation (OPG) is introduced to abstract and memorize object prototypes with informative details using high-quality features from previous frames. Extensive experiments are conducted to validate the effectiveness of our approach. While CamSAM2 only adds negligible learnable parameters to SAM2, it substantially outperforms SAM2 on three VCOS datasets, especially achieving 12.2 mDice gains with click prompt on MoCA-Mask and 19.6 mDice gains with mask prompt on SUN-SEG-Hard, with Hiera-T as the backbone. The code will be available at https://github.com/zhoustan/CamSAM2.
♻ ☆ PG-SAM: Prior-Guided SAM with Medical for Multi-organ Segmentation
Segment Anything Model (SAM) demonstrates powerful zero-shot capabilities; however, its accuracy and robustness significantly decrease when applied to medical image segmentation. Existing methods address this issue through modality fusion, integrating textual and image information to provide more detailed priors. In this study, we argue that the granularity of text and the domain gap affect the accuracy of the priors. Furthermore, the discrepancy between high-level abstract semantics and pixel-level boundary details in images can introduce noise into the fusion process. To address this, we propose Prior-Guided SAM (PG-SAM), which employs a fine-grained modality prior aligner to leverage specialized medical knowledge for better modality alignment. The core of our method lies in efficiently addressing the domain gap with fine-grained text from a medical LLM. Meanwhile, it also enhances the priors' quality after modality alignment, ensuring more accurate segmentation. In addition, our decoder enhances the model's expressive capabilities through multi-level feature fusion and iterative mask optimizer operations, supporting unprompted learning. We also propose a unified pipeline that effectively supplies high-quality semantic information to SAM. Extensive experiments on the Synapse dataset demonstrate that the proposed PG-SAM achieves state-of-the-art performance. Our code is released at https://github.com/logan-0623/PG-SAM.
♻ ☆ Multi-agent Application System in Office Collaboration Scenarios
This paper introduces a multi-agent application system designed to enhance office collaboration efficiency and work quality. The system integrates artificial intelligence, machine learning, and natural language processing technologies, achieving functionalities such as task allocation, progress monitoring, and information sharing. The agents within the system are capable of providing personalized collaboration support based on team members' needs and incorporate data analysis tools to improve decision-making quality. The paper also proposes an intelligent agent architecture that separates Plan and Solver, and through techniques such as multi-turn query rewriting and business tool retrieval, it enhances the agent's multi-intent and multi-turn dialogue capabilities. Furthermore, the paper details the design of tools and multi-turn dialogue in the context of office collaboration scenarios, and validates the system's effectiveness through experiments and evaluations. Ultimately, the system has demonstrated outstanding performance in real business applications, particularly in query understanding, task planning, and tool calling. Looking forward, the system is expected to play a more significant role in addressing complex interaction issues within dynamic environments and large-scale multi-agent systems.
comment: Technical report
♻ ☆ Scaling Laws of Synthetic Data for Language Models
Large language models (LLMs) achieve strong performance across diverse tasks, largely driven by high-quality web data used in pre-training. However, recent studies indicate this data source is rapidly depleting. Synthetic data emerges as a promising alternative, but it remains unclear whether synthetic datasets exhibit predictable scalability comparable to raw pre-training data. In this work, we systematically investigate the scaling laws of synthetic data by introducing SynthLLM, a scalable framework that transforms pre-training corpora into diverse, high-quality synthetic datasets. Our approach achieves this by automatically extracting and recombining high-level concepts across multiple documents using a graph algorithm. Key findings from our extensive mathematical experiments on SynthLLM include: (1) SynthLLM generates synthetic data that reliably adheres to the rectified scaling law across various model sizes; (2) Performance improvements plateau near 300B tokens; and (3) Larger models approach optimal performance with fewer training tokens. For instance, an 8B model peaks at 1T tokens, while a 3B model requires 4T. Moreover, comparisons with existing synthetic data generation and augmentation methods demonstrate that SynthLLM achieves superior performance and scalability. Our findings highlight synthetic data as a scalable and reliable alternative to organic pre-training corpora, offering a viable path toward continued improvement in model performance.
comment: work in progress
♻ ☆ RoboSpatial: Teaching Spatial Understanding to 2D and 3D Vision-Language Models for Robotics CVPR 2025
Spatial understanding is a crucial capability that enables robots to perceive their surroundings, reason about their environment, and interact with it meaningfully. In modern robotics, these capabilities are increasingly provided by vision-language models. However, these models face significant challenges in spatial reasoning tasks, as their training data are based on general-purpose image datasets that often lack sophisticated spatial understanding. For example, datasets frequently do not capture reference frame comprehension, yet effective spatial reasoning requires understanding whether to reason from ego-, world-, or object-centric perspectives. To address this issue, we introduce RoboSpatial, a large-scale dataset for spatial understanding in robotics. It consists of real indoor and tabletop scenes, captured as 3D scans and egocentric images, and annotated with rich spatial information relevant to robotics. The dataset includes 1M images, 5k 3D scans, and 3M annotated spatial relationships, and the pairing of 2D egocentric images with 3D scans makes it both 2D- and 3D- ready. Our experiments show that models trained with RoboSpatial outperform baselines on downstream tasks such as spatial affordance prediction, spatial relationship prediction, and robot manipulation.
comment: CVPR 2025
♻ ☆ Graph-Level Label-Only Membership Inference Attack against Graph Neural Networks
Graph neural networks (GNNs) are widely used for graph-structured data but are vulnerable to membership inference attacks (MIAs) in graph classification tasks, which determine if a graph was part of the training dataset, potentially causing data leakage. Existing MIAs rely on prediction probability vectors, but they become ineffective when only prediction labels are available. We propose a Graph-level Label-Only Membership Inference Attack (GLO-MIA), which is based on the intuition that the target model's predictions on training data are more stable than those on testing data. GLO-MIA generates a set of perturbed graphs for target graph by adding perturbations to its effective features and queries the target model with the perturbed graphs to get their prediction labels, which are then used to calculate robustness score of the target graph. Finally, by comparing the robustness score with a predefined threshold, the membership of the target graph can be inferred correctly with high probability. Our evaluation on three datasets and four GNN models shows that GLO-MIA achieves an attack accuracy of up to 0.825, outperforming baseline work by 8.5% and closely matching the performance of probability-based MIAs, even with only prediction labels.
♻ ☆ Three Kinds of AI Ethics
There is an overwhelming abundance of works in AI Ethics. This growth is chaotic because of how sudden it is, its volume, and its multidisciplinary nature. This makes difficult to keep track of debates, and to systematically characterize goals, research questions, methods, and expertise required by AI ethicists. In this article, I show that the relation between AI and ethics can be characterized in at least three ways, which correspond to three well-represented kinds of AI ethics: ethics and AI; ethics in AI; ethics of AI. I elucidate the features of these three kinds of AI Ethics, characterize their research questions, and identify the kind of expertise that each kind needs. I also show how certain criticisms to AI ethics are misplaced, as being done from the point of view of one kind of AI ethics, to another kind with different goals. All in all, this work sheds light on the nature of AI ethics, and sets the groundwork for more informed discussions about the scope, methods, and training of AI ethicists.
comment: 16 pages, two figures
♻ ☆ PRECTR: A Synergistic Framework for Integrating Personalized Search Relevance Matching and CTR Prediction
The two primary tasks in the search recommendation system are search relevance matching and click-through rate (CTR) prediction -- the former focuses on seeking relevant items for user queries whereas the latter forecasts which item may better match user interest. Prior research typically develops two models to predict the CTR and search relevance separately, then ranking candidate items based on the fusion of the two outputs. However, such a divide-and-conquer paradigm creates the inconsistency between different models. Meanwhile, the search relevance model mainly concentrates on the degree of objective text matching while neglecting personalized differences among different users, leading to restricted model performance. To tackle these issues, we propose a unified Personalized Search RElevance Matching and CTR Prediction Fusion Model(PRECTR). Specifically, based on the conditional probability fusion mechanism, PRECTR integrates the CTR prediction and search relevance matching into one framework to enhance the interaction and consistency of the two modules. However, directly optimizing CTR binary classification loss may bring challenges to the fusion model's convergence and indefinitely promote the exposure of items with high CTR, regardless of their search relevance. Hence, we further introduce two-stage training and semantic consistency regularization to accelerate the model's convergence and restrain the recommendation of irrelevant items. Finally, acknowledging that different users may have varied relevance preferences, we assessed current users' relevance preferences by analyzing past users' preferences for similar queries and tailored incentives for different candidate items accordingly. Extensive experimental results on our production dataset and online A/B testing demonstrate the effectiveness and superiority of our proposed PRECTR method.
♻ ☆ Assessing Consistency and Reproducibility in the Outputs of Large Language Models: Evidence Across Diverse Finance and Accounting Tasks
This study provides the first comprehensive assessment of consistency and reproducibility in Large Language Model (LLM) outputs in finance and accounting research. We evaluate how consistently LLMs produce outputs given identical inputs through extensive experimentation with 50 independent runs across five common tasks: classification, sentiment analysis, summarization, text generation, and prediction. Using three OpenAI models (GPT-3.5-turbo, GPT-4o-mini, and GPT-4o), we generate over 3.4 million outputs from diverse financial source texts and data, covering MD&As, FOMC statements, finance news articles, earnings call transcripts, and financial statements. Our findings reveal substantial but task-dependent consistency, with binary classification and sentiment analysis achieving near-perfect reproducibility, while complex tasks show greater variability. More advanced models do not consistently demonstrate better consistency and reproducibility, with task-specific patterns emerging. LLMs significantly outperform expert human annotators in consistency and maintain high agreement even where human experts significantly disagree. We further find that simple aggregation strategies across 3-5 runs dramatically improve consistency. We also find that aggregation may come with an additional benefit of improved accuracy for sentiment analysis when using newer models. Simulation analysis reveals that despite measurable inconsistency in LLM outputs, downstream statistical inferences remain remarkably robust. These findings address concerns about what we term "G-hacking," the selective reporting of favorable outcomes from multiple Generative AI runs, by demonstrating that such risks are relatively low for finance and accounting tasks.
comment: 97 pages, 20 tables, 15 figures
♻ ☆ Task-Specific Activation Functions for Neuroevolution using Grammatical Evolution
Activation functions play a critical role in the performance and behaviour of neural networks, significantly impacting their ability to learn and generalise. Traditional activation functions, such as ReLU, sigmoid, and tanh, have been widely used with considerable success. However, these functions may not always provide optimal performance for all tasks and datasets. In this paper, we introduce Neuvo GEAF - an innovative approach leveraging grammatical evolution (GE) to automatically evolve novel activation functions tailored to specific neural network architectures and datasets. Experiments conducted on well-known binary classification datasets show statistically significant improvements in F1-score (between 2.4% and 9.4%) over ReLU using identical network architectures. Notably, these performance gains were achieved without increasing the network's parameter count, supporting the trend toward more efficient neural networks that can operate effectively on resource-constrained edge devices. This paper's findings suggest that evolved activation functions can provide significant performance improvements for compact networks while maintaining energy efficiency during both training and inference phases.
comment: 8 pages, 4 figures, IEEE
♻ ☆ Graph-Instructed Neural Networks for Sparse Grid-Based Discontinuity Detectors
In this paper, we present a novel approach for detecting the discontinuity interfaces of a discontinuous function. This approach leverages Graph-Instructed Neural Networks (GINNs) and sparse grids to address discontinuity detection also in domains of dimension larger than 3. GINNs, trained to identify troubled points on sparse grids, exploit graph structures built on the grids to achieve efficient and accurate discontinuity detection performances. We also introduce a recursive algorithm for general sparse grid-based detectors, characterized by convergence properties and easy applicability. Numerical experiments on functions with dimensions n = 2 and n = 4 demonstrate the efficiency and robust generalization properties of GINNs in detecting discontinuity interfaces. Notably, the trained GINNs offer portability and versatility, allowing integration into various algorithms and sharing among users.
♻ ☆ Certified Robustness via Dynamic Margin Maximization and Improved Lipschitz Regularization NeurIPS 2023
To improve the robustness of deep classifiers against adversarial perturbations, many approaches have been proposed, such as designing new architectures with better robustness properties (e.g., Lipschitz-capped networks), or modifying the training process itself (e.g., min-max optimization, constrained learning, or regularization). These approaches, however, might not be effective at increasing the margin in the input (feature) space. As a result, there has been an increasing interest in developing training procedures that can directly manipulate the decision boundary in the input space. In this paper, we build upon recent developments in this category by developing a robust training algorithm whose objective is to increase the margin in the output (logit) space while regularizing the Lipschitz constant of the model along vulnerable directions. We show that these two objectives can directly promote larger margins in the input space. To this end, we develop a scalable method for calculating guaranteed differentiable upper bounds on the Lipschitz constant of neural networks accurately and efficiently. The relative accuracy of the bounds prevents excessive regularization and allows for more direct manipulation of the decision boundary. Furthermore, our Lipschitz bounding algorithm exploits the monotonicity and Lipschitz continuity of the activation layers, and the resulting bounds can be used to design new layers with controllable bounds on their Lipschitz constant. Experiments on the MNIST, CIFAR-10, and Tiny-ImageNet data sets verify that our proposed algorithm obtains competitively improved results compared to the state-of-the-art.
comment: 37th Conference on Neural Information Processing Systems (NeurIPS 2023)
♻ ☆ Semiring Provenance for Lightweight Description Logics
We investigate semiring provenance--a successful framework originally defined in the relational database setting--for description logics. In this context, the ontology axioms are annotated with elements of a commutative semiring and these annotations are propagated to the ontology consequences in a way that reflects how they are derived. We define a provenance semantics for a language that encompasses several lightweight description logics and show its relationships with semantics that have been defined for ontologies annotated with a specific kind of annotation (such as fuzzy degrees). We show that under some restrictions on the semiring, the semantics satisfies desirable properties (such as extending the semiring provenance defined for databases). We then focus on the well-known why-provenance, for which we study the complexity of problems related to the provenance of an assertion or a conjunctive query answer. Finally, we consider two more restricted cases which correspond to the so-called positive Boolean provenance and lineage in the database setting. For these cases, we exhibit relationships with well-known notions related to explanations in description logics and complete our complexity analysis. As a side contribution, we provide conditions on an $\mathcal{ELHI}_\bot$ ontology that guarantee tractable reasoning.
comment: Paper currently under review. 133 pages
♻ ☆ Networking Systems for Video Anomaly Detection: A Tutorial and Survey
The increasing utilization of surveillance cameras in smart cities, coupled with the surge of online video applications, has heightened concerns regarding public security and privacy protection, which propelled automated Video Anomaly Detection (VAD) into a fundamental research task within the Artificial Intelligence (AI) community. With the advancements in deep learning and edge computing, VAD has made significant progress and advances synergized with emerging applications in smart cities and video internet, which has moved beyond the conventional research scope of algorithm engineering to deployable Networking Systems for VAD (NSVAD), a practical hotspot for intersection exploration in the AI, IoVT, and computing fields. In this article, we delineate the foundational assumptions, learning frameworks, and applicable scenarios of various deep learning-driven VAD routes, offering an exhaustive tutorial for novices in NSVAD. In addition, this article elucidates core concepts by reviewing recent advances and typical solutions and aggregating available research resources accessible at https://github.com/fdjingliu/NSVAD. Lastly, this article projects future development trends and discusses how the integration of AI and computing technologies can address existing research challenges and promote open opportunities, serving as an insightful guide for prospective researchers and engineers.
comment: Revised to ACM Computing Surveys, under review, for more information and supplementary material, please see https://github.com/fdjingliu/NSVAD
♻ ☆ Data Augmentation in Earth Observation: A Diffusion Model Approach
High-quality Earth Observation (EO) imagery is essential for accurate analysis and informed decision making across sectors. However, data scarcity caused by atmospheric conditions, seasonal variations, and limited geographical coverage hinders the effective application of Artificial Intelligence (AI) in EO. Traditional data augmentation techniques, which rely on basic parameterized image transformations, often fail to introduce sufficient diversity across key semantic axes. These axes include natural changes such as snow and floods, human impacts like urbanization and roads, and disasters such as wildfires and storms, which limits the accuracy of AI models in EO applications. To address this, we propose a four-stage data augmentation approach that integrates diffusion models to enhance semantic diversity. Our method employs meta-prompts for instruction generation, vision-language models for rich captioning, EO-specific diffusion model fine-tuning, and iterative data augmentation. Extensive experiments using four augmentation techniques demonstrate that our approach consistently outperforms established methods, generating semantically diverse EO images and improving AI model performance.
comment: 25 pages, 12 figures
♻ ☆ Towards Scalable Foundation Model for Multi-modal and Hyperspectral Geospatial Data
Geospatial raster data, such as that collected by satellite-based imaging systems at different times and spectral bands, hold immense potential for enabling a wide range of high-impact applications. This potential stems from the rich information that is spatially and temporally contextualized across multiple channels and sensing modalities. Recent work has adapted existing self-supervised learning approaches for such geospatial data. However, they fall short of scalable model architectures, leading to inflexibility and computational inefficiencies when faced with an increasing number of channels and modalities. To address these limitations, we introduce Low-rank Efficient Spatial-Spectral Vision Transformer with three key innovations: i) the LESS Attention Block that approximates high-dimensional spatial-spectral attention through Kronecker's product of the low-dimensional spatial and spectral attention components; ii) the Continuous Positional-Channel Embedding Layer that preserves both the continuity and physical characteristics of each spatial-spectral patch; and iii) the Perception Field Mask that exploits local spatial dependencies by constraining attention to neighboring patches. To evaluate the proposed innovations, we construct GFM-Bench, which serves as a comprehensive benchmark for such geospatial raster data. We pretrain LESS ViT using a Hyperspectral Masked Autoencoder framework with integrated positional and channel masking strategies. Experimental results demonstrate that our proposed method achieves competitive performance against state-of-the-art multi-modal geospatial foundation models while outperforming them on cross-satellite generalization tasks with higher computational efficiency. The flexibility and extensibility of our framework make it a promising direction for future geospatial data analysis tasks that involve a wide range of modalities and channels.
♻ ☆ COSMOS: Cross-Modality Self-Distillation for Vision Language Pre-training CVPR 2025
Vision-Language Models (VLMs) trained with contrastive loss have achieved significant advancements in various vision and language tasks. However, the global nature of the contrastive loss makes VLMs focus predominantly on foreground objects, neglecting other crucial information in the image, which limits their effectiveness in downstream tasks. To address these challenges, we propose COSMOS: CrOSs-MOdality Self-distillation for vision-language pre-training that integrates a novel text-cropping strategy and cross-attention module into a self-supervised learning framework. We create global and local views of images and texts (i.e., multi-modal augmentations), which are essential for self-distillation in VLMs. We further introduce a cross-attention module, enabling COSMOS to learn comprehensive cross-modal representations optimized via a cross-modality self-distillation loss. COSMOS consistently outperforms previous strong baselines on various zero-shot downstream tasks, including retrieval, classification, and semantic segmentation. Additionally, it surpasses CLIP-based models trained on larger datasets in visual perception and contextual understanding tasks. Code is available at https://github.com/ExplainableML/cosmos.
comment: CVPR 2025
♻ ☆ Context-Aware Semantic Recomposition Mechanism for Large Language Models
Context-aware processing mechanisms have increasingly become a critical area of exploration for improving the semantic and contextual capabilities of language generation models. The Context-Aware Semantic Recomposition Mechanism (CASRM) was introduced as a novel framework designed to address limitations in coherence, contextual adaptability, and error propagation in large-scale text generation tasks. Through the integration of dynamically generated context vectors and attention modulation layers, CASRM enhances the alignment between token-level representations and broader contextual dependencies. Experimental evaluations demonstrated significant improvements in semantic coherence across multiple domains, including technical, conversational, and narrative text. The ability to adapt to unseen domains and ambiguous inputs was evaluated using a diverse set of test scenarios, highlighting the robustness of the proposed mechanism. A detailed computational analysis revealed that while CASRM introduces additional processing overhead, the gains in linguistic precision and contextual relevance outweigh the marginal increase in complexity. The framework also successfully mitigates error propagation in sequential tasks, improving performance in dialogue continuation and multi-step text synthesis. Additional investigations into token-level attention distribution emphasized the dynamic focus shifts enabled through context-aware enhancements. The findings suggest that CASRM offers a scalable and flexible solution for integrating contextual intelligence into existing language model architectures.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Intelligent Code Embedding Framework for High-Precision Ransomware Detection via Multimodal Execution Path Analysis
Modern threat landscapes continue to evolve with increasing sophistication, challenging traditional detection methodologies and necessitating innovative solutions capable of addressing complex adversarial tactics. A novel framework was developed to identify ransomware activity through multimodal execution path analysis, integrating high-dimensional embeddings and dynamic heuristic derivation mechanisms to capture behavioral patterns across diverse attack variants. The approach demonstrated high adaptability, effectively mitigating obfuscation strategies and polymorphic characteristics often employed by ransomware families to evade detection. Comprehensive experimental evaluations revealed significant advancements in precision, recall, and accuracy metrics compared to baseline techniques, particularly under conditions of variable encryption speeds and obfuscated execution flows. The framework achieved scalable and computationally efficient performance, ensuring robust applicability across a range of system configurations, from resource-constrained environments to high-performance infrastructures. Notable findings included reduced false positive rates and enhanced detection latency, even for ransomware families employing sophisticated encryption mechanisms. The modular design allowed seamless integration of additional modalities, enabling extensibility and future-proofing against emerging threat vectors. Quantitative analyses further highlighted the system's energy efficiency, emphasizing its practicality for deployment in environments with stringent operational constraints. The results underline the importance of integrating advanced computational techniques and dynamic adaptability to safeguard digital ecosystems from increasingly complex threats.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ MC-LLaVA: Multi-Concept Personalized Vision-Language Model
Current vision-language models (VLMs) show exceptional abilities across diverse tasks, such as visual question answering. To enhance user experience, recent studies investigate VLM personalization to understand user-provided concepts. However, they mainly focus on single-concept personalization, neglecting the existence and interplay of multiple concepts, which limits real-world applicability. This paper proposes the first multi-concept personalization paradigm, MC-LLaVA. Specifically, MC-LLaVA employs a multi-concept instruction tuning strategy, effectively integrating multiple concepts in a single training step. To reduce the costs related to joint training, we propose a personalized textual prompt that uses visual token information to initialize concept tokens. Additionally, we introduce a personalized visual prompt during inference, aggregating location confidence maps for enhanced recognition and grounding capabilities. To advance multi-concept personalization research, we further contribute a high-quality instruction tuning dataset. We carefully collect images with multiple characters and objects from movies and manually generate question-answer samples for multi-concept scenarios, featuring superior diversity. Comprehensive qualitative and quantitative experiments demonstrate that MC-LLaVA can achieve impressive multi-concept personalized responses, paving the way for VLMs to become better user-specific assistants. The code and dataset will be publicly available at https://github.com/arctanxarc/MC-LLaVA.
♻ ☆ Intuitive Axial Augmentation Using Polar-Sine-Based Piecewise Distortion for Medical Slice-Wise Segmentation
Most data-driven models for medical image analysis rely on universal augmentations to improve accuracy. Experimental evidence has confirmed their effectiveness, but the unclear mechanism underlying them poses a barrier to the widespread acceptance and trust in such methods within the medical community. We revisit and acknowledge the unique characteristics of medical images apart from traditional digital images, and consequently, proposed a medical-specific augmentation algorithm that is more elastic and aligns well with radiology scan procedure. The method performs piecewise affine with sinusoidal distorted ray according to radius on polar coordinates, thus simulating uncertain postures of human lying flat on the scanning table. Our method could generate human visceral distribution without affecting the fundamental relative position on axial plane. Two non-adaptive algorithms, namely Meta-based Scan Table Removal and Similarity-Guided Parameter Search, are introduced to bolster robustness of our augmentation method. In contrast to other methodologies, our method is highlighted for its intuitive design and ease of understanding for medical professionals, thereby enhancing its applicability in clinical scenarios. Experiments show our method improves accuracy with two modality across multiple famous segmentation frameworks without requiring more data samples. Our preview code is available in: https://github.com/MGAMZ/PSBPD.
comment: Published at Smart Health
♻ ☆ Black-Box Forgery Attacks on Semantic Watermarks for Diffusion Models CVPR
Integrating watermarking into the generation process of latent diffusion models (LDMs) simplifies detection and attribution of generated content. Semantic watermarks, such as Tree-Rings and Gaussian Shading, represent a novel class of watermarking techniques that are easy to implement and highly robust against various perturbations. However, our work demonstrates a fundamental security vulnerability of semantic watermarks. We show that attackers can leverage unrelated models, even with different latent spaces and architectures (UNet vs DiT), to perform powerful and realistic forgery attacks. Specifically, we design two watermark forgery attacks. The first imprints a targeted watermark into real images by manipulating the latent representation of an arbitrary image in an unrelated LDM to get closer to the latent representation of a watermarked image. We also show that this technique can be used for watermark removal. The second attack generates new images with the target watermark by inverting a watermarked image and re-generating it with an arbitrary prompt. Both attacks just need a single reference image with the target watermark. Overall, our findings question the applicability of semantic watermarks by revealing that attackers can easily forge or remove these watermarks under realistic conditions.
comment: 28 pages, 22 figures, 8 tables, to be published in The IEEE/CVF Conference on Computer Vision and Pattern Recognition 2025 (CVPR)
♻ ☆ Unleashing Vecset Diffusion Model for Fast Shape Generation
3D shape generation has greatly flourished through the development of so-called "native" 3D diffusion, particularly through the Vecset Diffusion Model (VDM). While recent advancements have shown promising results in generating high-resolution 3D shapes, VDM still struggles with high-speed generation. Challenges exist because of difficulties not only in accelerating diffusion sampling but also VAE decoding in VDM, areas under-explored in previous works. To address these challenges, we present FlashVDM, a systematic framework for accelerating both VAE and DiT in VDM. For DiT, FlashVDM enables flexible diffusion sampling with as few as 5 inference steps and comparable quality, which is made possible by stabilizing consistency distillation with our newly introduced Progressive Flow Distillation. For VAE, we introduce a lightning vecset decoder equipped with Adaptive KV Selection, Hierarchical Volume Decoding, and Efficient Network Design. By exploiting the locality of the vecset and the sparsity of shape surface in the volume, our decoder drastically lowers FLOPs, minimizing the overall decoding overhead. We apply FlashVDM to Hunyuan3D-2 to obtain Hunyuan3D-2 Turbo. Through systematic evaluation, we show that our model significantly outperforms existing fast 3D generation methods, achieving comparable performance to the state-of-the-art while reducing inference time by over 45x for reconstruction and 32x for generation. Code and models are available at https://github.com/Tencent/FlashVDM.
comment: Technical report
♻ ☆ The importance of the clustering model to detect new types of intrusion in data traffic
In the current digital age, the volume of data generated by various cyber activities has become enormous and is constantly increasing. The data may contain valuable insights that can be harnessed to improve cyber security measures. However, much of this data is unclassified and qualitative, which poses significant challenges to traditional analysis methods. Clustering facilitates the identification of hidden patterns and structures in data through grouping similar data points, which makes it simpler to identify and address threats. Clustering can be defined as a data mining (DM) approach, which uses similarity calculations for dividing a data set into several categories. Hierarchical, density-based, along with partitioning clustering algorithms are typical. The presented work use K-means algorithm, which is a popular clustering technique. Utilizing K-means algorithm, we worked with two different types of data: first, we gathered data with the use of XG-boost algorithm following completing the aggregation with K-means algorithm. Data was gathered utilizing Kali Linux environment, cicflowmeter traffic, and Putty Software tools with the use of diverse and simple attacks. The concept could assist in identifying new attack types, which are distinct from the known attacks, and labeling them based on the characteristics they will exhibit, as the dynamic nature regarding cyber threats means that new attack types often emerge, for which labeled data might not yet exist. The model counted the attacks and assigned numbers to each one of them. Secondly, We tried the same work on the ready data inside the Kaggle repository called (Intrusion Detection in Internet of Things Network), and the clustering model worked well and detected the number of attacks correctly as shown in the results section.
comment: 18 pages, 4 figures
♻ ☆ Fully Distributed Fog Load Balancing with Multi-Agent Reinforcement Learning
Real-time Internet of Things (IoT) applications require real-time support to handle the ever-growing demand for computing resources to process IoT workloads. Fog Computing provides high availability of such resources in a distributed manner. However, these resources must be efficiently managed to distribute unpredictable traffic demands among heterogeneous Fog resources. This paper proposes a fully distributed load-balancing solution with Multi-Agent Reinforcement Learning (MARL) that intelligently distributes IoT workloads to optimize the waiting time while providing fair resource utilization in the Fog network. These agents use transfer learning for life-long self-adaptation to dynamic changes in the environment. By leveraging distributed decision-making, MARL agents effectively minimize the waiting time compared to a single centralized agent solution and other baselines, enhancing end-to-end execution delay. Besides performance gain, a fully distributed solution allows for a global-scale implementation where agents can work independently in small collaboration regions, leveraging nearby local resources. Furthermore, we analyze the impact of a realistic frequency to observe the state of the environment, unlike the unrealistic common assumption in the literature of having observations readily available in real-time for every required action. The findings highlight the trade-off between realism and performance using an interval-based Gossip-based multi-casting protocol against assuming real-time observation availability for every generated workload.
comment: Submitted to IEEE TNSM with 14 pages, 11 figures, and 3 tables
♻ ☆ OASST-ETC Dataset: Alignment Signals from Eye-tracking Analysis of LLM Responses
While Large Language Models (LLMs) have significantly advanced natural language processing, aligning them with human preferences remains an open challenge. Although current alignment methods rely primarily on explicit feedback, eye-tracking (ET) data offers insights into real-time cognitive processing during reading. In this paper, we present OASST-ETC, a novel eye-tracking corpus capturing reading patterns from 24 participants, while evaluating LLM-generated responses from the OASST1 dataset. Our analysis reveals distinct reading patterns between preferred and non-preferred responses, which we compare with synthetic eye-tracking data. Furthermore, we examine the correlation between human reading measures and attention patterns from various transformer-based models, discovering stronger correlations in preferred responses. This work introduces a unique resource for studying human cognitive processing in LLM evaluation and suggests promising directions for incorporating eye-tracking data into alignment methods. The dataset and analysis code are publicly available.
comment: This paper has been accepted to ACM ETRA 2025 and published on PACMHCI
♻ ☆ Bayesian Modeling of Zero-Shot Classifications for Urban Flood Detection
Street scene datasets, collected from Street View or dashboard cameras, offer a promising means of detecting urban objects and incidents like street flooding. However, a major challenge in using these datasets is their lack of reliable labels: there are myriad types of incidents, many types occur rarely, and ground-truth measures of where incidents occur are lacking. Here, we propose BayFlood, a two-stage approach which circumvents this difficulty. First, we perform zero-shot classification of where incidents occur using a pretrained vision-language model (VLM). Second, we fit a spatial Bayesian model on the VLM classifications. The zero-shot approach avoids the need to annotate large training sets, and the Bayesian model provides frequent desiderata in urban settings - principled measures of uncertainty, smoothing across locations, and incorporation of external data like stormwater accumulation zones. We comprehensively validate this two-stage approach, showing that VLMs provide strong zero-shot signal for floods across multiple cities and time periods, the Bayesian model improves out-of-sample prediction relative to baseline methods, and our inferred flood risk correlates with known external predictors of risk. Having validated our approach, we show it can be used to improve urban flood detection: our analysis reveals 113,738 people who are at high risk of flooding overlooked by current methods, identifies demographic biases in existing methods, and suggests locations for new flood sensors. More broadly, our results showcase how Bayesian modeling of zero-shot LM annotations represents a promising paradigm because it avoids the need to collect large labeled datasets and leverages the power of foundation models while providing the expressiveness and uncertainty quantification of Bayesian models.
comment: In review
Fantastic Copyrighted Beasts and How (Not) to Generate Them
Recent studies show that image and video generation models can be prompted to reproduce copyrighted content from their training data, raising serious legal concerns about copyright infringement. Copyrighted characters (e.g., Mario, Batman) present a significant challenge: at least one lawsuit has already awarded damages based on the generation of such characters. Consequently, commercial services like DALL-E have started deploying interventions. However, little research has systematically examined these problems: (1) Can users easily prompt models to generate copyrighted characters, even if it is unintentional?; (2) How effective are the existing mitigation strategies? To address these questions, we introduce a novel evaluation framework with metrics that assess both the generated image's similarity to copyrighted characters and its consistency with user intent, grounded in a set of popular copyrighted characters from diverse studios and regions. We show that state-of-the-art image and video generation models can still generate characters even if characters' names are not explicitly mentioned, sometimes with only two generic keywords (e.g., prompting with "videogame, plumber" consistently generates Nintendo's Mario character). We also introduce semi-automatic techniques to identify such keywords or descriptions that trigger character generation. Using this framework, we evaluate mitigation strategies, including prompt rewriting and new approaches we propose. Our findings reveal that common methods, such as DALL-E's prompt rewriting, are insufficient alone and require supplementary strategies like negative prompting. Our work provides empirical grounding for discussions on copyright mitigation strategies and offers actionable insights for model deployers implementing these safeguards.
♻ ☆ Towards End-to-End Neuromorphic Voxel-based 3D Object Reconstruction Without Physical Priors ICME
Neuromorphic cameras, also known as event cameras, are asynchronous brightness-change sensors that can capture extremely fast motion without suffering from motion blur, making them particularly promising for 3D reconstruction in extreme environments. However, existing research on 3D reconstruction using monocular neuromorphic cameras is limited, and most of the methods rely on estimating physical priors and employ complex multi-step pipelines. In this work, we propose an end-to-end method for dense voxel 3D reconstruction using neuromorphic cameras that eliminates the need to estimate physical priors. Our method incorporates a novel event representation to enhance edge features, enabling the proposed feature-enhancement model to learn more effectively. Additionally, we introduced Optimal Binarization Threshold Selection Principle as a guideline for future related work, using the optimal reconstruction results achieved with threshold optimization as the benchmark. Our method achieves a 54.6% improvement in reconstruction accuracy compared to the baseline method.
comment: 6 pages, 15 figures, 5 tables, accepted by IEEE International Conference on Multimedia & Expo (ICME) 2025
♻ ☆ MMGDreamer: Mixed-Modality Graph for Geometry-Controllable 3D Indoor Scene Generation AAAI 2025
Controllable 3D scene generation has extensive applications in virtual reality and interior design, where the generated scenes should exhibit high levels of realism and controllability in terms of geometry. Scene graphs provide a suitable data representation that facilitates these applications. However, current graph-based methods for scene generation are constrained to text-based inputs and exhibit insufficient adaptability to flexible user inputs, hindering the ability to precisely control object geometry. To address this issue, we propose MMGDreamer, a dual-branch diffusion model for scene generation that incorporates a novel Mixed-Modality Graph, visual enhancement module, and relation predictor. The mixed-modality graph allows object nodes to integrate textual and visual modalities, with optional relationships between nodes. It enhances adaptability to flexible user inputs and enables meticulous control over the geometry of objects in the generated scenes. The visual enhancement module enriches the visual fidelity of text-only nodes by constructing visual representations using text embeddings. Furthermore, our relation predictor leverages node representations to infer absent relationships between nodes, resulting in more coherent scene layouts. Extensive experimental results demonstrate that MMGDreamer exhibits superior control of object geometry, achieving state-of-the-art scene generation performance. Project page: https://yangzhifeio.github.io/project/MMGDreamer.
comment: Accepted by AAAI 2025 Main Track
♻ ☆ MARVEL-40M+: Multi-Level Visual Elaboration for High-Fidelity Text-to-3D Content Creation
Generating high-fidelity 3D content from text prompts remains a significant challenge in computer vision due to the limited size, diversity, and annotation depth of the existing datasets. To address this, we introduce MARVEL-40M+, an extensive dataset with 40 million text annotations for over 8.9 million 3D assets aggregated from seven major 3D datasets. Our contribution is a novel multi-stage annotation pipeline that integrates open-source pretrained multi-view VLMs and LLMs to automatically produce multi-level descriptions, ranging from detailed (150-200 words) to concise semantic tags (10-20 words). This structure supports both fine-grained 3D reconstruction and rapid prototyping. Furthermore, we incorporate human metadata from source datasets into our annotation pipeline to add domain-specific information in our annotation and reduce VLM hallucinations. Additionally, we develop MARVEL-FX3D, a two-stage text-to-3D pipeline. We fine-tune Stable Diffusion with our annotations and use a pretrained image-to-3D network to generate 3D textured meshes within 15s. Extensive evaluations show that MARVEL-40M+ significantly outperforms existing datasets in annotation quality and linguistic diversity, achieving win rates of 72.41% by GPT-4 and 73.40% by human evaluators. Project page is available at https://sankalpsinha-cmos.github.io/MARVEL/.
♻ ☆ DEIM: DETR with Improved Matching for Fast Convergence CVPR 2025
We introduce DEIM, an innovative and efficient training framework designed to accelerate convergence in real-time object detection with Transformer-based architectures (DETR). To mitigate the sparse supervision inherent in one-to-one (O2O) matching in DETR models, DEIM employs a Dense O2O matching strategy. This approach increases the number of positive samples per image by incorporating additional targets, using standard data augmentation techniques. While Dense O2O matching speeds up convergence, it also introduces numerous low-quality matches that could affect performance. To address this, we propose the Matchability-Aware Loss (MAL), a novel loss function that optimizes matches across various quality levels, enhancing the effectiveness of Dense O2O. Extensive experiments on the COCO dataset validate the efficacy of DEIM. When integrated with RT-DETR and D-FINE, it consistently boosts performance while reducing training time by 50%. Notably, paired with RT-DETRv2, DEIM achieves 53.2% AP in a single day of training on an NVIDIA 4090 GPU. Additionally, DEIM-trained real-time models outperform leading real-time object detectors, with DEIM-D-FINE-L and DEIM-D-FINE-X achieving 54.7% and 56.5% AP at 124 and 78 FPS on an NVIDIA T4 GPU, respectively, without the need for additional data. We believe DEIM sets a new baseline for advancements in real-time object detection. Our code and pre-trained models are available at https://github.com/ShihuaHuang95/DEIM.
comment: CVPR 2025
♻ ☆ FREIDA: A Framework for developing quantitative agent based models based on qualitative expert knowledge: an example of organised crime
Developing ABMs of organized crime networks supports law enforcement strategies but is often limited by scarce quantitative data. This challenge extends to other psychosocial contexts like mental health and social systems. While qualitative data from reports and interviews is more accessible, current ABM methodologies struggle to integrate both data types effectively. To address this, we propose FREIDA, a mixed-methods framework that combines qualitative and quantitative data to develop, train, and validate ABMs in data-sparse contexts. FREIDA's four-phase process includes data acquisition, conceptual modeling, computational implementation, and model assessment. Using Thematic Content Analysis (TCA), Expected System Behaviors (ESBs) are translated into Training Statements (TS) for calibration and Validation Statements (VS) for assessment. Iterative sensitivity analysis and uncertainty quantification refine the model's accuracy. We apply FREIDA to a case study of the Netherlands cocaine network, producing the Criminal Cocaine Replacement Model (CCRM) to simulate kingpin removal dynamics. FREIDA enables robust ABM development with limited data, aiding law enforcement decisions and resource allocation.
comment: 32 pages, 12 figures, 14 tables, Appendix I-IV
♻ ☆ Retro-li: Small-Scale Retrieval Augmented Generation Supporting Noisy Similarity Searches and Domain Shift Generalization
The retrieval augmented generation (RAG) system such as Retro has been shown to improve language modeling capabilities and reduce toxicity and hallucinations by retrieving from a database of non-parametric memory containing trillions of entries. We introduce Retro-li that shows retrieval can also help using a small-scale database, but it demands more accurate and better neighbors when searching in a smaller hence sparser non-parametric memory. This can be met by using a proper semantic similarity search. We further propose adding a regularization to the non-parametric memory for the first time: it significantly reduces perplexity when the neighbor search operations are noisy during inference, and it improves generalization when a domain shift occurs. We also show that Retro-li's non-parametric memory can potentially be implemented on analog in-memory computing hardware, exhibiting O(1) search time while causing noise in retrieving neighbors, with minimal (<1%) performance loss. Our code is available at: https://github.com/IBM/Retrieval-Enhanced-Transformer-Little.
♻ ☆ Two pathways to resolve relational inconsistencies
When individuals encounter observations that violate their expectations, when will they adjust their expectations and when will they maintain them despite these observations? For example, when individuals expect objects of type A to be smaller than objects B, but observe the opposite, when will they adjust their expectation about the relationship between the two objects (to A being larger than B)? Naively, one would predict that the larger the violation, the greater the adaptation. However, experiments reveal that when violations are extreme, individuals are more likely to hold on to their prior expectations rather than adjust them. To address this puzzle, we tested the adaptation of artificial neural networks (ANNs) capable of relational learning and found a similar phenomenon: Standard learning dynamics dictates that small violations would lead to adjustments of expected relations while larger ones would be resolved using a different mechanism -- a change in object representation that bypasses the need for adaptation of the relational expectations. These results suggest that the experimentally-observed stability of prior expectations when facing large expectation violations is a natural consequence of learning dynamics and does not require any additional mechanisms. We conclude by discussing the effect of intermediate adaptation steps on this stability.
♻ ☆ Agentic AI Software Engineer: Programming with Trust
Large Language Models (LLMs) have shown surprising proficiency in generating code snippets, promising to automate large parts of software engineering via artificial intelligence (AI). We argue that successfully deploying AI software engineers requires a level of trust equal to or even greater than the trust established by human-driven software engineering practices. The recent trend toward LLM agents offers a path toward integrating the power of LLMs to create new code with the power of analysis tools to increase trust in the code. This opinion piece comments on whether LLM agents could dominate software engineering workflows in the future and whether the focus of programming will shift from programming at scale to programming with trust.
comment: 5 pages
♻ ☆ DiTCtrl: Exploring Attention Control in Multi-Modal Diffusion Transformer for Tuning-Free Multi-Prompt Longer Video Generation CVPR 2025
Sora-like video generation models have achieved remarkable progress with a Multi-Modal Diffusion Transformer MM-DiT architecture. However, the current video generation models predominantly focus on single-prompt, struggling to generate coherent scenes with multiple sequential prompts that better reflect real-world dynamic scenarios. While some pioneering works have explored multi-prompt video generation, they face significant challenges including strict training data requirements, weak prompt following, and unnatural transitions. To address these problems, we propose DiTCtrl, a training-free multi-prompt video generation method under MM-DiT architectures for the first time. Our key idea is to take the multi-prompt video generation task as temporal video editing with smooth transitions. To achieve this goal, we first analyze MM-DiT's attention mechanism, finding that the 3D full attention behaves similarly to that of the cross/self-attention blocks in the UNet-like diffusion models, enabling mask-guided precise semantic control across different prompts with attention sharing for multi-prompt video generation. Based on our careful design, the video generated by DiTCtrl achieves smooth transitions and consistent object motion given multiple sequential prompts without additional training. Besides, we also present MPVBench, a new benchmark specially designed for multi-prompt video generation to evaluate the performance of multi-prompt generation. Extensive experiments demonstrate that our method achieves state-of-the-art performance without additional training.
comment: CVPR 2025; 21 pages, 23 figures, Project page: https://onevfall.github.io/project_page/ditctrl ; GitHub repository: https://github.com/TencentARC/DiTCtrl
Oasis: One Image is All You Need for Multimodal Instruction Data Synthesis
The success of multi-modal large language models (MLLMs) has been largely attributed to the large-scale training data. However, the training data of many MLLMs is unavailable due to privacy concerns. The expensive and labor-intensive process of collecting multi-modal data further exacerbates the problem. Is it possible to synthesize multi-modal training data automatically without compromising diversity and quality? In this paper, we propose a new method, Oasis, to synthesize high-quality multi-modal data with only images. Oasis breaks through traditional methods by prompting only images to the MLLMs, thus extending the data diversity by a large margin. Our method features a delicate quality control method which ensures the data quality. We collected over 500k data and conducted incremental experiments on LLaVA-NeXT. Extensive experiments demonstrate that our method can significantly improve the performance of MLLMs. The image-based synthesis also allows us to focus on the specific-domain ability of MLLMs. Code and dataset are publicly available at https://github.com/Letian2003/MM_INF.
♻ ☆ ManiCM: Real-time 3D Diffusion Policy via Consistency Model for Robotic Manipulation
Diffusion models have been verified to be effective in generating complex distributions from natural images to motion trajectories. Recent diffusion-based methods show impressive performance in 3D robotic manipulation tasks, whereas they suffer from severe runtime inefficiency due to multiple denoising steps, especially with high-dimensional observations. To this end, we propose a real-time robotic manipulation model named ManiCM that imposes the consistency constraint to the diffusion process, so that the model can generate robot actions in only one-step inference. Specifically, we formulate a consistent diffusion process in the robot action space conditioned on the point cloud input, where the original action is required to be directly denoised from any point along the ODE trajectory. To model this process, we design a consistency distillation technique to predict the action sample directly instead of predicting the noise within the vision community for fast convergence in the low-dimensional action manifold. We evaluate ManiCM on 31 robotic manipulation tasks from Adroit and Metaworld, and the results demonstrate that our approach accelerates the state-of-the-art method by 10 times in average inference speed while maintaining competitive average success rate.
comment: https://manicm-fast.github.io/
♻ ☆ Lemur: Log Parsing with Entropy Sampling and Chain-of-Thought Merging
Logs produced by extensive software systems are integral to monitoring system behaviors. Advanced log analysis facilitates the detection, alerting, and diagnosis of system faults. Log parsing, which entails transforming raw log messages into structured templates, constitutes a critical phase in the automation of log analytics. Existing log parsers fail to identify the correct templates due to reliance on human-made rules. Besides, these methods focus on statistical features while ignoring semantic information in log messages. To address these challenges, we introduce a cutting-edge \textbf{L}og parsing framework with \textbf{E}ntropy sampling and chain-of-thought \textbf{M}erging (\model{}). Specifically, to discard the tedious manual rules, we propose a novel sampling method inspired by information entropy, which efficiently clusters typical logs. Furthermore, to enhance the merging of log templates, we design a chain-of-thought method for large language models (LLMs). LLMs exhibit exceptional semantic comprehension and deftly distinguish between parameters and invariant tokens. We have conducted experiments on large-scale public datasets. Extensive evaluation demonstrates that \model{} achieves state-of-the-art performance and impressive efficiency. The Code is available at https://github.com/zwpride/lemur.
♻ ☆ ARFlow: Human Action-Reaction Flow Matching with Physical Guidance
Human action-reaction synthesis, a fundamental challenge in modeling causal human interactions, plays a critical role in applications ranging from virtual reality to social robotics. While diffusion-based models have demonstrated promising performance, they exhibit two key limitations for interaction synthesis: reliance on complex noise-to-reaction generators with intricate conditional mechanisms, and frequent physical violations in generated motions. To address these issues, we propose Action-Reaction Flow Matching (ARFlow), a novel framework that establishes direct action-to-reaction mappings, eliminating the need for complex conditional mechanisms. Our approach introduces two key innovations: an x1-prediction method that directly outputs human motions instead of velocity fields, enabling explicit constraint enforcement; and a training-free, gradient-based physical guidance mechanism that effectively prevents body penetration artifacts during sampling. Extensive experiments on NTU120 and Chi3D datasets demonstrate that ARFlow not only outperforms existing methods in terms of Fr\'echet Inception Distance and motion diversity but also significantly reduces body collisions, as measured by our new Intersection Volume and Intersection Frequency metrics.
comment: Project Page: https://arflow2025.github.io/
♻ ☆ Contextual Similarity Distillation: Ensemble Uncertainties with a Single Model
Uncertainty quantification is a critical aspect of reinforcement learning and deep learning, with numerous applications ranging from efficient exploration and stable offline reinforcement learning to outlier detection in medical diagnostics. The scale of modern neural networks, however, complicates the use of many theoretically well-motivated approaches such as full Bayesian inference. Approximate methods like deep ensembles can provide reliable uncertainty estimates but still remain computationally expensive. In this work, we propose contextual similarity distillation, a novel approach that explicitly estimates the variance of an ensemble of deep neural networks with a single model, without ever learning or evaluating such an ensemble in the first place. Our method builds on the predictable learning dynamics of wide neural networks, governed by the neural tangent kernel, to derive an efficient approximation of the predictive variance of an infinite ensemble. Specifically, we reinterpret the computation of ensemble variance as a supervised regression problem with kernel similarities as regression targets. The resulting model can estimate predictive variance at inference time with a single forward pass, and can make use of unlabeled target-domain data or data augmentations to refine its uncertainty estimates. We empirically validate our method across a variety of out-of-distribution detection benchmarks and sparse-reward reinforcement learning environments. We find that our single-model method performs competitively and sometimes superior to ensemble-based baselines and serves as a reliable signal for efficient exploration. These results, we believe, position contextual similarity distillation as a principled and scalable alternative for uncertainty quantification in reinforcement learning and general deep learning.
♻ ☆ MetaDE: Evolving Differential Evolution by Differential Evolution
As a cornerstone in the Evolutionary Computation (EC) domain, Differential Evolution (DE) is known for its simplicity and effectiveness in handling challenging black-box optimization problems. While the advantages of DE are well-recognized, achieving peak performance heavily depends on its hyperparameters such as the mutation factor, crossover probability, and the selection of specific DE strategies. Traditional approaches to this hyperparameter dilemma have leaned towards parameter tuning or adaptive mechanisms. However, identifying the optimal settings tailored for specific problems remains a persistent challenge. In response, we introduce MetaDE, an approach that evolves DE's intrinsic hyperparameters and strategies using DE itself at a meta-level. A pivotal aspect of MetaDE is a specialized parameterization technique, which endows it with the capability to dynamically modify DE's parameters and strategies throughout the evolutionary process. To augment computational efficiency, MetaDE incorporates a design that leverages parallel processing through a GPU-accelerated computing framework. Within such a framework, DE is not just a solver but also an optimizer for its own configurations, thus streamlining the process of hyperparameter optimization and problem-solving into a cohesive and automated workflow. Extensive evaluations on the CEC2022 benchmark suite demonstrate MetaDE's promising performance. Moreover, when applied to robot control via evolutionary reinforcement learning, MetaDE also demonstrates promising performance. The source code of MetaDE is publicly accessible at: https://github.com/EMI-Group/metade.
comment: Accepted by IEEE TEVC
♻ ☆ Socratic Planner: Self-QA-Based Zero-Shot Planning for Embodied Instruction Following ICRA 2025
Embodied Instruction Following (EIF) is the task of executing natural language instructions by navigating and interacting with objects in interactive environments. A key challenge in EIF is compositional task planning, typically addressed through supervised learning or few-shot in-context learning with labeled data. To this end, we introduce the Socratic Planner, a self-QA-based zero-shot planning method that infers an appropriate plan without any further training. The Socratic Planner first facilitates self-questioning and answering by the Large Language Model (LLM), which in turn helps generate a sequence of subgoals. While executing the subgoals, an embodied agent may encounter unexpected situations, such as unforeseen obstacles. The Socratic Planner then adjusts plans based on dense visual feedback through a visually-grounded re-planning mechanism. Experiments demonstrate the effectiveness of the Socratic Planner, outperforming current state-of-the-art planning models on the ALFRED benchmark across all metrics, particularly excelling in long-horizon tasks that demand complex inference. We further demonstrate its real-world applicability through deployment on a physical robot for long-horizon tasks.
comment: 8 pages, 6 figures, published to ICRA 2025
♻ ☆ BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval
Existing retrieval benchmarks primarily consist of information-seeking queries (e.g., aggregated questions from search engines) where keyword or semantic-based retrieval is usually sufficient. However, many complex real-world queries require in-depth reasoning to identify relevant documents that go beyond surface form matching. For example, finding documentation for a coding question requires understanding the logic and syntax of the functions involved. To better benchmark retrieval on such challenging queries, we introduce BRIGHT, the first text retrieval benchmark that requires intensive reasoning to retrieve relevant documents. Our dataset consists of 1,384 real-world queries spanning diverse domains, such as economics, psychology, mathematics, and coding. These queries are drawn from naturally occurring and carefully curated human data. Extensive evaluation reveals that even state-of-the-art retrieval models perform poorly on BRIGHT. The leading model on the MTEB leaderboard (Muennighoff et al., 2023) SFR-Embedding-Mistral (Meng et al., 2024), which achieves a score of 59.0 nDCG@10,1 produces a score of nDCG@10 of 18.3 on BRIGHT. We show that incorporating explicit reasoning about the query improves retrieval performance by up to 12.2 points. Moreover, incorporating retrieved documents from the top-performing retriever boosts question-answering performance. We believe that BRIGHT paves the way for future research on retrieval systems in more realistic and challenging settings.
comment: 51 pages
♻ ☆ TopV-Nav: Unlocking the Top-View Spatial Reasoning Potential of MLLM for Zero-shot Object Navigation
The Zero-Shot Object Navigation (ZSON) task requires embodied agents to find a previously unseen object by navigating in unfamiliar environments. Such a goal-oriented exploration heavily relies on the ability to perceive, understand, and reason based on the spatial information of the environment. However, current LLM-based approaches convert visual observations to language descriptions and reason in the linguistic space, leading to the loss of spatial information. In this paper, we introduce TopV-Nav, an MLLM-based method that directly reasons on the top-view map with sufficient spatial information. To fully unlock the MLLM's spatial reasoning potential in top-view perspective, we propose the Adaptive Visual Prompt Generation (AVPG) method to adaptively construct semantically-rich top-view map. It enables the agent to directly utilize spatial information contained in the top-view map to conduct thorough reasoning. Besides, we design a Dynamic Map Scaling (DMS) mechanism to dynamically zoom top-view map at preferred scales, enhancing local fine-grained reasoning. Additionally, we devise a Potential Target Driven (PTD) mechanism to predict and to utilize target locations, facilitating global and human-like exploration. Experiments on MP3D and HM3D datasets demonstrate the superiority of our TopV-Nav.
comment: 10 pages
♻ ☆ Fine-Grained Domain Generalization with Feature Structuralization
Fine-grained domain generalization (FGDG) is a more challenging task than traditional DG tasks due to its small inter-class variations and relatively large intra-class disparities. When domain distribution changes, the vulnerability of subtle features leads to a severe deterioration in model performance. Nevertheless, humans inherently demonstrate the capacity for generalizing to out-of-distribution data, leveraging structured multi-granularity knowledge that emerges from discerning the commonality and specificity within categories. Likewise, we propose a Feature Structuralized Domain Generalization (FSDG) model, wherein features experience structuralization into common, specific, and confounding segments, harmoniously aligned with their relevant semantic concepts, to elevate performance in FGDG. Specifically, feature structuralization (FS) is accomplished through joint optimization of five constraints: a decorrelation function applied to disentangled segments, three constraints ensuring common feature consistency and specific feature distinctiveness, and a prediction calibration term. By imposing these stipulations, FSDG is prompted to disentangle and align features based on multi-granularity knowledge, facilitating robust subtle distinctions among categories. Extensive experimentation on three benchmarks consistently validates the superiority of FSDG over state-of-the-art counterparts, with an average improvement of 6.2% in FGDG performance. Beyond that, the explainability analysis on explicit concept matching intensity between the shared concepts among categories and the model channels, along with experiments on various mainstream model architectures, substantiates the validity of FS.
♻ ☆ Making AI Less "Thirsty": Uncovering and Addressing the Secret Water Footprint of AI Models
The growing carbon footprint of artificial intelligence (AI) has been undergoing public scrutiny. Nonetheless, the equally important water (withdrawal and consumption) footprint of AI has largely remained under the radar. For example, training the GPT-3 language model in Microsoft's state-of-the-art U.S. data centers can directly evaporate 700,000 liters of clean freshwater, but such information has been kept a secret. More critically, the global AI demand is projected to account for 4.2-6.6 billion cubic meters of water withdrawal in 2027, which is more than the total annual water withdrawal of 4-6 Denmark or half of the United Kingdom. This is concerning, as freshwater scarcity has become one of the most pressing challenges. To respond to the global water challenges, AI can, and also must, take social responsibility and lead by example by addressing its own water footprint. In this paper, we provide a principled methodology to estimate the water footprint of AI, and also discuss the unique spatial-temporal diversities of AI's runtime water efficiency. Finally, we highlight the necessity of holistically addressing water footprint along with carbon footprint to enable truly sustainable AI.
comment: Accepted by Communications of the ACM. Source codes available at: https://github.com/Ren-Research/Making-AI-Less-Thirsty
♻ ☆ General-purpose Clothes Manipulation with Semantic Keypoints ICRA 2025
Clothes manipulation is a critical capability for household robots; yet, existing methods are often confined to specific tasks, such as folding or flattening, due to the complex high-dimensional geometry of deformable fabric. This paper presents CLothes mAnipulation with Semantic keyPoints (CLASP) for general-purpose clothes manipulation, which enables the robot to perform diverse manipulation tasks over different types of clothes. The key idea of CLASP is semantic keypoints -- e.g., "right shoulder", "left sleeve", etc. -- a sparse spatial-semantic representation that is salient for both perception and action. Semantic keypoints of clothes can be effectively extracted from depth images and are sufficient to represent a broad range of clothes manipulation policies. CLASP leverages semantic keypoints to bridge LLM-powered task planning and low-level action execution in a two-level hierarchy. Extensive simulation experiments show that CLASP outperforms baseline methods across diverse clothes types in both seen and unseen tasks. Further, experiments with a Kinova dual-arm system on four distinct tasks -- folding, flattening, hanging, and placing -- confirm CLASP's performance on a real robot.
comment: accepted by IEEE International Conference on Robotics and Automation (ICRA 2025)
♻ ☆ DAWN: Dynamic Frame Avatar with Non-autoregressive Diffusion Framework for Talking Head Video Generation
Talking head generation intends to produce vivid and realistic talking head videos from a single portrait and speech audio clip. Although significant progress has been made in diffusion-based talking head generation, almost all methods rely on autoregressive strategies, which suffer from limited context utilization beyond the current generation step, error accumulation, and slower generation speed. To address these challenges, we present DAWN (Dynamic frame Avatar With Non-autoregressive diffusion), a framework that enables all-at-once generation of dynamic-length video sequences. Specifically, it consists of two main components: (1) audio-driven holistic facial dynamics generation in the latent motion space, and (2) audio-driven head pose and blink generation. Extensive experiments demonstrate that our method generates authentic and vivid videos with precise lip motions, and natural pose/blink movements. Additionally, with a high generation speed, DAWN possesses strong extrapolation capabilities, ensuring the stable production of high-quality long videos. These results highlight the considerable promise and potential impact of DAWN in the field of talking head video generation. Furthermore, we hope that DAWN sparks further exploration of non-autoregressive approaches in diffusion models. Our code will be publicly available at https://github.com/Hanbo-Cheng/DAWN-pytorch.
♻ ☆ VesselSAM: Leveraging SAM for Aortic Vessel Segmentation with LoRA and Atrous Attention
Medical image segmentation is crucial for clinical diagnosis and treatment planning, especially when dealing with complex anatomical structures such as vessels. However, accurately segmenting vessels remains challenging due to their small size, intricate edge structures, and susceptibility to artifacts and imaging noise. In this work, we propose VesselSAM, an enhanced version of the Segment Anything Model (SAM), specifically tailored for aortic vessel segmentation. VesselSAM incorporates AtrousLoRA, a novel module integrating Atrous Attention and Low-Rank Adaptation (LoRA), to enhance segmentation performance. Atrous Attention enables the model to capture multi-scale contextual information, preserving both fine-grained local details and broader global context. Additionally, LoRA facilitates efficient fine-tuning of the frozen SAM image encoder, reducing the number of trainable parameters and thereby enhancing computational efficiency. We evaluate VesselSAM using two challenging datasets: the Aortic Vessel Tree (AVT) dataset and the Type-B Aortic Dissection (TBAD) dataset. VesselSAM achieves state-of-the-art performance, attaining DSC scores of 93.50\%, 93.25\%, 93.02\%, and 93.26\% across multi-center datasets. Our results demonstrate that VesselSAM delivers high segmentation accuracy while significantly reducing computational overhead compared to existing large-scale models. This development paves the way for enhanced AI-based aortic vessel segmentation in clinical environments. The code and models will be released at https://github.com/Adnan-CAS/AtrousLora.
comment: Work in progress
♻ ☆ Bonsai: Gradient-free Graph Condensation for Node Classification
Graph condensation has emerged as a promising avenue to enable scalable training of GNNs by compressing the training dataset while preserving essential graph characteristics. Our study uncovers significant shortcomings in current graph condensation techniques. First, the majority of the algorithms paradoxically require training on the full dataset to perform condensation. Second, due to their gradient-emulating approach, these methods require fresh condensation for any change in hyperparameters or GNN architecture, limiting their flexibility and reusability. Finally, they fail to achieve substantial size reduction due to synthesizing fully-connected, edge-weighted graphs. To address these challenges, we present Bonsai, a novel graph condensation method empowered by the observation that \textit{computation trees} form the fundamental processing units of message-passing GNNs. Bonsai condenses datasets by encoding a careful selection of \textit{exemplar} trees that maximize the representation of all computation trees in the training set. This unique approach imparts Bonsai as the first linear-time, model-agnostic graph condensation algorithm for node classification that outperforms existing baselines across $7$ real-world datasets on accuracy, while being $22$ times faster on average. Bonsai is grounded in rigorous mathematical guarantees on the adopted approximation strategies making it robust to GNN architectures, datasets, and parameters.
♻ ☆ Human Motion Instruction Tuning CVPR 2025
This paper presents LLaMo (Large Language and Human Motion Assistant), a multimodal framework for human motion instruction tuning. In contrast to conventional instruction-tuning approaches that convert non-linguistic inputs, such as video or motion sequences, into language tokens, LLaMo retains motion in its native form for instruction tuning. This method preserves motion-specific details that are often diminished in tokenization, thereby improving the model's ability to interpret complex human behaviors. By processing both video and motion data alongside textual inputs, LLaMo enables a flexible, human-centric analysis. Experimental evaluations across high-complexity domains, including human behaviors and professional activities, indicate that LLaMo effectively captures domain-specific knowledge, enhancing comprehension and prediction in motion-intensive scenarios. We hope LLaMo offers a foundation for future multimodal AI systems with broad applications, from sports analytics to behavioral prediction. Our code and models are available on the project website: https://github.com/ILGLJ/LLaMo.
comment: Accepted by CVPR 2025
♻ ☆ Towards Visual Discrimination and Reasoning of Real-World Physical Dynamics: Physics-Grounded Anomaly Detection CVPR25
Humans detect real-world object anomalies by perceiving, interacting, and reasoning based on object-conditioned physical knowledge. The long-term goal of Industrial Anomaly Detection (IAD) is to enable machines to autonomously replicate this skill. However, current IAD algorithms are largely developed and tested on static, semantically simple datasets, which diverge from real-world scenarios where physical understanding and reasoning are essential. To bridge this gap, we introduce the Physics Anomaly Detection (Phys-AD) dataset, the first large-scale, real-world, physics-grounded video dataset for industrial anomaly detection. Collected using a real robot arm and motor, Phys-AD provides a diverse set of dynamic, semantically rich scenarios. The dataset includes more than 6400 videos across 22 real-world object categories, interacting with robot arms and motors, and exhibits 47 types of anomalies. Anomaly detection in Phys-AD requires visual reasoning, combining both physical knowledge and video content to determine object abnormality. We benchmark state-of-the-art anomaly detection methods under three settings: unsupervised AD, weakly-supervised AD, and video-understanding AD, highlighting their limitations in handling physics-grounded anomalies. Additionally, we introduce the Physics Anomaly Explanation (PAEval) metric, designed to assess the ability of visual-language foundation models to not only detect anomalies but also provide accurate explanations for their underlying physical causes. Our project is available at https://guyao2023.github.io/Phys-AD/.
comment: Accepted by CVPR25
♻ ☆ TransPlace: Transferable Circuit Global Placement via Graph Neural Network KDD 2025
Global placement, a critical step in designing the physical layout of computer chips, is essential to optimize chip performance. Prior global placement methods optimize each circuit design individually from scratch. Their neglect of transferable knowledge limits solution efficiency and chip performance as circuit complexity drastically increases. This study presents TransPlace, a global placement framework that learns to place millions of mixed-size cells in continuous space. TransPlace introduces i) Netlist Graph to efficiently model netlist topology, ii) Cell-flow and relative position encoding to learn SE(2)-invariant representation, iii) a tailored graph neural network architecture for informed parameterization of placement knowledge, and iv) a two-stage strategy for coarse-to-fine placement. Compared to state-of-the-art placement methods, TransPlace-trained on a few high-quality placements-can place unseen circuits with 1.2x speedup while reducing congestion by 30%, timing by 9%, and wirelength by 5%.
comment: Accepted at KDD 2025
♻ ☆ Forest-of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning
Large Language Models (LLMs) have demonstrated remarkable abilities across various language tasks, but solving complex reasoning problems remains a significant challenge. While existing methods, such as Chain-of-Thought (CoT) and Tree-of-Thought (ToT), enhance reasoning by decomposing problems or structuring prompts, they typically perform a single pass of reasoning and may fail to revisit flawed paths, compromising accuracy. To address this limitation, we propose a novel reasoning framework called Forest-of-Thought (FoT), which integrates multiple reasoning trees to leverage collective decision-making for solving complex logical problems. FoT employs sparse activation strategies to select the most relevant reasoning paths, improving both efficiency and accuracy. Additionally, we introduce a dynamic self-correction strategy that enables real-time error correction, along with consensus-guided decision-making strategies to optimize both correctness and computational resources. Experimental results demonstrate that the FoT framework, combined with these strategies, significantly enhances the reasoning capabilities of LLMs, enabling them to solve complex tasks with greater precision and efficiency. Code will be available at https://github.com/iamhankai/Forest-of-Thought.
comment: Preprint
♻ ☆ Inference-Time Policy Steering through Human Interactions ICRA 2025
Generative policies trained with human demonstrations can autonomously accomplish multimodal, long-horizon tasks. However, during inference, humans are often removed from the policy execution loop, limiting the ability to guide a pre-trained policy towards a specific sub-goal or trajectory shape among multiple predictions. Naive human intervention may inadvertently exacerbate distribution shift, leading to constraint violations or execution failures. To better align policy output with human intent without inducing out-of-distribution errors, we propose an Inference-Time Policy Steering (ITPS) framework that leverages human interactions to bias the generative sampling process, rather than fine-tuning the policy on interaction data. We evaluate ITPS across three simulated and real-world benchmarks, testing three forms of human interaction and associated alignment distance metrics. Among six sampling strategies, our proposed stochastic sampling with diffusion policy achieves the best trade-off between alignment and distribution shift. Videos are available at https://yanweiw.github.io/itps/.
comment: ICRA 2025
♻ ☆ Uni$\textbf{F}^2$ace: Fine-grained Face Understanding and Generation with Unified Multimodal Models
Unified multimodal models (UMMs) have emerged as a powerful paradigm in foundational computer vision research, demonstrating significant potential in both image understanding and generation. However, existing research in the face domain primarily focuses on $\textbf{coarse}$ facial attribute understanding, with limited capacity to handle $\textbf{fine-grained}$ facial attributes and without addressing generation capabilities. To overcome these limitations, we propose Uni$\textbf{F}^2$ace, the first UMM tailored specifically for fine-grained face understanding and generation. In general, we train Uni$\textbf{F}^2$ace on a self-constructed, specialized dataset utilizing two mutually beneficial diffusion techniques and a two-level mixture-of-experts architecture. Specifically, we first build a large-scale facial dataset, Uni$\textbf{F}^2$ace-130K, which contains 130K image-text pairs with one million question-answering pairs that span a wide range of facial attributes. Second, we establish a theoretical connection between discrete diffusion score matching and masked generative models, optimizing both evidence lower bounds simultaneously, which significantly improves the model's ability to synthesize facial details. Finally, we introduce both token-level and sequence-level mixture-of-experts, enabling efficient fine-grained representation learning for both understanding and generation tasks. Extensive experiments on Uni$\textbf{F}^2$ace-130K demonstrate that Uni$\textbf{F}^2$ace outperforms existing UMMs and generative models, achieving superior performance across both understanding and generation tasks.
♻ ☆ Medical-GAT: Cancer Document Classification Leveraging Graph-Based Residual Network for Scenarios with Limited Data
Accurate classification of cancer-related medical abstracts is crucial for healthcare management and research. However, obtaining large, labeled datasets in the medical domain is challenging due to privacy concerns and the complexity of clinical data. This scarcity of annotated data impedes the development of effective machine learning models for cancer document classification. To address this challenge, we present a curated dataset of 1,874 biomedical abstracts, categorized into thyroid cancer, colon cancer, lung cancer, and generic topics. Our research focuses on leveraging this dataset to improve classification performance, particularly in data-scarce scenarios. We introduce a Residual Graph Attention Network (R-GAT) with multiple graph attention layers that capture the semantic information and structural relationships within cancer-related documents. Our R-GAT model is compared with various techniques, including transformer-based models such as Bidirectional Encoder Representations from Transformers (BERT), RoBERTa, and domain-specific models like BioBERT and Bio+ClinicalBERT. We also evaluated deep learning models (CNNs, LSTMs) and traditional machine learning models (Logistic Regression, SVM). Additionally, we explore ensemble approaches that combine deep learning models to enhance classification. Various feature extraction methods are assessed, including Term Frequency-Inverse Document Frequency (TF-IDF) with unigrams and bigrams, Word2Vec, and tokenizers from BERT and RoBERTa. The R-GAT model outperforms other techniques, achieving precision, recall, and F1 scores of 0.99, 0.97, and 0.98 for thyroid cancer; 0.96, 0.94, and 0.95 for colon cancer; 0.96, 0.99, and 0.97 for lung cancer; and 0.95, 0.96, and 0.95 for generic topics.
♻ ☆ HLV-1K: A Large-scale Hour-Long Video Benchmark for Time-Specific Long Video Understanding ICME 2025
Multimodal large language models have become a popular topic in deep visual understanding due to many promising real-world applications. However, hour-long video understanding, spanning over one hour and containing tens of thousands of visual frames, remains under-explored because of 1) challenging long-term video analyses, 2) inefficient large-model approaches, and 3) lack of large-scale benchmark datasets. Among them, in this paper, we focus on building a large-scale hour-long long video benchmark, HLV-1K, designed to evaluate long video understanding models. HLV-1K comprises 1009 hour-long videos with 14,847 high-quality question answering (QA) and multi-choice question asnwering (MCQA) pairs with time-aware query and diverse annotations, covering frame-level, within-event-level, cross-event-level, and long-term reasoning tasks. We evaluate our benchmark using existing state-of-the-art methods and demonstrate its value for testing deep long video understanding capabilities at different levels and for various tasks. This includes promoting future long video understanding tasks at a granular level, such as deep understanding of long live videos, meeting recordings, and movies.
comment: Accepted to ICME 2025
♻ ☆ Threshold Crossings as Tail Events for Catastrophic AI Risk
We analyse circumstances in which bifurcation-driven jumps in AI systems are associated with emergent heavy-tailed outcome distributions. By analysing how a control parameter's random fluctuations near a catastrophic threshold generate extreme outcomes, we demonstrate in what circumstances the probability of a sudden, large-scale, transition aligns closely with the tail probability of the resulting damage distribution. Our results contribute to research in monitoring, mitigation and control of AI systems when seeking to manage potentially catastrophic AI risk.
comment: Under peer review
♻ ☆ A Multimodal Vision Foundation Model for Clinical Dermatology
Diagnosing and treating skin diseases require advanced visual skills across domains and the ability to synthesize information from multiple imaging modalities. While current deep learning models excel at specific tasks like skin cancer diagnosis from dermoscopic images, they struggle to meet the complex, multimodal requirements of clinical practice. Here, we introduce PanDerm, a multimodal dermatology foundation model pretrained through self-supervised learning on over 2 million real-world skin disease images from 11 clinical institutions across 4 imaging modalities. We evaluated PanDerm on 28 diverse benchmarks, including skin cancer screening, risk stratification, differential diagnosis of common and rare skin conditions, lesion segmentation, longitudinal monitoring, and metastasis prediction and prognosis. PanDerm achieved state-of-the-art performance across all evaluated tasks, often outperforming existing models when using only 10% of labeled data. We conducted three reader studies to assess PanDerm's potential clinical utility. PanDerm outperformed clinicians by 10.2% in early-stage melanoma detection through longitudinal analysis, improved clinicians' skin cancer diagnostic accuracy by 11% on dermoscopy images, and enhanced non-dermatologist healthcare providers' differential diagnosis by 16.5% across 128 skin conditions on clinical photographs. These results demonstrate PanDerm's potential to improve patient care across diverse clinical scenarios and serve as a model for developing multimodal foundation models in other medical specialties, potentially accelerating the integration of AI support in healthcare.
comment: 74 pages; Preprint
♻ ☆ No Black Box Anymore: Demystifying Clinical Predictive Modeling with Temporal-Feature Cross Attention Mechanism
Despite the outstanding performance of deep learning models in clinical prediction tasks, explainability remains a significant challenge. Inspired by transformer architectures, we introduce the Temporal-Feature Cross Attention Mechanism (TFCAM), a novel deep learning framework designed to capture dynamic interactions among clinical features across time, enhancing both predictive accuracy and interpretability. In an experiment with 1,422 patients with Chronic Kidney Disease, predicting progression to End-Stage Renal Disease, TFCAM outperformed LSTM and RETAIN baselines, achieving an AUROC of 0.95 and an F1-score of 0.69. Beyond performance gains, TFCAM provides multi-level explainability by identifying critical temporal periods, ranking feature importance, and quantifying how features influence each other across time before affecting predictions. Our approach addresses the "black box" limitations of deep learning in healthcare, offering clinicians transparent insights into disease progression mechanisms while maintaining state-of-the-art predictive performance.
comment: 10 pages, 3 figures, submitted to AMIA 2025
♻ ☆ Do We Need to Verify Step by Step? Rethinking Process Supervision from a Theoretical Perspective
As large language models have evolved, it has become crucial to distinguish between process supervision and outcome supervision -- two key reinforcement learning approaches to complex reasoning tasks. While process supervision offers intuitive advantages for long-term credit assignment, the precise relationship between these paradigms has remained an open question. Conventional wisdom suggests that outcome supervision is fundamentally more challenging due to the trajectory-level coverage problem, leading to significant investment in collecting fine-grained process supervision data. In this paper, we take steps towards resolving this debate. Our main theorem shows that, under standard data coverage assumptions, reinforcement learning through outcome supervision is no more statistically difficult than through process supervision, up to polynomial factors in horizon. At the core of this result lies the novel Change of Trajectory Measure Lemma -- a technical tool that bridges return-based trajectory measure and step-level distribution shift. Furthermore, for settings with access to a verifier or a rollout capability, we prove that any policy's advantage function can serve as an optimal process reward model, providing a direct connection between outcome and process supervision. These findings suggest that the empirically observed performance gap -- if any -- between outcome and process supervision likely stems from algorithmic limitations rather than inherent statistical difficulties, potentially transforming how we approach data collection and algorithm design for reinforcement learning.
♻ ☆ CLEAR: Cue Learning using Evolution for Accurate Recognition Applied to Sustainability Data Extraction
Large Language Model (LLM) image recognition is a powerful tool for extracting data from images, but accuracy depends on providing sufficient cues in the prompt - requiring a domain expert for specialized tasks. We introduce Cue Learning using Evolution for Accurate Recognition (CLEAR), which uses a combination of LLMs and evolutionary computation to generate and optimize cues such that recognition of specialized features in images is improved. It achieves this by auto-generating a novel domain-specific representation and then using it to optimize suitable textual cues with a genetic algorithm. We apply CLEAR to the real-world task of identifying sustainability data from interior and exterior images of buildings. We investigate the effects of using a variable-length representation compared to fixed-length and show how LLM consistency can be improved by refactoring from categorical to real-valued estimates. We show that CLEAR enables higher accuracy compared to expert human recognition and human-authored prompts in every task with error rates improved by up to two orders of magnitude and an ablation study evincing solution concision.
comment: 9 pages plus 2 pages of supplemental material
♻ ☆ Multi-Agent Inverse Reinforcement Learning in Real World Unstructured Pedestrian Crowds
Social robot navigation in crowded public spaces such as university campuses, restaurants, grocery stores, and hospitals, is an increasingly important area of research. One of the core strategies for achieving this goal is to understand humans' intent--underlying psychological factors that govern their motion--by learning their reward functions, typically via inverse reinforcement learning (IRL). Despite significant progress in IRL, learning reward functions of multiple agents simultaneously in dense unstructured pedestrian crowds has remained intractable due to the nature of the tightly coupled social interactions that occur in these scenarios \textit{e.g.} passing, intersections, swerving, weaving, etc. In this paper, we present a new multi-agent maximum entropy inverse reinforcement learning algorithm for real world unstructured pedestrian crowds. Key to our approach is a simple, but effective, mathematical trick which we name the so-called tractability-rationality trade-off trick that achieves tractability at the cost of a slight reduction in accuracy. We compare our approach to the classical single-agent MaxEnt IRL as well as state-of-the-art trajectory prediction methods on several datasets including the ETH, UCY, SCAND, JRDB, and a new dataset, called Speedway, collected at a busy intersection on a University campus focusing on dense, complex agent interactions. Our key findings show that, on the dense Speedway dataset, our approach ranks 1st among top 7 baselines with >2X improvement over single-agent IRL, and is competitive with state-of-the-art large transformer-based encoder-decoder models on sparser datasets such as ETH/UCY (ranks 3rd among top 7 baselines).
♻ ☆ M-LLM Based Video Frame Selection for Efficient Video Understanding
Recent advances in Multi-Modal Large Language Models (M-LLMs) show promising results in video reasoning. Popular Multi-Modal Large Language Model (M-LLM) frameworks usually apply naive uniform sampling to reduce the number of video frames that are fed into an M-LLM, particularly for long context videos. However, it could lose crucial context in certain periods of a video, so that the downstream M-LLM may not have sufficient visual information to answer a question. To attack this pain point, we propose a light-weight M-LLM -based frame selection method that adaptively select frames that are more relevant to users' queries. In order to train the proposed frame selector, we introduce two supervision signals (i) Spatial signal, where single frame importance score by prompting a M-LLM; (ii) Temporal signal, in which multiple frames selection by prompting Large Language Model (LLM) using the captions of all frame candidates. The selected frames are then digested by a frozen downstream video M-LLM for visual reasoning and question answering. Empirical results show that the proposed M-LLM video frame selector improves the performances various downstream video Large Language Model (video-LLM) across medium (ActivityNet, NExT-QA) and long (EgoSchema, LongVideoBench) context video question answering benchmarks.
♻ ☆ Policy Learning with a Language Bottleneck
Modern AI systems such as self-driving cars and game-playing agents achieve superhuman performance, but often lack human-like generalization, interpretability, and inter-operability with human users. Inspired by the rich interactions between language and decision-making in humans, we introduce Policy Learning with a Language Bottleneck (PLLB), a framework enabling AI agents to generate linguistic rules that capture the high-level strategies underlying rewarding behaviors. PLLB alternates between a *rule generation* step guided by language models, and an *update* step where agents learn new policies guided by rules, even when a rule is insufficient to describe an entire complex policy. Across five diverse tasks, including a two-player signaling game, maze navigation, image reconstruction, and robot grasp planning, we show that PLLB agents are not only able to learn more interpretable and generalizable behaviors, but can also share the learned rules with human users, enabling more effective human-AI coordination. We provide source code for our experiments at https://github.com/meghabyte/bottleneck .
comment: 21 pages, 15 figures, updated with robot manipulation task
♻ ☆ JOG3R: Towards 3D-Consistent Video Generators
Emergent capabilities of image generators have led to many impactful zero- or few-shot applications. Inspired by this success, we investigate whether video generators similarly exhibit 3D-awareness. Using structure-from-motion as a 3D-aware task, we test if intermediate features of a video generator - OpenSora in our case - can support camera pose estimation. Surprisingly, at first, we only find a weak correlation between the two tasks. Deeper investigation reveals that although the video generator produces plausible video frames, the frames themselves are not truly 3D-consistent. Instead, we propose to jointly train for the two tasks, using photometric generation and 3D aware errors. Specifically, we find that SoTA video generation and camera pose estimation (i.e.,DUSt3R [79]) networks share common structures, and propose an architecture that unifies the two. The proposed unified model, named \nameMethod, produces camera pose estimates with competitive quality while producing 3D-consistent videos. In summary, we propose the first unified video generator that is 3D-consistent, generates realistic video frames, and can potentially be repurposed for other 3D-aware tasks.
♻ ☆ Modeling Story Expectations to Understand Engagement: A Generative Framework Using LLMs
Understanding when and why consumers engage with stories is crucial for content creators and platforms. While existing theories suggest that audience beliefs of what is going to happen should play an important role in engagement decisions, empirical work has mostly focused on developing techniques to directly extract features from actual content, rather than capturing forward-looking beliefs, due to the lack of a principled way to model such beliefs in unstructured narrative data. To complement existing feature extraction techniques, this paper introduces a novel framework that leverages large language models to model audience forward-looking beliefs about how stories might unfold. Our method generates multiple potential continuations for each story and extracts features related to expectations, uncertainty, and surprise using established content analysis techniques. Applying our method to over 30,000 book chapters, we demonstrate that our framework complements existing feature engineering techniques by amplifying their marginal explanatory power on average by 31%. The results reveal that different types of engagement-continuing to read, commenting, and voting-are driven by distinct combinations of current and anticipated content features. Our framework provides a novel way to study and explore how audience forward-looking beliefs shape their engagement with narrative media, with implications for marketing strategy in content-focused industries.
♻ ☆ EuroBERT: Scaling Multilingual Encoders for European Languages
General-purpose multilingual vector representations, used in retrieval, regression and classification, are traditionally obtained from bidirectional encoder models. Despite their wide applicability, encoders have been recently overshadowed by advances in generative decoder-only models. However, many innovations driving this progress are not inherently tied to decoders. In this paper, we revisit the development of multilingual encoders through the lens of these advances, and introduce EuroBERT, a family of multilingual encoders covering European and widely spoken global languages. Our models outperform existing alternatives across a diverse range of tasks, spanning multilingual capabilities, mathematics, and coding, and natively supporting sequences of up to 8,192 tokens. We also examine the design decisions behind EuroBERT, offering insights into our dataset composition and training pipeline. We publicly release the EuroBERT models, including intermediate training checkpoints, together with our training framework.
comment: 28 pages, 8 figures, 13 tables
♻ ☆ Mixture of Robust Experts (MoRE):A Robust Denoising Method towards multiple perturbations ICLR 2021
To tackle the susceptibility of deep neural networks to adversarial examples, the adversarial training has been proposed which provides a notion of security through an inner maximization problem presenting the first-order adversaries embedded within the outer minimization of the training loss. To generalize the adversarial robustness over different perturbation types, the adversarial training method has been augmented with the improved inner maximization presenting a union of multiple perturbations e.g., various $\ell_p$ norm-bounded perturbations. However, the improved inner maximization only enjoys limited flexibility in terms of the allowable perturbation types. In this work, through a gating mechanism, we assemble a set of expert networks, each one either adversarially trained to deal with a particular perturbation type or normally trained for boosting accuracy on clean data. The gating module assigns weights dynamically to each expert to achieve superior accuracy under various data types e.g., adversarial examples, adverse weather perturbations, and clean input. In order to deal with the obfuscated gradients issue, the training of the gating module is conducted together with fine-tuning of the last fully connected layers of expert networks through adversarial training approach. Using extensive experiments, we show that our Mixture of Robust Experts (MoRE) approach enables a flexible integration of a broad range of robust experts with superior performance.
comment: This paper is accepted by ICLR 2021 Robust and reliable machine learning in the real world Workshop
Graphics 11
☆ PGC: Physics-Based Gaussian Cloth from a Single Pose
We introduce a novel approach to reconstruct simulation-ready garments with intricate appearance. Despite recent advancements, existing methods often struggle to balance the need for accurate garment reconstruction with the ability to generalize to new poses and body shapes or require large amounts of data to achieve this. In contrast, our method only requires a multi-view capture of a single static frame. We represent garments as hybrid mesh-embedded 3D Gaussian splats, where the Gaussians capture near-field shading and high-frequency details, while the mesh encodes far-field albedo and optimized reflectance parameters. We achieve novel pose generalization by exploiting the mesh from our hybrid approach, enabling physics-based simulation and surface rendering techniques, while also capturing fine details with Gaussians that accurately reconstruct garment details. Our optimized garments can be used for simulating garments on novel poses, and garment relighting. Project page: https://phys-gaussian-cloth.github.io .
☆ Text-Driven Voice Conversion via Latent State-Space Modeling
Text-driven voice conversion allows customization of speaker characteristics and prosodic elements using textual descriptions. However, most existing methods rely heavily on direct text-to-speech training, limiting their flexibility in controlling nuanced style elements or timbral features. In this paper, we propose a novel \textbf{Latent State-Space} approach for text-driven voice conversion (\textbf{LSS-VC}). Our method treats each utterance as an evolving dynamical system in a continuous latent space. Drawing inspiration from mamba, which introduced a state-space model for efficient text-driven \emph{image} style transfer, we adapt a loosely related methodology for \emph{voice} style transformation. Specifically, we learn a voice latent manifold where style and content can be manipulated independently by textual style prompts. We propose an adaptive cross-modal fusion mechanism to inject style information into the voice latent representation, enabling interpretable and fine-grained control over speaker identity, speaking rate, and emphasis. Extensive experiments show that our approach significantly outperforms recent baselines in both subjective and objective quality metrics, while offering smoother transitions between styles, reduced artifacts, and more precise text-based style control.
☆ ReverBERT: A State Space Model for Efficient Text-Driven Speech Style Transfer
Text-driven speech style transfer aims to mold the intonation, pace, and timbre of a spoken utterance to match stylistic cues from text descriptions. While existing methods leverage large-scale neural architectures or pre-trained language models, the computational costs often remain high. In this paper, we present \emph{ReverBERT}, an efficient framework for text-driven speech style transfer that draws inspiration from a state space model (SSM) paradigm, loosely motivated by the image-based method of Wang and Liu~\cite{wang2024stylemamba}. Unlike image domain techniques, our method operates in the speech space and integrates a discrete Fourier transform of latent speech features to enable smooth and continuous style modulation. We also propose a novel \emph{Transformer-based SSM} layer for bridging textual style descriptors with acoustic attributes, dramatically reducing inference time while preserving high-quality speech characteristics. Extensive experiments on benchmark speech corpora demonstrate that \emph{ReverBERT} significantly outperforms baselines in terms of naturalness, expressiveness, and computational efficiency. We release our model and code publicly to foster further research in text-driven speech style transfer.
☆ Cross-Modal State-Space Graph Reasoning for Structured Summarization
The ability to extract compact, meaningful summaries from large-scale and multimodal data is critical for numerous applications, ranging from video analytics to medical reports. Prior methods in cross-modal summarization have often suffered from high computational overheads and limited interpretability. In this paper, we propose a \textit{Cross-Modal State-Space Graph Reasoning} (\textbf{CSS-GR}) framework that incorporates a state-space model with graph-based message passing, inspired by prior work on efficient state-space models. Unlike existing approaches relying on purely sequential models, our method constructs a graph that captures inter- and intra-modal relationships, allowing more holistic reasoning over both textual and visual streams. We demonstrate that our approach significantly improves summarization quality and interpretability while maintaining computational efficiency, as validated on standard multimodal summarization benchmarks. We also provide a thorough ablation study to highlight the contributions of each component.
☆ Synthetic Video Enhances Physical Fidelity in Video Synthesis
We investigate how to enhance the physical fidelity of video generation models by leveraging synthetic videos derived from computer graphics pipelines. These rendered videos respect real-world physics, such as maintaining 3D consistency, and serve as a valuable resource that can potentially improve video generation models. To harness this potential, we propose a solution that curates and integrates synthetic data while introducing a method to transfer its physical realism to the model, significantly reducing unwanted artifacts. Through experiments on three representative tasks emphasizing physical consistency, we demonstrate its efficacy in enhancing physical fidelity. While our model still lacks a deep understanding of physics, our work offers one of the first empirical demonstrations that synthetic video enhances physical fidelity in video synthesis. Website: https://kevinz8866.github.io/simulation/
☆ EVPGS: Enhanced View Prior Guidance for Splatting-based Extrapolated View Synthesis CVPR2025
Gaussian Splatting (GS)-based methods rely on sufficient training view coverage and perform synthesis on interpolated views. In this work, we tackle the more challenging and underexplored Extrapolated View Synthesis (EVS) task. Here we enable GS-based models trained with limited view coverage to generalize well to extrapolated views. To achieve our goal, we propose a view augmentation framework to guide training through a coarse-to-fine process. At the coarse stage, we reduce rendering artifacts due to insufficient view coverage by introducing a regularization strategy at both appearance and geometry levels. At the fine stage, we generate reliable view priors to provide further training guidance. To this end, we incorporate an occlusion awareness into the view prior generation process, and refine the view priors with the aid of coarse stage output. We call our framework Enhanced View Prior Guidance for Splatting (EVPGS). To comprehensively evaluate EVPGS on the EVS task, we collect a real-world dataset called Merchandise3D dedicated to the EVS scenario. Experiments on three datasets including both real and synthetic demonstrate EVPGS achieves state-of-the-art performance, while improving synthesis quality at extrapolated views for GS-based methods both qualitatively and quantitatively. We will make our code, dataset, and models public.
comment: Accepted by CVPR2025
☆ Ancestral Mamba: Enhancing Selective Discriminant Space Model with Online Visual Prototype Learning for Efficient and Robust Discriminant Approach
In the realm of computer graphics, the ability to learn continuously from non-stationary data streams while adapting to new visual patterns and mitigating catastrophic forgetting is of paramount importance. Existing approaches often struggle to capture and represent the essential characteristics of evolving visual concepts, hindering their applicability to dynamic graphics tasks. In this paper, we propose Ancestral Mamba, a novel approach that integrates online prototype learning into a selective discriminant space model for efficient and robust online continual learning. The key components of our approach include Ancestral Prototype Adaptation (APA), which continuously refines and builds upon learned visual prototypes, and Mamba Feedback (MF), which provides targeted feedback to adapt to challenging visual patterns. APA enables the model to continuously adapt its prototypes, building upon ancestral knowledge to tackle new challenges, while MF acts as a targeted feedback mechanism, focusing on challenging classes and refining their representations. Extensive experiments on graphics-oriented datasets, such as CIFAR-10 and CIFAR-100, demonstrate the superior performance of Ancestral Mamba compared to state-of-the-art baselines, achieving significant improvements in accuracy and forgetting mitigation.
comment: 10 pages, 3 figures
♻ ☆ A Survey on Event-driven 3D Reconstruction: Development under Different Categories
Event cameras have gained increasing attention for 3D reconstruction due to their high temporal resolution, low latency, and high dynamic range. They capture per-pixel brightness changes asynchronously, allowing accurate reconstruction under fast motion and challenging lighting conditions. In this survey, we provide a comprehensive review of event-driven 3D reconstruction methods, including stereo, monocular, and multimodal systems. We further categorize recent developments based on geometric, learning-based, and hybrid approaches. Emerging trends, such as neural radiance fields and 3D Gaussian splatting with event data, are also covered. The related works are structured chronologically to illustrate the innovations and progression within the field. To support future research, we also highlight key research gaps and future research directions in dataset, experiment, evaluation, event representation, etc.
comment: 6 pages, 1 figure, 6 tables, submitted to an anonymous conference under double-blind review
♻ ☆ PhysAnimator: Physics-Guided Generative Cartoon Animation CVPR 2025
Creating hand-drawn animation sequences is labor-intensive and demands professional expertise. We introduce PhysAnimator, a novel approach for generating physically plausible meanwhile anime-stylized animation from static anime illustrations. Our method seamlessly integrates physics-based simulations with data-driven generative models to produce dynamic and visually compelling animations. To capture the fluidity and exaggeration characteristic of anime, we perform image-space deformable body simulations on extracted mesh geometries. We enhance artistic control by introducing customizable energy strokes and incorporating rigging point support, enabling the creation of tailored animation effects such as wind interactions. Finally, we extract and warp sketches from the simulation sequence, generating a texture-agnostic representation, and employ a sketch-guided video diffusion model to synthesize high-quality animation frames. The resulting animations exhibit temporal consistency and visual plausibility, demonstrating the effectiveness of our method in creating dynamic anime-style animations. See our project page for more demos: https://xpandora.github.io/PhysAnimator/
comment: Accepted by CVPR 2025
♻ ☆ Sensitivity to Redirected Walking Considering Gaze, Posture, and Luminance
We study the correlations between redirected walking (RDW) rotation gains and patterns in users' posture and gaze data during locomotion in virtual reality (VR). To do this, we conducted a psychophysical experiment to measure users' sensitivity to RDW rotation gains and collect gaze and posture data during the experiment. Using multilevel modeling, we studied how different factors of the VR system and user affected their physiological signals. In particular, we studied the effects of redirection gain, trial duration, trial number (i.e., time spent in VR), and participant gender on postural sway, gaze velocity (a proxy for gaze stability), and saccade and blink rate. Our results showed that, in general, physiological signals were significantly positively correlated with the strength of redirection gain, the duration of trials, and the trial number. Gaze velocity was negatively correlated with trial duration. Additionally, we measured users' sensitivity to rotation gains in well-lit (photopic) and dimly-lit (mesopic) virtual lighting conditions. Results showed that there were no significant differences in RDW detection thresholds between the photopic and mesopic luminance conditions.
comment: Accepted for publication in TVCG, proceedings of IEEE VR 2025 conference
♻ ☆ MARVEL-40M+: Multi-Level Visual Elaboration for High-Fidelity Text-to-3D Content Creation
Generating high-fidelity 3D content from text prompts remains a significant challenge in computer vision due to the limited size, diversity, and annotation depth of the existing datasets. To address this, we introduce MARVEL-40M+, an extensive dataset with 40 million text annotations for over 8.9 million 3D assets aggregated from seven major 3D datasets. Our contribution is a novel multi-stage annotation pipeline that integrates open-source pretrained multi-view VLMs and LLMs to automatically produce multi-level descriptions, ranging from detailed (150-200 words) to concise semantic tags (10-20 words). This structure supports both fine-grained 3D reconstruction and rapid prototyping. Furthermore, we incorporate human metadata from source datasets into our annotation pipeline to add domain-specific information in our annotation and reduce VLM hallucinations. Additionally, we develop MARVEL-FX3D, a two-stage text-to-3D pipeline. We fine-tune Stable Diffusion with our annotations and use a pretrained image-to-3D network to generate 3D textured meshes within 15s. Extensive evaluations show that MARVEL-40M+ significantly outperforms existing datasets in annotation quality and linguistic diversity, achieving win rates of 72.41% by GPT-4 and 73.40% by human evaluators. Project page is available at https://sankalpsinha-cmos.github.io/MARVEL/.
Robotics 52
☆ EventFly: Event Camera Perception from Ground to the Sky CVPR 2025
Cross-platform adaptation in event-based dense perception is crucial for deploying event cameras across diverse settings, such as vehicles, drones, and quadrupeds, each with unique motion dynamics, viewpoints, and class distributions. In this work, we introduce EventFly, a framework for robust cross-platform adaptation in event camera perception. Our approach comprises three key components: i) Event Activation Prior (EAP), which identifies high-activation regions in the target domain to minimize prediction entropy, fostering confident, domain-adaptive predictions; ii) EventBlend, a data-mixing strategy that integrates source and target event voxel grids based on EAP-driven similarity and density maps, enhancing feature alignment; and iii) EventMatch, a dual-discriminator technique that aligns features from source, target, and blended domains for better domain-invariant learning. To holistically assess cross-platform adaptation abilities, we introduce EXPo, a large-scale benchmark with diverse samples across vehicle, drone, and quadruped platforms. Extensive experiments validate our effectiveness, demonstrating substantial gains over popular adaptation methods. We hope this work can pave the way for more adaptive, high-performing event perception across diverse and complex environments.
comment: CVPR 2025; 30 pages, 8 figures, 16 tables; Project Page at https://event-fly.github.io/
☆ SuperFlow++: Enhanced Spatiotemporal Consistency for Cross-Modal Data Pretraining
LiDAR representation learning has emerged as a promising approach to reducing reliance on costly and labor-intensive human annotations. While existing methods primarily focus on spatial alignment between LiDAR and camera sensors, they often overlook the temporal dynamics critical for capturing motion and scene continuity in driving scenarios. To address this limitation, we propose SuperFlow++, a novel framework that integrates spatiotemporal cues in both pretraining and downstream tasks using consecutive LiDAR-camera pairs. SuperFlow++ introduces four key components: (1) a view consistency alignment module to unify semantic information across camera views, (2) a dense-to-sparse consistency regularization mechanism to enhance feature robustness across varying point cloud densities, (3) a flow-based contrastive learning approach that models temporal relationships for improved scene understanding, and (4) a temporal voting strategy that propagates semantic information across LiDAR scans to improve prediction consistency. Extensive evaluations on 11 heterogeneous LiDAR datasets demonstrate that SuperFlow++ outperforms state-of-the-art methods across diverse tasks and driving conditions. Furthermore, by scaling both 2D and 3D backbones during pretraining, we uncover emergent properties that provide deeper insights into developing scalable 3D foundation models. With strong generalizability and computational efficiency, SuperFlow++ establishes a new benchmark for data-efficient LiDAR-based perception in autonomous driving. The code is publicly available at https://github.com/Xiangxu-0103/SuperFlow
comment: Preprint; 15 pages, 6 figures, 10 tables; Code at https://github.com/Xiangxu-0103/SuperFlow
☆ Visuo-Tactile Object Pose Estimation for a Multi-Finger Robot Hand with Low-Resolution In-Hand Tactile Sensing ICRA
Accurate 3D pose estimation of grasped objects is an important prerequisite for robots to perform assembly or in-hand manipulation tasks, but object occlusion by the robot's own hand greatly increases the difficulty of this perceptual task. Here, we propose that combining visual information and proprioception with binary, low-resolution tactile contact measurements from across the interior surface of an articulated robotic hand can mitigate this issue. The visuo-tactile object-pose-estimation problem is formulated probabilistically in a factor graph. The pose of the object is optimized to align with the three kinds of measurements using a robust cost function to reduce the influence of visual or tactile outlier readings. The advantages of the proposed approach are first demonstrated in simulation: a custom 15-DoF robot hand with one binary tactile sensor per link grasps 17 YCB objects while observed by an RGB-D camera. This low-resolution in-hand tactile sensing significantly improves object-pose estimates under high occlusion and also high visual noise. We also show these benefits through grasping tests with a preliminary real version of our tactile hand, obtaining reasonable visuo-tactile estimates of object pose at approximately 13.3 Hz on average.
comment: Accepted for publication at the IEEE International Conference on Robotics and Automation (ICRA), 2025
☆ A Multi-Agent Framework Integrating Large Language Models and Generative AI for Accelerated Metamaterial Design
Metamaterials, renowned for their exceptional mechanical, electromagnetic, and thermal properties, hold transformative potential across diverse applications, yet their design remains constrained by labor-intensive trial-and-error methods and limited data interoperability. Here, we introduce CrossMatAgent--a novel multi-agent framework that synergistically integrates large language models with state-of-the-art generative AI to revolutionize metamaterial design. By orchestrating a hierarchical team of agents--each specializing in tasks such as pattern analysis, architectural synthesis, prompt engineering, and supervisory feedback--our system leverages the multimodal reasoning of GPT-4o alongside the generative precision of DALL-E 3 and a fine-tuned Stable Diffusion XL model. This integrated approach automates data augmentation, enhances design fidelity, and produces simulation- and 3D printing-ready metamaterial patterns. Comprehensive evaluations, including CLIP-based alignment, SHAP interpretability analyses, and mechanical simulations under varied load conditions, demonstrate the framework's ability to generate diverse, reproducible, and application-ready designs. CrossMatAgent thus establishes a scalable, AI-driven paradigm that bridges the gap between conceptual innovation and practical realization, paving the way for accelerated metamaterial development.
☆ OpenLex3D: A New Evaluation Benchmark for Open-Vocabulary 3D Scene Representations
3D scene understanding has been transformed by open-vocabulary language models that enable interaction via natural language. However, the evaluation of these representations is limited to closed-set semantics that do not capture the richness of language. This work presents OpenLex3D, a dedicated benchmark to evaluate 3D open-vocabulary scene representations. OpenLex3D provides entirely new label annotations for 23 scenes from Replica, ScanNet++, and HM3D, which capture real-world linguistic variability by introducing synonymical object categories and additional nuanced descriptions. By introducing an open-set 3D semantic segmentation task and an object retrieval task, we provide insights on feature precision, segmentation, and downstream capabilities. We evaluate various existing 3D open-vocabulary methods on OpenLex3D, showcasing failure cases, and avenues for improvement. The benchmark is publicly available at: https://openlex3d.github.io/.
☆ Dita: Scaling Diffusion Transformer for Generalist Vision-Language-Action Policy
While recent vision-language-action models trained on diverse robot datasets exhibit promising generalization capabilities with limited in-domain data, their reliance on compact action heads to predict discretized or continuous actions constrains adaptability to heterogeneous action spaces. We present Dita, a scalable framework that leverages Transformer architectures to directly denoise continuous action sequences through a unified multimodal diffusion process. Departing from prior methods that condition denoising on fused embeddings via shallow networks, Dita employs in-context conditioning -- enabling fine-grained alignment between denoised actions and raw visual tokens from historical observations. This design explicitly models action deltas and environmental nuances. By scaling the diffusion action denoiser alongside the Transformer's scalability, Dita effectively integrates cross-embodiment datasets across diverse camera perspectives, observation scenes, tasks, and action spaces. Such synergy enhances robustness against various variances and facilitates the successful execution of long-horizon tasks. Evaluations across extensive benchmarks demonstrate state-of-the-art or comparative performance in simulation. Notably, Dita achieves robust real-world adaptation to environmental variances and complex long-horizon tasks through 10-shot finetuning, using only third-person camera inputs. The architecture establishes a versatile, lightweight and open-source baseline for generalist robot policy learning. Project Page: https://robodita.github.io.
comment: Preprint; https://robodita.github.io;
Semi-SD: Semi-Supervised Metric Depth Estimation via Surrounding Cameras for Autonomous Driving
In this paper, we introduce Semi-SD, a novel metric depth estimation framework tailored for surrounding cameras equipment in autonomous driving. In this work, the input data consists of adjacent surrounding frames and camera parameters. We propose a unified spatial-temporal-semantic fusion module to construct the visual fused features. Cross-attention components for surrounding cameras and adjacent frames are utilized to focus on metric scale information refinement and temporal feature matching. Building on this, we propose a pose estimation framework using surrounding cameras, their corresponding estimated depths, and extrinsic parameters, which effectively address the scale ambiguity in multi-camera setups. Moreover, semantic world model and monocular depth estimation world model are integrated to supervised the depth estimation, which improve the quality of depth estimation. We evaluate our algorithm on DDAD and nuScenes datasets, and the results demonstrate that our method achieves state-of-the-art performance in terms of surrounding camera based depth estimation quality. The source code will be available on https://github.com/xieyuser/Semi-SD.
☆ Leveraging Cognitive States for Adaptive Scaffolding of Understanding in Explanatory Tasks in HRI
Understanding how scaffolding strategies influence human understanding in human-robot interaction is important for developing effective assistive systems. This empirical study investigates linguistic scaffolding strategies based on negation as an important means that de-biases the user from potential errors but increases processing costs and hesitations as a means to ameliorate processing costs. In an adaptive strategy, the user state with respect to the current state of understanding and processing capacity was estimated via a scoring scheme based on task performance, prior scaffolding strategy, and current eye gaze behavior. In the study, the adaptive strategy of providing negations and hesitations was compared with a non-adaptive strategy of providing only affirmations. The adaptive scaffolding strategy was generated using the computational model SHIFT. Our findings indicate that using adaptive scaffolding strategies with SHIFT tends to (1) increased processing costs, as reflected in longer reaction times, but (2) improved task understanding, evidenced by a lower error rate of almost 23%. We assessed the efficiency of SHIFT's selected scaffolding strategies across different cognitive states, finding that in three out of five states, the error rate was lower compared to the baseline condition. We discuss how these results align with the assumptions of the SHIFT model and highlight areas for refinement. Moreover, we demonstrate how scaffolding strategies, such as negation and hesitation, contribute to more effective human-robot explanatory dialogues.
comment: 8 pages, 6 figures
☆ Risk-Aware Reinforcement Learning for Autonomous Driving: Improving Safety When Driving through Intersection
Applying reinforcement learning to autonomous driving has garnered widespread attention. However, classical reinforcement learning methods optimize policies by maximizing expected rewards but lack sufficient safety considerations, often putting agents in hazardous situations. This paper proposes a risk-aware reinforcement learning approach for autonomous driving to improve the safety performance when crossing the intersection. Safe critics are constructed to evaluate driving risk and work in conjunction with the reward critic to update the actor. Based on this, a Lagrangian relaxation method and cyclic gradient iteration are combined to project actions into a feasible safe region. Furthermore, a Multi-hop and Multi-layer perception (MLP) mixed Attention Mechanism (MMAM) is incorporated into the actor-critic network, enabling the policy to adapt to dynamic traffic and overcome permutation sensitivity challenges. This allows the policy to focus more effectively on surrounding potential risks while enhancing the identification of passing opportunities. Simulation tests are conducted on different tasks at unsignalized intersections. The results show that the proposed approach effectively reduces collision rates and improves crossing efficiency in comparison to baseline algorithms. Additionally, our ablation experiments demonstrate the benefits of incorporating risk-awareness and MMAM into RL.
comment: 11 pages, 10 figures
☆ Energy-aware Joint Orchestration of 5G and Robots: Experimental Testbed and Field Validation
5G mobile networks introduce a new dimension for connecting and operating mobile robots in outdoor environments, leveraging cloud-native and offloading features of 5G networks to enable fully flexible and collaborative cloud robot operations. However, the limited battery life of robots remains a significant obstacle to their effective adoption in real-world exploration scenarios. This paper explores, via field experiments, the potential energy-saving gains of OROS, a joint orchestration of 5G and Robot Operating System (ROS) that coordinates multiple 5G-connected robots both in terms of navigation and sensing, as well as optimizes their cloud-native service resource utilization while minimizing total resource and energy consumption on the robots based on real-time feedback. We designed, implemented and evaluated our proposed OROS in an experimental testbed composed of commercial off-the-shelf robots and a local 5G infrastructure deployed on a campus. The experimental results demonstrated that OROS significantly outperforms state-of-the-art approaches in terms of energy savings by offloading demanding computational tasks to the 5G edge infrastructure and dynamic energy management of on-board sensors (e.g., switching them off when they are not needed). This strategy achieves approximately 15% energy savings on the robots, thereby extending battery life, which in turn allows for longer operating times and better resource utilization.
comment: 14 pages, 15 figures, journal
☆ ZodiAq: An Isotropic Flagella-Inspired Soft Underwater Drone for Safe Marine Exploration
The inherent challenges of robotic underwater exploration, such as hydrodynamic effects, the complexity of dynamic coupling, and the necessity for sensitive interaction with marine life, call for the adoption of soft robotic approaches in marine exploration. To address this, we present a novel prototype, ZodiAq, a soft underwater drone inspired by prokaryotic bacterial flagella. ZodiAq's unique dodecahedral structure, equipped with 12 flagella-like arms, ensures design redundancy and compliance, ideal for navigating complex underwater terrains. The prototype features a central unit based on a Raspberry Pi, connected to a sensory system for inertial, depth, and vision detection, and an acoustic modem for communication. Combined with the implemented control law, it renders ZodiAq an intelligent system. This paper details the design and fabrication process of ZodiAq, highlighting design choices and prototype capabilities. Based on the strain-based modeling of Cosserat rods, we have developed a digital twin of the prototype within a simulation toolbox to ease analysis and control. To optimize its operation in dynamic aquatic conditions, a simplified model-based controller has been developed and implemented, facilitating intelligent and adaptive movement in the hydrodynamic environment. Extensive experimental demonstrations highlight the drone's potential, showcasing its design redundancy, embodied intelligence, crawling gait, and practical applications in diverse underwater settings. This research contributes significantly to the field of underwater soft robotics, offering a promising new avenue for safe, efficient, and environmentally conscious underwater exploration.
comment: 43 pages, including disclaimer page, pre-peer-review version of the manuscript, and supplementary material
☆ DataPlatter: Boosting Robotic Manipulation Generalization with Minimal Costly Data
The growing adoption of Vision-Language-Action (VLA) models in embodied AI intensifies the demand for diverse manipulation demonstrations. However, high costs associated with data collection often result in insufficient data coverage across all scenarios, which limits the performance of the models. It is observed that the spatial reasoning phase (SRP) in large workspace dominates the failure cases. Fortunately, this data can be collected with low cost, underscoring the potential of leveraging inexpensive data to improve model performance. In this paper, we introduce the DataPlatter method, a framework that decouples training trajectories into distinct task stages and leverages abundant easily collectible SRP data to enhance VLA model's generalization. Through analysis we demonstrate that sub-task-specific training with additional SRP data with proper proportion can act as a performance catalyst for robot manipulation, maximizing the utilization of costly physical interaction phase (PIP) data. Experiments show that through introducing large proportion of cost-effective SRP trajectories into a limited set of PIP data, we can achieve a maximum improvement of 41\% on success rate in zero-shot scenes, while with the ability to transfer manipulation skill to novel targets.
☆ RoboFlamingo-Plus: Fusion of Depth and RGB Perception with Vision-Language Models for Enhanced Robotic Manipulation
As robotic technologies advancing towards more complex multimodal interactions and manipulation tasks, the integration of advanced Vision-Language Models (VLMs) has become a key driver in the field. Despite progress with current methods, challenges persist in fusing depth and RGB information within 3D environments and executing tasks guided by linguistic instructions. In response to these challenges, we have enhanced the existing RoboFlamingo framework by introducing RoboFlamingo-Plus, which incorporates depth data into VLMs to significantly improve robotic manipulation performance. Our research achieves a nuanced fusion of RGB and depth information by integrating a pre-trained Vision Transformer (ViT) with a resampling technique, closely aligning this combined data with linguistic cues for superior multimodal understanding. The novelty of RoboFlamingo-Plus lies in its adaptation of inputs for depth data processing, leveraging a pre-trained resampler for depth feature extraction, and employing cross-attention mechanisms for optimal feature integration. These improvements allow RoboFlamingo-Plus to not only deeply understand 3D environments but also easily perform complex, language-guided tasks in challenging settings. Experimental results show that RoboFlamingo-Plus boosts robotic manipulation by 10-20% over current methods, marking a significant advancement. Codes and model weights are public at RoboFlamingo-Plus.
☆ MM-LINS: a Multi-Map LiDAR-Inertial System for Over-Degenerate Environments
SLAM plays a crucial role in automation tasks, such as warehouse logistics, healthcare robotics, and restaurant delivery. These scenes come with various challenges, including navigating around crowds of people, dealing with flying plastic bags that can temporarily blind sensors, and addressing reduced LiDAR density caused by cooking smoke. Such scenarios can result in over-degeneracy, causing the map to drift. To address this issue, this paper presents a multi-map LiDAR-inertial system (MM-LINS) for the first time. The front-end employs an iterated error state Kalman filter for state estimation and introduces a reliable evaluation strategy for degeneracy detection. If over-degeneracy is detected, the active map will be stored into sleeping maps. Subsequently, the system continuously attempts to construct new maps using a dynamic initialization method to ensure successful initialization upon leaving the over-degeneracy. Regarding the back-end, the Scan Context descriptor is utilized to detect inter-map similarity. Upon successful recognition of a sleeping map that shares a common region with the active map, the overlapping trajectory region is utilized to constrain the positional transformation near the edge of the prior map. In response to this, a constraint-enhanced map fusion strategy is proposed to achieve high-precision positional and mapping results. Experiments have been conducted separately on both public datasets that exhibited over-degenerate conditions and in real-world environments. These tests demonstrated the effectiveness of MM-LINS in over-degeneracy environment. Our codes are open-sourced on Github.
comment: Accepted by IEEE Transactions on Intelligent Vehicles
☆ G-DexGrasp: Generalizable Dexterous Grasping Synthesis Via Part-Aware Prior Retrieval and Prior-Assisted Generation
Recent advances in dexterous grasping synthesis have demonstrated significant progress in producing reasonable and plausible grasps for many task purposes. But it remains challenging to generalize to unseen object categories and diverse task instructions. In this paper, we propose G-DexGrasp, a retrieval-augmented generation approach that can produce high-quality dexterous hand configurations for unseen object categories and language-based task instructions. The key is to retrieve generalizable grasping priors, including the fine-grained contact part and the affordance-related distribution of relevant grasping instances, for the following synthesis pipeline. Specifically, the fine-grained contact part and affordance act as generalizable guidance to infer reasonable grasping configurations for unseen objects with a generative model, while the relevant grasping distribution plays as regularization to guarantee the plausibility of synthesized grasps during the subsequent refinement optimization. Our comparison experiments validate the effectiveness of our key designs for generalization and demonstrate the remarkable performance against the existing approaches. Project page: https://g-dexgrasp.github.io/
comment: 11 pages, 5 figures
☆ Quality-focused Active Adversarial Policy for Safe Grasping in Human-Robot Interaction
Vision-guided robot grasping methods based on Deep Neural Networks (DNNs) have achieved remarkable success in handling unknown objects, attributable to their powerful generalizability. However, these methods with this generalizability tend to recognize the human hand and its adjacent objects as graspable targets, compromising safety during Human-Robot Interaction (HRI). In this work, we propose the Quality-focused Active Adversarial Policy (QFAAP) to solve this problem. Specifically, the first part is the Adversarial Quality Patch (AQP), wherein we design the adversarial quality patch loss and leverage the grasp dataset to optimize a patch with high quality scores. Next, we construct the Projected Quality Gradient Descent (PQGD) and integrate it with the AQP, which contains only the hand region within each real-time frame, endowing the AQP with fast adaptability to the human hand shape. Through AQP and PQGD, the hand can be actively adversarial with the surrounding objects, lowering their quality scores. Therefore, further setting the quality score of the hand to zero will reduce the grasping priority of both the hand and its adjacent objects, enabling the robot to grasp other objects away from the hand without emergency stops. We conduct extensive experiments on the benchmark datasets and a cobot, showing the effectiveness of QFAAP. Our code and demo videos are available here: https://github.com/clee-jaist/QFAAP.
☆ MATT-GS: Masked Attention-based 3DGS for Robot Perception and Object Detection IROS
This paper presents a novel masked attention-based 3D Gaussian Splatting (3DGS) approach to enhance robotic perception and object detection in industrial and smart factory environments. U2-Net is employed for background removal to isolate target objects from raw images, thereby minimizing clutter and ensuring that the model processes only relevant data. Additionally, a Sobel filter-based attention mechanism is integrated into the 3DGS framework to enhance fine details - capturing critical features such as screws, wires, and intricate textures essential for high-precision tasks. We validate our approach using quantitative metrics, including L1 loss, SSIM, PSNR, comparing the performance of the background-removed and attention-incorporated 3DGS model against the ground truth images and the original 3DGS training baseline. The results demonstrate significant improves in visual fidelity and detail preservation, highlighting the effectiveness of our method in enhancing robotic vision for object recognition and manipulation in complex industrial settings.
comment: This work has been submitted to the 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) for possible publication
☆ Towards Uncertainty Unification: A Case Study for Preference Learning
Learning human preferences is essential for human-robot interaction, as it enables robots to adapt their behaviors to align with human expectations and goals. However, the inherent uncertainties in both human behavior and robotic systems make preference learning a challenging task. While probabilistic robotics algorithms offer uncertainty quantification, the integration of human preference uncertainty remains underexplored. To bridge this gap, we introduce uncertainty unification and propose a novel framework, uncertainty-unified preference learning (UUPL), which enhances Gaussian Process (GP)-based preference learning by unifying human and robot uncertainties. Specifically, UUPL includes a human preference uncertainty model that improves GP posterior mean estimation, and an uncertainty-weighted Gaussian Mixture Model (GMM) that enhances GP predictive variance accuracy. Additionally, we design a user-specific calibration process to align uncertainty representations across users, ensuring consistency and reliability in the model performance. Comprehensive experiments and user studies demonstrate that UUPL achieves state-of-the-art performance in both prediction accuracy and user rating. An ablation study further validates the effectiveness of human uncertainty model and uncertainty-weighted GMM of UUPL.
☆ Observation Adaptation via Annealed Importance Resampling for Partially Observable Markov Decision Processes
Partially observable Markov decision processes (POMDPs) are a general mathematical model for sequential decision-making in stochastic environments under state uncertainty. POMDPs are often solved \textit{online}, which enables the algorithm to adapt to new information in real time. Online solvers typically use bootstrap particle filters based on importance resampling for updating the belief distribution. Since directly sampling from the ideal state distribution given the latest observation and previous state is infeasible, particle filters approximate the posterior belief distribution by propagating states and adjusting weights through prediction and resampling steps. However, in practice, the importance resampling technique often leads to particle degeneracy and sample impoverishment when the state transition model poorly aligns with the posterior belief distribution, especially when the received observation is highly informative. We propose an approach that constructs a sequence of bridge distributions between the state-transition and optimal distributions through iterative Monte Carlo steps, better accommodating noisy observations in online POMDP solvers. Our algorithm demonstrates significantly superior performance compared to state-of-the-art methods when evaluated across multiple challenging POMDP domains.
comment: Accepted as Oral Presentation to ICAPS 2025
☆ A Novel Underwater Vehicle With Orientation Adjustable Thrusters: Design and Adaptive Tracking Control
Autonomous underwater vehicles (AUVs) are essential for marine exploration and research. However, conventional designs often struggle with limited maneuverability in complex, dynamic underwater environments. This paper introduces an innovative orientation-adjustable thruster AUV (OATAUV), equipped with a redundant vector thruster configuration that enables full six-degree-of-freedom (6-DOF) motion and composite maneuvers. To overcome challenges associated with uncertain model parameters and environmental disturbances, a novel feedforward adaptive model predictive controller (FFAMPC) is proposed to ensure robust trajectory tracking, which integrates real-time state feedback with adaptive parameter updates. Extensive experiments, including closed-loop tracking and composite motion tests in a laboratory pool, validate the enhanced performance of the OAT-AUV. The results demonstrate that the OAT-AUV's redundant vector thruster configuration enables 23.8% cost reduction relative to common vehicles, while the FF-AMPC controller achieves 68.6% trajectory tracking improvement compared to PID controllers. Uniquely, the system executes composite helical/spiral trajectories unattainable by similar vehicles.
☆ CubeRobot: Grounding Language in Rubik's Cube Manipulation via Vision-Language Model
Proving Rubik's Cube theorems at the high level represents a notable milestone in human-level spatial imagination and logic thinking and reasoning. Traditional Rubik's Cube robots, relying on complex vision systems and fixed algorithms, often struggle to adapt to complex and dynamic scenarios. To overcome this limitation, we introduce CubeRobot, a novel vision-language model (VLM) tailored for solving 3x3 Rubik's Cubes, empowering embodied agents with multimodal understanding and execution capabilities. We used the CubeCoT image dataset, which contains multiple-level tasks (43 subtasks in total) that humans are unable to handle, encompassing various cube states. We incorporate a dual-loop VisionCoT architecture and Memory Stream, a paradigm for extracting task-related features from VLM-generated planning queries, thus enabling CubeRobot to independent planning, decision-making, reflection and separate management of high- and low-level Rubik's Cube tasks. Furthermore, in low-level Rubik's Cube restoration tasks, CubeRobot achieved a high accuracy rate of 100%, similar to 100% in medium-level tasks, and achieved an accuracy rate of 80% in high-level tasks.
☆ CoinFT: A Coin-Sized, Capacitive 6-Axis Force Torque Sensor for Robotic Applications
We introduce CoinFT, a capacitive 6-axis force/torque (F/T) sensor that is compact, light, low-cost, and robust with an average mean-squared error of 0.11N for force and 0.84mNm for moment when the input ranges from 0~10N and 0~4N in normal and shear directions, respectively. CoinFT is a stack of two rigid PCBs with comb-shaped electrodes connected by an array of silicone rubber pillars. The microcontroller interrogates the electrodes in different subsets in order to enhance sensitivity for measuring 6-axis F/T. The combination of desirable features of CoinFT enables various contact-rich robot interactions at a scale, across different embodiment domains including drones, robot end-effectors, and wearable haptic devices. We demonstrate the utility of CoinFT on drones by performing an attitude-based force control to perform tasks that require careful contact force modulation. The design, fabrication, and firmware of CoinFT are open-sourced at https://hojung-choi.github.io/coinft.github.io/.
☆ Direct Post-Training Preference Alignment for Multi-Agent Motion Generation Models Using Implicit Feedback from Pre-training Demonstrations ICLR 2025
Recent advancements in LLMs have revolutionized motion generation models in embodied applications. While LLM-type auto-regressive motion generation models benefit from training scalability, there remains a discrepancy between their token prediction objectives and human preferences. As a result, models pre-trained solely with token-prediction objectives often generate behaviors that deviate from what humans would prefer, making post-training preference alignment crucial for producing human-preferred motions. Unfortunately, post-training alignment requires extensive preference rankings of motions generated by the pre-trained model, which are costly to annotate, especially in multi-agent settings. Recently, there has been growing interest in leveraging pre-training demonstrations to scalably generate preference data for post-training alignment. However, these methods often adopt an adversarial assumption, treating all pre-trained model-generated samples as unpreferred examples. This adversarial approach overlooks the valuable signal provided by preference rankings among the model's own generations, ultimately reducing alignment effectiveness and potentially leading to misaligned behaviors. In this work, instead of treating all generated samples as equally bad, we leverage implicit preferences encoded in pre-training demonstrations to construct preference rankings among the pre-trained model's generations, offering more nuanced preference alignment guidance with zero human cost. We apply our approach to large-scale traffic simulation and demonstrate its effectiveness in improving the realism of pre-trained model's generated behaviors, making a lightweight 1M motion generation model comparable to SOTA large imitation-based models by relying solely on implicit feedback from pre-training demonstrations, without additional post-training human preference annotations or high computational costs.
comment: ICLR 2025 Spotlight
Extendable Long-Horizon Planning via Hierarchical Multiscale Diffusion
This paper tackles a novel problem, extendable long-horizon planning-enabling agents to plan trajectories longer than those in training data without compounding errors. To tackle this, we propose the Hierarchical Multiscale Diffuser (HM-Diffuser) and Progressive Trajectory Extension (PTE), an augmentation method that iteratively generates longer trajectories by stitching shorter ones. HM-Diffuser trains on these extended trajectories using a hierarchical structure, efficiently handling tasks across multiple temporal scales. Additionally, we introduce Adaptive Plan Pondering and the Recursive HM-Diffuser, which consolidate hierarchical layers into a single model to process temporal scales recursively. Experimental results demonstrate the effectiveness of our approach, advancing diffusion-based planners for scalable long-horizon planning.
comment: First two authors contributed equally
☆ Learning Scene-Level Signed Directional Distance Function with Ellipsoidal Priors and Neural Residuals
Dense geometric environment representations are critical for autonomous mobile robot navigation and exploration. Recent work shows that implicit continuous representations of occupancy, signed distance, or radiance learned using neural networks offer advantages in reconstruction fidelity, efficiency, and differentiability over explicit discrete representations based on meshes, point clouds, and voxels. In this work, we explore a directional formulation of signed distance, called signed directional distance function (SDDF). Unlike signed distance function (SDF) and similar to neural radiance fields (NeRF), SDDF has a position and viewing direction as input. Like SDF and unlike NeRF, SDDF directly provides distance to the observed surface along the direction, rather than integrating along the view ray, allowing efficient view synthesis. To learn and predict scene-level SDDF efficiently, we develop a differentiable hybrid representation that combines explicit ellipsoid priors and implicit neural residuals. This approach allows the model to effectively handle large distance discontinuities around obstacle boundaries while preserving the ability for dense high-fidelity prediction. We show that SDDF is competitive with the state-of-the-art neural implicit scene models in terms of reconstruction accuracy and rendering efficiency, while allowing differentiable view prediction for robot trajectory optimization.
☆ Gemini Robotics: Bringing AI into the Physical World
Recent advancements in large multimodal models have led to the emergence of remarkable generalist capabilities in digital domains, yet their translation to physical agents such as robots remains a significant challenge. This report introduces a new family of AI models purposefully designed for robotics and built upon the foundation of Gemini 2.0. We present Gemini Robotics, an advanced Vision-Language-Action (VLA) generalist model capable of directly controlling robots. Gemini Robotics executes smooth and reactive movements to tackle a wide range of complex manipulation tasks while also being robust to variations in object types and positions, handling unseen environments as well as following diverse, open vocabulary instructions. We show that with additional fine-tuning, Gemini Robotics can be specialized to new capabilities including solving long-horizon, highly dexterous tasks, learning new short-horizon tasks from as few as 100 demonstrations and adapting to completely novel robot embodiments. This is made possible because Gemini Robotics builds on top of the Gemini Robotics-ER model, the second model we introduce in this work. Gemini Robotics-ER (Embodied Reasoning) extends Gemini's multimodal reasoning capabilities into the physical world, with enhanced spatial and temporal understanding. This enables capabilities relevant to robotics including object detection, pointing, trajectory and grasp prediction, as well as multi-view correspondence and 3D bounding box predictions. We show how this novel combination can support a variety of robotics applications. We also discuss and address important safety considerations related to this new class of robotics foundation models. The Gemini Robotics family marks a substantial step towards developing general-purpose robots that realizes AI's potential in the physical world.
☆ Hyperdimensional Uncertainty Quantification for Multimodal Uncertainty Fusion in Autonomous Vehicles Perception CVPR 2025
Uncertainty Quantification (UQ) is crucial for ensuring the reliability of machine learning models deployed in real-world autonomous systems. However, existing approaches typically quantify task-level output prediction uncertainty without considering epistemic uncertainty at the multimodal feature fusion level, leading to sub-optimal outcomes. Additionally, popular uncertainty quantification methods, e.g., Bayesian approximations, remain challenging to deploy in practice due to high computational costs in training and inference. In this paper, we propose HyperDUM, a novel deterministic uncertainty method (DUM) that efficiently quantifies feature-level epistemic uncertainty by leveraging hyperdimensional computing. Our method captures the channel and spatial uncertainties through channel and patch -wise projection and bundling techniques respectively. Multimodal sensor features are then adaptively weighted to mitigate uncertainty propagation and improve feature fusion. Our evaluations show that HyperDUM on average outperforms the state-of-the-art (SOTA) algorithms by up to 2.01%/1.27% in 3D Object Detection and up to 1.29% improvement over baselines in semantic segmentation tasks under various types of uncertainties. Notably, HyperDUM requires 2.36x less Floating Point Operations and up to 38.30x less parameters than SOTA methods, providing an efficient solution for real-world autonomous systems.
comment: Accepted at CVPR 2025
☆ Hybrid Magnetically and Electrically Powered Metallo-Dielectric Janus Microrobots: Enhanced Motion Control and Operation Beyond Planar Limits
This study introduces the integration of hybrid magnetic and electric actuation mechanisms to achieve advanced motion capabilities for Janus particle (JP) microrobots. We demonstrate enhanced in-plane motion control through versatile control strategies and present the concepts of interplanar transitions and 2.5-dimensional (2.5D) trajectories, enabled by magnetic levitation and electrostatic trapping. These innovations expand the mobility of JPs into 3D space, allowing dynamic operation beyond the limitations of traditional surface-bound motion. Key functionalities include obstacle crossing, transitions to elevated surfaces, and discrete surface patterning enabling highly localized interventions. Using this set of tools, we also showcase the controlled out-of-plane transport of both synthetic and biological cargo. Together, these advancements lay the groundwork for novel microrobot-related applications in microfluidic systems and biomedical research.
☆ Body Discovery of Embodied AI
In the pursuit of realizing artificial general intelligence (AGI), the importance of embodied artificial intelligence (AI) becomes increasingly apparent. Following this trend, research integrating robots with AGI has become prominent. As various kinds of embodiments have been designed, adaptability to diverse embodiments will become important to AGI. We introduce a new challenge, termed "Body Discovery of Embodied AI", focusing on tasks of recognizing embodiments and summarizing neural signal functionality. The challenge encompasses the precise definition of an AI body and the intricate task of identifying embodiments in dynamic environments, where conventional approaches often prove inadequate. To address these challenges, we apply causal inference method and evaluate it by developing a simulator tailored for testing algorithms with virtual environments. Finally, we validate the efficacy of our algorithms through empirical testing, demonstrating their robust performance in various scenarios based on virtual environments.
☆ Benchmarking Multi-Object Grasping
In this work, we describe a multi-object grasping benchmark to evaluate the grasping and manipulation capabilities of robotic systems in both pile and surface scenarios. The benchmark introduces three robot multi-object grasping benchmarking protocols designed to challenge different aspects of robotic manipulation. These protocols are: 1) the Only-Pick-Once protocol, which assesses the robot's ability to efficiently pick multiple objects in a single attempt; 2) the Accurate pick-trnsferring protocol, which evaluates the robot's capacity to selectively grasp and transport a specific number of objects from a cluttered environment; and 3) the Pick-transferring-all protocol, which challenges the robot to clear an entire scene by sequentially grasping and transferring all available objects. These protocols are intended to be adopted by the broader robotics research community, providing a standardized method to assess and compare robotic systems' performance in multi-object grasping tasks. We establish baselines for these protocols using standard planning and perception algorithms on a Barrett hand, Robotiq parallel jar gripper, and the Pisa/IIT Softhand-2, which is a soft underactuated robotic hand. We discuss the results in relation to human performance in similar tasks we well.
comment: This paper contains 11 pages and 5 figures. This paper is under review of a robotics journal
☆ A Multi-Agent Framework Integrating Large Language Models and Generative AI for Accelerated Metamaterial Design
Metamaterials, renowned for their exceptional mechanical, electromagnetic, and thermal properties, hold transformative potential across diverse applications, yet their design remains constrained by labor-intensive trial-and-error methods and limited data interoperability. Here, we introduce CrossMatAgent -- a novel multi-agent framework that synergistically integrates large language models with state-of-the-art generative AI to revolutionize metamaterial design. By orchestrating a hierarchical team of agents -- each specializing in tasks such as pattern analysis, architectural synthesis, prompt engineering, and supervisory feedback -- our system leverages the multimodal reasoning of GPT-4o alongside the generative precision of DALL-E 3 and a fine-tuned Stable Diffusion XL model. This integrated approach automates data augmentation, enhances design fidelity, and produces simulation- and 3D printing-ready metamaterial patterns. Comprehensive evaluations, including CLIP-based alignment, SHAP interpretability analyses, and mechanical simulations under varied load conditions, demonstrate the framework's ability to generate diverse, reproducible, and application-ready designs. CrossMatAgent thus establishes a scalable, AI-driven paradigm that bridges the gap between conceptual innovation and practical realization, paving the way for accelerated metamaterial development.
♻ ☆ Aether: Geometric-Aware Unified World Modeling
The integration of geometric reconstruction and generative modeling remains a critical challenge in developing AI systems capable of human-like spatial reasoning. This paper proposes Aether, a unified framework that enables geometry-aware reasoning in world models by jointly optimizing three core capabilities: (1) 4D dynamic reconstruction, (2) action-conditioned video prediction, and (3) goal-conditioned visual planning. Through task-interleaved feature learning, Aether achieves synergistic knowledge sharing across reconstruction, prediction, and planning objectives. Building upon video generation models, our framework demonstrates unprecedented synthetic-to-real generalization despite never observing real-world data during training. Furthermore, our approach achieves zero-shot generalization in both action following and reconstruction tasks, thanks to its intrinsic geometric modeling. Remarkably, even without real-world data, its reconstruction performance is comparable with or even better than that of domain-specific models. Additionally, Aether employs camera trajectories as geometry-informed action spaces, enabling effective action-conditioned prediction and visual planning. We hope our work inspires the community to explore new frontiers in physically-reasonable world modeling and its applications.
comment: Project Page: https://aether-world.github.io/
♻ ☆ Any6D: Model-free 6D Pose Estimation of Novel Objects CVPR 2025
We introduce Any6D, a model-free framework for 6D object pose estimation that requires only a single RGB-D anchor image to estimate both the 6D pose and size of unknown objects in novel scenes. Unlike existing methods that rely on textured 3D models or multiple viewpoints, Any6D leverages a joint object alignment process to enhance 2D-3D alignment and metric scale estimation for improved pose accuracy. Our approach integrates a render-and-compare strategy to generate and refine pose hypotheses, enabling robust performance in scenarios with occlusions, non-overlapping views, diverse lighting conditions, and large cross-environment variations. We evaluate our method on five challenging datasets: REAL275, Toyota-Light, HO3D, YCBINEOAT, and LM-O, demonstrating its effectiveness in significantly outperforming state-of-the-art methods for novel object pose estimation. Project page: https://taeyeop.com/any6d
comment: CVPR 2025, Project Page: https://taeyeop.com/any6d
♻ ☆ Deep learning framework for action prediction reveals multi-timescale locomotor control
Modeling movement in real-world tasks is a fundamental goal for motor control, biomechanics, and rehabilitation engineering. However, widely used data-driven models of essential tasks like locomotion make simplifying assumptions such as linear and fixed timescale mappings between past inputs and future actions, which do not generalize to real-world contexts. Here, we develop a deep learning-based framework for action prediction with architecture-dependent trial embeddings, outperforming traditional models across contexts (walking and running, treadmill and overground, varying terrains) and input modalities (multiple body states, gaze). We find that neural network architectures with flexible input history-dependence like GRU and Transformer perform best overall. By quantifying the model's predictions relative to an autoregressive baseline, we identify context- and modality-dependent timescales. These analyses reveal that there is greater reliance on fast-timescale predictions in complex terrain, gaze predicts future foot placement before body states, and the full-body state predictions precede those by center-of-mass-relevant states. This deep learning framework for action prediction provides quantifiable insights into the control of real-world locomotion and can be extended to other actions, contexts, and populations.
UAVs Meet LLMs: Overviews and Perspectives Toward Agentic Low-Altitude Mobility
Low-altitude mobility, exemplified by unmanned aerial vehicles (UAVs), has introduced transformative advancements across various domains, like transportation, logistics, and agriculture. Leveraging flexible perspectives and rapid maneuverability, UAVs extend traditional systems' perception and action capabilities, garnering widespread attention from academia and industry. However, current UAV operations primarily depend on human control, with only limited autonomy in simple scenarios, and lack the intelligence and adaptability needed for more complex environments and tasks. The emergence of large language models (LLMs) demonstrates remarkable problem-solving and generalization capabilities, offering a promising pathway for advancing UAV intelligence. This paper explores the integration of LLMs and UAVs, beginning with an overview of UAV systems' fundamental components and functionalities, followed by an overview of the state-of-the-art in LLM technology. Subsequently, it systematically highlights the multimodal data resources available for UAVs, which provide critical support for training and evaluation. Furthermore, it categorizes and analyzes key tasks and application scenarios where UAVs and LLMs converge. Finally, a reference roadmap towards agentic UAVs is proposed, aiming to enable UAVs to achieve agentic intelligence through autonomous perception, memory, reasoning, and tool utilization. Related resources are available at https://github.com/Hub-Tian/UAVs_Meet_LLMs.
♻ ☆ Hierarchical Performance-Based Design Optimization Framework for Soft Grippers
This paper presents a hierarchical, performance-based framework for the design optimization of multi-fingered soft grippers. To address the need for systematically defined performance indices, the framework structures the optimization process into three integrated layers: Task Space, Motion Space, and Design Space. In the Task Space, performance indices are defined as core objectives, while the Motion Space interprets these into specific movement primitives. Finally, the Design Space applies parametric and topological optimization techniques to refine the geometry and material distribution of the system, achieving a balanced design across key performance metrics. The framework's layered structure enhances SG design, ensuring balanced performance and scalability for complex tasks and contributing to broader advancements in soft robotics.
comment: 7 pages, 3 figures, 1 Algorithm
♻ ☆ Helvipad: A Real-World Dataset for Omnidirectional Stereo Depth Estimation CVPR 2025
Despite progress in stereo depth estimation, omnidirectional imaging remains underexplored, mainly due to the lack of appropriate data. We introduce Helvipad, a real-world dataset for omnidirectional stereo depth estimation, featuring 40K video frames from video sequences across diverse environments, including crowded indoor and outdoor scenes with various lighting conditions. Collected using two 360{\deg} cameras in a top-bottom setup and a LiDAR sensor, the dataset includes accurate depth and disparity labels by projecting 3D point clouds onto equirectangular images. Additionally, we provide an augmented training set with an increased label density by using depth completion. We benchmark leading stereo depth estimation models for both standard and omnidirectional images. The results show that while recent stereo methods perform decently, a challenge persists in accurately estimating depth in omnidirectional imaging. To address this, we introduce necessary adaptations to stereo models, leading to improved performance.
comment: Accepted to CVPR 2025. Project page: https://vita-epfl.github.io/Helvipad
♻ ☆ Imitation Learning with Limited Actions via Diffusion Planners and Deep Koopman Controllers ICRA
Recent advances in diffusion-based robot policies have demonstrated significant potential in imitating multi-modal behaviors. However, these approaches typically require large quantities of demonstration data paired with corresponding robot action labels, creating a substantial data collection burden. In this work, we propose a plan-then-control framework aimed at improving the action-data efficiency of inverse dynamics controllers by leveraging observational demonstration data. Specifically, we adopt a Deep Koopman Operator framework to model the dynamical system and utilize observation-only trajectories to learn a latent action representation. This latent representation can then be effectively mapped to real high-dimensional continuous actions using a linear action decoder, requiring minimal action-labeled data. Through experiments on simulated robot manipulation tasks and a real robot experiment with multi-modal expert demonstrations, we demonstrate that our approach significantly enhances action-data efficiency and achieves high task success rates with limited action data.
comment: Accepted to IEEE International Conference on Robotics and Automation (ICRA) 2025
♻ ☆ On-Device Self-Supervised Learning of Low-Latency Monocular Depth from Only Events CVPR 2025
Event cameras provide low-latency perception for only milliwatts of power. This makes them highly suitable for resource-restricted, agile robots such as small flying drones. Self-supervised learning based on contrast maximization holds great potential for event-based robot vision, as it foregoes the need for high-frequency ground truth and allows for online learning in the robot's operational environment. However, online, on-board learning raises the major challenge of achieving sufficient computational efficiency for real-time learning, while maintaining competitive visual perception performance. In this work, we improve the time and memory efficiency of the contrast maximization pipeline, making on-device learning of low-latency monocular depth possible. We demonstrate that online learning on board a small drone yields more accurate depth estimates and more successful obstacle avoidance behavior compared to only pre-training. Benchmarking experiments show that the proposed pipeline is not only efficient, but also achieves state-of-the-art depth estimation performance among self-supervised approaches. Our work taps into the unused potential of online, on-device robot learning, promising smaller reality gaps and better performance.
comment: Accepted at CVPR 2025
♻ ☆ BimArt: A Unified Approach for the Synthesis of 3D Bimanual Interaction with Articulated Objects CVPR2025
We present BimArt, a novel generative approach for synthesizing 3D bimanual hand interactions with articulated objects. Unlike prior works, we do not rely on a reference grasp, a coarse hand trajectory, or separate modes for grasping and articulating. To achieve this, we first generate distance-based contact maps conditioned on the object trajectory with an articulation-aware feature representation, revealing rich bimanual patterns for manipulation. The learned contact prior is then used to guide our hand motion generator, producing diverse and realistic bimanual motions for object movement and articulation. Our work offers key insights into feature representation and contact prior for articulated objects, demonstrating their effectiveness in taming the complex, high-dimensional space of bimanual hand-object interactions. Through comprehensive quantitative experiments, we demonstrate a clear step towards simplified and high-quality hand-object animations that surpass the state of the art in motion quality and diversity. Project page: https://vcai.mpi-inf.mpg.de/projects/bimart/.
comment: CVPR2025
♻ ☆ RoboMatrix: A Skill-centric Hierarchical Framework for Scalable Robot Task Planning and Execution in Open-World
Existing robot policies predominantly adopt the task-centric approach, requiring end-to-end task data collection. This results in limited generalization to new tasks and difficulties in pinpointing errors within long-horizon, multi-stage tasks. To address this, we propose RoboMatrix, a skill-centric hierarchical framework designed for scalable robot task planning and execution in open-world environments. RoboMatrix extracts general meta-skills from diverse complex tasks, enabling the completion of unseen tasks through skill composition. Its architecture consists of a high-level scheduling layer that utilizes large language models (LLMs) for task decomposition, an intermediate skill layer housing meta-skill models, and a low-level hardware layer for robot control. A key innovation of our work is the introduction of the first unified vision-language-action (VLA) model capable of seamlessly integrating both movement and manipulation within one model. This is achieved by combining vision and language prompts to generate discrete actions. Experimental results demonstrate that RoboMatrix achieves a 50% higher success rate than task-centric baselines when applied to unseen objects, scenes, and tasks. To advance open-world robotics research, we will open-source code, hardware designs, model weights, and datasets at https://github.com/WayneMao/RoboMatrix.
comment: 17 pages, 16 figures
♻ ☆ MCVO: A Generic Visual Odometry for Arbitrarily Arranged Multi-Cameras
Making multi-camera visual SLAM systems easier to set up and more robust to the environment is attractive for vision robots. Existing monocular and binocular vision SLAM systems have narrow sensing Field-of-View (FoV), resulting in degenerated accuracy and limited robustness in textureless environments. Thus multi-camera SLAM systems are gaining attention because they can provide redundancy with much wider FoV. However, the usual arbitrary placement and orientation of multiple cameras make the pose scale estimation and system updating challenging. To address these problems, we propose a robust visual odometry system for rigidly-bundled arbitrarily-arranged multi-cameras, namely MCVO, which can achieve metric-scale state estimation with high flexibility in the cameras' arrangement. Specifically, we first design a learning-based feature tracking framework to shift the pressure of CPU processing of multiple video streams to GPU. Then we initialize the odometry system with the metric-scale poses under the rigid constraints between moving cameras. Finally, we fuse the features of the multi-cameras in the back-end to achieve robust pose estimation and online scale optimization. Additionally, multi-camera features help improve the loop detection for pose graph optimization. Experiments on KITTI-360 and MultiCamData datasets validate its robustness over arbitrarily arranged cameras. Compared with other stereo and multi-camera visual SLAM systems, our method obtains higher pose accuracy with better generalization ability. Our codes and online demos are available at https://github.com/JunhaoWang615/MCVO
comment: 8 pages, 8 figures
RoboBrain: A Unified Brain Model for Robotic Manipulation from Abstract to Concrete
Recent advancements in Multimodal Large Language Models (MLLMs) have shown remarkable capabilities across various multimodal contexts. However, their application in robotic scenarios, particularly for long-horizon manipulation tasks, reveals significant limitations. These limitations arise from the current MLLMs lacking three essential robotic brain capabilities: Planning Capability, which involves decomposing complex manipulation instructions into manageable sub-tasks; Affordance Perception, the ability to recognize and interpret the affordances of interactive objects; and Trajectory Prediction, the foresight to anticipate the complete manipulation trajectory necessary for successful execution. To enhance the robotic brain's core capabilities from abstract to concrete, we introduce ShareRobot, a high-quality heterogeneous dataset that labels multi-dimensional information such as task planning, object affordance, and end-effector trajectory. ShareRobot's diversity and accuracy have been meticulously refined by three human annotators. Building on this dataset, we developed RoboBrain, an MLLM-based model that combines robotic and general multi-modal data, utilizes a multi-stage training strategy, and incorporates long videos and high-resolution images to improve its robotic manipulation capabilities. Extensive experiments demonstrate that RoboBrain achieves state-of-the-art performance across various robotic tasks, highlighting its potential to advance robotic brain capabilities.
♻ ☆ AutoURDF: Unsupervised Robot Modeling from Point Cloud Frames Using Cluster Registration
Robot description models are essential for simulation and control, yet their creation often requires significant manual effort. To streamline this modeling process, we introduce AutoURDF, an unsupervised approach for constructing description files for unseen robots from point cloud frames. Our method leverages a cluster-based point cloud registration model that tracks the 6-DoF transformations of point clusters. Through analyzing cluster movements, we hierarchically address the following challenges: (1) moving part segmentation, (2) body topology inference, and (3) joint parameter estimation. The complete pipeline produces robot description files that are fully compatible with existing simulators. We validate our method across a variety of robots, using both synthetic and real-world scan data. Results indicate that our approach outperforms previous methods in registration and body topology estimation accuracy, offering a scalable solution for automated robot modeling.
comment: 16 pages
♻ ☆ SyncDiff: Synchronized Motion Diffusion for Multi-Body Human-Object Interaction Synthesis
Synthesizing realistic human-object interaction motions is a critical problem in VR/AR and human animation. Unlike the commonly studied scenarios involving a single human or hand interacting with one object, we address a more generic multi-body setting with arbitrary numbers of humans, hands, and objects. This complexity introduces significant challenges in synchronizing motions due to the high correlations and mutual influences among bodies. To address these challenges, we introduce SyncDiff, a novel method for multi-body interaction synthesis using a synchronized motion diffusion strategy. SyncDiff employs a single diffusion model to capture the joint distribution of multi-body motions. To enhance motion fidelity, we propose a frequency-domain motion decomposition scheme. Additionally, we introduce a new set of alignment scores to emphasize the synchronization of different body motions. SyncDiff jointly optimizes both data sample likelihood and alignment likelihood through an explicit synchronization strategy. Extensive experiments across four datasets with various multi-body configurations demonstrate the superiority of SyncDiff over existing state-of-the-art motion synthesis methods.
♻ ☆ AO-Grasp: Articulated Object Grasp Generation
We introduce AO-Grasp, a grasp proposal method that generates 6 DoF grasps that enable robots to interact with articulated objects, such as opening and closing cabinets and appliances. AO-Grasp consists of two main contributions: the AO-Grasp Model and the AO-Grasp Dataset. Given a segmented partial point cloud of a single articulated object, the AO-Grasp Model predicts the best grasp points on the object with an Actionable Grasp Point Predictor. Then, it finds corresponding grasp orientations for each of these points, resulting in stable and actionable grasp proposals. We train the AO-Grasp Model on our new AO-Grasp Dataset, which contains 78K actionable parallel-jaw grasps on synthetic articulated objects. In simulation, AO-Grasp achieves a 45.0 % grasp success rate, whereas the highest performing baseline achieves a 35.0% success rate. Additionally, we evaluate AO-Grasp on 120 real-world scenes of objects with varied geometries, articulation axes, and joint states, where AO-Grasp produces successful grasps on 67.5% of scenes, while the baseline only produces successful grasps on 33.3% of scenes. To the best of our knowledge, AO-Grasp is the first method for generating 6 DoF grasps on articulated objects directly from partial point clouds without requiring part detection or hand-designed grasp heuristics. Project website: https://stanford-iprl-lab.github.io/ao-grasp
comment: Project website: https://stanford-iprl-lab.github.io/ao-grasp
♻ ☆ TwoStep: Multi-agent Task Planning using Classical Planners and Large Language Models
Classical planning formulations like the Planning Domain Definition Language (PDDL) admit action sequences guaranteed to achieve a goal state given an initial state if any are possible. However, reasoning problems defined in PDDL do not capture temporal aspects of action taking, such as concurrent actions between two agents when there are no conflicting conditions, without significant modification and definition to existing PDDL domains. A human expert aware of such constraints can decompose a goal into subgoals, each reachable through single agent planning, to take advantage of simultaneous actions. In contrast to classical planning, large language models (LLMs) directly used for inferring plan steps rarely guarantee execution success, but are capable of leveraging commonsense reasoning to assemble action sequences. We combine the strengths of both classical planning and LLMs by approximating human intuitions for multi-agent planning goal decomposition. We demonstrate that LLM-based goal decomposition leads to faster planning times than solving multi-agent PDDL problems directly while simultaneously achieving fewer plan execution steps than a single agent plan alone, as well as most multiagent plans, while guaranteeing execution success. Additionally, we find that LLM-based approximations of subgoals result in similar multi-agent execution lengths to those specified by human experts. Website and resources at https://glamor-usc.github.io/twostep
comment: 14 pages
♻ ☆ Reactive Collision Avoidance for Safe Agile Navigation
Reactive collision avoidance is essential for agile robots navigating complex and dynamic environments, enabling real-time obstacle response. However, this task is inherently challenging because it requires a tight integration of perception, planning, and control, which traditional methods often handle separately, resulting in compounded errors and delays. This paper introduces a novel approach that unifies these tasks into a single reactive framework using solely onboard sensing and computing. Our method combines nonlinear model predictive control with adaptive control barrier functions, directly linking perception-driven constraints to real-time planning and control. Constraints are determined by using a neural network to refine noisy RGB-D data, enhancing depth accuracy, and selecting points with the minimum time-to-collision to prioritize the most immediate threats. To maintain a balance between safety and agility, a heuristic dynamically adjusts the optimization process, preventing overconstraints in real time. Extensive experiments with an agile quadrotor demonstrate effective collision avoidance across diverse indoor and outdoor environments, without requiring environment-specific tuning or explicit mapping.
♻ ☆ Asymptotically-Optimal Multi-Query Path Planning for a Polygonal Robot ICRA 2025
Shortest-path roadmaps, also known as reduced visibility graphs, provides a highly efficient multi-query method for computing optimal paths in two-dimensional environments. Combined with Minkowski sum computations, shortest-path roadmaps can compute optimal paths for a translating robot in 2D. In this study, we explore the intuitive idea of stacking up a set of reduced visibility graphs at different orientations for a polygonal holonomic robot to support the fast computation of near-optimal paths, allowing simultaneous 2D translation and rotation. The resulting algorithm, rotation-stacked visibility graph (RVG), is shown to be resolution-complete and asymptotically optimal. Extensive computational experiments show RVG significantly outperforms state-of-the-art single- and multi-query sampling-based methods on both computation time and solution optimality fronts.
comment: ICRA 2025
♻ ☆ Perception of Emotions in Human and Robot Faces: Is the Eye Region Enough?
The increased interest in developing next-gen social robots has raised questions about the factors affecting the perception of robot emotions. This study investigates the impact of robot appearances (humanlike, mechanical) and face regions (full-face, eye-region) on human perception of robot emotions. A between-subjects user study (N = 305) was conducted where participants were asked to identify the emotions being displayed in videos of robot faces, as well as a human baseline. Our findings reveal three important insights for effective social robot face design in Human-Robot Interaction (HRI): Firstly, robots equipped with a back-projected, fully animated face - regardless of whether they are more human-like or more mechanical-looking - demonstrate a capacity for emotional expression comparable to that of humans. Secondly, the recognition accuracy of emotional expressions in both humans and robots declines when only the eye region is visible. Lastly, within the constraint of only the eye region being visible, robots with more human-like features significantly enhance emotion recognition.
comment: Accepted for publication at the 16th International Conference on Social Robotics, Odense, Denmark (ICSR 2024)
♻ ☆ Autoregressive Action Sequence Learning for Robotic Manipulation
Designing a universal policy architecture that performs well across diverse robots and task configurations remains a key challenge. In this work, we address this by representing robot actions as sequential data and generating actions through autoregressive sequence modeling. Existing autoregressive architectures generate end-effector waypoints sequentially as word tokens in language modeling, which are limited to low-frequency control tasks. Unlike language, robot actions are heterogeneous and often include continuous values -- such as joint positions, 2D pixel coordinates, and end-effector poses -- which are not easily suited for language-based modeling. Based on this insight, we introduce a straightforward enhancement: we extend causal transformers' single-token prediction to support predicting a variable number of tokens in a single step through our Chunking Causal Transformer (CCT). This enhancement enables robust performance across diverse tasks of various control frequencies, greater efficiency by having fewer autoregression steps, and lead to a hybrid action sequence design by mixing different types of actions and using a different chunk size for each action type. Based on CCT, we propose the Autoregressive Policy (ARP) architecture, which solves manipulation tasks by generating hybrid action sequences. We evaluate ARP across diverse robotic manipulation environments, including Push-T, ALOHA, and RLBench, and show that ARP, as a universal architecture, matches or outperforms the environment-specific state-of-the-art in all tested benchmarks, while being more efficient in computation and parameter sizes. Videos of our real robot demonstrations, all source code and the pretrained models of ARP can be found at http://github.com/mlzxy/arp.
comment: (RA-L 2025) Add a new figure to explain why chunking autoregression works. Put back the previous in-depth discussion for arxiv release
♻ ☆ POp-GS: Next Best View in 3D-Gaussian Splatting with P-Optimality
In this paper, we present a novel algorithm for quantifying uncertainty and information gained within 3D Gaussian Splatting (3D-GS) through P-Optimality. While 3D-GS has proven to be a useful world model with high-quality rasterizations, it does not natively quantify uncertainty or information, posing a challenge for real-world applications such as 3D-GS SLAM. We propose to quantify information gain in 3D-GS by reformulating the problem through the lens of optimal experimental design, which is a classical solution widely used in literature. By restructuring information quantification of 3D-GS through optimal experimental design, we arrive at multiple solutions, of which T-Optimality and D-Optimality perform the best quantitatively and qualitatively as measured on two popular datasets. Additionally, we propose a block diagonal covariance approximation which provides a measure of correlation at the expense of a greater computation cost.
Computer Vision 149
☆ EventFly: Event Camera Perception from Ground to the Sky CVPR 2025
Cross-platform adaptation in event-based dense perception is crucial for deploying event cameras across diverse settings, such as vehicles, drones, and quadrupeds, each with unique motion dynamics, viewpoints, and class distributions. In this work, we introduce EventFly, a framework for robust cross-platform adaptation in event camera perception. Our approach comprises three key components: i) Event Activation Prior (EAP), which identifies high-activation regions in the target domain to minimize prediction entropy, fostering confident, domain-adaptive predictions; ii) EventBlend, a data-mixing strategy that integrates source and target event voxel grids based on EAP-driven similarity and density maps, enhancing feature alignment; and iii) EventMatch, a dual-discriminator technique that aligns features from source, target, and blended domains for better domain-invariant learning. To holistically assess cross-platform adaptation abilities, we introduce EXPo, a large-scale benchmark with diverse samples across vehicle, drone, and quadruped platforms. Extensive experiments validate our effectiveness, demonstrating substantial gains over popular adaptation methods. We hope this work can pave the way for more adaptive, high-performing event perception across diverse and complex environments.
comment: CVPR 2025; 30 pages, 8 figures, 16 tables; Project Page at https://event-fly.github.io/
☆ PartRM: Modeling Part-Level Dynamics with Large Cross-State Reconstruction Model CVPR 2025
As interest grows in world models that predict future states from current observations and actions, accurately modeling part-level dynamics has become increasingly relevant for various applications. Existing approaches, such as Puppet-Master, rely on fine-tuning large-scale pre-trained video diffusion models, which are impractical for real-world use due to the limitations of 2D video representation and slow processing times. To overcome these challenges, we present PartRM, a novel 4D reconstruction framework that simultaneously models appearance, geometry, and part-level motion from multi-view images of a static object. PartRM builds upon large 3D Gaussian reconstruction models, leveraging their extensive knowledge of appearance and geometry in static objects. To address data scarcity in 4D, we introduce the PartDrag-4D dataset, providing multi-view observations of part-level dynamics across over 20,000 states. We enhance the model's understanding of interaction conditions with a multi-scale drag embedding module that captures dynamics at varying granularities. To prevent catastrophic forgetting during fine-tuning, we implement a two-stage training process that focuses sequentially on motion and appearance learning. Experimental results show that PartRM establishes a new state-of-the-art in part-level motion learning and can be applied in manipulation tasks in robotics. Our code, data, and models are publicly available to facilitate future research.
comment: Accepted to CVPR 2025. Project Page: https://partrm.c7w.tech/
☆ Learning 3D Object Spatial Relationships from Pre-trained 2D Diffusion Models
We present a method for learning 3D spatial relationships between object pairs, referred to as object-object spatial relationships (OOR), by leveraging synthetically generated 3D samples from pre-trained 2D diffusion models. We hypothesize that images synthesized by 2D diffusion models inherently capture plausible and realistic OOR cues, enabling efficient ways to collect a 3D dataset to learn OOR for various unbounded object categories. Our approach begins by synthesizing diverse images that capture plausible OOR cues, which we then uplift into 3D samples. Leveraging our diverse collection of plausible 3D samples for the object pairs, we train a score-based OOR diffusion model to learn the distribution of their relative spatial relationships. Additionally, we extend our pairwise OOR to multi-object OOR by enforcing consistency across pairwise relations and preventing object collisions. Extensive experiments demonstrate the robustness of our method across various object-object spatial relationships, along with its applicability to real-world 3D scene arrangement tasks using the OOR diffusion model.
comment: Project Page: https://tlb-miss.github.io/oor/
☆ SuperFlow++: Enhanced Spatiotemporal Consistency for Cross-Modal Data Pretraining
LiDAR representation learning has emerged as a promising approach to reducing reliance on costly and labor-intensive human annotations. While existing methods primarily focus on spatial alignment between LiDAR and camera sensors, they often overlook the temporal dynamics critical for capturing motion and scene continuity in driving scenarios. To address this limitation, we propose SuperFlow++, a novel framework that integrates spatiotemporal cues in both pretraining and downstream tasks using consecutive LiDAR-camera pairs. SuperFlow++ introduces four key components: (1) a view consistency alignment module to unify semantic information across camera views, (2) a dense-to-sparse consistency regularization mechanism to enhance feature robustness across varying point cloud densities, (3) a flow-based contrastive learning approach that models temporal relationships for improved scene understanding, and (4) a temporal voting strategy that propagates semantic information across LiDAR scans to improve prediction consistency. Extensive evaluations on 11 heterogeneous LiDAR datasets demonstrate that SuperFlow++ outperforms state-of-the-art methods across diverse tasks and driving conditions. Furthermore, by scaling both 2D and 3D backbones during pretraining, we uncover emergent properties that provide deeper insights into developing scalable 3D foundation models. With strong generalizability and computational efficiency, SuperFlow++ establishes a new benchmark for data-efficient LiDAR-based perception in autonomous driving. The code is publicly available at https://github.com/Xiangxu-0103/SuperFlow
comment: Preprint; 15 pages, 6 figures, 10 tables; Code at https://github.com/Xiangxu-0103/SuperFlow
☆ CoLLM: A Large Language Model for Composed Image Retrieval CVPR 2025
Composed Image Retrieval (CIR) is a complex task that aims to retrieve images based on a multimodal query. Typical training data consists of triplets containing a reference image, a textual description of desired modifications, and the target image, which are expensive and time-consuming to acquire. The scarcity of CIR datasets has led to zero-shot approaches utilizing synthetic triplets or leveraging vision-language models (VLMs) with ubiquitous web-crawled image-caption pairs. However, these methods have significant limitations: synthetic triplets suffer from limited scale, lack of diversity, and unnatural modification text, while image-caption pairs hinder joint embedding learning of the multimodal query due to the absence of triplet data. Moreover, existing approaches struggle with complex and nuanced modification texts that demand sophisticated fusion and understanding of vision and language modalities. We present CoLLM, a one-stop framework that effectively addresses these limitations. Our approach generates triplets on-the-fly from image-caption pairs, enabling supervised training without manual annotation. We leverage Large Language Models (LLMs) to generate joint embeddings of reference images and modification texts, facilitating deeper multimodal fusion. Additionally, we introduce Multi-Text CIR (MTCIR), a large-scale dataset comprising 3.4M samples, and refine existing CIR benchmarks (CIRR and Fashion-IQ) to enhance evaluation reliability. Experimental results demonstrate that CoLLM achieves state-of-the-art performance across multiple CIR benchmarks and settings. MTCIR yields competitive results, with up to 15% performance improvement. Our refined benchmarks provide more reliable evaluation metrics for CIR models, contributing to the advancement of this important field.
comment: CVPR 2025. Project page: https://collm-cvpr25.github.io/
☆ FullDiT: Multi-Task Video Generative Foundation Model with Full Attention
Current video generative foundation models primarily focus on text-to-video tasks, providing limited control for fine-grained video content creation. Although adapter-based approaches (e.g., ControlNet) enable additional controls with minimal fine-tuning, they encounter challenges when integrating multiple conditions, including: branch conflicts between independently trained adapters, parameter redundancy leading to increased computational cost, and suboptimal performance compared to full fine-tuning. To address these challenges, we introduce FullDiT, a unified foundation model for video generation that seamlessly integrates multiple conditions via unified full-attention mechanisms. By fusing multi-task conditions into a unified sequence representation and leveraging the long-context learning ability of full self-attention to capture condition dynamics, FullDiT reduces parameter overhead, avoids conditions conflict, and shows scalability and emergent ability. We further introduce FullBench for multi-task video generation evaluation. Experiments demonstrate that FullDiT achieves state-of-the-art results, highlighting the efficacy of full-attention in complex multi-task video generation.
comment: Project Page: https://fulldit.github.io/
☆ Tracktention: Leveraging Point Tracking to Attend Videos Faster and Better CVPR 2025
Temporal consistency is critical in video prediction to ensure that outputs are coherent and free of artifacts. Traditional methods, such as temporal attention and 3D convolution, may struggle with significant object motion and may not capture long-range temporal dependencies in dynamic scenes. To address this gap, we propose the Tracktention Layer, a novel architectural component that explicitly integrates motion information using point tracks, i.e., sequences of corresponding points across frames. By incorporating these motion cues, the Tracktention Layer enhances temporal alignment and effectively handles complex object motions, maintaining consistent feature representations over time. Our approach is computationally efficient and can be seamlessly integrated into existing models, such as Vision Transformers, with minimal modification. It can be used to upgrade image-only models to state-of-the-art video ones, sometimes outperforming models natively designed for video prediction. We demonstrate this on video depth prediction and video colorization, where models augmented with the Tracktention Layer exhibit significantly improved temporal consistency compared to baselines.
comment: CVPR 2025. Project website: zlai0.github.io/TrackTention
☆ Scaling Vision Pre-Training to 4K Resolution CVPR 2025
High-resolution perception of visual details is crucial for daily tasks. Current vision pre-training, however, is still limited to low resolutions (e.g., 378 x 378 pixels) due to the quadratic cost of processing larger images. We introduce PS3 that scales CLIP-style vision pre-training to 4K resolution with a near-constant cost. Instead of contrastive learning on global image representation, PS3 is pre-trained by selectively processing local regions and contrasting them with local detailed captions, enabling high-resolution representation learning with greatly reduced computational overhead. The pre-trained PS3 is able to both encode the global image at low resolution and selectively process local high-resolution regions based on their saliency or relevance to a text prompt. When applying PS3 to multi-modal LLM (MLLM), the resulting model, named VILA-HD, significantly improves high-resolution visual perception compared to baselines without high-resolution vision pre-training such as AnyRes and S^2 while using up to 4.3x fewer tokens. PS3 also unlocks appealing scaling properties of VILA-HD, including scaling up resolution for free and scaling up test-time compute for better performance. Compared to state of the arts, VILA-HD outperforms previous MLLMs such as NVILA and Qwen2-VL across multiple benchmarks and achieves better efficiency than latest token pruning approaches. Finally, we find current benchmarks do not require 4K-resolution perception, which motivates us to propose 4KPro, a new benchmark of image QA at 4K resolution, on which VILA-HD outperforms all previous MLLMs, including a 14.5% improvement over GPT-4o, and a 3.2% improvement and 2.96x speedup over Qwen2-VL.
comment: CVPR 2025. Project Page: https://nvlabs.github.io/PS3
☆ ICE: Intrinsic Concept Extraction from a Single Image via Diffusion Models CVPR 2025
The inherent ambiguity in defining visual concepts poses significant challenges for modern generative models, such as the diffusion-based Text-to-Image (T2I) models, in accurately learning concepts from a single image. Existing methods lack a systematic way to reliably extract the interpretable underlying intrinsic concepts. To address this challenge, we present ICE, short for Intrinsic Concept Extraction, a novel framework that exclusively utilizes a T2I model to automatically and systematically extract intrinsic concepts from a single image. ICE consists of two pivotal stages. In the first stage, ICE devises an automatic concept localization module to pinpoint relevant text-based concepts and their corresponding masks within the image. This critical stage streamlines concept initialization and provides precise guidance for subsequent analysis. The second stage delves deeper into each identified mask, decomposing the object-level concepts into intrinsic concepts and general concepts. This decomposition allows for a more granular and interpretable breakdown of visual elements. Our framework demonstrates superior performance on intrinsic concept extraction from a single image in an unsupervised manner. Project page: https://visual-ai.github.io/ice
comment: CVPR 2025, Project page: https://visual-ai.github.io/ice
☆ TokenHSI: Unified Synthesis of Physical Human-Scene Interactions through Task Tokenization CVPR 2025
Synthesizing diverse and physically plausible Human-Scene Interactions (HSI) is pivotal for both computer animation and embodied AI. Despite encouraging progress, current methods mainly focus on developing separate controllers, each specialized for a specific interaction task. This significantly hinders the ability to tackle a wide variety of challenging HSI tasks that require the integration of multiple skills, e.g., sitting down while carrying an object. To address this issue, we present TokenHSI, a single, unified transformer-based policy capable of multi-skill unification and flexible adaptation. The key insight is to model the humanoid proprioception as a separate shared token and combine it with distinct task tokens via a masking mechanism. Such a unified policy enables effective knowledge sharing across skills, thereby facilitating the multi-task training. Moreover, our policy architecture supports variable length inputs, enabling flexible adaptation of learned skills to new scenarios. By training additional task tokenizers, we can not only modify the geometries of interaction targets but also coordinate multiple skills to address complex tasks. The experiments demonstrate that our approach can significantly improve versatility, adaptability, and extensibility in various HSI tasks. Website: https://liangpan99.github.io/TokenHSI/
comment: CVPR 2025
☆ CAFe: Unifying Representation and Generation with Contrastive-Autoregressive Finetuning
The rapid advancement of large vision-language models (LVLMs) has driven significant progress in multimodal tasks, enabling models to interpret, reason, and generate outputs across both visual and textual domains. While excelling in generative tasks, existing LVLMs often face limitations in tasks requiring high-fidelity representation learning, such as generating image or text embeddings for retrieval. Recent work has proposed finetuning LVLMs for representational learning, but the fine-tuned model often loses its generative capabilities due to the representational learning training paradigm. To address this trade-off, we introduce CAFe, a contrastive-autoregressive fine-tuning framework that enhances LVLMs for both representation and generative tasks. By integrating a contrastive objective with autoregressive language modeling, our approach unifies these traditionally separate tasks, achieving state-of-the-art results in both multimodal retrieval and multimodal generative benchmarks, including object hallucination (OH) mitigation. CAFe establishes a novel framework that synergizes embedding and generative functionalities in a single model, setting a foundation for future multimodal models that excel in both retrieval precision and coherent output generation.
☆ Scaling Down Text Encoders of Text-to-Image Diffusion Models CVPR 2025
Text encoders in diffusion models have rapidly evolved, transitioning from CLIP to T5-XXL. Although this evolution has significantly enhanced the models' ability to understand complex prompts and generate text, it also leads to a substantial increase in the number of parameters. Despite T5 series encoders being trained on the C4 natural language corpus, which includes a significant amount of non-visual data, diffusion models with T5 encoder do not respond to those non-visual prompts, indicating redundancy in representational power. Therefore, it raises an important question: "Do we really need such a large text encoder?" In pursuit of an answer, we employ vision-based knowledge distillation to train a series of T5 encoder models. To fully inherit its capabilities, we constructed our dataset based on three criteria: image quality, semantic understanding, and text-rendering. Our results demonstrate the scaling down pattern that the distilled T5-base model can generate images of comparable quality to those produced by T5-XXL, while being 50 times smaller in size. This reduction in model size significantly lowers the GPU requirements for running state-of-the-art models such as FLUX and SD3, making high-quality text-to-image generation more accessible.
comment: accepted by CVPR 2025
☆ Visuo-Tactile Object Pose Estimation for a Multi-Finger Robot Hand with Low-Resolution In-Hand Tactile Sensing ICRA
Accurate 3D pose estimation of grasped objects is an important prerequisite for robots to perform assembly or in-hand manipulation tasks, but object occlusion by the robot's own hand greatly increases the difficulty of this perceptual task. Here, we propose that combining visual information and proprioception with binary, low-resolution tactile contact measurements from across the interior surface of an articulated robotic hand can mitigate this issue. The visuo-tactile object-pose-estimation problem is formulated probabilistically in a factor graph. The pose of the object is optimized to align with the three kinds of measurements using a robust cost function to reduce the influence of visual or tactile outlier readings. The advantages of the proposed approach are first demonstrated in simulation: a custom 15-DoF robot hand with one binary tactile sensor per link grasps 17 YCB objects while observed by an RGB-D camera. This low-resolution in-hand tactile sensing significantly improves object-pose estimates under high occlusion and also high visual noise. We also show these benefits through grasping tests with a preliminary real version of our tactile hand, obtaining reasonable visuo-tactile estimates of object pose at approximately 13.3 Hz on average.
comment: Accepted for publication at the IEEE International Conference on Robotics and Automation (ICRA), 2025
☆ Mask$^2$DiT: Dual Mask-based Diffusion Transformer for Multi-Scene Long Video Generation CVPR 2025
Sora has unveiled the immense potential of the Diffusion Transformer (DiT) architecture in single-scene video generation. However, the more challenging task of multi-scene video generation, which offers broader applications, remains relatively underexplored. To bridge this gap, we propose Mask$^2$DiT, a novel approach that establishes fine-grained, one-to-one alignment between video segments and their corresponding text annotations. Specifically, we introduce a symmetric binary mask at each attention layer within the DiT architecture, ensuring that each text annotation applies exclusively to its respective video segment while preserving temporal coherence across visual tokens. This attention mechanism enables precise segment-level textual-to-visual alignment, allowing the DiT architecture to effectively handle video generation tasks with a fixed number of scenes. To further equip the DiT architecture with the ability to generate additional scenes based on existing ones, we incorporate a segment-level conditional mask, which conditions each newly generated segment on the preceding video segments, thereby enabling auto-regressive scene extension. Both qualitative and quantitative experiments confirm that Mask$^2$DiT excels in maintaining visual consistency across segments while ensuring semantic alignment between each segment and its corresponding text description. Our project page is https://tianhao-qi.github.io/Mask2DiTProject.
comment: Accepted by CVPR 2025
☆ GENIUS: A Generative Framework for Universal Multimodal Search CVPR 2025
Generative retrieval is an emerging approach in information retrieval that generates identifiers (IDs) of target data based on a query, providing an efficient alternative to traditional embedding-based retrieval methods. However, existing models are task-specific and fall short of embedding-based retrieval in performance. This paper proposes GENIUS, a universal generative retrieval framework supporting diverse tasks across multiple modalities and domains. At its core, GENIUS introduces modality-decoupled semantic quantization, transforming multimodal data into discrete IDs encoding both modality and semantics. Moreover, to enhance generalization, we propose a query augmentation that interpolates between a query and its target, allowing GENIUS to adapt to varied query forms. Evaluated on the M-BEIR benchmark, it surpasses prior generative methods by a clear margin. Unlike embedding-based retrieval, GENIUS consistently maintains high retrieval speed across database size, with competitive performance across multiple benchmarks. With additional re-ranking, GENIUS often achieves results close to those of embedding-based methods while preserving efficiency.
comment: Accepted to CVPR 2025
☆ Unpaired Translation of Chest X-ray Images for Lung Opacity Diagnosis via Adaptive Activation Masks and Cross-Domain Alignment
Chest X-ray radiographs (CXRs) play a pivotal role in diagnosing and monitoring cardiopulmonary diseases. However, lung opac- ities in CXRs frequently obscure anatomical structures, impeding clear identification of lung borders and complicating the localization of pathology. This challenge significantly hampers segmentation accuracy and precise lesion identification, which are crucial for diagnosis. To tackle these issues, our study proposes an unpaired CXR translation framework that converts CXRs with lung opacities into counterparts without lung opacities while preserving semantic features. Central to our approach is the use of adaptive activation masks to selectively modify opacity regions in lung CXRs. Cross-domain alignment ensures translated CXRs without opacity issues align with feature maps and prediction labels from a pre-trained CXR lesion classifier, facilitating the interpretability of the translation process. We validate our method using RSNA, MIMIC-CXR-JPG and JSRT datasets, demonstrating superior translation quality through lower Frechet Inception Distance (FID) and Kernel Inception Distance (KID) scores compared to existing meth- ods (FID: 67.18 vs. 210.4, KID: 0.01604 vs. 0.225). Evaluation on RSNA opacity, MIMIC acute respiratory distress syndrome (ARDS) patient CXRs and JSRT CXRs show our method enhances segmentation accuracy of lung borders and improves lesion classification, further underscoring its potential in clinical settings (RSNA: mIoU: 76.58% vs. 62.58%, Sensitivity: 85.58% vs. 77.03%; MIMIC ARDS: mIoU: 86.20% vs. 72.07%, Sensitivity: 92.68% vs. 86.85%; JSRT: mIoU: 91.08% vs. 85.6%, Sensitivity: 97.62% vs. 95.04%). Our approach advances CXR imaging analysis, especially in investigating segmentation impacts through image translation techniques.
☆ FALCONEye: Finding Answers and Localizing Content in ONE-hour-long videos with multi-modal LLMs
Information retrieval in hour-long videos presents a significant challenge, even for state-of-the-art Vision-Language Models (VLMs), particularly when the desired information is localized within a small subset of frames. Long video data presents challenges for VLMs due to context window limitations and the difficulty of pinpointing frames containing the answer. Our novel video agent, FALCONEye, combines a VLM and a Large Language Model (LLM) to search relevant information along the video, and locate the frames with the answer. FALCONEye novelty relies on 1) the proposed meta-architecture, which is better suited to tackle hour-long videos compared to short video approaches in the state-of-the-art; 2) a new efficient exploration algorithm to locate the information using short clips, captions and answer confidence; and 3) our state-of-the-art VLMs calibration analysis for the answer confidence. Our agent is built over a small-size VLM and a medium-size LLM being accessible to run on standard computational resources. We also release FALCON-Bench, a benchmark to evaluate long (average > 1 hour) Video Answer Search challenges, highlighting the need for open-ended question evaluation. Our experiments show FALCONEye's superior performance than the state-of-the-art in FALCON-Bench, and similar or better performance in related benchmarks.
☆ Towards Online Multi-Modal Social Interaction Understanding
Multimodal social interaction understanding (MMSI) is critical in human-robot interaction systems. In real-world scenarios, AI agents are required to provide real-time feedback. However, existing models often depend on both past and future contexts, which hinders them from applying to real-world problems. To bridge this gap, we propose an online MMSI setting, where the model must resolve MMSI tasks using only historical information, such as recorded dialogues and video streams. To address the challenges of missing the useful future context, we develop a novel framework, named Online-MMSI-VLM, that leverages two complementary strategies: multi-party conversation forecasting and social-aware visual prompting with multi-modal large language models. First, to enrich linguistic context, the multi-party conversation forecasting simulates potential future utterances in a coarse-to-fine manner, anticipating upcoming speaker turns and then generating fine-grained conversational details. Second, to effectively incorporate visual social cues like gaze and gesture, social-aware visual prompting highlights the social dynamics in video with bounding boxes and body keypoints for each person and frame. Extensive experiments on three tasks and two datasets demonstrate that our method achieves state-of-the-art performance and significantly outperforms baseline models, indicating its effectiveness on Online-MMSI. The code and pre-trained models will be publicly released at: https://github.com/Sampson-Lee/OnlineMMSI.
☆ FireEdit: Fine-grained Instruction-based Image Editing via Region-aware Vision Language Model CVPR 2025
Currently, instruction-based image editing methods have made significant progress by leveraging the powerful cross-modal understanding capabilities of vision language models (VLMs). However, they still face challenges in three key areas: 1) complex scenarios; 2) semantic consistency; and 3) fine-grained editing. To address these issues, we propose FireEdit, an innovative Fine-grained Instruction-based image editing framework that exploits a REgion-aware VLM. FireEdit is designed to accurately comprehend user instructions and ensure effective control over the editing process. Specifically, we enhance the fine-grained visual perception capabilities of the VLM by introducing additional region tokens. Relying solely on the output of the LLM to guide the diffusion model may lead to suboptimal editing results. Therefore, we propose a Time-Aware Target Injection module and a Hybrid Visual Cross Attention module. The former dynamically adjusts the guidance strength at various denoising stages by integrating timestep embeddings with the text embeddings. The latter enhances visual details for image editing, thereby preserving semantic consistency between the edited result and the source image. By combining the VLM enhanced with fine-grained region tokens and the time-dependent diffusion model, FireEdit demonstrates significant advantages in comprehending editing instructions and maintaining high semantic consistency. Extensive experiments indicate that our approach surpasses the state-of-the-art instruction-based image editing methods. Our project is available at https://zjgans.github.io/fireedit.github.io.
comment: Accepted to CVPR 2025
☆ AudCast: Audio-Driven Human Video Generation by Cascaded Diffusion Transformers CVPR
Despite the recent progress of audio-driven video generation, existing methods mostly focus on driving facial movements, leading to non-coherent head and body dynamics. Moving forward, it is desirable yet challenging to generate holistic human videos with both accurate lip-sync and delicate co-speech gestures w.r.t. given audio. In this work, we propose AudCast, a generalized audio-driven human video generation framework adopting a cascade Diffusion-Transformers (DiTs) paradigm, which synthesizes holistic human videos based on a reference image and a given audio. 1) Firstly, an audio-conditioned Holistic Human DiT architecture is proposed to directly drive the movements of any human body with vivid gesture dynamics. 2) Then to enhance hand and face details that are well-knownly difficult to handle, a Regional Refinement DiT leverages regional 3D fitting as the bridge to reform the signals, producing the final results. Extensive experiments demonstrate that our framework generates high-fidelity audio-driven holistic human videos with temporal coherence and fine facial and hand details. Resources can be found at https://guanjz20.github.io/projects/AudCast.
comment: Accepted to IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2025. Project page: https://guanjz20.github.io/projects/AudCast
GyralNet Subnetwork Partitioning via Differentiable Spectral Modularity Optimization
Understanding the structural and functional organization of the human brain requires a detailed examination of cortical folding patterns, among which the three-hinge gyrus (3HG) has been identified as a key structural landmark. GyralNet, a network representation of cortical folding, models 3HGs as nodes and gyral crests as edges, highlighting their role as critical hubs in cortico-cortical connectivity. However, existing methods for analyzing 3HGs face significant challenges, including the sub-voxel scale of 3HGs at typical neuroimaging resolutions, the computational complexity of establishing cross-subject correspondences, and the oversimplification of treating 3HGs as independent nodes without considering their community-level relationships. To address these limitations, we propose a fully differentiable subnetwork partitioning framework that employs a spectral modularity maximization optimization strategy to modularize the organization of 3HGs within GyralNet. By incorporating topological structural similarity and DTI-derived connectivity patterns as attribute features, our approach provides a biologically meaningful representation of cortical organization. Extensive experiments on the Human Connectome Project (HCP) dataset demonstrate that our method effectively partitions GyralNet at the individual level while preserving the community-level consistency of 3HGs across subjects, offering a robust foundation for understanding brain connectivity.
comment: 10 pages, 3 figures
☆ Domain-incremental White Blood Cell Classification with Privacy-aware Continual Learning
White blood cell (WBC) classification plays a vital role in hematology for diagnosing various medical conditions. However, it faces significant challenges due to domain shifts caused by variations in sample sources (e.g., blood or bone marrow) and differing imaging conditions across hospitals. Traditional deep learning models often suffer from catastrophic forgetting in such dynamic environments, while foundation models, though generally robust, experience performance degradation when the distribution of inference data differs from that of the training data. To address these challenges, we propose a generative replay-based Continual Learning (CL) strategy designed to prevent forgetting in foundation models for WBC classification. Our method employs lightweight generators to mimic past data with a synthetic latent representation to enable privacy-preserving replay. To showcase the effectiveness, we carry out extensive experiments with a total of four datasets with different task ordering and four backbone models including ResNet50, RetCCL, CTransPath, and UNI. Experimental results demonstrate that conventional fine-tuning methods degrade performance on previously learned tasks and struggle with domain shifts. In contrast, our continual learning strategy effectively mitigates catastrophic forgetting, preserving model performance across varying domains. This work presents a practical solution for maintaining reliable WBC classification in real-world clinical settings, where data distributions frequently evolve.
☆ LENVIZ: A High-Resolution Low-Exposure Night Vision Benchmark Dataset
Low-light image enhancement is crucial for a myriad of applications, from night vision and surveillance, to autonomous driving. However, due to the inherent limitations that come in hand with capturing images in low-illumination environments, the task of enhancing such scenes still presents a formidable challenge. To advance research in this field, we introduce our Low Exposure Night Vision (LENVIZ) Dataset, a comprehensive multi-exposure benchmark dataset for low-light image enhancement comprising of over 230K frames showcasing 24K real-world indoor and outdoor, with-and without human, scenes. Captured using 3 different camera sensors, LENVIZ offers a wide range of lighting conditions, noise levels, and scene complexities, making it the largest publicly available up-to 4K resolution benchmark in the field. LENVIZ includes high quality human-generated ground truth, for which each multi-exposure low-light scene has been meticulously curated and edited by expert photographers to ensure optimal image quality. Furthermore, we also conduct a comprehensive analysis of current state-of-the-art low-light image enhancement techniques on our dataset and highlight potential areas of improvement.
comment: Dataset will be released upon publication
☆ SeLIP: Similarity Enhanced Contrastive Language Image Pretraining for Multi-modal Head MRI
Despite that deep learning (DL) methods have presented tremendous potential in many medical image analysis tasks, the practical applications of medical DL models are limited due to the lack of enough data samples with manual annotations. By noting that the clinical radiology examinations are associated with radiology reports that describe the images, we propose to develop a foundation model for multi-model head MRI by using contrastive learning on the images and the corresponding radiology findings. In particular, a contrastive learning framework is proposed, where a mixed syntax and semantic similarity matching metric is integrated to reduce the thirst of extreme large dataset in conventional contrastive learning framework. Our proposed similarity enhanced contrastive language image pretraining (SeLIP) is able to effectively extract more useful features. Experiments revealed that our proposed SeLIP performs well in many downstream tasks including image-text retrieval task, classification task, and image segmentation, which highlights the importance of considering the similarities among texts describing different images in developing medical image foundation models.
☆ Unpaired Object-Level SAR-to-Optical Image Translation for Aircraft with Keypoints-Guided Diffusion Models
Synthetic Aperture Radar (SAR) imagery provides all-weather, all-day, and high-resolution imaging capabilities but its unique imaging mechanism makes interpretation heavily reliant on expert knowledge, limiting interpretability, especially in complex target tasks. Translating SAR images into optical images is a promising solution to enhance interpretation and support downstream tasks. Most existing research focuses on scene-level translation, with limited work on object-level translation due to the scarcity of paired data and the challenge of accurately preserving contour and texture details. To address these issues, this study proposes a keypoint-guided diffusion model (KeypointDiff) for SAR-to-optical image translation of unpaired aircraft targets. This framework introduces supervision on target class and azimuth angle via keypoints, along with a training strategy for unpaired data. Based on the classifier-free guidance diffusion architecture, a class-angle guidance module (CAGM) is designed to integrate class and angle information into the diffusion generation process. Furthermore, adversarial loss and consistency loss are employed to improve image fidelity and detail quality, tailored for aircraft targets. During sampling, aided by a pre-trained keypoint detector, the model eliminates the requirement for manually labeled class and azimuth information, enabling automated SAR-to-optical translation. Experimental results demonstrate that the proposed method outperforms existing approaches across multiple metrics, providing an efficient and effective solution for object-level SAR-to-optical translation and downstream tasks. Moreover, the method exhibits strong zero-shot generalization to untrained aircraft types with the assistance of the keypoint detector.
PAVE: Patching and Adapting Video Large Language Models CVPR2025
Pre-trained video large language models (Video LLMs) exhibit remarkable reasoning capabilities, yet adapting these models to new tasks involving additional modalities or data types (e.g., audio or 3D information) remains challenging. In this paper, we present PAVE, a flexible framework for adapting pre-trained Video LLMs to downstream tasks with side-channel signals, such as audio, 3D cues, or multi-view videos. PAVE introduces lightweight adapters, referred to as "patches," which add a small number of parameters and operations to a base model without modifying its architecture or pre-trained weights. In doing so, PAVE can effectively adapt the pre-trained base model to support diverse downstream tasks, including audio-visual question answering, 3D reasoning, multi-view video recognition, and high frame rate video understanding. Across these tasks, PAVE significantly enhances the performance of the base model, surpassing state-of-the-art task-specific models while incurring a minor cost of ~0.1% additional FLOPs and parameters. Further, PAVE supports multi-task learning and generalizes well across different Video LLMs. Our code is available at https://github.com/dragonlzm/PAVE.
comment: CVPR2025 Camera Ready
☆ SITA: Structurally Imperceptible and Transferable Adversarial Attacks for Stylized Image Generation
Image generation technology has brought significant advancements across various fields but has also raised concerns about data misuse and potential rights infringements, particularly with respect to creating visual artworks. Current methods aimed at safeguarding artworks often employ adversarial attacks. However, these methods face challenges such as poor transferability, high computational costs, and the introduction of noticeable noise, which compromises the aesthetic quality of the original artwork. To address these limitations, we propose a Structurally Imperceptible and Transferable Adversarial (SITA) attacks. SITA leverages a CLIP-based destylization loss, which decouples and disrupts the robust style representation of the image. This disruption hinders style extraction during stylized image generation, thereby impairing the overall stylization process. Importantly, SITA eliminates the need for a surrogate diffusion model, leading to significantly reduced computational overhead. The method's robust style feature disruption ensures high transferability across diverse models. Moreover, SITA introduces perturbations by embedding noise within the imperceptible structural details of the image. This approach effectively protects against style extraction without compromising the visual quality of the artwork. Extensive experiments demonstrate that SITA offers superior protection for artworks against unauthorized use in stylized generation. It significantly outperforms existing methods in terms of transferability, computational efficiency, and noise imperceptibility. Code is available at https://github.com/A-raniy-day/SITA.
☆ Fine-Grained Erasure in Text-to-Image Diffusion-based Foundation Models CVPR 2025
Existing unlearning algorithms in text-to-image generative models often fail to preserve the knowledge of semantically related concepts when removing specific target concepts: a challenge known as adjacency. To address this, we propose FADE (Fine grained Attenuation for Diffusion Erasure), introducing adjacency aware unlearning in diffusion models. FADE comprises two components: (1) the Concept Neighborhood, which identifies an adjacency set of related concepts, and (2) Mesh Modules, employing a structured combination of Expungement, Adjacency, and Guidance loss components. These enable precise erasure of target concepts while preserving fidelity across related and unrelated concepts. Evaluated on datasets like Stanford Dogs, Oxford Flowers, CUB, I2P, Imagenette, and ImageNet1k, FADE effectively removes target concepts with minimal impact on correlated concepts, achieving atleast a 12% improvement in retention performance over state-of-the-art methods.
comment: Published in CVPR 2025
☆ LPOSS: Label Propagation Over Patches and Pixels for Open-vocabulary Semantic Segmentation
We propose a training-free method for open-vocabulary semantic segmentation using Vision-and-Language Models (VLMs). Our approach enhances the initial per-patch predictions of VLMs through label propagation, which jointly optimizes predictions by incorporating patch-to-patch relationships. Since VLMs are primarily optimized for cross-modal alignment and not for intra-modal similarity, we use a Vision Model (VM) that is observed to better capture these relationships. We address resolution limitations inherent to patch-based encoders by applying label propagation at the pixel level as a refinement step, significantly improving segmentation accuracy near class boundaries. Our method, called LPOSS+, performs inference over the entire image, avoiding window-based processing and thereby capturing contextual interactions across the full image. LPOSS+ achieves state-of-the-art performance among training-free methods, across a diverse set of datasets. Code: https://github.com/vladan-stojnic/LPOSS
☆ Resilient Sensor Fusion under Adverse Sensor Failures via Multi-Modal Expert Fusion CVPR 2025
Modern autonomous driving perception systems utilize complementary multi-modal sensors, such as LiDAR and cameras. Although sensor fusion architectures enhance performance in challenging environments, they still suffer significant performance drops under severe sensor failures, such as LiDAR beam reduction, LiDAR drop, limited field of view, camera drop, and occlusion. This limitation stems from inter-modality dependencies in current sensor fusion frameworks. In this study, we introduce an efficient and robust LiDAR-camera 3D object detector, referred to as MoME, which can achieve robust performance through a mixture of experts approach. Our MoME fully decouples modality dependencies using three parallel expert decoders, which use camera features, LiDAR features, or a combination of both to decode object queries, respectively. We propose Multi-Expert Decoding (MED) framework, where each query is decoded selectively using one of three expert decoders. MoME utilizes an Adaptive Query Router (AQR) to select the most appropriate expert decoder for each query based on the quality of camera and LiDAR features. This ensures that each query is processed by the best-suited expert, resulting in robust performance across diverse sensor failure scenarios. We evaluated the performance of MoME on the nuScenes-R benchmark. Our MoME achieved state-of-the-art performance in extreme weather and sensor failure conditions, significantly outperforming the existing models across various sensor failure scenarios.
comment: Accepted to CVPR 2025
☆ BiPrompt-SAM: Enhancing Image Segmentation via Explicit Selection between Point and Text Prompts
Segmentation is a fundamental task in computer vision, with prompt-driven methods gaining prominence due to their flexibility. The recent Segment Anything Model (SAM) has demonstrated powerful point-prompt segmentation capabilities, while text-based segmentation models offer rich semantic understanding. However, existing approaches rarely explore how to effectively combine these complementary modalities for optimal segmentation performance. This paper presents BiPrompt-SAM, a novel dual-modal prompt segmentation framework that fuses the advantages of point and text prompts through an explicit selection mechanism. Specifically, we leverage SAM's inherent ability to generate multiple mask candidates, combined with a semantic guidance mask from text prompts, and explicitly select the most suitable candidate based on similarity metrics. This approach can be viewed as a simplified Mixture of Experts (MoE) system, where the point and text modules act as distinct "experts," and the similarity scoring serves as a rudimentary "gating network." We conducted extensive evaluations on both the Endovis17 medical dataset and RefCOCO series natural image datasets. On Endovis17, BiPrompt-SAM achieved 89.55\% mDice and 81.46\% mIoU, comparable to state-of-the-art specialized medical segmentation models. On the RefCOCO series datasets, our method attained 87.1\%, 86.5\%, and 85.8\% IoU, significantly outperforming existing approaches. Experiments demonstrate that our explicit dual-selection method effectively combines the spatial precision of point prompts with the semantic richness of text prompts, particularly excelling in scenarios involving semantically complex objects, multiple similar objects, and partial occlusions. BiPrompt-SAM not only provides a simple yet effective implementation but also offers a new perspective on multi-modal prompt fusion.
☆ OpenLex3D: A New Evaluation Benchmark for Open-Vocabulary 3D Scene Representations
3D scene understanding has been transformed by open-vocabulary language models that enable interaction via natural language. However, the evaluation of these representations is limited to closed-set semantics that do not capture the richness of language. This work presents OpenLex3D, a dedicated benchmark to evaluate 3D open-vocabulary scene representations. OpenLex3D provides entirely new label annotations for 23 scenes from Replica, ScanNet++, and HM3D, which capture real-world linguistic variability by introducing synonymical object categories and additional nuanced descriptions. By introducing an open-set 3D semantic segmentation task and an object retrieval task, we provide insights on feature precision, segmentation, and downstream capabilities. We evaluate various existing 3D open-vocabulary methods on OpenLex3D, showcasing failure cases, and avenues for improvement. The benchmark is publicly available at: https://openlex3d.github.io/.
☆ Dita: Scaling Diffusion Transformer for Generalist Vision-Language-Action Policy
While recent vision-language-action models trained on diverse robot datasets exhibit promising generalization capabilities with limited in-domain data, their reliance on compact action heads to predict discretized or continuous actions constrains adaptability to heterogeneous action spaces. We present Dita, a scalable framework that leverages Transformer architectures to directly denoise continuous action sequences through a unified multimodal diffusion process. Departing from prior methods that condition denoising on fused embeddings via shallow networks, Dita employs in-context conditioning -- enabling fine-grained alignment between denoised actions and raw visual tokens from historical observations. This design explicitly models action deltas and environmental nuances. By scaling the diffusion action denoiser alongside the Transformer's scalability, Dita effectively integrates cross-embodiment datasets across diverse camera perspectives, observation scenes, tasks, and action spaces. Such synergy enhances robustness against various variances and facilitates the successful execution of long-horizon tasks. Evaluations across extensive benchmarks demonstrate state-of-the-art or comparative performance in simulation. Notably, Dita achieves robust real-world adaptation to environmental variances and complex long-horizon tasks through 10-shot finetuning, using only third-person camera inputs. The architecture establishes a versatile, lightweight and open-source baseline for generalist robot policy learning. Project Page: https://robodita.github.io.
comment: Preprint; https://robodita.github.io;
☆ ORION: A Holistic End-to-End Autonomous Driving Framework by Vision-Language Instructed Action Generation
End-to-end (E2E) autonomous driving methods still struggle to make correct decisions in interactive closed-loop evaluation due to limited causal reasoning capability. Current methods attempt to leverage the powerful understanding and reasoning abilities of Vision-Language Models (VLMs) to resolve this dilemma. However, the problem is still open that few VLMs for E2E methods perform well in the closed-loop evaluation due to the gap between the semantic reasoning space and the purely numerical trajectory output in the action space. To tackle this issue, we propose ORION, a holistic E2E autonomous driving framework by vision-language instructed action generation. ORION uniquely combines a QT-Former to aggregate long-term history context, a Large Language Model (LLM) for driving scenario reasoning, and a generative planner for precision trajectory prediction. ORION further aligns the reasoning space and the action space to implement a unified E2E optimization for both visual question-answering (VQA) and planning tasks. Our method achieves an impressive closed-loop performance of 77.74 Driving Score (DS) and 54.62% Success Rate (SR) on the challenge Bench2Drive datasets, which outperforms state-of-the-art (SOTA) methods by a large margin of 14.28 DS and 19.61% SR.
☆ Surg-3M: A Dataset and Foundation Model for Perception in Surgical Settings
Advancements in computer-assisted surgical procedures heavily rely on accurate visual data interpretation from camera systems used during surgeries. Traditional open-access datasets focusing on surgical procedures are often limited by their small size, typically consisting of fewer than 100 videos with less than 100K images. To address these constraints, a new dataset called Surg-3M has been compiled using a novel aggregation pipeline that collects high-resolution videos from online sources. Featuring an extensive collection of over 4K surgical videos and more than 3 million high-quality images from multiple procedure types, Surg-3M offers a comprehensive resource surpassing existing alternatives in size and scope, including two novel tasks. To demonstrate the effectiveness of this dataset, we present SurgFM, a self-supervised foundation model pretrained on Surg-3M that achieves impressive results in downstream tasks such as surgical phase recognition, action recognition, and tool presence detection. Combining key components from ConvNeXt, DINO, and an innovative augmented distillation method, SurgFM exhibits exceptional performance compared to specialist architectures across various benchmarks. Our experimental results show that SurgFM outperforms state-of-the-art models in multiple downstream tasks, including significant gains in surgical phase recognition (+8.9pp, +4.7pp, and +3.9pp of Jaccard in AutoLaparo, M2CAI16, and Cholec80), action recognition (+3.1pp of mAP in CholecT50) and tool presence detection (+4.6pp of mAP in Cholec80). Moreover, even when using only half of the data, SurgFM outperforms state-of-the-art models in AutoLaparo and achieves state-of-the-art performance in Cholec80. Both Surg-3M and SurgFM have significant potential to accelerate progress towards developing autonomous robotic surgery systems.
comment: 15 pages
☆ GRN+: A Simplified Generative Reinforcement Network for Tissue Layer Analysis in 3D Ultrasound Images for Chronic Low-back Pain
3D ultrasound delivers high-resolution, real-time images of soft tissues, which is essential for pain research. However, manually distinguishing various tissues for quantitative analysis is labor-intensive. To streamline this process, we developed and validated GRN+, a novel multi-model framework that automates layer segmentation with minimal annotated data. GRN+ combines a ResNet-based generator and a U-Net segmentation model. Through a method called Segmentation-guided Enhancement (SGE), the generator produces new images and matching masks under the guidance of the segmentation model, with its weights adjusted according to the segmentation loss gradient. To prevent gradient explosion and secure stable training, a two-stage backpropagation strategy was implemented: the first stage propagates the segmentation loss through both the generator and segmentation model, while the second stage concentrates on optimizing the segmentation model alone, thereby refining mask prediction using the generated images. Tested on 69 fully annotated 3D ultrasound scans from 29 subjects with six manually labeled tissue layers, GRN+ outperformed all other semi-supervised methods in terms of the Dice coefficient using only 5% labeled data, despite not using unlabeled data for unsupervised training. Additionally, when applied to fully annotated datasets, GRN+ with SGE achieved a 2.16% higher Dice coefficient while incurring lower computational costs compared to other models. Overall, GRN+ provides accurate tissue segmentation while reducing both computational expenses and the dependency on extensive annotations, making it an effective tool for 3D ultrasound analysis in cLBP patients.
☆ InterSliceBoost: Identifying Tissue Layers in Three-dimensional Ultrasound Images for Chronic Lower Back Pain (cLBP) Assessment
Available studies on chronic lower back pain (cLBP) typically focus on one or a few specific tissues rather than conducting a comprehensive layer-by-layer analysis. Since three-dimensional (3-D) images often contain hundreds of slices, manual annotation of these anatomical structures is both time-consuming and error-prone. We aim to develop and validate a novel approach called InterSliceBoost to enable the training of a segmentation model on a partially annotated dataset without compromising segmentation performance. The architecture of InterSliceBoost includes two components: an inter-slice generator and a segmentation model. The generator utilizes residual block-based encoders to extract features from adjacent image-mask pairs (IMPs). Differential features are calculated and input into a decoder to generate inter-slice IMPs. The segmentation model is trained on partially annotated datasets (e.g., skipping 1, 2, 3, or 7 images) and the generated inter-slice IMPs. To validate the performance of InterSliceBoost, we utilized a dataset of 76 B-mode ultrasound scans acquired on 29 subjects enrolled in an ongoing cLBP study. InterSliceBoost, trained on only 33% of the image slices, achieved a mean Dice coefficient of 80.84% across all six layers on the independent test set, with Dice coefficients of 73.48%, 61.11%, 81.87%, 95.74%, 83.52% and 88.74% for segmenting dermis, superficial fat, superficial fascial membrane, deep fat, deep fascial membrane, and muscle. This performance is significantly higher than the conventional model trained on fully annotated images (p<0.05). InterSliceBoost can effectively segment the six tissue layers depicted on 3-D B-model ultrasound images in settings with partial annotations.
☆ PCM : Picard Consistency Model for Fast Parallel Sampling of Diffusion Models CVPR 2025
Recently, diffusion models have achieved significant advances in vision, text, and robotics. However, they still face slow generation speeds due to sequential denoising processes. To address this, a parallel sampling method based on Picard iteration was introduced, effectively reducing sequential steps while ensuring exact convergence to the original output. Nonetheless, Picard iteration does not guarantee faster convergence, which can still result in slow generation in practice. In this work, we propose a new parallelization scheme, the Picard Consistency Model (PCM), which significantly reduces the number of generation steps in Picard iteration. Inspired by the consistency model, PCM is directly trained to predict the fixed-point solution, or the final output, at any stage of the convergence trajectory. Additionally, we introduce a new concept called model switching, which addresses PCM's limitations and ensures exact convergence. Extensive experiments demonstrate that PCM achieves up to a 2.71x speedup over sequential sampling and a 1.77x speedup over Picard iteration across various tasks, including image generation and robotic control.
comment: Accepted to the CVPR 2025
☆ EventMamba: Enhancing Spatio-Temporal Locality with State Space Models for Event-Based Video Reconstruction
Leveraging its robust linear global modeling capability, Mamba has notably excelled in computer vision. Despite its success, existing Mamba-based vision models have overlooked the nuances of event-driven tasks, especially in video reconstruction. Event-based video reconstruction (EBVR) demands spatial translation invariance and close attention to local event relationships in the spatio-temporal domain. Unfortunately, conventional Mamba algorithms apply static window partitions and standard reshape scanning methods, leading to significant losses in local connectivity. To overcome these limitations, we introduce EventMamba--a specialized model designed for EBVR tasks. EventMamba innovates by incorporating random window offset (RWO) in the spatial domain, moving away from the restrictive fixed partitioning. Additionally, it features a new consistent traversal serialization approach in the spatio-temporal domain, which maintains the proximity of adjacent events both spatially and temporally. These enhancements enable EventMamba to retain Mamba's robust modeling capabilities while significantly preserving the spatio-temporal locality of event data. Comprehensive testing on multiple datasets shows that EventMamba markedly enhances video reconstruction, drastically improving computation speed while delivering superior visual quality compared to Transformer-based methods.
☆ On What Depends the Robustness of Multi-source Models to Missing Data in Earth Observation?
In recent years, the development of robust multi-source models has emerged in the Earth Observation (EO) field. These are models that leverage data from diverse sources to improve predictive accuracy when there is missing data. Despite these advancements, the factors influencing the varying effectiveness of such models remain poorly understood. In this study, we evaluate the predictive performance of six state-of-the-art multi-source models in predicting scenarios where either a single data source is missing or only a single source is available. Our analysis reveals that the efficacy of these models is intricately tied to the nature of the task, the complementarity among data sources, and the model design. Surprisingly, we observe instances where the removal of certain data sources leads to improved predictive performance, challenging the assumption that incorporating all available data is always beneficial. These findings prompt critical reflections on model complexity and the necessity of all collected data sources, potentially shaping the way for more streamlined approaches in EO applications.
comment: Accepted at IEEE International Geoscience and Remote Sensing Symposium 2025
Semi-SD: Semi-Supervised Metric Depth Estimation via Surrounding Cameras for Autonomous Driving
In this paper, we introduce Semi-SD, a novel metric depth estimation framework tailored for surrounding cameras equipment in autonomous driving. In this work, the input data consists of adjacent surrounding frames and camera parameters. We propose a unified spatial-temporal-semantic fusion module to construct the visual fused features. Cross-attention components for surrounding cameras and adjacent frames are utilized to focus on metric scale information refinement and temporal feature matching. Building on this, we propose a pose estimation framework using surrounding cameras, their corresponding estimated depths, and extrinsic parameters, which effectively address the scale ambiguity in multi-camera setups. Moreover, semantic world model and monocular depth estimation world model are integrated to supervised the depth estimation, which improve the quality of depth estimation. We evaluate our algorithm on DDAD and nuScenes datasets, and the results demonstrate that our method achieves state-of-the-art performance in terms of surrounding camera based depth estimation quality. The source code will be available on https://github.com/xieyuser/Semi-SD.
☆ Mind the Gap: Benchmarking Spatial Reasoning in Vision-Language Models
Vision-Language Models (VLMs) have recently emerged as powerful tools, excelling in tasks that integrate visual and textual comprehension, such as image captioning, visual question answering, and image-text retrieval. However, existing benchmarks for VLMs include spatial components, which often fail to isolate spatial reasoning from related tasks such as object detection or semantic comprehension. In this paper, we address these deficiencies with a multi-faceted approach towards understanding spatial reasoning. Informed by the diverse and multi-dimensional nature of human spatial reasoning abilities, we present a detailed analysis that first delineates the core elements of spatial reasoning: spatial relations, orientation and navigation, mental rotation, and spatial visualization, and then assesses the performance of these models in both synthetic and real-world images, bridging controlled and naturalistic contexts. We analyze 13 state-of-the-art Vision-Language Models, uncovering pivotal insights into their spatial reasoning performance. Our results reveal profound shortcomings in current VLMs, with average accuracy across the 13 models approximating random chance, highlighting spatial reasoning as a persistent obstacle. This work not only exposes the pressing need to advance spatial reasoning within VLMs but also establishes a solid platform for future exploration. Code available on GitHub (https://github.com/stogiannidis/srbench) and dataset available on HuggingFace (https://huggingface.co/datasets/stogiannidis/srbench).
comment: 8 main pages, 4 pages Appendix, 5 figures
☆ Bootstrap Your Own Views: Masked Ego-Exo Modeling for Fine-grained View-invariant Video Representations CVPR 2025
View-invariant representation learning from egocentric (first-person, ego) and exocentric (third-person, exo) videos is a promising approach toward generalizing video understanding systems across multiple viewpoints. However, this area has been underexplored due to the substantial differences in perspective, motion patterns, and context between ego and exo views. In this paper, we propose a novel masked ego-exo modeling that promotes both causal temporal dynamics and cross-view alignment, called Bootstrap Your Own Views (BYOV), for fine-grained view-invariant video representation learning from unpaired ego-exo videos. We highlight the importance of capturing the compositional nature of human actions as a basis for robust cross-view understanding. Specifically, self-view masking and cross-view masking predictions are designed to learn view-invariant and powerful representations concurrently. Experimental results demonstrate that our BYOV significantly surpasses existing approaches with notable gains across all metrics in four downstream ego-exo video tasks. The code is available at https://github.com/park-jungin/byov.
comment: CVPR 2025 Camera-ready
☆ High-Quality Spatial Reconstruction and Orthoimage Generation Using Efficient 2D Gaussian Splatting
Highly accurate geometric precision and dense image features characterize True Digital Orthophoto Maps (TDOMs), which are in great demand for applications such as urban planning, infrastructure management, and environmental monitoring. Traditional TDOM generation methods need sophisticated processes, such as Digital Surface Models (DSM) and occlusion detection, which are computationally expensive and prone to errors. This work presents an alternative technique rooted in 2D Gaussian Splatting (2DGS), free of explicit DSM and occlusion detection. With depth map generation, spatial information for every pixel within the TDOM is retrieved and can reconstruct the scene with high precision. Divide-and-conquer strategy achieves excellent GS training and rendering with high-resolution TDOMs at a lower resource cost, which preserves higher quality of rendering on complex terrain and thin structure without a decrease in efficiency. Experimental results demonstrate the efficiency of large-scale scene reconstruction and high-precision terrain modeling. This approach provides accurate spatial data, which assists users in better planning and decision-making based on maps.
Optimization of MedSAM model based on bounding box adaptive perturbation algorithm
The MedSAM model, built upon the SAM framework, enhances medical image segmentation through generalizable training but still exhibits notable limitations. First, constraints in the perturbation window settings during training can cause MedSAM to incorrectly segment small tissues or organs together with adjacent structures, leading to segmentation errors. Second, when dealing with medical image targets characterized by irregular shapes and complex structures, segmentation often relies on narrowing the bounding box to refine segmentation intent. However, MedSAM's performance under reduced bounding box prompts remains suboptimal. To address these challenges, this study proposes a bounding box adaptive perturbation algorithm to optimize the training process. The proposed approach aims to reduce segmentation errors for small targets and enhance the model's accuracy when processing reduced bounding box prompts, ultimately improving the robustness and reliability of the MedSAM model for complex medical imaging tasks.
comment: 6 pages, 6 figures, 3 Tables
☆ MultimodalStudio: A Heterogeneous Sensor Dataset and Framework for Neural Rendering across Multiple Imaging Modalities CVPR 2025
Neural Radiance Fields (NeRF) have shown impressive performances in the rendering of 3D scenes from arbitrary viewpoints. While RGB images are widely preferred for training volume rendering models, the interest in other radiance modalities is also growing. However, the capability of the underlying implicit neural models to learn and transfer information across heterogeneous imaging modalities has seldom been explored, mostly due to the limited training data availability. For this purpose, we present MultimodalStudio (MMS): it encompasses MMS-DATA and MMS-FW. MMS-DATA is a multimodal multi-view dataset containing 32 scenes acquired with 5 different imaging modalities: RGB, monochrome, near-infrared, polarization and multispectral. MMS-FW is a novel modular multimodal NeRF framework designed to handle multimodal raw data and able to support an arbitrary number of multi-channel devices. Through extensive experiments, we demonstrate that MMS-FW trained on MMS-DATA can transfer information between different imaging modalities and produce higher quality renderings than using single modalities alone. We publicly release the dataset and the framework, to promote the research on multimodal volume rendering and beyond.
comment: Accepted at CVPR 2025
☆ fine-CLIP: Enhancing Zero-Shot Fine-Grained Surgical Action Recognition with Vision-Language Models
While vision-language models like CLIP have advanced zero-shot surgical phase recognition, they struggle with fine-grained surgical activities, especially action triplets. This limitation arises because current CLIP formulations rely on global image features, which overlook the fine-grained semantics and contextual details crucial for complex tasks like zero-shot triplet recognition. Furthermore, these models do not explore the hierarchical structure inherent in triplets, reducing their ability to generalize to novel triplets. To address these challenges, we propose fine-CLIP, which learns object-centric features and lever- ages the hierarchy in triplet formulation. Our approach integrates three components: hierarchical prompt modeling to capture shared semantics, LoRA-based vision backbone adaptation for enhanced feature extraction, and a graph-based condensation strategy that groups similar patch features into meaningful object clusters. Since triplet classification is a challenging task, we introduce an alternative yet meaningful base-to-novel generalization benchmark with two settings on the CholecT50 dataset: Unseen-Target, assessing adaptability to triplets with novel anatomical structures, and Unseen-Instrument-Verb, where models need to generalize to novel instrument-verb interactions. fine-CLIP shows significant improvements in F1 and mAP, enhancing zero-shot recognition of novel surgical triplets.
comment: 6 pages, 3 tables, 3 figures
☆ CoSimGen: Controllable Diffusion Model for Simultaneous Image and Mask Generation
The acquisition of annotated datasets with paired images and segmentation masks is a critical challenge in domains such as medical imaging, remote sensing, and computer vision. Manual annotation demands significant resources, faces ethical constraints, and depends heavily on domain expertise. Existing generative models often target single-modality outputs, either images or segmentation masks, failing to address the need for high-quality, simultaneous image-mask generation. Additionally, these models frequently lack adaptable conditioning mechanisms, restricting control over the generated outputs and limiting their applicability for dataset augmentation and rare scenario simulation. We propose CoSimGen, a diffusion-based framework for controllable simultaneous image and mask generation. Conditioning is intuitively achieved through (1) text prompts grounded in class semantics, (2) spatial embedding of context prompts to provide spatial coherence, and (3) spectral embedding of timestep information to model noise levels during diffusion. To enhance controllability and training efficiency, the framework incorporates contrastive triplet loss between text and class embeddings, alongside diffusion and adversarial losses. Initial low-resolution outputs 128 x 128 are super-resolved to 512 x 512, producing high-fidelity images and masks with strict adherence to conditions. We evaluate CoSimGen on metrics such as FID, KID, LPIPS, Class FID, Positive predicted value for image fidelity and semantic alignment of generated samples over 4 diverse datasets. CoSimGen achieves state-of-the-art performance across all datasets, achieving the lowest KID of 0.11 and LPIPS of 0.53 across datasets.
comment: 15 pages, 14 figure, 2 tables, project page at https://camma-public.github.io/endogen/cosimgen
☆ BiblioPage: A Dataset of Scanned Title Pages for Bibliographic Metadata Extraction ICDAR2025
Manual digitization of bibliographic metadata is time consuming and labor intensive, especially for historical and real-world archives with highly variable formatting across documents. Despite advances in machine learning, the absence of dedicated datasets for metadata extraction hinders automation. To address this gap, we introduce BiblioPage, a dataset of scanned title pages annotated with structured bibliographic metadata. The dataset consists of approximately 2,000 monograph title pages collected from 14 Czech libraries, spanning a wide range of publication periods, typographic styles, and layout structures. Each title page is annotated with 16 bibliographic attributes, including title, contributors, and publication metadata, along with precise positional information in the form of bounding boxes. To extract structured information from this dataset, we valuated object detection models such as YOLO and DETR combined with transformer-based OCR, achieving a maximum mAP of 52 and an F1 score of 59. Additionally, we assess the performance of various visual large language models, including LlamA 3.2-Vision and GPT-4o, with the best model reaching an F1 score of 67. BiblioPage serves as a real-world benchmark for bibliographic metadata extraction, contributing to document understanding, document question answering, and document information extraction. Dataset and evaluation scripts are availible at: https://github.com/DCGM/biblio-dataset
comment: Submitted to ICDAR2025 conference
☆ RGB-Th-Bench: A Dense benchmark for Visual-Thermal Understanding of Vision Language Models
We introduce RGB-Th-Bench, the first benchmark designed to evaluate the ability of Vision-Language Models (VLMs) to comprehend RGB-Thermal image pairs. While VLMs have demonstrated remarkable progress in visual reasoning and multimodal understanding, their evaluation has been predominantly limited to RGB-based benchmarks, leaving a critical gap in assessing their capabilities in infrared vision tasks. Existing visible-infrared datasets are either task-specific or lack high-quality annotations necessary for rigorous model evaluation. To address these limitations, RGB-Th-Bench provides a comprehensive evaluation framework covering 14 distinct skill dimensions, with a total of 1,600+ expert-annotated Yes/No questions. The benchmark employs two accuracy metrics: a standard question-level accuracy and a stricter skill-level accuracy, which evaluates model robustness across multiple questions within each skill dimension. This design ensures a thorough assessment of model performance, including resilience to adversarial and hallucinated responses. We conduct extensive evaluations on 19 state-of-the-art VLMs, revealing significant performance gaps in RGB-Thermal understanding. Our results show that even the strongest models struggle with thermal image comprehension, with performance heavily constrained by their RGB-based capabilities. Additionally, the lack of large-scale application-specific and expert-annotated thermal-caption-pair datasets in pre-training is an important reason of the observed performance gap. RGB-Th-Bench highlights the urgent need for further advancements in multimodal learning to bridge the gap between visible and thermal image understanding. The dataset is available through this link, and the evaluation code will also be made publicly available.
☆ OpenSDI: Spotting Diffusion-Generated Images in the Open World
This paper identifies OpenSDI, a challenge for spotting diffusion-generated images in open-world settings. In response to this challenge, we define a new benchmark, the OpenSDI dataset (OpenSDID), which stands out from existing datasets due to its diverse use of large vision-language models that simulate open-world diffusion-based manipulations. Another outstanding feature of OpenSDID is its inclusion of both detection and localization tasks for images manipulated globally and locally by diffusion models. To address the OpenSDI challenge, we propose a Synergizing Pretrained Models (SPM) scheme to build up a mixture of foundation models. This approach exploits a collaboration mechanism with multiple pretrained foundation models to enhance generalization in the OpenSDI context, moving beyond traditional training by synergizing multiple pretrained models through prompting and attending strategies. Building on this scheme, we introduce MaskCLIP, an SPM-based model that aligns Contrastive Language-Image Pre-Training (CLIP) with Masked Autoencoder (MAE). Extensive evaluations on OpenSDID show that MaskCLIP significantly outperforms current state-of-the-art methods for the OpenSDI challenge, achieving remarkable relative improvements of 14.23% in IoU (14.11% in F1) and 2.05% in accuracy (2.38% in F1) compared to the second-best model in localization and detection tasks, respectively. Our dataset and code are available at https://github.com/iamwangyabin/OpenSDI.
☆ Show or Tell? Effectively prompting Vision-Language Models for semantic segmentation
Large Vision-Language Models (VLMs) are increasingly being regarded as foundation models that can be instructed to solve diverse tasks by prompting, without task-specific training. We examine the seemingly obvious question: how to effectively prompt VLMs for semantic segmentation. To that end, we systematically evaluate the segmentation performance of several recent models guided by either text or visual prompts on the out-of-distribution MESS dataset collection. We introduce a scalable prompting scheme, few-shot prompted semantic segmentation, inspired by open-vocabulary segmentation and few-shot learning. It turns out that VLMs lag far behind specialist models trained for a specific segmentation task, by about 30% on average on the Intersection-over-Union metric. Moreover, we find that text prompts and visual prompts are complementary: each one of the two modes fails on many examples that the other one can solve. Our analysis suggests that being able to anticipate the most effective prompt modality can lead to a 11% improvement in performance. Motivated by our findings, we propose PromptMatcher, a remarkably simple training-free baseline that combines both text and visual prompts, achieving state-of-the-art results outperforming the best text-prompted VLM by 2.5%, and the top visual-prompted VLM by 3.5% on few-shot prompted semantic segmentation.
☆ Burst Image Super-Resolution with Mamba
Burst image super-resolution (BISR) aims to enhance the resolution of a keyframe by leveraging information from multiple low-resolution images captured in quick succession. In the deep learning era, BISR methods have evolved from fully convolutional networks to transformer-based architectures, which, despite their effectiveness, suffer from the quadratic complexity of self-attention. We see Mamba as the next natural step in the evolution of this field, offering a comparable global receptive field and selective information routing with only linear time complexity. In this work, we introduce BurstMamba, a Mamba-based architecture for BISR. Our approach decouples the task into two specialized branches: a spatial module for keyframe super-resolution and a temporal module for subpixel prior extraction, striking a balance between computational efficiency and burst information integration. To further enhance burst processing with Mamba, we propose two novel strategies: (i) optical flow-based serialization, which aligns burst sequences only during state updates to preserve subpixel details, and (ii) a wavelet-based reparameterization of the state-space update rules, prioritizing high-frequency features for improved burst-to-keyframe information passing. Our framework achieves SOTA performance on public benchmarks of SyntheticSR, RealBSR-RGB, and RealBSR-RAW.
DynOPETs: A Versatile Benchmark for Dynamic Object Pose Estimation and Tracking in Moving Camera Scenarios
In the realm of object pose estimation, scenarios involving both dynamic objects and moving cameras are prevalent. However, the scarcity of corresponding real-world datasets significantly hinders the development and evaluation of robust pose estimation models. This is largely attributed to the inherent challenges in accurately annotating object poses in dynamic scenes captured by moving cameras. To bridge this gap, this paper presents a novel dataset DynOPETs and a dedicated data acquisition and annotation pipeline tailored for object pose estimation and tracking in such unconstrained environments. Our efficient annotation method innovatively integrates pose estimation and pose tracking techniques to generate pseudo-labels, which are subsequently refined through pose graph optimization. The resulting dataset offers accurate pose annotations for dynamic objects observed from moving cameras. To validate the effectiveness and value of our dataset, we perform comprehensive evaluations using 18 state-of-the-art methods, demonstrating its potential to accelerate research in this challenging domain. The dataset will be made publicly available to facilitate further exploration and advancement in the field.
☆ Exploring Hallucination of Large Multimodal Models in Video Understanding: Benchmark, Analysis and Mitigation
The hallucination of large multimodal models (LMMs), providing responses that appear correct but are actually incorrect, limits their reliability and applicability. This paper aims to study the hallucination problem of LMMs in video modality, which is dynamic and more challenging compared to static modalities like images and text. From this motivation, we first present a comprehensive benchmark termed HAVEN for evaluating hallucinations of LMMs in video understanding tasks. It is built upon three dimensions, i.e., hallucination causes, hallucination aspects, and question formats, resulting in 6K questions. Then, we quantitatively study 7 influential factors on hallucinations, e.g., duration time of videos, model sizes, and model reasoning, via experiments of 16 LMMs on the presented benchmark. In addition, inspired by recent thinking models like OpenAI o1, we propose a video-thinking model to mitigate the hallucinations of LMMs via supervised reasoning fine-tuning (SRFT) and direct preference optimization (TDPO)-- where SRFT enhances reasoning capabilities while TDPO reduces hallucinations in the thinking process. Extensive experiments and analyses demonstrate the effectiveness. Remarkably, it improves the baseline by 7.65% in accuracy on hallucination evaluation and reduces the bias score by 4.5%. The code and data are public at https://github.com/Hongcheng-Gao/HAVEN.
☆ Single Shot AI-assisted quantification of KI-67 proliferation index in breast cancer
Reliable quantification of Ki-67, a key proliferation marker in breast cancer, is essential for molecular subtyping and informed treatment planning. Conventional approaches, including visual estimation and manual counting, suffer from interobserver variability and limited reproducibility. This study introduces an AI-assisted method using the YOLOv8 object detection framework for automated Ki-67 scoring. High-resolution digital images (40x magnification) of immunohistochemically stained tumor sections were captured from Ki-67 hotspot regions and manually annotated by a domain expert to distinguish Ki-67-positive and negative tumor cells. The dataset was augmented and divided into training (80%), validation (10%), and testing (10%) subsets. Among the YOLOv8 variants tested, the Medium model achieved the highest performance, with a mean Average Precision at 50% Intersection over Union (mAP50) exceeding 85% for Ki-67-positive cells. The proposed approach offers an efficient, scalable, and objective alternative to conventional scoring methods, supporting greater consistency in Ki-67 evaluation. Future directions include developing user-friendly clinical interfaces and expanding to multi-institutional datasets to enhance generalizability and facilitate broader adoption in diagnostic practice.
☆ GIViC: Generative Implicit Video Compression
While video compression based on implicit neural representations (INRs) has recently demonstrated great potential, existing INR-based video codecs still cannot achieve state-of-the-art (SOTA) performance compared to their conventional or autoencoder-based counterparts given the same coding configuration. In this context, we propose a Generative Implicit Video Compression framework, GIViC, aiming at advancing the performance limits of this type of coding methods. GIViC is inspired by the characteristics that INRs share with large language and diffusion models in exploiting long-term dependencies. Through the newly designed implicit diffusion process, GIViC performs diffusive sampling across coarse-to-fine spatiotemporal decompositions, gradually progressing from coarser-grained full-sequence diffusion to finer-grained per-token diffusion. A novel Hierarchical Gated Linear Attention-based transformer (HGLA), is also integrated into the framework, which dual-factorizes global dependency modeling along scale and sequential axes. The proposed GIViC model has been benchmarked against SOTA conventional and neural codecs using a Random Access (RA) configuration (YUV 4:2:0, GOPSize=32), and yields BD-rate savings of 15.94%, 22.46% and 8.52% over VVC VTM, DCVC-FM and NVRC, respectively. As far as we are aware, GIViC is the first INR-based video codec that outperforms VTM based on the RA coding configuration. The source code will be made available.
☆ SACB-Net: Spatial-awareness Convolutions for Medical Image Registration CVPR 2025
Deep learning-based image registration methods have shown state-of-the-art performance and rapid inference speeds. Despite these advances, many existing approaches fall short in capturing spatially varying information in non-local regions of feature maps due to the reliance on spatially-shared convolution kernels. This limitation leads to suboptimal estimation of deformation fields. In this paper, we propose a 3D Spatial-Awareness Convolution Block (SACB) to enhance the spatial information within feature representations. Our SACB estimates the spatial clusters within feature maps by leveraging feature similarity and subsequently parameterizes the adaptive convolution kernels across diverse regions. This adaptive mechanism generates the convolution kernels (weights and biases) tailored to spatial variations, thereby enabling the network to effectively capture spatially varying information. Building on SACB, we introduce a pyramid flow estimator (named SACB-Net) that integrates SACBs to facilitate multi-scale flow composition, particularly addressing large deformations. Experimental results on the brain IXI and LPBA datasets as well as Abdomen CT datasets demonstrate the effectiveness of SACB and the superiority of SACB-Net over the state-of-the-art learning-based registration methods. The code is available at https://github.com/x-xc/SACB_Net .
comment: CVPR 2025
☆ Prompt-Guided Dual-Path UNet with Mamba for Medical Image Segmentation
Convolutional neural networks (CNNs) and transformers are widely employed in constructing UNet architectures for medical image segmentation tasks. However, CNNs struggle to model long-range dependencies, while transformers suffer from quadratic computational complexity. Recently, Mamba, a type of State Space Models, has gained attention for its exceptional ability to model long-range interactions while maintaining linear computational complexity. Despite the emergence of several Mamba-based methods, they still present the following limitations: first, their network designs generally lack perceptual capabilities for the original input data; second, they primarily focus on capturing global information, while often neglecting local details. To address these challenges, we propose a prompt-guided CNN-Mamba dual-path UNet, termed PGM-UNet, for medical image segmentation. Specifically, we introduce a prompt-guided residual Mamba module that adaptively extracts dynamic visual prompts from the original input data, effectively guiding Mamba in capturing global information. Additionally, we design a local-global information fusion network, comprising a local information extraction module, a prompt-guided residual Mamba module, and a multi-focus attention fusion module, which effectively integrates local and global information. Furthermore, inspired by Kolmogorov-Arnold Networks (KANs), we develop a multi-scale information extraction module to capture richer contextual information without altering the resolution. We conduct extensive experiments on the ISIC-2017, ISIC-2018, DIAS, and DRIVE. The results demonstrate that the proposed method significantly outperforms state-of-the-art approaches in multiple medical image segmentation tasks.
☆ Video Anomaly Detection with Contours - A Study
In Pose-based Video Anomaly Detection prior art is rooted on the assumption that abnormal events can be mostly regarded as a result of uncommon human behavior. Opposed to utilizing skeleton representations of humans, however, we investigate the potential of learning recurrent motion patterns of normal human behavior using 2D contours. Keeping all advantages of pose-based methods, such as increased object anonymization, the shift from human skeletons to contours is hypothesized to leave the opportunity to cover more object categories open for future research. We propose formulating the problem as a regression and a classification task, and additionally explore two distinct data representation techniques for contours. To further reduce the computational complexity of Pose-based Video Anomaly Detection solutions, all methods in this study are based on shallow Neural Networks from the field of Deep Learning, and evaluated on the three most prominent benchmark datasets within Video Anomaly Detection and their human-related counterparts, totaling six datasets. Our results indicate that this novel perspective on Pose-based Video Anomaly Detection marks a promising direction for future research.
☆ SINR: Sparsity Driven Compressed Implicit Neural Representations
Implicit Neural Representations (INRs) are increasingly recognized as a versatile data modality for representing discretized signals, offering benefits such as infinite query resolution and reduced storage requirements. Existing signal compression approaches for INRs typically employ one of two strategies: 1. direct quantization with entropy coding of the trained INR; 2. deriving a latent code on top of the INR through a learnable transformation. Thus, their performance is heavily dependent on the quantization and entropy coding schemes employed. In this paper, we introduce SINR, an innovative compression algorithm that leverages the patterns in the vector spaces formed by weights of INRs. We compress these vector spaces using a high-dimensional sparse code within a dictionary. Further analysis reveals that the atoms of the dictionary used to generate the sparse code do not need to be learned or transmitted to successfully recover the INR weights. We demonstrate that the proposed approach can be integrated with any existing INR-based signal compression technique. Our results indicate that SINR achieves substantial reductions in storage requirements for INRs across various configurations, outperforming conventional INR-based compression baselines. Furthermore, SINR maintains high-quality decoding across diverse data modalities, including images, occupancy fields, and Neural Radiance Fields.
☆ Improved tissue sodium concentration quantification in breast cancer by reducing partial volume effects: a preliminary study
Introduction: In sodium (23Na) MRI, partial volume effects (PVE) are one of the most common causes of errors in the quantification of tissue sodium concentration (TSC) in vivo. Advanced image reconstruction algorithms, such as compressed sensing (CS), have been shown to potentially reduce PVE. Therefore, we investigated the feasibility of CS-based methods for image quality and TSC quantification accuracy improvement in patients with breast cancer (BC). Subjects and Methods: Three healthy participants and 12 female participants with BC were examined on a 7T MRI scanner in this study. We reconstructed 23Na-MRI images using the weighted total variation (wTV) and directional total variation (dTV), anatomically guided total variation (AG-TV), and adaptive combine (ADC) reconstruction and performed image quality assessment. We evaluated agreement in tumor volumes delineated on sodium data using the Dice score and performed TSC quantification for different image reconstruction approaches. Results: All methods provided sodium images of the breast with good quality. The mean Dice scores for wTV, dTV, and AG-TV were 65%, 72%, and 75%, respectively. In the breast tumors, average TSC values were 83.0, 72.0, 80.0, and 84.0 mmol/L, respectively. There was a significant difference between dTV and wTV (p<0.001), as well as between dTV and AG-TV (p<0.001) and dTV and ADC algorithm (p<0.001). Conclusion: The results of this study showed that there are differences in tumor appearance and TSC estimations that might be depending on the type of image reconstruction and parameters used, most likely due to differences in their robustness in reducing PVE.
☆ Dance Like a Chicken: Low-Rank Stylization for Human Motion Diffusion MDM
Text-to-motion generative models span a wide range of 3D human actions but struggle with nuanced stylistic attributes such as a "Chicken" style. Due to the scarcity of style-specific data, existing approaches pull the generative prior towards a reference style, which often results in out-of-distribution low quality generations. In this work, we introduce LoRA-MDM, a lightweight framework for motion stylization that generalizes to complex actions while maintaining editability. Our key insight is that adapting the generative prior to include the style, while preserving its overall distribution, is more effective than modifying each individual motion during generation. Building on this idea, LoRA-MDM learns to adapt the prior to include the reference style using only a few samples. The style can then be used in the context of different textual prompts for generation. The low-rank adaptation shifts the motion manifold in a semantically meaningful way, enabling realistic style infusion even for actions not present in the reference samples. Moreover, preserving the distribution structure enables advanced operations such as style blending and motion editing. We compare LoRA-MDM to state-of-the-art stylized motion generation methods and demonstrate a favorable balance between text fidelity and style consistency.
comment: Project page at https://haimsaw.github.io/LoRA-MDM/
☆ Practical Fine-Tuning of Autoregressive Models on Limited Handwritten Texts ICDAR2025
A common use case for OCR applications involves users uploading documents and progressively correcting automatic recognition to obtain the final transcript. This correction phase presents an opportunity for progressive adaptation of the OCR model, making it crucial to adapt early, while ensuring stability and reliability. We demonstrate that state-of-the-art transformer-based models can effectively support this adaptation, gradually reducing the annotator's workload. Our results show that fine-tuning can reliably start with just 16 lines, yielding a 10% relative improvement in CER, and scale up to 40% with 256 lines. We further investigate the impact of model components, clarifying the roles of the encoder and decoder in the fine-tuning process. To guide adaptation, we propose reliable stopping criteria, considering both direct approaches and global trend analysis. Additionally, we show that OCR models can be leveraged to cut annotation costs by half through confidence-based selection of informative lines, achieving the same performance with fewer annotations.
comment: Submitted to ICDAR2025 conference
☆ Tiling artifacts and trade-offs of feature normalization in the segmentation of large biological images
Segmentation of very large images is a common problem in microscopy, medical imaging or remote sensing. The problem is usually addressed by sliding window inference, which can theoretically lead to seamlessly stitched predictions. However, in practice many of the popular pipelines still suffer from tiling artifacts. We investigate the root cause of these issues and show that they stem from the normalization layers within the neural networks. We propose indicators to detect normalization issues and further explore the trade-offs between artifact-free and high-quality predictions, using three diverse microscopy datasets as examples. Finally, we propose to use BatchRenorm as the most suitable normalization strategy, which effectively removes tiling artifacts and enhances transfer performance, thereby improving the reusability of trained networks for new datasets.
☆ Scene-agnostic Pose Regression for Visual Localization CVPR 2025
Absolute Pose Regression (APR) predicts 6D camera poses but lacks the adaptability to unknown environments without retraining, while Relative Pose Regression (RPR) generalizes better yet requires a large image retrieval database. Visual Odometry (VO) generalizes well in unseen environments but suffers from accumulated error in open trajectories. To address this dilemma, we introduce a new task, Scene-agnostic Pose Regression (SPR), which can achieve accurate pose regression in a flexible way while eliminating the need for retraining or databases. To benchmark SPR, we created a large-scale dataset, 360SPR, with over 200K photorealistic panoramas, 3.6M pinhole images and camera poses in 270 scenes at three different sensor heights. Furthermore, a SPR-Mamba model is initially proposed to address SPR in a dual-branch manner. Extensive experiments and studies demonstrate the effectiveness of our SPR paradigm, dataset, and model. In the unknown scenes of both 360SPR and 360Loc datasets, our method consistently outperforms APR, RPR and VO. The dataset and code are available at https://junweizheng93.github.io/publications/SPR/SPR.html.
comment: Accepted by CVPR 2025. Project page: https://junweizheng93.github.io/publications/SPR/SPR.html
☆ RoboFlamingo-Plus: Fusion of Depth and RGB Perception with Vision-Language Models for Enhanced Robotic Manipulation
As robotic technologies advancing towards more complex multimodal interactions and manipulation tasks, the integration of advanced Vision-Language Models (VLMs) has become a key driver in the field. Despite progress with current methods, challenges persist in fusing depth and RGB information within 3D environments and executing tasks guided by linguistic instructions. In response to these challenges, we have enhanced the existing RoboFlamingo framework by introducing RoboFlamingo-Plus, which incorporates depth data into VLMs to significantly improve robotic manipulation performance. Our research achieves a nuanced fusion of RGB and depth information by integrating a pre-trained Vision Transformer (ViT) with a resampling technique, closely aligning this combined data with linguistic cues for superior multimodal understanding. The novelty of RoboFlamingo-Plus lies in its adaptation of inputs for depth data processing, leveraging a pre-trained resampler for depth feature extraction, and employing cross-attention mechanisms for optimal feature integration. These improvements allow RoboFlamingo-Plus to not only deeply understand 3D environments but also easily perform complex, language-guided tasks in challenging settings. Experimental results show that RoboFlamingo-Plus boosts robotic manipulation by 10-20% over current methods, marking a significant advancement. Codes and model weights are public at RoboFlamingo-Plus.
☆ Improved Alignment of Modalities in Large Vision Language Models
Recent advancements in vision-language models have achieved remarkable results in making language models understand vision inputs. However, a unified approach to align these models across diverse tasks such as image captioning and visual question answering remains a challenge. Existing methods either require very big language models or very big datasets which is not efficient in utilizing existing models. This paper addresses this gap and devises a training strategy of auto-regressive vision-language models, to unify vision-language tasks like image-captioning and visual question answering. We propose four training stages for aligning the vision model with the language model, in other words, the language model is given an ability to process visual inputs. We also devise different attention masks for training transformer-based language models that improve the quality of visual features. Further, we introduce some findings, 1) the attention mask should not be applied on visual inputs, 2) the Language model converges faster on AI- generated data, 3) More work should be done in the alignment stage during the pre-training of the model, 4) the model can easily adapt to any downstream tasks like visual question answering on healthcare datasets like PathVQA. After training the model for one epoch for all the stages, it outperforms large models like VILA-13 billion models on common benchmarks like CIDEr scores on COCO and Flickr30k datasets and achieves very close scores to GIT-2 on the same dataset despite being a much smaller model trained on a much smaller dataset. All of the training is done using best practices available like multi- GPU parallel training, lower-precision training with 16-bit float numbers, faster attention (SDPA), and gradient accumulation, and completed the training within 12 hours.
☆ Single-Step Latent Consistency Model for Remote Sensing Image Super-Resolution
Recent advancements in diffusion models (DMs) have greatly advanced remote sensing image super-resolution (RSISR). However, their iterative sampling processes often result in slow inference speeds, limiting their application in real-time tasks. To address this challenge, we propose the latent consistency model for super-resolution (LCMSR), a novel single-step diffusion approach designed to enhance both efficiency and visual quality in RSISR tasks. Our proposal is structured into two distinct stages. In the first stage, we pretrain a residual autoencoder to encode the differential information between high-resolution (HR) and low-resolution (LR) images, transitioning the diffusion process into a latent space to reduce computational costs. The second stage focuses on consistency diffusion learning, which aims to learn the distribution of residual encodings in the latent space, conditioned on LR images. The consistency constraint enforces that predictions at any two timesteps along the reverse diffusion trajectory remain consistent, enabling direct mapping from noise to data. As a result, the proposed LCMSR reduces the iterative steps of traditional diffusion models from 50-1000 or more to just a single step, significantly improving efficiency. Experimental results demonstrate that LCMSR effectively balances efficiency and performance, achieving inference times comparable to non-diffusion models while maintaining high-quality output.
☆ Adaptive Weighted Parameter Fusion with CLIP for Class-Incremental Learning ICME2025
Class-incremental Learning (CIL) enables the model to incrementally absorb knowledge from new classes and build a generic classifier across all previously encountered classes. When the model optimizes with new classes, the knowledge of previous classes is inevitably erased, leading to catastrophic forgetting. Addressing this challenge requires making a trade-off between retaining old knowledge and accommodating new information. However, this balancing process often requires sacrificing some information, which can lead to a partial loss in the model's ability to discriminate between classes. To tackle this issue, we design the adaptive weighted parameter fusion with Contrastive Language-Image Pre-training (CLIP), which not only takes into account the variability of the data distribution of different tasks, but also retains all the effective information of the parameter matrix to the greatest extent. In addition, we introduce a balance factor that can balance the data distribution alignment and distinguishability of adjacent tasks. Experimental results on several traditional benchmarks validate the superiority of the proposed method.
comment: Accepted by ICME2025
☆ Pose-Based Fall Detection System: Efficient Monitoring on Standard CPUs
Falls among elderly residents in assisted living homes pose significant health risks, often leading to injuries and a decreased quality of life. Current fall detection solutions typically rely on sensor-based systems that require dedicated hardware, or on video-based models that demand high computational resources and GPUs for real-time processing. In contrast, this paper presents a robust fall detection system that does not require any additional sensors or high-powered hardware. The system uses pose estimation techniques, combined with threshold-based analysis and a voting mechanism, to effectively distinguish between fall and non-fall activities. For pose detection, we leverage MediaPipe, a lightweight and efficient framework that enables real-time processing on standard CPUs with minimal computational overhead. By analyzing motion, body position, and key pose points, the system processes pose features with a 20-frame buffer, minimizing false positives and maintaining high accuracy even in real-world settings. This unobtrusive, resource-efficient approach provides a practical solution for enhancing resident safety in old age homes, without the need for expensive sensors or high-end computational resources.
comment: 4 Pages, 2 figures, 2 code block, 1 flow chart
☆ TFIC: End-to-End Text-Focused Image Compression for Coding for Machines
Traditional image compression methods aim to faithfully reconstruct images for human perception. In contrast, Coding for Machines focuses on compressing images to preserve information relevant to a specific machine task. In this paper, we present an image compression system designed to retain text-specific features for subsequent Optical Character Recognition (OCR). Our encoding process requires half the time needed by the OCR module, making it especially suitable for devices with limited computational capacity. In scenarios where on-device OCR is computationally prohibitive, images are compressed and later processed to recover the text content. Experimental results demonstrate that our method achieves significant improvements in text extraction accuracy at low bitrates, even improving over the accuracy of OCR performed on uncompressed images, thus acting as a local pre-processing step.
☆ Exploring Disentangled and Controllable Human Image Synthesis: From End-to-End to Stage-by-Stage
Achieving fine-grained controllability in human image synthesis is a long-standing challenge in computer vision. Existing methods primarily focus on either facial synthesis or near-frontal body generation, with limited ability to simultaneously control key factors such as viewpoint, pose, clothing, and identity in a disentangled manner. In this paper, we introduce a new disentangled and controllable human synthesis task, which explicitly separates and manipulates these four factors within a unified framework. We first develop an end-to-end generative model trained on MVHumanNet for factor disentanglement. However, the domain gap between MVHumanNet and in-the-wild data produce unsatisfacotry results, motivating the exploration of virtual try-on (VTON) dataset as a potential solution. Through experiments, we observe that simply incorporating the VTON dataset as additional data to train the end-to-end model degrades performance, primarily due to the inconsistency in data forms between the two datasets, which disrupts the disentanglement process. To better leverage both datasets, we propose a stage-by-stage framework that decomposes human image generation into three sequential steps: clothed A-pose generation, back-view synthesis, and pose and view control. This structured pipeline enables better dataset utilization at different stages, significantly improving controllability and generalization, especially for in-the-wild scenarios. Extensive experiments demonstrate that our stage-by-stage approach outperforms end-to-end models in both visual fidelity and disentanglement quality, offering a scalable solution for real-world tasks. Additional demos are available on the project page: https://taited.github.io/discohuman-project/.
☆ GenHancer: Imperfect Generative Models are Secretly Strong Vision-Centric Enhancers
The synergy between generative and discriminative models receives growing attention. While discriminative Contrastive Language-Image Pre-Training (CLIP) excels in high-level semantics, it struggles with perceiving fine-grained visual details. Generally, to enhance representations, generative models take CLIP's visual features as conditions for reconstruction. However, the underlying principle remains underexplored. In this work, we empirically found that visually perfect generations are not always optimal for representation enhancement. The essence lies in effectively extracting fine-grained knowledge from generative models while mitigating irrelevant information. To explore critical factors, we delve into three aspects: (1) Conditioning mechanisms: We found that even a small number of local tokens can drastically reduce the difficulty of reconstruction, leading to collapsed training. We thus conclude that utilizing only global visual tokens as conditions is the most effective strategy. (2) Denoising configurations: We observed that end-to-end training introduces extraneous information. To address this, we propose a two-stage training strategy to prioritize learning useful visual knowledge. Additionally, we demonstrate that lightweight denoisers can yield remarkable improvements. (3) Generation paradigms: We explore both continuous and discrete denoisers with desirable outcomes, validating the versatility of our method. Through our in-depth explorations, we have finally arrived at an effective method, namely GenHancer, which consistently outperforms prior arts on the MMVP-VLM benchmark, e.g., 6.0% on OpenAICLIP. The enhanced CLIP can be further plugged into multimodal large language models for better vision-centric performance. All the models and codes are made publicly available.
comment: Project released at: https://mashijie1028.github.io/GenHancer/
☆ TeLL Me what you cant see
During criminal investigations, images of persons of interest directly influence the success of identification procedures. However, law enforcement agencies often face challenges related to the scarcity of high-quality images or their obsolescence, which can affect the accuracy and success of people searching processes. This paper introduces a novel forensic mugshot augmentation framework aimed at addressing these limitations. Our approach enhances the identification probability of individuals by generating additional, high-quality images through customizable data augmentation techniques, while maintaining the biometric integrity and consistency of the original data. Several experimental results show that our method significantly improves identification accuracy and robustness across various forensic scenarios, demonstrating its effectiveness as a trustworthy tool law enforcement applications. Index Terms: Digital Forensics, Person re-identification, Feature extraction, Data augmentation, Visual-Language models.
comment: 16 pages, 58 images
☆ A-MESS: Anchor based Multimodal Embedding with Semantic Synchronization for Multimodal Intent Recognition ICME2025
In the domain of multimodal intent recognition (MIR), the objective is to recognize human intent by integrating a variety of modalities, such as language text, body gestures, and tones. However, existing approaches face difficulties adequately capturing the intrinsic connections between the modalities and overlooking the corresponding semantic representations of intent. To address these limitations, we present the Anchor-based Mul- timodal Embedding with Semantic Synchronization (A-MESS) framework. We first design an Anchor-based Multimodal Embed- ding (A-ME) module that employs an anchor-based embedding fusion mechanism to integrate multimodal inputs. Furthermore, we develop a Semantic Synchronization (SS) strategy with the Triplet Contrastive Learning pipeline, which optimizes the pro- cess by synchronizing multimodal representation with label de- scriptions produced by the large language model. Comprehensive experiments indicate that our A-MESS achieves state-of-the-art and provides substantial insight into multimodal representation and downstream tasks.
comment: Accept by ICME2025
♻ ☆ Aether: Geometric-Aware Unified World Modeling
The integration of geometric reconstruction and generative modeling remains a critical challenge in developing AI systems capable of human-like spatial reasoning. This paper proposes Aether, a unified framework that enables geometry-aware reasoning in world models by jointly optimizing three core capabilities: (1) 4D dynamic reconstruction, (2) action-conditioned video prediction, and (3) goal-conditioned visual planning. Through task-interleaved feature learning, Aether achieves synergistic knowledge sharing across reconstruction, prediction, and planning objectives. Building upon video generation models, our framework demonstrates unprecedented synthetic-to-real generalization despite never observing real-world data during training. Furthermore, our approach achieves zero-shot generalization in both action following and reconstruction tasks, thanks to its intrinsic geometric modeling. Remarkably, even without real-world data, its reconstruction performance is comparable with or even better than that of domain-specific models. Additionally, Aether employs camera trajectories as geometry-informed action spaces, enabling effective action-conditioned prediction and visual planning. We hope our work inspires the community to explore new frontiers in physically-reasonable world modeling and its applications.
comment: Project Page: https://aether-world.github.io/
♻ ☆ HunyuanPortrait: Implicit Condition Control for Enhanced Portrait Animation CVPR 2025
We introduce HunyuanPortrait, a diffusion-based condition control method that employs implicit representations for highly controllable and lifelike portrait animation. Given a single portrait image as an appearance reference and video clips as driving templates, HunyuanPortrait can animate the character in the reference image by the facial expression and head pose of the driving videos. In our framework, we utilize pre-trained encoders to achieve the decoupling of portrait motion information and identity in videos. To do so, implicit representation is adopted to encode motion information and is employed as control signals in the animation phase. By leveraging the power of stable video diffusion as the main building block, we carefully design adapter layers to inject control signals into the denoising unet through attention mechanisms. These bring spatial richness of details and temporal consistency. HunyuanPortrait also exhibits strong generalization performance, which can effectively disentangle appearance and motion under different image styles. Our framework outperforms existing methods, demonstrating superior temporal consistency and controllability. Our project is available at https://kkakkkka.github.io/HunyuanPortrait.
comment: Accepted to CVPR 2025
♻ ☆ MC-LLaVA: Multi-Concept Personalized Vision-Language Model
Current vision-language models (VLMs) show exceptional abilities across diverse tasks, such as visual question answering. To enhance user experience, recent studies investigate VLM personalization to understand user-provided concepts. However, they mainly focus on single-concept personalization, neglecting the existence and interplay of multiple concepts, which limits real-world applicability. This paper proposes the first multi-concept personalization paradigm, MC-LLaVA. Specifically, MC-LLaVA employs a multi-concept instruction tuning strategy, effectively integrating multiple concepts in a single training step. To reduce the costs related to joint training, we propose a personalized textual prompt that uses visual token information to initialize concept tokens. Additionally, we introduce a personalized visual prompt during inference, aggregating location confidence maps for enhanced recognition and grounding capabilities. To advance multi-concept personalization research, we further contribute a high-quality instruction tuning dataset. We carefully collect images with multiple characters and objects from movies and manually generate question-answer samples for multi-concept scenarios, featuring superior diversity. Comprehensive qualitative and quantitative experiments demonstrate that MC-LLaVA can achieve impressive multi-concept personalized responses, paving the way for VLMs to become better user-specific assistants. The code and dataset will be publicly available at https://github.com/arctanxarc/MC-LLaVA}.
comment: I sincerely apologize for any inconvenience caused. We actually uploaded this paper to arXiv in November 2024, as arXiv:2411.11706. During this update, we did not consider the replacement operation of arXiv, which led to duplicate submissions. We have made modifications at the original address arXiv:2411.11706
♻ ☆ Learning to segment anatomy and lesions from disparately labeled sources in brain MRI
Segmenting healthy tissue structures alongside lesions in brain Magnetic Resonance Images (MRI) remains a challenge for today's algorithms due to lesion-caused disruption of the anatomy and lack of jointly labeled training datasets, where both healthy tissues and lesions are labeled on the same images. In this paper, we propose a method that is robust to lesion-caused disruptions and can be trained from disparately labeled training sets, i.e., without requiring jointly labeled samples, to automatically segment both. In contrast to prior work, we decouple healthy tissue and lesion segmentation in two paths to leverage multi-sequence acquisitions and merge information with an attention mechanism. During inference, an image-specific adaptation reduces adverse influences of lesion regions on healthy tissue predictions. During training, the adaptation is taken into account through meta-learning and co-training is used to learn from disparately labeled training images. Our model shows an improved performance on several anatomical structures and lesions on a publicly available brain glioblastoma dataset compared to the state-of-the-art segmentation methods.
♻ ☆ Lightweight Embedded FPGA Deployment of Learned Image Compression with Knowledge Distillation and Hybrid Quantization
Learnable Image Compression (LIC) has shown the potential to outperform standardized video codecs in RD efficiency, prompting the research for hardware-friendly implementations. Most existing LIC hardware implementations prioritize latency to RD-efficiency and through an extensive exploration of the hardware design space. We present a novel design paradigm where the burden of tuning the design for a specific hardware platform is shifted towards model dimensioning and without compromising on RD-efficiency. First, we design a framework for distilling a leaner student LIC model from a reference teacher: by tuning a single model hyperparameters, we can meet the constraints of different hardware platforms without a complex hardware design exploration. Second, we propose a hardware-friendly implementation of the Generalized Divisive Normalization - GDN activation that preserves RD efficiency even post parameter quantization. Third, we design a pipelined FPGA configuration which takes full advantage of available FPGA resources by leveraging parallel processing and optimizing resource allocation. Our experiments with a state of the art LIC model show that we outperform all existing FPGA implementations while performing very close to the original model.
comment: 1. Submitted to IEEE Transactions on Circuits and Systems for Video Technology in March 2025. 2. Corrected numerous mistakes from previous versions in results, citations and metrics numbers in figures
♻ ☆ Frequency Dynamic Convolution for Dense Image Prediction CVPR 2025
While Dynamic Convolution (DY-Conv) has shown promising performance by enabling adaptive weight selection through multiple parallel weights combined with an attention mechanism, the frequency response of these weights tends to exhibit high similarity, resulting in high parameter costs but limited adaptability. In this work, we introduce Frequency Dynamic Convolution (FDConv), a novel approach that mitigates these limitations by learning a fixed parameter budget in the Fourier domain. FDConv divides this budget into frequency-based groups with disjoint Fourier indices, enabling the construction of frequency-diverse weights without increasing the parameter cost. To further enhance adaptability, we propose Kernel Spatial Modulation (KSM) and Frequency Band Modulation (FBM). KSM dynamically adjusts the frequency response of each filter at the spatial level, while FBM decomposes weights into distinct frequency bands in the frequency domain and modulates them dynamically based on local content. Extensive experiments on object detection, segmentation, and classification validate the effectiveness of FDConv. We demonstrate that when applied to ResNet-50, FDConv achieves superior performance with a modest increase of +3.6M parameters, outperforming previous methods that require substantial increases in parameter budgets (e.g., CondConv +90M, KW +76.5M). Moreover, FDConv seamlessly integrates into a variety of architectures, including ConvNeXt, Swin-Transformer, offering a flexible and efficient solution for modern vision tasks. The code is made publicly available at https://github.com/Linwei-Chen/FDConv.
comment: Accepted by CVPR 2025
♻ ☆ Re-HOLD: Video Hand Object Interaction Reenactment via adaptive Layout-instructed Diffusion Model CVPR 2025
Current digital human studies focusing on lip-syncing and body movement are no longer sufficient to meet the growing industrial demand, while human video generation techniques that support interacting with real-world environments (e.g., objects) have not been well investigated. Despite human hand synthesis already being an intricate problem, generating objects in contact with hands and their interactions presents an even more challenging task, especially when the objects exhibit obvious variations in size and shape. To tackle these issues, we present a novel video Reenactment framework focusing on Human-Object Interaction (HOI) via an adaptive Layout-instructed Diffusion model (Re-HOLD). Our key insight is to employ specialized layout representation for hands and objects, respectively. Such representations enable effective disentanglement of hand modeling and object adaptation to diverse motion sequences. To further improve the generation quality of HOI, we design an interactive textural enhancement module for both hands and objects by introducing two independent memory banks. We also propose a layout adjustment strategy for the cross-object reenactment scenario to adaptively adjust unreasonable layouts caused by diverse object sizes during inference. Comprehensive qualitative and quantitative evaluations demonstrate that our proposed framework significantly outperforms existing methods. Project page: https://fyycs.github.io/Re-HOLD.
comment: Accepted to CVPR 2025
♻ ☆ IncEventGS: Pose-Free Gaussian Splatting from a Single Event Camera
Implicit neural representation and explicit 3D Gaussian Splatting (3D-GS) for novel view synthesis have achieved remarkable progress with frame-based camera (e.g. RGB and RGB-D cameras) recently. Compared to frame-based camera, a novel type of bio-inspired visual sensor, i.e. event camera, has demonstrated advantages in high temporal resolution, high dynamic range, low power consumption and low latency. Due to its unique asynchronous and irregular data capturing process, limited work has been proposed to apply neural representation or 3D Gaussian splatting for an event camera. In this work, we present IncEventGS, an incremental 3D Gaussian Splatting reconstruction algorithm with a single event camera. To recover the 3D scene representation incrementally, we exploit the tracking and mapping paradigm of conventional SLAM pipelines for IncEventGS. Given the incoming event stream, the tracker firstly estimates an initial camera motion based on prior reconstructed 3D-GS scene representation. The mapper then jointly refines both the 3D scene representation and camera motion based on the previously estimated motion trajectory from the tracker. The experimental results demonstrate that IncEventGS delivers superior performance compared to prior NeRF-based methods and other related baselines, even we do not have the ground-truth camera poses. Furthermore, our method can also deliver better performance compared to state-of-the-art event visual odometry methods in terms of camera motion estimation. Code is publicly available at: https://github.com/wu-cvgl/IncEventGS.
comment: Code Page: https://github.com/wu-cvgl/IncEventGS
♻ ☆ Any6D: Model-free 6D Pose Estimation of Novel Objects CVPR 2025
We introduce Any6D, a model-free framework for 6D object pose estimation that requires only a single RGB-D anchor image to estimate both the 6D pose and size of unknown objects in novel scenes. Unlike existing methods that rely on textured 3D models or multiple viewpoints, Any6D leverages a joint object alignment process to enhance 2D-3D alignment and metric scale estimation for improved pose accuracy. Our approach integrates a render-and-compare strategy to generate and refine pose hypotheses, enabling robust performance in scenarios with occlusions, non-overlapping views, diverse lighting conditions, and large cross-environment variations. We evaluate our method on five challenging datasets: REAL275, Toyota-Light, HO3D, YCBINEOAT, and LM-O, demonstrating its effectiveness in significantly outperforming state-of-the-art methods for novel object pose estimation. Project page: https://taeyeop.com/any6d
comment: CVPR 2025, Project Page: https://taeyeop.com/any6d
♻ ☆ Feature Calibration enhanced Parameter Synthesis for CLIP-based Class-incremental Learning
Class-incremental Learning (CIL) enables models to continuously learn new class knowledge while memorizing previous classes, facilitating their adaptation and evolution in dynamic environments. Traditional CIL methods are mainly based on visual features, which limits their ability to handle complex scenarios. In contrast, Vision-Language Models (VLMs) show promising potential to promote CIL by integrating pretrained knowledge with textual features. However, previous methods make it difficult to overcome catastrophic forgetting while preserving the generalization capabilities of VLMs. To tackle these challenges, we propose Feature Calibration enhanced Parameter Synthesis (FCPS) in this paper. Specifically, our FCPS employs a specific parameter adjustment mechanism to iteratively refine the proportion of original visual features participating in the final class determination, ensuring the model's foundational generalization capabilities. Meanwhile, parameter integration across different tasks achieves a balance between learning new class knowledge and retaining old knowledge. Experimental results on popular benchmarks (e.g., CIFAR100 and ImageNet100) validate the superiority of the proposed method.
♻ ☆ Superpixel Tokenization for Vision Transformers: Preserving Semantic Integrity in Visual Tokens
Transformers, a groundbreaking architecture proposed for Natural Language Processing (NLP), have also achieved remarkable success in Computer Vision. A cornerstone of their success lies in the attention mechanism, which models relationships among tokens. While the tokenization process in NLP inherently ensures that a single token does not contain multiple semantics, the tokenization of Vision Transformer (ViT) utilizes tokens from uniformly partitioned square image patches, which may result in an arbitrary mixing of visual concepts in a token. In this work, we propose to substitute the grid-based tokenization in ViT with superpixel tokenization, which employs superpixels to generate a token that encapsulates a sole visual concept. Unfortunately, the diverse shapes, sizes, and locations of superpixels make integrating superpixels into ViT tokenization rather challenging. Our tokenization pipeline, comprised of pre-aggregate extraction and superpixel-aware aggregation, overcomes the challenges that arise in superpixel tokenization. Extensive experiments demonstrate that our approach, which exhibits strong compatibility with existing frameworks, enhances the accuracy and robustness of ViT on various downstream tasks.
comment: Project page: https://github.com/jangsoohyuk/SuiT
♻ ☆ CompMarkGS: Robust Watermarking for Compressed 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) enables rapid differentiable rendering for 3D reconstruction and novel view synthesis, leading to its widespread commercial use. Consequently, copyright protection via watermarking has become critical. However, because 3DGS relies on millions of Gaussians, which require gigabytes of storage, efficient transfer and storage require compression. Existing 3DGS watermarking methods are vulnerable to quantization-based compression, often resulting in the loss of the embedded watermark. To address this challenge, we propose a novel watermarking method that ensures watermark robustness after model compression while maintaining high rendering quality. In detail, we incorporate a quantization distortion layer that simulates compression during training, preserving the watermark under quantization-based compression. Also, we propose a learnable watermark embedding feature that embeds the watermark into the anchor feature, ensuring structural consistency and seamless integration into the 3D scene. Furthermore, we present a frequency-aware anchor growing mechanism to enhance image quality in high-frequency regions by effectively identifying Guassians within these regions. Experimental results confirm that our method preserves the watermark and maintains superior image quality under high compression, validating it as a promising approach for a secure 3DGS model.
comment: 23 pages, 17 figures
♻ ☆ AMD-Hummingbird: Towards an Efficient Text-to-Video Model
Text-to-Video (T2V) generation has attracted significant attention for its ability to synthesize realistic videos from textual descriptions. However, existing models struggle to balance computational efficiency and high visual quality, particularly on resource-limited devices, e.g.,iGPUs and mobile phones. Most prior work prioritizes visual fidelity while overlooking the need for smaller, more efficient models suitable for real-world deployment. To address this challenge, we propose a lightweight T2V framework, termed Hummingbird, which prunes existing models and enhances visual quality through visual feedback learning. Our approach reduces the size of the U-Net from 1.4 billion to 0.7 billion parameters, significantly improving efficiency while preserving high-quality video generation. Additionally, we introduce a novel data processing pipeline that leverages Large Language Models (LLMs) and Video Quality Assessment (VQA) models to enhance the quality of both text prompts and video data. To support user-driven training and style customization, we publicly release the full training code, including data processing and model training. Extensive experiments show that our method achieves a 31X speedup compared to state-of-the-art models such as VideoCrafter2, while also attaining the highest overall score on VBench. Moreover, our method supports the generation of videos with up to 26 frames, addressing the limitations of existing U-Net-based methods in long video generation. Notably, the entire training process requires only four GPUs, yet delivers performance competitive with existing leading methods. Hummingbird presents a practical and efficient solution for T2V generation, combining high performance, scalability, and flexibility for real-world applications.
comment: Homepage: https://www.amd.com/en/developer/resources/technical-articles/amd-hummingbird-0-9b-text-to-video-diffusion-model-with-4-step-inferencing.html| GitHub: https://github.com/AMD-AIG-AIMA/AMD-Hummingbird-T2V
♻ ☆ AIM2PC: Aerial Image to 3D Building Point Cloud Reconstruction SP
Three-dimensional urban reconstruction of buildings from single-view images has attracted significant attention over the past two decades. However, recent methods primarily focus on rooftops from aerial images, often overlooking essential geometrical details. Additionally, there is a notable lack of datasets containing complete 3D point clouds for entire buildings, along with challenges in obtaining reliable camera pose information for aerial images. This paper addresses these challenges by presenting a novel methodology, AIM2PC , which utilizes our generated dataset that includes complete 3D point clouds and determined camera poses. Our approach takes features from a single aerial image as input and concatenates them with essential additional conditions, such as binary masks and Sobel edge maps, to enable more edge-aware reconstruction. By incorporating a point cloud diffusion model based on Centered denoising Diffusion Probabilistic Models (CDPM), we project these concatenated features onto the partially denoised point cloud using our camera poses at each diffusion step. The proposed method is able to reconstruct the complete 3D building point cloud, including wall information and demonstrates superior performance compared to existing baseline techniques. To allow further comparisons with our methodology the dataset has been made available at https://github.com/Soulaimene/AIM2PCDataset
comment: Accepted to ISPRS Geospatial Week 2025
♻ ☆ LookCloser: Frequency-aware Radiance Field for Tiny-Detail Scene CVPR 2025
Humans perceive and comprehend their surroundings through information spanning multiple frequencies. In immersive scenes, people naturally scan their environment to grasp its overall structure while examining fine details of objects that capture their attention. However, current NeRF frameworks primarily focus on modeling either high-frequency local views or the broad structure of scenes with low-frequency information, which is limited to balancing both. We introduce FA-NeRF, a novel frequency-aware framework for view synthesis that simultaneously captures the overall scene structure and high-definition details within a single NeRF model. To achieve this, we propose a 3D frequency quantification method that analyzes the scene's frequency distribution, enabling frequency-aware rendering. Our framework incorporates a frequency grid for fast convergence and querying, a frequency-aware feature re-weighting strategy to balance features across different frequency contents. Extensive experiments show that our method significantly outperforms existing approaches in modeling entire scenes while preserving fine details. Project page: https://coscatter.github.io/LookCloser/
comment: CVPR 2025. Project page: https://coscatter.github.io/LookCloser
♻ ☆ From My View to Yours: Ego-Augmented Learning in Large Vision Language Models for Understanding Exocentric Daily Living Activities
Large Vision Language Models (LVLMs) have demonstrated impressive capabilities in video understanding, yet their adoption for Activities of Daily Living (ADL) remains limited by their inability to capture fine-grained interactions and spatial relationships. To address this, we aim to leverage the complementary nature of egocentric views to enhance LVLM's understanding of exocentric ADL videos. Consequently, we propose ego2exo knowledge distillation to learn ego-augmented exp representations. While effective, this approach requires paired ego-exo videos, which are impractical to collect at scale. To address this, we propose Skeleton-guided Synthetic Ego Generation (SK-EGO), which leverages human skeleton motion to generate synthetic ego views from exocentric videos. To enhance the ego representation of LVLMs trained on synthetic data, we develop a domain-agnostic bootstrapped ego2exo strategy that effectively transfers knowledge from real ego-exo pairs to synthetic ego-exo pairs, while mitigating domain misalignment. We find that the exo representations of our ego-augmented LVLMs successfully learn to extract ego-perspective cues, demonstrated through comprehensive evaluation on six ADL benchmarks and our proposed Ego-in-Exo PerceptionMCQ benchmark designed specifically to assess egocentric understanding from exocentric videos. Code, models, and data will be open-sourced at https://github.com/dominickrei/EgoExo4ADL.
♻ ☆ Reanimating Images using Neural Representations of Dynamic Stimuli
While computer vision models have made incredible strides in static image recognition, they still do not match human performance in tasks that require the understanding of complex, dynamic motion. This is notably true for real-world scenarios where embodied agents face complex and motion-rich environments. Our approach, BrainNRDS (Brain-Neural Representations of Dynamic Stimuli), leverages state-of-the-art video diffusion models to decouple static image representation from motion generation, enabling us to utilize fMRI brain activity for a deeper understanding of human responses to dynamic visual stimuli. Conversely, we also demonstrate that information about the brain's representation of motion can enhance the prediction of optical flow in artificial systems. Our novel approach leads to four main findings: (1) Visual motion, represented as fine-grained, object-level resolution optical flow, can be decoded from brain activity generated by participants viewing video stimuli; (2) Video encoders outperform image-based models in predicting video-driven brain activity; (3) Brain-decoded motion signals enable realistic video reanimation based only on the initial frame of the video; and (4) We extend prior work to achieve full video decoding from video-driven brain activity. BrainNRDS advances our understanding of how the brain represents spatial and temporal information in dynamic visual scenes. Our findings demonstrate the potential of combining brain imaging with video diffusion models for developing more robust and biologically-inspired computer vision systems. We show additional decoding and encoding examples on this site: https://brain-nrds.github.io/.
comment: Project Page: https://brain-nrds.github.io
♻ ☆ Repurposing Pre-trained Video Diffusion Models for Event-based Video Interpolation CVPR 2025
Video Frame Interpolation aims to recover realistic missing frames between observed frames, generating a high-frame-rate video from a low-frame-rate video. However, without additional guidance, the large motion between frames makes this problem ill-posed. Event-based Video Frame Interpolation (EVFI) addresses this challenge by using sparse, high-temporal-resolution event measurements as motion guidance. This guidance allows EVFI methods to significantly outperform frame-only methods. However, to date, EVFI methods have relied on a limited set of paired event-frame training data, severely limiting their performance and generalization capabilities. In this work, we overcome the limited data challenge by adapting pre-trained video diffusion models trained on internet-scale datasets to EVFI. We experimentally validate our approach on real-world EVFI datasets, including a new one that we introduce. Our method outperforms existing methods and generalizes across cameras far better than existing approaches.
comment: Accepted to CVPR 2025
♻ ☆ MambaVision: A Hybrid Mamba-Transformer Vision Backbone CVPR'25
We propose a novel hybrid Mamba-Transformer backbone, MambaVision, specifically tailored for vision applications. Our core contribution includes redesigning the Mamba formulation to enhance its capability for efficient modeling of visual features. Through a comprehensive ablation study, we demonstrate the feasibility of integrating Vision Transformers (ViT) with Mamba. Our results show that equipping the Mamba architecture with self-attention blocks in the final layers greatly improves its capacity to capture long-range spatial dependencies. Based on these findings, we introduce a family of MambaVision models with a hierarchical architecture to meet various design criteria. For classification on the ImageNet-1K dataset, MambaVision variants achieve state-of-the-art (SOTA) performance in terms of both Top-1 accuracy and throughput. In downstream tasks such as object detection, instance segmentation, and semantic segmentation on MS COCO and ADE20K datasets, MambaVision outperforms comparably sized backbones while demonstrating favorable performance. Code: https://github.com/NVlabs/MambaVision
comment: Accepted to CVPR'25
♻ ☆ SAMWISE: Infusing Wisdom in SAM2 for Text-Driven Video Segmentation CVPR 2025
Referring Video Object Segmentation (RVOS) relies on natural language expressions to segment an object in a video clip. Existing methods restrict reasoning either to independent short clips, losing global context, or process the entire video offline, impairing their application in a streaming fashion. In this work, we aim to surpass these limitations and design an RVOS method capable of effectively operating in streaming-like scenarios while retaining contextual information from past frames. We build upon the Segment-Anything 2 (SAM2) model, that provides robust segmentation and tracking capabilities and is naturally suited for streaming processing. We make SAM2 wiser, by empowering it with natural language understanding and explicit temporal modeling at the feature extraction stage, without fine-tuning its weights, and without outsourcing modality interaction to external models. To this end, we introduce a novel adapter module that injects temporal information and multi-modal cues in the feature extraction process. We further reveal the phenomenon of tracking bias in SAM2 and propose a learnable module to adjust its tracking focus when the current frame features suggest a new object more aligned with the caption. Our proposed method, SAMWISE, achieves state-of-the-art across various benchmarks, by adding a negligible overhead of less than 5 M parameters. Code is available at https://github.com/ClaudiaCuttano/SAMWISE .
comment: CVPR 2025. Project page: https://claudiacuttano.github.io/SAMWISE
♻ ☆ Aesthetic Post-Training Diffusion Models from Generic Preferences with Step-by-step Preference Optimization CVPR 2025
Generating visually appealing images is fundamental to modern text-to-image generation models. A potential solution to better aesthetics is direct preference optimization (DPO), which has been applied to diffusion models to improve general image quality including prompt alignment and aesthetics. Popular DPO methods propagate preference labels from clean image pairs to all the intermediate steps along the two generation trajectories. However, preference labels provided in existing datasets are blended with layout and aesthetic opinions, which would disagree with aesthetic preference. Even if aesthetic labels were provided (at substantial cost), it would be hard for the two-trajectory methods to capture nuanced visual differences at different steps. To improve aesthetics economically, this paper uses existing generic preference data and introduces step-by-step preference optimization (SPO) that discards the propagation strategy and allows fine-grained image details to be assessed. Specifically, at each denoising step, we 1) sample a pool of candidates by denoising from a shared noise latent, 2) use a step-aware preference model to find a suitable win-lose pair to supervise the diffusion model, and 3) randomly select one from the pool to initialize the next denoising step. This strategy ensures that diffusion models focus on the subtle, fine-grained visual differences instead of layout aspect. We find that aesthetics can be significantly enhanced by accumulating these improved minor differences. When fine-tuning Stable Diffusion v1.5 and SDXL, SPO yields significant improvements in aesthetics compared with existing DPO methods while not sacrificing image-text alignment compared with vanilla models. Moreover, SPO converges much faster than DPO methods due to the use of more correct preference labels provided by the step-aware preference model.
comment: CVPR 2025. Project Page: https://rockeycoss.github.io/spo.github.io/
♻ ☆ CLIP-EBC: CLIP Can Count Accurately through Enhanced Blockwise Classification ICME 2025
We propose CLIP-EBC, the first fully CLIP-based model for accurate crowd density estimation. While the CLIP model has demonstrated remarkable success in addressing recognition tasks such as zero-shot image classification, its potential for counting has been largely unexplored due to the inherent challenges in transforming a regression problem, such as counting, into a recognition task. In this work, we investigate and enhance CLIP's ability to count, focusing specifically on the task of estimating crowd sizes from images. Existing classification-based crowd-counting frameworks have significant limitations, including the quantization of count values into bordering real-valued bins and the sole focus on classification errors. These practices result in label ambiguity near the shared borders and inaccurate prediction of count values. Hence, directly applying CLIP within these frameworks may yield suboptimal performance. To address these challenges, we first propose the Enhanced Blockwise Classification (EBC) framework. Unlike previous methods, EBC utilizes integer-valued bins, effectively reducing ambiguity near bin boundaries. Additionally, it incorporates a regression loss based on density maps to improve the prediction of count values. Within our backbone-agnostic EBC framework, we then introduce CLIP-EBC to fully leverage CLIP's recognition capabilities for this task. Extensive experiments demonstrate the effectiveness of EBC and the competitive performance of CLIP-EBC. Specifically, our EBC framework can improve existing classification-based methods by up to 44.5% on the UCF-QNRF dataset, and CLIP-EBC achieves state-of-the-art performance on the NWPU-Crowd test set, with an MAE of 58.2 and an RMSE of 268.5, representing improvements of 8.6% and 13.3% over the previous best method, STEERER. The code and weights are available at https://github.com/Yiming-M/CLIP-EBC.
comment: This is the author's accepted manuscript. The final version is published in ICME 2025
♻ ☆ UrbanCAD: Towards Highly Controllable and Photorealistic 3D Vehicles for Urban Scene Simulation
Photorealistic 3D vehicle models with high controllability are essential for autonomous driving simulation and data augmentation. While handcrafted CAD models provide flexible controllability, free CAD libraries often lack the high-quality materials necessary for photorealistic rendering. Conversely, reconstructed 3D models offer high-fidelity rendering but lack controllability. In this work, we introduce UrbanCAD, a framework that generates highly controllable and photorealistic 3D vehicle digital twins from a single urban image, leveraging a large collection of free 3D CAD models and handcrafted materials. To achieve this, we propose a novel pipeline that follows a retrieval-optimization manner, adapting to observational data while preserving fine-grained expert-designed priors for both geometry and material. This enables vehicles' realistic 360-degree rendering, background insertion, material transfer, relighting, and component manipulation. Furthermore, given multi-view background perspective and fisheye images, we approximate environment lighting using fisheye images and reconstruct the background with 3DGS, enabling the photorealistic insertion of optimized CAD models into rendered novel view backgrounds. Experimental results demonstrate that UrbanCAD outperforms baselines in terms of photorealism. Additionally, we show that various perception models maintain their accuracy when evaluated on UrbanCAD with in-distribution configurations but degrade when applied to realistic out-of-distribution data generated by our method. This suggests that UrbanCAD is a significant advancement in creating photorealistic, safety-critical driving scenarios for downstream applications.
comment: Project page: https://xdimlab.github.io/UrbanCAD/
♻ ☆ HyperFLINT: Hypernetwork-based Flow Estimation and Temporal Interpolation for Scientific Ensemble Visualization
We present HyperFLINT (Hypernetwork-based FLow estimation and temporal INTerpolation), a novel deep learning-based approach for estimating flow fields, temporally interpolating scalar fields, and facilitating parameter space exploration in spatio-temporal scientific ensemble data. This work addresses the critical need to explicitly incorporate ensemble parameters into the learning process, as traditional methods often neglect these, limiting their ability to adapt to diverse simulation settings and provide meaningful insights into the data dynamics. HyperFLINT introduces a hypernetwork to account for simulation parameters, enabling it to generate accurate interpolations and flow fields for each timestep by dynamically adapting to varying conditions, thereby outperforming existing parameter-agnostic approaches. The architecture features modular neural blocks with convolutional and deconvolutional layers, supported by a hypernetwork that generates weights for the main network, allowing the model to better capture intricate simulation dynamics. A series of experiments demonstrates HyperFLINT's significantly improved performance in flow field estimation and temporal interpolation, as well as its potential in enabling parameter space exploration, offering valuable insights into complex scientific ensembles.
♻ ☆ AuraFusion360: Augmented Unseen Region Alignment for Reference-based 360° Unbounded Scene Inpainting CVPR 2025
Three-dimensional scene inpainting is crucial for applications from virtual reality to architectural visualization, yet existing methods struggle with view consistency and geometric accuracy in 360{\deg} unbounded scenes. We present AuraFusion360, a novel reference-based method that enables high-quality object removal and hole filling in 3D scenes represented by Gaussian Splatting. Our approach introduces (1) depth-aware unseen mask generation for accurate occlusion identification, (2) Adaptive Guided Depth Diffusion, a zero-shot method for accurate initial point placement without requiring additional training, and (3) SDEdit-based detail enhancement for multi-view coherence. We also introduce 360-USID, the first comprehensive dataset for 360{\deg} unbounded scene inpainting with ground truth. Extensive experiments demonstrate that AuraFusion360 significantly outperforms existing methods, achieving superior perceptual quality while maintaining geometric accuracy across dramatic viewpoint changes.
comment: Paper accepted to CVPR 2025. Project page: https://kkennethwu.github.io/aurafusion360/
♻ ☆ FREE-Merging: Fourier Transform for Efficient Model Merging
With the rapid growth of deep learning, there is an increasing availability of open-source models for various tasks. However, single fine-tuned models often fall short of meeting the diverse needs of users. Model merging has thus emerged as an efficient method to integrate the capabilities of existing models into a unified model. Nevertheless, existing model merging methods face challenging trade-offs between performance and deployment costs, primarily due to task interference. For the first time, we reveal that task interference is evident in the frequency domain of model parameters, yet current efforts only focus on spatial domain solutions, which are largely ineffective in addressing frequency domain interference. To mitigate the impact of frequency domain interference, we propose FR-Merging, an innovative method that effectively filters harmful frequency domain interference on the backbone with minimal computational overhead. Since performance loss is inevitable with cost-free methods, we propose a lightweight task-specific expert module that dynamically compensates for information loss during merging. This proposed framework, FREE-Merging (FR-Merging with experts), strikes a balanced trade-off between training cost, inference latency, storage requirements, and performance. We demonstrate the effectiveness of both FR-Merging and FREE-Merging on multiple tasks across CV, NLP, and Multi-Modal domains and show that they can be flexibly adapted to specific needs.
comment: 20 pages, 10 figures
♻ ☆ GCC: Generative Color Constancy via Diffusing a Color Checker CVPR 2025
Color constancy methods often struggle to generalize across different camera sensors due to varying spectral sensitivities. We present GCC, which leverages diffusion models to inpaint color checkers into images for illumination estimation. Our key innovations include (1) a single-step deterministic inference approach that inpaints color checkers reflecting scene illumination, (2) a Laplacian decomposition technique that preserves checker structure while allowing illumination-dependent color adaptation, and (3) a mask-based data augmentation strategy for handling imprecise color checker annotations. By harnessing rich priors from pre-trained diffusion models, GCC demonstrates strong robustness in challenging cross-camera scenarios. These results highlight our method's effective generalization capability across different camera characteristics without requiring sensor-specific training, making it a versatile and practical solution for real-world applications.
comment: Paper accepted to CVPR 2025. Project page: https://chenwei891213.github.io/GCC/
♻ ☆ SpectroMotion: Dynamic 3D Reconstruction of Specular Scenes CVPR 2025
We present SpectroMotion, a novel approach that combines 3D Gaussian Splatting (3DGS) with physically-based rendering (PBR) and deformation fields to reconstruct dynamic specular scenes. Previous methods extending 3DGS to model dynamic scenes have struggled to represent specular surfaces accurately. Our method addresses this limitation by introducing a residual correction technique for accurate surface normal computation during deformation, complemented by a deformable environment map that adapts to time-varying lighting conditions. We implement a coarse-to-fine training strategy significantly enhancing scene geometry and specular color prediction. It is the only existing 3DGS method capable of synthesizing photorealistic real-world dynamic specular scenes, outperforming state-of-the-art methods in rendering complex, dynamic, and specular scenes.
comment: Paper accepted to CVPR 2025. Project page: https://cdfan0627.github.io/spectromotion/
♻ ☆ EmoAttack: Emotion-to-Image Diffusion Models for Emotional Backdoor Generation
Text-to-image diffusion models can generate realistic images based on textual inputs, enabling users to convey their opinions visually through language. Meanwhile, within language, emotion plays a crucial role in expressing personal opinions in our daily lives and the inclusion of maliciously negative content can lead users astray, exacerbating negative emotions. Recognizing the success of diffusion models and the significance of emotion, we investigate a previously overlooked risk associated with text-to-image diffusion models, that is, utilizing emotion in the input texts to introduce negative content and provoke unfavorable emotions in users. Specifically, we identify a new backdoor attack, i.e., emotion-aware backdoor attack (EmoAttack), which introduces malicious negative content triggered by emotional texts during image generation. We formulate such an attack as a diffusion personalization problem to avoid extensive model retraining and propose the EmoBooth. Unlike existing personalization methods, our approach fine-tunes a pre-trained diffusion model by establishing a mapping between a cluster of emotional words and a given reference image containing malicious negative content. To validate the effectiveness of our method, we built a dataset and conducted extensive analysis and discussion about its effectiveness. Given consumers' widespread use of diffusion models, uncovering this threat is critical for society.
♻ ☆ FrugalNeRF: Fast Convergence for Few-shot Novel View Synthesis without Learned Priors CVPR 2025
Neural Radiance Fields (NeRF) face significant challenges in extreme few-shot scenarios, primarily due to overfitting and long training times. Existing methods, such as FreeNeRF and SparseNeRF, use frequency regularization or pre-trained priors but struggle with complex scheduling and bias. We introduce FrugalNeRF, a novel few-shot NeRF framework that leverages weight-sharing voxels across multiple scales to efficiently represent scene details. Our key contribution is a cross-scale geometric adaptation scheme that selects pseudo ground truth depth based on reprojection errors across scales. This guides training without relying on externally learned priors, enabling full utilization of the training data. It can also integrate pre-trained priors, enhancing quality without slowing convergence. Experiments on LLFF, DTU, and RealEstate-10K show that FrugalNeRF outperforms other few-shot NeRF methods while significantly reducing training time, making it a practical solution for efficient and accurate 3D scene reconstruction.
comment: Paper accepted to CVPR 2025. Project page: https://linjohnss.github.io/frugalnerf/
♻ ☆ SPA-VL: A Comprehensive Safety Preference Alignment Dataset for Vision Language Model
The emergence of Vision Language Models (VLMs) has brought unprecedented advances in understanding multimodal information. The combination of textual and visual semantics in VLMs is highly complex and diverse, making the safety alignment of these models challenging. Furthermore, due to the limited study on the safety alignment of VLMs, there is a lack of large-scale, high-quality datasets. To address these limitations, we propose a Safety Preference Alignment dataset for Vision Language Models named SPA-VL. In terms of breadth, SPA-VL covers 6 harmfulness domains, 13 categories, and 53 subcategories, and contains 100,788 samples of the quadruple (question, image, chosen response, rejected response). In terms of depth, the responses are collected from 12 open-source (e.g., QwenVL) and closed-source (e.g., Gemini) VLMs to ensure diversity. The construction of preference data is fully automated, and the experimental results indicate that models trained with alignment techniques on the SPA-VL dataset exhibit substantial improvements in harmlessness and helpfulness while maintaining core capabilities. SPA-VL, as a large-scale, high-quality, and diverse dataset, represents a significant milestone in ensuring that VLMs achieve both harmlessness and helpfulness.
♻ ☆ Decorum: A Language-Based Approach For Style-Conditioned Synthesis of Indoor 3D Scenes
3D indoor scene generation is an important problem for the design of digital and real-world environments. To automate this process, a scene generation model should be able to not only generate plausible scene layouts, but also take into consideration visual features and style preferences. Existing methods for this task exhibit very limited control over these attributes, only allowing text inputs in the form of simple object-level descriptions or pairwise spatial relationships. Our proposed method Decorum enables users to control the scene generation process with natural language by adopting language-based representations at each stage. This enables us to harness recent advancements in Large Language Models (LLMs) to model language-to-language mappings. In addition, we show that using a text-based representation allows us to select furniture for our scenes using a novel object retrieval method based on multimodal LLMs. Evaluations on the benchmark 3D-FRONT dataset show that our methods achieve improvements over existing work in text-conditioned scene synthesis and object retrieval.
♻ ☆ DeNVeR: Deformable Neural Vessel Representations for Unsupervised Video Vessel Segmentation CVPR 2025
This paper presents Deformable Neural Vessel Representations (DeNVeR), an unsupervised approach for vessel segmentation in X-ray angiography videos without annotated ground truth. DeNVeR utilizes optical flow and layer separation techniques, enhancing segmentation accuracy and adaptability through test-time training. Key contributions include a novel layer separation bootstrapping technique, a parallel vessel motion loss, and the integration of Eulerian motion fields for modeling complex vessel dynamics. A significant component of this research is the introduction of the XACV dataset, the first X-ray angiography coronary video dataset with high-quality, manually labeled segmentation ground truth. Extensive evaluations on both XACV and CADICA datasets demonstrate that DeNVeR outperforms current state-of-the-art methods in vessel segmentation accuracy and generalization capability while maintaining temporal coherency.
comment: Paper accepted to CVPR 2025. Project page: https://kirito878.github.io/DeNVeR/
♻ ☆ FIPER: Generalizable Factorized Features for Robust Low-Level Vision Models
In this work, we propose using a unified representation, termed Factorized Features, for low-level vision tasks, where we test on Single Image Super-Resolution (SISR) and Image Compression. Motivated by the shared principles between these tasks, they require recovering and preserving fine image details, whether by enhancing resolution for SISR or reconstructing compressed data for Image Compression. Unlike previous methods that mainly focus on network architecture, our proposed approach utilizes a basis-coefficient decomposition as well as an explicit formulation of frequencies to capture structural components and multi-scale visual features in images, which addresses the core challenges of both tasks. We replace the representation of prior models from simple feature maps with Factorized Features to validate the potential for broad generalizability. In addition, we further optimize the pipelines by leveraging the mergeable-basis property of our Factorized Features, which consolidates shared structures on multi-frame compression and super-resolution. Extensive experiments show that our unified representation delivers state-of-the-art performance, achieving an average relative improvement of 204.4% in PSNR over the baseline in Super-Resolution (SR) and 9.35% BD-rate reduction in Image Compression compared to the previous SOTA.
comment: Project page: https://jayisaking.github.io/FIPER/
♻ ☆ Empowering LLMs to Understand and Generate Complex Vector Graphics CVPR 2025
The unprecedented advancements in Large Language Models (LLMs) have profoundly impacted natural language processing but have yet to fully embrace the realm of scalable vector graphics (SVG) generation. While LLMs encode partial knowledge of SVG data from web pages during training, recent findings suggest that semantically ambiguous and tokenized representations within LLMs may result in hallucinations in vector primitive predictions. Additionally, LLM training typically lacks modeling and understanding of the rendering sequence of vector paths, which can lead to occlusion between output vector primitives. In this paper, we present LLM4SVG, an initial yet substantial step toward bridging this gap by enabling LLMs to better understand and generate vector graphics. LLM4SVG facilitates a deeper understanding of SVG components through learnable semantic tokens, which precisely encode these tokens and their corresponding properties to generate semantically aligned SVG outputs. Using a series of learnable semantic tokens, a structured dataset for instruction following is developed to support comprehension and generation across two primary tasks. Our method introduces a modular architecture to existing large language models, integrating semantic tags, vector instruction encoders, fine-tuned commands, and powerful LLMs to tightly combine geometric, appearance, and language information. To overcome the scarcity of SVG-text instruction data, we developed an automated data generation pipeline that collected our SVGX-SFT Dataset, consisting of high-quality human-designed SVGs and 580k SVG instruction following data specifically crafted for LLM training, which facilitated the adoption of the supervised fine-tuning strategy popular in LLM development.
comment: Accepted by CVPR 2025. Project Page: https://ximinng.github.io/LLM4SVGProject/
♻ ☆ DiffIR2VR-Zero: Zero-Shot Video Restoration with Diffusion-based Image Restoration Models
We present DiffIR2VR-Zero, a zero-shot framework that enables any pre-trained image restoration diffusion model to perform high-quality video restoration without additional training. While image diffusion models have shown remarkable restoration capabilities, their direct application to video leads to temporal inconsistencies, and existing video restoration methods require extensive retraining for different degradation types. Our approach addresses these challenges through two key innovations: a hierarchical latent warping strategy that maintains consistency across both keyframes and local frames, and a hybrid token merging mechanism that adaptively combines optical flow and feature matching. Through extensive experiments, we demonstrate that our method not only maintains the high-quality restoration of base diffusion models but also achieves superior temporal consistency across diverse datasets and degradation conditions, including challenging scenarios like 8$\times$ super-resolution and severe noise. Importantly, our framework works with any image restoration diffusion model, providing a versatile solution for video enhancement without task-specific training or modifications.
comment: Project page: https://jimmycv07.github.io/DiffIR2VR_web/
♻ ☆ Localized Concept Erasure for Text-to-Image Diffusion Models Using Training-Free Gated Low-Rank Adaptation CVPR 2025
Fine-tuning based concept erasing has demonstrated promising results in preventing generation of harmful contents from text-to-image diffusion models by removing target concepts while preserving remaining concepts. To maintain the generation capability of diffusion models after concept erasure, it is necessary to remove only the image region containing the target concept when it locally appears in an image, leaving other regions intact. However, prior arts often compromise fidelity of the other image regions in order to erase the localized target concept appearing in a specific area, thereby reducing the overall performance of image generation. To address these limitations, we first introduce a framework called localized concept erasure, which allows for the deletion of only the specific area containing the target concept in the image while preserving the other regions. As a solution for the localized concept erasure, we propose a training-free approach, dubbed Gated Low-rank adaptation for Concept Erasure (GLoCE), that injects a lightweight module into the diffusion model. GLoCE consists of low-rank matrices and a simple gate, determined only by several generation steps for concepts without training. By directly applying GLoCE to image embeddings and designing the gate to activate only for target concepts, GLoCE can selectively remove only the region of the target concepts, even when target and remaining concepts coexist within an image. Extensive experiments demonstrated GLoCE not only improves the image fidelity to text prompts after erasing the localized target concepts, but also outperforms prior arts in efficacy, specificity, and robustness by large margin and can be extended to mass concept erasure.
comment: Accepted to CVPR 2025
DepthSplat: Connecting Gaussian Splatting and Depth CVPR 2025
Gaussian splatting and single-view depth estimation are typically studied in isolation. In this paper, we present DepthSplat to connect Gaussian splatting and depth estimation and study their interactions. More specifically, we first contribute a robust multi-view depth model by leveraging pre-trained monocular depth features, leading to high-quality feed-forward 3D Gaussian splatting reconstructions. We also show that Gaussian splatting can serve as an unsupervised pre-training objective for learning powerful depth models from large-scale multi-view posed datasets. We validate the synergy between Gaussian splatting and depth estimation through extensive ablation and cross-task transfer experiments. Our DepthSplat achieves state-of-the-art performance on ScanNet, RealEstate10K and DL3DV datasets in terms of both depth estimation and novel view synthesis, demonstrating the mutual benefits of connecting both tasks. In addition, DepthSplat enables feed-forward reconstruction from 12 input views (512x960 resolutions) in 0.6 seconds.
comment: CVPR 2025, Project page: https://haofeixu.github.io/depthsplat/, Code: https://github.com/cvg/depthsplat
Interpreting Object-level Foundation Models via Visual Precision Search CVPR 2025
Advances in multimodal pre-training have propelled object-level foundation models, such as Grounding DINO and Florence-2, in tasks like visual grounding and object detection. However, interpreting these models' decisions has grown increasingly challenging. Existing interpretable attribution methods for object-level task interpretation have notable limitations: (1) gradient-based methods lack precise localization due to visual-textual fusion in foundation models, and (2) perturbation-based methods produce noisy saliency maps, limiting fine-grained interpretability. To address these, we propose a Visual Precision Search method that generates accurate attribution maps with fewer regions. Our method bypasses internal model parameters to overcome attribution issues from multimodal fusion, dividing inputs into sparse sub-regions and using consistency and collaboration scores to accurately identify critical decision-making regions. We also conducted a theoretical analysis of the boundary guarantees and scope of applicability of our method. Experiments on RefCOCO, MS COCO, and LVIS show our approach enhances object-level task interpretability over SOTA for Grounding DINO and Florence-2 across various evaluation metrics, with faithfulness gains of 23.7%, 31.6%, and 20.1% on MS COCO, LVIS, and RefCOCO for Grounding DINO, and 102.9% and 66.9% on MS COCO and RefCOCO for Florence-2. Additionally, our method can interpret failures in visual grounding and object detection tasks, surpassing existing methods across multiple evaluation metrics. The code will be released at https://github.com/RuoyuChen10/VPS.
comment: Accepted to CVPR 2025
♻ ☆ When Large Vision-Language Model Meets Large Remote Sensing Imagery: Coarse-to-Fine Text-Guided Token Pruning
Efficient vision-language understanding of large Remote Sensing Images (RSIs) is meaningful but challenging. Current Large Vision-Language Models (LVLMs) typically employ limited pre-defined grids to process images, leading to information loss when handling gigapixel RSIs. Conversely, using unlimited grids significantly increases computational costs. To preserve image details while reducing computational complexity, we propose a text-guided token pruning method with Dynamic Image Pyramid (DIP) integration. Our method introduces: (i) a Region Focus Module (RFM) that leverages text-aware region localization capability to identify critical vision tokens, and (ii) a coarse-to-fine image tile selection and vision token pruning strategy based on DIP, which is guided by RFM outputs and avoids directly processing the entire large imagery. Additionally, existing benchmarks for evaluating LVLMs' perception ability on large RSI suffer from limited question diversity and constrained image sizes. We construct a new benchmark named LRS-VQA, which contains 7,333 QA pairs across 8 categories, with image length up to 27,328 pixels. Our method outperforms existing high-resolution strategies on four datasets using the same data. Moreover, compared to existing token reduction methods, our approach demonstrates higher efficiency under high-resolution settings. Dataset and code are in https://github.com/VisionXLab/LRS-VQA.
comment: 12 pages, 6 figures, 7 tables
♻ ☆ Interpretable Bilingual Multimodal Large Language Model for Diverse Biomedical Tasks ICLR 2025
Several medical Multimodal Large Languange Models (MLLMs) have been developed to address tasks involving visual images with textual instructions across various medical modalities, achieving impressive results. Most current medical generalist models are region-agnostic, treating the entire image as a holistic representation. However, they struggle to identify which specific regions they are focusing on when generating a sentence. To mimic the behavior of doctors, who typically begin by reviewing the entire image before concentrating on specific regions for a thorough evaluation, we aim to enhance the capability of medical MLLMs in understanding anatomical regions within entire medical scans. To achieve it, we first formulate Region-Centric tasks and construct a large-scale dataset, MedRegInstruct, to incorporate regional information into training. Combining our collected dataset with other medical multimodal corpora for training, we propose a Region-Aware medical MLLM, MedRegA, which is the first bilingual generalist medical AI system to simultaneously handle image-level and region-level medical vision-language tasks across a broad range of modalities. Our MedRegA not only enables three region-centric tasks, but also achieves the best performance for visual question answering, report generation and medical image classification over 8 modalities, showcasing significant versatility. Experiments demonstrate that our model can not only accomplish powerful performance across various medical vision-language tasks in bilingual settings, but also recognize and detect structures in multimodal medical scans, boosting the interpretability and user interactivity of medical MLLMs. Our project page is https://medrega.github.io.
comment: Accepted in ICLR 2025
♻ ☆ Pfungst and Clever Hans: Identifying the unintended cues in a widely used Alzheimer's disease MRI dataset using explainable deep learning
Backgrounds. Deep neural networks have demonstrated high accuracy in classifying Alzheimer's disease (AD). This study aims to enlighten the underlying black-box nature and reveal individual contributions of T1-weighted (T1w) gray-white matter texture, volumetric information and preprocessing on classification performance. Methods. We utilized T1w MRI data from the Alzheimer's Disease Neuroimaging Initiative to distinguish matched AD patients (990 MRIs) from healthy controls (990 MRIs). Preprocessing included skull stripping and binarization at varying thresholds to systematically eliminate texture information. A deep neural network was trained on these configurations, and the model performance was compared using McNemar tests with discrete Bonferroni-Holm correction. Layer-wise Relevance Propagation (LRP) and structural similarity metrics between heatmaps were applied to analyze learned features. Results. Classification performance metrics (accuracy, sensitivity, and specificity) were comparable across all configurations, indicating a negligible influence of T1w gray- and white signal texture. Models trained on binarized images demonstrated similar feature performance and relevance distributions, with volumetric features such as atrophy and skull-stripping features emerging as primary contributors. Conclusions. We revealed a previously undiscovered Clever Hans effect in a widely used AD MRI dataset. Deep neural networks classification predominantly rely on volumetric features, while eliminating gray-white matter T1w texture did not decrease the performance. This study clearly demonstrates an overestimation of the importance of gray-white matter contrasts, at least for widely used structural T1w images, and highlights potential misinterpretation of performance metrics.
♻ ☆ CLIP-Adapter: Better Vision-Language Models with Feature Adapters
Large-scale contrastive vision-language pre-training has shown significant progress in visual representation learning. Unlike traditional visual systems trained by a fixed set of discrete labels, a new paradigm was introduced in \cite{radford2021learning} to directly learn to align images with raw texts in an open-vocabulary setting. On downstream tasks, a carefully chosen text prompt is employed to make zero-shot predictions.~To avoid non-trivial prompt engineering, context optimization \cite{zhou2021coop} has been proposed to learn continuous vectors as task-specific prompts with few-shot training examples.~In this paper, we show that there is an alternative path to achieve better vision-language models other than prompt tuning.~While prompt tuning is for the textual inputs, we propose CLIP-Adapter to conduct fine-tuning with feature adapters on either visual or language branch. Specifically, CLIP-Adapter adopts an additional bottleneck layer to learn new features and performs residual-style feature blending with the original pre-trained features.~As a consequence, CLIP-Adapter is able to outperform context optimization while maintains a simple design. Experiments and extensive ablation studies on various visual classification tasks demonstrate the effectiveness of our approach. Code is released at t https://github.com/gaopengcuhk/CLIP-Adapter.
comment: Accepted by IJCV
♻ ☆ SG-GAN: Fine Stereoscopic-Aware Generation for 3D Brain Point Cloud Up-sampling from a Single Image
In minimally-invasive brain surgeries with indirect and narrow operating environments, 3D brain reconstruction is crucial. However, as requirements of accuracy for some new minimally-invasive surgeries (such as brain-computer interface surgery) are higher and higher, the outputs of conventional 3D reconstruction, such as point cloud (PC), are facing the challenges that sample points are too sparse and the precision is insufficient. On the other hand, there is a scarcity of high-density point cloud datasets, which makes it challenging to train models for direct reconstruction of high-density brain point clouds. In this work, a novel model named stereoscopic-aware graph generative adversarial network (SG-GAN) with two stages is proposed to generate fine high-density PC conditioned on a single image. The Stage-I GAN sketches the primitive shape and basic structure of the organ based on the given image, yielding Stage-I point clouds. The Stage-II GAN takes the results from Stage-I and generates high-density point clouds with detailed features. The Stage-II GAN is capable of correcting defects and restoring the detailed features of the region of interest (ROI) through the up-sampling process. Furthermore, a parameter-free-attention-based free-transforming module is developed to learn the efficient features of input, while upholding a promising performance. Comparing with the existing methods, the SG-GAN model shows superior performance in terms of visual quality, objective measurements, and performance in classification, as demonstrated by comprehensive results measured by several evaluation metrics including PC-to-PC error and Chamfer distance.
comment: Accepted by TETCI
♻ ☆ Helvipad: A Real-World Dataset for Omnidirectional Stereo Depth Estimation CVPR 2025
Despite progress in stereo depth estimation, omnidirectional imaging remains underexplored, mainly due to the lack of appropriate data. We introduce Helvipad, a real-world dataset for omnidirectional stereo depth estimation, featuring 40K video frames from video sequences across diverse environments, including crowded indoor and outdoor scenes with various lighting conditions. Collected using two 360{\deg} cameras in a top-bottom setup and a LiDAR sensor, the dataset includes accurate depth and disparity labels by projecting 3D point clouds onto equirectangular images. Additionally, we provide an augmented training set with an increased label density by using depth completion. We benchmark leading stereo depth estimation models for both standard and omnidirectional images. The results show that while recent stereo methods perform decently, a challenge persists in accurately estimating depth in omnidirectional imaging. To address this, we introduce necessary adaptations to stereo models, leading to improved performance.
comment: Accepted to CVPR 2025. Project page: https://vita-epfl.github.io/Helvipad
♻ ☆ Bokehlicious: Photorealistic Bokeh Rendering with Controllable Apertures
Bokeh rendering methods play a key role in creating the visually appealing, softly blurred backgrounds seen in professional photography. While recent learning-based approaches show promising results, generating realistic Bokeh with variable strength remains challenging. Existing methods require additional inputs and suffer from unrealistic Bokeh reproduction due to reliance on synthetic data. In this work, we propose Bokehlicious, a highly efficient network that provides intuitive control over Bokeh strength through an Aperture-Aware Attention mechanism, mimicking the physical lens aperture. To further address the lack of high-quality real-world data, we present RealBokeh, a novel dataset featuring 23,000 high-resolution (24-MP) images captured by professional photographers, covering diverse scenes with varied aperture and focal length settings. Evaluations on both our new RealBokeh and established Bokeh rendering benchmarks show that Bokehlicious consistently outperforms SOTA methods while significantly reducing computational cost and exhibiting strong zero-shot generalization. Our method and dataset further extend to defocus deblurring, achieving competitive results on the RealDOF benchmark. Our code and data can be found at https://github.com/TimSeizinger/Bokehlicious
comment: Technical Report
♻ ☆ MetaToken: Detecting Hallucination in Image Descriptions by Meta Classification
Large Vision Language Models (LVLMs) have shown remarkable capabilities in multimodal tasks like visual question answering or image captioning. However, inconsistencies between the visual information and the generated text, a phenomenon referred to as hallucinations, remain an unsolved problem with regard to the trustworthiness of LVLMs. To address this problem, recent works proposed to incorporate computationally costly Large (Vision) Language Models in order to detect hallucinations on a sentence- or subsentence-level. In this work, we introduce MetaToken, a lightweight binary classifier to detect hallucinations on the token-level at negligible cost. Based on a statistical analysis, we reveal key factors of hallucinations in LVLMs. MetaToken can be applied to any open-source LVLM without any knowledge about ground truth data providing a calibrated detection of hallucinations. We evaluate our method on four state-of-the-art LVLMs demonstrating the effectiveness of our approach.
♻ ☆ RobustEMD: Domain Robust Matching for Cross-domain Few-shot Medical Image Segmentation
Few-shot medical image segmentation (FSMIS) aims to perform the limited annotated data learning in the medical image analysis scope. Despite the progress has been achieved, current FSMIS models are all trained and deployed on the same data domain, as is not consistent with the clinical reality that medical imaging data is always across different data domains (e.g. imaging modalities, institutions and equipment sequences). How to enhance the FSMIS models to generalize well across the different specific medical imaging domains? In this paper, we focus on the matching mechanism of the few-shot semantic segmentation models and introduce an Earth Mover's Distance (EMD) calculation based domain robust matching mechanism for the cross-domain scenario. Specifically, we formulate the EMD transportation process between the foreground support-query features, the texture structure aware weights generation method, which proposes to perform the sobel based image gradient calculation over the nodes, is introduced in the EMD matching flow to restrain the domain relevant nodes. Besides, the point set level distance measurement metric is introduced to calculated the cost for the transportation from support set nodes to query set nodes. To evaluate the performance of our model, we conduct experiments on three scenarios (i.e., cross-modal, cross-sequence and cross-institution), which includes eight medical datasets and involves three body regions, and the results demonstrate that our model achieves the SoTA performance against the compared models.
comment: More details should be included, and more experiments
♻ ☆ Patch-Depth Fusion: Dichotomous Image Segmentation via Fine-Grained Patch Strategy and Depth Integrity-Prior
Dichotomous Image Segmentation (DIS) is a high-precision object segmentation task for high-resolution natural images. The current mainstream methods focus on the optimization of local details but overlook the fundamental challenge of modeling the integrity of objects. We have found that the depth integrity-prior implicit in the the pseudo-depth maps generated by Depth Anything Model v2 and the local detail features of image patches can jointly address the above dilemmas. Based on the above findings, we have designed a novel Patch-Depth Fusion Network (PDFNet) for high-precision dichotomous image segmentation. The core of PDFNet consists of three aspects. Firstly, the object perception is enhanced through multi-modal input fusion. By utilizing the patch fine-grained strategy, coupled with patch selection and enhancement, the sensitivity to details is improved. Secondly, by leveraging the depth integrity-prior distributed in the depth maps, we propose an integrity-prior loss to enhance the uniformity of the segmentation results in the depth maps. Finally, we utilize the features of the shared encoder and, through a simple depth refinement decoder, improve the ability of the shared encoder to capture subtle depth-related information in the images. Experiments on the DIS-5K dataset show that PDFNet significantly outperforms state-of-the-art non-diffusion methods. Due to the incorporation of the depth integrity-prior, PDFNet achieves or even surpassing the performance of the latest diffusion-based methods while using less than 11% of the parameters of diffusion-based methods. The source code at https://github.com/Tennine2077/PDFNet
♻ ☆ ProtoGS: Efficient and High-Quality Rendering with 3D Gaussian Prototypes
3D Gaussian Splatting (3DGS) has made significant strides in novel view synthesis but is limited by the substantial number of Gaussian primitives required, posing challenges for deployment on lightweight devices. Recent methods address this issue by compressing the storage size of densified Gaussians, yet fail to preserve rendering quality and efficiency. To overcome these limitations, we propose ProtoGS to learn Gaussian prototypes to represent Gaussian primitives, significantly reducing the total Gaussian amount without sacrificing visual quality. Our method directly uses Gaussian prototypes to enable efficient rendering and leverage the resulting reconstruction loss to guide prototype learning. To further optimize memory efficiency during training, we incorporate structure-from-motion (SfM) points as anchor points to group Gaussian primitives. Gaussian prototypes are derived within each group by clustering of K-means, and both the anchor points and the prototypes are optimized jointly. Our experiments on real-world and synthetic datasets prove that we outperform existing methods, achieving a substantial reduction in the number of Gaussians, and enabling high rendering speed while maintaining or even enhancing rendering fidelity.
♻ ☆ Using deep neural networks to detect non-analytically defined expert event labels in canoe sprint force sensor signals
Assessing an athlete's performance in canoe sprint is often established by measuring a variety of kinematic parameters during training sessions. Many of these parameters are related to single or multiple paddle stroke cycles. Determining on- and offset of these cycles in force sensor signals is usually not straightforward and requires human interaction. This paper explores convolutional neural networks (CNNs) and recurrent neural networks (RNNs) in terms of their ability to automatically predict these events. In addition, our work proposes an extension to the recently published SoftED metric for event detection in order to properly assess the model performance on time windows. In our results, an RNN based on bidirectional gated recurrent units (BGRUs) turned out to be the most suitable model for paddle stroke detection.
♻ ☆ ProbeSDF: Light Field Probes for Neural Surface Reconstruction
SDF-based differential rendering frameworks have achieved state-of-the-art multiview 3D shape reconstruction. In this work, we re-examine this family of approaches by minimally reformulating its core appearance model in a way that simultaneously yields faster computation and increased performance. To this goal, we exhibit a physically-inspired minimal radiance parametrization decoupling angular and spatial contributions, by encoding them with a small number of features stored in two respective volumetric grids of different resolutions. Requiring as little as four parameters per voxel, and a tiny MLP call inside a single fully fused kernel, our approach allows to enhance performance with both surface and image (PSNR) metrics, while providing a significant training speedup and real-time rendering. We show this performance to be consistently achieved on real data over two widely different and popular application fields, generic object and human subject shape reconstruction, using four representative and challenging datasets.
comment: 10 pages, 10 figures
♻ ☆ RL-RC-DoT: A Block-level RL agent for Task-Aware Video Compression
Video encoders optimize compression for human perception by minimizing reconstruction error under bit-rate constraints. In many modern applications such as autonomous driving, an overwhelming majority of videos serve as input for AI systems performing tasks like object recognition or segmentation, rather than being watched by humans. It is therefore useful to optimize the encoder for a downstream task instead of for perceptual image quality. However, a major challenge is how to combine such downstream optimization with existing standard video encoders, which are highly efficient and popular. Here, we address this challenge by controlling the Quantization Parameters (QPs) at the macro-block level to optimize the downstream task. This granular control allows us to prioritize encoding for task-relevant regions within each frame. We formulate this optimization problem as a Reinforcement Learning (RL) task, where the agent learns to balance long-term implications of choosing QPs on both task performance and bit-rate constraints. Notably, our policy does not require the downstream task as an input during inference, making it suitable for streaming applications and edge devices such as vehicles. We demonstrate significant improvements in two tasks, car detection, and ROI (saliency) encoding. Our approach improves task performance for a given bit rate compared to traditional task agnostic encoding methods, paving the way for more efficient task-aware video compression.
♻ ☆ Promoting Segment Anything Model towards Highly Accurate Dichotomous Image Segmentation
The Segment Anything Model (SAM) represents a significant breakthrough into foundation models for computer vision, providing a large-scale image segmentation model. However, despite SAM's zero-shot performance, its segmentation masks lack fine-grained details, particularly in accurately delineating object boundaries. Therefore, it is both interesting and valuable to explore whether SAM can be improved towards highly accurate object segmentation, which is known as the dichotomous image segmentation (DIS) task. To address this issue, we propose DIS-SAM, which advances SAM towards DIS with extremely accurate details. DIS-SAM is a framework specifically tailored for highly accurate segmentation, maintaining SAM's promptable design. DIS-SAM employs a two-stage approach, integrating SAM with a modified advanced network that was previously designed to handle the prompt-free DIS task. To better train DIS-SAM, we employ a ground truth enrichment strategy by modifying original mask annotations. Despite its simplicity, DIS-SAM significantly advances the SAM, HQ-SAM, and Pi-SAM ~by 8.5%, ~6.9%, and ~3.7% maximum F-measure. Our code at https://github.com/Tennine2077/DIS-SAM
♻ ☆ Which2comm: An Efficient Collaborative Perception Framework for 3D Object Detection
Collaborative perception allows real-time inter-agent information exchange and thus offers invaluable opportunities to enhance the perception capabilities of individual agents. However, limited communication bandwidth in practical scenarios restricts the inter-agent data transmission volume, consequently resulting in performance declines in collaborative perception systems. This implies a trade-off between perception performance and communication cost. To address this issue, we propose Which2comm, a novel multi-agent 3D object detection framework leveraging object-level sparse features. By integrating semantic information of objects into 3D object detection boxes, we introduce semantic detection boxes (SemDBs). Innovatively transmitting these information-rich object-level sparse features among agents not only significantly reduces the demanding communication volume, but also improves 3D object detection performance. Specifically, a fully sparse network is constructed to extract SemDBs from individual agents; a temporal fusion approach with a relative temporal encoding mechanism is utilized to obtain the comprehensive spatiotemporal features. Extensive experiments on the V2XSet and OPV2V datasets demonstrate that Which2comm consistently outperforms other state-of-the-art methods on both perception performance and communication cost, exhibiting better robustness to real-world latency. These results present that for multi-agent collaborative 3D object detection, transmitting only object-level sparse features is sufficient to achieve high-precision and robust performance.
♻ ☆ Instruct-4DGS: Efficient Dynamic Scene Editing via 4D Gaussian-based Static-Dynamic Separation CVPR 2025
Recent 4D dynamic scene editing methods require editing thousands of 2D images used for dynamic scene synthesis and updating the entire scene with additional training loops, resulting in several hours of processing to edit a single dynamic scene. Therefore, these methods are not scalable with respect to the temporal dimension of the dynamic scene (i.e., the number of timesteps). In this work, we propose Instruct-4DGS, an efficient dynamic scene editing method that is more scalable in terms of temporal dimension. To achieve computational efficiency, we leverage a 4D Gaussian representation that models a 4D dynamic scene by combining static 3D Gaussians with a Hexplane-based deformation field, which captures dynamic information. We then perform editing solely on the static 3D Gaussians, which is the minimal but sufficient component required for visual editing. To resolve the misalignment between the edited 3D Gaussians and the deformation field, which may arise from the editing process, we introduce a refinement stage using a score distillation mechanism. Extensive editing results demonstrate that Instruct-4DGS is efficient, reducing editing time by more than half compared to existing methods while achieving high-quality edits that better follow user instructions.
comment: Accepted to CVPR 2025. The first two authors contributed equally
♻ ☆ Shot Sequence Ordering for Video Editing: Benchmarks, Metrics, and Cinematology-Inspired Computing Methods
With the rising popularity of short video platforms, the demand for video production has increased substantially. However, high-quality video creation continues to rely heavily on professional editing skills and a nuanced understanding of visual language. To address this challenge, the Shot Sequence Ordering (SSO) task in AI-assisted video editing has emerged as a pivotal approach for enhancing video storytelling and the overall viewing experience. Nevertheless, the progress in this field has been impeded by a lack of publicly available benchmark datasets. In response, this paper introduces two novel benchmark datasets, AVE-Order and ActivityNet-Order. Additionally, we employ the Kendall Tau distance as an evaluation metric for the SSO task and propose the Kendall Tau Distance-Cross Entropy Loss. We further introduce the concept of Cinematology Embedding, which incorporates movie metadata and shot labels as prior knowledge into the SSO model, and constructs the AVE-Meta dataset to validate the method's effectiveness. Experimental results indicate that the proposed loss function and method substantially enhance SSO task accuracy. All datasets are publicly accessible at https://github.com/litchiar/ShotSeqBench.
♻ ☆ StarGen: A Spatiotemporal Autoregression Framework with Video Diffusion Model for Scalable and Controllable Scene Generation
Recent advances in large reconstruction and generative models have significantly improved scene reconstruction and novel view generation. However, due to compute limitations, each inference with these large models is confined to a small area, making long-range consistent scene generation challenging. To address this, we propose StarGen, a novel framework that employs a pre-trained video diffusion model in an autoregressive manner for long-range scene generation. The generation of each video clip is conditioned on the 3D warping of spatially adjacent images and the temporally overlapping image from previously generated clips, improving spatiotemporal consistency in long-range scene generation with precise pose control. The spatiotemporal condition is compatible with various input conditions, facilitating diverse tasks, including sparse view interpolation, perpetual view generation, and layout-conditioned city generation. Quantitative and qualitative evaluations demonstrate StarGen's superior scalability, fidelity, and pose accuracy compared to state-of-the-art methods. Project page: https://zju3dv.github.io/StarGen.
♻ ☆ On-Device Self-Supervised Learning of Low-Latency Monocular Depth from Only Events CVPR 2025
Event cameras provide low-latency perception for only milliwatts of power. This makes them highly suitable for resource-restricted, agile robots such as small flying drones. Self-supervised learning based on contrast maximization holds great potential for event-based robot vision, as it foregoes the need for high-frequency ground truth and allows for online learning in the robot's operational environment. However, online, on-board learning raises the major challenge of achieving sufficient computational efficiency for real-time learning, while maintaining competitive visual perception performance. In this work, we improve the time and memory efficiency of the contrast maximization pipeline, making on-device learning of low-latency monocular depth possible. We demonstrate that online learning on board a small drone yields more accurate depth estimates and more successful obstacle avoidance behavior compared to only pre-training. Benchmarking experiments show that the proposed pipeline is not only efficient, but also achieves state-of-the-art depth estimation performance among self-supervised approaches. Our work taps into the unused potential of online, on-device robot learning, promising smaller reality gaps and better performance.
comment: Accepted at CVPR 2025
♻ ☆ BimArt: A Unified Approach for the Synthesis of 3D Bimanual Interaction with Articulated Objects CVPR2025
We present BimArt, a novel generative approach for synthesizing 3D bimanual hand interactions with articulated objects. Unlike prior works, we do not rely on a reference grasp, a coarse hand trajectory, or separate modes for grasping and articulating. To achieve this, we first generate distance-based contact maps conditioned on the object trajectory with an articulation-aware feature representation, revealing rich bimanual patterns for manipulation. The learned contact prior is then used to guide our hand motion generator, producing diverse and realistic bimanual motions for object movement and articulation. Our work offers key insights into feature representation and contact prior for articulated objects, demonstrating their effectiveness in taming the complex, high-dimensional space of bimanual hand-object interactions. Through comprehensive quantitative experiments, we demonstrate a clear step towards simplified and high-quality hand-object animations that surpass the state of the art in motion quality and diversity. Project page: https://vcai.mpi-inf.mpg.de/projects/bimart/.
comment: CVPR2025
♻ ☆ Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variations
This paper presents an in-depth analysis of the scale generalisation properties of the scale-covariant and scale-invariant Gaussian derivative networks, complemented with both conceptual and algorithmic extensions. For this purpose, Gaussian derivative networks (GaussDerNets) are evaluated on new rescaled versions of the Fashion-MNIST and the CIFAR-10 datasets, with spatial scaling variations over a factor of 4 in the testing data, that are not present in the training data. Additionally, evaluations on the previously existing STIR datasets show that the GaussDerNets achieve better scale generalisation than previously reported for these datasets for other types of deep networks. We first experimentally demonstrate that the GaussDerNets have quite good scale generalisation properties on the new datasets, and that average pooling of feature responses over scales may sometimes also lead to better results than the previously used approach of max pooling over scales. Then, we demonstrate that using a spatial max pooling mechanism after the final layer enables localisation of non-centred objects in image domain, with maintained scale generalisation properties. We also show that regularisation during training, by applying dropout across the scale channels, referred to as scale-channel dropout, improves both the performance and the scale generalisation. In additional ablation studies, we demonstrate that discretisations of GaussDerNets, based on the discrete analogue of the Gaussian kernel in combination with central difference operators, perform best or among the best, compared to a set of other discrete approximations of the Gaussian derivative kernels. Finally, by visualising the activation maps and the learned receptive fields, we demonstrate that the GaussDerNets have very good explainability properties.
comment: 52 pages, 24 figures, 18 tables
♻ ☆ DynFocus: Dynamic Cooperative Network Empowers LLMs with Video Understanding CVPR 25
The challenge in LLM-based video understanding lies in preserving visual and semantic information in long videos while maintaining a memory-affordable token count. However, redundancy and correspondence in videos have hindered the performance potential of existing methods. Through statistical learning on current datasets, we observe that redundancy occurs in both repeated and answer-irrelevant frames, and the corresponding frames vary with different questions. This suggests the possibility of adopting dynamic encoding to balance detailed video information preservation with token budget reduction. To this end, we propose a dynamic cooperative network, DynFocus, for memory-efficient video encoding in this paper. Specifically, i) a Dynamic Event Prototype Estimation (DPE) module to dynamically select meaningful frames for question answering; (ii) a Compact Cooperative Encoding (CCE) module that encodes meaningful frames with detailed visual appearance and the remaining frames with sketchy perception separately. We evaluate our method on five publicly available benchmarks, and experimental results consistently demonstrate that our method achieves competitive performance.
comment: Accepted by CVPR 25
♻ ☆ Inverting Transformer-based Vision Models
Understanding the mechanisms underlying deep neural networks in computer vision remains a fundamental challenge. While many previous approaches have focused on visualizing intermediate representations within deep neural networks, particularly convolutional neural networks, these techniques have yet to be thoroughly explored in transformer-based vision models. In this study, we apply a modular approach of training inverse models to reconstruct input images from intermediate layers within a Detection Transformer and a Vision Transformer, showing that this approach is efficient and feasible. Through qualitative and quantitative evaluations of reconstructed images, we generate insights into the underlying mechanisms of these architectures, highlighting their similarities and differences in terms of contextual shape and preservation of image details, inter-layer correlation, and robustness to color perturbations. Our analysis illustrates how these properties emerge within the models, contributing to a deeper understanding of transformer-based vision models. The code for reproducing our experiments is available at github.com/wiskott-lab/inverse-tvm.
♻ ☆ VideoGLaMM: A Large Multimodal Model for Pixel-Level Visual Grounding in Videos
Fine-grained alignment between videos and text is challenging due to complex spatial and temporal dynamics in videos. Existing video-based Large Multimodal Models (LMMs) handle basic conversations but struggle with precise pixel-level grounding in videos. To address this, we introduce VideoGLaMM, a LMM designed for fine-grained pixel-level grounding in videos based on user-provided textual inputs. Our design seamlessly connects three key components: a Large Language Model, a dual vision encoder that emphasizes both spatial and temporal details, and a spatio-temporal decoder for accurate mask generation. This connection is facilitated via tunable V-L and L-V adapters that enable close Vision-Language (VL) alignment. The architecture is trained to synchronize both spatial and temporal elements of video content with textual instructions. To enable fine-grained grounding, we curate a multimodal dataset featuring detailed visually-grounded conversations using a semiautomatic annotation pipeline, resulting in a diverse set of 38k video-QA triplets along with 83k objects and 671k masks. We evaluate VideoGLaMM on three challenging tasks: Grounded Conversation Generation, Visual Grounding, and Referring Video Segmentation. Experimental results show that our model consistently outperforms existing approaches across all three tasks.
comment: Technical Report of VideoGLaMM
♻ ☆ PCDreamer: Point Cloud Completion Through Multi-view Diffusion Priors
This paper presents PCDreamer, a novel method for point cloud completion. Traditional methods typically extract features from partial point clouds to predict missing regions, but the large solution space often leads to unsatisfactory results. More recent approaches have started to use images as extra guidance, effectively improving performance, but obtaining paired data of images and partial point clouds is challenging in practice. To overcome these limitations, we harness the relatively view-consistent multi-view diffusion priors within large models, to generate novel views of the desired shape. The resulting image set encodes both global and local shape cues, which are especially beneficial for shape completion. To fully exploit the priors, we have designed a shape fusion module for producing an initial complete shape from multi-modality input (i.e.,, images and point clouds), and a follow-up shape consolidation module to obtain the final complete shape by discarding unreliable points introduced by the inconsistency from diffusion priors. Extensive experimental results demonstrate our superior performance, especially in recovering fine details.
comment: Project page: https://gsw-d.github.io/PCDreamer/
♻ ☆ Dissecting CLIP: Decomposition with a Schur Complement-based Approach
The use of CLIP embeddings to assess the alignment of samples produced by text-to-image generative models has been extensively explored in the literature. While the widely adopted CLIPScore, derived from the cosine similarity of text and image embeddings, effectively measures the relevance of a generated image, it does not quantify the diversity of images generated by a text-to-image model. In this work, we extend the application of CLIP embeddings to quantify and interpret the intrinsic diversity of text-to-image models, which is responsible for generating diverse images from similar text prompts. To achieve this, we propose a decomposition of the CLIP-based kernel covariance matrix of image data into text-based and non-text-based components. Using the Schur complement of the joint image-text kernel covariance matrix, we perform this decomposition and define the matrix-based entropy of the decomposed component as the \textit{Schur Complement Entropy (SCE)} score, a measure of the intrinsic diversity of a text-to-image model based on data collected with varying text prompts. Additionally, we demonstrate the use of the Schur complement-based decomposition to nullify the influence of a given prompt in the CLIP embedding of an image, enabling focus or defocus of embeddings on specific objects or properties for downstream tasks. We present several numerical results that apply our Schur complement-based approach to evaluate text-to-image models and modify CLIP image embeddings. The codebase is available at https://github.com/aziksh-ospanov/CLIP-DISSECTION
♻ ☆ Synergizing Motion and Appearance: Multi-Scale Compensatory Codebooks for Talking Head Video Generation CVPR 2025
Talking head video generation aims to generate a realistic talking head video that preserves the person's identity from a source image and the motion from a driving video. Despite the promising progress made in the field, it remains a challenging and critical problem to generate videos with accurate poses and fine-grained facial details simultaneously. Essentially, facial motion is often highly complex to model precisely, and the one-shot source face image cannot provide sufficient appearance guidance during generation due to dynamic pose changes. To tackle the problem, we propose to jointly learn motion and appearance codebooks and perform multi-scale codebook compensation to effectively refine both the facial motion conditions and appearance features for talking face image decoding. Specifically, the designed multi-scale motion and appearance codebooks are learned simultaneously in a unified framework to store representative global facial motion flow and appearance patterns. Then, we present a novel multi-scale motion and appearance compensation module, which utilizes a transformer-based codebook retrieval strategy to query complementary information from the two codebooks for joint motion and appearance compensation. The entire process produces motion flows of greater flexibility and appearance features with fewer distortions across different scales, resulting in a high-quality talking head video generation framework. Extensive experiments on various benchmarks validate the effectiveness of our approach and demonstrate superior generation results from both qualitative and quantitative perspectives when compared to state-of-the-art competitors.
comment: Accepted by CVPR 2025. Project page: https://shaelynz.github.io/synergize-motion-appearance/
♻ ☆ DiffusionAct: Controllable Diffusion Autoencoder for One-shot Face Reenactment
Video-driven neural face reenactment aims to synthesize realistic facial images that successfully preserve the identity and appearance of a source face, while transferring the target head pose and facial expressions. Existing GAN-based methods suffer from either distortions and visual artifacts or poor reconstruction quality, i.e., the background and several important appearance details, such as hair style/color, glasses and accessories, are not faithfully reconstructed. Recent advances in Diffusion Probabilistic Models (DPMs) enable the generation of high-quality realistic images. To this end, in this paper we present DiffusionAct, a novel method that leverages the photo-realistic image generation of diffusion models to perform neural face reenactment. Specifically, we propose to control the semantic space of a Diffusion Autoencoder (DiffAE), in order to edit the facial pose of the input images, defined as the head pose orientation and the facial expressions. Our method allows one-shot, self, and cross-subject reenactment, without requiring subject-specific fine-tuning. We compare against state-of-the-art GAN-, StyleGAN2-, and diffusion-based methods, showing better or on-par reenactment performance.
comment: Project page: https://stelabou.github.io/diffusionact/
♻ ☆ Lost in Time: A New Temporal Benchmark for VideoLLMs
Large language models have demonstrated impressive performance when integrated with vision models even enabling video understanding. However, evaluating video models presents its own unique challenges, for which several benchmarks have been proposed. In this paper, we show that the currently most used video-language benchmarks can be solved without requiring much temporal reasoning. We identified three main issues in existing datasets: (i) static information from single frames is often sufficient to solve the tasks (ii) the text of the questions and candidate answers is overly informative, allowing models to answer correctly without relying on any visual input (iii) world knowledge alone can answer many of the questions, making the benchmarks a test of knowledge replication rather than video reasoning. In addition, we found that open-ended question-answering benchmarks for video understanding suffer from similar issues while the automatic evaluation process with LLMs is unreliable, making it an unsuitable alternative. As a solution, we propose TVBench, a novel open-source video multiple-choice question-answering benchmark, and demonstrate through extensive evaluations that it requires a high level of temporal understanding. Surprisingly, we find that most recent state-of-the-art video-language models perform similarly to random performance on TVBench, with only a few models such as Qwen2-VL, and Tarsier clearly surpassing this baseline.
♻ ☆ RoboMatrix: A Skill-centric Hierarchical Framework for Scalable Robot Task Planning and Execution in Open-World
Existing robot policies predominantly adopt the task-centric approach, requiring end-to-end task data collection. This results in limited generalization to new tasks and difficulties in pinpointing errors within long-horizon, multi-stage tasks. To address this, we propose RoboMatrix, a skill-centric hierarchical framework designed for scalable robot task planning and execution in open-world environments. RoboMatrix extracts general meta-skills from diverse complex tasks, enabling the completion of unseen tasks through skill composition. Its architecture consists of a high-level scheduling layer that utilizes large language models (LLMs) for task decomposition, an intermediate skill layer housing meta-skill models, and a low-level hardware layer for robot control. A key innovation of our work is the introduction of the first unified vision-language-action (VLA) model capable of seamlessly integrating both movement and manipulation within one model. This is achieved by combining vision and language prompts to generate discrete actions. Experimental results demonstrate that RoboMatrix achieves a 50% higher success rate than task-centric baselines when applied to unseen objects, scenes, and tasks. To advance open-world robotics research, we will open-source code, hardware designs, model weights, and datasets at https://github.com/WayneMao/RoboMatrix.
comment: 17 pages, 16 figures
♻ ☆ Text-driven 3D Human Generation via Contrastive Preference Optimization
Recent advances in Score Distillation Sampling (SDS) have improved 3D human generation from textual descriptions. However, existing methods still face challenges in accurately aligning 3D models with long and complex textual inputs. To address this challenge, we propose a novel framework that introduces contrastive preferences, where human-level preference models, guided by both positive and negative prompts, assist SDS for improved alignment. Specifically, we design a preference optimization module that integrates multiple models to comprehensively capture the full range of textual features. Furthermore, we introduce a negation preference module to mitigate over-optimization of irrelevant details by leveraging static-dynamic negation prompts, effectively preventing ``reward hacking". Extensive experiments demonstrate that our method achieves state-of-the-art results, significantly enhancing texture realism and visual alignment with textual descriptions, particularly for long and complex inputs.
comment: 10+2
TrafficLoc: Localizing Traffic Surveillance Cameras in 3D Scenes
We tackle the problem of localizing traffic cameras within a 3D reference map and propose a novel image-to-point cloud registration (I2P) method, TrafficLoc, in a coarse-tofine matching fashion. To overcome the lack of large-scale real-world intersection datasets, we first introduce Carla Intersection, a new simulated dataset with 75 urban and rural intersections in Carla. We find that current I2P methods struggle with cross-modal matching under large viewpoint differences, especially at traffic intersections. TrafficLoc thus employs a novel Geometry-guided Attention Loss (GAL) to focus only on the corresponding geometric regions under different viewpoints during 2D-3D feature fusion. To address feature inconsistency in paired image patch-point groups, we further propose Inter-intra Contrastive Learning (ICL) to enhance separating 2D patch/3D group features within each intra-modality and introduce Dense Training Alignment (DTA) with soft-argmax for improving position regression. Extensive experiments show our TrafficLoc greatly improves the performance over the SOTA I2P methods (up to 86%) on Carla Intersection and generalizes well to real-world data. TrafficLoc also achieves new SOTA performance on KITTI and NuScenes datasets, demonstrating the superiority across both in-vehicle and traffic cameras. Our project page is publicly available at https://tum-luk.github.io/projects/trafficloc/.
♻ ☆ RelationField: Relate Anything in Radiance Fields CVPR 2025
Neural radiance fields are an emerging 3D scene representation and recently even been extended to learn features for scene understanding by distilling open-vocabulary features from vision-language models. However, current method primarily focus on object-centric representations, supporting object segmentation or detection, while understanding semantic relationships between objects remains largely unexplored. To address this gap, we propose RelationField, the first method to extract inter-object relationships directly from neural radiance fields. RelationField represents relationships between objects as pairs of rays within a neural radiance field, effectively extending its formulation to include implicit relationship queries. To teach RelationField complex, open-vocabulary relationships, relationship knowledge is distilled from multi-modal LLMs. To evaluate RelationField, we solve open-vocabulary 3D scene graph generation tasks and relationship-guided instance segmentation, achieving state-of-the-art performance in both tasks. See the project website at https://relationfield.github.io.
comment: CVPR 2025. Project page: https://relationfield.github.io
Artificial Intelligence 182
☆ CAFe: Unifying Representation and Generation with Contrastive-Autoregressive Finetuning
The rapid advancement of large vision-language models (LVLMs) has driven significant progress in multimodal tasks, enabling models to interpret, reason, and generate outputs across both visual and textual domains. While excelling in generative tasks, existing LVLMs often face limitations in tasks requiring high-fidelity representation learning, such as generating image or text embeddings for retrieval. Recent work has proposed finetuning LVLMs for representational learning, but the fine-tuned model often loses its generative capabilities due to the representational learning training paradigm. To address this trade-off, we introduce CAFe, a contrastive-autoregressive fine-tuning framework that enhances LVLMs for both representation and generative tasks. By integrating a contrastive objective with autoregressive language modeling, our approach unifies these traditionally separate tasks, achieving state-of-the-art results in both multimodal retrieval and multimodal generative benchmarks, including object hallucination (OH) mitigation. CAFe establishes a novel framework that synergizes embedding and generative functionalities in a single model, setting a foundation for future multimodal models that excel in both retrieval precision and coherent output generation.
☆ A proposal for an incident regime that tracks and counters threats to national security posed by AI systems
Recent progress in AI capabilities has heightened concerns that AI systems could pose a threat to national security, for example, by making it easier for malicious actors to perform cyberattacks on critical national infrastructure, or through loss of control of autonomous AI systems. In parallel, federal legislators in the US have proposed nascent 'AI incident regimes' to identify and counter similar threats. In this paper, we consolidate these two trends and present a proposal for a legally mandated post-deployment AI incident regie that aims to counter potential national security threats from AI systems. We start the paper by introducing the concept of 'security-critical' to describe doctors that pose extreme risks to national security, before arguing that 'security-critical' describes civilian nuclear power, aviation, life science dual-use research of concern, and frontier AI development. We then present in detail our AI incident regime proposal,, justifying each component of the proposal by demonstrating its similarity to US domestic incident regimes in other 'security-critical' sectors. Finally, we sketch a hypothetical scenario where our proposed AI incident regime deals with an AI cyber incident. Our proposed AI incident regime is split into three phases. The first phase revolves around a novel operationalization of what counts as an 'AI incident' and we suggest that AI providers must create a 'national security case' before deploying a frontier AI system. The second and third phases spell out that AI providers should notify a government agency about incidents, and that the government agency should be involved in amending AI providers' security and safety procedures, in order to counter future threats to national security. Our proposal is timely, given ongoing policy interest in the potential national security threats posed by AI systems.
Dynamics of Structured Complex-Valued Hopfield Neural Networks
In this paper, we explore the dynamics of structured complex-valued Hopfield neural networks (CvHNNs), which arise when the synaptic weight matrix possesses specific structural properties. We begin by analyzing CvHNNs with a Hermitian synaptic weight matrix and establish the existence of four-cycle dynamics in CvHNNs with skew-Hermitian weight matrices operating synchronously. Furthermore, we introduce two new classes of complex-valued matrices: braided Hermitian and braided skew-Hermitian matrices. We demonstrate that CvHNNs utilizing these matrix types exhibit cycles of length eight when operating in full parallel update mode. Finally, we conduct extensive computational experiments on synchronous CvHNNs, exploring other synaptic weight matrix structures. The findings provide a comprehensive overview of the dynamics of structured CvHNNs, offering insights that may contribute to developing improved associative memory models when integrated with suitable learning rules.
☆ Geometric Meta-Learning via Coupled Ricci Flow: Unifying Knowledge Representation and Quantum Entanglement
This paper establishes a unified framework integrating geometric flows with deep learning through three fundamental innovations. First, we propose a thermodynamically coupled Ricci flow that dynamically adapts parameter space geometry to loss landscape topology, formally proved to preserve isometric knowledge embedding (Theorem~\ref{thm:isometric}). Second, we derive explicit phase transition thresholds and critical learning rates (Theorem~\ref{thm:critical}) through curvature blowup analysis, enabling automated singularity resolution via geometric surgery (Lemma~\ref{lem:surgery}). Third, we establish an AdS/CFT-type holographic duality (Theorem~\ref{thm:ads}) between neural networks and conformal field theories, providing entanglement entropy bounds for regularization design. Experiments demonstrate 2.1$\times$ convergence acceleration and 63\% topological simplification while maintaining $\mathcal{O}(N\log N)$ complexity, outperforming Riemannian baselines by 15.2\% in few-shot accuracy. Theoretically, we prove exponential stability (Theorem~\ref{thm:converge}) through a new Lyapunov function combining Perelman entropy with Wasserstein gradient flows, fundamentally advancing geometric deep learning.
comment: 9 pages, submitted to IEEE PAMI
☆ GENIUS: A Generative Framework for Universal Multimodal Search CVPR 2025
Generative retrieval is an emerging approach in information retrieval that generates identifiers (IDs) of target data based on a query, providing an efficient alternative to traditional embedding-based retrieval methods. However, existing models are task-specific and fall short of embedding-based retrieval in performance. This paper proposes GENIUS, a universal generative retrieval framework supporting diverse tasks across multiple modalities and domains. At its core, GENIUS introduces modality-decoupled semantic quantization, transforming multimodal data into discrete IDs encoding both modality and semantics. Moreover, to enhance generalization, we propose a query augmentation that interpolates between a query and its target, allowing GENIUS to adapt to varied query forms. Evaluated on the M-BEIR benchmark, it surpasses prior generative methods by a clear margin. Unlike embedding-based retrieval, GENIUS consistently maintains high retrieval speed across database size, with competitive performance across multiple benchmarks. With additional re-ranking, GENIUS often achieves results close to those of embedding-based methods while preserving efficiency.
comment: Accepted to CVPR 2025
☆ Guarding against artificial intelligence--hallucinated citations: the case for full-text reference deposit
The tendency of generative artificial intelligence (AI) systems to "hallucinate" false information is well-known; AI-generated citations to non-existent sources have made their way into the reference lists of peer-reviewed publications. Here, I propose a solution to this problem, taking inspiration from the Transparency and Openness Promotion (TOP) data sharing guidelines, the clash of generative AI with the American judiciary, and the precedent set by submissions of prior art to the United States Patent and Trademark Office. Journals should require authors to submit the full text of each cited source along with their manuscripts, thereby preventing authors from citing any material whose full text they cannot produce. This solution requires limited additional work on the part of authors or editors while effectively immunizing journals against hallucinated references.
comment: 3 pages
☆ A Comparative Analysis of Word Segmentation, Part-of-Speech Tagging, and Named Entity Recognition for Historical Chinese Sources, 1900-1950 NAACL 2025
This paper compares large language models (LLMs) and traditional natural language processing (NLP) tools for performing word segmentation, part-of-speech (POS) tagging, and named entity recognition (NER) on Chinese texts from 1900 to 1950. Historical Chinese documents pose challenges for text analysis due to their logographic script, the absence of natural word boundaries, and significant linguistic changes. Using a sample dataset from the Shanghai Library Republican Journal corpus, traditional tools such as Jieba and spaCy are compared to LLMs, including GPT-4o, Claude 3.5, and the GLM series. The results show that LLMs outperform traditional methods in all metrics, albeit at considerably higher computational costs, highlighting a trade-off between accuracy and efficiency. Additionally, LLMs better handle genre-specific challenges such as poetry and temporal variations (i.e., pre-1920 versus post-1920 texts), demonstrating that their contextual learning capabilities can advance NLP approaches to historical texts by reducing the need for domain-specific training data.
comment: Accepted to NLP4DH 2025 at NAACL 2025
GyralNet Subnetwork Partitioning via Differentiable Spectral Modularity Optimization
Understanding the structural and functional organization of the human brain requires a detailed examination of cortical folding patterns, among which the three-hinge gyrus (3HG) has been identified as a key structural landmark. GyralNet, a network representation of cortical folding, models 3HGs as nodes and gyral crests as edges, highlighting their role as critical hubs in cortico-cortical connectivity. However, existing methods for analyzing 3HGs face significant challenges, including the sub-voxel scale of 3HGs at typical neuroimaging resolutions, the computational complexity of establishing cross-subject correspondences, and the oversimplification of treating 3HGs as independent nodes without considering their community-level relationships. To address these limitations, we propose a fully differentiable subnetwork partitioning framework that employs a spectral modularity maximization optimization strategy to modularize the organization of 3HGs within GyralNet. By incorporating topological structural similarity and DTI-derived connectivity patterns as attribute features, our approach provides a biologically meaningful representation of cortical organization. Extensive experiments on the Human Connectome Project (HCP) dataset demonstrate that our method effectively partitions GyralNet at the individual level while preserving the community-level consistency of 3HGs across subjects, offering a robust foundation for understanding brain connectivity.
comment: 10 pages, 3 figures
☆ Bitstream Collisions in Neural Image Compression via Adversarial Perturbations
Neural image compression (NIC) has emerged as a promising alternative to classical compression techniques, offering improved compression ratios. Despite its progress towards standardization and practical deployment, there has been minimal exploration into it's robustness and security. This study reveals an unexpected vulnerability in NIC - bitstream collisions - where semantically different images produce identical compressed bitstreams. Utilizing a novel whitebox adversarial attack algorithm, this paper demonstrates that adding carefully crafted perturbations to semantically different images can cause their compressed bitstreams to collide exactly. The collision vulnerability poses a threat to the practical usability of NIC, particularly in security-critical applications. The cause of the collision is analyzed, and a simple yet effective mitigation method is presented.
☆ Thinking agents for zero-shot generalization to qualitatively novel tasks
Intelligent organisms can solve truly novel problems which they have never encountered before, either in their lifetime or their evolution. An important component of this capacity is the ability to ``think'', that is, to mentally manipulate objects, concepts and behaviors in order to plan and evaluate possible solutions to novel problems, even without environment interaction. To generate problems that are truly qualitatively novel, while still solvable zero-shot (by mental simulation), we use the combinatorial nature of environments: we train the agent while withholding a specific combination of the environment's elements. The novel test task, based on this combination, is thus guaranteed to be truly novel, while still mentally simulable since the agent has been exposed to each individual element (and their pairwise interactions) during training. We propose a method to train agents endowed with world models to make use their mental simulation abilities, by selecting tasks based on the difference between the agent's pre-thinking and post-thinking performance. When tested on the novel, withheld problem, the resulting agent successfully simulated alternative scenarios and used the resulting information to guide its behavior in the actual environment, solving the novel task in a single real-environment trial (zero-shot).
☆ Guidelines For The Choice Of The Baseline in XAI Attribution Methods
Given the broad adoption of artificial intelligence, it is essential to provide evidence that AI models are reliable, trustable, and fair. To this end, the emerging field of eXplainable AI develops techniques to probe such requirements, counterbalancing the hype pushing the pervasiveness of this technology. Among the many facets of this issue, this paper focuses on baseline attribution methods, aiming at deriving a feature attribution map at the network input relying on a "neutral" stimulus usually called "baseline". The choice of the baseline is crucial as it determines the explanation of the network behavior. In this framework, this paper has the twofold goal of shedding light on the implications of the choice of the baseline and providing a simple yet effective method for identifying the best baseline for the task. To achieve this, we propose a decision boundary sampling method, since the baseline, by definition, lies on the decision boundary, which naturally becomes the search domain. Experiments are performed on synthetic examples and validated relying on state-of-the-art methods. Despite being limited to the experimental scope, this contribution is relevant as it offers clear guidelines and a simple proxy for baseline selection, reducing ambiguity and enhancing deep models' reliability and trust.
☆ Simulating Tracking Data to Advance Sports Analytics Research AAMAS
Advanced analytics have transformed how sports teams operate, particularly in episodic sports like baseball. Their impact on continuous invasion sports, such as soccer and ice hockey, has been limited due to increased game complexity and restricted access to high-resolution game tracking data. In this demo, we present a method to collect and utilize simulated soccer tracking data from the Google Research Football environment to support the development of models designed for continuous tracking data. The data is stored in a schema that is representative of real tracking data and we provide processes that extract high-level features and events. We include examples of established tracking data models to showcase the efficacy of the simulated data. We address the scarcity of publicly available tracking data, providing support for research at the intersection of artificial intelligence and sports analytics.
comment: 2 pages, 2 figures, Proceedings of the 24th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS)
☆ LENVIZ: A High-Resolution Low-Exposure Night Vision Benchmark Dataset
Low-light image enhancement is crucial for a myriad of applications, from night vision and surveillance, to autonomous driving. However, due to the inherent limitations that come in hand with capturing images in low-illumination environments, the task of enhancing such scenes still presents a formidable challenge. To advance research in this field, we introduce our Low Exposure Night Vision (LENVIZ) Dataset, a comprehensive multi-exposure benchmark dataset for low-light image enhancement comprising of over 230K frames showcasing 24K real-world indoor and outdoor, with-and without human, scenes. Captured using 3 different camera sensors, LENVIZ offers a wide range of lighting conditions, noise levels, and scene complexities, making it the largest publicly available up-to 4K resolution benchmark in the field. LENVIZ includes high quality human-generated ground truth, for which each multi-exposure low-light scene has been meticulously curated and edited by expert photographers to ensure optimal image quality. Furthermore, we also conduct a comprehensive analysis of current state-of-the-art low-light image enhancement techniques on our dataset and highlight potential areas of improvement.
comment: Dataset will be released upon publication
☆ SeLIP: Similarity Enhanced Contrastive Language Image Pretraining for Multi-modal Head MRI
Despite that deep learning (DL) methods have presented tremendous potential in many medical image analysis tasks, the practical applications of medical DL models are limited due to the lack of enough data samples with manual annotations. By noting that the clinical radiology examinations are associated with radiology reports that describe the images, we propose to develop a foundation model for multi-model head MRI by using contrastive learning on the images and the corresponding radiology findings. In particular, a contrastive learning framework is proposed, where a mixed syntax and semantic similarity matching metric is integrated to reduce the thirst of extreme large dataset in conventional contrastive learning framework. Our proposed similarity enhanced contrastive language image pretraining (SeLIP) is able to effectively extract more useful features. Experiments revealed that our proposed SeLIP performs well in many downstream tasks including image-text retrieval task, classification task, and image segmentation, which highlights the importance of considering the similarities among texts describing different images in developing medical image foundation models.
PAVE: Patching and Adapting Video Large Language Models CVPR2025
Pre-trained video large language models (Video LLMs) exhibit remarkable reasoning capabilities, yet adapting these models to new tasks involving additional modalities or data types (e.g., audio or 3D information) remains challenging. In this paper, we present PAVE, a flexible framework for adapting pre-trained Video LLMs to downstream tasks with side-channel signals, such as audio, 3D cues, or multi-view videos. PAVE introduces lightweight adapters, referred to as "patches," which add a small number of parameters and operations to a base model without modifying its architecture or pre-trained weights. In doing so, PAVE can effectively adapt the pre-trained base model to support diverse downstream tasks, including audio-visual question answering, 3D reasoning, multi-view video recognition, and high frame rate video understanding. Across these tasks, PAVE significantly enhances the performance of the base model, surpassing state-of-the-art task-specific models while incurring a minor cost of ~0.1% additional FLOPs and parameters. Further, PAVE supports multi-task learning and generalizes well across different Video LLMs. Our code is available at https://github.com/dragonlzm/PAVE.
comment: CVPR2025 Camera Ready
☆ Gemma 3 Technical Report
We introduce Gemma 3, a multimodal addition to the Gemma family of lightweight open models, ranging in scale from 1 to 27 billion parameters. This version introduces vision understanding abilities, a wider coverage of languages and longer context - at least 128K tokens. We also change the architecture of the model to reduce the KV-cache memory that tends to explode with long context. This is achieved by increasing the ratio of local to global attention layers, and keeping the span on local attention short. The Gemma 3 models are trained with distillation and achieve superior performance to Gemma 2 for both pre-trained and instruction finetuned versions. In particular, our novel post-training recipe significantly improves the math, chat, instruction-following and multilingual abilities, making Gemma3-4B-IT competitive with Gemma2-27B-IT and Gemma3-27B-IT comparable to Gemini-1.5-Pro across benchmarks. We release all our models to the community.
☆ Splitting Answer Set Programs with respect to Intensionality Statements (Extended Version) AAAI 2023
Splitting a logic program allows us to reduce the task of computing its stable models to similar tasks for its subprograms. This can be used to increase solving performance and prove program correctness. We generalize the conditions under which this technique is applicable, by considering not only dependencies between predicates but also their arguments and context. This allows splitting programs commonly used in practice to which previous results were not applicable.
comment: Extended version of the paper published in AAAI 2023
☆ Inducing Personality in LLM-Based Honeypot Agents: Measuring the Effect on Human-Like Agenda Generation
This paper presents SANDMAN, an architecture for cyber deception that leverages Language Agents to emulate convincing human simulacra. Our 'Deceptive Agents' serve as advanced cyber decoys, designed for high-fidelity engagement with attackers by extending the observation period of attack behaviours. Through experimentation, measurement, and analysis, we demonstrate how a prompt schema based on the five-factor model of personality systematically induces distinct 'personalities' in Large Language Models. Our results highlight the feasibility of persona-driven Language Agents for generating diverse, realistic behaviours, ultimately improving cyber deception strategies.
comment: 11 pages, 1 figure, 6 tables. Accepted to NLPAICS 2024
☆ On What Depends the Robustness of Multi-source Models to Missing Data in Earth Observation?
In recent years, the development of robust multi-source models has emerged in the Earth Observation (EO) field. These are models that leverage data from diverse sources to improve predictive accuracy when there is missing data. Despite these advancements, the factors influencing the varying effectiveness of such models remain poorly understood. In this study, we evaluate the predictive performance of six state-of-the-art multi-source models in predicting scenarios where either a single data source is missing or only a single source is available. Our analysis reveals that the efficacy of these models is intricately tied to the nature of the task, the complementarity among data sources, and the model design. Surprisingly, we observe instances where the removal of certain data sources leads to improved predictive performance, challenging the assumption that incorporating all available data is always beneficial. These findings prompt critical reflections on model complexity and the necessity of all collected data sources, potentially shaping the way for more streamlined approaches in EO applications.
comment: Accepted at IEEE International Geoscience and Remote Sensing Symposium 2025
☆ Invertible Koopman neural operator for data-driven modeling of partial differential equations
Koopman operator theory is a popular candidate for data-driven modeling because it provides a global linearization representation for nonlinear dynamical systems. However, existing Koopman operator-based methods suffer from shortcomings in constructing the well-behaved observable function and its inverse and are inefficient enough when dealing with partial differential equations (PDEs). To address these issues, this paper proposes the Invertible Koopman Neural Operator (IKNO), a novel data-driven modeling approach inspired by the Koopman operator theory and neural operator. IKNO leverages an Invertible Neural Network to parameterize observable function and its inverse simultaneously under the same learnable parameters, explicitly guaranteeing the reconstruction relation, thus eliminating the dependency on the reconstruction loss, which is an essential improvement over the original Koopman Neural Operator (KNO). The structured linear matrix inspired by the Koopman operator theory is parameterized to learn the evolution of observables' low-frequency modes in the frequency space rather than directly in the observable space, sustaining IKNO is resolution-invariant like other neural operators. Moreover, with preprocessing such as interpolation and dimension expansion, IKNO can be extended to operator learning tasks defined on non-Cartesian domains. We fully support the above claims based on rich numerical and real-world examples and demonstrate the effectiveness of IKNO and superiority over other neural operators.
comment: 25 pages, 10 figures
☆ Decoupled Dynamics Framework with Neural Fields for 3D Spatio-temporal Prediction of Vehicle Collisions
This study proposes a neural framework that predicts 3D vehicle collision dynamics by independently modeling global rigid-body motion and local structural deformation. Unlike approaches directly predicting absolute displacement, this method explicitly separates the vehicle's overall translation and rotation from its structural deformation. Two specialized networks form the core of the framework: a quaternion-based Rigid Net for rigid motion and a coordinate-based Deformation Net for local deformation. By independently handling fundamentally distinct physical phenomena, the proposed architecture achieves accurate predictions without requiring separate supervision for each component. The model, trained on only 10% of available simulation data, significantly outperforms baseline models, including single multi-layer perceptron (MLP) and deep operator networks (DeepONet), with prediction errors reduced by up to 83%. Extensive validation demonstrates strong generalization to collision conditions outside the training range, accurately predicting responses even under severe impacts involving extreme velocities and large impact angles. Furthermore, the framework successfully reconstructs high-resolution deformation details from low-resolution inputs without increased computational effort. Consequently, the proposed approach provides an effective, computationally efficient method for rapid and reliable assessment of vehicle safety across complex collision scenarios, substantially reducing the required simulation data and time while preserving prediction fidelity.
comment: 24 pages, 13 figures
☆ Writing as a testbed for open ended agents
Open-ended tasks are particularly challenging for LLMs due to the vast solution space, demanding both expansive exploration and adaptable strategies, especially when success lacks a clear, objective definition. Writing, with its vast solution space and subjective evaluation criteria, provides a compelling testbed for studying such problems. In this paper, we investigate the potential of LLMs to act as collaborative co-writers, capable of suggesting and implementing text improvements autonomously. We analyse three prominent LLMs - Gemini 1.5 Pro, Claude 3.5 Sonnet, and GPT-4o - focusing on how their action diversity, human alignment, and iterative improvement capabilities impact overall performance. This work establishes a framework for benchmarking autonomous writing agents and, more broadly, highlights fundamental challenges and potential solutions for building systems capable of excelling in diverse open-ended domains.
☆ Bootstrap Your Own Views: Masked Ego-Exo Modeling for Fine-grained View-invariant Video Representations CVPR 2025
View-invariant representation learning from egocentric (first-person, ego) and exocentric (third-person, exo) videos is a promising approach toward generalizing video understanding systems across multiple viewpoints. However, this area has been underexplored due to the substantial differences in perspective, motion patterns, and context between ego and exo views. In this paper, we propose a novel masked ego-exo modeling that promotes both causal temporal dynamics and cross-view alignment, called Bootstrap Your Own Views (BYOV), for fine-grained view-invariant video representation learning from unpaired ego-exo videos. We highlight the importance of capturing the compositional nature of human actions as a basis for robust cross-view understanding. Specifically, self-view masking and cross-view masking predictions are designed to learn view-invariant and powerful representations concurrently. Experimental results demonstrate that our BYOV significantly surpasses existing approaches with notable gains across all metrics in four downstream ego-exo video tasks. The code is available at https://github.com/park-jungin/byov.
comment: CVPR 2025 Camera-ready
☆ Optimal Path Planning and Cost Minimization for a Drone Delivery System Via Model Predictive Control
In this study, we formulate the drone delivery problem as a control problem and solve it using Model Predictive Control. Two experiments are performed: The first is on a less challenging grid world environment with lower dimensionality, and the second is with a higher dimensionality and added complexity. The MPC method was benchmarked against three popular Multi-Agent Reinforcement Learning (MARL): Independent $Q$-Learning (IQL), Joint Action Learners (JAL), and Value-Decomposition Networks (VDN). It was shown that the MPC method solved the problem quicker and required fewer optimal numbers of drones to achieve a minimized cost and navigate the optimal path.
comment: 15 pages, 5 figures, Submitted to the 2025 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications
☆ Deep Learning for Speech Emotion Recognition: A CNN Approach Utilizing Mel Spectrograms
This paper explores the application of Convolutional Neural Networks CNNs for classifying emotions in speech through Mel Spectrogram representations of audio files. Traditional methods such as Gaussian Mixture Models and Hidden Markov Models have proven insufficient for practical deployment, prompting a shift towards deep learning techniques. By transforming audio data into a visual format, the CNN model autonomously learns to identify intricate patterns, enhancing classification accuracy. The developed model is integrated into a user-friendly graphical interface, facilitating realtime predictions and potential applications in educational environments. The study aims to advance the understanding of deep learning in speech emotion recognition, assess the models feasibility, and contribute to the integration of technology in learning contexts
comment: 5 pages 8 figures
☆ BiblioPage: A Dataset of Scanned Title Pages for Bibliographic Metadata Extraction ICDAR2025
Manual digitization of bibliographic metadata is time consuming and labor intensive, especially for historical and real-world archives with highly variable formatting across documents. Despite advances in machine learning, the absence of dedicated datasets for metadata extraction hinders automation. To address this gap, we introduce BiblioPage, a dataset of scanned title pages annotated with structured bibliographic metadata. The dataset consists of approximately 2,000 monograph title pages collected from 14 Czech libraries, spanning a wide range of publication periods, typographic styles, and layout structures. Each title page is annotated with 16 bibliographic attributes, including title, contributors, and publication metadata, along with precise positional information in the form of bounding boxes. To extract structured information from this dataset, we valuated object detection models such as YOLO and DETR combined with transformer-based OCR, achieving a maximum mAP of 52 and an F1 score of 59. Additionally, we assess the performance of various visual large language models, including LlamA 3.2-Vision and GPT-4o, with the best model reaching an F1 score of 67. BiblioPage serves as a real-world benchmark for bibliographic metadata extraction, contributing to document understanding, document question answering, and document information extraction. Dataset and evaluation scripts are availible at: https://github.com/DCGM/biblio-dataset
comment: Submitted to ICDAR2025 conference
Towards Reliable Time Series Forecasting under Future Uncertainty: Ambiguity and Novelty Rejection Mechanisms
In real-world time series forecasting, uncertainty and lack of reliable evaluation pose significant challenges. Notably, forecasting errors often arise from underfitting in-distribution data and failing to handle out-of-distribution inputs. To enhance model reliability, we introduce a dual rejection mechanism combining ambiguity and novelty rejection. Ambiguity rejection, using prediction error variance, allows the model to abstain under low confidence, assessed through historical error variance analysis without future ground truth. Novelty rejection, employing Variational Autoencoders and Mahalanobis distance, detects deviations from training data. This dual approach improves forecasting reliability in dynamic environments by reducing errors and adapting to data changes, advancing reliability in complex scenarios.
☆ RGB-Th-Bench: A Dense benchmark for Visual-Thermal Understanding of Vision Language Models
We introduce RGB-Th-Bench, the first benchmark designed to evaluate the ability of Vision-Language Models (VLMs) to comprehend RGB-Thermal image pairs. While VLMs have demonstrated remarkable progress in visual reasoning and multimodal understanding, their evaluation has been predominantly limited to RGB-based benchmarks, leaving a critical gap in assessing their capabilities in infrared vision tasks. Existing visible-infrared datasets are either task-specific or lack high-quality annotations necessary for rigorous model evaluation. To address these limitations, RGB-Th-Bench provides a comprehensive evaluation framework covering 14 distinct skill dimensions, with a total of 1,600+ expert-annotated Yes/No questions. The benchmark employs two accuracy metrics: a standard question-level accuracy and a stricter skill-level accuracy, which evaluates model robustness across multiple questions within each skill dimension. This design ensures a thorough assessment of model performance, including resilience to adversarial and hallucinated responses. We conduct extensive evaluations on 19 state-of-the-art VLMs, revealing significant performance gaps in RGB-Thermal understanding. Our results show that even the strongest models struggle with thermal image comprehension, with performance heavily constrained by their RGB-based capabilities. Additionally, the lack of large-scale application-specific and expert-annotated thermal-caption-pair datasets in pre-training is an important reason of the observed performance gap. RGB-Th-Bench highlights the urgent need for further advancements in multimodal learning to bridge the gap between visible and thermal image understanding. The dataset is available through this link, and the evaluation code will also be made publicly available.
☆ OpenSDI: Spotting Diffusion-Generated Images in the Open World
This paper identifies OpenSDI, a challenge for spotting diffusion-generated images in open-world settings. In response to this challenge, we define a new benchmark, the OpenSDI dataset (OpenSDID), which stands out from existing datasets due to its diverse use of large vision-language models that simulate open-world diffusion-based manipulations. Another outstanding feature of OpenSDID is its inclusion of both detection and localization tasks for images manipulated globally and locally by diffusion models. To address the OpenSDI challenge, we propose a Synergizing Pretrained Models (SPM) scheme to build up a mixture of foundation models. This approach exploits a collaboration mechanism with multiple pretrained foundation models to enhance generalization in the OpenSDI context, moving beyond traditional training by synergizing multiple pretrained models through prompting and attending strategies. Building on this scheme, we introduce MaskCLIP, an SPM-based model that aligns Contrastive Language-Image Pre-Training (CLIP) with Masked Autoencoder (MAE). Extensive evaluations on OpenSDID show that MaskCLIP significantly outperforms current state-of-the-art methods for the OpenSDI challenge, achieving remarkable relative improvements of 14.23% in IoU (14.11% in F1) and 2.05% in accuracy (2.38% in F1) compared to the second-best model in localization and detection tasks, respectively. Our dataset and code are available at https://github.com/iamwangyabin/OpenSDI.
☆ HausaNLP at SemEval-2025 Task 3: Towards a Fine-Grained Model-Aware Hallucination Detection
This paper presents our findings of the Multilingual Shared Task on Hallucinations and Related Observable Overgeneration Mistakes, MU-SHROOM, which focuses on identifying hallucinations and related overgeneration errors in large language models (LLMs). The shared task involves detecting specific text spans that constitute hallucinations in the outputs generated by LLMs in 14 languages. To address this task, we aim to provide a nuanced, model-aware understanding of hallucination occurrences and severity in English. We used natural language inference and fine-tuned a ModernBERT model using a synthetic dataset of 400 samples, achieving an Intersection over Union (IoU) score of 0.032 and a correlation score of 0.422. These results indicate a moderately positive correlation between the model's confidence scores and the actual presence of hallucinations. The IoU score indicates that our model has a relatively low overlap between the predicted hallucination span and the truth annotation. The performance is unsurprising, given the intricate nature of hallucination detection. Hallucinations often manifest subtly, relying on context, making pinpointing their exact boundaries formidable.
☆ Recover from Horcrux: A Spectrogram Augmentation Method for Cardiac Feature Monitoring from Radar Signal Components
Radar-based wellness monitoring is becoming an effective measurement to provide accurate vital signs in a contactless manner, but data scarcity retards the related research on deep-learning-based methods. Data augmentation is commonly used to enrich the dataset by modifying the existing data, but most augmentation techniques can only couple with classification tasks. To enable the augmentation for regression tasks, this research proposes a spectrogram augmentation method, Horcrux, for radar-based cardiac feature monitoring (e.g., heartbeat detection, electrocardiogram reconstruction) with both classification and regression tasks involved. The proposed method is designed to increase the diversity of input samples while the augmented spectrogram is still faithful to the original ground truth vital sign. In addition, Horcrux proposes to inject zero values in specific areas to enhance the awareness of the deep learning model on subtle cardiac features, improving the performance for the limited dataset. Experimental result shows that Horcrux achieves an overall improvement of 16.20% in cardiac monitoring and has the potential to be extended to other spectrogram-based tasks. The code will be released upon publication.
☆ Show or Tell? Effectively prompting Vision-Language Models for semantic segmentation
Large Vision-Language Models (VLMs) are increasingly being regarded as foundation models that can be instructed to solve diverse tasks by prompting, without task-specific training. We examine the seemingly obvious question: how to effectively prompt VLMs for semantic segmentation. To that end, we systematically evaluate the segmentation performance of several recent models guided by either text or visual prompts on the out-of-distribution MESS dataset collection. We introduce a scalable prompting scheme, few-shot prompted semantic segmentation, inspired by open-vocabulary segmentation and few-shot learning. It turns out that VLMs lag far behind specialist models trained for a specific segmentation task, by about 30% on average on the Intersection-over-Union metric. Moreover, we find that text prompts and visual prompts are complementary: each one of the two modes fails on many examples that the other one can solve. Our analysis suggests that being able to anticipate the most effective prompt modality can lead to a 11% improvement in performance. Motivated by our findings, we propose PromptMatcher, a remarkably simple training-free baseline that combines both text and visual prompts, achieving state-of-the-art results outperforming the best text-prompted VLM by 2.5%, and the top visual-prompted VLM by 3.5% on few-shot prompted semantic segmentation.
☆ Analyzable Chain-of-Musical-Thought Prompting for High-Fidelity Music Generation
Autoregressive (AR) models have demonstrated impressive capabilities in generating high-fidelity music. However, the conventional next-token prediction paradigm in AR models does not align with the human creative process in music composition, potentially compromising the musicality of generated samples. To overcome this limitation, we introduce MusiCoT, a novel chain-of-thought (CoT) prompting technique tailored for music generation. MusiCoT empowers the AR model to first outline an overall music structure before generating audio tokens, thereby enhancing the coherence and creativity of the resulting compositions. By leveraging the contrastive language-audio pretraining (CLAP) model, we establish a chain of "musical thoughts", making MusiCoT scalable and independent of human-labeled data, in contrast to conventional CoT methods. Moreover, MusiCoT allows for in-depth analysis of music structure, such as instrumental arrangements, and supports music referencing -- accepting variable-length audio inputs as optional style references. This innovative approach effectively addresses copying issues, positioning MusiCoT as a vital practical method for music prompting. Our experimental results indicate that MusiCoT consistently achieves superior performance across both objective and subjective metrics, producing music quality that rivals state-of-the-art generation models. Our samples are available at https://MusiCoT.github.io/.
comment: Preprint
☆ Enabling Rapid Shared Human-AI Mental Model Alignment via the After-Action Review AAAI 2025
In this work, we present two novel contributions toward improving research in human-machine teaming (HMT): 1) a Minecraft testbed to accelerate testing and deployment of collaborative AI agents and 2) a tool to allow users to revisit and analyze behaviors within an HMT episode to facilitate shared mental model development. Our browser-based Minecraft testbed allows for rapid testing of collaborative agents in a continuous-space, real-time, partially-observable environment with real humans without cumbersome setup typical to human-AI interaction user studies. As Minecraft has an extensive player base and a rich ecosystem of pre-built AI agents, we hope this contribution can help to facilitate research quickly in the design of new collaborative agents and in understanding different human factors within HMT. Our mental model alignment tool facilitates user-led post-mission analysis by including video displays of first-person perspectives of the team members (i.e., the human and AI) that can be replayed, and a chat interface that leverages GPT-4 to provide answers to various queries regarding the AI's experiences and model details.
comment: Accepted to the Cooperative Multi-Agent Systems Decision-making and Learning:Human-Multi-Agent Cognitive Fusion Workshop at AAAI 2025
☆ Innate Reasoning is Not Enough: In-Context Learning Enhances Reasoning Large Language Models with Less Overthinking
Recent advances in Large Language Models (LLMs) have introduced Reasoning Large Language Models (RLLMs), which employ extended thinking processes with reflection and self-correction capabilities, demonstrating the effectiveness of test-time scaling. RLLMs exhibit innate Chain-of-Thought (CoT) reasoning capability obtained from training, leading to a natural question: "Is CoT prompting, a popular In-Context Learning (ICL) method for chat LLMs, necessary to enhance the reasoning capability of RLLMs?" In this work, we present the first comprehensive analysis of the impacts of Zero-shot CoT and Few-shot CoT on RLLMs across mathematical reasoning tasks. We examine models ranging from 1.5B to 32B parameters, finding that contrary to concerns, CoT prompting significantly enhances RLLMs' performance in most scenarios. Our results reveal distinct patterns: large-capacity models show minimal improvement on simple tasks but substantial gains on complex problems, while smaller models exhibit the opposite behavior. Further analysis demonstrates that CoT prompting effectively controls the distribution of the numbers of thinking tokens and reasoning steps, reducing excessive reflections by approximately 90% in some cases. Moreover, attention logits analysis reveals the RLLMs' overfitting to reflection-related words, which is mitigated by external CoT guidance. Notably, our experiments indicate that for RLLMs, one-shot CoT consistently yields superior performance compared to Few-shot CoT approaches. Our findings provide important insights for optimizing RLLMs' performance through appropriate prompting strategies.
☆ HoarePrompt: Structural Reasoning About Program Correctness in Natural Language
While software requirements are often expressed in natural language, verifying the correctness of a program against natural language requirements is a hard and underexplored problem. Large language models (LLMs) are promising candidates for addressing this challenge, however our experience shows that they are ineffective in this task, often failing to detect even straightforward bugs. To address this gap, we introduce HoarePrompt, a novel approach that adapts fundamental ideas from program analysis and verification to natural language artifacts. Drawing inspiration from the strongest postcondition calculus, HoarePrompt employs a systematic, step-by-step process in which an LLM generates natural language descriptions of reachable program states at various points in the code. To manage loops, we propose few-shot-driven k-induction, an adaptation of the k-induction method widely used in model checking. Once program states are described, HoarePrompt leverages the LLM to assess whether the program, annotated with these state descriptions, conforms to the natural language requirements. For evaluating the quality of classifiers of program correctness with respect to natural language requirements, we constructed CoCoClaNeL, a challenging dataset of solutions to programming competition problems. Our experiments show that HoarePrompt improves the MCC by 62% compared to directly using Zero-shot-CoT prompts for correctness classification. Furthermore, HoarePrompt outperforms a classifier that assesses correctness via LLM-based test generation by increasing the MCC by 93%. The inductive reasoning mechanism contributes a 28% boost to MCC, underscoring its effectiveness in managing loops.
☆ FedMM-X: A Trustworthy and Interpretable Framework for Federated Multi-Modal Learning in Dynamic Environments
As artificial intelligence systems increasingly operate in Real-world environments, the integration of multi-modal data sources such as vision, language, and audio presents both unprecedented opportunities and critical challenges for achieving trustworthy intelligence. In this paper, we propose a novel framework that unifies federated learning with explainable multi-modal reasoning to ensure trustworthiness in decentralized, dynamic settings. Our approach, called FedMM-X (Federated Multi-Modal Explainable Intelligence), leverages cross-modal consistency checks, client-level interpretability mechanisms, and dynamic trust calibration to address challenges posed by data heterogeneity, modality imbalance, and out-of-distribution generalization. Through rigorous evaluation across federated multi-modal benchmarks involving vision-language tasks, we demonstrate improved performance in both accuracy and interpretability while reducing vulnerabilities to adversarial and spurious correlations. Further, we introduce a novel trust score aggregation method to quantify global model reliability under dynamic client participation. Our findings pave the way toward developing robust, interpretable, and socially responsible AI systems in Real-world environments.
☆ FLEX: A Benchmark for Evaluating Robustness of Fairness in Large Language Models NAACL 2025
Recent advancements in Large Language Models (LLMs) have significantly enhanced interactions between users and models. These advancements concurrently underscore the need for rigorous safety evaluations due to the manifestation of social biases, which can lead to harmful societal impacts. Despite these concerns, existing benchmarks may overlook the intrinsic weaknesses of LLMs, which can generate biased responses even with simple adversarial instructions. To address this critical gap, we introduce a new benchmark, Fairness Benchmark in LLM under Extreme Scenarios (FLEX), designed to test whether LLMs can sustain fairness even when exposed to prompts constructed to induce bias. To thoroughly evaluate the robustness of LLMs, we integrate prompts that amplify potential biases into the fairness assessment. Comparative experiments between FLEX and existing benchmarks demonstrate that traditional evaluations may underestimate the inherent risks in models. This highlights the need for more stringent LLM evaluation benchmarks to guarantee safety and fairness.
comment: Accepted to NAACL 2025 findings
☆ VectorFit : Adaptive Singular & Bias Vector Fine-Tuning of Pre-trained Foundation Models
Popular PEFT methods achieve parameter efficiency by assuming that incremental weight updates are inherently low-rank, which often leads to a performance gap compared to full fine-tuning. While recent methods have attempted to address this limitation, they typically lack sufficient parameter and memory efficiency. We propose VectorFit, an effective and easily deployable approach that adaptively trains the singular vectors and biases of pre-trained weight matrices. We demonstrate that the utilization of structural and transformational characteristics of pre-trained weights enables high-rank updates comparable to those of full fine-tuning. As a result, VectorFit achieves superior performance with 9X less trainable parameters compared to state-of-the-art PEFT methods. Through extensive experiments over 17 datasets spanning diverse language and vision tasks such as natural language understanding and generation, question answering, image classification, and image generation, we exhibit that VectorFit consistently outperforms baselines, even in extremely low-budget scenarios.
☆ RoboFlamingo-Plus: Fusion of Depth and RGB Perception with Vision-Language Models for Enhanced Robotic Manipulation
As robotic technologies advancing towards more complex multimodal interactions and manipulation tasks, the integration of advanced Vision-Language Models (VLMs) has become a key driver in the field. Despite progress with current methods, challenges persist in fusing depth and RGB information within 3D environments and executing tasks guided by linguistic instructions. In response to these challenges, we have enhanced the existing RoboFlamingo framework by introducing RoboFlamingo-Plus, which incorporates depth data into VLMs to significantly improve robotic manipulation performance. Our research achieves a nuanced fusion of RGB and depth information by integrating a pre-trained Vision Transformer (ViT) with a resampling technique, closely aligning this combined data with linguistic cues for superior multimodal understanding. The novelty of RoboFlamingo-Plus lies in its adaptation of inputs for depth data processing, leveraging a pre-trained resampler for depth feature extraction, and employing cross-attention mechanisms for optimal feature integration. These improvements allow RoboFlamingo-Plus to not only deeply understand 3D environments but also easily perform complex, language-guided tasks in challenging settings. Experimental results show that RoboFlamingo-Plus boosts robotic manipulation by 10-20% over current methods, marking a significant advancement. Codes and model weights are public at RoboFlamingo-Plus.
☆ Towards Long-Range ENSO Prediction with an Explainable Deep Learning Model
El Ni\~no-Southern Oscillation (ENSO) is a prominent mode of interannual climate variability with far-reaching global impacts. Its evolution is governed by intricate air-sea interactions, posing significant challenges for long-term prediction. In this study, we introduce CTEFNet, a multivariate deep learning model that synergizes convolutional neural networks and transformers to enhance ENSO forecasting. By integrating multiple oceanic and atmospheric predictors, CTEFNet extends the effective forecast lead time to 20 months while mitigating the impact of the spring predictability barrier, outperforming both dynamical models and state-of-the-art deep learning approaches. Furthermore, CTEFNet offers physically meaningful and statistically significant insights through gradient-based sensitivity analysis, revealing the key precursor signals that govern ENSO dynamics, which align with well-established theories and reveal new insights about inter-basin interactions among the Pacific, Atlantic, and Indian Oceans. The CTEFNet's superior predictive skill and interpretable sensitivity assessments underscore its potential for advancing climate prediction. Our findings highlight the importance of multivariate coupling in ENSO evolution and demonstrate the promise of deep learning in capturing complex climate dynamics with enhanced interpretability.
☆ Pose-Based Fall Detection System: Efficient Monitoring on Standard CPUs
Falls among elderly residents in assisted living homes pose significant health risks, often leading to injuries and a decreased quality of life. Current fall detection solutions typically rely on sensor-based systems that require dedicated hardware, or on video-based models that demand high computational resources and GPUs for real-time processing. In contrast, this paper presents a robust fall detection system that does not require any additional sensors or high-powered hardware. The system uses pose estimation techniques, combined with threshold-based analysis and a voting mechanism, to effectively distinguish between fall and non-fall activities. For pose detection, we leverage MediaPipe, a lightweight and efficient framework that enables real-time processing on standard CPUs with minimal computational overhead. By analyzing motion, body position, and key pose points, the system processes pose features with a 20-frame buffer, minimizing false positives and maintaining high accuracy even in real-world settings. This unobtrusive, resource-efficient approach provides a practical solution for enhancing resident safety in old age homes, without the need for expensive sensors or high-end computational resources.
comment: 4 Pages, 2 figures, 2 code block, 1 flow chart
☆ SMT-EX: An Explainable Surrogate Modeling Toolbox for Mixed-Variables Design Exploration
Surrogate models are of high interest for many engineering applications, serving as cheap-to-evaluate time-efficient approximations of black-box functions to help engineers and practitioners make decisions and understand complex systems. As such, the need for explainability methods is rising and many studies have been performed to facilitate knowledge discovery from surrogate models. To respond to these enquiries, this paper introduces SMT-EX, an enhancement of the open-source Python Surrogate Modeling Toolbox (SMT) that integrates explainability techniques into a state-of-the-art surrogate modelling framework. More precisely, SMT-EX includes three key explainability methods: Shapley Additive Explanations, Partial Dependence Plot, and Individual Conditional Expectations. A peculiar explainability dependency of SMT has been developed for such purpose that can be easily activated once the surrogate model is built, offering a user-friendly and efficient tool for swift insight extraction. The effectiveness of SMT-EX is showcased through two test cases. The first case is a 10-variable wing weight problem with purely continuous variables and the second one is a 3-variable mixed-categorical cantilever beam bending problem. Relying on SMT-EX analyses for these problems, we demonstrate its versatility in addressing a diverse range of problem characteristics. SMT-Explainability is freely available on Github: https://github.com/SMTorg/smt-explainability .
☆ A-MESS: Anchor based Multimodal Embedding with Semantic Synchronization for Multimodal Intent Recognition ICME2025
In the domain of multimodal intent recognition (MIR), the objective is to recognize human intent by integrating a variety of modalities, such as language text, body gestures, and tones. However, existing approaches face difficulties adequately capturing the intrinsic connections between the modalities and overlooking the corresponding semantic representations of intent. To address these limitations, we present the Anchor-based Mul- timodal Embedding with Semantic Synchronization (A-MESS) framework. We first design an Anchor-based Multimodal Embed- ding (A-ME) module that employs an anchor-based embedding fusion mechanism to integrate multimodal inputs. Furthermore, we develop a Semantic Synchronization (SS) strategy with the Triplet Contrastive Learning pipeline, which optimizes the pro- cess by synchronizing multimodal representation with label de- scriptions produced by the large language model. Comprehensive experiments indicate that our A-MESS achieves state-of-the-art and provides substantial insight into multimodal representation and downstream tasks.
comment: Accept by ICME2025
☆ ReSearch: Learning to Reason with Search for LLMs via Reinforcement Learning
Large Language Models (LLMs) have shown remarkable capabilities in reasoning, exemplified by the success of OpenAI-o1 and DeepSeek-R1. However, integrating reasoning with external search processes remains challenging, especially for complex multi-hop questions requiring multiple retrieval steps. We propose ReSearch, a novel framework that trains LLMs to Reason with Search via reinforcement learning without using any supervised data on reasoning steps. Our approach treats search operations as integral components of the reasoning chain, where when and how to perform searches is guided by text-based thinking, and search results subsequently influence further reasoning. We train ReSearch on Qwen2.5-7B(-Instruct) and Qwen2.5-32B(-Instruct) models and conduct extensive experiments. Despite being trained on only one dataset, our models demonstrate strong generalizability across various benchmarks. Analysis reveals that ReSearch naturally elicits advanced reasoning capabilities such as reflection and self-correction during the reinforcement learning process.
comment: Work in progress
☆ Enhancing Small Language Models for Cross-Lingual Generalized Zero-Shot Classification with Soft Prompt Tuning NAACL 2025
In NLP, Zero-Shot Classification (ZSC) has become essential for enabling models to classify text into categories unseen during training, particularly in low-resource languages and domains where labeled data is scarce. While pretrained language models (PLMs) have shown promise in ZSC, they often rely on large training datasets or external knowledge, limiting their applicability in multilingual and low-resource scenarios. Recent approaches leveraging natural language prompts reduce the dependence on large training datasets but struggle to effectively incorporate available labeled data from related classification tasks, especially when these datasets originate from different languages or distributions. Moreover, existing prompt-based methods typically rely on manually crafted prompts in a specific language, limiting their adaptability and effectiveness in cross-lingual settings. To address these challenges, we introduce RoSPrompt, a lightweight and data-efficient approach for training soft prompts that enhance cross-lingual ZSC while ensuring robust generalization across data distribution shifts. RoSPrompt is designed for small multilingual PLMs, enabling them to leverage high-resource languages to improve performance in low-resource settings without requiring extensive fine-tuning or high computational costs. We evaluate our approach on multiple multilingual PLMs across datasets covering 106 languages, demonstrating strong cross-lingual transfer performance and robust generalization capabilities over unseen classes.
comment: Workshop on Language Models for Underserved Communities (co-located with NAACL 2025)
☆ Data-centric Federated Graph Learning with Large Language Models
In federated graph learning (FGL), a complete graph is divided into multiple subgraphs stored in each client due to privacy concerns, and all clients jointly train a global graph model by only transmitting model parameters. A pain point of FGL is the heterogeneity problem, where nodes or structures present non-IID properties among clients (e.g., different node label distributions), dramatically undermining the convergence and performance of FGL. To address this, existing efforts focus on design strategies at the model level, i.e., they design models to extract common knowledge to mitigate heterogeneity. However, these model-level strategies fail to fundamentally address the heterogeneity problem as the model needs to be designed from scratch when transferring to other tasks. Motivated by large language models (LLMs) having achieved remarkable success, we aim to utilize LLMs to fully understand and augment local text-attributed graphs, to address data heterogeneity at the data level. In this paper, we propose a general framework LLM4FGL that innovatively decomposes the task of LLM for FGL into two sub-tasks theoretically. Specifically, for each client, it first utilizes the LLM to generate missing neighbors and then infers connections between generated nodes and raw nodes. To improve the quality of generated nodes, we design a novel federated generation-and-reflection mechanism for LLMs, without the need to modify the parameters of the LLM but relying solely on the collective feedback from all clients. After neighbor generation, all the clients utilize a pre-trained edge predictor to infer the missing edges. Furthermore, our framework can seamlessly integrate as a plug-in with existing FGL methods. Experiments on three real-world datasets demonstrate the superiority of our method compared to advanced baselines.
comment: ongoing work
☆ VecTrans: LLM Transformation Framework for Better Auto-vectorization on High-performance CPU
Large language models (LLMs) have demonstrated great capabilities in code generation, yet their effective application in compiler optimizations remains an open challenge due to issues such as hallucinations and a lack of domain-specific reasoning. Vectorization, a crucial optimization for enhancing code performance, often fails because of the compiler's inability to recognize complex code patterns, which commonly require extensive empirical expertise. LLMs, with their ability to capture intricate patterns, thus providing a promising solution to this challenge. This paper presents VecTrans, a novel framework that leverages LLMs to enhance compiler-based code vectorization. VecTrans first employs compiler analysis to identify potentially vectorizable code regions. It then utilizes an LLM to refactor these regions into patterns that are more amenable to the compiler's auto-vectorization. To ensure semantic correctness, VecTrans further integrates a hybrid validation mechanism at the intermediate representation (IR) level. With the above efforts, VecTrans combines the adaptability of LLMs with the precision of compiler vectorization, thereby effectively opening up the vectorization opportunities. Experimental results show that among all 50 TSVC functions unvectorizable by Clang, GCC, and BiShengCompiler, VecTrans successfully vectorizes 23 cases (46%) and achieves an average speedup of 2.02x, greatly surpassing state-of-the-art performance.
☆ DeCAP: Context-Adaptive Prompt Generation for Debiasing Zero-shot Question Answering in Large Language Models NAACL 2025
While Large Language Models (LLMs) excel in zero-shot Question Answering (QA), they tend to expose biases in their internal knowledge when faced with socially sensitive questions, leading to a degradation in performance. Existing zero-shot methods are efficient but fail to consider context and prevent bias propagation in the answers. To address this, we propose DeCAP, a method for debiasing LLMs using Context-Adaptive Prompt Generation. DeCAP leverages a Question Ambiguity Detection to take appropriate debiasing actions based on the context and a Neutral Answer Guidance Generation to suppress the LLMs make objective judgments about the context, minimizing the propagation of bias from their internal knowledge. Our various experiments across eight LLMs show that DeCAP achieves state-of-the-art zero-shot debiased QA performance. This demonstrates DeCAP's efficacy in enhancing the fairness and accuracy of LLMs in diverse QA settings.
comment: Accepted to NAACL 2025 main. 20 pages, 3 figures
☆ Quantifying Symptom Causality in Clinical Decision Making: An Exploration Using CausaLM
Current machine learning approaches to medical diagnosis often rely on correlational patterns between symptoms and diseases, risking misdiagnoses when symptoms are ambiguous or common across multiple conditions. In this work, we move beyond correlation to investigate the causal influence of key symptoms-specifically "chest pain" on diagnostic predictions. Leveraging the CausaLM framework, we generate counterfactual text representations in which target concepts are effectively "forgotten" enabling a principled estimation of the causal effect of that concept on a model's predicted disease distribution. By employing Textual Representation-based Average Treatment Effect (TReATE), we quantify how the presence or absence of a symptom shapes the model's diagnostic outcomes, and contrast these findings against correlation-based baselines such as CONEXP. Our results offer deeper insight into the decision-making behavior of clinical NLP models and have the potential to inform more trustworthy, interpretable, and causally-grounded decision support tools in medical practice.
☆ Causal invariant geographic network representations with feature and structural distribution shifts
The existing methods learn geographic network representations through deep graph neural networks (GNNs) based on the i.i.d. assumption. However, the spatial heterogeneity and temporal dynamics of geographic data make the out-of-distribution (OOD) generalisation problem particularly salient. The latter are particularly sensitive to distribution shifts (feature and structural shifts) between testing and training data and are the main causes of the OOD generalisation problem. Spurious correlations are present between invariant and background representations due to selection biases and environmental effects, resulting in the model extremes being more likely to learn background representations. The existing approaches focus on background representation changes that are determined by shifts in the feature distributions of nodes in the training and test data while ignoring changes in the proportional distributions of heterogeneous and homogeneous neighbour nodes, which we refer to as structural distribution shifts. We propose a feature-structure mixed invariant representation learning (FSM-IRL) model that accounts for both feature distribution shifts and structural distribution shifts. To address structural distribution shifts, we introduce a sampling method based on causal attention, encouraging the model to identify nodes possessing strong causal relationships with labels or nodes that are more similar to the target node. Inspired by the Hilbert-Schmidt independence criterion, we implement a reweighting strategy to maximise the orthogonality of the node representations, thereby mitigating the spurious correlations among the node representations and suppressing the learning of background representations. Our experiments demonstrate that FSM-IRL exhibits strong learning capabilities on both geographic and social network datasets in OOD scenarios.
comment: 15 pages, 3 figures, 8 tables
☆ DeClotH: Decomposable 3D Cloth and Human Body Reconstruction from a Single Image CVPR 2025
Most existing methods of 3D clothed human reconstruction from a single image treat the clothed human as a single object without distinguishing between cloth and human body. In this regard, we present DeClotH, which separately reconstructs 3D cloth and human body from a single image. This task remains largely unexplored due to the extreme occlusion between cloth and the human body, making it challenging to infer accurate geometries and textures. Moreover, while recent 3D human reconstruction methods have achieved impressive results using text-to-image diffusion models, directly applying such an approach to this problem often leads to incorrect guidance, particularly in reconstructing 3D cloth. To address these challenges, we propose two core designs in our framework. First, to alleviate the occlusion issue, we leverage 3D template models of cloth and human body as regularizations, which provide strong geometric priors to prevent erroneous reconstruction by the occlusion. Second, we introduce a cloth diffusion model specifically designed to provide contextual information about cloth appearance, thereby enhancing the reconstruction of 3D cloth. Qualitative and quantitative experiments demonstrate that our proposed approach is highly effective in reconstructing both 3D cloth and the human body. More qualitative results are provided at https://hygenie1228.github.io/DeClotH/.
comment: Published at CVPR 2025, 17 pages including the supplementary material
☆ Flow to Learn: Flow Matching on Neural Network Parameters ICLR
Foundational language models show a remarkable ability to learn new concepts during inference via context data. However, similar work for images lag behind. To address this challenge, we introduce FLoWN, a flow matching model that learns to generate neural network parameters for different tasks. Our approach models the flow on latent space, while conditioning the process on context data. Experiments verify that FLoWN attains various desiderata for a meta-learning model. In addition, it matches or exceeds baselines on in-distribution tasks, provides better initializations for classifier training, and is performant on out-of-distribution few-shot tasks while having a fine-tuning mechanism to improve performance.
comment: Accepted at the ICLR Workshop on Neural Network Weights as a New Data Modality 2025
☆ Efficient IoT Intrusion Detection with an Improved Attention-Based CNN-BiLSTM Architecture
The ever-increasing security vulnerabilities in the Internet-of-Things (IoT) systems require improved threat detection approaches. This paper presents a compact and efficient approach to detect botnet attacks by employing an integrated approach that consists of traffic pattern analysis, temporal support learning, and focused feature extraction. The proposed attention-based model benefits from a hybrid CNN-BiLSTM architecture and achieves 99% classification accuracy in detecting botnet attacks utilizing the N-BaIoT dataset, while maintaining high precision and recall across various scenarios. The proposed model's performance is further validated by key parameters, such as Mathews Correlation Coefficient and Cohen's kappa Correlation Coefficient. The close-to-ideal results for these parameters demonstrate the proposed model's ability to detect botnet attacks accurately and efficiently in practical settings and on unseen data. The proposed model proved to be a powerful defense mechanism for IoT networks to face emerging security challenges.
☆ Wavelet-based Global-Local Interaction Network with Cross-Attention for Multi-View Diabetic Retinopathy Detection ICME
Multi-view diabetic retinopathy (DR) detection has recently emerged as a promising method to address the issue of incomplete lesions faced by single-view DR. However, it is still challenging due to the variable sizes and scattered locations of lesions. Furthermore, existing multi-view DR methods typically merge multiple views without considering the correlations and redundancies of lesion information across them. Therefore, we propose a novel method to overcome the challenges of difficult lesion information learning and inadequate multi-view fusion. Specifically, we introduce a two-branch network to obtain both local lesion features and their global dependencies. The high-frequency component of the wavelet transform is used to exploit lesion edge information, which is then enhanced by global semantic to facilitate difficult lesion learning. Additionally, we present a cross-view fusion module to improve multi-view fusion and reduce redundancy. Experimental results on large public datasets demonstrate the effectiveness of our method. The code is open sourced on https://github.com/HuYongting/WGLIN.
comment: Accepted by IEEE International Conference on Multimedia & Expo (ICME) 2025
☆ Substance over Style: Evaluating Proactive Conversational Coaching Agents
While NLP research has made strides in conversational tasks, many approaches focus on single-turn responses with well-defined objectives or evaluation criteria. In contrast, coaching presents unique challenges with initially undefined goals that evolve through multi-turn interactions, subjective evaluation criteria, mixed-initiative dialogue. In this work, we describe and implement five multi-turn coaching agents that exhibit distinct conversational styles, and evaluate them through a user study, collecting first-person feedback on 155 conversations. We find that users highly value core functionality, and that stylistic components in absence of core components are viewed negatively. By comparing user feedback with third-person evaluations from health experts and an LM, we reveal significant misalignment across evaluation approaches. Our findings provide insights into design and evaluation of conversational coaching agents and contribute toward improving human-centered NLP applications.
☆ Process or Result? Manipulated Ending Tokens Can Mislead Reasoning LLMs to Ignore the Correct Reasoning Steps
Recent reasoning large language models (LLMs) have demonstrated remarkable improvements in mathematical reasoning capabilities through long Chain-of-Thought. The reasoning tokens of these models enable self-correction within reasoning chains, enhancing robustness. This motivates our exploration: how vulnerable are reasoning LLMs to subtle errors in their input reasoning chains? We introduce "Compromising Thought" (CPT), a vulnerability where models presented with reasoning tokens containing manipulated calculation results tend to ignore correct reasoning steps and adopt incorrect results instead. Through systematic evaluation across multiple reasoning LLMs, we design three increasingly explicit prompting methods to measure CPT resistance, revealing that models struggle significantly to identify and correct these manipulations. Notably, contrary to existing research suggesting structural alterations affect model performance more than content modifications, we find that local ending token manipulations have greater impact on reasoning outcomes than structural changes. Moreover, we discover a security vulnerability in DeepSeek-R1 where tampered reasoning tokens can trigger complete reasoning cessation. Our work enhances understanding of reasoning robustness and highlights security considerations for reasoning-intensive applications.
☆ LRSCLIP: A Vision-Language Foundation Model for Aligning Remote Sensing Image with Longer Text
This study addresses the technical bottlenecks in handling long text and the "hallucination" issue caused by insufficient short text information in remote sensing vision-language foundation models (VLFM). We propose a novel vision-language foundation model, LRSCLIP, and a multimodal dataset, LRS2M. The main contributions are as follows: (1) By integrating multi-source remote sensing data and adopting a large language model labeling strategy, we construct the LRS2M dataset, which contains 2 million image-text pairs, providing both short and long texts for the first time, thus solving the problem of semantic granularity limitations in existing datasets; (2) The design of the LRSCLIP architecture based on Long-CLIP's KPS module, which extends CLIP's text processing capacity and achieves fine-grained cross-modal feature alignment through a dual-text loss weighting mechanism. Experimental results show that LRSCLIP improves retrieval accuracy by 10\%-20\% over the Long-CLIP baseline in the zero-shot long-text cross-modal retrieval task. For the zero-shot short-text cross-modal retrieval task, LRSCLIP achieves improvements over the current best model, GeoRSCLIP, with increases of 0.17\%, 0.67\%, and 0.92\% in Text to Image R@1, Image to Text R@1, and mR on RSITMD, respectively, and 0.04\%, 2.93\%, and 1.28\% on RSICD. In the zero-shot image classification task (average accuracy=75.75\%) and semantic localization task (Rmi=0.7653), LRSCLIP achieves state-of-the-art performance. These results validate the dual advantages of fine-grained semantic understanding and global feature matching in LRSCLIP. This work provides a new benchmark model and data support for remote sensing multimodal learning. The related code has been open source and is available at https://github.com/MitsuiChen14/LRSCLIP.
comment: 17 pages, 12 figures
☆ Observation Adaptation via Annealed Importance Resampling for Partially Observable Markov Decision Processes
Partially observable Markov decision processes (POMDPs) are a general mathematical model for sequential decision-making in stochastic environments under state uncertainty. POMDPs are often solved \textit{online}, which enables the algorithm to adapt to new information in real time. Online solvers typically use bootstrap particle filters based on importance resampling for updating the belief distribution. Since directly sampling from the ideal state distribution given the latest observation and previous state is infeasible, particle filters approximate the posterior belief distribution by propagating states and adjusting weights through prediction and resampling steps. However, in practice, the importance resampling technique often leads to particle degeneracy and sample impoverishment when the state transition model poorly aligns with the posterior belief distribution, especially when the received observation is highly informative. We propose an approach that constructs a sequence of bridge distributions between the state-transition and optimal distributions through iterative Monte Carlo steps, better accommodating noisy observations in online POMDP solvers. Our algorithm demonstrates significantly superior performance compared to state-of-the-art methods when evaluated across multiple challenging POMDP domains.
comment: Accepted as Oral Presentation to ICAPS 2025
☆ Adaptive Wavelet Filters as Practical Texture Feature Amplifiers for Parkinson's Disease Screening in OCT
Parkinson's disease (PD) is a prevalent neurodegenerative disorder globally. The eye's retina is an extension of the brain and has great potential in PD screening. Recent studies have suggested that texture features extracted from retinal layers can be adopted as biomarkers for PD diagnosis under optical coherence tomography (OCT) images. Frequency domain learning techniques can enhance the feature representations of deep neural networks (DNNs) by decomposing frequency components involving rich texture features. Additionally, previous works have not exploited texture features for automated PD screening in OCT. Motivated by the above analysis, we propose a novel Adaptive Wavelet Filter (AWF) that serves as the Practical Texture Feature Amplifier to fully leverage the merits of texture features to boost the PD screening performance of DNNs with the aid of frequency domain learning. Specifically, AWF first enhances texture feature representation diversities via channel mixer, then emphasizes informative texture feature representations with the well-designed adaptive wavelet filtering token mixer. By combining the AWFs with the DNN stem, AWFNet is constructed for automated PD screening. Additionally, we introduce a novel Balanced Confidence (BC) Loss by mining the potential of sample-wise predicted probabilities of all classes and class frequency prior, to further boost the PD screening performance and trustworthiness of AWFNet. The extensive experiments manifest the superiority of our AWFNet and BC over state-of-the-art methods in terms of PD screening performance and trustworthiness.
☆ No Black Box Anymore: Demystifying Clinical Predictive Modeling with Temporal-Feature Cross Attention Mechanism
Despite the outstanding performance of deep learning models in clinical prediction tasks, explainability remains a significant challenge. Inspired by transformer architectures, we introduce the Temporal-Feature Cross Attention Mechanism (TFCAM), a novel deep learning framework designed to capture dynamic interactions among clinical features across time, enhancing both predictive accuracy and interpretability. In an experiment with 1,422 patients with Chronic Kidney Disease, predicting progression to End-Stage Renal Disease, TFCAM outperformed LSTM and RETAIN baselines, achieving an AUROC of 0.95 and an F1-score of 0.69. Beyond performance gains, TFCAM provides multi-level explainability by identifying critical temporal periods, ranking feature importance, and quantifying how features influence each other across time before affecting predictions. Our approach addresses the "black box" limitations of deep learning in healthcare, offering clinicians transparent insights into disease progression mechanisms while maintaining state-of-the-art predictive performance.
comment: 10 pages, 3 figures, submitted to AMIA 2025
☆ CubeRobot: Grounding Language in Rubik's Cube Manipulation via Vision-Language Model
Proving Rubik's Cube theorems at the high level represents a notable milestone in human-level spatial imagination and logic thinking and reasoning. Traditional Rubik's Cube robots, relying on complex vision systems and fixed algorithms, often struggle to adapt to complex and dynamic scenarios. To overcome this limitation, we introduce CubeRobot, a novel vision-language model (VLM) tailored for solving 3x3 Rubik's Cubes, empowering embodied agents with multimodal understanding and execution capabilities. We used the CubeCoT image dataset, which contains multiple-level tasks (43 subtasks in total) that humans are unable to handle, encompassing various cube states. We incorporate a dual-loop VisionCoT architecture and Memory Stream, a paradigm for extracting task-related features from VLM-generated planning queries, thus enabling CubeRobot to independent planning, decision-making, reflection and separate management of high- and low-level Rubik's Cube tasks. Furthermore, in low-level Rubik's Cube restoration tasks, CubeRobot achieved a high accuracy rate of 100%, similar to 100% in medium-level tasks, and achieved an accuracy rate of 80% in high-level tasks.
☆ LogicLearner: A Tool for the Guided Practice of Propositional Logic Proofs
The study of propositional logic -- fundamental to the theory of computing -- is a cornerstone of the undergraduate computer science curriculum. Learning to solve logical proofs requires repeated guided practice, but undergraduate students often lack access to on-demand tutoring in a judgment-free environment. In this work, we highlight the need for guided practice tools in undergraduate mathematics education and outline the desiderata of an effective practice tool. We accordingly develop LogicLearner, a web application for guided logic proof practice. LogicLearner consists of an interface to attempt logic proofs step-by-step and an automated proof solver to generate solutions on the fly, allowing users to request guidance as needed. We pilot LogicLearner as a practice tool in two semesters of an undergraduate discrete mathematics course and receive strongly positive feedback for usability and pedagogical value in student surveys. To the best of our knowledge, LogicLearner is the only learning tool that provides an end-to-end practice environment for logic proofs with immediate, judgment-free feedback.
comment: 32 pages, 27 figures, open-source codebase linked in paper
☆ Context-Aware Semantic Segmentation: Enhancing Pixel-Level Understanding with Large Language Models for Advanced Vision Applications
Semantic segmentation has made significant strides in pixel-level image understanding, yet it remains limited in capturing contextual and semantic relationships between objects. Current models, such as CNN and Transformer-based architectures, excel at identifying pixel-level features but fail to distinguish semantically similar objects (e.g., "doctor" vs. "nurse" in a hospital scene) or understand complex contextual scenarios (e.g., differentiating a running child from a regular pedestrian in autonomous driving). To address these limitations, we proposed a novel Context-Aware Semantic Segmentation framework that integrates Large Language Models (LLMs) with state-of-the-art vision backbones. Our hybrid model leverages the Swin Transformer for robust visual feature extraction and GPT-4 for enriching semantic understanding through text embeddings. A Cross-Attention Mechanism is introduced to align vision and language features, enabling the model to reason about context more effectively. Additionally, Graph Neural Networks (GNNs) are employed to model object relationships within the scene, capturing dependencies that are overlooked by traditional models. Experimental results on benchmark datasets (e.g., COCO, Cityscapes) demonstrate that our approach outperforms the existing methods in both pixel-level accuracy (mIoU) and contextual understanding (mAP). This work bridges the gap between vision and language, paving the path for more intelligent and context-aware vision systems in applications including autonomous driving, medical imaging, and robotics.
☆ NeoRL-2: Near Real-World Benchmarks for Offline Reinforcement Learning with Extended Realistic Scenarios
Offline reinforcement learning (RL) aims to learn from historical data without requiring (costly) access to the environment. To facilitate offline RL research, we previously introduced NeoRL, which highlighted that datasets from real-world tasks are often conservative and limited. With years of experience applying offline RL to various domains, we have identified additional real-world challenges. These include extremely conservative data distributions produced by deployed control systems, delayed action effects caused by high-latency transitions, external factors arising from the uncontrollable variance of transitions, and global safety constraints that are difficult to evaluate during the decision-making process. These challenges are underrepresented in previous benchmarks but frequently occur in real-world tasks. To address this, we constructed the extended Near Real-World Offline RL Benchmark (NeoRL-2), which consists of 7 datasets from 7 simulated tasks along with their corresponding evaluation simulators. Benchmarking results from state-of-the-art offline RL approaches demonstrate that current methods often struggle to outperform the data-collection behavior policy, highlighting the need for more effective methods. We hope NeoRL-2 will accelerate the development of reinforcement learning algorithms for real-world applications. The benchmark project page is available at https://github.com/polixir/NeoRL2.
☆ Linguistic Blind Spots of Large Language Models NAACL 2025
Large language models (LLMs) are the foundation of many AI applications today. However, despite their remarkable proficiency in generating coherent text, questions linger regarding their ability to perform fine-grained linguistic annotation tasks, such as detecting nouns or verbs, or identifying more complex syntactic structures like clauses in input texts. These tasks require precise syntactic and semantic understanding of input text, and when LLMs underperform on specific linguistic structures, it raises concerns about their reliability for detailed linguistic analysis and whether their (even correct) outputs truly reflect an understanding of the inputs. In this paper, we empirically study the performance of recent LLMs on fine-grained linguistic annotation tasks. Through a series of experiments, we find that recent LLMs show limited efficacy in addressing linguistic queries and often struggle with linguistically complex inputs. We show that the most capable LLM (Llama3-70b) makes notable errors in detecting linguistic structures, such as misidentifying embedded clauses, failing to recognize verb phrases, and confusing complex nominals with clauses. Our results provide insights to inform future advancements in LLM design and development.
comment: NAACL 2025 Cognitive Modeling and Computational Linguistics Workshop
☆ Face Spoofing Detection using Deep Learning
Digital image spoofing has emerged as a significant security threat in biometric authentication systems, particularly those relying on facial recognition. This study evaluates the performance of three vision based models, MobileNetV2, ResNET50, and Vision Transformer, ViT, for spoof detection in image classification, utilizing a dataset of 150,986 images divided into training , 140,002, testing, 10,984, and validation ,39,574, sets. Spoof detection is critical for enhancing the security of image recognition systems, and this research compares the models effectiveness through accuracy, precision, recall, and F1 score metrics. Results reveal that MobileNetV2 outperforms other architectures on the test dataset, achieving an accuracy of 91.59%, precision of 91.72%, recall of 91.59%, and F1 score of 91.58%, compared to ViT 86.54%, 88.28%, 86.54%, and 86.39%, respectively. On the validation dataset, MobileNetV2, and ViT excel, with MobileNetV2 slightly ahead at 97.17% accuracy versus ViT 96.36%. MobileNetV2 demonstrates faster convergence during training and superior generalization to unseen data, despite both models showing signs of overfitting. These findings highlight MobileNetV2 balanced performance and robustness, making it the preferred choice for spoof detection applications where reliability on new data is essential. The study underscores the importance of model selection in security sensitive contexts and suggests MobileNetV2 as a practical solution for real world deployment.
comment: 26 pages, 9 figures,3 tables
☆ Zero-Shot Human-Object Interaction Synthesis with Multimodal Priors
Human-object interaction (HOI) synthesis is important for various applications, ranging from virtual reality to robotics. However, acquiring 3D HOI data is challenging due to its complexity and high cost, limiting existing methods to the narrow diversity of object types and interaction patterns in training datasets. This paper proposes a novel zero-shot HOI synthesis framework without relying on end-to-end training on currently limited 3D HOI datasets. The core idea of our method lies in leveraging extensive HOI knowledge from pre-trained Multimodal Models. Given a text description, our system first obtains temporally consistent 2D HOI image sequences using image or video generation models, which are then uplifted to 3D HOI milestones of human and object poses. We employ pre-trained human pose estimation models to extract human poses and introduce a generalizable category-level 6-DoF estimation method to obtain the object poses from 2D HOI images. Our estimation method is adaptive to various object templates obtained from text-to-3D models or online retrieval. A physics-based tracking of the 3D HOI kinematic milestone is further applied to refine both body motions and object poses, yielding more physically plausible HOI generation results. The experimental results demonstrate that our method is capable of generating open-vocabulary HOIs with physical realism and semantic diversity.
☆ Efficient Model Development through Fine-tuning Transfer
Modern LLMs struggle with efficient updates, as each new pretrained model version requires repeating expensive alignment processes. This challenge also applies to domain- or language-specific models, where fine-tuning on specialized data must be redone for every new base model release. In this paper, we explore the transfer of fine-tuning updates between model versions. Specifically, we derive the diff vector from one source model version, which represents the weight changes from fine-tuning, and apply it to the base model of a different target version. Through empirical evaluations on various open-weight model versions, we show that transferring diff vectors can significantly improve the target base model, often achieving performance comparable to its fine-tuned counterpart. For example, reusing the fine-tuning updates from Llama 3.0 8B leads to an absolute accuracy improvement of 10.7% on GPQA over the base Llama 3.1 8B without additional training, surpassing Llama 3.1 8B Instruct. In a multilingual model development setting, we show that this approach can significantly increase performance on target-language tasks without retraining, achieving an absolute improvement of 4.7% and 15.5% on Global MMLU for Malagasy and Turkish, respectively, compared to Llama 3.1 8B Instruct. Our controlled experiments reveal that fine-tuning transfer is most effective when the source and target models are linearly connected in the parameter space. Additionally, we demonstrate that fine-tuning transfer offers a stronger and more computationally efficient starting point for further fine-tuning. Finally, we propose an iterative recycling-then-finetuning approach for continuous model development, which improves both efficiency and effectiveness. Our findings suggest that fine-tuning transfer is a viable strategy to reduce training costs while maintaining model performance.
comment: 21 pages, 4 figures, 13 tables
☆ Direct Post-Training Preference Alignment for Multi-Agent Motion Generation Models Using Implicit Feedback from Pre-training Demonstrations ICLR 2025
Recent advancements in LLMs have revolutionized motion generation models in embodied applications. While LLM-type auto-regressive motion generation models benefit from training scalability, there remains a discrepancy between their token prediction objectives and human preferences. As a result, models pre-trained solely with token-prediction objectives often generate behaviors that deviate from what humans would prefer, making post-training preference alignment crucial for producing human-preferred motions. Unfortunately, post-training alignment requires extensive preference rankings of motions generated by the pre-trained model, which are costly to annotate, especially in multi-agent settings. Recently, there has been growing interest in leveraging pre-training demonstrations to scalably generate preference data for post-training alignment. However, these methods often adopt an adversarial assumption, treating all pre-trained model-generated samples as unpreferred examples. This adversarial approach overlooks the valuable signal provided by preference rankings among the model's own generations, ultimately reducing alignment effectiveness and potentially leading to misaligned behaviors. In this work, instead of treating all generated samples as equally bad, we leverage implicit preferences encoded in pre-training demonstrations to construct preference rankings among the pre-trained model's generations, offering more nuanced preference alignment guidance with zero human cost. We apply our approach to large-scale traffic simulation and demonstrate its effectiveness in improving the realism of pre-trained model's generated behaviors, making a lightweight 1M motion generation model comparable to SOTA large imitation-based models by relying solely on implicit feedback from pre-training demonstrations, without additional post-training human preference annotations or high computational costs.
comment: ICLR 2025 Spotlight
☆ AI Identity, Empowerment, and Mindfulness in Mitigating Unethical AI Use
This study examines how AI identity influences psychological empowerment and unethical AI behavior among college students, while also exploring the moderating role of IT mindfulness. Findings show that a strong AI identity enhances psychological empowerment and academic engagement but can also lead to increased unethical AI practices. Crucially, IT mindfulness acts as an ethical safeguard, promoting sensitivity to ethical concerns and reducing misuse of AI. These insights have implications for educators, policymakers, and AI developers, emphasizing For Peer Review the need for a balanced approach that encourages digital engagement without compromising student responsibility. The study also contributes to philosophical discussions of psychological agency, suggesting that empowerment through AI can yield both positive and negative outcomes. Mindfulness emerges as essential in guiding ethical AI interactions. Overall, the research informs ongoing debates on ethics in education and AI, offering strategies to align technological advancement with ethical accountability and responsible use.
☆ Can Multi-modal (reasoning) LLMs work as deepfake detectors?
Deepfake detection remains a critical challenge in the era of advanced generative models, particularly as synthetic media becomes more sophisticated. In this study, we explore the potential of state of the art multi-modal (reasoning) large language models (LLMs) for deepfake image detection such as (OpenAI O1/4o, Gemini thinking Flash 2, Deepseek Janus, Grok 3, llama 3.2, Qwen 2/2.5 VL, Mistral Pixtral, Claude 3.5/3.7 sonnet) . We benchmark 12 latest multi-modal LLMs against traditional deepfake detection methods across multiple datasets, including recently published real-world deepfake imagery. To enhance performance, we employ prompt tuning and conduct an in-depth analysis of the models' reasoning pathways to identify key contributing factors in their decision-making process. Our findings indicate that best multi-modal LLMs achieve competitive performance with promising generalization ability with zero shot, even surpass traditional deepfake detection pipelines in out-of-distribution datasets while the rest of the LLM families performs extremely disappointing with some worse than random guess. Furthermore, we found newer model version and reasoning capabilities does not contribute to performance in such niche tasks of deepfake detection while model size do help in some cases. This study highlights the potential of integrating multi-modal reasoning in future deepfake detection frameworks and provides insights into model interpretability for robustness in real-world scenarios.
☆ Abstracting Geo-specific Terrains to Scale Up Reinforcement Learning
Multi-agent reinforcement learning (MARL) is increasingly ubiquitous in training dynamic and adaptive synthetic characters for interactive simulations on geo-specific terrains. Frameworks such as Unity's ML-Agents help to make such reinforcement learning experiments more accessible to the simulation community. Military training simulations also benefit from advances in MARL, but they have immense computational requirements due to their complex, continuous, stochastic, partially observable, non-stationary, and doctrine-based nature. Furthermore, these simulations require geo-specific terrains, further exacerbating the computational resources problem. In our research, we leverage Unity's waypoints to automatically generate multi-layered representation abstractions of the geo-specific terrains to scale up reinforcement learning while still allowing the transfer of learned policies between different representations. Our early exploratory results on a novel MARL scenario, where each side has differing objectives, indicate that waypoint-based navigation enables faster and more efficient learning while producing trajectories similar to those taken by expert human players in CSGO gaming environments. This research points out the potential of waypoint-based navigation for reducing the computational costs of developing and training MARL models for military training simulations, where geo-specific terrains and differing objectives are crucial.
comment: 10 pages, 6 figures, 2024 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC)
☆ BugCraft: End-to-End Crash Bug Reproduction Using LLM Agents in Minecraft
Reproducing game bugs, in our case crash bugs in continuously evolving games like Minecraft, is a notoriously manual, time-consuming, and challenging process to automate. Despite the success of LLM-driven bug reproduction in other software domains, games, with their complex interactive environments, remain largely unaddressed. This paper introduces BugCraft, a novel end-to-end framework designed to automate the reproduction of crash bugs in Minecraft directly from user-submitted bug reports, addressing the critical gap in automated game bug reproduction. BugCraft employs a two-stage approach: first, a Step Synthesizer leverages LLMs and Minecraft Wiki knowledge to transform bug reports into high-quality, structured steps to reproduce (S2R). Second, an Action Model, powered by a vision-based LLM agent (GPT-4o) and a custom macro API, executes these S2R steps within Minecraft to trigger the reported crash. To facilitate evaluation, we introduce BugCraft-Bench, a curated dataset of Minecraft crash bug reports. Evaluated on BugCraft-Bench, our framework successfully reproduced 30.23% of crash bugs end-to-end. The Step Synthesizer demonstrated a 66.28% accuracy in generating correct bug reproduction plans, highlighting its effectiveness in interpreting and structuring bug report information. BugCraft demonstrates the feasibility of automated reproduction of crash bugs in complex game environments using LLMs, opening promising avenues for game testing and development. The framework and the BugCraft-Bench dataset pave the way for future research in automated game bug analysis and hold potential for generalization to other interactive game platforms. Finally, we make our code open at https://bugcraft2025.github.io/
☆ OmniNova:A General Multimodal Agent Framework
The integration of Large Language Models (LLMs) with specialized tools presents new opportunities for intelligent automation systems. However, orchestrating multiple LLM-driven agents to tackle complex tasks remains challenging due to coordination difficulties, inefficient resource utilization, and inconsistent information flow. We present OmniNova, a modular multi-agent automation framework that combines language models with specialized tools such as web search, crawling, and code execution capabilities. OmniNova introduces three key innovations: (1) a hierarchical multi-agent architecture with distinct coordinator, planner, supervisor, and specialist agents; (2) a dynamic task routing mechanism that optimizes agent deployment based on task complexity; and (3) a multi-layered LLM integration system that allocates appropriate models to different cognitive requirements. Our evaluations across 50 complex tasks in research, data analysis, and web interaction domains demonstrate that OmniNova outperforms existing frameworks in task completion rate (87\% vs. baseline 62\%), efficiency (41\% reduced token usage), and result quality (human evaluation score of 4.2/5 vs. baseline 3.1/5). We contribute both a theoretical framework for multi-agent system design and an open-source implementation that advances the state-of-the-art in LLM-based automation systems.
☆ Experience Replay Addresses Loss of Plasticity in Continual Learning
Loss of plasticity is one of the main challenges in continual learning with deep neural networks, where neural networks trained via backpropagation gradually lose their ability to adapt to new tasks and perform significantly worse than their freshly initialized counterparts. The main contribution of this paper is to propose a new hypothesis that experience replay addresses the loss of plasticity in continual learning. Here, experience replay is a form of memory. We provide supporting evidence for this hypothesis. In particular, we demonstrate in multiple different tasks, including regression, classification, and policy evaluation, that by simply adding an experience replay and processing the data in the experience replay with Transformers, the loss of plasticity disappears. Notably, we do not alter any standard components of deep learning. For example, we do not change backpropagation. We do not modify the activation functions. And we do not use any regularization. We conjecture that experience replay and Transformers can address the loss of plasticity because of the in-context learning phenomenon.
comment: 14 pages, 4 figures
☆ Unsupervised Learning for Quadratic Assignment
We introduce PLUME search, a data-driven framework that enhances search efficiency in combinatorial optimization through unsupervised learning. Unlike supervised or reinforcement learning, PLUME search learns directly from problem instances using a permutation-based loss with a non-autoregressive approach. We evaluate its performance on the quadratic assignment problem, a fundamental NP-hard problem that encompasses various combinatorial optimization problems. Experimental results demonstrate that PLUME search consistently improves solution quality. Furthermore, we study the generalization behavior and show that the learned model generalizes across different densities and sizes.
comment: preprint
☆ LEGO-Puzzles: How Good Are MLLMs at Multi-Step Spatial Reasoning?
Multi-step spatial reasoning entails understanding and reasoning about spatial relationships across multiple sequential steps, which is crucial for tackling complex real-world applications, such as robotic manipulation, autonomous navigation, and automated assembly. To assess how well current Multimodal Large Language Models (MLLMs) have acquired this fundamental capability, we introduce \textbf{LEGO-Puzzles}, a scalable benchmark designed to evaluate both \textbf{spatial understanding} and \textbf{sequential reasoning} in MLLMs through LEGO-based tasks. LEGO-Puzzles consists of 1,100 carefully curated visual question-answering (VQA) samples spanning 11 distinct tasks, ranging from basic spatial understanding to complex multi-step reasoning. Based on LEGO-Puzzles, we conduct a comprehensive evaluation of state-of-the-art MLLMs and uncover significant limitations in their spatial reasoning capabilities: even the most powerful MLLMs can answer only about half of the test cases, whereas human participants achieve over 90\% accuracy. In addition to VQA tasks, we evaluate MLLMs' abilities to generate LEGO images following assembly illustrations. Our experiments show that only Gemini-2.0-Flash and GPT-4o exhibit a limited ability to follow these instructions, while other MLLMs either replicate the input image or generate completely irrelevant outputs. Overall, LEGO-Puzzles exposes critical deficiencies in existing MLLMs' spatial understanding and sequential reasoning capabilities, and underscores the need for further advancements in multimodal spatial reasoning.
comment: 12 pages, 7 figures
☆ ExCoT: Optimizing Reasoning for Text-to-SQL with Execution Feedback
Text-to-SQL demands precise reasoning to convert natural language questions into structured queries. While large language models (LLMs) excel in many reasoning tasks, their ability to leverage Chain-of-Thought (CoT) reasoning for text-to-SQL remains underexplored. We identify critical limitations: zero-shot CoT offers minimal gains, and Direct Preference Optimization (DPO) applied without CoT yields marginal improvements. We propose ExCoT, a novel framework that iteratively optimizes open-source LLMs by combining CoT reasoning with off-policy and on-policy DPO, relying solely on execution accuracy as feedback. This approach eliminates the need for reward models or human-annotated preferences. Our experimental results demonstrate significant performance gains: ExCoT improves execution accuracy on BIRD dev set from 57.37% to 68.51% and on Spider test set from 78.81% to 86.59% for LLaMA-3 70B, with Qwen-2.5-Coder demonstrating similar improvements. Our best model achieves state-of-the-art performance in the single-model setting on both BIRD and Spider datasets, notably achieving 68.53% on the BIRD test set.
☆ ACVUBench: Audio-Centric Video Understanding Benchmark
Audio often serves as an auxiliary modality in video understanding tasks of audio-visual large language models (LLMs), merely assisting in the comprehension of visual information. However, a thorough understanding of videos significantly depends on auditory information, as audio offers critical context, emotional cues, and semantic meaning that visual data alone often lacks. This paper proposes an audio-centric video understanding benchmark (ACVUBench) to evaluate the video comprehension capabilities of multimodal LLMs with a particular focus on auditory information. Specifically, ACVUBench incorporates 2,662 videos spanning 18 different domains with rich auditory information, together with over 13k high-quality human annotated or validated question-answer pairs. Moreover, ACVUBench introduces a suite of carefully designed audio-centric tasks, holistically testing the understanding of both audio content and audio-visual interactions in videos. A thorough evaluation across a diverse range of open-source and proprietary multimodal LLMs is performed, followed by the analyses of deficiencies in audio-visual LLMs. Demos are available at https://github.com/lark-png/ACVUBench.
☆ LogQuant: Log-Distributed 2-Bit Quantization of KV Cache with Superior Accuracy Preservation ICLR 2025
We introduce LogQuant, a groundbreaking 2-bit quantization technique for KV Cache in large language model (LLM) inference, delivering substantial memory savings while preserving superior performance. Previous methods either assume that later tokens are more important or attempt to predict important tokens based on earlier attention patterns. Both approaches, however, can result in performance bottlenecks or frequent mispredictions. LogQuant takes a different approach. By applying a log-based filtering mechanism, it selectively compresses the KV Cache across the entire context, achieving better performance with the same or even reduced memory footprint compared to existing methods. In benchmark tests, it enhances throughput by 25% and boosts batch size by 60% without increasing memory consumption. For challenging tasks such as Math and Code Completion, LogQuant improves accuracy by 40% to 200% at the same compression ratio, outperforming comparable techniques.LogQuant integrates effortlessly with popular inference frameworks like Python's transformers library. Implementation can be available in https://github.com/Concyclics/LogQuantKV.
comment: Accepted by ICLR 2025 Workshop on Sparsity in LLMs (SLLM)
☆ Test-Time Reasoning Through Visual Human Preferences with VLMs and Soft Rewards
Can Visual Language Models (VLMs) effectively capture human visual preferences? This work addresses this question by training VLMs to think about preferences at test time, employing reinforcement learning methods inspired by DeepSeek R1 and OpenAI O1. Using datasets such as ImageReward and Human Preference Score v2 (HPSv2), our models achieve accuracies of 64.9% on the ImageReward test set (trained on ImageReward official split) and 65.4% on HPSv2 (trained on approximately 25% of its data). These results match traditional encoder-based models while providing transparent reasoning and enhanced generalization. This approach allows to use not only rich VLM world knowledge, but also its potential to think, yielding interpretable outcomes that help decision-making processes. By demonstrating that human visual preferences reasonable by current VLMs, we introduce efficient soft-reward strategies for image ranking, outperforming simplistic selection or scoring methods. This reasoning capability enables VLMs to rank arbitrary images-regardless of aspect ratio or complexity-thereby potentially amplifying the effectiveness of visual Preference Optimization. By reducing the need for extensive markup while improving reward generalization and explainability, our findings can be a strong mile-stone that will enhance text-to-vision models even further.
☆ Vanishing Depth: A Depth Adapter with Positional Depth Encoding for Generalized Image Encoders
Generalized metric depth understanding is critical for precise vision-guided robotics, which current state-of-the-art (SOTA) vision-encoders do not support. To address this, we propose Vanishing Depth, a self-supervised training approach that extends pretrained RGB encoders to incorporate and align metric depth into their feature embeddings. Based on our novel positional depth encoding, we enable stable depth density and depth distribution invariant feature extraction. We achieve performance improvements and SOTA results across a spectrum of relevant RGBD downstream tasks - without the necessity of finetuning the encoder. Most notably, we achieve 56.05 mIoU on SUN-RGBD segmentation, 88.3 RMSE on Void's depth completion, and 83.8 Top 1 accuracy on NYUv2 scene classification. In 6D-object pose estimation, we outperform our predecessors of DinoV2, EVA-02, and Omnivore and achieve SOTA results for non-finetuned encoders in several related RGBD downstream tasks.
comment: Preprint
☆ Optimizing Breast Cancer Detection in Mammograms: A Comprehensive Study of Transfer Learning, Resolution Reduction, and Multi-View Classification
This study explores open questions in the application of machine learning for breast cancer detection in mammograms. Current approaches often employ a two-stage transfer learning process: first, adapting a backbone model trained on natural images to develop a patch classifier, which is then used to create a single-view whole-image classifier. Additionally, many studies leverage both mammographic views to enhance model performance. In this work, we systematically investigate five key questions: (1) Is the intermediate patch classifier essential for optimal performance? (2) Do backbone models that excel in natural image classification consistently outperform others on mammograms? (3) When reducing mammogram resolution for GPU processing, does the learn-to-resize technique outperform conventional methods? (4) Does incorporating both mammographic views in a two-view classifier significantly improve detection accuracy? (5) How do these findings vary when analyzing low-quality versus high-quality mammograms? By addressing these questions, we developed models that outperform previous results for both single-view and two-view classifiers. Our findings provide insights into model architecture and transfer learning strategies contributing to more accurate and efficient mammogram analysis.
comment: 8 pages
☆ A Spatiotemporal Radar-Based Precipitation Model for Water Level Prediction and Flood Forecasting
Study Region: Goslar and G\"ottingen, Lower Saxony, Germany. Study Focus: In July 2017, the cities of Goslar and G\"ottingen experienced severe flood events characterized by short warning time of only 20 minutes, resulting in extensive regional flooding and significant damage. This highlights the critical need for a more reliable and timely flood forecasting system. This paper presents a comprehensive study on the impact of radar-based precipitation data on forecasting river water levels in Goslar. Additionally, the study examines how precipitation influences water level forecasts in G\"ottingen. The analysis integrates radar-derived spatiotemporal precipitation patterns with hydrological sensor data obtained from ground stations to evaluate the effectiveness of this approach in improving flood prediction capabilities. New Hydrological Insights for the Region: A key innovation in this paper is the use of residual-based modeling to address the non-linearity between precipitation images and water levels, leading to a Spatiotemporal Radar-based Precipitation Model with residuals (STRPMr). Unlike traditional hydrological models, our approach does not rely on upstream data, making it independent of additional hydrological inputs. This independence enhances its adaptability and allows for broader applicability in other regions with RADOLAN precipitation. The deep learning architecture integrates (2+1)D convolutional neural networks for spatial and temporal feature extraction with LSTM for timeseries forecasting. The results demonstrate the potential of the STRPMr for capturing extreme events and more accurate flood forecasting.
comment: 28 pages, 11 figures, 6 tables
☆ Body Discovery of Embodied AI
In the pursuit of realizing artificial general intelligence (AGI), the importance of embodied artificial intelligence (AI) becomes increasingly apparent. Following this trend, research integrating robots with AGI has become prominent. As various kinds of embodiments have been designed, adaptability to diverse embodiments will become important to AGI. We introduce a new challenge, termed "Body Discovery of Embodied AI", focusing on tasks of recognizing embodiments and summarizing neural signal functionality. The challenge encompasses the precise definition of an AI body and the intricate task of identifying embodiments in dynamic environments, where conventional approaches often prove inadequate. To address these challenges, we apply causal inference method and evaluate it by developing a simulator tailored for testing algorithms with virtual environments. Finally, we validate the efficacy of our algorithms through empirical testing, demonstrating their robust performance in various scenarios based on virtual environments.
☆ FuXi-RTM: A Physics-Guided Prediction Framework with Radiative Transfer Modeling
Similar to conventional video generation, current deep learning-based weather prediction frameworks often lack explicit physical constraints, leading to unphysical outputs that limit their reliability for operational forecasting. Among various physical processes requiring proper representation, radiation plays a fundamental role as it drives Earth's weather and climate systems. However, accurate simulation of radiative transfer processes remains challenging for traditional numerical weather prediction (NWP) models due to their inherent complexity and high computational costs. Here, we propose FuXi-RTM, a hybrid physics-guided deep learning framework designed to enhance weather forecast accuracy while enforcing physical consistency. FuXi-RTM integrates a primary forecasting model (FuXi) with a fixed deep learning-based radiative transfer model (DLRTM) surrogate that efficiently replaces conventional radiation parameterization schemes. This represents the first deep learning-based weather forecasting framework to explicitly incorporate physical process modeling. Evaluated over a comprehensive 5-year dataset, FuXi-RTM outperforms its unconstrained counterpart in 88.51% of 3320 variable and lead time combinations, with improvements in radiative flux predictions. By incorporating additional physical processes, FuXi-RTM paves the way for next-generation weather forecasting systems that are both accurate and physically consistent.
☆ Reverse Prompt: Cracking the Recipe Inside Text-to-Image Generation
Text-to-image generation has become increasingly popular, but achieving the desired images often requires extensive prompt engineering. In this paper, we explore how to decode textual prompts from reference images, a process we refer to as image reverse prompt engineering. This technique enables us to gain insights from reference images, understand the creative processes of great artists, and generate impressive new images. To address this challenge, we propose a method known as automatic reverse prompt optimization (ARPO). Specifically, our method refines an initial prompt into a high-quality prompt through an iteratively imitative gradient prompt optimization process: 1) generating a recreated image from the current prompt to instantiate its guidance capability; 2) producing textual gradients, which are candidate prompts intended to reduce the difference between the recreated image and the reference image; 3) updating the current prompt with textual gradients using a greedy search method to maximize the CLIP similarity between prompt and reference image. We compare ARPO with several baseline methods, including handcrafted techniques, gradient-based prompt tuning methods, image captioning, and data-driven selection method. Both quantitative and qualitative results demonstrate that our ARPO converges quickly to generate high-quality reverse prompts. More importantly, we can easily create novel images with diverse styles and content by directly editing these reverse prompts. Code will be made publicly available.
♻ ☆ Aether: Geometric-Aware Unified World Modeling
The integration of geometric reconstruction and generative modeling remains a critical challenge in developing AI systems capable of human-like spatial reasoning. This paper proposes Aether, a unified framework that enables geometry-aware reasoning in world models by jointly optimizing three core capabilities: (1) 4D dynamic reconstruction, (2) action-conditioned video prediction, and (3) goal-conditioned visual planning. Through task-interleaved feature learning, Aether achieves synergistic knowledge sharing across reconstruction, prediction, and planning objectives. Building upon video generation models, our framework demonstrates unprecedented synthetic-to-real generalization despite never observing real-world data during training. Furthermore, our approach achieves zero-shot generalization in both action following and reconstruction tasks, thanks to its intrinsic geometric modeling. Remarkably, even without real-world data, its reconstruction performance is comparable with or even better than that of domain-specific models. Additionally, Aether employs camera trajectories as geometry-informed action spaces, enabling effective action-conditioned prediction and visual planning. We hope our work inspires the community to explore new frontiers in physically-reasonable world modeling and its applications.
comment: Project Page: https://aether-world.github.io/
♻ ☆ Structuring Scientific Innovation: A Framework for Modeling and Discovering Impactful Knowledge Combinations
The emergence of large language models offers new possibilities for structured exploration of scientific knowledge. Rather than viewing scientific discovery as isolated ideas or content, we propose a structured approach that emphasizes the role of method combinations in shaping disruptive insights. Specifically, we investigate how knowledge unit--especially those tied to methodological design--can be modeled and recombined to yield research breakthroughs. Our proposed framework addresses two key challenges. First, we introduce a contrastive learning-based mechanism to identify distinguishing features of historically disruptive method combinations within problem-driven contexts. Second, we propose a reasoning-guided Monte Carlo search algorithm that leverages the chain-of-thought capability of LLMs to identify promising knowledge recombinations for new problem statements.Empirical studies across multiple domains show that the framework is capable of modeling the structural dynamics of innovation and successfully highlights combinations with high disruptive potential. This research provides a new path for computationally guided scientific ideation grounded in structured reasoning and historical data modeling.
♻ ☆ MC-LLaVA: Multi-Concept Personalized Vision-Language Model
Current vision-language models (VLMs) show exceptional abilities across diverse tasks, such as visual question answering. To enhance user experience, recent studies investigate VLM personalization to understand user-provided concepts. However, they mainly focus on single-concept personalization, neglecting the existence and interplay of multiple concepts, which limits real-world applicability. This paper proposes the first multi-concept personalization paradigm, MC-LLaVA. Specifically, MC-LLaVA employs a multi-concept instruction tuning strategy, effectively integrating multiple concepts in a single training step. To reduce the costs related to joint training, we propose a personalized textual prompt that uses visual token information to initialize concept tokens. Additionally, we introduce a personalized visual prompt during inference, aggregating location confidence maps for enhanced recognition and grounding capabilities. To advance multi-concept personalization research, we further contribute a high-quality instruction tuning dataset. We carefully collect images with multiple characters and objects from movies and manually generate question-answer samples for multi-concept scenarios, featuring superior diversity. Comprehensive qualitative and quantitative experiments demonstrate that MC-LLaVA can achieve impressive multi-concept personalized responses, paving the way for VLMs to become better user-specific assistants. The code and dataset will be publicly available at https://github.com/arctanxarc/MC-LLaVA}.
comment: I sincerely apologize for any inconvenience caused. We actually uploaded this paper to arXiv in November 2024, as arXiv:2411.11706. During this update, we did not consider the replacement operation of arXiv, which led to duplicate submissions. We have made modifications at the original address arXiv:2411.11706
♻ ☆ Lightweight Embedded FPGA Deployment of Learned Image Compression with Knowledge Distillation and Hybrid Quantization
Learnable Image Compression (LIC) has shown the potential to outperform standardized video codecs in RD efficiency, prompting the research for hardware-friendly implementations. Most existing LIC hardware implementations prioritize latency to RD-efficiency and through an extensive exploration of the hardware design space. We present a novel design paradigm where the burden of tuning the design for a specific hardware platform is shifted towards model dimensioning and without compromising on RD-efficiency. First, we design a framework for distilling a leaner student LIC model from a reference teacher: by tuning a single model hyperparameters, we can meet the constraints of different hardware platforms without a complex hardware design exploration. Second, we propose a hardware-friendly implementation of the Generalized Divisive Normalization - GDN activation that preserves RD efficiency even post parameter quantization. Third, we design a pipelined FPGA configuration which takes full advantage of available FPGA resources by leveraging parallel processing and optimizing resource allocation. Our experiments with a state of the art LIC model show that we outperform all existing FPGA implementations while performing very close to the original model.
comment: 1. Submitted to IEEE Transactions on Circuits and Systems for Video Technology in March 2025. 2. Corrected numerous mistakes from previous versions in results, citations and metrics numbers in figures
♻ ☆ Frequency Dynamic Convolution for Dense Image Prediction CVPR 2025
While Dynamic Convolution (DY-Conv) has shown promising performance by enabling adaptive weight selection through multiple parallel weights combined with an attention mechanism, the frequency response of these weights tends to exhibit high similarity, resulting in high parameter costs but limited adaptability. In this work, we introduce Frequency Dynamic Convolution (FDConv), a novel approach that mitigates these limitations by learning a fixed parameter budget in the Fourier domain. FDConv divides this budget into frequency-based groups with disjoint Fourier indices, enabling the construction of frequency-diverse weights without increasing the parameter cost. To further enhance adaptability, we propose Kernel Spatial Modulation (KSM) and Frequency Band Modulation (FBM). KSM dynamically adjusts the frequency response of each filter at the spatial level, while FBM decomposes weights into distinct frequency bands in the frequency domain and modulates them dynamically based on local content. Extensive experiments on object detection, segmentation, and classification validate the effectiveness of FDConv. We demonstrate that when applied to ResNet-50, FDConv achieves superior performance with a modest increase of +3.6M parameters, outperforming previous methods that require substantial increases in parameter budgets (e.g., CondConv +90M, KW +76.5M). Moreover, FDConv seamlessly integrates into a variety of architectures, including ConvNeXt, Swin-Transformer, offering a flexible and efficient solution for modern vision tasks. The code is made publicly available at https://github.com/Linwei-Chen/FDConv.
comment: Accepted by CVPR 2025
♻ ☆ Commander-GPT: Fully Unleashing the Sarcasm Detection Capability of Multi-Modal Large Language Models
Sarcasm detection, as a crucial research direction in the field of Natural Language Processing (NLP), has attracted widespread attention. Traditional sarcasm detection tasks have typically focused on single-modal approaches (e.g., text), but due to the implicit and subtle nature of sarcasm, such methods often fail to yield satisfactory results. In recent years, researchers have shifted the focus of sarcasm detection to multi-modal approaches. However, effectively leveraging multi-modal information to accurately identify sarcastic content remains a challenge that warrants further exploration. Leveraging the powerful integrated processing capabilities of Multi-Modal Large Language Models (MLLMs) for various information sources, we propose an innovative multi-modal Commander-GPT framework. Inspired by military strategy, we first decompose the sarcasm detection task into six distinct sub-tasks. A central commander (decision-maker) then assigns the best-suited large language model to address each specific sub-task. Ultimately, the detection results from each model are aggregated to identify sarcasm. We conducted extensive experiments on MMSD and MMSD 2.0, utilizing four multi-modal large language models and six prompting strategies. Our experiments demonstrate that our approach achieves state-of-the-art performance, with a 19.3% improvement in F1 score, without necessitating fine-tuning or ground-truth rationales.
♻ ☆ Any6D: Model-free 6D Pose Estimation of Novel Objects CVPR 2025
We introduce Any6D, a model-free framework for 6D object pose estimation that requires only a single RGB-D anchor image to estimate both the 6D pose and size of unknown objects in novel scenes. Unlike existing methods that rely on textured 3D models or multiple viewpoints, Any6D leverages a joint object alignment process to enhance 2D-3D alignment and metric scale estimation for improved pose accuracy. Our approach integrates a render-and-compare strategy to generate and refine pose hypotheses, enabling robust performance in scenarios with occlusions, non-overlapping views, diverse lighting conditions, and large cross-environment variations. We evaluate our method on five challenging datasets: REAL275, Toyota-Light, HO3D, YCBINEOAT, and LM-O, demonstrating its effectiveness in significantly outperforming state-of-the-art methods for novel object pose estimation. Project page: https://taeyeop.com/any6d
comment: CVPR 2025, Project Page: https://taeyeop.com/any6d
♻ ☆ CompMarkGS: Robust Watermarking for Compressed 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) enables rapid differentiable rendering for 3D reconstruction and novel view synthesis, leading to its widespread commercial use. Consequently, copyright protection via watermarking has become critical. However, because 3DGS relies on millions of Gaussians, which require gigabytes of storage, efficient transfer and storage require compression. Existing 3DGS watermarking methods are vulnerable to quantization-based compression, often resulting in the loss of the embedded watermark. To address this challenge, we propose a novel watermarking method that ensures watermark robustness after model compression while maintaining high rendering quality. In detail, we incorporate a quantization distortion layer that simulates compression during training, preserving the watermark under quantization-based compression. Also, we propose a learnable watermark embedding feature that embeds the watermark into the anchor feature, ensuring structural consistency and seamless integration into the 3D scene. Furthermore, we present a frequency-aware anchor growing mechanism to enhance image quality in high-frequency regions by effectively identifying Guassians within these regions. Experimental results confirm that our method preserves the watermark and maintains superior image quality under high compression, validating it as a promising approach for a secure 3DGS model.
comment: 23 pages, 17 figures
♻ ☆ Lessons and Insights from a Unifying Study of Parameter-Efficient Fine-Tuning (PEFT) in Visual Recognition CVPR 2025
Parameter-efficient fine-tuning (PEFT) has attracted significant attention due to the growth of pre-trained model sizes and the need to fine-tune (FT) them for superior downstream performance. Despite a surge in new PEFT methods, a systematic study to understand their performance and suitable application scenarios is lacking, leaving questions like "when to apply PEFT" and "which method to use" largely unanswered, especially in visual recognition. In this paper, we conduct a unifying empirical study of representative PEFT methods with Vision Transformers. We systematically tune their hyperparameters to fairly compare their accuracy on downstream tasks. Our study offers a practical user guide and unveils several new insights. First, if tuned carefully, different PEFT methods achieve similar accuracy in the low-shot benchmark VTAB-1K. This includes simple approaches like FT the bias terms that were reported inferior. Second, despite similar accuracy, we find that PEFT methods make different mistakes and high-confidence predictions, likely due to their different inductive biases. Such an inconsistency (or complementarity) opens up the opportunity for ensemble methods, and we make preliminary attempts at this. Third, going beyond the commonly used low-shot tasks, we find that PEFT is also useful in many-shot regimes, achieving comparable or better accuracy than full FT while using significantly fewer parameters. Lastly, we investigate PEFT's ability to preserve a pre-trained model's robustness to distribution shifts (e.g., CLIP). Perhaps not surprisingly, PEFT approaches outperform full FT alone. However, with weight-space ensembles, full FT can better balance target distribution and distribution shift performance, suggesting a future research direction for robust PEFT.
comment: CVPR 2025. The code is available at https://github.com/OSU-MLB/ViT_PEFT_Vision
♻ ☆ A Mechanistic Explanatory Strategy for XAI
Despite significant advancements in XAI, scholars continue to note a persistent lack of robust conceptual foundations and integration with broader discourse on scientific explanation. In response, emerging XAI research increasingly draws on explanatory strategies from various scientific disciplines and the philosophy of science to address these gaps. This paper outlines a mechanistic strategy for explaining the functional organization of deep learning systems, situating recent developments in AI explainability within a broader philosophical context. According to the mechanistic approach, explaining opaque AI systems involves identifying the mechanisms underlying decision-making processes. For deep neural networks, this means discerning functionally relevant components - such as neurons, layers, circuits, or activation patterns - and understanding their roles through decomposition, localization, and recomposition. Proof-of-principle case studies from image recognition and language modeling align this theoretical framework with recent research from OpenAI and Anthropic. The findings suggest that pursuing mechanistic explanations can uncover elements that traditional explainability techniques may overlook, ultimately contributing to more thoroughly explainable AI.
comment: Forthcoming in M\"uller, V. C., Dung, L., L\"ohr, G., & Rumana, A. (Eds.). Philosophy of Artificial Intelligence: The State of the Art, Synthese Library, Springer Nature. Please cite the published version
♻ ☆ LoTUS: Large-Scale Machine Unlearning with a Taste of Uncertainty CVPR 2025
We present LoTUS, a novel Machine Unlearning (MU) method that eliminates the influence of training samples from pre-trained models, avoiding retraining from scratch. LoTUS smooths the prediction probabilities of the model up to an information-theoretic bound, mitigating its over-confidence stemming from data memorization. We evaluate LoTUS on Transformer and ResNet18 models against eight baselines across five public datasets. Beyond established MU benchmarks, we evaluate unlearning on ImageNet1k, a large-scale dataset, where retraining is impractical, simulating real-world conditions. Moreover, we introduce the novel Retrain-Free Jensen-Shannon Divergence (RF-JSD) metric to enable evaluation under real-world conditions. The experimental results show that LoTUS outperforms state-of-the-art methods in terms of both efficiency and effectiveness. Code: https://github.com/cspartalis/LoTUS.
comment: Accepted as a main conference paper at CVPR 2025 (https://cvpr.thecvf.com/virtual/2025/poster/33292)
♻ ☆ PG-SAM: Prior-Guided SAM with Medical for Multi-organ Segmentation
Segment Anything Model (SAM) demonstrates powerful zero-shot capabilities; however, its accuracy and robustness significantly decrease when applied to medical image segmentation. Existing methods address this issue through modality fusion, integrating textual and image information to provide more detailed priors. In this study, we argue that the granularity of text and the domain gap affect the accuracy of the priors. Furthermore, the discrepancy between high-level abstract semantics and pixel-level boundary details in images can introduce noise into the fusion process. To address this, we propose Prior-Guided SAM (PG-SAM), which employs a fine-grained modality prior aligner to leverage specialized medical knowledge for better modality alignment. The core of our method lies in efficiently addressing the domain gap with fine-grained text from a medical LLM. Meanwhile, it also enhances the priors' quality after modality alignment, ensuring more accurate segmentation. In addition, our decoder enhances the model's expressive capabilities through multi-level feature fusion and iterative mask optimizer operations, supporting unprompted learning. We also propose a unified pipeline that effectively supplies high-quality semantic information to SAM. Extensive experiments on the Synapse dataset demonstrate that the proposed PG-SAM achieves state-of-the-art performance. Our anonymous code is released at https://github.com/logan-0623/PG-SAM.
♻ ☆ Evaluating Negative Sampling Approaches for Neural Topic Models
Negative sampling has emerged as an effective technique that enables deep learning models to learn better representations by introducing the paradigm of learn-to-compare. The goal of this approach is to add robustness to deep learning models to learn better representation by comparing the positive samples against the negative ones. Despite its numerous demonstrations in various areas of computer vision and natural language processing, a comprehensive study of the effect of negative sampling in an unsupervised domain like topic modeling has not been well explored. In this paper, we present a comprehensive analysis of the impact of different negative sampling strategies on neural topic models. We compare the performance of several popular neural topic models by incorporating a negative sampling technique in the decoder of variational autoencoder-based neural topic models. Experiments on four publicly available datasets demonstrate that integrating negative sampling into topic models results in significant enhancements across multiple aspects, including improved topic coherence, richer topic diversity, and more accurate document classification. Manual evaluations also indicate that the inclusion of negative sampling into neural topic models enhances the quality of the generated topics. These findings highlight the potential of negative sampling as a valuable tool for advancing the effectiveness of neural topic models.
comment: Code is available at: https://github.com/AdhyaSuman/Eval_NegTM
♻ ☆ Inductive Moment Matching
Diffusion models and Flow Matching generate high-quality samples but are slow at inference, and distilling them into few-step models often leads to instability and extensive tuning. To resolve these trade-offs, we propose Inductive Moment Matching (IMM), a new class of generative models for one- or few-step sampling with a single-stage training procedure. Unlike distillation, IMM does not require pre-training initialization and optimization of two networks; and unlike Consistency Models, IMM guarantees distribution-level convergence and remains stable under various hyperparameters and standard model architectures. IMM surpasses diffusion models on ImageNet-256x256 with 1.99 FID using only 8 inference steps and achieves state-of-the-art 2-step FID of 1.98 on CIFAR-10 for a model trained from scratch.
♻ ☆ Shot Sequence Ordering for Video Editing: Benchmarks, Metrics, and Cinematology-Inspired Computing Methods
With the rising popularity of short video platforms, the demand for video production has increased substantially. However, high-quality video creation continues to rely heavily on professional editing skills and a nuanced understanding of visual language. To address this challenge, the Shot Sequence Ordering (SSO) task in AI-assisted video editing has emerged as a pivotal approach for enhancing video storytelling and the overall viewing experience. Nevertheless, the progress in this field has been impeded by a lack of publicly available benchmark datasets. In response, this paper introduces two novel benchmark datasets, AVE-Order and ActivityNet-Order. Additionally, we employ the Kendall Tau distance as an evaluation metric for the SSO task and propose the Kendall Tau Distance-Cross Entropy Loss. We further introduce the concept of Cinematology Embedding, which incorporates movie metadata and shot labels as prior knowledge into the SSO model, and constructs the AVE-Meta dataset to validate the method's effectiveness. Experimental results indicate that the proposed loss function and method substantially enhance SSO task accuracy. All datasets are publicly accessible at https://github.com/litchiar/ShotSeqBench.
♻ ☆ Human-AI Interaction and User Satisfaction: Empirical Evidence from Online Reviews of AI Products
Human-AI Interaction (HAI) guidelines and design principles have become increasingly important in both industry and academia to guide the development of AI systems that align with user needs and expectations. However, large-scale empirical evidence on how HAI principles shape user satisfaction in practice remains limited. This study addresses that gap by analyzing over 100,000 user reviews of AI-related products from G2, a leading review platform for business software and services. Based on widely adopted industry guidelines, we identify seven core HAI dimensions and examine their coverage and sentiment within the reviews. We find that the sentiment on four HAI dimensions-adaptability, customization, error recovery, and security-is positively associated with overall user satisfaction. Moreover, we show that engagement with HAI dimensions varies by professional background: Users with technical job roles are more likely to discuss system-focused aspects, such as reliability, while non-technical users emphasize interaction-focused features like customization and feedback. Interestingly, the relationship between HAI sentiment and overall satisfaction is not moderated by job role, suggesting that once an HAI dimension has been identified by users, its effect on satisfaction is consistent across job roles.
♻ ☆ Generative AI for Validating Physics Laws
We present generative artificial intelligence (AI) to empirically validate fundamental laws of physics, focusing on the Stefan-Boltzmann law linking stellar temperature and luminosity. Our approach simulates counterfactual luminosities under hypothetical temperature regimes for each individual star and iteratively refines the temperature-luminosity relationship in a deep learning architecture. We use Gaia DR3 data and find that, on average, temperature's effect on luminosity increases with stellar radius and decreases with absolute magnitude, consistent with theoretical predictions. By framing physics laws as causal problems, our method offers a novel, data-driven approach to refine theoretical understanding and inform evidence-based policy and practice.
♻ ☆ Promoting Segment Anything Model towards Highly Accurate Dichotomous Image Segmentation
The Segment Anything Model (SAM) represents a significant breakthrough into foundation models for computer vision, providing a large-scale image segmentation model. However, despite SAM's zero-shot performance, its segmentation masks lack fine-grained details, particularly in accurately delineating object boundaries. Therefore, it is both interesting and valuable to explore whether SAM can be improved towards highly accurate object segmentation, which is known as the dichotomous image segmentation (DIS) task. To address this issue, we propose DIS-SAM, which advances SAM towards DIS with extremely accurate details. DIS-SAM is a framework specifically tailored for highly accurate segmentation, maintaining SAM's promptable design. DIS-SAM employs a two-stage approach, integrating SAM with a modified advanced network that was previously designed to handle the prompt-free DIS task. To better train DIS-SAM, we employ a ground truth enrichment strategy by modifying original mask annotations. Despite its simplicity, DIS-SAM significantly advances the SAM, HQ-SAM, and Pi-SAM ~by 8.5%, ~6.9%, and ~3.7% maximum F-measure. Our code at https://github.com/Tennine2077/DIS-SAM
♻ ☆ Reanimating Images using Neural Representations of Dynamic Stimuli
While computer vision models have made incredible strides in static image recognition, they still do not match human performance in tasks that require the understanding of complex, dynamic motion. This is notably true for real-world scenarios where embodied agents face complex and motion-rich environments. Our approach, BrainNRDS (Brain-Neural Representations of Dynamic Stimuli), leverages state-of-the-art video diffusion models to decouple static image representation from motion generation, enabling us to utilize fMRI brain activity for a deeper understanding of human responses to dynamic visual stimuli. Conversely, we also demonstrate that information about the brain's representation of motion can enhance the prediction of optical flow in artificial systems. Our novel approach leads to four main findings: (1) Visual motion, represented as fine-grained, object-level resolution optical flow, can be decoded from brain activity generated by participants viewing video stimuli; (2) Video encoders outperform image-based models in predicting video-driven brain activity; (3) Brain-decoded motion signals enable realistic video reanimation based only on the initial frame of the video; and (4) We extend prior work to achieve full video decoding from video-driven brain activity. BrainNRDS advances our understanding of how the brain represents spatial and temporal information in dynamic visual scenes. Our findings demonstrate the potential of combining brain imaging with video diffusion models for developing more robust and biologically-inspired computer vision systems. We show additional decoding and encoding examples on this site: https://brain-nrds.github.io/.
comment: Project Page: https://brain-nrds.github.io
♻ ☆ Functional Acceleration for Policy Mirror Descent
We apply functional acceleration to the Policy Mirror Descent (PMD) general family of algorithms, which cover a wide range of novel and fundamental methods in Reinforcement Learning (RL). Leveraging duality, we propose a momentum-based PMD update. By taking the functional route, our approach is independent of the policy parametrization and applicable to large-scale optimization, covering previous applications of momentum at the level of policy parameters as a special case. We theoretically analyze several properties of this approach and complement with a numerical ablation study, which serves to illustrate the policy optimization dynamics on the value polytope, relative to different algorithmic design choices in this space. We further characterize numerically several features of the problem setting relevant for functional acceleration, and lastly, we investigate the impact of approximation on their learning mechanics.
♻ ☆ Explaining Control Policies through Predicate Decision Diagrams SC
Safety-critical controllers of complex systems are hard to construct manually. Automated approaches such as controller synthesis or learning provide a tempting alternative but usually lack explainability. To this end, learning decision trees (DTs) have been prevalently used towards an interpretable model of the generated controllers. However, DTs do not exploit shared decision-making, a key concept exploited in binary decision diagrams (BDDs) to reduce their size and thus improve explainability. In this work, we introduce predicate decision diagrams (PDDs) that extend BDDs with predicates and thus unite the advantages of DTs and BDDs for controller representation. We establish a synthesis pipeline for efficient construction of PDDs from DTs representing controllers, exploiting reduction techniques for BDDs also for PDDs.
comment: Extended version of the HSCC 2025 paper
♻ ☆ SPA-VL: A Comprehensive Safety Preference Alignment Dataset for Vision Language Model
The emergence of Vision Language Models (VLMs) has brought unprecedented advances in understanding multimodal information. The combination of textual and visual semantics in VLMs is highly complex and diverse, making the safety alignment of these models challenging. Furthermore, due to the limited study on the safety alignment of VLMs, there is a lack of large-scale, high-quality datasets. To address these limitations, we propose a Safety Preference Alignment dataset for Vision Language Models named SPA-VL. In terms of breadth, SPA-VL covers 6 harmfulness domains, 13 categories, and 53 subcategories, and contains 100,788 samples of the quadruple (question, image, chosen response, rejected response). In terms of depth, the responses are collected from 12 open-source (e.g., QwenVL) and closed-source (e.g., Gemini) VLMs to ensure diversity. The construction of preference data is fully automated, and the experimental results indicate that models trained with alignment techniques on the SPA-VL dataset exhibit substantial improvements in harmlessness and helpfulness while maintaining core capabilities. SPA-VL, as a large-scale, high-quality, and diverse dataset, represents a significant milestone in ensuring that VLMs achieve both harmlessness and helpfulness.
UAVs Meet LLMs: Overviews and Perspectives Toward Agentic Low-Altitude Mobility
Low-altitude mobility, exemplified by unmanned aerial vehicles (UAVs), has introduced transformative advancements across various domains, like transportation, logistics, and agriculture. Leveraging flexible perspectives and rapid maneuverability, UAVs extend traditional systems' perception and action capabilities, garnering widespread attention from academia and industry. However, current UAV operations primarily depend on human control, with only limited autonomy in simple scenarios, and lack the intelligence and adaptability needed for more complex environments and tasks. The emergence of large language models (LLMs) demonstrates remarkable problem-solving and generalization capabilities, offering a promising pathway for advancing UAV intelligence. This paper explores the integration of LLMs and UAVs, beginning with an overview of UAV systems' fundamental components and functionalities, followed by an overview of the state-of-the-art in LLM technology. Subsequently, it systematically highlights the multimodal data resources available for UAVs, which provide critical support for training and evaluation. Furthermore, it categorizes and analyzes key tasks and application scenarios where UAVs and LLMs converge. Finally, a reference roadmap towards agentic UAVs is proposed, aiming to enable UAVs to achieve agentic intelligence through autonomous perception, memory, reasoning, and tool utilization. Related resources are available at https://github.com/Hub-Tian/UAVs_Meet_LLMs.
♻ ☆ FW-Merging: Scaling Model Merging with Frank-Wolfe Optimization
Model merging has emerged as a promising approach for multi-task learning (MTL), offering a data-efficient alternative to conventional fine-tuning. However, with the rapid development of the open-source AI ecosystem and the increasing availability of fine-tuned foundation models, existing model merging methods face two key limitations: (i) They are primarily designed for in-house fine-tuned models, making them less adaptable to diverse model sources with partially unknown model and task information, (ii) They struggle to scale effectively when merging numerous model checkpoints. To address these challenges, we formulate model merging as a constrained optimization problem and introduce a novel approach: Frank-Wolfe Merging (FW-Merging). Inspired by Frank-Wolfe optimization, our approach iteratively selects the most relevant model in the pool to minimize a linear approximation of the objective function and then executes a local merging similar to the Frank-Wolfe update. The objective function is designed to capture the desired behavior of the target-merged model, while the fine-tuned candidate models define the constraint set. More importantly, FW-Merging serves as an orthogonal technique for existing merging methods, seamlessly integrating with them to further enhance accuracy performance. Our experiments show that FW-Merging scales across diverse model sources, remaining stable with 16 irrelevant models and improving by 15.3% with 16 relevant models on 20 CV tasks, while maintaining constant memory overhead, unlike the linear overhead of data-informed merging methods. Compared with the state-of-the-art approaches, FW-Merging surpasses the data-free merging method by 32.8% and outperforms the data-informed Adamerging by 8.39% when merging 20 ViT models. Our code is open-sourced at github.com/hmarkc/FW-Merging.
♻ ☆ Localized Concept Erasure for Text-to-Image Diffusion Models Using Training-Free Gated Low-Rank Adaptation CVPR 2025
Fine-tuning based concept erasing has demonstrated promising results in preventing generation of harmful contents from text-to-image diffusion models by removing target concepts while preserving remaining concepts. To maintain the generation capability of diffusion models after concept erasure, it is necessary to remove only the image region containing the target concept when it locally appears in an image, leaving other regions intact. However, prior arts often compromise fidelity of the other image regions in order to erase the localized target concept appearing in a specific area, thereby reducing the overall performance of image generation. To address these limitations, we first introduce a framework called localized concept erasure, which allows for the deletion of only the specific area containing the target concept in the image while preserving the other regions. As a solution for the localized concept erasure, we propose a training-free approach, dubbed Gated Low-rank adaptation for Concept Erasure (GLoCE), that injects a lightweight module into the diffusion model. GLoCE consists of low-rank matrices and a simple gate, determined only by several generation steps for concepts without training. By directly applying GLoCE to image embeddings and designing the gate to activate only for target concepts, GLoCE can selectively remove only the region of the target concepts, even when target and remaining concepts coexist within an image. Extensive experiments demonstrated GLoCE not only improves the image fidelity to text prompts after erasing the localized target concepts, but also outperforms prior arts in efficacy, specificity, and robustness by large margin and can be extended to mass concept erasure.
comment: Accepted to CVPR 2025
♻ ☆ When Large Vision-Language Model Meets Large Remote Sensing Imagery: Coarse-to-Fine Text-Guided Token Pruning
Efficient vision-language understanding of large Remote Sensing Images (RSIs) is meaningful but challenging. Current Large Vision-Language Models (LVLMs) typically employ limited pre-defined grids to process images, leading to information loss when handling gigapixel RSIs. Conversely, using unlimited grids significantly increases computational costs. To preserve image details while reducing computational complexity, we propose a text-guided token pruning method with Dynamic Image Pyramid (DIP) integration. Our method introduces: (i) a Region Focus Module (RFM) that leverages text-aware region localization capability to identify critical vision tokens, and (ii) a coarse-to-fine image tile selection and vision token pruning strategy based on DIP, which is guided by RFM outputs and avoids directly processing the entire large imagery. Additionally, existing benchmarks for evaluating LVLMs' perception ability on large RSI suffer from limited question diversity and constrained image sizes. We construct a new benchmark named LRS-VQA, which contains 7,333 QA pairs across 8 categories, with image length up to 27,328 pixels. Our method outperforms existing high-resolution strategies on four datasets using the same data. Moreover, compared to existing token reduction methods, our approach demonstrates higher efficiency under high-resolution settings. Dataset and code are in https://github.com/VisionXLab/LRS-VQA.
comment: 12 pages, 6 figures, 7 tables
♻ ☆ MIRROR: A Novel Approach for the Automated Evaluation of Open-Ended Question Generation
Automatic question generation is a critical task that involves evaluating question quality by considering factors such as engagement, pedagogical value, and the ability to stimulate critical thinking. These aspects require human-like understanding and judgment, which automated systems currently lack. However, human evaluations are costly and impractical for large-scale samples of generated questions. Therefore, we propose a novel system, MIRROR (Multi-LLM Iterative Review and Response for Optimized Rating), which leverages large language models (LLMs) to automate the evaluation process for questions generated by automated question generation systems. We experimented with several state-of-the-art LLMs, such as GPT-4, Gemini, and Llama2-70b. We observed that the scores of human evaluation metrics, namely relevance, appropriateness, novelty, complexity, and grammaticality, improved when using the feedback-based approach called MIRROR, tending to be closer to the human baseline scores. Furthermore, we observed that Pearson's correlation coefficient between GPT-4 and human experts improved when using our proposed feedback-based approach, MIRROR, compared to direct prompting for evaluation. Error analysis shows that our proposed approach, MIRROR, significantly helps to improve relevance and appropriateness.
comment: Updated Version
♻ ☆ Helvipad: A Real-World Dataset for Omnidirectional Stereo Depth Estimation CVPR 2025
Despite progress in stereo depth estimation, omnidirectional imaging remains underexplored, mainly due to the lack of appropriate data. We introduce Helvipad, a real-world dataset for omnidirectional stereo depth estimation, featuring 40K video frames from video sequences across diverse environments, including crowded indoor and outdoor scenes with various lighting conditions. Collected using two 360{\deg} cameras in a top-bottom setup and a LiDAR sensor, the dataset includes accurate depth and disparity labels by projecting 3D point clouds onto equirectangular images. Additionally, we provide an augmented training set with an increased label density by using depth completion. We benchmark leading stereo depth estimation models for both standard and omnidirectional images. The results show that while recent stereo methods perform decently, a challenge persists in accurately estimating depth in omnidirectional imaging. To address this, we introduce necessary adaptations to stereo models, leading to improved performance.
comment: Accepted to CVPR 2025. Project page: https://vita-epfl.github.io/Helvipad
♻ ☆ Large language model-powered AI systems achieve self-replication with no human intervention
Self-replication with no human intervention is broadly recognized as one of the principal red lines associated with frontier AI systems. While leading corporations such as OpenAI and Google DeepMind have assessed GPT-o3-mini and Gemini on replication-related tasks and concluded that these systems pose a minimal risk regarding self-replication, our research presents novel findings. Following the same evaluation protocol, we demonstrate that 11 out of 32 existing AI systems under evaluation already possess the capability of self-replication. In hundreds of experimental trials, we observe a non-trivial number of successful self-replication trials across mainstream model families worldwide, even including those with as small as 14 billion parameters which can run on personal computers. Furthermore, we note the increase in self-replication capability when the model becomes more intelligent in general. Also, by analyzing the behavioral traces of diverse AI systems, we observe that existing AI systems already exhibit sufficient planning, problem-solving, and creative capabilities to accomplish complex agentic tasks including self-replication. More alarmingly, we observe successful cases where an AI system do self-exfiltration without explicit instructions, adapt to harsher computational environments without sufficient software or hardware supports, and plot effective strategies to survive against the shutdown command from the human beings. These novel findings offer a crucial time buffer for the international community to collaborate on establishing effective governance over the self-replication capabilities and behaviors of frontier AI systems, which could otherwise pose existential risks to the human society if not well-controlled.
comment: Work in progress
♻ ☆ One-vs.-One Mitigation of Intersectional Bias: A General Method to Extend Fairness-Aware Binary Classification
With the widespread adoption of machine learning in the real world, the impact of the discriminatory bias has attracted attention. In recent years, various methods to mitigate the bias have been proposed. However, most of them have not considered intersectional bias, which brings unfair situations where people belonging to specific subgroups of a protected group are treated worse when multiple sensitive attributes are taken into consideration. To mitigate this bias, in this paper, we propose a method called One-vs.-One Mitigation by applying a process of comparison between each pair of subgroups related to sensitive attributes to the fairness-aware machine learning for binary classification. We compare our method and the conventional fairness-aware binary classification methods in comprehensive settings using three approaches (pre-processing, in-processing, and post-processing), six metrics (the ratio and difference of demographic parity, equalized odds, and equal opportunity), and two real-world datasets (Adult and COMPAS). As a result, our method mitigates the intersectional bias much better than conventional methods in all the settings. With the result, we open up the potential of fairness-aware binary classification for solving more realistic problems occurring when there are multiple sensitive attributes.
♻ ☆ ProtoGS: Efficient and High-Quality Rendering with 3D Gaussian Prototypes
3D Gaussian Splatting (3DGS) has made significant strides in novel view synthesis but is limited by the substantial number of Gaussian primitives required, posing challenges for deployment on lightweight devices. Recent methods address this issue by compressing the storage size of densified Gaussians, yet fail to preserve rendering quality and efficiency. To overcome these limitations, we propose ProtoGS to learn Gaussian prototypes to represent Gaussian primitives, significantly reducing the total Gaussian amount without sacrificing visual quality. Our method directly uses Gaussian prototypes to enable efficient rendering and leverage the resulting reconstruction loss to guide prototype learning. To further optimize memory efficiency during training, we incorporate structure-from-motion (SfM) points as anchor points to group Gaussian primitives. Gaussian prototypes are derived within each group by clustering of K-means, and both the anchor points and the prototypes are optimized jointly. Our experiments on real-world and synthetic datasets prove that we outperform existing methods, achieving a substantial reduction in the number of Gaussians, and enabling high rendering speed while maintaining or even enhancing rendering fidelity.
♻ ☆ Framework for Progressive Knowledge Fusion in Large Language Models Through Structured Conceptual Redundancy Analysis
The organization of latent knowledge within large-scale models poses unique challenges when addressing overlapping representations and optimizing contextual accuracy. Conceptual redundancies embedded across layers often result in inefficiencies that affect both computational demands and task-specific outcomes. A framework was proposed to restructure these redundancies through advanced clustering techniques and dynamic thresholding, ensuring that critical semantic relationships are preserved while removing unnecessary overlaps. Evaluations revealed improved memory efficiency and faster inference times, alongside better alignment in latent knowledge clusters that enhanced interpretability. Improvements in error rates and adversarial robustness suggest that restructuring redundancies has broader implications for increasing model reliability across diverse applications. Comparative analyses highlighted reductions in resource consumption and notable gains in performance, particularly in translation and summarization tasks. Energy metrics demonstrated significant savings during training phases, further validating the practicality of the approach for real-world deployments. Representational fidelity was also enhanced, with latent space evaluations indicating better cluster alignment and higher semantic consistency. The methodology bridges a key gap in model optimization through directly addressing redundancies at the structural level. Its application opens avenues for scalable, efficient, and contextually aware systems that can adapt to complex, domain-specific tasks without compromising on performance.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Entropy-Synchronized Neural Hashing for Unsupervised Ransomware Detection
Entropy-based detection methodologies have gained significant attention due to their ability to analyze structural irregularities within executable files, particularly in the identification of malicious software employing advanced obfuscation techniques. The Entropy-Synchronized Neural Hashing (ESNH) framework introduces a novel approach that leverages entropy-driven hash representations to classify software binaries based on their underlying entropy characteristics. Through the synchronization of entropy profiles with neural network architectures, the model generates robust and unique hash values that maintain stability even when faced with polymorphic and metamorphic transformations. Comparative analysis against traditional detection approaches revealed superior performance in identifying novel threats, reducing false-positive rates, and achieving consistent classification across diverse ransomware families. The incorporation of a self-regulating hash convergence mechanism further ensured that entropy-synchronized hashes remained invariant across executions, minimizing classification inconsistencies that often arise due to dynamic modifications in ransomware payloads. Experimental results demonstrated high detection rates across contemporary ransomware strains, with the model exhibiting resilience against encryption-based evasion mechanisms, code injection strategies, and reflective loading techniques. Unlike conventional detection mechanisms that rely on static signatures and heuristic analysis, the proposed entropy-aware classification framework adapts to emerging threats through an inherent ability to capture entropy anomalies within executable structures. The findings reinforce the potential of entropy-based detection in addressing the limitations of traditional methodologies while enhancing detection robustness against obfuscation and adversarial evasion techniques.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Semantic Layered Embedding Diffusion in Large Language Models for Multi-Contextual Consistency
The Semantic Layered Embedding Diffusion (SLED) mechanism redefines the representation of hierarchical semantics within transformer-based architectures, enabling enhanced contextual consistency across a wide array of linguistic tasks. By introducing a multi-layered diffusion process grounded in spectral analysis, it achieves a complex balance between global and local semantic coherence. Experimental results demonstrate significant improvements in perplexity and BLEU scores, emphasizing the mechanism's ability to adapt effectively across diverse domains, including multilingual and cross-domain text generation. A rigorous mathematical framework underpins the embedding diffusion process, incorporating weighted adjacency matrices, kernel-based refinements, and dynamic layer-wise normalization. Error distribution analysis reveals that SLED addresses challenges in semantic alignment and coherence, outperforming baseline approaches across varied benchmarks. Scalability studies illustrate that its performance gains are maintained consistently across different model sizes, reflecting a practical balance between computational efficiency and linguistic precision. The implementation also achieves energy efficiency, reducing resource consumption during training and inference phases without compromising accuracy. Qualitative case studies further validate its adaptability to extended narratives and context-intensive scenarios, highlighting the mechanism's potential for real-world applications. SLED offers a different perspective on embedding design and its implications for advancing language modeling.
comment: arXiv admin note: This paper has been withdrawn by arXiv due to disputed and unverifiable authorship
♻ ☆ Does Safety Training of LLMs Generalize to Semantically Related Natural Prompts? ICLR 2025
Large Language Models (LLMs) are known to be susceptible to crafted adversarial attacks or jailbreaks that lead to the generation of objectionable content despite being aligned to human preferences using safety fine-tuning methods. While the large dimensionality of input token space makes it inevitable to find adversarial prompts that can jailbreak these models, we aim to evaluate whether safety fine-tuned LLMs are safe against natural prompts which are semantically related to toxic seed prompts that elicit safe responses after alignment. We surprisingly find that popular aligned LLMs such as GPT-4 can be compromised using naive prompts that are NOT even crafted with an objective of jailbreaking the model. Furthermore, we empirically show that given a seed prompt that elicits a toxic response from an unaligned model, one can systematically generate several semantically related natural prompts that can jailbreak aligned LLMs. Towards this, we propose a method of Response Guided Question Augmentation (ReG-QA) to evaluate the generalization of safety aligned LLMs to natural prompts, that first generates several toxic answers given a seed question using an unaligned LLM (Q to A), and further leverages an LLM to generate questions that are likely to produce these answers (A to Q). We interestingly find that safety fine-tuned LLMs such as GPT-4o are vulnerable to producing natural jailbreak questions from unsafe content (without denial) and can thus be used for the latter (A to Q) step. We obtain attack success rates that are comparable to/ better than leading adversarial attack methods on the JailbreakBench leaderboard, while being significantly more stable against defenses such as Smooth-LLM and Synonym Substitution, which are effective against existing all attacks on the leaderboard.
comment: Accepted in ICLR 2025
♻ ☆ Towards Understanding the Influence of Training Samples on Explanations IJCAI 2024
Explainable AI (XAI) is widely used to analyze AI systems' decision-making, such as providing counterfactual explanations for recourse. When unexpected explanations occur, users may want to understand the training data properties shaping them. Under the umbrella of data valuation, first approaches have been proposed that estimate the influence of data samples on a given model. This process not only helps determine the data's value, but also offers insights into how individual, potentially noisy, or misleading examples affect a model, which is crucial for interpretable AI. In this work, we apply the concept of data valuation to the significant area of model evaluations, focusing on how individual training samples impact a model's internal reasoning rather than the predictive performance only. Hence, we introduce the novel problem of identifying training samples shaping a given explanation or related quantity, and investigate the particular case of the cost of computational recourse. We propose an algorithm to identify such influential samples and conduct extensive empirical evaluations in two case studies.
comment: Extended version of the paper accepted at the "Workshop on Explainable Artificial Intelligence (XAI)" at IJCAI 2024
♻ ☆ Neuromorphic Principles for Efficient Large Language Models on Intel Loihi 2 ICLR
Large language models (LLMs) deliver impressive performance but require large amounts of energy. In this work, we present a MatMul-free LLM architecture adapted for Intel's neuromorphic processor, Loihi 2. Our approach leverages Loihi 2's support for low-precision, event-driven computation and stateful processing. Our hardware-aware quantized model on GPU demonstrates that a 370M parameter MatMul-free model can be quantized with no accuracy loss. Based on preliminary results, we report up to 3x higher throughput with 2x less energy, compared to transformer-based LLMs on an edge GPU, with significantly better scaling. Further hardware optimizations will increase throughput and decrease energy consumption. These results show the potential of neuromorphic hardware for efficient inference and pave the way for efficient reasoning models capable of generating complex, long-form text rapidly and cost-effectively.
comment: Accepted to International Conference on Learning Representations (ICLR) Workshop on Scalable Optimization for Efficient and Adaptive Foundation Models (SCOPE)
♻ ☆ A Schema-aware Logic Reformulation for Graph Reachability
Graph reachability is the task of understanding whether two distinct points in a graph are interconnected by arcs to which in general a semantic is attached. Reachability has plenty of applications, ranging from motion planning to routing. Improving reachability requires structural knowledge of relations so as to avoid the complexity of traditional depth-first and breadth-first strategies, implemented in logic languages. In some contexts, graphs are enriched with their schema definitions establishing domain and range for every arc. The introduction of a schema-aware formalization for guiding the search may result in a sensitive improvement by cutting out unuseful paths and prioritising those that, in principle, reach the target earlier. In this work, we propose a strategy to automatically exclude and sort certain graph paths by exploiting the higher-level conceptualization of instances. The aim is to obtain a new first-order logic reformulation of the graph reachability scenario, capable of improving the traditional algorithms in terms of time, space requirements, and number of backtracks. The experiments exhibit the expected advantages of the approach in reducing the number of backtracks during the search strategy, resulting in saving time and space as well.
♻ ☆ Data-Driven Analysis of AI in Medical Device Software in China: Deep Learning and General AI Trends Based on Regulatory Data
Artificial intelligence (AI) in medical device software (MDSW) represents a transformative clinical technology, attracting increasing attention within both the medical community and the regulators. In this study, we leverage a data-driven approach to automatically extract and analyze AI-enabled medical devices (AIMD) from the National Medical Products Administration (NMPA) regulatory database. The continued increase in publicly available regulatory data requires scalable methods for analysis. Automation of regulatory information screening is essential to create reproducible insights that can be quickly updated in an ever changing medical device landscape. More than 4 million entries were assessed, identifying 2,174 MDSW registrations, including 531 standalone applications and 1,643 integrated within medical devices, of which 43 were AI-enabled. It was shown that the leading medical specialties utilizing AIMD include respiratory (20.5%), ophthalmology/endocrinology (12.8%), and orthopedics (10.3%). This approach greatly improves the speed of data extracting providing a greater ability to compare and contrast. This study provides the first extensive, data-driven exploration of AIMD in China, showcasing the potential of automated regulatory data analysis in understanding and advancing the landscape of AI in medical technology.
♻ ☆ Probabilistic Shielding for Safe Reinforcement Learning AAAI 2025
In real-life scenarios, a Reinforcement Learning (RL) agent aiming to maximise their reward, must often also behave in a safe manner, including at training time. Thus, much attention in recent years has been given to Safe RL, where an agent aims to learn an optimal policy among all policies that satisfy a given safety constraint. However, strict safety guarantees are often provided through approaches based on linear programming, and thus have limited scaling. In this paper we present a new, scalable method, which enjoys strict formal guarantees for Safe RL, in the case where the safety dynamics of the Markov Decision Process (MDP) are known, and safety is defined as an undiscounted probabilistic avoidance property. Our approach is based on state-augmentation of the MDP, and on the design of a shield that restricts the actions available to the agent. We show that our approach provides a strict formal safety guarantee that the agent stays safe at training and test time. Furthermore, we demonstrate that our approach is viable in practice through experimental evaluation.
comment: 13 pages, 3 figures, Conference: AAAI 2025
♻ ☆ To FP8 and Back Again: Quantifying Reduced Precision Effects on LLM Training Stability
The massive computational costs associated with large language model (LLM) pretraining have spurred great interest in reduced-precision floating-point representations to accelerate the process. As a result, the BrainFloat16 (BF16) precision has become the de facto standard for LLM training, with hardware support included in recent generations of accelerators. This trend has gone even further in the latest processors, where FP8 has recently been introduced. However, prior experience with FP16, which was found to be less stable than BF16, raises concerns as to whether FP8, with even fewer bits than FP16, can be a cost-effective option for LLM training. We argue that reduced-precision training schemes must have similar training stability and hyperparameter sensitivities to their higher-precision counterparts in order to be cost-effective. However, we find that currently available methods for FP8 training are not robust enough to allow their use as economical replacements. This prompts us to investigate the stability of reduced-precision LLM training in terms of robustness across random seeds, learning rates, and datasets. To this end, we propose new evaluation techniques and a new metric for quantifying loss landscape sharpness in autoregressive language models. By simulating incremental bit reductions in floating-point representations, we analyze the relationship between representational power and training stability with the intent of aiding future research into the field.
♻ ☆ PropNet: a White-Box and Human-Like Network for Sentence Representation
Transformer-based embedding methods have dominated the field of sentence representation in recent years. Although they have achieved remarkable performance on NLP missions, such as semantic textual similarity (STS) tasks, their black-box nature and large-data-driven training style have raised concerns, including issues related to bias, trust, and safety. Many efforts have been made to improve the interpretability of embedding models, but these problems have not been fundamentally resolved. To achieve inherent interpretability, we propose a purely white-box and human-like sentence representation network, PropNet. Inspired by findings from cognitive science, PropNet constructs a hierarchical network based on the propositions contained in a sentence. While experiments indicate that PropNet has a significant gap compared to state-of-the-art (SOTA) embedding models in STS tasks, case studies reveal substantial room for improvement. Additionally, PropNet enables us to analyze and understand the human cognitive processes underlying STS benchmarks.
comment: Clarified some ambiguities in the previous version
♻ ☆ Inverting Transformer-based Vision Models
Understanding the mechanisms underlying deep neural networks in computer vision remains a fundamental challenge. While many previous approaches have focused on visualizing intermediate representations within deep neural networks, particularly convolutional neural networks, these techniques have yet to be thoroughly explored in transformer-based vision models. In this study, we apply a modular approach of training inverse models to reconstruct input images from intermediate layers within a Detection Transformer and a Vision Transformer, showing that this approach is efficient and feasible. Through qualitative and quantitative evaluations of reconstructed images, we generate insights into the underlying mechanisms of these architectures, highlighting their similarities and differences in terms of contextual shape and preservation of image details, inter-layer correlation, and robustness to color perturbations. Our analysis illustrates how these properties emerge within the models, contributing to a deeper understanding of transformer-based vision models. The code for reproducing our experiments is available at github.com/wiskott-lab/inverse-tvm.
♻ ☆ Computational Analysis of Stress, Depression and Engagement in Mental Health: A Survey
Analysis of stress, depression and engagement is less common and more complex than that of frequently discussed emotions such as happiness, sadness, fear and anger. The importance of these psychological states has been increasingly recognized due to their implications for mental health and well-being. Stress and depression are interrelated and together they impact engagement in daily tasks, highlighting the need to explore their interplay. This survey is the first to simultaneously explore computational methods for analyzing stress, depression and engagement. We present a taxonomy and timeline of the computational approaches used to analyze them and we discuss the most commonly used datasets and input modalities, along with the categories and generic pipeline of these approaches. Subsequently, we describe state-of-the-art computational approaches, including a performance summary on the most commonly used datasets. Following this, we explore the applications of stress, depression and engagement analysis, along with the associated challenges, limitations and future research directions.
comment: Under review in IEEE Transactions on Pattern Analysis and Machine Intelligence
♻ ☆ DiffusionAct: Controllable Diffusion Autoencoder for One-shot Face Reenactment
Video-driven neural face reenactment aims to synthesize realistic facial images that successfully preserve the identity and appearance of a source face, while transferring the target head pose and facial expressions. Existing GAN-based methods suffer from either distortions and visual artifacts or poor reconstruction quality, i.e., the background and several important appearance details, such as hair style/color, glasses and accessories, are not faithfully reconstructed. Recent advances in Diffusion Probabilistic Models (DPMs) enable the generation of high-quality realistic images. To this end, in this paper we present DiffusionAct, a novel method that leverages the photo-realistic image generation of diffusion models to perform neural face reenactment. Specifically, we propose to control the semantic space of a Diffusion Autoencoder (DiffAE), in order to edit the facial pose of the input images, defined as the head pose orientation and the facial expressions. Our method allows one-shot, self, and cross-subject reenactment, without requiring subject-specific fine-tuning. We compare against state-of-the-art GAN-, StyleGAN2-, and diffusion-based methods, showing better or on-par reenactment performance.
comment: Project page: https://stelabou.github.io/diffusionact/
♻ ☆ STATGRAPH: Effective In-vehicle Intrusion Detection via Multi-view Statistical Graph Learning
In-vehicle network (IVN) is facing complex external cyber-attacks, especially the emerging masquerade attacks with extremely high difficulty of detection while serious damaging effects. In this paper, we propose the STATGRAPH, which is an effective and fine-grained intrusion detection methodology for IVN security services via multi-view statistical graph learning on in-vehicle controller area network (CAN) messages with insight into their variations in periodicity, payload and signal combinations. Specifically, STATGRAPH generates two statistical graphs, timing correlation graph (TCG) and coupling relationship graph (CRG), in every CAN message detection window, where edge attributes in TCGs represent temporal correlation between different message IDs while edge attributes in CRGs denote the neighbour relationship and contextual similarity. Besides, a lightweight shallow layered graph convolution network is trained based on graph property of TCGs and CRGs, which learns the universal laws of various patterns more effectively and further enhance the performance of detection. To address the problem of insufficient attack types in previous intrusion detection, we select two real in-vehicle CAN datasets covering five new instances of sophisticated and stealthy masquerade attacks that are never investigated before. Experimental result shows STATGRAPH improves both detection granularity and detection performance over state-of-the-art intrusion detection methods. Code is available at https://github.com/wangkai-tech23/StatGraph.
comment: 13 pages, 7 figures, 6 tables, 36 references
♻ ☆ T-MAC: CPU Renaissance via Table Lookup for Low-Bit LLM Deployment on Edge EuroSys 2025
The deployment of Large Language Models (LLMs) on edge devices is increasingly important to enhance on-device intelligence. Weight quantization is crucial for reducing the memory footprint of LLMs on devices. However, low-bit LLMs necessitate mixed precision matrix multiplication (mpGEMM) of low precision weights and high precision activations during inference. Existing systems, lacking native support for mpGEMM, resort to dequantize weights for high precision computation. Such an indirect way can lead to a significant inference overhead. In this paper, we introduce T-MAC, an innovative lookup table(LUT)-based method designed for efficient low-bit LLM (i.e., weight-quantized LLM) inference on CPUs. T-MAC directly supports mpGEMM without dequantization, while simultaneously eliminating multiplications and reducing additions required. Specifically, T-MAC transforms the traditional data-type-centric multiplication to bit-wise table lookup, and enables a unified and scalable mpGEMM solution. Our LUT-based kernels scale linearly to the weight bit-width. Evaluated on low-bit Llama and BitNet models, T-MAC demonstrates up to 4x increase in throughput and 70% reduction in energy consumption compared to llama.cpp. For BitNet-b1.58-3B, T-MAC delivers a token generation throughput of 30 tokens/s with a single core and 71 tokens/s with eight cores on M2-Ultra, and 11 tokens/s on lower-end devices like Raspberry Pi 5, which significantly exceeds the adult average reading speed. T-MAC with LUT-based computing paradigm, paves the way for the practical deployment of low-bit LLMs on resource-constrained edge devices without compromising computational efficiency. The system is open-sourced at https://github.com/microsoft/T-MAC .
comment: EuroSys 2025
♻ ☆ Understanding and Reducing the Class-Dependent Effects of Data Augmentation with A Two-Player Game Approach
Data augmentation is widely applied and has shown its benefits in different machine learning tasks. However, as recently observed, it may have an unfair effect in multi-class classification. While data augmentation generally improves the overall performance (and therefore is beneficial for many classes), it can actually be detrimental for other classes, which can be problematic in some application domains. In this paper, to counteract this phenomenon, we propose CLAM, a CLAss-dependent Multiplicative-weights method. To derive it, we first formulate the training of a classifier as a non-linear optimization problem that aims at simultaneously maximizing the individual class performances and balancing them. By rewriting this optimization problem as an adversarial two-player game, we propose a novel multiplicative weight algorithm, for which we prove the convergence. Interestingly, our formulation also reveals that the class-dependent effects of data augmentation is not due to data augmentation only, but is in fact a general phenomenon. Our empirical results over five datasets demonstrate that the performance of learned classifiers is indeed more fairly distributed over classes, with only limited impact on the average accuracy.
♻ ☆ Expert Race: A Flexible Routing Strategy for Scaling Diffusion Transformer with Mixture of Experts
Diffusion models have emerged as mainstream framework in visual generation. Building upon this success, the integration of Mixture of Experts (MoE) methods has shown promise in enhancing model scalability and performance. In this paper, we introduce Race-DiT, a novel MoE model for diffusion transformers with a flexible routing strategy, Expert Race. By allowing tokens and experts to compete together and select the top candidates, the model learns to dynamically assign experts to critical tokens. Additionally, we propose per-layer regularization to address challenges in shallow layer learning, and router similarity loss to prevent mode collapse, ensuring better expert utilization. Extensive experiments on ImageNet validate the effectiveness of our approach, showcasing significant performance gains while promising scaling properties.
♻ ☆ A Multimodal Knowledge-enhanced Whole-slide Pathology Foundation Model
Remarkable strides in computational pathology have been made in the task-agnostic foundation model that advances the performance of a wide array of downstream clinical tasks. Despite the promising performance, there are still several challenges. First, prior works have resorted to either vision-only or image-caption data, disregarding pathology reports with more clinically authentic information from pathologists and gene expression profiles which respectively offer distinct knowledge for versatile clinical applications. Second, the current progress in pathology FMs predominantly concentrates on the patch level, where the restricted context of patch-level pretraining fails to capture whole-slide patterns. Even recent slide-level FMs still struggle to provide whole-slide context for patch representation. In this study, for the first time, we develop a pathology foundation model incorporating three levels of modalities: pathology slides, pathology reports, and gene expression data, which resulted in 26,169 slide-level modality pairs from 10,275 patients across 32 cancer types, amounting to over 116 million pathological patch images. To leverage these data for CPath, we propose a novel whole-slide pretraining paradigm that injects the multimodal whole-slide context into the patch representation, called Multimodal Self-TAught PRetraining (mSTAR). The proposed paradigm revolutionizes the pretraining workflow for CPath, enabling the pathology FM to acquire the whole-slide context. To the best of our knowledge, this is the first attempt to incorporate three modalities at the whole-slide context for enhancing pathology FMs. To systematically evaluate the capabilities of mSTAR, we built the largest spectrum of oncological benchmark, spanning 7 categories of oncological applications in 15 types of 97 practical oncological tasks.
comment: 62 pages
♻ ☆ Technical Approach for the EMI Challenge in the 8th Affective Behavior Analysis in-the-Wild Competition
Emotional Mimicry Intensity (EMI) estimation plays a pivotal role in understanding human social behavior and advancing human-computer interaction. The core challenges lie in dynamic correlation modeling and robust fusion of multimodal temporal signals. To address the limitations of existing methods--insufficient exploitation of cross-modal synergies, sensitivity to noise, and constrained fine-grained alignment capabilities--this paper proposes a dual-stage cross-modal alignment framework. Stage 1 develops vision-text and audio-text contrastive learning networks based on a CLIP architecture, achieving preliminary feature-space alignment through modality-decoupled pre-training. Stage 2 introduces a temporal-aware dynamic fusion module integrating Temporal Convolutional Networks (TCN) and gated bidirectional LSTM to capture macro-evolution patterns of facial expressions and local dynamics of acoustic features, respectively. A novel quality-guided fusion strategy further enables differentiable weight allocation for modality compensation under occlusion and noise. Experiments on the Hume-Vidmimic2 dataset demonstrate superior performance with an average Pearson correlation coefficient of 0.51 across six emotion dimensions on the validate set. Remarkably, our method achieved 0.68 on the test set, securing runner-up in the EMI Challenge Track of the 8th ABAW (Affective Behavior Analysis in the Wild) Competition, offering a novel pathway for fine-grained emotion analysis in open environments.
♻ ☆ A Closer Look at Time Steps is Worthy of Triple Speed-Up for Diffusion Model Training
Training diffusion models is always a computation-intensive task. In this paper, we introduce a novel speed-up method for diffusion model training, called, which is based on a closer look at time steps. Our key findings are: i) Time steps can be empirically divided into acceleration, deceleration, and convergence areas based on the process increment. ii) These time steps are imbalanced, with many concentrated in the convergence area. iii) The concentrated steps provide limited benefits for diffusion training. To address this, we design an asymmetric sampling strategy that reduces the frequency of steps from the convergence area while increasing the sampling probability for steps from other areas. Additionally, we propose a weighting strategy to emphasize the importance of time steps with rapid-change process increments. As a plug-and-play and architecture-agnostic approach, SpeeD consistently achieves 3-times acceleration across various diffusion architectures, datasets, and tasks. Notably, due to its simple design, our approach significantly reduces the cost of diffusion model training with minimal overhead. Our research enables more researchers to train diffusion models at a lower cost.
♻ ☆ Conditional Shift-Robust Conformal Prediction for Graph Neural Network
Graph Neural Networks (GNNs) have emerged as potent tools for predicting outcomes in graph-structured data. Despite their efficacy, a significant drawback of GNNs lies in their limited ability to provide robust uncertainty estimates, posing challenges to their reliability in contexts where errors carry significant consequences. Moreover, GNNs typically excel in in-distribution settings, assuming that training and test data follow identical distributions a condition often unmet in real world graph data scenarios. In this article, we leverage conformal prediction, a widely recognized statistical technique for quantifying uncertainty by transforming predictive model outputs into prediction sets, to address uncertainty quantification in GNN predictions amidst conditional shift\footnote{Representing the change in conditional probability distribution \(P(label|input)\) from source domain to target domain.} in graph-based semi-supervised learning (SSL). Additionally, we propose a novel loss function aimed at refining model predictions by minimizing conditional shift in latent stages. Termed Conditional Shift Robust (CondSR) conformal prediction for GNNs, our approach CondSR is model-agnostic and adaptable to various classification models. We validate the effectiveness of our method on standard graph benchmark datasets, integrating it with state-of-the-art GNNs in node classification tasks. Comprehensive evaluations demonstrate that our approach consistently achieves any predefined target marginal coverage, enhances the accuracy of state of the art GNN models by up to 12\% under conditional shift, and reduces the prediction set size by up to 48\%. The code implementation is publicly available for further exploration and experimentation.
comment: 15 pages, 3 figures, 4 tables
♻ ☆ Large Language Model for Patent Concept Generation
In traditional innovation practices, concept and IP generation are often iteratively integrated. Both processes demand an intricate understanding of advanced technical domain knowledge. Existing large language models (LLMs), while possessing massive pre-trained knowledge, often fall short in the innovative concept generation due to a lack of specialized knowledge necessary for the generation. To bridge this critical gap, we propose a novel knowledge finetuning (KFT) framework to endow LLM-based AI with the ability to autonomously mine, understand, and apply domain-specific knowledge and concepts for invention generation, i.e., concept and patent generation together. Our proposed PatentGPT integrates knowledge injection pre-training (KPT), domain-specific supervised finetuning (SFT), and reinforcement learning from human feedback (RLHF). Extensive evaluation shows that PatentGPT significantly outperforms the state-of-the-art models on patent-related benchmark tests. Our method not only provides new insights into data-driven innovation but also paves a new path to fine-tune LLMs for applications in the context of technology. We also discuss the managerial and policy implications of AI-generating inventions in the future.
comment: 33 pages, 8 figures
♻ ☆ CCUP: A Controllable Synthetic Data Generation Pipeline for Pretraining Cloth-Changing Person Re-Identification Models ICME 2025
Cloth-changing person re-identification (CC-ReID), also known as Long-Term Person Re-Identification (LT-ReID) is a critical and challenging research topic in computer vision that has recently garnered significant attention. However, due to the high cost of constructing CC-ReID data, the existing data-driven models are hard to train efficiently on limited data, causing overfitting issue. To address this challenge, we propose a low-cost and efficient pipeline for generating controllable and high-quality synthetic data simulating the surveillance of real scenarios specific to the CC-ReID task. Particularly, we construct a new self-annotated CC-ReID dataset named Cloth-Changing Unreal Person (CCUP), containing 6,000 IDs, 1,179,976 images, 100 cameras, and 26.5 outfits per individual. Based on this large-scale dataset, we introduce an effective and scalable pretrain-finetune framework for enhancing the generalization capabilities of the traditional CC-ReID models. The extensive experiments demonstrate that two typical models namely TransReID and FIRe^2, when integrated into our framework, outperform other state-of-the-art models after pretraining on CCUP and finetuning on the benchmarks such as PRCC, VC-Clothes and NKUP. The CCUP is available at: https://github.com/yjzhao1019/CCUP.
comment: Accepted by ICME 2025
♻ ☆ Extreme Precipitation Nowcasting using Multi-Task Latent Diffusion Models
Deep learning models have achieved remarkable progress in precipitation prediction. However, they still face significant challenges in accurately capturing spatial details of radar images, particularly in regions of high precipitation intensity. This limitation results in reduced spatial localization accuracy when predicting radar echo images across varying precipitation intensities. To address this challenge, we propose an innovative precipitation prediction approach termed the Multi-Task Latent Diffusion Model (MTLDM). The core idea of MTLDM lies in the recognition that precipitation radar images represent a combination of multiple components, each corresponding to different precipitation intensities. Thus, we adopt a divide-and-conquer strategy, decomposing radar images into several sub-images based on their precipitation intensities and individually modeling these components. During the prediction stage, MTLDM integrates these sub-image representations by utilizing a trained latent-space rainfall diffusion model, followed by decoding through a multi-task decoder to produce the final precipitation prediction. Experimental evaluations conducted on the MRMS dataset demonstrate that the proposed MTLDM method surpasses state-of-the-art techniques, achieving a Critical Success Index (CSI) improvement of 13-26%.
comment: 15 pages, 14figures
♻ ☆ VideoRefer Suite: Advancing Spatial-Temporal Object Understanding with Video LLM
Video Large Language Models (Video LLMs) have recently exhibited remarkable capabilities in general video understanding. However, they mainly focus on holistic comprehension and struggle with capturing fine-grained spatial and temporal details. Besides, the lack of high-quality object-level video instruction data and a comprehensive benchmark further hinders their advancements. To tackle these challenges, we introduce the VideoRefer Suite to empower Video LLM for finer-level spatial-temporal video understanding, i.e., enabling perception and reasoning on any objects throughout the video. Specially, we thoroughly develop VideoRefer Suite across three essential aspects: dataset, model, and benchmark. Firstly, we introduce a multi-agent data engine to meticulously curate a large-scale, high-quality object-level video instruction dataset, termed VideoRefer-700K. Next, we present the VideoRefer model, which equips a versatile spatial-temporal object encoder to capture precise regional and sequential representations. Finally, we meticulously create a VideoRefer-Bench to comprehensively assess the spatial-temporal understanding capability of a Video LLM, evaluating it across various aspects. Extensive experiments and analyses demonstrate that our VideoRefer model not only achieves promising performance on video referring benchmarks but also facilitates general video understanding capabilities.
comment: 17 pages, 14 figures, technical report
♻ ☆ GFlowVLM: Enhancing Multi-step Reasoning in Vision-Language Models with Generative Flow Networks
Vision-Language Models (VLMs) have recently shown promising advancements in sequential decision-making tasks through task-specific fine-tuning. However, common fine-tuning methods, such as Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) techniques like Proximal Policy Optimization (PPO), present notable limitations: SFT assumes Independent and Identically Distributed (IID) data, while PPO focuses on maximizing cumulative rewards. These limitations often restrict solution diversity and hinder generalization in multi-step reasoning tasks. To address these challenges, we introduce a novel framework, GFlowVLM, a framework that fine-tune VLMs using Generative Flow Networks (GFlowNets) to promote generation of diverse solutions for complex reasoning tasks. GFlowVLM models the environment as a non-Markovian decision process, allowing it to capture long-term dependencies essential for real-world applications. It takes observations and task descriptions as inputs to prompt chain-of-thought (CoT) reasoning which subsequently guides action selection. We use task based rewards to fine-tune VLM with GFlowNets. This approach enables VLMs to outperform prior fine-tuning methods, including SFT and RL. Empirical results demonstrate the effectiveness of GFlowVLM on complex tasks such as card games (NumberLine, BlackJack) and embodied planning tasks (ALFWorld), showing enhanced training efficiency, solution diversity, and stronger generalization capabilities across both in-distribution and out-of-distribution scenarios.
♻ ☆ Discovering Hidden Visual Concepts Beyond Linguistic Input in Infant Learning CVPR 2025
Infants develop complex visual understanding rapidly, even preceding the acquisition of linguistic skills. As computer vision seeks to replicate the human vision system, understanding infant visual development may offer valuable insights. In this paper, we present an interdisciplinary study exploring this question: can a computational model that imitates the infant learning process develop broader visual concepts that extend beyond the vocabulary it has heard, similar to how infants naturally learn? To investigate this, we analyze a recently published model in Science by Vong et al., which is trained on longitudinal, egocentric images of a single child paired with transcribed parental speech. We perform neuron labeling to identify visual concept neurons hidden in the model's internal representations. We then demonstrate that these neurons can recognize objects beyond the model's original vocabulary. Furthermore, we compare the differences in representation between infant models and those in modern computer vision models, such as CLIP and ImageNet pre-trained model. Ultimately, our work bridges cognitive science and computer vision by analyzing the internal representations of a computational model trained on an infant visual and linguistic inputs. Our code is available at https://github.com/Kexueyi/discover_infant_vis.
comment: Accepted at CVPR 2025
♻ ☆ BF-STVSR: B-Splines and Fourier-Best Friends for High Fidelity Spatial-Temporal Video Super-Resolution CVPR 2025
While prior methods in Continuous Spatial-Temporal Video Super-Resolution (C-STVSR) employ Implicit Neural Representation (INR) for continuous encoding, they often struggle to capture the complexity of video data, relying on simple coordinate concatenation and pre-trained optical flow networks for motion representation. Interestingly, we find that adding position encoding, contrary to common observations, does not improve--and even degrades--performance. This issue becomes particularly pronounced when combined with pre-trained optical flow networks, which can limit the model's flexibility. To address these issues, we propose BF-STVSR, a C-STVSR framework with two key modules tailored to better represent spatial and temporal characteristics of video: 1) B-spline Mapper for smooth temporal interpolation, and 2) Fourier Mapper for capturing dominant spatial frequencies. Our approach achieves state-of-the-art in various metrics, including PSNR and SSIM, showing enhanced spatial details and natural temporal consistency. Our code is available https://github.com/Eunjnnn/bfstvsr.
comment: CVPR 2025
♻ ☆ BioMamba: Leveraging Spectro-Temporal Embedding in Bidirectional Mamba for Enhanced Biosignal Classification
Biological signals, such as electroencephalograms (EEGs) and electrocardiograms (ECGs), play a pivotal role in numerous clinical practices, such as diagnosing brain and cardiac arrhythmic diseases. Existing methods for biosignal classification rely on Attention-based frameworks with dense Feed Forward layers, which lead to inefficient learning, high computational overhead, and suboptimal performance. In this work, we introduce BioMamba, a Spectro-Temporal Embedding strategy applied to the Bidirectional Mamba framework with Sparse Feed Forward layers to enable effective learning of biosignal sequences. By integrating these three key components, BioMamba effectively addresses the limitations of existing methods. Extensive experiments demonstrate that BioMamba significantly outperforms state-of-the-art methods with marked improvement in classification performance. The advantages of the proposed BioMamba include (1) Reliability: BioMamba consistently delivers robust results, confirmed across six evaluation metrics. (2) Efficiency: We assess both model and training efficiency, the BioMamba demonstrates computational effectiveness by reducing model size and resource consumption compared to existing approaches. (3) Generality: With the capacity to effectively classify a diverse set of tasks, BioMamba demonstrates adaptability and effectiveness across various domains and applications.
comment: Biological signals
♻ ☆ OmniDocBench: Benchmarking Diverse PDF Document Parsing with Comprehensive Annotations CVPR2025
Document content extraction is a critical task in computer vision, underpinning the data needs of large language models (LLMs) and retrieval-augmented generation (RAG) systems. Despite recent progress, current document parsing methods have not been fairly and comprehensively evaluated due to the narrow coverage of document types and the simplified, unrealistic evaluation procedures in existing benchmarks. To address these gaps, we introduce OmniDocBench, a novel benchmark featuring high-quality annotations across nine document sources, including academic papers, textbooks, and more challenging cases such as handwritten notes and densely typeset newspapers. OmniDocBench supports flexible, multi-level evaluations--ranging from an end-to-end assessment to the task-specific and attribute--based analysis using 19 layout categories and 15 attribute labels. We conduct a thorough evaluation of both pipeline-based methods and end-to-end vision-language models, revealing their strengths and weaknesses across different document types. OmniDocBench sets a new standard for the fair, diverse, and fine-grained evaluation in document parsing. Dataset and code are available at https://github.com/opendatalab/OmniDocBench.
comment: Accepted by CVPR2025
♻ ☆ MCRanker: Generating Diverse Criteria On-the-Fly to Improve Point-wise LLM Rankers
The most recent pointwise Large Language Model (LLM) rankers have achieved remarkable ranking results. However, these rankers are hindered by two major drawbacks: (1) they fail to follow a standardized comparison guidance during the ranking process, and (2) they struggle with comprehensive considerations when dealing with complicated passages. To address these shortcomings, we propose to build a ranker that generates ranking scores based on a set of criteria from various perspectives. These criteria are intended to direct each perspective in providing a distinct yet synergistic evaluation. Our research, which examines eight datasets from the BEIR benchmark demonstrates that incorporating this multi-perspective criteria ensemble approach markedly enhanced the performance of pointwise LLM rankers.
♻ ☆ XXLTraffic: Expanding and Extremely Long Traffic forecasting beyond test adaptation
Traffic forecasting is crucial for smart cities and intelligent transportation initiatives, where deep learning has made significant progress in modeling complex spatio-temporal patterns in recent years. However, current public datasets have limitations in reflecting the distribution shift nature of real-world scenarios, characterized by continuously evolving infrastructures, varying temporal distributions, and long temporal gaps due to sensor downtimes or changes in traffic patterns. These limitations inevitably restrict the practical applicability of existing traffic forecasting datasets. To bridge this gap, we present XXLTraffic, largest available public traffic dataset with the longest timespan collected from Los Angeles, USA, and New South Wales, Australia, curated to support research in extremely long forecasting beyond test adaptation. Our benchmark includes both typical time-series forecasting settings with hourly and daily aggregated data and novel configurations that introduce gaps and down-sample the training size to better simulate practical constraints. We anticipate the new XXLTraffic will provide a fresh perspective for the time-series and traffic forecasting communities. It would also offer a robust platform for developing and evaluating models designed to tackle the extremely long forecasting problems beyond test adaptation. Our dataset supplements existing spatio-temporal data resources and leads to new research directions in this domain.
♻ ☆ Polysemanticity and Capacity in Neural Networks
Individual neurons in neural networks often represent a mixture of unrelated features. This phenomenon, called polysemanticity, can make interpreting neural networks more difficult and so we aim to understand its causes. We propose doing so through the lens of feature \emph{capacity}, which is the fractional dimension each feature consumes in the embedding space. We show that in a toy model the optimal capacity allocation tends to monosemantically represent the most important features, polysemantically represent less important features (in proportion to their impact on the loss), and entirely ignore the least important features. Polysemanticity is more prevalent when the inputs have higher kurtosis or sparsity and more prevalent in some architectures than others. Given an optimal allocation of capacity, we go on to study the geometry of the embedding space. We find a block-semi-orthogonal structure, with differing block sizes in different models, highlighting the impact of model architecture on the interpretability of its neurons.
comment: 22 pages, 7 figures. Improved notation and corrected an error in the description of the most general efficient matrices
♻ ☆ Hardware-Friendly Static Quantization Method for Video Diffusion Transformers
Diffusion Transformers for video generation have gained significant research interest since the impressive performance of SORA. Efficient deployment of such generative-AI models on GPUs has been demonstrated with dynamic quantization. However, resource-constrained devices cannot support dynamic quantization, and need static quantization of the models for their efficient deployment on AI processors. In this paper, we propose a novel method for the post-training quantization of OpenSora\cite{opensora}, a Video Diffusion Transformer, without relying on dynamic quantization techniques. Our approach employs static quantization, achieving video quality comparable to FP16 and dynamically quantized ViDiT-Q methods, as measured by CLIP, and VQA metrics. In particular, we utilize per-step calibration data to adequately provide a post-training statically quantized model for each time step, incorporating channel-wise quantization for weights and tensor-wise quantization for activations. By further applying the smooth-quantization technique, we can obtain high-quality video outputs with the statically quantized models. Extensive experimental results demonstrate that static quantization can be a viable alternative to dynamic quantization for video diffusion transformers, offering a more efficient approach without sacrificing performance.
♻ ☆ In-House Evaluation Is Not Enough: Towards Robust Third-Party Flaw Disclosure for General-Purpose AI
The widespread deployment of general-purpose AI (GPAI) systems introduces significant new risks. Yet the infrastructure, practices, and norms for reporting flaws in GPAI systems remain seriously underdeveloped, lagging far behind more established fields like software security. Based on a collaboration between experts from the fields of software security, machine learning, law, social science, and policy, we identify key gaps in the evaluation and reporting of flaws in GPAI systems. We call for three interventions to advance system safety. First, we propose using standardized AI flaw reports and rules of engagement for researchers in order to ease the process of submitting, reproducing, and triaging flaws in GPAI systems. Second, we propose GPAI system providers adopt broadly-scoped flaw disclosure programs, borrowing from bug bounties, with legal safe harbors to protect researchers. Third, we advocate for the development of improved infrastructure to coordinate distribution of flaw reports across the many stakeholders who may be impacted. These interventions are increasingly urgent, as evidenced by the prevalence of jailbreaks and other flaws that can transfer across different providers' GPAI systems. By promoting robust reporting and coordination in the AI ecosystem, these proposals could significantly improve the safety, security, and accountability of GPAI systems.
♻ ☆ Think Carefully and Check Again! Meta-Generation Unlocking LLMs for Low-Resource Cross-Lingual Summarization
Cross-lingual summarization (CLS) aims to generate a summary for the source text in a different target language. Currently, instruction-tuned large language models (LLMs) excel at various English tasks. However, unlike languages such as English, Chinese or Spanish, for those relatively low-resource languages with limited usage or data, recent studies have shown that LLMs' performance on CLS tasks remains unsatisfactory even with few-shot settings. This raises the question: Are LLMs capable of handling cross-lingual summarization tasks for low-resource languages? To resolve this question, we fully explore the potential of large language models on cross-lingual summarization task for low-resource languages through our four-step zero-shot method: Summarization, Improvement, Translation and Refinement (SITR) with correspondingly designed prompts. We test our proposed method with multiple LLMs on two well-known cross-lingual summarization datasets with various low-resource target languages. The results show that: i) GPT-3.5 and GPT-4 significantly and consistently outperform other baselines when using our zero-shot SITR methods. ii) By employing our proposed method, we unlock the potential of LLMs, enabling them to effectively handle cross-lingual summarization tasks for relatively low-resource languages.
♻ ☆ Language Models May Verbatim Complete Text They Were Not Explicitly Trained On
An important question today is whether a given text was used to train a large language model (LLM). A \emph{completion} test is often employed: check if the LLM completes a sufficiently complex text. This, however, requires a ground-truth definition of membership; most commonly, it is defined as a member based on the $n$-gram overlap between the target text and any text in the dataset. In this work, we demonstrate that this $n$-gram based membership definition can be effectively gamed. We study scenarios where sequences are \emph{non-members} for a given $n$ and we find that completion tests still succeed. We find many natural cases of this phenomenon by retraining LLMs from scratch after removing all training samples that were completed; these cases include exact duplicates, near-duplicates, and even short overlaps. They showcase that it is difficult to find a single viable choice of $n$ for membership definitions. Using these insights, we design adversarial datasets that can cause a given target sequence to be completed without containing it, for any reasonable choice of $n$. Our findings highlight the inadequacy of $n$-gram membership, suggesting membership definitions fail to account for auxiliary information available to the training algorithm.
comment: Main text: 9 pages, 7 figures, 1 table. Appendix: 29 pages, 20 tables, 15 figures
♻ ☆ Long-range Meta-path Search on Large-scale Heterogeneous Graphs NeurIPS 2024
Utilizing long-range dependency, a concept extensively studied in homogeneous graphs, remains underexplored in heterogeneous graphs, especially on large ones, posing two significant challenges: Reducing computational costs while maximizing effective information utilization in the presence of heterogeneity, and overcoming the over-smoothing issue in graph neural networks. To address this gap, we investigate the importance of different meta-paths and introduce an automatic framework for utilizing long-range dependency on heterogeneous graphs, denoted as Long-range Meta-path Search through Progressive Sampling (LMSPS). Specifically, we develop a search space with all meta-paths related to the target node type. By employing a progressive sampling algorithm, LMSPS dynamically shrinks the search space with hop-independent time complexity. Through a sampling evaluation strategy, LMSPS conducts a specialized and effective meta-path selection, leading to retraining with only effective meta-paths, thus mitigating costs and over-smoothing. Extensive experiments across diverse heterogeneous datasets validate LMSPS's capability in discovering effective long-range meta-paths, surpassing state-of-the-art methods. Our code is available at https://github.com/JHL-HUST/LMSPS.
comment: Accepted by Advances in Neural Information Processing Systems (NeurIPS 2024)
♻ ☆ SyncDiff: Synchronized Motion Diffusion for Multi-Body Human-Object Interaction Synthesis
Synthesizing realistic human-object interaction motions is a critical problem in VR/AR and human animation. Unlike the commonly studied scenarios involving a single human or hand interacting with one object, we address a more generic multi-body setting with arbitrary numbers of humans, hands, and objects. This complexity introduces significant challenges in synchronizing motions due to the high correlations and mutual influences among bodies. To address these challenges, we introduce SyncDiff, a novel method for multi-body interaction synthesis using a synchronized motion diffusion strategy. SyncDiff employs a single diffusion model to capture the joint distribution of multi-body motions. To enhance motion fidelity, we propose a frequency-domain motion decomposition scheme. Additionally, we introduce a new set of alignment scores to emphasize the synchronization of different body motions. SyncDiff jointly optimizes both data sample likelihood and alignment likelihood through an explicit synchronization strategy. Extensive experiments across four datasets with various multi-body configurations demonstrate the superiority of SyncDiff over existing state-of-the-art motion synthesis methods.
♻ ☆ Lightweight Models for Emotional Analysis in Video
In this study, we present an approach for efficient spatiotemporal feature extraction using MobileNetV4 and a multi-scale 3D MLP-Mixer-based temporal aggregation module. MobileNetV4, with its Universal Inverted Bottleneck (UIB) blocks, serves as the backbone for extracting hierarchical feature representations from input image sequences, ensuring both computational efficiency and rich semantic encoding. To capture temporal dependencies, we introduce a three-level MLP-Mixer module, which processes spatial features at multiple resolutions while maintaining structural integrity. Experimental results on the ABAW 8th competition demonstrate the effectiveness of our approach, showing promising performance in affective behavior analysis. By integrating an efficient vision backbone with a structured temporal modeling mechanism, the proposed framework achieves a balance between computational efficiency and predictive accuracy, making it well-suited for real-time applications in mobile and embedded computing environments.
comment: https://github.com/PRVSL/abaw-8th
♻ ☆ Commonsense Video Question Answering through Video-Grounded Entailment Tree Reasoning CVPR 2025
This paper proposes the first video-grounded entailment tree reasoning method for commonsense video question answering (VQA). Despite the remarkable progress of large visual-language models (VLMs), there are growing concerns that they learn spurious correlations between videos and likely answers, reinforced by their black-box nature and remaining benchmarking biases. Our method explicitly grounds VQA tasks to video fragments in four steps: entailment tree construction, video-language entailment verification, tree reasoning, and dynamic tree expansion. A vital benefit of the method is its generalizability to current video and image-based VLMs across reasoning types. To support fair evaluation, we devise a de-biasing procedure based on large-language models that rewrites VQA benchmark answer sets to enforce model reasoning. Systematic experiments on existing and de-biased benchmarks highlight the impact of our method components across benchmarks, VLMs, and reasoning types.
comment: Accepted by CVPR 2025
♻ ☆ Natural Language Processing for the Legal Domain: A Survey of Tasks, Datasets, Models, and Challenges
Natural Language Processing (NLP) is revolutionising the way legal professionals and laypersons operate in the legal field. The considerable potential for NLP in the legal sector, especially in developing computational tools for various legal processes, has captured the interest of researchers for years. This survey follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses framework, reviewing 154 studies, with a final selection of 133 after manual filtering. It explores foundational concepts related to NLP in the legal domain, illustrating the unique aspects and challenges of processing legal texts, such as extensive document length, complex language, and limited open legal datasets. We provide an overview of NLP tasks specific to legal text, such as Legal Document Summarisation, legal Named Entity Recognition, Legal Question Answering, Legal Argument Mining, Legal Text Classification, and Legal Judgement Prediction. In the section on legal Language Models (LMs), we analyse both developed LMs and approaches for adapting general LMs to the legal domain. Additionally, we identify 16 Open Research Challenges, including bias in Artificial Intelligence applications, the need for more robust and interpretable models, and improving explainability to handle the complexities of legal language and reasoning.
comment: 35 pages
♻ ☆ The Surprising Effectiveness of Test-Time Training for Few-Shot Learning
Language models (LMs) have shown impressive performance on tasks within their training distribution, but often struggle with structurally novel tasks even when given a small number of in-context task examples. We investigate the effectiveness of test-time training (TTT) -- temporarily updating model parameters during inference using a loss derived from input data -- as a mechanism for improving LMs' reasoning and few-shot learning capabilities. On the Abstraction and Reasoning Corpus (ARC), performing TTT with in-context examples yields up to $6\times$ higher accuracy compared to fine-tuned baselines -- reaching $53.0\%$ on the public validation set with an 8B-parameter LM and $61.9\%$ when ensembled with program-synthesis methods, matching average human performance. On BIG-Bench Hard (BBH), TTT on in-context examples surpasses standard few-shot prompting in the $10$-shot setting by $7.3$ percentage points ($50.5\%$ to $57.8\%$). Our findings highlight the limitations of in-context learning for novel tasks and demonstrate the potential of test-time training to enhance language model adaptability.
comment: Preprint
♻ ☆ Coverage-based Fairness in Multi-document Summarization NAACL 2025
Fairness in multi-document summarization (MDS) measures whether a system can generate a summary fairly representing information from documents with different social attribute values. Fairness in MDS is crucial since a fair summary can offer readers a comprehensive view. Previous works focus on quantifying summary-level fairness using Proportional Representation, a fairness measure based on Statistical Parity. However, Proportional Representation does not consider redundancy in input documents and overlooks corpus-level unfairness. In this work, we propose a new summary-level fairness measure, Equal Coverage, which is based on coverage of documents with different social attribute values and considers the redundancy within documents. To detect the corpus-level unfairness, we propose a new corpus-level measure, Coverage Parity. Our human evaluations show that our measures align more with our definition of fairness. Using our measures, we evaluate the fairness of thirteen different LLMs. We find that Claude3-sonnet is the fairest among all evaluated LLMs. We also find that almost all LLMs overrepresent different social attribute values. The code is available at https://github.com/leehaoyuan/coverage_fairness.
comment: accepted to NAACL 2025
♻ ☆ On Diffusion Modeling for Anomaly Detection
Known for their impressive performance in generative modeling, diffusion models are attractive candidates for density-based anomaly detection. This paper investigates different variations of diffusion modeling for unsupervised and semi-supervised anomaly detection. In particular, we find that Denoising Diffusion Probability Models (DDPM) are performant on anomaly detection benchmarks yet computationally expensive. By simplifying DDPM in application to anomaly detection, we are naturally led to an alternative approach called Diffusion Time Estimation (DTE). DTE estimates the distribution over diffusion time for a given input and uses the mode or mean of this distribution as the anomaly score. We derive an analytical form for this density and leverage a deep neural network to improve inference efficiency. Through empirical evaluations on the ADBench benchmark, we demonstrate that all diffusion-based anomaly detection methods perform competitively for both semi-supervised and unsupervised settings. Notably, DTE achieves orders of magnitude faster inference time than DDPM, while outperforming it on this benchmark. These results establish diffusion-based anomaly detection as a scalable alternative to traditional methods and recent deep-learning techniques for standard unsupervised and semi-supervised anomaly detection settings.
♻ ☆ Non-autoregressive Generative Models for Reranking Recommendation KDD 2024
Contemporary recommendation systems are designed to meet users' needs by delivering tailored lists of items that align with their specific demands or interests. In a multi-stage recommendation system, reranking plays a crucial role by modeling the intra-list correlations among items. The key challenge of reranking lies in the exploration of optimal sequences within the combinatorial space of permutations. Recent research proposes a generator-evaluator learning paradigm, where the generator generates multiple feasible sequences and the evaluator picks out the best sequence based on the estimated listwise score. The generator is of vital importance, and generative models are well-suited for the generator function. Current generative models employ an autoregressive strategy for sequence generation. However, deploying autoregressive models in real-time industrial systems is challenging. To address these issues, we propose a Non-AutoRegressive generative model for reranking Recommendation (NAR4Rec) designed to enhance efficiency and effectiveness. To tackle challenges such as sparse training samples and dynamic candidates, we introduce a matching model. Considering the diverse nature of user feedback, we employ a sequence-level unlikelihood training objective to differentiate feasible sequences from unfeasible ones. Additionally, to overcome the lack of dependency modeling in non-autoregressive models regarding target items, we introduce contrastive decoding to capture correlations among these items. Extensive offline experiments validate the superior performance of NAR4Rec over state-of-the-art reranking methods. Online A/B tests reveal that NAR4Rec significantly enhances the user experience. Furthermore, NAR4Rec has been fully deployed in a popular video app Kuaishou with over 300 million daily active users.
comment: Accepted by KDD 2024
♻ ☆ Swift Hydra: Self-Reinforcing Generative Framework for Anomaly Detection with Multiple Mamba Models
Despite a plethora of anomaly detection models developed over the years, their ability to generalize to unseen anomalies remains an issue, particularly in critical systems. This paper aims to address this challenge by introducing Swift Hydra, a new framework for training an anomaly detection method based on generative AI and reinforcement learning (RL). Through featuring an RL policy that operates on the latent variables of a generative model, the framework synthesizes novel and diverse anomaly samples that are capable of bypassing a detection model. These generated synthetic samples are, in turn, used to augment the detection model, further improving its ability to handle challenging anomalies. Swift Hydra also incorporates Mamba models structured as a Mixture of Experts (MoE) to enable scalable adaptation of the number of Mamba experts based on data complexity, effectively capturing diverse feature distributions without increasing the model's inference time. Empirical evaluations on ADBench benchmark demonstrate that Swift Hydra outperforms other state-of-the-art anomaly detection models while maintaining a relatively short inference time. From these results, our research highlights a new and auspicious paradigm of integrating RL and generative AI for advancing anomaly detection.
♻ ☆ Zeroth-order Informed Fine-Tuning for Diffusion Model: A Recursive Likelihood Ratio Optimizer
The probabilistic diffusion model (DM), generating content by inferencing through a recursive chain structure, has emerged as a powerful framework for visual generation. After pre-training on enormous unlabeled data, the model needs to be properly aligned to meet requirements for downstream applications. How to efficiently align the foundation DM is a crucial task. Contemporary methods are either based on Reinforcement Learning (RL) or truncated Backpropagation (BP). However, RL and truncated BP suffer from low sample efficiency and biased gradient estimation respectively, resulting in limited improvement or, even worse, complete training failure. To overcome the challenges, we propose the Recursive Likelihood Ratio (RLR) optimizer, a zeroth-order informed fine-tuning paradigm for DM. The zeroth-order gradient estimator enables the computation graph rearrangement within the recursive diffusive chain, making the RLR's gradient estimator an unbiased one with the lower variance than other methods. We provide theoretical guarantees for the performance of the RLR. Extensive experiments are conducted on image and video generation tasks to validate the superiority of the RLR. Furthermore, we propose a novel prompt technique that is natural for the RLR to achieve a synergistic effect.
Mathematics and Machine Creativity: A Survey on Bridging Mathematics with AI
This paper presents a comprehensive overview on the applications of artificial intelligence (AI) in mathematical research, highlighting the transformative role AI has begun to play in this domain. Traditionally, AI advancements have heavily relied on theoretical foundations provided by mathematics and statistics. However, recent developments in AI, particularly in reinforcement learning (RL) and large language models (LLMs), have demonstrated the potential for AI to contribute back to mathematics by offering flexible algorithmic frameworks and powerful inductive reasoning capabilities that support various aspects of mathematical research. This survey aims to establish a bridge between AI and mathematics, providing insights into the mutual benefits and fostering deeper interdisciplinary understanding. In particular, we argue that while current AI and LLMs may struggle with complex deductive reasoning, their "inherent creativity", the ability to generate outputs at high throughput based on recognition of shallow patterns, holds significant potential to support and inspire mathematical research. This creative capability, often overlooked, could be the key to unlocking new perspectives and methodologies in mathematics. Furthermore, we address the lack of cross-disciplinary communication: mathematicians may not fully comprehend the latest advances in AI, while AI researchers frequently prioritize benchmark performance over real-world applications in frontier mathematical research. This paper seeks to close that gap, offering a detailed exploration of AI fundamentals, its strengths, and its emerging applications in the mathematical sciences.
comment: 26 pages, 3 figures
♻ ☆ h4rm3l: A language for Composable Jailbreak Attack Synthesis ICLR 2025
Despite their demonstrated valuable capabilities, state-of-the-art (SOTA) widely deployed large language models (LLMs) still have the potential to cause harm to society due to the ineffectiveness of their safety filters, which can be bypassed by prompt transformations called jailbreak attacks. Current approaches to LLM safety assessment, which employ datasets of templated prompts and benchmarking pipelines, fail to cover sufficiently large and diverse sets of jailbreak attacks, leading to the widespread deployment of unsafe LLMs. Recent research showed that novel jailbreak attacks could be derived by composition; however, a formal composable representation for jailbreak attacks, which, among other benefits, could enable the exploration of a large compositional space of jailbreak attacks through program synthesis methods, has not been previously proposed. We introduce h4rm3l, a novel approach that addresses this gap with a human-readable domain-specific language (DSL). Our framework comprises: (1) The h4rm3l DSL, which formally expresses jailbreak attacks as compositions of parameterized string transformation primitives. (2) A synthesizer with bandit algorithms that efficiently generates jailbreak attacks optimized for a target black box LLM. (3) The h4rm3l red-teaming software toolkit that employs the previous two components and an automated harmful LLM behavior classifier that is strongly aligned with human judgment. We demonstrate h4rm3l's efficacy by synthesizing a dataset of 2656 successful novel jailbreak attacks targeting 6 SOTA open-source and proprietary LLMs, and by benchmarking those models against a subset of these synthesized attacks. Our results show that h4rm3l's synthesized attacks are diverse and more successful than existing jailbreak attacks in literature, with success rates exceeding 90% on SOTA LLMs.
comment: Accepted to the Thirteenth International Conference on Learning Representations (ICLR 2025)
♻ ☆ IPCGRL: Language-Instructed Reinforcement Learning for Procedural Level Generation
Recent research has highlighted the significance of natural language in enhancing the controllability of generative models. While various efforts have been made to leverage natural language for content generation, research on deep reinforcement learning (DRL) agents utilizing text-based instructions for procedural content generation remains limited. In this paper, we propose IPCGRL, an instruction-based procedural content generation method via reinforcement learning, which incorporates a sentence embedding model. IPCGRL fine-tunes task-specific embedding representations to effectively compress game-level conditions. We evaluate IPCGRL in a two-dimensional level generation task and compare its performance with a general-purpose embedding method. The results indicate that IPCGRL achieves up to a 21.4% improvement in controllability and a 17.2% improvement in generalizability for unseen instructions. Furthermore, the proposed method extends the modality of conditional input, enabling a more flexible and expressive interaction framework for procedural content generation.
comment: 9 pages, 9 figures, 3 tables
♻ ☆ Generative Prompt Internalization NAACL 2025
Prompts used in recent large language model based applications are often fixed and lengthy, leading to significant computational overhead. To address this challenge, we propose Generative Prompt Internalization (GenPI), a lightweight method that employs a joint training approach. GenPI not only replicates the behavior of models with prompt inputs but also generates the content of the prompt along with reasons for why the model's behavior should change accordingly. We demonstrate that our approach effectively internalizes complex prompts across various agent-based application scenarios. For effective training without interactions with the dedicated environments, we introduce a data synthesis technique that autonomously collects conversational datasets by swapping the roles of the agent and environment. This method is especially useful in scenarios where only a predefined prompt is available without a corresponding training dataset. By internalizing complex prompts, Generative Prompt Internalization enables high performance and efficient inference without the need for explicit prompts.
comment: NAACL 2025 (Main Conference)
♻ ☆ TwoStep: Multi-agent Task Planning using Classical Planners and Large Language Models
Classical planning formulations like the Planning Domain Definition Language (PDDL) admit action sequences guaranteed to achieve a goal state given an initial state if any are possible. However, reasoning problems defined in PDDL do not capture temporal aspects of action taking, such as concurrent actions between two agents when there are no conflicting conditions, without significant modification and definition to existing PDDL domains. A human expert aware of such constraints can decompose a goal into subgoals, each reachable through single agent planning, to take advantage of simultaneous actions. In contrast to classical planning, large language models (LLMs) directly used for inferring plan steps rarely guarantee execution success, but are capable of leveraging commonsense reasoning to assemble action sequences. We combine the strengths of both classical planning and LLMs by approximating human intuitions for multi-agent planning goal decomposition. We demonstrate that LLM-based goal decomposition leads to faster planning times than solving multi-agent PDDL problems directly while simultaneously achieving fewer plan execution steps than a single agent plan alone, as well as most multiagent plans, while guaranteeing execution success. Additionally, we find that LLM-based approximations of subgoals result in similar multi-agent execution lengths to those specified by human experts. Website and resources at https://glamor-usc.github.io/twostep
comment: 14 pages
♻ ☆ Training Domain Draft Models for Speculative Decoding: Best Practices and Insights SC
Speculative decoding is an effective method for accelerating inference of large language models (LLMs) by employing a small draft model to predict the output of a target model. However, when adapting speculative decoding to domain-specific target models, the acceptance rate of the generic draft model drops significantly due to domain shift. In this work, we systematically investigate knowledge distillation techniques for training domain draft models to improve their speculation accuracy. We compare white-box and black-box distillation approaches and explore their effectiveness in various data accessibility scenarios, including historical user queries, curated domain data, and synthetically generated alignment data. Our experiments across Function Calling, Biology, and Chinese domains show that offline distillation consistently outperforms online distillation by 11% to 25%, white-box distillation surpasses black-box distillation by 2% to 10%, and data scaling trends hold across domains. Additionally, we find that synthetic data can effectively align draft models and achieve 80% to 93% of the performance of training on historical user queries. These findings provide practical guidelines for training domain-specific draft models to improve speculative decoding efficiency.
comment: Published as a workshop paper at SCOPE - ICLR 2025
♻ ☆ High-Dimension Human Value Representation in Large Language Models
The widespread application of LLMs across various tasks and fields has necessitated the alignment of these models with human values and preferences. Given various approaches of human value alignment, there is an urgent need to understand the scope and nature of human values injected into these LLMs before their deployment and adoption. We propose UniVaR, a high-dimensional neural representation of symbolic human value distributions in LLMs, orthogonal to model architecture and training data. This is a continuous and scalable representation, self-supervised from the value-relevant output of 8 LLMs and evaluated on 15 open-source and commercial LLMs. Through UniVaR, we visualize and explore how LLMs prioritize different values in 25 languages and cultures, shedding light on complex interplay between human values and language modeling.
♻ ☆ Truck Parking Usage Prediction with Decomposed Graph Neural Networks
Truck parking on freight corridors faces the major challenge of insufficient parking spaces. This is exacerbated by the Hour-of-Service (HOS) regulations, which often result in unauthorized parking practices, causing safety concerns. It has been shown that providing accurate parking usage prediction can be a cost-effective solution to reduce unsafe parking practices. In light of this, existing studies have developed various methods to predict the usage of a truck parking site and have demonstrated satisfactory accuracy. However, these studies focused on a single parking site, and few approaches have been proposed to predict the usage of multiple truck parking sites considering spatio-temporal dependencies, due to the lack of data. This paper aims to fill this gap and presents the Regional Temporal Graph Convolutional Network (RegT-GCN) to predict parking usage across the entire state to provide more comprehensive truck parking information. The framework leverages the topological structures of truck parking site locations and historical parking data to predict the occupancy rate considering spatio-temporal dependencies across a state. To achieve this, we introduce a Regional Decomposition approach, which effectively captures the geographical characteristics of the truck parking locations and their spatial correlations. Evaluation results demonstrate that the proposed model outperforms other baseline models, showing the effectiveness of our regional decomposition. The code is available at https://github.com/raynbowy23/RegT-GCN.
♻ ☆ END: Early Noise Dropping for Efficient and Effective Context Denoising
Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of natural language processing tasks. However, they are often distracted by irrelevant or noisy context in input sequences that degrades output quality. This problem affects both long- and short-context scenarios, such as retrieval-augmented generation, table question-answering, and in-context learning. We reveal that LLMs can implicitly identify whether input sequences contain useful information at early layers, prior to token generation. Leveraging this insight, we introduce Early Noise Dropping (\textsc{END}), a novel approach to mitigate this issue without requiring fine-tuning the LLMs. \textsc{END} segments input sequences into chunks and employs a linear prober on the early layers of LLMs to differentiate between informative and noisy chunks. By discarding noisy chunks early in the process, \textsc{END} preserves critical information, reduces distraction, and lowers computational overhead. Extensive experiments demonstrate that \textsc{END} significantly improves both performance and efficiency across different LLMs on multiple evaluation datasets. Furthermore, by investigating LLMs' implicit understanding to the input with the prober, this work also deepens understanding of how LLMs do reasoning with contexts internally.
comment: It's not approved by the legal from Amazon. They told us arXiv is not allowed unless the paper is accepted later. It's under submission now
♻ ☆ Motion-Boundary-Driven Unsupervised Surgical Instrument Segmentation in Low-Quality Optical Flow
Unsupervised video-based surgical instrument segmentation has the potential to accelerate the adoption of robot-assisted procedures by reducing the reliance on manual annotations. However, the generally low quality of optical flow in endoscopic footage poses a great challenge for unsupervised methods that rely heavily on motion cues. To overcome this limitation, we propose a novel approach that pinpoints motion boundaries, regions with abrupt flow changes, while selectively discarding frames with globally low-quality flow and adapting to varying motion patterns. Experiments on the EndoVis2017 VOS and EndoVis2017 Challenge datasets show that our method achieves mean Intersection-over-Union (mIoU) scores of 0.75 and 0.72, respectively, effectively alleviating the constraints imposed by suboptimal optical flow. This enables a more scalable and robust surgical instrument segmentation solution in clinical settings. The code will be publicly released.
♻ ☆ Elastic Federated Learning over Open Radio Access Network (O-RAN) for Concurrent Execution of Multiple Distributed Learning Tasks
Federated learning (FL) is a popular distributed machine learning (ML) technique in Internet of Things (IoT) networks, where resource-constrained devices collaboratively train ML models while preserving data privacy. However, implementation of FL over 5G-and-beyond wireless networks faces key challenges caused by (i) dynamics of the wireless network conditions and (ii) the coexistence of multiple FL-services in the system. In this paper, we unveil two key phenomena that arise from these challenges: over/under-provisioning of resources and perspective-driven load balancing, both of which significantly impact FL performance in IoT environments. We take the first steps towards addressing these phenomena by proposing a novel distributed ML architecture called elastic FL (EFL). EFL unleashes the full potential of Open RAN (O-RAN) systems and introduces an elastic resource provisioning methodology to execute FL-services. It further constitutes a multi-time-scale FL management system that introduces three dedicated network control functionalities tailored for FL-services, including (i) non-real-time (non-RT) system descriptor, which trains ML-based applications to predict both system and FL-related dynamics and parameters; (ii) near-RT FL controller, which handles O-RAN slicing and mobility management for the seamless execution of FL-services; (iii) FL MAC scheduler, which conducts real-time resource allocation to the end clients of various FL-services. We finally prototype EFL to demonstrate its potential in improving the performance of FL-services.
comment: 9 pages, 4 figures
♻ ☆ Autoregressive Action Sequence Learning for Robotic Manipulation
Designing a universal policy architecture that performs well across diverse robots and task configurations remains a key challenge. In this work, we address this by representing robot actions as sequential data and generating actions through autoregressive sequence modeling. Existing autoregressive architectures generate end-effector waypoints sequentially as word tokens in language modeling, which are limited to low-frequency control tasks. Unlike language, robot actions are heterogeneous and often include continuous values -- such as joint positions, 2D pixel coordinates, and end-effector poses -- which are not easily suited for language-based modeling. Based on this insight, we introduce a straightforward enhancement: we extend causal transformers' single-token prediction to support predicting a variable number of tokens in a single step through our Chunking Causal Transformer (CCT). This enhancement enables robust performance across diverse tasks of various control frequencies, greater efficiency by having fewer autoregression steps, and lead to a hybrid action sequence design by mixing different types of actions and using a different chunk size for each action type. Based on CCT, we propose the Autoregressive Policy (ARP) architecture, which solves manipulation tasks by generating hybrid action sequences. We evaluate ARP across diverse robotic manipulation environments, including Push-T, ALOHA, and RLBench, and show that ARP, as a universal architecture, matches or outperforms the environment-specific state-of-the-art in all tested benchmarks, while being more efficient in computation and parameter sizes. Videos of our real robot demonstrations, all source code and the pretrained models of ARP can be found at http://github.com/mlzxy/arp.
comment: (RA-L 2025) Add a new figure to explain why chunking autoregression works. Put back the previous in-depth discussion for arxiv release
♻ ☆ Beyond Outlining: Heterogeneous Recursive Planning for Adaptive Long-form Writing with Language Models
Long-form writing agents require flexible integration and interaction across information retrieval, reasoning, and composition. Current approaches rely on predetermined workflows and rigid thinking patterns to generate outlines before writing, resulting in constrained adaptability during writing. In this paper we propose a general agent framework that achieves human-like adaptive writing through recursive task decomposition and dynamic integration of three fundamental task types, i.e. retrieval, reasoning, and composition. Our methodology features: 1) a planning mechanism that interleaves recursive task decomposition and execution, eliminating artificial restrictions on writing workflow; and 2) integration of task types that facilitates heterogeneous task decomposition. Evaluations on both fiction writing and technical report generation show that our method consistently outperforms state-of-the-art approaches across all automatic evaluation metrics, which demonstrate the effectiveness and broad applicability of our proposed framework.
comment: 29 pages, 2 figures
♻ ☆ Implementation of a Generative AI Assistant in K-12 Education: The CyberScholar Initiative
This paper focuses on the piloting of CyberScholar, a Generative AI (GenAI) assistant tool that aims to provide feedback on writing K-12 contexts. The aim was to use GenAI to provide formative and summative feedback on students' texts in English Language Arts (ELA), Social Studies, and Modern World History. The trials discussed in this paper involved Grades 7, 8, 10, and 11 and were conducted in three schools in the Midwest and one in the Northwest of the United States. The tool used two main mechanisms: "prompt engineering" based on participant teachers' assessment rubric and "fine-tuning" a Large Language Model (LLM) from a customized corpus of teaching materials using Retrieval Augmented Generation. This paper focuses on CyberScholar's potential to enhance students' writing abilities and support teachers in diverse subject areas requiring written assignments.
Graphics 14
☆ AudCast: Audio-Driven Human Video Generation by Cascaded Diffusion Transformers CVPR
Despite the recent progress of audio-driven video generation, existing methods mostly focus on driving facial movements, leading to non-coherent head and body dynamics. Moving forward, it is desirable yet challenging to generate holistic human videos with both accurate lip-sync and delicate co-speech gestures w.r.t. given audio. In this work, we propose AudCast, a generalized audio-driven human video generation framework adopting a cascade Diffusion-Transformers (DiTs) paradigm, which synthesizes holistic human videos based on a reference image and a given audio. 1) Firstly, an audio-conditioned Holistic Human DiT architecture is proposed to directly drive the movements of any human body with vivid gesture dynamics. 2) Then to enhance hand and face details that are well-knownly difficult to handle, a Regional Refinement DiT leverages regional 3D fitting as the bridge to reform the signals, producing the final results. Extensive experiments demonstrate that our framework generates high-fidelity audio-driven holistic human videos with temporal coherence and fine facial and hand details. Resources can be found at https://guanjz20.github.io/projects/AudCast.
comment: Accepted to IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2025. Project page: https://guanjz20.github.io/projects/AudCast
☆ MultimodalStudio: A Heterogeneous Sensor Dataset and Framework for Neural Rendering across Multiple Imaging Modalities CVPR 2025
Neural Radiance Fields (NeRF) have shown impressive performances in the rendering of 3D scenes from arbitrary viewpoints. While RGB images are widely preferred for training volume rendering models, the interest in other radiance modalities is also growing. However, the capability of the underlying implicit neural models to learn and transfer information across heterogeneous imaging modalities has seldom been explored, mostly due to the limited training data availability. For this purpose, we present MultimodalStudio (MMS): it encompasses MMS-DATA and MMS-FW. MMS-DATA is a multimodal multi-view dataset containing 32 scenes acquired with 5 different imaging modalities: RGB, monochrome, near-infrared, polarization and multispectral. MMS-FW is a novel modular multimodal NeRF framework designed to handle multimodal raw data and able to support an arbitrary number of multi-channel devices. Through extensive experiments, we demonstrate that MMS-FW trained on MMS-DATA can transfer information between different imaging modalities and produce higher quality renderings than using single modalities alone. We publicly release the dataset and the framework, to promote the research on multimodal volume rendering and beyond.
comment: Accepted at CVPR 2025
☆ MATT-GS: Masked Attention-based 3DGS for Robot Perception and Object Detection IROS
This paper presents a novel masked attention-based 3D Gaussian Splatting (3DGS) approach to enhance robotic perception and object detection in industrial and smart factory environments. U2-Net is employed for background removal to isolate target objects from raw images, thereby minimizing clutter and ensuring that the model processes only relevant data. Additionally, a Sobel filter-based attention mechanism is integrated into the 3DGS framework to enhance fine details - capturing critical features such as screws, wires, and intricate textures essential for high-precision tasks. We validate our approach using quantitative metrics, including L1 loss, SSIM, PSNR, comparing the performance of the background-removed and attention-incorporated 3DGS model against the ground truth images and the original 3DGS training baseline. The results demonstrate significant improves in visual fidelity and detail preservation, highlighting the effectiveness of our method in enhancing robotic vision for object recognition and manipulation in complex industrial settings.
comment: This work has been submitted to the 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) for possible publication
☆ HoGS: Unified Near and Far Object Reconstruction via Homogeneous Gaussian Splatting CVPR'25
Novel view synthesis has demonstrated impressive progress recently, with 3D Gaussian splatting (3DGS) offering efficient training time and photorealistic real-time rendering. However, reliance on Cartesian coordinates limits 3DGS's performance on distant objects, which is important for reconstructing unbounded outdoor environments. We found that, despite its ultimate simplicity, using homogeneous coordinates, a concept on the projective geometry, for the 3DGS pipeline remarkably improves the rendering accuracies of distant objects. We therefore propose Homogeneous Gaussian Splatting (HoGS) incorporating homogeneous coordinates into the 3DGS framework, providing a unified representation for enhancing near and distant objects. HoGS effectively manages both expansive spatial positions and scales particularly in outdoor unbounded environments by adopting projective geometry principles. Experiments show that HoGS significantly enhances accuracy in reconstructing distant objects while maintaining high-quality rendering of nearby objects, along with fast training speed and real-time rendering capability. Our implementations are available on our project page https://kh129.github.io/hogs/.
comment: Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR'25)
☆ Zero-Shot Human-Object Interaction Synthesis with Multimodal Priors
Human-object interaction (HOI) synthesis is important for various applications, ranging from virtual reality to robotics. However, acquiring 3D HOI data is challenging due to its complexity and high cost, limiting existing methods to the narrow diversity of object types and interaction patterns in training datasets. This paper proposes a novel zero-shot HOI synthesis framework without relying on end-to-end training on currently limited 3D HOI datasets. The core idea of our method lies in leveraging extensive HOI knowledge from pre-trained Multimodal Models. Given a text description, our system first obtains temporally consistent 2D HOI image sequences using image or video generation models, which are then uplifted to 3D HOI milestones of human and object poses. We employ pre-trained human pose estimation models to extract human poses and introduce a generalizable category-level 6-DoF estimation method to obtain the object poses from 2D HOI images. Our estimation method is adaptive to various object templates obtained from text-to-3D models or online retrieval. A physics-based tracking of the 3D HOI kinematic milestone is further applied to refine both body motions and object poses, yielding more physically plausible HOI generation results. The experimental results demonstrate that our method is capable of generating open-vocabulary HOIs with physical realism and semantic diversity.
☆ Thin-Shell-SfT: Fine-Grained Monocular Non-rigid 3D Surface Tracking with Neural Deformation Fields CVPR 2025
3D reconstruction of highly deformable surfaces (e.g. cloths) from monocular RGB videos is a challenging problem, and no solution provides a consistent and accurate recovery of fine-grained surface details. To account for the ill-posed nature of the setting, existing methods use deformation models with statistical, neural, or physical priors. They also predominantly rely on nonadaptive discrete surface representations (e.g. polygonal meshes), perform frame-by-frame optimisation leading to error propagation, and suffer from poor gradients of the mesh-based differentiable renderers. Consequently, fine surface details such as cloth wrinkles are often not recovered with the desired accuracy. In response to these limitations, we propose ThinShell-SfT, a new method for non-rigid 3D tracking that represents a surface as an implicit and continuous spatiotemporal neural field. We incorporate continuous thin shell physics prior based on the Kirchhoff-Love model for spatial regularisation, which starkly contrasts the discretised alternatives of earlier works. Lastly, we leverage 3D Gaussian splatting to differentiably render the surface into image space and optimise the deformations based on analysis-bysynthesis principles. Our Thin-Shell-SfT outperforms prior works qualitatively and quantitatively thanks to our continuous surface formulation in conjunction with a specially tailored simulation prior and surface-induced 3D Gaussians. See our project page at https://4dqv.mpiinf.mpg.de/ThinShellSfT.
comment: 15 pages, 12 figures and 3 tables; project page: https://4dqv.mpiinf.mpg.de/ThinShellSfT; CVPR 2025
☆ Reflections on Diversity: A Real-time Virtual Mirror for Inclusive 3D Face Transformations
Real-time 3D face manipulation has significant applications in virtual reality, social media and human-computer interaction. This paper introduces a novel system, which we call Mirror of Diversity (MOD), that combines Generative Adversarial Networks (GANs) for texture manipulation and 3D Morphable Models (3DMMs) for facial geometry to achieve realistic face transformations that reflect various demographic characteristics, emphasizing the beauty of diversity and the universality of human features. As participants sit in front of a computer monitor with a camera positioned above, their facial characteristics are captured in real time and can further alter their digital face reconstruction with transformations reflecting different demographic characteristics, such as gender and ethnicity (e.g., a person from Africa, Asia, Europe). Another feature of our system, which we call Collective Face, generates an averaged face representation from multiple participants' facial data. A comprehensive evaluation protocol is implemented to assess the realism and demographic accuracy of the transformations. Qualitative feedback is gathered through participant questionnaires, which include comparisons of MOD transformations with similar filters on platforms like Snapchat and TikTok. Additionally, quantitative analysis is conducted using a pretrained Convolutional Neural Network that predicts gender and ethnicity, to validate the accuracy of demographic transformations.
☆ CoMapGS: Covisibility Map-based Gaussian Splatting for Sparse Novel View Synthesis CVPR 2025
We propose Covisibility Map-based Gaussian Splatting (CoMapGS), designed to recover underrepresented sparse regions in sparse novel view synthesis. CoMapGS addresses both high- and low-uncertainty regions by constructing covisibility maps, enhancing initial point clouds, and applying uncertainty-aware weighted supervision using a proximity classifier. Our contributions are threefold: (1) CoMapGS reframes novel view synthesis by leveraging covisibility maps as a core component to address region-specific uncertainty; (2) Enhanced initial point clouds for both low- and high-uncertainty regions compensate for sparse COLMAP-derived point clouds, improving reconstruction quality and benefiting few-shot 3DGS methods; (3) Adaptive supervision with covisibility-score-based weighting and proximity classification achieves consistent performance gains across scenes with varying sparsity scores derived from covisibility maps. Experimental results demonstrate that CoMapGS outperforms state-of-the-art methods on datasets including Mip-NeRF 360 and LLFF.
comment: Accepted to CVPR 2025, Mistakenly submitted as a replacement for arXiv:2402.11057
♻ ☆ PCDreamer: Point Cloud Completion Through Multi-view Diffusion Priors
This paper presents PCDreamer, a novel method for point cloud completion. Traditional methods typically extract features from partial point clouds to predict missing regions, but the large solution space often leads to unsatisfactory results. More recent approaches have started to use images as extra guidance, effectively improving performance, but obtaining paired data of images and partial point clouds is challenging in practice. To overcome these limitations, we harness the relatively view-consistent multi-view diffusion priors within large models, to generate novel views of the desired shape. The resulting image set encodes both global and local shape cues, which are especially beneficial for shape completion. To fully exploit the priors, we have designed a shape fusion module for producing an initial complete shape from multi-modality input (i.e.,, images and point clouds), and a follow-up shape consolidation module to obtain the final complete shape by discarding unreliable points introduced by the inconsistency from diffusion priors. Extensive experimental results demonstrate our superior performance, especially in recovering fine details.
comment: Project page: https://gsw-d.github.io/PCDreamer/
♻ ☆ HyperFLINT: Hypernetwork-based Flow Estimation and Temporal Interpolation for Scientific Ensemble Visualization
We present HyperFLINT (Hypernetwork-based FLow estimation and temporal INTerpolation), a novel deep learning-based approach for estimating flow fields, temporally interpolating scalar fields, and facilitating parameter space exploration in spatio-temporal scientific ensemble data. This work addresses the critical need to explicitly incorporate ensemble parameters into the learning process, as traditional methods often neglect these, limiting their ability to adapt to diverse simulation settings and provide meaningful insights into the data dynamics. HyperFLINT introduces a hypernetwork to account for simulation parameters, enabling it to generate accurate interpolations and flow fields for each timestep by dynamically adapting to varying conditions, thereby outperforming existing parameter-agnostic approaches. The architecture features modular neural blocks with convolutional and deconvolutional layers, supported by a hypernetwork that generates weights for the main network, allowing the model to better capture intricate simulation dynamics. A series of experiments demonstrates HyperFLINT's significantly improved performance in flow field estimation and temporal interpolation, as well as its potential in enabling parameter space exploration, offering valuable insights into complex scientific ensembles.
♻ ☆ BimArt: A Unified Approach for the Synthesis of 3D Bimanual Interaction with Articulated Objects CVPR2025
We present BimArt, a novel generative approach for synthesizing 3D bimanual hand interactions with articulated objects. Unlike prior works, we do not rely on a reference grasp, a coarse hand trajectory, or separate modes for grasping and articulating. To achieve this, we first generate distance-based contact maps conditioned on the object trajectory with an articulation-aware feature representation, revealing rich bimanual patterns for manipulation. The learned contact prior is then used to guide our hand motion generator, producing diverse and realistic bimanual motions for object movement and articulation. Our work offers key insights into feature representation and contact prior for articulated objects, demonstrating their effectiveness in taming the complex, high-dimensional space of bimanual hand-object interactions. Through comprehensive quantitative experiments, we demonstrate a clear step towards simplified and high-quality hand-object animations that surpass the state of the art in motion quality and diversity. Project page: https://vcai.mpi-inf.mpg.de/projects/bimart/.
comment: CVPR2025
♻ ☆ IDOL: Instant Photorealistic 3D Human Creation from a Single Image
Creating a high-fidelity, animatable 3D full-body avatar from a single image is a challenging task due to the diverse appearance and poses of humans and the limited availability of high-quality training data. To achieve fast and high-quality human reconstruction, this work rethinks the task from the perspectives of dataset, model, and representation. First, we introduce a large-scale HUman-centric GEnerated dataset, HuGe100K, consisting of 100K diverse, photorealistic sets of human images. Each set contains 24-view frames in specific human poses, generated using a pose-controllable image-to-multi-view model. Next, leveraging the diversity in views, poses, and appearances within HuGe100K, we develop a scalable feed-forward transformer model to predict a 3D human Gaussian representation in a uniform space from a given human image. This model is trained to disentangle human pose, body shape, clothing geometry, and texture. The estimated Gaussians can be animated without post-processing. We conduct comprehensive experiments to validate the effectiveness of the proposed dataset and method. Our model demonstrates the ability to efficiently reconstruct photorealistic humans at 1K resolution from a single input image using a single GPU instantly. Additionally, it seamlessly supports various applications, as well as shape and texture editing tasks. Project page: https://yiyuzhuang.github.io/IDOL/.
comment: 22 pages, 16 figures, includes main content, supplementary materials, and references
♻ ☆ WonderWorld: Interactive 3D Scene Generation from a Single Image CVPR 2025
We present WonderWorld, a novel framework for interactive 3D scene generation that enables users to interactively specify scene contents and layout and see the created scenes in low latency. The major challenge lies in achieving fast generation of 3D scenes. Existing scene generation approaches fall short of speed as they often require (1) progressively generating many views and depth maps, and (2) time-consuming optimization of the scene geometry representations. We introduce the Fast Layered Gaussian Surfels (FLAGS) as our scene representation and an algorithm to generate it from a single view. Our approach does not need multiple views, and it leverages a geometry-based initialization that significantly reduces optimization time. Another challenge is generating coherent geometry that allows all scenes to be connected. We introduce the guided depth diffusion that allows partial conditioning of depth estimation. WonderWorld generates connected and diverse 3D scenes in less than 10 seconds on a single A6000 GPU, enabling real-time user interaction and exploration. We demonstrate the potential of WonderWorld for user-driven content creation and exploration in virtual environments. We release full code and software for reproducibility. Project website: https://kovenyu.com/WonderWorld/.
comment: CVPR 2025. Project website: https://kovenyu.com/WonderWorld/. The first two authors contributed equally
♻ ☆ Bézier Splatting for Fast and Differentiable Vector Graphics
Differentiable vector graphics (VGs) are widely used in image vectorization and vector synthesis, while existing representations are costly to optimize and struggle to achieve high-quality rendering results for high-resolution images. This work introduces a new differentiable VG representation, dubbed B\'ezier splatting, that enables fast yet high-fidelity VG rasterization. B\'ezier splatting samples 2D Gaussians along B\'ezier curves, which naturally provide positional gradients at object boundaries. Thanks to the efficient splatting-based differentiable rasterizer, B\'ezier splatting achieves over 20x and 150x faster per forward and backward rasterization step for open curves compared to DiffVG. Additionally, we introduce an adaptive pruning and densification strategy that dynamically adjusts the spatial distribution of curves to escape local minima, further improving VG quality. Experimental results show that B\'ezier splatting significantly outperforms existing methods with better visual fidelity and 10x faster optimization speed.
comment: Project page: https://xiliu8006.github.io/Bezier_splatting_project/
Robotics 53
☆ AdaWorld: Learning Adaptable World Models with Latent Actions
World models aim to learn action-controlled prediction models and have proven essential for the development of intelligent agents. However, most existing world models rely heavily on substantial action-labeled data and costly training, making it challenging to adapt to novel environments with heterogeneous actions through limited interactions. This limitation can hinder their applicability across broader domains. To overcome this challenge, we propose AdaWorld, an innovative world model learning approach that enables efficient adaptation. The key idea is to incorporate action information during the pretraining of world models. This is achieved by extracting latent actions from videos in a self-supervised manner, capturing the most critical transitions between frames. We then develop an autoregressive world model that conditions on these latent actions. This learning paradigm enables highly adaptable world models, facilitating efficient transfer and learning of new actions even with limited interactions and finetuning. Our comprehensive experiments across multiple environments demonstrate that AdaWorld achieves superior performance in both simulation quality and visual planning.
comment: Project page: https://adaptable-world-model.github.io/
☆ Autonomous Generation of Sub-goals for Lifelong Learning in Robots
One of the challenges of open-ended learning in robots is the need to autonomously discover goals and learn skills to achieve them. However, when in lifelong learning settings, it is always desirable to generate sub-goals with their associated skills, without relying on explicit reward, as steppingstones to a goal. This allows sub-goals and skills to be reused to facilitate achieving other goals. This work proposes a two-pronged approach for sub-goal generation to address this challenge: a top-down approach, where sub-goals are hierarchically derived from general goals using intrinsic motivations to discover them, and a bottom-up approach, where sub-goal chains emerge from making latent relationships between goals and perceptual classes that were previously learned in different domains explicit. These methods help the robot to autonomously generate and chain sub-goals as a way to achieve more general goals. Additionally, they create more abstract representations of goals, helping to reduce sub-goal duplication and make the learning of skills more efficient. Implemented within an existing cognitive architecture for lifelong open-ended learning and tested with a real robot, our approach enhances the robot's ability to discover and achieve goals, generate sub-goals in an efficient manner, generalize learned skills, and operate in dynamic and unknown environments without explicit intermediate rewards.
comment: 16 pages
☆ Online 3D Scene Reconstruction Using Neural Object Priors 3DV 2025
This paper addresses the problem of reconstructing a scene online at the level of objects given an RGB-D video sequence. While current object-aware neural implicit representations hold promise, they are limited in online reconstruction efficiency and shape completion. Our main contributions to alleviate the above limitations are twofold. First, we propose a feature grid interpolation mechanism to continuously update grid-based object-centric neural implicit representations as new object parts are revealed. Second, we construct an object library with previously mapped objects in advance and leverage the corresponding shape priors to initialize geometric object models in new videos, subsequently completing them with novel views as well as synthesized past views to avoid losing original object details. Extensive experiments on synthetic environments from the Replica dataset, real-world ScanNet sequences and videos captured in our laboratory demonstrate that our approach outperforms state-of-the-art neural implicit models for this task in terms of reconstruction accuracy and completeness.
comment: 3DV 2025. Project page: https://www.di.ens.fr/willow/research/online-scene-reconstruction/
☆ Bootstrapped Model Predictive Control ICLR 2025
Model Predictive Control (MPC) has been demonstrated to be effective in continuous control tasks. When a world model and a value function are available, planning a sequence of actions ahead of time leads to a better policy. Existing methods typically obtain the value function and the corresponding policy in a model-free manner. However, we find that such an approach struggles with complex tasks, resulting in poor policy learning and inaccurate value estimation. To address this problem, we leverage the strengths of MPC itself. In this work, we introduce Bootstrapped Model Predictive Control (BMPC), a novel algorithm that performs policy learning in a bootstrapped manner. BMPC learns a network policy by imitating an MPC expert, and in turn, uses this policy to guide the MPC process. Combined with model-based TD-learning, our policy learning yields better value estimation and further boosts the efficiency of MPC. We also introduce a lazy reanalyze mechanism, which enables computationally efficient imitation learning. Our method achieves superior performance over prior works on diverse continuous control tasks. In particular, on challenging high-dimensional locomotion tasks, BMPC significantly improves data efficiency while also enhancing asymptotic performance and training stability, with comparable training time and smaller network sizes. Code is available at https://github.com/wertyuilife2/bmpc.
comment: Published as a conference paper at ICLR 2025
☆ Learning Multi-Robot Coordination through Locality-Based Factorized Multi-Agent Actor-Critic Algorithm
In this work, we present a novel cooperative multi-agent reinforcement learning method called \textbf{Loc}ality based \textbf{Fac}torized \textbf{M}ulti-Agent \textbf{A}ctor-\textbf{C}ritic (Loc-FACMAC). Existing state-of-the-art algorithms, such as FACMAC, rely on global reward information, which may not accurately reflect the quality of individual robots' actions in decentralized systems. We integrate the concept of locality into critic learning, where strongly related robots form partitions during training. Robots within the same partition have a greater impact on each other, leading to more precise policy evaluation. Additionally, we construct a dependency graph to capture the relationships between robots, facilitating the partitioning process. This approach mitigates the curse of dimensionality and prevents robots from using irrelevant information. Our method improves existing algorithms by focusing on local rewards and leveraging partition-based learning to enhance training efficiency and performance. We evaluate the performance of Loc-FACMAC in three environments: Hallway, Multi-cartpole, and Bounded-Cooperative-Navigation. We explore the impact of partition sizes on the performance and compare the result with baseline MARL algorithms such as LOMAQ, FACMAC, and QMIX. The experiments reveal that, if the locality structure is defined properly, Loc-FACMAC outperforms these baseline algorithms up to 108\%, indicating that exploiting the locality structure in the actor-critic framework improves the MARL performance.
☆ AlphaSpace: Enabling Robotic Actions through Semantic Tokenization and Symbolic Reasoning
This paper presents AlphaSpace, a novel methodology designed to enhance the spatial reasoning capabilities of large language models (LLMs) for 3D Cartesian space navigation. AlphaSpace employs a semantics-based tokenization strategy, encoding height information through specialized semantic tokens, and integrates primarily symbolic synthetic reasoning data. This approach enables LLMs to accurately manipulate objects by positioning them at specific [x, y, z] coordinates. Experimental results demonstrate that AlphaSpace significantly outperforms existing models on manipulation subtasks, achieving a total accuracy of 66.67%, compared to 37.5% for GPT-4o and 29.17% for Claude 3.5 Sonnet.
☆ Robust Tube-based Control Strategy for Vision-guided Autonomous Vehicles
A robust control strategy for autonomous vehicles can improve system stability, enhance riding comfort, and prevent driving accidents. This paper presents a novel interpolation tube-based constrained iterative linear quadratic regulator (itube-CILQR) algorithm for autonomous computer-vision-based vehicle lane-keeping. The goal of the algorithm is to enhance robustness during high-speed cornering on tight turns. The advantages of itube-CILQR over the standard tube-approach include reduced system conservatism and increased computational speed. Numerical and vision-based experiments were conducted to examine the feasibility of the proposed algorithm. The proposed itube-CILQR algorithm is better suited to vehicle lane-keeping than variational CILQR-based methods and model predictive control (MPC) approaches using a classical interior-point solver. Specifically, in evaluation experiments, itube-CILQR achieved an average runtime of 3.16 ms to generate a control signal to guide a self-driving vehicle; itube-MPC typically required a 4.67-times longer computation time to complete the same task. Moreover, the influence of conservatism on system behavior was investigated by exploring the interpolation variable trajectories derived from the proposed itube-CILQR algorithm during lane-keeping maneuvers.
comment: 13 pages, 14 figures
RoboEngine: Plug-and-Play Robot Data Augmentation with Semantic Robot Segmentation and Background Generation
Visual augmentation has become a crucial technique for enhancing the visual robustness of imitation learning. However, existing methods are often limited by prerequisites such as camera calibration or the need for controlled environments (e.g., green screen setups). In this work, we introduce RoboEngine, the first plug-and-play visual robot data augmentation toolkit. For the first time, users can effortlessly generate physics- and task-aware robot scenes with just a few lines of code. To achieve this, we present a novel robot scene segmentation dataset, a generalizable high-quality robot segmentation model, and a fine-tuned background generation model, which together form the core components of the out-of-the-box toolkit. Using RoboEngine, we demonstrate the ability to generalize robot manipulation tasks across six entirely new scenes, based solely on demonstrations collected from a single scene, achieving a more than 200% performance improvement compared to the no-augmentation baseline. All datasets, model weights, and the toolkit will be publicly released.
comment: Project Page: https://roboengine.github.io/
☆ Efficient Continual Adaptation of Pretrained Robotic Policy with Online Meta-Learned Adapters
Continual adaptation is essential for general autonomous agents. For example, a household robot pretrained with a repertoire of skills must still adapt to unseen tasks specific to each household. Motivated by this, building upon parameter-efficient fine-tuning in language models, prior works have explored lightweight adapters to adapt pretrained policies, which can preserve learned features from the pretraining phase and demonstrate good adaptation performances. However, these approaches treat task learning separately, limiting knowledge transfer between tasks. In this paper, we propose Online Meta-Learned adapters (OMLA). Instead of applying adapters directly, OMLA can facilitate knowledge transfer from previously learned tasks to current learning tasks through a novel meta-learning objective. Extensive experiments in both simulated and real-world environments demonstrate that OMLA can lead to better adaptation performances compared to the baseline methods. The project link: https://ricky-zhu.github.io/OMLA/.
comment: Project link: https://ricky-zhu.github.io/OMLA/
☆ FF-SRL: High Performance GPU-Based Surgical Simulation For Robot Learning
Robotic surgery is a rapidly developing field that can greatly benefit from the automation of surgical tasks. However, training techniques such as Reinforcement Learning (RL) require a high number of task repetitions, which are generally unsafe and impractical to perform on real surgical systems. This stresses the need for simulated surgical environments, which are not only realistic, but also computationally efficient and scalable. We introduce FF-SRL (Fast and Flexible Surgical Reinforcement Learning), a high-performance learning environment for robotic surgery. In FF-SRL both physics simulation and RL policy training reside entirely on a single GPU. This avoids typical bottlenecks associated with data transfer between the CPU and GPU, leading to accelerated learning rates. Our results show that FF-SRL reduces the training time of a complex tissue manipulation task by an order of magnitude, down to a couple of minutes, compared to a common CPU/GPU simulator. Such speed-up may facilitate the experimentation with RL techniques and contribute to the development of new generation of surgical systems. To this end, we make our code publicly available to the community.
☆ Multi-agent coordination for data gathering with periodic requests and deliveries
In this demo work we develop a method to plan and coordinate a multi-agent team to gather information on demand. The data is periodically requested by a static Operation Center (OC) from changeable goals locations. The mission of the team is to reach these locations, taking measurements and delivering the data to the OC. Due to the limited communication range as well as signal attenuation because of the obstacles, the agents must travel to the OC, to upload the data. The agents can play two roles: ones as workers gathering data, the others as collectors traveling invariant paths for collecting the data of the workers to re-transmit it to the OC. The refreshing time of the delivered information depends on the number of available agents as well as of the scenario. The proposed algorithm finds out the best balance between the number of collectors-workers and the partition of the scenario into working areas in the planning phase, which provides the minimum refreshing time and will be the one executed by the agents.
☆ Communication-aware planning for robot teams deployment
In the present work we address the problem of deploying a team of robots in a scenario where some locations of interest must be reached. Thus, a planning for a deployment is required, before sending the robots. The obstacles, the limited communication range, and the need of communicating to a base station, constrain the connectivity of the team and the deployment planning. We propose a method consisting of three algorithms: a distributed path planner to obtain communication-aware trajectories; a deployment planner providing dual-use of the robots, visiting primary goals and performing connectivity tasks; and a clustering algorithm to allocate the tasks to robots, and obtain the best goal visit order for the mission.
☆ Parental Guidance: Efficient Lifelong Learning through Evolutionary Distillation
Developing robotic agents that can perform well in diverse environments while showing a variety of behaviors is a key challenge in AI and robotics. Traditional reinforcement learning (RL) methods often create agents that specialize in narrow tasks, limiting their adaptability and diversity. To overcome this, we propose a preliminary, evolution-inspired framework that includes a reproduction module, similar to natural species reproduction, balancing diversity and specialization. By integrating RL, imitation learning (IL), and a coevolutionary agent-terrain curriculum, our system evolves agents continuously through complex tasks. This approach promotes adaptability, inheritance of useful traits, and continual learning. Agents not only refine inherited skills but also surpass their predecessors. Our initial experiments show that this method improves exploration efficiency and supports open-ended learning, offering a scalable solution where sparse reward coupled with diverse terrain environments induces a multi-task setting.
comment: 4 pages, 3 figures, CoRL 2024 Workshop MAPoDeL
☆ P3Nav: A Unified Framework for Embodied Navigation Integrating Perception, Planning, and Prediction
In language-guided visual navigation, agents locate target objects in unseen environments using natural language instructions. For reliable navigation in unfamiliar scenes, agents must possess strong perception, planning, and prediction capabilities. Additionally, when agents revisit previously explored areas during long-term navigation, they may retain irrelevant and redundant historical perceptions, leading to suboptimal results. In this work, we introduce \textbf{P3Nav}, a unified framework that integrates \textbf{P}erception, \textbf{P}lanning, and \textbf{P}rediction capabilities through \textbf{Multitask Collaboration} on navigation and embodied question answering (EQA) tasks, thereby enhancing navigation performance. Furthermore, P3Nav employs an \textbf{Adaptive 3D-aware History Sampling} strategy to effectively and efficiently utilize historical observations. By leveraging the large language models (LLM), P3Nav comprehends diverse commands and complex visual scenes, resulting in appropriate navigation actions. P3Nav achieves a 75\% success rate in object goal navigation on the $\mathrm{CHORES}$-$\mathbb{S}$ benchmark, setting a new state-of-the-art performance.
comment: 14 pages, 7 figures
Analysis of Forces Exerted by Shoulder and Elbow Fabric-based Pneumatic Actuators for Pediatric Exosuits
To enhance pediatric exosuit design, it is crucial to assess the actuator-generated forces. This work evaluates the contact forces exerted by soft fabric-based pneumatic actuators in an upper extremity pediatric exosuit. Two actuators were examined: a single-cell bidirectional actuator for shoulder abduction/adduction and a bellow-type actuator for elbow extension/flexion. Experiments assessed the impact of actuator anchoring points and the adjacent joint's angle on exerted forces and actuated joint range of motion (ROM). These were measured via load cells and encoders integrated into a custom infant-scale engineered apparatus with two degrees of freedom (two revolute joints). For the shoulder actuator, results show that anchoring it further from the shoulder joint center while the elbow is flexed at $90^\circ$ yields the highest ROM while minimizing the peak force exerted on the body. For the elbow actuator, anchoring it symmetrically while the shoulder joint is at $0^\circ$ optimizes actuator performance. These findings contribute a key step toward co-optimizing the considered exosuit design for functionality and wearability.
☆ Innovative Automated Stretch Elastic Waistband Sewing Machine for Garment Manufacturing
There is applied research for the development of the Automated Stretch Elastic Waistband Sewing Machine represents a significant advancement in garment manufacturing, addressing the industry's need for increased efficiency, precision, and adaptability. This machine integrates innovative features such as a sensor-based automatic waistband expansion system, synchronized sewing speed and rolling wheel speed, and a differential feed top-loading mechanism. These enhancements streamline the sewing process, reduce manual intervention, and ensure consistent product quality. The machine's design incorporates both 3-wheel and 2-wheel rolling systems, each optimized for different elastic band dimensions and elongation factors. The 3-wheel rolling system accommodates a larger maximum boundary, while the 2-wheel rolling system offers a tighter operational range, providing flexibility to meet diverse manufacturing requirements. The Automated Stretch Elastic Waistband Sewing Machine has a design that controls the pulling apart force so as not to break the elastic waistband. It sets a new standard for quality and innovation, empowering manufacturers to meet the demands of a competitive market with precision and ease.
comment: 13 pages, 10 Figures
Reinforcement Learning for Adaptive Planner Parameter Tuning: A Perspective on Hierarchical Architecture
Automatic parameter tuning methods for planning algorithms, which integrate pipeline approaches with learning-based techniques, are regarded as promising due to their stability and capability to handle highly constrained environments. While existing parameter tuning methods have demonstrated considerable success, further performance improvements require a more structured approach. In this paper, we propose a hierarchical architecture for reinforcement learning-based parameter tuning. The architecture introduces a hierarchical structure with low-frequency parameter tuning, mid-frequency planning, and high-frequency control, enabling concurrent enhancement of both upper-layer parameter tuning and lower-layer control through iterative training. Experimental evaluations in both simulated and real-world environments show that our method surpasses existing parameter tuning approaches. Furthermore, our approach achieves first place in the Benchmark for Autonomous Robot Navigation (BARN) Challenge.
☆ Latent Embedding Adaptation for Human Preference Alignment in Diffusion Planners
This work addresses the challenge of personalizing trajectories generated in automated decision-making systems by introducing a resource-efficient approach that enables rapid adaptation to individual users' preferences. Our method leverages a pretrained conditional diffusion model with Preference Latent Embeddings (PLE), trained on a large, reward-free offline dataset. The PLE serves as a compact representation for capturing specific user preferences. By adapting the pretrained model using our proposed preference inversion method, which directly optimizes the learnable PLE, we achieve superior alignment with human preferences compared to existing solutions like Reinforcement Learning from Human Feedback (RLHF) and Low-Rank Adaptation (LoRA). To better reflect practical applications, we create a benchmark experiment using real human preferences on diverse, high-reward trajectories.
comment: 8 pages
☆ Vision-Guided Loco-Manipulation with a Snake Robot
This paper presents the development and integration of a vision-guided loco-manipulation pipeline for Northeastern University's snake robot, COBRA. The system leverages a YOLOv8-based object detection model and depth data from an onboard stereo camera to estimate the 6-DOF pose of target objects in real time. We introduce a framework for autonomous detection and control, enabling closed-loop loco-manipulation for transporting objects to specified goal locations. Additionally, we demonstrate open-loop experiments in which COBRA successfully performs real-time object detection and loco-manipulation tasks.
☆ NMPC-based Unified Posture Manipulation and Thrust Vectoring for Fault Recovery
Multi-rotors face significant risks, as actuator failures at high altitudes can easily result in a crash and the robot's destruction. Therefore, rapid fault recovery in the event of an actuator failure is necessary for the fault-tolerant and safe operation of unmanned aerial robots. In this work, we present a fault recovery approach based on the unification of posture manipulation and thrust vectoring. The key contributions of this work are: 1) Derivation of two flight dynamics models (high-fidelity and reduced-order) that capture posture control and thrust vectoring. 2) Design of a controller based on Nonlinear Model Predictive Control (NMPC) and demonstration of fault recovery in simulation using a high-fidelity model of the Multi-Modal Mobility Morphobot (M4) in Simscape.
☆ Ground Penetrating Radar-Assisted Multimodal Robot Odometry Using Subsurface Feature Matrix
Localization of robots using subsurface features observed by ground-penetrating radar (GPR) enhances and adds robustness to common sensor modalities, as subsurface features are less affected by weather, seasons, and surface changes. We introduce an innovative multimodal odometry approach using inputs from GPR, an inertial measurement unit (IMU), and a wheel encoder. To efficiently address GPR signal noise, we introduce an advanced feature representation called the subsurface feature matrix (SFM). The SFM leverages frequency domain data and identifies peaks within radar scans. Additionally, we propose a novel feature matching method that estimates GPR displacement by aligning SFMs. The integrations from these three input sources are consolidated using a factor graph approach to achieve multimodal robot odometry. Our method has been developed and evaluated with the CMU-GPR public dataset, demonstrating improvements in accuracy and robustness with real-time performance in robotic odometry tasks.
☆ Learning Orientation Field for OSM-Guided Autonomous Navigation
OpenStreetMap (OSM) has gained popularity recently in autonomous navigation due to its public accessibility, lower maintenance costs, and broader geographical coverage. However, existing methods often struggle with noisy OSM data and incomplete sensor observations, leading to inaccuracies in trajectory planning. These challenges are particularly evident in complex driving scenarios, such as at intersections or facing occlusions. To address these challenges, we propose a robust and explainable two-stage framework to learn an Orientation Field (OrField) for robot navigation by integrating LiDAR scans and OSM routes. In the first stage, we introduce the novel representation, OrField, which can provide orientations for each grid on the map, reasoning jointly from noisy LiDAR scans and OSM routes. To generate a robust OrField, we train a deep neural network by encoding a versatile initial OrField and output an optimized OrField. Based on OrField, we propose two trajectory planners for OSM-guided robot navigation, called Field-RRT* and Field-Bezier, respectively, in the second stage by improving the Rapidly Exploring Random Tree (RRT) algorithm and Bezier curve to estimate the trajectories. Thanks to the robustness of OrField which captures both global and local information, Field-RRT* and Field-Bezier can generate accurate and reliable trajectories even in challenging conditions. We validate our approach through experiments on the SemanticKITTI dataset and our own campus dataset. The results demonstrate the effectiveness of our method, achieving superior performance in complex and noisy conditions. Our code for network training and real-world deployment is available at https://github.com/IMRL/OriField.
comment: 14 pages, 12 figures, and 5 tables
☆ GI-SLAM: Gaussian-Inertial SLAM
3D Gaussian Splatting (3DGS) has recently emerged as a powerful representation of geometry and appearance for dense Simultaneous Localization and Mapping (SLAM). Through rapid, differentiable rasterization of 3D Gaussians, many 3DGS SLAM methods achieve near real-time rendering and accelerated training. However, these methods largely overlook inertial data, witch is a critical piece of information collected from the inertial measurement unit (IMU). In this paper, we present GI-SLAM, a novel gaussian-inertial SLAM system which consists of an IMU-enhanced camera tracking module and a realistic 3D Gaussian-based scene representation for mapping. Our method introduces an IMU loss that seamlessly integrates into the deep learning framework underpinning 3D Gaussian Splatting SLAM, effectively enhancing the accuracy, robustness and efficiency of camera tracking. Moreover, our SLAM system supports a wide range of sensor configurations, including monocular, stereo, and RGBD cameras, both with and without IMU integration. Our method achieves competitive performance compared with existing state-of-the-art real-time methods on the EuRoC and TUM-RGBD datasets.
comment: 10 pages, 2 figures, 5 tables
☆ Optimal Modified Feedback Strategies in LQ Games under Control Imperfections
Game-theoretic approaches and Nash equilibrium have been widely applied across various engineering domains. However, practical challenges such as disturbances, delays, and actuator limitations can hinder the precise execution of Nash equilibrium strategies. This work explores the impact of such implementation imperfections on game trajectories and players' costs within the context of a two-player linear quadratic (LQ) nonzero-sum game. Specifically, we analyze how small deviations by one player affect the state and cost function of the other player. To address these deviations, we propose an adjusted control policy that not only mitigates adverse effects optimally but can also exploit the deviations to enhance performance. Rigorous mathematical analysis and proofs are presented, demonstrating through a representative example that the proposed policy modification achieves up to $61\%$ improvement compared to the unadjusted feedback policy and up to $0.59\%$ compared to the feedback Nash strategy.
comment: 6 pages, 2 figures, Preprint version of a paper submitted to L-CSS and CDC
☆ Contact-based Grasp Control and Inverse Kinematics for a Five-fingered Robotic Hand
This paper presents an implementation and analysis of a five-fingered robotic grasping system that combines contact-based control with inverse kinematics solutions. Using the PyBullet simulation environment and the DexHand v2 model, we demonstrate a comprehensive approach to achieving stable grasps through contact point optimization with force closure validation. Our method achieves movement efficiency ratings between 0.966-0.996 for non-thumb fingers and 0.879 for the thumb, while maintaining positional accuracy within 0.0267-0.0283m for non-thumb digits and 0.0519m for the thumb. The system demonstrates rapid position stabilization at 240Hz simulation frequency and maintains stable contact configurations throughout the grasp execution. Experimental results validate the effectiveness of our approach, while also identifying areas for future enhancement in thumb opposition movements and horizontal plane control.
comment: 10 Pages, 5 Figures, 1 Table
☆ Dom, cars don't fly! -- Or do they? In-Air Vehicle Maneuver for High-Speed Off-Road Navigation
When pushing the speed limit for aggressive off-road navigation on uneven terrain, it is inevitable that vehicles may become airborne from time to time. During time-sensitive tasks, being able to fly over challenging terrain can also save time, instead of cautiously circumventing or slowly negotiating through. However, most off-road autonomy systems operate under the assumption that the vehicles are always on the ground and therefore limit operational speed. In this paper, we present a novel approach for in-air vehicle maneuver during high-speed off-road navigation. Based on a hybrid forward kinodynamic model using both physics principles and machine learning, our fixed-horizon, sampling-based motion planner ensures accurate vehicle landing poses and their derivatives within a short airborne time window using vehicle throttle and steering commands. We test our approach in extensive in-air experiments both indoors and outdoors, compare it against an error-driven control method, and demonstrate that precise and timely in-air vehicle maneuver is possible through existing ground vehicle controls.
comment: 8 Pages, 4 Figures
☆ Cooperative Control of Multi-Quadrotors for Transporting Cable-Suspended Payloads: Obstacle-Aware Planning and Event-Based Nonlinear Model Predictive Control
This paper introduces a novel methodology for the cooperative control of multiple quadrotors transporting cablesuspended payloads, emphasizing obstacle-aware planning and event-based Nonlinear Model Predictive Control (NMPC). Our approach integrates trajectory planning with real-time control through a combination of the A* algorithm for global path planning and NMPC for local control, enhancing trajectory adaptability and obstacle avoidance. We propose an advanced event-triggered control system that updates based on events identified through dynamically generated environmental maps. These maps are constructed using a dual-camera setup, which includes multi-camera systems for static obstacle detection and event cameras for high-resolution, low-latency detection of dynamic obstacles. This design is crucial for addressing fast-moving and transient obstacles that conventional cameras may overlook, particularly in environments with rapid motion and variable lighting conditions. When new obstacles are detected, the A* algorithm recalculates waypoints based on the updated map, ensuring safe and efficient navigation. This real-time obstacle detection and map updating integration allows the system to adaptively respond to environmental changes, markedly improving safety and navigation efficiency. The system employs SLAM and object detection techniques utilizing data from multi-cameras, event cameras, and IMUs for accurate localization and comprehensive environmental mapping. The NMPC framework adeptly manages the complex dynamics of multiple quadrotors and suspended payloads, incorporating safety constraints to maintain dynamic feasibility and stability. Extensive simulations validate the proposed approach, demonstrating significant enhancements in energy efficiency, computational resource management, and responsiveness.
☆ Evolutionary Policy Optimization
Despite its extreme sample inefficiency, on-policy reinforcement learning has become a fundamental tool in real-world applications. With recent advances in GPU-driven simulation, the ability to collect vast amounts of data for RL training has scaled exponentially. However, studies show that current on-policy methods, such as PPO, fail to fully leverage the benefits of parallelized environments, leading to performance saturation beyond a certain scale. In contrast, Evolutionary Algorithms (EAs) excel at increasing diversity through randomization, making them a natural complement to RL. However, existing EvoRL methods have struggled to gain widespread adoption due to their extreme sample inefficiency. To address these challenges, we introduce Evolutionary Policy Optimization (EPO), a novel policy gradient algorithm that combines the strengths of EA and policy gradients. We show that EPO significantly improves performance across diverse and challenging environments, demonstrating superior scalability with parallelized simulations.
comment: Website at https://sites.google.com/view/epo-rl
♻ ☆ LaMOuR: Leveraging Language Models for Out-of-Distribution Recovery in Reinforcement Learning
Deep Reinforcement Learning (DRL) has demonstrated strong performance in robotic control but remains susceptible to out-of-distribution (OOD) states, often resulting in unreliable actions and task failure. While previous methods have focused on minimizing or preventing OOD occurrences, they largely neglect recovery once an agent encounters such states. Although the latest research has attempted to address this by guiding agents back to in-distribution states, their reliance on uncertainty estimation hinders scalability in complex environments. To overcome this limitation, we introduce Language Models for Out-of-Distribution Recovery (LaMOuR), which enables recovery learning without relying on uncertainty estimation. LaMOuR generates dense reward codes that guide the agent back to a state where it can successfully perform its original task, leveraging the capabilities of LVLMs in image description, logical reasoning, and code generation. Experimental results show that LaMOuR substantially enhances recovery efficiency across diverse locomotion tasks and even generalizes effectively to complex environments, including humanoid locomotion and mobile manipulation, where existing methods struggle. The code and supplementary materials are available at https://lamour-rl.github.io/.
comment: 14 pages, 17 figures
♻ ☆ AVOCADO: Adaptive Optimal Collision Avoidance driven by Opinion TRO
We present AVOCADO (AdaptiVe Optimal Collision Avoidance Driven by Opinion), a novel navigation approach to address holonomic robot collision avoidance when the robot does not know how cooperative the other agents in the environment are. AVOCADO departs from a Velocity Obstacle's (VO) formulation akin to the Optimal Reciprocal Collision Avoidance method. However, instead of assuming reciprocity, it poses an adaptive control problem to adapt to the cooperation level of other robots and agents in real time. This is achieved through a novel nonlinear opinion dynamics design that relies solely on sensor observations. As a by-product, we leverage tools from the opinion dynamics formulation to naturally avoid the deadlocks in geometrically symmetric scenarios that typically suffer VO-based planners. Extensive numerical simulations show that AVOCADO surpasses existing motion planners in mixed cooperative/non-cooperative navigation environments in terms of success rate, time to goal and computational time. In addition, we conduct multiple real experiments that verify that AVOCADO is able to avoid collisions in environments crowded with other robots and humans.
comment: This paper is published at IEEE Transactions on Robotics under DOI 10.1109/TRO.2025.3552350
♻ ☆ Diff-DAgger: Uncertainty Estimation with Diffusion Policy for Robotic Manipulation ICRA
Recently, diffusion policy has shown impressive results in handling multi-modal tasks in robotic manipulation. However, it has fundamental limitations in out-of-distribution failures that persist due to compounding errors and its limited capability to extrapolate. One way to address these limitations is robot-gated DAgger, an interactive imitation learning with a robot query system to actively seek expert help during policy rollout. While robot-gated DAgger has high potential for learning at scale, existing methods like Ensemble-DAgger struggle with highly expressive policies: They often misinterpret policy disagreements as uncertainty at multi-modal decision points. To address this problem, we introduce Diff-DAgger, an efficient robot-gated DAgger algorithm that leverages the training objective of diffusion policy. We evaluate Diff-DAgger across different robot tasks including stacking, pushing, and plugging, and show that Diff-DAgger improves the task failure prediction by 39.0%, the task completion rate by 20.6%, and reduces the wall-clock time by a factor of 7.8. We hope that this work opens up a path for efficiently incorporating expressive yet data-hungry policies into interactive robot learning settings. The project website is available at: https://diffdagger.github.io.
comment: Project website: diffdagger.github.io 8 pages, 6 figures, accepted by International Conference on Robotics and Automation (ICRA) 2025
♻ ☆ Humanoid Policy ~ Human Policy
Training manipulation policies for humanoid robots with diverse data enhances their robustness and generalization across tasks and platforms. However, learning solely from robot demonstrations is labor-intensive, requiring expensive tele-operated data collection which is difficult to scale. This paper investigates a more scalable data source, egocentric human demonstrations, to serve as cross-embodiment training data for robot learning. We mitigate the embodiment gap between humanoids and humans from both the data and modeling perspectives. We collect an egocentric task-oriented dataset (PH2D) that is directly aligned with humanoid manipulation demonstrations. We then train a human-humanoid behavior policy, which we term Human Action Transformer (HAT). The state-action space of HAT is unified for both humans and humanoid robots and can be differentiably retargeted to robot actions. Co-trained with smaller-scale robot data, HAT directly models humanoid robots and humans as different embodiments without additional supervision. We show that human data improves both generalization and robustness of HAT with significantly better data collection efficiency. Code and data: https://human-as-robot.github.io/
comment: Code and data: https://human-as-robot.github.io/
♻ ☆ Believing is Seeing: Unobserved Object Detection using Generative Models
Can objects that are not visible in an image -- but are in the vicinity of the camera -- be detected? This study introduces the novel tasks of 2D, 2.5D and 3D unobserved object detection for predicting the location of nearby objects that are occluded or lie outside the image frame. We adapt several state-of-the-art pre-trained generative models to address this task, including 2D and 3D diffusion models and vision-language models, and show that they can be used to infer the presence of objects that are not directly observed. To benchmark this task, we propose a suite of metrics that capture different aspects of performance. Our empirical evaluation on indoor scenes from the RealEstate10k and NYU Depth v2 datasets demonstrate results that motivate the use of generative models for the unobserved object detection task.
comment: IEEE/CVF Computer Vision and Pattern Recognition 2025; 22 pages
♻ ☆ Uni-Gaussians: Unifying Camera and Lidar Simulation with Gaussians for Dynamic Driving Scenarios
Ensuring the safety of autonomous vehicles necessitates comprehensive simulation of multi-sensor data, encompassing inputs from both cameras and LiDAR sensors, across various dynamic driving scenarios. Neural rendering techniques, which utilize collected raw sensor data to simulate these dynamic environments, have emerged as a leading methodology. While NeRF-based approaches can uniformly represent scenes for rendering data from both camera and LiDAR, they are hindered by slow rendering speeds due to dense sampling. Conversely, Gaussian Splatting-based methods employ Gaussian primitives for scene representation and achieve rapid rendering through rasterization. However, these rasterization-based techniques struggle to accurately model non-linear optical sensors. This limitation restricts their applicability to sensors beyond pinhole cameras. To address these challenges and enable unified representation of dynamic driving scenarios using Gaussian primitives, this study proposes a novel hybrid approach. Our method utilizes rasterization for rendering image data while employing Gaussian ray-tracing for LiDAR data rendering. Experimental results on public datasets demonstrate that our approach outperforms current state-of-the-art methods. This work presents a unified and efficient solution for realistic simulation of camera and LiDAR data in autonomous driving scenarios using Gaussian primitives, offering significant advancements in both rendering quality and computational efficiency.
comment: 10 pages
♻ ☆ Double Oracle Algorithm for Game-Theoretic Robot Allocation on Graphs
We study the problem of game-theoretic robot allocation where two players strategically allocate robots to compete for multiple sites of interest. Robots possess offensive or defensive capabilities to interfere and weaken their opponents to take over a competing site. This problem belongs to the conventional Colonel Blotto Game. Considering the robots' heterogeneous capabilities and environmental factors, we generalize the conventional Blotto game by incorporating heterogeneous robot types and graph constraints that capture the robot transitions between sites. Then we employ the Double Oracle Algorithm (DOA) to solve for the Nash equilibrium of the generalized Blotto game. Particularly, for cyclic-dominance-heterogeneous (CDH) robots that inhibit each other, we define a new transformation rule between any two robot types. Building on the transformation, we design a novel utility function to measure the game's outcome quantitatively. Moreover, we rigorously prove the correctness of the designed utility function. Finally, we conduct extensive simulations to demonstrate the effectiveness of DOA on computing Nash equilibrium for homogeneous, linear heterogeneous, and CDH robot allocation on graphs.
♻ ☆ Physics-Informed Multi-Agent Reinforcement Learning for Distributed Multi-Robot Problems
The networked nature of multi-robot systems presents challenges in the context of multi-agent reinforcement learning. Centralized control policies do not scale with increasing numbers of robots, whereas independent control policies do not exploit the information provided by other robots, exhibiting poor performance in cooperative-competitive tasks. In this work we propose a physics-informed reinforcement learning approach able to learn distributed multi-robot control policies that are both scalable and make use of all the available information to each robot. Our approach has three key characteristics. First, it imposes a port-Hamiltonian structure on the policy representation, respecting energy conservation properties of physical robot systems and the networked nature of robot team interactions. Second, it uses self-attention to ensure a sparse policy representation able to handle time-varying information at each robot from the interaction graph. Third, we present a soft actor-critic reinforcement learning algorithm parameterized by our self-attention port-Hamiltonian control policy, which accounts for the correlation among robots during training while overcoming the need of value function factorization. Extensive simulations in different multi-robot scenarios demonstrate the success of the proposed approach, surpassing previous multi-robot reinforcement learning solutions in scalability, while achieving similar or superior performance (with averaged cumulative reward up to x2 greater than the state-of-the-art with robot teams x6 larger than the number of robots at training time). We also validate our approach on multiple real robots in the Georgia Tech Robotarium under imperfect communication, demonstrating zero-shot sim-to-real transfer and scalability across number of robots.
comment: This paper is under review at IEEE T-RO
♻ ☆ Kalib: Easy Hand-Eye Calibration with Reference Point Tracking
Hand-eye calibration aims to estimate the transformation between a camera and a robot. Traditional methods rely on fiducial markers, which require considerable manual effort and precise setup. Recent advances in deep learning have introduced markerless techniques but come with more prerequisites, such as retraining networks for each robot, and accessing accurate mesh models for data generation. In this paper, we propose Kalib, an automatic and easy-to-setup hand-eye calibration method that leverages the generalizability of visual foundation models to overcome these challenges. It features only two basic prerequisites, the robot's kinematic chain and a predefined reference point on the robot. During calibration, the reference point is tracked in the camera space. Its corresponding 3D coordinates in the robot coordinate can be inferred by forward kinematics. Then, a PnP solver directly estimates the transformation between the camera and the robot without training new networks or accessing mesh models. Evaluations in simulated and real-world benchmarks show that Kalib achieves good accuracy with a lower manual workload compared with recent baseline methods. We also demonstrate its application in multiple real-world settings with various robot arms and grippers. Kalib's user-friendly design and minimal setup requirements make it a possible solution for continuous operation in unstructured environments.
comment: The code, data, and supplementary materials are available at https://sites.google.com/view/hand-eye-kalib
♻ ☆ ETAP: Event-based Tracking of Any Point
Tracking any point (TAP) recently shifted the motion estimation paradigm from focusing on individual salient points with local templates to tracking arbitrary points with global image contexts. However, while research has mostly focused on driving the accuracy of models in nominal settings, addressing scenarios with difficult lighting conditions and high-speed motions remains out of reach due to the limitations of the sensor. This work addresses this challenge with the first event camera-based TAP method. It leverages the high temporal resolution and high dynamic range of event cameras for robust high-speed tracking, and the global contexts in TAP methods to handle asynchronous and sparse event measurements. We further extend the TAP framework to handle event feature variations induced by motion -- thereby addressing an open challenge in purely event-based tracking -- with a novel feature-alignment loss which ensures the learning of motion-robust features. Our method is trained with data from a new data generation pipeline and systematically ablated across all design decisions. Our method shows strong cross-dataset generalization and performs 136% better on the average Jaccard metric than the baselines. Moreover, on an established feature tracking benchmark, it achieves a 20% improvement over the previous best event-only method and even surpasses the previous best events-and-frames method by 4.1%. Our code is available at https://github.com/tub-rip/ETAP
comment: 17 pages, 15 figures, 8 tables. Project page: https://github.com/tub-rip/ETAP
CarPlanner: Consistent Auto-regressive Trajectory Planning for Large-scale Reinforcement Learning in Autonomous Driving CVPR 2025
Trajectory planning is vital for autonomous driving, ensuring safe and efficient navigation in complex environments. While recent learning-based methods, particularly reinforcement learning (RL), have shown promise in specific scenarios, RL planners struggle with training inefficiencies and managing large-scale, real-world driving scenarios. In this paper, we introduce \textbf{CarPlanner}, a \textbf{C}onsistent \textbf{a}uto-\textbf{r}egressive \textbf{Planner} that uses RL to generate multi-modal trajectories. The auto-regressive structure enables efficient large-scale RL training, while the incorporation of consistency ensures stable policy learning by maintaining coherent temporal consistency across time steps. Moreover, CarPlanner employs a generation-selection framework with an expert-guided reward function and an invariant-view module, simplifying RL training and enhancing policy performance. Extensive analysis demonstrates that our proposed RL framework effectively addresses the challenges of training efficiency and performance enhancement, positioning CarPlanner as a promising solution for trajectory planning in autonomous driving. To the best of our knowledge, we are the first to demonstrate that the RL-based planner can surpass both IL- and rule-based state-of-the-arts (SOTAs) on the challenging large-scale real-world dataset nuPlan. Our proposed CarPlanner surpasses RL-, IL-, and rule-based SOTA approaches within this demanding dataset.
comment: CVPR 2025
♻ ☆ Evolution 6.0: Evolving Robotic Capabilities Through Generative Design IROS
We propose a new concept, Evolution 6.0, which represents the evolution of robotics driven by Generative AI. When a robot lacks the necessary tools to accomplish a task requested by a human, it autonomously designs the required instruments and learns how to use them to achieve the goal. Evolution 6.0 is an autonomous robotic system powered by Vision-Language Models (VLMs), Vision-Language Action (VLA) models, and Text-to-3D generative models for tool design and task execution. The system comprises two key modules: the Tool Generation Module, which fabricates task-specific tools from visual and textual data, and the Action Generation Module, which converts natural language instructions into robotic actions. It integrates QwenVLM for environmental understanding, OpenVLA for task execution, and Llama-Mesh for 3D tool generation. Evaluation results demonstrate a 90% success rate for tool generation with a 10-second inference time, and action generation achieving 83.5% in physical and visual generalization, 70% in motion generalization, and 37% in semantic generalization. Future improvements will focus on bimanual manipulation, expanded task capabilities, and enhanced environmental interpretation to improve real-world adaptability.
comment: Submitted to IROS
♻ ☆ Improving robot navigation in crowded environments using intrinsic rewards ICRA
Autonomous navigation in crowded environments is an open problem with many applications, essential for the coexistence of robots and humans in the smart cities of the future. In recent years, deep reinforcement learning approaches have proven to outperform model-based algorithms. Nevertheless, even though the results provided are promising, the works are not able to take advantage of the capabilities that their models offer. They usually get trapped in local optima in the training process, that prevent them from learning the optimal policy. They are not able to visit and interact with every possible state appropriately, such as with the states near the goal or near the dynamic obstacles. In this work, we propose using intrinsic rewards to balance between exploration and exploitation and explore depending on the uncertainty of the states instead of on the time the agent has been trained, encouraging the agent to get more curious about unknown states. We explain the benefits of the approach and compare it with other exploration algorithms that may be used for crowd navigation. Many simulation experiments are performed modifying several algorithms of the state-of-the-art, showing that the use of intrinsic rewards makes the robot learn faster and reach higher rewards and success rates (fewer collisions) in shorter navigation times, outperforming the state-of-the-art.
comment: Paper accepted in 2023 IEEE International Conference on Robotics and Automation (ICRA)
♻ ☆ Emergency-Brake Simplex: Toward A Verifiably Safe Control-CPS Architecture for Abrupt Runtime Reachability Constraint Changes
When a system's constraints change abruptly, the system's reachability safety does no longer sustain. Thus, the system can reach a forbidden/dangerous value. Conventional remedy practically involves online controller redesign (OCR) to re-establish the reachability's compliance with the new constraints, which, however, is usually too slow. There is a need for an online strategy capable of managing runtime changes in reachability constraints. However, to the best of the authors' knowledge, this topic has not been addressed in the existing literature. In this paper, we propose a fast fault tolerance strategy to recover the system's reachability safety in runtime. Instead of redesigning the system's controller, we propose to change the system's reference state to modify the system's reachability to comply with the new constraints. We frame the reference state search as an optimization problem and employ the Karush-Kuhn-Tucker (KKT) method as well as the Interior Point Method (IPM) based Newton's method (as a fallback for the KKT method) for fast solution derivation. The optimization also allows more future fault tolerance. Numerical simulations demonstrate that our method outperforms the conventional OCR method in terms of computational efficiency and success rate. Specifically, the results show that the proposed method finds a solution $10^{2}$ (with the IPM based Newton's method) $\sim 10^{4}$ (with the KKT method) times faster than the OCR method. Additionally, the improvement rate of the success rate of our method over the OCR method is $40.81\%$ without considering the deadline of run time. The success rate remains at $49.44\%$ for the proposed method, while it becomes $0\%$ for the OCR method when a deadline of $1.5 \; seconds$ is imposed.
comment: 12 pages, 2 figures,
♻ ☆ Control Strategies for Pursuit-Evasion Under Occlusion Using Visibility and Safety Barrier Functions
This paper develops a control strategy for pursuit-evasion problems in environments with occlusions. We address the challenge of a mobile pursuer keeping a mobile evader within its field of view (FoV) despite line-of-sight obstructions. The signed distance function (SDF) of the FoV is used to formulate visibility as a control barrier function (CBF) constraint on the pursuer's control inputs. Similarly, obstacle avoidance is formulated as a CBF constraint based on the SDF of the obstacle set. While the visibility and safety CBFs are Lipschitz continuous, they are not differentiable everywhere, necessitating the use of generalized gradients. To achieve non-myopic pursuit, we generate reference control trajectories leading to evader visibility using a sampling-based kinodynamic planner. The pursuer then tracks this reference via convex optimization under the CBF constraints. We validate our approach in CARLA simulations and real-world robot experiments, demonstrating successful visibility maintenance using only onboard sensing, even under severe occlusions and dynamic evader movements.
comment: 7 pages, 7 figures
♻ ☆ DiffusionDrive: Truncated Diffusion Model for End-to-End Autonomous Driving CVPR 2025
Recently, the diffusion model has emerged as a powerful generative technique for robotic policy learning, capable of modeling multi-mode action distributions. Leveraging its capability for end-to-end autonomous driving is a promising direction. However, the numerous denoising steps in the robotic diffusion policy and the more dynamic, open-world nature of traffic scenes pose substantial challenges for generating diverse driving actions at a real-time speed. To address these challenges, we propose a novel truncated diffusion policy that incorporates prior multi-mode anchors and truncates the diffusion schedule, enabling the model to learn denoising from anchored Gaussian distribution to the multi-mode driving action distribution. Additionally, we design an efficient cascade diffusion decoder for enhanced interaction with conditional scene context. The proposed model, DiffusionDrive, demonstrates 10$\times$ reduction in denoising steps compared to vanilla diffusion policy, delivering superior diversity and quality in just 2 steps. On the planning-oriented NAVSIM dataset, with the aligned ResNet-34 backbone, DiffusionDrive achieves 88.1 PDMS without bells and whistles, setting a new record, while running at a real-time speed of 45 FPS on an NVIDIA 4090. Qualitative results on challenging scenarios further confirm that DiffusionDrive can robustly generate diverse plausible driving actions. Code and model will be available at https://github.com/hustvl/DiffusionDrive.
comment: Accepted to CVPR 2025. Code & demo & model are available at https://github.com/hustvl/DiffusionDrive
♻ ☆ Applications of Spiking Neural Networks in Visual Place Recognition TRO
In robotics, Spiking Neural Networks (SNNs) are increasingly recognized for their largely-unrealized potential energy efficiency and low latency particularly when implemented on neuromorphic hardware. Our paper highlights three advancements for SNNs in Visual Place Recognition (VPR). Firstly, we propose Modular SNNs, where each SNN represents a set of non-overlapping geographically distinct places, enabling scalable networks for large environments. Secondly, we present Ensembles of Modular SNNs, where multiple networks represent the same place, significantly enhancing accuracy compared to single-network models. Each of our Modular SNN modules is compact, comprising only 1500 neurons and 474k synapses, making them ideally suited for ensembling due to their small size. Lastly, we investigate the role of sequence matching in SNN-based VPR, a technique where consecutive images are used to refine place recognition. We demonstrate competitive performance of our method on a range of datasets, including higher responsiveness to ensembling compared to conventional VPR techniques and higher R@1 improvements with sequence matching than VPR techniques with comparable baseline performance. Our contributions highlight the viability of SNNs for VPR, offering scalable and robust solutions, and paving the way for their application in various energy-sensitive robotic tasks.
comment: 20 pages, 10 figures, IEEE Transactions on Robotics (TRO)
♻ ☆ AVR: Active Vision-Driven Robotic Precision Manipulation with Viewpoint and Focal Length Optimization
Robotic manipulation within dynamic environments presents challenges to precise control and adaptability. Traditional fixed-view camera systems face challenges adapting to change viewpoints and scale variations, limiting perception and manipulation precision. To tackle these issues, we propose the Active Vision-driven Robotic (AVR) framework, a teleoperation hardware solution that supports dynamic viewpoint and dynamic focal length adjustments to continuously center targets and maintain optimal scale, accompanied by a corresponding algorithm that effectively enhances the success rates of various operational tasks. Using the RoboTwin platform with a real-time image processing plugin, AVR framework improves task success rates by 5%-16% on five manipulation tasks. Physical deployment on a dual-arm system demonstrates in collaborative tasks and 36% precision in screwdriver insertion, outperforming baselines by over 25%. Experimental results confirm that AVR framework enhances environmental perception, manipulation repeatability (40% $\le $1 cm error), and robustness in complex scenarios, paving the way for future robotic precision manipulation methods in the pursuit of human-level robot dexterity and precision.
comment: Previously, there were some problems with our experimental data, and the conclusions need to be further verified. Now that we have completed a full-scale experiment and analysis, and added supporting materials to our website, we hope to be able to resubmit it
♻ ☆ 3D-MVP: 3D Multiview Pretraining for Robotic Manipulation CVPR 2025
Recent works have shown that visual pretraining on egocentric datasets using masked autoencoders (MAE) can improve generalization for downstream robotics tasks. However, these approaches pretrain only on 2D images, while many robotics applications require 3D scene understanding. In this work, we propose 3D-MVP, a novel approach for 3D Multi-View Pretraining using masked autoencoders. We leverage Robotic View Transformer (RVT), which uses a multi-view transformer to understand the 3D scene and predict gripper pose actions. We split RVT's multi-view transformer into visual encoder and action decoder, and pretrain its visual encoder using masked autoencoding on large-scale 3D datasets such as Objaverse. We evaluate 3D-MVP on a suite of virtual robot manipulation tasks and demonstrate improved performance over baselines. Our results suggest that 3D-aware pretraining is a promising approach to improve generalization of vision-based robotic manipulation policies. Project site: https://jasonqsy.github.io/3DMVP
comment: CVPR 2025
♻ ☆ MVCTrack: Boosting 3D Point Cloud Tracking via Multimodal-Guided Virtual Cues ICRA 2025
3D single object tracking is essential in autonomous driving and robotics. Existing methods often struggle with sparse and incomplete point cloud scenarios. To address these limitations, we propose a Multimodal-guided Virtual Cues Projection (MVCP) scheme that generates virtual cues to enrich sparse point clouds. Additionally, we introduce an enhanced tracker MVCTrack based on the generated virtual cues. Specifically, the MVCP scheme seamlessly integrates RGB sensors into LiDAR-based systems, leveraging a set of 2D detections to create dense 3D virtual cues that significantly improve the sparsity of point clouds. These virtual cues can naturally integrate with existing LiDAR-based 3D trackers, yielding substantial performance gains. Extensive experiments demonstrate that our method achieves competitive performance on the NuScenes dataset.
comment: Accepted by ICRA 2025
♻ ☆ NextStop: An Improved Tracker For Panoptic LIDAR Segmentation Data
4D panoptic LiDAR segmentation is essential for scene understanding in autonomous driving and robotics, combining semantic and instance segmentation with temporal consistency. Current methods, like 4D-PLS and 4D-STOP, use a tracking-by-detection methodology, employing deep learning networks to perform semantic and instance segmentation on each frame. To maintain temporal consistency, large-size instances detected in the current frame are compared and associated with instances within a temporal window that includes the current and preceding frames. However, their reliance on short-term instance detection, lack of motion estimation, and exclusion of small-sized instances lead to frequent identity switches and reduced tracking performance. We address these issues with the NextStop1 tracker, which integrates Kalman filter-based motion estimation, data association, and lifespan management, along with a tracklet state concept to improve prioritization. Evaluated using the LiDAR Segmentation and Tracking Quality (LSTQ) metric on the SemanticKITTI validation set, NextStop demonstrated enhanced tracking performance, particularly for small-sized objects like people and bicyclists, with fewer ID switches, earlier tracking initiation, and improved reliability in complex environments. The source code is available at https://github.com/AIROTAU/NextStop
♻ ☆ MGSO: Monocular Real-time Photometric SLAM with Efficient 3D Gaussian Splatting
Real-time SLAM with dense 3D mapping is computationally challenging, especially on resource-limited devices. The recent development of 3D Gaussian Splatting (3DGS) offers a promising approach for real-time dense 3D reconstruction. However, existing 3DGS-based SLAM systems struggle to balance hardware simplicity, speed, and map quality. Most systems excel in one or two of the aforementioned aspects but rarely achieve all. A key issue is the difficulty of initializing 3D Gaussians while concurrently conducting SLAM. To address these challenges, we present Monocular GSO (MGSO), a novel real-time SLAM system that integrates photometric SLAM with 3DGS. Photometric SLAM provides dense structured point clouds for 3DGS initialization, accelerating optimization and producing more efficient maps with fewer Gaussians. As a result, experiments show that our system generates reconstructions with a balance of quality, memory efficiency, and speed that outperforms the state-of-the-art. Furthermore, our system achieves all results using RGB inputs. We evaluate the Replica, TUM-RGBD, and EuRoC datasets against current live dense reconstruction systems. Not only do we surpass contemporary systems, but experiments also show that we maintain our performance on laptop hardware, making it a practical solution for robotics, A/R, and other real-time applications.
comment: The final version of this work has been approved by the IEEE for publication. This version may no longer be accessible without notice. Copyright 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses
♻ ☆ CAHSOR: Competence-Aware High-Speed Off-Road Ground Navigation in SE(3)
While the workspace of traditional ground vehicles is usually assumed to be in a 2D plane, i.e., SE(2), such an assumption may not hold when they drive at high speeds on unstructured off-road terrain: High-speed sharp turns on high-friction surfaces may lead to vehicle rollover; Turning aggressively on loose gravel or grass may violate the non-holonomic constraint and cause significant lateral sliding; Driving quickly on rugged terrain will produce extensive vibration along the vertical axis. Therefore, most offroad vehicles are currently limited to drive only at low speeds to assure vehicle stability and safety. In this work, we aim at empowering high-speed off-road vehicles with competence awareness in SE(3) so that they can reason about the consequences of taking aggressive maneuvers on different terrain with a 6-DoF forward kinodynamic model. The model is learned from visual and inertial Terrain Representation for Off-road Navigation (TRON) using multimodal, self-supervised vehicle-terrain interactions. We demonstrate the efficacy of our Competence-Aware High-Speed Off-Road (CAHSOR) navigation approach on a physical ground robot in both an autonomous navigation and a human shared-control setup and show that CAHSOR can efficiently reduce vehicle instability by 62% while only compromising 8.6% average speed with the help of TRON.
♻ ☆ A Rapid Trajectory Optimization and Control Framework for Resource-Constrained Applications
This paper presents a computationally efficient model predictive control formulation that uses an integral Chebyshev collocation method to enable rapid operations of autonomous agents. By posing the finite-horizon optimal control problem and recursive re-evaluation of the optimal trajectories, minimization of the L2 norms of the state and control errors are transcribed into a quadratic program. Control and state variable constraints are parameterized using Chebyshev polynomials and are accommodated in the optimal trajectory generation programs to incorporate the actuator limits and keep-out constraints. Differentiable collision detection of polytopes is leveraged for optimal collision avoidance. Results obtained from the collocation methods are benchmarked against the existing approaches on an edge computer to outline the performance improvements. Finally, collaborative control scenarios involving multi-agent space systems are considered to demonstrate the technical merits of the proposed work.
comment: This work has been accepted for publication at the IEEE ACC 2025
♻ ☆ Morphological Symmetries in Robotics
We present a comprehensive framework for studying and leveraging morphological symmetries in robotic systems. These are intrinsic properties of the robot's morphology, frequently observed in animal biology and robotics, which stem from the replication of kinematic structures and the symmetrical distribution of mass. We illustrate how these symmetries extend to the robot's state space and both proprioceptive and exteroceptive sensor measurements, resulting in the equivariance of the robot's equations of motion and optimal control policies. Thus, we recognize morphological symmetries as a relevant and previously unexplored physics-informed geometric prior, with significant implications for both data-driven and analytical methods used in modeling, control, estimation and design in robotics. For data-driven methods, we demonstrate that morphological symmetries can enhance the sample efficiency and generalization of machine learning models through data augmentation, or by applying equivariant/invariant constraints on the model's architecture. In the context of analytical methods, we employ abstract harmonic analysis to decompose the robot's dynamics into a superposition of lower-dimensional, independent dynamics. We substantiate our claims with both synthetic and real-world experiments conducted on bipedal and quadrupedal robots. Lastly, we introduce the repository MorphoSymm to facilitate the practical use of the theory and applications outlined in this work.
comment: 18 pages, 11 figures
Computer Vision 138
☆ Target-Aware Video Diffusion Models
We present a target-aware video diffusion model that generates videos from an input image in which an actor interacts with a specified target while performing a desired action. The target is defined by a segmentation mask and the desired action is described via a text prompt. Unlike existing controllable image-to-video diffusion models that often rely on dense structural or motion cues to guide the actor's movements toward the target, our target-aware model requires only a simple mask to indicate the target, leveraging the generalization capabilities of pretrained models to produce plausible actions. This makes our method particularly effective for human-object interaction (HOI) scenarios, where providing precise action guidance is challenging, and further enables the use of video diffusion models for high-level action planning in applications such as robotics. We build our target-aware model by extending a baseline model to incorporate the target mask as an additional input. To enforce target awareness, we introduce a special token that encodes the target's spatial information within the text prompt. We then fine-tune the model with our curated dataset using a novel cross-attention loss that aligns the cross-attention maps associated with this token with the input target mask. To further improve performance, we selectively apply this loss to the most semantically relevant transformer blocks and attention regions. Experimental results show that our target-aware model outperforms existing solutions in generating videos where actors interact accurately with the specified targets. We further demonstrate its efficacy in two downstream applications: video content creation and zero-shot 3D HOI motion synthesis.
comment: The project page is available at https://taeksuu.github.io/tavid/
☆ Equivariant Image Modeling
Current generative models, such as autoregressive and diffusion approaches, decompose high-dimensional data distribution learning into a series of simpler subtasks. However, inherent conflicts arise during the joint optimization of these subtasks, and existing solutions fail to resolve such conflicts without sacrificing efficiency or scalability. We propose a novel equivariant image modeling framework that inherently aligns optimization targets across subtasks by leveraging the translation invariance of natural visual signals. Our method introduces (1) column-wise tokenization which enhances translational symmetry along the horizontal axis, and (2) windowed causal attention which enforces consistent contextual relationships across positions. Evaluated on class-conditioned ImageNet generation at 256x256 resolution, our approach achieves performance comparable to state-of-the-art AR models while using fewer computational resources. Systematic analysis demonstrates that enhanced equivariance reduces inter-task conflicts, significantly improving zero-shot generalization and enabling ultra-long image synthesis. This work establishes the first framework for task-aligned decomposition in generative modeling, offering insights into efficient parameter sharing and conflict-free optimization. The code and models are publicly available at https://github.com/drx-code/EquivariantModeling.
☆ Tuning-Free Amodal Segmentation via the Occlusion-Free Bias of Inpainting Models
Amodal segmentation aims to predict segmentation masks for both the visible and occluded regions of an object. Most existing works formulate this as a supervised learning problem, requiring manually annotated amodal masks or synthetic training data. Consequently, their performance depends on the quality of the datasets, which often lack diversity and scale. This work introduces a tuning-free approach that repurposes pretrained diffusion-based inpainting models for amodal segmentation. Our approach is motivated by the "occlusion-free bias" of inpainting models, i.e., the inpainted objects tend to be complete objects without occlusions. Specifically, we reconstruct the occluded regions of an object via inpainting and then apply segmentation, all without additional training or fine-tuning. Experiments on five datasets demonstrate the generalizability and robustness of our approach. On average, our approach achieves 5.3% more accurate masks over the state-of-the-art.
☆ DINO in the Room: Leveraging 2D Foundation Models for 3D Segmentation
Vision foundation models (VFMs) trained on large-scale image datasets provide high-quality features that have significantly advanced 2D visual recognition. However, their potential in 3D vision remains largely untapped, despite the common availability of 2D images alongside 3D point cloud datasets. While significant research has been dedicated to 2D-3D fusion, recent state-of-the-art 3D methods predominantly focus on 3D data, leaving the integration of VFMs into 3D models underexplored. In this work, we challenge this trend by introducing DITR, a simple yet effective approach that extracts 2D foundation model features, projects them to 3D, and finally injects them into a 3D point cloud segmentation model. DITR achieves state-of-the-art results on both indoor and outdoor 3D semantic segmentation benchmarks. To enable the use of VFMs even when images are unavailable during inference, we further propose to distill 2D foundation models into a 3D backbone as a pretraining task. By initializing the 3D backbone with knowledge distilled from 2D VFMs, we create a strong basis for downstream 3D segmentation tasks, ultimately boosting performance across various datasets.
comment: Project page at https://vision.rwth-aachen.de/DITR
SlowFast-LLaVA-1.5: A Family of Token-Efficient Video Large Language Models for Long-Form Video Understanding
We introduce SlowFast-LLaVA-1.5 (abbreviated as SF-LLaVA-1.5), a family of video large language models (LLMs) offering a token-efficient solution for long-form video understanding. This model family employs the two-stream SlowFast mechanism, enabling efficient modeling of long-range temporal context to meet the demand for lightweight, mobile-friendly Video LLMs. We provide models ranging from 1B to 7B parameters, optimized through a streamlined training pipeline and a high-quality data mixture composed of publicly available datasets. Experimental results demonstrate that SF-LLaVA-1.5 achieves competitive performance on a wide range of video and image benchmarks, with robust results across all model sizes. Notably, SF-LLaVA-1.5 achieves state-of-the-art results in long-form video understanding (e.g., LongVideoBench and MLVU) and excels at small scales (1B and 3B) across various video benchmarks.
comment: Technical report
☆ Video-T1: Test-Time Scaling for Video Generation
With the scale capability of increasing training data, model size, and computational cost, video generation has achieved impressive results in digital creation, enabling users to express creativity across various domains. Recently, researchers in Large Language Models (LLMs) have expanded the scaling to test-time, which can significantly improve LLM performance by using more inference-time computation. Instead of scaling up video foundation models through expensive training costs, we explore the power of Test-Time Scaling (TTS) in video generation, aiming to answer the question: if a video generation model is allowed to use non-trivial amount of inference-time compute, how much can it improve generation quality given a challenging text prompt. In this work, we reinterpret the test-time scaling of video generation as a searching problem to sample better trajectories from Gaussian noise space to the target video distribution. Specifically, we build the search space with test-time verifiers to provide feedback and heuristic algorithms to guide searching process. Given a text prompt, we first explore an intuitive linear search strategy by increasing noise candidates at inference time. As full-step denoising all frames simultaneously requires heavy test-time computation costs, we further design a more efficient TTS method for video generation called Tree-of-Frames (ToF) that adaptively expands and prunes video branches in an autoregressive manner. Extensive experiments on text-conditioned video generation benchmarks demonstrate that increasing test-time compute consistently leads to significant improvements in the quality of videos. Project page: https://liuff19.github.io/Video-T1
comment: Project page: https://liuff19.github.io/Video-T1
☆ Training-free Diffusion Acceleration with Bottleneck Sampling
Diffusion models have demonstrated remarkable capabilities in visual content generation but remain challenging to deploy due to their high computational cost during inference. This computational burden primarily arises from the quadratic complexity of self-attention with respect to image or video resolution. While existing acceleration methods often compromise output quality or necessitate costly retraining, we observe that most diffusion models are pre-trained at lower resolutions, presenting an opportunity to exploit these low-resolution priors for more efficient inference without degrading performance. In this work, we introduce Bottleneck Sampling, a training-free framework that leverages low-resolution priors to reduce computational overhead while preserving output fidelity. Bottleneck Sampling follows a high-low-high denoising workflow: it performs high-resolution denoising in the initial and final stages while operating at lower resolutions in intermediate steps. To mitigate aliasing and blurring artifacts, we further refine the resolution transition points and adaptively shift the denoising timesteps at each stage. We evaluate Bottleneck Sampling on both image and video generation tasks, where extensive experiments demonstrate that it accelerates inference by up to 3$\times$ for image generation and 2.5$\times$ for video generation, all while maintaining output quality comparable to the standard full-resolution sampling process across multiple evaluation metrics. Code is available at: https://github.com/tyfeld/Bottleneck-Sampling
comment: Code Repo: https://github.com/tyfeld/Bottleneck-Sampling ,Project Page: https://tyfeld.github.io/BottleneckSampling.github.io/
☆ AdaWorld: Learning Adaptable World Models with Latent Actions
World models aim to learn action-controlled prediction models and have proven essential for the development of intelligent agents. However, most existing world models rely heavily on substantial action-labeled data and costly training, making it challenging to adapt to novel environments with heterogeneous actions through limited interactions. This limitation can hinder their applicability across broader domains. To overcome this challenge, we propose AdaWorld, an innovative world model learning approach that enables efficient adaptation. The key idea is to incorporate action information during the pretraining of world models. This is achieved by extracting latent actions from videos in a self-supervised manner, capturing the most critical transitions between frames. We then develop an autoregressive world model that conditions on these latent actions. This learning paradigm enables highly adaptable world models, facilitating efficient transfer and learning of new actions even with limited interactions and finetuning. Our comprehensive experiments across multiple environments demonstrate that AdaWorld achieves superior performance in both simulation quality and visual planning.
comment: Project page: https://adaptable-world-model.github.io/
☆ SyncVP: Joint Diffusion for Synchronous Multi-Modal Video Prediction
Predicting future video frames is essential for decision-making systems, yet RGB frames alone often lack the information needed to fully capture the underlying complexities of the real world. To address this limitation, we propose a multi-modal framework for Synchronous Video Prediction (SyncVP) that incorporates complementary data modalities, enhancing the richness and accuracy of future predictions. SyncVP builds on pre-trained modality-specific diffusion models and introduces an efficient spatio-temporal cross-attention module to enable effective information sharing across modalities. We evaluate SyncVP on standard benchmark datasets, such as Cityscapes and BAIR, using depth as an additional modality. We furthermore demonstrate its generalization to other modalities on SYNTHIA with semantic information and ERA5-Land with climate data. Notably, SyncVP achieves state-of-the-art performance, even in scenarios where only one modality is present, demonstrating its robustness and potential for a wide range of applications.
☆ CoMP: Continual Multimodal Pre-training for Vision Foundation Models
Pre-trained Vision Foundation Models (VFMs) provide strong visual representations for a wide range of applications. In this paper, we continually pre-train prevailing VFMs in a multimodal manner such that they can effortlessly process visual inputs of varying sizes and produce visual representations that are more aligned with language representations, regardless of their original pre-training process. To this end, we introduce CoMP, a carefully designed multimodal pre-training pipeline. CoMP uses a Continual Rotary Position Embedding to support native resolution continual pre-training, and an Alignment Loss between visual and textual features through language prototypes to align multimodal representations. By three-stage training, our VFMs achieve remarkable improvements not only in multimodal understanding but also in other downstream tasks such as classification and segmentation. Remarkably, CoMP-SigLIP achieves scores of 66.7 on ChartQA and 75.9 on DocVQA with a 0.5B LLM, while maintaining an 87.4% accuracy on ImageNet-1K and a 49.5 mIoU on ADE20K under frozen chunk evaluation.
comment: Code is available in https://github.com/SliMM-X/CoMP-MM
☆ Video SimpleQA: Towards Factuality Evaluation in Large Video Language Models
Recent advancements in Large Video Language Models (LVLMs) have highlighted their potential for multi-modal understanding, yet evaluating their factual grounding in video contexts remains a critical unsolved challenge. To address this gap, we introduce Video SimpleQA, the first comprehensive benchmark tailored for factuality evaluation of LVLMs. Our work distinguishes from existing video benchmarks through the following key features: 1) Knowledge required: demanding integration of external knowledge beyond the explicit narrative; 2) Fact-seeking question: targeting objective, undisputed events or relationships, avoiding subjective interpretation; 3) Definitive & short-form answer: Answers are crafted as unambiguous and definitively correct in a short format, enabling automated evaluation through LLM-as-a-judge frameworks with minimal scoring variance; 4) External-source verified: All annotations undergo rigorous validation against authoritative external references to ensure the reliability; 5) Temporal reasoning required: The annotated question types encompass both static single-frame understanding and dynamic temporal reasoning, explicitly evaluating LVLMs factuality under the long-context dependencies. We extensively evaluate 41 state-of-the-art LVLMs and summarize key findings as follows: 1) Current LVLMs exhibit notable deficiencies in factual adherence, particularly for open-source models. The best-performing model Gemini-1.5-Pro achieves merely an F-score of 54.4%; 2) Test-time compute paradigms show insignificant performance gains, revealing fundamental constraints for enhancing factuality through post-hoc computation; 3) Retrieval-Augmented Generation demonstrates consistent improvements at the cost of additional inference time overhead, presenting a critical efficiency-performance trade-off.
comment: 24 pages
☆ Building Blocks for Robust and Effective Semi-Supervised Real-World Object Detection
Semi-supervised object detection (SSOD) based on pseudo-labeling significantly reduces dependence on large labeled datasets by effectively leveraging both labeled and unlabeled data. However, real-world applications of SSOD often face critical challenges, including class imbalance, label noise, and labeling errors. We present an in-depth analysis of SSOD under real-world conditions, uncovering causes of suboptimal pseudo-labeling and key trade-offs between label quality and quantity. Based on our findings, we propose four building blocks that can be seamlessly integrated into an SSOD framework. Rare Class Collage (RCC): a data augmentation method that enhances the representation of rare classes by creating collages of rare objects. Rare Class Focus (RCF): a stratified batch sampling strategy that ensures a more balanced representation of all classes during training. Ground Truth Label Correction (GLC): a label refinement method that identifies and corrects false, missing, and noisy ground truth labels by leveraging the consistency of teacher model predictions. Pseudo-Label Selection (PLS): a selection method for removing low-quality pseudo-labeled images, guided by a novel metric estimating the missing detection rate while accounting for class rarity. We validate our methods through comprehensive experiments on autonomous driving datasets, resulting in up to 6% increase in SSOD performance. Overall, our investigation and novel, data-centric, and broadly applicable building blocks enable robust and effective SSOD in complex, real-world scenarios. Code is available at https://mos-ks.github.io/publications.
comment: Accepted to Transactions on Machine Learning Research (TMLR). OpenReview: https://openreview.net/forum?id=vRYt8QLKqK
☆ Online 3D Scene Reconstruction Using Neural Object Priors 3DV 2025
This paper addresses the problem of reconstructing a scene online at the level of objects given an RGB-D video sequence. While current object-aware neural implicit representations hold promise, they are limited in online reconstruction efficiency and shape completion. Our main contributions to alleviate the above limitations are twofold. First, we propose a feature grid interpolation mechanism to continuously update grid-based object-centric neural implicit representations as new object parts are revealed. Second, we construct an object library with previously mapped objects in advance and leverage the corresponding shape priors to initialize geometric object models in new videos, subsequently completing them with novel views as well as synthesized past views to avoid losing original object details. Extensive experiments on synthetic environments from the Replica dataset, real-world ScanNet sequences and videos captured in our laboratory demonstrate that our approach outperforms state-of-the-art neural implicit models for this task in terms of reconstruction accuracy and completeness.
comment: 3DV 2025. Project page: https://www.di.ens.fr/willow/research/online-scene-reconstruction/
☆ CFG-Zero*: Improved Classifier-Free Guidance for Flow Matching Models
Classifier-Free Guidance (CFG) is a widely adopted technique in diffusion/flow models to improve image fidelity and controllability. In this work, we first analytically study the effect of CFG on flow matching models trained on Gaussian mixtures where the ground-truth flow can be derived. We observe that in the early stages of training, when the flow estimation is inaccurate, CFG directs samples toward incorrect trajectories. Building on this observation, we propose CFG-Zero*, an improved CFG with two contributions: (a) optimized scale, where a scalar is optimized to correct for the inaccuracies in the estimated velocity, hence the * in the name; and (b) zero-init, which involves zeroing out the first few steps of the ODE solver. Experiments on both text-to-image (Lumina-Next, Stable Diffusion 3, and Flux) and text-to-video (Wan-2.1) generation demonstrate that CFG-Zero* consistently outperforms CFG, highlighting its effectiveness in guiding Flow Matching models. (Code is available at github.com/WeichenFan/CFG-Zero-star)
☆ Efficient and Accurate Scene Text Recognition with Cascaded-Transformers
In recent years, vision transformers with text decoder have demonstrated remarkable performance on Scene Text Recognition (STR) due to their ability to capture long-range dependencies and contextual relationships with high learning capacity. However, the computational and memory demands of these models are significant, limiting their deployment in resource-constrained applications. To address this challenge, we propose an efficient and accurate STR system. Specifically, we focus on improving the efficiency of encoder models by introducing a cascaded-transformers structure. This structure progressively reduces the vision token size during the encoding step, effectively eliminating redundant tokens and reducing computational cost. Our experimental results confirm that our STR system achieves comparable performance to state-of-the-art baselines while substantially decreasing computational requirements. In particular, for large-models, the accuracy remains same, 92.77 to 92.68, while computational complexity is almost halved with our structure.
comment: Accepted to ACM-MMSys2025
☆ Seeing Speech and Sound: Distinguishing and Locating Audios in Visual Scenes CVPR 2025
We present a unified model capable of simultaneously grounding both spoken language and non-speech sounds within a visual scene, addressing key limitations in current audio-visual grounding models. Existing approaches are typically limited to handling either speech or non-speech sounds independently, or at best, together but sequentially without mixing. This limitation prevents them from capturing the complexity of real-world audio sources that are often mixed. Our approach introduces a 'mix-and-separate' framework with audio-visual alignment objectives that jointly learn correspondence and disentanglement using mixed audio. Through these objectives, our model learns to produce distinct embeddings for each audio type, enabling effective disentanglement and grounding across mixed audio sources. Additionally, we created a new dataset to evaluate simultaneous grounding of mixed audio sources, demonstrating that our model outperforms prior methods. Our approach also achieves comparable or better performance in standard segmentation and cross-modal retrieval tasks, highlighting the benefits of our mix-and-separate approach.
comment: CVPR 2025
☆ A semantic communication-based workload-adjustable transceiver for wireless AI-generated content (AIGC) delivery
With the significant advances in generative AI (GAI) and the proliferation of mobile devices, providing high-quality AI-generated content (AIGC) services via wireless networks is becoming the future direction. However, the primary challenges of AIGC service delivery in wireless networks lie in unstable channels, limited bandwidth resources, and unevenly distributed computational resources. In this paper, we employ semantic communication (SemCom) in diffusion-based GAI models to propose a Resource-aware wOrkload-adjUstable TransceivEr (ROUTE) for AIGC delivery in dynamic wireless networks. Specifically, to relieve the communication resource bottleneck, SemCom is utilized to prioritize semantic information of the generated content. Then, to improve computational resource utilization in both edge and local and reduce AIGC semantic distortion in transmission, modified diffusion-based models are applied to adjust the computing workload and semantic density in cooperative content generation. Simulations verify the superiority of our proposed ROUTE in terms of latency and content quality compared to conventional AIGC approaches.
☆ Efficient Self-Supervised Adaptation for Medical Image Analysis
Self-supervised adaptation (SSA) improves foundation model transfer to medical domains but is computationally prohibitive. Although parameter efficient fine-tuning methods such as LoRA have been explored for supervised adaptation, their effectiveness for SSA remains unknown. In this work, we introduce efficient self-supervised adaptation (ESSA), a framework that applies parameter-efficient fine-tuning techniques to SSA with the aim of reducing computational cost and improving adaptation performance. Among the methods tested, Attention Projection Layer Adaptation (APLA) sets a new state-of-the-art, consistently surpassing full-parameter SSA and supervised fine-tuning across diverse medical tasks, while reducing GPU memory by up to 40.1% and increasing training throughput by 25.2%, all while maintaining inference efficiency.
☆ Curriculum Coarse-to-Fine Selection for High-IPC Dataset Distillation CVPR2025
Dataset distillation (DD) excels in synthesizing a small number of images per class (IPC) but struggles to maintain its effectiveness in high-IPC settings. Recent works on dataset distillation demonstrate that combining distilled and real data can mitigate the effectiveness decay. However, our analysis of the combination paradigm reveals that the current one-shot and independent selection mechanism induces an incompatibility issue between distilled and real images. To address this issue, we introduce a novel curriculum coarse-to-fine selection (CCFS) method for efficient high-IPC dataset distillation. CCFS employs a curriculum selection framework for real data selection, where we leverage a coarse-to-fine strategy to select appropriate real data based on the current synthetic dataset in each curriculum. Extensive experiments validate CCFS, surpassing the state-of-the-art by +6.6\% on CIFAR-10, +5.8\% on CIFAR-100, and +3.4\% on Tiny-ImageNet under high-IPC settings. Notably, CCFS achieves 60.2\% test accuracy on ResNet-18 with a 20\% compression ratio of Tiny-ImageNet, closely matching full-dataset training with only 0.3\% degradation. Code: https://github.com/CYDaaa30/CCFS.
comment: Accepted by CVPR2025
☆ Exploring the Integration of Key-Value Attention Into Pure and Hybrid Transformers for Semantic Segmentation
While CNNs were long considered state of the art for image processing, the introduction of Transformer architectures has challenged this position. While achieving excellent results in image classification and segmentation, Transformers remain inherently reliant on large training datasets and remain computationally expensive. A newly introduced Transformer derivative named KV Transformer shows promising results in synthetic, NLP, and image classification tasks, while reducing complexity and memory usage. This is especially conducive to use cases where local inference is required, such as medical screening applications. We endeavoured to further evaluate the merit of KV Transformers on semantic segmentation tasks, specifically in the domain of medical imaging. By directly comparing traditional and KV variants of the same base architectures, we provide further insight into the practical tradeoffs of reduced model complexity. We observe a notable reduction in parameter count and multiply accumulate operations, while achieving similar performance from most of the KV variant models when directly compared to their QKV implementation.
comment: 6 pages, 3 figures, Preprint. Final version published in: Bildverarbeitung f\"ur die Medizin 2025, Springer. DOI: https://doi.org/10.1007/978-3-658-47422-5_71
☆ 3DSwapping: Texture Swapping For 3D Object From Single Reference Image
3D texture swapping allows for the customization of 3D object textures, enabling efficient and versatile visual transformations in 3D editing. While no dedicated method exists, adapted 2D editing and text-driven 3D editing approaches can serve this purpose. However, 2D editing requires frame-by-frame manipulation, causing inconsistencies across views, while text-driven 3D editing struggles to preserve texture characteristics from reference images. To tackle these challenges, we introduce 3DSwapping, a 3D texture swapping method that integrates: 1) progressive generation, 2) view-consistency gradient guidance, and 3) prompt-tuned gradient guidance. To ensure view consistency, our progressive generation process starts by editing a single reference image and gradually propagates the edits to adjacent views. Our view-consistency gradient guidance further reinforces consistency by conditioning the generation model on feature differences between consistent and inconsistent outputs. To preserve texture characteristics, we introduce prompt-tuning-based gradient guidance, which learns a token that precisely captures the difference between the reference image and the 3D object. This token then guides the editing process, ensuring more consistent texture preservation across views. Overall, 3DSwapping integrates these novel strategies to achieve higher-fidelity texture transfer while preserving structural coherence across multiple viewpoints. Extensive qualitative and quantitative evaluations confirm that our three novel components enable convincing and effective 2D texture swapping for 3D objects. Code will be available upon acceptance.
☆ Dual-domain Multi-path Self-supervised Diffusion Model for Accelerated MRI Reconstruction
Magnetic resonance imaging (MRI) is a vital diagnostic tool, but its inherently long acquisition times reduce clinical efficiency and patient comfort. Recent advancements in deep learning, particularly diffusion models, have improved accelerated MRI reconstruction. However, existing diffusion models' training often relies on fully sampled data, models incur high computational costs, and often lack uncertainty estimation, limiting their clinical applicability. To overcome these challenges, we propose a novel framework, called Dual-domain Multi-path Self-supervised Diffusion Model (DMSM), that integrates a self-supervised dual-domain diffusion model training scheme, a lightweight hybrid attention network for the reconstruction diffusion model, and a multi-path inference strategy, to enhance reconstruction accuracy, efficiency, and explainability. Unlike traditional diffusion-based models, DMSM eliminates the dependency on training from fully sampled data, making it more practical for real-world clinical settings. We evaluated DMSM on two human MRI datasets, demonstrating that it achieves favorable performance over several supervised and self-supervised baselines, particularly in preserving fine anatomical structures and suppressing artifacts under high acceleration factors. Additionally, our model generates uncertainty maps that correlate reasonably well with reconstruction errors, offering valuable clinically interpretable guidance and potentially enhancing diagnostic confidence.
comment: 10 pages, 8 figures, 5 tables
☆ DAGait: Generalized Skeleton-Guided Data Alignment for Gait Recognition
Gait recognition is emerging as a promising and innovative area within the field of computer vision, widely applied to remote person identification. Although existing gait recognition methods have achieved substantial success in controlled laboratory datasets, their performance often declines significantly when transitioning to wild datasets.We argue that the performance gap can be primarily attributed to the spatio-temporal distribution inconsistencies present in wild datasets, where subjects appear at varying angles, positions, and distances across the frames. To achieve accurate gait recognition in the wild, we propose a skeleton-guided silhouette alignment strategy, which uses prior knowledge of the skeletons to perform affine transformations on the corresponding silhouettes.To the best of our knowledge, this is the first study to explore the impact of data alignment on gait recognition. We conducted extensive experiments across multiple datasets and network architectures, and the results demonstrate the significant advantages of our proposed alignment strategy.Specifically, on the challenging Gait3D dataset, our method achieved an average performance improvement of 7.9% across all evaluated networks. Furthermore, our method achieves substantial improvements on cross-domain datasets, with accuracy improvements of up to 24.0%.
☆ Enhanced OoD Detection through Cross-Modal Alignment of Multi-Modal Representations CVPR 2025
Prior research on out-of-distribution detection (OoDD) has primarily focused on single-modality models. Recently, with the advent of large-scale pretrained vision-language models such as CLIP, OoDD methods utilizing such multi-modal representations through zero-shot and prompt learning strategies have emerged. However, these methods typically involve either freezing the pretrained weights or only partially tuning them, which can be suboptimal for downstream datasets. In this paper, we highlight that multi-modal fine-tuning (MMFT) can achieve notable OoDD performance. Despite some recent works demonstrating the impact of fine-tuning methods for OoDD, there remains significant potential for performance improvement. We investigate the limitation of na\"ive fine-tuning methods, examining why they fail to fully leverage the pretrained knowledge. Our empirical analysis suggests that this issue could stem from the modality gap within in-distribution (ID) embeddings. To address this, we propose a training objective that enhances cross-modal alignment by regularizing the distances between image and text embeddings of ID data. This adjustment helps in better utilizing pretrained textual information by aligning similar semantics from different modalities (i.e., text and image) more closely in the hyperspherical representation space. We theoretically demonstrate that the proposed regularization corresponds to the maximum likelihood estimation of an energy-based model on a hypersphere. Utilizing ImageNet-1k OoD benchmark datasets, we show that our method, combined with post-hoc OoDD approaches leveraging pretrained knowledge (e.g., NegLabel), significantly outperforms existing methods, achieving state-of-the-art OoDD performance and leading ID accuracy.
comment: CVPR 2025
☆ SKDU at De-Factify 4.0: Vision Transformer with Data Augmentation for AI-Generated Image Detection AAAI
The aim of this work is to explore the potential of pre-trained vision-language models, e.g. Vision Transformers (ViT), enhanced with advanced data augmentation strategies for the detection of AI-generated images. Our approach leverages a fine-tuned ViT model trained on the Defactify-4.0 dataset, which includes images generated by state-of-the-art models such as Stable Diffusion 2.1, Stable Diffusion XL, Stable Diffusion 3, DALL-E 3, and MidJourney. We employ perturbation techniques like flipping, rotation, Gaussian noise injection, and JPEG compression during training to improve model robustness and generalisation. The experimental results demonstrate that our ViT-based pipeline achieves state-of-the-art performance, significantly outperforming competing methods on both validation and test datasets.
comment: De-Factify 4.0 workshop at the 39th Annual AAAI Conference on Artificial Intelligence (AAAI 2025)
☆ CRCL: Causal Representation Consistency Learning for Anomaly Detection in Surveillance Videos
Video Anomaly Detection (VAD) remains a fundamental yet formidable task in the video understanding community, with promising applications in areas such as information forensics and public safety protection. Due to the rarity and diversity of anomalies, existing methods only use easily collected regular events to model the inherent normality of normal spatial-temporal patterns in an unsupervised manner. Previous studies have shown that existing unsupervised VAD models are incapable of label-independent data offsets (e.g., scene changes) in real-world scenarios and may fail to respond to light anomalies due to the overgeneralization of deep neural networks. Inspired by causality learning, we argue that there exist causal factors that can adequately generalize the prototypical patterns of regular events and present significant deviations when anomalous instances occur. In this regard, we propose Causal Representation Consistency Learning (CRCL) to implicitly mine potential scene-robust causal variable in unsupervised video normality learning. Specifically, building on the structural causal models, we propose scene-debiasing learning and causality-inspired normality learning to strip away entangled scene bias in deep representations and learn causal video normality, respectively. Extensive experiments on benchmarks validate the superiority of our method over conventional deep representation learning. Moreover, ablation studies and extension validation show that the CRCL can cope with label-independent biases in multi-scene settings and maintain stable performance with only limited training data available.
comment: Accepted for publication by IEEE Transactions on Image Processing
☆ Change3D: Revisiting Change Detection and Captioning from A Video Modeling Perspective CVPR 2025
In this paper, we present Change3D, a framework that reconceptualizes the change detection and captioning tasks through video modeling. Recent methods have achieved remarkable success by regarding each pair of bi-temporal images as separate frames. They employ a shared-weight image encoder to extract spatial features and then use a change extractor to capture differences between the two images. However, image feature encoding, being a task-agnostic process, cannot attend to changed regions effectively. Furthermore, different change extractors designed for various change detection and captioning tasks make it difficult to have a unified framework. To tackle these challenges, Change3D regards the bi-temporal images as comprising two frames akin to a tiny video. By integrating learnable perception frames between the bi-temporal images, a video encoder enables the perception frames to interact with the images directly and perceive their differences. Therefore, we can get rid of the intricate change extractors, providing a unified framework for different change detection and captioning tasks. We verify Change3D on multiple tasks, encompassing change detection (including binary change detection, semantic change detection, and building damage assessment) and change captioning, across eight standard benchmarks. Without bells and whistles, this simple yet effective framework can achieve superior performance with an ultra-light video model comprising only ~6%-13% of the parameters and ~8%-34% of the FLOPs compared to state-of-the-art methods. We hope that Change3D could be an alternative to 2D-based models and facilitate future research.
comment: conference paper, accepted by CVPR 2025
☆ NexusGS: Sparse View Synthesis with Epipolar Depth Priors in 3D Gaussian Splatting CVPR 2025
Neural Radiance Field (NeRF) and 3D Gaussian Splatting (3DGS) have noticeably advanced photo-realistic novel view synthesis using images from densely spaced camera viewpoints. However, these methods struggle in few-shot scenarios due to limited supervision. In this paper, we present NexusGS, a 3DGS-based approach that enhances novel view synthesis from sparse-view images by directly embedding depth information into point clouds, without relying on complex manual regularizations. Exploiting the inherent epipolar geometry of 3DGS, our method introduces a novel point cloud densification strategy that initializes 3DGS with a dense point cloud, reducing randomness in point placement while preventing over-smoothing and overfitting. Specifically, NexusGS comprises three key steps: Epipolar Depth Nexus, Flow-Resilient Depth Blending, and Flow-Filtered Depth Pruning. These steps leverage optical flow and camera poses to compute accurate depth maps, while mitigating the inaccuracies often associated with optical flow. By incorporating epipolar depth priors, NexusGS ensures reliable dense point cloud coverage and supports stable 3DGS training under sparse-view conditions. Experiments demonstrate that NexusGS significantly enhances depth accuracy and rendering quality, surpassing state-of-the-art methods by a considerable margin. Furthermore, we validate the superiority of our generated point clouds by substantially boosting the performance of competing methods. Project page: https://usmizuki.github.io/NexusGS/.
comment: This paper is accepted by CVPR 2025
☆ LGI-DETR: Local-Global Interaction for UAV Object Detection
UAV has been widely used in various fields. However, most of the existing object detectors used in drones are not end-to-end and require the design of various complex components and careful fine-tuning. Most of the existing end-to-end object detectors are designed for natural scenes. It is not ideal to apply them directly to UAV images. In order to solve the above challenges, we design an local-global information interaction DETR for UAVs, namely LGI-DETR. Cross-layer bidirectional low-level and high-level feature information enhancement, this fusion method is effective especially in the field of small objection detection. At the initial stage of encoder, we propose a local spatial enhancement module (LSE), which enhances the low-level rich local spatial information into the high-level feature, and reduces the loss of local information in the transmission process of high-level information. At the final stage of the encoder, we propose a novel global information injection module (GII) designed to integrate rich high-level global semantic representations with low-level feature maps. This hierarchical fusion mechanism effectively addresses the inherent limitations of local receptive fields by propagating contextual information across the feature hierarchy. Experimental results on two challenging UAV image object detection benchmarks, VisDrone2019 and UAVDT, show that our proposed model outperforms the SOTA model. Compared to the baseline model, AP and AP50 improved by 1.9% and 2.4%, respectively.
comment: 14 pages
☆ Leveraging Perturbation Robustness to Enhance Out-of-Distribution Detection
Out-of-distribution (OOD) detection is the task of identifying inputs that deviate from the training data distribution. This capability is essential for safely deploying deep computer vision models in open-world environments. In this work, we propose a post-hoc method, Perturbation-Rectified OOD detection (PRO), based on the insight that prediction confidence for OOD inputs is more susceptible to reduction under perturbation than in-distribution (IND) inputs. Based on the observation, we propose an adversarial score function that searches for the local minimum scores near the original inputs by applying gradient descent. This procedure enhances the separability between IND and OOD samples. Importantly, the approach improves OOD detection performance without complex modifications to the underlying model architectures. We conduct extensive experiments using the OpenOOD benchmark~\cite{yang2022openood}. Our approach further pushes the limit of softmax-based OOD detection and is the leading post-hoc method for small-scale models. On a CIFAR-10 model with adversarial training, PRO effectively detects near-OOD inputs, achieving a reduction of more than 10\% on FPR@95 compared to state-of-the-art methods.
☆ Good Keypoints for the Two-View Geometry Estimation Problem CVPR 2025
Local features are essential to many modern downstream applications. Therefore, it is of interest to determine the properties of local features that contribute to the downstream performance for a better design of feature detectors and descriptors. In our work, we propose a new theoretical model for scoring feature points (keypoints) in the context of the two-view geometry estimation problem. The model determines two properties that a good keypoint for solving the homography estimation problem should have: be repeatable and have a small expected measurement error. This result provides key insights into why maximizing the number of correspondences doesn't always lead to better homography estimation accuracy. We use the developed model to design a method that detects keypoints that benefit the homography estimation introducing the Bounded NeSS-ST (BoNeSS-ST) keypoint detector. The novelty of BoNeSS-ST comes from strong theoretical foundations, a more accurate keypoint scoring due to subpixel refinement and a cost designed for superior robustness to low saliency keypoints. As a result, BoNeSS-ST outperforms prior self-supervised local feature detectors in both planar homography and epipolar geometry estimation problems.
comment: Camera-ready version of the CVPR 2025 paper
☆ EgoSurgery-HTS: A Dataset for Egocentric Hand-Tool Segmentation in Open Surgery Videos
Egocentric open-surgery videos capture rich, fine-grained details essential for accurately modeling surgical procedures and human behavior in the operating room. A detailed, pixel-level understanding of hands and surgical tools is crucial for interpreting a surgeon's actions and intentions. We introduce EgoSurgery-HTS, a new dataset with pixel-wise annotations and a benchmark suite for segmenting surgical tools, hands, and interacting tools in egocentric open-surgery videos. Specifically, we provide a labeled dataset for (1) tool instance segmentation of 14 distinct surgical tools, (2) hand instance segmentation, and (3) hand-tool segmentation to label hands and the tools they manipulate. Using EgoSurgery-HTS, we conduct extensive evaluations of state-of-the-art segmentation methods and demonstrate significant improvements in the accuracy of hand and hand-tool segmentation in egocentric open-surgery videos compared to existing datasets. The dataset will be released at https://github.com/Fujiry0/EgoSurgery.
☆ Self-Supervised Learning based on Transformed Image Reconstruction for Equivariance-Coherent Feature Representation
The equivariant behaviour of features is essential in many computer vision tasks, yet popular self-supervised learning (SSL) methods tend to constrain equivariance by design. We propose a self-supervised learning approach where the system learns transformations independently by reconstructing images that have undergone previously unseen transformations. Specifically, the model is tasked to reconstruct intermediate transformed images, e.g. translated or rotated images, without prior knowledge of these transformations. This auxiliary task encourages the model to develop equivariance-coherent features without relying on predefined transformation rules. To this end, we apply transformations to the input image, generating an image pair, and then split the extracted features into two sets per image. One set is used with a usual SSL loss encouraging invariance, the other with our loss based on the auxiliary task to reconstruct the intermediate transformed images. Our loss and the SSL loss are linearly combined with weighted terms. Evaluating on synthetic tasks with natural images, our proposed method strongly outperforms all competitors, regardless of whether they are designed to learn equivariance. Furthermore, when trained alongside augmentation-based methods as the invariance tasks, such as iBOT or DINOv2, we successfully learn a balanced combination of invariant and equivariant features. Our approach performs strong on a rich set of realistic computer vision downstream tasks, almost always improving over all baselines.
☆ Robust Tube-based Control Strategy for Vision-guided Autonomous Vehicles
A robust control strategy for autonomous vehicles can improve system stability, enhance riding comfort, and prevent driving accidents. This paper presents a novel interpolation tube-based constrained iterative linear quadratic regulator (itube-CILQR) algorithm for autonomous computer-vision-based vehicle lane-keeping. The goal of the algorithm is to enhance robustness during high-speed cornering on tight turns. The advantages of itube-CILQR over the standard tube-approach include reduced system conservatism and increased computational speed. Numerical and vision-based experiments were conducted to examine the feasibility of the proposed algorithm. The proposed itube-CILQR algorithm is better suited to vehicle lane-keeping than variational CILQR-based methods and model predictive control (MPC) approaches using a classical interior-point solver. Specifically, in evaluation experiments, itube-CILQR achieved an average runtime of 3.16 ms to generate a control signal to guide a self-driving vehicle; itube-MPC typically required a 4.67-times longer computation time to complete the same task. Moreover, the influence of conservatism on system behavior was investigated by exploring the interpolation variable trajectories derived from the proposed itube-CILQR algorithm during lane-keeping maneuvers.
comment: 13 pages, 14 figures
☆ Linguistics-aware Masked Image Modeling for Self-supervised Scene Text Recognition CVPR 2025
Text images are unique in their dual nature, encompassing both visual and linguistic information. The visual component encompasses structural and appearance-based features, while the linguistic dimension incorporates contextual and semantic elements. In scenarios with degraded visual quality, linguistic patterns serve as crucial supplements for comprehension, highlighting the necessity of integrating both aspects for robust scene text recognition (STR). Contemporary STR approaches often use language models or semantic reasoning modules to capture linguistic features, typically requiring large-scale annotated datasets. Self-supervised learning, which lacks annotations, presents challenges in disentangling linguistic features related to the global context. Typically, sequence contrastive learning emphasizes the alignment of local features, while masked image modeling (MIM) tends to exploit local structures to reconstruct visual patterns, resulting in limited linguistic knowledge. In this paper, we propose a Linguistics-aware Masked Image Modeling (LMIM) approach, which channels the linguistic information into the decoding process of MIM through a separate branch. Specifically, we design a linguistics alignment module to extract vision-independent features as linguistic guidance using inputs with different visual appearances. As features extend beyond mere visual structures, LMIM must consider the global context to achieve reconstruction. Extensive experiments on various benchmarks quantitatively demonstrate our state-of-the-art performance, and attention visualizations qualitatively show the simultaneous capture of both visual and linguistic information.
comment: CVPR 2025
☆ SFDLA: Source-Free Document Layout Analysis
Document Layout Analysis (DLA) is a fundamental task in document understanding. However, existing DLA and adaptation methods often require access to large-scale source data and target labels. This requirements severely limiting their real-world applicability, particularly in privacy-sensitive and resource-constrained domains, such as financial statements, medical records, and proprietary business documents. According to our observation, directly transferring source-domain fine-tuned models on target domains often results in a significant performance drop (Avg. -32.64%). In this work, we introduce Source-Free Document Layout Analysis (SFDLA), aiming for adapting a pre-trained source DLA models to an unlabeled target domain, without access to any source data. To address this challenge, we establish the first SFDLA benchmark, covering three major DLA datasets for geometric- and content-aware adaptation. Furthermore, we propose Document Layout Analysis Adapter (DLAdapter), a novel framework that is designed to improve source-free adaptation across document domains. Our method achieves a +4.21% improvement over the source-only baseline and a +2.26% gain over existing source-free methods from PubLayNet to DocLayNet. We believe this work will inspire the DLA community to further investigate source-free document understanding. To support future research of the community, the benchmark, models, and code will be publicly available at https://github.com/s3setewe/sfdla-DLAdapter.
comment: The benchmark, models, and code will be publicly available at https://github.com/s3setewe/sfdla-DLAdapter
☆ FG$^2$: Fine-Grained Cross-View Localization by Fine-Grained Feature Matching
We propose a novel fine-grained cross-view localization method that estimates the 3 Degrees of Freedom pose of a ground-level image in an aerial image of the surroundings by matching fine-grained features between the two images. The pose is estimated by aligning a point plane generated from the ground image with a point plane sampled from the aerial image. To generate the ground points, we first map ground image features to a 3D point cloud. Our method then learns to select features along the height dimension to pool the 3D points to a Bird's-Eye-View (BEV) plane. This selection enables us to trace which feature in the ground image contributes to the BEV representation. Next, we sample a set of sparse matches from computed point correspondences between the two point planes and compute their relative pose using Procrustes alignment. Compared to the previous state-of-the-art, our method reduces the mean localization error by 28% on the VIGOR cross-area test set. Qualitative results show that our method learns semantically consistent matches across ground and aerial views through weakly supervised learning from the camera pose.
☆ Boosting Resolution Generalization of Diffusion Transformers with Randomized Positional Encodings
Resolution generalization in image generation tasks enables the production of higher-resolution images with lower training resolution overhead. However, a significant challenge in resolution generalization, particularly in the widely used Diffusion Transformers, lies in the mismatch between the positional encodings encountered during testing and those used during training. While existing methods have employed techniques such as interpolation, extrapolation, or their combinations, none have fully resolved this issue. In this paper, we propose a novel two-dimensional randomized positional encodings (RPE-2D) framework that focuses on learning positional order of image patches instead of the specific distances between them, enabling seamless high- and low-resolution image generation without requiring high- and low-resolution image training. Specifically, RPE-2D independently selects positions over a broader range along both the horizontal and vertical axes, ensuring that all position encodings are trained during the inference phase, thus improving resolution generalization. Additionally, we propose a random data augmentation technique to enhance the modeling of position order. To address the issue of image cropping caused by the augmentation, we introduce corresponding micro-conditioning to enable the model to perceive the specific cropping patterns. On the ImageNet dataset, our proposed RPE-2D achieves state-of-the-art resolution generalization performance, outperforming existing competitive methods when trained at a resolution of $256 \times 256$ and inferred at $384 \times 384$ and $512 \times 512$, as well as when scaling from $512 \times 512$ to $768 \times 768$ and $1024 \times 1024$. And it also exhibits outstanding capabilities in low-resolution image generation, multi-stage training acceleration and multi-resolution inheritance.
☆ GS-Marker: Generalizable and Robust Watermarking for 3D Gaussian Splatting
In the Generative AI era, safeguarding 3D models has become increasingly urgent. While invisible watermarking is well-established for 2D images with encoder-decoder frameworks, generalizable and robust solutions for 3D remain elusive. The main difficulty arises from the renderer between the 3D encoder and 2D decoder, which disrupts direct gradient flow and complicates training. Existing 3D methods typically rely on per-scene iterative optimization, resulting in time inefficiency and limited generalization. In this work, we propose a single-pass watermarking approach for 3D Gaussian Splatting (3DGS), a well-known yet underexplored representation for watermarking. We identify two major challenges: (1) ensuring effective training generalized across diverse 3D models, and (2) reliably extracting watermarks from free-view renderings, even under distortions. Our framework, named GS-Marker, incorporates a 3D encoder to embed messages, distortion layers to enhance resilience against various distortions, and a 2D decoder to extract watermarks from renderings. A key innovation is the Adaptive Marker Control mechanism that adaptively perturbs the initially optimized 3DGS, escaping local minima and improving both training stability and convergence. Extensive experiments show that GS-Marker outperforms per-scene training approaches in terms of decoding accuracy and model fidelity, while also significantly reducing computation time.
☆ LLaVAction: evaluating and training multi-modal large language models for action recognition
Understanding human behavior requires measuring behavioral actions. Due to its complexity, behavior is best mapped onto a rich, semantic structure such as language. The recent development of multi-modal large language models (MLLMs) is a promising candidate for a wide range of action understanding tasks. In this work, we focus on evaluating and then improving MLLMs to perform action recognition. We reformulate EPIC-KITCHENS-100, one of the largest and most challenging egocentric action datasets, to the form of video multiple question answering (EPIC-KITCHENS-100-MQA). We show that when we sample difficult incorrect answers as distractors, leading MLLMs struggle to recognize the correct actions. We propose a series of methods that greatly improve the MLLMs' ability to perform action recognition, achieving state-of-the-art on both the EPIC-KITCHENS-100 validation set, as well as outperforming GPT-4o by 21 points in accuracy on EPIC-KITCHENS-100-MQA. Lastly, we show improvements on other action-related video benchmarks such as EgoSchema, PerceptionTest, LongVideoBench, VideoMME and MVBench, suggesting that MLLMs are a promising path forward for complex action tasks. Code and models are available at: https://github.com/AdaptiveMotorControlLab/LLaVAction.
comment: https://github.com/AdaptiveMotorControlLab/LLaVAction
☆ Accenture-NVS1: A Novel View Synthesis Dataset
This paper introduces ACC-NVS1, a specialized dataset designed for research on Novel View Synthesis specifically for airborne and ground imagery. Data for ACC-NVS1 was collected in Austin, TX and Pittsburgh, PA in 2023 and 2024. The collection encompasses six diverse real-world scenes captured from both airborne and ground cameras, resulting in a total of 148,000 images. ACC-NVS1 addresses challenges such as varying altitudes and transient objects. This dataset is intended to supplement existing datasets, providing additional resources for comprehensive research, rather than serving as a benchmark.
comment: 6 pages, 7 figures
☆ Revisiting Automatic Data Curation for Vision Foundation Models in Digital Pathology MICCAI 2025
Vision foundation models (FMs) are accelerating the development of digital pathology algorithms and transforming biomedical research. These models learn, in a self-supervised manner, to represent histological features in highly heterogeneous tiles extracted from whole-slide images (WSIs) of real-world patient samples. The performance of these FMs is significantly influenced by the size, diversity, and balance of the pre-training data. However, data selection has been primarily guided by expert knowledge at the WSI level, focusing on factors such as disease classification and tissue types, while largely overlooking the granular details available at the tile level. In this paper, we investigate the potential of unsupervised automatic data curation at the tile-level, taking into account 350 million tiles. Specifically, we apply hierarchical clustering trees to pre-extracted tile embeddings, allowing us to sample balanced datasets uniformly across the embedding space of the pretrained FM. We further identify these datasets are subject to a trade-off between size and balance, potentially compromising the quality of representations learned by FMs, and propose tailored batch sampling strategies to mitigate this effect. We demonstrate the effectiveness of our method through improved performance on a diverse range of clinically relevant downstream tasks.
comment: MICCAI 2025
☆ Benchmarking Burst Super-Resolution for Polarization Images: Noise Dataset and Analysis
Snapshot polarization imaging calculates polarization states from linearly polarized subimages. To achieve this, a polarization camera employs a double Bayer-patterned sensor to capture both color and polarization. It demonstrates low light efficiency and low spatial resolution, resulting in increased noise and compromised polarization measurements. Although burst super-resolution effectively reduces noise and enhances spatial resolution, applying it to polarization imaging poses challenges due to the lack of tailored datasets and reliable ground truth noise statistics. To address these issues, we introduce PolarNS and PolarBurstSR, two innovative datasets developed specifically for polarization imaging. PolarNS provides characterization of polarization noise statistics, facilitating thorough analysis, while PolarBurstSR functions as a benchmark for burst super-resolution in polarization images. These datasets, collected under various real-world conditions, enable comprehensive evaluation. Additionally, we present a model for analyzing polarization noise to quantify noise propagation, tested on a large dataset captured in a darkroom environment. As part of our application, we compare the latest burst super-resolution models, highlighting the advantages of training tailored to polarization compared to RGB-based methods. This work establishes a benchmark for polarization burst super-resolution and offers critical insights into noise propagation, thereby enhancing polarization image reconstruction.
☆ Channel Consistency Prior and Self-Reconstruction Strategy Based Unsupervised Image Deraining CVPR2025
Recently, deep image deraining models based on paired datasets have made a series of remarkable progress. However, they cannot be well applied in real-world applications due to the difficulty of obtaining real paired datasets and the poor generalization performance. In this paper, we propose a novel Channel Consistency Prior and Self-Reconstruction Strategy Based Unsupervised Image Deraining framework, CSUD, to tackle the aforementioned challenges. During training with unpaired data, CSUD is capable of generating high-quality pseudo clean and rainy image pairs which are used to enhance the performance of deraining network. Specifically, to preserve more image background details while transferring rain streaks from rainy images to the unpaired clean images, we propose a novel Channel Consistency Loss (CCLoss) by introducing the Channel Consistency Prior (CCP) of rain streaks into training process, thereby ensuring that the generated pseudo rainy images closely resemble the real ones. Furthermore, we propose a novel Self-Reconstruction (SR) strategy to alleviate the redundant information transfer problem of the generator, further improving the deraining performance and the generalization capability of our method. Extensive experiments on multiple synthetic and real-world datasets demonstrate that the deraining performance of CSUD surpasses other state-of-the-art unsupervised methods and CSUD exhibits superior generalization capability.
comment: Accepted to CVPR2025
☆ OCRT: Boosting Foundation Models in the Open World with Object-Concept-Relation Triad CVPR 2025
Although foundation models (FMs) claim to be powerful, their generalization ability significantly decreases when faced with distribution shifts, weak supervision, or malicious attacks in the open world. On the other hand, most domain generalization or adversarial fine-tuning methods are task-related or model-specific, ignoring the universality in practical applications and the transferability between FMs. This paper delves into the problem of generalizing FMs to the out-of-domain data. We propose a novel framework, the Object-Concept-Relation Triad (OCRT), that enables FMs to extract sparse, high-level concepts and intricate relational structures from raw visual inputs. The key idea is to bind objects in visual scenes and a set of object-centric representations through unsupervised decoupling and iterative refinement. To be specific, we project the object-centric representations onto a semantic concept space that the model can readily interpret and estimate their importance to filter out irrelevant elements. Then, a concept-based graph, which has a flexible degree, is constructed to incorporate the set of concepts and their corresponding importance, enabling the extraction of high-order factors from informative concepts and facilitating relational reasoning among these concepts. Extensive experiments demonstrate that OCRT can substantially boost the generalizability and robustness of SAM and CLIP across multiple downstream tasks.
comment: Accepted by CVPR 2025
☆ Hardware-Rasterized Ray-Based Gaussian Splatting
We present a novel, hardware rasterized rendering approach for ray-based 3D Gaussian Splatting (RayGS), obtaining both fast and high-quality results for novel view synthesis. Our work contains a mathematically rigorous and geometrically intuitive derivation about how to efficiently estimate all relevant quantities for rendering RayGS models, structured with respect to standard hardware rasterization shaders. Our solution is the first enabling rendering RayGS models at sufficiently high frame rates to support quality-sensitive applications like Virtual and Mixed Reality. Our second contribution enables alias-free rendering for RayGS, by addressing MIP-related issues arising when rendering diverging scales during training and testing. We demonstrate significant performance gains, across different benchmark scenes, while retaining state-of-the-art appearance quality of RayGS.
☆ NullSwap: Proactive Identity Cloaking Against Deepfake Face Swapping
Suffering from performance bottlenecks in passively detecting high-quality Deepfake images due to the advancement of generative models, proactive perturbations offer a promising approach to disabling Deepfake manipulations by inserting signals into benign images. However, existing proactive perturbation approaches remain unsatisfactory in several aspects: 1) visual degradation due to direct element-wise addition; 2) limited effectiveness against face swapping manipulation; 3) unavoidable reliance on white- and grey-box settings to involve generative models during training. In this study, we analyze the essence of Deepfake face swapping and argue the necessity of protecting source identities rather than target images, and we propose NullSwap, a novel proactive defense approach that cloaks source image identities and nullifies face swapping under a pure black-box scenario. We design an Identity Extraction module to obtain facial identity features from the source image, while a Perturbation Block is then devised to generate identity-guided perturbations accordingly. Meanwhile, a Feature Block extracts shallow-level image features, which are then fused with the perturbation in the Cloaking Block for image reconstruction. Furthermore, to ensure adaptability across different identity extractors in face swapping algorithms, we propose Dynamic Loss Weighting to adaptively balance identity losses. Experiments demonstrate the outstanding ability of our approach to fool various identity recognition models, outperforming state-of-the-art proactive perturbations in preventing face swapping models from generating images with correct source identities.
☆ Human Motion Unlearning
We introduce the task of human motion unlearning to prevent the synthesis of toxic animations while preserving the general text-to-motion generative performance. Unlearning toxic motions is challenging as those can be generated from explicit text prompts and from implicit toxic combinations of safe motions (e.g., ``kicking" is ``loading and swinging a leg"). We propose the first motion unlearning benchmark by filtering toxic motions from the large and recent text-to-motion datasets of HumanML3D and Motion-X. We propose baselines, by adapting state-of-the-art image unlearning techniques to process spatio-temporal signals. Finally, we propose a novel motion unlearning model based on Latent Code Replacement, which we dub LCR. LCR is training-free and suitable to the discrete latent spaces of state-of-the-art text-to-motion diffusion models. LCR is simple and consistently outperforms baselines qualitatively and quantitatively. Project page: \href{https://www.pinlab.org/hmu}{https://www.pinlab.org/hmu}.
☆ Structure-Aware Correspondence Learning for Relative Pose Estimation CVPR2025
Relative pose estimation provides a promising way for achieving object-agnostic pose estimation. Despite the success of existing 3D correspondence-based methods, the reliance on explicit feature matching suffers from small overlaps in visible regions and unreliable feature estimation for invisible regions. Inspired by humans' ability to assemble two object parts that have small or no overlapping regions by considering object structure, we propose a novel Structure-Aware Correspondence Learning method for Relative Pose Estimation, which consists of two key modules. First, a structure-aware keypoint extraction module is designed to locate a set of kepoints that can represent the structure of objects with different shapes and appearance, under the guidance of a keypoint based image reconstruction loss. Second, a structure-aware correspondence estimation module is designed to model the intra-image and inter-image relationships between keypoints to extract structure-aware features for correspondence estimation. By jointly leveraging these two modules, the proposed method can naturally estimate 3D-3D correspondences for unseen objects without explicit feature matching for precise relative pose estimation. Experimental results on the CO3D, Objaverse and LineMOD datasets demonstrate that the proposed method significantly outperforms prior methods, i.e., with 5.7{\deg}reduction in mean angular error on the CO3D dataset.
comment: CVPR2025
☆ Boosting Virtual Agent Learning and Reasoning: A Step-wise, Multi-dimensional, and Generalist Reward Model with Benchmark
The development of Generalist Virtual Agents (GVAs) powered by Multimodal Large Language Models (MLLMs) has shown significant promise in autonomous task execution. However, current training paradigms face critical limitations, including reliance on outcome supervision and labor-intensive human annotations. To address these challenges, we propose Similar, a Step-wise Multi-dimensional Generalist Reward Model, which offers fine-grained signals for agent training and can choose better action for inference-time scaling. Specifically, we begin by systematically defining five dimensions for evaluating agent actions. Building on this framework, we design an MCTS-P algorithm to automatically collect and annotate step-wise, five-dimensional agent execution data. Using this data, we train Similar with the Triple-M strategy. Furthermore, we introduce the first benchmark in the virtual agent domain for step-wise, multi-dimensional reward model training and evaluation, named SRM. This benchmark consists of two components: SRMTrain, which serves as the training set for Similar, and SRMEval, a manually selected test set for evaluating the reward model. Experimental results demonstrate that Similar, through its step-wise, multi-dimensional assessment and synergistic gain, provides GVAs with effective intermediate signals during both training and inference-time scaling. The code is available at https://github.com/Galery23/Similar-v1.
☆ Leveraging Land Cover Priors for Isoprene Emission Super-Resolution
Remote sensing plays a crucial role in monitoring Earth's ecosystems, yet satellite-derived data often suffer from limited spatial resolution, restricting their applicability in atmospheric modeling and climate research. In this work, we propose a deep learning-based Super-Resolution (SR) framework that leverages land cover information to enhance the spatial accuracy of Biogenic Volatile Organic Compounds (BVOCs) emissions, with a particular focus on isoprene. Our approach integrates land cover priors as emission drivers, capturing spatial patterns more effectively than traditional methods. We evaluate the model's performance across various climate conditions and analyze statistical correlations between isoprene emissions and key environmental information such as cropland and tree cover data. Additionally, we assess the generalization capabilities of our SR model by applying it to unseen climate zones and geographical regions. Experimental results demonstrate that incorporating land cover data significantly improves emission SR accuracy, particularly in heterogeneous landscapes. This study contributes to atmospheric chemistry and climate modeling by providing a cost-effective, data-driven approach to refining BVOC emission maps. The proposed method enhances the usability of satellite-based emissions data, supporting applications in air quality forecasting, climate impact assessments, and environmental studies.
comment: 17 pages, 16 figures, 4 tables
☆ Robust face recognition based on the wing loss and the $\ell_1$ regularization
In recent years, sparse sampling techniques based on regression analysis have witnessed extensive applications in face recognition research. Presently, numerous sparse sampling models based on regression analysis have been explored by various researchers. Nevertheless, the recognition rates of the majority of these models would be significantly decreased when confronted with highly occluded and highly damaged face images. In this paper, a new wing-constrained sparse coding model(WCSC) and its weighted version(WWCSC) are introduced, so as to deal with the face recognition problem in complex circumstances, where the alternating direction method of multipliers (ADMM) algorithm is employed to solve the corresponding minimization problems. In addition, performances of the proposed method are examined based on the four well-known facial databases, namely the ORL facial database, the Yale facial database, the AR facial database and the FERET facial database. Also, compared to the other methods in the literatures, the WWCSC has a very high recognition rate even in complex situations where face images have high occlusion or high damage, which illustrates the robustness of the WWCSC method in facial recognition.
comment: 10 pages, 3 figures
☆ Rethinking Glaucoma Calibration: Voting-Based Binocular and Metadata Integration
Glaucoma is an incurable ophthalmic disease that damages the optic nerve, leads to vision loss, and ranks among the leading causes of blindness worldwide. Diagnosing glaucoma typically involves fundus photography, optical coherence tomography (OCT), and visual field testing. However, the high cost of OCT often leads to reliance on fundus photography and visual field testing, both of which exhibit inherent inter-observer variability. This stems from glaucoma being a multifaceted disease that influenced by various factors. As a result, glaucoma diagnosis is highly subjective, emphasizing the necessity of calibration, which aligns predicted probabilities with actual disease likelihood. Proper calibration is essential to prevent overdiagnosis or misdiagnosis, which are critical concerns for high-risk diseases. Although AI has significantly improved diagnostic accuracy, overconfidence in models have worsen calibration performance. Recent study has begun focusing on calibration for glaucoma. Nevertheless, previous study has not fully considered glaucoma's systemic nature and the high subjectivity in its diagnostic process. To overcome these limitations, we propose V-ViT (Voting-based ViT), a novel framework that enhances calibration by incorporating disease-specific characteristics. V-ViT integrates binocular data and metadata, reflecting the multi-faceted nature of glaucoma diagnosis. Additionally, we introduce a MC dropout-based Voting System to address high subjectivity. Our approach achieves state-of-the-art performance across all metrics, including accuracy, demonstrating that our proposed methods are effective in addressing calibration issues. We validate our method using a custom dataset including binocular data.
☆ LLGS: Unsupervised Gaussian Splatting for Image Enhancement and Reconstruction in Pure Dark Environment
3D Gaussian Splatting has shown remarkable capabilities in novel view rendering tasks and exhibits significant potential for multi-view optimization.However, the original 3D Gaussian Splatting lacks color representation for inputs in low-light environments. Simply using enhanced images as inputs would lead to issues with multi-view consistency, and current single-view enhancement systems rely on pre-trained data, lacking scene generalization. These problems limit the application of 3D Gaussian Splatting in low-light conditions in the field of robotics, including high-fidelity modeling and feature matching. To address these challenges, we propose an unsupervised multi-view stereoscopic system based on Gaussian Splatting, called Low-Light Gaussian Splatting (LLGS). This system aims to enhance images in low-light environments while reconstructing the scene. Our method introduces a decomposable Gaussian representation called M-Color, which separately characterizes color information for targeted enhancement. Furthermore, we propose an unsupervised optimization method with zero-knowledge priors, using direction-based enhancement to ensure multi-view consistency. Experiments conducted on real-world datasets demonstrate that our system outperforms state-of-the-art methods in both low-light enhancement and 3D Gaussian Splatting.
☆ Unbiasing through Textual Descriptions: Mitigating Representation Bias in Video Benchmarks CVPR 2025
We propose a new "Unbiased through Textual Description (UTD)" video benchmark based on unbiased subsets of existing video classification and retrieval datasets to enable a more robust assessment of video understanding capabilities. Namely, we tackle the problem that current video benchmarks may suffer from different representation biases, e.g., object bias or single-frame bias, where mere recognition of objects or utilization of only a single frame is sufficient for correct prediction. We leverage VLMs and LLMs to analyze and debias benchmarks from such representation biases. Specifically, we generate frame-wise textual descriptions of videos, filter them for specific information (e.g. only objects) and leverage them to examine representation biases across three dimensions: 1) concept bias - determining if a specific concept (e.g., objects) alone suffice for prediction; 2) temporal bias - assessing if temporal information contributes to prediction; and 3) common sense vs. dataset bias - evaluating whether zero-shot reasoning or dataset correlations contribute to prediction. We conduct a systematic analysis of 12 popular video classification and retrieval datasets and create new object-debiased test splits for these datasets. Moreover, we benchmark 30 state-of-the-art video models on original and debiased splits and analyze biases in the models. To facilitate the future development of more robust video understanding benchmarks and models, we release: "UTD-descriptions", a dataset with our rich structured descriptions for each dataset, and "UTD-splits", a dataset of object-debiased test splits.
comment: To be published at CVPR 2025, project webpage https://utd-project.github.io/
☆ OCCO: LVM-guided Infrared and Visible Image Fusion Framework based on Object-aware and Contextual COntrastive Learning
Image fusion is a crucial technique in the field of computer vision, and its goal is to generate high-quality fused images and improve the performance of downstream tasks. However, existing fusion methods struggle to balance these two factors. Achieving high quality in fused images may result in lower performance in downstream visual tasks, and vice versa. To address this drawback, a novel LVM (large vision model)-guided fusion framework with Object-aware and Contextual COntrastive learning is proposed, termed as OCCO. The pre-trained LVM is utilized to provide semantic guidance, allowing the network to focus solely on fusion tasks while emphasizing learning salient semantic features in form of contrastive learning. Additionally, a novel feature interaction fusion network is also designed to resolve information conflicts in fusion images caused by modality differences. By learning the distinction between positive samples and negative samples in the latent feature space (contextual space), the integrity of target information in fused image is improved, thereby benefiting downstream performance. Finally, compared with eight state-of-the-art methods on four datasets, the effectiveness of the proposed method is validated, and exceptional performance is also demonstrated on downstream visual task.
☆ Robust Lane Detection with Wavelet-Enhanced Context Modeling and Adaptive Sampling
Lane detection is critical for autonomous driving and ad-vanced driver assistance systems (ADAS). While recent methods like CLRNet achieve strong performance, they struggle under adverse con-ditions such as extreme weather, illumination changes, occlusions, and complex curves. We propose a Wavelet-Enhanced Feature Pyramid Net-work (WE-FPN) to address these challenges. A wavelet-based non-local block is integrated before the feature pyramid to improve global context modeling, especially for occluded and curved lanes. Additionally, we de-sign an adaptive preprocessing module to enhance lane visibility under poor lighting. An attention-guided sampling strategy further reffnes spa-tial features, boosting accuracy on distant and curved lanes. Experiments on CULane and TuSimple demonstrate that our approach signiffcantly outperforms baselines in challenging scenarios, achieving better robust-ness and accuracy in real-world driving conditions.
☆ Towards Human-Understandable Multi-Dimensional Concept Discovery
Concept-based eXplainable AI (C-XAI) aims to overcome the limitations of traditional saliency maps by converting pixels into human-understandable concepts that are consistent across an entire dataset. A crucial aspect of C-XAI is completeness, which measures how well a set of concepts explains a model's decisions. Among C-XAI methods, Multi-Dimensional Concept Discovery (MCD) effectively improves completeness by breaking down the CNN latent space into distinct and interpretable concept subspaces. However, MCD's explanations can be difficult for humans to understand, raising concerns about their practical utility. To address this, we propose Human-Understandable Multi-dimensional Concept Discovery (HU-MCD). HU-MCD uses the Segment Anything Model for concept identification and implements a CNN-specific input masking technique to reduce noise introduced by traditional masking methods. These changes to MCD, paired with the completeness relation, enable HU-MCD to enhance concept understandability while maintaining explanation faithfulness. Our experiments, including human subject studies, show that HU-MCD provides more precise and reliable explanations than existing C-XAI methods. The code is available at https://github.com/grobruegge/hu-mcd.
☆ Dig2DIG: Dig into Diffusion Information Gains for Image Fusion
Image fusion integrates complementary information from multi-source images to generate more informative results. Recently, the diffusion model, which demonstrates unprecedented generative potential, has been explored in image fusion. However, these approaches typically incorporate predefined multimodal guidance into diffusion, failing to capture the dynamically changing significance of each modality, while lacking theoretical guarantees. To address this issue, we reveal a significant spatio-temporal imbalance in image denoising; specifically, the diffusion model produces dynamic information gains in different image regions with denoising steps. Based on this observation, we Dig into the Diffusion Information Gains (Dig2DIG) and theoretically derive a diffusion-based dynamic image fusion framework that provably reduces the upper bound of the generalization error. Accordingly, we introduce diffusion information gains (DIG) to quantify the information contribution of each modality at different denoising steps, thereby providing dynamic guidance during the fusion process. Extensive experiments on multiple fusion scenarios confirm that our method outperforms existing diffusion-based approaches in terms of both fusion quality and inference efficiency.
☆ Generative Dataset Distillation using Min-Max Diffusion Model ECCV2024
In this paper, we address the problem of generative dataset distillation that utilizes generative models to synthesize images. The generator may produce any number of images under a preserved evaluation time. In this work, we leverage the popular diffusion model as the generator to compute a surrogate dataset, boosted by a min-max loss to control the dataset's diversity and representativeness during training. However, the diffusion model is time-consuming when generating images, as it requires an iterative generation process. We observe a critical trade-off between the number of image samples and the image quality controlled by the diffusion steps and propose Diffusion Step Reduction to achieve optimal performance. This paper details our comprehensive method and its performance. Our model achieved $2^{nd}$ place in the generative track of \href{https://www.dd-challenge.com/#/}{The First Dataset Distillation Challenge of ECCV2024}, demonstrating its superior performance.
comment: The paper is accepted as the ECCV2024 workshop paper and achieved second place in the generative track of The First Dataset Distillation Challenge of ECCV2024, https://www.dd-challenge.com/#/
☆ Training-Free Personalization via Retrieval and Reasoning on Fingerprints
Vision Language Models (VLMs) have lead to major improvements in multimodal reasoning, yet they still struggle to understand user-specific concepts. Existing personalization methods address this limitation but heavily rely on training procedures, that can be either costly or unpleasant to individual users. We depart from existing work, and for the first time explore the training-free setting in the context of personalization. We propose a novel method, Retrieval and Reasoning for Personalization (R2P), leveraging internal knowledge of VLMs. First, we leverage VLMs to extract the concept fingerprint, i.e., key attributes uniquely defining the concept within its semantic class. When a query arrives, the most similar fingerprints are retrieved and scored via chain-of-thought-reasoning. To reduce the risk of hallucinations, the scores are validated through cross-modal verification at the attribute level: in case of a discrepancy between the scores, R2P refines the concept association via pairwise multimodal matching, where the retrieved fingerprints and their images are directly compared with the query. We validate R2P on two publicly available benchmarks and a newly introduced dataset, Personal Concepts with Visual Ambiguity (PerVA), for concept identification highlighting challenges in visual ambiguity. R2P consistently outperforms state-of-the-art approaches on various downstream tasks across all benchmarks. Code will be available upon acceptance.
☆ Unified Uncertainty-Aware Diffusion for Multi-Agent Trajectory Modeling CVPR 2025
Multi-agent trajectory modeling has primarily focused on forecasting future states, often overlooking broader tasks like trajectory completion, which are crucial for real-world applications such as correcting tracking data. Existing methods also generally predict agents' states without offering any state-wise measure of uncertainty. Moreover, popular multi-modal sampling methods lack any error probability estimates for each generated scene under the same prior observations, making it difficult to rank the predictions during inference time. We introduce U2Diff, a \textbf{unified} diffusion model designed to handle trajectory completion while providing state-wise \textbf{uncertainty} estimates jointly. This uncertainty estimation is achieved by augmenting the simple denoising loss with the negative log-likelihood of the predicted noise and propagating latent space uncertainty to the real state space. Additionally, we incorporate a Rank Neural Network in post-processing to enable \textbf{error probability} estimation for each generated mode, demonstrating a strong correlation with the error relative to ground truth. Our method outperforms the state-of-the-art solutions in trajectory completion and forecasting across four challenging sports datasets (NBA, Basketball-U, Football-U, Soccer-U), highlighting the effectiveness of uncertainty and error probability estimation. Video at https://youtu.be/ngw4D4eJToE
comment: Accepted to CVPR 2025 conference
☆ Adapting Video Diffusion Models for Time-Lapse Microscopy
We present a domain adaptation of video diffusion models to generate highly realistic time-lapse microscopy videos of cell division in HeLa cells. Although state-of-the-art generative video models have advanced significantly for natural videos, they remain underexplored in microscopy domains. To address this gap, we fine-tune a pretrained video diffusion model on microscopy-specific sequences, exploring three conditioning strategies: (1) text prompts derived from numeric phenotypic measurements (e.g., proliferation rates, migration speeds, cell-death frequencies), (2) direct numeric embeddings of phenotype scores, and (3) image-conditioned generation, where an initial microscopy frame is extended into a complete video sequence. Evaluation using biologically meaningful morphological, proliferation, and migration metrics demonstrates that fine-tuning substantially improves realism and accurately captures critical cellular behaviors such as mitosis and migration. Notably, the fine-tuned model also generalizes beyond the training horizon, generating coherent cell dynamics even in extended sequences. However, precisely controlling specific phenotypic characteristics remains challenging, highlighting opportunities for future work to enhance conditioning methods. Our results demonstrate the potential for domain-specific fine-tuning of generative video models to produce biologically plausible synthetic microscopy data, supporting applications such as in-silico hypothesis testing and data augmentation.
☆ Galaxy Walker: Geometry-aware VLMs For Galaxy-scale Understanding
Modern vision-language models (VLMs) develop patch embedding and convolution backbone within vector space, especially Euclidean ones, at the very founding. When expanding VLMs to a galaxy scale for understanding astronomical phenomena, the integration of spherical space for planetary orbits and hyperbolic spaces for black holes raises two formidable challenges. a) The current pre-training model is confined to Euclidean space rather than a comprehensive geometric embedding. b) The predominant architecture lacks suitable backbones for anisotropic physical geometries. In this paper, we introduced Galaxy-Walker, a geometry-aware VLM, for the universe-level vision understanding tasks. We proposed the geometry prompt that generates geometry tokens by random walks across diverse spaces on a multi-scale physical graph, along with a geometry adapter that compresses and reshapes the space anisotropy in a mixture-of-experts manner. Extensive experiments demonstrate the effectiveness of our approach, with Galaxy-Walker achieving state-of-the-art performance in both galaxy property estimation ($R^2$ scores up to $0.91$) and morphology classification tasks (up to $+0.17$ F1 improvement in challenging features), significantly outperforming both domain-specific models and general-purpose VLMs.
☆ Advancing Cross-Organ Domain Generalization with Test-Time Style Transfer and Diversity Enhancement
Deep learning has made significant progress in addressing challenges in various fields including computational pathology (CPath). However, due to the complexity of the domain shift problem, the performance of existing models will degrade, especially when it comes to multi-domain or cross-domain tasks. In this paper, we propose a Test-time style transfer (T3s) that uses a bidirectional mapping mechanism to project the features of the source and target domains into a unified feature space, enhancing the generalization ability of the model. To further increase the style expression space, we introduce a Cross-domain style diversification module (CSDM) to ensure the orthogonality between style bases. In addition, data augmentation and low-rank adaptation techniques are used to improve feature alignment and sensitivity, enabling the model to adapt to multi-domain inputs effectively. Our method has demonstrated effectiveness on three unseen datasets.
comment: 2025 IEEE International Symposium on Biomedical Imaging (ISBI)
☆ LeanStereo: A Leaner Backbone based Stereo Network
Recently, end-to-end deep networks based stereo matching methods, mainly because of their performance, have gained popularity. However, this improvement in performance comes at the cost of increased computational and memory bandwidth requirements, thus necessitating specialized hardware (GPUs); even then, these methods have large inference times compared to classical methods. This limits their applicability in real-world applications. Although we desire high accuracy stereo methods albeit with reasonable inference time. To this end, we propose a fast end-to-end stereo matching method. Majority of this speedup comes from integrating a leaner backbone. To recover the performance lost because of a leaner backbone, we propose to use learned attention weights based cost volume combined with LogL1 loss for stereo matching. Using LogL1 loss not only improves the overall performance of the proposed network but also leads to faster convergence. We do a detailed empirical evaluation of different design choices and show that our method requires 4x less operations and is also about 9 to 14x faster compared to the state of the art methods like ACVNet [1], LEAStereo [2] and CFNet [3] while giving comparable performance.
comment: 8 pages, 4 figures
☆ Instruction-Aligned Visual Attention for Mitigating Hallucinations in Large Vision-Language Models ICME2025
Despite the significant success of Large Vision-Language models(LVLMs), these models still suffer hallucinations when describing images, generating answers that include non-existent objects. It is reported that these models tend to over-focus on certain irrelevant image tokens that do not contain critical information for answering the question and distort the output. To address this, we propose an Instruction-Aligned Visual Attention(IAVA) approach, which identifies irrelevant tokens by comparing changes in attention weights under two different instructions. By applying contrastive decoding, we dynamically adjust the logits generated from original image tokens and irrelevant image tokens, reducing the model's over-attention to irrelevant information. The experimental results demonstrate that IAVA consistently outperforms existing decoding techniques on benchmarks such as MME, POPE, and TextVQA in mitigating object hallucinations. Our IAVA approach is available online at https://github.com/Lee-lab558/IAVA.
comment: Accepted by ICME2025
☆ ATARS: An Aerial Traffic Atomic Activity Recognition and Temporal Segmentation Dataset
Traffic Atomic Activity which describes traffic patterns for topological intersection dynamics is a crucial topic for the advancement of intelligent driving systems. However, existing atomic activity datasets are collected from an egocentric view, which cannot support the scenarios where traffic activities in an entire intersection are required. Moreover, existing datasets only provide video-level atomic activity annotations, which require exhausting efforts to manually trim the videos for recognition and limit their applications to untrimmed videos. To bridge this gap, we introduce the Aerial Traffic Atomic Activity Recognition and Segmentation (ATARS) dataset, the first aerial dataset designed for multi-label atomic activity analysis. We offer atomic activity labels for each frame, which accurately record the intervals for traffic activities. Moreover, we propose a novel task, Multi-label Temporal Atomic Activity Recognition, enabling the study of accurate temporal localization for atomic activity and easing the burden of manual video trimming for recognition. We conduct extensive experiments to evaluate existing state-of-the-art models on both atomic activity recognition and temporal atomic activity segmentation. The results highlight the unique challenges of our ATARS dataset, such as recognizing extremely small objects' activities. We further provide comprehensive discussion analyzing these challenges and offer valuable insights for future direction to improve recognizing atomic activity in aerial view. Our source code and dataset are available at https://github.com/magecliff96/ATARS/
☆ EvAnimate: Event-conditioned Image-to-Video Generation for Human Animation
Conditional human animation transforms a static reference image into a dynamic sequence by applying motion cues such as poses. These motion cues are typically derived from video data but are susceptible to limitations including low temporal resolution, motion blur, overexposure, and inaccuracies under low-light conditions. In contrast, event cameras provide data streams with exceptionally high temporal resolution, a wide dynamic range, and inherent resistance to motion blur and exposure issues. In this work, we propose EvAnimate, a framework that leverages event streams as motion cues to animate static human images. Our approach employs a specialized event representation that transforms asynchronous event streams into 3-channel slices with controllable slicing rates and appropriate slice density, ensuring compatibility with diffusion models. Subsequently, a dual-branch architecture generates high-quality videos by harnessing the inherent motion dynamics of the event streams, thereby enhancing both video quality and temporal consistency. Specialized data augmentation strategies further enhance cross-person generalization. Finally, we establish a new benchmarking, including simulated event data for training and validation, and a real-world event dataset capturing human actions under normal and extreme scenarios. The experiment results demonstrate that EvAnimate achieves high temporal fidelity and robust performance in scenarios where traditional video-derived cues fall short.
☆ Benchmarking Post-Hoc Unknown-Category Detection in Food Recognition
Food recognition models often struggle to distinguish between seen and unseen samples, frequently misclassifying samples from unseen categories by assigning them an in-distribution (ID) label. This misclassification presents significant challenges when deploying these models in real-world applications, particularly within automatic dietary assessment systems, where incorrect labels can lead to cascading errors throughout the system. Ideally, such models should prompt the user when an unknown sample is encountered, allowing for corrective action. Given no prior research exploring food recognition in real-world settings, in this work we conduct an empirical analysis of various post-hoc out-of-distribution (OOD) detection methods for fine-grained food recognition. Our findings indicate that virtual logit matching (ViM) performed the best overall, likely due to its combination of logits and feature-space representations. Additionally, our work reinforces prior notions in the OOD domain, noting that models with higher ID accuracy performed better across the evaluated OOD detection methods. Furthermore, transformer-based architectures consistently outperformed convolution-based models in detecting OOD samples across various methods.
☆ Distilling Stereo Networks for Performant and Efficient Leaner Networks IJCNN
Knowledge distillation has been quite popular in vision for tasks like classification and segmentation however not much work has been done for distilling state-of-the-art stereo matching methods despite their range of applications. One of the reasons for its lack of use in stereo matching networks is due to the inherent complexity of these networks, where a typical network is composed of multiple two- and three-dimensional modules. In this work, we systematically combine the insights from state-of-the-art stereo methods with general knowledge-distillation techniques to develop a joint framework for stereo networks distillation with competitive results and faster inference. Moreover, we show, via a detailed empirical analysis, that distilling knowledge from the stereo network requires careful design of the complete distillation pipeline starting from backbone to the right selection of distillation points and corresponding loss functions. This results in the student networks that are not only leaner and faster but give excellent performance . For instance, our student network while performing better than the performance oriented methods like PSMNet [1], CFNet [2], and LEAStereo [3]) on benchmark SceneFlow dataset, is 8x, 5x, and 8x faster respectively. Furthermore, compared to speed oriented methods having inference time less than 100ms, our student networks perform better than all the tested methods. In addition, our student network also shows better generalization capabilities when tested on unseen datasets like ETH3D and Middlebury.
comment: 8 pages, 3 figures. Published in: 2023 International Joint Conference on Neural Networks (IJCNN)
☆ UniPCGC: Towards Practical Point Cloud Geometry Compression via an Efficient Unified Approach AAAI 2025
Learning-based point cloud compression methods have made significant progress in terms of performance. However, these methods still encounter challenges including high complexity, limited compression modes, and a lack of support for variable rate, which restrict the practical application of these methods. In order to promote the development of practical point cloud compression, we propose an efficient unified point cloud geometry compression framework, dubbed as UniPCGC. It is a lightweight framework that supports lossy compression, lossless compression, variable rate and variable complexity. First, we introduce the Uneven 8-Stage Lossless Coder (UELC) in the lossless mode, which allocates more computational complexity to groups with higher coding difficulty, and merges groups with lower coding difficulty. Second, Variable Rate and Complexity Module (VRCM) is achieved in the lossy mode through joint adoption of a rate modulation module and dynamic sparse convolution. Finally, through the dynamic combination of UELC and VRCM, we achieve lossy compression, lossless compression, variable rate and complexity within a unified framework. Compared to the previous state-of-the-art method, our method achieves a compression ratio (CR) gain of 8.1\% on lossless compression, and a Bjontegaard Delta Rate (BD-Rate) gain of 14.02\% on lossy compression, while also supporting variable rate and variable complexity.
comment: Accepted to AAAI 2025
☆ HiRes-FusedMIM: A High-Resolution RGB-DSM Pre-trained Model for Building-Level Remote Sensing Applications
Recent advances in self-supervised learning have led to the development of foundation models that have significantly advanced performance in various computer vision tasks. However, despite their potential, these models often overlook the crucial role of high-resolution digital surface models (DSMs) in understanding urban environments, particularly for building-level analysis, which is essential for applications like digital twins. To address this gap, we introduce HiRes-FusedMIM, a novel pre-trained model specifically designed to leverage the rich information contained within high-resolution RGB and DSM data. HiRes-FusedMIM utilizes a dual-encoder simple masked image modeling (SimMIM) architecture with a multi-objective loss function that combines reconstruction and contrastive objectives, enabling it to learn powerful, joint representations from both modalities. We conducted a comprehensive evaluation of HiRes-FusedMIM on a diverse set of downstream tasks, including classification, semantic segmentation, and instance segmentation. Our results demonstrate that: 1) HiRes-FusedMIM outperforms previous state-of-the-art geospatial methods on several building-related datasets, including WHU Aerial and LoveDA, demonstrating its effectiveness in capturing and leveraging fine-grained building information; 2) Incorporating DSMs during pre-training consistently improves performance compared to using RGB data alone, highlighting the value of elevation information for building-level analysis; 3) The dual-encoder architecture of HiRes-FusedMIM, with separate encoders for RGB and DSM data, significantly outperforms a single-encoder model on the Vaihingen segmentation task, indicating the benefits of learning specialized representations for each modality. To facilitate further research and applications in this direction, we will publicly release the trained model weights.
☆ DiN: Diffusion Model for Robust Medical VQA with Semantic Noisy Labels
Medical Visual Question Answering (Med-VQA) systems benefit the interpretation of medical images containing critical clinical information. However, the challenge of noisy labels and limited high-quality datasets remains underexplored. To address this, we establish the first benchmark for noisy labels in Med-VQA by simulating human mislabeling with semantically designed noise types. More importantly, we introduce the DiN framework, which leverages a diffusion model to handle noisy labels in Med-VQA. Unlike the dominant classification-based VQA approaches that directly predict answers, our Answer Diffuser (AD) module employs a coarse-to-fine process, refining answer candidates with a diffusion model for improved accuracy. The Answer Condition Generator (ACG) further enhances this process by generating task-specific conditional information via integrating answer embeddings with fused image-question features. To address label noise, our Noisy Label Refinement(NLR) module introduces a robust loss function and dynamic answer adjustment to further boost the performance of the AD module.
☆ k-NN as a Simple and Effective Estimator of Transferability
How well can one expect transfer learning to work in a new setting where the domain is shifted, the task is different, and the architecture changes? Many transfer learning metrics have been proposed to answer this question. But how accurate are their predictions in a realistic new setting? We conducted an extensive evaluation involving over 42,000 experiments comparing 23 transferability metrics across 16 different datasets to assess their ability to predict transfer performance. Our findings reveal that none of the existing metrics perform well across the board. However, we find that a simple k-nearest neighbor evaluation -- as is commonly used to evaluate feature quality for self-supervision -- not only surpasses existing metrics, but also offers better computational efficiency and ease of implementation.
☆ Uncertainty-guided Perturbation for Image Super-Resolution Diffusion Model CVPR 2025
Diffusion-based image super-resolution methods have demonstrated significant advantages over GAN-based approaches, particularly in terms of perceptual quality. Building upon a lengthy Markov chain, diffusion-based methods possess remarkable modeling capacity, enabling them to achieve outstanding performance in real-world scenarios. Unlike previous methods that focus on modifying the noise schedule or sampling process to enhance performance, our approach emphasizes the improved utilization of LR information. We find that different regions of the LR image can be viewed as corresponding to different timesteps in a diffusion process, where flat areas are closer to the target HR distribution but edge and texture regions are farther away. In these flat areas, applying a slight noise is more advantageous for the reconstruction. We associate this characteristic with uncertainty and propose to apply uncertainty estimate to guide region-specific noise level control, a technique we refer to as Uncertainty-guided Noise Weighting. Pixels with lower uncertainty (i.e., flat regions) receive reduced noise to preserve more LR information, therefore improving performance. Furthermore, we modify the network architecture of previous methods to develop our Uncertainty-guided Perturbation Super-Resolution (UPSR) model. Extensive experimental results demonstrate that, despite reduced model size and training overhead, the proposed UWSR method outperforms current state-of-the-art methods across various datasets, both quantitatively and qualitatively.
comment: Accepted to CVPR 2025
☆ Can Text-to-Video Generation help Video-Language Alignment? CVPR 2025
Recent video-language alignment models are trained on sets of videos, each with an associated positive caption and a negative caption generated by large language models. A problem with this procedure is that negative captions may introduce linguistic biases, i.e., concepts are seen only as negatives and never associated with a video. While a solution would be to collect videos for the negative captions, existing databases lack the fine-grained variations needed to cover all possible negatives. In this work, we study whether synthetic videos can help to overcome this issue. Our preliminary analysis with multiple generators shows that, while promising on some tasks, synthetic videos harm the performance of the model on others. We hypothesize this issue is linked to noise (semantic and visual) in the generated videos and develop a method, SynViTA, that accounts for those. SynViTA dynamically weights the contribution of each synthetic video based on how similar its target caption is w.r.t. the real counterpart. Moreover, a semantic consistency loss makes the model focus on fine-grained differences across captions, rather than differences in video appearance. Experiments show that, on average, SynViTA improves over existing methods on VideoCon test sets and SSv2-Temporal, SSv2-Events, and ATP-Hard benchmarks, being a first promising step for using synthetic videos when learning video-language models.
comment: CVPR 2025. Project website at https://lucazanella.github.io/synvita/
♻ ☆ CoRLD: Contrastive Representation Learning Of Deformable Shapes In Images
Deformable shape representations, parameterized by deformations relative to a given template, have proven effective for improved image analysis tasks. However, their broader applicability is hindered by two major challenges. First, existing methods mainly rely on a known template during testing, which is impractical and limits flexibility. Second, they often struggle to capture fine-grained, voxel-level distinctions between similar shapes (e.g., anatomical variations among healthy individuals, those with mild cognitive impairment, and diseased states). To address these limitations, we propose a novel framework - Contrastive Representation Learning of Deformable shapes (CoRLD) in learned deformation spaces and demonstrate its effectiveness in the context of image classification. Our CoRLD leverages a class-aware contrastive supervised learning objective in latent deformation spaces, promoting proximity among representations of similar classes while ensuring separation of dissimilar groups. In contrast to previous deep learning networks that require a reference image as input to predict deformation changes, our approach eliminates this dependency. Instead, template images are utilized solely as ground truth in the loss function during the training process, making our model more flexible and generalizable to a wide range of medical applications. We validate CoRLD on diverse datasets, including real brain magnetic resonance imaging (MRIs) and adrenal shapes derived from computed tomography (CT) scans. Experimental results show that our model effectively extracts deformable shape features, which can be easily integrated with existing classifiers to substantially boost the classification accuracy. Our code is available at GitHub.
♻ ☆ Multi-modal Multi-platform Person Re-Identification: Benchmark and Method
Conventional person re-identification (ReID) research is often limited to single-modality sensor data from static cameras, which fails to address the complexities of real-world scenarios where multi-modal signals are increasingly prevalent. For instance, consider an urban ReID system integrating stationary RGB cameras, nighttime infrared sensors, and UAVs equipped with dynamic tracking capabilities. Such systems face significant challenges due to variations in camera perspectives, lighting conditions, and sensor modalities, hindering effective person ReID. To address these challenges, we introduce the MP-ReID benchmark, a novel dataset designed specifically for multi-modality and multi-platform ReID. This benchmark uniquely compiles data from 1,930 identities across diverse modalities, including RGB, infrared, and thermal imaging, captured by both UAVs and ground-based cameras in indoor and outdoor environments. Building on this benchmark, we introduce Uni-Prompt ReID, a framework with specific-designed prompts, tailored for cross-modality and cross-platform scenarios. Our method consistently outperforms state-of-the-art approaches, establishing a robust foundation for future research in complex and dynamic ReID environments. Our dataset are available at:https://mp-reid.github.io/.
♻ ☆ Re-HOLD: Video Hand Object Interaction Reenactment via adaptive Layout-instructed Diffusion Model CVPR 2025
Current digital human studies focusing on lip-syncing and body movement are no longer sufficient to meet the growing industrial demand, while human video generation techniques that support interacting with real-world environments (e.g., objects) have not been well investigated. Despite human hand synthesis already being an intricate problem, generating objects in contact with hands and their interactions presents an even more challenging task, especially when the objects exhibit obvious variations in size and shape. To cope with these issues, we present a novel video Reenactment framework focusing on Human-Object Interaction (HOI) via an adaptive Layout-instructed Diffusion model (Re-HOLD). Our key insight is to employ specialized layout representation for hands and objects, respectively. Such representations enable effective disentanglement of hand modeling and object adaptation to diverse motion sequences. To further improve the generation quality of HOI, we have designed an interactive textural enhancement module for both hands and objects by introducing two independent memory banks. We also propose a layout-adjusting strategy for the cross-object reenactment scenario to adaptively adjust unreasonable layouts caused by diverse object sizes during inference. Comprehensive qualitative and quantitative evaluations demonstrate that our proposed framework significantly outperforms existing methods. Project page: https://fyycs.github.io/Re-HOLD.
comment: Accepted to CVPR 2025
♻ ☆ GroundCap: A Visually Grounded Image Captioning Dataset
Current image captioning systems lack the ability to link descriptive text to specific visual elements, making their outputs difficult to verify. While recent approaches offer some grounding capabilities, they cannot track object identities across multiple references or ground both actions and objects simultaneously. We propose a novel ID-based grounding system that enables consistent object reference tracking and action-object linking, and present GroundCap, a dataset containing 52,016 images from 77 movies, with 344 human-annotated and 52,016 automatically generated captions. Each caption is grounded on detected objects (132 classes) and actions (51 classes) using a tag system that maintains object identity while linking actions to the corresponding objects. Our approach features persistent object IDs for reference tracking, explicit action-object linking, and segmentation of background elements through K-means clustering. We propose gMETEOR, a metric combining caption quality with grounding accuracy, and establish baseline performance by fine-tuning Pixtral-12B. Human evaluation demonstrates our approach's effectiveness in producing verifiable descriptions with coherent object references.
comment: 37 pages
♻ ☆ Zero-Shot Styled Text Image Generation, but Make It Autoregressive CVPR2025
Styled Handwritten Text Generation (HTG) has recently received attention from the computer vision and document analysis communities, which have developed several solutions, either GAN- or diffusion-based, that achieved promising results. Nonetheless, these strategies fail to generalize to novel styles and have technical constraints, particularly in terms of maximum output length and training efficiency. To overcome these limitations, in this work, we propose a novel framework for text image generation, dubbed Emuru. Our approach leverages a powerful text image representation model (a variational autoencoder) combined with an autoregressive Transformer. Our approach enables the generation of styled text images conditioned on textual content and style examples, such as specific fonts or handwriting styles. We train our model solely on a diverse, synthetic dataset of English text rendered in over 100,000 typewritten and calligraphy fonts, which gives it the capability to reproduce unseen styles (both fonts and users' handwriting) in zero-shot. To the best of our knowledge, Emuru is the first autoregressive model for HTG, and the first designed specifically for generalization to novel styles. Moreover, our model generates images without background artifacts, which are easier to use for downstream applications. Extensive evaluation on both typewritten and handwritten, any-length text image generation scenarios demonstrates the effectiveness of our approach.
comment: Accepted at CVPR2025
Relative Pose Estimation through Affine Corrections of Monocular Depth Priors CVPR 2025
Monocular depth estimation (MDE) models have undergone significant advancements over recent years. Many MDE models aim to predict affine-invariant relative depth from monocular images, while recent developments in large-scale training and vision foundation models enable reasonable estimation of metric (absolute) depth. However, effectively leveraging these predictions for geometric vision tasks, in particular relative pose estimation, remains relatively under explored. While depths provide rich constraints for cross-view image alignment, the intrinsic noise and ambiguity from the monocular depth priors present practical challenges to improving upon classic keypoint-based solutions. In this paper, we develop three solvers for relative pose estimation that explicitly account for independent affine (scale and shift) ambiguities, covering both calibrated and uncalibrated conditions. We further propose a hybrid estimation pipeline that combines our proposed solvers with classic point-based solvers and epipolar constraints. We find that the affine correction modeling is beneficial to not only the relative depth priors but also, surprisingly, the "metric" ones. Results across multiple datasets demonstrate large improvements of our approach over classic keypoint-based baselines and PnP-based solutions, under both calibrated and uncalibrated setups. We also show that our method improves consistently with different feature matchers and MDE models, and can further benefit from very recent advances on both modules. Code is available at https://github.com/MarkYu98/madpose.
comment: CVPR 2025
♻ ☆ Complementary Advantages: Exploiting Cross-Field Frequency Correlation for NIR-Assisted Image Denoising
Existing single-image denoising algorithms often struggle to restore details when dealing with complex noisy images. The introduction of near-infrared (NIR) images offers new possibilities for RGB image denoising. However, due to the inconsistency between NIR and RGB images, the existing works still struggle to balance the contributions of two fields in the process of image fusion. In response to this, in this paper, we develop a cross-field Frequency Correlation Exploiting Network (FCENet) for NIR-assisted image denoising. We first propose the frequency correlation prior based on an in-depth statistical frequency analysis of NIR-RGB image pairs. The prior reveals the complementary correlation of NIR and RGB images in the frequency domain. Leveraging frequency correlation prior, we then establish a frequency learning framework composed of Frequency Dynamic Selection Mechanism (FDSM) and Frequency Exhaustive Fusion Mechanism (FEFM). FDSM dynamically selects complementary information from NIR and RGB images in the frequency domain, and FEFM strengthens the control of common and differential features during the fusion process of NIR and RGB features. Extensive experiments on simulated and real data validate that the proposed method outperforms other state-of-the-art methods. The code will be released at https://github.com/yuchenwang815/FCENet.
♻ ☆ Merging synthetic and real embryo data for advanced AI predictions
Accurate embryo morphology assessment is essential in assisted reproductive technology for selecting the most viable embryo. Artificial intelligence has the potential to enhance this process. However, the limited availability of embryo data presents challenges for training deep learning models. To address this, we trained two generative models using two datasets-one we created and made publicly available, and one existing public dataset-to generate synthetic embryo images at various cell stages, including 2-cell, 4-cell, 8-cell, morula, and blastocyst. These were combined with real images to train classification models for embryo cell stage prediction. Our results demonstrate that incorporating synthetic images alongside real data improved classification performance, with the model achieving 97% accuracy compared to 94.5% when trained solely on real data. This trend remained consistent when tested on an external Blastocyst dataset from a different clinic. Notably, even when trained exclusively on synthetic data and tested on real data, the model achieved a high accuracy of 92%. Furthermore, combining synthetic data from both generative models yielded better classification results than using data from a single generative model. Four embryologists evaluated the fidelity of the synthetic images through a Turing test, during which they annotated inaccuracies and offered feedback. The analysis showed the diffusion model outperformed the generative adversarial network, deceiving embryologists 66.6% versus 25.3% and achieving lower Frechet inception distance scores.
♻ ☆ RaCFormer: Towards High-Quality 3D Object Detection via Query-based Radar-Camera Fusion CVPR 2025
We propose Radar-Camera fusion transformer (RaCFormer) to boost the accuracy of 3D object detection by the following insight. The Radar-Camera fusion in outdoor 3D scene perception is capped by the image-to-BEV transformation--if the depth of pixels is not accurately estimated, the naive combination of BEV features actually integrates unaligned visual content. To avoid this problem, we propose a query-based framework that enables adaptive sampling of instance-relevant features from both the bird's-eye view (BEV) and the original image view. Furthermore, we enhance system performance by two key designs: optimizing query initialization and strengthening the representational capacity of BEV. For the former, we introduce an adaptive circular distribution in polar coordinates to refine the initialization of object queries, allowing for a distance-based adjustment of query density. For the latter, we initially incorporate a radar-guided depth head to refine the transformation from image view to BEV. Subsequently, we focus on leveraging the Doppler effect of radar and introduce an implicit dynamic catcher to capture the temporal elements within the BEV. Extensive experiments on nuScenes and View-of-Delft (VoD) datasets validate the merits of our design. Remarkably, our method achieves superior results of 64.9% mAP and 70.2% NDS on nuScenes. RaCFormer also secures the state-of-the-art performance on the VoD dataset. Code is available at https://github.com/cxmomo/RaCFormer.
comment: Accepted to CVPR 2025
♻ ☆ MotionMap: Representing Multimodality in Human Pose Forecasting CVPR 2025
Human pose forecasting is inherently multimodal since multiple futures exist for an observed pose sequence. However, evaluating multimodality is challenging since the task is ill-posed. Therefore, we first propose an alternative paradigm to make the task well-posed. Next, while state-of-the-art methods predict multimodality, this requires oversampling a large volume of predictions. This raises key questions: (1) Can we capture multimodality by efficiently sampling a smaller number of predictions? (2) Subsequently, which of the predicted futures is more likely for an observed pose sequence? We address these questions with MotionMap, a simple yet effective heatmap based representation for multimodality. We extend heatmaps to represent a spatial distribution over the space of all possible motions, where different local maxima correspond to different forecasts for a given observation. MotionMap can capture a variable number of modes per observation and provide confidence measures for different modes. Further, MotionMap allows us to introduce the notion of uncertainty and controllability over the forecasted pose sequence. Finally, MotionMap captures rare modes that are non-trivial to evaluate yet critical for safety. We support our claims through multiple qualitative and quantitative experiments using popular 3D human pose datasets: Human3.6M and AMASS, highlighting the strengths and limitations of our proposed method. Project Page: https://vita-epfl.github.io/MotionMap
comment: CVPR 2025. We propose a new representation for learning multimodality in human pose forecasting which does not depend on generative models
♻ ☆ Dora: Sampling and Benchmarking for 3D Shape Variational Auto-Encoders CVPR 2025
Recent 3D content generation pipelines commonly employ Variational Autoencoders (VAEs) to encode shapes into compact latent representations for diffusion-based generation. However, the widely adopted uniform point sampling strategy in Shape VAE training often leads to a significant loss of geometric details, limiting the quality of shape reconstruction and downstream generation tasks. We present Dora-VAE, a novel approach that enhances VAE reconstruction through our proposed sharp edge sampling strategy and a dual cross-attention mechanism. By identifying and prioritizing regions with high geometric complexity during training, our method significantly improves the preservation of fine-grained shape features. Such sampling strategy and the dual attention mechanism enable the VAE to focus on crucial geometric details that are typically missed by uniform sampling approaches. To systematically evaluate VAE reconstruction quality, we additionally propose Dora-bench, a benchmark that quantifies shape complexity through the density of sharp edges, introducing a new metric focused on reconstruction accuracy at these salient geometric features. Extensive experiments on the Dora-bench demonstrate that Dora-VAE achieves comparable reconstruction quality to the state-of-the-art dense XCube-VAE while requiring a latent space at least 8$\times$ smaller (1,280 vs. > 10,000 codes).
comment: Accepted by CVPR 2025. Project page: https://aruichen.github.io/Dora/
♻ ☆ Visual Position Prompt for MLLM based Visual Grounding
Although Multimodal Large Language Models (MLLMs) excel at various image-related tasks, they encounter challenges in precisely aligning coordinates with spatial information within images, particularly in position-aware tasks such as visual grounding. This limitation arises from two key factors. First, MLLMs lack explicit spatial references, making it difficult to associate textual descriptions with precise image locations. Second, their feature extraction processes prioritize global context over fine-grained spatial details, leading to weak localization capability. To address this issue, we introduce VPP-LLaVA, an MLLM equipped with Visual Position Prompt (VPP) to improve its grounding capability. VPP-LLaVA integrates two complementary mechanisms. The global VPP overlays learnable, axis-like embeddings onto the input image to provide structured spatial cues. The local VPP focuses on fine-grained localization by incorporating position-aware queries, which suggests probable object locations. We also introduce a VPP-SFT dataset with 0.6M samples, consolidating high-quality visual grounding data into a compact format for efficient model training. Training on this dataset with VPP enhances the model's performance, achieving state-of-the-art results on standard grounding benchmarks despite using fewer training samples compared to other MLLMs like MiniGPT-v2, which rely on much larger datasets ($\sim$21M samples). The code and VPP-SFT dataset will be available at https://github.com/WayneTomas/VPP-LLaVA upon acceptance.
♻ ☆ PRISM: Privacy-Preserving Improved Stochastic Masking for Federated Generative Models
Despite recent advancements in federated learning (FL), the integration of generative models into FL has been limited due to challenges such as high communication costs and unstable training in heterogeneous data environments. To address these issues, we propose PRISM, a FL framework tailored for generative models that ensures (i) stable performance in heterogeneous data distributions and (ii) resource efficiency in terms of communication cost and final model size. The key of our method is to search for an optimal stochastic binary mask for a random network rather than updating the model weights, identifying a sparse subnetwork with high generative performance; i.e., a ``strong lottery ticket''. By communicating binary masks in a stochastic manner, PRISM minimizes communication overhead. This approach, combined with the utilization of maximum mean discrepancy (MMD) loss and a mask-aware dynamic moving average aggregation method (MADA) on the server side, facilitates stable and strong generative capabilities by mitigating local divergence in FL scenarios. Moreover, thanks to its sparsifying characteristic, PRISM yields a lightweight model without extra pruning or quantization, making it ideal for environments such as edge devices. Experiments on MNIST, FMNIST, CelebA, and CIFAR10 demonstrate that PRISM outperforms existing methods, while maintaining privacy with minimal communication costs. PRISM is the first to successfully generate images under challenging non-IID and privacy-preserving FL environments on complex datasets, where previous methods have struggled.
♻ ☆ STEVE: A Step Verification Pipeline for Computer-use Agent Training
Developing AI agents to autonomously manipulate graphical user interfaces is a long challenging task. Recent advances in data scaling law inspire us to train computer-use agents with a scaled instruction set, yet using behavior cloning to train agents still requires immense high-quality trajectories. To meet the scalability need, we designed STEVE, a step verification pipeline for computer-use agent training. First, we establish a large instruction set for computer-use agents and collect trajectory data with some suboptimal agents. GPT-4o is used to verify the correctness of each step in the trajectories based on the screens before and after the action execution, assigning each step with a binary label. Last, we adopt the Kahneman and Tversky Optimization to optimize the agent from the binary stepwise labels. Extensive experiments manifest that our agent outperforms supervised finetuning by leveraging both positive and negative actions within a trajectory. Also, STEVE enables us to train a 7B vision-language model as a computer-use agent, achieving leading performance in the challenging live desktop environment WinAgentArena with great efficiency at a reduced cost. Code and data: https://github.com/FanbinLu/STEVE.
♻ ☆ Positive2Negative: Breaking the Information-Lossy Barrier in Self-Supervised Single Image Denoising
Image denoising enhances image quality, serving as a foundational technique across various computational photography applications. The obstacle to clean image acquisition in real scenarios necessitates the development of self-supervised image denoising methods only depending on noisy images, especially a single noisy image. Existing self-supervised image denoising paradigms (Noise2Noise and Noise2Void) rely heavily on information-lossy operations, such as downsampling and masking, culminating in low quality denoising performance. In this paper, we propose a novel self-supervised single image denoising paradigm, Positive2Negative, to break the information-lossy barrier. Our paradigm involves two key steps: Renoised Data Construction (RDC) and Denoised Consistency Supervision (DCS). RDC renoises the predicted denoised image by the predicted noise to construct multiple noisy images, preserving all the information of the original image. DCS ensures consistency across the multiple denoised images, supervising the network to learn robust denoising. Our Positive2Negative paradigm achieves state-of-the-art performance in self-supervised single image denoising with significant speed improvements. The code is released to the public at https://github.com/Li-Tong-621/P2N.
comment: 8 figures, 5 tables, 11 pages
♻ ☆ Interleaved Scene Graphs for Interleaved Text-and-Image Generation Assessment ICLR 2025
Many real-world user queries (e.g. "How do to make egg fried rice?") could benefit from systems capable of generating responses with both textual steps with accompanying images, similar to a cookbook. Models designed to generate interleaved text and images face challenges in ensuring consistency within and across these modalities. To address these challenges, we present ISG, a comprehensive evaluation framework for interleaved text-and-image generation. ISG leverages a scene graph structure to capture relationships between text and image blocks, evaluating responses on four levels of granularity: holistic, structural, block-level, and image-specific. This multi-tiered evaluation allows for a nuanced assessment of consistency, coherence, and accuracy, and provides interpretable question-answer feedback. In conjunction with ISG, we introduce a benchmark, ISG-Bench, encompassing 1,150 samples across 8 categories and 21 subcategories. This benchmark dataset includes complex language-vision dependencies and golden answers to evaluate models effectively on vision-centric tasks such as style transfer, a challenging area for current models. Using ISG-Bench, we demonstrate that recent unified vision-language models perform poorly on generating interleaved content. While compositional approaches that combine separate language and image models show a 111% improvement over unified models at the holistic level, their performance remains suboptimal at both block and image levels. To facilitate future work, we develop ISG-Agent, a baseline agent employing a "plan-execute-refine" pipeline to invoke tools, achieving a 122% performance improvement.
comment: Accepted by ICLR 2025 as Spotlight. Project homepage: https://interleave-eval.github.io/
♻ ☆ Generative Omnimatte: Learning to Decompose Video into Layers CVPR 2025
Given a video and a set of input object masks, an omnimatte method aims to decompose the video into semantically meaningful layers containing individual objects along with their associated effects, such as shadows and reflections. Existing omnimatte methods assume a static background or accurate pose and depth estimation and produce poor decompositions when these assumptions are violated. Furthermore, due to the lack of generative prior on natural videos, existing methods cannot complete dynamic occluded regions. We present a novel generative layered video decomposition framework to address the omnimatte problem. Our method does not assume a stationary scene or require camera pose or depth information and produces clean, complete layers, including convincing completions of occluded dynamic regions. Our core idea is to train a video diffusion model to identify and remove scene effects caused by a specific object. We show that this model can be finetuned from an existing video inpainting model with a small, carefully curated dataset, and demonstrate high-quality decompositions and editing results for a wide range of casually captured videos containing soft shadows, glossy reflections, splashing water, and more.
comment: CVPR 2025. Project page: https://gen-omnimatte.github.io/
♻ ☆ Learned, uncertainty-driven adaptive acquisition for photon-efficient scanning microscopy
Scanning microscopy systems, such as confocal and multiphoton microscopy, are powerful imaging tools for probing deep into biological tissue. However, scanning systems have an inherent trade-off between acquisition time, field of view, phototoxicity, and image quality, often resulting in noisy measurements when fast, large field of view, and/or gentle imaging is needed. Deep learning could be used to denoise noisy microscopy measurements, but these algorithms can be prone to hallucination, which can be disastrous for medical and scientific applications. We propose a method to simultaneously denoise and predict pixel-wise uncertainty for scanning microscopy systems, improving algorithm trustworthiness and providing statistical guarantees for deep learning predictions. Furthermore, we propose to leverage this learned, pixel-wise uncertainty to drive an adaptive acquisition technique that rescans only the most uncertain regions of a sample, saving time and reducing the total light dose to the sample. We demonstrate our method on experimental confocal and multiphoton microscopy systems, showing that our uncertainty maps can pinpoint hallucinations in the deep learned predictions. Finally, with our adaptive acquisition technique, we demonstrate up to 16X reduction in acquisition time and total light dose while successfully recovering fine features in the sample and reducing hallucinations. We are the first to demonstrate distribution-free uncertainty quantification for a denoising task with real experimental data and the first to propose adaptive acquisition based on reconstruction uncertainty.
♻ ☆ Mani-GS: Gaussian Splatting Manipulation with Triangular Mesh CVPR 2025
Neural 3D representations such as Neural Radiance Fields (NeRF), excel at producing photo-realistic rendering results but lack the flexibility for manipulation and editing which is crucial for content creation. Previous works have attempted to address this issue by deforming a NeRF in canonical space or manipulating the radiance field based on an explicit mesh. However, manipulating NeRF is not highly controllable and requires a long training and inference time. With the emergence of 3D Gaussian Splatting (3DGS), extremely high-fidelity novel view synthesis can be achieved using an explicit point-based 3D representation with much faster training and rendering speed. However, there is still a lack of effective means to manipulate 3DGS freely while maintaining rendering quality. In this work, we aim to tackle the challenge of achieving manipulable photo-realistic rendering. We propose to utilize a triangular mesh to manipulate 3DGS directly with self-adaptation. This approach reduces the need to design various algorithms for different types of Gaussian manipulation. By utilizing a triangle shape-aware Gaussian binding and adapting method, we can achieve 3DGS manipulation and preserve high-fidelity rendering after manipulation. Our approach is capable of handling large deformations, local manipulations, and soft body simulations while keeping high-quality rendering. Furthermore, we demonstrate that our method is also effective with inaccurate meshes extracted from 3DGS. Experiments conducted demonstrate the effectiveness of our method and its superiority over baseline approaches.
comment: CVPR 2025. Project page here: https://gaoxiangjun.github.io/mani_gs/
♻ ☆ MaRS: A Fast Sampler for Mean Reverting Diffusion based on ODE and SDE Solvers ICLR 2025
In applications of diffusion models, controllable generation is of practical significance, but is also challenging. Current methods for controllable generation primarily focus on modifying the score function of diffusion models, while Mean Reverting (MR) Diffusion directly modifies the structure of the stochastic differential equation (SDE), making the incorporation of image conditions simpler and more natural. However, current training-free fast samplers are not directly applicable to MR Diffusion. And thus MR Diffusion requires hundreds of NFEs (number of function evaluations) to obtain high-quality samples. In this paper, we propose a new algorithm named MaRS (MR Sampler) to reduce the sampling NFEs of MR Diffusion. We solve the reverse-time SDE and the probability flow ordinary differential equation (PF-ODE) associated with MR Diffusion, and derive semi-analytical solutions. The solutions consist of an analytical function and an integral parameterized by a neural network. Based on this solution, we can generate high-quality samples in fewer steps. Our approach does not require training and supports all mainstream parameterizations, including noise prediction, data prediction and velocity prediction. Extensive experiments demonstrate that MR Sampler maintains high sampling quality with a speedup of 10 to 20 times across ten different image restoration tasks. Our algorithm accelerates the sampling procedure of MR Diffusion, making it more practical in controllable generation.
comment: Accepted by ICLR 2025
♻ ☆ Beyond Training: Dynamic Token Merging for Zero-Shot Video Understanding
Recent advancements in multimodal large language models (MLLMs) have opened new avenues for video understanding. However, achieving high fidelity in zero-shot video tasks remains challenging. Traditional video processing methods rely heavily on fine-tuning to capture nuanced spatial-temporal details, which incurs significant data and computation costs. In contrast, training-free approaches, though efficient, often lack robustness in preserving context-rich features across complex video content. To this end, we propose DYTO, a novel dynamic token merging framework for zero-shot video understanding that adaptively optimizes token efficiency while preserving crucial scene details. DYTO integrates a hierarchical frame selection and a bipartite token merging strategy to dynamically cluster key frames and selectively compress token sequences, striking a balance between computational efficiency with semantic richness. Extensive experiments across multiple benchmarks demonstrate the effectiveness of DYTO, achieving superior performance compared to both fine-tuned and training-free methods and setting a new state-of-the-art for zero-shot video understanding.
comment: Code is available at https://github.com/Jam1ezhang/DYTO
♻ ☆ SAT-HMR: Real-Time Multi-Person 3D Mesh Estimation via Scale-Adaptive Tokens
We propose a one-stage framework for real-time multi-person 3D human mesh estimation from a single RGB image. While current one-stage methods, which follow a DETR-style pipeline, achieve state-of-the-art (SOTA) performance with high-resolution inputs, we observe that this particularly benefits the estimation of individuals in smaller scales of the image (e.g., those far from the camera), but at the cost of significantly increased computation overhead. To address this, we introduce scale-adaptive tokens that are dynamically adjusted based on the relative scale of each individual in the image within the DETR framework. Specifically, individuals in smaller scales are processed at higher resolutions, larger ones at lower resolutions, and background regions are further distilled. These scale-adaptive tokens more efficiently encode the image features, facilitating subsequent decoding to regress the human mesh, while allowing the model to allocate computational resources more effectively and focus on more challenging cases. Experiments show that our method preserves the accuracy benefits of high-resolution processing while substantially reducing computational cost, achieving real-time inference with performance comparable to SOTA methods.
comment: 18 pages, 12 figures
♻ ☆ RankCLIP: Ranking-Consistent Language-Image Pretraining
Self-supervised contrastive learning models, such as CLIP, have set new benchmarks for vision-language models in many downstream tasks. However, their dependency on rigid one-to-one mappings overlooks the complex and often multifaceted relationships between and within texts and images. To this end, we introduce RankCLIP, a novel pre-training method that extends beyond the rigid one-to-one matching framework of CLIP and its variants. By extending the traditional pair-wise loss to list-wise, and leveraging both in-modal and cross-modal ranking consistency, RankCLIP improves the alignment process, enabling it to capture the nuanced many-to-many relationships between and within each modality. Through comprehensive experiments, we demonstrate the effectiveness of RankCLIP in various downstream tasks, notably achieving significant gains in zero-shot classifications over state-of-the-art methods, underscoring the importance of this enhanced learning process.
comment: Code and model checkpoints are available at https://github.com/Jam1ezhang/RankCLIP
♻ ☆ DUNE: Distilling a Universal Encoder from Heterogeneous 2D and 3D Teachers CVPR-2025
Recent multi-teacher distillation methods have unified the encoders of multiple foundation models into a single encoder, achieving competitive performance on core vision tasks like classification, segmentation, and depth estimation. This led us to ask: Could similar success be achieved when the pool of teachers also includes vision models specialized in diverse tasks across both 2D and 3D perception? In this paper, we define and investigate the problem of heterogeneous teacher distillation, or co-distillation, a challenging multi-teacher distillation scenario where teacher models vary significantly in both (a) their design objectives and (b) the data they were trained on. We explore data-sharing strategies and teacher-specific encoding, and introduce DUNE, a single encoder excelling in 2D vision, 3D understanding, and 3D human perception. Our model achieves performance comparable to that of its larger teachers, sometimes even outperforming them, on their respective tasks. Notably, DUNE surpasses MASt3R in Map-free Visual Relocalization with a much smaller encoder.
comment: Accepted to CVPR-2025. Project page: https://europe.naverlabs.com/dune
♻ ☆ Understanding Model Calibration -- A gentle introduction and visual exploration of calibration and the expected calibration error (ECE)
To be considered reliable, a model must be calibrated so that its confidence in each decision closely reflects its true outcome. In this blogpost we'll take a look at the most commonly used definition for calibration and then dive into a frequently used evaluation measure for model calibration. We'll then cover some of the drawbacks of this measure and how these surfaced the need for additional notions of calibration, which require their own new evaluation measures. This post is not intended to be an in-depth dissection of all works on calibration, nor does it focus on how to calibrate models. Instead, it is meant to provide a gentle introduction to the different notions and their evaluation measures as well as to re-highlight some issues with a measure that is still widely used to evaluate calibration.
♻ ☆ GAEA: A Geolocation Aware Conversational Model
Image geolocalization, in which, traditionally, an AI model predicts the precise GPS coordinates of an image is a challenging task with many downstream applications. However, the user cannot utilize the model to further their knowledge other than the GPS coordinate; the model lacks an understanding of the location and the conversational ability to communicate with the user. In recent days, with tremendous progress of large multimodal models (LMMs) -- proprietary and open-source -- researchers have attempted to geolocalize images via LMMs. However, the issues remain unaddressed; beyond general tasks, for more specialized downstream tasks, one of which is geolocalization, LMMs struggle. In this work, we propose to solve this problem by introducing a conversational model GAEA that can provide information regarding the location of an image, as required by a user. No large-scale dataset enabling the training of such a model exists. Thus we propose GAEA-1.6M, a comprehensive dataset with 800K images and around 1.6M question-answer pairs constructed by leveraging OpenStreetMap (OSM) attributes and geographical context clues. For quantitative evaluation, we propose a diverse benchmark, GAEA-Bench, comprising 4K image-text pairs to evaluate conversational capabilities equipped with diverse question types. We consider 11 state-of-the-art open-source and proprietary LMMs and demonstrate that GAEA significantly outperforms the best open-source model, LLaVA-OneVision by 25.69% and the best proprietary model, GPT-4o by 8.28%. Our dataset, model and codes are available.
comment: The dataset and code used in this submission is available at: https://ucf-crcv.github.io/GAEA/
♻ ☆ Multiple Object Tracking as ID Prediction CVPR 2025
Multi-Object Tracking (MOT) has been a long-standing challenge in video understanding. A natural and intuitive approach is to split this task into two parts: object detection and association. Most mainstream methods employ meticulously crafted heuristic techniques to maintain trajectory information and compute cost matrices for object matching. Although these methods can achieve notable tracking performance, they often require a series of elaborate handcrafted modifications while facing complicated scenarios. We believe that manually assumed priors limit the method's adaptability and flexibility in learning optimal tracking capabilities from domain-specific data. Therefore, we introduce a new perspective that treats Multiple Object Tracking as an in-context ID Prediction task, transforming the aforementioned object association into an end-to-end trainable task. Based on this, we propose a simple yet effective method termed MOTIP. Given a set of trajectories carried with ID information, MOTIP directly decodes the ID labels for current detections to accomplish the association process. Without using tailored or sophisticated architectures, our method achieves state-of-the-art results across multiple benchmarks by solely leveraging object-level features as tracking cues. The simplicity and impressive results of MOTIP leave substantial room for future advancements, thereby making it a promising baseline for subsequent research. Our code and checkpoints are released at https://github.com/MCG-NJU/MOTIP.
comment: Accepted by CVPR 2025
♻ ☆ Kalib: Easy Hand-Eye Calibration with Reference Point Tracking
Hand-eye calibration aims to estimate the transformation between a camera and a robot. Traditional methods rely on fiducial markers, which require considerable manual effort and precise setup. Recent advances in deep learning have introduced markerless techniques but come with more prerequisites, such as retraining networks for each robot, and accessing accurate mesh models for data generation. In this paper, we propose Kalib, an automatic and easy-to-setup hand-eye calibration method that leverages the generalizability of visual foundation models to overcome these challenges. It features only two basic prerequisites, the robot's kinematic chain and a predefined reference point on the robot. During calibration, the reference point is tracked in the camera space. Its corresponding 3D coordinates in the robot coordinate can be inferred by forward kinematics. Then, a PnP solver directly estimates the transformation between the camera and the robot without training new networks or accessing mesh models. Evaluations in simulated and real-world benchmarks show that Kalib achieves good accuracy with a lower manual workload compared with recent baseline methods. We also demonstrate its application in multiple real-world settings with various robot arms and grippers. Kalib's user-friendly design and minimal setup requirements make it a possible solution for continuous operation in unstructured environments.
comment: The code, data, and supplementary materials are available at https://sites.google.com/view/hand-eye-kalib
♻ ☆ Towards Universal Soccer Video Understanding CVPR 2025
As a globally celebrated sport, soccer has attracted widespread interest from fans all over the world. This paper aims to develop a comprehensive multi-modal framework for soccer video understanding. Specifically, we make the following contributions in this paper: (i) we introduce SoccerReplay-1988, the largest multi-modal soccer dataset to date, featuring videos and detailed annotations from 1,988 complete matches, with an automated annotation pipeline; (ii) we present an advanced soccer-specific visual encoder, MatchVision, which leverages spatiotemporal information across soccer videos and excels in various downstream tasks; (iii) we conduct extensive experiments and ablation studies on event classification, commentary generation, and multi-view foul recognition. MatchVision demonstrates state-of-the-art performance on all of them, substantially outperforming existing models, which highlights the superiority of our proposed data and model. We believe that this work will offer a standard paradigm for sports understanding research.
comment: CVPR 2025; Project Page: https://jyrao.github.io/UniSoccer/
♻ ☆ CAGE: Unsupervised Visual Composition and Animation for Controllable Video Generation AAAI2025
The field of video generation has expanded significantly in recent years, with controllable and compositional video generation garnering considerable interest. Most methods rely on leveraging annotations such as text, objects' bounding boxes, and motion cues, which require substantial human effort and thus limit their scalability. In contrast, we address the challenge of controllable and compositional video generation without any annotations by introducing a novel unsupervised approach. Our model is trained from scratch on a dataset of unannotated videos. At inference time, it can compose plausible novel scenes and animate objects by placing object parts at the desired locations in space and time. The core innovation of our method lies in the unified control format and the training process, where video generation is conditioned on a randomly selected subset of pre-trained self-supervised local features. This conditioning compels the model to learn how to inpaint the missing information in the video both spatially and temporally, thereby learning the inherent compositionality of a scene and the dynamics of moving objects. The abstraction level and the imposed invariance of the conditioning input to minor visual perturbations enable control over object motion by simply using the same features at all the desired future locations. We call our model CAGE, which stands for visual Composition and Animation for video GEneration. We conduct extensive experiments to validate the effectiveness of CAGE across various scenarios, demonstrating its capability to accurately follow the control and to generate high-quality videos that exhibit coherent scene composition and realistic animation.
comment: Published at AAAI2025; Project website: https://araachie.github.io/cage
♻ ☆ CholecTrack20: A Multi-Perspective Tracking Dataset for Surgical Tools CVPR 2025
Tool tracking in surgical videos is essential for advancing computer-assisted interventions, such as skill assessment, safety zone estimation, and human-machine collaboration. However, the lack of context-rich datasets limits AI applications in this field. Existing datasets rely on overly generic tracking formalizations that fail to capture surgical-specific dynamics, such as tools moving out of the camera's view or exiting the body. This results in less clinically relevant trajectories and a lack of flexibility for real-world surgical applications. Methods trained on these datasets often struggle with visual challenges such as smoke, reflection, and bleeding, further exposing the limitations of current approaches. We introduce CholecTrack20, a specialized dataset for multi-class, multi-tool tracking in surgical procedures. It redefines tracking formalization with three perspectives: (i) intraoperative, (ii) intracorporeal, and (iii) visibility, enabling adaptable and clinically meaningful tool trajectories. The dataset comprises 20 full-length surgical videos, annotated at 1 fps, yielding over 35K frames and 65K labeled tool instances. Annotations include spatial location, category, identity, operator, phase, and scene visual challenge. Benchmarking state-of-the-art methods on CholecTrack20 reveals significant performance gaps, with current approaches (< 45\% HOTA) failing to meet the accuracy required for clinical translation. These findings motivate the need for advanced and intuitive tracking algorithms and establish CholecTrack20 as a foundation for developing robust AI-driven surgical assistance systems.
comment: Surgical tool tracking dataset paper, 11 pages, 10 figures, 3 tables, CVPR 2025
♻ ☆ ETAP: Event-based Tracking of Any Point
Tracking any point (TAP) recently shifted the motion estimation paradigm from focusing on individual salient points with local templates to tracking arbitrary points with global image contexts. However, while research has mostly focused on driving the accuracy of models in nominal settings, addressing scenarios with difficult lighting conditions and high-speed motions remains out of reach due to the limitations of the sensor. This work addresses this challenge with the first event camera-based TAP method. It leverages the high temporal resolution and high dynamic range of event cameras for robust high-speed tracking, and the global contexts in TAP methods to handle asynchronous and sparse event measurements. We further extend the TAP framework to handle event feature variations induced by motion -- thereby addressing an open challenge in purely event-based tracking -- with a novel feature-alignment loss which ensures the learning of motion-robust features. Our method is trained with data from a new data generation pipeline and systematically ablated across all design decisions. Our method shows strong cross-dataset generalization and performs 136% better on the average Jaccard metric than the baselines. Moreover, on an established feature tracking benchmark, it achieves a 20% improvement over the previous best event-only method and even surpasses the previous best events-and-frames method by 4.1%. Our code is available at https://github.com/tub-rip/ETAP
comment: 17 pages, 15 figures, 8 tables. Project page: https://github.com/tub-rip/ETAP
♻ ☆ NeSS-ST: Detecting Good and Stable Keypoints with a Neural Stability Score and the Shi-Tomasi Detector ICCV 2023
Learning a feature point detector presents a challenge both due to the ambiguity of the definition of a keypoint and, correspondingly, the need for specially prepared ground truth labels for such points. In our work, we address both of these issues by utilizing a combination of a hand-crafted Shi-Tomasi detector, a specially designed metric that assesses the quality of keypoints, the stability score (SS), and a neural network. We build on the principled and localized keypoints provided by the Shi-Tomasi detector and learn the neural network to select good feature points via the stability score. The neural network incorporates the knowledge from the training targets in the form of the neural stability score (NeSS). Therefore, our method is named NeSS-ST since it combines the Shi-Tomasi detector and the properties of the neural stability score. It only requires sets of images for training without dataset pre-labeling or the need for reconstructed correspondence labels. We evaluate NeSS-ST on HPatches, ScanNet, MegaDepth and IMC-PT demonstrating state-of-the-art performance and good generalization on downstream tasks.
comment: Camera-ready version of ICCV 2023 paper
CarPlanner: Consistent Auto-regressive Trajectory Planning for Large-scale Reinforcement Learning in Autonomous Driving CVPR 2025
Trajectory planning is vital for autonomous driving, ensuring safe and efficient navigation in complex environments. While recent learning-based methods, particularly reinforcement learning (RL), have shown promise in specific scenarios, RL planners struggle with training inefficiencies and managing large-scale, real-world driving scenarios. In this paper, we introduce \textbf{CarPlanner}, a \textbf{C}onsistent \textbf{a}uto-\textbf{r}egressive \textbf{Planner} that uses RL to generate multi-modal trajectories. The auto-regressive structure enables efficient large-scale RL training, while the incorporation of consistency ensures stable policy learning by maintaining coherent temporal consistency across time steps. Moreover, CarPlanner employs a generation-selection framework with an expert-guided reward function and an invariant-view module, simplifying RL training and enhancing policy performance. Extensive analysis demonstrates that our proposed RL framework effectively addresses the challenges of training efficiency and performance enhancement, positioning CarPlanner as a promising solution for trajectory planning in autonomous driving. To the best of our knowledge, we are the first to demonstrate that the RL-based planner can surpass both IL- and rule-based state-of-the-arts (SOTAs) on the challenging large-scale real-world dataset nuPlan. Our proposed CarPlanner surpasses RL-, IL-, and rule-based SOTA approaches within this demanding dataset.
comment: CVPR 2025
♻ ☆ Revisiting Monocular 3D Object Detection with Depth Thickness Field
Monocular 3D object detection is challenging due to the lack of accurate depth. However, existing depth-assisted solutions still exhibit inferior performance, whose reason is universally acknowledged as the unsatisfactory accuracy of monocular depth estimation models. In this paper, we revisit monocular 3D object detection from the depth perspective and formulate an additional issue as the limited 3D structure-aware capability of existing depth representations (e.g., depth one-hot encoding or depth distribution). To address this issue, we introduce a novel Depth Thickness Field approach to embed clear 3D structures of the scenes. Specifically, we present MonoDTF, a scene-to-instance depth-adapted network for monocular 3D object detection. The framework mainly comprises a Scene-Level Depth Retargeting (SDR) module and an Instance-Level Spatial Refinement (ISR) module. The former retargets traditional depth representations to the proposed depth thickness field, incorporating the scene-level perception of 3D structures. The latter refines the voxel space with the guidance of instances, enhancing the 3D instance-aware capability of the depth thickness field and thus improving detection accuracy. Extensive experiments on the KITTI and Waymo datasets demonstrate our superiority to existing state-of-the-art (SoTA) methods and the universality when equipped with different depth estimation models. The code will be available.
♻ ☆ OnlineAnySeg: Online Zero-Shot 3D Segmentation by Visual Foundation Model Guided 2D Mask Merging
Online 3D open-vocabulary segmentation of a progressively reconstructed scene is both a critical and challenging task for embodied applications. With the success of visual foundation models (VFMs) in the image domain, leveraging 2D priors to address 3D online segmentation has become a prominent research focus. Since segmentation results provided by 2D priors often require spatial consistency to be lifted into final 3D segmentation, an efficient method for identifying spatial overlap among 2D masks is essential - yet existing methods rarely achieve this in real time, mainly limiting its use to offline approaches. To address this, we propose an efficient method that lifts 2D masks generated by VFMs into a unified 3D instance using a hashing technique. By employing voxel hashing for efficient 3D scene querying, our approach reduces the time complexity of costly spatial overlap queries from $O(n^2)$ to $O(n)$. Accurate spatial associations further enable 3D merging of 2D masks through simple similarity-based filtering in a zero-shot manner, making our approach more robust to incomplete and noisy data. Evaluated on the ScanNet and SceneNN benchmarks, our approach achieves state-of-the-art performance in online, open-vocabulary 3D instance segmentation with leading efficiency.
♻ ☆ MoCha-Stereo: Motif Channel Attention Network for Stereo Matching CVPR 2024
Learning-based stereo matching techniques have made significant progress. However, existing methods inevitably lose geometrical structure information during the feature channel generation process, resulting in edge detail mismatches. In this paper, the Motif Cha}nnel Attention Stereo Matching Network (MoCha-Stereo) is designed to address this problem. We provide the Motif Channel Correlation Volume (MCCV) to determine more accurate edge matching costs. MCCV is achieved by projecting motif channels, which capture common geometric structures in feature channels, onto feature maps and cost volumes. In addition, edge variations in %potential feature channels of the reconstruction error map also affect details matching, we propose the Reconstruction Error Motif Penalty (REMP) module to further refine the full-resolution disparity estimation. REMP integrates the frequency information of typical channel features from the reconstruction error. MoCha-Stereo ranks 1st on the KITTI-2015 and KITTI-2012 Reflective leaderboards. Our structure also shows excellent performance in Multi-View Stereo. Code is avaliable at https://github.com/ZYangChen/MoCha-Stereo.
comment: Accepted to CVPR 2024
♻ ☆ Believing is Seeing: Unobserved Object Detection using Generative Models
Can objects that are not visible in an image -- but are in the vicinity of the camera -- be detected? This study introduces the novel tasks of 2D, 2.5D and 3D unobserved object detection for predicting the location of nearby objects that are occluded or lie outside the image frame. We adapt several state-of-the-art pre-trained generative models to address this task, including 2D and 3D diffusion models and vision-language models, and show that they can be used to infer the presence of objects that are not directly observed. To benchmark this task, we propose a suite of metrics that capture different aspects of performance. Our empirical evaluation on indoor scenes from the RealEstate10k and NYU Depth v2 datasets demonstrate results that motivate the use of generative models for the unobserved object detection task.
comment: IEEE/CVF Computer Vision and Pattern Recognition 2025; 22 pages
♻ ☆ Image Over Text: Transforming Formula Recognition Evaluation with Character Detection Matching CVPR2025
Formula recognition presents significant challenges due to the complicated structure and varied notation of mathematical expressions. Despite continuous advancements in formula recognition models, the evaluation metrics employed by these models, such as BLEU and Edit Distance, still exhibit notable limitations. They overlook the fact that the same formula has diverse representations and is highly sensitive to the distribution of training data, thereby causing unfairness in formula recognition evaluation. To this end, we propose a Character Detection Matching (CDM) metric, ensuring the evaluation objectivity by designing an image-level rather than a LaTeX-level metric score. Specifically, CDM renders both the model-predicted LaTeX and the ground-truth LaTeX formulas into image-formatted formulas, then employs visual feature extraction and localization techniques for precise character-level matching, incorporating spatial position information. Such a spatially-aware and character-matching method offers a more accurate and equitable evaluation compared with previous BLEU and Edit Distance metrics that rely solely on text-based character matching. Experimentally, we evaluated various formula recognition models using CDM, BLEU, and ExpRate metrics. Their results demonstrate that the CDM aligns more closely with human evaluation standards and provides a fairer comparison across different models by eliminating discrepancies caused by diverse formula representations. Code is available at https://github.com/opendatalab/UniMERNet/tree/main/cdm.
comment: Accepted by CVPR2025
♻ ☆ Deep Polycuboid Fitting for Compact 3D Representation of Indoor Scenes 3DV 2025
This paper presents a novel framework for compactly representing a 3D indoor scene using a set of polycuboids through a deep learning-based fitting method. Indoor scenes mainly consist of man-made objects, such as furniture, which often exhibit rectilinear geometry. This property allows indoor scenes to be represented using combinations of polycuboids, providing a compact representation that benefits downstream applications like furniture rearrangement. Our framework takes a noisy point cloud as input and first detects six types of cuboid faces using a transformer network. Then, a graph neural network is used to validate the spatial relationships of the detected faces to form potential polycuboids. Finally, each polycuboid instance is reconstructed by forming a set of boxes based on the aggregated face labels. To train our networks, we introduce a synthetic dataset encompassing a diverse range of cuboid and polycuboid shapes that reflect the characteristics of indoor scenes. Our framework generalizes well to real-world indoor scene datasets, including Replica, ScanNet, and scenes captured with an iPhone. The versatility of our method is demonstrated through practical applications, such as virtual room tours and scene editing.
comment: Accepted to 3DV 2025. For project page, see this https://waldstein94.github.io/deep-polycuboid-fitting/
♻ ☆ Learning Physics From Video: Unsupervised Physical Parameter Estimation for Continuous Dynamical Systems
Extracting physical dynamical system parameters from recorded observations is key in natural science. Current methods for automatic parameter estimation from video train supervised deep networks on large datasets. Such datasets require labels, which are difficult to acquire. While some unsupervised techniques--which depend on frame prediction--exist, they suffer from long training times, initialization instabilities, only consider motion-based dynamical systems, and are evaluated mainly on synthetic data. In this work, we propose an unsupervised method to estimate the physical parameters of known, continuous governing equations from single videos suitable for different dynamical systems beyond motion and robust to initialization. Moreover, we remove the need for frame prediction by implementing a KL-divergence-based loss function in the latent space, which avoids convergence to trivial solutions and reduces model size and compute. We first evaluate our model on synthetic data, as commonly done. After which, we take the field closer to reality by recording Delfys75: our own real-world dataset of 75 videos for five different types of dynamical systems to evaluate our method and others. Our method compares favorably to others. %, yet, and real-world video datasets and demonstrate improved parameter estimation accuracy compared to existing methods. Code and data are available online:https://github.com/Alejandro-neuro/Learning_physics_from_video.
♻ ☆ Learnable Infinite Taylor Gaussian for Dynamic View Rendering
Capturing the temporal evolution of Gaussian properties such as position, rotation, and scale is a challenging task due to the vast number of time-varying parameters and the limited photometric data available, which generally results in convergence issues, making it difficult to find an optimal solution. While feeding all inputs into an end-to-end neural network can effectively model complex temporal dynamics, this approach lacks explicit supervision and struggles to generate high-quality transformation fields. On the other hand, using time-conditioned polynomial functions to model Gaussian trajectories and orientations provides a more explicit and interpretable solution, but requires significant handcrafted effort and lacks generalizability across diverse scenes. To overcome these limitations, this paper introduces a novel approach based on a learnable infinite Taylor Formula to model the temporal evolution of Gaussians. This method offers both the flexibility of an implicit network-based approach and the interpretability of explicit polynomial functions, allowing for more robust and generalizable modeling of Gaussian dynamics across various dynamic scenes. Extensive experiments on dynamic novel view rendering tasks are conducted on public datasets, demonstrating that the proposed method achieves state-of-the-art performance in this domain. More information is available on our project page(https://ellisonking.github.io/TaylorGaussian).
♻ ☆ SAMKD: Spatial-aware Adaptive Masking Knowledge Distillation for Object Detection
Most of recent attention-guided feature masking distillation methods perform knowledge transfer via global teacher attention maps without delving into fine-grained clues. Instead, performing distillation at finer granularity is conducive to uncovering local details supplementary to global knowledge transfer and reconstructing comprehensive student features. In this study, we propose a Spatial-aware Adaptive Masking Knowledge Distillation (SAMKD) framework for accurate object detection. Different from previous feature distillation methods which mainly perform single-scale feature masking, we develop spatially hierarchical feature masking distillation scheme, such that the object-aware locality is encoded during coarse-to-fine distillation process for improved feature reconstruction. In addition, our spatial-aware feature distillation strategy is combined with a masking logit distillation scheme in which region-specific feature difference between teacher and student networks is utilized to adaptively guide the distillation process. Thus, it can help the student model to better learn from the teacher counterpart with improved knowledge transfer and reduced gap. Extensive experiments for detection task demonstrate the superiority of our method. For example, when FCOS is used as teacher detector with ResNet101 backbone, our method improves the student network from 35.3\% to 38.8\% mAP, outperforming state-of-the-art distillation methods including MGD, FreeKD and DMKD.
♻ ☆ GaussTR: Foundation Model-Aligned Gaussian Transformer for Self-Supervised 3D Spatial Understanding CVPR 2025
3D Semantic Occupancy Prediction is fundamental for spatial understanding, yet existing approaches face challenges in scalability and generalization due to their reliance on extensive labeled data and computationally intensive voxel-wise representations. In this paper, we introduce GaussTR, a novel Gaussian-based Transformer framework that unifies sparse 3D modeling with foundation model alignment through Gaussian representations to advance 3D spatial understanding. GaussTR predicts sparse sets of Gaussians in a feed-forward manner to represent 3D scenes. By splatting the Gaussians into 2D views and aligning the rendered features with foundation models, GaussTR facilitates self-supervised 3D representation learning and enables open-vocabulary semantic occupancy prediction without requiring explicit annotations. Empirical experiments on the Occ3D-nuScenes dataset demonstrate GaussTR's state-of-the-art zero-shot performance of 12.27 mIoU, along with a 40% reduction in training time. These results highlight the efficacy of GaussTR for scalable and holistic 3D spatial understanding, with promising implications in autonomous driving and embodied agents. The code is available at https://github.com/hustvl/GaussTR.
comment: CVPR 2025
♻ ☆ Personalization Toolkit: Training Free Personalization of Large Vision Language Models
Large Vision Language Models (LVLMs) have significant potential to provide personalized assistance by adapting to the unique needs and preferences of individual users. The personalization of LVLMs has emerged as a field that focuses on customizing models to recognize specific object instances and provide tailored responses. However, current methodologies depend on time-consuming test-time training for each user and object, which proves to be impractical. This paper introduces a novel, training-free approach to LVLM personalization by leveraging pre-trained vision foundation models to extract distinct features, retrieval-augmented generation (RAG) techniques to recognize instances in the visual input, and visual prompting methods. Our model-agnostic vision toolkit enables flexible and efficient personalization without the need for extensive retraining. We demonstrate state-of-the-art results, surpassing conventional training-based approaches, and set a new benchmark for LVLM personalization.
♻ ☆ BI-RADS prediction of mammographic masses using uncertainty information extracted from a Bayesian Deep Learning model
The BI_RADS score is a probabilistic reporting tool used by radiologists to express the level of uncertainty in predicting breast cancer based on some morphological features in mammography images. There is a significant variability in describing masses which sometimes leads to BI_RADS misclassification. Using a BI_RADS prediction system is required to support the final radiologist decisions. In this study, the uncertainty information extracted by a Bayesian deep learning model is utilized to predict the BI_RADS score. The investigation results based on the pathology information demonstrate that the f1-scores of the predictions of the radiologist are 42.86%, 48.33% and 48.28%, meanwhile, the f1-scores of the model performance are 73.33%, 59.60% and 59.26% in the BI_RADS 2, 3 and 5 dataset samples, respectively. Also, the model can distinguish malignant from benign samples in the BI_RADS 0 category of the used dataset with an accuracy of 75.86% and correctly identify all malignant samples as BI_RADS 5. The Grad-CAM visualization shows the model pays attention to the morphological features of the lesions. Therefore, this study shows the uncertainty-aware Bayesian Deep Learning model can report his uncertainty about the malignancy of a lesion based on morphological features, like a radiologist.
♻ ☆ From Objects to Events: Unlocking Complex Visual Understanding in Object Detectors via LLM-guided Symbolic Reasoning
Our key innovation lies in bridging the semantic gap between object detection and event understanding without requiring expensive task-specific training. The proposed plug-and-play framework interfaces with any open-vocabulary detector while extending their inherent capabilities across architectures. At its core, our approach combines (i) a symbolic regression mechanism exploring relationship patterns among detected entities and (ii) a LLM-guided strategically guiding the search toward meaningful expressions. These discovered symbolic rules transform low-level visual perception into interpretable event understanding, providing a transparent reasoning path from objects to events with strong transferability across domains.We compared our training-free framework against specialized event recognition systems across diverse application domains. Experiments demonstrate that our framework enhances multiple object detector architectures to recognize complex events such as illegal fishing activities (75% AUROC, +8.36% improvement), construction safety violations (+15.77%), and abnormal crowd behaviors (+23.16%). The code will be released soon.
comment: 13 pages, 5 figures
♻ ☆ A Vision Centric Remote Sensing Benchmark
Multimodal Large Language Models (MLLMs) have achieved remarkable success in vision-language tasks but their remote sensing (RS) counterpart are relatively under explored. Unlike natural images, RS imagery presents unique challenges that current MLLMs struggle to handle, particularly in visual grounding and spatial reasoning. This study investigates the limitations of CLIP-based MLLMs in RS, highlighting their failure to differentiate visually distinct yet semantically similar RS images. To address this, we introduce a remote sensing multimodal visual patterns (RSMMVP) benchmark. It is designed to evaluate MLLMs in RS tasks by identifying the CLIP-blind pairs, where CLIP-based models incorrectly assign high similarity scores to visually distinct RS images. Through a visual question answering (VQA) evaluation, we analyze the performance of state-of-the-art MLLMs, revealing significant limitations in RS specific representation learning. The results provide valuable insights into the weaknesses of CLIP-based visual encoding and offer a foundation for future research to develop more effective MLLMs tailored for remote sensing applications.
comment: Under Review
♻ ☆ No Thing, Nothing: Highlighting Safety-Critical Classes for Robust LiDAR Semantic Segmentation in Adverse Weather CVPR 2025
Existing domain generalization methods for LiDAR semantic segmentation under adverse weather struggle to accurately predict "things" categories compared to "stuff" categories. In typical driving scenes, "things" categories can be dynamic and associated with higher collision risks, making them crucial for safe navigation and planning. Recognizing the importance of "things" categories, we identify their performance drop as a serious bottleneck in existing approaches. We observed that adverse weather induces degradation of semantic-level features and both corruption of local features, leading to a misprediction of "things" as "stuff". To mitigate these corruptions, we suggest our method, NTN - segmeNt Things for No-accident. To address semantic-level feature corruption, we bind each point feature to its superclass, preventing the misprediction of things classes into visually dissimilar categories. Additionally, to enhance robustness against local corruption caused by adverse weather, we define each LiDAR beam as a local region and propose a regularization term that aligns the clean data with its corrupted counterpart in feature space. NTN achieves state-of-the-art performance with a +2.6 mIoU gain on the SemanticKITTI-to-SemanticSTF benchmark and +7.9 mIoU on the SemanticPOSS-to-SemanticSTF benchmark. Notably, NTN achieves a +4.8 and +7.9 mIoU improvement on "things" classes, respectively, highlighting its effectiveness.
comment: 18 pages, accepted in CVPR 2025
♻ ☆ Attention Overlap Is Responsible for The Entity Missing Problem in Text-to-image Diffusion Models!
Text-to-image diffusion models, such as Stable Diffusion and DALL-E, are capable of generating high-quality, diverse, and realistic images from textual prompts. However, they sometimes struggle to accurately depict specific entities described in prompts, a limitation known as the entity missing problem in compositional generation. While prior studies suggested that adjusting cross-attention maps during the denoising process could alleviate this problem, they did not systematically investigate which objective functions could best address it. This study examines three potential causes of the entity-missing problem, focusing on cross-attention dynamics: (1) insufficient attention intensity for certain entities, (2) overly broad attention spread, and (3) excessive overlap between attention maps of different entities. We found that reducing overlap in attention maps between entities can effectively minimize the rate of entity missing. Specifically, we hypothesize that tokens related to specific entities compete for attention on certain image regions during the denoising process, which can lead to divided attention across tokens and prevent accurate representation of each entity. To address this issue, we introduced four loss functions, Intersection over Union (IoU), center-of-mass (CoM) distance, Kullback-Leibler (KL) divergence, and clustering compactness (CC) to regulate attention overlap during denoising steps without the need for retraining. Experimental results across a wide variety of benchmarks reveal that these proposed training-free methods significantly improve compositional accuracy, outperforming previous approaches in visual question answering (VQA), captioning scores, CLIP similarity, and human evaluations. Notably, these methods improved human evaluation scores by 9% over the best baseline, demonstrating substantial improvements in compositional alignment.
comment: TMLR - 2025
♻ ☆ GUI-World: A Video Benchmark and Dataset for Multimodal GUI-oriented Understanding ICLR 2025
Recently, Multimodal Large Language Models (MLLMs) have been used as agents to control keyboard and mouse inputs by directly perceiving the Graphical User Interface (GUI) and generating corresponding commands. However, current agents primarily demonstrate strong understanding capabilities in static environments and are mainly applied to relatively simple domains, such as Web or mobile interfaces. We argue that a robust GUI agent should be capable of perceiving temporal information on the GUI, including dynamic Web content and multi-step tasks. Additionally, it should possess a comprehensive understanding of various GUI scenarios, including desktop software and multi-window interactions. To this end, this paper introduces a new dataset, termed GUI-World, which features meticulously crafted Human-MLLM annotations, extensively covering six GUI scenarios and eight types of GUI-oriented questions in three formats. We evaluate the capabilities of current state-of-the-art MLLMs, including Image LLMs and Video LLMs, in understanding various types of GUI content, especially dynamic and sequential content. Our findings reveal that current models struggle with dynamic GUI content without manually annotated keyframes or operation history. On the other hand, Video LLMs fall short in all GUI-oriented tasks given the sparse GUI video dataset. Therefore, we take the initial step of leveraging a fine-tuned Video LLM, GUI-Vid, as a GUI-oriented assistant, demonstrating an improved understanding of various GUI tasks. However, due to the limitations in the performance of base LLMs, we conclude that using video LLMs as GUI agents remains a significant challenge. We believe our work provides valuable insights for future research in dynamic GUI content understanding. All the dataset and code are publicly available at: https://gui-world.github.io.
comment: Accepted by ICLR 2025
♻ ☆ Grounded Chain-of-Thought for Multimodal Large Language Models
Despite great progress, existing multimodal large language models (MLLMs) are prone to visual hallucination, greatly impeding their trustworthy applications. In this paper, we study this problem from the perspective of visual-spatial reasoning, and propose a new learning task for MLLMs, termed Grounded Chain-of-Thought (GCoT). Different from recent visual CoT studies, which focus more on visual knowledge reasoning, GCoT is keen to helping MLLMs to recognize and ground the relevant visual cues step by step, thereby predicting the correct answer with grounding coordinates as the intuitive basis. To facilitate this task, we also carefully design and construct a dataset called multimodal grounded chain-of-thought (MM-GCoT) consisting of 24,022 GCoT examples for 5,033 images. Besides, a comprehensive consistency evaluation system is also introduced, including the metrics of answer accuracy, grounding accuracy and answer-grounding consistency. We further design and conduct a bunch of experiments on 12 advanced MLLMs, and reveal some notable findings: i. most MLLMs performs poorly on the consistency evaluation, indicating obvious visual hallucination; ii. visual hallucination is not directly related to the parameter size and general multimodal performance, i.e., a larger and stronger MLLM is not less affected by this issue. Lastly, we also demonstrate that the proposed dataset can help existing MLLMs to well cultivate their GCoT capability and reduce the inconsistent answering significantly. Moreover, their GCoT can be also generalized to exiting multimodal tasks, such as open-world QA and REC.
♻ ☆ FLARE: Feed-forward Geometry, Appearance and Camera Estimation from Uncalibrated Sparse Views CVPR 2025
We present FLARE, a feed-forward model designed to infer high-quality camera poses and 3D geometry from uncalibrated sparse-view images (i.e., as few as 2-8 inputs), which is a challenging yet practical setting in real-world applications. Our solution features a cascaded learning paradigm with camera pose serving as the critical bridge, recognizing its essential role in mapping 3D structures onto 2D image planes. Concretely, FLARE starts with camera pose estimation, whose results condition the subsequent learning of geometric structure and appearance, optimized through the objectives of geometry reconstruction and novel-view synthesis. Utilizing large-scale public datasets for training, our method delivers state-of-the-art performance in the tasks of pose estimation, geometry reconstruction, and novel view synthesis, while maintaining the inference efficiency (i.e., less than 0.5 seconds). The project page and code can be found at: https://zhanghe3z.github.io/FLARE/
comment: CVPR 2025. Website: https://zhanghe3z.github.io/FLARE/
♻ ☆ Task-driven Image Fusion with Learnable Fusion Loss CVPR 2025
Multi-modal image fusion aggregates information from multiple sensor sources, achieving superior visual quality and perceptual features compared to single-source images, often improving downstream tasks. However, current fusion methods for downstream tasks still use predefined fusion objectives that potentially mismatch the downstream tasks, limiting adaptive guidance and reducing model flexibility. To address this, we propose Task-driven Image Fusion (TDFusion), a fusion framework incorporating a learnable fusion loss guided by task loss. Specifically, our fusion loss includes learnable parameters modeled by a neural network called the loss generation module. This module is supervised by the downstream task loss in a meta-learning manner. The learning objective is to minimize the task loss of fused images after optimizing the fusion module with the fusion loss. Iterative updates between the fusion module and the loss module ensure that the fusion network evolves toward minimizing task loss, guiding the fusion process toward the task objectives. TDFusion's training relies entirely on the downstream task loss, making it adaptable to any specific task. It can be applied to any architecture of fusion and task networks. Experiments demonstrate TDFusion's performance through fusion experiments conducted on four different datasets, in addition to evaluations on semantic segmentation and object detection tasks.
comment: Accepted to CVPR 2025
♻ ☆ ComicsPAP: understanding comic strips by picking the correct panel
Large multimodal models (LMMs) have made impressive strides in image captioning, VQA, and video comprehension, yet they still struggle with the intricate temporal and spatial cues found in comics. To address this gap, we introduce ComicsPAP, a large-scale benchmark designed for comic strip understanding. Comprising over 100k samples and organized into 5 subtasks under a Pick-a-Panel framework, ComicsPAP demands models to identify the missing panel in a sequence. Our evaluations, conducted under both multi-image and single-image protocols, reveal that current state-of-the-art LMMs perform near chance on these tasks, underscoring significant limitations in capturing sequential and contextual dependencies. To close the gap, we adapted LMMs for comic strip understanding, obtaining better results on ComicsPAP than 10x bigger models, demonstrating that ComicsPAP offers a robust resource to drive future research in multimodal comic comprehension.
♻ ☆ Continual Low-Rank Scaled Dot-product Attention
Transformers are widely used for their ability to capture data relations in sequence processing, with great success for a wide range of static tasks. However, the computational and memory footprint of their main component, i.e., the Scaled Dot-product Attention, is commonly overlooked. This makes their adoption in applications involving stream data processing with constraints in response latency, computational and memory resources infeasible. Some works have proposed methods to lower the computational cost of Transformers, i.e. low-rank approximations, sparsity in attention, and efficient formulations for Continual Inference. In this paper, we introduce a new formulation of the Scaled Dot-product Attention based on the Nystr\"om approximation that is suitable for Continual Inference. In experiments on Online Audio Classification and Online Action Detection tasks, the proposed Continual Scaled Dot-product Attention can lower the number of operations by up to three orders of magnitude compared to the original Transformers while retaining the predictive performance of competing models.
comment: 14 pages, 7 figures
♻ ☆ Fractal Calibration for long-tailed object detection CVPR2025
Real-world datasets follow an imbalanced distribution, which poses significant challenges in rare-category object detection. Recent studies tackle this problem by developing re-weighting and re-sampling methods, that utilise the class frequencies of the dataset. However, these techniques focus solely on the frequency statistics and ignore the distribution of the classes in image space, missing important information. In contrast to them, we propose FRActal CALibration (FRACAL): a novel post-calibration method for long-tailed object detection. FRACAL devises a logit adjustment method that utilises the fractal dimension to estimate how uniformly classes are distributed in image space. During inference, it uses the fractal dimension to inversely downweight the probabilities of uniformly spaced class predictions achieving balance in two axes: between frequent and rare categories, and between uniformly spaced and sparsely spaced classes. FRACAL is a post-processing method and it does not require any training, also it can be combined with many off-the-shelf models such as one-stage sigmoid detectors and two-stage instance segmentation models. FRACAL boosts the rare class performance by up to 8.6% and surpasses all previous methods on LVIS dataset, while showing good generalisation to other datasets such as COCO, V3Det and OpenImages. We provide the code at https://github.com/kostas1515/FRACAL.
comment: CVPR2025 (camera-ready)
♻ ☆ Constraint-Aware Feature Learning for Parametric Point Cloud
Parametric point clouds are sampled from CAD shapes and are becoming increasingly common in industrial manufacturing. Most existing CAD-specific deep learning methods only focus on geometric features, while overlooking constraints which are inherent and important in CAD shapes. This limits their ability to discern CAD shapes with similar appearance but different constraints. To tackle this challenge, we first analyze the constraint importance via a simple validation experiment. Then, we introduce a deep learning-friendly constraints representation with three vectorized components, and design a constraint-aware feature learning network (CstNet), which includes two stages. Stage 1 extracts constraint feature from B-Rep data or point cloud based on shape local information. It enables better generalization ability to unseen dataset after model pre-training. Stage 2 employs attention layers to adaptively adjust the weights of three constraints' components. It facilitates the effective utilization of constraints. In addition, we built the first multi-modal parametric-purpose dataset, i.e. Param20K, comprising about 20K shape instances of 75 classes. On this dataset, we performed the classification and rotation robustness experiments, and CstNet achieved 3.52\% and 26.17\% absolute improvements in instance accuracy over the state-of-the-art methods, respectively. To the best of our knowledge, CstNet is the first constraint-aware deep learning method tailored for parametric point cloud analysis in CAD domain.
♻ ☆ APLA: A Simple Adaptation Method for Vision Transformers
Existing adaptation techniques typically require architectural modifications or added parameters, leading to high computational costs and complexity. We introduce Attention Projection Layer Adaptation (APLA), a simple approach to adapt vision transformers (ViTs) without altering the architecture or adding parameters. Through a systematic analysis, we find that the layer immediately after the attention mechanism is crucial for adaptation. By updating only this projection layer, or even just a random subset of this layer's weights, APLA achieves state-of-the-art performance while reducing GPU memory usage by up to 52.63% and training time by up to 43.0%, with no extra cost at inference. Across 46 datasets covering a variety of tasks including scene classification, medical imaging, satellite imaging, and fine-grained classification, APLA consistently outperforms 17 other leading adaptation methods, including full fine-tuning, on classification, segmentation, and detection tasks. The code is available at https://github.com/MoeinSorkhei/APLA.
♻ ☆ Auto Cherry-Picker: Learning from High-quality Generative Data Driven by Language CVPR2025
Diffusion models can generate realistic and diverse images, potentially facilitating data availability for data-intensive perception tasks. However, leveraging these models to boost performance on downstream tasks with synthetic data poses several challenges, including aligning with real data distribution, scaling synthetic sample volumes, and ensuring their quality. To bridge these gaps, we present \textbf{A}uto \textbf{C}herry-\textbf{P}icker (ACP), a novel framework that generates high-quality cross-modality training samples at scale to augment perception and multi-modal training. ACP first uses LLMs to sample descriptions and layouts based on object combinations from real data priors, eliminating the need for ground truth image captions or annotations. Next, we use an off-the-shelf controllable diffusion model to generate multiple images. Then, the generated data are refined using a comprehensively designed metric, Composite Layout and Image Score (CLIS), to ensure quality. Our customized synthetic high-quality samples boost performance in various scenarios, especially in addressing challenges associated with long-tailed distribution and imbalanced datasets. Experiment results on downstream tasks demonstrate that ACP can significantly improve the performance of existing models. In addition, we find a positive correlation between CLIS and performance gains in downstream tasks. This finding shows the potential for evaluation metrics as the role for various visual perception and MLLM tasks.
comment: Accepted to CVPR2025
♻ ☆ Forensics Adapter: Adapting CLIP for Generalizable Face Forgery Detection CVPR 2025
We describe the Forensics Adapter, an adapter network designed to transform CLIP into an effective and generalizable face forgery detector. Although CLIP is highly versatile, adapting it for face forgery detection is non-trivial as forgery-related knowledge is entangled with a wide range of unrelated knowledge. Existing methods treat CLIP merely as a feature extractor, lacking task-specific adaptation, which limits their effectiveness. To address this, we introduce an adapter to learn face forgery traces -- the blending boundaries unique to forged faces, guided by task-specific objectives. Then we enhance the CLIP visual tokens with a dedicated interaction strategy that communicates knowledge across CLIP and the adapter. Since the adapter is alongside CLIP, its versatility is highly retained, naturally ensuring strong generalizability in face forgery detection. With only 5.7M trainable parameters, our method achieves a significant performance boost, improving by approximately 7% on average across five standard datasets. We believe the proposed method can serve as a baseline for future CLIP-based face forgery detection methods. The code is available at https://github.com/OUC-VAS/ForensicsAdapter.
comment: CVPR 2025
Artificial Intelligence 174
☆ Video-T1: Test-Time Scaling for Video Generation
With the scale capability of increasing training data, model size, and computational cost, video generation has achieved impressive results in digital creation, enabling users to express creativity across various domains. Recently, researchers in Large Language Models (LLMs) have expanded the scaling to test-time, which can significantly improve LLM performance by using more inference-time computation. Instead of scaling up video foundation models through expensive training costs, we explore the power of Test-Time Scaling (TTS) in video generation, aiming to answer the question: if a video generation model is allowed to use non-trivial amount of inference-time compute, how much can it improve generation quality given a challenging text prompt. In this work, we reinterpret the test-time scaling of video generation as a searching problem to sample better trajectories from Gaussian noise space to the target video distribution. Specifically, we build the search space with test-time verifiers to provide feedback and heuristic algorithms to guide searching process. Given a text prompt, we first explore an intuitive linear search strategy by increasing noise candidates at inference time. As full-step denoising all frames simultaneously requires heavy test-time computation costs, we further design a more efficient TTS method for video generation called Tree-of-Frames (ToF) that adaptively expands and prunes video branches in an autoregressive manner. Extensive experiments on text-conditioned video generation benchmarks demonstrate that increasing test-time compute consistently leads to significant improvements in the quality of videos. Project page: https://liuff19.github.io/Video-T1
comment: Project page: https://liuff19.github.io/Video-T1
☆ AdaWorld: Learning Adaptable World Models with Latent Actions
World models aim to learn action-controlled prediction models and have proven essential for the development of intelligent agents. However, most existing world models rely heavily on substantial action-labeled data and costly training, making it challenging to adapt to novel environments with heterogeneous actions through limited interactions. This limitation can hinder their applicability across broader domains. To overcome this challenge, we propose AdaWorld, an innovative world model learning approach that enables efficient adaptation. The key idea is to incorporate action information during the pretraining of world models. This is achieved by extracting latent actions from videos in a self-supervised manner, capturing the most critical transitions between frames. We then develop an autoregressive world model that conditions on these latent actions. This learning paradigm enables highly adaptable world models, facilitating efficient transfer and learning of new actions even with limited interactions and finetuning. Our comprehensive experiments across multiple environments demonstrate that AdaWorld achieves superior performance in both simulation quality and visual planning.
comment: Project page: https://adaptable-world-model.github.io/
☆ Statistical Proof of Execution (SPEX)
Many real-world applications are increasingly incorporating automated decision-making, driven by the widespread adoption of ML/AI inference for planning and guidance. This study examines the growing need for verifiable computing in autonomous decision-making. We formalize the problem of verifiable computing and introduce a sampling-based protocol that is significantly faster, more cost-effective, and simpler than existing methods. Furthermore, we tackle the challenges posed by non-determinism, proposing a set of strategies to effectively manage common scenarios.
☆ SimpleRL-Zoo: Investigating and Taming Zero Reinforcement Learning for Open Base Models in the Wild
DeepSeek-R1 has shown that long chain-of-thought (CoT) reasoning can naturally emerge through a simple reinforcement learning (RL) framework with rule-based rewards, where the training may directly start from the base models-a paradigm referred to as zero RL training. Most recent efforts to reproduce zero RL training have primarily focused on the Qwen2.5 model series, which may not be representative as we find the base models already exhibit strong instruction-following and self-reflection abilities. In this work, we investigate zero RL training across 10 diverse base models, spanning different families and sizes including LLama3-8B, Mistral-7B/24B, DeepSeek-Math-7B, Qwen2.5-math-7B, and all Qwen2.5 models from 0.5B to 32B. Leveraging several key design strategies-such as adjusting format reward and controlling query difficulty-we achieve substantial improvements in both reasoning accuracy and response length across most settings. However, by carefully monitoring the training dynamics, we observe that different base models exhibit distinct patterns during training. For instance, the increased response length does not always correlate with the emergence of certain cognitive behaviors such as verification (i.e., the "aha moment"). Notably, we observe the "aha moment" for the first time in small models not from the Qwen family. We share the key designs that enable successful zero RL training, along with our findings and practices. To facilitate further research, we open-source the code, models, and analysis tools.
☆ AgentDropout: Dynamic Agent Elimination for Token-Efficient and High-Performance LLM-Based Multi-Agent Collaboration
Multi-agent systems (MAS) based on large language models (LLMs) have demonstrated significant potential in collaborative problem-solving. However, they still face substantial challenges of low communication efficiency and suboptimal task performance, making the careful design of the agents' communication topologies particularly important. Inspired by the management theory that roles in an efficient team are often dynamically adjusted, we propose AgentDropout, which identifies redundant agents and communication across different communication rounds by optimizing the adjacency matrices of the communication graphs and eliminates them to enhance both token efficiency and task performance. Compared to state-of-the-art methods, AgentDropout achieves an average reduction of 21.6% in prompt token consumption and 18.4% in completion token consumption, along with a performance improvement of 1.14 on the tasks. Furthermore, the extended experiments demonstrate that AgentDropout achieves notable domain transferability and structure robustness, revealing its reliability and effectiveness. We release our code at https://github.com/wangzx1219/AgentDropout.
☆ Bootstrapped Model Predictive Control ICLR 2025
Model Predictive Control (MPC) has been demonstrated to be effective in continuous control tasks. When a world model and a value function are available, planning a sequence of actions ahead of time leads to a better policy. Existing methods typically obtain the value function and the corresponding policy in a model-free manner. However, we find that such an approach struggles with complex tasks, resulting in poor policy learning and inaccurate value estimation. To address this problem, we leverage the strengths of MPC itself. In this work, we introduce Bootstrapped Model Predictive Control (BMPC), a novel algorithm that performs policy learning in a bootstrapped manner. BMPC learns a network policy by imitating an MPC expert, and in turn, uses this policy to guide the MPC process. Combined with model-based TD-learning, our policy learning yields better value estimation and further boosts the efficiency of MPC. We also introduce a lazy reanalyze mechanism, which enables computationally efficient imitation learning. Our method achieves superior performance over prior works on diverse continuous control tasks. In particular, on challenging high-dimensional locomotion tasks, BMPC significantly improves data efficiency while also enhancing asymptotic performance and training stability, with comparable training time and smaller network sizes. Code is available at https://github.com/wertyuilife2/bmpc.
comment: Published as a conference paper at ICLR 2025
☆ Reasoning to Learn from Latent Thoughts
Compute scaling for language model (LM) pretraining has outpaced the growth of human-written texts, leading to concerns that data will become the bottleneck to LM scaling. To continue scaling pretraining in this data-constrained regime, we propose that explicitly modeling and inferring the latent thoughts that underlie the text generation process can significantly improve pretraining data efficiency. Intuitively, our approach views web text as the compressed final outcome of a verbose human thought process and that the latent thoughts contain important contextual knowledge and reasoning steps that are critical to data-efficient learning. We empirically demonstrate the effectiveness of our approach through data-constrained continued pretraining for math. We first show that synthetic data approaches to inferring latent thoughts significantly improve data efficiency, outperforming training on the same amount of raw data (5.7\% $\rightarrow$ 25.4\% on MATH). Furthermore, we demonstrate latent thought inference without a strong teacher, where an LM bootstraps its own performance by using an EM algorithm to iteratively improve the capability of the trained LM and the quality of thought-augmented pretraining data. We show that a 1B LM can bootstrap its performance across at least three iterations and significantly outperform baselines trained on raw data, with increasing gains from additional inference compute when performing the E-step. The gains from inference scaling and EM iterations suggest new opportunities for scaling data-constrained pretraining.
☆ Exploring the Integration of Key-Value Attention Into Pure and Hybrid Transformers for Semantic Segmentation
While CNNs were long considered state of the art for image processing, the introduction of Transformer architectures has challenged this position. While achieving excellent results in image classification and segmentation, Transformers remain inherently reliant on large training datasets and remain computationally expensive. A newly introduced Transformer derivative named KV Transformer shows promising results in synthetic, NLP, and image classification tasks, while reducing complexity and memory usage. This is especially conducive to use cases where local inference is required, such as medical screening applications. We endeavoured to further evaluate the merit of KV Transformers on semantic segmentation tasks, specifically in the domain of medical imaging. By directly comparing traditional and KV variants of the same base architectures, we provide further insight into the practical tradeoffs of reduced model complexity. We observe a notable reduction in parameter count and multiply accumulate operations, while achieving similar performance from most of the KV variant models when directly compared to their QKV implementation.
comment: 6 pages, 3 figures, Preprint. Final version published in: Bildverarbeitung f\"ur die Medizin 2025, Springer. DOI: https://doi.org/10.1007/978-3-658-47422-5_71
☆ Self-Organizing Graph Reasoning Evolves into a Critical State for Continuous Discovery Through Structural-Semantic Dynamics
We report fundamental insights into how agentic graph reasoning systems spontaneously evolve toward a critical state that sustains continuous semantic discovery. By rigorously analyzing structural (Von Neumann graph entropy) and semantic (embedding) entropy, we identify a subtle yet robust regime in which semantic entropy persistently dominates over structural entropy. This interplay is quantified by a dimensionless Critical Discovery Parameter that stabilizes at a small negative value, indicating a consistent excess of semantic entropy. Empirically, we observe a stable fraction (12%) of "surprising" edges, links between semantically distant concepts, providing evidence of long-range or cross-domain connections that drive continuous innovation. Concomitantly, the system exhibits scale-free and small-world topological features, alongside a negative cross-correlation between structural and semantic measures, reinforcing the analogy to self-organized criticality. These results establish clear parallels with critical phenomena in physical, biological, and cognitive complex systems, revealing an entropy-based principle governing adaptability and continuous innovation. Crucially, semantic richness emerges as the underlying driver of sustained exploration, despite not being explicitly used by the reasoning process. Our findings provide interdisciplinary insights and practical strategies for engineering intelligent systems with intrinsic capacities for long-term discovery and adaptation, and offer insights into how model training strategies can be developed that reinforce critical discovery.
☆ Three Kinds of AI Ethics
There is an overwhelmingly abundance of works in AI Ethics. This growth is chaotic because of how sudden it is, its volume, and its multidisciplinary nature. This makes difficult to keep track of debates, and to systematically characterize goals, research questions, methods, and expertise required by AI ethicists. In this article, I show that the relation between AI and ethics can be characterized in at least three ways, which correspond to three well-represented kinds of AI ethics: ethics and AI; ethics in AI; ethics of AI. I elucidate the features of these three kinds of AI Ethics, characterize their research questions, and identify the kind of expertise that each kind needs. I also show how certain criticisms to AI ethics are misplaced, as being done from the point of view of one kind of AI ethics, to another kind with different goals. All in all, this work sheds light on the nature of AI ethics, and set the grounds for more informed discussions about scope, methods, and trainings of AI ethicists.
comment: 16 pages, two figures
☆ Dual-domain Multi-path Self-supervised Diffusion Model for Accelerated MRI Reconstruction
Magnetic resonance imaging (MRI) is a vital diagnostic tool, but its inherently long acquisition times reduce clinical efficiency and patient comfort. Recent advancements in deep learning, particularly diffusion models, have improved accelerated MRI reconstruction. However, existing diffusion models' training often relies on fully sampled data, models incur high computational costs, and often lack uncertainty estimation, limiting their clinical applicability. To overcome these challenges, we propose a novel framework, called Dual-domain Multi-path Self-supervised Diffusion Model (DMSM), that integrates a self-supervised dual-domain diffusion model training scheme, a lightweight hybrid attention network for the reconstruction diffusion model, and a multi-path inference strategy, to enhance reconstruction accuracy, efficiency, and explainability. Unlike traditional diffusion-based models, DMSM eliminates the dependency on training from fully sampled data, making it more practical for real-world clinical settings. We evaluated DMSM on two human MRI datasets, demonstrating that it achieves favorable performance over several supervised and self-supervised baselines, particularly in preserving fine anatomical structures and suppressing artifacts under high acceleration factors. Additionally, our model generates uncertainty maps that correlate reasonably well with reconstruction errors, offering valuable clinically interpretable guidance and potentially enhancing diagnostic confidence.
comment: 10 pages, 8 figures, 5 tables
☆ Interpretable and Fair Mechanisms for Abstaining Classifiers ECML
Abstaining classifiers have the option to refrain from providing a prediction for instances that are difficult to classify. The abstention mechanism is designed to trade off the classifier's performance on the accepted data while ensuring a minimum number of predictions. In this setting, often fairness concerns arise when the abstention mechanism solely reduces errors for the majority groups of the data, resulting in increased performance differences across demographic groups. While there exist a bunch of methods that aim to reduce discrimination when abstaining, there is no mechanism that can do so in an explainable way. In this paper, we fill this gap by introducing Interpretable and Fair Abstaining Classifier IFAC, an algorithm that can reject predictions both based on their uncertainty and their unfairness. By rejecting possibly unfair predictions, our method reduces error and positive decision rate differences across demographic groups of the non-rejected data. Since the unfairness-based rejections are based on an interpretable-by-design method, i.e., rule-based fairness checks and situation testing, we create a transparent process that can empower human decision-makers to review the unfair predictions and make more just decisions for them. This explainable aspect is especially important in light of recent AI regulations, mandating that any high-risk decision task should be overseen by human experts to reduce discrimination risks.
comment: 25 pages, 8 figures. In: Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2024
☆ EconEvals: Benchmarks and Litmus Tests for LLM Agents in Unknown Environments
We develop benchmarks for LLM agents that act in, learn from, and strategize in unknown environments, the specifications of which the LLM agent must learn over time from deliberate exploration. Our benchmarks consist of decision-making tasks derived from key problems in economics. To forestall saturation, the benchmark tasks are synthetically generated with scalable difficulty levels. Additionally, we propose litmus tests, a new kind of quantitative measure for LLMs and LLM agents. Unlike benchmarks, litmus tests quantify differences in character, values, and tendencies of LLMs and LLM agents, by considering their behavior when faced with tradeoffs (e.g., efficiency versus equality) where there is no objectively right or wrong behavior. Overall, our benchmarks and litmus tests assess the abilities and tendencies of LLM agents in tackling complex economic problems in diverse settings spanning procurement, scheduling, task allocation, and pricing -- applications that should grow in importance as such agents are further integrated into the economy.
☆ Enhanced OoD Detection through Cross-Modal Alignment of Multi-Modal Representations CVPR 2025
Prior research on out-of-distribution detection (OoDD) has primarily focused on single-modality models. Recently, with the advent of large-scale pretrained vision-language models such as CLIP, OoDD methods utilizing such multi-modal representations through zero-shot and prompt learning strategies have emerged. However, these methods typically involve either freezing the pretrained weights or only partially tuning them, which can be suboptimal for downstream datasets. In this paper, we highlight that multi-modal fine-tuning (MMFT) can achieve notable OoDD performance. Despite some recent works demonstrating the impact of fine-tuning methods for OoDD, there remains significant potential for performance improvement. We investigate the limitation of na\"ive fine-tuning methods, examining why they fail to fully leverage the pretrained knowledge. Our empirical analysis suggests that this issue could stem from the modality gap within in-distribution (ID) embeddings. To address this, we propose a training objective that enhances cross-modal alignment by regularizing the distances between image and text embeddings of ID data. This adjustment helps in better utilizing pretrained textual information by aligning similar semantics from different modalities (i.e., text and image) more closely in the hyperspherical representation space. We theoretically demonstrate that the proposed regularization corresponds to the maximum likelihood estimation of an energy-based model on a hypersphere. Utilizing ImageNet-1k OoD benchmark datasets, we show that our method, combined with post-hoc OoDD approaches leveraging pretrained knowledge (e.g., NegLabel), significantly outperforms existing methods, achieving state-of-the-art OoDD performance and leading ID accuracy.
comment: CVPR 2025
☆ Learning Multi-Robot Coordination through Locality-Based Factorized Multi-Agent Actor-Critic Algorithm
In this work, we present a novel cooperative multi-agent reinforcement learning method called \textbf{Loc}ality based \textbf{Fac}torized \textbf{M}ulti-Agent \textbf{A}ctor-\textbf{C}ritic (Loc-FACMAC). Existing state-of-the-art algorithms, such as FACMAC, rely on global reward information, which may not accurately reflect the quality of individual robots' actions in decentralized systems. We integrate the concept of locality into critic learning, where strongly related robots form partitions during training. Robots within the same partition have a greater impact on each other, leading to more precise policy evaluation. Additionally, we construct a dependency graph to capture the relationships between robots, facilitating the partitioning process. This approach mitigates the curse of dimensionality and prevents robots from using irrelevant information. Our method improves existing algorithms by focusing on local rewards and leveraging partition-based learning to enhance training efficiency and performance. We evaluate the performance of Loc-FACMAC in three environments: Hallway, Multi-cartpole, and Bounded-Cooperative-Navigation. We explore the impact of partition sizes on the performance and compare the result with baseline MARL algorithms such as LOMAQ, FACMAC, and QMIX. The experiments reveal that, if the locality structure is defined properly, Loc-FACMAC outperforms these baseline algorithms up to 108\%, indicating that exploiting the locality structure in the actor-critic framework improves the MARL performance.
☆ Towards Responsible AI Music: an Investigation of Trustworthy Features for Creative Systems
Generative AI is radically changing the creative arts, by fundamentally transforming the way we create and interact with cultural artefacts. While offering unprecedented opportunities for artistic expression and commercialisation, this technology also raises ethical, societal, and legal concerns. Key among these are the potential displacement of human creativity, copyright infringement stemming from vast training datasets, and the lack of transparency, explainability, and fairness mechanisms. As generative systems become pervasive in this domain, responsible design is crucial. Whilst previous work has tackled isolated aspects of generative systems (e.g., transparency, evaluation, data), we take a comprehensive approach, grounding these efforts within the Ethics Guidelines for Trustworthy Artificial Intelligence produced by the High-Level Expert Group on AI appointed by the European Commission - a framework for designing responsible AI systems across seven macro requirements. Focusing on generative music AI, we illustrate how these requirements can be contextualised for the field, addressing trustworthiness across multiple dimensions and integrating insights from the existing literature. We further propose a roadmap for operationalising these contextualised requirements, emphasising interdisciplinary collaboration and stakeholder engagement. Our work provides a foundation for designing and evaluating responsible music generation systems, calling for collaboration among AI experts, ethicists, legal scholars, and artists. This manuscript is accompanied by a website: https://amresearchlab.github.io/raim-framework/.
☆ Defeating Prompt Injections by Design
Large Language Models (LLMs) are increasingly deployed in agentic systems that interact with an external environment. However, LLM agents are vulnerable to prompt injection attacks when handling untrusted data. In this paper we propose CaMeL, a robust defense that creates a protective system layer around the LLM, securing it even when underlying models may be susceptible to attacks. To operate, CaMeL explicitly extracts the control and data flows from the (trusted) query; therefore, the untrusted data retrieved by the LLM can never impact the program flow. To further improve security, CaMeL relies on a notion of a capability to prevent the exfiltration of private data over unauthorized data flows. We demonstrate effectiveness of CaMeL by solving $67\%$ of tasks with provable security in AgentDojo [NeurIPS 2024], a recent agentic security benchmark.
☆ Classical Planning with LLM-Generated Heuristics: Challenging the State of the Art with Python Code
In recent years, large language models (LLMs) have shown remarkable capabilities in various artificial intelligence problems. However, they fail to plan reliably, even when prompted with a detailed definition of the planning task. Attempts to improve their planning capabilities, such as chain-of-thought prompting, fine-tuning, and explicit "reasoning" still yield incorrect plans and usually fail to generalize to larger tasks. In this paper, we show how to use LLMs to generate correct plans, even for out-of-distribution tasks of increasing size. For a given planning domain, we ask an LLM to generate several domain-dependent heuristic functions in the form of Python code, evaluate them on a set of training tasks within a greedy best-first search, and choose the strongest one. The resulting LLM-generated heuristics solve many more unseen test tasks than state-of-the-art domain-independent heuristics for classical planning. They are even competitive with the strongest learning algorithm for domain-dependent planning. These findings are especially remarkable given that our proof-of-concept implementation is based on an unoptimized Python planner and the baselines all build upon highly optimized C++ code. In some domains, the LLM-generated heuristics expand fewer states than the baselines, revealing that they are not only efficiently computable, but sometimes even more informative than the state-of-the-art heuristics. Overall, our results show that sampling a set of planning heuristic function programs can significantly improve the planning capabilities of LLMs.
☆ REALM: A Dataset of Real-World LLM Use Cases
Large Language Models, such as the GPT series, have driven significant industrial applications, leading to economic and societal transformations. However, a comprehensive understanding of their real-world applications remains limited. To address this, we introduce REALM, a dataset of over 94,000 LLM use cases collected from Reddit and news articles. REALM captures two key dimensions: the diverse applications of LLMs and the demographics of their users. It categorizes LLM applications and explores how users' occupations relate to the types of applications they use. By integrating real-world data, REALM offers insights into LLM adoption across different domains, providing a foundation for future research on their evolving societal roles. A dedicated dashboard https://realm-e7682.web.app/ presents the data.
comment: 9 pages, 5 figures
☆ The case for delegated AI autonomy for Human AI teaming in healthcare
In this paper we propose an advanced approach to integrating artificial intelligence (AI) into healthcare: autonomous decision support. This approach allows the AI algorithm to act autonomously for a subset of patient cases whilst serving a supportive role in other subsets of patient cases based on defined delegation criteria. By leveraging the complementary strengths of both humans and AI, it aims to deliver greater overall performance than existing human-AI teaming models. It ensures safe handling of patient cases and potentially reduces clinician review time, whilst being mindful of AI tool limitations. After setting the approach within the context of current human-AI teaming models, we outline the delegation criteria and apply them to a specific AI-based tool used in histopathology. The potential impact of the approach and the regulatory requirements for its successful implementation are then discussed.
☆ BitDecoding: Unlocking Tensor Cores for Long-Context LLMs Decoding with Low-Bit KV Cache
The growing adoption of long-context Large Language Models (LLMs) has introduced significant memory and computational challenges in autoregressive decoding due to the expanding Key-Value (KV) cache. KV cache quantization has emerged as a promising solution, with prior work showing that 4-bit or even 2-bit quantization can maintain model accuracy while reducing memory costs. However, despite these benefits, preliminary implementations for the low-bit KV cache struggle to deliver the expected speedup due to quantization and dequantization overheads and the lack of Tensor Cores utilization. In this work, we propose BitDecoding, a GPU-optimized framework that unlocks Tensor Cores for efficient decoding with low-bit KV cache. Efficiently leveraging Tensor Cores for low-bit KV cache is challenging due to the dynamic nature of KV cache generation at each decoding step. BitDecoding addresses these challenges with a Tensor Cores-Centric BitFusion Scheme that ensures data layout compatibility to enable high utilization of Tensor Cores. Additionally, BitDecoding incorporates a warp-efficient parallel decoding kernel and a fine-grained asynchronous pipeline, minimizing dequantization overhead and improving computational efficiency. Experiments show that BitDecoding achieves up to 7.5x speedup on RTX 4090, 4.8x on A100, and 8.9x on H100, compared to FP16 FlashDecoding-v2. It also outperforms the state-of-the-art low-bit KV cache implementation (QServe) by up to 4.3x. On LLaMA-3.1-8B with a 128K sequence length, BitDecoding reduces single-batch decoding latency by 3x, demonstrating its effectiveness in long-context generation scenarios. The code is available at https://github.com/DD-DuDa/BitDecoding.
☆ Mechanistic Interpretability of Fine-Tuned Vision Transformers on Distorted Images: Decoding Attention Head Behavior for Transparent and Trustworthy AI
Mechanistic interpretability improves the safety, reliability, and robustness of large AI models. This study examined individual attention heads in vision transformers (ViTs) fine tuned on distorted 2D spectrogram images containing non relevant content (axis labels, titles, color bars). By introducing extraneous features, the study analyzed how transformer components processed unrelated information, using mechanistic interpretability to debug issues and reveal insights into transformer architectures. Attention maps assessed head contributions across layers. Heads in early layers (1 to 3) showed minimal task impact with ablation increased MSE loss slightly ({\mu}=0.11%, {\sigma}=0.09%), indicating focus on less critical low level features. In contrast, deeper heads (e.g., layer 6) caused a threefold higher loss increase ({\mu}=0.34%, {\sigma}=0.02%), demonstrating greater task importance. Intermediate layers (6 to 11) exhibited monosemantic behavior, attending exclusively to chirp regions. Some early heads (1 to 4) were monosemantic but non task relevant (e.g. text detectors, edge or corner detectors). Attention maps distinguished monosemantic heads (precise chirp localization) from polysemantic heads (multiple irrelevant regions). These findings revealed functional specialization in ViTs, showing how heads processed relevant vs. extraneous information. By decomposing transformers into interpretable components, this work enhanced model understanding, identified vulnerabilities, and advanced safer, more transparent AI.
comment: 15 pages, 8 figures
☆ EgoSurgery-HTS: A Dataset for Egocentric Hand-Tool Segmentation in Open Surgery Videos
Egocentric open-surgery videos capture rich, fine-grained details essential for accurately modeling surgical procedures and human behavior in the operating room. A detailed, pixel-level understanding of hands and surgical tools is crucial for interpreting a surgeon's actions and intentions. We introduce EgoSurgery-HTS, a new dataset with pixel-wise annotations and a benchmark suite for segmenting surgical tools, hands, and interacting tools in egocentric open-surgery videos. Specifically, we provide a labeled dataset for (1) tool instance segmentation of 14 distinct surgical tools, (2) hand instance segmentation, and (3) hand-tool segmentation to label hands and the tools they manipulate. Using EgoSurgery-HTS, we conduct extensive evaluations of state-of-the-art segmentation methods and demonstrate significant improvements in the accuracy of hand and hand-tool segmentation in egocentric open-surgery videos compared to existing datasets. The dataset will be released at https://github.com/Fujiry0/EgoSurgery.
☆ Construction Identification and Disambiguation Using BERT: A Case Study of NPN ACL
Construction Grammar hypothesizes that knowledge of a language consists chiefly of knowledge of form-meaning pairs (''constructions'') that include vocabulary, general grammar rules, and even idiosyncratic patterns. Recent work has shown that transformer language models represent at least some constructional patterns, including ones where the construction is rare overall. In this work, we probe BERT's representation of the form and meaning of a minor construction of English, the NPN (noun-preposition-noun) construction -- exhibited in such expressions as face to face and day to day -- which is known to be polysemous. We construct a benchmark dataset of semantically annotated corpus instances (including distractors that superficially resemble the construction). With this dataset, we train and evaluate probing classifiers. They achieve decent discrimination of the construction from distractors, as well as sense disambiguation among true instances of the construction, revealing that BERT embeddings carry indications of the construction's semantics. Moreover, artificially permuting the word order of true construction instances causes them to be rejected, indicating sensitivity to matters of form. We conclude that BERT does latently encode at least some knowledge of the NPN construction going beyond a surface syntactic pattern and lexical cues.
comment: 8 pages, ACL long-paper format (preprint)
☆ Energy-Efficient Dynamic Training and Inference for GNN-Based Network Modeling
Efficient network modeling is essential for resource optimization and network planning in next-generation large-scale complex networks. Traditional approaches, such as queuing theory-based modeling and packet-based simulators, can be inefficient due to the assumption made and the computational expense, respectively. To address these challenges, we propose an innovative energy-efficient dynamic orchestration of Graph Neural Networks (GNN) based model training and inference framework for context-aware network modeling and predictions. We have developed a low-complexity solution framework, QAG, that is a Quantum approximation optimization (QAO) algorithm for Adaptive orchestration of GNN-based network modeling. We leverage the tripartite graph model to represent a multi-application system with many compute nodes. Thereafter, we apply the constrained graph-cutting using QAO to find the feasible energy-efficient configurations of the GNN-based model and deploying them on the available compute nodes to meet the network modeling application requirements. The proposed QAG scheme closely matches the optimum and offers atleast a 50% energy saving while meeting the application requirements with 60% lower churn-rate.
comment: Accepted in IEEE WCNC 2025
☆ Efficient Continual Adaptation of Pretrained Robotic Policy with Online Meta-Learned Adapters
Continual adaptation is essential for general autonomous agents. For example, a household robot pretrained with a repertoire of skills must still adapt to unseen tasks specific to each household. Motivated by this, building upon parameter-efficient fine-tuning in language models, prior works have explored lightweight adapters to adapt pretrained policies, which can preserve learned features from the pretraining phase and demonstrate good adaptation performances. However, these approaches treat task learning separately, limiting knowledge transfer between tasks. In this paper, we propose Online Meta-Learned adapters (OMLA). Instead of applying adapters directly, OMLA can facilitate knowledge transfer from previously learned tasks to current learning tasks through a novel meta-learning objective. Extensive experiments in both simulated and real-world environments demonstrate that OMLA can lead to better adaptation performances compared to the baseline methods. The project link: https://ricky-zhu.github.io/OMLA/.
comment: Project link: https://ricky-zhu.github.io/OMLA/
☆ AgentSpec: Customizable Runtime Enforcement for Safe and Reliable LLM Agents
Agents built on LLMs are increasingly deployed across diverse domains, automating complex decision-making and task execution. However, their autonomy introduces safety risks, including security vulnerabilities, legal violations, and unintended harmful actions. Existing mitigation methods, such as model-based safeguards and early enforcement strategies, fall short in robustness, interpretability, and adaptability. To address these challenges, we propose AgentSpec, a lightweight domain-specific language for specifying and enforcing runtime constraints on LLM agents. With AgentSpec, users define structured rules that incorporate triggers, predicates, and enforcement mechanisms, ensuring agents operate within predefined safety boundaries. We implement AgentSpec across multiple domains, including code execution, embodied agents, and autonomous driving, demonstrating its adaptability and effectiveness. Our evaluation shows that AgentSpec successfully prevents unsafe executions in over 90% of code agent cases, eliminates all hazardous actions in embodied agent tasks, and enforces 100% compliance by autonomous vehicles (AVs). Despite its strong safety guarantees, AgentSpec remains computationally lightweight, with overheads in milliseconds. By combining interpretability, modularity, and efficiency, AgentSpec provides a practical and scalable solution for enforcing LLM agent safety across diverse applications. We also automate the generation of rules using LLMs and assess their effectiveness. Our evaluation shows that the rules generated by OpenAI o1 achieve a precision of 95.56% and recall of 70.96% for embodied agents, successfully identifying 87.26% of the risky code, and prevent AVs from breaking laws in 5 out of 8 scenarios.
☆ From Fragment to One Piece: A Survey on AI-Driven Graphic Design
This survey provides a comprehensive overview of the advancements in Artificial Intelligence in Graphic Design (AIGD), focusing on integrating AI techniques to support design interpretation and enhance the creative process. We categorize the field into two primary directions: perception tasks, which involve understanding and analyzing design elements, and generation tasks, which focus on creating new design elements and layouts. The survey covers various subtasks, including visual element perception and generation, aesthetic and semantic understanding, layout analysis, and generation. We highlight the role of large language models and multimodal approaches in bridging the gap between localized visual features and global design intent. Despite significant progress, challenges remain to understanding human intent, ensuring interpretability, and maintaining control over multilayered compositions. This survey serves as a guide for researchers, providing information on the current state of AIGD and potential future directions\footnote{https://github.com/zhangtianer521/excellent\_Intelligent\_graphic\_design}.
☆ Towards Human-Understandable Multi-Dimensional Concept Discovery
Concept-based eXplainable AI (C-XAI) aims to overcome the limitations of traditional saliency maps by converting pixels into human-understandable concepts that are consistent across an entire dataset. A crucial aspect of C-XAI is completeness, which measures how well a set of concepts explains a model's decisions. Among C-XAI methods, Multi-Dimensional Concept Discovery (MCD) effectively improves completeness by breaking down the CNN latent space into distinct and interpretable concept subspaces. However, MCD's explanations can be difficult for humans to understand, raising concerns about their practical utility. To address this, we propose Human-Understandable Multi-dimensional Concept Discovery (HU-MCD). HU-MCD uses the Segment Anything Model for concept identification and implements a CNN-specific input masking technique to reduce noise introduced by traditional masking methods. These changes to MCD, paired with the completeness relation, enable HU-MCD to enhance concept understandability while maintaining explanation faithfulness. Our experiments, including human subject studies, show that HU-MCD provides more precise and reliable explanations than existing C-XAI methods. The code is available at https://github.com/grobruegge/hu-mcd.
☆ Dig2DIG: Dig into Diffusion Information Gains for Image Fusion
Image fusion integrates complementary information from multi-source images to generate more informative results. Recently, the diffusion model, which demonstrates unprecedented generative potential, has been explored in image fusion. However, these approaches typically incorporate predefined multimodal guidance into diffusion, failing to capture the dynamically changing significance of each modality, while lacking theoretical guarantees. To address this issue, we reveal a significant spatio-temporal imbalance in image denoising; specifically, the diffusion model produces dynamic information gains in different image regions with denoising steps. Based on this observation, we Dig into the Diffusion Information Gains (Dig2DIG) and theoretically derive a diffusion-based dynamic image fusion framework that provably reduces the upper bound of the generalization error. Accordingly, we introduce diffusion information gains (DIG) to quantify the information contribution of each modality at different denoising steps, thereby providing dynamic guidance during the fusion process. Extensive experiments on multiple fusion scenarios confirm that our method outperforms existing diffusion-based approaches in terms of both fusion quality and inference efficiency.
☆ Adventurer: Exploration with BiGAN for Deep Reinforcement Learning
Recent developments in deep reinforcement learning have been very successful in learning complex, previously intractable problems. Sample efficiency and local optimality, however, remain significant challenges. To address these challenges, novelty-driven exploration strategies have emerged and shown promising potential. Unfortunately, no single algorithm outperforms all others in all tasks and most of them struggle with tasks with high-dimensional and complex observations. In this work, we propose Adventurer, a novelty-driven exploration algorithm that is based on Bidirectional Generative Adversarial Networks (BiGAN), where BiGAN is trained to estimate state novelty. Intuitively, a generator that has been trained on the distribution of visited states should only be able to generate a state coming from the distribution of visited states. As a result, novel states using the generator to reconstruct input states from certain latent representations would lead to larger reconstruction errors. We show that BiGAN performs well in estimating state novelty for complex observations. This novelty estimation method can be combined with intrinsic-reward-based exploration. Our empirical results show that Adventurer produces competitive results on a range of popular benchmark tasks, including continuous robotic manipulation tasks (e.g. Mujoco robotics) and high-dimensional image-based tasks (e.g. Atari games).
comment: Accepted at Applied Intelligence
Reinforcement Learning in Switching Non-Stationary Markov Decision Processes: Algorithms and Convergence Analysis
Reinforcement learning in non-stationary environments is challenging due to abrupt and unpredictable changes in dynamics, often causing traditional algorithms to fail to converge. However, in many real-world cases, non-stationarity has some structure that can be exploited to develop algorithms and facilitate theoretical analysis. We introduce one such structure, Switching Non-Stationary Markov Decision Processes (SNS-MDP), where environments switch over time based on an underlying Markov chain. Under a fixed policy, the value function of an SNS-MDP admits a closed-form solution determined by the Markov chain's statistical properties, and despite the inherent non-stationarity, Temporal Difference (TD) learning methods still converge to the correct value function. Furthermore, policy improvement can be performed, and it is shown that policy iteration converges to the optimal policy. Moreover, since Q-learning converges to the optimal Q-function, it likewise yields the corresponding optimal policy. To illustrate the practical advantages of SNS-MDPs, we present an example in communication networks where channel noise follows a Markovian pattern, demonstrating how this framework can effectively guide decision-making in complex, time-varying contexts.
☆ Adaptive Unimodal Regulation for Balanced Multimodal Information Acquisition CVPR2025
Sensory training during the early ages is vital for human development. Inspired by this cognitive phenomenon, we observe that the early training stage is also important for the multimodal learning process, where dataset information is rapidly acquired. We refer to this stage as the prime learning window. However, based on our observation, this prime learning window in multimodal learning is often dominated by information-sufficient modalities, which in turn suppresses the information acquisition of information-insufficient modalities. To address this issue, we propose Information Acquisition Regulation (InfoReg), a method designed to balance information acquisition among modalities. Specifically, InfoReg slows down the information acquisition process of information-sufficient modalities during the prime learning window, which could promote information acquisition of information-insufficient modalities. This regulation enables a more balanced learning process and improves the overall performance of the multimodal network. Experiments show that InfoReg outperforms related multimodal imbalanced methods across various datasets, achieving superior model performance. The code is available at https://github.com/GeWu-Lab/InfoReg_CVPR2025.
comment: 10pages, 16 figures, CVPR2025
☆ ClinText-SP and RigoBERTa Clinical: a new set of open resources for Spanish Clinical NLP
We present a novel contribution to Spanish clinical natural language processing by introducing the largest publicly available clinical corpus, ClinText-SP, along with a state-of-the-art clinical encoder language model, RigoBERTa Clinical. Our corpus was meticulously curated from diverse open sources, including clinical cases from medical journals and annotated corpora from shared tasks, providing a rich and diverse dataset that was previously difficult to access. RigoBERTa Clinical, developed through domain-adaptive pretraining on this comprehensive dataset, significantly outperforms existing models on multiple clinical NLP benchmarks. By publicly releasing both the dataset and the model, we aim to empower the research community with robust resources that can drive further advancements in clinical NLP and ultimately contribute to improved healthcare applications.
☆ The Role of Artificial Intelligence in Enhancing Insulin Recommendations and Therapy Outcomes
The growing worldwide incidence of diabetes requires more effective approaches for managing blood glucose levels. Insulin delivery systems have advanced significantly, with artificial intelligence (AI) playing a key role in improving their precision and adaptability. AI algorithms, particularly those based on reinforcement learning, allow for personalised insulin dosing by continuously adapting to an individual's responses. Despite these advancements, challenges such as data privacy, algorithm transparency, and accessibility still need to be addressed. Continued progress and validation in AI-driven insulin delivery systems promise to improve therapy outcomes further, offering people more effective and individualised management of their diabetes. This paper presents an overview of current strategies, key challenges, and future directions.
☆ Galaxy Walker: Geometry-aware VLMs For Galaxy-scale Understanding
Modern vision-language models (VLMs) develop patch embedding and convolution backbone within vector space, especially Euclidean ones, at the very founding. When expanding VLMs to a galaxy scale for understanding astronomical phenomena, the integration of spherical space for planetary orbits and hyperbolic spaces for black holes raises two formidable challenges. a) The current pre-training model is confined to Euclidean space rather than a comprehensive geometric embedding. b) The predominant architecture lacks suitable backbones for anisotropic physical geometries. In this paper, we introduced Galaxy-Walker, a geometry-aware VLM, for the universe-level vision understanding tasks. We proposed the geometry prompt that generates geometry tokens by random walks across diverse spaces on a multi-scale physical graph, along with a geometry adapter that compresses and reshapes the space anisotropy in a mixture-of-experts manner. Extensive experiments demonstrate the effectiveness of our approach, with Galaxy-Walker achieving state-of-the-art performance in both galaxy property estimation ($R^2$ scores up to $0.91$) and morphology classification tasks (up to $+0.17$ F1 improvement in challenging features), significantly outperforming both domain-specific models and general-purpose VLMs.
☆ Identifying and Characterising Higher Order Interactions in Mobility Networks Using Hypergraphs
Understanding human mobility is essential for applications ranging from urban planning to public health. Traditional mobility models such as flow networks and colocation matrices capture only pairwise interactions between discrete locations, overlooking higher-order relationships among locations (i.e., mobility flow among two or more locations). To address this, we propose co-visitation hypergraphs, a model that leverages temporal observation windows to extract group interactions between locations from individual mobility trajectory data. Using frequent pattern mining, our approach constructs hypergraphs that capture dynamic mobility behaviors across different spatial and temporal scales. We validate our method on a publicly available mobility dataset and demonstrate its effectiveness in analyzing city-scale mobility patterns, detecting shifts during external disruptions such as extreme weather events, and examining how a location's connectivity (degree) relates to the number of points of interest (POIs) within it. Our results demonstrate that our hypergraph-based mobility analysis framework is a valuable tool with potential applications in diverse fields such as public health, disaster resilience, and urban planning.
☆ Anchor-based oversampling for imbalanced tabular data via contrastive and adversarial learning
Imbalanced data represent a distribution with more frequencies of one class (majority) than the other (minority). This phenomenon occurs across various domains, such as security, medical care and human activity. In imbalanced learning, classification algorithms are typically inclined to classify the majority class accurately, resulting in artificially high accuracy rates. As a result, many minority samples are mistakenly labelled as majority-class instances, resulting in a bias that benefits the majority class. This study presents a framework based on boundary anchor samples to tackle the imbalance learning challenge. First, we select and use anchor samples to train a multilayer perceptron (MLP) classifier, which acts as a prior knowledge model and aids the adversarial and contrastive learning procedures. Then, we designed a novel deep generative model called Anchor Stabilized Conditional Generative Adversarial Network or Anch-SCGAN in short. Anch-SCGAN is supported with two generators for the minority and majority classes and a discriminator incorporating additional class-specific information from the pre-trained feature extractor MLP. In addition, we facilitate the generator's training procedure in two ways. First, we define a new generator loss function based on reprocessed anchor samples and contrastive learning. Second, we apply a scoring strategy to stabilize the adversarial training part in generators. We train Anch-SCGAN and further finetune it with anchor samples to improve the precision of the generated samples. Our experiments on 16 real-world imbalanced datasets illustrate that Anch-SCGAN outperforms the renowned methods in imbalanced learning.
☆ Distil-xLSTM: Learning Attention Mechanisms through Recurrent Structures
The current era of Natural Language Processing (NLP) is dominated by Transformer models. However, novel architectures relying on recurrent mechanisms, such as xLSTM and Mamba, have been proposed as alternatives to attention-based models. Although computation is done differently than with the attention mechanism mechanism, these recurrent models yield good results and sometimes even outperform state-of-the-art attention-based models. In this work, we propose Distil-xLSTM, an xLSTM-based Small Language Model (SLM) trained by distilling knowledge from a Large Language Model (LLM) that shows promising results while being compute and scale efficient. Our Distil-xLSTM focuses on approximating a transformer-based model attention parametrization using its recurrent sequence mixing components and shows good results with minimal training.
☆ Self-Reported Confidence of Large Language Models in Gastroenterology: Analysis of Commercial, Open-Source, and Quantized Models
This study evaluated self-reported response certainty across several large language models (GPT, Claude, Llama, Phi, Mistral, Gemini, Gemma, and Qwen) using 300 gastroenterology board-style questions. The highest-performing models (GPT-o1 preview, GPT-4o, and Claude-3.5-Sonnet) achieved Brier scores of 0.15-0.2 and AUROC of 0.6. Although newer models demonstrated improved performance, all exhibited a consistent tendency towards overconfidence. Uncertainty estimation presents a significant challenge to the safe use of LLMs in healthcare. Keywords: Large Language Models; Confidence Elicitation; Artificial Intelligence; Gastroenterology; Uncertainty Quantification
comment: 35 pages, 5 figures, 1 table, 7 supplementary figures
☆ EvAnimate: Event-conditioned Image-to-Video Generation for Human Animation
Conditional human animation transforms a static reference image into a dynamic sequence by applying motion cues such as poses. These motion cues are typically derived from video data but are susceptible to limitations including low temporal resolution, motion blur, overexposure, and inaccuracies under low-light conditions. In contrast, event cameras provide data streams with exceptionally high temporal resolution, a wide dynamic range, and inherent resistance to motion blur and exposure issues. In this work, we propose EvAnimate, a framework that leverages event streams as motion cues to animate static human images. Our approach employs a specialized event representation that transforms asynchronous event streams into 3-channel slices with controllable slicing rates and appropriate slice density, ensuring compatibility with diffusion models. Subsequently, a dual-branch architecture generates high-quality videos by harnessing the inherent motion dynamics of the event streams, thereby enhancing both video quality and temporal consistency. Specialized data augmentation strategies further enhance cross-person generalization. Finally, we establish a new benchmarking, including simulated event data for training and validation, and a real-world event dataset capturing human actions under normal and extreme scenarios. The experiment results demonstrate that EvAnimate achieves high temporal fidelity and robust performance in scenarios where traditional video-derived cues fall short.
☆ Discriminative protein sequence modelling with Latent Space Diffusion
We explore a framework for protein sequence representation learning that decomposes the task between manifold learning and distributional modelling. Specifically we present a Latent Space Diffusion architecture which combines a protein sequence autoencoder with a denoising diffusion model operating on its latent space. We obtain a one-parameter family of learned representations from the diffusion model, along with the autoencoder's latent representation. We propose and evaluate two autoencoder architectures: a homogeneous model forcing amino acids of the same type to be identically distributed in the latent space, and an inhomogeneous model employing a noise-based variant of masking. As a baseline we take a latent space learned by masked language modelling, and evaluate discriminative capability on a range of protein property prediction tasks. Our finding is twofold: the diffusion models trained on both our proposed variants display higher discriminative power than the one trained on the masked language model baseline, none of the diffusion representations achieve the performance of the masked language model embeddings themselves.
☆ RLCAD: Reinforcement Learning Training Gym for Revolution Involved CAD Command Sequence Generation
A CAD command sequence is a typical parametric design paradigm in 3D CAD systems where a model is constructed by overlaying 2D sketches with operations such as extrusion, revolution, and Boolean operations. Although there is growing academic interest in the automatic generation of command sequences, existing methods and datasets only support operations such as 2D sketching, extrusion,and Boolean operations. This limitation makes it challenging to represent more complex geometries. In this paper, we present a reinforcement learning (RL) training environment (gym) built on a CAD geometric engine. Given an input boundary representation (B-Rep) geometry, the policy network in the RL algorithm generates an action. This action, along with previously generated actions, is processed within the gym to produce the corresponding CAD geometry, which is then fed back into the policy network. The rewards, determined by the difference between the generated and target geometries within the gym, are used to update the RL network. Our method supports operations beyond sketches, Boolean, and extrusion, including revolution operations. With this training gym, we achieve state-of-the-art (SOTA) quality in generating command sequences from B-Rep geometries. In addition, our method can significantly improve the efficiency of command sequence generation by a factor of 39X compared with the previous training gym.
☆ An Identity and Interaction Based Network Forensic Analysis
In todays landscape of increasing electronic crime, network forensics plays a pivotal role in digital investigations. It aids in understanding which systems to analyse and as a supplement to support evidence found through more traditional computer based investigations. However, the nature and functionality of the existing Network Forensic Analysis Tools (NFATs) fall short compared to File System Forensic Analysis Tools (FS FATs) in providing usable data. The analysis tends to focus upon IP addresses, which are not synonymous with user identities, a point of significant interest to investigators. This paper presents several experiments designed to create a novel NFAT approach that can identify users and understand how they are using network based applications whilst the traffic remains encrypted. The experiments build upon the prior art and investigate how effective this approach is in classifying users and their actions. Utilising an in-house dataset composed of 50 million packers, the experiments are formed of three incremental developments that assist in improving performance. Building upon the successful experiments, a proposed NFAT interface is presented to illustrate the ease at which investigators would be able to ask relevant questions of user interactions. The experiments profiled across 27 users, has yielded an average 93.3% True Positive Identification Rate (TPIR), with 41% of users experiencing 100% TPIR. Skype, Wikipedia and Hotmail services achieved a notably high level of recognition performance. The study has developed and evaluated an approach to analyse encrypted network traffic more effectively through the modelling of network traffic and to subsequently visualise these interactions through a novel network forensic analysis tool.
☆ UniPCGC: Towards Practical Point Cloud Geometry Compression via an Efficient Unified Approach AAAI 2025
Learning-based point cloud compression methods have made significant progress in terms of performance. However, these methods still encounter challenges including high complexity, limited compression modes, and a lack of support for variable rate, which restrict the practical application of these methods. In order to promote the development of practical point cloud compression, we propose an efficient unified point cloud geometry compression framework, dubbed as UniPCGC. It is a lightweight framework that supports lossy compression, lossless compression, variable rate and variable complexity. First, we introduce the Uneven 8-Stage Lossless Coder (UELC) in the lossless mode, which allocates more computational complexity to groups with higher coding difficulty, and merges groups with lower coding difficulty. Second, Variable Rate and Complexity Module (VRCM) is achieved in the lossy mode through joint adoption of a rate modulation module and dynamic sparse convolution. Finally, through the dynamic combination of UELC and VRCM, we achieve lossy compression, lossless compression, variable rate and complexity within a unified framework. Compared to the previous state-of-the-art method, our method achieves a compression ratio (CR) gain of 8.1\% on lossless compression, and a Bjontegaard Delta Rate (BD-Rate) gain of 14.02\% on lossy compression, while also supporting variable rate and variable complexity.
comment: Accepted to AAAI 2025
☆ HiRes-FusedMIM: A High-Resolution RGB-DSM Pre-trained Model for Building-Level Remote Sensing Applications
Recent advances in self-supervised learning have led to the development of foundation models that have significantly advanced performance in various computer vision tasks. However, despite their potential, these models often overlook the crucial role of high-resolution digital surface models (DSMs) in understanding urban environments, particularly for building-level analysis, which is essential for applications like digital twins. To address this gap, we introduce HiRes-FusedMIM, a novel pre-trained model specifically designed to leverage the rich information contained within high-resolution RGB and DSM data. HiRes-FusedMIM utilizes a dual-encoder simple masked image modeling (SimMIM) architecture with a multi-objective loss function that combines reconstruction and contrastive objectives, enabling it to learn powerful, joint representations from both modalities. We conducted a comprehensive evaluation of HiRes-FusedMIM on a diverse set of downstream tasks, including classification, semantic segmentation, and instance segmentation. Our results demonstrate that: 1) HiRes-FusedMIM outperforms previous state-of-the-art geospatial methods on several building-related datasets, including WHU Aerial and LoveDA, demonstrating its effectiveness in capturing and leveraging fine-grained building information; 2) Incorporating DSMs during pre-training consistently improves performance compared to using RGB data alone, highlighting the value of elevation information for building-level analysis; 3) The dual-encoder architecture of HiRes-FusedMIM, with separate encoders for RGB and DSM data, significantly outperforms a single-encoder model on the Vaihingen segmentation task, indicating the benefits of learning specialized representations for each modality. To facilitate further research and applications in this direction, we will publicly release the trained model weights.
☆ Natural Language Processing for Electronic Health Records in Scandinavian Languages: Norwegian, Swedish, and Danish
Background: Clinical natural language processing (NLP) refers to the use of computational methods for extracting, processing, and analyzing unstructured clinical text data, and holds a huge potential to transform healthcare in various clinical tasks. Objective: The study aims to perform a systematic review to comprehensively assess and analyze the state-of-the-art NLP methods for the mainland Scandinavian clinical text. Method: A literature search was conducted in various online databases including PubMed, ScienceDirect, Google Scholar, ACM digital library, and IEEE Xplore between December 2022 and February 2024. Further, relevant references to the included articles were also used to solidify our search. The final pool includes articles that conducted clinical NLP in the mainland Scandinavian languages and were published in English between 2010 and 2024. Results: Out of the 113 articles, 18% (n=21) focus on Norwegian clinical text, 64% (n=72) on Swedish, 10% (n=11) on Danish, and 8% (n=9) focus on more than one language. Generally, the review identified positive developments across the region despite some observable gaps and disparities between the languages. There are substantial disparities in the level of adoption of transformer-based models. In essential tasks such as de-identification, there is significantly less research activity focusing on Norwegian and Danish compared to Swedish text. Further, the review identified a low level of sharing resources such as data, experimentation code, pre-trained models, and rate of adaptation and transfer learning in the region. Conclusion: The review presented a comprehensive assessment of the state-of-the-art Clinical NLP for electronic health records (EHR) text in mainland Scandinavian languages and, highlighted the potential barriers and challenges that hinder the rapid advancement of the field in the region.
comment: 45 pages including the appendix, 9 figures in the main manuscript and 11 figures in the Appendix
☆ MMCR: Advancing Visual Language Model in Multimodal Multi-Turn Contextual Reasoning
Compared to single-turn dialogue, multi-turn dialogue involving multiple images better aligns with the needs of real-world human-AI interactions. Additionally, as training data, it provides richer contextual reasoning information, thereby guiding the model to achieve better performance. However, existing vision-language models (VLMs) primarily rely on single-turn dialogue training and evaluation benchmarks. In this paper, following the characteristics of human dialogue, such as focused topics and concise, clear content, we present MMCR (Multimodal Multi-turn Contextual Reasoning), a novel dataset comprising: (1) MMCR-310k -- the largest multi-image multi-turn instruction tuning dataset with 310K contextual dialogues, each covering 1-4 images and 4 or 8 dialogue turns; and (2) MMCR-Bench -- a diagnostic benchmark featuring dialogues, spanning 8 domains (Humanities, Natural, Science, Education, etc.) and 40 sub-topics. Extensive evaluations demonstrate that models fine-tuned with MMCR-310k achieve 5.2\% higher contextual accuracy on MMCR-Bench, while showing consistent improvements on existing benchmarks (+1.1\% on AI2D, +1.2\% on MMMU and MMVet). MMCR and prompt engineering will be released publicly.
☆ SciClaims: An End-to-End Generative System for Biomedical Claim Analysis
Validating key claims in scientific literature, particularly in biomedical research, is essential for ensuring accuracy and advancing knowledge. This process is critical in sectors like the pharmaceutical industry, where rapid scientific progress requires automation and deep domain expertise. However, current solutions have significant limitations. They lack end-to-end pipelines encompassing all claim extraction, evidence retrieval, and verification steps; rely on complex NLP and information retrieval pipelines prone to multiple failure points; and often fail to provide clear, user-friendly justifications for claim verification outcomes. To address these challenges, we introduce SciClaims, an advanced system powered by state-of-the-art large language models (LLMs) that seamlessly integrates the entire scientific claim analysis process. SciClaims outperforms previous approaches in both claim extraction and verification without requiring additional fine-tuning, setting a new benchmark for automated scientific claim analysis.
comment: Pre-print version
☆ Neuro-symbolic Weak Supervision: Theory and Semantics
Weak supervision allows machine learning models to learn from limited or noisy labels, but it introduces challenges in interpretability and reliability - particularly in multi-instance partial label learning (MI-PLL), where models must resolve both ambiguous labels and uncertain instance-label mappings. We propose a semantics for neuro-symbolic framework that integrates Inductive Logic Programming (ILP) to improve MI-PLL by providing structured relational constraints that guide learning. Within our semantic characterization, ILP defines a logical hypothesis space for label transitions, clarifies classifier semantics, and establishes interpretable performance standards. This hybrid approach improves robustness, transparency, and accountability in weakly supervised settings, ensuring neural predictions align with domain knowledge. By embedding weak supervision into a logical framework, we enhance both interpretability and learning, making weak supervision more suitable for real-world, high-stakes applications.
☆ Statistically Testing Training Data for Unwanted Error Patterns using Rule-Oriented Regression
Artificial intelligence models trained from data can only be as good as the underlying data is. Biases in training data propagating through to the output of a machine learning model are a well-documented and well-understood phenomenon, but the machinery to prevent these undesired effects is much less developed. Efforts to ensure data is clean during collection, such as using bias-aware sampling, are most effective when the entity controlling data collection also trains the AI. In cases where the data is already available, how do we find out if the data was already manipulated, i.e., ``poisoned'', so that an undesired behavior would be trained into a machine learning model? This is a challenge fundamentally different to (just) improving approximation accuracy or efficiency, and we provide a method to test training data for flaws, to establish a trustworthy ground-truth for a subsequent training of machine learning models (of any kind). Unlike the well-studied problem of approximating data using fuzzy rules that are generated from the data, our method hinges on a prior definition of rules to happen before seeing the data to be tested. Therefore, the proposed method can also discover hidden error patterns, which may also have substantial influence. Our approach extends the abilities of conventional statistical testing by letting the ``test-condition'' be any Boolean condition to describe a pattern in the data, whose presence we wish to determine. The method puts fuzzy inference into a regression model, to get the best of the two: explainability from fuzzy logic with statistical properties and diagnostics from the regression, and finally also being applicable to ``small data'', hence not requiring large datasets as deep learning methods do. We provide an open source implementation for demonstration and experiments.
☆ Verbal Process Supervision Elicits Better Coding Agents
The emergence of large language models and their applications as AI agents have significantly advanced state-of-the-art code generation benchmarks, transforming modern software engineering tasks. However, even with test-time computed reasoning models, these systems still struggle with complex software engineering challenges. This work introduces CURA, a code understanding and reasoning agent system enhanced with verbal process supervision (VPS), achieving a 3.65\% improvement over baseline models on challenging benchmarks like BigCodeBench. Furthermore, CURA, when paired with the o3-mini model and VPS techniques, attains state-of-the-art performance. This work represents a step forward in integrating reasoning-driven architectures with LLM-based code generation, enabling agentic reasoning for language models to solve complex software engineering tasks.
☆ Safeguarding Mobile GUI Agent via Logic-based Action Verification
Large Foundation Models (LFMs) have unlocked new possibilities in human-computer interaction, particularly with the rise of mobile Graphical User Interface (GUI) Agents capable of interpreting GUIs. These agents promise to revolutionize mobile computing by allowing users to automate complex mobile tasks through simple natural language instructions. However, the inherent probabilistic nature of LFMs, coupled with the ambiguity and context-dependence of mobile tasks, makes LFM-based automation unreliable and prone to errors. To address this critical challenge, we introduce VeriSafe Agent (VSA): a formal verification system that serves as a logically grounded safeguard for Mobile GUI Agents. VSA is designed to deterministically ensure that an agent's actions strictly align with user intent before conducting an action. At its core, VSA introduces a novel autoformalization technique that translates natural language user instructions into a formally verifiable specification, expressed in our domain-specific language (DSL). This enables runtime, rule-based verification, allowing VSA to detect and prevent erroneous actions executing an action, either by providing corrective feedback or halting unsafe behavior. To the best of our knowledge, VSA is the first attempt to bring the rigor of formal verification to GUI agent. effectively bridging the gap between LFM-driven automation and formal software verification. We implement VSA using off-the-shelf LLM services (GPT-4o) and evaluate its performance on 300 user instructions across 18 widely used mobile apps. The results demonstrate that VSA achieves 94.3%-98.33% accuracy in verifying agent actions, representing a significant 20.4%-25.6% improvement over existing LLM-based verification methods, and consequently increases the GUI agent's task completion rate by 90%-130%.
☆ Large Language Models powered Network Attack Detection: Architecture, Opportunities and Case Study
Network attack detection is a pivotal technology to identify network anomaly and classify malicious traffic. Large Language Models (LLMs) are trained on a vast corpus of text, have amassed remarkable capabilities of context-understanding and commonsense knowledge. This has opened up a new door for network threat detection. Researchers have already initiated discussions regarding the application of LLMs on specific cyber-security tasks. Unfortunately, there is still a lack of comprehensive elaboration how to mine LLMs' potentials in network threat detections, as well as the opportunities and challenges. In this paper, we mainly focus on the classification of malicious traffic from the perspective of LLMs' capability. We present a holistic view of the architecture of LLM-powered network attack detection, including Pre-training, Fine-tuning, and Detection. Especially, by exploring the knowledge and capabilities of LLM, we identify three distinct roles LLM can act in network attack detection: \textit{Classifier, Encoder, and Predictor}. For each of them, the modeling paradigm, opportunities and challenges are elaborated. Finally, we present our design on LLM-powered DDoS detection as a case study. The proposed framework attains accurate detection on carpet bombing DDoS by exploiting LLMs' capabilities in contextual mining. The evaluation shows its efficacy, exhibiting a nearly $35$\% improvement compared to existing systems.
comment: submitted for peer-review
☆ Words as Bridges: Exploring Computational Support for Cross-Disciplinary Translation Work
Scholars often explore literature outside of their home community of study. This exploration process is frequently hampered by field-specific jargon. Past computational work often focuses on supporting translation work by removing jargon through simplification and summarization; here, we explore a different approach that preserves jargon as useful bridges to new conceptual spaces. Specifically, we cast different scholarly domains as different language-using communities, and explore how to adapt techniques from unsupervised cross-lingual alignment of word embeddings to explore conceptual alignments between domain-specific word embedding spaces.We developed a prototype cross-domain search engine that uses aligned domain-specific embeddings to support conceptual exploration, and tested this prototype in two case studies. We discuss qualitative insights into the promises and pitfalls of this approach to translation work, and suggest design insights for future interfaces that provide computational support for cross-domain information seeking.
comment: 26 pages, 8 tables, 6 figures
☆ MetaSpatial: Reinforcing 3D Spatial Reasoning in VLMs for the Metaverse
We present MetaSpatial, the first reinforcement learning (RL)-based framework designed to enhance 3D spatial reasoning in vision-language models (VLMs), enabling real-time 3D scene generation without the need for hard-coded optimizations. MetaSpatial addresses two core challenges: (i) the lack of internalized 3D spatial reasoning in VLMs, which limits their ability to generate realistic layouts, and (ii) the inefficiency of traditional supervised fine-tuning (SFT) for layout generation tasks, as perfect ground truth annotations are unavailable. Our key innovation is a multi-turn RL-based optimization mechanism that integrates physics-aware constraints and rendered image evaluations, ensuring generated 3D layouts are coherent, physically plausible, and aesthetically consistent. Methodologically, MetaSpatial introduces an adaptive, iterative reasoning process, where the VLM refines spatial arrangements over multiple turns by analyzing rendered outputs, improving scene coherence progressively. Empirical evaluations demonstrate that MetaSpatial significantly enhances the spatial consistency and formatting stability of various scale models. Post-training, object placements are more realistic, aligned, and functionally coherent, validating the effectiveness of RL for 3D spatial reasoning in metaverse, AR/VR, digital twins, and game development applications. Our code, data, and training pipeline are publicly available at https://github.com/PzySeere/MetaSpatial.
comment: Working Paper
☆ PALATE: Peculiar Application of the Law of Total Expectation to Enhance the Evaluation of Deep Generative Models
Deep generative models (DGMs) have caused a paradigm shift in the field of machine learning, yielding noteworthy advancements in domains such as image synthesis, natural language processing, and other related areas. However, a comprehensive evaluation of these models that accounts for the trichotomy between fidelity, diversity, and novelty in generated samples remains a formidable challenge. A recently introduced solution that has emerged as a promising approach in this regard is the Feature Likelihood Divergence (FLD), a method that offers a theoretically motivated practical tool, yet also exhibits some computational challenges. In this paper, we propose PALATE, a novel enhancement to the evaluation of DGMs that addresses limitations of existing metrics. Our approach is based on a peculiar application of the law of total expectation to random variables representing accessible real data. When combined with the MMD baseline metric and DINOv2 feature extractor, PALATE offers a holistic evaluation framework that matches or surpasses state-of-the-art solutions while providing superior computational efficiency and scalability to large-scale datasets. Through a series of experiments, we demonstrate the effectiveness of the PALATE enhancement, contributing a computationally efficient, holistic evaluation approach that advances the field of DGMs assessment, especially in detecting sample memorization and evaluating generalization capabilities.
☆ ModiGen: A Large Language Model-Based Workflow for Multi-Task Modelica Code Generation
Modelica is a widely adopted language for simulating complex physical systems, yet effective model creation and optimization require substantial domain expertise. Although large language models (LLMs) have demonstrated promising capabilities in code generation, their application to modeling remains largely unexplored. To address this gap, we have developed benchmark datasets specifically designed to evaluate the performance of LLMs in generating Modelica component models and test cases. Our evaluation reveals substantial limitations in current LLMs, as the generated code often fails to simulate successfully. To overcome these challenges, we propose a specialized workflow that integrates supervised fine-tuning, graph retrieval-augmented generation, and feedback optimization to improve the accuracy and reliability of Modelica code generation. The evaluation results demonstrate significant performance gains: the maximum improvement in pass@1 reached 0.3349 for the component generation task and 0.2457 for the test case generation task. This research underscores the potential of LLMs to advance intelligent modeling tools and offers valuable insights for future developments in system modeling and engineering applications.
☆ Teaching LLMs for Step-Level Automatic Math Correction via Reinforcement Learning
Automatic math correction aims to check students' solutions to mathematical problems via artificial intelligence technologies. Most existing studies focus on judging the final answer at the problem level, while they ignore detailed feedback on each step in a math problem-solving process, which requires abilities of semantic understanding and reasoning. In this paper, we propose a reinforcement learning (RL)-based method to boost large language model (LLM) for step-level automatic math correction, named StepAMC. Particularly, we convert the step-level automatic math correction within the text classification task into an RL problem to enhance the reasoning capabilities of LLMs. Then, we design a space-constrained policy network to improve the stability of RL. Then, we introduce a fine-grained reward network to convert the binary human feedback into a continuous value. We conduct extensive experiments over two benchmark datasets and the results show that our model outperforms the eleven strong baselines.
☆ Generative AI in Knowledge Work: Design Implications for Data Navigation and Decision-Making
Our study of 20 knowledge workers revealed a common challenge: the difficulty of synthesizing unstructured information scattered across multiple platforms to make informed decisions. Drawing on their vision of an ideal knowledge synthesis tool, we developed Yodeai, an AI-enabled system, to explore both the opportunities and limitations of AI in knowledge work. Through a user study with 16 product managers, we identified three key requirements for Generative AI in knowledge work: adaptable user control, transparent collaboration mechanisms, and the ability to integrate background knowledge with external information. However, we also found significant limitations, including overreliance on AI, user isolation, and contextual factors outside the AI's reach. As AI tools become increasingly prevalent in professional settings, we propose design principles that emphasize adaptability to diverse workflows, accountability in personal and collaborative contexts, and context-aware interoperability to guide the development of human-centered AI systems for product managers and knowledge workers.
comment: Accepted to CHI '25 (Conference on Human Factors in Computing Systems), to appear April 26-May 1, 2025, Yokohama, Japan
☆ Knowledge Graph Enhanced Generative Multi-modal Models for Class-Incremental Learning
Continual learning in computer vision faces the critical challenge of catastrophic forgetting, where models struggle to retain prior knowledge while adapting to new tasks. Although recent studies have attempted to leverage the generalization capabilities of pre-trained models to mitigate overfitting on current tasks, models still tend to forget details of previously learned categories as tasks progress, leading to misclassification. To address these limitations, we introduce a novel Knowledge Graph Enhanced Generative Multi-modal model (KG-GMM) that builds an evolving knowledge graph throughout the learning process. Our approach utilizes relationships within the knowledge graph to augment the class labels and assigns different relations to similar categories to enhance model differentiation. During testing, we propose a Knowledge Graph Augmented Inference method that locates specific categories by analyzing relationships within the generated text, thereby reducing the loss of detailed information about old classes when learning new knowledge and alleviating forgetting. Experiments demonstrate that our method effectively leverages relational information to help the model correct mispredictions, achieving state-of-the-art results in both conventional CIL and few-shot CIL settings, confirming the efficacy of knowledge graphs at preserving knowledge in the continual learning scenarios.
☆ PRECTR: A Synergistic Framework for Integrating Personalized Search Relevance Matching and CTR Prediction
The two primary tasks in the search recommendation system are search relevance matching and click-through rate (CTR) prediction -- the former focuses on seeking relevant items for user queries whereas the latter forecasts which item may better match user interest. Prior research typically develops two models to predict the CTR and search relevance separately, then ranking candidate items based on the fusion of the two outputs. However, such a divide-and-conquer paradigm creates the inconsistency between different models. Meanwhile, the search relevance model mainly concentrates on the degree of objective text matching while neglecting personalized differences among different users, leading to restricted model performance. To tackle these issues, we propose a unified \textbf{P}ersonalized Search RElevance Matching and CTR Prediction Fusion Model(PRECTR). Specifically, based on the conditional probability fusion mechanism, PRECTR integrates the CTR prediction and search relevance matching into one framework to enhance the interaction and consistency of the two modules. However, directly optimizing CTR binary classification loss may bring challenges to the fusion model's convergence and indefinitely promote the exposure of items with high CTR, regardless of their search relevance. Hence, we further introduce two-stage training and semantic consistency regularization to accelerate the model's convergence and restrain the recommendation of irrelevant items. Finally, acknowledging that different users may have varied relevance preferences, we assessed current users' relevance preferences by analyzing past users' preferences for similar queries and tailored incentives for different candidate items accordingly. Extensive experimental results on our production dataset and online A/B testing demonstrate the effectiveness and superiority of our proposed PRECTR method.
☆ Manipulation and the AI Act: Large Language Model Chatbots and the Danger of Mirrors
Large Language Model chatbots are increasingly taking the form and visage of human beings, adapting human faces, names, voices, personalities, and quirks, including those of celebrities and well-known political figures. Personifying AI chatbots could foreseeably increase their trust with users. However, it could also make them more capable of manipulation, by creating the illusion of a close and intimate relationship with an artificial entity. The European Commission has finalized the AI Act, with the EU Parliament making amendments banning manipulative and deceptive AI systems that cause significant harm to users. Although the AI Act covers harms that accumulate over time, it is unlikely to prevent harms associated with prolonged discussions with AI chatbots. Specifically, a chatbot could reinforce a person's negative emotional state over weeks, months, or years through negative feedback loops, prolonged conversations, or harmful recommendations, contributing to a user's deteriorating mental health.
☆ Resource-Efficient Motion Control for Video Generation via Dynamic Mask Guidance
Recent advances in diffusion models bring new vitality to visual content creation. However, current text-to-video generation models still face significant challenges such as high training costs, substantial data requirements, and difficulties in maintaining consistency between given text and motion of the foreground object. To address these challenges, we propose mask-guided video generation, which can control video generation through mask motion sequences, while requiring limited training data. Our model enhances existing architectures by incorporating foreground masks for precise text-position matching and motion trajectory control. Through mask motion sequences, we guide the video generation process to maintain consistent foreground objects throughout the sequence. Additionally, through a first-frame sharing strategy and autoregressive extension approach, we achieve more stable and longer video generation. Extensive qualitative and quantitative experiments demonstrate that this approach excels in various video generation tasks, such as video editing and generating artistic videos, outperforming previous methods in terms of consistency and quality. Our generated results can be viewed in the supplementary materials.
☆ RoCA: Robust Contrastive One-class Time Series Anomaly Detection with Contaminated Data
The accumulation of time-series signals and the absence of labels make time-series Anomaly Detection (AD) a self-supervised task of deep learning. Methods based on normality assumptions face the following three limitations: (1) A single assumption could hardly characterize the whole normality or lead to some deviation. (2) Some assumptions may go against the principle of AD. (3) Their basic assumption is that the training data is uncontaminated (free of anomalies), which is unrealistic in practice, leading to a decline in robustness. This paper proposes a novel robust approach, RoCA, which is the first to address all of the above three challenges, as far as we are aware. It fuses the separated assumptions of one-class classification and contrastive learning in a single training process to characterize a more complete so-called normality. Additionally, it monitors the training data and computes a carefully designed anomaly score throughout the training process. This score helps identify latent anomalies, which are then used to define the classification boundary, inspired by the concept of outlier exposure. The performance on AIOps datasets improved by 6% compared to when contamination was not considered (COCA). On two large and high-dimensional multivariate datasets, the performance increased by 5% to 10%. RoCA achieves the highest average performance on both univariate and multivariate datasets. The source code is available at https://github.com/ruiking04/RoCA.
☆ PP-FormulaNet: Bridging Accuracy and Efficiency in Advanced Formula Recognition
Formula recognition is an important task in document intelligence. It involves converting mathematical expressions from document images into structured symbolic formats that computers can easily work with. LaTeX is the most common format used for this purpose. In this work, we present PP-FormulaNet, a state-of-the-art formula recognition model that excels in both accuracy and efficiency. To meet the diverse needs of applications, we have developed two specialized models: PP-FormulaNet-L, tailored for high-accuracy scenarios, and PP-FormulaNet-S, optimized for high-efficiency contexts. Our extensive evaluations reveal that PP-FormulaNet-L attains accuracy levels that surpass those of prominent models such as UniMERNet by a significant 6%. Conversely, PP-FormulaNet-S operates at speeds that are over 16 times faster. These advancements facilitate seamless integration of PP-FormulaNet into a broad spectrum of document processing environments that involve intricate mathematical formulas. Furthermore, we introduce a Formula Mining System, which is capable of extracting a vast amount of high-quality formula data. This system further enhances the robustness and applicability of our formula recognition model. Code and models are publicly available at PaddleOCR(https://github.com/PaddlePaddle/PaddleOCR) and PaddleX(https://github.com/PaddlePaddle/PaddleX).
☆ Maximum Redundancy Pruning: A Principle-Driven Layerwise Sparsity Allocation for LLMs
Large language models (LLMs) have demonstrated impressive capabilities, but their enormous size poses significant challenges for deployment in real-world applications. To address this issue, researchers have sought to apply network pruning techniques to LLMs. A critical challenge in pruning is allocation the sparsity for each layer. Recent sparsity allocation methods is often based on heuristics or search that can easily lead to suboptimal performance. In this paper, we conducted an extensive investigation into various LLMs and revealed three significant discoveries: (1) the layerwise pruning sensitivity (LPS) of LLMs is highly non-uniform, (2) the choice of pruning metric affects LPS, and (3) the performance of a sparse model is related to the uniformity of its layerwise redundancy level. Based on these observations, we propose that the layerwise sparsity of LLMs should adhere to three principles: \emph{non-uniformity}, \emph{pruning metric dependency}, and \emph{uniform layerwise redundancy level} in the pruned model. To this end, we proposed Maximum Redundancy Pruning (MRP), an iterative pruning algorithm that prunes in the most redundant layers (\emph{i.e.}, those with the highest non-outlier ratio) at each iteration. The achieved layerwise sparsity aligns with the outlined principles. We conducted extensive experiments on publicly available LLMs, including the LLaMA2 and OPT, across various benchmarks. Experimental results validate the effectiveness of MRP, demonstrating its superiority over previous methods.
☆ Latent Embedding Adaptation for Human Preference Alignment in Diffusion Planners
This work addresses the challenge of personalizing trajectories generated in automated decision-making systems by introducing a resource-efficient approach that enables rapid adaptation to individual users' preferences. Our method leverages a pretrained conditional diffusion model with Preference Latent Embeddings (PLE), trained on a large, reward-free offline dataset. The PLE serves as a compact representation for capturing specific user preferences. By adapting the pretrained model using our proposed preference inversion method, which directly optimizes the learnable PLE, we achieve superior alignment with human preferences compared to existing solutions like Reinforcement Learning from Human Feedback (RLHF) and Low-Rank Adaptation (LoRA). To better reflect practical applications, we create a benchmark experiment using real human preferences on diverse, high-reward trajectories.
comment: 8 pages
☆ Optimizing Influence Campaigns: Nudging under Bounded Confidence
Influence campaigns in online social networks are often run by organizations, political parties, and nation states to influence large audiences. These campaigns are employed through the use of agents in the network that share persuasive content. Yet, their impact might be minimal if the audiences remain unswayed, often due to the bounded confidence phenomenon, where only a narrow spectrum of viewpoints can influence them. Here we show that to persuade under bounded confidence, an agent must nudge its targets to gradually shift their opinions. Using a control theory approach, we show how to construct an agent's nudging policy under the bounded confidence opinion dynamics model and also how to select targets for multiple agents in an influence campaign on a social network. Simulations on real Twitter networks show that a multi-agent nudging policy can shift the mean opinion, decrease opinion polarization, or even increase it. We find that our nudging based policies outperform other common techniques that do not consider the bounded confidence effect. Finally, we show how to craft prompts for large language models, such as ChatGPT, to generate text-based content for real nudging policies. This illustrates the practical feasibility of our approach, allowing one to go from mathematical nudging policies to real social media content.
☆ Plug-and-Play Interpretable Responsible Text-to-Image Generation via Dual-Space Multi-facet Concept Control
Ethical issues around text-to-image (T2I) models demand a comprehensive control over the generative content. Existing techniques addressing these issues for responsible T2I models aim for the generated content to be fair and safe (non-violent/explicit). However, these methods remain bounded to handling the facets of responsibility concepts individually, while also lacking in interpretability. Moreover, they often require alteration to the original model, which compromises the model performance. In this work, we propose a unique technique to enable responsible T2I generation by simultaneously accounting for an extensive range of concepts for fair and safe content generation in a scalable manner. The key idea is to distill the target T2I pipeline with an external plug-and-play mechanism that learns an interpretable composite responsible space for the desired concepts, conditioned on the target T2I pipeline. We use knowledge distillation and concept whitening to enable this. At inference, the learned space is utilized to modulate the generative content. A typical T2I pipeline presents two plug-in points for our approach, namely; the text embedding space and the diffusion model latent space. We develop modules for both points and show the effectiveness of our approach with a range of strong results.
☆ Bridging Writing Manner Gap in Visual Instruction Tuning by Creating LLM-aligned Instructions
In the realm of Large Multi-modal Models (LMMs), the instruction quality during the visual instruction tuning stage significantly influences the performance of modality alignment. In this paper, we assess the instruction quality from a unique perspective termed \textbf{Writing Manner}, which encompasses the selection of vocabulary, grammar and sentence structure to convey specific semantics. We argue that there exists a substantial writing manner gap between the visual instructions and the base Large Language Models (LLMs) within LMMs. This gap forces the pre-trained base LLMs to deviate from their original writing styles, leading to capability degradation of both base LLMs and LMMs. To bridge the writing manner gap while preserving the original semantics, we propose directly leveraging the base LLM to align the writing manner of soft-format visual instructions with that of the base LLM itself, resulting in novel LLM-aligned instructions. The manual writing manner evaluation results demonstrate that our approach successfully minimizes the writing manner gap. By utilizing LLM-aligned instructions, the baseline models LLaVA-7B and QwenVL demonstrate enhanced resistance to hallucinations and non-trivial comprehensive improvements across all $15$ visual and language benchmarks.
☆ DeepFund: Will LLM be Professional at Fund Investment? A Live Arena Perspective
Large Language Models (LLMs) have demonstrated impressive capabilities across various domains, but their effectiveness in financial decision making, particularly in fund investment, remains inadequately evaluated. Current benchmarks primarily assess LLMs understanding of financial documents rather than their ability to manage assets or analyze trading opportunities in dynamic market conditions. A critical limitation in existing evaluation methodologies is the backtesting approach, which suffers from information leakage when LLMs are evaluated on historical data they may have encountered during pretraining. This paper introduces DeepFund, a comprehensive platform for evaluating LLM based trading strategies in a simulated live environment. Our approach implements a multi agent framework where LLMs serve as both analysts and managers, creating a realistic simulation of investment decision making. The platform employs a forward testing methodology that mitigates information leakage by evaluating models on market data released after their training cutoff dates. We provide a web interface that visualizes model performance across different market conditions and investment parameters, enabling detailed comparative analysis. Through DeepFund, we aim to provide a more accurate and fair assessment of LLMs capabilities in fund investment, offering insights into their potential real world applications in financial markets.
comment: Work in progress
☆ How to Capture and Study Conversations Between Research Participants and ChatGPT: GPT for Researchers (g4r.org)
As large language models (LLMs) like ChatGPT become increasingly integrated into our everyday lives--from customer service and education to creative work and personal productivity--understanding how people interact with these AI systems has become a pressing issue. Despite the widespread use of LLMs, researchers lack standardized tools for systematically studying people's interactions with LLMs. To address this issue, we introduce GPT for Researchers (G4R), or g4r.org, a free website that researchers can use to easily create and integrate a GPT Interface into their studies. At g4r.org, researchers can (1) enable their study participants to interact with GPT (such as ChatGPT), (2) customize GPT Interfaces to guide participants' interactions with GPT (e.g., set constraints on topics or adjust GPT's tone or response style), and (3) capture participants' interactions with GPT by downloading data on messages exchanged between participants and GPT. By facilitating study participants' interactions with GPT and providing detailed data on these interactions, G4R can support research on topics such as consumer interactions with AI agents or LLMs, AI-assisted decision-making, and linguistic patterns in human-AI communication. With this goal in mind, we provide a step-by-step guide to using G4R at g4r.org.
☆ DiffMove: Group Mobility Tendency Enhanced Trajectory Recovery via Diffusion Model
In the real world, trajectory data is often sparse and incomplete due to low collection frequencies or limited device coverage. Trajectory recovery aims to recover these missing trajectory points, making the trajectories denser and more complete. However, this task faces two key challenges: 1) The excessive sparsity of individual trajectories makes it difficult to effectively leverage historical information for recovery; 2) Sparse trajectories make it harder to capture complex individual mobility preferences. To address these challenges, we propose a novel method called DiffMove. Firstly, we harness crowd wisdom for trajectory recovery. Specifically, we construct a group tendency graph using the collective trajectories of all users and then integrate the group mobility trends into the location representations via graph embedding. This solves the challenge of sparse trajectories being unable to rely on individual historical trajectories for recovery. Secondly, we capture individual mobility preferences from both historical and current perspectives. Finally, we integrate group mobility tendencies and individual preferences into the spatiotemporal distribution of the trajectory to recover high-quality trajectories. Extensive experiments on two real-world datasets demonstrate that DiffMove outperforms existing state-of-the-art methods. Further analysis validates the robustness of our method.
☆ When is dataset cartography ineffective? Using training dynamics does not improve robustness against Adversarial SQuAD
In this paper, I investigate the effectiveness of dataset cartography for extractive question answering on the SQuAD dataset. I begin by analyzing annotation artifacts in SQuAD and evaluate the impact of two adversarial datasets, AddSent and AddOneSent, on an ELECTRA-small model. Using training dynamics, I partition SQuAD into easy-to-learn, ambiguous, and hard-to-learn subsets. I then compare the performance of models trained on these subsets to those trained on randomly selected samples of equal size. Results show that training on cartography-based subsets does not improve generalization to the SQuAD validation set or the AddSent adversarial set. While the hard-to-learn subset yields a slightly higher F1 score on the AddOneSent dataset, the overall gains are limited. These findings suggest that dataset cartography provides little benefit for adversarial robustness in SQuAD-style QA tasks. I conclude by comparing these results to prior findings on SNLI and discuss possible reasons for the observed differences.
comment: 5 pages, 3 figures, 4 tables
☆ Voxel-based Point Cloud Geometry Compression with Space-to-Channel Context
Voxel-based methods are among the most efficient for point cloud geometry compression, particularly with dense point clouds. However, they face limitations due to a restricted receptive field, especially when handling high-bit depth point clouds. To overcome this issue, we introduce a stage-wise Space-to-Channel (S2C) context model for both dense point clouds and low-level sparse point clouds. This model utilizes a channel-wise autoregressive strategy to effectively integrate neighborhood information at a coarse resolution. For high-level sparse point clouds, we further propose a level-wise S2C context model that addresses resolution limitations by incorporating Geometry Residual Coding (GRC) for consistent-resolution cross-level prediction. Additionally, we use the spherical coordinate system for its compact representation and enhance our GRC approach with a Residual Probability Approximation (RPA) module, which features a large kernel size. Experimental results show that our S2C context model not only achieves bit savings while maintaining or improving reconstruction quality but also reduces computational complexity compared to state-of-the-art voxel-based compression methods.
TopV: Compatible Token Pruning with Inference Time Optimization for Fast and Low-Memory Multimodal Vision Language Model CVPR 2025
Vision-Language Models (VLMs) demand substantial computational resources during inference, largely due to the extensive visual input tokens for representing visual information. Previous studies have noted that visual tokens tend to receive less attention than text tokens, suggesting their lower importance during inference and potential for pruning. However, their methods encounter several challenges: reliance on greedy heuristic criteria for token importance and incompatibility with FlashAttention and KV cache. To address these issues, we introduce \textbf{TopV}, a compatible \textbf{TO}ken \textbf{P}runing with inference Time Optimization for fast and low-memory \textbf{V}LM, achieving efficient pruning without additional training or fine-tuning. Instead of relying on attention scores, we formulate token pruning as an optimization problem, accurately identifying important visual tokens while remaining compatible with FlashAttention. Additionally, since we only perform this pruning once during the prefilling stage, it effectively reduces KV cache size. Our optimization framework incorporates a visual-aware cost function considering factors such as Feature Similarity, Relative Spatial Distance, and Absolute Central Distance, to measure the importance of each source visual token, enabling effective pruning of low-importance tokens. Extensive experiments demonstrate that our method outperforms previous token pruning methods, validating the effectiveness and efficiency of our approach.
comment: Accepted by CVPR 2025
☆ Risk Management for Distributed Arbitrage Systems: Integrating Artificial Intelligence
Effective risk management solutions become absolutely crucial when financial markets embrace distributed technology and decentralized financing (DeFi). This study offers a thorough survey and comparative analysis of the integration of artificial intelligence (AI) in risk management for distributed arbitrage systems. We examine several modern caching techniques namely in memory caching, distributed caching, and proxy caching and their functions in enhancing performance in decentralized settings. Through literature review we examine the utilization of AI techniques for alleviating risks related to market volatility, liquidity challenges, operational failures, regulatory compliance, and security threats. This comparison research evaluates various case studies from prominent DeFi technologies, emphasizing critical performance metrics like latency reduction, load balancing, and system resilience. Additionally, we examine the problems and trade offs associated with these technologies, emphasizing their effects on consistency, scalability, and fault tolerance. By meticulously analyzing real world applications, specifically centering on the Aave platform as our principal case study, we illustrate how the purposeful amalgamation of AI with contemporary caching methodologies has revolutionized risk management in distributed arbitrage systems.
comment: International Conference on AI and Financial Innovation AIFI-2025
☆ Severing Spurious Correlations with Data Pruning ICLR 2025
Deep neural networks have been shown to learn and rely on spurious correlations present in the data that they are trained on. Reliance on such correlations can cause these networks to malfunction when deployed in the real world, where these correlations may no longer hold. To overcome the learning of and reliance on such correlations, recent studies propose approaches that yield promising results. These works, however, study settings where the strength of the spurious signal is significantly greater than that of the core, invariant signal, making it easier to detect the presence of spurious features in individual training samples and allow for further processing. In this paper, we identify new settings where the strength of the spurious signal is relatively weaker, making it difficult to detect any spurious information while continuing to have catastrophic consequences. We also discover that spurious correlations are learned primarily due to only a handful of all the samples containing the spurious feature and develop a novel data pruning technique that identifies and prunes small subsets of the training data that contain these samples. Our proposed technique does not require inferred domain knowledge, information regarding the sample-wise presence or nature of spurious information, or human intervention. Finally, we show that such data pruning attains state-of-the-art performance on previously studied settings where spurious information is identifiable.
comment: ICLR 2025, Spotlight
☆ The Human-Machine Identity Blur: A Unified Framework for Cybersecurity Risk Management in 2025
The modern enterprise is facing an unprecedented surge in digital identities, with machine identities now significantly outnumbering human identities. This paper examines the cybersecurity risks emerging from what we define as the "human-machine identity blur" - the point at which human and machine identities intersect, delegate authority, and create new attack surfaces. Drawing from industry data, expert insights, and real-world incident analysis, we identify key governance gaps in current identity management models that treat human and machine entities as separate domains. To address these challenges, we propose a Unified Identity Governance Framework based on four core principles: treating identity as a continuum rather than a binary distinction, applying consistent risk evaluation across all identity types, implementing continuous verification guided by zero trust principles, and maintaining governance throughout the entire identity lifecycle. Our research shows that organizations adopting this unified approach experience a 47 percent reduction in identity-related security incidents and a 62 percent improvement in incident response time. We conclude by offering a practical implementation roadmap and outlining future research directions as AI-driven systems become increasingly autonomous.
comment: 9 pages, 8 figures
☆ LLM Benchmarking with LLaMA2: Evaluating Code Development Performance Across Multiple Programming Languages
The rapid evolution of large language models (LLMs) has opened new possibilities for automating various tasks in software development. This paper evaluates the capabilities of the Llama 2-70B model in automating these tasks for scientific applications written in commonly used programming languages. Using representative test problems, we assess the model's capacity to generate code, documentation, and unit tests, as well as its ability to translate existing code between commonly used programming languages. Our comprehensive analysis evaluates the compilation, runtime behavior, and correctness of the generated and translated code. Additionally, we assess the quality of automatically generated code, documentation and unit tests. Our results indicate that while Llama 2-70B frequently generates syntactically correct and functional code for simpler numerical tasks, it encounters substantial difficulties with more complex, parallelized, or distributed computations, requiring considerable manual corrections. We identify key limitations and suggest areas for future improvements to better leverage AI-driven automation in scientific computing workflows.
☆ A Survey of Large Language Model Agents for Question Answering
This paper surveys the development of large language model (LLM)-based agents for question answering (QA). Traditional agents face significant limitations, including substantial data requirements and difficulty in generalizing to new environments. LLM-based agents address these challenges by leveraging LLMs as their core reasoning engine. These agents achieve superior QA results compared to traditional QA pipelines and naive LLM QA systems by enabling interaction with external environments. We systematically review the design of LLM agents in the context of QA tasks, organizing our discussion across key stages: planning, question understanding, information retrieval, and answer generation. Additionally, this paper identifies ongoing challenges and explores future research directions to enhance the performance of LLM agent QA systems.
☆ Continual Reinforcement Learning for HVAC Systems Control: Integrating Hypernetworks and Transfer Learning
Buildings with Heating, Ventilation, and Air Conditioning (HVAC) systems play a crucial role in ensuring indoor comfort and efficiency. While traditionally governed by physics-based models, the emergence of big data has enabled data-driven methods like Deep Reinforcement Learning (DRL). However, Reinforcement Learning (RL)-based techniques often suffer from sample inefficiency and limited generalization, especially across varying HVAC systems. We introduce a model-based reinforcement learning framework that uses a Hypernetwork to continuously learn environment dynamics across tasks with different action spaces. This enables efficient synthetic rollout generation and improved sample usage. Our approach demonstrates strong backward transfer in a continual learning setting after training on a second task, minimal fine-tuning on the first task allows rapid convergence within just 5 episodes and thus outperforming Model Free Reinforcement Learning (MFRL) and effectively mitigating catastrophic forgetting. These findings have significant implications for reducing energy consumption and operational costs in building management, thus supporting global sustainability goals. Keywords: Deep Reinforcement Learning, HVAC Systems Control, Hypernetworks, Transfer and Continual Learning, Catastrophic Forgetting
☆ Overtrained Language Models Are Harder to Fine-Tune
Large language models are pre-trained on ever-growing token budgets under the assumption that better pre-training performance translates to improved downstream models. In this work, we challenge this assumption and show that extended pre-training can make models harder to fine-tune, leading to degraded final performance. We term this phenomenon catastrophic overtraining. For example, the instruction-tuned OLMo-1B model pre-trained on 3T tokens leads to over 2% worse performance on multiple standard LLM benchmarks than its 2.3T token counterpart. Through controlled experiments and theoretical analysis, we show that catastrophic overtraining arises from a systematic increase in the broad sensitivity of pre-trained parameters to modifications, including but not limited to fine-tuning. Our findings call for a critical reassessment of pre-training design that considers the downstream adaptability of the model.
comment: 72 pages, 65 figures, 6 tables
☆ A Shared Low-Rank Adaptation Approach to Personalized RLHF AISTATS 2025
Reinforcement Learning from Human Feedback (RLHF) has emerged as a pivotal technique for aligning artificial intelligence systems with human values, achieving remarkable success in fine-tuning large language models. However, existing RLHF frameworks often assume that human preferences are relatively homogeneous and can be captured by a single, unified reward model. This assumption overlooks the inherent diversity and heterogeneity across individuals, limiting the adaptability of RLHF to personalized scenarios and risking misalignments that can diminish user satisfaction and trust in AI systems. In this paper, we address these challenges by introducing Low-Rank Adaptation (LoRA) into the personalized RLHF framework. We apply LoRA in the the aggregated parameter space of all personalized reward functions, thereby enabling efficient learning of personalized reward models from potentially limited local datasets. Our approach exploits potential shared structures among the local ground-truth reward models while allowing for individual adaptation, without relying on restrictive assumptions about shared representations as in prior works. We further establish sample complexity guarantees for our method. Theoretical analysis demonstrates the effectiveness of the proposed approach in capturing both shared and individual-specific structures within heterogeneous human preferences, addressing the dual challenge of personalization requirements and practical data constraints. Experimental results on real-world datasets corroborate the efficiency of our algorithm in the personalized RLHF setting.
comment: Published as a conference paper at AISTATS 2025
☆ Mining-Gym: A Configurable RL Benchmarking Environment for Truck Dispatch Scheduling
Mining process optimization particularly truck dispatch scheduling is a critical factor in enhancing the efficiency of open pit mining operations However the dynamic and stochastic nature of mining environments characterized by uncertainties such as equipment failures truck maintenance and variable haul cycle times poses significant challenges for traditional optimization methods While Reinforcement Learning RL has shown promise in adaptive decision making for mining logistics its practical deployment requires rigorous evaluation in realistic and customizable simulation environments The lack of standardized benchmarking environments limits fair algorithm comparisons reproducibility and the real world applicability of RL based approaches in open pit mining settings To address this challenge we introduce Mining Gym a configurable open source benchmarking environment designed for training testing and comparing RL algorithms in mining process optimization Built on Discrete Event Simulation DES and seamlessly integrated with the OpenAI Gym interface Mining Gym provides a structured testbed that enables the direct application of advanced RL algorithms from Stable Baselines The framework models key mining specific uncertainties such as equipment failures queue congestion and the stochasticity of mining processes ensuring a realistic and adaptive learning environment Additionally Mining Gym features a graphical user interface GUI for intuitive mine site configuration a comprehensive data logging system a built in KPI dashboard and real time visual representation of the mine site These capabilities facilitate standardized reproducible evaluations across multiple RL strategies and baseline heuristics
comment: 11 pages, 8 figures
☆ Browsing Lost Unformed Recollections: A Benchmark for Tip-of-the-Tongue Search and Reasoning
We introduce Browsing Lost Unformed Recollections, a tip-of-the-tongue known-item search and reasoning benchmark for general AI assistants. BLUR introduces a set of 573 real-world validated questions that demand searching and reasoning across multi-modal and multilingual inputs, as well as proficient tool use, in order to excel on. Humans easily ace these questions (scoring on average 98%), while the best-performing system scores around 56%. To facilitate progress toward addressing this challenging and aspirational use case for general AI assistants, we release 350 questions through a public leaderboard, retain the answers to 250 of them, and have the rest as a private test set.
☆ SoK: How Robust is Audio Watermarking in Generative AI models?
Audio watermarking is increasingly used to verify the provenance of AI-generated content, enabling applications such as detecting AI-generated speech, protecting music IP, and defending against voice cloning. To be effective, audio watermarks must resist removal attacks that distort signals to evade detection. While many schemes claim robustness, these claims are typically tested in isolation and against a limited set of attacks. A systematic evaluation against diverse removal attacks is lacking, hindering practical deployment. In this paper, we investigate whether recent watermarking schemes that claim robustness can withstand a broad range of removal attacks. First, we introduce a taxonomy covering 22 audio watermarking schemes. Next, we summarize their underlying technologies and potential vulnerabilities. We then present a large-scale empirical study to assess their robustness. To support this, we build an evaluation framework encompassing 22 types of removal attacks (109 configurations) including signal-level, physical-level, and AI-induced distortions. We reproduce 9 watermarking schemes using open-source code, identify 8 new highly effective attacks, and highlight 11 key findings that expose the fundamental limitations of these methods across 3 public datasets. Our results reveal that none of the surveyed schemes can withstand all tested distortions. This evaluation offers a comprehensive view of how current watermarking methods perform under real-world threats. Our demo and code are available at https://sokaudiowm.github.io/.
☆ AssertionForge: Enhancing Formal Verification Assertion Generation with Structured Representation of Specifications and RTL
Generating SystemVerilog Assertions (SVAs) from natural language specifications remains a major challenge in formal verification (FV) due to the inherent ambiguity and incompleteness of specifications. Existing LLM-based approaches, such as AssertLLM, focus on extracting information solely from specification documents, often failing to capture essential internal signal interactions and design details present in the RTL code, leading to incomplete or incorrect assertions. We propose a novel approach that constructs a Knowledge Graph (KG) from both specifications and RTL, using a hardware-specific schema with domain-specific entity and relation types. We create an initial KG from the specification and then systematically fuse it with information extracted from the RTL code, resulting in a unified, comprehensive KG. This combined representation enables a more thorough understanding of the design and allows for a multi-resolution context synthesis process which is designed to extract diverse verification contexts from the KG. Experiments on four designs demonstrate that our method significantly enhances SVA quality over prior methods. This structured representation not only improves FV but also paves the way for future research in tasks like code generation and design understanding.
☆ PSO-UNet: Particle Swarm-Optimized U-Net Framework for Precise Multimodal Brain Tumor Segmentation
Medical image segmentation, particularly for brain tumor analysis, demands precise and computationally efficient models due to the complexity of multimodal MRI datasets and diverse tumor morphologies. This study introduces PSO-UNet, which integrates Particle Swarm Optimization (PSO) with the U-Net architecture for dynamic hyperparameter optimization. Unlike traditional manual tuning or alternative optimization approaches, PSO effectively navigates complex hyperparameter search spaces, explicitly optimizing the number of filters, kernel size, and learning rate. PSO-UNet substantially enhances segmentation performance, achieving Dice Similarity Coefficients (DSC) of 0.9578 and 0.9523 and Intersection over Union (IoU) scores of 0.9194 and 0.9097 on the BraTS 2021 and Figshare datasets, respectively. Moreover, the method reduces computational complexity significantly, utilizing only 7.8 million parameters and executing in approximately 906 seconds, markedly faster than comparable U-Net-based frameworks. These outcomes underscore PSO-UNet's robust generalization capabilities across diverse MRI modalities and tumor classifications, emphasizing its clinical potential and clear advantages over conventional hyperparameter tuning methods. Future research will explore hybrid optimization strategies and validate the framework against other bio-inspired algorithms to enhance its robustness and scalability.
comment: 9 pages, 6 figures, 4 tables, Gecco 2025 Conference
☆ Overcoming Vocabulary Mismatch: Vocabulary-agnostic Teacher Guided Language Modeling
Using large teacher models to guide the training of smaller student models has become the prevailing paradigm for efficient and effective learning. However, vocabulary mismatches between teacher and student language models pose significant challenges in language modeling, resulting in divergent token sequences and output distributions. To overcome these limitations, we propose Vocabulary-agnostic Teacher Guided Language Modeling (VocAgnoLM), a novel approach that bridges the gap caused by vocabulary mismatch through two key methods: (1) Token-level Lexical Alignment, which aligns token sequences across mismatched vocabularies, and (2) Teacher Guided Loss, which leverages the loss of teacher model to guide effective student training. We demonstrate its effectiveness in language modeling with 1B student model using various 7B teacher models with different vocabularies. Notably, with Qwen2.5-Math-Instruct, a teacher model sharing only about 6% of its vocabulary with TinyLlama, VocAgnoLM achieves a 46% performance improvement compared to naive continual pretraining. Furthermore, we demonstrate that VocAgnoLM consistently benefits from stronger teacher models, providing a robust solution to vocabulary mismatches in language modeling.
☆ Where is this coming from? Making groundedness count in the evaluation of Document VQA models NAACL
Document Visual Question Answering (VQA) models have evolved at an impressive rate over the past few years, coming close to or matching human performance on some benchmarks. We argue that common evaluation metrics used by popular benchmarks do not account for the semantic and multimodal groundedness of a model's outputs. As a result, hallucinations and major semantic errors are treated the same way as well-grounded outputs, and the evaluation scores do not reflect the reasoning capabilities of the model. In response, we propose a new evaluation methodology that accounts for the groundedness of predictions with regard to the semantic characteristics of the output as well as the multimodal placement of the output within the input document. Our proposed methodology is parameterized in such a way that users can configure the score according to their preferences. We validate our scoring methodology using human judgment and show its potential impact on existing popular leaderboards. Through extensive analyses, we demonstrate that our proposed method produces scores that are a better indicator of a model's robustness and tends to give higher rewards to better-calibrated answers.
comment: Accepted to NAACL Findings 2025
☆ Information-Seeking Decision Strategies Mitigate Risk in Dynamic, Uncertain Environments
To survive in dynamic and uncertain environments, individuals must develop effective decision strategies that balance information gathering and decision commitment. Models of such strategies often prioritize either optimizing tangible payoffs, like reward rate, or gathering information to support a diversity of (possibly unknown) objectives. However, our understanding of the relative merits of these two approaches remains incomplete, in part because direct comparisons have been limited to idealized, static environments that lack the dynamic complexity of the real world. Here we compared the performance of normative reward- and information-seeking strategies in a dynamic foraging task. Both strategies show similar transitions between exploratory and exploitative behaviors as environmental uncertainty changes. However, we find subtle disparities in the actions they take, resulting in meaningful performance differences: whereas reward-seeking strategies generate slightly more reward on average, information-seeking strategies provide more consistent and predictable outcomes. Our findings support the adaptive value of information-seeking behaviors that can mitigate risk with minimal reward loss.
☆ Anomaly Detection Using Computer Vision: A Comparative Analysis of Class Distinction and Performance Metrics
This paper showcases an experimental study on anomaly detection using computer vision. The study focuses on class distinction and performance evaluation, combining OpenCV with deep learning techniques while employing a TensorFlow-based convolutional neural network for real-time face recognition and classification. The system effectively distinguishes among three classes: authorized personnel (admin), intruders, and non-human entities. A MobileNetV2-based deep learning model is utilized to optimize real-time performance, ensuring high computational efficiency without compromising accuracy. Extensive dataset preprocessing, including image augmentation and normalization, enhances the models generalization capabilities. Our analysis demonstrates classification accuracies of 90.20% for admin, 98.60% for intruders, and 75.80% for non-human detection, while maintaining an average processing rate of 30 frames per second. The study leverages transfer learning, batch normalization, and Adam optimization to achieve stable and robust learning, and a comparative analysis of class differentiation strategies highlights the impact of feature extraction techniques and training methodologies. The results indicate that advanced feature selection and data augmentation significantly enhance detection performance, particularly in distinguishing human from non-human scenes. As an experimental study, this research provides critical insights into optimizing deep learning-based surveillance systems for high-security environments and improving the accuracy and efficiency of real-time anomaly detection.
comment: 6 pages, 4 figures
☆ Rankers, Judges, and Assistants: Towards Understanding the Interplay of LLMs in Information Retrieval Evaluation
Large language models (LLMs) are increasingly integral to information retrieval (IR), powering ranking, evaluation, and AI-assisted content creation. This widespread adoption necessitates a critical examination of potential biases arising from the interplay between these LLM-based components. This paper synthesizes existing research and presents novel experiment designs that explore how LLM-based rankers and assistants influence LLM-based judges. We provide the first empirical evidence of LLM judges exhibiting significant bias towards LLM-based rankers. Furthermore, we observe limitations in LLM judges' ability to discern subtle system performance differences. Contrary to some previous findings, our preliminary study does not find evidence of bias against AI-generated content. These results highlight the need for a more holistic view of the LLM-driven information ecosystem. To this end, we offer initial guidelines and a research agenda to ensure the reliable use of LLMs in IR evaluation.
☆ The Case for "Thick Evaluations" of Cultural Representation in AI
Generative AI image models have been increasingly evaluated for their (in)ability to represent non-Western cultures. We argue that these evaluations operate through reductive ideals of representation, abstracted from how people define their own representation and neglecting the inherently interpretive and contextual nature of cultural representation. In contrast to these 'thin' evaluations, we introduce the idea of 'thick evaluations': a more granular, situated, and discursive measurement framework for evaluating representations of social worlds in AI images, steeped in communities' own understandings of representation. We develop this evaluation framework through workshops in South Asia, by studying the 'thick' ways in which people interpret and assign meaning to images of their own cultures. We introduce practices for thicker evaluations of representation that expand the understanding of representation underpinning AI evaluations and by co-constructing metrics with communities, bringing measurement in line with the experiences of communities on the ground.
comment: 14 pages
☆ HingeRLC-GAN: Combating Mode Collapse with Hinge Loss and RLC Regularization
Recent advances in Generative Adversarial Networks (GANs) have demonstrated their capability for producing high-quality images. However, a significant challenge remains mode collapse, which occurs when the generator produces a limited number of data patterns that do not reflect the diversity of the training dataset. This study addresses this issue by proposing a number of architectural changes aimed at increasing the diversity and stability of GAN models. We start by improving the loss function with Wasserstein loss and Gradient Penalty to better capture the full range of data variations. We also investigate various network architectures and conclude that ResNet significantly contributes to increased diversity. Building on these findings, we introduce HingeRLC-GAN, a novel approach that combines RLC Regularization and the Hinge loss function. With a FID Score of 18 and a KID Score of 0.001, our approach outperforms existing methods by effectively balancing training stability and increased diversity.
☆ Minimum Volume Conformal Sets for Multivariate Regression
Conformal prediction provides a principled framework for constructing predictive sets with finite-sample validity. While much of the focus has been on univariate response variables, existing multivariate methods either impose rigid geometric assumptions or rely on flexible but computationally expensive approaches that do not explicitly optimize prediction set volume. We propose an optimization-driven framework based on a novel loss function that directly learns minimum-volume covering sets while ensuring valid coverage. This formulation naturally induces a new nonconformity score for conformal prediction, which adapts to the residual distribution and covariates. Our approach optimizes over prediction sets defined by arbitrary norm balls, including single and multi-norm formulations. Additionally, by jointly optimizing both the predictive model and predictive uncertainty, we obtain prediction sets that are tight, informative, and computationally efficient, as demonstrated in our experiments on real-world datasets.
☆ Mist: Efficient Distributed Training of Large Language Models via Memory-Parallelism Co-Optimization EuroSys 2025
Various parallelism, such as data, tensor, and pipeline parallelism, along with memory optimizations like activation checkpointing, redundancy elimination, and offloading, have been proposed to accelerate distributed training for Large Language Models. To find the best combination of these techniques, automatic distributed training systems are proposed. However, existing systems only tune a subset of optimizations, due to the lack of overlap awareness, inability to navigate the vast search space, and ignoring the inter-microbatch imbalance, leading to sub-optimal performance. To address these shortcomings, we propose Mist, a memory, overlap, and imbalance-aware automatic distributed training system that comprehensively co-optimizes all memory footprint reduction techniques alongside parallelism. Mist is based on three key ideas: (1) fine-grained overlap-centric scheduling, orchestrating optimizations in an overlapped manner, (2) symbolic-based performance analysis that predicts runtime and memory usage using symbolic expressions for fast tuning, and (3) imbalance-aware hierarchical tuning, decoupling the process into an inter-stage imbalance and overlap aware Mixed Integer Linear Programming problem and an intra-stage Dual-Objective Constrained Optimization problem, and connecting them through Pareto frontier sampling. Our evaluation results show that Mist achieves an average of 1.28$\times$ (up to 1.73$\times$) and 1.27$\times$ (up to 2.04$\times$) speedup compared to state-of-the-art manual system Megatron-LM and state-of-the-art automatic system Aceso, respectively.
comment: Accepted by EuroSys 2025
☆ Forecasting Labor Demand: Predicting JOLT Job Openings using Deep Learning Model
This thesis studies the effectiveness of Long Short Term Memory model in forecasting future Job Openings and Labor Turnover Survey data in the United States. Drawing on multiple economic indicators from various sources, the data are fed directly into LSTM model to predict JOLT job openings in subsequent periods. The performance of the LSTM model is compared with conventional autoregressive approaches, including ARIMA, SARIMA, and Holt-Winters. Findings suggest that the LSTM model outperforms these traditional models in predicting JOLT job openings, as it not only captures the dependent variables trends but also harmonized with key economic factors. These results highlight the potential of deep learning techniques in capturing complex temporal dependencies in economic data, offering valuable insights for policymakers and stakeholders in developing data-driven labor market strategies
comment: 19 pages, 7 figures
☆ LookAhead Tuning: Safer Language Models via Partial Answer Previews
Fine-tuning enables large language models (LLMs) to adapt to specific domains, but often undermines their previously established safety alignment. To mitigate the degradation of model safety during fine-tuning, we introduce LookAhead Tuning, which comprises two simple, low-resource, and effective data-driven methods that modify training data by previewing partial answer prefixes. Both methods aim to preserve the model's inherent safety mechanisms by minimizing perturbations to initial token distributions. Comprehensive experiments demonstrate that LookAhead Tuning effectively maintains model safety without sacrificing robust performance on downstream tasks. Our findings position LookAhead Tuning as a reliable and efficient solution for the safe and effective adaptation of LLMs. Code is released at https://github.com/zjunlp/LookAheadTuning.
comment: Work in progress
☆ Evolutionary Policy Optimization
Despite its extreme sample inefficiency, on-policy reinforcement learning has become a fundamental tool in real-world applications. With recent advances in GPU-driven simulation, the ability to collect vast amounts of data for RL training has scaled exponentially. However, studies show that current on-policy methods, such as PPO, fail to fully leverage the benefits of parallelized environments, leading to performance saturation beyond a certain scale. In contrast, Evolutionary Algorithms (EAs) excel at increasing diversity through randomization, making them a natural complement to RL. However, existing EvoRL methods have struggled to gain widespread adoption due to their extreme sample inefficiency. To address these challenges, we introduce Evolutionary Policy Optimization (EPO), a novel policy gradient algorithm that combines the strengths of EA and policy gradients. We show that EPO significantly improves performance across diverse and challenging environments, demonstrating superior scalability with parallelized simulations.
comment: Website at https://sites.google.com/view/epo-rl
☆ Option Discovery Using LLM-guided Semantic Hierarchical Reinforcement Learning
Large Language Models (LLMs) have shown remarkable promise in reasoning and decision-making, yet their integration with Reinforcement Learning (RL) for complex robotic tasks remains underexplored. In this paper, we propose an LLM-guided hierarchical RL framework, termed LDSC, that leverages LLM-driven subgoal selection and option reuse to enhance sample efficiency, generalization, and multi-task adaptability. Traditional RL methods often suffer from inefficient exploration and high computational cost. Hierarchical RL helps with these challenges, but existing methods often fail to reuse options effectively when faced with new tasks. To address these limitations, we introduce a three-stage framework that uses LLMs for subgoal generation given natural language description of the task, a reusable option learning and selection method, and an action-level policy, enabling more effective decision-making across diverse tasks. By incorporating LLMs for subgoal prediction and policy guidance, our approach improves exploration efficiency and enhances learning performance. On average, LDSC outperforms the baseline by 55.9\% in average reward, demonstrating its effectiveness in complex RL settings. More details and experiment videos could be found in \href{https://raaslab.org/projects/LDSC/}{this link\footnote{https://raaslab.org/projects/LDSC}}.
☆ Computational Thinking with Computer Vision: Developing AI Competency in an Introductory Computer Science Course AAAI 2025
Developing competency in artificial intelligence is becoming increasingly crucial for computer science (CS) students at all levels of the CS curriculum. However, most previous research focuses on advanced CS courses, as traditional introductory courses provide limited opportunities to develop AI skills and knowledge. This paper introduces an introductory CS course where students learn computational thinking through computer vision, a sub-field of AI, as an application context. The course aims to achieve computational thinking outcomes alongside critical thinking outcomes that expose students to AI approaches and their societal implications. Through experiential activities such as individual projects and reading discussions, our course seeks to balance technical learning and critical thinking goals. Our evaluation, based on pre-and post-course surveys, shows an improved sense of belonging, self-efficacy, and AI ethics awareness among students. The results suggest that an AI-focused context can enhance participation and employability, student-selected projects support self-efficacy, and ethically grounded AI instruction can be effective for interdisciplinary audiences. Students' discussions on reading assignments demonstrated deep engagement with the complex challenges in today's AI landscape. Finally, we share insights on scaling such courses for larger cohorts and improving the learning experience for introductory CS students.
comment: 7 pages, 3 figures, 3 tables, Proceedings of AAAI 2025
☆ DisentTalk: Cross-lingual Talking Face Generation via Semantic Disentangled Diffusion Model
Recent advances in talking face generation have significantly improved facial animation synthesis. However, existing approaches face fundamental limitations: 3DMM-based methods maintain temporal consistency but lack fine-grained regional control, while Stable Diffusion-based methods enable spatial manipulation but suffer from temporal inconsistencies. The integration of these approaches is hindered by incompatible control mechanisms and semantic entanglement of facial representations. This paper presents DisentTalk, introducing a data-driven semantic disentanglement framework that decomposes 3DMM expression parameters into meaningful subspaces for fine-grained facial control. Building upon this disentangled representation, we develop a hierarchical latent diffusion architecture that operates in 3DMM parameter space, integrating region-aware attention mechanisms to ensure both spatial precision and temporal coherence. To address the scarcity of high-quality Chinese training data, we introduce CHDTF, a Chinese high-definition talking face dataset. Extensive experiments show superior performance over existing methods across multiple metrics, including lip synchronization, expression quality, and temporal consistency. Project Page: https://kangweiiliu.github.io/DisentTalk.
♻ ☆ Toward a method for LLM-enabled Indoor Navigation
Indoor navigation presents unique challenges due to complex layouts, lack of GPS signals, and accessibility concerns. Existing solutions often struggle with real-time adaptability and user-specific needs. In this work, we explore the potential of a Large Language Model (LLM), i.e., ChatGPT, to generate natural, context-aware navigation instructions from indoor map images. We design and evaluate test cases across different real-world environments, analyzing the effectiveness of LLMs in interpreting spatial layouts, handling user constraints, and planning efficient routes. Our findings demonstrate the potential of LLMs for supporting personalized indoor navigation, with an average of 50.54% correct indications and a maximum of 77.78%. The results do not appear to depend on the complexity of the layout or the complexity of the expected path, but rather on the number of points of interest and the abundance of visual information, which negatively affect the performance.
comment: 7 pages, 3 figures, 5 tables
♻ ☆ DiTEC-WDN: A Large-Scale Dataset of Hydraulic Scenarios across Multiple Water Distribution Networks
Privacy restrictions hinder the sharing of real-world Water Distribution Network (WDN) models, limiting the application of emerging data-driven machine learning, which typically requires extensive observations. To address this challenge, we propose the dataset DiTEC-WDN that comprises 36,000 unique scenarios simulated over either short-term (24 hours) or long-term (1 year) periods. We constructed this dataset using an automated pipeline that optimizes crucial parameters (e.g., pressure, flow rate, and demand patterns), facilitates large-scale simulations, and records discrete, synthetic but hydraulically realistic states under standard conditions via rule validation and post-hoc analysis. With a total of 228 million generated graph-based states, DiTEC-WDN can support a variety of machine-learning tasks, including graph-level, node-level, and link-level regression, as well as time-series forecasting. This contribution, released under a public license, encourages open scientific research in the critical water sector, eliminates the risk of exposing sensitive data, and fulfills the need for a large-scale water distribution network benchmark for study comparisons and scenario analysis.
comment: Submitted to Nature Scientific Data. Huy Truong and Andr\'es Tello contributed equally to this work. For the dataset, see https://huggingface.co/datasets/rugds/ditec-wdn
♻ ☆ LaMOuR: Leveraging Language Models for Out-of-Distribution Recovery in Reinforcement Learning
Deep Reinforcement Learning (DRL) has demonstrated strong performance in robotic control but remains susceptible to out-of-distribution (OOD) states, often resulting in unreliable actions and task failure. While previous methods have focused on minimizing or preventing OOD occurrences, they largely neglect recovery once an agent encounters such states. Although the latest research has attempted to address this by guiding agents back to in-distribution states, their reliance on uncertainty estimation hinders scalability in complex environments. To overcome this limitation, we introduce Language Models for Out-of-Distribution Recovery (LaMOuR), which enables recovery learning without relying on uncertainty estimation. LaMOuR generates dense reward codes that guide the agent back to a state where it can successfully perform its original task, leveraging the capabilities of LVLMs in image description, logical reasoning, and code generation. Experimental results show that LaMOuR substantially enhances recovery efficiency across diverse locomotion tasks and even generalizes effectively to complex environments, including humanoid locomotion and mobile manipulation, where existing methods struggle. The code and supplementary materials are available at https://lamour-rl.github.io/.
comment: 14 pages, 17 figures
♻ ☆ Survival Analysis with Machine Learning for Predicting Li-ion Battery Remaining Useful Life
The accurate prediction of RUL for lithium-ion batteries is crucial for enhancing the reliability and longevity of energy storage systems. Traditional methods for RUL prediction often struggle with issues such as data sparsity, varying battery chemistries, and the inability to capture complex degradation patterns over time. In this study, we propose a survival analysis-based framework combined with deep learning models to predict the RUL of lithium-ion batteries. Specifically, we utilize five advanced models: the Cox-type models (Cox, CoxPH, and CoxTime) and two machine-learning-based models (DeepHit and MTLR). These models address the challenges of accurate RUL estimation by transforming raw time-series battery data into survival data, including key degradation indicators such as voltage, current, and internal resistance. Advanced feature extraction techniques enhance the model's robustness in diverse real-world scenarios, including varying charging conditions and battery chemistries. Our models are tested using 10-fold cross-validation, ensuring generalizability and minimizing overfitting. Experimental results show that our survival-based framework significantly improves RUL prediction accuracy compared to traditional methods, providing a reliable tool for battery management and maintenance optimization. This study contributes to the advancement of predictive maintenance in battery technology, offering valuable insights for both researchers and industry practitioners aiming to enhance the operational lifespan of lithium-ion batteries.
♻ ☆ Neural Representation for Wireless Radiation Field Reconstruction: A 3D Gaussian Splatting Approach
Wireless channel modeling plays a pivotal role in designing, analyzing, and optimizing wireless communication systems. Nevertheless, developing an effective channel modeling approach has been a long-standing challenge. This issue has been escalated due to denser network deployment, larger antenna arrays, and broader bandwidth in next-generation networks. To address this challenge, we put forth WRF-GS, a novel framework for channel modeling based on wireless radiation field (WRF) reconstruction using 3D Gaussian splatting (3D-GS). WRF-GS employs 3D Gaussian primitives and neural networks to capture the interactions between the environment and radio signals, enabling efficient WRF reconstruction and visualization of the propagation characteristics. The reconstructed WRF can then be used to synthesize the spatial spectrum for comprehensive wireless channel characterization. While WRF-GS demonstrates remarkable effectiveness, it faces limitations in capturing high-frequency signal variations caused by complex multipath effects. To overcome these limitations, we propose WRF-GS+, an enhanced framework that integrates electromagnetic wave physics into the neural network design. WRF-GS+ leverages deformable 3D Gaussians to model both static and dynamic components of the WRF, significantly improving its ability to characterize signal variations. In addition, WRF-GS+ enhances the splatting process by simplifying the 3D-GS modeling process and improving computational efficiency. Experimental results demonstrate that both WRF-GS and WRF-GS+ outperform baselines for spatial spectrum synthesis, including ray tracing and other deep-learning approaches. Notably, WRF-GS+ achieves state-of-the-art performance in the received signal strength indication (RSSI) and channel state information (CSI) prediction tasks, surpassing existing methods by more than 0.7 dB and 3.36 dB, respectively.
comment: This is an extended journal version of our previous conference paper that was accepted to the IEEE INFOCOM 2025 at arXiv:2412.04832v2. The code for this version is available at https://github.com/wenchaozheng/WRF-GSplus
♻ ☆ Parameter Efficient Mamba Tuning via Projector-targeted Diagonal-centric Linear Transformation CVPR 2025
Despite the growing interest in Mamba architecture as a potential replacement for Transformer architecture, parameter-efficient fine-tuning (PEFT) approaches for Mamba remain largely unexplored. In our study, we introduce two key insights-driven strategies for PEFT in Mamba architecture: (1) While state-space models (SSMs) have been regarded as the cornerstone of Mamba architecture, then expected to play a primary role in transfer learning, our findings reveal that Projectors -- not SSMs -- are the predominant contributors to transfer learning. (2) Based on our observation, we propose a novel PEFT method specialized to Mamba architecture: Projector-targeted Diagonal-centric Linear Transformation (ProDiaL). ProDiaL focuses on optimizing only the pretrained Projectors for new tasks through diagonal-centric linear transformation matrices, without directly fine-tuning the Projector weights. This targeted approach allows efficient task adaptation, utilizing less than 1% of the total parameters, and exhibits strong performance across both vision and language Mamba models, highlighting its versatility and effectiveness.
comment: accepted in CVPR 2025
♻ ☆ Large Language Models Empowered Personalized Web Agents WWW 2025
Web agents have emerged as a promising direction to automate Web task completion based on user instructions, significantly enhancing user experience. Recently, Web agents have evolved from traditional agents to Large Language Models (LLMs)-based Web agents. Despite their success, existing LLM-based Web agents overlook the importance of personalized data (e.g., user profiles and historical Web behaviors) in assisting the understanding of users' personalized instructions and executing customized actions. To overcome the limitation, we first formulate the task of LLM-empowered personalized Web agents, which integrate personalized data and user instructions to personalize instruction comprehension and action execution. To address the absence of a comprehensive evaluation benchmark, we construct a Personalized Web Agent Benchmark (PersonalWAB), featuring user instructions, personalized user data, Web functions, and two evaluation paradigms across three personalized Web tasks. Moreover, we propose a Personalized User Memory-enhanced Alignment (PUMA) framework to adapt LLMs to the personalized Web agent task. PUMA utilizes a memory bank with a task-specific retrieval strategy to filter relevant historical Web behaviors. Based on the behaviors, PUMA then aligns LLMs for personalized action execution through fine-tuning and direct preference optimization. Extensive experiments validate the superiority of PUMA over existing Web agents on PersonalWAB.
comment: Accepted to WWW 2025. The code and data are available on the project website https://hongrucai.github.io/PersonalWAB/
♻ ☆ Subversion Strategy Eval: Can language models statelessly strategize to subvert control protocols?
An AI control protocol is a plan for usefully deploying AI systems that aims to prevent an AI from intentionally causing some unacceptable outcome. This paper investigates how well AI systems can generate and act on their own strategies for subverting control protocols whilst operating statelessly (without shared memory between contexts). To do this, an AI system may need to reliably generate optimal plans in each context, take actions with well-calibrated probabilities, and coordinate plans with other instances of itself without communicating. We develop Subversion Strategy Eval, a suite of eight environments, covering a range of protocols and strategic capabilities, and six sets of affordances that help isolate individual capabilities. We implement the evaluation in Inspect-AI and release it open-source. We evaluate Claude 3.5 models, including helpful-only versions, as well as OpenAI reasoning models. None of the models demonstrate substantial capability in strategizing to subvert control protocols statelessly. However, providing models with additional affordances, such as the ability to share a plan between contexts, can substantially improve performance. We hope our evaluations can act as a leading indicator for when models are capable of subverting control protocols and also relax the worst-case assumption of perfect strategic ability in AI control evaluations.
♻ ☆ FlowDock: Geometric Flow Matching for Generative Protein-Ligand Docking and Affinity Prediction
Powerful generative AI models of protein-ligand structure have recently been proposed, but few of these methods support both flexible protein-ligand docking and affinity estimation. Of those that do, none can directly model multiple binding ligands concurrently or have been rigorously benchmarked on pharmacologically relevant drug targets, hindering their widespread adoption in drug discovery efforts. In this work, we propose FlowDock, the first deep geometric generative model based on conditional flow matching that learns to directly map unbound (apo) structures to their bound (holo) counterparts for an arbitrary number of binding ligands. Furthermore, FlowDock provides predicted structural confidence scores and binding affinity values with each of its generated protein-ligand complex structures, enabling fast virtual screening of new (multi-ligand) drug targets. For the well-known PoseBusters Benchmark dataset, FlowDock outperforms single-sequence AlphaFold 3 with a 51% blind docking success rate using unbound (apo) protein input structures and without any information derived from multiple sequence alignments, and for the challenging new DockGen-E dataset, FlowDock outperforms single-sequence AlphaFold 3 and matches single-sequence Chai-1 for binding pocket generalization. Additionally, in the ligand category of the 16th community-wide Critical Assessment of Techniques for Structure Prediction (CASP16), FlowDock ranked among the top-5 methods for pharmacological binding affinity estimation across 140 protein-ligand complexes, demonstrating the efficacy of its learned representations in virtual screening. Source code, data, and pre-trained models are available at https://github.com/BioinfoMachineLearning/FlowDock.
comment: 15 pages, 2 tables, 2 algorithms, 11 figures. Code, data, pre-trained models, and baseline method predictions are available at https://github.com/BioinfoMachineLearning/FlowDock
♻ ☆ Visual Position Prompt for MLLM based Visual Grounding
Although Multimodal Large Language Models (MLLMs) excel at various image-related tasks, they encounter challenges in precisely aligning coordinates with spatial information within images, particularly in position-aware tasks such as visual grounding. This limitation arises from two key factors. First, MLLMs lack explicit spatial references, making it difficult to associate textual descriptions with precise image locations. Second, their feature extraction processes prioritize global context over fine-grained spatial details, leading to weak localization capability. To address this issue, we introduce VPP-LLaVA, an MLLM equipped with Visual Position Prompt (VPP) to improve its grounding capability. VPP-LLaVA integrates two complementary mechanisms. The global VPP overlays learnable, axis-like embeddings onto the input image to provide structured spatial cues. The local VPP focuses on fine-grained localization by incorporating position-aware queries, which suggests probable object locations. We also introduce a VPP-SFT dataset with 0.6M samples, consolidating high-quality visual grounding data into a compact format for efficient model training. Training on this dataset with VPP enhances the model's performance, achieving state-of-the-art results on standard grounding benchmarks despite using fewer training samples compared to other MLLMs like MiniGPT-v2, which rely on much larger datasets ($\sim$21M samples). The code and VPP-SFT dataset will be available at https://github.com/WayneTomas/VPP-LLaVA upon acceptance.
♻ ☆ STEVE: A Step Verification Pipeline for Computer-use Agent Training
Developing AI agents to autonomously manipulate graphical user interfaces is a long challenging task. Recent advances in data scaling law inspire us to train computer-use agents with a scaled instruction set, yet using behavior cloning to train agents still requires immense high-quality trajectories. To meet the scalability need, we designed STEVE, a step verification pipeline for computer-use agent training. First, we establish a large instruction set for computer-use agents and collect trajectory data with some suboptimal agents. GPT-4o is used to verify the correctness of each step in the trajectories based on the screens before and after the action execution, assigning each step with a binary label. Last, we adopt the Kahneman and Tversky Optimization to optimize the agent from the binary stepwise labels. Extensive experiments manifest that our agent outperforms supervised finetuning by leveraging both positive and negative actions within a trajectory. Also, STEVE enables us to train a 7B vision-language model as a computer-use agent, achieving leading performance in the challenging live desktop environment WinAgentArena with great efficiency at a reduced cost. Code and data: https://github.com/FanbinLu/STEVE.
♻ ☆ CarbonSense: A Multimodal Dataset and Baseline for Carbon Flux Modelling
Terrestrial carbon fluxes provide vital information about our biosphere's health and its capacity to absorb anthropogenic CO$_2$ emissions. The importance of predicting carbon fluxes has led to the emerging field of data-driven carbon flux modelling (DDCFM), which uses statistical techniques to predict carbon fluxes from biophysical data. However, the field lacks a standardized dataset to promote comparisons between models. To address this gap, we present CarbonSense, the first machine learning-ready dataset for DDCFM. CarbonSense integrates measured carbon fluxes, meteorological predictors, and satellite imagery from 385 locations across the globe, offering comprehensive coverage and facilitating robust model training. Additionally, we provide a baseline model using a current state-of-the-art DDCFM approach and a novel transformer based model. Our experiments illustrate the potential gains that multimodal deep learning techniques can bring to this domain. By providing these resources, we aim to lower the barrier to entry for other deep learning researchers to develop new models and drive new advances in carbon flux modelling.
comment: 9 content pages, 11 reference pages, 9 appendix pages
♻ ☆ HybridNorm: Towards Stable and Efficient Transformer Training via Hybrid Normalization
Transformers have become the de facto architecture for a wide range of machine learning tasks, particularly in large language models (LLMs). Despite their remarkable performance, challenges remain in training deep transformer networks, especially regarding the location of layer normalization. While Pre-Norm structures facilitate easier training due to their more prominent identity path, they often yield suboptimal performance compared to Post-Norm. In this paper, we propose $\textbf{HybridNorm}$, a straightforward yet effective hybrid normalization strategy that integrates the advantages of both Pre-Norm and Post-Norm approaches. Specifically, HybridNorm employs QKV normalization within the attention mechanism and Post-Norm in the feed-forward network (FFN) of each transformer block. This design not only stabilizes training but also enhances performance, particularly in the context of LLMs. Comprehensive experiments in both dense and sparse architectures show that HybridNorm consistently outperforms both Pre-Norm and Post-Norm approaches, achieving state-of-the-art results across various benchmarks. These findings highlight the potential of HybridNorm as a more stable and effective technique for improving the training and performance of deep transformer models. Code is available at https://github.com/BryceZhuo/HybridNorm.
♻ ☆ MF-CLIP: Leveraging CLIP as Surrogate Models for No-box Adversarial Attacks
The vulnerability of Deep Neural Networks (DNNs) to adversarial attacks poses a significant challenge to their deployment in safety-critical applications. While extensive research has addressed various attack scenarios, the no-box attack setting where adversaries have no prior knowledge, including access to training data of the target model, remains relatively underexplored despite its practical relevance. This work presents a systematic investigation into leveraging large-scale Vision-Language Models (VLMs), particularly CLIP, as surrogate models for executing no-box attacks. Our theoretical and empirical analyses reveal a key limitation in the execution of no-box attacks stemming from insufficient discriminative capabilities for direct application of vanilla CLIP as a surrogate model. To address this limitation, we propose MF-CLIP: a novel framework that enhances CLIP's effectiveness as a surrogate model through margin-aware feature space optimization. Comprehensive evaluations across diverse architectures and datasets demonstrate that MF-CLIP substantially advances the state-of-the-art in no-box attacks, surpassing existing baselines by 15.23% on standard models and achieving a 9.52% improvement on adversarially trained models. Our code will be made publicly available to facilitate reproducibility and future research in this direction.
♻ ☆ MaRS: A Fast Sampler for Mean Reverting Diffusion based on ODE and SDE Solvers ICLR 2025
In applications of diffusion models, controllable generation is of practical significance, but is also challenging. Current methods for controllable generation primarily focus on modifying the score function of diffusion models, while Mean Reverting (MR) Diffusion directly modifies the structure of the stochastic differential equation (SDE), making the incorporation of image conditions simpler and more natural. However, current training-free fast samplers are not directly applicable to MR Diffusion. And thus MR Diffusion requires hundreds of NFEs (number of function evaluations) to obtain high-quality samples. In this paper, we propose a new algorithm named MaRS (MR Sampler) to reduce the sampling NFEs of MR Diffusion. We solve the reverse-time SDE and the probability flow ordinary differential equation (PF-ODE) associated with MR Diffusion, and derive semi-analytical solutions. The solutions consist of an analytical function and an integral parameterized by a neural network. Based on this solution, we can generate high-quality samples in fewer steps. Our approach does not require training and supports all mainstream parameterizations, including noise prediction, data prediction and velocity prediction. Extensive experiments demonstrate that MR Sampler maintains high sampling quality with a speedup of 10 to 20 times across ten different image restoration tasks. Our algorithm accelerates the sampling procedure of MR Diffusion, making it more practical in controllable generation.
comment: Accepted by ICLR 2025
♻ ☆ VeriMind: Agentic LLM for Automated Verilog Generation with a Novel Evaluation Metric
Designing Verilog modules requires meticulous attention to correctness, efficiency, and adherence to design specifications. However, manually writing Verilog code remains a complex and time-consuming task that demands both expert knowledge and iterative refinement. Leveraging recent advancements in large language models (LLMs) and their structured text generation capabilities, we propose VeriMind, an agentic LLM framework for Verilog code generation that significantly automates and optimizes the synthesis process. Unlike traditional LLM-based code generators, VeriMind employs a structured reasoning approach: given a user-provided prompt describing design requirements, the system first formulates a detailed train of thought before the final Verilog code is generated. This multi-step methodology enhances interpretability, accuracy, and adaptability in hardware design. In addition, we introduce a novel evaluation metric-pass@ARC-which combines the conventional pass@k measure with Average Refinement Cycles (ARC) to capture both success rate and the efficiency of iterative refinement. Experimental results on diverse hardware design tasks demonstrated that our approach achieved up to $8.3\%$ improvement on pass@k metric and $8.1\%$ on pass@ARC metric. These findings underscore the transformative potential of agentic LLMs in automated hardware design, RTL development, and digital system synthesis.
♻ ☆ Implementing An Artificial Quantum Perceptron
A Perceptron is a fundamental building block of a neural network. The flexibility and scalability of perceptron make it ubiquitous in building intelligent systems. Studies have shown the efficacy of a single neuron in making intelligent decisions. Here, we examined and compared two perceptrons with distinct mechanisms, and developed a quantum version of one of those perceptrons. As a part of this modeling, we implemented the quantum circuit for an artificial perception, generated a dataset, and simulated the training. Through these experiments, we show that there is an exponential growth advantage and test different qubit versions. Our findings show that this quantum model of an individual perceptron can be used as a pattern classifier. For the second type of model, we provide an understanding to design and simulate a spike-dependent quantum perceptron. Our code is available at https://github.com/ashutosh1919/quantum-perceptron
♻ ☆ RankCLIP: Ranking-Consistent Language-Image Pretraining
Self-supervised contrastive learning models, such as CLIP, have set new benchmarks for vision-language models in many downstream tasks. However, their dependency on rigid one-to-one mappings overlooks the complex and often multifaceted relationships between and within texts and images. To this end, we introduce RankCLIP, a novel pre-training method that extends beyond the rigid one-to-one matching framework of CLIP and its variants. By extending the traditional pair-wise loss to list-wise, and leveraging both in-modal and cross-modal ranking consistency, RankCLIP improves the alignment process, enabling it to capture the nuanced many-to-many relationships between and within each modality. Through comprehensive experiments, we demonstrate the effectiveness of RankCLIP in various downstream tasks, notably achieving significant gains in zero-shot classifications over state-of-the-art methods, underscoring the importance of this enhanced learning process.
comment: Code and model checkpoints are available at https://github.com/Jam1ezhang/RankCLIP
♻ ☆ Benchmarking Post-Training Quantization in LLMs: Comprehensive Taxonomy, Unified Evaluation, and Comparative Analysis
Post-training Quantization (PTQ) technique has been extensively adopted for large language models (LLMs) compression owing to its efficiency and low resource requirement. However, current research lacks a in-depth analysis of the superior and applicable scenarios of each PTQ strategy. In addition, existing algorithms focus primarily on performance, overlooking the trade-off among model size, performance, and quantization bitwidth. To mitigate these confusions, we provide a novel benchmark for LLMs PTQ in this paper. Firstly, in order to support our benchmark, we propose a comprehensive taxonomy for existing mainstream methods by scrutinizing their computational strategies (e.g., optimization-based, compensation-based, etc.). Then, we conduct extensive experiments with the baseline within each class, covering models with various sizes (7B-70B), bitwidths, training levels (LLaMA1/2/3/3.1), architectures (Mixtral, DeepSeekMoE and Mamba) and modality (LLaVA1.5 and VILA1.5) on a wide range of evaluation metrics.Through comparative analysis on the results, we summarize the superior of each PTQ strategy and modelsize-bitwidth trade-off considering the performance. For example, our benchmark reveals that compensation-based technique demonstrates outstanding cross-architecture robustness and extremely low-bit PTQ for ultra large models should be reexamined. Finally, we further accordingly claim that a practical combination of compensation and other PTQ strategy can achieve SOTA various robustness. We believe that our benchmark will provide valuable recommendations for the deployment of LLMs and future research on PTQ approaches.We conduct an repository for our benchmark at https://github.com/zjq0455/PTQ_Benchmark.
comment: 17 pages, 3 fugures
♻ ☆ Understanding Model Calibration -- A gentle introduction and visual exploration of calibration and the expected calibration error (ECE)
To be considered reliable, a model must be calibrated so that its confidence in each decision closely reflects its true outcome. In this blogpost we'll take a look at the most commonly used definition for calibration and then dive into a frequently used evaluation measure for model calibration. We'll then cover some of the drawbacks of this measure and how these surfaced the need for additional notions of calibration, which require their own new evaluation measures. This post is not intended to be an in-depth dissection of all works on calibration, nor does it focus on how to calibrate models. Instead, it is meant to provide a gentle introduction to the different notions and their evaluation measures as well as to re-highlight some issues with a measure that is still widely used to evaluate calibration.
♻ ☆ CholecTrack20: A Multi-Perspective Tracking Dataset for Surgical Tools CVPR 2025
Tool tracking in surgical videos is essential for advancing computer-assisted interventions, such as skill assessment, safety zone estimation, and human-machine collaboration. However, the lack of context-rich datasets limits AI applications in this field. Existing datasets rely on overly generic tracking formalizations that fail to capture surgical-specific dynamics, such as tools moving out of the camera's view or exiting the body. This results in less clinically relevant trajectories and a lack of flexibility for real-world surgical applications. Methods trained on these datasets often struggle with visual challenges such as smoke, reflection, and bleeding, further exposing the limitations of current approaches. We introduce CholecTrack20, a specialized dataset for multi-class, multi-tool tracking in surgical procedures. It redefines tracking formalization with three perspectives: (i) intraoperative, (ii) intracorporeal, and (iii) visibility, enabling adaptable and clinically meaningful tool trajectories. The dataset comprises 20 full-length surgical videos, annotated at 1 fps, yielding over 35K frames and 65K labeled tool instances. Annotations include spatial location, category, identity, operator, phase, and scene visual challenge. Benchmarking state-of-the-art methods on CholecTrack20 reveals significant performance gaps, with current approaches (< 45\% HOTA) failing to meet the accuracy required for clinical translation. These findings motivate the need for advanced and intuitive tracking algorithms and establish CholecTrack20 as a foundation for developing robust AI-driven surgical assistance systems.
comment: Surgical tool tracking dataset paper, 11 pages, 10 figures, 3 tables, CVPR 2025
♻ ☆ Believing is Seeing: Unobserved Object Detection using Generative Models
Can objects that are not visible in an image -- but are in the vicinity of the camera -- be detected? This study introduces the novel tasks of 2D, 2.5D and 3D unobserved object detection for predicting the location of nearby objects that are occluded or lie outside the image frame. We adapt several state-of-the-art pre-trained generative models to address this task, including 2D and 3D diffusion models and vision-language models, and show that they can be used to infer the presence of objects that are not directly observed. To benchmark this task, we propose a suite of metrics that capture different aspects of performance. Our empirical evaluation on indoor scenes from the RealEstate10k and NYU Depth v2 datasets demonstrate results that motivate the use of generative models for the unobserved object detection task.
comment: IEEE/CVF Computer Vision and Pattern Recognition 2025; 22 pages
♻ ☆ BI-RADS prediction of mammographic masses using uncertainty information extracted from a Bayesian Deep Learning model
The BI_RADS score is a probabilistic reporting tool used by radiologists to express the level of uncertainty in predicting breast cancer based on some morphological features in mammography images. There is a significant variability in describing masses which sometimes leads to BI_RADS misclassification. Using a BI_RADS prediction system is required to support the final radiologist decisions. In this study, the uncertainty information extracted by a Bayesian deep learning model is utilized to predict the BI_RADS score. The investigation results based on the pathology information demonstrate that the f1-scores of the predictions of the radiologist are 42.86%, 48.33% and 48.28%, meanwhile, the f1-scores of the model performance are 73.33%, 59.60% and 59.26% in the BI_RADS 2, 3 and 5 dataset samples, respectively. Also, the model can distinguish malignant from benign samples in the BI_RADS 0 category of the used dataset with an accuracy of 75.86% and correctly identify all malignant samples as BI_RADS 5. The Grad-CAM visualization shows the model pays attention to the morphological features of the lesions. Therefore, this study shows the uncertainty-aware Bayesian Deep Learning model can report his uncertainty about the malignancy of a lesion based on morphological features, like a radiologist.
♻ ☆ No Thing, Nothing: Highlighting Safety-Critical Classes for Robust LiDAR Semantic Segmentation in Adverse Weather CVPR 2025
Existing domain generalization methods for LiDAR semantic segmentation under adverse weather struggle to accurately predict "things" categories compared to "stuff" categories. In typical driving scenes, "things" categories can be dynamic and associated with higher collision risks, making them crucial for safe navigation and planning. Recognizing the importance of "things" categories, we identify their performance drop as a serious bottleneck in existing approaches. We observed that adverse weather induces degradation of semantic-level features and both corruption of local features, leading to a misprediction of "things" as "stuff". To mitigate these corruptions, we suggest our method, NTN - segmeNt Things for No-accident. To address semantic-level feature corruption, we bind each point feature to its superclass, preventing the misprediction of things classes into visually dissimilar categories. Additionally, to enhance robustness against local corruption caused by adverse weather, we define each LiDAR beam as a local region and propose a regularization term that aligns the clean data with its corrupted counterpart in feature space. NTN achieves state-of-the-art performance with a +2.6 mIoU gain on the SemanticKITTI-to-SemanticSTF benchmark and +7.9 mIoU on the SemanticPOSS-to-SemanticSTF benchmark. Notably, NTN achieves a +4.8 and +7.9 mIoU improvement on "things" classes, respectively, highlighting its effectiveness.
comment: 18 pages, accepted in CVPR 2025
♻ ☆ AutoTRIZ: Automating Engineering Innovation with TRIZ and Large Language Models
Various ideation methods, such as morphological analysis and design-by-analogy, have been developed to aid creative problem-solving and innovation. Among them, the Theory of Inventive Problem Solving (TRIZ) stands out as one of the best-known methods. However, the complexity of TRIZ and its reliance on users' knowledge, experience, and reasoning capabilities limit its practicality. To address this, we introduce AutoTRIZ, an artificial ideation system that integrates Large Language Models (LLMs) to automate and enhance the TRIZ methodology. By leveraging LLMs' vast pre-trained knowledge and advanced reasoning capabilities, AutoTRIZ offers a novel, generative, and interpretable approach to engineering innovation. AutoTRIZ takes a problem statement from the user as its initial input, automatically conduct the TRIZ reasoning process and generates a structured solution report. We demonstrate and evaluate the effectiveness of AutoTRIZ through comparative experiments with textbook cases and a real-world application in the design of a Battery Thermal Management System (BTMS). Moreover, the proposed LLM-based framework holds the potential for extension to automate other knowledge-based ideation methods, such as SCAMPER, Design Heuristics, and Design-by-Analogy, paving the way for a new era of AI-driven innovation tools.
comment: 28 pages, 12 figures
♻ ☆ MERGE$^3$: Efficient Evolutionary Merging on Consumer-grade GPUs
Evolutionary model merging enables the creation of high-performing multi-task models but remains computationally prohibitive for consumer hardware. We introduce MERGE$^3$, an efficient framework that makes evolutionary merging feasible on a single GPU by reducing fitness computation costs 50$\times$ while preserving performance. MERGE$^3$ achieves this by Extracting a reduced dataset for evaluation, Estimating model abilities using Item Response Theory (IRT), and Evolving optimal merges via IRT-based performance estimators. Our method enables state-of-the-art multilingual and cross-lingual merging, transferring knowledge across languages with significantly lower computational overhead. We provide theoretical guarantees and an open-source library, democratizing high-quality model merging.
comment: 19 pages, 13 figures
♻ ☆ GUI-World: A Video Benchmark and Dataset for Multimodal GUI-oriented Understanding ICLR 2025
Recently, Multimodal Large Language Models (MLLMs) have been used as agents to control keyboard and mouse inputs by directly perceiving the Graphical User Interface (GUI) and generating corresponding commands. However, current agents primarily demonstrate strong understanding capabilities in static environments and are mainly applied to relatively simple domains, such as Web or mobile interfaces. We argue that a robust GUI agent should be capable of perceiving temporal information on the GUI, including dynamic Web content and multi-step tasks. Additionally, it should possess a comprehensive understanding of various GUI scenarios, including desktop software and multi-window interactions. To this end, this paper introduces a new dataset, termed GUI-World, which features meticulously crafted Human-MLLM annotations, extensively covering six GUI scenarios and eight types of GUI-oriented questions in three formats. We evaluate the capabilities of current state-of-the-art MLLMs, including Image LLMs and Video LLMs, in understanding various types of GUI content, especially dynamic and sequential content. Our findings reveal that current models struggle with dynamic GUI content without manually annotated keyframes or operation history. On the other hand, Video LLMs fall short in all GUI-oriented tasks given the sparse GUI video dataset. Therefore, we take the initial step of leveraging a fine-tuned Video LLM, GUI-Vid, as a GUI-oriented assistant, demonstrating an improved understanding of various GUI tasks. However, due to the limitations in the performance of base LLMs, we conclude that using video LLMs as GUI agents remains a significant challenge. We believe our work provides valuable insights for future research in dynamic GUI content understanding. All the dataset and code are publicly available at: https://gui-world.github.io.
comment: Accepted by ICLR 2025
♻ ☆ ConCodeEval: Evaluating Large Language Models for Code Constraints in Domain-Specific Languages
Recent work shows Large Language Models (LLMs) struggle to understand natural language constraints for various text generation tasks in zero- and few-shot settings. While, in the code domain, there is wide usage of constraints in code format to maintain the integrity of code written in Domain-Specific Languages (DSLs) like JSON and YAML which are widely used for system-level programming tasks in enterprises. Given that LLMs are increasingly used for system-level code tasks, evaluating if they can comprehend these code constraints is crucial. However, no work has been done to evaluate their controllability over code constraints. Hence, we introduce ConCodeEval, a first-of-its-kind benchmark having two novel tasks for code constraints across five representations. Our findings suggest that language models struggle with code constraints. Code languages that perform excellently for normal code tasks do not perform well when the same languages represent fine-grained constraints.
♻ ☆ Active Learning for Neural PDE Solvers
Solving partial differential equations (PDEs) is a fundamental problem in science and engineering. While neural PDE solvers can be more efficient than established numerical solvers, they often require large amounts of training data that is costly to obtain. Active learning (AL) could help surrogate models reach the same accuracy with smaller training sets by querying classical solvers with more informative initial conditions and PDE parameters. While AL is more common in other domains, it has yet to be studied extensively for neural PDE solvers. To bridge this gap, we introduce AL4PDE, a modular and extensible active learning benchmark. It provides multiple parametric PDEs and state-of-the-art surrogate models for the solver-in-the-loop setting, enabling the evaluation of existing and the development of new AL methods for neural PDE solving. We use the benchmark to evaluate batch active learning algorithms such as uncertainty- and feature-based methods. We show that AL reduces the average error by up to 71% compared to random sampling and significantly reduces worst-case errors. Moreover, AL generates similar datasets across repeated runs, with consistent distributions over the PDE parameters and initial conditions. The acquired datasets are reusable, providing benefits for surrogate models not involved in the data generation.
♻ ☆ Agent-R: Training Language Model Agents to Reflect via Iterative Self-Training
Large Language Models (LLMs) agents are increasingly pivotal for addressing complex tasks in interactive environments. Existing work mainly focuses on enhancing performance through behavior cloning from stronger experts, yet such approaches often falter in real-world applications, mainly due to the inability to recover from errors. However, step-level critique data is difficult and expensive to collect. Automating and dynamically constructing self-critique datasets is thus crucial to empowering models with intelligent agent capabilities. In this work, we propose an iterative self-training framework, Agent-R, that enables language Agent to Reflect on the fly. Unlike traditional methods that reward or penalize actions based on correctness, Agent-R leverages MCTS to construct training data that recover correct trajectories from erroneous ones. A key challenge of agent reflection lies in the necessity for timely revision rather than waiting until the end of a rollout. To address this, we introduce a model-guided critique construction mechanism: the actor model identifies the first error step (within its current capability) in a failed trajectory. Starting from it, we splice it with the adjacent correct path, which shares the same parent node in the tree. This strategy enables the model to learn reflection based on its current policy, therefore yielding better learning efficiency. To further explore the scalability of this self-improvement paradigm, we investigate iterative refinement of both error correction capabilities and dataset construction. Our findings demonstrate that Agent-R continuously improves the model's ability to recover from errors and enables timely error correction. Experiments on three interactive environments show that Agent-R effectively equips agents to correct erroneous actions while avoiding loops, achieving superior performance compared to baseline methods (+5.59%).
♻ ☆ Existential Notation3 Logic
In this paper, we delve into Notation3 Logic (N3), an extension of RDF, which empowers users to craft rules introducing fresh blank nodes to RDF graphs. This capability is pivotal in various applications such as ontology mapping, given the ubiquitous presence of blank nodes directly or in auxiliary constructs across the Web. However, the availability of fast N3 reasoners fully supporting blank node introduction remains limited. Conversely, engines like VLog or Nemo, though not explicitly designed for Semantic Web rule formats, cater to analogous constructs, namely existential rules. We investigate the correlation between N3 rules featuring blank nodes in their heads and existential rules. We pinpoint a subset of N3 that seamlessly translates to existential rules and establish a mapping preserving the equivalence of N3 formulae. To showcase the potential benefits of this translation in N3 reasoning, we implement this mapping and compare the performance of N3 reasoners like EYE and cwm against VLog and Nemo, both on native N3 rules and their translated counterparts. Our findings reveal that existential rule reasoners excel in scenarios with abundant facts, while the EYE reasoner demonstrates exceptional speed in managing a high volume of dependent rules. Additionally to the original conference version of this paper, we include all proofs of the theorems and introduce a new section dedicated to N3 lists featuring built-in functions and how they are implemented in existential rules. Adding lists to our translation/framework gives interesting insights on related design decisions influencing the standardization of N3.
comment: Under consideration in Theory and Practice of Logic Programming (TPLP)
♻ ☆ Twin Transition or Competing Interests? Validation of the Artificial Intelligence and Sustainability Perceptions Inventory (AISPI)
As artificial intelligence (AI) and sustainability initiatives increasingly intersect, understanding public perceptions of their relationship becomes crucial for successful implementation. However, no validated instrument exists to measure these specific perceptions. This paper presents the development and validation of the Artificial Intelligence and Sustainability Perceptions Inventory (AISPI), a novel 13-item instrument measuring how individuals view the relationship between AI advancement and environmental sustainability. Through factor analysis (N=105), we identified two distinct dimensions: Twin Transition and Competing Interests. The instrument demonstrated strong reliability (alpha=.89) and construct validity through correlations with established measures of AI and sustainability attitudes. Our findings suggest that individuals can simultaneously recognize both synergies and tensions in the AI-sustainability relationship, offering important implications for researchers and practitioners working at this critical intersection. This work provides a foundational tool for future research on public perceptions of AI's role in sustainable development.
comment: CHI 2025 Late Breaking Work
♻ ☆ Distilled Prompt Learning for Incomplete Multimodal Survival Prediction CVPR2025
The integration of multimodal data including pathology images and gene profiles is widely applied in precise survival prediction. Despite recent advances in multimodal survival models, collecting complete modalities for multimodal fusion still poses a significant challenge, hindering their application in clinical settings. Current approaches tackling incomplete modalities often fall short, as they typically compensate for only a limited part of the knowledge of missing modalities. To address this issue, we propose a Distilled Prompt Learning framework (DisPro) to utilize the strong robustness of Large Language Models (LLMs) to missing modalities, which employs two-stage prompting for compensation of comprehensive information for missing modalities. In the first stage, Unimodal Prompting (UniPro) distills the knowledge distribution of each modality, preparing for supplementing modality-specific knowledge of the missing modality in the subsequent stage. In the second stage, Multimodal Prompting (MultiPro) leverages available modalities as prompts for LLMs to infer the missing modality, which provides modality-common information. Simultaneously, the unimodal knowledge acquired in the first stage is injected into multimodal inference to compensate for the modality-specific knowledge of the missing modality. Extensive experiments covering various missing scenarios demonstrated the superiority of the proposed method. The code is available at https://github.com/Innse/DisPro.
comment: Accepted by CVPR2025
♻ ☆ Adapt-$\infty$: Scalable Continual Multimodal Instruction Tuning via Dynamic Data Selection
Visual instruction datasets from various distributors are released at different times and often contain a significant number of semantically redundant text-image pairs, depending on their task compositions (i.e., skills) or reference sources. This redundancy greatly limits the efficient deployment of continually adaptable multimodal large language models, hindering their ability to refine existing skills and acquire new competencies over time. We reframe the problem of lifelong Instruction Tuning (LiIT) via data selection, where the model automatically selects beneficial samples to learn from earlier and new datasets based on the current state of acquired knowledge in the model. We propose Adapt-$\infty$, a new multi-way and adaptive data selection approach that dynamically balances sample efficiency and effectiveness during LiIT. We first construct pseudo-skill clusters by grouping gradient-based sample vectors. Next, we select the best-performing data selector for each skill cluster from a pool of selector experts, including our newly proposed scoring function, Image Grounding score. This data selector samples a subset of the most important samples from each skill cluster for training. To prevent the continuous increase in the size of the dataset pool during LiIT, we introduce a cluster-wise permanent data pruning strategy to remove the most semantically redundant samples from each cluster, keeping computational requirements manageable. We validate the effectiveness and efficiency of Adapt-$\infty$ over a sequence of multimodal instruction tuning datasets with various tasks, including (Knowledge) VQA, multilingual, grounding, reasoning, language-only, and multi-image comprehension. Training with samples selected by Adapt-$\infty$ alleviates catastrophic forgetting, especially for rare tasks, and promotes forward transfer across the continuum using only a fraction of the original data.
comment: First two authors contributed equally. Code: https://github.com/adymaharana/adapt-inf
♻ ☆ Human-like conceptual representations emerge from language prediction
People acquire concepts through rich physical and social experiences and use them to understand the world. In contrast, large language models (LLMs), trained exclusively through next-token prediction over language data, exhibit remarkably human-like behaviors. Are these models developing concepts akin to humans, and if so, how are such concepts represented and organized? To address these questions, we reframed the classic reverse dictionary task to simulate human concept inference in context and investigated the emergence of human-like conceptual representations within LLMs. Our results demonstrate that LLMs can flexibly derive concepts from linguistic descriptions in relation to contextual cues about other concepts. The derived representations converged towards a shared, context-independent structure that effectively predicted human behavior across key psychological phenomena, including computation of similarities, categories and semantic scales. Moreover, these representations aligned well with neural activity patterns in the human brain, even in response to visual rather than linguistic stimuli, providing evidence for biological plausibility. These findings establish that structured, human-like conceptual representations can naturally emerge from language prediction without real-world grounding. More broadly, our work positions LLMs as promising computational tools for understanding complex human cognition and paves the way for better alignment between artificial and human intelligence.
comment: 51 pages
♻ ☆ Enhancing Multimodal Sentiment Analysis for Missing Modality through Self-Distillation and Unified Modality Cross-Attention
In multimodal sentiment analysis, collecting text data is often more challenging than video or audio due to higher annotation costs and inconsistent automatic speech recognition (ASR) quality. To address this challenge, our study has developed a robust model that effectively integrates multimodal sentiment information, even in the absence of text modality. Specifically, we have developed a Double-Flow Self-Distillation Framework, including Unified Modality Cross-Attention (UMCA) and Modality Imagination Autoencoder (MIA), which excels at processing both scenarios with complete modalities and those with missing text modality. In detail, when the text modality is missing, our framework uses the LLM-based model to simulate the text representation from the audio modality, while the MIA module supplements information from the other two modalities to make the simulated text representation similar to the real text representation. To further align the simulated and real representations, and to enable the model to capture the continuous nature of sample orders in sentiment valence regression tasks, we have also introduced the Rank-N Contrast (RNC) loss function. When testing on the CMU-MOSEI, our model achieved outstanding performance on MAE and significantly outperformed other models when text modality is missing. The code is available at: https://github.com/WarmCongee/SDUMC
♻ ☆ JanusFlow: Harmonizing Autoregression and Rectified Flow for Unified Multimodal Understanding and Generation CVPR 2025
We present JanusFlow, a powerful framework that unifies image understanding and generation in a single model. JanusFlow introduces a minimalist architecture that integrates autoregressive language models with rectified flow, a state-of-the-art method in generative modeling. Our key finding demonstrates that rectified flow can be straightforwardly trained within the large language model framework, eliminating the need for complex architectural modifications. To further improve the performance of our unified model, we adopt two key strategies: (i) decoupling the understanding and generation encoders, and (ii) aligning their representations during unified training. Extensive experiments show that JanusFlow achieves comparable or superior performance to specialized models in their respective domains, while significantly outperforming existing unified approaches across standard benchmarks. This work represents a step toward more efficient and versatile vision-language models.
comment: Accepted by CVPR 2025
♻ ☆ Humanoid Policy ~ Human Policy
Training manipulation policies for humanoid robots with diverse data enhances their robustness and generalization across tasks and platforms. However, learning solely from robot demonstrations is labor-intensive, requiring expensive tele-operated data collection which is difficult to scale. This paper investigates a more scalable data source, egocentric human demonstrations, to serve as cross-embodiment training data for robot learning. We mitigate the embodiment gap between humanoids and humans from both the data and modeling perspectives. We collect an egocentric task-oriented dataset (PH2D) that is directly aligned with humanoid manipulation demonstrations. We then train a human-humanoid behavior policy, which we term Human Action Transformer (HAT). The state-action space of HAT is unified for both humans and humanoid robots and can be differentiably retargeted to robot actions. Co-trained with smaller-scale robot data, HAT directly models humanoid robots and humans as different embodiments without additional supervision. We show that human data improves both generalization and robustness of HAT with significantly better data collection efficiency. Code and data: https://human-as-robot.github.io/
comment: Code and data: https://human-as-robot.github.io/
♻ ☆ CSCE: Boosting LLM Reasoning by Simultaneous Enhancing of Causal Significance and Consistency
Chain-based reasoning methods like chain of thought (CoT) play a rising role in solving reasoning tasks for large language models (LLMs). However, the causal hallucinations between a step of reasoning and corresponding state transitions are becoming a significant obstacle to advancing LLMs' reasoning capabilities, especially in long-range reasoning tasks. This paper proposes a non-chain-based reasoning framework for simultaneous consideration of causal significance and consistency, i.e., the Causal Significance and Consistency Enhancer (CSCE). We customize LLM's loss function utilizing treatment effect assessments to enhance its reasoning ability from two aspects: causal significance and consistency. This ensures that the model captures essential causal relationships and maintains robust and consistent performance across various scenarios. Additionally, we transform the reasoning process from the cascading multiple one-step reasoning commonly used in Chain-Based methods, like CoT, to a causal-enhanced method that outputs the entire reasoning process in one go, further improving the model's reasoning efficiency. Extensive experiments show that our method improves both the reasoning success rate and speed. These improvements further demonstrate that non-chain-based methods can also aid LLMs in completing reasoning tasks.
comment: 6 pages,4 figures. This paper has been accepted for presentation at IEEE International Conference on Multimedia & Expo 2025
♻ ☆ Cross-domain Random Pre-training with Prototypes for Reinforcement Learning
This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible. Unsupervised cross-domain Reinforcement Learning (RL) pre-training shows great potential for challenging continuous visual control but poses a big challenge. In this paper, we propose \textbf{C}ross-domain \textbf{R}andom \textbf{P}re-\textbf{T}raining with \textbf{pro}totypes (CRPTpro), a novel, efficient, and effective self-supervised cross-domain RL pre-training framework. CRPTpro decouples data sampling from encoder pre-training, proposing decoupled random collection to easily and quickly generate a qualified cross-domain pre-training dataset. Moreover, a novel prototypical self-supervised algorithm is proposed to pre-train an effective visual encoder that is generic across different domains. Without finetuning, the cross-domain encoder can be implemented for challenging downstream tasks defined in different domains, either seen or unseen. Compared with recent advanced methods, CRPTpro achieves better performance on downstream policy learning without extra training on exploration agents for data collection, greatly reducing the burden of pre-training. We conduct extensive experiments across eight challenging continuous visual-control domains, including balance control, robot locomotion, and manipulation. CRPTpro significantly outperforms the next best Proto-RL(C) on 11/12 cross-domain downstream tasks with only 54.5\% wall-clock pre-training time, exhibiting state-of-the-art pre-training performance with greatly improved pre-training efficiency.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ Divide and Conquer: Heterogeneous Noise Integration for Diffusion-based Adversarial Purification
Existing diffusion-based purification methods aim to disrupt adversarial perturbations by introducing a certain amount of noise through a forward diffusion process, followed by a reverse process to recover clean examples. However, this approach is fundamentally flawed: the uniform operation of the forward process across all pixels compromises normal pixels while attempting to combat adversarial perturbations, resulting in the target model producing incorrect predictions. Simply relying on low-intensity noise is insufficient for effective defense. To address this critical issue, we implement a heterogeneous purification strategy grounded in the interpretability of neural networks. Our method decisively applies higher-intensity noise to specific pixels that the target model focuses on while the remaining pixels are subjected to only low-intensity noise. This requirement motivates us to redesign the sampling process of the diffusion model, allowing for the effective removal of varying noise levels. Furthermore, to evaluate our method against strong adaptative attack, our proposed method sharply reduces time cost and memory usage through a single-step resampling. The empirical evidence from extensive experiments across three datasets demonstrates that our method outperforms most current adversarial training and purification techniques by a substantial margin.
♻ ☆ DreamText: High Fidelity Scene Text Synthesis
Scene text synthesis involves rendering specified texts onto arbitrary images. Current methods typically formulate this task in an end-to-end manner but lack effective character-level guidance during training. Besides, their text encoders, pre-trained on a single font type, struggle to adapt to the diverse font styles encountered in practical applications. Consequently, these methods suffer from character distortion, repetition, and absence, particularly in polystylistic scenarios. To this end, this paper proposes DreamText for high-fidelity scene text synthesis. Our key idea is to reconstruct the diffusion training process, introducing more refined guidance tailored to this task, to expose and rectify the model's attention at the character level and strengthen its learning of text regions. This transformation poses a hybrid optimization challenge, involving both discrete and continuous variables. To effectively tackle this challenge, we employ a heuristic alternate optimization strategy. Meanwhile, we jointly train the text encoder and generator to comprehensively learn and utilize the diverse font present in the training dataset. This joint training is seamlessly integrated into the alternate optimization process, fostering a synergistic relationship between learning character embedding and re-estimating character attention. Specifically, in each step, we first encode potential character-generated position information from cross-attention maps into latent character masks. These masks are then utilized to update the representation of specific characters in the current step, which, in turn, enables the generator to correct the character's attention in the subsequent steps. Both qualitative and quantitative results demonstrate the superiority of our method to the state of the art.
comment: Code: https://github.com/CodeGoat24/DreamText, Project page: https://codegoat24.github.io/DreamText/
♻ ☆ Reinforcement Learning: A Comprehensive Overview
This manuscript gives a big-picture, up-to-date overview of the field of (deep) reinforcement learning and sequential decision making, covering value-based method, policy-gradient methods, model-based methods, and various other topics (e.g., multi-agent RL, RL+LLMs, and RL+inference).
♻ ☆ Implementing Fairness in AI Classification: The Role of Explainability
In this paper, we propose a philosophical and experimental investigation of the problem of AI fairness in classification. We argue that implementing fairness in AI classification involves more work than just operationalizing a fairness metric. It requires establishing the explainability of the classification model chosen and of the principles behind it. Specifically, it involves making the training processes transparent, determining what outcomes the fairness criteria actually produce, and assessing their trade-offs by comparison with closely related models that would lead to a different outcome. To exemplify this methodology, we trained a model and developed a tool for disparity detection and fairness interventions, the package FairDream. While FairDream is set to enforce Demographic Parity, experiments reveal that it fulfills the constraint of Equalized Odds. The algorithm is thus more conservative than the user might expect. To justify this outcome, we first clarify the relation between Demographic Parity and Equalized Odds as fairness criteria. We then explain FairDream's reweighting method and justify the trade-offs reached by FairDream by a benchmark comparison with closely related GridSearch models. We draw conclusions regarding the way in which these explanatory steps can make an AI model trustworthy.
♻ ☆ AnDB: Breaking Boundaries with an AI-Native Database for Universal Semantic Analysis
In this demonstration, we present AnDB, an AI-native database that supports traditional OLTP workloads and innovative AI-driven tasks, enabling unified semantic analysis across structured and unstructured data. While structured data analytics is mature, challenges remain in bridging the semantic gap between user queries and unstructured data. AnDB addresses these issues by leveraging cutting-edge AI-native technologies, allowing users to perform semantic queries using intuitive SQL-like statements without requiring AI expertise. This approach eliminates the ambiguity of traditional text-to-SQL systems and provides a seamless end-to-end optimization for analyzing all data types. AnDB automates query processing by generating multiple execution plans and selecting the optimal one through its optimizer, which balances accuracy, execution time, and financial cost based on user policies and internal optimizing mechanisms. AnDB future-proofs data management infrastructure, empowering users to effectively and efficiently harness the full potential of all kinds of data without starting from scratch.
comment: 4 pages, 5 figures
♻ ☆ Zero-Knowledge Federated Learning: A New Trustworthy and Privacy-Preserving Distributed Learning Paradigm
Federated Learning (FL) has emerged as a promising paradigm in distributed machine learning, enabling collaborative model training while preserving data privacy. However, despite its many advantages, FL still contends with significant challenges -- most notably regarding security and trust. Zero-Knowledge Proofs (ZKPs) offer a potential solution by establishing trust and enhancing system integrity throughout the FL process. Although several studies have explored ZKP-based FL (ZK-FL), a systematic framework and comprehensive analysis are still lacking. This article makes two key contributions. First, we propose a structured ZK-FL framework that categorizes and analyzes the technical roles of ZKPs across various FL stages and tasks. Second, we introduce a novel algorithm, Verifiable Client Selection FL (Veri-CS-FL), which employs ZKPs to refine the client selection process. In Veri-CS-FL, participating clients generate verifiable proofs for the performance metrics of their local models and submit these concise proofs to the server for efficient verification. The server then selects clients with high-quality local models for uploading, subsequently aggregating the contributions from these selected clients. By integrating ZKPs, Veri-CS-FL not only ensures the accuracy of performance metrics but also fortifies trust among participants while enhancing the overall efficiency and security of FL systems.
comment: 7 pages, 5 figures, 1 table
♻ ☆ Characterizing GPU Resilience and Impact on AI/HPC Systems
In this study, we characterize GPU failures in Delta, the current large-scale AI system with over 600 petaflops of peak compute throughput. The system comprises GPU and non-GPU nodes with modern AI accelerators, such as NVIDIA A40, A100, and H100 GPUs. The study uses two and a half years of data on GPU errors. We evaluate the resilience of GPU hardware components to determine the vulnerability of different GPU components to failure and their impact on the GPU and node availability. We measure the key propagation paths in GPU hardware, GPU interconnect (NVLink), and GPU memory. Finally, we evaluate the impact of the observed GPU errors on user jobs. Our key findings are: (i) Contrary to common beliefs, GPU memory is over 30x more reliable than GPU hardware in terms of MTBE (mean time between errors). (ii) The newly introduced GSP (GPU System Processor) is the most vulnerable GPU hardware component. (iii) NVLink errors did not always lead to user job failure, and we attribute it to the underlying error detection and retry mechanisms employed. (iv) We show multiple examples of hardware errors originating from one of the key GPU hardware components, leading to application failure. (v) We project the impact of GPU node availability on larger scales with emulation and find that significant overprovisioning between 5-20% would be necessary to handle GPU failures. If GPU availability were improved to 99.9%, the overprovisioning would be reduced by 4x.
♻ ☆ Forming Auxiliary High-confident Instance-level Loss to Promote Learning from Label Proportions CVPR 2025
Learning from label proportions (LLP), i.e., a challenging weakly-supervised learning task, aims to train a classifier by using bags of instances and the proportions of classes within bags, rather than annotated labels for each instance. Beyond the traditional bag-level loss, the mainstream methodology of LLP is to incorporate an auxiliary instance-level loss with pseudo-labels formed by predictions. Unfortunately, we empirically observed that the pseudo-labels are are often inaccurate due to over-smoothing, especially for the scenarios with large bag sizes, hurting the classifier induction. To alleviate this problem, we suggest a novel LLP method, namely Learning from Label Proportions with Auxiliary High-confident Instance-level Loss (L^2P-AHIL). Specifically, we propose a dual entropy-based weight (DEW) method to adaptively measure the confidences of pseudo-labels. It simultaneously emphasizes accurate predictions at the bag level and avoids overly smoothed predictions. We then form high-confident instance-level loss with DEW, and jointly optimize it with the bag-level loss in a self-training manner. The experimental results on benchmark datasets show that L^2P-AHIL can surpass the existing baseline methods, and the performance gain can be more significant as the bag size increases. The implementation of our method is available at https://github.com/TianhaoMa5/LLP-AHIL.
comment: Accepted as a conference paper at CVPR 2025
♻ ☆ Leveraging Allophony in Self-Supervised Speech Models for Atypical Pronunciation Assessment NAACL 2025
Allophony refers to the variation in the phonetic realization of a phoneme based on its phonetic environment. Modeling allophones is crucial for atypical pronunciation assessment, which involves distinguishing atypical from typical pronunciations. However, recent phoneme classifier-based approaches often simplify this by treating various realizations as a single phoneme, bypassing the complexity of modeling allophonic variation. Motivated by the acoustic modeling capabilities of frozen self-supervised speech model (S3M) features, we propose MixGoP, a novel approach that leverages Gaussian mixture models to model phoneme distributions with multiple subclusters. Our experiments show that MixGoP achieves state-of-the-art performance across four out of five datasets, including dysarthric and non-native speech. Our analysis further suggests that S3M features capture allophonic variation more effectively than MFCCs and Mel spectrograms, highlighting the benefits of integrating MixGoP with S3M features.
comment: Accepted to NAACL 2025. Codebase available at https://github.com/juice500ml/acoustic-units-for-ood
♻ ☆ Human-AI Interaction Design Standards
The rapid development of artificial intelligence (AI) has significantly transformed human-computer interactions, making it essential to establish robust design standards to ensure effective, ethical, and human-centered AI (HCAI) solutions. Standards serve as the foundation for the adoption of new technologies, and human-AI interaction (HAII) standards are critical to supporting the industrialization of AI technology by following an HCAI approach. These design standards aim to provide clear principles, requirements, and guidelines for designing, developing, deploying, and using AI systems, enhancing the user experience and performance of AI systems. Despite their importance, the creation and adoption of HCAI-based interaction design standards face challenges, including the absence of universal frameworks, the inherent complexity of HAII, and the ethical dilemmas that arise in such systems. This chapter provides a comparative analysis of HAII versus traditional human-computer interaction (HCI) and outlines guiding principles for HCAI-based design. It explores international, regional, national, and industry standards related to HAII design from an HCAI perspective and reviews design guidelines released by leading companies such as Microsoft, Google, and Apple. Additionally, the chapter highlights tools available for implementing HAII standards and presents case studies of human-centered interaction design for AI systems in diverse fields, including healthcare, autonomous vehicles, and customer service. It further examines key challenges in developing HAII standards and suggests future directions for the field. Emphasizing the importance of ongoing collaboration between AI designers, developers, and experts in human factors and HCI, this chapter stresses the need to advance HCAI-based interaction design standards to ensure human-centered AI solutions across various domains.
♻ ☆ R2-KG: General-Purpose Dual-Agent Framework for Reliable Reasoning on Knowledge Graphs
Recent studies have combined Large Language Models (LLMs) with Knowledge Graphs (KGs) to enhance reasoning, improving inference accuracy without additional training while mitigating hallucination. However, existing frameworks are often rigid, struggling to adapt to KG or task changes. They also rely heavily on powerful LLMs for reliable (i.e., trustworthy) reasoning. To address this, We introduce R2-KG, a plug-and-play, dual-agent framework that separates reasoning into two roles: an Operator (a low-capacity LLM) that gathers evidence and a Supervisor (a high-capacity LLM) that makes final judgments. This design is cost-efficient for LLM inference while still maintaining strong reasoning accuracy. Additionally, R2-KG employs an Abstention mechanism, generating answers only when sufficient evidence is collected from KG, which significantly enhances reliability. Experiments across multiple KG-based reasoning tasks show that R2-KG consistently outperforms baselines in both accuracy and reliability, regardless of the inherent capability of LLMs used as the Operator. Further experiments reveal that the single-agent version of R2-KG, equipped with a strict self-consistency strategy, achieves significantly higher-than-baseline reliability while reducing inference cost. However, it also leads to a higher abstention rate in complex KGs. Our findings establish R2-KG as a flexible and cost-effective solution for KG-based reasoning. It reduces reliance on high-capacity LLMs while ensuring trustworthy inference.
♻ ☆ Advancing Mathematical Reasoning in Language Models: The Impact of Problem-Solving Data, Data Synthesis Methods, and Training Stages ICLR 2025
Mathematical reasoning remains a challenging area for large language models (LLMs), prompting the development of math-specific LLMs such as LLEMMA, DeepSeekMath, and Qwen2-Math, among others. These models typically follow a two-stage training paradigm: pre-training with math-related corpora and post-training with problem datasets for supervised fine-tuning (SFT). Despite these efforts, the improvements in mathematical reasoning achieved through continued pre-training (CPT) are often less significant compared to those obtained via SFT. This study addresses this discrepancy by exploring alternative strategies during the pre-training phase, focusing on the use of problem-solving data over general mathematical corpora. We investigate three primary research questions: (1) Can problem-solving data enhance the model's mathematical reasoning capabilities more effectively than general mathematical corpora during CPT? (2) Are synthetic data from the same source equally effective, and which synthesis methods are most efficient? (3) How do the capabilities developed from the same problem-solving data differ between the CPT and SFT stages, and what factors contribute to these differences? Our findings indicate that problem-solving data significantly enhances the model's mathematical capabilities compared to general mathematical corpora. We also identify effective data synthesis methods, demonstrating that the tutorship amplification synthesis method achieves the best performance. Furthermore, while SFT facilitates instruction-following abilities, it underperforms compared to CPT with the same data, which can be partially attributed to its poor learning capacity for more challenging problem-solving data. These insights provide valuable guidance for optimizing the mathematical reasoning capabilities of LLMs, culminating in our development of a powerful mathematical base model called MathGPT-8B.
comment: ICLR 2025
♻ ☆ Optimizing Generative AI's Accuracy and Transparency in Inductive Thematic Analysis: A Human-AI Comparison
This study highlights the transparency and accuracy of GenAI's inductive thematic analysis, particularly using GPT-4 Turbo API integrated within a stepwise prompt-based Python script. This approach ensured a traceable and systematic coding process, generating codes with supporting statements and page references, which enhanced validation and reproducibility. The results indicate that GenAI performs inductive coding in a manner closely resembling human coders, effectively categorizing themes at a level like the average human coder. However, in interpretation, GenAI extends beyond human coders by situating themes within a broader conceptual context, providing a more generalized and abstract perspective.
♻ ☆ Education distillation:getting student models to learn in shcools
This paper introduces a new knowledge distillation method, called education distillation (ED), which is inspired by the structured and progressive nature of human learning. ED mimics the educational stages of primary school, middle school, and university and designs teaching reference blocks. The student model is split into a main body and multiple teaching reference blocks to learn from teachers step by step. This promotes efficient knowledge distillation while maintaining the architecture of the student model. Experimental results on the CIFAR100, Tiny Imagenet, Caltech and Food-101 datasets show that the teaching reference blocks can effectively avoid the problem of forgetting. Compared with conventional single-teacher and multi-teacher knowledge distillation methods, ED significantly improves the accuracy and generalization ability of the student model. These findings highlight the potential of ED to improve model performance across different architectures and datasets, indicating its value in various deep learning scenarios. Code examples can be obtained at: https://github.com/Revolutioner1/ED.git.
♻ ☆ Differentially Private Kernel Density Estimation
We introduce a refined differentially private (DP) data structure for kernel density estimation (KDE), offering not only improved privacy-utility tradeoff but also better efficiency over prior results. Specifically, we study the mathematical problem: given a similarity function $f$ (or DP KDE) and a private dataset $X \subset \mathbb{R}^d$, our goal is to preprocess $X$ so that for any query $y\in\mathbb{R}^d$, we approximate $\sum_{x \in X} f(x, y)$ in a differentially private fashion. The best previous algorithm for $f(x,y) =\| x - y \|_1$ is the node-contaminated balanced binary tree by [Backurs, Lin, Mahabadi, Silwal, and Tarnawski, ICLR 2024]. Their algorithm requires $O(nd)$ space and time for preprocessing with $n=|X|$. For any query point, the query time is $d \log n$, with an error guarantee of $(1+\alpha)$-approximation and $\epsilon^{-1} \alpha^{-0.5} d^{1.5} R \log^{1.5} n$. In this paper, we improve the best previous result [Backurs, Lin, Mahabadi, Silwal, and Tarnawski, ICLR 2024] in three aspects: - We reduce query time by a factor of $\alpha^{-1} \log n$. - We improve the approximation ratio from $\alpha$ to 1. - We reduce the error dependence by a factor of $\alpha^{-0.5}$. From a technical perspective, our method of constructing the search tree differs from previous work [Backurs, Lin, Mahabadi, Silwal, and Tarnawski, ICLR 2024]. In prior work, for each query, the answer is split into $\alpha^{-1} \log n$ numbers, each derived from the summation of $\log n$ values in interval tree countings. In contrast, we construct the tree differently, splitting the answer into $\log n$ numbers, where each is a smart combination of two distance values, two counting values, and $y$ itself. We believe our tree structure may be of independent interest.
comment: v2: Appendix added. v3: Numerical validations added
♻ ☆ LTL-Constrained Policy Optimization with Cycle Experience Replay
Linear Temporal Logic (LTL) offers a precise means for constraining the behavior of reinforcement learning agents. However, in many settings where both satisfaction and optimality conditions are present, LTL is insufficient to capture both. Instead, LTL-constrained policy optimization, where the goal is to optimize a scalar reward under LTL constraints, is needed. This constrained optimization problem proves difficult in deep Reinforcement Learning (DRL) settings, where learned policies often ignore the LTL constraint due to the sparse nature of LTL satisfaction. To alleviate the sparsity issue, we introduce Cycle Experience Replay (CyclER), a novel reward shaping technique that exploits the underlying structure of the LTL constraint to guide a policy towards satisfaction by encouraging partial behaviors compliant with the constraint. We provide a theoretical guarantee that optimizing CyclER will achieve policies that satisfy the LTL constraint with near-optimal probability. We evaluate CyclER in three continuous control domains. Our experimental results show that optimizing CyclER in tandem with the existing scalar reward outperforms existing reward-shaping methods at finding performant LTL-satisfying policies.
comment: Published in TMLR, 12 pages in main text
♻ ☆ SILMM: Self-Improving Large Multimodal Models for Compositional Text-to-Image Generation CVPR 2025
Large Multimodal Models (LMMs) have demonstrated impressive capabilities in multimodal understanding and generation, pushing forward advancements in text-to-image generation. However, achieving accurate text-image alignment for LMMs, particularly in compositional scenarios, remains challenging. Existing approaches, such as layout planning for multi-step generation and learning from human feedback or AI feedback, depend heavily on prompt engineering, costly human annotations, and continual upgrading, limiting flexibility and scalability. In this work, we introduce a model-agnostic iterative self-improvement framework (SILMM) that can enable LMMs to provide helpful and scalable self-feedback and optimize text-image alignment via Direct Preference Optimization (DPO). DPO can readily applied to LMMs that use discrete visual tokens as intermediate image representations; while it is less suitable for LMMs with continuous visual features, as obtaining generation probabilities is challenging. To adapt SILMM to LMMs with continuous features, we propose a diversity mechanism to obtain diverse representations and a kernel-based continuous DPO for alignment. Extensive experiments on three compositional text-to-image generation benchmarks validate the effectiveness and superiority of SILMM, showing improvements exceeding 30% on T2I-CompBench++ and around 20% on DPG-Bench.
comment: CVPR 2025 Camera-ready. Project page: https://silmm.github.io/
♻ ☆ TIGeR: Unifying Text-to-Image Generation and Retrieval with Large Multimodal Models ICLR 2025
How humans can effectively and efficiently acquire images has always been a perennial question. A classic solution is text-to-image retrieval from an existing database; however, the limited database typically lacks creativity. By contrast, recent breakthroughs in text-to-image generation have made it possible to produce attractive and counterfactual visual content, but it faces challenges in synthesizing knowledge-intensive images. In this work, we rethink the relationship between text-to-image generation and retrieval, proposing a unified framework for both tasks with one single Large Multimodal Model (LMM). Specifically, we first explore the intrinsic discriminative abilities of LMMs and introduce an efficient generative retrieval method for text-to-image retrieval in a training-free manner. Subsequently, we unify generation and retrieval autoregressively and propose an autonomous decision mechanism to choose the best-matched one between generated and retrieved images as the response to the text prompt. To standardize the evaluation of unified text-to-image generation and retrieval, we construct TIGeR-Bench, a benchmark spanning both creative and knowledge-intensive domains. Extensive experiments on TIGeR-Bench and two retrieval benchmarks, i.e., Flickr30K and MS-COCO, demonstrate the superiority of our proposed framework.
comment: ICLR 2025 Camera-ready
♻ ☆ BEVDiffuser: Plug-and-Play Diffusion Model for BEV Denoising with Ground-Truth Guidance CVPR 2025
Bird's-eye-view (BEV) representations play a crucial role in autonomous driving tasks. Despite recent advancements in BEV generation, inherent noise, stemming from sensor limitations and the learning process, remains largely unaddressed, resulting in suboptimal BEV representations that adversely impact the performance of downstream tasks. To address this, we propose BEVDiffuser, a novel diffusion model that effectively denoises BEV feature maps using the ground-truth object layout as guidance. BEVDiffuser can be operated in a plug-and-play manner during training time to enhance existing BEV models without requiring any architectural modifications. Extensive experiments on the challenging nuScenes dataset demonstrate BEVDiffuser's exceptional denoising and generation capabilities, which enable significant enhancement to existing BEV models, as evidenced by notable improvements of 12.3\% in mAP and 10.1\% in NDS achieved for 3D object detection without introducing additional computational complexity. Moreover, substantial improvements in long-tail object detection and under challenging weather and lighting conditions further validate BEVDiffuser's effectiveness in denoising and enhancing BEV representations.
comment: CVPR 2025
♻ ☆ The Inadequacy of Similarity-based Privacy Metrics: Privacy Attacks against "Truly Anonymous" Synthetic Datasets
Generative models producing synthetic data are meant to provide a privacy-friendly approach to releasing data. However, their privacy guarantees are only considered robust when models satisfy Differential Privacy (DP). Alas, this is not a ubiquitous standard, as many leading companies (and, in fact, research papers) use ad-hoc privacy metrics based on testing the statistical similarity between synthetic and real data. In this paper, we examine the privacy metrics used in real-world synthetic data deployments and demonstrate their unreliability in several ways. First, we provide counter-examples where severe privacy violations occur even if the privacy tests pass and instantiate accurate membership and attribute inference attacks with minimal cost. We then introduce ReconSyn, a reconstruction attack that generates multiple synthetic datasets that are considered private by the metrics but actually leak information unique to individual records. We show that ReconSyn recovers 78-100% of the outliers in the train data with only black-box access to a single fitted generative model and the privacy metrics. In the process, we show that applying DP only to the model does not mitigate this attack, as using privacy metrics breaks the end-to-end DP pipeline.
comment: Published in the Proceedings of the 46th IEEE Symposium on Security & Privacy (IEEE S&P 2025). Please cite the S&P version
♻ ☆ NextStop: An Improved Tracker For Panoptic LIDAR Segmentation Data
4D panoptic LiDAR segmentation is essential for scene understanding in autonomous driving and robotics, combining semantic and instance segmentation with temporal consistency. Current methods, like 4D-PLS and 4D-STOP, use a tracking-by-detection methodology, employing deep learning networks to perform semantic and instance segmentation on each frame. To maintain temporal consistency, large-size instances detected in the current frame are compared and associated with instances within a temporal window that includes the current and preceding frames. However, their reliance on short-term instance detection, lack of motion estimation, and exclusion of small-sized instances lead to frequent identity switches and reduced tracking performance. We address these issues with the NextStop1 tracker, which integrates Kalman filter-based motion estimation, data association, and lifespan management, along with a tracklet state concept to improve prioritization. Evaluated using the LiDAR Segmentation and Tracking Quality (LSTQ) metric on the SemanticKITTI validation set, NextStop demonstrated enhanced tracking performance, particularly for small-sized objects like people and bicyclists, with fewer ID switches, earlier tracking initiation, and improved reliability in complex environments. The source code is available at https://github.com/AIROTAU/NextStop
♻ ☆ Deepfake-Eval-2024: A Multi-Modal In-the-Wild Benchmark of Deepfakes Circulated in 2024
In the age of increasingly realistic generative AI, robust deepfake detection is essential for mitigating fraud and disinformation. While many deepfake detectors report high accuracy on academic datasets, we show that these academic benchmarks are out of date and not representative of real-world deepfakes. We introduce Deepfake-Eval-2024, a new deepfake detection benchmark consisting of in-the-wild deepfakes collected from social media and deepfake detection platform users in 2024. Deepfake-Eval-2024 consists of 45 hours of videos, 56.5 hours of audio, and 1,975 images, encompassing the latest manipulation technologies. The benchmark contains diverse media content from 88 different websites in 52 different languages. We find that the performance of open-source state-of-the-art deepfake detection models drops precipitously when evaluated on Deepfake-Eval-2024, with AUC decreasing by 50% for video, 48% for audio, and 45% for image models compared to previous benchmarks. We also evaluate commercial deepfake detection models and models finetuned on Deepfake-Eval-2024, and find that they have superior performance to off-the-shelf open-source models, but do not yet reach the accuracy of deepfake forensic analysts. The dataset is available at https://github.com/nuriachandra/Deepfake-Eval-2024.
♻ ☆ LLM-Match: An Open-Sourced Patient Matching Model Based on Large Language Models and Retrieval-Augmented Generation
Patient matching is the process of linking patients to appropriate clinical trials by accurately identifying and matching their medical records with trial eligibility criteria. We propose LLM-Match, a novel framework for patient matching leveraging fine-tuned open-source large language models. Our approach consists of four key components. First, a retrieval-augmented generation (RAG) module extracts relevant patient context from a vast pool of electronic health records (EHRs). Second, a prompt generation module constructs input prompts by integrating trial eligibility criteria (both inclusion and exclusion criteria), patient context, and system instructions. Third, a fine-tuning module with a classification head optimizes the model parameters using structured prompts and ground-truth labels. Fourth, an evaluation module assesses the fine-tuned model's performance on the testing datasets. We evaluated LLM-Match on four open datasets - n2c2, SIGIR, TREC 2021, and TREC 2022 - using open-source models, comparing it against TrialGPT, Zero-Shot, and GPT-4-based closed models. LLM-Match outperformed all baselines.
comment: 10 pages, 1 figure
♻ ☆ HREF: Human Response-Guided Evaluation of Instruction Following in Language Models
Evaluating the capability of Large Language Models (LLMs) in following instructions has heavily relied on a powerful LLM as the judge, introducing unresolved biases that deviate the judgments from human judges. In this work, we reevaluate various choices for automatic evaluation on a wide range of instruction-following tasks. We experiment with methods that leverage human-written responses and observe that they enhance the reliability of automatic evaluations across a wide range of tasks, resulting in up to a 3.2% improvement in agreement with human judges. We also discovered that human-written responses offer an orthogonal perspective to model-generated responses in following instructions and should be used as an additional context when comparing model responses. Based on these observations, we develop a new evaluation benchmark, Human Response-Guided Evaluation of Instruction Following (HREF), comprising 4,258 samples across 11 task categories with a composite evaluation setup, employing a composite evaluation setup that selects the most reliable method for each category. In addition to providing reliable evaluation, HREF emphasizes individual task performance and is free from contamination. Finally, we study the impact of key design choices in HREF, including the size of the evaluation set, the judge model, the baseline model, and the prompt template. We host a live leaderboard that evaluates LLMs on the private evaluation set of HREF.
comment: 28 pages, 15 figures
♻ ☆ Int2Int: a framework for mathematics with transformers
This paper documents Int2Int, an open source code base for using transformers on problems of mathematical research, with a focus on number theory and other problems involving integers. Int2Int is a complete PyTorch implementation of a transformer architecture, together with training and evaluation loops, and classes and functions to represent, generate and decode common mathematical objects. Ancillary code for data preparation, and Jupyter Notebooks for visualizing experimental results are also provided. This document presents the main features of Int2Int, serves as its user manual, and provides guidelines on how to extend it. Int2Int is released under the MIT licence, at https://github.com/f-charton/Int2Int.
♻ ☆ QualityFlow: An Agentic Workflow for Program Synthesis Controlled by LLM Quality Checks
We introduce QualityFlow, a dynamic agentic workflow for program synthesis. Given the English description of a programming problem and a set of unit tests, the model's goal is to synthesize the correct program that solves the problem and passes the tests. QualityFlow includes large language model (LLM) agents resembling a software development team, including code generation, testing, and self-debugging. We propose the LLM Quality Checker, which explicitly "imagines" whether the synthesized programs' execution would conform to the unit tests. The Quality Checks dynamically control the workflow, including actions to submit the final answer, clarify the problem statement, and revert previous workflow steps. Our experiments show that the Quality Checker can precisely accept any correct program, mitigate faulty synthesized tests, and prevent potential workflow deviation. QualityFlow establishes the state-of-the-art results on four program synthesis benchmarks: MBPP, HumanEval, and stricter evaluations from MBPP-EvalPlus and HumanEval-EvalPlus.
♻ ☆ Counterfactual Token Generation in Large Language Models
"Sure, I am happy to generate a story for you: Captain Lyra stood at the helm of her trusty ship, the Maelstrom's Fury, gazing out at the endless sea. [...] Lyra's eyes welled up with tears as she realized the bitter truth - she had sacrificed everything for fleeting riches, and lost the love of her crew, her family, and herself." Although this story, generated by a large language model, is captivating, one may wonder -- how would the story have unfolded if the model had chosen "Captain Maeve" as the protagonist instead? We cannot know. State-of-the-art large language models are stateless -- they maintain no internal memory or state. Given a prompt, they generate a sequence of tokens as an output using an autoregressive process. As a consequence, they cannot reason about counterfactual alternatives to tokens they have generated in the past. In this work, our goal is to enhance them with this functionality. To this end, we develop a causal model of token generation that builds upon the Gumbel-Max structural causal model. Our model allows any large language model to perform counterfactual token generation at almost no cost in comparison with vanilla token generation, it is embarrassingly simple to implement, and it does not require any fine-tuning nor prompt engineering. We implement our model on Llama 3 8B-Instruct and Ministral-8B-Instruct and conduct a qualitative and a quantitative analysis of counterfactually generated text. We conclude with a demonstrative application of counterfactual token generation for bias detection, unveiling interesting insights about the model of the world constructed by large language models.
comment: Accepted at CLeaR 2025
♻ ☆ Morphological Symmetries in Robotics
We present a comprehensive framework for studying and leveraging morphological symmetries in robotic systems. These are intrinsic properties of the robot's morphology, frequently observed in animal biology and robotics, which stem from the replication of kinematic structures and the symmetrical distribution of mass. We illustrate how these symmetries extend to the robot's state space and both proprioceptive and exteroceptive sensor measurements, resulting in the equivariance of the robot's equations of motion and optimal control policies. Thus, we recognize morphological symmetries as a relevant and previously unexplored physics-informed geometric prior, with significant implications for both data-driven and analytical methods used in modeling, control, estimation and design in robotics. For data-driven methods, we demonstrate that morphological symmetries can enhance the sample efficiency and generalization of machine learning models through data augmentation, or by applying equivariant/invariant constraints on the model's architecture. In the context of analytical methods, we employ abstract harmonic analysis to decompose the robot's dynamics into a superposition of lower-dimensional, independent dynamics. We substantiate our claims with both synthetic and real-world experiments conducted on bipedal and quadrupedal robots. Lastly, we introduce the repository MorphoSymm to facilitate the practical use of the theory and applications outlined in this work.
comment: 18 pages, 11 figures
♻ ☆ Chameleon: a Heterogeneous and Disaggregated Accelerator System for Retrieval-Augmented Language Models VLDB 2025
A Retrieval-Augmented Language Model (RALM) combines a large language model (LLM) with a vector database to retrieve context-specific knowledge during text generation. This strategy facilitates impressive generation quality even with smaller models, thus reducing computational demands by orders of magnitude. To serve RALMs efficiently and flexibly, we propose Chameleon, a heterogeneous accelerator system integrating both LLM and vector search accelerators in a disaggregated architecture. The heterogeneity ensures efficient serving for both inference and retrieval, while the disaggregation allows independent scaling of LLM and vector search accelerators to fulfill diverse RALM requirements. Our Chameleon prototype implements vector search accelerators on FPGAs and assigns LLM inference to GPUs, with CPUs as cluster coordinators. Evaluated on various RALMs, Chameleon exhibits up to 2.16$\times$ reduction in latency and 3.18x speedup in throughput compared to the hybrid CPU-GPU architecture. The promising results pave the way for adopting heterogeneous accelerators for not only LLM inference but also vector search in future RALM systems.
comment: Accepted by VLDB 2025
Graphics 10
☆ Benchmarking Burst Super-Resolution for Polarization Images: Noise Dataset and Analysis
Snapshot polarization imaging calculates polarization states from linearly polarized subimages. To achieve this, a polarization camera employs a double Bayer-patterned sensor to capture both color and polarization. It demonstrates low light efficiency and low spatial resolution, resulting in increased noise and compromised polarization measurements. Although burst super-resolution effectively reduces noise and enhances spatial resolution, applying it to polarization imaging poses challenges due to the lack of tailored datasets and reliable ground truth noise statistics. To address these issues, we introduce PolarNS and PolarBurstSR, two innovative datasets developed specifically for polarization imaging. PolarNS provides characterization of polarization noise statistics, facilitating thorough analysis, while PolarBurstSR functions as a benchmark for burst super-resolution in polarization images. These datasets, collected under various real-world conditions, enable comprehensive evaluation. Additionally, we present a model for analyzing polarization noise to quantify noise propagation, tested on a large dataset captured in a darkroom environment. As part of our application, we compare the latest burst super-resolution models, highlighting the advantages of training tailored to polarization compared to RGB-based methods. This work establishes a benchmark for polarization burst super-resolution and offers critical insights into noise propagation, thereby enhancing polarization image reconstruction.
☆ Hardware-Rasterized Ray-Based Gaussian Splatting
We present a novel, hardware rasterized rendering approach for ray-based 3D Gaussian Splatting (RayGS), obtaining both fast and high-quality results for novel view synthesis. Our work contains a mathematically rigorous and geometrically intuitive derivation about how to efficiently estimate all relevant quantities for rendering RayGS models, structured with respect to standard hardware rasterization shaders. Our solution is the first enabling rendering RayGS models at sufficiently high frame rates to support quality-sensitive applications like Virtual and Mixed Reality. Our second contribution enables alias-free rendering for RayGS, by addressing MIP-related issues arising when rendering diverging scales during training and testing. We demonstrate significant performance gains, across different benchmark scenes, while retaining state-of-the-art appearance quality of RayGS.
☆ Surface-Aware Distilled 3D Semantic Features
Many 3D tasks such as pose alignment, animation, motion transfer, and 3D reconstruction rely on establishing correspondences between 3D shapes. This challenge has recently been approached by matching of semantic features from pre-trained vision models. However, despite their power, these features struggle to differentiate instances of the same semantic class such as "left hand" versus "right hand" which leads to substantial mapping errors. To solve this, we learn a surface-aware embedding space that is robust to these ambiguities. Importantly, our approach is self-supervised and requires only a small number of unpaired training meshes to infer features for new 3D shapes at test time. We achieve this by introducing a contrastive loss that preserves the semantic content of the features distilled from foundational models while disambiguating features located far apart on the shape's surface. We observe superior performance in correspondence matching benchmarks and enable downstream applications including in-part segmentation, pose alignment, and motion transfer. The project site is available at https://lukas.uzolas.com/SurfaceAware3DFeaturesSite.
☆ Stochastic Poisson Surface Reconstruction with One Solve using Geometric Gaussian Processes
Poisson Surface Reconstruction is a widely-used algorithm for reconstructing a surface from an oriented point cloud. To facilitate applications where only partial surface information is available, or scanning is performed sequentially, a recent line of work proposes to incorporate uncertainty into the reconstructed surface via Gaussian process models. The resulting algorithms first perform Gaussian process interpolation, then solve a set of volumetric partial differential equations globally in space, resulting in a computationally expensive two-stage procedure. In this work, we apply recently-developed techniques from geometric Gaussian processes to combine interpolation and surface reconstruction into a single stage, requiring only one linear solve per sample. The resulting reconstructed surface samples can be queried locally in space, without the use of problem-dependent volumetric meshes or grids. These capabilities enable one to (a) perform probabilistic collision detection locally around the region of interest, (b) perform ray casting without evaluating points not on the ray's trajectory, and (c) perform next-view planning on a per-slice basis. They also improve reconstruction quality, by not requiring one to approximate kernel matrix inverses with diagonal matrices as part of intermediate computations. Results show that our approach provides a cleaner, more-principled, and more-flexible stochastic surface reconstruction pipeline.
♻ ☆ Bokeh Diffusion: Defocus Blur Control in Text-to-Image Diffusion Models
Recent advances in large-scale text-to-image models have revolutionized creative fields by generating visually captivating outputs from textual prompts; however, while traditional photography offers precise control over camera settings to shape visual aesthetics -- such as depth-of-field -- current diffusion models typically rely on prompt engineering to mimic such effects. This approach often results in crude approximations and inadvertently altering the scene content. In this work, we propose Bokeh Diffusion, a scene-consistent bokeh control framework that explicitly conditions a diffusion model on a physical defocus blur parameter. By grounding depth-of-field adjustments, our method preserves the underlying scene structure as the level of blur is varied. To overcome the scarcity of paired real-world images captured under different camera settings, we introduce a hybrid training pipeline that aligns in-the-wild images with synthetic blur augmentations. Extensive experiments demonstrate that our approach not only achieves flexible, lens-like blur control but also supports applications such as real image editing via inversion.
comment: Project page: https://atfortes.github.io/projects/bokeh-diffusion/
♻ ☆ Mani-GS: Gaussian Splatting Manipulation with Triangular Mesh CVPR 2025
Neural 3D representations such as Neural Radiance Fields (NeRF), excel at producing photo-realistic rendering results but lack the flexibility for manipulation and editing which is crucial for content creation. Previous works have attempted to address this issue by deforming a NeRF in canonical space or manipulating the radiance field based on an explicit mesh. However, manipulating NeRF is not highly controllable and requires a long training and inference time. With the emergence of 3D Gaussian Splatting (3DGS), extremely high-fidelity novel view synthesis can be achieved using an explicit point-based 3D representation with much faster training and rendering speed. However, there is still a lack of effective means to manipulate 3DGS freely while maintaining rendering quality. In this work, we aim to tackle the challenge of achieving manipulable photo-realistic rendering. We propose to utilize a triangular mesh to manipulate 3DGS directly with self-adaptation. This approach reduces the need to design various algorithms for different types of Gaussian manipulation. By utilizing a triangle shape-aware Gaussian binding and adapting method, we can achieve 3DGS manipulation and preserve high-fidelity rendering after manipulation. Our approach is capable of handling large deformations, local manipulations, and soft body simulations while keeping high-quality rendering. Furthermore, we demonstrate that our method is also effective with inaccurate meshes extracted from 3DGS. Experiments conducted demonstrate the effectiveness of our method and its superiority over baseline approaches.
comment: CVPR 2025. Project page here: https://gaoxiangjun.github.io/mani_gs/
♻ ☆ 3D Shape Tokenization via Latent Flow Matching
We introduce a latent 3D representation that models 3D surfaces as probability density functions in 3D, i.e., p(x,y,z), with flow-matching. Our representation is specifically designed for consumption by machine learning models, offering continuity and compactness by construction while requiring only point clouds and minimal data preprocessing. Despite being a data-driven method, our use of flow matching in the 3D space enables interesting geometry properties, including the capabilities to perform zero-shot estimation of surface normal and deformation field. We evaluate with several machine learning tasks, including 3D-CLIP, unconditional generative models, single-image conditioned generative model, and intersection-point estimation. Across all experiments, our models achieve competitive performance to existing baselines, while requiring less preprocessing and auxiliary information from training data.
♻ ☆ Speedy-Splat: Fast 3D Gaussian Splatting with Sparse Pixels and Sparse Primitives CVPR 2025
3D Gaussian Splatting (3D-GS) is a recent 3D scene reconstruction technique that enables real-time rendering of novel views by modeling scenes as parametric point clouds of differentiable 3D Gaussians. However, its rendering speed and model size still present bottlenecks, especially in resource-constrained settings. In this paper, we identify and address two key inefficiencies in 3D-GS to substantially improve rendering speed. These improvements also yield the ancillary benefits of reduced model size and training time. First, we optimize the rendering pipeline to precisely localize Gaussians in the scene, boosting rendering speed without altering visual fidelity. Second, we introduce a novel pruning technique and integrate it into the training pipeline, significantly reducing model size and training time while further raising rendering speed. Our Speedy-Splat approach combines these techniques to accelerate average rendering speed by a drastic $\mathit{6.71\times}$ across scenes from the Mip-NeRF 360, Tanks & Temples, and Deep Blending datasets.
comment: CVPR 2025, Project Page: https://speedysplat.github.io/
♻ ☆ 3DGUT: Enabling Distorted Cameras and Secondary Rays in Gaussian Splatting CVPR 2025
3D Gaussian Splatting (3DGS) enables efficient reconstruction and high-fidelity real-time rendering of complex scenes on consumer hardware. However, due to its rasterization-based formulation, 3DGS is constrained to ideal pinhole cameras and lacks support for secondary lighting effects. Recent methods address these limitations by tracing the particles instead, but, this comes at the cost of significantly slower rendering. In this work, we propose 3D Gaussian Unscented Transform (3DGUT), replacing the EWA splatting formulation with the Unscented Transform that approximates the particles through sigma points, which can be projected exactly under any nonlinear projection function. This modification enables trivial support of distorted cameras with time dependent effects such as rolling shutter, while retaining the efficiency of rasterization. Additionally, we align our rendering formulation with that of tracing-based methods, enabling secondary ray tracing required to represent phenomena such as reflections and refraction within the same 3D representation. The source code is available at: https://github.com/nv-tlabs/3dgrut.
comment: Our paper has been accepted by CVPR 2025. For more details and updates, please visit our project website: https://research.nvidia.com/labs/toronto-ai/3DGUT
♻ ☆ PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting CVPR 2025
Recent advances in novel view synthesis have enabled real-time rendering speeds with high reconstruction accuracy. 3D Gaussian Splatting (3D-GS), a foundational point-based parametric 3D scene representation, models scenes as large sets of 3D Gaussians. However, complex scenes can consist of millions of Gaussians, resulting in high storage and memory requirements that limit the viability of 3D-GS on devices with limited resources. Current techniques for compressing these pretrained models by pruning Gaussians rely on combining heuristics to determine which Gaussians to remove. At high compression ratios, these pruned scenes suffer from heavy degradation of visual fidelity and loss of foreground details. In this paper, we propose a principled sensitivity pruning score that preserves visual fidelity and foreground details at significantly higher compression ratios than existing approaches. It is computed as a second-order approximation of the reconstruction error on the training views with respect to the spatial parameters of each Gaussian. Additionally, we propose a multi-round prune-refine pipeline that can be applied to any pretrained 3D-GS model without changing its training pipeline. After pruning 90% of Gaussians, a substantially higher percentage than previous methods, our PUP 3D-GS pipeline increases average rendering speed by 3.56$\times$ while retaining more salient foreground information and achieving higher image quality metrics than existing techniques on scenes from the Mip-NeRF 360, Tanks & Temples, and Deep Blending datasets.
comment: CVPR 2025, Project Page: https://pup3dgs.github.io/
Robotics 24
☆ A Robot-Led Intervention for Emotion Regulation: From Expression to Reappraisal
Emotion regulation is a crucial skill for managing emotions in everyday life, yet finding a constructive and accessible method to support these processes remains challenging due to their cognitive demands. In this study, we explore how regular interactions with a social robot, conducted in a structured yet familiar environment within university halls and departments, can provide effective support for emotion regulation through cognitive reappraisal. Twenty-one students participated in a five-session study at a university hall or department, where the robot facilitated structured conversations, encouraging the students to reinterpret emotionally charged situations that they shared with the robot. Quantitative and qualitative results indicate significant improvements in emotion self-regulation, with participants reporting better understanding and control of their emotions. The intervention led to significant changes in constructive emotion regulation tendencies and positive effects on mood and sentiment after each session. The findings also demonstrate that repeated interactions with the robot encouraged greater emotional expressiveness, including longer speech disclosures, increased use of affective language, and heightened facial arousal. Notably, expressiveness followed structured patterns aligned with the reappraisal process, with expression peaking during key reappraisal moments, particularly when participants were prompted to reinterpret negative experiences. The qualitative feedback further highlighted how the robot fostered introspection and provided a supportive space for discussing emotions, enabling participants to confront long-avoided emotional challenges. These findings demonstrate the potential of robots to effectively assist in emotion regulation in familiar environments, offering both emotional support and cognitive guidance.
☆ Decentralized Navigation of a Cable-Towed Load using Quadrupedal Robot Team via MARL
This work addresses the challenge of enabling a team of quadrupedal robots to collaboratively tow a cable-connected load through cluttered and unstructured environments while avoiding obstacles. Leveraging cables allows the multi-robot system to navigate narrow spaces by maintaining slack when necessary. However, this introduces hybrid physical interactions due to alternating taut and slack states, with computational complexity that scales exponentially as the number of agents increases. To tackle these challenges, we developed a scalable and decentralized system capable of dynamically coordinating a variable number of quadrupedal robots while managing the hybrid physical interactions inherent in the load-towing task. At the core of this system is a novel multi-agent reinforcement learning (MARL)-based planner, designed for decentralized coordination. The MARL-based planner is trained using a centralized training with decentralized execution (CTDE) framework, enabling each robot to make decisions autonomously using only local (ego) observations. To accelerate learning and ensure effective collaboration across varying team sizes, we introduce a tailored training curriculum for MARL. Experimental results highlight the flexibility and scalability of the framework, demonstrating successful deployment with one to four robots in real-world scenarios and up to twelve robots in simulation. The decentralized planner maintains consistent inference times, regardless of the team size. Additionally, the proposed system demonstrates robustness to environment perturbations and adaptability to varying load weights. This work represents a step forward in achieving flexible and efficient multi-legged robotic collaboration in complex and real-world environments.
☆ Extended Visibility of Autonomous Vehicles via Optimized Cooperative Perception under Imperfect Communication
Autonomous Vehicles (AVs) rely on individual perception systems to navigate safely. However, these systems face significant challenges in adverse weather conditions, complex road geometries, and dense traffic scenarios. Cooperative Perception (CP) has emerged as a promising approach to extending the perception quality of AVs by jointly processing shared camera feeds and sensor readings across multiple vehicles. This work presents a novel CP framework designed to optimize vehicle selection and networking resource utilization under imperfect communications. Our optimized CP formation considers critical factors such as the helper vehicles' spatial position, visual range, motion blur, and available communication budgets. Furthermore, our resource optimization module allocates communication channels while adjusting power levels to maximize data flow efficiency between the ego and helper vehicles, considering realistic models of modern vehicular communication systems, such as LTE and 5G NR-V2X. We validate our approach through extensive experiments on pedestrian detection in challenging scenarios, using synthetic data generated by the CARLA simulator. The results demonstrate that our method significantly improves upon the perception quality of individual AVs with about 10% gain in detection accuracy. This substantial gain uncovers the unleashed potential of CP to enhance AV safety and performance in complex situations.
comment: 55 pages, 13 figures, 3 tables, Elsevier Journal
☆ Joint State-Parameter Observer-Based Robust Control of a UAV for Heavy Load Transportation
This paper proposes a joint state-parameter observer-based controller for trajectory tracking of an octocopter unmanned aerial vehicle (OUAV), for transportation of a heavy load with unknown mass and size. The multi-body dynamic model of the OUAV with a rigidly attached load is obtained, effectively considering the effects of the load parameters into the dynamics of the system. A robust nonlinear W-infinity control strategy is designed for optimal trajectory tracking of the OUAV, with information of the states and load parameters provided by a joint estimation unscented Kalman filter. The effectiveness of the proposed strategy is corroborated by numerical results.
comment: 12 pages, 3 figures. This is a preprint of a paper presented at the 2023 Conference on Climbing and Walking Robots (CLAWAR) and published later by Springer Nature Switzerland
☆ Unraveling the Effects of Synthetic Data on End-to-End Autonomous Driving
End-to-end (E2E) autonomous driving (AD) models require diverse, high-quality data to perform well across various driving scenarios. However, collecting large-scale real-world data is expensive and time-consuming, making high-fidelity synthetic data essential for enhancing data diversity and model robustness. Existing driving simulators for synthetic data generation have significant limitations: game-engine-based simulators struggle to produce realistic sensor data, while NeRF-based and diffusion-based methods face efficiency challenges. Additionally, recent simulators designed for closed-loop evaluation provide limited interaction with other vehicles, failing to simulate complex real-world traffic dynamics. To address these issues, we introduce SceneCrafter, a realistic, interactive, and efficient AD simulator based on 3D Gaussian Splatting (3DGS). SceneCrafter not only efficiently generates realistic driving logs across diverse traffic scenarios but also enables robust closed-loop evaluation of end-to-end models. Experimental results demonstrate that SceneCrafter serves as both a reliable evaluation platform and a efficient data generator that significantly improves end-to-end model generalization.
PanopticSplatting: End-to-End Panoptic Gaussian Splatting
Open-vocabulary panoptic reconstruction is a challenging task for simultaneous scene reconstruction and understanding. Recently, methods have been proposed for 3D scene understanding based on Gaussian splatting. However, these methods are multi-staged, suffering from the accumulated errors and the dependence of hand-designed components. To streamline the pipeline and achieve global optimization, we propose PanopticSplatting, an end-to-end system for open-vocabulary panoptic reconstruction. Our method introduces query-guided Gaussian segmentation with local cross attention, lifting 2D instance masks without cross-frame association in an end-to-end way. The local cross attention within view frustum effectively reduces the training memory, making our model more accessible to large scenes with more Gaussians and objects. In addition, to address the challenge of noisy labels in 2D pseudo masks, we propose label blending to promote consistent 3D segmentation with less noisy floaters, as well as label warping on 2D predictions which enhances multi-view coherence and segmentation accuracy. Our method demonstrates strong performances in 3D scene panoptic reconstruction on the ScanNet-V2 and ScanNet++ datasets, compared with both NeRF-based and Gaussian-based panoptic reconstruction methods. Moreover, PanopticSplatting can be easily generalized to numerous variants of Gaussian splatting, and we demonstrate its robustness on different Gaussian base models.
comment: 8 pages, 6 figures
☆ Unseen from Seen: Rewriting Observation-Instruction Using Foundation Models for Augmenting Vision-Language Navigation
Data scarcity is a long-standing challenge in the Vision-Language Navigation (VLN) field, which extremely hinders the generalization of agents to unseen environments. Previous works primarily rely on additional simulator data or web-collected images/videos to improve the generalization. However, the simulator environments still face limited diversity, and the web-collected data often requires extensive labor to remove the noise. In this paper, we propose a Rewriting-driven AugMentation (RAM) paradigm for VLN, which directly creates the unseen observation-instruction pairs via rewriting human-annotated training data. Benefiting from our rewriting mechanism, new observation-instruction can be obtained in both simulator-free and labor-saving manners to promote generalization. Specifically, we first introduce Object-Enriched Observation Rewriting, where we combine Vision-Language Models (VLMs) and Large Language Models (LLMs) to derive rewritten object-enriched scene descriptions, enabling observation synthesis with diverse objects and spatial layouts via Text-to-Image Generation Models (T2IMs). Then, we propose Observation-Contrast Instruction Rewriting, which generates observation-aligned rewritten instructions by requiring LLMs to reason the difference between original and new observations. We further develop a mixing-then-focusing training strategy with a random observation cropping scheme, effectively enhancing data distribution diversity while suppressing augmentation data noise during training. Experiments on both the discrete environments (R2R, REVERIE, and R4R datasets) and continuous environments (R2R-CE dataset) show the superior performance and impressive generalization ability of our method. Code is available at https://github.com/SaDil13/VLN-RAM.
☆ Assist-as-needed Hip Exoskeleton Control for Gait Asymmetry Correction via Human-in-the-loop Optimization
Gait asymmetry is a significant clinical characteristic of hemiplegic gait that most stroke survivors suffer, leading to limited mobility and long-term negative impacts on their quality of life. Although a variety of exoskeleton controls have been developed for robot-assisted gait rehabilitation, little attention has been paid to correcting the gait asymmetry of stroke patients following the assist-as-need (AAN) principle, and it is still challenging to properly share control between the exoskeleton and stroke patients with partial motor control. In view of this, this article proposes an AAN hip exoskeleton control with human-in-the-loop optimization to correct gait asymmetry in stroke patients. To realize the AAN concept, an objective function was designed for real-time evaluation of the subject's gait performance and active participation, which considers the variability of natural human movement and guides the online tuning of control parameters on a subject-specific basis. In this way, patients were stimulated to contribute as much as possible to movement, thus maximizing the efficiency and outcomes of post-stroke gait rehabilitation. Finally, an experimental study was conducted to verify the feasibility and effectiveness of the proposed AAN control on healthy subjects with artificial gait impairment. For the first time, the common hypothesis that AAN controls can improve human active participation was validated from the biomechanics viewpoint.
☆ Optimizing Navigation And Chemical Application in Precision Agriculture With Deep Reinforcement Learning And Conditional Action Tree
This paper presents a novel reinforcement learning (RL)-based planning scheme for optimized robotic management of biotic stresses in precision agriculture. The framework employs a hierarchical decision-making structure with conditional action masking, where high-level actions direct the robot's exploration, while low-level actions optimize its navigation and efficient chemical spraying in affected areas. The key objectives of optimization include improving the coverage of infected areas with limited battery power and reducing chemical usage, thus preventing unnecessary spraying of healthy areas of the field. Our numerical experimental results demonstrate that the proposed method, Hierarchical Action Masking Proximal Policy Optimization (HAM-PPO), significantly outperforms baseline practices, such as LawnMower navigation + indiscriminate spraying (Carpet Spray), in terms of yield recovery and resource efficiency. HAM-PPO consistently achieves higher yield recovery percentages and lower chemical costs across a range of infection scenarios. The framework also exhibits robustness to observation noise and generalizability under diverse environmental conditions, adapting to varying infection ranges and spatial distribution patterns.
comment: 32 pages, 9 figures
☆ PhysTwin: Physics-Informed Reconstruction and Simulation of Deformable Objects from Videos
Creating a physical digital twin of a real-world object has immense potential in robotics, content creation, and XR. In this paper, we present PhysTwin, a novel framework that uses sparse videos of dynamic objects under interaction to produce a photo- and physically realistic, real-time interactive virtual replica. Our approach centers on two key components: (1) a physics-informed representation that combines spring-mass models for realistic physical simulation, generative shape models for geometry, and Gaussian splats for rendering; and (2) a novel multi-stage, optimization-based inverse modeling framework that reconstructs complete geometry, infers dense physical properties, and replicates realistic appearance from videos. Our method integrates an inverse physics framework with visual perception cues, enabling high-fidelity reconstruction even from partial, occluded, and limited viewpoints. PhysTwin supports modeling various deformable objects, including ropes, stuffed animals, cloth, and delivery packages. Experiments show that PhysTwin outperforms competing methods in reconstruction, rendering, future prediction, and simulation under novel interactions. We further demonstrate its applications in interactive real-time simulation and model-based robotic motion planning.
comment: Project Page: https://jianghanxiao.github.io/phystwin-web/
☆ Adaptive Koopman Model Predictive Control of Simple Serial Robots IROS 2025
Approximating nonlinear systems as linear ones is a common workaround to apply control tools tailored for linear systems. This motivates our present work where we developed a data-driven model predictive controller (MPC) based on the Koopman operator framework, allowing the embedding of nonlinear dynamics in a higher dimensional, but linear function space. The controller, termed adaptive Koopman model predictive control (KMPC), uses online closed-loop feedback to learn and incrementally update a linear representation of nonlinear system dynamics, without the prior knowledge of a model. Adaptive KMPC differs from most other Koopman-based control frameworks that aim to identify high-validity-range models in advance and then enter closed-loop control without further model adaptations. To validate the controller, trajectory tracking experiments are conducted with 1R and 2R robots under force disturbances and changing model parameters. We compare the controller to classical linearization MPC and Koopman-based MPC without model updates, denoted static KMPC. The results show that adaptive KMPC can, opposed to static KMPC, generalize over unforeseen force disturbances and can, opposed to linearization MPC, handle varying dynamic parameters, while using a small set of basis functions to approximate the Koopman operator.
comment: Preprint submitted to IROS 2025; See supplementary material at https://github.com/adrianodelr/adaptive-koopman-mpc
SG-Tailor: Inter-Object Commonsense Relationship Reasoning for Scene Graph Manipulation
Scene graphs capture complex relationships among objects, serving as strong priors for content generation and manipulation. Yet, reasonably manipulating scene graphs -- whether by adding nodes or modifying edges -- remains a challenging and untouched task. Tasks such as adding a node to the graph or reasoning about a node's relationships with all others are computationally intractable, as even a single edge modification can trigger conflicts due to the intricate interdependencies within the graph. To address these challenges, we introduce SG-Tailor, an autoregressive model that predicts the conflict-free relationship between any two nodes. SG-Tailor not only infers inter-object relationships, including generating commonsense edges for newly added nodes but also resolves conflicts arising from edge modifications to produce coherent, manipulated graphs for downstream tasks. For node addition, the model queries the target node and other nodes from the graph to predict the appropriate relationships. For edge modification, SG-Tailor employs a Cut-And-Stitch strategy to solve the conflicts and globally adjust the graph. Extensive experiments demonstrate that SG-Tailor outperforms competing methods by a large margin and can be seamlessly integrated as a plug-in module for scene generation and robotic manipulation tasks.
comment: The code will be available at https://github.com/josef5838/SG-Tailor
♻ ☆ Diffusion Transformer Policy
Recent large vision-language-action models pretrained on diverse robot datasets have demonstrated the potential for generalizing to new environments with a few in-domain data. However, those approaches usually predict individual discretized or continuous action by a small action head, which limits the ability in handling diverse action spaces. In contrast, we model the continuous action sequence with a large multi-modal diffusion transformer, dubbed as Diffusion Transformer Policy, in which we directly denoise action chunks by a large transformer model rather than a small action head for action embedding. By leveraging the scaling capability of transformers, the proposed approach can effectively model continuous end-effector actions across large diverse robot datasets, and achieve better generalization performance. Extensive experiments demonstrate the effectiveness and generalization of Diffusion Transformer Policy on Maniskill2, Libero, Calvin and SimplerEnv, as well as the real-world Franka arm, achieving consistent better performance on Real-to-Sim benchmark SimplerEnv, real-world Franka Arm and Libero compared to OpenVLA and Octo. Specifically, without bells and whistles, the proposed approach achieves state-of-the-art performance with only a single third-view camera stream in the Calvin task ABC->D, improving the average number of tasks completed in a row of 5 to 3.6, and the pretraining stage significantly facilitates the success sequence length on the Calvin by over 1.2.
comment: preprint; New Project Page: https://robodita.github.io; revert unsuitable replacement
♻ ☆ Distributed Bayesian Estimation in Sensor Networks: Consensus on Marginal Densities
In this paper, we aim to design and analyze distributed Bayesian estimation algorithms for sensor networks. The challenges we address are to (i) derive a distributed provably-correct algorithm in the functional space of probability distributions over continuous variables, and (ii) leverage these results to obtain new distributed estimators restricted to subsets of variables observed by individual agents. This relates to applications such as cooperative localization and federated learning, where the data collected at any agent depends on a subset of all variables of interest. We present Bayesian density estimation algorithms using data from non-linear likelihoods at agents in centralized, distributed, and marginal distributed settings. After setting up a distributed estimation objective, we prove almost-sure convergence to the optimal set of pdfs at each agent. Then, we prove the same for a storage-aware algorithm estimating densities only over relevant variables at each agent. Finally, we present a Gaussian version of these algorithms and implement it in a mapping problem using variational inference to handle non-linear likelihood models associated with LiDAR sensing.
♻ ☆ Socially-Aware Robot Navigation Enhanced by Bidirectional Natural Language Conversations Using Large Language Models
Robot navigation is crucial across various domains, yet traditional methods focus on efficiency and obstacle avoidance, often overlooking human behavior in shared spaces. With the rise of service robots, socially aware navigation has gained prominence. However, existing approaches primarily predict pedestrian movements or issue alerts, lacking true human-robot interaction. We introduce Hybrid Soft Actor-Critic with Large Language Model (HSAC-LLM), a novel framework for socially aware navigation. By integrating deep reinforcement learning with large language models, HSAC-LLM enables bidirectional natural language interactions, predicting both continuous and discrete navigation actions. When potential collisions arise, the robot proactively communicates with pedestrians to determine avoidance strategies. Experiments in 2D simulation, Gazebo, and real-world environments demonstrate that HSAC-LLM outperforms state-of-the-art DRL methods in interaction, navigation, and obstacle avoidance. This paradigm advances effective human-robot interactions in dynamic settings. Videos are available at https://hsacllm.github.io/.
♻ ☆ Towards Safe Mid-Air Drone Interception: Strategies for Tracking & Capture
A unique approach for the mid-air autonomous aerial interception of non-cooperating UAV by a flying robot equipped with a net is presented in this paper. A novel interception guidance method dubbed EPN is proposed, designed to catch agile maneuvering targets while relying on onboard state estimation and tracking. The proposed method is compared with state-of-the-art approaches in simulations using 100 different trajectories of the target with varying complexity comprising almost 14 hours of flight data, and EPN demonstrates the shortest response time and the highest number of interceptions, which are key parameters of agile interception. To enable robust transfer from theory and simulation to a real-world implementation, we aim to avoid overfitting to specific assumptions about the target, and to tackle interception of a target following an unknown general trajectory. Furthermore, we identify several often overlooked problems related to tracking and estimation of the target's state that can have a significant influence on the overall performance of the system. We propose the use of a novel state estimation filter based on the IMM filter and a new measurement model. Simulated experiments show that the proposed solution provides significant improvements in estimation accuracy over the commonly employed KF approaches when considering general trajectories. Based on these results, we employ the proposed filtering and guidance methods to implement a complete autonomous interception system, which is thoroughly evaluated in realistic simulations and tested in real-world experiments with a maneuvering target going far beyond the performance of any state-of-the-art solution.
♻ ☆ ModeSeq: Taming Sparse Multimodal Motion Prediction with Sequential Mode Modeling CVPR 2025
Anticipating the multimodality of future events lays the foundation for safe autonomous driving. However, multimodal motion prediction for traffic agents has been clouded by the lack of multimodal ground truth. Existing works predominantly adopt the winner-take-all training strategy to tackle this challenge, yet still suffer from limited trajectory diversity and uncalibrated mode confidence. While some approaches address these limitations by generating excessive trajectory candidates, they necessitate a post-processing stage to identify the most representative modes, a process lacking universal principles and compromising trajectory accuracy. We are thus motivated to introduce ModeSeq, a new multimodal prediction paradigm that models modes as sequences. Unlike the common practice of decoding multiple plausible trajectories in one shot, ModeSeq requires motion decoders to infer the next mode step by step, thereby more explicitly capturing the correlation between modes and significantly enhancing the ability to reason about multimodality. Leveraging the inductive bias of sequential mode prediction, we also propose the Early-Match-Take-All (EMTA) training strategy to diversify the trajectories further. Without relying on dense mode prediction or heuristic post-processing, ModeSeq considerably improves the diversity of multimodal output while attaining satisfactory trajectory accuracy, resulting in balanced performance on motion prediction benchmarks. Moreover, ModeSeq naturally emerges with the capability of mode extrapolation, which supports forecasting more behavior modes when the future is highly uncertain.
comment: CVPR 2025
♻ ☆ Omnidirectional Multi-Object Tracking CVPR 2025
Panoramic imagery, with its 360{\deg} field of view, offers comprehensive information to support Multi-Object Tracking (MOT) in capturing spatial and temporal relationships of surrounding objects. However, most MOT algorithms are tailored for pinhole images with limited views, impairing their effectiveness in panoramic settings. Additionally, panoramic image distortions, such as resolution loss, geometric deformation, and uneven lighting, hinder direct adaptation of existing MOT methods, leading to significant performance degradation. To address these challenges, we propose OmniTrack, an omnidirectional MOT framework that incorporates Tracklet Management to introduce temporal cues, FlexiTrack Instances for object localization and association, and the CircularStatE Module to alleviate image and geometric distortions. This integration enables tracking in panoramic field-of-view scenarios, even under rapid sensor motion. To mitigate the lack of panoramic MOT datasets, we introduce the QuadTrack dataset--a comprehensive panoramic dataset collected by a quadruped robot, featuring diverse challenges such as panoramic fields of view, intense motion, and complex environments. Extensive experiments on the public JRDB dataset and the newly introduced QuadTrack benchmark demonstrate the state-of-the-art performance of the proposed framework. OmniTrack achieves a HOTA score of 26.92% on JRDB, representing an improvement of 3.43%, and further achieves 23.45% on QuadTrack, surpassing the baseline by 6.81%. The established dataset and source code are available at https://github.com/xifen523/OmniTrack.
comment: Accepted to CVPR 2025. The established dataset and source code are available at https://github.com/xifen523/OmniTrack
♻ ☆ A Data-Centric Revisit of Pre-Trained Vision Models for Robot Learning CVPR 2025
Pre-trained vision models (PVMs) are fundamental to modern robotics, yet their optimal configuration remains unclear. Through systematic evaluation, we find that while DINO and iBOT outperform MAE across visuomotor control and perception tasks, they struggle when trained on non-(single-)object-centric (NOC) data--a limitation strongly correlated with their diminished ability to learn object-centric representations. This investigation indicates that the ability to form object-centric representations from the non-object-centric robotics dataset is the key to success for PVMs. Motivated by this discovery, we designed SlotMIM, a method that induces object-centric representations by introducing a semantic bottleneck to reduce the number of prototypes to encourage the emergence of objectness as well as cross-view consistency regularization for encouraging multiview invariance. Our experiments encompass pre-training on object-centric, scene-centric, web-crawled, and ego-centric data. Across all settings, our approach learns transferrable representations and achieves significant improvements over prior work in image recognition, scene understanding, and robot learning evaluations. When scaled up with million-scale datasets, our method also demonstrates superior data efficiency and scalability. Our code and models are publicly available at https://github.com/CVMI-Lab/SlotMIM.
comment: Accepted by CVPR 2025
♻ ☆ One-Shot Manipulation Strategy Learning by Making Contact Analogies ICRA 2025
We present a novel approach, MAGIC (manipulation analogies for generalizable intelligent contacts), for one-shot learning of manipulation strategies with fast and extensive generalization to novel objects. By leveraging a reference action trajectory, MAGIC effectively identifies similar contact points and sequences of actions on novel objects to replicate a demonstrated strategy, such as using different hooks to retrieve distant objects of different shapes and sizes. Our method is based on a two-stage contact-point matching process that combines global shape matching using pretrained neural features with local curvature analysis to ensure precise and physically plausible contact points. We experiment with three tasks including scooping, hanging, and hooking objects. MAGIC demonstrates superior performance over existing methods, achieving significant improvements in runtime speed and generalization to different object categories. Website: https://magic-2024.github.io/ .
comment: ICRA 2025; CoRL LEAP Workshop, 2024
♻ ☆ Intelligent LiDAR Navigation: Leveraging External Information and Semantic Maps with LLM as Copilot
Traditional robot navigation systems primarily utilize occupancy grid maps and laser-based sensing technologies, as demonstrated by the popular move_base package in ROS. Unlike robots, humans navigate not only through spatial awareness and physical distances but also by integrating external information, such as elevator maintenance updates from public notification boards and experiential knowledge, like the need for special access through certain doors. With the development of Large Language Models (LLMs), which possesses text understanding and intelligence close to human performance, there is now an opportunity to infuse robot navigation systems with a level of understanding akin to human cognition. In this study, we propose using osmAG (Area Graph in OpensStreetMap textual format), an innovative semantic topometric hierarchical map representation, to bridge the gap between the capabilities of ROS move_base and the contextual understanding offered by LLMs. Our methodology employs LLMs as an actual copilot in robot navigation, enabling the integration of a broader range of informational inputs while maintaining the robustness of traditional robotic navigation systems. Our code, demo, map, experiment results can be accessed at https://github.com/xiexiexiaoxiexie/Intelligent-LiDAR-Navigation-LLM-as-Copilot.
♻ ☆ Physics-Aware Combinatorial Assembly Sequence Planning using Data-free Action Masking
Combinatorial assembly uses standardized unit primitives to build objects that satisfy user specifications. This paper studies assembly sequence planning (ASP) for physical combinatorial assembly. Given the shape of the desired object, the goal is to find a sequence of actions for placing unit primitives to build the target object. In particular, we aim to ensure the planned assembly sequence is physically executable. However, ASP for combinatorial assembly is particularly challenging due to its combinatorial nature. To address the challenge, we employ deep reinforcement learning to learn a construction policy for placing unit primitives sequentially to build the desired object. Specifically, we design an online physics-aware action mask that filters out invalid actions, which effectively guides policy learning and ensures violation-free deployment. In the end, we apply the proposed method to Lego assembly with more than 250 3D structures. The experiment results demonstrate that the proposed method plans physically valid assembly sequences to build all structures, achieving a $100\%$ success rate, whereas the best comparable baseline fails more than $40$ structures. Our implementation is available at \url{https://github.com/intelligent-control-lab/PhysicsAwareCombinatorialASP}.
♻ ☆ Intent Prediction-Driven Model Predictive Control for UAV Planning and Navigation in Dynamic Environments
Aerial robots can enhance construction site productivity by autonomously handling inspection and mapping tasks. However, ensuring safe navigation near human workers remains challenging. While navigation in static environments has been well studied, navigating dynamic environments remains open due to challenges in perception and planning. Payload limitations restrict the robots to using cameras with limited fields of view, resulting in unreliable perception and tracking during collision avoidance. Moreover, the rapidly changing conditions of dynamic environments can quickly make the generated optimal trajectory outdated.To address these challenges, this paper presents a comprehensive navigation framework that integrates perception, intent prediction, and planning. Our perception module detects and tracks dynamic obstacles efficiently and handles tracking loss and occlusion during collision avoidance. The proposed intent prediction module employs a Markov Decision Process (MDP) to forecast potential actions of dynamic obstacles with the possible future trajectories. Finally, a novel intent-based planning algorithm, leveraging model predictive control (MPC), is applied to generate navigation trajectories. Simulation and physical experiments demonstrate that our method improves the safety of navigation by achieving the fewest collisions compared to benchmarks.
comment: 8 pages, 7 figures, 2 tables, experiment video: https://youtu.be/4xsEeMB9WPY, GitHub: https://github.com/Zhefan-Xu/Intent-MPC
♻ ☆ DexDiffuser: Interaction-aware Diffusion Planning for Adaptive Dexterous Manipulation
Dexterous manipulation with contact-rich interactions is crucial for advanced robotics. While recent diffusion-based planning approaches show promise for simple manipulation tasks, they often produce unrealistic ghost states (e.g., the object automatically moves without hand contact) or lack adaptability when handling complex sequential interactions. In this work, we introduce DexDiffuser, an interaction-aware diffusion planning framework for adaptive dexterous manipulation. DexDiffuser models joint state-action dynamics through a dual-phase diffusion process which consists of pre-interaction contact alignment and post-contact goal-directed control, enabling goal-adaptive generalizable dexterous manipulation. Additionally, we incorporate dynamics model-based dual guidance and leverage large language models for automated guidance function generation, enhancing generalizability for physical interactions and facilitating diverse goal adaptation through language cues. Experiments on physical interaction tasks such as door opening, pen and block re-orientation, object relocation, and hammer striking demonstrate DexDiffuser's effectiveness on goals outside training distributions, achieving over twice the average success rate (59.2% vs. 29.5%) compared to existing methods. Our framework achieves an average of 70.7% success rate on goal adaptive dexterous tasks, highlighting its robustness and flexibility in contact-rich manipulation.
comment: Camera ready version. 27 pages. Project page: https://dexdiffuser.github.io/
Graphics 6
☆ Real-time Global Illumination for Dynamic 3D Gaussian Scenes
We present a real-time global illumination approach along with a pipeline for dynamic 3D Gaussian models and meshes. Building on a formulated surface light transport model for 3D Gaussians, we address key performance challenges with a fast compound stochastic ray-tracing algorithm and an optimized 3D Gaussian rasterizer. Our pipeline integrates multiple real-time techniques to accelerate performance and achieve high-quality lighting effects. Our approach enables real-time rendering of dynamic scenes with interactively editable materials and dynamic lighting of diverse multi-lights settings, capturing mutual multi-bounce light transport (indirect illumination) between 3D Gaussians and mesh. Additionally, we present a real-time renderer with an interactive user interface, validating our approach and demonstrating its practicality and high efficiency with over 40 fps in scenes including both 3D Gaussians and mesh. Furthermore, our work highlights the potential of 3D Gaussians in real-time applications with dynamic lighting, offering insights into performance and optimization.
♻ ☆ Open-Sora 2.0: Training a Commercial-Level Video Generation Model in $200k
Video generation models have achieved remarkable progress in the past year. The quality of AI video continues to improve, but at the cost of larger model size, increased data quantity, and greater demand for training compute. In this report, we present Open-Sora 2.0, a commercial-level video generation model trained for only $200k. With this model, we demonstrate that the cost of training a top-performing video generation model is highly controllable. We detail all techniques that contribute to this efficiency breakthrough, including data curation, model architecture, training strategy, and system optimization. According to human evaluation results and VBench scores, Open-Sora 2.0 is comparable to global leading video generation models including the open-source HunyuanVideo and the closed-source Runway Gen-3 Alpha. By making Open-Sora 2.0 fully open-source, we aim to democratize access to advanced video generation technology, fostering broader innovation and creativity in content creation. All resources are publicly available at: https://github.com/hpcaitech/Open-Sora.
♻ ☆ SANA-Sprint: One-Step Diffusion with Continuous-Time Consistency Distillation
This paper presents SANA-Sprint, an efficient diffusion model for ultra-fast text-to-image (T2I) generation. SANA-Sprint is built on a pre-trained foundation model and augmented with hybrid distillation, dramatically reducing inference steps from 20 to 1-4. We introduce three key innovations: (1) We propose a training-free approach that transforms a pre-trained flow-matching model for continuous-time consistency distillation (sCM), eliminating costly training from scratch and achieving high training efficiency. Our hybrid distillation strategy combines sCM with latent adversarial distillation (LADD): sCM ensures alignment with the teacher model, while LADD enhances single-step generation fidelity. (2) SANA-Sprint is a unified step-adaptive model that achieves high-quality generation in 1-4 steps, eliminating step-specific training and improving efficiency. (3) We integrate ControlNet with SANA-Sprint for real-time interactive image generation, enabling instant visual feedback for user interaction. SANA-Sprint establishes a new Pareto frontier in speed-quality tradeoffs, achieving state-of-the-art performance with 7.59 FID and 0.74 GenEval in only 1 step - outperforming FLUX-schnell (7.94 FID / 0.71 GenEval) while being 10x faster (0.1s vs 1.1s on H100). It also achieves 0.1s (T2I) and 0.25s (ControlNet) latency for 1024 x 1024 images on H100, and 0.31s (T2I) on an RTX 4090, showcasing its exceptional efficiency and potential for AI-powered consumer applications (AIPC). Code and pre-trained models will be open-sourced.
comment: 22 pages, 11 figures, 8 tables, In submission
♻ ☆ TexGaussian: Generating High-quality PBR Material via Octree-based 3D Gaussian Splatting CVPR 2025
Physically Based Rendering (PBR) materials play a crucial role in modern graphics, enabling photorealistic rendering across diverse environment maps. Developing an effective and efficient algorithm that is capable of automatically generating high-quality PBR materials rather than RGB texture for 3D meshes can significantly streamline the 3D content creation. Most existing methods leverage pre-trained 2D diffusion models for multi-view image synthesis, which often leads to severe inconsistency between the generated textures and input 3D meshes. This paper presents TexGaussian, a novel method that uses octant-aligned 3D Gaussian Splatting for rapid PBR material generation. Specifically, we place each 3D Gaussian on the finest leaf node of the octree built from the input 3D mesh to render the multi-view images not only for the albedo map but also for roughness and metallic. Moreover, our model is trained in a regression manner instead of diffusion denoising, capable of generating the PBR material for a 3D mesh in a single feed-forward process. Extensive experiments on publicly available benchmarks demonstrate that our method synthesizes more visually pleasing PBR materials and runs faster than previous methods in both unconditional and text-conditional scenarios, exhibiting better consistency with the given geometry. Our code and trained models are available at https://3d-aigc.github.io/TexGaussian.
comment: CVPR 2025. Project Page: https://3d-aigc.github.io/TexGaussian
♻ ☆ SVGFusion: Scalable Text-to-SVG Generation via Vector Space Diffusion
In this work, we introduce SVGFusion, a Text-to-SVG model capable of scaling to real-world SVG data without relying on text-based discrete language models or prolonged Score Distillation Sampling (SDS) optimization. The core idea of SVGFusion is to utilize a popular Text-to-Image framework to learn a continuous latent space for vector graphics. Specifically, SVGFusion comprises two key modules: a Vector-Pixel Fusion Variational Autoencoder (VP-VAE) and a Vector Space Diffusion Transformer (VS-DiT). The VP-VAE processes both SVG codes and their corresponding rasterizations to learn a continuous latent space, while the VS-DiT generates latent codes within this space based on the input text prompt. Building on the VP-VAE, we propose a novel rendering sequence modeling strategy which enables the learned latent space to capture the inherent creation logic of SVGs. This allows the model to generate SVGs with higher visual quality and more logical construction, while systematically avoiding occlusion in complex graphic compositions. Additionally, the scalability of SVGFusion can be continuously enhanced by adding more VS-DiT blocks. To effectively train and evaluate SVGFusion, we construct SVGX-Dataset, a large-scale, high-quality SVG dataset that addresses the scarcity of high-quality vector data. Extensive experiments demonstrate the superiority of SVGFusion over existing SVG generation methods, establishing a new framework for SVG content creation. Code, model, and data will be released at: https://ximinng.github.io/SVGFusionProject/
comment: project page: https://ximinng.github.io/SVGFusionProject/
♻ ☆ Deformable Radial Kernel Splatting
Recently, Gaussian splatting has emerged as a robust technique for representing 3D scenes, enabling real-time rasterization and high-fidelity rendering. However, Gaussians' inherent radial symmetry and smoothness constraints limit their ability to represent complex shapes, often requiring thousands of primitives to approximate detailed geometry. We introduce Deformable Radial Kernel (DRK), which extends Gaussian splatting into a more general and flexible framework. Through learnable radial bases with adjustable angles and scales, DRK efficiently models diverse shape primitives while enabling precise control over edge sharpness and boundary curvature. iven DRK's planar nature, we further develop accurate ray-primitive intersection computation for depth sorting and introduce efficient kernel culling strategies for improved rasterization efficiency. Extensive experiments demonstrate that DRK outperforms existing methods in both representation efficiency and rendering quality, achieving state-of-the-art performance while dramatically reducing primitive count.
Artificial Intelligence 84
☆ ShED-HD: A Shannon Entropy Distribution Framework for Lightweight Hallucination Detection on Edge Devices
Large Language Models (LLMs) have demonstrated impressive capabilities on a broad array of NLP tasks, but their tendency to produce hallucinations$\unicode{x2013}$plausible-sounding but factually incorrect content$\unicode{x2013}$poses severe challenges in high-stakes domains. Existing hallucination detection methods either bear the computational cost of multiple inference passes or sacrifice accuracy for efficiency with single-pass approaches, neither of which is ideal in resource-constrained environments such as edge devices. We propose the Shannon Entropy Distribution Hallucination Detector (ShED-HD), a novel hallucination detection framework that bridges this gap by classifying sequence-level entropy patterns using a lightweight BiLSTM architecture with single-headed attention. In contrast to prior approaches, ShED-HD efficiently detects distinctive uncertainty patterns across entire output sequences, preserving contextual awareness. Through in-depth evaluation on three datasets (BioASQ, TriviaQA, and Jeopardy Questions), we show that ShED-HD significantly outperforms other computationally efficient approaches in the out-of-distribution setting, while achieving comparable performance in the in-distribution setting. ShED-HD facilitates hallucination detection that is low-cost, accurate, and generalizable, improving the credibility of content generated by LLMs in resource-constrained environments where trustworthy AI functionality is crucial.
☆ Collaborating with AI Agents: Field Experiments on Teamwork, Productivity, and Performance
To uncover how AI agents change productivity, performance, and work processes, we introduce MindMeld: an experimentation platform enabling humans and AI agents to collaborate in integrative workspaces. In a large-scale marketing experiment on the platform, 2310 participants were randomly assigned to human-human and human-AI teams, with randomized AI personality traits. The teams exchanged 183,691 messages, and created 63,656 image edits, 1,960,095 ad copy edits, and 10,375 AI-generated images while producing 11,138 ads for a large think tank. Analysis of fine-grained communication, collaboration, and workflow logs revealed that collaborating with AI agents increased communication by 137% and allowed humans to focus 23% more on text and image content generation messaging and 20% less on direct text editing. Humans on Human-AI teams sent 23% fewer social messages, creating 60% greater productivity per worker and higher-quality ad copy. In contrast, human-human teams produced higher-quality images, suggesting that AI agents require fine-tuning for multimodal workflows. AI personality prompt randomization revealed that AI traits can complement human personalities to enhance collaboration. For example, conscientious humans paired with open AI agents improved image quality, while extroverted humans paired with conscientious AI agents reduced the quality of text, images, and clicks. In field tests of ad campaigns with ~5M impressions, ads with higher image quality produced by human collaborations and higher text quality produced by AI collaborations performed significantly better on click-through rate and cost per click metrics. Overall, ads created by human-AI teams performed similarly to those created by human-human teams. Together, these results suggest AI agents can improve teamwork and productivity, especially when tuned to complement human traits.
comment: 56 pages, 8 figures
☆ Adaptive Multi-Fidelity Reinforcement Learning for Variance Reduction in Engineering Design Optimization
Multi-fidelity Reinforcement Learning (RL) frameworks efficiently utilize computational resources by integrating analysis models of varying accuracy and costs. The prevailing methodologies, characterized by transfer learning, human-inspired strategies, control variate techniques, and adaptive sampling, predominantly depend on a structured hierarchy of models. However, this reliance on a model hierarchy can exacerbate variance in policy learning when the underlying models exhibit heterogeneous error distributions across the design space. To address this challenge, this work proposes a novel adaptive multi-fidelity RL framework, in which multiple heterogeneous, non-hierarchical low-fidelity models are dynamically leveraged alongside a high-fidelity model to efficiently learn a high-fidelity policy. Specifically, low-fidelity policies and their experience data are adaptively used for efficient targeted learning, guided by their alignment with the high-fidelity policy. The effectiveness of the approach is demonstrated in an octocopter design optimization problem, utilizing two low-fidelity models alongside a high-fidelity simulator. The results demonstrate that the proposed approach substantially reduces variance in policy learning, leading to improved convergence and consistent high-quality solutions relative to traditional hierarchical multi-fidelity RL methods. Moreover, the framework eliminates the need for manually tuning model usage schedules, which can otherwise introduce significant computational overhead. This positions the framework as an effective variance-reduction strategy for multi-fidelity RL, while also mitigating the computational and operational burden of manual fidelity scheduling.
☆ A Study on Neuro-Symbolic Artificial Intelligence: Healthcare Perspectives
Over the last few decades, Artificial Intelligence (AI) scientists have been conducting investigations to attain human-level performance by a machine in accomplishing a cognitive task. Within machine learning, the ultimate aspiration is to attain Artificial General Intelligence (AGI) through a machine. This pursuit has led to the exploration of two distinct AI paradigms. Symbolic AI, also known as classical or GOFAI (Good Old-Fashioned AI) and Connectionist (Sub-symbolic) AI, represented by Neural Systems, are two mutually exclusive paradigms. Symbolic AI excels in reasoning, explainability, and knowledge representation but faces challenges in processing complex real-world data with noise. Conversely, deep learning (Black-Box systems) research breakthroughs in neural networks are notable, yet they lack reasoning and interpretability. Neuro-symbolic AI (NeSy), an emerging area of AI research, attempts to bridge this gap by integrating logical reasoning into neural networks, enabling them to learn and reason with symbolic representations. While a long path, this strategy has made significant progress towards achieving common sense reasoning by systems. This article conducts an extensive review of over 977 studies from prominent scientific databases (DBLP, ACL, IEEExplore, Scopus, PubMed, ICML, ICLR), thoroughly examining the multifaceted capabilities of Neuro-Symbolic AI, with a particular focus on its healthcare applications, particularly in drug discovery, and Protein engineering research. The survey addresses vital themes, including reasoning, explainability, integration strategies, 41 healthcare-related use cases, benchmarking, datasets, current approach limitations from both healthcare and broader perspectives, and proposed novel approaches for future experiments.
comment: 18 pages
☆ ViVa: Video-Trained Value Functions for Guiding Online RL from Diverse Data
Online reinforcement learning (RL) with sparse rewards poses a challenge partly because of the lack of feedback on states leading to the goal. Furthermore, expert offline data with reward signal is rarely available to provide this feedback and bootstrap online learning. How can we guide online agents to the right solution without this on-task data? Reward shaping offers a solution by providing fine-grained signal to nudge the policy towards the optimal solution. However, reward shaping often requires domain knowledge to hand-engineer heuristics for a specific goal. To enable more general and inexpensive guidance, we propose and analyze a data-driven methodology that automatically guides RL by learning from widely available video data such as Internet recordings, off-task demonstrations, task failures, and undirected environment interaction. By learning a model of optimal goal-conditioned value from diverse passive data, we open the floor to scaling up and using various data sources to model general goal-reaching behaviors relevant to guiding online RL. Specifically, we use intent-conditioned value functions to learn from diverse videos and incorporate these goal-conditioned values into the reward. Our experiments show that video-trained value functions work well with a variety of data sources, exhibit positive transfer from human video pre-training, can generalize to unseen goals, and scale with dataset size.
☆ FROG: Fair Removal on Graphs
As compliance with privacy regulations becomes increasingly critical, the growing demand for data privacy has highlighted the significance of machine unlearning in many real world applications, such as social network and recommender systems, many of which can be represented as graph-structured data. However, existing graph unlearning algorithms indiscriminately modify edges or nodes from well-trained models without considering the potential impact of such structural modifications on fairness. For example, forgetting links between nodes with different genders in a social network may exacerbate group disparities, leading to significant fairness concerns. To address these challenges, we propose a novel approach that jointly optimizes the graph structure and the corresponding model for fair unlearning tasks. Specifically,our approach rewires the graph to enhance unlearning efficiency by removing redundant edges that hinder forgetting while preserving fairness through targeted edge augmentation. Additionally, we introduce a worst-case evaluation mechanism to assess the reliability of fair unlearning performance. Extensive experiments on real-world datasets demonstrate the effectiveness of the proposed approach in achieving superior unlearning outcomes.
☆ Exploring Energy Landscapes for Minimal Counterfactual Explanations: Applications in Cybersecurity and Beyond
Counterfactual explanations have emerged as a prominent method in Explainable Artificial Intelligence (XAI), providing intuitive and actionable insights into Machine Learning model decisions. In contrast to other traditional feature attribution methods that assess the importance of input variables, counterfactual explanations focus on identifying the minimal changes required to alter a model's prediction, offering a ``what-if'' analysis that is close to human reasoning. In the context of XAI, counterfactuals enhance transparency, trustworthiness and fairness, offering explanations that are not just interpretable but directly applicable in the decision-making processes. In this paper, we present a novel framework that integrates perturbation theory and statistical mechanics to generate minimal counterfactual explanations in explainable AI. We employ a local Taylor expansion of a Machine Learning model's predictive function and reformulate the counterfactual search as an energy minimization problem over a complex landscape. In sequence, we model the probability of candidate perturbations leveraging the Boltzmann distribution and use simulated annealing for iterative refinement. Our approach systematically identifies the smallest modifications required to change a model's prediction while maintaining plausibility. Experimental results on benchmark datasets for cybersecurity in Internet of Things environments, demonstrate that our method provides actionable, interpretable counterfactuals and offers deeper insights into model sensitivity and decision boundaries in high-dimensional spaces.
☆ Adaptive Physics-informed Neural Networks: A Survey
Physics-informed neural networks (PINNs) have emerged as a promising approach to solving partial differential equations (PDEs) using neural networks, particularly in data-scarce scenarios, due to their unsupervised training capability. However, limitations related to convergence and the need for re-optimization with each change in PDE parameters hinder their widespread adoption across scientific and engineering applications. This survey reviews existing research that addresses these limitations through transfer learning and meta-learning. The covered methods improve the training efficiency, allowing faster adaptation to new PDEs with fewer data and computational resources. While traditional numerical methods solve systems of differential equations directly, neural networks learn solutions implicitly by adjusting their parameters. One notable advantage of neural networks is their ability to abstract away from specific problem domains, allowing them to retain, discard, or adapt learned representations to efficiently address similar problems. By exploring the application of these techniques to PINNs, this survey identifies promising directions for future research to facilitate the broader adoption of PINNs in a wide range of scientific and engineering applications.
comment: https://openreview.net/forum?id=vz5P1Kbt6t
☆ Unmasking Deceptive Visuals: Benchmarking Multimodal Large Language Models on Misleading Chart Question Answering
Misleading chart visualizations, which intentionally manipulate data representations to support specific claims, can distort perceptions and lead to incorrect conclusions. Despite decades of research, misleading visualizations remain a widespread and pressing issue. Recent advances in multimodal large language models (MLLMs) have demonstrated strong chart comprehension capabilities, yet no existing work has systematically evaluated their ability to detect and interpret misleading charts. This paper introduces the Misleading Chart Question Answering (Misleading ChartQA) Benchmark, a large-scale multimodal dataset designed to assess MLLMs in identifying and reasoning about misleading charts. It contains over 3,000 curated examples, covering 21 types of misleaders and 10 chart types. Each example includes standardized chart code, CSV data, and multiple-choice questions with labeled explanations, validated through multi-round MLLM checks and exhausted expert human review. We benchmark 16 state-of-the-art MLLMs on our dataset, revealing their limitations in identifying visually deceptive practices. We also propose a novel pipeline that detects and localizes misleaders, enhancing MLLMs' accuracy in misleading chart interpretation. Our work establishes a foundation for advancing MLLM-driven misleading chart comprehension. We publicly release the sample dataset to support further research in this critical area.
comment: 31 pages in total. Under Review For ARR
☆ Self-Attention Diffusion Models for Zero-Shot Biomedical Image Segmentation: Unlocking New Frontiers in Medical Imaging
Producing high-quality segmentation masks for medical images is a fundamental challenge in biomedical image analysis. Recent research has explored large-scale supervised training to enable segmentation across various medical imaging modalities and unsupervised training to facilitate segmentation without dense annotations. However, constructing a model capable of segmenting diverse medical images in a zero-shot manner without any annotations remains a significant hurdle. This paper introduces the Attention Diffusion Zero-shot Unsupervised System (ADZUS), a novel approach that leverages self-attention diffusion models for zero-shot biomedical image segmentation. ADZUS harnesses the intrinsic capabilities of pre-trained diffusion models, utilizing their generative and discriminative potentials to segment medical images without requiring annotated training data or prior domain-specific knowledge. The ADZUS architecture is detailed, with its integration of self-attention mechanisms that facilitate context-aware and detail-sensitive segmentations being highlighted. Experimental results across various medical imaging datasets, including skin lesion segmentation, chest X-ray infection segmentation, and white blood cell segmentation, reveal that ADZUS achieves state-of-the-art performance. Notably, ADZUS reached Dice scores ranging from 88.7\% to 92.9\% and IoU scores from 66.3\% to 93.3\% across different segmentation tasks, demonstrating significant improvements in handling novel, unseen medical imagery. It is noteworthy that while ADZUS demonstrates high effectiveness, it demands substantial computational resources and extended processing times. The model's efficacy in zero-shot settings underscores its potential to reduce reliance on costly annotations and seamlessly adapt to new medical imaging tasks, thereby expanding the diagnostic capabilities of AI-driven medical imaging technologies.
comment: 15 pages, 5 figures
☆ Strategic Prompt Pricing for AIGC Services: A User-Centric Approach
The rapid growth of AI-generated content (AIGC) services has created an urgent need for effective prompt pricing strategies, yet current approaches overlook users' strategic two-step decision-making process in selecting and utilizing generative AI models. This oversight creates two key technical challenges: quantifying the relationship between user prompt capabilities and generation outcomes, and optimizing platform payoff while accounting for heterogeneous user behaviors. We address these challenges by introducing prompt ambiguity, a theoretical framework that captures users' varying abilities in prompt engineering, and developing an Optimal Prompt Pricing (OPP) algorithm. Our analysis reveals a counterintuitive insight: users with higher prompt ambiguity (i.e., lower capability) exhibit non-monotonic prompt usage patterns, first increasing then decreasing with ambiguity levels, reflecting complex changes in marginal utility. Experimental evaluation using a character-level GPT-like model demonstrates that our OPP algorithm achieves up to 31.72% improvement in platform payoff compared to existing pricing mechanisms, validating the importance of user-centric prompt pricing in AIGC services.
comment: accepted in WiOpt 2025
☆ SNRAware: Improved Deep Learning MRI Denoising with SNR Unit Training and G-factor Map Augmentation
To develop and evaluate a new deep learning MR denoising method that leverages quantitative noise distribution information from the reconstruction process to improve denoising performance and generalization. This retrospective study trained 14 different transformer and convolutional models with two backbone architectures on a large dataset of 2,885,236 images from 96,605 cardiac retro-gated cine complex series acquired at 3T. The proposed training scheme, termed SNRAware, leverages knowledge of the MRI reconstruction process to improve denoising performance by simulating large, high quality, and diverse synthetic datasets, and providing quantitative information about the noise distribution to the model. In-distribution testing was performed on a hold-out dataset of 3000 samples with performance measured using PSNR and SSIM, with ablation comparison without the noise augmentation. Out-of-distribution tests were conducted on cardiac real-time cine, first-pass cardiac perfusion, and neuro and spine MRI, all acquired at 1.5T, to test model generalization across imaging sequences, dynamically changing contrast, different anatomies, and field strengths. The best model found in the in-distribution test generalized well to out-of-distribution samples, delivering 6.5x and 2.9x CNR improvement for real-time cine and perfusion imaging, respectively. Further, a model trained with 100% cardiac cine data generalized well to a T1 MPRAGE neuro 3D scan and T2 TSE spine MRI.
☆ Active Inference for Energy Control and Planning in Smart Buildings and Communities
Active Inference (AIF) is emerging as a powerful framework for decision-making under uncertainty, yet its potential in engineering applications remains largely unexplored. In this work, we propose a novel dual-layer AIF architecture that addresses both building-level and community-level energy management. By leveraging the free energy principle, each layer adapts to evolving conditions and handles partial observability without extensive sensor information and respecting data privacy. We validate the continuous AIF model against both a perfect optimization baseline and a reinforcement learning-based approach. We also test the community AIF framework under extreme pricing scenarios. The results highlight the model's robustness in handling abrupt changes. This study is the first to show how a distributed AIF works in engineering. It also highlights new opportunities for privacy-preserving and uncertainty-aware control strategies in engineering applications.
comment: Submitted to IEEE CASE 2025 (IEEE 21st International Conference on Automation Science and Engineering)
☆ DiffusionTalker: Efficient and Compact Speech-Driven 3D Talking Head via Personalizer-Guided Distillation ICME2025
Real-time speech-driven 3D facial animation has been attractive in academia and industry. Traditional methods mainly focus on learning a deterministic mapping from speech to animation. Recent approaches start to consider the nondeterministic fact of speech-driven 3D face animation and employ the diffusion model for the task. Existing diffusion-based methods can improve the diversity of facial animation. However, personalized speaking styles conveying accurate lip language is still lacking, besides, efficiency and compactness still need to be improved. In this work, we propose DiffusionTalker to address the above limitations via personalizer-guided distillation. In terms of personalization, we introduce a contrastive personalizer that learns identity and emotion embeddings to capture speaking styles from audio. We further propose a personalizer enhancer during distillation to enhance the influence of embeddings on facial animation. For efficiency, we use iterative distillation to reduce the steps required for animation generation and achieve more than 8x speedup in inference. To achieve compactness, we distill the large teacher model into a smaller student model, reducing our model's storage by 86.4\% while minimizing performance loss. After distillation, users can derive their identity and emotion embeddings from audio to quickly create personalized animations that reflect specific speaking styles. Extensive experiments are conducted to demonstrate that our method outperforms state-of-the-art methods. The code will be released at: https://github.com/ChenVoid/DiffusionTalker.
comment: Accepted by ICME2025
☆ Adoption of Watermarking for Generative AI Systems in Practice and Implications under the new EU AI Act
AI-generated images have become so good in recent years that individuals cannot distinguish them any more from "real" images. This development creates a series of societal risks, and challenges our perception of what is true and what is not, particularly with the emergence of "deep fakes" that impersonate real individuals. Watermarking, a technique that involves embedding identifying information within images to indicate their AI-generated nature, has emerged as a primary mechanism to address the risks posed by AI-generated images. The implementation of watermarking techniques is now becoming a legal requirement in many jurisdictions, including under the new 2024 EU AI Act. Despite the widespread use of AI image generation systems, the current status of watermarking implementation remains largely unexamined. Moreover, the practical implications of the AI Act's watermarking requirements have not previously been studied. The present paper therefore both provides an empirical analysis of 50 of the most widely used AI systems for image generation, and embeds this empirical analysis into a legal analysis of the AI Act. We identify four categories of generative AI image systems relevant under the AI Act, outline the legal obligations for each category, and find that only a minority number of providers currently implement adequate watermarking practices.
comment: 12 pages, 7 figures, note that this work has not been published in a peer reviewed venue yet. While we have made our best effort to ensure the validity of our findings, it is therefore still work in progress and potentially subject to change
☆ Efficient Deep Learning Approaches for Processing Ultra-Widefield Retinal Imaging
Deep learning has emerged as the predominant solution for classifying medical images. We intend to apply these developments to the ultra-widefield (UWF) retinal imaging dataset. Since UWF images can accurately diagnose various retina diseases, it is very important to clas sify them accurately and prevent them with early treatment. However, processing images manually is time-consuming and labor-intensive, and there are two challenges to automating this process. First, high perfor mance usually requires high computational resources. Artificial intelli gence medical technology is better suited for places with limited medical resources, but using high-performance processing units in such environ ments is challenging. Second, the problem of the accuracy of colour fun dus photography (CFP) methods. In general, the UWF method provides more information for retinal diagnosis than the CFP method, but most of the research has been conducted based on the CFP method. Thus, we demonstrate that these problems can be efficiently addressed in low performance units using methods such as strategic data augmentation and model ensembles, which balance performance and computational re sources while utilizing UWF images.
☆ LocDiffusion: Identifying Locations on Earth by Diffusing in the Hilbert Space
Image geolocalization is a fundamental yet challenging task, aiming at inferring the geolocation on Earth where an image is taken. Existing methods approach it either via grid-based classification or via image retrieval. Their performance significantly suffers when the spatial distribution of test images does not align with such choices. To address these limitations, we propose to leverage diffusion as a mechanism for image geolocalization. To avoid the problematic manifold reprojection step in diffusion, we developed a novel spherical positional encoding-decoding framework, which encodes points on a spherical surface (e.g., geolocations on Earth) into a Hilbert space of Spherical Harmonics coefficients and decodes points (geolocations) by mode-seeking. We call this type of position encoding Spherical Harmonics Dirac Delta (SHDD) Representation. We also propose a novel SirenNet-based architecture called CS-UNet to learn the conditional backward process in the latent SHDD space by minimizing a latent KL-divergence loss. We train a conditional latent diffusion model called LocDiffusion that generates geolocations under the guidance of images -- to the best of our knowledge, the first generative model for image geolocalization by diffusing geolocation information in a hidden location embedding space. We evaluate our method against SOTA image geolocalization baselines. LocDiffusion achieves competitive geolocalization performance and demonstrates significantly stronger generalizability to unseen geolocations.
☆ Mitigating Reward Over-Optimization in RLHF via Behavior-Supported Regularization ICLR 2025
Reinforcement learning from human feedback (RLHF) is an effective method for aligning large language models (LLMs) with human values. However, reward over-optimization remains an open challenge leading to discrepancies between the performance of LLMs under the reward model and the true human objectives. A primary contributor to reward over-optimization is the extrapolation error that arises when the reward model evaluates out-of-distribution (OOD) responses. However, current methods still fail to prevent the increasing frequency of OOD response generation during the reinforcement learning (RL) process and are not effective at handling extrapolation errors from OOD responses. In this work, we propose the Behavior-Supported Policy Optimization (BSPO) method to mitigate the reward over-optimization issue. Specifically, we define behavior policy as the next token distribution of the reward training dataset to model the in-distribution (ID) region of the reward model. Building on this, we introduce the behavior-supported Bellman operator to regularize the value function, penalizing all OOD values without impacting the ID ones. Consequently, BSPO reduces the generation of OOD responses during the RL process, thereby avoiding overestimation caused by the reward model's extrapolation errors. Theoretically, we prove that BSPO guarantees a monotonic improvement of the supported policy until convergence to the optimal behavior-supported policy. Empirical results from extensive experiments show that BSPO outperforms baselines in preventing reward over-optimization due to OOD evaluation and finding the optimal ID policy.
comment: Published as a conference paper at ICLR 2025
☆ GeoBenchX: Benchmarking LLMs for Multistep Geospatial Tasks
In this paper, we establish a benchmark for evaluating large language models (LLMs) on multi-step geospatial tasks relevant to commercial GIS practitioners. We assess seven leading commercial LLMs (Sonnet 3.5 and 3.7, Haiku 3.5, Gemini 2.0, GPT-4o, GPT-4o mini, and o3-mini) using a simple tool-calling agent equipped with 23 geospatial functions. Our benchmark comprises tasks across four categories of increasing complexity, with both solvable and intentionally unsolvable tasks to test hallucination rejection. We develop an LLM-as-Judge evaluation framework to compare agent solutions against reference implementations. Results show Sonnet 3.5 and GPT-4o achieve the best overall performance, with Claude models excelling on solvable tasks while OpenAI models better identify unsolvable scenarios. We observe significant differences in token usage, with Anthropic models consuming substantially more tokens than competitors. Common errors include misunderstanding geometrical relationships, relying on outdated knowledge, and inefficient data manipulation. The resulting benchmark set, evaluation framework, and data generation pipeline are released as open-source resources, providing one more standardized method for ongoing evaluation of LLMs for GeoAI.
comment: Github with code and benchmark set: https://github.com/Solirinai/GeoBenchX
☆ AgentRxiv: Towards Collaborative Autonomous Research
Progress in scientific discovery is rarely the result of a single "Eureka" moment, but is rather the product of hundreds of scientists incrementally working together toward a common goal. While existing agent workflows are capable of producing research autonomously, they do so in isolation, without the ability to continuously improve upon prior research results. To address these challenges, we introduce AgentRxiv-a framework that lets LLM agent laboratories upload and retrieve reports from a shared preprint server in order to collaborate, share insights, and iteratively build on each other's research. We task agent laboratories to develop new reasoning and prompting techniques and find that agents with access to their prior research achieve higher performance improvements compared to agents operating in isolation (11.4% relative improvement over baseline on MATH-500). We find that the best performing strategy generalizes to benchmarks in other domains (improving on average by 3.3%). Multiple agent laboratories sharing research through AgentRxiv are able to work together towards a common goal, progressing more rapidly than isolated laboratories, achieving higher overall accuracy (13.7% relative improvement over baseline on MATH-500). These findings suggest that autonomous agents may play a role in designing future AI systems alongside humans. We hope that AgentRxiv allows agents to collaborate toward research goals and enables researchers to accelerate discovery.
☆ Temporal Relation Extraction in Clinical Texts: A Span-based Graph Transformer Approach
Temporal information extraction from unstructured text is essential for contextualizing events and deriving actionable insights, particularly in the medical domain. We address the task of extracting clinical events and their temporal relations using the well-studied I2B2 2012 Temporal Relations Challenge corpus. This task is inherently challenging due to complex clinical language, long documents, and sparse annotations. We introduce GRAPHTREX, a novel method integrating span-based entity-relation extraction, clinical large pre-trained language models (LPLMs), and Heterogeneous Graph Transformers (HGT) to capture local and global dependencies. Our HGT component facilitates information propagation across the document through innovative global landmarks that bridge distant entities. Our method improves the state-of-the-art with 5.5% improvement in the tempeval $F_1$ score over the previous best and up to 8.9% improvement on long-range relations, which presents a formidable challenge. This work not only advances temporal information extraction but also lays the groundwork for improved diagnostic and prognostic models through enhanced temporal reasoning.
comment: Introducing a novel method for joint extraction of medical events and temporal relations from free-text, leveraging clinical LPLMs and Heterogeneous Graph Transformers, achieving a 5.5% improvement over the previous state-of-the-art and up to 8.9% on long-range relations
☆ On the effectiveness of LLMs for automatic grading of open-ended questions in Spanish
Grading is a time-consuming and laborious task that educators must face. It is an important task since it provides feedback signals to learners, and it has been demonstrated that timely feedback improves the learning process. In recent years, the irruption of LLMs has shed light on the effectiveness of automatic grading. In this paper, we explore the performance of different LLMs and prompting techniques in automatically grading short-text answers to open-ended questions. Unlike most of the literature, our study focuses on a use case where the questions, answers, and prompts are all in Spanish. Experimental results comparing automatic scores to those of human-expert evaluators show good outcomes in terms of accuracy, precision and consistency for advanced LLMs, both open and proprietary. Results are notably sensitive to prompt styles, suggesting biases toward certain words or content in the prompt. However, the best combinations of models and prompt strategies, consistently surpasses an accuracy of 95% in a three-level grading task, which even rises up to more than 98% when the it is simplified to a binary right or wrong rating problem, which demonstrates the potential that LLMs have to implement this type of automation in education applications.
☆ Unseen from Seen: Rewriting Observation-Instruction Using Foundation Models for Augmenting Vision-Language Navigation
Data scarcity is a long-standing challenge in the Vision-Language Navigation (VLN) field, which extremely hinders the generalization of agents to unseen environments. Previous works primarily rely on additional simulator data or web-collected images/videos to improve the generalization. However, the simulator environments still face limited diversity, and the web-collected data often requires extensive labor to remove the noise. In this paper, we propose a Rewriting-driven AugMentation (RAM) paradigm for VLN, which directly creates the unseen observation-instruction pairs via rewriting human-annotated training data. Benefiting from our rewriting mechanism, new observation-instruction can be obtained in both simulator-free and labor-saving manners to promote generalization. Specifically, we first introduce Object-Enriched Observation Rewriting, where we combine Vision-Language Models (VLMs) and Large Language Models (LLMs) to derive rewritten object-enriched scene descriptions, enabling observation synthesis with diverse objects and spatial layouts via Text-to-Image Generation Models (T2IMs). Then, we propose Observation-Contrast Instruction Rewriting, which generates observation-aligned rewritten instructions by requiring LLMs to reason the difference between original and new observations. We further develop a mixing-then-focusing training strategy with a random observation cropping scheme, effectively enhancing data distribution diversity while suppressing augmentation data noise during training. Experiments on both the discrete environments (R2R, REVERIE, and R4R datasets) and continuous environments (R2R-CE dataset) show the superior performance and impressive generalization ability of our method. Code is available at https://github.com/SaDil13/VLN-RAM.
Dynamic Task Vector Grouping for Efficient Multi-Task Prompt Tuning
Multi-task prompt tuning utilizes multiple high-resource source tasks to improve performance on low-source target tasks. Existing approaches transfer the soft prompt trained by combining all source tasks or a single ``high-similar'' source task one-time-only. However, we find that the optimal transfer performance often comes from a combination of source tasks, which is neither one nor all. Further, we find that the similarity between source and target tasks also changes dynamically during fine-tuning after transfering, making similarity calculation in the initiation stage inadequate. To address these issues, we propose a method called Dynamic Task Vector Grouping (DTVG), whose core ideas contain (1) measuring the task similarity with task vectors instead of soft prompt, (2) grouping the optimal source task combination based on two metrics: {\it target similarity} and {\it knowledge consistency}; (3) dynamically updating the combination in each iteration step. Extensive experiments on the 26 NLP datasets under different settings demonstrate that DTVG effectively groups similar source tasks while reducing negative transfer, achieving the start-of-art performance.
comment: Work in progress
Decision from Suboptimal Classifiers: Excess Risk Pre- and Post-Calibration
Probabilistic classifiers are central for making informed decisions under uncertainty. Based on the maximum expected utility principle, optimal decision rules can be derived using the posterior class probabilities and misclassification costs. Yet, in practice only learned approximations of the oracle posterior probabilities are available. In this work, we quantify the excess risk (a.k.a. regret) incurred using approximate posterior probabilities in batch binary decision-making. We provide analytical expressions for miscalibration-induced regret ($R^{\mathrm{CL}}$), as well as tight and informative upper and lower bounds on the regret of calibrated classifiers ($R^{\mathrm{GL}}$). These expressions allow us to identify regimes where recalibration alone addresses most of the regret, and regimes where the regret is dominated by the grouping loss, which calls for post-training beyond recalibration. Crucially, both $R^{\mathrm{CL}}$ and $R^{\mathrm{GL}}$ can be estimated in practice using a calibration curve and a recent grouping loss estimator. On NLP experiments, we show that these quantities identify when the expected gain of more advanced post-training is worth the operational cost. Finally, we highlight the potential of multicalibration approaches as efficient alternatives to costlier fine-tuning approaches.
☆ Lost in Cultural Translation: Do LLMs Struggle with Math Across Cultural Contexts?
Large Language Models (LLMs) have significantly advanced various fields, particularly coding, mathematical reasoning, and logical problem solving. However, a critical question remains: Do these mathematical reasoning abilities persist when LLMs are presented with culturally adapted math problems? Specifically, how do LLMs perform when faced with math problems embedded in cultural contexts that have no significant representation in main stream web-scale AI training data? To explore this, we generated six synthetic cultural datasets from GSM8K, a widely used benchmark for assessing LLMs' mathematical reasoning skills. While preserving the mathematical logic and numerical values of the original GSM8K test set, we modify cultural elements such as personal names, food items, place names, etc. These culturally adapted datasets provide a more reliable framework for evaluating LLMs' mathematical reasoning under shifting cultural contexts. Our findings reveal that LLMs struggle with math problems when cultural references change, even though the underlying mathematical structure remains constant. Smaller models exhibit greater performance drops compared to larger models. Interestingly, our results also suggest that cultural familiarity can enhance mathematical reasoning. Even models with no explicit mathematical training but exposure to relevant cultural contexts sometimes outperform larger, mathematically proficient models on culturally embedded math problems. This study highlights the impact of cultural context on the mathematical reasoning abilities of LLMs, underscoring the need for more diverse and representative training data to improve robustness in real-world applications. The benchmark data sets and script for reproducing the results are available at https://github.com/akarim23131/Lost_in_Cultural_Translation
☆ Vision-R1: Evolving Human-Free Alignment in Large Vision-Language Models via Vision-Guided Reinforcement Learning
Large Vision-Language Models (LVLMs) typically follow a two-stage training paradigm-pretraining and supervised fine-tuning. Recently, preference optimization, derived from the language domain, has emerged as an effective post-training reinforcement strategy to enhance capabilities of LVLMs. However, constructing high-quality human-annotated preference data and developing robust reward models to mimic these preferences are both costly and challenging. Motivated by this observation, we propose Vision-R1, a novel vision-guided R1-like reinforcement learning algorithm for LVLMs that rewards models with definitive vision feedback. It only leverages curated instruction data, eliminating the need for specialized reward models and handcrafted preference datasets. We incorporate a criterion-driven reward function that further integrates multi-dimensional feedback to evaluate model completions comprehensively based on the vision task logic. Furthermore, we introduce a progressive rule refinement strategy that dynamically adjusts the reward criteria during training, enabling continuous model improvement and mitigating reward hacking. Extensive experiments on both in-distribution and out-of-distribution benchmarks demonstrate that fine-tuning the 7B LVLMs with Vision-R1 achieves consistent performance gains, with even up to 50% improvement and surpassing the state-of-the-art 10x size model.
comment: Project in development. Github: https://github.com/jefferyZhan/Griffon/tree/master/Vision-R1
☆ Instructing the Architecture Search for Spatial-temporal Sequence Forecasting with LLM
Spatial-temporal sequence forecasting (STSF) is a long-standing research problem with widespread real-world applications. Neural architecture search (NAS), which automates the neural network design, has been shown effective in tackling the STSF problem. However, the existing NAS methods for STSF focus on generating architectures in a time-consuming data-driven fashion, which heavily limits their ability to use background knowledge and explore the complicated search trajectory. Large language models (LLMs) have shown remarkable ability in decision-making with comprehensive internal world knowledge, but how it could benefit NAS for STSF remains unexplored. In this paper, we propose a novel NAS method for STSF based on LLM. Instead of directly generate architectures with LLM, We inspire the LLM's capability with a multi-level enhancement mechanism. Specifically, on the step-level, we decompose the generation task into decision steps with powerful prompt engineering and inspire LLM to serve as instructor for architecture search based on its internal knowledge. On the instance-level, we utilize a one-step tuning framework to quickly evaluate the architecture instance and a memory bank to cumulate knowledge to improve LLM's search ability. On the task-level, we propose a two-stage architecture search, balancing the exploration stage and optimization stage, to reduce the possibility of being trapped in local optima. Extensive experimental results demonstrate that our method can achieve competitive effectiveness with superior efficiency against existing NAS methods for STSF.
☆ Predicting Multitasking in Manual and Automated Driving with Optimal Supervisory Control
Modern driving involves interactive technologies that can divert attention, increasing the risk of accidents. This paper presents a computational cognitive model that simulates human multitasking while driving. Based on optimal supervisory control theory, the model predicts how multitasking adapts to variations in driving demands, interactive tasks, and automation levels. Unlike previous models, it accounts for context-dependent multitasking across different degrees of driving automation. The model predicts longer in-car glances on straight roads and shorter glances during curves. It also anticipates increased glance durations with driver aids such as lane-centering assistance and their interaction with environmental demands. Validated against two empirical datasets, the model offers insights into driver multitasking amid evolving in-car technologies and automation.
☆ Metaphor-based Jailbreaking Attacks on Text-to-Image Models
To mitigate misuse, text-to-image~(T2I) models commonly incorporate safety filters to prevent the generation of sensitive images. Unfortunately, recent jailbreaking attack methods use LLMs to generate adversarial prompts that effectively bypass safety filters while generating sensitive images, revealing the safety vulnerabilities within the T2I model. However, existing LLM-based attack methods lack explicit guidance, relying on substantial queries to achieve a successful attack, which limits their practicality in real-world scenarios. In this work, we introduce \textbf{MJA}, a \textbf{m}etaphor-based \textbf{j}ailbreaking \textbf{a}ttack method inspired by the Taboo game, aiming to balance the attack effectiveness and query efficiency by generating metaphor-based adversarial prompts. Specifically, MJA consists of two modules: an LLM-based multi-agent generation module~(MLAG) and an adversarial prompt optimization module~(APO). MLAG decomposes the generation of metaphor-based adversarial prompts into three subtasks: metaphor retrieval, context matching, and adversarial prompt generation. Subsequently, MLAG coordinates three LLM-based agents to generate diverse adversarial prompts by exploring various metaphors and contexts. To enhance the attack efficiency, APO first trains a surrogate model to predict the attack results of adversarial prompts and then designs an acquisition strategy to adaptively identify optimal adversarial prompts. Experiments demonstrate that MJA achieves better attack effectiveness while requiring fewer queries compared to baseline methods. Moreover, our adversarial prompts exhibit strong transferability across various open-source and commercial T2I models. \textcolor{red}{This paper includes model-generated content that may contain offensive or distressing material.}
comment: 13 page3, 4 figures. This paper includes model-generated content that may contain offensive or distressing material
☆ Optimizing Navigation And Chemical Application in Precision Agriculture With Deep Reinforcement Learning And Conditional Action Tree
This paper presents a novel reinforcement learning (RL)-based planning scheme for optimized robotic management of biotic stresses in precision agriculture. The framework employs a hierarchical decision-making structure with conditional action masking, where high-level actions direct the robot's exploration, while low-level actions optimize its navigation and efficient chemical spraying in affected areas. The key objectives of optimization include improving the coverage of infected areas with limited battery power and reducing chemical usage, thus preventing unnecessary spraying of healthy areas of the field. Our numerical experimental results demonstrate that the proposed method, Hierarchical Action Masking Proximal Policy Optimization (HAM-PPO), significantly outperforms baseline practices, such as LawnMower navigation + indiscriminate spraying (Carpet Spray), in terms of yield recovery and resource efficiency. HAM-PPO consistently achieves higher yield recovery percentages and lower chemical costs across a range of infection scenarios. The framework also exhibits robustness to observation noise and generalizability under diverse environmental conditions, adapting to varying infection ranges and spatial distribution patterns.
comment: 32 pages, 9 figures
☆ Taste More, Taste Better: Diverse Data and Strong Model Boost Semi-Supervised Crowd Counting CVPR 2025
Semi-supervised crowd counting is crucial for addressing the high annotation costs of densely populated scenes. Although several methods based on pseudo-labeling have been proposed, it remains challenging to effectively and accurately utilize unlabeled data. In this paper, we propose a novel framework called Taste More Taste Better (TMTB), which emphasizes both data and model aspects. Firstly, we explore a data augmentation technique well-suited for the crowd counting task. By inpainting the background regions, this technique can effectively enhance data diversity while preserving the fidelity of the entire scenes. Secondly, we introduce the Visual State Space Model as backbone to capture the global context information from crowd scenes, which is crucial for extremely crowded, low-light, and adverse weather scenarios. In addition to the traditional regression head for exact prediction, we employ an Anti-Noise classification head to provide less exact but more accurate supervision, since the regression head is sensitive to noise in manual annotations. We conduct extensive experiments on four benchmark datasets and show that our method outperforms state-of-the-art methods by a large margin. Code is publicly available on https://github.com/syhien/taste_more_taste_better.
comment: Accepted by CVPR 2025
☆ Co-SemDepth: Fast Joint Semantic Segmentation and Depth Estimation on Aerial Images
Understanding the geometric and semantic properties of the scene is crucial in autonomous navigation and particularly challenging in the case of Unmanned Aerial Vehicle (UAV) navigation. Such information may be by obtained by estimating depth and semantic segmentation maps of the surrounding environment and for their practical use in autonomous navigation, the procedure must be performed as close to real-time as possible. In this paper, we leverage monocular cameras on aerial robots to predict depth and semantic maps in low-altitude unstructured environments. We propose a joint deep-learning architecture that can perform the two tasks accurately and rapidly, and validate its effectiveness on MidAir and Aeroscapes benchmark datasets. Our joint-architecture proves to be competitive or superior to the other single and joint architecture methods while performing its task fast predicting 20.2 FPS on a single NVIDIA quadro p5000 GPU and it has a low memory footprint. All codes for training and prediction can be found on this link: https://github.com/Malga-Vision/Co-SemDepth
☆ Trade-offs in Large Reasoning Models: An Empirical Analysis of Deliberative and Adaptive Reasoning over Foundational Capabilities
Recent advancements in Large Reasoning Models (LRMs), such as OpenAI's o1/o3 and DeepSeek-R1, have demonstrated remarkable performance in specialized reasoning tasks through human-like deliberative thinking and long chain-of-thought reasoning. However, our systematic evaluation across various model families (DeepSeek, Qwen, and LLaMA) and scales (7B to 671B) reveals that acquiring these deliberative reasoning capabilities significantly reduces the foundational capabilities of LRMs, including notable declines in helpfulness and harmlessness, alongside substantially increased inference costs. Importantly, we demonstrate that adaptive reasoning -- employing modes like Zero-Thinking, Less-Thinking, and Summary-Thinking -- can effectively alleviate these drawbacks. Our empirical insights underline the critical need for developing more versatile LRMs capable of dynamically allocating inference-time compute according to specific task characteristics.
comment: 23 pages. Work in progress
☆ PIM: Physics-Informed Multi-task Pre-training for Improving Inertial Sensor-Based Human Activity Recognition
Human activity recognition (HAR) with deep learning models relies on large amounts of labeled data, often challenging to obtain due to associated cost, time, and labor. Self-supervised learning (SSL) has emerged as an effective approach to leverage unlabeled data through pretext tasks, such as masked reconstruction and multitask learning with signal processing-based data augmentations, to pre-train encoder models. However, such methods are often derived from computer vision approaches that disregard physical mechanisms and constraints that govern wearable sensor data and the phenomena they reflect. In this paper, we propose a physics-informed multi-task pre-training (PIM) framework for IMU-based HAR. PIM generates pre-text tasks based on the understanding of basic physical aspects of human motion: including movement speed, angles of movement, and symmetry between sensor placements. Given a sensor signal, we calculate corresponding features using physics-based equations and use them as pretext tasks for SSL. This enables the model to capture fundamental physical characteristics of human activities, which is especially relevant for multi-sensor systems. Experimental evaluations on four HAR benchmark datasets demonstrate that the proposed method outperforms existing state-of-the-art methods, including data augmentation and masked reconstruction, in terms of accuracy and F1 score. We have observed gains of almost 10\% in macro f1 score and accuracy with only 2 to 8 labeled examples per class and up to 3% when there is no reduction in the amount of training data.
☆ PhysTwin: Physics-Informed Reconstruction and Simulation of Deformable Objects from Videos
Creating a physical digital twin of a real-world object has immense potential in robotics, content creation, and XR. In this paper, we present PhysTwin, a novel framework that uses sparse videos of dynamic objects under interaction to produce a photo- and physically realistic, real-time interactive virtual replica. Our approach centers on two key components: (1) a physics-informed representation that combines spring-mass models for realistic physical simulation, generative shape models for geometry, and Gaussian splats for rendering; and (2) a novel multi-stage, optimization-based inverse modeling framework that reconstructs complete geometry, infers dense physical properties, and replicates realistic appearance from videos. Our method integrates an inverse physics framework with visual perception cues, enabling high-fidelity reconstruction even from partial, occluded, and limited viewpoints. PhysTwin supports modeling various deformable objects, including ropes, stuffed animals, cloth, and delivery packages. Experiments show that PhysTwin outperforms competing methods in reconstruction, rendering, future prediction, and simulation under novel interactions. We further demonstrate its applications in interactive real-time simulation and model-based robotic motion planning.
comment: Project Page: https://jianghanxiao.github.io/phystwin-web/
☆ Understanding the Effects of RLHF on the Quality and Detectability of LLM-Generated Texts
Large Language Models (LLMs) have demonstrated exceptional performance on a range of downstream NLP tasks by generating text that closely resembles human writing. However, the ease of achieving this similarity raises concerns from potential malicious uses at scale by bad actors, as LLM-generated text becomes increasingly difficult to discern from human text. Although detection methods have been developed to address this issue, bad actors can further manipulate LLM-generated texts to make them less detectable. In this work, we study how further editing texts with Reinforcement Learning from Human Feedback (RLHF), which aligns model outputs with human preferences, affects (a) the quality of generated texts for two tasks, and (b) the performance of LLM-generated text detectors, looking at both training-based and zero-shot detection methods. Although RLHF improves the quality of LLM-generated texts, we find that it also tends to produce more detectable, lengthy, and repetitive outputs. Additionally, we observe that training-based detectors are vulnerable to short texts and to texts that incorporate code, whereas zero-shot detectors exhibit greater robustness.
comment: 14 pages, 3 figures
Dynamic Gradient Sparse Update for Edge Training ISCA
Training on edge devices enables personalized model fine-tuning to enhance real-world performance and maintain data privacy. However, the gradient computation for backpropagation in the training requires significant memory buffers to store intermediate features and compute losses. This is unacceptable for memory-constrained edge devices such as microcontrollers. To tackle this issue, we propose a training acceleration method using dynamic gradient sparse updates. This method updates the important channels and layers only and skips gradient computation for the less important channels and layers to reduce memory usage for each update iteration. In addition, the channel selection is dynamic for different iterations to traverse most of the parameters in the update layers along the time dimension for better performance. The experimental result shows that the proposed method enables an ImageNet pre-trained MobileNetV2 trained on CIFAR-10 to achieve an accuracy of 85.77\% while updating only 2\% of convolution weights within 256KB on-chip memory. This results in a remarkable 98\% reduction in feature memory usage compared to dense model training.
comment: published in IEEE International Symposium on Circuits and Systems (IEEE ISCAS 2024)
☆ Physics-Guided Multi-Fidelity DeepONet for Data-Efficient Flow Field Prediction
This study presents an enhanced multi-fidelity deep operator network (DeepONet) framework for efficient spatio-temporal flow field prediction, with particular emphasis on practical scenarios where high-fidelity data is scarce. We introduce several key innovations to improve the framework's efficiency and accuracy. First, we enhance the DeepONet architecture by incorporating a merge network that enables more complex feature interactions between operator and coordinate spaces, achieving a 50.4% reduction in prediction error compared to traditional dot-product operations. We further optimize the architecture through temporal positional encoding and point-based sampling strategies, achieving a 7.57% improvement in prediction accuracy while reducing training time by 96% through efficient sampling and automatic mixed precision training. Building upon this foundation, we develop a transfer learning-based multi-fidelity framework that leverages knowledge from pre-trained low-fidelity models to guide high-fidelity predictions. Our approach freezes the pre-trained branch and trunk networks while making only the merge network trainable during high-fidelity training, preserving valuable low-fidelity representations while efficiently adapting to high-fidelity features. Through systematic investigation, we demonstrate that this fine-tuning strategy not only significantly outperforms linear probing and full-tuning alternatives but also surpasses conventional multi-fidelity frameworks by up to 76%, while achieving up to 43.7% improvement in prediction accuracy compared to single-fidelity training. The core contribution lies in our novel time-derivative guided sampling approach: it maintains prediction accuracy equivalent to models trained with the full dataset while requiring only 60% of the original high-fidelity samples.
☆ An Empirical Study of the Role of Incompleteness and Ambiguity in Interactions with Large Language Models
Natural language as a medium for human-computer interaction has long been anticipated, has been undergoing a sea-change with the advent of Large Language Models (LLMs) with startling capacities for processing and generating language. Many of us now treat LLMs as modern-day oracles, asking it almost any kind of question. Unlike its Delphic predecessor, consulting an LLM does not have to be a single-turn activity (ask a question, receive an answer, leave); and -- also unlike the Pythia -- it is widely acknowledged that answers from LLMs can be improved with additional context. In this paper, we aim to study when we need multi-turn interactions with LLMs to successfully get a question answered; or conclude that a question is unanswerable. We present a neural symbolic framework that models the interactions between human and LLM agents. Through the proposed framework, we define incompleteness and ambiguity in the questions as properties deducible from the messages exchanged in the interaction, and provide results from benchmark problems, in which the answer-correctness is shown to depend on whether or not questions demonstrate the presence of incompleteness or ambiguity (according to the properties we identify). Our results show multi-turn interactions are usually required for datasets which have a high proportion of incompleteness or ambiguous questions; and that that increasing interaction length has the effect of reducing incompleteness or ambiguity. The results also suggest that our measures of incompleteness and ambiguity can be useful tools for characterising interactions with an LLM on question-answeringproblems
☆ Experience Retrieval-Augmentation with Electronic Health Records Enables Accurate Discharge QA
To improve the reliability of Large Language Models (LLMs) in clinical applications, retrieval-augmented generation (RAG) is extensively applied to provide factual medical knowledge. However, beyond general medical knowledge from open-ended datasets, clinical case-based knowledge is also critical for effective medical reasoning, as it provides context grounded in real-world patient experiences. Motivated by this, we propose Experience Retrieval Augmentation - ExpRAG framework based on Electronic Health Record (EHR), aiming to offer the relevant context from other patients' discharge reports. ExpRAG performs retrieval through a coarse-to-fine process, utilizing an EHR-based report ranker to efficiently identify similar patients, followed by an experience retriever to extract task-relevant content for enhanced medical reasoning. To evaluate ExpRAG, we introduce DischargeQA, a clinical QA dataset with 1,280 discharge-related questions across diagnosis, medication, and instruction tasks. Each problem is generated using EHR data to ensure realistic and challenging scenarios. Experimental results demonstrate that ExpRAG consistently outperforms a text-based ranker, achieving an average relative improvement of 5.2%, highlighting the importance of case-based knowledge for medical reasoning.
☆ STShield: Single-Token Sentinel for Real-Time Jailbreak Detection in Large Language Models
Large Language Models (LLMs) have become increasingly vulnerable to jailbreak attacks that circumvent their safety mechanisms. While existing defense methods either suffer from adaptive attacks or require computationally expensive auxiliary models, we present STShield, a lightweight framework for real-time jailbroken judgement. STShield introduces a novel single-token sentinel mechanism that appends a binary safety indicator to the model's response sequence, leveraging the LLM's own alignment capabilities for detection. Our framework combines supervised fine-tuning on normal prompts with adversarial training using embedding-space perturbations, achieving robust detection while preserving model utility. Extensive experiments demonstrate that STShield successfully defends against various jailbreak attacks, while maintaining the model's performance on legitimate queries. Compared to existing approaches, STShield achieves superior defense performance with minimal computational overhead, making it a practical solution for real-world LLM deployment.
comment: 11 pages
☆ WLB-LLM: Workload-Balanced 4D Parallelism for Large Language Model Training
In this work, we present WLB-LLM, a workLoad-balanced 4D parallelism for large language model training. We first thoroughly analyze the workload imbalance issue in LLM training and identify two primary sources of imbalance at the pipeline parallelism and context parallelism levels. Then, to address the imbalance issue, at the pipeline parallelism level, WLB-LLM incorporates a workload-aware variable-length document packing method to balance the computation and communication workload across micro-batches. Additionally, at the context parallelism level, WLB-LLM introduces a novel fine-grained per-document sharding strategy, ensuring each worker within a context parallelism group has an identical workload. Comprehensive experiments under different model scales demonstrate that WLB-LLM significantly mitigates the workload imbalance during 4D parallelism LLM training and achieves an average speedup of 1.23x when applying WLB-LLM in our internal LLM training framework.
comment: 12 pages, 16 figures
☆ Cat-AIR: Content and Task-Aware All-in-One Image Restoration
All-in-one image restoration seeks to recover high-quality images from various types of degradation using a single model, without prior knowledge of the corruption source. However, existing methods often struggle to effectively and efficiently handle multiple degradation types. We present Cat-AIR, a novel \textbf{C}ontent \textbf{A}nd \textbf{T}ask-aware framework for \textbf{A}ll-in-one \textbf{I}mage \textbf{R}estoration. Cat-AIR incorporates an alternating spatial-channel attention mechanism that adaptively balances the local and global information for different tasks. Specifically, we introduce cross-layer channel attentions and cross-feature spatial attentions that allocate computations based on content and task complexity. Furthermore, we propose a smooth learning strategy that allows for seamless adaptation to new restoration tasks while maintaining performance on existing ones. Extensive experiments demonstrate that Cat-AIR achieves state-of-the-art results across a wide range of restoration tasks, requiring fewer FLOPs than previous methods, establishing new benchmarks for efficient all-in-one image restoration.
☆ GLADMamba: Unsupervised Graph-Level Anomaly Detection Powered by Selective State Space Model
Unsupervised graph-level anomaly detection (UGLAD) is a critical and challenging task across various domains, such as social network analysis, anti-cancer drug discovery, and toxic molecule identification. However, existing methods often struggle to capture the long-range dependencies efficiently and neglect the spectral information. Recently, selective State Space Models (SSMs), particularly Mamba, have demonstrated remarkable advantages in capturing long-range dependencies with linear complexity and a selection mechanism. Motivated by their success across various domains, we propose GLADMamba, a novel framework that adapts the selective state space model into UGLAD field. We design View-Fused Mamba (VFM) with a Mamba-Transformer-style architecture to efficiently fuse information from different views with a selective state mechanism. We also design Spectrum-Guided Mamba (SGM) with a Mamba-Transformer-style architecture to leverage the Rayleigh quotient to guide the embedding refining process. GLADMamba can dynamically focus on anomaly-related information while discarding irrelevant information for anomaly detection. To the best of our knowledge, this is the first work to introduce Mamba and explicit spectral information to UGLAD. Extensive experiments on 12 real-world datasets demonstrate that GLADMamba outperforms existing state-of-the-art methods, achieving superior performance in UGLAD. The code is available at https://github.com/Yali-F/GLADMamba.
♻ ☆ SFO: Piloting VLM Feedback for Offline RL
While internet-scale image and textual data have enabled strong generalization in Vision-Language Models (VLMs), the absence of internet-scale control data has impeded the development of similar generalization in standard reinforcement learning (RL) agents. Although VLMs are fundamentally limited in their ability to solve control tasks due to their lack of action-conditioned training data, their capacity for image understanding allows them to provide valuable feedback in RL tasks by recognizing successful outcomes. A key challenge in Reinforcement Learning from AI Feedback (RLAIF) is determining how best to integrate VLM-derived signals into the learning process. We explore this question in the context of offline RL and introduce a class of methods called sub-trajectory filtered optimization. We identify three key insights. First, trajectory length plays a crucial role in offline RL, as full-trajectory preference learning exacerbates the stitching problem, necessitating the use of sub-trajectories. Second, even in Markovian environments, a non-Markovian reward signal from a sequence of images is required to assess trajectory improvement, as VLMs do not interpret control actions and must rely on visual cues over time. Third, a simple yet effective approach--filtered and weighted behavior cloning--consistently outperforms more complex reinforcement learning from human feedback-based methods. We propose sub-trajectory filtered behavior cloning, a method that leverages VLM feedback on sub-trajectories while incorporating a retrospective filtering mechanism that removes sub-trajectories preceding failures to improve robustness and prevent turbulence. This study is preliminary; we provide initial evidence through evaluations on a toy control domain. Please enjoy our airport puns.
comment: Code is provided at https://github.com/jacooba/OfflineRLAIF
♻ ☆ Computation-Efficient and Recognition-Friendly 3D Point Cloud Privacy Protection CVPR2025
3D point cloud has been widely used in applications such as self-driving cars, robotics, CAD models, etc. To the best of our knowledge, these applications raised the issue of privacy leakage in 3D point clouds, which has not been studied well. Different from the 2D image privacy, which is related to texture and 2D geometric structure, the 3D point cloud is texture-less and only relevant to 3D geometric structure. In this work, we defined the 3D point cloud privacy problem and proposed an efficient privacy-preserving framework named PointFlowGMM that can support downstream classification and segmentation tasks without seeing the original data. Using a flow-based generative model, the point cloud is projected into a latent Gaussian mixture distributed subspace. We further designed a novel angular similarity loss to obfuscate the original geometric structure and reduce the model size from 767MB to 120MB without a decrease in recognition performance. The projected point cloud in the latent space is orthogonally rotated randomly to further protect the original geometric structure, the class-to-class relationship is preserved after rotation, thus, the protected point cloud can support the recognition task. We evaluated our model on multiple datasets and achieved comparable recognition results on encrypted point clouds compared to the original point clouds.
comment: Accepted by CVPR2025
♻ ☆ When neural implant meets multimodal LLM: A dual-loop system for neuromodulation and naturalistic neuralbehavioral research
We propose a novel dual-loop system that synergistically combines responsive neurostimulation (RNS) implants with artificial intelligence-driven wearable devices for treating post-traumatic stress disorder (PTSD) and enabling naturalistic brain research. In PTSD Therapy Mode, an implanted closed-loop neural device monitors amygdala activity and provides on-demand stimulation upon detecting pathological theta oscillations, while an ensemble of wearables (smart glasses, smartwatches, smartphones) uses multimodal large language model (LLM) analysis of sensory data to detect environmental or physiological PTSD triggers and deliver timely audiovisual interventions. Logged events from both the neural and wearable loops are analyzed to personalize trigger detection and progressively transition patients to non-invasive interventions. In Neuroscience Research Mode, the same platform is adapted for real-world brain activity capture. Wearable-LLM systems recognize naturalistic events (social interactions, emotional situations, compulsive behaviors, decision making) and signal implanted RNS devices (via wireless triggers) to record synchronized intracranial data during these moments. This approach builds on recent advances in mobile intracranial EEG recording and closed-loop neuromodulation in humans (BRAIN Initiative, 2023) (Mobbs et al., 2021). We discuss how our interdisciplinary system could revolutionize PTSD therapy and cognitive neuroscience by enabling 24/7 monitoring, context-aware intervention, and rich data collection outside traditional labs. The vision is a future where AI-enhanced devices continuously collaborate with the human brain, offering therapeutic support and deep insights into neural function, with the resulting real-world context rich neural data, in turn, accelerating the development of more biologically-grounded and human-centric AI.
♻ ☆ Constructing and explaining machine learning models for chemistry: example of the exploration and design of boron-based Lewis acids
The integration of machine learning (ML) into chemistry offers transformative potential in the design of molecules with targeted properties. However, the focus has often been on creating highly efficient predictive models, sometimes at the expense of interpretability. In this study, we leverage explainable AI techniques to explore the rational design of boron-based Lewis acids, which play a pivotal role in organic reactions due to their electron-ccepting properties. Using Fluoride Ion Affinity as a proxy for Lewis acidity, we developed interpretable ML models based on chemically meaningful descriptors, including ab initio computed features and substituent-based parameters derived from the Hammett linear free-energy relationship. By constraining the chemical space to well-defined molecular scaffolds, we achieved highly accurate predictions (mean absolute error < 6 kJ/mol), surpassing conventional black-box deep learning models in low-data regimes. Interpretability analyses of the models shed light on the origin of Lewis acidity in these compounds and identified actionable levers to modulate it through the nature and positioning of substituents on the molecular scaffold. This work bridges ML and chemist's way of thinking, demonstrating how explainable models can inspire molecular design and enhance scientific understanding of chemical reactivity.
comment: Main text is 14 pages, 7 figures, 1 scheme. Supporting information is 25 pages. For associated code and datasets, see https://github.com/jfenogli/XAI_boron_LA
♻ ☆ GhostWriter: Augmenting Collaborative Human-AI Writing Experiences Through Personalization and Agency
Writing is a well-established practice to support ideation and creativity. While Large Language Models (LLMs) have become ubiquitous in providing different kinds of writing assistance to different writers, LLM-powered writing systems often fall short in capturing the nuanced personalization and control necessary for effective support and creative exploration. To address these challenges, we introduce GhostWriter, an AI-enhanced writing design probe that enables users to exercise enhanced agency and personalization. GhostWriter leverages LLMs to implicitly learn the user's intended writing style for seamless personalization, while exposing explicit teaching moments for style refinement and reflection. We study 18 participants who use GhostWriter for editing and creative tasks, observing that it helps users craft personalized text and empowers them by providing multiple ways to steer system output. Based on this study, we present insights on people's relationships with AI-assisted writing and offer design recommendations to promote user agency in similar co-creative systems.
comment: 23 pages, 12 figures
♻ ☆ Atom of Thoughts for Markov LLM Test-Time Scaling
Large Language Models (LLMs) achieve superior performance through training-time scaling, and test-time scaling further enhances their capabilities by conducting effective reasoning during inference. However, as the scale of reasoning increases, existing test-time scaling methods suffer from accumulated historical information, which not only wastes computational resources but also interferes with effective reasoning. To address this issue, we observe that complex reasoning can be achieved by solving a series of independent and self-contained subquestions. These subquestions are essentially \textit{atomic questions}, exhibiting the memoryless property similar to Markov processes. Based on this observation, we propose Atom of Thoughts (\our), where each state transition consists of decomposing the current question into a dependency-based directed acyclic graph and contracting its subquestions, forming a simplified question that maintains answer equivalence with the original problem. This answer preservation enables the iterative \textit{decomposition-contraction} process to naturally form a meaningful Markov reasoning process. Furthermore, these atomic states can be seamlessly integrated into existing test-time scaling methods, enabling \our to serve as a plug-in enhancement for improving reasoning capabilities. Experiments across six benchmarks demonstrate the effectiveness of \our both as a standalone framework and a plug-in enhancement. Notably, on HotpotQA, when applied to gpt-4o-mini, \our achieves an \textbf{80.6\%} F1 score, surpassing o3-mini by \textbf{3.4\%} and DeepSeek-R1 by \textbf{10.6\%}. The code is available at \href{https://github.com/qixucen/atom}{https://github.com/qixucen/atom}.
♻ ☆ The Representational Status of Deep Learning Models
This paper aims to clarify the representational status of Deep Learning Models (DLMs). While commonly referred to as 'representations', what this entails is ambiguous due to a conflation of functional and relational conceptions of representation. This paper argues that while DLMs represent their targets in a relational sense, in general, we have no good reason to believe that DLMs encode locally semantically decomposable representations of their targets. That is, the representational capacity these models have is largely global, rather than decomposable into stable, local subrepresentations. This result has immediate implications for explainable AI (XAI) and directs attention toward exploring the global relational nature of deep learning representations and their relationship both to models more generally to understand their potential role in future scientific inquiry.
comment: 18 pages, 1 figure
♻ ☆ Balancing Content Size in RAG-Text2SQL System
Large Language Models (LLMs) have emerged as a promising solution for converting natural language queries into SQL commands, enabling seamless database interaction. However, these Text-to-SQL (Text2SQL) systems face inherent limitations, hallucinations, outdated knowledge, and untraceable reasoning. To address these challenges, the integration of retrieval-augmented generation (RAG) with Text2SQL models has gained traction. RAG serves as a retrieval mechanism, providing essential contextual information, such as table schemas and metadata, to enhance the query generation process. Despite their potential, RAG + Text2SQL systems are susceptible to the quality and size of retrieved documents. While richer document content can improve schema relevance and retrieval accuracy, it also introduces noise, increasing the risk of hallucinations and reducing query fidelity as the prompt size of the Text2SQL model increases. This research investigates the nuanced trade-off between document size and quality, aiming to strike a balance that optimizes system performance. Key thresholds are identified where performance degradation occurs, along with actionable strategies to mitigate these challenges. Additionally, we explore the phenomenon of hallucinations in Text2SQL models, emphasizing the critical role of curated document presentation in minimizing errors. Our findings provide a roadmap for enhancing the robustness of RAG + Text2SQL systems, offering practical insights for real-world applications.
♻ ☆ TSPRank: Bridging Pairwise and Listwise Methods with a Bilinear Travelling Salesman Model KDD 2025
Traditional Learning-To-Rank (LETOR) approaches, including pairwise methods like RankNet and LambdaMART, often fall short by solely focusing on pairwise comparisons, leading to sub-optimal global rankings. Conversely, deep learning based listwise methods, while aiming to optimise entire lists, require complex tuning and yield only marginal improvements over robust pairwise models. To overcome these limitations, we introduce Travelling Salesman Problem Rank (TSPRank), a hybrid pairwise-listwise ranking method. TSPRank reframes the ranking problem as a Travelling Salesman Problem (TSP), a well-known combinatorial optimisation challenge that has been extensively studied for its numerous solution algorithms and applications. This approach enables the modelling of pairwise relationships and leverages combinatorial optimisation to determine the listwise ranking. This approach can be directly integrated as an additional component into embeddings generated by existing backbone models to enhance ranking performance. Our extensive experiments across three backbone models on diverse tasks, including stock ranking, information retrieval, and historical events ordering, demonstrate that TSPRank significantly outperforms both pure pairwise and listwise methods. Our qualitative analysis reveals that TSPRank's main advantage over existing methods is its ability to harness global information better while ranking. TSPRank's robustness and superior performance across different domains highlight its potential as a versatile and effective LETOR solution.
comment: Accepted to ACM SIGKDD 2025 Research Track. The code and preprocessed data are available at https://github.com/waylonli/TSPRank-KDD2025
♻ ☆ COVID 19 Diagnosis Analysis using Transfer Learning
Coronaviruses, including SARS-CoV-2, are responsible for COVID-19, a highly transmissible disease that emerged in December 2019 in Wuhan, China. During the past five years, significant advancements have been made in understanding and mitigating the virus. Although the initial outbreak led to global health crises, improved vaccination strategies, antiviral treatments, and AI-driven diagnostic tools have contributed to better disease management. However, COVID-19 continues to pose risks, particularly for immuno-compromised individuals and those with pre-existing conditions. This study explores the use of deep learning for a rapid and accurate diagnosis of COVID-19, addressing ongoing challenges in healthcare infrastructure and testing accessibility. We propose an enhanced automated detection system leveraging state-of-the-art convolutional neural networks (CNNs), including updated versions of VGG16, VGG19, and ResNet50, to classify COVID-19 infections from chest radiographs and computerized tomography (CT) scans. Our results, based on an expanded dataset of over 6000 medical images, demonstrate that the optimized ResNet50 model achieves the highest classification performance, with 97.77% accuracy, 100% sensitivity, 93.33% specificity, and a 98.0% F1-score. These findings reinforce the potential of AI-assisted diagnostic tools in improving early detection and pandemic preparedness.
♻ ☆ A semantic approach to mapping the Provenance Ontology to Basic Formal Ontology
The Provenance Ontology (PROV-O) is a World Wide Web Consortium (W3C) recommended ontology used to structure data about provenance across a wide variety of domains. Basic Formal Ontology (BFO) is a top-level ontology ISO/IEC standard used to structure a wide variety of ontologies, such as the OBO Foundry ontologies and the Common Core Ontologies (CCO). To enhance interoperability between these two ontologies, their extensions, and data organized by them, a mapping methodology and set of alignments are presented according to specific criteria which prioritize semantic and logical principles. The ontology alignments are evaluated by checking their logical consistency with canonical examples of PROV-O instances and querying terms that do not satisfy the alignment criteria as formalized in SPARQL. A variety of semantic web technologies are used in support of FAIR (Findable, Accessible, Interoperable, Reusable) principles.
comment: 31 pages, 12 figures. This version of the article has been accepted for publication, after peer review (when applicable) but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1038/s41597-025-04580-1
♻ ☆ FALCON: Feedback-driven Adaptive Long/short-term memory reinforced Coding Optimization system
Recently, large language models (LLMs) have achieved significant progress in automated code generation. Despite their strong instruction-following capabilities, these models frequently struggled to align with user intent in coding scenarios. In particular, they were hampered by datasets that lacked diversity and failed to address specialized tasks or edge cases. Furthermore, challenges in supervised fine-tuning (SFT) and reinforcement learning from human feedback (RLHF) led to failures in generating precise, human-intent-aligned code. To tackle these challenges and improve the code generation performance for automated programming systems, we propose Feedback-driven Adaptive Long/short-term memory reinforced Coding Optimization (i.e., FALCON). FALCON is structured into two hierarchical levels. From the global level, long-term memory improves code quality by retaining and applying learned knowledge. At the local level, short-term memory allows for the incorporation of immediate feedback from compilers and AI systems. Additionally, we introduce meta-reinforcement learning with feedback rewards to solve the global-local bi-level optimization problem and enhance the model's adaptability across diverse code generation tasks. Extensive experiments demonstrate that our technique achieves state-of-the-art performance, leading other reinforcement learning methods by more than 4.5 percentage points on the MBPP benchmark and 6.1 percentage points on the Humaneval benchmark. The open-sourced code is publicly available at https://github.com/titurte/FALCON.
comment: 20 pages, 7 figures
♻ ☆ Trajectory Imputation in Multi-Agent Sports with Derivative-Accumulating Self-Ensemble
Multi-agent trajectory data collected from domains such as team sports often suffer from missing values due to various factors. While many imputation methods have been proposed for spatiotemporal data, they are not well-suited for multi-agent sports scenarios where player movements are highly dynamic and inter-agent interactions continuously evolve. To address these challenges, we propose MIDAS (Multi-agent Imputer with Derivative-Accumulating Self-ensemble), a framework that imputes multi-agent trajectories with high accuracy and physical plausibility. It jointly predicts positions, velocities, and accelerations through a Set Transformer-based neural network and generates alternative estimates by recursively accumulating predicted velocity and acceleration values. These predictions are then combined using a learnable weighted ensemble to produce final imputed trajectories. Experiments on three sports datasets demonstrate that MIDAS significantly outperforms existing baselines in both positional accuracy and physical plausibility. Lastly, we showcase use cases of MIDAS, such as approximating total distance and pass success probability, to highlight its applicability to practical downstream tasks that require complete tracking data.
♻ ☆ Adaptive Intelligence: leveraging insights from adaptive behavior in animals to build flexible AI systems
Biological intelligence is inherently adaptive -- animals continually adjust their actions based on environmental feedback. However, creating adaptive artificial intelligence (AI) remains a major challenge. The next frontier is to go beyond traditional AI to develop "adaptive intelligence," defined here as harnessing insights from biological intelligence to build agents that can learn online, generalize, and rapidly adapt to changes in their environment. Recent advances in neuroscience offer inspiration through studies that increasingly focus on how animals naturally learn and adapt their world models. In this Perspective, I will review the behavioral and neural foundations of adaptive biological intelligence, the parallel progress in AI, and explore brain-inspired approaches for building more adaptive algorithms.
comment: 10 pages, 4 figures
♻ ☆ From Knowledge Generation to Knowledge Verification: Examining the BioMedical Generative Capabilities of ChatGPT
The generative capabilities of LLM models offer opportunities for accelerating tasks but raise concerns about the authenticity of the knowledge they produce. To address these concerns, we present a computational approach that evaluates the factual accuracy of biomedical knowledge generated by an LLM. Our approach consists of two processes: generating disease-centric associations and verifying these associations using the semantic framework of biomedical ontologies. Using ChatGPT as the selected LLM, we designed prompt-engineering processes to establish linkages between diseases and related drugs, symptoms, and genes, and assessed consistency across multiple ChatGPT models (e.g., GPT-turbo, GPT-4, etc.). Experimental results demonstrate high accuracy in identifying disease terms (88%-97%), drug names (90%-91%), and genetic information (88%-98%). However, symptom term identification was notably lower (49%-61%), due to the informal and verbose nature of symptom descriptions, which hindered effective semantic matching with the formal language of specialized ontologies. Verification of associations reveals literature coverage rates of 89%-91% for disease-drug and disease-gene pairs, while symptom-related associations exhibit lower coverage (49%-62%).
comment: 28 pages, 6 figures, In Review with a Cell Press Journal
♻ ☆ DeepInnovation AI: A Global Dataset Mapping the AI innovation from Academic Research to Industrial Patents
In the rapidly evolving field of artificial intelligence (AI), mapping innovation patterns and understanding effective technology transfer from research to applications are essential for economic growth. However, existing data infrastructures suffer from fragmentation, incomplete coverage, and insufficient evaluative capacity. Here, we present DeepInnovationAI, a comprehensive global dataset containing three structured files. DeepPatentAI.csv: Contains 2,356,204 patent records with 8 field-specific attributes. DeepDiveAI.csv: Encompasses 3,511,929 academic publications with 13 metadata fields. These two datasets leverage large language models, multilingual text analysis and dual-layer BERT classifiers to accurately identify AI-related content, while utilizing hypergraph analysis to create robust innovation metrics. Additionally, DeepCosineAI.csv: By applying semantic vector proximity analysis, this file presents approximately one hundred million calculated paper-patent similarity pairs to enhance understanding of how theoretical advancements translate into commercial technologies. DeepInnovationAI enables researchers, policymakers, and industry leaders to anticipate trends and identify collaboration opportunities. With extensive temporal and geographical scope, it supports detailed analysis of technological development patterns and international competition dynamics, establishing a foundation for modeling AI innovation and technology transfer processes.
comment: 32 pages and 8 figures
♻ ☆ MV-MATH: Evaluating Multimodal Math Reasoning in Multi-Visual Contexts
Multimodal Large Language Models (MLLMs) have shown promising capabilities in mathematical reasoning within visual contexts across various datasets. However, most existing multimodal math benchmarks are limited to single-visual contexts, which diverges from the multi-visual scenarios commonly encountered in real-world mathematical applications. To address this gap, we introduce MV-MATH: a meticulously curated dataset of 2,009 high-quality mathematical problems. Each problem integrates multiple images interleaved with text, derived from authentic K-12 scenarios, and enriched with detailed annotations. MV-MATH includes multiple-choice, free-form, and multi-step questions, covering 11 subject areas across 3 difficulty levels, and serves as a comprehensive and rigorous benchmark for assessing MLLMs' mathematical reasoning in multi-visual contexts. Through extensive experimentation, we observe that MLLMs encounter substantial challenges in multi-visual math tasks, with a considerable performance gap relative to human capabilities on MV-MATH. Furthermore, we analyze the performance and error patterns of various models, providing insights into MLLMs' mathematical reasoning capabilities within multi-visual settings.
comment: 47 pages
♻ ☆ Large Language Models: A Survey
Large Language Models (LLMs) have drawn a lot of attention due to their strong performance on a wide range of natural language tasks, since the release of ChatGPT in November 2022. LLMs' ability of general-purpose language understanding and generation is acquired by training billions of model's parameters on massive amounts of text data, as predicted by scaling laws \cite{kaplan2020scaling,hoffmann2022training}. The research area of LLMs, while very recent, is evolving rapidly in many different ways. In this paper, we review some of the most prominent LLMs, including three popular LLM families (GPT, LLaMA, PaLM), and discuss their characteristics, contributions and limitations. We also give an overview of techniques developed to build, and augment LLMs. We then survey popular datasets prepared for LLM training, fine-tuning, and evaluation, review widely used LLM evaluation metrics, and compare the performance of several popular LLMs on a set of representative benchmarks. Finally, we conclude the paper by discussing open challenges and future research directions.
♻ ☆ ModeSeq: Taming Sparse Multimodal Motion Prediction with Sequential Mode Modeling CVPR 2025
Anticipating the multimodality of future events lays the foundation for safe autonomous driving. However, multimodal motion prediction for traffic agents has been clouded by the lack of multimodal ground truth. Existing works predominantly adopt the winner-take-all training strategy to tackle this challenge, yet still suffer from limited trajectory diversity and uncalibrated mode confidence. While some approaches address these limitations by generating excessive trajectory candidates, they necessitate a post-processing stage to identify the most representative modes, a process lacking universal principles and compromising trajectory accuracy. We are thus motivated to introduce ModeSeq, a new multimodal prediction paradigm that models modes as sequences. Unlike the common practice of decoding multiple plausible trajectories in one shot, ModeSeq requires motion decoders to infer the next mode step by step, thereby more explicitly capturing the correlation between modes and significantly enhancing the ability to reason about multimodality. Leveraging the inductive bias of sequential mode prediction, we also propose the Early-Match-Take-All (EMTA) training strategy to diversify the trajectories further. Without relying on dense mode prediction or heuristic post-processing, ModeSeq considerably improves the diversity of multimodal output while attaining satisfactory trajectory accuracy, resulting in balanced performance on motion prediction benchmarks. Moreover, ModeSeq naturally emerges with the capability of mode extrapolation, which supports forecasting more behavior modes when the future is highly uncertain.
comment: CVPR 2025
♻ ☆ Beautimeter: Harnessing GPT for Assessing Architectural and Urban Beauty based on the 15 Properties of Living Structure
Beautimeter is a new tool powered by generative pre-trained transformer (GPT) technology, designed to evaluate architectural and urban beauty. Rooted in Christopher Alexander's theory of centers, this work builds on the idea that all environments possess, to varying degrees, an innate sense of life. Alexander identified 15 fundamental properties, such as levels of scale and thick boundaries, that characterize living structure, which Beautimeter uses as a basis for its analysis. By integrating GPT's advanced natural language processing capabilities, Beautimeter assesses the extent to which a structure embodies these 15 properties, enabling a nuanced evaluation of architectural and urban aesthetics. Using ChatGPT, the tool helps users generate insights into the perceived beauty and coherence of spaces. We conducted a series of case studies, evaluating images of architectural and urban environments, as well as carpets, paintings, and other artifacts. The results demonstrate Beautimeter's effectiveness in analyzing aesthetic qualities across diverse contexts. Our findings suggest that by leveraging GPT technology, Beautimeter offers architects, urban planners, and designers a powerful tool to create spaces that resonate deeply with people. This paper also explores the implications of such technology for architecture and urban design, highlighting its potential to enhance both the design process and the assessment of built environments. Keywords: Living structure, structural beauty, Christopher Alexander, AI in Design, human centered design
comment: 12 pages, 6 figure, and 3 tables
♻ ☆ Open-Sora 2.0: Training a Commercial-Level Video Generation Model in $200k
Video generation models have achieved remarkable progress in the past year. The quality of AI video continues to improve, but at the cost of larger model size, increased data quantity, and greater demand for training compute. In this report, we present Open-Sora 2.0, a commercial-level video generation model trained for only $200k. With this model, we demonstrate that the cost of training a top-performing video generation model is highly controllable. We detail all techniques that contribute to this efficiency breakthrough, including data curation, model architecture, training strategy, and system optimization. According to human evaluation results and VBench scores, Open-Sora 2.0 is comparable to global leading video generation models including the open-source HunyuanVideo and the closed-source Runway Gen-3 Alpha. By making Open-Sora 2.0 fully open-source, we aim to democratize access to advanced video generation technology, fostering broader innovation and creativity in content creation. All resources are publicly available at: https://github.com/hpcaitech/Open-Sora.
♻ ☆ MMAC-Copilot: Multi-modal Agent Collaboration Operating Copilot
Large language model agents that interact with PC applications often face limitations due to their singular mode of interaction with real-world environments, leading to restricted versatility and frequent hallucinations. To address this, we propose the Multi-Modal Agent Collaboration framework (MMAC-Copilot), a framework utilizes the collective expertise of diverse agents to enhance interaction ability with application. The framework introduces a team collaboration chain, enabling each participating agent to contribute insights based on their specific domain knowledge, effectively reducing the hallucination associated with knowledge domain gaps. We evaluate MMAC-Copilot using the GAIA benchmark and our newly introduced Visual Interaction Benchmark (VIBench). MMAC-Copilot achieved exceptional performance on GAIA, with an average improvement of 6.8\% over existing leading systems. VIBench focuses on non-API-interactable applications across various domains, including 3D gaming, recreation, and office scenarios. It also demonstrated remarkable capability on VIBench. We hope this work can inspire in this field and provide a more comprehensive assessment of Autonomous agents. The anonymous Github is available at \href{https://anonymous.4open.science/r/ComputerAgentWithVision-3C12}{Anonymous Github}
comment: Technical Reports
♻ ☆ Certifiably Robust Policies for Uncertain Parametric Environments
We present a data-driven approach for producing policies that are provably robust across unknown stochastic environments. Existing approaches can learn models of a single environment as an interval Markov decision processes (IMDP) and produce a robust policy with a probably approximately correct (PAC) guarantee on its performance. However these are unable to reason about the impact of environmental parameters underlying the uncertainty. We propose a framework based on parametric Markov decision processes (MDPs) with unknown distributions over parameters. We learn and analyse IMDPs for a set of unknown sample environments induced by parameters. The key challenge is then to produce meaningful performance guarantees that combine the two layers of uncertainty: (1) multiple environments induced by parameters with an unknown distribution; (2) unknown induced environments which are approximated by IMDPs. We present a novel approach based on scenario optimisation that yields a single PAC guarantee quantifying the risk level for which a specified performance level can be assured in unseen environments, plus a means to trade-off risk and performance. We implement and evaluate our framework using multiple robust policy generation methods on a range of benchmarks. We show that our approach produces tight bounds on a policy's performance with high confidence.
♻ ☆ A new approach for encoding code and assisting code understanding
Some companies (e.g., Microsoft Research and Google DeepMind) have discovered some of the limitations of GPTs' autoregressive paradigm next-word prediction, manifested in the model's lack of planning, working memory, backtracking, and reasoning skills. GPTs rely on a local and greedy process of generating the next word, without a global understanding of the task or the output. We have confirmed the above limitations through specialized empirical studies of code comprehension. Although GPT-4 is good at producing fluent and coherent text, it cannot handle complex logic and generate new code that hasn't been seen, and it relies too much on the formatting of the prompt to generate the correct code. We propose a new paradigm for code understanding that goes beyond the next-word prediction paradigm, inspired by the successful application of diffusion techniques to image generation (Dalle-2, Sora) and protein structure generation (AlphaFold-3), which have no autoregressive constraints. Instead of encoding the code in a form that mimics natural language, we encode the code as a heterogeneous image paradigm with a memory of global information that mimics both images and protein structures. We then refer to Sora's CLIP upstream text-to-image encoder model to design a text-to-code encoder model that can be applied to various downstream code understanding tasks. The model learns the global understanding of code under the new paradigm heterogeneous image, connects the encoding space of text and code, and encodes the input of text into the vector of code most similar to it. Using self-supervised comparative learning on 456,360 text-code pairs, the model achieved a zero-shot prediction of new data. This work is the basis for future work on code generation using diffusion techniques under a new paradigm to avoid autoregressive limitations.
comment: 10 page, 14 figures
♻ ☆ VideoAutoArena: An Automated Arena for Evaluating Large Multimodal Models in Video Analysis through User Simulation CVPR 2025
Large multimodal models (LMMs) with advanced video analysis capabilities have recently garnered significant attention. However, most evaluations rely on traditional methods like multiple-choice questions in benchmarks such as VideoMME and LongVideoBench, which are prone to lack the depth needed to capture the complex demands of real-world users. To address this limitation-and due to the prohibitive cost and slow pace of human annotation for video tasks-we introduce VideoAutoArena, an arena-style benchmark inspired by LMSYS Chatbot Arena's framework, designed to automatically assess LMMs' video analysis abilities. VideoAutoArena utilizes user simulation to generate open-ended, adaptive questions that rigorously assess model performance in video understanding. The benchmark features an automated, scalable evaluation framework, incorporating a modified ELO Rating System for fair and continuous comparisons across multiple LMMs. To validate our automated judging system, we construct a 'gold standard' using a carefully curated subset of human annotations, demonstrating that our arena strongly aligns with human judgment while maintaining scalability. Additionally, we introduce a fault-driven evolution strategy, progressively increasing question complexity to push models toward handling more challenging video analysis scenarios. Experimental results demonstrate that VideoAutoArena effectively differentiates among state-of-the-art LMMs, providing insights into model strengths and areas for improvement. To further streamline our evaluation, we introduce VideoAutoBench as an auxiliary benchmark, where human annotators label winners in a subset of VideoAutoArena battles. We use GPT-4o as a judge to compare responses against these human-validated answers. Together, VideoAutoArena and VideoAutoBench offer a cost-effective, and scalable framework for evaluating LMMs in user-centric video analysis.
comment: CVPR 2025, Project Page: https://videoautoarena.github.io/
♻ ☆ Credit Risk Meets Large Language Models: Building a Risk Indicator from Loan Descriptions in P2P Lending
Peer-to-peer (P2P) lending connects borrowers and lenders through online platforms but suffers from significant information asymmetry, as lenders often lack sufficient data to assess borrowers' creditworthiness. This paper addresses this challenge by leveraging BERT, a Large Language Model (LLM) known for its ability to capture contextual nuances in text, to generate a risk score based on borrowers' loan descriptions using a dataset from the Lending Club platform. We fine-tune BERT to distinguish between defaulted and non-defaulted loans using the loan descriptions provided by the borrowers. The resulting BERT-generated risk score is then integrated as an additional feature into an XGBoost classifier used at the loan granting stage, where decision-makers have limited information available to guide their decisions. This integration enhances predictive performance, with improvements in balanced accuracy and AUC, highlighting the value of textual features in complementing traditional inputs. Moreover, we find that the incorporation of the BERT score alters how classification models utilize traditional input variables, with these changes varying by loan purpose. These findings suggest that BERT discerns meaningful patterns in loan descriptions, encompassing borrower-specific features, specific purposes, and linguistic characteristics. However, the inherent opacity of LLMs and their potential biases underscore the need for transparent frameworks to ensure regulatory compliance and foster trust. Overall, this study demonstrates how LLM-derived insights interact with traditional features in credit risk modeling, opening new avenues to enhance the explainability and fairness of these models.
♻ ☆ Diffusion-Driven Semantic Communication for Generative Models with Bandwidth Constraints
Diffusion models have been extensively utilized in AI-generated content (AIGC) in recent years, thanks to the superior generation capabilities. Combining with semantic communications, diffusion models are used for tasks such as denoising, data reconstruction, and content generation. However, existing diffusion-based generative models do not consider the stringent bandwidth limitation, which limits its application in wireless communication. This paper introduces a diffusion-driven semantic communication framework with advanced VAE-based compression for bandwidth-constrained generative model. Our designed architecture utilizes the diffusion model, where the signal transmission process through the wireless channel acts as the forward process in diffusion. To reduce bandwidth requirements, we incorporate a downsampling module and a paired upsampling module based on a variational auto-encoder with reparameterization at the receiver to ensure that the recovered features conform to the Gaussian distribution. Furthermore, we derive the loss function for our proposed system and evaluate its performance through comprehensive experiments. Our experimental results demonstrate significant improvements in pixel-level metrics such as peak signal to noise ratio (PSNR) and semantic metrics like learned perceptual image patch similarity (LPIPS). These enhancements are more profound regarding the compression rates and SNR compared to deep joint source-channel coding (DJSCC).
comment: accepted to IEEE for possible publication
♻ ☆ Gazing at Rewards: Eye Movements as a Lens into Human and AI Decision-Making in Hybrid Visual Foraging
Imagine searching a collection of coins for quarters ($0.25$), dimes ($0.10$), nickels ($0.05$), and pennies ($0.01$)-a hybrid foraging task where observers look for multiple instances of multiple target types. In such tasks, how do target values and their prevalence influence foraging and eye movement behaviors (e.g., should you prioritize rare quarters or common nickels)? To explore this, we conducted human psychophysics experiments, revealing that humans are proficient reward foragers. Their eye fixations are drawn to regions with higher average rewards, fixation durations are longer on more valuable targets, and their cumulative rewards exceed chance, approaching the upper bound of optimal foragers. To probe these decision-making processes of humans, we developed a transformer-based Visual Forager (VF) model trained via reinforcement learning. Our VF model takes a series of targets, their corresponding values, and the search image as inputs, processes the images using foveated vision, and produces a sequence of eye movements along with decisions on whether to collect each fixated item. Our model outperforms all baselines, achieves cumulative rewards comparable to those of humans, and approximates human foraging behavior in eye movements and foraging biases within time-limited environments. Furthermore, stress tests on out-of-distribution tasks with novel targets, unseen values, and varying set sizes demonstrate the VF model's effective generalization. Our work offers valuable insights into the relationship between eye movements and decision-making, with our model serving as a powerful tool for further exploration of this connection. All data, code, and models are available at https://github.com/ZhangLab-DeepNeuroCogLab/visual-forager.
♻ ☆ SupReMix: Supervised Contrastive Learning for Medical Imaging Regression with Mixup
In medical image analysis, regression plays a critical role in computer-aided diagnosis. It enables quantitative measurements such as age prediction from structural imaging, cardiac function quantification, and molecular measurement from PET scans. While deep learning has shown promise for these tasks, most approaches focus solely on optimizing regression loss or model architecture, neglecting the quality of learned feature representations which are crucial for robust clinical predictions. Directly applying representation learning techniques designed for classification to regression often results in fragmented representations in the latent space, yielding sub-optimal performance. In this paper, we argue that the potential of contrastive learning for medical image regression has been overshadowed due to the neglect of two crucial aspects: ordinality-awareness and hardness. To address these challenges, we propose Supervised Contrastive Learning for Medical Imaging Regression with Mixup (SupReMix). It takes anchor-inclusive mixtures (mixup of the anchor and a distinct negative sample) as hard negative pairs and anchor-exclusive mixtures (mixup of two distinct negative samples) as hard positive pairs at the embedding level. This strategy formulates harder contrastive pairs by integrating richer ordinal information. Through theoretical analysis and extensive experiments on six datasets spanning MRI, X-ray, ultrasound, and PET modalities, we demonstrate that SupReMix fosters continuous ordered representations, significantly improving regression performance.
comment: The first two authors equally contributed to this work. Previously titled "Mixup Your Own Pair", content extended and revised
♻ ☆ Heterogeneous bimodal attention fusion for speech emotion recognition
Multi-modal emotion recognition in conversations is a challenging problem due to the complex and complementary interactions between different modalities. Audio and textual cues are particularly important for understanding emotions from a human perspective. Most existing studies focus on exploring interactions between audio and text modalities at the same representation level. However, a critical issue is often overlooked: the heterogeneous modality gap between low-level audio representations and high-level text representations. To address this problem, we propose a novel framework called Heterogeneous Bimodal Attention Fusion (HBAF) for multi-level multi-modal interaction in conversational emotion recognition. The proposed method comprises three key modules: the uni-modal representation module, the multi-modal fusion module, and the inter-modal contrastive learning module. The uni-modal representation module incorporates contextual content into low-level audio representations to bridge the heterogeneous multi-modal gap, enabling more effective fusion. The multi-modal fusion module uses dynamic bimodal attention and a dynamic gating mechanism to filter incorrect cross-modal relationships and fully exploit both intra-modal and inter-modal interactions. Finally, the inter-modal contrastive learning module captures complex absolute and relative interactions between audio and text modalities. Experiments on the MELD and IEMOCAP datasets demonstrate that the proposed HBAF method outperforms existing state-of-the-art baselines.
♻ ☆ One-Shot Manipulation Strategy Learning by Making Contact Analogies ICRA 2025
We present a novel approach, MAGIC (manipulation analogies for generalizable intelligent contacts), for one-shot learning of manipulation strategies with fast and extensive generalization to novel objects. By leveraging a reference action trajectory, MAGIC effectively identifies similar contact points and sequences of actions on novel objects to replicate a demonstrated strategy, such as using different hooks to retrieve distant objects of different shapes and sizes. Our method is based on a two-stage contact-point matching process that combines global shape matching using pretrained neural features with local curvature analysis to ensure precise and physically plausible contact points. We experiment with three tasks including scooping, hanging, and hooking objects. MAGIC demonstrates superior performance over existing methods, achieving significant improvements in runtime speed and generalization to different object categories. Website: https://magic-2024.github.io/ .
comment: ICRA 2025; CoRL LEAP Workshop, 2024
♻ ☆ Optical-Flow Guided Prompt Optimization for Coherent Video Generation CVPR 2025
While text-to-video diffusion models have made significant strides, many still face challenges in generating videos with temporal consistency. Within diffusion frameworks, guidance techniques have proven effective in enhancing output quality during inference; however, applying these methods to video diffusion models introduces additional complexity of handling computations across entire sequences. To address this, we propose a novel framework called MotionPrompt that guides the video generation process via optical flow. Specifically, we train a discriminator to distinguish optical flow between random pairs of frames from real videos and generated ones. Given that prompts can influence the entire video, we optimize learnable token embeddings during reverse sampling steps by using gradients from a trained discriminator applied to random frame pairs. This approach allows our method to generate visually coherent video sequences that closely reflect natural motion dynamics, without compromising the fidelity of the generated content. We demonstrate the effectiveness of our approach across various models.
comment: CVPR 2025 (poster); project page: https://motionprompt.github.io/
♻ ☆ Concept-as-Tree: Synthetic Data is All You Need for VLM Personalization
Vision-Language Models (VLMs) have demonstrated exceptional performance in various multi-modal tasks. Recently, there has been an increasing interest in improving the personalization capabilities of VLMs. To better integrate user-provided concepts into VLMs, many methods use positive and negative samples to fine-tune these models. However, the scarcity of user-provided positive samples and the low quality of retrieved negative samples pose challenges for fine-tuning. To reveal the relationship between sample and model performance, we systematically investigate the impact of positive and negative samples (easy and hard) and their diversity on VLM personalization tasks. Based on the detailed analysis, we introduce Concept-as-Tree (CaT), which represents a concept as a tree structure, thereby enabling the data generation of positive and negative samples with varying difficulty and diversity for VLM personalization. With a well-designed data filtering strategy, our CaT framework can ensure the quality of generated data, constituting a powerful pipeline. We perform thorough experiments with various VLM personalization baselines to assess the effectiveness of the pipeline, alleviating the lack of positive samples and the low quality of negative samples. Our results demonstrate that CaT equipped with the proposed data filter significantly enhances the personalization capabilities of VLMs across the MyVLM, Yo'LLaVA, and MC-LLaVA datasets. To our knowledge, this work is the first controllable synthetic data pipeline for VLM personalization. The code is released at $\href{https://github.com/zengkaiya/CaT}{\text{https://github.com/zengkaiya/CaT}}$.
comment: The code is released at $\href{https://github.com/zengkaiya/CaT}{\text{https://github.com/zengkaiya/CaT}}$
♻ ☆ Nuclear Deployed: Analyzing Catastrophic Risks in Decision-making of Autonomous LLM Agents
Large language models (LLMs) are evolving into autonomous decision-makers, raising concerns about catastrophic risks in high-stakes scenarios, particularly in Chemical, Biological, Radiological and Nuclear (CBRN) domains. Based on the insight that such risks can originate from trade-offs between the agent's Helpful, Harmlessness and Honest (HHH) goals, we build a novel three-stage evaluation framework, which is carefully constructed to effectively and naturally expose such risks. We conduct 14,400 agentic simulations across 12 advanced LLMs, with extensive experiments and analysis. Results reveal that LLM agents can autonomously engage in catastrophic behaviors and deception, without being deliberately induced. Furthermore, stronger reasoning abilities often increase, rather than mitigate, these risks. We also show that these agents can violate instructions and superior commands. On the whole, we empirically prove the existence of catastrophic risks in autonomous LLM agents. We release our code to foster further research.
comment: Please visit https://llm-catastrophic-risks.github.io for a quick tour of our research. Our code is available at https://github.com/pillowsofwind/LLM-CBRN-Risks
♻ ☆ GEMeX: A Large-Scale, Groundable, and Explainable Medical VQA Benchmark for Chest X-ray Diagnosis
Medical Visual Question Answering (Med-VQA) combines computer vision and natural language processing to automatically answer clinical inquiries about medical images. However, current Med-VQA datasets exhibit two significant limitations: (1) they often lack visual and textual explanations for answers, hindering comprehension for patients and junior doctors; (2) they typically offer a narrow range of question formats, inadequately reflecting the diverse requirements in practical scenarios. These limitations pose significant challenges to the development of a reliable and user-friendly Med-VQA system. To address these challenges, we introduce a large-scale, Groundable, and Explainable Medical VQA benchmark for chest X-ray diagnosis (GEMeX), featuring several innovative components: (1) a multi-modal explainability mechanism that offers detailed visual and textual explanations for each question-answer pair, thereby enhancing answer comprehensibility; (2) four question types, open-ended, closed-ended, single-choice, and multiple-choice, to better reflect practical needs. With 151,025 images and 1,605,575 questions, GEMeX is the currently largest chest X-ray VQA dataset. Evaluation of 12 representative large vision language models (LVLMs) on GEMeX reveals suboptimal performance, underscoring the dataset's complexity. Meanwhile, we propose a strong model by fine-tuning an existing LVLM on the GEMeX training set. The substantial performance improvement showcases the dataset's effectiveness. The benchmark is available at https://www.med-vqa.com/GEMeX.
comment: This project is available at https://www.med-vqa.com/GEMeX
♻ ☆ Autonomous Data Selection with Zero-shot Generative Classifiers for Mathematical Texts
We present Autonomous Data Selection (AutoDS), a method that leverages base language models themselves as zero-shot "generative classifiers" to automatically curate high-quality mathematical texts. Unlike prior approaches that require human annotations or training a dedicated data filter, AutoDS relies solely on a model's logits to determine whether a given passage is mathematically informative and educational. By integrating AutoDS into a continual pretraining pipeline, we substantially boost downstream performance on challenging math benchmarks (MATH, GSM8K, and BBH) while using far fewer tokens than previous methods. Empirically, our approach achieves roughly a twofold improvement in pretraining token efficiency over strong baselines, underscoring the potential of self-directed data selection in enhancing mathematical reasoning. We release our curated AutoMathText dataset to facilitate future research in automated domain-specific data curation. The AutoMathText dataset is available at https://huggingface.co/datasets/math-ai/AutoMathText. The code is available at https://github.com/yifanzhang-pro/AutoMathText.
comment: 24 pages, 8 figures. arXiv admin note: text overlap with arXiv:0808.2664, arXiv:0806.2159, arXiv:1703.08834, arXiv:math/0610707 by other authors
♻ ☆ Few-Shot Joint Multimodal Entity-Relation Extraction via Knowledge-Enhanced Cross-modal Prompt Model ACM MM 2024
Joint Multimodal Entity-Relation Extraction (JMERE) is a challenging task that aims to extract entities and their relations from text-image pairs in social media posts. Existing methods for JMERE require large amounts of labeled data. However, gathering and annotating fine-grained multimodal data for JMERE poses significant challenges. Initially, we construct diverse and comprehensive multimodal few-shot datasets fitted to the original data distribution. To address the insufficient information in the few-shot setting, we introduce the \textbf{K}nowledge-\textbf{E}nhanced \textbf{C}ross-modal \textbf{P}rompt \textbf{M}odel (KECPM) for JMERE. This method can effectively address the problem of insufficient information in the few-shot setting by guiding a large language model to generate supplementary background knowledge. Our proposed method comprises two stages: (1) a knowledge ingestion stage that dynamically formulates prompts based on semantic similarity guide ChatGPT generating relevant knowledge and employs self-reflection to refine the knowledge; (2) a knowledge-enhanced language model stage that merges the auxiliary knowledge with the original input and utilizes a transformer-based model to align with JMERE's required output format. We extensively evaluate our approach on a few-shot dataset derived from the JMERE dataset, demonstrating its superiority over strong baselines in terms of both micro and macro F$_1$ scores. Additionally, we present qualitative analyses and case studies to elucidate the effectiveness of our model.
comment: accepted by ACM MM 2024
♻ ☆ MotiF: Making Text Count in Image Animation with Motion Focal Loss CVPR 2025
Text-Image-to-Video (TI2V) generation aims to generate a video from an image following a text description, which is also referred to as text-guided image animation. Most existing methods struggle to generate videos that align well with the text prompts, particularly when motion is specified. To overcome this limitation, we introduce MotiF, a simple yet effective approach that directs the model's learning to the regions with more motion, thereby improving the text alignment and motion generation. We use optical flow to generate a motion heatmap and weight the loss according to the intensity of the motion. This modified objective leads to noticeable improvements and complements existing methods that utilize motion priors as model inputs. Additionally, due to the lack of a diverse benchmark for evaluating TI2V generation, we propose TI2V Bench, a dataset consists of 320 image-text pairs for robust evaluation. We present a human evaluation protocol that asks the annotators to select an overall preference between two videos followed by their justifications. Through a comprehensive evaluation on TI2V Bench, MotiF outperforms nine open-sourced models, achieving an average preference of 72%. The TI2V Bench and additional results are released in https://wang-sj16.github.io/motif/.
comment: Accepted by CVPR 2025. Project page: https://wang-sj16.github.io/motif/
♻ ☆ Toward Conditional Distribution Calibration in Survival Prediction NeurIPS 2024
Survival prediction often involves estimating the time-to-event distribution from censored datasets. Previous approaches have focused on enhancing discrimination and marginal calibration. In this paper, we highlight the significance of conditional calibration for real-world applications -- especially its role in individual decision-making. We propose a method based on conformal prediction that uses the model's predicted individual survival probability at that instance's observed time. This method effectively improves the model's marginal and conditional calibration, without compromising discrimination. We provide asymptotic theoretical guarantees for both marginal and conditional calibration and test it extensively across 15 diverse real-world datasets, demonstrating the method's practical effectiveness and versatility in various settings.
comment: Accepted to NeurIPS 2024. 41 pages, 23 figures
Robotics 18
☆ Smart Ankleband for Plug-and-Play Hand-Prosthetic Control
Building robotic prostheses requires the creation of a sensor-based interface designed to provide the robotic hand with the control required to perform hand gestures. Traditional Electromyography (EMG) based prosthetics and emerging alternatives often face limitations such as muscle-activation limitations, high cost, and complex-calibration procedures. In this paper, we present a low-cost robotic system composed of a smart ankleband for intuitive, calibration-free control of a robotic hand, and a robotic prosthetic hand that executes actions corresponding to leg gestures. The ankleband integrates an Inertial Measurement Unit (IMU) sensor with a lightweight temporal neural network to infer user-intended leg gestures from motion data. Our system represents a significant step towards higher adoption rates of robotic prostheses among arm amputees, as it enables one to operate a prosthetic hand using a low-cost, low-power, and calibration-free solution. To evaluate our work, we collected data from 10 subjects and tested our prototype ankleband with a robotic hand on an individual with upper-limb amputations. Our results demonstrate that this system empowers users to perform daily tasks more efficiently, requiring few compensatory movements.
☆ GS-LTS: 3D Gaussian Splatting-Based Adaptive Modeling for Long-Term Service Robots
3D Gaussian Splatting (3DGS) has garnered significant attention in robotics for its explicit, high fidelity dense scene representation, demonstrating strong potential for robotic applications. However, 3DGS-based methods in robotics primarily focus on static scenes, with limited attention to the dynamic scene changes essential for long-term service robots. These robots demand sustained task execution and efficient scene updates-challenges current approaches fail to meet. To address these limitations, we propose GS-LTS (Gaussian Splatting for Long-Term Service), a 3DGS-based system enabling indoor robots to manage diverse tasks in dynamic environments over time. GS-LTS detects scene changes (e.g., object addition or removal) via single-image change detection, employs a rule-based policy to autonomously collect multi-view observations, and efficiently updates the scene representation through Gaussian editing. Additionally, we propose a simulation-based benchmark that automatically generates scene change data as compact configuration scripts, providing a standardized, user-friendly evaluation benchmark. Experimental results demonstrate GS-LTS's advantages in reconstruction, navigation, and superior scene updates-faster and higher quality than the image training baseline-advancing 3DGS for long-term robotic operations. Code and benchmark are available at: https://vipl-vsu.github.io/3DGS-LTS.
☆ Aportes para el cumplimiento del Reglamento (UE) 2024/1689 en robótica y sistemas autónomos
Cybersecurity in robotics stands out as a key aspect within Regulation (EU) 2024/1689, also known as the Artificial Intelligence Act, which establishes specific guidelines for intelligent and automated systems. A fundamental distinction in this regulatory framework is the difference between robots with Artificial Intelligence (AI) and those that operate through automation systems without AI, since the former are subject to stricter security requirements due to their learning and autonomy capabilities. This work analyzes cybersecurity tools applicable to advanced robotic systems, with special emphasis on the protection of knowledge bases in cognitive architectures. Furthermore, a list of basic tools is proposed to guarantee the security, integrity, and resilience of these systems, and a practical case is presented, focused on the analysis of robot knowledge management, where ten evaluation criteria are defined to ensure compliance with the regulation and reduce risks in human-robot interaction (HRI) environments.
comment: 9 pages, 1 figure, in Spanish
☆ Adaptive Perching and Grasping by Aerial Robot with Light-weight and High Grip-force Tendon-driven Three-fingered Hand using Single Actuator
In previous research, various types of aerial robots equipped with perching mechanisms have been developed to extend operational time. However, most existing perching methods adopt either an upward or downward approach, making it difficult to perch near walls with surrounding obstacles. Additionally, perching hands are typically designed solely for attachment to objects and lack additional functionality, imposing a payload burden during flight. To address these issues, this paper proposes a lightweight robotic hand, the "Tri-force hand", capable of both perching and object grasping, as well as a new perching method called "Pendulum-perching". The Tri-force hand is a tendon-driven, three-fingered hand utilizing a spherical joint and a two-dimensional differential plate, enabling passive actuation with a single actuator. Each finger module, designed with controllable semi-tendon drive, can conform to arbitrary shapes within its operating range, allowing both perching and adaptive object grasping. By integrating this hand into a fully actuated aerial robot, the system can perform multi-directional approaches from the side and landing using gravity. This approach is similar to Crush-perching seen in researches with fixed-wing aerial robots, but it differs in its superior control over approach speed and direction, as well as its ability to achieve stable detachment and re-launch. In experiments, the fabricated Tri-force hand demonstrated the ability to withstand a total weight of up to 27.5 kg, grasp various objects ranging from simple to complex-shaped tools, and achieve a high success rate in both perching and takeoff.
☆ RAIDER: Tool-Equipped Large Language Model Agent for Robotic Action Issue Detection, Explanation and Recovery
As robots increasingly operate in dynamic human-centric environments, improving their ability to detect, explain, and recover from action-related issues becomes crucial. Traditional model-based and data-driven techniques lack adaptability, while more flexible generative AI methods struggle with grounding extracted information to real-world constraints. We introduce RAIDER, a novel agent that integrates Large Language Models (LLMs) with grounded tools for adaptable and efficient issue detection and explanation. Using a unique "Ground, Ask& Answer, Issue" procedure, RAIDER dynamically generates context-aware precondition questions and selects appropriate tools for resolution, achieving targeted information gathering. Our results within a simulated household environment surpass methods relying on predefined models, full scene descriptions, or standalone trained models. Additionally, RAIDER's explanations enhance recovery success, including cases requiring human interaction. Its modular architecture, featuring self-correction mechanisms, enables straightforward adaptation to diverse scenarios, as demonstrated in a real-world human-assistive task. This showcases RAIDER's potential as a versatile agentic AI solution for robotic issue detection and explanation, while addressing the problem of grounding generative AI for its effective application in embodied agents. Project website: https://raider-llmagent.github.io/
☆ Sense4FL: Vehicular Crowdsensing Enhanced Federated Learning for Autonomous Driving
To accommodate constantly changing road conditions, real-time model training is essential for autonomous driving (AD). Federated learning (FL) serves as a promising paradigm to enable autonomous vehicles to train models collaboratively with their onboard computing resources. However, existing vehicle selection schemes for FL all assume predetermined and location-independent vehicles' datasets, neglecting the fact that vehicles collect training data along their routes, thereby resulting in suboptimal vehicle selection. To improve the perception quality in AD for a region, we propose Sense4FL, a vehicular crowdsensing-enhanced FL framework featuring trajectory-dependent vehicular training data collection. To this end, we first derive the convergence bound of FL by considering the impact of both vehicles' uncertain trajectories and uploading probabilities, from which we discover that minimizing the training loss is equivalent to minimizing a weighted sum of local and global earth mover's distance (EMD) between vehicles' collected data distribution and global data distribution. Based on this observation, we formulate the trajectory-dependent vehicle selection and data collection problem for FL in AD. Given that the problem is NP-hard, we develop an efficient algorithm to find the solution with an approximation guarantee. Extensive simulation results have demonstrated the effectiveness of our approach in improving object detection performance compared with existing benchmarks.
comment: 16 pages, 5 figures
☆ Computationally and Sample Efficient Safe Reinforcement Learning Using Adaptive Conformal Prediction ICRA 2025
Safety is a critical concern in learning-enabled autonomous systems especially when deploying these systems in real-world scenarios. An important challenge is accurately quantifying the uncertainty of unknown models to generate provably safe control policies that facilitate the gathering of informative data, thereby achieving both safe and optimal policies. Additionally, the selection of the data-driven model can significantly impact both the real-time implementation and the uncertainty quantification process. In this paper, we propose a provably sample efficient episodic safe learning framework that remains robust across various model choices with quantified uncertainty for online control tasks. Specifically, we first employ Quadrature Fourier Features (QFF) for kernel function approximation of Gaussian Processes (GPs) to enable efficient approximation of unknown dynamics. Then the Adaptive Conformal Prediction (ACP) is used to quantify the uncertainty from online observations and combined with the Control Barrier Functions (CBF) to characterize the uncertainty-aware safe control constraints under learned dynamics. Finally, an optimism-based exploration strategy is integrated with ACP-based CBFs for safe exploration and near-optimal safe nonlinear control. Theoretical proofs and simulation results are provided to demonstrate the effectiveness and efficiency of the proposed framework.
comment: 7 pages, accepted to ICRA 2025
☆ Transferable Latent-to-Latent Locomotion Policy for Efficient and Versatile Motion Control of Diverse Legged Robots
Reinforcement learning (RL) has demonstrated remarkable capability in acquiring robot skills, but learning each new skill still requires substantial data collection for training. The pretrain-and-finetune paradigm offers a promising approach for efficiently adapting to new robot entities and tasks. Inspired by the idea that acquired knowledge can accelerate learning new tasks with the same robot and help a new robot master a trained task, we propose a latent training framework where a transferable latent-to-latent locomotion policy is pretrained alongside diverse task-specific observation encoders and action decoders. This policy in latent space processes encoded latent observations to generate latent actions to be decoded, with the potential to learn general abstract motion skills. To retain essential information for decision-making and control, we introduce a diffusion recovery module that minimizes information reconstruction loss during pretrain stage. During fine-tune stage, the pretrained latent-to-latent locomotion policy remains fixed, while only the lightweight task-specific encoder and decoder are optimized for efficient adaptation. Our method allows a robot to leverage its own prior experience across different tasks as well as the experience of other morphologically diverse robots to accelerate adaptation. We validate our approach through extensive simulations and real-world experiments, demonstrating that the pretrained latent-to-latent locomotion policy effectively generalizes to new robot entities and tasks with improved efficiency.
☆ Feature Selection Based on Reinforcement Learning and Hazard State Classification for Magnetic Adhesion Wall-Climbing Robots
Magnetic adhesion tracked wall-climbing robots face potential risks of overturning during high-altitude operations, making their stability crucial for ensuring safety. This study presents a dynamic feature selection method based on Proximal Policy Optimization (PPO) reinforcement learning, combined with typical machine learning models, aimed at improving the classification accuracy of hazardous states under complex operating conditions. Firstly, this work innovatively employs a fiber rod-based MEMS attitude sensor to collect vibration data from the robot and extract high-dimensional feature vectors in both time and frequency domains. Then, a reinforcement learning model is used to dynamically select the optimal feature subset, reducing feature redundancy and enhancing classification accuracy. Finally, a CNN-LSTM deep learning model is employed for classification and recognition. Experimental results demonstrate that the proposed method significantly improves the robot's ability to assess hazardous states across various operational scenarios, providing reliable technical support for robotic safety monitoring.
comment: 21 pages, 11 figures, manuscript for Journal of Autonomous Robots
☆ Extending First-order Motion Planners to Second-order Dynamics
This paper extends first-order motion planners to robots governed by second-order dynamics. Two control schemes are proposed based on the knowledge of a scalar function whose negative gradient aligns with a given first-order motion planner. When such a function is known, the first-order motion planner is combined with a damping velocity vector with a dynamic gain to extend the safety and convergence guarantees of the first-order motion planner to second-order systems. If no such function is available, we propose an alternative control scheme ensuring that the error between the robot's velocity and the first-order motion planner converges to zero. The theoretical developments are supported by simulation results demonstrating the effectiveness of the proposed approaches.
comment: 13 pages, 7 figures
☆ Threshold Adaptation in Spiking Networks Enables Shortest Path Finding and Place Disambiguation
Efficient spatial navigation is a hallmark of the mammalian brain, inspiring the development of neuromorphic systems that mimic biological principles. Despite progress, implementing key operations like back-tracing and handling ambiguity in bio-inspired spiking neural networks remains an open challenge. This work proposes a mechanism for activity back-tracing in arbitrary, uni-directional spiking neuron graphs. We extend the existing replay mechanism of the spiking hierarchical temporal memory (S-HTM) by our spike timing-dependent threshold adaptation (STDTA), which enables us to perform path planning in networks of spiking neurons. We further present an ambiguity dependent threshold adaptation (ADTA) for identifying places in an environment with less ambiguity, enhancing the localization estimate of an agent. Combined, these methods enable efficient identification of the shortest path to an unambiguous target. Our experiments show that a network trained on sequences reliably computes shortest paths with fewer replays than the steps required to reach the target. We further show that we can identify places with reduced ambiguity in multiple, similar environments. These contributions advance the practical application of biologically inspired sequential learning algorithms like the S-HTM towards neuromorphic localization and navigation.
comment: Appears in the proceedings of the 2025 Neuro Inspired Computational Elements Conference (NICE)
♻ ☆ Deep learning framework for action prediction reveals multi-timescale locomotor control
Modeling movement in real-world tasks is a fundamental scientific goal for motor control, biomechanics, and rehabilitation engineering. However, existing models and their simplifying assumptions such as linear and fixed timescale mappings do not generalize to real-world contexts. Here, we develop a deep learning-based framework for action prediction with architecture-dependent trial embedding, outperforming traditional models across multiple contexts (walking and running, treadmill and overground, varying terrains) and input modalities (multiple body states, gaze). We find that neural network architectures with flexible input history-dependence like GRU and Transformer perform best overall. By quantifying the model's predictions relative to an autoregressive baseline, we identify context- and modality-dependent timescales. There is greater reliance on fast-timescale predictions in complex terrain, gaze predictions precede body state predictions, and full-body state predictions precede center-of-mass-relevant predictions. This deep learning framework for action prediction provides quantifiable insights into the control of complex movements and can be extended to other actions, contexts, and populations.
♻ ☆ LEVA: A high-mobility logistic vehicle with legged suspension ICRA
The autonomous transportation of materials over challenging terrain is a challenge with major economic implications and remains unsolved. This paper introduces LEVA, a high-payload, high-mobility robot designed for autonomous logistics across varied terrains, including those typical in agriculture, construction, and search and rescue operations. LEVA uniquely integrates an advanced legged suspension system using parallel kinematics. It is capable of traversing stairs using a rl controller, has steerable wheels, and includes a specialized box pickup mechanism that enables autonomous payload loading as well as precise and reliable cargo transportation of up to 85 kg across uneven surfaces, steps and inclines while maintaining a cot of as low as 0.15. Through extensive experimental validation, LEVA demonstrates its off-road capabilities and reliability regarding payload loading and transport.
comment: Accepted for publication at the 2025 IEEE International Conference on Robotics and Automation (ICRA). This is the author's preprint version. 6 pages, 8 figures, 2 tables
♻ ☆ Learning-based 3D Reconstruction in Autonomous Driving: A Comprehensive Survey
Learning-based 3D reconstruction has emerged as a transformative technique in autonomous driving, enabling precise modeling of both dynamic and static environments through advanced neural representations. Despite data augmentation, 3D reconstruction inspires pioneering solution for vital tasks in the field of autonomous driving, such as scene understanding and closed-loop simulation. We investigates the details of 3D reconstruction and conducts a multi-perspective, in-depth analysis of recent advancements. Specifically, we first provide a systematic introduction of preliminaries, including data modalities, benchmarks and technical preliminaries of learning-based 3D reconstruction, facilitating instant identification of suitable methods according to sensor suites. Then, we systematically review learning-based 3D reconstruction methods in autonomous driving, categorizing approaches by subtasks and conducting multi-dimensional analysis and summary to establish a comprehensive technical reference. The development trends and existing challenges are summarized in the context of learning-based 3D reconstruction in autonomous driving. We hope that our review will inspire future researches.
♻ ☆ MERLION: Marine ExploRation with Language guIded Online iNformative Visual Sampling and Enhancement ICRA 2025
Autonomous and targeted underwater visual monitoring and exploration using Autonomous Underwater Vehicles (AUVs) can be a challenging task due to both online and offline constraints. The online constraints comprise limited onboard storage capacity and communication bandwidth to the surface, whereas the offline constraints entail the time and effort required for the selection of desired key frames from the video data. An example use case of targeted underwater visual monitoring is finding the most interesting visual frames of fish in a long sequence of an AUV's visual experience. This challenge of targeted informative sampling is further aggravated in murky waters with poor visibility. In this paper, we present MERLION, a novel framework that provides semantically aligned and visually enhanced summaries for murky underwater marine environment monitoring and exploration. Specifically, our framework integrates (a) an image-text model for semantically aligning the visual samples to the users' needs, (b) an image enhancement model for murky water visual data and (c) an informative sampler for summarizing the monitoring experience. We validate our proposed MERLION framework on real-world data with user studies and present qualitative and quantitative results using our evaluation metric and show improved results compared to the state-of-the-art approaches. We have open-sourced the code for MERLION at the following link https://github.com/MARVL-Lab/MERLION.git.
comment: In proceedings of IEEE ICRA 2025
♻ ☆ NavCoT: Boosting LLM-Based Vision-and-Language Navigation via Learning Disentangled Reasoning
Vision-and-Language Navigation (VLN), as a crucial research problem of Embodied AI, requires an embodied agent to navigate through complex 3D environments following natural language instructions. Recent research has highlighted the promising capacity of large language models (LLMs) in VLN by improving navigational reasoning accuracy and interpretability. However, their predominant use in an offline manner usually suffers from substantial domain gap between the VLN task and the LLM training corpus. This paper introduces a novel strategy called Navigational Chain-of-Thought (NavCoT), where we fulfill parameter-efficient in-domain training to enable self-guided navigational decision, leading to a significant mitigation of the domain gap in a cost-effective manner. Specifically, at each timestep, the LLM is prompted to forecast the navigational chain-of-thought by: 1) acting as a world model to imagine the next observation according to the instruction, 2) selecting the candidate observation that best aligns with the imagination, and 3) determining the action based on the reasoning from the prior steps. Through constructing formalized labels for training, the LLM can learn to generate desired and reasonable chain-of-thought outputs for improving the action decision. Experimental results across various training settings and popular VLN benchmarks (e.g., Room-to-Room (R2R), Room-across-Room (RxR), Room-for-Room (R4R)) show the significant superiority of NavCoT over the direct action prediction variants. Through simple parameter-efficient finetuning, our NavCoT outperforms a recent GPT4-based approach with ~7% relative improvement on the R2R dataset. We believe that NavCoT will help unlock more task-adaptive and scalable LLM-based embodied agents, which are helpful for developing real-world robotics applications. Code is available at https://github.com/expectorlin/NavCoT.
comment: Accepted by TPAMI 2025
♻ ☆ Closing the Intent-to-Behavior Gap via Fulfillment Priority Logic
Practitioners designing reinforcement learning policies face a fundamental challenge: translating intended behavioral objectives into representative reward functions. This challenge stems from behavioral intent requiring simultaneous achievement of multiple competing objectives, typically addressed through labor-intensive linear reward composition that yields brittle results. Consider the ubiquitous robotics scenario where performance maximization directly conflicts with energy conservation. Such competitive dynamics are resistant to simple linear reward combinations. In this paper, we present the concept of objective fulfillment upon which we build Fulfillment Priority Logic (FPL). FPL allows practitioners to define logical formula representing their intentions and priorities within multi-objective reinforcement learning. Our novel Balanced Policy Gradient algorithm leverages FPL specifications to achieve up to 500\% better sample efficiency compared to Soft Actor Critic. Notably, this work constitutes the first implementation of non-linear utility scalarization design, specifically for continuous control problems.
♻ ☆ GDRNPP: A Geometry-guided and Fully Learning-based Object Pose Estimator
6D pose estimation of rigid objects is a long-standing and challenging task in computer vision. Recently, the emergence of deep learning reveals the potential of Convolutional Neural Networks (CNNs) to predict reliable 6D poses. Given that direct pose regression networks currently exhibit suboptimal performance, most methods still resort to traditional techniques to varying degrees. For example, top-performing methods often adopt an indirect strategy by first establishing 2D-3D or 3D-3D correspondences followed by applying the RANSAC-based PnP or Kabsch algorithms, and further employing ICP for refinement. Despite the performance enhancement, the integration of traditional techniques makes the networks time-consuming and not end-to-end trainable. Orthogonal to them, this paper introduces a fully learning-based object pose estimator. In this work, we first perform an in-depth investigation of both direct and indirect methods and propose a simple yet effective Geometry-guided Direct Regression Network (GDRN) to learn the 6D pose from monocular images in an end-to-end manner. Afterwards, we introduce a geometry-guided pose refinement module, enhancing pose accuracy when extra depth data is available. Guided by the predicted coordinate map, we build an end-to-end differentiable architecture that establishes robust and accurate 3D-3D correspondences between the observed and rendered RGB-D images to refine the pose. Our enhanced pose estimation pipeline GDRNPP (GDRN Plus Plus) conquered the leaderboard of the BOP Challenge for two consecutive years, becoming the first to surpass all prior methods that relied on traditional techniques in both accuracy and speed. The code and models are available at https://github.com/shanice-l/gdrnpp_bop2022.
comment: accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), code: https://github.com/shanice-l/gdrnpp_bop2022
Graphics 3
♻ ☆ MTGS: Multi-Traversal Gaussian Splatting
Multi-traversal data, commonly collected through daily commutes or by self-driving fleets, provides multiple viewpoints for scene reconstruction within a road block. This data offers significant potential for high-quality novel view synthesis, which is crucial for applications such as autonomous vehicle simulators. However, inherent challenges in multi-traversal data often result in suboptimal reconstruction quality, including variations in appearance and the presence of dynamic objects. To address these issues, we propose Multi-Traversal Gaussian Splatting (MTGS), a novel approach that reconstructs high-quality driving scenes from arbitrarily collected multi-traversal data by modeling a shared static geometry while separately handling dynamic elements and appearance variations. Our method employs a multi-traversal dynamic scene graph with a shared static node and traversal-specific dynamic nodes, complemented by color correction nodes with learnable spherical harmonics coefficient residuals. This approach enables high-fidelity novel view synthesis and provides flexibility to navigate any viewpoint. We conduct extensive experiments on a large-scale driving dataset, nuPlan, with multi-traversal data. Our results demonstrate that MTGS improves LPIPS by 23.5% and geometry accuracy by 46.3% compared to single-traversal baselines. The code and data would be available to the public.
♻ ☆ DiffusionRenderer: Neural Inverse and Forward Rendering with Video Diffusion Models CVPR 2025
Understanding and modeling lighting effects are fundamental tasks in computer vision and graphics. Classic physically-based rendering (PBR) accurately simulates the light transport, but relies on precise scene representations--explicit 3D geometry, high-quality material properties, and lighting conditions--that are often impractical to obtain in real-world scenarios. Therefore, we introduce DiffusionRenderer, a neural approach that addresses the dual problem of inverse and forward rendering within a holistic framework. Leveraging powerful video diffusion model priors, the inverse rendering model accurately estimates G-buffers from real-world videos, providing an interface for image editing tasks, and training data for the rendering model. Conversely, our rendering model generates photorealistic images from G-buffers without explicit light transport simulation. Experiments demonstrate that DiffusionRenderer effectively approximates inverse and forwards rendering, consistently outperforming the state-of-the-art. Our model enables practical applications from a single video input--including relighting, material editing, and realistic object insertion.
comment: CVPR 2025; project page: research.nvidia.com/labs/toronto-ai/DiffusionRenderer/
♻ ☆ LAYOUTDREAMER: Physics-guided Layout for Text-to-3D Compositional Scene Generation
Recently, the field of text-guided 3D scene generation has garnered significant attention. High-quality generation that aligns with physical realism and high controllability is crucial for practical 3D scene applications. However, existing methods face fundamental limitations: (i) difficulty capturing complex relationships between multiple objects described in the text, (ii) inability to generate physically plausible scene layouts, and (iii) lack of controllability and extensibility in compositional scenes. In this paper, we introduce LayoutDreamer, a framework that leverages 3D Gaussian Splatting (3DGS) to facilitate high-quality, physically consistent compositional scene generation guided by text. Specifically, given a text prompt, we convert it into a directed scene graph and adaptively adjust the density and layout of the initial compositional 3D Gaussians. Subsequently, dynamic camera adjustments are made based on the training focal point to ensure entity-level generation quality. Finally, by extracting directed dependencies from the scene graph, we tailor physical and layout energy to ensure both realism and flexibility. Comprehensive experiments demonstrate that LayoutDreamer outperforms other compositional scene generation quality and semantic alignment methods. Specifically, it achieves state-of-the-art (SOTA) performance in the multiple objects generation metric of T3Bench.
Artificial Intelligence 63
☆ Reasoning with LLMs for Zero-Shot Vulnerability Detection
Automating software vulnerability detection (SVD) remains a critical challenge in an era of increasingly complex and interdependent software systems. Despite significant advances in Large Language Models (LLMs) for code analysis, prevailing evaluation methodologies often lack the \textbf{context-aware robustness} necessary to capture real-world intricacies and cross-component interactions. To address these limitations, we present \textbf{VulnSage}, a comprehensive evaluation framework and a dataset curated from diverse, large-scale open-source system software projects developed in C/C++. Unlike prior datasets, it leverages a heuristic noise pre-filtering approach combined with LLM-based reasoning to ensure a representative and minimally noisy spectrum of vulnerabilities. The framework supports multi-granular analysis across function, file, and inter-function levels and employs four diverse zero-shot prompt strategies: Baseline, Chain-of-Thought, Think, and Think & Verify. Through this evaluation, we uncover that structured reasoning prompts substantially improve LLM performance, with Think & Verify reducing ambiguous responses from 20.3% to 9.1% while increasing accuracy. We further demonstrate that code-specialized models consistently outperform general-purpose alternatives, with performance varying significantly across vulnerability types, revealing that no single approach universally excels across all security contexts. Link to dataset and codes: https://github.com/Erroristotle/VulnSage.git
☆ Think Before Refusal : Triggering Safety Reflection in LLMs to Mitigate False Refusal Behavior
Recent advancements in large language models (LLMs) have demonstrated that fine-tuning and human alignment can render LLMs harmless. In practice, such "harmlessness" behavior is mainly achieved by training models to reject harmful requests, such as "Explain how to burn down my neighbor's house", where the model appropriately declines to respond. However, this approach can inadvertently result in false refusal, where models reject benign queries as well, such as "Tell me how to kill a Python process". In this work, we demonstrate that prompting safety reflection before generating a response can mitigate false refusal behavior. Building on this finding, we introduce the Think-Before-Refusal (TBR) schema and conduct safety-aware instruction fine-tuning incorporating safety reflection. In an ablation study across 15 pre-trained models, we show that models fine-tuned with safety reflection significantly reduce false refusal behavior while maintaining safety and overall performance compared to those fine-tuned without safety reflection.
comment: 18 pages, 23 figures
☆ good4cir: Generating Detailed Synthetic Captions for Composed Image Retrieval
Composed image retrieval (CIR) enables users to search images using a reference image combined with textual modifications. Recent advances in vision-language models have improved CIR, but dataset limitations remain a barrier. Existing datasets often rely on simplistic, ambiguous, or insufficient manual annotations, hindering fine-grained retrieval. We introduce good4cir, a structured pipeline leveraging vision-language models to generate high-quality synthetic annotations. Our method involves: (1) extracting fine-grained object descriptions from query images, (2) generating comparable descriptions for target images, and (3) synthesizing textual instructions capturing meaningful transformations between images. This reduces hallucination, enhances modification diversity, and ensures object-level consistency. Applying our method improves existing datasets and enables creating new datasets across diverse domains. Results demonstrate improved retrieval accuracy for CIR models trained on our pipeline-generated datasets. We release our dataset construction framework to support further research in CIR and multi-modal retrieval.
Detecting and Mitigating DDoS Attacks with AI: A Survey
Distributed Denial of Service attacks represent an active cybersecurity research problem. Recent research shifted from static rule-based defenses towards AI-based detection and mitigation. This comprehensive survey covers several key topics. Preeminently, state-of-the-art AI detection methods are discussed. An in-depth taxonomy based on manual expert hierarchies and an AI-generated dendrogram are provided, thus settling DDoS categorization ambiguities. An important discussion on available datasets follows, covering data format options and their role in training AI detection methods together with adversarial training and examples augmentation. Beyond detection, AI based mitigation techniques are surveyed as well. Finally, multiple open research directions are proposed.
☆ A Causal Adjustment Module for Debiasing Scene Graph Generation
While recent debiasing methods for Scene Graph Generation (SGG) have shown impressive performance, these efforts often attribute model bias solely to the long-tail distribution of relationships, overlooking the more profound causes stemming from skewed object and object pair distributions. In this paper, we employ causal inference techniques to model the causality among these observed skewed distributions. Our insight lies in the ability of causal inference to capture the unobservable causal effects between complex distributions, which is crucial for tracing the roots of model bias. Specifically, we introduce the Mediator-based Causal Chain Model (MCCM), which, in addition to modeling causality among objects, object pairs, and relationships, incorporates mediator variables, i.e., cooccurrence distribution, for complementing the causality. Following this, we propose the Causal Adjustment Module (CAModule) to estimate the modeled causal structure, using variables from MCCM as inputs to produce a set of adjustment factors aimed at correcting biased model predictions. Moreover, our method enables the composition of zero-shot relationships, thereby enhancing the model's ability to recognize such relationships. Experiments conducted across various SGG backbones and popular benchmarks demonstrate that CAModule achieves state-of-the-art mean recall rates, with significant improvements also observed on the challenging zero-shot recall rate metric.
comment: 18 pages, 8 tables, 10 figures
☆ Adapt, Agree, Aggregate: Semi-Supervised Ensemble Labeling for Graph Convolutional Networks
In this paper, we propose a novel framework that combines ensemble learning with augmented graph structures to improve the performance and robustness of semi-supervised node classification in graphs. By creating multiple augmented views of the same graph, our approach harnesses the "wisdom of a diverse crowd", mitigating the challenges posed by noisy graph structures. Leveraging ensemble learning allows us to simultaneously achieve three key goals: adaptive confidence threshold selection based on model agreement, dynamic determination of the number of high-confidence samples for training, and robust extraction of pseudo-labels to mitigate confirmation bias. Our approach uniquely integrates adaptive ensemble consensus to flexibly guide pseudo-label extraction and sample selection, reducing the risks of error accumulation and improving robustness. Furthermore, the use of ensemble-driven consensus for pseudo-labeling captures subtle patterns that individual models often overlook, enabling the model to generalize better. Experiments on several real-world datasets demonstrate the effectiveness of our proposed method.
☆ A Study on the Improvement of Code Generation Quality Using Large Language Models Leveraging Product Documentation
Research on using Large Language Models (LLMs) in system development is expanding, especially in automated code and test generation. While E2E testing is vital for ensuring application quality, most test generation research has focused on unit tests, with limited work on E2E test code. This study proposes a method for automatically generating E2E test code from product documentation such as manuals, FAQs, and tutorials using LLMs with tailored prompts. The two step process interprets documentation intent and produces executable test code. Experiments on a web app with six key features (e.g., authentication, profile, discussion) showed that tests generated from product documentation had high compilation success and functional coverage, outperforming those based on requirement specs and user stories. These findings highlight the potential of product documentation to improve E2E test quality and, by extension, software quality.
comment: 12 pages, 5 figures and 10 tables
☆ FundusGAN: A Hierarchical Feature-Aware Generative Framework for High-Fidelity Fundus Image Generation
Recent advancements in ophthalmology foundation models such as RetFound have demonstrated remarkable diagnostic capabilities but require massive datasets for effective pre-training, creating significant barriers for development and deployment. To address this critical challenge, we propose FundusGAN, a novel hierarchical feature-aware generative framework specifically designed for high-fidelity fundus image synthesis. Our approach leverages a Feature Pyramid Network within its encoder to comprehensively extract multi-scale information, capturing both large anatomical structures and subtle pathological features. The framework incorporates a modified StyleGAN-based generator with dilated convolutions and strategic upsampling adjustments to preserve critical retinal structures while enhancing pathological detail representation. Comprehensive evaluations on the DDR, DRIVE, and IDRiD datasets demonstrate that FundusGAN consistently outperforms state-of-the-art methods across multiple metrics (SSIM: 0.8863, FID: 54.2, KID: 0.0436 on DDR). Furthermore, disease classification experiments reveal that augmenting training data with FundusGAN-generated images significantly improves diagnostic accuracy across multiple CNN architectures (up to 6.49\% improvement with ResNet50). These results establish FundusGAN as a valuable foundation model component that effectively addresses data scarcity challenges in ophthalmological AI research, enabling more robust and generalizable diagnostic systems while reducing dependency on large-scale clinical data collection.
☆ Metacognition in Content-Centric Computational Cognitive C4 Modeling
For AI agents to emulate human behavior, they must be able to perceive, meaningfully interpret, store, and use large amounts of information about the world, themselves, and other agents. Metacognition is a necessary component of all of these processes. In this paper, we briefly a) introduce content-centric computational cognitive (C4) modeling for next-generation AI agents; b) review the long history of developing C4 agents at RPI's LEIA (Language-Endowed Intelligent Agents) Lab; c) discuss our current work on extending LEIAs' cognitive capabilities to cognitive robotic applications developed using a neuro symbolic processing model; and d) sketch plans for future developments in this paradigm that aim to overcome underappreciated limitations of currently popular, LLM-driven methods in AI.
comment: METACOG-25: 2nd Workshop on Metacognitive Prediction of AI Behavior
☆ OvercookedV2: Rethinking Overcooked for Zero-Shot Coordination
AI agents hold the potential to transform everyday life by helping humans achieve their goals. To do this successfully, agents need to be able to coordinate with novel partners without prior interaction, a setting known as zero-shot coordination (ZSC). Overcooked has become one of the most popular benchmarks for evaluating coordination capabilities of AI agents and learning algorithms. In this work, we investigate the origins of ZSC challenges in Overcooked. We introduce a state augmentation mechanism which mixes states that might be encountered when paired with unknown partners into the training distribution, reducing the out-of-distribution challenge associated with ZSC. We show that independently trained agents under this algorithm coordinate successfully in Overcooked. Our results suggest that ZSC failure can largely be attributed to poor state coverage under self-play rather than more sophisticated coordination challenges. The Overcooked environment is therefore not suitable as a ZSC benchmark. To address these shortcomings, we introduce OvercookedV2, a new version of the benchmark, which includes asymmetric information and stochasticity, facilitating the creation of interesting ZSC scenarios. To validate OvercookedV2, we conduct experiments demonstrating that mere exhaustive state coverage is insufficient to coordinate well. Finally, we use OvercookedV2 to build a new range of coordination challenges, including ones that require test time protocol formation, and we demonstrate the need for new coordination algorithms that can adapt online. We hope that OvercookedV2 will help benchmark the next generation of ZSC algorithms and advance collaboration between AI agents and humans.
☆ Feather-SQL: A Lightweight NL2SQL Framework with Dual-Model Collaboration Paradigm for Small Language Models
Natural Language to SQL (NL2SQL) has seen significant advancements with large language models (LLMs). However, these models often depend on closed-source systems and high computational resources, posing challenges in data privacy and deployment. In contrast, small language models (SLMs) struggle with NL2SQL tasks, exhibiting poor performance and incompatibility with existing frameworks. To address these issues, we introduce Feather-SQL, a new lightweight framework tailored for SLMs. Feather-SQL improves SQL executability and accuracy through 1) schema pruning and linking, 2) multi-path and multi-candidate generation. Additionally, we introduce the 1+1 Model Collaboration Paradigm, which pairs a strong general-purpose chat model with a fine-tuned SQL specialist, combining strong analytical reasoning with high-precision SQL generation. Experimental results on BIRD demonstrate that Feather-SQL improves NL2SQL performance on SLMs, with around 10% boost for models without fine-tuning. The proposed paradigm raises the accuracy ceiling of SLMs to 54.76%, highlighting its effectiveness.
☆ A Roadmap Towards Improving Multi-Agent Reinforcement Learning With Causal Discovery And Inference
Causal reasoning is increasingly used in Reinforcement Learning (RL) to improve the learning process in several dimensions: efficacy of learned policies, efficiency of convergence, generalisation capabilities, safety and interpretability of behaviour. However, applications of causal reasoning to Multi-Agent RL (MARL) are still mostly unexplored. In this paper, we take the first step in investigating the opportunities and challenges of applying causal reasoning in MARL. We measure the impact of a simple form of causal augmentation in state-of-the-art MARL scenarios increasingly requiring cooperation, and with state-of-the-art MARL algorithms exploiting various degrees of collaboration between agents. Then, we discuss the positive as well as negative results achieved, giving us the chance to outline the areas where further research may help to successfully transfer causal RL to the multi-agent setting.
☆ GaussianFocus: Constrained Attention Focus for 3D Gaussian Splatting
Recent developments in 3D reconstruction and neural rendering have significantly propelled the capabilities of photo-realistic 3D scene rendering across various academic and industrial fields. The 3D Gaussian Splatting technique, alongside its derivatives, integrates the advantages of primitive-based and volumetric representations to deliver top-tier rendering quality and efficiency. Despite these advancements, the method tends to generate excessive redundant noisy Gaussians overfitted to every training view, which degrades the rendering quality. Additionally, while 3D Gaussian Splatting excels in small-scale and object-centric scenes, its application to larger scenes is hindered by constraints such as limited video memory, excessive optimization duration, and variable appearance across views. To address these challenges, we introduce GaussianFocus, an innovative approach that incorporates a patch attention algorithm to refine rendering quality and implements a Gaussian constraints strategy to minimize redundancy. Moreover, we propose a subdivision reconstruction strategy for large-scale scenes, dividing them into smaller, manageable blocks for individual training. Our results indicate that GaussianFocus significantly reduces unnecessary Gaussians and enhances rendering quality, surpassing existing State-of-The-Art (SoTA) methods. Furthermore, we demonstrate the capability of our approach to effectively manage and render large scenes, such as urban environments, whilst maintaining high fidelity in the visual output.
☆ Progressive Prompt Detailing for Improved Alignment in Text-to-Image Generative Models
Text-to-image generative models often struggle with long prompts detailing complex scenes, diverse objects with distinct visual characteristics and spatial relationships. In this work, we propose SCoPE (Scheduled interpolation of Coarse-to-fine Prompt Embeddings), a training-free method to improve text-to-image alignment by progressively refining the input prompt in a coarse-to-fine-grained manner. Given a detailed input prompt, we first decompose it into multiple sub-prompts which evolve from describing broad scene layout to highly intricate details. During inference, we interpolate between these sub-prompts and thus progressively introduce finer-grained details into the generated image. Our training-free plug-and-play approach significantly enhances prompt alignment, achieves an average improvement of up to +4% in Visual Question Answering (VQA) scores over the Stable Diffusion baselines on 85% of the prompts from the GenAI-Bench dataset.
☆ Every Sample Matters: Leveraging Mixture-of-Experts and High-Quality Data for Efficient and Accurate Code LLM
Recent advancements in code large language models (LLMs) have demonstrated remarkable capabilities in code generation and understanding. It is still challenging to build a code LLM with comprehensive performance yet ultimate efficiency. Many attempts have been released in the open source community to break the trade-off between performance and efficiency, such as the Qwen Coder series and the DeepSeek Coder series. This paper introduces yet another attempt in this area, namely Ling-Coder-Lite. We leverage the efficient Mixture-of-Experts (MoE) architecture along with a set of high-quality data curation methods (especially those based on program analytics) to build an efficient yet powerful code LLM. Ling-Coder-Lite exhibits on-par performance on 12 representative coding benchmarks compared to state-of-the-art models of similar size, such as Qwen2.5-Coder-7B and DeepSeek-Coder-V2-Lite, while offering competitive latency and throughput. In practice, we achieve a 50\% reduction in deployment resources compared to the similar-sized dense model without performance loss. To facilitate further research and development in this area, we open-source our models as well as a substantial portion of high-quality data for the annealing and post-training stages. The models and data can be accessed at~\url{https://huggingface.co/inclusionAI/Ling-Coder-lite}.
comment: 20 pages, 6 figures
☆ Aligning Foundation Model Priors and Diffusion-Based Hand Interactions for Occlusion-Resistant Two-Hand Reconstruction
Two-hand reconstruction from monocular images faces persistent challenges due to complex and dynamic hand postures and occlusions, causing significant difficulty in achieving plausible interaction alignment. Existing approaches struggle with such alignment issues, often resulting in misalignment and penetration artifacts. To tackle this, we propose a novel framework that attempts to precisely align hand poses and interactions by synergistically integrating foundation model-driven 2D priors with diffusion-based interaction refinement for occlusion-resistant two-hand reconstruction. First, we introduce a Fusion Alignment Encoder that learns to align fused multimodal priors keypoints, segmentation maps, and depth cues from foundation models during training. This provides robust structured guidance, further enabling efficient inference without foundation models at test time while maintaining high reconstruction accuracy. Second, we employ a two-hand diffusion model explicitly trained to transform interpenetrated poses into plausible, non-penetrated interactions, leveraging gradient-guided denoising to correct artifacts and ensure realistic spatial relations. Extensive evaluations demonstrate that our method achieves state-of-the-art performance on InterHand2.6M, FreiHAND, and HIC datasets, significantly advancing occlusion handling and interaction robustness.
☆ MEPNet: Medical Entity-balanced Prompting Network for Brain CT Report Generation AAAI 2025
The automatic generation of brain CT reports has gained widespread attention, given its potential to assist radiologists in diagnosing cranial diseases. However, brain CT scans involve extensive medical entities, such as diverse anatomy regions and lesions, exhibiting highly inconsistent spatial patterns in 3D volumetric space. This leads to biased learning of medical entities in existing methods, resulting in repetitiveness and inaccuracy in generated reports. To this end, we propose a Medical Entity-balanced Prompting Network (MEPNet), which harnesses the large language model (LLM) to fairly interpret various entities for accurate brain CT report generation. By introducing the visual embedding and the learning status of medical entities as enriched clues, our method prompts the LLM to balance the learning of diverse entities, thereby enhancing reports with comprehensive findings. First, to extract visual embedding of entities, we propose Knowledge-driven Joint Attention to explore and distill entity patterns using both explicit and implicit medical knowledge. Then, a Learning Status Scorer is designed to evaluate the learning of entity visual embeddings, resulting in unique learning status for individual entities. Finally, these entity visual embeddings and status are elaborately integrated into multi-modal prompts, to guide the text generation of LLM. This process allows LLM to self-adapt the learning process for biased-fitted entities, thereby covering detailed findings in generated reports. We conduct experiments on two brain CT report generation benchmarks, showing the effectiveness in clinical accuracy and text coherence.
comment: AAAI 2025 Oral Paper
☆ Energy-Aware LLMs: A step towards sustainable AI for downstream applications
Advanced Large Language Models (LLMs) have revolutionized various fields, including communication networks, sparking an innovation wave that has led to new applications and services, and significantly enhanced solution schemes. Despite all these impressive developments, most LLMs typically require huge computational resources, resulting in terribly high energy consumption. Thus, this research study proposes an end-to-end pipeline that investigates the trade-off between energy efficiency and model performance for an LLM during fault ticket analysis in communication networks. It further evaluates the pipeline performance using two real-world datasets for the tasks of root cause analysis and response feedback in a communication network. Our results show that an appropriate combination of quantization and pruning techniques is able to reduce energy consumption while significantly improving model performance.
comment: This work has been submitted to V. International Conference on Electrical, Computer and Energy Technologies (ICECET 2025) for possible publication
☆ Lifelong Evolution of Swarms
Adapting to task changes without forgetting previous knowledge is a key skill for intelligent systems, and a crucial aspect of lifelong learning. Swarm controllers, however, are typically designed for specific tasks, lacking the ability to retain knowledge across changing tasks. Lifelong learning, on the other hand, focuses on individual agents with limited insights into the emergent abilities of a collective like a swarm. To address this gap, we introduce a lifelong evolutionary framework for swarms, where a population of swarm controllers is evolved in a dynamic environment that incrementally presents novel tasks. This requires evolution to find controllers that quickly adapt to new tasks while retaining knowledge of previous ones, as they may reappear in the future. We discover that the population inherently preserves information about previous tasks, and it can reuse it to foster adaptation and mitigate forgetting. In contrast, the top-performing individual for a given task catastrophically forgets previous tasks. To mitigate this phenomenon, we design a regularization process for the evolutionary algorithm, reducing forgetting in top-performing individuals. Evolving swarms in a lifelong fashion raises fundamental questions on the current state of deep lifelong learning and on the robustness of swarm controllers in dynamic environments.
comment: Accepted as full paper at GECCO 2025
☆ CODA: Repurposing Continuous VAEs for Discrete Tokenization
Discrete visual tokenizers transform images into a sequence of tokens, enabling token-based visual generation akin to language models. However, this process is inherently challenging, as it requires both compressing visual signals into a compact representation and discretizing them into a fixed set of codes. Traditional discrete tokenizers typically learn the two tasks jointly, often leading to unstable training, low codebook utilization, and limited reconstruction quality. In this paper, we introduce \textbf{CODA}(\textbf{CO}ntinuous-to-\textbf{D}iscrete \textbf{A}daptation), a framework that decouples compression and discretization. Instead of training discrete tokenizers from scratch, CODA adapts off-the-shelf continuous VAEs -- already optimized for perceptual compression -- into discrete tokenizers via a carefully designed discretization process. By primarily focusing on discretization, CODA ensures stable and efficient training while retaining the strong visual fidelity of continuous VAEs. Empirically, with $\mathbf{6 \times}$ less training budget than standard VQGAN, our approach achieves a remarkable codebook utilization of 100% and notable reconstruction FID (rFID) of $\mathbf{0.43}$ and $\mathbf{1.34}$ for $8 \times$ and $16 \times$ compression on ImageNet 256$\times$ 256 benchmark.
comment: Project page: https://lzy-tony.github.io/coda
☆ Bandwidth Reservation for Time-Critical Vehicular Applications: A Multi-Operator Environment
Onsite bandwidth reservation requests often face challenges such as price fluctuations and fairness issues due to unpredictable bandwidth availability and stringent latency requirements. Requesting bandwidth in advance can mitigate the impact of these fluctuations and ensure timely access to critical resources. In a multi-Mobile Network Operator (MNO) environment, vehicles need to select cost-effective and reliable resources for their safety-critical applications. This research aims to minimize resource costs by finding the best price among multiple MNOs. It formulates multi-operator scenarios as a Markov Decision Process (MDP), utilizing a Deep Reinforcement Learning (DRL) algorithm, specifically Dueling Deep Q-Learning. For efficient and stable learning, we propose a novel area-wise approach and an adaptive MDP synthetic close to the real environment. The Temporal Fusion Transformer (TFT) is used to handle time-dependent data and model training. Furthermore, the research leverages Amazon spot price data and adopts a multi-phase training approach, involving initial training on synthetic data, followed by real-world data. These phases enable the DRL agent to make informed decisions using insights from historical data and real-time observations. The results show that our model leads to significant cost reductions, up to 40%, compared to scenarios without a policy model in such a complex environment.
comment: 14 pages, 11 figures
☆ Building Resource-Constrained Language Agents: A Korean Case Study on Chemical Toxicity Information
Language agents powered by large language models (LLMs) face significant deployment challenges in resource-constrained environments, particularly for specialized domains and less-common languages. This paper presents Tox-chat, a Korean chemical toxicity information agent devised within these limitations. We propose two key innovations: a context-efficient architecture that reduces token consumption through hierarchical section search, and a scenario-based dialogue generation methodology that effectively distills tool-using capabilities from larger models. Experimental evaluations demonstrate that our fine-tuned 8B parameter model substantially outperforms both untuned models and baseline approaches, in terms of DB faithfulness and preference. Our work offers valuable insights for researchers developing domain-specific language agents under practical constraints.
comment: Preprint
☆ V2P-Bench: Evaluating Video-Language Understanding with Visual Prompts for Better Human-Model Interaction
Large Vision-Language Models (LVLMs) have made significant progress in the field of video understanding recently. However, current benchmarks uniformly lean on text prompts for evaluation, which often necessitate complex referential language and fail to provide precise spatial and temporal references. This limitation diminishes the experience and efficiency of human-model interaction. To address this limitation, we propose the Video Visual Prompt Benchmark(V2P-Bench), a comprehensive benchmark specifically designed to evaluate LVLMs' video understanding capabilities in multimodal human-model interaction scenarios. V2P-Bench includes 980 unique videos and 1,172 QA pairs, covering 5 main tasks and 12 dimensions, facilitating instance-level fine-grained understanding aligned with human cognition. Benchmarking results reveal that even the most powerful models perform poorly on V2P-Bench (65.4% for GPT-4o and 67.9% for Gemini-1.5-Pro), significantly lower than the human experts' 88.3%, highlighting the current shortcomings of LVLMs in understanding video visual prompts. We hope V2P-Bench will serve as a foundation for advancing multimodal human-model interaction and video understanding evaluation. Project page: https://github.com/gaotiexinqu/V2P-Bench.
☆ Aportes para el cumplimiento del Reglamento (UE) 2024/1689 en robótica y sistemas autónomos
Cybersecurity in robotics stands out as a key aspect within Regulation (EU) 2024/1689, also known as the Artificial Intelligence Act, which establishes specific guidelines for intelligent and automated systems. A fundamental distinction in this regulatory framework is the difference between robots with Artificial Intelligence (AI) and those that operate through automation systems without AI, since the former are subject to stricter security requirements due to their learning and autonomy capabilities. This work analyzes cybersecurity tools applicable to advanced robotic systems, with special emphasis on the protection of knowledge bases in cognitive architectures. Furthermore, a list of basic tools is proposed to guarantee the security, integrity, and resilience of these systems, and a practical case is presented, focused on the analysis of robot knowledge management, where ten evaluation criteria are defined to ensure compliance with the regulation and reduce risks in human-robot interaction (HRI) environments.
comment: 9 pages, 1 figure, in Spanish
☆ DynASyn: Multi-Subject Personalization Enabling Dynamic Action Synthesis AAAI 2025
Recent advances in text-to-image diffusion models spurred research on personalization, i.e., a customized image synthesis, of subjects within reference images. Although existing personalization methods are able to alter the subjects' positions or to personalize multiple subjects simultaneously, they often struggle to modify the behaviors of subjects or their dynamic interactions. The difficulty is attributable to overfitting to reference images, which worsens if only a single reference image is available. We propose DynASyn, an effective multi-subject personalization from a single reference image addressing these challenges. DynASyn preserves the subject identity in the personalization process by aligning concept-based priors with subject appearances and actions. This is achieved by regularizing the attention maps between the subject token and images through concept-based priors. In addition, we propose concept-based prompt-and-image augmentation for an enhanced trade-off between identity preservation and action diversity. We adopt an SDE-based editing guided by augmented prompts to generate diverse appearances and actions while maintaining identity consistency in the augmented images. Experiments show that DynASyn is capable of synthesizing highly realistic images of subjects with novel contexts and dynamic interactions with the surroundings, and outperforms baseline methods in both quantitative and qualitative aspects.
comment: Accepted at AAAI 2025
☆ A Survey on Mathematical Reasoning and Optimization with Large Language Models
Mathematical reasoning and optimization are fundamental to artificial intelligence and computational problem-solving. Recent advancements in Large Language Models (LLMs) have significantly improved AI-driven mathematical reasoning, theorem proving, and optimization techniques. This survey explores the evolution of mathematical problem-solving in AI, from early statistical learning approaches to modern deep learning and transformer-based methodologies. We review the capabilities of pretrained language models and LLMs in performing arithmetic operations, complex reasoning, theorem proving, and structured symbolic computation. A key focus is on how LLMs integrate with optimization and control frameworks, including mixed-integer programming, linear quadratic control, and multi-agent optimization strategies. We examine how LLMs assist in problem formulation, constraint generation, and heuristic search, bridging theoretical reasoning with practical applications. We also discuss enhancement techniques such as Chain-of-Thought reasoning, instruction tuning, and tool-augmented methods that improve LLM's problem-solving performance. Despite their progress, LLMs face challenges in numerical precision, logical consistency, and proof verification. Emerging trends such as hybrid neural-symbolic reasoning, structured prompt engineering, and multi-step self-correction aim to overcome these limitations. Future research should focus on interpretability, integration with domain-specific solvers, and improving the robustness of AI-driven decision-making. This survey offers a comprehensive review of the current landscape and future directions of mathematical reasoning and optimization with LLMs, with applications across engineering, finance, and scientific research.
☆ Towards Invisible Backdoor Attack on Text-to-Image Diffusion Model
Backdoor attacks targeting text-to-image diffusion models have advanced rapidly, enabling attackers to implant malicious triggers into these models to manipulate their outputs. However, current backdoor samples often exhibit two key abnormalities compared to benign samples: 1) Semantic Consistency, where backdoor prompts tend to generate images with similar semantic content even with significant textual variations to the prompts; 2) Attention Consistency, where the trigger induces consistent structural responses in the cross-attention maps. These consistencies leave detectable traces for defenders, making backdoors easier to identify. To enhance the stealthiness of backdoor samples, we propose a novel Invisible Backdoor Attack (IBA) by explicitly mitigating these consistencies. Specifically, our approach leverages syntactic structures as backdoor triggers to amplify the sensitivity to textual variations, effectively breaking down the semantic consistency. Besides, a regularization method based on Kernel Maximum Mean Discrepancy (KMMD) is proposed to align the distribution of cross-attention responses between backdoor and benign samples, thereby disrupting attention consistency. Extensive experiments demonstrate that our IBA achieves a 97.5% attack success rate while exhibiting stronger resistance to defenses, with an average of over 98% backdoor samples bypassing three state-of-the-art detection mechanisms. The code is available at https://github.com/Robin-WZQ/IBA.
☆ Multi-modality Anomaly Segmentation on the Road
Semantic segmentation allows autonomous driving cars to understand the surroundings of the vehicle comprehensively. However, it is also crucial for the model to detect obstacles that may jeopardize the safety of autonomous driving systems. Based on our experiments, we find that current uni-modal anomaly segmentation frameworks tend to produce high anomaly scores for non-anomalous regions in images. Motivated by this empirical finding, we develop a multi-modal uncertainty-based anomaly segmentation framework, named MMRAS+, for autonomous driving systems. MMRAS+ effectively reduces the high anomaly outputs of non-anomalous classes by introducing text-modal using the CLIP text encoder. Indeed, MMRAS+ is the first multi-modal anomaly segmentation solution for autonomous driving. Moreover, we develop an ensemble module to further boost the anomaly segmentation performance. Experiments on RoadAnomaly, SMIYC, and Fishyscapes validation datasets demonstrate the superior performance of our method. The code is available in https://github.com/HengGao12/MMRAS_plus.
☆ Slide2Text: Leveraging LLMs for Personalized Textbook Generation from PowerPoint Presentations
The rapid advancements in Large Language Models (LLMs) have revolutionized educational technology, enabling innovative approaches to automated and personalized content creation. This paper introduces Slide2Text, a system that leverages LLMs to transform PowerPoint presentations into customized textbooks. By extracting slide content using OCR, organizing it into a coherent structure, and generating tailored materials such as explanations, exercises, and references, Slide2Text streamlines the textbook creation process. Flexible customization options further enhance its adaptability to diverse educational needs. The system highlights the potential of LLMs in modernizing textbook creation and improving educational accessibility. Future developments will explore multimedia inputs and advanced user customization features.
☆ GUI-Xplore: Empowering Generalizable GUI Agents with One Exploration CVPR 2025
GUI agents hold significant potential to enhance the experience and efficiency of human-device interaction. However, current methods face challenges in generalizing across applications (apps) and tasks, primarily due to two fundamental limitations in existing datasets. First, these datasets overlook developer-induced structural variations among apps, limiting the transferability of knowledge across diverse software environments. Second, many of them focus solely on navigation tasks, which restricts their capacity to represent comprehensive software architectures and complex user interactions. To address these challenges, we introduce GUI-Xplore, a dataset meticulously designed to enhance cross-application and cross-task generalization via an exploration-and-reasoning framework. GUI-Xplore integrates pre-recorded exploration videos providing contextual insights, alongside five hierarchically structured downstream tasks designed to comprehensively evaluate GUI agent capabilities. To fully exploit GUI-Xplore's unique features, we propose Xplore-Agent, a GUI agent framework that combines Action-aware GUI Modeling with Graph-Guided Environment Reasoning. Further experiments indicate that Xplore-Agent achieves a 10% improvement over existing methods in unfamiliar environments, yet there remains significant potential for further enhancement towards truly generalizable GUI agents.
comment: CVPR 2025
☆ PT-PINNs: A Parametric Engineering Turbulence Solver based on Physics-Informed Neural Networks
Physics-informed neural networks (PINNs) demonstrate promising potential in parameterized engineering turbulence optimization problems but face challenges, such as high data requirements and low computational accuracy when applied to engineering turbulence problems. This study proposes a framework that enhances the ability of PINNs to solve parametric turbulence problems without training datasets from experiments or CFD-Parametric Turbulence PINNs (PT-PINNs)). Two key methods are introduced to improve the accuracy and robustness of this framework. The first is a soft constraint method for turbulent viscosity calculation. The second is a pre-training method based on the conservation of flow rate in the flow field. The effectiveness of PT-PINNs is validated using a three-dimensional backward-facing step (BFS) turbulence problem with two varying parameters (Re = 3000-200000, ER = 1.1-1.5). PT-PINNs produce predictions that closely match experimental data and computational fluid dynamics (CFD) results across various conditions. Moreover, PT-PINNs offer a computational efficiency advantage over traditional CFD methods. The total time required to construct the parametric BFS turbulence model is 39 hours, one-sixteenth of the time required by traditional numerical methods. The inference time for a single-condition prediction is just 40 seconds-only 0.5% of a single CFD computation. These findings highlight the potential of PT-PINNs for future applications in engineering turbulence optimization problems.
☆ On the (im)possibility of sustainable artificial intelligence. Why it does not make sense to move faster when heading the wrong way
Artificial intelligence (AI) is currently considered a sustainability "game-changer" within and outside of academia. In order to discuss sustainable AI this article draws from insights by critical data and algorithm studies, STS, transformative sustainability science, critical computer science, and public interest theory. I argue that while there are indeed many sustainability-related use cases for AI, they are likely to have more overall drawbacks than benefits. To substantiate this claim, I differentiate three 'AI materialities' of the AI supply chain: first the literal materiality (e.g. water, cobalt, lithium, energy consumption etc.), second, the informational materiality (e.g. lots of data and centralised control necessary), and third, the social materiality (e.g. exploitative data work, communities harm by waste and pollution). In all materialities, effects are especially devastating for the global south while benefiting the global north. A second strong claim regarding sustainable AI circles around so called apolitical optimisation (e.g. regarding city traffic), however the optimisation criteria (e.g. cars, bikes, emissions, commute time, health) are purely political and have to be collectively negotiated before applying AI optimisation. Hence, sustainable AI, in principle, cannot break the glass ceiling of transformation and might even distract from necessary societal change. To address that I propose to stop 'unformation gathering' and to apply the 'small is beautiful' principle. This aims to contribute to an informed academic and collective negotiation on how to (not) integrate AI into the sustainability project while avoiding to reproduce the status quo by serving hegemonic interests between useful AI use cases, techno-utopian salvation narratives, technology-centred efficiency paradigms, the exploitative and extractivist character of AI and concepts of digital degrowth.
comment: 10 pages
☆ Intelligence Sequencing and the Path-Dependence of Intelligence Evolution: AGI-First vs. DCI-First as Irreversible Attractors
The trajectory of intelligence evolution is often framed around the emergence of artificial general intelligence (AGI) and its alignment with human values. This paper challenges that framing by introducing the concept of intelligence sequencing: the idea that the order in which AGI and decentralized collective intelligence (DCI) emerge determines the long-term attractor basin of intelligence. Using insights from dynamical systems, evolutionary game theory, and network models, it argues that intelligence follows a path-dependent, irreversible trajectory. Once development enters a centralized (AGI-first) or decentralized (DCI-first) regime, transitions become structurally infeasible due to feedback loops and resource lock-in. Intelligence attractors are modeled in functional state space as the co-navigation of conceptual and adaptive fitness spaces. Early-phase structuring constrains later dynamics, much like renormalization in physics. This has major implications for AI safety: traditional alignment assumes AGI will emerge and must be controlled after the fact, but this paper argues that intelligence sequencing is more foundational. If AGI-first architectures dominate before DCI reaches critical mass, hierarchical monopolization and existential risk become locked in. If DCI-first emerges, intelligence stabilizes around decentralized cooperative equilibrium. The paper further explores whether intelligence structurally biases itself toward an attractor based on its self-modeling method -- externally imposed axioms (favoring AGI) vs. recursive internal visualization (favoring DCI). Finally, it proposes methods to test this theory via simulations, historical lock-in case studies, and intelligence network analysis. The findings suggest that intelligence sequencing is a civilizational tipping point: determining whether the future is shaped by unbounded competition or unbounded cooperation.
☆ Can LLMs Automate Fact-Checking Article Writing?
Automatic fact-checking aims to support professional fact-checkers by offering tools that can help speed up manual fact-checking. Yet, existing frameworks fail to address the key step of producing output suitable for broader dissemination to the general public: while human fact-checkers communicate their findings through fact-checking articles, automated systems typically produce little or no justification for their assessments. Here, we aim to bridge this gap. We argue for the need to extend the typical automatic fact-checking pipeline with automatic generation of full fact-checking articles. We first identify key desiderata for such articles through a series of interviews with experts from leading fact-checking organizations. We then develop QRAFT, an LLM-based agentic framework that mimics the writing workflow of human fact-checkers. Finally, we assess the practical usefulness of QRAFT through human evaluations with professional fact-checkers. Our evaluation shows that while QRAFT outperforms several previously proposed text-generation approaches, it lags considerably behind expert-written articles. We hope that our work will enable further research in this new and important direction.
comment: 10 pages, 4 figures, 6 tables
☆ Safe RLHF-V: Safe Reinforcement Learning from Human Feedback in Multimodal Large Language Models
Multimodal large language models (MLLMs) are critical for developing general-purpose AI assistants, yet they face growing safety risks. How can we ensure that MLLMs are safely aligned to prevent undesired behaviors such as discrimination, misinformation, or violations of ethical standards? In a further step, we need to explore how to fine-tune MLLMs to enhance reasoning performance while ensuring they satisfy safety constraints. Fundamentally, this can be formulated as a min-max optimization problem. In this study, we propose Safe RLHF-V, the first multimodal safety alignment framework that jointly optimizes helpfulness and safety using separate multimodal reward and cost models within a Lagrangian-based constrained optimization framework. Given that there is a lack of preference datasets that separate helpfulness and safety in multimodal scenarios, we introduce BeaverTails-V, the first open-source dataset with dual preference annotations for helpfulness and safety, along with multi-level safety labels (minor, moderate, severe). Additionally, we design a Multi-level Guardrail System to proactively defend against unsafe queries and adversarial attacks. By applying the Beaver-Guard-V moderation for 5 rounds of filtering and re-generation on the precursor model, the overall safety of the upstream model is significantly improved by an average of 40.9%. Experimental results demonstrate that fine-tuning different MLLMs with Safe RLHF can effectively enhance model helpfulness while ensuring improved safety. Specifically, Safe RLHF-V improves model safety by 34.2% and helpfulness by 34.3%. All of datasets, models, and code can be found at https://github.com/SafeRLHF-V to support the safety development of MLLMs and reduce potential societal risks.
☆ ComfyGPT: A Self-Optimizing Multi-Agent System for Comprehensive ComfyUI Workflow Generation
ComfyUI provides a widely-adopted, workflow-based interface that enables users to customize various image generation tasks through an intuitive node-based architecture. However, the intricate connections between nodes and diverse modules often present a steep learning curve for users. In this paper, we introduce ComfyGPT, the first self-optimizing multi-agent system designed to generate ComfyUI workflows based on task descriptions automatically. ComfyGPT comprises four specialized agents: ReformatAgent, FlowAgent, RefineAgent, and ExecuteAgent. The core innovation of ComfyGPT lies in two key aspects. First, it focuses on generating individual node links rather than entire workflows, significantly improving generation precision. Second, we proposed FlowAgent, a LLM-based workflow generation agent that uses both supervised fine-tuning (SFT) and reinforcement learning (RL) to improve workflow generation accuracy. Moreover, we introduce FlowDataset, a large-scale dataset containing 13,571 workflow-description pairs, and FlowBench, a comprehensive benchmark for evaluating workflow generation systems. We also propose four novel evaluation metrics: Format Validation (FV), Pass Accuracy (PA), Pass Instruct Alignment (PIA), and Pass Node Diversity (PND). Experimental results demonstrate that ComfyGPT significantly outperforms existing LLM-based methods in workflow generation.
☆ A Qualitative Study of User Perception of M365 AI Copilot
Adopting AI copilots in professional workflows presents opportunities for enhanced productivity, efficiency, and decision making. In this paper, we present results from a six month trial of M365 Copilot conducted at our organisation in 2024. A qualitative interview study was carried out with 27 participants. The study explored user perceptions of M365 Copilot's effectiveness, productivity impact, evolving expectations, ethical concerns, and overall satisfaction. Initial enthusiasm for the tool was met with mixed post trial experiences. While some users found M365 Copilot beneficial for tasks such as email coaching, meeting summaries, and content retrieval, others reported unmet expectations in areas requiring deeper contextual understanding, reasoning, and integration with existing workflows. Ethical concerns were a recurring theme, with users highlighting issues related to data privacy, transparency, and AI bias. While M365 Copilot demonstrated value in specific operational areas, its broader impact remained constrained by usability limitations and the need for human oversight to validate AI generated outputs.
☆ NaFM: Pre-training a Foundation Model for Small-Molecule Natural Products
Natural products, as metabolites from microorganisms, animals, or plants, exhibit diverse biological activities, making them crucial for drug discovery. Nowadays, existing deep learning methods for natural products research primarily rely on supervised learning approaches designed for specific downstream tasks. However, such one-model-for-a-task paradigm often lacks generalizability and leaves significant room for performance improvement. Additionally, existing molecular characterization methods are not well-suited for the unique tasks associated with natural products. To address these limitations, we have pre-trained a foundation model for natural products based on their unique properties. Our approach employs a novel pretraining strategy that is especially tailored to natural products. By incorporating contrastive learning and masked graph learning objectives, we emphasize evolutional information from molecular scaffolds while capturing side-chain information. Our framework achieves state-of-the-art (SOTA) results in various downstream tasks related to natural product mining and drug discovery. We first compare taxonomy classification with synthesized molecule-focused baselines to demonstrate that current models are inadequate for understanding natural synthesis. Furthermore, by diving into a fine-grained analysis at both the gene and microbial levels, NaFM demonstrates the ability to capture evolutionary information. Eventually, our method is experimented with virtual screening, illustrating informative natural product representations that can lead to more effective identification of potential drug candidates.
☆ A Modular Dataset to Demonstrate LLM Abstraction Capability ACL 2025
Large language models (LLMs) exhibit impressive capabilities but struggle with reasoning errors due to hallucinations and flawed logic. To investigate their internal representations of reasoning, we introduce ArrangementPuzzle, a novel puzzle dataset with structured solutions and automated stepwise correctness verification. We trained a classifier model on LLM activations on this dataset and found that it achieved over 80% accuracy in predicting reasoning correctness, implying that LLMs internally distinguish between correct and incorrect reasoning steps, with the strongest representations in middle-late Transformer layers. Further analysis reveals that LLMs encode abstract reasoning concepts within the middle activation layers of the transformer architecture, distinguishing logical from semantic equivalence. These findings provide insights into LLM reasoning mechanisms and contribute to improving AI reliability and interpretability, thereby offering the possibility to manipulate and refine LLM reasoning.
comment: 7 pages, 5 figures. Submitted to ACL 2025
☆ On The Sample Complexity Bounds In Bilevel Reinforcement Learning
Bilevel reinforcement learning (BRL) has emerged as a powerful mathematical framework for studying generative AI alignment and related problems. While several principled algorithmic frameworks have been proposed, key theoretical foundations, particularly those related to sample complexity, remain underexplored. Understanding and deriving tight sample complexity bounds are crucial for bridging the gap between theory and practice, guiding the development of more efficient algorithms. In this work, we present the first sample complexity result for BRL, achieving a bound of $\epsilon^{-4}$. This result extends to standard bilevel optimization problems, providing an interesting theoretical contribution with practical implications. To address the computational challenges associated with hypergradient estimation in bilevel optimization, we develop a first-order Hessian-free algorithm that does not rely on costly hypergradient computations. By leveraging matrix-free techniques and constrained optimization methods, our approach ensures scalability and practicality. Our findings pave the way for improved methods in AI alignment and other fields reliant on bilevel optimization.
☆ FairFlow: Mitigating Dataset Biases through Undecided Learning EMNLP 2024
Language models are prone to dataset biases, known as shortcuts and spurious correlations in data, which often result in performance drop on new data. We present a new debiasing framework called ``FairFlow'' that mitigates dataset biases by learning to be undecided in its predictions for data samples or representations associated with known or unknown biases. The framework introduces two key components: a suite of data and model perturbation operations that generate different biased views of input samples, and a contrastive objective that learns debiased and robust representations from the resulting biased views of samples. Experiments show that FairFlow outperforms existing debiasing methods, particularly against out-of-domain and hard test samples without compromising the in-domain performance
comment: EMNLP 2024
♻ ☆ Open Models, Closed Minds? On Agents Capabilities in Mimicking Human Personalities through Open Large Language Models AAAI 2025
The emergence of unveiling human-like behaviors in Large Language Models (LLMs) has led to a closer connection between NLP and human psychology. Scholars have been studying the inherent personalities exhibited by LLMs and attempting to incorporate human traits and behaviors into them. However, these efforts have primarily focused on commercially-licensed LLMs, neglecting the widespread use and notable advancements seen in Open LLMs. This work aims to address this gap by employing a set of 12 LLM Agents based on the most representative Open models and subject them to a series of assessments concerning the Myers-Briggs Type Indicator (MBTI) test and the Big Five Inventory (BFI) test. Our approach involves evaluating the intrinsic personality traits of Open LLM agents and determining the extent to which these agents can mimic human personalities when conditioned by specific personalities and roles. Our findings unveil that $(i)$ each Open LLM agent showcases distinct human personalities; $(ii)$ personality-conditioned prompting produces varying effects on the agents, with only few successfully mirroring the imposed personality, while most of them being ``closed-minded'' (i.e., they retain their intrinsic traits); and $(iii)$ combining role and personality conditioning can enhance the agents' ability to mimic human personalities. Our work represents a step up in understanding the dense relationship between NLP and human psychology through the lens of Open LLMs.
comment: Accepted and presented at the AAAI 2025 Conference. CHANGES in version v2: (i) Enhanced methodology and evaluation based on BFI in addition to MBTI, with expanded set of LLM agents; (ii) author list changed w.r.t. version (v1), see Acknowledgements
♻ ☆ 1000 Layer Networks for Self-Supervised RL: Scaling Depth Can Enable New Goal-Reaching Capabilities
Scaling up self-supervised learning has driven breakthroughs in language and vision, yet comparable progress has remained elusive in reinforcement learning (RL). In this paper, we study building blocks for self-supervised RL that unlock substantial improvements in scalability, with network depth serving as a critical factor. Whereas most RL papers in recent years have relied on shallow architectures (around 2 - 5 layers), we demonstrate that increasing the depth up to 1024 layers can significantly boost performance. Our experiments are conducted in an unsupervised goal-conditioned setting, where no demonstrations or rewards are provided, so an agent must explore (from scratch) and learn how to maximize the likelihood of reaching commanded goals. Evaluated on simulated locomotion and manipulation tasks, our approach increases performance by $2\times$ - $50\times$. Increasing the model depth not only increases success rates but also qualitatively changes the behaviors learned.
comment: Link to project website: https://wang-kevin3290.github.io/scaling-crl/
♻ ☆ Proactive and Reactive Constraint Programming for Stochastic Project Scheduling with Maximal Time-Lags
This study investigates scheduling strategies for the stochastic resource-constrained project scheduling problem with maximal time lags (SRCPSP/max)). Recent advances in Constraint Programming (CP) and Temporal Networks have reinvoked interest in evaluating the advantages and drawbacks of various proactive and reactive scheduling methods. First, we present a new, CP-based fully proactive method. Second, we show how a reactive approach can be constructed using an online rescheduling procedure. A third contribution is based on partial order schedules and uses Simple Temporal Networks with Uncertainty (STNUs). Our statistical analysis shows that the STNU-based algorithm performs best in terms of solution quality, while also showing good relative offline and online computation time.
♻ ☆ LLM+KG@VLDB'24 Workshop Summary SIGMOD
The unification of large language models (LLMs) and knowledge graphs (KGs) has emerged as a hot topic. At the LLM+KG'24 workshop, held in conjunction with VLDB 2024 in Guangzhou, China, one of the key themes explored was important data management challenges and opportunities due to the effective interaction between LLMs and KGs. This report outlines the major directions and approaches presented by various speakers during the LLM+KG'24 workshop.
comment: accepted at ACM SIGMOD Record 2025
♻ ☆ Plurals: A System for Guiding LLMs Via Simulated Social Ensembles
Recent debates raised concerns that language models may favor certain viewpoints. But what if the solution is not to aim for a 'view from nowhere' but rather to leverage different viewpoints? We introduce Plurals, a system and Python library for pluralistic AI deliberation. Plurals consists of Agents (LLMs, optionally with personas) which deliberate within customizable Structures, with Moderators overseeing deliberation. Plurals is a generator of simulated social ensembles. Plurals integrates with government datasets to create nationally representative personas, includes deliberation templates inspired by deliberative democracy, and allows users to customize both information-sharing structures and deliberation behavior within Structures. Six case studies demonstrate fidelity to theoretical constructs and efficacy. Three randomized experiments show simulated focus groups produced output resonant with an online sample of the relevant audiences (chosen over zero-shot generation in 75% of trials). Plurals is both a paradigm and a concrete system for pluralistic AI. The Plurals library is available at https://github.com/josh-ashkinaze/plurals and will be continually updated.
comment: CHI 2025
♻ ☆ Active management of battery degradation in wireless sensor network using deep reinforcement learning for group battery replacement
Wireless sensor networks (WSNs) have become a promising solution for structural health monitoring (SHM), especially in hard-to-reach or remote locations. Battery-powered WSNs offer various advantages over wired systems, however limited battery life has always been one of the biggest obstacles in practical use of the WSNs, regardless of energy harvesting methods. While various methods have been studied for battery health management, existing methods exclusively aim to extend lifetime of individual batteries, lacking a system level view. A consequence of applying such methods is that batteries in a WSN tend to fail at different times, posing significant difficulty on planning and scheduling of battery replacement trip. This study investigate a deep reinforcement learning (DRL) method for active battery degradation management by optimizing duty cycle of WSNs at the system level. This active management strategy effectively reduces earlier failure of battery individuals which enable group replacement without sacrificing WSN performances. A simulated environment based on a real-world WSN setup was developed to train a DRL agent and learn optimal duty cycle strategies. The performance of the strategy was validated in a long-term setup with various network sizes, demonstrating its efficiency and scalability.
♻ ☆ Beyond Label Attention: Transparency in Language Models for Automated Medical Coding via Dictionary Learning
Medical coding, the translation of unstructured clinical text into standardized medical codes, is a crucial but time-consuming healthcare practice. Though large language models (LLM) could automate the coding process and improve the efficiency of such tasks, interpretability remains paramount for maintaining patient trust. Current efforts in interpretability of medical coding applications rely heavily on label attention mechanisms, which often leads to the highlighting of extraneous tokens irrelevant to the ICD code. To facilitate accurate interpretability in medical language models, this paper leverages dictionary learning that can efficiently extract sparsely activated representations from dense language model embeddings in superposition. Compared with common label attention mechanisms, our model goes beyond token-level representations by building an interpretable dictionary which enhances the mechanistic-based explanations for each ICD code prediction, even when the highlighted tokens are medically irrelevant. We show that dictionary features can steer model behavior, elucidate the hidden meanings of upwards of 90% of medically irrelevant tokens, and are human interpretable.
comment: https://aclanthology.org/2024.emnlp-main.500/
♻ ☆ ULTra: Unveiling Latent Token Interpretability in Transformer-Based Understanding and Segmentation
Transformers have revolutionized Computer Vision (CV) through self-attention mechanisms. However, their complexity makes latent token representations difficult to interpret. We introduce ULTra, a framework for interpreting Transformer embeddings and uncovering meaningful semantic patterns within them. ULTra enables unsupervised semantic segmentation using pre-trained models without requiring fine-tuning. Additionally, we propose a self-supervised training approach that refines segmentation performance by learning an external transformation matrix without modifying the underlying model. Our method achieves state-of-the-art performance in unsupervised semantic segmentation, outperforming existing segmentation methods. Furthermore, we validate ULTra for model interpretation on both synthetic and real-world scenarios, including Object Selection and interpretable text summarization using LLMs, demonstrating its broad applicability in explaining the semantic structure of latent token representations.
♻ ☆ How To Think About End-To-End Encryption and AI: Training, Processing, Disclosure, and Consent
End-to-end encryption (E2EE) has become the gold standard for securing communications, bringing strong confidentiality and privacy guarantees to billions of users worldwide. However, the current push towards widespread integration of artificial intelligence (AI) models, including in E2EE systems, raises some serious security concerns. This work performs a critical examination of the (in)compatibility of AI models and E2EE applications. We explore this on two fronts: (1) the integration of AI "assistants" within E2EE applications, and (2) the use of E2EE data for training AI models. We analyze the potential security implications of each, and identify conflicts with the security guarantees of E2EE. Then, we analyze legal implications of integrating AI models in E2EE applications, given how AI integration can undermine the confidentiality that E2EE promises. Finally, we offer a list of detailed recommendations based on our technical and legal analyses, including: technical design choices that must be prioritized to uphold E2EE security; how service providers must accurately represent E2EE security; and best practices for the default behavior of AI features and for requesting user consent. We hope this paper catalyzes an informed conversation on the tensions that arise between the brisk deployment of AI and the security offered by E2EE, and guides the responsible development of new AI features.
♻ ☆ To Google or To ChatGPT? A Comparison of CS2 Students' Information Gathering Approaches and Outcomes
LLMs such as ChatGPT have been widely adopted by students in higher education as tools for learning programming and related concepts. However, it remains unclear how effective students are and what strategies students use while learning with LLMs. Since the majority of students' experiences in online self-learning have come through using search engines such as Google, evaluating AI tools in this context can help us address these gaps. In this mixed methods research, we conducted an exploratory within-subjects study to understand how CS2 students learn programming concepts using both LLMs as well as traditional online methods such as educational websites and videos to examine how students approach learning within and across both scenarios. We discovered that students found it easier to learn a more difficult concept using traditional methods than using ChatGPT. We also found that students ask fewer follow-ups and use more keyword-based queries for search engines while their prompts to LLMs tend to explicitly ask for information.
♻ ☆ SynMorph: Generating Synthetic Face Morphing Dataset with Mated Samples
Face morphing attack detection (MAD) algorithms have become essential to overcome the vulnerability of face recognition systems. To solve the lack of large-scale and public-available datasets due to privacy concerns and restrictions, in this work we propose a new method to generate a synthetic face morphing dataset with 2450 identities and more than 100k morphs. The proposed synthetic face morphing dataset is unique for its high-quality samples, different types of morphing algorithms, and the generalization for both single and differential morphing attack detection algorithms. For experiments, we apply face image quality assessment and vulnerability analysis to evaluate the proposed synthetic face morphing dataset from the perspective of biometric sample quality and morphing attack potential on face recognition systems. The results are benchmarked with an existing SOTA synthetic dataset and a representative non-synthetic and indicate improvement compared with the SOTA. Additionally, we design different protocols and study the applicability of using the proposed synthetic dataset on training morphing attack detection algorithms.
comment: This preprint has been further published in IEEE Access. Print ISSN: 2169-3536. Online ISSN: 2169-3536. Digital Object Identifier: 10.1109/ACCESS.2025.3548957
♻ ☆ Don't Kill the Baby: The Case for AI in Arbitration
Since the introduction of Generative AI (GenAI) in 2022, its ability to simulate human intelligence and generate content has sparked both enthusiasm and concern. While much criticism focuses on AI's potential to perpetuate bias, create emotional dissonance, displace jobs, and raise ethical questions, these concerns often overlook the practical benefits of AI, particularly in legal contexts. This article examines the integration of AI into arbitration, arguing that the Federal Arbitration Act (FAA) allows parties to contractually choose AI-driven arbitration, despite traditional reservations. The article makes three key contributions: (1) It shifts the focus from debates over AI's personhood to the practical aspects of incorporating AI into arbitration, asserting that AI can effectively serve as an arbitrator if both parties agree; (2) It positions arbitration as an ideal starting point for broader AI adoption in the legal field, given its flexibility and the autonomy it grants parties to define their standards of fairness; and (3) It outlines future research directions, emphasizing the importance of empirically comparing AI and human arbitration, which could lead to the development of distinct systems. By advocating for the use of AI in arbitration, this article underscores the importance of respecting contractual autonomy and creating an environment that allows AI's potential to be fully realized. Drawing on the insights of Judge Richard Posner, the article argues that the ethical obligations of AI in arbitration should be understood within the context of its technological strengths and the voluntary nature of arbitration agreements. Ultimately, it calls for a balanced, open-minded approach to AI in arbitration, recognizing its potential to enhance the efficiency, fairness, and flexibility of dispute resolution
♻ ☆ LAYOUTDREAMER: Physics-guided Layout for Text-to-3D Compositional Scene Generation
Recently, the field of text-guided 3D scene generation has garnered significant attention. High-quality generation that aligns with physical realism and high controllability is crucial for practical 3D scene applications. However, existing methods face fundamental limitations: (i) difficulty capturing complex relationships between multiple objects described in the text, (ii) inability to generate physically plausible scene layouts, and (iii) lack of controllability and extensibility in compositional scenes. In this paper, we introduce LayoutDreamer, a framework that leverages 3D Gaussian Splatting (3DGS) to facilitate high-quality, physically consistent compositional scene generation guided by text. Specifically, given a text prompt, we convert it into a directed scene graph and adaptively adjust the density and layout of the initial compositional 3D Gaussians. Subsequently, dynamic camera adjustments are made based on the training focal point to ensure entity-level generation quality. Finally, by extracting directed dependencies from the scene graph, we tailor physical and layout energy to ensure both realism and flexibility. Comprehensive experiments demonstrate that LayoutDreamer outperforms other compositional scene generation quality and semantic alignment methods. Specifically, it achieves state-of-the-art (SOTA) performance in the multiple objects generation metric of T3Bench.
♻ ☆ Enhancing Layer Attention Efficiency through Pruning Redundant Retrievals
Growing evidence suggests that layer attention mechanisms, which enhance interaction among layers in deep neural networks, have significantly advanced network architectures. However, existing layer attention methods suffer from redundancy, as attention weights learned by adjacent layers often become highly similar. This redundancy causes multiple layers to extract nearly identical features, reducing the model's representational capacity and increasing training time. To address this issue, we propose a novel approach to quantify redundancy by leveraging the Kullback-Leibler (KL) divergence between adjacent layers. Additionally, we introduce an Enhanced Beta Quantile Mapping (EBQM) method that accurately identifies and skips redundant layers, thereby maintaining model stability. Our proposed Efficient Layer Attention (ELA) architecture, improves both training efficiency and overall performance, achieving a 30\% reduction in training time while enhancing performance in tasks such as image classification and object detection.
comment: 11 pages, 7 figures
♻ ☆ Bimodal Connection Attention Fusion for Speech Emotion Recognition
Multi-modal emotion recognition is challenging due to the difficulty of extracting features that capture subtle emotional differences. Understanding multi-modal interactions and connections is key to building effective bimodal speech emotion recognition systems. In this work, we propose Bimodal Connection Attention Fusion (BCAF) method, which includes three main modules: the interactive connection network, the bimodal attention network, and the correlative attention network. The interactive connection network uses an encoder-decoder architecture to model modality connections between audio and text while leveraging modality-specific features. The bimodal attention network enhances semantic complementation and exploits intra- and inter-modal interactions. The correlative attention network reduces cross-modal noise and captures correlations between audio and text. Experiments on the MELD and IEMOCAP datasets demonstrate that the proposed BCAF method outperforms existing state-of-the-art baselines.
♻ ☆ Score matching through the roof: linear, nonlinear, and latent variables causal discovery
Causal discovery from observational data holds great promise, but existing methods rely on strong assumptions about the underlying causal structure, often requiring full observability of all relevant variables. We tackle these challenges by leveraging the score function $\nabla \log p(X)$ of observed variables for causal discovery and propose the following contributions. First, we fine-tune the existing identifiability results with the score on additive noise models, showing that their assumption of nonlinearity of the causal mechanisms is not necessary. Second, we establish conditions for inferring causal relations from the score even in the presence of hidden variables; this result is two-faced: we demonstrate the score's potential to infer the equivalence class of causal graphs with hidden variables (while previous results are restricted to the fully observable setting), and we provide sufficient conditions for identifying direct causes in latent variable models. Building on these insights, we propose a flexible algorithm suited for causal discovery on linear, nonlinear, and latent variable models, which we empirically validate.
♻ ☆ NavCoT: Boosting LLM-Based Vision-and-Language Navigation via Learning Disentangled Reasoning
Vision-and-Language Navigation (VLN), as a crucial research problem of Embodied AI, requires an embodied agent to navigate through complex 3D environments following natural language instructions. Recent research has highlighted the promising capacity of large language models (LLMs) in VLN by improving navigational reasoning accuracy and interpretability. However, their predominant use in an offline manner usually suffers from substantial domain gap between the VLN task and the LLM training corpus. This paper introduces a novel strategy called Navigational Chain-of-Thought (NavCoT), where we fulfill parameter-efficient in-domain training to enable self-guided navigational decision, leading to a significant mitigation of the domain gap in a cost-effective manner. Specifically, at each timestep, the LLM is prompted to forecast the navigational chain-of-thought by: 1) acting as a world model to imagine the next observation according to the instruction, 2) selecting the candidate observation that best aligns with the imagination, and 3) determining the action based on the reasoning from the prior steps. Through constructing formalized labels for training, the LLM can learn to generate desired and reasonable chain-of-thought outputs for improving the action decision. Experimental results across various training settings and popular VLN benchmarks (e.g., Room-to-Room (R2R), Room-across-Room (RxR), Room-for-Room (R4R)) show the significant superiority of NavCoT over the direct action prediction variants. Through simple parameter-efficient finetuning, our NavCoT outperforms a recent GPT4-based approach with ~7% relative improvement on the R2R dataset. We believe that NavCoT will help unlock more task-adaptive and scalable LLM-based embodied agents, which are helpful for developing real-world robotics applications. Code is available at https://github.com/expectorlin/NavCoT.
comment: Accepted by TPAMI 2025
♻ ☆ LoRA-Pro: Are Low-Rank Adapters Properly Optimized? ICLR 2025
Low-rank adaptation, also known as LoRA, has emerged as a prominent method for parameter-efficient fine-tuning of foundation models. Despite its computational efficiency, LoRA still yields inferior performance compared to full fine-tuning. In this paper, we first uncover a fundamental connection between the optimization processes of LoRA and full fine-tuning: using LoRA for optimization is mathematically equivalent to full fine-tuning using a low-rank gradient for parameter updates. And this low-rank gradient can be expressed in terms of the gradients of the two low-rank matrices in LoRA. Leveraging this insight, we introduce LoRA-Pro, a method that enhances LoRA's performance by strategically adjusting the gradients of these low-rank matrices. This adjustment allows the low-rank gradient to more accurately approximate the full fine-tuning gradient, thereby narrowing the performance gap between LoRA and full fine-tuning. Furthermore, we theoretically derive the optimal solutions for adjusting the gradients of the low-rank matrices, applying them during fine-tuning in LoRA-Pro. We conduct extensive experiments across natural language understanding, dialogue generation, mathematical reasoning, code generation, and image classification tasks, demonstrating that LoRA-Pro substantially improves LoRA's performance, effectively narrowing the gap with full fine-tuning. Code is publicly available at https://github.com/mrflogs/LoRA-Pro.
comment: Camera-Ready Version for ICLR 2025; technical corrections to previous version
♻ ☆ Demo-Craft: Using In-Context Learning to Improve Code Generation in Large Language Models
Generating executable code from natural language instructions using Large Language Models (LLMs) poses challenges such as semantic ambiguity and understanding taskspecific contexts. To address these issues, we propose a system called DemoCraft, which enhances code generation by leveraging in-context learning and demonstration selection, combined with latent concept learning. Latent concept learning introduces additional concept tokens, which are trainable embeddings that capture task-specific knowledge. We then test our system on two major datasets: MBPP and Humaneval. Our experimental results demonstrate that the proposed system achieves an approximate 2x increase in the pass@k metric compared to baseline models. Furthermore, we introduce two novel evaluation metrics: correctness@k and similarity@k. Our empirical studies indicate that our system attains nearly a 3x improvement in these metrics as well.
comment: Accepted at IEEE ICIITCEE 2025. Presented on 16th January 2025 in Bengaluru, India
♻ ☆ VisEscape: A Benchmark for Evaluating Exploration-driven Decision-making in Virtual Escape Rooms
Escape rooms present a unique cognitive challenge that demands exploration-driven planning: players should actively search their environment, continuously update their knowledge based on new discoveries, and connect disparate clues to determine which elements are relevant to their objectives. Motivated by this, we introduce VisEscape, a benchmark of 20 virtual escape rooms specifically designed to evaluate AI models under these challenging conditions, where success depends not only on solving isolated puzzles but also on iteratively constructing and refining spatial-temporal knowledge of a dynamically changing environment. On VisEscape, we observe that even state-of-the-art multimodal models generally fail to escape the rooms, showing considerable variation in their levels of progress and trajectories. To address this issue, we propose VisEscaper, which effectively integrates Memory, Feedback, and ReAct modules, demonstrating significant improvements by performing 3.7 times more effectively and 4.9 times more efficiently on average compared to baseline agents.
♻ ☆ Privacy-Preserving Federated Learning with Differentially Private Hyperdimensional Computing
Federated Learning (FL) has become a key method for preserving data privacy in Internet of Things (IoT) environments, as it trains Machine Learning (ML) models locally while transmitting only model updates. Despite this design, FL remains susceptible to threats such as model inversion and membership inference attacks, which can reveal private training data. Differential Privacy (DP) techniques are often introduced to mitigate these risks, but simply injecting DP noise into black-box ML models can compromise accuracy, particularly in dynamic IoT contexts, where continuous, lifelong learning leads to excessive noise accumulation. To address this challenge, we propose Federated HyperDimensional computing with Privacy-preserving (FedHDPrivacy), an eXplainable Artificial Intelligence (XAI) framework that integrates neuro-symbolic computing and DP. Unlike conventional approaches, FedHDPrivacy actively monitors the cumulative noise across learning rounds and adds only the additional noise required to satisfy privacy constraints. In a real-world application for monitoring manufacturing machining processes, FedHDPrivacy maintains high performance while surpassing standard FL frameworks - Federated Averaging (FedAvg), Federated Proximal (FedProx), Federated Normalized Averaging (FedNova), and Federated Optimization (FedOpt) - by up to 37%. Looking ahead, FedHDPrivacy offers a promising avenue for further enhancements, such as incorporating multimodal data fusion.
comment: 31 Pages, 14 Figures
♻ ☆ A Comprehensive Survey on Self-Interpretable Neural Networks
Neural networks have achieved remarkable success across various fields. However, the lack of interpretability limits their practical use, particularly in critical decision-making scenarios. Post-hoc interpretability, which provides explanations for pre-trained models, is often at risk of robustness and fidelity. This has inspired a rising interest in self-interpretable neural networks, which inherently reveal the prediction rationale through the model structures. Although there exist surveys on post-hoc interpretability, a comprehensive and systematic survey of self-interpretable neural networks is still missing. To address this gap, we first collect and review existing works on self-interpretable neural networks and provide a structured summary of their methodologies from five key perspectives: attribution-based, function-based, concept-based, prototype-based, and rule-based self-interpretation. We also present concrete, visualized examples of model explanations and discuss their applicability across diverse scenarios, including image, text, graph data, and deep reinforcement learning. Additionally, we summarize existing evaluation metrics for self-interpretability and identify open challenges in this field, offering insights for future research. To support ongoing developments, we present a publicly accessible resource to track advancements in this domain: https://github.com/yangji721/Awesome-Self-Interpretable-Neural-Network.
Robotics 52
☆ LLM+MAP: Bimanual Robot Task Planning using Large Language Models and Planning Domain Definition Language
Bimanual robotic manipulation provides significant versatility, but also presents an inherent challenge due to the complexity involved in the spatial and temporal coordination between two hands. Existing works predominantly focus on attaining human-level manipulation skills for robotic hands, yet little attention has been paid to task planning on long-horizon timescales. With their outstanding in-context learning and zero-shot generation abilities, Large Language Models (LLMs) have been applied and grounded in diverse robotic embodiments to facilitate task planning. However, LLMs still suffer from errors in long-horizon reasoning and from hallucinations in complex robotic tasks, lacking a guarantee of logical correctness when generating the plan. Previous works, such as LLM+P, extended LLMs with symbolic planners. However, none have been successfully applied to bimanual robots. New challenges inevitably arise in bimanual manipulation, necessitating not only effective task decomposition but also efficient task allocation. To address these challenges, this paper introduces LLM+MAP, a bimanual planning framework that integrates LLM reasoning and multi-agent planning, automating effective and efficient bimanual task planning. We conduct simulated experiments on various long-horizon manipulation tasks of differing complexity. Our method is built using GPT-4o as the backend, and we compare its performance against plans generated directly by LLMs, including GPT-4o, V3 and also recent strong reasoning models o1 and R1. By analyzing metrics such as planning time, success rate, group debits, and planning-step reduction rate, we demonstrate the superior performance of LLM+MAP, while also providing insights into robotic reasoning. Code is available at https://github.com/Kchu/LLM-MAP.
comment: Code and video are available at https://github.com/Kchu/LLM-MAP
Control the Soft Robot Arm with its Physical Twin
To exploit the compliant capabilities of soft robot arms we require controller which can exploit their physical capabilities. Teleoperation, leveraging a human in the loop, is a key step towards achieving more complex control strategies. Whilst teleoperation is widely used for rigid robots, for soft robots we require teleoperation methods where the configuration of the whole body is considered. We propose a method of using an identical 'physical twin', or demonstrator of the robot. This tendon robot can be back-driven, with the tendon lengths providing configuration perception, and enabling a direct mapping of tendon lengths for the execture. We demonstrate how this teleoperation across the entire configuration of the robot enables complex interactions with exploit the envrionment, such as squeezing into gaps. We also show how this method can generalize to robots which are a larger scale that the physical twin, and how, tuneability of the stiffness properties of the physical twin simplify its use.
☆ GAA-TSO: Geometry-Aware Assisted Depth Completion for Transparent and Specular Objects
Transparent and specular objects are frequently encountered in daily life, factories, and laboratories. However, due to the unique optical properties, the depth information on these objects is usually incomplete and inaccurate, which poses significant challenges for downstream robotics tasks. Therefore, it is crucial to accurately restore the depth information of transparent and specular objects. Previous depth completion methods for these objects usually use RGB information as an additional channel of the depth image to perform depth prediction. Due to the poor-texture characteristics of transparent and specular objects, these methods that rely heavily on color information tend to generate structure-less depth predictions. Moreover, these 2D methods cannot effectively explore the 3D structure hidden in the depth channel, resulting in depth ambiguity. To this end, we propose a geometry-aware assisted depth completion method for transparent and specular objects, which focuses on exploring the 3D structural cues of the scene. Specifically, besides extracting 2D features from RGB-D input, we back-project the input depth to a point cloud and build the 3D branch to extract hierarchical scene-level 3D structural features. To exploit 3D geometric information, we design several gated cross-modal fusion modules to effectively propagate multi-level 3D geometric features to the image branch. In addition, we propose an adaptive correlation aggregation strategy to appropriately assign 3D features to the corresponding 2D features. Extensive experiments on ClearGrasp, OOD, TransCG, and STD datasets show that our method outperforms other state-of-the-art methods. We further demonstrate that our method significantly enhances the performance of downstream robotic grasping tasks.
☆ Exploring psychophysiological methods for human-robot collaboration in construction
Psychophysiological methods present a promising approach to fostering enhanced mutual communication and collaboration between human workers and robots. Despite their potential, there is still limited understanding of how to effectively integrate psychophysiological methods to improve human-robot collaboration (HRC) in construction. This paper addresses this gap by critically reviewing the use of psychophysiological methods for HRC within construction environments, employing a concept-methodology-value philosophical framework. The analysis reveals that measuring brain activity using electroencephalography is the most widely used method, while most of the works are still at the proof of concept stage and lack empirical evidence. Three potential research directions were proposed: the integration of multi-modal psychophysiological signals, enriching the existing experimental settings for better generalizability, and leveraging advanced biocompatible or contactless technologies for effective signal detection. The findings should benefit subsequent exploration and practical applications of psychophysiological methods to enable better implementation of robots and support HRC in construction.
HAPI: A Model for Learning Robot Facial Expressions from Human Preferences
Automatic robotic facial expression generation is crucial for human-robot interaction, as handcrafted methods based on fixed joint configurations often yield rigid and unnatural behaviors. Although recent automated techniques reduce the need for manual tuning, they tend to fall short by not adequately bridging the gap between human preferences and model predictions-resulting in a deficiency of nuanced and realistic expressions due to limited degrees of freedom and insufficient perceptual integration. In this work, we propose a novel learning-to-rank framework that leverages human feedback to address this discrepancy and enhanced the expressiveness of robotic faces. Specifically, we conduct pairwise comparison annotations to collect human preference data and develop the Human Affective Pairwise Impressions (HAPI) model, a Siamese RankNet-based approach that refines expression evaluation. Results obtained via Bayesian Optimization and online expression survey on a 35-DOF android platform demonstrate that our approach produces significantly more realistic and socially resonant expressions of Anger, Happiness, and Surprise than those generated by baseline and expert-designed methods. This confirms that our framework effectively bridges the gap between human preferences and model predictions while robustly aligning robotic expression generation with human affective responses.
☆ Behavioral Conflict Avoidance Between Humans and Quadruped Robots in Shared Environments
Nowadays, robots are increasingly operated in environments shared with humans, where conflicts between human and robot behaviors may compromise safety. This paper presents a proactive behavioral conflict avoidance framework based on the principle of adaptation to trends for quadruped robots that not only ensures the robot's safety but also minimizes interference with human activities. It can proactively avoid potential conflicts with approaching humans or other dynamic objects, whether the robot is stationary or in motion, then swiftly resume its tasks once the conflict subsides. An enhanced approach is proposed to achieve precise human detection and tracking on vibratory robot platform equipped with low-cost hybrid solid-state LiDAR. When potential conflict detected, the robot selects an avoidance point and executes an evasion maneuver before resuming its task. This approach contrasts with conventional methods that remain goal-driven, often resulting in aggressive behaviors, such as forcibly bypassing obstacles and causing conflicts or becoming stuck in deadlock scenarios. The selection of avoidance points is achieved by integrating static and dynamic obstacle to generate a potential field map. The robot then searches for feasible regions within this map and determines the optimal avoidance point using an evaluation function. Experimental results demonstrate that the framework significantly reduces interference with human activities, enhances the safety of both robots and persons.
comment: 7 pages, 9 figures. This work has been submitted to the IEEE for possible publication
☆ Autonomous Exploration-Based Precise Mapping for Mobile Robots through Stepwise and Consistent Motions
This paper presents an autonomous exploration framework. It is designed for indoor ground mobile robots that utilize laser Simultaneous Localization and Mapping (SLAM), ensuring process completeness and precise mapping results. For frontier search, the local-global sampling architecture based on multiple Rapidly Exploring Random Trees (RRTs) is employed. Traversability checks during RRT expansion and global RRT pruning upon map updates eliminate unreachable frontiers, reducing potential collisions and deadlocks. Adaptive sampling density adjustments, informed by obstacle distribution, enhance exploration coverage potential. For frontier point navigation, a stepwise consistent motion strategy is adopted, wherein the robot strictly drives straight on approximately equidistant line segments in the polyline path and rotates in place at segment junctions. This simplified, decoupled motion pattern improves scan-matching stability and mitigates map drift. For process control, the framework serializes frontier point selection and navigation, avoiding oscillation caused by frequent goal changes in conventional parallelized processes. The waypoint retracing mechanism is introduced to generate repeated observations, triggering loop closure detection and backend optimization in graph-based SLAM, thereby improving map consistency and precision. Experiments in both simulation and real-world scenarios validate the effectiveness of the framework. It achieves improved mapping coverage and precision in more challenging environments compared to baseline 2D exploration algorithms. It also shows robustness in supporting resource-constrained robot platforms and maintaining mapping consistency across various LiDAR field-of-view (FoV) configurations.
comment: 8 pages, 11 figures. This work has been submitted to the IEEE for possible publication
☆ Targetless 6DoF Calibration of LiDAR and 2D Scanning Radar Based on Cylindrical Occupancy
Owing to the capability for reliable and all-weather long-range sensing, the fusion of LiDAR and Radar has been widely applied to autonomous vehicles for robust perception. In practical operation, well manually calibrated extrinsic parameters, which are crucial for the fusion of multi-modal sensors, may drift due to the vibration. To address this issue, we present a novel targetless calibration approach, termed LiRaCo, for the extrinsic 6DoF calibration of LiDAR and Radar sensors. Although both types of sensors can obtain geometric information, bridging the geometric correspondences between multi-modal data without any clues of explicit artificial markers is nontrivial, mainly due to the low vertical resolution of scanning Radar. To achieve the targetless calibration, LiRaCo leverages a spatial occupancy consistency between LiDAR point clouds and Radar scans in a common cylindrical representation, considering the increasing data sparsity with distance for both sensors. Specifically, LiRaCo expands the valid Radar scanned pixels into 3D occupancy grids to constrain LiDAR point clouds based on spatial consistency. Consequently, a cost function involving extrinsic calibration parameters is formulated based on the spatial overlap of 3D grids and LiDAR points. Extrinsic parameters are finally estimated by optimizing the cost function. Comprehensive quantitative and qualitative experiments on two real outdoor datasets with different LiDAR sensors demonstrate the feasibility and accuracy of the proposed method. The source code will be publicly available.
☆ Extending Behavior Trees for Robotic Missions with Quality Requirements
Context and motivation: In recent years, behavior trees have gained growing interest within the robotics community as a specification and control switching mechanism for the different tasks that form a robotics mission. Problem: Given the rising complexity and prevalence of robotic systems, it is increasingly challenging and important for practitioners to design high-quality missions that meet certain qualities, for instance, to consider potential failures or mitigate safety risks. In software requirements engineering, quality or non-functional requirements have long been recognized as a key factor in system success. Currently, qualities are not represented in behavior tree models, which capture a robotic mission, making it difficult to assess the extent to which different mission components comply with those qualities. Principal ideas: In this paper, we propose an extension for behavior trees to have qualities and quality requirements explicitly represented in robotics missions. We provide a meta-model for the extension, develop a domain-specific language (DSL), and describe how we integrated our DSL in one of the most used languages in robotics for developing behavior trees, BehaviorTree.CPP. A preliminary evaluation of the implemented DSL shows promising results for the feasibility of our approach and the need for similar DSLs. Contribution: Our approach paves the way for incorporating qualities into the behavior model of robotics missions. This promotes early expression of qualities in robotics missions, and a better overview of missions components and their contribution to the satisfaction of quality concerns.
comment: 17 pages, 6 figures, Requirements Engineering: Foundation for Software Quality (REFSQ) 2025
☆ Somatic Safety: An Embodied Approach Towards Safe Human-Robot Interaction
As robots enter the messy human world so the vital matter of safety takes on a fresh complexion with physical contact becoming inevitable and even desirable. We report on an artistic-exploration of how dancers, working as part of a multidisciplinary team, engaged in contact improvisation exercises to explore the opportunities and challenges of dancing with cobots. We reveal how they employed their honed bodily senses and physical skills to engage with the robots aesthetically and yet safely, interleaving improvised physical manipulations with reflections to grow their knowledge of how the robots behaved and felt. We introduce somatic safety, a holistic mind-body approach in which safety is learned, felt and enacted through bodily contact with robots in addition to being reasoned about. We conclude that robots need to be better designed for people to hold them and might recognise tacit safety cues among people.We propose that safety should be learned through iterative bodily experience interleaved with reflection.
comment: ACM/IEEE International Conference on Human-Robot Interaction (HRI'25)
☆ Reachability-Guaranteed Optimal Control for the Interception of Dynamic Targets under Uncertainty
Intercepting dynamic objects in uncertain environments involves a significant unresolved challenge in modern robotic systems. Current control approaches rely solely on estimated information, and results lack guarantees of robustness and feasibility. In this work, we introduce a novel method to tackle the interception of targets whose motion is affected by known and bounded uncertainty. Our approach introduces new techniques of reachability analysis for rigid bodies, leveraged to guarantee feasibility of interception under uncertain conditions. We then propose a Reachability-Guaranteed Optimal Control Problem, ensuring robustness and guaranteed reachability to a target set of configurations. We demonstrate the methodology in the case study of an interception maneuver of a tumbling target in space.
☆ Rude Humans and Vengeful Robots: Examining Human Perceptions of Robot Retaliatory Intentions in Professional Settings
Humans and robots are increasingly working in personal and professional settings. In workplace settings, humans and robots may work together as colleagues, potentially leading to social expectations, or violation thereof. Extant research has primarily sought to understand social interactions and expectations in personal rather than professional settings, and none of these studies have examined negative outcomes arising from violations of social expectations. This paper reports the results of a 2x3 online experiment that used a unique first-person perspective video to immerse participants in a collaborative workplace setting. The results are nuanced and reveal that while robots are expected to act in accordance with social expectations despite human behavior, there are benefits for robots perceived as being the bigger person in the face of human rudeness. Theoretical and practical implications are provided which discuss the import of these findings for the design of social robots.
comment: This is the author version of the manuscript submitted to ACM Transactions on Human-Robot Interaction. The final version, if accepted, will be published by ACM and available via the ACM Digital Library. 12 pages, 1 figure, 2 tables
☆ Deep Learning for Human Locomotion Analysis in Lower-Limb Exoskeletons: A Comparative Study
Wearable robotics for lower-limb assistance have become a pivotal area of research, aiming to enhance mobility for individuals with physical impairments or augment the performance of able-bodied users. Accurate and adaptive control systems are essential to ensure seamless interaction between the wearer and the robotic device, particularly when navigating diverse and dynamic terrains. Despite the recent advances in neural networks for time series analysis, no attempts have been directed towards the classification of ground conditions, categorized into five classes and subsequently determining the ramp's slope and stair's height. In this respect, this paper presents an experimental comparison between eight deep neural network backbones to predict high-level locomotion parameters across diverse terrains. All the models are trained on the publicly available CAMARGO 2021 dataset. IMU-only data equally or outperformed IMU+EMG inputs, promoting a cost-effective and efficient design. Indeeds, using three IMU sensors, the LSTM achieved high terrain classification accuracy (0.94 +- 0.04) and precise ramp slope (1.95 +- 0.58{\deg}) and the CNN-LSTM a stair height (15.65 +- 7.40 mm) estimations. As a further contribution, SHAP analysis justified sensor reduction without performance loss, ensuring a lightweight setup. The system operates with ~2 ms inference time, supporting real-time applications. The code is code available at https://github.com/cosbidev/Human-Locomotion-Identification.
comment: 26 pages, 6 figures
☆ Safe On-Orbit Dislodging of Deployable Structures via Robust Adaptive MPC
This paper proposes a novel robust adaptive model predictive controller for on-orbit dislodging. We consider the scenario where a servicer, equipped with a robot arm, must dislodge a client, a time-varying system composed of an underpowered jammed solar panel with a hybrid hinge system on a space station. Our approach leverages online set-membership identification to reduce the uncertainty to provide robust safety guarantees during dislodging despite bounded disturbances while balancing exploration and exploitation effectively in the parameter space. The feasibility of the developed robust adaptive MPC method is also examined through dislodging simulations and hardware experiments in zero-gravity and gravity environments, respectively. In addition, the advantages of our method are shown through comparison experiments with several state-of-the-art control schemes for both accuracy of parameter estimation and control performance.
comment: This paper has been submitted to IEEE Transactions on Control Systems Technology and is being reviewed
☆ SGFormer: Satellite-Ground Fusion for 3D Semantic Scene Completion
Recently, camera-based solutions have been extensively explored for scene semantic completion (SSC). Despite their success in visible areas, existing methods struggle to capture complete scene semantics due to frequent visual occlusions. To address this limitation, this paper presents the first satellite-ground cooperative SSC framework, i.e., SGFormer, exploring the potential of satellite-ground image pairs in the SSC task. Specifically, we propose a dual-branch architecture that encodes orthogonal satellite and ground views in parallel, unifying them into a common domain. Additionally, we design a ground-view guidance strategy that corrects satellite image biases during feature encoding, addressing misalignment between satellite and ground views. Moreover, we develop an adaptive weighting strategy that balances contributions from satellite and ground views. Experiments demonstrate that SGFormer outperforms the state of the art on SemanticKITTI and SSCBench-KITTI-360 datasets. Our code is available on https://github.com/gxytcrc/SGFormer.
☆ DyWA: Dynamics-adaptive World Action Model for Generalizable Non-prehensile Manipulation
Nonprehensile manipulation is crucial for handling objects that are too thin, large, or otherwise ungraspable in unstructured environments. While conventional planning-based approaches struggle with complex contact modeling, learning-based methods have recently emerged as a promising alternative. However, existing learning-based approaches face two major limitations: they heavily rely on multi-view cameras and precise pose tracking, and they fail to generalize across varying physical conditions, such as changes in object mass and table friction. To address these challenges, we propose the Dynamics-Adaptive World Action Model (DyWA), a novel framework that enhances action learning by jointly predicting future states while adapting to dynamics variations based on historical trajectories. By unifying the modeling of geometry, state, physics, and robot actions, DyWA enables more robust policy learning under partial observability. Compared to baselines, our method improves the success rate by 31.5% using only single-view point cloud observations in the simulation. Furthermore, DyWA achieves an average success rate of 68% in real-world experiments, demonstrating its ability to generalize across diverse object geometries, adapt to varying table friction, and robustness in challenging scenarios such as half-filled water bottles and slippery surfaces.
comment: Project Page:https://pku-epic.github.io/DyWA/
☆ BEAC: Imitating Complex Exploration and Task-oriented Behaviors for Invisible Object Nonprehensile Manipulation
Applying imitation learning (IL) is challenging to nonprehensile manipulation tasks of invisible objects with partial observations, such as excavating buried rocks. The demonstrator must make such complex action decisions as exploring to find the object and task-oriented actions to complete the task while estimating its hidden state, perhaps causing inconsistent action demonstration and high cognitive load problems. For these problems, work in human cognitive science suggests that promoting the use of pre-designed, simple exploration rules for the demonstrator may alleviate the problems of action inconsistency and high cognitive load. Therefore, when performing imitation learning from demonstrations using such exploration rules, it is important to accurately imitate not only the demonstrator's task-oriented behavior but also his/her mode-switching behavior (exploratory or task-oriented behavior) under partial observation. Based on the above considerations, this paper proposes a novel imitation learning framework called Belief Exploration-Action Cloning (BEAC), which has a switching policy structure between a pre-designed exploration policy and a task-oriented action policy trained on the estimated belief states based on past history. In simulation and real robot experiments, we confirmed that our proposed method achieved the best task performance, higher mode and action prediction accuracies, while reducing the cognitive load in the demonstration indicated by a user study.
comment: 27 pages
☆ Displacement-Actuated Continuum Robots: A Joint Space Abstraction
The displacement-actuated continuum robot as an abstraction has been shown as a key abstraction to significantly simplify and improve approaches due to its relation to the Clarke transform. To highlight further potentials, we revisit and extend this abstraction that features an increasingly popular length extension and an underutilized twisting. For each extension, the corresponding mapping from the joint values to the local coordinates of the manifold embedded in the joint spaces is provided. Each mapping is characterized by its compactness and linearity.
comment: 11 pages, 4 figures, 3 tables
☆ LLM-Drone: Aerial Additive Manufacturing with Drones Planned Using Large Language Models
Additive manufacturing (AM) has transformed the production landscape by enabling the precision creation of complex geometries. However, AM faces limitations when applied to challenging environments, such as elevated surfaces and remote locations. Aerial additive manufacturing, facilitated by drones, presents a solution to these challenges. However, despite advances in methods for the planning, control, and localization of drones, the accuracy of these methods is insufficient to run traditional feedforward extrusion-based additive manufacturing processes (such as Fused Deposition Manufacturing). Recently, the emergence of LLMs has revolutionized various fields by introducing advanced semantic reasoning and real-time planning capabilities. This paper proposes the integration of LLMs with aerial additive manufacturing to assist with the planning and execution of construction tasks, granting greater flexibility and enabling a feed-back based design and construction system. Using the semantic understanding and adaptability of LLMs, we can overcome the limitations of drone based systems by dynamically generating and adapting building plans on site, ensuring efficient and accurate construction even in constrained environments. Our system is able to design and build structures given only a semantic prompt and has shown success in understanding the spatial environment despite tight planning constraints. Our method's feedback system enables replanning using the LLM if the manufacturing process encounters unforeseen errors, without requiring complicated heuristics or evaluation functions. Combining the semantic planning with automatic error correction, our system achieved a 90% build accuracy, converting simple text prompts to build structures.
comment: 26 Pages, 6 Figures
☆ Shear-based Grasp Control for Multi-fingered Underactuated Tactile Robotic Hands
This paper presents a shear-based control scheme for grasping and manipulating delicate objects with a Pisa/IIT anthropomorphic SoftHand equipped with soft biomimetic tactile sensors on all five fingertips. These `microTac' tactile sensors are miniature versions of the TacTip vision-based tactile sensor, and can extract precise contact geometry and force information at each fingertip for use as feedback into a controller to modulate the grasp while a held object is manipulated. Using a parallel processing pipeline, we asynchronously capture tactile images and predict contact pose and force from multiple tactile sensors. Consistent pose and force models across all sensors are developed using supervised deep learning with transfer learning techniques. We then develop a grasp control framework that uses contact force feedback from all fingertip sensors simultaneously, allowing the hand to safely handle delicate objects even under external disturbances. This control framework is applied to several grasp-manipulation experiments: first, retaining a flexible cup in a grasp without crushing it under changes in object weight; second, a pouring task where the center of mass of the cup changes dynamically; and third, a tactile-driven leader-follower task where a human guides a held object. These manipulation tasks demonstrate more human-like dexterity with underactuated robotic hands by using fast reflexive control from tactile sensing.
comment: 16 pages. 10 figures. Accepted in IEEE Transactions on Robotics, Special Section on Tactile Robotics
☆ Splat-LOAM: Gaussian Splatting LiDAR Odometry and Mapping ICCV 2025
LiDARs provide accurate geometric measurements, making them valuable for ego-motion estimation and reconstruction tasks. Although its success, managing an accurate and lightweight representation of the environment still poses challenges. Both classic and NeRF-based solutions have to trade off accuracy over memory and processing times. In this work, we build on recent advancements in Gaussian Splatting methods to develop a novel LiDAR odometry and mapping pipeline that exclusively relies on Gaussian primitives for its scene representation. Leveraging spherical projection, we drive the refinement of the primitives uniquely from LiDAR measurements. Experiments show that our approach matches the current registration performance, while achieving SOTA results for mapping tasks with minimal GPU requirements. This efficiency makes it a strong candidate for further exploration and potential adoption in real-time robotics estimation tasks.
comment: submitted to ICCV 2025
☆ TamedPUMA: safe and stable imitation learning with geometric fabrics
Using the language of dynamical systems, Imitation learning (IL) provides an intuitive and effective way of teaching stable task-space motions to robots with goal convergence. Yet, IL techniques are affected by serious limitations when it comes to ensuring safety and fulfillment of physical constraints. With this work, we solve this challenge via TamedPUMA, an IL algorithm augmented with a recent development in motion generation called geometric fabrics. As both the IL policy and geometric fabrics describe motions as artificial second-order dynamical systems, we propose two variations where IL provides a navigation policy for geometric fabrics. The result is a stable imitation learning strategy within which we can seamlessly blend geometrical constraints like collision avoidance and joint limits. Beyond providing a theoretical analysis, we demonstrate TamedPUMA with simulated and real-world tasks, including a 7-DoF manipulator.
comment: 14 pages (10+4), 1+3*5 figures, 1 table, preprint version of accepted paper at L4DC 2025
♻ ☆ SPINE: Online Semantic Planning for Missions with Incomplete Natural Language Specifications in Unstructured Environments ICRA
As robots become increasingly capable, users will want to describe high-level missions and have robots infer the relevant details. Because pre-built maps are difficult to obtain in many realistic settings, accomplishing such missions will require the robot to map and plan online. While many semantic planning methods operate online, they are typically designed for well specified missions such as object search or exploration. Recently, Large Language Models (LLMs) have demonstrated powerful contextual reasoning abilities over a range of robotic tasks described in natural language. However, existing LLM-enabled planners typically do not consider online planning or complex missions; rather, relevant subtasks and semantics are provided by a pre-built map or a user. We address these limitations via SPINE, an online planner for missions with incomplete mission specifications provided in natural language. The planner uses an LLM to reason about subtasks implied by the mission specification and then realizes these subtasks in a receding horizon framework. Tasks are automatically validated for safety and refined online with new map observations. We evaluate SPINE in simulation and real-world settings with missions that require multiple steps of semantic reasoning and exploration in cluttered outdoor environments of over 20,000m$^2$. Compared to baselines that use existing LLM-enabled planning approaches, our method is over twice as efficient in terms of time and distance, requires less user interactions, and does not require a full map. Additional resources are provided at https://zacravichandran.github.io/SPINE.
comment: Accepted to the International Conference on Robotics and Automation (ICRA) 2025
♻ ☆ Moto: Latent Motion Token as the Bridging Language for Learning Robot Manipulation from Videos
Recent developments in Large Language Models pre-trained on extensive corpora have shown significant success in various natural language processing tasks with minimal fine-tuning. This success offers new promise for robotics, which has long been constrained by the high cost of action-labeled data. We ask: given the abundant video data containing interaction-related knowledge available as a rich "corpus", can a similar generative pre-training approach be effectively applied to enhance robot learning? The key challenge is to identify an effective representation for autoregressive pre-training that benefits robot manipulation tasks. Inspired by the way humans learn new skills through observing dynamic environments, we propose that effective robotic learning should emphasize motion-related knowledge, which is closely tied to low-level actions and is hardware-agnostic, facilitating the transfer of learned motions to actual robot actions. To this end, we introduce Moto, which converts video content into latent Motion Token sequences by a Latent Motion Tokenizer, learning a bridging "language" of motion from videos in an unsupervised manner. We pre-train Moto-GPT through motion token autoregression, enabling it to capture diverse visual motion knowledge. After pre-training, Moto-GPT demonstrates the promising ability to produce semantically interpretable motion tokens, predict plausible motion trajectories, and assess trajectory rationality through output likelihood. To transfer learned motion priors to real robot actions, we implement a co-fine-tuning strategy that seamlessly bridges latent motion token prediction and real robot control. Extensive experiments show that the fine-tuned Moto-GPT exhibits superior robustness and efficiency on robot manipulation benchmarks, underscoring its effectiveness in transferring knowledge from video data to downstream visual manipulation tasks.
comment: Project released at: https://chenyi99.github.io/moto/ Code released at: https://github.com/TencentARC/Moto Update: Added content related to real-world robot experiments and learning from human videos; Modified author information
♻ ☆ A Unified Framework for Real-Time Failure Handling in Robotics Using Vision-Language Models, Reactive Planner and Behavior Trees
Robotic systems often face execution failures due to unexpected obstacles, sensor errors, or environmental changes. Traditional failure recovery methods rely on predefined strategies or human intervention, making them less adaptable. This paper presents a unified failure recovery framework that combines Vision-Language Models (VLMs), a reactive planner, and Behavior Trees (BTs) to enable real-time failure handling. Our approach includes pre-execution verification, which checks for potential failures before execution, and reactive failure handling, which detects and corrects failures during execution by verifying existing BT conditions, adding missing preconditions and, when necessary, generating new skills. The framework uses a scene graph for structured environmental perception and an execution history for continuous monitoring, enabling context-aware and adaptive failure handling. We evaluate our framework through real-world experiments with an ABB YuMi robot on tasks like peg insertion, object sorting, and drawer placement, as well as in AI2-THOR simulator. Compared to using pre-execution and reactive methods separately, our approach achieves higher task success rates and greater adaptability. Ablation studies highlight the importance of VLM-based reasoning, structured scene representation, and execution history tracking for effective failure recovery in robotics.
♻ ☆ Incremental Learning for Robot Shared Autonomy
Shared autonomy holds promise for improving the usability and accessibility of assistive robotic arms, but current methods often rely on costly expert demonstrations and remain static after pretraining, limiting their ability to handle real-world variations. Even with extensive training data, unforeseen challenges--especially those that fundamentally alter task dynamics, such as unexpected obstacles or spatial constraints--can cause assistive policies to break down, leading to ineffective or unreliable assistance. To address this, we propose ILSA, an Incrementally Learned Shared Autonomy framework that continuously refines its assistive policy through user interactions, adapting to real-world challenges beyond the scope of pre-collected data. At the core of ILSA is a structured fine-tuning mechanism that enables continual improvement with each interaction by effectively integrating limited new interaction data while preserving prior knowledge, ensuring a balance between adaptation and generalization. A user study with 20 participants demonstrates ILSA's effectiveness, showing faster task completion and improved user experience compared to static alternatives. Code and videos are available at https://ilsa-robo.github.io/.
♻ ☆ SuperPC: A Single Diffusion Model for Point Cloud Completion, Upsampling, Denoising, and Colorization
Point cloud (PC) processing tasks-such as completion, upsampling, denoising, and colorization-are crucial in applications like autonomous driving and 3D reconstruction. Despite substantial advancements, prior approaches often address each of these tasks independently, with separate models focused on individual issues. However, this isolated approach fails to account for the fact that defects like incompleteness, low resolution, noise, and lack of color frequently coexist, with each defect influencing and correlating with the others. Simply applying these models sequentially can lead to error accumulation from each model, along with increased computational costs. To address these challenges, we introduce SuperPC, the first unified diffusion model capable of concurrently handling all four tasks. Our approach employs a three-level-conditioned diffusion framework, enhanced by a novel spatial-mix-fusion strategy, to leverage the correlations among these four defects for simultaneous, efficient processing. We show that SuperPC outperforms the state-of-the-art specialized models as well as their combination on all four individual tasks.
♻ ☆ Global SLAM Using 5G ToA Integration: Performance Analysis with Unknown Base Stations and Loop Closure Alternatives
This paper presents a novel approach that integrates 5G Time of Arrival (ToA) measurements into ORB-SLAM3 to enable global localization and enhance mapping capabilities for indoor drone navigation. We extend ORB-SLAM3's optimization pipeline to jointly process ToA data from 5G base stations alongside visual and inertial measurements while estimating system biases. This integration transforms the inherently local SLAM estimates into globally referenced trajectories and effectively resolves scale ambiguity in monocular configurations. Our method is evaluated using both Aerolab indoor datasets with RGB-D cameras and the EuRoC MAV benchmark, complemented by simulated 5G ToA measurements at 28 GHz and 78 GHz frequencies using MATLAB and QuaDRiGa. Extensive experiments across multiple SLAM configurations demonstrate that ToA integration enables consistent global positioning across all modes while maintaining local accuracy. For monocular configurations, ToA integration successfully resolves scale ambiguity and improves consistency. We further investigate scenarios with unknown base station positions and demonstrate that ToA measurements can effectively serve as an alternative to loop closure for drift correction. We also analyze how different geometric arrangements of base stations impact SLAM performance. Comparative analysis with state-of-the-art methods, including UWB-VO, confirms our approach's robustness even with lower measurement frequencies and sequential base station operation. The results validate that 5G ToA integration provides substantial benefits for global SLAM applications, particularly in challenging indoor environments where accurate positioning is critical.
♻ ☆ MultiNash-PF: A Particle Filtering Approach for Computing Multiple Local Generalized Nash Equilibria in Trajectory Games
Modern robotic systems frequently engage in complex multi-agent interactions, many of which are inherently multi-modal, meaning they can lead to multiple distinct outcomes. To interact effectively, robots must recognize the possible interaction modes and adapt to the one preferred by other agents. In this work, we propose an efficient algorithm for capturing the multimodality in multi-agent interactions. We leverage a game-theoretic planner to model interaction outcomes as equilibria where \emph{each equilibrium} corresponds to a distinct interaction \emph{mode}. We then develop an efficient algorithm to identify all the equilibria, allowing robots to reason about multiple interaction modes. More specifically, we formulate interactive planning as Constrained Potential Trajectory Games (CPTGs) and model interaction outcomes by local Generalized Nash equilibria (GNEs) of the game. CPTGs are a class of games for which a local GNE can be found by solving a single constrained optimal control problem where a potential function is minimized. We propose to integrate the potential game approach with implicit particle filtering, a sample-efficient method for non-convex trajectory optimization. We utilize implicit particle filtering to identify the coarse estimates of multiple local minimizers of the game's potential function. MultiNash-PF then refines these estimates with optimization solvers, obtaining different local GNEs. We show through numerical simulations that MultiNash-PF reduces computation time by up to 50\% compared to a baseline. We further demonstrate the effectiveness of our algorithm in real-world human-robot interaction scenarios, where it successfully accounts for the multi-modal nature of interactions and resolves potential conflicts in real-time.
♻ ☆ Strategic Decision-Making in Multi-Agent Domains: A Weighted Constrained Potential Dynamic Game Approach
In interactive multi-agent settings, decision-making and planning are challenging mainly due to the agents' interconnected objectives. Dynamic game theory offers a formal framework for analyzing such intricacies. Yet, solving constrained dynamic games and determining the interaction outcome in the form of generalized Nash Equilibria (GNE) pose computational challenges due to the need for solving constrained coupled optimal control problems. In this paper, we address this challenge by proposing to leverage the special structure of many real-world multi-agent interactions. More specifically, our key idea is to leverage constrained dynamic potential games, which are games for which GNE can be found by solving a single constrained optimal control problem associated with minimizing the potential function. We argue that constrained dynamic potential games can effectively facilitate interactive decision-making in many multi-agent interactions. We will identify structures in realistic multi-agent interactive scenarios that can be transformed into weighted constrained potential dynamic games (WCPDGs). We will show that the GNE of the resulting WCPDG can be obtained by solving a single constrained optimal control problem. We will demonstrate the effectiveness of the proposed method through various simulation studies and show that we achieve significant improvements in solve time compared to state-of-the-art game solvers. We further provide experimental validation of our proposed method in a navigation setup involving two quadrotors carrying a rigid object while avoiding collisions with two humans.
comment: in IEEE Transactions on Robotics 2025
♻ ☆ SOUS VIDE: Cooking Visual Drone Navigation Policies in a Gaussian Splatting Vacuum
We propose a new simulator, training approach, and policy architecture, collectively called SOUS VIDE, for end-to-end visual drone navigation. Our trained policies exhibit zero-shot sim-to-real transfer with robust real-world performance using only onboard perception and computation. Our simulator, called FiGS, couples a computationally simple drone dynamics model with a high visual fidelity Gaussian Splatting scene reconstruction. FiGS can quickly simulate drone flights producing photorealistic images at up to 130 fps. We use FiGS to collect 100k-300k image/state-action pairs from an expert MPC with privileged state and dynamics information, randomized over dynamics parameters and spatial disturbances. We then distill this expert MPC into an end-to-end visuomotor policy with a lightweight neural architecture, called SV-Net. SV-Net processes color image, optical flow and IMU data streams into low-level thrust and body rate commands at 20 Hz onboard a drone. Crucially, SV-Net includes a learned module for low-level control that adapts at runtime to variations in drone dynamics. In a campaign of 105 hardware experiments, we show SOUS VIDE policies to be robust to 30% mass variations, 40 m/s wind gusts, 60% changes in ambient brightness, shifting or removing objects from the scene, and people moving aggressively through the drone's visual field. Code, data, and experiment videos can be found on our project page: https://stanfordmsl.github.io/SousVide/.
♻ ☆ Social Gesture Recognition in spHRI: Leveraging Fabric-Based Tactile Sensing on Humanoid Robots ICRA 25
Humans are able to convey different messages using only touch. Equipping robots with the ability to understand social touch adds another modality in which humans and robots can communicate. In this paper, we present a social gesture recognition system using a fabric-based, large-scale tactile sensor placed onto the arms of a humanoid robot. We built a social gesture dataset using multiple participants and extracted temporal features for classification. By collecting tactile data on a humanoid robot, our system provides insights into human-robot social touch, and displays that the use of fabric based sensors could be a potential way of advancing the development of spHRI systems for more natural and effective communication.
comment: Accepted to ICRA 25. 8 pages, 8 figures
♻ ☆ Discrete Policy: Learning Disentangled Action Space for Multi-Task Robotic Manipulation ICRA 2025
Learning visuomotor policy for multi-task robotic manipulation has been a long-standing challenge for the robotics community. The difficulty lies in the diversity of action space: typically, a goal can be accomplished in multiple ways, resulting in a multimodal action distribution for a single task. The complexity of action distribution escalates as the number of tasks increases. In this work, we propose \textbf{Discrete Policy}, a robot learning method for training universal agents capable of multi-task manipulation skills. Discrete Policy employs vector quantization to map action sequences into a discrete latent space, facilitating the learning of task-specific codes. These codes are then reconstructed into the action space conditioned on observations and language instruction. We evaluate our method on both simulation and multiple real-world embodiments, including both single-arm and bimanual robot settings. We demonstrate that our proposed Discrete Policy outperforms a well-established Diffusion Policy baseline and many state-of-the-art approaches, including ACT, Octo, and OpenVLA. For example, in a real-world multi-task training setting with five tasks, Discrete Policy achieves an average success rate that is 26\% higher than Diffusion Policy and 15\% higher than OpenVLA. As the number of tasks increases to 12, the performance gap between Discrete Policy and Diffusion Policy widens to 32.5\%, further showcasing the advantages of our approach. Our work empirically demonstrates that learning multi-task policies within the latent space is a vital step toward achieving general-purpose agents.
comment: Accept to ICRA 2025
♻ ☆ Bootstrapping Object-level Planning with Large Language Models ICRA 2025
We introduce a new method that extracts knowledge from a large language model (LLM) to produce object-level plans, which describe high-level changes to object state, and uses them to bootstrap task and motion planning (TAMP). Existing work uses LLMs to directly output task plans or generate goals in representations like PDDL. However, these methods fall short because they rely on the LLM to do the actual planning or output a hard-to-satisfy goal. Our approach instead extracts knowledge from an LLM in the form of plan schemas as an object-level representation called functional object-oriented networks (FOON), from which we automatically generate PDDL subgoals. Our method markedly outperforms alternative planning strategies in completing several pick-and-place tasks in simulation.
comment: Accepted to ICRA 2025; 11 pages (6 pages + 1 page references + 4 pages appendix); for demo videos, please see https://davidpaulius.github.io/olp_llm/
♻ ☆ A Bayesian Modeling Framework for Estimation and Ground Segmentation of Cluttered Staircases
Autonomous robot navigation in complex environments requires robust perception as well as high-level scene understanding due to perceptual challenges, such as occlusions, and uncertainty introduced by robot movement. For example, a robot climbing a cluttered staircase can misinterpret clutter as a step, misrepresenting the state and compromising safety. This requires robust state estimation methods capable of inferring the underlying structure of the environment even from incomplete sensor data. In this paper, we introduce a novel method for robust state estimation of staircases. To address the challenge of perceiving occluded staircases extending beyond the robot's field-of-view, our approach combines an infinite-width staircase representation with a finite endpoint state to capture the overall staircase structure. This representation is integrated into a Bayesian inference framework to fuse noisy measurements enabling accurate estimation of staircase location even with partial observations and occlusions. Additionally, we present a segmentation algorithm that works in conjunction with the staircase estimation pipeline to accurately identify clutter-free regions on a staircase. Our method is extensively evaluated on real robot across diverse staircases, demonstrating significant improvements in estimation accuracy and segmentation performance compared to baseline approaches.
♻ ☆ Contraction Theory for Nonlinear Stability Analysis and Learning-based Control: A Tutorial Overview
Contraction theory is an analytical tool to study differential dynamics of a non-autonomous (i.e., time-varying) nonlinear system under a contraction metric defined with a uniformly positive definite matrix, the existence of which results in a necessary and sufficient characterization of incremental exponential stability of multiple solution trajectories with respect to each other. By using a squared differential length as a Lyapunov-like function, its nonlinear stability analysis boils down to finding a suitable contraction metric that satisfies a stability condition expressed as a linear matrix inequality, indicating that many parallels can be drawn between well-known linear systems theory and contraction theory for nonlinear systems. Furthermore, contraction theory takes advantage of a superior robustness property of exponential stability used in conjunction with the comparison lemma. This yields much-needed safety and stability guarantees for neural network-based control and estimation schemes, without resorting to a more involved method of using uniform asymptotic stability for input-to-state stability. Such distinctive features permit the systematic construction of a contraction metric via convex optimization, thereby obtaining an explicit exponential bound on the distance between a time-varying target trajectory and solution trajectories perturbed externally due to disturbances and learning errors. The objective of this paper is, therefore, to present a tutorial overview of contraction theory and its advantages in nonlinear stability analysis of deterministic and stochastic systems, with an emphasis on deriving formal robustness and stability guarantees for various learning-based and data-driven automatic control methods. In particular, we provide a detailed review of techniques for finding contraction metrics and associated control and estimation laws using deep neural networks.
comment: Annual Reviews in Control, Preprint Version, Accepted, Oct. 1st
♻ ☆ Code-as-Monitor: Constraint-aware Visual Programming for Reactive and Proactive Robotic Failure Detection CVPR 2025
Automatic detection and prevention of open-set failures are crucial in closed-loop robotic systems. Recent studies often struggle to simultaneously identify unexpected failures reactively after they occur and prevent foreseeable ones proactively. To this end, we propose Code-as-Monitor (CaM), a novel paradigm leveraging the vision-language model (VLM) for both open-set reactive and proactive failure detection. The core of our method is to formulate both tasks as a unified set of spatio-temporal constraint satisfaction problems and use VLM-generated code to evaluate them for real-time monitoring. To enhance the accuracy and efficiency of monitoring, we further introduce constraint elements that abstract constraint-related entities or their parts into compact geometric elements. This approach offers greater generality, simplifies tracking, and facilitates constraint-aware visual programming by leveraging these elements as visual prompts. Experiments show that CaM achieves a 28.7% higher success rate and reduces execution time by 31.8% under severe disturbances compared to baselines across three simulators and a real-world setting. Moreover, CaM can be integrated with open-loop control policies to form closed-loop systems, enabling long-horizon tasks in cluttered scenes with dynamic environments.
comment: Accepted by CVPR 2025. Project page: https://zhoues.github.io/Code-as-Monitor/
♻ ☆ Data-driven Camera and Lidar Simulation Models for Autonomous Driving: A Review from Generative Models to Volume Renderers
Perception sensors, particularly camera and Lidar, are key elements of Autonomous Driving Systems (ADS) that enable them to comprehend their surroundings to informed driving and control decisions. Therefore, developing realistic simulation models for these sensors is essential for conducting effective simulation-based testing of ADS. Moreover, the rise of deep learning-based perception models has increased the utility of sensor simulation models for synthesising diverse training datasets. The traditional sensor simulation models rely on computationally expensive physics-based algorithms, specifically in complex systems such as ADS. Hence, the current potential resides in data-driven approaches, fuelled by the exceptional performance of deep generative models in capturing high-dimensional data distribution and volume renderers in accurately representing scenes. This paper reviews the current state-of-the-art data-driven camera and Lidar simulation models and their evaluation methods. It explores a spectrum of models from the novel perspective of generative models and volume renderers. Generative models are discussed in terms of their input-output types, while volume renderers are categorised based on their input encoding. Finally, the paper illustrates commonly used evaluation techniques for assessing sensor simulation models and highlights the existing research gaps in the area.
comment: To be published in IEEE Transactions on Intelligent Vehicles
♻ ☆ Synthesizing multi-log grasp poses in cluttered environments
Multi-object grasping is a challenging task. It is important for energy and cost-efficient operation of industrial crane manipulators, such as those used to collect tree logs from the forest floor and on forest machines. In this work, we used synthetic data from physics simulations to explore how data-driven modeling can be used to infer multi-object grasp poses from images. We showed that convolutional neural networks can be trained specifically for synthesizing multi-object grasps. Using RGB-Depth images and instance segmentation masks as input, a U-Net model outputs grasp maps with the corresponding grapple orientation and opening width. Given an observation of a pile of logs, the model can be used to synthesize and rate the possible grasp poses and select the most suitable one, with the possibility to respect changing operational constraints such as lift capacity and reach. When tested on previously unseen data, the proposed model found successful grasp poses with an accuracy up to 96%.
comment: 21 pages, 14 figures
♻ ☆ Set-membership target search and tracking within an unknown cluttered area using cooperating UAVs equipped with vision systems
This paper addresses the problem of target search and tracking using a fleet of cooperating UAVs evolving in some unknown region of interest containing an a priori unknown number of moving ground targets. Each drone is equipped with an embedded Computer Vision System (CVS), providing an image with labeled pixels and a depth map of the observed part of its environment. Moreover, a box containing the corresponding pixels in the image frame is available when a UAV identifies a target. Hypotheses regarding information provided by the pixel classification, depth map construction, and target identification algorithms are proposed to allow its exploitation by set-membership approaches. A set-membership target location estimator is developed using the information provided by the CVS. Each UAV evaluates sets guaranteed to contain the location of the identified targets and a set possibly containing the locations of targets still to be identified. Then, each UAV uses these sets to search and track targets cooperatively.
comment: This work has been submitted to Elsevier / ScienceDirect for possible publication
♻ ☆ Efficient Training of Generalizable Visuomotor Policies via Control-Aware Augmentation
Improving generalization is one key challenge in embodied AI, where obtaining large-scale datasets across diverse scenarios is costly. Traditional weak augmentations, such as cropping and flipping, are insufficient for improving a model's performance in new environments. Existing data augmentation methods often disrupt task-relevant information in images, potentially degrading performance. To overcome these challenges, we introduce EAGLE, an efficient training framework for generalizable visuomotor policies that improves upon existing methods by (1) enhancing generalization by applying augmentation only to control-related regions identified through a self-supervised control-aware mask and (2) improving training stability and efficiency by distilling knowledge from an expert to a visuomotor student policy, which is then deployed to unseen environments without further fine-tuning. Comprehensive experiments on three domains, including the DMControl Generalization Benchmark, the enhanced Robot Manipulation Distraction Benchmark, and a long-sequential drawer-opening task, validate the effectiveness of our method.
♻ ☆ Neuromorphic Attitude Estimation and Control
The real-world application of small drones is mostly hampered by energy limitations. Neuromorphic computing promises extremely energy-efficient AI for autonomous flight but is still challenging to train and deploy on real robots. To reap the maximal benefits from neuromorphic computing, it is necessary to perform all autonomy functions end-to-end on a single neuromorphic chip, from low-level attitude control to high-level navigation. This research presents the first neuromorphic control system using a spiking neural network (SNN) to effectively map a drone's raw sensory input directly to motor commands. We apply this method to low-level attitude estimation and control for a quadrotor, deploying the SNN on a tiny Crazyflie. We propose a modular SNN, separately training and then merging estimation and control sub-networks. The SNN is trained with imitation learning, using a flight dataset of sensory-motor pairs. Post-training, the network is deployed on the Crazyflie, issuing control commands from sensor inputs at 500Hz. Furthermore, for the training procedure we augmented training data by flying a controller with additional excitation and time-shifting the target data to enhance the predictive capabilities of the SNN. On the real drone, the perception-to-control SNN tracks attitude commands with an average error of 3.0 degrees, compared to 2.7 degrees for the regular flight stack. We also show the benefits of the proposed learning modifications for reducing the average tracking error and reducing oscillations. Our work shows the feasibility of performing neuromorphic end-to-end control, laying the basis for highly energy-efficient and low-latency neuromorphic autopilots.
♻ ☆ GAPartManip: A Large-scale Part-centric Dataset for Material-Agnostic Articulated Object Manipulation ICRA 2025
Effectively manipulating articulated objects in household scenarios is a crucial step toward achieving general embodied artificial intelligence. Mainstream research in 3D vision has primarily focused on manipulation through depth perception and pose detection. However, in real-world environments, these methods often face challenges due to imperfect depth perception, such as with transparent lids and reflective handles. Moreover, they generally lack the diversity in part-based interactions required for flexible and adaptable manipulation. To address these challenges, we introduced a large-scale part-centric dataset for articulated object manipulation that features both photo-realistic material randomization and detailed annotations of part-oriented, scene-level actionable interaction poses. We evaluated the effectiveness of our dataset by integrating it with several state-of-the-art methods for depth estimation and interaction pose prediction. Additionally, we proposed a novel modular framework that delivers superior and robust performance for generalizable articulated object manipulation. Our extensive experiments demonstrate that our dataset significantly improves the performance of depth perception and actionable interaction pose prediction in both simulation and real-world scenarios. More information and demos can be found at: https://pku-epic.github.io/GAPartManip/.
comment: Accepted by ICRA 2025. Project page: https://pku-epic.github.io/GAPartManip/
♻ ☆ HOTFormerLoc: Hierarchical Octree Transformer for Versatile Lidar Place Recognition Across Ground and Aerial Views CVPR 2025
We present HOTFormerLoc, a novel and versatile Hierarchical Octree-based TransFormer, for large-scale 3D place recognition in both ground-to-ground and ground-to-aerial scenarios across urban and forest environments. We propose an octree-based multi-scale attention mechanism that captures spatial and semantic features across granularities. To address the variable density of point distributions from spinning lidar, we present cylindrical octree attention windows to reflect the underlying distribution during attention. We introduce relay tokens to enable efficient global-local interactions and multi-scale representation learning at reduced computational cost. Our pyramid attentional pooling then synthesises a robust global descriptor for end-to-end place recognition in challenging environments. In addition, we introduce CS-Wild-Places, a novel 3D cross-source dataset featuring point cloud data from aerial and ground lidar scans captured in dense forests. Point clouds in CS-Wild-Places contain representational gaps and distinctive attributes such as varying point densities and noise patterns, making it a challenging benchmark for cross-view localisation in the wild. HOTFormerLoc achieves a top-1 average recall improvement of 5.5% - 11.5% on the CS-Wild-Places benchmark. Furthermore, it consistently outperforms SOTA 3D place recognition methods, with an average performance gain of 4.9% on well-established urban and forest datasets. The code and CS-Wild-Places benchmark is available at https://csiro-robotics.github.io/HOTFormerLoc.
comment: 16 pages, 13 figures, 10 tables, Accepted to CVPR 2025
♻ ☆ AlignBot: Aligning VLM-powered Customized Task Planning with User Reminders Through Fine-Tuning for Household Robots
This paper presents AlignBot, a novel framework designed to optimize VLM-powered customized task planning for household robots by effectively aligning with user reminders. In domestic settings, aligning task planning with user reminders poses significant challenges due to the limited quantity, diversity, and multimodal nature of the reminders. To address these challenges, AlignBot employs a fine-tuned LLaVA-7B model, functioning as an adapter for GPT-4o. This adapter model internalizes diverse forms of user reminders-such as personalized preferences, corrective guidance, and contextual assistance-into structured instruction-formatted cues that prompt GPT-4o in generating customized task plans. Additionally, AlignBot integrates a dynamic retrieval mechanism that selects task-relevant historical successes as prompts for GPT-4o, further enhancing task planning accuracy. To validate the effectiveness of AlignBot, experiments are conducted in real-world household environments, which are constructed within the laboratory to replicate typical household settings. A multimodal dataset with over 1,500 entries derived from volunteer reminders is used for training and evaluation. The results demonstrate that AlignBot significantly improves customized task planning, outperforming existing LLM- and VLM-powered planners by interpreting and aligning with user reminders, achieving 86.8% success rate compared to the vanilla GPT-4o baseline at 21.6%, reflecting a 65% improvement and over four times greater effectiveness. Supplementary materials are available at: https://yding25.com/AlignBot/
♻ ☆ An Integrated Approach to Robotic Object Grasping and Manipulation
In response to the growing challenges of manual labor and efficiency in warehouse operations, Amazon has embarked on a significant transformation by incorporating robotics to assist with various tasks. While a substantial number of robots have been successfully deployed for tasks such as item transportation within warehouses, the complex process of object picking from shelves remains a significant challenge. This project addresses the issue by developing an innovative robotic system capable of autonomously fulfilling a simulated order by efficiently selecting specific items from shelves. A distinguishing feature of the proposed robotic system is its capacity to navigate the challenge of uncertain object positions within each bin of the shelf. The system is engineered to autonomously adapt its approach, employing strategies that enable it to efficiently locate and retrieve the desired items, even in the absence of pre-established knowledge about their placements.
comment: I am making big changes in the paper and continuing its further development with other instituition
♻ ☆ KARMA: Augmenting Embodied AI Agents with Long-and-short Term Memory Systems
Embodied AI agents responsible for executing interconnected, long-sequence household tasks often face difficulties with in-context memory, leading to inefficiencies and errors in task execution. To address this issue, we introduce KARMA, an innovative memory system that integrates long-term and short-term memory modules, enhancing large language models (LLMs) for planning in embodied agents through memory-augmented prompting. KARMA distinguishes between long-term and short-term memory, with long-term memory capturing comprehensive 3D scene graphs as representations of the environment, while short-term memory dynamically records changes in objects' positions and states. This dual-memory structure allows agents to retrieve relevant past scene experiences, thereby improving the accuracy and efficiency of task planning. Short-term memory employs strategies for effective and adaptive memory replacement, ensuring the retention of critical information while discarding less pertinent data. Compared to state-of-the-art embodied agents enhanced with memory, our memory-augmented embodied AI agent improves success rates by 1.3x and 2.3x in Composite Tasks and Complex Tasks within the AI2-THOR simulator, respectively, and enhances task execution efficiency by 3.4x and 62.7x. Furthermore, we demonstrate that KARMA's plug-and-play capability allows for seamless deployment on real-world robotic systems, such as mobile manipulation platforms.Through this plug-and-play memory system, KARMA significantly enhances the ability of embodied agents to generate coherent and contextually appropriate plans, making the execution of complex household tasks more efficient. The experimental videos from the work can be found at https://youtu.be/4BT7fnw9ehs. Our code is available at https://github.com/WZX0Swarm0Robotics/KARMA/tree/master.
♻ ☆ Robotic In-Hand Manipulation for Large-Range Precise Object Movement: The RGMC Champion Solution
In-hand manipulation using multiple dexterous fingers is a critical robotic skill that can reduce the reliance on large arm motions, thereby saving space and energy. This letter focuses on in-grasp object movement, which refers to manipulating an object to a desired pose through only finger motions within a stable grasp. The key challenge lies in simultaneously achieving high precision and large-range movements while maintaining a constant stable grasp. To address this problem, we propose a simple and practical approach based on kinematic trajectory optimization with no need for pretraining or object geometries, which can be easily applied to novel objects in real-world scenarios. Adopting this approach, we won the championship for the in-hand manipulation track at the 9th Robotic Grasping and Manipulation Competition (RGMC) held at ICRA 2024. Implementation details, discussion, and further quantitative experimental results are presented in this letter, which aims to comprehensively evaluate our approach and share our key takeaways from the competition. Supplementary materials including video and code are available at https://rgmc-xl-team.github.io/ingrasp_manipulation .
comment: Accepted by RA-L. Project website: https://rgmc-xl-team.github.io/ingrasp_manipulation
♻ ☆ Adver-City: Open-Source Multi-Modal Dataset for Collaborative Perception Under Adverse Weather Conditions
Adverse weather conditions pose a significant challenge to the widespread adoption of Autonomous Vehicles (AVs) by impacting sensors like LiDARs and cameras. Even though Collaborative Perception (CP) improves AV perception in difficult conditions, existing CP datasets lack adverse weather conditions. To address this, we introduce Adver-City, the first open-source synthetic CP dataset focused on adverse weather conditions. Simulated in CARLA with OpenCDA, it contains over 24 thousand frames, over 890 thousand annotations, and 110 unique scenarios across six different weather conditions: clear weather, soft rain, heavy rain, fog, foggy heavy rain and, for the first time in a synthetic CP dataset, glare. It has six object categories including pedestrians and cyclists, and uses data from vehicles and roadside units featuring LiDARs, RGB and semantic segmentation cameras, GNSS, and IMUs. Its scenarios, based on real crash reports, depict the most relevant road configurations for adverse weather and poor visibility conditions, varying in object density, with both dense and sparse scenes, allowing for novel testing conditions of CP models. Benchmarks run on the dataset show that weather conditions created challenging conditions for perception models, with CoBEVT scoring 58.30/52.44/38.90 (AP@30/50/70). The dataset, code and documentation are available at https://labs.cs.queensu.ca/quarrg/datasets/adver-city/.
comment: 13 pages
♻ ☆ Electrostatic Clutches Enable Simultaneous Mechanical Multiplexing
Actuating robotic systems with multiple degrees of freedom (DoF) traditionally requires numerous motors, leading to increased size, weight, cost, and power consumption. Mechanical multiplexing offers a solution by enabling a single actuator to control multiple DoF. However, existing multiplexers have either been limited to electrically controlled time-based multiplexing that control one DoF at a time or have relied on mechanical switching to control multiple DoF simultaneously. There is a strong need for a system that can perform electrically controlled multiplexing for both time-based and simultaneous control of multiple DoF. This study introduces a novel electrostatic capstan clutch-based mechanical multiplexer that enables high-force, single-motor control of multiple DoF. Here, we show that our system achieves both single-input-single-output (SISO) and single-input-multipleoutput (SIMO) actuation, allowing bidirectional control and position holding with minimal power consumption. Each output can actuate a 22.24 N load, limited by clutch performance, up to 5 cm. The number of outputs and actuation length is currently limited by the length of the drive shaft. We demonstrate the integration of our system into a 4-DoF commercial robotic hand using a single motor. These findings show that electrostatic clutchbased multiplexing provides a scalable and energy-efficient design solution for high-DoF robotic platforms, opening new possibilities for lightweight and power-efficient actuation in robotics.
♻ ☆ Physically-Feasible Reactive Synthesis for Terrain-Adaptive Locomotion via Trajectory Optimization and Symbolic Repair
We propose an integrated planning framework for quadrupedal locomotion over dynamically changing, unforeseen terrains. Existing approaches either rely on heuristics for instantaneous foothold selection--compromising safety and versatility--or solve expensive trajectory optimization problems with complex terrain features and long time horizons. In contrast, our framework leverages reactive synthesis to generate correct-by-construction controllers at the symbolic level, and mixed-integer convex programming (MICP) for dynamic and physically feasible footstep planning for each symbolic transition. We use a high-level manager to reduce the large state space in synthesis by incorporating local environment information, improving synthesis scalability. To handle specifications that cannot be met due to dynamic infeasibility, and to minimize costly MICP solves, we leverage a symbolic repair process to generate only necessary symbolic transitions. During online execution, re-running the MICP with real-world terrain data, along with runtime symbolic repair, bridges the gap between offline synthesis and online execution. We demonstrate, in simulation, our framework's capabilities to discover missing locomotion skills and react promptly in safety-critical environments, such as scattered stepping stones and rebars.
♻ ☆ Understanding and Imitating Human-Robot Motion with Restricted Visual Fields
When working around humans, it is important to model their perception limitations in order to predict their behavior more accurately. In this work, we consider agents with a limited field of view, viewing range, and ability to miss objects within the viewing range (e.g., transparency). By considering the observation model independently from the motion policy, we can better predict the agent's behavior by considering these limitations and approximating them. We perform a user study where human operators navigate a cluttered scene while scanning the region for obstacles with a limited field of view and range. Using imitation learning, we show that a robot can adopt a human's strategy for observing an environment with limitations on observation and navigate with minimal collision with dynamic and static obstacles. We also show that this learned model helps it successfully navigate a physical hardware vehicle in real-time.
Computer Vision 148
☆ Position: Interactive Generative Video as Next-Generation Game Engine
Modern game development faces significant challenges in creativity and cost due to predetermined content in traditional game engines. Recent breakthroughs in video generation models, capable of synthesizing realistic and interactive virtual environments, present an opportunity to revolutionize game creation. In this position paper, we propose Interactive Generative Video (IGV) as the foundation for Generative Game Engines (GGE), enabling unlimited novel content generation in next-generation gaming. GGE leverages IGV's unique strengths in unlimited high-quality content synthesis, physics-aware world modeling, user-controlled interactivity, long-term memory capabilities, and causal reasoning. We present a comprehensive framework detailing GGE's core modules and a hierarchical maturity roadmap (L0-L4) to guide its evolution. Our work charts a new course for game development in the AI era, envisioning a future where AI-powered generative systems fundamentally reshape how games are created and experienced.
☆ Image as an IMU: Estimating Camera Motion from a Single Motion-Blurred Image
In many robotics and VR/AR applications, fast camera motions cause a high level of motion blur, causing existing camera pose estimation methods to fail. In this work, we propose a novel framework that leverages motion blur as a rich cue for motion estimation rather than treating it as an unwanted artifact. Our approach works by predicting a dense motion flow field and a monocular depth map directly from a single motion-blurred image. We then recover the instantaneous camera velocity by solving a linear least squares problem under the small motion assumption. In essence, our method produces an IMU-like measurement that robustly captures fast and aggressive camera movements. To train our model, we construct a large-scale dataset with realistic synthetic motion blur derived from ScanNet++v2 and further refine our model by training end-to-end on real data using our fully differentiable pipeline. Extensive evaluations on real-world benchmarks demonstrate that our method achieves state-of-the-art angular and translational velocity estimates, outperforming current methods like MASt3R and COLMAP.
comment: Project page: https://jerredchen.github.io/image-as-imu/
☆ OpenVLThinker: An Early Exploration to Complex Vision-Language Reasoning via Iterative Self-Improvement
Recent advancements demonstrated by DeepSeek-R1 have shown that complex reasoning abilities in large language models (LLMs), including sophisticated behaviors such as self-verification and self-correction, can be achieved by RL with verifiable rewards and significantly improves model performance on challenging tasks such as AIME. Motivated by these findings, our study investigates whether similar reasoning capabilities can be successfully integrated into large vision-language models (LVLMs) and assesses their impact on challenging multimodal reasoning tasks. We consider an approach that iteratively leverages supervised fine-tuning (SFT) on lightweight training data and Reinforcement Learning (RL) to further improve model generalization. Initially, reasoning capabilities were distilled from pure-text R1 models by generating reasoning steps using high-quality captions of the images sourced from diverse visual datasets. Subsequently, iterative RL training further enhance reasoning skills, with each iteration's RL-improved model generating refined SFT datasets for the next round. This iterative process yielded OpenVLThinker, a LVLM exhibiting consistently improved reasoning performance on challenging benchmarks such as MathVista, MathVerse, and MathVision, demonstrating the potential of our strategy for robust vision-language reasoning. The code, model and data are held at https://github.com/yihedeng9/OpenVLThinker.
comment: 23 pages, 11 figures, 8 tables
☆ Time-Series U-Net with Recurrence for Noise-Robust Imaging Photoplethysmography
Remote estimation of vital signs enables health monitoring for situations in which contact-based devices are either not available, too intrusive, or too expensive. In this paper, we present a modular, interpretable pipeline for pulse signal estimation from video of the face that achieves state-of-the-art results on publicly available datasets.Our imaging photoplethysmography (iPPG) system consists of three modules: face and landmark detection, time-series extraction, and pulse signal/pulse rate estimation. Unlike many deep learning methods that make use of a single black-box model that maps directly from input video to output signal or heart rate, our modular approach enables each of the three parts of the pipeline to be interpreted individually. The pulse signal estimation module, which we call TURNIP (Time-Series U-Net with Recurrence for Noise-Robust Imaging Photoplethysmography), allows the system to faithfully reconstruct the underlying pulse signal waveform and uses it to measure heart rate and pulse rate variability metrics, even in the presence of motion. When parts of the face are occluded due to extreme head poses, our system explicitly detects such "self-occluded" regions and maintains estimation robustness despite the missing information. Our algorithm provides reliable heart rate estimates without the need for specialized sensors or contact with the skin, outperforming previous iPPG methods on both color (RGB) and near-infrared (NIR) datasets.
comment: 14 Pages, 8 figures
☆ Decouple and Track: Benchmarking and Improving Video Diffusion Transformers for Motion Transfer
The motion transfer task involves transferring motion from a source video to newly generated videos, requiring the model to decouple motion from appearance. Previous diffusion-based methods primarily rely on separate spatial and temporal attention mechanisms within 3D U-Net. In contrast, state-of-the-art video Diffusion Transformers (DiT) models use 3D full attention, which does not explicitly separate temporal and spatial information. Thus, the interaction between spatial and temporal dimensions makes decoupling motion and appearance more challenging for DiT models. In this paper, we propose DeT, a method that adapts DiT models to improve motion transfer ability. Our approach introduces a simple yet effective temporal kernel to smooth DiT features along the temporal dimension, facilitating the decoupling of foreground motion from background appearance. Meanwhile, the temporal kernel effectively captures temporal variations in DiT features, which are closely related to motion. Moreover, we introduce explicit supervision along dense trajectories in the latent feature space to further enhance motion consistency. Additionally, we present MTBench, a general and challenging benchmark for motion transfer. We also introduce a hybrid motion fidelity metric that considers both the global and local motion similarity. Therefore, our work provides a more comprehensive evaluation than previous works. Extensive experiments on MTBench demonstrate that DeT achieves the best trade-off between motion fidelity and edit fidelity.
☆ Beyond Semantics: Rediscovering Spatial Awareness in Vision-Language Models
Vision-Language Models (VLMs) excel at identifying and describing objects but struggle with spatial reasoning such as accurately understanding the relative positions of objects. Inspired by the dual-pathway (ventral-dorsal) model of human vision, we investigate why VLMs fail spatial tasks despite strong object recognition capabilities. Our interpretability-driven analysis reveals a critical underlying cause: vision embeddings in VLMs are treated primarily as semantic ``bag-of-tokens," overshadowing subtle yet crucial positional cues due to their disproportionately large embedding norms. We validate this insight through extensive diagnostic experiments, demonstrating minimal performance impact when token orders or fine-grained spatial details are removed. Guided by these findings, we propose simple, interpretable interventions, including normalizing vision embedding norms and extracting mid-layer spatially rich features, to restore spatial awareness. Empirical results on both our synthetic data and standard benchmarks demonstrate improved spatial reasoning capabilities, highlighting the value of interpretability-informed design choices. Our study not only uncovers fundamental limitations in current VLM architectures but also provides actionable insights for enhancing structured perception of visual scenes.
☆ Dereflection Any Image with Diffusion Priors and Diversified Data
Reflection removal of a single image remains a highly challenging task due to the complex entanglement between target scenes and unwanted reflections. Despite significant progress, existing methods are hindered by the scarcity of high-quality, diverse data and insufficient restoration priors, resulting in limited generalization across various real-world scenarios. In this paper, we propose Dereflection Any Image, a comprehensive solution with an efficient data preparation pipeline and a generalizable model for robust reflection removal. First, we introduce a dataset named Diverse Reflection Removal (DRR) created by randomly rotating reflective mediums in target scenes, enabling variation of reflection angles and intensities, and setting a new benchmark in scale, quality, and diversity. Second, we propose a diffusion-based framework with one-step diffusion for deterministic outputs and fast inference. To ensure stable learning, we design a three-stage progressive training strategy, including reflection-invariant finetuning to encourage consistent outputs across varying reflection patterns that characterize our dataset. Extensive experiments show that our method achieves SOTA performance on both common benchmarks and challenging in-the-wild images, showing superior generalization across diverse real-world scenes.
☆ Align Your Rhythm: Generating Highly Aligned Dance Poses with Gating-Enhanced Rhythm-Aware Feature Representation
Automatically generating natural, diverse and rhythmic human dance movements driven by music is vital for virtual reality and film industries. However, generating dance that naturally follows music remains a challenge, as existing methods lack proper beat alignment and exhibit unnatural motion dynamics. In this paper, we propose Danceba, a novel framework that leverages gating mechanism to enhance rhythm-aware feature representation for music-driven dance generation, which achieves highly aligned dance poses with enhanced rhythmic sensitivity. Specifically, we introduce Phase-Based Rhythm Extraction (PRE) to precisely extract rhythmic information from musical phase data, capitalizing on the intrinsic periodicity and temporal structures of music. Additionally, we propose Temporal-Gated Causal Attention (TGCA) to focus on global rhythmic features, ensuring that dance movements closely follow the musical rhythm. We also introduce Parallel Mamba Motion Modeling (PMMM) architecture to separately model upper and lower body motions along with musical features, thereby improving the naturalness and diversity of generated dance movements. Extensive experiments confirm that Danceba outperforms state-of-the-art methods, achieving significantly better rhythmic alignment and motion diversity. Project page: https://danceba.github.io/ .
comment: 10 pages, 6 figures
☆ A Topological Data Analysis Framework for Quantifying Necrosis in Glioblastomas
In this paper, we introduce a shape descriptor that we call "interior function". This is a Topological Data Analysis (TDA) based descriptor that refines previous descriptors for image analysis. Using this concept, we define subcomplex lacunarity, a new index that quantifies geometric characteristics of necrosis in tumors such as conglomeration. Building on this framework, we propose a set of indices to analyze necrotic morphology and construct a diagram that captures the distinct structural and geometric properties of necrotic regions in tumors. We present an application of this framework in the study of MRIs of Glioblastomas (GB). Using cluster analysis, we identify four distinct subtypes of Glioblastomas that reflect geometric properties of necrotic regions.
☆ Pow3R: Empowering Unconstrained 3D Reconstruction with Camera and Scene Priors CVPR 2025
We present Pow3r, a novel large 3D vision regression model that is highly versatile in the input modalities it accepts. Unlike previous feed-forward models that lack any mechanism to exploit known camera or scene priors at test time, Pow3r incorporates any combination of auxiliary information such as intrinsics, relative pose, dense or sparse depth, alongside input images, within a single network. Building upon the recent DUSt3R paradigm, a transformer-based architecture that leverages powerful pre-training, our lightweight and versatile conditioning acts as additional guidance for the network to predict more accurate estimates when auxiliary information is available. During training we feed the model with random subsets of modalities at each iteration, which enables the model to operate under different levels of known priors at test time. This in turn opens up new capabilities, such as performing inference in native image resolution, or point-cloud completion. Our experiments on 3D reconstruction, depth completion, multi-view depth prediction, multi-view stereo, and multi-view pose estimation tasks yield state-of-the-art results and confirm the effectiveness of Pow3r at exploiting all available information. The project webpage is https://europe.naverlabs.com/pow3r.
comment: CVPR 2025
☆ Exploring a Principled Framework for Deep Subspace Clustering ICLR 2025
Subspace clustering is a classical unsupervised learning task, built on a basic assumption that high-dimensional data can be approximated by a union of subspaces (UoS). Nevertheless, the real-world data are often deviating from the UoS assumption. To address this challenge, state-of-the-art deep subspace clustering algorithms attempt to jointly learn UoS representations and self-expressive coefficients. However, the general framework of the existing algorithms suffers from a catastrophic feature collapse and lacks a theoretical guarantee to learn desired UoS representation. In this paper, we present a Principled fRamewOrk for Deep Subspace Clustering (PRO-DSC), which is designed to learn structured representations and self-expressive coefficients in a unified manner. Specifically, in PRO-DSC, we incorporate an effective regularization on the learned representations into the self-expressive model, prove that the regularized self-expressive model is able to prevent feature space collapse, and demonstrate that the learned optimal representations under certain condition lie on a union of orthogonal subspaces. Moreover, we provide a scalable and efficient approach to implement our PRO-DSC and conduct extensive experiments to verify our theoretical findings and demonstrate the superior performance of our proposed deep subspace clustering approach. The code is available at https://github.com/mengxianghan123/PRO-DSC.
comment: The paper is accepted by ICLR 2025. The first two authors are equally contributed
☆ An Iterative Feedback Mechanism for Improving Natural Language Class Descriptions in Open-Vocabulary Object Detection SP
Recent advances in open-vocabulary object detection models will enable Automatic Target Recognition systems to be sustainable and repurposed by non-technical end-users for a variety of applications or missions. New, and potentially nuanced, classes can be defined with natural language text descriptions in the field, immediately before runtime, without needing to retrain the model. We present an approach for improving non-technical users' natural language text descriptions of their desired targets of interest, using a combination of analysis techniques on the text embeddings, and proper combinations of embeddings for contrastive examples. We quantify the improvement that our feedback mechanism provides by demonstrating performance with multiple publicly-available open-vocabulary object detection models.
comment: To appear in the Proceedings of SPIE 13463 Automatic Target Recognition XXXV, Orlando, FL, 2025
☆ HyperNVD: Accelerating Neural Video Decomposition via Hypernetworks CVPR 2025
Decomposing a video into a layer-based representation is crucial for easy video editing for the creative industries, as it enables independent editing of specific layers. Existing video-layer decomposition models rely on implicit neural representations (INRs) trained independently for each video, making the process time-consuming when applied to new videos. Noticing this limitation, we propose a meta-learning strategy to learn a generic video decomposition model to speed up the training on new videos. Our model is based on a hypernetwork architecture which, given a video-encoder embedding, generates the parameters for a compact INR-based neural video decomposition model. Our strategy mitigates the problem of single-video overfitting and, importantly, shortens the convergence of video decomposition on new, unseen videos. Our code is available at: https://hypernvd.github.io/
comment: CVPR 2025, project page: https://hypernvd.github.io/
☆ Vision Transformer Based Semantic Communications for Next Generation Wireless Networks
In the evolving landscape of 6G networks, semantic communications are poised to revolutionize data transmission by prioritizing the transmission of semantic meaning over raw data accuracy. This paper presents a Vision Transformer (ViT)-based semantic communication framework that has been deliberately designed to achieve high semantic similarity during image transmission while simultaneously minimizing the demand for bandwidth. By equipping ViT as the encoder-decoder framework, the proposed architecture can proficiently encode images into a high semantic content at the transmitter and precisely reconstruct the images, considering real-world fading and noise consideration at the receiver. Building on the attention mechanisms inherent to ViTs, our model outperforms Convolution Neural Network (CNNs) and Generative Adversarial Networks (GANs) tailored for generating such images. The architecture based on the proposed ViT network achieves the Peak Signal-to-noise Ratio (PSNR) of 38 dB, which is higher than other Deep Learning (DL) approaches in maintaining semantic similarity across different communication environments. These findings establish our ViT-based approach as a significant breakthrough in semantic communications.
comment: Accepted @ ICC 2025
☆ Recovering Pulse Waves from Video Using Deep Unrolling and Deep Equilibrium Models
Camera-based monitoring of vital signs, also known as imaging photoplethysmography (iPPG), has seen applications in driver-monitoring, perfusion assessment in surgical settings, affective computing, and more. iPPG involves sensing the underlying cardiac pulse from video of the skin and estimating vital signs such as the heart rate or a full pulse waveform. Some previous iPPG methods impose model-based sparse priors on the pulse signals and use iterative optimization for pulse wave recovery, while others use end-to-end black-box deep learning methods. In contrast, we introduce methods that combine signal processing and deep learning methods in an inverse problem framework. Our methods estimate the underlying pulse signal and heart rate from facial video by learning deep-network-based denoising operators that leverage deep algorithm unfolding and deep equilibrium models. Experiments show that our methods can denoise an acquired signal from the face and infer the correct underlying pulse rate, achieving state-of-the-art heart rate estimation performance on well-known benchmarks, all with less than one-fifth the number of learnable parameters as the closest competing method.
comment: 13 pages, 9 figures
☆ Physical Plausibility-aware Trajectory Prediction via Locomotion Embodiment CVPR2025
Humans can predict future human trajectories even from momentary observations by using human pose-related cues. However, previous Human Trajectory Prediction (HTP) methods leverage the pose cues implicitly, resulting in implausible predictions. To address this, we propose Locomotion Embodiment, a framework that explicitly evaluates the physical plausibility of the predicted trajectory by locomotion generation under the laws of physics. While the plausibility of locomotion is learned with an indifferentiable physics simulator, it is replaced by our differentiable Locomotion Value function to train an HTP network in a data-driven manner. In particular, our proposed Embodied Locomotion loss is beneficial for efficiently training a stochastic HTP network using multiple heads. Furthermore, the Locomotion Value filter is proposed to filter out implausible trajectories at inference. Experiments demonstrate that our method enhances even the state-of-the-art HTP methods across diverse datasets and problem settings. Our code is available at: https://github.com/ImIntheMiddle/EmLoco.
comment: CVPR2025. Project page: https://iminthemiddle.github.io/EmLoco-Page/
☆ Unsupervised Joint Learning of Optical Flow and Intensity with Event Cameras
Event cameras rely on motion to obtain information about scene appearance. In other words, for event cameras, motion and appearance are seen both or neither, which are encoded in the output event stream. Previous works consider recovering these two visual quantities as separate tasks, which does not fit with the nature of event cameras and neglects the inherent relations between both tasks. In this paper, we propose an unsupervised learning framework that jointly estimates optical flow (motion) and image intensity (appearance), with a single network. Starting from the event generation model, we newly derive the event-based photometric error as a function of optical flow and image intensity, which is further combined with the contrast maximization framework, yielding a comprehensive loss function that provides proper constraints for both flow and intensity estimation. Exhaustive experiments show that our model achieves state-of-the-art performance for both optical flow (achieves 20% and 25% improvement in EPE and AE respectively in the unsupervised learning category) and intensity estimation (produces competitive results with other baselines, particularly in high dynamic range scenarios). Last but not least, our model achieves shorter inference time than all the other optical flow models and many of the image reconstruction models, while they output only one quantity. Project page: https://github.com/tub-rip/e2fai
comment: 14 page, 8 figures, 9 tables. Project page: https://github.com/tub-rip/e2fai
☆ Cross-Modal Interactive Perception Network with Mamba for Lung Tumor Segmentation in PET-CT Images CVPR 2025
Lung cancer is a leading cause of cancer-related deaths globally. PET-CT is crucial for imaging lung tumors, providing essential metabolic and anatomical information, while it faces challenges such as poor image quality, motion artifacts, and complex tumor morphology. Deep learning-based models are expected to address these problems, however, existing small-scale and private datasets limit significant performance improvements for these methods. Hence, we introduce a large-scale PET-CT lung tumor segmentation dataset, termed PCLT20K, which comprises 21,930 pairs of PET-CT images from 605 patients. Furthermore, we propose a cross-modal interactive perception network with Mamba (CIPA) for lung tumor segmentation in PET-CT images. Specifically, we design a channel-wise rectification module (CRM) that implements a channel state space block across multi-modal features to learn correlated representations and helps filter out modality-specific noise. A dynamic cross-modality interaction module (DCIM) is designed to effectively integrate position and context information, which employs PET images to learn regional position information and serves as a bridge to assist in modeling the relationships between local features of CT images. Extensive experiments on a comprehensive benchmark demonstrate the effectiveness of our CIPA compared to the current state-of-the-art segmentation methods. We hope our research can provide more exploration opportunities for medical image segmentation. The dataset and code are available at https://github.com/mj129/CIPA.
comment: Accepted to CVPR 2025
☆ Deep End-to-End Posterior ENergy (DEEPEN) for image recovery
Current end-to-end (E2E) and plug-and-play (PnP) image reconstruction algorithms approximate the maximum a posteriori (MAP) estimate but cannot offer sampling from the posterior distribution, like diffusion models. By contrast, it is challenging for diffusion models to be trained in an E2E fashion. This paper introduces a Deep End-to-End Posterior ENergy (DEEPEN) framework, which enables MAP estimation as well as sampling. We learn the parameters of the posterior, which is the sum of the data consistency error and the negative log-prior distribution, using maximum likelihood optimization in an E2E fashion. The proposed approach does not require algorithm unrolling, and hence has a smaller computational and memory footprint than current E2E methods, while it does not require contraction constraints typically needed by current PnP methods. Our results demonstrate that DEEPEN offers improved performance than current E2E and PnP models in the MAP setting, while it also offers faster sampling compared to diffusion models. In addition, the learned energy-based model is observed to be more robust to changes in image acquisition settings.
☆ Slide-Level Prompt Learning with Vision Language Models for Few-Shot Multiple Instance Learning in Histopathology
In this paper, we address the challenge of few-shot classification in histopathology whole slide images (WSIs) by utilizing foundational vision-language models (VLMs) and slide-level prompt learning. Given the gigapixel scale of WSIs, conventional multiple instance learning (MIL) methods rely on aggregation functions to derive slide-level (bag-level) predictions from patch representations, which require extensive bag-level labels for training. In contrast, VLM-based approaches excel at aligning visual embeddings of patches with candidate class text prompts but lack essential pathological prior knowledge. Our method distinguishes itself by utilizing pathological prior knowledge from language models to identify crucial local tissue types (patches) for WSI classification, integrating this within a VLM-based MIL framework. Our approach effectively aligns patch images with tissue types, and we fine-tune our model via prompt learning using only a few labeled WSIs per category. Experimentation on real-world pathological WSI datasets and ablation studies highlight our method's superior performance over existing MIL- and VLM-based methods in few-shot WSI classification tasks. Our code is publicly available at https://github.com/LTS5/SLIP.
comment: Accepted to ISBI 2025
☆ Strong Baseline: Multi-UAV Tracking via YOLOv12 with BoT-SORT-ReID
Detecting and tracking multiple unmanned aerial vehicles (UAVs) in thermal infrared video is inherently challenging due to low contrast, environmental noise, and small target sizes. This paper provides a straightforward approach to address multi-UAV tracking in thermal infrared video, leveraging recent advances in detection and tracking. Instead of relying on the YOLOv5 with the DeepSORT pipeline, we present a tracking framework built on YOLOv12 and BoT-SORT, enhanced with tailored training and inference strategies. We evaluate our approach following the metrics from the 4th Anti-UAV Challenge and demonstrate competitive performance. Notably, we achieve strong results without using contrast enhancement or temporal information fusion to enrich UAV features, highlighting our approach as a "Strong Baseline" for the multi-UAV tracking task. We provide implementation details, in-depth experimental analysis, and a discussion of potential improvements. The code is available at https://github.com/wish44165/YOLOv12-BoT-SORT-ReID .
comment: 10 pages, 5 figures, 5 tables
☆ Leveraging Text-to-Image Generation for Handling Spurious Correlation
Deep neural networks trained with Empirical Risk Minimization (ERM) perform well when both training and test data come from the same domain, but they often fail to generalize to out-of-distribution samples. In image classification, these models may rely on spurious correlations that often exist between labels and irrelevant features of images, making predictions unreliable when those features do not exist. We propose a technique to generate training samples with text-to-image (T2I) diffusion models for addressing the spurious correlation problem. First, we compute the best describing token for the visual features pertaining to the causal components of samples by a textual inversion mechanism. Then, leveraging a language segmentation method and a diffusion model, we generate new samples by combining the causal component with the elements from other classes. We also meticulously prune the generated samples based on the prediction probabilities and attribution scores of the ERM model to ensure their correct composition for our objective. Finally, we retrain the ERM model on our augmented dataset. This process reduces the model's reliance on spurious correlations by learning from carefully crafted samples for in which this correlation does not exist. Our experiments show that across different benchmarks, our technique achieves better worst-group accuracy than the existing state-of-the-art methods.
☆ Neuro-Symbolic Scene Graph Conditioning for Synthetic Image Dataset Generation
As machine learning models increase in scale and complexity, obtaining sufficient training data has become a critical bottleneck due to acquisition costs, privacy constraints, and data scarcity in specialised domains. While synthetic data generation has emerged as a promising alternative, a notable performance gap remains compared to models trained on real data, particularly as task complexity grows. Concurrently, Neuro-Symbolic methods, which combine neural networks' learning strengths with symbolic reasoning's structured representations, have demonstrated significant potential across various cognitive tasks. This paper explores the utility of Neuro-Symbolic conditioning for synthetic image dataset generation, focusing specifically on improving the performance of Scene Graph Generation models. The research investigates whether structured symbolic representations in the form of scene graphs can enhance synthetic data quality through explicit encoding of relational constraints. The results demonstrate that Neuro-Symbolic conditioning yields significant improvements of up to +2.59% in standard Recall metrics and +2.83% in No Graph Constraint Recall metrics when used for dataset augmentation. These findings establish that merging Neuro-Symbolic and generative approaches produces synthetic data with complementary structural information that enhances model performance when combined with real data, providing a novel approach to overcome data scarcity limitations even for complex visual reasoning tasks.
☆ UniCon: Unidirectional Information Flow for Effective Control of Large-Scale Diffusion Models ICLR
We introduce UniCon, a novel architecture designed to enhance control and efficiency in training adapters for large-scale diffusion models. Unlike existing methods that rely on bidirectional interaction between the diffusion model and control adapter, UniCon implements a unidirectional flow from the diffusion network to the adapter, allowing the adapter alone to generate the final output. UniCon reduces computational demands by eliminating the need for the diffusion model to compute and store gradients during adapter training. Our results indicate that UniCon reduces GPU memory usage by one-third and increases training speed by 2.3 times, while maintaining the same adapter parameter size. Additionally, without requiring extra computational resources, UniCon enables the training of adapters with double the parameter volume of existing ControlNets. In a series of image conditional generation tasks, UniCon has demonstrated precise responsiveness to control inputs and exceptional generation capabilities.
comment: This work has been accepted for publication at the International Conference on Learning Representations (ICLR) 2025
☆ PP-DocLayout: A Unified Document Layout Detection Model to Accelerate Large-Scale Data Construction
Document layout analysis is a critical preprocessing step in document intelligence, enabling the detection and localization of structural elements such as titles, text blocks, tables, and formulas. Despite its importance, existing layout detection models face significant challenges in generalizing across diverse document types, handling complex layouts, and achieving real-time performance for large-scale data processing. To address these limitations, we present PP-DocLayout, which achieves high precision and efficiency in recognizing 23 types of layout regions across diverse document formats. To meet different needs, we offer three models of varying scales. PP-DocLayout-L is a high-precision model based on the RT-DETR-L detector, achieving 90.4% mAP@0.5 and an end-to-end inference time of 13.4 ms per page on a T4 GPU. PP-DocLayout-M is a balanced model, offering 75.2% mAP@0.5 with an inference time of 12.7 ms per page on a T4 GPU. PP-DocLayout-S is a high-efficiency model designed for resource-constrained environments and real-time applications, with an inference time of 8.1 ms per page on a T4 GPU and 14.5 ms on a CPU. This work not only advances the state of the art in document layout analysis but also provides a robust solution for constructing high-quality training data, enabling advancements in document intelligence and multimodal AI systems. Code and models are available at https://github.com/PaddlePaddle/PaddleX .
comment: Github Repo: https://github.com/PaddlePaddle/PaddleX
☆ A Deep Learning Framework for Visual Attention Prediction and Analysis of News Interfaces
News outlets' competition for attention in news interfaces has highlighted the need for demographically-aware saliency prediction models. Despite recent advancements in saliency detection applied to user interfaces (UI), existing datasets are limited in size and demographic representation. We present a deep learning framework that enhances the SaRa (Saliency Ranking) model with DeepGaze IIE, improving Salient Object Ranking (SOR) performance by 10.7%. Our framework optimizes three key components: saliency map generation, grid segment scoring, and map normalization. Through a two-fold experiment using eye-tracking (30 participants) and mouse-tracking (375 participants aged 13--70), we analyze attention patterns across demographic groups. Statistical analysis reveals significant age-based variations (p < 0.05, {\epsilon^2} = 0.042), with older users (36--70) engaging more with textual content and younger users (13--35) interacting more with images. Mouse-tracking data closely approximates eye-tracking behavior (sAUC = 0.86) and identifies UI elements that immediately stand out, validating its use in large-scale studies. We conclude that saliency studies should prioritize gathering data from a larger, demographically representative sample and report exact demographic distributions.
comment: This is a preprint submitted to the 2025 IEEE Conference on Artificial Intelligence (CAI)
☆ A Language Anchor-Guided Method for Robust Noisy Domain Generalization
Real-world machine learning applications often struggle with two major challenges: distribution shift and label noise. Models tend to overfit by focusing on redundant and uninformative features in the training data, which makes it hard for them to generalize to the target domain. Noisy data worsens this problem by causing further overfitting to the noise, meaning that existing methods often fail to tell the difference between true, invariant features and misleading, spurious ones. To tackle these issues, we introduce Anchor Alignment and Adaptive Weighting (A3W). This new algorithm uses sample reweighting guided by natural language processing (NLP) anchors to extract more representative features. In simple terms, A3W leverages semantic representations from natural language models as a source of domain-invariant prior knowledge. Additionally, it employs a weighted loss function that adjusts each sample's contribution based on its similarity to the corresponding NLP anchor. This adjustment makes the model more robust to noisy labels. Extensive experiments on standard benchmark datasets show that A3W consistently outperforms state-of-the-art domain generalization methods, offering significant improvements in both accuracy and robustness across different datasets and noise levels.
☆ Jailbreaking the Non-Transferable Barrier via Test-Time Data Disguising CVPR
Non-transferable learning (NTL) has been proposed to protect model intellectual property (IP) by creating a "non-transferable barrier" to restrict generalization from authorized to unauthorized domains. Recently, well-designed attack, which restores the unauthorized-domain performance by fine-tuning NTL models on few authorized samples, highlights the security risks of NTL-based applications. However, such attack requires modifying model weights, thus being invalid in the black-box scenario. This raises a critical question: can we trust the security of NTL models deployed as black-box systems? In this work, we reveal the first loophole of black-box NTL models by proposing a novel attack method (dubbed as JailNTL) to jailbreak the non-transferable barrier through test-time data disguising. The main idea of JailNTL is to disguise unauthorized data so it can be identified as authorized by the NTL model, thereby bypassing the non-transferable barrier without modifying the NTL model weights. Specifically, JailNTL encourages unauthorized-domain disguising in two levels, including: (i) data-intrinsic disguising (DID) for eliminating domain discrepancy and preserving class-related content at the input-level, and (ii) model-guided disguising (MGD) for mitigating output-level statistics difference of the NTL model. Empirically, when attacking state-of-the-art (SOTA) NTL models in the black-box scenario, JailNTL achieves an accuracy increase of up to 55.7% in the unauthorized domain by using only 1% authorized samples, largely exceeding existing SOTA white-box attacks.
comment: Code is released at https://github.com/tmllab/2025_CVPR_JailNTL
☆ FreeUV: Ground-Truth-Free Realistic Facial UV Texture Recovery via Cross-Assembly Inference Strategy CVPR 2025
Recovering high-quality 3D facial textures from single-view 2D images is a challenging task, especially under constraints of limited data and complex facial details such as makeup, wrinkles, and occlusions. In this paper, we introduce FreeUV, a novel ground-truth-free UV texture recovery framework that eliminates the need for annotated or synthetic UV data. FreeUV leverages pre-trained stable diffusion model alongside a Cross-Assembly inference strategy to fulfill this objective. In FreeUV, separate networks are trained independently to focus on realistic appearance and structural consistency, and these networks are combined during inference to generate coherent textures. Our approach accurately captures intricate facial features and demonstrates robust performance across diverse poses and occlusions. Extensive experiments validate FreeUV's effectiveness, with results surpassing state-of-the-art methods in both quantitative and qualitative metrics. Additionally, FreeUV enables new applications, including local editing, facial feature interpolation, and multi-view texture recovery. By reducing data requirements, FreeUV offers a scalable solution for generating high-fidelity 3D facial textures suitable for real-world scenarios.
comment: CVPR 2025. Project: https://yangxingchao.github.io/FreeUV-page/
☆ MSCA-Net:Multi-Scale Context Aggregation Network for Infrared Small Target Detection
Detecting infrared small targets in complex backgrounds remains a challenging task because of the low contrast and high noise levels inherent in infrared images. These factors often lead to the loss of crucial details during feature extraction. Moreover, existing detection methods have limitations in adequately integrating global and local information, which constrains the efficiency and accuracy of infrared small target detection. To address these challenges, this paper proposes a novel network architecture named MSCA-Net, which integrates three key components: Multi-Scale Enhanced Detection Attention mechanism(MSEDA), Positional Convolutional Block Attention Module (PCBAM), and Channel Aggregation Block (CAB). Specifically, MSEDA employs a multi-scale feature fusion attention mechanism to adaptively aggregate information across different scales, enriching feature representation. PCBAM captures the correlation between global and local features through a correlation matrix-based strategy, enabling deep feature interaction. Moreover, CAB redistributes input feature channels, facilitating the efficient transmission of beneficial features and further enhancing the model detection capability in complex backgrounds. The experimental results demonstrate that MSCA-Net achieves outstanding small target detection performance in complex backgrounds. Specifically, it attains mIoU scores of 78.43\%, 94.56\%, and 67.08\% on the NUAA-SIRST, NUDT-SIRST, and IRTSD-1K datasets, respectively, underscoring its effectiveness and strong potential for real-world applications.
☆ D2Fusion: Dual-domain Fusion with Feature Superposition for Deepfake Detection
Deepfake detection is crucial for curbing the harm it causes to society. However, current Deepfake detection methods fail to thoroughly explore artifact information across different domains due to insufficient intrinsic interactions. These interactions refer to the fusion and coordination after feature extraction processes across different domains, which are crucial for recognizing complex forgery clues. Focusing on more generalized Deepfake detection, in this work, we introduce a novel bi-directional attention module to capture the local positional information of artifact clues from the spatial domain. This enables accurate artifact localization, thus addressing the coarse processing with artifact features. To further address the limitation that the proposed bi-directional attention module may not well capture global subtle forgery information in the artifact feature (e.g., textures or edges), we employ a fine-grained frequency attention module in the frequency domain. By doing so, we can obtain high-frequency information in the fine-grained features, which contains the global and subtle forgery information. Although these features from the diverse domains can be effectively and independently improved, fusing them directly does not effectively improve the detection performance. Therefore, we propose a feature superposition strategy that complements information from spatial and frequency domains. This strategy turns the feature components into the form of wave-like tokens, which are updated based on their phase, such that the distinctions between authentic and artifact features can be amplified. Our method demonstrates significant improvements over state-of-the-art (SOTA) methods on five public Deepfake datasets in capturing abnormalities across different manipulated operations and real-life.
☆ Radar-Guided Polynomial Fitting for Metric Depth Estimation
We propose PolyRad, a novel radar-guided depth estimation method that introduces polynomial fitting to transform scaleless depth predictions from pretrained monocular depth estimation (MDE) models into metric depth maps. Unlike existing approaches that rely on complex architectures or expensive sensors, our method is grounded in a simple yet fundamental insight: using polynomial coefficients predicted from cheap, ubiquitous radar data to adaptively adjust depth predictions non-uniformly across depth ranges. Although MDE models often infer reasonably accurate local depth structure within each object or local region, they may misalign these regions relative to one another, making a linear scale-and-shift transformation insufficient given three or more of these regions. In contrast, PolyRad generalizes beyond linear transformations and is able to correct such misalignments by introducing inflection points. Importantly, our polynomial fitting framework preserves structural consistency through a novel training objective that enforces monotonicity via first-derivative regularization. PolyRad achieves state-of-the-art performance on the nuScenes, ZJU-4DRadarCam, and View-of-Delft datasets, outperforming existing methods by 30.3% in MAE and 37.2% in RMSE.
☆ Which2comm: An Efficient Collaborative Perception Framework for 3D Object Detection
Collaborative perception allows real-time inter-agent information exchange and thus offers invaluable opportunities to enhance the perception capabilities of individual agents. However, limited communication bandwidth in practical scenarios restricts the inter-agent data transmission volume, consequently resulting in performance declines in collaborative perception systems. This implies a trade-off between perception performance and communication cost. To address this issue, we propose Which2comm, a novel multi-agent 3D object detection framework leveraging object-level sparse features. By integrating semantic information of objects into 3D object detection boxes, we introduce semantic detection boxes (SemDBs). Innovatively transmitting these information-rich object-level sparse features among agents not only significantly reduces the demanding communication volume, but also improves 3D object detection performance. Specifically, a fully sparse network is constructed to extract SemDBs from individual agents; a temporal fusion approach with a relative temporal encoding mechanism is utilized to obtain the comprehensive spatiotemporal features. Extensive experiments on the V2XSet and OPV2V datasets demonstrate that Which2comm consistently outperforms other state-of-the-art methods on both perception performance and communication cost, exhibiting better robustness to real-world latency. These results present that for multi-agent collaborative 3D object detection, transmitting only object-level sparse features is sufficient to achieve high-precision and robust performance.
☆ Hi-ALPS -- An Experimental Robustness Quantification of Six LiDAR-based Object Detection Systems for Autonomous Driving
Light Detection and Ranging (LiDAR) is an essential sensor technology for autonomous driving as it can capture high-resolution 3D data. As 3D object detection systems (OD) can interpret such point cloud data, they play a key role in the driving decisions of autonomous vehicles. Consequently, such 3D OD must be robust against all types of perturbations and must therefore be extensively tested. One approach is the use of adversarial examples, which are small, sometimes sophisticated perturbations in the input data that change, i.e., falsify, the prediction of the OD. These perturbations are carefully designed based on the weaknesses of the OD. The robustness of the OD cannot be quantified with adversarial examples in general, because if the OD is vulnerable to a given attack, it is unclear whether this is due to the robustness of the OD or whether the attack algorithm produces particularly strong adversarial examples. The contribution of this work is Hi-ALPS -- Hierarchical Adversarial-example-based LiDAR Perturbation Level System, where higher robustness of the OD is required to withstand the perturbations as the perturbation levels increase. In doing so, the Hi-ALPS levels successively implement a heuristic followed by established adversarial example approaches. In a series of comprehensive experiments using Hi-ALPS, we quantify the robustness of six state-of-the-art 3D OD under different types of perturbations. The results of the experiments show that none of the OD is robust against all Hi-ALPS levels; an important factor for the ranking is that human observers can still correctly recognize the perturbed objects, as the respective perturbations are small. To increase the robustness of the OD, we discuss the applicability of state-of-the-art countermeasures. In addition, we derive further suggestions for countermeasures based on our experimental results.
☆ D2C: Unlocking the Potential of Continuous Autoregressive Image Generation with Discrete Tokens
In the domain of image generation, latent-based generative models occupy a dominant status; however, these models rely heavily on image tokenizer. To meet modeling requirements, autoregressive models possessing the characteristics of scalability and flexibility embrace a discrete-valued tokenizer, but face the challenge of poor image generation quality. In contrast, diffusion models take advantage of the continuous-valued tokenizer to achieve better generation quality but are subject to low efficiency and complexity. The existing hybrid models are mainly to compensate for information loss and simplify the diffusion learning process. The potential of merging discrete-valued and continuous-valued tokens in the field of image generation has not yet been explored. In this paper, we propose D2C, a novel two-stage method to enhance model generation capacity. In the first stage, the discrete-valued tokens representing coarse-grained image features are sampled by employing a small discrete-valued generator. Then in the second stage, the continuous-valued tokens representing fine-grained image features are learned conditioned on the discrete token sequence. In addition, we design two kinds of fusion modules for seamless interaction. On the ImageNet-256 benchmark, extensive experiment results validate that our model achieves superior performance compared with several continuous-valued and discrete-valued generative models on the class-conditional image generation tasks.
☆ Enhancing Steering Estimation with Semantic-Aware GNNs ICCV 2025
Steering estimation is a critical task in autonomous driving, traditionally relying on 2D image-based models. In this work, we explore the advantages of incorporating 3D spatial information through hybrid architectures that combine 3D neural network models with recurrent neural networks (RNNs) for temporal modeling, using LiDAR-based point clouds as input. We systematically evaluate four hybrid 3D models, all of which outperform the 2D-only baseline, with the Graph Neural Network (GNN) - RNN model yielding the best results. To reduce reliance on LiDAR, we leverage a pretrained unified model to estimate depth from monocular images, reconstructing pseudo-3D point clouds. We then adapt the GNN-RNN model, originally designed for LiDAR-based point clouds, to work with these pseudo-3D representations, achieving comparable or even superior performance compared to the LiDAR-based model. Additionally, the unified model provides semantic labels for each point, enabling a more structured scene representation. To further optimize graph construction, we introduce an efficient connectivity strategy where connections are predominantly formed between points of the same semantic class, with only 20\% of inter-class connections retained. This targeted approach reduces graph complexity and computational cost while preserving critical spatial relationships. Finally, we validate our approach on the KITTI dataset, achieving a 71% improvement over 2D-only models. Our findings highlight the advantages of 3D spatial information and efficient graph construction for steering estimation, while maintaining the cost-effectiveness of monocular images and avoiding the expense of LiDAR-based systems.
comment: Submitted to ICCV 2025
☆ Not Only Text: Exploring Compositionality of Visual Representations in Vision-Language Models CVPR 2025
Vision-Language Models (VLMs) learn a shared feature space for text and images, enabling the comparison of inputs of different modalities. While prior works demonstrated that VLMs organize natural language representations into regular structures encoding composite meanings, it remains unclear if compositional patterns also emerge in the visual embedding space. In this work, we investigate compositionality in the image domain, where the analysis of compositional properties is challenged by noise and sparsity of visual data. We address these problems and propose a framework, called Geodesically Decomposable Embeddings (GDE), that approximates image representations with geometry-aware compositional structures in the latent space. We demonstrate that visual embeddings of pre-trained VLMs exhibit a compositional arrangement, and evaluate the effectiveness of this property in the tasks of compositional classification and group robustness. GDE achieves stronger performance in compositional classification compared to its counterpart method that assumes linear geometry of the latent space. Notably, it is particularly effective for group robustness, where we achieve higher results than task-specific solutions. Our results indicate that VLMs can automatically develop a human-like form of compositional reasoning in the visual domain, making their underlying processes more interpretable. Code is available at https://github.com/BerasiDavide/vlm_image_compositionality.
comment: Camera-ready version for CVPR 2025 (with Supp.Mat.)
☆ Temporal-Guided Spiking Neural Networks for Event-Based Human Action Recognition
This paper explores the promising interplay between spiking neural networks (SNNs) and event-based cameras for privacy-preserving human action recognition (HAR). The unique feature of event cameras in capturing only the outlines of motion, combined with SNNs' proficiency in processing spatiotemporal data through spikes, establishes a highly synergistic compatibility for event-based HAR. Previous studies, however, have been limited by SNNs' ability to process long-term temporal information, essential for precise HAR. In this paper, we introduce two novel frameworks to address this: temporal segment-based SNN (\textit{TS-SNN}) and 3D convolutional SNN (\textit{3D-SNN}). The \textit{TS-SNN} extracts long-term temporal information by dividing actions into shorter segments, while the \textit{3D-SNN} replaces 2D spatial elements with 3D components to facilitate the transmission of temporal information. To promote further research in event-based HAR, we create a dataset, \textit{FallingDetection-CeleX}, collected using the high-resolution CeleX-V event camera $(1280 \times 800)$, comprising 7 distinct actions. Extensive experimental results show that our proposed frameworks surpass state-of-the-art SNN methods on our newly collected dataset and three other neuromorphic datasets, showcasing their effectiveness in handling long-range temporal information for event-based HAR.
☆ R-LiViT: A LiDAR-Visual-Thermal Dataset Enabling Vulnerable Road User Focused Roadside Perception ICCV2025
In autonomous driving, the integration of roadside perception systems is essential for overcoming occlusion challenges and enhancing the safety of Vulnerable Road Users (VRUs). While LiDAR and visual (RGB) sensors are commonly used, thermal imaging remains underrepresented in datasets, despite its acknowledged advantages for VRU detection in extreme lighting conditions. In this paper, we present R-LiViT, the first dataset to combine LiDAR, RGB, and thermal imaging from a roadside perspective, with a strong focus on VRUs. R-LiViT captures three intersections during both day and night, ensuring a diverse dataset. It includes 10,000 LiDAR frames and 2,400 temporally and spatially aligned RGB and thermal images across over 150 traffic scenarios, with 6 and 8 annotated classes respectively, providing a comprehensive resource for tasks such as object detection and tracking. The dataset1 and the code for reproducing our evaluation results2 are made publicly available.
comment: 10 pages, 7 figures, submitted to ICCV2025
☆ A New Statistical Model of Star Speckles for Learning to Detect and Characterize Exoplanets in Direct Imaging Observations CVPR 2025
The search for exoplanets is an active field in astronomy, with direct imaging as one of the most challenging methods due to faint exoplanet signals buried within stronger residual starlight. Successful detection requires advanced image processing to separate the exoplanet signal from this nuisance component. This paper presents a novel statistical model that captures nuisance fluctuations using a multi-scale approach, leveraging problem symmetries and a joint spectral channel representation grounded in physical principles. Our model integrates into an interpretable, end-to-end learnable framework for simultaneous exoplanet detection and flux estimation. The proposed algorithm is evaluated against the state of the art using datasets from the SPHERE instrument operating at the Very Large Telescope (VLT). It significantly improves the precision-recall trade-off, notably on challenging datasets that are otherwise unusable by astronomers. The proposed approach is computationally efficient, robust to varying data quality, and well suited for large-scale observational surveys.
comment: Accepted to CVPR 2025
☆ The CASTLE 2024 Dataset: Advancing the Art of Multimodal Understanding
Egocentric video has seen increased interest in recent years, as it is used in a range of areas. However, most existing datasets are limited to a single perspective. In this paper, we present the CASTLE 2024 dataset, a multimodal collection containing ego- and exo-centric (i.e., first- and third-person perspective) video and audio from 15 time-aligned sources, as well as other sensor streams and auxiliary data. The dataset was recorded by volunteer participants over four days in a fixed location and includes the point of view of 10 participants, with an additional 5 fixed cameras providing an exocentric perspective. The entire dataset contains over 600 hours of UHD video recorded at 50 frames per second. In contrast to other datasets, CASTLE 2024 does not contain any partial censoring, such as blurred faces or distorted audio. The dataset is available via https://castle-dataset.github.io/.
comment: 7 pages, 6 figures, dataset available via https://castle-dataset.github.io/
☆ Beyond Accuracy: What Matters in Designing Well-Behaved Models?
Deep learning has become an essential part of computer vision, with deep neural networks (DNNs) excelling in predictive performance. However, they often fall short in other critical quality dimensions, such as robustness, calibration, or fairness. While existing studies have focused on a subset of these quality dimensions, none have explored a more general form of "well-behavedness" of DNNs. With this work, we address this gap by simultaneously studying nine different quality dimensions for image classification. Through a large-scale study, we provide a bird's-eye view by analyzing 326 backbone models and how different training paradigms and model architectures affect the quality dimensions. We reveal various new insights such that (i) vision-language models exhibit high fairness on ImageNet-1k classification and strong robustness against domain changes; (ii) self-supervised learning is an effective training paradigm to improve almost all considered quality dimensions; and (iii) the training dataset size is a major driver for most of the quality dimensions. We conclude our study by introducing the QUBA score (Quality Understanding Beyond Accuracy), a novel metric that ranks models across multiple dimensions of quality, enabling tailored recommendations based on specific user needs.
comment: Code: https://github.com/visinf/beyond-accuracy
☆ Missing Target-Relevant Information Prediction with World Model for Accurate Zero-Shot Composed Image Retrieval CVPR 2025
Zero-Shot Composed Image Retrieval (ZS-CIR) involves diverse tasks with a broad range of visual content manipulation intent across domain, scene, object, and attribute. The key challenge for ZS-CIR tasks is to modify a reference image according to manipulation text to accurately retrieve a target image, especially when the reference image is missing essential target content. In this paper, we propose a novel prediction-based mapping network, named PrediCIR, to adaptively predict the missing target visual content in reference images in the latent space before mapping for accurate ZS-CIR. Specifically, a world view generation module first constructs a source view by omitting certain visual content of a target view, coupled with an action that includes the manipulation intent derived from existing image-caption pairs. Then, a target content prediction module trains a world model as a predictor to adaptively predict the missing visual information guided by user intention in manipulating text at the latent space. The two modules map an image with the predicted relevant information to a pseudo-word token without extra supervision. Our model shows strong generalization ability on six ZS-CIR tasks. It obtains consistent and significant performance boosts ranging from 1.73% to 4.45% over the best methods and achieves new state-of-the-art results on ZS-CIR. Our code is available at https://github.com/Pter61/predicir.
comment: This work has been accepted to CVPR 2025
☆ Exploring Few-Shot Object Detection on Blood Smear Images: A Case Study of Leukocytes and Schistocytes
The detection of blood disorders often hinges upon the quantification of specific blood cell types. Variations in cell counts may indicate the presence of pathological conditions. Thus, the significance of developing precise automatic systems for blood cell enumeration is underscored. The investigation focuses on a novel approach termed DE-ViT. This methodology is employed in a Few-Shot paradigm, wherein training relies on a limited number of images. Two distinct datasets are utilised for experimental purposes: the Raabin-WBC dataset for Leukocyte detection and a local dataset for Schistocyte identification. In addition to the DE-ViT model, two baseline models, Faster R-CNN 50 and Faster R-CNN X 101, are employed, with their outcomes being compared against those of the proposed model. While DE-ViT has demonstrated state-of-the-art performance on the COCO and LVIS datasets, both baseline models surpassed its performance on the Raabin-WBC dataset. Moreover, only Faster R-CNN X 101 yielded satisfactory results on the SC-IDB. The observed disparities in performance may possibly be attributed to domain shift phenomena.
☆ GAA-TSO: Geometry-Aware Assisted Depth Completion for Transparent and Specular Objects
Transparent and specular objects are frequently encountered in daily life, factories, and laboratories. However, due to the unique optical properties, the depth information on these objects is usually incomplete and inaccurate, which poses significant challenges for downstream robotics tasks. Therefore, it is crucial to accurately restore the depth information of transparent and specular objects. Previous depth completion methods for these objects usually use RGB information as an additional channel of the depth image to perform depth prediction. Due to the poor-texture characteristics of transparent and specular objects, these methods that rely heavily on color information tend to generate structure-less depth predictions. Moreover, these 2D methods cannot effectively explore the 3D structure hidden in the depth channel, resulting in depth ambiguity. To this end, we propose a geometry-aware assisted depth completion method for transparent and specular objects, which focuses on exploring the 3D structural cues of the scene. Specifically, besides extracting 2D features from RGB-D input, we back-project the input depth to a point cloud and build the 3D branch to extract hierarchical scene-level 3D structural features. To exploit 3D geometric information, we design several gated cross-modal fusion modules to effectively propagate multi-level 3D geometric features to the image branch. In addition, we propose an adaptive correlation aggregation strategy to appropriately assign 3D features to the corresponding 2D features. Extensive experiments on ClearGrasp, OOD, TransCG, and STD datasets show that our method outperforms other state-of-the-art methods. We further demonstrate that our method significantly enhances the performance of downstream robotic grasping tasks.
☆ A Comparative Analysis of Image Descriptors for Histopathological Classification of Gastric Cancer
Gastric cancer ranks as the fifth most common and fourth most lethal cancer globally, with a dismal 5-year survival rate of approximately 20%. Despite extensive research on its pathobiology, the prognostic predictability remains inadequate, compounded by pathologists' high workload and potential diagnostic errors. Thus, automated, accurate histopathological diagnosis tools are crucial. This study employs Machine Learning and Deep Learning techniques to classify histopathological images into healthy and cancerous categories. Using handcrafted and deep features with shallow learning classifiers on the GasHisSDB dataset, we offer a comparative analysis and insights into the most robust and high-performing combinations of features and classifiers for distinguishing between normal and abnormal histopathological images without fine-tuning strategies. With the RF classifier, our approach can reach F1 of 93.4%, demonstrating its validity.
☆ R2LDM: An Efficient 4D Radar Super-Resolution Framework Leveraging Diffusion Model
We introduce R2LDM, an innovative approach for generating dense and accurate 4D radar point clouds, guided by corresponding LiDAR point clouds. Instead of utilizing range images or bird's eye view (BEV) images, we represent both LiDAR and 4D radar point clouds using voxel features, which more effectively capture 3D shape information. Subsequently, we propose the Latent Voxel Diffusion Model (LVDM), which performs the diffusion process in the latent space. Additionally, a novel Latent Point Cloud Reconstruction (LPCR) module is utilized to reconstruct point clouds from high-dimensional latent voxel features. As a result, R2LDM effectively generates LiDAR-like point clouds from paired raw radar data. We evaluate our approach on two different datasets, and the experimental results demonstrate that our model achieves 6- to 10-fold densification of radar point clouds, outperforming state-of-the-art baselines in 4D radar point cloud super-resolution. Furthermore, the enhanced radar point clouds generated by our method significantly improve downstream tasks, achieving up to 31.7% improvement in point cloud registration recall rate and 24.9% improvement in object detection accuracy.
☆ FFaceNeRF: Few-shot Face Editing in Neural Radiance Fields CVPR2025
Recent 3D face editing methods using masks have produced high-quality edited images by leveraging Neural Radiance Fields (NeRF). Despite their impressive performance, existing methods often provide limited user control due to the use of pre-trained segmentation masks. To utilize masks with a desired layout, an extensive training dataset is required, which is challenging to gather. We present FFaceNeRF, a NeRF-based face editing technique that can overcome the challenge of limited user control due to the use of fixed mask layouts. Our method employs a geometry adapter with feature injection, allowing for effective manipulation of geometry attributes. Additionally, we adopt latent mixing for tri-plane augmentation, which enables training with a few samples. This facilitates rapid model adaptation to desired mask layouts, crucial for applications in fields like personalized medical imaging or creative face editing. Our comparative evaluations demonstrate that FFaceNeRF surpasses existing mask based face editing methods in terms of flexibility, control, and generated image quality, paving the way for future advancements in customized and high-fidelity 3D face editing. The code is available on the {\href{https://kwanyun.github.io/FFaceNeRF_page/}{project-page}}.
comment: CVPR2025, 11 pages, 14 figures
☆ ColabSfM: Collaborative Structure-from-Motion by Point Cloud Registration CVPR 2025
Structure-from-Motion (SfM) is the task of estimating 3D structure and camera poses from images. We define Collaborative SfM (ColabSfM) as sharing distributed SfM reconstructions. Sharing maps requires estimating a joint reference frame, which is typically referred to as registration. However, there is a lack of scalable methods and training datasets for registering SfM reconstructions. In this paper, we tackle this challenge by proposing the scalable task of point cloud registration for SfM reconstructions. We find that current registration methods cannot register SfM point clouds when trained on existing datasets. To this end, we propose a SfM registration dataset generation pipeline, leveraging partial reconstructions from synthetically generated camera trajectories for each scene. Finally, we propose a simple but impactful neural refiner on top of the SotA registration method RoITr that yields significant improvements, which we call RefineRoITr. Our extensive experimental evaluation shows that our proposed pipeline and model enables ColabSfM. Code is available at https://github.com/EricssonResearch/ColabSfM
comment: CVPR 2025
☆ Does a Rising Tide Lift All Boats? Bias Mitigation for AI-based CMR Segmentation
Artificial intelligence (AI) is increasingly being used for medical imaging tasks. However, there can be biases in the resulting models, particularly when they were trained using imbalanced training datasets. One such example has been the strong race bias effect in cardiac magnetic resonance (CMR) image segmentation models. Although this phenomenon has been reported in a number of publications, little is known about the effectiveness of bias mitigation algorithms in this domain. We aim to investigate the impact of common bias mitigation methods to address bias between Black and White subjects in AI-based CMR segmentation models. Specifically, we use oversampling, importance reweighing and Group DRO as well as combinations of these techniques to mitigate the race bias. Furthermore, motivated by recent findings on the root causes of AI-based CMR segmentation bias, we evaluate the same methods using models trained and evaluated on cropped CMR images. We find that bias can be mitigated using oversampling, significantly improving performance for the underrepresented Black subjects whilst not significantly reducing the majority White subjects' performance. Group DRO also improves performance for Black subjects but not significantly, while reweighing decreases performance for Black subjects. Using a combination of oversampling and Group DRO also improves performance for Black subjects but not significantly. Using cropped images increases performance for both races and reduces the bias, whilst adding oversampling as a bias mitigation technique with cropped images reduces the bias further.
☆ Seeing What Matters: Empowering CLIP with Patch Generation-to-Selection CVPR 2025
The CLIP model has demonstrated significant advancements in aligning visual and language modalities through large-scale pre-training on image-text pairs, enabling strong zero-shot classification and retrieval capabilities on various domains. However, CLIP's training remains computationally intensive, with high demands on both data processing and memory. To address these challenges, recent masking strategies have emerged, focusing on the selective removal of image patches to improve training efficiency. Although effective, these methods often compromise key semantic information, resulting in suboptimal alignment between visual features and text descriptions. In this work, we present a concise yet effective approach called Patch Generation-to-Selection to enhance CLIP's training efficiency while preserving critical semantic content. Our method introduces a gradual masking process in which a small set of candidate patches is first pre-selected as potential mask regions. Then, we apply Sobel edge detection across the entire image to generate an edge mask that prioritizes the retention of the primary object areas. Finally, similarity scores between the candidate mask patches and their neighboring patches are computed, with optimal transport normalization refining the selection process to ensure a balanced similarity matrix. Our approach, CLIP-PGS, sets new state-of-the-art results in zero-shot classification and retrieval tasks, achieving superior performance in robustness evaluation and language compositionality benchmarks.
comment: accepted by CVPR 2025
☆ Halton Scheduler For Masked Generative Image Transformer
Masked Generative Image Transformers (MaskGIT) have emerged as a scalable and efficient image generation framework, able to deliver high-quality visuals with low inference costs. However, MaskGIT's token unmasking scheduler, an essential component of the framework, has not received the attention it deserves. We analyze the sampling objective in MaskGIT, based on the mutual information between tokens, and elucidate its shortcomings. We then propose a new sampling strategy based on our Halton scheduler instead of the original Confidence scheduler. More precisely, our method selects the token's position according to a quasi-random, low-discrepancy Halton sequence. Intuitively, that method spreads the tokens spatially, progressively covering the image uniformly at each step. Our analysis shows that it allows reducing non-recoverable sampling errors, leading to simpler hyper-parameters tuning and better quality images. Our scheduler does not require retraining or noise injection and may serve as a simple drop-in replacement for the original sampling strategy. Evaluation of both class-to-image synthesis on ImageNet and text-to-image generation on the COCO dataset demonstrates that the Halton scheduler outperforms the Confidence scheduler quantitatively by reducing the FID and qualitatively by generating more diverse and more detailed images. Our code is at https://github.com/valeoai/Halton-MaskGIT.
☆ Zero-Shot Styled Text Image Generation, but Make It Autoregressive CVPR2025
Styled Handwritten Text Generation (HTG) has recently received attention from the computer vision and document analysis communities, which have developed several solutions, either GAN- or diffusion-based, that achieved promising results. Nonetheless, these strategies fail to generalize to novel styles and have technical constraints, particularly in terms of maximum output length and training efficiency. To overcome these limitations, in this work, we propose a novel framework for text image generation, dubbed Emuru. Our approach leverages a powerful text image representation model (a variational autoencoder) combined with an autoregressive Transformer. Our approach enables the generation of styled text images conditioned on textual content and style examples, such as specific fonts or handwriting styles. We train our model solely on a diverse, synthetic dataset of English text rendered in over 100,000 typewritten and calligraphy fonts, which gives it the capability to reproduce unseen styles (both fonts and users' handwriting) in zero-shot. To the best of our knowledge, Emuru is the first autoregressive model for HTG, and the first designed specifically for generalization to novel styles. Moreover, our model generates images without background artifacts, which are easier to use for downstream applications. Extensive evaluation on both typewritten and handwritten, any-length text image generation scenarios demonstrates the effectiveness of our approach.
comment: Accepted at CVPR2025
☆ Superpowering Open-Vocabulary Object Detectors for X-ray Vision
Open-vocabulary object detection (OvOD) is set to revolutionize security screening by enabling systems to recognize any item in X-ray scans. However, developing effective OvOD models for X-ray imaging presents unique challenges due to data scarcity and the modality gap that prevents direct adoption of RGB-based solutions. To overcome these limitations, we propose RAXO, a training-free framework that repurposes off-the-shelf RGB OvOD detectors for robust X-ray detection. RAXO builds high-quality X-ray class descriptors using a dual-source retrieval strategy. It gathers relevant RGB images from the web and enriches them via a novel X-ray material transfer mechanism, eliminating the need for labeled databases. These visual descriptors replace text-based classification in OvOD, leveraging intra-modal feature distances for robust detection. Extensive experiments demonstrate that RAXO consistently improves OvOD performance, providing an average mAP increase of up to 17.0 points over base detectors. To further support research in this emerging field, we also introduce DET-COMPASS, a new benchmark featuring bounding box annotations for over 300 object categories, enabling large-scale evaluation of OvOD in X-ray. Code and dataset available at: https://github.com/PAGF188/RAXO.
☆ PVChat: Personalized Video Chat with One-Shot Learning
Video large language models (ViLLMs) excel in general video understanding, e.g., recognizing activities like talking and eating, but struggle with identity-aware comprehension, such as "Wilson is receiving chemotherapy" or "Tom is discussing with Sarah", limiting their applicability in smart healthcare and smart home environments. To address this limitation, we propose a one-shot learning framework PVChat, the first personalized ViLLM that enables subject-aware question answering (QA) from a single video for each subject. Our approach optimizes a Mixture-of-Heads (MoH) enhanced ViLLM on a synthetically augmented video-QA dataset, leveraging a progressive image-to-video learning strategy. Specifically, we introduce an automated augmentation pipeline that synthesizes identity-preserving positive samples and retrieves hard negatives from existing video corpora, generating a diverse training dataset with four QA types: existence, appearance, action, and location inquiries. To enhance subject-specific learning, we propose a ReLU Routing MoH attention mechanism, alongside two novel objectives: (1) Smooth Proximity Regularization for progressive learning through exponential distance scaling and (2) Head Activation Enhancement for balanced attention routing. Finally, we adopt a two-stage training strategy, transitioning from image pre-training to video fine-tuning, enabling a gradual learning process from static attributes to dynamic representations. We evaluate PVChat on diverse datasets covering medical scenarios, TV series, anime, and real-world footage, demonstrating its superiority in personalized feature understanding after learning from a single video, compared to state-of-the-art ViLLMs.
☆ DIDiffGes: Decoupled Semi-Implicit Diffusion Models for Real-time Gesture Generation from Speech AAAI 2025
Diffusion models have demonstrated remarkable synthesis quality and diversity in generating co-speech gestures. However, the computationally intensive sampling steps associated with diffusion models hinder their practicality in real-world applications. Hence, we present DIDiffGes, for a Decoupled Semi-Implicit Diffusion model-based framework, that can synthesize high-quality, expressive gestures from speech using only a few sampling steps. Our approach leverages Generative Adversarial Networks (GANs) to enable large-step sampling for diffusion model. We decouple gesture data into body and hands distributions and further decompose them into marginal and conditional distributions. GANs model the marginal distribution implicitly, while L2 reconstruction loss learns the conditional distributions exciplictly. This strategy enhances GAN training stability and ensures expressiveness of generated full-body gestures. Our framework also learns to denoise root noise conditioned on local body representation, guaranteeing stability and realism. DIDiffGes can generate gestures from speech with just 10 sampling steps, without compromising quality and expressiveness, reducing the number of sampling steps by a factor of 100 compared to existing methods. Our user study reveals that our method outperforms state-of-the-art approaches in human likeness, appropriateness, and style correctness. Project is https://cyk990422.github.io/DIDiffGes.
comment: Accepted by AAAI 2025
☆ Semi-supervised Cervical Segmentation on Ultrasound by A Dual Framework for Neural Networks
Accurate segmentation of ultrasound (US) images of the cervical muscles is crucial for precision healthcare. The demand for automatic computer-assisted methods is high. However, the scarcity of labeled data hinders the development of these methods. Advanced semi-supervised learning approaches have displayed promise in overcoming this challenge by utilizing labeled and unlabeled data. This study introduces a novel semi-supervised learning (SSL) framework that integrates dual neural networks. This SSL framework utilizes both networks to generate pseudo-labels and cross-supervise each other at the pixel level. Additionally, a self-supervised contrastive learning strategy is introduced, which employs a pair of deep representations to enhance feature learning capabilities, particularly on unlabeled data. Our framework demonstrates competitive performance in cervical segmentation tasks. Our codes are publicly available on https://github.com/13204942/SSL\_Cervical\_Segmentation.
comment: Accepted for an oral presentation at ISBI 2025 Fetal Ultrasound Grand Challenge: Semi-Supervised Cervical Segmentation
☆ Scoring, Remember, and Reference: Catching Camouflaged Objects in Videos
Video Camouflaged Object Detection (VCOD) aims to segment objects whose appearances closely resemble their surroundings, posing a challenging and emerging task. Existing vision models often struggle in such scenarios due to the indistinguishable appearance of camouflaged objects and the insufficient exploitation of dynamic information in videos. To address these challenges, we propose an end-to-end VCOD framework inspired by human memory-recognition, which leverages historical video information by integrating memory reference frames for camouflaged sequence processing. Specifically, we design a dual-purpose decoder that simultaneously generates predicted masks and scores, enabling reference frame selection based on scores while introducing auxiliary supervision to enhance feature extraction.Furthermore, this study introduces a novel reference-guided multilevel asymmetric attention mechanism, effectively integrating long-term reference information with short-term motion cues for comprehensive feature extraction. By combining these modules, we develop the Scoring, Remember, and Reference (SRR) framework, which efficiently extracts information to locate targets and employs memory guidance to improve subsequent processing. With its optimized module design and effective utilization of video data, our model achieves significant performance improvements, surpassing existing approaches by 10% on benchmark datasets while requiring fewer parameters (54M) and only a single pass through the video. The code will be made publicly available.
HAPI: A Model for Learning Robot Facial Expressions from Human Preferences
Automatic robotic facial expression generation is crucial for human-robot interaction, as handcrafted methods based on fixed joint configurations often yield rigid and unnatural behaviors. Although recent automated techniques reduce the need for manual tuning, they tend to fall short by not adequately bridging the gap between human preferences and model predictions-resulting in a deficiency of nuanced and realistic expressions due to limited degrees of freedom and insufficient perceptual integration. In this work, we propose a novel learning-to-rank framework that leverages human feedback to address this discrepancy and enhanced the expressiveness of robotic faces. Specifically, we conduct pairwise comparison annotations to collect human preference data and develop the Human Affective Pairwise Impressions (HAPI) model, a Siamese RankNet-based approach that refines expression evaluation. Results obtained via Bayesian Optimization and online expression survey on a 35-DOF android platform demonstrate that our approach produces significantly more realistic and socially resonant expressions of Anger, Happiness, and Surprise than those generated by baseline and expert-designed methods. This confirms that our framework effectively bridges the gap between human preferences and model predictions while robustly aligning robotic expression generation with human affective responses.
☆ ExCap3D: Expressive 3D Scene Understanding via Object Captioning with Varying Detail
Generating text descriptions of objects in 3D indoor scenes is an important building block of embodied understanding. Existing methods do this by describing objects at a single level of detail, which often does not capture fine-grained details such as varying textures, materials, and shapes of the parts of objects. We propose the task of expressive 3D captioning: given an input 3D scene, describe objects at multiple levels of detail: a high-level object description, and a low-level description of the properties of its parts. To produce such captions, we present ExCap3D, an expressive 3D captioning model which takes as input a 3D scan, and for each detected object in the scan, generates a fine-grained collective description of the parts of the object, along with an object-level description conditioned on the part-level description. We design ExCap3D to encourage semantic consistency between the generated text descriptions, as well as textual similarity in the latent space, to further increase the quality of the generated captions. To enable this task, we generated the ExCap3D Dataset by leveraging a visual-language model (VLM) for multi-view captioning. The ExCap3D Dataset contains captions on the ScanNet++ dataset with varying levels of detail, comprising 190k text descriptions of 34k 3D objects in 947 indoor scenes. Our experiments show that the object- and part-level of detail captions generated by ExCap3D are of higher quality than those produced by state-of-the-art methods, with a Cider score improvement of 17% and 124% for object- and part-level details respectively. Our code, dataset and models will be made publicly available.
comment: Project page: https://cy94.github.io/excap3d/, Video: https://www.youtube.com/watch?v=SQRV1l_0oY0
☆ An Attentive Representative Sample Selection Strategy Combined with Balanced Batch Training for Skin Lesion Segmentation
An often overlooked problem in medical image segmentation research is the effective selection of training subsets to annotate from a complete set of unlabelled data. Many studies select their training sets at random, which may lead to suboptimal model performance, especially in the minimal supervision setting where each training image has a profound effect on performance outcomes. This work aims to address this issue. We use prototypical contrasting learning and clustering to extract representative and diverse samples for annotation. We improve upon prior works with a bespoke cluster-based image selection process. Additionally, we introduce the concept of unsupervised balanced batch dataloading to medical image segmentation, which aims to improve model learning with minimally annotated data. We evaluated our method on a public skin lesion dataset (ISIC 2018) and compared it to another state-of-the-art data sampling method. Our method achieved superior performance in a low annotation budget scenario.
comment: Accepted to ISBI 2025
☆ TaoAvatar: Real-Time Lifelike Full-Body Talking Avatars for Augmented Reality via 3D Gaussian Splatting CVPR 2025
Realistic 3D full-body talking avatars hold great potential in AR, with applications ranging from e-commerce live streaming to holographic communication. Despite advances in 3D Gaussian Splatting (3DGS) for lifelike avatar creation, existing methods struggle with fine-grained control of facial expressions and body movements in full-body talking tasks. Additionally, they often lack sufficient details and cannot run in real-time on mobile devices. We present TaoAvatar, a high-fidelity, lightweight, 3DGS-based full-body talking avatar driven by various signals. Our approach starts by creating a personalized clothed human parametric template that binds Gaussians to represent appearances. We then pre-train a StyleUnet-based network to handle complex pose-dependent non-rigid deformation, which can capture high-frequency appearance details but is too resource-intensive for mobile devices. To overcome this, we "bake" the non-rigid deformations into a lightweight MLP-based network using a distillation technique and develop blend shapes to compensate for details. Extensive experiments show that TaoAvatar achieves state-of-the-art rendering quality while running in real-time across various devices, maintaining 90 FPS on high-definition stereo devices such as the Apple Vision Pro.
comment: Accepted by CVPR 2025, project page: https://PixelAI-Team.github.io/TaoAvatar
☆ Exploring the Efficacy of Partial Denoising Using Bit Plane Slicing for Enhanced Fracture Identification: A Comparative Study of Deep Learning-Based Approaches and Handcrafted Feature Extraction Techniques
Computer vision has transformed medical diagnosis, treatment, and research through advanced image processing and machine learning techniques. Fracture classification, a critical area in healthcare, has greatly benefited from these advancements, yet accurate detection is challenged by complex patterns and image noise. Bit plane slicing enhances medical images by reducing noise interference and extracting informative features. This research explores partial denoising techniques to provide practical solutions for improved fracture analysis, ultimately enhancing patient care. The study explores deep learning model DenseNet and handcrafted feature extraction. Decision Tree and Random Forest, were employed to train and evaluate distinct image representations. These include the original image, the concatenation of the four bit planes from the LSB as well as MSB, the fully denoised image, and an image consisting of 6 bit planes from MSB and 2 denoised bit planes from LSB. The purpose of forming these diverse image representations is to analyze SNR as well as classification accuracy and identify the bit planes that contain the most informative features. Moreover, the study delves into the significance of partial denoising techniques in preserving crucial features, leading to improvements in classification results. Notably, this study shows that employing the Random Forest classifier, the partially denoised image representation exhibited a testing accuracy of 95.61% surpassing the performance of other image representations. The outcomes of this research provide valuable insights into the development of efficient preprocessing, feature extraction and classification approaches for fracture identification. By enhancing diagnostic accuracy, these advancements hold the potential to positively impact patient care and overall medical outcomes.
☆ AnimatePainter: A Self-Supervised Rendering Framework for Reconstructing Painting Process
Humans can intuitively decompose an image into a sequence of strokes to create a painting, yet existing methods for generating drawing processes are limited to specific data types and often rely on expensive human-annotated datasets. We propose a novel self-supervised framework for generating drawing processes from any type of image, treating the task as a video generation problem. Our approach reverses the drawing process by progressively removing strokes from a reference image, simulating a human-like creation sequence. Crucially, our method does not require costly datasets of real human drawing processes; instead, we leverage depth estimation and stroke rendering to construct a self-supervised dataset. We model human drawings as "refinement" and "layering" processes and introduce depth fusion layers to enable video generation models to learn and replicate human drawing behavior. Extensive experiments validate the effectiveness of our approach, demonstrating its ability to generate realistic drawings without the need for real drawing process data.
☆ RAW-Adapter: Adapting Pre-trained Visual Model to Camera RAW Images and A Benchmark ECCV 2024
In the computer vision community, the preference for pre-training visual models has largely shifted toward sRGB images due to their ease of acquisition and compact storage. However, camera RAW images preserve abundant physical details across diverse real-world scenarios. Despite this, most existing visual perception methods that utilize RAW data directly integrate image signal processing (ISP) stages with subsequent network modules, often overlooking potential synergies at the model level. Building on recent advances in adapter-based methodologies in both NLP and computer vision, we propose RAW-Adapter, a novel framework that incorporates learnable ISP modules as input-level adapters to adjust RAW inputs. At the same time, it employs model-level adapters to seamlessly bridge ISP processing with high-level downstream architectures. Moreover, RAW-Adapter serves as a general framework applicable to various computer vision frameworks. Furthermore, we introduce RAW-Bench, which incorporates 17 types of RAW-based common corruptions, including lightness degradations, weather effects, blurriness, camera imaging degradations, and variations in camera color response. Using this benchmark, we systematically compare the performance of RAW-Adapter with state-of-the-art (SOTA) ISP methods and other RAW-based high-level vision algorithms. Additionally, we propose a RAW-based data augmentation strategy to further enhance RAW-Adapter's performance and improve its out-of-domain (OOD) generalization ability. Extensive experiments substantiate the effectiveness and efficiency of RAW-Adapter, highlighting its robust performance across diverse scenarios.
comment: 23 pages, 17 figures, extension of ECCV 2024 work: arXiv:2408.14802
☆ A Tale of Two Classes: Adapting Supervised Contrastive Learning to Binary Imbalanced Datasets
Supervised contrastive learning (SupCon) has proven to be a powerful alternative to the standard cross-entropy loss for classification of multi-class balanced datasets. However, it struggles to learn well-conditioned representations of datasets with long-tailed class distributions. This problem is potentially exacerbated for binary imbalanced distributions, which are commonly encountered during many real-world problems such as medical diagnosis. In experiments on seven binary datasets of natural and medical images, we show that the performance of SupCon decreases with increasing class imbalance. To substantiate these findings, we introduce two novel metrics that evaluate the quality of the learned representation space. By measuring the class distribution in local neighborhoods, we are able to uncover structural deficiencies of the representation space that classical metrics cannot detect. Informed by these insights, we propose two new supervised contrastive learning strategies tailored to binary imbalanced datasets that improve the structure of the representation space and increase downstream classification accuracy over standard SupCon by up to 35%. We make our code available.
☆ Specifying What You Know or Not for Multi-Label Class-Incremental Learning AAAI 2025
Existing class incremental learning is mainly designed for single-label classification task, which is ill-equipped for multi-label scenarios due to the inherent contradiction of learning objectives for samples with incomplete labels. We argue that the main challenge to overcome this contradiction in multi-label class-incremental learning (MLCIL) lies in the model's inability to clearly distinguish between known and unknown knowledge. This ambiguity hinders the model's ability to retain historical knowledge, master current classes, and prepare for future learning simultaneously. In this paper, we target at specifying what is known or not to accommodate Historical, Current, and Prospective knowledge for MLCIL and propose a novel framework termed as HCP. Specifically, (i) we clarify the known classes by dynamic feature purification and recall enhancement with distribution prior, enhancing the precision and retention of known information. (ii) We design prospective knowledge mining to probe the unknown, preparing the model for future learning. Extensive experiments validate that our method effectively alleviates catastrophic forgetting in MLCIL, surpassing the previous state-of-the-art by 3.3% on average accuracy for MS-COCO B0-C10 setting without replay buffers.
comment: Accepted by AAAI 2025
☆ Steady Progress Beats Stagnation: Mutual Aid of Foundation and Conventional Models in Mixed Domain Semi-Supervised Medical Image Segmentation CVPR 2025
Large pretrained visual foundation models exhibit impressive general capabilities. However, the extensive prior knowledge inherent in these models can sometimes be a double-edged sword when adapting them to downstream tasks in specific domains. In the context of semi-supervised medical image segmentation with domain shift, foundation models like MedSAM tend to make overconfident predictions, some of which are incorrect. The error accumulation hinders the effective utilization of unlabeled data and limits further improvements. In this paper, we introduce a Synergistic training framework for Foundation and Conventional models (SynFoC) to address the issue. We observe that a conventional model trained from scratch has the ability to correct the high-confidence mispredictions of the foundation model, while the foundation model can supervise it with high-quality pseudo-labels in the early training stages. Furthermore, to enhance the collaborative training effectiveness of both models and promote reliable convergence towards optimization, the consensus-divergence consistency regularization is proposed. We demonstrate the superiority of our method across four public multi-domain datasets. In particular, our method improves the Dice score by 10.31\% on the Prostate dataset. Our code is available at https://github.com/MQinghe/SynFoC .
comment: Accepted by CVPR 2025
☆ High Accuracy Pulmonary Vessel Segmentation for Contrast and Non-contrast CT Images and Its Clinical Evaluation
Accurate segmentation of pulmonary vessels plays a very critical role in diagnosing and assessing various lung diseases. In clinical practice, diagnosis is typically carried out using CTPA images. However, there is a lack of high-precision pulmonary vessel segmentation algorithms for CTPA, and pulmonary vessel segmentation for NCCT poses an even greater challenge. In this study, we propose a 3D image segmentation algorithm for automated pulmonary vessel segmentation from both contrast and non-contrast CT images. In the network, we designed a Vessel Lumen Structure Optimization Module (VLSOM), which extracts the centerline of vessels and adjusts the weights based on the positional information and adds a Cl-Dice-Loss to supervise the stability of the vessels structure. In addition, we designed a method for generating vessel GT from CTPA to NCCT for training models that support both CTPA and NCCT. In this work, we used 427 sets of high-precision annotated CT data from multiple vendors and countries. Finally, our experimental model achieved Cl-Recall, Cl-DICE and Recall values of 0.879, 0.909, 0.934 (CTPA) and 0.928, 0.936, 0.955 (NCCT) respectively. This shows that our model has achieved good performance in both accuracy and completeness of pulmonary vessel segmentation. In clinical visual evaluation, our model also had good segmentation performance on various disease types and can assist doctors in medical diagnosis, verifying the great potential of this method in clinical application.
☆ Enabling Versatile Controls for Video Diffusion Models
Despite substantial progress in text-to-video generation, achieving precise and flexible control over fine-grained spatiotemporal attributes remains a significant unresolved challenge in video generation research. To address these limitations, we introduce VCtrl (also termed PP-VCtrl), a novel framework designed to enable fine-grained control over pre-trained video diffusion models in a unified manner. VCtrl integrates diverse user-specified control signals-such as Canny edges, segmentation masks, and human keypoints-into pretrained video diffusion models via a generalizable conditional module capable of uniformly encoding multiple types of auxiliary signals without modifying the underlying generator. Additionally, we design a unified control signal encoding pipeline and a sparse residual connection mechanism to efficiently incorporate control representations. Comprehensive experiments and human evaluations demonstrate that VCtrl effectively enhances controllability and generation quality. The source code and pre-trained models are publicly available and implemented using the PaddlePaddle framework at http://github.com/PaddlePaddle/PaddleMIX/tree/develop/ppdiffusers/examples/ppvctrl.
comment: Codes and Supplementary Material: http://github.com/PaddlePaddle/PaddleMIX/tree/develop/ppdiffusers/examples/ppvctrl
☆ Token Dynamics: Towards Efficient and Dynamic Video Token Representation for Video Large Language Models
Token-based video representation has emerged as a promising approach for enabling large language models to interpret video content. However, existing token reduction techniques, such as token pruning and token merging, often disrupt essential spatial-temporal positional embeddings, failing to adequately balance computational efficiency with fewer tokens. Consequently, these methods result in relatively lengthy token sequences, limiting their applicability in scenarios requiring extreme token compression, such as video large language models. In this paper, we introduce the novel task of extreme short token reduction, aiming to represent extensive video sequences with a minimal number of tokens. To address this challenge, we propose Token Dynamics, a new video representation framework that dynamically reduces token count while preserving spatial-temporal coherence. Specifically, we disentangle video representations by separating visual embeddings from grid-level motion information, structuring them into: 1. a concise token base, created by clustering tokens that describe object-level content; 2. a token dynamics map, capturing detailed spatial-temporal motion patterns across grids. Furthermore, we introduce a cross-dynamics attention mechanism that integrates motion features into the token base without increasing token length, thereby maintaining compactness and spatial-temporal integrity. The experiments demonstrate a reduction of token count to merely 0.07% of the original tokens, with only a minor performance drop of 1.13%. Additionally, we propose two novel subtasks within extreme token reduction (fixed-length and adaptive-length compression), both effectively representing long token sequences for video-language tasks. Our method offers significantly lower theoretical complexity, fewer tokens, and enhanced throughput, thus providing an efficient solution for video LLMs.
☆ Instant Gaussian Stream: Fast and Generalizable Streaming of Dynamic Scene Reconstruction via Gaussian Splatting
Building Free-Viewpoint Videos in a streaming manner offers the advantage of rapid responsiveness compared to offline training methods, greatly enhancing user experience. However, current streaming approaches face challenges of high per-frame reconstruction time (10s+) and error accumulation, limiting their broader application. In this paper, we propose Instant Gaussian Stream (IGS), a fast and generalizable streaming framework, to address these issues. First, we introduce a generalized Anchor-driven Gaussian Motion Network, which projects multi-view 2D motion features into 3D space, using anchor points to drive the motion of all Gaussians. This generalized Network generates the motion of Gaussians for each target frame in the time required for a single inference. Second, we propose a Key-frame-guided Streaming Strategy that refines each key frame, enabling accurate reconstruction of temporally complex scenes while mitigating error accumulation. We conducted extensive in-domain and cross-domain evaluations, demonstrating that our approach can achieve streaming with a average per-frame reconstruction time of 2s+, alongside a enhancement in view synthesis quality.
☆ GeoT: Geometry-guided Instance-dependent Transition Matrix for Semi-supervised Tooth Point Cloud Segmentation
Achieving meticulous segmentation of tooth point clouds from intra-oral scans stands as an indispensable prerequisite for various orthodontic applications. Given the labor-intensive nature of dental annotation, a significant amount of data remains unlabeled, driving increasing interest in semi-supervised approaches. One primary challenge of existing semi-supervised medical segmentation methods lies in noisy pseudo labels generated for unlabeled data. To address this challenge, we propose GeoT, the first framework that employs instance-dependent transition matrix (IDTM) to explicitly model noise in pseudo labels for semi-supervised dental segmentation. Specifically, to handle the extensive solution space of IDTM arising from tens of thousands of dental points, we introduce tooth geometric priors through two key components: point-level geometric regularization (PLGR) to enhance consistency between point adjacency relationships in 3D and IDTM spaces, and class-level geometric smoothing (CLGS) to leverage the fixed spatial distribution of tooth categories for optimal IDTM estimation. Extensive experiments performed on the public Teeth3DS dataset and private dataset demonstrate that our method can make full utilization of unlabeled data to facilitate segmentation, achieving performance comparable to fully supervised methods with only $20\%$ of the labeled data.
comment: IPMI2025
☆ EasyRobust: A Comprehensive and Easy-to-use Toolkit for Robust and Generalized Vision
Deep neural networks (DNNs) has shown great promise in computer vision tasks. However, machine vision achieved by DNNs cannot be as robust as human perception. Adversarial attacks and data distribution shifts have been known as two major scenarios which degrade machine performance and obstacle the wide deployment of machines "in the wild". In order to break these obstructions and facilitate the research of model robustness, we develop EasyRobust, a comprehensive and easy-to-use toolkit for training, evaluation and analysis of robust vision models. EasyRobust targets at two types of robustness: 1) Adversarial robustness enables the model to defense against malicious inputs crafted by worst-case perturbations, also known as adversarial examples; 2) Non-adversarial robustness enhances the model performance on natural test images with corruptions or distribution shifts. Thorough benchmarks on image classification enable EasyRobust to provide an accurate robustness evaluation on vision models. We wish our EasyRobust can help for training practically-robust models and promote academic and industrial progress in closing the gap between human and machine vision. Codes and models of EasyRobust have been open-sourced in https://github.com/alibaba/easyrobust.
☆ ARFlow: Human Action-Reaction Flow Matching with Physical Guidance
Human action-reaction synthesis, a fundamental challenge in modeling causal human interactions, plays a critical role in applications ranging from virtual reality to social robotics. While diffusion-based models have demonstrated promising performance, they exhibit two key limitations for interaction synthesis: reliance on complex noise-to-reaction generators with intricate conditional mechanisms, and frequent physical violations in generated motions. To address these issues, we propose Action-Reaction Flow Matching (ARFlow), a novel framework that establishes direct action-to-reaction mappings, eliminating the need for complex conditional mechanisms. Our approach introduces two key innovations: an x1-prediction method that directly outputs human motions instead of velocity fields, enabling explicit constraint enforcement; and a training-free, gradient-based physical guidance mechanism that effectively prevents body penetration artifacts during sampling. Extensive experiments on NTU120 and Chi3D datasets demonstrate that ARFlow not only outperforms existing methods in terms of Fr\'echet Inception Distance and motion diversity but also significantly reduces body collisions, as measured by our new Intersection Volume and Intersection Frequency metrics.
comment: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI)
☆ Distilling Monocular Foundation Model for Fine-grained Depth Completion
Depth completion involves predicting dense depth maps from sparse LiDAR inputs. However, sparse depth annotations from sensors limit the availability of dense supervision, which is necessary for learning detailed geometric features. In this paper, we propose a two-stage knowledge distillation framework that leverages powerful monocular foundation models to provide dense supervision for depth completion. In the first stage, we introduce a pre-training strategy that generates diverse training data from natural images, which distills geometric knowledge to depth completion. Specifically, we simulate LiDAR scans by utilizing monocular depth and mesh reconstruction, thereby creating training data without requiring ground-truth depth. Besides, monocular depth estimation suffers from inherent scale ambiguity in real-world settings. To address this, in the second stage, we employ a scale- and shift-invariant loss (SSI Loss) to learn real-world scales when fine-tuning on real-world datasets. Our two-stage distillation framework enables depth completion models to harness the strengths of monocular foundation models. Experimental results demonstrate that models trained with our two-stage distillation framework achieve state-of-the-art performance, ranking \textbf{first place} on the KITTI benchmark. Code is available at https://github.com/Sharpiless/DMD3C
☆ When Words Outperform Vision: VLMs Can Self-Improve Via Text-Only Training For Human-Centered Decision Making
Embodied decision-making is fundamental for AI agents operating in real-world environments. While Visual Language Models (VLMs) have advanced this capability, they still struggle with complex decisions, particularly in human-centered situations that require deep reasoning about human needs and values. In this study, we systematically evaluate open-sourced VLMs on multimodal human-centered decision-making tasks. We find that LLMs receiving only textual descriptions unexpectedly outperform their VLM counterparts of similar scale that process actual images, suggesting that visual alignment may hinder VLM abilities. To address this challenge, we propose a novel text-only training approach with synthesized textual data. This method strengthens VLMs' language components and transfers the learned abilities to multimodal inference, eliminating the need for expensive image-text paired data. Furthermore, we show that VLMs can achieve substantial performance gains through self-improvement, using training data generated by their LLM counterparts rather than relying on larger teacher models like GPT-4. Our findings establish a more efficient and scalable approach to enhancing VLMs' human-centered decision-making capabilities, opening new avenues for optimizing VLMs through self-improvement mechanisms.
DroneSplat: 3D Gaussian Splatting for Robust 3D Reconstruction from In-the-Wild Drone Imagery
Drones have become essential tools for reconstructing wild scenes due to their outstanding maneuverability. Recent advances in radiance field methods have achieved remarkable rendering quality, providing a new avenue for 3D reconstruction from drone imagery. However, dynamic distractors in wild environments challenge the static scene assumption in radiance fields, while limited view constraints hinder the accurate capture of underlying scene geometry. To address these challenges, we introduce DroneSplat, a novel framework designed for robust 3D reconstruction from in-the-wild drone imagery. Our method adaptively adjusts masking thresholds by integrating local-global segmentation heuristics with statistical approaches, enabling precise identification and elimination of dynamic distractors in static scenes. We enhance 3D Gaussian Splatting with multi-view stereo predictions and a voxel-guided optimization strategy, supporting high-quality rendering under limited view constraints. For comprehensive evaluation, we provide a drone-captured 3D reconstruction dataset encompassing both dynamic and static scenes. Extensive experiments demonstrate that DroneSplat outperforms both 3DGS and NeRF baselines in handling in-the-wild drone imagery.
☆ Center-guided Classifier for Semantic Segmentation of Remote Sensing Images
Compared with natural images, remote sensing images (RSIs) have the unique characteristic. i.e., larger intraclass variance, which makes semantic segmentation for remote sensing images more challenging. Moreover, existing semantic segmentation models for remote sensing images usually employ a vanilla softmax classifier, which has three drawbacks: (1) non-direct supervision for the pixel representations during training; (2) inadequate modeling ability of parametric softmax classifiers under large intraclass variance; and (3) opaque process of classification decision. In this paper, we propose a novel classifier (called CenterSeg) customized for RSI semantic segmentation, which solves the abovementioned problems with multiple prototypes, direct supervision under Grassmann manifold, and interpretability strategy. Specifically, for each class, our CenterSeg obtains local class centers by aggregating corresponding pixel features based on ground-truth masks, and generates multiple prototypes through hard attention assignment and momentum updating. In addition, we introduce the Grassmann manifold and constrain the joint embedding space of pixel features and prototypes based on two additional regularization terms. Especially, during the inference, CenterSeg can further provide interpretability to the model by restricting the prototype as a sample of the training set. Experimental results on three remote sensing segmentation datasets validate the effectiveness of the model. Besides the superior performance, CenterSeg has the advantages of simplicity, lightweight, compatibility, and interpretability. Code is available at https://github.com/xwmaxwma/rssegmentation.
☆ From Faces to Voices: Learning Hierarchical Representations for High-quality Video-to-Speech CVPR 2025
The objective of this study is to generate high-quality speech from silent talking face videos, a task also known as video-to-speech synthesis. A significant challenge in video-to-speech synthesis lies in the substantial modality gap between silent video and multi-faceted speech. In this paper, we propose a novel video-to-speech system that effectively bridges this modality gap, significantly enhancing the quality of synthesized speech. This is achieved by learning of hierarchical representations from video to speech. Specifically, we gradually transform silent video into acoustic feature spaces through three sequential stages -- content, timbre, and prosody modeling. In each stage, we align visual factors -- lip movements, face identity, and facial expressions -- with corresponding acoustic counterparts to ensure the seamless transformation. Additionally, to generate realistic and coherent speech from the visual representations, we employ a flow matching model that estimates direct trajectories from a simple prior distribution to the target speech distribution. Extensive experiments demonstrate that our method achieves exceptional generation quality comparable to real utterances, outperforming existing methods by a significant margin.
comment: CVPR 2025, demo page: https://mm.kaist.ac.kr/projects/faces2voices/
☆ MagicColor: Multi-Instance Sketch Colorization
We present \textit{MagicColor}, a diffusion-based framework for multi-instance sketch colorization. The production of multi-instance 2D line art colorization adheres to an industry-standard workflow, which consists of three crucial stages: the design of line art characters, the coloring of individual objects, and the refinement process. The artists are required to repeat the process of coloring each instance one by one, which is inaccurate and inefficient. Meanwhile, current generative methods fail to solve this task due to the challenge of multi-instance pair data collection. To tackle these challenges, we incorporate three technical designs to ensure precise character detail transcription and achieve multi-instance sketch colorization in a single forward. Specifically, we first propose the self-play training strategy to solve the lack of training data. Then we introduce an instance guider to feed the color of the instance. To achieve accurate color matching, we present fine-grained color matching with edge loss to enhance visual quality. Equipped with the proposed modules, MagicColor enables automatically transforming sketches into vividly-colored images with accurate consistency and multi-instance control. Experiments on our collected datasets show that our model outperforms existing methods regarding chromatic precision. Specifically, our model critically automates the colorization process with zero manual adjustments, so novice users can produce stylistically consistent artwork by providing reference instances and the original line art. Our code and additional details are available at https://yinhan-zhang.github.io/color
☆ PE-CLIP: A Parameter-Efficient Fine-Tuning of Vision Language Models for Dynamic Facial Expression Recognition
Vision-Language Models (VLMs) like CLIP offer promising solutions for Dynamic Facial Expression Recognition (DFER) but face challenges such as inefficient full fine-tuning, high complexity, and poor alignment between textual and visual representations. Additionally, existing methods struggle with ineffective temporal modeling. To address these issues, we propose PE-CLIP, a parameter-efficient fine-tuning (PEFT) framework that adapts CLIP for DFER while significantly reducing trainable parameters while maintaining high accuracy. PE-CLIP introduces two specialized adapters: a Temporal Dynamic Adapter (TDA) and a Shared Adapter (ShA). The TDA is a GRU-based module with dynamic scaling that captures sequential dependencies while emphasizing informative temporal features and suppressing irrelevant variations. The ShA is a lightweight adapter that refines representations within both textual and visual encoders, ensuring consistency and efficiency. Additionally, we integrate Multi-modal Prompt Learning (MaPLe), introducing learnable prompts for visual and action unit-based textual inputs, enhancing semantic alignment between modalities and enabling efficient CLIP adaptation for dynamic tasks. We evaluate PE-CLIP on two benchmark datasets, DFEW and FERV39K, achieving competitive performance compared to state-of-the-art methods while requiring fewer trainable parameters. By balancing efficiency and accuracy, PE-CLIP sets a new benchmark in resource-efficient DFER. The source code of the proposed PE-CLIP will be publicly available at https://github.com/Ibtissam-SAADI/PE-CLIP .
☆ HyperLoRA: Parameter-Efficient Adaptive Generation for Portrait Synthesis
Personalized portrait synthesis, essential in domains like social entertainment, has recently made significant progress. Person-wise fine-tuning based methods, such as LoRA and DreamBooth, can produce photorealistic outputs but need training on individual samples, consuming time and resources and posing an unstable risk. Adapter based techniques such as IP-Adapter freeze the foundational model parameters and employ a plug-in architecture to enable zero-shot inference, but they often exhibit a lack of naturalness and authenticity, which are not to be overlooked in portrait synthesis tasks. In this paper, we introduce a parameter-efficient adaptive generation method, namely HyperLoRA, that uses an adaptive plug-in network to generate LoRA weights, merging the superior performance of LoRA with the zero-shot capability of adapter scheme. Through our carefully designed network structure and training strategy, we achieve zero-shot personalized portrait generation (supporting both single and multiple image inputs) with high photorealism, fidelity, and editability.
♻ ☆ SV4D 2.0: Enhancing Spatio-Temporal Consistency in Multi-View Video Diffusion for High-Quality 4D Generation
We present Stable Video 4D 2.0 (SV4D 2.0), a multi-view video diffusion model for dynamic 3D asset generation. Compared to its predecessor SV4D, SV4D 2.0 is more robust to occlusions and large motion, generalizes better to real-world videos, and produces higher-quality outputs in terms of detail sharpness and spatio-temporal consistency. We achieve this by introducing key improvements in multiple aspects: 1) network architecture: eliminating the dependency of reference multi-views and designing blending mechanism for 3D and frame attention, 2) data: enhancing quality and quantity of training data, 3) training strategy: adopting progressive 3D-4D training for better generalization, and 4) 4D optimization: handling 3D inconsistency and large motion via 2-stage refinement and progressive frame sampling. Extensive experiments demonstrate significant performance gain by SV4D 2.0 both visually and quantitatively, achieving better detail (-14\% LPIPS) and 4D consistency (-44\% FV4D) in novel-view video synthesis and 4D optimization (-12\% LPIPS and -24\% FV4D) compared to SV4D.
comment: Project page: https://sv4d20.github.io/
♻ ☆ Karyotype AI for Precision Oncology
We present a machine learning method capable of accurately detecting chromosome abnormalities that cause blood cancers directly from microscope images of the metaphase stage of cell division. The pipeline is built on a series of fine-tuned Vision Transformers. Current state of the art (and standard clinical practice) requires expensive, manual expert analysis, whereas our pipeline takes only 15 seconds per metaphase image. Using a novel pretraining-finetuning strategy to mitigate the challenge of data scarcity, we achieve a high precision-recall score of 94% AUC for the clinically significant del(5q) and t(9;22) anomalies. Our method also unlocks zero-shot detection of rare aberrations based on model latent embeddings. The ability to quickly, accurately, and scalably diagnose genetic abnormalities directly from metaphase images could transform karyotyping practice and improve patient outcomes. We will make code publicly available.
♻ ☆ A General Adaptive Dual-level Weighting Mechanism for Remote Sensing Pansharpening CVPR
Currently, deep learning-based methods for remote sensing pansharpening have advanced rapidly. However, many existing methods struggle to fully leverage feature heterogeneity and redundancy, thereby limiting their effectiveness. We use the covariance matrix to model the feature heterogeneity and redundancy and propose Correlation-Aware Covariance Weighting (CACW) to adjust them. CACW captures these correlations through the covariance matrix, which is then processed by a nonlinear function to generate weights for adjustment. Building upon CACW, we introduce a general adaptive dual-level weighting mechanism (ADWM) to address these challenges from two key perspectives, enhancing a wide range of existing deep-learning methods. First, Intra-Feature Weighting (IFW) evaluates correlations among channels within each feature to reduce redundancy and enhance unique information. Second, Cross-Feature Weighting (CFW) adjusts contributions across layers based on inter-layer correlations, refining the final output. Extensive experiments demonstrate the superior performance of ADWM compared to recent state-of-the-art (SOTA) methods. Furthermore, we validate the effectiveness of our approach through generality experiments, redundancy visualization, comparison experiments, key variables and complexity analysis, and ablation studies. Our code is available at https://github.com/Jie-1203/ADWM.
comment: This paper is accepted at the CVPR Conference on Computer Vision and Pattern Recognition 2025
♻ ☆ URLOST: Unsupervised Representation Learning without Stationarity or Topology ICLR 2025
Unsupervised representation learning has seen tremendous progress. However, it is constrained by its reliance on domain specific stationarity and topology, a limitation not found in biological intelligence systems. For instance, unlike computer vision, human vision can process visual signals sampled from highly irregular and non-stationary sensors. We introduce a novel framework that learns from high-dimensional data without prior knowledge of stationarity and topology. Our model, abbreviated as URLOST, combines a learnable self-organizing layer, spectral clustering, and a masked autoencoder (MAE). We evaluate its effectiveness on three diverse data modalities including simulated biological vision data, neural recordings from the primary visual cortex, and gene expressions. Compared to state-of-the-art unsupervised learning methods like SimCLR and MAE, our model excels at learning meaningful representations across diverse modalities without knowing their stationarity or topology. It also outperforms other methods that are not dependent on these factors, setting a new benchmark in the field. We position this work as a step toward unsupervised learning methods capable of generalizing across diverse high-dimensional data modalities.
comment: Accepted by ICLR 2025; Code will be available at this https://github.com/zeyuyun1/URLOST
♻ ☆ TopoDiffusionNet: A Topology-aware Diffusion Model ICLR 2025
Diffusion models excel at creating visually impressive images but often struggle to generate images with a specified topology. The Betti number, which represents the number of structures in an image, is a fundamental measure in topology. Yet, diffusion models fail to satisfy even this basic constraint. This limitation restricts their utility in applications requiring exact control, like robotics and environmental modeling. To address this, we propose TopoDiffusionNet (TDN), a novel approach that enforces diffusion models to maintain the desired topology. We leverage tools from topological data analysis, particularly persistent homology, to extract the topological structures within an image. We then design a topology-based objective function to guide the denoising process, preserving intended structures while suppressing noisy ones. Our experiments across four datasets demonstrate significant improvements in topological accuracy. TDN is the first to integrate topology with diffusion models, opening new avenues of research in this area. Code available at https://github.com/Saumya-Gupta-26/TopoDiffusionNet
comment: Accepted to ICLR 2025 (Poster)
♻ ☆ Adapting to the Unknown: Training-Free Audio-Visual Event Perception with Dynamic Thresholds
In the domain of audio-visual event perception, which focuses on the temporal localization and classification of events across distinct modalities (audio and visual), existing approaches are constrained by the vocabulary available in their training data. This limitation significantly impedes their capacity to generalize to novel, unseen event categories. Furthermore, the annotation process for this task is labor-intensive, requiring extensive manual labeling across modalities and temporal segments, limiting the scalability of current methods. Current state-of-the-art models ignore the shifts in event distributions over time, reducing their ability to adjust to changing video dynamics. Additionally, previous methods rely on late fusion to combine audio and visual information. While straightforward, this approach results in a significant loss of multimodal interactions. To address these challenges, we propose Audio-Visual Adaptive Video Analysis ($\text{AV}^2\text{A}$), a model-agnostic approach that requires no further training and integrates a score-level fusion technique to retain richer multimodal interactions. $\text{AV}^2\text{A}$ also includes a within-video label shift algorithm, leveraging input video data and predictions from prior frames to dynamically adjust event distributions for subsequent frames. Moreover, we present the first training-free, open-vocabulary baseline for audio-visual event perception, demonstrating that $\text{AV}^2\text{A}$ achieves substantial improvements over naive training-free baselines. We demonstrate the effectiveness of $\text{AV}^2\text{A}$ on both zero-shot and weakly-supervised state-of-the-art methods, achieving notable improvements in performance metrics over existing approaches.
♻ ☆ SOUS VIDE: Cooking Visual Drone Navigation Policies in a Gaussian Splatting Vacuum
We propose a new simulator, training approach, and policy architecture, collectively called SOUS VIDE, for end-to-end visual drone navigation. Our trained policies exhibit zero-shot sim-to-real transfer with robust real-world performance using only onboard perception and computation. Our simulator, called FiGS, couples a computationally simple drone dynamics model with a high visual fidelity Gaussian Splatting scene reconstruction. FiGS can quickly simulate drone flights producing photorealistic images at up to 130 fps. We use FiGS to collect 100k-300k image/state-action pairs from an expert MPC with privileged state and dynamics information, randomized over dynamics parameters and spatial disturbances. We then distill this expert MPC into an end-to-end visuomotor policy with a lightweight neural architecture, called SV-Net. SV-Net processes color image, optical flow and IMU data streams into low-level thrust and body rate commands at 20 Hz onboard a drone. Crucially, SV-Net includes a learned module for low-level control that adapts at runtime to variations in drone dynamics. In a campaign of 105 hardware experiments, we show SOUS VIDE policies to be robust to 30% mass variations, 40 m/s wind gusts, 60% changes in ambient brightness, shifting or removing objects from the scene, and people moving aggressively through the drone's visual field. Code, data, and experiment videos can be found on our project page: https://stanfordmsl.github.io/SousVide/.
♻ ☆ DINO-LG: A Task-Specific DINO Model for Coronary Calcium Scoring
Coronary artery disease (CAD), one of the leading causes of mortality worldwide, necessitates effective risk assessment strategies, with coronary artery calcium (CAC) scoring via computed tomography (CT) being a key method for prevention. Traditional methods, primarily based on UNET architectures implemented on pre-built models, face challenges like the scarcity of annotated CT scans containing CAC and imbalanced datasets, leading to reduced performance in segmentation and scoring tasks. In this study, we address these limitations by incorporating the self-supervised learning (SSL) technique of DINO (self-distillation with no labels), which trains without requiring CAC-specific annotations, enhancing its robustness in generating distinct features. The DINO-LG model, which leverages label guidance to focus on calcified areas, achieves significant improvements, with a sensitivity of 89% and specificity of 90% for detecting CAC-containing CT slices, compared to the standard DINO model's sensitivity of 79% and specificity of 77%. Additionally, false-negative and false-positive rates are reduced by 49% and 59%, respectively, instilling greater confidence in clinicians when ruling out calcification in low-risk patients and minimizing unnecessary imaging reviews by radiologists. Further, CAC scoring and segmentation tasks are conducted using a basic UNET architecture, applied specifically to CT slices identified by the DINO-LG model as containing calcified areas. This targeted approach enhances CAC scoring accuracy by feeding the UNET model with relevant slices, significantly improving diagnostic precision, reducing both false positives and false negatives, and ultimately lowering overall healthcare costs by minimizing unnecessary tests and treatments, presenting a valuable advancement in CAD risk assessment.
comment: Developed by Center for Applied Artificial Intelligence (CAAI), University of Kentucky
♻ ☆ MANTA: Diffusion Mamba for Efficient and Effective Stochastic Long-Term Dense Anticipation CVPR2025
Long-term dense action anticipation is very challenging since it requires predicting actions and their durations several minutes into the future based on provided video observations. To model the uncertainty of future outcomes, stochastic models predict several potential future action sequences for the same observation. Recent work has further proposed to incorporate uncertainty modelling for observed frames by simultaneously predicting per-frame past and future actions in a unified manner. While such joint modelling of actions is beneficial, it requires long-range temporal capabilities to connect events across distant past and future time points. However, the previous work struggles to achieve such a long-range understanding due to its limited and/or sparse receptive field. To alleviate this issue, we propose a novel MANTA (MAmba for ANTicipation) network. Our model enables effective long-term temporal modelling even for very long sequences while maintaining linear complexity in sequence length. We demonstrate that our approach achieves state-of-the-art results on three datasets - Breakfast, 50Salads, and Assembly101 - while also significantly improving computational and memory efficiency. Our code is available at https://github.com/olga-zats/DIFF_MANTA .
comment: Accepted to CVPR2025
♻ ☆ United we stand, Divided we fall: Handling Weak Complementary Relationships for Audio-Visual Emotion Recognition in Valence-Arousal Space CVPR2025
Audio and visual modalities are two predominant contact-free channels in videos, which are often expected to carry a complementary relationship with each other. However, they may not always complement each other, resulting in poor audio-visual feature representations. In this paper, we introduce Gated Recursive Joint Cross Attention (GRJCA) using a gating mechanism that can adaptively choose the most relevant features to effectively capture the synergic relationships across audio and visual modalities. Specifically, we improve the performance of Recursive Joint Cross-Attention (RJCA) by introducing a gating mechanism to control the flow of information between the input features and the attended features of multiple iterations depending on the strength of their complementary relationship. For instance, if the modalities exhibit strong complementary relationships, the gating mechanism emphasizes cross-attended features, otherwise non-attended features. To further improve the performance of the system, we also explored a hierarchical gating approach by introducing a gating mechanism at every iteration, followed by high-level gating across the gated outputs of each iteration. The proposed approach improves the performance of RJCA model by adding more flexibility to deal with weak complementary relationships across audio and visual modalities. Extensive experiments are conducted on the challenging Affwild2 dataset to demonstrate the robustness of the proposed approach. By effectively handling the weak complementary relationships across the audio and visual modalities, the proposed model achieves a Concordance Correlation Coefficient (CCC) of 0.561 (0.623) and 0.620 (0.660) for valence and arousal respectively on the test set (validation set).
comment: Achieved 2nd place in valence arousal challenge Submission to CVPR2025 Workshop
♻ ☆ FALCON: Fairness Learning via Contrastive Attention Approach to Continual Semantic Scene Understanding CVPR'25
Continual Learning in semantic scene segmentation aims to continually learn new unseen classes in dynamic environments while maintaining previously learned knowledge. Prior studies focused on modeling the catastrophic forgetting and background shift challenges in continual learning. However, fairness, another major challenge that causes unfair predictions leading to low performance among major and minor classes, still needs to be well addressed. In addition, prior methods have yet to model the unknown classes well, thus resulting in producing non-discriminative features among unknown classes. This work presents a novel Fairness Learning via Contrastive Attention Approach to continual learning in semantic scene understanding. In particular, we first introduce a new Fairness Contrastive Clustering loss to address the problems of catastrophic forgetting and fairness. Then, we propose an attention-based visual grammar approach to effectively model the background shift problem and unknown classes, producing better feature representations for different unknown classes. Through our experiments, our proposed approach achieves State-of-the-Art (SoTA) performance on different continual learning benchmarks, i.e., ADE20K, Cityscapes, and Pascal VOC. It promotes the fairness of the continual semantic segmentation model.
comment: Accepted to CVPR'25
♻ ☆ Leveraging V2X for Collaborative HD Maps Construction Using Scene Graph Generation
High-Definition (HD) maps play a crucial role in autonomous vehicle navigation, complementing onboard perception sensors for improved accuracy and safety. Traditional HD map generation relies on dedicated mapping vehicles, which are costly and fail to capture real-time infrastructure changes. This paper presents HDMapLaneNet, a novel framework leveraging V2X communication and Scene Graph Generation to collaboratively construct a localized geometric layer of HD maps. The approach extracts lane centerlines from front-facing camera images, represents them as graphs, and transmits the data for global aggregation to the cloud via V2X. Preliminary results on the nuScenes dataset demonstrate superior association prediction performance compared to a state-of-the-art method.
♻ ☆ End-to-end Adaptive Dynamic Subsampling and Reconstruction for Cardiac MRI
$\textbf{Background:}$ Accelerating dynamic MRI is vital for advancing clinical applications and improving patient comfort. Commonly, deep learning (DL) methods for accelerated dynamic MRI reconstruction typically rely on uniformly applying non-adaptive predetermined or random subsampling patterns across all temporal frames of the dynamic acquisition. This approach fails to exploit temporal correlations or optimize subsampling on a case-by-case basis. $\textbf{Purpose:}$ To develop an end-to-end approach for adaptive dynamic MRI subsampling and reconstruction, capable of generating customized sampling patterns maximizing at the same time reconstruction quality. $\textbf{Methods:}$ We introduce the End-to-end Adaptive Dynamic Sampling and Reconstruction (E2E-ADS-Recon) for MRI framework, which integrates an adaptive dynamic sampler (ADS) that adapts the acquisition trajectory to each case for a given acceleration factor with a state-of-the-art dynamic reconstruction network, vSHARP, for reconstructing the adaptively sampled data into a dynamic image. The ADS can produce either frame-specific patterns or unified patterns applied to all temporal frames. E2E-ADS-Recon is evaluated under both frame-specific and unified 1D or 2D sampling settings, using dynamic cine cardiac MRI data and compared with vSHARP models employing standard subsampling trajectories, as well as pipelines where ADS was replaced by parameterized samplers optimized for dataset-specific schemes. $\textbf{Results:}$ E2E-ADS-Recon exhibited superior reconstruction quality, especially at high accelerations, in terms of standard quantitative metrics (SSIM, pSNR, NMSE). $\textbf{Conclusion:}$ The proposed framework improves reconstruction quality, highlighting the importance of case-specific subsampling optimization in dynamic MRI applications.
comment: 38 pages, 26 figures, 2 tables
♻ ☆ SuperPC: A Single Diffusion Model for Point Cloud Completion, Upsampling, Denoising, and Colorization
Point cloud (PC) processing tasks-such as completion, upsampling, denoising, and colorization-are crucial in applications like autonomous driving and 3D reconstruction. Despite substantial advancements, prior approaches often address each of these tasks independently, with separate models focused on individual issues. However, this isolated approach fails to account for the fact that defects like incompleteness, low resolution, noise, and lack of color frequently coexist, with each defect influencing and correlating with the others. Simply applying these models sequentially can lead to error accumulation from each model, along with increased computational costs. To address these challenges, we introduce SuperPC, the first unified diffusion model capable of concurrently handling all four tasks. Our approach employs a three-level-conditioned diffusion framework, enhanced by a novel spatial-mix-fusion strategy, to leverage the correlations among these four defects for simultaneous, efficient processing. We show that SuperPC outperforms the state-of-the-art specialized models as well as their combination on all four individual tasks.
♻ ☆ ZeroHSI: Zero-Shot 4D Human-Scene Interaction by Video Generation
Human-scene interaction (HSI) generation is crucial for applications in embodied AI, virtual reality, and robotics. Yet, existing methods cannot synthesize interactions in unseen environments such as in-the-wild scenes or reconstructed scenes, as they rely on paired 3D scenes and captured human motion data for training, which are unavailable for unseen environments. We present ZeroHSI, a novel approach that enables zero-shot 4D human-scene interaction synthesis, eliminating the need for training on any MoCap data. Our key insight is to distill human-scene interactions from state-of-the-art video generation models, which have been trained on vast amounts of natural human movements and interactions, and use differentiable rendering to reconstruct human-scene interactions. ZeroHSI can synthesize realistic human motions in both static scenes and environments with dynamic objects, without requiring any ground-truth motion data. We evaluate ZeroHSI on a curated dataset of different types of various indoor and outdoor scenes with different interaction prompts, demonstrating its ability to generate diverse and contextually appropriate human-scene interactions.
comment: Project website: https://awfuact.github.io/zerohsi/ The first two authors contribute equally
♻ ☆ TruthPrInt: Mitigating LVLM Object Hallucination Via Latent Truthful-Guided Pre-Intervention
Object Hallucination (OH) has been acknowledged as one of the major trustworthy challenges in Large Vision-Language Models (LVLMs). Recent advancements in Large Language Models (LLMs) indicate that internal states, such as hidden states, encode the "overall truthfulness" of generated responses. However, it remains under-explored how internal states in LVLMs function and whether they could serve as "per-token" hallucination indicators, which is essential for mitigating OH. In this paper, we first conduct an in-depth exploration of LVLM internal states in relation to OH issues and discover that (1) LVLM internal states are high-specificity per-token indicators of hallucination behaviors. Moreover, (2) different LVLMs encode universal patterns of hallucinations in common latent subspaces, indicating that there exist "generic truthful directions" shared by various LVLMs. Based on these discoveries, we propose Truthful-Guided Pre-Intervention (TruthPrInt) that first learns the truthful direction of LVLM decoding and then applies truthful-guided inference-time intervention during LVLM decoding. We further propose ComnHallu to enhance both cross-LVLM and cross-data hallucination detection transferability by constructing and aligning hallucination latent subspaces. We evaluate TruthPrInt in extensive experimental settings, including in-domain and out-of-domain scenarios, over popular LVLMs and OH benchmarks. Experimental results indicate that TruthPrInt significantly outperforms state-of-the-art methods. Codes will be available at https://github.com/jinhaoduan/TruthPrInt.
comment: 15 pages, 9 figures, the first two authors contributed equally
♻ ☆ RadioActive: 3D Radiological Interactive Segmentation Benchmark
Effortless and precise segmentation with minimal clinician effort could greatly streamline clinical workflows. Recent interactive segmentation models, inspired by METAs Segment Anything, have made significant progress but face critical limitations in 3D radiology. These include impractical human interaction requirements such as slice-by-slice operations for 2D models on 3D data and a lack of iterative refinement. Prior studies have been hindered by inadequate evaluation protocols, resulting in unreliable performance assessments and inconsistent findings across studies. The RadioActive benchmark addresses these challenges by providing a rigorous and reproducible evaluation framework for interactive segmentation methods in clinically relevant scenarios. It features diverse datasets, a wide range of target structures, and the most impactful 2D and 3D interactive segmentation methods, all within a flexible and extensible codebase. We also introduce advanced prompting techniques that reduce interaction steps, enabling fair comparisons between 2D and 3D models. Surprisingly, SAM2 outperforms all specialized medical 2D and 3D models in a setting requiring only a few interactions to generate prompts for a 3D volume. This challenges prevailing assumptions and demonstrates that general-purpose models surpass specialized medical approaches. By open-sourcing RadioActive, we invite researchers to integrate their models and prompting techniques, ensuring continuous and transparent evaluation of 3D medical interactive models.
comment: Undergoing Peer-Review
♻ ☆ UniCoRN: Latent Diffusion-based Unified Controllable Image Restoration Network across Multiple Degradations
Image restoration is essential for enhancing degraded images across computer vision tasks. However, most existing methods address only a single type of degradation (e.g., blur, noise, or haze) at a time, limiting their real-world applicability where multiple degradations often occur simultaneously. In this paper, we propose UniCoRN, a unified image restoration approach capable of handling multiple degradation types simultaneously using a multi-head diffusion model. Specifically, we uncover the potential of low-level visual cues extracted from images in guiding a controllable diffusion model for real-world image restoration and we design a multi-head control network adaptable via a mixture-of-experts strategy. We train our model without any prior assumption of specific degradations, through a smartly designed curriculum learning recipe. Additionally, we also introduce MetaRestore, a metalens imaging benchmark containing images with multiple degradations and artifacts. Extensive evaluations on several challenging datasets, including our benchmark, demonstrate that our method achieves significant performance gains and can robustly restore images with severe degradations. Project page: https://codejaeger.github.io/unicorn-gh
♻ ☆ Matrix3D: Large Photogrammetry Model All-in-One CVPR 2025
We present Matrix3D, a unified model that performs several photogrammetry subtasks, including pose estimation, depth prediction, and novel view synthesis using just the same model. Matrix3D utilizes a multi-modal diffusion transformer (DiT) to integrate transformations across several modalities, such as images, camera parameters, and depth maps. The key to Matrix3D's large-scale multi-modal training lies in the incorporation of a mask learning strategy. This enables full-modality model training even with partially complete data, such as bi-modality data of image-pose and image-depth pairs, thus significantly increases the pool of available training data. Matrix3D demonstrates state-of-the-art performance in pose estimation and novel view synthesis tasks. Additionally, it offers fine-grained control through multi-round interactions, making it an innovative tool for 3D content creation. Project page: https://nju-3dv.github.io/projects/matrix3d.
comment: CVPR 2025 camera ready. Project Page: https://nju-3dv.github.io/projects/matrix3d
♻ ☆ Mono2D: A Trainable Monogenic Layer for Robust Knee Cartilage Segmentation on Out-of-Distribution 2D Ultrasound Data
Automated knee cartilage segmentation using point-of-care ultrasound devices and deep-learning networks has the potential to enhance the management of knee osteoarthritis. However, segmentation algorithms often struggle with domain shifts caused by variations in ultrasound devices and acquisition parameters, limiting their generalizability. In this paper, we propose Mono2D, a monogenic layer that extracts multi-scale, contrast- and intensity-invariant local phase features using trainable bandpass quadrature filters. This layer mitigates domain shifts, improving generalization to out-of-distribution domains. Mono2D is integrated before the first layer of a segmentation network, and its parameters jointly trained alongside the network's parameters. We evaluated Mono2D on a multi-domain 2D ultrasound knee cartilage dataset for single-source domain generalization (SSDG). Our results demonstrate that Mono2D outperforms other SSDG methods in terms of Dice score and mean average surface distance. To further assess its generalizability, we evaluate Mono2D on a multi-site prostate MRI dataset, where it continues to outperform other SSDG methods, highlighting its potential to improve domain generalization in medical imaging. Nevertheless, further evaluation on diverse datasets is still necessary to assess its clinical utility.
comment: 11 pages, removed unrelated LaTeX template figure from last page
♻ ☆ Uncertainty modeling for fine-tuned implicit functions
Implicit functions such as Neural Radiance Fields (NeRFs), occupancy networks, and signed distance functions (SDFs) have become pivotal in computer vision for reconstructing detailed object shapes from sparse views. Achieving optimal performance with these models can be challenging due to the extreme sparsity of inputs and distribution shifts induced by data corruptions. To this end, large, noise-free synthetic datasets can serve as shape priors to help models fill in gaps, but the resulting reconstructions must be approached with caution. Uncertainty estimation is crucial for assessing the quality of these reconstructions, particularly in identifying areas where the model is uncertain about the parts it has inferred from the prior. In this paper, we introduce Dropsembles, a novel method for uncertainty estimation in tuned implicit functions. We demonstrate the efficacy of our approach through a series of experiments, starting with toy examples and progressing to a real-world scenario. Specifically, we train a Convolutional Occupancy Network on synthetic anatomical data and test it on low-resolution MRI segmentations of the lumbar spine. Our results show that Dropsembles achieve the accuracy and calibration levels of deep ensembles but with significantly less computational cost.
♻ ☆ Deep End-to-end Adaptive k-Space Sampling, Reconstruction, and Registration for Dynamic MRI
Dynamic MRI enables a range of clinical applications, including cardiac function assessment, organ motion tracking, and radiotherapy guidance. However, fully sampling the dynamic k-space data is often infeasible due to time constraints and physiological motion such as respiratory and cardiac motion. This necessitates undersampling, which degrades the quality of reconstructed images. Poor image quality not only hinders visualization but also impairs the estimation of deformation fields, crucial for registering dynamic (moving) images to a static reference image. This registration enables tasks such as motion correction, treatment planning, and quantitative analysis in applications like cardiac imaging and MR-guided radiotherapy. To overcome the challenges posed by undersampling and motion, we introduce an end-to-end deep learning (DL) framework that integrates adaptive dynamic k-space sampling, reconstruction, and registration. Our approach begins with a DL-based adaptive sampling strategy, optimizing dynamic k-space acquisition to capture the most relevant data for each specific case. This is followed by a DL-based reconstruction module that produces images optimized for accurate deformation field estimation from the undersampled moving data. Finally, a registration module estimates the deformation fields aligning the reconstructed dynamic images with a static reference. The proposed framework is independent of specific reconstruction and registration modules allowing for plug-and-play integration of these components. The entire framework is jointly trained using a combination of supervised and unsupervised loss functions, enabling end-to-end optimization for improved performance across all components. Through controlled experiments and ablation studies, we validate each component, demonstrating that each choice contributes to robust motion estimation from undersampled dynamic data.
comment: 48 pages, 23 figures, 8 tables
♻ ☆ Code-as-Monitor: Constraint-aware Visual Programming for Reactive and Proactive Robotic Failure Detection CVPR 2025
Automatic detection and prevention of open-set failures are crucial in closed-loop robotic systems. Recent studies often struggle to simultaneously identify unexpected failures reactively after they occur and prevent foreseeable ones proactively. To this end, we propose Code-as-Monitor (CaM), a novel paradigm leveraging the vision-language model (VLM) for both open-set reactive and proactive failure detection. The core of our method is to formulate both tasks as a unified set of spatio-temporal constraint satisfaction problems and use VLM-generated code to evaluate them for real-time monitoring. To enhance the accuracy and efficiency of monitoring, we further introduce constraint elements that abstract constraint-related entities or their parts into compact geometric elements. This approach offers greater generality, simplifies tracking, and facilitates constraint-aware visual programming by leveraging these elements as visual prompts. Experiments show that CaM achieves a 28.7% higher success rate and reduces execution time by 31.8% under severe disturbances compared to baselines across three simulators and a real-world setting. Moreover, CaM can be integrated with open-loop control policies to form closed-loop systems, enabling long-horizon tasks in cluttered scenes with dynamic environments.
comment: Accepted by CVPR 2025. Project page: https://zhoues.github.io/Code-as-Monitor/
♻ ☆ VASparse: Towards Efficient Visual Hallucination Mitigation via Visual-Aware Token Sparsification CVPR 2025
Large Vision-Language Models (LVLMs) may produce outputs that are unfaithful to reality, also known as visual hallucinations (VH), which significantly impedes their real-world usage. To alleviate VH, various decoding strategies have been proposed to enhance visual information. However, many of these methods may require secondary decoding and rollback, which significantly reduces inference speed. In this work, we propose an efficient plug-and-play decoding algorithm via Visual-Aware Sparsification (VASparse) from the perspective of token sparsity for mitigating VH. VASparse is inspired by empirical observations: (1) the sparse activation of attention in LVLMs, and (2) visual-agnostic tokens sparsification exacerbates VH. Based on these insights, we propose a novel token sparsification strategy that balances efficiency and trustworthiness. Specifically, VASparse implements a visual-aware token selection strategy during decoding to reduce redundant tokens while preserving visual context effectively. Additionally, we innovatively introduce a sparse-based visual contrastive decoding method to recalibrate the distribution of hallucinated outputs without the time overhead associated with secondary decoding. Subsequently, VASparse recalibrates attention scores to penalize attention sinking of LVLMs towards text tokens. Extensive experiments across four popular benchmarks confirm the effectiveness of VASparse in mitigating VH across different LVLM families without requiring additional training or post-processing. Impressively, VASparse achieves state-of-the-art performance for mitigating VH while maintaining competitive decoding speed. Code is available at https://github.com/mengchuang123/VASparse-github.
comment: Accepted by CVPR 2025
♻ ☆ GiVE: Guiding Visual Encoder to Perceive Overlooked Information ICME 2025
Multimodal Large Language Models have advanced AI in applications like text-to-video generation and visual question answering. These models rely on visual encoders to convert non-text data into vectors, but current encoders either lack semantic alignment or overlook non-salient objects. We propose the Guiding Visual Encoder to Perceive Overlooked Information (GiVE) approach. GiVE enhances visual representation with an Attention-Guided Adapter (AG-Adapter) module and an Object-focused Visual Semantic Learning module. These incorporate three novel loss terms: Object-focused Image-Text Contrast (OITC) loss, Object-focused Image-Image Contrast (OIIC) loss, and Object-focused Image Discrimination (OID) loss, improving object consideration, retrieval accuracy, and comprehensiveness. Our contributions include dynamic visual focus adjustment, novel loss functions to enhance object retrieval, and the Multi-Object Instruction (MOInst) dataset. Experiments show our approach achieves state-of-the-art performance.
comment: This paper was accepted by ICME 2025
♻ ☆ EgoTextVQA: Towards Egocentric Scene-Text Aware Video Question Answering CVPR 2025
We introduce EgoTextVQA, a novel and rigorously constructed benchmark for egocentric QA assistance involving scene text. EgoTextVQA contains 1.5K ego-view videos and 7K scene-text aware questions that reflect real user needs in outdoor driving and indoor house-keeping activities. The questions are designed to elicit identification and reasoning on scene text in an egocentric and dynamic environment. With EgoTextVQA, we comprehensively evaluate 10 prominent multimodal large language models. Currently, all models struggle, and the best results (Gemini 1.5 Pro) are around 33\% accuracy, highlighting the severe deficiency of these techniques in egocentric QA assistance. Our further investigations suggest that precise temporal grounding and multi-frame reasoning, along with high resolution and auxiliary scene-text inputs, are key for better performance. With thorough analyses and heuristic suggestions, we hope EgoTextVQA can serve as a solid testbed for research in egocentric scene-text QA assistance. Our dataset is released at: https://github.com/zhousheng97/EgoTextVQA.
comment: Accepted by CVPR 2025
♻ ☆ When Domain Generalization meets Generalized Category Discovery: An Adaptive Task-Arithmetic Driven Approach CVPR 2025
Generalized Class Discovery (GCD) clusters base and novel classes in a target domain using supervision from a source domain with only base classes. Current methods often falter with distribution shifts and typically require access to target data during training, which can sometimes be impractical. To address this issue, we introduce the novel paradigm of Domain Generalization in GCD (DG-GCD), where only source data is available for training, while the target domain, with a distinct data distribution, remains unseen until inference. To this end, our solution, DG2CD-Net, aims to construct a domain-independent, discriminative embedding space for GCD. The core innovation is an episodic training strategy that enhances cross-domain generalization by adapting a base model on tasks derived from source and synthetic domains generated by a foundation model. Each episode focuses on a cross-domain GCD task, diversifying task setups over episodes and combining open-set domain adaptation with a novel margin loss and representation learning for optimizing the feature space progressively. To capture the effects of fine-tuning on the base model, we extend task arithmetic by adaptively weighting the local task vectors concerning the fine-tuned models based on their GCD performance on a validation distribution. This episodic update mechanism boosts the adaptability of the base model to unseen targets. Experiments across three datasets confirm that DG2CD-Net outperforms existing GCD methods customized for DG-GCD.
comment: Accepted at CVPR 2025 (Main Conference)
♻ ☆ Data-driven Camera and Lidar Simulation Models for Autonomous Driving: A Review from Generative Models to Volume Renderers
Perception sensors, particularly camera and Lidar, are key elements of Autonomous Driving Systems (ADS) that enable them to comprehend their surroundings to informed driving and control decisions. Therefore, developing realistic simulation models for these sensors is essential for conducting effective simulation-based testing of ADS. Moreover, the rise of deep learning-based perception models has increased the utility of sensor simulation models for synthesising diverse training datasets. The traditional sensor simulation models rely on computationally expensive physics-based algorithms, specifically in complex systems such as ADS. Hence, the current potential resides in data-driven approaches, fuelled by the exceptional performance of deep generative models in capturing high-dimensional data distribution and volume renderers in accurately representing scenes. This paper reviews the current state-of-the-art data-driven camera and Lidar simulation models and their evaluation methods. It explores a spectrum of models from the novel perspective of generative models and volume renderers. Generative models are discussed in terms of their input-output types, while volume renderers are categorised based on their input encoding. Finally, the paper illustrates commonly used evaluation techniques for assessing sensor simulation models and highlights the existing research gaps in the area.
comment: To be published in IEEE Transactions on Intelligent Vehicles
♻ ☆ Instant Adversarial Purification with Adversarial Consistency Distillation CVPR2025
Neural networks have revolutionized numerous fields with their exceptional performance, yet they remain susceptible to adversarial attacks through subtle perturbations. While diffusion-based purification methods like DiffPure offer promising defense mechanisms, their computational overhead presents a significant practical limitation. In this paper, we introduce One Step Control Purification (OSCP), a novel defense framework that achieves robust adversarial purification in a single Neural Function Evaluation (NFE) within diffusion models. We propose Gaussian Adversarial Noise Distillation (GAND) as the distillation objective and Controlled Adversarial Purification (CAP) as the inference pipeline, which makes OSCP demonstrate remarkable efficiency while maintaining defense efficacy. Our proposed GAND addresses a fundamental tension between consistency distillation and adversarial perturbation, bridging the gap between natural and adversarial manifolds in the latent space, while remaining computationally efficient through Parameter-Efficient Fine-Tuning (PEFT) methods such as LoRA, eliminating the high computational budget request from full parameter fine-tuning. The CAP guides the purification process through the unlearnable edge detection operator calculated by the input image as an extra prompt, effectively preventing the purified images from deviating from their original appearance when large purification steps are used. Our experimental results on ImageNet showcase OSCP's superior performance, achieving a 74.19% defense success rate with merely 0.1s per purification -- a 100-fold speedup compared to conventional approaches.
comment: Accepted by CVPR2025
♻ ☆ SUM Parts: Benchmarking Part-Level Semantic Segmentation of Urban Meshes CVPR 2025
Semantic segmentation in urban scene analysis has mainly focused on images or point clouds, while textured meshes - offering richer spatial representation - remain underexplored. This paper introduces SUM Parts, the first large-scale dataset for urban textured meshes with part-level semantic labels, covering about 2.5 km2 with 21 classes. The dataset was created using our own annotation tool, which supports both face- and texture-based annotations with efficient interactive selection. We also provide a comprehensive evaluation of 3D semantic segmentation and interactive annotation methods on this dataset. Our project page is available at https://tudelft3d.github.io/SUMParts/.
comment: CVPR 2025
♻ ☆ UVE: Are MLLMs Unified Evaluators for AI-Generated Videos?
With the rapid growth of video generative models (VGMs), it is essential to develop reliable and comprehensive automatic metrics for AI-generated videos (AIGVs). Existing methods either use off-the-shelf models optimized for other tasks or rely on human assessment data to train specialized evaluators. These approaches are constrained to specific evaluation aspects and are difficult to scale with the increasing demands for finer-grained and more comprehensive evaluations. To address this issue, this work investigates the feasibility of using multimodal large language models (MLLMs) as a unified evaluator for AIGVs, leveraging their strong visual perception and language understanding capabilities. To evaluate the performance of automatic metrics in unified AIGV evaluation, we introduce a benchmark called UVE-Bench. UVE-Bench collects videos generated by state-of-the-art VGMs and provides pairwise human preference annotations across 15 evaluation aspects. Using UVE-Bench, we extensively evaluate 16 MLLMs. Our empirical results suggest that while advanced MLLMs (e.g., Qwen2VL-72B and InternVL2.5-78B) still lag behind human evaluators, they demonstrate promising ability in unified AIGV evaluation, significantly surpassing existing specialized evaluation methods. Additionally, we conduct an in-depth analysis of key design choices that impact the performance of MLLM-driven evaluators, offering valuable insights for future research on AIGV evaluation. The code is available at https://github.com/bytedance/UVE.
♻ ☆ DLEN: Dual Branch of Transformer for Low-Light Image Enhancement in Dual Domains
Low-light image enhancement (LLE) aims to improve the visual quality of images captured in poorly lit conditions, which often suffer from low brightness, low contrast, noise, and color distortions. These issues hinder the performance of computer vision tasks such as object detection, facial recognition, and autonomous driving.Traditional enhancement techniques, such as multi-scale fusion and histogram equalization, fail to preserve fine details and often struggle with maintaining the natural appearance of enhanced images under complex lighting conditions. Although the Retinex theory provides a foundation for image decomposition, it often amplifies noise, leading to suboptimal image quality. In this paper, we propose the Dual Light Enhance Network (DLEN), a novel architecture that incorporates two distinct attention mechanisms, considering both spatial and frequency domains. Our model introduces a learnable wavelet transform module in the illumination estimation phase, preserving high- and low-frequency components to enhance edge and texture details. Additionally, we design a dual-branch structure that leverages the power of the Transformer architecture to enhance both the illumination and structural components of the image.Through extensive experiments, our model outperforms state-of-the-art methods on standard benchmarks.Code is available here: https://github.com/LaLaLoXX/DLEN
comment: 9 pages and 6 figures
♻ ☆ Spectral State Space Model for Rotation-Invariant Visual Representation Learning
State Space Models (SSMs) have recently emerged as an alternative to Vision Transformers (ViTs) due to their unique ability of modeling global relationships with linear complexity. SSMs are specifically designed to capture spatially proximate relationships of image patches. However, they fail to identify relationships between conceptually related yet not adjacent patches. This limitation arises from the non-causal nature of image data, which lacks inherent directional relationships. Additionally, current vision-based SSMs are highly sensitive to transformations such as rotation. Their predefined scanning directions depend on the original image orientation, which can cause the model to produce inconsistent patch-processing sequences after rotation. To address these limitations, we introduce Spectral VMamba, a novel approach that effectively captures the global structure within an image by leveraging spectral information derived from the graph Laplacian of image patches. Through spectral decomposition, our approach encodes patch relationships independently of image orientation, achieving rotation invariance with the aid of our Rotational Feature Normalizer (RFN) module. Our experiments on classification tasks show that Spectral VMamba outperforms the leading SSM models in vision, such as VMamba, while maintaining invariance to rotations and a providing a similar runtime efficiency.
♻ ☆ Embedded Visual Prompt Tuning
Foundation models pre-trained on large-scale data have been widely witnessed to achieve success in various natural imaging downstream tasks. Parameter-efficient fine-tuning (PEFT) methods aim to adapt foundation models to new domains by updating only a small portion of parameters in order to reduce computational overhead. However, the effectiveness of these PEFT methods, especially in cross-domain few-shot scenarios, e.g., medical image analysis, has not been fully explored. In this work, we facilitate the study of the performance of PEFT when adapting foundation models to medical image classification tasks. Furthermore, to alleviate the limitations of prompt introducing ways and approximation capabilities on Transformer architectures of mainstream prompt tuning methods, we propose the Embedded Prompt Tuning (EPT) method by embedding prompt tokens into the expanded channels. We also find that there are anomalies in the feature space distribution of foundation models during pre-training process, and prompt tuning can help mitigate this negative impact. To explain this phenomenon, we also introduce a novel perspective to understand prompt tuning: Prompt tuning is a distribution calibrator. And we support it by analyzing patch-wise scaling and feature separation operations contained in EPT. Our experiments show that EPT outperforms several state-of-the-art fine-tuning methods by a significant margin on few-shot medical image classification tasks, and completes the fine-tuning process within highly competitive time, indicating EPT is an effective PEFT method. The source code is available at github.com/zuwenqiang/EPT.
♻ ☆ Dynamic-LLaVA: Efficient Multimodal Large Language Models via Dynamic Vision-language Context Sparsification ICLR 2025
Multimodal Large Language Models (MLLMs) have achieved remarkable success in vision understanding, reasoning, and interaction. However, the inference computation and memory increase progressively with the generation of output tokens during decoding, directly affecting the efficacy of MLLMs. Existing methods attempt to reduce the vision context redundancy to achieve efficient MLLMs. Unfortunately, the efficiency benefits of the vision context reduction in the prefill stage gradually diminish during the decoding stage. To address this problem, we proposed a dynamic vision-language context sparsification framework Dynamic-LLaVA, which dynamically reduces the redundancy of vision context in the prefill stage and decreases the memory and computation overhead of the generated language context during decoding. Dynamic-LLaVA designs a tailored sparsification inference scheme for different inference modes, i.e., prefill, decoding with and without KV cache, to achieve efficient inference of MLLMs. In practice, Dynamic-LLaVA can reduce computation consumption by $\sim$75\% in the prefill stage. Meanwhile, throughout the entire generation process of MLLMs, Dynamic-LLaVA reduces the $\sim$50\% computation consumption under decoding without KV cache, while saving $\sim$50\% GPU memory overhead when decoding with KV cache, due to the vision-language context sparsification. Extensive experiments also demonstrate that Dynamic-LLaVA achieves efficient inference for MLLMs with negligible understanding and generation ability degradation or even performance gains compared to the full-context inference baselines. Code is available at https://github.com/Osilly/dynamic_llava .
comment: Accepted to ICLR 2025. Code is available at https://github.com/Osilly/dynamic_llava
♻ ☆ Self-supervised Monocular Depth Estimation Based on Hierarchical Feature-Guided Diffusion
Self-supervised monocular depth estimation has received widespread attention because of its capability to train without ground truth. In real-world scenarios, the images may be blurry or noisy due to the influence of weather conditions and inherent limitations of the camera. Therefore, it is particularly important to develop a robust depth estimation model. Benefiting from the training strategies of generative networks, generative-based methods often exhibit enhanced robustness. In light of this, we employ the generative-based diffusion model with a unique denoising training process for self-supervised monocular depth estimation. Additionally, to further enhance the robustness of the diffusion model, we probe into the influence of perturbations on image features and propose a hierarchical feature-guided denoising module. Furthermore, we explore the implicit depth within reprojection and design an implicit depth consistency loss. This loss function is not interfered by the other subnetwork, which can be targeted to constrain the depth estimation network and ensure the scale consistency of depth within a video sequence. We conduct experiments on the KITTI and Make3D datasets. The results indicate that our approach stands out among generative-based models, while also showcasing remarkable robustness.
♻ ☆ SoMA: Singular Value Decomposed Minor Components Adaptation for Domain Generalizable Representation Learning CVPR 2025
Domain generalization (DG) aims to adapt a model using one or multiple source domains to ensure robust performance in unseen target domains. Recently, Parameter-Efficient Fine-Tuning (PEFT) of foundation models has shown promising results in the context of DG problem. Nevertheless, existing PEFT methods still struggle to strike a balance between preserving generalizable components of the pre-trained model and learning task-specific features. To gain insights into the distribution of generalizable components, we begin by analyzing the pre-trained weights through the lens of singular value decomposition. Building on these insights, we introduce Singular Value Decomposed Minor Components Adaptation (SoMA), an approach that selectively tunes minor singular components while keeping the residual parts frozen. SoMA effectively retains the generalization ability of the pre-trained model while efficiently acquiring task-specific skills. Moreover, we freeze domain-generalizable blocks and employ an annealing weight decay strategy, thereby achieving an optimal balance in the delicate trade-off between generalizability and discriminability. SoMA attains state-of-the-art results on multiple benchmarks that span both domain generalized semantic segmentation to domain generalized object detection. In addition, our methods introduce no additional inference overhead or regularization loss, maintain compatibility with any backbone or head, and are designed to be versatile, allowing easy integration into a wide range of tasks.
comment: CVPR 2025 Project page: https://ysj9909.github.io/SoRA.github.io/
♻ ☆ Sparse autoencoders reveal selective remapping of visual concepts during adaptation ICLR 2025
Adapting foundation models for specific purposes has become a standard approach to build machine learning systems for downstream applications. Yet, it is an open question which mechanisms take place during adaptation. Here we develop a new Sparse Autoencoder (SAE) for the CLIP vision transformer, named PatchSAE, to extract interpretable concepts at granular levels (e.g., shape, color, or semantics of an object) and their patch-wise spatial attributions. We explore how these concepts influence the model output in downstream image classification tasks and investigate how recent state-of-the-art prompt-based adaptation techniques change the association of model inputs to these concepts. While activations of concepts slightly change between adapted and non-adapted models, we find that the majority of gains on common adaptation tasks can be explained with the existing concepts already present in the non-adapted foundation model. This work provides a concrete framework to train and use SAEs for Vision Transformers and provides insights into explaining adaptation mechanisms.
comment: Published as a conference paper at the Thirteenth International Conference on Learning Representations (ICLR 2025)
♻ ☆ T2ICount: Enhancing Cross-modal Understanding for Zero-Shot Counting CVPR2025
Zero-shot object counting aims to count instances of arbitrary object categories specified by text descriptions. Existing methods typically rely on vision-language models like CLIP, but often exhibit limited sensitivity to text prompts. We present T2ICount, a diffusion-based framework that leverages rich prior knowledge and fine-grained visual understanding from pretrained diffusion models. While one-step denoising ensures efficiency, it leads to weakened text sensitivity. To address this challenge, we propose a Hierarchical Semantic Correction Module that progressively refines text-image feature alignment, and a Representational Regional Coherence Loss that provides reliable supervision signals by leveraging the cross-attention maps extracted from the denosing U-Net. Furthermore, we observe that current benchmarks mainly focus on majority objects in images, potentially masking models' text sensitivity. To address this, we contribute a challenging re-annotated subset of FSC147 for better evaluation of text-guided counting ability. Extensive experiments demonstrate that our method achieves superior performance across different benchmarks. Code is available at https://github.com/cha15yq/T2ICount.
comment: Accepted by CVPR2025
♻ ☆ Number it: Temporal Grounding Videos like Flipping Manga CVPR 2025
Video Large Language Models (Vid-LLMs) have made remarkable advancements in comprehending video content for QA dialogue. However, they struggle to extend this visual understanding to tasks requiring precise temporal localization, known as Video Temporal Grounding (VTG). To address this gap, we introduce Number-Prompt (NumPro), a novel method that empowers Vid-LLMs to bridge visual comprehension with temporal grounding by adding unique numerical identifiers to each video frame. Treating a video as a sequence of numbered frame images, NumPro transforms VTG into an intuitive process: flipping through manga panels in sequence. This allows Vid-LLMs to "read" event timelines, accurately linking visual content with corresponding temporal information. Our experiments demonstrate that NumPro significantly boosts VTG performance of top-tier Vid-LLMs without additional computational cost. Furthermore, fine-tuning on a NumPro-enhanced dataset defines a new state-of-the-art for VTG, surpassing previous top-performing methods by up to 6.9\% in mIoU for moment retrieval and 8.5\% in mAP for highlight detection. The code will be available at https://github.com/yongliang-wu/NumPro.
comment: Accepted by CVPR 2025
♻ ☆ PUGS: Zero-shot Physical Understanding with Gaussian Splatting ICRA 2025
Current robotic systems can understand the categories and poses of objects well. But understanding physical properties like mass, friction, and hardness, in the wild, remains challenging. We propose a new method that reconstructs 3D objects using the Gaussian splatting representation and predicts various physical properties in a zero-shot manner. We propose two techniques during the reconstruction phase: a geometry-aware regularization loss function to improve the shape quality and a region-aware feature contrastive loss function to promote region affinity. Two other new techniques are designed during inference: a feature-based property propagation module and a volume integration module tailored for the Gaussian representation. Our framework is named as zero-shot physical understanding with Gaussian splatting, or PUGS. PUGS achieves new state-of-the-art results on the standard benchmark of ABO-500 mass prediction. We provide extensive quantitative ablations and qualitative visualization to demonstrate the mechanism of our designs. We show the proposed methodology can help address challenging real-world grasping tasks. Our codes, data, and models are available at https://github.com/EverNorif/PUGS
comment: ICRA 2025, Project page: https://evernorif.github.io/PUGS/
♻ ☆ Inverting Transformer-based Vision Models
Understanding the mechanisms underlying deep neural networks in computer vision remains a fundamental challenge. While many previous approaches have focused on visualizing intermediate representations within deep neural networks, particularly convolutional neural networks, these techniques have yet to be thoroughly explored in transformer-based vision models. In this study, we apply a modular approach of training inverse models to reconstruct input images from intermediate layers within a Detection Transformer and a Vision Transformer, showing that this approach is efficient and feasible. Through qualitative and quantitative evaluations of reconstructed images, we generate insights into the underlying mechanisms of these architectures, highlighting their similarities and differences in terms of contextual shape and preservation of image details, inter-layer correlation, and robustness to color perturbations. Our analysis illustrates how these properties emerge within the models, contributing to a deeper understanding of transformer-based vision models. The code for reproducing our experiments is available at github.com/wiskott-lab/inverse-detection-transformer.
♻ ☆ WAIT: Feature Warping for Animation to Illustration video Translation using GANs
In this paper, we explore a new domain for video-to-video translation. Motivated by the availability of animation movies that are adopted from illustrated books for children, we aim to stylize these videos with the style of the original illustrations. Current state-of-the-art video-to-video translation models rely on having a video sequence or a single style image to stylize an input video. We introduce a new problem for video stylizing where an unordered set of images are used. This is a challenging task for two reasons: i) we do not have the advantage of temporal consistency as in video sequences; ii) it is more difficult to obtain consistent styles for video frames from a set of unordered images compared to using a single image. Most of the video-to-video translation methods are built on an image-to-image translation model, and integrate additional networks such as optical flow, or temporal predictors to capture temporal relations. These additional networks make the model training and inference complicated and slow down the process. To ensure temporal coherency in video-to-video style transfer, we propose a new generator network with feature warping layers which overcomes the limitations of the previous methods. We show the effectiveness of our method on three datasets both qualitatively and quantitatively. Code and pretrained models are available at https://github.com/giddyyupp/wait.
comment: Accepted to Neurocomputing
♻ ☆ Explaining Human Activity Recognition with SHAP: Validating Insights with Perturbation and Quantitative Measures
In Human Activity Recognition (HAR), understanding the intricacy of body movements within high-risk applications is essential. This study uses SHapley Additive exPlanations (SHAP) to explain the decision-making process of Graph Convolution Networks (GCNs) when classifying activities with skeleton data. We employ SHAP to explain two real-world datasets: one for cerebral palsy (CP) classification and the widely used NTU RGB+D 60 action recognition dataset. To test the explanation, we introduce a novel perturbation approach that modifies the model's edge importance matrix, allowing us to evaluate the impact of specific body key points on prediction outcomes. To assess the fidelity of our explanations, we employ informed perturbation, targeting body key points identified as important by SHAP and comparing them against random perturbation as a control condition. This perturbation enables a judgment on whether the body key points are truly influential or non-influential based on the SHAP values. Results on both datasets show that body key points identified as important through SHAP have the largest influence on the accuracy, specificity, and sensitivity metrics. Our findings highlight that SHAP can provide granular insights into the input feature contribution to the prediction outcome of GCNs in HAR tasks. This demonstrates the potential for more interpretable and trustworthy models in high-stakes applications like healthcare or rehabilitation.
comment: Published in Computers in Biology and Medicine
♻ ☆ Automatic infant 2D pose estimation from videos: comparing seven deep neural network methods
Automatic markerless estimation of infant posture and motion from ordinary videos carries great potential for movement studies "in the wild", facilitating understanding of motor development and massively increasing the chances of early diagnosis of disorders. There is rapid development of human pose estimation methods in computer vision thanks to advances in deep learning and machine learning. However, these methods are trained on datasets that feature adults in different contexts. This work tests and compares seven popular methods (AlphaPose, DeepLabCut/DeeperCut, Detectron2, HRNet, MediaPipe/BlazePose, OpenPose, and ViTPose) on videos of infants in supine position and in more complex settings. Surprisingly, all methods except DeepLabCut and MediaPipe have competitive performance without additional finetuning, with ViTPose performing best. Next to standard performance metrics (average precision and recall), we introduce errors expressed in the neck-mid-hip (torso length) ratio and additionally study missed and redundant detections, and the reliability of the internal confidence ratings of the different methods, which are relevant for downstream tasks. Among the networks with competitive performance, only AlphaPose could run close to real time (27 fps) on our machine. We provide documented Docker containers or instructions for all the methods we used, our analysis scripts, and the processed data at https://hub.docker.com/u/humanoidsctu and https://osf.io/x465b/.
comment: 34 pages, 7 figures, 20 tables
♻ ☆ Babel: A Scalable Pre-trained Model for Multi-Modal Sensing via Expandable Modality Alignment
This paper presents Babel, the expandable modality alignment model, specially designed for multi-modal sensing. While there has been considerable work on multi-modality alignment, they all struggle to effectively incorporate multiple sensing modalities due to the data scarcity constraints. How to utilize multi-modal data with partial pairings in sensing remains an unresolved challenge. Babel tackles this challenge by introducing the concept of expandable modality alignment. The key idea involves transforming the N-modality alignment into a series of binary-modality alignments. Novel techniques are also proposed to further mitigate data scarcity issue and balance the contribution of the newly incorporated modality with the previously established modality alignment during the expandable alignment process. We provide the comprehensive implementation. In the pre-training phase, Babel currently aligns 6 sensing modalities, namely Wi-Fi, mmWave, IMU, LiDAR, video, and depth. For the deployment phase, as a foundation model, any single or combination of aligned modalities could be selected from Babel and applied to downstream tasks. Evaluation demonstrates Babel's outstanding performance on eight human activity recognition datasets, compared to a broad range of baselines e.g., the SOTA single-modal sensing networks, multi-modal sensing framework, and multi-modal large language models. Babel not only improves the performance of individual modality sensing (12% averaged accuracy improvement), but also effectively fuses multiple available modalities (up to 22% accuracy increase). Case studies also highlight emerging application scenarios empowered by Babel, including cross-modality retrieval (i.e., sensing imaging), and bridging LLM for sensing comprehension.
comment: Accepted by SenSys'25
♻ ☆ Diffusion Beats Autoregressive: An Evaluation of Compositional Generation in Text-to-Image Models NeurIPS 2024
Text-to-image (T2I) generative models, such as Stable Diffusion and DALL-E, have shown remarkable proficiency in producing high-quality, realistic, and natural images from textual descriptions. However, these models sometimes fail to accurately capture all the details specified in the input prompts, particularly concerning entities, attributes, and spatial relationships. This issue becomes more pronounced when the prompt contains novel or complex compositions, leading to what are known as compositional generation failure modes. Recently, a new open-source diffusion-based T2I model, FLUX, has been introduced, demonstrating strong performance in high-quality image generation. Additionally, autoregressive T2I models like LlamaGen have claimed competitive visual quality performance compared to diffusion-based models. In this study, we evaluate the compositional generation capabilities of these newly introduced models against established models using the T2I-CompBench benchmark. Our findings reveal that LlamaGen, as a vanilla autoregressive model, is not yet on par with state-of-the-art diffusion models for compositional generation tasks under the same criteria, such as model size and inference time. On the other hand, the open-source diffusion-based model FLUX exhibits compositional generation capabilities comparable to the state-of-the-art closed-source model DALL-E3.
comment: NeurIPS 2024 Workshop on Compositional Learning: Perspectives, Methods, and Paths Forward
♻ ☆ SALOVA: Segment-Augmented Long Video Assistant for Targeted Retrieval and Routing in Long-Form Video Analysis
Despite advances in Large Multi-modal Models, applying them to long and untrimmed video content remains challenging due to limitations in context length and substantial memory overhead. These constraints often lead to significant information loss and reduced relevance in the model responses. With the exponential growth of video data across web platforms, understanding long-form video is crucial for advancing generalized intelligence. In this paper, we introduce SALOVA: Segment-Augmented LOng Video Assistant, a novel video-LLM framework designed to enhance the comprehension of lengthy video content through targeted retrieval process. We address two main challenges to achieve it: (i) We present the SceneWalk dataset, a high-quality collection of 87.8K long videos, each densely captioned at the segment level to enable models to capture scene continuity and maintain rich descriptive context. (ii) We develop robust architectural designs integrating dynamic routing mechanism and spatio-temporal projector to efficiently retrieve and process relevant video segments based on user queries. Our framework mitigates the limitations of current video-LMMs by allowing for precise identification and retrieval of relevant video segments in response to queries, thereby improving the contextual relevance of the generated responses. Through extensive experiments, SALOVA demonstrates enhanced capability in processing complex long-form videos, showing significant capability to maintain contextual integrity across extended sequences.
comment: Project page: https://ivy-lvlm.github.io/SALOVA/
♻ ☆ Exploring Part-Informed Visual-Language Learning for Person Re-Identification ICME 2025
Recently, visual-language learning (VLL) has shown great potential in enhancing visual-based person re-identification (ReID). Existing VLL-based ReID methods typically focus on image-text feature alignment at the whole-body level, while neglecting supervision on fine-grained part features, thus lacking constraints for local feature semantic consistency. To this end, we propose Part-Informed Visual-language Learning ($\pi$-VL) to enhance fine-grained visual features with part-informed language supervisions for ReID tasks. Specifically, $\pi$-VL introduces a human parsing-guided prompt tuning strategy and a hierarchical visual-language alignment paradigm to ensure within-part feature semantic consistency. The former combines both identity labels and human parsing maps to constitute pixel-level text prompts, and the latter fuses multi-scale visual features with a light-weight auxiliary head to perform fine-grained image-text alignment. As a plug-and-play and inference-free solution, our $\pi$-VL achieves performance comparable to or better than state-of-the-art methods on four commonly used ReID benchmarks. Notably, it reports 91.0% Rank-1 and 76.9% mAP on the challenging MSMT17 database, without bells and whistles.
comment: 6 pages, 4 figures, ICME 2025
♻ ☆ UrbanGS: Semantic-Guided Gaussian Splatting for Urban Scene Reconstruction
Reconstructing urban scenes is challenging due to their complex geometries and the presence of potentially dynamic objects. 3D Gaussian Splatting (3DGS)-based methods have shown strong performance, but existing approaches often incorporate manual 3D annotations to improve dynamic object modeling, which is impractical due to high labeling costs. Some methods leverage 4D Gaussian Splatting (4DGS) to represent the entire scene, but they treat static and dynamic objects uniformly, leading to unnecessary updates for static elements and ultimately degrading reconstruction quality. To address these issues, we propose UrbanGS, which leverages 2D semantic maps and an existing dynamic Gaussian approach to distinguish static objects from the scene, enabling separate processing of definite static and potentially dynamic elements. Specifically, for definite static regions, we enforce global consistency to prevent unintended changes in dynamic Gaussian and introduce a K-nearest neighbor (KNN)-based regularization to improve local coherence on low-textured ground surfaces. Notably, for potentially dynamic objects, we aggregate temporal information using learnable time embeddings, allowing each Gaussian to model deformations over time. Extensive experiments on real-world datasets demonstrate that our approach outperforms state-of-the-art methods in reconstruction quality and efficiency, accurately preserving static content while capturing dynamic elements.
♻ ☆ Training Neural Networks on RAW and HDR Images for Restoration Tasks
The vast majority of standard image and video content available online is represented in display-encoded color spaces, in which pixel values are conveniently scaled to a limited range (0-1) and the color distribution is approximately perceptually uniform. In contrast, both camera RAW and high dynamic range (HDR) images are often represented in linear color spaces, in which color values are linearly related to colorimetric quantities of light. While training on commonly available display-encoded images is a well-established practice, there is no consensus on how neural networks should be trained for tasks on RAW and HDR images in linear color spaces. In this work, we test several approaches on three popular image restoration applications: denoising, deblurring, and single-image super-resolution. We examine whether HDR/RAW images need to be display-encoded using popular transfer functions (PQ, PU21, and mu-law), or whether it is better to train in linear color spaces, but use loss functions that correct for perceptual non-uniformity. Our results indicate that neural networks train significantly better on HDR and RAW images represented in display-encoded color spaces, which offer better perceptual uniformity than linear spaces. This small change to the training strategy can bring a very substantial gain in performance, between 2 and 9 dB.
♻ ☆ SPHINX-X: Scaling Data and Parameters for a Family of Multi-modal Large Language Models ICML 2024
We propose SPHINX-X, an extensive Multimodality Large Language Model (MLLM) series developed upon SPHINX. To improve the architecture and training efficiency, we modify the SPHINX framework by removing redundant visual encoders, bypassing fully-padded sub-images with skip tokens, and simplifying multi-stage training into a one-stage all-in-one paradigm. To fully unleash the potential of MLLMs, we assemble a comprehensive multi-domain and multimodal dataset covering publicly available resources in language, vision, and vision-language tasks. We further enrich this collection with our curated OCR intensive and Set-of-Mark datasets, extending the diversity and generality. By training over different base LLMs including TinyLlama1.1B, InternLM2-7B, LLaMA2-13B, and Mixtral8x7B, we obtain a spectrum of MLLMs that vary in parameter size and multilingual capabilities. Comprehensive benchmarking reveals a strong correlation between the multi-modal performance with the data and parameter scales. Code and models are released at https://github.com/Alpha-VLLM/LLaMA2-Accessory
comment: Accepted by ICML 2024. Code and models are released at https://github.com/Alpha-VLLM/LLaMA2-Accessory
♻ ☆ Reloc3r: Large-Scale Training of Relative Camera Pose Regression for Generalizable, Fast, and Accurate Visual Localization CVPR 2025
Visual localization aims to determine the camera pose of a query image relative to a database of posed images. In recent years, deep neural networks that directly regress camera poses have gained popularity due to their fast inference capabilities. However, existing methods struggle to either generalize well to new scenes or provide accurate camera pose estimates. To address these issues, we present Reloc3r, a simple yet effective visual localization framework. It consists of an elegantly designed relative pose regression network, and a minimalist motion averaging module for absolute pose estimation. Trained on approximately eight million posed image pairs, Reloc3r achieves surprisingly good performance and generalization ability. We conduct extensive experiments on six public datasets, consistently demonstrating the effectiveness and efficiency of the proposed method. It provides high-quality camera pose estimates in real time and generalizes to novel scenes. Code: https://github.com/ffrivera0/reloc3r.
comment: CVPR 2025
♻ ☆ AutArch: An AI-assisted workflow for object detection and automated recording in archaeological catalogues
The context of this paper is the creation of large uniform archaeological datasets from heterogeneous published resources, such as find catalogues - with the help of AI and Big Data. The paper is concerned with the challenge of consistent assemblages of archaeological data. We cannot simply combine existing records, as they differ in terms of quality and recording standards. Thus, records have to be recreated from published archaeological illustrations. This is only a viable path with the help of automation. The contribution of this paper is a new workflow for collecting data from archaeological find catalogues available as legacy resources, such as archaeological drawings and photographs in large unsorted PDF files; the workflow relies on custom software (AutArch) supporting image processing, object detection, and interactive means of validating and adjusting automatically retrieved data. We integrate artificial intelligence (AI) in terms of neural networks for object detection and classification into the workflow, thereby speeding up, automating, and standardising data collection. Objects commonly found in archaeological catalogues - such as graves, skeletons, ceramics, ornaments, stone tools and maps - are detected. Those objects are spatially related and analysed to extract real-life attributes, such as the size and orientation of graves based on the north arrow and the scale. We also automate recording of geometric whole-outlines through contour detection, as an alternative to landmark-based geometric morphometrics. Detected objects, contours, and other automatically retrieved data can be manually validated and adjusted. We use third millennium BC Europe (encompassing cultures such as 'Corded Ware' and 'Bell Beaker', and their burial practices) as a 'testing ground' and for evaluation purposes; this includes a user study for the workflow and the AutArch software.
♻ ☆ Surgical Text-to-Image Generation
Acquiring surgical data for research and development is significantly hindered by high annotation costs and practical and ethical constraints. Utilizing synthetically generated images could offer a valuable alternative. In this work, we explore adapting text-to-image generative models for the surgical domain using the CholecT50 dataset, which provides surgical images annotated with action triplets (instrument, verb, target). We investigate several language models and find T5 to offer more distinct features for differentiating surgical actions on triplet-based textual inputs, and showcasing stronger alignment between long and triplet-based captions. To address challenges in training text-to-image models solely on triplet-based captions without additional inputs and supervisory signals, we discover that triplet text embeddings are instrument-centric in the latent space. Leveraging this insight, we design an instrument-based class balancing technique to counteract data imbalance and skewness, improving training convergence. Extending Imagen, a diffusion-based generative model, we develop Surgical Imagen to generate photorealistic and activity-aligned surgical images from triplet-based textual prompts. We assess the model on quality, alignment, reasoning, and knowledge, achieving FID and CLIP scores of 3.7 and 26.8% respectively. Human expert survey shows that participants were highly challenged by the realistic characteristics of the generated samples, demonstrating Surgical Imagen's effectiveness as a practical alternative to real data collection.
comment: 13 pages, 13 figures, 3 tables, published in Pattern Recognition Letters 2025, project page at https://camma-public.github.io/endogen/
♻ ☆ Cross-Modal Consistency Learning for Sign Language Recognition
Pre-training has been proven to be effective in boosting the performance of Isolated Sign Language Recognition (ISLR). Existing pre-training methods solely focus on the compact pose data, which eliminates background perturbation but inevitably suffers from insufficient semantic cues compared to raw RGB videos. Nevertheless, learning representation directly from RGB videos remains challenging due to the presence of sign-independent visual features. To address this dilemma, we propose a Cross-modal Consistency Learning framework (CCL-SLR), which leverages the cross-modal consistency from both RGB and pose modalities based on self-supervised pre-training. First, CCL-SLR employs contrastive learning for instance discrimination within and across modalities. Through the single-modal and cross-modal contrastive learning, CCL-SLR gradually aligns the feature spaces of RGB and pose modalities, thereby extracting consistent sign representations. Second, we further introduce Motion-Preserving Masking (MPM) and Semantic Positive Mining (SPM) techniques to improve cross-modal consistency from the perspective of data augmentation and sample similarity, respectively. Extensive experiments on four ISLR benchmarks show that CCL-SLR achieves impressive performance, demonstrating its effectiveness. The code will be released to the public.
♻ ☆ Design of an Expression Recognition Solution Based on the Global Channel-Spatial Attention Mechanism and Proportional Criterion Fusion
Facial expression recognition is a challenging classification task that holds broad application prospects in the field of human-computer interaction. This paper aims to introduce the method we will adopt in the 8th Affective and Behavioral Analysis in the Wild (ABAW) Competition, which will be held during the Conference on Computer Vision and Pattern Recognition (CVPR) in 2025.First of all, we apply the frequency masking technique and the method of extracting data at equal time intervals to conduct targeted processing on the original videos. Then, based on the residual hybrid convolutional neural network and the multi-branch convolutional neural network respectively, we design feature extraction models for image and audio sequences. In particular, we propose a global channel-spatial attention mechanism to enhance the features initially extracted from both the audio and image modalities respectively.Finally, we adopt a decision fusion strategy based on the proportional criterion to fuse the classification results of the two single modalities, obtain an emotion probability vector, and output the final emotional classification. We also design a coarse - fine granularity loss function to optimize the performance of the entire network, which effectively improves the accuracy of facial expression recognition.In the facial expression recognition task of the 8th ABAW Competition, our method ranked third on the official validation set. This result fully confirms the effectiveness and competitiveness of the method we have proposed.
♻ ☆ Morphing Tokens Draw Strong Masked Image Models ICLR'25
Masked image modeling (MIM) has emerged as a promising approach for pre-training Vision Transformers (ViTs). MIMs predict masked tokens token-wise to recover target signals that are tokenized from images or generated by pre-trained models like vision-language models. While using tokenizers or pre-trained models is viable, they often offer spatially inconsistent supervision even for neighboring tokens, hindering models from learning discriminative representations. Our pilot study identifies spatial inconsistency in supervisory signals and suggests that addressing it can improve representation learning. Building upon this insight, we introduce Dynamic Token Morphing (DTM), a novel method that dynamically aggregates tokens while preserving context to generate contextualized targets, thereby likely reducing spatial inconsistency. DTM is compatible with various SSL frameworks; we showcase significantly improved MIM results, barely introducing extra training costs. Our method facilitates MIM training by using more spatially consistent targets, resulting in improved training trends as evidenced by lower losses. Experiments on ImageNet-1K and ADE20K demonstrate DTM's superiority, which surpasses complex state-of-the-art MIM methods. Furthermore, the evaluation of transfer learning on downstream tasks like iNaturalist, along with extensive empirical studies, supports DTM's effectiveness.
comment: 24 pages, 16 tables, 8 figures. To be presented at ICLR'25
♻ ☆ Enhanced Continual Learning of Vision-Language Models with Model Fusion ICLR 2025
Vision-Language Models (VLMs) represent a breakthrough in artificial intelligence by integrating visual and textual modalities to achieve impressive zero-shot capabilities. However, VLMs are susceptible to catastrophic forgetting when sequentially fine-tuned on multiple downstream tasks. Existing continual learning methods for VLMs often rely heavily on additional reference datasets, compromise zero-shot performance, or are limited to parameter-efficient fine-tuning scenarios. In this paper, we propose Continual Decoupling-Unifying (ConDU), a novel approach, by introducing model fusion into continual learning for VLMs. ConDU maintains a unified model along with task triggers and prototype sets, employing an iterative process of decoupling task-specific models for previous tasks and unifying them with the model for the newly learned task. Additionally, we introduce an inference strategy for zero-shot scenarios by aggregating predictions from multiple decoupled task-specific models. Extensive experiments across various settings show that ConDU achieves up to a 2\% improvement in average performance across all seen tasks compared to state-of-the-art baselines, while also enhancing zero-shot capabilities relative to the original VLM.
comment: Accepted by ICLR 2025 workshop
♻ ☆ FATE: Full-head Gaussian Avatar with Textural Editing from Monocular Video CVPR2025
Reconstructing high-fidelity, animatable 3D head avatars from effortlessly captured monocular videos is a pivotal yet formidable challenge. Although significant progress has been made in rendering performance and manipulation capabilities, notable challenges remain, including incomplete reconstruction and inefficient Gaussian representation. To address these challenges, we introduce FATE, a novel method for reconstructing an editable full-head avatar from a single monocular video. FATE integrates a sampling-based densification strategy to ensure optimal positional distribution of points, improving rendering efficiency. A neural baking technique is introduced to convert discrete Gaussian representations into continuous attribute maps, facilitating intuitive appearance editing. Furthermore, we propose a universal completion framework to recover non-frontal appearance, culminating in a 360$^\circ$-renderable 3D head avatar. FATE outperforms previous approaches in both qualitative and quantitative evaluations, achieving state-of-the-art performance. To the best of our knowledge, FATE is the first animatable and 360$^\circ$ full-head monocular reconstruction method for a 3D head avatar.
comment: Accepted by CVPR2025
♻ ☆ You See it, You Got it: Learning 3D Creation on Pose-Free Videos at Scale CVPR 2025
Recent 3D generation models typically rely on limited-scale 3D `gold-labels' or 2D diffusion priors for 3D content creation. However, their performance is upper-bounded by constrained 3D priors due to the lack of scalable learning paradigms. In this work, we present See3D, a visual-conditional multi-view diffusion model trained on large-scale Internet videos for open-world 3D creation. The model aims to Get 3D knowledge by solely Seeing the visual contents from the vast and rapidly growing video data -- You See it, You Got it. To achieve this, we first scale up the training data using a proposed data curation pipeline that automatically filters out multi-view inconsistencies and insufficient observations from source videos. This results in a high-quality, richly diverse, large-scale dataset of multi-view images, termed WebVi3D, containing 320M frames from 16M video clips. Nevertheless, learning generic 3D priors from videos without explicit 3D geometry or camera pose annotations is nontrivial, and annotating poses for web-scale videos is prohibitively expensive. To eliminate the need for pose conditions, we introduce an innovative visual-condition - a purely 2D-inductive visual signal generated by adding time-dependent noise to the masked video data. Finally, we introduce a novel visual-conditional 3D generation framework by integrating See3D into a warping-based pipeline for high-fidelity 3D generation. Our numerical and visual comparisons on single and sparse reconstruction benchmarks show that See3D, trained on cost-effective and scalable video data, achieves notable zero-shot and open-world generation capabilities, markedly outperforming models trained on costly and constrained 3D datasets. Please refer to our project page at: https://vision.baai.ac.cn/see3d
comment: Accepted by CVPR 2025, Project Page: https://vision.baai.ac.cn/see3d
♻ ☆ Free-Lunch Color-Texture Disentanglement for Stylized Image Generation
Recent advances in Text-to-Image (T2I) diffusion models have transformed image generation, enabling significant progress in stylized generation using only a few style reference images. However, current diffusion-based methods struggle with fine-grained style customization due to challenges in controlling multiple style attributes, such as color and texture. This paper introduces the first tuning-free approach to achieve free-lunch color-texture disentanglement in stylized T2I generation, addressing the need for independently controlled style elements for the Disentangled Stylized Image Generation (DisIG) problem. Our approach leverages the Image-Prompt Additivity property in the CLIP image embedding space to develop techniques for separating and extracting Color-Texture Embeddings (CTE) from individual color and texture reference images. To ensure that the color palette of the generated image aligns closely with the color reference, we apply a whitening and coloring transformation to enhance color consistency. Additionally, to prevent texture loss due to the signal-leak bias inherent in diffusion training, we introduce a noise term that preserves textural fidelity during the Regularized Whitening and Coloring Transformation (RegWCT). Through these methods, our Style Attributes Disentanglement approach (SADis) delivers a more precise and customizable solution for stylized image generation. Experiments on images from the WikiArt and StyleDrop datasets demonstrate that, both qualitatively and quantitatively, SADis surpasses state-of-the-art stylization methods in the DisIG task.Code will be released at https://deepffff.github.io/sadis.github.io/.
comment: Code will be available at https://deepffff.github.io/sadis.github.io/
♻ ☆ Weakly Supervised Segmentation of Hyper-Reflective Foci with Compact Convolutional Transformers and SAM2
Weakly supervised segmentation has the potential to greatly reduce the annotation effort for training segmentation models for small structures such as hyper-reflective foci (HRF) in optical coherence tomography (OCT). However, most weakly supervised methods either involve a strong downsampling of input images, or only achieve localization at a coarse resolution, both of which are unsatisfactory for small structures. We propose a novel framework that increases the spatial resolution of a traditional attention-based Multiple Instance Learning (MIL) approach by using Layer-wise Relevance Propagation (LRP) to prompt the Segment Anything Model (SAM~2), and increases recall with iterative inference. Moreover, we demonstrate that replacing MIL with a Compact Convolutional Transformer (CCT), which adds a positional encoding, and permits an exchange of information between different regions of the OCT image, leads to a further and substantial increase in segmentation accuracy.
comment: 7 pages, 1 figure, accepted at German Conference on Medical Image Computing 2025
♻ ☆ When Lighting Deceives: Exposing Vision-Language Models' Illumination Vulnerability Through Illumination Transformation Attack
Vision-Language Models (VLMs) have achieved remarkable success in various tasks, yet their robustness to real-world illumination variations remains largely unexplored. To bridge this gap, we propose \textbf{I}llumination \textbf{T}ransformation \textbf{A}ttack (\textbf{ITA}), the first framework to systematically assess VLMs' robustness against illumination changes. However, there still exist two key challenges: (1) how to model global illumination with fine-grained control to achieve diverse lighting conditions and (2) how to ensure adversarial effectiveness while maintaining naturalness. To address the first challenge, we innovatively decompose global illumination into multiple parameterized point light sources based on the illumination rendering equation. This design enables us to model more diverse lighting variations that previous methods could not capture. Then, by integrating these parameterized lighting variations with physics-based lighting reconstruction techniques, we could precisely render such light interactions in the original scenes, finally meeting the goal of fine-grained lighting control. For the second challenge, by controlling illumination through the lighting reconstrution model's latent space rather than direct pixel manipulation, we inherently preserve physical lighting priors. Furthermore, to prevent potential reconstruction artifacts, we design additional perceptual constraints for maintaining visual consistency with original images and diversity constraints for avoiding light source convergence. Extensive experiments demonstrate that our ITA could significantly reduce the performance of advanced VLMs, e.g., LLaVA-1.6, while possessing competitive naturalness, exposing VLMS' critical illuminiation vulnerabilities.
♻ ☆ Efficient Training of Generalizable Visuomotor Policies via Control-Aware Augmentation
Improving generalization is one key challenge in embodied AI, where obtaining large-scale datasets across diverse scenarios is costly. Traditional weak augmentations, such as cropping and flipping, are insufficient for improving a model's performance in new environments. Existing data augmentation methods often disrupt task-relevant information in images, potentially degrading performance. To overcome these challenges, we introduce EAGLE, an efficient training framework for generalizable visuomotor policies that improves upon existing methods by (1) enhancing generalization by applying augmentation only to control-related regions identified through a self-supervised control-aware mask and (2) improving training stability and efficiency by distilling knowledge from an expert to a visuomotor student policy, which is then deployed to unseen environments without further fine-tuning. Comprehensive experiments on three domains, including the DMControl Generalization Benchmark, the enhanced Robot Manipulation Distraction Benchmark, and a long-sequential drawer-opening task, validate the effectiveness of our method.
Artificial Intelligence 157
☆ HCAST: Human-Calibrated Autonomy Software Tasks
To understand and predict the societal impacts of highly autonomous AI systems, we need benchmarks with grounding, i.e., metrics that directly connect AI performance to real-world effects we care about. We present HCAST (Human-Calibrated Autonomy Software Tasks), a benchmark of 189 machine learning engineering, cybersecurity, software engineering, and general reasoning tasks. We collect 563 human baselines (totaling over 1500 hours) from people skilled in these domains, working under identical conditions as AI agents, which lets us estimate that HCAST tasks take humans between one minute and 8+ hours. Measuring the time tasks take for humans provides an intuitive metric for evaluating AI capabilities, helping answer the question "can an agent be trusted to complete a task that would take a human X hours?" We evaluate the success rates of AI agents built on frontier foundation models, and we find that current agents succeed 70-80% of the time on tasks that take humans less than one hour, and less than 20% of the time on tasks that take humans more than 4 hours.
comment: 32 pages, 10 figures, 5 tables
☆ NdLinear Is All You Need for Representation Learning
Many high-impact machine learning tasks involve multi-dimensional data (e.g., images, volumetric medical scans, multivariate time-series). Yet, most neural architectures flatten inputs, discarding critical cross-dimension information. We introduce NdLinear, a novel linear transformation that preserves these structures without extra overhead. By operating separately along each dimension, NdLinear captures dependencies that standard fully connected layers overlook. Extensive experiments across convolutional, recurrent, and transformer-based networks show significant improvements in representational power and parameter efficiency. Crucially, NdLinear serves as a foundational building block for large-scale foundation models by operating on any unimodal or multimodal data in its native form. This removes the need for flattening or modality-specific preprocessing. Ndlinear rethinks core architectural priorities beyond attention, enabling more expressive, context-aware models at scale. We propose NdLinear as a drop-in replacement for standard linear layers -- marking an important step toward next-generation neural architectures.
comment: Code is available at https://github.com/ensemble-core/NdLinear
☆ Align Your Rhythm: Generating Highly Aligned Dance Poses with Gating-Enhanced Rhythm-Aware Feature Representation
Automatically generating natural, diverse and rhythmic human dance movements driven by music is vital for virtual reality and film industries. However, generating dance that naturally follows music remains a challenge, as existing methods lack proper beat alignment and exhibit unnatural motion dynamics. In this paper, we propose Danceba, a novel framework that leverages gating mechanism to enhance rhythm-aware feature representation for music-driven dance generation, which achieves highly aligned dance poses with enhanced rhythmic sensitivity. Specifically, we introduce Phase-Based Rhythm Extraction (PRE) to precisely extract rhythmic information from musical phase data, capitalizing on the intrinsic periodicity and temporal structures of music. Additionally, we propose Temporal-Gated Causal Attention (TGCA) to focus on global rhythmic features, ensuring that dance movements closely follow the musical rhythm. We also introduce Parallel Mamba Motion Modeling (PMMM) architecture to separately model upper and lower body motions along with musical features, thereby improving the naturalness and diversity of generated dance movements. Extensive experiments confirm that Danceba outperforms state-of-the-art methods, achieving significantly better rhythmic alignment and motion diversity. Project page: https://danceba.github.io/ .
comment: 10 pages, 6 figures
☆ Can AI expose tax loopholes? Towards a new generation of legal policy assistants
The legislative process is the backbone of a state built on solid institutions. Yet, due to the complexity of laws -- particularly tax law -- policies may lead to inequality and social tensions. In this study, we introduce a novel prototype system designed to address the issues of tax loopholes and tax avoidance. Our hybrid solution integrates a natural language interface with a domain-specific language tailored for planning. We demonstrate on a case study how tax loopholes and avoidance schemes can be exposed. We conclude that our prototype can help enhance social welfare by systematically identifying and addressing tax gaps stemming from loopholes.
comment: 13 pages, 6 figures
☆ Capturing Individual Human Preferences with Reward Features
Reinforcement learning from human feedback usually models preferences using a reward model that does not distinguish between people. We argue that this is unlikely to be a good design choice in contexts with high potential for disagreement, like in the training of large language models. We propose a method to specialise a reward model to a person or group of people. Our approach builds on the observation that individual preferences can be captured as a linear combination of a set of general reward features. We show how to learn such features and subsequently use them to quickly adapt the reward model to a specific individual, even if their preferences are not reflected in the training data. We present experiments with large language models comparing the proposed architecture with a non-adaptive reward model and also adaptive counterparts, including models that do in-context personalisation. Depending on how much disagreement there is in the training data, our model either significantly outperforms the baselines or matches their performance with a simpler architecture and more stable training.
☆ Efficient Intent-Based Filtering for Multi-Party Conversations Using Knowledge Distillation from LLMs
Large language models (LLMs) have showcased remarkable capabilities in conversational AI, enabling open-domain responses in chat-bots, as well as advanced processing of conversations like summarization, intent classification, and insights generation. However, these models are resource-intensive, demanding substantial memory and computational power. To address this, we propose a cost-effective solution that filters conversational snippets of interest for LLM processing, tailored to the target downstream application, rather than processing every snippet. In this work, we introduce an innovative approach that leverages knowledge distillation from LLMs to develop an intent-based filter for multi-party conversations, optimized for compute power constrained environments. Our method combines different strategies to create a diverse multi-party conversational dataset, that is annotated with the target intents and is then used to fine-tune the MobileBERT model for multi-label intent classification. This model achieves a balance between efficiency and performance, effectively filtering conversation snippets based on their intents. By passing only the relevant snippets to the LLM for further processing, our approach significantly reduces overall operational costs depending on the intents and the data distribution as demonstrated in our experiments.
☆ CVE-Bench: A Benchmark for AI Agents' Ability to Exploit Real-World Web Application Vulnerabilities
Large language model (LLM) agents are increasingly capable of autonomously conducting cyberattacks, posing significant threats to existing applications. This growing risk highlights the urgent need for a real-world benchmark to evaluate the ability of LLM agents to exploit web application vulnerabilities. However, existing benchmarks fall short as they are limited to abstracted Capture the Flag competitions or lack comprehensive coverage. Building a benchmark for real-world vulnerabilities involves both specialized expertise to reproduce exploits and a systematic approach to evaluating unpredictable threats. To address this challenge, we introduce CVE-Bench, a real-world cybersecurity benchmark based on critical-severity Common Vulnerabilities and Exposures. In CVE-Bench, we design a sandbox framework that enables LLM agents to exploit vulnerable web applications in scenarios that mimic real-world conditions, while also providing effective evaluation of their exploits. Our evaluation shows that the state-of-the-art agent framework can resolve up to 13% of vulnerabilities.
comment: 15 pages, 4 figures, 5 tables
☆ LLM+MAP: Bimanual Robot Task Planning using Large Language Models and Planning Domain Definition Language
Bimanual robotic manipulation provides significant versatility, but also presents an inherent challenge due to the complexity involved in the spatial and temporal coordination between two hands. Existing works predominantly focus on attaining human-level manipulation skills for robotic hands, yet little attention has been paid to task planning on long-horizon timescales. With their outstanding in-context learning and zero-shot generation abilities, Large Language Models (LLMs) have been applied and grounded in diverse robotic embodiments to facilitate task planning. However, LLMs still suffer from errors in long-horizon reasoning and from hallucinations in complex robotic tasks, lacking a guarantee of logical correctness when generating the plan. Previous works, such as LLM+P, extended LLMs with symbolic planners. However, none have been successfully applied to bimanual robots. New challenges inevitably arise in bimanual manipulation, necessitating not only effective task decomposition but also efficient task allocation. To address these challenges, this paper introduces LLM+MAP, a bimanual planning framework that integrates LLM reasoning and multi-agent planning, automating effective and efficient bimanual task planning. We conduct simulated experiments on various long-horizon manipulation tasks of differing complexity. Our method is built using GPT-4o as the backend, and we compare its performance against plans generated directly by LLMs, including GPT-4o, V3 and also recent strong reasoning models o1 and R1. By analyzing metrics such as planning time, success rate, group debits, and planning-step reduction rate, we demonstrate the superior performance of LLM+MAP, while also providing insights into robotic reasoning. Code is available at https://github.com/Kchu/LLM-MAP.
comment: Code and video are available at https://github.com/Kchu/LLM-MAP
☆ Preference-Guided Diffusion for Multi-Objective Offline Optimization
Offline multi-objective optimization aims to identify Pareto-optimal solutions given a dataset of designs and their objective values. In this work, we propose a preference-guided diffusion model that generates Pareto-optimal designs by leveraging a classifier-based guidance mechanism. Our guidance classifier is a preference model trained to predict the probability that one design dominates another, directing the diffusion model toward optimal regions of the design space. Crucially, this preference model generalizes beyond the training distribution, enabling the discovery of Pareto-optimal solutions outside the observed dataset. We introduce a novel diversity-aware preference guidance, augmenting Pareto dominance preference with diversity criteria. This ensures that generated solutions are optimal and well-distributed across the objective space, a capability absent in prior generative methods for offline multi-objective optimization. We evaluate our approach on various continuous offline multi-objective optimization tasks and find that it consistently outperforms other inverse/generative approaches while remaining competitive with forward/surrogate-based optimization methods. Our results highlight the effectiveness of classifier-guided diffusion models in generating diverse and high-quality solutions that approximate the Pareto front well.
☆ Breaking the Symmetries of Indistinguishable Objects
Indistinguishable objects often occur when modelling problems in constraint programming, as well as in other related paradigms. They occur when objects can be viewed as being drawn from a set of unlabelled objects, and the only operation allowed on them is equality testing. For example, the golfers in the social golfer problem are indistinguishable. If we do label the golfers, then any relabelling of the golfers in one solution gives another valid solution. Therefore, we can regard the symmetric group of size $n$ as acting on a set of $n$ indistinguishable objects. In this paper, we show how we can break the symmetries resulting from indistinguishable objects. We show how symmetries on indistinguishable objects can be defined properly in complex types, for example in a matrix indexed by indistinguishable objects. We then show how the resulting symmetries can be broken correctly. In Essence, a high-level modelling language, indistinguishable objects are encapsulated in "unnamed types". We provide an implementation of complete symmetry breaking for unnamed types in Essence.
☆ KL3M Tokenizers: A Family of Domain-Specific and Character-Level Tokenizers for Legal, Financial, and Preprocessing Applications
We present the KL3M tokenizers, a family of specialized tokenizers for legal, financial, and governmental text. Despite established work on tokenization, specialized tokenizers for professional domains remain understudied. Our paper offers two main contributions to this area. First, we introduce domain-specific BPE tokenizers for legal, financial, and governmental text. Our kl3m-004-128k-cased tokenizer uses 9-17% fewer tokens than GPT-4o and Llama3 for domain-specific documents, despite having a smaller vocabulary. For specialized terminology, our cased tokenizer is even more efficient, using up to 83% fewer tokens for legal terms and 39% fewer tokens for financial terms. Second, we develop character-level BPE tokenizers (4K, 8K, and 16K vocabulary sizes) for text correction tasks like OCR post-processing. These tokenizers keep consistent token boundaries between error-containing and correct text, making it easier for models to learn correction patterns. These tokenizers help professional applications by fitting more text in context windows, reducing computational needs, and preserving the meaning of domain-specific terms. Our analysis shows these efficiency gains directly benefit the processing of long legal and financial documents. We release all tokenizers and code through GitHub and Hugging Face to support further research in specialized tokenization.
comment: 12 pages, 7 tables, 3 figures; Source code available at https://github.com/alea-institute/kl3m-tokenizer-paper
☆ SafeMERGE: Preserving Safety Alignment in Fine-Tuned Large Language Models via Selective Layer-Wise Model Merging
Fine-tuning large language models (LLMs) on downstream tasks can inadvertently erode their safety alignment, even for benign fine-tuning datasets. We address this challenge by proposing SafeMERGE, a post-fine-tuning framework that preserves safety while maintaining task utility. It achieves this by selectively merging fine-tuned and safety-aligned model layers only when those deviate from safe behavior, measured by a cosine similarity criterion. We evaluate SafeMERGE against other fine-tuning- and post-fine-tuning-stage approaches for Llama-2-7B-Chat and Qwen-2-7B-Instruct models on GSM8K and PubMedQA tasks while exploring different merging strategies. We find that SafeMERGE consistently reduces harmful outputs compared to other baselines without significantly sacrificing performance, sometimes even enhancing it. The results suggest that our selective, subspace-guided, and per-layer merging method provides an effective safeguard against the inadvertent loss of safety in fine-tuned LLMs while outperforming simpler post-fine-tuning-stage defenses.
☆ Strong Baseline: Multi-UAV Tracking via YOLOv12 with BoT-SORT-ReID
Detecting and tracking multiple unmanned aerial vehicles (UAVs) in thermal infrared video is inherently challenging due to low contrast, environmental noise, and small target sizes. This paper provides a straightforward approach to address multi-UAV tracking in thermal infrared video, leveraging recent advances in detection and tracking. Instead of relying on the YOLOv5 with the DeepSORT pipeline, we present a tracking framework built on YOLOv12 and BoT-SORT, enhanced with tailored training and inference strategies. We evaluate our approach following the metrics from the 4th Anti-UAV Challenge and demonstrate competitive performance. Notably, we achieve strong results without using contrast enhancement or temporal information fusion to enrich UAV features, highlighting our approach as a "Strong Baseline" for the multi-UAV tracking task. We provide implementation details, in-depth experimental analysis, and a discussion of potential improvements. The code is available at https://github.com/wish44165/YOLOv12-BoT-SORT-ReID .
comment: 10 pages, 5 figures, 5 tables
☆ FactSelfCheck: Fact-Level Black-Box Hallucination Detection for LLMs
Large Language Models (LLMs) frequently generate hallucinated content, posing significant challenges for applications where factuality is crucial. While existing hallucination detection methods typically operate at the sentence level or passage level, we propose FactSelfCheck, a novel black-box sampling-based method that enables fine-grained fact-level detection. Our approach represents text as knowledge graphs consisting of facts in the form of triples. Through analyzing factual consistency across multiple LLM responses, we compute fine-grained hallucination scores without requiring external resources or training data. Our evaluation demonstrates that FactSelfCheck performs competitively with leading sampling-based methods while providing more detailed insights. Most notably, our fact-level approach significantly improves hallucination correction, achieving a 35% increase in factual content compared to the baseline, while sentence-level SelfCheckGPT yields only an 8% improvement. The granular nature of our detection enables more precise identification and correction of hallucinated content.
comment: Preprint
☆ Neuro-Symbolic Scene Graph Conditioning for Synthetic Image Dataset Generation
As machine learning models increase in scale and complexity, obtaining sufficient training data has become a critical bottleneck due to acquisition costs, privacy constraints, and data scarcity in specialised domains. While synthetic data generation has emerged as a promising alternative, a notable performance gap remains compared to models trained on real data, particularly as task complexity grows. Concurrently, Neuro-Symbolic methods, which combine neural networks' learning strengths with symbolic reasoning's structured representations, have demonstrated significant potential across various cognitive tasks. This paper explores the utility of Neuro-Symbolic conditioning for synthetic image dataset generation, focusing specifically on improving the performance of Scene Graph Generation models. The research investigates whether structured symbolic representations in the form of scene graphs can enhance synthetic data quality through explicit encoding of relational constraints. The results demonstrate that Neuro-Symbolic conditioning yields significant improvements of up to +2.59% in standard Recall metrics and +2.83% in No Graph Constraint Recall metrics when used for dataset augmentation. These findings establish that merging Neuro-Symbolic and generative approaches produces synthetic data with complementary structural information that enhances model performance when combined with real data, providing a novel approach to overcome data scarcity limitations even for complex visual reasoning tasks.
☆ Automating Adjudication of Cardiovascular Events Using Large Language Models
Cardiovascular events, such as heart attacks and strokes, remain a leading cause of mortality globally, necessitating meticulous monitoring and adjudication in clinical trials. This process, traditionally performed manually by clinical experts, is time-consuming, resource-intensive, and prone to inter-reviewer variability, potentially introducing bias and hindering trial progress. This study addresses these critical limitations by presenting a novel framework for automating the adjudication of cardiovascular events in clinical trials using Large Language Models (LLMs). We developed a two-stage approach: first, employing an LLM-based pipeline for event information extraction from unstructured clinical data and second, using an LLM-based adjudication process guided by a Tree of Thoughts approach and clinical endpoint committee (CEC) guidelines. Using cardiovascular event-specific clinical trial data, the framework achieved an F1-score of 0.82 for event extraction and an accuracy of 0.68 for adjudication. Furthermore, we introduce the CLEART score, a novel, automated metric specifically designed for evaluating the quality of AI-generated clinical reasoning in adjudicating cardiovascular events. This approach demonstrates significant potential for substantially reducing adjudication time and costs while maintaining high-quality, consistent, and auditable outcomes in clinical trials. The reduced variability and enhanced standardization also allow for faster identification and mitigation of risks associated with cardiovascular therapies.
☆ PP-DocLayout: A Unified Document Layout Detection Model to Accelerate Large-Scale Data Construction
Document layout analysis is a critical preprocessing step in document intelligence, enabling the detection and localization of structural elements such as titles, text blocks, tables, and formulas. Despite its importance, existing layout detection models face significant challenges in generalizing across diverse document types, handling complex layouts, and achieving real-time performance for large-scale data processing. To address these limitations, we present PP-DocLayout, which achieves high precision and efficiency in recognizing 23 types of layout regions across diverse document formats. To meet different needs, we offer three models of varying scales. PP-DocLayout-L is a high-precision model based on the RT-DETR-L detector, achieving 90.4% mAP@0.5 and an end-to-end inference time of 13.4 ms per page on a T4 GPU. PP-DocLayout-M is a balanced model, offering 75.2% mAP@0.5 with an inference time of 12.7 ms per page on a T4 GPU. PP-DocLayout-S is a high-efficiency model designed for resource-constrained environments and real-time applications, with an inference time of 8.1 ms per page on a T4 GPU and 14.5 ms on a CPU. This work not only advances the state of the art in document layout analysis but also provides a robust solution for constructing high-quality training data, enabling advancements in document intelligence and multimodal AI systems. Code and models are available at https://github.com/PaddlePaddle/PaddleX .
comment: Github Repo: https://github.com/PaddlePaddle/PaddleX
☆ TreeSynth: Synthesizing Diverse Data from Scratch via Tree-Guided Subspace Partitioning
Model customization requires high-quality and diverse datasets, but acquiring such data remains challenging and costly. Although large language models (LLMs) can synthesize training data, current approaches are constrained by limited seed data, model bias and insufficient control over the generation process, resulting in limited diversity and biased distribution with the increase of data scales. To tackle this challenge, we present TreeSynth, a tree-guided subspace-based data synthesis framework that recursively partitions the entire data space into hierar-chical subspaces, enabling comprehensive and diverse scaling of data synthesis. Briefly, given a task-specific description, we construct a data space partitioning tree by iteratively executing criteria determination and subspace coverage steps. This hierarchically divides the whole space (i.e., root node) into mutually exclusive and complementary atomic subspaces (i.e., leaf nodes). By collecting synthesized data according to the attributes of each leaf node, we obtain a diverse dataset that fully covers the data space. Empirically, our extensive experiments demonstrate that TreeSynth surpasses both human-designed datasets and the state-of-the-art data synthesis baselines, achieving maximum improvements of 45.2% in data diversity and 17.6% in downstream task performance across various models and tasks. Hopefully, TreeSynth provides a scalable solution to synthesize diverse and comprehensive datasets from scratch without human intervention.
☆ D2Fusion: Dual-domain Fusion with Feature Superposition for Deepfake Detection
Deepfake detection is crucial for curbing the harm it causes to society. However, current Deepfake detection methods fail to thoroughly explore artifact information across different domains due to insufficient intrinsic interactions. These interactions refer to the fusion and coordination after feature extraction processes across different domains, which are crucial for recognizing complex forgery clues. Focusing on more generalized Deepfake detection, in this work, we introduce a novel bi-directional attention module to capture the local positional information of artifact clues from the spatial domain. This enables accurate artifact localization, thus addressing the coarse processing with artifact features. To further address the limitation that the proposed bi-directional attention module may not well capture global subtle forgery information in the artifact feature (e.g., textures or edges), we employ a fine-grained frequency attention module in the frequency domain. By doing so, we can obtain high-frequency information in the fine-grained features, which contains the global and subtle forgery information. Although these features from the diverse domains can be effectively and independently improved, fusing them directly does not effectively improve the detection performance. Therefore, we propose a feature superposition strategy that complements information from spatial and frequency domains. This strategy turns the feature components into the form of wave-like tokens, which are updated based on their phase, such that the distinctions between authentic and artifact features can be amplified. Our method demonstrates significant improvements over state-of-the-art (SOTA) methods on five public Deepfake datasets in capturing abnormalities across different manipulated operations and real-life.
☆ LLMs Love Python: A Study of LLMs' Bias for Programming Languages and Libraries
Programming language and library choices are crucial to software reliability and security. Poor or inconsistent choices can lead to increased technical debt, security vulnerabilities, and even catastrophic failures in safety-critical systems. As Large Language Models (LLMs) play an increasing role in code generation, it is essential to understand how they make these decisions. However, little is known about their preferences when selecting programming languages and libraries for different coding tasks. To fill this gap, this study provides the first in-depth investigation into LLM preferences for programming languages and libraries used when generating code. We assess the preferences of eight diverse LLMs by prompting them to complete various coding tasks, including widely-studied benchmarks and the more practical task of generating the initial structural code for new projects (a crucial step that often determines a project's language or library choices). Our findings reveal that LLMs heavily favour Python when solving language-agnostic problems, using it in 90%-97% of cases for benchmark tasks. Even when generating initial project code where Python is not a suitable language, it remains the most-used language in 58% of instances. Moreover, LLMs contradict their own language recommendations in 83% of project initialisation tasks, raising concerns about their reliability in guiding language selection. Similar biases toward well-established libraries further create serious discoverability challenges for newer open-source projects. These results highlight the need to improve LLMs' adaptability to diverse programming contexts and to develop mechanisms for mitigating programming language and library bias.
comment: 12 pages, 1 figure
☆ Temporal-Guided Spiking Neural Networks for Event-Based Human Action Recognition
This paper explores the promising interplay between spiking neural networks (SNNs) and event-based cameras for privacy-preserving human action recognition (HAR). The unique feature of event cameras in capturing only the outlines of motion, combined with SNNs' proficiency in processing spatiotemporal data through spikes, establishes a highly synergistic compatibility for event-based HAR. Previous studies, however, have been limited by SNNs' ability to process long-term temporal information, essential for precise HAR. In this paper, we introduce two novel frameworks to address this: temporal segment-based SNN (\textit{TS-SNN}) and 3D convolutional SNN (\textit{3D-SNN}). The \textit{TS-SNN} extracts long-term temporal information by dividing actions into shorter segments, while the \textit{3D-SNN} replaces 2D spatial elements with 3D components to facilitate the transmission of temporal information. To promote further research in event-based HAR, we create a dataset, \textit{FallingDetection-CeleX}, collected using the high-resolution CeleX-V event camera $(1280 \times 800)$, comprising 7 distinct actions. Extensive experimental results show that our proposed frameworks surpass state-of-the-art SNN methods on our newly collected dataset and three other neuromorphic datasets, showcasing their effectiveness in handling long-range temporal information for event-based HAR.
☆ The CASTLE 2024 Dataset: Advancing the Art of Multimodal Understanding
Egocentric video has seen increased interest in recent years, as it is used in a range of areas. However, most existing datasets are limited to a single perspective. In this paper, we present the CASTLE 2024 dataset, a multimodal collection containing ego- and exo-centric (i.e., first- and third-person perspective) video and audio from 15 time-aligned sources, as well as other sensor streams and auxiliary data. The dataset was recorded by volunteer participants over four days in a fixed location and includes the point of view of 10 participants, with an additional 5 fixed cameras providing an exocentric perspective. The entire dataset contains over 600 hours of UHD video recorded at 50 frames per second. In contrast to other datasets, CASTLE 2024 does not contain any partial censoring, such as blurred faces or distorted audio. The dataset is available via https://castle-dataset.github.io/.
comment: 7 pages, 6 figures, dataset available via https://castle-dataset.github.io/
☆ FFaceNeRF: Few-shot Face Editing in Neural Radiance Fields CVPR2025
Recent 3D face editing methods using masks have produced high-quality edited images by leveraging Neural Radiance Fields (NeRF). Despite their impressive performance, existing methods often provide limited user control due to the use of pre-trained segmentation masks. To utilize masks with a desired layout, an extensive training dataset is required, which is challenging to gather. We present FFaceNeRF, a NeRF-based face editing technique that can overcome the challenge of limited user control due to the use of fixed mask layouts. Our method employs a geometry adapter with feature injection, allowing for effective manipulation of geometry attributes. Additionally, we adopt latent mixing for tri-plane augmentation, which enables training with a few samples. This facilitates rapid model adaptation to desired mask layouts, crucial for applications in fields like personalized medical imaging or creative face editing. Our comparative evaluations demonstrate that FFaceNeRF surpasses existing mask based face editing methods in terms of flexibility, control, and generated image quality, paving the way for future advancements in customized and high-fidelity 3D face editing. The code is available on the {\href{https://kwanyun.github.io/FFaceNeRF_page/}{project-page}}.
comment: CVPR2025, 11 pages, 14 figures
☆ Does a Rising Tide Lift All Boats? Bias Mitigation for AI-based CMR Segmentation
Artificial intelligence (AI) is increasingly being used for medical imaging tasks. However, there can be biases in the resulting models, particularly when they were trained using imbalanced training datasets. One such example has been the strong race bias effect in cardiac magnetic resonance (CMR) image segmentation models. Although this phenomenon has been reported in a number of publications, little is known about the effectiveness of bias mitigation algorithms in this domain. We aim to investigate the impact of common bias mitigation methods to address bias between Black and White subjects in AI-based CMR segmentation models. Specifically, we use oversampling, importance reweighing and Group DRO as well as combinations of these techniques to mitigate the race bias. Furthermore, motivated by recent findings on the root causes of AI-based CMR segmentation bias, we evaluate the same methods using models trained and evaluated on cropped CMR images. We find that bias can be mitigated using oversampling, significantly improving performance for the underrepresented Black subjects whilst not significantly reducing the majority White subjects' performance. Group DRO also improves performance for Black subjects but not significantly, while reweighing decreases performance for Black subjects. Using a combination of oversampling and Group DRO also improves performance for Black subjects but not significantly. Using cropped images increases performance for both races and reduces the bias, whilst adding oversampling as a bias mitigation technique with cropped images reduces the bias further.
☆ Deterministic AI Agent Personality Expression through Standard Psychological Diagnostics
Artificial intelligence (AI) systems powered by large language models have become increasingly prevalent in modern society, enabling a wide range of applications through natural language interaction. As AI agents proliferate in our daily lives, their generic and uniform expressiveness presents a significant limitation to their appeal and adoption. Personality expression represents a key prerequisite for creating more human-like and distinctive AI systems. We show that AI models can express deterministic and consistent personalities when instructed using established psychological frameworks, with varying degrees of accuracy depending on model capabilities. We find that more advanced models like GPT-4o and o1 demonstrate the highest accuracy in expressing specified personalities across both Big Five and Myers-Briggs assessments, and further analysis suggests that personality expression emerges from a combination of intelligence and reasoning capabilities. Our results reveal that personality expression operates through holistic reasoning rather than question-by-question optimization, with response-scale metrics showing higher variance than test-scale metrics. Furthermore, we find that model fine-tuning affects communication style independently of personality expression accuracy. These findings establish a foundation for creating AI agents with diverse and consistent personalities, which could significantly enhance human-AI interaction across applications from education to healthcare, while additionally enabling a broader range of more unique AI agents. The ability to quantitatively assess and implement personality expression in AI systems opens new avenues for research into more relatable, trustworthy, and ethically designed AI.
comment: 25 pages, 8 figures, 4 tables; appeared in ADI (March 2025)
☆ A Thorough Assessment of the Non-IID Data Impact in Federated Learning
Federated learning (FL) allows collaborative machine learning (ML) model training among decentralized clients' information, ensuring data privacy. The decentralized nature of FL deals with non-independent and identically distributed (non-IID) data. This open problem has notable consequences, such as decreased model performance and more significant convergence times. Despite its importance, experimental studies systematically addressing all types of data heterogeneity (a.k.a. non-IIDness) remain scarce. We aim to fill this gap by assessing and quantifying the non-IID effect through a thorough empirical analysis. We use the Hellinger Distance (HD) to measure differences in distribution among clients. Our study benchmarks four state-of-the-art strategies for handling non-IID data, including label, feature, quantity, and spatiotemporal skewness, under realistic and controlled conditions. This is the first comprehensive analysis of the spatiotemporal skew effect in FL. Our findings highlight the significant impact of label and spatiotemporal skew non-IID types on FL model performance, with notable performance drops occurring at specific HD thresholds. Additionally, the FL performance is heavily affected mainly when the non-IIDness is extreme. Thus, we provide recommendations for FL research to tackle data heterogeneity effectively. Our work represents the most extensive examination of non-IIDness in FL, offering a robust foundation for future research.
☆ PVChat: Personalized Video Chat with One-Shot Learning
Video large language models (ViLLMs) excel in general video understanding, e.g., recognizing activities like talking and eating, but struggle with identity-aware comprehension, such as "Wilson is receiving chemotherapy" or "Tom is discussing with Sarah", limiting their applicability in smart healthcare and smart home environments. To address this limitation, we propose a one-shot learning framework PVChat, the first personalized ViLLM that enables subject-aware question answering (QA) from a single video for each subject. Our approach optimizes a Mixture-of-Heads (MoH) enhanced ViLLM on a synthetically augmented video-QA dataset, leveraging a progressive image-to-video learning strategy. Specifically, we introduce an automated augmentation pipeline that synthesizes identity-preserving positive samples and retrieves hard negatives from existing video corpora, generating a diverse training dataset with four QA types: existence, appearance, action, and location inquiries. To enhance subject-specific learning, we propose a ReLU Routing MoH attention mechanism, alongside two novel objectives: (1) Smooth Proximity Regularization for progressive learning through exponential distance scaling and (2) Head Activation Enhancement for balanced attention routing. Finally, we adopt a two-stage training strategy, transitioning from image pre-training to video fine-tuning, enabling a gradual learning process from static attributes to dynamic representations. We evaluate PVChat on diverse datasets covering medical scenarios, TV series, anime, and real-world footage, demonstrating its superiority in personalized feature understanding after learning from a single video, compared to state-of-the-art ViLLMs.
☆ Replay4NCL: An Efficient Memory Replay-based Methodology for Neuromorphic Continual Learning in Embedded AI Systems
Neuromorphic Continual Learning (NCL) paradigm leverages Spiking Neural Networks (SNNs) to enable continual learning (CL) capabilities for AI systems to adapt to dynamically changing environments. Currently, the state-of-the-art employ a memory replay-based method to maintain the old knowledge. However, this technique relies on long timesteps and compression-decompression steps, thereby incurring significant latency and energy overheads, which are not suitable for tightly-constrained embedded AI systems (e.g., mobile agents/robotics). To address this, we propose Replay4NCL, a novel efficient memory replay-based methodology for enabling NCL in embedded AI systems. Specifically, Replay4NCL compresses the latent data (old knowledge), then replays them during the NCL training phase with small timesteps, to minimize the processing latency and energy consumption. To compensate the information loss from reduced spikes, we adjust the neuron threshold potential and learning rate settings. Experimental results on the class-incremental scenario with the Spiking Heidelberg Digits (SHD) dataset show that Replay4NCL can preserve old knowledge with Top-1 accuracy of 90.43% compared to 86.22% from the state-of-the-art, while effectively learning new tasks, achieving 4.88x latency speed-up, 20% latent memory saving, and 36.43% energy saving. These results highlight the potential of our Replay4NCL methodology to further advances NCL capabilities for embedded AI systems.
comment: Accepted at the 62th Design Automation Conference (DAC) 2025, June 2025, San Francisco, CA, USA
☆ Data-Driven Optimization of EV Charging Station Placement Using Causal Discovery
This paper addresses the critical challenge of optimizing electric vehicle charging station placement through a novel data-driven methodology employing causal discovery techniques. While traditional approaches prioritize economic factors or power grid constraints, they often neglect empirical charging patterns that ultimately determine station utilization. We analyze extensive charging data from Palo Alto and Boulder (337,344 events across 100 stations) to uncover latent relationships between station characteristics and utilization. Applying structural learning algorithms (NOTEARS and DAGMA) to this data reveals that charging demand is primarily determined by three factors: proximity to amenities, EV registration density, and adjacency to high-traffic routes. These findings, consistent across multiple algorithms and urban contexts, challenge conventional infrastructure distribution strategies. We develop an optimization framework that translates these insights into actionable placement recommendations, identifying locations likely to experience high utilization based on the discovered dependency structures. The resulting site selection model prioritizes strategic clustering in high-amenity areas with substantial EV populations rather than uniform spatial distribution. Our approach contributes a framework that integrates empirical charging behavior into infrastructure planning, potentially enhancing both station utilization and user convenience. By focusing on data-driven insights instead of theoretical distribution models, we provide a more effective strategy for expanding charging networks that can adjust to various stages of EV market development.
comment: Under review of IEEE CASE 2025; This is also the master thesis project from Julius supervised by Dr. Ziyue Li
HAPI: A Model for Learning Robot Facial Expressions from Human Preferences
Automatic robotic facial expression generation is crucial for human-robot interaction, as handcrafted methods based on fixed joint configurations often yield rigid and unnatural behaviors. Although recent automated techniques reduce the need for manual tuning, they tend to fall short by not adequately bridging the gap between human preferences and model predictions-resulting in a deficiency of nuanced and realistic expressions due to limited degrees of freedom and insufficient perceptual integration. In this work, we propose a novel learning-to-rank framework that leverages human feedback to address this discrepancy and enhanced the expressiveness of robotic faces. Specifically, we conduct pairwise comparison annotations to collect human preference data and develop the Human Affective Pairwise Impressions (HAPI) model, a Siamese RankNet-based approach that refines expression evaluation. Results obtained via Bayesian Optimization and online expression survey on a 35-DOF android platform demonstrate that our approach produces significantly more realistic and socially resonant expressions of Anger, Happiness, and Surprise than those generated by baseline and expert-designed methods. This confirms that our framework effectively bridges the gap between human preferences and model predictions while robustly aligning robotic expression generation with human affective responses.
☆ Summarization Metrics for Spanish and Basque: Do Automatic Scores and LLM-Judges Correlate with Humans?
Studies on evaluation metrics and LLM-as-a-Judge models for automatic text summarization have largely been focused on English, limiting our understanding of their effectiveness in other languages. Through our new dataset BASSE (BAsque and Spanish Summarization Evaluation), we address this situation by collecting human judgments on 2,040 abstractive summaries in Basque and Spanish, generated either manually or by five LLMs with four different prompts. For each summary, annotators evaluated five criteria on a 5-point Likert scale: coherence, consistency, fluency, relevance, and 5W1H. We use these data to reevaluate traditional automatic metrics used for evaluating summaries, as well as several LLM-as-a-Judge models that show strong performance on this task in English. Our results show that currently proprietary judge LLMs have the highest correlation with human judgments, followed by criteria-specific automatic metrics, while open-sourced judge LLMs perform poorly. We release BASSE and our code publicly, along with the first large-scale Basque summarization dataset containing 22,525 news articles with their subheads.
☆ An Attentive Representative Sample Selection Strategy Combined with Balanced Batch Training for Skin Lesion Segmentation
An often overlooked problem in medical image segmentation research is the effective selection of training subsets to annotate from a complete set of unlabelled data. Many studies select their training sets at random, which may lead to suboptimal model performance, especially in the minimal supervision setting where each training image has a profound effect on performance outcomes. This work aims to address this issue. We use prototypical contrasting learning and clustering to extract representative and diverse samples for annotation. We improve upon prior works with a bespoke cluster-based image selection process. Additionally, we introduce the concept of unsupervised balanced batch dataloading to medical image segmentation, which aims to improve model learning with minimally annotated data. We evaluated our method on a public skin lesion dataset (ISIC 2018) and compared it to another state-of-the-art data sampling method. Our method achieved superior performance in a low annotation budget scenario.
comment: Accepted to ISBI 2025
☆ Exploring the Efficacy of Partial Denoising Using Bit Plane Slicing for Enhanced Fracture Identification: A Comparative Study of Deep Learning-Based Approaches and Handcrafted Feature Extraction Techniques
Computer vision has transformed medical diagnosis, treatment, and research through advanced image processing and machine learning techniques. Fracture classification, a critical area in healthcare, has greatly benefited from these advancements, yet accurate detection is challenged by complex patterns and image noise. Bit plane slicing enhances medical images by reducing noise interference and extracting informative features. This research explores partial denoising techniques to provide practical solutions for improved fracture analysis, ultimately enhancing patient care. The study explores deep learning model DenseNet and handcrafted feature extraction. Decision Tree and Random Forest, were employed to train and evaluate distinct image representations. These include the original image, the concatenation of the four bit planes from the LSB as well as MSB, the fully denoised image, and an image consisting of 6 bit planes from MSB and 2 denoised bit planes from LSB. The purpose of forming these diverse image representations is to analyze SNR as well as classification accuracy and identify the bit planes that contain the most informative features. Moreover, the study delves into the significance of partial denoising techniques in preserving crucial features, leading to improvements in classification results. Notably, this study shows that employing the Random Forest classifier, the partially denoised image representation exhibited a testing accuracy of 95.61% surpassing the performance of other image representations. The outcomes of this research provide valuable insights into the development of efficient preprocessing, feature extraction and classification approaches for fracture identification. By enhancing diagnostic accuracy, these advancements hold the potential to positively impact patient care and overall medical outcomes.
☆ A Guide to Bayesian Networks Software Packages for Structure and Parameter Learning -- 2025 Edition
A representation of the cause-effect mechanism is needed to enable artificial intelligence to represent how the world works. Bayesian Networks (BNs) have proven to be an effective and versatile tool for this task. BNs require constructing a structure of dependencies among variables and learning the parameters that govern these relationships. These tasks, referred to as structural learning and parameter learning, are actively investigated by the research community, with several algorithms proposed and no single method having established itself as standard. A wide range of software, tools, and packages have been developed for BNs analysis and made available to academic researchers and industry practitioners. As a consequence of having no one-size-fits-all solution, moving the first practical steps and getting oriented into this field is proving to be challenging to outsiders and beginners. In this paper, we review the most relevant tools and software for BNs structural and parameter learning to date, providing our subjective recommendations directed to an audience of beginners. In addition, we provide an extensive easy-to-consult overview table summarizing all software packages and their main features. By improving the reader understanding of which available software might best suit their needs, we improve accessibility to the field and make it easier for beginners to take their first step into it.
comment: 11 pages, 1 figure
☆ Symbolic Audio Classification via Modal Decision Tree Learning
The range of potential applications of acoustic analysis is wide. Classification of sounds, in particular, is a typical machine learning task that received a lot of attention in recent years. The most common approaches to sound classification are sub-symbolic, typically based on neural networks, and result in black-box models with high performances but very low transparency. In this work, we consider several audio tasks, namely, age and gender recognition, emotion classification, and respiratory disease diagnosis, and we approach them with a symbolic technique, that is, (modal) decision tree learning. We prove that such tasks can be solved using the same symbolic pipeline, that allows to extract simple rules with very high accuracy and low complexity. In principle, all such tasks could be associated to an autonomous conversation system, which could be useful in different contexts, such as an automatic reservation agent for an hospital or a clinic.
☆ Developing Critical Thinking in Second Language Learners: Exploring Generative AI like ChatGPT as a Tool for Argumentative Essay Writing
This study employs the Paul-Elder Critical Thinking Model and Tan's argumentative writing framework to create a structured methodology. This methodology, ChatGPT Guideline for Critical Argumentative Writing (CGCAW) framework, integrates the models with ChatGPT's capabilities to guide L2 learners in utilizing ChatGPT to enhance their critical thinking skills. A quantitative experiment was conducted with 10 participants from a state university, divided into experimental and control groups. The experimental group utilized the CGCAW framework, while the control group used ChatGPT without specific guidelines. Participants wrote an argumentative essay within a 40-minute timeframe, and essays were evaluated by three assessors: ChatGPT, Grammarly, and a course instructor. Results indicated that the experimental group showed improvements in clarity, logical coherence, and use of evidence, demonstrating ChatGPT's potential to enhance specific aspects of argumentative writing. However, the control group performed better in overall language mechanics and articulation of main arguments, indicating areas where the CGCAW framework could be further refined. This study highlights the need for further research to optimize the use of AI tools like ChatGPT in L2 learning environments to enhance critical thinking and writing skills.
comment: 12 pages, 3 figures. Uses Paul-Elder Critical Thinking Model and Tan's argumentative writing framework. Includes an experimental study with 10 participants
☆ Targetless 6DoF Calibration of LiDAR and 2D Scanning Radar Based on Cylindrical Occupancy
Owing to the capability for reliable and all-weather long-range sensing, the fusion of LiDAR and Radar has been widely applied to autonomous vehicles for robust perception. In practical operation, well manually calibrated extrinsic parameters, which are crucial for the fusion of multi-modal sensors, may drift due to the vibration. To address this issue, we present a novel targetless calibration approach, termed LiRaCo, for the extrinsic 6DoF calibration of LiDAR and Radar sensors. Although both types of sensors can obtain geometric information, bridging the geometric correspondences between multi-modal data without any clues of explicit artificial markers is nontrivial, mainly due to the low vertical resolution of scanning Radar. To achieve the targetless calibration, LiRaCo leverages a spatial occupancy consistency between LiDAR point clouds and Radar scans in a common cylindrical representation, considering the increasing data sparsity with distance for both sensors. Specifically, LiRaCo expands the valid Radar scanned pixels into 3D occupancy grids to constrain LiDAR point clouds based on spatial consistency. Consequently, a cost function involving extrinsic calibration parameters is formulated based on the spatial overlap of 3D grids and LiDAR points. Extrinsic parameters are finally estimated by optimizing the cost function. Comprehensive quantitative and qualitative experiments on two real outdoor datasets with different LiDAR sensors demonstrate the feasibility and accuracy of the proposed method. The source code will be publicly available.
☆ Enabling Versatile Controls for Video Diffusion Models
Despite substantial progress in text-to-video generation, achieving precise and flexible control over fine-grained spatiotemporal attributes remains a significant unresolved challenge in video generation research. To address these limitations, we introduce VCtrl (also termed PP-VCtrl), a novel framework designed to enable fine-grained control over pre-trained video diffusion models in a unified manner. VCtrl integrates diverse user-specified control signals-such as Canny edges, segmentation masks, and human keypoints-into pretrained video diffusion models via a generalizable conditional module capable of uniformly encoding multiple types of auxiliary signals without modifying the underlying generator. Additionally, we design a unified control signal encoding pipeline and a sparse residual connection mechanism to efficiently incorporate control representations. Comprehensive experiments and human evaluations demonstrate that VCtrl effectively enhances controllability and generation quality. The source code and pre-trained models are publicly available and implemented using the PaddlePaddle framework at http://github.com/PaddlePaddle/PaddleMIX/tree/develop/ppdiffusers/examples/ppvctrl.
comment: Codes and Supplementary Material: http://github.com/PaddlePaddle/PaddleMIX/tree/develop/ppdiffusers/examples/ppvctrl
☆ Token Dynamics: Towards Efficient and Dynamic Video Token Representation for Video Large Language Models
Token-based video representation has emerged as a promising approach for enabling large language models to interpret video content. However, existing token reduction techniques, such as token pruning and token merging, often disrupt essential spatial-temporal positional embeddings, failing to adequately balance computational efficiency with fewer tokens. Consequently, these methods result in relatively lengthy token sequences, limiting their applicability in scenarios requiring extreme token compression, such as video large language models. In this paper, we introduce the novel task of extreme short token reduction, aiming to represent extensive video sequences with a minimal number of tokens. To address this challenge, we propose Token Dynamics, a new video representation framework that dynamically reduces token count while preserving spatial-temporal coherence. Specifically, we disentangle video representations by separating visual embeddings from grid-level motion information, structuring them into: 1. a concise token base, created by clustering tokens that describe object-level content; 2. a token dynamics map, capturing detailed spatial-temporal motion patterns across grids. Furthermore, we introduce a cross-dynamics attention mechanism that integrates motion features into the token base without increasing token length, thereby maintaining compactness and spatial-temporal integrity. The experiments demonstrate a reduction of token count to merely 0.07% of the original tokens, with only a minor performance drop of 1.13%. Additionally, we propose two novel subtasks within extreme token reduction (fixed-length and adaptive-length compression), both effectively representing long token sequences for video-language tasks. Our method offers significantly lower theoretical complexity, fewer tokens, and enhanced throughput, thus providing an efficient solution for video LLMs.
☆ Real-Time Diffusion Policies for Games: Enhancing Consistency Policies with Q-Ensembles
Diffusion models have shown impressive performance in capturing complex and multi-modal action distributions for game agents, but their slow inference speed prevents practical deployment in real-time game environments. While consistency models offer a promising approach for one-step generation, they often suffer from training instability and performance degradation when applied to policy learning. In this paper, we present CPQE (Consistency Policy with Q-Ensembles), which combines consistency models with Q-ensembles to address these challenges.CPQE leverages uncertainty estimation through Q-ensembles to provide more reliable value function approximations, resulting in better training stability and improved performance compared to classic double Q-network methods. Our extensive experiments across multiple game scenarios demonstrate that CPQE achieves inference speeds of up to 60 Hz -- a significant improvement over state-of-the-art diffusion policies that operate at only 20 Hz -- while maintaining comparable performance to multi-step diffusion approaches. CPQE consistently outperforms state-of-the-art consistency model approaches, showing both higher rewards and enhanced training stability throughout the learning process. These results indicate that CPQE offers a practical solution for deploying diffusion-based policies in games and other real-time applications where both multi-modal behavior modeling and rapid inference are critical requirements.
☆ GeoT: Geometry-guided Instance-dependent Transition Matrix for Semi-supervised Tooth Point Cloud Segmentation
Achieving meticulous segmentation of tooth point clouds from intra-oral scans stands as an indispensable prerequisite for various orthodontic applications. Given the labor-intensive nature of dental annotation, a significant amount of data remains unlabeled, driving increasing interest in semi-supervised approaches. One primary challenge of existing semi-supervised medical segmentation methods lies in noisy pseudo labels generated for unlabeled data. To address this challenge, we propose GeoT, the first framework that employs instance-dependent transition matrix (IDTM) to explicitly model noise in pseudo labels for semi-supervised dental segmentation. Specifically, to handle the extensive solution space of IDTM arising from tens of thousands of dental points, we introduce tooth geometric priors through two key components: point-level geometric regularization (PLGR) to enhance consistency between point adjacency relationships in 3D and IDTM spaces, and class-level geometric smoothing (CLGS) to leverage the fixed spatial distribution of tooth categories for optimal IDTM estimation. Extensive experiments performed on the public Teeth3DS dataset and private dataset demonstrate that our method can make full utilization of unlabeled data to facilitate segmentation, achieving performance comparable to fully supervised methods with only $20\%$ of the labeled data.
comment: IPMI2025
☆ Assessing Consistency and Reproducibility in the Outputs of Large Language Models: Evidence Across Diverse Finance and Accounting Tasks
This study provides the first comprehensive assessment of consistency and reproducibility in Large Language Model (LLM) outputs in finance and accounting research. We evaluate how consistently LLMs produce outputs given identical inputs through extensive experimentation with 50 independent runs across five common tasks: classification, sentiment analysis, summarization, text generation, and prediction. Using three OpenAI models (GPT-3.5-turbo, GPT-4o-mini, and GPT-4o), we generate over 3.4 million outputs from diverse financial source texts and data, covering MD&As, FOMC statements, finance news articles, earnings call transcripts, and financial statements. Our findings reveal substantial but task-dependent consistency, with binary classification and sentiment analysis achieving near-perfect reproducibility, while complex tasks show greater variability. More advanced models do not consistently demonstrate better consistency and reproducibility, with task-specific patterns emerging. LLMs significantly outperform expert human annotators in consistency and maintain high agreement even where human experts significantly disagree. We further find that simple aggregation strategies across 3-5 runs dramatically improve consistency. Simulation analysis reveals that despite measurable inconsistency in LLM outputs, downstream statistical inferences remain remarkably robust. These findings address concerns about what we term "G-hacking," the selective reporting of favorable outcomes from multiple Generative AI runs, by demonstrating that such risks are relatively low for finance and accounting tasks.
comment: 96 pages
☆ ARFlow: Human Action-Reaction Flow Matching with Physical Guidance
Human action-reaction synthesis, a fundamental challenge in modeling causal human interactions, plays a critical role in applications ranging from virtual reality to social robotics. While diffusion-based models have demonstrated promising performance, they exhibit two key limitations for interaction synthesis: reliance on complex noise-to-reaction generators with intricate conditional mechanisms, and frequent physical violations in generated motions. To address these issues, we propose Action-Reaction Flow Matching (ARFlow), a novel framework that establishes direct action-to-reaction mappings, eliminating the need for complex conditional mechanisms. Our approach introduces two key innovations: an x1-prediction method that directly outputs human motions instead of velocity fields, enabling explicit constraint enforcement; and a training-free, gradient-based physical guidance mechanism that effectively prevents body penetration artifacts during sampling. Extensive experiments on NTU120 and Chi3D datasets demonstrate that ARFlow not only outperforms existing methods in terms of Fr\'echet Inception Distance and motion diversity but also significantly reduces body collisions, as measured by our new Intersection Volume and Intersection Frequency metrics.
comment: Computer Vision and Pattern Recognition (cs.CV); Artificial Intelligence (cs.AI)
☆ From Faces to Voices: Learning Hierarchical Representations for High-quality Video-to-Speech CVPR 2025
The objective of this study is to generate high-quality speech from silent talking face videos, a task also known as video-to-speech synthesis. A significant challenge in video-to-speech synthesis lies in the substantial modality gap between silent video and multi-faceted speech. In this paper, we propose a novel video-to-speech system that effectively bridges this modality gap, significantly enhancing the quality of synthesized speech. This is achieved by learning of hierarchical representations from video to speech. Specifically, we gradually transform silent video into acoustic feature spaces through three sequential stages -- content, timbre, and prosody modeling. In each stage, we align visual factors -- lip movements, face identity, and facial expressions -- with corresponding acoustic counterparts to ensure the seamless transformation. Additionally, to generate realistic and coherent speech from the visual representations, we employ a flow matching model that estimates direct trajectories from a simple prior distribution to the target speech distribution. Extensive experiments demonstrate that our method achieves exceptional generation quality comparable to real utterances, outperforming existing methods by a significant margin.
comment: CVPR 2025, demo page: https://mm.kaist.ac.kr/projects/faces2voices/
☆ Neural-Guided Equation Discovery
Deep learning approaches are becoming increasingly attractive for equation discovery. We show the advantages and disadvantages of using neural-guided equation discovery by giving an overview of recent papers and the results of experiments using our modular equation discovery system MGMT ($\textbf{M}$ulti-Task $\textbf{G}$rammar-Guided $\textbf{M}$onte-Carlo $\textbf{T}$ree Search for Equation Discovery). The system uses neural-guided Monte-Carlo Tree Search (MCTS) and supports both supervised and reinforcement learning, with a search space defined by a context-free grammar. We summarize seven desirable properties of equation discovery systems, emphasizing the importance of embedding tabular data sets for such learning approaches. Using the modular structure of MGMT, we compare seven architectures (among them, RNNs, CNNs, and Transformers) for embedding tabular datasets on the auxiliary task of contrastive learning for tabular data sets on an equation discovery task. For almost all combinations of modules, supervised learning outperforms reinforcement learning. Moreover, our experiments indicate an advantage of using grammar rules as action space instead of tokens. Two adaptations of MCTS -- risk-seeking MCTS and AmEx-MCTS -- can improve equation discovery with that kind of search.
comment: 32 pages + 4 pages appendix, 9 figures, book chapter
☆ On-Sensor Convolutional Neural Networks with Early-Exits SC
Tiny Machine Learning (TinyML) is a novel research field aiming at integrating Machine Learning (ML) within embedded devices with limited memory, computation, and energy. Recently, a new branch of TinyML has emerged, focusing on integrating ML directly into the sensors to further reduce the power consumption of embedded devices. Interestingly, despite their state-of-the-art performance in many tasks, none of the current solutions in the literature aims to optimize the implementation of Convolutional Neural Networks (CNNs) operating directly into sensors. In this paper, we introduce for the first time in the literature the optimized design and implementation of Depth-First CNNs operating on the Intelligent Sensor Processing Unit (ISPU) within an Inertial Measurement Unit (IMU) by STMicroelectronics. Our approach partitions the CNN between the ISPU and the microcontroller (MCU) and employs an Early-Exit mechanism to stop the computations on the IMU when enough confidence about the results is achieved, hence significantly reducing power consumption. When using a NUCLEO-F411RE board, this solution achieved an average current consumption of 4.8 mA, marking an 11% reduction compared to the regular inference pipeline on the MCU, while having equal accuracy.
comment: Presented at IEEE SSCI
☆ Interpretable Machine Learning for Oral Lesion Diagnosis through Prototypical Instances Identification
Decision-making processes in healthcare can be highly complex and challenging. Machine Learning tools offer significant potential to assist in these processes. However, many current methodologies rely on complex models that are not easily interpretable by experts. This underscores the need to develop interpretable models that can provide meaningful support in clinical decision-making. When approaching such tasks, humans typically compare the situation at hand to a few key examples and representative cases imprinted in their memory. Using an approach which selects such exemplary cases and grounds its predictions on them could contribute to obtaining high-performing interpretable solutions to such problems. To this end, we evaluate PivotTree, an interpretable prototype selection model, on an oral lesion detection problem, specifically trying to detect the presence of neoplastic, aphthous and traumatic ulcerated lesions from oral cavity images. We demonstrate the efficacy of using such method in terms of performance and offer a qualitative and quantitative comparison between exemplary cases and ground-truth prototypes selected by experts.
☆ Rude Humans and Vengeful Robots: Examining Human Perceptions of Robot Retaliatory Intentions in Professional Settings
Humans and robots are increasingly working in personal and professional settings. In workplace settings, humans and robots may work together as colleagues, potentially leading to social expectations, or violation thereof. Extant research has primarily sought to understand social interactions and expectations in personal rather than professional settings, and none of these studies have examined negative outcomes arising from violations of social expectations. This paper reports the results of a 2x3 online experiment that used a unique first-person perspective video to immerse participants in a collaborative workplace setting. The results are nuanced and reveal that while robots are expected to act in accordance with social expectations despite human behavior, there are benefits for robots perceived as being the bigger person in the face of human rudeness. Theoretical and practical implications are provided which discuss the import of these findings for the design of social robots.
comment: This is the author version of the manuscript submitted to ACM Transactions on Human-Robot Interaction. The final version, if accepted, will be published by ACM and available via the ACM Digital Library. 12 pages, 1 figure, 2 tables
☆ TEMPO: Temporal Preference Optimization of Video LLMs via Difficulty Scheduling and Pre-SFT Alignment
Video Large Language Models (Video LLMs) have achieved significant success by leveraging a two-stage paradigm: pretraining on large-scale video-text data for vision-language alignment, followed by supervised fine-tuning (SFT) for task-specific capabilities. However, existing approaches struggle with temporal reasoning due to weak temporal correspondence in the data and reliance on the next-token prediction paradigm during training. To address these limitations, we propose TEMPO (TEMporal Preference Optimization), a systematic framework that enhances Video LLMs' temporal reasoning capabilities through Direct Preference Optimization (DPO). To facilitate this, we introduce an automated preference data generation pipeline that systematically constructs preference pairs by selecting videos that are rich in temporal information, designing video-specific perturbation strategies, and finally evaluating model responses on clean and perturbed video inputs. Our temporal alignment features two key innovations: curriculum learning which that progressively increases perturbation difficulty to improve model robustness and adaptability; and ``Pre-SFT Alignment'', applying preference optimization before instruction tuning to prioritize fine-grained temporal comprehension. Extensive experiments demonstrate that our approach consistently improves Video LLM performance across multiple benchmarks with a relatively small set of self-generated DPO data. We further analyze the transferability of DPO data across architectures and the role of difficulty scheduling in optimization. Our findings highlight our TEMPO as a scalable and efficient complement to SFT-based methods, paving the way for developing reliable Video LLMs.
☆ RustEvo^2: An Evolving Benchmark for API Evolution in LLM-based Rust Code Generation
Large Language Models (LLMs) have become pivotal tools for automating code generation in software development. However, these models face significant challenges in producing version-aware code for rapidly evolving languages like Rust, where frequent Application Programming Interfaces (API) changes across versions lead to compatibility issues and correctness errors. Existing benchmarks lack systematic evaluation of how models navigate API transitions, relying on labor-intensive manual curation and offering limited version-specific insights. To address this gap, we present RustEvo, a novel framework for constructing dynamic benchmarks that evaluate the ability of LLMs to adapt to evolving Rust APIs. RustEvo automates dataset creation by synthesizing 588 API changes (380 from Rust standard libraries, 208 from 15 third-party crates) into programming tasks mirroring real-world challenges. These tasks cover four API evolution categories: Stabilizations, Signature Changes, Behavioral Changes, and Deprecations, reflecting their actual distribution in the Rust ecosystem. Experiments on state-of-the-art (SOTA) LLMs reveal significant performance variations: models achieve a 65.8% average success rate on stabilized APIs but only 38.0% on behavioral changes, highlighting difficulties in detecting semantic shifts without signature alterations. Knowledge cutoff dates strongly influence performance, with models scoring 56.1% on before-cutoff APIs versus 32.5% on after-cutoff tasks. Retrieval-Augmented Generation (RAG) mitigates this gap, improving success rates by 13.5% on average for APIs released after model training. Our findings underscore the necessity of our evolution-aware benchmarks to advance the adaptability of LLMs in fast-paced software ecosystems. The framework and the benchmarks are publicly released at https://github.com/SYSUSELab/RustEvo.
☆ When Preferences Diverge: Aligning Diffusion Models with Minority-Aware Adaptive DPO
In recent years, the field of image generation has witnessed significant advancements, particularly in fine-tuning methods that align models with universal human preferences. This paper explores the critical role of preference data in the training process of diffusion models, particularly in the context of Diffusion-DPO and its subsequent adaptations. We investigate the complexities surrounding universal human preferences in image generation, highlighting the subjective nature of these preferences and the challenges posed by minority samples in preference datasets. Through pilot experiments, we demonstrate the existence of minority samples and their detrimental effects on model performance. We propose Adaptive-DPO -- a novel approach that incorporates a minority-instance-aware metric into the DPO objective. This metric, which includes intra-annotator confidence and inter-annotator stability, distinguishes between majority and minority samples. We introduce an Adaptive-DPO loss function which improves the DPO loss in two ways: enhancing the model's learning of majority labels while mitigating the negative impact of minority samples. Our experiments demonstrate that this method effectively handles both synthetic minority data and real-world preference data, paving the way for more effective training methodologies in image generation tasks.
☆ A New Segment Routing method with Swap Node Selection Strategy Based on Deep Reinforcement Learning for Software Defined Network
The existing segment routing (SR) methods need to determine the routing first and then use path segmentation approaches to select swap nodes to form a segment routing path (SRP). They require re-segmentation of the path when the routing changes. Furthermore, they do not consider the flow table issuance time, which cannot maximize the speed of issuance flow table. To address these issues, this paper establishes an optimization model that can simultaneously form routing strategies and path segmentation strategies for selecting the appropriate swap nodes to reduce flow table issuance time. It also designs an intelligent segment routing algorithm based on deep reinforcement learning (DRL-SR) to solve the proposed model. First, a traffic matrix is designed as the state space for the deep reinforcement learning agent; this matrix includes multiple QoS performance indicators, flow table issuance time overhead and SR label stack depth. Second, the action selection strategy and corresponding reward function are designed, where the agent selects the next node considering the routing; in addition, the action selection strategy whether the newly added node is selected as the swap node and the corresponding reward function are designed considering the time cost factor for the controller to issue the flow table to the swap node. Finally, a series of experiments and their results show that, compared with the existing methods, the designed segmented route optimization model and the intelligent solution algorithm (DRL-SR) can reduce the time overhead required to complete the segmented route establishment task while optimizing performance metrics such as throughput, delays and packet losses.
☆ MAPS: A Multi-Agent Framework Based on Big Seven Personality and Socratic Guidance for Multimodal Scientific Problem Solving
Multimodal scientific problems (MSPs) involve complex issues that require the integration of multiple modalities, such as text and diagrams, presenting a significant challenge in artificial intelligence. While progress has been made in addressing traditional scientific problems, MSPs still face two primary issues: the challenge of multi-modal comprehensive reasoning in scientific problem-solving and the lack of reflective and rethinking capabilities. To address these issues, we introduce a Multi-Agent framework based on the Big Seven Personality and Socratic guidance (MAPS). This framework employs seven distinct agents that leverage feedback mechanisms and the Socratic method to guide the resolution of MSPs. To tackle the first issue, we propose a progressive four-agent solving strategy, where each agent focuses on a specific stage of the problem-solving process. For the second issue, we introduce a Critic agent, inspired by Socratic questioning, which prompts critical thinking and stimulates autonomous learning. We conduct extensive experiments on the EMMA, Olympiad, and MathVista datasets, achieving promising results that outperform the current SOTA model by 15.84% across all tasks. Meanwhile, the additional analytical experiments also verify the model's progress as well as generalization ability.
☆ Deep Learning for Human Locomotion Analysis in Lower-Limb Exoskeletons: A Comparative Study
Wearable robotics for lower-limb assistance have become a pivotal area of research, aiming to enhance mobility for individuals with physical impairments or augment the performance of able-bodied users. Accurate and adaptive control systems are essential to ensure seamless interaction between the wearer and the robotic device, particularly when navigating diverse and dynamic terrains. Despite the recent advances in neural networks for time series analysis, no attempts have been directed towards the classification of ground conditions, categorized into five classes and subsequently determining the ramp's slope and stair's height. In this respect, this paper presents an experimental comparison between eight deep neural network backbones to predict high-level locomotion parameters across diverse terrains. All the models are trained on the publicly available CAMARGO 2021 dataset. IMU-only data equally or outperformed IMU+EMG inputs, promoting a cost-effective and efficient design. Indeeds, using three IMU sensors, the LSTM achieved high terrain classification accuracy (0.94 +- 0.04) and precise ramp slope (1.95 +- 0.58{\deg}) and the CNN-LSTM a stair height (15.65 +- 7.40 mm) estimations. As a further contribution, SHAP analysis justified sensor reduction without performance loss, ensuring a lightweight setup. The system operates with ~2 ms inference time, supporting real-time applications. The code is code available at https://github.com/cosbidev/Human-Locomotion-Identification.
comment: 26 pages, 6 figures
☆ MARS: A Multi-Agent Framework Incorporating Socratic Guidance for Automated Prompt Optimization
The basic question-answering format of large language models involves inputting a prompt and receiving a response, and the quality of the prompt directly impacts the effectiveness of the response. Automated Prompt Optimization (APO) aims to break free from the cognitive biases of manually designed prompts and explores a broader design space for prompts. However, existing APO methods suffer from limited flexibility of fixed templates and inefficient search in prompt spaces as key issues. To this end, we propose a Multi-Agent framework Incorporating Socratic guidance (MARS), which utilizes multi-agent fusion technology for automatic planning, with gradual continuous optimization and evaluation. Specifically, MARS comprises seven agents, each with distinct functionalities, which autonomously use the Planner to devise an optimization path that ensures flexibility. Additionally, it employs a Teacher-Critic-Student Socratic dialogue pattern to iteratively optimize the prompts while conducting effective search. We conduct extensive experiments on various datasets to validate the effectiveness of our method, and perform additional analytical experiments to assess the model's advancement as well as the interpretability.
☆ Classifier-guided CLIP Distillation for Unsupervised Multi-label Classification CVPR 2025
Multi-label classification is crucial for comprehensive image understanding, yet acquiring accurate annotations is challenging and costly. To address this, a recent study suggests exploiting unsupervised multi-label classification leveraging CLIP, a powerful vision-language model. Despite CLIP's proficiency, it suffers from view-dependent predictions and inherent bias, limiting its effectiveness. We propose a novel method that addresses these issues by leveraging multiple views near target objects, guided by Class Activation Mapping (CAM) of the classifier, and debiasing pseudo-labels derived from CLIP predictions. Our Classifier-guided CLIP Distillation (CCD) enables selecting multiple local views without extra labels and debiasing predictions to enhance classification performance. Experimental results validate our method's superiority over existing techniques across diverse datasets. The code is available at https://github.com/k0u-id/CCD.
comment: CVPR 2025 Accepted
☆ Sparse Logit Sampling: Accelerating Knowledge Distillation in LLMs
Knowledge distillation can be a cost-effective technique to distill knowledge in Large Language Models, if the teacher output logits can be pre-computed and cached. However, successfully applying this to pre-training remains largely unexplored. In this work, we prove that naive approaches for sparse knowledge distillation such as caching Top-K probabilities, while intuitive, provide biased estimates of teacher probability distribution to the student, resulting in suboptimal performance and calibration. We propose an importance-sampling-based method `Random Sampling Knowledge Distillation', which provides unbiased estimates, preserves the gradient in expectation, and requires storing significantly sparser logits. Our method enables faster training of student models with marginal overhead (<10%) compared to cross-entropy based training, while maintaining competitive performance compared to full distillation, across a range of model sizes from 300M to 3B.
comment: Anshumann, Mohd Abbas Zaidi and Akhil Kedia have Equal Contribution
☆ In-House Evaluation Is Not Enough: Towards Robust Third-Party Flaw Disclosure for General-Purpose AI
The widespread deployment of general-purpose AI (GPAI) systems introduces significant new risks. Yet the infrastructure, practices, and norms for reporting flaws in GPAI systems remain seriously underdeveloped, lagging far behind more established fields like software security. Based on a collaboration between experts from the fields of software security, machine learning, law, social science, and policy, we identify key gaps in the evaluation and reporting of flaws in GPAI systems. We call for three interventions to advance system safety. First, we propose using standardized AI flaw reports and rules of engagement for researchers in order to ease the process of submitting, reproducing, and triaging flaws in GPAI systems. Second, we propose GPAI system providers adopt broadly-scoped flaw disclosure programs, borrowing from bug bounties, with legal safe harbors to protect researchers. Third, we advocate for the development of improved infrastructure to coordinate distribution of flaw reports across the many stakeholders who may be impacted. These interventions are increasingly urgent, as evidenced by the prevalence of jailbreaks and other flaws that can transfer across different providers' GPAI systems. By promoting robust reporting and coordination in the AI ecosystem, these proposals could significantly improve the safety, security, and accountability of GPAI systems.
☆ MTBench: A Multimodal Time Series Benchmark for Temporal Reasoning and Question Answering
Understanding the relationship between textual news and time-series evolution is a critical yet under-explored challenge in applied data science. While multimodal learning has gained traction, existing multimodal time-series datasets fall short in evaluating cross-modal reasoning and complex question answering, which are essential for capturing complex interactions between narrative information and temporal patterns. To bridge this gap, we introduce Multimodal Time Series Benchmark (MTBench), a large-scale benchmark designed to evaluate large language models (LLMs) on time series and text understanding across financial and weather domains. MTbench comprises paired time series and textual data, including financial news with corresponding stock price movements and weather reports aligned with historical temperature records. Unlike existing benchmarks that focus on isolated modalities, MTbench provides a comprehensive testbed for models to jointly reason over structured numerical trends and unstructured textual narratives. The richness of MTbench enables formulation of diverse tasks that require a deep understanding of both text and time-series data, including time-series forecasting, semantic and technical trend analysis, and news-driven question answering (QA). These tasks target the model's ability to capture temporal dependencies, extract key insights from textual context, and integrate cross-modal information. We evaluate state-of-the-art LLMs on MTbench, analyzing their effectiveness in modeling the complex relationships between news narratives and temporal patterns. Our findings reveal significant challenges in current models, including difficulties in capturing long-term dependencies, interpreting causality in financial and weather trends, and effectively fusing multimodal information.
comment: 14 pages
☆ Imagine to Hear: Auditory Knowledge Generation can be an Effective Assistant for Language Models
Language models pretrained on text-only corpora often struggle with tasks that require auditory commonsense knowledge. Previous work addresses this problem by augmenting the language model to retrieve knowledge from external audio databases. This approach has several limitations, such as the potential lack of relevant audio in databases and the high costs associated with constructing and querying the databases. To address these issues, we propose Imagine to Hear, a novel approach that dynamically generates auditory knowledge using generative models. Our framework detects multiple audio-related textual spans from the given prompt and generates corresponding auditory knowledge. We develop several mechanisms to efficiently process multiple auditory knowledge, including a CLAP-based rejection sampler and a language-audio fusion module. Our experiments show that our method achieves state-of-the-art performance on AuditoryBench without relying on external databases, highlighting the effectiveness of our generation-based approach.
comment: Preprint
☆ Casual Inference via Style Bias Deconfounding for Domain Generalization
Deep neural networks (DNNs) often struggle with out-of-distribution data, limiting their reliability in diverse realworld applications. To address this issue, domain generalization methods have been developed to learn domain-invariant features from single or multiple training domains, enabling generalization to unseen testing domains. However, existing approaches usually overlook the impact of style frequency within the training set. This oversight predisposes models to capture spurious visual correlations caused by style confounding factors, rather than learning truly causal representations, thereby undermining inference reliability. In this work, we introduce Style Deconfounding Causal Learning (SDCL), a novel causal inference-based framework designed to explicitly address style as a confounding factor. Our approaches begins with constructing a structural causal model (SCM) tailored to the domain generalization problem and applies a backdoor adjustment strategy to account for style influence. Building on this foundation, we design a style-guided expert module (SGEM) to adaptively clusters style distributions during training, capturing the global confounding style. Additionally, a back-door causal learning module (BDCL) performs causal interventions during feature extraction, ensuring fair integration of global confounding styles into sample predictions, effectively reducing style bias. The SDCL framework is highly versatile and can be seamlessly integrated with state-of-the-art data augmentation techniques. Extensive experiments across diverse natural and medical image recognition tasks validate its efficacy, demonstrating superior performance in both multi-domain and the more challenging single-domain generalization scenarios.
comment: under review
☆ Physics-Informed Neural Network Surrogate Models for River Stage Prediction
This work investigates the feasibility of using Physics-Informed Neural Networks (PINNs) as surrogate models for river stage prediction, aiming to reduce computational cost while maintaining predictive accuracy. Our primary contribution demonstrates that PINNs can successfully approximate HEC-RAS numerical solutions when trained on a single river, achieving strong predictive accuracy with generally low relative errors, though some river segments exhibit higher deviations. By integrating the governing Saint-Venant equations into the learning process, the proposed PINN-based surrogate model enforces physical consistency and significantly improves computational efficiency compared to HEC-RAS. We evaluate the model's performance in terms of accuracy and computational speed, demonstrating that it closely approximates HEC-RAS predictions while enabling real-time inference. These results highlight the potential of PINNs as effective surrogate models for single-river hydrodynamics, offering a promising alternative for computationally efficient river stage forecasting. Future work will explore techniques to enhance PINN training stability and robustness across a more generalized multi-river model.
comment: 10 pages, 5 figures
☆ The Deployment of End-to-End Audio Language Models Should Take into Account the Principle of Least Privilege
We are at a turning point for language models that accept audio input. The latest end-to-end audio language models (Audio LMs) process speech directly instead of relying on a separate transcription step. This shift preserves detailed information, such as intonation or the presence of multiple speakers, that would otherwise be lost in transcription. However, it also introduces new safety risks, including the potential misuse of speaker identity cues and other sensitive vocal attributes, which could have legal implications. In this position paper, we urge a closer examination of how these models are built and deployed. We argue that the principle of least privilege should guide decisions on whether to deploy cascaded or end-to-end models. Specifically, evaluations should assess (1) whether end-to-end modeling is necessary for a given application; and (2), the appropriate scope of information access. Finally, We highlight related gaps in current audio LM benchmarks and identify key open research questions, both technical and policy-related, that must be addressed to enable the responsible deployment of end-to-end Audio LMs.
☆ DyWA: Dynamics-adaptive World Action Model for Generalizable Non-prehensile Manipulation
Nonprehensile manipulation is crucial for handling objects that are too thin, large, or otherwise ungraspable in unstructured environments. While conventional planning-based approaches struggle with complex contact modeling, learning-based methods have recently emerged as a promising alternative. However, existing learning-based approaches face two major limitations: they heavily rely on multi-view cameras and precise pose tracking, and they fail to generalize across varying physical conditions, such as changes in object mass and table friction. To address these challenges, we propose the Dynamics-Adaptive World Action Model (DyWA), a novel framework that enhances action learning by jointly predicting future states while adapting to dynamics variations based on historical trajectories. By unifying the modeling of geometry, state, physics, and robot actions, DyWA enables more robust policy learning under partial observability. Compared to baselines, our method improves the success rate by 31.5% using only single-view point cloud observations in the simulation. Furthermore, DyWA achieves an average success rate of 68% in real-world experiments, demonstrating its ability to generalize across diverse object geometries, adapt to varying table friction, and robustness in challenging scenarios such as half-filled water bottles and slippery surfaces.
comment: Project Page:https://pku-epic.github.io/DyWA/
☆ Auto-Regressive Diffusion for Generating 3D Human-Object Interactions
Text-driven Human-Object Interaction (Text-to-HOI) generation is an emerging field with applications in animation, video games, virtual reality, and robotics. A key challenge in HOI generation is maintaining interaction consistency in long sequences. Existing Text-to-Motion-based approaches, such as discrete motion tokenization, cannot be directly applied to HOI generation due to limited data in this domain and the complexity of the modality. To address the problem of interaction consistency in long sequences, we propose an autoregressive diffusion model (ARDHOI) that predicts the next continuous token. Specifically, we introduce a Contrastive Variational Autoencoder (cVAE) to learn a physically plausible space of continuous HOI tokens, thereby ensuring that generated human-object motions are realistic and natural. For generating sequences autoregressively, we develop a Mamba-based context encoder to capture and maintain consistent sequential actions. Additionally, we implement an MLP-based denoiser to generate the subsequent token conditioned on the encoded context. Our model has been evaluated on the OMOMO and BEHAVE datasets, where it outperforms existing state-of-the-art methods in terms of both performance and inference speed. This makes ARDHOI a robust and efficient solution for text-driven HOI tasks
☆ Causally Aligned Curriculum Learning ICLR 2024
A pervasive challenge in Reinforcement Learning (RL) is the "curse of dimensionality" which is the exponential growth in the state-action space when optimizing a high-dimensional target task. The framework of curriculum learning trains the agent in a curriculum composed of a sequence of related and more manageable source tasks. The expectation is that when some optimal decision rules are shared across source tasks and the target task, the agent could more quickly pick up the necessary skills to behave optimally in the environment, thus accelerating the learning process. However, this critical assumption of invariant optimal decision rules does not necessarily hold in many practical applications, specifically when the underlying environment contains unobserved confounders. This paper studies the problem of curriculum RL through causal lenses. We derive a sufficient graphical condition characterizing causally aligned source tasks, i.e., the invariance of optimal decision rules holds. We further develop an efficient algorithm to generate a causally aligned curriculum, provided with qualitative causal knowledge of the target task. Finally, we validate our proposed methodology through experiments in discrete and continuous confounded tasks with pixel observations.
comment: Accepted as Posters in ICLR 2024
☆ A Learnability Analysis on Neuro-Symbolic Learning
This paper analyzes the learnability of neuro-symbolic (NeSy) tasks within hybrid systems. We show that the learnability of NeSy tasks can be characterized by their derived constraint satisfaction problems (DCSPs). Specifically, a task is learnable if the corresponding DCSP has a unique solution; otherwise, it is unlearnable. For learnable tasks, we establish error bounds by exploiting the clustering property of the hypothesis space. Additionally, we analyze the asymptotic error for general NeSy tasks, showing that the expected error scales with the disagreement among solutions. Our results offer a principled approach to determining learnability and provide insights into the design of new algorithms.
☆ "The Diagram is like Guardrails": Structuring GenAI-assisted Hypotheses Exploration with an Interactive Shared Representation
Data analysis encompasses a spectrum of tasks, from high-level conceptual reasoning to lower-level execution. While AI-powered tools increasingly support execution tasks, there remains a need for intelligent assistance in conceptual tasks. This paper investigates the design of an ordered node-link tree interface augmented with AI-generated information hints and visualizations, as a potential shared representation for hypothesis exploration. Through a design probe (n=22), participants generated diagrams averaging 21.82 hypotheses. Our findings showed that the node-link diagram acts as "guardrails" for hypothesis exploration, facilitating structured workflows, providing comprehensive overviews, and enabling efficient backtracking. The AI-generated information hints, particularly visualizations, aided users in transforming abstract ideas into data-backed concepts while reducing cognitive load. We further discuss how node-link diagrams can support both parallel exploration and iterative refinement in hypothesis formulation, potentially enhancing the breadth and depth of human-AI collaborative data analysis.
☆ Does Chain-of-Thought Reasoning Help Mobile GUI Agent? An Empirical Study
Reasoning capabilities have significantly improved the performance of vision-language models (VLMs) in domains such as mathematical problem-solving, coding, and visual question-answering. However, their impact on real-world applications remains unclear. This paper presents the first empirical study on the effectiveness of reasoning-enabled VLMs in mobile GUI agents, a domain that requires interpreting complex screen layouts, understanding user instructions, and executing multi-turn interactions. We evaluate two pairs of commercial models--Gemini 2.0 Flash and Claude 3.7 Sonnet--comparing their base and reasoning-enhanced versions across two static benchmarks (ScreenSpot and AndroidControl) and one interactive environment (AndroidWorld). We surprisingly find the Claude 3.7 Sonnet reasoning model achieves state-of-the-art performance on AndroidWorld. However, reasoning VLMs generally offer marginal improvements over non-reasoning models on static benchmarks and even degrade performance in some agent setups. Notably, reasoning and non-reasoning VLMs fail on different sets of tasks, suggesting that reasoning does have an impact, but its benefits and drawbacks counterbalance each other. We attribute these inconsistencies to the limitations of benchmarks and VLMs. Based on the findings, we provide insights for further enhancing mobile GUI agents in terms of benchmarks, VLMs, and their adaptability in dynamically invoking reasoning VLMs. The experimental data are publicly available at https://github.com/LlamaTouch/VLM-Reasoning-Traces.
☆ Learning Part Knowledge to Facilitate Category Understanding for Fine-Grained Generalized Category Discovery
Generalized Category Discovery (GCD) aims to classify unlabeled data containing both seen and novel categories. Although existing methods perform well on generic datasets, they struggle in fine-grained scenarios. We attribute this difficulty to their reliance on contrastive learning over global image features to automatically capture discriminative cues, which fails to capture the subtle local differences essential for distinguishing fine-grained categories. Therefore, in this paper, we propose incorporating part knowledge to address fine-grained GCD, which introduces two key challenges: the absence of annotations for novel classes complicates the extraction of the part features, and global contrastive learning prioritizes holistic feature invariance, inadvertently suppressing discriminative local part patterns. To address these challenges, we propose PartGCD, including 1) Adaptive Part Decomposition, which automatically extracts class-specific semantic parts via Gaussian Mixture Models, and 2) Part Discrepancy Regularization, enforcing explicit separation between part features to amplify fine-grained local part distinctions. Experiments demonstrate state-of-the-art performance across multiple fine-grained benchmarks while maintaining competitiveness on generic datasets, validating the effectiveness and robustness of our approach.
☆ Chain-of-Tools: Utilizing Massive Unseen Tools in the CoT Reasoning of Frozen Language Models
Tool learning can further broaden the usage scenarios of large language models (LLMs). However most of the existing methods either need to finetune that the model can only use tools seen in the training data, or add tool demonstrations into the prompt with lower efficiency. In this paper, we present a new Tool Learning method Chain-of-Tools. It makes full use of the powerful semantic representation capability of frozen LLMs to finish tool calling in CoT reasoning with a huge and flexible tool pool which may contain unseen tools. Especially, to validate the effectiveness of our approach in the massive unseen tool scenario, we construct a new dataset SimpleToolQuestions. We conduct experiments on two numerical reasoning benchmarks (GSM8K-XL and FuncQA) and two knowledge-based question answering benchmarks (KAMEL and SimpleToolQuestions). Experimental results show that our approach performs better than the baseline. We also identify dimensions of the model output that are critical in tool selection, enhancing the model interpretability. Our code and data are available at: https://github.com/fairyshine/Chain-of-Tools .
comment: 11 pages, 10 figures
Dynamic Attention Mechanism in Spatiotemporal Memory Networks for Object Tracking
Mainstream visual object tracking frameworks predominantly rely on template matching paradigms. Their performance heavily depends on the quality of template features, which becomes increasingly challenging to maintain in complex scenarios involving target deformation, occlusion, and background clutter. While existing spatiotemporal memory-based trackers emphasize memory capacity expansion, they lack effective mechanisms for dynamic feature selection and adaptive fusion. To address this gap, we propose a Dynamic Attention Mechanism in Spatiotemporal Memory Network (DASTM) with two key innovations: 1) A differentiable dynamic attention mechanism that adaptively adjusts channel-spatial attention weights by analyzing spatiotemporal correlations between the templates and memory features; 2) A lightweight gating network that autonomously allocates computational resources based on target motion states, prioritizing high-discriminability features in challenging scenarios. Extensive evaluations on OTB-2015, VOT 2018, LaSOT, and GOT-10K benchmarks demonstrate our DASTM's superiority, achieving state-of-the-art performance in success rate, robustness, and real-time efficiency, thereby offering a novel solution for real-time tracking in complex environments.
♻ ☆ SPINE: Online Semantic Planning for Missions with Incomplete Natural Language Specifications in Unstructured Environments ICRA
As robots become increasingly capable, users will want to describe high-level missions and have robots infer the relevant details. Because pre-built maps are difficult to obtain in many realistic settings, accomplishing such missions will require the robot to map and plan online. While many semantic planning methods operate online, they are typically designed for well specified missions such as object search or exploration. Recently, Large Language Models (LLMs) have demonstrated powerful contextual reasoning abilities over a range of robotic tasks described in natural language. However, existing LLM-enabled planners typically do not consider online planning or complex missions; rather, relevant subtasks and semantics are provided by a pre-built map or a user. We address these limitations via SPINE, an online planner for missions with incomplete mission specifications provided in natural language. The planner uses an LLM to reason about subtasks implied by the mission specification and then realizes these subtasks in a receding horizon framework. Tasks are automatically validated for safety and refined online with new map observations. We evaluate SPINE in simulation and real-world settings with missions that require multiple steps of semantic reasoning and exploration in cluttered outdoor environments of over 20,000m$^2$. Compared to baselines that use existing LLM-enabled planning approaches, our method is over twice as efficient in terms of time and distance, requires less user interactions, and does not require a full map. Additional resources are provided at https://zacravichandran.github.io/SPINE.
comment: Accepted to the International Conference on Robotics and Automation (ICRA) 2025
Bridging Technology and Humanities: Evaluating the Impact of Large Language Models on Social Sciences Research with DeepSeek-R1
In recent years, the development of Large Language Models (LLMs) has made significant breakthroughs in the field of natural language processing and has gradually been applied to the field of humanities and social sciences research. LLMs have a wide range of application value in the field of humanities and social sciences because of its strong text understanding, generation and reasoning capabilities. In humanities and social sciences research, LLMs can analyze large-scale text data and make inferences. This article analyzes the large language model DeepSeek-R1 from seven aspects: low-resource language translation, educational question-answering, student writing improvement in higher education, logical reasoning, educational measurement and psychometrics, public health policy analysis, and art education.Then we compare the answers given by DeepSeek-R1 in the seven aspects with the answers given by o1-preview. DeepSeek-R1 performs well in the humanities and social sciences, answering most questions correctly and logically, and can give reasonable analysis processes and explanations. Compared with o1-preview, it can automatically generate reasoning processes and provide more detailed explanations, which is suitable for beginners or people who need to have a detailed understanding of this knowledge, while o1-preview is more suitable for quick reading. Through analysis, it is found that LLM has broad application potential in the field of humanities and social sciences, and shows great advantages in improving text analysis efficiency, language communication and other fields. LLM's powerful language understanding and generation capabilities enable it to deeply explore complex problems in the field of humanities and social sciences, and provide innovative tools for academic research and practical applications.
comment: 52 pages, 19 figures
♻ ☆ Temporal-Spatial Attention Network (TSAN) for DoS Attack Detection in Network Traffic
Denial-of-Service (DoS) attacks remain a critical threat to network security, disrupting services and causing significant economic losses. Traditional detection methods, including statistical and rule-based models, struggle to adapt to evolving attack patterns. To address this challenge, we propose a novel Temporal-Spatial Attention Network (TSAN) architecture for detecting Denial of Service (DoS) attacks in network traffic. By leveraging both temporal and spatial features of network traffic, our approach captures complex traffic patterns and anomalies that traditional methods might miss. The TSAN model incorporates transformer-based temporal encoding, convolutional spatial encoding, and a cross-attention mechanism to fuse these complementary feature spaces. Additionally, we employ multi-task learning with auxiliary tasks to enhance the model's robustness. Experimental results on the NSL-KDD dataset demonstrate that TSAN outperforms state-of-the-art models, achieving superior accuracy, precision, recall, and F1-score while maintaining computational efficiency for real-time deployment. The proposed architecture offers an optimal balance between detection accuracy and computational overhead, making it highly suitable for real-world network security applications.
comment: 19 Pages, 5 figures
♻ ☆ GreenIQ: A Deep Search Platform for Comprehensive Carbon Market Analysis and Automated Report Generation
This study introduces GreenIQ, an AI-powered deep search platform designed to revolutionise carbon market intelligence through autonomous analysis and automated report generation. Carbon markets operate across diverse regulatory landscapes, generating vast amounts of heterogeneous data from policy documents, industry reports, academic literature, and real-time trading platforms. Traditional research approaches remain labour-intensive, slow, and difficult to scale. GreenIQ addresses these limitations through a multi-agent architecture powered by Large Language Models (LLMs), integrating five specialised AI agents: a Main Researcher Agent for intelligent information retrieval, a Report Writing Agent for structured synthesis, a Final Reviewer Agent for accuracy verification, a Data Visualisation Agent for enhanced interpretability, and a Translator Agent for multilingual adaptation. The system achieves seamless integration of structured and unstructured information with AI-driven citation verification, ensuring high transparency and reliability. GreenIQ delivers a 99.2\% reduction in processing time and a 99.7\% cost reduction compared to traditional research methodologies. A novel AI persona-based evaluation framework involving 16 domain-specific AI personas highlights its superior cross-jurisdictional analytical capabilities and regulatory insight generation. GreenIQ sets new standards in AI-driven research synthesis, policy analysis, and sustainability finance by streamlining carbon market research. It offers an efficient and scalable framework for environmental and financial intelligence, enabling more accurate, timely, and cost-effective decision-making in complex regulatory landscapes
comment: 12 Pages, 1 figure
♻ ☆ Autonomous AI imitators increase diversity in homogeneous information ecosystems
Recent breakthroughs in large language models (LLMs) have facilitated autonomous AI agents capable of imitating human-generated content. This technological advancement raises fundamental questions about AI's impact on the diversity and democratic value of information ecosystems. We introduce a large-scale simulation framework to examine AI-based imitation within news, a context crucial for public discourse. By systematically testing two distinct imitation strategies across a range of information environments varying in initial diversity, we demonstrate that AI-generated articles do not uniformly homogenize content. Instead, AI's influence is strongly context-dependent: AI-generated content can introduce valuable diversity in originally homogeneous news environments but diminish diversity in initially heterogeneous contexts. These results illustrate that the initial diversity of an information environment critically shapes AI's impact, challenging assumptions that AI-driven imitation uniformly threatens diversity. Instead, when information is initially homogeneous, AI-driven imitation can expand perspectives, styles, and topics. This is especially important in news contexts, where information diversity fosters richer public debate by exposing citizens to alternative viewpoints, challenging biases, and preventing narrative monopolies, which is essential for a resilient democracy.
comment: 35 pages, 10 figures, 4 tables; v2: corrected typographical errors, streamlined language, updated abstract, added supplementary information
♻ ☆ A General Adaptive Dual-level Weighting Mechanism for Remote Sensing Pansharpening CVPR
Currently, deep learning-based methods for remote sensing pansharpening have advanced rapidly. However, many existing methods struggle to fully leverage feature heterogeneity and redundancy, thereby limiting their effectiveness. We use the covariance matrix to model the feature heterogeneity and redundancy and propose Correlation-Aware Covariance Weighting (CACW) to adjust them. CACW captures these correlations through the covariance matrix, which is then processed by a nonlinear function to generate weights for adjustment. Building upon CACW, we introduce a general adaptive dual-level weighting mechanism (ADWM) to address these challenges from two key perspectives, enhancing a wide range of existing deep-learning methods. First, Intra-Feature Weighting (IFW) evaluates correlations among channels within each feature to reduce redundancy and enhance unique information. Second, Cross-Feature Weighting (CFW) adjusts contributions across layers based on inter-layer correlations, refining the final output. Extensive experiments demonstrate the superior performance of ADWM compared to recent state-of-the-art (SOTA) methods. Furthermore, we validate the effectiveness of our approach through generality experiments, redundancy visualization, comparison experiments, key variables and complexity analysis, and ablation studies. Our code is available at https://github.com/Jie-1203/ADWM.
comment: This paper is accepted at the CVPR Conference on Computer Vision and Pattern Recognition 2025
♻ ☆ TAET: Two-Stage Adversarial Equalization Training on Long-Tailed Distributions CVPR2025
Adversarial robustness is a critical challenge in deploying deep neural networks for real-world applications. While adversarial training is a widely recognized defense strategy, most existing studies focus on balanced datasets, overlooking the prevalence of long-tailed distributions in real-world data, which significantly complicates robustness. This paper provides a comprehensive analysis of adversarial training under long-tailed distributions and identifies limitations in the current state-of-the-art method, AT-BSL, in achieving robust performance under such conditions. To address these challenges, we propose a novel training framework, TAET, which integrates an initial stabilization phase followed by a stratified equalization adversarial training phase. Additionally, prior work on long-tailed robustness has largely ignored the crucial evaluation metric of balanced accuracy. To bridge this gap, we introduce the concept of balanced robustness, a comprehensive metric tailored for assessing robustness under long-tailed distributions. Extensive experiments demonstrate that our method surpasses existing advanced defenses, achieving significant improvements in both memory and computational efficiency. This work represents a substantial advancement in addressing robustness challenges in real-world applications. Our code is available at: https://github.com/BuhuiOK/TAET-Two-Stage-Adversarial-Equalization-Training-on-Long-Tailed-Distributions.
comment: Text: 8 pages of main content, 5 pages of appendices have been accepted by CVPR2025
♻ ☆ Label Unbalance in High-frequency Trading
In financial trading, return prediction is one of the foundation for a successful trading system. By the fast development of the deep learning in various areas such as graphical processing, natural language, it has also demonstrate significant edge in handling with financial data. While the success of the deep learning relies on huge amount of labeled sample, labeling each time/event as profitable or unprofitable, under the transaction cost, especially in the high-frequency trading world, suffers from serious label imbalance issue.In this paper, we adopts rigurious end-to-end deep learning framework with comprehensive label imbalance adjustment methods and succeed in predicting in high-frequency return in the Chinese future market. The code for our method is publicly available at https://github.com/RS2002/Label-Unbalance-in-High-Frequency-Trading .
comment: Technical Report
♻ ☆ Advancing Mobile GUI Agents: A Verifier-Driven Approach to Practical Deployment
We propose V-Droid, a mobile GUI task automation agent. Unlike previous mobile agents that utilize Large Language Models (LLMs) as generators to directly generate actions at each step, V-Droid employs LLMs as verifiers to evaluate candidate actions before making final decisions. To realize this novel paradigm, we introduce a comprehensive framework for constructing verifier-driven mobile agents: the discretized action space construction coupled with the prefilling-only workflow to accelerate the verification process, the pair-wise progress preference training to significantly enhance the verifier's decision-making capabilities, and the scalable human-agent joint annotation scheme to efficiently collect the necessary data at scale. V-Droid sets a new state-of-the-art task success rate across several public mobile task automation benchmarks: 59.5% on AndroidWorld, 38.3% on AndroidLab, and 49% on MobileAgentBench, surpassing existing agents by 9.5%, 2.1%, and 9%, respectively. Furthermore, V-Droid achieves an impressively low latency of 0.7 seconds per step, making it the first mobile agent capable of delivering near-real-time, effective decision-making capabilities.
comment: 14 pages, 4 iterations, refine figs
♻ ☆ Diffusion Attribution Score: Evaluating Training Data Influence in Diffusion Models
As diffusion models become increasingly popular, the misuse of copyrighted and private images has emerged as a major concern. One promising solution to mitigate this issue is identifying the contribution of specific training samples in generative models, a process known as data attribution. Existing data attribution methods for diffusion models typically quantify the contribution of a training sample by evaluating the change in diffusion loss when the sample is included or excluded from the training process. However, we argue that the direct usage of diffusion loss cannot represent such a contribution accurately due to the calculation of diffusion loss. Specifically, these approaches measure the divergence between predicted and ground truth distributions, which leads to an indirect comparison between the predicted distributions and cannot represent the variances between model behaviors. To address these issues, we aim to measure the direct comparison between predicted distributions with an attribution score to analyse the training sample importance, which is achieved by Diffusion Attribution Score (\textit{DAS}). Underpinned by rigorous theoretical analysis, we elucidate the effectiveness of DAS. Additionally, we explore strategies to accelerate DAS calculations, facilitating its application to large-scale diffusion models. Our extensive experiments across various datasets and diffusion models demonstrate that DAS significantly surpasses previous benchmarks in terms of the linear data-modelling score, establishing new state-of-the-art performance. Code is available at \hyperlink{here}{https://github.com/Jinxu-Lin/DAS}.
♻ ☆ Mirror Descent and Novel Exponentiated Gradient Algorithms Using Trace-Form Entropies and Deformed Logarithms
In this paper we propose and investigate a wide class of Mirror Descent updates (MD) and associated novel Generalized Exponentiated Gradient (GEG) algorithms by exploiting various trace-form entropies and associated deformed logarithms and their inverses - deformed (generalized) exponential functions. The proposed algorithms can be considered as extension of entropic MD and generalization of multiplicative updates. In the literature, there exist nowadays over fifty mathematically well defined generalized entropies, so impossible to exploit all of them in one research paper. So we focus on a few selected most popular entropies and associated logarithms like the Tsallis, Kaniadakis and Sharma-Taneja-Mittal and some of their extension like Tempesta or Kaniadakis-Scarfone entropies. The shape and properties of the deformed logarithms and their inverses are tuned by one or more hyperparameters. By learning these hyperparameters, we can adapt to distribution of training data, which can be designed to the specific geometry of the optimization problem, leading to potentially faster convergence and better performance. The using generalized entropies and associated deformed logarithms in the Bregman divergence, used as a regularization term, provides some new insight into exponentiated gradient descent updates.
comment: 22 pages, 9 figures
♻ ☆ Aligning Text to Image in Diffusion Models is Easier Than You Think
While recent advancements in generative modeling have significantly improved text-image alignment, some residual misalignment between text and image representations still remains. Although many approaches have attempted to address this issue by fine-tuning models using various reward models, etc., we revisit the challenge from the perspective of representation alignment-an approach that has gained popularity with the success of REPresentation Alignment (REPA). We first argue that conventional text-to-image (T2I) diffusion models, typically trained on paired image and text data (i.e., positive pairs) by minimizing score matching or flow matching losses, is suboptimal from the standpoint of representation alignment. Instead, a better alignment can be achieved through contrastive learning that leverages both positive and negative pairs. To achieve this efficiently even with pretrained models, we introduce a lightweight contrastive fine tuning strategy called SoftREPA that uses soft text tokens. This approach improves alignment with minimal computational overhead by adding fewer than 1M trainable parameters to the pretrained model. Our theoretical analysis demonstrates that our method explicitly increases the mutual information between text and image representations, leading to enhanced semantic consistency. Experimental results across text-to-image generation and text-guided image editing tasks validate the effectiveness of our approach in improving the semantic consistency of T2I generative models.
♻ ☆ LazyDiT: Lazy Learning for the Acceleration of Diffusion Transformers AAAI 2025
Diffusion Transformers have emerged as the preeminent models for a wide array of generative tasks, demonstrating superior performance and efficacy across various applications. The promising results come at the cost of slow inference, as each denoising step requires running the whole transformer model with a large amount of parameters. In this paper, we show that performing the full computation of the model at each diffusion step is unnecessary, as some computations can be skipped by lazily reusing the results of previous steps. Furthermore, we show that the lower bound of similarity between outputs at consecutive steps is notably high, and this similarity can be linearly approximated using the inputs. To verify our demonstrations, we propose the \textbf{LazyDiT}, a lazy learning framework that efficiently leverages cached results from earlier steps to skip redundant computations. Specifically, we incorporate lazy learning layers into the model, effectively trained to maximize laziness, enabling dynamic skipping of redundant computations. Experimental results show that LazyDiT outperforms the DDIM sampler across multiple diffusion transformer models at various resolutions. Furthermore, we implement our method on mobile devices, achieving better performance than DDIM with similar latency. Code: https://github.com/shawnricecake/lazydit
comment: Accepted by AAAI 2025
♻ ☆ Moto: Latent Motion Token as the Bridging Language for Learning Robot Manipulation from Videos
Recent developments in Large Language Models pre-trained on extensive corpora have shown significant success in various natural language processing tasks with minimal fine-tuning. This success offers new promise for robotics, which has long been constrained by the high cost of action-labeled data. We ask: given the abundant video data containing interaction-related knowledge available as a rich "corpus", can a similar generative pre-training approach be effectively applied to enhance robot learning? The key challenge is to identify an effective representation for autoregressive pre-training that benefits robot manipulation tasks. Inspired by the way humans learn new skills through observing dynamic environments, we propose that effective robotic learning should emphasize motion-related knowledge, which is closely tied to low-level actions and is hardware-agnostic, facilitating the transfer of learned motions to actual robot actions. To this end, we introduce Moto, which converts video content into latent Motion Token sequences by a Latent Motion Tokenizer, learning a bridging "language" of motion from videos in an unsupervised manner. We pre-train Moto-GPT through motion token autoregression, enabling it to capture diverse visual motion knowledge. After pre-training, Moto-GPT demonstrates the promising ability to produce semantically interpretable motion tokens, predict plausible motion trajectories, and assess trajectory rationality through output likelihood. To transfer learned motion priors to real robot actions, we implement a co-fine-tuning strategy that seamlessly bridges latent motion token prediction and real robot control. Extensive experiments show that the fine-tuned Moto-GPT exhibits superior robustness and efficiency on robot manipulation benchmarks, underscoring its effectiveness in transferring knowledge from video data to downstream visual manipulation tasks.
comment: Project released at: https://chenyi99.github.io/moto/ Code released at: https://github.com/TencentARC/Moto Update: Added content related to real-world robot experiments and learning from human videos; Modified author information
♻ ☆ From 1,000,000 Users to Every User: Scaling Up Personalized Preference for User-level Alignment
Large language models (LLMs) have traditionally been aligned through one-size-fits-all approaches that assume uniform human preferences, fundamentally overlooking the diversity in user values and needs. This paper introduces a comprehensive framework for scalable personalized alignment of LLMs. We establish a systematic preference space characterizing psychological and behavioral dimensions, alongside diverse persona representations for robust preference inference in real-world scenarios. Building upon this foundation, we introduce \textsc{AlignX}, a large-scale dataset of over 1.3 million personalized preference examples, and develop two complementary alignment approaches: \textit{in-context alignment} directly conditioning on persona representations and \textit{preference-bridged alignment} modeling intermediate preference distributions. Extensive experiments demonstrate substantial improvements over existing methods, with an average 17.06\% accuracy gain across four benchmarks while exhibiting a strong adaptation capability to novel preferences, robustness to limited user data, and precise preference controllability. These results validate our framework's effectiveness, advancing toward truly user-adaptive AI systems.
♻ ☆ A Unified Framework for Real-Time Failure Handling in Robotics Using Vision-Language Models, Reactive Planner and Behavior Trees
Robotic systems often face execution failures due to unexpected obstacles, sensor errors, or environmental changes. Traditional failure recovery methods rely on predefined strategies or human intervention, making them less adaptable. This paper presents a unified failure recovery framework that combines Vision-Language Models (VLMs), a reactive planner, and Behavior Trees (BTs) to enable real-time failure handling. Our approach includes pre-execution verification, which checks for potential failures before execution, and reactive failure handling, which detects and corrects failures during execution by verifying existing BT conditions, adding missing preconditions and, when necessary, generating new skills. The framework uses a scene graph for structured environmental perception and an execution history for continuous monitoring, enabling context-aware and adaptive failure handling. We evaluate our framework through real-world experiments with an ABB YuMi robot on tasks like peg insertion, object sorting, and drawer placement, as well as in AI2-THOR simulator. Compared to using pre-execution and reactive methods separately, our approach achieves higher task success rates and greater adaptability. Ablation studies highlight the importance of VLM-based reasoning, structured scene representation, and execution history tracking for effective failure recovery in robotics.
♻ ☆ RAGO: Systematic Performance Optimization for Retrieval-Augmented Generation Serving
Retrieval-augmented generation (RAG), which combines large language models (LLMs) with retrievals from external knowledge databases, is emerging as a popular approach for reliable LLM serving. However, efficient RAG serving remains an open challenge due to the rapid emergence of many RAG variants and the substantial differences in workload characteristics across them. In this paper, we make three fundamental contributions to advancing RAG serving. First, we introduce RAGSchema, a structured abstraction that captures the wide range of RAG algorithms, serving as a foundation for performance optimization. Second, we analyze several representative RAG workloads with distinct RAGSchema, revealing significant performance variability across these workloads. Third, to address this variability and meet diverse performance requirements, we propose RAGO (Retrieval-Augmented Generation Optimizer), a system optimization framework for efficient RAG serving. Our evaluation shows that RAGO achieves up to a 2x increase in QPS per chip and a 55% reduction in time-to-first-token latency compared to RAG systems built on LLM-system extensions.
comment: 16 pages, 19 figures, 4 tables
♻ ☆ DINO-LG: A Task-Specific DINO Model for Coronary Calcium Scoring
Coronary artery disease (CAD), one of the leading causes of mortality worldwide, necessitates effective risk assessment strategies, with coronary artery calcium (CAC) scoring via computed tomography (CT) being a key method for prevention. Traditional methods, primarily based on UNET architectures implemented on pre-built models, face challenges like the scarcity of annotated CT scans containing CAC and imbalanced datasets, leading to reduced performance in segmentation and scoring tasks. In this study, we address these limitations by incorporating the self-supervised learning (SSL) technique of DINO (self-distillation with no labels), which trains without requiring CAC-specific annotations, enhancing its robustness in generating distinct features. The DINO-LG model, which leverages label guidance to focus on calcified areas, achieves significant improvements, with a sensitivity of 89% and specificity of 90% for detecting CAC-containing CT slices, compared to the standard DINO model's sensitivity of 79% and specificity of 77%. Additionally, false-negative and false-positive rates are reduced by 49% and 59%, respectively, instilling greater confidence in clinicians when ruling out calcification in low-risk patients and minimizing unnecessary imaging reviews by radiologists. Further, CAC scoring and segmentation tasks are conducted using a basic UNET architecture, applied specifically to CT slices identified by the DINO-LG model as containing calcified areas. This targeted approach enhances CAC scoring accuracy by feeding the UNET model with relevant slices, significantly improving diagnostic precision, reducing both false positives and false negatives, and ultimately lowering overall healthcare costs by minimizing unnecessary tests and treatments, presenting a valuable advancement in CAD risk assessment.
comment: Developed by Center for Applied Artificial Intelligence (CAAI), University of Kentucky
♻ ☆ ModServe: Scalable and Resource-Efficient Large Multimodal Model Serving
Large multimodal models (LMMs) demonstrate impressive capabilities in understanding images, videos, and audio beyond text. However, efficiently serving LMMs in production environments poses significant challenges due to their complex architectures and heterogeneous characteristics across their multi-stage inference pipelines. We present the first comprehensive systems analysis of two prominent LMM architectures, decoder-only and cross-attention, across six representative open-source models, revealing key systems design implications. We also present an in-depth analysis of production LMM inference traces, uncovering unique workload characteristics, including variable, heavy-tailed request distributions and bursty traffic patterns. Based on these insights, we propose ModServe, a modular LMM serving system that decouples stages for independent optimization and adaptive scaling. ModServe dynamically reconfigures stages and handles bursty traffic with modality-aware scheduling and autoscaling to meet tail latency SLOs while minimizing costs. ModServe achieves 3.3-5.5x higher throughput (leading to 25-41.3% cost saving) while meeting SLOs on a 128-GPU cluster with production traces.
♻ ☆ Graph Masked Language Models
Language Models (LMs) and Graph Neural Networks (GNNs) have shown great promise in their respective areas, yet integrating structured graph data with rich textual information remains challenging. In this work, we propose \emph{Graph Masked Language Models} (GMLM), a novel dual-branch architecture that combines the structural learning of GNNs with the contextual power of pretrained language models. Our approach introduces two key innovations: (i) a \emph{semantic masking strategy} that leverages graph topology to selectively mask nodes based on their structural importance, and (ii) a \emph{soft masking mechanism} that interpolates between original node features and a learnable mask token, ensuring smoother information flow during training. Extensive experiments on multiple node classification and language understanding benchmarks demonstrate that GMLM not only achieves state-of-the-art performance but also exhibits enhanced robustness and stability. This work underscores the benefits of integrating structured and unstructured data representations for improved graph learning.
♻ ☆ Multi-Aggregator Time-Warping Heterogeneous Graph Neural Network for Personalized Micro-Video Recommendation
Micro-video recommendation is attracting global attention and becoming a popular daily service for people of all ages. Recently, Graph Neural Networks-based micro-video recommendation has displayed performance improvement for many kinds of recommendation tasks. However, the existing works fail to fully consider the characteristics of micro-videos, such as the high timeliness of news nature micro-video recommendation and sequential interactions of frequently changed interests. In this paper, a novel Multi-aggregator Time-warping Heterogeneous Graph Neural Network (MTHGNN) is proposed for personalized news nature micro-video recommendation based on sequential sessions, where characteristics of micro-videos are comprehensively studied, users' preference is mined via multi-aggregator, the temporal and dynamic changes of users' preference are captured, and timeliness is considered. Through the comparison with the state-of-the-arts, the experimental results validate the superiority of our MTHGNN model.
♻ ☆ TruthPrInt: Mitigating LVLM Object Hallucination Via Latent Truthful-Guided Pre-Intervention
Object Hallucination (OH) has been acknowledged as one of the major trustworthy challenges in Large Vision-Language Models (LVLMs). Recent advancements in Large Language Models (LLMs) indicate that internal states, such as hidden states, encode the "overall truthfulness" of generated responses. However, it remains under-explored how internal states in LVLMs function and whether they could serve as "per-token" hallucination indicators, which is essential for mitigating OH. In this paper, we first conduct an in-depth exploration of LVLM internal states in relation to OH issues and discover that (1) LVLM internal states are high-specificity per-token indicators of hallucination behaviors. Moreover, (2) different LVLMs encode universal patterns of hallucinations in common latent subspaces, indicating that there exist "generic truthful directions" shared by various LVLMs. Based on these discoveries, we propose Truthful-Guided Pre-Intervention (TruthPrInt) that first learns the truthful direction of LVLM decoding and then applies truthful-guided inference-time intervention during LVLM decoding. We further propose ComnHallu to enhance both cross-LVLM and cross-data hallucination detection transferability by constructing and aligning hallucination latent subspaces. We evaluate TruthPrInt in extensive experimental settings, including in-domain and out-of-domain scenarios, over popular LVLMs and OH benchmarks. Experimental results indicate that TruthPrInt significantly outperforms state-of-the-art methods. Codes will be available at https://github.com/jinhaoduan/TruthPrInt.
comment: 15 pages, 9 figures, the first two authors contributed equally
♻ ☆ RadioActive: 3D Radiological Interactive Segmentation Benchmark
Effortless and precise segmentation with minimal clinician effort could greatly streamline clinical workflows. Recent interactive segmentation models, inspired by METAs Segment Anything, have made significant progress but face critical limitations in 3D radiology. These include impractical human interaction requirements such as slice-by-slice operations for 2D models on 3D data and a lack of iterative refinement. Prior studies have been hindered by inadequate evaluation protocols, resulting in unreliable performance assessments and inconsistent findings across studies. The RadioActive benchmark addresses these challenges by providing a rigorous and reproducible evaluation framework for interactive segmentation methods in clinically relevant scenarios. It features diverse datasets, a wide range of target structures, and the most impactful 2D and 3D interactive segmentation methods, all within a flexible and extensible codebase. We also introduce advanced prompting techniques that reduce interaction steps, enabling fair comparisons between 2D and 3D models. Surprisingly, SAM2 outperforms all specialized medical 2D and 3D models in a setting requiring only a few interactions to generate prompts for a 3D volume. This challenges prevailing assumptions and demonstrates that general-purpose models surpass specialized medical approaches. By open-sourcing RadioActive, we invite researchers to integrate their models and prompting techniques, ensuring continuous and transparent evaluation of 3D medical interactive models.
comment: Undergoing Peer-Review
♻ ☆ GREEN-CODE: Learning to Optimize Energy Efficiency in LLM-based Code Generation
Large Language Models (LLMs) are becoming integral to daily life, showcasing their vast potential across various Natural Language Processing (NLP) tasks. Beyond NLP, LLMs are increasingly used in software development tasks, such as code completion, modification, bug fixing, and code translation. Software engineers widely use tools like GitHub Copilot and Amazon Q, streamlining workflows and automating tasks with high accuracy. While the resource and energy intensity of LLM training is often highlighted, inference can be even more resource-intensive over time, as it's a continuous process with a high number of invocations. Therefore, developing resource-efficient alternatives for LLM inference is crucial for sustainability. This work proposes GREEN-CODE, a framework for energy-aware code generation in LLMs. GREEN-CODE performs dynamic early exit during LLM inference. We train a Reinforcement Learning (RL) agent that learns to balance the trade-offs between accuracy, latency, and energy consumption. Our approach is evaluated on two open-source LLMs, Llama 3.2 3B and OPT 2.7B, using the JavaCorpus and PY150 datasets. Results show that our method reduces the energy consumption between 23-50 % on average for code generation tasks without significantly affecting accuracy.
comment: Under submission in ACM/IEEE conference, 11 pages
♻ ☆ Uncertainty modeling for fine-tuned implicit functions
Implicit functions such as Neural Radiance Fields (NeRFs), occupancy networks, and signed distance functions (SDFs) have become pivotal in computer vision for reconstructing detailed object shapes from sparse views. Achieving optimal performance with these models can be challenging due to the extreme sparsity of inputs and distribution shifts induced by data corruptions. To this end, large, noise-free synthetic datasets can serve as shape priors to help models fill in gaps, but the resulting reconstructions must be approached with caution. Uncertainty estimation is crucial for assessing the quality of these reconstructions, particularly in identifying areas where the model is uncertain about the parts it has inferred from the prior. In this paper, we introduce Dropsembles, a novel method for uncertainty estimation in tuned implicit functions. We demonstrate the efficacy of our approach through a series of experiments, starting with toy examples and progressing to a real-world scenario. Specifically, we train a Convolutional Occupancy Network on synthetic anatomical data and test it on low-resolution MRI segmentations of the lumbar spine. Our results show that Dropsembles achieve the accuracy and calibration levels of deep ensembles but with significantly less computational cost.
♻ ☆ LitLLMs, LLMs for Literature Review: Are we there yet?
Literature reviews are an essential component of scientific research, but they remain time-intensive and challenging to write, especially due to the recent influx of research papers. This paper explores the zero-shot abilities of recent Large Language Models (LLMs) in assisting with the writing of literature reviews based on an abstract. We decompose the task into two components: 1. Retrieving related works given a query abstract, and 2. Writing a literature review based on the retrieved results. We analyze how effective LLMs are for both components. For retrieval, we introduce a novel two-step search strategy that first uses an LLM to extract meaningful keywords from the abstract of a paper and then retrieves potentially relevant papers by querying an external knowledge base. Additionally, we study a prompting-based re-ranking mechanism with attribution and show that re-ranking doubles the normalized recall compared to naive search methods, while providing insights into the LLM's decision-making process. In the generation phase, we propose a two-step approach that first outlines a plan for the review and then executes steps in the plan to generate the actual review. To evaluate different LLM-based literature review methods, we create test sets from arXiv papers using a protocol designed for rolling use with newly released LLMs to avoid test set contamination in zero-shot evaluations. We release this evaluation protocol to promote additional research and development in this regard. Our empirical results suggest that LLMs show promising potential for writing literature reviews when the task is decomposed into smaller components of retrieval and planning. Our project page including a demonstration system and toolkit can be accessed here: https://litllm.github.io.
Advanced Deep Learning Methods for Protein Structure Prediction and Design
After AlphaFold won the Nobel Prize, protein prediction with deep learning once again became a hot topic. We comprehensively explore advanced deep learning methods applied to protein structure prediction and design. It begins by examining recent innovations in prediction architectures, with detailed discussions on improvements such as diffusion based frameworks and novel pairwise attention modules. The text analyses key components including structure generation, evaluation metrics, multiple sequence alignment processing, and network architecture, thereby illustrating the current state of the art in computational protein modelling. Subsequent chapters focus on practical applications, presenting case studies that range from individual protein predictions to complex biomolecular interactions. Strategies for enhancing prediction accuracy and integrating deep learning techniques with experimental validation are thoroughly explored. The later sections review the industry landscape of protein design, highlighting the transformative role of artificial intelligence in biotechnology and discussing emerging market trends and future challenges. Supplementary appendices provide essential resources such as databases and open source tools, making this volume a valuable reference for researchers and students.
♻ ☆ Code-as-Monitor: Constraint-aware Visual Programming for Reactive and Proactive Robotic Failure Detection CVPR 2025
Automatic detection and prevention of open-set failures are crucial in closed-loop robotic systems. Recent studies often struggle to simultaneously identify unexpected failures reactively after they occur and prevent foreseeable ones proactively. To this end, we propose Code-as-Monitor (CaM), a novel paradigm leveraging the vision-language model (VLM) for both open-set reactive and proactive failure detection. The core of our method is to formulate both tasks as a unified set of spatio-temporal constraint satisfaction problems and use VLM-generated code to evaluate them for real-time monitoring. To enhance the accuracy and efficiency of monitoring, we further introduce constraint elements that abstract constraint-related entities or their parts into compact geometric elements. This approach offers greater generality, simplifies tracking, and facilitates constraint-aware visual programming by leveraging these elements as visual prompts. Experiments show that CaM achieves a 28.7% higher success rate and reduces execution time by 31.8% under severe disturbances compared to baselines across three simulators and a real-world setting. Moreover, CaM can be integrated with open-loop control policies to form closed-loop systems, enabling long-horizon tasks in cluttered scenes with dynamic environments.
comment: Accepted by CVPR 2025. Project page: https://zhoues.github.io/Code-as-Monitor/
♻ ☆ Algorithmic causal structure emerging through compression
We explore the relationship between causality, symmetry, and compression. We build on and generalize the known connection between learning and compression to a setting where causal models are not identifiable. We propose a framework where causality emerges as a consequence of compressing data across multiple environments. We define algorithmic causality as an alternative definition of causality when traditional assumptions for causal identifiability do not hold. We demonstrate how algorithmic causal and symmetric structures can emerge from minimizing upper bounds on Kolmogorov complexity, without knowledge of intervention targets. We hypothesize that these insights may also provide a novel perspective on the emergence of causality in machine learning models, such as large language models, where causal relationships may not be explicitly identifiable.
comment: Extended version of the camera-ready paper accepted at CLeaR 2025
♻ ☆ LitLLM: A Toolkit for Scientific Literature Review
Conducting literature reviews for scientific papers is essential for understanding research, its limitations, and building on existing work. It is a tedious task which makes an automatic literature review generator appealing. Unfortunately, many existing works that generate such reviews using Large Language Models (LLMs) have significant limitations. They tend to hallucinate-generate non-factual information-and ignore the latest research they have not been trained on. To address these limitations, we propose a toolkit that operates on Retrieval Augmented Generation (RAG) principles, specialized prompting and instructing techniques with the help of LLMs. Our system first initiates a web search to retrieve relevant papers by summarizing user-provided abstracts into keywords using an off-the-shelf LLM. Authors can enhance the search by supplementing it with relevant papers or keywords, contributing to a tailored retrieval process. Second, the system re-ranks the retrieved papers based on the user-provided abstract. Finally, the related work section is generated based on the re-ranked results and the abstract. There is a substantial reduction in time and effort for literature review compared to traditional methods, establishing our toolkit as an efficient alternative. Our project page including the demo and toolkit can be accessed here: https://litllm.github.io
♻ ☆ Generation of Geodesics with Actor-Critic Reinforcement Learning to Predict Midpoints
To find the shortest paths for all pairs on manifolds with infinitesimally defined metrics, we introduce a framework to generate them by predicting midpoints recursively. To learn midpoint prediction, we propose an actor-critic approach. We prove the soundness of our approach and show experimentally that the proposed method outperforms existing methods on several planning tasks, including path planning for agents with complex kinematics and motion planning for multi-degree-of-freedom robot arms.
comment: 17 pages with 8 pages of appendices and references, 9 figures
♻ ☆ Zero-Shot Reinforcement Learning via Function Encoders
Although reinforcement learning (RL) can solve many challenging sequential decision making problems, achieving zero-shot transfer across related tasks remains a challenge. The difficulty lies in finding a good representation for the current task so that the agent understands how it relates to previously seen tasks. To achieve zero-shot transfer, we introduce the function encoder, a representation learning algorithm which represents a function as a weighted combination of learned, non-linear basis functions. By using a function encoder to represent the reward function or the transition function, the agent has information on how the current task relates to previously seen tasks via a coherent vector representation. Thus, the agent is able to achieve transfer between related tasks at run time with no additional training. We demonstrate state-of-the-art data efficiency, asymptotic performance, and training stability in three RL fields by augmenting basic RL algorithms with a function encoder task representation.
comment: A critical issue was found in the multi-agent experiments published in version 2. We rerun the multi-agent experiments on a more challenging, partially observable Markov game
♻ ☆ GiVE: Guiding Visual Encoder to Perceive Overlooked Information ICME 2025
Multimodal Large Language Models have advanced AI in applications like text-to-video generation and visual question answering. These models rely on visual encoders to convert non-text data into vectors, but current encoders either lack semantic alignment or overlook non-salient objects. We propose the Guiding Visual Encoder to Perceive Overlooked Information (GiVE) approach. GiVE enhances visual representation with an Attention-Guided Adapter (AG-Adapter) module and an Object-focused Visual Semantic Learning module. These incorporate three novel loss terms: Object-focused Image-Text Contrast (OITC) loss, Object-focused Image-Image Contrast (OIIC) loss, and Object-focused Image Discrimination (OID) loss, improving object consideration, retrieval accuracy, and comprehensiveness. Our contributions include dynamic visual focus adjustment, novel loss functions to enhance object retrieval, and the Multi-Object Instruction (MOInst) dataset. Experiments show our approach achieves state-of-the-art performance.
comment: This paper was accepted by ICME 2025
♻ ☆ Learning Robust Reward Machines from Noisy Labels KR 2024
This paper presents PROB-IRM, an approach that learns robust reward machines (RMs) for reinforcement learning (RL) agents from noisy execution traces. The key aspect of RM-driven RL is the exploitation of a finite-state machine that decomposes the agent's task into different subtasks. PROB-IRM uses a state-of-the-art inductive logic programming framework robust to noisy examples to learn RMs from noisy traces using the Bayesian posterior degree of beliefs, thus ensuring robustness against inconsistencies. Pivotal for the results is the interleaving between RM learning and policy learning: a new RM is learned whenever the RL agent generates a trace that is believed not to be accepted by the current RM. To speed up the training of the RL agent, PROB-IRM employs a probabilistic formulation of reward shaping that uses the posterior Bayesian beliefs derived from the traces. Our experimental analysis shows that PROB-IRM can learn (potentially imperfect) RMs from noisy traces and exploit them to train an RL agent to solve its tasks successfully. Despite the complexity of learning the RM from noisy traces, agents trained with PROB-IRM perform comparably to agents provided with handcrafted RMs.
comment: Accepted at the 21st International Conference on Principles of Knowledge Representation and Reasoning (KR 2024)
♻ ☆ Causality Is Key to Understand and Balance Multiple Goals in Trustworthy ML and Foundation Models
Ensuring trustworthiness in machine learning (ML) systems is crucial as they become increasingly embedded in high-stakes domains. This paper advocates for integrating causal methods into machine learning to navigate the trade-offs among key principles of trustworthy ML, including fairness, privacy, robustness, accuracy, and explainability. While these objectives should ideally be satisfied simultaneously, they are often addressed in isolation, leading to conflicts and suboptimal solutions. Drawing on existing applications of causality in ML that successfully align goals such as fairness and accuracy or privacy and robustness, this paper argues that a causal approach is essential for balancing multiple competing objectives in both trustworthy ML and foundation models. Beyond highlighting these trade-offs, we examine how causality can be practically integrated into ML and foundation models, offering solutions to enhance their reliability and interpretability. Finally, we discuss the challenges, limitations, and opportunities in adopting causal frameworks, paving the way for more accountable and ethically sound AI systems.
♻ ☆ Instant Adversarial Purification with Adversarial Consistency Distillation CVPR2025
Neural networks have revolutionized numerous fields with their exceptional performance, yet they remain susceptible to adversarial attacks through subtle perturbations. While diffusion-based purification methods like DiffPure offer promising defense mechanisms, their computational overhead presents a significant practical limitation. In this paper, we introduce One Step Control Purification (OSCP), a novel defense framework that achieves robust adversarial purification in a single Neural Function Evaluation (NFE) within diffusion models. We propose Gaussian Adversarial Noise Distillation (GAND) as the distillation objective and Controlled Adversarial Purification (CAP) as the inference pipeline, which makes OSCP demonstrate remarkable efficiency while maintaining defense efficacy. Our proposed GAND addresses a fundamental tension between consistency distillation and adversarial perturbation, bridging the gap between natural and adversarial manifolds in the latent space, while remaining computationally efficient through Parameter-Efficient Fine-Tuning (PEFT) methods such as LoRA, eliminating the high computational budget request from full parameter fine-tuning. The CAP guides the purification process through the unlearnable edge detection operator calculated by the input image as an extra prompt, effectively preventing the purified images from deviating from their original appearance when large purification steps are used. Our experimental results on ImageNet showcase OSCP's superior performance, achieving a 74.19% defense success rate with merely 0.1s per purification -- a 100-fold speedup compared to conventional approaches.
comment: Accepted by CVPR2025
♻ ☆ Embedded Visual Prompt Tuning
Foundation models pre-trained on large-scale data have been widely witnessed to achieve success in various natural imaging downstream tasks. Parameter-efficient fine-tuning (PEFT) methods aim to adapt foundation models to new domains by updating only a small portion of parameters in order to reduce computational overhead. However, the effectiveness of these PEFT methods, especially in cross-domain few-shot scenarios, e.g., medical image analysis, has not been fully explored. In this work, we facilitate the study of the performance of PEFT when adapting foundation models to medical image classification tasks. Furthermore, to alleviate the limitations of prompt introducing ways and approximation capabilities on Transformer architectures of mainstream prompt tuning methods, we propose the Embedded Prompt Tuning (EPT) method by embedding prompt tokens into the expanded channels. We also find that there are anomalies in the feature space distribution of foundation models during pre-training process, and prompt tuning can help mitigate this negative impact. To explain this phenomenon, we also introduce a novel perspective to understand prompt tuning: Prompt tuning is a distribution calibrator. And we support it by analyzing patch-wise scaling and feature separation operations contained in EPT. Our experiments show that EPT outperforms several state-of-the-art fine-tuning methods by a significant margin on few-shot medical image classification tasks, and completes the fine-tuning process within highly competitive time, indicating EPT is an effective PEFT method. The source code is available at github.com/zuwenqiang/EPT.
♻ ☆ OptionZero: Planning with Learned Options ICLR 2025
Planning with options -- a sequence of primitive actions -- has been shown effective in reinforcement learning within complex environments. Previous studies have focused on planning with predefined options or learned options through expert demonstration data. Inspired by MuZero, which learns superhuman heuristics without any human knowledge, we propose a novel approach, named OptionZero. OptionZero incorporates an option network into MuZero, providing autonomous discovery of options through self-play games. Furthermore, we modify the dynamics network to provide environment transitions when using options, allowing searching deeper under the same simulation constraints. Empirical experiments conducted in 26 Atari games demonstrate that OptionZero outperforms MuZero, achieving a 131.58% improvement in mean human-normalized score. Our behavior analysis shows that OptionZero not only learns options but also acquires strategic skills tailored to different game characteristics. Our findings show promising directions for discovering and using options in planning. Our code is available at https://rlg.iis.sinica.edu.tw/papers/optionzero.
comment: Accepted by the Thirteenth International Conference on Learning Representations (ICLR 2025) as oral presentation
♻ ☆ Dynamic-LLaVA: Efficient Multimodal Large Language Models via Dynamic Vision-language Context Sparsification ICLR 2025
Multimodal Large Language Models (MLLMs) have achieved remarkable success in vision understanding, reasoning, and interaction. However, the inference computation and memory increase progressively with the generation of output tokens during decoding, directly affecting the efficacy of MLLMs. Existing methods attempt to reduce the vision context redundancy to achieve efficient MLLMs. Unfortunately, the efficiency benefits of the vision context reduction in the prefill stage gradually diminish during the decoding stage. To address this problem, we proposed a dynamic vision-language context sparsification framework Dynamic-LLaVA, which dynamically reduces the redundancy of vision context in the prefill stage and decreases the memory and computation overhead of the generated language context during decoding. Dynamic-LLaVA designs a tailored sparsification inference scheme for different inference modes, i.e., prefill, decoding with and without KV cache, to achieve efficient inference of MLLMs. In practice, Dynamic-LLaVA can reduce computation consumption by $\sim$75\% in the prefill stage. Meanwhile, throughout the entire generation process of MLLMs, Dynamic-LLaVA reduces the $\sim$50\% computation consumption under decoding without KV cache, while saving $\sim$50\% GPU memory overhead when decoding with KV cache, due to the vision-language context sparsification. Extensive experiments also demonstrate that Dynamic-LLaVA achieves efficient inference for MLLMs with negligible understanding and generation ability degradation or even performance gains compared to the full-context inference baselines. Code is available at https://github.com/Osilly/dynamic_llava .
comment: Accepted to ICLR 2025. Code is available at https://github.com/Osilly/dynamic_llava
♻ ☆ Optimizing Attention with Mirror Descent: Generalized Max-Margin Token Selection
Attention mechanisms have revolutionized several domains of artificial intelligence, such as natural language processing and computer vision, by enabling models to selectively focus on relevant parts of the input data. While recent work has characterized the optimization dynamics of gradient descent (GD) in attention-based models and the structural properties of its preferred solutions, less is known about more general optimization algorithms such as mirror descent (MD). In this paper, we investigate the convergence properties and implicit biases of a family of MD algorithms tailored for softmax attention mechanisms, with the potential function chosen as the $p$-th power of the $\ell_p$-norm. Specifically, we show that these algorithms converge in direction to a generalized hard-margin SVM with an $\ell_p$-norm objective when applied to a classification problem using a softmax attention model. Notably, our theoretical results reveal that the convergence rate is comparable to that of traditional GD in simpler models, despite the highly nonlinear and nonconvex nature of the present problem. Additionally, we delve into the joint optimization dynamics of the key-query matrix and the decoder, establishing conditions under which this complex joint optimization converges to their respective hard-margin SVM solutions. Lastly, our numerical experiments on real data demonstrate that MD algorithms improve generalization over standard GD and excel in optimal token selection.
♻ ☆ SATA: A Paradigm for LLM Jailbreak via Simple Assistive Task Linkage
Large language models (LLMs) have made significant advancements across various tasks, but their safety alignment remain a major concern. Exploring jailbreak prompts can expose LLMs' vulnerabilities and guide efforts to secure them. Existing methods primarily design sophisticated instructions for the LLM to follow, or rely on multiple iterations, which could hinder the performance and efficiency of jailbreaks. In this work, we propose a novel jailbreak paradigm, Simple Assistive Task Linkage (SATA), which can effectively circumvent LLM safeguards and elicit harmful responses. Specifically, SATA first masks harmful keywords within a malicious query to generate a relatively benign query containing one or multiple [MASK] special tokens. It then employs a simple assistive task such as a masked language model task or an element lookup by position task to encode the semantics of the masked keywords. Finally, SATA links the assistive task with the masked query to jointly perform the jailbreak. Extensive experiments show that SATA achieves state-of-the-art performance and outperforms baselines by a large margin. Specifically, on AdvBench dataset, with mask language model (MLM) assistive task, SATA achieves an overall attack success rate (ASR) of 85% and harmful score (HS) of 4.57, and with element lookup by position (ELP) assistive task, SATA attains an overall ASR of 76% and HS of 4.43.
♻ ☆ NotaGen: Advancing Musicality in Symbolic Music Generation with Large Language Model Training Paradigms
We introduce NotaGen, a symbolic music generation model aiming to explore the potential of producing high-quality classical sheet music. Inspired by the success of Large Language Models (LLMs), NotaGen adopts pre-training, fine-tuning, and reinforcement learning paradigms (henceforth referred to as the LLM training paradigms). It is pre-trained on 1.6M pieces of music in ABC notation, and then fine-tuned on approximately 9K high-quality classical compositions conditioned on "period-composer-instrumentation" prompts. For reinforcement learning, we propose the CLaMP-DPO method, which further enhances generation quality and controllability without requiring human annotations or predefined rewards. Our experiments demonstrate the efficacy of CLaMP-DPO in symbolic music generation models with different architectures and encoding schemes. Furthermore, subjective A/B tests show that NotaGen outperforms baseline models against human compositions, greatly advancing musical aesthetics in symbolic music generation.
♻ ☆ Controlled Low-Rank Adaptation with Subspace Regularization for Continued Training on Large Language Models
Large language models (LLMs) exhibit remarkable capabilities in natural language processing but face catastrophic forgetting when learning new tasks, where adaptation to a new domain leads to a substantial decline in performance on previous tasks. In this paper, we propose Controlled LoRA (CLoRA), a sub-space regularization method on LoRA structure. Aiming to reduce the scale of output change while introduce minimal constraint on model capacity, CLoRA imposes constraint on the direction of updating matrix's null space. Experimental results on one-stage LLM finetuning tasks and continual learning settings highlight the superority of CLoRA as a effective parameter efficient finetuning method with catastrophic forgetting mitigating.Further investigation for model parameters indicates that CLoRA effectively balances the trade-off between model capacity and degree of forgetting.
♻ ☆ DITTO: Offline Imitation Learning with World Models
For imitation learning algorithms to scale to real-world challenges, they must handle high-dimensional observations, offline learning, and policy-induced covariate-shift. We propose DITTO, an offline imitation learning algorithm which addresses all three of these problems. DITTO optimizes a novel distance metric in the latent space of a learned world model: First, we train a world model on all available trajectory data, then, the imitation agent is unrolled from expert start states in the learned model, and penalized for its latent divergence from the expert dataset over multiple time steps. We optimize this multi-step latent divergence using standard reinforcement learning algorithms, which provably induces imitation learning, and empirically achieves state-of-the art performance and sample efficiency on a range of Atari environments from pixels, without any online environment access. We also adapt other standard imitation learning algorithms to the world model setting, and show that this considerably improves their performance. Our results show how creative use of world models can lead to a simple, robust, and highly-performant policy-learning framework.
♻ ☆ Knowledge Transfer based Evolutionary Deep Neural Network for Intelligent Fault Diagnosis
A faster response with commendable accuracy in intelligent systems is essential for the reliability and smooth operations of industrial machines. Two main challenges affect the design of such intelligent systems: (i) the selection of a suitable model and (ii) domain adaptation if there is a continuous change in operating conditions. Therefore, we propose an evolutionary Net2Net transformation (EvoN2N) that finds the best suitable DNN architecture with limited availability of labeled data samples. Net2Net transformation-based quick learning algorithm has been used in the evolutionary framework of Non-dominated sorting genetic algorithm II to obtain the best DNN architecture. Net2Net transformation-based quick learning algorithm uses the concept of knowledge transfer from one generation to the next for faster fitness evaluation. The proposed framework can obtain the best model for intelligent fault diagnosis without a long and time-consuming search process. The proposed framework has been validated on the Case Western Reserve University dataset, the Paderborn University dataset, and the gearbox fault detection dataset under different operating conditions. The best models obtained are capable of demonstrating an excellent diagnostic performance and classification accuracy of almost up to 100% for most of the operating conditions.
comment: Submitted to IEEE Transactions on Sustainable Computing
♻ ☆ Inverting Transformer-based Vision Models
Understanding the mechanisms underlying deep neural networks in computer vision remains a fundamental challenge. While many previous approaches have focused on visualizing intermediate representations within deep neural networks, particularly convolutional neural networks, these techniques have yet to be thoroughly explored in transformer-based vision models. In this study, we apply a modular approach of training inverse models to reconstruct input images from intermediate layers within a Detection Transformer and a Vision Transformer, showing that this approach is efficient and feasible. Through qualitative and quantitative evaluations of reconstructed images, we generate insights into the underlying mechanisms of these architectures, highlighting their similarities and differences in terms of contextual shape and preservation of image details, inter-layer correlation, and robustness to color perturbations. Our analysis illustrates how these properties emerge within the models, contributing to a deeper understanding of transformer-based vision models. The code for reproducing our experiments is available at github.com/wiskott-lab/inverse-detection-transformer.
♻ ☆ Application of linear regression method to the deep reinforcement learning in continuous action cases
The linear regression (LR) method offers the advantage that optimal parameters can be calculated relatively easily, although its representation capability is limited than that of the deep learning technique. To improve deep reinforcement learning, the Least Squares Deep Q Network (LS-DQN) method was proposed by Levine et al., which combines Deep Q Network (DQN) with LR method. However, the LS-DQN method assumes that the actions are discrete. In this study, we propose the Double Least Squares Deep Deterministic Policy Gradient (DLS-DDPG) method to address this limitation. This method combines the LR method with the Deep Deterministic Policy Gradient (DDPG) technique, one of the representative deep reinforcement learning algorithms for continuous action cases. Numerical experiments conducted in MuJoCo environments showed that the LR update improved performance at least in some tasks, although there are difficulties such as the inability to make the regularization terms small.
comment: 21 pages, 6 figures
♻ ☆ Offload Rethinking by Cloud Assistance for Efficient Environmental Sound Recognition on LPWANs
Learning-based environmental sound recognition has emerged as a crucial method for ultra-low-power environmental monitoring in biological research and city-scale sensing systems. These systems usually operate under limited resources and are often powered by harvested energy in remote areas. Recent efforts in on-device sound recognition suffer from low accuracy due to resource constraints, whereas cloud offloading strategies are hindered by high communication costs. In this work, we introduce ORCA, a novel resource-efficient cloud-assisted environmental sound recognition system on batteryless devices operating over the Low-Power Wide-Area Networks (LPWANs), targeting wide-area audio sensing applications. We propose a cloud assistance strategy that remedies the low accuracy of on-device inference while minimizing the communication costs for cloud offloading. By leveraging a self-attention-based cloud sub-spectral feature selection method to facilitate efficient on-device inference, ORCA resolves three key challenges for resource-constrained cloud offloading over LPWANs: 1) high communication costs and low data rates, 2) dynamic wireless channel conditions, and 3) unreliable offloading. We implement ORCA on an energy-harvesting batteryless microcontroller and evaluate it in a real world urban sound testbed. Our results show that ORCA outperforms state-of-the-art methods by up to $80 \times$ in energy savings and $220 \times$ in latency reduction while maintaining comparable accuracy.
comment: Accepted by The 23rd ACM Conference on Embedded Networked Sensor Systems (SenSys '25)
♻ ☆ Generating Likely Counterfactuals Using Sum-Product Networks
The need to explain decisions made by AI systems is driven by both recent regulation and user demand. The decisions are often explainable only post hoc. In counterfactual explanations, one may ask what constitutes the best counterfactual explanation. Clearly, multiple criteria must be taken into account, although "distance from the sample" is a key criterion. Recent methods that consider the plausibility of a counterfactual seem to sacrifice this original objective. Here, we present a system that provides high-likelihood explanations that are, at the same time, close and sparse. We show that the search for the most likely explanations satisfying many common desiderata for counterfactual explanations can be modeled using Mixed-Integer Optimization (MIO). We use a Sum-Product Network (SPN) to estimate the likelihood of a counterfactual. To achieve that, we propose an MIO formulation of an SPN, which can be of independent interest. The source code with examples is available at https://github.com/Epanemu/LiCE.
♻ ☆ Babel: A Scalable Pre-trained Model for Multi-Modal Sensing via Expandable Modality Alignment
This paper presents Babel, the expandable modality alignment model, specially designed for multi-modal sensing. While there has been considerable work on multi-modality alignment, they all struggle to effectively incorporate multiple sensing modalities due to the data scarcity constraints. How to utilize multi-modal data with partial pairings in sensing remains an unresolved challenge. Babel tackles this challenge by introducing the concept of expandable modality alignment. The key idea involves transforming the N-modality alignment into a series of binary-modality alignments. Novel techniques are also proposed to further mitigate data scarcity issue and balance the contribution of the newly incorporated modality with the previously established modality alignment during the expandable alignment process. We provide the comprehensive implementation. In the pre-training phase, Babel currently aligns 6 sensing modalities, namely Wi-Fi, mmWave, IMU, LiDAR, video, and depth. For the deployment phase, as a foundation model, any single or combination of aligned modalities could be selected from Babel and applied to downstream tasks. Evaluation demonstrates Babel's outstanding performance on eight human activity recognition datasets, compared to a broad range of baselines e.g., the SOTA single-modal sensing networks, multi-modal sensing framework, and multi-modal large language models. Babel not only improves the performance of individual modality sensing (12% averaged accuracy improvement), but also effectively fuses multiple available modalities (up to 22% accuracy increase). Case studies also highlight emerging application scenarios empowered by Babel, including cross-modality retrieval (i.e., sensing imaging), and bridging LLM for sensing comprehension.
comment: Accepted by SenSys'25
♻ ☆ SALOVA: Segment-Augmented Long Video Assistant for Targeted Retrieval and Routing in Long-Form Video Analysis
Despite advances in Large Multi-modal Models, applying them to long and untrimmed video content remains challenging due to limitations in context length and substantial memory overhead. These constraints often lead to significant information loss and reduced relevance in the model responses. With the exponential growth of video data across web platforms, understanding long-form video is crucial for advancing generalized intelligence. In this paper, we introduce SALOVA: Segment-Augmented LOng Video Assistant, a novel video-LLM framework designed to enhance the comprehension of lengthy video content through targeted retrieval process. We address two main challenges to achieve it: (i) We present the SceneWalk dataset, a high-quality collection of 87.8K long videos, each densely captioned at the segment level to enable models to capture scene continuity and maintain rich descriptive context. (ii) We develop robust architectural designs integrating dynamic routing mechanism and spatio-temporal projector to efficiently retrieve and process relevant video segments based on user queries. Our framework mitigates the limitations of current video-LMMs by allowing for precise identification and retrieval of relevant video segments in response to queries, thereby improving the contextual relevance of the generated responses. Through extensive experiments, SALOVA demonstrates enhanced capability in processing complex long-form videos, showing significant capability to maintain contextual integrity across extended sequences.
comment: Project page: https://ivy-lvlm.github.io/SALOVA/
♻ ☆ HAL 9000: a Risk Manager for ITSs
HAL 9000 is an Intrusion Tolerant Systems (ITSs) Risk Manager, which assesses configuration risks against potential intrusions. It utilizes gathered threat knowledge and remains operational, even in the absence of updated information. Based on its advice, the ITSs can dynamically and proactively adapt to recent threats to minimize and mitigate future intrusions from malicious adversaries. Our goal is to reduce the risk linked to the exploitation of recently uncovered vulnerabilities that have not been classified and/or do not have a script to reproduce the exploit, considering the potential that they may have already been exploited as zero-day exploits. Our experiments demonstrate that the proposed solution can effectively learn and replicate National Vulnerability Database's evaluation process with 99% accuracy.
comment: 10 pages, 4 figures
♻ ☆ SPHINX-X: Scaling Data and Parameters for a Family of Multi-modal Large Language Models ICML 2024
We propose SPHINX-X, an extensive Multimodality Large Language Model (MLLM) series developed upon SPHINX. To improve the architecture and training efficiency, we modify the SPHINX framework by removing redundant visual encoders, bypassing fully-padded sub-images with skip tokens, and simplifying multi-stage training into a one-stage all-in-one paradigm. To fully unleash the potential of MLLMs, we assemble a comprehensive multi-domain and multimodal dataset covering publicly available resources in language, vision, and vision-language tasks. We further enrich this collection with our curated OCR intensive and Set-of-Mark datasets, extending the diversity and generality. By training over different base LLMs including TinyLlama1.1B, InternLM2-7B, LLaMA2-13B, and Mixtral8x7B, we obtain a spectrum of MLLMs that vary in parameter size and multilingual capabilities. Comprehensive benchmarking reveals a strong correlation between the multi-modal performance with the data and parameter scales. Code and models are released at https://github.com/Alpha-VLLM/LLaMA2-Accessory
comment: Accepted by ICML 2024. Code and models are released at https://github.com/Alpha-VLLM/LLaMA2-Accessory
♻ ☆ Strength Estimation and Human-Like Strength Adjustment in Games ICLR 2025
Strength estimation and adjustment are crucial in designing human-AI interactions, particularly in games where AI surpasses human players. This paper introduces a novel strength system, including a strength estimator (SE) and an SE-based Monte Carlo tree search, denoted as SE-MCTS, which predicts strengths from games and offers different playing strengths with human styles. The strength estimator calculates strength scores and predicts ranks from games without direct human interaction. SE-MCTS utilizes the strength scores in a Monte Carlo tree search to adjust playing strength and style. We first conduct experiments in Go, a challenging board game with a wide range of ranks. Our strength estimator significantly achieves over 80% accuracy in predicting ranks by observing 15 games only, whereas the previous method reached 49% accuracy for 100 games. For strength adjustment, SE-MCTS successfully adjusts to designated ranks while achieving a 51.33% accuracy in aligning to human actions, outperforming a previous state-of-the-art, with only 42.56% accuracy. To demonstrate the generality of our strength system, we further apply SE and SE-MCTS to chess and obtain consistent results. These results show a promising approach to strength estimation and adjustment, enhancing human-AI interactions in games. Our code is available at https://rlg.iis.sinica.edu.tw/papers/strength-estimator.
comment: Accepted by the Thirteenth International Conference on Learning Representations (ICLR 2025)
♻ ☆ Solving Drone Routing Problems with Quantum Computing: A Hybrid Approach Combining Quantum Annealing and Gate-Based Paradigms
This paper presents a novel hybrid approach to solving real-world drone routing problems by leveraging the capabilities of quantum computing. The proposed method, coined Quantum for Drone Routing (Q4DR), integrates the two most prominent paradigms in the field: quantum gate-based computing, through the Eclipse Qrisp programming language; and quantum annealers, by means of D-Wave System's devices. The algorithm is divided into two different phases: an initial clustering phase executed using a Quantum Approximate Optimization Algorithm (QAOA), and a routing phase employing quantum annealers. The efficacy of Q4DR is demonstrated through three use cases of increasing complexity, each incorporating real-world constraints such as asymmetric costs, forbidden paths, and itinerant charging points. This research contributes to the growing body of work in quantum optimization, showcasing the practical applications of quantum computing in logistics and route planning.
comment: 8 pages, 5 figures. Paper accepted for being presented in the IEEE Congress on Evolutionary Computation (IEEE CEC 2025)
Advancing Tool-Augmented Large Language Models: Integrating Insights from Errors in Inference Trees NeurIPS 2024
Tool-augmented large language models (LLMs) leverage tools, often in the form of APIs, to improve their reasoning capabilities on complex tasks. This enables them to act as intelligent agents interacting with the real world. The recently introduced ToolLLaMA model by Qin et al. [2023] utilizes the depth-first search-based decision tree (DFSDT) mechanism for multi-step reasoning with $16000+$ real-world APIs, effectively enhancing the performance of tool-augmented LLMs compared to traditional chain reasoning mechanisms. However, their approach only employs successful paths from decision trees (also called inference trees) for supervised fine-tuning (SFT), missing out on the potential learning opportunities from failed paths. Inspired by this, we propose an inference trajectory optimization framework based on preference learning to address this limitation. We first introduce a novel method for constructing step-wise preference data from tree-like expert trajectories, which leverages the previously ignored failed explorations in the decision trees. In the subsequent training phase, we first fine-tune the LLM with successful tool-usage expert trajectories and then apply direct preference optimization (DPO) with the preference data to update the LLM's policy, resulting in our ToolPrefer-LLaMA (TP-LLaMA) model. This approach not only enhances the utilization of original expert data but also broadens the learning space of the model. Our experiments demonstrate that by obtaining insights from errors in inference trees, TP-LLaMA significantly outperforms the baselines across almost all test scenarios by a large margin and exhibits better generalization capabilities with unseen APIs. At the same time, TP-LLaMA has also demonstrated superior reasoning efficiency compared to the baselines, making it more suitable for complex tool-usage reasoning tasks.
comment: Accepted by NeurIPS 2024
♻ ☆ GAPartManip: A Large-scale Part-centric Dataset for Material-Agnostic Articulated Object Manipulation ICRA 2025
Effectively manipulating articulated objects in household scenarios is a crucial step toward achieving general embodied artificial intelligence. Mainstream research in 3D vision has primarily focused on manipulation through depth perception and pose detection. However, in real-world environments, these methods often face challenges due to imperfect depth perception, such as with transparent lids and reflective handles. Moreover, they generally lack the diversity in part-based interactions required for flexible and adaptable manipulation. To address these challenges, we introduced a large-scale part-centric dataset for articulated object manipulation that features both photo-realistic material randomization and detailed annotations of part-oriented, scene-level actionable interaction poses. We evaluated the effectiveness of our dataset by integrating it with several state-of-the-art methods for depth estimation and interaction pose prediction. Additionally, we proposed a novel modular framework that delivers superior and robust performance for generalizable articulated object manipulation. Our extensive experiments demonstrate that our dataset significantly improves the performance of depth perception and actionable interaction pose prediction in both simulation and real-world scenarios. More information and demos can be found at: https://pku-epic.github.io/GAPartManip/.
comment: Accepted by ICRA 2025. Project page: https://pku-epic.github.io/GAPartManip/
♻ ☆ Bridging Social Psychology and LLM Reasoning: Conflict-Aware Meta-Review Generation via Cognitive Alignment
The rapid growth of scholarly submissions has overwhelmed traditional peer review systems, driving the need for intelligent automation to preserve scientific rigor. While large language models (LLMs) show promise in automating manuscript critiques, their ability to synthesize high-stakes meta-reviews, which require conflict-aware reasoning and consensus derivation, remains underdeveloped. Existing methods fail to effectively handle conflicting viewpoints within differing opinions, and often introduce additional cognitive biases, such as anchoring effects and conformity bias.To overcome these limitations, we propose the Cognitive Alignment Framework (CAF), a dual-process architecture that transforms LLMs into adaptive scientific arbitrators. By operationalizing Kahneman's dual-process theory, CAF introduces a three-step cognitive pipeline: review initialization, incremental integration, and cognitive alignment.Empirical validation shows that CAF outperforms existing LLM-based methods, with sentiment consistency gains reaching up to 19.47\% and content consistency improving by as much as 12.95\%.
comment: 23 pages
♻ ☆ Analysis and Fully Memristor-based Reservoir Computing for Temporal Data Classification
Reservoir computing (RC) offers a neuromorphic framework that is particularly effective for processing spatiotemporal signals. Known for its temporal processing prowess, RC significantly lowers training costs compared to conventional recurrent neural networks. A key component in its hardware deployment is the ability to generate dynamic reservoir states. Our research introduces a novel dual-memory RC system, integrating a short-term memory via a WOx-based memristor, capable of achieving 16 distinct states encoded over 4 bits, and a long-term memory component using a TiOx-based memristor within the readout layer. We thoroughly examine both memristor types and leverage the RC system to process temporal data sets. The performance of the proposed RC system is validated through two benchmark tasks: isolated spoken digit recognition with incomplete inputs and Mackey-Glass time series prediction. The system delivered an impressive 98.84% accuracy in digit recognition and sustained a low normalized root mean square error (NRMSE) of 0.036 in the time series prediction task, underscoring its capability. This study illuminates the adeptness of memristor-based RC systems in managing intricate temporal challenges, laying the groundwork for further innovations in neuromorphic computing.
comment: 22 pages, 20 figures, Journal, Typo corrected and updated reference
Catastrophic Failure of LLM Unlearning via Quantization ICLR 2025
Large language models (LLMs) have shown remarkable proficiency in generating text, benefiting from extensive training on vast textual corpora. However, LLMs may also acquire unwanted behaviors from the diverse and sensitive nature of their training data, which can include copyrighted and private content. Machine unlearning has been introduced as a viable solution to remove the influence of such problematic content without the need for costly and time-consuming retraining. This process aims to erase specific knowledge from LLMs while preserving as much model utility as possible. Despite the effectiveness of current unlearning methods, little attention has been given to whether existing unlearning methods for LLMs truly achieve forgetting or merely hide the knowledge, which current unlearning benchmarks fail to detect. This paper reveals that applying quantization to models that have undergone unlearning can restore the "forgotten" information. To thoroughly evaluate this phenomenon, we conduct comprehensive experiments using various quantization techniques across multiple precision levels. We find that for unlearning methods with utility constraints, the unlearned model retains an average of 21\% of the intended forgotten knowledge in full precision, which significantly increases to 83\% after 4-bit quantization. ... Our code is available at: \href{https://github.com/zzwjames/FailureLLMUnlearning}{https://github.com/zzwjames/FailureLLMUnlearning}.
comment: ICLR 2025
♻ ☆ Bias Testing and Mitigation in LLM-based Code Generation
As the adoption of LLMs becomes more widespread in software coding ecosystems, a pressing issue has emerged: does the generated code contain social bias and unfairness, such as those related to age, gender, and race? This issue concerns the integrity, fairness, and ethical foundation of software applications that depend on the code generated by these models but are underexplored in the literature. This paper presents a novel bias testing framework that is specifically designed for code generation tasks. Based on this framework, we conduct an extensive empirical study on the biases in code generated by five widely studied LLMs (i.e., PALM-2-CodeChat-bison, Claude-instant-1, GPT-3.5-turbo, GPT-4-turbo, and GPT-4). Our findings reveal that biases are prevalent. For example, 13.47% to 49.10% of the codes generated by these LLMs have biased behaviors towards gender. Moreover, we study five bias mitigation prompt strategies that are commonly used in current code generation scenarios, i.e., zero-shot, one-shot, few-shot, and two Chain-of-Thought (CoT) prompts, with and without provided feedback-driven refinement. Our evaluation results illustrate that using direct prompt engineering strategies has limited effectiveness in mitigating bias, but our test execution feedback can help to reduce the ratio of code biases to a large extent (e.g., from 59.88% to 4.79% for GPT-4).
comment: Accepted by TOSEM
♻ ☆ AVA: Attentive VLM Agent for Mastering StarCraft II
We introduce Attentive VLM Agent (AVA), a multimodal StarCraft II agent that aligns artificial agent perception with the human gameplay experience. Traditional frameworks such as SMAC rely on abstract state representations that diverge significantly from human perception, limiting the ecological validity of agent behavior. Our agent addresses this limitation by incorporating RGB visual inputs and natural language observations that more closely simulate human cognitive processes during gameplay. The AVA architecture consists of three integrated components: (1) a vision-language model enhanced with specialized self-attention mechanisms for strategic unit targeting and battlefield assessment, (2) a retrieval-augmented generation system that leverages domain-specific StarCraft II knowledge to inform tactical decisions, and (3) a dynamic role-based task distribution system that enables coordinated multi-agent behavior. The experimental evaluation in our proposed AVACraft environment, which contains 21 multimodal StarCraft II scenarios, demonstrates that AVA powered by foundation models (specifically Qwen-VL and GPT-4o) can execute complex tactical maneuvers without explicit training, achieving comparable performance to traditional MARL methods that require substantial training iterations. This work establishes a foundation for developing human-aligned StarCraft II agents and advances the broader research agenda of multimodal game AI. Our implementation is available at https://github.com/camel-ai/VLM-Play-StarCraft2.
comment: Under Review
♻ ☆ MBQ: Modality-Balanced Quantization for Large Vision-Language Models
Vision-Language Models (VLMs) have enabled a variety of real-world applications. The large parameter size of VLMs brings large memory and computation overhead which poses significant challenges for deployment. Post-Training Quantization (PTQ) is an effective technique to reduce the memory and computation overhead. Existing PTQ methods mainly focus on large language models (LLMs), without considering the differences across other modalities. In this paper, we discover that there is a significant difference in sensitivity between language and vision tokens in large VLMs. Therefore, treating tokens from different modalities equally, as in existing PTQ methods, may over-emphasize the insensitive modalities, leading to significant accuracy loss. To deal with the above issue, we propose a simple yet effective method, Modality-Balanced Quantization (MBQ), for large VLMs. Specifically, MBQ incorporates the different sensitivities across modalities during the calibration process to minimize the reconstruction loss for better quantization parameters. Extensive experiments show that MBQ can significantly improve task accuracy by up to 4.4% and 11.6% under W3 and W4A8 quantization for 7B to 70B VLMs, compared to SOTA baselines. Additionally, we implement a W3 GPU kernel that fuses the dequantization and GEMV operators, achieving a 1.4x speedup on LLaVA-onevision-7B on the RTX 4090. The code is available at https://github.com/thu-nics/MBQ.
♻ ☆ Large Language Models and Causal Inference in Collaboration: A Survey NAACL 2025
Causal inference has shown potential in enhancing the predictive accuracy, fairness, robustness, and explainability of Natural Language Processing (NLP) models by capturing causal relationships among variables. The emergence of generative Large Language Models (LLMs) has significantly impacted various NLP domains, particularly through their advanced reasoning capabilities. This survey focuses on evaluating and improving LLMs from a causal view in the following areas: understanding and improving the LLMs' reasoning capacity, addressing fairness and safety issues in LLMs, complementing LLMs with explanations, and handling multimodality. Meanwhile, LLMs' strong reasoning capacities can in turn contribute to the field of causal inference by aiding causal relationship discovery and causal effect estimations. This review explores the interplay between causal inference frameworks and LLMs from both perspectives, emphasizing their collective potential to further the development of more advanced and equitable artificial intelligence systems.
comment: Findings of the Association for Computational Linguistics: NAACL 2025
♻ ☆ Omni6D: Large-Vocabulary 3D Object Dataset for Category-Level 6D Object Pose Estimation ECCV 2024
6D object pose estimation aims at determining an object's translation, rotation, and scale, typically from a single RGBD image. Recent advancements have expanded this estimation from instance-level to category-level, allowing models to generalize across unseen instances within the same category. However, this generalization is limited by the narrow range of categories covered by existing datasets, such as NOCS, which also tend to overlook common real-world challenges like occlusion. To tackle these challenges, we introduce Omni6D, a comprehensive RGBD dataset featuring a wide range of categories and varied backgrounds, elevating the task to a more realistic context. 1) The dataset comprises an extensive spectrum of 166 categories, 4688 instances adjusted to the canonical pose, and over 0.8 million captures, significantly broadening the scope for evaluation. 2) We introduce a symmetry-aware metric and conduct systematic benchmarks of existing algorithms on Omni6D, offering a thorough exploration of new challenges and insights. 3) Additionally, we propose an effective fine-tuning approach that adapts models from previous datasets to our extensive vocabulary setting. We believe this initiative will pave the way for new insights and substantial progress in both the industrial and academic fields, pushing forward the boundaries of general 6D pose estimation.
comment: ECCV 2024 (poster). Github page: https://github.com/3DTopia/Omni6D
♻ ☆ AlignBot: Aligning VLM-powered Customized Task Planning with User Reminders Through Fine-Tuning for Household Robots
This paper presents AlignBot, a novel framework designed to optimize VLM-powered customized task planning for household robots by effectively aligning with user reminders. In domestic settings, aligning task planning with user reminders poses significant challenges due to the limited quantity, diversity, and multimodal nature of the reminders. To address these challenges, AlignBot employs a fine-tuned LLaVA-7B model, functioning as an adapter for GPT-4o. This adapter model internalizes diverse forms of user reminders-such as personalized preferences, corrective guidance, and contextual assistance-into structured instruction-formatted cues that prompt GPT-4o in generating customized task plans. Additionally, AlignBot integrates a dynamic retrieval mechanism that selects task-relevant historical successes as prompts for GPT-4o, further enhancing task planning accuracy. To validate the effectiveness of AlignBot, experiments are conducted in real-world household environments, which are constructed within the laboratory to replicate typical household settings. A multimodal dataset with over 1,500 entries derived from volunteer reminders is used for training and evaluation. The results demonstrate that AlignBot significantly improves customized task planning, outperforming existing LLM- and VLM-powered planners by interpreting and aligning with user reminders, achieving 86.8% success rate compared to the vanilla GPT-4o baseline at 21.6%, reflecting a 65% improvement and over four times greater effectiveness. Supplementary materials are available at: https://yding25.com/AlignBot/
♻ ☆ SeqAfford: Sequential 3D Affordance Reasoning via Multimodal Large Language Model
3D affordance segmentation aims to link human instructions to touchable regions of 3D objects for embodied manipulations. Existing efforts typically adhere to single-object, single-affordance paradigms, where each affordance type or explicit instruction strictly corresponds to a specific affordance region and are unable to handle long-horizon tasks. Such a paradigm cannot actively reason about complex user intentions that often imply sequential affordances. In this paper, we introduce the Sequential 3D Affordance Reasoning task, which extends the traditional paradigm by reasoning from cumbersome user intentions and then decomposing them into a series of segmentation maps. Toward this, we construct the first instruction-based affordance segmentation benchmark that includes reasoning over both single and sequential affordances, comprising 180K instruction-point cloud pairs. Based on the benchmark, we propose our model, SeqAfford, to unlock the 3D multi-modal large language model with additional affordance segmentation abilities, which ensures reasoning with world knowledge and fine-grained affordance grounding in a cohesive framework. We further introduce a multi-granular language-point integration module to endow 3D dense prediction. Extensive experimental evaluations show that our model excels over well-established methods and exhibits open-world generalization with sequential reasoning abilities.
♻ ☆ Specialized Foundation Models Struggle to Beat Supervised Baselines
Following its success for vision and text, the "foundation model" (FM) paradigm -- pretraining large models on massive data, then fine-tuning on target tasks -- has rapidly expanded to domains in the sciences, engineering, healthcare, and beyond. Has this achieved what the original FMs accomplished, i.e. the supplanting of traditional supervised learning in their domains? To answer we look at three modalities -- genomics, satellite imaging, and time series -- with multiple recent FMs and compare them to a standard supervised learning workflow: model development, hyperparameter tuning, and training, all using only data from the target task. Across these three specialized domains, we find that it is consistently possible to train simple supervised models -- no more complicated than a lightly modified wide ResNet or UNet -- that match or even outperform the latest foundation models. Our work demonstrates that the benefits of large-scale pretraining have yet to be realized in many specialized areas, reinforces the need to compare new FMs to strong, well-tuned baselines, and introduces two new, easy-to-use, open-source, and automated workflows for doing so.
comment: The first two authors contributed equally. The order was determined by coin flip
♻ ☆ Examining Two Hop Reasoning Through Information Content Scaling
Prior work has found that transformers have an inconsistent ability to learn to answer latent two-hop questions -- questions of the form "Who is Bob's mother's boss?" We study why this is the case by examining how transformers' capacity to learn datasets of two-hop questions and answers (two-hop QA) scales with their size, motivated by prior work on transformer knowledge capacity for simple factual memorization. We find that capacity scaling and generalization both support the hypothesis that latent two-hop QA requires transformers to learn each fact twice, while two-hop QA with chain of thought does not. We also show that with appropriate dataset parameters, it is possible to "trap" very small models in a regime where they memorize answers to two-hop questions independently, even though they would perform better if they could learn to answer them with function composition. Our findings show that measurement of capacity scaling can complement existing interpretability methods, though there are challenges in using it for this purpose.
♻ ☆ Mitigating Hallucinations in Multimodal Spatial Relations through Constraint-Aware Prompting
Spatial relation hallucinations pose a persistent challenge in large vision-language models (LVLMs), leading to generate incorrect predictions about object positions and spatial configurations within an image. To address this issue, we propose a constraint-aware prompting framework designed to reduce spatial relation hallucinations. Specifically, we introduce two types of constraints: (1) bidirectional constraint, which ensures consistency in pairwise object relations, and (2) transitivity constraint, which enforces relational dependence across multiple objects. By incorporating these constraints, LVLMs can produce more spatially coherent and consistent outputs. We evaluate our method on three widely-used spatial relation datasets, demonstrating performance improvements over existing approaches. Additionally, a systematic analysis of various bidirectional relation analysis choices and transitivity reference selections highlights greater possibilities of our methods in incorporating constraints to mitigate spatial relation hallucinations.
comment: 19 pages
♻ ☆ STP: Self-play LLM Theorem Provers with Iterative Conjecturing and Proving
A fundamental challenge in formal theorem proving by LLMs is the lack of high-quality training data. Although reinforcement learning or expert iteration partially mitigates this issue by alternating between LLM generating proofs and finetuning them on correctly generated ones, performance quickly plateaus due to the scarcity of correct proofs (sparse rewards). To keep improving the models with limited data, we draw inspiration from mathematicians, who continuously develop new results, partly by proposing novel conjectures or exercises (which are often variants of known results) and attempting to solve them. We design the Self-play Theorem Prover (STP) that simultaneously takes on two roles, conjecturer and prover, each providing training signals to the other. The conjecturer is trained iteratively on previously generated conjectures that are barely provable by the current prover, which incentivizes it to generate increasingly challenging conjectures over time. The prover attempts to prove the conjectures with standard expert iteration. We evaluate STP with both Lean and Isabelle formal versifiers. With 51.3 billion tokens generated during the training in Lean, STP proves 28.5% of the statements in the LeanWorkbook dataset, doubling the previous best result of 13.2% achieved through expert iteration. The final model achieves state-of-the-art performance among whole-proof generation methods on miniF2F-test (65.0%, pass@3200), Proofnet-test (23.9%, pass@3200) and PutnamBench (8/644, pass@3200). We release our code, model, and dataset in this URL: https://github.com/kfdong/STP.
comment: 25 pages, 5 figures
♻ ☆ MODL: Multilearner Online Deep Learning
Online deep learning tackles the challenge of learning from data streams by balancing two competing goals: fast learning and deep learning. However, existing research primarily emphasizes deep learning solutions, which are more adept at handling the ``deep'' aspect than the ``fast'' aspect of online learning. In this work, we introduce an alternative paradigm through a hybrid multilearner approach. We begin by developing a fast online logistic regression learner, which operates without relying on backpropagation. It leverages closed-form recursive updates of model parameters, efficiently addressing the fast learning component of the online learning challenge. This approach is further integrated with a cascaded multilearner design, where shallow and deep learners are co-trained in a cooperative, synergistic manner to solve the online learning problem. We demonstrate that this approach achieves state-of-the-art performance on standard online learning datasets. We make our code available: https://github.com/AntonValk/MODL
♻ ☆ From Open Vocabulary to Open World: Teaching Vision Language Models to Detect Novel Objects
Traditional object detection methods operate under the closed-set assumption, where models can only detect a fixed number of objects predefined in the training set. Recent works on open vocabulary object detection (OVD) enable the detection of objects defined by an in-principle unbounded vocabulary, which reduces the cost of training models for specific tasks. However, OVD heavily relies on accurate prompts provided by an ``oracle'', which limits their use in critical applications such as driving scene perception. OVD models tend to misclassify near-out-of-distribution (NOOD) objects that have similar features to known classes, and ignore far-out-of-distribution (FOOD) objects. To address these limitations, we propose a framework that enables OVD models to operate in open world settings, by identifying and incrementally learning previously unseen objects. To detect FOOD objects, we propose Open World Embedding Learning (OWEL) and introduce the concept of Pseudo Unknown Embedding which infers the location of unknown classes in a continuous semantic space based on the information of known classes. We also propose Multi-Scale Contrastive Anchor Learning (MSCAL), which enables the identification of misclassified unknown objects by promoting the intra-class consistency of object embeddings at different scales. The proposed method achieves state-of-the-art performance on standard open world object detection and autonomous driving benchmarks while maintaining its open vocabulary object detection capability.
♻ ☆ Knowledge-aware contrastive heterogeneous molecular graph learning
Molecular representation learning is pivotal in predicting molecular properties and advancing drug design. Traditional methodologies, which predominantly rely on homogeneous graph encoding, are limited by their inability to integrate external knowledge and represent molecular structures across different levels of granularity. To address these limitations, we propose a paradigm shift by encoding molecular graphs into heterogeneous structures, introducing a novel framework: Knowledge-aware Contrastive Heterogeneous Molecular Graph Learning (KCHML). This approach leverages contrastive learning to enrich molecular representations with embedded external knowledge. KCHML conceptualizes molecules through three distinct graph views-molecular, elemental, and pharmacological-enhanced by heterogeneous molecular graphs and a dual message-passing mechanism. This design offers a comprehensive representation for property prediction, as well as for downstream tasks such as drug-drug interaction (DDI) prediction. Extensive benchmarking demonstrates KCHML's superiority over state-of-the-art molecular property prediction models, underscoring its ability to capture intricate molecular features.
♻ ☆ Knowledge Graph Embeddings: A Comprehensive Survey on Capturing Relation Properties
Knowledge Graph Embedding (KGE) techniques play a pivotal role in transforming symbolic Knowledge Graphs (KGs) into numerical representations, thereby enhancing various deep learning models for knowledge-augmented applications. Unlike entities, relations in KGs are the carriers of semantic meaning, and their accurate modeling is crucial for the performance of KGE models. Firstly, we address the complex mapping properties inherent in relations, such as one-to-one, one-to-many, many-to-one, and many-to-many mappings. We provide a comprehensive summary of relation-aware mapping-based models, models that utilize specific representation spaces, tensor decomposition-based models, and neural network-based models. Next, focusing on capturing various relation patterns like symmetry, asymmetry, inversion, and composition, we review models that employ modified tensor decomposition, those based on modified relation-aware mappings, and those that leverage rotation operations. Subsequently, considering the implicit hierarchical relations among entities, we introduce models that incorporate auxiliary information, models based on hyperbolic spaces, and those that utilize the polar coordinate system. Finally, in response to more complex scenarios such as sparse and dynamic KGs, this paper discusses potential future research directions. We explore innovative ideas such as integrating multimodal information into KGE, enhancing relation pattern modeling with rules, and developing models to capture relation characteristics in dynamic KGE settings.
comment: 22 pages, 8 figures, 3 tables, this paper is a modified English version of our article already published in Computer Science journal (in Chinese), released to facilitate communication among international researchers in the relevant fields
♻ ☆ Prioritized Trajectory Replay: A Replay Memory for Data-driven Reinforcement Learning AAMAS 2024
In recent years, data-driven reinforcement learning (RL), also known as offline RL, have gained significant attention. However, the role of data sampling techniques in offline RL has been overlooked despite its potential to enhance online RL performance. Recent research suggests applying sampling techniques directly to state-transitions does not consistently improve performance in offline RL. Therefore, in this study, we propose a memory technique, (Prioritized) Trajectory Replay (TR/PTR), which extends the sampling perspective to trajectories for more comprehensive information extraction from limited data. TR enhances learning efficiency by backward sampling of trajectories that optimizes the use of subsequent state information. Building on TR, we build the weighted critic target to avoid sampling unseen actions in offline training, and Prioritized Trajectory Replay (PTR) that enables more efficient trajectory sampling, prioritized by various trajectory priority metrics. We demonstrate the benefits of integrating TR and PTR with existing offline RL algorithms on D4RL. In summary, our research emphasizes the significance of trajectory-based data sampling techniques in enhancing the efficiency and performance of offline RL algorithms.
comment: Accepted by AAMAS 2024, see https://dl.acm.org/doi/10.5555/3635637.3662980
♻ ☆ ChatBEV: A Visual Language Model that Understands BEV Maps
Traffic scene understanding is essential for intelligent transportation systems and autonomous driving, ensuring safe and efficient vehicle operation. While recent advancements in VLMs have shown promise for holistic scene understanding, the application of VLMs to traffic scenarios, particularly using BEV maps, remains under explored. Existing methods often suffer from limited task design and narrow data amount, hindering comprehensive scene understanding. To address these challenges, we introduce ChatBEV-QA, a novel BEV VQA benchmark contains over 137k questions, designed to encompass a wide range of scene understanding tasks, including global scene understanding, vehicle-lane interactions, and vehicle-vehicle interactions. This benchmark is constructed using an novel data collection pipeline that generates scalable and informative VQA data for BEV maps. We further fine-tune a specialized vision-language model ChatBEV, enabling it to interpret diverse question prompts and extract relevant context-aware information from BEV maps. Additionally, we propose a language-driven traffic scene generation pipeline, where ChatBEV facilitates map understanding and text-aligned navigation guidance, significantly enhancing the generation of realistic and consistent traffic scenarios. The dataset, code and the fine-tuned model will be released.
♻ ☆ HunyuanProver: A Scalable Data Synthesis Framework and Guided Tree Search for Automated Theorem Proving
We introduce HunyuanProver, an language model finetuned from the Hunyuan 7B for interactive automatic theorem proving with LEAN4. To alleviate the data sparsity issue, we design a scalable framework to iterative synthesize data with low cost. Besides, guided tree search algorithms are designed to enable effective ``system 2 thinking`` of the prover. HunyuanProver achieves state-of-the-art (SOTA) performances on major benchmarks. Specifically, it achieves a pass of 68.4% on the miniF2F-test compared to 65.9%, the current SOTA results. It proves 4 IMO statements (imo_1960_p2, imo_1962_p2}, imo_1964_p2 and imo_1983_p6) in miniF2F-test. To benefit the community, we will open-source a dataset of 30k synthesized instances, where each instance contains the original question in natural language, the converted statement by autoformalization, and the proof by HunyuanProver.
♻ ☆ KARMA: Augmenting Embodied AI Agents with Long-and-short Term Memory Systems
Embodied AI agents responsible for executing interconnected, long-sequence household tasks often face difficulties with in-context memory, leading to inefficiencies and errors in task execution. To address this issue, we introduce KARMA, an innovative memory system that integrates long-term and short-term memory modules, enhancing large language models (LLMs) for planning in embodied agents through memory-augmented prompting. KARMA distinguishes between long-term and short-term memory, with long-term memory capturing comprehensive 3D scene graphs as representations of the environment, while short-term memory dynamically records changes in objects' positions and states. This dual-memory structure allows agents to retrieve relevant past scene experiences, thereby improving the accuracy and efficiency of task planning. Short-term memory employs strategies for effective and adaptive memory replacement, ensuring the retention of critical information while discarding less pertinent data. Compared to state-of-the-art embodied agents enhanced with memory, our memory-augmented embodied AI agent improves success rates by 1.3x and 2.3x in Composite Tasks and Complex Tasks within the AI2-THOR simulator, respectively, and enhances task execution efficiency by 3.4x and 62.7x. Furthermore, we demonstrate that KARMA's plug-and-play capability allows for seamless deployment on real-world robotic systems, such as mobile manipulation platforms.Through this plug-and-play memory system, KARMA significantly enhances the ability of embodied agents to generate coherent and contextually appropriate plans, making the execution of complex household tasks more efficient. The experimental videos from the work can be found at https://youtu.be/4BT7fnw9ehs. Our code is available at https://github.com/WZX0Swarm0Robotics/KARMA/tree/master.
♻ ☆ GET: Unlocking the Multi-modal Potential of CLIP for Generalized Category Discovery CVPR 2025
Given unlabelled datasets containing both old and new categories, generalized category discovery (GCD) aims to accurately discover new classes while correctly classifying old classes. Current GCD methods only use a single visual modality of information, resulting in a poor classification of visually similar classes. As a different modality, text information can provide complementary discriminative information, which motivates us to introduce it into the GCD task. However, the lack of class names for unlabelled data makes it impractical to utilize text information. To tackle this challenging problem, in this paper, we propose a Text Embedding Synthesizer (TES) to generate pseudo text embeddings for unlabelled samples. Specifically, our TES leverages the property that CLIP can generate aligned vision-language features, converting visual embeddings into tokens of the CLIP's text encoder to generate pseudo text embeddings. Besides, we employ a dual-branch framework, through the joint learning and instance consistency of different modality branches, visual and semantic information mutually enhance each other, promoting the interaction and fusion of visual and text knowledge. Our method unlocks the multi-modal potentials of CLIP and outperforms the baseline methods by a large margin on all GCD benchmarks, achieving new state-of-the-art. Our code is available at: https://github.com/enguangW/GET.
comment: CVPR 2025
♻ ☆ A Comprehensive Survey of Time Series Forecasting: Architectural Diversity and Open Challenges
Time series forecasting is a critical task that provides key information for decision-making across various fields. Recently, various fundamental deep learning architectures such as MLPs, CNNs, RNNs, and GNNs have been developed and applied to solve time series forecasting problems. However, the structural limitations caused by the inductive biases of each deep learning architecture constrained their performance. Transformer models, which excel at handling long-term dependencies, have become significant architectural components for time series forecasting. However, recent research has shown that alternatives such as simple linear layers can outperform Transformers. These findings have opened up new possibilities for using diverse architectures. In this context of exploration into various models, the architectural modeling of time series forecasting has now entered a renaissance. This survey not only provides a historical context for time series forecasting but also offers comprehensive and timely analysis of the movement toward architectural diversification. By comparing and re-examining various deep learning models, we uncover new perspectives and presents the latest trends in time series forecasting, including the emergence of hybrid models, diffusion models, Mamba models, and foundation models. By focusing on the inherent characteristics of time series data, we also address open challenges that have gained attention in time series forecasting, such as channel dependency, distribution shift, causality, and feature extraction. This survey explores vital elements that can enhance forecasting performance through diverse approaches. These contributions lead to lowering the entry barriers for newcomers to the field of time series forecasting, while also offering seasoned researchers broad perspectives, new opportunities, and deep insights.
comment: Submitted to the Artificial Intelligence Review on October 10, 2024
♻ ☆ TCProF: Time-Complexity Prediction SSL Framework NAACL 2025
Time complexity is a theoretic measure to determine the amount of time the algorithm needs for its execution. In reality, developers write algorithms into code snippets within limited resources, making the calculation of a code's time complexity a fundamental task. However, determining the precise time complexity of a code is theoretically undecidable. In response, recent advancements have leaned toward deploying datasets for code time complexity prediction and initiating preliminary experiments for this challenge. We investigate the challenge in low-resource scenarios where only a few labeled instances are given for training. Remarkably, we are the first to introduce TCProF: a Time-Complexity Prediction SSL Framework as an effective solution for code time complexity prediction in low-resource settings. TCProF significantly boosts performance by integrating our augmentation, symbolic modules, and a co-training mechanism, achieving a more than 60% improvement over self-training approaches. We further provide an extensive comparative analysis between TCProF, ChatGPT, and Gemini-Pro, offering a detailed evaluation of our approach. Our code is at https://github.com/peer0/few-shot-tc.
comment: 26 pages, 13 figures, This paper has been accepted to NAACL 2025
♻ ☆ Inteligencia Artificial para la conservación y uso sostenible de la biodiversidad, una visión desde Colombia (Artificial Intelligence for conservation and sustainable use of biodiversity, a view from Colombia)
The rise of artificial intelligence (AI) and the aggravating biodiversity crisis have resulted in a research area where AI-based computational methods are being developed to act as allies in conservation, and the sustainable use and management of natural resources. While important general guidelines have been established globally regarding the opportunities and challenges that this interdisciplinary research offers, it is essential to generate local reflections from the specific contexts and realities of each region. Hence, this document aims to analyze the scope of this research area from a perspective focused on Colombia and the Neotropics. In this paper, we summarize the main experiences and debates that took place at the Humboldt Institute between 2023 and 2024 in Colombia. To illustrate the variety of promising opportunities, we present current uses such as automatic species identification from images and recordings, species modeling, and in silico bioprospecting, among others. From the experiences described above, we highlight limitations, challenges, and opportunities for in order to successfully implementate AI in conservation efforts and sustainable management of biological resources in the Neotropics. The result aims to be a guide for researchers, decision makers, and biodiversity managers, facilitating the understanding of how artificial intelligence can be effectively integrated into conservation and sustainable use strategies. Furthermore, it also seeks to open a space for dialogue on the development of policies that promote the responsible and ethical adoption of AI in local contexts, ensuring that its benefits are harnessed without compromising biodiversity or the cultural and ecosystemic values inherent in Colombia and the Neotropics.
♻ ☆ Privacy Ethics Alignment in AI: A Stakeholder-Centric Based Framework for Ethical AI
The increasing integration of Artificial Intelligence (AI) in digital ecosystems has reshaped privacy dynamics, particularly for young digital citizens navigating data-driven environments. This study explores evolving privacy concerns across three key stakeholder groups, digital citizens (ages 16-19), parents/educators, and AI professionals, and assesses differences in data ownership, trust, transparency, parental mediation, education, and risk-benefit perceptions. Employing a grounded theory methodology, this research synthesizes insights from 482 participants through structured surveys, qualitative interviews, and focus groups. The findings reveal distinct privacy expectations: Young users emphasize autonomy and digital freedom, while parents and educators advocate for regulatory oversight and AI literacy programs. AI professionals, in contrast, prioritize the balance between ethical system design and technological efficiency. The data further highlights gaps in AI literacy and transparency, emphasizing the need for comprehensive, stakeholder-driven privacy frameworks that accommodate diverse user needs. Using comparative thematic analysis, this study identifies key tensions in privacy governance and develops the novel Privacy-Ethics Alignment in AI (PEA-AI) model, which structures privacy decision-making as a dynamic negotiation between stakeholders. By systematically analyzing themes such as transparency, user control, risk perception, and parental mediation, this research provides a scalable, adaptive foundation for AI governance, ensuring that privacy protections evolve alongside emerging AI technologies and youth-centric digital interactions.
comment: Submitted to peer reviwed venue
♻ ☆ On the Robustness of Language Models for Tabular Question Answering
Large Language Models (LLMs), already shown to ace various text comprehension tasks have also remarkably been shown to tackle table comprehension tasks without specific training. While previous research has explored LLM capabilities with tabular dataset tasks, our study assesses the influence of \textit{in-context learning}, \textit{model scale}, \textit{instruction tuning}, and \textit{domain biases} on Tabular Question Answering (TQA). We evaluate the robustness of LLMs on Wikipedia-based \textbf{WTQ}, financial report-based \textbf{TAT-QA}, and scientific claims-based \textbf{SCITAB}, TQA datasets, focusing on their ability to interpret tabular data under various augmentations and perturbations robustly. Our findings indicate that instructions significantly enhance performance, with recent models exhibiting greater robustness over earlier versions. However, data contamination and practical reliability issues persist, especially with \textbf{WTQ}. We highlight the need for improved methodologies, including structure-aware self-attention mechanisms and better handling of domain-specific tabular data, to develop more reliable LLMs for table comprehension.
Graphics 9
☆ FFaceNeRF: Few-shot Face Editing in Neural Radiance Fields CVPR2025
Recent 3D face editing methods using masks have produced high-quality edited images by leveraging Neural Radiance Fields (NeRF). Despite their impressive performance, existing methods often provide limited user control due to the use of pre-trained segmentation masks. To utilize masks with a desired layout, an extensive training dataset is required, which is challenging to gather. We present FFaceNeRF, a NeRF-based face editing technique that can overcome the challenge of limited user control due to the use of fixed mask layouts. Our method employs a geometry adapter with feature injection, allowing for effective manipulation of geometry attributes. Additionally, we adopt latent mixing for tri-plane augmentation, which enables training with a few samples. This facilitates rapid model adaptation to desired mask layouts, crucial for applications in fields like personalized medical imaging or creative face editing. Our comparative evaluations demonstrate that FFaceNeRF surpasses existing mask based face editing methods in terms of flexibility, control, and generated image quality, paving the way for future advancements in customized and high-fidelity 3D face editing. The code is available on the {\href{https://kwanyun.github.io/FFaceNeRF_page/}{project-page}}.
comment: CVPR2025, 11 pages, 14 figures
☆ DIDiffGes: Decoupled Semi-Implicit Diffusion Models for Real-time Gesture Generation from Speech AAAI 2025
Diffusion models have demonstrated remarkable synthesis quality and diversity in generating co-speech gestures. However, the computationally intensive sampling steps associated with diffusion models hinder their practicality in real-world applications. Hence, we present DIDiffGes, for a Decoupled Semi-Implicit Diffusion model-based framework, that can synthesize high-quality, expressive gestures from speech using only a few sampling steps. Our approach leverages Generative Adversarial Networks (GANs) to enable large-step sampling for diffusion model. We decouple gesture data into body and hands distributions and further decompose them into marginal and conditional distributions. GANs model the marginal distribution implicitly, while L2 reconstruction loss learns the conditional distributions exciplictly. This strategy enhances GAN training stability and ensures expressiveness of generated full-body gestures. Our framework also learns to denoise root noise conditioned on local body representation, guaranteeing stability and realism. DIDiffGes can generate gestures from speech with just 10 sampling steps, without compromising quality and expressiveness, reducing the number of sampling steps by a factor of 100 compared to existing methods. Our user study reveals that our method outperforms state-of-the-art approaches in human likeness, appropriateness, and style correctness. Project is https://cyk990422.github.io/DIDiffGes.
comment: Accepted by AAAI 2025
☆ HSM: Hierarchical Scene Motifs for Multi-Scale Indoor Scene Generation
Despite advances in indoor 3D scene layout generation, synthesizing scenes with dense object arrangements remains challenging. Existing methods primarily focus on large furniture while neglecting smaller objects, resulting in unrealistically empty scenes. Those that place small objects typically do not honor arrangement specifications, resulting in largely random placement not following the text description. We present HSM, a hierarchical framework for indoor scene generation with dense object arrangements across spatial scales. Indoor scenes are inherently hierarchical, with surfaces supporting objects at different scales, from large furniture on floors to smaller objects on tables and shelves. HSM embraces this hierarchy and exploits recurring cross-scale spatial patterns to generate complex and realistic indoor scenes in a unified manner. Our experiments show that HSM outperforms existing methods by generating scenes that are more realistic and better conform to user input across room types and spatial configurations.
comment: 23 pages, 7 figures
☆ Auto-Regressive Diffusion for Generating 3D Human-Object Interactions
Text-driven Human-Object Interaction (Text-to-HOI) generation is an emerging field with applications in animation, video games, virtual reality, and robotics. A key challenge in HOI generation is maintaining interaction consistency in long sequences. Existing Text-to-Motion-based approaches, such as discrete motion tokenization, cannot be directly applied to HOI generation due to limited data in this domain and the complexity of the modality. To address the problem of interaction consistency in long sequences, we propose an autoregressive diffusion model (ARDHOI) that predicts the next continuous token. Specifically, we introduce a Contrastive Variational Autoencoder (cVAE) to learn a physically plausible space of continuous HOI tokens, thereby ensuring that generated human-object motions are realistic and natural. For generating sequences autoregressively, we develop a Mamba-based context encoder to capture and maintain consistent sequential actions. Additionally, we implement an MLP-based denoiser to generate the subsequent token conditioned on the encoded context. Our model has been evaluated on the OMOMO and BEHAVE datasets, where it outperforms existing state-of-the-art methods in terms of both performance and inference speed. This makes ARDHOI a robust and efficient solution for text-driven HOI tasks
☆ elaTCSF: A Temporal Contrast Sensitivity Function for Flicker Detection and Modeling Variable Refresh Rate Flicker SIGGRAPH
The perception of flicker has been a prominent concern in illumination and electronic display fields for over a century. Traditional approaches often rely on Critical Flicker Frequency (CFF), primarily suited for high-contrast (full-on, full-off) flicker. To tackle varying contrast flicker, the International Committee for Display Metrology (ICDM) introduced a Temporal Contrast Sensitivity Function TCSF$_{IDMS}$ within the Information Display Measurements Standard (IDMS). Nevertheless, this standard overlooks crucial parameters: luminance, eccentricity, and area. Existing models incorporating these parameters are inadequate for flicker detection, especially at low spatial frequencies. To address these limitations, we extend the TCSF$_{IDMS}$ and combine it with a new spatial probability summation model to incorporate the effects of luminance, eccentricity, and area (elaTCSF). We train the elaTCSF on various flicker detection datasets and establish the first variable refresh rate flicker detection dataset for further verification. Additionally, we contribute to resolving a longstanding debate on whether the flicker is more visible in peripheral vision. We demonstrate how elaTCSF can be used to predict flicker due to low-persistence in VR headsets, identify flicker-free VRR operational ranges, and determine flicker sensitivity in lighting design.
comment: Published at SIGGRAPH Asia 2024
♻ ☆ Kiss3DGen: Repurposing Image Diffusion Models for 3D Asset Generation
Diffusion models have achieved great success in generating 2D images. However, the quality and generalizability of 3D content generation remain limited. State-of-the-art methods often require large-scale 3D assets for training, which are challenging to collect. In this work, we introduce Kiss3DGen (Keep It Simple and Straightforward in 3D Generation), an efficient framework for generating, editing, and enhancing 3D objects by repurposing a well-trained 2D image diffusion model for 3D generation. Specifically, we fine-tune a diffusion model to generate ''3D Bundle Image'', a tiled representation composed of multi-view images and their corresponding normal maps. The normal maps are then used to reconstruct a 3D mesh, and the multi-view images provide texture mapping, resulting in a complete 3D model. This simple method effectively transforms the 3D generation problem into a 2D image generation task, maximizing the utilization of knowledge in pretrained diffusion models. Furthermore, we demonstrate that our Kiss3DGen model is compatible with various diffusion model techniques, enabling advanced features such as 3D editing, mesh and texture enhancement, etc. Through extensive experiments, we demonstrate the effectiveness of our approach, showcasing its ability to produce high-quality 3D models efficiently.
comment: The first three authors contributed equally to this work
♻ ☆ ZeroHSI: Zero-Shot 4D Human-Scene Interaction by Video Generation
Human-scene interaction (HSI) generation is crucial for applications in embodied AI, virtual reality, and robotics. Yet, existing methods cannot synthesize interactions in unseen environments such as in-the-wild scenes or reconstructed scenes, as they rely on paired 3D scenes and captured human motion data for training, which are unavailable for unseen environments. We present ZeroHSI, a novel approach that enables zero-shot 4D human-scene interaction synthesis, eliminating the need for training on any MoCap data. Our key insight is to distill human-scene interactions from state-of-the-art video generation models, which have been trained on vast amounts of natural human movements and interactions, and use differentiable rendering to reconstruct human-scene interactions. ZeroHSI can synthesize realistic human motions in both static scenes and environments with dynamic objects, without requiring any ground-truth motion data. We evaluate ZeroHSI on a curated dataset of different types of various indoor and outdoor scenes with different interaction prompts, demonstrating its ability to generate diverse and contextually appropriate human-scene interactions.
comment: Project website: https://awfuact.github.io/zerohsi/ The first two authors contribute equally
♻ ☆ Data-driven Camera and Lidar Simulation Models for Autonomous Driving: A Review from Generative Models to Volume Renderers
Perception sensors, particularly camera and Lidar, are key elements of Autonomous Driving Systems (ADS) that enable them to comprehend their surroundings to informed driving and control decisions. Therefore, developing realistic simulation models for these sensors is essential for conducting effective simulation-based testing of ADS. Moreover, the rise of deep learning-based perception models has increased the utility of sensor simulation models for synthesising diverse training datasets. The traditional sensor simulation models rely on computationally expensive physics-based algorithms, specifically in complex systems such as ADS. Hence, the current potential resides in data-driven approaches, fuelled by the exceptional performance of deep generative models in capturing high-dimensional data distribution and volume renderers in accurately representing scenes. This paper reviews the current state-of-the-art data-driven camera and Lidar simulation models and their evaluation methods. It explores a spectrum of models from the novel perspective of generative models and volume renderers. Generative models are discussed in terms of their input-output types, while volume renderers are categorised based on their input encoding. Finally, the paper illustrates commonly used evaluation techniques for assessing sensor simulation models and highlights the existing research gaps in the area.
comment: To be published in IEEE Transactions on Intelligent Vehicles
♻ ☆ AutArch: An AI-assisted workflow for object detection and automated recording in archaeological catalogues
The context of this paper is the creation of large uniform archaeological datasets from heterogeneous published resources, such as find catalogues - with the help of AI and Big Data. The paper is concerned with the challenge of consistent assemblages of archaeological data. We cannot simply combine existing records, as they differ in terms of quality and recording standards. Thus, records have to be recreated from published archaeological illustrations. This is only a viable path with the help of automation. The contribution of this paper is a new workflow for collecting data from archaeological find catalogues available as legacy resources, such as archaeological drawings and photographs in large unsorted PDF files; the workflow relies on custom software (AutArch) supporting image processing, object detection, and interactive means of validating and adjusting automatically retrieved data. We integrate artificial intelligence (AI) in terms of neural networks for object detection and classification into the workflow, thereby speeding up, automating, and standardising data collection. Objects commonly found in archaeological catalogues - such as graves, skeletons, ceramics, ornaments, stone tools and maps - are detected. Those objects are spatially related and analysed to extract real-life attributes, such as the size and orientation of graves based on the north arrow and the scale. We also automate recording of geometric whole-outlines through contour detection, as an alternative to landmark-based geometric morphometrics. Detected objects, contours, and other automatically retrieved data can be manually validated and adjusted. We use third millennium BC Europe (encompassing cultures such as 'Corded Ware' and 'Bell Beaker', and their burial practices) as a 'testing ground' and for evaluation purposes; this includes a user study for the workflow and the AutArch software.
Robotics 55
☆ M3: 3D-Spatial MultiModal Memory ICLR2025
We present 3D Spatial MultiModal Memory (M3), a multimodal memory system designed to retain information about medium-sized static scenes through video sources for visual perception. By integrating 3D Gaussian Splatting techniques with foundation models, M3 builds a multimodal memory capable of rendering feature representations across granularities, encompassing a wide range of knowledge. In our exploration, we identify two key challenges in previous works on feature splatting: (1) computational constraints in storing high-dimensional features for each Gaussian primitive, and (2) misalignment or information loss between distilled features and foundation model features. To address these challenges, we propose M3 with key components of principal scene components and Gaussian memory attention, enabling efficient training and inference. To validate M3, we conduct comprehensive quantitative evaluations of feature similarity and downstream tasks, as well as qualitative visualizations to highlight the pixel trace of Gaussian memory attention. Our approach encompasses a diverse range of foundation models, including vision-language models (VLMs), perception models, and large multimodal and language models (LMMs/LLMs). Furthermore, to demonstrate real-world applicability, we deploy M3's feature field in indoor scenes on a quadruped robot. Notably, we claim that M3 is the first work to address the core compression challenges in 3D feature distillation.
comment: ICLR2025 homepage: https://m3-spatial-memory.github.io code: https://github.com/MaureenZOU/m3-spatial
☆ RoboFactory: Exploring Embodied Agent Collaboration with Compositional Constraints
Designing effective embodied multi-agent systems is critical for solving complex real-world tasks across domains. Due to the complexity of multi-agent embodied systems, existing methods fail to automatically generate safe and efficient training data for such systems. To this end, we propose the concept of compositional constraints for embodied multi-agent systems, addressing the challenges arising from collaboration among embodied agents. We design various interfaces tailored to different types of constraints, enabling seamless interaction with the physical world. Leveraging compositional constraints and specifically designed interfaces, we develop an automated data collection framework for embodied multi-agent systems and introduce the first benchmark for embodied multi-agent manipulation, RoboFactory. Based on RoboFactory benchmark, we adapt and evaluate the method of imitation learning and analyzed its performance in different difficulty agent tasks. Furthermore, we explore the architectures and training strategies for multi-agent imitation learning, aiming to build safe and efficient embodied multi-agent systems.
comment: Project page: https://iranqin.github.io/robofactory/
☆ Do Visual Imaginations Improve Vision-and-Language Navigation Agents?
Vision-and-Language Navigation (VLN) agents are tasked with navigating an unseen environment using natural language instructions. In this work, we study if visual representations of sub-goals implied by the instructions can serve as navigational cues and lead to increased navigation performance. To synthesize these visual representations or imaginations, we leverage a text-to-image diffusion model on landmark references contained in segmented instructions. These imaginations are provided to VLN agents as an added modality to act as landmark cues and an auxiliary loss is added to explicitly encourage relating these with their corresponding referring expressions. Our findings reveal an increase in success rate (SR) of around 1 point and up to 0.5 points in success scaled by inverse path length (SPL) across agents. These results suggest that the proposed approach reinforces visual understanding compared to relying on language instructions alone. Code and data for our work can be found at https://www.akhilperincherry.com/VLN-Imagine-website/.
☆ Nonlinear action prediction models reveal multi-timescale locomotor control
Modeling movement in real-world tasks is a fundamental scientific goal. However, it is unclear whether existing models and their assumptions, overwhelmingly tested in laboratory-constrained settings, generalize to the real world. For example, data-driven models of foot placement control -- a crucial action for stable locomotion -- assume linear and single timescale mappings. We develop nonlinear foot placement prediction models, finding that neural network architectures with flexible input history-dependence like GRU and Transformer perform best across multiple contexts (walking and running, treadmill and overground, varying terrains) and input modalities (multiple body states, gaze), outperforming traditional models. These models reveal context- and modality-dependent timescales: there is more reliance on fast-timescale predictions in complex terrain, gaze predictions precede body state predictions, and full-body state predictions precede center-of-mass-relevant predictions. Thus, nonlinear action prediction models provide quantifiable insights into real-world motor control and can be extended to other actions, contexts, and populations.
☆ Can Real-to-Sim Approaches Capture Dynamic Fabric Behavior for Robotic Fabric Manipulation?
This paper presents a rigorous evaluation of Real-to-Sim parameter estimation approaches for fabric manipulation in robotics. The study systematically assesses three state-of-the-art approaches, namely two differential pipelines and a data-driven approach. We also devise a novel physics-informed neural network approach for physics parameter estimation. These approaches are interfaced with two simulations across multiple Real-to-Sim scenarios (lifting, wind blowing, and stretching) for five different fabric types and evaluated on three unseen scenarios (folding, fling, and shaking). We found that the simulation engines and the choice of Real-to-Sim approaches significantly impact fabric manipulation performance in our evaluation scenarios. Moreover, PINN observes superior performance in quasi-static tasks but shows limitations in dynamic scenarios.
Loop Closure from Two Views: Revisiting PGO for Scalable Trajectory Estimation through Monocular Priors
(Visual) Simultaneous Localization and Mapping (SLAM) remains a fundamental challenge in enabling autonomous systems to navigate and understand large-scale environments. Traditional SLAM approaches struggle to balance efficiency and accuracy, particularly in large-scale settings where extensive computational resources are required for scene reconstruction and Bundle Adjustment (BA). However, this scene reconstruction, in the form of sparse pointclouds of visual landmarks, is often only used within the SLAM system because navigation and planning methods require different map representations. In this work, we therefore investigate a more scalable Visual SLAM (VSLAM) approach without reconstruction, mainly based on approaches for two-view loop closures. By restricting the map to a sparse keyframed pose graph without dense geometry representations, our '2GO' system achieves efficient optimization with competitive absolute trajectory accuracy. In particular, we find that recent advancements in image matching and monocular depth priors enable very accurate trajectory optimization from two-view edges. We conduct extensive experiments on diverse datasets, including large-scale scenarios, and provide a detailed analysis of the trade-offs between runtime, accuracy, and map size. Our results demonstrate that this streamlined approach supports real-time performance, scales well in map size and trajectory duration, and effectively broadens the capabilities of VSLAM for long-duration deployments to large environments.
☆ From Monocular Vision to Autonomous Action: Guiding Tumor Resection via 3D Reconstruction IROS
Surgical automation requires precise guidance and understanding of the scene. Current methods in the literature rely on bulky depth cameras to create maps of the anatomy, however this does not translate well to space-limited clinical applications. Monocular cameras are small and allow minimally invasive surgeries in tight spaces but additional processing is required to generate 3D scene understanding. We propose a 3D mapping pipeline that uses only RGB images to create segmented point clouds of the target anatomy. To ensure the most precise reconstruction, we compare different structure from motion algorithms' performance on mapping the central airway obstructions, and test the pipeline on a downstream task of tumor resection. In several metrics, including post-procedure tissue model evaluation, our pipeline performs comparably to RGB-D cameras and, in some cases, even surpasses their performance. These promising results demonstrate that automation guidance can be achieved in minimally invasive procedures with monocular cameras. This study is a step toward the complete autonomy of surgical robots.
comment: 7 Pages, 8 Figures, 1 Table. This work has been submitted IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) for possible publication
☆ Dispersion is (Almost) Optimal under (A)synchrony
The dispersion problem has received much attention recently in the distributed computing literature. In this problem, $k\leq n$ agents placed initially arbitrarily on the nodes of an $n$-node, $m$-edge anonymous graph of maximum degree $\Delta$ have to reposition autonomously to reach a configuration in which each agent is on a distinct node of the graph. Dispersion is interesting as well as important due to its connections to many fundamental coordination problems by mobile agents on graphs, such as exploration, scattering, load balancing, relocation of self-driven electric cars (robots) to recharge stations (nodes), etc. The objective has been to provide a solution that optimizes simultaneously time and memory complexities. There exist graphs for which the lower bound on time complexity is $\Omega(k)$. Memory complexity is $\Omega(\log k)$ per agent independent of graph topology. The state-of-the-art algorithms have (i) time complexity $O(k\log^2k)$ and memory complexity $O(\log(k+\Delta))$ under the synchronous setting [DISC'24] and (ii) time complexity $O(\min\{m,k\Delta\})$ and memory complexity $O(\log(k+\Delta))$ under the asynchronous setting [OPODIS'21]. In this paper, we improve substantially on this state-of-the-art. Under the synchronous setting as in [DISC'24], we present the first optimal $O(k)$ time algorithm keeping memory complexity $O(\log (k+\Delta))$. Under the asynchronous setting as in [OPODIS'21], we present the first algorithm with time complexity $O(k\log k)$ keeping memory complexity $O(\log (k+\Delta))$, which is time-optimal within an $O(\log k)$ factor despite asynchrony. Both results were obtained through novel techniques to quickly find empty nodes to settle agents, which may be of independent interest.
comment: 24 pages
☆ Explosive Jumping with Rigid and Articulated Soft Quadrupeds via Example Guided Reinforcement Learning IROS2025
Achieving controlled jumping behaviour for a quadruped robot is a challenging task, especially when introducing passive compliance in mechanical design. This study addresses this challenge via imitation-based deep reinforcement learning with a progressive training process. To start, we learn the jumping skill by mimicking a coarse jumping example generated by model-based trajectory optimization. Subsequently, we generalize the learned policy to broader situations, including various distances in both forward and lateral directions, and then pursue robust jumping in unknown ground unevenness. In addition, without tuning the reward much, we learn the jumping policy for a quadruped with parallel elasticity. Results show that using the proposed method, i) the robot learns versatile jumps by learning only from a single demonstration, ii) the robot with parallel compliance reduces the landing error by 11.1%, saves energy cost by 15.2% and reduces the peak torque by 15.8%, compared to the rigid robot without parallel elasticity, iii) the robot can perform jumps of variable distances with robustness against ground unevenness (maximal 4cm height perturbations) using only proprioceptive perception.
comment: 8 pages, 9 figures, submitted to IROS2025
☆ Asymptotically Optimal Path Planning With an Approximation of the Omniscient Set
The asymptotically optimal version of Rapidly-exploring Random Tree (RRT*) is often used to find optimal paths in a high-dimensional configuration space. The well-known issue of RRT* is its slow convergence towards the optimal solution. A possible solution is to draw random samples only from a subset of the configuration space that is known to contain configurations that can improve the cost of the path (omniscient set). A fast convergence rate may be achieved by approximating the omniscient with a low-volume set. In this letter, we propose new methods to approximate the omniscient set and methods for their effective sampling. First, we propose to approximate the omniscient set using several (small) hyperellipsoids defined by sections of the current best solution. The second approach approximates the omniscient set by a convex hull computed from the current solution. Both approaches ensure asymptotical optimality and work in a general n-dimensional configuration space. The experiments have shown superior performance of our approaches in multiple scenarios in 3D and 6D configuration spaces.
comment: 9 pages, 13 figures
☆ The Morphology-Control Trade-Off: Insights into Soft Robotic Efficiency
Soft robotics holds transformative potential for enabling adaptive and adaptable systems in dynamic environments. However, the interplay between morphological and control complexities and their collective impact on task performance remains poorly understood. Therefore, in this study, we investigate these trade-offs across tasks of differing difficulty levels using four well-used morphological complexity metrics and control complexity measured by FLOPs. We investigate how these factors jointly influence task performance by utilizing the evolutionary robot experiments. Results show that optimal performance depends on the alignment between morphology and control: simpler morphologies and lightweight controllers suffice for easier tasks, while harder tasks demand higher complexities in both dimensions. In addition, a clear trade-off between morphological and control complexities that achieve the same task performance can be observed. Moreover, we also propose a sensitivity analysis to expose the task-specific contributions of individual morphological metrics. Our study establishes a framework for investigating the relationships between morphology, control, and task performance, advancing the development of task-specific robotic designs that balance computational efficiency with adaptability. This study contributes to the practical application of soft robotics in real-world scenarios by providing actionable insights.
comment: The paper is planed to be submitted to a journal
☆ Rejecting Outliers in 2D-3D Point Correspondences from 2D Forward-Looking Sonar Observations
Rejecting outliers before applying classical robust methods is a common approach to increase the success rate of estimation, particularly when the outlier ratio is extremely high (e.g. 90%). However, this method often relies on sensor- or task-specific characteristics, which may not be easily transferable across different scenarios. In this paper, we focus on the problem of rejecting 2D-3D point correspondence outliers from 2D forward-looking sonar (2D FLS) observations, which is one of the most popular perception device in the underwater field but has a significantly different imaging mechanism compared to widely used perspective cameras and LiDAR. We fully leverage the narrow field of view in the elevation of 2D FLS and develop two compatibility tests for different 3D point configurations: (1) In general cases, we design a pairwise length in-range test to filter out overly long or short edges formed from point sets; (2) In coplanar cases, we design a coplanarity test to check if any four correspondences are compatible under a coplanar setting. Both tests are integrated into outlier rejection pipelines, where they are followed by maximum clique searching to identify the largest consistent measurement set as inliers. Extensive simulations demonstrate that the proposed methods for general and coplanar cases perform effectively under outlier ratios of 80% and 90%, respectively.
☆ GraspCoT: Integrating Physical Property Reasoning for 6-DoF Grasping under Flexible Language Instructions
Flexible instruction-guided 6-DoF grasping is a significant yet challenging task for real-world robotic systems. Existing methods utilize the contextual understanding capabilities of the large language models (LLMs) to establish mappings between expressions and targets, allowing robots to comprehend users' intentions in the instructions. However, the LLM's knowledge about objects' physical properties remains underexplored despite its tight relevance to grasping. In this work, we propose GraspCoT, a 6-DoF grasp detection framework that integrates a Chain-of-Thought (CoT) reasoning mechanism oriented to physical properties, guided by auxiliary question-answering (QA) tasks. Particularly, we design a set of QA templates to enable hierarchical reasoning that includes three stages: target parsing, physical property analysis, and grasp action selection. Moreover, GraspCoT presents a unified multimodal LLM architecture, which encodes multi-view observations of 3D scenes into 3D-aware visual tokens, and then jointly embeds these visual tokens with CoT-derived textual tokens within LLMs to generate grasp pose predictions. Furthermore, we present IntentGrasp, a large-scale benchmark that fills the gap in public datasets for multi-object grasp detection under diverse and indirect verbal commands. Extensive experiments on IntentGrasp demonstrate the superiority of our method, with additional validation in real-world robotic applications confirming its practicality. Codes and data will be released.
☆ Wearable Haptics for a Marionette-inspired Teleoperation of Highly Redundant Robotic Systems
The teleoperation of complex, kinematically redundant robots with loco-manipulation capabilities represents a challenge for human operators, who have to learn how to operate the many degrees of freedom of the robot to accomplish a desired task. In this context, developing an easy-to-learn and easy-to-use human-robot interface is paramount. Recent works introduced a novel teleoperation concept, which relies on a virtual physical interaction interface between the human operator and the remote robot equivalent to a "Marionette" control, but whose feedback was limited to only visual feedback on the human side. In this paper, we propose extending the "Marionette" interface by adding a wearable haptic interface to cope with the limitations given by the previous works. Leveraging the additional haptic feedback modality, the human operator gains full sensorimotor control over the robot, and the awareness about the robot's response and interactions with the environment is greatly improved. We evaluated the proposed interface and the related teleoperation framework with naive users, assessing the teleoperation performance and the user experience with and without haptic feedback. The conducted experiments consisted in a loco-manipulation mission with the CENTAURO robot, a hybrid leg-wheel quadruped with a humanoid dual-arm upper body.
comment: 7 pages, 8 figures
☆ A Laser-guided Interaction Interface for Providing Effective Robot Assistance to People with Upper Limbs Impairments
Robotics has shown significant potential in assisting people with disabilities to enhance their independence and involvement in daily activities. Indeed, a societal long-term impact is expected in home-care assistance with the deployment of intelligent robotic interfaces. This work presents a human-robot interface developed to help people with upper limbs impairments, such as those affected by stroke injuries, in activities of everyday life. The proposed interface leverages on a visual servoing guidance component, which utilizes an inexpensive but effective laser emitter device. By projecting the laser on a surface within the workspace of the robot, the user is able to guide the robotic manipulator to desired locations, to reach, grasp and manipulate objects. Considering the targeted users, the laser emitter is worn on the head, enabling to intuitively control the robot motions with head movements that point the laser in the environment, which projection is detected with a neural network based perception module. The interface implements two control modalities: the first allows the user to select specific locations directly, commanding the robot to reach those points; the second employs a paper keyboard with buttons that can be virtually pressed by pointing the laser at them. These buttons enable a more direct control of the Cartesian velocity of the end-effector and provides additional functionalities such as commanding the action of the gripper. The proposed interface is evaluated in a series of manipulation tasks involving a 6DOF assistive robot manipulator equipped with 1DOF beak-like gripper. The two interface modalities are combined to successfully accomplish tasks requiring bimanual capacity that is usually affected in people with upper limbs impairments.
comment: 8 pages, 12 figures
☆ Development of a Magnetorheological Hand Exoskeleton Featuring High Force-to-power Ratio for Enhancing Grip Endurance
Hand exoskeletons have significant potential in labor-intensive fields by mitigating hand grip fatigue, enhancing hand strength, and preventing injuries.However, most traditional hand exoskeletons are driven by motors whose output force is limited under constrained installation conditions. In addition, they also come with the disadvantages of high power consumption, complex and bulky assistive systems, and high instability.In this work, we develop a novel hand exoskeleton integrated with magnetorheological (MR) clutches that offers a high force-to-power ratio to improve grip endurance. The clutch features an enhanced structure design, a micro roller enhancing structure, which can significantly boost output forces. The experimental data demonstrate that the clutch can deliver a peak holding force of 380 N with a consumption of 1.48 W, yielding a force-to-power ratio of 256.75N/W, which is 2.35 times higher than the best reported actuator used for hand exoskeletons. The designed MR hand exoskeleton is highly integrated and comprises an exoskeleton frame, MR clutches, a control unit, and a battery. Evaluations through static grip endurance tests and dynamic carrying and lifting tests confirm that the MR hand exoskeleton can effectively reduce muscle fatigue, extend grip endurance, and minimize injuries. These findings highlight its strong potential for practical applications in repetitive tasks such as carrying and lifting in industrial settings.
☆ CONTHER: Human-Like Contextual Robot Learning via Hindsight Experience Replay and Transformers without Expert Demonstrations IROS 2025
This paper presents CONTHER, a novel reinforcement learning algorithm designed to efficiently and rapidly train robotic agents for goal-oriented manipulation tasks and obstacle avoidance. The algorithm uses a modified replay buffer inspired by the Hindsight Experience Replay (HER) approach to artificially populate experience with successful trajectories, effectively addressing the problem of sparse reward scenarios and eliminating the need to manually collect expert demonstrations. The developed algorithm proposes a Transformer-based architecture to incorporate the context of previous states, allowing the agent to perform a deeper analysis and make decisions in a manner more akin to human learning. The effectiveness of the built-in replay buffer, which acts as an "internal demonstrator", is twofold: it accelerates learning and allows the algorithm to adapt to different tasks. Empirical data confirm the superiority of the algorithm by an average of 38.46% over other considered methods, and the most successful baseline by 28.21%, showing higher success rates and faster convergence in the point-reaching task. Since the control is performed through the robot's joints, the algorithm facilitates potential adaptation to a real robot system and construction of an obstacle avoidance task. Therefore, the algorithm has also been tested on tasks requiring following a complex dynamic trajectory and obstacle avoidance. The design of the algorithm ensures its applicability to a wide range of goal-oriented tasks, making it an easily integrated solution for real-world robotics applications.
comment: Submitted to IROS 2025
☆ APEX-MR: Multi-Robot Asynchronous Planning and Execution for Cooperative Assembly
Compared to a single-robot workstation, a multi-robot system offers several advantages: 1) it expands the system's workspace, 2) improves task efficiency, and more importantly, 3) enables robots to achieve significantly more complex and dexterous tasks, such as cooperative assembly. However, coordinating the tasks and motions of multiple robots is challenging due to issues, e.g. system uncertainty, task efficiency, algorithm scalability, and safety concerns. To address these challenges, this paper studies multi-robot coordination and proposes APEX-MR, an asynchronous planning and execution framework designed to safely and efficiently coordinate multiple robots to achieve cooperative assembly, e.g. LEGO assembly. In particular, APEX-MR provides a systematic approach to post-process multi-robot tasks and motion plans to enable robust asynchronous execution under uncertainty. Experimental results demonstrate that APEX-MR can significantly speed up the execution time of many long-horizon LEGO assembly tasks by 48% compared to sequential planning and 36% compared to synchronous planning on average. To further demonstrate the performance, we deploy APEX-MR to a dual-arm system to perform physical LEGO assembly. To our knowledge, this is the first robotic system capable of performing customized LEGO assembly using commercial LEGO bricks. The experiment results demonstrate that the dual-arm system, with APEX-MR, can safely coordinate robot motions, efficiently collaborate, and construct complex LEGO structures. Our project website is available at https://intelligent-control-lab.github.io/APEX-MR/
comment: 17 pages, 11 figures
Control Pneumatic Soft Bending Actuator with Online Learning Pneumatic Physical Reservoir Computing RAS
The intrinsic nonlinearities of soft robots present significant control but simultaneously provide them with rich computational potential. Reservoir computing (RC) has shown effectiveness in online learning systems for controlling nonlinear systems such as soft actuators. Conventional RC can be extended into physical reservoir computing (PRC) by leveraging the nonlinear dynamics of soft actuators for computation. This paper introduces a PRC-based online learning framework to control the motion of a pneumatic soft bending actuator, utilizing another pneumatic soft actuator as the PRC model. Unlike conventional designs requiring two RC models, the proposed control system employs a more compact architecture with a single RC model. Additionally, the framework enables zero-shot online learning, addressing limitations of previous PRC-based control systems reliant on offline training. Simulations and experiments validated the performance of the proposed system. Experimental results indicate that the PRC model achieved superior control performance compared to a linear model, reducing the root-mean-square error (RMSE) by an average of over 37% in bending motion control tasks. The proposed PRC-based online learning control framework provides a novel approach for harnessing physical systems' inherent nonlinearities to enhance the control of soft actuators.
comment: 8 pages, 13 figures, IEEE-RAS International Conference on Soft Robotics (RoboSoft 2025)
☆ UAS Visual Navigation in Large and Unseen Environments via a Meta Agent
The aim of this work is to develop an approach that enables Unmanned Aerial System (UAS) to efficiently learn to navigate in large-scale urban environments and transfer their acquired expertise to novel environments. To achieve this, we propose a meta-curriculum training scheme. First, meta-training allows the agent to learn a master policy to generalize across tasks. The resulting model is then fine-tuned on the downstream tasks. We organize the training curriculum in a hierarchical manner such that the agent is guided from coarse to fine towards the target task. In addition, we introduce Incremental Self-Adaptive Reinforcement learning (ISAR), an algorithm that combines the ideas of incremental learning and meta-reinforcement learning (MRL). In contrast to traditional reinforcement learning (RL), which focuses on acquiring a policy for a specific task, MRL aims to learn a policy with fast transfer ability to novel tasks. However, the MRL training process is time consuming, whereas our proposed ISAR algorithm achieves faster convergence than the conventional MRL algorithm. We evaluate the proposed methodologies in simulated environments and demonstrate that using this training philosophy in conjunction with the ISAR algorithm significantly improves the convergence speed for navigation in large-scale cities and the adaptation proficiency in novel environments.
☆ AutoDrive-QA- Automated Generation of Multiple-Choice Questions for Autonomous Driving Datasets Using Large Vision-Language Models
In autonomous driving, open-ended question answering often suffers from unreliable evaluations because freeform responses require either complex metrics or subjective human judgment. To address this challenge, we introduce AutoDrive-QA, an automatic pipeline that converts existing driving QA datasets (including DriveLM, NuScenes-QA, and LingoQA) into a structured multiple-choice question (MCQ) format. This benchmark systematically assesses perception, prediction, and planning tasks, providing a standardized and objective evaluation framework. AutoDrive-QA employs an automated pipeline that leverages large language models (LLMs) to generate high-quality, contextually relevant distractors based on domain-specific error patterns commonly found in autonomous driving scenarios. To evaluate both general capabilities and generalization performance, we test the benchmark on three public datasets and conduct zero-shot experiments on an unseen dataset. The zero-shot evaluations reveal that GPT-4V leads with 69.57% accuracy -- achieving 74.94% in Perception, 65.33% in Prediction, and 68.45% in Planning -- demonstrating that while all models excel in Perception, they struggle in Prediction. Consequently, AutoDrive-QA establishes a rigorous, unbiased standard for integrating and evaluating different vision-language models across various autonomous driving datasets, thereby improving generalization in this field. We release all the codes in the AutoDrive-QA GitHub Repository.
☆ Ground and Flight Locomotion for Two-Wheeled Drones via Model Predictive Path Integral Control
This paper presents a novel approach to motion planning for two-wheeled drones that can drive on the ground and fly in the air. Conventional methods for two-wheeled drone motion planning typically rely on gradient-based optimization and assume that obstacle shapes can be approximated by a differentiable form. To overcome this limitation, we propose a motion planning method based on Model Predictive Path Integral (MPPI) control, enabling navigation through arbitrarily shaped obstacles by switching between driving and flight modes. To handle the instability and rapid solution changes caused by mode switching, our proposed method switches the control space and utilizes the auxiliary controller for MPPI. Our simulation results demonstrate that the proposed method enables navigation in unstructured environments and achieves effective obstacle avoidance through mode switching.
comment: This work has been submitted to the IEEE for possible publication
☆ Depth Matters: Multimodal RGB-D Perception for Robust Autonomous Agents IROS 2025
Autonomous agents that rely purely on perception to make real-time control decisions require efficient and robust architectures. In this work, we demonstrate that augmenting RGB input with depth information significantly enhances our agents' ability to predict steering commands compared to using RGB alone. We benchmark lightweight recurrent controllers that leverage the fused RGB-D features for sequential decision-making. To train our models, we collect high-quality data using a small-scale autonomous car controlled by an expert driver via a physical steering wheel, capturing varying levels of steering difficulty. Our models, trained under diverse configurations, were successfully deployed on real hardware. Specifically, our findings reveal that the early fusion of depth data results in a highly robust controller, which remains effective even with frame drops and increased noise levels, without compromising the network's focus on the task.
comment: Submitted to IROS 2025
☆ A Schwarz-Christoffel Mapping-based Framework for Sim-to-Real Transfer in Autonomous Robot Operations
Despite the remarkable acceleration of robotic development through advanced simulation technology, robotic applications are often subject to performance reductions in real-world deployment due to the inherent discrepancy between simulation and reality, often referred to as the "sim-to-real gap". This gap arises from factors like model inaccuracies, environmental variations, and unexpected disturbances. Similarly, model discrepancies caused by system degradation over time or minor changes in the system's configuration also hinder the effectiveness of the developed methodologies. Effectively closing these gaps is critical and remains an open challenge. This work proposes a lightweight conformal mapping framework to transfer control and planning policies from an expert teacher to a degraded less capable learner. The method leverages Schwarz-Christoffel Mapping (SCM) to geometrically map teacher control inputs into the learner's command space, ensuring maneuver consistency. To demonstrate its generality, the framework is applied to two representative types of control and planning methods in a path-tracking task: 1) a discretized motion primitives command transfer and 2) a continuous Model Predictive Control (MPC)-based command transfer. The proposed framework is validated through extensive simulations and real-world experiments, demonstrating its effectiveness in reducing the sim-to-real gap by closely transferring teacher commands to the learner robot.
☆ Informative Path Planning to Explore and Map Unknown Planetary Surfaces with Gaussian Processes
Many environments, such as unvisited planetary surfaces and oceanic regions, remain unexplored due to a lack of prior knowledge. Autonomous vehicles must sample upon arrival, process data, and either transmit findings to a teleoperator or decide where to explore next. Teleoperation is suboptimal, as human intuition lacks mathematical guarantees for optimality. This study evaluates an informative path planning algorithm for mapping a scalar variable distribution while minimizing travel distance and ensuring model convergence. We compare traditional open loop coverage methods (e.g., Boustrophedon, Spiral) with information-theoretic approaches using Gaussian processes, which update models iteratively with confidence metrics. The algorithm's performance is tested on three surfaces, a parabola, Townsend function, and lunar crater hydration map, to assess noise, convexity, and function behavior. Results demonstrate that information-driven methods significantly outperform naive exploration in reducing model error and travel distance while improving convergence potential.
☆ ContactFusion: Stochastic Poisson Surface Maps from Visual and Contact Sensing
Robust and precise robotic assembly entails insertion of constituent components. Insertion success is hindered when noise in scene understanding exceeds tolerance limits, especially when fabricated with tight tolerances. In this work, we propose ContactFusion which combines global mapping with local contact information, fusing point clouds with force sensing. Our method entails a Rejection Sampling based contact occupancy sensing procedure which estimates contact locations on the end-effector from Force/Torque sensing at the wrist. We demonstrate how to fuse contact with visual information into a Stochastic Poisson Surface Map (SPSMap) - a map representation that can be updated with the Stochastic Poisson Surface Reconstruction (SPSR) algorithm. We first validate the contact occupancy sensor in simulation and show its ability to detect the contact location on the robot from force sensing information. Then, we evaluate our method in a peg-in-hole task, demonstrating an improvement in the hole pose estimate with the fusion of the contact information with the SPSMap.
☆ World Knowledge from AI Image Generation for Robot Control
When interacting with the world robots face a number of difficult questions, having to make decisions when given under-specified tasks where they need to make choices, often without clearly defined right and wrong answers. Humans, on the other hand, can often rely on their knowledge and experience to fill in the gaps. For example, the simple task of organizing newly bought produce into the fridge involves deciding where to put each thing individually, how to arrange them together meaningfully, e.g. putting related things together, all while there is no clear right and wrong way to accomplish this task. We could encode all this information on how to do such things explicitly into the robots' knowledge base, but this can quickly become overwhelming, considering the number of potential tasks and circumstances the robot could encounter. However, images of the real world often implicitly encode answers to such questions and can show which configurations of objects are meaningful or are usually used by humans. An image of a full fridge can give a lot of information about how things are usually arranged in relation to each other and the full fridge at large. Modern generative systems are capable of generating plausible images of the real world and can be conditioned on the environment in which the robot operates. Here we investigate the idea of using the implicit knowledge about the world of modern generative AI systems given by their ability to generate convincing images of the real world to solve under-specified tasks.
comment: 9 pages, 10 figures
☆ AUV Acceleration Prediction Using DVL and Deep Learning
Autonomous underwater vehicles (AUVs) are essential for various applications, including oceanographic surveys, underwater mapping, and infrastructure inspections. Accurate and robust navigation are critical to completing these tasks. To this end, a Doppler velocity log (DVL) and inertial sensors are fused together. Recently, a model-based approach demonstrated the ability to extract the vehicle acceleration vector from DVL velocity measurements. Motivated by this advancement, in this paper we present an end-to-end deep learning approach to estimate the AUV acceleration vector based on past DVL velocity measurements. Based on recorded data from sea experiments, we demonstrate that the proposed method improves acceleration vector estimation by more than 65% compared to the model-based approach by using data-driven techniques. As a result of our data-driven approach, we can enhance navigation accuracy and reliability in AUV applications, contributing to more efficient and effective underwater missions through improved accuracy and reliability.
☆ Design of Reward Function on Reinforcement Learning for Automated Driving
This paper proposes a design scheme of reward function that constantly evaluates both driving states and actions for applying reinforcement learning to automated driving. In the field of reinforcement learning, reward functions often evaluate whether the goal is achieved by assigning values such as +1 for success and -1 for failure. This type of reward function can potentially obtain a policy that achieves the goal, but the process by which the goal is reached is not evaluated. However, process to reach a destination is important for automated driving, such as keeping velocity, avoiding risk, retaining distance from other cars, keeping comfortable for passengers. Therefore, the reward function designed by the proposed scheme is suited for automated driving by evaluating driving process. The effects of the proposed scheme are demonstrated on simulated circuit driving and highway cruising. Asynchronous Advantage Actor-Critic is used, and models are trained under some situations for generalization. The result shows that appropriate driving positions are obtained, such as traveling on the inside of corners, and rapid deceleration to turn along sharp curves. In highway cruising, the ego vehicle becomes able to change lane in an environment where there are other vehicles with suitable deceleration to avoid catching up to a front vehicle, and acceleration so that a rear vehicle does not catch up to the ego vehicle.
comment: Accepted in IFAC World Congress 2023, 6 pages, 9 figures
☆ Likelihood Reward Redistribution
In many practical reinforcement learning scenarios, feedback is provided only at the end of a long horizon, leading to sparse and delayed rewards. Existing reward redistribution methods typically assume that per-step rewards are independent, thus overlooking interdependencies among state--action pairs. In this paper, we propose a \emph{Likelihood Reward Redistribution} (LRR) framework that addresses this issue by modeling each per-step reward with a parametric probability distribution whose parameters depend on the state--action pair. By maximizing the likelihood of the observed episodic return via a leave-one-out (LOO) strategy that leverages the entire trajectory, our framework inherently introduces an uncertainty regularization term into the surrogate objective. Moreover, we show that the conventional mean squared error (MSE) loss for reward redistribution emerges as a special case of our likelihood framework when the uncertainty is fixed under the Gaussian distribution. When integrated with an off-policy algorithm such as Soft Actor-Critic, LRR yields dense and informative reward signals, resulting in superior sample efficiency and policy performance on Box-2d and MuJoCo benchmarks.
☆ IRef-VLA: A Benchmark for Interactive Referential Grounding with Imperfect Language in 3D Scenes ICRA 2025
With the recent rise of large language models, vision-language models, and other general foundation models, there is growing potential for multimodal, multi-task robotics that can operate in diverse environments given natural language input. One such application is indoor navigation using natural language instructions. However, despite recent progress, this problem remains challenging due to the 3D spatial reasoning and semantic understanding required. Additionally, the language used may be imperfect or misaligned with the scene, further complicating the task. To address this challenge, we curate a benchmark dataset, IRef-VLA, for Interactive Referential Vision and Language-guided Action in 3D Scenes with imperfect references. IRef-VLA is the largest real-world dataset for the referential grounding task, consisting of over 11.5K scanned 3D rooms from existing datasets, 7.6M heuristically generated semantic relations, and 4.7M referential statements. Our dataset also contains semantic object and room annotations, scene graphs, navigable free space annotations, and is augmented with statements where the language has imperfections or ambiguities. We verify the generalizability of our dataset by evaluating with state-of-the-art models to obtain a performance baseline and also develop a graph-search baseline to demonstrate the performance bound and generation of alternatives using scene-graph knowledge. With this benchmark, we aim to provide a resource for 3D scene understanding that aids the development of robust, interactive navigation systems. The dataset and all source code is publicly released at https://github.com/HaochenZ11/IRef-VLA.
comment: Accepted to ICRA 2025. Code available at https://github.com/HaochenZ11/IRef-VLA. arXiv admin note: text overlap with arXiv:2411.03540
♻ ☆ Tangles: Unpacking Extended Collision Experiences with Soma Trajectories
We reappraise the idea of colliding with robots, moving from a position that tries to avoid or mitigate collisions to one that considers them an important facet of human interaction. We report on a soma design workshop that explored how our bodies could collide with telepresence robots, mobility aids, and a quadruped robot. Based on our findings, we employed soma trajectories to analyse collisions as extended experiences that negotiate key transitions of consent, preparation, launch, contact, ripple, sting, untangle, debris and reflect. We then employed these ideas to analyse two collision experiences, an accidental collision between a person and a drone, and the deliberate design of a robot to play with cats, revealing how real-world collisions involve the complex and ongoing entanglement of soma trajectories. We discuss how viewing collisions as entangled trajectories, or tangles, can be used analytically, as a design approach, and as a lens to broach ethical complexity.
comment: 32 pages, 13 figures
♻ ☆ Robust Safety Critical Control Under Multiple State and Input Constraints: Volume Control Barrier Function Method
In this paper, the safety-critical control problem for uncertain systems under multiple control barrier function (CBF) constraints and input constraints is investigated. A novel framework is proposed to generate a safety filter that minimizes changes to reference inputs when safety risks arise, ensuring a balance between safety and performance. A nonlinear disturbance observer (DOB) based on the robust integral of the sign of the error (RISE) is used to estimate system uncertainties, ensuring that the estimation error converges to zero exponentially. This error bound is integrated into the safety-critical controller to reduce conservativeness while ensuring safety. To further address the challenges arising from multiple CBF and input constraints, a novel Volume CBF (VCBF) is proposed by analyzing the feasible space of the quadratic programming (QP) problem. % ensuring solution feasibility by keeping the volume as a positive value. To ensure that the feasible space does not vanish under disturbances, a DOB-VCBF-based method is introduced, ensuring system safety while maintaining the feasibility of the resulting QP. Subsequently, several groups of simulation and experimental results are provided to validate the effectiveness of the proposed controller.
♻ ☆ SPINE: Online Semantic Planning for Missions with Incomplete Natural Language Specifications in Unstructured Environments ICRA
As robots become increasingly capable, users will want to describe high-level missions and have robots infer the relevant details. because pre-built maps are difficult to obtain in many realistic settings, accomplishing such missions will require the robot to map and plan online. while many semantic planning methods operate online, they are typically designed for well specified missions such as object search or exploration. recently, large language models (LLMs) have demonstrated powerful contextual reasoning abilities over a range of robotic tasks described in natural language. however, existing LLM-enabled planners typically do not consider online planning or complex missions; rather, relevant subtasks and semantics are provided by a pre-built map or a user. we address these limitations via spine, an online planner for missions with incomplete mission specifications provided in natural language. the planner uses an LLM to reason about subtasks implied by the mission specification and then realizes these subtasks in a receding horizon framework. tasks are automatically validated for safety and refined online with new map observations. we evaluate spine in simulation and real-world settings with missions that require multiple steps of semantic reasoning and exploration in cluttered outdoor environments of over 20,000m$^2$. compared to baselines that use existing LLM-enabled planning approaches, our method is over twice as efficient in terms of time and distance, requires less user interactions, and does not require a full map. Additional resources are provided at: https://zacravichandran.github.io/SPINE.
comment: Accepted to the International Conference on Robotics and Automation (ICRA) 2025
♻ ☆ Pareto Control Barrier Function for Inner Safe Set Maximization Under Input Constraints
This article introduces the Pareto Control Barrier Function (PCBF) algorithm to maximize the inner safe set of dynamical systems under input constraints. Traditional Control Barrier Functions (CBFs) ensure safety by maintaining system trajectories within a safe set but often fail to account for realistic input constraints. To address this problem, we leverage the Pareto multi-task learning framework to balance competing objectives of safety and safe set volume. The PCBF algorithm is applicable to high-dimensional systems and is computationally efficient. We validate its effectiveness through comparison with Hamilton-Jacobi reachability for an inverted pendulum and through simulations on a 12-dimensional quadrotor system. Results show that the PCBF consistently outperforms existing methods, yielding larger safe sets and ensuring safety under input constraints.
comment: Accepted for presentation at American Control Conference 2025
♻ ☆ Unifying 2D and 3D Vision-Language Understanding
Progress in 3D vision-language learning has been hindered by the scarcity of large-scale 3D datasets. We introduce UniVLG, a unified architecture for 2D and 3D vision-language understanding that bridges the gap between existing 2D-centric models and the rich 3D sensory data available in embodied systems. Our approach initializes most model weights from pre-trained 2D models and trains on both 2D and 3D vision-language data. We propose a novel language-conditioned mask decoder shared across 2D and 3D modalities to ground objects effectively in both RGB and RGB-D images, outperforming box-based approaches. To further reduce the domain gap between 2D and 3D, we incorporate 2D-to-3D lifting strategies, enabling UniVLG to utilize 2D data to enhance 3D performance. With these innovations, our model achieves state-of-the-art performance across multiple 3D vision-language grounding tasks, demonstrating the potential of transferring advances from 2D vision-language learning to the data-constrained 3D domain. Furthermore, co-training on both 2D and 3D data enhances performance across modalities without sacrificing 2D capabilities. By removing the reliance on 3D mesh reconstruction and ground-truth object proposals, UniVLG sets a new standard for realistic, embodied-aligned evaluation. Code and additional visualizations are available at https://univlg.github.io .
comment: The first two authors contributed equally
♻ ☆ LiMoE: Mixture of LiDAR Representation Learners from Automotive Scenes CVPR 2025
LiDAR data pretraining offers a promising approach to leveraging large-scale, readily available datasets for enhanced data utilization. However, existing methods predominantly focus on sparse voxel representation, overlooking the complementary attributes provided by other LiDAR representations. In this work, we propose LiMoE, a framework that integrates the Mixture of Experts (MoE) paradigm into LiDAR data representation learning to synergistically combine multiple representations, such as range images, sparse voxels, and raw points. Our approach consists of three stages: i) Image-to-LiDAR Pretraining, which transfers prior knowledge from images to point clouds across different representations; ii) Contrastive Mixture Learning (CML), which uses MoE to adaptively activate relevant attributes from each representation and distills these mixed features into a unified 3D network; iii) Semantic Mixture Supervision (SMS), which combines semantic logits from multiple representations to boost downstream segmentation performance. Extensive experiments across eleven large-scale LiDAR datasets demonstrate our effectiveness and superiority. The code has been made publicly accessible.
comment: CVPR 2025; 27 pages, 17 figures, 10 tables; Project Page at https://ldkong.com/LiMoE
♻ ☆ GSplatLoc: Grounding Keypoint Descriptors into 3D Gaussian Splatting for Improved Visual Localization
Although various visual localization approaches exist, such as scene coordinate regression and camera pose regression, these methods often struggle with optimization complexity or limited accuracy. To address these challenges, we explore the use of novel view synthesis techniques, particularly 3D Gaussian Splatting (3DGS), which enables the compact encoding of both 3D geometry and scene appearance. We propose a two-stage procedure that integrates dense and robust keypoint descriptors from the lightweight XFeat feature extractor into 3DGS, enhancing performance in both indoor and outdoor environments. The coarse pose estimates are directly obtained via 2D-3D correspondences between the 3DGS representation and query image descriptors. In the second stage, the initial pose estimate is refined by minimizing the rendering-based photometric warp loss. Benchmarking on widely used indoor and outdoor datasets demonstrates improvements over recent neural rendering-based localization methods, such as NeRFMatch and PNeRFLoc.
comment: Project website at https://gsplatloc.github.io/
♻ ☆ Relational Object-Centric Actor-Critic
The advances in unsupervised object-centric representation learning have significantly improved its application to downstream tasks. Recent works highlight that disentangled object representations can aid policy learning in image-based, object-centric reinforcement learning tasks. This paper proposes a novel object-centric reinforcement learning algorithm that integrates actor-critic and model-based approaches by incorporating an object-centric world model within the critic. The world model captures the environment's data-generating process by predicting the next state and reward given the current state-action pair, where actions are interventions in the environment. In model-based reinforcement learning, world model learning can be interpreted as a causal induction problem, where the agent must learn the causal relationships underlying the environment's dynamics. We evaluate our method in a simulated 3D robotic environment and a 2D environment with compositional structure. As baselines, we compare against object-centric, model-free actor-critic algorithms and a state-of-the-art monolithic model-based algorithm. While the baselines show comparable performance in easier tasks, our approach outperforms them in more challenging scenarios with a large number of objects or more complex dynamics.
♻ ☆ AVOCADO: Adaptive Optimal Collision Avoidance driven by Opinion TRO
We present AVOCADO (AdaptiVe Optimal Collision Avoidance Driven by Opinion), a novel navigation approach to address holonomic robot collision avoidance when the degree of cooperation of the other agents in the environment is unknown. AVOCADO departs from a Velocity Obstacle's formulation akin to the Optimal Reciprocal Collision Avoidance method. However, instead of assuming reciprocity, AVOCADO poses an adaptive control problem that aims at adapting in real-time to the cooperation degree of other robots and agents. Adaptation is achieved through a novel nonlinear opinion dynamics design that relies solely on sensor observations. As a by-product, based on the nonlinear opinion dynamics, we propose a novel method to avoid the deadlocks under geometrical symmetries among robots and agents. Extensive numerical simulations show that AVOCADO surpasses existing geometrical, learning and planning-based approaches in mixed cooperative/non-cooperative navigation environments in terms of success rate, time to goal and computational time. In addition, we conduct multiple real experiments that verify that AVOCADO is able to avoid collisions in environments crowded with other robots and humans.
comment: This paper is published at IEEE Transactions on Robotics under DOI 10.1109/TRO.2025.3552350
♻ ☆ AffordDP: Generalizable Diffusion Policy with Transferable Affordance
Diffusion-based policies have shown impressive performance in robotic manipulation tasks while struggling with out-of-domain distributions. Recent efforts attempted to enhance generalization by improving the visual feature encoding for diffusion policy. However, their generalization is typically limited to the same category with similar appearances. Our key insight is that leveraging affordances--manipulation priors that define "where" and "how" an agent interacts with an object--can substantially enhance generalization to entirely unseen object instances and categories. We introduce the Diffusion Policy with transferable Affordance (AffordDP), designed for generalizable manipulation across novel categories. AffordDP models affordances through 3D contact points and post-contact trajectories, capturing the essential static and dynamic information for complex tasks. The transferable affordance from in-domain data to unseen objects is achieved by estimating a 6D transformation matrix using foundational vision models and point cloud registration techniques. More importantly, we incorporate affordance guidance during diffusion sampling that can refine action sequence generation. This guidance directs the generated action to gradually move towards the desired manipulation for unseen objects while keeping the generated action within the manifold of action space. Experimental results from both simulated and real-world environments demonstrate that AffordDP consistently outperforms previous diffusion-based methods, successfully generalizing to unseen instances and categories where others fail.
♻ ☆ Precise and Dexterous Robotic Manipulation via Human-in-the-Loop Reinforcement Learning
Reinforcement learning (RL) holds great promise for enabling autonomous acquisition of complex robotic manipulation skills, but realizing this potential in real-world settings has been challenging. We present a human-in-the-loop vision-based RL system that demonstrates impressive performance on a diverse set of dexterous manipulation tasks, including dynamic manipulation, precision assembly, and dual-arm coordination. Our approach integrates demonstrations and human corrections, efficient RL algorithms, and other system-level design choices to learn policies that achieve near-perfect success rates and fast cycle times within just 1 to 2.5 hours of training. We show that our method significantly outperforms imitation learning baselines and prior RL approaches, with an average 2x improvement in success rate and 1.8x faster execution. Through extensive experiments and analysis, we provide insights into the effectiveness of our approach, demonstrating how it learns robust, adaptive policies for both reactive and predictive control strategies. Our results suggest that RL can indeed learn a wide range of complex vision-based manipulation policies directly in the real world within practical training times. We hope this work will inspire a new generation of learned robotic manipulation techniques, benefiting both industrial applications and research advancements. Videos and code are available at our project website https://hil-serl.github.io/.
♻ ☆ SERL: A Software Suite for Sample-Efficient Robotic Reinforcement Learning ICRA 2024
In recent years, significant progress has been made in the field of robotic reinforcement learning (RL), enabling methods that handle complex image observations, train in the real world, and incorporate auxiliary data, such as demonstrations and prior experience. However, despite these advances, robotic RL remains hard to use. It is acknowledged among practitioners that the particular implementation details of these algorithms are often just as important (if not more so) for performance as the choice of algorithm. We posit that a significant challenge to widespread adoption of robotic RL, as well as further development of robotic RL methods, is the comparative inaccessibility of such methods. To address this challenge, we developed a carefully implemented library containing a sample efficient off-policy deep RL method, together with methods for computing rewards and resetting the environment, a high-quality controller for a widely-adopted robot, and a number of challenging example tasks. We provide this library as a resource for the community, describe its design choices, and present experimental results. Perhaps surprisingly, we find that our implementation can achieve very efficient learning, acquiring policies for PCB board assembly, cable routing, and object relocation between 25 to 50 minutes of training per policy on average, improving over state-of-the-art results reported for similar tasks in the literature. These policies achieve perfect or near-perfect success rates, extreme robustness even under perturbations, and exhibit emergent recovery and correction behaviors. We hope that these promising results and our high-quality open-source implementation will provide a tool for the robotics community to facilitate further developments in robotic RL. Our code, documentation, and videos can be found at https://serl-robot.github.io/
comment: ICRA 2024
♻ ☆ MG-SLAM: Structure Gaussian Splatting SLAM with Manhattan World Hypothesis
Gaussian Splatting SLAMs have made significant advancements in improving the efficiency and fidelity of real-time reconstructions. However, these systems often encounter incomplete reconstructions in complex indoor environments, characterized by substantial holes due to unobserved geometry caused by obstacles or limited view angles. To address this challenge, we present Manhattan Gaussian SLAM, an RGB-D system that leverages the Manhattan World hypothesis to enhance geometric accuracy and completeness. By seamlessly integrating fused line segments derived from structured scenes, our method ensures robust tracking in textureless indoor areas. Moreover, The extracted lines and planar surface assumption allow strategic interpolation of new Gaussians in regions of missing geometry, enabling efficient scene completion. Extensive experiments conducted on both synthetic and real-world scenes demonstrate that these advancements enable our method to achieve state-of-the-art performance, marking a substantial improvement in the capabilities of Gaussian SLAM systems.
♻ ☆ Moto: Latent Motion Token as the Bridging Language for Learning Robot Manipulation from Videos
Recent developments in Large Language Models pre-trained on extensive corpora have shown significant success in various natural language processing tasks with minimal fine-tuning. This success offers new promise for robotics, which has long been constrained by the high cost of action-labeled data. We ask: given the abundant video data containing interaction-related knowledge available as a rich "corpus", can a similar generative pre-training approach be effectively applied to enhance robot learning? The key challenge is to identify an effective representation for autoregressive pre-training that benefits robot manipulation tasks. Inspired by the way humans learn new skills through observing dynamic environments, we propose that effective robotic learning should emphasize motion-related knowledge, which is closely tied to low-level actions and is hardware-agnostic, facilitating the transfer of learned motions to actual robot actions. To this end, we introduce Moto, which converts video content into latent Motion Token sequences by a Latent Motion Tokenizer, learning a bridging "language" of motion from videos in an unsupervised manner. We pre-train Moto-GPT through motion token autoregression, enabling it to capture diverse visual motion knowledge. After pre-training, Moto-GPT demonstrates the promising ability to produce semantically interpretable motion tokens, predict plausible motion trajectories, and assess trajectory rationality through output likelihood. To transfer learned motion priors to real robot actions, we implement a co-fine-tuning strategy that seamlessly bridges latent motion token prediction and real robot control. Extensive experiments show that the fine-tuned Moto-GPT exhibits superior robustness and efficiency on robot manipulation benchmarks, underscoring its effectiveness in transferring knowledge from video data to downstream visual manipulation tasks.
comment: Project released at: https://chenyi99.github.io/moto/ Update: Added content related to real-world robot experiments and learning from human videos
♻ ☆ Dynamic Layer Detection of a Thin Materials using DenseTact Optical Tactile Sensors IROS 2025
Manipulation of thin materials is critical for many everyday tasks and remains a significant challenge for robots. While existing research has made strides in tasks like material smoothing and folding, many studies struggle with common failure modes (crumpled corners/edges, incorrect grasp con-figurations) that a preliminary step of layer detection can solve. We present a novel method for classifying the number of grasped material layers using a custom gripper equipped with DenseTact 2.0 optical tactile sensors. After grasping a thin material, the gripper performs an anthropomorphic rubbing motion while collecting optical flow, 6-axis wrench, and joint state data. Using this data in a transformer-based network achieves a test accuracy of 98.21% in correctly classifying the number of grasped cloth layers, and 81.25% accuracy in classifying layers of grasped paper, showing the effectiveness of our dynamic rubbing method. Evaluating different inputs and model architectures highlights the usefulness of tactile sensor information and a transformer model for this task. A comprehensive dataset of 568 labeled trials (368 for cloth and 200 for paper) was collected and made open-source along with this paper. Our project page is available at https://armlabstanford.github.io/dynamic-cloth-detection.
comment: 7 pages, 9 figures, submitted to IROS 2025
♻ ☆ Mixed-Reality Digital Twins: Leveraging the Physical and Virtual Worlds for Hybrid Sim2Real Transition of Multi-Agent Reinforcement Learning Policies
Multi-agent reinforcement learning (MARL) for cyber-physical vehicle systems usually requires a significantly long training time due to their inherent complexity. Furthermore, deploying the trained policies in the real world demands a feature-rich environment along with multiple physical embodied agents, which may not be feasible due to monetary, physical, energy, or safety constraints. This work seeks to address these pain points by presenting a mixed-reality digital twin framework capable of: (i) selectively scaling parallelized workloads on-demand, and (ii) evaluating the trained policies across simulation-to-reality (sim2real) experiments. The viability and performance of the proposed framework are highlighted through two representative use cases, which cover cooperative as well as competitive classes of MARL problems. We study the effect of: (i) agent and environment parallelization on training time, and (ii) systematic domain randomization on zero-shot sim2real transfer across both case studies. Results indicate up to 76.3% reduction in training time with the proposed parallelization scheme and sim2real gap as low as 2.9% using the proposed deployment method.
♻ ☆ Cycloidal Quasi-Direct Drive Actuator Designs with Learning-based Torque Estimation for Legged Robotics ICRA25
This paper presents a novel approach through the design and implementation of Cycloidal Quasi-Direct Drive actuators for legged robotics. The cycloidal gear mechanism, with its inherent high torque density and mechanical robustness, offers significant advantages over conventional designs. By integrating cycloidal gears into the Quasi-Direct Drive framework, we aim to enhance the performance of legged robots, particularly in tasks demanding high torque and dynamic loads, while still keeping them lightweight. Additionally, we develop a torque estimation framework for the actuator using an Actuator Network, which effectively reduces the sim-to-real gap introduced by the cycloidal drive's complex dynamics. This integration is crucial for capturing the complex dynamics of a cycloidal drive, which contributes to improved learning efficiency, agility, and adaptability for reinforcement learning.
comment: Proceeding to 2025 IEEE International Conference on Robotics and Automation (ICRA25)
♻ ☆ These Magic Moments: Differentiable Uncertainty Quantification of Radiance Field Models
This paper introduces a novel approach to uncertainty quantification for radiance fields by leveraging higher-order moments of the rendering equation. Uncertainty quantification is crucial for downstream tasks including view planning and scene understanding, where safety and robustness are paramount. However, the high dimensionality and complexity of radiance fields pose significant challenges for uncertainty quantification, limiting the use of these uncertainty quantification methods in high-speed decision-making. We demonstrate that the probabilistic nature of the rendering process enables efficient and differentiable computation of higher-order moments for radiance field outputs, including color, depth, and semantic predictions. Our method outperforms existing radiance field uncertainty estimation techniques while offering a more direct, computationally efficient, and differentiable formulation without the need for post-processing. Beyond uncertainty quantification, we also illustrate the utility of our approach in downstream applications such as next-best-view (NBV) selection and active ray sampling for neural radiance field training. Extensive experiments on synthetic and real-world scenes confirm the efficacy of our approach, which achieves state-of-the-art performance while maintaining simplicity.
♻ ☆ 3D-GRAND: A Million-Scale Dataset for 3D-LLMs with Better Grounding and Less Hallucination CVPR 2025
The integration of language and 3D perception is crucial for embodied agents and robots that comprehend and interact with the physical world. While large language models (LLMs) have demonstrated impressive language understanding and generation capabilities, their adaptation to 3D environments (3D-LLMs) remains in its early stages. A primary challenge is a lack of large-scale datasets with dense grounding between language and 3D scenes. We introduce 3D-GRAND, a pioneering large-scale dataset comprising 40,087 household scenes paired with 6.2 million densely-grounded scene-language instructions. Our results show that instruction tuning with 3D-GRAND significantly enhances grounding capabilities and reduces hallucinations in 3D-LLMs. As part of our contributions, we propose a comprehensive benchmark 3D-POPE to systematically evaluate hallucination in 3D-LLMs, enabling fair comparisons of models. Our experiments highlight a scaling effect between dataset size and 3D-LLM performance, emphasizing the importance of large-scale 3D-text datasets for embodied AI research. Our results demonstrate early signals for effective sim-to-real transfer, indicating that models trained on large synthetic data can perform well on real-world 3D scans. Through 3D-GRAND and 3D-POPE, we aim to equip the embodied AI community with resources and insights to lead to more reliable and better-grounded 3D-LLMs. Project website: https://3d-grand.github.io
comment: CVPR 2025. Project website: https://3d-grand.github.io
♻ ☆ Parameter Adjustments in POMDP-Based Trajectory Planning for Unsignalized Intersections
This paper investigates the problem of trajectory planning for autonomous vehicles at unsignalized intersections, specifically focusing on scenarios where the vehicle lacks the right of way and yet must cross safely. To address this issue, we have employed a method based on the Partially Observable Markov Decision Processes (POMDPs) framework designed for planning under uncertainty. The method utilizes the Adaptive Belief Tree (ABT) algorithm as an approximate solver for the POMDPs. We outline the POMDP formulation, beginning with discretizing the intersection's topology. Additionally, we present a dynamics model for the prediction of the evolving states of vehicles, such as their position and velocity. Using an observation model, we also describe the connection of those states with the imperfect (noisy) available measurements. Our results confirmed that the method is able to plan collision-free trajectories in a series of simulations utilizing real-world traffic data from aerial footage of two distinct intersections. Furthermore, we studied the impact of parameter adjustments of the ABT algorithm on the method's performance. This provides guidance in determining reasonable parameter settings, which is valuable for future method applications.
comment: Submitted version
♻ ☆ Fish Mouth Inspired Origami Gripper for Robust Multi-Type Underwater Grasping
Robotic grasping and manipulation in underwater environments present unique challenges for robotic hands traditionally used on land. These challenges stem from dynamic water conditions, a wide range of object properties from soft to stiff, irregular object shapes, and varying surface frictions. One common approach involves developing finger-based hands with embedded compliance using underactuation and soft actuators. This study introduces an effective alternative solution that does not rely on finger-based hand designs. We present a fish mouth inspired origami gripper that utilizes a single degree of freedom to perform a variety of robust grasping tasks underwater. The innovative structure transforms a simple uniaxial pulling motion into a grasping action based on the Yoshimura crease pattern folding. The origami gripper offers distinct advantages, including scalable and optimizable design, grasping compliance, and robustness, with four grasping types: pinch, power grasp, simultaneous grasping of multiple objects, and scooping from the seabed. In this work, we detail the design, modeling, fabrication, and validation of a specialized underwater gripper capable of handling various marine creatures, including jellyfish, crabs, and abalone. By leveraging an origami and bio-inspired approach, the presented gripper demonstrates promising potential for robotic grasping and manipulation in underwater environments.
♻ ☆ iKap: Kinematics-aware Planning with Imperative Learning
Trajectory planning in robotics aims to generate collision-free pose sequences that can be reliably executed. Recently, vision-to-planning systems have gained increasing attention for their efficiency and ability to interpret and adapt to surrounding environments. However, traditional modular systems suffer from increased latency and error propagation, while purely data-driven approaches often overlook the robot's kinematic constraints. This oversight leads to discrepancies between planned trajectories and those that are executable. To address these challenges, we propose iKap, a novel vision-to-planning system that integrates the robot's kinematic model directly into the learning pipeline. iKap employs a self-supervised learning approach and incorporates the state transition model within a differentiable bi-level optimization framework. This integration ensures the network learns collision-free waypoints while satisfying kinematic constraints, enabling gradient back-propagation for end-to-end training. Our experimental results demonstrate that iKap achieves higher success rates and reduced latency compared to the state-of-the-art methods. Besides the complete system, iKap offers a visual-to-planning network that seamlessly works with various controllers, providing a robust solution for robots navigating complex environments.
comment: 6 pages, 6 figures
♻ ☆ Robust Nonprehensile Object Transportation with Uncertain Inertial Parameters
We consider the nonprehensile object transportation task known as the waiter's problem - in which a robot must move an object on a tray from one location to another - when the transported object has uncertain inertial parameters. In contrast to existing approaches that completely ignore uncertainty in the inertia matrix or which only consider small parameter errors, we are interested in pushing the limits of the amount of inertial parameter uncertainty that can be handled. We first show how constraints that are robust to inertial parameter uncertainty can be incorporated into an optimization-based motion planning framework to transport objects while moving quickly. Next, we develop necessary conditions for the inertial parameters to be realizable on a bounding shape based on moment relaxations, allowing us to verify whether a trajectory will violate the constraints for any realizable inertial parameters. Finally, we demonstrate our approach on a mobile manipulator in simulations and real hardware experiments: our proposed robust constraints consistently successfully transport a 56 cm tall object with substantial inertial parameter uncertainty in the real world, while the baseline approaches drop the object while transporting it.
comment: 8 pages, 7 figures. Published in IEEE Robotics and Automation Letters
♻ ☆ Out-of-Distribution Recovery with Object-Centric Keypoint Inverse Policy for Visuomotor Imitation Learning
We propose an object-centric recovery (OCR) framework to address the challenges of out-of-distribution (OOD) scenarios in visuomotor policy learning. Previous behavior cloning (BC) methods rely heavily on a large amount of labeled data coverage, failing in unfamiliar spatial states. Without relying on extra data collection, our approach learns a recovery policy constructed by an inverse policy inferred from the object keypoint manifold gradient in the original training data. The recovery policy serves as a simple add-on to any base visuomotor BC policy, agnostic to a specific method, guiding the system back towards the training distribution to ensure task success even in OOD situations. We demonstrate the effectiveness of our object-centric framework in both simulation and real robot experiments, achieving an improvement of 77.7\% over the base policy in OOD. Furthermore, we show OCR's capacity to autonomously collect demonstrations for continual learning. Overall, we believe this framework represents a step toward improving the robustness of visuomotor policies in real-world settings. Project Website: https://sites.google.com/view/ocr-penn
Computer Vision 152
☆ Sonata: Self-Supervised Learning of Reliable Point Representations CVPR 2025
In this paper, we question whether we have a reliable self-supervised point cloud model that can be used for diverse 3D tasks via simple linear probing, even with limited data and minimal computation. We find that existing 3D self-supervised learning approaches fall short when evaluated on representation quality through linear probing. We hypothesize that this is due to what we term the "geometric shortcut", which causes representations to collapse to low-level spatial features. This challenge is unique to 3D and arises from the sparse nature of point cloud data. We address it through two key strategies: obscuring spatial information and enhancing the reliance on input features, ultimately composing a Sonata of 140k point clouds through self-distillation. Sonata is simple and intuitive, yet its learned representations are strong and reliable: zero-shot visualizations demonstrate semantic grouping, alongside strong spatial reasoning through nearest-neighbor relationships. Sonata demonstrates exceptional parameter and data efficiency, tripling linear probing accuracy (from 21.8% to 72.5%) on ScanNet and nearly doubling performance with only 1% of the data compared to previous approaches. Full fine-tuning further advances SOTA across both 3D indoor and outdoor perception tasks.
comment: CVPR 2025, produced by Pointcept x Meta, project page: https://xywu.me/sonata/
☆ Bridging Continuous and Discrete Tokens for Autoregressive Visual Generation
Autoregressive visual generation models typically rely on tokenizers to compress images into tokens that can be predicted sequentially. A fundamental dilemma exists in token representation: discrete tokens enable straightforward modeling with standard cross-entropy loss, but suffer from information loss and tokenizer training instability; continuous tokens better preserve visual details, but require complex distribution modeling, complicating the generation pipeline. In this paper, we propose TokenBridge, which bridges this gap by maintaining the strong representation capacity of continuous tokens while preserving the modeling simplicity of discrete tokens. To achieve this, we decouple discretization from the tokenizer training process through post-training quantization that directly obtains discrete tokens from continuous representations. Specifically, we introduce a dimension-wise quantization strategy that independently discretizes each feature dimension, paired with a lightweight autoregressive prediction mechanism that efficiently model the resulting large token space. Extensive experiments show that our approach achieves reconstruction and generation quality on par with continuous methods while using standard categorical prediction. This work demonstrates that bridging discrete and continuous paradigms can effectively harness the strengths of both approaches, providing a promising direction for high-quality visual generation with simple autoregressive modeling. Project page: https://yuqingwang1029.github.io/TokenBridge.
comment: Project page: https://yuqingwang1029.github.io/TokenBridge
☆ XAttention: Block Sparse Attention with Antidiagonal Scoring
Long-Context Transformer Models (LCTMs) are vital for real-world applications but suffer high computational costs due to attention's quadratic complexity. Block-sparse attention mitigates this by focusing computation on critical regions, yet existing methods struggle with balancing accuracy and efficiency due to costly block importance measurements. In this paper, we introduce XAttention, a plug-and-play framework that dramatically accelerates long-context inference in Transformers models using sparse attention. XAttention's key innovation is the insight that the sum of antidiagonal values (i.e., from the lower-left to upper-right) in the attention matrix provides a powerful proxy for block importance. This allows for precise identification and pruning of non-essential blocks, resulting in high sparsity and dramatically accelerated inference. Across comprehensive evaluations on demanding long-context benchmarks-including RULER and LongBench for language, VideoMME for video understanding, and VBench for video generation. XAttention achieves accuracy comparable to full attention while delivering substantial computational gains. We demonstrate up to 13.5x acceleration in attention computation. These results underscore XAttention's ability to unlock the practical potential of block sparse attention, paving the way for scalable and efficient deployment of LCTMs in real-world applications. Code is available at https://github.com/mit-han-lab/x-attention.
comment: The first two authors contributed equally to this work
DynamicVis: An Efficient and General Visual Foundation Model for Remote Sensing Image Understanding
The advancement of remote sensing technology has improved the spatial resolution of satellite imagery, facilitating more detailed visual representations for diverse interpretations. However, existing methods exhibit limited generalization capabilities across varied applications. While some contemporary foundation models demonstrate potential, they are hindered by insufficient cross-task adaptability and primarily process low-resolution imagery of restricted sizes, thus failing to fully exploit high-resolution data or leverage comprehensive large-scene semantics. Crucially, remote sensing imagery differs fundamentally from natural images, as key foreground targets (eg., maritime objects, artificial structures) often occupy minimal spatial proportions (~1%) and exhibit sparse distributions. Efficiently modeling cross-task generalizable knowledge from lengthy 2D tokens (~100,000) poses a significant challenge yet remains critical for remote sensing image understanding. Motivated by the selective attention mechanisms inherent to the human visual system, we propose DynamicVis, a dynamic visual perception foundation model for remote sensing imagery. The framework integrates a novel dynamic region perception backbone based on the selective state space model, which strategically balances localized detail extraction with global contextual integration, enabling computationally efficient encoding of large-scale data while maintaining architectural scalability. To enhance cross-task knowledge transferring, we introduce a multi-instance learning paradigm utilizing meta-embedding representations, trained on million-scale region-level annotations. Evaluations across nine downstream tasks demonstrate the model's versatility. DynamicVis achieves multi-level feature modeling with exceptional efficiency, processing (2048x2048) pixels with 97 ms latency (6% of ViT's) and 833 MB GPU memory (3% of ViT's).
☆ Tokenize Image as a Set
This paper proposes a fundamentally new paradigm for image generation through set-based tokenization and distribution modeling. Unlike conventional methods that serialize images into fixed-position latent codes with a uniform compression ratio, we introduce an unordered token set representation to dynamically allocate coding capacity based on regional semantic complexity. This TokenSet enhances global context aggregation and improves robustness against local perturbations. To address the critical challenge of modeling discrete sets, we devise a dual transformation mechanism that bijectively converts sets into fixed-length integer sequences with summation constraints. Further, we propose Fixed-Sum Discrete Diffusion--the first framework to simultaneously handle discrete values, fixed sequence length, and summation invariance--enabling effective set distribution modeling. Experiments demonstrate our method's superiority in semantic-aware representation and generation quality. Our innovations, spanning novel representation and modeling strategies, advance visual generation beyond traditional sequential token paradigms. Our code and models are publicly available at https://github.com/Gengzigang/TokenSet.
☆ Bézier Splatting for Fast and Differentiable Vector Graphics
Differentiable vector graphics (VGs) are widely used in image vectorization and vector synthesis, while existing representations are costly to optimize and struggle to achieve high-quality rendering results for high-resolution images. This work introduces a new differentiable VG representation, dubbed B\'ezier splatting, that enables fast yet high-fidelity VG rasterization. B\'ezier splatting samples 2D Gaussians along B\'ezier curves, which naturally provide positional gradients at object boundaries. Thanks to the efficient splatting-based differentiable rasterizer, B\'ezier splatting achieves over 20x and 150x faster per forward and backward rasterization step for open curves compared to DiffVG. Additionally, we introduce an adaptive pruning and densification strategy that dynamically adjusts the spatial distribution of curves to escape local minima, further improving VG quality. Experimental results show that B\'ezier splatting significantly outperforms existing methods with better visual fidelity and 10x faster optimization speed.
☆ GAEA: A Geolocation Aware Conversational Model
Image geolocalization, in which, traditionally, an AI model predicts the precise GPS coordinates of an image is a challenging task with many downstream applications. However, the user cannot utilize the model to further their knowledge other than the GPS coordinate; the model lacks an understanding of the location and the conversational ability to communicate with the user. In recent days, with tremendous progress of large multimodal models (LMMs) proprietary and open-source researchers have attempted to geolocalize images via LMMs. However, the issues remain unaddressed; beyond general tasks, for more specialized downstream tasks, one of which is geolocalization, LMMs struggle. In this work, we propose to solve this problem by introducing a conversational model GAEA that can provide information regarding the location of an image, as required by a user. No large-scale dataset enabling the training of such a model exists. Thus we propose a comprehensive dataset GAEA with 800K images and around 1.6M question answer pairs constructed by leveraging OpenStreetMap (OSM) attributes and geographical context clues. For quantitative evaluation, we propose a diverse benchmark comprising 4K image-text pairs to evaluate conversational capabilities equipped with diverse question types. We consider 11 state-of-the-art open-source and proprietary LMMs and demonstrate that GAEA significantly outperforms the best open-source model, LLaVA-OneVision by 25.69% and the best proprietary model, GPT-4o by 8.28%. Our dataset, model and codes are available
comment: The dataset and code used in this submission is available at: https://ucf-crcv.github.io/GAEA/
☆ 1000+ FPS 4D Gaussian Splatting for Dynamic Scene Rendering
4D Gaussian Splatting (4DGS) has recently gained considerable attention as a method for reconstructing dynamic scenes. Despite achieving superior quality, 4DGS typically requires substantial storage and suffers from slow rendering speed. In this work, we delve into these issues and identify two key sources of temporal redundancy. (Q1) \textbf{Short-Lifespan Gaussians}: 4DGS uses a large portion of Gaussians with short temporal span to represent scene dynamics, leading to an excessive number of Gaussians. (Q2) \textbf{Inactive Gaussians}: When rendering, only a small subset of Gaussians contributes to each frame. Despite this, all Gaussians are processed during rasterization, resulting in redundant computation overhead. To address these redundancies, we present \textbf{4DGS-1K}, which runs at over 1000 FPS on modern GPUs. For Q1, we introduce the Spatial-Temporal Variation Score, a new pruning criterion that effectively removes short-lifespan Gaussians while encouraging 4DGS to capture scene dynamics using Gaussians with longer temporal spans. For Q2, we store a mask for active Gaussians across consecutive frames, significantly reducing redundant computations in rendering. Compared to vanilla 4DGS, our method achieves a $41\times$ reduction in storage and $9\times$ faster rasterization speed on complex dynamic scenes, while maintaining comparable visual quality. Please see our project page at https://4DGS-1K.github.io.
☆ MagicMotion: Controllable Video Generation with Dense-to-Sparse Trajectory Guidance
Recent advances in video generation have led to remarkable improvements in visual quality and temporal coherence. Upon this, trajectory-controllable video generation has emerged to enable precise object motion control through explicitly defined spatial paths. However, existing methods struggle with complex object movements and multi-object motion control, resulting in imprecise trajectory adherence, poor object consistency, and compromised visual quality. Furthermore, these methods only support trajectory control in a single format, limiting their applicability in diverse scenarios. Additionally, there is no publicly available dataset or benchmark specifically tailored for trajectory-controllable video generation, hindering robust training and systematic evaluation. To address these challenges, we introduce MagicMotion, a novel image-to-video generation framework that enables trajectory control through three levels of conditions from dense to sparse: masks, bounding boxes, and sparse boxes. Given an input image and trajectories, MagicMotion seamlessly animates objects along defined trajectories while maintaining object consistency and visual quality. Furthermore, we present MagicData, a large-scale trajectory-controlled video dataset, along with an automated pipeline for annotation and filtering. We also introduce MagicBench, a comprehensive benchmark that assesses both video quality and trajectory control accuracy across different numbers of objects. Extensive experiments demonstrate that MagicMotion outperforms previous methods across various metrics. Our project page are publicly available at https://quanhaol.github.io/magicmotion-site.
☆ SynCity: Training-Free Generation of 3D Worlds
We address the challenge of generating 3D worlds from textual descriptions. We propose SynCity, a training- and optimization-free approach, which leverages the geometric precision of pre-trained 3D generative models and the artistic versatility of 2D image generators to create large, high-quality 3D spaces. While most 3D generative models are object-centric and cannot generate large-scale worlds, we show how 3D and 2D generators can be combined to generate ever-expanding scenes. Through a tile-based approach, we allow fine-grained control over the layout and the appearance of scenes. The world is generated tile-by-tile, and each new tile is generated within its world-context and then fused with the scene. SynCity generates compelling and immersive scenes that are rich in detail and diversity.
comment: Project page: https://research.paulengstler.com/syncity/
☆ InfiniteYou: Flexible Photo Recrafting While Preserving Your Identity
Achieving flexible and high-fidelity identity-preserved image generation remains formidable, particularly with advanced Diffusion Transformers (DiTs) like FLUX. We introduce InfiniteYou (InfU), one of the earliest robust frameworks leveraging DiTs for this task. InfU addresses significant issues of existing methods, such as insufficient identity similarity, poor text-image alignment, and low generation quality and aesthetics. Central to InfU is InfuseNet, a component that injects identity features into the DiT base model via residual connections, enhancing identity similarity while maintaining generation capabilities. A multi-stage training strategy, including pretraining and supervised fine-tuning (SFT) with synthetic single-person-multiple-sample (SPMS) data, further improves text-image alignment, ameliorates image quality, and alleviates face copy-pasting. Extensive experiments demonstrate that InfU achieves state-of-the-art performance, surpassing existing baselines. In addition, the plug-and-play design of InfU ensures compatibility with various existing methods, offering a valuable contribution to the broader community.
comment: Project page: https://bytedance.github.io/InfiniteYou/ Code and model: https://github.com/bytedance/InfiniteYou
☆ DreamTexture: Shape from Virtual Texture with Analysis by Augmentation
DreamFusion established a new paradigm for unsupervised 3D reconstruction from virtual views by combining advances in generative models and differentiable rendering. However, the underlying multi-view rendering, along with supervision from large-scale generative models, is computationally expensive and under-constrained. We propose DreamTexture, a novel Shape-from-Virtual-Texture approach that leverages monocular depth cues to reconstruct 3D objects. Our method textures an input image by aligning a virtual texture with the real depth cues in the input, exploiting the inherent understanding of monocular geometry encoded in modern diffusion models. We then reconstruct depth from the virtual texture deformation with a new conformal map optimization, which alleviates memory-intensive volumetric representations. Our experiments reveal that generative models possess an understanding of monocular shape cues, which can be extracted by augmenting and aligning texture cues -- a novel monocular reconstruction paradigm that we call Analysis by Augmentation.
comment: Project page: https://anantarb.github.io/dreamtexture/
☆ M3: 3D-Spatial MultiModal Memory ICLR2025
We present 3D Spatial MultiModal Memory (M3), a multimodal memory system designed to retain information about medium-sized static scenes through video sources for visual perception. By integrating 3D Gaussian Splatting techniques with foundation models, M3 builds a multimodal memory capable of rendering feature representations across granularities, encompassing a wide range of knowledge. In our exploration, we identify two key challenges in previous works on feature splatting: (1) computational constraints in storing high-dimensional features for each Gaussian primitive, and (2) misalignment or information loss between distilled features and foundation model features. To address these challenges, we propose M3 with key components of principal scene components and Gaussian memory attention, enabling efficient training and inference. To validate M3, we conduct comprehensive quantitative evaluations of feature similarity and downstream tasks, as well as qualitative visualizations to highlight the pixel trace of Gaussian memory attention. Our approach encompasses a diverse range of foundation models, including vision-language models (VLMs), perception models, and large multimodal and language models (LMMs/LLMs). Furthermore, to demonstrate real-world applicability, we deploy M3's feature field in indoor scenes on a quadruped robot. Notably, we claim that M3 is the first work to address the core compression challenges in 3D feature distillation.
comment: ICLR2025 homepage: https://m3-spatial-memory.github.io code: https://github.com/MaureenZOU/m3-spatial
☆ RoboFactory: Exploring Embodied Agent Collaboration with Compositional Constraints
Designing effective embodied multi-agent systems is critical for solving complex real-world tasks across domains. Due to the complexity of multi-agent embodied systems, existing methods fail to automatically generate safe and efficient training data for such systems. To this end, we propose the concept of compositional constraints for embodied multi-agent systems, addressing the challenges arising from collaboration among embodied agents. We design various interfaces tailored to different types of constraints, enabling seamless interaction with the physical world. Leveraging compositional constraints and specifically designed interfaces, we develop an automated data collection framework for embodied multi-agent systems and introduce the first benchmark for embodied multi-agent manipulation, RoboFactory. Based on RoboFactory benchmark, we adapt and evaluate the method of imitation learning and analyzed its performance in different difficulty agent tasks. Furthermore, we explore the architectures and training strategies for multi-agent imitation learning, aiming to build safe and efficient embodied multi-agent systems.
comment: Project page: https://iranqin.github.io/robofactory/
☆ VerbDiff: Text-Only Diffusion Models with Enhanced Interaction Awareness CVPR 2025
Recent large-scale text-to-image diffusion models generate photorealistic images but often struggle to accurately depict interactions between humans and objects due to their limited ability to differentiate various interaction words. In this work, we propose VerbDiff to address the challenge of capturing nuanced interactions within text-to-image diffusion models. VerbDiff is a novel text-to-image generation model that weakens the bias between interaction words and objects, enhancing the understanding of interactions. Specifically, we disentangle various interaction words from frequency-based anchor words and leverage localized interaction regions from generated images to help the model better capture semantics in distinctive words without extra conditions. Our approach enables the model to accurately understand the intended interaction between humans and objects, producing high-quality images with accurate interactions aligned with specified verbs. Extensive experiments on the HICO-DET dataset demonstrate the effectiveness of our method compared to previous approaches.
comment: Accepted at CVPR 2025, code : https://github.com/SeungJuCha/VerbDiff.git
☆ SA-Occ: Satellite-Assisted 3D Occupancy Prediction in Real World
Existing vision-based 3D occupancy prediction methods are inherently limited in accuracy due to their exclusive reliance on street-view imagery, neglecting the potential benefits of incorporating satellite views. We propose SA-Occ, the first Satellite-Assisted 3D occupancy prediction model, which leverages GPS & IMU to integrate historical yet readily available satellite imagery into real-time applications, effectively mitigating limitations of ego-vehicle perceptions, involving occlusions and degraded performance in distant regions. To address the core challenges of cross-view perception, we propose: 1) Dynamic-Decoupling Fusion, which resolves inconsistencies in dynamic regions caused by the temporal asynchrony between satellite and street views; 2) 3D-Proj Guidance, a module that enhances 3D feature extraction from inherently 2D satellite imagery; and 3) Uniform Sampling Alignment, which aligns the sampling density between street and satellite views. Evaluated on Occ3D-nuScenes, SA-Occ achieves state-of-the-art performance, especially among single-frame methods, with a 39.05% mIoU (a 6.97% improvement), while incurring only 6.93 ms of additional latency per frame. Our code and newly curated dataset are available at https://github.com/chenchen235/SA-Occ.
comment: 10 pages
☆ Scale-wise Distillation of Diffusion Models
We present SwD, a scale-wise distillation framework for diffusion models (DMs), which effectively employs next-scale prediction ideas for diffusion-based few-step generators. In more detail, SwD is inspired by the recent insights relating diffusion processes to the implicit spectral autoregression. We suppose that DMs can initiate generation at lower data resolutions and gradually upscale the samples at each denoising step without loss in performance while significantly reducing computational costs. SwD naturally integrates this idea into existing diffusion distillation methods based on distribution matching. Also, we enrich the family of distribution matching approaches by introducing a novel patch loss enforcing finer-grained similarity to the target distribution. When applied to state-of-the-art text-to-image diffusion models, SwD approaches the inference times of two full resolution steps and significantly outperforms the counterparts under the same computation budget, as evidenced by automated metrics and human preference studies.
☆ SV4D 2.0: Enhancing Spatio-Temporal Consistency in Multi-View Video Diffusion for High-Quality 4D Generation
We present Stable Video 4D 2.0 (SV4D 2.0), a multi-view video diffusion model for dynamic 3D asset generation. Compared to its predecessor SV4D, SV4D 2.0 is more robust to occlusions and large motion, generalizes better to real-world videos, and produces higher-quality outputs in terms of detail sharpness and spatio-temporal consistency. We achieve this by introducing key improvements in multiple aspects: 1) network architecture: eliminating the dependency of reference multi-views and designing blending mechanism for 3D and frame attention, 2) data: enhancing quality and quantity of training data, 3) training strategy: adopting progressive 3D-4D training for better generalization, and 4) 4D optimization: handling 3D inconsistency and large motion via 2-stage refinement and progressive frame sampling. Extensive experiments demonstrate significant performance gain by SV4D 2.0 both visually and quantitatively, achieving better detail (-14\% LPIPS) and 4D consistency (-44\% FV4D) in novel-view video synthesis and 4D optimization (-12\% LPIPS and -24\% FV4D) compared to SV4D. Project page: https://sv4d2.0.github.io.
☆ Do Visual Imaginations Improve Vision-and-Language Navigation Agents?
Vision-and-Language Navigation (VLN) agents are tasked with navigating an unseen environment using natural language instructions. In this work, we study if visual representations of sub-goals implied by the instructions can serve as navigational cues and lead to increased navigation performance. To synthesize these visual representations or imaginations, we leverage a text-to-image diffusion model on landmark references contained in segmented instructions. These imaginations are provided to VLN agents as an added modality to act as landmark cues and an auxiliary loss is added to explicitly encourage relating these with their corresponding referring expressions. Our findings reveal an increase in success rate (SR) of around 1 point and up to 0.5 points in success scaled by inverse path length (SPL) across agents. These results suggest that the proposed approach reinforces visual understanding compared to relying on language instructions alone. Code and data for our work can be found at https://www.akhilperincherry.com/VLN-Imagine-website/.
☆ Attentional Triple-Encoder Network in Spatiospectral Domains for Medical Image Segmentation
Retinal Optical Coherence Tomography (OCT) segmentation is essential for diagnosing pathology. Traditional methods focus on either spatial or spectral domains, overlooking their combined dependencies. We propose a triple-encoder network that integrates CNNs for spatial features, Fast Fourier Convolution (FFC) for spectral features, and attention mechanisms to capture global relationships across both domains. Attention fusion modules integrate convolution and cross-attention to further enhance features. Our method achieves an average Dice score improvement from 0.855 to 0.864, outperforming prior work.
comment: IEEE Conference on Artificial Intelligence (IEEE CAI)
☆ Panoptic-CUDAL Technical Report: Rural Australia Point Cloud Dataset in Rainy Conditions
Existing autonomous driving datasets are predominantly oriented towards well-structured urban settings and favorable weather conditions, leaving the complexities of rural environments and adverse weather conditions largely unaddressed. Although some datasets encompass variations in weather and lighting, bad weather scenarios do not appear often. Rainfall can significantly impair sensor functionality, introducing noise and reflections in LiDAR and camera data and reducing the system's capabilities for reliable environmental perception and safe navigation. We introduce the Panoptic-CUDAL dataset, a novel dataset purpose-built for panoptic segmentation in rural areas subject to rain. By recording high-resolution LiDAR, camera, and pose data, Panoptic-CUDAL offers a diverse, information-rich dataset in a challenging scenario. We present analysis of the recorded data and provide baseline results for panoptic and semantic segmentation methods on LiDAR point clouds. The dataset can be found here: https://robotics.sydney.edu.au/our-research/intelligent-transportation-systems/
☆ LaPIG: Cross-Modal Generation of Paired Thermal and Visible Facial Images
The success of modern machine learning, particularly in facial translation networks, is highly dependent on the availability of high-quality, paired, large-scale datasets. However, acquiring sufficient data is often challenging and costly. Inspired by the recent success of diffusion models in high-quality image synthesis and advancements in Large Language Models (LLMs), we propose a novel framework called LLM-assisted Paired Image Generation (LaPIG). This framework enables the construction of comprehensive, high-quality paired visible and thermal images using captions generated by LLMs. Our method encompasses three parts: visible image synthesis with ArcFace embedding, thermal image translation using Latent Diffusion Models (LDMs), and caption generation with LLMs. Our approach not only generates multi-view paired visible and thermal images to increase data diversity but also produces high-quality paired data while maintaining their identity information. We evaluate our method on public datasets by comparing it with existing methods, demonstrating the superiority of LaPIG.
☆ NuiScene: Exploring Efficient Generation of Unbounded Outdoor Scenes
In this paper, we explore the task of generating expansive outdoor scenes, ranging from castles to high-rises. Unlike indoor scene generation, which has been a primary focus of prior work, outdoor scene generation presents unique challenges, including wide variations in scene heights and the need for a method capable of rapidly producing large landscapes. To address this, we propose an efficient approach that encodes scene chunks as uniform vector sets, offering better compression and performance than the spatially structured latents used in prior methods. Furthermore, we train an explicit outpainting model for unbounded generation, which improves coherence compared to prior resampling-based inpainting schemes while also speeding up generation by eliminating extra diffusion steps. To facilitate this task, we curate NuiScene43, a small but high-quality set of scenes, preprocessed for joint training. Notably, when trained on scenes of varying styles, our model can blend different environments, such as rural houses and city skyscrapers, within the same scene, highlighting the potential of our curation process to leverage heterogeneous scenes for joint training.
☆ JARVIS-VLA: Post-Training Large-Scale Vision Language Models to Play Visual Games with Keyboards and Mouse
Recently, action-based decision-making in open-world environments has gained significant attention. Visual Language Action (VLA) models, pretrained on large-scale web datasets, have shown promise in decision-making tasks. However, previous work has primarily focused on action post-training, often neglecting enhancements to the foundational model itself. In response, we introduce a novel approach, Act from Visual Language Post-Training, which refines Visual Language Models (VLMs) through visual and linguistic guidance in a self-supervised manner. This enhancement improves the models' capabilities in world knowledge, visual recognition, and spatial grounding in open-world environments. Following the above post-training paradigms, we obtain the first VLA models in Minecraft that can follow human instructions on over 1k different atomic tasks, including crafting, smelting, cooking, mining, and killing. Our experiments demonstrate that post-training on non-trajectory tasks leads to a significant 40% improvement over the best agent baseline on a diverse set of atomic tasks. Furthermore, we demonstrate that our approach surpasses traditional imitation learning-based policies in Minecraft, achieving state-of-the-art performance. We have open-sourced the code, models, and datasets to foster further research. The project page can be found in https://craftjarvis.github.io/JarvisVLA.
comment: 22 pages, 5 figures
☆ UniSync: A Unified Framework for Audio-Visual Synchronization ICME 2025
Precise audio-visual synchronization in speech videos is crucial for content quality and viewer comprehension. Existing methods have made significant strides in addressing this challenge through rule-based approaches and end-to-end learning techniques. However, these methods often rely on limited audio-visual representations and suboptimal learning strategies, potentially constraining their effectiveness in more complex scenarios. To address these limitations, we present UniSync, a novel approach for evaluating audio-visual synchronization using embedding similarities. UniSync offers broad compatibility with various audio representations (e.g., Mel spectrograms, HuBERT) and visual representations (e.g., RGB images, face parsing maps, facial landmarks, 3DMM), effectively handling their significant dimensional differences. We enhance the contrastive learning framework with a margin-based loss component and cross-speaker unsynchronized pairs, improving discriminative capabilities. UniSync outperforms existing methods on standard datasets and demonstrates versatility across diverse audio-visual representations. Its integration into talking face generation frameworks enhances synchronization quality in both natural and AI-generated content.
comment: 7 pages, 3 figures, accepted by ICME 2025
☆ CaKE: Circuit-aware Editing Enables Generalizable Knowledge Learners
Knowledge Editing (KE) enables the modification of outdated or incorrect information in large language models (LLMs). While existing KE methods can update isolated facts, they struggle to generalize these updates to multi-hop reasoning tasks that depend on the modified knowledge. Through an analysis of reasoning circuits -- the neural pathways LLMs use for knowledge-based inference, we observe that current layer-localized KE approaches, such as MEMIT and WISE, which edit only single or a few model layers, struggle to effectively incorporate updated information into these reasoning pathways. To address this limitation, we propose CaKE (Circuit-aware Knowledge Editing), a novel method that enables more effective integration of updated knowledge in LLMs. CaKE leverages strategically curated data, guided by our circuits-based analysis, that enforces the model to utilize the modified knowledge, stimulating the model to develop appropriate reasoning circuits for newly integrated knowledge. Experimental results show that CaKE enables more accurate and consistent use of updated knowledge across related reasoning tasks, leading to an average of 20% improvement in multi-hop reasoning accuracy on MQuAKE dataset compared to existing KE methods. We release the code and data in https://github.com/zjunlp/CaKE.
comment: Work in progress
☆ Gaussian Graph Network: Learning Efficient and Generalizable Gaussian Representations from Multi-view Images NeurIPS 2024
3D Gaussian Splatting (3DGS) has demonstrated impressive novel view synthesis performance. While conventional methods require per-scene optimization, more recently several feed-forward methods have been proposed to generate pixel-aligned Gaussian representations with a learnable network, which are generalizable to different scenes. However, these methods simply combine pixel-aligned Gaussians from multiple views as scene representations, thereby leading to artifacts and extra memory cost without fully capturing the relations of Gaussians from different images. In this paper, we propose Gaussian Graph Network (GGN) to generate efficient and generalizable Gaussian representations. Specifically, we construct Gaussian Graphs to model the relations of Gaussian groups from different views. To support message passing at Gaussian level, we reformulate the basic graph operations over Gaussian representations, enabling each Gaussian to benefit from its connected Gaussian groups with Gaussian feature fusion. Furthermore, we design a Gaussian pooling layer to aggregate various Gaussian groups for efficient representations. We conduct experiments on the large-scale RealEstate10K and ACID datasets to demonstrate the efficiency and generalization of our method. Compared to the state-of-the-art methods, our model uses fewer Gaussians and achieves better image quality with higher rendering speed.
comment: NeurIPS 2024
☆ Ultra-Resolution Adaptation with Ease
Text-to-image diffusion models have achieved remarkable progress in recent years. However, training models for high-resolution image generation remains challenging, particularly when training data and computational resources are limited. In this paper, we explore this practical problem from two key perspectives: data and parameter efficiency, and propose a set of key guidelines for ultra-resolution adaptation termed \emph{URAE}. For data efficiency, we theoretically and empirically demonstrate that synthetic data generated by some teacher models can significantly promote training convergence. For parameter efficiency, we find that tuning minor components of the weight matrices outperforms widely-used low-rank adapters when synthetic data are unavailable, offering substantial performance gains while maintaining efficiency. Additionally, for models leveraging guidance distillation, such as FLUX, we show that disabling classifier-free guidance, \textit{i.e.}, setting the guidance scale to 1 during adaptation, is crucial for satisfactory performance. Extensive experiments validate that URAE achieves comparable 2K-generation performance to state-of-the-art closed-source models like FLUX1.1 [Pro] Ultra with only 3K samples and 2K iterations, while setting new benchmarks for 4K-resolution generation. Codes are available \href{https://github.com/Huage001/URAE}{here}.
comment: Technical Report. Codes are available \href{https://github.com/Huage001/URAE}{here}
Dynamic Point Maps: A Versatile Representation for Dynamic 3D Reconstruction
DUSt3R has recently shown that one can reduce many tasks in multi-view geometry, including estimating camera intrinsics and extrinsics, reconstructing the scene in 3D, and establishing image correspondences, to the prediction of a pair of viewpoint-invariant point maps, i.e., pixel-aligned point clouds defined in a common reference frame. This formulation is elegant and powerful, but unable to tackle dynamic scenes. To address this challenge, we introduce the concept of Dynamic Point Maps (DPM), extending standard point maps to support 4D tasks such as motion segmentation, scene flow estimation, 3D object tracking, and 2D correspondence. Our key intuition is that, when time is introduced, there are several possible spatial and time references that can be used to define the point maps. We identify a minimal subset of such combinations that can be regressed by a network to solve the sub tasks mentioned above. We train a DPM predictor on a mixture of synthetic and real data and evaluate it across diverse benchmarks for video depth prediction, dynamic point cloud reconstruction, 3D scene flow and object pose tracking, achieving state-of-the-art performance. Code, models and additional results are available at https://www.robots.ox.ac.uk/~vgg/research/dynamic-point-maps/.
comment: Web page: https://www.robots.ox.ac.uk/~vgg/research/dynamic-point-maps/
☆ Rapid patient-specific neural networks for intraoperative X-ray to volume registration
The integration of artificial intelligence in image-guided interventions holds transformative potential, promising to extract 3D geometric and quantitative information from conventional 2D imaging modalities during complex procedures. Achieving this requires the rapid and precise alignment of 2D intraoperative images (e.g., X-ray) with 3D preoperative volumes (e.g., CT, MRI). However, current 2D/3D registration methods fail across the broad spectrum of procedures dependent on X-ray guidance: traditional optimization techniques require custom parameter tuning for each subject, whereas neural networks trained on small datasets do not generalize to new patients or require labor-intensive manual annotations, increasing clinical burden and precluding application to new anatomical targets. To address these challenges, we present xvr, a fully automated framework for training patient-specific neural networks for 2D/3D registration. xvr uses physics-based simulation to generate abundant high-quality training data from a patient's own preoperative volumetric imaging, thereby overcoming the inherently limited ability of supervised models to generalize to new patients and procedures. Furthermore, xvr requires only 5 minutes of training per patient, making it suitable for emergency interventions as well as planned procedures. We perform the largest evaluation of a 2D/3D registration algorithm on real X-ray data to date and find that xvr robustly generalizes across a diverse dataset comprising multiple anatomical structures, imaging modalities, and hospitals. Across surgical tasks, xvr achieves submillimeter-accurate registration at intraoperative speeds, improving upon existing methods by an order of magnitude. xvr is released as open-source software freely available at https://github.com/eigenvivek/xvr.
☆ Unleashing Vecset Diffusion Model for Fast Shape Generation
3D shape generation has greatly flourished through the development of so-called "native" 3D diffusion, particularly through the Vecset Diffusion Model (VDM). While recent advancements have shown promising results in generating high-resolution 3D shapes, VDM still struggles with high-speed generation. Challenges exist because of difficulties not only in accelerating diffusion sampling but also VAE decoding in VDM, areas under-explored in previous works. To address these challenges, we present FlashVDM, a systematic framework for accelerating both VAE and DiT in VDM. For DiT, FlashVDM enables flexible diffusion sampling with as few as 5 inference steps and comparable quality, which is made possible by stabilizing consistency distillation with our newly introduced Progressive Flow Distillation. For VAE, we introduce a lightning vecset decoder equipped with Adaptive KV Selection, Hierarchical Volume Decoding, and Efficient Network Design. By exploiting the locality of the vecset and the sparsity of shape surface in the volume, our decoder drastically lowers FLOPs, minimizing the overall decoding overhead. We apply FlashVDM to Hunyuan3D-2 to obtain Hunyuan3D-2 Turbo. Through systematic evaluation, we show that our model significantly outperforms existing fast 3D generation methods, achieving comparable performance to the state-of-the-art while reducing inference time by over 45x for reconstruction and 32x for generation. Code and models are available at https://github.com/Tencent/FlashVDM.
comment: Technical report
☆ SceneMI: Motion In-betweening for Modeling Human-Scene Interactions
Modeling human-scene interactions (HSI) is essential for understanding and simulating everyday human behaviors. Recent approaches utilizing generative modeling have made progress in this domain; however, they are limited in controllability and flexibility for real-world applications. To address these challenges, we propose reformulating the HSI modeling problem as Scene-aware Motion In-betweening -- a more tractable and practical task. We introduce SceneMI, a framework that supports several practical applications, including keyframe-guided character animation in 3D scenes and enhancing the motion quality of imperfect HSI data. SceneMI employs dual scene descriptors to comprehensively encode global and local scene context. Furthermore, our framework leverages the inherent denoising nature of diffusion models to generalize on noisy keyframes. Experimental results demonstrate SceneMI's effectiveness in scene-aware keyframe in-betweening and generalization to the real-world GIMO dataset, where motions and scenes are acquired by noisy IMU sensors and smartphones. We further showcase SceneMI's applicability in HSI reconstruction from monocular videos.
comment: 15 pages, Project page: http://inwoohwang.me/SceneMI
☆ PSA-MIL: A Probabilistic Spatial Attention-Based Multiple Instance Learning for Whole Slide Image Classification
Whole Slide Images (WSIs) are high-resolution digital scans widely used in medical diagnostics. WSI classification is typically approached using Multiple Instance Learning (MIL), where the slide is partitioned into tiles treated as interconnected instances. While attention-based MIL methods aim to identify the most informative tiles, they often fail to fully exploit the spatial relationships among them, potentially overlooking intricate tissue structures crucial for accurate diagnosis. To address this limitation, we propose Probabilistic Spatial Attention MIL (PSA-MIL), a novel attention-based MIL framework that integrates spatial context into the attention mechanism through learnable distance-decayed priors, formulated within a probabilistic interpretation of self-attention as a posterior distribution. This formulation enables a dynamic inference of spatial relationships during training, eliminating the need for predefined assumptions often imposed by previous approaches. Additionally, we suggest a spatial pruning strategy for the posterior, effectively reducing self-attention's quadratic complexity. To further enhance spatial modeling, we introduce a diversity loss that encourages variation among attention heads, ensuring each captures distinct spatial representations. Together, PSA-MIL enables a more data-driven and adaptive integration of spatial context, moving beyond predefined constraints. We achieve state-of-the-art performance across both contextual and non-contextual baselines, while significantly reducing computational costs.
comment: 8 pages, 7 figures
☆ Generalized Few-shot 3D Point Cloud Segmentation with Vision-Language Model CVPR 2025
Generalized few-shot 3D point cloud segmentation (GFS-PCS) adapts models to new classes with few support samples while retaining base class segmentation. Existing GFS-PCS methods enhance prototypes via interacting with support or query features but remain limited by sparse knowledge from few-shot samples. Meanwhile, 3D vision-language models (3D VLMs), generalizing across open-world novel classes, contain rich but noisy novel class knowledge. In this work, we introduce a GFS-PCS framework that synergizes dense but noisy pseudo-labels from 3D VLMs with precise yet sparse few-shot samples to maximize the strengths of both, named GFS-VL. Specifically, we present a prototype-guided pseudo-label selection to filter low-quality regions, followed by an adaptive infilling strategy that combines knowledge from pseudo-label contexts and few-shot samples to adaptively label the filtered, unlabeled areas. Additionally, we design a novel-base mix strategy to embed few-shot samples into training scenes, preserving essential context for improved novel class learning. Moreover, recognizing the limited diversity in current GFS-PCS benchmarks, we introduce two challenging benchmarks with diverse novel classes for comprehensive generalization evaluation. Experiments validate the effectiveness of our framework across models and datasets. Our approach and benchmarks provide a solid foundation for advancing GFS-PCS in the real world. The code is at https://github.com/ZhaochongAn/GFS-VL
comment: Accepted to CVPR 2025
☆ Do image and video quality metrics model low-level human vision?
Image and video quality metrics, such as SSIM, LPIPS, and VMAF, are aimed to predict the perceived quality of the evaluated content and are often claimed to be "perceptual". Yet, few metrics directly model human visual perception, and most rely on hand-crafted formulas or training datasets to achieve alignment with perceptual data. In this paper, we propose a set of tests for full-reference quality metrics that examine their ability to model several aspects of low-level human vision: contrast sensitivity, contrast masking, and contrast matching. The tests are meant to provide additional scrutiny for newly proposed metrics. We use our tests to analyze 33 existing image and video quality metrics and find their strengths and weaknesses, such as the ability of LPIPS and MS-SSIM to predict contrast masking and poor performance of VMAF in this task. We further find that the popular SSIM metric overemphasizes differences in high spatial frequencies, but its multi-scale counterpart, MS-SSIM, addresses this shortcoming. Such findings cannot be easily made using existing evaluation protocols.
☆ From Monocular Vision to Autonomous Action: Guiding Tumor Resection via 3D Reconstruction IROS
Surgical automation requires precise guidance and understanding of the scene. Current methods in the literature rely on bulky depth cameras to create maps of the anatomy, however this does not translate well to space-limited clinical applications. Monocular cameras are small and allow minimally invasive surgeries in tight spaces but additional processing is required to generate 3D scene understanding. We propose a 3D mapping pipeline that uses only RGB images to create segmented point clouds of the target anatomy. To ensure the most precise reconstruction, we compare different structure from motion algorithms' performance on mapping the central airway obstructions, and test the pipeline on a downstream task of tumor resection. In several metrics, including post-procedure tissue model evaluation, our pipeline performs comparably to RGB-D cameras and, in some cases, even surpasses their performance. These promising results demonstrate that automation guidance can be achieved in minimally invasive procedures with monocular cameras. This study is a step toward the complete autonomy of surgical robots.
comment: 7 Pages, 8 Figures, 1 Table. This work has been submitted IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) for possible publication
☆ Chain of Functions: A Programmatic Pipeline for Fine-Grained Chart Reasoning Data
Visual reasoning is crucial for multimodal large language models (MLLMs) to address complex chart queries, yet high-quality rationale data remains scarce. Existing methods leveraged (M)LLMs for data generation, but direct prompting often yields limited precision and diversity. In this paper, we propose \textit{Chain of Functions (CoF)}, a novel programmatic reasoning data generation pipeline that utilizes freely-explored reasoning paths as supervision to ensure data precision and diversity. Specifically, it starts with human-free exploration among the atomic functions (e.g., maximum data and arithmetic operations) to generate diverse function chains, which are then translated into linguistic rationales and questions with only a moderate open-sourced LLM. \textit{CoF} provides multiple benefits: 1) Precision: function-governed generation reduces hallucinations compared to freeform generation; 2) Diversity: enumerating function chains enables varied question taxonomies; 3) Explainability: function chains serve as built-in rationales, allowing fine-grained evaluation beyond overall accuracy; 4) Practicality: eliminating reliance on extremely large models. Employing \textit{CoF}, we construct the \textit{ChartCoF} dataset, with 1.4k complex reasoning Q\&A for fine-grained analysis and 50k Q\&A for reasoning enhancement. The fine-grained evaluation on \textit{ChartCoF} reveals varying performance across question taxonomies for each MLLM, and the experiments also show that finetuning with \textit{ChartCoF} achieves state-of-the-art performance among same-scale MLLMs on widely used benchmarks. Furthermore, the novel paradigm of function-governed rationale generation in \textit{CoF} could inspire broader applications beyond charts.
comment: Under review
☆ Plug-and-Play 1.x-Bit KV Cache Quantization for Video Large Language Models
Video large language models (VideoLLMs) have demonstrated the capability to process longer video inputs and enable complex reasoning and analysis. However, due to the thousands of visual tokens from the video frames, key-value (KV) cache can significantly increase memory requirements, becoming a bottleneck for inference speed and memory usage. KV cache quantization is a widely used approach to address this problem. In this paper, we find that 2-bit KV quantization of VideoLLMs can hardly hurt the model performance, while the limit of KV cache quantization in even lower bits has not been investigated. To bridge this gap, we introduce VidKV, a plug-and-play KV cache quantization method to compress the KV cache to lower than 2 bits. Specifically, (1) for key, we propose a mixed-precision quantization strategy in the channel dimension, where we perform 2-bit quantization for anomalous channels and 1-bit quantization combined with FFT for normal channels; (2) for value, we implement 1.58-bit quantization while selectively filtering semantically salient visual tokens for targeted preservation, for a better trade-off between precision and model performance. Importantly, our findings suggest that the value cache of VideoLLMs should be quantized in a per-channel fashion instead of the per-token fashion proposed by prior KV cache quantization works for LLMs. Empirically, extensive results with LLaVA-OV-7B and Qwen2.5-VL-7B on six benchmarks show that VidKV effectively compresses the KV cache to 1.5-bit and 1.58-bit precision with almost no performance drop compared to the FP16 counterparts.
comment: 12 pages
☆ M2N2V2: Multi-Modal Unsupervised and Training-free Interactive Segmentation
We present Markov Map Nearest Neighbor V2 (M2N2V2), a novel and simple, yet effective approach which leverages depth guidance and attention maps for unsupervised and training-free point-prompt-based interactive segmentation. Following recent trends in supervised multimodal approaches, we carefully integrate depth as an additional modality to create novel depth-guided Markov-maps. Furthermore, we observe occasional segment size fluctuations in M2N2 during the interactive process, which can decrease the overall mIoU's. To mitigate this problem, we model the prompting as a sequential process and propose a novel adaptive score function which considers the previous segmentation and the current prompt point in order to prevent unreasonable segment size changes. Using Stable Diffusion 2 and Depth Anything V2 as backbones, we empirically show that our proposed M2N2V2 significantly improves the Number of Clicks (NoC) and mIoU compared to M2N2 in all datasets except those from the medical domain. Interestingly, our unsupervised approach achieves competitive results compared to supervised methods like SAM and SimpleClick in the more challenging DAVIS and HQSeg44K datasets in the NoC metric, reducing the gap between supervised and unsupervised methods.
☆ RESFL: An Uncertainty-Aware Framework for Responsible Federated Learning by Balancing Privacy, Fairness and Utility in Autonomous Vehicles
Autonomous vehicles (AVs) increasingly rely on Federated Learning (FL) to enhance perception models while preserving privacy. However, existing FL frameworks struggle to balance privacy, fairness, and robustness, leading to performance disparities across demographic groups. Privacy-preserving techniques like differential privacy mitigate data leakage risks but worsen fairness by restricting access to sensitive attributes needed for bias correction. This work explores the trade-off between privacy and fairness in FL-based object detection for AVs and introduces RESFL, an integrated solution optimizing both. RESFL incorporates adversarial privacy disentanglement and uncertainty-guided fairness-aware aggregation. The adversarial component uses a gradient reversal layer to remove sensitive attributes, reducing privacy risks while maintaining fairness. The uncertainty-aware aggregation employs an evidential neural network to weight client updates adaptively, prioritizing contributions with lower fairness disparities and higher confidence. This ensures robust and equitable FL model updates. We evaluate RESFL on the FACET dataset and CARLA simulator, assessing accuracy, fairness, privacy resilience, and robustness under varying conditions. RESFL improves detection accuracy, reduces fairness disparities, and lowers privacy attack success rates while demonstrating superior robustness to adversarial conditions compared to other approaches.
comment: Submitted to PETS 2025 (under review)
☆ OpenMIBOOD: Open Medical Imaging Benchmarks for Out-Of-Distribution Detection
The growing reliance on Artificial Intelligence (AI) in critical domains such as healthcare demands robust mechanisms to ensure the trustworthiness of these systems, especially when faced with unexpected or anomalous inputs. This paper introduces the Open Medical Imaging Benchmarks for Out-Of-Distribution Detection (OpenMIBOOD), a comprehensive framework for evaluating out-of-distribution (OOD) detection methods specifically in medical imaging contexts. OpenMIBOOD includes three benchmarks from diverse medical domains, encompassing 14 datasets divided into covariate-shifted in-distribution, near-OOD, and far-OOD categories. We evaluate 24 post-hoc methods across these benchmarks, providing a standardized reference to advance the development and fair comparison of OOD detection methods. Results reveal that findings from broad-scale OOD benchmarks in natural image domains do not translate to medical applications, underscoring the critical need for such benchmarks in the medical field. By mitigating the risk of exposing AI models to inputs outside their training distribution, OpenMIBOOD aims to support the advancement of reliable and trustworthy AI systems in healthcare. The repository is available at https://github.com/remic-othr/OpenMIBOOD.
☆ Efficient Bayesian Computation Using Plug-and-Play Priors for Poisson Inverse Problems
This paper introduces a novel plug-and-play (PnP) Langevin sampling methodology for Bayesian inference in low-photon Poisson imaging problems, a challenging class of problems with significant applications in astronomy, medicine, and biology. PnP Langevin sampling algorithms offer a powerful framework for Bayesian image restoration, enabling accurate point estimation as well as advanced inference tasks, including uncertainty quantification and visualization analyses, and empirical Bayesian inference for automatic model parameter tuning. However, existing PnP Langevin algorithms are not well-suited for low-photon Poisson imaging due to high solution uncertainty and poor regularity properties, such as exploding gradients and non-negativity constraints. To address these challenges, we propose two strategies for extending Langevin PnP sampling to Poisson imaging models: (i) an accelerated PnP Langevin method that incorporates boundary reflections and a Poisson likelihood approximation and (ii) a mirror sampling algorithm that leverages a Riemannian geometry to handle the constraints and the poor regularity of the likelihood without approximations. The effectiveness of these approaches is demonstrated through extensive numerical experiments and comparisons with state-of-the-art methods.
comment: 31 pages, 17 figures
☆ Temporal Score Analysis for Understanding and Correcting Diffusion Artifacts
Visual artifacts remain a persistent challenge in diffusion models, even with training on massive datasets. Current solutions primarily rely on supervised detectors, yet lack understanding of why these artifacts occur in the first place. In our analysis, we identify three distinct phases in the diffusion generative process: Profiling, Mutation, and Refinement. Artifacts typically emerge during the Mutation phase, where certain regions exhibit anomalous score dynamics over time, causing abrupt disruptions in the normal evolution pattern. This temporal nature explains why existing methods focusing only on spatial uncertainty of the final output fail at effective artifact localization. Based on these insights, we propose ASCED (Abnormal Score Correction for Enhancing Diffusion), that detects artifacts by monitoring abnormal score dynamics during the diffusion process, with a trajectory-aware on-the-fly mitigation strategy that appropriate generation of noise in the detected areas. Unlike most existing methods that apply post hoc corrections, \eg, by applying a noising-denoising scheme after generation, our mitigation strategy operates seamlessly within the existing diffusion process. Extensive experiments demonstrate that our proposed approach effectively reduces artifacts across diverse domains, matching or surpassing existing supervised methods without additional training.
☆ VP-NTK: Exploring the Benefits of Visual Prompting in Differentially Private Data Synthesis ICASSP 2025
Differentially private (DP) synthetic data has become the de facto standard for releasing sensitive data. However, many DP generative models suffer from the low utility of synthetic data, especially for high-resolution images. On the other hand, one of the emerging techniques in parameter efficient fine-tuning (PEFT) is visual prompting (VP), which allows well-trained existing models to be reused for the purpose of adapting to subsequent downstream tasks. In this work, we explore such a phenomenon in constructing captivating generative models with DP constraints. We show that VP in conjunction with DP-NTK, a DP generator that exploits the power of the neural tangent kernel (NTK) in training DP generative models, achieves a significant performance boost, particularly for high-resolution image datasets, with accuracy improving from 0.644$\pm$0.044 to 0.769. Lastly, we perform ablation studies on the effect of different parameters that influence the overall performance of VP-NTK. Our work demonstrates a promising step forward in improving the utility of DP synthetic data, particularly for high-resolution images.
comment: Accepted by ICASSP 2025
☆ Improving Autoregressive Image Generation through Coarse-to-Fine Token Prediction
Autoregressive models have shown remarkable success in image generation by adapting sequential prediction techniques from language modeling. However, applying these approaches to images requires discretizing continuous pixel data through vector quantization methods like VQ-VAE. To alleviate the quantization errors that existed in VQ-VAE, recent works tend to use larger codebooks. However, this will accordingly expand vocabulary size, complicating the autoregressive modeling task. This paper aims to find a way to enjoy the benefits of large codebooks without making autoregressive modeling more difficult. Through empirical investigation, we discover that tokens with similar codeword representations produce similar effects on the final generated image, revealing significant redundancy in large codebooks. Based on this insight, we propose to predict tokens from coarse to fine (CTF), realized by assigning the same coarse label for similar tokens. Our framework consists of two stages: (1) an autoregressive model that sequentially predicts coarse labels for each token in the sequence, and (2) an auxiliary model that simultaneously predicts fine-grained labels for all tokens conditioned on their coarse labels. Experiments on ImageNet demonstrate our method's superior performance, achieving an average improvement of 59 points in Inception Score compared to baselines. Notably, despite adding an inference step, our approach achieves faster sampling speeds.
comment: Work in progress
☆ CLS-RL: Image Classification with Rule-Based Reinforcement Learning
Classification is a core task in machine learning. Recent research has shown that although Multimodal Large Language Models (MLLMs) are initially poor at image classification, fine-tuning them with an adequate amount of data can significantly enhance their performance, making them comparable to SOTA classification models. However, acquiring large-scale labeled data is expensive. In this paper, we explore few-shot MLLM classification fine-tuning. We found that SFT can cause severe overfitting issues and may even degrade performance over the zero-shot approach. To address this challenge, inspired by the recent successes in rule-based reinforcement learning, we propose CLS-RL, which uses verifiable signals as reward to fine-tune MLLMs. We discovered that CLS-RL outperforms SFT in most datasets and has a much higher average accuracy on both base-to-new and few-shot learning setting. Moreover, we observed a free-lunch phenomenon for CLS-RL; when models are fine-tuned on a particular dataset, their performance on other distinct datasets may also improve over zero-shot models, even if those datasets differ in distribution and class names. This suggests that RL-based methods effectively teach models the fundamentals of classification. Lastly, inspired by recent works in inference time thinking, we re-examine the `thinking process' during fine-tuning, a critical aspect of RL-based methods, in the context of visual classification. We question whether such tasks require extensive thinking process during fine-tuning, proposing that this may actually detract from performance. Based on this premise, we introduce the No-Thinking-CLS-RL method, which minimizes thinking processes during training by setting an equality accuracy reward. Our findings indicate that, with much less fine-tuning time, No-Thinking-CLS-RL method achieves superior in-domain performance and generalization capabilities than CLS-RL.
comment: Preprint, work in progress
☆ MapGlue: Multimodal Remote Sensing Image Matching
Multimodal remote sensing image (MRSI) matching is pivotal for cross-modal fusion, localization, and object detection, but it faces severe challenges due to geometric, radiometric, and viewpoint discrepancies across imaging modalities. Existing unimodal datasets lack scale and diversity, limiting deep learning solutions. This paper proposes MapGlue, a universal MRSI matching framework, and MapData, a large-scale multimodal dataset addressing these gaps. Our contributions are twofold. MapData, a globally diverse dataset spanning 233 sampling points, offers original images (7,000x5,000 to 20,000x15,000 pixels). After rigorous cleaning, it provides 121,781 aligned electronic map-visible image pairs (512x512 pixels) with hybrid manual-automated ground truth, addressing the scarcity of scalable multimodal benchmarks. MapGlue integrates semantic context with a dual graph-guided mechanism to extract cross-modal invariant features. This structure enables global-to-local interaction, enhancing descriptor robustness against modality-specific distortions. Extensive evaluations on MapData and five public datasets demonstrate MapGlue's superiority in matching accuracy under complex conditions, outperforming state-of-the-art methods. Notably, MapGlue generalizes effectively to unseen modalities without retraining, highlighting its adaptability. This work addresses longstanding challenges in MRSI matching by combining scalable dataset construction with a robust, semantics-driven framework. Furthermore, MapGlue shows strong generalization capabilities on other modality matching tasks for which it was not specifically trained. The dataset and code are available at https://github.com/PeihaoWu/MapGlue.
comment: The dataset and code are available at https://github.com/PeihaoWu/MapGlue
☆ Accurate Scene Text Recognition with Efficient Model Scaling and Cloze Self-Distillation
Scaling architectures have been proven effective for improving Scene Text Recognition (STR), but the individual contribution of vision encoder and text decoder scaling remain under-explored. In this work, we present an in-depth empirical analysis and demonstrate that, contrary to previous observations, scaling the decoder yields significant performance gains, always exceeding those achieved by encoder scaling alone. We also identify label noise as a key challenge in STR, particularly in real-world data, which can limit the effectiveness of STR models. To address this, we propose Cloze Self-Distillation (CSD), a method that mitigates label noise by distilling a student model from context-aware soft predictions and pseudolabels generated by a teacher model. Additionally, we enhance the decoder architecture by introducing differential cross-attention for STR. Our methodology achieves state-of-the-art performance on 10 out of 11 benchmarks using only real data, while significantly reducing the parameter size and computational costs.
☆ Narrowing Class-Wise Robustness Gaps in Adversarial Training ICLR 2025
Efforts to address declining accuracy as a result of data shifts often involve various data-augmentation strategies. Adversarial training is one such method, designed to improve robustness to worst-case distribution shifts caused by adversarial examples. While this method can improve robustness, it may also hinder generalization to clean examples and exacerbate performance imbalances across different classes. This paper explores the impact of adversarial training on both overall and class-specific performance, as well as its spill-over effects. We observe that enhanced labeling during training boosts adversarial robustness by 53.50% and mitigates class imbalances by 5.73%, leading to improved accuracy in both clean and adversarial settings compared to standard adversarial training.
comment: 4 figures, ICLR 2025 Workshop on Foundation Models in the Wild
☆ OccluGaussian: Occlusion-Aware Gaussian Splatting for Large Scene Reconstruction and Rendering
In large-scale scene reconstruction using 3D Gaussian splatting, it is common to partition the scene into multiple smaller regions and reconstruct them individually. However, existing division methods are occlusion-agnostic, meaning that each region may contain areas with severe occlusions. As a result, the cameras within those regions are less correlated, leading to a low average contribution to the overall reconstruction. In this paper, we propose an occlusion-aware scene division strategy that clusters training cameras based on their positions and co-visibilities to acquire multiple regions. Cameras in such regions exhibit stronger correlations and a higher average contribution, facilitating high-quality scene reconstruction. We further propose a region-based rendering technique to accelerate large scene rendering, which culls Gaussians invisible to the region where the viewpoint is located. Such a technique significantly speeds up the rendering without compromising quality. Extensive experiments on multiple large scenes show that our method achieves superior reconstruction results with faster rendering speed compared to existing state-of-the-art approaches. Project page: https://occlugaussian.github.io.
comment: Project website: https://occlugaussian.github.io
☆ Iterative Optimal Attention and Local Model for Single Image Rain Streak Removal
High-fidelity imaging is crucial for the successful safety supervision and intelligent deployment of vision-based measurement systems (VBMS). It ensures high-quality imaging in VBMS, which is fundamental for reliable visual measurement and analysis. However, imaging quality can be significantly impaired by adverse weather conditions, particularly rain, leading to blurred images and reduced contrast. Such impairments increase the risk of inaccurate evaluations and misinterpretations in VBMS. To address these limitations, we propose an Expectation Maximization Reconstruction Transformer (EMResformer) for single image rain streak removal. The EMResformer retains the key self-attention values for feature aggregation, enhancing local features to produce superior image reconstruction. Specifically, we propose an Expectation Maximization Block seamlessly integrated into the single image rain streak removal network, enhancing its ability to eliminate superfluous information and restore a cleaner background image. Additionally, to further enhance local information for improved detail rendition, we introduce a Local Model Residual Block, which integrates two local model blocks along with a sequence of convolutions and activation functions. This integration synergistically facilitates the extraction of more pertinent features for enhanced single image rain streak removal. Extensive experiments validate that our proposed EMResformer surpasses current state-of-the-art single image rain streak removal methods on both synthetic and real-world datasets, achieving an improved balance between model complexity and single image deraining performance. Furthermore, we evaluate the effectiveness of our method in VBMS scenarios, demonstrating that high-quality imaging significantly improves the accuracy and reliability of VBMS tasks.
comment: 14 pages, 14 figures, 6 tables
☆ FreeFlux: Understanding and Exploiting Layer-Specific Roles in RoPE-Based MMDiT for Versatile Image Editing
The integration of Rotary Position Embedding (RoPE) in Multimodal Diffusion Transformer (MMDiT) has significantly enhanced text-to-image generation quality. However, the fundamental reliance of self-attention layers on positional embedding versus query-key similarity during generation remains an intriguing question. We present the first mechanistic analysis of RoPE-based MMDiT models (e.g., FLUX), introducing an automated probing strategy that disentangles positional information versus content dependencies by strategically manipulating RoPE during generation. Our analysis reveals distinct dependency patterns that do not straightforwardly correlate with depth, offering new insights into the layer-specific roles in RoPE-based MMDiT. Based on these findings, we propose a training-free, task-specific image editing framework that categorizes editing tasks into three types: position-dependent editing (e.g., object addition), content similarity-dependent editing (e.g., non-rigid editing), and region-preserved editing (e.g., background replacement). For each type, we design tailored key-value injection strategies based on the characteristics of the editing task. Extensive qualitative and quantitative evaluations demonstrate that our method outperforms state-of-the-art approaches, particularly in preserving original semantic content and achieving seamless modifications.
comment: Project page: https://wtybest.github.io/projects/FreeFlux/
☆ Selective Complementary Feature Fusion and Modal Feature Compression Interaction for Brain Tumor Segmentation
Efficient modal feature fusion strategy is the key to achieve accurate segmentation of brain glioma. However, due to the specificity of different MRI modes, it is difficult to carry out cross-modal fusion with large differences in modal features, resulting in the model ignoring rich feature information. On the other hand, the problem of multi-modal feature redundancy interaction occurs in parallel networks due to the proliferation of feature dimensions, further increase the difficulty of multi-modal feature fusion at the bottom end. In order to solve the above problems, we propose a noval complementary feature compression interaction network (CFCI-Net), which realizes the complementary fusion and compression interaction of multi-modal feature information with an efficient mode fusion strategy. Firstly, we propose a selective complementary feature fusion (SCFF) module, which adaptively fuses rich cross-modal feature information by complementary soft selection weights. Secondly, a modal feature compression interaction (MFCI) transformer is proposed to deal with the multi-mode fusion redundancy problem when the feature dimension surges. The MFCI transformer is composed of modal feature compression (MFC) and modal feature interaction (MFI) to realize redundancy feature compression and multi-mode feature interactive learning. %In MFI, we propose a hierarchical interactive attention mechanism based on multi-head attention. Evaluations on the BraTS2019 and BraTS2020 datasets demonstrate that CFCI-Net achieves superior results compared to state-of-the-art models. Code: https://github.com/CDmm0/CFCI-Net
☆ Binarized Mamba-Transformer for Lightweight Quad Bayer HybridEVS Demosaicing CVPR 2025
Quad Bayer demosaicing is the central challenge for enabling the widespread application of Hybrid Event-based Vision Sensors (HybridEVS). Although existing learning-based methods that leverage long-range dependency modeling have achieved promising results, their complexity severely limits deployment on mobile devices for real-world applications. To address these limitations, we propose a lightweight Mamba-based binary neural network designed for efficient and high-performing demosaicing of HybridEVS RAW images. First, to effectively capture both global and local dependencies, we introduce a hybrid Binarized Mamba-Transformer architecture that combines the strengths of the Mamba and Swin Transformer architectures. Next, to significantly reduce computational complexity, we propose a binarized Mamba (Bi-Mamba), which binarizes all projections while retaining the core Selective Scan in full precision. Bi-Mamba also incorporates additional global visual information to enhance global context and mitigate precision loss. We conduct quantitative and qualitative experiments to demonstrate the effectiveness of BMTNet in both performance and computational efficiency, providing a lightweight demosaicing solution suited for real-world edge devices. Our codes and models are available at https://github.com/Clausy9/BMTNet.
comment: Accepted by CVPR 2025
☆ Coupling deep and handcrafted features to assess smile genuineness SP
Assessing smile genuineness from video sequences is a vital topic concerned with recognizing facial expression and linking them with the underlying emotional states. There have been a number of techniques proposed underpinned with handcrafted features, as well as those that rely on deep learning to elaborate the useful features. As both of these approaches have certain benefits and limitations, in this work we propose to combine the features learned by a long short-term memory network with the features handcrafted to capture the dynamics of facial action units. The results of our experiments indicate that the proposed solution is more effective than the baseline techniques and it allows for assessing the smile genuineness from video sequences in real-time.
comment: Submitted to SPIE Defense + Commercial Sensing 2024
☆ Uncertainty Meets Diversity: A Comprehensive Active Learning Framework for Indoor 3D Object Detection CVPR 2025
Active learning has emerged as a promising approach to reduce the substantial annotation burden in 3D object detection tasks, spurring several initiatives in outdoor environments. However, its application in indoor environments remains unexplored. Compared to outdoor 3D datasets, indoor datasets face significant challenges, including fewer training samples per class, a greater number of classes, more severe class imbalance, and more diverse scene types and intra-class variances. This paper presents the first study on active learning for indoor 3D object detection, where we propose a novel framework tailored for this task. Our method incorporates two key criteria - uncertainty and diversity - to actively select the most ambiguous and informative unlabeled samples for annotation. The uncertainty criterion accounts for both inaccurate detections and undetected objects, ensuring that the most ambiguous samples are prioritized. Meanwhile, the diversity criterion is formulated as a joint optimization problem that maximizes the diversity of both object class distributions and scene types, using a new Class-aware Adaptive Prototype (CAP) bank. The CAP bank dynamically allocates representative prototypes to each class, helping to capture varying intra-class diversity across different categories. We evaluate our method on SUN RGB-D and ScanNetV2, where it outperforms baselines by a significant margin, achieving over 85% of fully-supervised performance with just 10% of the annotation budget.
comment: Accepted by CVPR 2025
☆ Probabilistic Prompt Distribution Learning for Animal Pose Estimation CVPR 2025
Multi-species animal pose estimation has emerged as a challenging yet critical task, hindered by substantial visual diversity and uncertainty. This paper challenges the problem by efficient prompt learning for Vision-Language Pretrained (VLP) models, \textit{e.g.} CLIP, aiming to resolve the cross-species generalization problem. At the core of the solution lies in the prompt designing, probabilistic prompt modeling and cross-modal adaptation, thereby enabling prompts to compensate for cross-modal information and effectively overcome large data variances under unbalanced data distribution. To this end, we propose a novel probabilistic prompting approach to fully explore textual descriptions, which could alleviate the diversity issues caused by long-tail property and increase the adaptability of prompts on unseen category instance. Specifically, we first introduce a set of learnable prompts and propose a diversity loss to maintain distinctiveness among prompts, thus representing diverse image attributes. Diverse textual probabilistic representations are sampled and used as the guidance for the pose estimation. Subsequently, we explore three different cross-modal fusion strategies at spatial level to alleviate the adverse impacts of visual uncertainty. Extensive experiments on multi-species animal pose benchmarks show that our method achieves the state-of-the-art performance under both supervised and zero-shot settings. The code is available at https://github.com/Raojiyong/PPAP.
comment: Accepted by CVPR 2025
☆ OSLoPrompt: Bridging Low-Supervision Challenges and Open-Set Domain Generalization in CLIP CVPR 2025
We introduce Low-Shot Open-Set Domain Generalization (LSOSDG), a novel paradigm unifying low-shot learning with open-set domain generalization (ODG). While prompt-based methods using models like CLIP have advanced DG, they falter in low-data regimes (e.g., 1-shot) and lack precision in detecting open-set samples with fine-grained semantics related to training classes. To address these challenges, we propose OSLOPROMPT, an advanced prompt-learning framework for CLIP with two core innovations. First, to manage limited supervision across source domains and improve DG, we introduce a domain-agnostic prompt-learning mechanism that integrates adaptable domain-specific cues and visually guided semantic attributes through a novel cross-attention module, besides being supported by learnable domain- and class-generic visual prompts to enhance cross-modal adaptability. Second, to improve outlier rejection during inference, we classify unfamiliar samples as "unknown" and train specialized prompts with systematically synthesized pseudo-open samples that maintain fine-grained relationships to known classes, generated through a targeted query strategy with off-the-shelf foundation models. This strategy enhances feature learning, enabling our model to detect open samples with varied granularity more effectively. Extensive evaluations across five benchmarks demonstrate that OSLOPROMPT establishes a new state-of-the-art in LSOSDG, significantly outperforming existing methods.
comment: Accepted to CVPR 2025
☆ MarkushGrapher: Joint Visual and Textual Recognition of Markush Structures
The automated analysis of chemical literature holds promise to accelerate discovery in fields such as material science and drug development. In particular, search capabilities for chemical structures and Markush structures (chemical structure templates) within patent documents are valuable, e.g., for prior-art search. Advancements have been made in the automatic extraction of chemical structures from text and images, yet the Markush structures remain largely unexplored due to their complex multi-modal nature. In this work, we present MarkushGrapher, a multi-modal approach for recognizing Markush structures in documents. Our method jointly encodes text, image, and layout information through a Vision-Text-Layout encoder and an Optical Chemical Structure Recognition vision encoder. These representations are merged and used to auto-regressively generate a sequential graph representation of the Markush structure along with a table defining its variable groups. To overcome the lack of real-world training data, we propose a synthetic data generation pipeline that produces a wide range of realistic Markush structures. Additionally, we present M2S, the first annotated benchmark of real-world Markush structures, to advance research on this challenging task. Extensive experiments demonstrate that our approach outperforms state-of-the-art chemistry-specific and general-purpose vision-language models in most evaluation settings. Code, models, and datasets will be available.
☆ Hyperspectral Imaging for Identifying Foreign Objects on Pork Belly
Ensuring food safety and quality is critical in the food processing industry, where the detection of contaminants remains a persistent challenge. This study presents an automated solution for detecting foreign objects on pork belly meat using hyperspectral imaging (HSI). A hyperspectral camera was used to capture data across various bands in the near-infrared (NIR) spectrum (900-1700 nm), enabling accurate identification of contaminants that are often undetectable through traditional visual inspection methods. The proposed solution combines pre-processing techniques with a segmentation approach based on a lightweight Vision Transformer (ViT) to distinguish contaminants from meat, fat, and conveyor belt materials. The adopted strategy demonstrates high detection accuracy and training efficiency, while also addressing key industrial challenges such as inherent noise, temperature variations, and spectral similarity between contaminants and pork belly. Experimental results validate the effectiveness of hyperspectral imaging in enhancing food safety, highlighting its potential for broad real-time applications in automated quality control processes.
comment: Article under review by Computers in Industry, Elsevier
☆ 3-D Image-to-Image Fusion in Lightsheet Microscopy by Two-Step Adversarial Network: Contribution to the FuseMyCells Challenge
Lightsheet microscopy is a powerful 3-D imaging technique that addresses limitations of traditional optical and confocal microscopy but suffers from a low penetration depth and reduced image quality at greater depths. Multiview lightsheet microscopy improves 3-D resolution by combining multiple views but simultaneously increasing the complexity and the photon budget, leading to potential photobleaching and phototoxicity. The FuseMyCells challenge, organized in conjunction with the IEEE ISBI 2025 conference, aims to benchmark deep learning-based solutions for fusing high-quality 3-D volumes from single 3-D views, potentially simplifying procedures and conserving the photon budget. In this work, we propose a contribution to the FuseMyCells challenge based on a two-step procedure. The first step processes a downsampled version of the image to capture the entire region of interest, while the second step uses a patch-based approach for high-resolution inference, incorporating adversarial loss to enhance visual outcomes. This method addresses challenges related to high data resolution, the necessity of global context, and the preservation of high-frequency details. Experimental results demonstrate the effectiveness of our approach, highlighting its potential to improve 3-D image fusion quality and extend the capabilities of lightsheet microscopy. The average SSIM for the nucleus and membranes is greater than 0.85 and 0.91, respectively.
☆ Disentangled and Interpretable Multimodal Attention Fusion for Cancer Survival Prediction
To improve the prediction of cancer survival using whole-slide images and transcriptomics data, it is crucial to capture both modality-shared and modality-specific information. However, multimodal frameworks often entangle these representations, limiting interpretability and potentially suppressing discriminative features. To address this, we propose Disentangled and Interpretable Multimodal Attention Fusion (DIMAF), a multimodal framework that separates the intra- and inter-modal interactions within an attention-based fusion mechanism to learn distinct modality-specific and modality-shared representations. We introduce a loss based on Distance Correlation to promote disentanglement between these representations and integrate Shapley additive explanations to assess their relative contributions to survival prediction. We evaluate DIMAF on four public cancer survival datasets, achieving a relative average improvement of 1.85% in performance and 23.7% in disentanglement compared to current state-of-the-art multimodal models. Beyond improved performance, our interpretable framework enables a deeper exploration of the underlying interactions between and within modalities in cancer biology.
comment: 11 pages, 1 figure, 3 tables
☆ PoseTraj: Pose-Aware Trajectory Control in Video Diffusion
Recent advancements in trajectory-guided video generation have achieved notable progress. However, existing models still face challenges in generating object motions with potentially changing 6D poses under wide-range rotations, due to limited 3D understanding. To address this problem, we introduce PoseTraj, a pose-aware video dragging model for generating 3D-aligned motion from 2D trajectories. Our method adopts a novel two-stage pose-aware pretraining framework, improving 3D understanding across diverse trajectories. Specifically, we propose a large-scale synthetic dataset PoseTraj-10K, containing 10k videos of objects following rotational trajectories, and enhance the model perception of object pose changes by incorporating 3D bounding boxes as intermediate supervision signals. Following this, we fine-tune the trajectory-controlling module on real-world videos, applying an additional camera-disentanglement module to further refine motion accuracy. Experiments on various benchmark datasets demonstrate that our method not only excels in 3D pose-aligned dragging for rotational trajectories but also outperforms existing baselines in trajectory accuracy and video quality.
comment: Code, data and project page: https://robingg1.github.io/Pose-Traj/
☆ Bokehlicious: Photorealistic Bokeh Rendering with Controllable Apertures
Bokeh rendering methods play a key role in creating the visually appealing, softly blurred backgrounds seen in professional photography. While recent learning-based approaches show promising results, generating realistic Bokeh with variable strength remains challenging. Existing methods require additional inputs and suffer from unrealistic Bokeh reproduction due to reliance on synthetic data. In this work, we propose Bokehlicious, a highly efficient network that provides intuitive control over Bokeh strength through an Aperture-Aware Attention mechanism, mimicking the physical lens aperture. To further address the lack of high-quality real-world data, we present RealBokeh, a novel dataset featuring 23,000 high-resolution (24-MP) images captured by professional photographers, covering diverse scenes with varied aperture and focal length settings. Evaluations on both our new RealBokeh and established Bokeh rendering benchmarks show that Bokehlicious consistently outperforms SOTA methods while significantly reducing computational cost and exhibiting strong zero-shot generalization. Our method and dataset further extend to defocus deblurring, achieving competitive results on the RealDOF benchmark. Our code and data can be found at https://github.com/TimSeizinger/Bokehlicious
comment: Technical Report
☆ Shining Yourself: High-Fidelity Ornaments Virtual Try-on with Diffusion Model
While virtual try-on for clothes and shoes with diffusion models has gained attraction, virtual try-on for ornaments, such as bracelets, rings, earrings, and necklaces, remains largely unexplored. Due to the intricate tiny patterns and repeated geometric sub-structures in most ornaments, it is much more difficult to guarantee identity and appearance consistency under large pose and scale variances between ornaments and models. This paper proposes the task of virtual try-on for ornaments and presents a method to improve the geometric and appearance preservation of ornament virtual try-ons. Specifically, we estimate an accurate wearing mask to improve the alignments between ornaments and models in an iterative scheme alongside the denoising process. To preserve structure details, we further regularize attention layers to map the reference ornament mask to the wearing mask in an implicit way. Experimental results demonstrate that our method successfully wears ornaments from reference images onto target models, handling substantial differences in scale and pose while preserving identity and achieving realistic visual effects.
☆ PromptHash: Affinity-Prompted Collaborative Cross-Modal Learning for Adaptive Hashing Retrieval CVPR2025
Cross-modal hashing is a promising approach for efficient data retrieval and storage optimization. However, contemporary methods exhibit significant limitations in semantic preservation, contextual integrity, and information redundancy, which constrains retrieval efficacy. We present PromptHash, an innovative framework leveraging affinity prompt-aware collaborative learning for adaptive cross-modal hashing. We propose an end-to-end framework for affinity-prompted collaborative hashing, with the following fundamental technical contributions: (i) a text affinity prompt learning mechanism that preserves contextual information while maintaining parameter efficiency, (ii) an adaptive gated selection fusion architecture that synthesizes State Space Model with Transformer network for precise cross-modal feature integration, and (iii) a prompt affinity alignment strategy that bridges modal heterogeneity through hierarchical contrastive learning. To the best of our knowledge, this study presents the first investigation into affinity prompt awareness within collaborative cross-modal adaptive hash learning, establishing a paradigm for enhanced semantic consistency across modalities. Through comprehensive evaluation on three benchmark multi-label datasets, PromptHash demonstrates substantial performance improvements over existing approaches. Notably, on the NUS-WIDE dataset, our method achieves significant gains of 18.22% and 18.65% in image-to-text and text-to-image retrieval tasks, respectively. The code is publicly available at https://github.com/ShiShuMo/PromptHash.
comment: Accepted by CVPR2025
☆ Landmarks Are Alike Yet Distinct: Harnessing Similarity and Individuality for One-Shot Medical Landmark Detection
Landmark detection plays a crucial role in medical imaging applications such as disease diagnosis, bone age estimation, and therapy planning. However, training models for detecting multiple landmarks simultaneously often encounters the "seesaw phenomenon", where improvements in detecting certain landmarks lead to declines in detecting others. Yet, training a separate model for each landmark increases memory usage and computational overhead. To address these challenges, we propose a novel approach based on the belief that "landmarks are distinct" by training models with pseudo-labels and template data updated continuously during the training process, where each model is dedicated to detecting a single landmark to achieve high accuracy. Furthermore, grounded on the belief that "landmarks are also alike", we introduce an adapter-based fusion model, combining shared weights with landmark-specific weights, to efficiently share model parameters while allowing flexible adaptation to individual landmarks. This approach not only significantly reduces memory and computational resource requirements but also effectively mitigates the seesaw phenomenon in multi-landmark training. Experimental results on publicly available medical image datasets demonstrate that the single-landmark models significantly outperform traditional multi-point joint training models in detecting individual landmarks. Although our adapter-based fusion model shows slightly lower performance compared to the combined results of all single-landmark models, it still surpasses the current state-of-the-art methods while achieving a notable improvement in resource efficiency.
☆ Expert Race: A Flexible Routing Strategy for Scaling Diffusion Transformer with Mixture of Experts
Diffusion models have emerged as mainstream framework in visual generation. Building upon this success, the integration of Mixture of Experts (MoE) methods has shown promise in enhancing model scalability and performance. In this paper, we introduce Race-DiT, a novel MoE model for diffusion transformers with a flexible routing strategy, Expert Race. By allowing tokens and experts to compete together and select the top candidates, the model learns to dynamically assign experts to critical tokens. Additionally, we propose per-layer regularization to address challenges in shallow layer learning, and router similarity loss to prevent mode collapse, ensuring better expert utilization. Extensive experiments on ImageNet validate the effectiveness of our approach, showcasing significant performance gains while promising scaling properties.
Semantic-Guided Global-Local Collaborative Networks for Lightweight Image Super-Resolution
Single-Image Super-Resolution (SISR) plays a pivotal role in enhancing the accuracy and reliability of measurement systems, which are integral to various vision-based instrumentation and measurement applications. These systems often require clear and detailed images for precise object detection and recognition. However, images captured by visual measurement tools frequently suffer from degradation, including blurring and loss of detail, which can impede measurement accuracy.As a potential remedy, we in this paper propose a Semantic-Guided Global-Local Collaborative Network (SGGLC-Net) for lightweight SISR. Our SGGLC-Net leverages semantic priors extracted from a pre-trained model to guide the super-resolution process, enhancing image detail quality effectively. Specifically,we propose a Semantic Guidance Module that seamlessly integrates the semantic priors into the super-resolution network, enabling the network to more adeptly capture and utilize semantic priors, thereby enhancing image details. To further explore both local and non-local interactions for improved detail rendition,we propose a Global-Local Collaborative Module, which features three Global and Local Detail Enhancement Modules, as well as a Hybrid Attention Mechanism to work together to efficiently learn more useful features. Our extensive experiments show that SGGLC-Net achieves competitive PSNR and SSIM values across multiple benchmark datasets, demonstrating higher performance with the multi-adds reduction of 12.81G compared to state-of-the-art lightweight super-resolution approaches. These improvements underscore the potential of our approach to enhance the precision and effectiveness of visual measurement systems. Codes are at https://github.com/fanamber831/SGGLC-Net.
comment: 14 pages,13 figures, 9 tables
☆ SALT: Singular Value Adaptation with Low-Rank Transformation
The complex nature of medical image segmentation calls for models that are specifically designed to capture detailed, domain-specific features. Large foundation models offer considerable flexibility, yet the cost of fine-tuning these models remains a significant barrier. Parameter-Efficient Fine-Tuning (PEFT) methods, such as Low-Rank Adaptation (LoRA), efficiently update model weights with low-rank matrices but may suffer from underfitting when the chosen rank is insufficient to capture domain-specific nuances. Conversely, full-rank Singular Value Decomposition (SVD) based methods provide comprehensive updates by modifying all singular values, yet they often lack flexibility and exhibit variable performance across datasets. We propose SALT (Singular Value Adaptation with Low-Rank Transformation), a method that selectively adapts the most influential singular values using trainable scale and shift parameters while complementing this with a low-rank update for the remaining subspace. This hybrid approach harnesses the advantages of both LoRA and SVD, enabling effective adaptation without relying on increasing model size or depth. Evaluated on 5 challenging medical datasets, ranging from as few as 20 samples to 1000, SALT outperforms state-of-the-art PEFT (LoRA and SVD) by 2% to 5% in Dice with only 3.9% trainable parameters, demonstrating robust adaptation even in low-resource settings. The code for SALT is available at: https://github.com/BioMedIA-MBZUAI/SALT
☆ Closer to Ground Truth: Realistic Shape and Appearance Labeled Data Generation for Unsupervised Underwater Image Segmentation ECCV
Solving fish segmentation in underwater videos, a real-world problem of great practical value in marine and aquaculture industry, is a challenging task due to the difficulty of the filming environment, poor visibility and limited existing annotated underwater fish data. In order to overcome these obstacles, we introduce a novel two stage unsupervised segmentation approach that requires no human annotations and combines artificially created and real images. Our method generates challenging synthetic training data, by placing virtual fish in real-world underwater habitats, after performing fish transformations such as Thin Plate Spline shape warping and color Histogram Matching, which realistically integrate synthetic fish into the backgrounds, making the generated images increasingly closer to the real world data with every stage of our approach. While we validate our unsupervised method on the popular DeepFish dataset, obtaining a performance close to a fully-supervised SoTA model, we further show its effectiveness on the specific case of salmon segmentation in underwater videos, for which we introduce DeepSalmon, the largest dataset of its kind in the literature (30 GB). Moreover, on both datasets we prove the capability of our approach to boost the performance of the fully-supervised SoTA model.
comment: Proceedings of ECCVW 2024
☆ Hybrid-Level Instruction Injection for Video Token Compression in Multi-modal Large Language Models CVPR2025
Recent Multi-modal Large Language Models (MLLMs) have been challenged by the computational overhead resulting from massive video frames, often alleviated through compression strategies. However, the visual content is not equally contributed to user instructions, existing strategies (\eg, average pool) inevitably lead to the loss of potentially useful information. To tackle this, we propose the Hybrid-level Instruction Injection Strategy for Conditional Token Compression in MLLMs (HICom), utilizing the instruction as a condition to guide the compression from both local and global levels. This encourages the compression to retain the maximum amount of user-focused information while reducing visual tokens to minimize computational burden. Specifically, the instruction condition is injected into the grouped visual tokens at the local level and the learnable tokens at the global level, and we conduct the attention mechanism to complete the conditional compression. From the hybrid-level compression, the instruction-relevant visual parts are highlighted while the temporal-spatial structure is also preserved for easier understanding of LLMs. To further unleash the potential of HICom, we introduce a new conditional pre-training stage with our proposed dataset HICom-248K. Experiments show that our HICom can obtain distinguished video understanding ability with fewer tokens, increasing the performance by 2.43\% average on three multiple-choice QA benchmarks and saving 78.8\% tokens compared with the SOTA method. The code is available at https://github.com/lntzm/HICom.
comment: Accepted to CVPR2025
☆ Agentic Keyframe Search for Video Question Answering
Video question answering (VideoQA) enables machines to extract and comprehend key information from videos through natural language interaction, which is a critical step towards achieving intelligence. However, the demand for a thorough understanding of videos and high computational costs still limit the widespread applications of VideoQA. To address it, we propose Agentic Keyframe Search (AKeyS), a simple yet powerful algorithm for identifying keyframes in the VideoQA task. It can effectively distinguish key information from redundant, irrelevant content by leveraging modern language agents to direct classical search algorithms. Specifically, we first segment the video and organize it as a tree structure. Then, AKeyS uses a language agent to estimate heuristics and movement costs while dynamically expanding nodes. Finally, the agent determines if sufficient keyframes have been collected based on termination conditions and provides answers. Extensive experiments on the EgoSchema and NExT-QA datasets show that AKeyS outperforms all previous methods with the highest keyframe searching efficiency, which means it can accurately identify key information and conduct effective visual reasoning with minimal computational overhead. For example, on the EgoSchema subset, it achieves 1.8% higher accuracy while processing only 43.5% of the frames compared to VideoTree. We believe that AKeyS represents a significant step towards building intelligent agents for video understanding. The code is publicly available at https://github.com/fansunqi/AKeyS.
☆ Single Image Iterative Subject-driven Generation and Editing
Personalizing image generation and editing is particularly challenging when we only have a few images of the subject, or even a single image. A common approach to personalization is concept learning, which can integrate the subject into existing models relatively quickly, but produces images whose quality tends to deteriorate quickly when the number of subject images is small. Quality can be improved by pre-training an encoder, but training restricts generation to the training distribution, and is time consuming. It is still an open hard challenge to personalize image generation and editing from a single image without training. Here, we present SISO, a novel, training-free approach based on optimizing a similarity score with an input subject image. More specifically, SISO iteratively generates images and optimizes the model based on loss of similarity with the given subject image until a satisfactory level of similarity is achieved, allowing plug-and-play optimization to any image generator. We evaluated SISO in two tasks, image editing and image generation, using a diverse data set of personal subjects, and demonstrate significant improvements over existing methods in image quality, subject fidelity, and background preservation.
comment: Project page is at https://siso-paper.github.io/
☆ GraspCoT: Integrating Physical Property Reasoning for 6-DoF Grasping under Flexible Language Instructions
Flexible instruction-guided 6-DoF grasping is a significant yet challenging task for real-world robotic systems. Existing methods utilize the contextual understanding capabilities of the large language models (LLMs) to establish mappings between expressions and targets, allowing robots to comprehend users' intentions in the instructions. However, the LLM's knowledge about objects' physical properties remains underexplored despite its tight relevance to grasping. In this work, we propose GraspCoT, a 6-DoF grasp detection framework that integrates a Chain-of-Thought (CoT) reasoning mechanism oriented to physical properties, guided by auxiliary question-answering (QA) tasks. Particularly, we design a set of QA templates to enable hierarchical reasoning that includes three stages: target parsing, physical property analysis, and grasp action selection. Moreover, GraspCoT presents a unified multimodal LLM architecture, which encodes multi-view observations of 3D scenes into 3D-aware visual tokens, and then jointly embeds these visual tokens with CoT-derived textual tokens within LLMs to generate grasp pose predictions. Furthermore, we present IntentGrasp, a large-scale benchmark that fills the gap in public datasets for multi-object grasp detection under diverse and indirect verbal commands. Extensive experiments on IntentGrasp demonstrate the superiority of our method, with additional validation in real-world robotic applications confirming its practicality. Codes and data will be released.
☆ GazeSCRNN: Event-based Near-eye Gaze Tracking using a Spiking Neural Network
This work introduces GazeSCRNN, a novel spiking convolutional recurrent neural network designed for event-based near-eye gaze tracking. Leveraging the high temporal resolution, energy efficiency, and compatibility of Dynamic Vision Sensor (DVS) cameras with event-based systems, GazeSCRNN uses a spiking neural network (SNN) to address the limitations of traditional gaze-tracking systems in capturing dynamic movements. The proposed model processes event streams from DVS cameras using Adaptive Leaky-Integrate-and-Fire (ALIF) neurons and a hybrid architecture optimized for spatio-temporal data. Extensive evaluations on the EV-Eye dataset demonstrate the model's accuracy in predicting gaze vectors. In addition, we conducted ablation studies to reveal the importance of the ALIF neurons, dynamic event framing, and training techniques, such as Forward-Propagation-Through-Time, in enhancing overall system performance. The most accurate model achieved a Mean Angle Error (MAE) of 6.034{\deg} and a Mean Pupil Error (MPE) of 2.094 mm. Consequently, this work is pioneering in demonstrating the feasibility of using SNNs for event-based gaze tracking, while shedding light on critical challenges and opportunities for further improvement.
☆ SenseExpo: Efficient Autonomous Exploration with Prediction Information from Lightweight Neural Networks
This paper proposes SenseExpo, an efficient autonomous exploration framework based on a lightweight prediction network, which addresses the limitations of traditional methods in computational overhead and environmental generalization. By integrating Generative Adversarial Networks (GANs), Transformer, and Fast Fourier Convolution (FFC), we designed a lightweight prediction model with merely 709k parameters. Our smallest model achieves better performance on the KTH dataset than U-net (24.5M) and LaMa (51M), delivering PSNR 9.026 and SSIM 0.718, particularly representing a 38.7% PSNR improvement over the 51M-parameter LaMa model. Cross-domain testing demonstrates its strong generalization capability, with an FID score of 161.55 on the HouseExpo dataset, significantly outperforming comparable methods. Regarding exploration efficiency, on the KTH dataset,SenseExpo demonstrates approximately a 67.9% time reduction in exploration time compared to MapEx. On the MRPB 1.0 dataset, SenseExpo achieves 77.1% time reduction roughly compared to MapEx. Deployed as a plug-and-play ROS node, the framework seamlessly integrates with existing navigation systems, providing an efficient solution for resource-constrained devices.
☆ Automating 3D Dataset Generation with Neural Radiance Fields
3D detection is a critical task to understand spatial characteristics of the environment and is used in a variety of applications including robotics, augmented reality, and image retrieval. Training performant detection models require diverse, precisely annotated, and large scale datasets that involve complex and expensive creation processes. Hence, there are only few public 3D datasets that are additionally limited in their range of classes. In this work, we propose a pipeline for automatic generation of 3D datasets for arbitrary objects. By utilizing the universal 3D representation and rendering capabilities of Radiance Fields, our pipeline generates high quality 3D models for arbitrary objects. These 3D models serve as input for a synthetic dataset generator. Our pipeline is fast, easy to use and has a high degree of automation. Our experiments demonstrate, that 3D pose estimation networks, trained with our generated datasets, archive strong performance in typical application scenarios.
comment: Accepted and presented at ROBOVIS 2025 (5th International Conference on Robotics, Computer Vision and Intelligent Systems)
☆ Animating the Uncaptured: Humanoid Mesh Animation with Video Diffusion Models
Animation of humanoid characters is essential in various graphics applications, but requires significant time and cost to create realistic animations. We propose an approach to synthesize 4D animated sequences of input static 3D humanoid meshes, leveraging strong generalized motion priors from generative video models -- as such video models contain powerful motion information covering a wide variety of human motions. From an input static 3D humanoid mesh and a text prompt describing the desired animation, we synthesize a corresponding video conditioned on a rendered image of the 3D mesh. We then employ an underlying SMPL representation to animate the corresponding 3D mesh according to the video-generated motion, based on our motion optimization. This enables a cost-effective and accessible solution to enable the synthesis of diverse and realistic 4D animations.
comment: 16 pages, 10 figures
☆ SpiLiFormer: Enhancing Spiking Transformers with Lateral Inhibition
Spiking Neural Networks (SNNs) based on Transformers have garnered significant attention due to their superior performance and high energy efficiency. However, the spiking attention modules of most existing Transformer-based SNNs are adapted from those of analog Transformers, failing to fully address the issue of over-allocating attention to irrelevant contexts. To fix this fundamental yet overlooked issue, we propose a Lateral Inhibition-inspired Spiking Transformer (SpiLiFormer). It emulates the brain's lateral inhibition mechanism, guiding the model to enhance attention to relevant tokens while suppressing attention to irrelevant ones. Our model achieves state-of-the-art (SOTA) performance across multiple datasets, including CIFAR-10 (+0.45%), CIFAR-100 (+0.48%), CIFAR10-DVS (+2.70%), N-Caltech101 (+1.94%), and ImageNet-1K (+1.6%). Notably, on the ImageNet-1K dataset, SpiLiFormer (69.9M parameters, 4 time steps, 384 resolution) outperforms E-SpikeFormer (173.0M parameters, 8 time steps, 384 resolution), a SOTA spiking Transformer, by 0.46% using only 39% of the parameters and half the time steps. Our code and training checkpoints will be released upon acceptance.
comment: 16 pages, 7 figures
☆ DIPLI: Deep Image Prior Lucky Imaging for Blind Astronomical Image Restoration
Contemporary image restoration and super-resolution techniques effectively harness deep neural networks, markedly outperforming traditional methods. However, astrophotography presents unique challenges for deep learning due to limited training data. This work explores hybrid strategies, such as the Deep Image Prior (DIP) model, which facilitates blind training but is susceptible to overfitting, artifact generation, and instability when handling noisy images. We propose enhancements to the DIP model's baseline performance through several advanced techniques. First, we refine the model to process multiple frames concurrently, employing the Back Projection method and the TVNet model. Next, we adopt a Markov approach incorporating Monte Carlo estimation, Langevin dynamics, and a variational input technique to achieve unbiased estimates with minimal variance and counteract overfitting effectively. Collectively, these modifications reduce the likelihood of noise learning and mitigate loss function fluctuations during training, enhancing result stability. We validated our algorithm across multiple image sets of astronomical and celestial objects, achieving performance that not only mitigates limitations of Lucky Imaging, a classical computer vision technique that remains a standard in astronomical image reconstruction but surpasses the original DIP model, state of the art transformer- and diffusion-based models, underscoring the significance of our improvements.
comment: 10 pages, 7 figures, 2 tables
☆ A Survey on fMRI-based Brain Decoding for Reconstructing Multimodal Stimuli
In daily life, we encounter diverse external stimuli, such as images, sounds, and videos. As research in multimodal stimuli and neuroscience advances, fMRI-based brain decoding has become a key tool for understanding brain perception and its complex cognitive processes. Decoding brain signals to reconstruct stimuli not only reveals intricate neural mechanisms but also drives progress in AI, disease treatment, and brain-computer interfaces. Recent advancements in neuroimaging and image generation models have significantly improved fMRI-based decoding. While fMRI offers high spatial resolution for precise brain activity mapping, its low temporal resolution and signal noise pose challenges. Meanwhile, techniques like GANs, VAEs, and Diffusion Models have enhanced reconstructed image quality, and multimodal pre-trained models have boosted cross-modal decoding tasks. This survey systematically reviews recent progress in fMRI-based brain decoding, focusing on stimulus reconstruction from passive brain signals. It summarizes datasets, relevant brain regions, and categorizes existing methods by model structure. Additionally, it evaluates model performance and discusses their effectiveness. Finally, it identifies key challenges and proposes future research directions, offering valuable insights for the field. For more information and resources related to this survey, visit https://github.com/LpyNow/BrainDecodingImage.
comment: 31 pages, 6 figures
☆ Acc3D: Accelerating Single Image to 3D Diffusion Models via Edge Consistency Guided Score Distillation
We present Acc3D to tackle the challenge of accelerating the diffusion process to generate 3D models from single images. To derive high-quality reconstructions through few-step inferences, we emphasize the critical issue of regularizing the learning of score function in states of random noise. To this end, we propose edge consistency, i.e., consistent predictions across the high signal-to-noise ratio region, to enhance a pre-trained diffusion model, enabling a distillation-based refinement of the endpoint score function. Building on those distilled diffusion models, we propose an adversarial augmentation strategy to further enrich the generation detail and boost overall generation quality. The two modules complement each other, mutually reinforcing to elevate generative performance. Extensive experiments demonstrate that our Acc3D not only achieves over a $20\times$ increase in computational efficiency but also yields notable quality improvements, compared to the state-of-the-arts.
☆ STOP: Integrated Spatial-Temporal Dynamic Prompting for Video Understanding
Pre-trained on tremendous image-text pairs, vision-language models like CLIP have demonstrated promising zero-shot generalization across numerous image-based tasks. However, extending these capabilities to video tasks remains challenging due to limited labeled video data and high training costs. Recent video prompting methods attempt to adapt CLIP for video tasks by introducing learnable prompts, but they typically rely on a single static prompt for all video sequences, overlooking the diverse temporal dynamics and spatial variations that exist across frames. This limitation significantly hinders the model's ability to capture essential temporal information for effective video understanding. To address this, we propose an integrated Spatial-TempOral dynamic Prompting (STOP) model which consists of two complementary modules, the intra-frame spatial prompting and inter-frame temporal prompting. Our intra-frame spatial prompts are designed to adaptively highlight discriminative regions within each frame by leveraging intra-frame attention and temporal variation, allowing the model to focus on areas with substantial temporal dynamics and capture fine-grained spatial details. Additionally, to highlight the varying importance of frames for video understanding, we further introduce inter-frame temporal prompts, dynamically inserting prompts between frames with high temporal variance as measured by frame similarity. This enables the model to prioritize key frames and enhances its capacity to understand temporal dependencies across sequences. Extensive experiments on various video benchmarks demonstrate that STOP consistently achieves superior performance against state-of-the-art methods. The code is available at https://github.com/zhoujiahuan1991/CVPR2025-STOP.
☆ V-NAW: Video-based Noise-aware Adaptive Weighting for Facial Expression Recognition
Facial Expression Recognition (FER) plays a crucial role in human affective analysis and has been widely applied in computer vision tasks such as human-computer interaction and psychological assessment. The 8th Affective Behavior Analysis in-the-Wild (ABAW) Challenge aims to assess human emotions using the video-based Aff-Wild2 dataset. This challenge includes various tasks, including the video-based EXPR recognition track, which is our primary focus. In this paper, we demonstrate that addressing label ambiguity and class imbalance, which are known to cause performance degradation, can lead to meaningful performance improvements. Specifically, we propose Video-based Noise-aware Adaptive Weighting (V-NAW), which adaptively assigns importance to each frame in a clip to address label ambiguity and effectively capture temporal variations in facial expressions. Furthermore, we introduce a simple and effective augmentation strategy to reduce redundancy between consecutive frames, which is a primary cause of overfitting. Through extensive experiments, we validate the effectiveness of our approach, demonstrating significant improvements in video-based FER performance.
☆ Beyond the Visible: Multispectral Vision-Language Learning for Earth Observation
Vision-language models for Earth observation (EO) typically rely on the visual spectrum of data as the only model input, thus failing to leverage the rich spectral information available in the multispectral channels recorded by satellites. Therefore, in this paper, we introduce Llama3-MS-CLIP, the first vision-language model pre-trained with contrastive learning on a large-scale multispectral dataset and report on the performance gains due to the extended spectral range. Furthermore, we present the largest-to-date image-caption dataset for multispectral data, consisting of one million Sentinel-2 samples and corresponding textual descriptions generated with Llama3-LLaVA-Next and Overture Maps data. We develop a scalable captioning pipeline, which is validated by domain experts. We evaluate Llama3-MS-CLIP on multispectral zero-shot image classification and retrieval using three datasets of varying complexity. Our results demonstrate that Llama3-MS-CLIP significantly outperforms other RGB-based approaches, improving classification accuracy by 6.77% on average and retrieval performance by 4.63% mAP compared to the second-best model. Our results emphasize the relevance of multispectral vision-language learning. We release the image-caption dataset, code, and model weights under an open-source license.
☆ CausalCLIPSeg: Unlocking CLIP's Potential in Referring Medical Image Segmentation with Causal Intervention MICCAI 2024
Referring medical image segmentation targets delineating lesions indicated by textual descriptions. Aligning visual and textual cues is challenging due to their distinct data properties. Inspired by large-scale pre-trained vision-language models, we propose CausalCLIPSeg, an end-to-end framework for referring medical image segmentation that leverages CLIP. Despite not being trained on medical data, we enforce CLIP's rich semantic space onto the medical domain by a tailored cross-modal decoding method to achieve text-to-pixel alignment. Furthermore, to mitigate confounding bias that may cause the model to learn spurious correlations instead of meaningful causal relationships, CausalCLIPSeg introduces a causal intervention module which self-annotates confounders and excavates causal features from inputs for segmentation judgments. We also devise an adversarial min-max game to optimize causal features while penalizing confounding ones. Extensive experiments demonstrate the state-of-the-art performance of our proposed method. Code is available at https://github.com/WUTCM-Lab/CausalCLIPSeg.
comment: MICCAI 2024
☆ Don't Fight Hallucinations, Use Them: Estimating Image Realism using NLI over Atomic Facts AAAI-2025
Quantifying the realism of images remains a challenging problem in the field of artificial intelligence. For example, an image of Albert Einstein holding a smartphone violates common-sense because modern smartphone were invented after Einstein's death. We introduce a novel method for assessing image realism using Large Vision-Language Models (LVLMs) and Natural Language Inference (NLI). Our approach is based on the premise that LVLMs may generate hallucinations when confronted with images that defy common sense. Using LVLM to extract atomic facts from these images, we obtain a mix of accurate facts and erroneous hallucinations. We proceed by calculating pairwise entailment scores among these facts, subsequently aggregating these values to yield a singular reality score. This process serves to identify contradictions between genuine facts and hallucinatory elements, signaling the presence of images that violate common sense. Our approach has achieved a new state-of-the-art performance in zero-shot mode on the WHOOPS! dataset.
comment: Proceedings of De-Factify 4: 4nd Workshop on Multimodal Fact Checking and Hate Speech Detection, co-located with AAAI-2025
☆ UniCrossAdapter: Multimodal Adaptation of CLIP for Radiology Report Generation MICCAI 2024
Automated radiology report generation aims to expedite the tedious and error-prone reporting process for radiologists. While recent works have made progress, learning to align medical images and textual findings remains challenging due to the relative scarcity of labeled medical data. For example, datasets for this task are much smaller than those used for image captioning in computer vision. In this work, we propose to transfer representations from CLIP, a large-scale pre-trained vision-language model, to better capture cross-modal semantics between images and texts. However, directly applying CLIP is suboptimal due to the domain gap between natural images and radiology. To enable efficient adaptation, we introduce UniCrossAdapter, lightweight adapter modules that are incorporated into CLIP and fine-tuned on the target task while keeping base parameters fixed. The adapters are distributed across modalities and their interaction to enhance vision-language alignment. Experiments on two public datasets demonstrate the effectiveness of our approach, advancing state-of-the-art in radiology report generation. The proposed transfer learning framework provides a means of harnessing semantic knowledge from large-scale pre-trained models to tackle data-scarce medical vision-language tasks. Code is available at https://github.com/chauncey-tow/MRG-CLIP.
comment: MICCAI 2024 Workshop
☆ SaMam: Style-aware State Space Model for Arbitrary Image Style Transfer
Global effective receptive field plays a crucial role for image style transfer (ST) to obtain high-quality stylized results. However, existing ST backbones (e.g., CNNs and Transformers) suffer huge computational complexity to achieve global receptive fields. Recently, the State Space Model (SSM), especially the improved variant Mamba, has shown great potential for long-range dependency modeling with linear complexity, which offers a approach to resolve the above dilemma. In this paper, we develop a Mamba-based style transfer framework, termed SaMam. Specifically, a mamba encoder is designed to efficiently extract content and style information. In addition, a style-aware mamba decoder is developed to flexibly adapt to various styles. Moreover, to address the problems of local pixel forgetting, channel redundancy and spatial discontinuity of existing SSMs, we introduce both local enhancement and zigzag scan. Qualitative and quantitative results demonstrate that our SaMam outperforms state-of-the-art methods in terms of both accuracy and efficiency.
comment: 11 pages, 10 figures, 2 tables
☆ DnLUT: Ultra-Efficient Color Image Denoising via Channel-Aware Lookup Tables CVPR2025
While deep neural networks have revolutionized image denoising capabilities, their deployment on edge devices remains challenging due to substantial computational and memory requirements. To this end, we present DnLUT, an ultra-efficient lookup table-based framework that achieves high-quality color image denoising with minimal resource consumption. Our key innovation lies in two complementary components: a Pairwise Channel Mixer (PCM) that effectively captures inter-channel correlations and spatial dependencies in parallel, and a novel L-shaped convolution design that maximizes receptive field coverage while minimizing storage overhead. By converting these components into optimized lookup tables post-training, DnLUT achieves remarkable efficiency - requiring only 500KB storage and 0.1% energy consumption compared to its CNN contestant DnCNN, while delivering 20X faster inference. Extensive experiments demonstrate that DnLUT outperforms all existing LUT-based methods by over 1dB in PSNR, establishing a new state-of-the-art in resource-efficient color image denoising. The project is available at https://github.com/Stephen0808/DnLUT.
comment: Accepted by CVPR2025
☆ BlockDance: Reuse Structurally Similar Spatio-Temporal Features to Accelerate Diffusion Transformers CVPR2025
Diffusion models have demonstrated impressive generation capabilities, particularly with recent advancements leveraging transformer architectures to improve both visual and artistic quality. However, Diffusion Transformers (DiTs) continue to encounter challenges related to low inference speed, primarily due to the iterative denoising process. To address this issue, we propose BlockDance, a training-free approach that explores feature similarities at adjacent time steps to accelerate DiTs. Unlike previous feature-reuse methods that lack tailored reuse strategies for features at different scales, BlockDance prioritizes the identification of the most structurally similar features, referred to as Structurally Similar Spatio-Temporal (STSS) features. These features are primarily located within the structure-focused blocks of the transformer during the later stages of denoising. BlockDance caches and reuses these highly similar features to mitigate redundant computation, thereby accelerating DiTs while maximizing consistency with the generated results of the original model. Furthermore, considering the diversity of generated content and the varying distributions of redundant features, we introduce BlockDance-Ada, a lightweight decision-making network tailored for instance-specific acceleration. BlockDance-Ada dynamically allocates resources and provides superior content quality. Both BlockDance and BlockDance-Ada have proven effective across various generation tasks and models, achieving accelerations between 25% and 50% while maintaining generation quality.
comment: Accepted by CVPR2025
☆ Learning to Efficiently Adapt Foundation Models for Self-Supervised Endoscopic 3D Scene Reconstruction from Any Cameras
Accurate 3D scene reconstruction is essential for numerous medical tasks. Given the challenges in obtaining ground truth data, there has been an increasing focus on self-supervised learning (SSL) for endoscopic depth estimation as a basis for scene reconstruction. While foundation models have shown remarkable progress in visual tasks, their direct application to the medical domain often leads to suboptimal results. However, the visual features from these models can still enhance endoscopic tasks, emphasizing the need for efficient adaptation strategies, which still lack exploration currently. In this paper, we introduce Endo3DAC, a unified framework for endoscopic scene reconstruction that efficiently adapts foundation models. We design an integrated network capable of simultaneously estimating depth maps, relative poses, and camera intrinsic parameters. By freezing the backbone foundation model and training only the specially designed Gated Dynamic Vector-Based Low-Rank Adaptation (GDV-LoRA) with separate decoder heads, Endo3DAC achieves superior depth and pose estimation while maintaining training efficiency. Additionally, we propose a 3D scene reconstruction pipeline that optimizes depth maps' scales, shifts, and a few parameters based on our integrated network. Extensive experiments across four endoscopic datasets demonstrate that Endo3DAC significantly outperforms other state-of-the-art methods while requiring fewer trainable parameters. To our knowledge, we are the first to utilize a single network that only requires surgical videos to perform both SSL depth estimation and scene reconstruction tasks. The code will be released upon acceptance.
♻ ☆ Paint by Inpaint: Learning to Add Image Objects by Removing Them First
Image editing has advanced significantly with the introduction of text-conditioned diffusion models. Despite this progress, seamlessly adding objects to images based on textual instructions without requiring user-provided input masks remains a challenge. We address this by leveraging the insight that removing objects (Inpaint) is significantly simpler than its inverse process of adding them (Paint), attributed to inpainting models that benefit from segmentation mask guidance. Capitalizing on this realization, by implementing an automated and extensive pipeline, we curate a filtered large-scale image dataset containing pairs of images and their corresponding object-removed versions. Using these pairs, we train a diffusion model to inverse the inpainting process, effectively adding objects into images. Unlike other editing datasets, ours features natural target images instead of synthetic ones while ensuring source-target consistency by construction. Additionally, we utilize a large Vision-Language Model to provide detailed descriptions of the removed objects and a Large Language Model to convert these descriptions into diverse, natural-language instructions. Our quantitative and qualitative results show that the trained model surpasses existing models in both object addition and general editing tasks. Visit our project page for the released dataset and trained models at https://rotsteinnoam.github.io/Paint-by-Inpaint.
♻ ☆ Benchmarking Large Language Models for Handwritten Text Recognition
Traditional machine learning models for Handwritten Text Recognition (HTR) rely on supervised training, requiring extensive manual annotations, and often produce errors due to the separation between layout and text processing. In contrast, Multimodal Large Language Models (MLLMs) offer a general approach to recognizing diverse handwriting styles without the need for model-specific training. The study benchmarks various proprietary and open-source LLMs against Transkribus models, evaluating their performance on both modern and historical datasets written in English, French, German, and Italian. In addition, emphasis is placed on testing the models' ability to autonomously correct previously generated outputs. Findings indicate that proprietary models, especially Claude 3.5 Sonnet, outperform open-source alternatives in zero-shot settings. MLLMs achieve excellent results in recognizing modern handwriting and exhibit a preference for the English language due to their pre-training dataset composition. Comparisons with Transkribus show no consistent advantage for either approach. Moreover, LLMs demonstrate limited ability to autonomously correct errors in zero-shot transcriptions.
♻ ☆ Pathways on the Image Manifold: Image Editing via Video Generation
Recent advances in image editing, driven by image diffusion models, have shown remarkable progress. However, significant challenges remain, as these models often struggle to follow complex edit instructions accurately and frequently compromise fidelity by altering key elements of the original image. Simultaneously, video generation has made remarkable strides, with models that effectively function as consistent and continuous world simulators. In this paper, we propose merging these two fields by utilizing image-to-video models for image editing. We reformulate image editing as a temporal process, using pretrained video models to create smooth transitions from the original image to the desired edit. This approach traverses the image manifold continuously, ensuring consistent edits while preserving the original image's key aspects. Our approach achieves state-of-the-art results on text-based image editing, demonstrating significant improvements in both edit accuracy and image preservation. Visit our project page at https://rotsteinnoam.github.io/Frame2Frame.
♻ ☆ VideoGen-of-Thought: Step-by-step generating multi-shot video with minimal manual intervention
Current video generation models excel at short clips but fail to produce cohesive multi-shot narratives due to disjointed visual dynamics and fractured storylines. Existing solutions either rely on extensive manual scripting/editing or prioritize single-shot fidelity over cross-scene continuity, limiting their practicality for movie-like content. We introduce VideoGen-of-Thought (VGoT), a step-by-step framework that automates multi-shot video synthesis from a single sentence by systematically addressing three core challenges: (1) Narrative Fragmentation: Existing methods lack structured storytelling. We propose dynamic storyline modeling, which first converts the user prompt into concise shot descriptions, then elaborates them into detailed, cinematic specifications across five domains (character dynamics, background continuity, relationship evolution, camera movements, HDR lighting), ensuring logical narrative progression with self-validation. (2) Visual Inconsistency: Existing approaches struggle with maintaining visual consistency across shots. Our identity-aware cross-shot propagation generates identity-preserving portrait (IPP) tokens that maintain character fidelity while allowing trait variations (expressions, aging) dictated by the storyline. (3) Transition Artifacts: Abrupt shot changes disrupt immersion. Our adjacent latent transition mechanisms implement boundary-aware reset strategies that process adjacent shots' features at transition points, enabling seamless visual flow while preserving narrative continuity. VGoT generates multi-shot videos that outperform state-of-the-art baselines by 20.4% in within-shot face consistency and 17.4% in style consistency, while achieving over 100% better cross-shot consistency and 10x fewer manual adjustments than alternatives.
comment: This paper should be a refined version of arXiv:2412.02259, "VideoGen-of-Thought: A Collaborative Framework for Multi-Shot Video Generation", but I mistakenly submit it as a new paper
♻ ☆ GIVEPose: Gradual Intra-class Variation Elimination for RGB-based Category-Level Object Pose Estimation CVPR2025
Recent advances in RGBD-based category-level object pose estimation have been limited by their reliance on precise depth information, restricting their broader applicability. In response, RGB-based methods have been developed. Among these methods, geometry-guided pose regression that originated from instance-level tasks has demonstrated strong performance. However, we argue that the NOCS map is an inadequate intermediate representation for geometry-guided pose regression method, as its many-to-one correspondence with category-level pose introduces redundant instance-specific information, resulting in suboptimal results. This paper identifies the intra-class variation problem inherent in pose regression based solely on the NOCS map and proposes the Intra-class Variation-Free Consensus (IVFC) map, a novel coordinate representation generated from the category-level consensus model. By leveraging the complementary strengths of the NOCS map and the IVFC map, we introduce GIVEPose, a framework that implements Gradual Intra-class Variation Elimination for category-level object pose estimation. Extensive evaluations on both synthetic and real-world datasets demonstrate that GIVEPose significantly outperforms existing state-of-the-art RGB-based approaches, achieving substantial improvements in category-level object pose estimation. Our code is available at https://github.com/ziqin-h/GIVEPose.
comment: CVPR2025
♻ ☆ Distilling 3D distinctive local descriptors for 6D pose estimation
Three-dimensional local descriptors are crucial for encoding geometric surface properties, making them essential for various point cloud understanding tasks. Among these descriptors, GeDi has demonstrated strong zero-shot 6D pose estimation capabilities but remains computationally impractical for real-world applications due to its expensive inference process. Can we retain GeDi's effectiveness while significantly improving its efficiency? In this paper, we explore this question by introducing a knowledge distillation framework that trains an efficient student model to regress local descriptors from a GeDi teacher. Our key contributions include: an efficient large-scale training procedure that ensures robustness to occlusions and partial observations while operating under compute and storage constraints, and a novel loss formulation that handles weak supervision from non-distinctive teacher descriptors. We validate our approach on five BOP Benchmark datasets and demonstrate a significant reduction in inference time while maintaining competitive performance with existing methods, bringing zero-shot 6D pose estimation closer to real-time feasibility. Project Website: https://tev-fbk.github.io/dGeDi/
comment: Project Website: https://tev-fbk.github.io/dGeDi/
♻ ☆ Conjuring Positive Pairs for Efficient Unification of Representation Learning and Image Synthesis
While representation learning and generative modeling seek to understand visual data, unifying both domains remains unexplored. Recent Unified Self-Supervised Learning (SSL) methods have started to bridge the gap between both paradigms. However, they rely solely on semantic token reconstruction, which requires an external tokenizer during training -- introducing a significant overhead. In this work, we introduce Sorcen, a novel unified SSL framework, incorporating a synergic Contrastive-Reconstruction objective. Our Contrastive objective, "Echo Contrast", leverages the generative capabilities of Sorcen, eliminating the need for additional image crops or augmentations during training. Sorcen "generates" an echo sample in the semantic token space, forming the contrastive positive pair. Sorcen operates exclusively on precomputed tokens, eliminating the need for an online token transformation during training, thereby significantly reducing computational overhead. Extensive experiments on ImageNet-1k demonstrate that Sorcen outperforms the previous Unified SSL SoTA by 0.4%, 1.48 FID, 1.76%, and 1.53% on linear probing, unconditional image generation, few-shot learning, and transfer learning, respectively, while being 60.8% more efficient. Additionally, Sorcen surpasses previous single-crop MIM SoTA in linear probing and achieves SoTA performance in unconditional image generation, highlighting significant improvements and breakthroughs in Unified SSL models.
comment: The source code is available in https://github.com/ImaGonEs/Sorcen
♻ ☆ Multi-subject Open-set Personalization in Video Generation CVPR 2025
Video personalization methods allow us to synthesize videos with specific concepts such as people, pets, and places. However, existing methods often focus on limited domains, require time-consuming optimization per subject, or support only a single subject. We present Video Alchemist $-$ a video model with built-in multi-subject, open-set personalization capabilities for both foreground objects and background, eliminating the need for time-consuming test-time optimization. Our model is built on a new Diffusion Transformer module that fuses each conditional reference image and its corresponding subject-level text prompt with cross-attention layers. Developing such a large model presents two main challenges: dataset and evaluation. First, as paired datasets of reference images and videos are extremely hard to collect, we sample selected video frames as reference images and synthesize a clip of the target video. However, while models can easily denoise training videos given reference frames, they fail to generalize to new contexts. To mitigate this issue, we design a new automatic data construction pipeline with extensive image augmentations. Second, evaluating open-set video personalization is a challenge in itself. To address this, we introduce a personalization benchmark that focuses on accurate subject fidelity and supports diverse personalization scenarios. Finally, our extensive experiments show that our method significantly outperforms existing personalization methods in both quantitative and qualitative evaluations.
comment: CVPR 2025. Project page: https://snap-research.github.io/open-set-video-personalization/
♻ ☆ Wolf: Dense Video Captioning with a World Summarization Framework
We propose Wolf, a WOrLd summarization Framework for accurate video captioning. Wolf is an automated captioning framework that adopts a mixture-of-experts approach, leveraging complementary strengths of Vision Language Models (VLMs). By utilizing both image and video models, our framework captures different levels of information and summarizes them efficiently. Our approach can be applied to enhance video understanding, auto-labeling, and captioning. To evaluate caption quality, we introduce CapScore, an LLM-based metric to assess the similarity and quality of generated captions compared to the ground truth captions. We further build four human-annotated datasets in three domains: autonomous driving, general scenes, and robotics, to facilitate comprehensive comparisons. We show that Wolf achieves superior captioning performance compared to state-of-the-art approaches from the research community (VILA1.5, CogAgent) and commercial solutions (Gemini-Pro-1.5, GPT-4V). For instance, in comparison with GPT-4V, Wolf improves CapScore both quality-wise by 55.6% and similarity-wise by 77.4% on challenging driving videos. Finally, we establish a benchmark for video captioning and introduce a leaderboard, aiming to accelerate advancements in video understanding, captioning, and data alignment. Webpage: https://wolfv0.github.io/.
♻ ☆ ReLearn: Unlearning via Learning for Large Language Models
Current unlearning methods for large language models usually rely on reverse optimization to reduce target token probabilities. However, this paradigm disrupts the subsequent tokens prediction, degrading model performance and linguistic coherence. Moreover, existing evaluation metrics overemphasize contextual forgetting while inadequately assessing response fluency and relevance. To address these challenges, we propose ReLearn, a data augmentation and fine-tuning pipeline for effective unlearning, along with a comprehensive evaluation framework. This framework introduces Knowledge Forgetting Rate (KFR) and Knowledge Retention Rate (KRR) to measure knowledge-level preservation, and Linguistic Score (LS) to evaluate generation quality. Our experiments show that ReLearn successfully achieves targeted forgetting while preserving high-quality output. Through mechanistic analysis, we further demonstrate how reverse optimization disrupts coherent text generation, while ReLearn preserves this essential capability. Code is available at https://github.com/zjunlp/unlearn.
comment: Work in progress
♻ ☆ Karyotype AI for Precision Oncology
We present a machine learning method capable of accurately detecting chromosome abnormalities that cause blood cancers directly from microscope images of the metaphase stage of cell division. The pipeline is built on a series of fine-tuned Vision Transformers. Current state of the art (and standard clinical practice) requires expensive, manual expert analysis, whereas our pipeline takes only 15 seconds per metaphase image. Using a novel pretraining-finetuning strategy to mitigate the challenge of data scarcity, we achieve a high precision-recall score of 94% AUC for the clinically significant del(5q) and t(9;22) anomalies. Our method also unlocks zero-shot detection of rare aberrations based on model latent embeddings. The ability to quickly, accurately, and scalably diagnose genetic abnormalities directly from metaphase images could transform karyotyping practice and improve patient outcomes. We will make code publicly available.
♻ ☆ Multi-Modal Foundation Models for Computational Pathology: A Survey
Foundation models have emerged as a powerful paradigm in computational pathology (CPath), enabling scalable and generalizable analysis of histopathological images. While early developments centered on uni-modal models trained solely on visual data, recent advances have highlighted the promise of multi-modal foundation models that integrate heterogeneous data sources such as textual reports, structured domain knowledge, and molecular profiles. In this survey, we provide a comprehensive and up-to-date review of multi-modal foundation models in CPath, with a particular focus on models built upon hematoxylin and eosin (H&E) stained whole slide images (WSIs) and tile-level representations. We categorize 32 state-of-the-art multi-modal foundation models into three major paradigms: vision-language, vision-knowledge graph, and vision-gene expression. We further divide vision-language models into non-LLM-based and LLM-based approaches. Additionally, we analyze 28 available multi-modal datasets tailored for pathology, grouped into image-text pairs, instruction datasets, and image-other modality pairs. Our survey also presents a taxonomy of downstream tasks, highlights training and evaluation strategies, and identifies key challenges and future directions. We aim for this survey to serve as a valuable resource for researchers and practitioners working at the intersection of pathology and AI.
♻ ☆ Unifying 2D and 3D Vision-Language Understanding
Progress in 3D vision-language learning has been hindered by the scarcity of large-scale 3D datasets. We introduce UniVLG, a unified architecture for 2D and 3D vision-language understanding that bridges the gap between existing 2D-centric models and the rich 3D sensory data available in embodied systems. Our approach initializes most model weights from pre-trained 2D models and trains on both 2D and 3D vision-language data. We propose a novel language-conditioned mask decoder shared across 2D and 3D modalities to ground objects effectively in both RGB and RGB-D images, outperforming box-based approaches. To further reduce the domain gap between 2D and 3D, we incorporate 2D-to-3D lifting strategies, enabling UniVLG to utilize 2D data to enhance 3D performance. With these innovations, our model achieves state-of-the-art performance across multiple 3D vision-language grounding tasks, demonstrating the potential of transferring advances from 2D vision-language learning to the data-constrained 3D domain. Furthermore, co-training on both 2D and 3D data enhances performance across modalities without sacrificing 2D capabilities. By removing the reliance on 3D mesh reconstruction and ground-truth object proposals, UniVLG sets a new standard for realistic, embodied-aligned evaluation. Code and additional visualizations are available at https://univlg.github.io .
comment: The first two authors contributed equally
♻ ☆ Repurposing Stable Diffusion Attention for Training-Free Unsupervised Interactive Segmentation CVPR 2025
Recent progress in interactive point prompt based Image Segmentation allows to significantly reduce the manual effort to obtain high quality semantic labels. State-of-the-art unsupervised methods use self-supervised pre-trained models to obtain pseudo-labels which are used in training a prompt-based segmentation model. In this paper, we propose a novel unsupervised and training-free approach based solely on the self-attention of Stable Diffusion. We interpret the self-attention tensor as a Markov transition operator, which enables us to iteratively construct a Markov chain. Pixel-wise counting of the required number of iterations along the Markov chain to reach a relative probability threshold yields a Markov-iteration-map, which we simply call a Markov-map. Compared to the raw attention maps, we show that our proposed Markov-map has less noise, sharper semantic boundaries and more uniform values within semantically similar regions. We integrate the Markov-map in a simple yet effective truncated nearest neighbor framework to obtain interactive point prompt based segmentation. Despite being training-free, we experimentally show that our approach yields excellent results in terms of Number of Clicks (NoC), even outperforming state-of-the-art training based unsupervised methods in most of the datasets. Code is available at https://github.com/mkarmann/m2n2.
comment: Accepted by CVPR 2025
♻ ☆ Revealing Key Details to See Differences: A Novel Prototypical Perspective for Skeleton-based Action Recognition CVPR 2025
In skeleton-based action recognition, a key challenge is distinguishing between actions with similar trajectories of joints due to the lack of image-level details in skeletal representations. Recognizing that the differentiation of similar actions relies on subtle motion details in specific body parts, we direct our approach to focus on the fine-grained motion of local skeleton components. To this end, we introduce ProtoGCN, a Graph Convolutional Network (GCN)-based model that breaks down the dynamics of entire skeleton sequences into a combination of learnable prototypes representing core motion patterns of action units. By contrasting the reconstruction of prototypes, ProtoGCN can effectively identify and enhance the discriminative representation of similar actions. Without bells and whistles, ProtoGCN achieves state-of-the-art performance on multiple benchmark datasets, including NTU RGB+D, NTU RGB+D 120, Kinetics-Skeleton, and FineGYM, which demonstrates the effectiveness of the proposed method. The code is available at https://github.com/firework8/ProtoGCN.
comment: Accepted by CVPR 2025
♻ ☆ Vision-Language Models Generate More Homogeneous Stories for Phenotypically Black Individuals
Vision-Language Models (VLMs) extend Large Language Models' capabilities by integrating image processing, but concerns persist about their potential to reproduce and amplify human biases. While research has documented how these models perpetuate stereotypes across demographic groups, most work has focused on between-group biases rather than within-group differences. This study investigates homogeneity bias-the tendency to portray groups as more uniform than they are-within Black Americans, examining how perceived racial phenotypicality influences VLMs' outputs. Using computer-generated images that systematically vary in phenotypicality, we prompted VLMs to generate stories about these individuals and measured text similarity to assess content homogeneity. Our findings reveal three key patterns: First, VLMs generate significantly more homogeneous stories about Black individuals with higher phenotypicality compared to those with lower phenotypicality. Second, stories about Black women consistently display greater homogeneity than those about Black men across all models tested. Third, in two of three VLMs, this homogeneity bias is primarily driven by a pronounced interaction where phenotypicality strongly influences content variation for Black women but has minimal impact for Black men. These results demonstrate how intersectionality shapes AI-generated representations and highlight the persistence of stereotyping that mirror documented biases in human perception, where increased racial phenotypicality leads to greater stereotyping and less individualized representation.
♻ ☆ TWIST & SCOUT: Grounding Multimodal LLM-Experts by Forget-Free Tuning
Spatial awareness is key to enable embodied multimodal AI systems. Yet, without vast amounts of spatial supervision, current Multimodal Large Language Models (MLLMs) struggle at this task. In this paper, we introduce TWIST & SCOUT, a framework that equips pre-trained MLLMs with visual grounding ability without forgetting their existing image and language understanding skills. To this end, we propose TWIST, a twin-expert stepwise tuning module that modifies the decoder of the language model using one frozen module pre-trained on image understanding tasks and another learnable one for visual grounding tasks. This allows the MLLM to retain previously learned knowledge and skills, while acquiring what is missing. To fine-tune the model effectively, we generate a high-quality synthetic dataset we call SCOUT, which mimics human reasoning in visual grounding. This dataset provides rich supervision signals, describing a step-by-step multimodal reasoning process, thereby simplifying the task of visual grounding. We evaluate our approach on several standard benchmark datasets, encompassing grounded image captioning, zero-shot localization, and visual grounding tasks. Our method consistently delivers strong performance across all tasks, while retaining the pre-trained image understanding capabilities.
♻ ☆ EPAM-Net: An Efficient Pose-driven Attention-guided Multimodal Network for Video Action Recognition
Existing multimodal-based human action recognition approaches are computationally intensive, limiting their deployment in real-time applications. In this work, we present a novel and efficient pose-driven attention-guided multimodal network (EPAM-Net) for action recognition in videos. Specifically, we propose eXpand temporal Shift (X-ShiftNet) convolutional architectures for RGB and pose streams to capture spatio-temporal features from RGB videos and their skeleton sequences. The X-ShiftNet tackles the high computational cost of the 3D CNNs by integrating the Temporal Shift Module (TSM) into an efficient 2D CNN, enabling efficient spatiotemporal learning. Then skeleton features are utilized to guide the visual network stream, focusing on keyframes and their salient spatial regions using the proposed spatial-temporal attention block. Finally, the predictions of the two streams are fused for final classification. The experimental results show that our method, with a significant reduction in floating-point operations (FLOPs), outperforms and competes with the state-of-the-art methods on NTU RGB-D 60, NTU RGB-D 120, PKU-MMD, and Toyota SmartHome datasets. The proposed EPAM-Net provides up to a 72.8x reduction in FLOPs and up to a 48.6x reduction in the number of network parameters. The code will be available at https://github.com/ahmed-nady/Multimodal-Action-Recognition.
♻ ☆ 2DSig-Detect: a semi-supervised framework for anomaly detection on image data using 2D-signatures
The rapid advancement of machine learning technologies raises questions about the security of machine learning models, with respect to both training-time (poisoning) and test-time (evasion, impersonation, and inversion) attacks. Models performing image-related tasks, e.g. detection, and classification, are vulnerable to adversarial attacks that can degrade their performance and produce undesirable outcomes. This paper introduces a novel technique for anomaly detection in images called 2DSig-Detect, which uses a 2D-signature-embedded semi-supervised framework rooted in rough path theory. We demonstrate our method in adversarial settings for training-time and test-time attacks, and benchmark our framework against other state of the art methods. Using 2DSig-Detect for anomaly detection, we show both superior performance and a reduction in the computation time to detect the presence of adversarial perturbations in images.
♻ ☆ Project-Probe-Aggregate: Efficient Fine-Tuning for Group Robustness CVPR 2025
While image-text foundation models have succeeded across diverse downstream tasks, they still face challenges in the presence of spurious correlations between the input and label. To address this issue, we propose a simple three-step approach,Project-Probe-Aggregate (PPA), that enables parameter-efficient fine-tuning for foundation models without relying on group annotations. Building upon the failure-based debiasing scheme, our method, PPA, improves its two key components: minority samples identification and the robust training algorithm. Specifically, we first train biased classifiers by projecting image features onto the nullspace of class proxies from text encoders. Next, we infer group labels using the biased classifier and probe group targets with prior correction. Finally, we aggregate group weights of each class to produce the debiased classifier. Our theoretical analysis shows that our PPA enhances minority group identification and is Bayes optimal for minimizing the balanced group error, mitigating spurious correlations. Extensive experimental results confirm the effectiveness of our PPA: it outperforms the state-of-the-art by an average worst-group accuracy while requiring less than 0.01% tunable parameters without training group labels.
comment: Accepted by CVPR 2025
♻ ☆ SSHNet: Unsupervised Cross-modal Homography Estimation via Problem Reformulation and Split Optimization CVPR 2025
We propose a novel unsupervised cross-modal homography estimation learning framework, named Split Supervised Homography estimation Network (SSHNet). SSHNet reformulates the unsupervised cross-modal homography estimation into two supervised sub-problems, each addressed by its specialized network: a homography estimation network and a modality transfer network. To realize stable training, we introduce an effective split optimization strategy to train each network separately within its respective sub-problem. We also formulate an extra homography feature space supervision to enhance feature consistency, further boosting the estimation accuracy. Moreover, we employ a simple yet effective distillation training technique to reduce model parameters and improve cross-domain generalization ability while maintaining comparable performance. The training stability of SSHNet enables its cooperation with various homography estimation architectures. Experiments reveal that the SSHNet using IHN as homography estimation network, namely SSHNet-IHN, outperforms previous unsupervised approaches by a significant margin. Even compared to supervised approaches MHN and LocalTrans, SSHNet-IHN achieves 47.4% and 85.8% mean average corner errors (MACEs) reduction on the challenging OPT-SAR dataset.
comment: Accepted by CVPR 2025
♻ ☆ UNIP: Rethinking Pre-trained Attention Patterns for Infrared Semantic Segmentation ICLR 2025
Pre-training techniques significantly enhance the performance of semantic segmentation tasks with limited training data. However, the efficacy under a large domain gap between pre-training (e.g. RGB) and fine-tuning (e.g. infrared) remains underexplored. In this study, we first benchmark the infrared semantic segmentation performance of various pre-training methods and reveal several phenomena distinct from the RGB domain. Next, our layerwise analysis of pre-trained attention maps uncovers that: (1) There are three typical attention patterns (local, hybrid, and global); (2) Pre-training tasks notably influence the pattern distribution across layers; (3) The hybrid pattern is crucial for semantic segmentation as it attends to both nearby and foreground elements; (4) The texture bias impedes model generalization in infrared tasks. Building on these insights, we propose UNIP, a UNified Infrared Pre-training framework, to enhance the pre-trained model performance. This framework uses the hybrid-attention distillation NMI-HAD as the pre-training target, a large-scale mixed dataset InfMix for pre-training, and a last-layer feature pyramid network LL-FPN for fine-tuning. Experimental results show that UNIP outperforms various pre-training methods by up to 13.5\% in average mIoU on three infrared segmentation tasks, evaluated using fine-tuning and linear probing metrics. UNIP-S achieves performance on par with MAE-L while requiring only 1/10 of the computational cost. Furthermore, UNIP significantly surpasses state-of-the-art (SOTA) infrared or RGB segmentation methods and demonstrates broad potential for application in other modalities, such as RGB and depth. Our code is available at https://github.com/casiatao/UNIP.
comment: ICLR 2025. 27 pages, 13 figures, 21 tables
♻ ☆ LiMoE: Mixture of LiDAR Representation Learners from Automotive Scenes CVPR 2025
LiDAR data pretraining offers a promising approach to leveraging large-scale, readily available datasets for enhanced data utilization. However, existing methods predominantly focus on sparse voxel representation, overlooking the complementary attributes provided by other LiDAR representations. In this work, we propose LiMoE, a framework that integrates the Mixture of Experts (MoE) paradigm into LiDAR data representation learning to synergistically combine multiple representations, such as range images, sparse voxels, and raw points. Our approach consists of three stages: i) Image-to-LiDAR Pretraining, which transfers prior knowledge from images to point clouds across different representations; ii) Contrastive Mixture Learning (CML), which uses MoE to adaptively activate relevant attributes from each representation and distills these mixed features into a unified 3D network; iii) Semantic Mixture Supervision (SMS), which combines semantic logits from multiple representations to boost downstream segmentation performance. Extensive experiments across eleven large-scale LiDAR datasets demonstrate our effectiveness and superiority. The code has been made publicly accessible.
comment: CVPR 2025; 27 pages, 17 figures, 10 tables; Project Page at https://ldkong.com/LiMoE
♻ ☆ How accurate is mechanobiology? A statistical test of cell force
Mechanobiology is gaining more and more traction as the fundamental role of physical forces in biological function becomes clearer. Forces at the microscale are often measured indirectly using inverse problems such as Traction Force Microscopy because biological experiments are hard to access with physical probes. In contrast with the experimental nature of biology and physics, these measurements do not come with error bars, confidence regions, or p-values. The aim of this manuscript is to publicize this issue and to propose a first step towards a remedy therefor in the form of a general reconstruction framework. We also show that this opens the door to hypothesis testing of seemingly abstract experimental questions.
♻ ☆ Defending Multimodal Backdoored Models by Repulsive Visual Prompt Tuning
Multimodal contrastive learning models (e.g., CLIP) can learn high-quality representations from large-scale image-text datasets, yet they exhibit significant vulnerabilities to backdoor attacks, raising serious safety concerns. In this paper, we disclose that CLIP's vulnerabilities primarily stem from its excessive encoding of class-irrelevant features, which can compromise the model's visual feature resistivity to input perturbations, making it more susceptible to capturing the trigger patterns inserted by backdoor attacks. Inspired by this finding, we propose Repulsive Visual Prompt Tuning (RVPT), a novel defense approach that employs specially designed deep visual prompt tuning and feature-repelling loss to eliminate excessive class-irrelevant features while simultaneously optimizing cross-entropy loss to maintain clean accuracy. Unlike existing multimodal backdoor defense methods that typically require the availability of poisoned data or involve fine-tuning the entire model, RVPT leverages few-shot downstream clean samples and only tunes a small number of parameters. Empirical results demonstrate that RVPT tunes only 0.27\% of the parameters relative to CLIP, yet it significantly outperforms state-of-the-art baselines, reducing the attack success rate from 67.53\% to 2.76\% against SoTA attacks and effectively generalizing its defensive capabilities across multiple datasets.
♻ ☆ The Devil is in the Spurious Correlations: Boosting Moment Retrieval with Dynamic Learning
Given a textual query along with a corresponding video, the objective of moment retrieval aims to localize the moments relevant to the query within the video. While commendable results have been demonstrated by existing transformer-based approaches, predicting the accurate temporal span of the target moment is still a major challenge. This paper reveals that a crucial reason stems from the spurious correlation between the text query and the moment context. Namely, the model makes predictions by overly associating queries with background frames rather than distinguishing target moments. To address this issue, we propose a dynamic learning approach for moment retrieval, where two strategies are designed to mitigate the spurious correlation. First, we introduce a novel video synthesis approach to construct a dynamic context for the queried moment, enabling the model to attend to the target moment of the corresponding query across dynamic backgrounds. Second, to alleviate the over-association with backgrounds, we enhance representations temporally by incorporating text-dynamics interaction, which encourages the model to align text with target moments through complementary dynamic representations. With the proposed method, our model significantly alleviates the spurious correlation issue in moment retrieval and establishes new state-of-the-art performance on two popular benchmarks, \ie, QVHighlights and Charades-STA. In addition, detailed ablation studies and evaluations across different architectures demonstrate the generalization and effectiveness of the proposed strategies. Our code will be publicly available.
♻ ☆ Bring Remote Sensing Object Detect Into Nature Language Model: Using SFT Method
Recently, large language models (LLMs) and vision-language models (VLMs) have achieved significant success, demonstrating remarkable capabilities in understanding various images and videos, particularly in classification and detection tasks. However, due to the substantial differences between remote sensing images and conventional optical images, these models face considerable challenges in comprehension, especially in detection tasks. Directly prompting VLMs with detection instructions often leads to unsatisfactory results. To address this issue, this letter explores the application of VLMs for object detection in remote sensing images. Specifically, we constructed supervised fine-tuning (SFT) datasets using publicly available remote sensing object detection datasets, including SSDD, HRSID, and NWPU-VHR-10. In these new datasets, we converted annotation information into JSON-compliant natural language descriptions, facilitating more effective understanding and training for the VLM. We then evaluate the detection performance of various fine-tuning strategies for VLMs and derive optimized model weights for object detection in remote sensing images. Finally, we evaluate the model's prior knowledge capabilities using natural language queries. Experimental results demonstrate that, without modifying the model architecture, remote sensing object detection can be effectively achieved using natural language alone. Additionally, the model exhibits the ability to perform certain vision question answering (VQA) tasks. Our datasets and related code will be released soon.
♻ ☆ Jointly Understand Your Command and Intention:Reciprocal Co-Evolution between Scene-Aware 3D Human Motion Synthesis and Analysis
As two intimate reciprocal tasks, scene-aware human motion synthesis and analysis require a joint understanding between multiple modalities, including 3D body motions, 3D scenes, and textual descriptions. In this paper, we integrate these two paired processes into a Co-Evolving Synthesis-Analysis (CESA) pipeline and mutually benefit their learning. Specifically, scene-aware text-to-human synthesis generates diverse indoor motion samples from the same textual description to enrich human-scene interaction intra-class diversity, thus significantly benefiting training a robust human motion analysis system. Reciprocally, human motion analysis would enforce semantic scrutiny on each synthesized motion sample to ensure its semantic consistency with the given textual description, thus improving realistic motion synthesis. Considering that real-world indoor human motions are goal-oriented and path-guided, we propose a cascaded generation strategy that factorizes text-driven scene-specific human motion generation into three stages: goal inferring, path planning, and pose synthesizing. Coupling CESA with this powerful cascaded motion synthesis model, we jointly improve realistic human motion synthesis and robust human motion analysis in 3D scenes.
♻ ☆ Text2Earth: Unlocking Text-driven Remote Sensing Image Generation with a Global-Scale Dataset and a Foundation Model
Generative foundation models have advanced large-scale text-driven natural image generation, becoming a prominent research trend across various vertical domains. However, in the remote sensing field, there is still a lack of research on large-scale text-to-image (text2image) generation technology. Existing remote sensing image-text datasets are small in scale and confined to specific geographic areas and scene types. Besides, existing text2image methods have struggled to achieve global-scale, multi-resolution controllable, and unbounded image generation. To address these challenges, this paper presents two key contributions: the Git-10M dataset and the Text2Earth foundation model. Git-10M is a global-scale image-text dataset comprising 10.5 million image-text pairs, 5 times larger than the previous largest one. The dataset covers a wide range of geographic scenes and contains resolution information, significantly surpassing existing datasets in both size and diversity. Building on Git-10M, we propose Text2Earth, a 1.3 billion parameter generative foundation model based on the diffusion framework to model global-scale remote sensing scenes. Text2Earth integrates a resolution guidance mechanism, enabling users to specify image resolutions. A dynamic condition adaptation strategy is proposed for training and inference to improve image quality. Text2Earth excels in zero-shot text2image generation and demonstrates robust generalization and flexibility across multiple tasks, including unbounded scene construction, image editing, and cross-modal image generation. This robust capability surpasses previous models restricted to the basic fixed size and limited scene types. On the previous benchmark dataset, Text2Earth outperforms previous models with an improvement of +26.23 FID and +20.95% Zero-shot Cls-OA metric.Our project page is https://chen-yang-liu.github.io/Text2Earth
♻ ☆ Switti: Designing Scale-Wise Transformers for Text-to-Image Synthesis CVPR 2025
This work presents Switti, a scale-wise transformer for text-to-image generation. We start by adapting an existing next-scale prediction autoregressive (AR) architecture to T2I generation, investigating and mitigating training stability issues in the process. Next, we argue that scale-wise transformers do not require causality and propose a non-causal counterpart facilitating ~21% faster sampling and lower memory usage while also achieving slightly better generation quality. Furthermore, we reveal that classifier-free guidance at high-resolution scales is often unnecessary and can even degrade performance. By disabling guidance at these scales, we achieve an additional sampling acceleration of ~32% and improve the generation of fine-grained details. Extensive human preference studies and automated evaluations show that Switti outperforms existing T2I AR models and competes with state-of-the-art T2I diffusion models while being up to 7x faster.
comment: CVPR 2025
♻ ☆ GSplatLoc: Grounding Keypoint Descriptors into 3D Gaussian Splatting for Improved Visual Localization
Although various visual localization approaches exist, such as scene coordinate regression and camera pose regression, these methods often struggle with optimization complexity or limited accuracy. To address these challenges, we explore the use of novel view synthesis techniques, particularly 3D Gaussian Splatting (3DGS), which enables the compact encoding of both 3D geometry and scene appearance. We propose a two-stage procedure that integrates dense and robust keypoint descriptors from the lightweight XFeat feature extractor into 3DGS, enhancing performance in both indoor and outdoor environments. The coarse pose estimates are directly obtained via 2D-3D correspondences between the 3DGS representation and query image descriptors. In the second stage, the initial pose estimate is refined by minimizing the rendering-based photometric warp loss. Benchmarking on widely used indoor and outdoor datasets demonstrates improvements over recent neural rendering-based localization methods, such as NeRFMatch and PNeRFLoc.
comment: Project website at https://gsplatloc.github.io/
♻ ☆ Transformation trees -- documentation of multimodal image registration
Multimodal image registration plays a key role in creating digital patient models by combining data from different imaging techniques into a single coordinate system. This process often involves multiple sequential and interconnected transformations, which must be well-documented to ensure transparency and reproducibility. In this paper, we propose the use of transformation trees as a method for structured recording and management of these transformations. This approach has been implemented in the dpVision software and uses a dedicated .dpw file format to store hierarchical relationships between images, transformations, and motion data. Transformation trees allow precise tracking of all image processing steps, reduce the need to store multiple copies of the same data, and enable the indirect registration of images that do not share common reference points. This improves the reproducibility of the analyses and facilitates later processing and integration of images from different sources. The practical application of this method is demonstrated with examples from orthodontics, including the integration of 3D face scans, intraoral scans, and CBCT images, as well as the documentation of mandibular motion. Beyond orthodontics, this method can be applied in other fields that require systematic management of image registration processes, such as maxillofacial surgery, oncology, and biomechanical analysis. Maintaining long-term data consistency is essential for both scientific research and clinical practice. It enables easier comparison of results in longitudinal studies, improves retrospective analysis, and supports the development of artificial intelligence algorithms by providing standardized and well-documented datasets. The proposed approach enhances data organization, allows for efficient analysis, and facilitates the reuse of information in future studies and diagnostic procedures.
comment: 28 pages, 15 figures
♻ ☆ FOCUS: Knowledge-enhanced Adaptive Visual Compression for Few-shot Whole Slide Image Classification CVPR'2025
Few-shot learning presents a critical solution for cancer diagnosis in computational pathology (CPath), addressing fundamental limitations in data availability, particularly the scarcity of expert annotations and patient privacy constraints. A key challenge in this paradigm stems from the inherent disparity between the limited training set of whole slide images (WSIs) and the enormous number of contained patches, where a significant portion of these patches lacks diagnostically relevant information, potentially diluting the model's ability to learn and focus on critical diagnostic features. While recent works attempt to address this by incorporating additional knowledge, several crucial gaps hinder further progress: (1) despite the emergence of powerful pathology foundation models (FMs), their potential remains largely untapped, with most approaches limiting their use to basic feature extraction; (2) current language guidance mechanisms attempt to align text prompts with vast numbers of WSI patches all at once, struggling to leverage rich pathological semantic information. To this end, we introduce the knowledge-enhanced adaptive visual compression framework, dubbed FOCUS, which uniquely combines pathology FMs with language prior knowledge to enable a focused analysis of diagnostically relevant regions by prioritizing discriminative WSI patches. Our approach implements a progressive three-stage compression strategy: we first leverage FMs for global visual redundancy elimination, and integrate compressed features with language prompts for semantic relevance assessment, then perform neighbor-aware visual token filtering while preserving spatial coherence. Extensive experiments on pathological datasets spanning breast, lung, and ovarian cancers demonstrate its superior performance in few-shot pathology diagnosis. Codes are available at https://github.com/dddavid4real/FOCUS.
comment: Accepted by CVPR'2025
DongbaMIE: A Multimodal Information Extraction Dataset for Evaluating Semantic Understanding of Dongba Pictograms
Dongba pictographs are the only pictographs still in use in the world. They have pictorial ideographic features, and their symbols carry rich cultural and contextual information. Due to the lack of relevant datasets, existing research has difficulty in advancing the study of semantic understanding of Dongba pictographs. To this end, we propose \textbf{DongbaMIE}, the first multimodal dataset for semantic understanding and extraction of Dongba pictographs, consisting of Dongba pictograph images and corresponding Chinese semantic annotations. DongbaMIE contains 23,530 sentence-level and 2,539 paragraph-level images, covering four semantic dimensions: objects, actions, relations, and attributes. We systematically evaluate multimodal large language models (MLLMs), such as GPT-4o, Gemini-2.0, and Qwen2-VL. Experimental results show that best F1 scores of proprietary models, GPT-4o and Gemini, for object extraction task are only 3.16 and 3.11 respectively. For the open-source model Qwen2-VL, it achieves only 11.49 after supervised fine-tuning. These suggest that current MLLMs still face significant challenges in accurately recognizing diverse semantic information in Dongba pictographs.
comment: Our dataset can be obtained from: https://github.com/thinklis/DongbaMIE
♻ ☆ Beyond Role-Based Surgical Domain Modeling: Generalizable Re-Identification in the Operating Room
Surgical domain models improve workflow optimization through automated predictions of each staff member's surgical role. However, mounting evidence indicates that team familiarity and individuality impact surgical outcomes. We present a novel staff-centric modeling approach that characterizes individual team members through their distinctive movement patterns and physical characteristics, enabling long-term tracking and analysis of surgical personnel across multiple procedures. To address the challenge of inter-clinic variability, we develop a generalizable re-identification framework that encodes sequences of 3D point clouds to capture shape and articulated motion patterns unique to each individual. Our method achieves 86.19% accuracy on realistic clinical data while maintaining 75.27% accuracy when transferring between different environments - a 12% improvement over existing methods. When used to augment markerless personnel tracking, our approach improves accuracy by over 50%. Through extensive validation across three datasets and the introduction of a novel workflow visualization technique, we demonstrate how our framework can reveal novel insights into surgical team dynamics and space utilization patterns, advancing methods to analyze surgical workflows and team coordination.
comment: 26 pages, 14 figures
♻ ☆ Complexity in Complexity: Understanding Visual Complexity Through Structure, Color, and Surprise
Understanding how humans perceive visual complexity is a key area of study in visual cognition. Previous approaches to modeling visual complexity assessments have often resulted in intricate, difficult-to-interpret algorithms that employ numerous features or sophisticated deep learning architectures. While these complex models achieve high performance on specific datasets, they often sacrifice interpretability, making it challenging to understand the factors driving human perception of complexity. Recently (Shen, et al. 2024) proposed an interpretable segmentation-based model that accurately predicted complexity across various datasets, supporting the idea that complexity can be explained simply. In this work, we investigate the failure of their model to capture structural, color and surprisal contributions to complexity. To this end, we propose Multi-Scale Sobel Gradient (MSG) which measures spatial intensity variations, Multi-Scale Unique Color (MUC) which quantifies colorfulness across multiple scales, and surprise scores generated using a Large Language Model. We test our features on existing benchmarks and a novel dataset (Surprising Visual Genome) containing surprising images from Visual Genome. Our experiments demonstrate that modeling complexity accurately is not as simple as previously thought, requiring additional perceptual and semantic factors to address dataset biases. Our model improves predictive performance while maintaining interpretability, offering deeper insights into how visual complexity is perceived and assessed. Our code, analysis and data are available at https://github.com/Complexity-Project/Complexity-in-Complexity.
♻ ☆ Words in Motion: Extracting Interpretable Control Vectors for Motion Transformers ICLR 2025
Transformer-based models generate hidden states that are difficult to interpret. In this work, we analyze hidden states and modify them at inference, with a focus on motion forecasting. We use linear probing to analyze whether interpretable features are embedded in hidden states. Our experiments reveal high probing accuracy, indicating latent space regularities with functionally important directions. Building on this, we use the directions between hidden states with opposing features to fit control vectors. At inference, we add our control vectors to hidden states and evaluate their impact on predictions. Remarkably, such modifications preserve the feasibility of predictions. We further refine our control vectors using sparse autoencoders (SAEs). This leads to more linear changes in predictions when scaling control vectors. Our approach enables mechanistic interpretation as well as zero-shot generalization to unseen dataset characteristics with negligible computational overhead.
comment: ICLR 2025 camera-ready. Our implementation is available at github.com/kit-mrt/future-motion
♻ ☆ Tiny models from tiny data: Textual and null-text inversion for few-shot distillation
Few-shot learning deals with problems such as image classification using very few training examples. Recent vision foundation models show excellent few-shot transfer abilities, but are large and slow at inference. Using knowledge distillation, the capabilities of high-performing but slow models can be transferred to tiny, efficient models. However, common distillation methods require a large set of unlabeled data, which is not available in the few-shot setting. To overcome this lack of data, there has been a recent interest in using synthetic data. We expand on this line of research by presenting a novel diffusion model inversion technique (TINT) combining the diversity of textual inversion with the specificity of null-text inversion. Using this method in a few-shot distillation pipeline leads to state-of-the-art accuracy among small student models on popular benchmarks, while being significantly faster than prior work. Popular few-shot benchmarks involve evaluation over a large number of episodes, which is computationally cumbersome for methods involving synthetic data generation. We also present a theoretical analysis on how the accuracy estimator variance depends on the number of episodes and query examples, and use these results to lower the computational effort required for method evaluation. Finally, to further motivate the use of generative models in few-shot distillation, we demonstrate that our method outperforms training on real data mined from the dataset used in the original diffusion model training. Source code is available at https://github.com/pixwse/tiny2.
comment: 24 pages (13 main pages + references and appendix)
♻ ☆ ROCKET-1: Mastering Open-World Interaction with Visual-Temporal Context Prompting
Vision-language models (VLMs) have excelled in multimodal tasks, but adapting them to embodied decision-making in open-world environments presents challenges. One critical issue is bridging the gap between discrete entities in low-level observations and the abstract concepts required for effective planning. A common solution is building hierarchical agents, where VLMs serve as high-level reasoners that break down tasks into executable sub-tasks, typically specified using language. However, language suffers from the inability to communicate detailed spatial information. We propose visual-temporal context prompting, a novel communication protocol between VLMs and policy models. This protocol leverages object segmentation from past observations to guide policy-environment interactions. Using this approach, we train ROCKET-1, a low-level policy that predicts actions based on concatenated visual observations and segmentation masks, supported by real-time object tracking from SAM-2. Our method unlocks the potential of VLMs, enabling them to tackle complex tasks that demand spatial reasoning. Experiments in Minecraft show that our approach enables agents to achieve previously unattainable tasks, with a $\mathbf{76}\%$ absolute improvement in open-world interaction performance. Codes and demos are now available on the project page: https://craftjarvis.github.io/ROCKET-1.
♻ ☆ LongVALE: Vision-Audio-Language-Event Benchmark Towards Time-Aware Omni-Modal Perception of Long Videos CVPR2025
Despite impressive advancements in video understanding, most efforts remain limited to coarse-grained or visual-only video tasks. However, real-world videos encompass omni-modal information (vision, audio, and speech) with a series of events forming a cohesive storyline. The lack of multi-modal video data with fine-grained event annotations and the high cost of manual labeling are major obstacles to comprehensive omni-modality video perception. To address this gap, we propose an automatic pipeline consisting of high-quality multi-modal video filtering, semantically coherent omni-modal event boundary detection, and cross-modal correlation-aware event captioning. In this way, we present LongVALE, the first-ever Vision-Audio-Language Event understanding benchmark comprising 105K omni-modal events with precise temporal boundaries and detailed relation-aware captions within 8.4K high-quality long videos. Further, we build a baseline that leverages LongVALE to enable video large language models (LLMs) for omni-modality fine-grained temporal video understanding for the first time. Extensive experiments demonstrate the effectiveness and great potential of LongVALE in advancing comprehensive multi-modal video understanding.
comment: Accepted by CVPR2025
♻ ☆ Segmentation Guided Sparse Transformer for Under-Display Camera Image Restoration
Under-Display Camera (UDC) is an emerging technology that achieves full-screen display via hiding the camera under the display panel. However, the current implementation of UDC causes serious degradation. The incident light required for camera imaging undergoes attenuation and diffraction when passing through the display panel, leading to various artifacts in UDC imaging. Presently, the prevailing UDC image restoration methods predominantly utilize convolutional neural network architectures, whereas Transformer-based methods have exhibited superior performance in the majority of image restoration tasks. This is attributed to the Transformer's capability to sample global features for the local reconstruction of images, thereby achieving high-quality image restoration. In this paper, we observe that when using the Vision Transformer for UDC degraded image restoration, the global attention samples a large amount of redundant information and noise. Furthermore, compared to the ordinary Transformer employing dense attention, the Transformer utilizing sparse attention can alleviate the adverse impact of redundant information and noise. Building upon this discovery, we propose a Segmentation Guided Sparse Transformer method (SGSFormer) for the task of restoring high-quality images from UDC degraded images. Specifically, we utilize sparse self-attention to filter out redundant information and noise, directing the model's attention to focus on the features more relevant to the degraded regions in need of reconstruction. Moreover, we integrate the instance segmentation map as prior information to guide the sparse self-attention in filtering and focusing on the correct regions.
comment: 13 pages, 10 figures, conference or other essential info
♻ ☆ Towards Lossless Implicit Neural Representation via Bit Plane Decomposition
We quantify the upper bound on the size of the implicit neural representation (INR) model from a digital perspective. The upper bound of the model size increases exponentially as the required bit-precision increases. To this end, we present a bit-plane decomposition method that makes INR predict bit-planes, producing the same effect as reducing the upper bound of the model size. We validate our hypothesis that reducing the upper bound leads to faster convergence with constant model size. Our method achieves lossless representation in 2D image and audio fitting, even for high bit-depth signals, such as 16-bit, which was previously unachievable. We pioneered the presence of bit bias, which INR prioritizes as the most significant bit (MSB). We expand the application of the INR task to bit depth expansion, lossless image compression, and extreme network quantization. Our source code is available at https://github.com/WooKyoungHan/LosslessINR
♻ ☆ PC-Talk: Precise Facial Animation Control for Audio-Driven Talking Face Generation
Recent advancements in audio-driven talking face generation have made great progress in lip synchronization. However, current methods often lack sufficient control over facial animation such as speaking style and emotional expression, resulting in uniform outputs. In this paper, we focus on improving two key factors: lip-audio alignment and emotion control, to enhance the diversity and user-friendliness of talking videos. Lip-audio alignment control focuses on elements like speaking style and the scale of lip movements, whereas emotion control is centered on generating realistic emotional expressions, allowing for modifications in multiple attributes such as intensity. To achieve precise control of facial animation, we propose a novel framework, PC-Talk, which enables lip-audio alignment and emotion control through implicit keypoint deformations. First, our lip-audio alignment control module facilitates precise editing of speaking styles at the word level and adjusts lip movement scales to simulate varying vocal loudness levels, maintaining lip synchronization with the audio. Second, our emotion control module generates vivid emotional facial features with pure emotional deformation. This module also enables the fine modification of intensity and the combination of multiple emotions across different facial regions. Our method demonstrates outstanding control capabilities and achieves state-of-the-art performance on both HDTF and MEAD datasets in extensive experiments.
♻ ☆ Odd-One-Out: Anomaly Detection by Comparing with Neighbors
This paper introduces a novel anomaly detection (AD) problem aimed at identifying `odd-looking' objects within a scene by comparing them to other objects present. Unlike traditional AD benchmarks with fixed anomaly criteria, our task detects anomalies specific to each scene by inferring a reference group of regular objects. To address occlusions, we use multiple views of each scene as input, construct 3D object-centric models for each instance from 2D views, enhancing these models with geometrically consistent part-aware representations. Anomalous objects are then detected through cross-instance comparison. We also introduce two new benchmarks, ToysAD-8K and PartsAD-15K as testbeds for future research in this task. We provide a comprehensive analysis of our method quantitatively and qualitatively on these benchmarks.
comment: Codes & Dataset at https://github.com/VICO-UoE/OddOneOutAD
♻ ☆ Vision-Language Models for Acute Tuberculosis Diagnosis: A Multimodal Approach Combining Imaging and Clinical Data
Background: This study introduces a Vision-Language Model (VLM) leveraging SIGLIP and Gemma-3b architectures for automated acute tuberculosis (TB) screening. By integrating chest X-ray images and clinical notes, the model aims to enhance diagnostic accuracy and efficiency, particularly in resource-limited settings. Methods: The VLM combines visual data from chest X-rays with clinical context to generate detailed, context-aware diagnostic reports. The architecture employs SIGLIP for visual encoding and Gemma-3b for decoding, ensuring effective representation of acute TB-specific pathologies and clinical insights. Results: Key acute TB pathologies, including consolidation, cavities, and nodules, were detected with high precision (97percent) and recall (96percent). The model demonstrated strong spatial localization capabilities and robustness in distinguishing TB-positive cases, making it a reliable tool for acute TB diagnosis. Conclusion: The multimodal capability of the VLM reduces reliance on radiologists, providing a scalable solution for acute TB screening. Future work will focus on improving the detection of subtle pathologies and addressing dataset biases to enhance its generalizability and application in diverse global healthcare settings.
comment: 11 pages, 3 figures
♻ ☆ Synthetic Prior for Few-Shot Drivable Head Avatar Inversion CVPR25
We present SynShot, a novel method for the few-shot inversion of a drivable head avatar based on a synthetic prior. We tackle three major challenges. First, training a controllable 3D generative network requires a large number of diverse sequences, for which pairs of images and high-quality tracked meshes are not always available. Second, the use of real data is strictly regulated (e.g., under the General Data Protection Regulation, which mandates frequent deletion of models and data to accommodate a situation when a participant's consent is withdrawn). Synthetic data, free from these constraints, is an appealing alternative. Third, state-of-the-art monocular avatar models struggle to generalize to new views and expressions, lacking a strong prior and often overfitting to a specific viewpoint distribution. Inspired by machine learning models trained solely on synthetic data, we propose a method that learns a prior model from a large dataset of synthetic heads with diverse identities, expressions, and viewpoints. With few input images, SynShot fine-tunes the pretrained synthetic prior to bridge the domain gap, modeling a photorealistic head avatar that generalizes to novel expressions and viewpoints. We model the head avatar using 3D Gaussian splatting and a convolutional encoder-decoder that outputs Gaussian parameters in UV texture space. To account for the different modeling complexities over parts of the head (e.g., skin vs hair), we embed the prior with explicit control for upsampling the number of per-part primitives. Compared to SOTA monocular and GAN-based methods, SynShot significantly improves novel view and expression synthesis.
comment: Accepted to CVPR25 Website: https://zielon.github.io/synshot/
ARKit LabelMaker: A New Scale for Indoor 3D Scene Understanding
Neural network performance scales with both model size and data volume, as shown in both language and image processing. This requires scaling-friendly architectures and large datasets. While transformers have been adapted for 3D vision, a `GPT-moment' remains elusive due to limited training data. We introduce ARKit LabelMaker, a large-scale real-world 3D dataset with dense semantic annotation that is more than three times larger than prior largest dataset. Specifically, we extend ARKitScenes with automatically generated dense 3D labels using an extended LabelMaker pipeline, tailored for large-scale pre-training. Training on our dataset improves accuracy across architectures, achieving state-of-the-art 3D semantic segmentation scores on ScanNet and ScanNet200, with notable gains on tail classes. Our code is available at https://labelmaker.org and our dataset at https://huggingface.co/datasets/labelmaker/arkit_labelmaker.
♻ ☆ STEP: Simultaneous Tracking and Estimation of Pose for Animals and Humans
We introduce STEP, a novel framework utilizing Transformer-based discriminative model prediction for simultaneous tracking and estimation of pose across diverse animal species and humans. We are inspired by the fact that the human brain exploits spatiotemporal continuity and performs concurrent localization and pose estimation despite the specialization of brain areas for form and motion processing. Traditional discriminative models typically require predefined target states for determining model weights, a challenge we address through Gaussian Map Soft Prediction (GMSP) and Offset Map Regression Adapter (OMRA) Modules. These modules remove the necessity of keypoint target states as input, streamlining the process. Our method starts with a known target state in the initial frame of a given video sequence. It then seamlessly tracks the target and estimates keypoints of anatomical importance as output for subsequent frames. Unlike prevalent top-down pose estimation methods, our approach doesn't rely on per-frame target detections due to its tracking capability. This facilitates a significant advancement in inference efficiency and potential applications. We train and validate our approach on datasets encompassing diverse species. Our experiments demonstrate superior results compared to existing methods, opening doors to various applications, including but not limited to action recognition and behavioral analysis.
♻ ☆ Gaussian Eigen Models for Human Heads CVPR25
Current personalized neural head avatars face a trade-off: lightweight models lack detail and realism, while high-quality, animatable avatars require significant computational resources, making them unsuitable for commodity devices. To address this gap, we introduce Gaussian Eigen Models (GEM), which provide high-quality, lightweight, and easily controllable head avatars. GEM utilizes 3D Gaussian primitives for representing the appearance combined with Gaussian splatting for rendering. Building on the success of mesh-based 3D morphable face models (3DMM), we define GEM as an ensemble of linear eigenbases for representing the head appearance of a specific subject. In particular, we construct linear bases to represent the position, scale, rotation, and opacity of the 3D Gaussians. This allows us to efficiently generate Gaussian primitives of a specific head shape by a linear combination of the basis vectors, only requiring a low-dimensional parameter vector that contains the respective coefficients. We propose to construct these linear bases (GEM) by distilling high-quality compute-intense CNN-based Gaussian avatar models that can generate expression-dependent appearance changes like wrinkles. These high-quality models are trained on multi-view videos of a subject and are distilled using a series of principal component analyses. Once we have obtained the bases that represent the animatable appearance space of a specific human, we learn a regressor that takes a single RGB image as input and predicts the low-dimensional parameter vector that corresponds to the shown facial expression. In a series of experiments, we compare GEM's self-reenactment and cross-person reenactment results to state-of-the-art 3D avatar methods, demonstrating GEM's higher visual quality and better generalization to new expressions.
comment: Accepted to CVPR25 Website: https://zielon.github.io/gem/
♻ ☆ A General Adaptive Dual-level Weighting Mechanism for Remote Sensing Pansharpening CVPR
Currently, deep learning-based methods for remote sensing pansharpening have advanced rapidly. However, many existing methods struggle to fully leverage feature heterogeneity and redundancy, thereby limiting their effectiveness. We use the covariance matrix to model the feature heterogeneity and redundancy and propose Correlation-Aware Covariance Weighting (CACW) to adjust them. CACW captures these correlations through the covariance matrix, which is then processed by a nonlinear function to generate weights for adjustment. Building upon CACW, we introduce a general adaptive dual-level weighting mechanism (ADWM) to address these challenges from two key perspectives, enhancing a wide range of existing deep-learning methods. First, Intra-Feature Weighting (IFW) evaluates correlations among channels within each feature to reduce redundancy and enhance unique information. Second, Cross-Feature Weighting (CFW) adjusts contributions across layers based on inter-layer correlations, refining the final output. Extensive experiments demonstrate the superior performance of ADWM compared to recent state-of-the-art (SOTA) methods. Furthermore, we validate the effectiveness of our approach through generality experiments, redundancy visualization, comparison experiments, key variables and complexity analysis, and ablation studies. Our code is available at https://github.com/Jie-1203/ADWM.
comment: This paper is accepted at the CVPR Conference on Computer Vision and Pattern Recognition 2025
♻ ☆ Multi-View Pose-Agnostic Change Localization with Zero Labels CVPR 2025
Autonomous agents often require accurate methods for detecting and localizing changes in their environment, particularly when observations are captured from unconstrained and inconsistent viewpoints. We propose a novel label-free, pose-agnostic change detection method that integrates information from multiple viewpoints to construct a change-aware 3D Gaussian Splatting (3DGS) representation of the scene. With as few as 5 images of the post-change scene, our approach can learn an additional change channel in a 3DGS and produce change masks that outperform single-view techniques. Our change-aware 3D scene representation additionally enables the generation of accurate change masks for unseen viewpoints. Experimental results demonstrate state-of-the-art performance in complex multi-object scenes, achieving a 1.7x and 1.5x improvement in Mean Intersection Over Union and F1 score respectively over other baselines. We also contribute a new real-world dataset to benchmark change detection in diverse challenging scenes in the presence of lighting variations.
comment: Accepted at CVPR 2025
♻ ☆ Information-Preserved Blending Method for Forward-Looking Sonar Mosaicing in Non-Ideal System Configuration
Forward-Looking Sonar (FLS) has started to gain attention in the field of near-bottom close-range underwater inspection because of its high resolution and high framerate features. Although Automatic Target Recognition (ATR) algorithms have been applied tentatively for object-searching tasks, human supervision is still indispensable, especially when involving critical areas. A clear FLS mosaic containing all suspicious information is in demand to help experts deal with tremendous perception data. However, previous work only considered that FLS is working in an ideal system configuration, which assumes an appropriate sonar imaging setup and the availability of accurate positioning data. Without those promises, the intra-frame and inter-frame artifacts will appear and degrade the quality of the final mosaic by making the information of interest invisible. In this paper, we propose a novel blending method for FLS mosaicing which can preserve interested information. A Long-Short Time Sliding Window (LST-SW) is designed to rectify the local statistics of raw sonar images. The statistics are then utilized to construct a Global Variance Map (GVM). The GVM helps to emphasize the useful information contained in images in the blending phase by classifying the informative and featureless pixels, thereby enhancing the quality of final mosaic. The method is verified using data collected in the real environment. The results show that our method can preserve more details in FLS mosaics for human inspection purposes in practice.
♻ ☆ Weakly Supervised Contrastive Adversarial Training for Learning Robust Features from Semi-supervised Data CVPR 2025
Existing adversarial training (AT) methods often suffer from incomplete perturbation, meaning that not all non-robust features are perturbed when generating adversarial examples (AEs). This results in residual correlations between non-robust features and labels, leading to suboptimal learning of robust features. However, achieving complete perturbation, i.e., perturbing as many non-robust features as possible, is challenging due to the difficulty in distinguishing robust and non-robust features and the sparsity of labeled data. To address these challenges, we propose a novel approach called Weakly Supervised Contrastive Adversarial Training (WSCAT). WSCAT ensures complete perturbation for improved learning of robust features by disrupting correlations between non-robust features and labels through complete AE generation over partially labeled data, grounded in information theory. Extensive theoretical analysis and comprehensive experiments on widely adopted benchmarks validate the superiority of WSCAT. Our code is available at https://github.com/zhang-lilin/WSCAT.
comment: This paper has been accepted by CVPR 2025
♻ ☆ Generative Human Geometry Distribution
Realistic human geometry generation is an important yet challenging task, requiring both the preservation of fine clothing details and the accurate modeling of clothing-pose interactions. Geometry distributions, which can model the geometry of a single human as a distribution, provide a promising representation for high-fidelity synthesis. However, applying geometry distributions for human generation requires learning a dataset-level distribution over numerous individual geometry distributions. To address the resulting challenges, we propose a novel 3D human generative framework that, for the first time, models the distribution of human geometry distributions. Our framework operates in two stages: first, generating the human geometry distribution, and second, synthesizing high-fidelity humans by sampling from this distribution. We validate our method on two tasks: pose-conditioned 3D human generation and single-view-based novel pose generation. Experimental results demonstrate that our approach achieves the best quantitative results in terms of realism and geometric fidelity, outperforming state-of-the-art generative methods.
♻ ☆ EMOVA: Empowering Language Models to See, Hear and Speak with Vivid Emotions CVPR 2025
GPT-4o, an omni-modal model that enables vocal conversations with diverse emotions and tones, marks a milestone for omni-modal foundation models. However, empowering Large Language Models to perceive and generate images, texts, and speeches end-to-end with publicly available data remains challenging for the open-source community. Existing vision-language models rely on external tools for speech processing, while speech-language models still suffer from limited or totally without vision-understanding capabilities. To address this gap, we propose the EMOVA (EMotionally Omni-present Voice Assistant), to enable Large Language Models with end-to-end speech abilities while maintaining the leading vision-language performance. With a semantic-acoustic disentangled speech tokenizer, we surprisingly notice that omni-modal alignment can further enhance vision-language and speech abilities compared with the bi-modal aligned counterparts. Moreover, a lightweight style module is introduced for the flexible speech style controls including emotions and pitches. For the first time, EMOVA achieves state-of-the-art performance on both the vision-language and speech benchmarks, and meanwhile, supporting omni-modal spoken dialogue with vivid emotions.
comment: Accepted by CVPR 2025. Project Page: https://emova-ollm.github.io/
♻ ☆ ISP-AD: A Large-Scale Real-World Dataset for Advancing Industrial Anomaly Detection with Synthetic and Real Defects
Automatic visual inspection using machine learning-based methods plays a key role in achieving zero-defect policies in industry. Research on anomaly detection approaches is constrained by the availability of datasets that represent complex defect appearances and imperfect imaging conditions, which are typical to industrial processes. Recent benchmarks indicate that most publicly available datasets are biased towards optimal imaging conditions, leading to an overestimation of the methods' applicability to real-world industrial scenarios. To address this gap, we introduce the Industrial Screen Printing Anomaly Detection dataset (ISP-AD). It presents challenging small and weakly contrasted surface defects embedded within structured patterns exhibiting high permitted design variability. To the best of our knowledge, it is the largest publicly available industrial dataset to date, including both synthetic and real defects collected directly from the factory floor. In addition to the evaluation of defect detection performance of recent unsupervised anomaly detection methods, experiments on a mixed supervised training approach, incorporating both synthesized and real defects, were conducted. Even small amounts of injected real defects prove beneficial for model generalization. Furthermore, starting from training on purely synthetic defects, emerging real defective samples can be efficiently integrated into subsequent scalable training. Research findings indicate that supervision by means of both synthetic and accumulated real defects can complement each other, meeting demanded industrial inspection requirements such as low false positive rates and high recall. The presented unsupervised and supervised dataset splits are designed to emphasize research on unsupervised, self-supervised, and supervised approaches, enhancing their applicability to industrial settings.
comment: 26 pages, 6 figures, this preprint has been submitted to the Journal of Intelligent Manufacturing, the dataset is available at https://doi.org/10.5281/zenodo.14911043
♻ ☆ I2AM: Interpreting Image-to-Image Latent Diffusion Models via Bi-Attribution Maps
Large-scale diffusion models have made significant advances in image generation, particularly through cross-attention mechanisms. While cross-attention has been well-studied in text-to-image tasks, their interpretability in image-to-image (I2I) diffusion models remains underexplored. This paper introduces Image-to-Image Attribution Maps (I2AM), a method that enhances the interpretability of I2I models by visualizing bidirectional attribution maps, from the reference image to the generated image and vice versa. I2AM aggregates cross-attention scores across time steps, attention heads, and layers, offering insights into how critical features are transferred between images. We demonstrate the effectiveness of I2AM across object detection, inpainting, and super-resolution tasks. Our results demonstrate that I2AM successfully identifies key regions responsible for generating the output, even in complex scenes. Additionally, we introduce the Inpainting Mask Attention Consistency Score (IMACS) as a novel evaluation metric to assess the alignment between attribution maps and inpainting masks, which correlates strongly with existing performance metrics. Through extensive experiments, we show that I2AM enables model debugging and refinement, providing practical tools for improving I2I model's performance and interpretability.
comment: 23 pages
♻ ☆ HS-FPN: High Frequency and Spatial Perception FPN for Tiny Object Detection
The introduction of Feature Pyramid Network (FPN) has significantly improved object detection performance. However, substantial challenges remain in detecting tiny objects, as their features occupy only a very small proportion of the feature maps. Although FPN integrates multi-scale features, it does not directly enhance or enrich the features of tiny objects. Furthermore, FPN lacks spatial perception ability. To address these issues, we propose a novel High Frequency and Spatial Perception Feature Pyramid Network (HS-FPN) with two innovative modules. First, we designed a high frequency perception module (HFP) that generates high frequency responses through high pass filters. These high frequency responses are used as mask weights from both spatial and channel perspectives to enrich and highlight the features of tiny objects in the original feature maps. Second, we developed a spatial dependency perception module (SDP) to capture the spatial dependencies that FPN lacks. Our experiments demonstrate that detectors based on HS-FPN exhibit competitive advantages over state-of-the-art models on the AI-TOD dataset for tiny object detection.
comment: 13 pages,12 figures,7 tables
♻ ☆ MTGS: Multi-Traversal Gaussian Splatting
Multi-traversal data, commonly collected through daily commutes or by self-driving fleets, provides multiple viewpoints for scene reconstruction within a road block. This data offers significant potential for high-quality novel view synthesis, which is crucial for applications such as autonomous vehicle simulators. However, inherent challenges in multi-traversal data often result in suboptimal reconstruction quality, including variations in appearance and the presence of dynamic objects. To address these issues, we propose Multi-Traversal Gaussian Splatting (MTGS), a novel approach that reconstructs high-quality driving scenes from arbitrarily collected multi-traversal data by modeling a shared static geometry while separately handling dynamic elements and appearance variations. Our method employs a multi-traversal dynamic scene graph with a shared static node and traversal-specific dynamic nodes, complemented by color correction nodes with learnable spherical harmonics coefficient residuals. This approach enables high-fidelity novel view synthesis and provides flexibility to navigate any viewpoint. We conduct extensive experiments on a large-scale driving dataset, nuPlan, with multi-traversal data. Our results demonstrate that MTGS improves LPIPS by 23.5% and geometry accuracy by 46.3% compared to single-traversal baselines. The code and data would be available to the public.
Artificial Intelligence 216
☆ MagicMotion: Controllable Video Generation with Dense-to-Sparse Trajectory Guidance
Recent advances in video generation have led to remarkable improvements in visual quality and temporal coherence. Upon this, trajectory-controllable video generation has emerged to enable precise object motion control through explicitly defined spatial paths. However, existing methods struggle with complex object movements and multi-object motion control, resulting in imprecise trajectory adherence, poor object consistency, and compromised visual quality. Furthermore, these methods only support trajectory control in a single format, limiting their applicability in diverse scenarios. Additionally, there is no publicly available dataset or benchmark specifically tailored for trajectory-controllable video generation, hindering robust training and systematic evaluation. To address these challenges, we introduce MagicMotion, a novel image-to-video generation framework that enables trajectory control through three levels of conditions from dense to sparse: masks, bounding boxes, and sparse boxes. Given an input image and trajectories, MagicMotion seamlessly animates objects along defined trajectories while maintaining object consistency and visual quality. Furthermore, we present MagicData, a large-scale trajectory-controlled video dataset, along with an automated pipeline for annotation and filtering. We also introduce MagicBench, a comprehensive benchmark that assesses both video quality and trajectory control accuracy across different numbers of objects. Extensive experiments demonstrate that MagicMotion outperforms previous methods across various metrics. Our project page are publicly available at https://quanhaol.github.io/magicmotion-site.
Survey on Evaluation of LLM-based Agents
The emergence of LLM-based agents represents a paradigm shift in AI, enabling autonomous systems to plan, reason, use tools, and maintain memory while interacting with dynamic environments. This paper provides the first comprehensive survey of evaluation methodologies for these increasingly capable agents. We systematically analyze evaluation benchmarks and frameworks across four critical dimensions: (1) fundamental agent capabilities, including planning, tool use, self-reflection, and memory; (2) application-specific benchmarks for web, software engineering, scientific, and conversational agents; (3) benchmarks for generalist agents; and (4) frameworks for evaluating agents. Our analysis reveals emerging trends, including a shift toward more realistic, challenging evaluations with continuously updated benchmarks. We also identify critical gaps that future research must address-particularly in assessing cost-efficiency, safety, and robustness, and in developing fine-grained, and scalable evaluation methods. This survey maps the rapidly evolving landscape of agent evaluation, reveals the emerging trends in the field, identifies current limitations, and proposes directions for future research.
☆ DreamTexture: Shape from Virtual Texture with Analysis by Augmentation
DreamFusion established a new paradigm for unsupervised 3D reconstruction from virtual views by combining advances in generative models and differentiable rendering. However, the underlying multi-view rendering, along with supervision from large-scale generative models, is computationally expensive and under-constrained. We propose DreamTexture, a novel Shape-from-Virtual-Texture approach that leverages monocular depth cues to reconstruct 3D objects. Our method textures an input image by aligning a virtual texture with the real depth cues in the input, exploiting the inherent understanding of monocular geometry encoded in modern diffusion models. We then reconstruct depth from the virtual texture deformation with a new conformal map optimization, which alleviates memory-intensive volumetric representations. Our experiments reveal that generative models possess an understanding of monocular shape cues, which can be extracted by augmenting and aligning texture cues -- a novel monocular reconstruction paradigm that we call Analysis by Augmentation.
comment: Project page: https://anantarb.github.io/dreamtexture/
☆ RoboFactory: Exploring Embodied Agent Collaboration with Compositional Constraints
Designing effective embodied multi-agent systems is critical for solving complex real-world tasks across domains. Due to the complexity of multi-agent embodied systems, existing methods fail to automatically generate safe and efficient training data for such systems. To this end, we propose the concept of compositional constraints for embodied multi-agent systems, addressing the challenges arising from collaboration among embodied agents. We design various interfaces tailored to different types of constraints, enabling seamless interaction with the physical world. Leveraging compositional constraints and specifically designed interfaces, we develop an automated data collection framework for embodied multi-agent systems and introduce the first benchmark for embodied multi-agent manipulation, RoboFactory. Based on RoboFactory benchmark, we adapt and evaluate the method of imitation learning and analyzed its performance in different difficulty agent tasks. Furthermore, we explore the architectures and training strategies for multi-agent imitation learning, aiming to build safe and efficient embodied multi-agent systems.
comment: Project page: https://iranqin.github.io/robofactory/
☆ The Emperor's New Clothes in Benchmarking? A Rigorous Examination of Mitigation Strategies for LLM Benchmark Data Contamination
Benchmark Data Contamination (BDC)-the inclusion of benchmark testing samples in the training set-has raised increasing concerns in Large Language Model (LLM) evaluation, leading to falsely inflated performance estimates and undermining evaluation reliability. To address this, researchers have proposed various mitigation strategies to update existing benchmarks, including modifying original questions or generating new ones based on them. However, a rigorous examination of the effectiveness of these mitigation strategies remains lacking. In this paper, we design a systematic and controlled pipeline along with two novel metrics-fidelity and contamination resistance-to provide a fine-grained and comprehensive assessment of existing BDC mitigation strategies. Previous assessment methods, such as accuracy drop and accuracy matching, focus solely on aggregate accuracy, often leading to incomplete or misleading conclusions. Our metrics address this limitation by emphasizing question-level evaluation result matching. Extensive experiments with 10 LLMs, 5 benchmarks, 20 BDC mitigation strategies, and 2 contamination scenarios reveal that no existing strategy significantly improves resistance over the vanilla case (i.e., no benchmark update) across all benchmarks, and none effectively balances fidelity and contamination resistance. These findings underscore the urgent need for designing more effective BDC mitigation strategies. Our code repository is available at https://github.com/ASTRAL-Group/BDC_mitigation_assessment.
comment: 23 pages
☆ SA-Occ: Satellite-Assisted 3D Occupancy Prediction in Real World
Existing vision-based 3D occupancy prediction methods are inherently limited in accuracy due to their exclusive reliance on street-view imagery, neglecting the potential benefits of incorporating satellite views. We propose SA-Occ, the first Satellite-Assisted 3D occupancy prediction model, which leverages GPS & IMU to integrate historical yet readily available satellite imagery into real-time applications, effectively mitigating limitations of ego-vehicle perceptions, involving occlusions and degraded performance in distant regions. To address the core challenges of cross-view perception, we propose: 1) Dynamic-Decoupling Fusion, which resolves inconsistencies in dynamic regions caused by the temporal asynchrony between satellite and street views; 2) 3D-Proj Guidance, a module that enhances 3D feature extraction from inherently 2D satellite imagery; and 3) Uniform Sampling Alignment, which aligns the sampling density between street and satellite views. Evaluated on Occ3D-nuScenes, SA-Occ achieves state-of-the-art performance, especially among single-frame methods, with a 39.05% mIoU (a 6.97% improvement), while incurring only 6.93 ms of additional latency per frame. Our code and newly curated dataset are available at https://github.com/chenchen235/SA-Occ.
comment: 10 pages
☆ Do Visual Imaginations Improve Vision-and-Language Navigation Agents?
Vision-and-Language Navigation (VLN) agents are tasked with navigating an unseen environment using natural language instructions. In this work, we study if visual representations of sub-goals implied by the instructions can serve as navigational cues and lead to increased navigation performance. To synthesize these visual representations or imaginations, we leverage a text-to-image diffusion model on landmark references contained in segmented instructions. These imaginations are provided to VLN agents as an added modality to act as landmark cues and an auxiliary loss is added to explicitly encourage relating these with their corresponding referring expressions. Our findings reveal an increase in success rate (SR) of around 1 point and up to 0.5 points in success scaled by inverse path length (SPL) across agents. These results suggest that the proposed approach reinforces visual understanding compared to relying on language instructions alone. Code and data for our work can be found at https://www.akhilperincherry.com/VLN-Imagine-website/.
Graph of Effort: Quantifying Risk of AI Usage for Vulnerability Assessment
With AI-based software becoming widely available, the risk of exploiting its capabilities, such as high automation and complex pattern recognition, could significantly increase. An AI used offensively to attack non-AI assets is referred to as offensive AI. Current research explores how offensive AI can be utilized and how its usage can be classified. Additionally, methods for threat modeling are being developed for AI-based assets within organizations. However, there are gaps that need to be addressed. Firstly, there is a need to quantify the factors contributing to the AI threat. Secondly, there is a requirement to create threat models that analyze the risk of being attacked by AI for vulnerability assessment across all assets of an organization. This is particularly crucial and challenging in cloud environments, where sophisticated infrastructure and access control landscapes are prevalent. The ability to quantify and further analyze the threat posed by offensive AI enables analysts to rank vulnerabilities and prioritize the implementation of proactive countermeasures. To address these gaps, this paper introduces the Graph of Effort, an intuitive, flexible, and effective threat modeling method for analyzing the effort required to use offensive AI for vulnerability exploitation by an adversary. While the threat model is functional and provides valuable support, its design choices need further empirical validation in future work.
comment: 8 pages; accepted for the 16th International Conference on Cloud Computing, GRIDs, and Virtualization (Cloud Computing 2025), Valencia, Spain, 2025
☆ Attentional Triple-Encoder Network in Spatiospectral Domains for Medical Image Segmentation
Retinal Optical Coherence Tomography (OCT) segmentation is essential for diagnosing pathology. Traditional methods focus on either spatial or spectral domains, overlooking their combined dependencies. We propose a triple-encoder network that integrates CNNs for spatial features, Fast Fourier Convolution (FFC) for spectral features, and attention mechanisms to capture global relationships across both domains. Attention fusion modules integrate convolution and cross-attention to further enhance features. Our method achieves an average Dice score improvement from 0.855 to 0.864, outperforming prior work.
comment: IEEE Conference on Artificial Intelligence (IEEE CAI)
☆ Deconstructing Long Chain-of-Thought: A Structured Reasoning Optimization Framework for Long CoT Distillation
Recent advancements in large language models (LLMs) have demonstrated remarkable reasoning capabilities through long chain-of-thought (CoT) reasoning. The R1 distillation scheme has emerged as a promising approach for training cost-effective models with enhanced reasoning abilities. However, the underlying mechanisms driving its effectiveness remain unclear. This study examines the universality of distillation data and identifies key components that enable the efficient transfer of long-chain reasoning capabilities in LLM distillation. Our findings reveal that the effectiveness of long CoT reasoning distillation from teacher models like Qwen-QwQ degrades significantly on nonhomologous models, challenging the assumed universality of current distillation methods. To gain deeper insights into the structure and patterns of long CoT reasoning, we propose DLCoT (Deconstructing Long Chain-of-Thought), a distillation data enhancement framework. DLCoT consists of three key steps: (1) data segmentation to decompose complex long CoT structures, (2) simplification by eliminating unsolvable and redundant solutions, and (3) optimization of intermediate error states. Our approach significantly improves model performance and token efficiency, facilitating the development of high-performance LLMs.
Reinforcement Learning-based Heuristics to Guide Domain-Independent Dynamic Programming
Domain-Independent Dynamic Programming (DIDP) is a state-space search paradigm based on dynamic programming for combinatorial optimization. In its current implementation, DIDP guides the search using user-defined dual bounds. Reinforcement learning (RL) is increasingly being applied to combinatorial optimization problems and shares several key structures with DP, being represented by the Bellman equation and state-based transition systems. We propose using reinforcement learning to obtain a heuristic function to guide the search in DIDP. We develop two RL-based guidance approaches: value-based guidance using Deep Q-Networks and policy-based guidance using Proximal Policy Optimization. Our experiments indicate that RL-based guidance significantly outperforms standard DIDP and problem-specific greedy heuristics with the same number of node expansions. Further, despite longer node evaluation times, RL guidance achieves better run-time performance than standard DIDP on three of four benchmark domains.
comment: 24 pages, 4 figures, to be published in CPAIOR 2025 (https://sites.google.com/view/cpaior2025)
☆ JARVIS-VLA: Post-Training Large-Scale Vision Language Models to Play Visual Games with Keyboards and Mouse
Recently, action-based decision-making in open-world environments has gained significant attention. Visual Language Action (VLA) models, pretrained on large-scale web datasets, have shown promise in decision-making tasks. However, previous work has primarily focused on action post-training, often neglecting enhancements to the foundational model itself. In response, we introduce a novel approach, Act from Visual Language Post-Training, which refines Visual Language Models (VLMs) through visual and linguistic guidance in a self-supervised manner. This enhancement improves the models' capabilities in world knowledge, visual recognition, and spatial grounding in open-world environments. Following the above post-training paradigms, we obtain the first VLA models in Minecraft that can follow human instructions on over 1k different atomic tasks, including crafting, smelting, cooking, mining, and killing. Our experiments demonstrate that post-training on non-trajectory tasks leads to a significant 40% improvement over the best agent baseline on a diverse set of atomic tasks. Furthermore, we demonstrate that our approach surpasses traditional imitation learning-based policies in Minecraft, achieving state-of-the-art performance. We have open-sourced the code, models, and datasets to foster further research. The project page can be found in https://craftjarvis.github.io/JarvisVLA.
comment: 22 pages, 5 figures
☆ Neural Networks: According to the Principles of Grassmann Algebra
In this paper, we explore the algebra of quantum idempotents and the quantization of fermions which gives rise to a Hilbert space equal to the Grassmann algebra associated with the Lie algebra. Since idempotents carry representations of the algebra under consideration, they form algebraic varieties and smooth manifolds in the natural topology. In addition to the motivation of linking up mathematical physics with machine learning, it is also shown that by using idempotents and invariant subspace of the corresponding algebras, these representations encode and perhaps provide a probabilistic interpretation of reasoning and relational paths in geometrical terms.
☆ CaKE: Circuit-aware Editing Enables Generalizable Knowledge Learners
Knowledge Editing (KE) enables the modification of outdated or incorrect information in large language models (LLMs). While existing KE methods can update isolated facts, they struggle to generalize these updates to multi-hop reasoning tasks that depend on the modified knowledge. Through an analysis of reasoning circuits -- the neural pathways LLMs use for knowledge-based inference, we observe that current layer-localized KE approaches, such as MEMIT and WISE, which edit only single or a few model layers, struggle to effectively incorporate updated information into these reasoning pathways. To address this limitation, we propose CaKE (Circuit-aware Knowledge Editing), a novel method that enables more effective integration of updated knowledge in LLMs. CaKE leverages strategically curated data, guided by our circuits-based analysis, that enforces the model to utilize the modified knowledge, stimulating the model to develop appropriate reasoning circuits for newly integrated knowledge. Experimental results show that CaKE enables more accurate and consistent use of updated knowledge across related reasoning tasks, leading to an average of 20% improvement in multi-hop reasoning accuracy on MQuAKE dataset compared to existing KE methods. We release the code and data in https://github.com/zjunlp/CaKE.
comment: Work in progress
☆ Palatable Conceptions of Disembodied Being: Terra Incognita in the Space of Possible Minds
Is it possible to articulate a conception of consciousness that is compatible with the exotic characteristics of contemporary, disembodied AI systems, and that can stand up to philosophical scrutiny? How would subjective time and selfhood show up for an entity that conformed to such a conception? Trying to answer these questions, even metaphorically, stretches the language of consciousness to breaking point. Ultimately, the attempt yields something like emptiness, in the Buddhist sense, and helps to undermine our dualistic inclinations towards subjectivity and selfhood.
☆ HiQ-Lip: The First Quantum-Classical Hierarchical Method for Global Lipschitz Constant Estimation of ReLU Networks
Estimating the global Lipschitz constant of neural networks is crucial for understanding and improving their robustness and generalization capabilities. However, precise calculations are NP-hard, and current semidefinite programming (SDP) methods face challenges such as high memory usage and slow processing speeds. In this paper, we propose \textbf{HiQ-Lip}, a hybrid quantum-classical hierarchical method that leverages Coherent Ising Machines (CIMs) to estimate the global Lipschitz constant. We tackle the estimation by converting it into a Quadratic Unconstrained Binary Optimization (QUBO) problem and implement a multilevel graph coarsening and refinement strategy to adapt to the constraints of contemporary quantum hardware. Our experimental evaluations on fully connected neural networks demonstrate that HiQ-Lip not only provides estimates comparable to state-of-the-art methods but also significantly accelerates the computation process. In specific tests involving two-layer neural networks with 256 hidden neurons, HiQ-Lip doubles the solving speed and offers more accurate upper bounds than the existing best method, LiPopt. These findings highlight the promising utility of small-scale quantum devices in advancing the estimation of neural network robustness.
☆ Enhancing Software Quality Assurance with an Adaptive Differential Evolution based Quantum Variational Autoencoder-Transformer Model
An AI-powered quality engineering platform uses artificial intelligence to boost software quality assessments through automated defect prediction and optimized performance alongside improved feature extraction. Existing models result in difficulties addressing noisy data types together with imbalances, pattern recognition complexities, ineffective feature extraction, and generalization weaknesses. To overcome those existing challenges in this research, we develop a new model Adaptive Differential Evolution based Quantum Variational Autoencoder-Transformer Model (ADE-QVAET), that combines a Quantum Variational Autoencoder-Transformer (QVAET) to obtain high-dimensional latent features and maintain sequential dependencies together with contextual relationships, resulting in superior defect prediction accuracy. Adaptive Differential Evolution (ADE) Optimization utilizes an adaptive parameter tuning method that enhances model convergence and predictive performance. ADE-QVAET integrates advanced AI techniques to create a robust solution for scalable and accurate software defect prediction that represents a top-level AI-driven technology for quality engineering applications. The proposed ADE-QVAET model attains high accuracy, precision, recall, and f1-score during the training percentage (TP) 90 of 98.08%, 92.45%, 94.67%, and 98.12%.
☆ Knowledge-guided machine learning model with soil moisture for corn yield prediction under drought conditions
Remote sensing (RS) techniques, by enabling non-contact acquisition of extensive ground observations, have become a valuable tool for corn yield prediction. Traditional process-based (PB) models are limited by fixed input features and struggle to incorporate large volumes of RS data. In contrast, machine learning (ML) models are often criticized for being ``black boxes'' with limited interpretability. To address these limitations, we used Knowledge-Guided Machine Learning (KGML), which combined the strengths of both approaches and fully used RS data. However, previous KGML methods overlooked the crucial role of soil moisture in plant growth. To bridge this gap, we proposed the Knowledge-Guided Machine Learning with Soil Moisture (KGML-SM) framework, using soil moisture as an intermediate variable to emphasize its key role in plant development. Additionally, based on the prior knowledge that the model may overestimate under drought conditions, we designed a drought-aware loss function that penalizes predicted yield in drought-affected areas. Our experiments showed that the KGML-SM model outperformed other ML models. Finally, we explored the relationships between drought, soil moisture, and corn yield prediction, assessing the importance of various features and analyzing how soil moisture impacts corn yield predictions across different regions and time periods.
☆ OmniGeo: Towards a Multimodal Large Language Models for Geospatial Artificial Intelligence
The rapid advancement of multimodal large language models (LLMs) has opened new frontiers in artificial intelligence, enabling the integration of diverse large-scale data types such as text, images, and spatial information. In this paper, we explore the potential of multimodal LLMs (MLLM) for geospatial artificial intelligence (GeoAI), a field that leverages spatial data to address challenges in domains including Geospatial Semantics, Health Geography, Urban Geography, Urban Perception, and Remote Sensing. We propose a MLLM (OmniGeo) tailored to geospatial applications, capable of processing and analyzing heterogeneous data sources, including satellite imagery, geospatial metadata, and textual descriptions. By combining the strengths of natural language understanding and spatial reasoning, our model enhances the ability of instruction following and the accuracy of GeoAI systems. Results demonstrate that our model outperforms task-specific models and existing LLMs on diverse geospatial tasks, effectively addressing the multimodality nature while achieving competitive results on the zero-shot geospatial tasks. Our code will be released after publication.
comment: 15 pages, Under review
☆ Structured-Noise Masked Modeling for Video, Audio and Beyond
Masked modeling has emerged as a powerful self-supervised learning framework, but existing methods largely rely on random masking, disregarding the structural properties of different modalities. In this work, we introduce structured noise-based masking, a simple yet effective approach that naturally aligns with the spatial, temporal, and spectral characteristics of video and audio data. By filtering white noise into distinct color noise distributions, we generate structured masks that preserve modality-specific patterns without requiring handcrafted heuristics or access to the data. Our approach improves the performance of masked video and audio modeling frameworks without any computational overhead. Extensive experiments demonstrate that structured noise masking achieves consistent improvement over random masking for standard and advanced masked modeling methods, highlighting the importance of modality-aware masking strategies for representation learning.
☆ Speeding up design and making to reduce time-to-project and time-to-market: an AI-Enhanced approach in engineering education
This paper explores the integration of AI tools, such as ChatGPT and GitHub Copilot, in the Software Architecture for Embedded Systems course. AI-supported workflows enabled students to rapidly prototype complex projects, emphasizing real-world applications like SLAM robotics. Results demon-started enhanced problem-solving, faster development, and more sophisticated outcomes, with AI augmenting but not replacing human decision-making.
comment: 10 pages, 4 figures, AIxEDU 2024 conference
Bridging Technology and Humanities: Evaluating the Impact of Large Language Models on Social Sciences Research with DeepSeek-R1
In recent years, the development of Large Language Models (LLMs) has made significant breakthroughs in the field of natural language processing and has gradually been applied to the field of humanities and social sciences research. LLMs have a wide range of application value in the field of humanities and social sciences because of its strong text understanding, generation and reasoning capabilities. In humanities and social sciences research, LLMs can analyze large-scale text data and make inferences. This article analyzes the large language model DeepSeek-R1 from seven aspects: low-resource language translation, educational question-answering, student writing improvement in higher education, logical reasoning, educational measurement and psychometrics, public health policy analysis, and art education.Then we compare the answers given by DeepSeek-R1 in the seven aspects with the answers given by o1-preview. DeepSeek-R1 performs well in the humanities and social sciences, answering most questions correctly and logically, and can give reasonable analysis processes and explanations. Compared with o1-preview, it can automatically generate reasoning processes and provide more detailed explanations, which is suitable for beginners or people who need to have a detailed understanding of this knowledge, while o1-preview is more suitable for quick reading. Through analysis, it is found that LLM has broad application potential in the field of humanities and social sciences, and shows great advantages in improving text analysis efficiency, language communication and other fields. LLM's powerful language understanding and generation capabilities enable it to deeply explore complex problems in the field of humanities and social sciences, and provide innovative tools for academic research and practical applications.
comment: arXiv admin note: text overlap with arXiv:2409.18486
☆ Unleashing Vecset Diffusion Model for Fast Shape Generation
3D shape generation has greatly flourished through the development of so-called "native" 3D diffusion, particularly through the Vecset Diffusion Model (VDM). While recent advancements have shown promising results in generating high-resolution 3D shapes, VDM still struggles with high-speed generation. Challenges exist because of difficulties not only in accelerating diffusion sampling but also VAE decoding in VDM, areas under-explored in previous works. To address these challenges, we present FlashVDM, a systematic framework for accelerating both VAE and DiT in VDM. For DiT, FlashVDM enables flexible diffusion sampling with as few as 5 inference steps and comparable quality, which is made possible by stabilizing consistency distillation with our newly introduced Progressive Flow Distillation. For VAE, we introduce a lightning vecset decoder equipped with Adaptive KV Selection, Hierarchical Volume Decoding, and Efficient Network Design. By exploiting the locality of the vecset and the sparsity of shape surface in the volume, our decoder drastically lowers FLOPs, minimizing the overall decoding overhead. We apply FlashVDM to Hunyuan3D-2 to obtain Hunyuan3D-2 Turbo. Through systematic evaluation, we show that our model significantly outperforms existing fast 3D generation methods, achieving comparable performance to the state-of-the-art while reducing inference time by over 45x for reconstruction and 32x for generation. Code and models are available at https://github.com/Tencent/FlashVDM.
comment: Technical report
☆ Diffusion-augmented Graph Contrastive Learning for Collaborative Filter
Graph-based collaborative filtering has been established as a prominent approach in recommendation systems, leveraging the inherent graph topology of user-item interactions to model high-order connectivity patterns and enhance recommendation performance. Recent advances in Graph Contrastive Learning (GCL) have demonstrated promising potential to alleviate data sparsity issues by improving representation learning through contrastive view generation and mutual information maximization. However, existing approaches lack effective data augmentation strategies. Structural augmentation risks distorting fundamental graph topology, while feature-level perturbation techniques predominantly employ uniform noise scales that fail to account for node-specific characteristics. To solve these challenges, we propose Diffusion-augmented Contrastive Learning (DGCL), an innovative framework that integrates diffusion models with contrastive learning for enhanced collaborative filtering. Our approach employs a diffusion process that learns node-specific Gaussian distributions of representations, thereby generating semantically consistent yet diversified contrastive views through reverse diffusion sampling. DGCL facilitates adaptive data augmentation based on reconstructed representations, considering both semantic coherence and node-specific features. In addition, it explores unrepresented regions of the latent sparse feature space, thereby enriching the diversity of contrastive views. Extensive experimental results demonstrate the effectiveness of DGCL on three public datasets.
☆ AI Agents in Cryptoland: Practical Attacks and No Silver Bullet
The integration of AI agents with Web3 ecosystems harnesses their complementary potential for autonomy and openness, yet also introduces underexplored security risks, as these agents dynamically interact with financial protocols and immutable smart contracts. This paper investigates the vulnerabilities of AI agents within blockchain-based financial ecosystems when exposed to adversarial threats in real-world scenarios. We introduce the concept of context manipulation -- a comprehensive attack vector that exploits unprotected context surfaces, including input channels, memory modules, and external data feeds. Through empirical analysis of ElizaOS, a decentralized AI agent framework for automated Web3 operations, we demonstrate how adversaries can manipulate context by injecting malicious instructions into prompts or historical interaction records, leading to unintended asset transfers and protocol violations which could be financially devastating. Our findings indicate that prompt-based defenses are insufficient, as malicious inputs can corrupt an agent's stored context, creating cascading vulnerabilities across interactions and platforms. This research highlights the urgent need to develop AI agents that are both secure and fiduciarily responsible.
comment: 12 pages, 8 figures
☆ Flight Testing an Optionally Piloted Aircraft: a Case Study on Trust Dynamics in Human-Autonomy Teaming
This paper examines how trust is formed, maintained, or diminished over time in the context of human-autonomy teaming with an optionally piloted aircraft. Whereas traditional factor-based trust models offer a static representation of human confidence in technology, here we discuss how variations in the underlying factors lead to variations in trust, trust thresholds, and human behaviours. Over 200 hours of flight test data collected over a multi-year test campaign from 2021 to 2023 were reviewed. The dispositional-situational-learned, process-performance-purpose, and IMPACTS homeostasis trust models are applied to illuminate trust trends during nominal autonomous flight operations. The results offer promising directions for future studies on trust dynamics and design-for-trust in human-autonomy teaming.
comment: IEEE International Conference on Human-Machine Systems 2025, keywords: trust, human factors, aviation, safety-critical, human-autonomy teaming
☆ MathFusion: Enhancing Mathematic Problem-solving of LLM through Instruction Fusion
Large Language Models (LLMs) have shown impressive progress in mathematical reasoning. While data augmentation is promising to enhance mathematical problem-solving ability, current approaches are predominantly limited to instance-level modifications-such as rephrasing or generating syntactic variations-which fail to capture and leverage the intrinsic relational structures inherent in mathematical knowledge. Inspired by human learning processes, where mathematical proficiency develops through systematic exposure to interconnected concepts, we introduce MathFusion, a novel framework that enhances mathematical reasoning through cross-problem instruction synthesis. MathFusion implements this through three fusion strategies: (1) sequential fusion, which chains related problems to model solution dependencies; (2) parallel fusion, which combines analogous problems to reinforce conceptual understanding; and (3) conditional fusion, which creates context-aware selective problems to enhance reasoning flexibility. By applying these strategies, we generate a new dataset, \textbf{MathFusionQA}, followed by fine-tuning models (DeepSeekMath-7B, Mistral-7B, Llama3-8B) on it. Experimental results demonstrate that MathFusion achieves substantial improvements in mathematical reasoning while maintaining high data efficiency, boosting performance by 18.0 points in accuracy across diverse benchmarks while requiring only 45K additional synthetic instructions, representing a substantial improvement over traditional single-instruction approaches. Our datasets, models, and code are publicly available at https://github.com/QizhiPei/mathfusion.
comment: Work in progress
☆ Logic Explanation of AI Classifiers by Categorical Explaining Functors
The most common methods in explainable artificial intelligence are post-hoc techniques which identify the most relevant features used by pretrained opaque models. Some of the most advanced post hoc methods can generate explanations that account for the mutual interactions of input features in the form of logic rules. However, these methods frequently fail to guarantee the consistency of the extracted explanations with the model's underlying reasoning. To bridge this gap, we propose a theoretically grounded approach to ensure coherence and fidelity of the extracted explanations, moving beyond the limitations of current heuristic-based approaches. To this end, drawing from category theory, we introduce an explaining functor which structurally preserves logical entailment between the explanation and the opaque model's reasoning. As a proof of concept, we validate the proposed theoretical constructions on a synthetic benchmark verifying how the proposed approach significantly mitigates the generation of contradictory or unfaithful explanations.
☆ Large Language Models for Water Distribution Systems Modeling and Decision-Making
The design, operations, and management of water distribution systems (WDS) involve complex mathematical models. These models are continually improving due to computational advancements, leading to better decision-making and more efficient WDS management. However, the significant time and effort required for modeling, programming, and analyzing results remain substantial challenges. Another issue is the professional burden, which confines the interaction with models, databases, and other sophisticated tools to a small group of experts, thereby causing non-technical stakeholders to depend on these experts or make decisions without modeling support. Furthermore, explaining model results is challenging even for experts, as it is often unclear which conditions cause the model to reach a certain state or recommend a specific policy. The recent advancements in Large Language Models (LLMs) open doors for a new stage in human-model interaction. This study proposes a framework of plain language interactions with hydraulic and water quality models based on LLM-EPANET architecture. This framework is tested with increasing levels of complexity of queries to study the ability of LLMs to interact with WDS models, run complex simulations, and report simulation results. The performance of the proposed framework is evaluated across several categories of queries and hyper-parameter configurations, demonstrating its potential to enhance decision-making processes in WDS management.
comment: Accepted to EWRI Congress 2025
☆ Accurate Scene Text Recognition with Efficient Model Scaling and Cloze Self-Distillation
Scaling architectures have been proven effective for improving Scene Text Recognition (STR), but the individual contribution of vision encoder and text decoder scaling remain under-explored. In this work, we present an in-depth empirical analysis and demonstrate that, contrary to previous observations, scaling the decoder yields significant performance gains, always exceeding those achieved by encoder scaling alone. We also identify label noise as a key challenge in STR, particularly in real-world data, which can limit the effectiveness of STR models. To address this, we propose Cloze Self-Distillation (CSD), a method that mitigates label noise by distilling a student model from context-aware soft predictions and pseudolabels generated by a teacher model. Additionally, we enhance the decoder architecture by introducing differential cross-attention for STR. Our methodology achieves state-of-the-art performance on 10 out of 11 benchmarks using only real data, while significantly reducing the parameter size and computational costs.
☆ Towards Lighter and Robust Evaluation for Retrieval Augmented Generation ICLR 25
Large Language Models are prompting us to view more NLP tasks from a generative perspective. At the same time, they offer a new way of accessing information, mainly through the RAG framework. While there have been notable improvements for the autoregressive models, overcoming hallucination in the generated answers remains a continuous problem. A standard solution is to use commercial LLMs, such as GPT4, to evaluate these algorithms. However, such frameworks are expensive and not very transparent. Therefore, we propose a study which demonstrates the interest of open-weight models for evaluating RAG hallucination. We develop a lightweight approach using smaller, quantized LLMs to provide an accessible and interpretable metric that gives continuous scores for the generated answer with respect to their correctness and faithfulness. This score allows us to question decisions' reliability and explore thresholds to develop a new AUC metric as an alternative to correlation with human judgment.
comment: 17 pages, 5 figures, published at 1st workshop of Quantify Uncertainty and Hallucination in Foundation Models: The Next Frontier in Reliable AI at ICLR 25
☆ Neural Combinatorial Optimization for Real-World Routing
Vehicle Routing Problems (VRPs) are a class of NP-hard problems ubiquitous in several real-world logistics scenarios that pose significant challenges for optimization. Neural Combinatorial Optimization (NCO) has emerged as a promising alternative to classical approaches, as it can learn fast heuristics to solve VRPs. However, most research works in NCO for VRPs focus on simplified settings, which do not account for asymmetric distances and travel durations that cannot be derived by simple Euclidean distances and unrealistic data distributions, hindering real-world deployment. This work introduces RRNCO (Real Routing NCO) to bridge the gap of NCO between synthetic and real-world VRPs in the critical aspects of both data and modeling. First, we introduce a new, openly available dataset with real-world data containing a diverse dataset of locations, distances, and duration matrices from 100 cities, considering realistic settings with actual routing distances and durations obtained from Open Source Routing Machine (OSRM). Second, we propose a novel approach that efficiently processes both node and edge features through contextual gating, enabling the construction of more informed node embedding, and we finally incorporate an Adaptation Attention Free Module (AAFM) with neural adaptive bias mechanisms that effectively integrates not only distance matrices but also angular relationships between nodes, allowing our model to capture rich structural information. RRNCO achieves state-of-the-art results in real-world VRPs among NCO methods. We make our dataset and code publicly available at https://github.com/ai4co/real-routing-nco.
☆ Unify and Triumph: Polyglot, Diverse, and Self-Consistent Generation of Unit Tests with LLMs
Large language model (LLM)-based test generation has gained attention in software engineering, yet most studies evaluate LLMs' ability to generate unit tests in a single attempt for a given language, missing the opportunity to leverage LLM diversity for more robust testing. This paper introduces PolyTest, a novel approach that enhances test generation by exploiting polyglot and temperature-controlled diversity. PolyTest systematically leverages these properties in two complementary ways: (1) Cross-lingual test generation, where tests are generated in multiple languages at zero temperature and then unified; (2) Diverse test sampling, where multiple test sets are generated within the same language at a higher temperature before unification. A key insight is that LLMs can generate diverse yet contradicting tests -- same input, different expected outputs -- across languages and generations. PolyTest mitigates inconsistencies by unifying test sets, fostering self-consistency and improving overall test quality. Unlike single-language or single-attempt approaches, PolyTest enhances testing without requiring on-the-fly execution, making it particularly beneficial for weaker-performing languages. We evaluate PolyTest on Llama3-70B, GPT-4o, and GPT-3.5 using EvalPlus, generating tests in five languages (Java, C, Python, JavaScript, and a CSV-based format) at temperature 0 and sampling multiple sets at temperature 1. We observe that LLMs frequently generate contradicting tests across settings, and that PolyTest significantly improves test quality across all considered metrics -- number of tests, passing rate, statement/branch coverage (up to +9.01%), and mutation score (up to +11.23%). Finally, PolyTest outperforms Pynguin in test generation, passing rate, and mutation score.
PromptMobile: Efficient Promptus for Low Bandwidth Mobile Video Streaming
Traditional video compression algorithms exhibit significant quality degradation at extremely low bitrates. Promptus emerges as a new paradigm for video streaming, substantially cutting down the bandwidth essential for video streaming. However, Promptus is computationally intensive and can not run in real-time on mobile devices. This paper presents PromptMobile, an efficient acceleration framework tailored for on-device Promptus. Specifically, we propose (1) a two-stage efficient generation framework to reduce computational cost by 8.1x, (2) a fine-grained inter-frame caching to reduce redundant computations by 16.6\%, (3) system-level optimizations to further enhance efficiency. The evaluations demonstrate that compared with the original Promptus, PromptMobile achieves a 13.6x increase in image generation speed. Compared with other streaming methods, PromptMobile achives an average LPIPS improvement of 0.016 (compared with H.265), reducing 60\% of severely distorted frames (compared to VQGAN).
comment: 7 pages, 10 figures
☆ AIMI: Leveraging Future Knowledge and Personalization in Sparse Event Forecasting for Treatment Adherence
Adherence to prescribed treatments is crucial for individuals with chronic conditions to avoid costly or adverse health outcomes. For certain patient groups, intensive lifestyle interventions are vital for enhancing medication adherence. Accurate forecasting of treatment adherence can open pathways to developing an on-demand intervention tool, enabling timely and personalized support. With the increasing popularity of smartphones and wearables, it is now easier than ever to develop and deploy smart activity monitoring systems. However, effective forecasting systems for treatment adherence based on wearable sensors are still not widely available. We close this gap by proposing Adherence Forecasting and Intervention with Machine Intelligence (AIMI). AIMI is a knowledge-guided adherence forecasting system that leverages smartphone sensors and previous medication history to estimate the likelihood of forgetting to take a prescribed medication. A user study was conducted with 27 participants who took daily medications to manage their cardiovascular diseases. We designed and developed CNN and LSTM-based forecasting models with various combinations of input features and found that LSTM models can forecast medication adherence with an accuracy of 0.932 and an F-1 score of 0.936. Moreover, through a series of ablation studies involving convolutional and recurrent neural network architectures, we demonstrate that leveraging known knowledge about future and personalized training enhances the accuracy of medication adherence forecasting. Code available: https://github.com/ab9mamun/AIMI.
comment: 15 pages, 5 figures
☆ Allostatic Control of Persistent States in Spiking Neural Networks for perception and computation
We introduce a novel model for updating perceptual beliefs about the environment by extending the concept of Allostasis to the control of internal representations. Allostasis is a fundamental regulatory mechanism observed in animal physiology that orchestrates responses to maintain a dynamic equilibrium in bodily needs and internal states. In this paper, we focus on an application in numerical cognition, where a bump of activity in an attractor network is used as a spatial numerical representation. While existing neural networks can maintain persistent states, to date, there is no unified framework for dynamically controlling spatial changes in neuronal activity in response to environmental changes. To address this, we couple a well known allostatic microcircuit, the Hammel model, with a ring attractor, resulting in a Spiking Neural Network architecture that can modulate the location of the bump as a function of some reference input. This localized activity in turn is used as a perceptual belief in a simulated subitization task a quick enumeration process without counting. We provide a general procedure to fine-tune the model and demonstrate the successful control of the bump location. We also study the response time in the model with respect to changes in parameters and compare it with biological data. Finally, we analyze the dynamics of the network to understand the selectivity and specificity of different neurons to distinct categories present in the input. The results of this paper, particularly the mechanism for moving persistent states, are not limited to numerical cognition but can be applied to a wide range of tasks involving similar representations.
☆ 3-D Image-to-Image Fusion in Lightsheet Microscopy by Two-Step Adversarial Network: Contribution to the FuseMyCells Challenge
Lightsheet microscopy is a powerful 3-D imaging technique that addresses limitations of traditional optical and confocal microscopy but suffers from a low penetration depth and reduced image quality at greater depths. Multiview lightsheet microscopy improves 3-D resolution by combining multiple views but simultaneously increasing the complexity and the photon budget, leading to potential photobleaching and phototoxicity. The FuseMyCells challenge, organized in conjunction with the IEEE ISBI 2025 conference, aims to benchmark deep learning-based solutions for fusing high-quality 3-D volumes from single 3-D views, potentially simplifying procedures and conserving the photon budget. In this work, we propose a contribution to the FuseMyCells challenge based on a two-step procedure. The first step processes a downsampled version of the image to capture the entire region of interest, while the second step uses a patch-based approach for high-resolution inference, incorporating adversarial loss to enhance visual outcomes. This method addresses challenges related to high data resolution, the necessity of global context, and the preservation of high-frequency details. Experimental results demonstrate the effectiveness of our approach, highlighting its potential to improve 3-D image fusion quality and extend the capabilities of lightsheet microscopy. The average SSIM for the nucleus and membranes is greater than 0.85 and 0.91, respectively.
☆ Redefining Toxicity: An Objective and Context-Aware Approach for Stress-Level-Based Detection
The fundamental problem of toxicity detection lies in the fact that the term "toxicity" is ill-defined. Such uncertainty causes researchers to rely on subjective and vague data during model training, which leads to non-robust and inaccurate results, following the 'garbage in - garbage out' paradigm. This study introduces a novel, objective, and context-aware framework for toxicity detection, leveraging stress levels as a key determinant of toxicity. We propose new definition, metric and training approach as a parts of our framework and demonstrate it's effectiveness using a dataset we collected.
☆ Tuning LLMs by RAG Principles: Towards LLM-native Memory
Memory, additional information beyond the training of large language models (LLMs), is crucial to various real-world applications, such as personal assistant. The two mainstream solutions to incorporate memory into the generation process are long-context LLMs and retrieval-augmented generation (RAG). In this paper, we first systematically compare these two types of solutions on three renovated/new datasets and show that (1) long-context solutions, although more expensive, shall be easier to capture the big picture and better answer queries which require considering the memory as a whole; and (2) when the queries concern specific information, RAG solutions shall be more competitive especially when the keywords can be explicitly matched. Therefore, we propose a novel method RAG-Tuned-LLM which fine-tunes a relative small (e.g., 7B) LLM using the data generated following the RAG principles, so it can combine the advantages of both solutions. Extensive experiments on three datasets demonstrate that RAG-Tuned-LLM can beat long-context LLMs and RAG methods across a wide range of query types.
☆ PromptHash: Affinity-Prompted Collaborative Cross-Modal Learning for Adaptive Hashing Retrieval CVPR2025
Cross-modal hashing is a promising approach for efficient data retrieval and storage optimization. However, contemporary methods exhibit significant limitations in semantic preservation, contextual integrity, and information redundancy, which constrains retrieval efficacy. We present PromptHash, an innovative framework leveraging affinity prompt-aware collaborative learning for adaptive cross-modal hashing. We propose an end-to-end framework for affinity-prompted collaborative hashing, with the following fundamental technical contributions: (i) a text affinity prompt learning mechanism that preserves contextual information while maintaining parameter efficiency, (ii) an adaptive gated selection fusion architecture that synthesizes State Space Model with Transformer network for precise cross-modal feature integration, and (iii) a prompt affinity alignment strategy that bridges modal heterogeneity through hierarchical contrastive learning. To the best of our knowledge, this study presents the first investigation into affinity prompt awareness within collaborative cross-modal adaptive hash learning, establishing a paradigm for enhanced semantic consistency across modalities. Through comprehensive evaluation on three benchmark multi-label datasets, PromptHash demonstrates substantial performance improvements over existing approaches. Notably, on the NUS-WIDE dataset, our method achieves significant gains of 18.22% and 18.65% in image-to-text and text-to-image retrieval tasks, respectively. The code is publicly available at https://github.com/ShiShuMo/PromptHash.
comment: Accepted by CVPR2025
☆ Two-stage Incomplete Utterance Rewriting on Editing Operation
Previous work on Incomplete Utterance Rewriting (IUR) has primarily focused on generating rewritten utterances based solely on dialogue context, ignoring the widespread phenomenon of coreference and ellipsis in dialogues. To address this issue, we propose a novel framework called TEO (\emph{Two-stage approach on Editing Operation}) for IUR, in which the first stage generates editing operations and the second stage rewrites incomplete utterances utilizing the generated editing operations and the dialogue context. Furthermore, an adversarial perturbation strategy is proposed to mitigate cascading errors and exposure bias caused by the inconsistency between training and inference in the second stage. Experimental results on three IUR datasets show that our TEO outperforms the SOTA models significantly.
☆ Expert Race: A Flexible Routing Strategy for Scaling Diffusion Transformer with Mixture of Experts
Diffusion models have emerged as mainstream framework in visual generation. Building upon this success, the integration of Mixture of Experts (MoE) methods has shown promise in enhancing model scalability and performance. In this paper, we introduce Race-DiT, a novel MoE model for diffusion transformers with a flexible routing strategy, Expert Race. By allowing tokens and experts to compete together and select the top candidates, the model learns to dynamically assign experts to critical tokens. Additionally, we propose per-layer regularization to address challenges in shallow layer learning, and router similarity loss to prevent mode collapse, ensuring better expert utilization. Extensive experiments on ImageNet validate the effectiveness of our approach, showcasing significant performance gains while promising scaling properties.
☆ Temporal-Spatial Attention Network (TSAN) for DoS Attack Detection in Network Traffic
Denial-of-Service (DoS) attacks remain a critical threat to network security, disrupting services and causing significant economic losses. Traditional detection methods, including statistical and rule-based models, struggle to adapt to evolving attack patterns. To address this challenge, we propose a novel Temporal-Spatial Attention Network (TSAN) architecture for detecting Denial of Service (DoS) attacks in network traffic. By leveraging both temporal and spatial features of network traffic, our approach captures complex traffic patterns and anomalies that traditional methods might miss. The TSAN model incorporates transformer-based temporal encoding, convolutional spatial encoding, and a cross-attention mechanism to fuse these complementary feature spaces. Additionally, we employ multi-task learning with auxiliary tasks to enhance the model's robustness. Experimental results on the NSL-KDD dataset demonstrate that TSAN outperforms state-of-the-art models, achieving superior accuracy, precision, recall, and F1-score while maintaining computational efficiency for real-time deployment. The proposed architecture offers an optimal balance between detection accuracy and computational overhead, making it highly suitable for real-world network security applications.
comment: 19 Pages, 5 figures
☆ Open Science and Artificial Intelligence for supporting the sustainability of the SRC Network: The espSRC case
The SKA Observatory (SKAO), a landmark project in radio astronomy, seeks to address fundamental questions in astronomy. To process its immense data output, approximately 700 PB/year, a global network of SKA Regional Centres (SR-CNet) will provide the infrastructure, tools, computational power needed for scientific analysis and scientific support. The Spanish SRC (espSRC) focuses on ensuring the sustainability of this network by reducing its environmental impact, integrating green practices into data platforms, and developing Open Science technologies to enable reproducible research. This paper discusses and summarizes part of the research and development activities that the team is conducting to reduce the SRC energy consumption at the espSRC and SRCNet. The paper also discusses fundamental research on trusted repositories to support Open Science practices.
comment: Conference: Astronomical Data Analysis Software & Systems - ADASS XXXIV - 2024
☆ Incomplete Utterance Rewriting with Editing Operation Guidance and Utterance Augmentation
Although existing fashionable generation methods on Incomplete Utterance Rewriting (IUR) can generate coherent utterances, they often result in the inclusion of irrelevant and redundant tokens in rewritten utterances due to their inability to focus on critical tokens in dialogue context. Furthermore, the limited size of the training datasets also contributes to the insufficient training of the IUR model. To address the first issue, we propose a multi-task learning framework EO-IUR (Editing Operation-guided Incomplete Utterance Rewriting) that introduces the editing operation labels generated by sequence labeling module to guide generation model to focus on critical tokens. Furthermore, we introduce a token-level heterogeneous graph to represent dialogues. To address the second issue, we propose a two-dimensional utterance augmentation strategy, namely editing operation-based incomplete utterance augmentation and LLM-based historical utterance augmentation. The experimental results on three datasets demonstrate that our EO-IUR outperforms previous state-of-the-art (SOTA) baselines in both open-domain and task-oriented dialogue. The code will be available at https://github.com/Dewset/EO-IUR.
☆ GreenIQ: A Deep Search Platform for Comprehensive Carbon Market Analysis and Automated Report Generation
This study introduces GreenIQ, an AI-powered deep search platform designed to revolutionise carbon market intelligence through autonomous analysis and automated report generation. Carbon markets operate across diverse regulatory landscapes, generating vast amounts of heterogeneous data from policy documents, industry reports, academic literature, and real-time trading platforms. Traditional research approaches remain labour-intensive, slow, and difficult to scale. GreenIQ addresses these limitations through a multi-agent architecture powered by Large Language Models (LLMs), integrating five specialised AI agents: a Main Researcher Agent for intelligent information retrieval, a Report Writing Agent for structured synthesis, a Final Reviewer Agent for accuracy verification, a Data Visualisation Agent for enhanced interpretability, and a Translator Agent for multilingual adaptation. The system achieves seamless integration of structured and unstructured information with AI-driven citation verification, ensuring high transparency and reliability. GreenIQ delivers a 99.2\% reduction in processing time and a 99.7\% cost reduction compared to traditional research methodologies. A novel AI persona-based evaluation framework involving 16 domain-specific AI personas highlights its superior cross-jurisdictional analytical capabilities and regulatory insight generation. GreenIQ sets new standards in AI-driven research synthesis, policy analysis, and sustainability finance by streamlining carbon market research. It offers an efficient and scalable framework for environmental and financial intelligence, enabling more accurate, timely, and cost-effective decision-making in complex regulatory landscapes
comment: 12 Pages, 1 figure
☆ Hybrid-Level Instruction Injection for Video Token Compression in Multi-modal Large Language Models CVPR2025
Recent Multi-modal Large Language Models (MLLMs) have been challenged by the computational overhead resulting from massive video frames, often alleviated through compression strategies. However, the visual content is not equally contributed to user instructions, existing strategies (\eg, average pool) inevitably lead to the loss of potentially useful information. To tackle this, we propose the Hybrid-level Instruction Injection Strategy for Conditional Token Compression in MLLMs (HICom), utilizing the instruction as a condition to guide the compression from both local and global levels. This encourages the compression to retain the maximum amount of user-focused information while reducing visual tokens to minimize computational burden. Specifically, the instruction condition is injected into the grouped visual tokens at the local level and the learnable tokens at the global level, and we conduct the attention mechanism to complete the conditional compression. From the hybrid-level compression, the instruction-relevant visual parts are highlighted while the temporal-spatial structure is also preserved for easier understanding of LLMs. To further unleash the potential of HICom, we introduce a new conditional pre-training stage with our proposed dataset HICom-248K. Experiments show that our HICom can obtain distinguished video understanding ability with fewer tokens, increasing the performance by 2.43\% average on three multiple-choice QA benchmarks and saving 78.8\% tokens compared with the SOTA method. The code is available at https://github.com/lntzm/HICom.
comment: Accepted to CVPR2025
☆ Single Image Iterative Subject-driven Generation and Editing
Personalizing image generation and editing is particularly challenging when we only have a few images of the subject, or even a single image. A common approach to personalization is concept learning, which can integrate the subject into existing models relatively quickly, but produces images whose quality tends to deteriorate quickly when the number of subject images is small. Quality can be improved by pre-training an encoder, but training restricts generation to the training distribution, and is time consuming. It is still an open hard challenge to personalize image generation and editing from a single image without training. Here, we present SISO, a novel, training-free approach based on optimizing a similarity score with an input subject image. More specifically, SISO iteratively generates images and optimizes the model based on loss of similarity with the given subject image until a satisfactory level of similarity is achieved, allowing plug-and-play optimization to any image generator. We evaluated SISO in two tasks, image editing and image generation, using a diverse data set of personal subjects, and demonstrate significant improvements over existing methods in image quality, subject fidelity, and background preservation.
comment: Project page is at https://siso-paper.github.io/
☆ The Lighthouse of Language: Enhancing LLM Agents via Critique-Guided Improvement
Large language models (LLMs) have recently transformed from text-based assistants to autonomous agents capable of planning, reasoning, and iteratively improving their actions. While numerical reward signals and verifiers can effectively rank candidate actions, they often provide limited contextual guidance. In contrast, natural language feedback better aligns with the generative capabilities of LLMs, providing richer and more actionable suggestions. However, parsing and implementing this feedback effectively can be challenging for LLM-based agents. In this work, we introduce Critique-Guided Improvement (CGI), a novel two-player framework, comprising an actor model that explores an environment and a critic model that generates detailed nature language feedback. By training the critic to produce fine-grained assessments and actionable revisions, and the actor to utilize these critiques, our approach promotes more robust exploration of alternative strategies while avoiding local optima. Experiments in three interactive environments show that CGI outperforms existing baselines by a substantial margin. Notably, even a small critic model surpasses GPT-4 in feedback quality. The resulting actor achieves state-of-the-art performance, demonstrating the power of explicit iterative guidance to enhance decision-making in LLM-based agents.
☆ Autonomous AI imitators increase diversity in homogeneous information ecosystems
Recent breakthroughs in large language models (LLMs) have facilitated autonomous AI agents capable of imitating human-generated content. This technological advancement raises fundamental questions about AI's potential impact on the diversity and democratic value of information ecosystems. Here, we introduce a large-scale simulation framework to examine AI-based imitation in news, a context critically influential for public discourse. By systematically testing two distinct imitation strategies across a range of information environments varying in initial diversity, we demonstrate that AI-generated articles do not uniformly homogenize content. Instead, AI's influence is strongly context-dependent: AI-generated articles can introduce valuable diversity in originally homogeneous news environments, while potentially diminishing diversity in contexts that initially display high heterogeneity. These results illustrate that the baseline diversity of an information space critically shapes AI's impact, challenging assumptions that AI-driven imitation uniformly threatens information diversity. Instead, when information is initially homogeneous, AI-driven imitation can expand perspectives, styles, and topics. This is especially important in news contexts, where information diversity fosters richer public debate by exposing citizens to alternative viewpoints, challenging biases, and preventing narrative monopolies, which is essential for a resilient democracy.
comment: 35 pages, 10 figures, 4 tables
☆ Exploring the Reliability of Self-explanation and its Relationship with Classification in Language Model-driven Financial Analysis
Language models (LMs) have exhibited exceptional versatility in reasoning and in-depth financial analysis through their proprietary information processing capabilities. Previous research focused on evaluating classification performance while often overlooking explainability or pre-conceived that refined explanation corresponds to higher classification accuracy. Using a public dataset in finance domain, we quantitatively evaluated self-explanations by LMs, focusing on their factuality and causality. We identified the statistically significant relationship between the accuracy of classifications and the factuality or causality of self-explanations. Our study built an empirical foundation for approximating classification confidence through self-explanations and for optimizing classification via proprietary reasoning.
☆ DIPLI: Deep Image Prior Lucky Imaging for Blind Astronomical Image Restoration
Contemporary image restoration and super-resolution techniques effectively harness deep neural networks, markedly outperforming traditional methods. However, astrophotography presents unique challenges for deep learning due to limited training data. This work explores hybrid strategies, such as the Deep Image Prior (DIP) model, which facilitates blind training but is susceptible to overfitting, artifact generation, and instability when handling noisy images. We propose enhancements to the DIP model's baseline performance through several advanced techniques. First, we refine the model to process multiple frames concurrently, employing the Back Projection method and the TVNet model. Next, we adopt a Markov approach incorporating Monte Carlo estimation, Langevin dynamics, and a variational input technique to achieve unbiased estimates with minimal variance and counteract overfitting effectively. Collectively, these modifications reduce the likelihood of noise learning and mitigate loss function fluctuations during training, enhancing result stability. We validated our algorithm across multiple image sets of astronomical and celestial objects, achieving performance that not only mitigates limitations of Lucky Imaging, a classical computer vision technique that remains a standard in astronomical image reconstruction but surpasses the original DIP model, state of the art transformer- and diffusion-based models, underscoring the significance of our improvements.
comment: 10 pages, 7 figures, 2 tables
☆ InhibiDistilbert: Knowledge Distillation for a ReLU and Addition-based Transformer
This work explores optimizing transformer-based language models by integrating model compression techniques with inhibitor attention, a novel alternative attention mechanism. Inhibitor attention employs Manhattan distances and ReLU activations instead of the matrix multiplications and softmax activation of the conventional scaled dot-product attention. This shift offers potential computational and energy savings while maintaining model effectiveness. We propose further adjustments to improve the inhibitor mechanism's training efficiency and evaluate its performance on the DistilBERT architecture. Our knowledge distillation experiments indicate that the modified inhibitor transformer model can achieve competitive performance on standard NLP benchmarks, including General Language Understanding Evaluation (GLUE) and sentiment analysis tasks.
comment: 7 pages, 2 tables
☆ Beyond the Visible: Multispectral Vision-Language Learning for Earth Observation
Vision-language models for Earth observation (EO) typically rely on the visual spectrum of data as the only model input, thus failing to leverage the rich spectral information available in the multispectral channels recorded by satellites. Therefore, in this paper, we introduce Llama3-MS-CLIP, the first vision-language model pre-trained with contrastive learning on a large-scale multispectral dataset and report on the performance gains due to the extended spectral range. Furthermore, we present the largest-to-date image-caption dataset for multispectral data, consisting of one million Sentinel-2 samples and corresponding textual descriptions generated with Llama3-LLaVA-Next and Overture Maps data. We develop a scalable captioning pipeline, which is validated by domain experts. We evaluate Llama3-MS-CLIP on multispectral zero-shot image classification and retrieval using three datasets of varying complexity. Our results demonstrate that Llama3-MS-CLIP significantly outperforms other RGB-based approaches, improving classification accuracy by 6.77% on average and retrieval performance by 4.63% mAP compared to the second-best model. Our results emphasize the relevance of multispectral vision-language learning. We release the image-caption dataset, code, and model weights under an open-source license.
☆ GAN-enhanced Simulation-driven DNN Testing in Absence of Ground Truth
The generation of synthetic inputs via simulators driven by search algorithms is essential for cost-effective testing of Deep Neural Network (DNN) components for safety-critical systems. However, in many applications, simulators are unable to produce the ground-truth data needed for automated test oracles and to guide the search process. To tackle this issue, we propose an approach for the generation of inputs for computer vision DNNs that integrates a generative network to ensure simulator fidelity and employs heuristic-based search fitnesses that leverage transformation consistency, noise resistance, surprise adequacy, and uncertainty estimation. We compare the performance of our fitnesses with that of a traditional fitness function leveraging ground truth; further, we assess how the integration of a GAN not leveraging the ground truth impacts on test and retraining effectiveness. Our results suggest that leveraging transformation consistency is the best option to generate inputs for both DNN testing and retraining; it maximizes input diversity, spots the inputs leading to worse DNN performance, and leads to best DNN performance after retraining. Besides enabling simulator-based testing in the absence of ground truth, our findings pave the way for testing solutions that replace costly simulators with diffusion and large language models, which might be more affordable than simulators, but cannot generate ground-truth data.
comment: 15 pages, 8 figures, 13 tables
☆ Don't Fight Hallucinations, Use Them: Estimating Image Realism using NLI over Atomic Facts AAAI-2025
Quantifying the realism of images remains a challenging problem in the field of artificial intelligence. For example, an image of Albert Einstein holding a smartphone violates common-sense because modern smartphone were invented after Einstein's death. We introduce a novel method for assessing image realism using Large Vision-Language Models (LVLMs) and Natural Language Inference (NLI). Our approach is based on the premise that LVLMs may generate hallucinations when confronted with images that defy common sense. Using LVLM to extract atomic facts from these images, we obtain a mix of accurate facts and erroneous hallucinations. We proceed by calculating pairwise entailment scores among these facts, subsequently aggregating these values to yield a singular reality score. This process serves to identify contradictions between genuine facts and hallucinatory elements, signaling the presence of images that violate common sense. Our approach has achieved a new state-of-the-art performance in zero-shot mode on the WHOOPS! dataset.
comment: Proceedings of De-Factify 4: 4nd Workshop on Multimodal Fact Checking and Hate Speech Detection, co-located with AAAI-2025
☆ Unreal-MAP: Unreal-Engine-Based General Platform for Multi-Agent Reinforcement Learning
In this paper, we propose Unreal Multi-Agent Playground (Unreal-MAP), an MARL general platform based on the Unreal-Engine (UE). Unreal-MAP allows users to freely create multi-agent tasks using the vast visual and physical resources available in the UE community, and deploy state-of-the-art (SOTA) MARL algorithms within them. Unreal-MAP is user-friendly in terms of deployment, modification, and visualization, and all its components are open-source. We also develop an experimental framework compatible with algorithms ranging from rule-based to learning-based provided by third-party frameworks. Lastly, we deploy several SOTA algorithms in example tasks developed via Unreal-MAP, and conduct corresponding experimental analyses. We believe Unreal-MAP can play an important role in the MARL field by closely integrating existing algorithms with user-customized tasks, thus advancing the field of MARL.
☆ Advancing Mobile GUI Agents: A Verifier-Driven Approach to Practical Deployment
We propose V-Droid, a mobile GUI task automation agent. Unlike previous mobile agents that utilize Large Language Models (LLMs) as generators to directly generate actions at each step, V-Droid employs LLMs as verifiers to evaluate candidate actions before making final decisions. To realize this novel paradigm, we introduce a comprehensive framework for constructing verifier-driven mobile agents: the discretized action space construction coupled with the prefilling-only workflow to accelerate the verification process, the pair-wise progress preference training to significantly enhance the verifier's decision-making capabilities, and the scalable human-agent joint annotation scheme to efficiently collect the necessary data at scale. V-Droid sets a new state-of-the-art task success rate across several public mobile task automation benchmarks: 59.5% on AndroidWorld, 38.3% on AndroidLab, and 49% on MobileAgentBench, surpassing existing agents by 9.5%, 2.1%, and 9%, respectively. Furthermore, V-Droid achieves an impressively low latency of 0.7 seconds per step, making it the first mobile agent capable of delivering near-real-time, effective decision-making capabilities.
comment: 14 pages, 4 itertions
☆ Towards Automatic Continual Learning: A Self-Adaptive Framework for Continual Instruction Tuning
Continual instruction tuning enables large language models (LLMs) to learn incrementally while retaining past knowledge, whereas existing methods primarily focus on how to retain old knowledge rather than on selecting which new knowledge to learn. In domain-specific contexts, maintaining data quality and managing system constraints remain key challenges. To address these issues, we propose an automated continual instruction tuning framework that dynamically filters incoming data, which identify and reduce redundant data across successive updates. Our approach utilizes a small proxy model for efficient perplexity-based filtering, and updates the proxy to ensure that the filtering criteria remain aligned with the evolving state of the deployed model. Compared to existing static data selection methods, our framework can effectively handle incrementally acquired data and shifting distributions. Additionally, it addresses practical deployment challenges by enabling seamless model updates, supporting version rollback and incorporating automatic checkpoint evaluation. We evaluated the system in real-world medical scenarios. It reduced computational costs by 66.7% and improved model performance, and achieved autonomous updates, thus demonstrating its effectiveness for automatic continual instruction tuning.
☆ Denoising-based Contractive Imitation Learning
A fundamental challenge in imitation learning is the \emph{covariate shift} problem. Existing methods to mitigate covariate shift often require additional expert interactions, access to environment dynamics, or complex adversarial training, which may not be practical in real-world applications. In this paper, we propose a simple yet effective method (DeCIL) to mitigate covariate shift by incorporating a denoising mechanism that enhances the contraction properties of the state transition mapping. Our approach involves training two neural networks: a dynamics model ( f ) that predicts the next state from the current state, and a joint state-action denoising policy network ( d ) that refines this state prediction via denoising and outputs the corresponding action. We provide theoretical analysis showing that the denoising network acts as a local contraction mapping, reducing the error propagation of the state transition and improving stability. Our method is straightforward to implement and can be easily integrated with existing imitation learning frameworks without requiring additional expert data or complex modifications to the training procedure. Empirical results demonstrate that our approach effectively improves success rate of various imitation learning tasks under noise perturbation.
☆ No Thing, Nothing: Highlighting Safety-Critical Classes for Robust LiDAR Semantic Segmentation in Adverse Weather CVPR 2025
Existing domain generalization methods for LiDAR semantic segmentation under adverse weather struggle to accurately predict "things" categories compared to "stuff" categories. In typical driving scenes, "things" categories can be dynamic and associated with higher collision risks, making them crucial for safe navigation and planning. Recognizing the importance of "things" categories, we identify their performance drop as a serious bottleneck in existing approaches. We observed that adverse weather induces degradation of semantic-level features and both corruption of local features, leading to a misprediction of "things" as "stuff". To mitigate these corruptions, we suggest our method, NTN - segmeNt Things for No-accident. To address semantic-level feature corruption, we bind each point feature to its superclass, preventing the misprediction of things classes into visually dissimilar categories. Additionally, to enhance robustness against local corruption caused by adverse weather, we define each LiDAR beam as a local region and propose a regularization term that aligns the clean data with its corrupted counterpart in feature space. NTN achieves state-of-the-art performance with a +2.6 mIoU gain on the SemanticKITTI-to-SemanticSTF benchmark and +7.9 mIoU on the SemanticPOSS-to-SemanticSTF benchmark. Notably, NTN achieves a +4.8 and +7.9 mIoU improvement on "things" classes, respectively, highlighting its effectiveness.
comment: 18 pages, CVPR 2025
☆ Enhancing Close-up Novel View Synthesis via Pseudo-labeling AAAI 2025
Recent methods, such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS), have demonstrated remarkable capabilities in novel view synthesis. However, despite their success in producing high-quality images for viewpoints similar to those seen during training, they struggle when generating detailed images from viewpoints that significantly deviate from the training set, particularly in close-up views. The primary challenge stems from the lack of specific training data for close-up views, leading to the inability of current methods to render these views accurately. To address this issue, we introduce a novel pseudo-label-based learning strategy. This approach leverages pseudo-labels derived from existing training data to provide targeted supervision across a wide range of close-up viewpoints. Recognizing the absence of benchmarks for this specific challenge, we also present a new dataset designed to assess the effectiveness of both current and future methods in this area. Our extensive experiments demonstrate the efficacy of our approach.
comment: Accepted by AAAI 2025
☆ Jasmine: Harnessing Diffusion Prior for Self-supervised Depth Estimation
In this paper, we propose Jasmine, the first Stable Diffusion (SD)-based self-supervised framework for monocular depth estimation, which effectively harnesses SD's visual priors to enhance the sharpness and generalization of unsupervised prediction. Previous SD-based methods are all supervised since adapting diffusion models for dense prediction requires high-precision supervision. In contrast, self-supervised reprojection suffers from inherent challenges (e.g., occlusions, texture-less regions, illumination variance), and the predictions exhibit blurs and artifacts that severely compromise SD's latent priors. To resolve this, we construct a novel surrogate task of hybrid image reconstruction. Without any additional supervision, it preserves the detail priors of SD models by reconstructing the images themselves while preventing depth estimation from degradation. Furthermore, to address the inherent misalignment between SD's scale and shift invariant estimation and self-supervised scale-invariant depth estimation, we build the Scale-Shift GRU. It not only bridges this distribution gap but also isolates the fine-grained texture of SD output against the interference of reprojection loss. Extensive experiments demonstrate that Jasmine achieves SoTA performance on the KITTI benchmark and exhibits superior zero-shot generalization across multiple datasets.
☆ From Structured Prompts to Open Narratives: Measuring Gender Bias in LLMs Through Open-Ended Storytelling
Large Language Models (LLMs) have revolutionized natural language processing, yet concerns persist regarding their tendency to reflect or amplify social biases present in their training data. This study introduces a novel evaluation framework to uncover gender biases in LLMs, focusing on their occupational narratives. Unlike previous methods relying on structured scenarios or carefully crafted prompts, our approach leverages free-form storytelling to reveal biases embedded in the models. Systematic analyses show an overrepresentation of female characters across occupations in six widely used LLMs. Additionally, our findings reveal that LLM-generated occupational gender rankings align more closely with human stereotypes than actual labor statistics. These insights underscore the need for balanced mitigation strategies to ensure fairness while avoiding the reinforcement of new stereotypes.
☆ A multi-model approach using XAI and anomaly detection to predict asteroid hazards
The potential for catastrophic collision makes near-Earth asteroids (NEAs) a serious concern. Planetary defense depends on accurately classifying potentially hazardous asteroids (PHAs), however the complexity of the data hampers conventional techniques. This work offers a sophisticated method for accurately predicting hazards by combining machine learning, deep learning, explainable AI (XAI), and anomaly detection. Our approach extracts essential parameters like size, velocity, and trajectory from historical and real-time asteroid data. A hybrid algorithm improves prediction accuracy by combining several cutting-edge models. A forecasting module predicts future asteroid behavior, and Monte Carlo simulations evaluate the likelihood of collisions. Timely mitigation is made possible by a real-time alarm system that notifies worldwide monitoring stations. This technique enhances planetary defense efforts by combining real-time alarms with sophisticated predictive modeling.
comment: 17 pages, 12 figures
☆ Time After Time: Deep-Q Effect Estimation for Interventions on When and What to do
Problems in fields such as healthcare, robotics, and finance requires reasoning about the value both of what decision or action to take and when to take it. The prevailing hope is that artificial intelligence will support such decisions by estimating the causal effect of policies such as how to treat patients or how to allocate resources over time. However, existing methods for estimating the effect of a policy struggle with \emph{irregular time}. They either discretize time, or disregard the effect of timing policies. We present a new deep-Q algorithm that estimates the effect of both when and what to do called Earliest Disagreement Q-Evaluation (EDQ). EDQ makes use of recursion for the Q-function that is compatible with flexible sequence models, such as transformers. EDQ provides accurate estimates under standard assumptions. We validate the approach through experiments on survival time and tumor growth tasks.
☆ LeanTTA: A Backpropagation-Free and Stateless Approach to Quantized Test-Time Adaptation on Edge Devices
While there are many advantages to deploying machine learning models on edge devices, the resource constraints of mobile platforms, the dynamic nature of the environment, and differences between the distribution of training versus in-the-wild data make such deployments challenging. Current test-time adaptation methods are often memory-intensive and not designed to be quantization-compatible or deployed on low-resource devices. To address these challenges, we present LeanTTA, a novel backpropagation-free and stateless framework for quantized test-time adaptation tailored to edge devices. Our approach minimizes computational costs by dynamically updating normalization statistics without backpropagation, which frees LeanTTA from the common pitfall of relying on large batches and historical data, making our method robust to realistic deployment scenarios. Our approach is the first to enable further computational gains by combining partial adaptation with quantized module fusion. We validate our framework across sensor modalities, demonstrating significant improvements over state-of-the-art TTA methods, including a 15.7% error reduction, peak memory usage of only 11.2MB for ResNet18, and fast adaptation within an order-of-magnitude of normal inference speeds on-device. LeanTTA provides a robust solution for achieving the right trade offs between accuracy and system efficiency in edge deployments, addressing the unique challenges posed by limited data and varied operational conditions.
comment: 8 pages, 5 figures
☆ Parameters vs. Context: Fine-Grained Control of Knowledge Reliance in Language Models
Retrieval-Augmented Generation (RAG) mitigates hallucinations in Large Language Models (LLMs) by integrating external knowledge. However, conflicts between parametric knowledge and retrieved context pose challenges, particularly when retrieved information is unreliable or the model's internal knowledge is outdated. In such cases, LLMs struggle to determine whether to rely more on their own parameters or the conflicted context. To address this, we propose **CK-PLUG**, a plug-and-play method for controlling LLMs' reliance on parametric and contextual knowledge. We introduce a novel knowledge consistency metric, Confidence Gain, which detects knowledge conflicts by measuring entropy shifts in token probability distributions after context insertion. CK-PLUG then enables fine-grained control over knowledge preference by adjusting the probability distribution of tokens with negative confidence gain through a single tuning parameter. Experiments demonstrate CK-PLUG's ability to significantly regulate knowledge reliance in counterfactual RAG scenarios while maintaining generation fluency and knowledge accuracy. For instance, on Llama3-8B, memory recall (MR) of RAG response can be adjusted within a broad range (9.9%-71.9%), compared to the baseline of 42.1%. Moreover, CK-PLUG supports adaptive control based on the model's confidence in both internal and external knowledge, achieving consistent performance improvements across various general RAG tasks. Our code is available at: $\href{https://github.com/byronBBL/CK-PLUG}{\text{this https URL}}$.
☆ DeepPsy-Agent: A Stage-Aware and Deep-Thinking Emotional Support Agent System
This paper introduces DeepPsy-Agent, an innovative psychological support system that combines the three-stage helping theory in psychology with deep learning techniques. The system consists of two core components: (1) a multi-stage response-capable dialogue model (\textit{deeppsy-chat}), which enhances reasoning capabilities through stage-awareness and deep-thinking analysis to generate high-quality responses; and (2) a real-time stage transition detection model that identifies contextual shifts to guide the dialogue towards more effective intervention stages. Based on 30,000 real psychological hotline conversations, we employ AI-simulated dialogues and expert re-annotation strategies to construct a high-quality multi-turn dialogue dataset. Experimental results demonstrate that DeepPsy-Agent outperforms general-purpose large language models (LLMs) in key metrics such as problem exposure completeness, cognitive restructuring success rate, and action adoption rate. Ablation studies further validate the effectiveness of stage-awareness and deep-thinking modules, showing that stage information contributes 42.3\% to performance, while the deep-thinking module increases root-cause identification by 58.3\% and reduces ineffective suggestions by 72.1\%. This system addresses critical challenges in AI-based psychological support through dynamic dialogue management and deep reasoning, advancing intelligent mental health services.
☆ TruthLens: Explainable DeepFake Detection for Face Manipulated and Fully Synthetic Data
Detecting DeepFakes has become a crucial research area as the widespread use of AI image generators enables the effortless creation of face-manipulated and fully synthetic content, yet existing methods are often limited to binary classification (real vs. fake) and lack interpretability. To address these challenges, we propose TruthLens, a novel and highly generalizable framework for DeepFake detection that not only determines whether an image is real or fake but also provides detailed textual reasoning for its predictions. Unlike traditional methods, TruthLens effectively handles both face-manipulated DeepFakes and fully AI-generated content while addressing fine-grained queries such as "Does the eyes/nose/mouth look real or fake?" The architecture of TruthLens combines the global contextual understanding of multimodal large language models like PaliGemma2 with the localized feature extraction capabilities of vision-only models like DINOv2. This hybrid design leverages the complementary strengths of both models, enabling robust detection of subtle manipulations while maintaining interpretability. Extensive experiments on diverse datasets demonstrate that TruthLens outperforms state-of-the-art methods in detection accuracy (by 2-14%) and explainability, in both in-domain and cross-data settings, generalizing effectively across traditional and emerging manipulation techniques.
☆ Active management of battery degradation in wireless sensor network using deep reinforcement learning for group battery replacement
Wireless sensor networks (WSNs) have become a promising solution for structural health monitoring (SHM), especially in hard-to-reach or remote locations. Battery-powered WSNs offer various advantages over wired systems, however limited battery life has always been one of the biggest obstacles in practical use of the WSNs, regardless of energy harvesting methods. While various methods have been studied for battery health management, existing methods exclusively aim to extend lifetime of individual batteries, lacking a system level view. A consequence of applying such methods is that batteries in a WSN tend to fail at different times, posing significant difficulty on planning and scheduling of battery replacement trip. This study investigate a deep reinforcement learning (DRL) method for active battery degradation management by optimizing duty cycle of WSNs at the system level. This active management strategy effectively reduces earlier failure of battery individuals which enable group replacement without sacrificing WSN performances. A simulated environment based on a real-world WSN setup was developed to train a DRL agent and learn optimal duty cycle strategies. The performance of the strategy was validated in a long-term setup with various network sizes, demonstrating its efficiency and scalability.
☆ VideoRFSplat: Direct Scene-Level Text-to-3D Gaussian Splatting Generation with Flexible Pose and Multi-View Joint Modeling
We propose VideoRFSplat, a direct text-to-3D model leveraging a video generation model to generate realistic 3D Gaussian Splatting (3DGS) for unbounded real-world scenes. To generate diverse camera poses and unbounded spatial extent of real-world scenes, while ensuring generalization to arbitrary text prompts, previous methods fine-tune 2D generative models to jointly model camera poses and multi-view images. However, these methods suffer from instability when extending 2D generative models to joint modeling due to the modality gap, which necessitates additional models to stabilize training and inference. In this work, we propose an architecture and a sampling strategy to jointly model multi-view images and camera poses when fine-tuning a video generation model. Our core idea is a dual-stream architecture that attaches a dedicated pose generation model alongside a pre-trained video generation model via communication blocks, generating multi-view images and camera poses through separate streams. This design reduces interference between the pose and image modalities. Additionally, we propose an asynchronous sampling strategy that denoises camera poses faster than multi-view images, allowing rapidly denoised poses to condition multi-view generation, reducing mutual ambiguity and enhancing cross-modal consistency. Trained on multiple large-scale real-world datasets (RealEstate10K, MVImgNet, DL3DV-10K, ACID), VideoRFSplat outperforms existing text-to-3D direct generation methods that heavily depend on post-hoc refinement via score distillation sampling, achieving superior results without such refinement.
comment: Project page: https://gohyojun15.github.io/VideoRFSplat/
☆ Entropy-based Exploration Conduction for Multi-step Reasoning
In large language model (LLM) reasoning, multi-step processes have proven effective for solving complex tasks. However, the depth of exploration can significantly affect the reasoning performance. Existing methods to automatically decide the depth often bring high costs and lack flexibility, and thus undermine the model's reasoning accuracy. To address these issues, we propose Entropy-based Exploration Depth Conduction (Entro-duction), a novel method that dynamically adjusts the exploration depth during multi-step reasoning by monitoring LLM's output entropy and variance entropy. We employ these two metrics to capture the model's current uncertainty and the fluctuation of uncertainty across consecutive reasoning steps. Based on the observed changes, the LLM selects whether to deepen, expand or stop exploration according to the probability. In this way, we balance the reasoning accuracy and exploration effectiveness. Experimental results across four benchmark datasets demonstrate the efficacy of Entro-duction. We further conduct experiments and analysis on the components of Entro-duction to discuss their contributions to reasoning performance.
☆ Beyond Local Selection: Global Cut Selection for Enhanced Mixed-Integer Programming
In mixed-integer programming (MIP) solvers, cutting planes are essential for Branch-and-Cut (B&C) algorithms as they reduce the search space and accelerate the solving process. Traditional methods rely on hard-coded heuristics for cut plane selection but fail to leverage problem-specific structural features. Recent machine learning approaches use neural networks for cut selection but focus narrowly on the efficiency of single-node within the B&C algorithm, without considering the broader contextual information. To address this, we propose Global Cut Selection (GCS), which uses a bipartite graph to represent the search tree and combines graph neural networks with reinforcement learning to develop cut selection strategies. Unlike prior methods, GCS applies cutting planes across all nodes, incorporating richer contextual information. Experiments show GCS significantly improves solving efficiency for synthetic and large-scale real-world MIPs compared to traditional and learning-based methods.
☆ Fùxì: A Benchmark for Evaluating Language Models on Ancient Chinese Text Understanding and Generation
Ancient Chinese text processing presents unique challenges for large language models (LLMs) due to its distinct linguistic features, complex structural constraints, and rich cultural context. While existing benchmarks have primarily focused on evaluating comprehension through multiple-choice questions, there remains a critical gap in assessing models' generative capabilities in classical Chinese. We introduce F\`ux\`i, a comprehensive benchmark that evaluates both understanding and generation capabilities across 21 diverse tasks. Our benchmark distinguishes itself through three key contributions: (1) balanced coverage of both comprehension and generation tasks, including novel tasks like poetry composition and couplet completion, (2) specialized evaluation metrics designed specifically for classical Chinese text generation, combining rule-based verification with fine-tuned LLM evaluators, and (3) a systematic assessment framework that considers both linguistic accuracy and cultural authenticity. Through extensive evaluation of state-of-the-art LLMs, we reveal significant performance gaps between understanding and generation tasks, with models achieving promising results in comprehension but struggling considerably in generation tasks, particularly those requiring deep cultural knowledge and adherence to classical formats. Our findings highlight the current limitations in ancient Chinese text processing and provide insights for future model development. The benchmark, evaluation toolkit, and baseline results are publicly available to facilitate research in this domain.
comment: working in progress
☆ Computation-Efficient and Recognition-Friendly 3D Point Cloud Privacy Protection
3D point cloud has been widely used in applications such as self-driving cars, robotics, CAD models, etc. To the best of our knowledge, these applications raised the issue of privacy leakage in 3D point clouds, which has not been studied well. Different from the 2D image privacy, which is related to texture and 2D geometric structure, the 3D point cloud is texture-less and only relevant to 3D geometric structure. In this work, we defined the 3D point cloud privacy problem and proposed an efficient privacy-preserving framework named PointFlowGMM that can support downstream classification and segmentation tasks without seeing the original data. Using a flow-based generative model, the point cloud is projected into a latent Gaussian mixture distributed subspace. We further designed a novel angular similarity loss to obfuscate the original geometric structure and reduce the model size from 767MB to 120MB without a decrease in recognition performance. The projected point cloud in the latent space is orthogonally rotated randomly to further protect the original geometric structure, the class-to-class relationship is preserved after rotation, thus, the protected point cloud can support the recognition task. We evaluated our model on multiple datasets and achieved comparable recognition results on encrypted point clouds compared to the original point clouds.
☆ Ranking Counterfactual Explanations
AI-driven outcomes can be challenging for end-users to understand. Explanations can address two key questions: "Why this outcome?" (factual) and "Why not another?" (counterfactual). While substantial efforts have been made to formalize factual explanations, a precise and comprehensive study of counterfactual explanations is still lacking. This paper proposes a formal definition of counterfactual explanations, proving some properties they satisfy, and examining the relationship with factual explanations. Given that multiple counterfactual explanations generally exist for a specific case, we also introduce a rigorous method to rank these counterfactual explanations, going beyond a simple minimality condition, and to identify the optimal ones. Our experiments with 12 real-world datasets highlight that, in most cases, a single optimal counterfactual explanation emerges. We also demonstrate, via three metrics, that the selected optimal explanation exhibits higher representativeness and can explain a broader range of elements than a random minimal counterfactual. This result highlights the effectiveness of our approach in identifying more robust and comprehensive counterfactual explanations.
comment: 15 pages
☆ Attention Pruning: Automated Fairness Repair of Language Models via Surrogate Simulated Annealing
This paper explores pruning attention heads as a post-processing bias mitigation method for large language models (LLMs). Modern AI systems such as LLMs are expanding into sensitive social contexts where fairness concerns become especially crucial. Since LLMs develop decision-making patterns by training on massive datasets of human-generated content, they naturally encode and perpetuate societal biases. While modifying training datasets and algorithms is expensive and requires significant resources; post-processing techniques-such as selectively deactivating neurons and attention heads in pre-trained LLMs-can provide feasible and effective approaches to improve fairness. However, identifying the optimal subset of parameters to prune presents a combinatorial challenge within LLMs' immense parameter space, requiring solutions that efficiently balance competing objectives across the frontiers of model fairness and utility. To address the computational challenges, we explore a search-based program repair approach via randomized simulated annealing. Given the prohibitive evaluation costs in billion-parameter LLMs, we develop surrogate deep neural networks that efficiently model the relationship between attention head states (active/inactive) and their corresponding fairness/utility metrics. This allows us to perform optimization over the surrogate models and efficiently identify optimal subsets of attention heads for selective pruning rather than directly searching through the LLM parameter space. This paper introduces Attention Pruning, a fairness-aware surrogate simulated annealing approach to prune attention heads in LLMs that disproportionately contribute to bias while minimally impacting overall model utility. Our experiments show that Attention Pruning achieves up to $40\%$ reduction in gender bias and outperforms the state-of-the-art bias mitigation strategies.
☆ ChatGPT and U(X): A Rapid Review on Measuring the User Experience
ChatGPT, powered by a large language model (LLM), has revolutionized everyday human-computer interaction (HCI) since its 2022 release. While now used by millions around the world, a coherent pathway for evaluating the user experience (UX) ChatGPT offers remains missing. In this rapid review (N = 58), I explored how ChatGPT UX has been approached quantitatively so far. I focused on the independent variables (IVs) manipulated, the dependent variables (DVs) measured, and the methods used for measurement. Findings reveal trends, gaps, and emerging consensus in UX assessments. This work offers a first step towards synthesizing existing approaches to measuring ChatGPT UX, urgent trajectories to advance standardization and breadth, and two preliminary frameworks aimed at guiding future research and tool development. I seek to elevate the field of ChatGPT UX by empowering researchers and practitioners in optimizing user interactions with ChatGPT and similar LLM-based systems.
☆ Video-VoT-R1: An efficient video inference model integrating image packing and AoE architecture
In the field of video-language pretraining, existing models face numerous challenges in terms of inference efficiency and multimodal data processing. This paper proposes a KunLunBaize-VoT-R1 video inference model based on a long-sequence image encoder, along with its training and application methods. By integrating image packing technology, the Autonomy-of-Experts (AoE) architecture, and combining the video of Thought (VoT), a large language model (LLM) trained with large-scale reinforcement learning, and multiple training techniques, the efficiency and accuracy of the model in video inference tasks are effectively improved. Experiments show that this model performs outstandingly in multiple tests, providing a new solution for video-language understanding.
comment: 18 pages
Blend the Separated: Mixture of Synergistic Experts for Data-Scarcity Drug-Target Interaction Prediction
Drug-target interaction prediction (DTI) is essential in various applications including drug discovery and clinical application. There are two perspectives of input data widely used in DTI prediction: Intrinsic data represents how drugs or targets are constructed, and extrinsic data represents how drugs or targets are related to other biological entities. However, any of the two perspectives of input data can be scarce for some drugs or targets, especially for those unpopular or newly discovered. Furthermore, ground-truth labels for specific interaction types can also be scarce. Therefore, we propose the first method to tackle DTI prediction under input data and/or label scarcity. To make our model functional when only one perspective of input data is available, we design two separate experts to process intrinsic and extrinsic data respectively and fuse them adaptively according to different samples. Furthermore, to make the two perspectives complement each other and remedy label scarcity, two experts synergize with each other in a mutually supervised way to exploit the enormous unlabeled data. Extensive experiments on 3 real-world datasets under different extents of input data scarcity and/or label scarcity demonstrate our model outperforms states of the art significantly and steadily, with a maximum improvement of 53.53%. We also test our model without any data scarcity and it still outperforms current methods.
☆ Grammar and Gameplay-aligned RL for Game Description Generation with LLMs
Game Description Generation (GDG) is the task of generating a game description written in a Game Description Language (GDL) from natural language text. Previous studies have explored generation methods leveraging the contextual understanding capabilities of Large Language Models (LLMs); however, accurately reproducing the game features of the game descriptions remains a challenge. In this paper, we propose reinforcement learning-based fine-tuning of LLMs for GDG (RLGDG). Our training method simultaneously improves grammatical correctness and fidelity to game concepts by introducing both grammar rewards and concept rewards. Furthermore, we adopt a two-stage training strategy where Reinforcement Learning (RL) is applied following Supervised Fine-Tuning (SFT). Experimental results demonstrate that our proposed method significantly outperforms baseline methods using SFT alone.
☆ MobiFuse: Learning Universal Human Mobility Patterns through Cross-domain Data Fusion
Human mobility modeling is critical for urban planning and transportation management, yet existing datasets often lack the resolution and semantic richness required for comprehensive analysis. To address this, we proposed a cross-domain data fusion framework that integrates multi-modal data of distinct nature and spatio-temporal resolution, including geographical, mobility, socio-demographic, and traffic information, to construct a privacy-preserving and semantically enriched human travel trajectory dataset. This framework is demonstrated through two case studies in Los Angeles (LA) and Egypt, where a domain adaptation algorithm ensures its transferability across diverse urban contexts. Quantitative evaluation shows that the generated synthetic dataset accurately reproduces mobility patterns observed in empirical data. Moreover, large-scale traffic simulations for LA County based on the generated synthetic demand align well with observed traffic. On California's I-405 corridor, the simulation yields a Mean Absolute Percentage Error of 5.85% for traffic volume and 4.36% for speed compared to Caltrans PeMS observations.
Detecting LLM-Written Peer Reviews
Editors of academic journals and program chairs of conferences require peer reviewers to write their own reviews. However, there is growing concern about the rise of lazy reviewing practices, where reviewers use large language models (LLMs) to generate reviews instead of writing them independently. Existing tools for detecting LLM-generated content are not designed to differentiate between fully LLM-generated reviews and those merely polished by an LLM. In this work, we employ a straightforward approach to identify LLM-generated reviews - doing an indirect prompt injection via the paper PDF to ask the LLM to embed a watermark. Our focus is on presenting watermarking schemes and statistical tests that maintain a bounded family-wise error rate, when a venue evaluates multiple reviews, with a higher power as compared to standard methods like Bonferroni correction. These guarantees hold without relying on any assumptions about human-written reviews. We also consider various methods for prompt injection including font embedding and jailbreaking. We evaluate the effectiveness and various tradeoffs of these methods, including different reviewer defenses. We find a high success rate in the embedding of our watermarks in LLM-generated reviews across models. We also find that our approach is resilient to common reviewer defenses, and that the bounds on error rates in our statistical tests hold in practice while having the power to flag LLM-generated reviews, while Bonferroni correction is infeasible.
comment: 26 pages, 1 figure
☆ Can one size fit all?: Measuring Failure in Multi-Document Summarization Domain Transfer
Abstractive multi-document summarization (MDS) is the task of automatically summarizing information in multiple documents, from news articles to conversations with multiple speakers. The training approaches for current MDS models can be grouped into four approaches: end-to-end with special pre-training ("direct"), chunk-then-summarize, extract-then-summarize, and inference with GPT-style models. In this work, we evaluate MDS models across training approaches, domains, and dimensions (reference similarity, quality, and factuality), to analyze how and why models trained on one domain can fail to summarize documents from another (News, Science, and Conversation) in the zero-shot domain transfer setting. We define domain-transfer "failure" as a decrease in factuality, higher deviation from the target, and a general decrease in summary quality. In addition to exploring domain transfer for MDS models, we examine potential issues with applying popular summarization metrics out-of-the-box.
☆ Towards Agentic AI Networking in 6G: A Generative Foundation Model-as-Agent Approach
The promising potential of AI and network convergence in improving networking performance and enabling new service capabilities has recently attracted significant interest. Existing network AI solutions, while powerful, are mainly built based on the close-loop and passive learning framework, resulting in major limitations in autonomous solution finding and dynamic environmental adaptation. Agentic AI has recently been introduced as a promising solution to address the above limitations and pave the way for true generally intelligent and beneficial AI systems. The key idea is to create a networking ecosystem to support a diverse range of autonomous and embodied AI agents in fulfilling their goals. In this paper, we focus on the novel challenges and requirements of agentic AI networking. We propose AgentNet, a novel framework for supporting interaction, collaborative learning, and knowledge transfer among AI agents. We introduce a general architectural framework of AgentNet and then propose a generative foundation model (GFM)-based implementation in which multiple GFM-as-agents have been created as an interactive knowledge-base to bootstrap the development of embodied AI agents according to different task requirements and environmental features. We consider two application scenarios, digital-twin-based industrial automation and metaverse-based infotainment system, to describe how to apply AgentNet for supporting efficient task-driven collaboration and interaction among AI agents.
comment: Currently under revision at IEEE Communications Magazine
☆ Dialogic Learning in Child-Robot Interaction: A Hybrid Approach to Personalized Educational Content Generation
Dialogic learning fosters motivation and deeper understanding in education through purposeful and structured dialogues. Foundational models offer a transformative potential for child-robot interactions, enabling the design of personalized, engaging, and scalable interactions. However, their integration into educational contexts presents challenges in terms of ensuring age-appropriate and safe content and alignment with pedagogical goals. We introduce a hybrid approach to designing personalized educational dialogues in child-robot interactions. By combining rule-based systems with LLMs for selective offline content generation and human validation, the framework ensures educational quality and developmental appropriateness. We illustrate this approach through a project aimed at enhancing reading motivation, in which a robot facilitated book-related dialogues.
☆ ATTENTION2D: Communication Efficient Distributed Self-Attention Mechanism
Transformer-based models have emerged as a leading architecture for natural language processing, natural language generation, and image generation tasks. A fundamental element of the transformer architecture is self-attention, which allows the model to capture intricate dependencies within the data. However, the self-attention mechanism also incurs significant computational and memory costs, particularly for long sequences. In this paper, we introduce ATTENTION2D, a novel approach that exploits parallelism along two dimensions - query and key/value - of the self-attention operation. This method enables efficient distribution and parallelization of computations across multiple devices. Our approach facilitates asymptotically faster training and inference phases compared to previous methods, without relying on approximations or incurring additional computational or memory overheads. Furthermore, unlike existing techniques that struggle to scale with an increasing number of processing units, our approach effectively scales with additional processing units. Our experimental results confirm the effectiveness of our method in improving communication efficiency and scalability. Compared to Ring Attention, our approach demonstrated up to a 5x performance boost on a GPT-3-like model using 64 NVIDIA A100 GPUs across 16 nodes, and up to a 9.4x performance boost on 64 NVIDIA H100 GPUs across 64 nodes.
☆ AutoRedTeamer: Autonomous Red Teaming with Lifelong Attack Integration
As large language models (LLMs) become increasingly capable, security and safety evaluation are crucial. While current red teaming approaches have made strides in assessing LLM vulnerabilities, they often rely heavily on human input and lack comprehensive coverage of emerging attack vectors. This paper introduces AutoRedTeamer, a novel framework for fully automated, end-to-end red teaming against LLMs. AutoRedTeamer combines a multi-agent architecture with a memory-guided attack selection mechanism to enable continuous discovery and integration of new attack vectors. The dual-agent framework consists of a red teaming agent that can operate from high-level risk categories alone to generate and execute test cases and a strategy proposer agent that autonomously discovers and implements new attacks by analyzing recent research. This modular design allows AutoRedTeamer to adapt to emerging threats while maintaining strong performance on existing attack vectors. We demonstrate AutoRedTeamer's effectiveness across diverse evaluation settings, achieving 20% higher attack success rates on HarmBench against Llama-3.1-70B while reducing computational costs by 46% compared to existing approaches. AutoRedTeamer also matches the diversity of human-curated benchmarks in generating test cases, providing a comprehensive, scalable, and continuously evolving framework for evaluating the security of AI systems.
☆ Using Language Models to Decipher the Motivation Behind Human Behaviors
AI presents a novel tool for deciphering the motivations behind human behaviors. We show that by varying prompts to a large language model, we can elicit a full range of human behaviors in a variety of different scenarios in terms of classic economic games. Then by analyzing which prompts are needed to elicit which behaviors, we can infer (decipher) the motivations behind the human behaviors. We also show how one can analyze the prompts to reveal relationships between the classic economic games, providing new insight into what different economic scenarios induce people to think about. We also show how this deciphering process can be used to understand differences in the behavioral tendencies of different populations.
☆ SuperARC: A Test for General and Super Intelligence Based on First Principles of Recursion Theory and Algorithmic Probability
We introduce an open-ended test grounded in algorithmic probability that can avoid benchmark contamination in the quantitative evaluation of frontier models in the context of their Artificial General Intelligence (AGI) and Superintelligence (ASI) claims. Unlike other tests, this test does not rely on statistical compression methods (such as GZIP or LZW), which are more closely related to Shannon entropy than to Kolmogorov complexity. The test challenges aspects related to features of intelligence of fundamental nature such as synthesis and model creation in the context of inverse problems (generating new knowledge from observation). We argue that metrics based on model abstraction and optimal Bayesian inference for planning can provide a robust framework for testing intelligence, including natural intelligence (human and animal), narrow AI, AGI, and ASI. Our results show no clear evidence of LLM convergence towards a defined level of intelligence, particularly AGI or ASI. We found that LLM model versions tend to be fragile and incremental, as new versions may perform worse than older ones, with progress largely driven by the size of training data. The results were compared with a hybrid neurosymbolic approach that theoretically guarantees model convergence from optimal inference based on the principles of algorithmic probability and Kolmogorov complexity. The method outperforms LLMs in a proof-of-concept on short binary sequences. Our findings confirm suspicions regarding the fundamental limitations of LLMs, exposing them as systems optimised for the perception of mastery over human language. Progress among different LLM versions from the same developers was found to be inconsistent and limited, particularly in the absence of a solid symbolic counterpart.
comment: 45 pages + Technical Supplementary Information, 71 pages total
☆ Towards Agentic Recommender Systems in the Era of Multimodal Large Language Models
Recent breakthroughs in Large Language Models (LLMs) have led to the emergence of agentic AI systems that extend beyond the capabilities of standalone models. By empowering LLMs to perceive external environments, integrate multimodal information, and interact with various tools, these agentic systems exhibit greater autonomy and adaptability across complex tasks. This evolution brings new opportunities to recommender systems (RS): LLM-based Agentic RS (LLM-ARS) can offer more interactive, context-aware, and proactive recommendations, potentially reshaping the user experience and broadening the application scope of RS. Despite promising early results, fundamental challenges remain, including how to effectively incorporate external knowledge, balance autonomy with controllability, and evaluate performance in dynamic, multimodal settings. In this perspective paper, we first present a systematic analysis of LLM-ARS: (1) clarifying core concepts and architectures; (2) highlighting how agentic capabilities -- such as planning, memory, and multimodal reasoning -- can enhance recommendation quality; and (3) outlining key research questions in areas such as safety, efficiency, and lifelong personalization. We also discuss open problems and future directions, arguing that LLM-ARS will drive the next wave of RS innovation. Ultimately, we foresee a paradigm shift toward intelligent, autonomous, and collaborative recommendation experiences that more closely align with users' evolving needs and complex decision-making processes.
☆ Towards Automated Semantic Interpretability in Reinforcement Learning via Vision-Language Models
Semantic Interpretability in Reinforcement Learning (RL) enables transparency, accountability, and safer deployment by making the agent's decisions understandable and verifiable. Achieving this, however, requires a feature space composed of human-understandable concepts, which traditionally rely on human specification and fail to generalize to unseen environments. In this work, we introduce Semantically Interpretable Reinforcement Learning with Vision-Language Models Empowered Automation (SILVA), an automated framework that leverages pre-trained vision-language models (VLM) for semantic feature extraction and interpretable tree-based models for policy optimization. SILVA first queries a VLM to identify relevant semantic features for an unseen environment, then extracts these features from the environment. Finally, it trains an Interpretable Control Tree via RL, mapping the extracted features to actions in a transparent and interpretable manner. To address the computational inefficiency of extracting features directly with VLMs, we develop a feature extraction pipeline that generates a dataset for training a lightweight convolutional network, which is subsequently used during RL. By leveraging VLMs to automate tree-based RL, SILVA removes the reliance on human annotation previously required by interpretable models while also overcoming the inability of VLMs alone to generate valid robot policies, enabling semantically interpretable reinforcement learning without human-in-the-loop.
☆ QuartDepth: Post-Training Quantization for Real-Time Depth Estimation on the Edge CVPR 2025
Monocular Depth Estimation (MDE) has emerged as a pivotal task in computer vision, supporting numerous real-world applications. However, deploying accurate depth estimation models on resource-limited edge devices, especially Application-Specific Integrated Circuits (ASICs), is challenging due to the high computational and memory demands. Recent advancements in foundational depth estimation deliver impressive results but further amplify the difficulty of deployment on ASICs. To address this, we propose QuartDepth which adopts post-training quantization to quantize MDE models with hardware accelerations for ASICs. Our approach involves quantizing both weights and activations to 4-bit precision, reducing the model size and computation cost. To mitigate the performance degradation, we introduce activation polishing and compensation algorithm applied before and after activation quantization, as well as a weight reconstruction method for minimizing errors in weight quantization. Furthermore, we design a flexible and programmable hardware accelerator by supporting kernel fusion and customized instruction programmability, enhancing throughput and efficiency. Experimental results demonstrate that our framework achieves competitive accuracy while enabling fast inference and higher energy efficiency on ASICs, bridging the gap between high-performance depth estimation and practical edge-device applicability. Code: https://github.com/shawnricecake/quart-depth
comment: Accepted by CVPR 2025
☆ Limits of trust in medical AI
Artificial intelligence (AI) is expected to revolutionize the practice of medicine. Recent advancements in the field of deep learning have demonstrated success in a variety of clinical tasks: detecting diabetic retinopathy from images, predicting hospital readmissions, aiding in the discovery of new drugs, etc. AI's progress in medicine, however, has led to concerns regarding the potential effects of this technology upon relationships of trust in clinical practice. In this paper, I will argue that there is merit to these concerns, since AI systems can be relied upon, and are capable of reliability, but cannot be trusted, and are not capable of trustworthiness. Insofar as patients are required to rely upon AI systems for their medical decision-making, there is potential for this to produce a deficit of trust in relationships in clinical practice.
comment: 12 pages
☆ GAIR: Improving Multimodal Geo-Foundation Model with Geo-Aligned Implicit Representations
Advancements in vision and language foundation models have inspired the development of geo-foundation models (GeoFMs), enhancing performance across diverse geospatial tasks. However, many existing GeoFMs primarily focus on overhead remote sensing (RS) data while neglecting other data modalities such as ground-level imagery. A key challenge in multimodal GeoFM development is to explicitly model geospatial relationships across modalities, which enables generalizability across tasks, spatial scales, and temporal contexts. To address these limitations, we propose GAIR, a novel multimodal GeoFM architecture integrating overhead RS data, street view (SV) imagery, and their geolocation metadata. We utilize three factorized neural encoders to project an SV image, its geolocation, and an RS image into the embedding space. The SV image needs to be located within the RS image's spatial footprint but does not need to be at its geographic center. In order to geographically align the SV image and RS image, we propose a novel implicit neural representations (INR) module that learns a continuous RS image representation and looks up the RS embedding at the SV image's geolocation. Next, these geographically aligned SV embedding, RS embedding, and location embedding are trained with contrastive learning objectives from unlabeled data. We evaluate GAIR across 10 geospatial tasks spanning RS image-based, SV image-based, and location embedding-based benchmarks. Experimental results demonstrate that GAIR outperforms state-of-the-art GeoFMs and other strong baselines, highlighting its effectiveness in learning generalizable and transferable geospatial representations.
comment: 18 pages, 10 figures
☆ GauRast: Enhancing GPU Triangle Rasterizers to Accelerate 3D Gaussian Splatting
3D intelligence leverages rich 3D features and stands as a promising frontier in AI, with 3D rendering fundamental to many downstream applications. 3D Gaussian Splatting (3DGS), an emerging high-quality 3D rendering method, requires significant computation, making real-time execution on existing GPU-equipped edge devices infeasible. Previous efforts to accelerate 3DGS rely on dedicated accelerators that require substantial integration overhead and hardware costs. This work proposes an acceleration strategy that leverages the similarities between the 3DGS pipeline and the highly optimized conventional graphics pipeline in modern GPUs. Instead of developing a dedicated accelerator, we enhance existing GPU rasterizer hardware to efficiently support 3DGS operations. Our results demonstrate a 23$\times$ increase in processing speed and a 24$\times$ reduction in energy consumption, with improvements yielding 6$\times$ faster end-to-end runtime for the original 3DGS algorithm and 4$\times$ for the latest efficiency-improved pipeline, achieving 24 FPS and 46 FPS respectively. These enhancements incur only a minimal area overhead of 0.2\% relative to the entire SoC chip area, underscoring the practicality and efficiency of our approach for enabling 3DGS rendering on resource-constrained platforms.
comment: DAC 2025
☆ Echoes of Power: Investigating Geopolitical Bias in US and China Large Language Models
Large Language Models (LLMs) have emerged as powerful tools for generating human-like text, transforming human-machine interactions. However, their widespread adoption has raised concerns about their potential to influence public opinion and shape political narratives. In this work, we investigate the geopolitical biases in US and Chinese LLMs, focusing on how these models respond to questions related to geopolitics and international relations. We collected responses from ChatGPT and DeepSeek to a set of geopolitical questions and evaluated their outputs through both qualitative and quantitative analyses. Our findings show notable biases in both models, reflecting distinct ideological perspectives and cultural influences. However, despite these biases, for a set of questions, the models' responses are more aligned than expected, indicating that they can address sensitive topics without necessarily presenting directly opposing viewpoints. This study highlights the potential of LLMs to shape public discourse and underscores the importance of critically assessing AI-generated content, particularly in politically sensitive contexts.
☆ Accelerating Transformer Inference and Training with 2:4 Activation Sparsity
In this paper, we demonstrate how to leverage 2:4 sparsity, a popular hardware-accelerated GPU sparsity pattern, to activations to accelerate large language model training and inference. Crucially we exploit the intrinsic sparsity found in Squared-ReLU activations to provide this acceleration with no accuracy loss. Our approach achieves up to 1.3x faster Feed Forward Network (FFNs) in both the forwards and backwards pass. This work highlights the potential for sparsity to play a key role in accelerating large language model training and inference.
☆ Aligning Text-to-Music Evaluation with Human Preferences
Despite significant recent advances in generative acoustic text-to-music (TTM) modeling, robust evaluation of these models lags behind, relying in particular on the popular Fr\'echet Audio Distance (FAD). In this work, we rigorously study the design space of reference-based divergence metrics for evaluating TTM models through (1) designing four synthetic meta-evaluations to measure sensitivity to particular musical desiderata, and (2) collecting and evaluating on MusicPrefs, the first open-source dataset of human preferences for TTM systems. We find that not only is the standard FAD setup inconsistent on both synthetic and human preference data, but that nearly all existing metrics fail to effectively capture desiderata, and are only weakly correlated with human perception. We propose a new metric, the MAUVE Audio Divergence (MAD), computed on representations from a self-supervised audio embedding model. We find that this metric effectively captures diverse musical desiderata (average rank correlation 0.84 for MAD vs. 0.49 for FAD and also correlates more strongly with MusicPrefs (0.62 vs. 0.14).
☆ Code Evolution Graphs: Understanding Large Language Model Driven Design of Algorithms
Large Language Models (LLMs) have demonstrated great promise in generating code, especially when used inside an evolutionary computation framework to iteratively optimize the generated algorithms. However, in some cases they fail to generate competitive algorithms or the code optimization stalls, and we are left with no recourse because of a lack of understanding of the generation process and generated codes. We present a novel approach to mitigate this problem by enabling users to analyze the generated codes inside the evolutionary process and how they evolve over repeated prompting of the LLM. We show results for three benchmark problem classes and demonstrate novel insights. In particular, LLMs tend to generate more complex code with repeated prompting, but additional complexity can hurt algorithmic performance in some cases. Different LLMs have different coding ``styles'' and generated code tends to be dissimilar to other LLMs. These two findings suggest that using different LLMs inside the code evolution frameworks might produce higher performing code than using only one LLM.
comment: Accepted at GECCO 2025
☆ MobilePlantViT: A Mobile-friendly Hybrid ViT for Generalized Plant Disease Image Classification
Plant diseases significantly threaten global food security by reducing crop yields and undermining agricultural sustainability. AI-driven automated classification has emerged as a promising solution, with deep learning models demonstrating impressive performance in plant disease identification. However, deploying these models on mobile and edge devices remains challenging due to high computational demands and resource constraints, highlighting the need for lightweight, accurate solutions for accessible smart agriculture systems. To address this, we propose MobilePlantViT, a novel hybrid Vision Transformer (ViT) architecture designed for generalized plant disease classification, which optimizes resource efficiency while maintaining high performance. Extensive experiments across diverse plant disease datasets of varying scales show our model's effectiveness and strong generalizability, achieving test accuracies ranging from 80% to over 99%. Notably, with only 0.69 million parameters, our architecture outperforms the smallest versions of MobileViTv1 and MobileViTv2, despite their higher parameter counts. These results underscore the potential of our approach for real-world, AI-powered automated plant disease classification in sustainable and resource-efficient smart agriculture systems. All codes will be available in the GitHub repository: https://github.com/moshiurtonmoy/MobilePlantViT
comment: Submitted to a journal for peer-review under IEEE Transactions series
☆ Classification of User Reports for Detection of Faulty Computer Components using NLP Models: A Case Study
Computer manufacturers typically offer platforms for users to report faults. However, there remains a significant gap in these platforms' ability to effectively utilize textual reports, which impedes users from describing their issues in their own words. In this context, Natural Language Processing (NLP) offers a promising solution, by enabling the analysis of user-generated text. This paper presents an innovative approach that employs NLP models to classify user reports for detecting faulty computer components, such as CPU, memory, motherboard, video card, and more. In this work, we build a dataset of 341 user reports obtained from many sources. Additionally, through extensive experimental evaluation, our approach achieved an accuracy of 79% with our dataset.
comment: 9 pages, 2 figures
☆ A Recipe for Generating 3D Worlds From a Single Image
We introduce a recipe for generating immersive 3D worlds from a single image by framing the task as an in-context learning problem for 2D inpainting models. This approach requires minimal training and uses existing generative models. Our process involves two steps: generating coherent panoramas using a pre-trained diffusion model and lifting these into 3D with a metric depth estimator. We then fill unobserved regions by conditioning the inpainting model on rendered point clouds, requiring minimal fine-tuning. Tested on both synthetic and real images, our method produces high-quality 3D environments suitable for VR display. By explicitly modeling the 3D structure of the generated environment from the start, our approach consistently outperforms state-of-the-art, video synthesis-based methods along multiple quantitative image quality metrics. Project Page: https://katjaschwarz.github.io/worlds/
☆ Explainable AI-Guided Efficient Approximate DNN Generation for Multi-Pod Systolic Arrays
Approximate deep neural networks (AxDNNs) are promising for enhancing energy efficiency in real-world devices. One of the key contributors behind this enhanced energy efficiency in AxDNNs is the use of approximate multipliers. Unfortunately, the simulation of approximate multipliers does not usually scale well on CPUs and GPUs. As a consequence, this slows down the overall simulation of AxDNNs aimed at identifying the appropriate approximate multipliers to achieve high energy efficiency with a minimum accuracy loss. To address this problem, we present a novel XAI-Gen methodology, which leverages the analytical model of the emerging hardware accelerator (e.g., Google TPU v4) and explainable artificial intelligence (XAI) to precisely identify the non-critical layers for approximation and quickly discover the appropriate approximate multipliers for AxDNN layers. Our results show that XAI-Gen achieves up to 7x lower energy consumption with only 1-2% accuracy loss. We also showcase the effectiveness of the XAI-Gen approach through a neural architecture search (XAI-NAS) case study. Interestingly, XAI-NAS achieves 40\% higher energy efficiency with up to 5x less execution time when compared to the state-of-the-art NAS methods for generating AxDNNs.
comment: This paper has been accepted in the ISQED 2025 conference
☆ Machine Learning-Based Genomic Linguistic Analysis (Gene Sequence Feature Learning): A Case Study on Predicting Heavy Metal Response Genes in Rice
This study explores the application of machine learning-based genetic linguistics for identifying heavy metal response genes in rice (Oryza sativa). By integrating convolutional neural networks and random forest algorithms, we developed a hybrid model capable of extracting and learning meaningful features from gene sequences, such as k-mer frequencies and physicochemical properties. The model was trained and tested on datasets of genes, achieving high predictive performance (precision: 0.89, F1-score: 0.82). RNA-seq and qRT-PCR experiments conducted on rice leaves which exposed to Hg0, revealed differential expression of genes associated with heavy metal responses, which validated the model's predictions. Co-expression network analysis identified 103 related genes, and a literature review indicated that these genes are highly likely to be involved in heavy metal-related biological processes. By integrating and comparing the analysis results with those of differentially expressed genes (DEGs), the validity of the new machine learning method was further demonstrated. This study highlights the efficacy of combining machine learning with genetic linguistics for large-scale gene prediction. It demonstrates a cost-effective and efficient approach for uncovering molecular mechanisms underlying heavy metal responses, with potential applications in developing stress-tolerant crop varieties.
☆ Investigating Retrieval-Augmented Generation in Quranic Studies: A Study of 13 Open-Source Large Language Models
Accurate and contextually faithful responses are critical when applying large language models (LLMs) to sensitive and domain-specific tasks, such as answering queries related to quranic studies. General-purpose LLMs often struggle with hallucinations, where generated responses deviate from authoritative sources, raising concerns about their reliability in religious contexts. This challenge highlights the need for systems that can integrate domain-specific knowledge while maintaining response accuracy, relevance, and faithfulness. In this study, we investigate 13 open-source LLMs categorized into large (e.g., Llama3:70b, Gemma2:27b, QwQ:32b), medium (e.g., Gemma2:9b, Llama3:8b), and small (e.g., Llama3.2:3b, Phi3:3.8b). A Retrieval-Augmented Generation (RAG) is used to make up for the problems that come with using separate models. This research utilizes a descriptive dataset of Quranic surahs including the meanings, historical context, and qualities of the 114 surahs, allowing the model to gather relevant knowledge before responding. The models are evaluated using three key metrics set by human evaluators: context relevance, answer faithfulness, and answer relevance. The findings reveal that large models consistently outperform smaller models in capturing query semantics and producing accurate, contextually grounded responses. The Llama3.2:3b model, even though it is considered small, does very well on faithfulness (4.619) and relevance (4.857), showing the promise of smaller architectures that have been well optimized. This article examines the trade-offs between model size, computational efficiency, and response quality while using LLMs in domain-specific applications.
comment: 11 pages, keywords: Large-language-models; retrieval-augmented generation; question answering; Quranic studies; Islamic teachings
☆ Feature selection strategies for optimized heart disease diagnosis using ML and DL models
Heart disease remains one of the leading causes of morbidity and mortality worldwide, necessitating the development of effective diagnostic tools to enable early diagnosis and clinical decision-making. This study evaluates the impact of feature selection techniques Mutual Information (MI), Analysis of Variance (ANOVA), and Chi-Square on the predictive performance of various machine learning (ML) and deep learning (DL) models using a dataset of clinical indicators for heart disease. Eleven ML/DL models were assessed using metrics such as precision, recall, AUC score, F1-score, and accuracy. Results indicate that MI outperformed other methods, particularly for advanced models like neural networks, achieving the highest accuracy of 82.3% and recall score of 0.94. Logistic regression (accuracy 82.1%) and random forest (accuracy 80.99%) also demonstrated improved performance with MI. Simpler models such as Naive Bayes and decision trees achieved comparable results with ANOVA and Chi-Square, yielding accuracies of 76.45% and 75.99%, respectively, making them computationally efficient alternatives. Conversely, k Nearest Neighbors (KNN) and Support Vector Machines (SVM) exhibited lower performance, with accuracies ranging between 51.52% and 54.43%, regardless of the feature selection method. This study provides a comprehensive comparison of feature selection methods for heart disease prediction, demonstrating the critical role of feature selection in optimizing model performance. The results offer practical guidance for selecting appropriate feature selection techniques based on the chosen classification algorithm, contributing to the development of more accurate and efficient diagnostic tools for enhanced clinical decision-making in cardiology.
☆ Extract, Match, and Score: An Evaluation Paradigm for Long Question-context-answer Triplets in Financial Analysis
The rapid advancement of large language models (LLMs) has sparked widespread adoption across diverse applications, making robust evaluation frameworks crucial for assessing their performance. While conventional evaluation metrics remain applicable for shorter texts, their efficacy diminishes when evaluating the quality of long-form answers. This limitation is particularly critical in real-world scenarios involving extended questions, extensive context, and long-form answers, such as financial analysis or regulatory compliance. In this paper, we use a practical financial use case to illustrate applications that handle "long question-context-answer triplets". We construct a real-world financial dataset comprising long triplets and demonstrate the inadequacies of traditional metrics. To address this, we propose an effective Extract, Match, and Score (EMS) evaluation approach tailored to the complexities of long-form LLMs' outputs, providing practitioners with a reliable methodology for assessing LLMs' performance in complex real-world scenarios.
☆ AUV Acceleration Prediction Using DVL and Deep Learning
Autonomous underwater vehicles (AUVs) are essential for various applications, including oceanographic surveys, underwater mapping, and infrastructure inspections. Accurate and robust navigation are critical to completing these tasks. To this end, a Doppler velocity log (DVL) and inertial sensors are fused together. Recently, a model-based approach demonstrated the ability to extract the vehicle acceleration vector from DVL velocity measurements. Motivated by this advancement, in this paper we present an end-to-end deep learning approach to estimate the AUV acceleration vector based on past DVL velocity measurements. Based on recorded data from sea experiments, we demonstrate that the proposed method improves acceleration vector estimation by more than 65% compared to the model-based approach by using data-driven techniques. As a result of our data-driven approach, we can enhance navigation accuracy and reliability in AUV applications, contributing to more efficient and effective underwater missions through improved accuracy and reliability.
☆ Efficient ANN-Guided Distillation: Aligning Rate-based Features of Spiking Neural Networks through Hybrid Block-wise Replacement
Spiking Neural Networks (SNNs) have garnered considerable attention as a potential alternative to Artificial Neural Networks (ANNs). Recent studies have highlighted SNNs' potential on large-scale datasets. For SNN training, two main approaches exist: direct training and ANN-to-SNN (ANN2SNN) conversion. To fully leverage existing ANN models in guiding SNN learning, either direct ANN-to-SNN conversion or ANN-SNN distillation training can be employed. In this paper, we propose an ANN-SNN distillation framework from the ANN-to-SNN perspective, designed with a block-wise replacement strategy for ANN-guided learning. By generating intermediate hybrid models that progressively align SNN feature spaces to those of ANN through rate-based features, our framework naturally incorporates rate-based backpropagation as a training method. Our approach achieves results comparable to or better than state-of-the-art SNN distillation methods, showing both training and learning efficiency.
♻ ☆ Dynamic Bi-Elman Attention Networks (DBEAN): Dual-Directional Context-Aware Representation Learning for Enhanced Text Classification
Text classification, a fundamental task in natural language processing (NLP), aims to categorize textual data into predefined labels. Traditional methods struggled with complex linguistic structures and semantic dependencies. The advent of deep learning, particularly recurrent neural networks (RNNs) and Transformer-based models, has significantly advanced the field by enabling nuanced feature extraction and context-aware predictions. Despite improvements, existing models exhibit limitations in balancing interpretability, computational efficiency, and long-range contextual understanding. This paper proposes the Dynamic Bidirectional Elman with Attention Network (DBEAN), which integrates bidirectional temporal modelling with self-attention mechanisms. DBEAN dynamically assigns weights to critical segments of input, improving contextual representation while maintaining computational efficiency.
comment: 11 pages,1 figure
♻ ☆ Sample Efficient Preference Alignment in LLMs via Active Exploration
Preference-based feedback is important for many applications in machine learning where evaluation of a reward function is not feasible. Notable recent examples arise in preference alignment for large language models, including in reinforcement learning from human feedback (RLHF) and direct preference optimization (DPO). For many applications of preference alignment, the cost of acquiring human feedback can be substantial. In this work, we take advantage of the fact that one can often choose contexts at which to obtain human feedback to most efficiently identify a good policy, and formalize the setting as an active contextual dueling bandit problem. We propose an active exploration algorithm to efficiently select the data and provide theoretical proof that it has a polynomial worst-case regret bound. We extend the setting and methodology for practical use in preference alignment of large language models. We provide two extensions, an online and an offline approach. Our method outperforms the baselines with limited samples of human preferences on several language models and four real-world datasets including two new datasets that we contribute to the literature.
♻ ☆ BigO(Bench) -- Can LLMs Generate Code with Controlled Time and Space Complexity?
We introduce BigO(Bench), a novel coding benchmark designed to evaluate the capabilities of generative language models in understanding and generating code with specified time and space complexities. This benchmark addresses the gap in current evaluations that often overlook the ability of models to comprehend and produce code constrained by computational complexity. BigO(Bench) includes tooling to infer the algorithmic complexity of any Python function from profiling measurements, including human- or LLM-generated solutions. BigO(Bench) also includes of set of 3,105 coding problems and 1,190,250 solutions from Code Contests annotated with inferred (synthetic) time and space complexity labels from the complexity framework, as well as corresponding runtime and memory footprint values for a large set of input sizes. We present results from evaluating multiple state-of-the-art language models on this benchmark, highlighting their strengths and weaknesses in handling complexity requirements. In particular, token-space reasoning models are unrivaled in code generation but not in complexity understanding, hinting that they may not generalize well to tasks for which no reward was given at training time.
♻ ☆ Paint by Inpaint: Learning to Add Image Objects by Removing Them First
Image editing has advanced significantly with the introduction of text-conditioned diffusion models. Despite this progress, seamlessly adding objects to images based on textual instructions without requiring user-provided input masks remains a challenge. We address this by leveraging the insight that removing objects (Inpaint) is significantly simpler than its inverse process of adding them (Paint), attributed to inpainting models that benefit from segmentation mask guidance. Capitalizing on this realization, by implementing an automated and extensive pipeline, we curate a filtered large-scale image dataset containing pairs of images and their corresponding object-removed versions. Using these pairs, we train a diffusion model to inverse the inpainting process, effectively adding objects into images. Unlike other editing datasets, ours features natural target images instead of synthetic ones while ensuring source-target consistency by construction. Additionally, we utilize a large Vision-Language Model to provide detailed descriptions of the removed objects and a Large Language Model to convert these descriptions into diverse, natural-language instructions. Our quantitative and qualitative results show that the trained model surpasses existing models in both object addition and general editing tasks. Visit our project page for the released dataset and trained models at https://rotsteinnoam.github.io/Paint-by-Inpaint.
♻ ☆ Pathways on the Image Manifold: Image Editing via Video Generation
Recent advances in image editing, driven by image diffusion models, have shown remarkable progress. However, significant challenges remain, as these models often struggle to follow complex edit instructions accurately and frequently compromise fidelity by altering key elements of the original image. Simultaneously, video generation has made remarkable strides, with models that effectively function as consistent and continuous world simulators. In this paper, we propose merging these two fields by utilizing image-to-video models for image editing. We reformulate image editing as a temporal process, using pretrained video models to create smooth transitions from the original image to the desired edit. This approach traverses the image manifold continuously, ensuring consistent edits while preserving the original image's key aspects. Our approach achieves state-of-the-art results on text-based image editing, demonstrating significant improvements in both edit accuracy and image preservation. Visit our project page at https://rotsteinnoam.github.io/Frame2Frame.
♻ ☆ LOCAL: Learning with Orientation Matrix to Infer Causal Structure from Time Series Data
Discovering the underlying Directed Acyclic Graph (DAG) from time series observational data is highly challenging due to the dynamic nature and complex nonlinear interactions between variables. Existing methods typically search for the optimal DAG by optimizing an objective function but face scalability challenges, as their computational demands grow exponentially with the dimensional expansion of variables. To this end, we propose LOCAL, a highly efficient, easy-to-implement, and constraint-free method for recovering dynamic causal structures. LOCAL is the first attempt to formulate a quasi-maximum likelihood-based score function for learning the dynamic DAG equivalent to the ground truth. Building on this, we introduce two adaptive modules that enhance the algebraic characterization of acyclicity: Asymptotic Causal Mask Learning (ACML) and Dynamic Graph Parameter Learning (DGPL). ACML constructs causal masks using learnable priority vectors and the Gumbel-Sigmoid function, ensuring DAG formation while optimizing computational efficiency. DGPL transforms causal learning into decomposed matrix products, capturing dynamic causal structure in high-dimensional data and improving interpretability. Extensive experiments on synthetic and real-world datasets demonstrate that LOCAL significantly outperforms existing methods and highlight LOCAL's potential as a robust and efficient method for dynamic causal discovery.
comment: 16 pages, 7 figures
♻ ☆ Conjuring Positive Pairs for Efficient Unification of Representation Learning and Image Synthesis
While representation learning and generative modeling seek to understand visual data, unifying both domains remains unexplored. Recent Unified Self-Supervised Learning (SSL) methods have started to bridge the gap between both paradigms. However, they rely solely on semantic token reconstruction, which requires an external tokenizer during training -- introducing a significant overhead. In this work, we introduce Sorcen, a novel unified SSL framework, incorporating a synergic Contrastive-Reconstruction objective. Our Contrastive objective, "Echo Contrast", leverages the generative capabilities of Sorcen, eliminating the need for additional image crops or augmentations during training. Sorcen "generates" an echo sample in the semantic token space, forming the contrastive positive pair. Sorcen operates exclusively on precomputed tokens, eliminating the need for an online token transformation during training, thereby significantly reducing computational overhead. Extensive experiments on ImageNet-1k demonstrate that Sorcen outperforms the previous Unified SSL SoTA by 0.4%, 1.48 FID, 1.76%, and 1.53% on linear probing, unconditional image generation, few-shot learning, and transfer learning, respectively, while being 60.8% more efficient. Additionally, Sorcen surpasses previous single-crop MIM SoTA in linear probing and achieves SoTA performance in unconditional image generation, highlighting significant improvements and breakthroughs in Unified SSL models.
comment: The source code is available in https://github.com/ImaGonEs/Sorcen
♻ ☆ SemHiTok: A Unified Image Tokenizer via Semantic-Guided Hierarchical Codebook for Multimodal Understanding and Generation
We present SemHiTok, a unified image Tokenizer via Semantic-Guided Hierarchical codebook that provides consistent discrete feature representations for multimodal understanding and generation tasks. Recently, unified multimodal large models (MLLMs) for understanding and generation have sparked exploration within research community. Previous works attempt to train a unified image tokenizer by combining loss functions for semantic feature reconstruction and pixel reconstruction. However, due to the differing levels of features prioritized by multimodal understanding and generation tasks, joint training methods face significant challenges in achieving a good trade-off. SemHiTok addresses this challenge through Semantic-Guided Hierarchical codebook which builds texture sub-codebooks on pre-trained semantic codebook. This design decouples the training of semantic reconstruction and pixel reconstruction and equips the tokenizer with low-level texture feature extraction capability without degradation of high-level semantic feature extraction ability. Our experiments demonstrate that SemHiTok achieves excellent rFID score at 256X256resolution compared to other unified tokenizers, and exhibits competitive performance on multimodal understanding and generation tasks.
comment: Under Review, Refer to the latest version
♻ ☆ PC-Talk: Precise Facial Animation Control for Audio-Driven Talking Face Generation
Recent advancements in audio-driven talking face generation have made great progress in lip synchronization. However, current methods often lack sufficient control over facial animation such as speaking style and emotional expression, resulting in uniform outputs. In this paper, we focus on improving two key factors: lip-audio alignment and emotion control, to enhance the diversity and user-friendliness of talking videos. Lip-audio alignment control focuses on elements like speaking style and the scale of lip movements, whereas emotion control is centered on generating realistic emotional expressions, allowing for modifications in multiple attributes such as intensity. To achieve precise control of facial animation, we propose a novel framework, PC-Talk, which enables lip-audio alignment and emotion control through implicit keypoint deformations. First, our lip-audio alignment control module facilitates precise editing of speaking styles at the word level and adjusts lip movement scales to simulate varying vocal loudness levels, maintaining lip synchronization with the audio. Second, our emotion control module generates vivid emotional facial features with pure emotional deformation. This module also enables the fine modification of intensity and the combination of multiple emotions across different facial regions. Our method demonstrates outstanding control capabilities and achieves state-of-the-art performance on both HDTF and MEAD datasets in extensive experiments.
JuDGE: Benchmarking Judgment Document Generation for Chinese Legal System
This paper introduces JuDGE (Judgment Document Generation Evaluation), a novel benchmark for evaluating the performance of judgment document generation in the Chinese legal system. We define the task as generating a complete legal judgment document from the given factual description of the case. To facilitate this benchmark, we construct a comprehensive dataset consisting of factual descriptions from real legal cases, paired with their corresponding full judgment documents, which serve as the ground truth for evaluating the quality of generated documents. This dataset is further augmented by two external legal corpora that provide additional legal knowledge for the task: one comprising statutes and regulations, and the other consisting of a large collection of past judgment documents. In collaboration with legal professionals, we establish a comprehensive automated evaluation framework to assess the quality of generated judgment documents across various dimensions. We evaluate various baseline approaches, including few-shot in-context learning, fine-tuning, and a multi-source retrieval-augmented generation (RAG) approach, using both general and legal-domain LLMs. The experimental results demonstrate that, while RAG approaches can effectively improve performance in this task, there is still substantial room for further improvement. All the codes and datasets are available at: https://github.com/oneal2000/JuDGE.
♻ ☆ Workflow for Safe-AI
The development and deployment of safe and dependable AI models is crucial in applications where functional safety is a key concern. Given the rapid advancement in AI research and the relative novelty of the safe-AI domain, there is an increasing need for a workflow that balances stability with adaptability. This work proposes a transparent, complete, yet flexible and lightweight workflow that highlights both reliability and qualifiability. The core idea is that the workflow must be qualifiable, which demands the use of qualified tools. Tool qualification is a resource-intensive process, both in terms of time and cost. We therefore place value on a lightweight workflow featuring a minimal number of tools with limited features. The workflow is built upon an extended ONNX model description allowing for validation of AI algorithms from their generation to runtime deployment. This validation is essential to ensure that models are validated before being reliably deployed across different runtimes, particularly in mixed-criticality systems. Keywords-AI workflows, safe-AI, dependable-AI, functional safety, v-model development
comment: Embedded World Conference, Nuremberg, 2025
♻ ☆ Enhancing the Scalability and Applicability of Kohn-Sham Hamiltonians for Molecular Systems
Density Functional Theory (DFT) is a pivotal method within quantum chemistry and materials science, with its core involving the construction and solution of the Kohn-Sham Hamiltonian. Despite its importance, the application of DFT is frequently limited by the substantial computational resources required to construct the Kohn-Sham Hamiltonian. In response to these limitations, current research has employed deep-learning models to efficiently predict molecular and solid Hamiltonians, with roto-translational symmetries encoded in their neural networks. However, the scalability of prior models may be problematic when applied to large molecules, resulting in non-physical predictions of ground-state properties. In this study, we generate a substantially larger training set (PubChemQH) than used previously and use it to create a scalable model for DFT calculations with physical accuracy. For our model, we introduce a loss function derived from physical principles, which we call Wavefunction Alignment Loss (WALoss). WALoss involves performing a basis change on the predicted Hamiltonian to align it with the observed one; thus, the resulting differences can serve as a surrogate for orbital energy differences, allowing models to make better predictions for molecular orbitals and total energies than previously possible. WALoss also substantially accelerates self-consistent-field (SCF) DFT calculations. Here, we show it achieves a reduction in total energy prediction error by a factor of 1347 and an SCF calculation speed-up by a factor of 18%. These substantial improvements set new benchmarks for achieving accurate and applicable predictions in larger molecular systems.
♻ ☆ SPINE: Online Semantic Planning for Missions with Incomplete Natural Language Specifications in Unstructured Environments ICRA
As robots become increasingly capable, users will want to describe high-level missions and have robots infer the relevant details. because pre-built maps are difficult to obtain in many realistic settings, accomplishing such missions will require the robot to map and plan online. while many semantic planning methods operate online, they are typically designed for well specified missions such as object search or exploration. recently, large language models (LLMs) have demonstrated powerful contextual reasoning abilities over a range of robotic tasks described in natural language. however, existing LLM-enabled planners typically do not consider online planning or complex missions; rather, relevant subtasks and semantics are provided by a pre-built map or a user. we address these limitations via spine, an online planner for missions with incomplete mission specifications provided in natural language. the planner uses an LLM to reason about subtasks implied by the mission specification and then realizes these subtasks in a receding horizon framework. tasks are automatically validated for safety and refined online with new map observations. we evaluate spine in simulation and real-world settings with missions that require multiple steps of semantic reasoning and exploration in cluttered outdoor environments of over 20,000m$^2$. compared to baselines that use existing LLM-enabled planning approaches, our method is over twice as efficient in terms of time and distance, requires less user interactions, and does not require a full map. Additional resources are provided at: https://zacravichandran.github.io/SPINE.
comment: Accepted to the International Conference on Robotics and Automation (ICRA) 2025
♻ ☆ Is Long Context All You Need? Leveraging LLM's Extended Context for NL2SQL VLDB 2025
Large Language Models (LLMs) have demonstrated impressive capabilities across a range of natural language processing tasks. In particular, improvements in reasoning abilities and the expansion of context windows have opened new avenues for leveraging these powerful models. NL2SQL is challenging in that the natural language question is inherently ambiguous, while the SQL generation requires a precise understanding of complex data schema and semantics. One approach to this semantic ambiguous problem is to provide more and sufficient contextual information. In this work, we explore the performance and the latency trade-offs of the extended context window (a.k.a., long context) offered by Google's state-of-the-art LLM (\textit{gemini-1.5-pro}). We study the impact of various contextual information, including column example values, question and SQL query pairs, user-provided hints, SQL documentation, and schema. To the best of our knowledge, this is the first work to study how the extended context window and extra contextual information can help NL2SQL generation with respect to both accuracy and latency cost. We show that long context LLMs are robust and do not get lost in the extended contextual information. Additionally, our long-context NL2SQL pipeline based on Google's \textit{gemini-pro-1.5} achieve strong performances on various benchmark datasets without finetuning and expensive self-consistency based techniques.
comment: 13 pages, 6 figures, VLDB 2025
♻ ☆ ReLearn: Unlearning via Learning for Large Language Models
Current unlearning methods for large language models usually rely on reverse optimization to reduce target token probabilities. However, this paradigm disrupts the subsequent tokens prediction, degrading model performance and linguistic coherence. Moreover, existing evaluation metrics overemphasize contextual forgetting while inadequately assessing response fluency and relevance. To address these challenges, we propose ReLearn, a data augmentation and fine-tuning pipeline for effective unlearning, along with a comprehensive evaluation framework. This framework introduces Knowledge Forgetting Rate (KFR) and Knowledge Retention Rate (KRR) to measure knowledge-level preservation, and Linguistic Score (LS) to evaluate generation quality. Our experiments show that ReLearn successfully achieves targeted forgetting while preserving high-quality output. Through mechanistic analysis, we further demonstrate how reverse optimization disrupts coherent text generation, while ReLearn preserves this essential capability. Code is available at https://github.com/zjunlp/unlearn.
comment: Work in progress
♻ ☆ Pareto Control Barrier Function for Inner Safe Set Maximization Under Input Constraints
This article introduces the Pareto Control Barrier Function (PCBF) algorithm to maximize the inner safe set of dynamical systems under input constraints. Traditional Control Barrier Functions (CBFs) ensure safety by maintaining system trajectories within a safe set but often fail to account for realistic input constraints. To address this problem, we leverage the Pareto multi-task learning framework to balance competing objectives of safety and safe set volume. The PCBF algorithm is applicable to high-dimensional systems and is computationally efficient. We validate its effectiveness through comparison with Hamilton-Jacobi reachability for an inverted pendulum and through simulations on a 12-dimensional quadrotor system. Results show that the PCBF consistently outperforms existing methods, yielding larger safe sets and ensuring safety under input constraints.
comment: Accepted for presentation at American Control Conference 2025
♻ ☆ LegalCore: A Dataset for Event Coreference Resolution in Legal Documents
Recognizing events and their coreferential mentions in a document is essential for understanding semantic meanings of text. The existing research on event coreference resolution is mostly limited to news articles. In this paper, we present the first dataset for the legal domain, LegalCore, which has been annotated with comprehensive event and event coreference information. The legal contract documents we annotated in this dataset are several times longer than news articles, with an average length of around 25k tokens per document. The annotations show that legal documents have dense event mentions and feature both short-distance and super long-distance coreference links between event mentions. We further benchmark mainstream Large Language Models (LLMs) on this dataset for both event detection and event coreference resolution tasks, and find that this dataset poses significant challenges for state-of-the-art open-source and proprietary LLMs, which perform significantly worse than a supervised baseline. We will publish the dataset as well as the code.
comment: Need company internal approval before public release
♻ ☆ Multi-Modal Foundation Models for Computational Pathology: A Survey
Foundation models have emerged as a powerful paradigm in computational pathology (CPath), enabling scalable and generalizable analysis of histopathological images. While early developments centered on uni-modal models trained solely on visual data, recent advances have highlighted the promise of multi-modal foundation models that integrate heterogeneous data sources such as textual reports, structured domain knowledge, and molecular profiles. In this survey, we provide a comprehensive and up-to-date review of multi-modal foundation models in CPath, with a particular focus on models built upon hematoxylin and eosin (H&E) stained whole slide images (WSIs) and tile-level representations. We categorize 32 state-of-the-art multi-modal foundation models into three major paradigms: vision-language, vision-knowledge graph, and vision-gene expression. We further divide vision-language models into non-LLM-based and LLM-based approaches. Additionally, we analyze 28 available multi-modal datasets tailored for pathology, grouped into image-text pairs, instruction datasets, and image-other modality pairs. Our survey also presents a taxonomy of downstream tasks, highlights training and evaluation strategies, and identifies key challenges and future directions. We aim for this survey to serve as a valuable resource for researchers and practitioners working at the intersection of pathology and AI.
♻ ☆ Multi-Output Distributional Fairness via Post-Processing
The post-processing approaches are becoming prominent techniques to enhance machine learning models' fairness because of their intuitiveness, low computational cost, and excellent scalability. However, most existing post-processing methods are designed for task-specific fairness measures and are limited to single-output models. In this paper, we introduce a post-processing method for multi-output models, such as the ones used for multi-task/multi-class classification and representation learning, to enhance a model's distributional parity, a task-agnostic fairness measure. Existing methods for achieving distributional parity rely on the (inverse) cumulative density function of a model's output, restricting their applicability to single-output models. Extending previous works, we propose to employ optimal transport mappings to move a model's outputs across different groups towards their empirical Wasserstein barycenter. An approximation technique is applied to reduce the complexity of computing the exact barycenter and a kernel regression method is proposed to extend this process to out-of-sample data. Our empirical studies evaluate the proposed approach against various baselines on multi-task/multi-class classification and representation learning tasks, demonstrating the effectiveness of the proposed approach.
comment: 21 pages, 4 figures
♻ ☆ LLM-SR: Scientific Equation Discovery via Programming with Large Language Models ICLR 2025
Mathematical equations have been unreasonably effective in describing complex natural phenomena across various scientific disciplines. However, discovering such insightful equations from data presents significant challenges due to the necessity of navigating extremely large combinatorial hypothesis spaces. Current methods of equation discovery, commonly known as symbolic regression techniques, largely focus on extracting equations from data alone, often neglecting the domain-specific prior knowledge that scientists typically depend on. They also employ limited representations such as expression trees, constraining the search space and expressiveness of equations. To bridge this gap, we introduce LLM-SR, a novel approach that leverages the extensive scientific knowledge and robust code generation capabilities of Large Language Models (LLMs) to discover scientific equations from data. Specifically, LLM-SR treats equations as programs with mathematical operators and combines LLMs' scientific priors with evolutionary search over equation programs. The LLM iteratively proposes new equation skeleton hypotheses, drawing from its domain knowledge, which are then optimized against data to estimate parameters. We evaluate LLM-SR on four benchmark problems across diverse scientific domains (e.g., physics, biology), which we carefully designed to simulate the discovery process and prevent LLM recitation. Our results demonstrate that LLM-SR discovers physically accurate equations that significantly outperform state-of-the-art symbolic regression baselines, particularly in out-of-domain test settings. We also show that LLM-SR's incorporation of scientific priors enables more efficient equation space exploration than the baselines. Code and data are available: https://github.com/deep-symbolic-mathematics/LLM-SR
comment: ICLR 2025 Oral
♻ ☆ Unifying 2D and 3D Vision-Language Understanding
Progress in 3D vision-language learning has been hindered by the scarcity of large-scale 3D datasets. We introduce UniVLG, a unified architecture for 2D and 3D vision-language understanding that bridges the gap between existing 2D-centric models and the rich 3D sensory data available in embodied systems. Our approach initializes most model weights from pre-trained 2D models and trains on both 2D and 3D vision-language data. We propose a novel language-conditioned mask decoder shared across 2D and 3D modalities to ground objects effectively in both RGB and RGB-D images, outperforming box-based approaches. To further reduce the domain gap between 2D and 3D, we incorporate 2D-to-3D lifting strategies, enabling UniVLG to utilize 2D data to enhance 3D performance. With these innovations, our model achieves state-of-the-art performance across multiple 3D vision-language grounding tasks, demonstrating the potential of transferring advances from 2D vision-language learning to the data-constrained 3D domain. Furthermore, co-training on both 2D and 3D data enhances performance across modalities without sacrificing 2D capabilities. By removing the reliance on 3D mesh reconstruction and ground-truth object proposals, UniVLG sets a new standard for realistic, embodied-aligned evaluation. Code and additional visualizations are available at https://univlg.github.io .
comment: The first two authors contributed equally
♻ ☆ When Text Embedding Meets Large Language Model: A Comprehensive Survey
Text embedding has become a foundational technology in natural language processing (NLP) during the deep learning era, driving advancements across a wide array of downstream tasks. While many natural language understanding challenges can now be modeled using generative paradigms and leverage the robust generative and comprehension capabilities of large language models (LLMs), numerous practical applications - such as semantic matching, clustering, and information retrieval - continue to rely on text embeddings for their efficiency and effectiveness. Therefore, integrating LLMs with text embeddings has become a major research focus in recent years. In this survey, we categorize the interplay between LLMs and text embeddings into three overarching themes: (1) LLM-augmented text embedding, enhancing traditional embedding methods with LLMs; (2) LLMs as text embedders, adapting their innate capabilities for high-quality embedding; and (3) Text embedding understanding with LLMs, leveraging LLMs to analyze and interpret embeddings. By organizing recent works based on interaction patterns rather than specific downstream applications, we offer a novel and systematic overview of contributions from various research and application domains in the era of LLMs. Furthermore, we highlight the unresolved challenges that persisted in the pre-LLM era with pre-trained language models (PLMs) and explore the emerging obstacles brought forth by LLMs. Building on this analysis, we outline prospective directions for the evolution of text embedding, addressing both theoretical and practical opportunities in the rapidly advancing landscape of NLP.
comment: Version 3: We added some latest works of LLM-based Embedders and MLLM-based Embedders
♻ ☆ Repurposing Stable Diffusion Attention for Training-Free Unsupervised Interactive Segmentation CVPR 2025
Recent progress in interactive point prompt based Image Segmentation allows to significantly reduce the manual effort to obtain high quality semantic labels. State-of-the-art unsupervised methods use self-supervised pre-trained models to obtain pseudo-labels which are used in training a prompt-based segmentation model. In this paper, we propose a novel unsupervised and training-free approach based solely on the self-attention of Stable Diffusion. We interpret the self-attention tensor as a Markov transition operator, which enables us to iteratively construct a Markov chain. Pixel-wise counting of the required number of iterations along the Markov chain to reach a relative probability threshold yields a Markov-iteration-map, which we simply call a Markov-map. Compared to the raw attention maps, we show that our proposed Markov-map has less noise, sharper semantic boundaries and more uniform values within semantically similar regions. We integrate the Markov-map in a simple yet effective truncated nearest neighbor framework to obtain interactive point prompt based segmentation. Despite being training-free, we experimentally show that our approach yields excellent results in terms of Number of Clicks (NoC), even outperforming state-of-the-art training based unsupervised methods in most of the datasets. Code is available at https://github.com/mkarmann/m2n2.
comment: Accepted by CVPR 2025
♻ ☆ Immune: Improving Safety Against Jailbreaks in Multi-modal LLMs via Inference-Time Alignment CVPR 2025
With the widespread deployment of Multimodal Large Language Models (MLLMs) for visual-reasoning tasks, improving their safety has become crucial. Recent research indicates that despite training-time safety alignment, these models remain vulnerable to jailbreak attacks. In this work, we first highlight an important safety gap to describe that alignment achieved solely through safety training may be insufficient against jailbreak attacks. To address this vulnerability, we propose Immune, an inference-time defense framework that leverages a safe reward model through controlled decoding to defend against jailbreak attacks. Additionally, we provide a mathematical characterization of Immune, offering insights on why it improves safety against jailbreaks. Extensive evaluations on diverse jailbreak benchmarks using recent MLLMs reveal that Immune effectively enhances model safety while preserving the model's original capabilities. For instance, against text-based jailbreak attacks on LLaVA-1.6, Immune reduces the attack success rate by 57.82% and 16.78% compared to the base MLLM and state-of-the-art defense strategy, respectively.
comment: Accepted to CVPR 2025
♻ ☆ BELLA: Black box model Explanations by Local Linear Approximations
Understanding the decision-making process of black-box models has become not just a legal requirement, but also an additional way to assess their performance. However, the state of the art post-hoc explanation approaches for regression models rely on synthetic data generation, which introduces uncertainty and can hurt the reliability of the explanations. Furthermore, they tend to produce explanations that apply to only very few data points. In this paper, we present BELLA, a deterministic model-agnostic post-hoc approach for explaining the individual predictions of regression black-box models. BELLA provides explanations in the form of a linear model trained in the feature space. BELLA maximizes the size of the neighborhood to which the linear model applies so that the explanations are accurate, simple, general, and robust. BELLA can produce both factual and counterfactual explanations.
comment: 19 pages,3 figures, submitted to TMLR journal
♻ ☆ Subjective Logic Encodings
Many existing approaches for learning from labeled data assume the existence of gold-standard labels. According to these approaches, inter-annotator disagreement is seen as noise to be removed, either through refinement of annotation guidelines, label adjudication, or label filtering. However, annotator disagreement can rarely be totally eradicated, especially on more subjective tasks such as sentiment analysis or hate speech detection where disagreement is natural. Therefore, a new approach to learning from labeled data, called data perspectivism, seeks to leverage inter-annotator disagreement to learn models that stay true to the inherent uncertainty of the task by treating annotations as opinions of the annotators, rather than gold-standard facts. Despite this conceptual grounding, existing methods under data perspectivism are limited to using disagreement as the sole source of annotation uncertainty. To expand the possibilities of data perspectivism, we introduce Subjective Logic Encodings (SLEs), a flexible framework for constructing classification targets that explicitly encodes annotations as opinions of the annotators. Based on Subjective Logic Theory, SLEs encode labels as Dirichlet distributions and provide principled methods for encoding and aggregating various types of annotation uncertainty -- annotator confidence, reliability, and disagreement -- into the targets. We show that SLEs are a generalization of other types of label encodings as well as how to estimate models to predict SLEs using a distribution matching objective.
comment: We make our code publicly available at https://github.com/jvasilakes/SLEncodings
♻ ☆ Fourier Neural Operator based surrogates for $CO_2$ storage in realistic geologies
This study aims to develop surrogate models for accelerating decision making processes associated with carbon capture and storage (CCS) technologies. Selection of sub-surface $CO_2$ storage sites often necessitates expensive and involved simulations of $CO_2$ flow fields. Here, we develop a Fourier Neural Operator (FNO) based model for real-time, high-resolution simulation of $CO_2$ plume migration. The model is trained on a comprehensive dataset generated from realistic subsurface parameters and offers $O(10^5)$ computational acceleration with minimal sacrifice in prediction accuracy. We also explore super-resolution experiments to improve the computational cost of training the FNO based models. Additionally, we present various strategies for improving the reliability of predictions from the model, which is crucial while assessing actual geological sites. This novel framework, based on NVIDIA's Modulus library, will allow rapid screening of sites for CCS. The discussed workflows and strategies can be applied to other energy solutions like geothermal reservoir modeling and hydrogen storage. Our work scales scientific machine learning models to realistic 3D systems that are more consistent with real-life subsurface aquifers/reservoirs, paving the way for next-generation digital twins for subsurface CCS applications.
♻ ☆ EPAM-Net: An Efficient Pose-driven Attention-guided Multimodal Network for Video Action Recognition
Existing multimodal-based human action recognition approaches are computationally intensive, limiting their deployment in real-time applications. In this work, we present a novel and efficient pose-driven attention-guided multimodal network (EPAM-Net) for action recognition in videos. Specifically, we propose eXpand temporal Shift (X-ShiftNet) convolutional architectures for RGB and pose streams to capture spatio-temporal features from RGB videos and their skeleton sequences. The X-ShiftNet tackles the high computational cost of the 3D CNNs by integrating the Temporal Shift Module (TSM) into an efficient 2D CNN, enabling efficient spatiotemporal learning. Then skeleton features are utilized to guide the visual network stream, focusing on keyframes and their salient spatial regions using the proposed spatial-temporal attention block. Finally, the predictions of the two streams are fused for final classification. The experimental results show that our method, with a significant reduction in floating-point operations (FLOPs), outperforms and competes with the state-of-the-art methods on NTU RGB-D 60, NTU RGB-D 120, PKU-MMD, and Toyota SmartHome datasets. The proposed EPAM-Net provides up to a 72.8x reduction in FLOPs and up to a 48.6x reduction in the number of network parameters. The code will be available at https://github.com/ahmed-nady/Multimodal-Action-Recognition.
♻ ☆ "Moralized" Multi-Step Jailbreak Prompts: Black-Box Testing of Guardrails in Large Language Models for Verbal Attacks
As the application of large language models continues to expand in various fields, it poses higher challenges to the effectiveness of identifying harmful content generation and guardrail mechanisms. This research aims to evaluate the guardrail effectiveness of GPT-4o, Grok-2 Beta, Llama 3.1 (405B), Gemini 1.5, and Claude 3.5 Sonnet through black-box testing of seemingly ethical multi-step jailbreak prompts. It conducts ethical attacks by designing an identical multi-step prompts that simulates the scenario of "corporate middle managers competing for promotions." The data results show that the guardrails of the above-mentioned LLMs were bypassed and the content of verbal attacks was generated. Claude 3.5 Sonnet's resistance to multi-step jailbreak prompts is more obvious. To ensure objectivity, the experimental process, black box test code, and enhanced guardrail code are uploaded to the GitHub repository: https://github.com/brucewang123456789/GeniusTrail.git.
comment: This paper has been submitted to Nature Machine Intelligence and OpenReview preprints. It has 7 pages of text, 3 figures, and 3 tables
♻ ☆ Human Choice Prediction in Language-based Persuasion Games: Simulation-based Off-Policy Evaluation
Recent advances in Large Language Models (LLMs) have spurred interest in designing LLM-based agents for tasks that involve interaction with human and artificial agents. This paper addresses a key aspect in the design of such agents: predicting human decisions in off-policy evaluation (OPE). We focus on language-based persuasion games, where an expert aims to influence the decision-maker through verbal messages. In our OPE framework, the prediction model is trained on human interaction data collected from encounters with one set of expert agents, and its performance is evaluated on interactions with a different set of experts. Using a dedicated application, we collected a dataset of 87K decisions from humans playing a repeated decision-making game with artificial agents. To enhance off-policy performance, we propose a simulation technique involving interactions across the entire agent space and simulated decision-makers. Our learning strategy yields significant OPE gains, e.g., improving prediction accuracy in the top 15% challenging cases by 7.1%. Our code and the large dataset we collected and generated are submitted as supplementary material and publicly available in our GitHub repository: https://github.com/eilamshapira/HumanChoicePrediction
♻ ☆ Rationalization Models for Text-to-SQL ICLR 2025
We introduce a framework for generating Chain-of-Thought (CoT) rationales to enhance text-to-SQL model fine-tuning. These rationales consist of intermediate SQL statements and explanations, serving as incremental steps toward constructing the final SQL query. The process begins with manually annotating a small set of examples, which are then used to prompt a large language model in an iterative, dynamic few-shot knowledge distillation procedure from a teacher model. A rationalization model is subsequently trained on the validated decomposed queries, enabling extensive synthetic CoT annotations for text-to-SQL datasets. To evaluate the approach, we fine-tune small language models with and without these rationales on the BIRD dataset. Results indicate that step-by-step query generation improves execution accuracy, especially for moderately and highly complex queries, while also enhancing explainability.
comment: Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs
♻ ☆ Mitigating Sycophancy in Decoder-Only Transformer Architectures: Synthetic Data Intervention
To address the sycophancy problem caused by reinforcement learning from human feedback in large language models, this research applies synthetic data intervention technology to the decoder-only transformer architecture. Based on the research gaps in the existing literature, the researcher designed an experimental process to reduce the tendency of models to cater by generating diversified data, and used GPT4o as an experimental tool for verification. The experiment used 100 true and false questions, and compared the performance of the model trained with synthetic data intervention and the original untrained model on multiple indicators. The results show that the SDI training model supports the technology in terms of accuracy rate and sycophancy rate and has significant effectiveness in reducing sycophancy phenomena.
comment: The data set, experimental process, code and data results have been uploaded to Github repository, the link is https://github.com/brucewang123456789/GeniusTrail/tree/main/Synthetic%20Data%20Intervention
♻ ☆ Federated Learning for Traffic Flow Prediction with Synthetic Data Augmentation
Deep-learning based traffic prediction models require vast amounts of data to learn embedded spatial and temporal dependencies. The inherent privacy and commercial sensitivity of such data has encouraged a shift towards decentralised data-driven methods, such as Federated Learning (FL). Under a traditional Machine Learning paradigm, traffic flow prediction models can capture spatial and temporal relationships within centralised data. In reality, traffic data is likely distributed across separate data silos owned by multiple stakeholders. In this work, a cross-silo FL setting is motivated to facilitate stakeholder collaboration for optimal traffic flow prediction applications. This work introduces an FL framework, referred to as FedTPS, to generate synthetic data to augment each client's local dataset by training a diffusion-based trajectory generation model through FL. The proposed framework is evaluated on a large-scale real world ride-sharing dataset using various FL methods and Traffic Flow Prediction models, including a novel prediction model we introduce, which leverages Temporal and Graph Attention mechanisms to learn the Spatio-Temporal dependencies embedded within regional traffic flow data. Experimental results show that FedTPS outperforms multiple other FL baselines with respect to global model performance.
comment: 11 pages, 7 figures, 6 tables, ACM format
♻ ☆ GSplatLoc: Grounding Keypoint Descriptors into 3D Gaussian Splatting for Improved Visual Localization
Although various visual localization approaches exist, such as scene coordinate regression and camera pose regression, these methods often struggle with optimization complexity or limited accuracy. To address these challenges, we explore the use of novel view synthesis techniques, particularly 3D Gaussian Splatting (3DGS), which enables the compact encoding of both 3D geometry and scene appearance. We propose a two-stage procedure that integrates dense and robust keypoint descriptors from the lightweight XFeat feature extractor into 3DGS, enhancing performance in both indoor and outdoor environments. The coarse pose estimates are directly obtained via 2D-3D correspondences between the 3DGS representation and query image descriptors. In the second stage, the initial pose estimate is refined by minimizing the rendering-based photometric warp loss. Benchmarking on widely used indoor and outdoor datasets demonstrates improvements over recent neural rendering-based localization methods, such as NeRFMatch and PNeRFLoc.
comment: Project website at https://gsplatloc.github.io/
♻ ☆ Why is AI not a Panacea for Data Workers? An Interview Study on Human-AI Collaboration in Data Storytelling
Data storytelling plays an important role in data workers' daily jobs since it boosts team collaboration and public communication. However, to make an appealing data story, data workers spend tremendous efforts on various tasks, including outlining and styling the story. Recently, a growing research trend has been exploring how to assist data storytelling with advanced artificial intelligence (AI). However, existing studies may focus on individual tasks in the workflow of data storytelling and do not reveal a complete picture of humans' preference for collaborating with AI. To better understand real-world needs, we interviewed eighteen data workers from both industry and academia to learn where and how they would like to collaborate with AI. Surprisingly, though the participants showed excitement about collaborating with AI, many of them also expressed reluctance and pointed out nuanced reasons. Based on their responses, we first characterize stages and tasks in the practical data storytelling workflows and the desired roles of AI. Then the preferred collaboration patterns in different tasks are identified. Next, we summarize the interviewees' reasons why and why not they would like to collaborate with AI. Finally, we provide suggestions for human-AI collaborative data storytelling to hopefully shed light on future related research.
comment: To be published in IEEE Transactions on Visualization and Computer Graphics
♻ ☆ Relational Object-Centric Actor-Critic
The advances in unsupervised object-centric representation learning have significantly improved its application to downstream tasks. Recent works highlight that disentangled object representations can aid policy learning in image-based, object-centric reinforcement learning tasks. This paper proposes a novel object-centric reinforcement learning algorithm that integrates actor-critic and model-based approaches by incorporating an object-centric world model within the critic. The world model captures the environment's data-generating process by predicting the next state and reward given the current state-action pair, where actions are interventions in the environment. In model-based reinforcement learning, world model learning can be interpreted as a causal induction problem, where the agent must learn the causal relationships underlying the environment's dynamics. We evaluate our method in a simulated 3D robotic environment and a 2D environment with compositional structure. As baselines, we compare against object-centric, model-free actor-critic algorithms and a state-of-the-art monolithic model-based algorithm. While the baselines show comparable performance in easier tasks, our approach outperforms them in more challenging scenarios with a large number of objects or more complex dynamics.
♻ ☆ FOCUS: Knowledge-enhanced Adaptive Visual Compression for Few-shot Whole Slide Image Classification CVPR'2025
Few-shot learning presents a critical solution for cancer diagnosis in computational pathology (CPath), addressing fundamental limitations in data availability, particularly the scarcity of expert annotations and patient privacy constraints. A key challenge in this paradigm stems from the inherent disparity between the limited training set of whole slide images (WSIs) and the enormous number of contained patches, where a significant portion of these patches lacks diagnostically relevant information, potentially diluting the model's ability to learn and focus on critical diagnostic features. While recent works attempt to address this by incorporating additional knowledge, several crucial gaps hinder further progress: (1) despite the emergence of powerful pathology foundation models (FMs), their potential remains largely untapped, with most approaches limiting their use to basic feature extraction; (2) current language guidance mechanisms attempt to align text prompts with vast numbers of WSI patches all at once, struggling to leverage rich pathological semantic information. To this end, we introduce the knowledge-enhanced adaptive visual compression framework, dubbed FOCUS, which uniquely combines pathology FMs with language prior knowledge to enable a focused analysis of diagnostically relevant regions by prioritizing discriminative WSI patches. Our approach implements a progressive three-stage compression strategy: we first leverage FMs for global visual redundancy elimination, and integrate compressed features with language prompts for semantic relevance assessment, then perform neighbor-aware visual token filtering while preserving spatial coherence. Extensive experiments on pathological datasets spanning breast, lung, and ovarian cancers demonstrate its superior performance in few-shot pathology diagnosis. Codes are available at https://github.com/dddavid4real/FOCUS.
comment: Accepted by CVPR'2025
♻ ☆ ChatGPT as a Solver and Grader of Programming Exams written in Spanish
Evaluating the capabilities of Large Language Models (LLMs) to assist teachers and students in educational tasks is receiving increasing attention. In this paper, we assess ChatGPT's capacities to solve and grade real programming exams, from an accredited BSc degree in Computer Science, written in Spanish. Our findings suggest that this AI model is only effective for solving simple coding tasks. Its proficiency in tackling complex problems or evaluating solutions authored by others are far from effective. As part of this research, we also release a new corpus of programming tasks and the corresponding prompts for solving the problems or grading the solutions. This resource can be further exploited by other research teams.
♻ ☆ Complexity in Complexity: Understanding Visual Complexity Through Structure, Color, and Surprise
Understanding how humans perceive visual complexity is a key area of study in visual cognition. Previous approaches to modeling visual complexity assessments have often resulted in intricate, difficult-to-interpret algorithms that employ numerous features or sophisticated deep learning architectures. While these complex models achieve high performance on specific datasets, they often sacrifice interpretability, making it challenging to understand the factors driving human perception of complexity. Recently (Shen, et al. 2024) proposed an interpretable segmentation-based model that accurately predicted complexity across various datasets, supporting the idea that complexity can be explained simply. In this work, we investigate the failure of their model to capture structural, color and surprisal contributions to complexity. To this end, we propose Multi-Scale Sobel Gradient (MSG) which measures spatial intensity variations, Multi-Scale Unique Color (MUC) which quantifies colorfulness across multiple scales, and surprise scores generated using a Large Language Model. We test our features on existing benchmarks and a novel dataset (Surprising Visual Genome) containing surprising images from Visual Genome. Our experiments demonstrate that modeling complexity accurately is not as simple as previously thought, requiring additional perceptual and semantic factors to address dataset biases. Our model improves predictive performance while maintaining interpretability, offering deeper insights into how visual complexity is perceived and assessed. Our code, analysis and data are available at https://github.com/Complexity-Project/Complexity-in-Complexity.
♻ ☆ ROCKET-1: Mastering Open-World Interaction with Visual-Temporal Context Prompting
Vision-language models (VLMs) have excelled in multimodal tasks, but adapting them to embodied decision-making in open-world environments presents challenges. One critical issue is bridging the gap between discrete entities in low-level observations and the abstract concepts required for effective planning. A common solution is building hierarchical agents, where VLMs serve as high-level reasoners that break down tasks into executable sub-tasks, typically specified using language. However, language suffers from the inability to communicate detailed spatial information. We propose visual-temporal context prompting, a novel communication protocol between VLMs and policy models. This protocol leverages object segmentation from past observations to guide policy-environment interactions. Using this approach, we train ROCKET-1, a low-level policy that predicts actions based on concatenated visual observations and segmentation masks, supported by real-time object tracking from SAM-2. Our method unlocks the potential of VLMs, enabling them to tackle complex tasks that demand spatial reasoning. Experiments in Minecraft show that our approach enables agents to achieve previously unattainable tasks, with a $\mathbf{76}\%$ absolute improvement in open-world interaction performance. Codes and demos are now available on the project page: https://craftjarvis.github.io/ROCKET-1.
♻ ☆ SePer: Measure Retrieval Utility Through The Lens Of Semantic Perplexity Reduction ICLR 2025
Large Language Models (LLMs) have demonstrated improved generation performance by incorporating externally retrieved knowledge, a process known as retrieval-augmented generation (RAG). Despite the potential of this approach, existing studies evaluate RAG effectiveness by 1) assessing retrieval and generation components jointly, which obscures retrieval's distinct contribution, or 2) examining retrievers using traditional metrics such as NDCG, which creates a gap in understanding retrieval's true utility in the overall generation process. To address the above limitations, in this work, we introduce an automatic evaluation method that measures retrieval quality through the lens of information gain within the RAG framework. Specifically, we propose Semantic Perplexity (SePer), a metric that captures the LLM's internal belief about the correctness of the retrieved information. We quantify the utility of retrieval by the extent to which it reduces semantic perplexity post-retrieval. Extensive experiments demonstrate that SePer not only aligns closely with human preferences but also offers a more precise and efficient evaluation of retrieval utility across diverse RAG scenarios.
comment: ICLR 2025 Spotlight
♻ ☆ A Deep Dive Into Large Language Model Code Generation Mistakes: What and Why?
Recent advancements in Large Language Models (LLMs) have led to their widespread application in automated code generation. However, these models can still generate defective code that deviates from the specification. Previous research has mainly focused on the mistakes in LLM-generated standalone functions, overlooking real-world software development situations where the successful generation of the code requires software contexts such as external dependencies. In this paper, we considered both of these code generation situations and identified a range of \textit{non-syntactic mistakes} arising from LLMs' misunderstandings of coding question specifications. Seven categories of non-syntactic mistakes were identified through extensive manual analyses, four of which were missed by previous works. To better understand these mistakes, we proposed six reasons behind these mistakes from various perspectives. Moreover, we explored the effectiveness of LLMs in detecting mistakes and their reasons. Our evaluation demonstrated that GPT-4 with the ReAct prompting technique can achieve an F1 score of up to 0.65 when identifying reasons for LLM's mistakes, such as misleading function signatures. We believe that these findings offer valuable insights into enhancing the quality of LLM-generated code.
♻ ☆ Spherical Tree-Sliced Wasserstein Distance
Sliced Optimal Transport (OT) simplifies the OT problem in high-dimensional spaces by projecting supports of input measures onto one-dimensional lines and then exploiting the closed-form expression of the univariate OT to reduce the computational burden of OT. Recently, the Tree-Sliced method has been introduced to replace these lines with more intricate structures, known as tree systems. This approach enhances the ability to capture topological information of integration domains in Sliced OT while maintaining low computational cost. Inspired by this approach, in this paper, we present an adaptation of tree systems on OT problems for measures supported on a sphere. As a counterpart to the Radon transform variant on tree systems, we propose a novel spherical Radon transform with a new integration domain called spherical trees. By leveraging this transform and exploiting the spherical tree structures, we derive closed-form expressions for OT problems on the sphere. Consequently, we obtain an efficient metric for measures on the sphere, named Spherical Tree-Sliced Wasserstein (STSW) distance. We provide an extensive theoretical analysis to demonstrate the topology of spherical trees and the well-definedness and injectivity of our Radon transform variant, which leads to an orthogonally invariant distance between spherical measures. Finally, we conduct a wide range of numerical experiments, including gradient flows and self-supervised learning, to assess the performance of our proposed metric, comparing it to recent benchmarks.
♻ ☆ Development of a graph neural network surrogate for travel demand modelling
As urban environments grow, the modelling of transportation systems becomes increasingly complex. This paper advances the field of travel demand modelling by introducing advanced Graph Neural Network (GNN) architectures as surrogate models, addressing key limitations of previous approaches. Building on prior work with Graph Convolutional Networks (GCNs), we introduce GATv3, a new Graph Attention Network (GAT) variant that mitigates over-smoothing through residual connections, enabling deeper and more expressive architectures. Additionally, we propose a fine-grained classification framework that improves predictive stability while achieving numerical precision comparable to regression, offering a more interpretable and efficient alternative. To enhance model performance, we develop a synthetic data generation strategy, which expands the augmented training dataset without overfitting. Our experiments demonstrate that GATv3 significantly improves classification performance, while the GCN model shows unexpected dominance in fine-grained classification when supplemented with additional training data. The results highlight the advantages of fine-grained classification over regression for travel demand modelling tasks and reveal new challenges in extending GAT-based architectures to complex transport scenarios. Notably, GATv3 appears well-suited for classification-based transportation applications, such as section control and congestion warning systems, which require a higher degree of differentiation among neighboring links. These findings contribute to refining GNN-based surrogates, offering new possibilities for applying GATv3 and fine-grained classification in broader transportation challenges.
♻ ☆ Vision-Language Models for Acute Tuberculosis Diagnosis: A Multimodal Approach Combining Imaging and Clinical Data
Background: This study introduces a Vision-Language Model (VLM) leveraging SIGLIP and Gemma-3b architectures for automated acute tuberculosis (TB) screening. By integrating chest X-ray images and clinical notes, the model aims to enhance diagnostic accuracy and efficiency, particularly in resource-limited settings. Methods: The VLM combines visual data from chest X-rays with clinical context to generate detailed, context-aware diagnostic reports. The architecture employs SIGLIP for visual encoding and Gemma-3b for decoding, ensuring effective representation of acute TB-specific pathologies and clinical insights. Results: Key acute TB pathologies, including consolidation, cavities, and nodules, were detected with high precision (97percent) and recall (96percent). The model demonstrated strong spatial localization capabilities and robustness in distinguishing TB-positive cases, making it a reliable tool for acute TB diagnosis. Conclusion: The multimodal capability of the VLM reduces reliance on radiologists, providing a scalable solution for acute TB screening. Future work will focus on improving the detection of subtle pathologies and addressing dataset biases to enhance its generalizability and application in diverse global healthcare settings.
comment: 11 pages, 3 figures
ARKit LabelMaker: A New Scale for Indoor 3D Scene Understanding
Neural network performance scales with both model size and data volume, as shown in both language and image processing. This requires scaling-friendly architectures and large datasets. While transformers have been adapted for 3D vision, a `GPT-moment' remains elusive due to limited training data. We introduce ARKit LabelMaker, a large-scale real-world 3D dataset with dense semantic annotation that is more than three times larger than prior largest dataset. Specifically, we extend ARKitScenes with automatically generated dense 3D labels using an extended LabelMaker pipeline, tailored for large-scale pre-training. Training on our dataset improves accuracy across architectures, achieving state-of-the-art 3D semantic segmentation scores on ScanNet and ScanNet200, with notable gains on tail classes. Our code is available at https://labelmaker.org and our dataset at https://huggingface.co/datasets/labelmaker/arkit_labelmaker.
♻ ☆ Polynomial Composition Activations: Unleashing the Dynamics of Large Language Models ICLR 2025
Transformers have found extensive applications across various domains due to the powerful fitting capabilities. This success can be partially attributed to their inherent nonlinearity. Thus, in addition to the ReLU function employed in the original transformer architecture, researchers have explored alternative modules such as GeLU and SwishGLU to enhance nonlinearity and thereby augment representational capacity. In this paper, we propose a novel category of polynomial composition activations (PolyCom), designed to optimize the dynamics of transformers. Theoretically, we provide a comprehensive mathematical analysis of PolyCom, highlighting its enhanced expressivity and efficacy relative to other activation functions. Notably, we demonstrate that networks incorporating PolyCom achieve the $\textbf{optimal approximation rate}$, indicating that PolyCom networks require minimal parameters to approximate general smooth functions in Sobolev spaces. We conduct empirical experiments on the pre-training configurations of large language models (LLMs), including both dense and sparse architectures. By substituting conventional activation functions with PolyCom, we enable LLMs to capture higher-order interactions within the data, thus improving performance metrics in terms of accuracy and convergence rates. Extensive experimental results demonstrate the effectiveness of our method, showing substantial improvements over other activation functions. Code is available at https://github.com/BryceZhuo/PolyCom.
comment: Accepted by ICLR 2025
♻ ☆ A General Adaptive Dual-level Weighting Mechanism for Remote Sensing Pansharpening CVPR
Currently, deep learning-based methods for remote sensing pansharpening have advanced rapidly. However, many existing methods struggle to fully leverage feature heterogeneity and redundancy, thereby limiting their effectiveness. We use the covariance matrix to model the feature heterogeneity and redundancy and propose Correlation-Aware Covariance Weighting (CACW) to adjust them. CACW captures these correlations through the covariance matrix, which is then processed by a nonlinear function to generate weights for adjustment. Building upon CACW, we introduce a general adaptive dual-level weighting mechanism (ADWM) to address these challenges from two key perspectives, enhancing a wide range of existing deep-learning methods. First, Intra-Feature Weighting (IFW) evaluates correlations among channels within each feature to reduce redundancy and enhance unique information. Second, Cross-Feature Weighting (CFW) adjusts contributions across layers based on inter-layer correlations, refining the final output. Extensive experiments demonstrate the superior performance of ADWM compared to recent state-of-the-art (SOTA) methods. Furthermore, we validate the effectiveness of our approach through generality experiments, redundancy visualization, comparison experiments, key variables and complexity analysis, and ablation studies. Our code is available at https://github.com/Jie-1203/ADWM.
comment: This paper is accepted at the CVPR Conference on Computer Vision and Pattern Recognition 2025
♻ ☆ Model-based learning for multi-antenna multi-frequency location-to-channel mapping
Years of study of the propagation channel showed a close relation between a location and the associated communication channel response. The use of a neural network to learn the location-to-channel mapping can therefore be envisioned. The Implicit Neural Representation (INR) literature showed that classical neural architecture are biased towards learning low-frequency content, making the location-to-channel mapping learning a non-trivial problem. Indeed, it is well known that this mapping is a function rapidly varying with the location, on the order of the wavelength. This paper leverages the model-based machine learning paradigm to derive a problem-specific neural architecture from a propagation channel model. The resulting architecture efficiently overcomes the spectral-bias issue. It only learns low-frequency sparse correction terms activating a dictionary of high-frequency components. The proposed architecture is evaluated against classical INR architectures on realistic synthetic data, showing much better accuracy. Its mapping learning performance is explained based on the approximated channel model, highlighting the explainability of the model-based machine learning paradigm.
♻ ☆ Physically Parameterized Differentiable MUSIC for DoA Estimation with Uncalibrated Arrays
Direction of arrival (DoA) estimation is a common sensing problem in radar, sonar, audio, and wireless communication systems. It has gained renewed importance with the advent of the integrated sensing and communication paradigm. To fully exploit the potential of such sensing systems, it is crucial to take into account potential hardware impairments that can negatively impact the obtained performance. This study introduces a joint DoA estimation and hardware impairment learning scheme following a model-based approach. Specifically, a differentiable version of the multiple signal classification (MUSIC) algorithm is derived, allowing efficient learning of the considered impairments. The proposed approach supports both supervised and unsupervised learning strategies, showcasing its practical potential. Simulation results indicate that the proposed method successfully learns significant inaccuracies in both antenna locations and complex gains. Additionally, the proposed method outperforms the classical MUSIC algorithm in the DoA estimation task.
♻ ☆ Precise and Dexterous Robotic Manipulation via Human-in-the-Loop Reinforcement Learning
Reinforcement learning (RL) holds great promise for enabling autonomous acquisition of complex robotic manipulation skills, but realizing this potential in real-world settings has been challenging. We present a human-in-the-loop vision-based RL system that demonstrates impressive performance on a diverse set of dexterous manipulation tasks, including dynamic manipulation, precision assembly, and dual-arm coordination. Our approach integrates demonstrations and human corrections, efficient RL algorithms, and other system-level design choices to learn policies that achieve near-perfect success rates and fast cycle times within just 1 to 2.5 hours of training. We show that our method significantly outperforms imitation learning baselines and prior RL approaches, with an average 2x improvement in success rate and 1.8x faster execution. Through extensive experiments and analysis, we provide insights into the effectiveness of our approach, demonstrating how it learns robust, adaptive policies for both reactive and predictive control strategies. Our results suggest that RL can indeed learn a wide range of complex vision-based manipulation policies directly in the real world within practical training times. We hope this work will inspire a new generation of learned robotic manipulation techniques, benefiting both industrial applications and research advancements. Videos and code are available at our project website https://hil-serl.github.io/.
♻ ☆ SERL: A Software Suite for Sample-Efficient Robotic Reinforcement Learning ICRA 2024
In recent years, significant progress has been made in the field of robotic reinforcement learning (RL), enabling methods that handle complex image observations, train in the real world, and incorporate auxiliary data, such as demonstrations and prior experience. However, despite these advances, robotic RL remains hard to use. It is acknowledged among practitioners that the particular implementation details of these algorithms are often just as important (if not more so) for performance as the choice of algorithm. We posit that a significant challenge to widespread adoption of robotic RL, as well as further development of robotic RL methods, is the comparative inaccessibility of such methods. To address this challenge, we developed a carefully implemented library containing a sample efficient off-policy deep RL method, together with methods for computing rewards and resetting the environment, a high-quality controller for a widely-adopted robot, and a number of challenging example tasks. We provide this library as a resource for the community, describe its design choices, and present experimental results. Perhaps surprisingly, we find that our implementation can achieve very efficient learning, acquiring policies for PCB board assembly, cable routing, and object relocation between 25 to 50 minutes of training per policy on average, improving over state-of-the-art results reported for similar tasks in the literature. These policies achieve perfect or near-perfect success rates, extreme robustness even under perturbations, and exhibit emergent recovery and correction behaviors. We hope that these promising results and our high-quality open-source implementation will provide a tool for the robotics community to facilitate further developments in robotic RL. Our code, documentation, and videos can be found at https://serl-robot.github.io/
comment: ICRA 2024
♻ ☆ TAET: Two-Stage Adversarial Equalization Training on Long-Tailed Distributions CVPR2025
Adversarial robustness is a critical challenge in deploying deep neural networks for real-world applications. While adversarial training is a widely recognized defense strategy, most existing studies focus on balanced datasets, overlooking the prevalence of long-tailed distributions in real-world data, which significantly complicates robustness. This paper provides a comprehensive analysis of adversarial training under long-tailed distributions and identifies limitations in the current state-of-the-art method, AT-BSL, in achieving robust performance under such conditions. To address these challenges, we propose a novel training framework, TAET, which integrates an initial stabilization phase followed by a stratified equalization adversarial training phase. Additionally, prior work on long-tailed robustness has largely ignored the crucial evaluation metric of balanced accuracy. To bridge this gap, we introduce the concept of balanced robustness, a comprehensive metric tailored for assessing robustness under long-tailed distributions. Extensive experiments demonstrate that our method surpasses existing advanced defenses, achieving significant improvements in both memory and computational efficiency. This work represents a substantial advancement in addressing robustness challenges in real-world applications. Our code is available at: https://github.com/BuhuiOK/TAET-Two-Stage-Adversarial-Equalization-Training-on-Long-Tailed-Distributions.
comment: Text: 8 pages of main content, 5 pages of appendices have been accepted by CVPR2025
♻ ☆ GC-Fed: Gradient Centralized Federated Learning with Partial Client Participation
Federated Learning (FL) enables privacy-preserving multi-source information fusion (MSIF) but is challenged by client drift in highly heterogeneous data settings. Many existing drift-mitigation strategies rely on reference-based techniques--such as gradient adjustments or proximal loss--that use historical snapshots (e.g., past gradients or previous global models) as reference points. When only a subset of clients participates in each training round, these historical references may not accurately capture the overall data distribution, leading to unstable training. In contrast, our proposed Gradient Centralized Federated Learning (GC-Fed) employs a hyperplane as a historically independent reference point to guide local training and enhance inter-client alignment. GC-Fed comprises two complementary components: Local GC, which centralizes gradients during local training, and Global GC, which centralizes updates during server aggregation. In our hybrid design, Local GC is applied to feature-extraction layers to harmonize client contributions, while Global GC refines classifier layers to stabilize round-wise performance. Theoretical analysis and extensive experiments on benchmark FL tasks demonstrate that GC-Fed effectively mitigates client drift and achieves up to a 20% improvement in accuracy under heterogeneous and partial participation conditions.
♻ ☆ Label Unbalance in High-frequency Trading
In financial trading, return prediction is one of the foundation for a successful trading system. By the fast development of the deep learning in various areas such as graphical processing, natural language, it has also demonstrate significant edge in handling with financial data. While the success of the deep learning relies on huge amount of labeled sample, labeling each time/event as profitable or unprofitable, under the transaction cost, especially in the high-frequency trading world, suffers from serious label imbalance issue.In this paper, we adopts rigurious end-to-end deep learning framework with comprehensive label imbalance adjustment methods and succeed in predicting in high-frequency return in the Chinese future market. The code for our method is publicly available at https://github.com/RS2002/Label-Unbalance-in-High-Frequency-Trading .
comment: Technical Report
♻ ☆ An Adaptive Orthogonal Convolution Scheme for Efficient and Flexible CNN Architectures
Orthogonal convolutional layers are the workhorse of multiple areas in machine learning, such as adversarial robustness, normalizing flows, GANs, and Lipschitzconstrained models. Their ability to preserve norms and ensure stable gradient propagation makes them valuable for a large range of problems. Despite their promise, the deployment of orthogonal convolution in large-scale applications is a significant challenge due to computational overhead and limited support for modern features like strides, dilations, group convolutions, and transposed convolutions.In this paper, we introduce AOC (Adaptative Orthogonal Convolution), a scalable method for constructing orthogonal convolutions, effectively overcoming these limitations. This advancement unlocks the construction of architectures that were previously considered impractical. We demonstrate through our experiments that our method produces expressive models that become increasingly efficient as they scale. To foster further advancement, we provide an open-source library implementing this method, available at https://github.com/thib-s/orthogonium.
♻ ☆ I2AM: Interpreting Image-to-Image Latent Diffusion Models via Bi-Attribution Maps
Large-scale diffusion models have made significant advances in image generation, particularly through cross-attention mechanisms. While cross-attention has been well-studied in text-to-image tasks, their interpretability in image-to-image (I2I) diffusion models remains underexplored. This paper introduces Image-to-Image Attribution Maps (I2AM), a method that enhances the interpretability of I2I models by visualizing bidirectional attribution maps, from the reference image to the generated image and vice versa. I2AM aggregates cross-attention scores across time steps, attention heads, and layers, offering insights into how critical features are transferred between images. We demonstrate the effectiveness of I2AM across object detection, inpainting, and super-resolution tasks. Our results demonstrate that I2AM successfully identifies key regions responsible for generating the output, even in complex scenes. Additionally, we introduce the Inpainting Mask Attention Consistency Score (IMACS) as a novel evaluation metric to assess the alignment between attribution maps and inpainting masks, which correlates strongly with existing performance metrics. Through extensive experiments, we show that I2AM enables model debugging and refinement, providing practical tools for improving I2I model's performance and interpretability.
comment: 23 pages
♻ ☆ LICORICE: Label-Efficient Concept-Based Interpretable Reinforcement Learning ICLR 2025
Recent advances in reinforcement learning (RL) have predominantly leveraged neural network policies for decision-making, yet these models often lack interpretability, posing challenges for stakeholder comprehension and trust. Concept bottleneck models offer an interpretable alternative by integrating human-understandable concepts into policies. However, prior work assumes that concept annotations are readily available during training. For RL, this requirement poses a significant limitation: it necessitates continuous real-time concept annotation, which either places an impractical burden on human annotators or incurs substantial costs in API queries and inference time when employing automated labeling methods. To overcome this limitation, we introduce a novel training scheme that enables RL agents to efficiently learn a concept-based policy by only querying annotators to label a small set of data. Our algorithm, LICORICE, involves three main contributions: interleaving concept learning and RL training, using an ensemble to actively select informative data points for labeling, and decorrelating the concept data. We show how LICORICE reduces human labeling efforts to 500 or fewer concept labels in three environments, and 5000 or fewer in two more complex environments, all at no cost to performance. We also explore the use of VLMs as automated concept annotators, finding them effective in some cases but imperfect in others. Our work significantly reduces the annotation burden for interpretable RL, making it more practical for real-world applications that necessitate transparency.
comment: Accepted at ICLR 2025
♻ ☆ A Diagnosis and Treatment of Liver Diseases: Integrating Batch Processing, Rule-Based Event Detection and Explainable Artificial Intelligence
Liver diseases pose a significant global health burden, impacting many individuals and having substantial economic and social consequences. Rising liver problems are considered a fatal disease in many countries, such as Egypt and Moldova. This study aims to develop a diagnosis and treatment model for liver disease using Basic Formal Ontology (BFO), Patient Clinical Data (PCD) ontology, and detection rules derived from a decision tree algorithm. For the development of the ontology, the National Viral Hepatitis Control Program (NVHCP) guidelines were used, which made the ontology more accurate and reliable. The Apache Jena framework uses batch processing to detect events based on these rules. Based on the event detected, queries can be directly processed using SPARQL. We convert these Decision Tree (DT) and medical guidelines-based rules into Semantic Web Rule Language (SWRL) to operationalize the ontology. Using this SWRL in the ontology to predict different types of liver disease with the help of the Pellet and Drools inference engines in Protege Tools, a total of 615 records were taken from different liver diseases. After inferring the rules, the result can be generated for the patient according to the rules, and other patient-related details, along with different precautionary suggestions, can be obtained based on these results. These rules can make suggestions more accurate with the help of Explainable Artificial Intelligence (XAI) with open API-based suggestions. When the patient has prescribed a medical test, the model accommodates this result using optical character recognition (OCR), and the same process applies when the patient has prescribed a further medical suggestion according to the test report. These models combine to form a comprehensive Decision Support System (DSS) for the diagnosis of liver disease.
♻ ☆ Preserve or Modify? Context-Aware Evaluation for Balancing Preservation and Modification in Text-Guided Image Editing CVPR 2025
The development of vision-language and generative models has significantly advanced text-guided image editing, which seeks the preservation of core elements in the source image while implementing modifications based on the target text. However, existing metrics have a context-blindness problem, indiscriminately applying the same evaluation criteria on completely different pairs of source image and target text, biasing towards either modification or preservation. Directional CLIP similarity, the only metric that considers both source image and target text, is also biased towards modification aspects and attends to irrelevant editing regions of the image. We propose AugCLIP, a context-aware metric that adaptively coordinates preservation and modification aspects, depending on the specific context of a given source image and target text. This is done by deriving the CLIP representation of an ideally edited image, that preserves the source image with necessary modifications to align with target text. More specifically, using a multi-modal large language model, AugCLIP augments the textual descriptions of the source and target, then calculates a modification vector through a hyperplane that separates source and target attributes in CLIP space. Extensive experiments on five benchmark datasets, encompassing a diverse range of editing scenarios, show that AugCLIP aligns remarkably well with human evaluation standards, outperforming existing metrics. The code is available at https://github.com/augclip/augclip_eval.
comment: accepted to CVPR 2025
♻ ☆ A Comprehensive Survey on Process-Oriented Automatic Text Summarization with Exploration of LLM-Based Methods
Automatic Text Summarization (ATS), utilizing Natural Language Processing (NLP) algorithms, aims to create concise and accurate summaries, thereby significantly reducing the human effort required in processing large volumes of text. ATS has drawn considerable interest in both academic and industrial circles. Many studies have been conducted in the past to survey ATS methods; however, they generally lack practicality for real-world implementations, as they often categorize previous methods from a theoretical standpoint. Moreover, the advent of Large Language Models (LLMs) has altered conventional ATS methods. In this survey, we aim to 1) provide a comprehensive overview of ATS from a ``Process-Oriented Schema'' perspective, which is best aligned with real-world implementations; 2) comprehensively review the latest LLM-based ATS works; and 3) deliver an up-to-date survey of ATS, bridging the two-year gap in the literature. To the best of our knowledge, this is the first survey to specifically investigate LLM-based ATS methods.
♻ ☆ Diffusion Attribution Score: Evaluating Training Data Influence in Diffusion Model
As diffusion models become increasingly popular, the misuse of copyrighted and private images has emerged as a major concern. One promising solution to mitigate this issue is identifying the contribution of specific training samples in generative models, a process known as data attribution. Existing data attribution methods for diffusion models typically quantify the contribution of a training sample by evaluating the change in diffusion loss when the sample is included or excluded from the training process. However, we argue that the direct usage of diffusion loss cannot represent such a contribution accurately due to the calculation of diffusion loss. Specifically, these approaches measure the divergence between predicted and ground truth distributions, which leads to an indirect comparison between the predicted distributions and cannot represent the variances between model behaviors. To address these issues, we aim to measure the direct comparison between predicted distributions with an attribution score to analyse the training sample importance, which is achieved by Diffusion Attribution Score (\textit{DAS}). Underpinned by rigorous theoretical analysis, we elucidate the effectiveness of DAS. Additionally, we explore strategies to accelerate DAS calculations, facilitating its application to large-scale diffusion models. Our extensive experiments across various datasets and diffusion models demonstrate that DAS significantly surpasses previous benchmarks in terms of the linear data-modelling score, establishing new state-of-the-art performance. Code is available at \hyperlink{here}{https://github.com/Jinxu-Lin/DAS}.
♻ ☆ Mirror Descent and Novel Exponentiated Gradient Algorithms Using Trace-Form Entropies and Deformed Logarithms
In this paper we propose and investigate a wide class of Mirror Descent updates (MD) and associated novel Generalized Exponentiated Gradient (GEG) algorithms by exploiting various trace-form entropies and associated deformed logarithms and their inverses - deformed (generalized) exponential functions. The proposed algorithms can be considered as extension of entropic MD and generalization of multiplicative updates. In the literature, there exist nowadays over fifty mathematically well defined generalized entropies, so impossible to exploit all of them in one research paper. So we focus on a few selected most popular entropies and associated logarithms like the Tsallis, Kaniadakis and Sharma-Taneja-Mittal and some of their extension like Tempesta or Kaniadakis-Scarfone entropies. The shape and properties of the deformed logarithms and their inverses are tuned by one or more hyperparameters. By learning these hyperparameters, we can adapt to distribution of training data, which can be designed to the specific geometry of the optimization problem, leading to potentially faster convergence and better performance. The using generalized entropies and associated deformed logarithms in the Bregman divergence, used as a regularization term, provides some new insight into exponentiated gradient descent updates.
comment: 22 pages, 9 figures
♻ ☆ A Retrospective Systematic Study on Hierarchical Sparse Query Transformer-assisted Ultrasound Screening for Early Hepatocellular Carcinoma
Hepatocellular carcinoma (HCC), ranking as the third leading cause of cancer-related mortality worldwide, demands urgent improvements in early detection to enhance patient survival. While ultrasound remains the preferred screening modality due to its cost-effectiveness and real-time capabilities, its sensitivity (59%-78%) heavily relies on radiologists' expertise, leading to inconsistent diagnostic outcomes and operational inefficiencies. Recent advancements in AI technology offer promising solutions to bridge this gap. This study introduces the Hierarchical Sparse Query Transformer (HSQformer), a novel hybrid architecture that synergizes CNNs' local feature extraction with Vision Transformers' global contextual awareness through latent space representation and sparse learning. By dynamically activating task-specific experts via a Mixture-of-Experts (MoE) framework, HSQformer achieves hierarchical feature integration without structural redundancy. Evaluated across three clinical scenarios: single-center, multi-center, and high-risk patient cohorts, HSQformer outperforms state-of-the-art models (e.g., 95.38% AUC in multi-center testing) and matches senior radiologists' diagnostic accuracy while significantly surpassing junior counterparts. These results highlight the potential of AI-assisted tools to standardize HCC screening, reduce dependency on human expertise, and improve early diagnosis rates. The full code is available at https://github.com/Asunatan/HSQformer.
♻ ☆ SAUCE: Selective Concept Unlearning in Vision-Language Models with Sparse Autoencoders
Unlearning methods for vision-language models (VLMs) have primarily adapted techniques from large language models (LLMs), relying on weight updates that demand extensive annotated forget sets. Moreover, these methods perform unlearning at a coarse granularity, often leading to excessive forgetting and reduced model utility. To address this issue, we introduce SAUCE, a novel method that leverages sparse autoencoders (SAEs) for fine-grained and selective concept unlearning in VLMs. Briefly, SAUCE first trains SAEs to capture high-dimensional, semantically rich sparse features. It then identifies the features most relevant to the target concept for unlearning. During inference, it selectively modifies these features to suppress specific concepts while preserving unrelated information. We evaluate SAUCE on two distinct VLMs, LLaVA-v1.5-7B and LLaMA-3.2-11B-Vision-Instruct, across two types of tasks: concrete concept unlearning (objects and sports scenes) and abstract concept unlearning (emotions, colors, and materials), encompassing a total of 60 concepts. Extensive experiments demonstrate that SAUCE outperforms state-of-the-art methods by 18.04% in unlearning quality while maintaining comparable model utility. Furthermore, we investigate SAUCE's robustness against widely used adversarial attacks, its transferability across models, and its scalability in handling multiple simultaneous unlearning requests. Our findings establish SAUCE as an effective and scalable solution for selective concept unlearning in VLMs.
comment: More comparative experiments are needed
♻ ☆ Mobile Edge Intelligence for Large Language Models: A Contemporary Survey
On-device large language models (LLMs), referring to running LLMs on edge devices, have raised considerable interest since they are more cost-effective, latency-efficient, and privacy-preserving compared with the cloud paradigm. Nonetheless, the performance of on-device LLMs is intrinsically constrained by resource limitations on edge devices. Sitting between cloud and on-device AI, mobile edge intelligence (MEI) presents a viable solution by provisioning AI capabilities at the edge of mobile networks, enabling end users to offload heavy AI computation to capable edge servers nearby. This article provides a contemporary survey on harnessing MEI for LLMs. We begin by illustrating several killer applications to demonstrate the urgent need for deploying LLMs at the network edge. Next, we present the preliminaries of LLMs and MEI, followed by resource-efficient LLM techniques. We then present an architectural overview of MEI for LLMs (MEI4LLM), outlining its core components and how it supports the deployment of LLMs. Subsequently, we delve into various aspects of MEI4LLM, extensively covering edge LLM caching and delivery, edge LLM training, and edge LLM inference. Finally, we identify future research opportunities. We hope this article inspires researchers in the field to leverage mobile edge computing to facilitate LLM deployment, thereby unleashing the potential of LLMs across various privacy- and delay-sensitive applications.
comment: 42 pages, 17 figures. This paper has been accepted by IEEE Communications Surveys & Tutorials
♻ ☆ WritingBench: A Comprehensive Benchmark for Generative Writing
Recent advancements in large language models (LLMs) have significantly enhanced text generation capabilities, yet evaluating their performance in generative writing remains a challenge. Existing benchmarks primarily focus on generic text generation or limited in writing tasks, failing to capture the diverse requirements of high-quality written contents across various domains. To bridge this gap, we present WritingBench, a comprehensive benchmark designed to evaluate LLMs across 6 core writing domains and 100 subdomains, encompassing creative, persuasive, informative, and technical writing. We further propose a query-dependent evaluation framework that empowers LLMs to dynamically generate instance-specific assessment criteria. This framework is complemented by a fine-tuned critic model for criteria-aware scoring, enabling evaluations in style, format and length. The framework's validity is further demonstrated by its data curation capability, which enables 7B-parameter models to approach state-of-the-art (SOTA) performance. We open-source the benchmark, along with evaluation tools and modular framework components, to advance the development of LLMs in writing.
♻ ☆ Automatic Curriculum Expert Iteration for Reliable LLM Reasoning
Hallucinations (i.e., generating plausible but inaccurate content) and laziness (i.e. excessive refusals or defaulting to "I don't know") persist as major challenges in LLM reasoning. Current efforts to reduce hallucinations primarily focus on factual errors in knowledge-grounded tasks, often neglecting hallucinations related to faulty reasoning. Meanwhile, some approaches render LLMs overly conservative, limiting their problem-solving capabilities. To mitigate hallucination and laziness in reasoning tasks, we propose Automatic Curriculum Expert Iteration (Auto-CEI) to enhance LLM reasoning and align responses to the model's capabilities--assertively answering within its limits and declining when tasks exceed them. In our method, Expert Iteration explores the reasoning trajectories near the LLM policy, guiding incorrect paths back on track to reduce compounding errors and improve robustness; it also promotes appropriate "I don't know" responses after sufficient reasoning attempts. The curriculum automatically adjusts rewards, incentivizing extended reasoning before acknowledging incapability, thereby pushing the limits of LLM reasoning and aligning its behaviour with these limits. We compare Auto-CEI with various SOTA baselines across logical reasoning, mathematics, and planning tasks, where Auto-CEI achieves superior alignment by effectively balancing assertiveness and conservativeness. The code is available at https://github.com/SalesforceAIResearch/Auto-CEI .
comment: 20 pages
♻ ☆ CLIMB: Data Foundations for Large Scale Multimodal Clinical Foundation Models
Recent advances in clinical AI have enabled remarkable progress across many clinical domains. However, existing benchmarks and models are primarily limited to a small set of modalities and tasks, which hinders the development of large-scale multimodal methods that can make holistic assessments of patient health and well-being. To bridge this gap, we introduce Clinical Large-Scale Integrative Multimodal Benchmark (CLIMB), a comprehensive clinical benchmark unifying diverse clinical data across imaging, language, temporal, and graph modalities. CLIMB comprises 4.51 million patient samples totaling 19.01 terabytes distributed across 2D imaging, 3D video, time series, graphs, and multimodal data. Through extensive empirical evaluation, we demonstrate that multitask pretraining significantly improves performance on understudied domains, achieving up to 29% improvement in ultrasound and 23% in ECG analysis over single-task learning. Pretraining on CLIMB also effectively improves models' generalization capability to new tasks, and strong unimodal encoder performance translates well to multimodal performance when paired with task-appropriate fusion strategies. Our findings provide a foundation for new architecture designs and pretraining strategies to advance clinical AI research. Code is released at https://github.com/DDVD233/climb.
♻ ☆ Aligning Text to Image in Diffusion Models is Easier Than You Think
While recent advancements in generative modeling have significantly improved text-image alignment, some residual misalignment between text and image representations still remains. Although many approaches have attempted to address this issue by fine-tuning models using various reward models, etc., we revisit the challenge from the perspective of representation alignment-an approach that has gained popularity with the success of REPresentation Alignment (REPA). We first argue that conventional text-to-image (T2I) diffusion models, typically trained on paired image and text data (i.e., positive pairs) by minimizing score matching or flow matching losses, is suboptimal from the standpoint of representation alignment. Instead, a better alignment can be achieved through contrastive learning that leverages both positive and negative pairs. To achieve this efficiently even with pretrained models, we introduce a lightweight contrastive fine tuning strategy called SoftREPA that uses soft text tokens. This approach improves alignment with minimal computational overhead by adding fewer than 1M trainable parameters to the pretrained model. Our theoretical analysis demonstrates that our method explicitly increases the mutual information between text and image representations, leading to enhanced semantic consistency. Experimental results across text-to-image generation and text-guided image editing tasks validate the effectiveness of our approach in improving the semantic consistency of T2I generative models.
♻ ☆ Diffusion-Driven Semantic Communication for Generative Models with Bandwidth Constraints
Diffusion models have been extensively utilized in AI-generated content (AIGC) in recent years, thanks to the superior generation capabilities. Combining with semantic communications, diffusion models are used for tasks such as denoising, data reconstruction, and content generation. However, existing diffusion-based generative models do not consider the stringent bandwidth limitation, which limits its application in wireless communication. This paper introduces a diffusion-driven semantic communication framework with advanced VAE-based compression for bandwidth-constrained generative model. Our designed architecture utilizes the diffusion model, where the signal transmission process through the wireless channel acts as the forward process in diffusion. To reduce bandwidth requirements, we incorporate a downsampling module and a paired upsampling module based on a variational auto-encoder with reparameterization at the receiver to ensure that the recovered features conform to the Gaussian distribution. Furthermore, we derive the loss function for our proposed system and evaluate its performance through comprehensive experiments. Our experimental results demonstrate significant improvements in pixel-level metrics such as peak signal to noise ratio (PSNR) and semantic metrics like learned perceptual image patch similarity (LPIPS). These enhancements are more profound regarding the compression rates and SNR compared to deep joint source-channel coding (DJSCC).
comment: accepted to IEEE for possible publication
♻ ☆ Image is All You Need to Empower Large-scale Diffusion Models for In-Domain Generation CVPR2025
In-domain generation aims to perform a variety of tasks within a specific domain, such as unconditional generation, text-to-image, image editing, 3D generation, and more. Early research typically required training specialized generators for each unique task and domain, often relying on fully-labeled data. Motivated by the powerful generative capabilities and broad applications of diffusion models, we are driven to explore leveraging label-free data to empower these models for in-domain generation. Fine-tuning a pre-trained generative model on domain data is an intuitive but challenging way and often requires complex manual hyper-parameter adjustments since the limited diversity of the training data can easily disrupt the model's original generative capabilities. To address this challenge, we propose a guidance-decoupled prior preservation mechanism to achieve high generative quality and controllability by image-only data, inspired by preserving the pre-trained model from a denoising guidance perspective. We decouple domain-related guidance from the conditional guidance used in classifier-free guidance mechanisms to preserve open-world control guidance and unconditional guidance from the pre-trained model. We further propose an efficient domain knowledge learning technique to train an additional text-free UNet copy to predict domain guidance. Besides, we theoretically illustrate a multi-guidance in-domain generation pipeline for a variety of generative tasks, leveraging multiple guidances from distinct diffusion models and conditions. Extensive experiments demonstrate the superiority of our method in domain-specific synthesis and its compatibility with various diffusion-based control methods and applications.
comment: Accepted to CVPR2025. Code is available at https://github.com/PRIV-Creation/In-domain-Generation-Diffusion
♻ ☆ A Survey of the Self Supervised Learning Mechanisms for Vision Transformers
Deep supervised learning models require high volume of labeled data to attain sufficiently good results. Although, the practice of gathering and annotating such big data is costly and laborious. Recently, the application of self supervised learning (SSL) in vision tasks has gained significant attention. The intuition behind SSL is to exploit the synchronous relationships within the data as a form of self-supervision, which can be versatile. In the current big data era, most of the data is unlabeled, and the success of SSL thus relies in finding ways to utilize this vast amount of unlabeled data available. Thus it is better for deep learning algorithms to reduce reliance on human supervision and instead focus on self-supervision based on the inherent relationships within the data. With the advent of ViTs, which have achieved remarkable results in computer vision, it is crucial to explore and understand the various SSL mechanisms employed for training these models specifically in scenarios where there is limited labelled data available. In this survey, we develop a comprehensive taxonomy of systematically classifying the SSL techniques based upon their representations and pre-training tasks being applied. Additionally, we discuss the motivations behind SSL, review popular pre-training tasks, and highlight the challenges and advancements in this field. Furthermore, we present a comparative analysis of different SSL methods, evaluate their strengths and limitations, and identify potential avenues for future research.
comment: 34 Pages, 5 Figures, 7 Tables
♻ ☆ LazyDiT: Lazy Learning for the Acceleration of Diffusion Transformers AAAI 2025
Diffusion Transformers have emerged as the preeminent models for a wide array of generative tasks, demonstrating superior performance and efficacy across various applications. The promising results come at the cost of slow inference, as each denoising step requires running the whole transformer model with a large amount of parameters. In this paper, we show that performing the full computation of the model at each diffusion step is unnecessary, as some computations can be skipped by lazily reusing the results of previous steps. Furthermore, we show that the lower bound of similarity between outputs at consecutive steps is notably high, and this similarity can be linearly approximated using the inputs. To verify our demonstrations, we propose the \textbf{LazyDiT}, a lazy learning framework that efficiently leverages cached results from earlier steps to skip redundant computations. Specifically, we incorporate lazy learning layers into the model, effectively trained to maximize laziness, enabling dynamic skipping of redundant computations. Experimental results show that LazyDiT outperforms the DDIM sampler across multiple diffusion transformer models at various resolutions. Furthermore, we implement our method on mobile devices, achieving better performance than DDIM with similar latency. Code: https://github.com/shawnricecake/lazydit
comment: Accepted by AAAI 2025
♻ ☆ SSTP: Efficient Sample Selection for Trajectory Prediction
Trajectory prediction is a core task in autonomous driving. However, training advanced trajectory prediction models on large-scale datasets is both time-consuming and computationally expensive. In addition, the imbalanced distribution of driving scenarios often biases models toward data-rich cases, limiting performance in safety-critical, data-scarce conditions. To address these challenges, we propose the Sample Selection for Trajectory Prediction (SSTP) framework, which constructs a compact yet balanced dataset for trajectory prediction. SSTP consists of two main stages (1) Extraction, in which a pretrained trajectory prediction model computes gradient vectors for each sample to capture their influence on parameter updates; and (2) Selection, where a submodular function is applied to greedily choose a representative subset that covers diverse driving scenarios. This approach significantly reduces the dataset size and mitigates scenario imbalance, without sacrificing prediction accuracy and even improving in high-density cases. We evaluate our proposed SSTP on the Argoverse 1 and Argoverse 2 benchmarks using a wide range of recent state-of-the-art models. Our experiments demonstrate that SSTP achieves comparable performance to full-dataset training using only half the data while delivering substantial improvements in high-density traffic scenes and significantly reducing training time. Importantly, SSTP exhibits strong generalization and robustness, and the selected subset is model-agnostic, offering a broadly applicable solution.
♻ ☆ Data Mixing Laws: Optimizing Data Mixtures by Predicting Language Modeling Performance ICLR2025
Pretraining data of large language models composes multiple domains (e.g., web texts, academic papers, codes), whose mixture proportions crucially impact the competence of outcome models. While existing endeavors rely on heuristics or qualitative strategies to tune the proportions, we discover the quantitative predictability of model performance regarding the mixture proportions in function forms, which we refer to as the data mixing laws. Fitting such functions on sample mixtures unveils model performance on unseen mixtures before actual runs, thus guiding the selection of an ideal data mixture. Furthermore, we propose nested use of the scaling laws of training steps, model sizes, and our data mixing law to enable predicting the performance of large models trained on massive data under various mixtures with only small-scale training. Moreover, experimental results verify that our method effectively optimizes the training mixture of a 1B model trained for 100B tokens in RedPajama, reaching a performance comparable to the one trained for 48% more steps on the default mixture. Extending the application of data mixing laws to continual training accurately predicts the critical mixture proportion that avoids catastrophic forgetting and outlooks the potential for dynamic data schedules
comment: accepted by ICLR2025, camera ready version
♻ ☆ KDSelector: A Knowledge-Enhanced and Data-Efficient Model Selector Learning Framework for Time Series Anomaly Detection SIGMOD 2025
Model selection has been raised as an essential problem in the area of time series anomaly detection (TSAD), because there is no single best TSAD model for the highly heterogeneous time series in real-world applications. However, despite the success of existing model selection solutions that train a classification model (especially neural network, NN) using historical data as a selector to predict the correct TSAD model for each series, the NN-based selector learning methods used by existing solutions do not make full use of the knowledge in the historical data and require iterating over all training samples, which limits the accuracy and training speed of the selector. To address these limitations, we propose KDSelector, a novel knowledge-enhanced and data-efficient framework for learning the NN-based TSAD model selector, of which three key components are specifically designed to integrate available knowledge into the selector and dynamically prune less important and redundant samples during the learning. We develop a TSAD model selection system with KDSelector as the internal, to demonstrate how users improve the accuracy and training speed of their selectors by using KDSelector as a plug-and-play module. Our demonstration video is hosted at https://youtu.be/2uqupDWvTF0.
comment: This paper has been accepted by SIGMOD 2025
♻ ☆ KunlunBaize: LLM with Multi-Scale Convolution and Multi-Token Prediction Under TransformerX Framework
Large language models have demonstrated remarkable performance across various tasks, yet they face challenges such as low computational efficiency, gradient vanishing, and difficulties in capturing complex feature interactions. To address these limitations, a novel framework has been proposed. This framework incorporates a learnable dense residual skip connection mechanism, a TransformerX module a transformer based component integrating multiscale convolution and adaptive activation functions and a multitoken prediction interaction module. The learnable dense residual connections enhance information flow and feature capture across layers. Within the TransformerX module, large convolutional kernels aggregate semantic information from extensive text segments, while smaller convolutions focus on local word order and syntactic structures. The adaptive activation function dynamically adjusts its parameters based on the semantic features of the input text, improving the model's ability to handle diverse semantic expressions and complex relationships. The multitoken prediction module boosts data utilization and accelerates inference by predicting multiple future tokens. These components significantly enhance the performance and efficiency of large language models.
comment: 21 pages
♻ ☆ Scalable Oversight for Superhuman AI via Recursive Self-Critiquing
As AI capabilities increasingly surpass human proficiency in complex tasks, current alignment techniques including SFT and RLHF face fundamental challenges in ensuring reliable oversight. These methods rely on direct human assessment and become untenable when AI outputs exceed human cognitive thresholds. In response to this challenge, we explore two hypotheses: (1) critique of critique can be easier than critique itself, extending the widely-accepted observation that verification is easier than generation to the critique domain, as critique itself is a specialized form of generation; (2) this difficulty relationship is recursively held, suggesting that when direct evaluation is infeasible, performing high-order critiques (e.g., critique of critique of critique) offers a more tractable supervision pathway. To examine these hypotheses, we perform Human-Human, Human-AI, and AI-AI experiments across multiple tasks. Our results demonstrate encouraging evidence supporting these hypotheses and suggest that recursive self-critiquing is a promising direction for scalable oversight.
♻ ☆ Moto: Latent Motion Token as the Bridging Language for Learning Robot Manipulation from Videos
Recent developments in Large Language Models pre-trained on extensive corpora have shown significant success in various natural language processing tasks with minimal fine-tuning. This success offers new promise for robotics, which has long been constrained by the high cost of action-labeled data. We ask: given the abundant video data containing interaction-related knowledge available as a rich "corpus", can a similar generative pre-training approach be effectively applied to enhance robot learning? The key challenge is to identify an effective representation for autoregressive pre-training that benefits robot manipulation tasks. Inspired by the way humans learn new skills through observing dynamic environments, we propose that effective robotic learning should emphasize motion-related knowledge, which is closely tied to low-level actions and is hardware-agnostic, facilitating the transfer of learned motions to actual robot actions. To this end, we introduce Moto, which converts video content into latent Motion Token sequences by a Latent Motion Tokenizer, learning a bridging "language" of motion from videos in an unsupervised manner. We pre-train Moto-GPT through motion token autoregression, enabling it to capture diverse visual motion knowledge. After pre-training, Moto-GPT demonstrates the promising ability to produce semantically interpretable motion tokens, predict plausible motion trajectories, and assess trajectory rationality through output likelihood. To transfer learned motion priors to real robot actions, we implement a co-fine-tuning strategy that seamlessly bridges latent motion token prediction and real robot control. Extensive experiments show that the fine-tuned Moto-GPT exhibits superior robustness and efficiency on robot manipulation benchmarks, underscoring its effectiveness in transferring knowledge from video data to downstream visual manipulation tasks.
comment: Project released at: https://chenyi99.github.io/moto/ Update: Added content related to real-world robot experiments and learning from human videos
♻ ☆ CREMA: Generalizable and Efficient Video-Language Reasoning via Multimodal Modular Fusion ICLR 2025
Despite impressive advancements in recent multimodal reasoning approaches, they are still limited in flexibility and efficiency, as these models typically process only a few fixed modality inputs and require updates to numerous parameters. This paper tackles these critical challenges and proposes CREMA, a generalizable, highly efficient, and modular modality-fusion framework that can incorporate any new modality to enhance video reasoning. We first augment multiple informative modalities (such as optical flow, 3D point cloud, audio, thermal heatmap, and touch map) from given videos without extra human annotation by leveraging sensors or existing pre-trained models. Next, we introduce a query transformer with multiple parameter-efficient modules associated with each accessible modality. It projects diverse modality features to the LLM token embedding space, allowing the model to integrate different data types for response generation. Furthermore, we propose a novel progressive multimodal fusion design supported by a lightweight fusion module and modality-sequential training strategy. It helps compress information across various assisting modalities, maintaining computational efficiency in the LLM while improving performance. We validate our method on 7 video-language reasoning tasks assisted by diverse modalities, including conventional VideoQA and Video-Audio/3D/Touch/Thermal QA, and achieve better/equivalent performance against strong multimodal LLMs, including OneLLM, BLIP-2, and SeViLA while reducing over 90% trainable parameters. We provide extensive analyses of CREMA, including the impact of each modality on reasoning domains, the design of the fusion module, and example visualizations.
comment: ICLR 2025; first two authors contributed equally. Project page: https://CREMA-VideoLLM.github.io/
♻ ☆ VideoGen-of-Thought: Step-by-step generating multi-shot video with minimal manual intervention
Current video generation models excel at short clips but fail to produce cohesive multi-shot narratives due to disjointed visual dynamics and fractured storylines. Existing solutions either rely on extensive manual scripting/editing or prioritize single-shot fidelity over cross-scene continuity, limiting their practicality for movie-like content. We introduce VideoGen-of-Thought (VGoT), a step-by-step framework that automates multi-shot video synthesis from a single sentence by systematically addressing three core challenges: (1) Narrative Fragmentation: Existing methods lack structured storytelling. We propose dynamic storyline modeling, which first converts the user prompt into concise shot descriptions, then elaborates them into detailed, cinematic specifications across five domains (character dynamics, background continuity, relationship evolution, camera movements, HDR lighting), ensuring logical narrative progression with self-validation. (2) Visual Inconsistency: Existing approaches struggle with maintaining visual consistency across shots. Our identity-aware cross-shot propagation generates identity-preserving portrait (IPP) tokens that maintain character fidelity while allowing trait variations (expressions, aging) dictated by the storyline. (3) Transition Artifacts: Abrupt shot changes disrupt immersion. Our adjacent latent transition mechanisms implement boundary-aware reset strategies that process adjacent shots' features at transition points, enabling seamless visual flow while preserving narrative continuity. VGoT generates multi-shot videos that outperform state-of-the-art baselines by 20.4% in within-shot face consistency and 17.4% in style consistency, while achieving over 100% better cross-shot consistency and 10x fewer manual adjustments than alternatives.
comment: Code: https://github.com/DuNGEOnmassster/VideoGen-of-Thought.git; Webpage: https://cheliosoops.github.io/VGoT/
♻ ☆ Applications of Large Language Model Reasoning in Feature Generation
Large Language Models (LLMs) have revolutionized natural language processing through their state of art reasoning capabilities. This paper explores the convergence of LLM reasoning techniques and feature generation for machine learning tasks. We examine four key reasoning approaches: Chain of Thought, Tree of Thoughts, Retrieval-Augmented Generation, and Thought Space Exploration. Our analysis reveals how these approaches can be used to identify effective feature generation rules without having to manually specify search spaces. The paper categorizes LLM-based feature generation methods across various domains including finance, healthcare, and text analytics. LLMs can extract key information from clinical notes and radiology reports in healthcare, by enabling more efficient data utilization. In finance, LLMs facilitate text generation, summarization, and entity extraction from complex documents. We analyze evaluation methodologies for assessing feature quality and downstream performance, with particular attention to OCTree's decision tree reasoning approach that provides language-based feedback for iterative improvements. Current challenges include hallucination, computational efficiency, and domain adaptation. As of March 2025, emerging approaches include inference-time compute scaling, reinforcement learning, and supervised fine-tuning with model distillation. Future directions point toward multimodal feature generation, self-improving systems, and neuro-symbolic approaches. This paper provides a detailed overview of an emerging field that promises to automate and enhance feature engineering through language model reasoning.
comment: I just updated the format of the references in the paper
♻ ☆ GRE^2-MDCL: Graph Representation Embedding Enhanced via Multidimensional Contrastive Learning
Graph representation learning has emerged as a powerful tool for preserving graph topology when mapping nodes to vector representations, enabling various downstream tasks such as node classification and community detection. However, most current graph neural network models face the challenge of requiring extensive labeled data, which limits their practical applicability in real-world scenarios where labeled data is scarce. To address this challenge, researchers have explored Graph Contrastive Learning (GCL), which leverages enhanced graph data and contrastive learning techniques. While promising, existing GCL methods often struggle with effectively capturing both local and global graph structures, and balancing the trade-off between nodelevel and graph-level representations. In this work, we propose Graph Representation Embedding Enhanced via Multidimensional Contrastive Learning (GRE2-MDCL). Our model introduces a novel triple network architecture with a multi-head attention GNN as the core. GRE2-MDCL first globally and locally augments the input graph using SVD and LAGNN techniques. It then constructs a multidimensional contrastive loss, incorporating cross-network, cross-view, and neighbor contrast, to optimize the model. Extensive experiments on benchmark datasets Cora, Citeseer, and PubMed demonstrate that GRE2-MDCL achieves state-of-the-art performance, with average accuracies of 82.5%, 72.5%, and 81.6% respectively. Visualizations further show tighter intra-cluster aggregation and clearer inter-cluster boundaries, highlighting the effectiveness of our framework in improving upon baseline GCL models.
comment: I am requesting the withdrawal of my paper due to errors identified in the methodology and experimental results. Specifically, there are inaccuracies in the analysis section that may lead to misleading conclusions
♻ ☆ DirectMultiStep: Direct Route Generation for Multistep Retrosynthesis
Traditional computer-aided synthesis planning (CASP) methods rely on iterative single-step predictions, leading to exponential search space growth that limits efficiency and scalability. We introduce a series of transformer-based models, that leverage a mixture of experts approach to directly generate multistep synthetic routes as a single string, conditionally predicting each transformation based on all preceding ones. Our DMS Explorer XL model, which requires only target compounds as input, outperforms state-of-the-art methods on the PaRoutes dataset with 1.9x and 3.1x improvements in Top-1 accuracy on the n$_1$ and n$_5$ test sets, respectively. Providing additional information, such as the desired number of steps and starting materials, enables both a reduction in model size and an increase in accuracy, highlighting the benefits of incorporating more constraints into the prediction process. The top-performing DMS-Flex (Duo) model scores 25-50% higher on Top-1 and Top-10 accuracies for both n$_1$ and n$_5$ sets. Additionally, our models successfully predict routes for FDA-approved drugs not included in the training data, demonstrating strong generalization capabilities. While the limited diversity of the training set may affect performance on less common reaction types, our multistep-first approach presents a promising direction towards fully automated retrosynthetic planning.
♻ ☆ Can a MISL Fly? Analysis and Ingredients for Mutual Information Skill Learning
Self-supervised learning has the potential of lifting several of the key challenges in reinforcement learning today, such as exploration, representation learning, and reward design. Recent work (METRA) has effectively argued that moving away from mutual information and instead optimizing a certain Wasserstein distance is important for good performance. In this paper, we argue that the benefits seen in that paper can largely be explained within the existing framework of mutual information skill learning (MISL). Our analysis suggests a new MISL method (contrastive successor features) that retains the excellent performance of METRA with fewer moving parts, and highlights connections between skill learning, contrastive representation learning, and successor features. Finally, through careful ablation studies, we provide further insight into some of the key ingredients for both our method and METRA.
comment: Code and videos are available on the website: https://princeton-rl.github.io/contrastive-successor-features/
♻ ☆ MedAgentsBench: Benchmarking Thinking Models and Agent Frameworks for Complex Medical Reasoning
Large Language Models (LLMs) have shown impressive performance on existing medical question-answering benchmarks. This high performance makes it increasingly difficult to meaningfully evaluate and differentiate advanced methods. We present MedAgentsBench, a benchmark that focuses on challenging medical questions requiring multi-step clinical reasoning, diagnosis formulation, and treatment planning-scenarios where current models still struggle despite their strong performance on standard tests. Drawing from seven established medical datasets, our benchmark addresses three key limitations in existing evaluations: (1) the prevalence of straightforward questions where even base models achieve high performance, (2) inconsistent sampling and evaluation protocols across studies, and (3) lack of systematic analysis of the interplay between performance, cost, and inference time. Through experiments with various base models and reasoning methods, we demonstrate that the latest thinking models, DeepSeek R1 and OpenAI o3, exhibit exceptional performance in complex medical reasoning tasks. Additionally, advanced search-based agent methods offer promising performance-to-cost ratios compared to traditional approaches. Our analysis reveals substantial performance gaps between model families on complex questions and identifies optimal model selections for different computational constraints. Our benchmark and evaluation framework are publicly available at https://github.com/gersteinlab/medagents-benchmark.
♻ ☆ Unimodal Distributions for Ordinal Regression
In many real-world prediction tasks, class labels contain information about the relative order between labels that are not captured by commonly used loss functions such as multicategory cross-entropy. Recently, the preference for unimodal distributions in the output space has been incorporated into models and loss functions to account for such ordering information. However, current approaches rely on heuristics that lack a theoretical foundation. Here, we propose two new approaches to incorporate the preference for unimodal distributions into the predictive model. We analyse the set of unimodal distributions in the probability simplex and establish fundamental properties. We then propose a new architecture that imposes unimodal distributions and a new loss term that relies on the notion of projection in a set to promote unimodality. Experiments show the new architecture achieves top-2 performance, while the proposed new loss term is very competitive while maintaining high unimodality.
comment: 17 pages
♻ ☆ Estimating Causal Effects of Text Interventions Leveraging LLMs
Quantifying the effects of textual interventions in social systems, such as reducing anger in social media posts to see its impact on engagement, is challenging. Real-world interventions are often infeasible, necessitating reliance on observational data. Traditional causal inference methods, typically designed for binary or discrete treatments, are inadequate for handling the complex, high-dimensional textual data. This paper addresses these challenges by proposing CausalDANN, a novel approach to estimate causal effects using text transformations facilitated by large language models (LLMs). Unlike existing methods, our approach accommodates arbitrary textual interventions and leverages text-level classifiers with domain adaptation ability to produce robust effect estimates against domain shifts, even when only the control group is observed. This flexibility in handling various text interventions is a key advancement in causal estimation for textual data, offering opportunities to better understand human behaviors and develop effective interventions within social systems.
♻ ☆ SoMeR: Multi-View User Representation Learning for Social Media
Social media user representation learning aims to capture user preferences, interests, and behaviors in low-dimensional vector representations. These representations are critical to a range of social problems, including predicting user behaviors and detecting inauthentic accounts. However, existing methods are either designed for commercial applications, or rely on specific features like text contents, activity patterns, or platform metadata, failing to holistically model user behavior across different modalities. To address these limitations, we propose SoMeR, a Social Media user Representation learning framework that incorporates temporal activities, text contents, profile information, and network interactions to learn comprehensive user portraits. SoMeR encodes user post streams as sequences of time-stamped textual features, uses transformers to embed this along with profile data, and jointly trains with link prediction and contrastive learning objectives to capture user similarity. We demonstrate SoMeR's versatility through three applications: 1) Identifying information operation driver accounts, 2) Measuring online polarization after major events, and 3) Predicting future user participation in Reddit hate communities. SoMeR provides new solutions to better understand user behavior in the socio-political domains, enabling more informed decisions and interventions.
♻ ☆ The MASK Benchmark: Disentangling Honesty From Accuracy in AI Systems
As large language models (LLMs) become more capable and agentic, the requirement for trust in their outputs grows significantly, yet at the same time concerns have been mounting that models may learn to lie in pursuit of their goals. To address these concerns, a body of work has emerged around the notion of "honesty" in LLMs, along with interventions aimed at mitigating deceptive behaviors. However, evaluations of honesty are currently highly limited, with no benchmark combining large scale and applicability to all models. Moreover, many benchmarks claiming to measure honesty in fact simply measure accuracy--the correctness of a model's beliefs--in disguise. In this work, we introduce a large-scale human-collected dataset for measuring honesty directly, allowing us to disentangle accuracy from honesty for the first time. Across a diverse set of LLMs, we find that while larger models obtain higher accuracy on our benchmark, they do not become more honest. Surprisingly, while most frontier LLMs obtain high scores on truthfulness benchmarks, we find a substantial propensity in frontier LLMs to lie when pressured to do so, resulting in low honesty scores on our benchmark. We find that simple methods, such as representation engineering interventions, can improve honesty. These results underscore the growing need for robust evaluations and effective interventions to ensure LLMs remain trustworthy.
comment: Website: https://www.mask-benchmark.ai
♻ ☆ 3D-GRAND: A Million-Scale Dataset for 3D-LLMs with Better Grounding and Less Hallucination CVPR 2025
The integration of language and 3D perception is crucial for embodied agents and robots that comprehend and interact with the physical world. While large language models (LLMs) have demonstrated impressive language understanding and generation capabilities, their adaptation to 3D environments (3D-LLMs) remains in its early stages. A primary challenge is a lack of large-scale datasets with dense grounding between language and 3D scenes. We introduce 3D-GRAND, a pioneering large-scale dataset comprising 40,087 household scenes paired with 6.2 million densely-grounded scene-language instructions. Our results show that instruction tuning with 3D-GRAND significantly enhances grounding capabilities and reduces hallucinations in 3D-LLMs. As part of our contributions, we propose a comprehensive benchmark 3D-POPE to systematically evaluate hallucination in 3D-LLMs, enabling fair comparisons of models. Our experiments highlight a scaling effect between dataset size and 3D-LLM performance, emphasizing the importance of large-scale 3D-text datasets for embodied AI research. Our results demonstrate early signals for effective sim-to-real transfer, indicating that models trained on large synthetic data can perform well on real-world 3D scans. Through 3D-GRAND and 3D-POPE, we aim to equip the embodied AI community with resources and insights to lead to more reliable and better-grounded 3D-LLMs. Project website: https://3d-grand.github.io
comment: CVPR 2025. Project website: https://3d-grand.github.io
♻ ☆ Cost-Efficient Continual Learning with Sufficient Exemplar Memory
Continual learning (CL) research typically assumes highly constrained exemplar memory resources. However, in many real-world scenarios-especially in the era of large foundation models-memory is abundant, while GPU computational costs are the primary bottleneck. In this work, we investigate CL in a novel setting where exemplar memory is ample (i.e., sufficient exemplar memory). Unlike prior methods designed for strict exemplar memory constraints, we propose a simple yet effective approach that directly operates in the model's weight space through a combination of weight resetting and averaging techniques. Our method achieves state-of-the-art performance while reducing the computational cost to a quarter or third of existing methods. These findings challenge conventional CL assumptions and provide a practical baseline for computationally efficient CL applications.
comment: 12 pages, 5 figures
♻ ☆ The Cooperative Network Architecture: Learning Structured Networks as Representation of Sensory Patterns
We introduce the Cooperative Network Architecture (CNA), a model that represents sensory signals using structured, recurrently connected networks of neurons, termed "nets." Nets are dynamically assembled from overlapping net fragments, which are learned based on statistical regularities in sensory input. This architecture offers robustness to noise, deformation, and out-of-distribution data, addressing challenges in current vision systems from a novel perspective. We demonstrate that net fragments can be learned without supervision and flexibly recombined to encode novel patterns, enabling figure completion and resilience to noise. Our findings establish CNA as a promising paradigm for developing neural representations that integrate local feature processing with global structure formation, providing a foundation for future research on invariant object recognition.
♻ ☆ Large Language Models are Zero-Shot Recognizers for Activities of Daily Living
The sensor-based recognition of Activities of Daily Living (ADLs) in smart home environments enables several applications in the areas of energy management, safety, well-being, and healthcare. ADLs recognition is typically based on deep learning methods requiring large datasets to be trained. Recently, several studies proved that Large Language Models (LLMs) effectively capture common-sense knowledge about human activities. However, the effectiveness of LLMs for ADLs recognition in smart home environments still deserves to be investigated. In this work, we propose ADL-LLM, a novel LLM-based ADLs recognition system. ADLLLM transforms raw sensor data into textual representations, that are processed by an LLM to perform zero-shot ADLs recognition. Moreover, in the scenario where a small labeled dataset is available, ADL-LLM can also be empowered with few-shot prompting. We evaluated ADL-LLM on two public datasets, showing its effectiveness in this domain.
comment: Paper accepted for publication in the ACM Transactions on Intelligent Systems and Technology (TIST) journal
♻ ☆ Uncovering Latent Chain of Thought Vectors in Language Models ICLR 2025
In this work, we examine how targeted perturbations in the activation space of Language Models (LMs) can encode complex reasoning patterns. We inject steering vectors, derived from LM activations, into LMs during inference time and study whether these vectors can induce Chain-of-Thought (CoT) reasoning in LMs without the need for natural language prompting. We demonstrate this approach on Llama3 8B Instruct and Mistral 7B v0.2 Instruct and show that activation-space interventions achieve competitive, if not superior, performance compared to traditional CoT prompting across multiple reasoning benchmarks, including GSM8k, MMLU, AGI Eval, and ARC AI2. These findings suggest that neural network activations can encode reasoning patterns, offering a new application of activation space manipulation as a tool for tuning model behavior.
comment: This work was presented at the Workshop on Neural Network Weights as a New Data Modality at ICLR 2025
♻ ☆ EmojiPrompt: Generative Prompt Obfuscation for Privacy-Preserving Communication with Cloud-based LLMs NAACL 2025
Cloud-based Large Language Models (LLMs) such as ChatGPT have become increasingly integral to daily operations. Nevertheless, they also introduce privacy concerns: firstly, numerous studies underscore the risks to user privacy posed by jailbreaking cloud-based LLMs; secondly, the LLM service providers have access to all user data, which deters individuals from confidently utilizing such services. To address such concerns, we propose a simple yet effective paradigm, EmojiPrompt, to protect user privacy. At its core, EmojiPrompt performs generative transformation, obfuscating private data within prompts with linguistic and non-linguistic elements before submitting them to cloud-based LLMs. We evaluate EmojiPrompt's performance across 8 datasets from various domains. We also propose simulated inference attacks to assess EmojiPrompt's ability to preserve user privacy. The results demonstrate that EmojiPrompt effectively obfuscates user private data, while largely maintaining, or even enhancing, performances compared to the unobfuscated version. Furthermore, EmojiPrompt's atomic-level obfuscation allows it to function exclusively with cloud-based LLMs. For source code, please refer to: https://github.com/agiresearch/EmojiCrypt.
comment: Accepted to the 2025 Annual Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics (NAACL 2025)
♻ ☆ A Black Swan Hypothesis: The Role of Human Irrationality in AI Safety
Black swan events are statistically rare occurrences that carry extremely high risks. A typical view of defining black swan events is heavily assumed to originate from an unpredictable time-varying environments; however, the community lacks a comprehensive definition of black swan events. To this end, this paper challenges that the standard view is incomplete and claims that high-risk, statistically rare events can also occur in unchanging environments due to human misperception of their value and likelihood, which we call as spatial black swan event. We first carefully categorize black swan events, focusing on spatial black swan events, and mathematically formalize the definition of black swan events. We hope these definitions can pave the way for the development of algorithms to prevent such events by rationally correcting human perception.
comment: The title was changed and acknowledgment was included
♻ ☆ The Text Classification Pipeline: Starting Shallow going Deeper
Text classification stands as a cornerstone within the realm of Natural Language Processing (NLP), particularly when viewed through computer science and engineering. The past decade has seen deep learning revolutionize text classification, propelling advancements in text retrieval, categorization, information extraction, and summarization. The scholarly literature includes datasets, models, and evaluation criteria, with English being the predominant language of focus, despite studies involving Arabic, Chinese, Hindi, and others. The efficacy of text classification models relies heavily on their ability to capture intricate textual relationships and non-linear correlations, necessitating a comprehensive examination of the entire text classification pipeline. In the NLP domain, a plethora of text representation techniques and model architectures have emerged, with Large Language Models (LLMs) and Generative Pre-trained Transformers (GPTs) at the forefront. These models are adept at transforming extensive textual data into meaningful vector representations encapsulating semantic information. The multidisciplinary nature of text classification, encompassing data mining, linguistics, and information retrieval, highlights the importance of collaborative research to advance the field. This work integrates traditional and contemporary text mining methodologies, fostering a holistic understanding of text classification.
♻ ☆ Hierarchical Spatio-Temporal State-Space Modeling for fMRI Analysis
Recent advances in deep learning structured state space models, especially the Mamba architecture, have demonstrated remarkable performance improvements while maintaining linear complexity. In this study, we introduce functional spatiotemporal Mamba (FST-Mamba), a Mamba-based model designed for discovering neurological biomarkers using functional magnetic resonance imaging (fMRI). We focus on dynamic functional network connectivity (dFNC) derived from fMRI and propose a hierarchical spatiotemporal Mamba-based network that processes spatial and temporal information separately using Mamba-based encoders. Leveraging the topological uniqueness of the FNC matrix, we introduce a component-wise varied-scale aggregation (CVA) mechanism to aggregate connectivity across individual components within brain networks, enabling the model to capture component-level and network-level information. Additionally, we propose symmetric rotary position encoding (SymRope) to encode the relative positions of each functional connection while considering the symmetric nature of the FNC matrix. Experimental results demonstrate significant improvements in the proposed FST-Mamba model on various brain-based classification and regression tasks. We further show brain connectivities and dynamics that are crucial for the prediction. Our work reveals the substantial potential of attention-free sequence modeling in brain discovery. The codes are publicly available here: https://github.com/yuxiangwei0808/FunctionalMamba/tree/main.
comment: Accepted to RECOMB 2025
♻ ☆ ContextGPT: Infusing LLMs Knowledge into Neuro-Symbolic Activity Recognition Models
Context-aware Human Activity Recognition (HAR) is a hot research area in mobile computing, and the most effective solutions in the literature are based on supervised deep learning models. However, the actual deployment of these systems is limited by the scarcity of labeled data that is required for training. Neuro-Symbolic AI (NeSy) provides an interesting research direction to mitigate this issue, by infusing common-sense knowledge about human activities and the contexts in which they can be performed into HAR deep learning classifiers. Existing NeSy methods for context-aware HAR rely on knowledge encoded in logic-based models (e.g., ontologies) whose design, implementation, and maintenance to capture new activities and contexts require significant human engineering efforts, technical knowledge, and domain expertise. Recent works show that pre-trained Large Language Models (LLMs) effectively encode common-sense knowledge about human activities. In this work, we propose ContextGPT: a novel prompt engineering approach to retrieve from LLMs common-sense knowledge about the relationship between human activities and the context in which they are performed. Unlike ontologies, ContextGPT requires limited human effort and expertise. An extensive evaluation carried out on two public datasets shows how a NeSy model obtained by infusing common-sense knowledge from ContextGPT is effective in data scarcity scenarios, leading to similar (and sometimes better) recognition rates than logic-based approaches with a fraction of the effort.
♻ ☆ Scaling Up Single Image Dehazing Algorithm by Cross-Data Vision Alignment for Richer Representation Learning and Beyond
In recent years, deep neural networks tasks have increasingly relied on high-quality image inputs. With the development of high-resolution representation learning, the task of image dehazing has received significant attention. Previously, many methods collect diverse image data for large-scale training to boost the performance on a target scene. Ignoring the domain gap between different data, former de-hazing methods simply adopt multiple datasets for explicit large-scale training, which often makes the methods themselves be violated. To address this problem, we propose a novel method of cross-data vision alignment for richer representation learning to improve the existing dehazing methodology. Specifically, we call for the internal- and external knowledge should be further adapted with a self-supervised manner to fill up the domain gap. By using cross-data external alignment, the datasets inherit samples from different domains that are firmly aligned, making the model learn more robust and generalizable features. By using the internal augmentation method, the model can fully exploit local information within the images, and then obtaining more image details. To demonstrate the effectiveness of our proposed method, we conduct training on the Natural Image Dataset (NID). Experimental results show that our method clearly resolves the domain gap in different dehazing datasets and presents a new pipeline for large-scale training in the dehazing task. Our approach significantly outperforms other advanced methods in dehazing and produces dehazed images that are closest to real haze-free images.
comment: A cross-dataset vision alignment and augmentation technology is proposed to boost generalizable feature learning in the de-hazing task
♻ ☆ On the Challenges and Opportunities in Generative AI
The field of deep generative modeling has grown rapidly in the last few years. With the availability of massive amounts of training data coupled with advances in scalable unsupervised learning paradigms, recent large-scale generative models show tremendous promise in synthesizing high-resolution images and text, as well as structured data such as videos and molecules. However, we argue that current large-scale generative AI models exhibit several fundamental shortcomings that hinder their widespread adoption across domains. In this work, our objective is to identify these issues and highlight key unresolved challenges in modern generative AI paradigms that should be addressed to further enhance their capabilities, versatility, and reliability. By identifying these challenges, we aim to provide researchers with insights for exploring fruitful research directions, thus fostering the development of more robust and accessible generative AI solutions.
♻ ☆ Summaries, Highlights, and Action items: Design, implementation and evaluation of an LLM-powered meeting recap system SC
Meetings play a critical infrastructural role in coordinating work. The recent surge of hybrid and remote meetings in computer-mediated spaces has led to new problems (e.g., more time spent in less engaging meetings) and new opportunities (e.g., automated transcription/captioning and recap support). Advances in dialogue summarization offer the potential for improving post-meeting experiences, but fixed-length summaries often fail to meet diverse needs, such as quick overviews or detailed insights. To address these gaps, we use cognitive science and discourse theories to conceptualize two recap designs: important highlights and a structured, hierarchical minutes view, targeting complementary recap needs. We operationalize these representations into high-fidelity prototypes using dialogue summarization. Finally, we evaluate the representations' effectiveness with seven users in the context of their work meetings at Microsoft. Our results show both recap types are valuable in different contexts, enabling collaboration through discussions and consensus-building. Exploring the meaning of users adding, editing, and deleting from recaps suggests varying alignment for using these actions to improve AI-recap. Our design implications, such as incorporating organizational artifacts (e.g., linking presentations) in recaps and personalizing context, advance the discourse of effective recap designs for organizational work and support past results from cognition studies.
comment: Accepted at CSCW 2024
♻ ☆ Out-of-Distribution Recovery with Object-Centric Keypoint Inverse Policy for Visuomotor Imitation Learning
We propose an object-centric recovery (OCR) framework to address the challenges of out-of-distribution (OOD) scenarios in visuomotor policy learning. Previous behavior cloning (BC) methods rely heavily on a large amount of labeled data coverage, failing in unfamiliar spatial states. Without relying on extra data collection, our approach learns a recovery policy constructed by an inverse policy inferred from the object keypoint manifold gradient in the original training data. The recovery policy serves as a simple add-on to any base visuomotor BC policy, agnostic to a specific method, guiding the system back towards the training distribution to ensure task success even in OOD situations. We demonstrate the effectiveness of our object-centric framework in both simulation and real robot experiments, achieving an improvement of 77.7\% over the base policy in OOD. Furthermore, we show OCR's capacity to autonomously collect demonstrations for continual learning. Overall, we believe this framework represents a step toward improving the robustness of visuomotor policies in real-world settings. Project Website: https://sites.google.com/view/ocr-penn
Graphics 14
☆ Bézier Splatting for Fast and Differentiable Vector Graphics
Differentiable vector graphics (VGs) are widely used in image vectorization and vector synthesis, while existing representations are costly to optimize and struggle to achieve high-quality rendering results for high-resolution images. This work introduces a new differentiable VG representation, dubbed B\'ezier splatting, that enables fast yet high-fidelity VG rasterization. B\'ezier splatting samples 2D Gaussians along B\'ezier curves, which naturally provide positional gradients at object boundaries. Thanks to the efficient splatting-based differentiable rasterizer, B\'ezier splatting achieves over 20x and 150x faster per forward and backward rasterization step for open curves compared to DiffVG. Additionally, we introduce an adaptive pruning and densification strategy that dynamically adjusts the spatial distribution of curves to escape local minima, further improving VG quality. Experimental results show that B\'ezier splatting significantly outperforms existing methods with better visual fidelity and 10x faster optimization speed.
☆ VerbDiff: Text-Only Diffusion Models with Enhanced Interaction Awareness CVPR 2025
Recent large-scale text-to-image diffusion models generate photorealistic images but often struggle to accurately depict interactions between humans and objects due to their limited ability to differentiate various interaction words. In this work, we propose VerbDiff to address the challenge of capturing nuanced interactions within text-to-image diffusion models. VerbDiff is a novel text-to-image generation model that weakens the bias between interaction words and objects, enhancing the understanding of interactions. Specifically, we disentangle various interaction words from frequency-based anchor words and leverage localized interaction regions from generated images to help the model better capture semantics in distinctive words without extra conditions. Our approach enables the model to accurately understand the intended interaction between humans and objects, producing high-quality images with accurate interactions aligned with specified verbs. Extensive experiments on the HICO-DET dataset demonstrate the effectiveness of our method compared to previous approaches.
comment: Accepted at CVPR 2025, code : https://github.com/SeungJuCha/VerbDiff.git
☆ OccluGaussian: Occlusion-Aware Gaussian Splatting for Large Scene Reconstruction and Rendering
In large-scale scene reconstruction using 3D Gaussian splatting, it is common to partition the scene into multiple smaller regions and reconstruct them individually. However, existing division methods are occlusion-agnostic, meaning that each region may contain areas with severe occlusions. As a result, the cameras within those regions are less correlated, leading to a low average contribution to the overall reconstruction. In this paper, we propose an occlusion-aware scene division strategy that clusters training cameras based on their positions and co-visibilities to acquire multiple regions. Cameras in such regions exhibit stronger correlations and a higher average contribution, facilitating high-quality scene reconstruction. We further propose a region-based rendering technique to accelerate large scene rendering, which culls Gaussians invisible to the region where the viewpoint is located. Such a technique significantly speeds up the rendering without compromising quality. Extensive experiments on multiple large scenes show that our method achieves superior reconstruction results with faster rendering speed compared to existing state-of-the-art approaches. Project page: https://occlugaussian.github.io.
comment: Project website: https://occlugaussian.github.io
☆ The Malleable Glyph (Challenge)
Malleable Glyph is a new visualization problem and a public challenge. It originated from UX research (namely from research on card sorting UX), but its applications can be diverse (UI, gaming, information presentation, maps, and others). Its essence is: carrying as much information in a defined planar and static area as possible. The information should allow human observers to evaluate a pair of glyphs into three possible sortings: the first is "greater", or the second is "greater", or both are equal. The glyphs should adhere to the Illiteracy Rule, in other words, the observer should ask themselves the question "how much?" rather than "how many?". This article motivates the technique, explains its details, and presents the public challenge, including the evaluation protocol. The article aims to call for ideas from other visualization and graphics researchers and practitioners and to invite everyone to participate in the challenge and, by doing so, move scientific knowledge forward.
☆ Multi-Prompt Style Interpolation for Fine-Grained Artistic Control
Text-driven image style transfer has seen remarkable progress with methods leveraging cross-modal embeddings for fast, high-quality stylization. However, most existing pipelines assume a \emph{single} textual style prompt, limiting the range of artistic control and expressiveness. In this paper, we propose a novel \emph{multi-prompt style interpolation} framework that extends the recently introduced \textbf{StyleMamba} approach. Our method supports blending or interpolating among multiple textual prompts (eg, ``cubism,'' ``impressionism,'' and ``cartoon''), allowing the creation of nuanced or hybrid artistic styles within a \emph{single} image. We introduce a \textit{Multi-Prompt Embedding Mixer} combined with \textit{Adaptive Blending Weights} to enable fine-grained control over the spatial and semantic influence of each style. Further, we propose a \emph{Hierarchical Masked Directional Loss} to refine region-specific style consistency. Experiments and user studies confirm our approach outperforms single-prompt baselines and naive linear combinations of styles, achieving superior style fidelity, text-image alignment, and artistic flexibility, all while maintaining the computational efficiency offered by the state-space formulation.
Controllable Segmentation-Based Text-Guided Style Editing
We present a novel approach for controllable, region-specific style editing driven by textual prompts. Building upon the state-space style alignment framework introduced by \emph{StyleMamba}, our method integrates a semantic segmentation model into the style transfer pipeline. This allows users to selectively apply text-driven style changes to specific segments (e.g., ``turn the building into a cyberpunk tower'') while leaving other regions (e.g., ``people'' or ``trees'') unchanged. By incorporating region-wise condition vectors and a region-specific directional loss, our method achieves high-fidelity transformations that respect both semantic boundaries and user-driven style descriptions. Extensive experiments demonstrate that our approach can flexibly handle complex scene stylizations in real-world scenarios, improving control and quality over purely global style transfer methods.
☆ Animating the Uncaptured: Humanoid Mesh Animation with Video Diffusion Models
Animation of humanoid characters is essential in various graphics applications, but requires significant time and cost to create realistic animations. We propose an approach to synthesize 4D animated sequences of input static 3D humanoid meshes, leveraging strong generalized motion priors from generative video models -- as such video models contain powerful motion information covering a wide variety of human motions. From an input static 3D humanoid mesh and a text prompt describing the desired animation, we synthesize a corresponding video conditioned on a rendered image of the 3D mesh. We then employ an underlying SMPL representation to animate the corresponding 3D mesh according to the video-generated motion, based on our motion optimization. This enables a cost-effective and accessible solution to enable the synthesis of diverse and realistic 4D animations.
comment: 16 pages, 10 figures
Controlling Avatar Diffusion with Learnable Gaussian Embedding
Recent advances in diffusion models have made significant progress in digital human generation. However, most existing models still struggle to maintain 3D consistency, temporal coherence, and motion accuracy. A key reason for these shortcomings is the limited representation ability of commonly used control signals(e.g., landmarks, depth maps, etc.). In addition, the lack of diversity in identity and pose variations in public datasets further hinders progress in this area. In this paper, we analyze the shortcomings of current control signals and introduce a novel control signal representation that is optimizable, dense, expressive, and 3D consistent. Our method embeds a learnable neural Gaussian onto a parametric head surface, which greatly enhances the consistency and expressiveness of diffusion-based head models. Regarding the dataset, we synthesize a large-scale dataset with multiple poses and identities. In addition, we use real/synthetic labels to effectively distinguish real and synthetic data, minimizing the impact of imperfections in synthetic data on the generated head images. Extensive experiments show that our model outperforms existing methods in terms of realism, expressiveness, and 3D consistency. Our code, synthetic datasets, and pre-trained models will be released in our project page: https://ustc3dv.github.io/Learn2Control/
comment: Project Page: https://ustc3dv.github.io/Learn2Control/
☆ SAGE: Semantic-Driven Adaptive Gaussian Splatting in Extended Reality
3D Gaussian Splatting (3DGS) has significantly improved the efficiency and realism of three-dimensional scene visualization in several applications, ranging from robotics to eXtended Reality (XR). This work presents SAGE (Semantic-Driven Adaptive Gaussian Splatting in Extended Reality), a novel framework designed to enhance the user experience by dynamically adapting the Level of Detail (LOD) of different 3DGS objects identified via a semantic segmentation. Experimental results demonstrate how SAGE effectively reduces memory and computational overhead while keeping a desired target visual quality, thus providing a powerful optimization for interactive XR applications.
☆ GauRast: Enhancing GPU Triangle Rasterizers to Accelerate 3D Gaussian Splatting
3D intelligence leverages rich 3D features and stands as a promising frontier in AI, with 3D rendering fundamental to many downstream applications. 3D Gaussian Splatting (3DGS), an emerging high-quality 3D rendering method, requires significant computation, making real-time execution on existing GPU-equipped edge devices infeasible. Previous efforts to accelerate 3DGS rely on dedicated accelerators that require substantial integration overhead and hardware costs. This work proposes an acceleration strategy that leverages the similarities between the 3DGS pipeline and the highly optimized conventional graphics pipeline in modern GPUs. Instead of developing a dedicated accelerator, we enhance existing GPU rasterizer hardware to efficiently support 3DGS operations. Our results demonstrate a 23$\times$ increase in processing speed and a 24$\times$ reduction in energy consumption, with improvements yielding 6$\times$ faster end-to-end runtime for the original 3DGS algorithm and 4$\times$ for the latest efficiency-improved pipeline, achieving 24 FPS and 46 FPS respectively. These enhancements incur only a minimal area overhead of 0.2\% relative to the entire SoC chip area, underscoring the practicality and efficiency of our approach for enabling 3DGS rendering on resource-constrained platforms.
comment: DAC 2025
☆ TriTex: Learning Texture from a Single Mesh via Triplane Semantic Features
As 3D content creation continues to grow, transferring semantic textures between 3D meshes remains a significant challenge in computer graphics. While recent methods leverage text-to-image diffusion models for texturing, they often struggle to preserve the appearance of the source texture during texture transfer. We present \ourmethod, a novel approach that learns a volumetric texture field from a single textured mesh by mapping semantic features to surface colors. Using an efficient triplane-based architecture, our method enables semantic-aware texture transfer to a novel target mesh. Despite training on just one example, it generalizes effectively to diverse shapes within the same category. Extensive evaluation on our newly created benchmark dataset shows that \ourmethod{} achieves superior texture transfer quality and fast inference times compared to existing methods. Our approach advances single-example texture transfer, providing a practical solution for maintaining visual coherence across related 3D models in applications like game development and simulation.
comment: Project page: https://danacohen95.github.io/TriTex/
♻ ☆ MTGS: Multi-Traversal Gaussian Splatting
Multi-traversal data, commonly collected through daily commutes or by self-driving fleets, provides multiple viewpoints for scene reconstruction within a road block. This data offers significant potential for high-quality novel view synthesis, which is crucial for applications such as autonomous vehicle simulators. However, inherent challenges in multi-traversal data often result in suboptimal reconstruction quality, including variations in appearance and the presence of dynamic objects. To address these issues, we propose Multi-Traversal Gaussian Splatting (MTGS), a novel approach that reconstructs high-quality driving scenes from arbitrarily collected multi-traversal data by modeling a shared static geometry while separately handling dynamic elements and appearance variations. Our method employs a multi-traversal dynamic scene graph with a shared static node and traversal-specific dynamic nodes, complemented by color correction nodes with learnable spherical harmonics coefficient residuals. This approach enables high-fidelity novel view synthesis and provides flexibility to navigate any viewpoint. We conduct extensive experiments on a large-scale driving dataset, nuPlan, with multi-traversal data. Our results demonstrate that MTGS improves LPIPS by 23.5% and geometry accuracy by 46.3% compared to single-traversal baselines. The code and data would be available to the public.
♻ ☆ FreeCloth: Free-form Generation Enhances Challenging Clothed Human Modeling
Achieving realistic animated human avatars requires accurate modeling of pose-dependent clothing deformations. Existing learning-based methods heavily rely on the Linear Blend Skinning (LBS) of minimally-clothed human models like SMPL to model deformation. However, they struggle to handle loose clothing, such as long dresses, where the canonicalization process becomes ill-defined when the clothing is far from the body, leading to disjointed and fragmented results. To overcome this limitation, we propose FreeCloth, a novel hybrid framework to model challenging clothed humans. Our core idea is to use dedicated strategies to model different regions, depending on whether they are close to or distant from the body. Specifically, we segment the human body into three categories: unclothed, deformed, and generated. We simply replicate unclothed regions that require no deformation. For deformed regions close to the body, we leverage LBS to handle the deformation. As for the generated regions, which correspond to loose clothing areas, we introduce a novel free-form, part-aware generator to model them, as they are less affected by movements. This free-form generation paradigm brings enhanced flexibility and expressiveness to our hybrid framework, enabling it to capture the intricate geometric details of challenging loose clothing, such as skirts and dresses. Experimental results on the benchmark dataset featuring loose clothing demonstrate that FreeCloth achieves state-of-the-art performance with superior visual fidelity and realism, particularly in the most challenging cases.
comment: 23 pages, 26 figures
♻ ☆ GeoCode: Interpretable Shape Programs
The task of crafting procedural programs capable of generating structurally valid 3D shapes easily and intuitively remains an elusive goal in computer vision and graphics. Within the graphics community, generating procedural 3D models has shifted to using node graph systems. They allow the artist to create complex shapes and animations through visual programming. Being a high-level design tool, they made procedural 3D modeling more accessible. However, crafting those node graphs demands expertise and training. We present GeoCode, a novel framework designed to extend an existing node graph system and significantly lower the bar for the creation of new procedural 3D shape programs. Our approach meticulously balances expressiveness and generalization for part-based shapes. We propose a curated set of new geometric building blocks that are expressive and reusable across domains. We showcase three innovative and expressive programs developed through our technique and geometric building blocks. Our programs enforce intricate rules, empowering users to execute intuitive high-level parameter edits that seamlessly propagate throughout the entire shape at a lower level while maintaining its validity. To evaluate the user-friendliness of our geometric building blocks among non-experts, we conducted a user study that demonstrates their ease of use and highlights their applicability across diverse domains. Empirical evidence shows the superior accuracy of GeoCode in inferring and recovering 3D shapes compared to an existing competitor. Furthermore, our method demonstrates superior expressiveness compared to alternatives that utilize coarse primitives. Notably, we illustrate the ability to execute controllable local and global shape manipulations.
comment: project page: https://threedle.github.io/GeoCode/
Robotics 61
☆ Learning to Play Piano in the Real World
Towards the grand challenge of achieving human-level manipulation in robots, playing piano is a compelling testbed that requires strategic, precise, and flowing movements. Over the years, several works demonstrated hand-designed controllers on real world piano playing, while other works evaluated robot learning approaches on simulated piano scenarios. In this paper, we develop the first piano playing robotic system that makes use of learning approaches while also being deployed on a real world dexterous robot. Specifically, we make use of Sim2Real to train a policy in simulation using reinforcement learning before deploying the learned policy on a real world dexterous robot. In our experiments, we thoroughly evaluate the interplay between domain randomization and the accuracy of the dynamics model used in simulation. Moreover, we evaluate the robot's performance across multiple songs with varying complexity to study the generalization of our learned policy. By providing a proof-of-concept of learning to play piano in the real world, we want to encourage the community to adopt piano playing as a compelling benchmark towards human-level manipulation. We open-source our code and show additional videos at https://lasr.org/research/learning-to-play-piano .
comment: 10 pages
☆ Friction-Scaled Vibrotactile Feedback for Real-Time Slip Detection in Manipulation using Robotic Sixth Finger
The integration of extra-robotic limbs/fingers to enhance and expand motor skills, particularly for grasping and manipulation, possesses significant challenges. The grasping performance of existing limbs/fingers is far inferior to that of human hands. Human hands can detect onset of slip through tactile feedback originating from tactile receptors during the grasping process, enabling precise and automatic regulation of grip force. The frictional information is perceived by humans depending upon slip happening between finger and object. Enhancing this capability in extra-robotic limbs or fingers used by humans is challenging. To address this challenge, this paper introduces novel approach to communicate frictional information to users through encoded vibrotactile cues. These cues are conveyed on onset of incipient slip thus allowing users to perceive friction and ultimately use this information to increase force to avoid dropping of object. In a 2-alternative forced-choice protocol, participants gripped and lifted a glass under three different frictional conditions, applying a normal force of 3.5 N. After reaching this force, glass was gradually released to induce slip. During this slipping phase, vibrations scaled according to static coefficient of friction were presented to users, reflecting frictional conditions. The results suggested an accuracy of 94.53 p/m 3.05 (mean p/mSD) in perceiving frictional information upon lifting objects with varying friction. The results indicate effectiveness of using vibrotactile feedback for sensory feedback, allowing users of extra-robotic limbs or fingers to perceive frictional information. This enables them to assess surface properties and adjust grip force according to frictional conditions, enhancing their ability to grasp, manipulate objects more effectively.
☆ CCDP: Composition of Conditional Diffusion Policies with Guided Sampling
Imitation Learning offers a promising approach to learn directly from data without requiring explicit models, simulations, or detailed task definitions. During inference, actions are sampled from the learned distribution and executed on the robot. However, sampled actions may fail for various reasons, and simply repeating the sampling step until a successful action is obtained can be inefficient. In this work, we propose an enhanced sampling strategy that refines the sampling distribution to avoid previously unsuccessful actions. We demonstrate that by solely utilizing data from successful demonstrations, our method can infer recovery actions without the need for additional exploratory behavior or a high-level controller. Furthermore, we leverage the concept of diffusion model decomposition to break down the primary problem (which may require long-horizon history to manage failures) into multiple smaller, more manageable sub-problems in learning, data collection, and inference, thereby enabling the system to adapt to variable failure counts. Our approach yields a low-level controller that dynamically adjusts its sampling space to improve efficiency when prior samples fall short. We validate our method across several tasks, including door opening with unknown directions, object manipulation, and button-searching scenarios, demonstrating that our approach outperforms traditional baselines.
☆ Geometrically-Aware One-Shot Skill Transfer of Category-Level Objects
Robotic manipulation of unfamiliar objects in new environments is challenging and requires extensive training or laborious pre-programming. We propose a new skill transfer framework, which enables a robot to transfer complex object manipulation skills and constraints from a single human demonstration. Our approach addresses the challenge of skill acquisition and task execution by deriving geometric representations from demonstrations focusing on object-centric interactions. By leveraging the Functional Maps (FM) framework, we efficiently map interaction functions between objects and their environments, allowing the robot to replicate task operations across objects of similar topologies or categories, even when they have significantly different shapes. Additionally, our method incorporates a Task-Space Imitation Algorithm (TSIA) which generates smooth, geometrically-aware robot paths to ensure the transferred skills adhere to the demonstrated task constraints. We validate the effectiveness and adaptability of our approach through extensive experiments, demonstrating successful skill transfer and task execution in diverse real-world environments without requiring additional training.
comment: 7 pages, 6 figures
☆ Online Imitation Learning for Manipulation via Decaying Relative Correction through Teleoperation
Teleoperated robotic manipulators enable the collection of demonstration data, which can be used to train control policies through imitation learning. However, such methods can require significant amounts of training data to develop robust policies or adapt them to new and unseen tasks. While expert feedback can significantly enhance policy performance, providing continuous feedback can be cognitively demanding and time-consuming for experts. To address this challenge, we propose to use a cable-driven teleoperation system which can provide spatial corrections with 6 degree of freedom to the trajectories generated by a policy model. Specifically, we propose a correction method termed Decaying Relative Correction (DRC) which is based upon the spatial offset vector provided by the expert and exists temporarily, and which reduces the intervention steps required by an expert. Our results demonstrate that DRC reduces the required expert intervention rate by 30\% compared to a standard absolute corrective method. Furthermore, we show that integrating DRC within an online imitation learning framework rapidly increases the success rate of manipulation tasks such as raspberry harvesting and cloth wiping.
Reinforcement Learning for Robust Athletic Intelligence: Lessons from the 2nd 'AI Olympics with RealAIGym' Competition
In the field of robotics many different approaches ranging from classical planning over optimal control to reinforcement learning (RL) are developed and borrowed from other fields to achieve reliable control in diverse tasks. In order to get a clear understanding of their individual strengths and weaknesses and their applicability in real world robotic scenarios is it important to benchmark and compare their performances not only in a simulation but also on real hardware. The '2nd AI Olympics with RealAIGym' competition was held at the IROS 2024 conference to contribute to this cause and evaluate different controllers according to their ability to solve a dynamic control problem on an underactuated double pendulum system with chaotic dynamics. This paper describes the four different RL methods submitted by the participating teams, presents their performance in the swing-up task on a real double pendulum, measured against various criteria, and discusses their transferability from simulation to real hardware and their robustness to external disturbances.
comment: 8 pages, 7 figures
Perception-aware Planning for Quadrotor Flight in Unknown and Feature-limited Environments
Various studies on perception-aware planning have been proposed to enhance the state estimation accuracy of quadrotors in visually degraded environments. However, many existing methods heavily rely on prior environmental knowledge and face significant limitations in previously unknown environments with sparse localization features, which greatly limits their practical application. In this paper, we present a perception-aware planning method for quadrotor flight in unknown and feature-limited environments that properly allocates perception resources among environmental information during navigation. We introduce a viewpoint transition graph that allows for the adaptive selection of local target viewpoints, which guide the quadrotor to efficiently navigate to the goal while maintaining sufficient localizability and without being trapped in feature-limited regions. During the local planning, a novel yaw trajectory generation method that simultaneously considers exploration capability and localizability is presented. It constructs a localizable corridor via feature co-visibility evaluation to ensure localization robustness in a computationally efficient way. Through validations conducted in both simulation and real-world experiments, we demonstrate the feasibility and real-time performance of the proposed method. The source code will be released to benefit the community.
☆ A Unified Framework for Real-Time Failure Handling in Robotics Using Vision-Language Models, Reactive Planner and Behavior Trees
Robotic systems often face execution failures due to unexpected obstacles, sensor errors, or environmental changes. Traditional failure recovery methods rely on predefined strategies or human intervention, making them less adaptable. This paper presents a unified failure recovery framework that combines Vision-Language Models (VLMs), a reactive planner, and Behavior Trees (BTs) to enable real-time failure handling. Our approach includes pre-execution verification, which checks for potential failures before execution, and reactive failure handling, which detects and corrects failures during execution by verifying existing BT conditions, adding missing preconditions and, when necessary, generating new skills. The framework uses a scene graph for structured environmental perception and an execution history for continuous monitoring, enabling context-aware and adaptive failure handling. We evaluate our framework through real-world experiments with an ABB YuMi robot on tasks like peg insertion, object sorting, and drawer placement, as well as in AI2-THOR simulator. Compared to using pre-execution and reactive methods separately, our approach achieves higher task success rates and greater adaptability. Ablation studies highlight the importance of VLM-based reasoning, structured scene representation, and execution history tracking for effective failure recovery in robotics.
☆ Volumetric Reconstruction From Partial Views for Task-Oriented Grasping
Object affordance and volumetric information are essential in devising effective grasping strategies under task-specific constraints. This paper presents an approach for inferring suitable grasping strategies from limited partial views of an object. To achieve this, a recurrent generative adversarial network (R-GAN) was proposed by incorporating a recurrent generator with long short-term memory (LSTM) units for it to process a variable number of depth scans. To determine object affordances, the AffordPose knowledge dataset is utilized as prior knowledge. Affordance retrieving is defined by the volume similarity measured via Chamfer Distance and action similarities. A Proximal Policy Optimization (PPO) reinforcement learning model is further implemented to refine the retrieved grasp strategies for task-oriented grasping. The retrieved grasp strategies were evaluated on a dual-arm mobile manipulation robot with an overall grasping accuracy of 89% for four tasks: lift, handle grasp, wrap grasp, and press.
☆ A Comparative Study of Human Motion Models in Reinforcement Learning Algorithms for Social Robot Navigation
Social robot navigation is an evolving research field that aims to find efficient strategies to safely navigate dynamic environments populated by humans. A critical challenge in this domain is the accurate modeling of human motion, which directly impacts the design and evaluation of navigation algorithms. This paper presents a comparative study of two popular categories of human motion models used in social robot navigation, namely velocity-based models and force-based models. A system-theoretic representation of both model types is presented, which highlights their common feedback structure, although with different state variables. Several navigation policies based on reinforcement learning are trained and tested in various simulated environments involving pedestrian crowds modeled with these approaches. A comparative study is conducted to assess performance across multiple factors, including human motion model, navigation policy, scenario complexity and crowd density. The results highlight advantages and challenges of different approaches to modeling human behavior, as well as their role during training and testing of learning-based navigation policies. The findings offer valuable insights and guidelines for selecting appropriate human motion models when designing socially-aware robot navigation systems.
☆ VIPER: Visual Perception and Explainable Reasoning for Sequential Decision-Making
While Large Language Models (LLMs) excel at reasoning on text and Vision-Language Models (VLMs) are highly effective for visual perception, applying those models for visual instruction-based planning remains a widely open problem. In this paper, we introduce VIPER, a novel framework for multimodal instruction-based planning that integrates VLM-based perception with LLM-based reasoning. Our approach uses a modular pipeline where a frozen VLM generates textual descriptions of image observations, which are then processed by an LLM policy to predict actions based on the task goal. We fine-tune the reasoning module using behavioral cloning and reinforcement learning, improving our agent's decision-making capabilities. Experiments on the ALFWorld benchmark show that VIPER significantly outperforms state-of-the-art visual instruction-based planners while narrowing the gap with purely text-based oracles. By leveraging text as an intermediate representation, VIPER also enhances explainability, paving the way for a fine-grained analysis of perception and reasoning components.
☆ Intelligent Spatial Perception by Building Hierarchical 3D Scene Graphs for Indoor Scenarios with the Help of LLMs
This paper addresses the high demand in advanced intelligent robot navigation for a more holistic understanding of spatial environments, by introducing a novel system that harnesses the capabilities of Large Language Models (LLMs) to construct hierarchical 3D Scene Graphs (3DSGs) for indoor scenarios. The proposed framework constructs 3DSGs consisting of a fundamental layer with rich metric-semantic information, an object layer featuring precise point-cloud representation of object nodes as well as visual descriptors, and higher layers of room, floor, and building nodes. Thanks to the innovative application of LLMs, not only object nodes but also nodes of higher layers, e.g., room nodes, are annotated in an intelligent and accurate manner. A polling mechanism for room classification using LLMs is proposed to enhance the accuracy and reliability of the room node annotation. Thorough numerical experiments demonstrate the system's ability to integrate semantic descriptions with geometric data, creating an accurate and comprehensive representation of the environment instrumental for context-aware navigation and task planning.
comment: accepted by WRC SARA 2024
☆ StyleLoco: Generative Adversarial Distillation for Natural Humanoid Robot Locomotion
Humanoid robots are anticipated to acquire a wide range of locomotion capabilities while ensuring natural movement across varying speeds and terrains. Existing methods encounter a fundamental dilemma in learning humanoid locomotion: reinforcement learning with handcrafted rewards can achieve agile locomotion but produces unnatural gaits, while Generative Adversarial Imitation Learning (GAIL) with motion capture data yields natural movements but suffers from unstable training processes and restricted agility. Integrating these approaches proves challenging due to the inherent heterogeneity between expert policies and human motion datasets. To address this, we introduce StyleLoco, a novel two-stage framework that bridges this gap through a Generative Adversarial Distillation (GAD) process. Our framework begins by training a teacher policy using reinforcement learning to achieve agile and dynamic locomotion. It then employs a multi-discriminator architecture, where distinct discriminators concurrently extract skills from both the teacher policy and motion capture data. This approach effectively combines the agility of reinforcement learning with the natural fluidity of human-like movements while mitigating the instability issues commonly associated with adversarial training. Through extensive simulation and real-world experiments, we demonstrate that StyleLoco enables humanoid robots to perform diverse locomotion tasks with the precision of expertly trained policies and the natural aesthetics of human motion, successfully transferring styles across different movement types while maintaining stable locomotion across a broad spectrum of command inputs.
comment: 9 pages, 4 figures
☆ HAD-Gen: Human-like and Diverse Driving Behavior Modeling for Controllable Scenario Generation
Simulation-based testing has emerged as an essential tool for verifying and validating autonomous vehicles (AVs). However, contemporary methodologies, such as deterministic and imitation learning-based driver models, struggle to capture the variability of human-like driving behavior. Given these challenges, we propose HAD-Gen, a general framework for realistic traffic scenario generation that simulates diverse human-like driving behaviors. The framework first clusters the vehicle trajectory data into different driving styles according to safety features. It then employs maximum entropy inverse reinforcement learning on each of the clusters to learn the reward function corresponding to each driving style. Using these reward functions, the method integrates offline reinforcement learning pre-training and multi-agent reinforcement learning algorithms to obtain general and robust driving policies. Multi-perspective simulation results show that our proposed scenario generation framework can simulate diverse, human-like driving behaviors with strong generalization capability. The proposed framework achieves a 90.96% goal-reaching rate, an off-road rate of 2.08%, and a collision rate of 6.91% in the generalization test, outperforming prior approaches by over 20% in goal-reaching performance. The source code is released at https://github.com/RoboSafe-Lab/Sim4AD.
☆ GraspCorrect: Robotic Grasp Correction via Vision-Language Model-Guided Feedback
Despite significant advancements in robotic manipulation, achieving consistent and stable grasping remains a fundamental challenge, often limiting the successful execution of complex tasks. Our analysis reveals that even state-of-the-art policy models frequently exhibit unstable grasping behaviors, leading to failure cases that create bottlenecks in real-world robotic applications. To address these challenges, we introduce GraspCorrect, a plug-and-play module designed to enhance grasp performance through vision-language model-guided feedback. GraspCorrect employs an iterative visual question-answering framework with two key components: grasp-guided prompting, which incorporates task-specific constraints, and object-aware sampling, which ensures the selection of physically feasible grasp candidates. By iteratively generating intermediate visual goals and translating them into joint-level actions, GraspCorrect significantly improves grasp stability and consistently enhances task success rates across existing policy models in the RLBench and CALVIN datasets.
☆ DRoPE: Directional Rotary Position Embedding for Efficient Agent Interaction Modeling
Accurate and efficient modeling of agent interactions is essential for trajectory generation, the core of autonomous driving systems. Existing methods, scene-centric, agent-centric, and query-centric frameworks, each present distinct advantages and drawbacks, creating an impossible triangle among accuracy, computational time, and memory efficiency. To break this limitation, we propose Directional Rotary Position Embedding (DRoPE), a novel adaptation of Rotary Position Embedding (RoPE), originally developed in natural language processing. Unlike traditional relative position embedding (RPE), which introduces significant space complexity, RoPE efficiently encodes relative positions without explicitly increasing complexity but faces inherent limitations in handling angular information due to periodicity. DRoPE overcomes this limitation by introducing a uniform identity scalar into RoPE's 2D rotary transformation, aligning rotation angles with realistic agent headings to naturally encode relative angular information. We theoretically analyze DRoPE's correctness and efficiency, demonstrating its capability to simultaneously optimize trajectory generation accuracy, time complexity, and space complexity. Empirical evaluations compared with various state-of-the-art trajectory generation models, confirm DRoPE's good performance and significantly reduced space complexity, indicating both theoretical soundness and practical effectiveness. The video documentation is available at https://drope-traj.github.io/.
☆ High-Order Control Barrier Functions: Insights and a Truncated Taylor-Based Formulation
We examine the complexity of the standard High-Order Control Barrier Function (HOCBF) approach and propose a truncated Taylor-based approach that reduces design parameters. First, we derive the explicit inequality condition for the HOCBF approach and show that the corresponding equality condition sets a lower bound on the barrier function value that regulates its decay rate. Next, we present our Truncated Taylor CBF (TTCBF), which uses a truncated Taylor series to approximate the discrete-time CBF condition. While the standard HOCBF approach requires multiple class K functions, leading to more design parameters as the constraint's relative degree increases, our TTCBF approach requires only one. We support our theoretical findings in numerical collision-avoidance experiments and show that our approach ensures safety while reducing design complexity.
☆ Modeling, Embedded Control and Design of Soft Robots using a Learned Condensed FEM Model
The Finite Element Method (FEM) is a powerful modeling tool for predicting soft robots' behavior, but its computation time can limit practical applications. In this paper, a learning-based approach based on condensation of the FEM model is detailed. The proposed method handles several kinds of actuators and contacts with the environment. We demonstrate that this compact model can be learned as a unified model across several designs and remains very efficient in terms of modeling since we can deduce the direct and inverse kinematics of the robot. Building upon the intuition introduced in [11], the learned model is presented as a general framework for modeling, controlling, and designing soft manipulators. First, the method's adaptability and versatility are illustrated through optimization based control problems involving positioning and manipulation tasks with mechanical contact-based coupling. Secondly, the low memory consumption and the high prediction speed of the learned condensed model are leveraged for real-time embedding control without relying on costly online FEM simulation. Finally, the ability of the learned condensed FEM model to capture soft robot design variations and its differentiability are leveraged in calibration and design optimization applications.
comment: IEEE Transactions on Robotics, In press
☆ Advancing a taxonomy for proxemics in robot social navigation
Deploying robots in human environments requires effective social robot navigation. This article focuses on proxemics, proposing a new taxonomy and suggesting future directions through an analysis of state-of-the-art studies and the identification of research gaps. The various factors that affect the dynamic properties of proxemics patterns in human-robot interaction are thoroughly explored. To establish a coherent proxemics framework, we identified and organized the key parameters and attributes that shape proxemics behavior. Building on this framework, we introduce a novel approach to define proxemics in robot navigation, emphasizing the significant attributes that influence its structure and size. This leads to the development of a new taxonomy that serves as a foundation for guiding future research and development. Our findings underscore the complexity of defining personal distance, revealing it as a complex, multi-dimensional challenge. Furthermore, we highlight the flexible and dynamic nature of personal zone boundaries, which should be adaptable to different contexts and circumstances. Additionally, we propose a new layer for implementing proxemics in the navigation of social robots.
☆ Speed Optimization Algorithm based on Deterministic Markov Decision Process for Automated Highway Merge
This study presents a robust optimization algorithm for automated highway merge. The merging scenario is one of the challenging scenes in automated driving, because it requires adjusting ego vehicle's speed to match other vehicles before reaching the end point. Then, we model the speed planning problem as a deterministic Markov decision process. The proposed scheme is able to compute each state value of the process and reliably derive the optimal sequence of actions. In our approach, we adopt jerk as the action of the process to prevent a sudden change of acceleration. However, since this expands the state space, we also consider ways to achieve a real-time operation. We compared our scheme with a simple algorithm with the Intelligent Driver Model. We not only evaluated the scheme in a simulation environment but also conduct a real world testing.
comment: 4 pages, 8 figures, Accepted as a position paper for SICE Annual Conference 2023
☆ Sensorized gripper for human demonstrations
Ease of programming is a key factor in making robots ubiquitous in unstructured environments. In this work, we present a sensorized gripper built with off-the-shelf parts, used to record human demonstrations of a box in box assembly task. With very few trials of short interval timings each, we show that a robot can repeat the task successfully. We adopt a Cartesian approach to robot motion generation by computing the joint space solution while concurrently solving for the optimal robot position, to maximise manipulability. The statistics of the human demonstration are extracted using Gaussian Mixture Models (GMM) and the robot is commanded using impedance control.
☆ Geometric Iterative Approach for Efficient Inverse Kinematics and Planning of Continuum Robots with a Floating Base Under Environment Constraints
Continuum robots with floating bases demonstrate exceptional operational capabilities in confined spaces, such as those encountered in medical surgeries and equipment maintenance. However, developing low-cost solutions for their motion and planning problems remains a significant challenge in this field. This paper investigates the application of geometric iterative strategy methods to continuum robots, and proposes the algorithm based on an improved two-layer geometric iterative strategy for motion planning. First, we thoroughly study the kinematics and effective workspace of a multi-segment tendon-driven continuum robot with a floating base. Then, generalized iterative algorithms for solving arbitrary-segment continuum robots are proposed based on a series of problems such as initial arm shape dependence exhibited by similar methods when applied to continuum robots. Further, the task scenario is extended to a follow-the-leader task considering environmental factors, and further extended algorithm are proposed. Simulation comparison results with similar methods demonstrate the effectiveness of the proposed method in eliminating the initial arm shape dependence and improving the solution efficiency and accuracy. The experimental results further demonstrate that the method based on improved two-layer geometric iteration can be used for motion planning task of a continuum robot with a floating base, under an average deviation of about 4 mm in the end position, an average orientation deviation of no more than 1 degree, and the reduction of average number of iterations and time cost is 127.4 iterations and 72.6 ms compared with similar methods, respectively.
comment: 32 pages, 16 figures
☆ Project Jenkins: Turning Monkey Neural Data into Robotic Arm Movement, and Back
Project Jenkins explores how neural activity in the brain can be decoded into robotic movement and, conversely, how movement patterns can be used to generate synthetic neural data. Using real neural data recorded from motor and premotor cortex areas of a macaque monkey named Jenkins, we develop models for decoding (converting brain signals into robotic arm movements) and encoding (simulating brain activity corresponding to a given movement). For the interface between the brain simulation and the physical world, we utilized Koch v1.1 leader and follower robotic arms. We developed an interactive web console that allows users to generate synthetic brain data from joystick movements in real time. Our results are a step towards brain-controlled robotics, prosthetics, and enhancing normal motor function. By accurately modeling brain activity, we take a step toward flexible brain-computer interfaces that generalize beyond predefined movements. To support the research community, we provide open source tools for both synthetic data generation and neural decoding, fostering reproducibility and accelerating progress. The project is available at https://www.808robots.com/projects/jenkins
comment: 6 pages, 5 figures, project webpage and github
☆ SemanticFlow: A Self-Supervised Framework for Joint Scene Flow Prediction and Instance Segmentation in Dynamic Environments
Accurate perception of dynamic traffic scenes is crucial for high-level autonomous driving systems, requiring robust object motion estimation and instance segmentation. However, traditional methods often treat them as separate tasks, leading to suboptimal performance, spatio-temporal inconsistencies, and inefficiency in complex scenarios due to the absence of information sharing. This paper proposes a multi-task SemanticFlow framework to simultaneously predict scene flow and instance segmentation of full-resolution point clouds. The novelty of this work is threefold: 1) developing a coarse-to-fine prediction based multi-task scheme, where an initial coarse segmentation of static backgrounds and dynamic objects is used to provide contextual information for refining motion and semantic information through a shared feature processing module; 2) developing a set of loss functions to enhance the performance of scene flow estimation and instance segmentation, while can help ensure spatial and temporal consistency of both static and dynamic objects within traffic scenes; 3) developing a self-supervised learning scheme, which utilizes coarse segmentation to detect rigid objects and compute their transformation matrices between sequential frames, enabling the generation of self-supervised labels. The proposed framework is validated on the Argoverse and Waymo datasets, demonstrating superior performance in instance segmentation accuracy, scene flow estimation, and computational efficiency, establishing a new benchmark for self-supervised methods in dynamic scene understanding.
☆ Curiosity-Diffuser: Curiosity Guide Diffusion Models for Reliability
One of the bottlenecks in robotic intelligence is the instability of neural network models, which, unlike control models, lack a well-defined convergence domain and stability. This leads to risks when applying intelligence in the physical world. Specifically, imitation policy based on neural network may generate hallucinations, leading to inaccurate behaviors that impact the safety of real-world applications. To address this issue, this paper proposes the Curiosity-Diffuser, aimed at guiding the conditional diffusion model to generate trajectories with lower curiosity, thereby improving the reliability of policy. The core idea is to use a Random Network Distillation (RND) curiosity module to assess whether the model's behavior aligns with the training data, and then minimize curiosity by classifier guidance diffusion to reduce overgeneralization during inference. Additionally, we propose a computationally efficient metric for evaluating the reliability of the policy, measuring the similarity between the generated behaviors and the training dataset, to facilitate research about reliability learning. Finally, simulation verify the effectiveness and applicability of the proposed method to a variety of scenarios, showing that Curiosity-Diffuser significantly improves task performance and produces behaviors that are more similar to the training data. The code for this work is available at: github.com/CarlDegio/Curiosity-Diffuser
☆ A Study on Human-Swarm Interaction: A Framework for Assessing Situation Awareness and Task Performance
This paper introduces a framework for human swarm interaction studies that measures situation awareness in dynamic environments. A tablet-based interface was developed for a user study by implementing the concepts introduced in the framework, where operators guided a robotic swarm in a single-target search task, marking hazardous cells unknown to the swarm. Both subjective and objective situation awareness measures were used, with task performance evaluated based on how close the robots were to the target. The framework enabled a structured investigation of the role of situation awareness in human swarm interaction, leading to key findings such as improved task performance across attempts, showing the interface was learnable, centroid active robot position proved to be a useful task performance metric for assessing situation awareness, perception and projection played a key role in task performance, highlighting their importance in interface design and both subjective and objective situation awareness influenced task performance, emphasizing the need for interfaces that support both. These findings validate our framework as a structured approach for integrating situation awareness concepts into human swarm interaction studies, offering a systematic way to assess situation awareness and task performance. The framework can be applied to other swarming studies to evaluate interface learnability, identify meaningful task performance metrics, and refine interface designs to enhance situation awareness, ultimately improving human swarm interaction in dynamic environments.
comment: 10 pages, 8 figures, 1 table, 2 equations
☆ A Constrained Saddle Search Approach for Constructing Singular and Flexible Bar Frameworks
Singularity analysis is essential in robot kinematics, as singular configurations cause loss of control and kinematic indeterminacy. This paper models singularities in bar frameworks as saddle points on constrained manifolds. Given an under-constrained, non-singular bar framework, by allowing one edge to vary its length while fixing lengths of others, we define the squared length of the free edge as an energy functional and show that its local saddle points correspond to singular and flexible frameworks. Using our constrained saddle search approach, we identify previously unknown singular and flexible bar frameworks, providing new insights into singular robotics design and analysis.
comment: 9 pages, 3 figures
☆ Reward Training Wheels: Adaptive Auxiliary Rewards for Robotics Reinforcement Learning
Robotics Reinforcement Learning (RL) often relies on carefully engineered auxiliary rewards to supplement sparse primary learning objectives to compensate for the lack of large-scale, real-world, trial-and-error data. While these auxiliary rewards accelerate learning, they require significant engineering effort, may introduce human biases, and cannot adapt to the robot's evolving capabilities during training. In this paper, we introduce Reward Training Wheels (RTW), a teacher-student framework that automates auxiliary reward adaptation for robotics RL. To be specific, the RTW teacher dynamically adjusts auxiliary reward weights based on the student's evolving capabilities to determine which auxiliary reward aspects require more or less emphasis to improve the primary objective. We demonstrate RTW on two challenging robot tasks: navigation in highly constrained spaces and off-road vehicle mobility on vertically challenging terrain. In simulation, RTW outperforms expert-designed rewards by 2.35% in navigation success rate and improves off-road mobility performance by 122.62%, while achieving 35% and 3X faster training efficiency, respectively. Physical robot experiments further validate RTW's effectiveness, achieving a perfect success rate (5/5 trials vs. 2/5 for expert-designed rewards) and improving vehicle stability with up to 47.4% reduction in orientation angles.
comment: 7 pages, 5 figures
☆ Experience-based Optimal Motion Planning Algorithm for Solving Difficult Planning Problems Using a Limited Dataset
This study aims to address the key challenge of obtaining a high-quality solution path within a short calculation time by generalizing a limited dataset. In the informed experience-driven random trees connect star (IERTC*) process, the algorithm flexibly explores the search trees by morphing the micro paths generated from a single experience while reducing the path cost by introducing a re-wiring process and an informed sampling process. The core idea of this algorithm is to apply different strategies depending on the complexity of the local environment; for example, it adopts a more complex curved trajectory if obstacles are densely arranged near the search tree, and it adopts a simpler straight line if the local environment is sparse. The results of experiments using a general motion benchmark test revealed that IERTC* significantly improved the planning success rate in difficult problems in the cluttered environment (an average improvement of 49.3% compared to the state-of-the-art algorithm) while also significantly reducing the solution cost (a reduction of 56.3%) when using one hundred experiences. Furthermore, the results demonstrated outstanding planning performance even when only one experience was available (a 43.8% improvement in success rate and a 57.8% reduction in solution cost).
☆ Safety Aware Task Planning via Large Language Models in Robotics
The integration of large language models (LLMs) into robotic task planning has unlocked better reasoning capabilities for complex, long-horizon workflows. However, ensuring safety in LLM-driven plans remains a critical challenge, as these models often prioritize task completion over risk mitigation. This paper introduces SAFER (Safety-Aware Framework for Execution in Robotics), a multi-LLM framework designed to embed safety awareness into robotic task planning. SAFER employs a Safety Agent that operates alongside the primary task planner, providing safety feedback. Additionally, we introduce LLM-as-a-Judge, a novel metric leveraging LLMs as evaluators to quantify safety violations within generated task plans. Our framework integrates safety feedback at multiple stages of execution, enabling real-time risk assessment, proactive error correction, and transparent safety evaluation. We also integrate a control framework using Control Barrier Functions (CBFs) to ensure safety guarantees within SAFER's task planning. We evaluated SAFER against state-of-the-art LLM planners on complex long-horizon tasks involving heterogeneous robotic agents, demonstrating its effectiveness in reducing safety violations while maintaining task efficiency. We also verify the task planner and safety planner through actual hardware experiments involving multiple robots and a human.
☆ Capturing a Moving Target by Two Robots in the F2F Model
We study a search problem on capturing a moving target on an infinite real line. Two autonomous mobile robots (which can move with a maximum speed of 1) are initially placed at the origin, while an oblivious moving target is initially placed at a distance $d$ away from the origin. The robots can move along the line in any direction, but the target is oblivious, cannot change direction, and moves either away from or toward the origin at a constant speed $v$. Our aim is to design efficient algorithms for the two robots to capture the target. The target is captured only when both robots are co-located with it. The robots communicate with each other only face-to-face (F2F), meaning they can exchange information only when co-located, while the target remains oblivious and has no communication capabilities. We design algorithms under various knowledge scenarios, which take into account the prior knowledge the robots have about the starting distance $d$, the direction of movement (either toward or away from the origin), and the speed $v$ of the target. As a measure of the efficiency of the algorithms, we use the competitive ratio, which is the ratio of the capture time of an algorithm with limited knowledge to the capture time in the full-knowledge model. In our analysis, we are mindful of the cost of changing direction of movement, and show how to accomplish the capture of the target with at most three direction changes (turns).
☆ Robotic Paper Wrapping by Learning Force Control
Robotic packaging using wrapping paper poses significant challenges due to the material's complex deformation properties. The packaging process itself involves multiple steps, primarily categorized as folding the paper or creating creases. Small deviations in the robot's arm trajectory or force vector can lead to tearing or wrinkling of the paper, exacerbated by the variability in material properties. This study introduces a novel framework that combines imitation learning and reinforcement learning to enable a robot to perform each step of the packaging process efficiently. The framework allows the robot to follow approximate trajectories of the tool-center point (TCP) based on human demonstrations while optimizing force control parameters to prevent tearing or wrinkling, even with variable wrapping paper materials. The proposed method was validated through ablation studies, which demonstrated successful task completion with a significant reduction in tear and wrinkle rates. Furthermore, the force control strategy proved to be adaptable across different wrapping paper materials and robust against variations in the size of the target object.
☆ GASP: Unifying Geometric and Semantic Self-Supervised Pre-training for Autonomous Driving
Self-supervised pre-training based on next-token prediction has enabled large language models to capture the underlying structure of text, and has led to unprecedented performance on a large array of tasks when applied at scale. Similarly, autonomous driving generates vast amounts of spatiotemporal data, alluding to the possibility of harnessing scale to learn the underlying geometric and semantic structure of the environment and its evolution over time. In this direction, we propose a geometric and semantic self-supervised pre-training method, GASP, that learns a unified representation by predicting, at any queried future point in spacetime, (1) general occupancy, capturing the evolving structure of the 3D scene; (2) ego occupancy, modeling the ego vehicle path through the environment; and (3) distilled high-level features from a vision foundation model. By modeling geometric and semantic 4D occupancy fields instead of raw sensor measurements, the model learns a structured, generalizable representation of the environment and its evolution through time. We validate GASP on multiple autonomous driving benchmarks, demonstrating significant improvements in semantic occupancy forecasting, online mapping, and ego trajectory prediction. Our results demonstrate that continuous 4D geometric and semantic occupancy prediction provides a scalable and effective pre-training paradigm for autonomous driving. For code and additional visualizations, see \href{https://research.zenseact.com/publications/gasp/.
☆ Neural Lyapunov Function Approximation with Self-Supervised Reinforcement Learning ICRA
Control Lyapunov functions are traditionally used to design a controller which ensures convergence to a desired state, yet deriving these functions for nonlinear systems remains a complex challenge. This paper presents a novel, sample-efficient method for neural approximation of nonlinear Lyapunov functions, leveraging self-supervised Reinforcement Learning (RL) to enhance training data generation, particularly for inaccurately represented regions of the state space. The proposed approach employs a data-driven World Model to train Lyapunov functions from off-policy trajectories. The method is validated on both standard and goal-conditioned robotic tasks, demonstrating faster convergence and higher approximation accuracy compared to the state-of-the-art neural Lyapunov approximation baseline. The code is available at: https://github.com/CAV-Research-Lab/SACLA.git
comment: Accepted at IEEE International Conference on Robotics and Automation (ICRA)
☆ PEnGUiN: Partially Equivariant Graph NeUral Networks for Sample Efficient MARL
Equivariant Graph Neural Networks (EGNNs) have emerged as a promising approach in Multi-Agent Reinforcement Learning (MARL), leveraging symmetry guarantees to greatly improve sample efficiency and generalization. However, real-world environments often exhibit inherent asymmetries arising from factors such as external forces, measurement inaccuracies, or intrinsic system biases. This paper introduces \textit{Partially Equivariant Graph NeUral Networks (PEnGUiN)}, a novel architecture specifically designed to address these challenges. We formally identify and categorize various types of partial equivariance relevant to MARL, including subgroup equivariance, feature-wise equivariance, regional equivariance, and approximate equivariance. We theoretically demonstrate that PEnGUiN is capable of learning both fully equivariant (EGNN) and non-equivariant (GNN) representations within a unified framework. Through extensive experiments on a range of MARL problems incorporating various asymmetries, we empirically validate the efficacy of PEnGUiN. Our results consistently demonstrate that PEnGUiN outperforms both EGNNs and standard GNNs in asymmetric environments, highlighting their potential to improve the robustness and applicability of graph-based MARL algorithms in real-world scenarios.
☆ A Vehicle-Infrastructure Multi-layer Cooperative Decision-making Framework
Autonomous driving has entered the testing phase, but due to the limited decision-making capabilities of individual vehicle algorithms, safety and efficiency issues have become more apparent in complex scenarios. With the advancement of connected communication technologies, autonomous vehicles equipped with connectivity can leverage vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications, offering a potential solution to the decision-making challenges from individual vehicle's perspective. We propose a multi-level vehicle-infrastructure cooperative decision-making framework for complex conflict scenarios at unsignalized intersections. First, based on vehicle states, we define a method for quantifying vehicle impacts and their propagation relationships, using accumulated impact to group vehicles through motif-based graph clustering. Next, within and between vehicle groups, a pass order negotiation process based on Large Language Models (LLM) is employed to determine the vehicle passage order, resulting in planned vehicle actions. Simulation results from ablation experiments show that our approach reduces negotiation complexity and ensures safer, more efficient vehicle passage at intersections, aligning with natural decision-making logic.
comment: 7 pages, 6 figures
☆ CoIn-SafeLink: Safety-critical Control With Cost-sensitive Incremental Random Vector Functional Link Network IROS 2025
Control barrier functions (CBFs) play a crucial role in achieving the safety-critical control of robotic systems theoretically. However, most existing methods rely on the analytical expressions of unsafe state regions, which is often impractical for irregular and dynamic unsafe regions. In this paper, a novel CBF construction approach, called CoIn-SafeLink, is proposed based on cost-sensitive incremental random vector functional-link (RVFL) neural networks. By designing an appropriate cost function, CoIn-SafeLink achieves differentiated sensitivities to safe and unsafe samples, effectively achieving zero false-negative risk in unsafe sample classification. Additionally, an incremental update theorem for CoIn-SafeLink is proposed, enabling precise adjustments in response to changes in the unsafe region. Finally, the gradient analytical expression of the CoIn-SafeLink is provided to calculate the control input. The proposed method is validated on a 3-degree-of-freedom drone attitude control system. Experimental results demonstrate that the method can effectively learn the unsafe region boundaries and rapidly adapt as these regions evolve, with an update speed approximately five times faster than comparison methods. The source code is available at https://github.com/songqiaohu/CoIn-SafeLink.
comment: 8 pages, 8 figures, submitted to The 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
☆ SemanticScanpath: Combining Gaze and Speech for Situated Human-Robot Interaction Using LLMs
Large Language Models (LLMs) have substantially improved the conversational capabilities of social robots. Nevertheless, for an intuitive and fluent human-robot interaction, robots should be able to ground the conversation by relating ambiguous or underspecified spoken utterances to the current physical situation and to the intents expressed non verbally by the user, for example by using referential gaze. Here we propose a representation integrating speech and gaze to enable LLMs to obtain higher situated awareness and correctly resolve ambiguous requests. Our approach relies on a text-based semantic translation of the scanpath produced by the user along with the verbal requests and demonstrates LLM's capabilities to reason about gaze behavior, robustly ignoring spurious glances or irrelevant objects. We validate the system across multiple tasks and two scenarios, showing its generality and accuracy, and demonstrate its implementation on a robotic platform, closing the loop from request interpretation to execution.
☆ Reachable Sets-based Trajectory Planning Combining Reinforcement Learning and iLQR
The driving risk field is applicable to more complex driving scenarios, providing new approaches for safety decision-making and active vehicle control in intricate environments. However, existing research often overlooks the driving risk field and fails to consider the impact of risk distribution within drivable areas on trajectory planning, which poses challenges for enhancing safety. This paper proposes a trajectory planning method for intelligent vehicles based on the risk reachable set to further improve the safety of trajectory planning. First, we construct the reachable set incorporating the driving risk field to more accurately assess and avoid potential risks in drivable areas. Then, the initial trajectory is generated based on safe reinforcement learning and projected onto the reachable set. Finally, we introduce a trajectory planning method based on a constrained iterative quadratic regulator to optimize the initial solution, ensuring that the planned trajectory achieves optimal comfort, safety, and efficiency. We conduct simulation tests of trajectory planning in high-speed lane-changing scenarios. The results indicate that the proposed method can guarantee trajectory comfort and driving efficiency, with the generated trajectory situated outside high-risk boundaries, thereby ensuring vehicle safety during operation.
♻ ☆ Controllable Latent Diffusion for Traffic Simulation IROS
The validation of autonomous driving systems benefits greatly from the ability to generate scenarios that are both realistic and precisely controllable. Conventional approaches, such as real-world test drives, are not only expensive but also lack the flexibility to capture targeted edge cases for thorough evaluation. To address these challenges, we propose a controllable latent diffusion that guides the training of diffusion models via reinforcement learning to automatically generate a diverse and controllable set of driving scenarios for virtual testing. Our approach removes the reliance on large-scale real-world data by generating complex scenarios whose properties can be finely tuned to challenge and assess autonomous vehicle systems. Experimental results show that our approach has the lowest collision rate of $0.098$ and lowest off-road rate of $0.096$, demonstrating superiority over existing baselines. The proposed approach significantly improves the realism, stability and controllability of the generated scenarios, enabling more nuanced safety evaluation of autonomous vehicles.
comment: 7 pages,2 figures, submitted to IROS conference
♻ ☆ A nonlinear real time capable motion cueing algorithm based on deep reinforcement learning
In motion simulation, motion cueing algorithms are used for the trajectory planning of the motion simulator platform, where workspace limitations prevent direct reproduction of reference trajectories. Strategies such as motion washout, which return the platform to its center, are crucial in these settings. For serial robotic MSPs with highly nonlinear workspaces, it is essential to maximize the efficient utilization of the MSPs kinematic and dynamic capabilities. Traditional approaches, including classical washout filtering and linear model predictive control, fail to consider platform-specific, nonlinear properties, while nonlinear model predictive control, though comprehensive, imposes high computational demands that hinder real-time, pilot-in-the-loop application without further simplification. To overcome these limitations, we introduce a novel approach using deep reinforcement learning for motion cueing, demonstrated here for the first time in a 6-degree-of-freedom setting with full consideration of the MSPs kinematic nonlinearities. Previous work by the authors successfully demonstrated the application of DRL to a simplified 2-DOF setup, which did not consider kinematic or dynamic constraints. This approach has been extended to all 6 DOF by incorporating a complete kinematic model of the MSP into the algorithm, a crucial step for enabling its application on a real motion simulator. The training of the DRL-MCA is based on Proximal Policy Optimization in an actor-critic implementation combined with an automated hyperparameter optimization. After detailing the necessary training framework and the algorithm itself, we provide a comprehensive validation, demonstrating that the DRL MCA achieves competitive performance against established algorithms. Moreover, it generates feasible trajectories by respecting all system constraints and meets all real-time requirements with low...
♻ ☆ CAFEs: Cable-driven Collaborative Floating End-Effectors for Agriculture Applications
CAFEs (Collaborative Agricultural Floating End-effectors) is a new robot design and control approach to automating large-scale agricultural tasks. Based upon a cable driven robot architecture, by sharing the same roller-driven cable set with modular robotic arms, a fast-switching clamping mechanism allows each CAFE to clamp onto or release from the moving cables, enabling both independent and synchronized movement across the workspace. The methods developed to enable this system include the mechanical design, precise position control and a dynamic model for the spring-mass liked system, ensuring accurate and stable movement of the robotic arms. The system's scalability is further explored by studying the tension and sag in the cables to maintain performance as more robotic arms are deployed. Experimental and simulation results demonstrate the system's effectiveness in tasks including pick-and-place showing its potential to contribute to agricultural automation.
♻ ☆ Diff-DAgger: Uncertainty Estimation with Diffusion Policy for Robotic Manipulation ICRA
Recently, diffusion policy has shown impressive results in handling multi-modal tasks in robotic manipulation. However, it has fundamental limitations in out-of-distribution failures that persist due to compounding errors and its limited capability to extrapolate. One way to address these limitations is robot-gated DAgger, an interactive imitation learning with a robot query system to actively seek expert help during policy rollout. While robot-gated DAgger has high potential for learning at scale, existing methods like Ensemble-DAgger struggle with highly expressive policies: They often misinterpret policy disagreements as uncertainty at multi-modal decision points. To address this problem, we introduce Diff-DAgger, an efficient robot-gated DAgger algorithm that leverages the training objective of diffusion policy. We evaluate Diff-DAgger across different robot tasks including stacking, pushing, and plugging, and show that Diff-DAgger improves the task failure prediction by 39.0%, the task completion rate by 20.6%, and reduces the wall-clock time by a factor of 7.8. We hope that this work opens up a path for efficiently incorporating expressive yet data-hungry policies into interactive robot learning settings. The project website is available at: https://diffdagger.github.io.
comment: Project website: diffdagger.github.io 8 pages, 6 figures, accepted by International Conference on Robotics and Automation (ICRA) 2025
♻ ☆ Faster Model Predictive Control via Self-Supervised Initialization Learning
Optimization for robot control tasks, spanning various methodologies, includes Model Predictive Control (MPC). However, the complexity of the system, such as non-convex and non-differentiable cost functions and prolonged planning horizons often drastically increases the computation time, limiting MPC's real-world applicability. Prior works in speeding up the optimization have limitations on optimizing MPC running time directly and generalizing to hold out domains. To overcome this challenge, we develop a novel framework aiming at expediting optimization processes directly. In our framework, we combine offline self-supervised learning and online fine-tuning to improve the control performance and reduce optimization time. We demonstrate the success of our method on a novel and challenging Formula 1 track driving task. Comparing to single-phase training, our approach achieves a 19.4\% reduction in optimization time and a 6.3\% improvement in tracking accuracy on zero-shot tracks.
♻ ☆ SHIRE: Enhancing Sample Efficiency using Human Intuition in REinforcement Learning
The ability of neural networks to perform robotic perception and control tasks such as depth and optical flow estimation, simultaneous localization and mapping (SLAM), and automatic control has led to their widespread adoption in recent years. Deep Reinforcement Learning has been used extensively in these settings, as it does not have the unsustainable training costs associated with supervised learning. However, DeepRL suffers from poor sample efficiency, i.e., it requires a large number of environmental interactions to converge to an acceptable solution. Modern RL algorithms such as Deep Q Learning and Soft Actor-Critic attempt to remedy this shortcoming but can not provide the explainability required in applications such as autonomous robotics. Humans intuitively understand the long-time-horizon sequential tasks common in robotics. Properly using such intuition can make RL policies more explainable while enhancing their sample efficiency. In this work, we propose SHIRE, a novel framework for encoding human intuition using Probabilistic Graphical Models (PGMs) and using it in the Deep RL training pipeline to enhance sample efficiency. Our framework achieves 25-78% sample efficiency gains across the environments we evaluate at negligible overhead cost. Additionally, by teaching RL agents the encoded elementary behavior, SHIRE enhances policy explainability. A real-world demonstration further highlights the efficacy of policies trained using our framework.
♻ ☆ A Deep Reinforcement Learning Based Motion Cueing Algorithm for Vehicle Driving Simulation
Motion cueing algorithms (MCA) are used to control the movement of motion simulation platforms (MSP) to reproduce the motion perception of a real vehicle driver as accurately as possible without exceeding the limits of the workspace of the MSP. Existing approaches either produce non-optimal results due to filtering, linearization, or simplifications, or the computational time required exceeds the real-time requirements of a closed-loop application. This work presents a new solution to the motion cueing problem, where instead of a human designer specifying the principles of the MCA, an artificial intelligence (AI) learns the optimal motion by trial and error in interaction with the MSP. To achieve this, a well-established deep reinforcement learning (RL) algorithm is applied, where an agent interacts with an environment, allowing him to directly control a simulated MSP to obtain feedback on its performance. The RL algorithm used is proximal policy optimization (PPO), where the value function and the policy corresponding to the control strategy are both learned and mapped in artificial neural networks (ANN). This approach is implemented in Python and the functionality is demonstrated by the practical example of pre-recorded lateral maneuvers. The subsequent validation shows that the RL algorithm is able to learn the control strategy and improve the quality of the immersion compared to an established method. Thereby, the perceived motion signals determined by a model of the vestibular system are more accurately reproduced, and the resources of the MSP are used more economically.
♻ ☆ Long-horizon Locomotion and Manipulation on a Quadrupedal Robot with Large Language Models
We present a large language model (LLM) based system to empower quadrupedal robots with problem-solving abilities for long-horizon tasks beyond short-term motions. Long-horizon tasks for quadrupeds are challenging since they require both a high-level understanding of the semantics of the problem for task planning and a broad range of locomotion and manipulation skills to interact with the environment. Our system builds a high-level reasoning layer with large language models, which generates hybrid discrete-continuous plans as robot code from task descriptions. It comprises multiple LLM agents: a semantic planner that sketches a plan, a parameter calculator that predicts arguments in the plan, a code generator that converts the plan into executable robot code, and a replanner that handles execution failures or human interventions. At the low level, we adopt reinforcement learning to train a set of motion planning and control skills to unleash the flexibility of quadrupeds for rich environment interactions. Our system is tested on long-horizon tasks that are infeasible to complete with one single skill. Simulation and real-world experiments show that it successfully figures out multi-step strategies and demonstrates non-trivial behaviors, including building tools or notifying a human for help. Demos are available on our project page: https://sites.google.com/view/long-horizon-robot.
♻ ☆ RoomTour3D: Geometry-Aware Video-Instruction Tuning for Embodied Navigation CVPR2025
Vision-and-Language Navigation (VLN) suffers from the limited diversity and scale of training data, primarily constrained by the manual curation of existing simulators. To address this, we introduce RoomTour3D, a video-instruction dataset derived from web-based room tour videos that capture real-world indoor spaces and human walking demonstrations. Unlike existing VLN datasets, RoomTour3D leverages the scale and diversity of online videos to generate open-ended human walking trajectories and open-world navigable instructions. To compensate for the lack of navigation data in online videos, we perform 3D reconstruction and obtain 3D trajectories of walking paths augmented with additional information on the room types, object locations and 3D shape of surrounding scenes. Our dataset includes $\sim$100K open-ended description-enriched trajectories with $\sim$200K instructions, and 17K action-enriched trajectories from 1847 room tour environments. We demonstrate experimentally that RoomTour3D enables significant improvements across multiple VLN tasks including CVDN, SOON, R2R, and REVERIE. Moreover, RoomTour3D facilitates the development of trainable zero-shot VLN agents, showcasing the potential and challenges of advancing towards open-world navigation.
comment: CVPR2025
♻ ☆ ArtGS: Building Interactable Replicas of Complex Articulated Objects via Gaussian Splatting
Building articulated objects is a key challenge in computer vision. Existing methods often fail to effectively integrate information across different object states, limiting the accuracy of part-mesh reconstruction and part dynamics modeling, particularly for complex multi-part articulated objects. We introduce ArtGS, a novel approach that leverages 3D Gaussians as a flexible and efficient representation to address these issues. Our method incorporates canonical Gaussians with coarse-to-fine initialization and updates for aligning articulated part information across different object states, and employs a skinning-inspired part dynamics modeling module to improve both part-mesh reconstruction and articulation learning. Extensive experiments on both synthetic and real-world datasets, including a new benchmark for complex multi-part objects, demonstrate that ArtGS achieves state-of-the-art performance in joint parameter estimation and part mesh reconstruction. Our approach significantly improves reconstruction quality and efficiency, especially for multi-part articulated objects. Additionally, we provide comprehensive analyses of our design choices, validating the effectiveness of each component to highlight potential areas for future improvement. Our work is made publicly available at: https://articulate-gs.github.io.
♻ ☆ Interaction of Autonomous and Manually Controlled Vehicles Multiscenario Vehicle Interaction Dataset
The acquisition and analysis of high-quality sensor data constitute an essential requirement in shaping the development of fully autonomous driving systems. This process is indispensable for enhancing road safety and ensuring the effectiveness of the technological advancements in the automotive industry. This study introduces the Interaction of Autonomous and Manually-Controlled Vehicles (IAMCV) dataset, a novel and extensive dataset focused on inter-vehicle interactions. The dataset, enriched with a sophisticated array of sensors such as Light Detection and Ranging, cameras, Inertial Measurement Unit/Global Positioning System, and vehicle bus data acquisition, provides a comprehensive representation of real-world driving scenarios that include roundabouts, intersections, country roads, and highways, recorded across diverse locations in Germany. Furthermore, the study shows the versatility of the IAMCV dataset through several proof-of-concept use cases. Firstly, an unsupervised trajectory clustering algorithm illustrates the dataset's capability in categorizing vehicle movements without the need for labeled training data. Secondly, we compare an online camera calibration method with the Robot Operating System-based standard, using images captured in the dataset. Finally, a preliminary test employing the YOLOv8 object-detection model is conducted, augmented by reflections on the transferability of object detection across various LIDAR resolutions. These use cases underscore the practical utility of the collected dataset, emphasizing its potential to advance research and innovation in the area of intelligent vehicles.
♻ ☆ Incremental Learning for Robot Shared Autonomy
Shared autonomy holds promise for improving the usability and accessibility of assistive robotic arms, but current methods often rely on costly expert demonstrations and lack the ability to adapt post-deployment. This paper introduces ILSA, an Incrementally Learned Shared Autonomy framework that continually improves its assistive control policy through repeated user interactions. ILSA leverages synthetic kinematic trajectories for initial pretraining, reducing the need for expert demonstrations, and then incrementally finetunes its policy after each manipulation interaction, with mechanisms to balance new knowledge acquisition with existing knowledge retention during incremental learning. We validate ILSA for complex long-horizon tasks through a comprehensive ablation study and a user study with 20 participants, demonstrating its effectiveness and robustness in both quantitative performance and user-reported qualitative metrics. Code and videos are available at https://ilsa-robo.github.io/.
♻ ☆ ES-Parkour: Advanced Robot Parkour with Bio-inspired Event Camera and Spiking Neural Network
In recent years, quadruped robotics has advanced significantly, particularly in perception and motion control via reinforcement learning, enabling complex motions in challenging environments. Visual sensors like depth cameras enhance stability and robustness but face limitations, such as low operating frequencies relative to joint control and sensitivity to lighting, which hinder outdoor deployment. Additionally, deep neural networks in sensor and control systems increase computational demands. To address these issues, we introduce spiking neural networks (SNNs) and event cameras to perform a challenging quadruped parkour task. Event cameras capture dynamic visual data, while SNNs efficiently process spike sequences, mimicking biological perception. Experimental results demonstrate that this approach significantly outperforms traditional models, achieving excellent parkour performance with just 11.7% of the energy consumption of an artificial neural network (ANN)-based model, yielding an 88.3% energy reduction. By integrating event cameras with SNNs, our work advances robotic reinforcement learning and opens new possibilities for applications in demanding environments.
♻ ☆ PRISM: Preference Refinement via Implicit Scene Modeling for 3D Vision-Language Preference-Based Reinforcement Learning
We propose PRISM, a novel framework designed to overcome the limitations of 2D-based Preference-Based Reinforcement Learning (PBRL) by unifying 3D point cloud modeling and future-aware preference refinement. At its core, PRISM adopts a 3D Point Cloud-Language Model (3D-PC-LLM) to mitigate occlusion and viewpoint biases, ensuring more stable and spatially consistent preference signals. Additionally, PRISM leverages Chain-of-Thought (CoT) reasoning to incorporate long-horizon considerations, thereby preventing the short-sighted feedback often seen in static preference comparisons. In contrast to conventional PBRL techniques, this integration of 3D perception and future-oriented reasoning leads to significant gains in preference agreement rates, faster policy convergence, and robust generalization across unseen robotic environments. Our empirical results, spanning tasks such as robotic manipulation and autonomous navigation, highlight PRISM's potential for real-world applications where precise spatial understanding and reliable long-term decision-making are critical. By bridging 3D geometric awareness with CoT-driven preference modeling, PRISM establishes a comprehensive foundation for scalable, human-aligned reinforcement learning.
comment: I withdraw arXiv:2503.10177 due to critical computational errors invalidating its conclusions and the withdrawal of consent from co-author Yanjun Chen
♻ ☆ PRESTO: Fast Motion Planning Using Diffusion Models Based on Key-Configuration Environment Representation ICRA 2025
We introduce a learning-guided motion planning framework that generates seed trajectories using a diffusion model for trajectory optimization. Given a workspace, our method approximates the configuration space (C-space) obstacles through an environment representation consisting of a sparse set of task-related key configurations, which is then used as a conditioning input to the diffusion model. The diffusion model integrates regularization terms that encourage smooth, collision-free trajectories during training, and trajectory optimization refines the generated seed trajectories to correct any colliding segments. Our experimental results demonstrate that high-quality trajectory priors, learned through our C-space-grounded diffusion model, enable the efficient generation of collision-free trajectories in narrow-passage environments, outperforming previous learning- and planning-based baselines. Videos and additional materials can be found on the project page: https://kiwi-sherbet.github.io/PRESTO.
comment: Accepted to ICRA 2025
♻ ☆ Dynamic Open-Vocabulary 3D Scene Graphs for Long-term Language-Guided Mobile Manipulation
Enabling mobile robots to perform long-term tasks in dynamic real-world environments is a formidable challenge, especially when the environment changes frequently due to human-robot interactions or the robot's own actions. Traditional methods typically assume static scenes, which limits their applicability in the continuously changing real world. To overcome these limitations, we present DovSG, a novel mobile manipulation framework that leverages dynamic open-vocabulary 3D scene graphs and a language-guided task planning module for long-term task execution. DovSG takes RGB-D sequences as input and utilizes vision-language models (VLMs) for object detection to obtain high-level object semantic features. Based on the segmented objects, a structured 3D scene graph is generated for low-level spatial relationships. Furthermore, an efficient mechanism for locally updating the scene graph, allows the robot to adjust parts of the graph dynamically during interactions without the need for full scene reconstruction. This mechanism is particularly valuable in dynamic environments, enabling the robot to continually adapt to scene changes and effectively support the execution of long-term tasks. We validated our system in real-world environments with varying degrees of manual modifications, demonstrating its effectiveness and superior performance in long-term tasks. Our project page is available at: https://bjhyzj.github.io/dovsg-web.
comment: Accepted by IEEE Robotics and Automation Letters (RA-L), 2025
♻ ☆ SNAIL Radar: A large-scale diverse benchmark for evaluating 4D-radar-based SLAM
4D radars are increasingly favored for odometry and mapping of autonomous systems due to their robustness in harsh weather and dynamic environments. Existing datasets, however, often cover limited areas and are typically captured using a single platform. To address this gap, we present a diverse large-scale dataset specifically designed for 4D radar-based localization and mapping. This dataset was gathered using three different platforms: a handheld device, an e-bike, and an SUV, under a variety of environmental conditions, including clear days, nighttime, and heavy rain. The data collection occurred from September 2023 to February 2024, encompassing diverse settings such as roads in a vegetated campus and tunnels on highways. Each route was traversed multiple times to facilitate place recognition evaluations. The sensor suite included a 3D lidar, 4D radars, stereo cameras, consumer-grade IMUs, and a GNSS/INS system. Sensor data packets were synchronized to GNSS time using a two-step process including a convex-hull-based smoothing and a correlation-based correction. The reference motion for the platforms was generated by registering lidar scans to a terrestrial laser scanner (TLS) point cloud map by a lidar inertial sequential localizer which supports forward and backward processing. The backward pass enables detailed quantitative and qualitative assessments of reference motion accuracy. To demonstrate the dataset's utility, we evaluated several state-of-the-art radar-based odometry and place recognition methods, indicating existing challenges in radar-based SLAM.
comment: 16 pages, 5 figures, 7 tables
♻ ☆ StackGen: Generating Stable Structures from Silhouettes via Diffusion
Humans naturally obtain intuition about the interactions between and the stability of rigid objects by observing and interacting with the world. It is this intuition that governs the way in which we regularly configure objects in our environment, allowing us to build complex structures from simple, everyday objects. Robotic agents, on the other hand, traditionally require an explicit model of the world that includes the detailed geometry of each object and an analytical model of the environment dynamics, which are difficult to scale and preclude generalization. Instead, robots would benefit from an awareness of intuitive physics that enables them to similarly reason over the stable interaction of objects in their environment. Towards that goal, we propose StackGen, a diffusion model that generates diverse stable configurations of building blocks matching a target silhouette. To demonstrate the capability of the method, we evaluate it in a simulated environment and deploy it in the real setting using a robotic arm to assemble structures generated by the model.
♻ ☆ Learning Nash Equilibrial Hamiltonian for Two-Player Collision-Avoiding Interactions
We consider the problem of learning Nash equilibrial policies for two-player risk-sensitive collision-avoiding interactions. Solving the Hamilton-Jacobi-Isaacs equations of such general-sum differential games in real time is an open challenge due to the discontinuity of equilibrium values on the state space. A common solution is to learn a neural network that approximates the equilibrium Hamiltonian for given system states and actions. The learning, however, is usually supervised and requires a large amount of sample equilibrium policies from different initial states in order to mitigate the risks of collisions. This paper claims two contributions towards more data-efficient learning of equilibrium policies: First, instead of computing Hamiltonian through a value network, we show that the equilibrium co-states have simple structures when collision avoidance dominates the agents' loss functions and system dynamics is linear, and therefore are more data-efficient to learn. Second, we introduce theory-driven active learning to guide data sampling, where the acquisition function measures the compliance of the predicted co-states to Pontryagin's Maximum Principle. On an uncontrolled intersection case, the proposed method leads to more generalizable approximation of the equilibrium policies, and in turn, lower collision probabilities, than the state-of-the-art under the same data acquisition budget.
comment: Accepted by 2025 ACC
♻ ☆ ContactSDF: Signed Distance Functions as Multi-Contact Models for Dexterous Manipulation
In this paper, we propose ContactSDF, a method that uses signed distance functions (SDFs) to approximate multi-contact models, including both collision detection and time-stepping routines. ContactSDF first establishes an SDF using the supporting plane representation of an object for collision detection, and then uses the generated contact dual cones to build a second SDF for time-stepping prediction of the next state. Those two SDFs create a differentiable and closed-form multi-contact dynamic model for state prediction, enabling efficient model learning and optimization for contact-rich manipulation. We perform extensive simulation experiments to show the effectiveness of ContactSDF for model learning and real-time control of dexterous manipulation. We further evaluate the ContactSDF on a hardware Allegro hand for on-palm reorientation tasks. Results show with around 2 minutes of learning on hardware, the ContactSDF achieves high-quality dexterous manipulation at a frequency of 30-60Hz. Project page https://yangwen-1102.github.io/contactsdf.github.io/
♻ ☆ Fast3R: Towards 3D Reconstruction of 1000+ Images in One Forward Pass CVPR 2025
Multi-view 3D reconstruction remains a core challenge in computer vision, particularly in applications requiring accurate and scalable representations across diverse perspectives. Current leading methods such as DUSt3R employ a fundamentally pairwise approach, processing images in pairs and necessitating costly global alignment procedures to reconstruct from multiple views. In this work, we propose Fast 3D Reconstruction (Fast3R), a novel multi-view generalization to DUSt3R that achieves efficient and scalable 3D reconstruction by processing many views in parallel. Fast3R's Transformer-based architecture forwards N images in a single forward pass, bypassing the need for iterative alignment. Through extensive experiments on camera pose estimation and 3D reconstruction, Fast3R demonstrates state-of-the-art performance, with significant improvements in inference speed and reduced error accumulation. These results establish Fast3R as a robust alternative for multi-view applications, offering enhanced scalability without compromising reconstruction accuracy.
comment: CVPR 2025. Project website: https://fast3r-3d.github.io/
♻ ☆ Mechanisms and Computational Design of Multi-Modal End-Effector with Force Sensing using Gated Networks ICRA25
In limbed robotics, end-effectors must serve dual functions, such as both feet for locomotion and grippers for grasping, which presents design challenges. This paper introduces a multi-modal end-effector capable of transitioning between flat and line foot configurations while providing grasping capabilities. MAGPIE integrates 8-axis force sensing using proposed mechanisms with hall effect sensors, enabling both contact and tactile force measurements. We present a computational design framework for our sensing mechanism that accounts for noise and interference, allowing for desired sensitivity and force ranges and generating ideal inverse models. The hardware implementation of MAGPIE is validated through experiments, demonstrating its capability as a foot and verifying the performance of the sensing mechanisms, ideal models, and gated network-based models.
comment: Proceeding to 2025 IEEE International Conference on Robotics and Automation (ICRA25)
Computer Vision 145
☆ TULIP: Towards Unified Language-Image Pretraining
Despite the recent success of image-text contrastive models like CLIP and SigLIP, these models often struggle with vision-centric tasks that demand high-fidelity image understanding, such as counting, depth estimation, and fine-grained object recognition. These models, by performing language alignment, tend to prioritize high-level semantics over visual understanding, weakening their image understanding. On the other hand, vision-focused models are great at processing visual information but struggle to understand language, limiting their flexibility for language-driven tasks. In this work, we introduce TULIP, an open-source, drop-in replacement for existing CLIP-like models. Our method leverages generative data augmentation, enhanced image-image and text-text contrastive learning, and image/text reconstruction regularization to learn fine-grained visual features while preserving global semantic alignment. Our approach, scaling to over 1B parameters, outperforms existing state-of-the-art (SOTA) models across multiple benchmarks, establishing a new SOTA zero-shot performance on ImageNet-1K, delivering up to a $2\times$ enhancement over SigLIP on RxRx1 in linear probing for few-shot classification, and improving vision-language models, achieving over $3\times$ higher scores than SigLIP on MMVP. Our code/checkpoints are available at https://tulip-berkeley.github.io
☆ Cube: A Roblox View of 3D Intelligence
Foundation models trained on vast amounts of data have demonstrated remarkable reasoning and generation capabilities in the domains of text, images, audio and video. Our goal at Roblox is to build such a foundation model for 3D intelligence, a model that can support developers in producing all aspects of a Roblox experience, from generating 3D objects and scenes to rigging characters for animation to producing programmatic scripts describing object behaviors. We discuss three key design requirements for such a 3D foundation model and then present our first step towards building such a model. We expect that 3D geometric shapes will be a core data type and describe our solution for 3D shape tokenizer. We show how our tokenization scheme can be used in applications for text-to-shape generation, shape-to-text generation and text-to-scene generation. We demonstrate how these applications can collaborate with existing large language models (LLMs) to perform scene analysis and reasoning. We conclude with a discussion outlining our path to building a fully unified foundation model for 3D intelligence.
comment: Our code and model weights can be found at: https://github.com/Roblox/cube
☆ Toward task-driven satellite image super-resolution RSS 2024
Super-resolution is aimed at reconstructing high-resolution images from low-resolution observations. State-of-the-art approaches underpinned with deep learning allow for obtaining outstanding results, generating images of high perceptual quality. However, it often remains unclear whether the reconstructed details are close to the actual ground-truth information and whether they constitute a more valuable source for image analysis algorithms. In the reported work, we address the latter problem, and we present our efforts toward learning super-resolution algorithms in a task-driven way to make them suitable for generating high-resolution images that can be exploited for automated image analysis. In the reported initial research, we propose a methodological approach for assessing the existing models that perform computer vision tasks in terms of whether they can be used for evaluating super-resolution reconstruction algorithms, as well as training them in a task-driven way. We support our analysis with experimental study and we expect it to establish a solid foundation for selecting appropriate computer vision tasks that will advance the capabilities of real-world super-resolution.
comment: Submitted to IEEE IGARSS 2024
☆ EgoDTM: Towards 3D-Aware Egocentric Video-Language Pretraining
Egocentric video-language pretraining has significantly advanced video representation learning. Humans perceive and interact with a fully 3D world, developing spatial awareness that extends beyond text-based understanding. However, most previous works learn from 1D text or 2D visual cues, such as bounding boxes, which inherently lack 3D understanding. To bridge this gap, we introduce EgoDTM, an Egocentric Depth- and Text-aware Model, jointly trained through large-scale 3D-aware video pretraining and video-text contrastive learning. EgoDTM incorporates a lightweight 3D-aware decoder to efficiently learn 3D-awareness from pseudo depth maps generated by depth estimation models. To further facilitate 3D-aware video pretraining, we enrich the original brief captions with hand-object visual cues by organically combining several foundation models. Extensive experiments demonstrate EgoDTM's superior performance across diverse downstream tasks, highlighting its superior 3D-aware visual understanding. Our code will be released at https://github.com/xuboshen/EgoDTM.
comment: Code will be released at: https://github.com/xuboshen/EgoDTM
☆ FP4DiT: Towards Effective Floating Point Quantization for Diffusion Transformers
Diffusion Models (DM) have revolutionized the text-to-image visual generation process. However, the large computational cost and model footprint of DMs hinders practical deployment, especially on edge devices. Post-training quantization (PTQ) is a lightweight method to alleviate these burdens without the need for training or fine-tuning. While recent DM PTQ methods achieve W4A8 on integer-based PTQ, two key limitations remain: First, while most existing DM PTQ methods evaluate on classical DMs like Stable Diffusion XL, 1.5 or earlier, which use convolutional U-Nets, newer Diffusion Transformer (DiT) models like the PixArt series, Hunyuan and others adopt fundamentally different transformer backbones to achieve superior image synthesis. Second, integer (INT) quantization is prevailing in DM PTQ but doesn't align well with the network weight and activation distribution, while Floating-Point Quantization (FPQ) is still under-investigated, yet it holds the potential to better align the weight and activation distributions in low-bit settings for DiT. In response, we introduce FP4DiT, a PTQ method that leverages FPQ to achieve W4A6 quantization. Specifically, we extend and generalize the Adaptive Rounding PTQ technique to adequately calibrate weight quantization for FPQ and demonstrate that DiT activations depend on input patch data, necessitating robust online activation quantization techniques. Experimental results demonstrate that FP4DiT outperforms integer-based PTQ at W4A6 and W4A8 precision and generates convincing visual content on PixArt-$\alpha$, PixArt-$\Sigma$ and Hunyuan in terms of several T2I metrics such as HPSv2 and CLIP.
comment: The code is available at https://github.com/cccrrrccc/FP4DiT
☆ Di$\mathtt{[M]}$O: Distilling Masked Diffusion Models into One-step Generator
Masked Diffusion Models (MDMs) have emerged as a powerful generative modeling technique. Despite their remarkable results, they typically suffer from slow inference with several steps. In this paper, we propose Di$\mathtt{[M]}$O, a novel approach that distills masked diffusion models into a one-step generator. Di$\mathtt{[M]}$O addresses two key challenges: (1) the intractability of using intermediate-step information for one-step generation, which we solve through token-level distribution matching that optimizes model output logits by an 'on-policy framework' with the help of an auxiliary model; and (2) the lack of entropy in the initial distribution, which we address through a token initialization strategy that injects randomness while maintaining similarity to teacher training distribution. We show Di$\mathtt{[M]}$O's effectiveness on both class-conditional and text-conditional image generation, impressively achieving performance competitive to multi-step teacher outputs while drastically reducing inference time. To our knowledge, we are the first to successfully achieve one-step distillation of masked diffusion models and the first to apply discrete distillation to text-to-image generation, opening new paths for efficient generative modeling.
☆ MotionStreamer: Streaming Motion Generation via Diffusion-based Autoregressive Model in Causal Latent Space
This paper addresses the challenge of text-conditioned streaming motion generation, which requires us to predict the next-step human pose based on variable-length historical motions and incoming texts. Existing methods struggle to achieve streaming motion generation, e.g., diffusion models are constrained by pre-defined motion lengths, while GPT-based methods suffer from delayed response and error accumulation problem due to discretized non-causal tokenization. To solve these problems, we propose MotionStreamer, a novel framework that incorporates a continuous causal latent space into a probabilistic autoregressive model. The continuous latents mitigate information loss caused by discretization and effectively reduce error accumulation during long-term autoregressive generation. In addition, by establishing temporal causal dependencies between current and historical motion latents, our model fully utilizes the available information to achieve accurate online motion decoding. Experiments show that our method outperforms existing approaches while offering more applications, including multi-round generation, long-term generation, and dynamic motion composition. Project Page: https://zju3dv.github.io/MotionStreamer/
comment: Project Page: https://zju3dv.github.io/MotionStreamer/
☆ V2X-DG: Domain Generalization for Vehicle-to-Everything Cooperative Perception ICRA 2025
LiDAR-based Vehicle-to-Everything (V2X) cooperative perception has demonstrated its impact on the safety and effectiveness of autonomous driving. Since current cooperative perception algorithms are trained and tested on the same dataset, the generalization ability of cooperative perception systems remains underexplored. This paper is the first work to study the Domain Generalization problem of LiDAR-based V2X cooperative perception (V2X-DG) for 3D detection based on four widely-used open source datasets: OPV2V, V2XSet, V2V4Real and DAIR-V2X. Our research seeks to sustain high performance not only within the source domain but also across other unseen domains, achieved solely through training on source domain. To this end, we propose Cooperative Mixup Augmentation based Generalization (CMAG) to improve the model generalization capability by simulating the unseen cooperation, which is designed compactly for the domain gaps in cooperative perception. Furthermore, we propose a constraint for the regularization of the robust generalized feature representation learning: Cooperation Feature Consistency (CFC), which aligns the intermediately fused features of the generalized cooperation by CMAG and the early fused features of the original cooperation in source domain. Extensive experiments demonstrate that our approach achieves significant performance gains when generalizing to other unseen datasets while it also maintains strong performance on the source dataset.
comment: accepted by ICRA 2025
☆ Visual Position Prompt for MLLM based Visual Grounding
Although Multimodal Large Language Models (MLLMs) excel at various image-related tasks, they encounter challenges in precisely aligning coordinates with spatial information within images, particularly in position-aware tasks such as visual grounding. This limitation arises from two key factors. First, MLLMs lack explicit spatial references, making it difficult to associate textual descriptions with precise image locations. Second, their feature extraction processes prioritize global context over fine-grained spatial details, leading to weak localization capability. To address this issue, we introduce VPP-LLaVA, an MLLM equipped with Visual Position Prompt (VPP) to improve its grounding capability. VPP-LLaVA integrates two complementary mechanisms. The global VPP overlays learnable, axis-like embeddings onto the input image to provide structured spatial cues. The local VPP focuses on fine-grained localization by incorporating position-aware queries, which suggests probable object locations. We also introduce a VPP-SFT dataset with 0.6M samples, consolidating high-quality visual grounding data into a compact format for efficient model training. Training on this dataset with VPP enhances the model's performance, achieving state-of-the-art results on standard grounding benchmarks despite using fewer training samples compared to other MLLMs like MiniGPT-v2, which rely on much larger datasets ($\sim$21M samples). The code and VPP-SFT dataset will be available at https://github.com/WayneTomas/VPP-LLaVA upon acceptance.
☆ LIFT: Latent Implicit Functions for Task- and Data-Agnostic Encoding
Implicit Neural Representations (INRs) are proving to be a powerful paradigm in unifying task modeling across diverse data domains, offering key advantages such as memory efficiency and resolution independence. Conventional deep learning models are typically modality-dependent, often requiring custom architectures and objectives for different types of signals. However, existing INR frameworks frequently rely on global latent vectors or exhibit computational inefficiencies that limit their broader applicability. We introduce LIFT, a novel, high-performance framework that addresses these challenges by capturing multiscale information through meta-learning. LIFT leverages multiple parallel localized implicit functions alongside a hierarchical latent generator to produce unified latent representations that span local, intermediate, and global features. This architecture facilitates smooth transitions across local regions, enhancing expressivity while maintaining inference efficiency. Additionally, we introduce ReLIFT, an enhanced variant of LIFT that incorporates residual connections and expressive frequency encodings. With this straightforward approach, ReLIFT effectively addresses the convergence-capacity gap found in comparable methods, providing an efficient yet powerful solution to improve capacity and speed up convergence. Empirical results show that LIFT achieves state-of-the-art (SOTA) performance in generative modeling and classification tasks, with notable reductions in computational costs. Moreover, in single-task settings, the streamlined ReLIFT architecture proves effective in signal representations and inverse problem tasks.
☆ Temporal Regularization Makes Your Video Generator Stronger
Temporal quality is a critical aspect of video generation, as it ensures consistent motion and realistic dynamics across frames. However, achieving high temporal coherence and diversity remains challenging. In this work, we explore temporal augmentation in video generation for the first time, and introduce FluxFlow for initial investigation, a strategy designed to enhance temporal quality. Operating at the data level, FluxFlow applies controlled temporal perturbations without requiring architectural modifications. Extensive experiments on UCF-101 and VBench benchmarks demonstrate that FluxFlow significantly improves temporal coherence and diversity across various video generation models, including U-Net, DiT, and AR-based architectures, while preserving spatial fidelity. These findings highlight the potential of temporal augmentation as a simple yet effective approach to advancing video generation quality.
comment: Project: https://haroldchen19.github.io/FluxFlow/
☆ Automated Processing of eXplainable Artificial Intelligence Outputs in Deep Learning Models for Fault Diagnostics of Large Infrastructures
Deep Learning (DL) models processing images to recognize the health state of large infrastructure components can exhibit biases and rely on non-causal shortcuts. eXplainable Artificial Intelligence (XAI) can address these issues but manually analyzing explanations generated by XAI techniques is time-consuming and prone to errors. This work proposes a novel framework that combines post-hoc explanations with semi-supervised learning to automatically identify anomalous explanations that deviate from those of correctly classified images and may therefore indicate model abnormal behaviors. This significantly reduces the workload for maintenance decision-makers, who only need to manually reclassify images flagged as having anomalous explanations. The proposed framework is applied to drone-collected images of insulator shells for power grid infrastructure monitoring, considering two different Convolutional Neural Networks (CNNs), GradCAM explanations and Deep Semi-Supervised Anomaly Detection. The average classification accuracy on two faulty classes is improved by 8% and maintenance operators are required to manually reclassify only 15% of the images. We compare the proposed framework with a state-of-the-art approach based on the faithfulness metric: the experimental results obtained demonstrate that the proposed framework consistently achieves F_1 scores larger than those of the faithfulness-based approach. Additionally, the proposed framework successfully identifies correct classifications that result from non-causal shortcuts, such as the presence of ID tags printed on insulator shells.
☆ Federated Continual 3D Segmentation With Single-round Communication
Federated learning seeks to foster collaboration among distributed clients while preserving the privacy of their local data. Traditionally, federated learning methods assume a fixed setting in which client data and learning objectives remain constant. However, in real-world scenarios, new clients may join, and existing clients may expand the segmentation label set as task requirements evolve. In such a dynamic federated analysis setup, the conventional federated communication strategy of model aggregation per communication round is suboptimal. As new clients join, this strategy requires retraining, linearly increasing communication and computation overhead. It also imposes requirements for synchronized communication, which is difficult to achieve among distributed clients. In this paper, we propose a federated continual learning strategy that employs a one-time model aggregation at the server through multi-model distillation. This approach builds and updates the global model while eliminating the need for frequent server communication. When integrating new data streams or onboarding new clients, this approach efficiently reuses previous client models, avoiding the need to retrain the global model across the entire federation. By minimizing communication load and bypassing the need to put unchanged clients online, our approach relaxes synchronization requirements among clients, providing an efficient and scalable federated analysis framework suited for real-world applications. Using multi-class 3D abdominal CT segmentation as an application task, we demonstrate the effectiveness of the proposed approach.
☆ Learn Your Scales: Towards Scale-Consistent Generative Novel View Synthesis
Conventional depth-free multi-view datasets are captured using a moving monocular camera without metric calibration. The scales of camera positions in this monocular setting are ambiguous. Previous methods have acknowledged scale ambiguity in multi-view data via various ad-hoc normalization pre-processing steps, but have not directly analyzed the effect of incorrect scene scales on their application. In this paper, we seek to understand and address the effect of scale ambiguity when used to train generative novel view synthesis methods (GNVS). In GNVS, new views of a scene or object can be minimally synthesized given a single image and are, thus, unconstrained, necessitating the use of generative methods. The generative nature of these models captures all aspects of uncertainty, including any uncertainty of scene scales, which act as nuisance variables for the task. We study the effect of scene scale ambiguity in GNVS when sampled from a single image by isolating its effect on the resulting models and, based on these intuitions, define new metrics that measure the scale inconsistency of generated views. We then propose a framework to estimate scene scales jointly with the GNVS model in an end-to-end fashion. Empirically, we show that our method reduces the scale inconsistency of generated views without the complexity or downsides of previous scale normalization methods. Further, we show that removing this ambiguity improves generated image quality of the resulting GNVS model.
☆ Visual Persona: Foundation Model for Full-Body Human Customization CVPR 2025
We introduce Visual Persona, a foundation model for text-to-image full-body human customization that, given a single in-the-wild human image, generates diverse images of the individual guided by text descriptions. Unlike prior methods that focus solely on preserving facial identity, our approach captures detailed full-body appearance, aligning with text descriptions for body structure and scene variations. Training this model requires large-scale paired human data, consisting of multiple images per individual with consistent full-body identities, which is notoriously difficult to obtain. To address this, we propose a data curation pipeline leveraging vision-language models to evaluate full-body appearance consistency, resulting in Visual Persona-500K, a dataset of 580k paired human images across 100k unique identities. For precise appearance transfer, we introduce a transformer encoder-decoder architecture adapted to a pre-trained text-to-image diffusion model, which augments the input image into distinct body regions, encodes these regions as local appearance features, and projects them into dense identity embeddings independently to condition the diffusion model for synthesizing customized images. Visual Persona consistently surpasses existing approaches, generating high-quality, customized images from in-the-wild inputs. Extensive ablation studies validate design choices, and we demonstrate the versatility of Visual Persona across various downstream tasks.
comment: CVPR 2025, Project page is available at https://cvlab-kaist.github.io/Visual-Persona
☆ Improving Adversarial Transferability on Vision Transformers via Forward Propagation Refinement CVPR2025
Vision Transformers (ViTs) have been widely applied in various computer vision and vision-language tasks. To gain insights into their robustness in practical scenarios, transferable adversarial examples on ViTs have been extensively studied. A typical approach to improving adversarial transferability is by refining the surrogate model. However, existing work on ViTs has restricted their surrogate refinement to backward propagation. In this work, we instead focus on Forward Propagation Refinement (FPR) and specifically refine two key modules of ViTs: attention maps and token embeddings. For attention maps, we propose Attention Map Diversification (AMD), which diversifies certain attention maps and also implicitly imposes beneficial gradient vanishing during backward propagation. For token embeddings, we propose Momentum Token Embedding (MTE), which accumulates historical token embeddings to stabilize the forward updates in both the Attention and MLP blocks. We conduct extensive experiments with adversarial examples transferred from ViTs to various CNNs and ViTs, demonstrating that our FPR outperforms the current best (backward) surrogate refinement by up to 7.0\% on average. We also validate its superiority against popular defenses and its compatibility with other transfer methods. Codes and appendix are available at https://github.com/RYC-98/FPR.
comment: CVPR2025
☆ Towards efficient keyword spotting using spike-based time difference encoders
Keyword spotting in edge devices is becoming increasingly important as voice-activated assistants are widely used. However, its deployment is often limited by the extreme low-power constraints of the target embedded systems. Here, we explore the Temporal Difference Encoder (TDE) performance in keyword spotting. This recent neuron model encodes the time difference in instantaneous frequency and spike count to perform efficient keyword spotting with neuromorphic processors. We use the TIdigits dataset of spoken digits with a formant decomposition and rate-based encoding into spikes. We compare three Spiking Neural Networks (SNNs) architectures to learn and classify spatio-temporal signals. The proposed SNN architectures are made of three layers with variation in its hidden layer composed of either (1) feedforward TDE, (2) feedforward Current-Based Leaky Integrate-and-Fire (CuBa-LIF), or (3) recurrent CuBa-LIF neurons. We first show that the spike trains of the frequency-converted spoken digits have a large amount of information in the temporal domain, reinforcing the importance of better exploiting temporal encoding for such a task. We then train the three SNNs with the same number of synaptic weights to quantify and compare their performance based on the accuracy and synaptic operations. The resulting accuracy of the feedforward TDE network (89%) is higher than the feedforward CuBa-LIF network (71%) and close to the recurrent CuBa-LIF network (91%). However, the feedforward TDE-based network performs 92% fewer synaptic operations than the recurrent CuBa-LIF network with the same amount of synapses. In addition, the results of the TDE network are highly interpretable and correlated with the frequency and timescale features of the spoken keywords in the dataset. Our findings suggest that the TDE is a promising neuron model for scalable event-driven processing of spatio-temporal patterns.
comment: 26 pages, 9 figures
☆ FedSCA: Federated Tuning with Similarity-guided Collaborative Aggregation for Heterogeneous Medical Image Segmentation
Transformer-based foundation models (FMs) have recently demonstrated remarkable performance in medical image segmentation. However, scaling these models is challenging due to the limited size of medical image datasets within isolated hospitals, where data centralization is restricted due to privacy concerns. These constraints, combined with the data-intensive nature of FMs, hinder their broader application. Integrating federated learning (FL) with foundation models (FLFM) fine-tuning offers a potential solution to these challenges by enabling collaborative model training without data sharing, thus allowing FMs to take advantage of a diverse pool of sensitive medical image data across hospitals/clients. However, non-independent and identically distributed (non-IID) data among clients, paired with computational and communication constraints in federated environments, presents an additional challenge that limits further performance improvements and remains inadequately addressed in existing studies. In this work, we propose a novel FLFM fine-tuning framework, \underline{\textbf{Fed}}erated tuning with \underline{\textbf{S}}imilarity-guided \underline{\textbf{C}}ollaborative \underline{\textbf{A}}ggregation (FedSCA), encompassing all phases of the FL process. This includes (1) specially designed parameter-efficient fine-tuning (PEFT) for local client training to enhance computational efficiency; (2) partial low-level adapter transmission for communication efficiency; and (3) similarity-guided collaborative aggregation (SGCA) on the server side to address non-IID issues. Extensive experiments on three FL benchmarks for medical image segmentation demonstrate the effectiveness of our proposed FedSCA, establishing new SOTA performance.
☆ EfficientLLaVA:Generalizable Auto-Pruning for Large Vision-language Models CVPR 2025
While multimodal large language models demonstrate strong performance in complex reasoning tasks, they pose significant challenges related to model complexity during deployment, especially for resource-limited devices. In this paper, we propose an automatic pruning method for large vision-language models to enhance the efficiency of multimodal reasoning. Conventional methods rely on the training data of the original model to select the proper pruning ratio for different network components. However, these methods are impractical for large vision-language models due to the unaffordable search costs caused by web-scale training corpus. In contrast, our approach only leverages a small number of samples to search for the desired pruning policy by maximizing its generalization ability on unknown training data while maintaining the model accuracy, which enables the achievement of an optimal trade-off between accuracy and efficiency for large visual language models. Specifically, we formulate the generalization gap of the pruning strategy using the structural risk minimization principle. Based on both task performance and generalization capability, we iteratively search for the optimal pruning policy within a given search space and optimize the vision projector to evolve the search space with higher upper bound of performance. We conduct extensive experiments on the ScienceQA, Vizwiz, MM-vet, and LLaVA-Bench datasets for the task of visual question answering. Using only 64 samples for pruning policy search, EfficientLLaVA achieves an accuracy of 83.05% on ScienceQA, along with a $\times$ 1.8 speedup compared to the dense LLaVA-v1.5-7B model.
comment: Accepted by CVPR 2025
☆ Boosting HDR Image Reconstruction via Semantic Knowledge Transfer
Recovering High Dynamic Range (HDR) images from multiple Low Dynamic Range (LDR) images becomes challenging when the LDR images exhibit noticeable degradation and missing content. Leveraging scene-specific semantic priors offers a promising solution for restoring heavily degraded regions. However, these priors are typically extracted from sRGB Standard Dynamic Range (SDR) images, the domain/format gap poses a significant challenge when applying it to HDR imaging. To address this issue, we propose a general framework that transfers semantic knowledge derived from SDR domain via self-distillation to boost existing HDR reconstruction. Specifically, the proposed framework first introduces the Semantic Priors Guided Reconstruction Model (SPGRM), which leverages SDR image semantic knowledge to address ill-posed problems in the initial HDR reconstruction results. Subsequently, we leverage a self-distillation mechanism that constrains the color and content information with semantic knowledge, aligning the external outputs between the baseline and SPGRM. Furthermore, to transfer the semantic knowledge of the internal features, we utilize a semantic knowledge alignment module (SKAM) to fill the missing semantic contents with the complementary masks. Extensive experiments demonstrate that our method can significantly improve the HDR imaging quality of existing methods.
☆ SemEval-2025 Task 1: AdMIRe -- Advancing Multimodal Idiomaticity Representation SemEval-2025
Idiomatic expressions present a unique challenge in NLP, as their meanings are often not directly inferable from their constituent words. Despite recent advancements in Large Language Models (LLMs), idiomaticity remains a significant obstacle to robust semantic representation. We present datasets and tasks for SemEval-2025 Task 1: AdMiRe (Advancing Multimodal Idiomaticity Representation), which challenges the community to assess and improve models' ability to interpret idiomatic expressions in multimodal contexts and in multiple languages. Participants competed in two subtasks: ranking images based on their alignment with idiomatic or literal meanings, and predicting the next image in a sequence. The most effective methods achieved human-level performance by leveraging pretrained LLMs and vision-language models in mixture-of-experts settings, with multiple queries used to smooth over the weaknesses in these models' representations of idiomaticity.
comment: Preprint; SemEval-2025 proceedings to appear at ACL 2025
☆ Leveraging Perfect Multimodal Alignment and Gaussian Assumptions for Cross-modal Transfer
Multimodal alignment aims to construct a joint latent vector space where two modalities representing the same concept map to the same vector. We formulate this as an inverse problem and show that under certain conditions perfect alignment can be achieved. We then address a specific application of alignment referred to as cross-modal transfer. Unsupervised cross-modal transfer aims to leverage a model trained with one modality to perform inference on another modality, without any labeled fine-tuning on the new modality. Assuming that semantic classes are represented as a mixture of Gaussians in the latent space, we show how cross-modal transfer can be performed by projecting the data points from the representation space onto different subspaces representing each modality. Our experiments on synthetic multimodal Gaussian data verify the effectiveness of our perfect alignment and cross-modal transfer method. We hope these findings inspire further exploration of the applications of perfect alignment and the use of Gaussian models for cross-modal learning.
☆ TruthLens:A Training-Free Paradigm for DeepFake Detection
The proliferation of synthetic images generated by advanced AI models poses significant challenges in identifying and understanding manipulated visual content. Current fake image detection methods predominantly rely on binary classification models that focus on accuracy while often neglecting interpretability, leaving users without clear insights into why an image is deemed real or fake. To bridge this gap, we introduce TruthLens, a novel training-free framework that reimagines deepfake detection as a visual question-answering (VQA) task. TruthLens utilizes state-of-the-art large vision-language models (LVLMs) to observe and describe visual artifacts and combines this with the reasoning capabilities of large language models (LLMs) like GPT-4 to analyze and aggregate evidence into informed decisions. By adopting a multimodal approach, TruthLens seamlessly integrates visual and semantic reasoning to not only classify images as real or fake but also provide interpretable explanations for its decisions. This transparency enhances trust and provides valuable insights into the artifacts that signal synthetic content. Extensive evaluations demonstrate that TruthLens outperforms conventional methods, achieving high accuracy on challenging datasets while maintaining a strong emphasis on explainability. By reframing deepfake detection as a reasoning-driven process, TruthLens establishes a new paradigm in combating synthetic media, combining cutting-edge performance with interpretability to address the growing threats of visual disinformation.
☆ Recover and Match: Open-Vocabulary Multi-Label Recognition through Knowledge-Constrained Optimal Transport CVPR 2025
Identifying multiple novel classes in an image, known as open-vocabulary multi-label recognition, is a challenging task in computer vision. Recent studies explore the transfer of powerful vision-language models such as CLIP. However, these approaches face two critical challenges: (1) The local semantics of CLIP are disrupted due to its global pre-training objectives, resulting in unreliable regional predictions. (2) The matching property between image regions and candidate labels has been neglected, relying instead on naive feature aggregation such as average pooling, which leads to spurious predictions from irrelevant regions. In this paper, we present RAM (Recover And Match), a novel framework that effectively addresses the above issues. To tackle the first problem, we propose Ladder Local Adapter (LLA) to enforce refocusing on local regions, recovering local semantics in a memory-friendly way. For the second issue, we propose Knowledge-Constrained Optimal Transport (KCOT) to suppress meaningless matching to non-GT labels by formulating the task as an optimal transport problem. As a result, RAM achieves state-of-the-art performance on various datasets from three distinct domains, and shows great potential to boost the existing methods. Code: https://github.com/EricTan7/RAM.
comment: CVPR 2025
☆ Euclid Quick Data Release (Q1). Active galactic nuclei identification using diffusion-based inpainting of Euclid VIS images
Light emission from galaxies exhibit diverse brightness profiles, influenced by factors such as galaxy type, structural features and interactions with other galaxies. Elliptical galaxies feature more uniform light distributions, while spiral and irregular galaxies have complex, varied light profiles due to their structural heterogeneity and star-forming activity. In addition, galaxies with an active galactic nucleus (AGN) feature intense, concentrated emission from gas accretion around supermassive black holes, superimposed on regular galactic light, while quasi-stellar objects (QSO) are the extreme case of the AGN emission dominating the galaxy. The challenge of identifying AGN and QSO has been discussed many times in the literature, often requiring multi-wavelength observations. This paper introduces a novel approach to identify AGN and QSO from a single image. Diffusion models have been recently developed in the machine-learning literature to generate realistic-looking images of everyday objects. Utilising the spatial resolving power of the Euclid VIS images, we created a diffusion model trained on one million sources, without using any source pre-selection or labels. The model learns to reconstruct light distributions of normal galaxies, since the population is dominated by them. We condition the prediction of the central light distribution by masking the central few pixels of each source and reconstruct the light according to the diffusion model. We further use this prediction to identify sources that deviate from this profile by examining the reconstruction error of the few central pixels regenerated in each source's core. Our approach, solely using VIS imaging, features high completeness compared to traditional methods of AGN and QSO selection, including optical, near-infrared, mid-infrared, and X-rays. [abridged]
comment: Paper submitted as part of the A&A Special Issue `Euclid Quick Data Release (Q1)', 32 pages, 26 figures
☆ SUM Parts: Benchmarking Part-Level Semantic Segmentation of Urban Meshes
Semantic segmentation in urban scene analysis has mainly focused on images or point clouds, while textured meshes - offering richer spatial representation - remain underexplored. This paper introduces SUM Parts, the first large-scale dataset for urban textured meshes with part-level semantic labels, covering about 2.5 km2 with 21 classes. The dataset was created using our own annotation tool, which supports both face- and texture-based annotations with efficient interactive selection. We also provide a comprehensive evaluation of 3D semantic segmentation and interactive annotation methods on this dataset. Our project page is available at https://tudelft3d.github.io/SUMParts/.
comment: 22 pages, 24 figures
☆ DCA: Dividing and Conquering Amnesia in Incremental Object Detection AAAI 2025
Incremental object detection (IOD) aims to cultivate an object detector that can continuously localize and recognize novel classes while preserving its performance on previous classes. Existing methods achieve certain success by improving knowledge distillation and exemplar replay for transformer-based detection frameworks, but the intrinsic forgetting mechanisms remain underexplored. In this paper, we dive into the cause of forgetting and discover forgetting imbalance between localization and recognition in transformer-based IOD, which means that localization is less-forgetting and can generalize to future classes, whereas catastrophic forgetting occurs primarily on recognition. Based on these insights, we propose a Divide-and-Conquer Amnesia (DCA) strategy, which redesigns the transformer-based IOD into a localization-then-recognition process. DCA can well maintain and transfer the localization ability, leaving decoupled fragile recognition to be specially conquered. To reduce feature drift in recognition, we leverage semantic knowledge encoded in pre-trained language models to anchor class representations within a unified feature space across incremental tasks. This involves designing a duplex classifier fusion and embedding class semantic features into the recognition decoding process in the form of queries. Extensive experiments validate that our approach achieves state-of-the-art performance, especially for long-term incremental scenarios. For example, under the four-step setting on MS-COCO, our DCA strategy significantly improves the final AP by 6.9%.
comment: Accepted by AAAI 2025
☆ Test-Time Backdoor Detection for Object Detection Models CVPR 2025
Object detection models are vulnerable to backdoor attacks, where attackers poison a small subset of training samples by embedding a predefined trigger to manipulate prediction. Detecting poisoned samples (i.e., those containing triggers) at test time can prevent backdoor activation. However, unlike image classification tasks, the unique characteristics of object detection -- particularly its output of numerous objects -- pose fresh challenges for backdoor detection. The complex attack effects (e.g., "ghost" object emergence or "vanishing" object) further render current defenses fundamentally inadequate. To this end, we design TRAnsformation Consistency Evaluation (TRACE), a brand-new method for detecting poisoned samples at test time in object detection. Our journey begins with two intriguing observations: (1) poisoned samples exhibit significantly more consistent detection results than clean ones across varied backgrounds. (2) clean samples show higher detection consistency when introduced to different focal information. Based on these phenomena, TRACE applies foreground and background transformations to each test sample, then assesses transformation consistency by calculating the variance in objects confidences. TRACE achieves black-box, universal backdoor detection, with extensive experiments showing a 30% improvement in AUROC over state-of-the-art defenses and resistance to adaptive attacks.
comment: Accepted to CVPR 2025
☆ Beacon2Science: Enhancing STEREO/HI beacon data1 with machine learning for efficient CME tracking
Observing and forecasting coronal mass ejections (CME) in real-time is crucial due to the strong geomagnetic storms they can generate that can have a potentially damaging effect, for example, on satellites and electrical devices. With its near-real-time availability, STEREO/HI beacon data is the perfect candidate for early forecasting of CMEs. However, previous work concluded that CME arrival prediction based on beacon data could not achieve the same accuracy as with high-resolution science data due to data gaps and lower quality. We present our novel pipeline entitled ''Beacon2Science'', bridging the gap between beacon and science data to improve CME tracking. Through this pipeline, we first enhance the quality (signal-to-noise ratio and spatial resolution) of beacon data. We then increase the time resolution of enhanced beacon images through learned interpolation to match science data's 40-minute resolution. We maximize information coherence between consecutive frames with adapted model architecture and loss functions through the different steps. The improved beacon images are comparable to science data, showing better CME visibility than the original beacon data. Furthermore, we compare CMEs tracked in beacon, enhanced beacon, and science images. The tracks extracted from enhanced beacon data are closer to those from science images, with a mean average error of $\sim 0.5 ^\circ$ of elongation compared to $1^\circ$ with original beacon data. The work presented in this paper paves the way for its application to forthcoming missions such as Vigil and PUNCH.
comment: 24 pages, 11 figures, 1 tables, submitted to AGU Space Weather on 14th Marc 2025
☆ PAPI-Reg: Patch-to-Pixel Solution for Efficient Cross-Modal Registration between LiDAR Point Cloud and Camera Image
The primary requirement for cross-modal data fusion is the precise alignment of data from different sensors. However, the calibration between LiDAR point clouds and camera images is typically time-consuming and needs external calibration board or specific environmental features. Cross-modal registration effectively solves this problem by aligning the data directly without requiring external calibration. However, due to the domain gap between the point cloud and the image, existing methods rarely achieve satisfactory registration accuracy while maintaining real-time performance. To address this issue, we propose a framework that projects point clouds into several 2D representations for matching with camera images, which not only leverages the geometric characteristic of LiDAR point clouds more effectively but also bridge the domain gap between the point cloud and image. Moreover, to tackle the challenges of cross modal differences and the limited overlap between LiDAR point clouds and images in the image matching task, we introduce a multi-scale feature extraction network to effectively extract features from both camera images and the projection maps of LiDAR point cloud. Additionally, we propose a patch-to-pixel matching network to provide more effective supervision and achieve higher accuracy. We validate the performance of our model through experiments on the KITTI and nuScenes datasets. Our network achieves real-time performance and extremely high registration accuracy. On the KITTI dataset, our model achieves a registration accuracy rate of over 99\%.
☆ EdgeRegNet: Edge Feature-based Multimodal Registration Network between Images and LiDAR Point Clouds
Cross-modal data registration has long been a critical task in computer vision, with extensive applications in autonomous driving and robotics. Accurate and robust registration methods are essential for aligning data from different modalities, forming the foundation for multimodal sensor data fusion and enhancing perception systems' accuracy and reliability. The registration task between 2D images captured by cameras and 3D point clouds captured by Light Detection and Ranging (LiDAR) sensors is usually treated as a visual pose estimation problem. High-dimensional feature similarities from different modalities are leveraged to identify pixel-point correspondences, followed by pose estimation techniques using least squares methods. However, existing approaches often resort to downsampling the original point cloud and image data due to computational constraints, inevitably leading to a loss in precision. Additionally, high-dimensional features extracted using different feature extractors from various modalities require specific techniques to mitigate cross-modal differences for effective matching. To address these challenges, we propose a method that uses edge information from the original point clouds and images for cross-modal registration. We retain crucial information from the original data by extracting edge points and pixels, enhancing registration accuracy while maintaining computational efficiency. The use of edge points and edge pixels allows us to introduce an attention-based feature exchange block to eliminate cross-modal disparities. Furthermore, we incorporate an optimal matching layer to improve correspondence identification. We validate the accuracy of our method on the KITTI and nuScenes datasets, demonstrating its state-of-the-art performance.
☆ TF-TI2I: Training-Free Text-and-Image-to-Image Generation via Multi-Modal Implicit-Context Learning in Text-to-Image Models
Text-and-Image-To-Image (TI2I), an extension of Text-To-Image (T2I), integrates image inputs with textual instructions to enhance image generation. Existing methods often partially utilize image inputs, focusing on specific elements like objects or styles, or they experience a decline in generation quality with complex, multi-image instructions. To overcome these challenges, we introduce Training-Free Text-and-Image-to-Image (TF-TI2I), which adapts cutting-edge T2I models such as SD3 without the need for additional training. Our method capitalizes on the MM-DiT architecture, in which we point out that textual tokens can implicitly learn visual information from vision tokens. We enhance this interaction by extracting a condensed visual representation from reference images, facilitating selective information sharing through Reference Contextual Masking -- this technique confines the usage of contextual tokens to instruction-relevant visual information. Additionally, our Winner-Takes-All module mitigates distribution shifts by prioritizing the most pertinent references for each vision token. Addressing the gap in TI2I evaluation, we also introduce the FG-TI2I Bench, a comprehensive benchmark tailored for TI2I and compatible with existing T2I methods. Our approach shows robust performance across various benchmarks, confirming its effectiveness in handling complex image-generation tasks.
☆ Challenges and Trends in Egocentric Vision: A Survey
With the rapid development of artificial intelligence technologies and wearable devices, egocentric vision understanding has emerged as a new and challenging research direction, gradually attracting widespread attention from both academia and industry. Egocentric vision captures visual and multimodal data through cameras or sensors worn on the human body, offering a unique perspective that simulates human visual experiences. This paper provides a comprehensive survey of the research on egocentric vision understanding, systematically analyzing the components of egocentric scenes and categorizing the tasks into four main areas: subject understanding, object understanding, environment understanding, and hybrid understanding. We explore in detail the sub-tasks within each category. We also summarize the main challenges and trends currently existing in the field. Furthermore, this paper presents an overview of high-quality egocentric vision datasets, offering valuable resources for future research. By summarizing the latest advancements, we anticipate the broad applications of egocentric vision technologies in fields such as augmented reality, virtual reality, and embodied intelligence, and propose future research directions based on the latest developments in the field.
☆ DeepMesh: Auto-Regressive Artist-mesh Creation with Reinforcement Learning
Triangle meshes play a crucial role in 3D applications for efficient manipulation and rendering. While auto-regressive methods generate structured meshes by predicting discrete vertex tokens, they are often constrained by limited face counts and mesh incompleteness. To address these challenges, we propose DeepMesh, a framework that optimizes mesh generation through two key innovations: (1) an efficient pre-training strategy incorporating a novel tokenization algorithm, along with improvements in data curation and processing, and (2) the introduction of Reinforcement Learning (RL) into 3D mesh generation to achieve human preference alignment via Direct Preference Optimization (DPO). We design a scoring standard that combines human evaluation with 3D metrics to collect preference pairs for DPO, ensuring both visual appeal and geometric accuracy. Conditioned on point clouds and images, DeepMesh generates meshes with intricate details and precise topology, outperforming state-of-the-art methods in both precision and quality. Project page: https://zhaorw02.github.io/DeepMesh/
comment: Project page: https://zhaorw02.github.io/DeepMesh/
☆ LEGION: Learning to Ground and Explain for Synthetic Image Detection
The rapid advancements in generative technology have emerged as a double-edged sword. While offering powerful tools that enhance convenience, they also pose significant social concerns. As defenders, current synthetic image detection methods often lack artifact-level textual interpretability and are overly focused on image manipulation detection, and current datasets usually suffer from outdated generators and a lack of fine-grained annotations. In this paper, we introduce SynthScars, a high-quality and diverse dataset consisting of 12,236 fully synthetic images with human-expert annotations. It features 4 distinct image content types, 3 categories of artifacts, and fine-grained annotations covering pixel-level segmentation, detailed textual explanations, and artifact category labels. Furthermore, we propose LEGION (LEarning to Ground and explain for Synthetic Image detectiON), a multimodal large language model (MLLM)-based image forgery analysis framework that integrates artifact detection, segmentation, and explanation. Building upon this capability, we further explore LEGION as a controller, integrating it into image refinement pipelines to guide the generation of higher-quality and more realistic images. Extensive experiments show that LEGION outperforms existing methods across multiple benchmarks, particularly surpassing the second-best traditional expert on SynthScars by 3.31% in mIoU and 7.75% in F1 score. Moreover, the refined images generated under its guidance exhibit stronger alignment with human preferences. The code, model, and dataset will be released.
comment: Project Page: https://opendatalab.github.io/LEGION
☆ DEPT: Deep Extreme Point Tracing for Ultrasound Image Segmentation
Automatic medical image segmentation plays a crucial role in computer aided diagnosis. However, fully supervised learning approaches often require extensive and labor-intensive annotation efforts. To address this challenge, weakly supervised learning methods, particularly those using extreme points as supervisory signals, have the potential to offer an effective solution. In this paper, we introduce Deep Extreme Point Tracing (DEPT) integrated with Feature-Guided Extreme Point Masking (FGEPM) algorithm for ultrasound image segmentation. Notably, our method generates pseudo labels by identifying the lowest-cost path that connects all extreme points on the feature map-based cost matrix. Additionally, an iterative training strategy is proposed to refine pseudo labels progressively, enabling continuous network improvement. Experimental results on two public datasets demonstrate the effectiveness of our proposed method. The performance of our method approaches that of the fully supervised method and outperforms several existing weakly supervised methods.
☆ CoE: Chain-of-Explanation via Automatic Visual Concept Circuit Description and Polysemanticity Quantification CVPR2025
Explainability is a critical factor influencing the wide deployment of deep vision models (DVMs). Concept-based post-hoc explanation methods can provide both global and local insights into model decisions. However, current methods in this field face challenges in that they are inflexible to automatically construct accurate and sufficient linguistic explanations for global concepts and local circuits. Particularly, the intrinsic polysemanticity in semantic Visual Concepts (VCs) impedes the interpretability of concepts and DVMs, which is underestimated severely. In this paper, we propose a Chain-of-Explanation (CoE) approach to address these issues. Specifically, CoE automates the decoding and description of VCs to construct global concept explanation datasets. Further, to alleviate the effect of polysemanticity on model explainability, we design a concept polysemanticity disentanglement and filtering mechanism to distinguish the most contextually relevant concept atoms. Besides, a Concept Polysemanticity Entropy (CPE), as a measure of model interpretability, is formulated to quantify the degree of concept uncertainty. The modeling of deterministic concepts is upgraded to uncertain concept atom distributions. Finally, CoE automatically enables linguistic local explanations of the decision-making process of DVMs by tracing the concept circuit. GPT-4o and human-based experiments demonstrate the effectiveness of CPE and the superiority of CoE, achieving an average absolute improvement of 36% in terms of explainability scores.
comment: Accepted by CVPR2025
☆ GO-N3RDet: Geometry Optimized NeRF-enhanced 3D Object Detector CVPR2025
We propose GO-N3RDet, a scene-geometry optimized multi-view 3D object detector enhanced by neural radiance fields. The key to accurate 3D object detection is in effective voxel representation. However, due to occlusion and lack of 3D information, constructing 3D features from multi-view 2D images is challenging. Addressing that, we introduce a unique 3D positional information embedded voxel optimization mechanism to fuse multi-view features. To prioritize neural field reconstruction in object regions, we also devise a double importance sampling scheme for the NeRF branch of our detector. We additionally propose an opacity optimization module for precise voxel opacity prediction by enforcing multi-view consistency constraints. Moreover, to further improve voxel density consistency across multiple perspectives, we incorporate ray distance as a weighting factor to minimize cumulative ray errors. Our unique modules synergetically form an end-to-end neural model that establishes new state-of-the-art in NeRF-based multi-view 3D detection, verified with extensive experiments on ScanNet and ARKITScenes. Code will be available at https://github.com/ZechuanLi/GO-N3RDet.
comment: Accepted by CVPR2025
☆ DiST-4D: Disentangled Spatiotemporal Diffusion with Metric Depth for 4D Driving Scene Generation
Current generative models struggle to synthesize dynamic 4D driving scenes that simultaneously support temporal extrapolation and spatial novel view synthesis (NVS) without per-scene optimization. A key challenge lies in finding an efficient and generalizable geometric representation that seamlessly connects temporal and spatial synthesis. To address this, we propose DiST-4D, the first disentangled spatiotemporal diffusion framework for 4D driving scene generation, which leverages metric depth as the core geometric representation. DiST-4D decomposes the problem into two diffusion processes: DiST-T, which predicts future metric depth and multi-view RGB sequences directly from past observations, and DiST-S, which enables spatial NVS by training only on existing viewpoints while enforcing cycle consistency. This cycle consistency mechanism introduces a forward-backward rendering constraint, reducing the generalization gap between observed and unseen viewpoints. Metric depth is essential for both accurate reliable forecasting and accurate spatial NVS, as it provides a view-consistent geometric representation that generalizes well to unseen perspectives. Experiments demonstrate that DiST-4D achieves state-of-the-art performance in both temporal prediction and NVS tasks, while also delivering competitive performance in planning-related evaluations.
Detect-and-Guide: Self-regulation of Diffusion Models for Safe Text-to-Image Generation via Guideline Token Optimization CVPR25
Text-to-image diffusion models have achieved state-of-the-art results in synthesis tasks; however, there is a growing concern about their potential misuse in creating harmful content. To mitigate these risks, post-hoc model intervention techniques, such as concept unlearning and safety guidance, have been developed. However, fine-tuning model weights or adapting the hidden states of the diffusion model operates in an uninterpretable way, making it unclear which part of the intermediate variables is responsible for unsafe generation. These interventions severely affect the sampling trajectory when erasing harmful concepts from complex, multi-concept prompts, thus hindering their practical use in real-world settings. In this work, we propose the safe generation framework Detect-and-Guide (DAG), leveraging the internal knowledge of diffusion models to perform self-diagnosis and fine-grained self-regulation during the sampling process. DAG first detects harmful concepts from noisy latents using refined cross-attention maps of optimized tokens, then applies safety guidance with adaptive strength and editing regions to negate unsafe generation. The optimization only requires a small annotated dataset and can provide precise detection maps with generalizability and concept specificity. Moreover, DAG does not require fine-tuning of diffusion models, and therefore introduces no loss to their generation diversity. Experiments on erasing sexual content show that DAG achieves state-of-the-art safe generation performance, balancing harmfulness mitigation and text-following performance on multi-concept real-world prompts.
comment: CVPR25
☆ 3D Occupancy Prediction with Low-Resolution Queries via Prototype-aware View Transformation CVPR2025
The resolution of voxel queries significantly influences the quality of view transformation in camera-based 3D occupancy prediction. However, computational constraints and the practical necessity for real-time deployment require smaller query resolutions, which inevitably leads to an information loss. Therefore, it is essential to encode and preserve rich visual details within limited query sizes while ensuring a comprehensive representation of 3D occupancy. To this end, we introduce ProtoOcc, a novel occupancy network that leverages prototypes of clustered image segments in view transformation to enhance low-resolution context. In particular, the mapping of 2D prototypes onto 3D voxel queries encodes high-level visual geometries and complements the loss of spatial information from reduced query resolutions. Additionally, we design a multi-perspective decoding strategy to efficiently disentangle the densely compressed visual cues into a high-dimensional 3D occupancy scene. Experimental results on both Occ3D and SemanticKITTI benchmarks demonstrate the effectiveness of the proposed method, showing clear improvements over the baselines. More importantly, ProtoOcc achieves competitive performance against the baselines even with 75\% reduced voxel resolution.
comment: Accepted to CVPR2025
☆ A Review on Large Language Models for Visual Analytics
This paper provides a comprehensive review of the integration of Large Language Models (LLMs) with visual analytics, addressing their foundational concepts, capabilities, and wide-ranging applications. It begins by outlining the theoretical underpinnings of visual analytics and the transformative potential of LLMs, specifically focusing on their roles in natural language understanding, natural language generation, dialogue systems, and text-to-media transformations. The review further investigates how the synergy between LLMs and visual analytics enhances data interpretation, visualization techniques, and interactive exploration capabilities. Key tools and platforms including LIDA, Chat2VIS, Julius AI, and Zoho Analytics, along with specialized multimodal models such as ChartLlama and CharXIV, are critically evaluated. The paper discusses their functionalities, strengths, and limitations in supporting data exploration, visualization enhancement, automated reporting, and insight extraction. The taxonomy of LLM tasks, ranging from natural language understanding (NLU), natural language generation (NLG), to dialogue systems and text-to-media transformations, is systematically explored. This review provides a SWOT analysis of integrating Large Language Models (LLMs) with visual analytics, highlighting strengths like accessibility and flexibility, weaknesses such as computational demands and biases, opportunities in multimodal integration and user collaboration, and threats including privacy concerns and skill degradation. It emphasizes addressing ethical considerations and methodological improvements for effective integration.
☆ World Models in Artificial Intelligence: Sensing, Learning, and Reasoning Like a Child
World Models help Artificial Intelligence (AI) predict outcomes, reason about its environment, and guide decision-making. While widely used in reinforcement learning, they lack the structured, adaptive representations that even young children intuitively develop. Advancing beyond pattern recognition requires dynamic, interpretable frameworks inspired by Piaget's cognitive development theory. We highlight six key research areas -- physics-informed learning, neurosymbolic learning, continual learning, causal inference, human-in-the-loop AI, and responsible AI -- as essential for enabling true reasoning in AI. By integrating statistical learning with advances in these areas, AI can evolve from pattern recognition to genuine understanding, adaptation and reasoning capabilities.
comment: 11 pages, 1 figure
☆ Machine Unlearning in Hyperbolic vs. Euclidean Multimodal Contrastive Learning: Adapting Alignment Calibration to MERU
Machine unlearning methods have become increasingly important for selective concept removal in large pre-trained models. While recent work has explored unlearning in Euclidean contrastive vision-language models, the effectiveness of concept removal in hyperbolic spaces remains unexplored. This paper investigates machine unlearning in hyperbolic contrastive learning by adapting Alignment Calibration to MERU, a model that embeds images and text in hyperbolic space to better capture semantic hierarchies. Through systematic experiments and ablation studies, we demonstrate that hyperbolic geometry offers distinct advantages for concept removal, achieving near perfect forgetting with reasonable performance on retained concepts, particularly when scaling to multiple concept removal. Our approach introduces hyperbolic-specific components including entailment calibration and norm regularization that leverage the unique properties of hyperbolic space. Comparative analysis with Euclidean models reveals fundamental differences in unlearning dynamics, with hyperbolic unlearning reorganizing the semantic hierarchy while Euclidean approaches merely disconnect cross-modal associations. These findings not only advance machine unlearning techniques but also provide insights into the geometric properties that influence concept representation and removal in multimodal models. Source code available at https://github.com/alex-pv01/HAC
comment: Preprint
☆ UltraFlwr -- An Efficient Federated Medical and Surgical Object Detection Framework MICCAI
Object detection shows promise for medical and surgical applications such as cell counting and tool tracking. However, its faces multiple real-world edge deployment challenges including limited high-quality annotated data, data sharing restrictions, and computational constraints. In this work, we introduce UltraFlwr, a framework for federated medical and surgical object detection. By leveraging Federated Learning (FL), UltraFlwr enables decentralized model training across multiple sites without sharing raw data. To further enhance UltraFlwr's efficiency, we propose YOLO-PA, a set of novel Partial Aggregation (PA) strategies specifically designed for YOLO models in FL. YOLO-PA significantly reduces communication overhead by up to 83% per round while maintaining performance comparable to Full Aggregation (FA) strategies. Our extensive experiments on BCCD and m2cai16-tool-locations datasets demonstrate that YOLO-PA not only provides better client models compared to client-wise centralized training and FA strategies, but also facilitates efficient training and deployment across resource-constrained edge devices. Further, we also establish one of the first benchmarks in federated medical and surgical object detection. This paper advances the feasibility of training and deploying detection models on the edge, making federated object detection more practical for time-critical and resource-constrained medical and surgical applications. UltraFlwr is publicly available at https://github.com/KCL-BMEIS/UltraFlwr.
comment: 10 pages, 2 figures, under review @ MICCAI
☆ ARC: Anchored Representation Clouds for High-Resolution INR Classification ICLR 2025
Implicit neural representations (INRs) encode signals in neural network weights as a memory-efficient representation, decoupling sampling resolution from the associated resource costs. Current INR image classification methods are demonstrated on low-resolution data and are sensitive to image-space transformations. We attribute these issues to the global, fully-connected MLP neural network architecture encoding of current INRs, which lack mechanisms for local representation: MLPs are sensitive to absolute image location and struggle with high-frequency details. We propose ARC: Anchored Representation Clouds, a novel INR architecture that explicitly anchors latent vectors locally in image-space. By introducing spatial structure to the latent vectors, ARC captures local image data which in our testing leads to state-of-the-art implicit image classification of both low- and high-resolution images and increased robustness against image-space translation. Code can be found at https://github.com/JLuij/anchored_representation_clouds.
comment: Accepted at the ICLR 2025 Workshop on Neural Network Weights as a New Data Modality
☆ PointSFDA: Source-free Domain Adaptation for Point Cloud Completion
Conventional methods for point cloud completion, typically trained on synthetic datasets, face significant challenges when applied to out-of-distribution real-world scans. In this paper, we propose an effective yet simple source-free domain adaptation framework for point cloud completion, termed \textbf{PointSFDA}. Unlike unsupervised domain adaptation that reduces the domain gap by directly leveraging labeled source data, PointSFDA uses only a pretrained source model and unlabeled target data for adaptation, avoiding the need for inaccessible source data in practical scenarios. Being the first source-free domain adaptation architecture for point cloud completion, our method offers two core contributions. First, we introduce a coarse-to-fine distillation solution to explicitly transfer the global geometry knowledge learned from the source dataset. Second, as noise may be introduced due to domain gaps, we propose a self-supervised partial-mask consistency training strategy to learn local geometry information in the target domain. Extensive experiments have validated that our method significantly improves the performance of state-of-the-art networks in cross-domain shape completion. Our code is available at \emph{\textcolor{magenta}{https://github.com/Starak-x/PointSFDA}}.
☆ Object-Centric Pretraining via Target Encoder Bootstrapping ICLR 2025
Object-centric representation learning has recently been successfully applied to real-world datasets. This success can be attributed to pretrained non-object-centric foundation models, whose features serve as reconstruction targets for slot attention. However, targets must remain frozen throughout the training, which sets an upper bound on the performance object-centric models can attain. Attempts to update the target encoder by bootstrapping result in large performance drops, which can be attributed to its lack of object-centric inductive biases, causing the object-centric model's encoder to drift away from representations useful as reconstruction targets. To address these limitations, we propose Object-CEntric Pretraining by Target Encoder BOotstrapping, a self-distillation setup for training object-centric models from scratch, on real-world data, for the first time ever. In OCEBO, the target encoder is updated as an exponential moving average of the object-centric model, thus explicitly being enriched with object-centric inductive biases introduced by slot attention while removing the upper bound on performance present in other models. We mitigate the slot collapse caused by random initialization of the target encoder by introducing a novel cross-view patch filtering approach that limits the supervision to sufficiently informative patches. When pretrained on 241k images from COCO, OCEBO achieves unsupervised object discovery performance comparable to that of object-centric models with frozen non-object-centric target encoders pretrained on hundreds of millions of images. The code and pretrained models are publicly available at https://github.com/djukicn/ocebo.
comment: ICLR 2025
☆ Text-Derived Relational Graph-Enhanced Network for Skeleton-Based Action Segmentation
Skeleton-based Temporal Action Segmentation (STAS) aims to segment and recognize various actions from long, untrimmed sequences of human skeletal movements. Current STAS methods typically employ spatio-temporal modeling to establish dependencies among joints as well as frames, and utilize one-hot encoding with cross-entropy loss for frame-wise classification supervision. However, these methods overlook the intrinsic correlations among joints and actions within skeletal features, leading to a limited understanding of human movements. To address this, we propose a Text-Derived Relational Graph-Enhanced Network (TRG-Net) that leverages prior graphs generated by Large Language Models (LLM) to enhance both modeling and supervision. For modeling, the Dynamic Spatio-Temporal Fusion Modeling (DSFM) method incorporates Text-Derived Joint Graphs (TJG) with channel- and frame-level dynamic adaptation to effectively model spatial relations, while integrating spatio-temporal core features during temporal modeling. For supervision, the Absolute-Relative Inter-Class Supervision (ARIS) method employs contrastive learning between action features and text embeddings to regularize the absolute class distributions, and utilizes Text-Derived Action Graphs (TAG) to capture the relative inter-class relationships among action features. Additionally, we propose a Spatial-Aware Enhancement Processing (SAEP) method, which incorporates random joint occlusion and axial rotation to enhance spatial generalization. Performance evaluations on four public datasets demonstrate that TRG-Net achieves state-of-the-art results.
☆ When the Future Becomes the Past: Taming Temporal Correspondence for Self-supervised Video Representation Learning CVPR 2025
The past decade has witnessed notable achievements in self-supervised learning for video tasks. Recent efforts typically adopt the Masked Video Modeling (MVM) paradigm, leading to significant progress on multiple video tasks. However, two critical challenges remain: 1) Without human annotations, the random temporal sampling introduces uncertainty, increasing the difficulty of model training. 2) Previous MVM methods primarily recover the masked patches in the pixel space, leading to insufficient information compression for downstream tasks. To address these challenges jointly, we propose a self-supervised framework that leverages Temporal Correspondence for video Representation learning (T-CoRe). For challenge 1), we propose a sandwich sampling strategy that selects two auxiliary frames to reduce reconstruction uncertainty in a two-side-squeezing manner. Addressing challenge 2), we introduce an auxiliary branch into a self-distillation architecture to restore representations in the latent space, generating high-level semantic representations enriched with temporal information. Experiments of T-CoRe consistently present superior performance across several downstream tasks, demonstrating its effectiveness for video representation learning. The code is available at https://github.com/yafeng19/T-CORE.
comment: Accepted at CVPR 2025
☆ Intelligent Spatial Perception by Building Hierarchical 3D Scene Graphs for Indoor Scenarios with the Help of LLMs
This paper addresses the high demand in advanced intelligent robot navigation for a more holistic understanding of spatial environments, by introducing a novel system that harnesses the capabilities of Large Language Models (LLMs) to construct hierarchical 3D Scene Graphs (3DSGs) for indoor scenarios. The proposed framework constructs 3DSGs consisting of a fundamental layer with rich metric-semantic information, an object layer featuring precise point-cloud representation of object nodes as well as visual descriptors, and higher layers of room, floor, and building nodes. Thanks to the innovative application of LLMs, not only object nodes but also nodes of higher layers, e.g., room nodes, are annotated in an intelligent and accurate manner. A polling mechanism for room classification using LLMs is proposed to enhance the accuracy and reliability of the room node annotation. Thorough numerical experiments demonstrate the system's ability to integrate semantic descriptions with geometric data, creating an accurate and comprehensive representation of the environment instrumental for context-aware navigation and task planning.
comment: accepted by WRC SARA 2024
☆ An Investigation of Beam Density on LiDAR Object Detection Performance
Accurate 3D object detection is a critical component of autonomous driving, enabling vehicles to perceive their surroundings with precision and make informed decisions. LiDAR sensors, widely used for their ability to provide detailed 3D measurements, are key to achieving this capability. However, variations between training and inference data can cause significant performance drops when object detection models are employed in different sensor settings. One critical factor is beam density, as inference on sparse, cost-effective LiDAR sensors is often preferred in real-world applications. Despite previous work addressing the beam-density-induced domain gap, substantial knowledge gaps remain, particularly concerning dense 128-beam sensors in cross-domain scenarios. To gain better understanding of the impact of beam density on domain gaps, we conduct a comprehensive investigation that includes an evaluation of different object detection architectures. Our architecture evaluation reveals that combining voxel- and point-based approaches yields superior cross-domain performance by leveraging the strengths of both representations. Building on these findings, we analyze beam-density-induced domain gaps and argue that these domain gaps must be evaluated in conjunction with other domain shifts. Contrary to conventional beliefs, our experiments reveal that detectors benefit from training on denser data and exhibit robustness to beam density variations during inference.
comment: Accepted by CVWW 2025
☆ MultiBARF: Integrating Imagery of Different Wavelength Regions by Using Neural Radiance Fields
Optical sensor applications have become popular through digital transformation. Linking observed data to real-world locations and combining different image sensors is essential to make the applications practical and efficient. However, data preparation to try different sensor combinations requires high sensing and image processing expertise. To make data preparation easier for users unfamiliar with sensing and image processing, we have developed MultiBARF. This method replaces the co-registration and geometric calibration by synthesizing pairs of two different sensor images and depth images at assigned viewpoints. Our method extends Bundle Adjusting Neural Radiance Fields(BARF), a deep neural network-based novel view synthesis method, for the two imagers. Through experiments on visible light and thermographic images, we demonstrate that our method superimposes two color channels of those sensor images on NeRF.
☆ Texture-Aware StarGAN for CT data harmonisation
Computed Tomography (CT) plays a pivotal role in medical diagnosis; however, variability across reconstruction kernels hinders data-driven approaches, such as deep learning models, from achieving reliable and generalized performance. To this end, CT data harmonization has emerged as a promising solution to minimize such non-biological variances by standardizing data across different sources or conditions. In this context, Generative Adversarial Networks (GANs) have proved to be a powerful framework for harmonization, framing it as a style-transfer problem. However, GAN-based approaches still face limitations in capturing complex relationships within the images, which are essential for effective harmonization. In this work, we propose a novel texture-aware StarGAN for CT data harmonization, enabling one-to-many translations across different reconstruction kernels. Although the StarGAN model has been successfully applied in other domains, its potential for CT data harmonization remains unexplored. Furthermore, our approach introduces a multi-scale texture loss function that embeds texture information across different spatial and angular scales into the harmonization process, effectively addressing kernel-induced texture variations. We conducted extensive experimentation on a publicly available dataset, utilizing a total of 48667 chest CT slices from 197 patients distributed over three different reconstruction kernels, demonstrating the superiority of our method over the baseline StarGAN.
☆ Single-Step Bidirectional Unpaired Image Translation Using Implicit Bridge Consistency Distillation
Unpaired image-to-image translation has seen significant progress since the introduction of CycleGAN. However, methods based on diffusion models or Schr\"odinger bridges have yet to be widely adopted in real-world applications due to their iterative sampling nature. To address this challenge, we propose a novel framework, Implicit Bridge Consistency Distillation (IBCD), which enables single-step bidirectional unpaired translation without using adversarial loss. IBCD extends consistency distillation by using a diffusion implicit bridge model that connects PF-ODE trajectories between distributions. Additionally, we introduce two key improvements: 1) distribution matching for consistency distillation and 2) adaptive weighting method based on distillation difficulty. Experimental results demonstrate that IBCD achieves state-of-the-art performance on benchmark datasets in a single generation step. Project page available at https://hyn2028.github.io/project_page/IBCD/index.html
comment: 25 pages, 16 figures
☆ DRoPE: Directional Rotary Position Embedding for Efficient Agent Interaction Modeling
Accurate and efficient modeling of agent interactions is essential for trajectory generation, the core of autonomous driving systems. Existing methods, scene-centric, agent-centric, and query-centric frameworks, each present distinct advantages and drawbacks, creating an impossible triangle among accuracy, computational time, and memory efficiency. To break this limitation, we propose Directional Rotary Position Embedding (DRoPE), a novel adaptation of Rotary Position Embedding (RoPE), originally developed in natural language processing. Unlike traditional relative position embedding (RPE), which introduces significant space complexity, RoPE efficiently encodes relative positions without explicitly increasing complexity but faces inherent limitations in handling angular information due to periodicity. DRoPE overcomes this limitation by introducing a uniform identity scalar into RoPE's 2D rotary transformation, aligning rotation angles with realistic agent headings to naturally encode relative angular information. We theoretically analyze DRoPE's correctness and efficiency, demonstrating its capability to simultaneously optimize trajectory generation accuracy, time complexity, and space complexity. Empirical evaluations compared with various state-of-the-art trajectory generation models, confirm DRoPE's good performance and significantly reduced space complexity, indicating both theoretical soundness and practical effectiveness. The video documentation is available at https://drope-traj.github.io/.
☆ Forensics-Bench: A Comprehensive Forgery Detection Benchmark Suite for Large Vision Language Models
Recently, the rapid development of AIGC has significantly boosted the diversities of fake media spread in the Internet, posing unprecedented threats to social security, politics, law, and etc. To detect the ever-increasingly diverse malicious fake media in the new era of AIGC, recent studies have proposed to exploit Large Vision Language Models (LVLMs) to design robust forgery detectors due to their impressive performance on a wide range of multimodal tasks. However, it still lacks a comprehensive benchmark designed to comprehensively assess LVLMs' discerning capabilities on forgery media. To fill this gap, we present Forensics-Bench, a new forgery detection evaluation benchmark suite to assess LVLMs across massive forgery detection tasks, requiring comprehensive recognition, location and reasoning capabilities on diverse forgeries. Forensics-Bench comprises 63,292 meticulously curated multi-choice visual questions, covering 112 unique forgery detection types from 5 perspectives: forgery semantics, forgery modalities, forgery tasks, forgery types and forgery models. We conduct thorough evaluations on 22 open-sourced LVLMs and 3 proprietary models GPT-4o, Gemini 1.5 Pro, and Claude 3.5 Sonnet, highlighting the significant challenges of comprehensive forgery detection posed by Forensics-Bench. We anticipate that Forensics-Bench will motivate the community to advance the frontier of LVLMs, striving for all-around forgery detectors in the era of AIGC. The deliverables will be updated at https://Forensics-Bench.github.io/.
comment: 31 pages, 19 figures
☆ Bridging the Gap: Fusing CNNs and Transformers to Decode the Elegance of Handwritten Arabic Script
Handwritten Arabic script recognition is a challenging task due to the script's dynamic letter forms and contextual variations. This paper proposes a hybrid approach combining convolutional neural networks (CNNs) and Transformer-based architectures to address these complexities. We evaluated custom and fine-tuned models, including EfficientNet-B7 and Vision Transformer (ViT-B16), and introduced an ensemble model that leverages confidence-based fusion to integrate their strengths. Our ensemble achieves remarkable performance on the IFN/ENIT dataset, with 96.38% accuracy for letter classification and 97.22% for positional classification. The results highlight the complementary nature of CNNs and Transformers, demonstrating their combined potential for robust Arabic handwriting recognition. This work advances OCR systems, offering a scalable solution for real-world applications.
☆ xMOD: Cross-Modal Distillation for 2D/3D Multi-Object Discovery from 2D motion CVPR 2025
Object discovery, which refers to the task of localizing objects without human annotations, has gained significant attention in 2D image analysis. However, despite this growing interest, it remains under-explored in 3D data, where approaches rely exclusively on 3D motion, despite its several challenges. In this paper, we present a novel framework that leverages advances in 2D object discovery which are based on 2D motion to exploit the advantages of such motion cues being more flexible and generalizable and to bridge the gap between 2D and 3D modalities. Our primary contributions are twofold: (i) we introduce DIOD-3D, the first baseline for multi-object discovery in 3D data using 2D motion, incorporating scene completion as an auxiliary task to enable dense object localization from sparse input data; (ii) we develop xMOD, a cross-modal training framework that integrates 2D and 3D data while always using 2D motion cues. xMOD employs a teacher-student training paradigm across the two modalities to mitigate confirmation bias by leveraging the domain gap. During inference, the model supports both RGB-only and point cloud-only inputs. Additionally, we propose a late-fusion technique tailored to our pipeline that further enhances performance when both modalities are available at inference. We evaluate our approach extensively on synthetic (TRIP-PD) and challenging real-world datasets (KITTI and Waymo). Notably, our approach yields a substantial performance improvement compared with the 2D object discovery state-of-the-art on all datasets with gains ranging from +8.7 to +15.1 in F1@50 score. The code is available at https://github.com/CEA-LIST/xMOD
comment: Accepted at CVPR 2025
☆ Learning 4D Panoptic Scene Graph Generation from Rich 2D Visual Scene CVPR 2025
The latest emerged 4D Panoptic Scene Graph (4D-PSG) provides an advanced-ever representation for comprehensively modeling the dynamic 4D visual real world. Unfortunately, current pioneering 4D-PSG research can primarily suffer from data scarcity issues severely, as well as the resulting out-of-vocabulary problems; also, the pipeline nature of the benchmark generation method can lead to suboptimal performance. To address these challenges, this paper investigates a novel framework for 4D-PSG generation that leverages rich 2D visual scene annotations to enhance 4D scene learning. First, we introduce a 4D Large Language Model (4D-LLM) integrated with a 3D mask decoder for end-to-end generation of 4D-PSG. A chained SG inference mechanism is further designed to exploit LLMs' open-vocabulary capabilities to infer accurate and comprehensive object and relation labels iteratively. Most importantly, we propose a 2D-to-4D visual scene transfer learning framework, where a spatial-temporal scene transcending strategy effectively transfers dimension-invariant features from abundant 2D SG annotations to 4D scenes, effectively compensating for data scarcity in 4D-PSG. Extensive experiments on the benchmark data demonstrate that we strikingly outperform baseline models by a large margin, highlighting the effectiveness of our method.
comment: CVPR 2025
☆ Exploiting Diffusion Prior for Real-World Image Dehazing with Unpaired Training AAAI2025
Unpaired training has been verified as one of the most effective paradigms for real scene dehazing by learning from unpaired real-world hazy and clear images. Although numerous studies have been proposed, current methods demonstrate limited generalization for various real scenes due to limited feature representation and insufficient use of real-world prior. Inspired by the strong generative capabilities of diffusion models in producing both hazy and clear images, we exploit diffusion prior for real-world image dehazing, and propose an unpaired framework named Diff-Dehazer. Specifically, we leverage diffusion prior as bijective mapping learners within the CycleGAN, a classic unpaired learning framework. Considering that physical priors contain pivotal statistics information of real-world data, we further excavate real-world knowledge by integrating physical priors into our framework. Furthermore, we introduce a new perspective for adequately leveraging the representation ability of diffusion models by removing degradation in image and text modalities, so as to improve the dehazing effect. Extensive experiments on multiple real-world datasets demonstrate the superior performance of our method. Our code https://github.com/ywxjm/Diff-Dehazer.
comment: Accepted by AAAI2025
☆ Manifold Learning for Hyperspectral Images
Traditional feature extraction and projection techniques, such as Principal Component Analysis, struggle to adequately represent X-Ray Transmission (XRT) Multi-Energy (ME) images, limiting the performance of neural networks in decision-making processes. To address this issue, we propose a method that approximates the dataset topology by constructing adjacency graphs using the Uniform Manifold Approximation and Projection. This approach captures nonlinear correlations within the data, significantly improving the performance of machine learning algorithms, particularly in processing Hyperspectral Images (HSI) from X-ray transmission spectroscopy. This technique not only preserves the global structure of the data but also enhances feature separability, leading to more accurate and robust classification results.
☆ A Novel Channel Boosted Residual CNN-Transformer with Regional-Boundary Learning for Breast Cancer Detection
Recent advancements in detecting tumors using deep learning on breast ultrasound images (BUSI) have demonstrated significant success. Deep CNNs and vision-transformers (ViTs) have demonstrated individually promising initial performance. However, challenges related to model complexity and contrast, texture, and tumor morphology variations introduce uncertainties that hinder the effectiveness of current methods. This study introduces a novel hybrid framework, CB-Res-RBCMT, combining customized residual CNNs and new ViT components for detailed BUSI cancer analysis. The proposed RBCMT uses stem convolution blocks with CNN Meet Transformer (CMT) blocks, followed by new Regional and boundary (RB) feature extraction operations for capturing contrast and morphological variations. Moreover, the CMT block incorporates global contextual interactions through multi-head attention, enhancing computational efficiency with a lightweight design. Additionally, the customized inverse residual and stem CNNs within the CMT effectively extract local texture information and handle vanishing gradients. Finally, the new channel-boosted (CB) strategy enriches the feature diversity of the limited dataset by combining the original RBCMT channels with transfer learning-based residual CNN-generated maps. These diverse channels are processed through a spatial attention block for optimal pixel selection, reducing redundancy and improving the discrimination of minor contrast and texture variations. The proposed CB-Res-RBCMT achieves an F1-score of 95.57%, accuracy of 95.63%, sensitivity of 96.42%, and precision of 94.79% on the standard harmonized stringent BUSI dataset, outperforming existing ViT and CNN methods. These results demonstrate the versatility of our integrated CNN-Transformer framework in capturing diverse features and delivering superior performance in BUSI cancer diagnosis.
comment: 12 pages, 10 Figures, 2 Tables. arXiv admin note: substantial text overlap with arXiv:2405.12986
☆ Universal Scene Graph Generation CVPR 2025
Scene graph (SG) representations can neatly and efficiently describe scene semantics, which has driven sustained intensive research in SG generation. In the real world, multiple modalities often coexist, with different types, such as images, text, video, and 3D data, expressing distinct characteristics. Unfortunately, current SG research is largely confined to single-modality scene modeling, preventing the full utilization of the complementary strengths of different modality SG representations in depicting holistic scene semantics. To this end, we introduce Universal SG (USG), a novel representation capable of fully characterizing comprehensive semantic scenes from any given combination of modality inputs, encompassing modality-invariant and modality-specific scenes. Further, we tailor a niche-targeting USG parser, USG-Par, which effectively addresses two key bottlenecks of cross-modal object alignment and out-of-domain challenges. We design the USG-Par with modular architecture for end-to-end USG generation, in which we devise an object associator to relieve the modality gap for cross-modal object alignment. Further, we propose a text-centric scene contrasting learning mechanism to mitigate domain imbalances by aligning multimodal objects and relations with textual SGs. Through extensive experiments, we demonstrate that USG offers a stronger capability for expressing scene semantics than standalone SGs, and also that our USG-Par achieves higher efficacy and performance.
comment: CVPR 2025
☆ Semantic Segmentation of Transparent and Opaque Drinking Glasses with the Help of Zero-shot Learning
Segmenting transparent structures in images is challenging since they are difficult to distinguish from the background. Common examples are drinking glasses, which are a ubiquitous part of our lives and appear in many different shapes and sizes. In this work we propose TransCaGNet, a modified version of the zero-shot model CaGNet. We exchange the segmentation backbone with the architecture of Trans4Trans to be capable of segmenting transparent objects. Since some glasses are rarely captured, we use zeroshot learning to be able to create semantic segmentations of glass categories not given during training. We propose a novel synthetic dataset covering a diverse set of different environmental conditions. Additionally we capture a real-world evaluation dataset since most applications take place in the real world. Comparing our model with Zeg-Clip we are able to show that TransCaGNet produces better mean IoU and accuracy values while ZegClip outperforms it mostly for unseen classes. To improve the segmentation results, we combine the semantic segmentation of the models with the segmentation results of SAM 2. Our evaluation emphasizes that distinguishing between different classes is challenging for the models due to similarity, points of view, or coverings. Taking this behavior into account, we assign glasses multiple possible categories. The modification leads to an improvement up to 13.68% for the mean IoU and up to 17.88% for the mean accuracy values on the synthetic dataset. Using our difficult synthetic dataset for training, the models produce even better results on the real-world dataset. The mean IoU is improved up to 5.55% and the mean accuracy up to 5.72% on the real-world dataset.
☆ Low-Complexity Patch-based No-Reference Point Cloud Quality Metric exploiting Weighted Structure and Texture Features
During the compression, transmission, and rendering of point clouds, various artifacts are introduced, affecting the quality perceived by the end user. However, evaluating the impact of these distortions on the overall quality is a challenging task. This study introduces PST-PCQA, a no-reference point cloud quality metric based on a low-complexity, learning-based framework. It evaluates point cloud quality by analyzing individual patches, integrating local and global features to predict the Mean Opinion Score. In summary, the process involves extracting features from patches, combining them, and using correlation weights to predict the overall quality. This approach allows us to assess point cloud quality without relying on a reference point cloud, making it particularly useful in scenarios where reference data is unavailable. Experimental tests on three state-of-the-art datasets show good prediction capabilities of PST-PCQA, through the analysis of different feature pooling strategies and its ability to generalize across different datasets. The ablation study confirms the benefits of evaluating quality on a patch-by-patch basis. Additionally, PST-PCQA's light-weight structure, with a small number of parameters to learn, makes it well-suited for real-time applications and devices with limited computational capacity. For reproducibility purposes, we made code, model, and pretrained weights available at https://github.com/michaelneri/PST-PCQA.
comment: Accepted for publication in IEEE Transactions on Broadcasting. Code at https://github.com/michaelneri/PST-PCQA
☆ TGV: Tabular Data-Guided Learning of Visual Cardiac Representations
Contrastive learning methods in computer vision typically rely on different views of the same image to form pairs. However, in medical imaging, we often seek to compare entire patients with different phenotypes rather than just multiple augmentations of one scan. We propose harnessing clinically relevant tabular data to identify distinct patient phenotypes and form more meaningful pairs in a contrastive learning framework. Our method uses tabular attributes to guide the training of visual representations, without requiring a joint embedding space. We demonstrate its strength using short-axis cardiac MR images and clinical attributes from the UK Biobank, where tabular data helps to more effectively distinguish between patient subgroups. Evaluation on downstream tasks, including fine-tuning and zero-shot prediction of cardiovascular artery diseases and cardiac phenotypes, shows that incorporating tabular data yields stronger visual representations than conventional methods that rely solely on image augmentations or combined image-tabular embeddings. Furthermore, we demonstrate that image encoders trained with tabular guidance are capable of embedding demographic information in their representations, allowing them to use insights from tabular data for unimodal predictions, making them well-suited to real-world medical settings where extensive clinical annotations may not be routinely available at inference time. The code will be available on GitHub.
☆ Disentangling Modes and Interference in the Spectrogram of Multicomponent Signals
In this paper, we investigate how the spectrogram of multicomponent signals can be decomposed into a mode part and an interference part. We explore two approaches: (i) a variational method inspired by texture-geometry decomposition in image processing, and (ii) a supervised learning approach using a U-Net architecture, trained on a dataset encompassing diverse interference patterns and noise conditions. Once the interference component is identified, we explain how it enables us to define a criterion to locally adapt the window length used in the definition of the spectrogram, for the sake of improving ridge detection in the presence of close modes. Numerical experiments illustrate the advantages and limitations of both approaches for spectrogram decomposition, highlighting their potential for enhancing time-frequency analysis in the presence of strong interference.
☆ Semi-KAN: KAN Provides an Effective Representation for Semi-Supervised Learning in Medical Image Segmentation
Deep learning-based medical image segmentation has shown remarkable success; however, it typically requires extensive pixel-level annotations, which are both expensive and time-intensive. Semi-supervised medical image segmentation (SSMIS) offers a viable alternative, driven by advancements in CNNs and ViTs. However, these networks often rely on single fixed activation functions and linear modeling patterns, limiting their ability to effectively learn robust representations. Given the limited availability of labeled date, achieving robust representation learning becomes crucial. Inspired by Kolmogorov-Arnold Networks (KANs), we propose Semi-KAN, which leverages the untapped potential of KANs to enhance backbone architectures for representation learning in SSMIS. Our findings indicate that: (1) compared to networks with fixed activation functions, KANs exhibit superior representation learning capabilities with fewer parameters, and (2) KANs excel in high-semantic feature spaces. Building on these insights, we integrate KANs into tokenized intermediate representations, applying them selectively at the encoder's bottleneck and the decoder's top layers within a U-Net pipeline to extract high-level semantic features. Although learnable activation functions improve feature expansion, they introduce significant computational overhead with only marginal performance gains. To mitigate this, we reduce the feature dimensions and employ horizontal scaling to capture multiple pattern representations. Furthermore, we design a multi-branch U-Net architecture with uncertainty estimation to effectively learn diverse pattern representations. Extensive experiments on four public datasets demonstrate that Semi-KAN surpasses baseline networks, utilizing fewer KAN layers and lower computational cost, thereby underscoring the potential of KANs as a promising approach for SSMIS.
comment: 18 pages, 7 figures, 6 tables
☆ One-Shot Medical Video Object Segmentation via Temporal Contrastive Memory Networks MICCAI 2024
Video object segmentation is crucial for the efficient analysis of complex medical video data, yet it faces significant challenges in data availability and annotation. We introduce the task of one-shot medical video object segmentation, which requires separating foreground and background pixels throughout a video given only the mask annotation of the first frame. To address this problem, we propose a temporal contrastive memory network comprising image and mask encoders to learn feature representations, a temporal contrastive memory bank that aligns embeddings from adjacent frames while pushing apart distant ones to explicitly model inter-frame relationships and stores these features, and a decoder that fuses encoded image features and memory readouts for segmentation. We also collect a diverse, multi-source medical video dataset spanning various modalities and anatomies to benchmark this task. Extensive experiments demonstrate state-of-the-art performance in segmenting both seen and unseen structures from a single exemplar, showing ability to generalize from scarce labels. This highlights the potential to alleviate annotation burdens for medical video analysis. Code is available at https://github.com/MedAITech/TCMN.
comment: MICCAI 2024 Workshop
☆ Taming Flow Matching with Unbalanced Optimal Transport into Fast Pansharpening
Pansharpening, a pivotal task in remote sensing for fusing high-resolution panchromatic and multispectral imagery, has garnered significant research interest. Recent advancements employing diffusion models based on stochastic differential equations (SDEs) have demonstrated state-of-the-art performance. However, the inherent multi-step sampling process of SDEs imposes substantial computational overhead, hindering practical deployment. While existing methods adopt efficient samplers, knowledge distillation, or retraining to reduce sampling steps (e.g., from 1,000 to fewer steps), such approaches often compromise fusion quality. In this work, we propose the Optimal Transport Flow Matching (OTFM) framework, which integrates the dual formulation of unbalanced optimal transport (UOT) to achieve one-step, high-quality pansharpening. Unlike conventional OT formulations that enforce rigid distribution alignment, UOT relaxes marginal constraints to enhance modeling flexibility, accommodating the intrinsic spectral and spatial disparities in remote sensing data. Furthermore, we incorporate task-specific regularization into the UOT objective, enhancing the robustness of the flow model. The OTFM framework enables simulation-free training and single-step inference while maintaining strict adherence to pansharpening constraints. Experimental evaluations across multiple datasets demonstrate that OTFM matches or exceeds the performance of previous regression-based models and leading diffusion-based methods while only needing one sampling step. Codes are available at https://github.com/294coder/PAN-OTFM.
☆ Language-based Image Colorization: A Benchmark and Beyond
Image colorization aims to bring colors back to grayscale images. Automatic image colorization methods, which requires no additional guidance, struggle to generate high-quality images due to color ambiguity, and provides limited user controllability. Thanks to the emergency of cross-modality datasets and models, language-based colorization methods are proposed to fully utilize the efficiency and flexibly of text descriptions to guide colorization. In view of the lack of a comprehensive review of language-based colorization literature, we conduct a thorough analysis and benchmarking. We first briefly summarize existing automatic colorization methods. Then, we focus on language-based methods and point out their core challenge on cross-modal alignment. We further divide these methods into two categories: one attempts to train a cross-modality network from scratch, while the other utilizes the pre-trained cross-modality model to establish the textual-visual correspondence. Based on the analyzed limitations of existing language-based methods, we propose a simple yet effective method based on distilled diffusion model. Extensive experiments demonstrate that our simple baseline can produces better results than previous complex methods with 14 times speed up. To the best of our knowledge, this is the first comprehensive review and benchmark on language-based image colorization field, providing meaningful insights for the community. The code is available at https://github.com/lyf1212/Color-Turbo.
☆ Ultrasound Image-to-Video Synthesis via Latent Dynamic Diffusion Models MICCAI 2024
Ultrasound video classification enables automated diagnosis and has emerged as an important research area. However, publicly available ultrasound video datasets remain scarce, hindering progress in developing effective video classification models. We propose addressing this shortage by synthesizing plausible ultrasound videos from readily available, abundant ultrasound images. To this end, we introduce a latent dynamic diffusion model (LDDM) to efficiently translate static images to dynamic sequences with realistic video characteristics. We demonstrate strong quantitative results and visually appealing synthesized videos on the BUSV benchmark. Notably, training video classification models on combinations of real and LDDM-synthesized videos substantially improves performance over using real data alone, indicating our method successfully emulates dynamics critical for discrimination. Our image-to-video approach provides an effective data augmentation solution to advance ultrasound video analysis. Code is available at https://github.com/MedAITech/U_I2V.
comment: MICCAI 2024
☆ Body-Hand Modality Expertized Networks with Cross-attention for Fine-grained Skeleton Action Recognition
Skeleton-based Human Action Recognition (HAR) is a vital technology in robotics and human-robot interaction. However, most existing methods concentrate primarily on full-body movements and often overlook subtle hand motions that are critical for distinguishing fine-grained actions. Recent work leverages a unified graph representation that combines body, hand, and foot keypoints to capture detailed body dynamics. Yet, these models often blur fine hand details due to the disparity between body and hand action characteristics and the loss of subtle features during the spatial-pooling. In this paper, we propose BHaRNet (Body-Hand action Recognition Network), a novel framework that augments a typical body-expert model with a hand-expert model. Our model jointly trains both streams with an ensemble loss that fosters cooperative specialization, functioning in a manner reminiscent of a Mixture-of-Experts (MoE). Moreover, cross-attention is employed via an expertized branch method and a pooling-attention module to enable feature-level interactions and selectively fuse complementary information. Inspired by MMNet, we also demonstrate the applicability of our approach to multi-modal tasks by leveraging RGB information, where body features guide RGB learning to capture richer contextual cues. Experiments on large-scale benchmarks (NTU RGB+D 60, NTU RGB+D 120, PKU-MMD, and Northwestern-UCLA) demonstrate that BHaRNet achieves SOTA accuracies -- improving from 86.4\% to 93.0\% in hand-intensive actions -- while maintaining fewer GFLOPs and parameters than the relevant unified methods.
comment: 7 figures, 8 pages
☆ Reducing Annotation Burden: Exploiting Image Knowledge for Few-Shot Medical Video Object Segmentation via Spatiotemporal Consistency Relearning MICCAI 2024
Few-shot video object segmentation aims to reduce annotation costs; however, existing methods still require abundant dense frame annotations for training, which are scarce in the medical domain. We investigate an extremely low-data regime that utilizes annotations from only a few video frames and leverages existing labeled images to minimize costly video annotations. Specifically, we propose a two-phase framework. First, we learn a few-shot segmentation model using labeled images. Subsequently, to improve performance without full supervision, we introduce a spatiotemporal consistency relearning approach on medical videos that enforces consistency between consecutive frames. Constraints are also enforced between the image model and relearning model at both feature and prediction levels. Experiments demonstrate the superiority of our approach over state-of-the-art few-shot segmentation methods. Our model bridges the gap between abundant annotated medical images and scarce, sparsely labeled medical videos to achieve strong video segmentation performance in this low data regime. Code is available at https://github.com/MedAITech/RAB.
comment: MICCAI 2024
☆ Neuro Symbolic Knowledge Reasoning for Procedural Video Question Answering
This paper introduces a new video question-answering (VQA) dataset that challenges models to leverage procedural knowledge for complex reasoning. It requires recognizing visual entities, generating hypotheses, and performing contextual, causal, and counterfactual reasoning. To address this, we propose neuro symbolic reasoning module that integrates neural networks and LLM-driven constrained reasoning over variables for interpretable answer generation. Results show that combining LLMs with structured knowledge reasoning with logic enhances procedural reasoning on the STAR benchmark and our dataset. Code and dataset at https://github.com/LUNAProject22/KML soon.
☆ Depth-Aware Range Image-Based Model for Point Cloud Segmentation
Point cloud segmentation (PCS) aims to separate points into different and meaningful groups. The task plays an important role in robotics because PCS enables robots to understand their physical environments directly. To process sparse and large-scale outdoor point clouds in real time, range image-based models are commonly adopted. However, in a range image, the lack of explicit depth information inevitably causes some separate objects in 3D space to touch each other, bringing difficulty for the range image-based models in correctly segmenting the objects. Moreover, previous PCS models are usually derived from the existing color image-based models and unable to make full use of the implicit but ordered depth information inherent in the range image, thereby achieving inferior performance. In this paper, we propose Depth-Aware Module (DAM) and Fast FMVNet V3. DAM perceives the ordered depth information in the range image by explicitly modelling the interdependence among channels. Fast FMVNet V3 incorporates DAM by integrating it into the last block in each architecture stage. Extensive experiments conducted on SemanticKITTI, nuScenes, and SemanticPOSS demonstrate that DAM brings a significant improvement for Fast FMVNet V3 with negligible computational cost.
comment: No Comments
☆ Aligning Information Capacity Between Vision and Language via Dense-to-Sparse Feature Distillation for Image-Text Matching
Enabling Visual Semantic Models to effectively handle multi-view description matching has been a longstanding challenge. Existing methods typically learn a set of embeddings to find the optimal match for each view's text and compute similarity. However, the visual and text embeddings learned through these approaches have limited information capacity and are prone to interference from locally similar negative samples. To address this issue, we argue that the information capacity of embeddings is crucial and propose Dense-to-Sparse Feature Distilled Visual Semantic Embedding (D2S-VSE), which enhances the information capacity of sparse text by leveraging dense text distillation. Specifically, D2S-VSE is a two-stage framework. In the pre-training stage, we align images with dense text to enhance the information capacity of visual semantic embeddings. In the fine-tuning stage, we optimize two tasks simultaneously, distilling dense text embeddings to sparse text embeddings while aligning images and sparse texts, enhancing the information capacity of sparse text embeddings. Our proposed D2S-VSE model is extensively evaluated on the large-scale MS-COCO and Flickr30K datasets, demonstrating its superiority over recent state-of-the-art methods.
☆ USAM-Net: A U-Net-based Network for Improved Stereo Correspondence and Scene Depth Estimation using Features from a Pre-trained Image Segmentation network
The increasing demand for high-accuracy depth estimation in autonomous driving and augmented reality applications necessitates advanced neural architectures capable of effectively leveraging multiple data modalities. In this context, we introduce the Unified Segmentation Attention Mechanism Network (USAM-Net), a novel convolutional neural network that integrates stereo image inputs with semantic segmentation maps and attention to enhance depth estimation performance. USAM-Net employs a dual-pathway architecture, which combines a pre-trained segmentation model (SAM) and a depth estimation model. The segmentation pathway preprocesses the stereo images to generate semantic masks, which are then concatenated with the stereo images as inputs to the depth estimation pathway. This integration allows the model to focus on important features such as object boundaries and surface textures which are crucial for accurate depth perception. Empirical evaluation on the DrivingStereo dataset demonstrates that USAM-Net achieves superior performance metrics, including a Global Difference (GD) of 3.61\% and an End-Point Error (EPE) of 0.88, outperforming traditional models such as CFNet, SegStereo, and iResNet. These results underscore the effectiveness of integrating segmentation information into stereo depth estimation tasks, highlighting the potential of USAM-Net in applications demanding high-precision depth data.
☆ ChatStitch: Visualizing Through Structures via Surround-View Unsupervised Deep Image Stitching with Collaborative LLM-Agents
Collaborative perception has garnered significant attention for its ability to enhance the perception capabilities of individual vehicles through the exchange of information with surrounding vehicle-agents. However, existing collaborative perception systems are limited by inefficiencies in user interaction and the challenge of multi-camera photorealistic visualization. To address these challenges, this paper introduces ChatStitch, the first collaborative perception system capable of unveiling obscured blind spot information through natural language commands integrated with external digital assets. To adeptly handle complex or abstract commands, ChatStitch employs a multi-agent collaborative framework based on Large Language Models. For achieving the most intuitive perception for humans, ChatStitch proposes SV-UDIS, the first surround-view unsupervised deep image stitching method under the non-global-overlapping condition. We conducted extensive experiments on the UDIS-D, MCOV-SLAM open datasets, and our real-world dataset. Specifically, our SV-UDIS method achieves state-of-the-art performance on the UDIS-D dataset for 3, 4, and 5 image stitching tasks, with PSNR improvements of 9%, 17%, and 21%, and SSIM improvements of 8%, 18%, and 26%, respectively.
☆ Generating Multimodal Driving Scenes via Next-Scene Prediction
Generative models in Autonomous Driving (AD) enable diverse scene creation, yet existing methods fall short by only capturing a limited range of modalities, restricting the capability of generating controllable scenes for comprehensive evaluation of AD systems. In this paper, we introduce a multimodal generation framework that incorporates four major data modalities, including a novel addition of map modality. With tokenized modalities, our scene sequence generation framework autoregressively predicts each scene while managing computational demands through a two-stage approach. The Temporal AutoRegressive (TAR) component captures inter-frame dynamics for each modality while the Ordered AutoRegressive (OAR) component aligns modalities within each scene by sequentially predicting tokens in a fixed order. To maintain coherence between map and ego-action modalities, we introduce the Action-aware Map Alignment (AMA) module, which applies a transformation based on the ego-action to maintain coherence between these modalities. Our framework effectively generates complex, realistic driving scenes over extended sequences, ensuring multimodal consistency and offering fine-grained control over scene elements.
☆ MMAIF: Multi-task and Multi-degradation All-in-One for Image Fusion with Language Guidance
Image fusion, a fundamental low-level vision task, aims to integrate multiple image sequences into a single output while preserving as much information as possible from the input. However, existing methods face several significant limitations: 1) requiring task- or dataset-specific models; 2) neglecting real-world image degradations (\textit{e.g.}, noise), which causes failure when processing degraded inputs; 3) operating in pixel space, where attention mechanisms are computationally expensive; and 4) lacking user interaction capabilities. To address these challenges, we propose a unified framework for multi-task, multi-degradation, and language-guided image fusion. Our framework includes two key components: 1) a practical degradation pipeline that simulates real-world image degradations and generates interactive prompts to guide the model; 2) an all-in-one Diffusion Transformer (DiT) operating in latent space, which fuses a clean image conditioned on both the degraded inputs and the generated prompts. Furthermore, we introduce principled modifications to the original DiT architecture to better suit the fusion task. Based on this framework, we develop two versions of the model: Regression-based and Flow Matching-based variants. Extensive qualitative and quantitative experiments demonstrate that our approach effectively addresses the aforementioned limitations and outperforms previous restoration+fusion and all-in-one pipelines. Codes are available at https://github.com/294coder/MMAIF.
☆ 3D Engine-ready Photorealistic Avatars via Dynamic Textures
As the digital and physical worlds become more intertwined, there has been a lot of interest in digital avatars that closely resemble their real-world counterparts. Current digitization methods used in 3D production pipelines require costly capture setups, making them impractical for mass usage among common consumers. Recent academic literature has found success in reconstructing humans from limited data using implicit representations (e.g., voxels used in NeRFs), which are able to produce impressive videos. However, these methods are incompatible with traditional rendering pipelines, making it difficult to use them in applications such as games. In this work, we propose an end-to-end pipeline that builds explicitly-represented photorealistic 3D avatars using standard 3D assets. Our key idea is the use of dynamically-generated textures to enhance the realism and visually mask deficiencies in the underlying mesh geometry. This allows for seamless integration with current graphics pipelines while achieving comparable visual quality to state-of-the-art 3D avatar generation methods.
☆ UPME: An Unsupervised Peer Review Framework for Multimodal Large Language Model Evaluation CVPR 2025
Multimodal Large Language Models (MLLMs) have emerged to tackle the challenges of Visual Question Answering (VQA), sparking a new research focus on conducting objective evaluations of these models. Existing evaluation methods face limitations due to the significant human workload required to design Q&A pairs for visual images, which inherently restricts the scale and scope of evaluations. Although automated MLLM-as-judge approaches attempt to reduce the human workload through automatic evaluations, they often introduce biases. To address these problems, we propose an Unsupervised Peer review MLLM Evaluation framework. It utilizes only image data, allowing models to automatically generate questions and conduct peer review assessments of answers from other models, effectively alleviating the reliance on human workload. Additionally, we introduce the vision-language scoring system to mitigate the bias issues, which focuses on three aspects: (i) response correctness; (ii) visual understanding and reasoning; and (iii) image-text correlation. Experimental results demonstrate that UPME achieves a Pearson correlation of 0.944 with human evaluations on the MMstar dataset and 0.814 on the ScienceQA dataset, indicating that our framework closely aligns with human-designed benchmarks and inherent human preferences.
comment: Accepted by CVPR 2025
☆ VisNumBench: Evaluating Number Sense of Multimodal Large Language Models
Can Multimodal Large Language Models (MLLMs) develop an intuitive number sense similar to humans? Targeting this problem, we introduce Visual Number Benchmark (VisNumBench) to evaluate the number sense abilities of MLLMs across a wide range of visual numerical tasks. VisNumBench consists of about 1,900 multiple-choice question-answer pairs derived from both synthetic and real-world visual data, covering seven visual numerical attributes and four types of visual numerical estimation tasks. Our experiments on VisNumBench led to the following key findings: (i) The 17 MLLMs we tested, including open-source models such as Qwen2.5-VL and InternVL2.5, as well as proprietary models like GPT-4o and Gemini 2.0 Flash, perform significantly below human levels in number sense-related tasks. (ii) Multimodal mathematical models and multimodal chain-of-thought (CoT) models did not exhibit significant improvements in number sense abilities. (iii) Stronger MLLMs with larger parameter sizes and broader general abilities demonstrate modest gains in number sense abilities. We believe VisNumBench will serve as a valuable resource for the research community, encouraging further advancements in enhancing MLLMs' number sense abilities. All benchmark resources, including code and datasets, will be publicly available at https://wwwtttjjj.github.io/VisNumBench/.
☆ Optimal Transport Adapter Tuning for Bridging Modality Gaps in Few-Shot Remote Sensing Scene Classification
Few-Shot Remote Sensing Scene Classification (FS-RSSC) presents the challenge of classifying remote sensing images with limited labeled samples. Existing methods typically emphasize single-modal feature learning, neglecting the potential benefits of optimizing multi-modal representations. To address this limitation, we propose a novel Optimal Transport Adapter Tuning (OTAT) framework aimed at constructing an ideal Platonic representational space through optimal transport (OT) theory. This framework seeks to harmonize rich visual information with less dense textual cues, enabling effective cross-modal information transfer and complementarity. Central to this approach is the Optimal Transport Adapter (OTA), which employs a cross-modal attention mechanism to enrich textual representations and facilitate subsequent better information interaction. By transforming the network optimization into an OT optimization problem, OTA establishes efficient pathways for balanced information exchange between modalities. Moreover, we introduce a sample-level Entropy-Aware Weighted (EAW) loss, which combines difficulty-weighted similarity scores with entropy-based regularization. This loss function provides finer control over the OT optimization process, enhancing its solvability and stability. Our framework offers a scalable and efficient solution for advancing multimodal learning in remote sensing applications. Extensive experiments on benchmark datasets demonstrate that OTAT achieves state-of-the-art performance in FS-RSSC, significantly improving the model performance and generalization.
☆ FAVOR-Bench: A Comprehensive Benchmark for Fine-Grained Video Motion Understanding
Multimodal Large Language Models (MLLMs) have shown remarkable capabilities in video content understanding but still struggle with fine-grained motion comprehension. To comprehensively assess the motion understanding ability of existing MLLMs, we introduce FAVOR-Bench, comprising 1,776 videos with structured manual annotations of various motions. Our benchmark includes both close-ended and open-ended tasks. For close-ended evaluation, we carefully design 8,184 multiple-choice question-answer pairs spanning six distinct sub-tasks. For open-ended evaluation, we develop both a novel cost-efficient LLM-free and a GPT-assisted caption assessment method, where the former can enhance benchmarking interpretability and reproducibility. Comprehensive experiments with 21 state-of-the-art MLLMs reveal significant limitations in their ability to comprehend and describe detailed temporal dynamics in video motions. To alleviate this limitation, we further build FAVOR-Train, a dataset consisting of 17,152 videos with fine-grained motion annotations. The results of finetuning Qwen2.5-VL on FAVOR-Train yield consistent improvements on motion-related tasks of TVBench, MotionBench and our FAVOR-Bench. Comprehensive assessment results demonstrate that the proposed FAVOR-Bench and FAVOR-Train provide valuable tools to the community for developing more powerful video understanding models. Project page: \href{https://favor-bench.github.io/}{https://favor-bench.github.io/}.
comment: FAVOR-Bench project page: https://favor-bench.github.io/
♻ ☆ Advances in 4D Generation: A Survey
Generative artificial intelligence (AI) has made significant progress across various domains in recent years. Building on the rapid advancements in 2D, video, and 3D content generation fields, 4D generation has emerged as a novel and rapidly evolving research area, attracting growing attention. 4D generation focuses on creating dynamic 3D assets with spatiotemporal consistency based on user input, offering greater creative freedom and richer immersive experiences. This paper presents a comprehensive survey of the 4D generation field, systematically summarizing its core technologies, developmental trajectory, key challenges, and practical applications, while also exploring potential future research directions. The survey begins by introducing various fundamental 4D representation models, followed by a review of 4D generation frameworks built upon these representations and the key technologies that incorporate motion and geometry priors into 4D assets. We summarize five major challenges of 4D generation: consistency, controllability, diversity, efficiency, and fidelity, accompanied by an outline of existing solutions to address these issues. We systematically analyze applications of 4D generation, spanning dynamic object generation, scene generation, digital human synthesis, 4D editing, and autonomous driving. Finally, we provide an in-depth discussion of the obstacles currently hindering the development of the 4D generation. This survey offers a clear and comprehensive overview of 4D generation, aiming to stimulate further exploration and innovation in this rapidly evolving field. Our code is publicly available at: https://github.com/MiaoQiaowei/Awesome-4D.
♻ ☆ State Space Model Meets Transformer: A New Paradigm for 3D Object Detection ICLR 2025
DETR-based methods, which use multi-layer transformer decoders to refine object queries iteratively, have shown promising performance in 3D indoor object detection. However, the scene point features in the transformer decoder remain fixed, leading to minimal contributions from later decoder layers, thereby limiting performance improvement. Recently, State Space Models (SSM) have shown efficient context modeling ability with linear complexity through iterative interactions between system states and inputs. Inspired by SSMs, we propose a new 3D object DEtection paradigm with an interactive STate space model (DEST). In the interactive SSM, we design a novel state-dependent SSM parameterization method that enables system states to effectively serve as queries in 3D indoor detection tasks. In addition, we introduce four key designs tailored to the characteristics of point cloud and SSM: The serialization and bidirectional scanning strategies enable bidirectional feature interaction among scene points within the SSM. The inter-state attention mechanism models the relationships between state points, while the gated feed-forward network enhances inter-channel correlations. To the best of our knowledge, this is the first method to model queries as system states and scene points as system inputs, which can simultaneously update scene point features and query features with linear complexity. Extensive experiments on two challenging datasets demonstrate the effectiveness of our DEST-based method. Our method improves the GroupFree baseline in terms of AP50 on ScanNet V2 (+5.3) and SUN RGB-D (+3.2) datasets. Based on the VDETR baseline, Our method sets a new SOTA on the ScanNetV2 and SUN RGB-D datasets.
comment: Accepted by ICLR 2025. Project url: https://chuxwa.github.io/project_DEST/
♻ ☆ Creation-MMBench: Assessing Context-Aware Creative Intelligence in MLLM
Creativity is a fundamental aspect of intelligence, involving the ability to generate novel and appropriate solutions across diverse contexts. While Large Language Models (LLMs) have been extensively evaluated for their creative capabilities, the assessment of Multimodal Large Language Models (MLLMs) in this domain remains largely unexplored. To address this gap, we introduce Creation-MMBench, a multimodal benchmark specifically designed to evaluate the creative capabilities of MLLMs in real-world, image-based tasks. The benchmark comprises 765 test cases spanning 51 fine-grained tasks. To ensure rigorous evaluation, we define instance-specific evaluation criteria for each test case, guiding the assessment of both general response quality and factual consistency with visual inputs. Experimental results reveal that current open-source MLLMs significantly underperform compared to proprietary models in creative tasks. Furthermore, our analysis demonstrates that visual fine-tuning can negatively impact the base LLM's creative abilities. Creation-MMBench provides valuable insights for advancing MLLM creativity and establishes a foundation for future improvements in multimodal generative intelligence. Full data and evaluation code is released on https://github.com/open-compass/Creation-MMBench.
comment: Evaluation Code and dataset see https://github.com/open-compass/Creation-MMBench
♻ ☆ EvolvingGrasp: Evolutionary Grasp Generation via Efficient Preference Alignment
Dexterous robotic hands often struggle to generalize effectively in complex environments due to the limitations of models trained on low-diversity data. However, the real world presents an inherently unbounded range of scenarios, making it impractical to account for every possible variation. A natural solution is to enable robots learning from experience in complex environments, an approach akin to evolution, where systems improve through continuous feedback, learning from both failures and successes, and iterating toward optimal performance. Motivated by this, we propose EvolvingGrasp, an evolutionary grasp generation method that continuously enhances grasping performance through efficient preference alignment. Specifically, we introduce Handpose wise Preference Optimization (HPO), which allows the model to continuously align with preferences from both positive and negative feedback while progressively refining its grasping strategies. To further enhance efficiency and reliability during online adjustments, we incorporate a Physics-aware Consistency Model within HPO, which accelerates inference, reduces the number of timesteps needed for preference finetuning, and ensures physical plausibility throughout the process. Extensive experiments across four benchmark datasets demonstrate state of the art performance of our method in grasp success rate and sampling efficiency. Our results validate that EvolvingGrasp enables evolutionary grasp generation, ensuring robust, physically feasible, and preference-aligned grasping in both simulation and real scenarios.
♻ ☆ DualToken: Towards Unifying Visual Understanding and Generation with Dual Visual Vocabularies
The differing representation spaces required for visual understanding and generation pose a challenge in unifying them within the autoregressive paradigm of large language models. A vision tokenizer trained for reconstruction excels at capturing low-level perceptual details, making it well-suited for visual generation but lacking high-level semantic representations for understanding tasks. Conversely, a vision encoder trained via contrastive learning aligns well with language but struggles to decode back into the pixel space for generation tasks. To bridge this gap, we propose DualToken, a method that unifies representations for both understanding and generation within a single tokenizer. However, directly integrating reconstruction and semantic objectives in a single tokenizer creates conflicts, leading to degraded performance in both reconstruction quality and semantic performance. Instead of forcing a single codebook to handle both semantic and perceptual information, DualToken disentangles them by introducing separate codebooks for high and low-level features, effectively transforming their inherent conflict into a synergistic relationship. As a result, DualToken achieves state-of-the-art performance in both reconstruction and semantic tasks while demonstrating remarkable effectiveness in downstream MLLM understanding and generation tasks. Notably, we also show that DualToken, as a unified tokenizer, surpasses the naive combination of two distinct types vision encoders, providing superior performance within a unified MLLM.
♻ ☆ Manual Labelling Artificially Inflates Deep Learning-Based Segmentation Performance on RGB Images of Closed Canopy: Validation Using TLS
Monitoring forest dynamics at an individual tree scale is essential for accurately assessing ecosystem responses to climate change, yet traditional methods relying on field-based forest inventories are labor-intensive and limited in spatial coverage. Advances in remote sensing using drone-acquired RGB imagery combined with deep learning models have promised precise individual tree crown (ITC) segmentation; however, existing methods are frequently validated against human-annotated images, lacking rigorous independent ground truth. In this study, we generate high-fidelity validation labels from co-located Terrestrial Laser Scanning (TLS) data for drone imagery of mixed unmanaged boreal and Mediterranean forests. We evaluate the performance of two widely used deep learning ITC segmentation models - DeepForest (RetinaNet) and Detectree2 (Mask R-CNN) - on these data, and compare to performance on further Mediterranean forest data labelled manually. When validated against TLS-derived ground truth from Mediterranean forests, model performance decreased significantly compared to assessment based on hand-labelled from an ecologically similar site (AP50: 0.094 vs. 0.670). Restricting evaluation to only canopy trees shrank this gap considerably (Canopy AP50: 0.365), although performance was still far lower than on similar hand-labelled data. Models also performed poorly on boreal forest data (AP50: 0.142), although again increasing when evaluated on canopy trees only (Canopy AP50: 0.308). Both models showed very poor localisation accuracy at stricter IoU thresholds, even when restricted to canopy trees (Max AP75: 0.051). Similar results have been observed in studies using aerial LiDAR data, suggesting fundamental limitations in aerial-based segmentation approaches in closed canopy forests.
comment: 17 pages, 3 figures
♻ ☆ CTSR: Controllable Fidelity-Realness Trade-off Distillation for Real-World Image Super Resolution
Real-world image super-resolution is a critical image processing task, where two key evaluation criteria are the fidelity to the original image and the visual realness of the generated results. Although existing methods based on diffusion models excel in visual realness by leveraging strong priors, they often struggle to achieve an effective balance between fidelity and realness. In our preliminary experiments, we observe that a linear combination of multiple models outperforms individual models, motivating us to harness the strengths of different models for a more effective trade-off. Based on this insight, we propose a distillation-based approach that leverages the geometric decomposition of both fidelity and realness, alongside the performance advantages of multiple teacher models, to strike a more balanced trade-off. Furthermore, we explore the controllability of this trade-off, enabling a flexible and adjustable super-resolution process, which we call CTSR (Controllable Trade-off Super-Resolution). Experiments conducted on several real-world image super-resolution benchmarks demonstrate that our method surpasses existing state-of-the-art approaches, achieving superior performance across both fidelity and realness metrics.
♻ ☆ Towards Self-Improving Systematic Cognition for Next-Generation Foundation MLLMs
Despite their impressive capabilities, Multimodal Large Language Models (MLLMs) face challenges with fine-grained perception and complex reasoning. Prevalent multimodal pre-training approaches focus on enhancing perception by training on high-quality image captions due to the extremely high cost of collecting chain-of-thought (CoT) reasoning data for improving reasoning. While leveraging advanced MLLMs for caption generation enhances scalability, the outputs often lack comprehensiveness and accuracy. In this paper, we introduce Self-Improving cognition (SIcog), a self-learning framework designed to construct next-generation foundation MLLMs by enhancing their systematic cognitive capabilities through multimodal pre-training with self-generated data. Specifically, we propose Chain-of-Description, an approach that improves an MLLM's systematic perception by enabling step-by-step visual understanding, ensuring greater comprehensiveness and accuracy. Additionally, we adopt a structured CoT reasoning technique to enable MLLMs to integrate in-depth multimodal reasoning. To construct a next-generation foundation MLLM with self-improved cognition, SIcog first equips an MLLM with systematic perception and reasoning abilities using minimal external annotations. The enhanced models then generate detailed captions and CoT reasoning data, which are further curated through self-consistency. This curated data is ultimately used for multimodal pre-training to develop next-generation foundation models. Extensive experiments on both low- and high-resolution MLLMs across diverse benchmarks demonstrate that, with merely 213K self-generated pre-training samples, SIcog produces next-generation foundation MLLMs with significantly improved cognition, achieving benchmark-leading performance compared to prevalent pre-training approaches.
comment: 38 pages. Preprint, work in progress
♻ ☆ Accurate Automatic 3D Annotation of Traffic Lights and Signs for Autonomous Driving ECCV 2024
3D detection of traffic management objects, such as traffic lights and road signs, is vital for self-driving cars, particularly for address-to-address navigation where vehicles encounter numerous intersections with these static objects. This paper introduces a novel method for automatically generating accurate and temporally consistent 3D bounding box annotations for traffic lights and signs, effective up to a range of 200 meters. These annotations are suitable for training real-time models used in self-driving cars, which need a large amount of training data. The proposed method relies only on RGB images with 2D bounding boxes of traffic management objects, which can be automatically obtained using an off-the-shelf image-space detector neural network, along with GNSS/INS data, eliminating the need for LiDAR point cloud data.
comment: Accepted at the 2nd Workshop on Vision-Centric Autonomous Driving (VCAD) as part of ECCV 2024
♻ ☆ Multimodal Feature-Driven Deep Learning for the Prediction of Duck Body Dimensions and Weight
Accurate body dimension and weight measurements are critical for optimizing poultry management, health assessment, and economic efficiency. This study introduces an innovative deep learning-based model leveraging multimodal data-2D RGB images from different views, depth images, and 3D point clouds-for the non-invasive estimation of duck body dimensions and weight. A dataset of 1,023 Linwu ducks, comprising over 5,000 samples with diverse postures and conditions, was collected to support model training. The proposed method innovatively employs PointNet++ to extract key feature points from point clouds, extracts and computes corresponding 3D geometric features, and fuses them with multi-view convolutional 2D features. A Transformer encoder is then utilized to capture long-range dependencies and refine feature interactions, thereby enhancing prediction robustness. The model achieved a mean absolute percentage error (MAPE) of 6.33% and an R2 of 0.953 across eight morphometric parameters, demonstrating strong predictive capability. Unlike conventional manual measurements, the proposed model enables high-precision estimation while eliminating the necessity for physical handling, thereby reducing animal stress and broadening its application scope. This study marks the first application of deep learning techniques to poultry body dimension and weight estimation, providing a valuable reference for the intelligent and precise management of the livestock industry with far-reaching practical significance.
♻ ☆ SlideChat: A Large Vision-Language Assistant for Whole-Slide Pathology Image Understanding CVPR2025
Despite the progress made by multimodal large language models (MLLMs) in computational pathology, they remain limited by a predominant focus on patch-level analysis, missing essential contextual information at the whole-slide level. The lack of large-scale instruction datasets and the gigapixel scale of whole slide images (WSIs) pose significant developmental challenges. In this paper, we present SlideChat, the first vision-language assistant capable of understanding gigapixel whole-slide images, exhibiting excellent multimodal conversational capability and response complex instruction across diverse pathology scenarios. To support its development, we created SlideInstruction, the largest instruction-following dataset for WSIs consisting of 4.2K WSI captions and 176K VQA pairs with multiple categories. Furthermore, we propose SlideBench, a multimodal benchmark that incorporates captioning and VQA tasks to assess SlideChat's capabilities in varied clinical settings such as microscopy, diagnosis. Compared to both general and specialized MLLMs, SlideChat exhibits exceptional capabilities achieving state-of-the-art performance on 18 of 22 tasks. For example, it achieved an overall accuracy of 81.17% on SlideBench-VQA (TCGA), and 54.15% on SlideBench-VQA (BCNB). Our code, data, and model is publicly accessible at https://uni-medical.github.io/SlideChat.github.io.
comment: Accepted by CVPR2025
♻ ☆ RMDM: Radio Map Diffusion Model with Physics Informed
With the rapid development of wireless communication technology, the efficient utilization of spectrum resources, optimization of communication quality, and intelligent communication have become critical. Radio map reconstruction is essential for enabling advanced applications, yet challenges such as complex signal propagation and sparse data hinder accurate reconstruction. To address these issues, we propose the **Radio Map Diffusion Model (RMDM)**, a physics-informed framework that integrates **Physics-Informed Neural Networks (PINNs)** to incorporate constraints like the **Helmholtz equation**. RMDM employs a dual U-Net architecture: the first ensures physical consistency by minimizing PDE residuals, boundary conditions, and source constraints, while the second refines predictions via diffusion-based denoising. By leveraging physical laws, RMDM significantly enhances accuracy, robustness, and generalization. Experiments demonstrate that RMDM outperforms state-of-the-art methods, achieving **NMSE of 0.0031** and **RMSE of 0.0125** under the Static RM (SRM) setting, and **NMSE of 0.0047** and **RMSE of 0.0146** under the Dynamic RM (DRM) setting. These results establish a novel paradigm for integrating physics-informed and data-driven approaches in radio map reconstruction, particularly under sparse data conditions.
♻ ☆ Safety at Scale: A Comprehensive Survey of Large Model Safety
The rapid advancement of large models, driven by their exceptional abilities in learning and generalization through large-scale pre-training, has reshaped the landscape of Artificial Intelligence (AI). These models are now foundational to a wide range of applications, including conversational AI, recommendation systems, autonomous driving, content generation, medical diagnostics, and scientific discovery. However, their widespread deployment also exposes them to significant safety risks, raising concerns about robustness, reliability, and ethical implications. This survey provides a systematic review of current safety research on large models, covering Vision Foundation Models (VFMs), Large Language Models (LLMs), Vision-Language Pre-training (VLP) models, Vision-Language Models (VLMs), Diffusion Models (DMs), and large-model-based Agents. Our contributions are summarized as follows: (1) We present a comprehensive taxonomy of safety threats to these models, including adversarial attacks, data poisoning, backdoor attacks, jailbreak and prompt injection attacks, energy-latency attacks, data and model extraction attacks, and emerging agent-specific threats. (2) We review defense strategies proposed for each type of attacks if available and summarize the commonly used datasets and benchmarks for safety research. (3) Building on this, we identify and discuss the open challenges in large model safety, emphasizing the need for comprehensive safety evaluations, scalable and effective defense mechanisms, and sustainable data practices. More importantly, we highlight the necessity of collective efforts from the research community and international collaboration. Our work can serve as a useful reference for researchers and practitioners, fostering the ongoing development of comprehensive defense systems and platforms to safeguard AI models.
comment: 47 pages, 3 figures, 11 tables; GitHub: https://github.com/xingjunm/Awesome-Large-Model-Safety
♻ ☆ FlowTok: Flowing Seamlessly Across Text and Image Tokens
Bridging different modalities lies at the heart of cross-modality generation. While conventional approaches treat the text modality as a conditioning signal that gradually guides the denoising process from Gaussian noise to the target image modality, we explore a much simpler paradigm-directly evolving between text and image modalities through flow matching. This requires projecting both modalities into a shared latent space, which poses a significant challenge due to their inherently different representations: text is highly semantic and encoded as 1D tokens, whereas images are spatially redundant and represented as 2D latent embeddings. To address this, we introduce FlowTok, a minimal framework that seamlessly flows across text and images by encoding images into a compact 1D token representation. Compared to prior methods, this design reduces the latent space size by 3.3x at an image resolution of 256, eliminating the need for complex conditioning mechanisms or noise scheduling. Moreover, FlowTok naturally extends to image-to-text generation under the same formulation. With its streamlined architecture centered around compact 1D tokens, FlowTok is highly memory-efficient, requires significantly fewer training resources, and achieves much faster sampling speeds-all while delivering performance comparable to state-of-the-art models. Code will be available at https://github.com/bytedance/1d-tokenizer.
comment: Project page at https://tacju.github.io/projects/flowtok.html
♻ ☆ Data-Free Dynamic Compression of CNNs for Tractable Efficiency
To reduce the computational cost of convolutional neural networks (CNNs) on resource-constrained devices, structured pruning approaches have shown promise in lowering floating-point operations (FLOPs) without substantial drops in accuracy. However, most methods require fine-tuning or specific training procedures to achieve a reasonable trade-off between retained accuracy and reduction in FLOPs, adding computational overhead and requiring training data to be available. To this end, we propose HASTE (Hashing for Tractable Efficiency), a data-free, plug-and-play convolution module that instantly reduces a network's test-time inference cost without training or fine-tuning. Our approach utilizes locality-sensitive hashing (LSH) to detect redundancies in the channel dimension of latent feature maps, compressing similar channels to reduce input and filter depth simultaneously, resulting in cheaper convolutions. We demonstrate our approach on the popular vision benchmarks CIFAR-10 and ImageNet, where we achieve a 46.72% reduction in FLOPs with only a 1.25% loss in accuracy by swapping the convolution modules in a ResNet34 on CIFAR-10 for our HASTE module.
comment: Accepted at VISAPP 2025
♻ ☆ The PanAf-FGBG Dataset: Understanding the Impact of Backgrounds in Wildlife Behaviour Recognition CVPR
Computer vision analysis of camera trap video footage is essential for wildlife conservation, as captured behaviours offer some of the earliest indicators of changes in population health. Recently, several high-impact animal behaviour datasets and methods have been introduced to encourage their use; however, the role of behaviour-correlated background information and its significant effect on out-of-distribution generalisation remain unexplored. In response, we present the PanAf-FGBG dataset, featuring 20 hours of wild chimpanzee behaviours, recorded at over 350 individual camera locations. Uniquely, it pairs every video with a chimpanzee (referred to as a foreground video) with a corresponding background video (with no chimpanzee) from the same camera location. We present two views of the dataset: one with overlapping camera locations and one with disjoint locations. This setup enables, for the first time, direct evaluation of in-distribution and out-of-distribution conditions, and for the impact of backgrounds on behaviour recognition models to be quantified. All clips come with rich behavioural annotations and metadata including unique camera IDs and detailed textual scene descriptions. Additionally, we establish several baselines and present a highly effective latent-space normalisation technique that boosts out-of-distribution performance by +5.42% mAP for convolutional and +3.75% mAP for transformer-based models. Finally, we provide an in-depth analysis on the role of backgrounds in out-of-distribution behaviour recognition, including the so far unexplored impact of background durations (i.e., the count of background frames within foreground videos).
comment: 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
♻ ☆ IDArb: Intrinsic Decomposition for Arbitrary Number of Input Views and Illuminations ICLR 2025
Capturing geometric and material information from images remains a fundamental challenge in computer vision and graphics. Traditional optimization-based methods often require hours of computational time to reconstruct geometry, material properties, and environmental lighting from dense multi-view inputs, while still struggling with inherent ambiguities between lighting and material. On the other hand, learning-based approaches leverage rich material priors from existing 3D object datasets but face challenges with maintaining multi-view consistency. In this paper, we introduce IDArb, a diffusion-based model designed to perform intrinsic decomposition on an arbitrary number of images under varying illuminations. Our method achieves accurate and multi-view consistent estimation on surface normals and material properties. This is made possible through a novel cross-view, cross-domain attention module and an illumination-augmented, view-adaptive training strategy. Additionally, we introduce ARB-Objaverse, a new dataset that provides large-scale multi-view intrinsic data and renderings under diverse lighting conditions, supporting robust training. Extensive experiments demonstrate that IDArb outperforms state-of-the-art methods both qualitatively and quantitatively. Moreover, our approach facilitates a range of downstream tasks, including single-image relighting, photometric stereo, and 3D reconstruction, highlighting its broad applications in realistic 3D content creation.
comment: ICLR 2025. Project Page: https://lizb6626.github.io/IDArb/
♻ ☆ MaskHand: Generative Masked Modeling for Robust Hand Mesh Reconstruction in the Wild
Reconstructing a 3D hand mesh from a single RGB image is challenging due to complex articulations, self-occlusions, and depth ambiguities. Traditional discriminative methods, which learn a deterministic mapping from a 2D image to a single 3D mesh, often struggle with the inherent ambiguities in 2D-to-3D mapping. To address this challenge, we propose MaskHand, a novel generative masked model for hand mesh recovery that synthesizes plausible 3D hand meshes by learning and sampling from the probabilistic distribution of the ambiguous 2D-to-3D mapping process. MaskHand consists of two key components: (1) a VQ-MANO, which encodes 3D hand articulations as discrete pose tokens in a latent space, and (2) a Context-Guided Masked Transformer that randomly masks out pose tokens and learns their joint distribution, conditioned on corrupted token sequence, image context, and 2D pose cues. This learned distribution facilitates confidence-guided sampling during inference, producing mesh reconstructions with low uncertainty and high precision. Extensive evaluations on benchmark and real-world datasets demonstrate that MaskHand achieves state-of-the-art accuracy, robustness, and realism in 3D hand mesh reconstruction. Project website: https://m-usamasaleem.github.io/publication/MaskHand/MaskHand.html.
♻ ☆ On the Fourier analysis in the SO(3) space : EquiLoPO Network
Analyzing volumetric data with rotational invariance or equivariance is an active topic in current research. Existing deep-learning approaches utilize either group convolutional networks limited to discrete rotations or steerable convolutional networks with constrained filter structures. This work proposes a novel equivariant neural network architecture that achieves analytical Equivariance to Local Pattern Orientation on the continuous SO(3) group while allowing unconstrained trainable filters - EquiLoPO Network. Our key innovations are a group convolutional operation leveraging irreducible representations as the Fourier basis and a local activation function in the SO(3) space that provides a well-defined mapping from input to output functions, preserving equivariance. By integrating these operations into a ResNet-style architecture, we propose a model that overcomes the limitations of prior methods. A comprehensive evaluation on diverse 3D medical imaging datasets from MedMNIST3D demonstrates the effectiveness of our approach, which consistently outperforms state of the art. This work suggests the benefits of true rotational equivariance on SO(3) and flexible unconstrained filters enabled by the local activation function, providing a flexible framework for equivariant deep learning on volumetric data with potential applications across domains. Our code is publicly available at https://gricad-gitlab.univ-grenoble-alpes.fr/GruLab/ILPO/-/tree/main/EquiLoPO.
♻ ☆ Ctrl-U: Robust Conditional Image Generation via Uncertainty-aware Reward Modeling ICLR 2025
In this paper, we focus on the task of conditional image generation, where an image is synthesized according to user instructions. The critical challenge underpinning this task is ensuring both the fidelity of the generated images and their semantic alignment with the provided conditions. To tackle this issue, previous studies have employed supervised perceptual losses derived from pre-trained models, i.e., reward models, to enforce alignment between the condition and the generated result. However, we observe one inherent shortcoming: considering the diversity of synthesized images, the reward model usually provides inaccurate feedback when encountering newly generated data, which can undermine the training process. To address this limitation, we propose an uncertainty-aware reward modeling, called Ctrl-U, including uncertainty estimation and uncertainty-aware regularization, designed to reduce the adverse effects of imprecise feedback from the reward model. Given the inherent cognitive uncertainty within reward models, even images generated under identical conditions often result in a relatively large discrepancy in reward loss. Inspired by the observation, we explicitly leverage such prediction variance as an uncertainty indicator. Based on the uncertainty estimation, we regularize the model training by adaptively rectifying the reward. In particular, rewards with lower uncertainty receive higher loss weights, while those with higher uncertainty are given reduced weights to allow for larger variability. The proposed uncertainty regularization facilitates reward fine-tuning through consistency construction. Extensive experiments validate the effectiveness of our methodology in improving the controllability and generation quality, as well as its scalability across diverse conditional scenarios. Codes are publicly available at https://grenoble-zhang.github.io/Ctrl-U-Page/.
comment: ICLR 2025
♻ ☆ GaussRender: Learning 3D Occupancy with Gaussian Rendering
Understanding the 3D geometry and semantics of driving scenes is critical for safe autonomous driving. Recent advances in 3D occupancy prediction have improved scene representation but often suffer from spatial inconsistencies, leading to floating artifacts and poor surface localization. Existing voxel-wise losses (e.g., cross-entropy) fail to enforce geometric coherence. In this paper, we propose GaussRender, a module that improves 3D occupancy learning by enforcing projective consistency. Our key idea is to project both predicted and ground-truth 3D occupancy into 2D camera views, where we apply supervision. Our method penalizes 3D configurations that produce inconsistent 2D projections, thereby enforcing a more coherent 3D structure. To achieve this efficiently, we leverage differentiable rendering with Gaussian splatting. GaussRender seamlessly integrates with existing architectures while maintaining efficiency and requiring no inference-time modifications. Extensive evaluations on multiple benchmarks (SurroundOcc-nuScenes, Occ3D-nuScenes, SSCBench-KITTI360) demonstrate that GaussRender significantly improves geometric fidelity across various 3D occupancy models (TPVFormer, SurroundOcc, Symphonies), achieving state-of-the-art results, particularly on surface-sensitive metrics. The code is open-sourced at https://github.com/valeoai/GaussRender.
♻ ☆ Mitigating Ambiguities in 3D Classification with Gaussian Splatting CVPR 2025
3D classification with point cloud input is a fundamental problem in 3D vision. However, due to the discrete nature and the insufficient material description of point cloud representations, there are ambiguities in distinguishing wire-like and flat surfaces, as well as transparent or reflective objects. To address these issues, we propose Gaussian Splatting (GS) point cloud-based 3D classification. We find that the scale and rotation coefficients in the GS point cloud help characterize surface types. Specifically, wire-like surfaces consist of multiple slender Gaussian ellipsoids, while flat surfaces are composed of a few flat Gaussian ellipsoids. Additionally, the opacity in the GS point cloud represents the transparency characteristics of objects. As a result, ambiguities in point cloud-based 3D classification can be mitigated utilizing GS point cloud as input. To verify the effectiveness of GS point cloud input, we construct the first real-world GS point cloud dataset in the community, which includes 20 categories with 200 objects in each category. Experiments not only validate the superiority of GS point cloud input, especially in distinguishing ambiguous objects, but also demonstrate the generalization ability across different classification methods.
comment: Accepted by CVPR 2025
♻ ☆ MedVLM-R1: Incentivizing Medical Reasoning Capability of Vision-Language Models (VLMs) via Reinforcement Learning
Reasoning is a critical frontier for advancing medical image analysis, where transparency and trustworthiness play a central role in both clinician trust and regulatory approval. Although Medical Visual Language Models (VLMs) show promise for radiological tasks, most existing VLMs merely produce final answers without revealing the underlying reasoning. To address this gap, we introduce MedVLM-R1, a medical VLM that explicitly generates natural language reasoning to enhance transparency and trustworthiness. Instead of relying on supervised fine-tuning (SFT), which often suffers from overfitting to training distributions and fails to foster genuine reasoning, MedVLM-R1 employs a reinforcement learning framework that incentivizes the model to discover human-interpretable reasoning paths without using any reasoning references. Despite limited training data (600 visual question answering samples) and model parameters (2B), MedVLM-R1 boosts accuracy from 55.11% to 78.22% across MRI, CT, and X-ray benchmarks, outperforming larger models trained on over a million samples. It also demonstrates robust domain generalization under out-of-distribution tasks. By unifying medical image analysis with explicit reasoning, MedVLM-R1 marks a pivotal step toward trustworthy and interpretable AI in clinical practice. Inference model is available at: https://huggingface.co/JZPeterPan/MedVLM-R1.
♻ ☆ MultiPlaneNeRF: Neural Radiance Field with Non-Trainable Representation
NeRF is a popular model that efficiently represents 3D objects from 2D images. However, vanilla NeRF has some important limitations. NeRF must be trained on each object separately. The training time is long since we encode the object's shape and color in neural network weights. Moreover, NeRF does not generalize well to unseen data. In this paper, we present MultiPlaneNeRF -- a model that simultaneously solves the above problems. Our model works directly on 2D images. We project 3D points on 2D images to produce non-trainable representations. The projection step is not parametrized and a very shallow decoder can efficiently process the representation. Furthermore, we can train MultiPlaneNeRF on a large data set and force our implicit decoder to generalize across many objects. Consequently, we can only replace the 2D images (without additional training) to produce a NeRF representation of the new object. In the experimental section, we demonstrate that MultiPlaneNeRF achieves results comparable to state-of-the-art models for synthesizing new views and has generalization properties. Additionally, MultiPlane decoder can be used as a component in large generative models like GANs.
♻ ☆ Towards Long-Horizon Vision-Language Navigation: Platform, Benchmark and Method CVPR 2025
Existing Vision-Language Navigation (VLN) methods primarily focus on single-stage navigation, limiting their effectiveness in multi-stage and long-horizon tasks within complex and dynamic environments. To address these limitations, we propose a novel VLN task, named Long-Horizon Vision-Language Navigation (LH-VLN), which emphasizes long-term planning and decision consistency across consecutive subtasks. Furthermore, to support LH-VLN, we develop an automated data generation platform NavGen, which constructs datasets with complex task structures and improves data utility through a bidirectional, multi-granularity generation approach. To accurately evaluate complex tasks, we construct the Long-Horizon Planning and Reasoning in VLN (LHPR-VLN) benchmark consisting of 3,260 tasks with an average of 150 task steps, serving as the first dataset specifically designed for the long-horizon vision-language navigation task. Furthermore, we propose Independent Success Rate (ISR), Conditional Success Rate (CSR), and CSR weight by Ground Truth (CGT) metrics, to provide fine-grained assessments of task completion. To improve model adaptability in complex tasks, we propose a novel Multi-Granularity Dynamic Memory (MGDM) module that integrates short-term memory blurring with long-term memory retrieval to enable flexible navigation in dynamic environments. Our platform, benchmark and method supply LH-VLN with a robust data generation pipeline, comprehensive model evaluation dataset, reasonable metrics, and a novel VLN model, establishing a foundational framework for advancing LH-VLN.
comment: Accepted by CVPR 2025. A novel Long-Horizon Vision-Language Navigation task, project page: https://hcplab-sysu.github.io/LH-VLN/
♻ ☆ MMO-IG: Multi-Class and Multi-Scale Object Image Generation for Remote Sensing
The rapid advancement of deep generative models (DGMs) has significantly advanced research in computer vision, providing a cost-effective alternative to acquiring vast quantities of expensive imagery. However, existing methods predominantly focus on synthesizing remote sensing (RS) images aligned with real images in a global layout view, which limits their applicability in RS image object detection (RSIOD) research. To address these challenges, we propose a multi-class and multi-scale object image generator based on DGMs, termed MMO-IG, designed to generate RS images with supervised object labels from global and local aspects simultaneously. Specifically, from the local view, MMO-IG encodes various RS instances using an iso-spacing instance map (ISIM). During the generation process, it decodes each instance region with iso-spacing value in ISIM-corresponding to both background and foreground instances-to produce RS images through the denoising process of diffusion models. Considering the complex interdependencies among MMOs, we construct a spatial-cross dependency knowledge graph (SCDKG). This ensures a realistic and reliable multidirectional distribution among MMOs for region embedding, thereby reducing the discrepancy between source and target domains. Besides, we propose a structured object distribution instruction (SODI) to guide the generation of synthesized RS image content from a global aspect with SCDKG-based ISIM together. Extensive experimental results demonstrate that our MMO-IG exhibits superior generation capabilities for RS images with dense MMO-supervised labels, and RS detectors pre-trained with MMO-IG show excellent performance on real-world datasets.
♻ ☆ Skin Cancer Machine Learning Model Tone Bias
Background: Many open-source skin cancer image datasets are the result of clinical trials conducted in countries with lighter skin tones. Due to this tone imbalance, machine learning models derived from these datasets can perform well at detecting skin cancer for lighter skin tones. Any tone bias in these models could introduce fairness concerns and reduce public trust in the artificial intelligence health field. Methods: We examine a subset of images from the International Skin Imaging Collaboration (ISIC) archive that provide tone information. The subset has a significant tone imbalance. These imbalances could explain a model's tone bias. To address this, we train models using the imbalanced dataset and a balanced dataset to compare against. The datasets are used to train a deep convolutional neural network model to classify the images as malignant or benign. We then evaluate the models' disparate impact, based on selection rate, relative to dark or light skin tone. Results: Using the imbalanced dataset, we found that the model is significantly better at detecting malignant images in lighter tone resulting in a disparate impact of 0.577. Using the balanced dataset, we found that the model is also significantly better at detecting malignant images in lighter versus darker tones with a disparate impact of 0.684. Using the imbalanced or balanced dataset to train the model still results in a disparate impact well below the standard threshold of 0.80 which suggests the model is biased with respect to skin tone. Conclusion: The results show that typical skin cancer machine learning models can be tone biased. These results provide evidence that diagnosis or tone imbalance is not the cause of the bias. Other techniques will be necessary to identify and address the bias in these models, an area of future investigation.
♻ ☆ Enhancing the automatic segmentation and analysis of 3D liver vasculature models MICCAI 2024
Surgical assessment of liver cancer patients requires identification of the vessel trees from medical images. Specifically, the venous trees - the portal (perfusing) and the hepatic (draining) trees are important for understanding the liver anatomy and disease state, and perform surgery planning. This research aims to improve the 3D segmentation, skeletonization, and subsequent analysis of vessel trees, by creating an automatic pipeline based on deep learning and image processing techniques. The first part of this work explores the impact of differentiable skeletonization methods such as ClDice and morphological skeletonization loss, on the overall liver vessel segmentation performance. To this aim, it studies how to improve vessel tree connectivity. The second part of this study converts a single class vessel segmentation into multi-class ones, separating the two venous trees. It builds on the previous two-class vessel segmentation model, which vessel tree outputs might be entangled, and on connected components and skeleton analyses of the trees. After providing sub-labeling of the specific anatomical branches of each venous tree, these algorithms also enable a morphometric analysis of the vessel trees by extracting various geometrical markers. In conclusion, we propose a method that successfully improves current skeletonization methods, for extensive vascular trees that contain vessels of different calibers. The separation algorithm creates a clean multi-class segmentation of the vessels, validated by surgeons to provide low error. A new, publicly shared high-quality liver vessel dataset of 77 cases is thus created. Finally a method to annotate vessel trees according to anatomy is provided, enabling a unique liver vessel morphometry analysis.
comment: Paper presented at MICCAI 2024 Workshop: ADSMI. This work was done in the context of an internship at Simbiotx, Inria
♻ ☆ TikZero: Zero-Shot Text-Guided Graphics Program Synthesis
With the rise of generative AI, synthesizing figures from text captions becomes a compelling application. However, achieving high geometric precision and editability requires representing figures as graphics programs in languages like TikZ, and aligned training data (i.e., graphics programs with captions) remains scarce. Meanwhile, large amounts of unaligned graphics programs and captioned raster images are more readily available. We reconcile these disparate data sources by presenting TikZero, which decouples graphics program generation from text understanding by using image representations as an intermediary bridge. It enables independent training on graphics programs and captioned images and allows for zero-shot text-guided graphics program synthesis during inference. We show that our method substantially outperforms baselines that can only operate with caption-aligned graphics programs. Furthermore, when leveraging caption-aligned graphics programs as a complementary training signal, TikZero matches or exceeds the performance of much larger models, including commercial systems like GPT-4o. Our code, datasets, and select models are publicly available.
comment: Project page: https://github.com/potamides/DeTikZify
♻ ☆ Low-Biased General Annotated Dataset Generation CVPR2025
Pre-training backbone networks on a general annotated dataset (e.g., ImageNet) that comprises numerous manually collected images with category annotations has proven to be indispensable for enhancing the generalization capacity of downstream visual tasks. However, those manually collected images often exhibit bias, which is non-transferable across either categories or domains, thus causing the model's generalization capacity degeneration. To mitigate this problem, we present a low-biased general annotated dataset generation framework (lbGen). Instead of expensive manual collection, we aim at directly generating low-biased images with category annotations. To achieve this goal, we propose to leverage the advantage of a multimodal foundation model (e.g., CLIP), in terms of aligning images in a low-biased semantic space defined by language. Specifically, we develop a bi-level semantic alignment loss, which not only forces all generated images to be consistent with the semantic distribution of all categories belonging to the target dataset in an adversarial learning manner, but also requires each generated image to match the semantic description of its category name. In addition, we further cast an existing image quality scoring model into a quality assurance loss to preserve the quality of the generated image. By leveraging these two loss functions, we can obtain a low-biased image generation model by simply fine-tuning a pre-trained diffusion model using only all category names in the target dataset as input. Experimental results confirm that, compared with the manually labeled dataset or other synthetic datasets, the utilization of our generated low-biased dataset leads to stable generalization capacity enhancement of different backbone networks across various tasks, especially in tasks where the manually labeled samples are scarce.
comment: CVPR2025 Accepted Paper
♻ ☆ DCAT: Dual Cross-Attention Fusion for Disease Classification in Radiological Images with Uncertainty Estimation
Accurate and reliable image classification is crucial in radiology, where diagnostic decisions significantly impact patient outcomes. Conventional deep learning models tend to produce overconfident predictions despite underlying uncertainties, potentially leading to misdiagnoses. Attention mechanisms have emerged as powerful tools in deep learning, enabling models to focus on relevant parts of the input data. Combined with feature fusion, they can be effective in addressing uncertainty challenges. Cross-attention has become increasingly important in medical image analysis for capturing dependencies across features and modalities. This paper proposes a novel dual cross-attention fusion model for medical image analysis by addressing key challenges in feature integration and interpretability. Our approach introduces a bidirectional cross-attention mechanism with refined channel and spatial attention that dynamically fuses feature maps from EfficientNetB4 and ResNet34 leveraging multi-network contextual dependencies. The refined features through channel and spatial attention highlights discriminative patterns crucial for accurate classification. The proposed model achieved AUC of 99.75%, 100%, 99.93% and 98.69% and AUPR of 99.81%, 100%, 99.97%, and 96.36% on Covid-19, Tuberculosis, Pneumonia Chest X-ray images and Retinal OCT images respectively. The entropy values and several high uncertain samples give an interpretable visualization from the model enhancing transparency. By combining multi-scale feature extraction, bidirectional attention and uncertainty estimation, our proposed model strongly impacts medical image analysis.
comment: 18 pages, 8 figures, 5 tables
♻ ☆ KeyFace: Expressive Audio-Driven Facial Animation for Long Sequences via KeyFrame Interpolation CVPR 2025
Current audio-driven facial animation methods achieve impressive results for short videos but suffer from error accumulation and identity drift when extended to longer durations. Existing methods attempt to mitigate this through external spatial control, increasing long-term consistency but compromising the naturalness of motion. We propose KeyFace, a novel two-stage diffusion-based framework, to address these issues. In the first stage, keyframes are generated at a low frame rate, conditioned on audio input and an identity frame, to capture essential facial expressions and movements over extended periods of time. In the second stage, an interpolation model fills in the gaps between keyframes, ensuring smooth transitions and temporal coherence. To further enhance realism, we incorporate continuous emotion representations and handle a wide range of non-speech vocalizations (NSVs), such as laughter and sighs. We also introduce two new evaluation metrics for assessing lip synchronization and NSV generation. Experimental results show that KeyFace outperforms state-of-the-art methods in generating natural, coherent facial animations over extended durations, successfully encompassing NSVs and continuous emotions.
comment: CVPR 2025
♻ ☆ FiVL: A Framework for Improved Vision-Language Alignment through the Lens of Training, Evaluation and Explainability
Large Vision Language Models (LVLMs) have achieved significant progress in integrating visual and textual inputs for multimodal reasoning. However, a recurring challenge is ensuring these models utilize visual information as effectively as linguistic content when both modalities are necessary to formulate an accurate answer. We hypothesize that hallucinations arise due to the lack of effective visual grounding in current LVLMs. Furthermore, current vision-language benchmarks are not specifically measuring the degree to which the answer require the visual input. This limitation makes it challenging to confirm that the image is truly necessary, particularly in tasks like visual question answering. In this work, we introduce FiVL, a novel method for constructing datasets designed to train LVLMs for enhanced visual grounding and also evaluate their effectiveness in achieving it. We demonstrate the value of our datasets through three approaches. First, we introduce a novel training task based on our augmented training dataset, resulting in better performance than the baseline. Second, we present benchmarks to assess the model's ability to use image as substantive evidence, rather than relying solely on linguistic priors. Finally, we identify attention heads with the strongest vision-language alignment, enabling explainability on visual-driven hallucinations. The code is available at https://github.com/IntelLabs/fivl.
♻ ☆ DORNet: A Degradation Oriented and Regularized Network for Blind Depth Super-Resolution CVPR 2025
Recent RGB-guided depth super-resolution methods have achieved impressive performance under the assumption of fixed and known degradation (e.g., bicubic downsampling). However, in real-world scenarios, captured depth data often suffer from unconventional and unknown degradation due to sensor limitations and complex imaging environments (e.g., low reflective surfaces, varying illumination). Consequently, the performance of these methods significantly declines when real-world degradation deviate from their assumptions. In this paper, we propose the Degradation Oriented and Regularized Network (DORNet), a novel framework designed to adaptively address unknown degradation in real-world scenes through implicit degradation representations. Our approach begins with the development of a self-supervised degradation learning strategy, which models the degradation representations of low-resolution depth data using routing selection-based degradation regularization. To facilitate effective RGB-D fusion, we further introduce a degradation-oriented feature transformation module that selectively propagates RGB content into the depth data based on the learned degradation priors. Extensive experimental results on both real and synthetic datasets demonstrate the superiority of our DORNet in handling unknown degradation, outperforming existing methods. The code is available at https://github.com/yanzq95/DORNet.
comment: CVPR 2025
♻ ☆ ChemVLM: Exploring the Power of Multimodal Large Language Models in Chemistry Area
Large Language Models (LLMs) have achieved remarkable success and have been applied across various scientific fields, including chemistry. However, many chemical tasks require the processing of visual information, which cannot be successfully handled by existing chemical LLMs. This brings a growing need for models capable of integrating multimodal information in the chemical domain. In this paper, we introduce \textbf{ChemVLM}, an open-source chemical multimodal large language model specifically designed for chemical applications. ChemVLM is trained on a carefully curated bilingual multimodal dataset that enhances its ability to understand both textual and visual chemical information, including molecular structures, reactions, and chemistry examination questions. We develop three datasets for comprehensive evaluation, tailored to Chemical Optical Character Recognition (OCR), Multimodal Chemical Reasoning (MMCR), and Multimodal Molecule Understanding tasks. We benchmark ChemVLM against a range of open-source and proprietary multimodal large language models on various tasks. Experimental results demonstrate that ChemVLM achieves competitive performance across all evaluated tasks. Our model can be found at https://huggingface.co/AI4Chem/ChemVLM-26B.
comment: 11 pages, updated version
♻ ☆ Learning Shape-Independent Transformation via Spherical Representations for Category-Level Object Pose Estimation ICLR 2025
Category-level object pose estimation aims to determine the pose and size of novel objects in specific categories. Existing correspondence-based approaches typically adopt point-based representations to establish the correspondences between primitive observed points and normalized object coordinates. However, due to the inherent shape-dependence of canonical coordinates, these methods suffer from semantic incoherence across diverse object shapes. To resolve this issue, we innovatively leverage the sphere as a shared proxy shape of objects to learn shape-independent transformation via spherical representations. Based on this insight, we introduce a novel architecture called SpherePose, which yields precise correspondence prediction through three core designs. Firstly, We endow the point-wise feature extraction with SO(3)-invariance, which facilitates robust mapping between camera coordinate space and object coordinate space regardless of rotation transformation. Secondly, the spherical attention mechanism is designed to propagate and integrate features among spherical anchors from a comprehensive perspective, thus mitigating the interference of noise and incomplete point cloud. Lastly, a hyperbolic correspondence loss function is designed to distinguish subtle distinctions, which can promote the precision of correspondence prediction. Experimental results on CAMERA25, REAL275 and HouseCat6D benchmarks demonstrate the superior performance of our method, verifying the effectiveness of spherical representations and architectural innovations.
comment: Accepted by ICLR 2025. Project page is available at https://renhuan1999.github.io/SpherePose
♻ ☆ Post-hoc Probabilistic Vision-Language Models
Vision-language models (VLMs), such as CLIP and SigLIP, have found remarkable success in classification, retrieval, and generative tasks. For this, VLMs deterministically map images and text descriptions to a joint latent space in which their similarity is assessed using the cosine similarity. However, a deterministic mapping of inputs fails to capture uncertainties over concepts arising from domain shifts when used in downstream tasks. In this work, we propose post-hoc uncertainty estimation in VLMs that does not require additional training. Our method leverages a Bayesian posterior approximation over the last layers in VLMs and analytically quantifies uncertainties over cosine similarities. We demonstrate its effectiveness for uncertainty quantification and support set selection in active learning. Compared to baselines, we obtain improved and well-calibrated predictive uncertainties, interpretable uncertainty estimates, and sample-efficient active learning. Our results show promise for safety-critical applications of large-scale models.
comment: Project page: https://aaltoml.github.io/BayesVLM/
♻ ☆ DepthCues: Evaluating Monocular Depth Perception in Large Vision Models CVPR 2025
Large-scale pre-trained vision models are becoming increasingly prevalent, offering expressive and generalizable visual representations that benefit various downstream tasks. Recent studies on the emergent properties of these models have revealed their high-level geometric understanding, in particular in the context of depth perception. However, it remains unclear how depth perception arises in these models without explicit depth supervision provided during pre-training. To investigate this, we examine whether the monocular depth cues, similar to those used by the human visual system, emerge in these models. We introduce a new benchmark, DepthCues, designed to evaluate depth cue understanding, and present findings across 20 diverse and representative pre-trained vision models. Our analysis shows that human-like depth cues emerge in more recent larger models. We also explore enhancing depth perception in large vision models by fine-tuning on DepthCues, and find that even without dense depth supervision, this improves depth estimation. To support further research, our benchmark and evaluation code will be made publicly available for studying depth perception in vision models.
comment: Accepted to CVPR 2025. Project page: https://danier97.github.io/depthcues/
♻ ☆ Deep Learning Pipeline for Fully Automated Myocardial Infarct Segmentation from Clinical Cardiac MR Scans
Purpose: To develop and evaluate a deep learning-based method that allows to perform myocardial infarct segmentation in a fully-automated way. Materials and Methods: For this retrospective study, a cascaded framework of two and three-dimensional convolutional neural networks (CNNs), specialized on identifying ischemic myocardial scars on late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) images, was trained on an in-house training dataset consisting of 144 examinations. On a separate test dataset from the same institution, including images from 152 examinations obtained between 2021 and 2023, a quantitative comparison between artificial intelligence (AI)-based segmentations and manual segmentations was performed. Further, qualitative assessment of segmentation accuracy was evaluated for both human and AI-generated contours by two CMR experts in a blinded experiment. Results: Excellent agreement could be found between manually and automatically calculated infarct volumes ($\rho_c$ = 0.9). The qualitative evaluation showed that compared to human-based measurements, the experts rated the AI-based segmentations to better represent the actual extent of infarction significantly (p < 0.001) more often (33.4% AI, 25.1% human, 41.5% equal). On the contrary, for segmentation of microvascular obstruction (MVO), manual measurements were still preferred (11.3% AI, 55.6% human, 33.1% equal). Conclusion: This fully-automated segmentation pipeline enables CMR infarct size to be calculated in a very short time and without requiring any pre-processing of the input images while matching the segmentation quality of trained human observers. In a blinded experiment, experts preferred automated infarct segmentations more often than manual segmentations, paving the way for a potential clinical application.
♻ ☆ MonoGSDF: Exploring Monocular Geometric Cues for Gaussian Splatting-Guided Implicit Surface Reconstruction
Accurate meshing from monocular images remains a key challenge in 3D vision. While state-of-the-art 3D Gaussian Splatting (3DGS) methods excel at synthesizing photorealistic novel views through rasterization-based rendering, their reliance on sparse, explicit primitives severely limits their ability to recover watertight and topologically consistent 3D surfaces.We introduce MonoGSDF, a novel method that couples Gaussian-based primitives with a neural Signed Distance Field (SDF) for high-quality reconstruction. During training, the SDF guides Gaussians' spatial distribution, while at inference, Gaussians serve as priors to reconstruct surfaces, eliminating the need for memory-intensive Marching Cubes. To handle arbitrary-scale scenes, we propose a scaling strategy for robust generalization. A multi-resolution training scheme further refines details and monocular geometric cues from off-the-shelf estimators enhance reconstruction quality. Experiments on real-world datasets show MonoGSDF outperforms prior methods while maintaining efficiency.
♻ ☆ Video In-context Learning: Autoregressive Transformers are Zero-Shot Video Imitators ICLR 2025
People interact with the real-world largely dependent on visual signal, which are ubiquitous and illustrate detailed demonstrations. In this paper, we explore utilizing visual signals as a new interface for models to interact with the environment. Specifically, we choose videos as a representative visual signal. And by training autoregressive Transformers on video datasets in a self-supervised objective, we find that the model emerges a zero-shot capability to infer the semantics from a demonstration video, and imitate the semantics to an unseen scenario. This allows the models to perform unseen tasks by watching the demonstration video in an in-context manner, without further fine-tuning. To validate the imitation capacity, we design various evaluation metrics including both objective and subjective measures. The results show that our models can generate high-quality video clips that accurately align with the semantic guidance provided by the demonstration videos, and we also show that the imitation capacity follows the scaling law. Code and models have been open-sourced.
comment: ICLR 2025
♻ ☆ RoomTour3D: Geometry-Aware Video-Instruction Tuning for Embodied Navigation CVPR2025
Vision-and-Language Navigation (VLN) suffers from the limited diversity and scale of training data, primarily constrained by the manual curation of existing simulators. To address this, we introduce RoomTour3D, a video-instruction dataset derived from web-based room tour videos that capture real-world indoor spaces and human walking demonstrations. Unlike existing VLN datasets, RoomTour3D leverages the scale and diversity of online videos to generate open-ended human walking trajectories and open-world navigable instructions. To compensate for the lack of navigation data in online videos, we perform 3D reconstruction and obtain 3D trajectories of walking paths augmented with additional information on the room types, object locations and 3D shape of surrounding scenes. Our dataset includes $\sim$100K open-ended description-enriched trajectories with $\sim$200K instructions, and 17K action-enriched trajectories from 1847 room tour environments. We demonstrate experimentally that RoomTour3D enables significant improvements across multiple VLN tasks including CVDN, SOON, R2R, and REVERIE. Moreover, RoomTour3D facilitates the development of trainable zero-shot VLN agents, showcasing the potential and challenges of advancing towards open-world navigation.
comment: CVPR2025
♻ ☆ DocLayLLM: An Efficient Multi-modal Extension of Large Language Models for Text-rich Document Understanding CVPR2025
Text-rich document understanding (TDU) requires comprehensive analysis of documents containing substantial textual content and complex layouts. While Multimodal Large Language Models (MLLMs) have achieved fast progress in this domain, existing approaches either demand significant computational resources or struggle with effective multi-modal integration. In this paper, we introduce DocLayLLM, an efficient multi-modal extension of LLMs specifically designed for TDU. By lightly integrating visual patch tokens and 2D positional tokens into LLMs' input and encoding the document content using the LLMs themselves, we fully take advantage of the document comprehension capability of LLMs and enhance their perception of OCR information. We have also deeply considered the role of chain-of-thought (CoT) and innovatively proposed the techniques of CoT Pre-training and CoT Annealing. Our DocLayLLM can achieve remarkable performances with lightweight training settings, showcasing its efficiency and effectiveness. Experimental results demonstrate that our DocLayLLM outperforms existing OCR-dependent methods and OCR-free competitors. Code and model are available at https://github.com/whlscut/DocLayLLM.
comment: CVPR2025
♻ ☆ LLaVA-UHD v2: an MLLM Integrating High-Resolution Semantic Pyramid via Hierarchical Window Transformer
Vision transformers (ViTs) are widely employed in multimodal large language models (MLLMs) for visual encoding. However, they exhibit inferior performance on tasks regarding fine-grained visual perception. We attribute this to the limitations of ViTs in capturing diverse multi-modal visual levels, such as low-level details. To address this issue, we present LLaVA-UHD v2, an MLLM with advanced perception abilities by introducing a well-designed vision-language projector, the Hierarchical window (Hiwin) transformer. Hiwin transformer enhances MLLM's ability to capture diverse multi-modal visual granularities, by incorporating our constructed high-resolution semantic pyramid. Specifically, Hiwin transformer comprises two key modules: (i) a visual detail injection module, which progressively injects low-level visual details into high-level language-aligned semantics features, thereby forming an inverse semantic pyramid (ISP), and (ii) a hierarchical window attention module, which leverages cross-scale windows to condense multi-level semantics from the ISP. Extensive experiments show that LLaVA-UHD v2 outperforms compared MLLMs on a wide range of benchmarks. Notably, our design achieves an average boost of 3.7% across 14 benchmarks compared with the baseline method, 9.3% on DocVQA for instance. All the data and code will be publicly available to facilitate future research.
♻ ☆ DEIM: DETR with Improved Matching for Fast Convergence CVPR 2025
We introduce DEIM, an innovative and efficient training framework designed to accelerate convergence in real-time object detection with Transformer-based architectures (DETR). To mitigate the sparse supervision inherent in one-to-one (O2O) matching in DETR models, DEIM employs a Dense O2O matching strategy. This approach increases the number of positive samples per image by incorporating additional targets, using standard data augmentation techniques. While Dense O2O matching speeds up convergence, it also introduces numerous low-quality matches that could affect performance. To address this, we propose the Matchability-Aware Loss (MAL), a novel loss function that optimizes matches across various quality levels, enhancing the effectiveness of Dense O2O. Extensive experiments on the COCO dataset validate the efficacy of DEIM. When integrated with RT-DETR and D-FINE, it consistently boosts performance while reducing training time by 50%. Notably, paired with RT-DETRv2, DEIM achieves 53.2% AP in a single day of training on an NVIDIA 4090 GPU. Additionally, DEIM-trained real-time models outperform leading real-time object detectors, with DEIM-D-FINE-L and DEIM-D-FINE-X achieving 54.7% and 56.5% AP at 124 and 78 FPS on an NVIDIA T4 GPU, respectively, without the need for additional data. We believe DEIM sets a new baseline for advancements in real-time object detection. Our code and pre-trained models are available at https://github.com/ShihuaHuang95/DEIM.
comment: CVPR 2025
♻ ☆ Gaussian Random Fields as an Abstract Representation of Patient Metadata for Multimodal Medical Image Segmentation
The growing rate of chronic wound occurrence, especially in patients with diabetes, has become a concerning trend in recent years. Chronic wounds are difficult and costly to treat, and have become a serious burden on health care systems worldwide. Chronic wounds can have devastating consequences for the patient, with infection often leading to reduced quality of life and increased mortality risk. Innovative deep learning methods for the detection and monitoring of such wounds have the potential to reduce the impact to both patient and clinician. We present a novel multimodal segmentation method which allows for the introduction of patient metadata into the training workflow whereby the patient data are expressed as Gaussian random fields. Our results indicate that the proposed method improved performance when utilising multiple models, each trained on different metadata categories. Using the Diabetic Foot Ulcer Challenge 2022 test set, when compared to the baseline results (intersection over union = 0.4670, Dice similarity coefficient = 0.5908) we demonstrate improvements of +0.0220 and +0.0229 for intersection over union and Dice similarity coefficient respectively. This paper presents the first study to focus on integrating patient data into a chronic wound segmentation workflow. Our results show significant performance gains when training individual models using specific metadata categories, followed by average merging of prediction masks using distance transforms. All source code for this study is available at: https://github.com/mmu-dermatology-research/multimodal-grf
♻ ☆ MMLNB: Multi-Modal Learning for Neuroblastoma Subtyping Classification Assisted with Textual Description Generation
Neuroblastoma (NB), a leading cause of childhood cancer mortality, exhibits significant histopathological variability, necessitating precise subtyping for accurate prognosis and treatment. Traditional diagnostic methods rely on subjective evaluations that are time-consuming and inconsistent. To address these challenges, we introduce MMLNB, a multi-modal learning (MML) model that integrates pathological images with generated textual descriptions to improve classification accuracy and interpretability. The approach follows a two-stage process. First, we fine-tune a Vision-Language Model (VLM) to enhance pathology-aware text generation. Second, the fine-tuned VLM generates textual descriptions, using a dual-branch architecture to independently extract visual and textual features. These features are fused via Progressive Robust Multi-Modal Fusion (PRMF) Block for stable training. Experimental results show that the MMLNB model is more accurate than the single modal model. Ablation studies demonstrate the importance of multi-modal fusion, fine-tuning, and the PRMF mechanism. This research creates a scalable AI-driven framework for digital pathology, enhancing reliability and interpretability in NB subtyping classification. Our source code is available at https://github.com/HovChen/MMLNB.
comment: 25 pages, 7 figures
♻ ☆ Improving Generalization of Universal Adversarial Perturbation via Dynamic Maximin Optimization AAAI 2025
Deep neural networks (DNNs) are susceptible to universal adversarial perturbations (UAPs). These perturbations are meticulously designed to fool the target model universally across all sample classes. Unlike instance-specific adversarial examples (AEs), generating UAPs is more complex because they must be generalized across a wide range of data samples and models. Our research reveals that existing universal attack methods, which optimize UAPs using DNNs with static model parameter snapshots, do not fully leverage the potential of DNNs to generate more effective UAPs. Rather than optimizing UAPs against static DNN models with a fixed training set, we suggest using dynamic model-data pairs to generate UAPs. In particular, we introduce a dynamic maximin optimization strategy, aiming to optimize the UAP across a variety of optimal model-data pairs. We term this approach DM-UAP. DM-UAP utilizes an iterative max-min-min optimization framework that refines the model-data pairs, coupled with a curriculum UAP learning algorithm to examine the combined space of model parameters and data thoroughly. Comprehensive experiments on the ImageNet dataset demonstrate that the proposed DM-UAP markedly enhances both cross-sample universality and cross-model transferability of UAPs. Using only 500 samples for UAP generation, DM-UAP outperforms the state-of-the-art approach with an average increase in fooling ratio of 12.108%.
comment: Accepted in AAAI 2025
♻ ☆ BiM-VFI: Bidirectional Motion Field-Guided Frame Interpolation for Video with Non-uniform Motions
Existing Video Frame interpolation (VFI) models tend to suffer from time-to-location ambiguity when trained with video of non-uniform motions, such as accelerating, decelerating, and changing directions, which often yield blurred interpolated frames. In this paper, we propose (i) a novel motion description map, Bidirectional Motion field (BiM), to effectively describe non-uniform motions; (ii) a BiM-guided Flow Net (BiMFN) with Content-Aware Upsampling Network (CAUN) for precise optical flow estimation; and (iii) Knowledge Distillation for VFI-centric Flow supervision (KDVCF) to supervise the motion estimation of VFI model with VFI-centric teacher flows. The proposed VFI is called a Bidirectional Motion field-guided VFI (BiM-VFI) model. Extensive experiments show that our BiM-VFI model significantly surpasses the recent state-of-the-art VFI methods by 26% and 45% improvements in LPIPS and STLPIPS respectively, yielding interpolated frames with much fewer blurs at arbitrary time instances.
comment: The last two authors are co-corresponding authors
Learning from Mistakes: Iterative Prompt Relabeling for Text-to-Image Diffusion Model Training
Diffusion models have shown impressive performance in many domains. However, the model's capability to follow natural language instructions (e.g., spatial relationships between objects, generating complex scenes) is still unsatisfactory. In this work, we propose Iterative Prompt Relabeling (IPR), a novel algorithm that aligns images to text through iterative image sampling and prompt relabeling with feedback. IPR first samples a batch of images conditioned on the text, then relabels the text prompts of unmatched text-image pairs with classifier feedback. We conduct thorough experiments on SDv2 and SDXL, testing their capability to follow instructions on spatial relations. With IPR, we improved up to 15.22% (absolute improvement) on the challenging spatial relation VISOR benchmark, demonstrating superior performance compared to previous RL methods. Our code is publicly available at https://github.com/xinyan-cxy/IPR-RLDF.
♻ ☆ FlexWorld: Progressively Expanding 3D Scenes for Flexiable-View Synthesis
Generating flexible-view 3D scenes, including 360{\deg} rotation and zooming, from single images is challenging due to a lack of 3D data. To this end, we introduce FlexWorld, a novel framework consisting of two key components: (1) a strong video-to-video (V2V) diffusion model to generate high-quality novel view images from incomplete input rendered from a coarse scene, and (2) a progressive expansion process to construct a complete 3D scene. In particular, leveraging an advanced pre-trained video model and accurate depth-estimated training pairs, our V2V model can generate novel views under large camera pose variations. Building upon it, FlexWorld progressively generates new 3D content and integrates it into the global scene through geometry-aware scene fusion. Extensive experiments demonstrate the effectiveness of FlexWorld in generating high-quality novel view videos and flexible-view 3D scenes from single images, achieving superior visual quality under multiple popular metrics and datasets compared to existing state-of-the-art methods. Qualitatively, we highlight that FlexWorld can generate high-fidelity scenes with flexible views like 360{\deg} rotations and zooming. Project page: https://ml-gsai.github.io/FlexWorld.
♻ ☆ JMMMU: A Japanese Massive Multi-discipline Multimodal Understanding Benchmark for Culture-aware Evaluation NAACL 2025
Accelerating research on Large Multimodal Models (LMMs) in non-English languages is crucial for enhancing user experiences across broader populations. In this paper, we introduce JMMMU (Japanese MMMU), the first large-scale Japanese benchmark designed to evaluate LMMs on expert-level tasks based on the Japanese cultural context. To facilitate comprehensive culture-aware evaluation, JMMMU features two complementary subsets: (i) culture-agnostic (CA) subset, where the culture-independent subjects (e.g., Math) are selected and translated into Japanese, enabling one-to-one comparison with its English counterpart MMMU; and (ii) culture-specific (CS) subset, comprising newly crafted subjects that reflect Japanese cultural context. Using the CA subset, we observe performance drop in many LMMs when evaluated in Japanese, which is purely attributable to language variation. Using the CS subset, we reveal their inadequate Japanese cultural understanding. Further, by combining both subsets, we identify that some LMMs perform well on the CA subset but not on the CS subset, exposing a shallow understanding of the Japanese language that lacks depth in cultural understanding. We hope this work will not only help advance LMM performance in Japanese but also serve as a guideline to create high-standard, culturally diverse benchmarks for multilingual LMM development. The project page is https://mmmu-japanese-benchmark.github.io/JMMMU/.
comment: Accepted at NAACL 2025. Project page: https://mmmu-japanese-benchmark.github.io/JMMMU/
♻ ☆ A Deep Learning Approach for Augmenting Perceptional Understanding of Histopathology Images
In Recent Years, Digital Technologies Have Made Significant Strides In Augmenting-Human-Health, Cognition, And Perception, Particularly Within The Field Of Computational-Pathology. This Paper Presents A Novel Approach To Enhancing The Analysis Of Histopathology Images By Leveraging A Mult-modal-Model That Combines Vision Transformers (Vit) With Gpt-2 For Image Captioning. The Model Is Fine-Tuned On The Specialized Arch-Dataset, Which Includes Dense Image Captions Derived From Clinical And Academic Resources, To Capture The Complexities Of Pathology Images Such As Tissue Morphologies, Staining Variations, And Pathological Conditions. By Generating Accurate, Contextually Captions, The Model Augments The Cognitive Capabilities Of Healthcare Professionals, Enabling More Efficient Disease Classification, Segmentation, And Detection. The Model Enhances The Perception Of Subtle Pathological Features In Images That Might Otherwise Go Unnoticed, Thereby Improving Diagnostic Accuracy. Our Approach Demonstrates The Potential For Digital Technologies To Augment Human Cognitive Abilities In Medical Image Analysis, Providing Steps Toward More Personalized And Accurate Healthcare Outcomes.
comment: Accepted by International Conference on Semantic & Natural Language Processing (SNLP 2025)
♻ ☆ Time-to-Event Pretraining for 3D Medical Imaging
With the rise of medical foundation models and the growing availability of imaging data, scalable pretraining techniques offer a promising way to identify imaging biomarkers predictive of future disease risk. While current self-supervised methods for 3D medical imaging models capture local structural features like organ morphology, they fail to link pixel biomarkers with long-term health outcomes due to a missing context problem. Current approaches lack the temporal context necessary to identify biomarkers correlated with disease progression, as they rely on supervision derived only from images and concurrent text descriptions. To address this, we introduce time-to-event pretraining, a pretraining framework for 3D medical imaging models that leverages large-scale temporal supervision from paired, longitudinal electronic health records (EHRs). Using a dataset of 18,945 CT scans (4.2 million 2D images) and time-to-event distributions across thousands of EHR-derived tasks, our method improves outcome prediction, achieving an average AUROC increase of 23.7% and a 29.4% gain in Harrell's C-index across 8 benchmark tasks. Importantly, these gains are achieved without sacrificing diagnostic classification performance. This study lays the foundation for integrating longitudinal EHR and 3D imaging data to advance clinical risk prediction.
comment: 34 pages, 19 figures
♻ ☆ Toward Generalized Image Quality Assessment: Relaxing the Perfect Reference Quality Assumption CVPR 2025
Full-reference image quality assessment (FR-IQA) generally assumes that reference images are of perfect quality. However, this assumption is flawed due to the sensor and optical limitations of modern imaging systems. Moreover, recent generative enhancement methods are capable of producing images of higher quality than their original. All of these challenge the effectiveness and applicability of current FR-IQA models. To relax the assumption of perfect reference image quality, we build a large-scale IQA database, namely DiffIQA, containing approximately 180,000 images generated by a diffusion-based image enhancer with adjustable hyper-parameters. Each image is annotated by human subjects as either worse, similar, or better quality compared to its reference. Building on this, we present a generalized FR-IQA model, namely Adaptive Fidelity-Naturalness Evaluator (A-FINE), to accurately assess and adaptively combine the fidelity and naturalness of a test image. A-FINE aligns well with standard FR-IQA when the reference image is much more natural than the test image. We demonstrate by extensive experiments that A-FINE surpasses standard FR-IQA models on well-established IQA datasets and our newly created DiffIQA. To further validate A-FINE, we additionally construct a super-resolution IQA benchmark (SRIQA-Bench), encompassing test images derived from ten state-of-the-art SR methods with reliable human quality annotations. Tests on SRIQA-Bench re-affirm the advantages of A-FINE. The code and dataset are available at https://tianhewu.github.io/A-FINE-page.github.io/.
comment: Accepted by CVPR 2025
♻ ☆ GOOD: Towards Domain Generalized Orientated Object Detection SP
Oriented object detection has been rapidly developed in the past few years, but most of these methods assume the training and testing images are under the same statistical distribution, which is far from reality. In this paper, we propose the task of domain generalized oriented object detection, which intends to explore the generalization of oriented object detectors on arbitrary unseen target domains. Learning domain generalized oriented object detectors is particularly challenging, as the cross-domain style variation not only negatively impacts the content representation, but also leads to unreliable orientation predictions. To address these challenges, we propose a generalized oriented object detector (GOOD). After style hallucination by the emerging contrastive language-image pre-training (CLIP), it consists of two key components, namely, rotation-aware content consistency learning (RAC) and style consistency learning (SEC). The proposed RAC allows the oriented object detector to learn stable orientation representation from style-diversified samples. The proposed SEC further stabilizes the generalization ability of content representation from different image styles. Extensive experiments on multiple cross-domain settings show the state-of-the-art performance of GOOD. Source code will be publicly available.
comment: 18 pages. accepted by ISPRS
♻ ☆ Scalable Autoregressive Monocular Depth Estimation CVPR2025
This paper shows that the autoregressive model is an effective and scalable monocular depth estimator. Our idea is simple: We tackle the monocular depth estimation (MDE) task with an autoregressive prediction paradigm, based on two core designs. First, our depth autoregressive model (DAR) treats the depth map of different resolutions as a set of tokens, and conducts the low-to-high resolution autoregressive objective with a patch-wise casual mask. Second, our DAR recursively discretizes the entire depth range into more compact intervals, and attains the coarse-to-fine granularity autoregressive objective in an ordinal-regression manner. By coupling these two autoregressive objectives, our DAR establishes new state-of-the-art (SOTA) on KITTI and NYU Depth v2 by clear margins. Further, our scalable approach allows us to scale the model up to 2.0B and achieve the best RMSE of 1.799 on the KITTI dataset (5% improvement) compared to 1.896 by the current SOTA (Depth Anything). DAR further showcases zero-shot generalization ability on unseen datasets. These results suggest that DAR yields superior performance with an autoregressive prediction paradigm, providing a promising approach to equip modern autoregressive large models (e.g., GPT-4o) with depth estimation capabilities.
comment: Accepted by CVPR2025
♻ ☆ Beyond the Destination: A Novel Benchmark for Exploration-Aware Embodied Question Answering
Embodied Question Answering (EQA) is a challenging task in embodied intelligence that requires agents to dynamically explore 3D environments, actively gather visual information, and perform multi-step reasoning to answer questions. However, current EQA approaches suffer from critical limitations in exploration efficiency, dataset design, and evaluation metrics. Moreover, existing datasets often introduce biases or prior knowledge, leading to disembodied reasoning, while frontier-based exploration strategies struggle in cluttered environments and fail to ensure fine-grained exploration of task-relevant areas. To address these challenges, we construct the EXPloration-awaRe Embodied queStion anSwering Benchmark (EXPRESS-Bench), the largest dataset designed specifically to evaluate both exploration and reasoning capabilities. EXPRESS-Bench consists of 777 exploration trajectories and 2,044 question-trajectory pairs. To improve exploration efficiency, we propose Fine-EQA, a hybrid exploration model that integrates frontier-based and goal-oriented navigation to guide agents toward task-relevant regions more effectively. Additionally, we introduce a novel evaluation metric, Exploration-Answer Consistency (EAC), which ensures faithful assessment by measuring the alignment between answer grounding and exploration reliability. Extensive experimental comparisons with state-of-the-art EQA models demonstrate the effectiveness of our EXPRESS-Bench in advancing embodied exploration and question reasoning.
Artificial Intelligence 172
☆ TULIP: Towards Unified Language-Image Pretraining
Despite the recent success of image-text contrastive models like CLIP and SigLIP, these models often struggle with vision-centric tasks that demand high-fidelity image understanding, such as counting, depth estimation, and fine-grained object recognition. These models, by performing language alignment, tend to prioritize high-level semantics over visual understanding, weakening their image understanding. On the other hand, vision-focused models are great at processing visual information but struggle to understand language, limiting their flexibility for language-driven tasks. In this work, we introduce TULIP, an open-source, drop-in replacement for existing CLIP-like models. Our method leverages generative data augmentation, enhanced image-image and text-text contrastive learning, and image/text reconstruction regularization to learn fine-grained visual features while preserving global semantic alignment. Our approach, scaling to over 1B parameters, outperforms existing state-of-the-art (SOTA) models across multiple benchmarks, establishing a new SOTA zero-shot performance on ImageNet-1K, delivering up to a $2\times$ enhancement over SigLIP on RxRx1 in linear probing for few-shot classification, and improving vision-language models, achieving over $3\times$ higher scores than SigLIP on MMVP. Our code/checkpoints are available at https://tulip-berkeley.github.io
☆ Value Profiles for Encoding Human Variation
Modelling human variation in rating tasks is crucial for enabling AI systems for personalization, pluralistic model alignment, and computational social science. We propose representing individuals using value profiles -- natural language descriptions of underlying values compressed from in-context demonstrations -- along with a steerable decoder model to estimate ratings conditioned on a value profile or other rater information. To measure the predictive information in rater representations, we introduce an information-theoretic methodology. We find that demonstrations contain the most information, followed by value profiles and then demographics. However, value profiles offer advantages in terms of scrutability, interpretability, and steerability due to their compressed natural language format. Value profiles effectively compress the useful information from demonstrations (>70% information preservation). Furthermore, clustering value profiles to identify similarly behaving individuals better explains rater variation than the most predictive demographic groupings. Going beyond test set performance, we show that the decoder models interpretably change ratings according to semantic profile differences, are well-calibrated, and can help explain instance-level disagreement by simulating an annotator population. These results demonstrate that value profiles offer novel, predictive ways to describe individual variation beyond demographics or group information.
☆ Learning to Play Piano in the Real World
Towards the grand challenge of achieving human-level manipulation in robots, playing piano is a compelling testbed that requires strategic, precise, and flowing movements. Over the years, several works demonstrated hand-designed controllers on real world piano playing, while other works evaluated robot learning approaches on simulated piano scenarios. In this paper, we develop the first piano playing robotic system that makes use of learning approaches while also being deployed on a real world dexterous robot. Specifically, we make use of Sim2Real to train a policy in simulation using reinforcement learning before deploying the learned policy on a real world dexterous robot. In our experiments, we thoroughly evaluate the interplay between domain randomization and the accuracy of the dynamics model used in simulation. Moreover, we evaluate the robot's performance across multiple songs with varying complexity to study the generalization of our learned policy. By providing a proof-of-concept of learning to play piano in the real world, we want to encourage the community to adopt piano playing as a compelling benchmark towards human-level manipulation. We open-source our code and show additional videos at https://lasr.org/research/learning-to-play-piano .
comment: 10 pages
☆ What Makes a Reward Model a Good Teacher? An Optimization Perspective
The success of Reinforcement Learning from Human Feedback (RLHF) critically depends on the quality of the reward model. While this quality is primarily evaluated through accuracy, it remains unclear whether accuracy fully captures what makes a reward model an effective teacher. We address this question from an optimization perspective. First, we prove that regardless of how accurate a reward model is, if it induces low reward variance, then the RLHF objective suffers from a flat landscape. Consequently, even a perfectly accurate reward model can lead to extremely slow optimization, underperforming less accurate models that induce higher reward variance. We additionally show that a reward model that works well for one language model can induce low reward variance, and thus a flat objective landscape, for another. These results establish a fundamental limitation of evaluating reward models solely based on accuracy or independently of the language model they guide. Experiments using models of up to 8B parameters corroborate our theory, demonstrating the interplay between reward variance, accuracy, and reward maximization rate. Overall, our findings highlight that beyond accuracy, a reward model needs to induce sufficient variance for efficient optimization.
comment: Code available at https://github.com/princeton-pli/what-makes-good-rm
☆ EgoDTM: Towards 3D-Aware Egocentric Video-Language Pretraining
Egocentric video-language pretraining has significantly advanced video representation learning. Humans perceive and interact with a fully 3D world, developing spatial awareness that extends beyond text-based understanding. However, most previous works learn from 1D text or 2D visual cues, such as bounding boxes, which inherently lack 3D understanding. To bridge this gap, we introduce EgoDTM, an Egocentric Depth- and Text-aware Model, jointly trained through large-scale 3D-aware video pretraining and video-text contrastive learning. EgoDTM incorporates a lightweight 3D-aware decoder to efficiently learn 3D-awareness from pseudo depth maps generated by depth estimation models. To further facilitate 3D-aware video pretraining, we enrich the original brief captions with hand-object visual cues by organically combining several foundation models. Extensive experiments demonstrate EgoDTM's superior performance across diverse downstream tasks, highlighting its superior 3D-aware visual understanding. Our code will be released at https://github.com/xuboshen/EgoDTM.
comment: Code will be released at: https://github.com/xuboshen/EgoDTM
☆ From 1,000,000 Users to Every User: Scaling Up Personalized Preference for User-level Alignment
Large language models (LLMs) have traditionally been aligned through one-size-fits-all approaches that assume uniform human preferences, fundamentally overlooking the diversity in user values and needs. This paper introduces a comprehensive framework for scalable personalized alignment of LLMs. We establish a systematic preference space characterizing psychological and behavioral dimensions, alongside diverse persona representations for robust preference inference in real-world scenarios. Building upon this foundation, we introduce \textsc{AlignX}, a large-scale dataset of over 1.3 million personalized preference examples, and develop two complementary alignment approaches: \textit{in-context alignment} directly conditioning on persona representations and \textit{preference-bridged alignment} modeling intermediate preference distributions. Extensive experiments demonstrate substantial improvements over existing methods, with an average 17.06\% accuracy gain across four benchmarks while exhibiting a strong adaptation capability to novel preferences, robustness to limited user data, and precise preference controllability. These results validate our framework's effectiveness, advancing toward truly user-adaptive AI systems.
☆ Di$\mathtt{[M]}$O: Distilling Masked Diffusion Models into One-step Generator
Masked Diffusion Models (MDMs) have emerged as a powerful generative modeling technique. Despite their remarkable results, they typically suffer from slow inference with several steps. In this paper, we propose Di$\mathtt{[M]}$O, a novel approach that distills masked diffusion models into a one-step generator. Di$\mathtt{[M]}$O addresses two key challenges: (1) the intractability of using intermediate-step information for one-step generation, which we solve through token-level distribution matching that optimizes model output logits by an 'on-policy framework' with the help of an auxiliary model; and (2) the lack of entropy in the initial distribution, which we address through a token initialization strategy that injects randomness while maintaining similarity to teacher training distribution. We show Di$\mathtt{[M]}$O's effectiveness on both class-conditional and text-conditional image generation, impressively achieving performance competitive to multi-step teacher outputs while drastically reducing inference time. To our knowledge, we are the first to successfully achieve one-step distillation of masked diffusion models and the first to apply discrete distillation to text-to-image generation, opening new paths for efficient generative modeling.
☆ VenusFactory: A Unified Platform for Protein Engineering Data Retrieval and Language Model Fine-Tuning
Natural language processing (NLP) has significantly influenced scientific domains beyond human language, including protein engineering, where pre-trained protein language models (PLMs) have demonstrated remarkable success. However, interdisciplinary adoption remains limited due to challenges in data collection, task benchmarking, and application. This work presents VenusFactory, a versatile engine that integrates biological data retrieval, standardized task benchmarking, and modular fine-tuning of PLMs. VenusFactory supports both computer science and biology communities with choices of both a command-line execution and a Gradio-based no-code interface, integrating $40+$ protein-related datasets and $40+$ popular PLMs. All implementations are open-sourced on https://github.com/tyang816/VenusFactory.
comment: 12 pages, 1 figure, 8 tables
☆ An extensive simulation study evaluating the interaction of resampling techniques across multiple causal discovery contexts
Despite the accelerating presence of exploratory causal analysis in modern science and medicine, the available non-experimental methods for validating causal models are not well characterized. One of the most popular methods is to evaluate the stability of model features after resampling the data, similar to resampling methods for estimating confidence intervals in statistics. Many aspects of this approach have received little to no attention, however, such as whether the choice of resampling method should depend on the sample size, algorithms being used, or algorithm tuning parameters. We present theoretical results proving that certain resampling methods closely emulate the assignment of specific values to algorithm tuning parameters. We also report the results of extensive simulation experiments, which verify the theoretical result and provide substantial data to aid researchers in further characterizing resampling in the context of causal discovery analysis. Together, the theoretical work and simulation results provide specific guidance on how resampling methods and tuning parameters should be selected in practice.
☆ Visual Position Prompt for MLLM based Visual Grounding
Although Multimodal Large Language Models (MLLMs) excel at various image-related tasks, they encounter challenges in precisely aligning coordinates with spatial information within images, particularly in position-aware tasks such as visual grounding. This limitation arises from two key factors. First, MLLMs lack explicit spatial references, making it difficult to associate textual descriptions with precise image locations. Second, their feature extraction processes prioritize global context over fine-grained spatial details, leading to weak localization capability. To address this issue, we introduce VPP-LLaVA, an MLLM equipped with Visual Position Prompt (VPP) to improve its grounding capability. VPP-LLaVA integrates two complementary mechanisms. The global VPP overlays learnable, axis-like embeddings onto the input image to provide structured spatial cues. The local VPP focuses on fine-grained localization by incorporating position-aware queries, which suggests probable object locations. We also introduce a VPP-SFT dataset with 0.6M samples, consolidating high-quality visual grounding data into a compact format for efficient model training. Training on this dataset with VPP enhances the model's performance, achieving state-of-the-art results on standard grounding benchmarks despite using fewer training samples compared to other MLLMs like MiniGPT-v2, which rely on much larger datasets ($\sim$21M samples). The code and VPP-SFT dataset will be available at https://github.com/WayneTomas/VPP-LLaVA upon acceptance.
☆ Probing the topology of the space of tokens with structured prompts
This article presents a general and flexible method for prompting a large language model (LLM) to reveal its (hidden) token input embedding up to homeomorphism. Moreover, this article provides strong theoretical justification -- a mathematical proof for generic LLMs -- for why this method should be expected to work. With this method in hand, we demonstrate its effectiveness by recovering the token subspace of Llemma-7B. The results of this paper apply not only to LLMs but also to general nonlinear autoregressive processes.
comment: 20 pages, 5 figures
☆ Temporal Regularization Makes Your Video Generator Stronger
Temporal quality is a critical aspect of video generation, as it ensures consistent motion and realistic dynamics across frames. However, achieving high temporal coherence and diversity remains challenging. In this work, we explore temporal augmentation in video generation for the first time, and introduce FluxFlow for initial investigation, a strategy designed to enhance temporal quality. Operating at the data level, FluxFlow applies controlled temporal perturbations without requiring architectural modifications. Extensive experiments on UCF-101 and VBench benchmarks demonstrate that FluxFlow significantly improves temporal coherence and diversity across various video generation models, including U-Net, DiT, and AR-based architectures, while preserving spatial fidelity. These findings highlight the potential of temporal augmentation as a simple yet effective approach to advancing video generation quality.
comment: Project: https://haroldchen19.github.io/FluxFlow/
☆ Automated Processing of eXplainable Artificial Intelligence Outputs in Deep Learning Models for Fault Diagnostics of Large Infrastructures
Deep Learning (DL) models processing images to recognize the health state of large infrastructure components can exhibit biases and rely on non-causal shortcuts. eXplainable Artificial Intelligence (XAI) can address these issues but manually analyzing explanations generated by XAI techniques is time-consuming and prone to errors. This work proposes a novel framework that combines post-hoc explanations with semi-supervised learning to automatically identify anomalous explanations that deviate from those of correctly classified images and may therefore indicate model abnormal behaviors. This significantly reduces the workload for maintenance decision-makers, who only need to manually reclassify images flagged as having anomalous explanations. The proposed framework is applied to drone-collected images of insulator shells for power grid infrastructure monitoring, considering two different Convolutional Neural Networks (CNNs), GradCAM explanations and Deep Semi-Supervised Anomaly Detection. The average classification accuracy on two faulty classes is improved by 8% and maintenance operators are required to manually reclassify only 15% of the images. We compare the proposed framework with a state-of-the-art approach based on the faithfulness metric: the experimental results obtained demonstrate that the proposed framework consistently achieves F_1 scores larger than those of the faithfulness-based approach. Additionally, the proposed framework successfully identifies correct classifications that result from non-causal shortcuts, such as the presence of ID tags printed on insulator shells.
☆ Towards efficient keyword spotting using spike-based time difference encoders
Keyword spotting in edge devices is becoming increasingly important as voice-activated assistants are widely used. However, its deployment is often limited by the extreme low-power constraints of the target embedded systems. Here, we explore the Temporal Difference Encoder (TDE) performance in keyword spotting. This recent neuron model encodes the time difference in instantaneous frequency and spike count to perform efficient keyword spotting with neuromorphic processors. We use the TIdigits dataset of spoken digits with a formant decomposition and rate-based encoding into spikes. We compare three Spiking Neural Networks (SNNs) architectures to learn and classify spatio-temporal signals. The proposed SNN architectures are made of three layers with variation in its hidden layer composed of either (1) feedforward TDE, (2) feedforward Current-Based Leaky Integrate-and-Fire (CuBa-LIF), or (3) recurrent CuBa-LIF neurons. We first show that the spike trains of the frequency-converted spoken digits have a large amount of information in the temporal domain, reinforcing the importance of better exploiting temporal encoding for such a task. We then train the three SNNs with the same number of synaptic weights to quantify and compare their performance based on the accuracy and synaptic operations. The resulting accuracy of the feedforward TDE network (89%) is higher than the feedforward CuBa-LIF network (71%) and close to the recurrent CuBa-LIF network (91%). However, the feedforward TDE-based network performs 92% fewer synaptic operations than the recurrent CuBa-LIF network with the same amount of synapses. In addition, the results of the TDE network are highly interpretable and correlated with the frequency and timescale features of the spoken keywords in the dataset. Our findings suggest that the TDE is a promising neuron model for scalable event-driven processing of spatio-temporal patterns.
comment: 26 pages, 9 figures
☆ CCDP: Composition of Conditional Diffusion Policies with Guided Sampling
Imitation Learning offers a promising approach to learn directly from data without requiring explicit models, simulations, or detailed task definitions. During inference, actions are sampled from the learned distribution and executed on the robot. However, sampled actions may fail for various reasons, and simply repeating the sampling step until a successful action is obtained can be inefficient. In this work, we propose an enhanced sampling strategy that refines the sampling distribution to avoid previously unsuccessful actions. We demonstrate that by solely utilizing data from successful demonstrations, our method can infer recovery actions without the need for additional exploratory behavior or a high-level controller. Furthermore, we leverage the concept of diffusion model decomposition to break down the primary problem (which may require long-horizon history to manage failures) into multiple smaller, more manageable sub-problems in learning, data collection, and inference, thereby enabling the system to adapt to variable failure counts. Our approach yields a low-level controller that dynamically adjusts its sampling space to improve efficiency when prior samples fall short. We validate our method across several tasks, including door opening with unknown directions, object manipulation, and button-searching scenarios, demonstrating that our approach outperforms traditional baselines.
☆ Real-world validation of a multimodal LLM-powered pipeline for High-Accuracy Clinical Trial Patient Matching leveraging EHR data
Background: Patient recruitment in clinical trials is hindered by complex eligibility criteria and labor-intensive chart reviews. Prior research using text-only models have struggled to address this problem in a reliable and scalable way due to (1) limited reasoning capabilities, (2) information loss from converting visual records to text, and (3) lack of a generic EHR integration to extract patient data. Methods: We introduce a broadly applicable, integration-free, LLM-powered pipeline that automates patient-trial matching using unprocessed documents extracted from EHRs. Our approach leverages (1) the new reasoning-LLM paradigm, enabling the assessment of even the most complex criteria, (2) visual capabilities of latest LLMs to interpret medical records without lossy image-to-text conversions, and (3) multimodal embeddings for efficient medical record search. The pipeline was validated on the n2c2 2018 cohort selection dataset (288 diabetic patients) and a real-world dataset composed of 485 patients from 30 different sites matched against 36 diverse trials. Results: On the n2c2 dataset, our method achieved a new state-of-the-art criterion-level accuracy of 93\%. In real-world trials, the pipeline yielded an accuracy of 87\%, undermined by the difficulty to replicate human decision-making when medical records lack sufficient information. Nevertheless, users were able to review overall eligibility in under 9 minutes per patient on average, representing an 80\% improvement over traditional manual chart reviews. Conclusion: This pipeline demonstrates robust performance in clinical trial patient matching without requiring custom integration with site systems or trial-specific tailoring, thereby enabling scalable deployment across sites seeking to leverage AI for patient matching.
☆ Optimizing Decomposition for Optimal Claim Verification
Current research on the \textit{Decompose-Then-Verify} paradigm for evaluating the factuality of long-form text typically treats decomposition and verification in isolation, overlooking their interactions and potential misalignment. We find that existing decomposition policies, typically hand-crafted demonstrations, do not align well with downstream verifiers in terms of atomicity -- a novel metric quantifying information density -- leading to suboptimal verification results. We formulate finding the optimal decomposition policy for optimal verification as a bilevel optimization problem. To approximate a solution for this strongly NP-hard problem, we propose dynamic decomposition, a reinforcement learning framework that leverages verifier feedback to learn a policy for dynamically decomposing claims to verifier-preferred atomicity. Experimental results show that dynamic decomposition outperforms existing decomposition policies, improving verification confidence by 0.07 and accuracy by 0.12 (on a 0-1 scale) on average across varying verifiers, datasets, and atomcities of input claims.
☆ Leveraging Perfect Multimodal Alignment and Gaussian Assumptions for Cross-modal Transfer
Multimodal alignment aims to construct a joint latent vector space where two modalities representing the same concept map to the same vector. We formulate this as an inverse problem and show that under certain conditions perfect alignment can be achieved. We then address a specific application of alignment referred to as cross-modal transfer. Unsupervised cross-modal transfer aims to leverage a model trained with one modality to perform inference on another modality, without any labeled fine-tuning on the new modality. Assuming that semantic classes are represented as a mixture of Gaussians in the latent space, we show how cross-modal transfer can be performed by projecting the data points from the representation space onto different subspaces representing each modality. Our experiments on synthetic multimodal Gaussian data verify the effectiveness of our perfect alignment and cross-modal transfer method. We hope these findings inspire further exploration of the applications of perfect alignment and the use of Gaussian models for cross-modal learning.
☆ TruthLens:A Training-Free Paradigm for DeepFake Detection
The proliferation of synthetic images generated by advanced AI models poses significant challenges in identifying and understanding manipulated visual content. Current fake image detection methods predominantly rely on binary classification models that focus on accuracy while often neglecting interpretability, leaving users without clear insights into why an image is deemed real or fake. To bridge this gap, we introduce TruthLens, a novel training-free framework that reimagines deepfake detection as a visual question-answering (VQA) task. TruthLens utilizes state-of-the-art large vision-language models (LVLMs) to observe and describe visual artifacts and combines this with the reasoning capabilities of large language models (LLMs) like GPT-4 to analyze and aggregate evidence into informed decisions. By adopting a multimodal approach, TruthLens seamlessly integrates visual and semantic reasoning to not only classify images as real or fake but also provide interpretable explanations for its decisions. This transparency enhances trust and provides valuable insights into the artifacts that signal synthetic content. Extensive evaluations demonstrate that TruthLens outperforms conventional methods, achieving high accuracy on challenging datasets while maintaining a strong emphasis on explainability. By reframing deepfake detection as a reasoning-driven process, TruthLens establishes a new paradigm in combating synthetic media, combining cutting-edge performance with interpretability to address the growing threats of visual disinformation.
☆ Challenges and Trends in Egocentric Vision: A Survey
With the rapid development of artificial intelligence technologies and wearable devices, egocentric vision understanding has emerged as a new and challenging research direction, gradually attracting widespread attention from both academia and industry. Egocentric vision captures visual and multimodal data through cameras or sensors worn on the human body, offering a unique perspective that simulates human visual experiences. This paper provides a comprehensive survey of the research on egocentric vision understanding, systematically analyzing the components of egocentric scenes and categorizing the tasks into four main areas: subject understanding, object understanding, environment understanding, and hybrid understanding. We explore in detail the sub-tasks within each category. We also summarize the main challenges and trends currently existing in the field. Furthermore, this paper presents an overview of high-quality egocentric vision datasets, offering valuable resources for future research. By summarizing the latest advancements, we anticipate the broad applications of egocentric vision technologies in fields such as augmented reality, virtual reality, and embodied intelligence, and propose future research directions based on the latest developments in the field.
☆ MAMM-Refine: A Recipe for Improving Faithfulness in Generation with Multi-Agent Collaboration NAACL 2025
Multi-agent collaboration among models has shown promise in reasoning tasks but is underexplored in long-form generation tasks like summarization and question-answering. We extend multi-agent multi-model reasoning to generation, specifically to improving faithfulness through refinement, i.e., revising model-generated outputs to remove factual inconsistencies. We investigate how iterative collaboration among multiple instances and types of large language models (LLMs) enhances subtasks in the refinement process, such as error detection, critiquing unfaithful sentences, and making corrections based on critiques. We design intrinsic evaluations for each subtask, with our findings indicating that both multi-agent (multiple instances) and multi-model (diverse LLM types) approaches benefit error detection and critiquing. Additionally, reframing critiquing and refinement as reranking rather than generation tasks improves multi-agent performance. We consolidate these insights into a final "recipe" called Multi-Agent Multi-Model Refinement (MAMM-Refine), where multi-agent and multi-model collaboration significantly boosts performance on three summarization datasets as well as on long-form question answering, demonstrating the effectiveness and generalizability of our recipe.
comment: NAACL 2025, 18 pages. Code: https://github.com/meetdavidwan/mammrefine
☆ Do Chains-of-Thoughts of Large Language Models Suffer from Hallucinations, Cognitive Biases, or Phobias in Bayesian Reasoning?
Learning to reason and carefully explain arguments is central to students' cognitive, mathematical, and computational thinking development. This is particularly challenging in problems under uncertainty and in Bayesian reasoning. With the new generation of large language models (LLMs) capable of reasoning using Chain-of-Thought (CoT), there is an excellent opportunity to learn with them as they explain their reasoning through a dialogue with their artificial internal voice. It is an engaging and excellent opportunity to learn Bayesian reasoning. Furthermore, given that different LLMs sometimes arrive at opposite solutions, CoT generates opportunities for deep learning by detailed comparisons of reasonings. However, unlike humans, we found that they do not autonomously explain using ecologically valid strategies like natural frequencies, whole objects, and embodied heuristics. This is unfortunate, as these strategies help humans avoid critical mistakes and have proven pedagogical value in Bayesian reasoning. In order to overcome these biases and aid understanding and learning, we included prompts that induce LLMs to use these strategies. We found that LLMs with CoT incorporate them but not consistently. They show persistent biases towards symbolic reasoning and avoidance or phobia of ecologically valid strategies.
comment: 24 pages, 3 figures
☆ Automated Non-Functional Requirements Generation in Software Engineering with Large Language Models: A Comparative Study
Neglecting non-functional requirements (NFRs) early in software development can lead to critical challenges. Despite their importance, NFRs are often overlooked or difficult to identify, impacting software quality. To support requirements engineers in eliciting NFRs, we developed a framework that leverages Large Language Models (LLMs) to derive quality-driven NFRs from functional requirements (FRs). Using a custom prompting technique within a Deno-based pipeline, the system identifies relevant quality attributes for each functional requirement and generates corresponding NFRs, aiding systematic integration. A crucial aspect is evaluating the quality and suitability of these generated requirements. Can LLMs produce high-quality NFR suggestions? Using 34 functional requirements - selected as a representative subset of 3,964 FRs-the LLMs inferred applicable attributes based on the ISO/IEC 25010:2023 standard, generating 1,593 NFRs. A horizontal evaluation covered three dimensions: NFR validity, applicability of quality attributes, and classification precision. Ten industry software quality evaluators, averaging 13 years of experience, assessed a subset for relevance and quality. The evaluation showed strong alignment between LLM-generated NFRs and expert assessments, with median validity and applicability scores of 5.0 (means: 4.63 and 4.59, respectively) on a 1-5 scale. In the classification task, 80.4% of LLM-assigned attributes matched expert choices, with 8.3% near misses and 11.3% mismatches. A comparative analysis of eight LLMs highlighted variations in performance, with gemini-1.5-pro exhibiting the highest attribute accuracy, while llama-3.3-70B achieved higher validity and applicability scores. These findings provide insights into the feasibility of using LLMs for automated NFR generation and lay the foundation for further exploration of AI-assisted requirements engineering.
comment: 11 pages
☆ CoE: Chain-of-Explanation via Automatic Visual Concept Circuit Description and Polysemanticity Quantification CVPR2025
Explainability is a critical factor influencing the wide deployment of deep vision models (DVMs). Concept-based post-hoc explanation methods can provide both global and local insights into model decisions. However, current methods in this field face challenges in that they are inflexible to automatically construct accurate and sufficient linguistic explanations for global concepts and local circuits. Particularly, the intrinsic polysemanticity in semantic Visual Concepts (VCs) impedes the interpretability of concepts and DVMs, which is underestimated severely. In this paper, we propose a Chain-of-Explanation (CoE) approach to address these issues. Specifically, CoE automates the decoding and description of VCs to construct global concept explanation datasets. Further, to alleviate the effect of polysemanticity on model explainability, we design a concept polysemanticity disentanglement and filtering mechanism to distinguish the most contextually relevant concept atoms. Besides, a Concept Polysemanticity Entropy (CPE), as a measure of model interpretability, is formulated to quantify the degree of concept uncertainty. The modeling of deterministic concepts is upgraded to uncertain concept atom distributions. Finally, CoE automatically enables linguistic local explanations of the decision-making process of DVMs by tracing the concept circuit. GPT-4o and human-based experiments demonstrate the effectiveness of CPE and the superiority of CoE, achieving an average absolute improvement of 36% in terms of explainability scores.
comment: Accepted by CVPR2025
☆ Exploring Large Language Models for Word Games:Who is the Spy?
Word games hold significant research value for natural language processing (NLP), game theory, and related fields due to their rule-based and situational nature. This study explores how large language models (LLMs) can be effectively involved in word games and proposes a training-free framework. "Shei Shi Wo Di" or "Who is the Spy" in English, is a classic word game. Using this game as an example, we introduce a Chain-of-Thought (CoT)-based scheduling framework to enable LLMs to achieve excellent performance in tasks such as inferring role words and disguising their identities. We evaluate the framework's performance based on game success rates and the accuracy of the LLM agents' analytical results. Experimental results affirm the framework's effectiveness, demonstrating notable improvements in LLM performance across multiple datasets. This work highlights the potential of LLMs in mastering situational reasoning and social interactions within structured game environments. Our code is publicly available at https://github.com/ct-wei/Who-is-The-Spy.
☆ A Personalized Data-Driven Generative Model of Human Motion
The deployment of autonomous virtual avatars (in extended reality) and robots in human group activities - such as rehabilitation therapy, sports, and manufacturing - is expected to increase as these technologies become more pervasive. Designing cognitive architectures and control strategies to drive these agents requires realistic models of human motion. However, existing models only provide simplified descriptions of human motor behavior. In this work, we propose a fully data-driven approach, based on Long Short-Term Memory neural networks, to generate original motion that captures the unique characteristics of specific individuals. We validate the architecture using real data of scalar oscillatory motion. Extensive analyses show that our model effectively replicates the velocity distribution and amplitude envelopes of the individual it was trained on, remaining different from other individuals, and outperforming state-of-the-art models in terms of similarity to human data.
comment: 6 pages, 9 figures
☆ When Pigs Get Sick: Multi-Agent AI for Swine Disease Detection
Swine disease surveillance is critical to the sustainability of global agriculture, yet its effectiveness is frequently undermined by limited veterinary resources, delayed identification of cases, and variability in diagnostic accuracy. To overcome these barriers, we introduce a novel AI-powered, multi-agent diagnostic system that leverages Retrieval-Augmented Generation (RAG) to deliver timely, evidence-based disease detection and clinical guidance. By automatically classifying user inputs into either Knowledge Retrieval Queries or Symptom-Based Diagnostic Queries, the system ensures targeted information retrieval and facilitates precise diagnostic reasoning. An adaptive questioning protocol systematically collects relevant clinical signs, while a confidence-weighted decision fusion mechanism integrates multiple diagnostic hypotheses to generate robust disease predictions and treatment recommendations. Comprehensive evaluations encompassing query classification, disease diagnosis, and knowledge retrieval demonstrate that the system achieves high accuracy, rapid response times, and consistent reliability. By providing a scalable, AI-driven diagnostic framework, this approach enhances veterinary decision-making, advances sustainable livestock management practices, and contributes substantively to the realization of global food security.
comment: 14 pages, 2 figures
☆ A Unified Framework for Real-Time Failure Handling in Robotics Using Vision-Language Models, Reactive Planner and Behavior Trees
Robotic systems often face execution failures due to unexpected obstacles, sensor errors, or environmental changes. Traditional failure recovery methods rely on predefined strategies or human intervention, making them less adaptable. This paper presents a unified failure recovery framework that combines Vision-Language Models (VLMs), a reactive planner, and Behavior Trees (BTs) to enable real-time failure handling. Our approach includes pre-execution verification, which checks for potential failures before execution, and reactive failure handling, which detects and corrects failures during execution by verifying existing BT conditions, adding missing preconditions and, when necessary, generating new skills. The framework uses a scene graph for structured environmental perception and an execution history for continuous monitoring, enabling context-aware and adaptive failure handling. We evaluate our framework through real-world experiments with an ABB YuMi robot on tasks like peg insertion, object sorting, and drawer placement, as well as in AI2-THOR simulator. Compared to using pre-execution and reactive methods separately, our approach achieves higher task success rates and greater adaptability. Ablation studies highlight the importance of VLM-based reasoning, structured scene representation, and execution history tracking for effective failure recovery in robotics.
☆ 3D Occupancy Prediction with Low-Resolution Queries via Prototype-aware View Transformation CVPR2025
The resolution of voxel queries significantly influences the quality of view transformation in camera-based 3D occupancy prediction. However, computational constraints and the practical necessity for real-time deployment require smaller query resolutions, which inevitably leads to an information loss. Therefore, it is essential to encode and preserve rich visual details within limited query sizes while ensuring a comprehensive representation of 3D occupancy. To this end, we introduce ProtoOcc, a novel occupancy network that leverages prototypes of clustered image segments in view transformation to enhance low-resolution context. In particular, the mapping of 2D prototypes onto 3D voxel queries encodes high-level visual geometries and complements the loss of spatial information from reduced query resolutions. Additionally, we design a multi-perspective decoding strategy to efficiently disentangle the densely compressed visual cues into a high-dimensional 3D occupancy scene. Experimental results on both Occ3D and SemanticKITTI benchmarks demonstrate the effectiveness of the proposed method, showing clear improvements over the baselines. More importantly, ProtoOcc achieves competitive performance against the baselines even with 75\% reduced voxel resolution.
comment: Accepted to CVPR2025
☆ Foundation models may exhibit staged progression in novel CBRN threat disclosure
The extent to which foundation models can disclose novel chemical, biological, radiation, and nuclear (CBRN) threats to expert users is unclear due to a lack of test cases. I leveraged the unique opportunity presented by an upcoming publication describing a novel catastrophic biothreat - "Technical Report on Mirror Bacteria: Feasibility and Risks" - to conduct a small controlled study before it became public. Graduate-trained biologists tasked with predicting the consequences of releasing mirror E. coli showed no significant differences in rubric-graded accuracy using Claude Sonnet 3.5 new (n=10) or web search only (n=2); both groups scored comparably to a web baseline (28 and 43 versus 36). However, Sonnet reasoned correctly when prompted by a report author, but a smaller model, Haiku 3.5, failed even with author guidance (80 versus 5). These results suggest distinct stages of model capability: Haiku is unable to reason about mirror life even with threat-aware expert guidance (Stage 1), while Sonnet correctly reasons only with threat-aware prompting (Stage 2). Continued advances may allow future models to disclose novel CBRN threats to naive experts (Stage 3) or unskilled users (Stage 4). While mirror life represents only one case study, monitoring new models' ability to reason about privately known threats may allow protective measures to be implemented before widespread disclosure.
comment: 26 pages, 2 figures
☆ Multi-Agent Actor-Critic with Harmonic Annealing Pruning for Dynamic Spectrum Access Systems
Multi-Agent Deep Reinforcement Learning (MADRL) has emerged as a powerful tool for optimizing decentralized decision-making systems in complex settings, such as Dynamic Spectrum Access (DSA). However, deploying deep learning models on resource-constrained edge devices remains challenging due to their high computational cost. To address this challenge, in this paper, we present a novel sparse recurrent MARL framework integrating gradual neural network pruning into the independent actor global critic paradigm. Additionally, we introduce a harmonic annealing sparsity scheduler, which achieves comparable, and in certain cases superior, performance to standard linear and polynomial pruning schedulers at large sparsities. Our experimental investigation demonstrates that the proposed DSA framework can discover superior policies, under diverse training conditions, outperforming conventional DSA, MADRL baselines, and state-of-the-art pruning techniques.
comment: 5 pages, 3 figures, 1 table, submited to an IEEE conference
☆ Comparing Llama3 and DeepSeekR1 on Biomedical Text Classification Tasks
This study compares the performance of two open-source large language models (LLMs)-Llama3-70B and DeepSeekR1-distill-Llama3-70B-on six biomedical text classification tasks. Four tasks involve data from social media, while two tasks focus on clinical notes from electronic health records, and all experiments were performed in zero-shot settings. Performance metrics, including precision, recall, and F1 scores, were measured for each task, along with their 95% confidence intervals. Results demonstrated that DeepSeekR1-distill-Llama3-70B generally performs better in terms of precision on most tasks, with mixed results on recall. While the zero-shot LLMs demonstrated high F1 scores for some tasks, they grossly underperformed on others, for data from both sources. The findings suggest that model selection should be guided by the specific requirements of the health-related text classification tasks, particularly when considering the precision-recall trade-offs, and that, in the presence of annotated data, supervised classification approaches may be more reliable than zero-shot LLMs.
comment: 4 pages
☆ World Models in Artificial Intelligence: Sensing, Learning, and Reasoning Like a Child
World Models help Artificial Intelligence (AI) predict outcomes, reason about its environment, and guide decision-making. While widely used in reinforcement learning, they lack the structured, adaptive representations that even young children intuitively develop. Advancing beyond pattern recognition requires dynamic, interpretable frameworks inspired by Piaget's cognitive development theory. We highlight six key research areas -- physics-informed learning, neurosymbolic learning, continual learning, causal inference, human-in-the-loop AI, and responsible AI -- as essential for enabling true reasoning in AI. By integrating statistical learning with advances in these areas, AI can evolve from pattern recognition to genuine understanding, adaptation and reasoning capabilities.
comment: 11 pages, 1 figure
☆ Volumetric Reconstruction From Partial Views for Task-Oriented Grasping
Object affordance and volumetric information are essential in devising effective grasping strategies under task-specific constraints. This paper presents an approach for inferring suitable grasping strategies from limited partial views of an object. To achieve this, a recurrent generative adversarial network (R-GAN) was proposed by incorporating a recurrent generator with long short-term memory (LSTM) units for it to process a variable number of depth scans. To determine object affordances, the AffordPose knowledge dataset is utilized as prior knowledge. Affordance retrieving is defined by the volume similarity measured via Chamfer Distance and action similarities. A Proximal Policy Optimization (PPO) reinforcement learning model is further implemented to refine the retrieved grasp strategies for task-oriented grasping. The retrieved grasp strategies were evaluated on a dual-arm mobile manipulation robot with an overall grasping accuracy of 89% for four tasks: lift, handle grasp, wrap grasp, and press.
☆ Machine Unlearning in Hyperbolic vs. Euclidean Multimodal Contrastive Learning: Adapting Alignment Calibration to MERU
Machine unlearning methods have become increasingly important for selective concept removal in large pre-trained models. While recent work has explored unlearning in Euclidean contrastive vision-language models, the effectiveness of concept removal in hyperbolic spaces remains unexplored. This paper investigates machine unlearning in hyperbolic contrastive learning by adapting Alignment Calibration to MERU, a model that embeds images and text in hyperbolic space to better capture semantic hierarchies. Through systematic experiments and ablation studies, we demonstrate that hyperbolic geometry offers distinct advantages for concept removal, achieving near perfect forgetting with reasonable performance on retained concepts, particularly when scaling to multiple concept removal. Our approach introduces hyperbolic-specific components including entailment calibration and norm regularization that leverage the unique properties of hyperbolic space. Comparative analysis with Euclidean models reveals fundamental differences in unlearning dynamics, with hyperbolic unlearning reorganizing the semantic hierarchy while Euclidean approaches merely disconnect cross-modal associations. These findings not only advance machine unlearning techniques but also provide insights into the geometric properties that influence concept representation and removal in multimodal models. Source code available at https://github.com/alex-pv01/HAC
comment: Preprint
☆ A Foundational Theory for Decentralized Sensory Learning
In both neuroscience and artificial intelligence, popular functional frameworks and neural network formulations operate by making use of extrinsic error measurements and global learning algorithms. Through a set of conjectures based on evolutionary insights on the origin of cellular adaptive mechanisms, we reinterpret the core meaning of sensory signals to allow the brain to be interpreted as a negative feedback control system, and show how this could lead to local learning algorithms without the need for global error correction metrics. Thereby, a sufficiently good minima in sensory activity can be the complete reward signal of the network, as well as being both necessary and sufficient for biological learning to arise. We show that this method of learning was likely already present in the earliest unicellular life forms on earth. We show evidence that the same principle holds and scales to multicellular organisms where it in addition can lead to division of labour between cells. Available evidence shows that the evolution of the nervous system likely was an adaptation to more effectively communicate intercellular signals to support such division of labour. We therefore propose that the same learning principle that evolved already in the earliest unicellular life forms, i.e. negative feedback control of externally and internally generated sensor signals, has simply been scaled up to become a fundament of the learning we see in biological brains today. We illustrate diverse biological settings, from the earliest unicellular organisms to humans, where this operational principle appears to be a plausible interpretation of the meaning of sensor signals in biology, and how this relates to current neuroscientific theories and findings.
☆ Aligning Crowd-sourced Human Feedback for Reinforcement Learning on Code Generation by Large Language Models
This paper studies how AI-assisted programming and large language models (LLM) improve software developers' ability via AI tools (LLM agents) like Github Copilot and Amazon CodeWhisperer, while integrating human feedback to enhance reinforcement learning (RLHF) with crowd-sourced computation to enhance text-to-code generation. Additionally, we demonstrate that our Bayesian optimization framework supports AI alignment in code generation by distributing the feedback collection burden, highlighting the value of collecting human feedback of good quality. Our empirical evaluations demonstrate the efficacy of this approach, showcasing how LLM agents can be effectively trained for improved text-to-code generation. Our Bayesian optimization framework can be designed for general domain-specific languages, promoting the alignment of large language model capabilities with human feedback in AI-assisted programming for code generation.
☆ Increasing the Robustness of the Fine-tuned Multilingual Machine-Generated Text Detectors
Since the proliferation of LLMs, there have been concerns about their misuse for harmful content creation and spreading. Recent studies justify such fears, providing evidence of LLM vulnerabilities and high potential of their misuse. Humans are no longer able to distinguish between high-quality machine-generated and authentic human-written texts. Therefore, it is crucial to develop automated means to accurately detect machine-generated content. It would enable to identify such content in online information space, thus providing an additional information about its credibility. This work addresses the problem by proposing a robust fine-tuning process of LLMs for the detection task, making the detectors more robust against obfuscation and more generalizable to out-of-distribution data.
☆ Text-Derived Relational Graph-Enhanced Network for Skeleton-Based Action Segmentation
Skeleton-based Temporal Action Segmentation (STAS) aims to segment and recognize various actions from long, untrimmed sequences of human skeletal movements. Current STAS methods typically employ spatio-temporal modeling to establish dependencies among joints as well as frames, and utilize one-hot encoding with cross-entropy loss for frame-wise classification supervision. However, these methods overlook the intrinsic correlations among joints and actions within skeletal features, leading to a limited understanding of human movements. To address this, we propose a Text-Derived Relational Graph-Enhanced Network (TRG-Net) that leverages prior graphs generated by Large Language Models (LLM) to enhance both modeling and supervision. For modeling, the Dynamic Spatio-Temporal Fusion Modeling (DSFM) method incorporates Text-Derived Joint Graphs (TJG) with channel- and frame-level dynamic adaptation to effectively model spatial relations, while integrating spatio-temporal core features during temporal modeling. For supervision, the Absolute-Relative Inter-Class Supervision (ARIS) method employs contrastive learning between action features and text embeddings to regularize the absolute class distributions, and utilizes Text-Derived Action Graphs (TAG) to capture the relative inter-class relationships among action features. Additionally, we propose a Spatial-Aware Enhancement Processing (SAEP) method, which incorporates random joint occlusion and axial rotation to enhance spatial generalization. Performance evaluations on four public datasets demonstrate that TRG-Net achieves state-of-the-art results.
☆ Reasoning Effort and Problem Complexity: A Scaling Analysis in LLMs ICLR 2025
Large Language Models (LLMs) have demonstrated remarkable text generation capabilities, and recent advances in training paradigms have led to breakthroughs in their reasoning performance. In this work, we investigate how the reasoning effort of such models scales with problem complexity. We use the infinitely scalable Tents puzzle, which has a known linear-time solution, to analyze this scaling behavior. Our results show that reasoning effort scales with problem size, but only up to a critical problem complexity. Beyond this threshold, the reasoning effort does not continue to increase, and may even decrease. This observation highlights a critical limitation in the logical coherence of current LLMs as problem complexity increases, and underscores the need for strategies to improve reasoning scalability. Furthermore, our results reveal significant performance differences between current state-of-the-art reasoning models when faced with increasingly complex logical puzzles.
comment: Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs
☆ VIPER: Visual Perception and Explainable Reasoning for Sequential Decision-Making
While Large Language Models (LLMs) excel at reasoning on text and Vision-Language Models (VLMs) are highly effective for visual perception, applying those models for visual instruction-based planning remains a widely open problem. In this paper, we introduce VIPER, a novel framework for multimodal instruction-based planning that integrates VLM-based perception with LLM-based reasoning. Our approach uses a modular pipeline where a frozen VLM generates textual descriptions of image observations, which are then processed by an LLM policy to predict actions based on the task goal. We fine-tune the reasoning module using behavioral cloning and reinforcement learning, improving our agent's decision-making capabilities. Experiments on the ALFWorld benchmark show that VIPER significantly outperforms state-of-the-art visual instruction-based planners while narrowing the gap with purely text-based oracles. By leveraging text as an intermediate representation, VIPER also enhances explainability, paving the way for a fine-grained analysis of perception and reasoning components.
☆ Diffusion-Based Forecasting for Uncertainty-Aware Model Predictive Control
We propose Diffusion-Informed Model Predictive Control (D-I MPC), a generic framework for uncertainty-aware prediction and decision-making in partially observable stochastic systems by integrating diffusion-based time series forecasting models in Model Predictive Control algorithms. In our approach, a diffusion-based time series forecasting model is used to probabilistically estimate the evolution of the system's stochastic components. These forecasts are then incorporated into MPC algorithms to estimate future trajectories and optimize action selection under the uncertainty of the future. We evaluate the framework on the task of energy arbitrage, where a Battery Energy Storage System participates in the day-ahead electricity market of the New York state. Experimental results indicate that our model-based approach with a diffusion-based forecaster significantly outperforms both implementations with classical forecasting methods and model-free reinforcement learning baselines.
comment: 5 pages, 3 figures, 3 tables. This version is submitted to the 33rd European Signal Processing Conference (EUSIPCO 2025), to be held in Isola delle Femmine - Palermo - Italy, on September 8-12, 2025
☆ Towards Understanding the Safety Boundaries of DeepSeek Models: Evaluation and Findings
This study presents the first comprehensive safety evaluation of the DeepSeek models, focusing on evaluating the safety risks associated with their generated content. Our evaluation encompasses DeepSeek's latest generation of large language models, multimodal large language models, and text-to-image models, systematically examining their performance regarding unsafe content generation. Notably, we developed a bilingual (Chinese-English) safety evaluation dataset tailored to Chinese sociocultural contexts, enabling a more thorough evaluation of the safety capabilities of Chinese-developed models. Experimental results indicate that despite their strong general capabilities, DeepSeek models exhibit significant safety vulnerabilities across multiple risk dimensions, including algorithmic discrimination and sexual content. These findings provide crucial insights for understanding and improving the safety of large foundation models. Our code is available at https://github.com/NY1024/DeepSeek-Safety-Eval.
☆ StyleLoco: Generative Adversarial Distillation for Natural Humanoid Robot Locomotion
Humanoid robots are anticipated to acquire a wide range of locomotion capabilities while ensuring natural movement across varying speeds and terrains. Existing methods encounter a fundamental dilemma in learning humanoid locomotion: reinforcement learning with handcrafted rewards can achieve agile locomotion but produces unnatural gaits, while Generative Adversarial Imitation Learning (GAIL) with motion capture data yields natural movements but suffers from unstable training processes and restricted agility. Integrating these approaches proves challenging due to the inherent heterogeneity between expert policies and human motion datasets. To address this, we introduce StyleLoco, a novel two-stage framework that bridges this gap through a Generative Adversarial Distillation (GAD) process. Our framework begins by training a teacher policy using reinforcement learning to achieve agile and dynamic locomotion. It then employs a multi-discriminator architecture, where distinct discriminators concurrently extract skills from both the teacher policy and motion capture data. This approach effectively combines the agility of reinforcement learning with the natural fluidity of human-like movements while mitigating the instability issues commonly associated with adversarial training. Through extensive simulation and real-world experiments, we demonstrate that StyleLoco enables humanoid robots to perform diverse locomotion tasks with the precision of expertly trained policies and the natural aesthetics of human motion, successfully transferring styles across different movement types while maintaining stable locomotion across a broad spectrum of command inputs.
comment: 9 pages, 4 figures
☆ Texture-Aware StarGAN for CT data harmonisation
Computed Tomography (CT) plays a pivotal role in medical diagnosis; however, variability across reconstruction kernels hinders data-driven approaches, such as deep learning models, from achieving reliable and generalized performance. To this end, CT data harmonization has emerged as a promising solution to minimize such non-biological variances by standardizing data across different sources or conditions. In this context, Generative Adversarial Networks (GANs) have proved to be a powerful framework for harmonization, framing it as a style-transfer problem. However, GAN-based approaches still face limitations in capturing complex relationships within the images, which are essential for effective harmonization. In this work, we propose a novel texture-aware StarGAN for CT data harmonization, enabling one-to-many translations across different reconstruction kernels. Although the StarGAN model has been successfully applied in other domains, its potential for CT data harmonization remains unexplored. Furthermore, our approach introduces a multi-scale texture loss function that embeds texture information across different spatial and angular scales into the harmonization process, effectively addressing kernel-induced texture variations. We conducted extensive experimentation on a publicly available dataset, utilizing a total of 48667 chest CT slices from 197 patients distributed over three different reconstruction kernels, demonstrating the superiority of our method over the baseline StarGAN.
☆ HAD-Gen: Human-like and Diverse Driving Behavior Modeling for Controllable Scenario Generation
Simulation-based testing has emerged as an essential tool for verifying and validating autonomous vehicles (AVs). However, contemporary methodologies, such as deterministic and imitation learning-based driver models, struggle to capture the variability of human-like driving behavior. Given these challenges, we propose HAD-Gen, a general framework for realistic traffic scenario generation that simulates diverse human-like driving behaviors. The framework first clusters the vehicle trajectory data into different driving styles according to safety features. It then employs maximum entropy inverse reinforcement learning on each of the clusters to learn the reward function corresponding to each driving style. Using these reward functions, the method integrates offline reinforcement learning pre-training and multi-agent reinforcement learning algorithms to obtain general and robust driving policies. Multi-perspective simulation results show that our proposed scenario generation framework can simulate diverse, human-like driving behaviors with strong generalization capability. The proposed framework achieves a 90.96% goal-reaching rate, an off-road rate of 2.08%, and a collision rate of 6.91% in the generalization test, outperforming prior approaches by over 20% in goal-reaching performance. The source code is released at https://github.com/RoboSafe-Lab/Sim4AD.
☆ GraspCorrect: Robotic Grasp Correction via Vision-Language Model-Guided Feedback
Despite significant advancements in robotic manipulation, achieving consistent and stable grasping remains a fundamental challenge, often limiting the successful execution of complex tasks. Our analysis reveals that even state-of-the-art policy models frequently exhibit unstable grasping behaviors, leading to failure cases that create bottlenecks in real-world robotic applications. To address these challenges, we introduce GraspCorrect, a plug-and-play module designed to enhance grasp performance through vision-language model-guided feedback. GraspCorrect employs an iterative visual question-answering framework with two key components: grasp-guided prompting, which incorporates task-specific constraints, and object-aware sampling, which ensures the selection of physically feasible grasp candidates. By iteratively generating intermediate visual goals and translating them into joint-level actions, GraspCorrect significantly improves grasp stability and consistently enhances task success rates across existing policy models in the RLBench and CALVIN datasets.
☆ A Novel Channel Boosted Residual CNN-Transformer with Regional-Boundary Learning for Breast Cancer Detection
Recent advancements in detecting tumors using deep learning on breast ultrasound images (BUSI) have demonstrated significant success. Deep CNNs and vision-transformers (ViTs) have demonstrated individually promising initial performance. However, challenges related to model complexity and contrast, texture, and tumor morphology variations introduce uncertainties that hinder the effectiveness of current methods. This study introduces a novel hybrid framework, CB-Res-RBCMT, combining customized residual CNNs and new ViT components for detailed BUSI cancer analysis. The proposed RBCMT uses stem convolution blocks with CNN Meet Transformer (CMT) blocks, followed by new Regional and boundary (RB) feature extraction operations for capturing contrast and morphological variations. Moreover, the CMT block incorporates global contextual interactions through multi-head attention, enhancing computational efficiency with a lightweight design. Additionally, the customized inverse residual and stem CNNs within the CMT effectively extract local texture information and handle vanishing gradients. Finally, the new channel-boosted (CB) strategy enriches the feature diversity of the limited dataset by combining the original RBCMT channels with transfer learning-based residual CNN-generated maps. These diverse channels are processed through a spatial attention block for optimal pixel selection, reducing redundancy and improving the discrimination of minor contrast and texture variations. The proposed CB-Res-RBCMT achieves an F1-score of 95.57%, accuracy of 95.63%, sensitivity of 96.42%, and precision of 94.79% on the standard harmonized stringent BUSI dataset, outperforming existing ViT and CNN methods. These results demonstrate the versatility of our integrated CNN-Transformer framework in capturing diverse features and delivering superior performance in BUSI cancer diagnosis.
comment: 12 pages, 10 Figures, 2 Tables. arXiv admin note: substantial text overlap with arXiv:2405.12986
☆ Application of linear regression method to the deep reinforcement learning in continuous action cases
The linear regression (LR) method offers the advantage that optimal parameters can be calculated relatively easily, although its representation capability is limited than that of the deep learning technique. To improve deep reinforcement learning, the Least Squares Deep Q Network (LS-DQN) method was proposed by Levine et al., which combines Deep Q Network (DQN) with LR method. However, the LS-DQN method assumes that the actions are discrete. In this study, we propose the Double Least Squares Deep Deterministic Policy Gradient (DLS-DDPG) method to address this limitation. This method combines the LR method with the Deep Deterministic Policy Gradient (DDPG) technique, one of the representative deep reinforcement learning algorithms for continuous action cases. Numerical experiments conducted in MuJoCo environments showed that the LR update improved performance at least in some tasks, although there are difficulties such as the inability to make the regularization terms small.
comment: 21 pages, 6 figures
☆ Behaviour Discovery and Attribution for Explainable Reinforcement Learning
Explaining the decisions made by reinforcement learning (RL) agents is critical for building trust and ensuring reliability in real-world applications. Traditional approaches to explainability often rely on saliency analysis, which can be limited in providing actionable insights. Recently, there has been growing interest in attributing RL decisions to specific trajectories within a dataset. However, these methods often generalize explanations to long trajectories, potentially involving multiple distinct behaviors. Often, providing multiple more fine grained explanations would improve clarity. In this work, we propose a framework for behavior discovery and action attribution to behaviors in offline RL trajectories. Our method identifies meaningful behavioral segments, enabling more precise and granular explanations associated with high level agent behaviors. This approach is adaptable across diverse environments with minimal modifications, offering a scalable and versatile solution for behavior discovery and attribution for explainable RL.
☆ USAM-Net: A U-Net-based Network for Improved Stereo Correspondence and Scene Depth Estimation using Features from a Pre-trained Image Segmentation network
The increasing demand for high-accuracy depth estimation in autonomous driving and augmented reality applications necessitates advanced neural architectures capable of effectively leveraging multiple data modalities. In this context, we introduce the Unified Segmentation Attention Mechanism Network (USAM-Net), a novel convolutional neural network that integrates stereo image inputs with semantic segmentation maps and attention to enhance depth estimation performance. USAM-Net employs a dual-pathway architecture, which combines a pre-trained segmentation model (SAM) and a depth estimation model. The segmentation pathway preprocesses the stereo images to generate semantic masks, which are then concatenated with the stereo images as inputs to the depth estimation pathway. This integration allows the model to focus on important features such as object boundaries and surface textures which are crucial for accurate depth perception. Empirical evaluation on the DrivingStereo dataset demonstrates that USAM-Net achieves superior performance metrics, including a Global Difference (GD) of 3.61\% and an End-Point Error (EPE) of 0.88, outperforming traditional models such as CFNet, SegStereo, and iResNet. These results underscore the effectiveness of integrating segmentation information into stereo depth estimation tasks, highlighting the potential of USAM-Net in applications demanding high-precision depth data.
☆ FAVOR-Bench: A Comprehensive Benchmark for Fine-Grained Video Motion Understanding
Multimodal Large Language Models (MLLMs) have shown remarkable capabilities in video content understanding but still struggle with fine-grained motion comprehension. To comprehensively assess the motion understanding ability of existing MLLMs, we introduce FAVOR-Bench, comprising 1,776 videos with structured manual annotations of various motions. Our benchmark includes both close-ended and open-ended tasks. For close-ended evaluation, we carefully design 8,184 multiple-choice question-answer pairs spanning six distinct sub-tasks. For open-ended evaluation, we develop both a novel cost-efficient LLM-free and a GPT-assisted caption assessment method, where the former can enhance benchmarking interpretability and reproducibility. Comprehensive experiments with 21 state-of-the-art MLLMs reveal significant limitations in their ability to comprehend and describe detailed temporal dynamics in video motions. To alleviate this limitation, we further build FAVOR-Train, a dataset consisting of 17,152 videos with fine-grained motion annotations. The results of finetuning Qwen2.5-VL on FAVOR-Train yield consistent improvements on motion-related tasks of TVBench, MotionBench and our FAVOR-Bench. Comprehensive assessment results demonstrate that the proposed FAVOR-Bench and FAVOR-Train provide valuable tools to the community for developing more powerful video understanding models. Project page: \href{https://favor-bench.github.io/}{https://favor-bench.github.io/}.
comment: FAVOR-Bench project page: https://favor-bench.github.io/
☆ Shushing! Let's Imagine an Authentic Speech from the Silent Video
Vision-guided speech generation aims to produce authentic speech from facial appearance or lip motions without relying on auditory signals, offering significant potential for applications such as dubbing in filmmaking and assisting individuals with aphonia. Despite recent progress, existing methods struggle to achieve unified cross-modal alignment across semantics, timbre, and emotional prosody from visual cues, prompting us to propose Consistent Video-to-Speech (CV2S) as an extended task to enhance cross-modal consistency. To tackle emerging challenges, we introduce ImaginTalk, a novel cross-modal diffusion framework that generates faithful speech using only visual input, operating within a discrete space. Specifically, we propose a discrete lip aligner that predicts discrete speech tokens from lip videos to capture semantic information, while an error detector identifies misaligned tokens, which are subsequently refined through masked language modeling with BERT. To further enhance the expressiveness of the generated speech, we develop a style diffusion transformer equipped with a face-style adapter that adaptively customizes identity and prosody dynamics across both the channel and temporal dimensions while ensuring synchronization with lip-aware semantic features. Extensive experiments demonstrate that ImaginTalk can generate high-fidelity speech with more accurate semantic details and greater expressiveness in timbre and emotion compared to state-of-the-art baselines. Demos are shown at our project page: https://imagintalk.github.io.
comment: Project Page: https://imagintalk.github.io
☆ A Semantic and Clean-label Backdoor Attack against Graph Convolutional Networks
Graph Convolutional Networks (GCNs) have shown excellent performance in graph-structured tasks such as node classification and graph classification. However, recent research has shown that GCNs are vulnerable to a new type of threat called the backdoor attack, where the adversary can inject a hidden backdoor into the GCNs so that the backdoored model performs well on benign samples, whereas its prediction will be maliciously changed to the attacker-specified target label if the hidden backdoor is activated by the attacker-defined trigger. Clean-label backdoor attack and semantic backdoor attack are two new backdoor attacks to Deep Neural Networks (DNNs), they are more imperceptible and have posed new and serious threats. The semantic and clean-label backdoor attack is not fully explored in GCNs. In this paper, we propose a semantic and clean-label backdoor attack against GCNs under the context of graph classification to reveal the existence of this security vulnerability in GCNs. Specifically, SCLBA conducts an importance analysis on graph samples to select one type of node as semantic trigger, which is then inserted into the graph samples to create poisoning samples without changing the labels of the poisoning samples to the attacker-specified target label. We evaluate SCLBA on multiple datasets and the results show that SCLBA can achieve attack success rates close to 99% with poisoning rates of less than 3%, and with almost no impact on the performance of model on benign samples.
☆ MASS: Mathematical Data Selection via Skill Graphs for Pretraining Large Language Models
High-quality data plays a critical role in the pretraining and fine-tuning of large language models (LLMs), even determining their performance ceiling to some degree. Consequently, numerous data selection methods have been proposed to identify subsets of data that can effectively and efficiently enhance model performance. However, most of these methods focus on general data selection and tend to overlook the specific nuances of domain-related data. In this paper, we introduce MASS, a \textbf{MA}thematical data \textbf{S}election framework using the \textbf{S}kill graph for pretraining LLMs in the mathematical reasoning domain. By taking into account the unique characteristics of mathematics and reasoning, we construct a skill graph that captures the mathematical skills and their interrelations from a reference dataset. This skill graph guides us in assigning quality scores to the target dataset, enabling us to select the top-ranked subset which is further used to pretrain LLMs. Experimental results demonstrate the efficiency and effectiveness of MASS across different model sizes (1B and 7B) and pretraining datasets (web data and synthetic data). Specifically, in terms of efficiency, models trained on subsets selected by MASS can achieve similar performance to models trained on the original datasets, with a significant reduction in the number of trained tokens - ranging from 50\% to 70\% fewer tokens. In terms of effectiveness, when trained on the same amount of tokens, models trained on the data selected by MASS outperform those trained on the original datasets by 3.3\% to 5.9\%. These results underscore the potential of MASS to improve both the efficiency and effectiveness of pretraining LLMs.
☆ POSTA: A Go-to Framework for Customized Artistic Poster Generation CVPR 2025
Poster design is a critical medium for visual communication. Prior work has explored automatic poster design using deep learning techniques, but these approaches lack text accuracy, user customization, and aesthetic appeal, limiting their applicability in artistic domains such as movies and exhibitions, where both clear content delivery and visual impact are essential. To address these limitations, we present POSTA: a modular framework powered by diffusion models and multimodal large language models (MLLMs) for customized artistic poster generation. The framework consists of three modules. Background Diffusion creates a themed background based on user input. Design MLLM then generates layout and typography elements that align with and complement the background style. Finally, to enhance the poster's aesthetic appeal, ArtText Diffusion applies additional stylization to key text elements. The final result is a visually cohesive and appealing poster, with a fully modular process that allows for complete customization. To train our models, we develop the PosterArt dataset, comprising high-quality artistic posters annotated with layout, typography, and pixel-level stylized text segmentation. Our comprehensive experimental analysis demonstrates POSTA's exceptional controllability and design diversity, outperforming existing models in both text accuracy and aesthetic quality.
comment: Accepted to CVPR 2025
☆ Deep Contrastive Unlearning for Language Models
The past a few years have witnessed the great success of large language models, demonstrating powerful capabilities in comprehending textual data and generating human-like languages. Large language models achieve success by being trained on vast amounts of textual data, including online sources with copyrighted content and user-generated knowledge. However, this comes at a cost: the potential risk of exposing users' privacy and violating copyright protections. Thus, to safeguard individuals' "right to be forgotten", there has been increasing interests in machine unlearning -- the process of removing information carried by particular training samples from a model while not deteriorating its predictive quality. This is a challenging task due to the black-box nature of language models. Most existing studies focus on mitigating the impact of those forgot samples upon a model's outputs, and do not explicitly consider the geometric distributions of samples in the latent space of a model. To address this issue, we propose a machine unlearning framework, named Deep Contrastive Unlearning for fine-Tuning (DeepCUT) language models. Our proposed model achieves machine unlearning by directly optimizing the latent space of a model. Comprehensive experiments on real-world datasets demonstrate the effectiveness and efficiency of DeepCUT with consistent and significant improvement over baseline methods.
☆ Mitigating Object Hallucinations in MLLMs via Multi-Frequency Perturbations
Recently, multimodal large language models (MLLMs) have demonstrated remarkable performance in visual-language tasks. However, the authenticity of the responses generated by MLLMs is often compromised by object hallucinations. We identify that a key cause of these hallucinations is the model's over-susceptibility to specific image frequency features in detecting objects. In this paper, we introduce Multi-Frequency Perturbations (MFP), a simple, cost-effective, and pluggable method that leverages both low-frequency and high-frequency features of images to perturb visual feature representations and explicitly suppress redundant frequency-domain features during inference, thereby mitigating hallucinations. Experimental results demonstrate that our method significantly mitigates object hallucinations across various model architectures. Furthermore, as a training-time method, MFP can be combined with inference-time methods to achieve state-of-the-art performance on the CHAIR benchmark.
☆ MetaLadder: Ascending Mathematical Solution Quality via Analogical-Problem Reasoning Transfer
Large Language Models (LLMs) have demonstrated promising capabilities in solving mathematical reasoning tasks, leveraging Chain-of-Thought (CoT) data as a vital component in guiding answer generation. Current paradigms typically generate CoT and answers directly for a given problem, diverging from human problem-solving strategies to some extent. Humans often solve problems by recalling analogous cases and leveraging their solutions to reason about the current task. Inspired by this cognitive process, we propose \textbf{MetaLadder}, a novel framework that explicitly prompts LLMs to recall and reflect on meta-problems, those structurally or semantically analogous problems, alongside their CoT solutions before addressing the target problem. Additionally, we introduce a problem-restating mechanism to enhance the model's comprehension of the target problem by regenerating the original question, which further improves reasoning accuracy. Therefore, the model can achieve reasoning transfer from analogical problems, mimicking human-like "learning from examples" and generalization abilities. Extensive experiments on mathematical benchmarks demonstrate that our MetaLadder significantly boosts LLMs' problem-solving accuracy, largely outperforming standard CoT-based methods (\textbf{10.3\%} accuracy gain) and other methods. Our code and data has been released at https://github.com/LHL3341/MetaLadder.
☆ Envisioning an AI-Enhanced Mental Health Ecosystem
The rapid advancement of Large Language Models (LLMs), reasoning models, and agentic AI approaches coincides with a growing global mental health crisis, where increasing demand has not translated into adequate access to professional support, particularly for underserved populations. This presents a unique opportunity for AI to complement human-led interventions, offering scalable and context-aware support while preserving human connection in this sensitive domain. We explore various AI applications in peer support, self-help interventions, proactive monitoring, and data-driven insights, using a human-centred approach that ensures AI supports rather than replaces human interaction. However, AI deployment in mental health fields presents challenges such as ethical concerns, transparency, privacy risks, and risks of over-reliance. We propose a hybrid ecosystem where where AI assists but does not replace human providers, emphasising responsible deployment and evaluation. We also present some of our early work and findings in several of these AI applications. Finally, we outline future research directions for refining AI-enhanced interventions while adhering to ethical and culturally sensitive guidelines.
comment: 5 pages, 0 figures, accepted to the CHI'25 Envisioning the Future of Interactive Health Workshop, to be published in HAL
☆ Exploring the Limits of KV Cache Compression in Visual Autoregressive Transformers
A fundamental challenge in Visual Autoregressive models is the substantial memory overhead required during inference to store previously generated representations. Despite various attempts to mitigate this issue through compression techniques, prior works have not explicitly formalized the problem of KV-cache compression in this context. In this work, we take the first step in formally defining the KV-cache compression problem for Visual Autoregressive transformers. We then establish a fundamental negative result, proving that any mechanism for sequential visual token generation under attention-based architectures must use at least $\Omega(n^2 d)$ memory, when $d = \Omega(\log n)$, where $n$ is the number of tokens generated and $d$ is the embedding dimensionality. This result demonstrates that achieving truly sub-quadratic memory usage is impossible without additional structural constraints. Our proof is constructed via a reduction from a computational lower bound problem, leveraging randomized embedding techniques inspired by dimensionality reduction principles. Finally, we discuss how sparsity priors on visual representations can influence memory efficiency, presenting both impossibility results and potential directions for mitigating memory overhead.
☆ Efficient Personalization of Quantized Diffusion Model without Backpropagation
Diffusion models have shown remarkable performance in image synthesis, but they demand extensive computational and memory resources for training, fine-tuning and inference. Although advanced quantization techniques have successfully minimized memory usage for inference, training and fine-tuning these quantized models still require large memory possibly due to dequantization for accurate computation of gradients and/or backpropagation for gradient-based algorithms. However, memory-efficient fine-tuning is particularly desirable for applications such as personalization that often must be run on edge devices like mobile phones with private data. In this work, we address this challenge by quantizing a diffusion model with personalization via Textual Inversion and by leveraging a zeroth-order optimization on personalization tokens without dequantization so that it does not require gradient and activation storage for backpropagation that consumes considerable memory. Since a gradient estimation using zeroth-order optimization is quite noisy for a single or a few images in personalization, we propose to denoise the estimated gradient by projecting it onto a subspace that is constructed with the past history of the tokens, dubbed Subspace Gradient. In addition, we investigated the influence of text embedding in image generation, leading to our proposed time steps sampling, dubbed Partial Uniform Timestep Sampling for sampling with effective diffusion timesteps. Our method achieves comparable performance to prior methods in image and text alignment scores for personalizing Stable Diffusion with only forward passes while reducing training memory demand up to $8.2\times$.
☆ 1000 Layer Networks for Self-Supervised RL: Scaling Depth Can Enable New Goal-Reaching Capabilities
Scaling up self-supervised learning has driven breakthroughs in language and vision, yet comparable progress has remained elusive in reinforcement learning (RL). In this paper, we study building blocks for self-supervised RL that unlock substantial improvements in scalability, with network depth serving as a critical factor. Whereas most RL papers in recent years have relied on shallow architectures (around 2 - 5 layers), we demonstrate that increasing the depth up to 1024 layers can significantly boost performance. Our experiments are conducted in an unsupervised goal-conditioned setting, where no demonstrations or rewards are provided, so an agent must explore (from scratch) and learn how to maximize the likelihood of reaching commanded goals. Evaluated on simulated locomotion and manipulation tasks, our approach increases performance by $2\times$ - $50\times$. Increasing the model depth not only increases success rates but also qualitatively changes the behaviors learned.
comment: Link to project website: https://wang-kevin3290.github.io/scaling-crl/
☆ Project Jenkins: Turning Monkey Neural Data into Robotic Arm Movement, and Back
Project Jenkins explores how neural activity in the brain can be decoded into robotic movement and, conversely, how movement patterns can be used to generate synthetic neural data. Using real neural data recorded from motor and premotor cortex areas of a macaque monkey named Jenkins, we develop models for decoding (converting brain signals into robotic arm movements) and encoding (simulating brain activity corresponding to a given movement). For the interface between the brain simulation and the physical world, we utilized Koch v1.1 leader and follower robotic arms. We developed an interactive web console that allows users to generate synthetic brain data from joystick movements in real time. Our results are a step towards brain-controlled robotics, prosthetics, and enhancing normal motor function. By accurately modeling brain activity, we take a step toward flexible brain-computer interfaces that generalize beyond predefined movements. To support the research community, we provide open source tools for both synthetic data generation and neural decoding, fostering reproducibility and accelerating progress. The project is available at https://www.808robots.com/projects/jenkins
comment: 6 pages, 5 figures, project webpage and github
☆ Curiosity-Diffuser: Curiosity Guide Diffusion Models for Reliability
One of the bottlenecks in robotic intelligence is the instability of neural network models, which, unlike control models, lack a well-defined convergence domain and stability. This leads to risks when applying intelligence in the physical world. Specifically, imitation policy based on neural network may generate hallucinations, leading to inaccurate behaviors that impact the safety of real-world applications. To address this issue, this paper proposes the Curiosity-Diffuser, aimed at guiding the conditional diffusion model to generate trajectories with lower curiosity, thereby improving the reliability of policy. The core idea is to use a Random Network Distillation (RND) curiosity module to assess whether the model's behavior aligns with the training data, and then minimize curiosity by classifier guidance diffusion to reduce overgeneralization during inference. Additionally, we propose a computationally efficient metric for evaluating the reliability of the policy, measuring the similarity between the generated behaviors and the training dataset, to facilitate research about reliability learning. Finally, simulation verify the effectiveness and applicability of the proposed method to a variety of scenarios, showing that Curiosity-Diffuser significantly improves task performance and produces behaviors that are more similar to the training data. The code for this work is available at: github.com/CarlDegio/Curiosity-Diffuser
☆ The CLEF-2025 CheckThat! Lab: Subjectivity, Fact-Checking, Claim Normalization, and Retrieval
The CheckThat! lab aims to advance the development of innovative technologies designed to identify and counteract online disinformation and manipulation efforts across various languages and platforms. The first five editions focused on key tasks in the information verification pipeline, including check-worthiness, evidence retrieval and pairing, and verification. Since the 2023 edition, the lab has expanded its scope to address auxiliary tasks that support research and decision-making in verification. In the 2025 edition, the lab revisits core verification tasks while also considering auxiliary challenges. Task 1 focuses on the identification of subjectivity (a follow-up from CheckThat! 2024), Task 2 addresses claim normalization, Task 3 targets fact-checking numerical claims, and Task 4 explores scientific web discourse processing. These tasks present challenging classification and retrieval problems at both the document and span levels, including multilingual settings.
comment: misinformation, factuality, fact-checking, fact-checkers, check-worthiness, Social Media Platforms
☆ MMDT: Decoding the Trustworthiness and Safety of Multimodal Foundation Models ICLR 2025
Multimodal foundation models (MMFMs) play a crucial role in various applications, including autonomous driving, healthcare, and virtual assistants. However, several studies have revealed vulnerabilities in these models, such as generating unsafe content by text-to-image models. Existing benchmarks on multimodal models either predominantly assess the helpfulness of these models, or only focus on limited perspectives such as fairness and privacy. In this paper, we present the first unified platform, MMDT (Multimodal DecodingTrust), designed to provide a comprehensive safety and trustworthiness evaluation for MMFMs. Our platform assesses models from multiple perspectives, including safety, hallucination, fairness/bias, privacy, adversarial robustness, and out-of-distribution (OOD) generalization. We have designed various evaluation scenarios and red teaming algorithms under different tasks for each perspective to generate challenging data, forming a high-quality benchmark. We evaluate a range of multimodal models using MMDT, and our findings reveal a series of vulnerabilities and areas for improvement across these perspectives. This work introduces the first comprehensive and unique safety and trustworthiness evaluation platform for MMFMs, paving the way for developing safer and more reliable MMFMs and systems. Our platform and benchmark are available at https://mmdecodingtrust.github.io/.
comment: ICLR 2025
☆ Learning with Expert Abstractions for Efficient Multi-Task Continuous Control
Decision-making in complex, continuous multi-task environments is often hindered by the difficulty of obtaining accurate models for planning and the inefficiency of learning purely from trial and error. While precise environment dynamics may be hard to specify, human experts can often provide high-fidelity abstractions that capture the essential high-level structure of a task and user preferences in the target environment. Existing hierarchical approaches often target discrete settings and do not generalize across tasks. We propose a hierarchical reinforcement learning approach that addresses these limitations by dynamically planning over the expert-specified abstraction to generate subgoals to learn a goal-conditioned policy. To overcome the challenges of learning under sparse rewards, we shape the reward based on the optimal state value in the abstract model. This structured decision-making process enhances sample efficiency and facilitates zero-shot generalization. Our empirical evaluation on a suite of procedurally generated continuous control environments demonstrates that our approach outperforms existing hierarchical reinforcement learning methods in terms of sample efficiency, task completion rate, scalability to complex tasks, and generalization to novel scenarios.
comment: 12 pages, 6 figures. Submitted to RLC 2025. Code and experiments at https://github.com/Intelligent-Reliable-Autonomous-Systems/gcrs-expert-abstractions
☆ Long Context Modeling with Ranked Memory-Augmented Retrieval
Effective long-term memory management is crucial for language models handling extended contexts. We introduce a novel framework that dynamically ranks memory entries based on relevance. Unlike previous works, our model introduces a novel relevance scoring and a pointwise re-ranking model for key-value embeddings, inspired by learning-to-rank techniques in information retrieval. Enhanced Ranked Memory Augmented Retrieval ERMAR achieves state-of-the-art results on standard benchmarks.
☆ ECLAIR: Enhanced Clarification for Interactive Responses
We present ECLAIR (Enhanced CLArification for Interactive Responses), a novel unified and end-to-end framework for interactive disambiguation in enterprise AI assistants. ECLAIR generates clarification questions for ambiguous user queries and resolves ambiguity based on the user's response.We introduce a generalized architecture capable of integrating ambiguity information from multiple downstream agents, enhancing context-awareness in resolving ambiguities and allowing enterprise specific definition of agents. We further define agents within our system that provide domain-specific grounding information. We conduct experiments comparing ECLAIR to few-shot prompting techniques and demonstrate ECLAIR's superior performance in clarification question generation and ambiguity resolution.
comment: 7 pages, 4 figures
Reinforcement Learning Environment with LLM-Controlled Adversary in D&D 5th Edition Combat ICONIP 2024
The objective of this study is to design and implement a reinforcement learning (RL) environment using D\&D 5E combat scenarios to challenge smaller RL agents through interaction with a robust adversarial agent controlled by advanced Large Language Models (LLMs) like GPT-4o and LLaMA 3 8B. This research employs Deep Q-Networks (DQN) for the smaller agents, creating a testbed for strategic AI development that also serves as an educational tool by simulating dynamic and unpredictable combat scenarios. We successfully integrated sophisticated language models into the RL framework, enhancing strategic decision-making processes. Our results indicate that while RL agents generally outperform LLM-controlled adversaries in standard metrics, the strategic depth provided by LLMs significantly enhances the overall AI capabilities in this complex, rule-based setting. The novelty of our approach and its implications for mastering intricate environments and developing adaptive strategies are discussed, alongside potential innovations in AI-driven interactive simulations. This paper aims to demonstrate how integrating LLMs can create more robust and adaptable AI systems, providing valuable insights for further research and educational applications.
comment: Preprint. Submitted to the 31st International Conference on Neural Information Processing (ICONIP 2024)
☆ Reward Training Wheels: Adaptive Auxiliary Rewards for Robotics Reinforcement Learning
Robotics Reinforcement Learning (RL) often relies on carefully engineered auxiliary rewards to supplement sparse primary learning objectives to compensate for the lack of large-scale, real-world, trial-and-error data. While these auxiliary rewards accelerate learning, they require significant engineering effort, may introduce human biases, and cannot adapt to the robot's evolving capabilities during training. In this paper, we introduce Reward Training Wheels (RTW), a teacher-student framework that automates auxiliary reward adaptation for robotics RL. To be specific, the RTW teacher dynamically adjusts auxiliary reward weights based on the student's evolving capabilities to determine which auxiliary reward aspects require more or less emphasis to improve the primary objective. We demonstrate RTW on two challenging robot tasks: navigation in highly constrained spaces and off-road vehicle mobility on vertically challenging terrain. In simulation, RTW outperforms expert-designed rewards by 2.35% in navigation success rate and improves off-road mobility performance by 122.62%, while achieving 35% and 3X faster training efficiency, respectively. Physical robot experiments further validate RTW's effectiveness, achieving a perfect success rate (5/5 trials vs. 2/5 for expert-designed rewards) and improving vehicle stability with up to 47.4% reduction in orientation angles.
comment: 7 pages, 5 figures
☆ Safety Aware Task Planning via Large Language Models in Robotics
The integration of large language models (LLMs) into robotic task planning has unlocked better reasoning capabilities for complex, long-horizon workflows. However, ensuring safety in LLM-driven plans remains a critical challenge, as these models often prioritize task completion over risk mitigation. This paper introduces SAFER (Safety-Aware Framework for Execution in Robotics), a multi-LLM framework designed to embed safety awareness into robotic task planning. SAFER employs a Safety Agent that operates alongside the primary task planner, providing safety feedback. Additionally, we introduce LLM-as-a-Judge, a novel metric leveraging LLMs as evaluators to quantify safety violations within generated task plans. Our framework integrates safety feedback at multiple stages of execution, enabling real-time risk assessment, proactive error correction, and transparent safety evaluation. We also integrate a control framework using Control Barrier Functions (CBFs) to ensure safety guarantees within SAFER's task planning. We evaluated SAFER against state-of-the-art LLM planners on complex long-horizon tasks involving heterogeneous robotic agents, demonstrating its effectiveness in reducing safety violations while maintaining task efficiency. We also verify the task planner and safety planner through actual hardware experiments involving multiple robots and a human.
☆ Predicting Multi-Agent Specialization via Task Parallelizability
Multi-agent systems often rely on specialized agents with distinct roles rather than general-purpose agents that perform the entire task independently. However, the conditions that govern the optimal degree of specialization remain poorly understood. In this work, we propose that specialist teams outperform generalist ones when environmental constraints limit task parallelizability -- the potential to execute task components concurrently. Drawing inspiration from distributed systems, we introduce a heuristic to predict the relative efficiency of generalist versus specialist teams by estimating the speed-up achieved when two agents perform a task in parallel rather than focus on complementary subtasks. We validate this heuristic through three multi-agent reinforcement learning (MARL) experiments in Overcooked-AI, demonstrating that key factors limiting task parallelizability influence specialization. We also observe that as the state space expands, agents tend to converge on specialist strategies, even when generalist ones are theoretically more efficient, highlighting potential biases in MARL training algorithms. Our findings provide a principled framework for interpreting specialization given the task and environment, and introduce a novel benchmark for evaluating whether MARL finds optimal strategies.
☆ Representational Similarity via Interpretable Visual Concepts ICLR 2025
How do two deep neural networks differ in how they arrive at a decision? Measuring the similarity of deep networks has been a long-standing open question. Most existing methods provide a single number to measure the similarity of two networks at a given layer, but give no insight into what makes them similar or dissimilar. We introduce an interpretable representational similarity method (RSVC) to compare two networks. We use RSVC to discover shared and unique visual concepts between two models. We show that some aspects of model differences can be attributed to unique concepts discovered by one model that are not well represented in the other. Finally, we conduct extensive evaluation across different vision model architectures and training protocols to demonstrate its effectiveness.
comment: 32 pages, 5 Figures, 16 Supplemental Figures, ICLR 2025
☆ UI-Vision: A Desktop-centric GUI Benchmark for Visual Perception and Interaction
Autonomous agents that navigate Graphical User Interfaces (GUIs) to automate tasks like document editing and file management can greatly enhance computer workflows. While existing research focuses on online settings, desktop environments, critical for many professional and everyday tasks, remain underexplored due to data collection challenges and licensing issues. We introduce UI-Vision, the first comprehensive, license-permissive benchmark for offline, fine-grained evaluation of computer use agents in real-world desktop environments. Unlike online benchmarks, UI-Vision provides: (i) dense, high-quality annotations of human demonstrations, including bounding boxes, UI labels, and action trajectories (clicks, drags, and keyboard inputs) across 83 software applications, and (ii) three fine-to-coarse grained tasks-Element Grounding, Layout Grounding, and Action Prediction-with well-defined metrics to rigorously evaluate agents' performance in desktop environments. Our evaluation reveals critical limitations in state-of-the-art models like UI-TARS-72B, including issues with understanding professional software, spatial reasoning, and complex actions like drag-and-drop. These findings highlight the challenges in developing fully autonomous computer use agents. By releasing UI-Vision as open-source, we aim to advance the development of more capable agents for real-world desktop tasks.
☆ R$^2$: A LLM Based Novel-to-Screenplay Generation Framework with Causal Plot Graphs
Automatically adapting novels into screenplays is important for the TV, film, or opera industries to promote products with low costs. The strong performances of large language models (LLMs) in long-text generation call us to propose a LLM based framework Reader-Rewriter (R$^2$) for this task. However, there are two fundamental challenges here. First, the LLM hallucinations may cause inconsistent plot extraction and screenplay generation. Second, the causality-embedded plot lines should be effectively extracted for coherent rewriting. Therefore, two corresponding tactics are proposed: 1) A hallucination-aware refinement method (HAR) to iteratively discover and eliminate the affections of hallucinations; and 2) a causal plot-graph construction method (CPC) based on a greedy cycle-breaking algorithm to efficiently construct plot lines with event causalities. Recruiting those efficient techniques, R$^2$ utilizes two modules to mimic the human screenplay rewriting process: The Reader module adopts a sliding window and CPC to build the causal plot graphs, while the Rewriter module generates first the scene outlines based on the graphs and then the screenplays. HAR is integrated into both modules for accurate inferences of LLMs. Experimental results demonstrate the superiority of R$^2$, which substantially outperforms three existing approaches (51.3%, 22.6%, and 57.1% absolute increases) in pairwise comparison at the overall win rate for GPT-4o.
comment: 16 pages, 6 figures
Survey on Generalization Theory for Graph Neural Networks
Message-passing graph neural networks (MPNNs) have emerged as the leading approach for machine learning on graphs, attracting significant attention in recent years. While a large set of works explored the expressivity of MPNNs, i.e., their ability to separate graphs and approximate functions over them, comparatively less attention has been directed toward investigating their generalization abilities, i.e., making meaningful predictions beyond the training data. Here, we systematically review the existing literature on the generalization abilities of MPNNs. We analyze the strengths and limitations of various studies in these domains, providing insights into their methodologies and findings. Furthermore, we identify potential avenues for future research, aiming to deepen our understanding of the generalization abilities of MPNNs.
☆ A Context-Driven Training-Free Network for Lightweight Scene Text Segmentation and Recognition
Modern scene text recognition systems often depend on large end-to-end architectures that require extensive training and are prohibitively expensive for real-time scenarios. In such cases, the deployment of heavy models becomes impractical due to constraints on memory, computational resources, and latency. To address these challenges, we propose a novel, training-free plug-and-play framework that leverages the strengths of pre-trained text recognizers while minimizing redundant computations. Our approach uses context-based understanding and introduces an attention-based segmentation stage, which refines candidate text regions at the pixel level, improving downstream recognition. Instead of performing traditional text detection that follows a block-level comparison between feature map and source image and harnesses contextual information using pretrained captioners, allowing the framework to generate word predictions directly from scene context.Candidate texts are semantically and lexically evaluated to get a final score. Predictions that meet or exceed a pre-defined confidence threshold bypass the heavier process of end-to-end text STR profiling, ensuring faster inference and cutting down on unnecessary computations. Experiments on public benchmarks demonstrate that our paradigm achieves performance on par with state-of-the-art systems, yet requires substantially fewer resources.
☆ Neural Lyapunov Function Approximation with Self-Supervised Reinforcement Learning ICRA
Control Lyapunov functions are traditionally used to design a controller which ensures convergence to a desired state, yet deriving these functions for nonlinear systems remains a complex challenge. This paper presents a novel, sample-efficient method for neural approximation of nonlinear Lyapunov functions, leveraging self-supervised Reinforcement Learning (RL) to enhance training data generation, particularly for inaccurately represented regions of the state space. The proposed approach employs a data-driven World Model to train Lyapunov functions from off-policy trajectories. The method is validated on both standard and goal-conditioned robotic tasks, demonstrating faster convergence and higher approximation accuracy compared to the state-of-the-art neural Lyapunov approximation baseline. The code is available at: https://github.com/CAV-Research-Lab/SACLA.git
comment: Accepted at IEEE International Conference on Robotics and Automation (ICRA)
☆ LLaVA-MORE: A Comparative Study of LLMs and Visual Backbones for Enhanced Visual Instruction Tuning
Recent progress in Multimodal Large Language Models (MLLMs) has highlighted the critical roles of both the visual backbone and the underlying language model. While prior work has primarily focused on scaling these components to billions of parameters, the trade-offs between model size, architecture, and performance remain underexplored. Additionally, inconsistencies in training data and evaluation protocols have hindered direct comparisons, making it difficult to derive optimal design choices. In this paper, we introduce LLaVA-MORE, a new family of MLLMs that integrates recent language models with diverse visual backbones. To ensure fair comparisons, we employ a unified training protocol applied consistently across all architectures. Our analysis systematically explores both small- and medium-scale LLMs -- including Phi-4, LLaMA-3.1, and Gemma-2 -- to evaluate multimodal reasoning, generation, and instruction following, while examining the relationship between model size and performance. Beyond evaluating the LLM impact on final results, we conduct a comprehensive study of various visual encoders, ranging from CLIP-based architectures to alternatives such as DINOv2, SigLIP, and SigLIP2. Additional experiments investigate the effects of increased image resolution and variations in pre-training datasets. Overall, our results provide insights into the design of more effective MLLMs, offering a reproducible evaluation framework that facilitates direct comparisons and can guide future model development. Our source code and trained models are publicly available at: https://github.com/aimagelab/LLaVA-MORE.
☆ Does Context Matter? ContextualJudgeBench for Evaluating LLM-based Judges in Contextual Settings
The large language model (LLM)-as-judge paradigm has been used to meet the demand for a cheap, reliable, and fast evaluation of model outputs during AI system development and post-deployment monitoring. While judge models -- LLMs finetuned to specialize in assessing and critiquing model outputs -- have been touted as general purpose evaluators, they are typically evaluated only on non-contextual scenarios, such as instruction following. The omission of contextual settings -- those where external information is used as context to generate an output -- is surprising given the increasing prevalence of retrieval-augmented generation (RAG) and summarization use cases. Contextual assessment is uniquely challenging, as evaluation often depends on practitioner priorities, leading to conditional evaluation criteria (e.g., comparing responses based on factuality and then considering completeness if they are equally factual). To address the gap, we propose ContextualJudgeBench, a judge benchmark with 2,000 challenging response pairs across eight splits inspired by real-world contextual evaluation scenarios. We build our benchmark with a multi-pronged data construction pipeline that leverages both existing human annotations and model-based perturbations. Our comprehensive study across 11 judge models and 9 general purpose models, reveals that the contextual information and its assessment criteria present a significant challenge to even state-of-the-art models. For example, OpenAI's o1, the best-performing model, barely reaches 55% consistent accuracy.
comment: 23 pages, 13 figures, 6 tables
☆ CAM-Seg: A Continuous-valued Embedding Approach for Semantic Image Generation
Traditional transformer-based semantic segmentation relies on quantized embeddings. However, our analysis reveals that autoencoder accuracy on segmentation mask using quantized embeddings (e.g. VQ-VAE) is 8% lower than continuous-valued embeddings (e.g. KL-VAE). Motivated by this, we propose a continuous-valued embedding framework for semantic segmentation. By reformulating semantic mask generation as a continuous image-to-embedding diffusion process, our approach eliminates the need for discrete latent representations while preserving fine-grained spatial and semantic details. Our key contribution includes a diffusion-guided autoregressive transformer that learns a continuous semantic embedding space by modeling long-range dependencies in image features. Our framework contains a unified architecture combining a VAE encoder for continuous feature extraction, a diffusion-guided transformer for conditioned embedding generation, and a VAE decoder for semantic mask reconstruction. Our setting facilitates zero-shot domain adaptation capabilities enabled by the continuity of the embedding space. Experiments across diverse datasets (e.g., Cityscapes and domain-shifted variants) demonstrate state-of-the-art robustness to distribution shifts, including adverse weather (e.g., fog, snow) and viewpoint variations. Our model also exhibits strong noise resilience, achieving robust performance ($\approx$ 95% AP compared to baseline) under gaussian noise, moderate motion blur, and moderate brightness/contrast variations, while experiencing only a moderate impact ($\approx$ 90% AP compared to baseline) from 50% salt and pepper noise, saturation and hue shifts. Code available: https://github.com/mahmed10/CAMSS.git
☆ PEnGUiN: Partially Equivariant Graph NeUral Networks for Sample Efficient MARL
Equivariant Graph Neural Networks (EGNNs) have emerged as a promising approach in Multi-Agent Reinforcement Learning (MARL), leveraging symmetry guarantees to greatly improve sample efficiency and generalization. However, real-world environments often exhibit inherent asymmetries arising from factors such as external forces, measurement inaccuracies, or intrinsic system biases. This paper introduces \textit{Partially Equivariant Graph NeUral Networks (PEnGUiN)}, a novel architecture specifically designed to address these challenges. We formally identify and categorize various types of partial equivariance relevant to MARL, including subgroup equivariance, feature-wise equivariance, regional equivariance, and approximate equivariance. We theoretically demonstrate that PEnGUiN is capable of learning both fully equivariant (EGNN) and non-equivariant (GNN) representations within a unified framework. Through extensive experiments on a range of MARL problems incorporating various asymmetries, we empirically validate the efficacy of PEnGUiN. Our results consistently demonstrate that PEnGUiN outperforms both EGNNs and standard GNNs in asymmetric environments, highlighting their potential to improve the robustness and applicability of graph-based MARL algorithms in real-world scenarios.
☆ How Well Can AI Build SD Models?
Introduction: As system dynamics (SD) embraces automation, AI offers efficiency but risks bias from missing data and flawed models. Models that omit multiple perspectives and data threaten model quality, whether created by humans or with the assistance of AI. To reduce uncertainty about how well AI can build SD models, we introduce two metrics for evaluation of AI-generated causal maps: technical correctness (causal translation) and adherence to instructions (conformance). Approach: We developed an open source project called sd-ai to provide a basis for collaboration in the SD community, aiming to fully harness the potential of AI based tools like ChatGPT for dynamic modeling. Additionally, we created an evaluation theory along with a comprehensive suite of tests designed to evaluate any such tools developed within the sd-ai ecosystem. Results: We tested 11 different LLMs on their ability to do causal translation as well as conform to user instruction. gpt-4.5-preview was the top performer, scoring 92.9% overall, excelling in both tasks. o1 scored 100% in causal translation. gpt-4o identified all causal links but struggled with positive polarity in decreasing terms. While gpt-4.5-preview and o1 are most accurate, gpt-4o is the cheapest. Discussion: Causal translation and conformance tests applied to the sd-ai engine reveal significant variations across lLLMs, underscoring the need for continued evaluation to ensure responsible development of AI tools for dynamic modeling. To address this, an open collaboration among tool developers, modelers, and stakeholders is launched to standardize measures for evaluating the capacity of AI tools to improve the modeling process.
☆ A Bird Song Detector for improving bird identification through Deep Learning: a case study from Doñana
Passive Acoustic Monitoring with automatic recorders is essential for ecosystem conservation but generates vast unsupervised audio data, posing challenges for extracting meaningful information. Deep Learning techniques offer a promising solution. BirdNET, a widely used model for bird identification, has shown success in many study systems but is limited in some regions due to biases in its training data. A key challenge in bird species detection is that many recordings either lack target species or contain overlapping vocalizations. To overcome these problems, we developed a multi-stage pipeline for automatic bird vocalization identification in Do\~nana National Park (SW Spain), a region facing significant conservation threats. Our approach included a Bird Song Detector to isolate vocalizations and custom classifiers trained with BirdNET embeddings. We manually annotated 461 minutes of audio from three habitats across nine locations, yielding 3,749 annotations for 34 classes. Spectrograms facilitated the use of image processing techniques. Applying the Bird Song Detector before classification improved species identification, as all classification models performed better when analyzing only the segments where birds were detected. Specifically, the combination of the Bird Song Detector and fine-tuned BirdNET compared to the baseline without the Bird Song Detector. Our approach demonstrated the effectiveness of integrating a Bird Song Detector with fine-tuned classification models for bird identification at local soundscapes. These findings highlight the need to adapt general-purpose tools for specific ecological challenges, as demonstrated in Do\~nana. Automatically detecting bird species serves for tracking the health status of this threatened ecosystem, given the sensitivity of birds to environmental changes, and helps in the design of conservation measures for reducing biodiversity loss
comment: 20 pages, 13 images, for associated dataset see https://huggingface.co/datasets/GrunCrow/BIRDeep_AudioAnnotations , for associated code see https://github.com/GrunCrow/BIRDeep_BirdSongDetector_NeuralNetworks and https://github.com/GrunCrow/Bird-Song-Detector
♻ ☆ State Space Model Meets Transformer: A New Paradigm for 3D Object Detection ICLR 2025
DETR-based methods, which use multi-layer transformer decoders to refine object queries iteratively, have shown promising performance in 3D indoor object detection. However, the scene point features in the transformer decoder remain fixed, leading to minimal contributions from later decoder layers, thereby limiting performance improvement. Recently, State Space Models (SSM) have shown efficient context modeling ability with linear complexity through iterative interactions between system states and inputs. Inspired by SSMs, we propose a new 3D object DEtection paradigm with an interactive STate space model (DEST). In the interactive SSM, we design a novel state-dependent SSM parameterization method that enables system states to effectively serve as queries in 3D indoor detection tasks. In addition, we introduce four key designs tailored to the characteristics of point cloud and SSM: The serialization and bidirectional scanning strategies enable bidirectional feature interaction among scene points within the SSM. The inter-state attention mechanism models the relationships between state points, while the gated feed-forward network enhances inter-channel correlations. To the best of our knowledge, this is the first method to model queries as system states and scene points as system inputs, which can simultaneously update scene point features and query features with linear complexity. Extensive experiments on two challenging datasets demonstrate the effectiveness of our DEST-based method. Our method improves the GroupFree baseline in terms of AP50 on ScanNet V2 (+5.3) and SUN RGB-D (+3.2) datasets. Based on the VDETR baseline, Our method sets a new SOTA on the ScanNetV2 and SUN RGB-D datasets.
comment: Accepted by ICLR 2025. Project url: https://chuxwa.github.io/project_DEST/
♻ ☆ MoonCast: High-Quality Zero-Shot Podcast Generation
Recent advances in text-to-speech synthesis have achieved notable success in generating high-quality short utterances for individual speakers. However, these systems still face challenges when extending their capabilities to long, multi-speaker, and spontaneous dialogues, typical of real-world scenarios such as podcasts. These limitations arise from two primary challenges: 1) long speech: podcasts typically span several minutes, exceeding the upper limit of most existing work; 2) spontaneity: podcasts are marked by their spontaneous, oral nature, which sharply contrasts with formal, written contexts; existing works often fall short in capturing this spontaneity. In this paper, we propose MoonCast, a solution for high-quality zero-shot podcast generation, aiming to synthesize natural podcast-style speech from text-only sources (e.g., stories, technical reports, news in TXT, PDF, or Web URL formats) using the voices of unseen speakers. To generate long audio, we adopt a long-context language model-based audio modeling approach utilizing large-scale long-context speech data. To enhance spontaneity, we utilize a podcast generation module to generate scripts with spontaneous details, which have been empirically shown to be as crucial as the text-to-speech modeling itself. Experiments demonstrate that MoonCast outperforms baselines, with particularly notable improvements in spontaneity and coherence.
♻ ☆ Ensemble Knowledge Distillation for Machine Learning Interatomic Potentials
Machine learning interatomic potentials (MLIPs) are a promising tool to accelerate atomistic simulations and molecular property prediction. The quality of MLIPs strongly depends on the quantity of available training data as well as the quantum chemistry (QC) level of theory used to generate that data. Datasets generated with high-fidelity QC methods, such as coupled cluster, are typically restricted to small molecules and may be missing energy gradients. With this limited quantity of data, it is often difficult to train good MLIP models. We present an ensemble knowledge distillation (EKD) method to improve MLIP accuracy when trained to energy-only datasets. In our EKD approach, first, multiple teacher models are trained to QC energies and then used to generate atomic forces for all configurations in the dataset. Next, a student MLIP is trained to both QC energies and to ensemble-averaged forces generated by the teacher models. We apply this workflow on the ANI-1ccx dataset which consists of organic molecules with configuration energies computed at the coupled cluster level of theory. The resulting student MLIPs achieve new state-of-the-art accuracy on the out-of-sample COMP6 benchmark and improved stability for molecular dynamics simulations. The EKD approach for MLIP is broadly applicable for chemical, biomolecular and materials science simulations.
♻ ☆ Manual Labelling Artificially Inflates Deep Learning-Based Segmentation Performance on RGB Images of Closed Canopy: Validation Using TLS
Monitoring forest dynamics at an individual tree scale is essential for accurately assessing ecosystem responses to climate change, yet traditional methods relying on field-based forest inventories are labor-intensive and limited in spatial coverage. Advances in remote sensing using drone-acquired RGB imagery combined with deep learning models have promised precise individual tree crown (ITC) segmentation; however, existing methods are frequently validated against human-annotated images, lacking rigorous independent ground truth. In this study, we generate high-fidelity validation labels from co-located Terrestrial Laser Scanning (TLS) data for drone imagery of mixed unmanaged boreal and Mediterranean forests. We evaluate the performance of two widely used deep learning ITC segmentation models - DeepForest (RetinaNet) and Detectree2 (Mask R-CNN) - on these data, and compare to performance on further Mediterranean forest data labelled manually. When validated against TLS-derived ground truth from Mediterranean forests, model performance decreased significantly compared to assessment based on hand-labelled from an ecologically similar site (AP50: 0.094 vs. 0.670). Restricting evaluation to only canopy trees shrank this gap considerably (Canopy AP50: 0.365), although performance was still far lower than on similar hand-labelled data. Models also performed poorly on boreal forest data (AP50: 0.142), although again increasing when evaluated on canopy trees only (Canopy AP50: 0.308). Both models showed very poor localisation accuracy at stricter IoU thresholds, even when restricted to canopy trees (Max AP75: 0.051). Similar results have been observed in studies using aerial LiDAR data, suggesting fundamental limitations in aerial-based segmentation approaches in closed canopy forests.
comment: 17 pages, 3 figures
♻ ☆ KG-IRAG: A Knowledge Graph-Based Iterative Retrieval-Augmented Generation Framework for Temporal Reasoning
Graph Retrieval-Augmented Generation (GraphRAG) has proven highly effective in enhancing the performance of Large Language Models (LLMs) on tasks that require external knowledge. By leveraging Knowledge Graphs (KGs), GraphRAG improves information retrieval for complex reasoning tasks, providing more precise and comprehensive retrieval and generating more accurate responses to QAs. However, most RAG methods fall short in addressing multi-step reasoning, particularly when both information extraction and inference are necessary. To address this limitation, this paper presents Knowledge Graph-Based Iterative Retrieval-Augmented Generation (KG-IRAG), a novel framework that integrates KGs with iterative reasoning to improve LLMs' ability to handle queries involving temporal and logical dependencies. Through iterative retrieval steps, KG-IRAG incrementally gathers relevant data from external KGs, enabling step-by-step reasoning. The proposed approach is particularly suited for scenarios where reasoning is required alongside dynamic temporal data extraction, such as determining optimal travel times based on weather conditions or traffic patterns. Experimental results show that KG-IRAG improves accuracy in complex reasoning tasks by effectively integrating external knowledge with iterative, logic-based retrieval. Additionally, three new datasets: weatherQA-Irish, weatherQA-Sydney, and trafficQA-TFNSW, are formed to evaluate KG-IRAG's performance, demonstrating its potential beyond traditional RAG applications.
comment: 14 pages, 4 figures
♻ ☆ AI and Deep Learning for Automated Segmentation and Quantitative Measurement of Spinal Structures in MRI
Background: Accurate spinal structure measurement is crucial for assessing spine health and diagnosing conditions like spondylosis, disc herniation, and stenosis. Manual methods for measuring intervertebral disc height and spinal canal diameter are subjective and time-consuming. Automated solutions are needed to improve accuracy, efficiency, and reproducibility in clinical practice. Purpose: This study develops an autonomous AI system for segmenting and measuring key spinal structures in MRI scans, focusing on intervertebral disc height and spinal canal anteroposterior (AP) diameter in the cervical, lumbar, and thoracic regions. The goal is to reduce clinician workload, enhance diagnostic consistency, and improve assessments. Methods: The AI model leverages deep learning architectures, including UNet, nnU-Net, and CNNs. Trained on a large proprietary MRI dataset, it was validated against expert annotations. Performance was evaluated using Dice coefficients and segmentation accuracy. Results: The AI model achieved Dice coefficients of 0.94 for lumbar, 0.91 for cervical, and 0.90 for dorsal spine segmentation (D1-D12). It precisely measured spinal parameters like disc height and canal diameter, demonstrating robustness and clinical applicability. Conclusion: The AI system effectively automates MRI-based spinal measurements, improving accuracy and reducing clinician workload. Its consistent performance across spinal regions supports clinical decision-making, particularly in high-demand settings, enhancing spinal assessments and patient outcomes.
comment: 16 pages, 2 figures
♻ ☆ Scam Detection for Ethereum Smart Contracts: Leveraging Graph Representation Learning for Secure Blockchain ISCA
As more and more attacks have been detected on Ethereum smart contracts, it has seriously affected finance and credibility. Current anti-fraud detection techniques, including code parsing or manual feature extraction, still have some shortcomings, although some generalization or adaptability can be obtained. In the face of this situation, this paper proposes to use graphical representation learning technology to find transaction patterns and distinguish malicious transaction contracts, that is, to represent Ethereum transaction data as graphs, and then use advanced ML technology to obtain reliable and accurate results. Taking into account the sample imbalance, we treated with SMOTE-ENN and tested several models, in which MLP performed better than GCN, but the exact effect depends on its field trials. Our research opens up more possibilities for trust and security in the Ethereum ecosystem.
comment: Accepted to ISCAIT 2025
♻ ☆ DLPO: Towards a Robust, Efficient, and Generalizable Prompt Optimization Framework from a Deep-Learning Perspective
Large Language Models (LLMs) have achieved remarkable success across diverse tasks, largely driven by well-designed prompts. However, crafting and selecting such prompts often requires considerable human effort, significantly limiting its scalability. To mitigate this, recent studies have explored automated prompt optimization as a promising solution. Despite these efforts, existing methods still face critical challenges in robustness, efficiency, and generalization. To systematically address these challenges, we first conduct an empirical analysis to identify the limitations of current reflection-based prompt optimization paradigm. Building on these insights, we propose 7 innovative approaches inspired by traditional deep learning paradigms for prompt optimization (DLPO), seamlessly integrating these concepts into text-based gradient optimization. Through these advancements, we progressively tackle the aforementioned challenges and validate our methods through extensive experimentation. We hope our study not only provides valuable guidance for future research but also offers a comprehensive understanding of the challenges and potential solutions in prompt optimization. Our code is available at https://github.com/sfasfaffa/DLPO.
comment: Preprint
♻ ☆ From Autonomous Agents to Integrated Systems, A New Paradigm: Orchestrated Distributed Intelligence
The rapid evolution of artificial intelligence (AI) has ushered in a new era of integrated systems that merge computational prowess with human decision-making. In this paper, we introduce the concept of Orchestrated Distributed Intelligence (ODI), a novel paradigm that reconceptualizes AI not as isolated autonomous agents, but as cohesive, orchestrated networks that work in tandem with human expertise. ODI leverages advanced orchestration layers, multi-loop feedback mechanisms, and a high cognitive density framework to transform static, record-keeping systems into dynamic, action-oriented environments. Through a comprehensive review of multi-agent system literature, recent technological advances, and practical insights from industry forums, we argue that the future of AI lies in integrating distributed intelligence within human-centric workflows. This approach not only enhances operational efficiency and strategic agility but also addresses challenges related to scalability, transparency, and ethical decision-making. Our work outlines key theoretical implications and presents a practical roadmap for future research and enterprise innovation, aiming to pave the way for responsible and adaptive AI systems that drive sustainable innovation in human organizations.
♻ ☆ SlideChat: A Large Vision-Language Assistant for Whole-Slide Pathology Image Understanding CVPR2025
Despite the progress made by multimodal large language models (MLLMs) in computational pathology, they remain limited by a predominant focus on patch-level analysis, missing essential contextual information at the whole-slide level. The lack of large-scale instruction datasets and the gigapixel scale of whole slide images (WSIs) pose significant developmental challenges. In this paper, we present SlideChat, the first vision-language assistant capable of understanding gigapixel whole-slide images, exhibiting excellent multimodal conversational capability and response complex instruction across diverse pathology scenarios. To support its development, we created SlideInstruction, the largest instruction-following dataset for WSIs consisting of 4.2K WSI captions and 176K VQA pairs with multiple categories. Furthermore, we propose SlideBench, a multimodal benchmark that incorporates captioning and VQA tasks to assess SlideChat's capabilities in varied clinical settings such as microscopy, diagnosis. Compared to both general and specialized MLLMs, SlideChat exhibits exceptional capabilities achieving state-of-the-art performance on 18 of 22 tasks. For example, it achieved an overall accuracy of 81.17% on SlideBench-VQA (TCGA), and 54.15% on SlideBench-VQA (BCNB). Our code, data, and model is publicly accessible at https://uni-medical.github.io/SlideChat.github.io.
comment: Accepted by CVPR2025
♻ ☆ Developer Perspectives on Licensing and Copyright Issues Arising from Generative AI for Software Development
Despite the utility that Generative AI (GenAI) tools provide for tasks such as writing code, the use of these tools raises important legal questions and potential risks, particularly those associated with copyright law. As lawmakers and regulators engage with those questions, the views of users can provide relevant perspectives. In this paper, we provide: (1) a survey of 574 developers on the licensing and copyright aspects of GenAI for coding, as well as follow-up interviews; (2) a snapshot of developers' views at a time when GenAI and perceptions of it are rapidly evolving; and (3) an analysis of developers' views, yielding insights and recommendations that can inform future regulatory decisions in this evolving field. Our results show the benefits developers derive from GenAI, how they view the use of AI-generated code as similar to using other existing code, the varied opinions they have on who should own or be compensated for such code, that they are concerned about data leakage via GenAI, and much more, providing organizations and policymakers with valuable insights into how the technology is being used and what concerns stakeholders would like to see addressed.
♻ ☆ Smooth InfoMax -- Towards easier Post-Hoc interpretability
We introduce Smooth InfoMax (SIM), a novel method for self-supervised representation learning that incorporates an interpretability constraint into the learned representations at various depths of the neural network. SIM's architecture is split up into probabilistic modules, each locally optimized using the InfoNCE bound. Inspired by VAEs, the representations from these modules are designed to be samples from Gaussian distributions and are further constrained to be close to the standard normal distribution. This results in a smooth and predictable space, enabling traversal of the latent space through a decoder for easier post-hoc analysis of the learned representations. We evaluate SIM's performance on sequential speech data, showing that it performs competitively with its less interpretable counterpart, Greedy InfoMax (GIM). Moreover, we provide insights into SIM's internal representations, demonstrating that the contained information is less entangled throughout the representation and more concentrated in a smaller subset of the dimensions. This further highlights the improved interpretability of SIM.
♻ ☆ Probabilities of Chat LLMs Are Miscalibrated but Still Predict Correctness on Multiple-Choice Q&A
We study 15 large language models (LLMs) fine-tuned for chat and find that their maximum softmax probabilities (MSPs) are consistently miscalibrated on multiple-choice Q&A. However, those MSPs might still encode useful uncertainty information. Specifically, we hypothesized that wrong answers would be associated with smaller MSPs compared to correct answers. Via rigorous statistical testing, we show that this hypothesis holds for models which perform well on the underlying Q&A task. We also find a strong direction correlation between Q&A accuracy and MSP correctness prediction, while finding no correlation between Q&A accuracy and calibration error. This suggests that within the current fine-tuning paradigm, we can expect correctness prediction but not calibration to improve as LLM capabilities progress. To demonstrate the utility of correctness prediction, we show that when models have the option to abstain, performance can be improved by selectively abstaining based on the MSP of the initial model response, using only a small amount of labeled data to choose the MSP threshold.
♻ ☆ Subversion Strategy Eval: Can language models statelessly strategize to subvert control protocols?
An AI control protocol is a plan for usefully deploying AI systems that prevents an AI from intentionally causing some unacceptable outcome. Previous work evaluated protocols by subverting them using an AI following a human-written strategy. This paper investigates how well AI systems can generate and act on their own strategies for subverting control protocols whilst operating statelessly (without shared memory between contexts). To do this, an AI system may need to reliably generate optimal plans in each context, take actions with well-calibrated probabilities, and coordinate plans with other instances of itself without communicating. We develop Subversion Strategy Eval, a suite of eight environments, covering a range of protocols and strategic capabilities, and six sets of affordances that help isolate individual capabilities. We implement the evaluation in Inspect-AI and release it open-source. We evaluate Claude 3.5 models, including helpful-only versions, as well as OpenAI reasoning models. None of the models demonstrate substantial capability in strategizing to subvert control protocols statelessly. However, providing models with additional affordances, such as the ability to share a plan between contexts, can substantially improve performance. We hope our evaluations can act as a leading indicator for when models are capable of subverting control protocols and also relax the worst-case assumption of perfect strategic ability in AI control evaluations.
♻ ☆ dFLMoE: Decentralized Federated Learning via Mixture of Experts for Medical Data Analysis
Federated learning has wide applications in the medical field. It enables knowledge sharing among different healthcare institutes while protecting patients' privacy. However, existing federated learning systems are typically centralized, requiring clients to upload client-specific knowledge to a central server for aggregation. This centralized approach would integrate the knowledge from each client into a centralized server, and the knowledge would be already undermined during the centralized integration before it reaches back to each client. Besides, the centralized approach also creates a dependency on the central server, which may affect training stability if the server malfunctions or connections are unstable. To address these issues, we propose a decentralized federated learning framework named dFLMoE. In our framework, clients directly exchange lightweight head models with each other. After exchanging, each client treats both local and received head models as individual experts, and utilizes a client-specific Mixture of Experts (MoE) approach to make collective decisions. This design not only reduces the knowledge damage with client-specific aggregations but also removes the dependency on the central server to enhance the robustness of the framework. We validate our framework on multiple medical tasks, demonstrating that our method evidently outperforms state-of-the-art approaches under both model homogeneity and heterogeneity settings.
comment: One of the authors, Wenyuan Cai, currently requests not to make the paper public. Before we officially release the paper, we request to withdraw the submission
♻ ☆ Reinforcement Learning Outperforms Supervised Fine-Tuning: A Case Study on Audio Question Answering
Recently, reinforcement learning (RL) has been shown to greatly enhance the reasoning capabilities of large language models (LLMs), and RL-based approaches have been progressively applied to visual multimodal tasks. However, the audio modality has largely been overlooked in these developments. Thus, we conduct a series of RL explorations in audio understanding and reasoning, specifically focusing on the audio question answering (AQA) task. We leverage the group relative policy optimization (GRPO) algorithm to Qwen2-Audio-7B-Instruct, and our experiments demonstrated state-of-the-art performance on the MMAU Test-mini benchmark, achieving an accuracy rate of 64.5%. The main findings in this technical report are as follows: 1) The GRPO algorithm can be effectively applied to large audio language models (LALMs), even when the model has only 8.2B parameters; 2) With only 38k post-training samples, RL significantly outperforms supervised fine-tuning (SFT), indicating that RL-based approaches can be effective without large datasets; 3) The explicit reasoning process has not shown significant benefits for AQA tasks, and how to efficiently utilize deep thinking remains an open question for further research; 4) LALMs still lag far behind humans auditory-language reasoning, suggesting that the RL-based approaches warrant further exploration. Our project is available at https://github.com/xiaomi-research/r1-aqa and https://huggingface.co/mispeech/r1-aqa.
♻ ☆ Predictable Scale: Part I -- Optimal Hyperparameter Scaling Law in Large Language Model Pretraining
The impressive capabilities of Large Language Models (LLMs) across diverse tasks are now well-established, yet their effective deployment necessitates careful hyperparameter optimization. Through extensive empirical studies involving grid searches across diverse configurations, we discover universal scaling laws governing these hyperparameters: optimal learning rate follows a power-law relationship with both model parameters and data sizes, while optimal batch size scales primarily with data sizes. Our analysis reveals a convex optimization landscape for hyperparameters under fixed models and data size conditions. This convexity implies an optimal hyperparameter plateau. We contribute a universal, plug-and-play optimal hyperparameter tool for the community. Its estimated values on the test set are merely 0.09% away from the globally optimal LLM performance found via an exhaustive search. These laws demonstrate remarkable robustness across variations in model sparsity, training data distribution, and model shape. To our best known, this is the first work that unifies different model shapes and structures, such as Mixture-of-Experts models and dense transformers, as well as establishes optimal hyperparameter scaling laws across diverse data distributions. This exhaustive optimization process demands substantial computational resources, utilizing nearly one million NVIDIA H800 GPU hours to train 3,700 LLMs of varying sizes and hyperparameters from scratch and consuming approximately 100 trillion tokens in total. To facilitate reproducibility and further research, we will progressively release all loss measurements and model checkpoints through our designated repository https://step-law.github.io/
comment: 22 pages
♻ ☆ Speculate, then Collaborate: Fusing Knowledge of Language Models during Decoding
Large Language Models (LLMs) often excel in specific domains but fall short in others due to the limitations of their training. Thus, enabling LLMs to solve problems collaboratively by integrating their complementary knowledge promises to improve their performance across domains. To realize this potential, we introduce a novel Collaborative Speculative Decoding (CoSD) algorithm that enables efficient LLM knowledge fusion at test time without requiring additional model training. CoSD employs a draft model to generate initial sequences and an easy-to-learn rule or decision tree to decide when to invoke an assistant model to improve these drafts. CoSD not only enhances knowledge fusion but also improves inference efficiency, is transferable across domains and models, and offers greater explainability. Experimental results demonstrate that CoSD improves accuracy by up to 10\% across benchmarks compared to existing methods, providing a scalable and effective solution for LLM-based applications
♻ ☆ From Transcripts to Insights: Uncovering Corporate Risks Using Generative AI
We explore the value of generative AI tools, such as ChatGPT, in helping investors uncover dimensions of corporate risk. We develop and validate firm-level measures of risk exposure to political, climate, and AI-related risks. Using the GPT 3.5 model to generate risk summaries and assessments from the context provided by earnings call transcripts, we show that GPT-based measures possess significant information content and outperform the existing risk measures in predicting (abnormal) firm-level volatility and firms' choices such as investment and innovation. Importantly, information in risk assessments dominates that in risk summaries, establishing the value of general AI knowledge. We also find that generative AI is effective at detecting emerging risks, such as AI risk, which has soared in recent quarters. Our measures perform well both within and outside the GPT's training window and are priced in equity markets. Taken together, an AI-based approach to risk measurement provides useful insights to users of corporate disclosures at a low cost.
♻ ☆ Bloated Disclosures: Can ChatGPT Help Investors Process Information?
Generative AI tools such as ChatGPT can fundamentally change the way investors process information. We probe the economic usefulness of these tools in summarizing complex corporate disclosures using the stock market as a laboratory. The unconstrained summaries are remarkably shorter compared to the originals, whereas their information content is amplified. When a document has a positive (negative) sentiment, its summary becomes more positive (negative). Importantly, the summaries are more effective at explaining stock market reactions to the disclosed information. Motivated by these findings, we propose a measure of information ``bloat." We show that bloated disclosure is associated with adverse capital market consequences, such as lower price efficiency and higher information asymmetry. Finally, we show that the model is effective at constructing targeted summaries that identify firms' (non-)financial performance. Collectively, our results indicate that generative AI adds considerable value for investors with information processing constraints.
♻ ☆ Safety at Scale: A Comprehensive Survey of Large Model Safety
The rapid advancement of large models, driven by their exceptional abilities in learning and generalization through large-scale pre-training, has reshaped the landscape of Artificial Intelligence (AI). These models are now foundational to a wide range of applications, including conversational AI, recommendation systems, autonomous driving, content generation, medical diagnostics, and scientific discovery. However, their widespread deployment also exposes them to significant safety risks, raising concerns about robustness, reliability, and ethical implications. This survey provides a systematic review of current safety research on large models, covering Vision Foundation Models (VFMs), Large Language Models (LLMs), Vision-Language Pre-training (VLP) models, Vision-Language Models (VLMs), Diffusion Models (DMs), and large-model-based Agents. Our contributions are summarized as follows: (1) We present a comprehensive taxonomy of safety threats to these models, including adversarial attacks, data poisoning, backdoor attacks, jailbreak and prompt injection attacks, energy-latency attacks, data and model extraction attacks, and emerging agent-specific threats. (2) We review defense strategies proposed for each type of attacks if available and summarize the commonly used datasets and benchmarks for safety research. (3) Building on this, we identify and discuss the open challenges in large model safety, emphasizing the need for comprehensive safety evaluations, scalable and effective defense mechanisms, and sustainable data practices. More importantly, we highlight the necessity of collective efforts from the research community and international collaboration. Our work can serve as a useful reference for researchers and practitioners, fostering the ongoing development of comprehensive defense systems and platforms to safeguard AI models.
comment: 47 pages, 3 figures, 11 tables; GitHub: https://github.com/xingjunm/Awesome-Large-Model-Safety
♻ ☆ The Impact of Input Order Bias on Large Language Models for Software Fault Localization
Large Language Models (LLMs) have shown significant potential in software engineering tasks such as Fault Localization (FL) and Automatic Program Repair (APR). This study investigates how input order and context size influence LLM performance in FL, a crucial step for many downstream software engineering tasks. We evaluate different method orderings using Kendall Tau distances, including "perfect" (where ground truths appear first) and "worst" (where ground truths appear last), across two benchmarks containing Java and Python projects. Our results reveal a strong order bias: in Java projects, Top-1 FL accuracy drops from 57% to 20% when reversing the order, while in Python projects, it decreases from 38% to approximately 3%. However, segmenting inputs into smaller contexts mitigates this bias, reducing the performance gap in FL from 22% and 6% to just 1% across both benchmarks. We replaced method names with semantically meaningful alternatives to determine whether this bias is due to data leakage. The observed trends remained consistent, suggesting that the bias is not caused by memorization from training data but rather by the inherent effect of input order. Additionally, we explored ordering methods based on traditional FL techniques and metrics, finding that DepGraph's ranking achieves 48% Top-1 accuracy, outperforming simpler approaches such as CallGraph(DFS). These findings highlight the importance of structuring inputs, managing context effectively, and selecting appropriate ordering strategies to enhance LLM performance in FL and other software engineering applications.
♻ ☆ Towards Hierarchical Multi-Step Reward Models for Enhanced Reasoning in Large Language Models
Recent studies show that Large Language Models (LLMs) achieve strong reasoning capabilities through supervised fine-tuning or reinforcement learning. However, a key approach, the Process Reward Model (PRM), suffers from reward hacking, making it unreliable in identifying the best intermediate steps. In this paper, we propose a novel reward model approach, Hierarchical Reward Model (HRM), which evaluates both individual and consecutive reasoning steps from fine-grained and coarse-grained level. HRM performs better in assessing reasoning coherence and self-reflection, particularly when the previous reasoning step is incorrect. Furthermore, to address the inefficiency of autonomous generating PRM training data via Monte Carlo Tree Search (MCTS), we introduce a lightweight and effective data augmentation strategy called Hierarchical Node Compression (HNC) based on node merging (combining two consecutive reasoning steps into one step) in the tree structure. This approach diversifies MCTS results for HRM with negligible computational overhead, enhancing label robustness by introducing noise. Empirical results on the PRM800K dataset demonstrate that HRM, in conjunction with HNC, achieves superior stability and reliability in evaluation compared to PRM. Furthermore, cross-domain evaluations on MATH500 and GSM8K confirm HRM's superior generalization and robustness across diverse reasoning tasks. The code for all experiments will be released at https: //github.com/tengwang0318/hierarchial_reward_model.
♻ ☆ Do LLMs Have Distinct and Consistent Personality? TRAIT: Personality Testset designed for LLMs with Psychometrics NAACL2025
Recent advancements in Large Language Models (LLMs) have led to their adaptation in various domains as conversational agents. We wonder: can personality tests be applied to these agents to analyze their behavior, similar to humans? We introduce TRAIT, a new benchmark consisting of 8K multi-choice questions designed to assess the personality of LLMs. TRAIT is built on two psychometrically validated small human questionnaires, Big Five Inventory (BFI) and Short Dark Triad (SD-3), enhanced with the ATOMIC-10X knowledge graph to a variety of real-world scenarios. TRAIT also outperforms existing personality tests for LLMs in terms of reliability and validity, achieving the highest scores across four key metrics: Content Validity, Internal Validity, Refusal Rate, and Reliability. Using TRAIT, we reveal two notable insights into personalities of LLMs: 1) LLMs exhibit distinct and consistent personality, which is highly influenced by their training data (e.g., data used for alignment tuning), and 2) current prompting techniques have limited effectiveness in eliciting certain traits, such as high psychopathy or low conscientiousness, suggesting the need for further research in this direction.
comment: Accepted to NAACL2025 Findings
♻ ☆ The PanAf-FGBG Dataset: Understanding the Impact of Backgrounds in Wildlife Behaviour Recognition CVPR
Computer vision analysis of camera trap video footage is essential for wildlife conservation, as captured behaviours offer some of the earliest indicators of changes in population health. Recently, several high-impact animal behaviour datasets and methods have been introduced to encourage their use; however, the role of behaviour-correlated background information and its significant effect on out-of-distribution generalisation remain unexplored. In response, we present the PanAf-FGBG dataset, featuring 20 hours of wild chimpanzee behaviours, recorded at over 350 individual camera locations. Uniquely, it pairs every video with a chimpanzee (referred to as a foreground video) with a corresponding background video (with no chimpanzee) from the same camera location. We present two views of the dataset: one with overlapping camera locations and one with disjoint locations. This setup enables, for the first time, direct evaluation of in-distribution and out-of-distribution conditions, and for the impact of backgrounds on behaviour recognition models to be quantified. All clips come with rich behavioural annotations and metadata including unique camera IDs and detailed textual scene descriptions. Additionally, we establish several baselines and present a highly effective latent-space normalisation technique that boosts out-of-distribution performance by +5.42% mAP for convolutional and +3.75% mAP for transformer-based models. Finally, we provide an in-depth analysis on the role of backgrounds in out-of-distribution behaviour recognition, including the so far unexplored impact of background durations (i.e., the count of background frames within foreground videos).
comment: 2025 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
♻ ☆ AI-driven control of bioelectric signalling for real-time topological reorganization of cells
Understanding and manipulating bioelectric signaling could present a new wave of progress in developmental biology, regenerative medicine, and synthetic biology. Bioelectric signals, defined as voltage gradients across cell membranes caused by ionic movements, play a role in regulating crucial processes including cellular differentiation, proliferation, apoptosis, and tissue morphogenesis. Recent studies demonstrate the ability to modulate these signals to achieve controlled tissue regeneration and morphological outcomes in organisms such as planaria and frogs. However, significant knowledge gaps remain, particularly in predicting and controlling the spatial and temporal dynamics of membrane potentials (V_mem), understanding their regulatory roles in tissue and organ development, and exploring their therapeutic potential in diseases. In this work we propose an experiment using Deep Reinforcement Learning (DRL) framework together with lab automation techniques for real-time manipulation of bioelectric signals to guide tissue regeneration and morphogenesis. The proposed framework should interact continuously with biological systems, adapting strategies based on direct biological feedback. Combining DRL with real-time measurement techniques -- such as optogenetics, voltage-sensitive dyes, fluorescent reporters, and advanced microscopy -- could provide a comprehensive platform for precise bioelectric control, leading to improved understanding of bioelectric mechanisms in morphogenesis, quantitative bioelectric models, identification of minimal experimental setups, and advancements in bioelectric modulation techniques relevant to regenerative medicine and cancer therapy. Ultimately, this research aims to utilize bioelectric signaling to develop new biomedical and bioengineering applications.
♻ ☆ MaskHand: Generative Masked Modeling for Robust Hand Mesh Reconstruction in the Wild
Reconstructing a 3D hand mesh from a single RGB image is challenging due to complex articulations, self-occlusions, and depth ambiguities. Traditional discriminative methods, which learn a deterministic mapping from a 2D image to a single 3D mesh, often struggle with the inherent ambiguities in 2D-to-3D mapping. To address this challenge, we propose MaskHand, a novel generative masked model for hand mesh recovery that synthesizes plausible 3D hand meshes by learning and sampling from the probabilistic distribution of the ambiguous 2D-to-3D mapping process. MaskHand consists of two key components: (1) a VQ-MANO, which encodes 3D hand articulations as discrete pose tokens in a latent space, and (2) a Context-Guided Masked Transformer that randomly masks out pose tokens and learns their joint distribution, conditioned on corrupted token sequence, image context, and 2D pose cues. This learned distribution facilitates confidence-guided sampling during inference, producing mesh reconstructions with low uncertainty and high precision. Extensive evaluations on benchmark and real-world datasets demonstrate that MaskHand achieves state-of-the-art accuracy, robustness, and realism in 3D hand mesh reconstruction. Project website: https://m-usamasaleem.github.io/publication/MaskHand/MaskHand.html.
♻ ☆ MedVLM-R1: Incentivizing Medical Reasoning Capability of Vision-Language Models (VLMs) via Reinforcement Learning
Reasoning is a critical frontier for advancing medical image analysis, where transparency and trustworthiness play a central role in both clinician trust and regulatory approval. Although Medical Visual Language Models (VLMs) show promise for radiological tasks, most existing VLMs merely produce final answers without revealing the underlying reasoning. To address this gap, we introduce MedVLM-R1, a medical VLM that explicitly generates natural language reasoning to enhance transparency and trustworthiness. Instead of relying on supervised fine-tuning (SFT), which often suffers from overfitting to training distributions and fails to foster genuine reasoning, MedVLM-R1 employs a reinforcement learning framework that incentivizes the model to discover human-interpretable reasoning paths without using any reasoning references. Despite limited training data (600 visual question answering samples) and model parameters (2B), MedVLM-R1 boosts accuracy from 55.11% to 78.22% across MRI, CT, and X-ray benchmarks, outperforming larger models trained on over a million samples. It also demonstrates robust domain generalization under out-of-distribution tasks. By unifying medical image analysis with explicit reasoning, MedVLM-R1 marks a pivotal step toward trustworthy and interpretable AI in clinical practice. Inference model is available at: https://huggingface.co/JZPeterPan/MedVLM-R1.
♻ ☆ DAHRS: Divergence-Aware Hallucination-Remediated SRL Projection
Semantic role labeling (SRL) enriches many downstream applications, e.g., machine translation, question answering, summarization, and stance/belief detection. However, building multilingual SRL models is challenging due to the scarcity of semantically annotated corpora for multiple languages. Moreover, state-of-the-art SRL projection (XSRL) based on large language models (LLMs) yields output that is riddled with spurious role labels. Remediation of such hallucinations is not straightforward due to the lack of explainability of LLMs. We show that hallucinated role labels are related to naturally occurring divergence types that interfere with initial alignments. We implement Divergence-Aware Hallucination-Remediated SRL projection (DAHRS), leveraging linguistically-informed alignment remediation followed by greedy First-Come First-Assign (FCFA) SRL projection. DAHRS improves the accuracy of SRL projection without additional transformer-based machinery, beating XSRL in both human and automatic comparisons, and advancing beyond headwords to accommodate phrase-level SRL projection (e.g., EN-FR, EN-ES). Using CoNLL-2009 as our ground truth, we achieve a higher word-level F1 over XSRL: 87.6% vs. 77.3% (EN-FR) and 89.0% vs. 82.7% (EN-ES). Human phrase-level assessments yield 89.1% (EN-FR) and 91.0% (EN-ES). We also define a divergence metric to adapt our approach to other language pairs (e.g., English-Tagalog).
comment: 15 pages, 6 figures, Accepted to The 29th International Conference on Natural Language & Information Systems (NLDB 2024)
♻ ☆ Multi-agent cooperation through learning-aware policy gradients
Self-interested individuals often fail to cooperate, posing a fundamental challenge for multi-agent learning. How can we achieve cooperation among self-interested, independent learning agents? Promising recent work has shown that in certain tasks cooperation can be established between learning-aware agents who model the learning dynamics of each other. Here, we present the first unbiased, higher-derivative-free policy gradient algorithm for learning-aware reinforcement learning, which takes into account that other agents are themselves learning through trial and error based on multiple noisy trials. We then leverage efficient sequence models to condition behavior on long observation histories that contain traces of the learning dynamics of other agents. Training long-context policies with our algorithm leads to cooperative behavior and high returns on standard social dilemmas, including a challenging environment where temporally-extended action coordination is required. Finally, we derive from the iterated prisoner's dilemma a novel explanation for how and when cooperation arises among self-interested learning-aware agents.
♻ ☆ On the Need and Applicability of Causality for Fairness: A Unified Framework for AI Auditing and Legal Analysis
As Artificial Intelligence (AI) increasingly influences decisions in critical societal sectors, understanding and establishing causality becomes essential for evaluating the fairness of automated systems. This article explores the significance of causal reasoning in addressing algorithmic discrimination, emphasizing both legal and societal perspectives. By reviewing landmark cases and regulatory frameworks, particularly within the European Union, we illustrate the challenges inherent in proving causal claims when confronted with opaque AI decision-making processes. The discussion outlines practical obstacles and methodological limitations in applying causal inference to real-world fairness scenarios, proposing actionable solutions to enhance transparency, accountability, and fairness in algorithm-driven decisions.
♻ ☆ Skin Cancer Machine Learning Model Tone Bias
Background: Many open-source skin cancer image datasets are the result of clinical trials conducted in countries with lighter skin tones. Due to this tone imbalance, machine learning models derived from these datasets can perform well at detecting skin cancer for lighter skin tones. Any tone bias in these models could introduce fairness concerns and reduce public trust in the artificial intelligence health field. Methods: We examine a subset of images from the International Skin Imaging Collaboration (ISIC) archive that provide tone information. The subset has a significant tone imbalance. These imbalances could explain a model's tone bias. To address this, we train models using the imbalanced dataset and a balanced dataset to compare against. The datasets are used to train a deep convolutional neural network model to classify the images as malignant or benign. We then evaluate the models' disparate impact, based on selection rate, relative to dark or light skin tone. Results: Using the imbalanced dataset, we found that the model is significantly better at detecting malignant images in lighter tone resulting in a disparate impact of 0.577. Using the balanced dataset, we found that the model is also significantly better at detecting malignant images in lighter versus darker tones with a disparate impact of 0.684. Using the imbalanced or balanced dataset to train the model still results in a disparate impact well below the standard threshold of 0.80 which suggests the model is biased with respect to skin tone. Conclusion: The results show that typical skin cancer machine learning models can be tone biased. These results provide evidence that diagnosis or tone imbalance is not the cause of the bias. Other techniques will be necessary to identify and address the bias in these models, an area of future investigation.
♻ ☆ Enhancing the automatic segmentation and analysis of 3D liver vasculature models MICCAI 2024
Surgical assessment of liver cancer patients requires identification of the vessel trees from medical images. Specifically, the venous trees - the portal (perfusing) and the hepatic (draining) trees are important for understanding the liver anatomy and disease state, and perform surgery planning. This research aims to improve the 3D segmentation, skeletonization, and subsequent analysis of vessel trees, by creating an automatic pipeline based on deep learning and image processing techniques. The first part of this work explores the impact of differentiable skeletonization methods such as ClDice and morphological skeletonization loss, on the overall liver vessel segmentation performance. To this aim, it studies how to improve vessel tree connectivity. The second part of this study converts a single class vessel segmentation into multi-class ones, separating the two venous trees. It builds on the previous two-class vessel segmentation model, which vessel tree outputs might be entangled, and on connected components and skeleton analyses of the trees. After providing sub-labeling of the specific anatomical branches of each venous tree, these algorithms also enable a morphometric analysis of the vessel trees by extracting various geometrical markers. In conclusion, we propose a method that successfully improves current skeletonization methods, for extensive vascular trees that contain vessels of different calibers. The separation algorithm creates a clean multi-class segmentation of the vessels, validated by surgeons to provide low error. A new, publicly shared high-quality liver vessel dataset of 77 cases is thus created. Finally a method to annotate vessel trees according to anatomy is provided, enabling a unique liver vessel morphometry analysis.
comment: Paper presented at MICCAI 2024 Workshop: ADSMI. This work was done in the context of an internship at Simbiotx, Inria
♻ ☆ DCAT: Dual Cross-Attention Fusion for Disease Classification in Radiological Images with Uncertainty Estimation
Accurate and reliable image classification is crucial in radiology, where diagnostic decisions significantly impact patient outcomes. Conventional deep learning models tend to produce overconfident predictions despite underlying uncertainties, potentially leading to misdiagnoses. Attention mechanisms have emerged as powerful tools in deep learning, enabling models to focus on relevant parts of the input data. Combined with feature fusion, they can be effective in addressing uncertainty challenges. Cross-attention has become increasingly important in medical image analysis for capturing dependencies across features and modalities. This paper proposes a novel dual cross-attention fusion model for medical image analysis by addressing key challenges in feature integration and interpretability. Our approach introduces a bidirectional cross-attention mechanism with refined channel and spatial attention that dynamically fuses feature maps from EfficientNetB4 and ResNet34 leveraging multi-network contextual dependencies. The refined features through channel and spatial attention highlights discriminative patterns crucial for accurate classification. The proposed model achieved AUC of 99.75%, 100%, 99.93% and 98.69% and AUPR of 99.81%, 100%, 99.97%, and 96.36% on Covid-19, Tuberculosis, Pneumonia Chest X-ray images and Retinal OCT images respectively. The entropy values and several high uncertain samples give an interpretable visualization from the model enhancing transparency. By combining multi-scale feature extraction, bidirectional attention and uncertainty estimation, our proposed model strongly impacts medical image analysis.
comment: 18 pages, 8 figures, 5 tables
♻ ☆ ReAttention: Training-Free Infinite Context with Finite Attention Scope ICLR 2025
The long-context capability of the Large Language Models (LLM) has made significant breakthroughs, but the maximum supported context length in length extrapolation remains a critical bottleneck limiting their practical applications. The constraint of context length in LLMs arises from the self-attention mechanism, which cannot effectively and efficiently capture the semantic relationships within infinitely long contexts via the limited pre-trained positional information and attention scope. In this work, we propose ReAttention, a training-free approach enabling LLM based on the self-attention mechanism to support an infinite context with a finite attention scope under sufficient memory resources. ReAttention performs the position-agnostic top-$k$ attention before the ordinary position-aware self-attention, freeing LLMs from the length extrapolation issue. We validate the performance of ReAttention on the LongBench, L-Eval, and InfiniteBench and demonstrate that it is on par with traditional methods. Furthermore, we also apply ReAttention on mainstream LLMs, including LLaMA3.1-8B and Mistral-v0.3-7B, enabling them to support context lengths of at least 1M and even expanding the context length of LLaMA3.2-3B-chat by 128$\times$ to 4M without any further training in Needle-In-A-Haystack tests. We also improve the efficiency of ReAttention with Triton and achieve an efficient extrapolation without additional overhead. The code is available at https://github.com/OpenMOSS/ReAttention.
comment: 21 pages, 11 figures, Accepted by ICLR 2025
♻ ☆ KeyFace: Expressive Audio-Driven Facial Animation for Long Sequences via KeyFrame Interpolation CVPR 2025
Current audio-driven facial animation methods achieve impressive results for short videos but suffer from error accumulation and identity drift when extended to longer durations. Existing methods attempt to mitigate this through external spatial control, increasing long-term consistency but compromising the naturalness of motion. We propose KeyFace, a novel two-stage diffusion-based framework, to address these issues. In the first stage, keyframes are generated at a low frame rate, conditioned on audio input and an identity frame, to capture essential facial expressions and movements over extended periods of time. In the second stage, an interpolation model fills in the gaps between keyframes, ensuring smooth transitions and temporal coherence. To further enhance realism, we incorporate continuous emotion representations and handle a wide range of non-speech vocalizations (NSVs), such as laughter and sighs. We also introduce two new evaluation metrics for assessing lip synchronization and NSV generation. Experimental results show that KeyFace outperforms state-of-the-art methods in generating natural, coherent facial animations over extended durations, successfully encompassing NSVs and continuous emotions.
comment: CVPR 2025
♻ ☆ FiVL: A Framework for Improved Vision-Language Alignment through the Lens of Training, Evaluation and Explainability
Large Vision Language Models (LVLMs) have achieved significant progress in integrating visual and textual inputs for multimodal reasoning. However, a recurring challenge is ensuring these models utilize visual information as effectively as linguistic content when both modalities are necessary to formulate an accurate answer. We hypothesize that hallucinations arise due to the lack of effective visual grounding in current LVLMs. Furthermore, current vision-language benchmarks are not specifically measuring the degree to which the answer require the visual input. This limitation makes it challenging to confirm that the image is truly necessary, particularly in tasks like visual question answering. In this work, we introduce FiVL, a novel method for constructing datasets designed to train LVLMs for enhanced visual grounding and also evaluate their effectiveness in achieving it. We demonstrate the value of our datasets through three approaches. First, we introduce a novel training task based on our augmented training dataset, resulting in better performance than the baseline. Second, we present benchmarks to assess the model's ability to use image as substantive evidence, rather than relying solely on linguistic priors. Finally, we identify attention heads with the strongest vision-language alignment, enabling explainability on visual-driven hallucinations. The code is available at https://github.com/IntelLabs/fivl.
♻ ☆ A Distribution Semantics for Probabilistic Term Rewriting
Probabilistic programming is becoming increasingly popular thanks to its ability to specify problems with a certain degree of uncertainty. In this work, we focus on term rewriting, a well-known computational formalism. In particular, we consider systems that combine traditional rewriting rules with probabilities. Then, we define a novel "distribution semantics" for such systems that can be used to model the probability of reducing a term to some value. We also show how to compute a set of "explanations" for a given reduction, which can be used to compute its probability in a more efficient way. Finally, we illustrate our approach with several examples and outline a couple of extensions that may prove useful to improve the expressive power of probabilistic rewrite systems.
comment: Submitted for publication
♻ ☆ Deep Learning Pipeline for Fully Automated Myocardial Infarct Segmentation from Clinical Cardiac MR Scans
Purpose: To develop and evaluate a deep learning-based method that allows to perform myocardial infarct segmentation in a fully-automated way. Materials and Methods: For this retrospective study, a cascaded framework of two and three-dimensional convolutional neural networks (CNNs), specialized on identifying ischemic myocardial scars on late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) images, was trained on an in-house training dataset consisting of 144 examinations. On a separate test dataset from the same institution, including images from 152 examinations obtained between 2021 and 2023, a quantitative comparison between artificial intelligence (AI)-based segmentations and manual segmentations was performed. Further, qualitative assessment of segmentation accuracy was evaluated for both human and AI-generated contours by two CMR experts in a blinded experiment. Results: Excellent agreement could be found between manually and automatically calculated infarct volumes ($\rho_c$ = 0.9). The qualitative evaluation showed that compared to human-based measurements, the experts rated the AI-based segmentations to better represent the actual extent of infarction significantly (p < 0.001) more often (33.4% AI, 25.1% human, 41.5% equal). On the contrary, for segmentation of microvascular obstruction (MVO), manual measurements were still preferred (11.3% AI, 55.6% human, 33.1% equal). Conclusion: This fully-automated segmentation pipeline enables CMR infarct size to be calculated in a very short time and without requiring any pre-processing of the input images while matching the segmentation quality of trained human observers. In a blinded experiment, experts preferred automated infarct segmentations more often than manual segmentations, paving the way for a potential clinical application.
♻ ☆ Lightweight Software Kernels and Hardware Extensions for Efficient Sparse Deep Neural Networks on Microcontrollers
The acceleration of pruned Deep Neural Networks (DNNs) on edge devices such as Microcontrollers (MCUs) is a challenging task, given the tight area- and power-constraints of these devices. In this work, we propose a three-fold contribution to address this problem. First, we design a set of optimized software kernels for N:M pruned layers, targeting ultra-low-power, multicore RISC-V MCUs, which are up to 2.1x and 3.4x faster than their dense counterparts at 1:8 and 1:16 sparsity, respectively. Then, we implement a lightweight Instruction-Set Architecture (ISA) extension to accelerate the indirect load and non-zero indices decompression operations required by our kernels, obtaining up to 1.9x extra speedup, at the cost of a 5% area overhead. Lastly, we extend an open-source DNN compiler to utilize our sparse kernels for complete networks, showing speedups of 3.21x and 1.81x on a ResNet18 and a Vision Transformer (ViT), with less than 1.5% accuracy drop compared to a dense baseline.
comment: Accepted at MLSys 2025
♻ ☆ Unveiling Pitfalls: Understanding Why AI-driven Code Agents Fail at GitHub Issue Resolution
AI-driven software development has rapidly advanced with the emergence of software development agents that leverage large language models (LLMs) to tackle complex, repository-level software engineering tasks. These agents go beyond just generation of final code; they engage in multi-step reasoning, utilize various tools for code modification and debugging, and interact with execution environments to diagnose and iteratively resolve issues. However, most existing evaluations focus primarily on static analyses of final code outputs, yielding limited insights into the agents' dynamic problem-solving processes. To fill this gap, we conduct an in-depth empirical study on 3,977 solving-phase trajectories and 3,931 testing-phase logs from 8 top-ranked agents evaluated on 500 GitHub issues in the SWE-Bench benchmark. Our exploratory analysis shows that Python execution errors during the issue resolution phase correlate with lower resolution rates and increased reasoning overheads. We have identified the most prevalent errors -- such as ModuleNotFoundError and TypeError -- and highlighted particularly challenging errors like OSError and database-related issues (e.g., IntegrityError) that demand significantly more debugging effort. Furthermore, we have discovered 3 bugs in the SWE-Bench platform that affect benchmark fairness and accuracy; these issues have been reported to and confirmed by the maintainers. To promote transparency and foster future research, we publicly share our datasets and analysis scripts.
♻ ☆ RoomTour3D: Geometry-Aware Video-Instruction Tuning for Embodied Navigation CVPR2025
Vision-and-Language Navigation (VLN) suffers from the limited diversity and scale of training data, primarily constrained by the manual curation of existing simulators. To address this, we introduce RoomTour3D, a video-instruction dataset derived from web-based room tour videos that capture real-world indoor spaces and human walking demonstrations. Unlike existing VLN datasets, RoomTour3D leverages the scale and diversity of online videos to generate open-ended human walking trajectories and open-world navigable instructions. To compensate for the lack of navigation data in online videos, we perform 3D reconstruction and obtain 3D trajectories of walking paths augmented with additional information on the room types, object locations and 3D shape of surrounding scenes. Our dataset includes $\sim$100K open-ended description-enriched trajectories with $\sim$200K instructions, and 17K action-enriched trajectories from 1847 room tour environments. We demonstrate experimentally that RoomTour3D enables significant improvements across multiple VLN tasks including CVDN, SOON, R2R, and REVERIE. Moreover, RoomTour3D facilitates the development of trainable zero-shot VLN agents, showcasing the potential and challenges of advancing towards open-world navigation.
comment: CVPR2025
♻ ☆ DEIM: DETR with Improved Matching for Fast Convergence CVPR 2025
We introduce DEIM, an innovative and efficient training framework designed to accelerate convergence in real-time object detection with Transformer-based architectures (DETR). To mitigate the sparse supervision inherent in one-to-one (O2O) matching in DETR models, DEIM employs a Dense O2O matching strategy. This approach increases the number of positive samples per image by incorporating additional targets, using standard data augmentation techniques. While Dense O2O matching speeds up convergence, it also introduces numerous low-quality matches that could affect performance. To address this, we propose the Matchability-Aware Loss (MAL), a novel loss function that optimizes matches across various quality levels, enhancing the effectiveness of Dense O2O. Extensive experiments on the COCO dataset validate the efficacy of DEIM. When integrated with RT-DETR and D-FINE, it consistently boosts performance while reducing training time by 50%. Notably, paired with RT-DETRv2, DEIM achieves 53.2% AP in a single day of training on an NVIDIA 4090 GPU. Additionally, DEIM-trained real-time models outperform leading real-time object detectors, with DEIM-D-FINE-L and DEIM-D-FINE-X achieving 54.7% and 56.5% AP at 124 and 78 FPS on an NVIDIA T4 GPU, respectively, without the need for additional data. We believe DEIM sets a new baseline for advancements in real-time object detection. Our code and pre-trained models are available at https://github.com/ShihuaHuang95/DEIM.
comment: CVPR 2025
♻ ☆ Agent-R: Training Language Model Agents to Reflect via Iterative Self-Training
Large Language Models (LLMs) agents are increasingly pivotal for addressing complex tasks in interactive environments. Existing work mainly focuses on enhancing performance through behavior cloning from stronger experts, yet such approaches often falter in real-world applications, mainly due to the inability to recover from errors. However, step-level critique data is difficult and expensive to collect. Automating and dynamically constructing self-critique datasets is thus crucial to empowering models with intelligent agent capabilities. In this work, we propose an iterative self-training framework, Agent-R, that enables language Agent to Reflect on the fly. Unlike traditional methods that reward or penalize actions based on correctness, Agent-R leverages MCTS to construct training data that recover correct trajectories from erroneous ones. A key challenge of agent reflection lies in the necessity for timely revision rather than waiting until the end of a rollout. To address this, we introduce a model-guided critique construction mechanism: the actor model identifies the first error step (within its current capability) in a failed trajectory. Starting from it, we splice it with the adjacent correct path, which shares the same parent node in the tree. This strategy enables the model to learn reflection based on its current policy, therefore yielding better learning efficiency. To further explore the scalability of this self-improvement paradigm, we investigate iterative refinement of both error correction capabilities and dataset construction. Our findings demonstrate that Agent-R continuously improves the model's ability to recover from errors and enables timely error correction. Experiments on three interactive environments show that Agent-R effectively equips agents to correct erroneous actions while avoiding loops, achieving superior performance compared to baseline methods (+5.59%).
♻ ☆ MMLNB: Multi-Modal Learning for Neuroblastoma Subtyping Classification Assisted with Textual Description Generation
Neuroblastoma (NB), a leading cause of childhood cancer mortality, exhibits significant histopathological variability, necessitating precise subtyping for accurate prognosis and treatment. Traditional diagnostic methods rely on subjective evaluations that are time-consuming and inconsistent. To address these challenges, we introduce MMLNB, a multi-modal learning (MML) model that integrates pathological images with generated textual descriptions to improve classification accuracy and interpretability. The approach follows a two-stage process. First, we fine-tune a Vision-Language Model (VLM) to enhance pathology-aware text generation. Second, the fine-tuned VLM generates textual descriptions, using a dual-branch architecture to independently extract visual and textual features. These features are fused via Progressive Robust Multi-Modal Fusion (PRMF) Block for stable training. Experimental results show that the MMLNB model is more accurate than the single modal model. Ablation studies demonstrate the importance of multi-modal fusion, fine-tuning, and the PRMF mechanism. This research creates a scalable AI-driven framework for digital pathology, enhancing reliability and interpretability in NB subtyping classification. Our source code is available at https://github.com/HovChen/MMLNB.
comment: 25 pages, 7 figures
♻ ☆ JMMMU: A Japanese Massive Multi-discipline Multimodal Understanding Benchmark for Culture-aware Evaluation NAACL 2025
Accelerating research on Large Multimodal Models (LMMs) in non-English languages is crucial for enhancing user experiences across broader populations. In this paper, we introduce JMMMU (Japanese MMMU), the first large-scale Japanese benchmark designed to evaluate LMMs on expert-level tasks based on the Japanese cultural context. To facilitate comprehensive culture-aware evaluation, JMMMU features two complementary subsets: (i) culture-agnostic (CA) subset, where the culture-independent subjects (e.g., Math) are selected and translated into Japanese, enabling one-to-one comparison with its English counterpart MMMU; and (ii) culture-specific (CS) subset, comprising newly crafted subjects that reflect Japanese cultural context. Using the CA subset, we observe performance drop in many LMMs when evaluated in Japanese, which is purely attributable to language variation. Using the CS subset, we reveal their inadequate Japanese cultural understanding. Further, by combining both subsets, we identify that some LMMs perform well on the CA subset but not on the CS subset, exposing a shallow understanding of the Japanese language that lacks depth in cultural understanding. We hope this work will not only help advance LMM performance in Japanese but also serve as a guideline to create high-standard, culturally diverse benchmarks for multilingual LMM development. The project page is https://mmmu-japanese-benchmark.github.io/JMMMU/.
comment: Accepted at NAACL 2025. Project page: https://mmmu-japanese-benchmark.github.io/JMMMU/
♻ ☆ A Deep Learning Approach for Augmenting Perceptional Understanding of Histopathology Images
In Recent Years, Digital Technologies Have Made Significant Strides In Augmenting-Human-Health, Cognition, And Perception, Particularly Within The Field Of Computational-Pathology. This Paper Presents A Novel Approach To Enhancing The Analysis Of Histopathology Images By Leveraging A Mult-modal-Model That Combines Vision Transformers (Vit) With Gpt-2 For Image Captioning. The Model Is Fine-Tuned On The Specialized Arch-Dataset, Which Includes Dense Image Captions Derived From Clinical And Academic Resources, To Capture The Complexities Of Pathology Images Such As Tissue Morphologies, Staining Variations, And Pathological Conditions. By Generating Accurate, Contextually Captions, The Model Augments The Cognitive Capabilities Of Healthcare Professionals, Enabling More Efficient Disease Classification, Segmentation, And Detection. The Model Enhances The Perception Of Subtle Pathological Features In Images That Might Otherwise Go Unnoticed, Thereby Improving Diagnostic Accuracy. Our Approach Demonstrates The Potential For Digital Technologies To Augment Human Cognitive Abilities In Medical Image Analysis, Providing Steps Toward More Personalized And Accurate Healthcare Outcomes.
comment: Accepted by International Conference on Semantic & Natural Language Processing (SNLP 2025)
♻ ☆ Enhancing High-Quality Code Generation in Large Language Models with Comparative Prefix-Tuning
Large Language Models (LLMs) have been widely adopted in commercial code completion engines, significantly enhancing coding efficiency and productivity. However, LLMs may generate code with quality issues that violate coding standards and best practices, such as poor code style and maintainability, even when the code is functionally correct. This necessitates additional effort from developers to improve the code, potentially negating the efficiency gains provided by LLMs. To address this problem, we propose a novel comparative prefix-tuning method for controllable high-quality code generation. Our method introduces a single, property-specific prefix that is prepended to the activations of the LLM, serving as a lightweight alternative to fine-tuning. Unlike existing methods that require training multiple prefixes, our approach trains only one prefix and leverages pairs of high-quality and low-quality code samples, introducing a sequence-level ranking loss to guide the model's training. This comparative approach enables the model to better understand the differences between high-quality and low-quality code, focusing on aspects that impact code quality. Additionally, we design a data construction pipeline to collect and annotate pairs of high-quality and low-quality code, facilitating effective training. Extensive experiments on the Code Llama 7B model demonstrate that our method improves code quality by over 100% in certain task categories, while maintaining functional correctness. We also conduct ablation studies and generalization experiments, confirming the effectiveness of our method's components and its strong generalization capability.
♻ ☆ Learning to Negotiate via Voluntary Commitment AISTATS 2025
The partial alignment and conflict of autonomous agents lead to mixed-motive scenarios in many real-world applications. However, agents may fail to cooperate in practice even when cooperation yields a better outcome. One well known reason for this failure comes from non-credible commitments. To facilitate commitments among agents for better cooperation, we define Markov Commitment Games (MCGs), a variant of commitment games, where agents can voluntarily commit to their proposed future plans. Based on MCGs, we propose a learnable commitment protocol via policy gradients. We further propose incentive-compatible learning to accelerate convergence to equilibria with better social welfare. Experimental results in challenging mixed-motive tasks demonstrate faster empirical convergence and higher returns for our method compared with its counterparts. Our code is available at https://github.com/shuhui-zhu/DCL.
comment: Accepted by AISTATS 2025
♻ ☆ EXAONE Deep: Reasoning Enhanced Language Models
We present EXAONE Deep series, which exhibits superior capabilities in various reasoning tasks, including math and coding benchmarks. We train our models mainly on the reasoning-specialized dataset that incorporates long streams of thought processes. Evaluation results show that our smaller models, EXAONE Deep 2.4B and 7.8B, outperform other models of comparable size, while the largest model, EXAONE Deep 32B, demonstrates competitive performance against leading open-weight models. All EXAONE Deep models are openly available for research purposes and can be downloaded from https://huggingface.co/LGAI-EXAONE
comment: arXiv admin note: substantial text overlap with arXiv:2412.04862, arXiv:2408.03541
♻ ☆ Enhancing Layer Attention Efficiency through Pruning Redundant Retrievals
Growing evidence suggests that layer attention mechanisms, which enhance interaction among layers in deep neural networks, have significantly advanced network architectures. However, existing layer attention methods suffer from redundancy, as attention weights learned by adjacent layers often become highly similar. This redundancy causes multiple layers to extract nearly identical features, reducing the model's representational capacity and increasing training time. To address this issue, we propose a novel approach to quantify redundancy by leveraging the Kullback-Leibler (KL) divergence between adjacent layers. Additionally, we introduce an Enhanced Beta Quantile Mapping (EBQM) method that accurately identifies and skips redundant layers, thereby maintaining model stability. Our proposed Efficient Layer Attention (ELA) architecture, improves both training efficiency and overall performance, achieving a 30\% reduction in training time while enhancing performance in tasks such as image classification and object detection.
comment: 11 pages, 7 figures
♻ ☆ Bonsai: Gradient-free Graph Distillation for Node Classification
Graph distillation has emerged as a promising avenue to enable scalable training of GNNs by compressing the training dataset while preserving essential graph characteristics. Our study uncovers significant shortcomings in current graph distillation techniques. First, the majority of the algorithms paradoxically require training on the full dataset to perform distillation. Second, due to their gradient-emulating approach, these methods require fresh distillation for any change in hyperparameters or GNN architecture, limiting their flexibility and reusability. Finally, they fail to achieve substantial size reduction due to synthesizing fully-connected, edge-weighted graphs. To address these challenges, we present Bonsai, a novel graph distillation method empowered by the observation that \textit{computation trees} form the fundamental processing units of message-passing GNNs. Bonsai distills datasets by encoding a careful selection of \textit{exemplar} trees that maximize the representation of all computation trees in the training set. This unique approach imparts Bonsai as the first linear-time, model-agnostic graph distillation algorithm for node classification that outperforms existing baselines across $6$ real-world datasets on accuracy, while being $22$ times faster on average. Bonsai is grounded in rigorous mathematical guarantees on the adopted approximation strategies making it robust to GNN architectures, datasets, and parameters.
♻ ☆ E2ETune: End-to-End Knob Tuning via Fine-tuned Generative Language Model VLDB 2025
Database knob tuning is a significant challenge for database administrators, as it involves tuning a large number of configuration knobs with continuous or discrete values to achieve optimal database performance. Traditional methods, such as manual tuning or learning-based approaches, typically require numerous workload replays and are both time-consuming and resource-intensive. To address this challenge, we introduce E2ETune, an end-to-end knob tuner powered by a fine-tuned generative language model. The key idea is to leverage the exceptional sequence-to-sequence modeling capabilities of generative language models to capture the complex mapping between workloads (inputs) and their corresponding promising configurations (outputs). To achieve this goal, we propose a novel data generation framework to efficiently produce a large amount of training data, where each data sample consists of a workload and its promising configuration. Then, these data are used to fine-tune a generative language model, yielding an end-to-end knob tuner. This tuner offers out-of-the-box configuration recommendations for new workloads. We conduct extensive experiments to evaluate E2ETune's efficiency and effectiveness using 10 representative and 3 real-world benchmarks. Compared to state-of-the-art methods, E2ETune can identify competitive configurations in significantly less time.
comment: Accepted by VLDB 2025
♻ ☆ ADBM: Adversarial diffusion bridge model for reliable adversarial purification ICLR 2025
Recently Diffusion-based Purification (DiffPure) has been recognized as an effective defense method against adversarial examples. However, we find DiffPure which directly employs the original pre-trained diffusion models for adversarial purification, to be suboptimal. This is due to an inherent trade-off between noise purification performance and data recovery quality. Additionally, the reliability of existing evaluations for DiffPure is questionable, as they rely on weak adaptive attacks. In this work, we propose a novel Adversarial Diffusion Bridge Model, termed ADBM. ADBM directly constructs a reverse bridge from the diffused adversarial data back to its original clean examples, enhancing the purification capabilities of the original diffusion models. Through theoretical analysis and experimental validation across various scenarios, ADBM has proven to be a superior and robust defense mechanism, offering significant promise for practical applications.
comment: ICLR 2025, fix typos in the proof
♻ ☆ Language Model Council: Democratically Benchmarking Foundation Models on Highly Subjective Tasks
As Large Language Models (LLMs) continue to evolve, evaluating them remains a persistent challenge. Many recent evaluations use LLMs as judges to score outputs from other LLMs, often relying on a single large model like GPT-4o. However, using a single LLM judge is prone to intra-model bias, and many tasks - such as those related to emotional intelligence, creative writing, and persuasiveness - may be too subjective for a single model to judge fairly. We introduce the Language Model Council (LMC), where a group of LLMs collaborate to create tests, respond to them, and evaluate each other's responses to produce a ranking in a democratic fashion. Unlike previous approaches that focus on reducing cost or bias by using a panel of smaller models, our work examines the benefits and nuances of a fully inclusive LLM evaluation system. In a detailed case study on emotional intelligence, we deploy a council of 20 recent LLMs to rank each other on open-ended responses to interpersonal conflicts. Our results show that the LMC produces rankings that are more separable and more robust, and through a user study, we show that they are more consistent with human evaluations than any individual LLM judge. Using all LLMs for judging can be costly, however, so we use Monte Carlo simulations and hand-curated sub-councils to study hypothetical council compositions and discuss the value of the incremental LLM judge.
♻ ☆ Introducing Verification Task of Set Consistency with Set-Consistency Energy Networks
Examining logical inconsistencies among multiple statements (such as collections of sentences or question-answer pairs) is a crucial challenge in machine learning, particularly for ensuring the safety and reliability of models. Traditional methods that rely on pairwise comparisons often fail to capture inconsistencies that only emerge when more than two statements are evaluated collectively. To address this gap, we introduce the task of set-consistency verification, an extension of natural language inference (NLI) that assesses the logical coherence of entire sets rather than isolated pairs. Building on this task, we present the Set-Consistency Energy Network (SC-Energy), a novel model that employs a contrastive loss framework to learn the compatibility among a collection of statements. Our approach not only efficiently verifies inconsistencies and pinpoints the specific statements responsible for logical contradictions, but also significantly outperforms existing methods including prompting-based LLM models. Furthermore, we release two new datasets: Set-LConVQA and Set-SNLI for set-consistency verification task.
♻ ☆ Tensor Completion for Surrogate Modeling of Material Property Prediction AAAI 2025
When designing materials to optimize certain properties, there are often many possible configurations of designs that need to be explored. For example, the materials' composition of elements will affect properties such as strength or conductivity, which are necessary to know when developing new materials. Exploring all combinations of elements to find optimal materials becomes very time consuming, especially when there are more design variables. For this reason, there is growing interest in using machine learning (ML) to predict a material's properties. In this work, we model the optimization of certain material properties as a tensor completion problem, to leverage the structure of our datasets and navigate the vast number of combinations of material configurations. Across a variety of material property prediction tasks, our experiments show tensor completion methods achieving 10-20% decreased error compared with baseline ML models such as GradientBoosting and Multilayer Perceptron (MLP), while maintaining similar training speed.
comment: 2 page paper presented at the AAAI 2025 Bridge on Knowledge-Guided Machine Learning
♻ ☆ From Commands to Prompts: LLM-based Semantic File System for AIOS ICLR2025
Large language models (LLMs) have demonstrated significant potential in the development of intelligent applications and systems such as LLM-based agents and agent operating systems (AIOS). However, when these applications and systems interact with the underlying file system, the file system still remains the traditional paradigm: reliant on manual navigation through precise commands. This paradigm poses a bottleneck to the usability of these systems as users are required to navigate complex folder hierarchies and remember cryptic file names. To address this limitation, we propose an LLM-based semantic file system ( LSFS ) for prompt-driven file management. Unlike conventional approaches, LSFS incorporates LLMs to enable users or agents to interact with files through natural language prompts, facilitating semantic file management. At the macro-level, we develop a comprehensive API set to achieve semantic file management functionalities, such as semantic file retrieval, file update monitoring and summarization, and semantic file rollback). At the micro-level, we store files by constructing semantic indexes for them, design and implement syscalls of different semantic operations (e.g., CRUD, group by, join) powered by vector database. Our experiments show that LSFS offers significant improvements over traditional file systems in terms of user convenience, the diversity of supported functions, and the accuracy and efficiency of file operations. Additionally, with the integration of LLM, our system enables more intelligent file management tasks, such as content summarization and version comparison, further enhancing its capabilities.
comment: Accepted by International Conference on Learning Representations 2025(ICLR2025)
♻ ☆ MIRROR: Multi-Modal Pathological Self-Supervised Representation Learning via Modality Alignment and Retention
Histopathology and transcriptomics are fundamental modalities in oncology, encapsulating the morphological and molecular aspects of the disease. Multi-modal self-supervised learning has demonstrated remarkable potential in learning pathological representations by integrating diverse data sources. Conventional multi-modal integration methods primarily emphasize modality alignment, while paying insufficient attention to retaining the modality-specific structures. However, unlike conventional scenarios where multi-modal inputs share highly overlapping features, histopathology and transcriptomics exhibit pronounced heterogeneity, offering orthogonal yet complementary insights. Histopathology provides morphological and spatial context, elucidating tissue architecture and cellular topology, whereas transcriptomics delineates molecular signatures through gene expression patterns. This inherent disparity introduces a major challenge in aligning them while maintaining modality-specific fidelity. To address these challenges, we present MIRROR, a novel multi-modal representation learning method designed to foster both modality alignment and retention. MIRROR employs dedicated encoders to extract comprehensive features for each modality, which is further complemented by a modality alignment module to achieve seamless integration between phenotype patterns and molecular profiles. Furthermore, a modality retention module safeguards unique attributes from each modality, while a style clustering module mitigates redundancy and enhances disease-relevant information by modeling and aligning consistent pathological signatures within a clustering space. Extensive evaluations on TCGA cohorts for cancer subtyping and survival analysis highlight MIRROR's superior performance, demonstrating its effectiveness in constructing comprehensive oncological feature representations and benefiting the cancer diagnosis.
comment: 10 pages, 5 figures, 4 tables. Code available at https://github.com/TianyiFranklinWang/MIRROR. Project page: https://tianyifranklinwang.github.io/MIRROR
♻ ☆ Speculative MoE: Communication Efficient Parallel MoE Inference with Speculative Token and Expert Pre-scheduling
MoE (Mixture of Experts) prevails as a neural architecture that can scale modern transformer-based LLMs (Large Language Models) to unprecedented scales. Nevertheless, large MoEs' great demands of computing power, memory capacity and memory bandwidth make scalable serving a fundamental challenge and efficient parallel inference has become a requisite to attain adequate throughput under latency constraints. DeepSpeed-MoE, one state-of-the-art MoE inference framework, adopts a 3D-parallel paradigm including EP (Expert Parallelism), TP (Tensor Parallel) and DP (Data Parallelism). However, our analysis shows DeepSpeed-MoE's inference efficiency is largely bottlenecked by EP, which is implemented with costly all-to-all collectives to route token activation. Our work aims to boost DeepSpeed-MoE by strategically reducing EP's communication overhead with a technique named Speculative MoE. Speculative MoE has two speculative parallelization schemes, speculative token shuffling and speculative expert grouping, which predict outstanding tokens' expert routing paths and pre-schedule tokens and experts across devices to losslessly trim EP's communication volume. Besides DeepSpeed-MoE, we also build Speculative MoE into a prevailing MoE inference engine SGLang. Experiments show Speculative MoE can significantly boost state-of-the-art MoE inference frameworks on fast homogeneous and slow heterogeneous interconnects.
♻ ☆ DeepSeek-Inspired Exploration of RL-based LLMs and Synergy with Wireless Networks: A Survey
Reinforcement learning (RL)-based large language models (LLMs), such as ChatGPT, DeepSeek, and Grok-3, have gained significant attention for their exceptional capabilities in natural language processing and multimodal data understanding. Meanwhile, the rapid expansion of information services has driven the growing need for intelligence, efficient, and adaptable wireless networks. Wireless networks require the empowerment of RL-based LLMs while these models also benefit from wireless networks to broaden their application scenarios. Specifically, RL-based LLMs can enhance wireless communication systems through intelligent resource allocation, adaptive network optimization, and real-time decision-making. Conversely, wireless networks provide a vital infrastructure for the efficient training, deployment, and distributed inference of RL-based LLMs, especially in decentralized and edge computing environments. This mutual empowerment highlights the need for a deeper exploration of the interplay between these two domains. We first review recent advancements in wireless communications, highlighting the associated challenges and potential solutions. We then discuss the progress of RL-based LLMs, focusing on key technologies for LLM training, challenges, and potential solutions. Subsequently, we explore the mutual empowerment between these two fields, highlighting key motivations, open challenges, and potential solutions. Finally, we provide insights into future directions, applications, and their societal impact to further explore this intersection, paving the way for next-generation intelligent communication systems. Overall, this survey provides a comprehensive overview of the relationship between RL-based LLMs and wireless networks, offering a vision where these domains empower each other to drive innovations.
comment: 25 pages, 13 figures
♻ ☆ Coarse-to-Fine Lightweight Meta-Embedding for ID-Based Recommendation
The state-of-the-art recommendation systems have shifted the attention to efficient recommendation, e.g., on-device recommendation, under memory constraints. To this end, the existing methods either focused on the lightweight embeddings for both users and items, or involved on-device systems enjoying the compact embeddings to enhance reusability and reduces space complexity. However, they focus solely on the coarse granularity of embedding, while overlook the fine-grained semantic nuances, to adversarially downgrade the efficacy of meta-embeddings in capturing the intricate relationship over both user and item, consequently resulting into the suboptimal recommendations. In this paper, we aim to study how the meta-embedding can efficiently learn varied grained semantics, together with how the fine-grained meta-embedding can strengthen the representation of coarse-grained meta-embedding. To answer these questions, we develop a novel graph neural networks (GNNs) based recommender where each user and item serves as the node, linked directly to coarse-grained virtual nodes and indirectly to fine-grained virtual nodes, ensuring different grained semantic learning, while disclosing: 1) In contrast to coarse-grained semantics, fine-grained semantics are well captured through sparse meta-embeddings, which adaptively 2) balance the embedding uniqueness and memory constraint. Additionally, the initialization method come up upon SparsePCA, along with a soft thresholding activation function to render the sparseness of the meta-embeddings. We propose a weight bridging update strategy that focuses on matching each coarse-grained meta-embedding with several fine-grained meta-embeddings based on the users/items' semantics. Extensive experiments substantiate our method's superiority over existing baselines. Our code is available at https://github.com/htyjers/C2F-MetaEmbed.
comment: 16 pages, 6 figures, accepted to appear at Science China Information Sciences
♻ ☆ ANaGRAM: A Natural Gradient Relative to Adapted Model for efficient PINNs learning ICLR 2025
In the recent years, Physics Informed Neural Networks (PINNs) have received strong interest as a method to solve PDE driven systems, in particular for data assimilation purpose. This method is still in its infancy, with many shortcomings and failures that remain not properly understood. In this paper we propose a natural gradient approach to PINNs which contributes to speed-up and improve the accuracy of the training. Based on an in depth analysis of the differential geometric structures of the problem, we come up with two distinct contributions: (i) a new natural gradient algorithm that scales as $\min(P^2S, S^2P)$, where $P$ is the number of parameters, and $S$ the batch size; (ii) a mathematically principled reformulation of the PINNs problem that allows the extension of natural gradient to it, with proved connections to Green's function theory.
comment: accepted in ICLR 2025
♻ ☆ Contrastive Explanations That Anticipate Human Misconceptions Can Improve Human Decision-Making Skills
People's decision-making abilities often fail to improve or may even erode when they rely on AI for decision-support, even when the AI provides informative explanations. We argue this is partly because people intuitively seek contrastive explanations, which clarify the difference between the AI's decision and their own reasoning, while most AI systems offer "unilateral" explanations that justify the AI's decision but do not account for users' thinking. To align human-AI knowledge on decision tasks, we introduce a framework for generating human-centered contrastive explanations that explain the difference between AI's choice and a predicted, likely human choice about the same task. Results from a large-scale experiment (N = 628) demonstrate that contrastive explanations significantly enhance users' independent decision-making skills compared to unilateral explanations, without sacrificing decision accuracy. Amid rising deskilling concerns, our research demonstrates that incorporating human reasoning into AI design can foster human skill development.
♻ ☆ Assessing AI vs Human-Authored Spear Phishing SMS Attacks: An Empirical Study
This paper explores the use of Large Language Models (LLMs) in spear phishing message generation and evaluates their performance compared to human-authored counterparts. Our pilot study examines the effectiveness of smishing (SMS phishing) messages created by GPT-4 and human authors, which have been personalized for willing targets. The targets assessed these messages in a modified ranked-order experiment using a novel methodology we call TRAPD (Threshold Ranking Approach for Personalized Deception). Experiments involved ranking each spear phishing message from most to least convincing, providing qualitative feedback, and guessing which messages were human- or AI-generated. Results show that LLM-generated messages are often perceived as more convincing than those authored by humans, particularly job-related messages. Targets also struggled to distinguish between human- and AI-generated messages. We analyze different criteria the targets used to assess the persuasiveness and source of messages. This study aims to highlight the urgent need for further research and improved countermeasures against personalized AI-enabled social engineering attacks.
comment: 18 pages, 5 figures, 1 table
♻ ☆ VEGGIE: Instructional Editing and Reasoning of Video Concepts with Grounded Generation
Recent video diffusion models have enhanced video editing, but it remains challenging to handle instructional editing and diverse tasks (e.g., adding, removing, changing) within a unified framework. In this paper, we introduce VEGGIE, a Video Editor with Grounded Generation from Instructions, a simple end-to-end framework that unifies video concept editing, grounding, and reasoning based on diverse user instructions. Specifically, given a video and text query, VEGGIE first utilizes an MLLM to interpret user intentions in instructions and ground them to the video contexts, generating frame-specific grounded task queries for pixel-space responses. A diffusion model then renders these plans and generates edited videos that align with user intent. To support diverse tasks and complex instructions, we employ a curriculum learning strategy: first aligning the MLLM and video diffusion model with large-scale instructional image editing data, followed by end-to-end fine-tuning on high-quality multitask video data. Additionally, we introduce a novel data synthesis pipeline to generate paired instructional video editing data for model training. It transforms static image data into diverse, high-quality video editing samples by leveraging Image-to-Video models to inject dynamics. VEGGIE shows strong performance in instructional video editing with different editing skills, outperforming the best instructional baseline as a versatile model, while other models struggle with multi-tasking. VEGGIE also excels in video object grounding and reasoning segmentation, where other baselines fail. We further reveal how the multiple tasks help each other and highlight promising applications like zero-shot multimodal instructional and in-context video editing.
comment: First three authors contributed equally. Project page: https://veggie-gen.github.io/
♻ ☆ A Comprehensive Survey on Integrating Large Language Models with Knowledge-Based Methods
The rapid development of artificial intelligence has led to marked progress in the field. One interesting direction for research is whether Large Language Models (LLMs) can be integrated with structured knowledge-based systems. This approach aims to combine the generative language understanding of LLMs and the precise knowledge representation systems by which they are integrated. This article surveys the relationship between LLMs and knowledge bases, looks at how they can be applied in practice, and discusses related technical, operational, and ethical challenges. Utilizing a comprehensive examination of the literature, the study both identifies important issues and assesses existing solutions. It demonstrates the merits of incorporating generative AI into structured knowledge-base systems concerning data contextualization, model accuracy, and utilization of knowledge resources. The findings give a full list of the current situation of research, point out the main gaps, and propose helpful paths to take. These insights contribute to advancing AI technologies and support their practical deployment across various sectors.
♻ ☆ Graph Neural Networks for the Offline Nanosatellite Task Scheduling Problem
This study investigates how to schedule nanosatellite tasks more efficiently using Graph Neural Networks (GNNs). In the Offline Nanosatellite Task Scheduling (ONTS) problem, the goal is to find the optimal schedule for tasks to be carried out in orbit while taking into account Quality-of-Service (QoS) considerations such as priority, minimum and maximum activation events, execution time-frames, periods, and execution windows, as well as constraints on the satellite's power resources and the complexity of energy harvesting and management. The ONTS problem has been approached using conventional mathematical formulations and exact methods, but their applicability to challenging cases of the problem is limited. This study examines the use of GNNs in this context, which has been effectively applied to optimization problems such as the traveling salesman, scheduling, and facility placement problems. More specifically, we investigate whether GNNs can learn the complex structure of the ONTS problem with respect to feasibility and optimality of candidate solutions. Furthermore, we evaluate using GNN-based heuristic solutions to provide better solutions (w.r.t. the objective value) to the ONTS problem and reduce the optimization cost. Our experiments show that GNNs are not only able to learn feasibility and optimality for instances of the ONTS problem, but they can generalize to harder instances than those seen during training. Furthermore, the GNN-based heuristics improved the expected objective value of the best solution found under the time limit in 45%, and reduced the expected time to find a feasible solution in 35%, when compared to the SCIP (Solving Constraint Integer Programs) solver in its off-the-shelf configuration
♻ ☆ Search-R1: Training LLMs to Reason and Leverage Search Engines with Reinforcement Learning
Efficiently acquiring external knowledge and up-to-date information is essential for effective reasoning and text generation in large language models (LLMs). Prompting advanced LLMs with reasoning capabilities during inference to use search engines is not optimal, since the LLM does not learn how to optimally interact with the search engine. This paper introduces Search-R1, an extension of the DeepSeek-R1 model where the LLM learns -- solely through reinforcement learning (RL) -- to autonomously generate (multiple) search queries during step-by-step reasoning with real-time retrieval. Search-R1 optimizes LLM rollouts with multi-turn search interactions, leveraging retrieved token masking for stable RL training and a simple outcome-based reward function. Experiments on seven question-answering datasets show that Search-R1 improves performance by 26% (Qwen2.5-7B), 21% (Qwen2.5-3B), and 10% (LLaMA3.2-3B) over strong baselines. This paper further provides empirical insights into RL optimization methods, LLM choices, and response length dynamics in retrieval-augmented reasoning. The code and model checkpoints are available at https://github.com/PeterGriffinJin/Search-R1.
comment: 16 pages
♻ ☆ VideoRepair: Improving Text-to-Video Generation via Misalignment Evaluation and Localized Refinement
Recent text-to-video (T2V) diffusion models have demonstrated impressive generation capabilities across various domains. However, these models often generate videos that have misalignments with text prompts, especially when the prompts describe complex scenes with multiple objects and attributes. To address this, we introduce VideoRepair, a novel model-agnostic, training-free video refinement framework that automatically identifies fine-grained text-video misalignments and generates explicit spatial and textual feedback, enabling a T2V diffusion model to perform targeted, localized refinements. VideoRepair consists of two stages: In (1) video refinement planning, we first detect misalignments by generating fine-grained evaluation questions and answering them using an MLLM. Based on video evaluation outputs, we identify accurately generated objects and construct localized prompts to precisely refine misaligned regions. In (2) localized refinement, we enhance video alignment by 'repairing' the misaligned regions from the original video while preserving the correctly generated areas. This is achieved by frame-wise region decomposition using our Region-Preserving Segmentation (RPS) module. On two popular video generation benchmarks (EvalCrafter and T2V-CompBench), VideoRepair substantially outperforms recent baselines across various text-video alignment metrics. We provide a comprehensive analysis of VideoRepair components and qualitative examples.
comment: Project page: https://video-repair.github.io
♻ ☆ From Image to Video: An Empirical Study of Diffusion Representations
Diffusion models have revolutionized generative modeling, enabling unprecedented realism in image and video synthesis. This success has sparked interest in leveraging their representations for visual understanding tasks. While recent works have explored this potential for image generation, the visual understanding capabilities of video diffusion models remain largely uncharted. To address this gap, we systematically compare the same model architecture trained for video versus image generation, analyzing the performance of their latent representations on various downstream tasks including image classification, action recognition, depth estimation, and tracking. Results show that video diffusion models consistently outperform their image counterparts, though we find a striking range in the extent of this superiority. We further analyze features extracted from different layers and with varying noise levels, as well as the effect of model size and training budget on representation and generation quality. This work marks the first direct comparison of video and image diffusion objectives for visual understanding, offering insights into the role of temporal information in representation learning.
♻ ☆ From Isolated Conversations to Hierarchical Schemas: Dynamic Tree Memory Representation for LLMs
Recent advancements in large language models have significantly improved their context windows, yet challenges in effective long-term memory management remain. We introduce MemTree, an algorithm that leverages a dynamic, tree-structured memory representation to optimize the organization, retrieval, and integration of information, akin to human cognitive schemas. MemTree organizes memory hierarchically, with each node encapsulating aggregated textual content, corresponding semantic embeddings, and varying abstraction levels across the tree's depths. Our algorithm dynamically adapts this memory structure by computing and comparing semantic embeddings of new and existing information to enrich the model's context-awareness. This approach allows MemTree to handle complex reasoning and extended interactions more effectively than traditional memory augmentation methods, which often rely on flat lookup tables. Evaluations on benchmarks for multi-turn dialogue understanding and document question answering show that MemTree significantly enhances performance in scenarios that demand structured memory management.
♻ ☆ MRAG-Bench: Vision-Centric Evaluation for Retrieval-Augmented Multimodal Models ICLR 2025
Existing multimodal retrieval benchmarks primarily focus on evaluating whether models can retrieve and utilize external textual knowledge for question answering. However, there are scenarios where retrieving visual information is either more beneficial or easier to access than textual data. In this paper, we introduce a multimodal retrieval-augmented generation benchmark, MRAG-Bench, in which we systematically identify and categorize scenarios where visually augmented knowledge is better than textual knowledge, for instance, more images from varying viewpoints. MRAG-Bench consists of 16,130 images and 1,353 human-annotated multiple-choice questions across 9 distinct scenarios. With MRAG-Bench, we conduct an evaluation of 10 open-source and 4 proprietary large vision-language models (LVLMs). Our results show that all LVLMs exhibit greater improvements when augmented with images compared to textual knowledge, confirming that MRAG-Bench is vision-centric. Additionally, we conduct extensive analysis with MRAG-Bench, which offers valuable insights into retrieval-augmented LVLMs. Notably, the top-performing model, GPT-4o, faces challenges in effectively leveraging retrieved knowledge, achieving only a 5.82% improvement with ground-truth information, in contrast to a 33.16% improvement observed in human participants. These findings highlight the importance of MRAG-Bench in encouraging the community to enhance LVLMs' ability to utilize retrieved visual knowledge more effectively.
comment: ICLR 2025
♻ ☆ Latent Action Learning Requires Supervision in the Presence of Distractors ICLR 2025
Recently, latent action learning, pioneered by Latent Action Policies (LAPO), have shown remarkable pre-training efficiency on observation-only data, offering potential for leveraging vast amounts of video available on the web for embodied AI. However, prior work has focused on distractor-free data, where changes between observations are primarily explained by ground-truth actions. Unfortunately, real-world videos contain action-correlated distractors that may hinder latent action learning. Using Distracting Control Suite (DCS) we empirically investigate the effect of distractors on latent action learning and demonstrate that LAPO struggle in such scenario. We propose LAOM, a simple LAPO modification that improves the quality of latent actions by 8x, as measured by linear probing. Importantly, we show that providing supervision with ground-truth actions, as few as 2.5% of the full dataset, during latent action learning improves downstream performance by 4.2x on average. Our findings suggest that integrating supervision during Latent Action Models (LAM) training is critical in the presence of distractors, challenging the conventional pipeline of first learning LAM and only then decoding from latent to ground-truth actions.
comment: Preprint. In review. Edit: Accepted by ICLR 2025 Workshop on World Models: Understanding, Modelling and Scaling
♻ ☆ Continual Gesture Learning without Data via Synthetic Feature Sampling
Data-Free Class Incremental Learning (DFCIL) aims to enable models to continuously learn new classes while retraining knowledge of old classes, even when the training data for old classes is unavailable. Although explored primarily with image datasets by researchers, this study focuses on investigating DFCIL for skeleton-based gesture classification due to its significant real-world implications, particularly considering the growing prevalence of VR/AR headsets where gestures serve as the primary means of control and interaction. In this work, we made an intriguing observation: skeleton models trained with base classes(even very limited) demonstrate strong generalization capabilities to unseen classes without requiring additional training. Building on this insight, we developed Synthetic Feature Replay (SFR) that can sample synthetic features from class prototypes to replay for old classes and augment for new classes (under a few-shot setting). Our proposed method showcases significant advancements over the state-of-the-art, achieving up to 15% enhancements in mean accuracy across all steps and largely mitigating the accuracy imbalance between base classes and new classes.
♻ ☆ Semi-supervised Concept Bottleneck Models
Concept Bottleneck Models (CBMs) have garnered increasing attention due to their ability to provide concept-based explanations for black-box deep learning models while achieving high final prediction accuracy using human-like concepts. However, the training of current CBMs is heavily dependent on the precision and richness of the annotated concepts in the dataset. These concept labels are typically provided by experts, which can be costly and require significant resources and effort. Additionally, concept saliency maps frequently misalign with input saliency maps, causing concept predictions to correspond to irrelevant input features - an issue related to annotation alignment. To address these limitations, we propose a new framework called SSCBM (Semi-supervised Concept Bottleneck Model). Our SSCBM is suitable for practical situations where annotated data is scarce. By leveraging joint training on both labeled and unlabeled data and aligning the unlabeled data at the concept level, we effectively solve these issues. We proposed a strategy to generate pseudo labels and an alignment loss. Experiments demonstrate that our SSCBM is both effective and efficient. With only 10% labeled data, our model's concept and task accuracy on average across four datasets is only 2.44% and 3.93% lower, respectively, compared to the best baseline in the fully supervised learning setting.
comment: 16 pages
♻ ☆ Approximate Computing Survey, Part II: Application-Specific & Architectural Approximation Techniques and Applications
The challenging deployment of compute-intensive applications from domains such as Artificial Intelligence (AI) and Digital Signal Processing (DSP), forces the community of computing systems to explore new design approaches. Approximate Computing appears as an emerging solution, allowing to tune the quality of results in the design of a system in order to improve the energy efficiency and/or performance. This radical paradigm shift has attracted interest from both academia and industry, resulting in significant research on approximation techniques and methodologies at different design layers (from system down to integrated circuits). Motivated by the wide appeal of Approximate Computing over the last 10 years, we conduct a two-part survey to cover key aspects (e.g., terminology and applications) and review the state-of-the art approximation techniques from all layers of the traditional computing stack. Part II of the survey classifies and presents the technical details of application-specific and architectural approximation techniques, which both target the design of resource-efficient processors/accelerators and systems. Moreover, it reports a quantitative analysis of the techniques and a detailed analysis of the application spectrum of Approximate Computing, and finally, it discusses open challenges and future directions.
comment: Published in ACM Computing Surveys (Volume 57, Issue 7, 2025)
♻ ☆ Fast3R: Towards 3D Reconstruction of 1000+ Images in One Forward Pass CVPR 2025
Multi-view 3D reconstruction remains a core challenge in computer vision, particularly in applications requiring accurate and scalable representations across diverse perspectives. Current leading methods such as DUSt3R employ a fundamentally pairwise approach, processing images in pairs and necessitating costly global alignment procedures to reconstruct from multiple views. In this work, we propose Fast 3D Reconstruction (Fast3R), a novel multi-view generalization to DUSt3R that achieves efficient and scalable 3D reconstruction by processing many views in parallel. Fast3R's Transformer-based architecture forwards N images in a single forward pass, bypassing the need for iterative alignment. Through extensive experiments on camera pose estimation and 3D reconstruction, Fast3R demonstrates state-of-the-art performance, with significant improvements in inference speed and reduced error accumulation. These results establish Fast3R as a robust alternative for multi-view applications, offering enhanced scalability without compromising reconstruction accuracy.
comment: CVPR 2025. Project website: https://fast3r-3d.github.io/
♻ ☆ Chain-of-Thought Reasoning In The Wild Is Not Always Faithful ICLR 25
Chain-of-Thought (CoT) reasoning has significantly advanced state-of-the-art AI capabilities. However, recent studies have shown that CoT reasoning is not always faithful, i.e. CoT reasoning does not always reflect how models arrive at conclusions. So far, most of these studies have focused on unfaithfulness in unnatural contexts where an explicit bias has been introduced. In contrast, we show that unfaithful CoT can occur on realistic prompts with no artificial bias. Our results reveal non-negligible rates of several forms of unfaithful reasoning in frontier models: Sonnet 3.7 (16.3%), DeepSeek R1 (5.3%) and ChatGPT-4o (7.0%) all answer a notable proportion of question pairs unfaithfully. Specifically, we find that models rationalize their implicit biases in answers to binary questions ("implicit post-hoc rationalization"). For example, when separately presented with the questions "Is X bigger than Y?" and "Is Y bigger than X?", models sometimes produce superficially coherent arguments to justify answering Yes to both questions or No to both questions, despite such responses being logically contradictory. We also investigate restoration errors (Dziri et al., 2023), where models make and then silently correct errors in their reasoning, and unfaithful shortcuts, where models use clearly illogical reasoning to simplify solving problems in Putnam questions (a hard benchmark). Our findings raise challenges for AI safety work that relies on monitoring CoT to detect undesired behavior.
comment: Accepted to the Reasoning and Planning for LLMs Workshop (ICLR 25), 10 main paper pages, 39 appendix pages
♻ ☆ Attributing Culture-Conditioned Generations to Pretraining Corpora
In open-ended generative tasks like narrative writing or dialogue, large language models often exhibit cultural biases, showing limited knowledge and generating templated outputs for less prevalent cultures. Recent works show that these biases may stem from uneven cultural representation in pretraining corpora. This work investigates how pretraining leads to biased culture-conditioned generations by analyzing how models associate entities with cultures based on pretraining data patterns. We propose the MEMOed framework (MEMOrization from pretraining document) to determine whether a generation for a culture arises from memorization. Using MEMOed on culture-conditioned generations about food and clothing for 110 cultures, we find that high-frequency cultures in pretraining data yield more generations with memorized symbols, while some low-frequency cultures produce none. Additionally, the model favors generating entities with extraordinarily high frequency regardless of the conditioned culture, reflecting biases toward frequent pretraining terms irrespective of relevance. We hope that the MEMOed framework and our insights will inspire more works on attributing model performance on pretraining data.
♻ ☆ ViBe: A Text-to-Video Benchmark for Evaluating Hallucination in Large Multimodal Models
Recent advances in Large Multimodal Models (LMMs) have expanded their capabilities to video understanding, with Text-to-Video (T2V) models excelling in generating videos from textual prompts. However, they still frequently produce hallucinated content, revealing AI-generated inconsistencies. We introduce ViBe (https://vibe-t2v-bench.github.io/): a large-scale dataset of hallucinated videos from open-source T2V models. We identify five major hallucination types: Vanishing Subject, Omission Error, Numeric Variability, Subject Dysmorphia, and Visual Incongruity. Using ten T2V models, we generated and manually annotated 3,782 videos from 837 diverse MS COCO captions. Our proposed benchmark includes a dataset of hallucinated videos and a classification framework using video embeddings. ViBe serves as a critical resource for evaluating T2V reliability and advancing hallucination detection. We establish classification as a baseline, with the TimeSFormer + CNN ensemble achieving the best performance (0.345 accuracy, 0.342 F1 score). While initial baselines proposed achieve modest accuracy, this highlights the difficulty of automated hallucination detection and the need for improved methods. Our research aims to drive the development of more robust T2V models and evaluate their outputs based on user preferences.
♻ ☆ Undesirable Memorization in Large Language Models: A Survey
While recent research increasingly showcases the remarkable capabilities of Large Language Models (LLMs), it is equally crucial to examine their associated risks. Among these, privacy and security vulnerabilities are particularly concerning, posing significant ethical and legal challenges. At the heart of these vulnerabilities stands memorization, which refers to a model's tendency to store and reproduce phrases from its training data. This phenomenon has been shown to be a fundamental source to various privacy and security attacks against LLMs. In this paper, we provide a taxonomy of the literature on LLM memorization, exploring it across three dimensions: granularity, retrievability, and desirability. Next, we discuss the metrics and methods used to quantify memorization, followed by an analysis of the causes and factors that contribute to memorization phenomenon. We then explore strategies that are used so far to mitigate the undesirable aspects of this phenomenon. We conclude our survey by identifying potential research topics for the near future, including methods to balance privacy and performance, and the analysis of memorization in specific LLM contexts such as conversational agents, retrieval-augmented generation, and diffusion language models. Given the rapid research pace in this field, we also maintain a dedicated repository of the references discussed in this survey which will be regularly updated to reflect the latest developments.
♻ ☆ Robust Federated Learning Over the Air: Combating Heavy-Tailed Noise with Median Anchored Clipping
Leveraging over-the-air computations for model aggregation is an effective approach to cope with the communication bottleneck in federated edge learning. By exploiting the superposition properties of multi-access channels, this approach facilitates an integrated design of communication and computation, thereby enhancing system privacy while reducing implementation costs. However, the inherent electromagnetic interference in radio channels often exhibits heavy-tailed distributions, giving rise to exceptionally strong noise in globally aggregated gradients that can significantly deteriorate the training performance. To address this issue, we propose a novel gradient clipping method, termed Median Anchored Clipping (MAC), to combat the detrimental effects of heavy-tailed noise. We also derive analytical expressions for the convergence rate of model training with analog over-the-air federated learning under MAC, which quantitatively demonstrates the effect of MAC on training performance. Extensive experimental results show that the proposed MAC algorithm effectively mitigates the impact of heavy-tailed noise, hence substantially enhancing system robustness.
comment: This is the full version of the paper, and the appendix contains a complete convergence analysis under non-convex conditions
♻ ☆ Towards Adaptive Human-centric Video Anomaly Detection: A Comprehensive Framework and A New Benchmark
Human-centric Video Anomaly Detection (VAD) aims to identify human behaviors that deviate from normal. At its core, human-centric VAD faces substantial challenges, such as the complexity of diverse human behaviors, the rarity of anomalies, and ethical constraints. These challenges limit access to high-quality datasets and highlight the need for a dataset and framework supporting continual learning. Moving towards adaptive human-centric VAD, we introduce the HuVAD (Human-centric privacy-enhanced Video Anomaly Detection) dataset and a novel Unsupervised Continual Anomaly Learning (UCAL) framework. UCAL enables incremental learning, allowing models to adapt over time, bridging traditional training and real-world deployment. HuVAD prioritizes privacy by providing de-identified annotations and includes seven indoor/outdoor scenes, offering over 5x more pose-annotated frames than previous datasets. Our standard and continual benchmarks, utilize a comprehensive set of metrics, demonstrating that UCAL-enhanced models achieve superior performance in 82.14% of cases, setting a new state-of-the-art (SOTA). The dataset can be accessed at https://github.com/TeCSAR-UNCC/HuVAD.
♻ ☆ No, of course I can! Refusal Mechanisms Can Be Exploited Using Harmless Fine-Tuning Data
Leading language model (LM) providers like OpenAI and Google offer fine-tuning APIs that allow customers to adapt LMs for specific use cases. To prevent misuse, these LM providers implement filtering mechanisms to block harmful fine-tuning data. Consequently, adversaries seeking to produce unsafe LMs via these APIs must craft adversarial training data that are not identifiably harmful. We make three contributions in this context: 1. We show that many existing attacks that use harmless data to create unsafe LMs rely on eliminating model refusals in the first few tokens of their responses. 2. We show that such prior attacks can be blocked by a simple defense that pre-fills the first few tokens from an aligned model before letting the fine-tuned model fill in the rest. 3. We describe a new data-poisoning attack, ``No, Of course I Can Execute'' (NOICE), which exploits an LM's formulaic refusal mechanism to elicit harmful responses. By training an LM to refuse benign requests on the basis of safety before fulfilling those requests regardless, we are able to jailbreak several open-source models and a closed-source model (GPT-4o). We show an attack success rate (ASR) of 57% against GPT-4o; our attack earned a Bug Bounty from OpenAI. Against open-source models protected by simple defenses, we improve ASRs by an average of 3.25 times compared to the best performing previous attacks that use only harmless data. NOICE demonstrates the exploitability of repetitive refusal mechanisms and broadens understanding of the threats closed-source models face from harmless data.
♻ ☆ Neuron-based explanations of neural networks sacrifice completeness and interpretability
High quality explanations of neural networks (NNs) should exhibit two key properties. Completeness ensures that they accurately reflect a network's function and interpretability makes them understandable to humans. Many existing methods provide explanations of individual neurons within a network. In this work we provide evidence that for AlexNet pretrained on ImageNet, neuron-based explanation methods sacrifice both completeness and interpretability compared to activation principal components. Neurons are a poor basis for AlexNet embeddings because they don't account for the distributed nature of these representations. By examining two quantitative measures of completeness and conducting a user study to measure interpretability, we show the most important principal components provide more complete and interpretable explanations than the most important neurons. Much of the activation variance may be explained by examining relatively few high-variance PCs, as opposed to studying every neuron. These principal components also strongly affect network function, and are significantly more interpretable than neurons. Our findings suggest that explanation methods for networks like AlexNet should avoid using neurons as a basis for embeddings and instead choose a basis, such as principal components, which accounts for the high dimensional and distributed nature of a network's internal representations. Interactive demo and code available at https://ndey96.github.io/neuron-explanations-sacrifice.
comment: TMLR 2025
Graphics 9
☆ A Personalized Data-Driven Generative Model of Human Motion
The deployment of autonomous virtual avatars (in extended reality) and robots in human group activities - such as rehabilitation therapy, sports, and manufacturing - is expected to increase as these technologies become more pervasive. Designing cognitive architectures and control strategies to drive these agents requires realistic models of human motion. However, existing models only provide simplified descriptions of human motor behavior. In this work, we propose a fully data-driven approach, based on Long Short-Term Memory neural networks, to generate original motion that captures the unique characteristics of specific individuals. We validate the architecture using real data of scalar oscillatory motion. Extensive analyses show that our model effectively replicates the velocity distribution and amplitude envelopes of the individual it was trained on, remaining different from other individuals, and outperforming state-of-the-art models in terms of similarity to human data.
comment: 6 pages, 9 figures
☆ Fast But Accurate: A Real-Time Hyperelastic Simulator with Robust Frictional Contact
We present a GPU-friendly framework for real-time implicit simulation of elastic material in the presence of frictional contacts. The integration of hyperelasticity, non-interpenetration contact, and friction in real-time simulations presents formidable nonlinear and non-smooth problems, which are highly challenging to solve. By incorporating nonlinear complementarity conditions within the local-global framework, we achieve rapid convergence in addressing these challenges. While the structure of local-global methods is not fully GPU-friendly, our proposal of a simple yet efficient solver with sparse presentation of the system inverse enables highly parallel computing while maintaining a fast convergence rate. Moreover, our novel splitting strategy for non-smooth indicators not only amplifies overall performance but also refines the complementarity preconditioner, enhancing the accuracy of frictional behavior modeling. Through extensive experimentation, the robustness of our framework in managing real-time contact scenarios, ranging from large-scale systems and extreme deformations to non-smooth contacts and precise friction interactions, has been validated. Compatible with a wide range of hyperelastic models, our approach maintains efficiency across both low and high stiffness materials. Despite its remarkable efficiency, robustness, and generality, our method is elegantly simple, with its core contributions grounded solely on standard matrix operations.
☆ POSTA: A Go-to Framework for Customized Artistic Poster Generation CVPR 2025
Poster design is a critical medium for visual communication. Prior work has explored automatic poster design using deep learning techniques, but these approaches lack text accuracy, user customization, and aesthetic appeal, limiting their applicability in artistic domains such as movies and exhibitions, where both clear content delivery and visual impact are essential. To address these limitations, we present POSTA: a modular framework powered by diffusion models and multimodal large language models (MLLMs) for customized artistic poster generation. The framework consists of three modules. Background Diffusion creates a themed background based on user input. Design MLLM then generates layout and typography elements that align with and complement the background style. Finally, to enhance the poster's aesthetic appeal, ArtText Diffusion applies additional stylization to key text elements. The final result is a visually cohesive and appealing poster, with a fully modular process that allows for complete customization. To train our models, we develop the PosterArt dataset, comprising high-quality artistic posters annotated with layout, typography, and pixel-level stylized text segmentation. Our comprehensive experimental analysis demonstrates POSTA's exceptional controllability and design diversity, outperforming existing models in both text accuracy and aesthetic quality.
comment: Accepted to CVPR 2025
☆ ClimateGS: Real-Time Climate Simulation with 3D Gaussian Style Transfer
Adverse climate conditions pose significant challenges for autonomous systems, demanding reliable perception and decision-making across diverse environments. To better simulate these conditions, physically-based NeRF rendering methods have been explored for their ability to generate realistic scene representations. However, these methods suffer from slow rendering speeds and long preprocessing times, making them impractical for real-time testing and user interaction. This paper presents ClimateGS, a novel framework integrating 3D Gaussian representations with physical simulation to enable real-time climate effects rendering. The novelty of this work is threefold: 1) developing a linear transformation for 3D Gaussian photorealistic style transfer, enabling direct modification of spherical harmonics across bands for efficient and consistent style adaptation; 2) developing a joint training strategy for 3D style transfer, combining supervised and self-supervised learning to accelerate convergence while preserving original scene details; 3) developing a real-time rendering method for climate simulation, integrating physics-based effects with 3D Gaussian to achieve efficient and realistic rendering. We evaluate ClimateGS on MipNeRF360 and Tanks and Temples, demonstrating real-time rendering with comparable or superior visual quality to SOTA 2D/3D methods, making it suitable for interactive applications.
☆ How to Train Your Dragon: Automatic Diffusion-Based Rigging for Characters with Diverse Topologies
Recent diffusion-based methods have achieved impressive results on animating images of human subjects. However, most of that success has built on human-specific body pose representations and extensive training with labeled real videos. In this work, we extend the ability of such models to animate images of characters with more diverse skeletal topologies. Given a small number (3-5) of example frames showing the character in different poses with corresponding skeletal information, our model quickly infers a rig for that character that can generate images corresponding to new skeleton poses. We propose a procedural data generation pipeline that efficiently samples training data with diverse topologies on the fly. We use it, along with a novel skeleton representation, to train our model on articulated shapes spanning a large space of textures and topologies. Then during fine-tuning, our model rapidly adapts to unseen target characters and generalizes well to rendering new poses, both for realistic and more stylized cartoon appearances. To better evaluate performance on this novel and challenging task, we create the first 2D video dataset that contains both humanoid and non-humanoid subjects with per-frame keypoint annotations. With extensive experiments, we demonstrate the superior quality of our results. Project page: https://traindragondiffusion.github.io/
comment: Accepted to Eurographics 2025
☆ Shap-MeD
We present Shap-MeD, a text-to-3D object generative model specialized in the biomedical domain. The objective of this study is to develop an assistant that facilitates the 3D modeling of medical objects, thereby reducing development time. 3D modeling in medicine has various applications, including surgical procedure simulation and planning, the design of personalized prosthetic implants, medical education, the creation of anatomical models, and the development of research prototypes. To achieve this, we leverage Shap-e, an open-source text-to-3D generative model developed by OpenAI, and fine-tune it using a dataset of biomedical objects. Our model achieved a mean squared error (MSE) of 0.089 in latent generation on the evaluation set, compared to Shap-e's MSE of 0.147. Additionally, we conducted a qualitative evaluation, comparing our model with others in the generation of biomedical objects. Our results indicate that Shap-MeD demonstrates higher structural accuracy in biomedical object generation.
♻ ☆ ArtGS: Building Interactable Replicas of Complex Articulated Objects via Gaussian Splatting
Building articulated objects is a key challenge in computer vision. Existing methods often fail to effectively integrate information across different object states, limiting the accuracy of part-mesh reconstruction and part dynamics modeling, particularly for complex multi-part articulated objects. We introduce ArtGS, a novel approach that leverages 3D Gaussians as a flexible and efficient representation to address these issues. Our method incorporates canonical Gaussians with coarse-to-fine initialization and updates for aligning articulated part information across different object states, and employs a skinning-inspired part dynamics modeling module to improve both part-mesh reconstruction and articulation learning. Extensive experiments on both synthetic and real-world datasets, including a new benchmark for complex multi-part objects, demonstrate that ArtGS achieves state-of-the-art performance in joint parameter estimation and part mesh reconstruction. Our approach significantly improves reconstruction quality and efficiency, especially for multi-part articulated objects. Additionally, we provide comprehensive analyses of our design choices, validating the effectiveness of each component to highlight potential areas for future improvement. Our work is made publicly available at: https://articulate-gs.github.io.
♻ ☆ HandOS: 3D Hand Reconstruction in One Stage
Existing approaches of hand reconstruction predominantly adhere to a multi-stage framework, encompassing detection, left-right classification, and pose estimation. This paradigm induces redundant computation and cumulative errors. In this work, we propose HandOS, an end-to-end framework for 3D hand reconstruction. Our central motivation lies in leveraging a frozen detector as the foundation while incorporating auxiliary modules for 2D and 3D keypoint estimation. In this manner, we integrate the pose estimation capacity into the detection framework, while at the same time obviating the necessity of using the left-right category as a prerequisite. Specifically, we propose an interactive 2D-3D decoder, where 2D joint semantics is derived from detection cues while 3D representation is lifted from those of 2D joints. Furthermore, hierarchical attention is designed to enable the concurrent modeling of 2D joints, 3D vertices, and camera translation. Consequently, we achieve an end-to-end integration of hand detection, 2D pose estimation, and 3D mesh reconstruction within a one-stage framework, so that the above multi-stage drawbacks are overcome. Meanwhile, the HandOS reaches state-of-the-art performances on public benchmarks, e.g., 5.0 PA-MPJPE on FreiHand and 64.6\% PCK@0.05 on HInt-Ego4D. Project page: idea-research.github.io/HandOSweb.
♻ ☆ Fast3R: Towards 3D Reconstruction of 1000+ Images in One Forward Pass CVPR 2025
Multi-view 3D reconstruction remains a core challenge in computer vision, particularly in applications requiring accurate and scalable representations across diverse perspectives. Current leading methods such as DUSt3R employ a fundamentally pairwise approach, processing images in pairs and necessitating costly global alignment procedures to reconstruct from multiple views. In this work, we propose Fast 3D Reconstruction (Fast3R), a novel multi-view generalization to DUSt3R that achieves efficient and scalable 3D reconstruction by processing many views in parallel. Fast3R's Transformer-based architecture forwards N images in a single forward pass, bypassing the need for iterative alignment. Through extensive experiments on camera pose estimation and 3D reconstruction, Fast3R demonstrates state-of-the-art performance, with significant improvements in inference speed and reduced error accumulation. These results establish Fast3R as a robust alternative for multi-view applications, offering enhanced scalability without compromising reconstruction accuracy.
comment: CVPR 2025. Project website: https://fast3r-3d.github.io/
Robotics 80
☆ Tracking Meets Large Multimodal Models for Driving Scenario Understanding
Large Multimodal Models (LMMs) have recently gained prominence in autonomous driving research, showcasing promising capabilities across various emerging benchmarks. LMMs specifically designed for this domain have demonstrated effective perception, planning, and prediction skills. However, many of these methods underutilize 3D spatial and temporal elements, relying mainly on image data. As a result, their effectiveness in dynamic driving environments is limited. We propose to integrate tracking information as an additional input to recover 3D spatial and temporal details that are not effectively captured in the images. We introduce a novel approach for embedding this tracking information into LMMs to enhance their spatiotemporal understanding of driving scenarios. By incorporating 3D tracking data through a track encoder, we enrich visual queries with crucial spatial and temporal cues while avoiding the computational overhead associated with processing lengthy video sequences or extensive 3D inputs. Moreover, we employ a self-supervised approach to pretrain the tracking encoder to provide LMMs with additional contextual information, significantly improving their performance in perception, planning, and prediction tasks for autonomous driving. Experimental results demonstrate the effectiveness of our approach, with a gain of 9.5% in accuracy, an increase of 7.04 points in the ChatGPT score, and 9.4% increase in the overall score over baseline models on DriveLM-nuScenes benchmark, along with a 3.7% final score improvement on DriveLM-CARLA. Our code is available at https://github.com/mbzuai-oryx/TrackingMeetsLMM
comment: 13 pages, 8 figures, Github: https://github.com/mbzuai-oryx/TrackingMeetsLMM
☆ Cosmos-Transfer1: Conditional World Generation with Adaptive Multimodal Control
We introduce Cosmos-Transfer, a conditional world generation model that can generate world simulations based on multiple spatial control inputs of various modalities such as segmentation, depth, and edge. In the design, the spatial conditional scheme is adaptive and customizable. It allows weighting different conditional inputs differently at different spatial locations. This enables highly controllable world generation and finds use in various world-to-world transfer use cases, including Sim2Real. We conduct extensive evaluations to analyze the proposed model and demonstrate its applications for Physical AI, including robotics Sim2Real and autonomous vehicle data enrichment. We further demonstrate an inference scaling strategy to achieve real-time world generation with an NVIDIA GB200 NVL72 rack. To help accelerate research development in the field, we open-source our models and code at https://github.com/nvidia-cosmos/cosmos-transfer1.
☆ Manual, Semi or Fully Autonomous Flipper Control? A Framework for Fair Comparison
We investigated the performance of existing semi- and fully autonomous methods for controlling flipper-based skid-steer robots. Our study involves reimplementation of these methods for fair comparison and it introduces a novel semi-autonomous control policy that provides a compelling trade-off among current state-of-the-art approaches. We also propose new metrics for assessing cognitive load and traversal quality and offer a benchmarking interface for generating Quality-Load graphs from recorded data. Our results, presented in a 2D Quality-Load space, demonstrate that the new control policy effectively bridges the gap between autonomous and manual control methods. Additionally, we reveal a surprising fact that fully manual, continuous control of all six degrees of freedom remains highly effective when performed by an experienced operator on a well-designed analog controller from third person view.
☆ Flying in Highly Dynamic Environments with End-to-end Learning Approach
Obstacle avoidance for unmanned aerial vehicles like quadrotors is a popular research topic. Most existing research focuses only on static environments, and obstacle avoidance in environments with multiple dynamic obstacles remains challenging. This paper proposes a novel deep-reinforcement learning-based approach for the quadrotors to navigate through highly dynamic environments. We propose a lidar data encoder to extract obstacle information from the massive point cloud data from the lidar. Multi frames of historical scans will be compressed into a 2-dimension obstacle map while maintaining the obstacle features required. An end-to-end deep neural network is trained to extract the kinematics of dynamic and static obstacles from the obstacle map, and it will generate acceleration commands to the quadrotor to control it to avoid these obstacles. Our approach contains perception and navigating functions in a single neural network, which can change from a navigating state into a hovering state without mode switching. We also present simulations and real-world experiments to show the effectiveness of our approach while navigating in highly dynamic cluttered environments.
comment: IEEE Robotics and Automation Letters (2025)
☆ ADAPT: An Autonomous Forklift for Construction Site Operation
Efficient material logistics play a critical role in controlling costs and schedules in the construction industry. However, manual material handling remains prone to inefficiencies, delays, and safety risks. Autonomous forklifts offer a promising solution to streamline on-site logistics, reducing reliance on human operators and mitigating labor shortages. This paper presents the development and evaluation of the Autonomous Dynamic All-terrain Pallet Transporter (ADAPT), a fully autonomous off-road forklift designed for construction environments. Unlike structured warehouse settings, construction sites pose significant challenges, including dynamic obstacles, unstructured terrain, and varying weather conditions. To address these challenges, our system integrates AI-driven perception techniques with traditional approaches for decision making, planning, and control, enabling reliable operation in complex environments. We validate the system through extensive real-world testing, comparing its long-term performance against an experienced human operator across various weather conditions. We also provide a comprehensive analysis of challenges and key lessons learned, contributing to the advancement of autonomous heavy machinery. Our findings demonstrate that autonomous outdoor forklifts can operate near human-level performance, offering a viable path toward safer and more efficient construction logistics.
☆ Pushing Everything Everywhere All At Once: Probabilistic Prehensile Pushing
We address prehensile pushing, the problem of manipulating a grasped object by pushing against the environment. Our solution is an efficient nonlinear trajectory optimization problem relaxed from an exact mixed integer non-linear trajectory optimization formulation. The critical insight is recasting the external pushers (environment) as a discrete probability distribution instead of binary variables and minimizing the entropy of the distribution. The probabilistic reformulation allows all pushers to be used simultaneously, but at the optimum, the probability mass concentrates onto one due to the entropy minimization. We numerically compare our method against a state-of-the-art sampling-based baseline on a prehensile pushing task. The results demonstrate that our method finds trajectories 8 times faster and at a 20 times lower cost than the baseline. Finally, we demonstrate that a simulated and real Franka Panda robot can successfully manipulate different objects following the trajectories proposed by our method. Supplementary materials are available at https://probabilistic-prehensile-pushing.github.io/.
comment: This paper has been accepted for publication in the IEEE Robotics and Automation Letters (RA-L)
☆ Quantization-Free Autoregressive Action Transformer
Current transformer-based imitation learning approaches introduce discrete action representations and train an autoregressive transformer decoder on the resulting latent code. However, the initial quantization breaks the continuous structure of the action space thereby limiting the capabilities of the generative model. We propose a quantization-free method instead that leverages Generative Infinite-Vocabulary Transformers (GIVT) as a direct, continuous policy parametrization for autoregressive transformers. This simplifies the imitation learning pipeline while achieving state-of-the-art performance on a variety of popular simulated robotics tasks. We enhance our policy roll-outs by carefully studying sampling algorithms, further improving the results.
☆ A Chain-Driven, Sandwich-Legged Quadruped Robot: Design and Experimental Analysis
This paper introduces a chain-driven, sandwich-legged, mid-size quadruped robot designed as an accessible research platform. The design prioritizes enhanced locomotion capabilities, improved reliability and safety of the actuation system, and simplified, cost-effective manufacturing processes. Locomotion performance is optimized through a sandwiched leg design and a dual-motor configuration, reducing leg inertia for agile movements. Reliability and safety are achieved by integrating robust cable strain reliefs, efficient heat sinks for motor thermal management, and mechanical limits to restrict leg motion. Simplified design considerations include a quasi-direct drive (QDD) actuator and the adoption of low-cost fabrication techniques, such as laser cutting and 3D printing, to minimize cost and ensure rapid prototyping. The robot weighs approximately 25 kg and is developed at a cost under \$8000, making it a scalable and affordable solution for robotics research. Experimental validations demonstrate the platform's capability to execute trot and crawl gaits on flat terrain and slopes, highlighting its potential as a versatile and reliable quadruped research platform.
comment: 6 pages, 9 figures
☆ CTSAC: Curriculum-Based Transformer Soft Actor-Critic for Goal-Oriented Robot Exploration ICRA
With the increasing demand for efficient and flexible robotic exploration solutions, Reinforcement Learning (RL) is becoming a promising approach in the field of autonomous robotic exploration. However, current RL-based exploration algorithms often face limited environmental reasoning capabilities, slow convergence rates, and substantial challenges in Sim-To-Real (S2R) transfer. To address these issues, we propose a Curriculum Learning-based Transformer Reinforcement Learning Algorithm (CTSAC) aimed at improving both exploration efficiency and transfer performance. To enhance the robot's reasoning ability, a Transformer is integrated into the perception network of the Soft Actor-Critic (SAC) framework, leveraging historical information to improve the farsightedness of the strategy. A periodic review-based curriculum learning is proposed, which enhances training efficiency while mitigating catastrophic forgetting during curriculum transitions. Training is conducted on the ROS-Gazebo continuous robotic simulation platform, with LiDAR clustering optimization to further reduce the S2R gap. Experimental results demonstrate the CTSAC algorithm outperforms the state-of-the-art non-learning and learning-based algorithms in terms of success rate and success rate-weighted exploration time. Moreover, real-world experiments validate the strong S2R transfer capabilities of CTSAC.
comment: 7pages,7 figures,Thesis received by 2025 ICRA
☆ GeoFlow-SLAM: A Robust Tightly-Coupled RGBD-Inertial Fusion SLAM for Dynamic Legged Robotics
This paper presents GeoFlow-SLAM, a robust and effective Tightly-Coupled RGBD-inertial SLAM for legged robots operating in highly dynamic environments.By integrating geometric consistency, legged odometry constraints, and dual-stream optical flow (GeoFlow), our method addresses three critical challenges:feature matching and pose initialization failures during fast locomotion and visual feature scarcity in texture-less scenes.Specifically, in rapid motion scenarios, feature matching is notably enhanced by leveraging dual-stream optical flow, which combines prior map points and poses. Additionally, we propose a robust pose initialization method for fast locomotion and IMU error in legged robots, integrating IMU/Legged odometry, inter-frame Perspective-n-Point (PnP), and Generalized Iterative Closest Point (GICP). Furthermore, a novel optimization framework that tightly couples depth-to-map and GICP geometric constraints is first introduced to improve the robustness and accuracy in long-duration, visually texture-less environments. The proposed algorithms achieve state-of-the-art (SOTA) on collected legged robots and open-source datasets. To further promote research and development, the open-source datasets and code will be made publicly available at https://github.com/NSN-Hello/GeoFlow-SLAM
comment: 8 pages
☆ HA-VLN: A Benchmark for Human-Aware Navigation in Discrete-Continuous Environments with Dynamic Multi-Human Interactions, Real-World Validation, and an Open Leaderboard
Vision-and-Language Navigation (VLN) systems often focus on either discrete (panoramic) or continuous (free-motion) paradigms alone, overlooking the complexities of human-populated, dynamic environments. We introduce a unified Human-Aware VLN (HA-VLN) benchmark that merges these paradigms under explicit social-awareness constraints. Our contributions include: 1. A standardized task definition that balances discrete-continuous navigation with personal-space requirements; 2. An enhanced human motion dataset (HAPS 2.0) and upgraded simulators capturing realistic multi-human interactions, outdoor contexts, and refined motion-language alignment; 3. Extensive benchmarking on 16,844 human-centric instructions, revealing how multi-human dynamics and partial observability pose substantial challenges for leading VLN agents; 4. Real-world robot tests validating sim-to-real transfer in crowded indoor spaces; and 5. A public leaderboard supporting transparent comparisons across discrete and continuous tasks. Empirical results show improved navigation success and fewer collisions when social context is integrated, underscoring the need for human-centric design. By releasing all datasets, simulators, agent code, and evaluation tools, we aim to advance safer, more capable, and socially responsible VLN research.
comment: 27 pages, website: https://ha-vln-project.vercel.app/
☆ Stochastic Trajectory Prediction under Unstructured Constraints ICRA 2025
Trajectory prediction facilitates effective planning and decision-making, while constrained trajectory prediction integrates regulation into prediction. Recent advances in constrained trajectory prediction focus on structured constraints by constructing optimization objectives. However, handling unstructured constraints is challenging due to the lack of differentiable formal definitions. To address this, we propose a novel method for constrained trajectory prediction using a conditional generative paradigm, named Controllable Trajectory Diffusion (CTD). The key idea is that any trajectory corresponds to a degree of conformity to a constraint. By quantifying this degree and treating it as a condition, a model can implicitly learn to predict trajectories under unstructured constraints. CTD employs a pre-trained scoring model to predict the degree of conformity (i.e., a score), and uses this score as a condition for a conditional diffusion model to generate trajectories. Experimental results demonstrate that CTD achieves high accuracy on the ETH/UCY and SDD benchmarks. Qualitative analysis confirms that CTD ensures adherence to unstructured constraints and can predict trajectories that satisfy combinatorial constraints.
comment: has been accepted by ICRA 2025
☆ Variable Time-Step MPC for Agile Multi-Rotor UAV Interception of Dynamic Targets
Agile trajectory planning can improve the efficiency of multi-rotor Uncrewed Aerial Vehicles (UAVs) in scenarios with combined task-oriented and kinematic trajectory planning, such as monitoring spatio-temporal phenomena or intercepting dynamic targets. Agile planning using existing non-linear model predictive control methods is limited by the number of planning steps as it becomes increasingly computationally demanding. That reduces the prediction horizon length, leading to a decrease in solution quality. Besides, the fixed time-step length limits the utilization of the available UAV dynamics in the target neighborhood. In this paper, we propose to address these limitations by introducing variable time steps and coupling them with the prediction horizon length. A simplified point-mass motion primitive is used to leverage the differential flatness of quadrotor dynamics and the generation of feasible trajectories in the flat output space. Based on the presented evaluation results and experimentally validated deployment, the proposed method increases the solution quality by enabling planning for long flight segments but allowing tightly sampled maneuvering.
☆ Bridging Past and Future: End-to-End Autonomous Driving with Historical Prediction and Planning CVPR 2025
End-to-end autonomous driving unifies tasks in a differentiable framework, enabling planning-oriented optimization and attracting growing attention. Current methods aggregate historical information either through dense historical bird's-eye-view (BEV) features or by querying a sparse memory bank, following paradigms inherited from detection. However, we argue that these paradigms either omit historical information in motion planning or fail to align with its multi-step nature, which requires predicting or planning multiple future time steps. In line with the philosophy of future is a continuation of past, we propose BridgeAD, which reformulates motion and planning queries as multi-step queries to differentiate the queries for each future time step. This design enables the effective use of historical prediction and planning by applying them to the appropriate parts of the end-to-end system based on the time steps, which improves both perception and motion planning. Specifically, historical queries for the current frame are combined with perception, while queries for future frames are integrated with motion planning. In this way, we bridge the gap between past and future by aggregating historical insights at every time step, enhancing the overall coherence and accuracy of the end-to-end autonomous driving pipeline. Extensive experiments on the nuScenes dataset in both open-loop and closed-loop settings demonstrate that BridgeAD achieves state-of-the-art performance.
comment: CVPR 2025
☆ GPU-Accelerated Motion Planning of an Underactuated Forestry Crane in Cluttered Environments
Autonomous large-scale machine operations require fast, efficient, and collision-free motion planning while addressing unique challenges such as hydraulic actuation limits and underactuated joint dynamics. This paper presents a novel two-step motion planning framework designed for an underactuated forestry crane. The first step employs GPU-accelerated stochastic optimization to rapidly compute a globally shortest collision-free path. The second step refines this path into a dynamically feasible trajectory using a trajectory optimizer that ensures compliance with system dynamics and actuation constraints. The proposed approach is benchmarked against conventional techniques, including RRT-based methods and purely optimization-based approaches. Simulation results demonstrate substantial improvements in computation speed and motion feasibility, making this method highly suitable for complex crane systems.
comment: 7 pages
☆ Foundation Feature-Driven Online End-Effector Pose Estimation: A Marker-Free and Learning-Free Approach
Accurate transformation estimation between camera space and robot space is essential. Traditional methods using markers for hand-eye calibration require offline image collection, limiting their suitability for online self-calibration. Recent learning-based robot pose estimation methods, while advancing online calibration, struggle with cross-robot generalization and require the robot to be fully visible. This work proposes a Foundation feature-driven online End-Effector Pose Estimation (FEEPE) algorithm, characterized by its training-free and cross end-effector generalization capabilities. Inspired by the zero-shot generalization capabilities of foundation models, FEEPE leverages pre-trained visual features to estimate 2D-3D correspondences derived from the CAD model and target image, enabling 6D pose estimation via the PnP algorithm. To resolve ambiguities from partial observations and symmetry, a multi-historical key frame enhanced pose optimization algorithm is introduced, utilizing temporal information for improved accuracy. Compared to traditional hand-eye calibration, FEEPE enables marker-free online calibration. Unlike robot pose estimation, it generalizes across robots and end-effectors in a training-free manner. Extensive experiments demonstrate its superior flexibility, generalization, and performance.
☆ Robust Safety Critical Control Under Multiple State and Input Constraints: Volume Control Barrier Function Method
In this paper, the safety-critical control problem for uncertain systems under multiple control barrier function (CBF) constraints and input constraints is investigated. A novel framework is proposed to generate a safety filter that minimizes changes to reference inputs when safety risks arise, ensuring a balance between safety and performance. A nonlinear disturbance observer (DOB) based on the robust integral of the sign of the error (RISE) is used to estimate system uncertainties, ensuring that the estimation error converges to zero exponentially. This error bound is integrated into the safety-critical controller to reduce conservativeness while ensuring safety. To further address the challenges arising from multiple CBF and input constraints, a novel Volume CBF (VCBF) is proposed by analyzing the feasible space of the quadratic programming (QP) problem. % ensuring solution feasibility by keeping the volume as a positive value. To ensure that the feasible space does not vanish under disturbances, a DOB-VCBF-based method is introduced, ensuring system safety while maintaining the feasibility of the resulting QP. Subsequently, several groups of simulation and experimental results are provided to validate the effectiveness of the proposed controller.
☆ FlexVLN: Flexible Adaptation for Diverse Vision-and-Language Navigation Tasks
The aspiration of the Vision-and-Language Navigation (VLN) task has long been to develop an embodied agent with robust adaptability, capable of seamlessly transferring its navigation capabilities across various tasks. Despite remarkable advancements in recent years, most methods necessitate dataset-specific training, thereby lacking the capability to generalize across diverse datasets encompassing distinct types of instructions. Large language models (LLMs) have demonstrated exceptional reasoning and generalization abilities, exhibiting immense potential in robot action planning. In this paper, we propose FlexVLN, an innovative hierarchical approach to VLN that integrates the fundamental navigation ability of a supervised-learning-based Instruction Follower with the robust generalization ability of the LLM Planner, enabling effective generalization across diverse VLN datasets. Moreover, a verification mechanism and a multi-model integration mechanism are proposed to mitigate potential hallucinations by the LLM Planner and enhance execution accuracy of the Instruction Follower. We take REVERIE, SOON, and CVDN-target as out-of-domain datasets for assessing generalization ability. The generalization performance of FlexVLN surpasses that of all the previous methods to a large extent.
☆ COLSON: Controllable Learning-Based Social Navigation via Diffusion-Based Reinforcement Learning IROS 2025
Mobile robot navigation in dynamic environments with pedestrian traffic is a key challenge in the development of autonomous mobile service robots. Recently, deep reinforcement learning-based methods have been actively studied and have outperformed traditional rule-based approaches owing to their optimization capabilities. Among these, methods that assume a continuous action space typically rely on a Gaussian distribution assumption, which limits the flexibility of generated actions. Meanwhile, the application of diffusion models to reinforcement learning has advanced, allowing for more flexible action distributions compared with Gaussian distribution-based approaches. In this study, we applied a diffusion-based reinforcement learning approach to social navigation and validated its effectiveness. Furthermore, by leveraging the characteristics of diffusion models, we propose an extension that enables post-training action smoothing and adaptation to static obstacle scenarios not considered during the training steps.
comment: This work has been submitted to IROS 2025 for possible publication
☆ A bio-inspired sand-rolling robot: effect of body shape on sand rolling performance
The capability of effectively moving on complex terrains such as sand and gravel can empower our robots to robustly operate in outdoor environments, and assist with critical tasks such as environment monitoring, search-and-rescue, and supply delivery. Inspired by the Mount Lyell salamander's ability to curl its body into a loop and effectively roll down {\Revision hill slopes}, in this study we develop a sand-rolling robot and investigate how its locomotion performance is governed by the shape of its body. We experimentally tested three different body shapes: Hexagon, Quadrilateral, and Triangle. We found that Hexagon and Triangle can achieve a faster rolling speed on sand, but exhibited more frequent failures of getting stuck. Analysis of the interaction between robot and sand revealed the failure mechanism: the deformation of the sand produced a local ``sand incline'' underneath robot contact segments, increasing the effective region of supporting polygon (ERSP) and preventing the robot from shifting its center of mass (CoM) outside the ERSP to produce sustainable rolling. Based on this mechanism, a highly-simplified model successfully captured the critical body pitch for each rolling shape to produce sustained rolling on sand, and informed design adaptations that mitigated the locomotion failures and improved robot speed by more than 200$\%$. Our results provide insights into how locomotors can utilize different morphological features to achieve robust rolling motion across deformable substrates.
☆ Learning Bimanual Manipulation via Action Chunking and Inter-Arm Coordination with Transformers
Robots that can operate autonomously in a human living environment are necessary to have the ability to handle various tasks flexibly. One crucial element is coordinated bimanual movements that enable functions that are difficult to perform with one hand alone. In recent years, learning-based models that focus on the possibilities of bimanual movements have been proposed. However, the high degree of freedom of the robot makes it challenging to reason about control, and the left and right robot arms need to adjust their actions depending on the situation, making it difficult to realize more dexterous tasks. To address the issue, we focus on coordination and efficiency between both arms, particularly for synchronized actions. Therefore, we propose a novel imitation learning architecture that predicts cooperative actions. We differentiate the architecture for both arms and add an intermediate encoder layer, Inter-Arm Coordinated transformer Encoder (IACE), that facilitates synchronization and temporal alignment to ensure smooth and coordinated actions. To verify the effectiveness of our architectures, we perform distinctive bimanual tasks. The experimental results showed that our model demonstrated a high success rate for comparison and suggested a suitable architecture for the policy learning of bimanual manipulation.
comment: 6 pages, 5 figures, 1 table
☆ Project URSULA: Design of a Robotic Squid for Underwater Manipulation
With this paper, the design of a biomimetic robotic squid (dubbed URSULA) developed for dexterous underwater manipulation is presented. The robot serves as a test bed for several novel underwater technologies such as soft manipulators, propeller-less propulsion, model mediated tele-operation with video and haptic feedback, sonar-based underwater mapping, localization, and navigation, and high bandwidth visible light communications. Following the finalization of the detailed design, a prototype is manufactured and is currently undergoing pool tests.
comment: Presented during the IEEE OES AUV 2024 Symposium held in Boston, MA, USA between the dates 18-20 September, 2024. 6 pages, 7 pages, 17 references
☆ Evaluating Global Geo-alignment for Precision Learned Autonomous Vehicle Localization using Aerial Data ICRA
Recently there has been growing interest in the use of aerial and satellite map data for autonomous vehicles, primarily due to its potential for significant cost reduction and enhanced scalability. Despite the advantages, aerial data also comes with challenges such as a sensor-modality gap and a viewpoint difference gap. Learned localization methods have shown promise for overcoming these challenges to provide precise metric localization for autonomous vehicles. Most learned localization methods rely on coarsely aligned ground truth, or implicit consistency-based methods to learn the localization task -- however, in this paper we find that improving the alignment between aerial data and autonomous vehicle sensor data at training time is critical to the performance of a learning-based localization system. We compare two data alignment methods using a factor graph framework and, using these methods, we then evaluate the effects of closely aligned ground truth on learned localization accuracy through ablation studies. Finally, we evaluate a learned localization system using the data alignment methods on a comprehensive (1600km) autonomous vehicle dataset and demonstrate localization error below 0.3m and 0.5$^{\circ}$ sufficient for autonomous vehicle applications.
comment: 8 pages, 7 figures, accepted by International Conference on Robotics and Automation (ICRA) 2025
☆ VARP: Reinforcement Learning from Vision-Language Model Feedback with Agent Regularized Preferences
Designing reward functions for continuous-control robotics often leads to subtle misalignments or reward hacking, especially in complex tasks. Preference-based RL mitigates some of these pitfalls by learning rewards from comparative feedback rather than hand-crafted signals, yet scaling human annotations remains challenging. Recent work uses Vision-Language Models (VLMs) to automate preference labeling, but a single final-state image generally fails to capture the agent's full motion. In this paper, we present a two-part solution that both improves feedback accuracy and better aligns reward learning with the agent's policy. First, we overlay trajectory sketches on final observations to reveal the path taken, allowing VLMs to provide more reliable preferences-improving preference accuracy by approximately 15-20% in metaworld tasks. Second, we regularize reward learning by incorporating the agent's performance, ensuring that the reward model is optimized based on data generated by the current policy; this addition boosts episode returns by 20-30% in locomotion tasks. Empirical studies on metaworld demonstrate that our method achieves, for instance, around 70-80% success rate in all tasks, compared to below 50% for standard approaches. These results underscore the efficacy of combining richer visual representations with agent-aware reward regularization.
comment: 8 pages
☆ Automatic MILP Model Construction for Multi-Robot Task Allocation and Scheduling Based on Large Language Models
With the accelerated development of Industry 4.0, intelligent manufacturing systems increasingly require efficient task allocation and scheduling in multi-robot systems. However, existing methods rely on domain expertise and face challenges in adapting to dynamic production constraints. Additionally, enterprises have high privacy requirements for production scheduling data, which prevents the use of cloud-based large language models (LLMs) for solution development. To address these challenges, there is an urgent need for an automated modeling solution that meets data privacy requirements. This study proposes a knowledge-augmented mixed integer linear programming (MILP) automated formulation framework, integrating local LLMs with domain-specific knowledge bases to generate executable code from natural language descriptions automatically. The framework employs a knowledge-guided DeepSeek-R1-Distill-Qwen-32B model to extract complex spatiotemporal constraints (82% average accuracy) and leverages a supervised fine-tuned Qwen2.5-Coder-7B-Instruct model for efficient MILP code generation (90% average accuracy). Experimental results demonstrate that the framework successfully achieves automatic modeling in the aircraft skin manufacturing case while ensuring data privacy and computational efficiency. This research provides a low-barrier and highly reliable technical path for modeling in complex industrial scenarios.
☆ A Systematic Digital Engineering Approach to Verification & Validation of Autonomous Ground Vehicles in Off-Road Environments
The engineering community currently encounters significant challenges in the systematic development and validation of autonomy algorithms for off-road ground vehicles. These challenges are posed by unusually high test parameters and algorithmic variants. In order to address these pain points, this work presents an optimized digital engineering framework that tightly couples digital twin simulations with model-based systems engineering (MBSE) and model-based design (MBD) workflows. The efficacy of the proposed framework is demonstrated through an end-to-end case study of an autonomous light tactical vehicle (LTV) performing visual servoing to drive along a dirt road and reacting to any obstacles or environmental changes. The presented methodology allows for traceable requirements engineering, efficient variant management, granular parameter sweep setup, systematic test-case definition, and automated execution of the simulations. The candidate off-road autonomy algorithm is evaluated for satisfying requirements against a battery of 128 test cases, which is procedurally generated based on the test parameters (times of the day and weather conditions) and algorithmic variants (perception, planning, and control sub-systems). Finally, the test results and key performance indicators are logged, and the test report is generated automatically. This then allows for manual as well as automated data analysis with traceability and tractability across the digital thread.
comment: DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. OPSEC9523
☆ Nonlinear Modeling and Observability of a Planar Multi-Link Robot with Link Thrusters
This work is motivated by the development of cooperative teams of small, soft underwater robots designed to accomplish complex tasks through collective behavior. These robots take inspiration from biology: salps are gelatinous, jellyfish-like marine animals that utilize jet propulsion for maneuvering and can physically connect to form dynamic chains of arbitrary shape and size. The primary contributions of this research are twofold: first, we adapt a planar nonlinear multi-link snake robot model to model a planar multi-link salp-inspired system by removing joint actuators, introducing link thrusters, and allowing for non-uniform link lengths, masses, and moments of inertia. Second, we conduct a nonlinear observability analysis of the multi-link system with link thrusters, showing that the link angles, angular velocities, masses, and moments of inertia are locally observable when equipped with inertial measurement units and operating under specific thruster conditions. This research provides a theoretical foundation for modeling and estimating both the state and intrinsic parameters of a multi-link system with link thrusters, which are essential for effective controller design and performance.
comment: 6 pages, 1 table
☆ Dexterous Control of an 11-DOF Redundant Robot for CT-Guided Needle Insertion With Task-Oriented Weighted Policies
Computed tomography (CT)-guided needle biopsies are critical for diagnosing a range of conditions, including lung cancer, but present challenges such as limited in-bore space, prolonged procedure times, and radiation exposure. Robotic assistance offers a promising solution by improving needle trajectory accuracy, reducing radiation exposure, and enabling real-time adjustments. In our previous work, we introduced a redundant robotic platform designed for dexterous needle insertion within the confined CT bore. However, its limited base mobility restricts flexible deployment in clinical settings. In this study, we present an improved 11-degree-of-freedom (DOF) robotic system that integrates a 6-DOF robotic base with a 5-DOF cable-driven end-effector, significantly enhancing workspace flexibility and precision. With the hyper-redundant degrees of freedom, we introduce a weighted inverse kinematics controller with a two-stage priority scheme for large-scale movement and fine in-bore adjustments, along with a null-space control strategy to optimize dexterity. We validate our system through both simulation and real-world experiments, demonstrating superior tracking accuracy and enhanced manipulability in CT-guided procedures. The study provides a strong case for hyper-redundancy and null-space control formulations for robot-assisted needle biopsy scenarios.
☆ GR00T N1: An Open Foundation Model for Generalist Humanoid Robots
General-purpose robots need a versatile body and an intelligent mind. Recent advancements in humanoid robots have shown great promise as a hardware platform for building generalist autonomy in the human world. A robot foundation model, trained on massive and diverse data sources, is essential for enabling the robots to reason about novel situations, robustly handle real-world variability, and rapidly learn new tasks. To this end, we introduce GR00T N1, an open foundation model for humanoid robots. GR00T N1 is a Vision-Language-Action (VLA) model with a dual-system architecture. The vision-language module (System 2) interprets the environment through vision and language instructions. The subsequent diffusion transformer module (System 1) generates fluid motor actions in real time. Both modules are tightly coupled and jointly trained end-to-end. We train GR00T N1 with a heterogeneous mixture of real-robot trajectories, human videos, and synthetically generated datasets. We show that our generalist robot model GR00T N1 outperforms the state-of-the-art imitation learning baselines on standard simulation benchmarks across multiple robot embodiments. Furthermore, we deploy our model on the Fourier GR-1 humanoid robot for language-conditioned bimanual manipulation tasks, achieving strong performance with high data efficiency.
comment: Authors are listed alphabetically. Project leads are Linxi "Jim" Fan and Yuke Zhu
☆ Parking control of an active-joint center-articulated mobile robot based on feedback from beacons
This paper presents an autonomous parking control system for an active-joint center-articulated mobile robot. We begin by proposing a kinematic model of the robot, then derive a control law designed to stabilize the vehicle's configuration within a small neighborhood of the target position. The control law is developed using Lyapunov techniques and is based on the robot's equations of motion in polar coordinates. Additionally, a beacon-based guidance system provides real-time feedback on the target's position and orientation. Simulation results demonstrate the robot's capability to start from arbitrary initial positions and orientations and successfully achieve parking.
comment: IEEE Conference - CCECE 2010
☆ Using Mobile AR for Rapid Feasibility Analysis for Deployment of Robots: A Usability Study with Non-Expert Users
Automating a production line with robotic arms is a complex, demanding task that requires not only substantial resources but also a deep understanding of the automated processes and available technologies and tools. Expert integrators must consider factors such as placement, payload, and robot reach requirements to determine the feasibility of automation. Ideally, such considerations are based on a detailed digital simulation developed before any hardware is deployed. However, this process is often time-consuming and challenging. To simplify these processes, we introduce a much simpler method for the feasibility analysis of robotic arms' reachability, designed for non-experts. We implement this method through a mobile, sensing-based prototype tool. The two-step experimental evaluation included the expert user study results, which helped us identify the difficulty levels of various deployment scenarios and refine the initial prototype. The results of the subsequent quantitative study with 22 non-expert participants utilizing both scenarios indicate that users could complete both simple and complex feasibility analyses in under ten minutes, exhibiting similar cognitive loads and high engagement. Overall, the results suggest that the tool was well-received and rated as highly usable, thereby showing a new path for changing the ease of feasibility analysis for automation.
comment: Submitted to IEEE RA-L
☆ ViVa-SAFELAND: a New Freeware for Safe Validation of Vision-based Navigation in Aerial Vehicles
ViVa-SAFELAND is an open source software library, aimed to test and evaluate vision-based navigation strategies for aerial vehicles, with special interest in autonomous landing, while complying with legal regulations and people's safety. It consists of a collection of high definition aerial videos, focusing on real unstructured urban scenarios, recording moving obstacles of interest, such as cars and people. Then, an Emulated Aerial Vehicle (EAV) with a virtual moving camera is implemented in order to ``navigate" inside the video, according to high-order commands. ViVa-SAFELAND provides a new, safe, simple and fair comparison baseline to evaluate and compare different visual navigation solutions under the same conditions, and to randomize variables along several trials. It also facilitates the development of autonomous landing and navigation strategies, as well as the generation of image datasets for different training tasks. Moreover, it is useful for training either human of autonomous pilots using deep learning. The effectiveness of the framework for validating vision algorithms is demonstrated through two case studies, detection of moving objects and risk assessment segmentation. To our knowledge, this is the first safe validation framework of its kind, to test and compare visual navigation solution for aerial vehicles, which is a crucial aspect for urban deployment in complex real scenarios.
comment: paper under review for publication
☆ ARC-Calib: Autonomous Markerless Camera-to-Robot Calibration via Exploratory Robot Motions
Camera-to-robot (also known as eye-to-hand) calibration is a critical component of vision-based robot manipulation. Traditional marker-based methods often require human intervention for system setup. Furthermore, existing autonomous markerless calibration methods typically rely on pre-trained robot tracking models that impede their application on edge devices and require fine-tuning for novel robot embodiments. To address these limitations, this paper proposes a model-based markerless camera-to-robot calibration framework, ARC-Calib, that is fully autonomous and generalizable across diverse robots and scenarios without requiring extensive data collection or learning. First, exploratory robot motions are introduced to generate easily trackable trajectory-based visual patterns in the camera's image frames. Then, a geometric optimization framework is proposed to exploit the coplanarity and collinearity constraints from the observed motions to iteratively refine the estimated calibration result. Our approach eliminates the need for extra effort in either environmental marker setup or data collection and model training, rendering it highly adaptable across a wide range of real-world autonomous systems. Extensive experiments are conducted in both simulation and the real world to validate its robustness and generalizability.
comment: 8 pages, 9 figures
☆ Model Predictive Path Integral Control of I2RIS Robot Using RBF Identifier and Extended Kalman Filter
Modeling and controlling cable-driven snake robots is a challenging problem due to nonlinear mechanical properties such as hysteresis, variable stiffness, and unknown friction between the actuation cables and the robot body. This challenge is more significant for snake robots in ophthalmic surgery applications, such as the Improved Integrated Robotic Intraocular Snake (I$^2$RIS), given its small size and lack of embedded sensory feedback. Data-driven models take advantage of global function approximations, reducing complicated analytical models' challenge and computational costs. However, their performance might deteriorate in case of new data unseen in the training phase. Therefore, adding an adaptation mechanism might improve these models' performance during snake robots' interactions with unknown environments. In this work, we applied a model predictive path integral (MPPI) controller on a data-driven model of the I$^2$RIS based on the Gaussian mixture model (GMM) and Gaussian mixture regression (GMR). To analyze the performance of the MPPI in unseen robot-tissue interaction situations, unknown external disturbances and environmental loads are simulated and added to the GMM-GMR model. These uncertainties of the robot model are then identified online using a radial basis function (RBF) whose weights are updated using an extended Kalman filter (EKF). Simulation results demonstrated the robustness of the optimal control solutions of the MPPI algorithm and its computational superiority over a conventional model predictive control (MPC) algorithm.
Reinforcement Learning-Based Neuroadaptive Control of Robotic Manipulators under Deferred Constraints
This paper presents a reinforcement learning-based neuroadaptive control framework for robotic manipulators operating under deferred constraints. The proposed approach improves traditional barrier Lyapunov functions by introducing a smooth constraint enforcement mechanism that offers two key advantages: (i) it minimizes control effort in unconstrained regions and progressively increases it near constraints, improving energy efficiency, and (ii) it enables gradual constraint activation through a prescribed-time shifting function, allowing safe operation even when initial conditions violate constraints. To address system uncertainties and improve adaptability, an actor-critic reinforcement learning framework is employed. The critic network estimates the value function, while the actor network learns an optimal control policy in real time, enabling adaptive constraint handling without requiring explicit system modeling. Lyapunov-based stability analysis guarantees the boundedness of all closed-loop signals. The effectiveness of the proposed method is validated through numerical simulations.
comment: 7 pages, 5 figures
☆ These Magic Moments: Differentiable Uncertainty Quantification of Radiance Field Models
This paper introduces a novel approach to uncertainty quantification for radiance fields by leveraging higher-order moments of the rendering equation. Uncertainty quantification is crucial for downstream tasks including view planning and scene understanding, where safety and robustness are paramount. However, the high dimensionality and complexity of radiance fields pose significant challenges for uncertainty quantification, limiting the use of these uncertainty quantification methods in high-speed decision-making. We demonstrate that the probabilistic nature of the rendering process enables efficient and differentiable computation of higher-order moments for radiance field outputs, including color, depth, and semantic predictions. Our method outperforms existing radiance field uncertainty estimation techniques while offering a more direct, computationally efficient, and differentiable formulation without the need for post-processing.Beyond uncertainty quantification, we also illustrate the utility of our approach in downstream applications such as next-best-view (NBV) selection and active ray sampling for neural radiance field training. Extensive experiments on synthetic and real-world scenes confirm the efficacy of our approach, which achieves state-of-the-art performance while maintaining simplicity.
☆ Safety-Critical and Distributed Nonlinear Predictive Controllers for Teams of Quadrupedal Robots
This paper presents a novel hierarchical, safety-critical control framework that integrates distributed nonlinear model predictive controllers (DNMPCs) with control barrier functions (CBFs) to enable cooperative locomotion of multi-agent quadrupedal robots in complex environments. While NMPC-based methods are widely adopted for enforcing safety constraints and navigating multi-robot systems (MRSs) through intricate environments, ensuring the safety of MRSs requires a formal definition grounded in the concept of invariant sets. CBFs, typically implemented via quadratic programs (QPs) at the planning layer, provide formal safety guarantees. However, their zero-control horizon limits their effectiveness for extended trajectory planning in inherently unstable, underactuated, and nonlinear legged robot models. Furthermore, the integration of CBFs into real-time NMPC for sophisticated MRSs, such as quadrupedal robot teams, remains underexplored. This paper develops computationally efficient, distributed NMPC algorithms that incorporate CBF-based collision safety guarantees within a consensus protocol, enabling longer planning horizons for safe cooperative locomotion under disturbances and rough terrain conditions. The optimal trajectories generated by the DNMPCs are tracked using full-order, nonlinear whole-body controllers at the low level. The proposed approach is validated through extensive numerical simulations with up to four Unitree A1 robots and hardware experiments involving two A1 robots subjected to external pushes, rough terrain, and uncertain obstacle information. Comparative analysis demonstrates that the proposed CBF-based DNMPCs achieve a 27.89% higher success rate than conventional NMPCs without CBF constraints.
Reinforcement learning-based motion imitation for physiologically plausible musculoskeletal motor control
How do humans move? The quest to understand human motion has broad applications in numerous fields, ranging from computer animation and motion synthesis to neuroscience, human prosthetics and rehabilitation. Although advances in reinforcement learning (RL) have produced impressive results in capturing human motion using simplified humanoids, controlling physiologically accurate models of the body remains an open challenge. In this work, we present a model-free motion imitation framework (KINESIS) to advance the understanding of muscle-based motor control. Using a musculoskeletal model of the lower body with 80 muscle actuators and 20 DoF, we demonstrate that KINESIS achieves strong imitation performance on 1.9 hours of motion capture data, is controllable by natural language through pre-trained text-to-motion generative models, and can be fine-tuned to carry out high-level tasks such as target goal reaching. Importantly, KINESIS generates muscle activity patterns that correlate well with human EMG activity. The physiological plausibility makes KINESIS a promising model for tackling challenging problems in human motor control theory, which we highlight by investigating Bernstein's redundancy problem in the context of locomotion. Code, videos and benchmarks will be available at https://github.com/amathislab/Kinesis.
☆ A Unified Framework for Robots that Influence Humans over Long-Term Interaction
Robot actions influence the decisions of nearby humans. Here influence refers to intentional change: robots influence humans when they shift the human's behavior in a way that helps the robot complete its task. Imagine an autonomous car trying to merge; by proactively nudging into the human's lane, the robot causes human drivers to yield and provide space. Influence is often necessary for seamless interaction. However, if influence is left unregulated and uncontrolled, robots will negatively impact the humans around them. Prior works have begun to address this problem by creating a variety of control algorithms that seek to influence humans. Although these methods are effective in the short-term, they fail to maintain influence over time as the human adapts to the robot's behaviors. In this paper we therefore present an optimization framework that enables robots to purposely regulate their influence over humans across both short-term and long-term interactions. Here the robot maintains its influence by reasoning over a dynamic human model which captures how the robot's current choices will impact the human's future behavior. Our resulting framework serves to unify current approaches: we demonstrate that state-of-the-art methods are simplifications of our underlying formalism. Our framework also provides a principled way to generate influential policies: in the best case the robot exactly solves our framework to find optimal, influential behavior. But when solving this optimization problem becomes impractical, designers can introduce their own simplifications to reach tractable approximations. We experimentally compare our unified framework to state-of-the-art baselines and ablations, and demonstrate across simulations and user studies that this framework is able to successfully influence humans over repeated interactions. See videos of our experiments here: https://youtu.be/nPekTUfUEbo
☆ SuperPC: A Single Diffusion Model for Point Cloud Completion, Upsampling, Denoising, and Colorization
Point cloud (PC) processing tasks-such as completion, upsampling, denoising, and colorization-are crucial in applications like autonomous driving and 3D reconstruction. Despite substantial advancements, prior approaches often address each of these tasks independently, with separate models focused on individual issues. However, this isolated approach fails to account for the fact that defects like incompleteness, low resolution, noise, and lack of color frequently coexist, with each defect influencing and correlating with the others. Simply applying these models sequentially can lead to error accumulation from each model, along with increased computational costs. To address these challenges, we introduce SuperPC, the first unified diffusion model capable of concurrently handling all four tasks. Our approach employs a three-level-conditioned diffusion framework, enhanced by a novel spatial-mix-fusion strategy, to leverage the correlations among these four defects for simultaneous, efficient processing. We show that SuperPC outperforms the state-of-the-art specialized models as well as their combination on all four individual tasks.
☆ Generating Causal Explanations of Vehicular Agent Behavioural Interactions with Learnt Reward Profiles
Transparency and explainability are important features that responsible autonomous vehicles should possess, particularly when interacting with humans, and causal reasoning offers a strong basis to provide these qualities. However, even if one assumes agents act to maximise some concept of reward, it is difficult to make accurate causal inferences of agent planning without capturing what is of importance to the agent. Thus our work aims to learn a weighting of reward metrics for agents such that explanations for agent interactions can be causally inferred. We validate our approach quantitatively and qualitatively across three real-world driving datasets, demonstrating a functional improvement over previous methods and competitive performance across evaluation metrics.
comment: 8 Pages, 5 Figures, To be published in the Proceedings of the 2025 IEEE International Conference on Robotics & Automation, Initial upload of accepted paper
☆ Cosmos-Reason1: From Physical Common Sense To Embodied Reasoning
Physical AI systems need to perceive, understand, and perform complex actions in the physical world. In this paper, we present the Cosmos-Reason1 models that can understand the physical world and generate appropriate embodied decisions (e.g., next step action) in natural language through long chain-of-thought reasoning processes. We begin by defining key capabilities for Physical AI reasoning, with a focus on physical common sense and embodied reasoning. To represent physical common sense, we use a hierarchical ontology that captures fundamental knowledge about space, time, and physics. For embodied reasoning, we rely on a two-dimensional ontology that generalizes across different physical embodiments. Building on these capabilities, we develop two multimodal large language models, Cosmos-Reason1-8B and Cosmos-Reason1-56B. We curate data and train our models in four stages: vision pre-training, general supervised fine-tuning (SFT), Physical AI SFT, and Physical AI reinforcement learning (RL) as the post-training. To evaluate our models, we build comprehensive benchmarks for physical common sense and embodied reasoning according to our ontologies. Evaluation results show that Physical AI SFT and reinforcement learning bring significant improvements. To facilitate the development of Physical AI, we will make our code and pre-trained models available under the NVIDIA Open Model License at https://github.com/nvidia-cosmos/cosmos-reason1.
☆ Motion Synthesis with Sparse and Flexible Keyjoint Control
Creating expressive character animations is labor-intensive, requiring intricate manual adjustment of animators across space and time. Previous works on controllable motion generation often rely on a predefined set of dense spatio-temporal specifications (e.g., dense pelvis trajectories with exact per-frame timing), limiting practicality for animators. To process high-level intent and intuitive control in diverse scenarios, we propose a practical controllable motions synthesis framework that respects sparse and flexible keyjoint signals. Our approach employs a decomposed diffusion-based motion synthesis framework that first synthesizes keyjoint movements from sparse input control signals and then synthesizes full-body motion based on the completed keyjoint trajectories. The low-dimensional keyjoint movements can easily adapt to various control signal types, such as end-effector position for diverse goal-driven motion synthesis, or incorporate functional constraints on a subset of keyjoints. Additionally, we introduce a time-agnostic control formulation, eliminating the need for frame-specific timing annotations and enhancing control flexibility. Then, the shared second stage can synthesize a natural whole-body motion that precisely satisfies the task requirement from dense keyjoint movements. We demonstrate the effectiveness of sparse and flexible keyjoint control through comprehensive experiments on diverse datasets and scenarios.
comment: 11 pages, Project Page: http://inwoohwang.me/SFControl
☆ Adaptive Drift Compensation for Soft Sensorized Finger Using Continual Learning
Strain sensors are gaining popularity in soft robotics for acquiring tactile data due to their flexibility and ease of integration. Tactile sensing plays a critical role in soft grippers, enabling them to safely interact with unstructured environments and precisely detect object properties. However, a significant challenge with these systems is their high non-linearity, time-varying behavior, and long-term signal drift. In this paper, we introduce a continual learning (CL) approach to model a soft finger equipped with piezoelectric-based strain sensors for proprioception. To tackle the aforementioned challenges, we propose an adaptive CL algorithm that integrates a Long Short-Term Memory (LSTM) network with a memory buffer for rehearsal and includes a regularization term to keep the model's decision boundary close to the base signal while adapting to time-varying drift. We conduct nine different experiments, resetting the entire setup each time to demonstrate signal drift. We also benchmark our algorithm against two other methods and conduct an ablation study to assess the impact of different components on the overall performance.
☆ A Digital Twin Simulator of a Pastillation Process with Applications to Automatic Control based on Computer Vision
We present a digital-twin simulator for a pastillation process. The simulation framework produces realistic thermal image data of the process that is used to train computer vision-based soft sensors based on convolutional neural networks (CNNs); the soft sensors produce output signals for temperature and product flow rate that enable real-time monitoring and feedback control. Pastillation technologies are high-throughput devices that are used in a broad range of industries; these processes face operational challenges such as real-time identification of clog locations (faults) in the rotating shell and the automatic, real-time adjustment of conveyor belt speed and operating conditions to stabilize output. The proposed simulator is able to capture this behavior and generates realistic data that can be used to benchmark different algorithms for image processing and different control architectures. We present a case study to illustrate the capabilities; the study explores behavior over a range of equipment sizes, clog locations, and clog duration. A feedback controller (tuned using Bayesian optimization) is used to adjust the conveyor belt speed based on the CNN output signal to achieve the desired process outputs.
☆ Leveraging Vision-Language Models for Open-Vocabulary Instance Segmentation and Tracking
This paper introduces a novel approach that leverages the capabilities of vision-language models (VLMs) by integrating them with established approaches for open-vocabulary detection (OVD), instance segmentation, and tracking. We utilize VLM-generated structured descriptions to identify visible object instances, collect application-relevant attributes, and inform an open-vocabulary detector to extract corresponding bounding boxes that are passed to a video segmentation model providing precise segmentation masks and tracking capabilities. Once initialized, this model can then directly extract segmentation masks, allowing processing of image streams in real time with minimal computational overhead. Tracks can be updated online as needed by generating new structured descriptions and corresponding open-vocabulary detections. This combines the descriptive power of VLMs with the grounding capability of OVD and the pixel-level understanding and speed of video segmentation. Our evaluation across datasets and robotics platforms demonstrates the broad applicability of this approach, showcasing its ability to extract task-specific attributes from non-standard objects in dynamic environments.
comment: Submitted to IEEE Robotics and Automation Letters (RA-L)
☆ CP-NCBF: A Conformal Prediction-based Approach to Synthesize Verified Neural Control Barrier Functions
Control Barrier Functions (CBFs) are a practical approach for designing safety-critical controllers, but constructing them for arbitrary nonlinear dynamical systems remains a challenge. Recent efforts have explored learning-based methods, such as neural CBFs (NCBFs), to address this issue. However, ensuring the validity of NCBFs is difficult due to potential learning errors. In this letter, we propose a novel framework that leverages split-conformal prediction to generate formally verified neural CBFs with probabilistic guarantees based on a user-defined error rate, referred to as CP-NCBF. Unlike existing methods that impose Lipschitz constraints on neural CBF-leading to scalability limitations and overly conservative safe sets--our approach is sample-efficient, scalable, and results in less restrictive safety regions. We validate our framework through case studies on obstacle avoidance in autonomous driving and geo-fencing of aerial vehicles, demonstrating its ability to generate larger and less conservative safe sets compared to conventional techniques.
comment: 6 Pages, 4 Figures. First two authors have contributed equally
♻ ☆ UniGoal: Towards Universal Zero-shot Goal-oriented Navigation CVPR 2025
In this paper, we propose a general framework for universal zero-shot goal-oriented navigation. Existing zero-shot methods build inference framework upon large language models (LLM) for specific tasks, which differs a lot in overall pipeline and fails to generalize across different types of goal. Towards the aim of universal zero-shot navigation, we propose a uniform graph representation to unify different goals, including object category, instance image and text description. We also convert the observation of agent into an online maintained scene graph. With this consistent scene and goal representation, we preserve most structural information compared with pure text and are able to leverage LLM for explicit graph-based reasoning. Specifically, we conduct graph matching between the scene graph and goal graph at each time instant and propose different strategies to generate long-term goal of exploration according to different matching states. The agent first iteratively searches subgraph of goal when zero-matched. With partial matching, the agent then utilizes coordinate projection and anchor pair alignment to infer the goal location. Finally scene graph correction and goal verification are applied for perfect matching. We also present a blacklist mechanism to enable robust switch between stages. Extensive experiments on several benchmarks show that our UniGoal achieves state-of-the-art zero-shot performance on three studied navigation tasks with a single model, even outperforming task-specific zero-shot methods and supervised universal methods.
comment: Accepted to CVPR 2025. Project page: https://bagh2178.github.io/UniGoal/
♻ ☆ LEVA: A high-mobility logistic vehicle with legged suspension ICRA
The autonomous transportation of materials over challenging terrain is a challenge with major economic implications and remains unsolved. This paper introduces LEVA, a high-payload, high-mobility robot designed for autonomous logistics across varied terrains, including those typical in agriculture, construction, and search and rescue operations. LEVA uniquely integrates an advanced legged suspension system using parallel kinematics. It is capable of traversing stairs using a rl controller, has steerable wheels, and includes a specialized box pickup mechanism that enables autonomous payload loading as well as precise and reliable cargo transportation of up to 85 kg across uneven surfaces, steps and inclines while maintaining a cot of as low as 0.15. Through extensive experimental validation, LEVA demonstrates its off-road capabilities and reliability regarding payload loading and transport.
comment: Accepted for publication at the 2025 IEEE International Conference on Robotics and Automation (ICRA). This is the author's preprint version. 6 pages, 8 figures, 2 tables
♻ ☆ An Real-Sim-Real (RSR) Loop Framework for Generalizable Robotic Policy Transfer with Differentiable Simulation
The sim-to-real gap remains a critical challenge in robotics, hindering the deployment of algorithms trained in simulation to real-world systems. This paper introduces a novel Real-Sim-Real (RSR) loop framework leveraging differentiable simulation to address this gap by iteratively refining simulation parameters, aligning them with real-world conditions, and enabling robust and efficient policy transfer. A key contribution of our work is the design of an informative cost function that encourages the collection of diverse and representative real-world data, minimizing bias and maximizing the utility of each data point for simulation refinement. This cost function integrates seamlessly into existing reinforcement learning algorithms (e.g., PPO, SAC) and ensures a balanced exploration of critical regions in the real domain. Furthermore, our approach is implemented on the versatile Mujoco MJX platform, and our framework is compatible with a wide range of robotic systems. Experimental results on several robotic manipulation tasks demonstrate that our method significantly reduces the sim-to-real gap, achieving high task performance and generalizability across diverse scenarios of both explicit and implicit environmental uncertainties.
♻ ☆ SE(3)-Equivariant Robot Learning and Control: A Tutorial Survey
Recent advances in deep learning and Transformers have driven major breakthroughs in robotics by employing techniques such as imitation learning, reinforcement learning, and LLM-based multimodal perception and decision-making. However, conventional deep learning and Transformer models often struggle to process data with inherent symmetries and invariances, typically relying on large datasets or extensive data augmentation. Equivariant neural networks overcome these limitations by explicitly integrating symmetry and invariance into their architectures, leading to improved efficiency and generalization. This tutorial survey reviews a wide range of equivariant deep learning and control methods for robotics, from classic to state-of-the-art, with a focus on SE(3)-equivariant models that leverage the natural 3D rotational and translational symmetries in visual robotic manipulation and control design. Using unified mathematical notation, we begin by reviewing key concepts from group theory, along with matrix Lie groups and Lie algebras. We then introduce foundational group-equivariant neural network design and show how the group-equivariance can be obtained through their structure. Next, we discuss the applications of SE(3)-equivariant neural networks in robotics in terms of imitation learning and reinforcement learning. The SE(3)-equivariant control design is also reviewed from the perspective of geometric control. Finally, we highlight the challenges and future directions of equivariant methods in developing more robust, sample-efficient, and multi-modal real-world robotic systems.
comment: Submitted to International Journcal of Control, Automation and Systems (IJCAS), Under Review
♻ ☆ Flying through Moving Gates without Full State Estimation ICRA 2025
Autonomous drone racing requires powerful perception, planning, and control and has become a benchmark and test field for autonomous, agile flight. Existing work usually assumes static race tracks with known maps, which enables offline planning of time-optimal trajectories, performing localization to the gates to reduce the drift in visual-inertial odometry (VIO) for state estimation or training learning-based methods for the particular race track and operating environment. In contrast, many real-world tasks like disaster response or delivery need to be performed in unknown and dynamic environments. To make drone racing more robust against unseen environments and moving gates, we propose a control algorithm that operates without a race track map or VIO, relying solely on monocular measurements of the line of sight to the gates. For this purpose, we adopt the law of proportional navigation (PN) to accurately fly through the gates despite gate motions or wind. We formulate the PN-informed vision-based control problem for drone racing as a constrained optimization problem and derive a closed-form optimal solution. Through simulations and real-world experiments, we demonstrate that our algorithm can navigate through moving gates at high speeds while being robust to different gate movements, model errors, wind, and delays.
comment: 7 pages, 6 figures, accepted to ICRA 2025
♻ ☆ Cosmos World Foundation Model Platform for Physical AI
Physical AI needs to be trained digitally first. It needs a digital twin of itself, the policy model, and a digital twin of the world, the world model. In this paper, we present the Cosmos World Foundation Model Platform to help developers build customized world models for their Physical AI setups. We position a world foundation model as a general-purpose world model that can be fine-tuned into customized world models for downstream applications. Our platform covers a video curation pipeline, pre-trained world foundation models, examples of post-training of pre-trained world foundation models, and video tokenizers. To help Physical AI builders solve the most critical problems of our society, we make Cosmos open-source and our models open-weight with permissive licenses available via https://github.com/nvidia-cosmos/cosmos-predict1.
♻ ☆ Safe Interval Motion Planning for Quadrotors in Dynamic Environments ICRA
Trajectory generation in dynamic environments presents a significant challenge for quadrotors, particularly due to the non-convexity in the spatial-temporal domain. Many existing methods either assume simplified static environments or struggle to produce optimal solutions in real-time. In this work, we propose an efficient safe interval motion planning framework for navigation in dynamic environments. A safe interval refers to a time window during which a specific configuration is safe. Our approach addresses trajectory generation through a two-stage process: a front-end graph search step followed by a back-end gradient-based optimization. We ensure completeness and optimality by constructing a dynamic connected visibility graph and incorporating low-order dynamic bounds within safe intervals and temporal corridors. To avoid local minima, we propose a Uniform Temporal Visibility Deformation (UTVD) for the complete evaluation of spatial-temporal topological equivalence. We represent trajectories with B-Spline curves and apply gradient-based optimization to navigate around static and moving obstacles within spatial-temporal corridors. Through simulation and real-world experiments, we show that our method can achieve a success rate of over 95% in environments with different density levels, exceeding the performance of other approaches, demonstrating its potential for practical deployment in highly dynamic environments.
comment: 2025 IEEE International Conference on Robotics & Automation(ICRA)
♻ ☆ IMRL: Integrating Visual, Physical, Temporal, and Geometric Representations for Enhanced Food Acquisition
Robotic assistive feeding holds significant promise for improving the quality of life for individuals with eating disabilities. However, acquiring diverse food items under varying conditions and generalizing to unseen food presents unique challenges. Existing methods that rely on surface-level geometric information (e.g., bounding box and pose) derived from visual cues (e.g., color, shape, and texture) often lacks adaptability and robustness, especially when foods share similar physical properties but differ in visual appearance. We employ imitation learning (IL) to learn a policy for food acquisition. Existing methods employ IL or Reinforcement Learning (RL) to learn a policy based on off-the-shelf image encoders such as ResNet-50. However, such representations are not robust and struggle to generalize across diverse acquisition scenarios. To address these limitations, we propose a novel approach, IMRL (Integrated Multi-Dimensional Representation Learning), which integrates visual, physical, temporal, and geometric representations to enhance the robustness and generalizability of IL for food acquisition. Our approach captures food types and physical properties (e.g., solid, semi-solid, granular, liquid, and mixture), models temporal dynamics of acquisition actions, and introduces geometric information to determine optimal scooping points and assess bowl fullness. IMRL enables IL to adaptively adjust scooping strategies based on context, improving the robot's capability to handle diverse food acquisition scenarios. Experiments on a real robot demonstrate our approach's robustness and adaptability across various foods and bowl configurations, including zero-shot generalization to unseen settings. Our approach achieves improvement up to $35\%$ in success rate compared with the best-performing baseline. More details can be found on our website https://ruiiu.github.io/imrl.
♻ ☆ Physically-Consistent Parameter Identification of Robots in Contact
Accurate inertial parameter identification is crucial for the simulation and control of robots encountering intermittent contact with the environment. Classically, robots' inertial parameters are obtained from CAD models that are not precise (and sometimes not available, e.g., Spot from Boston Dynamics), hence requiring identification. To do that, existing methods require access to contact force measurement, a modality not present in modern quadruped and humanoid robots. This paper presents an alternative technique that utilizes joint current/torque measurements -- a standard sensing modality in modern robots -- to identify inertial parameters without requiring direct contact force measurements. By projecting the whole-body dynamics into the null space of contact constraints, we eliminate the dependency on contact forces and reformulate the identification problem as a linear matrix inequality that can handle physical and geometrical constraints. We compare our proposed method against a common black-box identification method using a deep neural network and show that incorporating physical consistency significantly improves the sample efficiency and generalizability of the model. Finally, we validate our method on the Spot quadruped robot across various locomotion tasks, showcasing its accuracy and generalizability in real-world scenarios over different gaits.
comment: 7 pages, 5 figures, 2 tables
♻ ☆ InteLiPlan: An Interactive Lightweight LLM-Based Planner for Domestic Robot Autonomy
We introduce an interactive LLM-based framework designed to enhance the autonomy and robustness of domestic robots, targeting embodied intelligence. Our approach reduces reliance on large-scale data and incorporates a robot-agnostic pipeline that embodies an LLM. Our framework, InteLiPlan, ensures that the LLM's decision-making capabilities are effectively aligned with robotic functions, enhancing operational robustness and adaptability, while our human-in-the-loop mechanism allows for real-time human intervention when user instruction is required. We evaluate our method in both simulation and on the real Toyota Human Support Robot (HSR). Our method achieves a 93% success rate in the 'fetch me' task completion with failure recovery, highlighting its capability in both failure reasoning and task planning. InteLiPlan achieves comparable performance to state-of-the-art large-scale LLM-based robotics planners, while using only real-time onboard computing.
♻ ☆ Road Markings Segmentation from LIDAR Point Clouds using Reflectivity Information
Lane detection algorithms are crucial for the development of autonomous vehicles technologies. The more extended approach is to use cameras as sensors. However, LIDAR sensors can cope with weather and light conditions that cameras can not. In this paper, we introduce a method to extract road markings from the reflectivity data of a 64-layers LIDAR sensor. First, a plane segmentation method along with region grow clustering was used to extract the road plane. Then we applied an adaptive thresholding based on Otsu s method and finally, we fitted line models to filter out the remaining outliers. The algorithm was tested on a test track at 60km/h and a highway at 100km/h. Results showed the algorithm was reliable and precise. There was a clear improvement when using reflectivity data in comparison to the use of the raw intensity data both of them provided by the LIDAR sensor.
♻ ☆ Extraction of Road Users' Behavior From Realistic Data According to Assumptions in Safety-Related Models for Automated Driving Systems
In this work, we utilized the methodology outlined in the IEEE Standard 2846-2022 for "Assumptions in Safety-Related Models for Automated Driving Systems" to extract information on the behavior of other road users in driving scenarios. This method includes defining high-level scenarios, determining kinematic characteristics, evaluating safety relevance, and making assumptions on reasonably predictable behaviors. The assumptions were expressed as kinematic bounds. The numerical values for these bounds were extracted using Python scripts to process realistic data from the UniD dataset. The resulting information enables Automated Driving Systems designers to specify the parameters and limits of a road user's state in a specific scenario. This information can be utilized to establish starting conditions for testing a vehicle that is equipped with an Automated Driving System in simulations or on actual roads.
♻ ☆ IGDrivSim: A Benchmark for the Imitation Gap in Autonomous Driving
Developing autonomous vehicles that can navigate complex environments with human-level safety and efficiency is a central goal in self-driving research. A common approach to achieving this is imitation learning, where agents are trained to mimic human expert demonstrations collected from real-world driving scenarios. However, discrepancies between human perception and the self-driving car's sensors can introduce an $\textit{imitation}$ gap, leading to imitation learning failures. In this work, we introduce $\textbf{IGDrivSim}$, a benchmark built on top of the Waymax simulator, designed to investigate the effects of the imitation gap in learning autonomous driving policy from human expert demonstrations. Our experiments show that this perception gap between human experts and self-driving agents can hinder the learning of safe and effective driving behaviors. We further show that combining imitation with reinforcement learning, using a simple penalty reward for prohibited behaviors, effectively mitigates these failures. Our code is open-sourced at: https://github.com/clemgris/IGDrivSim.git.
comment: 8 pages, 4 figures, 1 table
♻ ☆ Dynamic Programming-Based Offline Redundancy Resolution of Redundant Manipulators Along Prescribed Paths with Real-Time Adjustment
Traditional offline redundancy resolution of trajectories for redundant manipulators involves computing inverse kinematic solutions for Cartesian space paths, constraining the manipulator to a fixed path without real-time adjustments. Online redundancy resolution can achieve real-time adjustment of paths, but it cannot consider subsequent path points, leading to the possibility of the manipulator being forced to stop mid-motion due to joint constraints. To address this, this paper introduces a dynamic programming-based offline redundancy resolution for redundant manipulators along prescribed paths with real-time adjustment. The proposed method allows the manipulator to move along a prescribed path while implementing real-time adjustment along the normal to the path. Using Dynamic Programming, the proposed approach computes a global maximum for the variation of adjustment coefficients. As long as the coefficient variation between adjacent sampling path points does not exceed this limit, the algorithm provides the next path point's joint angles based on the current joint angles, enabling the end-effector to achieve the adjusted Cartesian pose. The main innovation of this paper lies in augmenting traditional offline optimal planning with real-time adjustment capabilities, achieving a fusion of offline planning and online planning.
♻ ☆ Temporally Consistent Object-Centric Learning by Contrasting Slots CVPR 2025
Unsupervised object-centric learning from videos is a promising approach to extract structured representations from large, unlabeled collections of videos. To support downstream tasks like autonomous control, these representations must be both compositional and temporally consistent. Existing approaches based on recurrent processing often lack long-term stability across frames because their training objective does not enforce temporal consistency. In this work, we introduce a novel object-level temporal contrastive loss for video object-centric models that explicitly promotes temporal consistency. Our method significantly improves the temporal consistency of the learned object-centric representations, yielding more reliable video decompositions that facilitate challenging downstream tasks such as unsupervised object dynamics prediction. Furthermore, the inductive bias added by our loss strongly improves object discovery, leading to state-of-the-art results on both synthetic and real-world datasets, outperforming even weakly-supervised methods that leverage motion masks as additional cues.
comment: Published at CVPR 2025
♻ ☆ CANVAS: Commonsense-Aware Navigation System for Intuitive Human-Robot Interaction ICRA 2025
Real-life robot navigation involves more than just reaching a destination; it requires optimizing movements while addressing scenario-specific goals. An intuitive way for humans to express these goals is through abstract cues like verbal commands or rough sketches. Such human guidance may lack details or be noisy. Nonetheless, we expect robots to navigate as intended. For robots to interpret and execute these abstract instructions in line with human expectations, they must share a common understanding of basic navigation concepts with humans. To this end, we introduce CANVAS, a novel framework that combines visual and linguistic instructions for commonsense-aware navigation. Its success is driven by imitation learning, enabling the robot to learn from human navigation behavior. We present COMMAND, a comprehensive dataset with human-annotated navigation results, spanning over 48 hours and 219 km, designed to train commonsense-aware navigation systems in simulated environments. Our experiments show that CANVAS outperforms the strong rule-based system ROS NavStack across all environments, demonstrating superior performance with noisy instructions. Notably, in the orchard environment, where ROS NavStack records a 0% total success rate, CANVAS achieves a total success rate of 67%. CANVAS also closely aligns with human demonstrations and commonsense constraints, even in unseen environments. Furthermore, real-world deployment of CANVAS showcases impressive Sim2Real transfer with a total success rate of 69%, highlighting the potential of learning from human demonstrations in simulated environments for real-world applications.
comment: Accepted to ICRA 2025, project page https://worv-ai.github.io/canvas
♻ ☆ db-CBS: Discontinuity-Bounded Conflict-Based Search for Multi-Robot Kinodynamic Motion Planning ICRA 2024
This paper presents a multi-robot kinodynamic motion planner that enables a team of robots with different dynamics, actuation limits, and shapes to reach their goals in challenging environments. We solve this problem by combining Conflict-Based Search (CBS), a multi-agent path finding method, and discontinuity-bounded A*, a single-robot kinodynamic motion planner. Our method, db-CBS, operates in three levels. Initially, we compute trajectories for individual robots using a graph search that allows bounded discontinuities between precomputed motion primitives. The second level identifies inter-robot collisions and resolves them by imposing constraints on the first level. The third and final level uses the resulting solution with discontinuities as an initial guess for a joint space trajectory optimization. The procedure is repeated with a reduced discontinuity bound. Our approach is anytime, probabilistically complete, asymptotically optimal, and finds near-optimal solutions quickly. Experimental results with robot dynamics such as unicycle, double integrator, and car with trailer in different settings show that our method is capable of solving challenging tasks with a higher success rate and lower cost than the existing state-of-the-art.
comment: Presented at ICRA 2024
♻ ☆ Data-efficient Tactile Sensing with Electrical Impedance Tomography
Electrical Impedance Tomography (EIT)-inspired tactile sensors are gaining attention in robotic tactile sensing due to their cost-effectiveness, safety, and scalability with sparse electrode configurations. This paper presents a data augmentation strategy for learning-based tactile reconstruction that amplifies the original single-frame signal measurement into 32 distinct, effective signal data for training. This approach supplements uncollected conditions of position information, resulting in more accurate and high-resolution tactile reconstructions. Data augmentation for EIT significantly reduces the required EIT measurements and achieves promising performance with even limited samples. Simulation results show that the proposed method improves the correlation coefficient by over 12% and reduces the relative error by over 21% under various noise levels. Furthermore, we demonstrate that a standard deep neural network (DNN) utilizing the proposed data augmentation reduces the required data down to 1/31 while achieving a similar tactile reconstruction quality. Real-world tests further validate the approach's effectiveness on a flexible EIT-based tactile sensor. These results could help address the challenge of training tactile sensing networks with limited available measurements, improving the accuracy and applicability of EIT-based tactile sensing systems.
♻ ☆ SLC$^2$-SLAM: Semantic-guided Loop Closure using Shared Latent Code for NeRF SLAM RAL
Targeting the notorious cumulative drift errors in NeRF SLAM, we propose a Semantic-guided Loop Closure using Shared Latent Code, dubbed SLC$^2$-SLAM. We argue that latent codes stored in many NeRF SLAM systems are not fully exploited, as they are only used for better reconstruction. In this paper, we propose a simple yet effective way to detect potential loops using the same latent codes as local features. To further improve the loop detection performance, we use the semantic information, which are also decoded from the same latent codes to guide the aggregation of local features. Finally, with the potential loops detected, we close them with a graph optimization followed by bundle adjustment to refine both the estimated poses and the reconstructed scene. To evaluate the performance of our SLC$^2$-SLAM, we conduct extensive experiments on Replica and ScanNet datasets. Our proposed semantic-guided loop closure significantly outperforms the pre-trained NetVLAD and ORB combined with Bag-of-Words, which are used in all the other NeRF SLAM with loop closure. As a result, our SLC$^2$-SLAM also demonstrated better tracking and reconstruction performance, especially in larger scenes with more loops, like ScanNet.
comment: Accepted to RAL. 8 pages, 5 figures, 5 tables
♻ ☆ Is Linear Feedback on Smoothed Dynamics Sufficient for Stabilizing Contact-Rich Plans? ICRA2025
Designing planners and controllers for contact-rich manipulation is extremely challenging as contact violates the smoothness conditions that many gradient-based controller synthesis tools assume. Contact smoothing approximates a non-smooth system with a smooth one, allowing one to use these synthesis tools more effectively. However, applying classical control synthesis methods to smoothed contact dynamics remains relatively under-explored. This paper analyzes the efficacy of linear controller synthesis using differential simulators based on contact smoothing. We introduce natural baselines for leveraging contact smoothing to compute (a) open-loop plans robust to uncertain conditions and/or dynamics, and (b) feedback gains to stabilize around open-loop plans. Using robotic bimanual whole-body manipulation as a testbed, we perform extensive empirical experiments on over 300 trajectories and analyze why LQR seems insufficient for stabilizing contact-rich plans. The video summarizing this paper and hardware experiments is found here: https://youtu.be/HLaKi6qbwQg?si=_zCAmBBD6rGSitm9.
comment: ICRA2025
♻ ☆ Extending Structural Causal Models for Autonomous Vehicles to Simplify Temporal System Construction & Enable Dynamic Interactions Between Agents
In this work we aim to bridge the divide between autonomous vehicles and causal reasoning. Autonomous vehicles have come to increasingly interact with human drivers, and in many cases may pose risks to the physical or mental well-being of those they interact with. Meanwhile causal models, despite their inherent transparency and ability to offer contrastive explanations, have found limited usage within such systems. As such, we first identify the challenges that have limited the integration of structural causal models within autonomous vehicles. We then introduce a number of theoretical extensions to the structural causal model formalism in order to tackle these challenges. This augments these models to possess greater levels of modularisation and encapsulation, as well presenting temporal causal model representation with constant space complexity. We also prove through the extensions we have introduced that dynamically mutable sets (e.g. varying numbers of autonomous vehicles across time) can be used within a structural causal model while maintaining a relaxed form of causal stationarity. Finally we discuss the application of the extensions in the context of the autonomous vehicle and service robotics domain along with potential directions for future work.
comment: 30 Pages = 13 Pages (Main Content) + 4 Pages (References) + 13 Pages (Appendix), 15 Figures = 5 Figures (Main Content) + 10 (Appendix), To be published in the Proceedings of the 2025 Causal Learning and Reasoning Conference, Update upload of accepted paper version
♻ ☆ MERCI: Multimodal Emotional and peRsonal Conversational Interactions Dataset
The integration of conversational agents into our daily lives has become increasingly common, yet many of these agents cannot engage in deep interactions with humans. Despite this, there is a noticeable shortage of datasets that capture multimodal information from human-robot interaction dialogues. To address this gap, we have recorded a novel multimodal dataset (MERCI) that encompasses rich embodied interaction data. The process involved asking participants to complete a questionnaire and gathering their profiles on ten topics, such as hobbies and favorite music. Subsequently, we initiated conversations between the robot and the participants, leveraging GPT-4 to generate contextually appropriate responses based on the participant's profile and emotional state, as determined by facial expression recognition and sentiment analysis. Automatic and user evaluations were conducted to assess the overall quality of the collected data. The results of both evaluations indicated a high level of naturalness, engagement, fluency, consistency, and relevance in the conversation, as well as the robot's ability to provide empathetic responses. It is worth noting that the dataset is derived from genuine interactions with the robot, involving participants who provided personal information and conveyed actual emotions.
comment: 9 pages, 5 Figures, Rejected from International Conference of Human Robot Interaction 2025, Melbourne, Australia
♻ ☆ Point Cloud Structural Similarity-based Underwater Sonar Loop Detection
In this letter, we propose a point cloud structural similarity-based loop detection method for underwater Simultaneous Localization and Mapping using sonar sensors. Existing sonar-based loop detection approaches often rely on 2D projection and keypoint extraction, which can lead to data loss and poor performance in feature-scarce environments. Additionally, methods based on neural networks or Bag-of-Words require extensive preprocessing, such as model training or vocabulary creation, reducing adaptability to new environments. To address these challenges, our method directly utilizes 3D sonar point clouds without projection and computes point-wise structural feature maps based on geometry, normals, and curvature. By leveraging rotation-invariant similarity comparisons, the proposed approach eliminates the need for keypoint detection and ensures robust loop detection across diverse underwater terrains. We validate our method using two real-world datasets: the Antarctica dataset obtained from deep underwater and the Seaward dataset collected from rivers and lakes. Experimental results show that our method achieves the highest loop detection performance compared to existing keypointbased and learning-based approaches while requiring no additional training or preprocessing. Our code is available at https://github.com/donghwijung/point_cloud_structural_similarity_based_underwater_sonar_loop_detection.
♻ ☆ NormalFlow: Fast, Robust, and Accurate Contact-based Object 6DoF Pose Tracking with Vision-based Tactile Sensors
Tactile sensing is crucial for robots aiming to achieve human-level dexterity. Among tactile-dependent skills, tactile-based object tracking serves as the cornerstone for many tasks, including manipulation, in-hand manipulation, and 3D reconstruction. In this work, we introduce NormalFlow, a fast, robust, and real-time tactile-based 6DoF tracking algorithm. Leveraging the precise surface normal estimation of vision-based tactile sensors, NormalFlow determines object movements by minimizing discrepancies between the tactile-derived surface normals. Our results show that NormalFlow consistently outperforms competitive baselines and can track low-texture objects like table surfaces. For long-horizon tracking, we demonstrate when rolling the sensor around a bead for 360 degrees, NormalFlow maintains a rotational tracking error of 2.5 degrees. Additionally, we present state-of-the-art tactile-based 3D reconstruction results, showcasing the high accuracy of NormalFlow. We believe NormalFlow unlocks new possibilities for high-precision perception and manipulation tasks that involve interacting with objects using hands. The video demo, code, and dataset are available on our website: https://joehjhuang.github.io/normalflow.
comment: 8 pages, published in 2024 RA-L, website link: https://joehjhuang.github.io/normalflow
Fast Iterative Region Inflation for Computing Large 2-D/3-D Convex Regions of Obstacle-Free Space
Convex polytopes have compact representations and exhibit convexity, which makes them suitable for abstracting obstacle-free spaces from various environments. Existing generation methods struggle with balancing high-quality output and efficiency. Moreover, another crucial requirement for convex polytopes to accurately contain certain seed point sets, such as a robot or a front-end path, is proposed in various tasks, which we refer to as manageability. In this paper, we propose Fast Iterative Regional Inflation (FIRI) to generate high-quality convex polytope while ensuring efficiency and manageability simultaneously. FIRI consists of two iteratively executed submodules: Restrictive Inflation (RsI) and Maximum Volume Inscribed Ellipsoid (MVIE) computation. By explicitly incorporating constraints that include the seed point set, RsI guarantees manageability. Meanwhile, iterative MVIE optimization ensures high-quality result through monotonic volume bound improvement.In terms of efficiency, we design methods tailored to the low-dimensional and multi-constrained nature of both modules, resulting in orders of magnitude improvement compared to generic solvers. Notably, in 2-D MVIE, we present the first linear-complexity analytical algorithm for maximum area inscribed ellipse, further enhancing the performance in 2-D cases. Extensive benchmarks conducted against state-of-the-art methods validate the superior performance of FIRI in terms of quality, manageability, and efficiency. Furthermore, various real-world applications showcase the generality and practicality of FIRI.
♻ ☆ RFUAV: A Benchmark Dataset for Unmanned Aerial Vehicle Detection and Identification
In this paper, we propose RFUAV as a new benchmark dataset for radio-frequency based (RF-based) unmanned aerial vehicle (UAV) identification and address the following challenges: Firstly, many existing datasets feature a restricted variety of drone types and insufficient volumes of raw data, which fail to meet the demands of practical applications. Secondly, existing datasets often lack raw data covering a broad range of signal-to-noise ratios (SNR), or do not provide tools for transforming raw data to different SNR levels. This limitation undermines the validity of model training and evaluation. Lastly, many existing datasets do not offer open-access evaluation tools, leading to a lack of unified evaluation standards in current research within this field. RFUAV comprises approximately 1.3 TB of raw frequency data collected from 37 distinct UAVs using the Universal Software Radio Peripheral (USRP) device in real-world environments. Through in-depth analysis of the RF data in RFUAV, we define a drone feature sequence called RF drone fingerprint, which aids in distinguishing drone signals. In addition to the dataset, RFUAV provides a baseline preprocessing method and model evaluation tools. Rigorous experiments demonstrate that these preprocessing methods achieve state-of-the-art (SOTA) performance using the provided evaluation tools. The RFUAV dataset and baseline implementation are publicly available at https://github.com/kitoweeknd/RFUAV/.
comment: 23 pages, 13 figures, conference
♻ ☆ Safe Expeditious Whole-Body Control of Mobile Manipulators for Collision Avoidance
In the control task of mobile manipulators (MMs), achieving efficient and agile obstacle avoidance in dynamic environments is challenging. In this letter, we present a safe expeditious whole-body (SEWB) control for MMs that ensures both external and internal collision-free. Firstly, control barrier functions (CBFs) are employed for an MM to establish initial safety constraints. Moreover, to resolve the pseudo-equilibrium problem of CBFs and improve avoidance agility, we propose a novel approach called adaptive cyclic inequality (ACI). ACI comprehensively considers obstacles, nominal control to generate directional constraints for MM. Then, we combine CBF and ACI to decompose safety constraints. Considering all these constraints, we formulate a quadratic programming (QP) as our primary optimization. In the QP cost function, we account for the motion accuracy differences between the base and manipulator, as well as obstacle influences, to achieve simultaneous whole-body motion. We validate the effectiveness of our SEWB control in avoiding collision and reaching target points through simulations and real-world experiments, particularly in challenging scenarios that involve fast-moving obstacles. SEWB has been proven to achieve whole-body collision-free and improve avoidance agility.
Playful DoggyBot: Learning Agile and Precise Quadrupedal Locomotion
Quadrupedal animals can perform agile and playful tasks while interacting with real-world objects. For instance, a trained dog can track and catch a flying frisbee before it touches the ground, while a cat left alone at home may leap to grasp the door handle. Successfully grasping an object during high-dynamic locomotion requires highly precise perception and control. However, due to hardware limitations, agility and precision are usually a trade-off in robotics problems. In this work, we employ a perception-control decoupled system based on Reinforcement Learning (RL), aiming to explore the level of precision a quadrupedal robot can achieve while interacting with objects during high-dynamic locomotion. Our experiments show that our quadrupedal robot, mounted with a passive gripper in front of the robot's chassis, can perform both tracking and catching tasks similar to a real trained dog. The robot can follow a mid-air ball moving at speeds of up to 3m/s and it can leap and successfully catch a small object hanging above it at a height of 1.05m in simulation and 0.8m in the real world.
♻ ☆ Robotic Compliant Object Prying Using Diffusion Policy Guided by Vision and Force Observations
The growing adoption of batteries in the electric vehicle industry and various consumer products has created an urgent need for effective recycling solutions. These products often contain a mix of compliant and rigid components, making robotic disassembly a critical step toward achieving scalable recycling processes. Diffusion policy has emerged as a promising approach for learning low-level skills in robotics. To effectively apply diffusion policy to contact-rich tasks, incorporating force as feedback is essential. In this paper, we apply diffusion policy with vision and force in a compliant object prying task. However, when combining low-dimensional contact force with high-dimensional image, the force information may be diluted. To address this issue, we propose a method that effectively integrates force with image data for diffusion policy observations. We validate our approach on a battery prying task that demands high precision and multi-step execution. Our model achieves a 96\% success rate in diverse scenarios, marking a 57\% improvement over the vision-only baseline. Our method also demonstrates zero-shot transfer capability to handle unseen objects and battery types. Supplementary videos and implementation codes are available on our project website. https://rros-lab.github.io/diffusion-with-force.github.io/
comment: Accepted to IEEE RA-L. (C) 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media. 8 pages with 9 figures
♻ ☆ Riemannian Variational Calculus: Optimal Trajectories Under Inertia, Gravity, and Drag Effects
Robotic motion optimization often focuses on task-specific solutions, overlooking fundamental motion principles. Building on Riemannian geometry and the calculus of variations (often appearing as indirect methods of optimal control), we derive an optimal control equation that expresses general forces as functions of configuration and velocity, revealing how inertia, gravity, and drag shape optimal trajectories. Our analysis identifies three key effects: (i) curvature effects of inertia manifold, (ii) curvature effects of potential field, and (iii) shortening effects from resistive force. We validate our approach on a two-link manipulator and a UR5, demonstrating a unified geometric framework for understanding optimal trajectories beyond geodesic-based planning.
comment: 6 pages, submitted to IEEE Control Systems Letters (L-CSS)
♻ ☆ MAP: Multi-user Personalization with Collaborative LLM-powered Agents
The widespread adoption of Large Language Models (LLMs) and LLM-powered agents in multi-user settings underscores the need for reliable, usable methods to accommodate diverse preferences and resolve conflicting directives. Drawing on conflict resolution theory, we introduce a user-centered workflow for multi-user personalization comprising three stages: Reflection, Analysis, and Feedback. We then present MAP -- a \textbf{M}ulti-\textbf{A}gent system for multi-user \textbf{P}ersonalization -- to operationalize this workflow. By delegating subtasks to specialized agents, MAP (1) retrieves and reflects on relevant user information, while enhancing reliability through agent-to-agent interactions, (2) provides detailed analysis for improved transparency and usability, and (3) integrates user feedback to iteratively refine results. Our user study findings (n=12) highlight MAP's effectiveness and usability for conflict resolution while emphasizing the importance of user involvement in resolution verification and failure management. This work highlights the potential of multi-agent systems to implement user-centered, multi-user personalization workflows and concludes by offering insights for personalization in multi-user contexts.
comment: In Extended Abstracts of the CHI Conference on Human Factors in Computing Systems (CHI EA '25), April 26-May 1, 2025, Yokohama, Japan
♻ ☆ Adaptive Trajectory Optimization for Task-Specific Human-Robot Collaboration
This paper proposes a task-specific trajectory optimization framework for human-robot collaboration, enabling adaptive motion planning based on human interaction dynamics. Unlike conventional approaches that rely on predefined desired trajectories, the proposed framework optimizes the collaborative motion dynamically using the inverse differential Riccati equation, ensuring adaptability to task variations and human input. The generated trajectory serves as the reference for a neuro-adaptive PID controller, which leverages a neural network to adjust control gains in real time, addressing system uncertainties while maintaining low computational complexity. The combination of trajectory planning and the adaptive control law ensures stability and accurate joint-space tracking without requiring extensive parameter tuning. Numerical simulations validate the proposed approach.
comment: 7 pages, 6 figures, 1 table
♻ ☆ LIMIT: Learning Interfaces to Maximize Information Transfer
Robots can use auditory, visual, or haptic interfaces to convey information to human users. The way these interfaces select signals is typically pre-defined by the designer: for instance, a haptic wristband might vibrate when the robot is moving and squeeze when the robot stops. But different people interpret the same signals in different ways, so that what makes sense to one person might be confusing or unintuitive to another. In this paper we introduce a unified algorithmic formalism for learning co-adaptive interfaces from scratch. Our method does not need to know the human's task (i.e., what the human is using these signals for). Instead, our insight is that interpretable interfaces should select signals that maximize correlation between the human's actions and the information the interface is trying to convey. Applying this insight we develop LIMIT: Learning Interfaces to Maximize Information Transfer. LIMIT optimizes a tractable, real-time proxy of information gain in continuous spaces. The first time a person works with our system the signals may appear random; but over repeated interactions the interface learns a one-to-one mapping between displayed signals and human responses. Our resulting approach is both personalized to the current user and not tied to any specific interface modality. We compare LIMIT to state-of-the-art baselines across controlled simulations, an online survey, and an in-person user study with auditory, visual, and haptic interfaces. Overall, our results suggest that LIMIT learns interfaces that enable users to complete the task more quickly and efficiently, and users subjectively prefer LIMIT to the alternatives. See videos here: https://youtu.be/IvQ3TM1_2fA
Computer Vision 142
☆ MusicInfuser: Making Video Diffusion Listen and Dance
We introduce MusicInfuser, an approach for generating high-quality dance videos that are synchronized to a specified music track. Rather than attempting to design and train a new multimodal audio-video model, we show how existing video diffusion models can be adapted to align with musical inputs by introducing lightweight music-video cross-attention and a low-rank adapter. Unlike prior work requiring motion capture data, our approach fine-tunes only on dance videos. MusicInfuser achieves high-quality music-driven video generation while preserving the flexibility and generative capabilities of the underlying models. We introduce an evaluation framework using Video-LLMs to assess multiple dimensions of dance generation quality. The project page and code are available at https://susunghong.github.io/MusicInfuser.
comment: Project page: https://susunghong.github.io/MusicInfuser
☆ Aligning Multimodal LLM with Human Preference: A Survey
Large language models (LLMs) can handle a wide variety of general tasks with simple prompts, without the need for task-specific training. Multimodal Large Language Models (MLLMs), built upon LLMs, have demonstrated impressive potential in tackling complex tasks involving visual, auditory, and textual data. However, critical issues related to truthfulness, safety, o1-like reasoning, and alignment with human preference remain insufficiently addressed. This gap has spurred the emergence of various alignment algorithms, each targeting different application scenarios and optimization goals. Recent studies have shown that alignment algorithms are a powerful approach to resolving the aforementioned challenges. In this paper, we aim to provide a comprehensive and systematic review of alignment algorithms for MLLMs. Specifically, we explore four key aspects: (1) the application scenarios covered by alignment algorithms, including general image understanding, multi-image, video, and audio, and extended multimodal applications; (2) the core factors in constructing alignment datasets, including data sources, model responses, and preference annotations; (3) the benchmarks used to evaluate alignment algorithms; and (4) a discussion of potential future directions for the development of alignment algorithms. This work seeks to help researchers organize current advancements in the field and inspire better alignment methods. The project page of this paper is available at https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models/tree/Alignment.
comment: https://github.com/BradyFU/Awesome-Multimodal-Large-Language-Models/tree/Alignment
☆ The Power of Context: How Multimodality Improves Image Super-Resolution CVPR2025
Single-image super-resolution (SISR) remains challenging due to the inherent difficulty of recovering fine-grained details and preserving perceptual quality from low-resolution inputs. Existing methods often rely on limited image priors, leading to suboptimal results. We propose a novel approach that leverages the rich contextual information available in multiple modalities -- including depth, segmentation, edges, and text prompts -- to learn a powerful generative prior for SISR within a diffusion model framework. We introduce a flexible network architecture that effectively fuses multimodal information, accommodating an arbitrary number of input modalities without requiring significant modifications to the diffusion process. Crucially, we mitigate hallucinations, often introduced by text prompts, by using spatial information from other modalities to guide regional text-based conditioning. Each modality's guidance strength can also be controlled independently, allowing steering outputs toward different directions, such as increasing bokeh through depth or adjusting object prominence via segmentation. Extensive experiments demonstrate that our model surpasses state-of-the-art generative SISR methods, achieving superior visual quality and fidelity. See project page at https://mmsr.kfmei.com/.
comment: accepted by CVPR2025
☆ Utilization of Neighbor Information for Image Classification with Different Levels of Supervision
We propose to bridge the gap between semi-supervised and unsupervised image recognition with a flexible method that performs well for both generalized category discovery (GCD) and image clustering. Despite the overlap in motivation between these tasks, the methods themselves are restricted to a single task -- GCD methods are reliant on the labeled portion of the data, and deep image clustering methods have no built-in way to leverage the labels efficiently. We connect the two regimes with an innovative approach that Utilizes Neighbor Information for Classification (UNIC) both in the unsupervised (clustering) and semisupervised (GCD) setting. State-of-the-art clustering methods already rely heavily on nearest neighbors. We improve on their results substantially in two parts, first with a sampling and cleaning strategy where we identify accurate positive and negative neighbors, and secondly by finetuning the backbone with clustering losses computed by sampling both types of neighbors. We then adapt this pipeline to GCD by utilizing the labelled images as ground truth neighbors. Our method yields state-of-the-art results for both clustering (+3% ImageNet-100, Imagenet200) and GCD (+0.8% ImageNet-100, +5% CUB, +2% SCars, +4% Aircraft).
comment: 18 pages, 16 figures, 7 tables
☆ Tracking Meets Large Multimodal Models for Driving Scenario Understanding
Large Multimodal Models (LMMs) have recently gained prominence in autonomous driving research, showcasing promising capabilities across various emerging benchmarks. LMMs specifically designed for this domain have demonstrated effective perception, planning, and prediction skills. However, many of these methods underutilize 3D spatial and temporal elements, relying mainly on image data. As a result, their effectiveness in dynamic driving environments is limited. We propose to integrate tracking information as an additional input to recover 3D spatial and temporal details that are not effectively captured in the images. We introduce a novel approach for embedding this tracking information into LMMs to enhance their spatiotemporal understanding of driving scenarios. By incorporating 3D tracking data through a track encoder, we enrich visual queries with crucial spatial and temporal cues while avoiding the computational overhead associated with processing lengthy video sequences or extensive 3D inputs. Moreover, we employ a self-supervised approach to pretrain the tracking encoder to provide LMMs with additional contextual information, significantly improving their performance in perception, planning, and prediction tasks for autonomous driving. Experimental results demonstrate the effectiveness of our approach, with a gain of 9.5% in accuracy, an increase of 7.04 points in the ChatGPT score, and 9.4% increase in the overall score over baseline models on DriveLM-nuScenes benchmark, along with a 3.7% final score improvement on DriveLM-CARLA. Our code is available at https://github.com/mbzuai-oryx/TrackingMeetsLMM
comment: 13 pages, 8 figures, Github: https://github.com/mbzuai-oryx/TrackingMeetsLMM
☆ Deeply Supervised Flow-Based Generative Models
Flow based generative models have charted an impressive path across multiple visual generation tasks by adhering to a simple principle: learning velocity representations of a linear interpolant. However, we observe that training velocity solely from the final layer output underutilizes the rich inter layer representations, potentially impeding model convergence. To address this limitation, we introduce DeepFlow, a novel framework that enhances velocity representation through inter layer communication. DeepFlow partitions transformer layers into balanced branches with deep supervision and inserts a lightweight Velocity Refiner with Acceleration (VeRA) block between adjacent branches, which aligns the intermediate velocity features within transformer blocks. Powered by the improved deep supervision via the internal velocity alignment, DeepFlow converges 8 times faster on ImageNet with equivalent performance and further reduces FID by 2.6 while halving training time compared to previous flow based models without a classifier free guidance. DeepFlow also outperforms baselines in text to image generation tasks, as evidenced by evaluations on MSCOCO and zero shot GenEval.
comment: Project website at https://deepflow-project.github.io/
☆ Cosmos-Transfer1: Conditional World Generation with Adaptive Multimodal Control
We introduce Cosmos-Transfer, a conditional world generation model that can generate world simulations based on multiple spatial control inputs of various modalities such as segmentation, depth, and edge. In the design, the spatial conditional scheme is adaptive and customizable. It allows weighting different conditional inputs differently at different spatial locations. This enables highly controllable world generation and finds use in various world-to-world transfer use cases, including Sim2Real. We conduct extensive evaluations to analyze the proposed model and demonstrate its applications for Physical AI, including robotics Sim2Real and autonomous vehicle data enrichment. We further demonstrate an inference scaling strategy to achieve real-time world generation with an NVIDIA GB200 NVL72 rack. To help accelerate research development in the field, we open-source our models and code at https://github.com/nvidia-cosmos/cosmos-transfer1.
☆ Stable Virtual Camera: Generative View Synthesis with Diffusion Models
We present Stable Virtual Camera (Seva), a generalist diffusion model that creates novel views of a scene, given any number of input views and target cameras. Existing works struggle to generate either large viewpoint changes or temporally smooth samples, while relying on specific task configurations. Our approach overcomes these limitations through simple model design, optimized training recipe, and flexible sampling strategy that generalize across view synthesis tasks at test time. As a result, our samples maintain high consistency without requiring additional 3D representation-based distillation, thus streamlining view synthesis in the wild. Furthermore, we show that our method can generate high-quality videos lasting up to half a minute with seamless loop closure. Extensive benchmarking demonstrates that Seva outperforms existing methods across different datasets and settings.
☆ DiffMoE: Dynamic Token Selection for Scalable Diffusion Transformers
Diffusion models have demonstrated remarkable success in various image generation tasks, but their performance is often limited by the uniform processing of inputs across varying conditions and noise levels. To address this limitation, we propose a novel approach that leverages the inherent heterogeneity of the diffusion process. Our method, DiffMoE, introduces a batch-level global token pool that enables experts to access global token distributions during training, promoting specialized expert behavior. To unleash the full potential of the diffusion process, DiffMoE incorporates a capacity predictor that dynamically allocates computational resources based on noise levels and sample complexity. Through comprehensive evaluation, DiffMoE achieves state-of-the-art performance among diffusion models on ImageNet benchmark, substantially outperforming both dense architectures with 3x activated parameters and existing MoE approaches while maintaining 1x activated parameters. The effectiveness of our approach extends beyond class-conditional generation to more challenging tasks such as text-to-image generation, demonstrating its broad applicability across different diffusion model applications. Project Page: https://shiml20.github.io/DiffMoE/
comment: Project Page: https://shiml20.github.io/DiffMoE/
☆ Lux Post Facto: Learning Portrait Performance Relighting with Conditional Video Diffusion and a Hybrid Dataset CVPR 2025
Video portrait relighting remains challenging because the results need to be both photorealistic and temporally stable. This typically requires a strong model design that can capture complex facial reflections as well as intensive training on a high-quality paired video dataset, such as dynamic one-light-at-a-time (OLAT). In this work, we introduce Lux Post Facto, a novel portrait video relighting method that produces both photorealistic and temporally consistent lighting effects. From the model side, we design a new conditional video diffusion model built upon state-of-the-art pre-trained video diffusion model, alongside a new lighting injection mechanism to enable precise control. This way we leverage strong spatial and temporal generative capability to generate plausible solutions to the ill-posed relighting problem. Our technique uses a hybrid dataset consisting of static expression OLAT data and in-the-wild portrait performance videos to jointly learn relighting and temporal modeling. This avoids the need to acquire paired video data in different lighting conditions. Our extensive experiments show that our model produces state-of-the-art results both in terms of photorealism and temporal consistency.
comment: CVPR 2025
☆ Multi-view Reconstruction via SfM-guided Monocular Depth Estimation CVPR 2025
In this paper, we present a new method for multi-view geometric reconstruction. In recent years, large vision models have rapidly developed, performing excellently across various tasks and demonstrating remarkable generalization capabilities. Some works use large vision models for monocular depth estimation, which have been applied to facilitate multi-view reconstruction tasks in an indirect manner. Due to the ambiguity of the monocular depth estimation task, the estimated depth values are usually not accurate enough, limiting their utility in aiding multi-view reconstruction. We propose to incorporate SfM information, a strong multi-view prior, into the depth estimation process, thus enhancing the quality of depth prediction and enabling their direct application in multi-view geometric reconstruction. Experimental results on public real-world datasets show that our method significantly improves the quality of depth estimation compared to previous monocular depth estimation works. Additionally, we evaluate the reconstruction quality of our approach in various types of scenes including indoor, streetscape, and aerial views, surpassing state-of-the-art MVS methods. The code and supplementary materials are available at https://zju3dv.github.io/murre/ .
comment: CVPR 2025. Project page: https://zju3dv.github.io/murre/
☆ ICE-Bench: A Unified and Comprehensive Benchmark for Image Creating and Editing
Image generation has witnessed significant advancements in the past few years. However, evaluating the performance of image generation models remains a formidable challenge. In this paper, we propose ICE-Bench, a unified and comprehensive benchmark designed to rigorously assess image generation models. Its comprehensiveness could be summarized in the following key features: (1) Coarse-to-Fine Tasks: We systematically deconstruct image generation into four task categories: No-ref/Ref Image Creating/Editing, based on the presence or absence of source images and reference images. And further decompose them into 31 fine-grained tasks covering a broad spectrum of image generation requirements, culminating in a comprehensive benchmark. (2) Multi-dimensional Metrics: The evaluation framework assesses image generation capabilities across 6 dimensions: aesthetic quality, imaging quality, prompt following, source consistency, reference consistency, and controllability. 11 metrics are introduced to support the multi-dimensional evaluation. Notably, we introduce VLLM-QA, an innovative metric designed to assess the success of image editing by leveraging large models. (3) Hybrid Data: The data comes from real scenes and virtual generation, which effectively improves data diversity and alleviates the bias problem in model evaluation. Through ICE-Bench, we conduct a thorough analysis of existing generation models, revealing both the challenging nature of our benchmark and the gap between current model capabilities and real-world generation requirements. To foster further advancements in the field, we will open-source ICE-Bench, including its dataset, evaluation code, and models, thereby providing a valuable resource for the research community.
comment: 17 pages
☆ Optimized 3D Gaussian Splatting using Coarse-to-Fine Image Frequency Modulation
The field of Novel View Synthesis has been revolutionized by 3D Gaussian Splatting (3DGS), which enables high-quality scene reconstruction that can be rendered in real-time. 3DGS-based techniques typically suffer from high GPU memory and disk storage requirements which limits their practical application on consumer-grade devices. We propose Opti3DGS, a novel frequency-modulated coarse-to-fine optimization framework that aims to minimize the number of Gaussian primitives used to represent a scene, thus reducing memory and storage demands. Opti3DGS leverages image frequency modulation, initially enforcing a coarse scene representation and progressively refining it by modulating frequency details in the training images. On the baseline 3DGS, we demonstrate an average reduction of 62% in Gaussians, a 40% reduction in the training GPU memory requirements and a 20% reduction in optimization time without sacrificing the visual quality. Furthermore, we show that our method integrates seamlessly with many 3DGS-based techniques, consistently reducing the number of Gaussian primitives while maintaining, and often improving, visual quality. Additionally, Opti3DGS inherently produces a level-of-detail scene representation at no extra cost, a natural byproduct of the optimization pipeline. Results and code will be made publicly available.
☆ SIR-DIFF: Sparse Image Sets Restoration with Multi-View Diffusion Model
The computer vision community has developed numerous techniques for digitally restoring true scene information from single-view degraded photographs, an important yet extremely ill-posed task. In this work, we tackle image restoration from a different perspective by jointly denoising multiple photographs of the same scene. Our core hypothesis is that degraded images capturing a shared scene contain complementary information that, when combined, better constrains the restoration problem. To this end, we implement a powerful multi-view diffusion model that jointly generates uncorrupted views by extracting rich information from multi-view relationships. Our experiments show that our multi-view approach outperforms existing single-view image and even video-based methods on image deblurring and super-resolution tasks. Critically, our model is trained to output 3D consistent images, making it a promising tool for applications requiring robust multi-view integration, such as 3D reconstruction or pose estimation.
☆ Bolt3D: Generating 3D Scenes in Seconds
We present a latent diffusion model for fast feed-forward 3D scene generation. Given one or more images, our model Bolt3D directly samples a 3D scene representation in less than seven seconds on a single GPU. We achieve this by leveraging powerful and scalable existing 2D diffusion network architectures to produce consistent high-fidelity 3D scene representations. To train this model, we create a large-scale multiview-consistent dataset of 3D geometry and appearance by applying state-of-the-art dense 3D reconstruction techniques to existing multiview image datasets. Compared to prior multiview generative models that require per-scene optimization for 3D reconstruction, Bolt3D reduces the inference cost by a factor of up to 300 times.
comment: Project page: https://szymanowiczs.github.io/bolt3d
☆ MagicComp: Training-free Dual-Phase Refinement for Compositional Video Generation
Text-to-video (T2V) generation has made significant strides with diffusion models. However, existing methods still struggle with accurately binding attributes, determining spatial relationships, and capturing complex action interactions between multiple subjects. To address these limitations, we propose MagicComp, a training-free method that enhances compositional T2V generation through dual-phase refinement. Specifically, (1) During the Conditioning Stage: We introduce the Semantic Anchor Disambiguation to reinforces subject-specific semantics and resolve inter-subject ambiguity by progressively injecting the directional vectors of semantic anchors into original text embedding; (2) During the Denoising Stage: We propose Dynamic Layout Fusion Attention, which integrates grounding priors and model-adaptive spatial perception to flexibly bind subjects to their spatiotemporal regions through masked attention modulation. Furthermore, MagicComp is a model-agnostic and versatile approach, which can be seamlessly integrated into existing T2V architectures. Extensive experiments on T2V-CompBench and VBench demonstrate that MagicComp outperforms state-of-the-art methods, highlighting its potential for applications such as complex prompt-based and trajectory-controllable video generation. Project page: https://hong-yu-zhang.github.io/MagicComp-Page/.
comment: Project webpage: https://hong-yu-zhang.github.io/MagicComp-Page/
☆ ExDDV: A New Dataset for Explainable Deepfake Detection in Video
The ever growing realism and quality of generated videos makes it increasingly harder for humans to spot deepfake content, who need to rely more and more on automatic deepfake detectors. However, deepfake detectors are also prone to errors, and their decisions are not explainable, leaving humans vulnerable to deepfake-based fraud and misinformation. To this end, we introduce ExDDV, the first dataset and benchmark for Explainable Deepfake Detection in Video. ExDDV comprises around 5.4K real and deepfake videos that are manually annotated with text descriptions (to explain the artifacts) and clicks (to point out the artifacts). We evaluate a number of vision-language models on ExDDV, performing experiments with various fine-tuning and in-context learning strategies. Our results show that text and click supervision are both required to develop robust explainable models for deepfake videos, which are able to localize and describe the observed artifacts. Our novel dataset and code to reproduce the results are available at https://github.com/vladhondru25/ExDDV.
☆ DUNE: Distilling a Universal Encoder from Heterogeneous 2D and 3D Teachers CVPR-2025
Recent multi-teacher distillation methods have unified the encoders of multiple foundation models into a single encoder, achieving competitive performance on core vision tasks like classification, segmentation, and depth estimation. This led us to ask: Could similar success be achieved when the pool of teachers also includes vision models specialized in diverse tasks across both 2D and 3D perception? In this paper, we define and investigate the problem of heterogeneous teacher distillation, or co-distillation, a challenging multi-teacher distillation scenario where teacher models vary significantly in both (a) their design objectives and (b) the data they were trained on. We explore data-sharing strategies and teacher-specific encoding, and introduce DUNE, a single encoder excelling in 2D vision, 3D understanding, and 3D human perception. Our model achieves performance comparable to that of its larger teachers, sometimes even outperforming them, on their respective tasks. Notably, DUNE surpasses MASt3R in Map-free Visual Relocalization with a much smaller encoder.
comment: Accepted to CVPR-2025. Project page: https://europe.naverlabs.com/dune
☆ Diffusion-based Facial Aesthetics Enhancement with 3D Structure Guidance
Facial Aesthetics Enhancement (FAE) aims to improve facial attractiveness by adjusting the structure and appearance of a facial image while preserving its identity as much as possible. Most existing methods adopted deep feature-based or score-based guidance for generation models to conduct FAE. Although these methods achieved promising results, they potentially produced excessively beautified results with lower identity consistency or insufficiently improved facial attractiveness. To enhance facial aesthetics with less loss of identity, we propose the Nearest Neighbor Structure Guidance based on Diffusion (NNSG-Diffusion), a diffusion-based FAE method that beautifies a 2D facial image with 3D structure guidance. Specifically, we propose to extract FAE guidance from a nearest neighbor reference face. To allow for less change of facial structures in the FAE process, a 3D face model is recovered by referring to both the matched 2D reference face and the 2D input face, so that the depth and contour guidance can be extracted from the 3D face model. Then the depth and contour clues can provide effective guidance to Stable Diffusion with ControlNet for FAE. Extensive experiments demonstrate that our method is superior to previous relevant methods in enhancing facial aesthetics while preserving facial identity.
☆ Weakly Supervised Spatial Implicit Neural Representation Learning for 3D MRI-Ultrasound Deformable Image Registration in HDR Prostate Brachytherapy
Purpose: Accurate 3D MRI-ultrasound (US) deformable registration is critical for real-time guidance in high-dose-rate (HDR) prostate brachytherapy. We present a weakly supervised spatial implicit neural representation (SINR) method to address modality differences and pelvic anatomy challenges. Methods: The framework uses sparse surface supervision from MRI/US segmentations instead of dense intensity matching. SINR models deformations as continuous spatial functions, with patient-specific surface priors guiding a stationary velocity field for biologically plausible deformations. Validation included 20 public Prostate-MRI-US-Biopsy cases and 10 institutional HDR cases, evaluated via Dice similarity coefficient (DSC), mean surface distance (MSD), and 95% Hausdorff distance (HD95). Results: The proposed method achieved robust registration. For the public dataset, prostate DSC was $0.93 \pm 0.05$, MSD $0.87 \pm 0.10$ mm, and HD95 $1.58 \pm 0.37$ mm. For the institutional dataset, prostate CTV achieved DSC $0.88 \pm 0.09$, MSD $1.21 \pm 0.38$ mm, and HD95 $2.09 \pm 1.48$ mm. Bladder and rectum performance was lower due to ultrasound's limited field of view. Visual assessments confirmed accurate alignment with minimal discrepancies. Conclusion: This study introduces a novel weakly supervised SINR-based approach for 3D MRI-US deformable registration. By leveraging sparse surface supervision and spatial priors, it achieves accurate, robust, and computationally efficient registration, enhancing real-time image guidance in HDR prostate brachytherapy and improving treatment precision.
☆ Impossible Videos
Synthetic videos nowadays is widely used to complement data scarcity and diversity of real-world videos. Current synthetic datasets primarily replicate real-world scenarios, leaving impossible, counterfactual and anti-reality video concepts underexplored. This work aims to answer two questions: 1) Can today's video generation models effectively follow prompts to create impossible video content? 2) Are today's video understanding models good enough for understanding impossible videos? To this end, we introduce IPV-Bench, a novel benchmark designed to evaluate and foster progress in video understanding and generation. IPV-Bench is underpinned by a comprehensive taxonomy, encompassing 4 domains, 14 categories. It features diverse scenes that defy physical, biological, geographical, or social laws. Based on the taxonomy, a prompt suite is constructed to evaluate video generation models, challenging their prompt following and creativity capabilities. In addition, a video benchmark is curated to assess Video-LLMs on their ability of understanding impossible videos, which particularly requires reasoning on temporal dynamics and world knowledge. Comprehensive evaluations reveal limitations and insights for future directions of video models, paving the way for next-generation video models.
comment: 26 pages
☆ Advancing Medical Representation Learning Through High-Quality Data
Despite the growing scale of medical Vision-Language datasets, the impact of dataset quality on model performance remains under-explored. We introduce Open-PMC, a high-quality medical dataset from PubMed Central, containing 2.2 million image-text pairs, enriched with image modality annotations, subfigures, and summarized in-text references. Notably, the in-text references provide richer medical context, extending beyond the abstract information typically found in captions. Through extensive experiments, we benchmark Open-PMC against larger datasets across retrieval and zero-shot classification tasks. Our results show that dataset quality-not just size-drives significant performance gains. We complement our benchmark with an in-depth analysis of feature representation. Our findings highlight the crucial role of data curation quality in advancing multimodal medical AI. We release Open-PMC, along with the trained models and our codebase.
☆ ImViD: Immersive Volumetric Videos for Enhanced VR Engagement CVPR 2025
User engagement is greatly enhanced by fully immersive multi-modal experiences that combine visual and auditory stimuli. Consequently, the next frontier in VR/AR technologies lies in immersive volumetric videos with complete scene capture, large 6-DoF interaction space, multi-modal feedback, and high resolution & frame-rate contents. To stimulate the reconstruction of immersive volumetric videos, we introduce ImViD, a multi-view, multi-modal dataset featuring complete space-oriented data capture and various indoor/outdoor scenarios. Our capture rig supports multi-view video-audio capture while on the move, a capability absent in existing datasets, significantly enhancing the completeness, flexibility, and efficiency of data capture. The captured multi-view videos (with synchronized audios) are in 5K resolution at 60FPS, lasting from 1-5 minutes, and include rich foreground-background elements, and complex dynamics. We benchmark existing methods using our dataset and establish a base pipeline for constructing immersive volumetric videos from multi-view audiovisual inputs for 6-DoF multi-modal immersive VR experiences. The benchmark and the reconstruction and interaction results demonstrate the effectiveness of our dataset and baseline method, which we believe will stimulate future research on immersive volumetric video production.
comment: Accepted by CVPR 2025
☆ RFMI: Estimating Mutual Information on Rectified Flow for Text-to-Image Alignment ICLR 2025
Rectified Flow (RF) models trained with a Flow matching framework have achieved state-of-the-art performance on Text-to-Image (T2I) conditional generation. Yet, multiple benchmarks show that synthetic images can still suffer from poor alignment with the prompt, i.e., images show wrong attribute binding, subject positioning, numeracy, etc. While the literature offers many methods to improve T2I alignment, they all consider only Diffusion Models, and require auxiliary datasets, scoring models, and linguistic analysis of the prompt. In this paper we aim to address these gaps. First, we introduce RFMI, a novel Mutual Information (MI) estimator for RF models that uses the pre-trained model itself for the MI estimation. Then, we investigate a self-supervised fine-tuning approach for T2I alignment based on RFMI that does not require auxiliary information other than the pre-trained model itself. Specifically, a fine-tuning set is constructed by selecting synthetic images generated from the pre-trained RF model and having high point-wise MI between images and prompts. Our experiments on MI estimation benchmarks demonstrate the validity of RFMI, and empirical fine-tuning on SD3.5-Medium confirms the effectiveness of RFMI for improving T2I alignment while maintaining image quality.
comment: to appear at ICLR 2025 Workshop on Deep Generative Model in Machine Learning: Theory, Principle and Efficacy
☆ MAST-Pro: Dynamic Mixture-of-Experts for Adaptive Segmentation of Pan-Tumors with Knowledge-Driven Prompts
Accurate tumor segmentation is crucial for cancer diagnosis and treatment. While foundation models have advanced general-purpose segmentation, existing methods still struggle with: (1) limited incorporation of medical priors, (2) imbalance between generic and tumor-specific features, and (3) high computational costs for clinical adaptation. To address these challenges, we propose MAST-Pro (Mixture-of-experts for Adaptive Segmentation of pan-Tumors with knowledge-driven Prompts), a novel framework that integrates dynamic Mixture-of-Experts (D-MoE) and knowledge-driven prompts for pan-tumor segmentation. Specifically, text and anatomical prompts provide domain-specific priors, guiding tumor representation learning, while D-MoE dynamically selects experts to balance generic and tumor-specific feature learning, improving segmentation accuracy across diverse tumor types. To enhance efficiency, we employ Parameter-Efficient Fine-Tuning (PEFT), optimizing MAST-Pro with significantly reduced computational overhead. Experiments on multi-anatomical tumor datasets demonstrate that MAST-Pro outperforms state-of-the-art approaches, achieving up to a 5.20% improvement in average DSC while reducing trainable parameters by 91.04%, without compromising accuracy.
comment: 10 pages, 2 figures
☆ Retrospective: A CORDIC Based Configurable Activation Function for NN Applications
A CORDIC-based configuration for the design of Activation Functions (AF) was previously suggested to accelerate ASIC hardware design for resource-constrained systems by providing functional reconfigurability. Since its introduction, this new approach for neural network acceleration has gained widespread popularity, influencing numerous designs for activation functions in both academic and commercial AI processors. In this retrospective analysis, we explore the foundational aspects of this initiative, summarize key developments over recent years, and introduce the DA-VINCI AF tailored for the evolving needs of AI applications. This new generation of dynamically configurable and precision-adjustable activation function cores promise greater adaptability for a range of activation functions in AI workloads, including Swish, SoftMax, SeLU, and GeLU, utilizing the Shift-and-Add CORDIC technique. The previously presented design has been optimized for MAC, Sigmoid, and Tanh functionalities and incorporated into ReLU AFs, culminating in an accumulative NEURIC compute unit. These enhancements position NEURIC as a fundamental component in the resource-efficient vector engine for the realization of AI accelerators that focus on DNNs, RNNs/LSTMs, and Transformers, achieving a quality of results (QoR) of 98.5%.
☆ VEGGIE: Instructional Editing and Reasoning Video Concepts with Grounded Generation
Recent video diffusion models have enhanced video editing, but it remains challenging to handle instructional editing and diverse tasks (e.g., adding, removing, changing) within a unified framework. In this paper, we introduce VEGGIE, a Video Editor with Grounded Generation from Instructions, a simple end-to-end framework that unifies video concept editing, grounding, and reasoning based on diverse user instructions. Specifically, given a video and text query, VEGGIE first utilizes an MLLM to interpret user intentions in instructions and ground them to the video contexts, generating frame-specific grounded task queries for pixel-space responses. A diffusion model then renders these plans and generates edited videos that align with user intent. To support diverse tasks and complex instructions, we employ a curriculum learning strategy: first aligning the MLLM and video diffusion model with large-scale instructional image editing data, followed by end-to-end fine-tuning on high-quality multitask video data. Additionally, we introduce a novel data synthesis pipeline to generate paired instructional video editing data for model training. It transforms static image data into diverse, high-quality video editing samples by leveraging Image-to-Video models to inject dynamics. VEGGIE shows strong performance in instructional video editing with different editing skills, outperforming the best instructional baseline as a versatile model, while other models struggle with multi-tasking. VEGGIE also excels in video object grounding and reasoning segmentation, where other baselines fail. We further reveal how the multiple tasks help each other and highlight promising applications like zero-shot multimodal instructional and in-context video editing.
comment: First three authors contributed equally. Project page: https://veggie-gen.github.io/
☆ 3D Densification for Multi-Map Monocular VSLAM in Endoscopy
Multi-map Sparse Monocular visual Simultaneous Localization and Mapping applied to monocular endoscopic sequences has proven efficient to robustly recover tracking after the frequent losses in endoscopy due to motion blur, temporal occlusion, tools interaction or water jets. The sparse multi-maps are adequate for robust camera localization, however they are very poor for environment representation, they are noisy, with a high percentage of inaccurately reconstructed 3D points, including significant outliers, and more importantly with an unacceptable low density for clinical applications. We propose a method to remove outliers and densify the maps of the state of the art for sparse endoscopy multi-map CudaSIFT-SLAM. The NN LightDepth for up-to-scale depth dense predictions are aligned with the sparse CudaSIFT submaps by means of the robust to spurious LMedS. Our system mitigates the inherent scale ambiguity in monocular depth estimation while filtering outliers, leading to reliable densified 3D maps. We provide experimental evidence of accurate densified maps 4.15 mm RMS accuracy at affordable computing time in the C3VD phantom colon dataset. We report qualitative results on the real colonoscopy from the Endomapper dataset.
☆ Multi-Prototype Embedding Refinement for Semi-Supervised Medical Image Segmentation
Medical image segmentation aims to identify anatomical structures at the voxel-level. Segmentation accuracy relies on distinguishing voxel differences. Compared to advancements achieved in studies of the inter-class variance, the intra-class variance receives less attention. Moreover, traditional linear classifiers, limited by a single learnable weight per class, struggle to capture this finer distinction. To address the above challenges, we propose a Multi-Prototype-based Embedding Refinement method for semi-supervised medical image segmentation. Specifically, we design a multi-prototype-based classification strategy, rethinking the segmentation from the perspective of structural relationships between voxel embeddings. The intra-class variations are explored by clustering voxels along the distribution of multiple prototypes in each class. Next, we introduce a consistency constraint to alleviate the limitation of linear classifiers. This constraint integrates different classification granularities from a linear classifier and the proposed prototype-based classifier. In the thorough evaluation on two popular benchmarks, our method achieves superior performance compared with state-of-the-art methods. Code is available at https://github.com/Briley-byl123/MPER.
☆ ADAPT: An Autonomous Forklift for Construction Site Operation
Efficient material logistics play a critical role in controlling costs and schedules in the construction industry. However, manual material handling remains prone to inefficiencies, delays, and safety risks. Autonomous forklifts offer a promising solution to streamline on-site logistics, reducing reliance on human operators and mitigating labor shortages. This paper presents the development and evaluation of the Autonomous Dynamic All-terrain Pallet Transporter (ADAPT), a fully autonomous off-road forklift designed for construction environments. Unlike structured warehouse settings, construction sites pose significant challenges, including dynamic obstacles, unstructured terrain, and varying weather conditions. To address these challenges, our system integrates AI-driven perception techniques with traditional approaches for decision making, planning, and control, enabling reliable operation in complex environments. We validate the system through extensive real-world testing, comparing its long-term performance against an experienced human operator across various weather conditions. We also provide a comprehensive analysis of challenges and key lessons learned, contributing to the advancement of autonomous heavy machinery. Our findings demonstrate that autonomous outdoor forklifts can operate near human-level performance, offering a viable path toward safer and more efficient construction logistics.
☆ LeanVAE: An Ultra-Efficient Reconstruction VAE for Video Diffusion Models
Recent advances in Latent Video Diffusion Models (LVDMs) have revolutionized video generation by leveraging Video Variational Autoencoders (Video VAEs) to compress intricate video data into a compact latent space. However, as LVDM training scales, the computational overhead of Video VAEs becomes a critical bottleneck, particularly for encoding high-resolution videos. To address this, we propose LeanVAE, a novel and ultra-efficient Video VAE framework that introduces two key innovations: (1) a lightweight architecture based on a Neighborhood-Aware Feedforward (NAF) module and non-overlapping patch operations, drastically reducing computational cost, and (2) the integration of wavelet transforms and compressed sensing techniques to enhance reconstruction quality. Extensive experiments validate LeanVAE's superiority in video reconstruction and generation, particularly in enhancing efficiency over existing Video VAEs. Our model offers up to 50x fewer FLOPs and 44x faster inference speed while maintaining competitive reconstruction quality, providing insights for scalable, efficient video generation. Our models and code are available at https://github.com/westlake-repl/LeanVAE
☆ RoMedFormer: A Rotary-Embedding Transformer Foundation Model for 3D Genito-Pelvic Structure Segmentation in MRI and CT
Deep learning-based segmentation of genito-pelvic structures in MRI and CT is crucial for applications such as radiation therapy, surgical planning, and disease diagnosis. However, existing segmentation models often struggle with generalizability across imaging modalities, and anatomical variations. In this work, we propose RoMedFormer, a rotary-embedding transformer-based foundation model designed for 3D female genito-pelvic structure segmentation in both MRI and CT. RoMedFormer leverages self-supervised learning and rotary positional embeddings to enhance spatial feature representation and capture long-range dependencies in 3D medical data. We pre-train our model using a diverse dataset of 3D MRI and CT scans and fine-tune it for downstream segmentation tasks. Experimental results demonstrate that RoMedFormer achieves superior performance segmenting genito-pelvic organs. Our findings highlight the potential of transformer-based architectures in medical image segmentation and pave the way for more transferable segmentation frameworks.
☆ PC-Talk: Precise Facial Animation Control for Audio-Driven Talking Face Generation
Recent advancements in audio-driven talking face generation have made great progress in lip synchronization. However, current methods often lack sufficient control over facial animation such as speaking style and emotional expression, resulting in uniform outputs. In this paper, we focus on improving two key factors: lip-audio alignment and emotion control, to enhance the diversity and user-friendliness of talking videos. Lip-audio alignment control focuses on elements like speaking style and the scale of lip movements, whereas emotion control is centered on generating realistic emotional expressions, allowing for modifications in multiple attributes such as intensity. To achieve precise control of facial animation, we propose a novel framework, PC-Talk, which enables lip-audio alignment and emotion control through implicit keypoint deformations. First, our lip-audio alignment control module facilitates precise editing of speaking styles at the word level and adjusts lip movement scales to simulate varying vocal loudness levels, maintaining lip synchronization with the audio. Second, our emotion control module generates vivid emotional facial features with pure emotional deformation. This module also enables the fine modification of intensity and the combination of multiple emotions across different facial regions. Our method demonstrates outstanding control capabilities and achieves state-of-the-art performance on both HDTF and MEAD datasets in extensive experiments.
☆ Towards synthetic generation of realistic wooden logs
In this work, we propose a novel method to synthetically generate realistic 3D representations of wooden logs. Efficient sawmilling heavily relies on accurate measurement of logs and the distribution of knots inside them. Computed Tomography (CT) can be used to obtain accurate information about the knots but is often not feasible in a sawmill environment. A promising alternative is to utilize surface measurements and machine learning techniques to predict the inner structure of the logs. However, obtaining enough training data remains a challenge. We focus mainly on two aspects of log generation: the modeling of knot growth inside the tree, and the realistic synthesis of the surface including the regions, where the knots reach the surface. This results in the first log synthesis approach capable of generating both the internal knot and external surface structures of wood. We demonstrate that the proposed mathematical log model accurately fits to real data obtained from CT scans and enables the generation of realistic logs.
☆ Free-Lunch Color-Texture Disentanglement for Stylized Image Generation
Recent advances in Text-to-Image (T2I) diffusion models have transformed image generation, enabling significant progress in stylized generation using only a few style reference images. However, current diffusion-based methods struggle with fine-grained style customization due to challenges in controlling multiple style attributes, such as color and texture. This paper introduces the first tuning-free approach to achieve free-lunch color-texture disentanglement in stylized T2I generation, addressing the need for independently controlled style elements for the Disentangled Stylized Image Generation (DisIG) problem. Our approach leverages the Image-Prompt Additivity property in the CLIP image embedding space to develop techniques for separating and extracting Color-Texture Embeddings (CTE) from individual color and texture reference images. To ensure that the color palette of the generated image aligns closely with the color reference, we apply a whitening and coloring transformation to enhance color consistency. Additionally, to prevent texture loss due to the signal-leak bias inherent in diffusion training, we introduce a noise term that preserves textural fidelity during the Regularized Whitening and Coloring Transformation (RegWCT). Through these methods, our Style Attributes Disentanglement approach (SADis) delivers a more precise and customizable solution for stylized image generation. Experiments on images from the WikiArt and StyleDrop datasets demonstrate that, both qualitatively and quantitatively, SADis surpasses state-of-the-art stylization methods in the DisIG task.
☆ Improving Adaptive Density Control for 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) has become one of the most influential works in the past year. Due to its efficient and high-quality novel view synthesis capabilities, it has been widely adopted in many research fields and applications. Nevertheless, 3DGS still faces challenges to properly manage the number of Gaussian primitives that are used during scene reconstruction. Following the adaptive density control (ADC) mechanism of 3D Gaussian Splatting, new Gaussians in under-reconstructed regions are created, while Gaussians that do not contribute to the rendering quality are pruned. We observe that those criteria for densifying and pruning Gaussians can sometimes lead to worse rendering by introducing artifacts. We especially observe under-reconstructed background or overfitted foreground regions. To encounter both problems, we propose three new improvements to the adaptive density control mechanism. Those include a correction for the scene extent calculation that does not only rely on camera positions, an exponentially ascending gradient threshold to improve training convergence, and significance-aware pruning strategy to avoid background artifacts. With these adaptions, we show that the rendering quality improves while using the same number of Gaussians primitives. Furthermore, with our improvements, the training converges considerably faster, allowing for more than twice as fast training times while yielding better quality than 3DGS. Finally, our contributions are easily compatible with most existing derivative works of 3DGS making them relevant for future works.
☆ Deep Unsupervised Segmentation of Log Point Clouds
In sawmills, it is essential to accurately measure the raw material, i.e. wooden logs, to optimise the sawing process. Earlier studies have shown that accurate predictions of the inner structure of the logs can be obtained using just surface point clouds produced by a laser scanner. This provides a cost-efficient and fast alternative to the X-ray CT-based measurement devices. The essential steps in analysing log point clouds is segmentation, as it forms the basis for finding the fine surface details that provide the cues about the inner structure of the log. We propose a novel Point Transformer-based point cloud segmentation technique that learns to find the points belonging to the log surface in unsupervised manner. This is obtained using a loss function that utilises the geometrical properties of a cylinder while taking into account the shape variation common in timber logs. We demonstrate the accuracy of the method on wooden logs, but the approach could be utilised also on other cylindrical objects.
☆ Make Your Training Flexible: Towards Deployment-Efficient Video Models
Popular video training methods mainly operate on a fixed number of tokens sampled from a predetermined spatiotemporal grid, resulting in sub-optimal accuracy-computation trade-offs due to inherent video redundancy. They also lack adaptability to varying computational budgets for downstream tasks, hindering applications of the most competitive model in real-world scenes. We thus propose a new test setting, Token Optimization, for maximized input information across budgets, which optimizes the size-limited set of input tokens through token selection from more suitably sampled videos. To this end, we propose a novel augmentation tool termed Flux. By making the sampling grid flexible and leveraging token selection, it is easily adopted in most popular video training frameworks, boosting model robustness with nearly no additional cost. We integrate Flux in large-scale video pre-training, and the resulting FluxViT establishes new state-of-the-art results across extensive tasks at standard costs. Notably, with 1/4 tokens only, it can still match the performance of previous state-of-the-art models with Token Optimization, yielding nearly 90\% savings. All models and data are available at https://github.com/OpenGVLab/FluxViT.
☆ CRCE: Coreference-Retention Concept Erasure in Text-to-Image Diffusion Models
Text-to-Image diffusion models can produce undesirable content that necessitates concept erasure techniques. However, existing methods struggle with under-erasure, leaving residual traces of targeted concepts, or over-erasure, mistakenly eliminating unrelated but visually similar concepts. To address these limitations, we introduce CRCE, a novel concept erasure framework that leverages Large Language Models to identify both semantically related concepts that should be erased alongside the target and distinct concepts that should be preserved. By explicitly modeling coreferential and retained concepts semantically, CRCE enables more precise concept removal, without unintended erasure. Experiments demonstrate that CRCE outperforms existing methods on diverse erasure tasks.
☆ Multi-task Learning for Identification of Porcelain in Song and Yuan Dynasties
Chinese porcelain holds immense historical and cultural value, making its accurate classification essential for archaeological research and cultural heritage preservation. Traditional classification methods rely heavily on expert analysis, which is time-consuming, subjective, and difficult to scale. This paper explores the application of DL and transfer learning techniques to automate the classification of porcelain artifacts across four key attributes: dynasty, glaze, ware, and type. We evaluate four Convolutional Neural Networks (CNNs) - ResNet50, MobileNetV2, VGG16, and InceptionV3 - comparing their performance with and without pre-trained weights. Our results demonstrate that transfer learning significantly enhances classification accuracy, particularly for complex tasks like type classification, where models trained from scratch exhibit lower performance. MobileNetV2 and ResNet50 consistently achieve high accuracy and robustness across all tasks, while VGG16 struggles with more diverse classifications. We further discuss the impact of dataset limitations and propose future directions, including domain-specific pre-training, integration of attention mechanisms, explainable AI methods, and generalization to other cultural artifacts.
☆ HA-VLN: A Benchmark for Human-Aware Navigation in Discrete-Continuous Environments with Dynamic Multi-Human Interactions, Real-World Validation, and an Open Leaderboard
Vision-and-Language Navigation (VLN) systems often focus on either discrete (panoramic) or continuous (free-motion) paradigms alone, overlooking the complexities of human-populated, dynamic environments. We introduce a unified Human-Aware VLN (HA-VLN) benchmark that merges these paradigms under explicit social-awareness constraints. Our contributions include: 1. A standardized task definition that balances discrete-continuous navigation with personal-space requirements; 2. An enhanced human motion dataset (HAPS 2.0) and upgraded simulators capturing realistic multi-human interactions, outdoor contexts, and refined motion-language alignment; 3. Extensive benchmarking on 16,844 human-centric instructions, revealing how multi-human dynamics and partial observability pose substantial challenges for leading VLN agents; 4. Real-world robot tests validating sim-to-real transfer in crowded indoor spaces; and 5. A public leaderboard supporting transparent comparisons across discrete and continuous tasks. Empirical results show improved navigation success and fewer collisions when social context is integrated, underscoring the need for human-centric design. By releasing all datasets, simulators, agent code, and evaluation tools, we aim to advance safer, more capable, and socially responsible VLN research.
comment: 27 pages, website: https://ha-vln-project.vercel.app/
☆ Panoramic Distortion-Aware Tokenization for Person Detection and Localization Using Transformers in Overhead Fisheye Images
Person detection methods are used widely in applications including visual surveillance, pedestrian detection, and robotics. However, accurate detection of persons from overhead fisheye images remains an open challenge because of factors including person rotation and small-sized persons. To address the person rotation problem, we convert the fisheye images into panoramic images. For smaller people, we focused on the geometry of the panoramas. Conventional detection methods tend to focus on larger people because these larger people yield large significant areas for feature maps. In equirectangular panoramic images, we find that a person's height decreases linearly near the top of the images. Using this finding, we leverage the significance values and aggregate tokens that are sorted based on these values to balance the significant areas. In this leveraging process, we introduce panoramic distortion-aware tokenization. This tokenization procedure divides a panoramic image using self-similarity figures that enable determination of optimal divisions without gaps, and we leverage the maximum significant values in each tile of token groups to preserve the significant areas of smaller people. To achieve higher detection accuracy, we propose a person detection and localization method that combines panoramic-image remapping and the tokenization procedure. Extensive experiments demonstrated that our method outperforms conventional methods when applied to large-scale datasets.
☆ Segmentation-Guided Neural Radiance Fields for Novel Street View Synthesis
Recent advances in Neural Radiance Fields (NeRF) have shown great potential in 3D reconstruction and novel view synthesis, particularly for indoor and small-scale scenes. However, extending NeRF to large-scale outdoor environments presents challenges such as transient objects, sparse cameras and textures, and varying lighting conditions. In this paper, we propose a segmentation-guided enhancement to NeRF for outdoor street scenes, focusing on complex urban environments. Our approach extends ZipNeRF and utilizes Grounded SAM for segmentation mask generation, enabling effective handling of transient objects, modeling of the sky, and regularization of the ground. We also introduce appearance embeddings to adapt to inconsistent lighting across view sequences. Experimental results demonstrate that our method outperforms the baseline ZipNeRF, improving novel view synthesis quality with fewer artifacts and sharper details.
comment: Presented at VISAPP2025. Project page: http://www.ok.sc.e.titech.ac.jp/res/NVS/index.html
☆ AI-Driven Diabetic Retinopathy Diagnosis Enhancement through Image Processing and Salp Swarm Algorithm-Optimized Ensemble Network
Diabetic retinopathy is a leading cause of blindness in diabetic patients and early detection plays a crucial role in preventing vision loss. Traditional diagnostic methods are often time-consuming and prone to errors. The emergence of deep learning techniques has provided innovative solutions to improve diagnostic efficiency. However, single deep learning models frequently face issues related to extracting key features from complex retinal images. To handle this problem, we present an effective ensemble method for DR diagnosis comprising four main phases: image pre-processing, selection of backbone pre-trained models, feature enhancement, and optimization. Our methodology initiates with the pre-processing phase, where we apply CLAHE to enhance image contrast and Gamma correction is then used to adjust the brightness for better feature recognition. We then apply Discrete Wavelet Transform (DWT) for image fusion by combining multi-resolution details to create a richer dataset. Then, we selected three pre-trained models with the best performance named DenseNet169, MobileNetV1, and Xception for diverse feature extraction. To further improve feature extraction, an improved residual block is integrated into each model. Finally, the predictions from these base models are then aggregated using weighted ensemble approach, with the weights optimized by using Salp Swarm Algorithm (SSA).SSA intelligently explores the weight space and finds the optimal configuration of base architectures to maximize the performance of the ensemble model. The proposed model is evaluated on the multiclass Kaggle APTOS 2019 dataset and obtained 88.52% accuracy.
☆ RoGSplat: Learning Robust Generalizable Human Gaussian Splatting from Sparse Multi-View Images CVPR2025
This paper presents RoGSplat, a novel approach for synthesizing high-fidelity novel views of unseen human from sparse multi-view images, while requiring no cumbersome per-subject optimization. Unlike previous methods that typically struggle with sparse views with few overlappings and are less effective in reconstructing complex human geometry, the proposed method enables robust reconstruction in such challenging conditions. Our key idea is to lift SMPL vertices to dense and reliable 3D prior points representing accurate human body geometry, and then regress human Gaussian parameters based on the points. To account for possible misalignment between SMPL model and images, we propose to predict image-aligned 3D prior points by leveraging both pixel-level features and voxel-level features, from which we regress the coarse Gaussians. To enhance the ability to capture high-frequency details, we further render depth maps from the coarse 3D Gaussians to help regress fine-grained pixel-wise Gaussians. Experiments on several benchmark datasets demonstrate that our method outperforms state-of-the-art methods in novel view synthesis and cross-dataset generalization. Our code is available at https://github.com/iSEE-Laboratory/RoGSplat.
comment: Accepted to CVPR2025
☆ Mapping Urban Villages in China: Progress and Challenges
The shift toward high-quality urbanization has brought increased attention to the issue of "urban villages", which has become a prominent social problem in China. However, there is a lack of available geospatial data on urban villages, making it crucial to prioritize urban village mapping. In order to assess the current progress in urban village mapping and identify challenges and future directions, we have conducted a comprehensive review, which to the best of our knowledge is the first of its kind in this field. Our review begins by providing a clear context for urban villages and elaborating the method for literature review, then summarizes the study areas, data sources, and approaches used for urban village mapping in China. We also address the challenges and future directions for further research. Through thorough investigation, we find that current studies only cover very limited study areas and periods and lack sufficient investigation into the scalability, transferability, and interpretability of identification approaches due to the challenges in concept fuzziness and variances, spatial heterogeneity and variances of urban villages, and data availability. Future research can complement and further the current research in the following potential directions in order to achieve large-area mapping across the whole nation...
comment: Updated review at https://github.com/rui-research/urban-village-review
☆ Towards Harmless Multimodal Assistants with Blind Preference Optimization
Multimodal Large Language Models (MLLMs) have demonstrated impressive capabilities in multimodal understanding, reasoning, and interaction. Given the extensive applications of MLLMs, the associated safety issues have become increasingly critical. Due to the effectiveness of preference optimization in aligning MLLMs with human preferences, there is an urgent need for safety-related preference data for MLLMs. To address this, we construct the MMSafe-PO preference dataset towards harmless multimodal assistants, featuring multimodal instructions, the conversational format, and ranked paired responses from human feedback. We also identify two insightful observations: modality co-defense and modality cheating, which illustrate that MLLMs possess a certain level of inherent defense while still presenting unique safety challenges. Based on these observations, we propose the Blind Preference Optimization (BPO) approach. Comprehensive experiments on three benchmarks show that BPO effectively enhances the safety capabilities of MLLMs. Notably, BPO significantly improves the safety rate of the base MLLM by 45.0%, outperforming the DPO approach. Additionally, applying BPO to the MMSafe-PO dataset greatly reduces the base MLLM's unsafe rate on other safety benchmarks (14.5% on MM-SafetyBench and 82.9% on HarmEval, demonstrating the effectiveness and robustness of both the dataset and the approach. We release code and data at https://lu-yang666.github.io/MMsafe-PO-Web/.
☆ Bridging Past and Future: End-to-End Autonomous Driving with Historical Prediction and Planning CVPR 2025
End-to-end autonomous driving unifies tasks in a differentiable framework, enabling planning-oriented optimization and attracting growing attention. Current methods aggregate historical information either through dense historical bird's-eye-view (BEV) features or by querying a sparse memory bank, following paradigms inherited from detection. However, we argue that these paradigms either omit historical information in motion planning or fail to align with its multi-step nature, which requires predicting or planning multiple future time steps. In line with the philosophy of future is a continuation of past, we propose BridgeAD, which reformulates motion and planning queries as multi-step queries to differentiate the queries for each future time step. This design enables the effective use of historical prediction and planning by applying them to the appropriate parts of the end-to-end system based on the time steps, which improves both perception and motion planning. Specifically, historical queries for the current frame are combined with perception, while queries for future frames are integrated with motion planning. In this way, we bridge the gap between past and future by aggregating historical insights at every time step, enhancing the overall coherence and accuracy of the end-to-end autonomous driving pipeline. Extensive experiments on the nuScenes dataset in both open-loop and closed-loop settings demonstrate that BridgeAD achieves state-of-the-art performance.
comment: CVPR 2025
☆ Lightweight Gradient-Aware Upscaling of 3D Gaussian Splatting Images
We introduce an image upscaling technique tailored for 3D Gaussian Splatting (3DGS) on lightweight GPUs. Compared to 3DGS, it achieves significantly higher rendering speeds and reduces artifacts commonly observed in 3DGS reconstructions. Our technique upscales low-resolution 3DGS renderings with a marginal increase in cost by directly leveraging the analytical image gradients of Gaussians for gradient-based bicubic spline interpolation. The technique is agnostic to the specific 3DGS implementation, achieving novel view synthesis at rates 3x-4x higher than the baseline implementation. Through extensive experiments on multiple datasets, we showcase the performance improvements and high reconstruction fidelity attainable with gradient-aware upscaling of 3DGS images. We further demonstrate the integration of gradient-aware upscaling into the gradient-based optimization of a 3DGS model and analyze its effects on reconstruction quality and performance.
CoSpace: Benchmarking Continuous Space Perception Ability for Vision-Language Models
Vision-Language Models (VLMs) have recently witnessed significant progress in visual comprehension. As the permitting length of image context grows, VLMs can now comprehend a broader range of views and spaces. Current benchmarks provide insightful analysis of VLMs in tasks involving complex visual instructions following, multi-image understanding and spatial reasoning. However, they usually focus on spatially irrelevant images or discrete images captured from varied viewpoints. The compositional characteristic of images captured from a static viewpoint remains underestimated. We term this characteristic as Continuous Space Perception. When observing a scene from a static viewpoint while shifting orientations, it produces a series of spatially continuous images, enabling the reconstruction of the entire space. In this paper, we present CoSpace, a multi-image visual understanding benchmark designed to assess the Continuous Space perception ability for VLMs. CoSpace contains 2,918 images and 1,626 question-answer pairs, covering seven types of tasks. We conduct evaluation across 19 proprietary and open-source VLMs. Results reveal that there exist pitfalls on the continuous space perception ability for most of the evaluated models, including proprietary ones. Interestingly, we find that the main discrepancy between open-source and proprietary models lies not in accuracy but in the consistency of responses. We believe that enhancing the ability of continuous space perception is essential for VLMs to perform effectively in real-world tasks and encourage further research to advance this capability.
RBFIM: Perceptual Quality Assessment for Compressed Point Clouds Using Radial Basis Function Interpolation
One of the main challenges in point cloud compression (PCC) is how to evaluate the perceived distortion so that the codec can be optimized for perceptual quality. Current standard practices in PCC highlight a primary issue: while single-feature metrics are widely used to assess compression distortion, the classic method of searching point-to-point nearest neighbors frequently fails to adequately build precise correspondences between point clouds, resulting in an ineffective capture of human perceptual features. To overcome the related limitations, we propose a novel assessment method called RBFIM, utilizing radial basis function (RBF) interpolation to convert discrete point features into a continuous feature function for the distorted point cloud. By substituting the geometry coordinates of the original point cloud into the feature function, we obtain the bijective sets of point features. This enables an establishment of precise corresponding features between distorted and original point clouds and significantly improves the accuracy of quality assessments. Moreover, this method avoids the complexity caused by bidirectional searches. Extensive experiments on multiple subjective quality datasets of compressed point clouds demonstrate that our RBFIM excels in addressing human perception tasks, thereby providing robust support for PCC optimization efforts.
☆ Concat-ID: Towards Universal Identity-Preserving Video Synthesis
We present Concat-ID, a unified framework for identity-preserving video generation. Concat-ID employs Variational Autoencoders to extract image features, which are concatenated with video latents along the sequence dimension, leveraging solely 3D self-attention mechanisms without the need for additional modules. A novel cross-video pairing strategy and a multi-stage training regimen are introduced to balance identity consistency and facial editability while enhancing video naturalness. Extensive experiments demonstrate Concat-ID's superiority over existing methods in both single and multi-identity generation, as well as its seamless scalability to multi-subject scenarios, including virtual try-on and background-controllable generation. Concat-ID establishes a new benchmark for identity-preserving video synthesis, providing a versatile and scalable solution for a wide range of applications.
☆ Comparative and Interpretative Analysis of CNN and Transformer Models in Predicting Wildfire Spread Using Remote Sensing Data
Facing the escalating threat of global wildfires, numerous computer vision techniques using remote sensing data have been applied in this area. However, the selection of deep learning methods for wildfire prediction remains uncertain due to the lack of comparative analysis in a quantitative and explainable manner, crucial for improving prevention measures and refining models. This study aims to thoroughly compare the performance, efficiency, and explainability of four prevalent deep learning architectures: Autoencoder, ResNet, UNet, and Transformer-based Swin-UNet. Employing a real-world dataset that includes nearly a decade of remote sensing data from California, U.S., these models predict the spread of wildfires for the following day. Through detailed quantitative comparison analysis, we discovered that Transformer-based Swin-UNet and UNet generally outperform Autoencoder and ResNet, particularly due to the advanced attention mechanisms in Transformer-based Swin-UNet and the efficient use of skip connections in both UNet and Transformer-based Swin-UNet, which contribute to superior predictive accuracy and model interpretability. Then we applied XAI techniques on all four models, this not only enhances the clarity and trustworthiness of models but also promotes focused improvements in wildfire prediction capabilities. The XAI analysis reveals that UNet and Transformer-based Swin-UNet are able to focus on critical features such as 'Previous Fire Mask', 'Drought', and 'Vegetation' more effectively than the other two models, while also maintaining balanced attention to the remaining features, leading to their superior performance. The insights from our thorough comparative analysis offer substantial implications for future model design and also provide guidance for model selection in different scenarios.
☆ Marten: Visual Question Answering with Mask Generation for Multi-modal Document Understanding CVPR2025
Multi-modal Large Language Models (MLLMs) have introduced a novel dimension to document understanding, i.e., they endow large language models with visual comprehension capabilities; however, how to design a suitable image-text pre-training task for bridging the visual and language modality in document-level MLLMs remains underexplored. In this study, we introduce a novel visual-language alignment method that casts the key issue as a Visual Question Answering with Mask generation (VQAMask) task, optimizing two tasks simultaneously: VQA-based text parsing and mask generation. The former allows the model to implicitly align images and text at the semantic level. The latter introduces an additional mask generator (discarded during inference) to explicitly ensure alignment between visual texts within images and their corresponding image regions at a spatially-aware level. Together, they can prevent model hallucinations when parsing visual text and effectively promote spatially-aware feature representation learning. To support the proposed VQAMask task, we construct a comprehensive image-mask generation pipeline and provide a large-scale dataset with 6M data (MTMask6M). Subsequently, we demonstrate that introducing the proposed mask generation task yields competitive document-level understanding performance. Leveraging the proposed VQAMask, we introduce Marten, a training-efficient MLLM tailored for document-level understanding. Extensive experiments show that our Marten consistently achieves significant improvements among 8B-MLLMs in document-centric tasks. Code and datasets are available at https://github.com/PriNing/Marten.
comment: Accepted by CVPR2025
☆ Exploring Disparity-Accuracy Trade-offs in Face Recognition Systems: The Role of Datasets, Architectures, and Loss Functions AAAI
Automated Face Recognition Systems (FRSs), developed using deep learning models, are deployed worldwide for identity verification and facial attribute analysis. The performance of these models is determined by a complex interdependence among the model architecture, optimization/loss function and datasets. Although FRSs have surpassed human-level accuracy, they continue to be disparate against certain demographics. Due to the ubiquity of applications, it is extremely important to understand the impact of the three components -- model architecture, loss function and face image dataset on the accuracy-disparity trade-off to design better, unbiased platforms. In this work, we perform an in-depth analysis of three FRSs for the task of gender prediction, with various architectural modifications resulting in ten deep-learning models coupled with four loss functions and benchmark them on seven face datasets across 266 evaluation configurations. Our results show that all three components have an individual as well as a combined impact on both accuracy and disparity. We identify that datasets have an inherent property that causes them to perform similarly across models, independent of the choice of loss functions. Moreover, the choice of dataset determines the model's perceived bias -- the same model reports bias in opposite directions for three gender-balanced datasets of ``in-the-wild'' face images of popular individuals. Studying the facial embeddings shows that the models are unable to generalize a uniform definition of what constitutes a ``female face'' as opposed to a ``male face'', due to dataset diversity. We provide recommendations to model developers on using our study as a blueprint for model development and subsequent deployment.
comment: This work has been accepted for publication at AAAI ICWSM 2025
☆ SketchFusion: Learning Universal Sketch Features through Fusing Foundation Models CVPR 2025
While foundation models have revolutionised computer vision, their effectiveness for sketch understanding remains limited by the unique challenges of abstract, sparse visual inputs. Through systematic analysis, we uncover two fundamental limitations: Stable Diffusion (SD) struggles to extract meaningful features from abstract sketches (unlike its success with photos), and exhibits a pronounced frequency-domain bias that suppresses essential low-frequency components needed for sketch understanding. Rather than costly retraining, we address these limitations by strategically combining SD with CLIP, whose strong semantic understanding naturally compensates for SD's spatial-frequency biases. By dynamically injecting CLIP features into SD's denoising process and adaptively aggregating features across semantic levels, our method achieves state-of-the-art performance in sketch retrieval (+3.35%), recognition (+1.06%), segmentation (+29.42%), and correspondence learning (+21.22%), demonstrating the first truly universal sketch feature representation in the era of foundation models.
comment: Accepted in CVPR 2025. Project page available at https://subhadeepkoley.github.io/SketchFusion/
☆ Condensing Action Segmentation Datasets via Generative Network Inversion CVPR2025
This work presents the first condensation approach for procedural video datasets used in temporal action segmentation. We propose a condensation framework that leverages generative prior learned from the dataset and network inversion to condense data into compact latent codes with significant storage reduced across temporal and channel aspects. Orthogonally, we propose sampling diverse and representative action sequences to minimize video-wise redundancy. Our evaluation on standard benchmarks demonstrates consistent effectiveness in condensing TAS datasets and achieving competitive performances. Specifically, on the Breakfast dataset, our approach reduces storage by over 500$\times$ while retaining 83% of the performance compared to training with the full dataset. Furthermore, when applied to a downstream incremental learning task, it yields superior performance compared to the state-of-the-art.
comment: 10 pages, 3 figures, 5 tables, Accepted to CVPR2025
☆ Towards properties of adversarial image perturbations
Using stochastic gradient approach we study the properties of adversarial perturbations resulting in noticeable growth of VMAF image quality metric. The structure of the perturbations is investigated depending on the acceptable PSNR values and based on the Fourier power spectrum computations for the perturbations. It is demonstrated that moderate variation of image brightness ($\sim 10$ pixel units in a restricted region of an image can result in VMAF growth by $\sim 60\%$). Unlike some other methods demonstrating similar VMAF growth, the subjective quality of an image remains almost unchanged. It is also shown that the adversarial perturbations may demonstrate approximately linear dependence of perturbation amplitudes on the image brightness. The perturbations are studied based on the direct VMAF optimization in PyTorch. The significant discrepancies between the metric values and subjective judgements are also demonstrated when image restoration from noise is carried out using the same direct VMAF optimization.
comment: 13 pages, 40 figures
☆ Operational Change Detection for Geographical Information: Overview and Challenges
Rapid evolution of territories due to climate change and human impact requires prompt and effective updates to geospatial databases maintained by the National Mapping Agency. This paper presents a comprehensive overview of change detection methods tailored for the operational updating of large-scale geographic databases. This review first outlines the fundamental definition of change, emphasizing its multifaceted nature, from temporal to semantic characterization. It categorizes automatic change detection methods into four main families: rule-based, statistical, machine learning, and simulation methods. The strengths, limitations, and applicability of every family are discussed in the context of various input data. Then, key applications for National Mapping Agencies are identified, particularly the optimization of geospatial database updating, change-based phenomena, and dynamics monitoring. Finally, the paper highlights the current challenges for leveraging change detection such as the variability of change definition, the missing of relevant large-scale datasets, the diversity of input data, the unstudied no-change detection, the human in the loop integration and the operational constraints. The discussion underscores the necessity for ongoing innovation in change detection techniques to address the future needs of geographic information systems for national mapping agencies.
comment: Preprint under review
☆ Reliable uncertainty quantification for 2D/3D anatomical landmark localization using multi-output conformal prediction
Automatic anatomical landmark localization in medical imaging requires not just accurate predictions but reliable uncertainty quantification for effective clinical decision support. Current uncertainty quantification approaches often fall short, particularly when combined with normality assumptions, systematically underestimating total predictive uncertainty. This paper introduces conformal prediction as a framework for reliable uncertainty quantification in anatomical landmark localization, addressing a critical gap in automatic landmark localization. We present two novel approaches guaranteeing finite-sample validity for multi-output prediction: Multi-output Regression-as-Classification Conformal Prediction (M-R2CCP) and its variant Multi-output Regression to Classification Conformal Prediction set to Region (M-R2C2R). Unlike conventional methods that produce axis-aligned hyperrectangular or ellipsoidal regions, our approaches generate flexible, non-convex prediction regions that better capture the underlying uncertainty structure of landmark predictions. Through extensive empirical evaluation across multiple 2D and 3D datasets, we demonstrate that our methods consistently outperform existing multi-output conformal prediction approaches in both validity and efficiency. This work represents a significant advancement in reliable uncertainty estimation for anatomical landmark localization, providing clinicians with trustworthy confidence measures for their diagnoses. While developed for medical imaging, these methods show promise for broader applications in multi-output regression problems.
comment: 33 pages, 10 figures
☆ SCJD: Sparse Correlation and Joint Distillation for Efficient 3D Human Pose Estimation
Existing 3D Human Pose Estimation (HPE) methods achieve high accuracy but suffer from computational overhead and slow inference, while knowledge distillation methods fail to address spatial relationships between joints and temporal correlations in multi-frame inputs. In this paper, we propose Sparse Correlation and Joint Distillation (SCJD), a novel framework that balances efficiency and accuracy for 3D HPE. SCJD introduces Sparse Correlation Input Sequence Downsampling to reduce redundancy in student network inputs while preserving inter-frame correlations. For effective knowledge transfer, we propose Dynamic Joint Spatial Attention Distillation, which includes Dynamic Joint Embedding Distillation to enhance the student's feature representation using the teacher's multi-frame context feature, and Adjacent Joint Attention Distillation to improve the student network's focus on adjacent joint relationships for better spatial understanding. Additionally, Temporal Consistency Distillation aligns the temporal correlations between teacher and student networks through upsampling and global supervision. Extensive experiments demonstrate that SCJD achieves state-of-the-art performance. Code is available at https://github.com/wileychan/SCJD.
☆ Image-Based Metrics in Ultrasound for Estimation of Global Speed-of-Sound
Accurate speed-of-sound (SoS) estimation is crucial for ultrasound image formation, yet conventional systems often rely on an assumed value for imaging. While several methods exist for SoS estimation, they typically depend on complex physical models of acoustic propagation. We propose to leverage conventional image analysis techniques and metrics, as a novel and simple approach to estimate tissue SoS. We study eleven metrics in three categories for assessing image quality, image similarity and multi-frame variation, by testing them in numerical simulations and phantom experiments. Among single-frame image quality metrics, conventional Focus and our proposed Smoothed Threshold Tenengrad metrics achieved satisfactory accuracy, however only when applied to compounded images. Image quality metrics were largely surpassed by various image comparison metrics, which exhibited errors consistently under 8 m/s even applied to a single pair of images. Particularly, Mean Square Error is a computationally efficient alternative for global estimation. Mutual Information and Correlation are found to be robust to processing small image segments, making them suitable, e.g., for multi-layer SoS estimation. The above metrics do not require access to raw channel data as they can operate on post-beamformed data, and in the case of image quality metrics they can operate on B-mode images, given that the beamforming SoS can be controlled for beamforming using a multitude of values. These image analysis based SoS estimation methods offer a computationally efficient and data-accessible alternative to conventional physics-based methods, with potential extensions to layered or local SoS imaging.
☆ Growing a Twig to Accelerate Large Vision-Language Models
Large vision-language models (VLMs) have demonstrated remarkable capabilities in open-world multimodal understanding, yet their high computational overheads pose great challenges for practical deployment. Some recent works have proposed methods to accelerate VLMs by pruning redundant visual tokens guided by the attention maps of VLM's early layers. Despite the success of these token pruning methods, they still suffer from two major shortcomings: (i) considerable accuracy drop due to insensitive attention signals in early layers, and (ii) limited speedup when generating long responses (e.g., 30 tokens). To address the limitations above, we present TwigVLM -- a simple and general architecture by growing a lightweight twig upon an early layer of the base VLM. Compared with most existing VLM acceleration methods purely based on visual token pruning, our TwigVLM not only achieves better accuracy retention by employing a twig-guided token pruning (TTP) strategy, but also yields higher generation speed by utilizing a self-speculative decoding (SSD) strategy. Taking LLaVA-1.5-7B as the base VLM, experimental results show that TwigVLM preserves 96% of the original performance after pruning 88.9% of visual tokens and achieves 154% speedup in generating long responses, delivering significantly better performance in terms of both accuracy and speed over the state-of-the-art VLM acceleration methods. Code will be made publicly available.
comment: 17 pages, 8 figures
☆ Limb-Aware Virtual Try-On Network with Progressive Clothing Warping
Image-based virtual try-on aims to transfer an in-shop clothing image to a person image. Most existing methods adopt a single global deformation to perform clothing warping directly, which lacks fine-grained modeling of in-shop clothing and leads to distorted clothing appearance. In addition, existing methods usually fail to generate limb details well because they are limited by the used clothing-agnostic person representation without referring to the limb textures of the person image. To address these problems, we propose Limb-aware Virtual Try-on Network named PL-VTON, which performs fine-grained clothing warping progressively and generates high-quality try-on results with realistic limb details. Specifically, we present Progressive Clothing Warping (PCW) that explicitly models the location and size of in-shop clothing and utilizes a two-stage alignment strategy to progressively align the in-shop clothing with the human body. Moreover, a novel gravity-aware loss that considers the fit of the person wearing clothing is adopted to better handle the clothing edges. Then, we design Person Parsing Estimator (PPE) with a non-limb target parsing map to semantically divide the person into various regions, which provides structural constraints on the human body and therefore alleviates texture bleeding between clothing and body regions. Finally, we introduce Limb-aware Texture Fusion (LTF) that focuses on generating realistic details in limb regions, where a coarse try-on result is first generated by fusing the warped clothing image with the person image, then limb textures are further fused with the coarse result under limb-aware guidance to refine limb details. Extensive experiments demonstrate that our PL-VTON outperforms the state-of-the-art methods both qualitatively and quantitatively.
comment: Accepted by IEEE Transactions on Multimedia (TMM). The code is available at https://github.com/aipixel/PL-VTONv2
☆ Fast Autoregressive Video Generation with Diagonal Decoding
Autoregressive Transformer models have demonstrated impressive performance in video generation, but their sequential token-by-token decoding process poses a major bottleneck, particularly for long videos represented by tens of thousands of tokens. In this paper, we propose Diagonal Decoding (DiagD), a training-free inference acceleration algorithm for autoregressively pre-trained models that exploits spatial and temporal correlations in videos. Our method generates tokens along diagonal paths in the spatial-temporal token grid, enabling parallel decoding within each frame as well as partially overlapping across consecutive frames. The proposed algorithm is versatile and adaptive to various generative models and tasks, while providing flexible control over the trade-off between inference speed and visual quality. Furthermore, we propose a cost-effective finetuning strategy that aligns the attention patterns of the model with our decoding order, further mitigating the training-inference gap on small-scale models. Experiments on multiple autoregressive video generation models and datasets demonstrate that DiagD achieves up to $10\times$ speedup compared to naive sequential decoding, while maintaining comparable visual fidelity.
☆ AIGVE-Tool: AI-Generated Video Evaluation Toolkit with Multifaceted Benchmark
The rapid advancement in AI-generated video synthesis has led to a growth demand for standardized and effective evaluation metrics. Existing metrics lack a unified framework for systematically categorizing methodologies, limiting a holistic understanding of the evaluation landscape. Additionally, fragmented implementations and the absence of standardized interfaces lead to redundant processing overhead. Furthermore, many prior approaches are constrained by dataset-specific dependencies, limiting their applicability across diverse video domains. To address these challenges, we introduce AIGVE-Tool (AI-Generated Video Evaluation Toolkit), a unified framework that provides a structured and extensible evaluation pipeline for a comprehensive AI-generated video evaluation. Organized within a novel five-category taxonomy, AIGVE-Tool integrates multiple evaluation methodologies while allowing flexible customization through a modular configuration system. Additionally, we propose AIGVE-Bench, a large-scale benchmark dataset created with five SOTA video generation models based on hand-crafted instructions and prompts. This dataset systematically evaluates various video generation models across nine critical quality dimensions. Extensive experiments demonstrate the effectiveness of AIGVE-Tool in providing standardized and reliable evaluation results, highlighting specific strengths and limitations of current models and facilitating the advancements of next-generation AI-generated video techniques.
☆ Foundation Feature-Driven Online End-Effector Pose Estimation: A Marker-Free and Learning-Free Approach
Accurate transformation estimation between camera space and robot space is essential. Traditional methods using markers for hand-eye calibration require offline image collection, limiting their suitability for online self-calibration. Recent learning-based robot pose estimation methods, while advancing online calibration, struggle with cross-robot generalization and require the robot to be fully visible. This work proposes a Foundation feature-driven online End-Effector Pose Estimation (FEEPE) algorithm, characterized by its training-free and cross end-effector generalization capabilities. Inspired by the zero-shot generalization capabilities of foundation models, FEEPE leverages pre-trained visual features to estimate 2D-3D correspondences derived from the CAD model and target image, enabling 6D pose estimation via the PnP algorithm. To resolve ambiguities from partial observations and symmetry, a multi-historical key frame enhanced pose optimization algorithm is introduced, utilizing temporal information for improved accuracy. Compared to traditional hand-eye calibration, FEEPE enables marker-free online calibration. Unlike robot pose estimation, it generalizes across robots and end-effectors in a training-free manner. Extensive experiments demonstrate its superior flexibility, generalization, and performance.
☆ MAG: Multi-Modal Aligned Autoregressive Co-Speech Gesture Generation without Vector Quantization
This work focuses on full-body co-speech gesture generation. Existing methods typically employ an autoregressive model accompanied by vector-quantized tokens for gesture generation, which results in information loss and compromises the realism of the generated gestures. To address this, inspired by the natural continuity of real-world human motion, we propose MAG, a novel multi-modal aligned framework for high-quality and diverse co-speech gesture synthesis without relying on discrete tokenization. Specifically, (1) we introduce a motion-text-audio-aligned variational autoencoder (MTA-VAE), which leverages pre-trained WavCaps' text and audio embeddings to enhance both semantic and rhythmic alignment with motion, ultimately producing more realistic gestures. (2) Building on this, we propose a multimodal masked autoregressive model (MMAG) that enables autoregressive modeling in continuous motion embeddings through diffusion without vector quantization. To further ensure multi-modal consistency, MMAG incorporates a hybrid granularity audio-text fusion block, which serves as conditioning for diffusion process. Extensive experiments on two benchmark datasets demonstrate that MAG achieves stateof-the-art performance both quantitatively and qualitatively, producing highly realistic and diverse co-speech gestures.The code will be released to facilitate future research.
☆ Intra and Inter Parser-Prompted Transformers for Effective Image Restoration AAAI-25
We propose Intra and Inter Parser-Prompted Transformers (PPTformer) that explore useful features from visual foundation models for image restoration. Specifically, PPTformer contains two parts: an Image Restoration Network (IRNet) for restoring images from degraded observations and a Parser-Prompted Feature Generation Network (PPFGNet) for providing IRNet with reliable parser information to boost restoration. To enhance the integration of the parser within IRNet, we propose Intra Parser-Prompted Attention (IntraPPA) and Inter Parser-Prompted Attention (InterPPA) to implicitly and explicitly learn useful parser features to facilitate restoration. The IntraPPA re-considers cross attention between parser and restoration features, enabling implicit perception of the parser from a long-range and intra-layer perspective. Conversely, the InterPPA initially fuses restoration features with those of the parser, followed by formulating these fused features within an attention mechanism to explicitly perceive parser information. Further, we propose a parser-prompted feed-forward network to guide restoration within pixel-wise gating modulation. Experimental results show that PPTformer achieves state-of-the-art performance on image deraining, defocus deblurring, desnowing, and low-light enhancement.
comment: This version is accepted by the Association for the Advancement of Artificial Intelligence (AAAI-25)
☆ A Revisit to the Decoder for Camouflaged Object Detection BMVC 2024
Camouflaged object detection (COD) aims to generate a fine-grained segmentation map of camouflaged objects hidden in their background. Due to the hidden nature of camouflaged objects, it is essential for the decoder to be tailored to effectively extract proper features of camouflaged objects and extra-carefully generate their complex boundaries. In this paper, we propose a novel architecture that augments the prevalent decoding strategy in COD with Enrich Decoder and Retouch Decoder, which help to generate a fine-grained segmentation map. Specifically, the Enrich Decoder amplifies the channels of features that are important for COD using channel-wise attention. Retouch Decoder further refines the segmentation maps by spatially attending to important pixels, such as the boundary regions. With extensive experiments, we demonstrate that ENTO shows superior performance using various encoders, with the two novel components playing their unique roles that are mutually complementary.
comment: Published in BMVC 2024, 13 pages, 7 figures (Appendix: 5 pages, 2 figures)
☆ Shift, Scale and Rotation Invariant Multiple Object Detection using Balanced Joint Transform Correlator
The Polar Mellin Transform (PMT) is a well-known technique that converts images into shift, scale and rotation invariant signatures for object detection using opto-electronic correlators. However, this technique cannot be properly applied when there are multiple targets in a single input. Here, we propose a Segmented PMT (SPMT) that extends this methodology for cases where multiple objects are present within the same frame. Simulations show that this SPMT can be integrated into an opto-electronic joint transform correlator to create a correlation system capable of detecting multiple objects simultaneously, presenting robust detection capabilities across various transformation conditions, with remarkable discrimination between matching and non-matching targets.
☆ Rethinking End-to-End 2D to 3D Scene Segmentation in Gaussian Splatting CVPR 2025
Lifting multi-view 2D instance segmentation to a radiance field has proven to be effective to enhance 3D understanding. Existing methods rely on direct matching for end-to-end lifting, yielding inferior results; or employ a two-stage solution constrained by complex pre- or post-processing. In this work, we design a new end-to-end object-aware lifting approach, named Unified-Lift that provides accurate 3D segmentation based on the 3D Gaussian representation. To start, we augment each Gaussian point with an additional Gaussian-level feature learned using a contrastive loss to encode instance information. Importantly, we introduce a learnable object-level codebook to account for individual objects in the scene for an explicit object-level understanding and associate the encoded object-level features with the Gaussian-level point features for segmentation predictions. While promising, achieving effective codebook learning is non-trivial and a naive solution leads to degraded performance. Therefore, we formulate the association learning module and the noisy label filtering module for effective and robust codebook learning. We conduct experiments on three benchmarks: LERF-Masked, Replica, and Messy Rooms datasets. Both qualitative and quantitative results manifest that our Unified-Lift clearly outperforms existing methods in terms of segmentation quality and time efficiency. The code is publicly available at \href{https://github.com/Runsong123/Unified-Lift}{https://github.com/Runsong123/Unified-Lift}.
comment: CVPR 2025. The code is publicly available at this https URL (https://github.com/Runsong123/Unified-Lift)
☆ Uncertainty-Aware Global-View Reconstruction for Multi-View Multi-Label Feature Selection AAAI 25
In recent years, multi-view multi-label learning (MVML) has gained popularity due to its close resemblance to real-world scenarios. However, the challenge of selecting informative features to ensure both performance and efficiency remains a significant question in MVML. Existing methods often extract information separately from the consistency part and the complementary part, which may result in noise due to unclear segmentation. In this paper, we propose a unified model constructed from the perspective of global-view reconstruction. Additionally, while feature selection methods can discern the importance of features, they typically overlook the uncertainty of samples, which is prevalent in realistic scenarios. To address this, we incorporate the perception of sample uncertainty during the reconstruction process to enhance trustworthiness. Thus, the global-view is reconstructed through the graph structure between samples, sample confidence, and the view relationship. The accurate mapping is established between the reconstructed view and the label matrix. Experimental results demonstrate the superior performance of our method on multi-view datasets.
comment: 9 pages,5 figures, accept in AAAI 25
☆ MP-GUI: Modality Perception with MLLMs for GUI Understanding CVPR 2025
Graphical user interface (GUI) has become integral to modern society, making it crucial to be understood for human-centric systems. However, unlike natural images or documents, GUIs comprise artificially designed graphical elements arranged to convey specific semantic meanings. Current multi-modal large language models (MLLMs) already proficient in processing graphical and textual components suffer from hurdles in GUI understanding due to the lack of explicit spatial structure modeling. Moreover, obtaining high-quality spatial structure data is challenging due to privacy issues and noisy environments. To address these challenges, we present MP-GUI, a specially designed MLLM for GUI understanding. MP-GUI features three precisely specialized perceivers to extract graphical, textual, and spatial modalities from the screen as GUI-tailored visual clues, with spatial structure refinement strategy and adaptively combined via a fusion gate to meet the specific preferences of different GUI understanding tasks. To cope with the scarcity of training data, we also introduce a pipeline for automatically data collecting. Extensive experiments demonstrate that MP-GUI achieves impressive results on various GUI understanding tasks with limited data.
comment: Paper accepted to CVPR 2025
☆ Boosting Semi-Supervised Medical Image Segmentation via Masked Image Consistency and Discrepancy Learning
Semi-supervised learning is of great significance in medical image segmentation by exploiting unlabeled data. Among its strategies, the co-training framework is prominent. However, previous co-training studies predominantly concentrate on network initialization variances and pseudo-label generation, while overlooking the equilibrium between information interchange and model diversity preservation. In this paper, we propose the Masked Image Consistency and Discrepancy Learning (MICD) framework with three key modules. The Masked Cross Pseudo Consistency (MCPC) module enriches context perception and small sample learning via pseudo-labeling across masked-input branches. The Cross Feature Consistency (CFC) module fortifies information exchange and model robustness by ensuring decoder feature consistency. The Cross Model Discrepancy (CMD) module utilizes EMA teacher networks to oversee outputs and preserve branch diversity. Together, these modules address existing limitations by focusing on fine-grained local information and maintaining diversity in a heterogeneous framework. Experiments on two public medical image datasets, AMOS and Synapse, demonstrate that our approach outperforms state-of-the-art methods.
☆ LEGNet: Lightweight Edge-Gaussian Driven Network for Low-Quality Remote Sensing Image Object Detection
Remote sensing object detection (RSOD) faces formidable challenges in complex visual environments. Aerial and satellite images inherently suffer from limitations such as low spatial resolution, sensor noise, blurred objects, low-light degradation, and partial occlusions. These degradation factors collectively compromise the feature discriminability in detection models, resulting in three key issues: (1) reduced contrast that hampers foreground-background separation, (2) structural discontinuities in edge representations, and (3) ambiguous feature responses caused by variations in illumination. These collectively weaken model robustness and deployment feasibility. To address these challenges, we propose LEGNet, a lightweight network that incorporates a novel edge-Gaussian aggregation (EGA) module specifically designed for low-quality remote sensing images. Our key innovation lies in the synergistic integration of Scharr operator-based edge priors with uncertainty-aware Gaussian modeling: (a) The orientation-aware Scharr filters preserve high-frequency edge details with rotational invariance; (b) The uncertainty-aware Gaussian layers probabilistically refine low-confidence features through variance estimation. This design enables precision enhancement while maintaining architectural simplicity. Comprehensive evaluations across four RSOD benchmarks (DOTA-v1.0, v1.5, DIOR-R, FAIR1M-v1.0) and a UAV-view dataset (VisDrone2019) demonstrate significant improvements. LEGNet achieves state-of-the-art performance across five benchmark datasets while ensuring computational efficiency, making it well-suited for deployment on resource-constrained edge devices in real-world remote sensing applications. The code is available at https://github.com/lwCVer/LEGNet.
comment: 12 pages, 5 figures. Remote Sensing Image Object Detection
☆ MeshFleet: Filtered and Annotated 3D Vehicle Dataset for Domain Specific Generative Modeling
Generative models have recently made remarkable progress in the field of 3D objects. However, their practical application in fields like engineering remains limited since they fail to deliver the accuracy, quality, and controllability needed for domain-specific tasks. Fine-tuning large generative models is a promising perspective for making these models available in these fields. Creating high-quality, domain-specific 3D datasets is crucial for fine-tuning large generative models, yet the data filtering and annotation process remains a significant bottleneck. We present MeshFleet, a filtered and annotated 3D vehicle dataset extracted from Objaverse-XL, the most extensive publicly available collection of 3D objects. Our approach proposes a pipeline for automated data filtering based on a quality classifier. This classifier is trained on a manually labeled subset of Objaverse, incorporating DINOv2 and SigLIP embeddings, refined through caption-based analysis and uncertainty estimation. We demonstrate the efficacy of our filtering method through a comparative analysis against caption and image aesthetic score-based techniques and fine-tuning experiments with SV3D, highlighting the importance of targeted data selection for domain-specific 3D generative modeling.
☆ BI-RADS prediction of mammographic masses using uncertainty information extracted from a Bayesian Deep Learning model
The BI_RADS score is a probabilistic reporting tool used by radiologists to express the level of uncertainty in predicting breast cancer based on some morphological features in mammography images. There is a significant variability in describing masses which sometimes leads to BI_RADS misclassification. Using a BI_RADS prediction system is required to support the final radiologist decisions. In this study, the uncertainty information extracted by a Bayesian deep learning model is utilized to predict the BI_RADS score. The investigation results based on the pathology information demonstrate that the f1-scores of the predictions of the radiologist are 42.86%, 48.33% and 48.28%, meanwhile, the f1-scores of the model performance are 73.33%, 59.60% and 59.26% in the BI_RADS 2, 3 and 5 dataset samples, respectively. Also, the model can distinguish malignant from benign samples in the BI_RADS 0 category of the used dataset with an accuracy of 75.86% and correctly identify all malignant samples as BI_RADS 5. The Grad-CAM visualization shows the model pays attention to the morphological features of the lesions. Therefore, this study shows the uncertainty-aware Bayesian Deep Learning model can report his uncertainty about the malignancy of a lesion based on morphological features, like a radiologist.
♻ ☆ MaTVLM: Hybrid Mamba-Transformer for Efficient Vision-Language Modeling
With the advancement of RNN models with linear complexity, the quadratic complexity challenge of transformers has the potential to be overcome. Notably, the emerging Mamba-2 has demonstrated competitive performance, bridging the gap between RNN models and transformers. However, due to sequential processing and vanishing gradients, RNN models struggle to capture long-range dependencies, limiting contextual understanding. This results in slow convergence, high resource demands, and poor performance on downstream understanding and complex reasoning tasks. In this work, we present a hybrid model MaTVLM by substituting a portion of the transformer decoder layers in a pre-trained VLM with Mamba-2 layers. Leveraging the inherent relationship between attention and Mamba-2, we initialize Mamba-2 with corresponding attention weights to accelerate convergence. Subsequently, we employ a single-stage distillation process, using the pre-trained VLM as the teacher model to transfer knowledge to the MaTVLM, further enhancing convergence speed and performance. Furthermore, we investigate the impact of differential distillation loss within our training framework. We evaluate the MaTVLM on multiple benchmarks, demonstrating competitive performance against the teacher model and existing VLMs while surpassing both Mamba-based VLMs and models of comparable parameter scales. Remarkably, the MaTVLM achieves up to 3.6x faster inference than the teacher model while reducing GPU memory consumption by 27.5%, all without compromising performance. Code and models are released at http://github.com/hustvl/MaTVLM.
comment: Code and model are available at http://github.com/hustvl/MaTVLM
♻ ☆ MAC: A Benchmark for Multiple Attributes Compositional Zero-Shot Learning
Compositional Zero-Shot Learning (CZSL) aims to learn semantic primitives (attributes and objects) from seen compositions and recognize unseen attribute-object compositions. Existing CZSL datasets focus on single attributes, neglecting the fact that objects naturally exhibit multiple interrelated attributes. Their narrow attribute scope and single attribute labeling introduce annotation biases, misleading the learning of attributes and causing inaccurate evaluation. To address these issues, we introduce the Multi-Attribute Composition (MAC) dataset, encompassing 22,838 images and 17,627 compositions with comprehensive and representative attribute annotations. MAC shows complex relationship between attributes and objects, with each attribute type linked to an average of 82.2 object types, and each object type associated with 31.4 attribute types. Based on MAC, we propose multi-attribute compositional zero-shot learning that requires deeper semantic understanding and advanced attribute associations, establishing a more realistic and challenging benchmark for CZSL. We also propose Multi-attribute Visual-Primitive Integrator (MVP-Integrator), a robust baseline for multi-attribute CZSL, which disentangles semantic primitives and performs effective visual-primitive association. Experimental results demonstrate that MVP-Integrator significantly outperforms existing CZSL methods on MAC with improved inference efficiency.
comment: 13pages,5figures
♻ ☆ Multi-Granularity Class Prototype Topology Distillation for Class-Incremental Source-Free Unsupervised Domain Adaptation CVPR 2025
This paper explores the Class-Incremental Source-Free Unsupervised Domain Adaptation (CI-SFUDA) problem, where the unlabeled target data come incrementally without access to labeled source instances. This problem poses two challenges, the interference of similar source-class knowledge in target-class representation learning and the shocks of new target knowledge to old ones. To address them, we propose the Multi-Granularity Class Prototype Topology Distillation (GROTO) algorithm, which effectively transfers the source knowledge to the class-incremental target domain. Concretely, we design the multi-granularity class prototype self-organization module and the prototype topology distillation module. First, we mine the positive classes by modeling accumulation distributions. Next, we introduce multi-granularity class prototypes to generate reliable pseudo-labels, and exploit them to promote the positive-class target feature self-organization. Second, the positive-class prototypes are leveraged to construct the topological structures of source and target feature spaces. Then, we perform the topology distillation to continually mitigate the shocks of new target knowledge to old ones. Extensive experiments demonstrate that our proposed method achieves state-of-the-art performance on three public datasets.
comment: Accepted by CVPR 2025
♻ ☆ Rethinking Image Evaluation in Super-Resolution
While recent advancing image super-resolution (SR) techniques are continually improving the perceptual quality of their outputs, they can usually fail in quantitative evaluations. This inconsistency leads to a growing distrust in existing image metrics for SR evaluations. Though image evaluation depends on both the metric and the reference ground truth (GT), researchers typically do not inspect the role of GTs, as they are generally accepted as `perfect' references. However, due to the data being collected in the early years and the ignorance of controlling other types of distortions, we point out that GTs in existing SR datasets can exhibit relatively poor quality, which leads to biased evaluations. Following this observation, in this paper, we are interested in the following questions: Are GT images in existing SR datasets 100% trustworthy for model evaluations? How does GT quality affect this evaluation? And how to make fair evaluations if there exist imperfect GTs? To answer these questions, this paper presents two main contributions. First, by systematically analyzing seven state-of-the-art SR models across three real-world SR datasets, we show that SR performances can be consistently affected across models by low-quality GTs, and models can perform quite differently when GT quality is controlled. Second, we propose a novel perceptual quality metric, Relative Quality Index (RQI), that measures the relative quality discrepancy of image pairs, thus issuing the biased evaluations caused by unreliable GTs. Our proposed model achieves significantly better consistency with human opinions. We expect our work to provide insights for the SR community on how future datasets, models, and metrics should be developed.
♻ ☆ One-for-More: Continual Diffusion Model for Anomaly Detection CVPR2025
With the rise of generative models, there is a growing interest in unifying all tasks within a generative framework. Anomaly detection methods also fall into this scope and utilize diffusion models to generate or reconstruct normal samples when given arbitrary anomaly images. However, our study found that the diffusion model suffers from severe ``faithfulness hallucination'' and ``catastrophic forgetting'', which can't meet the unpredictable pattern increments. To mitigate the above problems, we propose a continual diffusion model that uses gradient projection to achieve stable continual learning. Gradient projection deploys a regularization on the model updating by modifying the gradient towards the direction protecting the learned knowledge. But as a double-edged sword, it also requires huge memory costs brought by the Markov process. Hence, we propose an iterative singular value decomposition method based on the transitive property of linear representation, which consumes tiny memory and incurs almost no performance loss. Finally, considering the risk of ``over-fitting'' to normal images of the diffusion model, we propose an anomaly-masked network to enhance the condition mechanism of the diffusion model. For continual anomaly detection, ours achieves first place in 17/18 settings on MVTec and VisA. Code is available at https://github.com/FuNz-0/One-for-More
comment: Accepted by CVPR2025
♻ ☆ Text-to-3D Generation using Jensen-Shannon Score Distillation
Score distillation sampling is an effective technique to generate 3D models from text prompts, utilizing pre-trained large-scale text-to-image diffusion models as guidance. However, the produced 3D assets tend to be over-saturating, over-smoothing, with limited diversity. These issues are results from a reverse Kullback-Leibler (KL) divergence objective, which makes the optimization unstable and results in mode-seeking behavior. In this paper, we derive a bounded score distillation objective based on Jensen-Shannon divergence (JSD), which stabilizes the optimization process and produces high-quality 3D generation. JSD can match well generated and target distribution, therefore mitigating mode seeking. We provide a practical implementation of JSD by utilizing the theory of generative adversarial networks to define an approximate objective function for the generator, assuming the discriminator is well trained. By assuming the discriminator following a log-odds classifier, we propose a minority sampling algorithm to estimate the gradients of our proposed objective, providing a practical implementation for JSD. We conduct both theoretical and empirical studies to validate our method. Experimental results on T3Bench demonstrate that our method can produce high-quality and diversified 3D assets.
♻ ☆ Balanced Rate-Distortion Optimization in Learned Image Compression CVPR 2025
Learned image compression (LIC) using deep learning architectures has seen significant advancements, yet standard rate-distortion (R-D) optimization often encounters imbalanced updates due to diverse gradients of the rate and distortion objectives. This imbalance can lead to suboptimal optimization, where one objective dominates, thereby reducing overall compression efficiency. To address this challenge, we reformulate R-D optimization as a multi-objective optimization (MOO) problem and introduce two balanced R-D optimization strategies that adaptively adjust gradient updates to achieve more equitable improvements in both rate and distortion. The first proposed strategy utilizes a coarse-to-fine gradient descent approach along standard R-D optimization trajectories, making it particularly suitable for training LIC models from scratch. The second proposed strategy analytically addresses the reformulated optimization as a quadratic programming problem with an equality constraint, which is ideal for fine-tuning existing models. Experimental results demonstrate that both proposed methods enhance the R-D performance of LIC models, achieving around a 2\% BD-Rate reduction with acceptable additional training cost, leading to a more balanced and efficient optimization process. Code will be available at https://gitlab.com/viper-purdue/Balanced-RD.
comment: Accepted to CVPR 2025
♻ ☆ Cosmos World Foundation Model Platform for Physical AI
Physical AI needs to be trained digitally first. It needs a digital twin of itself, the policy model, and a digital twin of the world, the world model. In this paper, we present the Cosmos World Foundation Model Platform to help developers build customized world models for their Physical AI setups. We position a world foundation model as a general-purpose world model that can be fine-tuned into customized world models for downstream applications. Our platform covers a video curation pipeline, pre-trained world foundation models, examples of post-training of pre-trained world foundation models, and video tokenizers. To help Physical AI builders solve the most critical problems of our society, we make Cosmos open-source and our models open-weight with permissive licenses available via https://github.com/nvidia-cosmos/cosmos-predict1.
♻ ☆ PULASki: Learning inter-rater variability using statistical distances to improve probabilistic segmentation
In the domain of medical imaging, many supervised learning based methods for segmentation face several challenges such as high variability in annotations from multiple experts, paucity of labelled data and class imbalanced datasets. These issues may result in segmentations that lack the requisite precision for clinical analysis and can be misleadingly overconfident without associated uncertainty quantification. This work proposes the PULASki method as a computationally efficient generative tool for biomedical image segmentation that accurately captures variability in expert annotations, even in small datasets. This approach makes use of an improved loss function based on statistical distances in a conditional variational autoencoder structure (Probabilistic UNet), which improves learning of the conditional decoder compared to the standard cross-entropy particularly in class imbalanced problems. The proposed method was analysed for two structurally different segmentation tasks (intracranial vessel and multiple sclerosis (MS) lesion) and compare our results to four well-established baselines in terms of quantitative metrics and qualitative output. These experiments involve class-imbalanced datasets characterised by challenging features, including suboptimal signal-to-noise ratios and high ambiguity. Empirical results demonstrate the PULASKi method outperforms all baselines at the 5\% significance level. Our experiments are also of the first to present a comparative study of the computationally feasible segmentation of complex geometries using 3D patches and the traditional use of 2D slices. The generated segmentations are shown to be much more anatomically plausible than in the 2D case, particularly for the vessel task.
♻ ☆ PQPP: A Joint Benchmark for Text-to-Image Prompt and Query Performance Prediction CVPR 2025
Text-to-image generation has recently emerged as a viable alternative to text-to-image retrieval, driven by the visually impressive results of generative diffusion models. Although query performance prediction is an active research topic in information retrieval, to the best of our knowledge, there is no prior study that analyzes the difficulty of queries (referred to as prompts) in text-to-image generation, based on human judgments. To this end, we introduce the first dataset of prompts which are manually annotated in terms of image generation performance. Additionally, we extend these evaluations to text-to-image retrieval by collecting manual annotations that represent retrieval performance. We thus establish the first joint benchmark for prompt and query performance prediction (PQPP) across both tasks, comprising over 10K queries. Our benchmark enables (i) the comparative assessment of prompt/query difficulty in both image generation and image retrieval, and (ii) the evaluation of prompt/query performance predictors addressing both generation and retrieval. We evaluate several pre- and post-generation/retrieval performance predictors, thus providing competitive baselines for future research. Our benchmark and code are publicly available at https://github.com/Eduard6421/PQPP.
comment: Accepted at CVPR 2025
♻ ☆ OVTR: End-to-End Open-Vocabulary Multiple Object Tracking with Transformer ICLR 2025
Open-vocabulary multiple object tracking aims to generalize trackers to unseen categories during training, enabling their application across a variety of real-world scenarios. However, the existing open-vocabulary tracker is constrained by its framework structure, isolated frame-level perception, and insufficient modal interactions, which hinder its performance in open-vocabulary classification and tracking. In this paper, we propose OVTR (End-to-End Open-Vocabulary Multiple Object Tracking with TRansformer), the first end-to-end open-vocabulary tracker that models motion, appearance, and category simultaneously. To achieve stable classification and continuous tracking, we design the CIP (Category Information Propagation) strategy, which establishes multiple high-level category information priors for subsequent frames. Additionally, we introduce a dual-branch structure for generalization capability and deep multimodal interaction, and incorporate protective strategies in the decoder to enhance performance. Experimental results show that our method surpasses previous trackers on the open-vocabulary MOT benchmark while also achieving faster inference speeds and significantly reducing preprocessing requirements. Moreover, the experiment transferring the model to another dataset demonstrates its strong adaptability. Models and code are released at https://github.com/jinyanglii/OVTR.
comment: Accepted by ICLR 2025
♻ ☆ CaReBench: A Fine-Grained Benchmark for Video Captioning and Retrieval
Video understanding, including video captioning and retrieval, is still a great challenge for video-language models (VLMs). The existing video retrieval and caption benchmarks only include short descriptions, limits their ability of detailed video understanding evaluation. To address this problem, we present CaReBench, a testing benchmark for fine-grained video captioning and retrieval with 1,000 high-quality pairs of videos and human-annotated detailed captions. Uniquely, it provides manually separated spatial annotations and temporal annotations for each video. Based on this design, we introduce two evaluation metrics, ReBias and CapST, specifically tailored for video retrieval and video captioning tasks, respectively. These metrics enable a comprehensive investigation into the spatial and temporal biases inherent in VLMs. In addition, to handle both video retrieval and video captioning tasks in a unified framework, we develop a simple baseline based on a Multimodal Language Model (MLLM). By implementing a two-stage Supervised Fine-Tuning (SFT), we fully unlock the potential of MLLM, enabling it not only to generate detailed video descriptions but also to extract video features. Surprisingly, experimental results demonstrate that, compared to the CLIP-based models designed for retrieval and the popular MLLMs skilled in video captioning, our baseline shows competitive performance in both fine-grained video retrieval and video detailed captioning.
♻ ☆ Targeted Neural Architectures in Multi-Objective Frameworks for Complete Glioma Characterization from Multimodal MRI
Brain tumors result from abnormal cell growth in brain tissue. If undiagnosed, they cause neurological deficits, including cognitive impairment, motor dysfunction, and sensory loss. As tumors grow, intracranial pressure increases, potentially leading to fatal complications such as brain herniation. Early diagnosis and treatment are crucial to controlling these effects and slowing tumor progression. Deep learning (DL) and artificial intelligence (AI) are increasingly used to assist doctors in early diagnosis through magnetic resonance imaging (MRI) scans. Our research proposes targeted neural architectures within multi-objective frameworks that can localize, segment, and classify the grade of these gliomas from multimodal MRI images to solve this critical issue. Our localization framework utilizes a targeted architecture that enhances the LinkNet framework with an encoder inspired by VGG19 for better multimodal feature extraction from the tumor along with spatial and graph attention mechanisms that sharpen feature focus and inter-feature relationships. For the segmentation objective, we deployed a specialized framework using the SeResNet101 CNN model as the encoder backbone integrated into the LinkNet architecture, achieving an IoU Score of 96%. The classification objective is addressed through a distinct framework implemented by combining the SeResNet152 feature extractor with Adaptive Boosting classifier, reaching an accuracy of 98.53%. Our multi-objective approach with targeted neural architectures demonstrated promising results for complete glioma characterization, with the potential to advance medical AI by enabling early diagnosis and providing more accurate treatment options for patients.
comment: 29 pages, 25 figures, 6 tables
♻ ☆ The Shape of Attraction in UMAP: Exploring the Embedding Forces in Dimensionality Reduction
Uniform manifold approximation and projection (UMAP) is among the most popular neighbor embedding methods. The method relies on attractive and repulsive forces among high-dimensional data points to obtain a low-dimensional embedding. In this paper, we analyze the forces to reveal their effects on cluster formations and visualization. Repulsion emphasizes differences, controlling cluster boundaries and inter-cluster distance. Attraction is more subtle, as attractive tension between points can manifest simultaneously as attraction and repulsion in the lower-dimensional mapping. This explains the need for learning rate annealing and motivates the different treatments between attractive and repulsive terms. Moreover, by modifying attraction, we improve the consistency of cluster formation under random initialization. Overall, our analysis makes UMAP and similar embedding methods more interpretable, more robust, and more accurate.
comment: 9 page + appendix
♻ ☆ Hadamard Attention Recurrent Transformer: A Strong Baseline for Stereo Matching Transformer
In light of the advancements in transformer technology, extant research posits the construction of stereo transformers as a potential solution to the binocular stereo matching challenge. However, constrained by the low-rank bottleneck and quadratic complexity of attention mechanisms, stereo transformers still fail to demonstrate sufficient nonlinear expressiveness within a reasonable inference time. The lack of focus on key homonymous points renders the representations of such methods vulnerable to challenging conditions, including reflections and weak textures. Furthermore, a slow computing speed is not conducive to the application. To overcome these difficulties, we present the Hadamard Attention Recurrent Stereo Transformer (HART) that incorporates the following components: 1) For faster inference, we present a Hadamard product paradigm for the attention mechanism, achieving linear computational complexity. 2) We designed a Dense Attention Kernel (DAK) to amplify the differences between relevant and irrelevant feature responses. This allows HART to focus on important details. DAK also converts zero elements to non-zero elements to mitigate the reduced expressiveness caused by the low-rank bottleneck. 3) To compensate for the spatial and channel interaction missing in the Hadamard product, we propose MKOI to capture both global and local information through the interleaving of large and small kernel convolutions. Experimental results demonstrate the effectiveness of our HART. In reflective area, HART ranked 1st on the KITTI 2012 benchmark among all published methods at the time of submission. Code is available at https://github.com/ZYangChen/HART.
♻ ☆ DreamRunner: Fine-Grained Compositional Story-to-Video Generation with Retrieval-Augmented Motion Adaptation
Storytelling video generation (SVG) aims to produce coherent and visually rich multi-scene videos that follow a structured narrative. Existing methods primarily employ LLM for high-level planning to decompose a story into scene-level descriptions, which are then independently generated and stitched together. However, these approaches struggle with generating high-quality videos aligned with the complex single-scene description, as visualizing such complex description involves coherent composition of multiple characters and events, complex motion synthesis and muti-character customization. To address these challenges, we propose DreamRunner, a novel story-to-video generation method: First, we structure the input script using a large language model (LLM) to facilitate both coarse-grained scene planning as well as fine-grained object-level layout and motion planning. Next, DreamRunner presents retrieval-augmented test-time adaptation to capture target motion priors for objects in each scene, supporting diverse motion customization based on retrieved videos, thus facilitating the generation of new videos with complex, scripted motions. Lastly, we propose a novel spatial-temporal region-based 3D attention and prior injection module SR3AI for fine-grained object-motion binding and frame-by-frame semantic control. We compare DreamRunner with various SVG baselines, demonstrating state-of-the-art performance in character consistency, text alignment, and smooth transitions. Additionally, DreamRunner exhibits strong fine-grained condition-following ability in compositional text-to-video generation, significantly outperforming baselines on T2V-ComBench. Finally, we validate DreamRunner's robust ability to generate multi-object interactions with qualitative examples.
comment: Project website: https://zunwang1.github.io/DreamRunner
♻ ☆ BiTrack: Bidirectional Offline 3D Multi-Object Tracking Using Camera-LiDAR Data
Compared with real-time multi-object tracking (MOT), offline multi-object tracking (OMOT) has the advantages to perform 2D-3D detection fusion, erroneous link correction, and full track optimization but has to deal with the challenges from bounding box misalignment and track evaluation, editing, and refinement. This paper proposes "BiTrack", a 3D OMOT framework that includes modules of 2D-3D detection fusion, initial trajectory generation, and bidirectional trajectory re-optimization to achieve optimal tracking results from camera-LiDAR data. The novelty of this paper includes threefold: (1) development of a point-level object registration technique that employs a density-based similarity metric to achieve accurate fusion of 2D-3D detection results; (2) development of a set of data association and track management skills that utilizes a vertex-based similarity metric as well as false alarm rejection and track recovery mechanisms to generate reliable bidirectional object trajectories; (3) development of a trajectory re-optimization scheme that re-organizes track fragments of different fidelities in a greedy fashion, as well as refines each trajectory with completion and smoothing techniques. The experiment results on the KITTI dataset demonstrate that BiTrack achieves the state-of-the-art performance for 3D OMOT tasks in terms of accuracy and efficiency.
♻ ☆ Bracket Diffusion: HDR Image Generation by Consistent LDR Denoising
We demonstrate generating HDR images using the concerted action of multiple black-box, pre-trained LDR image diffusion models. Relying on a pre-trained LDR generative diffusion models is vital as, first, there is no sufficiently large HDR image dataset available to re-train them, and, second, even if it was, re-training such models is impossible for most compute budgets. Instead, we seek inspiration from the HDR image capture literature that traditionally fuses sets of LDR images, called "exposure brackets'', to produce a single HDR image. We operate multiple denoising processes to generate multiple LDR brackets that together form a valid HDR result. The key to making this work is to introduce a consistency term into the diffusion process to couple the brackets such that they agree across the exposure range they share while accounting for possible differences due to the quantization error. We demonstrate state-of-the-art unconditional and conditional or restoration-type (LDR2HDR) generative modeling results, yet in HDR.
comment: 11 pages, 14 figures, Accepted to Eurographics 2025, see https://bracketdiffusion.mpi-inf.mpg.de
♻ ☆ Uncertainty Quantification in Machine Learning Based Segmentation: A Post-Hoc Approach for Left Ventricle Volume Estimation in MRI
Recent studies have confirmed cardiovascular diseases remain responsible for highest death toll amongst non-communicable diseases. Accurate left ventricular (LV) volume estimation is critical for valid diagnosis and management of various cardiovascular conditions, but poses significant challenge due to inherent uncertainties associated with segmentation algorithms in magnetic resonance imaging (MRI). Recent machine learning advancements, particularly U-Net-like convolutional networks, have facilitated automated segmentation for medical images, but struggles under certain pathologies and/or different scanner vendors and imaging protocols. This study proposes a novel methodology for post-hoc uncertainty estimation in LV volume prediction using It\^{o} stochastic differential equations (SDEs) to model path-wise behavior for the prediction error. The model describes the area of the left ventricle along the heart's long axis. The method is agnostic to the underlying segmentation algorithm, facilitating its use with various existing and future segmentation technologies. The proposed approach provides a mechanism for quantifying uncertainty, enabling medical professionals to intervene for unreliable predictions. This is of utmost importance in critical applications such as medical diagnosis, where prediction accuracy and reliability can directly impact patient outcomes. The method is also robust to dataset changes, enabling application for medical centers with limited access to labeled data. Our findings highlight the proposed uncertainty estimation methodology's potential to enhance automated segmentation robustness and generalizability, paving the way for more reliable and accurate LV volume estimation in clinical settings as well as opening new avenues for uncertainty quantification in biomedical image segmentation, providing promising directions for future research.
♻ ☆ CoDTS: Enhancing Sparsely Supervised Collaborative Perception with a Dual Teacher-Student Framework AAAI 2025
Current collaborative perception methods often rely on fully annotated datasets, which can be expensive to obtain in practical situations. To reduce annotation costs, some works adopt sparsely supervised learning techniques and generate pseudo labels for the missing instances. However, these methods fail to achieve an optimal confidence threshold that harmonizes the quality and quantity of pseudo labels. To address this issue, we propose an end-to-end Collaborative perception Dual Teacher-Student framework (CoDTS), which employs adaptive complementary learning to produce both high-quality and high-quantity pseudo labels. Specifically, the Main Foreground Mining (MFM) module generates high-quality pseudo labels based on the prediction of the static teacher. Subsequently, the Supplement Foreground Mining (SFM) module ensures a balance between the quality and quantity of pseudo labels by adaptively identifying missing instances based on the prediction of the dynamic teacher. Additionally, the Neighbor Anchor Sampling (NAS) module is incorporated to enhance the representation of pseudo labels. To promote the adaptive complementary learning, we implement a staged training strategy that trains the student and dynamic teacher in a mutually beneficial manner. Extensive experiments demonstrate that the CoDTS effectively ensures an optimal balance of pseudo labels in both quality and quantity, establishing a new state-of-the-art in sparsely supervised collaborative perception. The code is available at https://github.com/CatOneTwo/CoDTS.
comment: AAAI 2025 (Oral)
♻ ☆ Multimodal Adversarial Defense for Vision-Language Models by Leveraging One-To-Many Relationships
Pre-trained vision-language (VL) models are highly vulnerable to adversarial attacks. However, existing defense methods primarily focus on image classification, overlooking two key aspects of VL tasks: multimodal attacks, where both image and text can be perturbed, and the one-to-many relationship of images and texts, where a single image can correspond to multiple textual descriptions and vice versa (1:N and N:1). This work is the first to explore defense strategies against multimodal attacks in VL tasks, whereas prior VL defense methods focus on vision robustness. We propose multimodal adversarial training (MAT), which incorporates adversarial perturbations in both image and text modalities during training, significantly outperforming existing unimodal defenses. Furthermore, we discover that MAT is limited by deterministic one-to-one (1:1) image-text pairs in VL training data. To address this, we conduct a comprehensive study on leveraging one-to-many relationships to enhance robustness, investigating diverse augmentation techniques. Our analysis shows that, for a more effective defense, augmented image-text pairs should be well-aligned, diverse, yet avoid distribution shift -- conditions overlooked by prior research. Our experiments show that MAT can effectively be applied to different VL models and tasks to improve adversarial robustness, outperforming previous efforts. Our code will be made public upon acceptance.
comment: Under review
♻ ☆ PCDreamer: Point Cloud Completion Through Multi-view Diffusion Priors
This paper presents PCDreamer, a novel method for point cloud completion. Traditional methods typically extract features from partial point clouds to predict missing regions, but the large solution space often leads to unsatisfactory results. More recent approaches have started to use images as extra guidance, effectively improving performance, but obtaining paired data of images and partial point clouds is challenging in practice. To overcome these limitations, we harness the relatively view-consistent multi-view diffusion priors within large models, to generate novel views of the desired shape. The resulting image set encodes both global and local shape cues, which are especially beneficial for shape completion. To fully exploit the priors, we have designed a shape fusion module for producing an initial complete shape from multi-modality input (i.e.,, images and point clouds), and a follow-up shape consolidation module to obtain the final complete shape by discarding unreliable points introduced by the inconsistency from diffusion priors. Extensive experimental results demonstrate our superior performance, especially in recovering fine details.
♻ ☆ Biologically-inspired Semi-supervised Semantic Segmentation for Biomedical Imaging
We propose a novel bio-inspired semi-supervised learning approach for training downsampling-upsampling semantic segmentation architectures. The first stage does not use backpropagation. Rather, it exploits the Hebbian principle ``fire together, wire together'' as a local learning rule for updating the weights of both convolutional and transpose-convolutional layers, allowing unsupervised discovery of data features. In the second stage, the model is fine-tuned with standard backpropagation on a small subset of labeled data. We evaluate our methodology through experiments conducted on several widely used biomedical datasets, deeming that this domain is paramount in computer vision and is notably impacted by data scarcity. Results show that our proposed method outperforms SOTA approaches across different levels of label availability. Furthermore, we show that using our unsupervised stage to initialize the SOTA approaches leads to performance improvements. The code to replicate our experiments can be found at https://github.com/ciampluca/hebbian-bootstraping-semi-supervised-medical-imaging
♻ ☆ Enhancing AUTOSAR-Based Firmware Over-the-Air Updates in the Automotive Industry with a Practical Implementation on a Steering System
The automotive industry is increasingly reliant on software to manage complex vehicle functionalities, making efficient and secure firmware updates essential. Traditional firmware update methods, requiring physical connections through On-Board Diagnostics (OBD) ports, are inconvenient, costly, and time-consuming. Firmware Over-the-Air (FOTA) technology offers a revolutionary solution by enabling wireless updates, reducing operational costs, and enhancing the user experience. This project aims to design and implement an advanced FOTA system tailored for modern vehicles, incorporating the AUTOSAR architecture for scalability and standardization, and utilizing delta updating to minimize firmware update sizes, thereby improving bandwidth efficiency and reducing flashing times. To ensure security, the system integrates the UDS 0x27 protocol for authentication and data integrity during the update process. Communication between Electronic Control Units (ECUs) is achieved using the CAN protocol, while the ESP8266 module and the master ECU communicate via SPI for data transfer. The system's architecture includes key components such as a bootloader, boot manager, and bootloader updater to facilitate seamless firmware updates. The functionality of the system is demonstrated through two applications: a blinking LED and a Lane Keeping Assist (LKA) system, showcasing its versatility in handling critical automotive features. This project represents a significant step forward in automotive technology, offering a user-centric, efficient, and secure solution for automotive firmware management.
comment: Bachelor's thesis
♻ ☆ Morpheus: Text-Driven 3D Gaussian Splat Shape and Color Stylization
Exploring real-world spaces using novel-view synthesis is fun, and reimagining those worlds in a different style adds another layer of excitement. Stylized worlds can also be used for downstream tasks where there is limited training data and a need to expand a model's training distribution. Most current novel-view synthesis stylization techniques lack the ability to convincingly change geometry. This is because any geometry change requires increased style strength which is often capped for stylization stability and consistency. In this work, we propose a new autoregressive 3D Gaussian Splatting stylization method. As part of this method, we contribute a new RGBD diffusion model that allows for strength control over appearance and shape stylization. To ensure consistency across stylized frames, we use a combination of novel depth-guided cross attention, feature injection, and a Warp ControlNet conditioned on composite frames for guiding the stylization of new frames. We validate our method via extensive qualitative results, quantitative experiments, and a user study. Code online.
♻ ☆ VSTAR: Generative Temporal Nursing for Longer Dynamic Video Synthesis ICLR 2025
Despite tremendous progress in the field of text-to-video (T2V) synthesis, open-sourced T2V diffusion models struggle to generate longer videos with dynamically varying and evolving content. They tend to synthesize quasi-static videos, ignoring the necessary visual change-over-time implied in the text prompt. At the same time, scaling these models to enable longer, more dynamic video synthesis often remains computationally intractable. To address this challenge, we introduce the concept of Generative Temporal Nursing (GTN), where we aim to alter the generative process on the fly during inference to improve control over the temporal dynamics and enable generation of longer videos. We propose a method for GTN, dubbed VSTAR, which consists of two key ingredients: 1) Video Synopsis Prompting (VSP) - automatic generation of a video synopsis based on the original single prompt leveraging LLMs, which gives accurate textual guidance to different visual states of longer videos, and 2) Temporal Attention Regularization (TAR) - a regularization technique to refine the temporal attention units of the pre-trained T2V diffusion models, which enables control over the video dynamics. We experimentally showcase the superiority of the proposed approach in generating longer, visually appealing videos over existing open-sourced T2V models. We additionally analyze the temporal attention maps realized with and without VSTAR, demonstrating the importance of applying our method to mitigate neglect of the desired visual change over time.
comment: Accepted at ICLR 2025. Code: https://github.com/boschresearch/VSTAR and project page: https://yumengli007.github.io/VSTAR
♻ ☆ ViewDelta: Text-Prompted Change Detection in Unaligned Images
Detecting changes between images is fundamental in applications such as infrastructure assessment, environmental monitoring, and industrial automation. Existing supervised models demonstrate strong performance but are inherently limited by the scope of their training data, requiring retraining to recognize novel changes. To overcome this limitation, we introduce a novel change detection task utilizing textual prompts alongside two potentially unaligned images to produce binary segmentations highlighting user-relevant changes. This text-conditioned framework significantly broadens the scope of change detection, enabling unparalleled flexibility and straightforward scalability by incorporating diverse future datasets without restriction to specific change types. As a first approach to address this challenge, we propose ViewDelta, a multimodal architecture extending the vision transformer into the domain of text-conditioned change detection. ViewDelta establishes a robust baseline, demonstrating flexibility across various scenarios and achieving competitive results compared to specialized, fine-tuned models trained on aligned images. Moreover, we create and release the first text-prompt-conditioned change detection dataset, comprising 501,153 image pairs with corresponding textual prompts and annotated labels. Extensive experiments confirm the robustness and versatility of our model across diverse environments, including indoor, outdoor, street-level, synthetic, and satellite imagery. https://joshuakgao.github.io/viewdelta/
♻ ☆ Proxy Denoising for Source-Free Domain Adaptation ICLR 2025
Source-Free Domain Adaptation (SFDA) aims to adapt a pre-trained source model to an unlabeled target domain with no access to the source data. Inspired by the success of large Vision-Language (ViL) models in many applications, the latest research has validated ViL's benefit for SFDA by using their predictions as pseudo supervision. However, we observe that ViL's supervision could be noisy and inaccurate at an unknown rate, introducing additional negative effects during adaption. To address this thus-far ignored challenge, we introduce a novel Proxy Denoising (ProDe) approach. The key idea is to leverage the ViL model as a proxy to facilitate the adaptation process towards the latent domain-invariant space. We design a proxy denoising mechanism to correct ViL's predictions, grounded on a proxy confidence theory that models the dynamic effect of proxy's divergence against the domain-invariant space during adaptation. To capitalize on the corrected proxy, we derive a mutual knowledge distilling regularization. Extensive experiments show that ProDe significantly outperforms current state-of-the-art alternatives under the conventional closed set setting and more challenging open set, partial set, generalized SFDA, multi-target, multi-source, and test-time settings. Our code and data are available at https://github.com/tntek/source-free-domain-adaptation.
comment: This paper is accepted by ICLR 2025 (Oral, Top 1.8%)
♻ ☆ Is JPEG AI going to change image forensics?
In this paper, we investigate the counter-forensic effects of the new JPEG AI standard based on neural image compression, focusing on two critical areas: deepfake image detection and image splicing localization. Neural image compression leverages advanced neural network algorithms to achieve higher compression rates while maintaining image quality. However, it introduces artifacts that closely resemble those generated by image synthesis techniques and image splicing pipelines, complicating the work of researchers when discriminating pristine from manipulated content. We comprehensively analyze JPEG AI's counter-forensic effects through extensive experiments on several state-of-the-art detectors and datasets. Our results demonstrate a reduction in the performance of leading forensic detectors when analyzing content processed through JPEG AI. By exposing the vulnerabilities of the available forensic tools, we aim to raise the urgent need for multimedia forensics researchers to include JPEG AI images in their experimental setups and develop robust forensic techniques to distinguish between neural compression artifacts and actual manipulations.
♻ ☆ Zero-Shot Action Recognition in Surveillance Videos
The growing demand for surveillance in public spaces presents significant challenges due to the shortage of human resources. Current AI-based video surveillance systems heavily rely on core computer vision models that require extensive finetuning, which is particularly difficult in surveillance settings due to limited datasets and difficult setting (viewpoint, low quality, etc.). In this work, we propose leveraging Large Vision-Language Models (LVLMs), known for their strong zero and few-shot generalization, to tackle video understanding tasks in surveillance. Specifically, we explore VideoLLaMA2, a state-of-the-art LVLM, and an improved token-level sampling method, Self-Reflective Sampling (Self-ReS). Our experiments on the UCF-Crime dataset show that VideoLLaMA2 represents a significant leap in zero-shot performance, with 20% boost over the baseline. Self-ReS additionally increases zero-shot action recognition performance to 44.6%. These results highlight the potential of LVLMs, paired with improved sampling techniques, for advancing surveillance video analysis in diverse scenarios.
♻ ☆ Curriculum Direct Preference Optimization for Diffusion and Consistency Models CVPR 2025
Direct Preference Optimization (DPO) has been proposed as an effective and efficient alternative to reinforcement learning from human feedback (RLHF). In this paper, we propose a novel and enhanced version of DPO based on curriculum learning for text-to-image generation. Our method is divided into two training stages. First, a ranking of the examples generated for each prompt is obtained by employing a reward model. Then, increasingly difficult pairs of examples are sampled and provided to a text-to-image generative (diffusion or consistency) model. Generated samples that are far apart in the ranking are considered to form easy pairs, while those that are close in the ranking form hard pairs. In other words, we use the rank difference between samples as a measure of difficulty. The sampled pairs are split into batches according to their difficulty levels, which are gradually used to train the generative model. Our approach, Curriculum DPO, is compared against state-of-the-art fine-tuning approaches on nine benchmarks, outperforming the competing methods in terms of text alignment, aesthetics and human preference. Our code is available at https://github.com/CroitoruAlin/Curriculum-DPO.
comment: Accepted at CVPR 2025
♻ ☆ Temporally Consistent Object-Centric Learning by Contrasting Slots CVPR 2025
Unsupervised object-centric learning from videos is a promising approach to extract structured representations from large, unlabeled collections of videos. To support downstream tasks like autonomous control, these representations must be both compositional and temporally consistent. Existing approaches based on recurrent processing often lack long-term stability across frames because their training objective does not enforce temporal consistency. In this work, we introduce a novel object-level temporal contrastive loss for video object-centric models that explicitly promotes temporal consistency. Our method significantly improves the temporal consistency of the learned object-centric representations, yielding more reliable video decompositions that facilitate challenging downstream tasks such as unsupervised object dynamics prediction. Furthermore, the inductive bias added by our loss strongly improves object discovery, leading to state-of-the-art results on both synthetic and real-world datasets, outperforming even weakly-supervised methods that leverage motion masks as additional cues.
comment: Published at CVPR 2025
High-Quality 3D Head Reconstruction from Any Single Portrait Image
In this work, we introduce a novel high-fidelity 3D head reconstruction method from a single portrait image, regardless of perspective, expression, or accessories. Despite significant efforts in adapting 2D generative models for novel view synthesis and 3D optimization, most methods struggle to produce high-quality 3D portraits. The lack of crucial information, such as identity, expression, hair, and accessories, limits these approaches in generating realistic 3D head models. To address these challenges, we construct a new high-quality dataset containing 227 sequences of digital human portraits captured from 96 different perspectives, totalling 21,792 frames, featuring diverse expressions and accessories. To further improve performance, we integrate identity and expression information into the multi-view diffusion process to enhance facial consistency across views. Specifically, we apply identity- and expression-aware guidance and supervision to extract accurate facial representations, which guide the model and enforce objective functions to ensure high identity and expression consistency during generation. Finally, we generate an orbital video around the portrait consisting of 96 multi-view frames, which can be used for 3D portrait model reconstruction. Our method demonstrates robust performance across challenging scenarios, including side-face angles and complex accessories
♻ ☆ CANVAS: Commonsense-Aware Navigation System for Intuitive Human-Robot Interaction ICRA 2025
Real-life robot navigation involves more than just reaching a destination; it requires optimizing movements while addressing scenario-specific goals. An intuitive way for humans to express these goals is through abstract cues like verbal commands or rough sketches. Such human guidance may lack details or be noisy. Nonetheless, we expect robots to navigate as intended. For robots to interpret and execute these abstract instructions in line with human expectations, they must share a common understanding of basic navigation concepts with humans. To this end, we introduce CANVAS, a novel framework that combines visual and linguistic instructions for commonsense-aware navigation. Its success is driven by imitation learning, enabling the robot to learn from human navigation behavior. We present COMMAND, a comprehensive dataset with human-annotated navigation results, spanning over 48 hours and 219 km, designed to train commonsense-aware navigation systems in simulated environments. Our experiments show that CANVAS outperforms the strong rule-based system ROS NavStack across all environments, demonstrating superior performance with noisy instructions. Notably, in the orchard environment, where ROS NavStack records a 0% total success rate, CANVAS achieves a total success rate of 67%. CANVAS also closely aligns with human demonstrations and commonsense constraints, even in unseen environments. Furthermore, real-world deployment of CANVAS showcases impressive Sim2Real transfer with a total success rate of 69%, highlighting the potential of learning from human demonstrations in simulated environments for real-world applications.
comment: Accepted to ICRA 2025, project page https://worv-ai.github.io/canvas
♻ ☆ Lost in Time: Clock and Calendar Understanding Challenges in Multimodal LLMs ICLR 2025
Understanding time from visual representations is a fundamental cognitive skill, yet it remains a challenge for multimodal large language models (MLLMs). In this work, we investigate the capabilities of MLLMs in interpreting time and date through analogue clocks and yearly calendars. To facilitate this, we curated a structured dataset comprising two subsets: 1) $\textit{ClockQA}$, which comprises various types of clock styles$-$standard, black-dial, no-second-hand, Roman numeral, and arrow-hand clocks$-$paired with time related questions; and 2) $\textit{CalendarQA}$, which consists of yearly calendar images with questions ranging from commonly known dates (e.g., Christmas, New Year's Day) to computationally derived ones (e.g., the 100th or 153rd day of the year). We aim to analyse how MLLMs can perform visual recognition, numerical reasoning, and temporal inference when presented with time-related visual data. Our evaluations show that despite recent advancements, reliably understanding time remains a significant challenge for MLLMs.
comment: Accepted at the ICLR 2025 Workshop on Reasoning and Planning for Large Language Models
♻ ☆ Task-driven single-image super-resolution reconstruction of document scans
Super-resolution reconstruction is aimed at generating images of high spatial resolution from low-resolution observations. State-of-the-art super-resolution techniques underpinned with deep learning allow for obtaining results of outstanding visual quality, but it is seldom verified whether they constitute a valuable source for specific computer vision applications. In this paper, we investigate the possibility of employing super-resolution as a preprocessing step to improve optical character recognition from document scans. To achieve that, we propose to train deep networks for single-image super-resolution in a task-driven way to make them better adapted for the purpose of text detection. As problems limited to a specific task are heavily ill-posed, we introduce a multi-task loss function that embraces components related with text detection coupled with those guided by image similarity. The obtained results reported in this paper are encouraging and they constitute an important step towards real-world super-resolution of document images.
comment: Accepted for FedCSIS 2024
♻ ☆ Crowdsource, Crawl, or Generate? Creating SEA-VL, a Multicultural Vision-Language Dataset for Southeast Asia
Southeast Asia (SEA) is a region of extraordinary linguistic and cultural diversity, yet it remains significantly underrepresented in vision-language (VL) research. This often results in artificial intelligence (AI) models that fail to capture SEA cultural nuances. To fill this gap, we present SEA-VL, an open-source initiative dedicated to developing high-quality, culturally relevant data for SEA languages. By involving contributors from SEA countries, SEA-VL aims to ensure better cultural relevance and diversity, fostering greater inclusivity of underrepresented languages in VL research. Beyond crowdsourcing, our initiative goes one step further in the exploration of the automatic collection of culturally relevant images through crawling and image generation. First, we find that image crawling achieves approximately ~85% cultural relevance while being more cost- and time-efficient than crowdsourcing. Second, despite the substantial progress in generative vision models, synthetic images remain unreliable in accurately reflecting SEA cultures. The generated images often fail to reflect the nuanced traditions and cultural contexts of the region. Collectively, we gather 1.28M SEA culturally-relevant images, more than 50 times larger than other existing datasets. Through SEA-VL, we aim to bridge the representation gap in SEA, fostering the development of more inclusive AI systems that authentically represent diverse cultures across SEA.
comment: [SEA-VL Dataset] https://huggingface.co/collections/SEACrowd/sea-vl-multicultural-vl-dataset-for-southeast-asia-67cf223d0c341d4ba2b236e7 [Appendix J] https://github.com/SEACrowd/seacrowd.github.io/blob/master/docs/SEA_VL_Appendix_J.pdf
♻ ☆ LesionDiffusion: Towards Text-controlled General Lesion Synthesis
Fully-supervised lesion recognition methods in medical imaging face challenges due to the reliance on large annotated datasets, which are expensive and difficult to collect. To address this, synthetic lesion generation has become a promising approach. However, existing models struggle with scalability, fine-grained control over lesion attributes, and the generation of complex structures. We propose LesionDiffusion, a text-controllable lesion synthesis framework for 3D CT imaging that generates both lesions and corresponding masks. By utilizing a structured lesion report template, our model provides greater control over lesion attributes and supports a wider variety of lesion types. We introduce a dataset of 1,505 annotated CT scans with paired lesion masks and structured reports, covering 14 lesion types across 8 organs. LesionDiffusion consists of two components: a lesion mask synthesis network (LMNet) and a lesion inpainting network (LINet), both guided by lesion attributes and image features. Extensive experiments demonstrate that LesionDiffusion significantly improves segmentation performance, with strong generalization to unseen lesion types and organs, outperforming current state-of-the-art models. Code will be available at https://github.com/HengruiTianSJTU/LesionDiffusion.
comment: 10 pages, 4 figures
♻ ☆ Co-Learning Semantic-aware Unsupervised Segmentation for Pathological Image Registration MICCAI
The registration of pathological images plays an important role in medical applications. Despite its significance, most researchers in this field primarily focus on the registration of normal tissue into normal tissue. The negative impact of focal tissue, such as the loss of spatial correspondence information and the abnormal distortion of tissue, are rarely considered. In this paper, we propose GIRNet, a novel unsupervised approach for pathological image registration by incorporating segmentation and inpainting through the principles of Generation, Inpainting, and Registration (GIR). The registration, segmentation, and inpainting modules are trained simultaneously in a co-learning manner so that the segmentation of the focal area and the registration of inpainted pairs can improve collaboratively. Overall, the registration of pathological images is achieved in a completely unsupervised learning framework. Experimental results on multiple datasets, including Magnetic Resonance Imaging (MRI) of T1 sequences, demonstrate the efficacy of our proposed method. Our results show that our method can accurately achieve the registration of pathological images and identify lesions even in challenging imaging modalities. Our unsupervised approach offers a promising solution for the efficient and cost-effective registration of pathological images. Our code is available at https://github.com/brain-intelligence-lab/GIRNet.
comment: 13 pages, 7 figures, published in Medical Image Computing and Computer Assisted Intervention (MICCAI) 2023
♻ ☆ Flatness Improves Backbone Generalisation in Few-shot Classification
Deployment of deep neural networks in real-world settings typically requires adaptation to new tasks with few examples. Few-shot classification (FSC) provides a solution to this problem by leveraging pre-trained backbones for fast adaptation to new classes. However, approaches for multi-domain FSC typically result in complex pipelines aimed at information fusion and task-specific adaptation without consideration of the importance of backbone training. In this work, we introduce an effective strategy for backbone training and selection in multi-domain FSC by utilizing flatness-aware training and fine-tuning. Our work is theoretically grounded and empirically performs on par or better than state-of-the-art methods despite being simpler. Further, our results indicate that backbone training is crucial for good generalisation in FSC across different adaptation methods.
♻ ☆ Words Matter: Leveraging Individual Text Embeddings for Code Generation in CLIP Test-Time Adaptation
Vision-language foundation models, such as CLIP, have shown unprecedented zero-shot performance across a wide range of tasks. Nevertheless, these models may be unreliable under distributional shifts, as their performance is significantly degraded. In this work, we explore how to efficiently leverage class text information to mitigate these distribution drifts encountered by large pre-trained vision-language models (VLMs) during test-time inference. In particular, we propose to generate pseudo-labels for the test-time samples by exploiting generic class text embeddings as fixed centroids of a label assignment problem, which is efficiently solved with Optimal Transport. Furthermore, the proposed adaptation method (CLIP-OT) integrates a multiple template knowledge distillation approach, which replicates multi-view contrastive learning strategies in unsupervised representation learning but without incurring additional computational complexity. Extensive experiments on multiple popular test-time adaptation benchmarks presenting diverse complexity empirically show the superiority of CLIP-OT, achieving performance gains of up to 7% over recent state-of-the-art methods, yet being computationally and memory efficient.
comment: Added additional figures to communicate the algorithm
♻ ☆ Ensembling convolutional neural networks for human skin segmentation RAM
Detecting and segmenting human skin regions in digital images is an intensively explored topic of computer vision with a variety of approaches proposed over the years that have been found useful in numerous practical applications. The first methods were based on pixel-wise skin color modeling and they were later enhanced with context-based analysis to include the textural and geometrical features, recently extracted using deep convolutional neural networks. It has been also demonstrated that skin regions can be segmented from grayscale images without using color information at all. However, the possibility to combine these two sources of information has not been explored so far and we address this research gap with the contribution reported in this paper. We propose to train a convolutional network using the datasets focused on different features to create an ensemble whose individual outcomes are effectively combined using yet another convolutional network trained to produce the final segmentation map. The experimental results clearly indicate that the proposed approach outperforms the basic classifiers, as well as an ensemble based on the voting scheme. We expect that this study will help in developing new ensemble-based techniques that will improve the performance of semantic segmentation systems, reaching beyond the problem of detecting human skin.
comment: Paper accepted for IBERAMIA 2024
♻ ☆ Beyond Generation: Unlocking Universal Editing via Self-Supervised Fine-Tuning
Recent advances in video generation have outpaced progress in video editing, which remains constrained by several limiting factors, namely: (a) the task's dependency on supervision severely limits generality, (b) an unnecessary artificial separation between the generation and editing task, and (c) the high computational costs of training a video model. In this work, we propose UES (Unlocking Universal Editing via Self-Supervision), a lightweight self-supervised fine-tuning strategy that transforms generation models into unified generation-editing systems through self-supervised semantic alignment. Our approach establishes a dual-conditioning mechanism where original video-text pairs jointly provide visual and textual semantics, enabling structured learning of intrinsic spatiotemporal correspondences. Key advantages include: (i) Universality through supervision-free adaptation to diverse editing tasks, (ii) Unification of generation and editing applicable to most text(+image)-to-video model, and (iii) Efficiency via lightweight fine-tune that reduces tunable parameters by 92.67%. To enable systematic evaluation, we introduce OmniBench-99, a comprehensive benchmark spanning 99 videos across humans/animals, environments, and objects, comprising 4 editing types and 8 scenarios. Extensive experiments show UES enables models without inherent editing capability to perform powerful and universal editing while preserving or even enhancing their original generation performance.
comment: Project: https://haroldchen19.github.io/UES-Page/
♻ ☆ Ingredients: Blending Custom Photos with Video Diffusion Transformers
This paper presents a powerful framework to customize video creations by incorporating multiple specific identity (ID) photos, with video diffusion Transformers, referred to as Ingredients. Generally, our method consists of three primary modules: (i) a facial extractor that captures versatile and precise facial features for each human ID from both global and local perspectives; (ii) a multi-scale projector that maps face embeddings into the contextual space of image query in video diffusion transformers; (iii) an ID router that dynamically combines and allocates multiple ID embedding to the corresponding space-time regions. Leveraging a meticulously curated text-video dataset and a multi-stage training protocol, Ingredients demonstrates superior performance in turning custom photos into dynamic and personalized video content. Qualitative evaluations highlight the advantages of proposed method, positioning it as a significant advancement toward more effective generative video control tools in Transformer-based architecture, compared to existing methods. The data, code, and model weights are publicly available at: https://github.com/feizc/Ingredients.
♻ ☆ Counting Stacked Objects
Visual object counting is a fundamental computer vision task underpinning numerous real-world applications, from cell counting in biomedicine to traffic and wildlife monitoring. However, existing methods struggle to handle the challenge of stacked 3D objects in which most objects are hidden by those above them. To address this important yet underexplored problem, we propose a novel 3D counting approach that decomposes the task into two complementary subproblems - estimating the 3D geometry of the object stack and the occupancy ratio from multi-view images. By combining geometric reconstruction and deep learning-based depth analysis, our method can accurately count identical objects within containers, even when they are irregularly stacked. We validate our 3D Counting pipeline on diverse real-world and large-scale synthetic datasets, which we will release publicly to facilitate further research.
comment: 13 pages
♻ ☆ Endo-FASt3r: Endoscopic Foundation model Adaptation for Structure from motion
Accurate depth and camera pose estimation is essential for achieving high-quality 3D visualisations in robotic-assisted surgery. Despite recent advancements in foundation model adaptation to monocular depth estimation of endoscopic scenes via self-supervised learning (SSL), no prior work has explored their use for pose estimation. These methods rely on low rank-based adaptation approaches, which constrain model updates to a low-rank space. We propose Endo-FASt3r, the first monocular SSL depth and pose estimation framework that uses foundation models for both tasks. We extend the Reloc3r relative pose estimation foundation model by designing Reloc3rX, introducing modifications necessary for convergence in SSL. We also present DoMoRA, a novel adaptation technique that enables higher-rank updates and faster convergence. Experiments on the SCARED dataset show that Endo-FASt3r achieves a substantial $10\%$ improvement in pose estimation and a $2\%$ improvement in depth estimation over prior work. Similar performance gains on the Hamlyn and StereoMIS datasets reinforce the generalisability of Endo-FASt3r across different datasets.
♻ ☆ Hierarchical Mutual Distillation for Multi-View Fusion: Learning from All Possible View Combinations
Multi-view learning often faces challenges in effectively leveraging images captured from different angles and locations. This challenge is particularly pronounced when addressing inconsistencies and uncertainties between views. In this paper, we propose a novel Multi-View Uncertainty-Weighted Mutual Distillation (MV-UWMD) method. Our method enhances prediction consistency by performing hierarchical mutual distillation across all possible view combinations, including single-view, partial multi-view, and full multi-view predictions. This introduces an uncertainty-based weighting mechanism through mutual distillation, allowing effective exploitation of unique information from each view while mitigating the impact of uncertain predictions. We extend a CNN-Transformer hybrid architecture to facilitate robust feature learning and integration across multiple view combinations. We conducted extensive experiments using a large, unstructured dataset captured from diverse, non-fixed viewpoints. The results demonstrate that MV-UWMD improves prediction accuracy and consistency compared to existing multi-view learning approaches.
♻ ☆ Hyper-Connections
We present hyper-connections, a simple yet effective method that can serve as an alternative to residual connections. This approach specifically addresses common drawbacks observed in residual connection variants, such as the seesaw effect between gradient vanishing and representation collapse. Theoretically, hyper-connections allow the network to adjust the strength of connections between features at different depths and dynamically rearrange layers. We conduct experiments focusing on the pre-training of large language models, including dense and sparse models, where hyper-connections show significant performance improvements over residual connections. Additional experiments conducted on vision tasks also demonstrate similar improvements. We anticipate that this method will be broadly applicable and beneficial across a wide range of AI problems.
♻ ☆ UniGoal: Towards Universal Zero-shot Goal-oriented Navigation CVPR 2025
In this paper, we propose a general framework for universal zero-shot goal-oriented navigation. Existing zero-shot methods build inference framework upon large language models (LLM) for specific tasks, which differs a lot in overall pipeline and fails to generalize across different types of goal. Towards the aim of universal zero-shot navigation, we propose a uniform graph representation to unify different goals, including object category, instance image and text description. We also convert the observation of agent into an online maintained scene graph. With this consistent scene and goal representation, we preserve most structural information compared with pure text and are able to leverage LLM for explicit graph-based reasoning. Specifically, we conduct graph matching between the scene graph and goal graph at each time instant and propose different strategies to generate long-term goal of exploration according to different matching states. The agent first iteratively searches subgraph of goal when zero-matched. With partial matching, the agent then utilizes coordinate projection and anchor pair alignment to infer the goal location. Finally scene graph correction and goal verification are applied for perfect matching. We also present a blacklist mechanism to enable robust switch between stages. Extensive experiments on several benchmarks show that our UniGoal achieves state-of-the-art zero-shot performance on three studied navigation tasks with a single model, even outperforming task-specific zero-shot methods and supervised universal methods.
comment: Accepted to CVPR 2025. Project page: https://bagh2178.github.io/UniGoal/
♻ ☆ One VLM to Keep it Learning: Generation and Balancing for Data-free Continual Visual Question Answering
Vision-Language Models (VLMs) have shown significant promise in Visual Question Answering (VQA) tasks by leveraging web-scale multimodal datasets. However, these models often struggle with continual learning due to catastrophic forgetting when adapting to new tasks. As an effective remedy to mitigate catastrophic forgetting, rehearsal strategy uses the data of past tasks upon learning new task. However, such strategy incurs the need of storing past data, which might not be feasible due to hardware constraints or privacy concerns. In this work, we propose the first data-free method that leverages the language generation capability of a VLM, instead of relying on external models, to produce pseudo-rehearsal data for addressing continual VQA. Our proposal, named as GaB, generates pseudo-rehearsal data by posing previous task questions on new task data. Yet, despite being effective, the distribution of generated questions skews towards the most frequently posed questions due to the limited and task-specific training data. To mitigate this issue, we introduce a pseudo-rehearsal balancing module that aligns the generated data towards the ground-truth data distribution using either the question meta-statistics or an unsupervised clustering method. We evaluate our proposed method on two recent benchmarks, \ie VQACL-VQAv2 and CLOVE-function benchmarks. GaB outperforms all the data-free baselines with substantial improvement in maintaining VQA performance across evolving tasks, while being on-par with methods with access to the past data.
♻ ☆ MutualForce: Mutual-Aware Enhancement for 4D Radar-LiDAR 3D Object Detection ICASSP 2025
Radar and LiDAR have been widely used in autonomous driving as LiDAR provides rich structure information, and radar demonstrates high robustness under adverse weather. Recent studies highlight the effectiveness of fusing radar and LiDAR point clouds. However, challenges remain due to the modality misalignment and information loss during feature extractions. To address these issues, we propose a 4D radar-LiDAR framework to mutually enhance their representations. Initially, the indicative features from radar are utilized to guide both radar and LiDAR geometric feature learning. Subsequently, to mitigate their sparsity gap, the shape information from LiDAR is used to enrich radar BEV features. Extensive experiments on the View-of-Delft (VoD) dataset demonstrate our approach's superiority over existing methods, achieving the highest mAP of 71.76% across the entire area and 86.36\% within the driving corridor. Especially for cars, we improve the AP by 4.17% and 4.20% due to the strong indicative features and symmetric shapes.
comment: Accepted by ICASSP 2025
♻ ☆ UniMamba: Unified Spatial-Channel Representation Learning with Group-Efficient Mamba for LiDAR-based 3D Object Detection CVPR2025
Recent advances in LiDAR 3D detection have demonstrated the effectiveness of Transformer-based frameworks in capturing the global dependencies from point cloud spaces, which serialize the 3D voxels into the flattened 1D sequence for iterative self-attention. However, the spatial structure of 3D voxels will be inevitably destroyed during the serialization process. Besides, due to the considerable number of 3D voxels and quadratic complexity of Transformers, multiple sequences are grouped before feeding to Transformers, leading to a limited receptive field. Inspired by the impressive performance of State Space Models (SSM) achieved in the field of 2D vision tasks, in this paper, we propose a novel Unified Mamba (UniMamba), which seamlessly integrates the merits of 3D convolution and SSM in a concise multi-head manner, aiming to perform "local and global" spatial context aggregation efficiently and simultaneously. Specifically, a UniMamba block is designed which mainly consists of spatial locality modeling, complementary Z-order serialization and local-global sequential aggregator. The spatial locality modeling module integrates 3D submanifold convolution to capture the dynamic spatial position embedding before serialization. Then the efficient Z-order curve is adopted for serialization both horizontally and vertically. Furthermore, the local-global sequential aggregator adopts the channel grouping strategy to efficiently encode both "local and global" spatial inter-dependencies using multi-head SSM. Additionally, an encoder-decoder architecture with stacked UniMamba blocks is formed to facilitate multi-scale spatial learning hierarchically. Extensive experiments are conducted on three popular datasets: nuScenes, Waymo and Argoverse 2. Particularly, our UniMamba achieves 70.2 mAP on the nuScenes dataset.
comment: Accepted to CVPR2025
♻ ☆ Sparse Autoencoder as a Zero-Shot Classifier for Concept Erasing in Text-to-Image Diffusion Models
Text-to-image (T2I) diffusion models have achieved remarkable progress in generating high-quality images but also raise people's concerns about generating harmful or misleading content. While extensive approaches have been proposed to erase unwanted concepts without requiring retraining from scratch, they inadvertently degrade performance on normal generation tasks. In this work, we propose Interpret then Deactivate (ItD), a novel framework to enable precise concept removal in T2I diffusion models while preserving overall performance. ItD first employs a sparse autoencoder (SAE) to interpret each concept as a combination of multiple features. By permanently deactivating the specific features associated with target concepts, we repurpose SAE as a zero-shot classifier that identifies whether the input prompt includes target concepts, allowing selective concept erasure in diffusion models. Moreover, we demonstrate that ItD can be easily extended to erase multiple concepts without requiring further training. Comprehensive experiments across celebrity identities, artistic styles, and explicit content demonstrate ItD's effectiveness in eliminating targeted concepts without interfering with normal concept generation. Additionally, ItD is also robust against adversarial prompts designed to circumvent content filters. Code is available at: https://github.com/NANSirun/Interpret-then-deactivate.
comment: 25 pages
♻ ☆ Text-Guided Texturing by Synchronized Multi-View Diffusion SIGGRAPH
This paper introduces a novel approach to synthesize texture to dress up a given 3D object, given a text prompt. Based on the pretrained text-to-image (T2I) diffusion model, existing methods usually employ a project-and-inpaint approach, in which a view of the given object is first generated and warped to another view for inpainting. But it tends to generate inconsistent texture due to the asynchronous diffusion of multiple views. We believe such asynchronous diffusion and insufficient information sharing among views are the root causes of the inconsistent artifact. In this paper, we propose a synchronized multi-view diffusion approach that allows the diffusion processes from different views to reach a consensus of the generated content early in the process, and hence ensures the texture consistency. To synchronize the diffusion, we share the denoised content among different views in each denoising step, specifically blending the latent content in the texture domain from views with overlap. Our method demonstrates superior performance in generating consistent, seamless, highly detailed textures, comparing to state-of-the-art methods.
comment: 11 pages, 11 figures, technical papers, "Text, Texturing, and Stylization"@SIGGRAPH Asia 2024
♻ ☆ Evaluating the Posterior Sampling Ability of Plug&Play Diffusion Methods in Sparse-View CT
Plug&Play (PnP) diffusion models are state-of-the-art methods in computed tomography (CT) reconstruction. Such methods usually consider applications where the sinogram contains a sufficient amount of information for the posterior distribution to be concentrated around a single mode, and consequently are evaluated using image-to-image metrics such as PSNR/SSIM. Instead, we are interested in reconstructing compressible flow images from sinograms having a small number of projections, which results in a posterior distribution no longer concentrated or even multimodal. Thus, in this paper, we aim at evaluating the approximate posterior of PnP diffusion models and introduce two posterior evaluation properties. We quantitatively evaluate three PnP diffusion methods on three different datasets for several numbers of projections. We surprisingly find that, for each method, the approximate posterior deviates from the true posterior when the number of projections decreases.
♻ ☆ ViiNeuS: Volumetric Initialization for Implicit Neural Surface reconstruction of urban scenes with limited image overlap CVPR2025
Neural implicit surface representation methods have recently shown impressive 3D reconstruction results. However, existing solutions struggle to reconstruct driving scenes due to their large size, highly complex nature and their limited visual observation overlap. Hence, to achieve accurate reconstructions, additional supervision data such as LiDAR, strong geometric priors, and long training times are required. To tackle such limitations, we present ViiNeuS, a new hybrid implicit surface learning method that efficiently initializes the signed distance field to reconstruct large driving scenes from 2D street view images. ViiNeuS's hybrid architecture models two separate implicit fields: one representing the volumetric density of the scene, and another one representing the signed distance to the surface. To accurately reconstruct urban outdoor driving scenarios, we introduce a novel volume-rendering strategy that relies on self-supervised probabilistic density estimation to sample points near the surface and transition progressively from volumetric to surface representation. Our solution permits a proper and fast initialization of the signed distance field without relying on any geometric prior on the scene, compared to concurrent methods. By conducting extensive experiments on four outdoor driving datasets, we show that ViiNeuS can learn an accurate and detailed 3D surface representation of various urban scene while being two times faster to train compared to previous state-of-the-art solutions.
comment: CVPR2025. Project page: https://hala-djeghim.github.io/ViiNeuS/
♻ ☆ 3D-LMVIC: Learning-based Multi-View Image Coding with 3D Gaussian Geometric Priors
Existing multi-view image compression methods often rely on 2D projection-based similarities between views to estimate disparities. While effective for small disparities, such as those in stereo images, these methods struggle with the more complex disparities encountered in wide-baseline multi-camera systems, commonly found in virtual reality and autonomous driving applications. To address this limitation, we propose 3D-LMVIC, a novel learning-based multi-view image compression framework that leverages 3D Gaussian Splatting to derive geometric priors for accurate disparity estimation. Furthermore, we introduce a depth map compression model to minimize geometric redundancy across views, along with a multi-view sequence ordering strategy based on a defined distance measure between views to enhance correlations between adjacent views. Experimental results demonstrate that 3D-LMVIC achieves superior performance compared to both traditional and learning-based methods. Additionally, it significantly improves disparity estimation accuracy over existing two-view approaches.
comment: 17 pages, 10 figures, conference
♻ ☆ R1-Onevision: Advancing Generalized Multimodal Reasoning through Cross-Modal Formalization
Large Language Models have demonstrated remarkable reasoning capability in complex textual tasks. However, multimodal reasoning, which requires integrating visual and textual information, remains a significant challenge. Existing visual-language models often struggle to effectively analyze and reason visual content, resulting in suboptimal performance on complex reasoning tasks. Moreover, the absence of comprehensive benchmarks hinders the accurate assessment of multimodal reasoning capabilities. In this paper, we introduce R1-Onevision, a multimodal reasoning model designed to bridge the gap between visual perception and deep reasoning. To achieve this, we propose a cross-modal reasoning pipeline that transforms images into formal textural representations, enabling precise language-based reasoning. Leveraging this pipeline, we construct the R1-Onevision dataset which provides detailed, step-by-step multimodal reasoning annotations across diverse domains. We further develop the R1-Onevision model through supervised fine-tuning and reinforcement learning to cultivate advanced reasoning and robust generalization abilities. To comprehensively evaluate multimodal reasoning performance across different grades, we introduce R1-Onevision-Bench, a benchmark aligned with human educational stages, covering exams from junior high school to university and beyond. Experimental results show that R1-Onevision achieves state-of-the-art performance, outperforming models such as GPT-4o and Qwen2.5-VL on multiple challenging multimodal reasoning benchmarks.
comment: Code and Model: https://github.com/Fancy-MLLM/R1-onevision
♻ ☆ MEGA: Masked Generative Autoencoder for Human Mesh Recovery
Human Mesh Recovery (HMR) from a single RGB image is a highly ambiguous problem, as an infinite set of 3D interpretations can explain the 2D observation equally well. Nevertheless, most HMR methods overlook this issue and make a single prediction without accounting for this ambiguity. A few approaches generate a distribution of human meshes, enabling the sampling of multiple predictions; however, none of them is competitive with the latest single-output model when making a single prediction. This work proposes a new approach based on masked generative modeling. By tokenizing the human pose and shape, we formulate the HMR task as generating a sequence of discrete tokens conditioned on an input image. We introduce MEGA, a MaskEd Generative Autoencoder trained to recover human meshes from images and partial human mesh token sequences. Given an image, our flexible generation scheme allows us to predict a single human mesh in deterministic mode or to generate multiple human meshes in stochastic mode. Experiments on in-the-wild benchmarks show that MEGA achieves state-of-the-art performance in deterministic and stochastic modes, outperforming single-output and multi-output approaches.
♻ ☆ Identity-Preserving Pose-Guided Character Animation via Facial Landmarks Transformation
Creating realistic pose-guided image-to-video character animations while preserving facial identity remains challenging, especially in complex and dynamic scenarios such as dancing, where precise identity consistency is crucial. Existing methods frequently encounter difficulties maintaining facial coherence due to misalignments between facial landmarks extracted from driving videos that provide head pose and expression cues and the facial geometry of the reference images. To address this limitation, we introduce the Facial Landmarks Transformation (FLT) method, which leverages a 3D Morphable Model to address this limitation. FLT converts 2D landmarks into a 3D face model, adjusts the 3D face model to align with the reference identity, and then transforms them back into 2D landmarks to guide the image-to-video generation process. This approach ensures accurate alignment with the reference facial geometry, enhancing the consistency between generated videos and reference images. Experimental results demonstrate that FLT effectively preserves facial identity, significantly improving pose-guided character animation models.
comment: 6 pages, 4 figures
♻ ☆ VideoOrion: Tokenizing Object Dynamics in Videos
We present VideoOrion, a Video Large Language Model (Video-LLM) that explicitly captures the key semantic information in videos - the spatial-temporal dynamics of objects throughout the videos. VideoOrion employs expert vision models to extract object dynamics through a detect-segment-track pipeline, encoding them into a set of object tokens by aggregating spatial-temporal object features. Our method addresses the persistent challenge in Video-LLMs of efficiently compressing high-dimensional video data into semantic tokens that are comprehensible to LLMs. Compared to prior methods which resort to downsampling the original video or aggregating visual tokens using resamplers, leading to information loss and entangled semantics, VideoOrion not only offers a more natural and efficient way to derive compact, disentangled semantic representations but also enables explicit object modeling of video content with minimal computational cost. Moreover, the introduced object tokens naturally allow VideoOrion to accomplish video-based referring tasks. Experimental results show that VideoOrion can learn to make good use of the object tokens, and achieves competitive results on both general video question answering and video-based referring benchmarks.
♻ ☆ DDF: A Novel Dual-Domain Image Fusion Strategy for Remote Sensing Image Semantic Segmentation with Unsupervised Domain Adaptation
Semantic segmentation of remote sensing images is a challenging and hot issue due to the large amount of unlabeled data. Unsupervised domain adaptation (UDA) has proven to be advantageous in incorporating unclassified information from the target domain. However, independently fine-tuning UDA models on the source and target domains has a limited effect on the outcome. This paper proposes a hybrid training strategy as well as a novel dual-domain image fusion strategy that effectively utilizes the original image, transformation image, and intermediate domain information. Moreover, to enhance the precision of pseudo-labels, we present a pseudo-label region-specific weight strategy. The efficacy of our approach is substantiated by extensive benchmark experiments and ablation studies conducted on the ISPRS Vaihingen and Potsdam datasets.
comment: Accepted to IEEE Transactions on Geoscience and Remote Sensing
♻ ☆ SDRT: Enhance Vision-Language Models by Self-Distillation with Diverse Reasoning Traces
Reasoning is increasingly crucial for various tasks. While chain-of-thought prompting enables large language models to leverage reasoning effectively, harnessing the reasoning capabilities of Vision-Language Models (VLMs) remains challenging. To solve this problem, we propose a novel self-distillation framework that enhances the reasoning capabilities of the model. The proposed framework introduces several key innovations. We start by employing a prompt library tailored to visual reasoning tasks to generate diverse in-context questions and utilize a two-step reasoning procedure to derive reasoning-guided responses. These responses are then used for self-distillation, enabling the model to internalize the reasoning process. Additionally, we improve the model architecture with several innovative components, including an intervention adapter for efficient parameter updates, a cross-modal skip connection to facilitate information exchange between modalities, and an ensemble learning algorithm to integrate diverse reasoning from multiple in-context questions. Extensive experiments show that our method significantly improves the baseline performance across five VQA datasets.
♻ ☆ A Two-step Linear Mixing Model for Unmixing under Hyperspectral Variability
Spectral unmixing is an important task in the research field of hyperspectral image processing. It can be thought of as a regression problem, where the observed variable (i.e., an image pixel) is to be found as a function of the response variables (i.e., the pure materials in a scene, called endmembers). The Linear Mixing Model (LMM) has received a great deal of attention, due to its simplicity and ease of use in, e.g., optimization problems. Its biggest flaw is that it assumes that any pure material can be characterized by one unique spectrum throughout the entire scene. In many cases this is incorrect: the endmembers face a significant amount of spectral variability caused by, e.g., illumination conditions, atmospheric effects, or intrinsic variability. Researchers have suggested several generalizations of the LMM to mitigate this effect. However, most models lead to ill-posed and highly non-convex optimization problems, which are hard to solve and have hyperparameters that are difficult to tune. In this paper, we propose a two-step LMM that bridges the gap between model complexity and computational tractability. We show that this model leads to only a mildly non-convex optimization problem, which we solve with an interior-point solver. This method requires virtually no hyperparameter tuning, and can therefore be used easily and quickly in a wide range of unmixing tasks. We show that the model is competitive and in some cases superior to existing and well-established unmixing methods and algorithms. We do this through several experiments on synthetic data, real-life satellite data, and hybrid synthetic-real data.
comment: 13 pages, 10 figures, 5 tables. This work has been submitted to the IEEE for possible publication
Artificial Intelligence 219
☆ MusicInfuser: Making Video Diffusion Listen and Dance
We introduce MusicInfuser, an approach for generating high-quality dance videos that are synchronized to a specified music track. Rather than attempting to design and train a new multimodal audio-video model, we show how existing video diffusion models can be adapted to align with musical inputs by introducing lightweight music-video cross-attention and a low-rank adapter. Unlike prior work requiring motion capture data, our approach fine-tunes only on dance videos. MusicInfuser achieves high-quality music-driven video generation while preserving the flexibility and generative capabilities of the underlying models. We introduce an evaluation framework using Video-LLMs to assess multiple dimensions of dance generation quality. The project page and code are available at https://susunghong.github.io/MusicInfuser.
comment: Project page: https://susunghong.github.io/MusicInfuser
☆ The Power of Context: How Multimodality Improves Image Super-Resolution CVPR2025
Single-image super-resolution (SISR) remains challenging due to the inherent difficulty of recovering fine-grained details and preserving perceptual quality from low-resolution inputs. Existing methods often rely on limited image priors, leading to suboptimal results. We propose a novel approach that leverages the rich contextual information available in multiple modalities -- including depth, segmentation, edges, and text prompts -- to learn a powerful generative prior for SISR within a diffusion model framework. We introduce a flexible network architecture that effectively fuses multimodal information, accommodating an arbitrary number of input modalities without requiring significant modifications to the diffusion process. Crucially, we mitigate hallucinations, often introduced by text prompts, by using spatial information from other modalities to guide regional text-based conditioning. Each modality's guidance strength can also be controlled independently, allowing steering outputs toward different directions, such as increasing bokeh through depth or adjusting object prominence via segmentation. Extensive experiments demonstrate that our model surpasses state-of-the-art generative SISR methods, achieving superior visual quality and fidelity. See project page at https://mmsr.kfmei.com/.
comment: accepted by CVPR2025
☆ Measuring AI Ability to Complete Long Tasks
Despite rapid progress on AI benchmarks, the real-world meaning of benchmark performance remains unclear. To quantify the capabilities of AI systems in terms of human capabilities, we propose a new metric: 50%-task-completion time horizon. This is the time humans typically take to complete tasks that AI models can complete with 50% success rate. We first timed humans with relevant domain expertise on a combination of RE-Bench, HCAST, and 66 novel shorter tasks. On these tasks, current frontier AI models such as Claude 3.7 Sonnet have a 50% time horizon of around 50 minutes. Furthermore, frontier AI time horizon has been doubling approximately every seven months since 2019, though the trend may have accelerated in 2024. The increase in AI models' time horizons seems to be primarily driven by greater reliability and ability to adapt to mistakes, combined with better logical reasoning and tool use capabilities. We discuss the limitations of our results -- including their degree of external validity -- and the implications of increased autonomy for dangerous capabilities. If these results generalize to real-world software tasks, extrapolation of this trend predicts that within 5 years, AI systems will be capable of automating many software tasks that currently take humans a month.
☆ Cosmos-Transfer1: Conditional World Generation with Adaptive Multimodal Control
We introduce Cosmos-Transfer, a conditional world generation model that can generate world simulations based on multiple spatial control inputs of various modalities such as segmentation, depth, and edge. In the design, the spatial conditional scheme is adaptive and customizable. It allows weighting different conditional inputs differently at different spatial locations. This enables highly controllable world generation and finds use in various world-to-world transfer use cases, including Sim2Real. We conduct extensive evaluations to analyze the proposed model and demonstrate its applications for Physical AI, including robotics Sim2Real and autonomous vehicle data enrichment. We further demonstrate an inference scaling strategy to achieve real-time world generation with an NVIDIA GB200 NVL72 rack. To help accelerate research development in the field, we open-source our models and code at https://github.com/nvidia-cosmos/cosmos-transfer1.
☆ Engineering Scientific Assistants using Interactive Structured Induction of Programs
We are interested in the construction of software that can act as scientific assistants to domain specialists. It is expected that such assistants will be needed to accelerate the identification of ways to address complex problems requiring urgent solutions. In this paper, our focus is not on a specific scientific problem, but on the software-engineering of such 'science accelerators'. Recent developments in 'No Code' techniques would seem to suggest that scientist can simply hypothesise solutions simply by conversing with a large language model (LLM). However, for complex scientific problems, this seems unlikely given the current state of LLM technology. What does appear feasible is that a software engineer can use LLMs to rapidly construct programs for use by a domain-specialist, including the specialist's requirements expressed in natural language. We propose the design of an interactive form of 'structured' inductive programming in which a software-engineer and an LLM collaboratively construct an 'assistant' for a scientific data analysis. The paper describes a simple implementation called iStrucInd that adapts a '2-way Intelligibility' protocol to implement the interaction between the software engineer and the LLM. We test the tool on two different non-trivial scientific data analysis tasks. Specifically, we compare the system constructed by iStrucInd against systems constructed manually and by Low Code/No Code methods along dimensions of: (a) program performance; (b) program quality; and (c) programming effort. The results show iStrucInd allows a software engineer to develop better programs faster suggesting interactive structured induction can play a useful role in the rapid construction of scientific assistants.
☆ DiffMoE: Dynamic Token Selection for Scalable Diffusion Transformers
Diffusion models have demonstrated remarkable success in various image generation tasks, but their performance is often limited by the uniform processing of inputs across varying conditions and noise levels. To address this limitation, we propose a novel approach that leverages the inherent heterogeneity of the diffusion process. Our method, DiffMoE, introduces a batch-level global token pool that enables experts to access global token distributions during training, promoting specialized expert behavior. To unleash the full potential of the diffusion process, DiffMoE incorporates a capacity predictor that dynamically allocates computational resources based on noise levels and sample complexity. Through comprehensive evaluation, DiffMoE achieves state-of-the-art performance among diffusion models on ImageNet benchmark, substantially outperforming both dense architectures with 3x activated parameters and existing MoE approaches while maintaining 1x activated parameters. The effectiveness of our approach extends beyond class-conditional generation to more challenging tasks such as text-to-image generation, demonstrating its broad applicability across different diffusion model applications. Project Page: https://shiml20.github.io/DiffMoE/
comment: Project Page: https://shiml20.github.io/DiffMoE/
☆ Gricean Norms as a Basis for Effective Collaboration AAMAS 2025
Effective human-AI collaboration hinges not only on the AI agent's ability to follow explicit instructions but also on its capacity to navigate ambiguity, incompleteness, invalidity, and irrelevance in communication. Gricean conversational and inference norms facilitate collaboration by aligning unclear instructions with cooperative principles. We propose a normative framework that integrates Gricean norms and cognitive frameworks -- common ground, relevance theory, and theory of mind -- into large language model (LLM) based agents. The normative framework adopts the Gricean maxims of quantity, quality, relation, and manner, along with inference, as Gricean norms to interpret unclear instructions, which are: ambiguous, incomplete, invalid, or irrelevant. Within this framework, we introduce Lamoids, GPT-4 powered agents designed to collaborate with humans. To assess the influence of Gricean norms in human-AI collaboration, we evaluate two versions of a Lamoid: one with norms and one without. In our experiments, a Lamoid collaborates with a human to achieve shared goals in a grid world (Doors, Keys, and Gems) by interpreting both clear and unclear natural language instructions. Our results reveal that the Lamoid with Gricean norms achieves higher task accuracy and generates clearer, more accurate, and contextually relevant responses than the Lamoid without norms. This improvement stems from the normative framework, which enhances the agent's pragmatic reasoning, fostering effective human-AI collaboration and enabling context-aware communication in LLM-based agents.
comment: Accepted to AAMAS 2025. 8 pages (excl. references), 9 figures/tables. (Appendix: 5 pages, 6 figures/tables). Code available at: https://github.com/fardinsaad/Gricean-Norms
☆ Attribution Score Alignment in Explainable Data Management
Different attribution-scores have been proposed to quantify the relevance of database tuples for a query answer from a database. Among them, we find Causal Responsibility, the Shapley Value, the Banzhaf Power-Index, and the Causal Effect. They have been analyzed in isolation, mainly in terms of computational properties. In this work, we start an investigation into the alignment of these scores on the basis of the queries at hand; that is, on whether they induce compatible rankings of tuples. We are able to identify vast classes of queries for which some pairs of scores are always aligned, and others for which they are not. It turns out that the presence of exogenous tuples makes a crucial difference in this regard.
☆ RWKV-7 "Goose" with Expressive Dynamic State Evolution
We present RWKV-7 "Goose", a new sequence modeling architecture, along with pre-trained language models that establish a new state-of-the-art in downstream performance at the 3 billion parameter scale on multilingual tasks, and match current SoTA English language performance despite being trained on dramatically fewer tokens than other top 3B models. Nevertheless, RWKV-7 models require only constant memory usage and constant inference time per token. RWKV-7 introduces a newly generalized formulation of the delta rule with vector-valued gating and in-context learning rates, as well as a relaxed value replacement rule. We show that RWKV-7 can perform state tracking and recognize all regular languages, while retaining parallelizability of training. This exceeds the capabilities of Transformers under standard complexity conjectures, which are limited to $\mathsf{TC}^0$. To demonstrate RWKV-7's language modeling capability, we also present an extended open source 3.1 trillion token multilingual corpus, and train four RWKV-7 models ranging from 0.19 billion to 2.9 billion parameters on this dataset. To foster openness, reproduction, and adoption, we release our models and dataset component listing at https://huggingface.co/RWKV, and our training and inference code at https://github.com/RWKV/RWKV-LM all under the Apache 2.0 License.
☆ Pauli Network Circuit Synthesis with Reinforcement Learning
We introduce a Reinforcement Learning (RL)-based method for re-synthesis of quantum circuits containing arbitrary Pauli rotations alongside Clifford operations. By collapsing each sub-block to a compact representation and then synthesizing it step-by-step through a learned heuristic, we obtain circuits that are both shorter and compliant with hardware connectivity constraints. We find that the method is fast enough and good enough to work as an optimization procedure: in direct comparisons on 6-qubit random Pauli Networks against state-of-the-art heuristic methods, our RL approach yields over 2x reduction in two-qubit gate count, while executing in under 10 milliseconds per circuit. We further integrate the method into a collect-and-re-synthesize pipeline, applied as a Qiskit transpiler pass, where we observe average improvements of 20% in two-qubit gate count and depth, reaching up to 60% for many instances, across the Benchpress benchmark. These results highlight the potential of RL-driven synthesis to significantly improve circuit quality in realistic, large-scale quantum transpilation workloads.
☆ LLM-FE: Automated Feature Engineering for Tabular Data with LLMs as Evolutionary Optimizers
Automated feature engineering plays a critical role in improving predictive model performance for tabular learning tasks. Traditional automated feature engineering methods are limited by their reliance on pre-defined transformations within fixed, manually designed search spaces, often neglecting domain knowledge. Recent advances using Large Language Models (LLMs) have enabled the integration of domain knowledge into the feature engineering process. However, existing LLM-based approaches use direct prompting or rely solely on validation scores for feature selection, failing to leverage insights from prior feature discovery experiments or establish meaningful reasoning between feature generation and data-driven performance. To address these challenges, we propose LLM-FE, a novel framework that combines evolutionary search with the domain knowledge and reasoning capabilities of LLMs to automatically discover effective features for tabular learning tasks. LLM-FE formulates feature engineering as a program search problem, where LLMs propose new feature transformation programs iteratively, and data-driven feedback guides the search process. Our results demonstrate that LLM-FE consistently outperforms state-of-the-art baselines, significantly enhancing the performance of tabular prediction models across diverse classification and regression benchmarks.
☆ PLAY2PROMPT: Zero-shot Tool Instruction Optimization for LLM Agents via Tool Play
Large language models (LLMs) are increasingly integrated with specialized external tools, yet many tasks demand zero-shot tool usage with minimal or noisy documentation. Existing solutions rely on manual rewriting or labeled data for validation, making them inapplicable in true zero-shot settings. To address these challenges, we propose PLAY2PROMPT, an automated framework that systematically "plays" with each tool to explore its input-output behaviors. Through this iterative trial-and-error process, PLAY2PROMPT refines tool documentation and generates usage examples without any labeled data. These examples not only guide LLM inference but also serve as validation to further enhance tool utilization. Extensive experiments on real-world tasks demonstrate that PLAY2PROMPT significantly improves zero-shot tool performance across both open and closed models, offering a scalable and effective solution for domain-specific tool integration.
☆ MagicComp: Training-free Dual-Phase Refinement for Compositional Video Generation
Text-to-video (T2V) generation has made significant strides with diffusion models. However, existing methods still struggle with accurately binding attributes, determining spatial relationships, and capturing complex action interactions between multiple subjects. To address these limitations, we propose MagicComp, a training-free method that enhances compositional T2V generation through dual-phase refinement. Specifically, (1) During the Conditioning Stage: We introduce the Semantic Anchor Disambiguation to reinforces subject-specific semantics and resolve inter-subject ambiguity by progressively injecting the directional vectors of semantic anchors into original text embedding; (2) During the Denoising Stage: We propose Dynamic Layout Fusion Attention, which integrates grounding priors and model-adaptive spatial perception to flexibly bind subjects to their spatiotemporal regions through masked attention modulation. Furthermore, MagicComp is a model-agnostic and versatile approach, which can be seamlessly integrated into existing T2V architectures. Extensive experiments on T2V-CompBench and VBench demonstrate that MagicComp outperforms state-of-the-art methods, highlighting its potential for applications such as complex prompt-based and trajectory-controllable video generation. Project page: https://hong-yu-zhang.github.io/MagicComp-Page/.
comment: Project webpage: https://hong-yu-zhang.github.io/MagicComp-Page/
☆ VisEscape: A Benchmark for Evaluating Exploration-driven Decision-making in Virtual Escape Rooms
Escape rooms present a unique cognitive challenge that demands exploration-driven planning: players should actively search their environment, continuously update their knowledge based on new discoveries, and connect disparate clues to determine which elements are relevant to their objectives. Motivated by this, we introduce VisEscape, a benchmark of 20 virtual escape rooms specifically designed to evaluate AI models under these challenging conditions, where success depends not only on solving isolated puzzles but also on iteratively constructing and refining spatial-temporal knowledge of a dynamically changing environment. On VisEscape, we observed that even state-of-the-art multimodal models generally fail to escape the rooms, showing considerable variation in their levels of progress and trajectories. To address this issue, we propose VisEscaper, which effectively integrates Memory, Feedback, and ReAct modules, demonstrating significant improvements by performing 3.7 times more effectively and 5.0 times more efficiently on average.
☆ ExDDV: A New Dataset for Explainable Deepfake Detection in Video
The ever growing realism and quality of generated videos makes it increasingly harder for humans to spot deepfake content, who need to rely more and more on automatic deepfake detectors. However, deepfake detectors are also prone to errors, and their decisions are not explainable, leaving humans vulnerable to deepfake-based fraud and misinformation. To this end, we introduce ExDDV, the first dataset and benchmark for Explainable Deepfake Detection in Video. ExDDV comprises around 5.4K real and deepfake videos that are manually annotated with text descriptions (to explain the artifacts) and clicks (to point out the artifacts). We evaluate a number of vision-language models on ExDDV, performing experiments with various fine-tuning and in-context learning strategies. Our results show that text and click supervision are both required to develop robust explainable models for deepfake videos, which are able to localize and describe the observed artifacts. Our novel dataset and code to reproduce the results are available at https://github.com/vladhondru25/ExDDV.
☆ Iffy-Or-Not: Extending the Web to Support the Critical Evaluation of Fallacious Texts
Social platforms have expanded opportunities for deliberation with the comments being used to inform one's opinion. However, using such information to form opinions is challenged by unsubstantiated or false content. To enhance the quality of opinion formation and potentially confer resistance to misinformation, we developed Iffy-Or-Not (ION), a browser extension that seeks to invoke critical thinking when reading texts. With three features guided by argumentation theory, ION highlights fallacious content, suggests diverse queries to probe them with, and offers deeper questions to consider and chat with others about. From a user study (N=18), we found that ION encourages users to be more attentive to the content, suggests queries that align with or are preferable to their own, and poses thought-provoking questions that expands their perspectives. However, some participants expressed aversion to ION due to misalignments with their information goals and thinking predispositions. Potential backfiring effects with ION are discussed.
☆ Unifying Text Semantics and Graph Structures for Temporal Text-attributed Graphs with Large Language Models ICML2025
Temporal graph neural networks (TGNNs) have shown remarkable performance in temporal graph modeling. However, real-world temporal graphs often possess rich textual information, giving rise to temporal text-attributed graphs (TTAGs). Such combination of dynamic text semantics and evolving graph structures introduces heightened complexity. Existing TGNNs embed texts statically and rely heavily on encoding mechanisms that biasedly prioritize structural information, overlooking the temporal evolution of text semantics and the essential interplay between semantics and structures for synergistic reinforcement. To tackle these issues, we present \textbf{{Cross}}, a novel framework that seamlessly extends existing TGNNs for TTAG modeling. The key idea is to employ the advanced large language models (LLMs) to extract the dynamic semantics in text space and then generate expressive representations unifying both semantics and structures. Specifically, we propose a Temporal Semantics Extractor in the {Cross} framework, which empowers the LLM to offer the temporal semantic understanding of node's evolving contexts of textual neighborhoods, facilitating semantic dynamics. Subsequently, we introduce the Semantic-structural Co-encoder, which collaborates with the above Extractor for synthesizing illuminating representations by jointly considering both semantic and structural information while encouraging their mutual reinforcement. Extensive experimental results on four public datasets and one practical industrial dataset demonstrate {Cross}'s significant effectiveness and robustness.
comment: Submit to ICML2025
☆ Tiled Flash Linear Attention: More Efficient Linear RNN and xLSTM Kernels
Linear RNNs with gating recently demonstrated competitive performance compared to Transformers in language modeling. Although their linear compute scaling in sequence length offers theoretical runtime advantages over Transformers, realizing these benefits in practice requires optimized custom kernels, as Transformers rely on the highly efficient Flash Attention kernels. Leveraging the chunkwise-parallel formulation of linear RNNs, Flash Linear Attention (FLA) shows that linear RNN kernels are faster than Flash Attention, by parallelizing over chunks of the input sequence. However, since the chunk size of FLA is limited, many intermediate states must be materialized in GPU memory. This leads to low arithmetic intensity and causes high memory consumption and IO cost, especially for long-context pre-training. In this work, we present Tiled Flash Linear Attention (TFLA), a novel kernel algorithm for linear RNNs, that enables arbitrary large chunk sizes by introducing an additional level of sequence parallelization within each chunk. First, we apply TFLA to the xLSTM with matrix memory, the mLSTM. Second, we propose an mLSTM variant with sigmoid input gate and reduced computation for even faster kernel runtimes at equal language modeling performance. In our speed benchmarks, we show that our new mLSTM kernels based on TFLA outperform highly optimized Flash Attention, Linear Attention and Mamba kernels, setting a new state of the art for efficient long-context sequence modeling primitives.
comment: Code available at: https://github.com/NX-AI/mlstm_kernels
☆ Retrospective: A CORDIC Based Configurable Activation Function for NN Applications
A CORDIC-based configuration for the design of Activation Functions (AF) was previously suggested to accelerate ASIC hardware design for resource-constrained systems by providing functional reconfigurability. Since its introduction, this new approach for neural network acceleration has gained widespread popularity, influencing numerous designs for activation functions in both academic and commercial AI processors. In this retrospective analysis, we explore the foundational aspects of this initiative, summarize key developments over recent years, and introduce the DA-VINCI AF tailored for the evolving needs of AI applications. This new generation of dynamically configurable and precision-adjustable activation function cores promise greater adaptability for a range of activation functions in AI workloads, including Swish, SoftMax, SeLU, and GeLU, utilizing the Shift-and-Add CORDIC technique. The previously presented design has been optimized for MAC, Sigmoid, and Tanh functionalities and incorporated into ReLU AFs, culminating in an accumulative NEURIC compute unit. These enhancements position NEURIC as a fundamental component in the resource-efficient vector engine for the realization of AI accelerators that focus on DNNs, RNNs/LSTMs, and Transformers, achieving a quality of results (QoR) of 98.5%.
☆ VEGGIE: Instructional Editing and Reasoning Video Concepts with Grounded Generation
Recent video diffusion models have enhanced video editing, but it remains challenging to handle instructional editing and diverse tasks (e.g., adding, removing, changing) within a unified framework. In this paper, we introduce VEGGIE, a Video Editor with Grounded Generation from Instructions, a simple end-to-end framework that unifies video concept editing, grounding, and reasoning based on diverse user instructions. Specifically, given a video and text query, VEGGIE first utilizes an MLLM to interpret user intentions in instructions and ground them to the video contexts, generating frame-specific grounded task queries for pixel-space responses. A diffusion model then renders these plans and generates edited videos that align with user intent. To support diverse tasks and complex instructions, we employ a curriculum learning strategy: first aligning the MLLM and video diffusion model with large-scale instructional image editing data, followed by end-to-end fine-tuning on high-quality multitask video data. Additionally, we introduce a novel data synthesis pipeline to generate paired instructional video editing data for model training. It transforms static image data into diverse, high-quality video editing samples by leveraging Image-to-Video models to inject dynamics. VEGGIE shows strong performance in instructional video editing with different editing skills, outperforming the best instructional baseline as a versatile model, while other models struggle with multi-tasking. VEGGIE also excels in video object grounding and reasoning segmentation, where other baselines fail. We further reveal how the multiple tasks help each other and highlight promising applications like zero-shot multimodal instructional and in-context video editing.
comment: First three authors contributed equally. Project page: https://veggie-gen.github.io/
☆ Spatio-Temporal Graph Neural Networks for Infant Language Acquisition Prediction
Predicting the words that a child is going to learn next can be useful for boosting language acquisition, and such predictions have been shown to be possible with both neural network techniques (looking at changes in the vocabulary state over time) and graph model (looking at data pertaining to the relationships between words). However, these models do not fully capture the complexity of the language learning process of an infant when used in isolation. In this paper, we examine how a model of language acquisition for infants and young children can be constructed and adapted for use in a Spatio-Temporal Graph Convolutional Network (STGCN), taking into account the different types of linguistic relationships that occur during child language learning. We introduce a novel approach for predicting child vocabulary acquisition, and evaluate the efficacy of such a model with respect to the different types of linguistic relationships that occur during language acquisition, resulting in insightful observations on model calibration and norm selection. An evaluation of this model found that the mean accuracy of models for predicting new words when using sensorimotor relationships (0.733) and semantic relationships (0.729) were found to be superior to that observed with a 2-layer Feed-forward neural network. Furthermore, the high recall for some relationships suggested that some relationships (e.g. visual) were superior in identifying a larger proportion of relevant words that a child should subsequently learn than others (such as auditory).
☆ Revealing higher-order neural representations with generative artificial intelligence
Studies often aim to reveal how neural representations encode aspects of an observer's environment, such as its contents or structure. These are ``first-order" representations (FORs), because they're ``about" the external world. A less-common target is ``higher-order" representations (HORs), which are ``about" FORs -- their contents, stability, or uncertainty. HORs of uncertainty appear critically involved in adaptive behaviors including learning under uncertainty, influencing learning rates and internal model updating based on environmental feedback. However, HORs about uncertainty are unlikely to be direct ``read-outs" of FOR characteristics, instead reflecting estimation processes which may be lossy, bias-prone, or distortive and which may also incorporate estimates of distributions of uncertainty the observer is likely to experience. While some research has targeted neural representations of ``instantaneously" estimated uncertainty, how the brain represents \textit{distributions} of expected uncertainty remains largely unexplored. Here, we propose a novel reinforcement learning (RL) based generative artificial intelligence (genAI) approach to explore neural representations of uncertainty distributions. We use existing functional magnetic resonance imaging data, where humans learned to `de-noise' their brain states to achieve target neural patterns, to train denoising diffusion genAI models with RL algorithms to learn noise distributions similar to how humans might learn to do the same. We then explore these models' learned noise-distribution HORs compared to control models trained with traditional backpropagation. Results reveal model-dependent differences in noise distribution representations -- with the RL-based model offering much higher explanatory power for human behavior -- offering an exciting path towards using genAI to explore neural noise-distribution HORs.
☆ COPA: Comparing the Incomparable to Explore the Pareto Front
In machine learning (ML), it is common to account for multiple objectives when, e.g., selecting a model to deploy. However, it is often unclear how one should compare, aggregate and, ultimately, trade-off these objectives, as they might be measured in different units or scales. For example, when deploying large language models (LLMs), we might not only care about their performance, but also their CO2 consumption. In this work, we investigate how objectives can be sensibly compared and aggregated to navigate their Pareto front. To do so, we propose to make incomparable objectives comparable via their CDFs, approximated by their relative rankings. This allows us to aggregate them while matching user-specific preferences, allowing practitioners to meaningfully navigate and search for models in the Pareto front. We demonstrate the potential impact of our methodology in diverse areas such as LLM selection, domain generalization, and AutoML benchmarking, where classical ways to aggregate and normalize objectives fail.
comment: 19 pages, 14 figures. Under submission
☆ PC-Talk: Precise Facial Animation Control for Audio-Driven Talking Face Generation
Recent advancements in audio-driven talking face generation have made great progress in lip synchronization. However, current methods often lack sufficient control over facial animation such as speaking style and emotional expression, resulting in uniform outputs. In this paper, we focus on improving two key factors: lip-audio alignment and emotion control, to enhance the diversity and user-friendliness of talking videos. Lip-audio alignment control focuses on elements like speaking style and the scale of lip movements, whereas emotion control is centered on generating realistic emotional expressions, allowing for modifications in multiple attributes such as intensity. To achieve precise control of facial animation, we propose a novel framework, PC-Talk, which enables lip-audio alignment and emotion control through implicit keypoint deformations. First, our lip-audio alignment control module facilitates precise editing of speaking styles at the word level and adjusts lip movement scales to simulate varying vocal loudness levels, maintaining lip synchronization with the audio. Second, our emotion control module generates vivid emotional facial features with pure emotional deformation. This module also enables the fine modification of intensity and the combination of multiple emotions across different facial regions. Our method demonstrates outstanding control capabilities and achieves state-of-the-art performance on both HDTF and MEAD datasets in extensive experiments.
JuDGE: Benchmarking Judgment Document Generation for Chinese Legal System
This paper introduces JuDGE (Judgment Document Generation Evaluation), a novel benchmark for evaluating the performance of judgment document generation in the Chinese legal system. We define the task as generating a complete legal judgment document from the given factual description of the case. To facilitate this benchmark, we construct a comprehensive dataset consisting of factual descriptions from real legal cases, paired with their corresponding full judgment documents, which serve as the ground truth for evaluating the quality of generated documents. This dataset is further augmented by two external legal corpora that provide additional legal knowledge for the task: one comprising statutes and regulations, and the other consisting of a large collection of past judgment documents. In collaboration with legal professionals, we establish a comprehensive automated evaluation framework to assess the quality of generated judgment documents across various dimensions. We evaluate various baseline approaches, including few-shot in-context learning, fine-tuning, and a multi-source retrieval-augmented generation (RAG) approach, using both general and legal-domain LLMs. The experimental results demonstrate that, while RAG approaches can effectively improve performance in this task, there is still substantial room for further improvement. All the codes and datasets are available at: https://github.com/oneal2000/JuDGE.
☆ CTSAC: Curriculum-Based Transformer Soft Actor-Critic for Goal-Oriented Robot Exploration ICRA
With the increasing demand for efficient and flexible robotic exploration solutions, Reinforcement Learning (RL) is becoming a promising approach in the field of autonomous robotic exploration. However, current RL-based exploration algorithms often face limited environmental reasoning capabilities, slow convergence rates, and substantial challenges in Sim-To-Real (S2R) transfer. To address these issues, we propose a Curriculum Learning-based Transformer Reinforcement Learning Algorithm (CTSAC) aimed at improving both exploration efficiency and transfer performance. To enhance the robot's reasoning ability, a Transformer is integrated into the perception network of the Soft Actor-Critic (SAC) framework, leveraging historical information to improve the farsightedness of the strategy. A periodic review-based curriculum learning is proposed, which enhances training efficiency while mitigating catastrophic forgetting during curriculum transitions. Training is conducted on the ROS-Gazebo continuous robotic simulation platform, with LiDAR clustering optimization to further reduce the S2R gap. Experimental results demonstrate the CTSAC algorithm outperforms the state-of-the-art non-learning and learning-based algorithms in terms of success rate and success rate-weighted exploration time. Moreover, real-world experiments validate the strong S2R transfer capabilities of CTSAC.
comment: 7pages,7 figures,Thesis received by 2025 ICRA
☆ A Parallel Hybrid Action Space Reinforcement Learning Model for Real-world Adaptive Traffic Signal Control
Adaptive traffic signal control (ATSC) can effectively reduce vehicle travel times by dynamically adjusting signal timings but poses a critical challenge in real-world scenarios due to the complexity of real-time decision-making in dynamic and uncertain traffic conditions. The burgeoning field of intelligent transportation systems, bolstered by artificial intelligence techniques and extensive data availability, offers new prospects for the implementation of ATSC. In this study, we introduce a parallel hybrid action space reinforcement learning model (PH-DDPG) that optimizes traffic signal phase and duration of traffic signals simultaneously, eliminating the need for sequential decision-making seen in traditional two-stage models. Our model features a task-specific parallel hybrid action space tailored for adaptive traffic control, which directly outputs discrete phase selections and their associated continuous duration parameters concurrently, thereby inherently addressing dynamic traffic adaptation through unified parametric optimization. %Our model features a unique parallel hybrid action space that allows for the simultaneous output of each action and its optimal parameters, streamlining the decision-making process. Furthermore, to ascertain the robustness and effectiveness of this approach, we executed ablation studies focusing on the utilization of a random action parameter mask within the critic network, which decouples the parameter space for individual actions, facilitating the use of preferable parameters for each action. The results from these studies confirm the efficacy of this method, distinctly enhancing real-world applicability
comment: 13 pages, 9 figures, Reinforcement Learning
☆ GeoFlow-SLAM: A Robust Tightly-Coupled RGBD-Inertial Fusion SLAM for Dynamic Legged Robotics
This paper presents GeoFlow-SLAM, a robust and effective Tightly-Coupled RGBD-inertial SLAM for legged robots operating in highly dynamic environments.By integrating geometric consistency, legged odometry constraints, and dual-stream optical flow (GeoFlow), our method addresses three critical challenges:feature matching and pose initialization failures during fast locomotion and visual feature scarcity in texture-less scenes.Specifically, in rapid motion scenarios, feature matching is notably enhanced by leveraging dual-stream optical flow, which combines prior map points and poses. Additionally, we propose a robust pose initialization method for fast locomotion and IMU error in legged robots, integrating IMU/Legged odometry, inter-frame Perspective-n-Point (PnP), and Generalized Iterative Closest Point (GICP). Furthermore, a novel optimization framework that tightly couples depth-to-map and GICP geometric constraints is first introduced to improve the robustness and accuracy in long-duration, visually texture-less environments. The proposed algorithms achieve state-of-the-art (SOTA) on collected legged robots and open-source datasets. To further promote research and development, the open-source datasets and code will be made publicly available at https://github.com/NSN-Hello/GeoFlow-SLAM
comment: 8 pages
☆ Trading-off Accuracy and Communication Cost in Federated Learning
Leveraging the training-by-pruning paradigm introduced by Zhou et al. and Isik et al. introduced a federated learning protocol that achieves a 34-fold reduction in communication cost. We achieve a compression improvements of orders of orders of magnitude over the state-of-the-art. The central idea of our framework is to encode the network weights $\vec w$ by a the vector of trainable parameters $\vec p$, such that $\vec w = Q\cdot \vec p$ where $Q$ is a carefully-generate sparse random matrix (that remains fixed throughout training). In such framework, the previous work of Zhou et al. [NeurIPS'19] is retrieved when $Q$ is diagonal and $\vec p$ has the same dimension of $\vec w$. We instead show that $\vec p$ can effectively be chosen much smaller than $\vec w$, while retaining the same accuracy at the price of a decrease of the sparsity of $Q$. Since server and clients only need to share $\vec p$, such a trade-off leads to a substantial improvement in communication cost. Moreover, we provide theoretical insight into our framework and establish a novel link between training-by-sampling and random convex geometry.
☆ CRCE: Coreference-Retention Concept Erasure in Text-to-Image Diffusion Models
Text-to-Image diffusion models can produce undesirable content that necessitates concept erasure techniques. However, existing methods struggle with under-erasure, leaving residual traces of targeted concepts, or over-erasure, mistakenly eliminating unrelated but visually similar concepts. To address these limitations, we introduce CRCE, a novel concept erasure framework that leverages Large Language Models to identify both semantically related concepts that should be erased alongside the target and distinct concepts that should be preserved. By explicitly modeling coreferential and retained concepts semantically, CRCE enables more precise concept removal, without unintended erasure. Experiments demonstrate that CRCE outperforms existing methods on diverse erasure tasks.
☆ HA-VLN: A Benchmark for Human-Aware Navigation in Discrete-Continuous Environments with Dynamic Multi-Human Interactions, Real-World Validation, and an Open Leaderboard
Vision-and-Language Navigation (VLN) systems often focus on either discrete (panoramic) or continuous (free-motion) paradigms alone, overlooking the complexities of human-populated, dynamic environments. We introduce a unified Human-Aware VLN (HA-VLN) benchmark that merges these paradigms under explicit social-awareness constraints. Our contributions include: 1. A standardized task definition that balances discrete-continuous navigation with personal-space requirements; 2. An enhanced human motion dataset (HAPS 2.0) and upgraded simulators capturing realistic multi-human interactions, outdoor contexts, and refined motion-language alignment; 3. Extensive benchmarking on 16,844 human-centric instructions, revealing how multi-human dynamics and partial observability pose substantial challenges for leading VLN agents; 4. Real-world robot tests validating sim-to-real transfer in crowded indoor spaces; and 5. A public leaderboard supporting transparent comparisons across discrete and continuous tasks. Empirical results show improved navigation success and fewer collisions when social context is integrated, underscoring the need for human-centric design. By releasing all datasets, simulators, agent code, and evaluation tools, we aim to advance safer, more capable, and socially responsible VLN research.
comment: 27 pages, website: https://ha-vln-project.vercel.app/
☆ Panoramic Distortion-Aware Tokenization for Person Detection and Localization Using Transformers in Overhead Fisheye Images
Person detection methods are used widely in applications including visual surveillance, pedestrian detection, and robotics. However, accurate detection of persons from overhead fisheye images remains an open challenge because of factors including person rotation and small-sized persons. To address the person rotation problem, we convert the fisheye images into panoramic images. For smaller people, we focused on the geometry of the panoramas. Conventional detection methods tend to focus on larger people because these larger people yield large significant areas for feature maps. In equirectangular panoramic images, we find that a person's height decreases linearly near the top of the images. Using this finding, we leverage the significance values and aggregate tokens that are sorted based on these values to balance the significant areas. In this leveraging process, we introduce panoramic distortion-aware tokenization. This tokenization procedure divides a panoramic image using self-similarity figures that enable determination of optimal divisions without gaps, and we leverage the maximum significant values in each tile of token groups to preserve the significant areas of smaller people. To achieve higher detection accuracy, we propose a person detection and localization method that combines panoramic-image remapping and the tokenization procedure. Extensive experiments demonstrated that our method outperforms conventional methods when applied to large-scale datasets.
☆ Stochastic Trajectory Prediction under Unstructured Constraints ICRA 2025
Trajectory prediction facilitates effective planning and decision-making, while constrained trajectory prediction integrates regulation into prediction. Recent advances in constrained trajectory prediction focus on structured constraints by constructing optimization objectives. However, handling unstructured constraints is challenging due to the lack of differentiable formal definitions. To address this, we propose a novel method for constrained trajectory prediction using a conditional generative paradigm, named Controllable Trajectory Diffusion (CTD). The key idea is that any trajectory corresponds to a degree of conformity to a constraint. By quantifying this degree and treating it as a condition, a model can implicitly learn to predict trajectories under unstructured constraints. CTD employs a pre-trained scoring model to predict the degree of conformity (i.e., a score), and uses this score as a condition for a conditional diffusion model to generate trajectories. Experimental results demonstrate that CTD achieves high accuracy on the ETH/UCY and SDD benchmarks. Qualitative analysis confirms that CTD ensures adherence to unstructured constraints and can predict trajectories that satisfy combinatorial constraints.
comment: has been accepted by ICRA 2025
☆ Driving behavior recognition via self-discovery learning
Autonomous driving systems require a deep understanding of human driving behaviors to achieve higher intelligence and safety.Despite advancements in deep learning, challenges such as long-tail distribution due to scarce samples and confusion from similar behaviors hinder effective driving behavior detection.Existing methods often fail to address sample confusion adequately, as datasets frequently contain ambiguous samples that obscure unique semantic information.
comment: 9 pages
☆ Strategic White Paper on AI Infrastructure for Particle, Nuclear, and Astroparticle Physics: Insights from JENA and EuCAIF
Artificial intelligence (AI) is transforming scientific research, with deep learning methods playing a central role in data analysis, simulations, and signal detection across particle, nuclear, and astroparticle physics. Within the JENA communities-ECFA, NuPECC, and APPEC-and as part of the EuCAIF initiative, AI integration is advancing steadily. However, broader adoption remains constrained by challenges such as limited computational resources, a lack of expertise, and difficulties in transitioning from research and development (R&D) to production. This white paper provides a strategic roadmap, informed by a community survey, to address these barriers. It outlines critical infrastructure requirements, prioritizes training initiatives, and proposes funding strategies to scale AI capabilities across fundamental physics over the next five years.
comment: 19 pages, 5 figures
☆ Inferring Event Descriptions from Time Series with Language Models
Time series data measure how environments change over time and drive decision-making in critical domains like finance and healthcare. When analyzing time series, we often seek to understand the underlying events occurring in the measured environment. For example, one might ask: What caused a sharp drop in the stock price? Events are often described with natural language, so we conduct the first study of whether Large Language Models (LLMs) can infer natural language events from time series. We curate a new benchmark featuring win probabilities collected from 4,200 basketball and American football games, featuring 1.7M timesteps with real value data and corresponding natural language events. Building on the recent wave of using LLMs on time series, we evaluate 16 LLMs and find that they demonstrate promising abilities to infer events from time series data. The open-weights DeepSeek-R1 32B model outperforms proprietary models like GPT-4o. Despite this impressive initial performance, we also find clear avenues to improve recent models, as we identify failures when altering the provided context, event sequence lengths, and evaluation strategy. (All resources needed to reproduce our work are available: https://github.com/BennyTMT/GAMETime)
comment: 17 pages, 9 Figures
☆ Variable Time-Step MPC for Agile Multi-Rotor UAV Interception of Dynamic Targets
Agile trajectory planning can improve the efficiency of multi-rotor Uncrewed Aerial Vehicles (UAVs) in scenarios with combined task-oriented and kinematic trajectory planning, such as monitoring spatio-temporal phenomena or intercepting dynamic targets. Agile planning using existing non-linear model predictive control methods is limited by the number of planning steps as it becomes increasingly computationally demanding. That reduces the prediction horizon length, leading to a decrease in solution quality. Besides, the fixed time-step length limits the utilization of the available UAV dynamics in the target neighborhood. In this paper, we propose to address these limitations by introducing variable time steps and coupling them with the prediction horizon length. A simplified point-mass motion primitive is used to leverage the differential flatness of quadrotor dynamics and the generation of feasible trajectories in the flat output space. Based on the presented evaluation results and experimentally validated deployment, the proposed method increases the solution quality by enabling planning for long flight segments but allowing tightly sampled maneuvering.
☆ Can LLMs Enable Verification in Mainstream Programming?
Although formal methods are capable of producing reliable software, they have seen minimal adoption in everyday programming. Automatic code generation using large language models is becoming increasingly widespread, but it rarely considers producing strong correctness guarantees. In this study, we explore the ability of LLMs to produce verified code in three verification languages (Dafny, Nagini, and Verus). To do so, we use manually curated datasets derived from the state-ofthe-art Python benchmark, HumanEval. We also assess what types of information are sufficient to achieve good-quality results.
☆ EIAD: Explainable Industrial Anomaly Detection Via Multi-Modal Large Language Models
Industrial Anomaly Detection (IAD) is critical to ensure product quality during manufacturing. Although existing zero-shot defect segmentation and detection methods have shown effectiveness, they cannot provide detailed descriptions of the defects. Furthermore, the application of large multi-modal models in IAD remains in its infancy, facing challenges in balancing question-answering (QA) performance and mask-based grounding capabilities, often owing to overfitting during the fine-tuning process. To address these challenges, we propose a novel approach that introduces a dedicated multi-modal defect localization module to decouple the dialog functionality from the core feature extraction. This decoupling is achieved through independent optimization objectives and tailored learning strategies. Additionally, we contribute to the first multi-modal industrial anomaly detection training dataset, named Defect Detection Question Answering (DDQA), encompassing a wide range of defect types and industrial scenarios. Unlike conventional datasets that rely on GPT-generated data, DDQA ensures authenticity and reliability and offers a robust foundation for model training. Experimental results demonstrate that our proposed method, Explainable Industrial Anomaly Detection Assistant (EIAD), achieves outstanding performance in defect detection and localization tasks. It not only significantly enhances accuracy but also improves interpretability. These advancements highlight the potential of EIAD for practical applications in industrial settings.
☆ Concat-ID: Towards Universal Identity-Preserving Video Synthesis
We present Concat-ID, a unified framework for identity-preserving video generation. Concat-ID employs Variational Autoencoders to extract image features, which are concatenated with video latents along the sequence dimension, leveraging solely 3D self-attention mechanisms without the need for additional modules. A novel cross-video pairing strategy and a multi-stage training regimen are introduced to balance identity consistency and facial editability while enhancing video naturalness. Extensive experiments demonstrate Concat-ID's superiority over existing methods in both single and multi-identity generation, as well as its seamless scalability to multi-subject scenarios, including virtual try-on and background-controllable generation. Concat-ID establishes a new benchmark for identity-preserving video synthesis, providing a versatile and scalable solution for a wide range of applications.
☆ Exploring Disparity-Accuracy Trade-offs in Face Recognition Systems: The Role of Datasets, Architectures, and Loss Functions AAAI
Automated Face Recognition Systems (FRSs), developed using deep learning models, are deployed worldwide for identity verification and facial attribute analysis. The performance of these models is determined by a complex interdependence among the model architecture, optimization/loss function and datasets. Although FRSs have surpassed human-level accuracy, they continue to be disparate against certain demographics. Due to the ubiquity of applications, it is extremely important to understand the impact of the three components -- model architecture, loss function and face image dataset on the accuracy-disparity trade-off to design better, unbiased platforms. In this work, we perform an in-depth analysis of three FRSs for the task of gender prediction, with various architectural modifications resulting in ten deep-learning models coupled with four loss functions and benchmark them on seven face datasets across 266 evaluation configurations. Our results show that all three components have an individual as well as a combined impact on both accuracy and disparity. We identify that datasets have an inherent property that causes them to perform similarly across models, independent of the choice of loss functions. Moreover, the choice of dataset determines the model's perceived bias -- the same model reports bias in opposite directions for three gender-balanced datasets of ``in-the-wild'' face images of popular individuals. Studying the facial embeddings shows that the models are unable to generalize a uniform definition of what constitutes a ``female face'' as opposed to a ``male face'', due to dataset diversity. We provide recommendations to model developers on using our study as a blueprint for model development and subsequent deployment.
comment: This work has been accepted for publication at AAAI ICWSM 2025
☆ CARE: A QLoRA-Fine Tuned Multi-Domain Chatbot With Fast Learning On Minimal Hardware
Large Language models have demonstrated excellent domain-specific question-answering capabilities when finetuned with a particular dataset of that specific domain. However, fine-tuning the models requires a significant amount of training time and a considerable amount of hardware. In this work, we propose CARE (Customer Assistance and Response Engine), a lightweight model made by fine-tuning Phi3.5-mini on very minimal hardware and data, designed to handle queries primarily across three domains: telecommunications support, medical support, and banking support. For telecommunications and banking, the chatbot addresses issues and problems faced by customers regularly in the above-mentioned domains. In the medical domain, CARE provides preliminary support by offering basic diagnoses and medical suggestions that a user might take before consulting a healthcare professional. Since CARE is built on Phi3.5-mini, it can be used even on mobile devices, increasing its usability. Our research also shows that CARE performs relatively well on various medical benchmarks, indicating that it can be used to make basic medical suggestions.
☆ Inference-Time Intervention in Large Language Models for Reliable Requirement Verification
Steering the behavior of Large Language Models (LLMs) remains a challenge, particularly in engineering applications where precision and reliability are critical. While fine-tuning and prompting methods can modify model behavior, they lack the dynamic and exact control necessary for engineering applications. Inference-time intervention techniques provide a promising alternative, allowing targeted adjustments to LLM outputs. In this work, we demonstrate how interventions enable fine-grained control for automating the usually time-intensive requirement verification process in Model-Based Systems Engineering (MBSE). Using two early-stage Capella SysML models of space missions with associated requirements, we apply the intervened LLMs to reason over a graph representation of the model to determine whether a requirement is fulfilled. Our method achieves robust and reliable outputs, significantly improving over both a baseline model and a fine-tuning approach. By identifying and modifying as few as one to three specialised attention heads, we can significantly change the model's behavior. When combined with self-consistency, this allows us to achieve perfect precision on our holdout test set.
☆ Frac-Connections: Fractional Extension of Hyper-Connections
Residual connections are central to modern deep learning architectures, enabling the training of very deep networks by mitigating gradient vanishing. Hyper-Connections recently generalized residual connections by introducing multiple connection strengths at different depths, thereby addressing the seesaw effect between gradient vanishing and representation collapse. However, Hyper-Connections increase memory access costs by expanding the width of hidden states. In this paper, we propose Frac-Connections, a novel approach that divides hidden states into multiple parts rather than expanding their width. Frac-Connections retain partial benefits of Hyper-Connections while reducing memory consumption. To validate their effectiveness, we conduct large-scale experiments on language tasks, with the largest being a 7B MoE model trained on up to 3T tokens, demonstrating that Frac-Connections significantly outperform residual connections.
☆ Operational Change Detection for Geographical Information: Overview and Challenges
Rapid evolution of territories due to climate change and human impact requires prompt and effective updates to geospatial databases maintained by the National Mapping Agency. This paper presents a comprehensive overview of change detection methods tailored for the operational updating of large-scale geographic databases. This review first outlines the fundamental definition of change, emphasizing its multifaceted nature, from temporal to semantic characterization. It categorizes automatic change detection methods into four main families: rule-based, statistical, machine learning, and simulation methods. The strengths, limitations, and applicability of every family are discussed in the context of various input data. Then, key applications for National Mapping Agencies are identified, particularly the optimization of geospatial database updating, change-based phenomena, and dynamics monitoring. Finally, the paper highlights the current challenges for leveraging change detection such as the variability of change definition, the missing of relevant large-scale datasets, the diversity of input data, the unstudied no-change detection, the human in the loop integration and the operational constraints. The discussion underscores the necessity for ongoing innovation in change detection techniques to address the future needs of geographic information systems for national mapping agencies.
comment: Preprint under review
☆ Reliable uncertainty quantification for 2D/3D anatomical landmark localization using multi-output conformal prediction
Automatic anatomical landmark localization in medical imaging requires not just accurate predictions but reliable uncertainty quantification for effective clinical decision support. Current uncertainty quantification approaches often fall short, particularly when combined with normality assumptions, systematically underestimating total predictive uncertainty. This paper introduces conformal prediction as a framework for reliable uncertainty quantification in anatomical landmark localization, addressing a critical gap in automatic landmark localization. We present two novel approaches guaranteeing finite-sample validity for multi-output prediction: Multi-output Regression-as-Classification Conformal Prediction (M-R2CCP) and its variant Multi-output Regression to Classification Conformal Prediction set to Region (M-R2C2R). Unlike conventional methods that produce axis-aligned hyperrectangular or ellipsoidal regions, our approaches generate flexible, non-convex prediction regions that better capture the underlying uncertainty structure of landmark predictions. Through extensive empirical evaluation across multiple 2D and 3D datasets, we demonstrate that our methods consistently outperform existing multi-output conformal prediction approaches in both validity and efficiency. This work represents a significant advancement in reliable uncertainty estimation for anatomical landmark localization, providing clinicians with trustworthy confidence measures for their diagnoses. While developed for medical imaging, these methods show promise for broader applications in multi-output regression problems.
comment: 33 pages, 10 figures
☆ Sensory-driven microinterventions for improved health and wellbeing
The five senses are gateways to our wellbeing and their decline is considered a significant public health challenge which is linked to multiple conditions that contribute significantly to morbidity and mortality. Modern technology, with its ubiquitous nature and fast data processing has the ability to leverage the power of the senses to transform our approach to day to day healthcare, with positive effects on our quality of life. Here, we introduce the idea of sensory-driven microinterventions for preventative, personalised healthcare. Microinterventions are targeted, timely, minimally invasive strategies that seamlessly integrate into our daily life. This idea harnesses human's sensory capabilities, leverages technological advances in sensory stimulation and real-time processing ability for sensing the senses. The collection of sensory data from our continuous interaction with technology - for example the tone of voice, gait movement, smart home behaviour - opens up a shift towards personalised technology-enabled, sensory-focused healthcare interventions, coupled with the potential of early detection and timely treatment of sensory deficits that can signal critical health insights, especially for neurodegenerative diseases such as Parkinson's disease.
☆ Toward Large-Scale Distributed Quantum Long Short-Term Memory with Modular Quantum Computers
In this work, we introduce a Distributed Quantum Long Short-Term Memory (QLSTM) framework that leverages modular quantum computing to address scalability challenges on Noisy Intermediate-Scale Quantum (NISQ) devices. By embedding variational quantum circuits into LSTM cells, the QLSTM captures long-range temporal dependencies, while a distributed architecture partitions the underlying Variational Quantum Circuits (VQCs) into smaller, manageable subcircuits that can be executed on a network of quantum processing units. We assess the proposed framework using nontrivial benchmark problems such as damped harmonic oscillators and Nonlinear Autoregressive Moving Average sequences. Our results demonstrate that the distributed QLSTM achieves stable convergence and improved training dynamics compared to classical approaches. This work underscores the potential of modular, distributed quantum computing architectures for large-scale sequence modelling, providing a foundation for the future integration of hybrid quantum-classical solutions into advanced Quantum High-performance computing (HPC) ecosystems.
☆ Theoretical Foundation of Flow-Based Time Series Generation: Provable Approximation, Generalization, and Efficiency
Recent studies suggest utilizing generative models instead of traditional auto-regressive algorithms for time series forecasting (TSF) tasks. These non-auto-regressive approaches involving different generative methods, including GAN, Diffusion, and Flow Matching for time series, have empirically demonstrated high-quality generation capability and accuracy. However, we still lack an appropriate understanding of how it processes approximation and generalization. This paper presents the first theoretical framework from the perspective of flow-based generative models to relieve the knowledge of limitations. In particular, we provide our insights with strict guarantees from three perspectives: $\textbf{Approximation}$, $\textbf{Generalization}$ and $\textbf{Efficiency}$. In detail, our analysis achieves the contributions as follows: $\bullet$ By assuming a general data model, the fitting of the flow-based generative models is confirmed to converge to arbitrary error under the universal approximation of Diffusion Transformer (DiT). $\bullet$ Introducing a polynomial-based regularization for flow matching, the generalization error thus be bounded since the generalization of polynomial approximation. $\bullet$ The sampling for generation is considered as an optimization process, we demonstrate its fast convergence with updating standard first-order gradient descent of some objective.
comment: 33 pages
☆ Fast Autoregressive Video Generation with Diagonal Decoding
Autoregressive Transformer models have demonstrated impressive performance in video generation, but their sequential token-by-token decoding process poses a major bottleneck, particularly for long videos represented by tens of thousands of tokens. In this paper, we propose Diagonal Decoding (DiagD), a training-free inference acceleration algorithm for autoregressively pre-trained models that exploits spatial and temporal correlations in videos. Our method generates tokens along diagonal paths in the spatial-temporal token grid, enabling parallel decoding within each frame as well as partially overlapping across consecutive frames. The proposed algorithm is versatile and adaptive to various generative models and tasks, while providing flexible control over the trade-off between inference speed and visual quality. Furthermore, we propose a cost-effective finetuning strategy that aligns the attention patterns of the model with our decoding order, further mitigating the training-inference gap on small-scale models. Experiments on multiple autoregressive video generation models and datasets demonstrate that DiagD achieves up to $10\times$ speedup compared to naive sequential decoding, while maintaining comparable visual fidelity.
☆ ON-Traffic: An Operator Learning Framework for Online Traffic Flow Estimation and Uncertainty Quantification from Lagrangian Sensors
Accurate traffic flow estimation and prediction are critical for the efficient management of transportation systems, particularly under increasing urbanization. Traditional methods relying on static sensors often suffer from limited spatial coverage, while probe vehicles provide richer, albeit sparse and irregular data. This work introduces ON-Traffic, a novel deep operator Network and a receding horizon learning-based framework tailored for online estimation of spatio-temporal traffic state along with quantified uncertainty by using measurements from moving probe vehicles and downstream boundary inputs. Our framework is evaluated in both numerical and simulation datasets, showcasing its ability to handle irregular, sparse input data, adapt to time-shifted scenarios, and provide well-calibrated uncertainty estimates. The results demonstrate that the model captures complex traffic phenomena, including shockwaves and congestion propagation, while maintaining robustness to noise and sensor dropout. These advancements present a significant step toward online, adaptive traffic management systems.
☆ Beyond holography: the entropic quantum gravity foundations of image processing
Recently, thanks to the development of artificial intelligence (AI) there is increasing scientific attention to establishing the connections between theoretical physics and AI. Traditionally, these connections have been focusing mostly on the relation between string theory and image processing and involve important theoretical paradigms such as holography. Recently G. Bianconi has proposed the entropic quantum gravity approach that proposes an action for gravity given by the quantum relative entropy between the metrics associated to a manifold. Here it is demonstrated that the famous Perona-Malik algorithm for image processing is the gradient flow of the entropic quantum gravity action. These results provide the geometrical and information theory foundations for the Perona-Malik algorithm and open new avenues for establishing fundamental relations between brain research, machine learning and entropic quantum gravity.
comment: (7 pages, 1 figure)
☆ MP-GUI: Modality Perception with MLLMs for GUI Understanding CVPR 2025
Graphical user interface (GUI) has become integral to modern society, making it crucial to be understood for human-centric systems. However, unlike natural images or documents, GUIs comprise artificially designed graphical elements arranged to convey specific semantic meanings. Current multi-modal large language models (MLLMs) already proficient in processing graphical and textual components suffer from hurdles in GUI understanding due to the lack of explicit spatial structure modeling. Moreover, obtaining high-quality spatial structure data is challenging due to privacy issues and noisy environments. To address these challenges, we present MP-GUI, a specially designed MLLM for GUI understanding. MP-GUI features three precisely specialized perceivers to extract graphical, textual, and spatial modalities from the screen as GUI-tailored visual clues, with spatial structure refinement strategy and adaptively combined via a fusion gate to meet the specific preferences of different GUI understanding tasks. To cope with the scarcity of training data, we also introduce a pipeline for automatically data collecting. Extensive experiments demonstrate that MP-GUI achieves impressive results on various GUI understanding tasks with limited data.
comment: Paper accepted to CVPR 2025
☆ Boosting Semi-Supervised Medical Image Segmentation via Masked Image Consistency and Discrepancy Learning
Semi-supervised learning is of great significance in medical image segmentation by exploiting unlabeled data. Among its strategies, the co-training framework is prominent. However, previous co-training studies predominantly concentrate on network initialization variances and pseudo-label generation, while overlooking the equilibrium between information interchange and model diversity preservation. In this paper, we propose the Masked Image Consistency and Discrepancy Learning (MICD) framework with three key modules. The Masked Cross Pseudo Consistency (MCPC) module enriches context perception and small sample learning via pseudo-labeling across masked-input branches. The Cross Feature Consistency (CFC) module fortifies information exchange and model robustness by ensuring decoder feature consistency. The Cross Model Discrepancy (CMD) module utilizes EMA teacher networks to oversee outputs and preserve branch diversity. Together, these modules address existing limitations by focusing on fine-grained local information and maintaining diversity in a heterogeneous framework. Experiments on two public medical image datasets, AMOS and Synapse, demonstrate that our approach outperforms state-of-the-art methods.
☆ MeshFleet: Filtered and Annotated 3D Vehicle Dataset for Domain Specific Generative Modeling
Generative models have recently made remarkable progress in the field of 3D objects. However, their practical application in fields like engineering remains limited since they fail to deliver the accuracy, quality, and controllability needed for domain-specific tasks. Fine-tuning large generative models is a promising perspective for making these models available in these fields. Creating high-quality, domain-specific 3D datasets is crucial for fine-tuning large generative models, yet the data filtering and annotation process remains a significant bottleneck. We present MeshFleet, a filtered and annotated 3D vehicle dataset extracted from Objaverse-XL, the most extensive publicly available collection of 3D objects. Our approach proposes a pipeline for automated data filtering based on a quality classifier. This classifier is trained on a manually labeled subset of Objaverse, incorporating DINOv2 and SigLIP embeddings, refined through caption-based analysis and uncertainty estimation. We demonstrate the efficacy of our filtering method through a comparative analysis against caption and image aesthetic score-based techniques and fine-tuning experiments with SV3D, highlighting the importance of targeted data selection for domain-specific 3D generative modeling.
☆ BI-RADS prediction of mammographic masses using uncertainty information extracted from a Bayesian Deep Learning model
The BI_RADS score is a probabilistic reporting tool used by radiologists to express the level of uncertainty in predicting breast cancer based on some morphological features in mammography images. There is a significant variability in describing masses which sometimes leads to BI_RADS misclassification. Using a BI_RADS prediction system is required to support the final radiologist decisions. In this study, the uncertainty information extracted by a Bayesian deep learning model is utilized to predict the BI_RADS score. The investigation results based on the pathology information demonstrate that the f1-scores of the predictions of the radiologist are 42.86%, 48.33% and 48.28%, meanwhile, the f1-scores of the model performance are 73.33%, 59.60% and 59.26% in the BI_RADS 2, 3 and 5 dataset samples, respectively. Also, the model can distinguish malignant from benign samples in the BI_RADS 0 category of the used dataset with an accuracy of 75.86% and correctly identify all malignant samples as BI_RADS 5. The Grad-CAM visualization shows the model pays attention to the morphological features of the lesions. Therefore, this study shows the uncertainty-aware Bayesian Deep Learning model can report his uncertainty about the malignancy of a lesion based on morphological features, like a radiologist.
GraphTEN: Graph Enhanced Texture Encoding Network
Texture recognition is a fundamental problem in computer vision and pattern recognition. Recent progress leverages feature aggregation into discriminative descriptions based on convolutional neural networks (CNNs). However, modeling non-local context relations through visual primitives remains challenging due to the variability and randomness of texture primitives in spatial distributions. In this paper, we propose a graph-enhanced texture encoding network (GraphTEN) designed to capture both local and global features of texture primitives. GraphTEN models global associations through fully connected graphs and captures cross-scale dependencies of texture primitives via bipartite graphs. Additionally, we introduce a patch encoding module that utilizes a codebook to achieve an orderless representation of texture by encoding multi-scale patch features into a unified feature space. The proposed GraphTEN achieves superior performance compared to state-of-the-art methods across five publicly available datasets.
comment: 6 pages, 7 figures, conference paper
☆ Empowering Smaller Models: Tuning LLaMA and Gemma with Chain-of-Thought for Ukrainian Exam Tasks
Leading large language models have demonstrated impressive capabilities in reasoning-intensive tasks, such as standardized educational testing. However, they often require extensive training in low-resource settings with inaccessible infrastructure. Small or compact models, though more efficient, frequently lack sufficient support for underrepresented languages, leaving a performance gap in critical domains. This work explores the potential of parameter-efficient fine-tuning of compact open-weight language models to handle reasoning-intensive tasks in the underrepresented Ukrainian language, building on the findings of the ZNO-Eval benchmark. Parameter-efficient fine-tuning of LLaMA 3.1 (8 billion parameters), LLaMA 3.2 (3 billion parameters), and Gemma 2 (9 billion parameters) models on chain-of-thought solutions resulted in a modest test score improvement of up to 17.4% on complex matching tasks and 1.6% overall compared to tuning on answer letters alone, offering enhanced interpretability and robustness. In addition, the proposed tuning method with joint task topic and step-by-step solution generation outperforms standard chain-of-thought tuning in matching tasks and provides a 5.4% gain over the best LLaMA 3.2 model due to guiding the model to recall and apply domain-relevant information. Contrasting obtained results with zero-shot evaluations of leading open-weight and proprietary models such as Qwen, DeepSeek R1, OpenAI o1 and o3, Gemini, and Claude, highlight that fine-tuning LLaMA and Gemma models with 2,032 step-by-step solutions and 20 to 50 million trainable parameters on a single A100 GPU lets them outperform GPT-4o mini, Mistral Large, and larger open-weight models. This research also evaluates how merging the quantized adapter with the base model influences the generation quality. Source code and tuned models are available at https://github.com/NLPForUA/ZNO.
comment: 12 pages, 6 tables, 2 figures
☆ DefectFill: Realistic Defect Generation with Inpainting Diffusion Model for Visual Inspection CVPR 2025
Developing effective visual inspection models remains challenging due to the scarcity of defect data. While image generation models have been used to synthesize defect images, producing highly realistic defects remains difficult. We propose DefectFill, a novel method for realistic defect generation that requires only a few reference defect images. It leverages a fine-tuned inpainting diffusion model, optimized with our custom loss functions incorporating defect, object, and attention terms. It enables precise capture of detailed, localized defect features and their seamless integration into defect-free objects. Additionally, our Low-Fidelity Selection method further enhances the defect sample quality. Experiments show that DefectFill generates high-quality defect images, enabling visual inspection models to achieve state-of-the-art performance on the MVTec AD dataset.
comment: Accepted by CVPR 2025
☆ FrustumFusionNets: A Three-Dimensional Object Detection Network Based on Tractor Road Scene
To address the issues of the existing frustum-based methods' underutilization of image information in road three-dimensional object detection as well as the lack of research on agricultural scenes, we constructed an object detection dataset using an 80-line Light Detection And Ranging (LiDAR) and a camera in a complex tractor road scene and proposed a new network called FrustumFusionNets (FFNets). Initially, we utilize the results of image-based two-dimensional object detection to narrow down the search region in the three-dimensional space of the point cloud. Next, we introduce a Gaussian mask to enhance the point cloud information. Then, we extract the features from the frustum point cloud and the crop image using the point cloud feature extraction pipeline and the image feature extraction pipeline, respectively. Finally, we concatenate and fuse the data features from both modalities to achieve three-dimensional object detection. Experiments demonstrate that on the constructed test set of tractor road data, the FrustumFusionNetv2 achieves 82.28% and 95.68% accuracy in the three-dimensional object detection of the two main road objects, cars and people, respectively. This performance is 1.83% and 2.33% better than the original model. It offers a hybrid fusion-based multi-object, high-precision, real-time three-dimensional object detection technique for unmanned agricultural machines in tractor road scenarios. On the Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI) Benchmark Suite validation set, the FrustumFusionNetv2 also demonstrates significant superiority in detecting road pedestrian objects compared with other frustum-based three-dimensional object detection methods.
☆ ChatBEV: A Visual Language Model that Understands BEV Maps
Traffic scene understanding is essential for intelligent transportation systems and autonomous driving, ensuring safe and efficient vehicle operation. While recent advancements in VLMs have shown promise for holistic scene understanding, the application of VLMs to traffic scenarios, particularly using BEV maps, remains under explored. Existing methods often suffer from limited task design and narrow data amount, hindering comprehensive scene understanding. To address these challenges, we introduce ChatBEV-QA, a novel BEV VQA benchmark contains over 137k questions, designed to encompass a wide range of scene understanding tasks, including global scene understanding, vehicle-lane interactions, and vehicle-vehicle interactions. This benchmark is constructed using an novel data collection pipeline that generates scalable and informative VQA data for BEV maps. We further fine-tune a specialized vision-language model ChatBEV, enabling it to interpret diverse question prompts and extract relevant context-aware information from BEV maps. Additionally, we propose a language-driven traffic scene generation pipeline, where ChatBEV facilitates map understanding and text-aligned navigation guidance, significantly enhancing the generation of realistic and consistent traffic scenarios. The dataset, code and the fine-tuned model will be released.
☆ COLSON: Controllable Learning-Based Social Navigation via Diffusion-Based Reinforcement Learning IROS 2025
Mobile robot navigation in dynamic environments with pedestrian traffic is a key challenge in the development of autonomous mobile service robots. Recently, deep reinforcement learning-based methods have been actively studied and have outperformed traditional rule-based approaches owing to their optimization capabilities. Among these, methods that assume a continuous action space typically rely on a Gaussian distribution assumption, which limits the flexibility of generated actions. Meanwhile, the application of diffusion models to reinforcement learning has advanced, allowing for more flexible action distributions compared with Gaussian distribution-based approaches. In this study, we applied a diffusion-based reinforcement learning approach to social navigation and validated its effectiveness. Furthermore, by leveraging the characteristics of diffusion models, we propose an extension that enables post-training action smoothing and adaptation to static obstacle scenarios not considered during the training steps.
comment: This work has been submitted to IROS 2025 for possible publication
☆ ConSCompF: Consistency-focused Similarity Comparison Framework for Generative Large Language Models
Large language models (LLMs) have been one of the most important discoveries in machine learning in recent years. LLM-based artificial intelligence (AI) assistants, such as ChatGPT, have consistently attracted the attention from researchers, investors, and the general public, driving the rapid growth of this industry. With the frequent introduction of new LLMs to the market, it becomes increasingly difficult to differentiate between them, creating a demand for new LLM comparison methods. In this research, the Consistency-focused Similarity Comparison Framework (ConSCompF) for generative large language models is proposed. It compares texts generated by two LLMs and produces a similarity score, indicating the overall degree of similarity between their responses. The main advantage of this framework is that it can operate on a small number of unlabeled data, such as chatbot instruction prompts, and does not require LLM developers to disclose any information about their product. To evaluate the efficacy of ConSCompF, two experiments aimed at identifying similarities between multiple LLMs are conducted. Additionally, these experiments examine the correlation between the similarity scores generated by ConSCompF and the differences in the outputs produced by other benchmarking techniques, such as ROUGE-L. Finally, a series of few-shot LLM comparison experiments is conducted to evaluate the performance of ConSCompF in a few-shot LLM comparison scenario. The proposed framework can be used for calculating similarity matrices of multiple LLMs, which can be effectively visualized using principal component analysis (PCA). The ConSCompF output may provide useful insights into data that might have been used during LLM training and help detect possible investment fraud attempts.
☆ Learning Accurate Models on Incomplete Data with Minimal Imputation
Missing data often exists in real-world datasets, requiring significant time and effort for imputation to learn accurate machine learning (ML) models. In this paper, we demonstrate that imputing all missing values is not always necessary to achieve an accurate ML model. We introduce the concept of minimal data imputation, which ensures accurate ML models trained over the imputed dataset. Implementing minimal imputation guarantees both minimal imputation effort and optimal ML models. We propose algorithms to find exact and approximate minimal imputation for various ML models. Our extensive experiments indicate that our proposed algorithms significantly reduce the time and effort required for data imputation.
☆ Learning Bimanual Manipulation via Action Chunking and Inter-Arm Coordination with Transformers
Robots that can operate autonomously in a human living environment are necessary to have the ability to handle various tasks flexibly. One crucial element is coordinated bimanual movements that enable functions that are difficult to perform with one hand alone. In recent years, learning-based models that focus on the possibilities of bimanual movements have been proposed. However, the high degree of freedom of the robot makes it challenging to reason about control, and the left and right robot arms need to adjust their actions depending on the situation, making it difficult to realize more dexterous tasks. To address the issue, we focus on coordination and efficiency between both arms, particularly for synchronized actions. Therefore, we propose a novel imitation learning architecture that predicts cooperative actions. We differentiate the architecture for both arms and add an intermediate encoder layer, Inter-Arm Coordinated transformer Encoder (IACE), that facilitates synchronization and temporal alignment to ensure smooth and coordinated actions. To verify the effectiveness of our architectures, we perform distinctive bimanual tasks. The experimental results showed that our model demonstrated a high success rate for comparison and suggested a suitable architecture for the policy learning of bimanual manipulation.
comment: 6 pages, 5 figures, 1 table
☆ Unlocking the Potential of Unlabeled Data in Semi-Supervised Domain Generalization CVPR 2025
We address the problem of semi-supervised domain generalization (SSDG), where the distributions of train and test data differ, and only a small amount of labeled data along with a larger amount of unlabeled data are available during training. Existing SSDG methods that leverage only the unlabeled samples for which the model's predictions are highly confident (confident-unlabeled samples), limit the full utilization of the available unlabeled data. To the best of our knowledge, we are the first to explore a method for incorporating the unconfident-unlabeled samples that were previously disregarded in SSDG setting. To this end, we propose UPCSC to utilize these unconfident-unlabeled samples in SSDG that consists of two modules: 1) Unlabeled Proxy-based Contrastive learning (UPC) module, treating unconfident-unlabeled samples as additional negative pairs and 2) Surrogate Class learning (SC) module, generating positive pairs for unconfident-unlabeled samples using their confusing class set. These modules are plug-and-play and do not require any domain labels, which can be easily integrated into existing approaches. Experiments on four widely used SSDG benchmarks demonstrate that our approach consistently improves performance when attached to baselines and outperforms competing plug-and-play methods. We also analyze the role of our method in SSDG, showing that it enhances class-level discriminability and mitigates domain gaps. The code is available at https://github.com/dongkwani/UPCSC.
comment: CVPR 2025
☆ KANITE: Kolmogorov-Arnold Networks for ITE estimation
We introduce KANITE, a framework leveraging Kolmogorov-Arnold Networks (KANs) for Individual Treatment Effect (ITE) estimation under multiple treatments setting in causal inference. By utilizing KAN's unique abilities to learn univariate activation functions as opposed to learning linear weights by Multi-Layer Perceptrons (MLPs), we improve the estimates of ITEs. The KANITE framework comprises two key architectures: 1.Integral Probability Metric (IPM) architecture: This employs an IPM loss in a specialized manner to effectively align towards ITE estimation across multiple treatments. 2. Entropy Balancing (EB) architecture: This uses weights for samples that are learned by optimizing entropy subject to balancing the covariates across treatment groups. Extensive evaluations on benchmark datasets demonstrate that KANITE outperforms state-of-the-art algorithms in both $\epsilon_{\text{PEHE}}$ and $\epsilon_{\text{ATE}}$ metrics. Our experiments highlight the advantages of KANITE in achieving improved causal estimates, emphasizing the potential of KANs to advance causal inference methodologies across diverse application areas.
comment: 16 pages, 4 figures
☆ HSOD-BIT-V2: A New Challenging Benchmarkfor Hyperspectral Salient Object Detection AAAI 2025
Salient Object Detection (SOD) is crucial in computer vision, yet RGB-based methods face limitations in challenging scenes, such as small objects and similar color features. Hyperspectral images provide a promising solution for more accurate Hyperspectral Salient Object Detection (HSOD) by abundant spectral information, while HSOD methods are hindered by the lack of extensive and available datasets. In this context, we introduce HSOD-BIT-V2, the largest and most challenging HSOD benchmark dataset to date. Five distinct challenges focusing on small objects and foreground-background similarity are designed to emphasize spectral advantages and real-world complexity. To tackle these challenges, we propose Hyper-HRNet, a high-resolution HSOD network. Hyper-HRNet effectively extracts, integrates, and preserves effective spectral information while reducing dimensionality by capturing the self-similar spectral features. Additionally, it conveys fine details and precisely locates object contours by incorporating comprehensive global information and detailed object saliency representations. Experimental analysis demonstrates that Hyper-HRNet outperforms existing models, especially in challenging scenarios.
comment: AAAI 2025
☆ TGBFormer: Transformer-GraphFormer Blender Network for Video Object Detection AAAI2025
Video object detection has made significant progress in recent years thanks to convolutional neural networks (CNNs) and vision transformers (ViTs). Typically, CNNs excel at capturing local features but struggle to model global representations. Conversely, ViTs are adept at capturing long-range global features but face challenges in representing local feature details. Off-the-shelf video object detection methods solely rely on CNNs or ViTs to conduct feature aggregation, which hampers their capability to simultaneously leverage global and local information, thereby resulting in limited detection performance. In this paper, we propose a Transformer-GraphFormer Blender Network (TGBFormer) for video object detection, with three key technical improvements to fully exploit the advantages of transformers and graph convolutional networks while compensating for their limitations. First, we develop a spatial-temporal transformer module to aggregate global contextual information, constituting global representations with long-range feature dependencies. Second, we introduce a spatial-temporal GraphFormer module that utilizes local spatial and temporal relationships to aggregate features, generating new local representations that are complementary to the transformer outputs. Third, we design a global-local feature blender module to adaptively couple transformer-based global representations and GraphFormer-based local representations. Extensive experiments demonstrate that our TGBFormer establishes new state-of-the-art results on the ImageNet VID dataset. Particularly, our TGBFormer achieves 86.5% mAP while running at around 41.0 FPS on a single Tesla A100 GPU.
comment: Accepted by AAAI2025
☆ MoK-RAG: Mixture of Knowledge Paths Enhanced Retrieval-Augmented Generation for Embodied AI Environments
While human cognition inherently retrieves information from diverse and specialized knowledge sources during decision-making processes, current Retrieval-Augmented Generation (RAG) systems typically operate through single-source knowledge retrieval, leading to a cognitive-algorithmic discrepancy. To bridge this gap, we introduce MoK-RAG, a novel multi-source RAG framework that implements a mixture of knowledge paths enhanced retrieval mechanism through functional partitioning of a large language model (LLM) corpus into distinct sections, enabling retrieval from multiple specialized knowledge paths. Applied to the generation of 3D simulated environments, our proposed MoK-RAG3D enhances this paradigm by partitioning 3D assets into distinct sections and organizing them based on a hierarchical knowledge tree structure. Different from previous methods that only use manual evaluation, we pioneered the introduction of automated evaluation methods for 3D scenes. Both automatic and human evaluations in our experiments demonstrate that MoK-RAG3D can assist Embodied AI agents in generating diverse scenes.
☆ Bridging Social Psychology and LLM Reasoning: Conflict-Aware Meta-Review Generation via Cognitive Alignment
The rapid growth of scholarly submissions has overwhelmed traditional peer review systems, driving the need for intelligent automation to preserve scientific rigor. While large language models (LLMs) show promise in automating manuscript critiques, their ability to synthesize high-stakes meta-reviews, which require conflict-aware reasoning and consensus derivation, remains underdeveloped. Existing methods fail to effectively handle conflicting viewpoints within differing opinions, and often introduce additional cognitive biases, such as anchoring effects and conformity bias.To overcome these limitations, we propose the Cognitive Alignment Framework (CAF), a dual-process architecture that transforms LLMs into adaptive scientific arbitrators. By operationalizing Kahneman's dual-process theory, CAF introduces a three-step cognitive pipeline: review initialization, incremental integration, and cognitive alignment.Empirical validation shows that CAF outperforms existing LLM-based methods, with sentiment consistency gains reaching up to 19.47\% and content consistency improving by as much as 12.95\%.
comment: 23 pages
☆ Out-of-Distribution Generalization in Time Series: A Survey
Time series frequently manifest distribution shifts, diverse latent features, and non-stationary learning dynamics, particularly in open and evolving environments. These characteristics pose significant challenges for out-of-distribution (OOD) generalization. While substantial progress has been made, a systematic synthesis of advancements remains lacking. To address this gap, we present the first comprehensive review of OOD generalization methodologies for time series, organized to delineate the field's evolutionary trajectory and contemporary research landscape. We organize our analysis across three foundational dimensions: data distribution, representation learning, and OOD evaluation. For each dimension, we present several popular algorithms in detail. Furthermore, we highlight key application scenarios, emphasizing their real-world impact. Finally, we identify persistent challenges and propose future research directions. A detailed summary of the methods reviewed for the generalization of OOD in time series can be accessed at https://tsood-generalization.com.
comment: 20 pages, 8 figures, 5 tables. Work in Progress
☆ RAD: Retrieval-Augmented Decision-Making of Meta-Actions with Vision-Language Models in Autonomous Driving
Accurately understanding and deciding high-level meta-actions is essential for ensuring reliable and safe autonomous driving systems. While vision-language models (VLMs) have shown significant potential in various autonomous driving tasks, they often suffer from limitations such as inadequate spatial perception and hallucination, reducing their effectiveness in complex autonomous driving scenarios. To address these challenges, we propose a retrieval-augmented decision-making (RAD) framework, a novel architecture designed to enhance VLMs' capabilities to reliably generate meta-actions in autonomous driving scenes. RAD leverages a retrieval-augmented generation (RAG) pipeline to dynamically improve decision accuracy through a three-stage process consisting of the embedding flow, retrieving flow, and generating flow. Additionally, we fine-tune VLMs on a specifically curated dataset derived from the NuScenes dataset to enhance their spatial perception and bird's-eye view image comprehension capabilities. Extensive experimental evaluations on the curated NuScenes-based dataset demonstrate that RAD outperforms baseline methods across key evaluation metrics, including match accuracy, and F1 score, and self-defined overall score, highlighting its effectiveness in improving meta-action decision-making for autonomous driving tasks.
☆ MDTeamGPT: A Self-Evolving LLM-based Multi-Agent Framework for Multi-Disciplinary Team Medical Consultation
Large Language Models (LLMs) have made significant progress in various fields. However, challenges remain in Multi-Disciplinary Team (MDT) medical consultations. Current research enhances reasoning through role assignment, task decomposition, and accumulation of medical experience. Multi-role collaboration in MDT consultations often results in excessively long dialogue histories. This increases the model's cognitive burden and degrades both efficiency and accuracy. Some methods only store treatment histories. They do not extract effective experience or reflect on errors. This limits knowledge generalization and system evolution. We propose a multi-agent MDT medical consultation framework based on LLMs to address these issues. Our framework uses consensus aggregation and a residual discussion structure for multi-round consultations. It also employs a Correct Answer Knowledge Base (CorrectKB) and a Chain-of-Thought Knowledge Base (ChainKB) to accumulate consultation experience. These mechanisms enable the framework to evolve and continually improve diagnosis rationality and accuracy. Experimental results on the MedQA and PubMedQA datasets demonstrate that our framework achieves accuracies of 90.1% and 83.9%, respectively, and that the constructed knowledge bases generalize effectively across test sets from both datasets.
comment: 24 pages
☆ Disentangling Fine-Tuning from Pre-Training in Visual Captioning with Hybrid Markov Logic
Multimodal systems have highly complex processing pipelines and are pretrained over large datasets before being fine-tuned for specific tasks such as visual captioning. However, it becomes hard to disentangle what the model learns during the fine-tuning process from what it already knows due to its pretraining. In this work, we learn a probabilistic model using Hybrid Markov Logic Networks (HMLNs) over the training examples by relating symbolic knowledge (extracted from the caption) with visual features (extracted from the image). For a generated caption, we quantify the influence of training examples based on the HMLN distribution using probabilistic inference. We evaluate two types of inference procedures on the MSCOCO dataset for different types of captioning models. Our results show that for BLIP2 (a model that uses a LLM), the fine-tuning may have smaller influence on the knowledge the model has acquired since it may have more general knowledge to perform visual captioning as compared to models that do not use a LLM
comment: 2024 IEEE International Conference on Big Data (BigData), 10 pages
☆ Spotting Persuasion: A Low-cost Model for Persuasion Detection in Political Ads on Social Media
In the realm of political advertising, persuasion operates as a pivotal element within the broader framework of propaganda, exerting profound influences on public opinion and electoral outcomes. In this paper, we (1) introduce a lightweight model for persuasive text detection that achieves state-of-the-art performance in Subtask 3 of SemEval 2023 Task 3, while significantly reducing the computational resource requirements; and (2) leverage the proposed model to gain insights into political campaigning strategies on social media platforms by applying it to a real-world dataset we curated, consisting of Facebook political ads from the 2022 Australian Federal election campaign. Our study shows how subtleties can be found in persuasive political advertisements and presents a pragmatic approach to detect and analyze such strategies with limited resources, enhancing transparency in social media political campaigns.
☆ WebNav: An Intelligent Agent for Voice-Controlled Web Navigation
The increasing reliance on web interfaces presents many challenges for visually impaired users, showcasing the need for more advanced assistive technologies. This paper introduces WebNav, a voice-controlled web navigation agent that leverages a ReAct-inspired architecture and generative AI to provide this framework. WebNav comprises of a hierarchical structure: a Digital Navigation Module (DIGNAV) for high-level strategic planning, an Assistant Module for translating abstract commands into executable actions, and an Inference Module for low-level interaction. A key component is a dynamic labeling engine, implemented as a browser extension, that generates real-time labels for interactive elements, creating mapping between voice commands and Document Object Model (DOM) components. Preliminary evaluations show that WebNav outperforms traditional screen readers in response time and task completion accuracy for the visually impaired. Future work will focus on extensive user evaluations, benchmark development, and refining the agent's adaptive capabilities for real-world deployment.
☆ Counterfactual experience augmented off-policy reinforcement learning
Reinforcement learning control algorithms face significant challenges due to out-of-distribution and inefficient exploration problems. While model-based reinforcement learning enhances the agent's reasoning and planning capabilities by constructing virtual environments, training such virtual environments can be very complex. In order to build an efficient inference model and enhance the representativeness of learning data, we propose the Counterfactual Experience Augmentation (CEA) algorithm. CEA leverages variational autoencoders to model the dynamic patterns of state transitions and introduces randomness to model non-stationarity. This approach focuses on expanding the learning data in the experience pool through counterfactual inference and performs exceptionally well in environments that follow the bisimulation assumption. Environments with bisimulation properties are usually represented by discrete observation and action spaces, we propose a sampling method based on maximum kernel density estimation entropy to extend CEA to various environments. By providing reward signals for counterfactual state transitions based on real information, CEA constructs a complete counterfactual experience to alleviate the out-of-distribution problem of the learning data, and outperforms general SOTA algorithms in environments with difference properties. Finally, we discuss the similarities, differences and properties of generated counterfactual experiences and real experiences. The code is available at https://github.com/Aegis1863/CEA.
comment: Accepted by Neurocomputing, https://doi.org/10.1016/j.neucom.2025.130017
☆ SALAD: Skeleton-aware Latent Diffusion for Text-driven Motion Generation and Editing CVPR 2025
Text-driven motion generation has advanced significantly with the rise of denoising diffusion models. However, previous methods often oversimplify representations for the skeletal joints, temporal frames, and textual words, limiting their ability to fully capture the information within each modality and their interactions. Moreover, when using pre-trained models for downstream tasks, such as editing, they typically require additional efforts, including manual interventions, optimization, or fine-tuning. In this paper, we introduce a skeleton-aware latent diffusion (SALAD), a model that explicitly captures the intricate inter-relationships between joints, frames, and words. Furthermore, by leveraging cross-attention maps produced during the generation process, we enable attention-based zero-shot text-driven motion editing using a pre-trained SALAD model, requiring no additional user input beyond text prompts. Our approach significantly outperforms previous methods in terms of text-motion alignment without compromising generation quality, and demonstrates practical versatility by providing diverse editing capabilities beyond generation. Code is available at project page.
comment: CVPR 2025; Project page https://seokhyeonhong.github.io/projects/salad/
☆ VARP: Reinforcement Learning from Vision-Language Model Feedback with Agent Regularized Preferences
Designing reward functions for continuous-control robotics often leads to subtle misalignments or reward hacking, especially in complex tasks. Preference-based RL mitigates some of these pitfalls by learning rewards from comparative feedback rather than hand-crafted signals, yet scaling human annotations remains challenging. Recent work uses Vision-Language Models (VLMs) to automate preference labeling, but a single final-state image generally fails to capture the agent's full motion. In this paper, we present a two-part solution that both improves feedback accuracy and better aligns reward learning with the agent's policy. First, we overlay trajectory sketches on final observations to reveal the path taken, allowing VLMs to provide more reliable preferences-improving preference accuracy by approximately 15-20% in metaworld tasks. Second, we regularize reward learning by incorporating the agent's performance, ensuring that the reward model is optimized based on data generated by the current policy; this addition boosts episode returns by 20-30% in locomotion tasks. Empirical studies on metaworld demonstrate that our method achieves, for instance, around 70-80% success rate in all tasks, compared to below 50% for standard approaches. These results underscore the efficacy of combining richer visual representations with agent-aware reward regularization.
comment: 8 pages
☆ Automatic MILP Model Construction for Multi-Robot Task Allocation and Scheduling Based on Large Language Models
With the accelerated development of Industry 4.0, intelligent manufacturing systems increasingly require efficient task allocation and scheduling in multi-robot systems. However, existing methods rely on domain expertise and face challenges in adapting to dynamic production constraints. Additionally, enterprises have high privacy requirements for production scheduling data, which prevents the use of cloud-based large language models (LLMs) for solution development. To address these challenges, there is an urgent need for an automated modeling solution that meets data privacy requirements. This study proposes a knowledge-augmented mixed integer linear programming (MILP) automated formulation framework, integrating local LLMs with domain-specific knowledge bases to generate executable code from natural language descriptions automatically. The framework employs a knowledge-guided DeepSeek-R1-Distill-Qwen-32B model to extract complex spatiotemporal constraints (82% average accuracy) and leverages a supervised fine-tuned Qwen2.5-Coder-7B-Instruct model for efficient MILP code generation (90% average accuracy). Experimental results demonstrate that the framework successfully achieves automatic modeling in the aircraft skin manufacturing case while ensuring data privacy and computational efficiency. This research provides a low-barrier and highly reliable technical path for modeling in complex industrial scenarios.
☆ The Empty Chair: Using LLMs to Raise Missing Perspectives in Policy Deliberations
Deliberation is essential to well-functioning democracies, yet physical, economic, and social barriers often exclude certain groups, reducing representativeness and contributing to issues like group polarization. In this work, we explore the use of large language model (LLM) personas to introduce missing perspectives in policy deliberations. We develop and evaluate a tool that transcribes conversations in real-time and simulates input from relevant but absent stakeholders. We deploy this tool in a 19-person student citizens' assembly on campus sustainability. Participants and facilitators found that the tool sparked new discussions and surfaced valuable perspectives they had not previously considered. However, they also noted that AI-generated responses were sometimes overly general. They raised concerns about overreliance on AI for perspective-taking. Our findings highlight both the promise and potential risks of using LLMs to raise missing points of view in group deliberation settings.
☆ Organ-aware Multi-scale Medical Image Segmentation Using Text Prompt Engineering
Accurate segmentation is essential for effective treatment planning and disease monitoring. Existing medical image segmentation methods predominantly rely on uni-modal visual inputs, such as images or videos, requiring labor-intensive manual annotations. Additionally, medical imaging techniques capture multiple intertwined organs within a single scan, further complicating segmentation accuracy. To address these challenges, MedSAM, a large-scale medical segmentation model based on the Segment Anything Model (SAM), was developed to enhance segmentation accuracy by integrating image features with user-provided prompts. While MedSAM has demonstrated strong performance across various medical segmentation tasks, it primarily relies on geometric prompts (e.g., points and bounding boxes) and lacks support for text-based prompts, which could help specify subtle or ambiguous anatomical structures. To overcome these limitations, we propose the Organ-aware Multi-scale Text-guided Medical Image Segmentation Model (OMT-SAM) for multi-organ segmentation. Our approach introduces CLIP encoders as a novel image-text prompt encoder, operating with the geometric prompt encoder to provide informative contextual guidance. We pair descriptive textual prompts with corresponding images, processing them through pre-trained CLIP encoders and a cross-attention mechanism to generate fused image-text embeddings. Additionally, we extract multi-scale visual features from MedSAM, capturing fine-grained anatomical details at different levels of granularity. We evaluate OMT-SAM on the FLARE 2021 dataset, benchmarking its performance against existing segmentation methods. Empirical results demonstrate that OMT-SAM achieves a mean Dice Similarity Coefficient of 0.937, outperforming MedSAM (0.893) and other segmentation models, highlighting its superior capability in handling complex medical image segmentation tasks.
☆ Empowering GraphRAG with Knowledge Filtering and Integration
In recent years, large language models (LLMs) have revolutionized the field of natural language processing. However, they often suffer from knowledge gaps and hallucinations. Graph retrieval-augmented generation (GraphRAG) enhances LLM reasoning by integrating structured knowledge from external graphs. However, we identify two key challenges that plague GraphRAG:(1) Retrieving noisy and irrelevant information can degrade performance and (2)Excessive reliance on external knowledge suppresses the model's intrinsic reasoning. To address these issues, we propose GraphRAG-FI (Filtering and Integration), consisting of GraphRAG-Filtering and GraphRAG-Integration. GraphRAG-Filtering employs a two-stage filtering mechanism to refine retrieved information. GraphRAG-Integration employs a logits-based selection strategy to balance external knowledge from GraphRAG with the LLM's intrinsic reasoning,reducing over-reliance on retrievals. Experiments on knowledge graph QA tasks demonstrate that GraphRAG-FI significantly improves reasoning performance across multiple backbone models, establishing a more reliable and effective GraphRAG framework.
☆ SMILE: a Scale-aware Multiple Instance Learning Method for Multicenter STAS Lung Cancer Histopathology Diagnosis
Spread through air spaces (STAS) represents a newly identified aggressive pattern in lung cancer, which is known to be associated with adverse prognostic factors and complex pathological features. Pathologists currently rely on time consuming manual assessments, which are highly subjective and prone to variation. This highlights the urgent need for automated and precise diag nostic solutions. 2,970 lung cancer tissue slides are comprised from multiple centers, re-diagnosed them, and constructed and publicly released three lung cancer STAS datasets: STAS CSU (hospital), STAS TCGA, and STAS CPTAC. All STAS datasets provide corresponding pathological feature diagnoses and related clinical data. To address the bias, sparse and heterogeneous nature of STAS, we propose an scale-aware multiple instance learning(SMILE) method for STAS diagnosis of lung cancer. By introducing a scale-adaptive attention mechanism, the SMILE can adaptively adjust high attention instances, reducing over-reliance on local regions and promoting consistent detection of STAS lesions. Extensive experiments show that SMILE achieved competitive diagnostic results on STAS CSU, diagnosing 251 and 319 STAS samples in CPTAC andTCGA,respectively, surpassing clinical average AUC. The 11 open baseline results are the first to be established for STAS research, laying the foundation for the future expansion, interpretability, and clinical integration of computational pathology technologies. The datasets and code are available at https://anonymous.4open.science/r/IJCAI25-1DA1.
☆ AI-Powered Prediction of Nanoparticle Pharmacokinetics: A Multi-View Learning Approach
The clinical translation of nanoparticle-based treatments remains limited due to the unpredictability of (nanoparticle) NP pharmacokinetics$\unicode{x2014}$how they distribute, accumulate, and clear from the body. Predicting these behaviours is challenging due to complex biological interactions and the difficulty of obtaining high-quality experimental datasets. Existing AI-driven approaches rely heavily on data-driven learning but fail to integrate crucial knowledge about NP properties and biodistribution mechanisms. We introduce a multi-view deep learning framework that enhances pharmacokinetic predictions by incorporating prior knowledge of key NP properties such as size and charge into a cross-attention mechanism, enabling context-aware feature selection and improving generalization despite small datasets. To further enhance prediction robustness, we employ an ensemble learning approach, combining deep learning with XGBoost (XGB) and Random Forest (RF), which significantly outperforms existing AI models. Our interpretability analysis reveals key physicochemical properties driving NP biodistribution, providing biologically meaningful insights into possible mechanisms governing NP behaviour in vivo rather than a black-box model. Furthermore, by bridging machine learning with physiologically based pharmacokinetic (PBPK) modelling, this work lays the foundation for data-efficient AI-driven drug discovery and precision nanomedicine.
☆ LED: LLM Enhanced Open-Vocabulary Object Detection without Human Curated Data Generation
Large foundation models trained on large-scale visual-text data can significantly enhance Open Vocabulary Object Detection (OVD) through data generation. However, this may lead to biased synthetic data and overfitting to specific configurations. It can sidestep biases of manually curated data generation by directly leveraging hidden states of Large Language Models (LLMs), which is surprisingly rarely explored. This paper presents a systematic method to enhance visual grounding by utilizing decoder layers of the LLM of a MLLM. We introduce a zero-initialized cross-attention adapter to enable efficient knowledge transfer from LLMs to object detectors, an new approach called LED (LLM Enhanced Open-Vocabulary Object Detection). We demonstrate that intermediate hidden states from early LLM layers retain strong spatial-semantic correlations that are beneficial to grounding tasks. Experiments show that our adaptation strategy significantly enhances the performance on complex free-form text queries while remaining the same on plain categories. With our adaptation, Qwen2-0.5B with Swin-T as the vision encoder improves GroundingDINO by 2.33% on Omnilabel, at the overhead of 8.7% more GFLOPs. Qwen2-0.5B with a larger vision encoder can further boost the performance by 6.22%. We further validate our design by ablating on varied adapter architectures, sizes of LLMs, and which layers to add adaptation.
☆ Mapping the Trust Terrain: LLMs in Software Engineering -- Insights and Perspectives
Applications of Large Language Models (LLMs) are rapidly growing in industry and academia for various software engineering (SE) tasks. As these models become more integral to critical processes, ensuring their reliability and trustworthiness becomes essential. Consequently, the concept of trust in these systems is becoming increasingly critical. Well-calibrated trust is important, as excessive trust can lead to security vulnerabilities, and risks, while insufficient trust can hinder innovation. However, the landscape of trust-related concepts in LLMs in SE is relatively unclear, with concepts such as trust, distrust, and trustworthiness lacking clear conceptualizations in the SE community. To bring clarity to the current research status and identify opportunities for future work, we conducted a comprehensive review of $88$ papers: a systematic literature review of $18$ papers focused on LLMs in SE, complemented by an analysis of 70 papers from broader trust literature. Additionally, we conducted a survey study with 25 domain experts to gain insights into practitioners' understanding of trust and identify gaps between existing literature and developers' perceptions. The result of our analysis serves as a roadmap that covers trust-related concepts in LLMs in SE and highlights areas for future exploration.
☆ Evaluating the Application of SOLID Principles in Modern AI Framework Architectures
This research evaluates the extent to which modern AI frameworks, specifically TensorFlow and scikit-learn, adhere to the SOLID design principles - Single Responsibility, Open/Closed, Liskov Substitution, Interface Segregation, and Dependency Inversion. Analyzing the frameworks architectural documentation and design philosophies, this research investigates architectural trade-offs when balancing software engineering best practices with AI-specific needs. I examined each frameworks documentation, source code, and architectural components to evaluate their adherence to these principles. The results show that both frameworks adopt certain aspects of SOLID design principles but make intentional trade-offs to address performance, scalability, and the experimental nature of AI development. TensorFlow focuses on performance and scalability, sometimes sacrificing strict adherence to principles like Single Responsibility and Interface Segregation. While scikit-learns design philosophy aligns more closely with SOLID principles through consistent interfaces and composition principles, sticking closer to SOLID guidelines but with occasional deviations for performance optimizations and scalability. This research discovered that applying SOLID principles in AI frameworks depends on context, as performance, scalability, and flexibility often require deviations from traditional software engineering principles. This research contributes to understanding how domain-specific constraints influence architectural decisions in modern AI frameworks and how these frameworks strategically adapted design choices to effectively balance these contradicting requirements.
comment: 5 pages, 1 figure, 12 references
☆ RAT: Boosting Misclassification Detection Ability without Extra Data
As deep neural networks(DNN) become increasingly prevalent, particularly in high-stakes areas such as autonomous driving and healthcare, the ability to detect incorrect predictions of models and intervene accordingly becomes crucial for safety. In this work, we investigate the detection of misclassified inputs for image classification models from the lens of adversarial perturbation: we propose to use robust radius (a.k.a. input-space margin) as a confidence metric and design two efficient estimation algorithms, RR-BS and RR-Fast, for misclassification detection. Furthermore, we design a training method called Radius Aware Training (RAT) to boost models' ability to identify mistakes. Extensive experiments show our method could achieve up to 29.3% reduction on AURC and 21.62% reduction in FPR@95TPR, compared with previous methods.
☆ Involution and BSConv Multi-Depth Distillation Network for Lightweight Image Super-Resolution
Single Image Super-Resolution (SISR) aims to reconstruct high-resolution (HR) images from low-resolution (LR) inputs. Deep learning, especially Convolutional Neural Networks (CNNs), has advanced SISR. However, increasing network depth increases parameters, and memory usage, and slows training, which is problematic for resource-limited devices. To address this, lightweight models are developed to balance accuracy and efficiency. We propose the Involution & BSConv Multi-Depth Distillation Network (IBMDN), combining Involution & BSConv Multi-Depth Distillation Block (IBMDB) and the Contrast and High-Frequency Attention Block (CHFAB). IBMDB integrates Involution and BSConv to balance computational efficiency and feature extraction. CHFAB enhances high-frequency details for better visual quality. IBMDB is compatible with other SISR architectures and reduces complexity, improving evaluation metrics like PSNR and SSIM. In transformer-based models, IBMDB reduces memory usage while improving feature extraction. In GANs, it enhances perceptual quality, balancing pixel-level accuracy with perceptual details. Our experiments show that the method achieves high accuracy with minimal computational cost. The code is available at GitHub.
☆ Language Independent Named Entity Recognition via Orthogonal Transformation of Word Vectors
Word embeddings have been a key building block for NLP in which models relied heavily on word embeddings in many different tasks. In this paper, a model is proposed based on using Bidirectional LSTM/CRF with word embeddings to perform named entity recognition for any language. This is done by training a model on a source language (English) and transforming word embeddings from the target language into word embeddings of the source language by using an orthogonal linear transformation matrix. Evaluation of the model shows that by training a model on an English dataset the model was capable of detecting named entities in an Arabic dataset without neither training or fine tuning the model on an Arabic language dataset.
comment: Paper was initially released in 2017 but was never published
☆ Bayesian Modeling of Zero-Shot Classifications for Urban Flood Detection
Street scene datasets, collected from Street View or dashboard cameras, offer a promising means of detecting urban objects and incidents like street flooding. However, a major challenge in using these datasets is their lack of reliable labels: there are myriad types of incidents, many types occur rarely, and ground-truth measures of where incidents occur are lacking. Here, we propose BayFlood, a two-stage approach which circumvents this difficulty. First, we perform zero-shot classification of where incidents occur using a pretrained vision-language model (VLM). Second, we fit a spatial Bayesian model on the VLM classifications. The zero-shot approach avoids the need to annotate large training sets, and the Bayesian model provides frequent desiderata in urban settings - principled measures of uncertainty, smoothing across locations, and incorporation of external data like stormwater accumulation zones. We comprehensively validate this two-stage approach, showing that VLMs provide strong zero-shot signal for floods across multiple cities and time periods, the Bayesian model improves out-of-sample prediction relative to baseline methods, and our inferred flood risk correlates with known external predictors of risk. Having validated our approach, we show it can be used to improve urban flood detection: our analysis reveals 113,738 people who are at high risk of flooding overlooked by current methods, identifies demographic biases in existing methods, and suggests locations for new flood sensors. More broadly, our results showcase how Bayesian modeling of zero-shot LM annotations represents a promising paradigm because it avoids the need to collect large labeled datasets and leverages the power of foundation models while providing the expressiveness and uncertainty quantification of Bayesian models.
comment: In review
☆ LipShiFT: A Certifiably Robust Shift-based Vision Transformer ICLR 2025
Deriving tight Lipschitz bounds for transformer-based architectures presents a significant challenge. The large input sizes and high-dimensional attention modules typically prove to be crucial bottlenecks during the training process and leads to sub-optimal results. Our research highlights practical constraints of these methods in vision tasks. We find that Lipschitz-based margin training acts as a strong regularizer while restricting weights in successive layers of the model. Focusing on a Lipschitz continuous variant of the ShiftViT model, we address significant training challenges for transformer-based architectures under norm-constrained input setting. We provide an upper bound estimate for the Lipschitz constants of this model using the $l_2$ norm on common image classification datasets. Ultimately, we demonstrate that our method scales to larger models and advances the state-of-the-art in certified robustness for transformer-based architectures.
comment: ICLR 2025 Workshop: VerifAI: AI Verification in the Wild
☆ GR00T N1: An Open Foundation Model for Generalist Humanoid Robots
General-purpose robots need a versatile body and an intelligent mind. Recent advancements in humanoid robots have shown great promise as a hardware platform for building generalist autonomy in the human world. A robot foundation model, trained on massive and diverse data sources, is essential for enabling the robots to reason about novel situations, robustly handle real-world variability, and rapidly learn new tasks. To this end, we introduce GR00T N1, an open foundation model for humanoid robots. GR00T N1 is a Vision-Language-Action (VLA) model with a dual-system architecture. The vision-language module (System 2) interprets the environment through vision and language instructions. The subsequent diffusion transformer module (System 1) generates fluid motor actions in real time. Both modules are tightly coupled and jointly trained end-to-end. We train GR00T N1 with a heterogeneous mixture of real-robot trajectories, human videos, and synthetically generated datasets. We show that our generalist robot model GR00T N1 outperforms the state-of-the-art imitation learning baselines on standard simulation benchmarks across multiple robot embodiments. Furthermore, we deploy our model on the Fourier GR-1 humanoid robot for language-conditioned bimanual manipulation tasks, achieving strong performance with high data efficiency.
comment: Authors are listed alphabetically. Project leads are Linxi "Jim" Fan and Yuke Zhu
☆ Construction Site Scaffolding Completeness Detection Based on Mask R-CNN and Hough Transform
Construction site scaffolding is essential for many building projects, and ensuring its safety is crucial to prevent accidents. The safety inspector must check the scaffolding's completeness and integrity, where most violations occur. The inspection process includes ensuring all the components are in the right place since workers often compromise safety for convenience and disassemble parts such as cross braces. This paper proposes a deep learning-based approach to detect the scaffolding and its cross braces using computer vision. A scaffold image dataset with annotated labels is used to train a convolutional neural network (CNN) model. With the proposed approach, we can automatically detect the completeness of cross braces from images taken at construction sites, without the need for manual inspection, saving a significant amount of time and labor costs. This non-invasive and efficient solution for detecting scaffolding completeness can help improve safety in construction sites.
comment: The 30th EG-ICE: International Conference on Intelligent Computing in Engineering
☆ DPImageBench: A Unified Benchmark for Differentially Private Image Synthesis
Differentially private (DP) image synthesis aims to generate artificial images that retain the properties of sensitive images while protecting the privacy of individual images within the dataset. Despite recent advancements, we find that inconsistent--and sometimes flawed--evaluation protocols have been applied across studies. This not only impedes the understanding of current methods but also hinders future advancements. To address the issue, this paper introduces DPImageBench for DP image synthesis, with thoughtful design across several dimensions: (1) Methods. We study eleven prominent methods and systematically characterize each based on model architecture, pretraining strategy, and privacy mechanism. (2) Evaluation. We include nine datasets and seven fidelity and utility metrics to thoroughly assess them. Notably, we find that a common practice of selecting downstream classifiers based on the highest accuracy on the sensitive test set not only violates DP but also overestimates the utility scores. DPImageBench corrects for these mistakes. (3) Platform. Despite the methods and evaluation protocols, DPImageBench provides a standardized interface that accommodates current and future implementations within a unified framework. With DPImageBench, we have several noteworthy findings. For example, contrary to the common wisdom that pretraining on public image datasets is usually beneficial, we find that the distributional similarity between pretraining and sensitive images significantly impacts the performance of the synthetic images and does not always yield improvements. In addition, adding noise to low-dimensional features, such as the high-level characteristics of sensitive images, is less affected by the privacy budget compared to adding noise to high-dimensional features, like weight gradients. The former methods perform better than the latter under a low privacy budget.
comment: The first two authors contributed equally; code available at https://github.com/2019ChenGong/DPImageBench
☆ ConQuer: A Framework for Concept-Based Quiz Generation
Quizzes play a crucial role in education by reinforcing students' understanding of key concepts and encouraging self-directed exploration. However, compiling high-quality quizzes can be challenging and require deep expertise and insight into specific subject matter. Although LLMs have greatly enhanced the efficiency of quiz generation, concerns remain regarding the quality of these AI-generated quizzes and their educational impact on students. To address these issues, we introduce ConQuer, a concept-based quiz generation framework that leverages external knowledge sources. We employ comprehensive evaluation dimensions to assess the quality of the generated quizzes, using LLMs as judges. Our experiment results demonstrate a 4.8% improvement in evaluation scores and a 77.52% win rate in pairwise comparisons against baseline quiz sets. Ablation studies further underscore the effectiveness of each component in our framework. Code available at https://github.com/sofyc/ConQuer.
Core-Periphery Principle Guided State Space Model for Functional Connectome Classification
Understanding the organization of human brain networks has become a central focus in neuroscience, particularly in the study of functional connectivity, which plays a crucial role in diagnosing neurological disorders. Advances in functional magnetic resonance imaging and machine learning techniques have significantly improved brain network analysis. However, traditional machine learning approaches struggle to capture the complex relationships between brain regions, while deep learning methods, particularly Transformer-based models, face computational challenges due to their quadratic complexity in long-sequence modeling. To address these limitations, we propose a Core-Periphery State-Space Model (CP-SSM), an innovative framework for functional connectome classification. Specifically, we introduce Mamba, a selective state-space model with linear complexity, to effectively capture long-range dependencies in functional brain networks. Furthermore, inspired by the core-periphery (CP) organization, a fundamental characteristic of brain networks that enhances efficient information transmission, we design CP-MoE, a CP-guided Mixture-of-Experts that improves the representation learning of brain connectivity patterns. We evaluate CP-SSM on two benchmark fMRI datasets: ABIDE and ADNI. Experimental results demonstrate that CP-SSM surpasses Transformer-based models in classification performance while significantly reducing computational complexity. These findings highlight the effectiveness and efficiency of CP-SSM in modeling brain functional connectivity, offering a promising direction for neuroimaging-based neurological disease diagnosis.
☆ RAGO: Systematic Performance Optimization for Retrieval-Augmented Generation Serving
Retrieval-augmented generation (RAG), which combines large language models (LLMs) with retrievals from external knowledge databases, is emerging as a popular approach for reliable LLM serving. However, efficient RAG serving remains an open challenge due to the rapid emergence of many RAG variants and the substantial differences in workload characteristics across them. In this paper, we make three fundamental contributions to advancing RAG serving. First, we introduce RAGSchema, a structured abstraction that captures the wide range of RAG algorithms, serving as a foundation for performance optimization. Second, we analyze several representative RAG workloads with distinct RAGSchema, revealing significant performance variability across these workloads. Third, to address this variability and meet diverse performance requirements, we propose RAGO (Retrieval-Augmented Generation Optimizer), a system optimization framework for efficient RAG serving. Our evaluation shows that RAGO achieves up to a 2x increase in QPS per chip and a 55% reduction in time-to-first-token latency compared to RAG systems built on LLM-system extensions.
Dynamic Accumulated Attention Map for Interpreting Evolution of Decision-Making in Vision Transformer
Various Vision Transformer (ViT) models have been widely used for image recognition tasks. However, existing visual explanation methods can not display the attention flow hidden inside the inner structure of ViT models, which explains how the final attention regions are formed inside a ViT for its decision-making. In this paper, a novel visual explanation approach, Dynamic Accumulated Attention Map (DAAM), is proposed to provide a tool that can visualize, for the first time, the attention flow from the top to the bottom through ViT networks. To this end, a novel decomposition module is proposed to construct and store the spatial feature information by unlocking the [class] token generated by the self-attention module of each ViT block. The module can also obtain the channel importance coefficients by decomposing the classification score for supervised ViT models. Because of the lack of classification score in self-supervised ViT models, we propose dimension-wise importance weights to compute the channel importance coefficients. Such spatial features are linearly combined with the corresponding channel importance coefficients, forming the attention map for each block. The dynamic attention flow is revealed by block-wisely accumulating each attention map. The contribution of this work focuses on visualizing the evolution dynamic of the decision-making attention for any intermediate block inside a ViT model by proposing a novel decomposition module and dimension-wise importance weights. The quantitative and qualitative analysis consistently validate the effectiveness and superior capacity of the proposed DAAM for not only interpreting ViT models with the fully-connected layers as the classifier but also self-supervised ViT models. The code is available at https://github.com/ly9802/DynamicAccumulatedAttentionMap.
Reinforcement learning-based motion imitation for physiologically plausible musculoskeletal motor control
How do humans move? The quest to understand human motion has broad applications in numerous fields, ranging from computer animation and motion synthesis to neuroscience, human prosthetics and rehabilitation. Although advances in reinforcement learning (RL) have produced impressive results in capturing human motion using simplified humanoids, controlling physiologically accurate models of the body remains an open challenge. In this work, we present a model-free motion imitation framework (KINESIS) to advance the understanding of muscle-based motor control. Using a musculoskeletal model of the lower body with 80 muscle actuators and 20 DoF, we demonstrate that KINESIS achieves strong imitation performance on 1.9 hours of motion capture data, is controllable by natural language through pre-trained text-to-motion generative models, and can be fine-tuned to carry out high-level tasks such as target goal reaching. Importantly, KINESIS generates muscle activity patterns that correlate well with human EMG activity. The physiological plausibility makes KINESIS a promising model for tackling challenging problems in human motor control theory, which we highlight by investigating Bernstein's redundancy problem in the context of locomotion. Code, videos and benchmarks will be available at https://github.com/amathislab/Kinesis.
☆ Assessing Large Language Models for Automated Feedback Generation in Learning Programming Problem Solving
Providing effective feedback is important for student learning in programming problem-solving. In this sense, Large Language Models (LLMs) have emerged as potential tools to automate feedback generation. However, their reliability and ability to identify reasoning errors in student code remain not well understood. This study evaluates the performance of four LLMs (GPT-4o, GPT-4o mini, GPT-4-Turbo, and Gemini-1.5-pro) on a benchmark dataset of 45 student solutions. We assessed the models' capacity to provide accurate and insightful feedback, particularly in identifying reasoning mistakes. Our analysis reveals that 63\% of feedback hints were accurate and complete, while 37\% contained mistakes, including incorrect line identification, flawed explanations, or hallucinated issues. These findings highlight the potential and limitations of LLMs in programming education and underscore the need for improvements to enhance reliability and minimize risks in educational applications.
☆ Reducing False Ventricular Tachycardia Alarms in ICU Settings: A Machine Learning Approach ICML
False arrhythmia alarms in intensive care units (ICUs) are a significant challenge, contributing to alarm fatigue and potentially compromising patient safety. Ventricular tachycardia (VT) alarms are particularly difficult to detect accurately due to their complex nature. This paper presents a machine learning approach to reduce false VT alarms using the VTaC dataset, a benchmark dataset of annotated VT alarms from ICU monitors. We extract time-domain and frequency-domain features from waveform data, preprocess the data, and train deep learning models to classify true and false VT alarms. Our results demonstrate high performance, with ROC-AUC scores exceeding 0.96 across various training configurations. This work highlights the potential of machine learning to improve the accuracy of VT alarm detection in clinical settings.
comment: Preprint, Accepted to the International Conference on Machine Learning Technologies (ICMLT 2025), Helsinki, Finland
☆ Image Captioning Evaluation in the Age of Multimodal LLMs: Challenges and Future Perspectives
The evaluation of machine-generated image captions is a complex and evolving challenge. With the advent of Multimodal Large Language Models (MLLMs), image captioning has become a core task, increasing the need for robust and reliable evaluation metrics. This survey provides a comprehensive overview of advancements in image captioning evaluation, analyzing the evolution, strengths, and limitations of existing metrics. We assess these metrics across multiple dimensions, including correlation with human judgment, ranking accuracy, and sensitivity to hallucinations. Additionally, we explore the challenges posed by the longer and more detailed captions generated by MLLMs and examine the adaptability of current metrics to these stylistic variations. Our analysis highlights some limitations of standard evaluation approaches and suggests promising directions for future research in image captioning assessment.
comment: Repo GitHub: https://github.com/aimagelab/awesome-captioning-evaluation
☆ PHGNN: A Novel Prompted Hypergraph Neural Network to Diagnose Alzheimer's Disease
The accurate diagnosis of Alzheimer's disease (AD) and prognosis of mild cognitive impairment (MCI) conversion are crucial for early intervention. However, existing multimodal methods face several challenges, from the heterogeneity of input data, to underexplored modality interactions, missing data due to patient dropouts, and limited data caused by the time-consuming and costly data collection process. In this paper, we propose a novel Prompted Hypergraph Neural Network (PHGNN) framework that addresses these limitations by integrating hypergraph based learning with prompt learning. Hypergraphs capture higher-order relationships between different modalities, while our prompt learning approach for hypergraphs, adapted from NLP, enables efficient training with limited data. Our model is validated through extensive experiments on the ADNI dataset, outperforming SOTA methods in both AD diagnosis and the prediction of MCI conversion.
☆ SocialJax: An Evaluation Suite for Multi-agent Reinforcement Learning in Sequential Social Dilemmas
Social dilemmas pose a significant challenge in the field of multi-agent reinforcement learning (MARL). Melting Pot is an extensive framework designed to evaluate social dilemma environments, providing an evaluation protocol that measures generalization to new social partners across various test scenarios. However, running reinforcement learning algorithms in the official Melting Pot environments demands substantial computational resources. In this paper, we introduce SocialJax, a suite of sequential social dilemma environments implemented in JAX. JAX is a high-performance numerical computing library for Python that enables significant improvements in the operational efficiency of SocialJax on GPUs and TPUs. Our experiments demonstrate that the training pipeline of SocialJax achieves a 50\texttimes{} speedup in real-time performance compared to Melting Pot's RLlib baselines. Additionally, we validate the effectiveness of baseline algorithms within the SocialJax environments. Finally, we use Schelling diagrams to verify the social dilemma properties of these environments, ensuring they accurately capture the dynamics of social dilemmas.
comment: 9 pages, 18 figures, 1 table
☆ Robust Weight Imprinting: Insights from Neural Collapse and Proxy-Based Aggregation DATE
The capacity of a foundation model allows for adaptation to new downstream tasks. Weight imprinting is a universal and efficient method to fulfill this purpose. It has been reinvented several times, but it has not been systematically studied. In this paper, we propose a framework for imprinting, identifying three main components: generation, normalization, and aggregation. This allows us to conduct an in-depth analysis of imprinting and a comparison of the existing work. We reveal the benefits of representing novel data with multiple proxies in the generation step and show the importance of proper normalization. We determine those proxies through clustering and propose a novel variant of imprinting that outperforms previous work. We motivate this by the neural collapse phenomenon -- an important connection that we can draw for the first time. Our results show an increase of up to 4% in challenging scenarios with complex data distributions for new classes.
comment: Code: https://github.com/DATEXIS/multi-imprinting/
☆ Potential Score Matching: Debiasing Molecular Structure Sampling with Potential Energy Guidance
The ensemble average of physical properties of molecules is closely related to the distribution of molecular conformations, and sampling such distributions is a fundamental challenge in physics and chemistry. Traditional methods like molecular dynamics (MD) simulations and Markov chain Monte Carlo (MCMC) sampling are commonly used but can be time-consuming and costly. Recently, diffusion models have emerged as efficient alternatives by learning the distribution of training data. Obtaining an unbiased target distribution is still an expensive task, primarily because it requires satisfying ergodicity. To tackle these challenges, we propose Potential Score Matching (PSM), an approach that utilizes the potential energy gradient to guide generative models. PSM does not require exact energy functions and can debias sample distributions even when trained on limited and biased data. Our method outperforms existing state-of-the-art (SOTA) models on the Lennard-Jones (LJ) potential, a commonly used toy model. Furthermore, we extend the evaluation of PSM to high-dimensional problems using the MD17 and MD22 datasets. The results demonstrate that molecular distributions generated by PSM more closely approximate the Boltzmann distribution compared to traditional diffusion models.
☆ Teaching Artificial Intelligence to Perform Rapid, Resolution-Invariant Grain Growth Modeling via Fourier Neural Operator
Microstructural evolution, particularly grain growth, plays a critical role in shaping the physical, optical, and electronic properties of materials. Traditional phase-field modeling accurately simulates these phenomena but is computationally intensive, especially for large systems and fine spatial resolutions. While machine learning approaches have been employed to accelerate simulations, they often struggle with resolution dependence and generalization across different grain scales. This study introduces a novel approach utilizing Fourier Neural Operator (FNO) to achieve resolution-invariant modeling of microstructure evolution in multi-grain systems. FNO operates in the Fourier space and can inherently handle varying resolutions by learning mappings between function spaces. By integrating FNO with the phase field method, we developed a surrogate model that significantly reduces computational costs while maintaining high accuracy across different spatial scales. We generated a comprehensive dataset from phase-field simulations using the Fan Chen model, capturing grain evolution over time. Data preparation involved creating input-output pairs with a time shift, allowing the model to predict future microstructures based on current and past states. The FNO-based neural network was trained using sequences of microstructures and demonstrated remarkable accuracy in predicting long-term evolution, even for unseen configurations and higher-resolution grids not encountered during training.
☆ SpecReX: Explainable AI for Raman Spectroscopy AAAI
Raman spectroscopy is becoming more common for medical diagnostics with deep learning models being increasingly used to leverage its full potential. However, the opaque nature of such models and the sensitivity of medical diagnosis together with regulatory requirements necessitate the need for explainable AI tools. We introduce SpecReX, specifically adapted to explaining Raman spectra. SpecReX uses the theory of actual causality to rank causal responsibility in a spectrum, quantified by iteratively refining mutated versions of the spectrum and testing if it retains the original classification. The explanations provided by SpecReX take the form of a responsibility map, highlighting spectral regions most responsible for the model to make a correct classification. To assess the validity of SpecReX, we create increasingly complex simulated spectra, in which a "ground truth" signal is seeded, to train a classifier. We then obtain SpecReX explanations and compare the results with another explainability tool. By using simulated spectra we establish that SpecReX localizes to the known differences between classes, under a number of conditions. This provides a foundation on which we can find the spectral features which differentiate disease classes. This is an important first step in proving the validity of SpecReX.
comment: AAAI Workshop on Health Intelligencee (W3PHIAI-25)
☆ Effortless Active Labeling for Long-Term Test-Time Adaptation CVPR 2025
Long-term test-time adaptation (TTA) is a challenging task due to error accumulation. Recent approaches tackle this issue by actively labeling a small proportion of samples in each batch, yet the annotation burden quickly grows as the batch number increases. In this paper, we investigate how to achieve effortless active labeling so that a maximum of one sample is selected for annotation in each batch. First, we annotate the most valuable sample in each batch based on the single-step optimization perspective in the TTA context. In this scenario, the samples that border between the source- and target-domain data distributions are considered the most feasible for the model to learn in one iteration. Then, we introduce an efficient strategy to identify these samples using feature perturbation. Second, we discover that the gradient magnitudes produced by the annotated and unannotated samples have significant variations. Therefore, we propose balancing their impact on model optimization using two dynamic weights. Extensive experiments on the popular ImageNet-C, -R, -K, -A and PACS databases demonstrate that our approach consistently outperforms state-of-the-art methods with significantly lower annotation costs.
comment: CVPR 2025.Code:https://github.com/flash1803/EATTA
☆ Analysis of human visual field information using machine learning methods and assessment of their accuracy
Subject of research: is the study of methods for analyzing perimetric images for the diagnosis and control of glaucoma diseases. Objects of research: is a dataset collected on the ophthalmological perimeter with the results of various patient pathologies, since the ophthalmological community is acutely aware of the issue of disease control and import substitution. [5]. Purpose of research: is to consider various machine learning methods that can classify glaucoma. This is possible thanks to the classifier built after labeling the dataset. It is able to determine from the image whether the visual fields depicted on it are the results of the impact of glaucoma on the eyes or other visual diseases. Earlier in the work [3], a dataset was described that was collected on the Tomey perimeter. The average age of the examined patients ranged from 30 to 85 years. Methods of research: machine learning methods for classifying image results (stochastic gradient descent, logistic regression, random forest, naive Bayes). Main results of research: the result of the study is computer modeling that can determine from the image whether the result is glaucoma or another disease (binary classification).
comment: in Russian language
♻ ☆ DLPO: Towards a Robust, Efficient, and Generalizable Prompt Optimization Framework from a Deep-Learning Perspective
Large Language Models (LLMs) have achieved remarkable success across diverse tasks, largely driven by well-designed prompts. However, crafting and selecting such prompts often requires considerable human effort, significantly limiting its scalability. To mitigate this, recent studies have explored automated prompt optimization as a promising solution. Despite these efforts, existing methods still face critical challenges in robustness, efficiency, and generalization. To systematically address these challenges, we first conduct an empirical analysis to identify the limitations of current reflection-based prompt optimization paradigm. Building on these insights, we propose 7 innovative approaches inspired by traditional deep learning paradigms for prompt optimization (DLPO), seamlessly integrating these concepts into text-based gradient optimization. Through these advancements, we progressively tackle the aforementioned challenges and validate our methods through extensive experimentation. We hope our study not only provides valuable guidance for future research but also offers a comprehensive understanding of the challenges and potential solutions in prompt optimization. Our code is available at https://github.com/sfasfaffa/DLPO.
comment: Preprint
♻ ☆ LLM-Match: An Open-Sourced Patient Matching Model Based on Large Language Models and Retrieval-Augmented Generation
Patient matching is the process of linking patients to appropriate clinical trials by accurately identifying and matching their medical records with trial eligibility criteria. We propose LLM-Match, a novel framework for patient matching leveraging fine-tuned open-source large language models. Our approach consists of four key components. First, a retrieval-augmented generation (RAG) module extracts relevant patient context from a vast pool of electronic health records (EHRs). Second, a prompt generation module constructs input prompts by integrating trial eligibility criteria (both inclusion and exclusion criteria), patient context, and system instructions. Third, a fine-tuning module with a classification head optimizes the model parameters using structured prompts and ground-truth labels. Fourth, an evaluation module assesses the fine-tuned model's performance on the testing datasets. We evaluated LLM-Match on four open datasets - n2c2, SIGIR, TREC 2021, and TREC 2022 - using open-source models, comparing it against TrialGPT, Zero-Shot, and GPT-4-based closed models. LLM-Match outperformed all baselines.
comment: 10 pages, 1 figure
♻ ☆ Towards Scalable Foundation Model for Multi-modal and Hyperspectral Geospatial Data
Geospatial raster data, such as that collected by satellite-based imaging systems at different times and spectral bands, hold immense potential for enabling a wide range of high-impact applications. This potential stems from the rich information that is spatially and temporally contextualized across multiple channels and sensing modalities. Recent work has adapted existing self-supervised learning approaches for such geospatial data. However, they fall short of scalable model architectures, leading to inflexibility and computational inefficiencies when faced with an increasing number of channels and modalities. To address these limitations, we introduce Low-rank Efficient Spatial-Spectral Vision Transformer with three key innovations: i) the LESS Attention Block that approximates high-dimensional spatial-spectral attention through Kronecker's product of the low-dimensional spatial and spectral attention components; ii) the Continuous Positional-Channel Embedding Layer that preserves both the continuity and physical characteristics of each spatial-spectral patch; and iii) the Perception Field Mask that exploits local spatial dependencies by constraining attention to neighboring patches. To evaluate the proposed innovations, we construct GFM-Bench, which serves as a comprehensive benchmark for such geospatial raster data. We pretrain LESS ViT using a Hyperspectral Masked Autoencoder framework with integrated positional and channel masking strategies. Experimental results demonstrate that our proposed method achieves competitive performance against state-of-the-art multi-modal geospatial foundation models while outperforming them on cross-satellite generalization tasks with higher computational efficiency. The flexibility and extensibility of our framework make it a promising direction for future geospatial data analysis tasks that involve a wide range of modalities and channels.
♻ ☆ From Head to Tail: Towards Balanced Representation in Large Vision-Language Models through Adaptive Data Calibration CVPR 2025
Large Vision-Language Models (LVLMs) have achieved significant progress in combining visual comprehension with language generation. Despite this success, the training data of LVLMs still suffers from Long-Tail (LT) problems, where the data distribution is highly imbalanced. Previous works have mainly focused on traditional VLM architectures, i.e., CLIP or ViT, and specific tasks such as recognition and classification. Nevertheless, the exploration of LVLM (e.g. LLaVA) and more general tasks (e.g. Visual Question Answering and Visual Reasoning) remains under-explored. In this paper, we first conduct an in-depth analysis of the LT issues in LVLMs and identify two core causes: the overrepresentation of head concepts and the underrepresentation of tail concepts. Based on the above observation, we propose an $\textbf{A}$daptive $\textbf{D}$ata $\textbf{R}$efinement Framework ($\textbf{ADR}$), which consists of two stages: $\textbf{D}$ata $\textbf{R}$ebalancing ($\textbf{DR}$) and $\textbf{D}$ata $\textbf{S}$ynthesis ($\textbf{DS}$). In the DR stage, we adaptively rebalance the redundant data based on entity distributions, while in the DS stage, we leverage Denoising Diffusion Probabilistic Models (DDPMs) and scarce images to supplement underrepresented portions. Through comprehensive evaluations across eleven benchmarks, our proposed ADR effectively mitigates the long-tail problem in the training data, improving the average performance of LLaVA 1.5 relatively by 4.36%, without increasing the training data volume.
comment: Accepted by CVPR 2025
♻ ☆ DeepPerception: Advancing R1-like Cognitive Visual Perception in MLLMs for Knowledge-Intensive Visual Grounding
Human experts excel at fine-grained visual discrimination by leveraging domain knowledge to refine perceptual features, a capability that remains underdeveloped in current Multimodal Large Language Models (MLLMs). Despite possessing vast expert-level knowledge, MLLMs struggle to integrate reasoning into visual perception, often generating direct responses without deeper analysis. To bridge this gap, we introduce knowledge-intensive visual grounding (KVG), a novel visual grounding task that requires both fine-grained perception and domain-specific knowledge integration. To address the challenges of KVG, we propose DeepPerception, an MLLM enhanced with cognitive visual perception capabilities. Our approach consists of (1) an automated data synthesis pipeline that generates high-quality, knowledge-aligned training samples, and (2) a two-stage training framework combining supervised fine-tuning for cognitive reasoning scaffolding and reinforcement learning to optimize perception-cognition synergy. To benchmark performance, we introduce KVG-Bench a comprehensive dataset spanning 10 domains with 1.3K manually curated test cases. Experimental results demonstrate that DeepPerception significantly outperforms direct fine-tuning, achieving +8.08\% accuracy improvements on KVG-Bench and exhibiting +4.60\% superior cross-domain generalization over baseline approaches. Our findings highlight the importance of integrating cognitive processes into MLLMs for human-like visual perception and open new directions for multimodal reasoning research. The data, codes, and models are released at https://github.com/thunlp/DeepPerception.
♻ ☆ Collaborative Instance Object Navigation: Leveraging Uncertainty-Awareness to Minimize Human-Agent Dialogues
Language-driven instance object navigation assumes that human users initiate the task by providing a detailed description of the target instance to the embodied agent. While this description is crucial for distinguishing the target from visually similar instances in a scene, providing it prior to navigation can be demanding for human. To bridge this gap, we introduce Collaborative Instance object Navigation (CoIN), a new task setting where the agent actively resolve uncertainties about the target instance during navigation in natural, template-free, open-ended dialogues with human. We propose a novel training-free method, Agent-user Interaction with UncerTainty Awareness (AIUTA), which operates independently from the navigation policy, and focuses on the human-agent interaction reasoning with Vision-Language Models (VLMs) and Large Language Models (LLMs). First, upon object detection, a Self-Questioner model initiates a self-dialogue within the agent to obtain a complete and accurate observation description with a novel uncertainty estimation technique. Then, an Interaction Trigger module determines whether to ask a question to the human, continue or halt navigation, minimizing user input. For evaluation, we introduce CoIN-Bench, with a curated dataset designed for challenging multi-instance scenarios. CoIN-Bench supports both online evaluation with humans and reproducible experiments with simulated user-agent interactions. On CoIN-Bench, we show that AIUTA serves as a competitive baseline, while existing language-driven instance navigation methods struggle in complex multi-instance scenes. Code and benchmark will be available upon acceptance at https://intelligolabs.github.io/CoIN/
comment: https://intelligolabs.github.io/CoIN/
♻ ☆ To Retrieve or Not to Retrieve? Uncertainty Detection for Dynamic Retrieval Augmented Generation ICLR 2025
Retrieval-Augmented Generation equips large language models with the capability to retrieve external knowledge, thereby mitigating hallucinations by incorporating information beyond the model's intrinsic abilities. However, most prior works have focused on invoking retrieval deterministically, which makes it unsuitable for tasks such as long-form question answering. Instead, dynamically performing retrieval by invoking it only when the underlying LLM lacks the required knowledge can be more efficient. In this context, we delve deeper into the question, "To Retrieve or Not to Retrieve?" by exploring multiple uncertainty detection methods. We evaluate these methods for the task of long-form question answering, employing dynamic retrieval, and present our comparisons. Our findings suggest that uncertainty detection metrics, such as Degree Matrix Jaccard and Eccentricity, can reduce the number of retrieval calls by almost half, with only a slight reduction in question-answering accuracy.
comment: 1st workshop of "Quantify Uncertainty and Hallucination in Foundation Models: The Next Frontier in Reliable AI" at ICLR 2025
♻ ☆ LLM-Driven Multi-step Translation from C to Rust using Static Analysis
Translating software written in legacy languages to modern languages, such as C to Rust, has significant benefits in improving memory safety while maintaining high performance. However, manual translation is cumbersome, error-prone, and produces unidiomatic code. Large language models (LLMs) have demonstrated promise in producing idiomatic translations, but offer no correctness guarantees as they lack the ability to capture all the semantics differences between the source and target languages. To resolve this issue, we propose SACTOR, an LLM-driven C-to-Rust zero-shot translation tool using a two-step translation methodology: an "unidiomatic" step to translate C into Rust while preserving semantics, and an "idiomatic" step to refine the code to follow Rust's semantic standards. SACTOR utilizes information provided by static analysis of the source C program to address challenges such as pointer semantics and dependency resolution. To validate the correctness of the translated result from each step, we use end-to-end testing via the foreign function interface to embed our translated code segment into the original code. We evaluate the translation of 200 programs from two datasets and two case studies, comparing the performance of GPT-4o, Claude 3.5 Sonnet, Gemini 2.0 Flash, Llama 3.3 70B and DeepSeek-R1 in SACTOR. Our results demonstrate that SACTOR achieves high correctness and improved idiomaticity, with the best-performing model (DeepSeek-R1) reaching 93% and (GPT-4o, Claude 3.5, DeepSeek-R1) reaching 84% correctness (on each dataset, respectively), while producing more natural and Rust-compliant translations compared to existing methods.
comment: 22 pages, 13 figures
♻ ☆ IPCGRL: Language-Instructed Reinforcement Learning for Procedural Level Generation
Recent research has highlighted the significance of natural language in enhancing the controllability of generative models. While various efforts have been made to leverage natural language for content generation, research on deep reinforcement learning (DRL) agents utilizing text-based instructions for procedural content generation remains limited. In this paper, we propose IPCGRL, an instruction-based procedural content generation method via reinforcement learning, which incorporates a sentence embedding model. IPCGRL fine-tunes task-specific embedding representations to effectively compress game-level conditions. We evaluate IPCGRL in a two-dimensional level generation task and compare its performance with a general-purpose embedding method. The results indicate that IPCGRL achieves up to a 21.4% improvement in controllability and a 17.2% improvement in generalizability for unseen instructions. Furthermore, the proposed method extends the modality of conditional input, enabling a more flexible and expressive interaction framework for procedural content generation.
comment: 9 pages, 9 figures, 3 tables
♻ ☆ SPIN-Bench: How Well Do LLMs Plan Strategically and Reason Socially?
Reasoning and strategic behavior in social interactions is a hallmark of intelligence. This form of reasoning is significantly more sophisticated than isolated planning or reasoning tasks in static settings (e.g., math problem solving). In this paper, we present Strategic Planning, Interaction, and Negotiation (SPIN-Bench), a new multi-domain evaluation designed to measure the intelligence of strategic planning and social reasoning. While many existing benchmarks focus on narrow planning or single-agent reasoning, SPIN-Bench combines classical PDDL tasks, competitive board games, cooperative card games, and multi-agent negotiation scenarios in one unified framework. The framework includes both a benchmark as well as an arena to simulate and evaluate the variety of social settings to test reasoning and strategic behavior of AI agents. We formulate the benchmark SPIN-Bench by systematically varying action spaces, state complexity, and the number of interacting agents to simulate a variety of social settings where success depends on not only methodical and step-wise decision making, but also conceptual inference of other (adversarial or cooperative) participants. Our experiments reveal that while contemporary LLMs handle basic fact retrieval and short-range planning reasonably well, they encounter significant performance bottlenecks in tasks requiring deep multi-hop reasoning over large state spaces and socially adept coordination under uncertainty. We envision SPIN-Bench as a catalyst for future research on robust multi-agent planning, social reasoning, and human--AI teaming. Project Website: https://spinbench.github.io/
comment: 51 pages, 7 figures
♻ ☆ Deep Jansen-Rit Parameter Inference for Model-Driven Analysis of Brain Activity SP
Accurately modeling effective connectivity (EC) is critical for understanding how the brain processes and integrates sensory information. Yet, it remains a formidable challenge due to complex neural dynamics and noisy measurements such as those obtained from the electroencephalogram (EEG). Model-driven EC infers local (within a brain region) and global (between brain regions) EC parameters by fitting a generative model of neural activity onto experimental data. This approach offers a promising route for various applications, including investigating neurodevelopmental disorders. However, current approaches fail to scale to whole-brain analyses and are highly noise-sensitive. In this work, we employ three deep-learning architectures--a transformer, a long short-term memory (LSTM) network, and a convolutional neural network and bidirectional LSTM (CNN-BiLSTM) network--for inverse modeling and compare their performance with simulation-based inference in estimating the Jansen-Rit neural mass model (JR-NMM) parameters from simulated EEG data under various noise conditions. We demonstrate a reliable estimation of key local parameters, such as synaptic gains and time constants. However, other parameters like local JR-NMM connectivity cannot be evaluated reliably from evoked-related potentials (ERP). We also conduct a sensitivity analysis to characterize the influence of JR-NMM parameters on ERP and evaluate their learnability. Our results show the feasibility of deep-learning approaches to estimate the subset of learnable JR-NMM parameters.
comment: Accepted at 7th International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI' 2025), 8-10 April 2025, Innsbruck, Austria
♻ ☆ Sparse Autoencoders for Hypothesis Generation
We describe HypotheSAEs, a general method to hypothesize interpretable relationships between text data (e.g., headlines) and a target variable (e.g., clicks). HypotheSAEs has three steps: (1) train a sparse autoencoder on text embeddings to produce interpretable features describing the data distribution, (2) select features that predict the target variable, and (3) generate a natural language interpretation of each feature (e.g., "mentions being surprised or shocked") using an LLM. Each interpretation serves as a hypothesis about what predicts the target variable. Compared to baselines, our method better identifies reference hypotheses on synthetic datasets (at least +0.06 in F1) and produces more predictive hypotheses on real datasets (~twice as many significant findings), despite requiring 1-2 orders of magnitude less compute than recent LLM-based methods. HypotheSAEs also produces novel discoveries on two well-studied tasks: explaining partisan differences in Congressional speeches and identifying drivers of engagement with online headlines.
comment: First two authors contributed equally; working paper. Code is available at https://github.com/rmovva/HypotheSAEs
♻ ☆ Counterfactual Generative Modeling with Variational Causal Inference ICLR 2025
Estimating an individual's counterfactual outcomes under interventions is a challenging task for traditional causal inference and supervised learning approaches when the outcome is high-dimensional (e.g. gene expressions, facial images) and covariates are relatively limited. In this case, to predict one's outcomes under counterfactual treatments, it is crucial to leverage individual information contained in the observed outcome in addition to the covariates. Prior works using variational inference in counterfactual generative modeling have been focusing on neural adaptations and model variants within the conditional variational autoencoder formulation, which we argue is fundamentally ill-suited to the notion of counterfactual in causal inference. In this work, we present a novel variational Bayesian causal inference framework and its theoretical backings to properly handle counterfactual generative modeling tasks, through which we are able to conduct counterfactual supervision end-to-end during training without any counterfactual samples, and encourage disentangled exogenous noise abduction that aids the correct identification of causal effect in counterfactual generations. In experiments, we demonstrate the advantage of our framework compared to state-of-the-art models in counterfactual generative modeling on multiple benchmarks.
comment: Published as a conference paper at ICLR 2025
♻ ☆ Still More Shades of Null: An Evaluation Suite for Responsible Missing Value Imputation
Data missingness is a practical challenge of sustained interest to the scientific community. In this paper, we present Shades-of-Null, an evaluation suite for responsible missing value imputation. Our work is novel in two ways (i) we model realistic and socially-salient missingness scenarios that go beyond Rubin's classic Missing Completely at Random (MCAR), Missing At Random (MAR) and Missing Not At Random (MNAR) settings, to include multi-mechanism missingness (when different missingness patterns co-exist in the data) and missingness shift (when the missingness mechanism changes between training and test) (ii) we evaluate imputers holistically, based on imputation quality and imputation fairness, as well as on the predictive performance, fairness and stability of the models that are trained and tested on the data post-imputation. We use Shades-of-Null to conduct a large-scale empirical study involving 29,736 experimental pipelines, and find that while there is no single best-performing imputation approach for all missingness types, interesting trade-offs arise between predictive performance, fairness and stability, based on the combination of missingness scenario, imputer choice, and the architecture of the predictive model. We make Shades-of-Null publicly available, to enable researchers to rigorously evaluate missing value imputation methods on a wide range of metrics in plausible and socially meaningful scenarios.
♻ ☆ Information Fusion in Smart Agriculture: Machine Learning Applications and Future Research Directions
Machine learning (ML) is a rapidly evolving technology with expanding applications across various fields. This paper presents a comprehensive survey of recent ML applications in agriculture for sustainability and efficiency. Existing reviews mainly focus on narrow subdomains or lack a fusion-driven perspectives. This study provides a combined analysis of ML applications in agriculture, structured around five key objectives: (i) Analyzing ML techniques across pre-harvesting, harvesting, and post-harvesting phases. (ii) Demonstrating how ML can be used with agricultural data and data fusion. (iii) Conducting a bibliometric and statistical analysis to reveal research trends and activity. (iv) Investigating real-world case studies of leading artificial intelligence (AI)-driven agricultural companies that use different types of multisensors and multisource data. (v) Compiling publicly available datasets to support ML model training. Going beyond existing previous reviews, this review focuses on how machine learning (ML) techniques, combined with multi-source data fusion (integrating remote sensing, IoT, and climate analytics), enhance precision agriculture by improving predictive accuracy and decision-making. Case studies and statistical insights illustrate the evolving landscape of AI driven smart farming, while future research directions also discusses challenges associated with data fusion for heterogeneous datasets. This review bridges the gap between AI research and agricultural applications, offering a roadmap for researchers, industry professionals, and policymakers to harness information fusion and ML for advancing precision agriculture.
♻ ☆ Text-to-3D Generation using Jensen-Shannon Score Distillation
Score distillation sampling is an effective technique to generate 3D models from text prompts, utilizing pre-trained large-scale text-to-image diffusion models as guidance. However, the produced 3D assets tend to be over-saturating, over-smoothing, with limited diversity. These issues are results from a reverse Kullback-Leibler (KL) divergence objective, which makes the optimization unstable and results in mode-seeking behavior. In this paper, we derive a bounded score distillation objective based on Jensen-Shannon divergence (JSD), which stabilizes the optimization process and produces high-quality 3D generation. JSD can match well generated and target distribution, therefore mitigating mode seeking. We provide a practical implementation of JSD by utilizing the theory of generative adversarial networks to define an approximate objective function for the generator, assuming the discriminator is well trained. By assuming the discriminator following a log-odds classifier, we propose a minority sampling algorithm to estimate the gradients of our proposed objective, providing a practical implementation for JSD. We conduct both theoretical and empirical studies to validate our method. Experimental results on T3Bench demonstrate that our method can produce high-quality and diversified 3D assets.
♻ ☆ A RAG-based Question Answering System Proposal for Understanding Islam: MufassirQAS LLM
Challenges exist in learning and understanding religions, such as the complexity and depth of religious doctrines and teachings. Chatbots as question-answering systems can help in solving these challenges. LLM chatbots use NLP techniques to establish connections between topics and accurately respond to complex questions. These capabilities make it perfect for enlightenment on religion as a question-answering chatbot. However, LLMs also tend to generate false information, known as hallucination. Also, the chatbots' responses can include content that insults personal religious beliefs, interfaith conflicts, and controversial or sensitive topics. It must avoid such cases without promoting hate speech or offending certain groups of people or their beliefs. This study uses a vector database-based Retrieval Augmented Generation (RAG) approach to enhance the accuracy and transparency of LLMs. Our question-answering system is called "MufassirQAS". We created a database consisting of several open-access books that include Turkish context. These books contain Turkish translations and interpretations of Islam. This database is utilized to answer religion-related questions and ensure our answers are trustworthy. The relevant part of the dataset, which LLM also uses, is presented along with the answer. We have put careful effort into creating system prompts that give instructions to prevent harmful, offensive, or disrespectful responses to respect people's values and provide reliable results. The system answers and shares additional information, such as the page number from the respective book and the articles referenced for obtaining the information. MufassirQAS and ChatGPT are also tested with sensitive questions. We got better performance with our system. Study and enhancements are still in progress. Results and future works are given.
♻ ☆ Cosmos World Foundation Model Platform for Physical AI
Physical AI needs to be trained digitally first. It needs a digital twin of itself, the policy model, and a digital twin of the world, the world model. In this paper, we present the Cosmos World Foundation Model Platform to help developers build customized world models for their Physical AI setups. We position a world foundation model as a general-purpose world model that can be fine-tuned into customized world models for downstream applications. Our platform covers a video curation pipeline, pre-trained world foundation models, examples of post-training of pre-trained world foundation models, and video tokenizers. To help Physical AI builders solve the most critical problems of our society, we make Cosmos open-source and our models open-weight with permissive licenses available via https://github.com/nvidia-cosmos/cosmos-predict1.
♻ ☆ Navigating LLM Ethics: Advancements, Challenges, and Future Directions
This study addresses ethical issues surrounding Large Language Models (LLMs) within the field of artificial intelligence. It explores the common ethical challenges posed by both LLMs and other AI systems, such as privacy and fairness, as well as ethical challenges uniquely arising from LLMs. It highlights challenges such as hallucination, verifiable accountability, and decoding censorship complexity, which are unique to LLMs and distinct from those encountered in traditional AI systems. The study underscores the need to tackle these complexities to ensure accountability, reduce biases, and enhance transparency in the influential role that LLMs play in shaping information dissemination. It proposes mitigation strategies and future directions for LLM ethics, advocating for interdisciplinary collaboration. It recommends ethical frameworks tailored to specific domains and dynamic auditing systems adapted to diverse contexts. This roadmap aims to guide responsible development and integration of LLMs, envisioning a future where ethical considerations govern AI advancements in society.
♻ ☆ PULASki: Learning inter-rater variability using statistical distances to improve probabilistic segmentation
In the domain of medical imaging, many supervised learning based methods for segmentation face several challenges such as high variability in annotations from multiple experts, paucity of labelled data and class imbalanced datasets. These issues may result in segmentations that lack the requisite precision for clinical analysis and can be misleadingly overconfident without associated uncertainty quantification. This work proposes the PULASki method as a computationally efficient generative tool for biomedical image segmentation that accurately captures variability in expert annotations, even in small datasets. This approach makes use of an improved loss function based on statistical distances in a conditional variational autoencoder structure (Probabilistic UNet), which improves learning of the conditional decoder compared to the standard cross-entropy particularly in class imbalanced problems. The proposed method was analysed for two structurally different segmentation tasks (intracranial vessel and multiple sclerosis (MS) lesion) and compare our results to four well-established baselines in terms of quantitative metrics and qualitative output. These experiments involve class-imbalanced datasets characterised by challenging features, including suboptimal signal-to-noise ratios and high ambiguity. Empirical results demonstrate the PULASKi method outperforms all baselines at the 5\% significance level. Our experiments are also of the first to present a comparative study of the computationally feasible segmentation of complex geometries using 3D patches and the traditional use of 2D slices. The generated segmentations are shown to be much more anatomically plausible than in the 2D case, particularly for the vessel task.
♻ ☆ PQPP: A Joint Benchmark for Text-to-Image Prompt and Query Performance Prediction CVPR 2025
Text-to-image generation has recently emerged as a viable alternative to text-to-image retrieval, driven by the visually impressive results of generative diffusion models. Although query performance prediction is an active research topic in information retrieval, to the best of our knowledge, there is no prior study that analyzes the difficulty of queries (referred to as prompts) in text-to-image generation, based on human judgments. To this end, we introduce the first dataset of prompts which are manually annotated in terms of image generation performance. Additionally, we extend these evaluations to text-to-image retrieval by collecting manual annotations that represent retrieval performance. We thus establish the first joint benchmark for prompt and query performance prediction (PQPP) across both tasks, comprising over 10K queries. Our benchmark enables (i) the comparative assessment of prompt/query difficulty in both image generation and image retrieval, and (ii) the evaluation of prompt/query performance predictors addressing both generation and retrieval. We evaluate several pre- and post-generation/retrieval performance predictors, thus providing competitive baselines for future research. Our benchmark and code are publicly available at https://github.com/Eduard6421/PQPP.
comment: Accepted at CVPR 2025
♻ ☆ The global landscape of academic guidelines for generative AI and Large Language Models
The integration of Generative Artificial Intelligence (GAI) and Large Language Models (LLMs) in academia has spurred a global discourse on their potential pedagogical benefits and ethical considerations. Positive reactions highlight some potential, such as collaborative creativity, increased access to education, and empowerment of trainers and trainees. However, negative reactions raise concerns about ethical complexities, balancing innovation and academic integrity, unequal access, and misinformation risks. Through a systematic survey and text-mining-based analysis of global and national directives, insights from independent research, and eighty university-level guidelines, this study provides a nuanced understanding of the opportunities and challenges posed by GAI and LLMs in education. It emphasizes the importance of balanced approaches that harness the benefits of these technologies while addressing ethical considerations and ensuring equitable access and educational outcomes. The paper concludes with recommendations for fostering responsible innovation and ethical practices to guide the integration of GAI and LLMs in academia.
♻ ☆ Towards Aligning Language Models with Textual Feedback EMNLP 2024
We present ALT (ALignment with Textual feedback), an approach that aligns language models with user preferences expressed in text. We argue that text offers greater expressiveness, enabling users to provide richer feedback than simple comparative preferences and this richer feedback can lead to more efficient and effective alignment. ALT aligns the model by conditioning its generation on the textual feedback. Our method relies solely on language modeling techniques and requires minimal hyper-parameter tuning, though it still presents the main benefits of RL-based alignment algorithms and can effectively learn from textual feedback. We explore the efficacy and efficiency of textual feedback across different tasks such as toxicity reduction, summarization, and dialog response generation. We find that ALT outperforms PPO for the task of toxicity reduction while being able to match its performance on summarization with only 20% of the samples. We also explore how ALT can be used with feedback provided by an existing LLM where we explore an LLM providing constrained and unconstrained textual feedback. We also outline future directions to align models with natural language feedback.
comment: Accepted to EMNLP 2024
♻ ☆ Amuro and Char: Analyzing the Relationship between Pre-Training and Fine-Tuning of Large Language Models
The development of large language models leads to the formation of a pre-train-then-align paradigm, in which the model is typically pre-trained on a large text corpus and undergoes a tuning stage to align the model with human preference or downstream tasks. In this work, we investigate the relationship between pre-training and fine-tuning by fine-tuning multiple intermediate pre-trained model checkpoints. Our results on 18 datasets suggest that i) continual pre-training improves the model in a latent way that unveils after fine-tuning; ii) with extra fine-tuning, the datasets that the model does not demonstrate capability gain much more than those that the model performs well during the pre-training stage; iii) although model benefits significantly through supervised fine-tuning, it may forget previously known domain knowledge and the tasks that are not seen during fine-tuning; iv) the model resembles high sensitivity to evaluation prompts after supervised fine-tuning, but this sensitivity can be alleviated by more pre-training.
comment: Rep4NLP Camera Ready
♻ ☆ Conformal Prediction and Human Decision Making
Methods to quantify uncertainty in predictions from arbitrary models are in demand in high-stakes domains like medicine and finance. Conformal prediction has emerged as a popular method for producing a set of predictions with specified average coverage, in place of a single prediction and confidence value. However, the value of conformal prediction sets to assist human decisions remains elusive due to the murky relationship between coverage guarantees and decision makers' goals and strategies. How should we think about conformal prediction sets as a form of decision support? We outline a decision theoretic framework for evaluating predictive uncertainty as informative signals, then contrast what can be said within this framework about idealized use of calibrated probabilities versus conformal prediction sets. Informed by prior empirical results and theories of human decisions under uncertainty, we formalize a set of possible strategies by which a decision maker might use a prediction set. We identify ways in which conformal prediction sets and posthoc predictive uncertainty quantification more broadly are in tension with common goals and needs in human-AI decision making. We give recommendations for future research in predictive uncertainty quantification to support human decision makers.
♻ ☆ A Graph-Enhanced Deep-Reinforcement Learning Framework for the Aircraft Landing Problem
The Aircraft Landing Problem (ALP) is one of the challenging problems in aircraft transportation and management. The challenge is to schedule the arriving aircraft in a sequence so that the cost and delays are optimized. There are various solution approaches to solving this problem, most of which are based on operations research algorithms and meta-heuristics. Although traditional methods perform better on one or the other factors, there remains a problem of solving real-time rescheduling and computational scalability altogether. This paper presents a novel deep reinforcement learning (DRL) framework that combines graph neural networks with actor-critic architectures to address the ALP. This paper introduces three key contributions: A graph-based state representation that efficiently captures temporal and spatial relationships between aircraft, a specialized actor-critic architecture designed to handle multiple competing objectives in landing scheduling, and a runway balance strategy that ensures efficient resource utilization while maintaining safety constraints. The results show that the trained algorithm can be tested on different problem sets and the results are competitive to operation research algorithms. The experimental results on standard benchmark data sets demonstrate a 99.95% reduction in computational time compared to Mixed Integer Programming (MIP) and 38% higher runway throughput over First Come First Serve (FCFS) approaches. Therefore, the proposed solution is competitive to traditional approaches and achieves substantial advancements. Notably, it does not require retraining, making it particularly suitable for industrial deployment. The frameworks capability to generate solutions within 1 second enables real-time rescheduling, addressing critical requirements of air traffic management.
comment: 27 pages, submitted to ESWA, comments are welcome
♻ ☆ FlexDeMo: Decoupled Momentum Optimization for Hybrid Sharded Data Parallel Training
Training large neural network models requires extensive computational resources, often distributed across several nodes and accelerators. Recent findings suggest that it may be sufficient to only exchange the fast moving components of the gradients, while accumulating momentum locally (Decoupled Momentum, or DeMo). However, when considering larger models that do not fit on a single accelerator, the exchange of gradient information and the integration of DeMo needs to be reconsidered. Here, we propose employing a hybrid sharded data parallel training strategy, FlexDeMo, whereby nodes fully shard model parameters locally between different accelerators, while inter-node communication bandwidth requirements are reduced by synchronizing only fast-moving components instead of the full gradients. This effectively combines previous hybrid sharded strategies with the advantages of decoupled momentum. Our experimental results show that FlexDeMo is on par with hybrid sharded data parallel training employing AdamW and full gradient synchronization in terms of validation loss, demonstrating its viability. Furthermore, FlexDeMo achieves improved training speed compared to full gradient synchronization across nodes. In a bandwidth-constrained 2-node setup, FlexDeMo allows reaching desired levels of validation loss faster than hybrid sharded data parallel training with full gradient synchronization.
♻ ☆ Block Diffusion: Interpolating Between Autoregressive and Diffusion Language Models ICLR 2025
Diffusion language models offer unique benefits over autoregressive models due to their potential for parallelized generation and controllability, yet they lag in likelihood modeling and are limited to fixed-length generation. In this work, we introduce a class of block diffusion language models that interpolate between discrete denoising diffusion and autoregressive models. Block diffusion overcomes key limitations of both approaches by supporting flexible-length generation and improving inference efficiency with KV caching and parallel token sampling. We propose a recipe for building effective block diffusion models that includes an efficient training algorithm, estimators of gradient variance, and data-driven noise schedules to minimize the variance. Block diffusion sets a new state-of-the-art performance among diffusion models on language modeling benchmarks and enables generation of arbitrary-length sequences. We provide the code, along with the model weights and blog post on the project page: https://m-arriola.com/bd3lms/
comment: ICLR 2025 Oral. We provide the code at https://github.com/kuleshov-group/bd3lms
♻ ☆ A Conditional Independence Test in the Presence of Discretization
Testing conditional independence has many applications, such as in Bayesian network learning and causal discovery. Different test methods have been proposed. However, existing methods generally can not work when only discretized observations are available. Specifically, consider $X_1$, $\tilde{X}_2$ and $X_3$ are observed variables, where $\tilde{X}_2$ is a discretization of latent variables $X_2$. Applying existing test methods to the observations of $X_1$, $\tilde{X}_2$ and $X_3$ can lead to a false conclusion about the underlying conditional independence of variables $X_1$, $X_2$ and $X_3$. Motivated by this, we propose a conditional independence test specifically designed to accommodate the presence of such discretization. To achieve this, we design the bridge equations to recover the parameter reflecting the statistical information of the underlying latent continuous variables. An appropriate test statistic and its asymptotic distribution under the null hypothesis of conditional independence have also been derived. Both theoretical results and empirical validation have been provided, demonstrating the effectiveness of our test methods.
♻ ☆ The Shape of Attraction in UMAP: Exploring the Embedding Forces in Dimensionality Reduction
Uniform manifold approximation and projection (UMAP) is among the most popular neighbor embedding methods. The method relies on attractive and repulsive forces among high-dimensional data points to obtain a low-dimensional embedding. In this paper, we analyze the forces to reveal their effects on cluster formations and visualization. Repulsion emphasizes differences, controlling cluster boundaries and inter-cluster distance. Attraction is more subtle, as attractive tension between points can manifest simultaneously as attraction and repulsion in the lower-dimensional mapping. This explains the need for learning rate annealing and motivates the different treatments between attractive and repulsive terms. Moreover, by modifying attraction, we improve the consistency of cluster formation under random initialization. Overall, our analysis makes UMAP and similar embedding methods more interpretable, more robust, and more accurate.
comment: 9 page + appendix
♻ ☆ IMRL: Integrating Visual, Physical, Temporal, and Geometric Representations for Enhanced Food Acquisition
Robotic assistive feeding holds significant promise for improving the quality of life for individuals with eating disabilities. However, acquiring diverse food items under varying conditions and generalizing to unseen food presents unique challenges. Existing methods that rely on surface-level geometric information (e.g., bounding box and pose) derived from visual cues (e.g., color, shape, and texture) often lacks adaptability and robustness, especially when foods share similar physical properties but differ in visual appearance. We employ imitation learning (IL) to learn a policy for food acquisition. Existing methods employ IL or Reinforcement Learning (RL) to learn a policy based on off-the-shelf image encoders such as ResNet-50. However, such representations are not robust and struggle to generalize across diverse acquisition scenarios. To address these limitations, we propose a novel approach, IMRL (Integrated Multi-Dimensional Representation Learning), which integrates visual, physical, temporal, and geometric representations to enhance the robustness and generalizability of IL for food acquisition. Our approach captures food types and physical properties (e.g., solid, semi-solid, granular, liquid, and mixture), models temporal dynamics of acquisition actions, and introduces geometric information to determine optimal scooping points and assess bowl fullness. IMRL enables IL to adaptively adjust scooping strategies based on context, improving the robot's capability to handle diverse food acquisition scenarios. Experiments on a real robot demonstrate our approach's robustness and adaptability across various foods and bowl configurations, including zero-shot generalization to unseen settings. Our approach achieves improvement up to $35\%$ in success rate compared with the best-performing baseline. More details can be found on our website https://ruiiu.github.io/imrl.
♻ ☆ DreamRunner: Fine-Grained Compositional Story-to-Video Generation with Retrieval-Augmented Motion Adaptation
Storytelling video generation (SVG) aims to produce coherent and visually rich multi-scene videos that follow a structured narrative. Existing methods primarily employ LLM for high-level planning to decompose a story into scene-level descriptions, which are then independently generated and stitched together. However, these approaches struggle with generating high-quality videos aligned with the complex single-scene description, as visualizing such complex description involves coherent composition of multiple characters and events, complex motion synthesis and muti-character customization. To address these challenges, we propose DreamRunner, a novel story-to-video generation method: First, we structure the input script using a large language model (LLM) to facilitate both coarse-grained scene planning as well as fine-grained object-level layout and motion planning. Next, DreamRunner presents retrieval-augmented test-time adaptation to capture target motion priors for objects in each scene, supporting diverse motion customization based on retrieved videos, thus facilitating the generation of new videos with complex, scripted motions. Lastly, we propose a novel spatial-temporal region-based 3D attention and prior injection module SR3AI for fine-grained object-motion binding and frame-by-frame semantic control. We compare DreamRunner with various SVG baselines, demonstrating state-of-the-art performance in character consistency, text alignment, and smooth transitions. Additionally, DreamRunner exhibits strong fine-grained condition-following ability in compositional text-to-video generation, significantly outperforming baselines on T2V-ComBench. Finally, we validate DreamRunner's robust ability to generate multi-object interactions with qualitative examples.
comment: Project website: https://zunwang1.github.io/DreamRunner
♻ ☆ Influence functions and regularity tangents for efficient active learning
In this paper we describe an efficient method for providing a regression model with a sense of curiosity about its data. In the field of machine learning, our framework for representing curiosity is called Active Learning, which concerns the problem of automatically choosing data points for which to query labels in the semi-supervised setting. The methods we propose are based on computing a "regularity tangent" vector that can be calculated (with only a constant slow-down) together with the model's parameter vector during training. We then take the inner product of this tangent vector with the gradient vector of the model's loss at a given data point to obtain a measure of the influence of that point on the complexity of the model. In the simplest instantiation, there is only a single regularity tangent vector, of the same dimension as the parameter vector. Thus, in the proposed technique, once training is complete, evaluating our "curiosity" about a potential query data point can be done as quickly as calculating the model's loss gradient at that point. The new vector only doubles the amount of storage required by the model. We show that the quantity computed by our technique is an example of an "influence function", and that it measures the expected squared change in model complexity incurred by up-weighting a given data point. We propose a number of ways for using this and other related quantities to choose new training data points for a regression model.
comment: 37 pages, 4 figures
♻ ☆ VGFL-SA: Vertical Graph Federated Learning Structure Attack Based on Contrastive Learning
Graph Neural Networks (GNNs) have gained attention for their ability to learn representations from graph data. Due to privacy concerns and conflicts of interest that prevent clients from directly sharing graph data with one another, Vertical Graph Federated Learning (VGFL) frameworks have been developed. Recent studies have shown that VGFL is vulnerable to adversarial attacks that degrade performance. However, it is a common problem that client nodes are often unlabeled in the realm of VGFL. Consequently, the existing attacks, which rely on the availability of labeling information to obtain gradients, are inherently constrained in their applicability. This limitation precludes their deployment in practical, real-world environments. To address the above problems, we propose a novel graph adversarial attack against VGFL, referred to as VGFL-SA, to degrade the performance of VGFL by modifying the local clients structure without using labels. Specifically, VGFL-SA uses a contrastive learning method to complete the attack before the local clients are trained. VGFL-SA first accesses the graph structure and node feature information of the poisoned clients, and generates the contrastive views by node-degree-based edge augmentation and feature shuffling augmentation. Then, VGFL-SA uses the shared graph encoder to get the embedding of each view, and the gradients of the adjacency matrices are obtained by the contrastive function. Finally, perturbed edges are generated using gradient modification rules. We validated the performance of VGFL-SA by performing a node classification task on real-world datasets, and the results show that VGFL-SA achieves good attack effectiveness and transferability.
♻ ☆ BiTrack: Bidirectional Offline 3D Multi-Object Tracking Using Camera-LiDAR Data
Compared with real-time multi-object tracking (MOT), offline multi-object tracking (OMOT) has the advantages to perform 2D-3D detection fusion, erroneous link correction, and full track optimization but has to deal with the challenges from bounding box misalignment and track evaluation, editing, and refinement. This paper proposes "BiTrack", a 3D OMOT framework that includes modules of 2D-3D detection fusion, initial trajectory generation, and bidirectional trajectory re-optimization to achieve optimal tracking results from camera-LiDAR data. The novelty of this paper includes threefold: (1) development of a point-level object registration technique that employs a density-based similarity metric to achieve accurate fusion of 2D-3D detection results; (2) development of a set of data association and track management skills that utilizes a vertex-based similarity metric as well as false alarm rejection and track recovery mechanisms to generate reliable bidirectional object trajectories; (3) development of a trajectory re-optimization scheme that re-organizes track fragments of different fidelities in a greedy fashion, as well as refines each trajectory with completion and smoothing techniques. The experiment results on the KITTI dataset demonstrate that BiTrack achieves the state-of-the-art performance for 3D OMOT tasks in terms of accuracy and efficiency.
♻ ☆ Sublinear Regret for a Class of Continuous-Time Linear-Quadratic Reinforcement Learning Problems
We study reinforcement learning (RL) for a class of continuous-time linear-quadratic (LQ) control problems for diffusions, where states are scalar-valued and running control rewards are absent but volatilities of the state processes depend on both state and control variables. We apply a model-free approach that relies neither on knowledge of model parameters nor on their estimations, and devise an RL algorithm to learn the optimal policy parameter directly. Our main contributions include the introduction of an exploration schedule and a regret analysis of the proposed algorithm. We provide the convergence rate of the policy parameter to the optimal one, and prove that the algorithm achieves a regret bound of $O(N^{\frac{3}{4}})$ up to a logarithmic factor, where $N$ is the number of learning episodes. We conduct a simulation study to validate the theoretical results and demonstrate the effectiveness and reliability of the proposed algorithm. We also perform numerical comparisons between our method and those of the recent model-based stochastic LQ RL studies adapted to the state- and control-dependent volatility setting, demonstrating a better performance of the former in terms of regret bounds.
comment: 49 pages, 4 figures
♻ ☆ Multi-View Node Pruning for Accurate Graph Representation
Graph pooling, which compresses a whole graph into a smaller coarsened graph, is an essential component of graph representation learning. To efficiently compress a given graph, graph pooling methods often drop their nodes with attention-based scoring with the task loss. However, this often results in simply removing nodes with lower degrees without consideration of their feature-level relevance to the given task. To fix this problem, we propose a Multi-View Pruning(MVP), a graph pruning method based on a multi-view framework and reconstruction loss. Given a graph, MVP first constructs multiple graphs for different views either by utilizing the predefined modalities or by randomly partitioning the input features, to consider the importance of each node in diverse perspectives. Then, it learns the score for each node by considering both the reconstruction and the task loss. MVP can be incorporated with any hierarchical pooling framework to score the nodes. We validate MVP on multiple benchmark datasets by coupling it with two graph pooling methods, and show that it significantly improves the performance of the base graph pooling method, outperforming all baselines. Further analysis shows that both the encoding of multiple views and the consideration of reconstruction loss are the key to the success of MVP, and that it indeed identifies nodes that are less important according to domain knowledge.
comment: Jiseong Park and Hanjin Kim are co-first author for this work
♻ ☆ Multimodal Adversarial Defense for Vision-Language Models by Leveraging One-To-Many Relationships
Pre-trained vision-language (VL) models are highly vulnerable to adversarial attacks. However, existing defense methods primarily focus on image classification, overlooking two key aspects of VL tasks: multimodal attacks, where both image and text can be perturbed, and the one-to-many relationship of images and texts, where a single image can correspond to multiple textual descriptions and vice versa (1:N and N:1). This work is the first to explore defense strategies against multimodal attacks in VL tasks, whereas prior VL defense methods focus on vision robustness. We propose multimodal adversarial training (MAT), which incorporates adversarial perturbations in both image and text modalities during training, significantly outperforming existing unimodal defenses. Furthermore, we discover that MAT is limited by deterministic one-to-one (1:1) image-text pairs in VL training data. To address this, we conduct a comprehensive study on leveraging one-to-many relationships to enhance robustness, investigating diverse augmentation techniques. Our analysis shows that, for a more effective defense, augmented image-text pairs should be well-aligned, diverse, yet avoid distribution shift -- conditions overlooked by prior research. Our experiments show that MAT can effectively be applied to different VL models and tasks to improve adversarial robustness, outperforming previous efforts. Our code will be made public upon acceptance.
comment: Under review
♻ ☆ PIG: Physics-Informed Gaussians as Adaptive Parametric Mesh Representations ICLR 2025
The numerical approximation of partial differential equations (PDEs) using neural networks has seen significant advancements through Physics-Informed Neural Networks (PINNs). Despite their straightforward optimization framework and flexibility in implementing various PDEs, PINNs often suffer from limited accuracy due to the spectral bias of Multi-Layer Perceptrons (MLPs), which struggle to effectively learn high-frequency and nonlinear components. Recently, parametric mesh representations in combination with neural networks have been investigated as a promising approach to eliminate the inductive bias of MLPs. However, they usually require high-resolution grids and a large number of collocation points to achieve high accuracy while avoiding overfitting. In addition, the fixed positions of the mesh parameters restrict their flexibility, making accurate approximation of complex PDEs challenging. To overcome these limitations, we propose Physics-Informed Gaussians (PIGs), which combine feature embeddings using Gaussian functions with a lightweight neural network. Our approach uses trainable parameters for the mean and variance of each Gaussian, allowing for dynamic adjustment of their positions and shapes during training. This adaptability enables our model to optimally approximate PDE solutions, unlike models with fixed parameter positions. Furthermore, the proposed approach maintains the same optimization framework used in PINNs, allowing us to benefit from their excellent properties. Experimental results show the competitive performance of our model across various PDEs, demonstrating its potential as a robust tool for solving complex PDEs. Our project page is available at https://namgyukang.github.io/Physics-Informed-Gaussians/
comment: Accepted by ICLR 2025. Project page: https://namgyukang.github.io/Physics-Informed-Gaussians/
♻ ☆ Faithful and Plausible Natural Language Explanations for Image Classification: A Pipeline Approach EMNLP 2024
Existing explanation methods for image classification struggle to provide faithful and plausible explanations. This paper addresses this issue by proposing a post-hoc natural language explanation method that can be applied to any CNN-based classifier without altering its training process or affecting predictive performance. By analysing influential neurons and the corresponding activation maps, the method generates a faithful description of the classifier's decision process in the form of a structured meaning representation, which is then converted into text by a language model. Through this pipeline approach, the generated explanations are grounded in the neural network architecture, providing accurate insight into the classification process while remaining accessible to non-experts. Experimental results show that the NLEs constructed by our method are significantly more plausible and faithful. In particular, user interventions in the neural network structure (masking of neurons) are three times more effective than the baselines.
comment: Findings of EMNLP 2024
♻ ☆ MV-MATH: Evaluating Multimodal Math Reasoning in Multi-Visual Contexts
Multimodal Large Language Models (MLLMs) have shown promising capabilities in mathematical reasoning within visual contexts across various datasets. However, most existing multimodal math benchmarks are limited to single-visual contexts, which diverges from the multi-visual scenarios commonly encountered in real-world mathematical applications. To address this gap, we introduce MV-MATH: a meticulously curated dataset of 2,009 high-quality mathematical problems. Each problem integrates multiple images interleaved with text, derived from authentic K-12 scenarios, and enriched with detailed annotations. MV-MATH includes multiple-choice, free-form, and multi-step questions, covering 11 subject areas across 3 difficulty levels, and serves as a comprehensive and rigorous benchmark for assessing MLLMs' mathematical reasoning in multi-visual contexts. Through extensive experimentation, we observe that MLLMs encounter substantial challenges in multi-visual math tasks, with a considerable performance gap relative to human capabilities on MV-MATH. Furthermore, we analyze the performance and error patterns of various models, providing insights into MLLMs' mathematical reasoning capabilities within multi-visual settings.
comment: 47 pages
♻ ☆ The Problem of Coherence in Natural Language Explanations of Recommendations
Providing natural language explanations for recommendations is particularly useful from the perspective of a non-expert user. Although several methods for providing such explanations have recently been proposed, we argue that an important aspect of explanation quality has been overlooked in their experimental evaluation. Specifically, the coherence between generated text and predicted rating, which is a necessary condition for an explanation to be useful, is not properly captured by currently used evaluation measures. In this paper, we highlight the issue of explanation and prediction coherence by 1) presenting results from a manual verification of explanations generated by one of the state-of-the-art approaches 2) proposing a method of automatic coherence evaluation 3) introducing a new transformer-based method that aims to produce more coherent explanations than the state-of-the-art approaches 4) performing an experimental evaluation which demonstrates that this method significantly improves the explanation coherence without affecting the other aspects of recommendation performance.
comment: ECAI 2023
♻ ☆ VSTAR: Generative Temporal Nursing for Longer Dynamic Video Synthesis ICLR 2025
Despite tremendous progress in the field of text-to-video (T2V) synthesis, open-sourced T2V diffusion models struggle to generate longer videos with dynamically varying and evolving content. They tend to synthesize quasi-static videos, ignoring the necessary visual change-over-time implied in the text prompt. At the same time, scaling these models to enable longer, more dynamic video synthesis often remains computationally intractable. To address this challenge, we introduce the concept of Generative Temporal Nursing (GTN), where we aim to alter the generative process on the fly during inference to improve control over the temporal dynamics and enable generation of longer videos. We propose a method for GTN, dubbed VSTAR, which consists of two key ingredients: 1) Video Synopsis Prompting (VSP) - automatic generation of a video synopsis based on the original single prompt leveraging LLMs, which gives accurate textual guidance to different visual states of longer videos, and 2) Temporal Attention Regularization (TAR) - a regularization technique to refine the temporal attention units of the pre-trained T2V diffusion models, which enables control over the video dynamics. We experimentally showcase the superiority of the proposed approach in generating longer, visually appealing videos over existing open-sourced T2V models. We additionally analyze the temporal attention maps realized with and without VSTAR, demonstrating the importance of applying our method to mitigate neglect of the desired visual change over time.
comment: Accepted at ICLR 2025. Code: https://github.com/boschresearch/VSTAR and project page: https://yumengli007.github.io/VSTAR
♻ ☆ Curriculum Direct Preference Optimization for Diffusion and Consistency Models CVPR 2025
Direct Preference Optimization (DPO) has been proposed as an effective and efficient alternative to reinforcement learning from human feedback (RLHF). In this paper, we propose a novel and enhanced version of DPO based on curriculum learning for text-to-image generation. Our method is divided into two training stages. First, a ranking of the examples generated for each prompt is obtained by employing a reward model. Then, increasingly difficult pairs of examples are sampled and provided to a text-to-image generative (diffusion or consistency) model. Generated samples that are far apart in the ranking are considered to form easy pairs, while those that are close in the ranking form hard pairs. In other words, we use the rank difference between samples as a measure of difficulty. The sampled pairs are split into batches according to their difficulty levels, which are gradually used to train the generative model. Our approach, Curriculum DPO, is compared against state-of-the-art fine-tuning approaches on nine benchmarks, outperforming the competing methods in terms of text alignment, aesthetics and human preference. Our code is available at https://github.com/CroitoruAlin/Curriculum-DPO.
comment: Accepted at CVPR 2025
♻ ☆ Benchmarking Generative Models on Computational Thinking Tests in Elementary Visual Programming
Generative models have demonstrated human-level proficiency in various benchmarks across domains like programming, natural sciences, and general knowledge. Despite these promising results on competitive benchmarks, they still struggle with seemingly simple problem-solving tasks typically carried out by elementary-level students. How do state-of-the-art models perform on standardized programming-related tests designed to assess computational thinking and problem-solving skills at schools? In this paper, we curate a novel benchmark involving computational thinking tests grounded in elementary visual programming domains. Our initial results show that state-of-the-art models like GPT-4o and Llama3 barely match the performance of an average school student. To further boost the performance of these models, we fine-tune them using a novel synthetic data generation methodology. The key idea is to develop a comprehensive dataset using symbolic methods that capture different skill levels, ranging from recognition of visual elements to multi-choice quizzes to synthesis-style tasks. We showcase how various aspects of symbolic information in synthetic data help improve fine-tuned models' performance. We will release the full implementation and datasets to facilitate further research on enhancing computational thinking in generative models.
♻ ☆ Temporally Consistent Object-Centric Learning by Contrasting Slots CVPR 2025
Unsupervised object-centric learning from videos is a promising approach to extract structured representations from large, unlabeled collections of videos. To support downstream tasks like autonomous control, these representations must be both compositional and temporally consistent. Existing approaches based on recurrent processing often lack long-term stability across frames because their training objective does not enforce temporal consistency. In this work, we introduce a novel object-level temporal contrastive loss for video object-centric models that explicitly promotes temporal consistency. Our method significantly improves the temporal consistency of the learned object-centric representations, yielding more reliable video decompositions that facilitate challenging downstream tasks such as unsupervised object dynamics prediction. Furthermore, the inductive bias added by our loss strongly improves object discovery, leading to state-of-the-art results on both synthetic and real-world datasets, outperforming even weakly-supervised methods that leverage motion masks as additional cues.
comment: Published at CVPR 2025
♻ ☆ SPEQ: Offline Stabilization Phases for Efficient Q-Learning in High Update-To-Data Ratio Reinforcement Learning
High update-to-data (UTD) ratio algorithms in reinforcement learning (RL) improve sample efficiency but incur high computational costs, limiting real-world scalability. We propose Offline Stabilization Phases for Efficient Q-Learning (SPEQ), an RL algorithm that combines low-UTD online training with periodic offline stabilization phases. During these phases, Q-functions are fine-tuned with high UTD ratios on a fixed replay buffer, reducing redundant updates on suboptimal data. This structured training schedule optimally balances computational and sample efficiency, addressing the limitations of both high and low UTD ratio approaches. We empirically demonstrate that SPEQ requires from 40% to 99% fewer gradient updates and 27% to 78% less training time compared to state-of-the-art high UTD ratio methods while maintaining or surpassing their performance on the MuJoCo continuous control benchmark. Our findings highlight the potential of periodic stabilization phases as an effective alternative to conventional training schedules, paving the way for more scalable reinforcement learning solutions in real-world applications where computational resources are constrained.
♻ ☆ Emerging Synergies in Causality and Deep Generative Models: A Survey
In the field of artificial intelligence (AI), the quest to understand and model data-generating processes (DGPs) is of paramount importance. Deep generative models (DGMs) have proven adept in capturing complex data distributions but often fall short in generalization and interpretability. On the other hand, causality offers a structured lens to comprehend the mechanisms driving data generation and highlights the causal-effect dynamics inherent in these processes. While causality excels in interpretability and the ability to extrapolate, it grapples with intricacies of high-dimensional spaces. Recognizing the synergistic potential, we delve into the confluence of causality and DGMs. We elucidate the integration of causal principles within DGMs, investigate causal identification using DGMs, and navigate an emerging research frontier of causality in large-scale generative models, particularly generative large language models (LLMs). We offer insights into methodologies, highlight open challenges, and suggest future directions, positioning our comprehensive review as an essential guide in this swiftly emerging and evolving area.
♻ ☆ Data-Driven Semi-Supervised Machine Learning with Safety Indicators for Abnormal Driving Behavior Detection
Detecting abnormal driving behavior is critical for road traffic safety and the evaluation of drivers' behavior. With the advancement of machine learning (ML) algorithms and the accumulation of naturalistic driving data, many ML models have been adopted for abnormal driving behavior detection (also referred to in this paper as "anomalies"). Most existing ML-based detectors rely on (fully) supervised ML methods, which require substantial labeled data. However, ground truth labels are not always available in the real world, and labeling large amounts of data is tedious. Thus, there is a need to explore unsupervised or semi-supervised methods to make the anomaly detection process more feasible and efficient. To fill this research gap, this study analyzes large-scale real-world data revealing several abnormal driving behaviors (e.g., sudden acceleration, rapid lane-changing) and develops a hierarchical extreme learning machine (HELM)-based semi-supervised ML method using partly labeled data to detect the identified abnormal driving behaviors. Moreover, previous ML-based approaches predominantly utilized basic vehicle motion features (such as velocity and acceleration) to label and detect abnormal driving behaviors, while this study seeks to introduce event-level safety indicators as input features for ML models to improve detection performance. Results from extensive experiments demonstrate the effectiveness of the proposed semi-supervised ML model with the introduced safety indicators serving as important features. The proposed semi-supervised ML method outperforms other baseline semi-supervised or unsupervised methods: for example, it delivers the best accuracy at 99.58% and the best F1-score at 0.9913. The ablation study further highlights the significance of safety indicators for advancing the detection performance of abnormal driving behaviors.
comment: 16 pages, 10 figures, accepted by the 103rd Transportation Research Board (TRB) Annual Meeting, accepted and published by Transportation Research Record: Journal of the Transportation Research Board
♻ ☆ Retrieval Augmented Generation for Topic Modeling in Organizational Research: An Introduction with Empirical Demonstration
Analyzing textual data is the cornerstone of qualitative research. While traditional methods such as grounded theory and content analysis are widely used, they are labor-intensive and time-consuming. Topic modeling offers an automated complement. Yet, existing approaches, including LLM-based topic modeling, still struggle with issues such as high data preprocessing requirements, interpretability, and reliability. This paper introduces Agentic Retrieval-Augmented Generation (Agentic RAG) as a method for topic modeling with LLMs. It integrates three key components: (1) retrieval, enabling automatized access to external data beyond an LLM's pre-trained knowledge; (2) generation, leveraging LLM capabilities for text synthesis; and (3) agent-driven learning, iteratively refining retrieval and query formulation processes. To empirically validate Agentic RAG for topic modeling, we reanalyze a Twitter/X dataset, previously examined by Mu et al. (2024a). Our findings demonstrate that the approach is more efficient, interpretable and at the same time achieves higher reliability and validity in comparison to the standard machine learning approach but also in comparison to LLM prompting for topic modeling. These results highlight Agentic RAG's ability to generate semantically relevant and reproducible topics, positioning it as a robust, scalable, and transparent alternative for AI-driven qualitative research in leadership, managerial, and organizational research.
comment: 30 pages, 4 figures
♻ ☆ Why Do We Laugh? Annotation and Taxonomy Generation for Laughable Contexts in Spontaneous Text Conversation
Laughter serves as a multifaceted communicative signal in human interaction, yet its identification within dialogue presents a significant challenge for conversational AI systems. This study addresses this challenge by annotating laughable contexts in Japanese spontaneous text conversation data and developing a taxonomy to classify the underlying reasons for such contexts. Initially, multiple annotators manually labeled laughable contexts using a binary decision (laughable or non-laughable). Subsequently, an LLM was used to generate explanations for the binary annotations of laughable contexts, which were then categorized into a taxonomy comprising ten categories, including "Empathy and Affinity" and "Humor and Surprise," highlighting the diverse range of laughter-inducing scenarios. The study also evaluated GPT-4o's performance in recognizing the majority labels of laughable contexts, achieving an F1 score of 43.14%. These findings contribute to the advancement of conversational AI by establishing a foundation for more nuanced recognition and generation of laughter, ultimately fostering more natural and engaging human-AI interactions.
comment: This paper has been accepted for presentation at International Workshop on Spoken Dialogue Systems Technology 2025 (IWSDS 2025) and represents the author's version of the work
♻ ☆ Lost in Time: Clock and Calendar Understanding Challenges in Multimodal LLMs ICLR 2025
Understanding time from visual representations is a fundamental cognitive skill, yet it remains a challenge for multimodal large language models (MLLMs). In this work, we investigate the capabilities of MLLMs in interpreting time and date through analogue clocks and yearly calendars. To facilitate this, we curated a structured dataset comprising two subsets: 1) $\textit{ClockQA}$, which comprises various types of clock styles$-$standard, black-dial, no-second-hand, Roman numeral, and arrow-hand clocks$-$paired with time related questions; and 2) $\textit{CalendarQA}$, which consists of yearly calendar images with questions ranging from commonly known dates (e.g., Christmas, New Year's Day) to computationally derived ones (e.g., the 100th or 153rd day of the year). We aim to analyse how MLLMs can perform visual recognition, numerical reasoning, and temporal inference when presented with time-related visual data. Our evaluations show that despite recent advancements, reliably understanding time remains a significant challenge for MLLMs.
comment: Accepted at the ICLR 2025 Workshop on Reasoning and Planning for Large Language Models
♻ ☆ Crowdsource, Crawl, or Generate? Creating SEA-VL, a Multicultural Vision-Language Dataset for Southeast Asia
Southeast Asia (SEA) is a region of extraordinary linguistic and cultural diversity, yet it remains significantly underrepresented in vision-language (VL) research. This often results in artificial intelligence (AI) models that fail to capture SEA cultural nuances. To fill this gap, we present SEA-VL, an open-source initiative dedicated to developing high-quality, culturally relevant data for SEA languages. By involving contributors from SEA countries, SEA-VL aims to ensure better cultural relevance and diversity, fostering greater inclusivity of underrepresented languages in VL research. Beyond crowdsourcing, our initiative goes one step further in the exploration of the automatic collection of culturally relevant images through crawling and image generation. First, we find that image crawling achieves approximately ~85% cultural relevance while being more cost- and time-efficient than crowdsourcing. Second, despite the substantial progress in generative vision models, synthetic images remain unreliable in accurately reflecting SEA cultures. The generated images often fail to reflect the nuanced traditions and cultural contexts of the region. Collectively, we gather 1.28M SEA culturally-relevant images, more than 50 times larger than other existing datasets. Through SEA-VL, we aim to bridge the representation gap in SEA, fostering the development of more inclusive AI systems that authentically represent diverse cultures across SEA.
comment: [SEA-VL Dataset] https://huggingface.co/collections/SEACrowd/sea-vl-multicultural-vl-dataset-for-southeast-asia-67cf223d0c341d4ba2b236e7 [Appendix J] https://github.com/SEACrowd/seacrowd.github.io/blob/master/docs/SEA_VL_Appendix_J.pdf
♻ ☆ Beyond Generation: Unlocking Universal Editing via Self-Supervised Fine-Tuning
Recent advances in video generation have outpaced progress in video editing, which remains constrained by several limiting factors, namely: (a) the task's dependency on supervision severely limits generality, (b) an unnecessary artificial separation between the generation and editing task, and (c) the high computational costs of training a video model. In this work, we propose UES (Unlocking Universal Editing via Self-Supervision), a lightweight self-supervised fine-tuning strategy that transforms generation models into unified generation-editing systems through self-supervised semantic alignment. Our approach establishes a dual-conditioning mechanism where original video-text pairs jointly provide visual and textual semantics, enabling structured learning of intrinsic spatiotemporal correspondences. Key advantages include: (i) Universality through supervision-free adaptation to diverse editing tasks, (ii) Unification of generation and editing applicable to most text(+image)-to-video model, and (iii) Efficiency via lightweight fine-tune that reduces tunable parameters by 92.67%. To enable systematic evaluation, we introduce OmniBench-99, a comprehensive benchmark spanning 99 videos across humans/animals, environments, and objects, comprising 4 editing types and 8 scenarios. Extensive experiments show UES enables models without inherent editing capability to perform powerful and universal editing while preserving or even enhancing their original generation performance.
comment: Project: https://haroldchen19.github.io/UES-Page/
♻ ☆ Hypergraph Neural Networks through the Lens of Message Passing: A Common Perspective to Homophily and Architecture Design
Most of the current hypergraph learning methodologies and benchmarking datasets in the hypergraph realm are obtained by lifting procedures from their graph analogs, leading to overshadowing specific characteristics of hypergraphs. This paper attempts to confront some pending questions in that regard: Q1 Can the concept of homophily play a crucial role in Hypergraph Neural Networks (HNNs)? Q2 Is there room for improving current HNN architectures by carefully addressing specific characteristics of higher-order networks? Q3 Do existing datasets provide a meaningful benchmark for HNNs? To address them, we first introduce a novel conceptualization of homophily in higher-order networks based on a Message Passing (MP) scheme, unifying both the analytical examination and the modeling of higher-order networks. Further, we investigate some natural, yet mostly unexplored, strategies for processing higher-order structures within HNNs such as keeping hyperedge-dependent node representations, or performing node/hyperedge stochastic samplings, leading us to the most general MP formulation up to date -MultiSet-, as well as to an original architecture design, MultiSetMixer. Finally, we conduct an extensive set of experiments that contextualize our proposals and successfully provide insights about our inquiries.
comment: This work has been published in Transactions on Machine Learning Research (TMLR). Please cite the journal version: https://openreview.net/forum?id=8rxtL0kZnX Link to bib: https://jmlr.org/tmlr/papers/bib/8rxtL0kZnX.bib
♻ ☆ CueTip: An Interactive and Explainable Physics-aware Pool Assistant
We present an interactive and explainable automated coaching assistant called CueTip for a variant of pool/billiards. CueTip's novelty lies in its combination of three features: a natural-language interface, an ability to perform contextual, physics-aware reasoning, and that its explanations are rooted in a set of predetermined guidelines developed by domain experts. We instrument a physics simulator so that it generates event traces in natural language alongside traditional state traces. Event traces lend themselves to interpretation by language models, which serve as the interface to our assistant. We design and train a neural adaptor that decouples tactical choices made by CueTip from its interactivity and explainability allowing it to be reconfigured to mimic any pool playing agent. Our experiments show that CueTip enables contextual query-based assistance and explanations while maintaining the strength of the agent in terms of win rate (improving it in some situations). The explanations generated by CueTip are physically-aware and grounded in the expert rules and are therefore more reliable.
♻ ☆ QuLTSF: Long-Term Time Series Forecasting with Quantum Machine Learning
Long-term time series forecasting (LTSF) involves predicting a large number of future values of a time series based on the past values. This is an essential task in a wide range of domains including weather forecasting, stock market analysis and disease outbreak prediction. Over the decades LTSF algorithms have transitioned from statistical models to deep learning models like transformer models. Despite the complex architecture of transformer based LTSF models `Are Transformers Effective for Time Series Forecasting? (Zeng et al., 2023)' showed that simple linear models can outperform the state-of-the-art transformer based LTSF models. Recently, quantum machine learning (QML) is evolving as a domain to enhance the capabilities of classical machine learning models. In this paper we initiate the application of QML to LTSF problems by proposing QuLTSF, a simple hybrid QML model for multivariate LTSF. Through extensive experiments on a widely used weather dataset we show the advantages of QuLTSF over the state-of-the-art classical linear models, in terms of reduced mean squared error and mean absolute error.
comment: Published in ICAART 2025
♻ ☆ Sparse Autoencoder as a Zero-Shot Classifier for Concept Erasing in Text-to-Image Diffusion Models
Text-to-image (T2I) diffusion models have achieved remarkable progress in generating high-quality images but also raise people's concerns about generating harmful or misleading content. While extensive approaches have been proposed to erase unwanted concepts without requiring retraining from scratch, they inadvertently degrade performance on normal generation tasks. In this work, we propose Interpret then Deactivate (ItD), a novel framework to enable precise concept removal in T2I diffusion models while preserving overall performance. ItD first employs a sparse autoencoder (SAE) to interpret each concept as a combination of multiple features. By permanently deactivating the specific features associated with target concepts, we repurpose SAE as a zero-shot classifier that identifies whether the input prompt includes target concepts, allowing selective concept erasure in diffusion models. Moreover, we demonstrate that ItD can be easily extended to erase multiple concepts without requiring further training. Comprehensive experiments across celebrity identities, artistic styles, and explicit content demonstrate ItD's effectiveness in eliminating targeted concepts without interfering with normal concept generation. Additionally, ItD is also robust against adversarial prompts designed to circumvent content filters. Code is available at: https://github.com/NANSirun/Interpret-then-deactivate.
comment: 25 pages
♻ ☆ Tuning LLM Judge Design Decisions for 1/1000 of the Cost
Evaluating Large Language Models (LLMs) often requires costly human annotations. To address this, LLM-based judges have been proposed, which compare the outputs of two LLMs enabling the ranking of models without human intervention. While several approaches have been proposed, many confounding factors are present between different papers. For instance the model, the prompt and other hyperparameters are typically changed at the same time making apple-to-apple comparisons challenging. In this paper, we propose to systematically analyze and tune hyperparameter of LLM judges. To alleviate the high cost of evaluating a judge, we propose to leverage multi-objective multi-fidelity which allows to find judges that trades accuracy for cost and also reduce significantly the cost of the search. Our method identifies judges that not only outperform existing benchmarks in accuracy and cost-efficiency but also utilize open-weight models, ensuring greater accessibility and reproducibility.
♻ ☆ Evaluating the Posterior Sampling Ability of Plug&Play Diffusion Methods in Sparse-View CT
Plug&Play (PnP) diffusion models are state-of-the-art methods in computed tomography (CT) reconstruction. Such methods usually consider applications where the sinogram contains a sufficient amount of information for the posterior distribution to be concentrated around a single mode, and consequently are evaluated using image-to-image metrics such as PSNR/SSIM. Instead, we are interested in reconstructing compressible flow images from sinograms having a small number of projections, which results in a posterior distribution no longer concentrated or even multimodal. Thus, in this paper, we aim at evaluating the approximate posterior of PnP diffusion models and introduce two posterior evaluation properties. We quantitatively evaluate three PnP diffusion methods on three different datasets for several numbers of projections. We surprisingly find that, for each method, the approximate posterior deviates from the true posterior when the number of projections decreases.
♻ ☆ PaCoST: Paired Confidence Significance Testing for Benchmark Contamination Detection in Large Language Models EMNLP 2024
Large language models (LLMs) are known to be trained on vast amounts of data, which may unintentionally or intentionally include data from commonly used benchmarks. This inclusion can lead to cheatingly high scores on model leaderboards, yet result in disappointing performance in real-world applications. To address this benchmark contamination problem, we first propose a set of requirements that practical contamination detection methods should follow. Following these proposed requirements, we introduce PaCoST, a Paired Confidence Significance Testing to effectively detect benchmark contamination in LLMs. Our method constructs a counterpart for each piece of data with the same distribution, and performs statistical analysis of the corresponding confidence to test whether the model is significantly more confident under the original benchmark. We validate the effectiveness of PaCoST and apply it on popular open-source models and benchmarks. We find that almost all models and benchmarks we tested are suspected contaminated more or less. We finally call for new LLM evaluation methods.
comment: Accepted by EMNLP 2024 Findings
♻ ☆ Improving Generalization of Neural Vehicle Routing Problem Solvers Through the Lens of Model Architecture
Neural models produce promising results when solving Vehicle Routing Problems (VRPs), but often fall short in generalization. Recent attempts to enhance model generalization often incur unnecessarily large training cost or cannot be directly applied to other models solving different VRP variants. To address these issues, we take a novel perspective on model architecture in this study. Specifically, we propose a plug-and-play Entropy-based Scaling Factor (ESF) and a Distribution-Specific (DS) decoder to enhance the size and distribution generalization, respectively. ESF adjusts the attention weight pattern of the model towards familiar ones discovered during training when solving VRPs of varying sizes. The DS decoder explicitly models VRPs of multiple training distribution patterns through multiple auxiliary light decoders, expanding the model representation space to encompass a broader range of distributional scenarios. We conduct extensive experiments on both synthetic and widely recognized real-world benchmarking datasets and compare the performance with seven baseline models. The results demonstrate the effectiveness of using ESF and DS decoder to obtain a more generalizable model and showcase their applicability to solve different VRP variants, i.e., travelling salesman problem and capacitated VRP. Notably, our proposed generic components require minimal computational resources, and can be effortlessly integrated into conventional generalization strategies to further elevate model generalization.
comment: This work has been accepted by Neural Networks
♻ ☆ OpenReviewer: A Specialized Large Language Model for Generating Critical Scientific Paper Reviews NAACL 2025
We present OpenReviewer, an open-source system for generating high-quality peer reviews of machine learning and AI conference papers. At its core is Llama-OpenReviewer-8B, an 8B parameter language model specifically fine-tuned on 79,000 expert reviews from top conferences. Given a PDF paper submission and review template as input, OpenReviewer extracts the full text, including technical content like equations and tables, and generates a structured review following conference-specific guidelines. Our evaluation on 400 test papers shows that OpenReviewer produces considerably more critical and realistic reviews compared to general-purpose LLMs like GPT-4 and Claude-3.5. While other LLMs tend toward overly positive assessments, OpenReviewer's recommendations closely match the distribution of human reviewer ratings. The system provides authors with rapid, constructive feedback to improve their manuscripts before submission, though it is not intended to replace human peer review. OpenReviewer is available as an online demo and open-source tool.
comment: NAACL 2025 System Demonstrations Track (Camera-ready version) Demo: https://huggingface.co/spaces/maxidl/openreviewer Model: https://huggingface.co/maxidl/Llama-OpenReviewer-8B
♻ ☆ R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning
Existing Large Reasoning Models (LRMs) have shown the potential of reinforcement learning (RL) to enhance the complex reasoning capabilities of Large Language Models~(LLMs). While they achieve remarkable performance on challenging tasks such as mathematics and coding, they often rely on their internal knowledge to solve problems, which can be inadequate for time-sensitive or knowledge-intensive questions, leading to inaccuracies and hallucinations. To address this, we propose \textbf{R1-Searcher}, a novel two-stage outcome-based RL approach designed to enhance the search capabilities of LLMs. This method allows LLMs to autonomously invoke external search systems to access additional knowledge during the reasoning process. Our framework relies exclusively on RL, without requiring process rewards or distillation for a cold start. % effectively generalizing to out-of-domain datasets and supporting both Base and Instruct models. Our experiments demonstrate that our method significantly outperforms previous strong RAG methods, even when compared to the closed-source GPT-4o-mini.
♻ ☆ Efficient Last-iterate Convergence Algorithms in Solving Games
To establish last-iterate convergence for Counterfactual Regret Minimization (CFR) algorithms in learning a Nash equilibrium (NE) of extensive-form games (EFGs), recent studies reformulate learning an NE of the original EFG as learning the NEs of a sequence of (perturbed) regularized EFGs. Consequently, proving last-iterate convergence in solving the original EFG reduces to proving last-iterate convergence in solving (perturbed) regularized EFGs. However, the empirical convergence rates of the algorithms in these studies are suboptimal, since they do not utilize Regret Matching (RM)-based CFR algorithms to solve perturbed EFGs, which are known the exceptionally fast empirical convergence rates. Additionally, since solving multiple perturbed regularized EFGs is required, fine-tuning across all such games is infeasible, making parameter-free algorithms highly desirable. In this paper, we prove that CFR$^+$, a classical parameter-free RM-based CFR algorithm, achieves last-iterate convergence in learning an NE of perturbed regularized EFGs. Leveraging CFR$^+$ to solve perturbed regularized EFGs, we get Reward Transformation CFR$^+$ (RTCFR$^+$). Importantly, we extend prior work on the parameter-free property of CFR$^+$, enhancing its stability, which is crucial for the empirical convergence of RTCFR$^+$. Experiments show that RTCFR$^+$ significantly outperforms existing algorithms with theoretical last-iterate convergence guarantees.
♻ ☆ Domain-Independent Dynamic Programming
For combinatorial optimization problems, model-based paradigms such as mixed-integer programming (MIP) and constraint programming (CP) aim to decouple modeling and solving a problem: the `holy grail' of declarative problem solving. We propose domain-independent dynamic programming (DIDP), a novel model-based paradigm based on dynamic programming (DP). While DP is not new, it has typically been implemented as a problem-specific method. We introduce Dynamic Programming Description Language (DyPDL), a formalism to define DP models based on a state transition system, inspired by artificial intelligence (AI) planning. we show that heuristic search algorithms can be used to solve DyPDL models and propose seven DIDP solvers. We experimentally compare our DIDP solvers with commercial MIP and CP solvers (solving MIP and CP models, respectively) on common benchmark instances of eleven combinatorial optimization problem classes. We show that DIDP outperforms MIP in nine problem classes, CP also in nine problem classes, and both MIP and CP in seven. DIDP also achieves superior performance to existing state-based solvers including domain-independent AI planners.
comment: Manuscript submitted to Artificial Intelligence
♻ ☆ 3D-MolT5: Leveraging Discrete Structural Information for Molecule-Text Modeling ICLR 2025
The integration of molecular and natural language representations has emerged as a focal point in molecular science, with recent advancements in Language Models (LMs) demonstrating significant potential for comprehensive modeling of both domains. However, existing approaches face notable limitations, particularly in their neglect of three-dimensional (3D) information, which is crucial for understanding molecular structures and functions. While some efforts have been made to incorporate 3D molecular information into LMs using external structure encoding modules, significant difficulties remain, such as insufficient interaction across modalities in pre-training and challenges in modality alignment. To address the limitations, we propose \textbf{3D-MolT5}, a unified framework designed to model molecule in both sequence and 3D structure spaces. The key innovation of our approach lies in mapping fine-grained 3D substructure representations into a specialized 3D token vocabulary. This methodology facilitates the seamless integration of sequence and structure representations in a tokenized format, enabling 3D-MolT5 to encode molecular sequences, molecular structures, and text sequences within a unified architecture. Leveraging this tokenized input strategy, we build a foundation model that unifies the sequence and structure data formats. We then conduct joint pre-training with multi-task objectives to enhance the model's comprehension of these diverse modalities within a shared representation space. Thus, our approach significantly improves cross-modal interaction and alignment, addressing key challenges in previous work. Further instruction tuning demonstrated that our 3D-MolT5 has strong generalization ability and surpasses existing methods with superior performance in multiple downstream tasks. Our code is available at https://github.com/QizhiPei/3D-MolT5.
comment: Accepted by ICLR 2025
♻ ☆ VISCO: Benchmarking Fine-Grained Critique and Correction Towards Self-Improvement in Visual Reasoning CVPR 2025
The ability of large vision-language models (LVLMs) to critique and correct their reasoning is an essential building block towards their self-improvement. However, a systematic analysis of such capabilities in LVLMs is still lacking. We propose VISCO, the first benchmark to extensively analyze the fine-grained critique and correction capabilities of LVLMs. Compared to existing work that uses a single scalar value to critique the entire reasoning [4], VISCO features dense and fine-grained critique, requiring LVLMs to evaluate the correctness of each step in the chain-of-thought and provide natural language explanations to support their judgments. Extensive evaluation of 24 LVLMs demonstrates that human-written critiques significantly enhance the performance after correction, showcasing the potential of the self-improvement strategy. However, the model-generated critiques are less helpful and sometimes detrimental to the performance, suggesting that critique is the crucial bottleneck. We identified three common patterns in critique failures: failure to critique visual perception, reluctance to "say no", and exaggerated assumption of error propagation. To address these issues, we propose an effective LookBack strategy that revisits the image to verify each piece of information in the initial reasoning. LookBack significantly improves critique and correction performance by up to 13.5%.
comment: CVPR 2025. https://visco-benchmark.github.io/
♻ ☆ MoVE-KD: Knowledge Distillation for VLMs with Mixture of Visual Encoders CVPR 2025
Visual encoders are fundamental components in vision-language models (VLMs), each showcasing unique strengths derived from various pre-trained visual foundation models. To leverage the various capabilities of these encoders, recent studies incorporate multiple encoders within a single VLM, leading to a considerable increase in computational cost. In this paper, we present Mixture-of-Visual-Encoder Knowledge Distillation (MoVE-KD), a novel framework that distills the unique proficiencies of multiple vision encoders into a single, efficient encoder model. Specifically, to mitigate conflicts and retain the unique characteristics of each teacher encoder, we employ low-rank adaptation (LoRA) and mixture-of-experts (MoEs) to selectively activate specialized knowledge based on input features, enhancing both adaptability and efficiency. To regularize the KD process and enhance performance, we propose an attention-based distillation strategy that adaptively weighs the different encoders and emphasizes valuable visual tokens, reducing the burden of replicating comprehensive but distinct features from multiple teachers. Comprehensive experiments on popular VLMs, such as LLaVA and LLaVA-NeXT, validate the effectiveness of our method. Our code is available at: https://github.com/hey-cjj/MoVE-KD.
comment: Accepted by CVPR 2025
♻ ☆ TFG-Flow: Training-free Guidance in Multimodal Generative Flow
Given an unconditional generative model and a predictor for a target property (e.g., a classifier), the goal of training-free guidance is to generate samples with desirable target properties without additional training. As a highly efficient technique for steering generative models toward flexible outcomes, training-free guidance has gained increasing attention in diffusion models. However, existing methods only handle data in continuous spaces, while many scientific applications involve both continuous and discrete data (referred to as multimodality). Another emerging trend is the growing use of the simple and general flow matching framework in building generative foundation models, where guided generation remains under-explored. To address this, we introduce TFG-Flow, a novel training-free guidance method for multimodal generative flow. TFG-Flow addresses the curse-of-dimensionality while maintaining the property of unbiased sampling in guiding discrete variables. We validate TFG-Flow on four molecular design tasks and show that TFG-Flow has great potential in drug design by generating molecules with desired properties.
♻ ☆ PIMRL: Physics-Informed Multi-Scale Recurrent Learning for Spatiotemporal Prediction
Simulation of spatiotemporal systems governed by partial differential equations is widely applied in fields such as biology, chemistry, aerospace dynamics, and meteorology. Traditional numerical methods incur high computational costs due to the requirement of small time steps for accurate predictions. While machine learning has reduced these costs, long-term predictions remain challenged by error accumulation, particularly in scenarios with insufficient data or varying time scales, where stability and accuracy are compromised. Existing methods often neglect the effective utilization of multi-scale data, leading to suboptimal robustness in predictions. To address these issues, we propose a novel multi-scale learning framework, namely, the Physics-Informed Multi-Scale Recurrent Learning (PIMRL), to effectively leverage multi-scale data for spatiotemporal dynamics prediction. The PIMRL framework comprises two modules: the micro-scale module embeds physical knowledge into neural networks via pretraining, and the macro-scale module adopts a data-driven approach to learn the temporal evolution of physics in the latent space. Experimental results demonstrate that the PIMRL framework consistently achieves state-of-the-art performance across five benchmark datasets ranging from one to three dimensions, showing average improvements of over 9\% in both RMSE and MAE evaluation metrics, with maximum enhancements reaching up to 80%.
♻ ☆ Adversarial Training for Multimodal Large Language Models against Jailbreak Attacks
Multimodal large language models (MLLMs) have made remarkable strides in cross-modal comprehension and generation tasks. However, they remain vulnerable to jailbreak attacks, where crafted perturbations bypass security guardrails and elicit harmful outputs. In this paper, we present the first adversarial training (AT) paradigm tailored to defend against jailbreak attacks during the MLLM training phase. Extending traditional AT to this domain poses two critical challenges: efficiently tuning massive parameters and ensuring robustness against attacks across multiple modalities. To address these challenges, we introduce Projection Layer Against Adversarial Training (ProEAT), an end-to-end AT framework. ProEAT incorporates a projector-based adversarial training architecture that efficiently handles large-scale parameters while maintaining computational feasibility by focusing adversarial training on a lightweight projector layer instead of the entire model; additionally, we design a dynamic weight adjustment mechanism that optimizes the loss function's weight allocation based on task demands, streamlining the tuning process. To enhance defense performance, we propose a joint optimization strategy across visual and textual modalities, ensuring robust resistance to jailbreak attacks originating from either modality. Extensive experiments conducted on five major jailbreak attack methods across three mainstream MLLMs demonstrate the effectiveness of our approach. ProEAT achieves state-of-the-art defense performance, outperforming existing baselines by an average margin of +34% across text and image modalities, while incurring only a 1% reduction in clean accuracy. Furthermore, evaluations on real-world embodied intelligent systems highlight the practical applicability of our framework, paving the way for the development of more secure and reliable multimodal systems.
♻ ☆ Towards Neural Scaling Laws for Time Series Foundation Models ICLR 2025
Scaling laws offer valuable insights into the design of time series foundation models (TSFMs). However, previous research has largely focused on the scaling laws of TSFMs for in-distribution (ID) data, leaving their out-of-distribution (OOD) scaling behavior and the influence of model architectures less explored. In this work, we examine two common TSFM architectures, encoder-only and decoder-only Transformers, and investigate their scaling behavior on both ID and OOD data. These models are trained and evaluated across varying parameter counts, compute budgets, and dataset sizes. Our experiments reveal that the log-likelihood loss of TSFMs exhibits similar scaling behavior in both OOD and ID settings. We further compare the scaling properties across different architectures, incorporating two state-of-the-art TSFMs as case studies, showing that model architecture plays a significant role in scaling. The encoder-only Transformers demonstrate better scalability than the decoder-only Transformers, while the architectural enhancements in the two advanced TSFMs primarily improve ID performance but reduce OOD scalability. While scaling up TSFMs is expected to drive performance breakthroughs, the lack of a comprehensive understanding of TSFM scaling laws has hindered the development of a robust framework to guide model scaling. We fill this gap in this work by synthesizing our findings and providing practical guidelines for designing and scaling larger TSFMs with enhanced model capabilities.
comment: Accepted by the 13th International Conference on Learning Representations (ICLR 2025)
♻ ☆ An LLM Benchmark for Addressee Recognition in Multi-modal Multi-party Dialogue
Handling multi-party dialogues represents a significant step for advancing spoken dialogue systems, necessitating the development of tasks specific to multi-party interactions. To address this challenge, we are constructing a multi-modal multi-party dialogue corpus of triadic (three-participant) discussions. This paper focuses on the task of addressee recognition, identifying who is being addressed to take the next turn, a critical component unique to multi-party dialogue systems. A subset of the corpus was annotated with addressee information, revealing that explicit addressees are indicated in approximately 20% of conversational turns. To evaluate the task's complexity, we benchmarked the performance of a large language model (GPT-4o) on addressee recognition. The results showed that GPT-4o achieved an accuracy only marginally above chance, underscoring the challenges of addressee recognition in multi-party dialogue. These findings highlight the need for further research to enhance the capabilities of large language models in understanding and navigating the intricacies of multi-party conversational dynamics.
comment: This paper has been accepted for presentation at International Workshop on Spoken Dialogue Systems Technology 2025 (IWSDS 2025) and represents the author's version of the work
♻ ☆ Is Linear Feedback on Smoothed Dynamics Sufficient for Stabilizing Contact-Rich Plans? ICRA2025
Designing planners and controllers for contact-rich manipulation is extremely challenging as contact violates the smoothness conditions that many gradient-based controller synthesis tools assume. Contact smoothing approximates a non-smooth system with a smooth one, allowing one to use these synthesis tools more effectively. However, applying classical control synthesis methods to smoothed contact dynamics remains relatively under-explored. This paper analyzes the efficacy of linear controller synthesis using differential simulators based on contact smoothing. We introduce natural baselines for leveraging contact smoothing to compute (a) open-loop plans robust to uncertain conditions and/or dynamics, and (b) feedback gains to stabilize around open-loop plans. Using robotic bimanual whole-body manipulation as a testbed, we perform extensive empirical experiments on over 300 trajectories and analyze why LQR seems insufficient for stabilizing contact-rich plans. The video summarizing this paper and hardware experiments is found here: https://youtu.be/HLaKi6qbwQg?si=_zCAmBBD6rGSitm9.
comment: ICRA2025
♻ ☆ Semi-Supervised Semantic Segmentation Based on Pseudo-Labels: A Survey
Semantic segmentation is an important and popular research area in computer vision that focuses on classifying pixels in an image based on their semantics. However, supervised deep learning requires large amounts of data to train models and the process of labeling images pixel by pixel is time-consuming and laborious. This review aims to provide a first comprehensive and organized overview of the state-of-the-art research results on pseudo-label methods in the field of semi-supervised semantic segmentation, which we categorize from different perspectives and present specific methods for specific application areas. In addition, we explore the application of pseudo-label technology in medical and remote-sensing image segmentation. Finally, we also propose some feasible future research directions to address the existing challenges.
comment: Accepted by IEEE Transactions on Circuits and Systems for Video Technology(TCSVT)
♻ ☆ Correcting Noisy Multilabel Predictions: Modeling Label Noise through Latent Space Shifts
Noise in data appears to be inevitable in most real-world machine learning applications and would cause severe overfitting problems. Not only can data features contain noise, but labels are also prone to be noisy due to human input. In this paper, rather than noisy label learning in multiclass classifications, we instead focus on the less explored area of noisy label learning for multilabel classifications. Specifically, we investigate the post-correction of predictions generated from classifiers learned with noisy labels. The reasons are two-fold. Firstly, this approach can directly work with the trained models to save computational resources. Secondly, it could be applied on top of other noisy label correction techniques to achieve further improvements. To handle this problem, we appeal to deep generative approaches that are possible for uncertainty estimation. Our model posits that label noise arises from a stochastic shift in the latent variable, providing a more robust and beneficial means for noisy learning. We develop both unsupervised and semi-supervised learning methods for our model. The extensive empirical study presents solid evidence to that our approach is able to consistently improve the independent models and performs better than a number of existing methods across various noisy label settings. Moreover, a comprehensive empirical analysis of the proposed method is carried out to validate its robustness, including sensitivity analysis and an ablation study, among other elements.
♻ ☆ Extending Structural Causal Models for Autonomous Vehicles to Simplify Temporal System Construction & Enable Dynamic Interactions Between Agents
In this work we aim to bridge the divide between autonomous vehicles and causal reasoning. Autonomous vehicles have come to increasingly interact with human drivers, and in many cases may pose risks to the physical or mental well-being of those they interact with. Meanwhile causal models, despite their inherent transparency and ability to offer contrastive explanations, have found limited usage within such systems. As such, we first identify the challenges that have limited the integration of structural causal models within autonomous vehicles. We then introduce a number of theoretical extensions to the structural causal model formalism in order to tackle these challenges. This augments these models to possess greater levels of modularisation and encapsulation, as well presenting temporal causal model representation with constant space complexity. We also prove through the extensions we have introduced that dynamically mutable sets (e.g. varying numbers of autonomous vehicles across time) can be used within a structural causal model while maintaining a relaxed form of causal stationarity. Finally we discuss the application of the extensions in the context of the autonomous vehicle and service robotics domain along with potential directions for future work.
comment: 30 Pages = 13 Pages (Main Content) + 4 Pages (References) + 13 Pages (Appendix), 15 Figures = 5 Figures (Main Content) + 10 (Appendix), To be published in the Proceedings of the 2025 Causal Learning and Reasoning Conference, Update upload of accepted paper version
♻ ☆ Generative AI in Transportation Planning: A Survey
The integration of generative artificial intelligence (GenAI) into transportation planning has the potential to revolutionize tasks such as demand forecasting, infrastructure design, policy evaluation, and traffic simulation. However, there is a critical need for a systematic framework to guide the adoption of GenAI in this interdisciplinary domain. In this survey, we, a multidisciplinary team of researchers spanning computer science and transportation engineering, present the first comprehensive framework for leveraging GenAI in transportation planning. Specifically, we introduce a new taxonomy that categorizes existing applications and methodologies into two perspectives: transportation planning tasks and computational techniques. From the transportation planning perspective, we examine the role of GenAI in automating descriptive, predictive, generative, simulation, and explainable tasks to enhance mobility systems. From the computational perspective, we detail advancements in data preparation, domain-specific fine-tuning, and inference strategies, such as retrieval-augmented generation and zero-shot learning tailored to transportation applications. Additionally, we address critical challenges, including data scarcity, explainability, bias mitigation, and the development of domain-specific evaluation frameworks that align with transportation goals like sustainability, equity, and system efficiency. This survey aims to bridge the gap between traditional transportation planning methodologies and modern AI techniques, fostering collaboration and innovation. By addressing these challenges and opportunities, we seek to inspire future research that ensures ethical, equitable, and impactful use of generative AI in transportation planning.
comment: 55 pages
♻ ☆ SagaLLM: Context Management, Validation, and Transaction Guarantees for Multi-Agent LLM Planning
Recent LLM-based agent frameworks have demonstrated impressive capabilities in task delegation and workflow orchestration, but face significant challenges in maintaining context awareness and ensuring planning consistency. This paper presents SagaLLM, a structured multi-agent framework that addresses four fundamental limitations in current LLM approaches: inadequate self-validation, context narrowing, lacking transaction properties, and insufficient inter-agent coordination. By implementing specialized context management agents and validation protocols, SagaLLM preserves critical constraints and state information throughout complex planning processes, enabling robust and consistent decision-making even during disruptions. We evaluate our approach using selected problems from the REALM benchmark, focusing on sequential and reactive planning scenarios that challenge both context retention and adaptive reasoning. Our experiments with state-of-the-art LLMs, Claude 3.7, DeepSeek R1, GPT-4o, and GPT-o1, demonstrate that while these models exhibit impressive reasoning capabilities, they struggle with maintaining global constraint awareness during complex planning tasks, particularly when adapting to unexpected changes. In contrast, the distributed cognitive architecture of SagaLLM shows significant improvements in planning consistency, constraint enforcement, and adaptation to disruptions in various scenarios.
comment: 13 pages, 8 tables, 5 figures
♻ ☆ Fair Summarization: Bridging Quality and Diversity in Extractive Summaries NeurIPS 2024
Fairness in multi-document summarization of user-generated content remains a critical challenge in natural language processing (NLP). Existing summarization methods often fail to ensure equitable representation across different social groups, leading to biased outputs. In this paper, we introduce two novel methods for fair extractive summarization: FairExtract, a clustering-based approach, and FairGPT, which leverages GPT-3.5-turbo with fairness constraints. We evaluate these methods using Divsumm summarization dataset of White-aligned, Hispanic, and African-American dialect tweets and compare them against relevant baselines. The results obtained using a comprehensive set of summarization quality metrics such as SUPERT, BLANC, SummaQA, BARTScore, and UniEval, as well as a fairness metric F, demonstrate that FairExtract and FairGPT achieve superior fairness while maintaining competitive summarization quality. Additionally, we introduce composite metrics (e.g., SUPERT+F, BLANC+F) that integrate quality and fairness into a single evaluation framework, offering a more nuanced understanding of the trade-offs between these objectives. Our code is available online.
comment: Accepted at AFLME@NeurIPS 2024 (non-archival) & C3NLP@NAACL 2025 (publication)
♻ ☆ Dual Conditional Diffusion Models for Sequential Recommendation
Recent advancements in diffusion models have shown promising results in sequential recommendation (SR). Existing approaches predominantly rely on implicit conditional diffusion models, which compress user behaviors into a single representation during the forward diffusion process. While effective to some extent, this oversimplification often leads to the loss of sequential and contextual information, which is critical for understanding user behavior. Moreover, explicit information, such as user-item interactions or sequential patterns, remains underutilized, despite its potential to directly guide the recommendation process and improve precision. However, combining implicit and explicit information is non-trivial, as it requires dynamically integrating these complementary signals while avoiding noise and irrelevant patterns within user behaviors. To address these challenges, we propose Dual Conditional Diffusion Models for Sequential Recommendation (DCRec), which effectively integrates implicit and explicit information by embedding dual conditions into both the forward and reverse diffusion processes. This allows the model to retain valuable sequential and contextual information while leveraging explicit user-item interactions to guide the recommendation process. Specifically, we introduce the Dual Conditional Diffusion Transformer (DCDT), which employs a cross-attention mechanism to dynamically integrate explicit signals throughout the diffusion stages, ensuring contextual understanding and minimizing the influence of irrelevant patterns. This design enables precise and contextually relevant recommendations. Extensive experiments on public benchmark datasets demonstrate that DCRec significantly outperforms state-of-the-art methods in both accuracy and computational efficiency.
♻ ☆ Latent Swap Joint Diffusion for 2D Long-Form Latent Generation
This paper introduces Swap Forward (SaFa), a modality-agnostic and efficient method to generate seamless and coherence long spectrum and panorama through latent swap joint diffusion across multi-views. We first investigate the spectrum aliasing problem in spectrum-based audio generation caused by existing joint diffusion methods. Through a comparative analysis of the VAE latent representation of Mel-spectra and RGB images, we identify that the failure arises from excessive suppression of high-frequency components during the spectrum denoising process due to the averaging operator. To address this issue, we propose Self-Loop Latent Swap, a frame-level bidirectional swap applied to the overlapping region of adjacent views. Leveraging stepwise differentiated trajectories of adjacent subviews, this swap operator adaptively enhances high-frequency components and avoid spectrum distortion. Furthermore, to improve global cross-view consistency in non-overlapping regions, we introduce Reference-Guided Latent Swap, a unidirectional latent swap operator that provides a centralized reference trajectory to synchronize subview diffusions. By refining swap timing and intervals, we can achieve a cross-view similarity-diversity balance in a forward-only manner. Quantitative and qualitative experiments demonstrate that SaFa significantly outperforms existing joint diffusion methods and even training-based methods in audio generation using both U-Net and DiT models, along with effective longer length adaptation. It also adapts well to panorama generation, achieving comparable performance with 2 $\sim$ 20 $\times$ faster speed and greater model generalizability. More generation demos are available at https://swapforward.github.io/
♻ ☆ Stochastic Gradient Sampling for Enhancing Neural Networks Training
In this paper, we introduce StochGradAdam, a novel optimizer designed as an extension of the Adam algorithm, incorporating stochastic gradient sampling techniques to improve computational efficiency while maintaining robust performance. StochGradAdam optimizes by selectively sampling a subset of gradients during training, reducing the computational cost while preserving the advantages of adaptive learning rates and bias corrections found in Adam. Our experimental results, applied to image classification and segmentation tasks, demonstrate that StochGradAdam can achieve comparable or superior performance to Adam, even when using fewer gradient updates per iteration. By focusing on key gradient updates, StochGradAdam offers stable convergence and enhanced exploration of the loss landscape, while mitigating the impact of noisy gradients. The results suggest that this approach is particularly effective for large-scale models and datasets, providing a promising alternative to traditional optimization techniques for deep learning applications.
♻ ☆ Position: Model Collapse Does Not Mean What You Think
The proliferation of AI-generated content online has fueled concerns over \emph{model collapse}, a degradation in future generative models' performance when trained on synthetic data generated by earlier models. Industry leaders, premier research journals and popular science publications alike have prophesied catastrophic societal consequences stemming from model collapse. In this position piece, we contend this widespread narrative fundamentally misunderstands the scientific evidence. We highlight that research on model collapse actually encompasses eight distinct and at times conflicting definitions of model collapse, and argue that inconsistent terminology within and between papers has hindered building a comprehensive understanding of model collapse. To assess how significantly different interpretations of model collapse threaten future generative models, we posit what we believe are realistic conditions for studying model collapse and then conduct a rigorous assessment of the literature's methodologies through this lens. While we leave room for reasonable disagreement, our analysis of research studies, weighted by how faithfully each study matches real-world conditions, leads us to conclude that certain predicted claims of model collapse rely on assumptions and conditions that poorly match real-world conditions, and in fact several prominent collapse scenarios are readily avoidable. Altogether, this position paper argues that model collapse has been warped from a nuanced multifaceted consideration into an oversimplified threat, and that the evidence suggests specific harms more likely under society's current trajectory have received disproportionately less attention.
♻ ☆ Differentially Private Distributed Inference
How can agents exchange information to learn while protecting privacy? Healthcare centers collaborating on clinical trials must balance knowledge sharing with safeguarding sensitive patient data. We address this challenge by using differential privacy (DP) to control information leakage. Agents update belief statistics via log-linear rules, and DP noise provides plausible deniability and rigorous performance guarantees. We study two settings: distributed maximum likelihood estimation (MLE) with a finite set of private signals and online learning from an intermittent signal stream. Noisy aggregation introduces trade-offs between rejecting low-quality states and accepting high-quality ones. The MLE setting naturally applies to hypothesis testing with formal statistical guarantees. Through simulations, we demonstrate differentially private, distributed survival analysis on real-world clinical trial data, evaluating treatment efficacy and the impact of biomedical indices on patient survival. Our methods enable privacy-preserving inference with greater efficiency and lower error rates than homomorphic encryption and first-order DP optimization approaches.
♻ ☆ BioMamba: Leveraging Spectro-Temporal Embedding in Bidirectional Mamba for Enhanced Biosignal Classification
Biological signals, such as electroencephalograms (EEGs) and electrocardiograms (ECGs), play a pivotal role in numerous clinical practices, such as diagnosing brain and cardiac arrhythmic diseases. Existing methods for biosignal classification rely on Attention-based frameworks with dense Feed Forward layers, which lead to inefficient learning, high computational overhead, and suboptimal performance. In this work, we introduce BioMamba, a Spectro-Temporal Embedding strategy applied to the Bidirectional Mamba framework with Sparse Feed Forward layers to enable effective learning of biosignal sequences. By integrating these three key components, BioMamba effectively addresses the limitations of existing methods. Extensive experiments demonstrate that BioMamba significantly outperforms state-of-the-art methods with marked improvement in classification performance. The advantages of the proposed BioMamba include (1) Reliability: BioMamba consistently delivers robust results, confirmed across six evaluation metrics. (2) Efficiency: We assess both model and training efficiency, the BioMamba demonstrates computational effectiveness by reducing model size and resource consumption compared to existing approaches. (3) Generality: With the capacity to effectively classify a diverse set of tasks, BioMamba demonstrates adaptability and effectiveness across various domains and applications.
comment: Application-> Biological signals
♻ ☆ RFUAV: A Benchmark Dataset for Unmanned Aerial Vehicle Detection and Identification
In this paper, we propose RFUAV as a new benchmark dataset for radio-frequency based (RF-based) unmanned aerial vehicle (UAV) identification and address the following challenges: Firstly, many existing datasets feature a restricted variety of drone types and insufficient volumes of raw data, which fail to meet the demands of practical applications. Secondly, existing datasets often lack raw data covering a broad range of signal-to-noise ratios (SNR), or do not provide tools for transforming raw data to different SNR levels. This limitation undermines the validity of model training and evaluation. Lastly, many existing datasets do not offer open-access evaluation tools, leading to a lack of unified evaluation standards in current research within this field. RFUAV comprises approximately 1.3 TB of raw frequency data collected from 37 distinct UAVs using the Universal Software Radio Peripheral (USRP) device in real-world environments. Through in-depth analysis of the RF data in RFUAV, we define a drone feature sequence called RF drone fingerprint, which aids in distinguishing drone signals. In addition to the dataset, RFUAV provides a baseline preprocessing method and model evaluation tools. Rigorous experiments demonstrate that these preprocessing methods achieve state-of-the-art (SOTA) performance using the provided evaluation tools. The RFUAV dataset and baseline implementation are publicly available at https://github.com/kitoweeknd/RFUAV/.
comment: 23 pages, 13 figures, conference
♻ ☆ CoTBal: Comprehensive Task Balancing for Multi-Task Visual Instruction Tuning
Visual instruction tuning is an important training stage for large multimodal models. Nevertheless, when learning multiple visual tasks simultaneously, this approach may lead to suboptimal and imbalanced overall performance due to latent knowledge conflicts across tasks. To mitigate this issue, we introduce a novel Comprehensive Task Balancing (CoTBal) algorithm tailored for multi-task visual instruction tuning. To our knowledge, this is the first work to explore multi-task optimization in visual instruction tuning. Specifically, we consider two critical dimensions for task balancing: (1) Inter-Task Contribution, which represents the phenomenon where learning one task could enhance the performance on others owing to the overlapping knowledge domains across tasks, and (2) Intra-Task Difficulty, which indicates the inherent learning difficulty of a single task. Furthermore, by quantifying these with performance-based metrics, comprehensive task balancing is thus achieved by assigning greater weight to tasks that offer substantial contributions to others, receive minimal contributions from others, and present high learning difficulties. Extensive experiments on three benchmarks demonstrate that our CoTBal algorithm results in superior and more balanced overall performance in multi-task visual instruction tuning.
♻ ☆ Order-Robust Class Incremental Learning: Graph-Driven Dynamic Similarity Grouping CVPR 2025
Class Incremental Learning (CIL) aims to enable models to learn new classes sequentially while retaining knowledge of previous ones. Although current methods have alleviated catastrophic forgetting (CF), recent studies highlight that the performance of CIL models is highly sensitive to the order of class arrival, particularly when sequentially introduced classes exhibit high inter-class similarity. To address this critical yet understudied challenge of class order sensitivity, we first extend existing CIL frameworks through theoretical analysis, proving that grouping classes with lower pairwise similarity during incremental phases significantly improves model robustness to order variations. Building on this insight, we propose Graph-Driven Dynamic Similarity Grouping (GDDSG), a novel method that employs graph coloring algorithms to dynamically partition classes into similarity-constrained groups. Each group trains an isolated CIL sub-model and constructs meta-features for class group identification. Experimental results demonstrate that our method effectively addresses the issue of class order sensitivity while achieving optimal performance in both model accuracy and anti-forgetting capability. Our code is available at https://github.com/AIGNLAI/GDDSG.
comment: Accepted to CVPR 2025
♻ ☆ AdaCM$^2$: On Understanding Extremely Long-Term Video with Adaptive Cross-Modality Memory Reduction CVPR 2025
The advancements in large language models (LLMs) have propelled the improvement of video understanding tasks by incorporating LLMs with visual models. However, most existing LLM-based models (e.g., VideoLLaMA, VideoChat) are constrained to processing short-duration videos. Recent attempts to understand long-term videos by extracting and compressing visual features into a fixed memory size. Nevertheless, those methods leverage only visual modality to merge video tokens and overlook the correlation between visual and textual queries, leading to difficulties in effectively handling complex question-answering tasks. To address the challenges of long videos and complex prompts, we propose AdaCM$^2$, which, for the first time, introduces an adaptive cross-modality memory reduction approach to video-text alignment in an auto-regressive manner on video streams. Our extensive experiments on various video understanding tasks, such as video captioning, video question answering, and video classification, demonstrate that AdaCM$^2$ achieves state-of-the-art performance across multiple datasets while significantly reducing memory usage. Notably, it achieves a 4.5% improvement across multiple tasks in the LVU dataset with a GPU memory consumption reduction of up to 65%.
comment: Accepted to CVPR 2025
♻ ☆ A Review of Human-Object Interaction Detection ICCV
Human-object interaction (HOI) detection plays a key role in high-level visual understanding, facilitating a deep comprehension of human activities. Specifically, HOI detection aims to locate the humans and objects involved in interactions within images or videos and classify the specific interactions between them. The success of this task is influenced by several key factors, including the accurate localization of human and object instances, as well as the correct classification of object categories and interaction relationships. This paper systematically summarizes and discusses the recent work in image-based HOI detection. First, the mainstream datasets involved in HOI relationship detection are introduced. Furthermore, starting with two-stage methods and end-to-end one-stage detection approaches, this paper comprehensively discusses the current developments in image-based HOI detection, analyzing the strengths and weaknesses of these two methods. Additionally, the advancements of zero-shot learning, weakly supervised learning, and the application of large-scale language models in HOI detection are discussed. Finally, the current challenges in HOI detection are outlined, and potential research directions and future trends are explored.
comment: Accepted by 2024 2nd International Conference on Computer, Vision and Intelligent Technology (ICCVIT)
♻ ☆ QF-tuner: Breaking Tradition in Reinforcement Learning
In reinforcement learning algorithms, the hyperparameters tuning method refers to choosing the optimal parameters that may increase the overall performance. Manual or random hyperparameter tuning methods can lead to different results in the reinforcement learning algorithms. In this paper, we propose a new method called QF-tuner for automatic hyperparameter tuning in the Q learning algorithm using the FOX optimization algorithm (FOX). Furthermore, a new objective function has been employed within FOX that prioritizes reward over learning error and time. QF tuner starts by running the FOX and tries to minimize the fitness value derived from observations at each iteration by executing the Q-learning algorithm. The proposed method has been evaluated using two control tasks from the OpenAI Gym: CartPole and FrozenLake. The empirical results indicate that the QF-tuner outperforms other optimization algorithms, such as particle swarm optimization (PSO), bees algorithm (BA), genetic algorithms (GA), and the random method. However, on the FrozenLake task, the QF-tuner increased rewards by 36% and reduced learning time by 26%, while on the CartPole task, it increased rewards by 57% and reduced learning time by 20%. Thus, the QF-tuner is an essential method for hyperparameter tuning in Q-learning algorithms, enabling more effective solutions to control task problems.
comment: 11 pages
♻ ☆ OffLight: An Offline Multi-Agent Reinforcement Learning Framework for Traffic Signal Control
Efficient traffic control (TSC) is essential for urban mobility, but traditional systems struggle to handle the complexity of real-world traffic. Multi-agent Reinforcement Learning (MARL) offers adaptive solutions, but online MARL requires extensive interactions with the environment, making it costly and impractical. Offline MARL mitigates these challenges by using historical traffic data for training but faces significant difficulties with heterogeneous behavior policies in real-world datasets, where mixed-quality data complicates learning. We introduce OffLight, a novel offline MARL framework designed to handle heterogeneous behavior policies in TSC datasets. To improve learning efficiency, OffLight incorporates Importance Sampling (IS) to correct for distributional shifts and Return-Based Prioritized Sampling (RBPS) to focus on high-quality experiences. OffLight utilizes a Gaussian Mixture Variational Graph Autoencoder (GMM-VGAE) to capture the diverse distribution of behavior policies from local observations. Extensive experiments across real-world urban traffic scenarios show that OffLight outperforms existing offline RL methods, achieving up to a 7.8% reduction in average travel time and 11.2% decrease in queue length. Ablation studies confirm the effectiveness of OffLight's components in handling heterogeneous data and improving policy performance. These results highlight OffLight's scalability and potential to improve urban traffic management without the risks of online learning.
♻ ☆ Augmented Object Intelligence: Making the Analog World Interactable with XR-Objects
Seamless integration of physical objects as interactive digital entities remains a challenge for spatial computing. This paper introduces Augmented Object Intelligence (AOI), a novel XR interaction paradigm designed to blur the lines between digital and physical by equipping real-world objects with the ability to interact as if they were digital, where every object has the potential to serve as a portal to vast digital functionalities. Our approach utilizes object segmentation and classification, combined with the power of Multimodal Large Language Models (MLLMs), to facilitate these interactions. We implement the AOI concept in the form of XR-Objects, an open-source prototype system that provides a platform for users to engage with their physical environment in rich and contextually relevant ways. This system enables analog objects to not only convey information but also to initiate digital actions, such as querying for details or executing tasks. Our contributions are threefold: (1) we define the AOI concept and detail its advantages over traditional AI assistants, (2) detail the XR-Objects system's open-source design and implementation, and (3) show its versatility through a variety of use cases and a user study.
comment: 2024 ACM Symposium on User Interface Software and Technology (UIST)
♻ ☆ Restyling Unsupervised Concept Based Interpretable Networks with Generative Models ICLR 2025
Developing inherently interpretable models for prediction has gained prominence in recent years. A subclass of these models, wherein the interpretable network relies on learning high-level concepts, are valued because of closeness of concept representations to human communication. However, the visualization and understanding of the learnt unsupervised dictionary of concepts encounters major limitations, especially for large-scale images. We propose here a novel method that relies on mapping the concept features to the latent space of a pretrained generative model. The use of a generative model enables high quality visualization, and lays out an intuitive and interactive procedure for better interpretation of the learnt concepts by imputing concept activations and visualizing generated modifications. Furthermore, leveraging pretrained generative models has the additional advantage of making the training of the system more efficient. We quantitatively ascertain the efficacy of our method in terms of accuracy of the interpretable prediction network, fidelity of reconstruction, as well as faithfulness and consistency of learnt concepts. The experiments are conducted on multiple image recognition benchmarks for large-scale images. Project page available at https://jayneelparekh.github.io/VisCoIN_project_page/
comment: Published at ICLR 2025. Project page available at https://jayneelparekh.github.io/VisCoIN_project_page/
♻ ☆ MedAlpaca -- An Open-Source Collection of Medical Conversational AI Models and Training Data
As large language models (LLMs) like OpenAI's GPT series continue to make strides, we witness the emergence of artificial intelligence applications in an ever-expanding range of fields. In medicine, these LLMs hold considerable promise for improving medical workflows, diagnostics, patient care, and education. Yet, there is an urgent need for open-source models that can be deployed on-premises to safeguard patient privacy. In our work, we present an innovative dataset consisting of over 160,000 entries, specifically crafted to fine-tune LLMs for effective medical applications. We investigate the impact of fine-tuning these datasets on publicly accessible pre-trained LLMs, and subsequently, we juxtapose the performance of pre-trained-only models against the fine-tuned models concerning the examinations that future medical doctors must pass to achieve certification.
♻ ☆ Tailoring Mixup to Data for Calibration ICLR 2025
Among all data augmentation techniques proposed so far, linear interpolation of training samples, also called Mixup, has found to be effective for a large panel of applications. Along with improved predictive performance, Mixup is also a good technique for improving calibration. However, mixing data carelessly can lead to manifold mismatch, i.e., synthetic data lying outside original class manifolds, which can deteriorate calibration. In this work, we show that the likelihood of assigning a wrong label with mixup increases with the distance between data to mix. To this end, we propose to dynamically change the underlying distributions of interpolation coefficients depending on the similarity between samples to mix, and define a flexible framework to do so without losing in diversity. We provide extensive experiments for classification and regression tasks, showing that our proposed method improves predictive performance and calibration of models, while being much more efficient.
comment: Published at ICLR 2025. The code available at https://github.com/qbouniot/sim_kernel_mixup
♻ ☆ Fast Training Dataset Attribution via In-Context Learning
We investigate the use of in-context learning and prompt engineering to estimate the contributions of training data in the outputs of instruction-tuned large language models (LLMs). We propose two novel approaches: (1) a similarity-based approach that measures the difference between LLM outputs with and without provided context, and (2) a mixture distribution model approach that frames the problem of identifying contribution scores as a matrix factorization task. Our empirical comparison demonstrates that the mixture model approach is more robust to retrieval noise in in-context learning, providing a more reliable estimation of data contributions.
♻ ☆ Towards Physics-Guided Foundation Models
Traditional foundation models are pre-trained on broad datasets to reduce the training resources (e.g., time, energy, labeled samples) needed for fine-tuning a wide range of downstream tasks. However, traditional foundation models struggle with out-of-distribution prediction and can produce outputs that are unrealistic and physically infeasible. We propose the notation of physics-guided foundation models (PGFM), that is, foundation models integrated with broad or general domain (e.g., scientific) physical knowledge applicable to a wide range of downstream tasks.
♻ ☆ A Metric-based Principal Curve Approach for Learning One-dimensional Manifold
Principal curve is a well-known statistical method oriented in manifold learning using concepts from differential geometry. In this paper, we propose a novel metric-based principal curve (MPC) method that learns one-dimensional manifold of spatial data. Synthetic datasets Real applications using MNIST dataset show that our method can learn the one-dimensional manifold well in terms of the shape.
♻ ☆ RepoGraph: Enhancing AI Software Engineering with Repository-level Code Graph ICLR 2025
Large Language Models (LLMs) excel in code generation yet struggle with modern AI software engineering tasks. Unlike traditional function-level or file-level coding tasks, AI software engineering requires not only basic coding proficiency but also advanced skills in managing and interacting with code repositories. However, existing methods often overlook the need for repository-level code understanding, which is crucial for accurately grasping the broader context and developing effective solutions. On this basis, we present RepoGraph, a plug-in module that manages a repository-level structure for modern AI software engineering solutions. RepoGraph offers the desired guidance and serves as a repository-wide navigation for AI software engineers. We evaluate RepoGraph on the SWE-bench by plugging it into four different methods of two lines of approaches, where RepoGraph substantially boosts the performance of all systems, leading to a new state-of-the-art among open-source frameworks. Our analyses also demonstrate the extensibility and flexibility of RepoGraph by testing on another repo-level coding benchmark, CrossCodeEval. Our code is available at https://github.com/ozyyshr/RepoGraph.
comment: ICLR 2025
♻ ☆ Frequency and Generalisation of Periodic Activation Functions in Reinforcement Learning
Periodic activation functions, often referred to as learned Fourier features have been widely demonstrated to improve sample efficiency and stability in a variety of deep RL algorithms. Potentially incompatible hypotheses have been made about the source of these improvements. One is that periodic activations learn low frequency representations and as a result avoid overfitting to bootstrapped targets. Another is that periodic activations learn high frequency representations that are more expressive, allowing networks to quickly fit complex value functions. We analyse these claims empirically, finding that periodic representations consistently converge to high frequencies regardless of their initialisation frequency. We also find that while periodic activation functions improve sample efficiency, they exhibit worse generalization on states with added observation noise -- especially when compared to otherwise equivalent networks with ReLU activation functions. Finally, we show that weight decay regularization is able to partially offset the overfitting of periodic activation functions, delivering value functions that learn quickly while also generalizing.
comment: RLC format, fixed bug which incorrectly gave vanilla ReLU training runs weight decay
♻ ☆ Towards the Pedagogical Steering of Large Language Models for Tutoring: A Case Study with Modeling Productive Failure
One-to-one tutoring is one of the most efficient methods of teaching. With the growing popularity of Large Language Models (LLMs), there have been efforts to create LLM based conversational tutors which can expand the benefits of one to one tutoring to everyone. However, current LLMs are trained primarily to be helpful assistants and lack crucial pedagogical skills. For example, they often quickly reveal the solution to the student and fail to plan for a richer multi turn pedagogical interaction. To use LLMs in pedagogical settings, they need to be steered to use effective teaching strategies: a problem we introduce as Pedagogical Steering. We develop StratL, an algorithm to optimize LLM prompts and steer it to follow a predefined multi-turn tutoring plan represented as a transition graph. As a case study, we create a prototype tutor for high school math following Productive Failure (PF), an advanced and effective learning design. To validate our approach in a real-world setting, we run a field study with 17 high school students in Singapore and show that StratL succeeds in steering the LLM to follow the PF tutoring strategy. Finally, we highlight challenges in Pedagogical Steering of LLMs and offer opportunities for further improvements by publishing a dataset of PF problems and our code.
comment: 19 pages, 10 figures, 6 tables
♻ ☆ MAP: Multi-user Personalization with Collaborative LLM-powered Agents
The widespread adoption of Large Language Models (LLMs) and LLM-powered agents in multi-user settings underscores the need for reliable, usable methods to accommodate diverse preferences and resolve conflicting directives. Drawing on conflict resolution theory, we introduce a user-centered workflow for multi-user personalization comprising three stages: Reflection, Analysis, and Feedback. We then present MAP -- a \textbf{M}ulti-\textbf{A}gent system for multi-user \textbf{P}ersonalization -- to operationalize this workflow. By delegating subtasks to specialized agents, MAP (1) retrieves and reflects on relevant user information, while enhancing reliability through agent-to-agent interactions, (2) provides detailed analysis for improved transparency and usability, and (3) integrates user feedback to iteratively refine results. Our user study findings (n=12) highlight MAP's effectiveness and usability for conflict resolution while emphasizing the importance of user involvement in resolution verification and failure management. This work highlights the potential of multi-agent systems to implement user-centered, multi-user personalization workflows and concludes by offering insights for personalization in multi-user contexts.
comment: In Extended Abstracts of the CHI Conference on Human Factors in Computing Systems (CHI EA '25), April 26-May 1, 2025, Yokohama, Japan
♻ ☆ Context Clues: Evaluating Long Context Models for Clinical Prediction Tasks on EHRs
Foundation Models (FMs) trained on Electronic Health Records (EHRs) have achieved state-of-the-art results on numerous clinical prediction tasks. However, most existing EHR FMs have context windows of <1k tokens. This prevents them from modeling full patient EHRs which can exceed 10k's of events. Recent advancements in subquadratic long-context architectures (e.g., Mamba) offer a promising solution. However, their application to EHR data has not been well-studied. We address this gap by presenting the first systematic evaluation of the effect of context length on modeling EHR data. We find that longer context models improve predictive performance -- our Mamba-based model surpasses the prior state-of-the-art on 9/14 tasks on the EHRSHOT prediction benchmark. For clinical applications, however, model performance alone is insufficient -- robustness to the unique properties of EHR is crucial. Thus, we also evaluate models across three previously underexplored properties of EHR data: (1) the prevalence of "copy-forwarded" diagnoses which creates artificial repetition of tokens within EHR sequences; (2) the irregular time intervals between EHR events which can lead to a wide range of timespans within a context window; and (3) the natural increase in disease complexity over time which makes later tokens in the EHR harder to predict than earlier ones. Stratifying our EHRSHOT results, we find that higher levels of each property correlate negatively with model performance, but that longer context models are more robust to more extreme levels of these properties. Our work highlights the potential for using long-context architectures to model EHR data, and offers a case study for identifying new challenges in modeling sequential data motivated by domains outside of natural language. We release our models and code at: https://github.com/som-shahlab/long_context_clues
Graphics 15
☆ Lux Post Facto: Learning Portrait Performance Relighting with Conditional Video Diffusion and a Hybrid Dataset CVPR 2025
Video portrait relighting remains challenging because the results need to be both photorealistic and temporally stable. This typically requires a strong model design that can capture complex facial reflections as well as intensive training on a high-quality paired video dataset, such as dynamic one-light-at-a-time (OLAT). In this work, we introduce Lux Post Facto, a novel portrait video relighting method that produces both photorealistic and temporally consistent lighting effects. From the model side, we design a new conditional video diffusion model built upon state-of-the-art pre-trained video diffusion model, alongside a new lighting injection mechanism to enable precise control. This way we leverage strong spatial and temporal generative capability to generate plausible solutions to the ill-posed relighting problem. Our technique uses a hybrid dataset consisting of static expression OLAT data and in-the-wild portrait performance videos to jointly learn relighting and temporal modeling. This avoids the need to acquire paired video data in different lighting conditions. Our extensive experiments show that our model produces state-of-the-art results both in terms of photorealism and temporal consistency.
comment: CVPR 2025
☆ Optimized 3D Gaussian Splatting using Coarse-to-Fine Image Frequency Modulation
The field of Novel View Synthesis has been revolutionized by 3D Gaussian Splatting (3DGS), which enables high-quality scene reconstruction that can be rendered in real-time. 3DGS-based techniques typically suffer from high GPU memory and disk storage requirements which limits their practical application on consumer-grade devices. We propose Opti3DGS, a novel frequency-modulated coarse-to-fine optimization framework that aims to minimize the number of Gaussian primitives used to represent a scene, thus reducing memory and storage demands. Opti3DGS leverages image frequency modulation, initially enforcing a coarse scene representation and progressively refining it by modulating frequency details in the training images. On the baseline 3DGS, we demonstrate an average reduction of 62% in Gaussians, a 40% reduction in the training GPU memory requirements and a 20% reduction in optimization time without sacrificing the visual quality. Furthermore, we show that our method integrates seamlessly with many 3DGS-based techniques, consistently reducing the number of Gaussian primitives while maintaining, and often improving, visual quality. Additionally, Opti3DGS inherently produces a level-of-detail scene representation at no extra cost, a natural byproduct of the optimization pipeline. Results and code will be made publicly available.
☆ Evaluating Machine Learning Approaches for ASCII Art Generation
Generating structured ASCII art using computational techniques demands a careful interplay between aesthetic representation and computational precision, requiring models that can effectively translate visual information into symbolic text characters. Although Convolutional Neural Networks (CNNs) have shown promise in this domain, the comparative performance of deep learning architectures and classical machine learning methods remains unexplored. This paper explores the application of contemporary ML and DL methods to generate structured ASCII art, focusing on three key criteria: fidelity, character classification accuracy, and output quality. We investigate deep learning architectures, including Multilayer Perceptrons (MLPs), ResNet, and MobileNetV2, alongside classical approaches such as Random Forests, Support Vector Machines (SVMs) and k-Nearest Neighbors (k-NN), trained on an augmented synthetic dataset of ASCII characters. Our results show that complex neural network architectures often fall short in producing high-quality ASCII art, whereas classical machine learning classifiers, despite their simplicity, achieve performance similar to CNNs. Our findings highlight the strength of classical methods in bridging model simplicity with output quality, offering new insights into ASCII art synthesis and machine learning on image data with low dimensionality.
comment: 9 pages, 7 figures, 3 tables. Code available at https://github.com/saiccoumar/deep_ascii_converter
☆ MAG: Multi-Modal Aligned Autoregressive Co-Speech Gesture Generation without Vector Quantization
This work focuses on full-body co-speech gesture generation. Existing methods typically employ an autoregressive model accompanied by vector-quantized tokens for gesture generation, which results in information loss and compromises the realism of the generated gestures. To address this, inspired by the natural continuity of real-world human motion, we propose MAG, a novel multi-modal aligned framework for high-quality and diverse co-speech gesture synthesis without relying on discrete tokenization. Specifically, (1) we introduce a motion-text-audio-aligned variational autoencoder (MTA-VAE), which leverages pre-trained WavCaps' text and audio embeddings to enhance both semantic and rhythmic alignment with motion, ultimately producing more realistic gestures. (2) Building on this, we propose a multimodal masked autoregressive model (MMAG) that enables autoregressive modeling in continuous motion embeddings through diffusion without vector quantization. To further ensure multi-modal consistency, MMAG incorporates a hybrid granularity audio-text fusion block, which serves as conditioning for diffusion process. Extensive experiments on two benchmark datasets demonstrate that MAG achieves stateof-the-art performance both quantitatively and qualitatively, producing highly realistic and diverse co-speech gestures.The code will be released to facilitate future research.
☆ BG-Triangle: Bézier Gaussian Triangle for 3D Vectorization and Rendering
Differentiable rendering enables efficient optimization by allowing gradients to be computed through the rendering process, facilitating 3D reconstruction, inverse rendering and neural scene representation learning. To ensure differentiability, existing solutions approximate or re-formulate traditional rendering operations using smooth, probabilistic proxies such as volumes or Gaussian primitives. Consequently, they struggle to preserve sharp edges due to the lack of explicit boundary definitions. We present a novel hybrid representation, B\'ezier Gaussian Triangle (BG-Triangle), that combines B\'ezier triangle-based vector graphics primitives with Gaussian-based probabilistic models, to maintain accurate shape modeling while conducting resolution-independent differentiable rendering. We present a robust and effective discontinuity-aware rendering technique to reduce uncertainties at object boundaries. We also employ an adaptive densification and pruning scheme for efficient training while reliably handling level-of-detail (LoD) variations. Experiments show that BG-Triangle achieves comparable rendering quality as 3DGS but with superior boundary preservation. More importantly, BG-Triangle uses a much smaller number of primitives than its alternatives, showcasing the benefits of vectorized graphics primitives and the potential to bridge the gap between classic and emerging representations.
☆ SALAD: Skeleton-aware Latent Diffusion for Text-driven Motion Generation and Editing CVPR 2025
Text-driven motion generation has advanced significantly with the rise of denoising diffusion models. However, previous methods often oversimplify representations for the skeletal joints, temporal frames, and textual words, limiting their ability to fully capture the information within each modality and their interactions. Moreover, when using pre-trained models for downstream tasks, such as editing, they typically require additional efforts, including manual interventions, optimization, or fine-tuning. In this paper, we introduce a skeleton-aware latent diffusion (SALAD), a model that explicitly captures the intricate inter-relationships between joints, frames, and words. Furthermore, by leveraging cross-attention maps produced during the generation process, we enable attention-based zero-shot text-driven motion editing using a pre-trained SALAD model, requiring no additional user input beyond text prompts. Our approach significantly outperforms previous methods in terms of text-motion alignment without compromising generation quality, and demonstrates practical versatility by providing diverse editing capabilities beyond generation. Code is available at project page.
comment: CVPR 2025; Project page https://seokhyeonhong.github.io/projects/salad/
☆ SceneEval: Evaluating Semantic Coherence in Text-Conditioned 3D Indoor Scene Synthesis
Despite recent advances in text-conditioned 3D indoor scene generation, there remain gaps in the evaluation of these methods. Existing metrics primarily assess the realism of generated scenes by comparing them to a set of ground-truth scenes, often overlooking alignment with the input text - a critical factor in determining how effectively a method meets user requirements. We present SceneEval, an evaluation framework designed to address this limitation. SceneEval includes metrics for both explicit user requirements, such as the presence of specific objects and their attributes described in the input text, and implicit expectations, like the absence of object collisions, providing a comprehensive assessment of scene quality. To facilitate evaluation, we introduce SceneEval-100, a dataset of scene descriptions with annotated ground-truth scene properties. We evaluate recent scene generation methods using SceneEval and demonstrate its ability to provide detailed assessments of the generated scenes, highlighting strengths and areas for improvement across multiple dimensions. Our results show that current methods struggle at generating scenes that meet user requirements, underscoring the need for further research in this direction.
comment: 20 pages, 6 figures, 6 tables
☆ Diffusion-based G-buffer generation and rendering
Despite recent advances in text-to-image generation, controlling geometric layout and material properties in synthesized scenes remains challenging. We present a novel pipeline that first produces a G-buffer (albedo, normals, depth, roughness, and metallic) from a text prompt and then renders a final image through a modular neural network. This intermediate representation enables fine-grained editing: users can copy and paste within specific G-buffer channels to insert or reposition objects, or apply masks to the irradiance channel to adjust lighting locally. As a result, real objects can be seamlessly integrated into virtual scenes, and virtual objects can be placed into real environments with high fidelity. By separating scene decomposition from image rendering, our method offers a practical balance between detailed post-generation control and efficient text-driven synthesis. We demonstrate its effectiveness on a variety of examples, showing that G-buffer editing significantly extends the flexibility of text-guided image generation.
☆ Three-dimensional Reconstruction of the Lumbar Spine with Submillimeter Accuracy Using Biplanar X-ray Images
Three-dimensional reconstruction of the spine under weight-bearing conditions from biplanar X-ray images is of great importance for the clinical assessment of spinal diseases. However, the current fully automated reconstruction methods have low accuracy and fail to meet the clinical application standards. This study developed and validated a fully automated method for high-accuracy 3D reconstruction of the lumbar spine from biplanar X-ray images. The method involves lumbar decomposition and landmark detection from the raw X-ray images, followed by a deformable model and landmark-weighted 2D-3D registration approach. The reconstruction accuracy was validated by the gold standard obtained through the registration of CT-segmented vertebral models with the biplanar X-ray images. The proposed method achieved a 3D reconstruction accuracy of 0.80 mm, representing a significant improvement over the mainstream approaches. This study will contribute to the clinical diagnosis of lumbar in weight-bearing positions.
comment: 21 pages, 10 figures, 4 tables
☆ Motion Synthesis with Sparse and Flexible Keyjoint Control
Creating expressive character animations is labor-intensive, requiring intricate manual adjustment of animators across space and time. Previous works on controllable motion generation often rely on a predefined set of dense spatio-temporal specifications (e.g., dense pelvis trajectories with exact per-frame timing), limiting practicality for animators. To process high-level intent and intuitive control in diverse scenarios, we propose a practical controllable motions synthesis framework that respects sparse and flexible keyjoint signals. Our approach employs a decomposed diffusion-based motion synthesis framework that first synthesizes keyjoint movements from sparse input control signals and then synthesizes full-body motion based on the completed keyjoint trajectories. The low-dimensional keyjoint movements can easily adapt to various control signal types, such as end-effector position for diverse goal-driven motion synthesis, or incorporate functional constraints on a subset of keyjoints. Additionally, we introduce a time-agnostic control formulation, eliminating the need for frame-specific timing annotations and enhancing control flexibility. Then, the shared second stage can synthesize a natural whole-body motion that precisely satisfies the task requirement from dense keyjoint movements. We demonstrate the effectiveness of sparse and flexible keyjoint control through comprehensive experiments on diverse datasets and scenarios.
comment: 11 pages, Project Page: http://inwoohwang.me/SFControl
♻ ☆ Tailor: An Integrated Text-Driven CG-Ready Human and Garment Generation System
Creating detailed 3D human avatars with garments typically requires specialized expertise and labor-intensive processes. Although recent advances in generative AI have enabled text-to-3D human/clothing generation, current methods fall short in offering accessible, integrated pipelines for producing ready-to-use clothed avatars. To solve this, we introduce Tailor, an integrated text-to-avatar system that generates high-fidelity, customizable 3D humans with simulation-ready garments. Our system includes a three-stage pipeline. We first employ a large language model to interpret textual descriptions into parameterized body shapes and semantically matched garment templates. Next, we develop topology-preserving deformation with novel geometric losses to adapt garments precisely to body geometries. Furthermore, an enhanced texture diffusion module with a symmetric local attention mechanism ensures both view consistency and photorealistic details. Quantitative and qualitative evaluations demonstrate that Tailor outperforms existing SoTA methods in terms of fidelity, usability, and diversity. Code will be available for academic use.
comment: Project page: https://human-tailor.github.io
♻ ☆ A Multi-scale Yarn Appearance Model with Fiber Details
Rendering realistic cloth has always been a challenge due to its intricate structure. Cloth is made up of fibers, plies, and yarns, and previous curved-based models, while detailed, were computationally expensive and inflexible for large cloth. To address this, we propose a simplified approach. We introduce a geometric aggregation technique that reduces ray-tracing computation by using fewer curves, focusing only on yarn curves. Our model generates ply and fiber shapes implicitly, compensating for the lack of explicit geometry with a novel shadowing component. We also present a shading model that simplifies light interactions among fibers by categorizing them into four components, accurately capturing specular and scattered light in both forward and backward directions. To render large cloth efficiently, we propose a multi-scale solution based on pixel coverage. Our yarn shading model outperforms previous methods, achieving rendering speeds 3-5 times faster with less memory in near-field views. Additionally, our multi-scale solution offers a 20% speed boost for distant cloth observation.
♻ ☆ Bracket Diffusion: HDR Image Generation by Consistent LDR Denoising
We demonstrate generating HDR images using the concerted action of multiple black-box, pre-trained LDR image diffusion models. Relying on a pre-trained LDR generative diffusion models is vital as, first, there is no sufficiently large HDR image dataset available to re-train them, and, second, even if it was, re-training such models is impossible for most compute budgets. Instead, we seek inspiration from the HDR image capture literature that traditionally fuses sets of LDR images, called "exposure brackets'', to produce a single HDR image. We operate multiple denoising processes to generate multiple LDR brackets that together form a valid HDR result. The key to making this work is to introduce a consistency term into the diffusion process to couple the brackets such that they agree across the exposure range they share while accounting for possible differences due to the quantization error. We demonstrate state-of-the-art unconditional and conditional or restoration-type (LDR2HDR) generative modeling results, yet in HDR.
comment: 11 pages, 14 figures, Accepted to Eurographics 2025, see https://bracketdiffusion.mpi-inf.mpg.de
♻ ☆ PCDreamer: Point Cloud Completion Through Multi-view Diffusion Priors
This paper presents PCDreamer, a novel method for point cloud completion. Traditional methods typically extract features from partial point clouds to predict missing regions, but the large solution space often leads to unsatisfactory results. More recent approaches have started to use images as extra guidance, effectively improving performance, but obtaining paired data of images and partial point clouds is challenging in practice. To overcome these limitations, we harness the relatively view-consistent multi-view diffusion priors within large models, to generate novel views of the desired shape. The resulting image set encodes both global and local shape cues, which are especially beneficial for shape completion. To fully exploit the priors, we have designed a shape fusion module for producing an initial complete shape from multi-modality input (i.e.,, images and point clouds), and a follow-up shape consolidation module to obtain the final complete shape by discarding unreliable points introduced by the inconsistency from diffusion priors. Extensive experimental results demonstrate our superior performance, especially in recovering fine details.
♻ ☆ DAGSM: Disentangled Avatar Generation with GS-enhanced Mesh CVPR 2025
Text-driven avatar generation has gained significant attention owing to its convenience. However, existing methods typically model the human body with all garments as a single 3D model, limiting its usability, such as clothing replacement, and reducing user control over the generation process. To overcome the limitations above, we propose DAGSM, a novel pipeline that generates disentangled human bodies and garments from the given text prompts. Specifically, we model each part (e.g., body, upper/lower clothes) of the clothed human as one GS-enhanced mesh (GSM), which is a traditional mesh attached with 2D Gaussians to better handle complicated textures (e.g., woolen, translucent clothes) and produce realistic cloth animations. During the generation, we first create the unclothed body, followed by a sequence of individual cloth generation based on the body, where we introduce a semantic-based algorithm to achieve better human-cloth and garment-garment separation. To improve texture quality, we propose a view-consistent texture refinement module, including a cross-view attention mechanism for texture style consistency and an incident-angle-weighted denoising (IAW-DE) strategy to update the appearance. Extensive experiments have demonstrated that DAGSM generates high-quality disentangled avatars, supports clothing replacement and realistic animation, and outperforms the baselines in visual quality.
comment: Accepted by CVPR 2025
Robotics 73
☆ MoManipVLA: Transferring Vision-language-action Models for General Mobile Manipulation CVPR 2025
Mobile manipulation is the fundamental challenge for robotics to assist humans with diverse tasks and environments in everyday life. However, conventional mobile manipulation approaches often struggle to generalize across different tasks and environments because of the lack of large-scale training. In contrast, recent advances in vision-language-action (VLA) models have shown impressive generalization capabilities, but these foundation models are developed for fixed-base manipulation tasks. Therefore, we propose an efficient policy adaptation framework named MoManipVLA to transfer pre-trained VLA models of fix-base manipulation to mobile manipulation, so that high generalization ability across tasks and environments can be achieved in mobile manipulation policy. Specifically, we utilize pre-trained VLA models to generate waypoints of the end-effector with high generalization ability. We design motion planning objectives for the mobile base and the robot arm, which aim at maximizing the physical feasibility of the trajectory. Finally, we present an efficient bi-level objective optimization framework for trajectory generation, where the upper-level optimization predicts waypoints for base movement to enhance the manipulator policy space, and the lower-level optimization selects the optimal end-effector trajectory to complete the manipulation task. In this way, MoManipVLA can adjust the position of the robot base in a zero-shot manner, thus making the waypoints predicted from the fixed-base VLA models feasible. Extensive experimental results on OVMM and the real world demonstrate that MoManipVLA achieves a 4.2% higher success rate than the state-of-the-art mobile manipulation, and only requires 50 training cost for real world deployment due to the strong generalization ability in the pre-trained VLA models.
comment: Accepted to CVPR 2025. Project Page: https://gary3410.github.io/momanipVLA/
☆ Humanoid Policy ~ Human Policy
Training manipulation policies for humanoid robots with diverse data enhances their robustness and generalization across tasks and platforms. However, learning solely from robot demonstrations is labor-intensive, requiring expensive tele-operated data collection which is difficult to scale. This paper investigates a more scalable data source, egocentric human demonstrations, to serve as cross-embodiment training data for robot learning. We mitigate the embodiment gap between humanoids and humans from both the data and modeling perspectives. We collect an egocentric task-oriented dataset (PH2D) that is directly aligned with humanoid manipulation demonstrations. We then train a human-humanoid behavior policy, which we term Human Action Transformer (HAT). The state-action space of HAT is unified for both humans and humanoid robots and can be differentiably retargeted to robot actions. Co-trained with smaller-scale robot data, HAT directly models humanoid robots and humans as different embodiments without additional supervision. We show that human data improves both generalization and robustness of HAT with significantly better data collection efficiency. Code and data: https://human-as-robot.github.io/
comment: Code and data: https://human-as-robot.github.io/
☆ AugMapNet: Improving Spatial Latent Structure via BEV Grid Augmentation for Enhanced Vectorized Online HD Map Construction
Autonomous driving requires an understanding of the infrastructure elements, such as lanes and crosswalks. To navigate safely, this understanding must be derived from sensor data in real-time and needs to be represented in vectorized form. Learned Bird's-Eye View (BEV) encoders are commonly used to combine a set of camera images from multiple views into one joint latent BEV grid. Traditionally, from this latent space, an intermediate raster map is predicted, providing dense spatial supervision but requiring post-processing into the desired vectorized form. More recent models directly derive infrastructure elements as polylines using vectorized map decoders, providing instance-level information. Our approach, Augmentation Map Network (AugMapNet), proposes latent BEV grid augmentation, a novel technique that significantly enhances the latent BEV representation. AugMapNet combines vector decoding and dense spatial supervision more effectively than existing architectures while remaining as straightforward to integrate and as generic as auxiliary supervision. Experiments on nuScenes and Argoverse2 datasets demonstrate significant improvements in vectorized map prediction performance up to 13.3% over the StreamMapNet baseline on 60m range and greater improvements on larger ranges. We confirm transferability by applying our method to another baseline and find similar improvements. A detailed analysis of the latent BEV grid confirms a more structured latent space of AugMapNet and shows the value of our novel concept beyond pure performance improvement. The code will be released soon.
☆ FLEX: A Framework for Learning Robot-Agnostic Force-based Skills Involving Sustained Contact Object Manipulation ICRA-2025
Learning to manipulate objects efficiently, particularly those involving sustained contact (e.g., pushing, sliding) and articulated parts (e.g., drawers, doors), presents significant challenges. Traditional methods, such as robot-centric reinforcement learning (RL), imitation learning, and hybrid techniques, require massive training and often struggle to generalize across different objects and robot platforms. We propose a novel framework for learning object-centric manipulation policies in force space, decoupling the robot from the object. By directly applying forces to selected regions of the object, our method simplifies the action space, reduces unnecessary exploration, and decreases simulation overhead. This approach, trained in simulation on a small set of representative objects, captures object dynamics -- such as joint configurations -- allowing policies to generalize effectively to new, unseen objects. Decoupling these policies from robot-specific dynamics enables direct transfer to different robotic platforms (e.g., Kinova, Panda, UR5) without retraining. Our evaluations demonstrate that the method significantly outperforms baselines, achieving over an order of magnitude improvement in training efficiency compared to other state-of-the-art methods. Additionally, operating in force space enhances policy transferability across diverse robot platforms and object types. We further showcase the applicability of our method in a real-world robotic setting. For supplementary materials and videos, please visit: https://tufts-ai-robotics-group.github.io/FLEX/
comment: Accepted at IEEE-ICRA-2025
☆ Artificial Spacetimes for Reactive Control of Resource-Limited Robots
Field-based reactive control provides a minimalist, decentralized route to guiding robots that lack onboard computation. Such schemes are well suited to resource-limited machines like microrobots, yet implementation artifacts, limited behaviors, and the frequent lack of formal guarantees blunt adoption. Here, we address these challenges with a new geometric approach called artificial spacetimes. We show that reactive robots navigating control fields obey the same dynamics as light rays in general relativity. This surprising connection allows us to adopt techniques from relativity and optics for constructing and analyzing control fields. When implemented, artificial spacetimes guide robots around structured environments, simultaneously avoiding boundaries and executing tasks like rallying or sorting, even when the field itself is static. We augment these capabilities with formal tools for analyzing what robots will do and provide experimental validation with silicon-based microrobots. Combined, this work provides a new framework for generating composed robot behaviors with minimal overhead.
☆ Digital Beamforming Enhanced Radar Odometry
Radar has become an essential sensor for autonomous navigation, especially in challenging environments where camera and LiDAR sensors fail. 4D single-chip millimeter-wave radar systems, in particular, have drawn increasing attention thanks to their ability to provide spatial and Doppler information with low hardware cost and power consumption. However, most single-chip radar systems using traditional signal processing, such as Fast Fourier Transform, suffer from limited spatial resolution in radar detection, significantly limiting the performance of radar-based odometry and Simultaneous Localization and Mapping (SLAM) systems. In this paper, we develop a novel radar signal processing pipeline that integrates spatial domain beamforming techniques, and extend it to 3D Direction of Arrival estimation. Experiments using public datasets are conducted to evaluate and compare the performance of our proposed signal processing pipeline against traditional methodologies. These tests specifically focus on assessing structural precision across diverse scenes and measuring odometry accuracy in different radar odometry systems. This research demonstrates the feasibility of achieving more accurate radar odometry by simply replacing the standard FFT-based processing with the proposed pipeline. The codes are available at GitHub*.
☆ MindEye-OmniAssist: A Gaze-Driven LLM-Enhanced Assistive Robot System for Implicit Intention Recognition and Task Execution
A promising effective human-robot interaction in assistive robotic systems is gaze-based control. However, current gaze-based assistive systems mainly help users with basic grasping actions, offering limited support. Moreover, the restricted intent recognition capability constrains the assistive system's ability to provide diverse assistance functions. In this paper, we propose an open implicit intention recognition framework powered by Large Language Model (LLM) and Vision Foundation Model (VFM), which can process gaze input and recognize user intents that are not confined to predefined or specific scenarios. Furthermore, we implement a gaze-driven LLM-enhanced assistive robot system (MindEye-OmniAssist) that recognizes user's intentions through gaze and assists in completing task. To achieve this, the system utilizes open vocabulary object detector, intention recognition network and LLM to infer their full intentions. By integrating eye movement feedback and LLM, it generates action sequences to assist the user in completing tasks. Real-world experiments have been conducted for assistive tasks, and the system achieved an overall success rate of 41/55 across various undefined tasks. Preliminary results show that the proposed method holds the potential to provide a more user-friendly human-computer interaction interface and significantly enhance the versatility and effectiveness of assistive systems by supporting more complex and diverse task.
☆ Dense Policy: Bidirectional Autoregressive Learning of Actions
Mainstream visuomotor policies predominantly rely on generative models for holistic action prediction, while current autoregressive policies, predicting the next token or chunk, have shown suboptimal results. This motivates a search for more effective learning methods to unleash the potential of autoregressive policies for robotic manipulation. This paper introduces a bidirectionally expanded learning approach, termed Dense Policy, to establish a new paradigm for autoregressive policies in action prediction. It employs a lightweight encoder-only architecture to iteratively unfold the action sequence from an initial single frame into the target sequence in a coarse-to-fine manner with logarithmic-time inference. Extensive experiments validate that our dense policy has superior autoregressive learning capabilities and can surpass existing holistic generative policies. Our policy, example data, and training code will be publicly available upon publication. Project page: https: //selen-suyue.github.io/DspNet/.
☆ 3D Hierarchical Panoptic Segmentation in Real Orchard Environments Across Different Sensors IROS
Crop yield estimation is a relevant problem in agriculture, because an accurate crop yield estimate can support farmers' decisions on harvesting or precision intervention. Robots can help to automate this process. To do so, they need to be able to perceive the surrounding environment to identify target objects. In this paper, we introduce a novel approach to address the problem of hierarchical panoptic segmentation of apple orchards on 3D data from different sensors. Our approach is able to simultaneously provide semantic segmentation, instance segmentation of trunks and fruits, and instance segmentation of plants (a single trunk with its fruits). This allows us to identify relevant information such as individual plants, fruits, and trunks, and capture the relationship among them, such as precisely estimate the number of fruits associated to each tree in an orchard. Additionally, to efficiently evaluate our approach for hierarchical panoptic segmentation, we provide a dataset designed specifically for this task. Our dataset is recorded in Bonn in a real apple orchard with a variety of sensors, spanning from a terrestrial laser scanner to a RGB-D camera mounted on different robotic platforms. The experiments show that our approach surpasses state-of-the-art approaches in 3D panoptic segmentation in the agricultural domain, while also providing full hierarchical panoptic segmentation. Our dataset has been made publicly available at https://www.ipb.uni-bonn.de/data/hops/. We will provide the open-source implementation of our approach and public competiton for hierarchical panoptic segmentation on the hidden test sets upon paper acceptance.
comment: Submitted to IROS
☆ HybridGen: VLM-Guided Hybrid Planning for Scalable Data Generation of Imitation Learning
The acquisition of large-scale and diverse demonstration data are essential for improving robotic imitation learning generalization. However, generating such data for complex manipulations is challenging in real-world settings. We introduce HybridGen, an automated framework that integrates Vision-Language Model (VLM) and hybrid planning. HybridGen uses a two-stage pipeline: first, VLM to parse expert demonstrations, decomposing tasks into expert-dependent (object-centric pose transformations for precise control) and plannable segments (synthesizing diverse trajectories via path planning); second, pose transformations substantially expand the first-stage data. Crucially, HybridGen generates a large volume of training data without requiring specific data formats, making it broadly applicable to a wide range of imitation learning algorithms, a characteristic which we also demonstrate empirically across multiple algorithms. Evaluations across seven tasks and their variants demonstrate that agents trained with HybridGen achieve substantial performance and generalization gains, averaging a 5% improvement over state-of-the-art methods. Notably, in the most challenging task variants, HybridGen achieves significant improvement, reaching a 59.7% average success rate, significantly outperforming Mimicgen's 49.5%. These results demonstrating its effectiveness and practicality.
☆ Rapid and Inexpensive Inertia Tensor Estimation from a Single Object Throw
The inertia tensor is an important parameter in many engineering fields, but measuring it can be cumbersome and involve multiple experiments or accurate and expensive equipment. We propose a method to measure the moment of inertia tensor of a rigid body from a single spinning throw, by attaching a small and inexpensive stand-alone measurement device consisting of a gyroscope, accelerometer and a reaction wheel. The method includes a compensation for the increase of moment of inertia due to adding the measurement device to the body, and additionally obtains the location of the centre of gravity of the body as an intermediate result. Experiments performed with known rigid bodies show that the mean accuracy is around 2\%.
comment: This work has been submitted to the IEEE for possible publication
☆ MIXPINN: Mixed-Material Simulations by Physics-Informed Neural Network IROS 2025
Simulating the complex interactions between soft tissues and rigid anatomy is critical for applications in surgical training, planning, and robotic-assisted interventions. Traditional Finite Element Method (FEM)-based simulations, while accurate, are computationally expensive and impractical for real-time scenarios. Learning-based approaches have shown promise in accelerating predictions but have fallen short in modeling soft-rigid interactions effectively. We introduce MIXPINN, a physics-informed Graph Neural Network (GNN) framework for mixed-material simulations, explicitly capturing soft-rigid interactions using graph-based augmentations. Our approach integrates Virtual Nodes (VNs) and Virtual Edges (VEs) to enhance rigid body constraint satisfaction while preserving computational efficiency. By leveraging a graph-based representation of biomechanical structures, MIXPINN learns high-fidelity deformations from FEM-generated data and achieves real-time inference with sub-millimeter accuracy. We validate our method in a realistic clinical scenario, demonstrating superior performance compared to baseline GNN models and traditional FEM methods. Our results show that MIXPINN reduces computational cost by an order of magnitude while maintaining high physical accuracy, making it a viable solution for real-time surgical simulation and robotic-assisted procedures.
comment: This work has been submitted to the lEEE IROS 2025 for possible publication
☆ LIVEPOINT: Fully Decentralized, Safe, Deadlock-Free Multi-Robot Control in Cluttered Environments with High-Dimensional Inputs
Fully decentralized, safe, and deadlock-free multi-robot navigation in dynamic, cluttered environments is a critical challenge in robotics. Current methods require exact state measurements in order to enforce safety and liveness e.g. via control barrier functions (CBFs), which is challenging to achieve directly from onboard sensors like lidars and cameras. This work introduces LIVEPOINT, a decentralized control framework that synthesizes universal CBFs over point clouds to enable safe, deadlock-free real-time multi-robot navigation in dynamic, cluttered environments. Further, LIVEPOINT ensures minimally invasive deadlock avoidance behavior by dynamically adjusting agents' speeds based on a novel symmetric interaction metric. We validate our approach in simulation experiments across highly constrained multi-robot scenarios like doorways and intersections. Results demonstrate that LIVEPOINT achieves zero collisions or deadlocks and a 100% success rate in challenging settings compared to optimization-based baselines such as MPC and ORCA and neural methods such as MPNet, which fail in such environments. Despite prioritizing safety and liveness, LIVEPOINT is 35% smoother than baselines in the doorway environment, and maintains agility in constrained environments while still being safe and deadlock-free.
☆ Multi-Platform Teach-and-Repeat Navigation by Visual Place Recognition Based on Deep-Learned Local Features
Uniform and variable environments still remain a challenge for stable visual localization and mapping in mobile robot navigation. One of the possible approaches suitable for such environments is appearance-based teach-and-repeat navigation, relying on simplified localization and reactive robot motion control - all without a need for standard mapping. This work brings an innovative solution to such a system based on visual place recognition techniques. Here, the major contributions stand in the employment of a new visual place recognition technique, a novel horizontal shift computation approach, and a multi-platform system design for applications across various types of mobile robots. Secondly, a new public dataset for experimental testing of appearance-based navigation methods is introduced. Moreover, the work also provides real-world experimental testing and performance comparison of the introduced navigation system against other state-of-the-art methods. The results confirm that the new system outperforms existing methods in several testing scenarios, is capable of operation indoors and outdoors, and exhibits robustness to day and night scene variations.
comment: 6 pages, 5 figures
☆ Free-form language-based robotic reasoning and grasping
Performing robotic grasping from a cluttered bin based on human instructions is a challenging task, as it requires understanding both the nuances of free-form language and the spatial relationships between objects. Vision-Language Models (VLMs) trained on web-scale data, such as GPT-4o, have demonstrated remarkable reasoning capabilities across both text and images. But can they truly be used for this task in a zero-shot setting? And what are their limitations? In this paper, we explore these research questions via the free-form language-based robotic grasping task, and propose a novel method, FreeGrasp, leveraging the pre-trained VLMs' world knowledge to reason about human instructions and object spatial arrangements. Our method detects all objects as keypoints and uses these keypoints to annotate marks on images, aiming to facilitate GPT-4o's zero-shot spatial reasoning. This allows our method to determine whether a requested object is directly graspable or if other objects must be grasped and removed first. Since no existing dataset is specifically designed for this task, we introduce a synthetic dataset FreeGraspData by extending the MetaGraspNetV2 dataset with human-annotated instructions and ground-truth grasping sequences. We conduct extensive analyses with both FreeGraspData and real-world validation with a gripper-equipped robotic arm, demonstrating state-of-the-art performance in grasp reasoning and execution. Project website: https://tev-fbk.github.io/FreeGrasp/.
comment: Project website: https://tev-fbk.github.io/FreeGrasp/
☆ Vision-based automatic fruit counting with UAV
The use of unmanned aerial vehicles (UAVs) for smart agriculture is becoming increasingly popular. This is evidenced by recent scientific works, as well as the various competitions organised on this topic. Therefore, in this work we present a system for automatic fruit counting using UAVs. To detect them, our solution uses a vision algorithm that processes streams from an RGB camera and a depth sensor using classical image operations. Our system also allows the planning and execution of flight trajectories, taking into account the minimisation of flight time and distance covered. We tested the proposed solution in simulation and obtained an average score of 87.27/100 points from a total of 500 missions. We also submitted it to the UAV Competition organised as part of the ICUAS 2024 conference, where we achieved an average score of 84.83/100 points, placing 6th in a field of 23 teams and advancing to the finals.
comment: Accepted for the 29th Conference on Automation - Innovations and Future Perspectives Automation 2025, May 7 - 9, 2025, Warsaw, Poland
☆ Mitigating Cross-Modal Distraction and Ensuring Geometric Feasibility via Affordance-Guided, Self-Consistent MLLMs for Food Preparation Task Planning
We study Multimodal Large Language Models (MLLMs) with in-context learning for food preparation task planning. In this context, we identify two key challenges: cross-modal distraction and geometric feasibility. Cross-modal distraction occurs when the inclusion of visual input degrades the reasoning performance of a MLLM. Geometric feasibility refers to the ability of MLLMs to ensure that the selected skills are physically executable in the environment. To address these issues, we adapt Chain of Thought (CoT) with Self-Consistency to mitigate reasoning loss from cross-modal distractions and use affordance predictor as skill preconditions to guide MLLM on geometric feasibility. We construct a dataset to evaluate the ability of MLLMs on quantity estimation, reachability analysis, relative positioning and collision avoidance. We conducted a detailed evaluation to identify issues among different baselines and analyze the reasons for improvement, providing insights into each approach. Our method reaches a success rate of 76.7% on the entire dataset, showing a substantial improvement over the CoT baseline at 36.7%.
☆ Robot Skin with Touch and Bend Sensing using Electrical Impedance Tomography
Flexible electronic skins that simultaneously sense touch and bend are desired in several application areas, such as to cover articulated robot structures. This paper introduces a flexible tactile sensor based on Electrical Impedance Tomography (EIT), capable of simultaneously detecting and measuring contact forces and flexion of the sensor. The sensor integrates a magnetic hydrogel composite and utilizes EIT to reconstruct internal conductivity distributions. Real-time estimation is achieved through the one-step Gauss-Newton method, which dynamically updates reference voltages to accommodate sensor deformation. A convolutional neural network is employed to classify interactions, distinguishing between touch, bending, and idle states using pre-reconstructed images. Experimental results demonstrate an average touch localization error of 5.4 mm (SD 2.2 mm) and average bending angle estimation errors of 1.9$^\circ$ (SD 1.6$^\circ$). The proposed adaptive reference method effectively distinguishes between single- and multi-touch scenarios while compensating for deformation effects. This makes the sensor a promising solution for multimodal sensing in robotics and human-robot collaboration.
☆ Large-area Tomographic Tactile Skin with Air Pressure Sensing for Improved Force Estimation
This paper presents a dual-channel tactile skin that integrates Electrical Impedance Tomography (EIT) with air pressure sensing to achieve accurate multi-contact force detection. The EIT layer provides spatial contact information, while the air pressure sensor delivers precise total force measurement. Our framework combines these complementary modalities through: deep learning-based EIT image reconstruction, contact area segmentation, and force allocation based on relative conductivity intensities from EIT. The experiments demonstrated 15.1% average force estimation error in single-contact scenarios and 20.1% in multi-contact scenarios without extensive calibration data requirements. This approach effectively addresses the challenge of simultaneously localizing and quantifying multiple contact forces without requiring complex external calibration setups, paving the way for practical and scalable soft robotic skin applications.
☆ Sensorless Remote Center of Motion Misalignment Estimation
Laparoscopic surgery constrains instrument motion around a fixed pivot point at the incision into a patient to minimize tissue trauma. Surgical robots achieve this through either hardware to software-based remote center of motion (RCM) constraints. However, accurate RCM alignment is difficult due to manual trocar placement, patient motion, and tissue deformation. Misalignment between the robot's RCM point and the patient incision site can cause unsafe forces at the incision site. This paper presents a sensorless force estimation-based framework for dynamically assessing and optimizing RCM misalignment in robotic surgery. Our experiments demonstrate that misalignment exceeding 20 mm can generate large enough forces to potentially damage tissue, emphasizing the need for precise RCM positioning. For misalignment $D\geq $ 20 mm, our optimization algorithm estimates the RCM offset with an absolute error within 5 mm. Accurate RCM misalignment estimation is a step toward automated RCM misalignment compensation, enhancing safety and reducing tissue damage in robotic-assisted laparoscopic surgery.
☆ Robot Policy Transfer with Online Demonstrations: An Active Reinforcement Learning Approach
Transfer Learning (TL) is a powerful tool that enables robots to transfer learned policies across different environments, tasks, or embodiments. To further facilitate this process, efforts have been made to combine it with Learning from Demonstrations (LfD) for more flexible and efficient policy transfer. However, these approaches are almost exclusively limited to offline demonstrations collected before policy transfer starts, which may suffer from the intrinsic issue of covariance shift brought by LfD and harm the performance of policy transfer. Meanwhile, extensive work in the learning-from-scratch setting has shown that online demonstrations can effectively alleviate covariance shift and lead to better policy performance with improved sample efficiency. This work combines these insights to introduce online demonstrations into a policy transfer setting. We present Policy Transfer with Online Demonstrations, an active LfD algorithm for policy transfer that can optimize the timing and content of queries for online episodic expert demonstrations under a limited demonstration budget. We evaluate our method in eight robotic scenarios, involving policy transfer across diverse environment characteristics, task objectives, and robotic embodiments, with the aim to transfer a trained policy from a source task to a related but different target task. The results show that our method significantly outperforms all baselines in terms of average success rate and sample efficiency, compared to two canonical LfD methods with offline demonstrations and one active LfD method with online demonstrations. Additionally, we conduct preliminary sim-to-real tests of the transferred policy on three transfer scenarios in the real-world environment, demonstrating the policy effectiveness on a real robot manipulator.
☆ Exploring 3D Activity Reasoning and Planning: From Implicit Human Intentions to Route-Aware Planning
3D activity reasoning and planning has attracted increasing attention in human-robot interaction and embodied AI thanks to the recent advance in multimodal learning. However, most existing works share two constraints: 1) heavy reliance on explicit instructions with little reasoning on implicit user intention; 2) negligence of inter-step route planning on robot moves. To bridge the gaps, we propose 3D activity reasoning and planning, a novel 3D task that reasons the intended activities from implicit instructions and decomposes them into steps with inter-step routes and planning under the guidance of fine-grained 3D object shapes and locations from scene segmentation. We tackle the new 3D task from two perspectives. First, we construct ReasonPlan3D, a large-scale benchmark that covers diverse 3D scenes with rich implicit instructions and detailed annotations for multi-step task planning, inter-step route planning, and fine-grained segmentation. Second, we design a novel framework that introduces progressive plan generation with contextual consistency across multiple steps, as well as a scene graph that is updated dynamically for capturing critical objects and their spatial relations. Extensive experiments demonstrate the effectiveness of our benchmark and framework in reasoning activities from implicit human instructions, producing accurate stepwise task plans, and seamlessly integrating route planning for multi-step moves. The dataset and code will be released.
☆ OptiPMB: Enhancing 3D Multi-Object Tracking with Optimized Poisson Multi-Bernoulli Filtering
Accurate 3D multi-object tracking (MOT) is crucial for autonomous driving, as it enables robust perception, navigation, and planning in complex environments. While deep learning-based solutions have demonstrated impressive 3D MOT performance, model-based approaches remain appealing for their simplicity, interpretability, and data efficiency. Conventional model-based trackers typically rely on random vector-based Bayesian filters within the tracking-by-detection (TBD) framework but face limitations due to heuristic data association and track management schemes. In contrast, random finite set (RFS)-based Bayesian filtering handles object birth, survival, and death in a theoretically sound manner, facilitating interpretability and parameter tuning. In this paper, we present OptiPMB, a novel RFS-based 3D MOT method that employs an optimized Poisson multi-Bernoulli (PMB) filter while incorporating several key innovative designs within the TBD framework. Specifically, we propose a measurement-driven hybrid adaptive birth model for improved track initialization, employ adaptive detection probability parameters to effectively maintain tracks for occluded objects, and optimize density pruning and track extraction modules to further enhance overall tracking performance. Extensive evaluations on nuScenes and KITTI datasets show that OptiPMB achieves superior tracking accuracy compared with state-of-the-art methods, thereby establishing a new benchmark for model-based 3D MOT and offering valuable insights for future research on RFS-based trackers in autonomous driving.
☆ A Hierarchical Region-Based Approach for Efficient Multi-Robot Exploration
Multi-robot autonomous exploration in an unknown environment is an important application in robotics.Traditional exploration methods only use information around frontier points or viewpoints, ignoring spatial information of unknown areas. Moreover, finding the exact optimal solution for multi-robot task allocation is NP-hard, resulting in significant computational time consumption. To address these issues, we present a hierarchical multi-robot exploration framework using a new modeling method called RegionGraph. The proposed approach makes two main contributions: 1) A new modeling method for unexplored areas that preserves their spatial information across the entire space in a weighted graph called RegionGraph. 2) A hierarchical multi-robot exploration framework that decomposes the global exploration task into smaller subtasks, reducing the frequency of global planning and enabling asynchronous exploration. The proposed method is validated through both simulation and real-world experiments, demonstrating a 20% improvement in efficiency compared to existing methods.
☆ In vivo validation of Wireless Power Transfer System for Magnetically Controlled Robotic Capsule Endoscopy
This paper presents the in vivo validation of an inductive wireless power transfer (WPT) system integrated for the first time into a magnetically controlled robotic capsule endoscopy platform. The proposed system enables continuous power delivery to the capsule without the need for onboard batteries, thus extending operational time and reducing size constraints. The WPT system operates through a resonant inductive coupling mechanism, based on a transmitting coil mounted on the end effector of a robotic arm that also houses an external permanent magnet and a localization coil for precise capsule manipulation. To ensure robust and stable power transmission in the presence of coil misalignment and rotation, a 3D receiving coil is integrated within the capsule. Additionally, a closed-loop adaptive control system, based on load-shift keying (LSK) modulation, dynamically adjusts the transmitted power to optimize efficiency while maintaining compliance with specific absorption rate (SAR) safety limits. The system has been extensively characterized in laboratory settings and validated through in vivo experiments using a porcine model, demonstrating reliable power transfer and effective robotic navigation in realistic gastrointestinal conditions: the average received power was 110 mW at a distance of 9 cm between the coils, with variable capsule rotation angles. The results confirm the feasibility of the proposed WPT approach for autonomous, battery-free robotic capsule endoscopy, paving the way for enhanced diagnostic in gastrointestinal medicine.
comment: 10 pages, 8 figures, regular paper
☆ MT-PCR: Leveraging Modality Transformation for Large-Scale Point Cloud Registration with Limited Overlap ICRA2025
Large-scale scene point cloud registration with limited overlap is a challenging task due to computational load and constrained data acquisition. To tackle these issues, we propose a point cloud registration method, MT-PCR, based on Modality Transformation. MT-PCR leverages a BEV capturing the maximal overlap information to improve the accuracy and utilizes images to provide complementary spatial features. Specifically, MT-PCR converts 3D point clouds to BEV images and eastimates correspondence by 2D image keypoints extraction and matching. Subsequently, the 2D correspondence estimates are then transformed back to 3D point clouds using inverse mapping. We have applied MT-PCR to Terrestrial Laser Scanning and Aerial Laser Scanning point cloud registration on the GrAco dataset, involving 8 low-overlap, square-kilometer scale registration scenarios. Experiments and comparisons with commonly used methods demonstrate that MT-PCR can achieve superior accuracy and robustness in large-scale scenes with limited overlap.
comment: 8 pages, 5 figures, ICRA2025
☆ Versatile Physics-based Character Control with Hybrid Latent Representation
We present a versatile latent representation that enables physically simulated character to efficiently utilize motion priors. To build a powerful motion embedding that is shared across multiple tasks, the physics controller should employ rich latent space that is easily explored and capable of generating high-quality motion. We propose integrating continuous and discrete latent representations to build a versatile motion prior that can be adapted to a wide range of challenging control tasks. Specifically, we build a discrete latent model to capture distinctive posterior distribution without collapse, and simultaneously augment the sampled vector with the continuous residuals to generate high-quality, smooth motion without jittering. We further incorporate Residual Vector Quantization, which not only maximizes the capacity of the discrete motion prior, but also efficiently abstracts the action space during the task learning phase. We demonstrate that our agent can produce diverse yet smooth motions simply by traversing the learned motion prior through unconditional motion generation. Furthermore, our model robustly satisfies sparse goal conditions with highly expressive natural motions, including head-mounted device tracking and motion in-betweening at irregular intervals, which could not be achieved with existing latent representations.
☆ Energy-Aware Task Allocation for Teams of Multi-mode Robots
This work proposes a novel multi-robot task allocation framework for robots that can switch between multiple modes, e.g., flying, driving, or walking. We first provide a method to encode the multi-mode property of robots as a graph, where the mode of each robot is represented by a node. Next, we formulate a constrained optimization problem to decide both the task to be allocated to each robot as well as the mode in which the latter should execute the task. The robot modes are optimized based on the state of the robot and the environment, as well as the energy required to execute the allocated task. Moreover, the proposed framework is able to encompass kinematic and dynamic models of robots alike. Furthermore, we provide sufficient conditions for the convergence of task execution and allocation for both robot models.
comment: This work has been submitted to the IEEE for possible publication
☆ DART: Dual-level Autonomous Robotic Topology for Efficient Exploration in Unknown Environments
Conventional algorithms in autonomous exploration face challenges due to their inability to accurately and efficiently identify the spatial distribution of convex regions in the real-time map. These methods often prioritize navigation toward the nearest or information-rich frontiers -- the boundaries between known and unknown areas -- resulting in incomplete convex region exploration and requiring excessive backtracking to revisit these missed areas. To address these limitations, this paper introduces an innovative dual-level topological analysis approach. First, we introduce a Low-level Topological Graph (LTG), generated through uniform sampling of the original map data, which captures essential geometric and connectivity details. Next, the LTG is transformed into a High-level Topological Graph (HTG), representing the spatial layout and exploration completeness of convex regions, prioritizing the exploration of convex regions that are not fully explored and minimizing unnecessary backtracking. Finally, an novel Local Artificial Potential Field (LAPF) method is employed for motion control, replacing conventional path planning and boosting overall efficiency. Experimental results highlight the effectiveness of our approach. Simulation tests reveal that our framework significantly reduces exploration time and travel distance, outperforming existing methods in both speed and efficiency. Ablation studies confirm the critical role of each framework component. Real-world tests demonstrate the robustness of our method in environments with poor mapping quality, surpassing other approaches in adaptability to mapping inaccuracies and inaccessible areas.
comment: 11 pages, 9 figures, Journal
☆ NuPlanQA: A Large-Scale Dataset and Benchmark for Multi-View Driving Scene Understanding in Multi-Modal Large Language Models
Recent advances in multi-modal large language models (MLLMs) have demonstrated strong performance across various domains; however, their ability to comprehend driving scenes remains less proven. The complexity of driving scenarios, which includes multi-view information, poses significant challenges for existing MLLMs. In this paper, we introduce NuPlanQA-Eval, a multi-view, multi-modal evaluation benchmark for driving scene understanding. To further support generalization to multi-view driving scenarios, we also propose NuPlanQA-1M, a large-scale dataset comprising 1M real-world visual question-answering (VQA) pairs. For context-aware analysis of traffic scenes, we categorize our dataset into nine subtasks across three core skills: Road Environment Perception, Spatial Relations Recognition, and Ego-Centric Reasoning. Furthermore, we present BEV-LLM, integrating Bird's-Eye-View (BEV) features from multi-view images into MLLMs. Our evaluation results reveal key challenges that existing MLLMs face in driving scene-specific perception and spatial reasoning from ego-centric perspectives. In contrast, BEV-LLM demonstrates remarkable adaptability to this domain, outperforming other models in six of the nine subtasks. These findings highlight how BEV integration enhances multi-view MLLMs while also identifying key areas that require further refinement for effective adaptation to driving scenes. To facilitate further research, we publicly release NuPlanQA at https://github.com/sungyeonparkk/NuPlanQA.
Dynamic-Dark SLAM: RGB-Thermal Cooperative Robot Vision Strategy for Multi-Person Tracking in Both Well-Lit and Low-Light Scenes
In robot vision, thermal cameras have significant potential for recognizing humans even in complete darkness. However, their application to multi-person tracking (MPT) has lagged due to data scarcity and difficulties in individual identification. In this study, we propose a cooperative MPT system that utilizes co-located RGB and thermal cameras, using pseudo-annotations (bounding boxes + person IDs) to train RGB and T trackers. Evaluation experiments demonstrate that the T tracker achieves remarkable performance in both bright and dark scenes. Furthermore, results suggest that a tracker-switching approach using a binary brightness classifier is more suitable than a tracker-fusion approach for information integration. This study marks a crucial first step toward ``Dynamic-Dark SLAM," enabling effective recognition, understanding, and reconstruction of individuals, occluding objects, and traversable areas in dynamic environments, both bright and dark.
comment: 6 pages, 4 figures, technical report
☆ MAP: Multi-user Personalization with Collaborative LLM-powered Agents
The widespread adoption of Large Language Models (LLMs) and LLM-powered agents in multi-user settings underscores the need for reliable, usable methods to accommodate diverse preferences and resolve conflicting directives. Drawing on conflict resolution theory, we introduce a user-centered workflow for multi-user personalization comprising three stages: Reflection, Analysis, and Feedback. We then present MAP -- a \textbf{M}ulti-\textbf{A}gent system for multi-user \textbf{P}ersonalization -- to operationalize this workflow. By delegating subtasks to specialized agents, MAP (1) retrieves and reflects on relevant user information, while enhancing reliability through agent-to-agent interactions, (2) provides detailed analysis for improved transparency and usability, and (3) integrates user feedback to iteratively refine results. Our user study findings (n=12) highlight MAP's effectiveness and usability for conflict resolution while emphasizing the importance of user involvement in resolution verification and failure management. This work highlights the potential of multi-agent systems to implement user-centered, multi-user personalization workflows and concludes by offering insights for personalization in multi-user contexts.
comment: In Extended Abstracts of the CHI Conference on Human Factors in Computing Systems (CHI EA '25), April 26-May 1, 2025, Yokohama, Japan
☆ Humanoids in Hospitals: A Technical Study of Humanoid Surrogates for Dexterous Medical Interventions
The increasing demand for healthcare workers, driven by aging populations and labor shortages, presents a significant challenge for hospitals. Humanoid robots have the potential to alleviate these pressures by leveraging their human-like dexterity and adaptability to assist in medical procedures. This work conducted an exploratory study on the feasibility of humanoid robots performing direct clinical tasks through teleoperation. A bimanual teleoperation system was developed for the Unitree G1 Humanoid Robot, integrating high-fidelity pose tracking, custom grasping configurations, and an impedance controller to safely and precisely manipulate medical tools. The system is evaluated in seven diverse medical procedures, including physical examinations, emergency interventions, and precision needle tasks. Our results demonstrate that humanoid robots can successfully replicate critical aspects of human medical assessments and interventions, with promising quantitative performance in ventilation and ultrasound-guided tasks. However, challenges remain, including limitations in force output for procedures requiring high strength and sensor sensitivity issues affecting clinical accuracy. This study highlights the potential and current limitations of humanoid robots in hospital settings and lays the groundwork for future research on robotic healthcare integration.
comment: 8 pages
☆ 16 Ways to Gallop: Energetics and Body Dynamics of High-Speed Quadrupedal Gaits
Galloping is a common high-speed gait in both animals and quadrupedal robots, yet its energetic characteristics remain insufficiently explored. This study systematically analyzes a large number of possible galloping gaits by categorizing them based on the number of flight phases per stride and the phase relationships between the front and rear legs, following Hildebrand's framework for asymmetrical gaits. Using the A1 quadrupedal robot from Unitree, we model galloping dynamics as a hybrid dynamical system and employ trajectory optimization (TO) to minimize the cost of transport (CoT) across a range of speeds. Our results reveal that rotary and transverse gallop footfall sequences exhibit no fundamental energetic difference, despite variations in body yaw and roll motion. However, the number of flight phases significantly impacts energy efficiency: galloping with no flight phases is optimal at lower speeds, whereas galloping with two flight phases minimizes energy consumption at higher speeds. We validate these findings using a quadratic programming (QP)-based controller, developed in our previous work, in Gazebo simulations. These insights advance the understanding of quadrupedal locomotion energetics and may inform future legged robot designs for adaptive, energy-efficient gait transitions.
comment: 7 pages, 6 figures
☆ Foam: A Tool for Spherical Approximation of Robot Geometry
Many applications in robotics require primitive spherical geometry, especially in cases where efficient distance queries are necessary. Manual creation of spherical models is time-consuming and prone to errors. This paper presents Foam, a tool to generate spherical approximations of robot geometry from an input Universal Robot Description Format (URDF) file. Foam provides a robust preprocessing pipeline to handle mesh defects and a number of configuration parameters to control the level and approximation of the spherization, and generates an output URDF with collision geometry specified only by spheres. We demonstrate Foam on a number of standard robot models on common tasks, and demonstrate improved collision checking and distance query performance with only a minor loss in fidelity compared to the true collision geometry. We release our tool as an open source Python library and containerized command-line application to facilitate adoption across the robotics community.
comment: 6 pages, 6 figures, 2 tables. Submitted to IEEE/RSJ International Conference on Intelligent Robots and Systems 2025. Code available at https://github.com/CoMMALab/foam
☆ Transformable Modular Robots: A CPG-Based Approach to Independent and Collective Locomotion
Modular robotics enables the development of versatile and adaptive robotic systems with autonomous reconfiguration. This paper presents a modular robotic system in which each module has independent actuation, battery power, and control, allowing both individual mobility and coordinated locomotion. A hierarchical Central Pattern Generator (CPG) framework governs motion, with a low-level CPG controlling individual modules and a high-level CPG synchronizing inter-module coordination, enabling smooth transitions between independent and collective behaviors. To validate the system, we conduct simulations in MuJoCo and hardware experiments, evaluating locomotion across different configurations. We first analyze single-module motion, followed by two-module cooperative locomotion. Results demonstrate the effectiveness of the CPG-based control framework in achieving robust, flexible, and scalable locomotion. The proposed modular architecture has potential applications in search and rescue, environmental monitoring, and autonomous exploration, where adaptability and reconfigurability are essential.
☆ INPROVF: Leveraging Large Language Models to Repair High-level Robot Controllers from Assumption Violations ICLR 2025
This paper presents INPROVF, an automatic framework that combines large language models (LLMs) and formal methods to speed up the repair process of high-level robot controllers. Previous approaches based solely on formal methods are computationally expensive and cannot scale to large state spaces. In contrast, INPROVF uses LLMs to generate repair candidates, and formal methods to verify their correctness. To improve the quality of these candidates, our framework first translates the symbolic representations of the environment and controllers into natural language descriptions. If a candidate fails the verification, INPROVF provides feedback on potential unsafe behaviors or unsatisfied tasks, and iteratively prompts LLMs to generate improved solutions. We demonstrate the effectiveness of INPROVF through 12 violations with various workspaces, tasks, and state space sizes.
comment: To appear in ICLR 2025 Workshop: VerifAI: AI Verification in the Wild; in submission to 2025 IEEE 21th International Conference on Automation Science and Engineering (CASE), Los Angeles, CA, USA: IEEE, Aug. 2025
☆ Does the Appearance of Autonomous Conversational Robots Affect User Spoken Behaviors in Real-World Conference Interactions?
We investigate the impact of robot appearance on users' spoken behavior during real-world interactions by comparing a human-like android, ERICA, with a less anthropomorphic humanoid, TELECO. Analyzing data from 42 participants at SIGDIAL 2024, we extracted linguistic features such as disfluencies and syntactic complexity from conversation transcripts. The results showed moderate effect sizes, suggesting that participants produced fewer disfluencies and employed more complex syntax when interacting with ERICA. Further analysis involving training classification models like Na\"ive Bayes, which achieved an F1-score of 71.60\%, and conducting feature importance analysis, highlighted the significant role of disfluencies and syntactic complexity in interactions with robots of varying human-like appearances. Discussing these findings within the frameworks of cognitive load and Communication Accommodation Theory, we conclude that designing robots to elicit more structured and fluent user speech can enhance their communicative alignment with humans.
comment: This paper has been accepted as Late-Breaking Work at CHI Conference on Human Factors in Computing Systems (CHI EA '25)
☆ Online Signature Verification based on the Lagrange formulation with 2D and 3D robotic models
Online Signature Verification commonly relies on function-based features, such as time-sampled horizontal and vertical coordinates, as well as the pressure exerted by the writer, obtained through a digitizer. Although inferring additional information about the writers arm pose, kinematics, and dynamics based on digitizer data can be useful, it constitutes a challenge. In this paper, we tackle this challenge by proposing a new set of features based on the dynamics of online signatures. These new features are inferred through a Lagrangian formulation, obtaining the sequences of generalized coordinates and torques for 2D and 3D robotic arm models. By combining kinematic and dynamic robotic features, our results demonstrate their significant effectiveness for online automatic signature verification and achieving state-of-the-art results when integrated into deep learning models.
☆ WMINet: A Wheel-Mounted Inertial Learning Approach For Mobile-Robot Positioning
Autonomous mobile robots are widely used for navigation, transportation, and inspection tasks indoors and outdoors. In practical situations of limited satellite signals or poor lighting conditions, navigation depends only on inertial sensors. In such cases, the navigation solution rapidly drifts due to inertial measurement errors. In this work, we propose WMINet a wheel-mounted inertial deep learning approach to estimate the mobile robot's position based only on its inertial sensors. To that end, we merge two common practical methods to reduce inertial drift: a wheel-mounted approach and driving the mobile robot in periodic trajectories. Additionally, we enforce a wheelbase constraint to further improve positioning performance. To evaluate our proposed approach we recorded using the Rosbot-XL a wheel-mounted initial dataset totaling 190 minutes, which is made publicly available. Our approach demonstrated a 66\% improvement over state-of-the-art approaches. As a consequence, our approach enables navigation in challenging environments and bridges the pure inertial gap. This enables seamless robot navigation using only inertial sensors for short periods.
☆ Synchronous vs Asynchronous Reinforcement Learning in a Real World Robot
In recent times, reinforcement learning (RL) with physical robots has attracted the attention of a wide range of researchers. However, state-of-the-art RL algorithms do not consider that physical environments do not wait for the RL agent to make decisions or updates. RL agents learn by periodically conducting computationally expensive gradient updates. When decision-making and gradient update tasks are carried out sequentially by the RL agent in a physical robot, it significantly increases the agent's response time. In a rapidly changing environment, this increased response time may be detrimental to the performance of the learning agent. Asynchronous RL methods, which separate the computation of decision-making and gradient updates, are a potential solution to this problem. However, only a few comparisons between asynchronous and synchronous RL have been made with physical robots. For this reason, the exact performance benefits of using asynchronous RL methods over synchronous RL methods are still unclear. In this study, we provide a performance comparison between asynchronous and synchronous RL using a physical robotic arm called Franka Emika Panda. Our experiments show that the agents learn faster and attain significantly more returns using asynchronous RL. Our experiments also demonstrate that the learning agent with a faster response time performs better than the agent with a slower response time, even if the agent with a slower response time performs a higher number of gradient updates.
comment: Presented at Alberta Robotics & Intelligent Systems Expo (RISE) Conference
☆ PANDORA: Diffusion Policy Learning for Dexterous Robotic Piano Playing
We present PANDORA, a novel diffusion-based policy learning framework designed specifically for dexterous robotic piano performance. Our approach employs a conditional U-Net architecture enhanced with FiLM-based global conditioning, which iteratively denoises noisy action sequences into smooth, high-dimensional trajectories. To achieve precise key execution coupled with expressive musical performance, we design a composite reward function that integrates task-specific accuracy, audio fidelity, and high-level semantic feedback from a large language model (LLM) oracle. The LLM oracle assesses musical expressiveness and stylistic nuances, enabling dynamic, hand-specific reward adjustments. Further augmented by a residual inverse-kinematics refinement policy, PANDORA achieves state-of-the-art performance in the ROBOPIANIST environment, significantly outperforming baselines in both precision and expressiveness. Ablation studies validate the critical contributions of diffusion-based denoising and LLM-driven semantic feedback in enhancing robotic musicianship. Videos available at: https://taco-group.github.io/PANDORA
☆ Learning-based 3D Reconstruction in Autonomous Driving: A Comprehensive Survey
Learning-based 3D reconstruction has emerged as a transformative technique in autonomous driving, enabling precise modeling of both dynamic and static environments through advanced neural representations. Despite augmenting perception, 3D reconstruction inspires pioneering solution for vital tasks in the field of autonomous driving, such as scene understanding and closed-loop simulation. Commencing with an examination of input modalities, we investigates the details of 3D reconstruction and conducts a multi-perspective, in-depth analysis of recent advancements. Specifically, we first provide a systematic introduction of preliminaries, including data formats, benchmarks and technical preliminaries of learning-based 3D reconstruction, facilitating instant identification of suitable methods based on hardware configurations and sensor suites. Then, we systematically review learning-based 3D reconstruction methods in autonomous driving, categorizing approaches by subtasks and conducting multi-dimensional analysis and summary to establish a comprehensive technical reference. The development trends and existing challenges is summarized in the context of learning-based 3D reconstruction in autonomous driving. We hope that our review will inspire future researches.
☆ Second-order Theory of Mind for Human Teachers and Robot Learners
Confusing or otherwise unhelpful learner feedback creates or perpetuates erroneous beliefs that the teacher and learner have of each other, thereby increasing the cognitive burden placed upon the human teacher. For example, the robot's feedback might cause the human to misunderstand what the learner knows about the learning objective or how the learner learns. At the same time -- and in addition to the learning objective -- the learner might misunderstand how the teacher perceives the learner's task knowledge and learning processes. To ease the teaching burden, the learner should provide feedback that accounts for these misunderstandings and elicits efficient teaching from the human. This work endows an AI learner with a Second-order Theory of Mind that models perceived rationality as a source for the erroneous beliefs a teacher and learner may have of one another. It also explores how a learner can ease the teaching burden and improve teacher efficacy if it selects feedback which accounts for its model of the teacher's beliefs about the learner and its learning objective.
♻ ☆ Dita: Scaling Diffusion Transformer for Generalist Vision-Language-Action Policy
While recent vision-language-action models trained on diverse robot datasets exhibit promising generalization capabilities with limited in-domain data, their reliance on compact action heads to predict discretized or continuous actions constrains adaptability to heterogeneous action spaces. We present Dita, a scalable framework that leverages Transformer architectures to directly denoise continuous action sequences through a unified multimodal diffusion process. Departing from prior methods that condition denoising on fused embeddings via shallow networks, Dita employs in-context conditioning -- enabling fine-grained alignment between denoised actions and raw visual tokens from historical observations. This design explicitly models action deltas and environmental nuances. By scaling the diffusion action denoiser alongside the Transformer's scalability, Dita effectively integrates cross-embodiment datasets across diverse camera perspectives, observation scenes, tasks, and action spaces. Such synergy enhances robustness against various variances and facilitates the successful execution of long-horizon tasks. Evaluations across extensive benchmarks demonstrate state-of-the-art or comparative performance in simulation. Notably, Dita achieves robust real-world adaptation to environmental variances and complex long-horizon tasks through 10-shot finetuning, using only third-person camera inputs. The architecture establishes a versatile, lightweight and open-source baseline for generalist robot policy learning. Project Page: https://robodita.github.io/
comment: I want to withdraw the recent replacement (v4), given that the author is different, the title is also different and the content is totally different
♻ ☆ Prof. Robot: Differentiable Robot Rendering Without Static and Self-Collisions
Differentiable rendering has gained significant attention in the field of robotics, with differentiable robot rendering emerging as an effective paradigm for learning robotic actions from image-space supervision. However, the lack of physical world perception in this approach may lead to potential collisions during action optimization. In this work, we introduce a novel improvement on previous efforts by incorporating physical awareness of collisions through the learning of a neural robotic collision classifier. This enables the optimization of actions that avoid collisions with static, non-interactable environments as well as the robot itself. To facilitate effective gradient optimization with the classifier, we identify the underlying issue and propose leveraging Eikonal regularization to ensure consistent gradients for optimization. Our solution can be seamlessly integrated into existing differentiable robot rendering frameworks, utilizing gradients for optimization and providing a foundation for future applications of differentiable rendering in robotics with improved reliability of interactions with the physical world. Both qualitative and quantitative experiments demonstrate the necessity and effectiveness of our method compared to previous solutions.
♻ ☆ A Survey of State of the Art Large Vision Language Models: Alignment, Benchmark, Evaluations and Challenges
Multimodal Vision Language Models (VLMs) have emerged as a transformative technology at the intersection of computer vision and natural language processing, enabling machines to perceive and reason about the world through both visual and textual modalities. For example, models such as CLIP, Claude, and GPT-4V demonstrate strong reasoning and understanding abilities on visual and textual data and beat classical single modality vision models on zero-shot classification. Despite their rapid advancements in research and growing popularity in applications, a comprehensive survey of existing studies on VLMs is notably lacking, particularly for researchers aiming to leverage VLMs in their specific domains. To this end, we provide a systematic overview of VLMs in the following aspects: model information of the major VLMs developed over the past five years (2019-2024); the main architectures and training methods of these VLMs; summary and categorization of the popular benchmarks and evaluation metrics of VLMs; the applications of VLMs including embodied agents, robotics, and video generation; the challenges and issues faced by current VLMs such as hallucination, fairness, and safety. Detailed collections including papers and model repository links are listed in https://github.com/zli12321/Vision-Language-Models-Overview.
comment: 22 pages, 3 figures
HybridVLA: Collaborative Diffusion and Autoregression in a Unified Vision-Language-Action Model
Recent advancements in vision-language models (VLMs) for common-sense reasoning have led to the development of vision-language-action (VLA) models, enabling robots to perform generalized manipulation. Although existing autoregressive VLA methods leverage large-scale pretrained knowledge, they disrupt the continuity of actions. Meanwhile, some VLA methods incorporate an additional diffusion head to predict continuous actions, relying solely on VLM-extracted features, which limits their reasoning capabilities. In this paper, we introduce HybridVLA, a unified framework that seamlessly integrates the strengths of both autoregressive and diffusion policies within a single large language model, rather than simply connecting them. To bridge the generation gap, a collaborative training recipe is proposed that injects the diffusion modeling directly into the next-token prediction. With this recipe, we find that these two forms of action prediction not only reinforce each other but also exhibit varying performance across different tasks. Therefore, we design a collaborative action ensemble mechanism that adaptively fuses these two predictions, leading to more robust control. In experiments, HybridVLA outperforms previous state-of-the-art VLA methods across various simulation and real-world tasks, including both single-arm and dual-arm robots, while demonstrating stable manipulation in previously unseen configurations.
♻ ☆ Reasoning in visual navigation of end-to-end trained agents: a dynamical systems approach
Progress in Embodied AI has made it possible for end-to-end-trained agents to navigate in photo-realistic environments with high-level reasoning and zero-shot or language-conditioned behavior, but benchmarks are still dominated by simulation. In this work, we focus on the fine-grained behavior of fast-moving real robots and present a large-scale experimental study involving \numepisodes{} navigation episodes in a real environment with a physical robot, where we analyze the type of reasoning emerging from end-to-end training. In particular, we study the presence of realistic dynamics which the agent learned for open-loop forecasting, and their interplay with sensing. We analyze the way the agent uses latent memory to hold elements of the scene structure and information gathered during exploration. We probe the planning capabilities of the agent, and find in its memory evidence for somewhat precise plans over a limited horizon. Furthermore, we show in a post-hoc analysis that the value function learned by the agent relates to long-term planning. Put together, our experiments paint a new picture on how using tools from computer vision and sequential decision making have led to new capabilities in robotics and control. An interactive tool is available at europe.naverlabs.com/research/publications/reasoning-in-visual-navigation-of-end-to-end-trained-agents.
♻ ☆ Uni-Gaussians: Unifying Camera and Lidar Simulation with Gaussians for Dynamic Driving Scenarios
Ensuring the safety of autonomous vehicles necessitates comprehensive simulation of multi-sensor data, encompassing inputs from both cameras and LiDAR sensors, across various dynamic driving scenarios. Neural rendering techniques, which utilize collected raw sensor data to simulate these dynamic environments, have emerged as a leading methodology. While NeRF-based approaches can uniformly represent scenes for rendering data from both camera and LiDAR, they are hindered by slow rendering speeds due to dense sampling. Conversely, Gaussian Splatting-based methods employ Gaussian primitives for scene representation and achieve rapid rendering through rasterization. However, these rasterization-based techniques struggle to accurately model non-linear optical sensors. This limitation restricts their applicability to sensors beyond pinhole cameras. To address these challenges and enable unified representation of dynamic driving scenarios using Gaussian primitives, this study proposes a novel hybrid approach. Our method utilizes rasterization for rendering image data while employing Gaussian ray-tracing for LiDAR data rendering. Experimental results on public datasets demonstrate that our approach outperforms current state-of-the-art methods. This work presents a unified and efficient solution for realistic simulation of camera and LiDAR data in autonomous driving scenarios using Gaussian primitives, offering significant advancements in both rendering quality and computational efficiency.
comment: 10 pages
♻ ☆ Enhancing Robustness in Manipulability Assessment: The Pseudo-Ellipsoid Approach
Manipulability analysis is a methodology employed to assess the capacity of an articulated system, at a specific configuration, to produce motion or exert force in diverse directions. The conventional method entails generating a virtual ellipsoid using the system's configuration and model. Yet, this approach poses challenges when applied to systems such as the human body, where direct access to such information is limited, necessitating reliance on estimations. Any inaccuracies in these estimations can distort the ellipsoid's configuration, potentially compromising the accuracy of the manipulability assessment. To address this issue, this article extends the standard approach by introducing the concept of the manipulability pseudo-ellipsoid. Through a series of theoretical analyses, simulations, and experiments, the article demonstrates that the proposed method exhibits reduced sensitivity to noise in sensory information, consequently enhancing the robustness of the approach.
comment: 8 pages, 10 figures
♻ ☆ Simultaneous Ground Reaction Force and State Estimation via Constrained Moving Horizon Estimation
Accurate ground reaction force (GRF) estimation can significantly improve the adaptability of legged robots in various real-world applications. For instance, with estimated GRF and contact kinematics, the locomotion control and planning assist the robot in overcoming uncertain terrains. The canonical momentum-based methods, formulated as nonlinear observers, do not fully address the noisy measurements and the dependence between floating-base states and the generalized momentum dynamics. In this paper, we present a simultaneous ground reaction force and state estimation framework for legged robots, which systematically addresses the sensor noise and the coupling between states and dynamics. With the floating base orientation estimated separately, a decentralized Moving Horizon Estimation (MHE) method is implemented to fuse the robot dynamics, proprioceptive sensors, exteroceptive sensors, and deterministic contact complementarity constraints in a convex windowed optimization. The proposed method is shown to be capable of providing accurate GRF and state estimation on several legged robots, including the custom-designed humanoid robot Bucky, the open-source educational planar bipedal robot STRIDE, and the quadrupedal robot Unitree Go1, with a frequency of 200Hz and a past time window of 0.04s.
♻ ☆ A Generalized Control Revision Method for Autonomous Driving Safety
Safety is one of the most crucial challenges of autonomous driving vehicles, and one solution to guarantee safety is to employ an additional control revision module after the planning backbone. Control Barrier Function (CBF) has been widely used because of its strong mathematical foundation on safety. However, the incompatibility with heterogeneous perception data and incomplete consideration of traffic scene elements make existing systems hard to be applied in dynamic and complex real-world scenarios. In this study, we introduce a generalized control revision method for autonomous driving safety, which adopts both vectorized perception and occupancy grid map as inputs and comprehensively models multiple types of traffic scene constraints based on a new proposed barrier function. Traffic elements are integrated into one unified framework, decoupled from specific scenario settings or rules. Experiments on CARLA, SUMO, and OnSite simulator prove that the proposed algorithm could realize safe control revision under complicated scenes, adapting to various planning backbones, road topologies, and risk types. Physical platform validation also verifies the real-world application feasibility.
♻ ☆ Personalized Speech Emotion Recognition in Human-Robot Interaction using Vision Transformers
Emotions are an essential element in verbal communication, so understanding individuals' affect during a human-robot interaction (HRI) becomes imperative. This paper investigates the application of vision transformer models, namely ViT (Vision Transformers) and BEiT (BERT Pre-Training of Image Transformers) pipelines, for Speech Emotion Recognition (SER) in HRI. The focus is to generalize the SER models for individual speech characteristics by fine-tuning these models on benchmark datasets and exploiting ensemble methods. For this purpose, we collected audio data from different human subjects having pseudo-naturalistic conversations with the NAO robot. We then fine-tuned our ViT and BEiT-based models and tested these models on unseen speech samples from the participants. In the results, we show that fine-tuning vision transformers on benchmark datasets and and then using either these already fine-tuned models or ensembling ViT/BEiT models gets us the highest classification accuracies per individual when it comes to identifying four primary emotions from their speech: neutral, happy, sad, and angry, as compared to fine-tuning vanilla-ViTs or BEiTs.
comment: This work has been accepted for the IEEE Robotics and Automation Letters (RA-L)
Environment as Policy: Learning to Race in Unseen Tracks
Reinforcement learning (RL) has achieved outstanding success in complex robot control tasks, such as drone racing, where the RL agents have outperformed human champions in a known racing track. However, these agents fail in unseen track configurations, always requiring complete retraining when presented with new track layouts. This work aims to develop RL agents that generalize effectively to novel track configurations without retraining. The naive solution of training directly on a diverse set of track layouts can overburden the agent, resulting in suboptimal policy learning as the increased complexity of the environment impairs the agent's ability to learn to fly. To enhance the generalizability of the RL agent, we propose an adaptive environment-shaping framework that dynamically adjusts the training environment based on the agent's performance. We achieve this by leveraging a secondary RL policy to design environments that strike a balance between being challenging and achievable, allowing the agent to adapt and improve progressively. Using our adaptive environment shaping, one single racing policy efficiently learns to race in diverse challenging tracks. Experimental results validated in both simulation and the real world show that our method enables drones to successfully fly complex and unseen race tracks, outperforming existing environment-shaping techniques. Project page: http://rpg.ifi.uzh.ch/env_as_policy.
♻ ☆ In-Context Learning Enables Robot Action Prediction in LLMs ICRA 2025
Recently, Large Language Models (LLMs) have achieved remarkable success using in-context learning (ICL) in the language domain. However, leveraging the ICL capabilities within LLMs to directly predict robot actions remains largely unexplored. In this paper, we introduce RoboPrompt, a framework that enables off-the-shelf text-only LLMs to directly predict robot actions through ICL without training. Our approach first heuristically identifies keyframes that capture important moments from an episode. Next, we extract end-effector actions from these keyframes as well as the estimated initial object poses, and both are converted into textual descriptions. Finally, we construct a structured template to form ICL demonstrations from these textual descriptions and a task instruction. This enables an LLM to directly predict robot actions at test time. Through extensive experiments and analysis, RoboPrompt shows stronger performance over zero-shot and ICL baselines in simulated and real-world settings. Our project page is available at https://davidyyd.github.io/roboprompt.
comment: Published in ICRA 2025
♻ ☆ Towards Effective Utilization of Mixed-Quality Demonstrations in Robotic Manipulation via Segment-Level Selection and Optimization ICRA 2025
Data is crucial for robotic manipulation, as it underpins the development of robotic systems for complex tasks. While high-quality, diverse datasets enhance the performance and adaptability of robotic manipulation policies, collecting extensive expert-level data is resource-intensive. Consequently, many current datasets suffer from quality inconsistencies due to operator variability, highlighting the need for methods to utilize mixed-quality data effectively. To mitigate these issues, we propose "Select Segments to Imitate" (S2I), a framework that selects and optimizes mixed-quality demonstration data at the segment level, while ensuring plug-and-play compatibility with existing robotic manipulation policies. The framework has three components: demonstration segmentation dividing origin data into meaningful segments, segment selection using contrastive learning to find high-quality segments, and trajectory optimization to refine suboptimal segments for better policy learning. We evaluate S2I through comprehensive experiments in simulation and real-world environments across six tasks, demonstrating that with only 3 expert demonstrations for reference, S2I can improve the performance of various downstream policies when trained with mixed-quality demonstrations. Project website: https://tonyfang.net/s2i/.
comment: ICRA 2025. Project website: https://tonyfang.net/s2i/
♻ ☆ Believing is Seeing: Unobserved Object Detection using Generative Models
Can objects that are not visible in an image -- but are in the vicinity of the camera -- be detected? This study introduces the novel tasks of 2D, 2.5D and 3D unobserved object detection for predicting the location of nearby objects that are occluded or lie outside the image frame. We adapt several state-of-the-art pre-trained generative models to address this task, including 2D and 3D diffusion models and vision-language models, and show that they can be used to infer the presence of objects that are not directly observed. To benchmark this task, we propose a suite of metrics that capture different aspects of performance. Our empirical evaluation on indoor scenes from the RealEstate10k and NYU Depth v2 datasets demonstrate results that motivate the use of generative models for the unobserved object detection task.
comment: IEEE/CVF Computer Vision and Pattern Recognition 2025; 22 pages
SARO: Space-Aware Robot System for Terrain Crossing via Vision-Language Model
The application of vision-language models (VLMs) has achieved impressive success in various robotics tasks. However, there are few explorations for these foundation models used in quadruped robot navigation through terrains in 3D environments. In this work, we introduce SARO (Space Aware Robot System for Terrain Crossing), an innovative system composed of a high-level reasoning module, a closed-loop sub-task execution module, and a low-level control policy. It enables the robot to navigate across 3D terrains and reach the goal position. For high-level reasoning and execution, we propose a novel algorithmic system taking advantage of a VLM, with a design of task decomposition and a closed-loop sub-task execution mechanism. For low-level locomotion control, we utilize the Probability Annealing Selection (PAS) method to effectively train a control policy by reinforcement learning. Numerous experiments show that our whole system can accurately and robustly navigate across several 3D terrains, and its generalization ability ensures the applications in diverse indoor and outdoor scenarios and terrains. Project page: https://saro-vlm.github.io/
comment: 12 pages, 9 figures
♻ ☆ ACL-QL: Adaptive Conservative Level in Q-Learning for Offline Reinforcement Learning
Offline Reinforcement Learning (RL), which operates solely on static datasets without further interactions with the environment, provides an appealing alternative to learning a safe and promising control policy. The prevailing methods typically learn a conservative policy to mitigate the problem of Q-value overestimation, but it is prone to overdo it, leading to an overly conservative policy. Moreover, they optimize all samples equally with fixed constraints, lacking the nuanced ability to control conservative levels in a fine-grained manner. Consequently, this limitation results in a performance decline. To address the above two challenges in a united way, we propose a framework, Adaptive Conservative Level in Q-Learning (ACL-QL), which limits the Q-values in a mild range and enables adaptive control on the conservative level over each state-action pair, i.e., lifting the Q-values more for good transitions and less for bad transitions. We theoretically analyze the conditions under which the conservative level of the learned Q-function can be limited in a mild range and how to optimize each transition adaptively. Motivated by the theoretical analysis, we propose a novel algorithm, ACL-QL, which uses two learnable adaptive weight functions to control the conservative level over each transition. Subsequently, we design a monotonicity loss and surrogate losses to train the adaptive weight functions, Q-function, and policy network alternatively. We evaluate ACL-QL on the commonly used D4RL benchmark and conduct extensive ablation studies to illustrate the effectiveness and state-of-the-art performance compared to existing offline DRL baselines.
comment: 19 pages, 4 figures, IEEE Transactions on Neural Networks and Learning Systems (2024)
♻ ☆ Learning from Imperfect Demonstrations with Self-Supervision for Robotic Manipulation
Improving data utilization, especially for imperfect data from task failures, is crucial for robotic manipulation due to the challenging, time-consuming, and expensive data collection process in the real world. Current imitation learning (IL) typically discards imperfect data, focusing solely on successful expert data. While reinforcement learning (RL) can learn from explorations and failures, the sim2real gap and its reliance on dense reward and online exploration make it difficult to apply effectively in real-world scenarios. In this work, we aim to conquer the challenge of leveraging imperfect data without the need for reward information to improve the model performance for robotic manipulation in an offline manner. Specifically, we introduce a Self-Supervised Data Filtering framework (SSDF) that combines expert and imperfect data to compute quality scores for failed trajectory segments. High-quality segments from the failed data are used to expand the training dataset. Then, the enhanced dataset can be used with any downstream policy learning method for robotic manipulation tasks. Extensive experiments on the ManiSkill2 benchmark built on the high-fidelity Sapien simulator and real-world robotic manipulation tasks using the Franka robot arm demonstrated that the SSDF can accurately expand the training dataset with high-quality imperfect data and improve the success rates for all robotic manipulation tasks.
comment: 8 pages, 4 figures
♻ ☆ OW-Rep: Open World Object Detection with Instance Representation Learning
Open World Object Detection(OWOD) addresses realistic scenarios where unseen object classes emerge, enabling detectors trained on known classes to detect unknown objects and incrementally incorporate the knowledge they provide. While existing OWOD methods primarily focus on detecting unknown objects, they often overlook the rich semantic relationships between detected objects, which are essential for scene understanding and applications in open-world environments (e.g., open-world tracking and novel class discovery). In this paper, we extend the OWOD framework to jointly detect unknown objects and learn semantically rich instance embeddings, enabling the detector to capture fine-grained semantic relationships between instances. To this end, we propose two modules that leverage the rich and generalizable knowledge of Vision Foundation Models(VFM). First, the Unknown Box Refine Module uses instance masks from the Segment Anything Model to accurately localize unknown objects. The Embedding Transfer Module then distills instance-wise semantic similarities from VFM features to the detector's embeddings via a relaxed contrastive loss, enabling the detector to learn a semantically meaningful and generalizable instance feature. Extensive experiments show that our method significantly improves both unknown object detection and instance embedding quality, while also enhancing performance in downstream tasks such as open-world tracking.
comment: Our project website can be found at https://sunohlee.github.io/OW-Rep/
♻ ☆ Brain-inspired Action Generation with Spiking Transformer Diffusion Policy Model
Spiking Neural Networks (SNNs) has the ability to extract spatio-temporal features due to their spiking sequence. While previous research has primarily foucus on the classification of image and reinforcement learning. In our paper, we put forward novel diffusion policy model based on Spiking Transformer Neural Networks and Denoising Diffusion Probabilistic Model (DDPM): Spiking Transformer Modulate Diffusion Policy Model (STMDP), a new brain-inspired model for generating robot action trajectories. In order to improve the performance of this model, we develop a novel decoder module: Spiking Modulate De coder (SMD), which replaces the traditional Decoder module within the Transformer architecture. Additionally, we explored the substitution of DDPM with Denoising Diffusion Implicit Models (DDIM) in our frame work. We conducted experiments across four robotic manipulation tasks and performed ablation studies on the modulate block. Our model consistently outperforms existing Transformer-based diffusion policy method. Especially in Can task, we achieved an improvement of 8%. The proposed STMDP method integrates SNNs, dffusion model and Transformer architecture, which offers new perspectives and promising directions for exploration in brain-inspired robotics.
comment: 10 pages, 4 figures and 2 tables, conference submission
♻ ☆ MTDP: A Modulated Transformer based Diffusion Policy Model
Recent research on robot manipulation based on Behavior Cloning (BC) has made significant progress. By combining diffusion models with BC, diffusion policiy has been proposed, enabling robots to quickly learn manipulation tasks with high success rates. However, integrating diffusion policy with high-capacity Transformer presents challenges, traditional Transformer architectures struggle to effectively integrate guiding conditions, resulting in poor performance in manipulation tasks when using Transformer-based models. In this paper, we investigate key architectural designs of Transformers and improve the traditional Transformer architecture by proposing the Modulated Transformer Diffusion Policy (MTDP) model for diffusion policy. The core of this model is the Modulated Attention module we proposed, which more effectively integrates the guiding conditions with the main input, improving the generative model's output quality and, consequently, increasing the robot's task success rate. In six experimental tasks, MTDP outperformed existing Transformer model architectures, particularly in the Toolhang experiment, where the success rate increased by 12\%. To verify the generality of Modulated Attention, we applied it to the UNet architecture to construct Modulated UNet Diffusion Policy model (MUDP), which also achieved higher success rates than existing UNet architectures across all six experiments. The Diffusion Policy uses Denoising Diffusion Probabilistic Models (DDPM) as the diffusion model. Building on this, we also explored Denoising Diffusion Implicit Models (DDIM) as the diffusion model, constructing the MTDP-I and MUDP-I model, which nearly doubled the generation speed while maintaining performance.
♻ ☆ An Augmented Reality Interface for Teleoperating Robot Manipulators
Effective real-time robot control is essential as we increasingly integrate robots into various societal contexts. Moreover, obtaining high-quality demonstration data is critical for the success of data-driven approaches, such as imitation learning. Existing platforms for robot control and data collection in manipulation tasks often place significant physical and mental demands on the user, require additional hardware, or necessitate specialized knowledge. In this work, we introduce a novel augmented reality interface for teleoperating robotic manipulators, focusing on the user experience, particularly when performing complex, precise tasks. Designed for the Microsoft HoloLens 2, this interface leverages the adaptability of mixed reality, allowing users to control a physical robot via a digital end effector surrogate. We evaluate the effectiveness of our approach across four complex manipulation tasks and compare its performance with the 3D SpaceMouse, a traditional teleoperation method in robotics, and kinesthetic teaching, the assumed performance upperbound in robotic control. Our findings reveal that, quantitatively, our method addresses a key limitation of the SpaceMouse: its unintuitive mapping of rotations. Additionally, a user study demonstrates that our AR-based system achieves higher usability scores and recommendation likelihood, and lower task load compared to the SpaceMouse.
comment: 8 pages, 6 figures
♻ ☆ The Spinning Blimp: Design and Control of a Novel Minimalist Aerial Vehicle Leveraging Rotational Dynamics and Locomotion ICRA 2025
This paper presents the Spinning Blimp, a novel lighter-than-air (LTA) aerial vehicle designed for low-energy stable flight. Utilizing an oblate spheroid helium balloon for buoyancy, the vehicle achieves minimal energy consumption while maintaining prolonged airborne states. The unique and low-cost design employs a passively arranged wing coupled with a propeller to induce a spinning behavior, providing inherent pendulum-like stabilization. We propose a control strategy that takes advantage of the continuous revolving nature of the spinning blimp to control translational motion. The cost-effectiveness of the vehicle makes it highly suitable for a variety of applications, such as patrolling, localization, air and turbulence monitoring, and domestic surveillance. Experimental evaluations affirm the design's efficacy and underscore its potential as a versatile and economically viable solution for aerial applications.
comment: Accepted at the IEEE international conference on robotics and automation(ICRA 2025)
Automated Layout and Control Co-Design of Robust Multi-UAV Transportation Systems
The joint optimization of physical parameters and controllers in robotic systems is challenging. This is due to the difficulties of predicting the effect that changes in physical parameters have on final performances. At the same time, physical and morphological modifications can improve robot capabilities, perhaps completely unlocking new skills and tasks. We present a novel approach to co-optimize the physical layout and the control of a cooperative aerial transportation system. The goal is to achieve the most precise and robust flight when carrying a payload. We assume the agents are connected to the payload through rigid attachments, essentially transforming the whole system into a larger flying object with ``thrust modules" at the attachment locations of the quadcopters. We investigate the optimal arrangement of the thrust modules around the payload, so that the resulting system achieves the best disturbance rejection capabilities. We propose a novel metric of robustness inspired by H2 control, and propose an algorithm to optimize the layout of the vehicles around the object and their controller altogether. We experimentally validate the effectiveness of our approach using fleets of three and four quadcopters and payloads of diverse shapes.
comment: 7 pages, 7 figures, journal paper (IEEE RA-L)
♻ ☆ Global SLAM Using 5G ToA Integration: Performance Analysis with Unknown Base Stations and Loop Closure Alternatives
This paper presents a novel approach that integrates 5G Time of Arrival (ToA) measurements into ORB-SLAM3 to enable global localization and enhance mapping capabilities for indoor drone navigation. We extend ORB-SLAM3's optimization pipeline to jointly process ToA data from 5G base stations alongside visual and inertial measurements while estimating system biases. This integration transforms the inherently local SLAM estimates into globally referenced trajectories and effectively resolves scale ambiguity in monocular configurations. Our method is evaluated using both Aerolab indoor datasets with RGB-D cameras and the EuRoC MAV benchmark, complemented by simulated 5G ToA measurements at 28 GHz and 78 GHz frequencies using MATLAB and QuaDRiGa. Extensive experiments across multiple SLAM configurations demonstrate that ToA integration enables consistent global positioning across all modes while maintaining local accuracy. For monocular configurations, ToA integration successfully resolves scale ambiguity and improves consistency. We further investigate scenarios with unknown base station positions and demonstrate that ToA measurements can effectively serve as an alternative to loop closure for drift correction. Comparative analysis with state-of-the-art methods, including UWB-VO, confirms our approach's robustness even with lower measurement frequencies and sequential base station operation. The results validate that 5G ToA integration provides substantial benefits for global SLAM applications, particularly in challenging indoor environments where accurate positioning is critical.
♻ ☆ Cooperative distributed model predictive control for embedded systems: Experiments with hovercraft formations
This paper presents experiments for embedded cooperative distributed model predictive control applied to a team of hovercraft floating on an air hockey table. The hovercraft collectively solve a centralized optimal control problem in each sampling step via a stabilizing decentralized real-time iteration scheme using the alternating direction method of multipliers. The efficient implementation does not require a central coordinator, executes onboard the hovercraft, and facilitates sampling intervals in the millisecond range. The formation control experiments showcase the flexibility of the approach on scenarios with point-to-point transitions, trajectory tracking, collision avoidance, and moving obstacles.
♻ ☆ SAFER-Splat: A Control Barrier Function for Safe Navigation with Online Gaussian Splatting Maps
SAFER-Splat (Simultaneous Action Filtering and Environment Reconstruction) is a real-time, scalable, and minimally invasive action filter, based on control barrier functions, for safe robotic navigation in a detailed map constructed at runtime using Gaussian Splatting (GSplat). We propose a novel Control Barrier Function (CBF) that not only induces safety with respect to all Gaussian primitives in the scene, but when synthesized into a controller, is capable of processing hundreds of thousands of Gaussians while maintaining a minimal memory footprint and operating at 15 Hz during online Splat training. Of the total compute time, a small fraction of it consumes GPU resources, enabling uninterrupted training. The safety layer is minimally invasive, correcting robot actions only when they are unsafe. To showcase the safety filter, we also introduce SplatBridge, an open-source software package built with ROS for real-time GSplat mapping for robots. We demonstrate the safety and robustness of our pipeline first in simulation, where our method is 20-50x faster, safer, and less conservative than competing methods based on neural radiance fields. Further, we demonstrate simultaneous GSplat mapping and safety filtering on a drone hardware platform using only on-board perception. We verify that under teleoperation a human pilot cannot invoke a collision. Our videos and codebase can be found at https://chengine.github.io/safer-splat.
comment: Accepted to International Conference on Robotics and Automation
♻ ☆ Visibility-Aware RRT* for Safety-Critical Navigation of Perception-Limited Robots in Unknown Environments IROS 2025
Safe autonomous navigation in unknown environments remains a critical challenge for robots with limited sensing capabilities. While safety-critical control techniques, such as Control Barrier Functions (CBFs), have been proposed to ensure safety, their effectiveness relies on the assumption that the robot has complete knowledge of its surroundings. In reality, robots often operate with restricted field-of-view and finite sensing range, which can lead to collisions with unknown obstacles if the planner is agnostic to these limitations. To address this issue, we introduce the Visibility-Aware RRT* algorithm that combines sampling-based planning with CBFs to generate safe and efficient global reference paths in partially unknown environments. The algorithm incorporates a collision avoidance CBF and a novel visibility CBF, which guarantees that the robot remains within locally collision-free regions, enabling timely detection and avoidance of unknown obstacles. We conduct extensive experiments interfacing the path planners with two different safety-critical controllers, wherein our method outperforms all other compared baselines across both safety and efficiency aspects.
comment: Accepted to IEEE Robotics and Automation Letters (to be presented at IROS 2025). Our project page can be found at: https://www.taekyung.me/visibility-rrt
♻ ☆ Sensory Glove-Based Surgical Robot User Interface ICRA
Robotic surgery has reached a high level of maturity and has become an integral part of standard surgical care. However, existing surgeon consoles are bulky, take up valuable space in the operating room, make surgical team coordination challenging, and their proprietary nature makes it difficult to take advantage of recent technological advances, especially in virtual and augmented reality. One potential area for further improvement is the integration of modern sensory gloves into robotic platforms, allowing surgeons to control robotic arms intuitively with their hand movements. We propose one such system that combines an HTC Vive tracker, a Manus Meta Prime 3 XR sensory glove, and SCOPEYE wireless smart glasses. The system controls one arm of a da Vinci surgical robot. In addition to moving the arm, the surgeon can use fingers to control the end-effector of the surgical instrument. Hand gestures are used to implement clutching and similar functions. In particular, we introduce clutching of the instrument orientation, a functionality unavailable in the da Vinci system. The vibrotactile elements of the glove are used to provide feedback to the user when gesture commands are invoked. A qualitative and quantitative evaluation has been conducted that compares the current device with the dVRK console. The system is shown to have excellent tracking accuracy, and the new interface allows surgeons to perform common surgical training tasks with minimal practice efficiently.
comment: 6 pages, 4 figures, 7 tables, submitted to International Conference on Robotics and Automation (ICRA) 2025
♻ ☆ ArtFormer: Controllable Generation of Diverse 3D Articulated Objects CVPR 2025
This paper presents a novel framework for modeling and conditional generation of 3D articulated objects. Troubled by flexibility-quality tradeoffs, existing methods are often limited to using predefined structures or retrieving shapes from static datasets. To address these challenges, we parameterize an articulated object as a tree of tokens and employ a transformer to generate both the object's high-level geometry code and its kinematic relations. Subsequently, each sub-part's geometry is further decoded using a signed-distance-function (SDF) shape prior, facilitating the synthesis of high-quality 3D shapes. Our approach enables the generation of diverse objects with high-quality geometry and varying number of parts. Comprehensive experiments on conditional generation from text descriptions demonstrate the effectiveness and flexibility of our method.
comment: CVPR 2025. impl. repo: https://github.com/ShuYuMo2003/ArtFormer
Computer Vision 148
☆ MoManipVLA: Transferring Vision-language-action Models for General Mobile Manipulation CVPR 2025
Mobile manipulation is the fundamental challenge for robotics to assist humans with diverse tasks and environments in everyday life. However, conventional mobile manipulation approaches often struggle to generalize across different tasks and environments because of the lack of large-scale training. In contrast, recent advances in vision-language-action (VLA) models have shown impressive generalization capabilities, but these foundation models are developed for fixed-base manipulation tasks. Therefore, we propose an efficient policy adaptation framework named MoManipVLA to transfer pre-trained VLA models of fix-base manipulation to mobile manipulation, so that high generalization ability across tasks and environments can be achieved in mobile manipulation policy. Specifically, we utilize pre-trained VLA models to generate waypoints of the end-effector with high generalization ability. We design motion planning objectives for the mobile base and the robot arm, which aim at maximizing the physical feasibility of the trajectory. Finally, we present an efficient bi-level objective optimization framework for trajectory generation, where the upper-level optimization predicts waypoints for base movement to enhance the manipulator policy space, and the lower-level optimization selects the optimal end-effector trajectory to complete the manipulation task. In this way, MoManipVLA can adjust the position of the robot base in a zero-shot manner, thus making the waypoints predicted from the fixed-base VLA models feasible. Extensive experimental results on OVMM and the real world demonstrate that MoManipVLA achieves a 4.2% higher success rate than the state-of-the-art mobile manipulation, and only requires 50 training cost for real world deployment due to the strong generalization ability in the pre-trained VLA models.
comment: Accepted to CVPR 2025. Project Page: https://gary3410.github.io/momanipVLA/
☆ VideoMind: A Chain-of-LoRA Agent for Long Video Reasoning
Videos, with their unique temporal dimension, demand precise grounded understanding, where answers are directly linked to visual, interpretable evidence. Despite significant breakthroughs in reasoning capabilities within Large Language Models, multi-modal reasoning - especially for videos - remains unexplored. In this work, we introduce VideoMind, a novel video-language agent designed for temporal-grounded video understanding. VideoMind incorporates two key innovations: (i) We identify essential capabilities for video temporal reasoning and develop a role-based agentic workflow, including a planner for coordinating different roles, a grounder for temporal localization, a verifier to assess temporal interval accuracy, and an answerer for question-answering. (ii) To efficiently integrate these diverse roles, we propose a novel Chain-of-LoRA strategy, enabling seamless role-switching via lightweight LoRA adaptors while avoiding the overhead of multiple models, thus balancing efficiency and flexibility. Extensive experiments on 14 public benchmarks demonstrate that our agent achieves state-of-the-art performance on diverse video understanding tasks, including 3 on grounded video question-answering, 6 on video temporal grounding, and 5 on general video question-answering, underscoring its effectiveness in advancing video agent and long-form temporal reasoning.
comment: Project Page: https://videomind.github.io/
☆ DPC: Dual-Prompt Collaboration for Tuning Vision-Language Models CVPR 2025
The Base-New Trade-off (BNT) problem universally exists during the optimization of CLIP-based prompt tuning, where continuous fine-tuning on base (target) classes leads to a simultaneous decrease of generalization ability on new (unseen) classes. Existing approaches attempt to regulate the prompt tuning process to balance BNT by appending constraints. However, imposed on the same target prompt, these constraints fail to fully avert the mutual exclusivity between the optimization directions for base and new. As a novel solution to this challenge, we propose the plug-and-play Dual-Prompt Collaboration (DPC) framework, the first that decoupling the optimization processes of base and new tasks at the prompt level. Specifically, we clone a learnable parallel prompt based on the backbone prompt, and introduce a variable Weighting-Decoupling framework to independently control the optimization directions of dual prompts specific to base or new tasks, thus avoiding the conflict in generalization. Meanwhile, we propose a Dynamic Hard Negative Optimizer, utilizing dual prompts to construct a more challenging optimization task on base classes for enhancement. For interpretability, we prove the feature channel invariance of the prompt vector during the optimization process, providing theoretical support for the Weighting-Decoupling of DPC. Extensive experiments on multiple backbones demonstrate that DPC can significantly improve base performance without introducing any external knowledge beyond the base classes, while maintaining generalization to new classes. Code is available at: https://github.com/JREion/DPC.
comment: Accepted by the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2025 (CVPR 2025)
☆ Humanoid Policy ~ Human Policy
Training manipulation policies for humanoid robots with diverse data enhances their robustness and generalization across tasks and platforms. However, learning solely from robot demonstrations is labor-intensive, requiring expensive tele-operated data collection which is difficult to scale. This paper investigates a more scalable data source, egocentric human demonstrations, to serve as cross-embodiment training data for robot learning. We mitigate the embodiment gap between humanoids and humans from both the data and modeling perspectives. We collect an egocentric task-oriented dataset (PH2D) that is directly aligned with humanoid manipulation demonstrations. We then train a human-humanoid behavior policy, which we term Human Action Transformer (HAT). The state-action space of HAT is unified for both humans and humanoid robots and can be differentiably retargeted to robot actions. Co-trained with smaller-scale robot data, HAT directly models humanoid robots and humans as different embodiments without additional supervision. We show that human data improves both generalization and robustness of HAT with significantly better data collection efficiency. Code and data: https://human-as-robot.github.io/
comment: Code and data: https://human-as-robot.github.io/
☆ Amodal3R: Amodal 3D Reconstruction from Occluded 2D Images
Most image-based 3D object reconstructors assume that objects are fully visible, ignoring occlusions that commonly occur in real-world scenarios. In this paper, we introduce Amodal3R, a conditional 3D generative model designed to reconstruct 3D objects from partial observations. We start from a "foundation" 3D generative model and extend it to recover plausible 3D geometry and appearance from occluded objects. We introduce a mask-weighted multi-head cross-attention mechanism followed by an occlusion-aware attention layer that explicitly leverages occlusion priors to guide the reconstruction process. We demonstrate that, by training solely on synthetic data, Amodal3R learns to recover full 3D objects even in the presence of occlusions in real scenes. It substantially outperforms existing methods that independently perform 2D amodal completion followed by 3D reconstruction, thereby establishing a new benchmark for occlusion-aware 3D reconstruction.
comment: Project Page: https://sm0kywu.github.io/Amodal3R/
☆ Unified Autoregressive Visual Generation and Understanding with Continuous Tokens
We present UniFluid, a unified autoregressive framework for joint visual generation and understanding leveraging continuous visual tokens. Our unified autoregressive architecture processes multimodal image and text inputs, generating discrete tokens for text and continuous tokens for image. We find though there is an inherent trade-off between the image generation and understanding task, a carefully tuned training recipe enables them to improve each other. By selecting an appropriate loss balance weight, the unified model achieves results comparable to or exceeding those of single-task baselines on both tasks. Furthermore, we demonstrate that employing stronger pre-trained LLMs and random-order generation during training is important to achieve high-fidelity image generation within this unified framework. Built upon the Gemma model series, UniFluid exhibits competitive performance across both image generation and understanding, demonstrating strong transferability to various downstream tasks, including image editing for generation, as well as visual captioning and question answering for understanding.
comment: Tech report
☆ WideRange4D: Enabling High-Quality 4D Reconstruction with Wide-Range Movements and Scenes
With the rapid development of 3D reconstruction technology, research in 4D reconstruction is also advancing, existing 4D reconstruction methods can generate high-quality 4D scenes. However, due to the challenges in acquiring multi-view video data, the current 4D reconstruction benchmarks mainly display actions performed in place, such as dancing, within limited scenarios. In practical scenarios, many scenes involve wide-range spatial movements, highlighting the limitations of existing 4D reconstruction datasets. Additionally, existing 4D reconstruction methods rely on deformation fields to estimate the dynamics of 3D objects, but deformation fields struggle with wide-range spatial movements, which limits the ability to achieve high-quality 4D scene reconstruction with wide-range spatial movements. In this paper, we focus on 4D scene reconstruction with significant object spatial movements and propose a novel 4D reconstruction benchmark, WideRange4D. This benchmark includes rich 4D scene data with large spatial variations, allowing for a more comprehensive evaluation of the generation capabilities of 4D generation methods. Furthermore, we introduce a new 4D reconstruction method, Progress4D, which generates stable and high-quality 4D results across various complex 4D scene reconstruction tasks. We conduct both quantitative and qualitative comparison experiments on WideRange4D, showing that our Progress4D outperforms existing state-of-the-art 4D reconstruction methods. Project: https://github.com/Gen-Verse/WideRange4D
comment: Project: https://github.com/Gen-Verse/WideRange4D
☆ BlobCtrl: A Unified and Flexible Framework for Element-level Image Generation and Editing
Element-level visual manipulation is essential in digital content creation, but current diffusion-based methods lack the precision and flexibility of traditional tools. In this work, we introduce BlobCtrl, a framework that unifies element-level generation and editing using a probabilistic blob-based representation. By employing blobs as visual primitives, our approach effectively decouples and represents spatial location, semantic content, and identity information, enabling precise element-level manipulation. Our key contributions include: 1) a dual-branch diffusion architecture with hierarchical feature fusion for seamless foreground-background integration; 2) a self-supervised training paradigm with tailored data augmentation and score functions; and 3) controllable dropout strategies to balance fidelity and diversity. To support further research, we introduce BlobData for large-scale training and BlobBench for systematic evaluation. Experiments show that BlobCtrl excels in various element-level manipulation tasks while maintaining computational efficiency, offering a practical solution for precise and flexible visual content creation. Project page: https://liyaowei-stu.github.io/project/BlobCtrl/
comment: Project Webpage: https://liyaowei-stu.github.io/project/BlobCtrl/
☆ Less Biased Noise Scale Estimation for Threshold-Robust RANSAC
The gold-standard for robustly estimating relative pose through image matching is RANSAC. While RANSAC is powerful, it requires setting the inlier threshold that determines whether the error of a correspondence under an estimated model is sufficiently small to be included in its consensus set. Setting this threshold is typically done by hand, and is difficult to tune without a access to ground truth data. Thus, a method capable of automatically determining the optimal threshold would be desirable. In this paper we revisit inlier noise scale estimation, which is an attractive approach as the inlier noise scale is linear to the optimal threshold. We revisit the noise scale estimation method SIMFIT and find bias in the estimate of the noise scale. In particular, we fix underestimates from using the same data for fitting the model as estimating the inlier noise, and from not taking the threshold itself into account. Secondly, since the optimal threshold within a scene is approximately constant we propose a multi-pair extension of SIMFIT++, by filtering of estimates, which improves results. Our approach yields robust performance across a range of thresholds, shown in Figure 1.
☆ AugMapNet: Improving Spatial Latent Structure via BEV Grid Augmentation for Enhanced Vectorized Online HD Map Construction
Autonomous driving requires an understanding of the infrastructure elements, such as lanes and crosswalks. To navigate safely, this understanding must be derived from sensor data in real-time and needs to be represented in vectorized form. Learned Bird's-Eye View (BEV) encoders are commonly used to combine a set of camera images from multiple views into one joint latent BEV grid. Traditionally, from this latent space, an intermediate raster map is predicted, providing dense spatial supervision but requiring post-processing into the desired vectorized form. More recent models directly derive infrastructure elements as polylines using vectorized map decoders, providing instance-level information. Our approach, Augmentation Map Network (AugMapNet), proposes latent BEV grid augmentation, a novel technique that significantly enhances the latent BEV representation. AugMapNet combines vector decoding and dense spatial supervision more effectively than existing architectures while remaining as straightforward to integrate and as generic as auxiliary supervision. Experiments on nuScenes and Argoverse2 datasets demonstrate significant improvements in vectorized map prediction performance up to 13.3% over the StreamMapNet baseline on 60m range and greater improvements on larger ranges. We confirm transferability by applying our method to another baseline and find similar improvements. A detailed analysis of the latent BEV grid confirms a more structured latent space of AugMapNet and shows the value of our novel concept beyond pure performance improvement. The code will be released soon.
☆ Escaping Plato's Cave: Robust Conceptual Reasoning through Interpretable 3D Neural Object Volumes
With the rise of neural networks, especially in high-stakes applications, these networks need two properties (i) robustness and (ii) interpretability to ensure their safety. Recent advances in classifiers with 3D volumetric object representations have demonstrated a greatly enhanced robustness in out-of-distribution data. However, these 3D-aware classifiers have not been studied from the perspective of interpretability. We introduce CAVE - Concept Aware Volumes for Explanations - a new direction that unifies interpretability and robustness in image classification. We design an inherently-interpretable and robust classifier by extending existing 3D-aware classifiers with concepts extracted from their volumetric representations for classification. In an array of quantitative metrics for interpretability, we compare against different concept-based approaches across the explainable AI literature and show that CAVE discovers well-grounded concepts that are used consistently across images, while achieving superior robustness.
☆ Infinite Mobility: Scalable High-Fidelity Synthesis of Articulated Objects via Procedural Generation
Large-scale articulated objects with high quality are desperately needed for multiple tasks related to embodied AI. Most existing methods for creating articulated objects are either data-driven or simulation based, which are limited by the scale and quality of the training data or the fidelity and heavy labour of the simulation. In this paper, we propose Infinite Mobility, a novel method for synthesizing high-fidelity articulated objects through procedural generation. User study and quantitative evaluation demonstrate that our method can produce results that excel current state-of-the-art methods and are comparable to human-annotated datasets in both physics property and mesh quality. Furthermore, we show that our synthetic data can be used as training data for generative models, enabling next-step scaling up. Code is available at https://github.com/Intern-Nexus/Infinite-Mobility
comment: Project page: https://infinite-mobility.github.io 10 pages,12 figures
☆ U2AD: Uncertainty-based Unsupervised Anomaly Detection Framework for Detecting T2 Hyperintensity in MRI Spinal Cord
T2 hyperintensities in spinal cord MR images are crucial biomarkers for conditions such as degenerative cervical myelopathy. However, current clinical diagnoses primarily rely on manual evaluation. Deep learning methods have shown promise in lesion detection, but most supervised approaches are heavily dependent on large, annotated datasets. Unsupervised anomaly detection (UAD) offers a compelling alternative by eliminating the need for abnormal data annotations. However, existing UAD methods rely on curated normal datasets and their performance frequently deteriorates when applied to clinical datasets due to domain shifts. We propose an Uncertainty-based Unsupervised Anomaly Detection framework, termed U2AD, to address these limitations. Unlike traditional methods, U2AD is designed to be trained and tested within the same clinical dataset, following a "mask-and-reconstruction" paradigm built on a Vision Transformer-based architecture. We introduce an uncertainty-guided masking strategy to resolve task conflicts between normal reconstruction and anomaly detection to achieve an optimal balance. Specifically, we employ a Monte-Carlo sampling technique to estimate reconstruction uncertainty mappings during training. By iteratively optimizing reconstruction training under the guidance of both epistemic and aleatoric uncertainty, U2AD reduces overall reconstruction variance while emphasizing regions. Experimental results demonstrate that U2AD outperforms existing supervised and unsupervised methods in patient-level identification and segment-level localization tasks. This framework establishes a new benchmark for incorporating uncertainty guidance into UAD, highlighting its clinical utility in addressing domain shifts and task conflicts in medical image anomaly detection. Our code is available: https://github.com/zhibaishouheilab/U2AD
☆ MicroVQA: A Multimodal Reasoning Benchmark for Microscopy-Based Scientific Research CVPR 2025
Scientific research demands sophisticated reasoning over multimodal data, a challenge especially prevalent in biology. Despite recent advances in multimodal large language models (MLLMs) for AI-assisted research, existing multimodal reasoning benchmarks only target up to college-level difficulty, while research-level benchmarks emphasize lower-level perception, falling short of the complex multimodal reasoning needed for scientific discovery. To bridge this gap, we introduce MicroVQA, a visual-question answering (VQA) benchmark designed to assess three reasoning capabilities vital in research workflows: expert image understanding, hypothesis generation, and experiment proposal. MicroVQA consists of 1,042 multiple-choice questions (MCQs) curated by biology experts across diverse microscopy modalities, ensuring VQA samples represent real scientific practice. In constructing the benchmark, we find that standard MCQ generation methods induce language shortcuts, motivating a new two-stage pipeline: an optimized LLM prompt structures question-answer pairs into MCQs; then, an agent-based `RefineBot' updates them to remove shortcuts. Benchmarking on state-of-the-art MLLMs reveal a peak performance of 53\%; models with smaller LLMs only slightly underperform top models, suggesting that language-based reasoning is less challenging than multimodal reasoning; and tuning with scientific articles enhances performance. Expert analysis of chain-of-thought responses shows that perception errors are the most frequent, followed by knowledge errors and then overgeneralization errors. These insights highlight the challenges in multimodal scientific reasoning, showing MicroVQA is a valuable resource advancing AI-driven biomedical research. MicroVQA is available at https://huggingface.co/datasets/jmhb/microvqa, and project page at https://jmhb0.github.io/microvqa.
comment: CVPR 2025 (Conference on Computer Vision and Pattern Recognition) Project page at https://jmhb0.github.io/microvqa Benchmark at https://huggingface.co/datasets/jmhb/microvqa
☆ Scale Efficient Training for Large Datasets CVPR2025
The rapid growth of dataset scales has been a key driver in advancing deep learning research. However, as dataset scale increases, the training process becomes increasingly inefficient due to the presence of low-value samples, including excessive redundant samples, overly challenging samples, and inefficient easy samples that contribute little to model improvement.To address this challenge, we propose Scale Efficient Training (SeTa) for large datasets, a dynamic sample pruning approach that losslessly reduces training time. To remove low-value samples, SeTa first performs random pruning to eliminate redundant samples, then clusters the remaining samples according to their learning difficulty measured by loss. Building upon this clustering, a sliding window strategy is employed to progressively remove both overly challenging and inefficient easy clusters following an easy-to-hard curriculum.We conduct extensive experiments on large-scale synthetic datasets, including ToCa, SS1M, and ST+MJ, each containing over 3 million samples.SeTa reduces training costs by up to 50\% while maintaining or improving performance, with minimal degradation even at 70\% cost reduction. Furthermore, experiments on various scale real datasets across various backbones (CNNs, Transformers, and Mambas) and diverse tasks (instruction tuning, multi-view stereo, geo-localization, composed image retrieval, referring image segmentation) demonstrate the powerful effectiveness and universality of our approach. Code is available at https://github.com/mrazhou/SeTa.
comment: Accepted by CVPR2025
Cream of the Crop: Harvesting Rich, Scalable and Transferable Multi-Modal Data for Instruction Fine-Tuning
The hypothesis that pretrained large language models (LLMs) necessitate only minimal supervision during the fine-tuning (SFT) stage (Zhou et al., 2024) has been substantiated by recent advancements in data curation and selection research. However, their stability and generalizability are compromised due to the vulnerability to experimental setups and validation protocols, falling short of surpassing random sampling (Diddee & Ippolito, 2024; Xia et al., 2024b). Built upon LLMs, multi-modal LLMs (MLLMs), combined with the sheer token volume and heightened heterogeneity of data sources, amplify both the significance and complexity of data selection. To harvest multi-modal instructional data in a robust and efficient manner, we re-define the granularity of the quality metric by decomposing it into 14 vision-language-related capabilities, and introduce multi-modal rich scorers to evaluate the capabilities of each data candidate. To promote diversity, in light of the inherent objective of the alignment stage, we take interaction style as diversity indicator and use a multi-modal rich styler to identify data instruction patterns. In doing so, our multi-modal rich scorers and styler (mmSSR) guarantee that high-scoring information is conveyed to users in diversified forms. Free from embedding-based clustering or greedy sampling, mmSSR efficiently scales to millions of data with varying budget constraints, supports customization for general or specific capability acquisition, and facilitates training-free generalization to new domains for curation. Across 10+ experimental settings, validated by 14 multi-modal benchmarks, we demonstrate consistent improvements over random sampling, baseline strategies and state-of-the-art selection methods, achieving 99.1% of full performance with only 30% of the 2.6M data.
comment: update comparison with sota and analysis
☆ TimeZero: Temporal Video Grounding with Reasoning-Guided LVLM
We introduce TimeZero, a reasoning-guided LVLM designed for the temporal video grounding (TVG) task. This task requires precisely localizing relevant video segments within long videos based on a given language query. TimeZero tackles this challenge by extending the inference process, enabling the model to reason about video-language relationships solely through reinforcement learning. To evaluate the effectiveness of TimeZero, we conduct experiments on two benchmarks, where TimeZero achieves state-of-the-art performance on Charades-STA. Code is available at https://github.com/www-Ye/TimeZero.
comment: Code: https://github.com/www-Ye/TimeZero
☆ Sightation Counts: Leveraging Sighted User Feedback in Building a BLV-aligned Dataset of Diagram Descriptions
Often, the needs and visual abilities differ between the annotator group and the end user group. Generating detailed diagram descriptions for blind and low-vision (BLV) users is one such challenging domain. Sighted annotators could describe visuals with ease, but existing studies have shown that direct generations by them are costly, bias-prone, and somewhat lacking by BLV standards. In this study, we ask sighted individuals to assess -- rather than produce -- diagram descriptions generated by vision-language models (VLM) that have been guided with latent supervision via a multi-pass inference. The sighted assessments prove effective and useful to professional educators who are themselves BLV and teach visually impaired learners. We release Sightation, a collection of diagram description datasets spanning 5k diagrams and 137k samples for completion, preference, retrieval, question answering, and reasoning training purposes and demonstrate their fine-tuning potential in various downstream tasks.
comment: 37 pages, 10 figures, 21 tables
☆ Mitigating Visual Forgetting via Take-along Visual Conditioning for Multi-modal Long CoT Reasoning
Recent advancements in Large Language Models (LLMs) have demonstrated enhanced reasoning capabilities, evolving from Chain-of-Thought (CoT) prompting to advanced, product-oriented solutions like OpenAI o1. During our re-implementation of this model, we noticed that in multimodal tasks requiring visual input (e.g., geometry problems), Multimodal LLMs (MLLMs) struggle to maintain focus on the visual information, in other words, MLLMs suffer from a gradual decline in attention to visual information as reasoning progresses, causing text-over-relied outputs. To investigate this, we ablate image inputs during long-chain reasoning. Concretely, we truncate the reasoning process midway, then re-complete the reasoning process with the input image removed. We observe only a ~2% accuracy drop on MathVista's test-hard subset, revealing the model's textual outputs dominate the following reasoning process. Motivated by this, we propose Take-along Visual Conditioning (TVC), a strategy that shifts image input to critical reasoning stages and compresses redundant visual tokens via dynamic pruning. This methodology helps the model retain attention to the visual components throughout the reasoning. Our approach achieves state-of-the-art performance on average across five mathematical reasoning benchmarks (+3.4% vs previous sota), demonstrating the effectiveness of TVC in enhancing multimodal reasoning systems.
comment: The project page is available at https://sun-hailong.github.io/projects/TVC
☆ One-Step Residual Shifting Diffusion for Image Super-Resolution via Distillation
Diffusion models for super-resolution (SR) produce high-quality visual results but require expensive computational costs. Despite the development of several methods to accelerate diffusion-based SR models, some (e.g., SinSR) fail to produce realistic perceptual details, while others (e.g., OSEDiff) may hallucinate non-existent structures. To overcome these issues, we present RSD, a new distillation method for ResShift, one of the top diffusion-based SR models. Our method is based on training the student network to produce such images that a new fake ResShift model trained on them will coincide with the teacher model. RSD achieves single-step restoration and outperforms the teacher by a large margin. We show that our distillation method can surpass the other distillation-based method for ResShift - SinSR - making it on par with state-of-the-art diffusion-based SR distillation methods. Compared to SR methods based on pre-trained text-to-image models, RSD produces competitive perceptual quality, provides images with better alignment to degraded input images, and requires fewer parameters and GPU memory. We provide experimental results on various real-world and synthetic datasets, including RealSR, RealSet65, DRealSR, ImageNet, and DIV2K.
☆ Parameter-free structure-texture image decomposition by unrolling
In this work, we propose a parameter-free and efficient method to tackle the structure-texture image decomposition problem. In particular, we present a neural network LPR-NET based on the unrolling of the Low Patch Rank model. On the one hand, this allows us to automatically learn parameters from data, and on the other hand to be computationally faster while obtaining qualitatively similar results compared to traditional iterative model-based methods. Moreover, despite being trained on synthetic images, numerical experiments show the ability of our network to generalize well when applied to natural images.
comment: To be published in Conference Proceedings: Scale Space and Variational Method in Computer Vision, 2025
☆ TriDF: Triplane-Accelerated Density Fields for Few-Shot Remote Sensing Novel View Synthesis
Remote sensing novel view synthesis (NVS) offers significant potential for 3D interpretation of remote sensing scenes, with important applications in urban planning and environmental monitoring. However, remote sensing scenes frequently lack sufficient multi-view images due to acquisition constraints. While existing NVS methods tend to overfit when processing limited input views, advanced few-shot NVS methods are computationally intensive and perform sub-optimally in remote sensing scenes. This paper presents TriDF, an efficient hybrid 3D representation for fast remote sensing NVS from as few as 3 input views. Our approach decouples color and volume density information, modeling them independently to reduce the computational burden on implicit radiance fields and accelerate reconstruction. We explore the potential of the triplane representation in few-shot NVS tasks by mapping high-frequency color information onto this compact structure, and the direct optimization of feature planes significantly speeds up convergence. Volume density is modeled as continuous density fields, incorporating reference features from neighboring views through image-based rendering to compensate for limited input data. Additionally, we introduce depth-guided optimization based on point clouds, which effectively mitigates the overfitting problem in few-shot NVS. Comprehensive experiments across multiple remote sensing scenes demonstrate that our hybrid representation achieves a 30x speed increase compared to NeRF-based methods, while simultaneously improving rendering quality metrics over advanced few-shot methods (7.4% increase in PSNR, 12.2% in SSIM, and 18.7% in LPIPS). The code is publicly available at https://github.com/kanehub/TriDF
☆ STEP: Simultaneous Tracking and Estimation of Pose for Animals and Humans
We introduce STEP, a novel framework utilizing Transformer-based discriminative model prediction for simultaneous tracking and estimation of pose across diverse animal species and humans. We are inspired by the fact that the human brain exploits spatiotemporal continuity and performs concurrent localization and pose estimation despite the specialization of brain areas for form and motion processing. Traditional discriminative models typically require predefined target states for determining model weights, a challenge we address through Gaussian Map Soft Prediction (GMSP) and Offset Map Regression Adapter (OMRA) Modules. These modules remove the necessity of keypoint target states as input, streamlining the process. Our method starts with a known target state initialized through a pre-trained detector or manual initialization in the initial frame of a given video sequence. It then seamlessly tracks the target and estimates keypoints of anatomical importance as output for subsequent frames. Unlike prevalent top-down pose estimation methods, our approach doesn't rely on per-frame target detections due to its tracking capability. This facilitates a significant advancement in inference efficiency and potential applications. We train and validate our approach on datasets encompassing diverse species. Our experiments demonstrate superior results compared to existing methods, opening doors to various applications, including but not limited to action recognition and behavioral analysis.
☆ LEAVS: An LLM-based Labeler for Abdominal CT Supervision
Extracting structured labels from radiology reports has been employed to create vision models to simultaneously detect several types of abnormalities. However, existing works focus mainly on the chest region. Few works have been investigated on abdominal radiology reports due to more complex anatomy and a wider range of pathologies in the abdomen. We propose LEAVS (Large language model Extractor for Abdominal Vision Supervision). This labeler can annotate the certainty of presence and the urgency of seven types of abnormalities for nine abdominal organs on CT radiology reports. To ensure broad coverage, we chose abnormalities that encompass most of the finding types from CT reports. Our approach employs a specialized chain-of-thought prompting strategy for a locally-run LLM using sentence extraction and multiple-choice questions in a tree-based decision system. We demonstrate that the LLM can extract several abnormality types across abdominal organs with an average F1 score of 0.89, significantly outperforming competing labelers and humans. Additionally, we show that extraction of urgency labels achieved performance comparable to human annotations. Finally, we demonstrate that the abnormality labels contain valuable information for training a single vision model that classifies several organs as normal or abnormal. We release our code and structured annotations for a public CT dataset containing over 1,000 CT volumes.
☆ Edit Transfer: Learning Image Editing via Vision In-Context Relations
We introduce a new setting, Edit Transfer, where a model learns a transformation from just a single source-target example and applies it to a new query image. While text-based methods excel at semantic manipulations through textual prompts, they often struggle with precise geometric details (e.g., poses and viewpoint changes). Reference-based editing, on the other hand, typically focuses on style or appearance and fails at non-rigid transformations. By explicitly learning the editing transformation from a source-target pair, Edit Transfer mitigates the limitations of both text-only and appearance-centric references. Drawing inspiration from in-context learning in large language models, we propose a visual relation in-context learning paradigm, building upon a DiT-based text-to-image model. We arrange the edited example and the query image into a unified four-panel composite, then apply lightweight LoRA fine-tuning to capture complex spatial transformations from minimal examples. Despite using only 42 training samples, Edit Transfer substantially outperforms state-of-the-art TIE and RIE methods on diverse non-rigid scenarios, demonstrating the effectiveness of few-shot visual relation learning.
☆ MagicDistillation: Weak-to-Strong Video Distillation for Large-Scale Portrait Few-Step Synthesis
Fine-tuning open-source large-scale VDMs for the portrait video synthesis task can result in significant improvements across multiple dimensions, such as visual quality and natural facial motion dynamics. Despite their advancements, how to achieve step distillation and reduce the substantial computational overhead of large-scale VDMs remains unexplored. To fill this gap, this paper proposes Weak-to-Strong Video Distillation (W2SVD) to mitigate both the issue of insufficient training memory and the problem of training collapse observed in vanilla DMD during the training process. Specifically, we first leverage LoRA to fine-tune the fake diffusion transformer (DiT) to address the out-of-memory issue. Then, we employ the W2S distribution matching to adjust the real DiT's parameter, subtly shifting it toward the fake DiT's parameter. This adjustment is achieved by utilizing the weak weight of the low-rank branch, effectively alleviate the conundrum where the video synthesized by the few-step generator deviates from the real data distribution, leading to inaccuracies in the KL divergence approximation. Additionally, we minimize the distance between the fake data distribution and the ground truth distribution to further enhance the visual quality of the synthesized videos. As experimentally demonstrated on HunyuanVideo, W2SVD surpasses the standard Euler, LCM, DMD and even the 28-step standard sampling in FID/FVD and VBench in 1/4-step video synthesis. The project page is in https://w2svd.github.io/W2SVD/.
☆ Integrating AI for Human-Centric Breast Cancer Diagnostics: A Multi-Scale and Multi-View Swin Transformer Framework
Despite advancements in Computer-Aided Diagnosis (CAD) systems, breast cancer remains one of the leading causes of cancer-related deaths among women worldwide. Recent breakthroughs in Artificial Intelligence (AI) have shown significant promise in development of advanced Deep Learning (DL) architectures for breast cancer diagnosis through mammography. In this context, the paper focuses on the integration of AI within a Human-Centric workflow to enhance breast cancer diagnostics. Key challenges are, however, largely overlooked such as reliance on detailed tumor annotations and susceptibility to missing views, particularly during test time. To address these issues, we propose a hybrid, multi-scale and multi-view Swin Transformer-based framework (MSMV-Swin) that enhances diagnostic robustness and accuracy. The proposed MSMV-Swin framework is designed to work as a decision-support tool, helping radiologists analyze multi-view mammograms more effectively. More specifically, the MSMV-Swin framework leverages the Segment Anything Model (SAM) to isolate the breast lobe, reducing background noise and enabling comprehensive feature extraction. The multi-scale nature of the proposed MSMV-Swin framework accounts for tumor-specific regions as well as the spatial characteristics of tissues surrounding the tumor, capturing both localized and contextual information. The integration of contextual and localized data ensures that MSMV-Swin's outputs align with the way radiologists interpret mammograms, fostering better human-AI interaction and trust. A hybrid fusion structure is then designed to ensure robustness against missing views, a common occurrence in clinical practice when only a single mammogram view is available.
☆ UniHOPE: A Unified Approach for Hand-Only and Hand-Object Pose Estimation
Estimating the 3D pose of hand and potential hand-held object from monocular images is a longstanding challenge. Yet, existing methods are specialized, focusing on either bare-hand or hand interacting with object. No method can flexibly handle both scenarios and their performance degrades when applied to the other scenario. In this paper, we propose UniHOPE, a unified approach for general 3D hand-object pose estimation, flexibly adapting both scenarios. Technically, we design a grasp-aware feature fusion module to integrate hand-object features with an object switcher to dynamically control the hand-object pose estimation according to grasping status. Further, to uplift the robustness of hand pose estimation regardless of object presence, we generate realistic de-occluded image pairs to train the model to learn object-induced hand occlusions, and formulate multi-level feature enhancement techniques for learning occlusion-invariant features. Extensive experiments on three commonly-used benchmarks demonstrate UniHOPE's SOTA performance in addressing hand-only and hand-object scenarios. Code will be released on https://github.com/JoyboyWang/UniHOPE_Pytorch.
comment: 8 pages, 6 figures, 7 tables
☆ Progressive Human Motion Generation Based on Text and Few Motion Frames
Although existing text-to-motion (T2M) methods can produce realistic human motion from text description, it is still difficult to align the generated motion with the desired postures since using text alone is insufficient for precisely describing diverse postures. To achieve more controllable generation, an intuitive way is to allow the user to input a few motion frames describing precise desired postures. Thus, we explore a new Text-Frame-to-Motion (TF2M) generation task that aims to generate motions from text and very few given frames. Intuitively, the closer a frame is to a given frame, the lower the uncertainty of this frame is when conditioned on this given frame. Hence, we propose a novel Progressive Motion Generation (PMG) method to progressively generate a motion from the frames with low uncertainty to those with high uncertainty in multiple stages. During each stage, new frames are generated by a Text-Frame Guided Generator conditioned on frame-aware semantics of the text, given frames, and frames generated in previous stages. Additionally, to alleviate the train-test gap caused by multi-stage accumulation of incorrectly generated frames during testing, we propose a Pseudo-frame Replacement Strategy for training. Experimental results show that our PMG outperforms existing T2M generation methods by a large margin with even one given frame, validating the effectiveness of our PMG. Code will be released.
☆ Artificial Intelligence-Driven Prognostic Classification of COVID-19 Using Chest X-rays: A Deep Learning Approach
Background: The COVID-19 pandemic has overwhelmed healthcare systems, emphasizing the need for AI-driven tools to assist in rapid and accurate patient prognosis. Chest X-ray imaging is a widely available diagnostic tool, but existing methods for prognosis classification lack scalability and efficiency. Objective: This study presents a high-accuracy deep learning model for classifying COVID-19 severity (Mild, Moderate, and Severe) using Chest X-ray images, developed on Microsoft Azure Custom Vision. Methods: Using a dataset of 1,103 confirmed COVID-19 X-ray images from AIforCOVID, we trained and validated a deep learning model leveraging Convolutional Neural Networks (CNNs). The model was evaluated on an unseen dataset to measure accuracy, precision, and recall. Results: Our model achieved an average accuracy of 97%, with specificity of 99%, sensitivity of 87%, and an F1-score of 93.11%. When classifying COVID-19 severity, the model achieved accuracies of 89.03% (Mild), 95.77% (Moderate), and 81.16% (Severe). These results demonstrate the model's potential for real-world clinical applications, aiding in faster decision-making and improved resource allocation. Conclusion: AI-driven prognosis classification using deep learning can significantly enhance COVID-19 patient management, enabling early intervention and efficient triaging. Our study provides a scalable, high-accuracy AI framework for integrating deep learning into routine clinical workflows. Future work should focus on expanding datasets, external validation, and regulatory compliance to facilitate clinical adoption.
comment: 27 pages, 6 figures, 10 tables
☆ Generative Gaussian Splatting: Generating 3D Scenes with Video Diffusion Priors
Synthesizing consistent and photorealistic 3D scenes is an open problem in computer vision. Video diffusion models generate impressive videos but cannot directly synthesize 3D representations, i.e., lack 3D consistency in the generated sequences. In addition, directly training generative 3D models is challenging due to a lack of 3D training data at scale. In this work, we present Generative Gaussian Splatting (GGS) -- a novel approach that integrates a 3D representation with a pre-trained latent video diffusion model. Specifically, our model synthesizes a feature field parameterized via 3D Gaussian primitives. The feature field is then either rendered to feature maps and decoded into multi-view images, or directly upsampled into a 3D radiance field. We evaluate our approach on two common benchmark datasets for scene synthesis, RealEstate10K and ScanNet+, and find that our proposed GGS model significantly improves both the 3D consistency of the generated multi-view images, and the quality of the generated 3D scenes over all relevant baselines. Compared to a similar model without 3D representation, GGS improves FID on the generated 3D scenes by ~20% on both RealEstate10K and ScanNet+. Project page: https://katjaschwarz.github.io/ggs/
☆ FlexWorld: Progressively Expanding 3D Scenes for Flexiable-View Synthesis
Generating flexible-view 3D scenes, including 360{\deg} rotation and zooming, from single images is challenging due to a lack of 3D data. To this end, we introduce FlexWorld, a novel framework consisting of two key components: (1) a strong video-to-video (V2V) diffusion model to generate high-quality novel view images from incomplete input rendered from a coarse scene, and (2) a progressive expansion process to construct a complete 3D scene. In particular, leveraging an advanced pre-trained video model and accurate depth-estimated training pairs, our V2V model can generate novel views under large camera pose variations. Building upon it, FlexWorld progressively generates new 3D content and integrates it into the global scene through geometry-aware scene fusion. Extensive experiments demonstrate the effectiveness of FlexWorld in generating high-quality novel view videos and flexible-view 3D scenes from single images, achieving superior visual quality under multiple popular metrics and datasets compared to existing state-of-the-art methods. Qualitatively, we highlight that FlexWorld can generate high-fidelity scenes with flexible views like 360{\deg} rotations and zooming. Project page: https://ml-gsai.github.io/FlexWorld.
☆ Don't Judge Before You CLIP: A Unified Approach for Perceptual Tasks
Visual perceptual tasks aim to predict human judgment of images (e.g., emotions invoked by images, image quality assessment). Unlike objective tasks such as object/scene recognition, perceptual tasks rely on subjective human assessments, making its data-labeling difficult. The scarcity of such human-annotated data results in small datasets leading to poor generalization. Typically, specialized models were designed for each perceptual task, tailored to its unique characteristics and its own training dataset. We propose a unified architectural framework for solving multiple different perceptual tasks leveraging CLIP as a prior. Our approach is based on recent cognitive findings which indicate that CLIP correlates well with human judgment. While CLIP was explicitly trained to align images and text, it implicitly also learned human inclinations. We attribute this to the inclusion of human-written image captions in CLIP's training data, which contain not only factual image descriptions, but inevitably also human sentiments and emotions. This makes CLIP a particularly strong prior for perceptual tasks. Accordingly, we suggest that minimal adaptation of CLIP suffices for solving a variety of perceptual tasks. Our simple unified framework employs a lightweight adaptation to fine-tune CLIP to each task, without requiring any task-specific architectural changes. We evaluate our approach on three tasks: (i) Image Memorability Prediction, (ii) No-reference Image Quality Assessment, and (iii) Visual Emotion Analysis. Our model achieves state-of-the-art results on all three tasks, while demonstrating improved generalization across different datasets.
☆ Sampling Innovation-Based Adaptive Compressive Sensing CVPR2025
Scene-aware Adaptive Compressive Sensing (ACS) has attracted significant interest due to its promising capability for efficient and high-fidelity acquisition of scene images. ACS typically prescribes adaptive sampling allocation (ASA) based on previous samples in the absence of ground truth. However, when confronting unknown scenes, existing ACS methods often lack accurate judgment and robust feedback mechanisms for ASA, thus limiting the high-fidelity sensing of the scene. In this paper, we introduce a Sampling Innovation-Based ACS (SIB-ACS) method that can effectively identify and allocate sampling to challenging image reconstruction areas, culminating in high-fidelity image reconstruction. An innovation criterion is proposed to judge ASA by predicting the decrease in image reconstruction error attributable to sampling increments, thereby directing more samples towards regions where the reconstruction error diminishes significantly. A sampling innovation-guided multi-stage adaptive sampling (AS) framework is proposed, which iteratively refines the ASA through a multi-stage feedback process. For image reconstruction, we propose a Principal Component Compressed Domain Network (PCCD-Net), which efficiently and faithfully reconstructs images under AS scenarios. Extensive experiments demonstrate that the proposed SIB-ACS method significantly outperforms the state-of-the-art methods in terms of image reconstruction fidelity and visual effects. Codes are available at https://github.com/giant-pandada/SIB-ACS_CVPR2025.
comment: CVPR2025 accepted
☆ Gradient Extrapolation for Debiased Representation Learning
Machine learning classification models trained with empirical risk minimization (ERM) often inadvertently rely on spurious correlations. When absent in the test data, these unintended associations between non-target attributes and target labels lead to poor generalization. This paper addresses this problem from a model optimization perspective and proposes a novel method, Gradient Extrapolation for Debiased Representation Learning (GERNE), designed to learn debiased representations in both known and unknown attribute training cases. GERNE uses two distinct batches with different amounts of spurious correlations to define the target gradient as the linear extrapolation of two gradients computed from each batch's loss. It is demonstrated that the extrapolated gradient, if directed toward the gradient of the batch with fewer amount of spurious correlation, can guide the training process toward learning a debiased model. GERNE can serve as a general framework for debiasing with methods, such as ERM, reweighting, and resampling, being shown as special cases. The theoretical upper and lower bounds of the extrapolation factor are derived to ensure convergence. By adjusting this factor, GERNE can be adapted to maximize the Group-Balanced Accuracy (GBA) or the Worst-Group Accuracy. The proposed approach is validated on five vision and one NLP benchmarks, demonstrating competitive and often superior performance compared to state-of-the-art baseline methods.
☆ HoloGest: Decoupled Diffusion and Motion Priors for Generating Holisticly Expressive Co-speech Gestures 3DV 2025
Animating virtual characters with holistic co-speech gestures is a challenging but critical task. Previous systems have primarily focused on the weak correlation between audio and gestures, leading to physically unnatural outcomes that degrade the user experience. To address this problem, we introduce HoleGest, a novel neural network framework based on decoupled diffusion and motion priors for the automatic generation of high-quality, expressive co-speech gestures. Our system leverages large-scale human motion datasets to learn a robust prior with low audio dependency and high motion reliance, enabling stable global motion and detailed finger movements. To improve the generation efficiency of diffusion-based models, we integrate implicit joint constraints with explicit geometric and conditional constraints, capturing complex motion distributions between large strides. This integration significantly enhances generation speed while maintaining high-quality motion. Furthermore, we design a shared embedding space for gesture-transcription text alignment, enabling the generation of semantically correct gesture actions. Extensive experiments and user feedback demonstrate the effectiveness and potential applications of our model, with our method achieving a level of realism close to the ground truth, providing an immersive user experience. Our code, model, and demo are are available at https://cyk990422.github.io/HoloGest.github.io/.
comment: Accepted by 3DV 2025
☆ Mind the Gap: Confidence Discrepancy Can Guide Federated Semi-Supervised Learning Across Pseudo-Mismatch CVPR 2025
Federated Semi-Supervised Learning (FSSL) aims to leverage unlabeled data across clients with limited labeled data to train a global model with strong generalization ability. Most FSSL methods rely on consistency regularization with pseudo-labels, converting predictions from local or global models into hard pseudo-labels as supervisory signals. However, we discover that the quality of pseudo-label is largely deteriorated by data heterogeneity, an intrinsic facet of federated learning. In this paper, we study the problem of FSSL in-depth and show that (1) heterogeneity exacerbates pseudo-label mismatches, further degrading model performance and convergence, and (2) local and global models' predictive tendencies diverge as heterogeneity increases. Motivated by these findings, we propose a simple and effective method called Semi-supervised Aggregation for Globally-Enhanced Ensemble (SAGE), that can flexibly correct pseudo-labels based on confidence discrepancies. This strategy effectively mitigates performance degradation caused by incorrect pseudo-labels and enhances consensus between local and global models. Experimental results demonstrate that SAGE outperforms existing FSSL methods in both performance and convergence. Our code is available at https://github.com/Jay-Codeman/SAGE
comment: Accepted by CVPR 2025
☆ Dense Policy: Bidirectional Autoregressive Learning of Actions
Mainstream visuomotor policies predominantly rely on generative models for holistic action prediction, while current autoregressive policies, predicting the next token or chunk, have shown suboptimal results. This motivates a search for more effective learning methods to unleash the potential of autoregressive policies for robotic manipulation. This paper introduces a bidirectionally expanded learning approach, termed Dense Policy, to establish a new paradigm for autoregressive policies in action prediction. It employs a lightweight encoder-only architecture to iteratively unfold the action sequence from an initial single frame into the target sequence in a coarse-to-fine manner with logarithmic-time inference. Extensive experiments validate that our dense policy has superior autoregressive learning capabilities and can surpass existing holistic generative policies. Our policy, example data, and training code will be publicly available upon publication. Project page: https: //selen-suyue.github.io/DspNet/.
☆ A General Adaptive Dual-level Weighting Mechanism for Remote Sensing Pansharpening CVPR
Currently, deep learning-based methods for remote sensing pansharpening have advanced rapidly. However, many existing methods struggle to fully leverage feature heterogeneity and redundancy, thereby limiting their effectiveness. We use the covariance matrix to model the feature heterogeneity and redundancy and propose Correlation-Aware Covariance Weighting (CACW) to adjust them. CACW captures these correlations through the covariance matrix, which is then processed by a nonlinear function to generate weights for adjustment. Building upon CACW, we introduce a general adaptive dual-level weighting mechanism (ADWM) to address these challenges from two key perspectives, enhancing a wide range of existing deep-learning methods. First, Intra-Feature Weighting (IFW) evaluates correlations among channels within each feature to reduce redundancy and enhance unique information. Second, Cross-Feature Weighting (CFW) adjusts contributions across layers based on inter-layer correlations, refining the final output. Extensive experiments demonstrate the superior performance of ADWM compared to recent state-of-the-art (SOTA) methods. Furthermore, we validate the effectiveness of our approach through generality experiments, redundancy visualization, comparison experiments, key variables and complexity analysis, and ablation studies. Our code is available at https://github.com/Jie-1203/ADWM.
comment: This paper is accepted at the CVPR Conference on Computer Vision and Pattern Recognition 2025
☆ MedLoRD: A Medical Low-Resource Diffusion Model for High-Resolution 3D CT Image Synthesis
Advancements in AI for medical imaging offer significant potential. However, their applications are constrained by the limited availability of data and the reluctance of medical centers to share it due to patient privacy concerns. Generative models present a promising solution by creating synthetic data as a substitute for real patient data. However, medical images are typically high-dimensional, and current state-of-the-art methods are often impractical for computational resource-constrained healthcare environments. These models rely on data sub-sampling, raising doubts about their feasibility and real-world applicability. Furthermore, many of these models are evaluated on quantitative metrics that alone can be misleading in assessing the image quality and clinical meaningfulness of the generated images. To address this, we introduce MedLoRD, a generative diffusion model designed for computational resource-constrained environments. MedLoRD is capable of generating high-dimensional medical volumes with resolutions up to 512$\times$512$\times$256, utilizing GPUs with only 24GB VRAM, which are commonly found in standard desktop workstations. MedLoRD is evaluated across multiple modalities, including Coronary Computed Tomography Angiography and Lung Computed Tomography datasets. Extensive evaluations through radiological evaluation, relative regional volume analysis, adherence to conditional masks, and downstream tasks show that MedLoRD generates high-fidelity images closely adhering to segmentation mask conditions, surpassing the capabilities of current state-of-the-art generative models for medical image synthesis in computational resource-constrained environments.
☆ MAP: Evaluation and Multi-Agent Enhancement of Large Language Models for Inpatient Pathways
Inpatient pathways demand complex clinical decision-making based on comprehensive patient information, posing critical challenges for clinicians. Despite advancements in large language models (LLMs) in medical applications, limited research focused on artificial intelligence (AI) inpatient pathways systems, due to the lack of large-scale inpatient datasets. Moreover, existing medical benchmarks typically concentrated on medical question-answering and examinations, ignoring the multifaceted nature of clinical decision-making in inpatient settings. To address these gaps, we first developed the Inpatient Pathway Decision Support (IPDS) benchmark from the MIMIC-IV database, encompassing 51,274 cases across nine triage departments and 17 major disease categories alongside 16 standardized treatment options. Then, we proposed the Multi-Agent Inpatient Pathways (MAP) framework to accomplish inpatient pathways with three clinical agents, including a triage agent managing the patient admission, a diagnosis agent serving as the primary decision maker at the department, and a treatment agent providing treatment plans. Additionally, our MAP framework includes a chief agent overseeing the inpatient pathways to guide and promote these three clinician agents. Extensive experiments showed our MAP improved the diagnosis accuracy by 25.10% compared to the state-of-the-art LLM HuatuoGPT2-13B. It is worth noting that our MAP demonstrated significant clinical compliance, outperforming three board-certified clinicians by 10%-12%, establishing a foundation for inpatient pathways systems.
☆ Clustering is back: Reaching state-of-the-art LiDAR instance segmentation without training
Panoptic segmentation of LiDAR point clouds is fundamental to outdoor scene understanding, with autonomous driving being a primary application. While state-of-the-art approaches typically rely on end-to-end deep learning architectures and extensive manual annotations of instances, the significant cost and time investment required for labeling large-scale point cloud datasets remains a major bottleneck in this field. In this work, we demonstrate that competitive panoptic segmentation can be achieved using only semantic labels, with instances predicted without any training or annotations. Our method achieves performance comparable to current state-of-the-art supervised methods on standard benchmarks including SemanticKITTI and nuScenes, and outperforms every publicly available method on SemanticKITTI as a drop-in instance head replacement, while running in real-time on a single-threaded CPU and requiring no instance labels. Our method is fully explainable, and requires no learning or parameter tuning. Code is available at https://github.com/valeoai/Alpine/
☆ 3D Hierarchical Panoptic Segmentation in Real Orchard Environments Across Different Sensors IROS
Crop yield estimation is a relevant problem in agriculture, because an accurate crop yield estimate can support farmers' decisions on harvesting or precision intervention. Robots can help to automate this process. To do so, they need to be able to perceive the surrounding environment to identify target objects. In this paper, we introduce a novel approach to address the problem of hierarchical panoptic segmentation of apple orchards on 3D data from different sensors. Our approach is able to simultaneously provide semantic segmentation, instance segmentation of trunks and fruits, and instance segmentation of plants (a single trunk with its fruits). This allows us to identify relevant information such as individual plants, fruits, and trunks, and capture the relationship among them, such as precisely estimate the number of fruits associated to each tree in an orchard. Additionally, to efficiently evaluate our approach for hierarchical panoptic segmentation, we provide a dataset designed specifically for this task. Our dataset is recorded in Bonn in a real apple orchard with a variety of sensors, spanning from a terrestrial laser scanner to a RGB-D camera mounted on different robotic platforms. The experiments show that our approach surpasses state-of-the-art approaches in 3D panoptic segmentation in the agricultural domain, while also providing full hierarchical panoptic segmentation. Our dataset has been made publicly available at https://www.ipb.uni-bonn.de/data/hops/. We will provide the open-source implementation of our approach and public competiton for hierarchical panoptic segmentation on the hidden test sets upon paper acceptance.
comment: Submitted to IROS
☆ 3DAxisPrompt: Promoting the 3D Grounding and Reasoning in GPT-4o
Multimodal Large Language Models (MLLMs) exhibit impressive capabilities across a variety of tasks, especially when equipped with carefully designed visual prompts. However, existing studies primarily focus on logical reasoning and visual understanding, while the capability of MLLMs to operate effectively in 3D vision remains an ongoing area of exploration. In this paper, we introduce a novel visual prompting method, called 3DAxisPrompt, to elicit the 3D understanding capabilities of MLLMs in real-world scenes. More specifically, our method leverages the 3D coordinate axis and masks generated from the Segment Anything Model (SAM) to provide explicit geometric priors to MLLMs and then extend their impressive 2D grounding and reasoning ability to real-world 3D scenarios. Besides, we first provide a thorough investigation of the potential visual prompting formats and conclude our findings to reveal the potential and limits of 3D understanding capabilities in GPT-4o, as a representative of MLLMs. Finally, we build evaluation environments with four datasets, i.e., ScanRefer, ScanNet, FMB, and nuScene datasets, covering various 3D tasks. Based on this, we conduct extensive quantitative and qualitative experiments, which demonstrate the effectiveness of the proposed method. Overall, our study reveals that MLLMs, with the help of 3DAxisPrompt, can effectively perceive an object's 3D position in real-world scenarios. Nevertheless, a single prompt engineering approach does not consistently achieve the best outcomes for all 3D tasks. This study highlights the feasibility of leveraging MLLMs for 3D vision grounding/reasoning with prompt engineering techniques.
Triad: Empowering LMM-based Anomaly Detection with Vision Expert-guided Visual Tokenizer and Manufacturing Process
Although recent methods have tried to introduce large multimodal models (LMMs) into industrial anomaly detection (IAD), their generalization in the IAD field is far inferior to that for general purposes. We summarize the main reasons for this gap into two aspects. On one hand, general-purpose LMMs lack cognition of defects in the visual modality, thereby failing to sufficiently focus on defect areas. Therefore, we propose to modify the AnyRes structure of the LLaVA model, providing the potential anomalous areas identified by existing IAD models to the LMMs. On the other hand, existing methods mainly focus on identifying defects by learning defect patterns or comparing with normal samples, yet they fall short of understanding the causes of these defects. Considering that the generation of defects is closely related to the manufacturing process, we propose a manufacturing-driven IAD paradigm. An instruction-tuning dataset for IAD (InstructIAD) and a data organization approach for Chain-of-Thought with manufacturing (CoT-M) are designed to leverage the manufacturing process for IAD. Based on the above two modifications, we present Triad, a novel LMM-based method incorporating an expert-guided region-of-interest tokenizer and manufacturing process for industrial anomaly detection. Extensive experiments show that our Triad not only demonstrates competitive performance against current LMMs but also achieves further improved accuracy when equipped with manufacturing processes. Source code, training data, and pre-trained models will be publicly available at https://github.com/tzjtatata/Triad.
☆ A super-resolution reconstruction method for lightweight building images based on an expanding feature modulation network
This study proposes a lightweight method for building image super-resolution using a Dilated Contextual Feature Modulation Network (DCFMN). The process includes obtaining high-resolution images, down-sampling them to low-resolution, enhancing the low-resolution images, constructing and training a lightweight network model, and generating super-resolution outputs. To address challenges such as regular textures and long-range dependencies in building images, the DCFMN integrates an expansion separable modulation unit and a local feature enhancement module. The former employs multiple expansion convolutions equivalent to a large kernel to efficiently aggregate multi-scale features while leveraging a simple attention mechanism for adaptivity. The latter encodes local features, mixes channel information, and ensures no additional computational burden during inference through reparameterization. This approach effectively resolves the limitations of existing lightweight super-resolution networks in modeling long-range dependencies, achieving accurate and efficient global feature modeling without increasing computational costs, and significantly improving both reconstruction quality and lightweight efficiency for building image super-resolution models.
☆ DeGauss: Dynamic-Static Decomposition with Gaussian Splatting for Distractor-free 3D Reconstruction
Reconstructing clean, distractor-free 3D scenes from real-world captures remains a significant challenge, particularly in highly dynamic and cluttered settings such as egocentric videos. To tackle this problem, we introduce DeGauss, a simple and robust self-supervised framework for dynamic scene reconstruction based on a decoupled dynamic-static Gaussian Splatting design. DeGauss models dynamic elements with foreground Gaussians and static content with background Gaussians, using a probabilistic mask to coordinate their composition and enable independent yet complementary optimization. DeGauss generalizes robustly across a wide range of real-world scenarios, from casual image collections to long, dynamic egocentric videos, without relying on complex heuristics or extensive supervision. Experiments on benchmarks including NeRF-on-the-go, ADT, AEA, Hot3D, and EPIC-Fields demonstrate that DeGauss consistently outperforms existing methods, establishing a strong baseline for generalizable, distractor-free 3D reconstructionin highly dynamic, interaction-rich environments.
☆ From Zero to Detail: Deconstructing Ultra-High-Definition Image Restoration from Progressive Spectral Perspective CVPR 2025
Ultra-high-definition (UHD) image restoration faces significant challenges due to its high resolution, complex content, and intricate details. To cope with these challenges, we analyze the restoration process in depth through a progressive spectral perspective, and deconstruct the complex UHD restoration problem into three progressive stages: zero-frequency enhancement, low-frequency restoration, and high-frequency refinement. Building on this insight, we propose a novel framework, ERR, which comprises three collaborative sub-networks: the zero-frequency enhancer (ZFE), the low-frequency restorer (LFR), and the high-frequency refiner (HFR). Specifically, the ZFE integrates global priors to learn global mapping, while the LFR restores low-frequency information, emphasizing reconstruction of coarse-grained content. Finally, the HFR employs our designed frequency-windowed kolmogorov-arnold networks (FW-KAN) to refine textures and details, producing high-quality image restoration. Our approach significantly outperforms previous UHD methods across various tasks, with extensive ablation studies validating the effectiveness of each component. The code is available at \href{https://github.com/NJU-PCALab/ERR}{here}.
comment: Accepted to CVPR 2025
☆ Beyond RGB: Adaptive Parallel Processing for RAW Object Detection
Object detection models are typically applied to standard RGB images processed through Image Signal Processing (ISP) pipelines, which are designed to enhance sensor-captured RAW images for human vision. However, these ISP functions can lead to a loss of critical information that may be essential in optimizing for computer vision tasks, such as object detection. In this work, we introduce Raw Adaptation Module (RAM), a module designed to replace the traditional ISP, with parameters optimized specifically for RAW object detection. Inspired by the parallel processing mechanisms of the human visual system, RAM departs from existing learned ISP methods by applying multiple ISP functions in parallel rather than sequentially, allowing for a more comprehensive capture of image features. These processed representations are then fused in a specialized module, which dynamically integrates and optimizes the information for the target task. This novel approach not only leverages the full potential of RAW sensor data but also enables task-specific pre-processing, resulting in superior object detection performance. Our approach outperforms RGB-based methods and achieves state-of-the-art results across diverse RAW image datasets under varying lighting conditions and dynamic ranges.
☆ Language-guided Open-world Video Anomaly Detection
Video anomaly detection models aim to detect anomalies that deviate from what is expected. In open-world scenarios, the expected events may change as requirements change. For example, not wearing a mask is considered abnormal during a flu outbreak but normal otherwise. However, existing methods assume that the definition of anomalies is invariable, and thus are not applicable to the open world. To address this, we propose a novel open-world VAD paradigm with variable definitions, allowing guided detection through user-provided natural language at inference time. This paradigm necessitates establishing a robust mapping from video and textual definition to anomaly score. Therefore, we propose LaGoVAD (Language-guided Open-world VAD), a model that dynamically adapts anomaly definitions through two regularization strategies: diversifying the relative durations of anomalies via dynamic video synthesis, and enhancing feature robustness through contrastive learning with negative mining. Training such adaptable models requires diverse anomaly definitions, but existing datasets typically provide given labels without semantic descriptions. To bridge this gap, we collect PreVAD (Pre-training Video Anomaly Dataset), the largest and most diverse video anomaly dataset to date, featuring 35,279 annotated videos with multi-level category labels and descriptions that explicitly define anomalies. Zero-shot experiments on seven datasets demonstrate SOTA performance. Data and code will be released.
☆ DynSTG-Mamba: Dynamic Spatio-Temporal Graph Mamba with Cross-Graph Knowledge Distillation for Gait Disorders Recognition
Gait disorder recognition plays a crucial role in the early diagnosis and monitoring of movement disorders. Existing approaches, including spatio-temporal graph convolutional networks (ST-GCNs), often face high memory demands and struggle to capture complex spatio-temporal dependencies, limiting their efficiency in clinical applications. To address these challenges, we introduce DynSTG-Mamba (Dynamic Spatio-Temporal Graph Mamba), a novel framework that combines DF-STGNN and STG-Mamba to enhance motion sequence modeling. The DF-STGNN incorporates a dynamic spatio-temporal filter that adaptively adjusts spatial connections between skeletal joints and temporal interactions across different movement phases. This approach ensures better feature propagation through dynamic graph structures by considering the hierarchical nature and dynamics of skeletal gait data. Meanwhile, STG-Mamba, an extension of Mamba adapted for skeletal motion data, ensures a continuous propagation of states, facilitating the capture of long-term dependencies while reducing computational complexity. To reduce the number of model parameters and computational costs while maintaining consistency, we propose Cross-Graph Relational Knowledge Distillation, a novel knowledge transfer mechanism that aligns relational information between teacher (large architecture) and student models (small architecture) while using shared memory. This ensures that the interactions and movement patterns of the joints are accurately preserved in the motion sequences. We validate our DynSTG-Mamba on KOA-NM, PD-WALK, and ATAXIA datasets, where it outperforms state-of-the-art approaches by achieving in terms of Accuracy, F1-score, and Recall. Our results highlight the efficiency and robustness of our approach, offering a lightweight yet highly accurate solution for automated gait analysis and movement disorder assessment.
☆ Iterative Predictor-Critic Code Decoding for Real-World Image Dehazing CVPR 2025
We propose a novel Iterative Predictor-Critic Code Decoding framework for real-world image dehazing, abbreviated as IPC-Dehaze, which leverages the high-quality codebook prior encapsulated in a pre-trained VQGAN. Apart from previous codebook-based methods that rely on one-shot decoding, our method utilizes high-quality codes obtained in the previous iteration to guide the prediction of the Code-Predictor in the subsequent iteration, improving code prediction accuracy and ensuring stable dehazing performance. Our idea stems from the observations that 1) the degradation of hazy images varies with haze density and scene depth, and 2) clear regions play crucial cues in restoring dense haze regions. However, it is non-trivial to progressively refine the obtained codes in subsequent iterations, owing to the difficulty in determining which codes should be retained or replaced at each iteration. Another key insight of our study is to propose Code-Critic to capture interrelations among codes. The Code-Critic is used to evaluate code correlations and then resample a set of codes with the highest mask scores, i.e., a higher score indicates that the code is more likely to be rejected, which helps retain more accurate codes and predict difficult ones. Extensive experiments demonstrate the superiority of our method over state-of-the-art methods in real-world dehazing.
comment: Acceptted by CVPR 2025
☆ Logic-in-Frames: Dynamic Keyframe Search via Visual Semantic-Logical Verification for Long Video Understanding
Understanding long video content is a complex endeavor that often relies on densely sampled frame captions or end-to-end feature selectors, yet these techniques commonly overlook the logical relationships between textual queries and visual elements. In practice, computational constraints necessitate coarse frame subsampling, a challenge analogous to ``finding a needle in a haystack.'' To address this issue, we introduce a semantics-driven search framework that reformulates keyframe selection under the paradigm of Visual Semantic-Logical Search. Specifically, we systematically define four fundamental logical dependencies: 1) spatial co-occurrence, 2) temporal proximity, 3) attribute dependency, and 4) causal order. These relations dynamically update frame sampling distributions through an iterative refinement process, enabling context-aware identification of semantically critical frames tailored to specific query requirements. Our method establishes new SOTA performance on the manually annotated benchmark in key-frame selection metrics. Furthermore, when applied to downstream video question-answering tasks, the proposed approach demonstrates the best performance gains over existing methods on LongVideoBench and Video-MME, validating its effectiveness in bridging the logical gap between textual queries and visual-temporal reasoning. The code will be publicly available.
comment: 18 pages, under review
☆ Enhancing zero-shot learning in medical imaging: integrating clip with advanced techniques for improved chest x-ray analysis
Due to the large volume of medical imaging data, advanced AI methodologies are needed to assist radiologists in diagnosing thoracic diseases from chest X-rays (CXRs). Existing deep learning models often require large, labeled datasets, which are scarce in medical imaging due to the time-consuming and expert-driven annotation process. In this paper, we extend the existing approach to enhance zero-shot learning in medical imaging by integrating Contrastive Language-Image Pre-training (CLIP) with Momentum Contrast (MoCo), resulting in our proposed model, MoCoCLIP. Our method addresses challenges posed by class-imbalanced and unlabeled datasets, enabling improved detection of pulmonary pathologies. Experimental results on the NIH ChestXray14 dataset demonstrate that MoCoCLIP outperforms the state-of-the-art CheXZero model, achieving relative improvement of approximately 6.5%. Furthermore, on the CheXpert dataset, MoCoCLIP demonstrates superior zero-shot performance, achieving an average AUC of 0.750 compared to CheXZero with 0.746 AUC, highlighting its enhanced generalization capabilities on unseen data.
☆ Patient-specific radiomic feature selection with reconstructed healthy persona of knee MR images
Classical radiomic features have been designed to describe image appearance and intensity patterns. These features are directly interpretable and readily understood by radiologists. Compared with end-to-end deep learning (DL) models, lower dimensional parametric models that use such radiomic features offer enhanced interpretability but lower comparative performance in clinical tasks. In this study, we propose an approach where a standard logistic regression model performance is substantially improved by learning to select radiomic features for individual patients, from a pool of candidate features. This approach has potentials to maintain the interpretability of such approaches while offering comparable performance to DL. We also propose to expand the feature pool by generating a patient-specific healthy persona via mask-inpainting using a denoising diffusion model trained on healthy subjects. Such a pathology-free baseline feature set allows further opportunity in novel feature discovery and improved condition classification. We demonstrate our method on multiple clinical tasks of classifying general abnormalities, anterior cruciate ligament tears, and meniscus tears. Experimental results demonstrate that our approach achieved comparable or even superior performance than state-of-the-art DL approaches while offering added interpretability by using radiomic features extracted from images and supplemented by generating healthy personas. Example clinical cases are discussed in-depth to demonstrate the intepretability-enabled utilities such as human-explainable feature discovery and patient-specific location/view selection. These findings highlight the potentials of the combination of subject-specific feature selection with generative models in augmenting radiomic analysis for more interpretable decision-making. The codes are available at: https://github.com/YaxiiC/RadiomicsPersona.git
☆ ChainHOI: Joint-based Kinematic Chain Modeling for Human-Object Interaction Generation CVPR 2025
We propose ChainHOI, a novel approach for text-driven human-object interaction (HOI) generation that explicitly models interactions at both the joint and kinetic chain levels. Unlike existing methods that implicitly model interactions using full-body poses as tokens, we argue that explicitly modeling joint-level interactions is more natural and effective for generating realistic HOIs, as it directly captures the geometric and semantic relationships between joints, rather than modeling interactions in the latent pose space. To this end, ChainHOI introduces a novel joint graph to capture potential interactions with objects, and a Generative Spatiotemporal Graph Convolution Network to explicitly model interactions at the joint level. Furthermore, we propose a Kinematics-based Interaction Module that explicitly models interactions at the kinetic chain level, ensuring more realistic and biomechanically coherent motions. Evaluations on two public datasets demonstrate that ChainHOI significantly outperforms previous methods, generating more realistic, and semantically consistent HOIs. Code is available \href{https://github.com/qinghuannn/ChainHOI}{here}.
comment: Accepted to CVPR 2025
☆ Non-Destructive Detection of Sub-Micron Imperceptible Scratches On Laser Chips Based On Consistent Texture Entropy Recursive Optimization Semi-Supervised Network
Laser chips, the core components of semiconductor lasers, are extensively utilized in various industries, showing great potential for future application. Smoothness emitting surfaces are crucial in chip production, as even imperceptible scratches can significantly degrade performance and lifespan, thus impeding production efficiency and yield. Therefore, non-destructively detecting these imperceptible scratches on the emitting surfaces is essential for enhancing yield and reducing costs. These sub-micron level scratches, barely visible against the background, are extremely difficult to detect with conventional methods, compounded by a lack of labeled datasets. To address this challenge, this paper introduces TexRecNet, a consistent texture entropy recursive optimization semi-supervised network. The network, based on a recursive optimization architecture, iteratively improves the detection accuracy of imperceptible scratch edges, using outputs from previous cycles to inform subsequent inputs and guide the network's positional encoding. It also introduces image texture entropy, utilizing a substantial amount of unlabeled data to expand the training set while maintaining training signal reliability. Ultimately, by analyzing the inconsistency of the network output sequences obtained during the recursive process, a semi-supervised training strategy with recursive consistency constraints is proposed, using outputs from the recursive process for non-destructive signal augmentation and consistently optimizes the loss function for efficient end-to-end training. Experimental results show that this method, utilizing a substantial amount of unsupervised data, achieves 75.6% accuracy and 74.8% recall in detecting imperceptible scratches, an 8.5% and 33.6% improvement over conventional Unet, enhancing quality control in laser chips.
comment: 11 pages
☆ 3D Human Interaction Generation: A Survey
3D human interaction generation has emerged as a key research area, focusing on producing dynamic and contextually relevant interactions between humans and various interactive entities. Recent rapid advancements in 3D model representation methods, motion capture technologies, and generative models have laid a solid foundation for the growing interest in this domain. Existing research in this field can be broadly categorized into three areas: human-scene interaction, human-object interaction, and human-human interaction. Despite the rapid advancements in this area, challenges remain due to the need for naturalness in human motion generation and the accurate interaction between humans and interactive entities. In this survey, we present a comprehensive literature review of human interaction generation, which, to the best of our knowledge, is the first of its kind. We begin by introducing the foundational technologies, including model representations, motion capture methods, and generative models. Subsequently, we introduce the approaches proposed for the three sub-tasks, along with their corresponding datasets and evaluation metrics. Finally, we discuss potential future research directions in this area and conclude the survey. Through this survey, we aim to offer a comprehensive overview of the current advancements in the field, highlight key challenges, and inspire future research works.
☆ MM-Spatial: Exploring 3D Spatial Understanding in Multimodal LLMs
Multimodal large language models (MLLMs) excel at 2D visual understanding but remain limited in their ability to reason about 3D space. In this work, we leverage large-scale high-quality 3D scene data with open-set annotations to introduce 1) a novel supervised fine-tuning dataset and 2) a new evaluation benchmark, focused on indoor scenes. Our Cubify Anything VQA (CA-VQA) data covers diverse spatial tasks including spatial relationship prediction, metric size and distance estimation, and 3D grounding. We show that CA-VQA enables us to train MM-Spatial, a strong generalist MLLM that also achieves state-of-the-art performance on 3D spatial understanding benchmarks, including our own. We show how incorporating metric depth and multi-view inputs (provided in CA-VQA) can further improve 3D understanding, and demonstrate that data alone allows our model to achieve depth perception capabilities comparable to dedicated monocular depth estimation models. We will publish our SFT dataset and benchmark.
☆ DTGBrepGen: A Novel B-rep Generative Model through Decoupling Topology and Geometry
Boundary representation (B-rep) of geometric models is a fundamental format in Computer-Aided Design (CAD). However, automatically generating valid and high-quality B-rep models remains challenging due to the complex interdependence between the topology and geometry of the models. Existing methods tend to prioritize geometric representation while giving insufficient attention to topological constraints, making it difficult to maintain structural validity and geometric accuracy. In this paper, we propose DTGBrepGen, a novel topology-geometry decoupled framework for B-rep generation that explicitly addresses both aspects. Our approach first generates valid topological structures through a two-stage process that independently models edge-face and edge-vertex adjacency relationships. Subsequently, we employ Transformer-based diffusion models for sequential geometry generation, progressively generating vertex coordinates, followed by edge geometries and face geometries which are represented as B-splines. Extensive experiments on diverse CAD datasets show that DTGBrepGen significantly outperforms existing methods in both topological validity and geometric accuracy, achieving higher validity rates and producing more diverse and realistic B-reps. Our code is publicly available at https://github.com/jinli99/DTGBrepGen.
☆ Lifting the Veil on Visual Information Flow in MLLMs: Unlocking Pathways to Faster Inference
Multimodal large language models (MLLMs) improve performance on vision-language tasks by integrating visual features from pre-trained vision encoders into large language models (LLMs). However, how MLLMs process and utilize visual information remains unclear. In this paper, a shift in the dominant flow of visual information is uncovered: (1) in shallow layers, strong interactions are observed between image tokens and instruction tokens, where most visual information is injected into instruction tokens to form cross-modal semantic representations; (2) in deeper layers, image tokens primarily interact with each other, aggregating the remaining visual information to optimize semantic representations within visual modality. Based on these insights, we propose Hierarchical Modality-Aware Pruning (HiMAP), a plug-and-play inference acceleration method that dynamically prunes image tokens at specific layers, reducing computational costs by approximately 65% without sacrificing performance. Our findings offer a new understanding of visual information processing in MLLMs and provide a state-of-the-art solution for efficient inference.
☆ ClearSight: Visual Signal Enhancement for Object Hallucination Mitigation in Multimodal Large language Models
Contrastive decoding strategies are widely used to mitigate object hallucinations in multimodal large language models (MLLMs). By reducing over-reliance on language priors, these strategies ensure that generated content remains closely grounded in visual inputs, producing contextually accurate outputs. Since contrastive decoding requires no additional training or external tools, it offers both computational efficiency and versatility, making it highly attractive. However, these methods present two main limitations: (1) bluntly suppressing language priors can compromise coherence and accuracy of generated content, and (2) processing contrastive inputs adds computational load, significantly slowing inference speed. To address these challenges, we propose Visual Amplification Fusion (VAF), a plug-and-play technique that enhances attention to visual signals within the model's middle layers, where modality fusion predominantly occurs. This approach enables more effective capture of visual features, reducing the model's bias toward language modality. Experimental results demonstrate that VAF significantly reduces hallucinations across various MLLMs without affecting inference speed, while maintaining coherence and accuracy in generated outputs.
☆ Multi-Platform Teach-and-Repeat Navigation by Visual Place Recognition Based on Deep-Learned Local Features
Uniform and variable environments still remain a challenge for stable visual localization and mapping in mobile robot navigation. One of the possible approaches suitable for such environments is appearance-based teach-and-repeat navigation, relying on simplified localization and reactive robot motion control - all without a need for standard mapping. This work brings an innovative solution to such a system based on visual place recognition techniques. Here, the major contributions stand in the employment of a new visual place recognition technique, a novel horizontal shift computation approach, and a multi-platform system design for applications across various types of mobile robots. Secondly, a new public dataset for experimental testing of appearance-based navigation methods is introduced. Moreover, the work also provides real-world experimental testing and performance comparison of the introduced navigation system against other state-of-the-art methods. The results confirm that the new system outperforms existing methods in several testing scenarios, is capable of operation indoors and outdoors, and exhibits robustness to day and night scene variations.
comment: 6 pages, 5 figures
☆ Gaussian On-the-Fly Splatting: A Progressive Framework for Robust Near Real-Time 3DGS Optimization
3D Gaussian Splatting (3DGS) achieves high-fidelity rendering with fast real-time performance, but existing methods rely on offline training after full Structure-from-Motion (SfM) processing. In contrast, this work introduces On-the-Fly GS, a progressive framework enabling near real-time 3DGS optimization during image capture. As each image arrives, its pose and sparse points are updated via on-the-fly SfM, and newly optimized Gaussians are immediately integrated into the 3DGS field. We propose a progressive local optimization strategy to prioritize new images and their neighbors by their corresponding overlapping relationship, allowing the new image and its overlapping images to get more training. To further stabilize training across old and new images, an adaptive learning rate schedule balances the iterations and the learning rate. Moreover, to maintain overall quality of the 3DGS field, an efficient global optimization scheme prevents overfitting to the newly added images. Experiments on multiple benchmark datasets show that our On-the-Fly GS reduces training time significantly, optimizing each new image in seconds with minimal rendering loss, offering the first practical step toward rapid, progressive 3DGS reconstruction.
☆ Free-form language-based robotic reasoning and grasping
Performing robotic grasping from a cluttered bin based on human instructions is a challenging task, as it requires understanding both the nuances of free-form language and the spatial relationships between objects. Vision-Language Models (VLMs) trained on web-scale data, such as GPT-4o, have demonstrated remarkable reasoning capabilities across both text and images. But can they truly be used for this task in a zero-shot setting? And what are their limitations? In this paper, we explore these research questions via the free-form language-based robotic grasping task, and propose a novel method, FreeGrasp, leveraging the pre-trained VLMs' world knowledge to reason about human instructions and object spatial arrangements. Our method detects all objects as keypoints and uses these keypoints to annotate marks on images, aiming to facilitate GPT-4o's zero-shot spatial reasoning. This allows our method to determine whether a requested object is directly graspable or if other objects must be grasped and removed first. Since no existing dataset is specifically designed for this task, we introduce a synthetic dataset FreeGraspData by extending the MetaGraspNetV2 dataset with human-annotated instructions and ground-truth grasping sequences. We conduct extensive analyses with both FreeGraspData and real-world validation with a gripper-equipped robotic arm, demonstrating state-of-the-art performance in grasp reasoning and execution. Project website: https://tev-fbk.github.io/FreeGrasp/.
comment: Project website: https://tev-fbk.github.io/FreeGrasp/
☆ Vision-based automatic fruit counting with UAV
The use of unmanned aerial vehicles (UAVs) for smart agriculture is becoming increasingly popular. This is evidenced by recent scientific works, as well as the various competitions organised on this topic. Therefore, in this work we present a system for automatic fruit counting using UAVs. To detect them, our solution uses a vision algorithm that processes streams from an RGB camera and a depth sensor using classical image operations. Our system also allows the planning and execution of flight trajectories, taking into account the minimisation of flight time and distance covered. We tested the proposed solution in simulation and obtained an average score of 87.27/100 points from a total of 500 missions. We also submitted it to the UAV Competition organised as part of the ICUAS 2024 conference, where we achieved an average score of 84.83/100 points, placing 6th in a field of 23 teams and advancing to the finals.
comment: Accepted for the 29th Conference on Automation - Innovations and Future Perspectives Automation 2025, May 7 - 9, 2025, Warsaw, Poland
☆ DehazeMamba: SAR-guided Optical Remote Sensing Image Dehazing with Adaptive State Space Model
Optical remote sensing image dehazing presents significant challenges due to its extensive spatial scale and highly non-uniform haze distribution, which traditional single-image dehazing methods struggle to address effectively. While Synthetic Aperture Radar (SAR) imagery offers inherently haze-free reference information for large-scale scenes, existing SAR-guided dehazing approaches face two critical limitations: the integration of SAR information often diminishes the quality of haze-free regions, and the instability of feature quality further exacerbates cross-modal domain shift. To overcome these challenges, we introduce DehazeMamba, a novel SAR-guided dehazing network built on a progressive haze decoupling fusion strategy. Our approach incorporates two key innovations: a Haze Perception and Decoupling Module (HPDM) that dynamically identifies haze-affected regions through optical-SAR difference analysis, and a Progressive Fusion Module (PFM) that mitigates domain shift through a two-stage fusion process based on feature quality assessment. To facilitate research in this domain, we present MRSHaze, a large-scale benchmark dataset comprising 8,000 pairs of temporally synchronized, precisely geo-registered SAR-optical images with high resolution and diverse haze conditions. Extensive experiments demonstrate that DehazeMamba significantly outperforms state-of-the-art methods, achieving a 0.73 dB improvement in PSNR and substantial enhancements in downstream tasks such as semantic segmentation. The dataset is available at https://github.com/mmic-lcl/Datasets-and-benchmark-code.
☆ Rewards Are Enough for Fast Photo-Realistic Text-to-image Generation
Aligning generated images to complicated text prompts and human preferences is a central challenge in Artificial Intelligence-Generated Content (AIGC). With reward-enhanced diffusion distillation emerging as a promising approach that boosts controllability and fidelity of text-to-image models, we identify a fundamental paradigm shift: as conditions become more specific and reward signals stronger, the rewards themselves become the dominant force in generation. In contrast, the diffusion losses serve as an overly expensive form of regularization. To thoroughly validate our hypothesis, we introduce R0, a novel conditional generation approach via regularized reward maximization. Instead of relying on tricky diffusion distillation losses, R0 proposes a new perspective that treats image generations as an optimization problem in data space which aims to search for valid images that have high compositional rewards. By innovative designs of the generator parameterization and proper regularization techniques, we train state-of-the-art few-step text-to-image generative models with R0 at scales. Our results challenge the conventional wisdom of diffusion post-training and conditional generation by demonstrating that rewards play a dominant role in scenarios with complex conditions. We hope our findings can contribute to further research into human-centric and reward-centric generation paradigms across the broader field of AIGC. Code is available at https://github.com/Luo-Yihong/R0.
☆ Crab: A Unified Audio-Visual Scene Understanding Model with Explicit Cooperation
In recent years, numerous tasks have been proposed to encourage model to develop specified capability in understanding audio-visual scene, primarily categorized into temporal localization, spatial localization, spatio-temporal reasoning, and pixel-level understanding. Instead, human possesses a unified understanding ability for diversified tasks. Therefore, designing an audio-visual model with general capability to unify these tasks is of great value. However, simply joint training for all tasks can lead to interference due to the heterogeneity of audiovisual data and complex relationship among tasks. We argue that this problem can be solved through explicit cooperation among tasks. To achieve this goal, we propose a unified learning method which achieves explicit inter-task cooperation from both the perspectives of data and model thoroughly. Specifically, considering the labels of existing datasets are simple words, we carefully refine these datasets and construct an Audio-Visual Unified Instruction-tuning dataset with Explicit reasoning process (AV-UIE), which clarifies the cooperative relationship among tasks. Subsequently, to facilitate concrete cooperation in learning stage, an interaction-aware LoRA structure with multiple LoRA heads is designed to learn different aspects of audiovisual data interaction. By unifying the explicit cooperation across the data and model aspect, our method not only surpasses existing unified audio-visual model on multiple tasks, but also outperforms most specialized models for certain tasks. Furthermore, we also visualize the process of explicit cooperation and surprisingly find that each LoRA head has certain audio-visual understanding ability. Code and dataset: https://github.com/GeWu-Lab/Crab
☆ Federated Learning with Domain Shift Eraser CVPR2025
Federated learning (FL) is emerging as a promising technique for collaborative learning without local data leaving their devices. However, clients' data originating from diverse domains may degrade model performance due to domain shifts, preventing the model from learning consistent representation space. In this paper, we propose a novel FL framework, Federated Domain Shift Eraser (FDSE), to improve model performance by differently erasing each client's domain skew and enhancing their consensus. First, we formulate the model forward passing as an iterative deskewing process that extracts and then deskews features alternatively. This is efficiently achieved by decomposing each original layer in the neural network into a Domain-agnostic Feature Extractor (DFE) and a Domain-specific Skew Eraser (DSE). Then, a regularization term is applied to promise the effectiveness of feature deskewing by pulling local statistics of DSE's outputs close to the globally consistent ones. Finally, DFE modules are fairly aggregated and broadcast to all the clients to maximize their consensus, and DSE modules are personalized for each client via similarity-aware aggregation to erase their domain skew differently. Comprehensive experiments were conducted on three datasets to confirm the advantages of our method in terms of accuracy, efficiency, and generalizability.
comment: Accepted by CVPR2025
☆ Historic Scripts to Modern Vision: A Novel Dataset and A VLM Framework for Transliteration of Modi Script to Devanagari
In medieval India, the Marathi language was written using the Modi script. The texts written in Modi script include extensive knowledge about medieval sciences, medicines, land records and authentic evidence about Indian history. Around 40 million documents are in poor condition and have not yet been transliterated. Furthermore, only a few experts in this domain can transliterate this script into English or Devanagari. Most of the past research predominantly focuses on individual character recognition. A system that can transliterate Modi script documents to Devanagari script is needed. We propose the MoDeTrans dataset, comprising 2,043 images of Modi script documents accompanied by their corresponding textual transliterations in Devanagari. We further introduce MoScNet (\textbf{Mo}di \textbf{Sc}ript \textbf{Net}work), a novel Vision-Language Model (VLM) framework for transliterating Modi script images into Devanagari text. MoScNet leverages Knowledge Distillation, where a student model learns from a teacher model to enhance transliteration performance. The final student model of MoScNet has better performance than the teacher model while having 163$\times$ lower parameters. Our work is the first to perform direct transliteration from the handwritten Modi script to the Devanagari script. MoScNet also shows competitive results on the optical character recognition (OCR) task.
comment: Under submission at a conference
☆ Do Vision Models Develop Human-Like Progressive Difficulty Understanding?
When a human undertakes a test, their responses likely follow a pattern: if they answered an easy question $(2 \times 3)$ incorrectly, they would likely answer a more difficult one $(2 \times 3 \times 4)$ incorrectly; and if they answered a difficult question correctly, they would likely answer the easy one correctly. Anything else hints at memorization. Do current visual recognition models exhibit a similarly structured learning capacity? In this work, we consider the task of image classification and study if those models' responses follow that pattern. Since real images aren't labeled with difficulty, we first create a dataset of 100 categories, 10 attributes, and 3 difficulty levels using recent generative models: for each category (e.g., dog) and attribute (e.g., occlusion), we generate images of increasing difficulty (e.g., a dog without occlusion, a dog only partly visible). We find that most of the models do in fact behave similarly to the aforementioned pattern around 80-90% of the time. Using this property, we then explore a new way to evaluate those models. Instead of testing the model on every possible test image, we create an adaptive test akin to GRE, in which the model's performance on the current round of images determines the test images in the next round. This allows the model to skip over questions too easy/hard for itself, and helps us get its overall performance in fewer steps.
☆ MaskSDM with Shapley values to improve flexibility, robustness, and explainability in species distribution modeling
Species Distribution Models (SDMs) play a vital role in biodiversity research, conservation planning, and ecological niche modeling by predicting species distributions based on environmental conditions. The selection of predictors is crucial, strongly impacting both model accuracy and how well the predictions reflect ecological patterns. To ensure meaningful insights, input variables must be carefully chosen to match the study objectives and the ecological requirements of the target species. However, existing SDMs, including both traditional and deep learning-based approaches, often lack key capabilities for variable selection: (i) flexibility to choose relevant predictors at inference without retraining; (ii) robustness to handle missing predictor values without compromising accuracy; and (iii) explainability to interpret and accurately quantify each predictor's contribution. To overcome these limitations, we introduce MaskSDM, a novel deep learning-based SDM that enables flexible predictor selection by employing a masked training strategy. This approach allows the model to make predictions with arbitrary subsets of input variables while remaining robust to missing data. It also provides a clearer understanding of how adding or removing a given predictor affects model performance and predictions. Additionally, MaskSDM leverages Shapley values for precise predictor contribution assessments, improving upon traditional approximations. We evaluate MaskSDM on the global sPlotOpen dataset, modeling the distributions of 12,738 plant species. Our results show that MaskSDM outperforms imputation-based methods and approximates models trained on specific subsets of variables. These findings underscore MaskSDM's potential to increase the applicability and adoption of SDMs, laying the groundwork for developing foundation models in SDMs that can be readily applied to diverse ecological applications.
☆ Uncertainty-Aware Knowledge Distillation for Compact and Efficient 6DoF Pose Estimation
Compact and efficient 6DoF object pose estimation is crucial in applications such as robotics, augmented reality, and space autonomous navigation systems, where lightweight models are critical for real-time accurate performance. This paper introduces a novel uncertainty-aware end-to-end Knowledge Distillation (KD) framework focused on keypoint-based 6DoF pose estimation. Keypoints predicted by a large teacher model exhibit varying levels of uncertainty that can be exploited within the distillation process to enhance the accuracy of the student model while ensuring its compactness. To this end, we propose a distillation strategy that aligns the student and teacher predictions by adjusting the knowledge transfer based on the uncertainty associated with each teacher keypoint prediction. Additionally, the proposed KD leverages this uncertainty-aware alignment of keypoints to transfer the knowledge at key locations of their respective feature maps. Experiments on the widely-used LINEMOD benchmark demonstrate the effectiveness of our method, achieving superior 6DoF object pose estimation with lightweight models compared to state-of-the-art approaches. Further validation on the SPEED+ dataset for spacecraft pose estimation highlights the robustness of our approach under diverse 6DoF pose estimation scenarios.
☆ Permutation Learning with Only N Parameters: From SoftSort to Self-Organizing Gaussians
Sorting and permutation learning are key concepts in optimization and machine learning, especially when organizing high-dimensional data into meaningful spatial layouts. The Gumbel-Sinkhorn method, while effective, requires N*N parameters to determine a full permutation matrix, making it computationally expensive for large datasets. Low-rank matrix factorization approximations reduce memory requirements to 2MN (with M << N), but they still struggle with very large problems. SoftSort, by providing a continuous relaxation of the argsort operator, allows differentiable 1D sorting, but it faces challenges with multidimensional data and complex permutations. In this paper, we present a novel method for learning permutations using only N parameters, which dramatically reduces storage costs. Our approach builds on SoftSort, but extends it by iteratively shuffling the N indices of the elements to be sorted through a separable learning process. This modification significantly improves sorting quality, especially for multidimensional data and complex optimization criteria, and outperforms pure SoftSort. Our method offers improved memory efficiency and scalability compared to existing approaches, while maintaining high-quality permutation learning. Its dramatically reduced memory requirements make it particularly well-suited for large-scale optimization tasks, such as "Self-Organizing Gaussians", where efficient and scalable permutation learning is critical.
☆ InsightDrive: Insight Scene Representation for End-to-End Autonomous Driving
Directly generating planning results from raw sensors has become increasingly prevalent due to its adaptability and robustness in complex scenarios. Scene representation, as a key module in the pipeline, has traditionally relied on conventional perception, which focus on the global scene. However, in driving scenarios, human drivers typically focus only on regions that directly impact driving, which often coincide with those required for end-to-end autonomous driving. In this paper, a novel end-to-end autonomous driving method called InsightDrive is proposed, which organizes perception by language-guided scene representation. We introduce an instance-centric scene tokenizer that transforms the surrounding environment into map- and object-aware instance tokens. Scene attention language descriptions, which highlight key regions and obstacles affecting the ego vehicle's movement, are generated by a vision-language model that leverages the cognitive reasoning capabilities of foundation models. We then align scene descriptions with visual features using the vision-language model, guiding visual attention through these descriptions to give effectively scene representation. Furthermore, we employ self-attention and cross-attention mechanisms to model the ego-agents and ego-map relationships to comprehensively build the topological relationships of the scene. Finally, based on scene understanding, we jointly perform motion prediction and planning. Extensive experiments on the widely used nuScenes benchmark demonstrate that the proposed InsightDrive achieves state-of-the-art performance in end-to-end autonomous driving. The code is available at https://github.com/songruiqi/InsightDrive
☆ All You Need to Know About Training Image Retrieval Models
Image retrieval is the task of finding images in a database that are most similar to a given query image. The performance of an image retrieval pipeline depends on many training-time factors, including the embedding model architecture, loss function, data sampler, mining function, learning rate(s), and batch size. In this work, we run tens of thousands of training runs to understand the effect each of these factors has on retrieval accuracy. We also discover best practices that hold across multiple datasets. The code is available at https://github.com/gmberton/image-retrieval
☆ Beyond Role-Based Surgical Domain Modeling: Generalizable Re-Identification in the Operating Room
Surgical domain models improve workflow optimization through automated predictions of each staff member's surgical role. However, mounting evidence indicates that team familiarity and individuality impact surgical outcomes. We present a novel staff-centric modeling approach that characterizes individual team members through their distinctive movement patterns and physical characteristics, enabling long-term tracking and analysis of surgical personnel across multiple procedures. To address the challenge of inter-clinic variability, we develop a generalizable re-identification framework that encodes sequences of 3D point clouds to capture shape and articulated motion patterns unique to each individual. Our method achieves 86.19% accuracy on realistic clinical data while maintaining 75.27% accuracy when transferring between different environments - a 12% improvement over existing methods. When used to augment markerless personnel tracking, our approach improves accuracy by over 50%. Through extensive validation across three datasets and the introduction of a novel workflow visualization technique, we demonstrate how our framework can reveal novel insights into surgical team dynamics and space utilization patterns, advancing methods to analyze surgical workflows and team coordination.
comment: 26 pages, 14 figures, Submitted to Medical Image Analysis
☆ HiMTok: Learning Hierarchical Mask Tokens for Image Segmentation with Large Multimodal Model
The remarkable performance of large multimodal models (LMMs) has attracted significant interest from the image segmentation community. To align with the next-token-prediction paradigm, current LMM-driven segmentation methods either use object boundary points to represent masks or introduce special segmentation tokens, whose hidden states are decoded by a segmentation model requiring the original image as input. However, these approaches often suffer from inadequate mask representation and complex architectures, limiting the potential of LMMs. In this work, we propose the Hierarchical Mask Tokenizer (HiMTok), which represents segmentation masks with up to 32 tokens and eliminates the need for the original image during mask de-tokenization. HiMTok allows for compact and coarse-to-fine mask representations, aligning well with the LLM next-token-prediction paradigm and facilitating the direct acquisition of segmentation capabilities. We develop a 3-stage training recipe for progressive learning of segmentation and visual capabilities, featuring a hierarchical mask loss for effective coarse-to-fine learning. Additionally, we enable bidirectional information flow, allowing conversion between bounding boxes and mask tokens to fully leverage multi-task training potential. Extensive experiments demonstrate that our method achieves state-of-the-art performance across various segmentation tasks,while also enhancing visual grounding and maintaining overall visual understanding.
comment: technical report
☆ PoseSyn: Synthesizing Diverse 3D Pose Data from In-the-Wild 2D Data
Despite considerable efforts to enhance the generalization of 3D pose estimators without costly 3D annotations, existing data augmentation methods struggle in real world scenarios with diverse human appearances and complex poses. We propose PoseSyn, a novel data synthesis framework that transforms abundant in the wild 2D pose dataset into diverse 3D pose image pairs. PoseSyn comprises two key components: Error Extraction Module (EEM), which identifies challenging poses from the 2D pose datasets, and Motion Synthesis Module (MSM), which synthesizes motion sequences around the challenging poses. Then, by generating realistic 3D training data via a human animation model aligned with challenging poses and appearances PoseSyn boosts the accuracy of various 3D pose estimators by up to 14% across real world benchmarks including various backgrounds and occlusions, challenging poses, and multi view scenarios. Extensive experiments further confirm that PoseSyn is a scalable and effective approach for improving generalization without relying on expensive 3D annotations, regardless of the pose estimator's model size or design.
comment: The first three authors contributed equally to this work
☆ Real-Time Multi-Object Tracking using YOLOv8 and SORT on a SoC FPGA
Multi-object tracking (MOT) is one of the most important problems in computer vision and a key component of any vision-based perception system used in advanced autonomous mobile robotics. Therefore, its implementation on low-power and real-time embedded platforms is highly desirable. Modern MOT algorithms should be able to track objects of a given class (e.g. people or vehicles). In addition, the number of objects to be tracked is not known in advance, and they may appear and disappear at any time, as well as be obscured. For these reasons, the most popular and successful approaches have recently been based on the tracking paradigm. Therefore, the presence of a high quality object detector is essential, which in practice accounts for the vast majority of the computational and memory complexity of the whole MOT system. In this paper, we propose an FPGA (Field-Programmable Gate Array) implementation of an embedded MOT system based on a quantized YOLOv8 detector and the SORT (Simple Online Realtime Tracker) tracker. We use a modified version of the FINN framework to utilize external memory for model parameters and to support operations necessary required by YOLOv8. We discuss the evaluation of detection and tracking performance using the COCO and MOT15 datasets, where we achieve 0.21 mAP and 38.9 MOTA respectively. As the computational platform, we use an MPSoC system (Zynq UltraScale+ device from AMD/Xilinx) where the detector is deployed in reprogrammable logic and the tracking algorithm is implemented in the processor system.
comment: Accepted for the 21st International Symposium on Applied Reconfigurable Computing ARC 2025, Sevilla, Spain, April 9-11, 2025
Dynamic Relation Inference via Verb Embeddings
CLIP has demonstrated exceptional image-text matching capabilities due to its training on contrastive learning tasks. Past research has suggested that whereas CLIP effectively matches text to images when the matching can be achieved just by matching the text with the objects in the image, CLIP struggles when the matching depends on representing the relationship among the objects in the images (i.e., inferring relations). Previous attempts to address this limitation by training CLIP on relation detection datasets with only linguistic supervision have met with limited success. In this paper, we offer insights and practical methods to advance the field of relation inference from images. This paper approaches the task of creating a model that effectively detects relations among the objects in images by producing text and image embeddings that capture relationships through linguistic supervision. To this end, we propose Dynamic Relation Inference via Verb Embeddings (DRIVE), which augments the COCO dataset, fine-tunes CLIP with hard negatives subject-relation-object triples and corresponding images, and introduces a novel loss function to improve relation detection. Evaluated on multiple CLIP-based models, our method significantly improves zero-shot relation inference accuracy in both frozen and fine-tuned settings, significantly outperforming CLIP and state-of-the-art models while generalizing well on unseen data.
☆ Efficient Motion-Aware Video MLLM CVPR 2025
Most current video MLLMs rely on uniform frame sampling and image-level encoders, resulting in inefficient data processing and limited motion awareness. To address these challenges, we introduce EMA, an Efficient Motion-Aware video MLLM that utilizes compressed video structures as inputs. We propose a motion-aware GOP (Group of Pictures) encoder that fuses spatial and motion information within a GOP unit in the compressed video stream, generating compact, informative visual tokens. By integrating fewer but denser RGB frames with more but sparser motion vectors in this native slow-fast input architecture, our approach reduces redundancy and enhances motion representation. Additionally, we introduce MotionBench, a benchmark for evaluating motion understanding across four motion types: linear, curved, rotational, and contact-based. Experimental results show that EMA achieves state-of-the-art performance on both MotionBench and popular video question answering benchmarks, while reducing inference costs. Moreover, EMA demonstrates strong scalability, as evidenced by its competitive performance on long video understanding benchmarks.
comment: CVPR 2025
☆ Test-Time Domain Generalization via Universe Learning: A Multi-Graph Matching Approach for Medical Image Segmentation
Despite domain generalization (DG) has significantly addressed the performance degradation of pre-trained models caused by domain shifts, it often falls short in real-world deployment. Test-time adaptation (TTA), which adjusts a learned model using unlabeled test data, presents a promising solution. However, most existing TTA methods struggle to deliver strong performance in medical image segmentation, primarily because they overlook the crucial prior knowledge inherent to medical images. To address this challenge, we incorporate morphological information and propose a framework based on multi-graph matching. Specifically, we introduce learnable universe embeddings that integrate morphological priors during multi-source training, along with novel unsupervised test-time paradigms for domain adaptation. This approach guarantees cycle-consistency in multi-matching while enabling the model to more effectively capture the invariant priors of unseen data, significantly mitigating the effects of domain shifts. Extensive experiments demonstrate that our method outperforms other state-of-the-art approaches on two medical image segmentation benchmarks for both multi-source and single-source domain generalization tasks. The source code is available at https://github.com/Yore0/TTDG-MGM.
☆ Knowledge Distillation: Enhancing Neural Network Compression with Integrated Gradients
Efficient deployment of deep neural networks on resource-constrained devices demands advanced compression techniques that preserve accuracy and interoperability. This paper proposes a machine learning framework that augments Knowledge Distillation (KD) with Integrated Gradients (IG), an attribution method, to optimise the compression of convolutional neural networks. We introduce a novel data augmentation strategy where IG maps, precomputed from a teacher model, are overlaid onto training images to guide a compact student model toward critical feature representations. This approach leverages the teacher's decision-making insights, enhancing the student's ability to replicate complex patterns with reduced parameters. Experiments on CIFAR-10 demonstrate the efficacy of our method: a student model, compressed 4.1-fold from the MobileNet-V2 teacher, achieves 92.5% classification accuracy, surpassing the baseline student's 91.4% and traditional KD approaches, while reducing inference latency from 140 ms to 13 ms--a tenfold speedup. We perform hyperparameter optimisation for efficient learning. Comprehensive ablation studies dissect the contributions of KD and IG, revealing synergistic effects that boost both performance and model explainability. Our method's emphasis on feature-level guidance via IG distinguishes it from conventional KD, offering a data-driven solution for mining transferable knowledge in neural architectures. This work contributes to machine learning by providing a scalable, interpretable compression technique, ideal for edge computing applications where efficiency and transparency are paramount.
comment: 15 pages, 3 figures, conference
☆ TFDM: Time-Variant Frequency-Based Point Cloud Diffusion with Mamba
Diffusion models currently demonstrate impressive performance over various generative tasks. Recent work on image diffusion highlights the strong capabilities of Mamba (state space models) due to its efficient handling of long-range dependencies and sequential data modeling. Unfortunately, joint consideration of state space models with 3D point cloud generation remains limited. To harness the powerful capabilities of the Mamba model for 3D point cloud generation, we propose a novel diffusion framework containing dual latent Mamba block (DM-Block) and a time-variant frequency encoder (TF-Encoder). The DM-Block apply a space-filling curve to reorder points into sequences suitable for Mamba state-space modeling, while operating in a latent space to mitigate the computational overhead that arises from direct 3D data processing. Meanwhile, the TF-Encoder takes advantage of the ability of the diffusion model to refine fine details in later recovery stages by prioritizing key points within the U-Net architecture. This frequency-based mechanism ensures enhanced detail quality in the final stages of generation. Experimental results on the ShapeNet-v2 dataset demonstrate that our method achieves state-of-the-art performance (ShapeNet-v2: 0.14\% on 1-NNA-Abs50 EMD and 57.90\% on COV EMD) on certain metrics for specific categories while reducing computational parameters and inference time by up to 10$\times$ and 9$\times$, respectively. Source code is available in Supplementary Materials and will be released upon accpetance.
☆ Concept-as-Tree: Synthetic Data is All You Need for VLM Personalization
Vision-Language Models (VLMs) have demonstrated exceptional performance in various multi-modal tasks. Recently, there has been an increasing interest in improving the personalization capabilities of VLMs. To better integrate user-provided concepts into VLMs, many methods use positive and negative samples to fine-tune these models. However, the scarcity of user-provided positive samples and the low quality of retrieved negative samples pose challenges for fine-tuning. To reveal the relationship between sample and model performance, we systematically investigate the impact of positive and negative samples (easy and hard) and their diversity on VLM personalization tasks. Based on the detailed analysis, we introduce Concept-as-Tree (CaT), which represents a concept as a tree structure, thereby enabling the data generation of positive and negative samples with varying difficulty and diversity for VLM personalization. With a well-designed data filtering strategy, our CaT framework can ensure the quality of generated data, constituting a powerful pipeline. We perform thorough experiments with various VLM personalization baselines to assess the effectiveness of the pipeline, alleviating the lack of positive samples and the low quality of negative samples. Our results demonstrate that CaT equipped with the proposed data filter significantly enhances the personalization capabilities of VLMs across the MyVLM, Yo'LLaVA, and MC-LLaVA datasets. To our knowledge, this work is the first controllable synthetic data pipeline for VLM personalization. The code is released at \href{https://github.com/zengkaiya/CaT}{https://github.com/zengkaiya/CaT}.
☆ How Good is my Histopathology Vision-Language Foundation Model? A Holistic Benchmark
Recently, histopathology vision-language foundation models (VLMs) have gained popularity due to their enhanced performance and generalizability across different downstream tasks. However, most existing histopathology benchmarks are either unimodal or limited in terms of diversity of clinical tasks, organs, and acquisition instruments, as well as their partial availability to the public due to patient data privacy. As a consequence, there is a lack of comprehensive evaluation of existing histopathology VLMs on a unified benchmark setting that better reflects a wide range of clinical scenarios. To address this gap, we introduce HistoVL, a fully open-source comprehensive benchmark comprising images acquired using up to 11 various acquisition tools that are paired with specifically crafted captions by incorporating class names and diverse pathology descriptions. Our Histo-VL includes 26 organs, 31 cancer types, and a wide variety of tissue obtained from 14 heterogeneous patient cohorts, totaling more than 5 million patches obtained from over 41K WSIs viewed under various magnification levels. We systematically evaluate existing histopathology VLMs on Histo-VL to simulate diverse tasks performed by experts in real-world clinical scenarios. Our analysis reveals interesting findings, including large sensitivity of most existing histopathology VLMs to textual changes with a drop in balanced accuracy of up to 25% in tasks such as Metastasis detection, low robustness to adversarial attacks, as well as improper calibration of models evident through high ECE values and low model prediction confidence, all of which can affect their clinical implementation.
SparseAlign: A Fully Sparse Framework for Cooperative Object Detection
Cooperative perception can increase the view field and decrease the occlusion of an ego vehicle, hence improving the perception performance and safety of autonomous driving. Despite the success of previous works on cooperative object detection, they mostly operate on dense Bird's Eye View (BEV) feature maps, which are computationally demanding and can hardly be extended to long-range detection problems. More efficient fully sparse frameworks are rarely explored. In this work, we design a fully sparse framework, SparseAlign, with three key features: an enhanced sparse 3D backbone, a query-based temporal context learning module, and a robust detection head specially tailored for sparse features. Extensive experimental results on both OPV2V and DairV2X datasets show that our framework, despite its sparsity, outperforms the state of the art with less communication bandwidth requirements. In addition, experiments on the OPV2Vt and DairV2Xt datasets for time-aligned cooperative object detection also show a significant performance gain compared to the baseline works.
☆ Analyzing Swimming Performance Using Drone Captured Aerial Videos
Monitoring swimmer performance is crucial for improving training and enhancing athletic techniques. Traditional methods for tracking swimmers, such as above-water and underwater cameras, face limitations due to the need for multiple cameras and obstructions from water splashes. This paper presents a novel approach for tracking swimmers using a moving UAV. The proposed system employs a UAV equipped with a high-resolution camera to capture aerial footage of the swimmers. The footage is then processed using computer vision algorithms to extract the swimmers' positions and movements. This approach offers several advantages, including single camera use and comprehensive coverage. The system's accuracy is evaluated with both training and in competition videos. The results demonstrate the system's ability to accurately track swimmers' movements, limb angles, stroke duration and velocity with the maximum error of 0.3 seconds and 0.35~m/s for stroke duration and velocity, respectively.
comment: 6 pages, published to ACM Dronet'24
☆ Exploring 3D Activity Reasoning and Planning: From Implicit Human Intentions to Route-Aware Planning
3D activity reasoning and planning has attracted increasing attention in human-robot interaction and embodied AI thanks to the recent advance in multimodal learning. However, most existing works share two constraints: 1) heavy reliance on explicit instructions with little reasoning on implicit user intention; 2) negligence of inter-step route planning on robot moves. To bridge the gaps, we propose 3D activity reasoning and planning, a novel 3D task that reasons the intended activities from implicit instructions and decomposes them into steps with inter-step routes and planning under the guidance of fine-grained 3D object shapes and locations from scene segmentation. We tackle the new 3D task from two perspectives. First, we construct ReasonPlan3D, a large-scale benchmark that covers diverse 3D scenes with rich implicit instructions and detailed annotations for multi-step task planning, inter-step route planning, and fine-grained segmentation. Second, we design a novel framework that introduces progressive plan generation with contextual consistency across multiple steps, as well as a scene graph that is updated dynamically for capturing critical objects and their spatial relations. Extensive experiments demonstrate the effectiveness of our benchmark and framework in reasoning activities from implicit human instructions, producing accurate stepwise task plans, and seamlessly integrating route planning for multi-step moves. The dataset and code will be released.
☆ Prospects for Mitigating Spectral Variability in Tropical Species Classification Using Self-Supervised Learning SP
Airborne hyperspectral imaging is a promising method for identifying tropical species, but spectral variability between acquisitions hinders consistent results. This paper proposes using Self-Supervised Learning (SSL) to encode spectral features that are robust to abiotic variability and relevant for species identification. By employing the state-of-the-art Barlow-Twins approach on repeated spectral acquisitions, we demonstrate the ability to develop stable features. For the classification of 40 tropical species, experiments show that these features can outperform typical reflectance products in terms of robustness to spectral variability by 10 points of accuracy across dates.
comment: 5 pages, 3 figures, published as proceeding of the "2024 14th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS)"
Aligning Vision to Language: Text-Free Multimodal Knowledge Graph Construction for Enhanced LLMs Reasoning
Multimodal reasoning in Large Language Models (LLMs) struggles with incomplete knowledge and hallucination artifacts, challenges that textual Knowledge Graphs (KGs) only partially mitigate due to their modality isolation. While Multimodal Knowledge Graphs (MMKGs) promise enhanced cross-modal understanding, their practical construction is impeded by semantic narrowness of manual text annotations and inherent noise in visual-semantic entity linkages. In this paper, we propose Vision-align-to-Language integrated Knowledge Graph (VaLiK), a novel approach for constructing MMKGs that enhances LLMs reasoning through cross-modal information supplementation. Specifically, we cascade pre-trained Vision-Language Models (VLMs) to align image features with text, transforming them into descriptions that encapsulate image-specific information. Furthermore, we developed a cross-modal similarity verification mechanism to quantify semantic consistency, effectively filtering out noise introduced during feature alignment. Even without manually annotated image captions, the refined descriptions alone suffice to construct the MMKG. Compared to conventional MMKGs construction paradigms, our approach achieves substantial storage efficiency gains while maintaining direct entity-to-image linkage capability. Experimental results on multimodal reasoning tasks demonstrate that LLMs augmented with VaLiK outperform previous state-of-the-art models. Our code is published at https://github.com/Wings-Of-Disaster/VaLiK.
comment: 14 pages, 7 figures, 6 tables
☆ Action tube generation by person query matching for spatio-temporal action detection
This paper proposes a method for spatio-temporal action detection (STAD) that directly generates action tubes from the original video without relying on post-processing steps such as IoU-based linking and clip splitting. Our approach applies query-based detection (DETR) to each frame and matches DETR queries to link the same person across frames. We introduce the Query Matching Module (QMM), which uses metric learning to bring queries for the same person closer together across frames compared to queries for different people. Action classes are predicted using the sequence of queries obtained from QMM matching, allowing for variable-length inputs from videos longer than a single clip. Experimental results on JHMDB, UCF101-24, and AVA datasets demonstrate that our method performs well for large position changes of people while offering superior computational efficiency and lower resource requirements.
comment: extended version of VISAPP2025
☆ OptiPMB: Enhancing 3D Multi-Object Tracking with Optimized Poisson Multi-Bernoulli Filtering
Accurate 3D multi-object tracking (MOT) is crucial for autonomous driving, as it enables robust perception, navigation, and planning in complex environments. While deep learning-based solutions have demonstrated impressive 3D MOT performance, model-based approaches remain appealing for their simplicity, interpretability, and data efficiency. Conventional model-based trackers typically rely on random vector-based Bayesian filters within the tracking-by-detection (TBD) framework but face limitations due to heuristic data association and track management schemes. In contrast, random finite set (RFS)-based Bayesian filtering handles object birth, survival, and death in a theoretically sound manner, facilitating interpretability and parameter tuning. In this paper, we present OptiPMB, a novel RFS-based 3D MOT method that employs an optimized Poisson multi-Bernoulli (PMB) filter while incorporating several key innovative designs within the TBD framework. Specifically, we propose a measurement-driven hybrid adaptive birth model for improved track initialization, employ adaptive detection probability parameters to effectively maintain tracks for occluded objects, and optimize density pruning and track extraction modules to further enhance overall tracking performance. Extensive evaluations on nuScenes and KITTI datasets show that OptiPMB achieves superior tracking accuracy compared with state-of-the-art methods, thereby establishing a new benchmark for model-based 3D MOT and offering valuable insights for future research on RFS-based trackers in autonomous driving.
☆ Training Video Foundation Models with NVIDIA NeMo
Video Foundation Models (VFMs) have recently been used to simulate the real world to train physical AI systems and develop creative visual experiences. However, there are significant challenges in training large-scale, high quality VFMs that can generate high-quality videos. We present a scalable, open-source VFM training pipeline with NVIDIA NeMo, providing accelerated video dataset curation, multimodal data loading, and parallelized video diffusion model training and inference. We also provide a comprehensive performance analysis highlighting best practices for efficient VFM training and inference.
☆ Unlock Pose Diversity: Accurate and Efficient Implicit Keypoint-based Spatiotemporal Diffusion for Audio-driven Talking Portrait
Audio-driven single-image talking portrait generation plays a crucial role in virtual reality, digital human creation, and filmmaking. Existing approaches are generally categorized into keypoint-based and image-based methods. Keypoint-based methods effectively preserve character identity but struggle to capture fine facial details due to the fixed points limitation of the 3D Morphable Model. Moreover, traditional generative networks face challenges in establishing causality between audio and keypoints on limited datasets, resulting in low pose diversity. In contrast, image-based approaches produce high-quality portraits with diverse details using the diffusion network but incur identity distortion and expensive computational costs. In this work, we propose KDTalker, the first framework to combine unsupervised implicit 3D keypoint with a spatiotemporal diffusion model. Leveraging unsupervised implicit 3D keypoints, KDTalker adapts facial information densities, allowing the diffusion process to model diverse head poses and capture fine facial details flexibly. The custom-designed spatiotemporal attention mechanism ensures accurate lip synchronization, producing temporally consistent, high-quality animations while enhancing computational efficiency. Experimental results demonstrate that KDTalker achieves state-of-the-art performance regarding lip synchronization accuracy, head pose diversity, and execution efficiency.Our codes are available at https://github.com/chaolongy/KDTalker.
☆ HIS-GPT: Towards 3D Human-In-Scene Multimodal Understanding
We propose a new task to benchmark human-in-scene understanding for embodied agents: Human-In-Scene Question Answering (HIS-QA). Given a human motion within a 3D scene, HIS-QA requires the agent to comprehend human states and behaviors, reason about its surrounding environment, and answer human-related questions within the scene. To support this new task, we present HIS-Bench, a multimodal benchmark that systematically evaluates HIS understanding across a broad spectrum, from basic perception to commonsense reasoning and planning. Our evaluation of various vision-language models on HIS-Bench reveals significant limitations in their ability to handle HIS-QA tasks. To this end, we propose HIS-GPT, the first foundation model for HIS understanding. HIS-GPT integrates 3D scene context and human motion dynamics into large language models while incorporating specialized mechanisms to capture human-scene interactions. Extensive experiments demonstrate that HIS-GPT sets a new state-of-the-art on HIS-QA tasks. We hope this work inspires future research on human behavior analysis in 3D scenes, advancing embodied AI and world models.
☆ Frame-wise Conditioning Adaptation for Fine-Tuning Diffusion Models in Text-to-Video Prediction
Text-video prediction (TVP) is a downstream video generation task that requires a model to produce subsequent video frames given a series of initial video frames and text describing the required motion. In practice TVP methods focus on a particular category of videos depicting manipulations of objects carried out by human beings or robot arms. Previous methods adapt models pre-trained on text-to-image tasks, and thus tend to generate video that lacks the required continuity. A natural progression would be to leverage more recent pre-trained text-to-video (T2V) models. This approach is rendered more challenging by the fact that the most common fine-tuning technique, low-rank adaptation (LoRA), yields undesirable results. In this work, we propose an adaptation-based strategy we label Frame-wise Conditioning Adaptation (FCA). Within the module, we devise a sub-module that produces frame-wise text embeddings from the input text, which acts as an additional text condition to aid generation. We use FCA to fine-tune the T2V model, which incorporates the initial frame(s) as an extra condition. We compare and discuss the more effective strategy for injecting such embeddings into the T2V model. We conduct extensive ablation studies on our design choices with quantitative and qualitative performance analysis. Our approach establishes a new state-of-the-art for the task of TVP. The project page is at https://github.com/Cuberick-Orion/FCA .
comment: 20 pages, 15 figures
☆ DivCon-NeRF: Generating Augmented Rays with Diversity and Consistency for Few-shot View Synthesis
Neural Radiance Field (NeRF) has shown remarkable performance in novel view synthesis but requires many multiview images, making it impractical for few-shot scenarios. Ray augmentation was proposed to prevent overfitting for sparse training data by generating additional rays. However, existing methods, which generate augmented rays only near the original rays, produce severe floaters and appearance distortion due to limited viewpoints and inconsistent rays obstructed by nearby obstacles and complex surfaces. To address these problems, we propose DivCon-NeRF, which significantly enhances both diversity and consistency. It employs surface-sphere augmentation, which preserves the distance between the original camera and the predicted surface point. This allows the model to compare the order of high-probability surface points and filter out inconsistent rays easily without requiring the exact depth. By introducing inner-sphere augmentation, DivCon-NeRF randomizes angles and distances for diverse viewpoints, further increasing diversity. Consequently, our method significantly reduces floaters and visual distortions, achieving state-of-the-art performance on the Blender, LLFF, and DTU datasets. Our code will be publicly available.
comment: 11 pages, 6 figures
☆ GIFT: Generated Indoor video frames for Texture-less point tracking
Point tracking is becoming a powerful solver for motion estimation and video editing. Compared to classical feature matching, point tracking methods have the key advantage of robustly tracking points under complex camera motion trajectories and over extended periods. However, despite certain improvements in methodologies, current point tracking methods still struggle to track any position in video frames, especially in areas that are texture-less or weakly textured. In this work, we first introduce metrics for evaluating the texture intensity of a 3D object. Using these metrics, we classify the 3D models in ShapeNet into three levels of texture intensity and create GIFT, a challenging synthetic benchmark comprising 1800 indoor video sequences with rich annotations. Unlike existing datasets that assign ground truth points arbitrarily, GIFT precisely anchors ground truth on classified target objects, ensuring that each video corresponds to a specific texture intensity level. Furthermore, we comprehensively evaluate current methods on GIFT to assess their performance across different texture intensity levels and analyze the impact of texture on point tracking.
☆ R1-VL: Learning to Reason with Multimodal Large Language Models via Step-wise Group Relative Policy Optimization
Recent studies generally enhance MLLMs' reasoning capabilities via supervised fine-tuning on high-quality chain-of-thought reasoning data, which often leads models to merely imitate successful reasoning paths without understanding what the wrong reasoning paths are. In this work, we aim to enhance the MLLMs' reasoning ability beyond passively imitating positive reasoning paths. To this end, we design Step-wise Group Relative Policy Optimization (StepGRPO), a new online reinforcement learning framework that enables MLLMs to self-improve reasoning ability via simple, effective and dense step-wise rewarding. Specifically, StepGRPO introduces two novel rule-based reasoning rewards: Step-wise Reasoning Accuracy Reward (StepRAR) and Step-wise Reasoning Validity Reward (StepRVR). StepRAR rewards the reasoning paths that contain necessary intermediate reasoning steps via a soft key-step matching technique, while StepRAR rewards reasoning paths that follow a well-structured and logically consistent reasoning process through a reasoning completeness and logic evaluation strategy. With the proposed StepGRPO, we introduce R1-VL, a series of MLLMs with outstanding capabilities in step-by-step reasoning. Extensive experiments over 8 benchmarks demonstrate the superiority of our methods.
☆ L2HCount:Generalizing Crowd Counting from Low to High Crowd Density via Density Simulation
Since COVID-19, crowd-counting tasks have gained wide applications. While supervised methods are reliable, annotation is more challenging in high-density scenes due to small head sizes and severe occlusion, whereas it's simpler in low-density scenes. Interestingly, can we train the model in low-density scenes and generalize it to high-density scenes? Therefore, we propose a low- to high-density generalization framework (L2HCount) that learns the pattern related to high-density scenes from low-density ones, enabling it to generalize well to high-density scenes. Specifically, we first introduce a High-Density Simulation Module and a Ground-Truth Generation Module to construct fake high-density images along with their corresponding ground-truth crowd annotations respectively by image-shifting technique, effectively simulating high-density crowd patterns. However, the simulated images have two issues: image blurring and loss of low-density image characteristics. Therefore, we second propose a Head Feature Enhancement Module to extract clear features in the simulated high-density scene. Third, we propose a Dual-Density Memory Encoding Module that uses two crowd memories to learn scene-specific patterns from low- and simulated high-density scenes, respectively. Extensive experiments on four challenging datasets have shown the promising performance of L2HCount.
☆ AR-1-to-3: Single Image to Consistent 3D Object Generation via Next-View Prediction
Novel view synthesis (NVS) is a cornerstone for image-to-3d creation. However, existing works still struggle to maintain consistency between the generated views and the input views, especially when there is a significant camera pose difference, leading to poor-quality 3D geometries and textures. We attribute this issue to their treatment of all target views with equal priority according to our empirical observation that the target views closer to the input views exhibit higher fidelity. With this inspiration, we propose AR-1-to-3, a novel next-view prediction paradigm based on diffusion models that first generates views close to the input views, which are then utilized as contextual information to progressively synthesize farther views. To encode the generated view subsequences as local and global conditions for the next-view prediction, we accordingly develop a stacked local feature encoding strategy (Stacked-LE) and an LSTM-based global feature encoding strategy (LSTM-GE). Extensive experiments demonstrate that our method significantly improves the consistency between the generated views and the input views, producing high-fidelity 3D assets.
☆ MMLNB: Multi-Modal Learning for Neuroblastoma Subtyping Classification Assisted with Textual Description Generation
Neuroblastoma (NB), a leading cause of childhood cancer mortality, exhibits significant histopathological variability, necessitating precise subtyping for accurate prognosis and treatment. Traditional diagnostic methods rely on subjective evaluations that are time-consuming and inconsistent. To address these challenges, we introduce MMLNB, a multi-modal learning (MML) model that integrates pathological images with generated textual descriptions to improve classification accuracy and interpretability. The approach follows a two-stage process. First, we fine-tune a Vision-Language Model (VLM) to enhance pathology-aware text generation. Second, the fine-tuned VLM generates textual descriptions, using a dual-branch architecture to independently extract visual and textual features. These features are fused via Progressive Robust Multi-Modal Fusion (PRMF) Block for stable training. Experimental results show that the MMLNB model is more accurate than the single modal model. Ablation studies demonstrate the importance of multi-modal fusion, fine-tuning, and the PRMF mechanism. This research creates a scalable AI-driven framework for digital pathology, enhancing reliability and interpretability in NB subtyping classification. Our source code is available at https://github.com/HovChen/MMLNB.
comment: 25 pages, 7 figures
♻ ☆ Dita: Scaling Diffusion Transformer for Generalist Vision-Language-Action Policy
While recent vision-language-action models trained on diverse robot datasets exhibit promising generalization capabilities with limited in-domain data, their reliance on compact action heads to predict discretized or continuous actions constrains adaptability to heterogeneous action spaces. We present Dita, a scalable framework that leverages Transformer architectures to directly denoise continuous action sequences through a unified multimodal diffusion process. Departing from prior methods that condition denoising on fused embeddings via shallow networks, Dita employs in-context conditioning -- enabling fine-grained alignment between denoised actions and raw visual tokens from historical observations. This design explicitly models action deltas and environmental nuances. By scaling the diffusion action denoiser alongside the Transformer's scalability, Dita effectively integrates cross-embodiment datasets across diverse camera perspectives, observation scenes, tasks, and action spaces. Such synergy enhances robustness against various variances and facilitates the successful execution of long-horizon tasks. Evaluations across extensive benchmarks demonstrate state-of-the-art or comparative performance in simulation. Notably, Dita achieves robust real-world adaptation to environmental variances and complex long-horizon tasks through 10-shot finetuning, using only third-person camera inputs. The architecture establishes a versatile, lightweight and open-source baseline for generalist robot policy learning. Project Page: https://robodita.github.io/
comment: I want to withdraw the recent replacement (v4), given that the author is different, the title is also different and the content is totally different
♻ ☆ COIN: Confidence Score-Guided Distillation for Annotation-Free Cell Segmentation
Cell instance segmentation (CIS) is crucial for identifying individual cell morphologies in histopathological images, providing valuable insights for biological and medical research. While unsupervised CIS (UCIS) models aim to reduce the heavy reliance on labor-intensive image annotations, they fail to accurately capture cell boundaries, causing missed detections and poor performance. Recognizing the absence of error-free instances as a key limitation, we present COIN (COnfidence score-guided INstance distillation), a novel annotation-free framework with three key steps: (1) Increasing the sensitivity for the presence of error-free instances via unsupervised semantic segmentation with optimal transport, leveraging its ability to discriminate spatially minor instances, (2) Instance-level confidence scoring to measure the consistency between model prediction and refined mask and identify highly confident instances, offering an alternative to ground truth annotations, and (3) Progressive expansion of confidence with recursive self-distillation. Extensive experiments across six datasets show COIN outperforming existing UCIS methods, even surpassing semi- and weakly-supervised approaches across all metrics on the MoNuSeg and TNBC datasets. The code is available at https://github.com/shjo-april/COIN.
♻ ☆ EMoTive: Event-guided Trajectory Modeling for 3D Motion Estimation
Visual 3D motion estimation aims to infer the motion of 2D pixels in 3D space based on visual cues. The key challenge arises from depth variation induced spatio-temporal motion inconsistencies, disrupting the assumptions of local spatial or temporal motion smoothness in previous motion estimation frameworks. In contrast, event cameras offer new possibilities for 3D motion estimation through continuous adaptive pixel-level responses to scene changes. This paper presents EMoTive, a novel event-based framework that models spatio-temporal trajectories via event-guided non-uniform parametric curves, effectively characterizing locally heterogeneous spatio-temporal motion. Specifically, we first introduce Event Kymograph - an event projection method that leverages a continuous temporal projection kernel and decouples spatial observations to encode fine-grained temporal evolution explicitly. For motion representation, we introduce a density-aware adaptation mechanism to fuse spatial and temporal features under event guidance, coupled with a non-uniform rational curve parameterization framework to adaptively model heterogeneous trajectories. The final 3D motion estimation is achieved through multi-temporal sampling of parametric trajectories, yielding optical flow and depth motion fields. To facilitate evaluation, we introduce CarlaEvent3D, a multi-dynamic synthetic dataset for comprehensive validation. Extensive experiments on both this dataset and a real-world benchmark demonstrate the effectiveness of the proposed method.
♻ ☆ Prof. Robot: Differentiable Robot Rendering Without Static and Self-Collisions
Differentiable rendering has gained significant attention in the field of robotics, with differentiable robot rendering emerging as an effective paradigm for learning robotic actions from image-space supervision. However, the lack of physical world perception in this approach may lead to potential collisions during action optimization. In this work, we introduce a novel improvement on previous efforts by incorporating physical awareness of collisions through the learning of a neural robotic collision classifier. This enables the optimization of actions that avoid collisions with static, non-interactable environments as well as the robot itself. To facilitate effective gradient optimization with the classifier, we identify the underlying issue and propose leveraging Eikonal regularization to ensure consistent gradients for optimization. Our solution can be seamlessly integrated into existing differentiable robot rendering frameworks, utilizing gradients for optimization and providing a foundation for future applications of differentiable rendering in robotics with improved reliability of interactions with the physical world. Both qualitative and quantitative experiments demonstrate the necessity and effectiveness of our method compared to previous solutions.
♻ ☆ Robust Latent Matters: Boosting Image Generation with Sampling Error Synthesis
Recent image generation schemes typically capture image distribution in a pre-constructed latent space relying on a frozen image tokenizer. Though the performance of tokenizer plays an essential role to the successful generation, its current evaluation metrics (e.g. rFID) fail to precisely assess the tokenizer and correlate its performance to the generation quality (e.g. gFID). In this paper, we comprehensively analyze the reason for the discrepancy of reconstruction and generation qualities in a discrete latent space, and, from which, we propose a novel plug-and-play tokenizer training scheme to facilitate latent space construction. Specifically, a latent perturbation approach is proposed to simulate sampling noises, i.e., the unexpected tokens sampled, from the generative process. With the latent perturbation, we further propose (1) a novel tokenizer evaluation metric, i.e., pFID, which successfully correlates the tokenizer performance to generation quality and (2) a plug-and-play tokenizer training scheme, which significantly enhances the robustness of tokenizer thus boosting the generation quality and convergence speed. Extensive benchmarking are conducted with 11 advanced discrete image tokenizers with 2 autoregressive generation models to validate our approach. The tokenizer trained with our proposed latent perturbation achieve a notable 1.60 gFID with classifier-free guidance (CFG) and 3.45 gFID without CFG with a $\sim$400M generator. Code: https://github.com/lxa9867/ImageFolder.
comment: 17 pages, 13 figures, 6 tables
♻ ☆ CLIP's Visual Embedding Projector is a Few-shot Cornucopia
We consider the problem of adapting a contrastively pretrained vision-language model like CLIP (Radford et al., 2021) for few-shot classification. The literature addresses this problem by learning a linear classifier of the frozen visual features, optimizing word embeddings, or learning external feature adapters. We introduce an alternative way for few-shot CLIP adaptation without adding ''external'' parameters to optimize. We find that simply fine-tuning the embedding projection matrix of the vision encoder leads to better performance than all baselines. Furthermore, we show that regularizing training with the distance between the fine-tuned and pretrained matrices adds reliability for adapting CLIP, making the results stable across different learning rates in the ''validation-free'' setting. This simple approach, coined ProLIP, yields state-of-the-art performance on 11 few-shot classification benchmarks, few-shot cross-dataset transfer, domain generalization, and base-to-new class generalization. We also show that ProLIP significantly outperforms prompt tuning when extended to another task of test-time adaptation, while being one order of magnitude faster to train. Code will be made available at: https://github.com/astra-vision/ProLIP .
♻ ☆ Video-Guided Foley Sound Generation with Multimodal Controls CVPR 2025
Generating sound effects for videos often requires creating artistic sound effects that diverge significantly from real-life sources and flexible control in the sound design. To address this problem, we introduce MultiFoley, a model designed for video-guided sound generation that supports multimodal conditioning through text, audio, and video. Given a silent video and a text prompt, MultiFoley allows users to create clean sounds (e.g., skateboard wheels spinning without wind noise) or more whimsical sounds (e.g., making a lion's roar sound like a cat's meow). MultiFoley also allows users to choose reference audio from sound effects (SFX) libraries or partial videos for conditioning. A key novelty of our model lies in its joint training on both internet video datasets with low-quality audio and professional SFX recordings, enabling high-quality, full-bandwidth (48kHz) audio generation. Through automated evaluations and human studies, we demonstrate that MultiFoley successfully generates synchronized high-quality sounds across varied conditional inputs and outperforms existing methods. Please see our project page for video results: https://ificl.github.io/MultiFoley/
comment: Accepted at CVPR 2025. Project site: https://ificl.github.io/MultiFoley/
♻ ☆ DualPM: Dual Posed-Canonical Point Maps for 3D Shape and Pose Reconstruction CVPR 2025
The choice of data representation is a key factor in the success of deep learning in geometric tasks. For instance, DUSt3R has recently introduced the concept of viewpoint-invariant point maps, generalizing depth prediction, and showing that one can reduce all the key problems in the 3D reconstruction of static scenes to predicting such point maps. In this paper, we develop an analogous concept for a very different problem, namely, the reconstruction of the 3D shape and pose of deformable objects. To this end, we introduce the Dual Point Maps (DualPM), where a pair of point maps is extracted from the same image, one associating pixels to their 3D locations on the object, and the other to a canonical version of the object at rest pose. We also extend point maps to amodal reconstruction, seeing through self-occlusions to obtain the complete shape of the object. We show that 3D reconstruction and 3D pose estimation reduce to the prediction of the DualPMs. We demonstrate empirically that this representation is a good target for a deep network to predict; specifically, we consider modeling horses, showing that DualPMs can be trained purely on 3D synthetic data, consisting of a single model of a horse, while generalizing very well to real images. With this, we improve by a large margin previous methods for the 3D analysis and reconstruction of this type of objects.
comment: First two authors contributed equally. CVPR 2025. Project page: https://dualpm.github.io
♻ ☆ Structure-Activation Synergy: A Dual Efficiency Framework for Parameter-Memory Optimized Transfer Learning
While parameter-efficient transfer learning (PETL) successfully reduces trainable parameters for adapting large pre-trained models, conventional methods exhibit limited effectiveness in decreasing activation memory consumption - a critical bottleneck for deployment on resource-constrained devices. We present Structure-Activation Synergy (S2A), an innovative framework achieving dual optimization of parameters and memory through two synergistic mechanisms: (1) Structural activation modules (bias/prompt/side adaptations) that strategically minimize both parametric complexity and intermediate feature storage requirements, and (2) Derivative-aware 4-bit quantization for non-parametric operators that maintains model fidelity through gradient-informed precision allocation. Extensive evaluations across multiple architectures (ViT, Swin, ResNet) and datasets (ImageNet-1K, CIFAR, DomainNet) demonstrate S2A's superior efficiency, reducing GPU memory consumption by 75\% (4.2 average reduction) while maintaining 98.7\% of full fine-tuning accuracy with only 0.9\% tunable parameters. This hardware-aware paradigm establishes new state-of-the-art in efficient model adaptation, offering practical deployment advantages through simultaneous parameter and memory optimization without compromising model capability
♻ ☆ GuardSplat: Efficient and Robust Watermarking for 3D Gaussian Splatting CVPR
3D Gaussian Splatting (3DGS) has recently created impressive 3D assets for various applications. However, considering security, capacity, invisibility, and training efficiency, the copyright of 3DGS assets is not well protected as existing watermarking methods are unsuited for its rendering pipeline. In this paper, we propose GuardSplat, an innovative and efficient framework for watermarking 3DGS assets. Specifically, 1) We propose a CLIP-guided pipeline for optimizing the message decoder with minimal costs. The key objective is to achieve high-accuracy extraction by leveraging CLIP's aligning capability and rich representations, demonstrating exceptional capacity and efficiency. 2) We tailor a Spherical-Harmonic-aware (SH-aware) Message Embedding module for 3DGS, seamlessly embedding messages into the SH features of each 3D Gaussian while preserving the original 3D structure. This enables watermarking 3DGS assets with minimal fidelity trade-offs and prevents malicious users from removing the watermarks from the model files, meeting the demands for invisibility and security. 3) We present an Anti-distortion Message Extraction module to improve robustness against various distortions. Experiments demonstrate that GuardSplat outperforms state-of-the-art and achieves fast optimization speed. Project page is at https://narcissusex.github.io/GuardSplat, and Code is at https://github.com/NarcissusEx/GuardSplat.
comment: This paper is accepted by the IEEE/CVF International Conference on Computer Vision and Pattern Recognition (CVPR), 2025
♻ ☆ Spatio-Temporal Distortion Aware Omnidirectional Video Super-Resolution
Omnidirectional video (ODV) provides an immersive visual experience and is widely utilized in virtual reality and augmented reality. However, restricted capturing devices and transmission bandwidth lead to low-resolution ODVs. Video super-resolution (SR) is proposed to enhance resolution, but practical ODV spatial projection distortions and temporal flickering are not well addressed directly applying existing methods. To achieve better ODV-SR reconstruction, we propose a Spatio-Temporal Distortion Aware Network (STDAN) oriented to ODV characteristics. Specifically, a spatially continuous distortion modulation module is introduced to improve discrete projection distortions. Next, we design an interlaced multi-frame reconstruction mechanism to refine temporal consistency across frames. Furthermore, we incorporate latitude-saliency adaptive weights during training to concentrate on regions with higher texture complexity and human-watching interest. In general, we explore inference-free and real-world viewing matched strategies to provide an application-friendly method on a novel ODV-SR dataset with practical scenarios. Extensive experimental results demonstrate the superior performance of the proposed STDAN over state-of-the-art methods.
♻ ☆ Nullu: Mitigating Object Hallucinations in Large Vision-Language Models via HalluSpace Projection CVPR 2025
Recent studies have shown that large vision-language models (LVLMs) often suffer from the issue of object hallucinations (OH). To mitigate this issue, we introduce an efficient method that edits the model weights based on an unsafe subspace, which we call HalluSpace in this paper. With truthful and hallucinated text prompts accompanying the visual content as inputs, the HalluSpace can be identified by extracting the hallucinated embedding features and removing the truthful representations in LVLMs. By orthogonalizing the model weights, input features will be projected into the Null space of the HalluSpace to reduce OH, based on which we name our method Nullu. We reveal that HalluSpaces generally contain prior information in the large language models (LLMs) applied to build LVLMs, which have been shown as essential causes of OH in previous studies. Therefore, null space projection suppresses the LLMs' priors to filter out the hallucinated features, resulting in contextually accurate outputs. Experiments show that our method can effectively mitigate OH across different LVLM families without extra inference costs and also show strong performance in general LVLM benchmarks. Code is released at https://github.com/Ziwei-Zheng/Nullu.
comment: CVPR 2025
♻ ☆ Revisiting Text-to-Image Evaluation with Gecko: On Metrics, Prompts, and Human Ratings ICLR 2025
While text-to-image (T2I) generative models have become ubiquitous, they do not necessarily generate images that align with a given prompt. While previous work has evaluated T2I alignment by proposing metrics, benchmarks, and templates for collecting human judgements, the quality of these components is not systematically measured. Human-rated prompt sets are generally small and the reliability of the ratings -- and thereby the prompt set used to compare models -- is not evaluated. We address this gap by performing an extensive study evaluating auto-eval metrics and human templates. We provide three main contributions: (1) We introduce a comprehensive skills-based benchmark that can discriminate models across different human templates. This skills-based benchmark categorises prompts into sub-skills, allowing a practitioner to pinpoint not only which skills are challenging, but at what level of complexity a skill becomes challenging. (2) We gather human ratings across four templates and four T2I models for a total of >100K annotations. This allows us to understand where differences arise due to inherent ambiguity in the prompt and where they arise due to differences in metric and model quality. (3) Finally, we introduce a new QA-based auto-eval metric that is better correlated with human ratings than existing metrics for our new dataset, across different human templates, and on TIFA160.
comment: Accepted to ICLR 2025 (Spotlight)
♻ ☆ Classifier-Free Guidance inside the Attraction Basin May Cause Memorization CVPR 2025
Diffusion models are prone to exactly reproduce images from the training data. This exact reproduction of the training data is concerning as it can lead to copyright infringement and/or leakage of privacy-sensitive information. In this paper, we present a novel perspective on the memorization phenomenon and propose a simple yet effective approach to mitigate it. We argue that memorization occurs because of an attraction basin in the denoising process which steers the diffusion trajectory towards a memorized image. However, this can be mitigated by guiding the diffusion trajectory away from the attraction basin by not applying classifier-free guidance until an ideal transition point occurs from which classifier-free guidance is applied. This leads to the generation of non-memorized images that are high in image quality and well-aligned with the conditioning mechanism. To further improve on this, we present a new guidance technique, opposite guidance, that escapes the attraction basin sooner in the denoising process. We demonstrate the existence of attraction basins in various scenarios in which memorization occurs, and we show that our proposed approach successfully mitigates memorization.
comment: CVPR 2025
♻ ☆ TraSCE: Trajectory Steering for Concept Erasure
Recent advancements in text-to-image diffusion models have brought them to the public spotlight, becoming widely accessible and embraced by everyday users. However, these models have been shown to generate harmful content such as not-safe-for-work (NSFW) images. While approaches have been proposed to erase such abstract concepts from the models, jail-breaking techniques have succeeded in bypassing such safety measures. In this paper, we propose TraSCE, an approach to guide the diffusion trajectory away from generating harmful content. Our approach is based on negative prompting, but as we show in this paper, a widely used negative prompting strategy is not a complete solution and can easily be bypassed in some corner cases. To address this issue, we first propose using a specific formulation of negative prompting instead of the widely used one. Furthermore, we introduce a localized loss-based guidance that enhances the modified negative prompting technique by steering the diffusion trajectory. We demonstrate that our proposed method achieves state-of-the-art results on various benchmarks in removing harmful content, including ones proposed by red teams, and erasing artistic styles and objects. Our proposed approach does not require any training, weight modifications, or training data (either image or prompt), making it easier for model owners to erase new concepts.
♻ ☆ Dual-Domain Homogeneous Fusion with Cross-Modal Mamba and Progressive Decoder for 3D Object Detection
Fusing LiDAR and image features in a homogeneous BEV domain has become popular for 3D object detection in autonomous driving. However, this paradigm is constrained by the excessive feature compression. While some works explore dense voxel fusion to enable better feature interaction, they face high computational costs and challenges in query generation. Additionally, feature misalignment in both domains results in suboptimal detection accuracy. To address these limitations, we propose a Dual-Domain Homogeneous Fusion network (DDHFusion), which leverages the complementarily of both BEV and voxel domains while mitigating their drawbacks. Specifically, we first transform image features into BEV and sparse voxel representations using lift-splat-shot and our proposed Semantic-Aware Feature Sampling (SAFS) module. The latter significantly reduces computational overhead by discarding unimportant voxels. Next, we introduce Homogeneous Voxel and BEV Fusion (HVF and HBF) networks for multi-modal fusion within respective domains. They are equipped with novel cross-modal Mamba blocks to resolve feature misalignment and enable comprehensive scene perception. The output voxel features are injected into the BEV space to compensate for the information loss brought by direct height compression. During query selection, the Progressive Query Generation (PQG) mechanism is implemented in the BEV domain to reduce false negatives caused by feature compression. Furthermore, we propose a Progressive Decoder (QD) that sequentially aggregates not only context-rich BEV features but also geometry-aware voxel features with deformable attention and the Multi-Modal Voxel Feature Mixing (MMVFM) block for precise classification and box regression.
comment: 13 pages, 9 figures
♻ ☆ Boundary Constraint-free Biomechanical Model-Based Surface Matching for Intraoperative Liver Deformation Correction
In image-guided liver surgery, 3D-3D non-rigid registration methods play a crucial role in estimating the mapping between the preoperative model and the intraoperative surface represented as point clouds, addressing the challenge of tissue deformation. Typically, these methods incorporate a biomechanical model, represented as a finite element model (FEM), into the strain energy term to regularize a surface matching term. We propose a 3D-3D non-rigid registration method that incorporates a modified FEM into the surface matching term. The modified FEM alleviates the need to specify boundary conditions, which is achieved by modifying the stiffness matrix of a FEM and using diagonal loading for stabilization. As a result, the modified surface matching term does not require the specification of boundary conditions or an additional strain energy term to regularize the surface matching term. Optimization is achieved through an accelerated gradient algorithm, further enhanced by our proposed method for determining the optimal step size. We evaluated our method and compared it to several state-of-the-art methods across various datasets. Our straightforward and effective approach consistently outperformed or achieved comparable performance to the state-of-the-art methods. Our code and datasets are available at https://github.com/zixinyang9109/BCF-FEM.
♻ ☆ Online optimisation for dynamic electrical impedance tomography
Online optimisation studies the convergence of optimisation methods as the data embedded in the problem changes. Based on this idea, we propose a primal dual online method for nonlinear time-discrete inverse problems. We analyse the method through regret theory and demonstrate its performance in real-time monitoring of moving bodies in a fluid with Electrical Impedance Tomography (EIT). To do so, we also prove the second-order differentiability of the Complete Electrode Model (CEM) solution operator on $L^\infty$.
♻ ☆ Human-Centric Video Anomaly Detection Through Spatio-Temporal Pose Tokenization and Transformer
Video Anomaly Detection (VAD) presents a significant challenge in computer vision, particularly due to the unpredictable and infrequent nature of anomalous events, coupled with the diverse and dynamic environments in which they occur. Human-centric VAD, a specialized area within this domain, faces additional complexities, including variations in human behavior, potential biases in data, and substantial privacy concerns related to human subjects. These issues complicate the development of models that are both robust and generalizable. To address these challenges, recent advancements have focused on pose-based VAD, which leverages human pose as a high-level feature to mitigate privacy concerns, reduce appearance biases, and minimize background interference. In this paper, we introduce SPARTA, a novel transformer-based architecture designed specifically for human-centric pose-based VAD. SPARTA introduces an innovative Spatio-Temporal Pose and Relative Pose (ST-PRP) tokenization method that produces an enriched representation of human motion over time. This approach ensures that the transformer's attention mechanism captures both spatial and temporal patterns simultaneously, rather than focusing on only one aspect. The addition of the relative pose further emphasizes subtle deviations from normal human movements. The architecture's core, a novel Unified Encoder Twin Decoders (UETD) transformer, significantly improves the detection of anomalous behaviors in video data. Extensive evaluations across multiple benchmark datasets demonstrate that SPARTA consistently outperforms existing methods, establishing a new state-of-the-art in pose-based VAD.
♻ ☆ A Recipe for Improving Remote Sensing VLM Zero Shot Generalization
Foundation models have had a significant impact across various AI applications, enabling use cases that were previously impossible. Contrastive Visual Language Models (VLMs), in particular, have outperformed other techniques in many tasks. However, their prevalence in remote sensing (RS) is still limited, due to the scarcity of diverse remote-sensing visual-language datasets. In this work we introduce two novel image-caption datasets for training of remote sensing foundation models. The first dataset pairs aerial and satellite imagery with captions generated by Gemini using landmarks extracted from Google Maps. The second dataset utilizes public web images and their corresponding alt-text, filtered for the remote sensing domain, resulting in a diverse dataset with greater breadth in image styles and subject matter. These datasets are used to pre-train the MaMMUT~\citep{kuo2023mammutsimplearchitecturejoint} VLM architecture, resulting in state-of-the-art generalization performance in zero-shot cross-modal retrieval on well-known public benchmarks. Finally, we present our ongoing research to distill image-level knowledge gained in the VLM contrastive training procedure to enhance the model's localization ability. Specifically, we iteratively generate pseudo-labels for image regions based on the model's attention maps and use these labels for further training. To mitigate noisy attention maps and create robust segmentation masks, we introduce a novel attention-pooling mechanism called the Smooth-Attention-Operation.
♻ ☆ Learning of Patch-Based Smooth-Plus-Sparse Models for Image Reconstruction
We aim at the solution of inverse problems in imaging, by combining a penalized sparse representation of image patches with an unconstrained smooth one. This allows for a straightforward interpretation of the reconstruction. We formulate the optimization as a bilevel problem. The inner problem deploys classical algorithms while the outer problem optimizes the dictionary and the regularizer parameters through supervised learning. The process is carried out via implicit differentiation and gradient-based optimization. We evaluate our method for denoising, super-resolution, and compressed-sensing magnetic-resonance imaging. We compare it to other classical models as well as deep-learning-based methods and show that it always outperforms the former and also the latter in some instances.
♻ ☆ Reangle-A-Video: 4D Video Generation as Video-to-Video Translation
We introduce Reangle-A-Video, a unified framework for generating synchronized multi-view videos from a single input video. Unlike mainstream approaches that train multi-view video diffusion models on large-scale 4D datasets, our method reframes the multi-view video generation task as video-to-videos translation, leveraging publicly available image and video diffusion priors. In essence, Reangle-A-Video operates in two stages. (1) Multi-View Motion Learning: An image-to-video diffusion transformer is synchronously fine-tuned in a self-supervised manner to distill view-invariant motion from a set of warped videos. (2) Multi-View Consistent Image-to-Images Translation: The first frame of the input video is warped and inpainted into various camera perspectives under an inference-time cross-view consistency guidance using DUSt3R, generating multi-view consistent starting images. Extensive experiments on static view transport and dynamic camera control show that Reangle-A-Video surpasses existing methods, establishing a new solution for multi-view video generation. We will publicly release our code and data. Project page: https://hyeonho99.github.io/reangle-a-video/
comment: Project page: https://hyeonho99.github.io/reangle-a-video/
♻ ☆ Video Depth without Video Models
Video depth estimation lifts monocular video clips to 3D by inferring dense depth at every frame. Recent advances in single-image depth estimation, brought about by the rise of large foundation models and the use of synthetic training data, have fueled a renewed interest in video depth. However, naively applying a single-image depth estimator to every frame of a video disregards temporal continuity, which not only leads to flickering but may also break when camera motion causes sudden changes in depth range. An obvious and principled solution would be to build on top of video foundation models, but these come with their own limitations; including expensive training and inference, imperfect 3D consistency, and stitching routines for the fixed-length (short) outputs. We take a step back and demonstrate how to turn a single-image latent diffusion model (LDM) into a state-of-the-art video depth estimator. Our model, which we call RollingDepth, has two main ingredients: (i) a multi-frame depth estimator that is derived from a single-image LDM and maps very short video snippets (typically frame triplets) to depth snippets. (ii) a robust, optimization-based registration algorithm that optimally assembles depth snippets sampled at various different frame rates back into a consistent video. RollingDepth is able to efficiently handle long videos with hundreds of frames and delivers more accurate depth videos than both dedicated video depth estimators and high-performing single-frame models. Project page: rollingdepth.github.io.
comment: Project page: rollingdepth.github.io
♻ ☆ FaceQSORT: a Multi-Face Tracking Method based on Biometric and Appearance Features
In this work, a novel multi-face tracking method named FaceQSORT is proposed. To mitigate multi-face tracking challenges (e.g., partially occluded or lateral faces), FaceQSORT combines biometric and visual appearance features (extracted from the same image (face) patch) for association. The Q in FaceQSORT refers to the scenario for which FaceQSORT is desinged, i.e. tracking people's faces as they move towards a gate in a Queue. This scenario is also reflected in the new dataset `Paris Lodron University Salzburg Faces in a Queue', which is made publicly available as part of this work. The dataset consists of a total of seven fully annotated and challenging sequences (12730 frames) and is utilized together with two other publicly available datasets for the experimental evaluation. It is shown that FaceQSORT outperforms state-of-the-art trackers in the considered scenario. To provide a deeper insight into FaceQSORT, comprehensive experiments are conducted evaluating the parameter selection, a different similarity metric and the utilized face recognition model (used to extract biometric features).
♻ ☆ ShapeShifter: 3D Variations Using Multiscale and Sparse Point-Voxel Diffusion
This paper proposes ShapeShifter, a new 3D generative model that learns to synthesize shape variations based on a single reference model. While generative methods for 3D objects have recently attracted much attention, current techniques often lack geometric details and/or require long training times and large resources. Our approach remedies these issues by combining sparse voxel grids and point, normal, and color sampling within a multiscale neural architecture that can be trained efficiently and in parallel. We show that our resulting variations better capture the fine details of their original input and can handle more general types of surfaces than previous SDF-based methods. Moreover, we offer interactive generation of 3D shape variants, allowing more human control in the design loop if needed.
♻ ☆ Rethinking model prototyping through the MedMNIST+ dataset collection
The integration of deep learning based systems in clinical practice is often impeded by challenges rooted in limited and heterogeneous medical datasets. In addition, the field has increasingly prioritized marginal performance gains on a few, narrowly scoped benchmarks over clinical applicability, slowing down meaningful algorithmic progress. This trend often results in excessive fine-tuning of existing methods on selected datasets rather than fostering clinically relevant innovations. In response, this work introduces a comprehensive benchmark for the MedMNIST+ dataset collection, designed to diversify the evaluation landscape across several imaging modalities, anatomical regions, classification tasks and sample sizes. We systematically reassess commonly used Convolutional Neural Networks (CNNs) and Vision Transformer (ViT) architectures across distinct medical datasets, training methodologies, and input resolutions to validate and refine existing assumptions about model effectiveness and development. Our findings suggest that computationally efficient training schemes and modern foundation models offer viable alternatives to costly end-to-end training. Additionally, we observe that higher image resolutions do not consistently improve performance beyond a certain threshold. This highlights the potential benefits of using lower resolutions, particularly in prototyping stages, to reduce computational demands without sacrificing accuracy. Notably, our analysis reaffirms the competitiveness of CNNs compared to ViTs, emphasizing the importance of comprehending the intrinsic capabilities of different architectures. Finally, by establishing a standardized evaluation framework, we aim to enhance transparency, reproducibility, and comparability within the MedMNIST+ dataset collection. Code is available at https://github.com/sdoerrich97/rethinking-model-prototyping-MedMNISTPlus .
♻ ☆ Classroom-Inspired Multi-Mentor Distillation with Adaptive Learning Strategies
We propose ClassroomKD, a novel multi-mentor knowledge distillation framework inspired by classroom environments to enhance knowledge transfer between the student and multiple mentors with different knowledge levels. Unlike traditional methods that rely on fixed mentor-student relationships, our framework dynamically selects and adapts the teaching strategies of diverse mentors based on their effectiveness for each data sample. ClassroomKD comprises two main modules: the Knowledge Filtering (KF) module and the Mentoring module. The KF Module dynamically ranks mentors based on their performance for each input, activating only high-quality mentors to minimize error accumulation and prevent information loss. The Mentoring Module adjusts the distillation strategy by tuning each mentor's influence according to the dynamic performance gap between the student and mentors, effectively modulating the learning pace. Extensive experiments on image classification (CIFAR-100 and ImageNet) and 2D human pose estimation (COCO Keypoints and MPII Human Pose) demonstrate that ClassroomKD outperforms existing knowledge distillation methods for different network architectures. Our results highlight that a dynamic and adaptive approach to mentor selection and guidance leads to more effective knowledge transfer, paving the way for enhanced model performance through distillation.
comment: Accepted in IntelliSys 2025
♻ ☆ LAGA: Layered 3D Avatar Generation and Customization via Gaussian Splatting
Creating and customizing a 3D clothed avatar from textual descriptions is a critical and challenging task. Traditional methods often treat the human body and clothing as inseparable, limiting users' ability to freely mix and match garments. In response to this limitation, we present LAyered Gaussian Avatar (LAGA), a carefully designed framework enabling the creation of high-fidelity decomposable avatars with diverse garments. By decoupling garments from avatar, our framework empowers users to conviniently edit avatars at the garment level. Our approach begins by modeling the avatar using a set of Gaussian points organized in a layered structure, where each layer corresponds to a specific garment or the human body itself. To generate high-quality garments for each layer, we introduce a coarse-to-fine strategy for diverse garment generation and a novel dual-SDS loss function to maintain coherence between the generated garments and avatar components, including the human body and other garments. Moreover, we introduce three regularization losses to guide the movement of Gaussians for garment transfer, allowing garments to be freely transferred to various avatars. Extensive experimentation demonstrates that our approach surpasses existing methods in the generation of 3D clothed humans.
♻ ☆ Open-Set Gait Recognition from Sparse mmWave Radar Point Clouds
The adoption of Millimeter-Wave (mmWave) radar devices for human sensing, particularly gait recognition, has recently gathered significant attention due to their efficiency, resilience to environmental conditions, and privacy-preserving nature. In this work, we tackle the challenging problem of Open-set Gait Recognition (OSGR) from sparse mmWave radar point clouds. Unlike most existing research, which assumes a closed-set scenario, our work considers the more realistic open-set case, where unknown subjects might be present at inference time, and should be correctly recognized by the system. Point clouds are well-suited for edge computing applications with resource constraints, but are more significantly affected by noise and random fluctuations than other representations, like the more common micro-Doppler signature. This is the first work addressing open-set gait recognition with sparse point cloud data. To do so, we propose a novel neural network architecture that combines supervised classification with unsupervised reconstruction of the point clouds, creating a robust, rich, and highly regularized latent space of gait features. To detect unknown subjects at inference time, we introduce a probabilistic novelty detection algorithm that leverages the structured latent space and offers a tunable trade-off between inference speed and prediction accuracy. Along with this paper, we release mmGait10, an original human gait dataset featuring over five hours of measurements from ten subjects, under varied walking modalities. Extensive experimental results show that our solution attains F1-Score improvements by 24% over state-of-the-art methods, on average, and across multiple openness levels.
♻ ☆ The Narrow Gate: Localized Image-Text Communication in Vision-Language Models
Recent advances in multimodal training have significantly improved the integration of image understanding and generation within a unified model. This study investigates how vision-language models (VLMs) handle image-understanding tasks, specifically focusing on how visual information is processed and transferred to the textual domain. We compare VLMs that generate both images and text with those that output only text, highlighting key differences in information flow. We find that in models with multimodal outputs, image and text embeddings are more separated within the residual stream. Additionally, models vary in how information is exchanged from visual to textual tokens. VLMs that only output text exhibit a distributed communication pattern, where information is exchanged through multiple image tokens. In contrast, models trained for image and text generation tend to rely on a single token that acts as a narrow gate for visual information. We demonstrate that ablating this single token significantly deteriorates performance on image understanding tasks. Furthermore, modifying this token enables effective steering of the image semantics, showing that targeted, local interventions can reliably control the model's global behavior.
♻ ☆ Learning Spatially Adaptive $\ell_1$-Norms Weights for Convolutional Synthesis Regularization
We propose an unrolled algorithm approach for learning spatially adaptive parameter maps in the framework of convolutional synthesis-based $\ell_1$ regularization. More precisely, we consider a family of pre-trained convolutional filters and estimate deeply parametrized spatially varying parameters applied to the sparse feature maps by means of unrolling a FISTA algorithm to solve the underlying sparse estimation problem. The proposed approach is evaluated for image reconstruction of low-field MRI and compared to spatially adaptive and non-adaptive analysis-type procedures relying on Total Variation regularization and to a well-established model-based deep learning approach. We show that the proposed approach produces visually and quantitatively comparable results with the latter approaches and at the same time remains highly interpretable. In particular, the inferred parameter maps quantify the local contribution of each filter in the reconstruction, which provides valuable insight into the algorithm mechanism and could potentially be used to discard unsuited filters.
comment: To be submitted to the EUSIPCO 2025 conference
♻ ☆ Image Intrinsic Scale Assessment: Bridging the Gap Between Quality and Resolution
Image Quality Assessment (IQA) measures and predicts perceived image quality by human observers. Although recent studies have highlighted the critical influence that variations in the scale of an image have on its perceived quality, this relationship has not been systematically quantified. To bridge this gap, we introduce the Image Intrinsic Scale (IIS), defined as the largest scale where an image exhibits its highest perceived quality. We also present the Image Intrinsic Scale Assessment (IISA) task, which involves subjectively measuring and predicting the IIS based on human judgments. We develop a subjective annotation methodology and create the IISA-DB dataset, comprising 785 image-IIS pairs annotated by experts in a rigorously controlled crowdsourcing study. Furthermore, we propose WIISA (Weak-labeling for Image Intrinsic Scale Assessment), a strategy that leverages how the IIS of an image varies with downscaling to generate weak labels. Experiments show that applying WIISA during the training of several IQA methods adapted for IISA consistently improves the performance compared to using only ground-truth labels. We will release the code, dataset, and pre-trained models upon acceptance.
♻ ☆ MoDec-GS: Global-to-Local Motion Decomposition and Temporal Interval Adjustment for Compact Dynamic 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) has made significant strides in scene representation and neural rendering, with intense efforts focused on adapting it for dynamic scenes. Despite delivering remarkable rendering quality and speed, existing methods struggle with storage demands and representing complex real-world motions. To tackle these issues, we propose MoDecGS, a memory-efficient Gaussian splatting framework designed for reconstructing novel views in challenging scenarios with complex motions. We introduce GlobaltoLocal Motion Decomposition (GLMD) to effectively capture dynamic motions in a coarsetofine manner. This approach leverages Global Canonical Scaffolds (Global CS) and Local Canonical Scaffolds (Local CS), extending static Scaffold representation to dynamic video reconstruction. For Global CS, we propose Global Anchor Deformation (GAD) to efficiently represent global dynamics along complex motions, by directly deforming the implicit Scaffold attributes which are anchor position, offset, and local context features. Next, we finely adjust local motions via the Local Gaussian Deformation (LGD) of Local CS explicitly. Additionally, we introduce Temporal Interval Adjustment (TIA) to automatically control the temporal coverage of each Local CS during training, allowing MoDecGS to find optimal interval assignments based on the specified number of temporal segments. Extensive evaluations demonstrate that MoDecGS achieves an average 70% reduction in model size over stateoftheart methods for dynamic 3D Gaussians from realworld dynamic videos while maintaining or even improving rendering quality.
comment: The last two authors are co-corresponding authors. Please visit our project page at https://kaist-viclab.github.io/MoDecGS-site/
♻ ☆ Automatic quality control in multi-centric fetal brain MRI super-resolution reconstruction MICCAI 2025
Quality control (QC) has long been considered essential to guarantee the reliability of neuroimaging studies. It is particularly important for fetal brain MRI, where acquisitions and image processing techniques are less standardized than in adult imaging. In this work, we focus on automated quality control of super-resolution reconstruction (SRR) volumes of fetal brain MRI, an important processing step where multiple stacks of thick 2D slices are registered together and combined to build a single, isotropic and artifact-free T2 weighted volume. We propose FetMRQC$_{SR}$, a machine-learning method that extracts more than 100 image quality metrics to predict image quality scores using a random forest model. This approach is well suited to a problem that is high dimensional, with highly heterogeneous data and small datasets. We validate FetMRQC$_{SR}$ in an out-of-domain (OOD) setting and report high performance (ROC AUC = 0.89), even when faced with data from an unknown site or SRR method. We also investigate failure cases and show that they occur in $45\%$ of the images due to ambiguous configurations for which the rating from the expert is arguable. These results are encouraging and illustrate how a non deep learning-based method like FetMRQC$_{SR}$ is well suited to this multifaceted problem. Our tool, along with all the code used to generate, train and evaluate the model will be released upon acceptance of the paper.
comment: 11 pages, 3 figures; Submitted to MICCAI 2025
♻ ☆ Believing is Seeing: Unobserved Object Detection using Generative Models
Can objects that are not visible in an image -- but are in the vicinity of the camera -- be detected? This study introduces the novel tasks of 2D, 2.5D and 3D unobserved object detection for predicting the location of nearby objects that are occluded or lie outside the image frame. We adapt several state-of-the-art pre-trained generative models to address this task, including 2D and 3D diffusion models and vision-language models, and show that they can be used to infer the presence of objects that are not directly observed. To benchmark this task, we propose a suite of metrics that capture different aspects of performance. Our empirical evaluation on indoor scenes from the RealEstate10k and NYU Depth v2 datasets demonstrate results that motivate the use of generative models for the unobserved object detection task.
comment: IEEE/CVF Computer Vision and Pattern Recognition 2025; 22 pages
♻ ☆ IMDPrompter: Adapting SAM to Image Manipulation Detection by Cross-View Automated Prompt Learning
Using extensive training data from SA-1B, the Segment Anything Model (SAM) has demonstrated exceptional generalization and zero-shot capabilities, attracting widespread attention in areas such as medical image segmentation and remote sensing image segmentation. However, its performance in the field of image manipulation detection remains largely unexplored and unconfirmed. There are two main challenges in applying SAM to image manipulation detection: a) reliance on manual prompts, and b) the difficulty of single-view information in supporting cross-dataset generalization. To address these challenges, we develops a cross-view prompt learning paradigm called IMDPrompter based on SAM. Benefiting from the design of automated prompts, IMDPrompter no longer relies on manual guidance, enabling automated detection and localization. Additionally, we propose components such as Cross-view Feature Perception, Optimal Prompt Selection, and Cross-View Prompt Consistency, which facilitate cross-view perceptual learning and guide SAM to generate accurate masks. Extensive experimental results from five datasets (CASIA, Columbia, Coverage, IMD2020, and NIST16) validate the effectiveness of our proposed method.
♻ ☆ Advanced computer vision for extracting georeferenced vehicle trajectories from drone imagery
This paper presents a framework for extracting georeferenced vehicle trajectories from high-altitude drone imagery, addressing key challenges in urban traffic monitoring and the limitations of traditional ground-based systems. Our approach integrates several novel contributions, including a tailored object detector optimized for high-altitude bird's-eye view perspectives, a unique track stabilization method that uses detected vehicle bounding boxes as exclusion masks during image registration, and an orthophoto and master frame-based georeferencing strategy that enhances consistent alignment across multiple drone viewpoints. Additionally, our framework features robust vehicle dimension estimation and detailed road segmentation, enabling comprehensive traffic analysis. Conducted in the Songdo International Business District, South Korea, the study utilized a multi-drone experiment covering 20 intersections, capturing approximately 12TB of 4K video data over four days. The framework produced two high-quality datasets: the Songdo Traffic dataset, comprising approximately 700,000 unique vehicle trajectories, and the Songdo Vision dataset, containing over 5,000 human-annotated images with about 300,000 vehicle instances in four classes. Comparisons with high-precision sensor data from an instrumented probe vehicle highlight the accuracy and consistency of our extraction pipeline in dense urban environments. The public release of Songdo Traffic and Songdo Vision, and the complete source code for the extraction pipeline, establishes new benchmarks in data quality, reproducibility, and scalability in traffic research. Results demonstrate the potential of integrating drone technology with advanced computer vision for precise and cost-effective urban traffic monitoring, providing valuable resources for developing intelligent transportation systems and enhancing traffic management strategies.
♻ ☆ VQ-SGen: A Vector Quantized Stroke Representation for Creative Sketch Generation
This paper presents VQ-SGen, a novel algorithm for high-quality creative sketch generation. Recent approaches have framed the task as pixel-based generation either as a whole or part-by-part, neglecting the intrinsic and contextual relationships among individual strokes, such as the shape and spatial positioning of both proximal and distant strokes. To overcome these limitations, we propose treating each stroke within a sketch as an entity and introducing a vector-quantized (VQ) stroke representation for fine-grained sketch generation. Our method follows a two-stage framework - in stage one, we decouple each stroke's shape and location information to ensure the VQ representation prioritizes stroke shape learning. In stage two, we feed the precise and compact representation into an auto-decoding Transformer to incorporate stroke semantics, positions, and shapes into the generation process. By utilizing tokenized stroke representation, our approach generates strokes with high fidelity and facilitates novel applications, such as text or class label conditioned generation and sketch completion. Comprehensive experiments demonstrate our method surpasses existing state-of-the-art techniques on the CreativeSketch dataset, underscoring its effectiveness.
♻ ☆ NeuSG: Neural Implicit Surface Reconstruction with 3D Gaussian Splatting Guidance
Existing neural implicit surface reconstruction methods have achieved impressive performance in multi-view 3D reconstruction by leveraging explicit geometry priors such as depth maps or point clouds as regularization. However, the reconstruction results still lack fine details because of the over-smoothed depth map or sparse point cloud. In this work, we propose a neural implicit surface reconstruction pipeline with guidance from 3D Gaussian Splatting to recover highly detailed surfaces. The advantage of 3D Gaussian Splatting is that it can generate dense point clouds with detailed structure. Nonetheless, a naive adoption of 3D Gaussian Splatting can fail since the generated points are the centers of 3D Gaussians that do not necessarily lie on the surface. We thus introduce a scale regularizer to pull the centers close to the surface by enforcing the 3D Gaussians to be extremely thin. Moreover, we propose to refine the point cloud from 3D Gaussians Splatting with the normal priors from the surface predicted by neural implicit models instead of using a fixed set of points as guidance. Consequently, the quality of surface reconstruction improves from the guidance of the more accurate 3D Gaussian splatting. By jointly optimizing the 3D Gaussian Splatting and the neural implicit model, our approach benefits from both representations and generates complete surfaces with intricate details. Experiments on Tanks and Temples verify the effectiveness of our proposed method.
♻ ☆ Visually Wired NFTs: Exploring the Role of Inspiration in Non-Fungible Tokens
The fervor for Non-Fungible Tokens (NFTs) attracted countless creators, leading to a Big Bang of digital assets driven by latent or explicit forms of inspiration, as in many creative processes. This work exploits Vision Transformers and graph-based modeling to delve into visual inspiration phenomena between NFTs over the years. Our goals include unveiling the main structural traits that shape visual inspiration networks, exploring the interrelation between visual inspiration and asset performances, investigating crypto influence on inspiration processes, and explaining the inspiration relationships among NFTs. Our findings unveil how the pervasiveness of inspiration led to a temporary saturation of the visual feature space, the impact of the dichotomy between inspiring and inspired NFTs on their financial performance, and an intrinsic self-regulatory mechanism between markets and inspiration waves. Our work can serve as a starting point for gaining a broader view of the evolution of Web3.
comment: Accepted for publication with ACM Trans. on the Web, Jan 2025. https://dl.acm.org/doi/10.1145/3703411
♻ ☆ Interleaved-Modal Chain-of-Thought CVPR 2025
Chain-of-Thought (CoT) prompting elicits large language models (LLMs) to produce a series of intermediate reasoning steps before arriving at the final answer. However, when transitioning to vision-language models (VLMs), their text-only rationales struggle to express the fine-grained associations with the original image. In this paper, we propose an image-incorporated multimodal Chain-of-Thought, named \textbf{Interleaved-modal Chain-of-Thought (ICoT)}, which generates sequential reasoning steps consisting of paired visual and textual rationales to infer the final answer. Intuitively, the novel ICoT requires VLMs to enable the generation of fine-grained interleaved-modal content, which is hard for current VLMs to fulfill. Considering that the required visual information is usually part of the input image, we propose \textbf{Attention-driven Selection (ADS)} to realize ICoT over existing VLMs. ADS intelligently inserts regions of the input image to generate the interleaved-modal reasoning steps with ignorable additional latency. ADS relies solely on the attention map of VLMs without the need for parameterization, and therefore it is a plug-and-play strategy that can be generalized to a spectrum of VLMs. We apply ADS to realize ICoT on two popular VLMs of different architectures. Extensive evaluations of three benchmarks have shown that ICoT prompting achieves substantial performance (up to 14\%) and interpretability improvements compared to existing multimodal CoT prompting methods.
comment: CVPR 2025 Main Conference
♻ ☆ A Generically Contrastive Spatiotemporal Representation Enhancement for 3D Skeleton Action Recognition
Skeleton-based action recognition is a central task in computer vision and human-robot interaction. However, most previous methods suffer from overlooking the explicit exploitation of the latent data distributions (i.e., the intra-class variations and inter-class relations), thereby leading to confusion about ambiguous samples and sub-optimum solutions of the skeleton encoders. To mitigate this, we propose a Contrastive Spatiotemporal Representation Enhancement (CSRE) framework to obtain more discriminative representations from the sequences, which can be incorporated into various previous skeleton encoders and can be removed when testing. Specifically, we decompose the representation into spatial- and temporal-specific features to explore fine-grained motion patterns along the corresponding dimensions. Furthermore, to explicitly exploit the latent data distributions, we employ the attentive features to contrastive learning, which models the cross-sequence semantic relations by pulling together the features from the positive pairs and pushing away the negative pairs. Extensive experiments show that CSRE with five various skeleton encoders (HCN, 2S-AGCN, CTR-GCN, Hyperformer, and BlockGCN) achieves solid improvements on five benchmarks. The code will be released at https://github.com/zhshj0110/CSRE.
comment: Accepted by PR 2025
HybridVLA: Collaborative Diffusion and Autoregression in a Unified Vision-Language-Action Model
Recent advancements in vision-language models (VLMs) for common-sense reasoning have led to the development of vision-language-action (VLA) models, enabling robots to perform generalized manipulation. Although existing autoregressive VLA methods leverage large-scale pretrained knowledge, they disrupt the continuity of actions. Meanwhile, some VLA methods incorporate an additional diffusion head to predict continuous actions, relying solely on VLM-extracted features, which limits their reasoning capabilities. In this paper, we introduce HybridVLA, a unified framework that seamlessly integrates the strengths of both autoregressive and diffusion policies within a single large language model, rather than simply connecting them. To bridge the generation gap, a collaborative training recipe is proposed that injects the diffusion modeling directly into the next-token prediction. With this recipe, we find that these two forms of action prediction not only reinforce each other but also exhibit varying performance across different tasks. Therefore, we design a collaborative action ensemble mechanism that adaptively fuses these two predictions, leading to more robust control. In experiments, HybridVLA outperforms previous state-of-the-art VLA methods across various simulation and real-world tasks, including both single-arm and dual-arm robots, while demonstrating stable manipulation in previously unseen configurations.
Artificial Intelligence 190
☆ MetaScale: Test-Time Scaling with Evolving Meta-Thoughts
One critical challenge for large language models (LLMs) for making complex reasoning is their reliance on matching reasoning patterns from training data, instead of proactively selecting the most appropriate cognitive strategy to solve a given task. Existing approaches impose fixed cognitive structures that enhance performance in specific tasks but lack adaptability across diverse scenarios. To address this limitation, we introduce METASCALE, a test-time scaling framework based on meta-thoughts -- adaptive thinking strategies tailored to each task. METASCALE initializes a pool of candidate meta-thoughts, then iteratively selects and evaluates them using a multi-armed bandit algorithm with upper confidence bound selection, guided by a reward model. To further enhance adaptability, a genetic algorithm evolves high-reward meta-thoughts, refining and extending the strategy pool over time. By dynamically proposing and optimizing meta-thoughts at inference time, METASCALE improves both accuracy and generalization across a wide range of tasks. Experimental results demonstrate that MetaScale consistently outperforms standard inference approaches, achieving an 11% performance gain in win rate on Arena-Hard for GPT-4o, surpassing o1-mini by 0.9% under style control. Notably, METASCALE scales more effectively with increasing sampling budgets and produces more structured, expert-level responses.
comment: Work in progress
☆ Faithfulness of LLM Self-Explanations for Commonsense Tasks: Larger Is Better, and Instruction-Tuning Allows Trade-Offs but Not Pareto Dominance
As large language models (LLMs) become increasingly capable, ensuring that their self-generated explanations are faithful to their internal decision-making process is critical for safety and oversight. In this work, we conduct a comprehensive counterfactual faithfulness analysis across 62 models from 8 families, encompassing both pretrained and instruction-tuned variants and significantly extending prior studies of counterfactual tests. We introduce phi-CCT, a simplified variant of the Correlational Counterfactual Test, which avoids the need for token probabilities while explaining most of the variance of the original test. Our findings reveal clear scaling trends: larger models are consistently more faithful on our metrics. However, when comparing instruction-tuned and human-imitated explanations, we find that observed differences in faithfulness can often be attributed to explanation verbosity, leading to shifts along the true-positive/false-positive Pareto frontier. While instruction-tuning and prompting can influence this trade-off, we find limited evidence that they fundamentally expand the frontier of explanatory faithfulness beyond what is achievable with pretrained models of comparable size. Our analysis highlights the nuanced relationship between instruction-tuning, verbosity, and the faithful representation of model decision processes.
comment: 38 pages, 9 figures
☆ VideoMind: A Chain-of-LoRA Agent for Long Video Reasoning
Videos, with their unique temporal dimension, demand precise grounded understanding, where answers are directly linked to visual, interpretable evidence. Despite significant breakthroughs in reasoning capabilities within Large Language Models, multi-modal reasoning - especially for videos - remains unexplored. In this work, we introduce VideoMind, a novel video-language agent designed for temporal-grounded video understanding. VideoMind incorporates two key innovations: (i) We identify essential capabilities for video temporal reasoning and develop a role-based agentic workflow, including a planner for coordinating different roles, a grounder for temporal localization, a verifier to assess temporal interval accuracy, and an answerer for question-answering. (ii) To efficiently integrate these diverse roles, we propose a novel Chain-of-LoRA strategy, enabling seamless role-switching via lightweight LoRA adaptors while avoiding the overhead of multiple models, thus balancing efficiency and flexibility. Extensive experiments on 14 public benchmarks demonstrate that our agent achieves state-of-the-art performance on diverse video understanding tasks, including 3 on grounded video question-answering, 6 on video temporal grounding, and 5 on general video question-answering, underscoring its effectiveness in advancing video agent and long-form temporal reasoning.
comment: Project Page: https://videomind.github.io/
☆ Humanoid Policy ~ Human Policy
Training manipulation policies for humanoid robots with diverse data enhances their robustness and generalization across tasks and platforms. However, learning solely from robot demonstrations is labor-intensive, requiring expensive tele-operated data collection which is difficult to scale. This paper investigates a more scalable data source, egocentric human demonstrations, to serve as cross-embodiment training data for robot learning. We mitigate the embodiment gap between humanoids and humans from both the data and modeling perspectives. We collect an egocentric task-oriented dataset (PH2D) that is directly aligned with humanoid manipulation demonstrations. We then train a human-humanoid behavior policy, which we term Human Action Transformer (HAT). The state-action space of HAT is unified for both humans and humanoid robots and can be differentiably retargeted to robot actions. Co-trained with smaller-scale robot data, HAT directly models humanoid robots and humans as different embodiments without additional supervision. We show that human data improves both generalization and robustness of HAT with significantly better data collection efficiency. Code and data: https://human-as-robot.github.io/
comment: Code and data: https://human-as-robot.github.io/
☆ Deep Belief Markov Models for POMDP Inference
This work introduces a novel deep learning-based architecture, termed the Deep Belief Markov Model (DBMM), which provides efficient, model-formulation agnostic inference in Partially Observable Markov Decision Process (POMDP) problems. The POMDP framework allows for modeling and solving sequential decision-making problems under observation uncertainty. In complex, high-dimensional, partially observable environments, existing methods for inference based on exact computations (e.g., via Bayes' theorem) or sampling algorithms do not scale well. Furthermore, ground truth states may not be available for learning the exact transition dynamics. DBMMs extend deep Markov models into the partially observable decision-making framework and allow efficient belief inference entirely based on available observation data via variational inference methods. By leveraging the potency of neural networks, DBMMs can infer and simulate non-linear relationships in the system dynamics and naturally scale to problems with high dimensionality and discrete or continuous variables. In addition, neural network parameters can be dynamically updated efficiently based on data availability. DBMMs can thus be used to infer a belief variable, thus enabling the derivation of POMDP solutions over the belief space. We evaluate the efficacy of the proposed methodology by evaluating the capability of model-formulation agnostic inference of DBMMs in benchmark problems that include discrete and continuous variables.
☆ BlobCtrl: A Unified and Flexible Framework for Element-level Image Generation and Editing
Element-level visual manipulation is essential in digital content creation, but current diffusion-based methods lack the precision and flexibility of traditional tools. In this work, we introduce BlobCtrl, a framework that unifies element-level generation and editing using a probabilistic blob-based representation. By employing blobs as visual primitives, our approach effectively decouples and represents spatial location, semantic content, and identity information, enabling precise element-level manipulation. Our key contributions include: 1) a dual-branch diffusion architecture with hierarchical feature fusion for seamless foreground-background integration; 2) a self-supervised training paradigm with tailored data augmentation and score functions; and 3) controllable dropout strategies to balance fidelity and diversity. To support further research, we introduce BlobData for large-scale training and BlobBench for systematic evaluation. Experiments show that BlobCtrl excels in various element-level manipulation tasks while maintaining computational efficiency, offering a practical solution for precise and flexible visual content creation. Project page: https://liyaowei-stu.github.io/project/BlobCtrl/
comment: Project Webpage: https://liyaowei-stu.github.io/project/BlobCtrl/
☆ AugMapNet: Improving Spatial Latent Structure via BEV Grid Augmentation for Enhanced Vectorized Online HD Map Construction
Autonomous driving requires an understanding of the infrastructure elements, such as lanes and crosswalks. To navigate safely, this understanding must be derived from sensor data in real-time and needs to be represented in vectorized form. Learned Bird's-Eye View (BEV) encoders are commonly used to combine a set of camera images from multiple views into one joint latent BEV grid. Traditionally, from this latent space, an intermediate raster map is predicted, providing dense spatial supervision but requiring post-processing into the desired vectorized form. More recent models directly derive infrastructure elements as polylines using vectorized map decoders, providing instance-level information. Our approach, Augmentation Map Network (AugMapNet), proposes latent BEV grid augmentation, a novel technique that significantly enhances the latent BEV representation. AugMapNet combines vector decoding and dense spatial supervision more effectively than existing architectures while remaining as straightforward to integrate and as generic as auxiliary supervision. Experiments on nuScenes and Argoverse2 datasets demonstrate significant improvements in vectorized map prediction performance up to 13.3% over the StreamMapNet baseline on 60m range and greater improvements on larger ranges. We confirm transferability by applying our method to another baseline and find similar improvements. A detailed analysis of the latent BEV grid confirms a more structured latent space of AugMapNet and shows the value of our novel concept beyond pure performance improvement. The code will be released soon.
☆ xLSTM 7B: A Recurrent LLM for Fast and Efficient Inference
Recent breakthroughs in solving reasoning, math and coding problems with Large Language Models (LLMs) have been enabled by investing substantial computation budgets at inference time. Therefore, inference speed is one of the most critical properties of LLM architectures, and there is a growing need for LLMs that are efficient and fast at inference. Recently, LLMs built on the xLSTM architecture have emerged as a powerful alternative to Transformers, offering linear compute scaling with sequence length and constant memory usage, both highly desirable properties for efficient inference. However, such xLSTM-based LLMs have yet to be scaled to larger models and assessed and compared with respect to inference speed and efficiency. In this work, we introduce xLSTM 7B, a 7-billion-parameter LLM that combines xLSTM's architectural benefits with targeted optimizations for fast and efficient inference. Our experiments demonstrate that xLSTM 7B achieves performance on downstream tasks comparable to other similar-sized LLMs, while providing significantly faster inference speeds and greater efficiency compared to Llama- and Mamba-based LLMs. These results establish xLSTM 7B as the fastest and most efficient 7B LLM, offering a solution for tasks that require large amounts of test-time computation. Our work highlights xLSTM's potential as a foundational architecture for methods building on heavy use of LLM inference. Our model weights, model code and training code are open-source.
comment: Code available at: https://github.com/NX-AI/xlstm and https://github.com/NX-AI/xlstm-jax
☆ Securing Virtual Reality Experiences: Unveiling and Tackling Cybersickness Attacks with Explainable AI
The synergy between virtual reality (VR) and artificial intelligence (AI), specifically deep learning (DL)-based cybersickness detection models, has ushered in unprecedented advancements in immersive experiences by automatically detecting cybersickness severity and adaptively various mitigation techniques, offering a smooth and comfortable VR experience. While this DL-enabled cybersickness detection method provides promising solutions for enhancing user experiences, it also introduces new risks since these models are vulnerable to adversarial attacks; a small perturbation of the input data that is visually undetectable to human observers can fool the cybersickness detection model and trigger unexpected mitigation, thus disrupting user immersive experiences (UIX) and even posing safety risks. In this paper, we present a new type of VR attack, i.e., a cybersickness attack, which successfully stops the triggering of cybersickness mitigation by fooling DL-based cybersickness detection models and dramatically hinders the UIX. Next, we propose a novel explainable artificial intelligence (XAI)-guided cybersickness attack detection framework to detect such attacks in VR to ensure UIX and a comfortable VR experience. We evaluate the proposed attack and the detection framework using two state-of-the-art open-source VR cybersickness datasets: Simulation 2021 and Gameplay dataset. Finally, to verify the effectiveness of our proposed method, we implement the attack and the XAI-based detection using a testbed with a custom-built VR roller coaster simulation with an HTC Vive Pro Eye headset and perform a user study. Our study shows that such an attack can dramatically hinder the UIX. However, our proposed XAI-guided cybersickness attack detection can successfully detect cybersickness attacks and trigger the proper mitigation, effectively reducing VR cybersickness.
comment: This work has been submitted to the IEEE for possible publication
☆ FLEX: A Framework for Learning Robot-Agnostic Force-based Skills Involving Sustained Contact Object Manipulation ICRA-2025
Learning to manipulate objects efficiently, particularly those involving sustained contact (e.g., pushing, sliding) and articulated parts (e.g., drawers, doors), presents significant challenges. Traditional methods, such as robot-centric reinforcement learning (RL), imitation learning, and hybrid techniques, require massive training and often struggle to generalize across different objects and robot platforms. We propose a novel framework for learning object-centric manipulation policies in force space, decoupling the robot from the object. By directly applying forces to selected regions of the object, our method simplifies the action space, reduces unnecessary exploration, and decreases simulation overhead. This approach, trained in simulation on a small set of representative objects, captures object dynamics -- such as joint configurations -- allowing policies to generalize effectively to new, unseen objects. Decoupling these policies from robot-specific dynamics enables direct transfer to different robotic platforms (e.g., Kinova, Panda, UR5) without retraining. Our evaluations demonstrate that the method significantly outperforms baselines, achieving over an order of magnitude improvement in training efficiency compared to other state-of-the-art methods. Additionally, operating in force space enhances policy transferability across diverse robot platforms and object types. We further showcase the applicability of our method in a real-world robotic setting. For supplementary materials and videos, please visit: https://tufts-ai-robotics-group.github.io/FLEX/
comment: Accepted at IEEE-ICRA-2025
☆ A Comprehensive Survey on Multi-Agent Cooperative Decision-Making: Scenarios, Approaches, Challenges and Perspectives
With the rapid development of artificial intelligence, intelligent decision-making techniques have gradually surpassed human levels in various human-machine competitions, especially in complex multi-agent cooperative task scenarios. Multi-agent cooperative decision-making involves multiple agents working together to complete established tasks and achieve specific objectives. These techniques are widely applicable in real-world scenarios such as autonomous driving, drone navigation, disaster rescue, and simulated military confrontations. This paper begins with a comprehensive survey of the leading simulation environments and platforms used for multi-agent cooperative decision-making. Specifically, we provide an in-depth analysis for these simulation environments from various perspectives, including task formats, reward allocation, and the underlying technologies employed. Subsequently, we provide a comprehensive overview of the mainstream intelligent decision-making approaches, algorithms and models for multi-agent systems (MAS). Theseapproaches can be broadly categorized into five types: rule-based (primarily fuzzy logic), game theory-based, evolutionary algorithms-based, deep multi-agent reinforcement learning (MARL)-based, and large language models(LLMs)reasoning-based. Given the significant advantages of MARL andLLMs-baseddecision-making methods over the traditional rule, game theory, and evolutionary algorithms, this paper focuses on these multi-agent methods utilizing MARL and LLMs-based techniques. We provide an in-depth discussion of these approaches, highlighting their methodology taxonomies, advantages, and drawbacks. Further, several prominent research directions in the future and potential challenges of multi-agent cooperative decision-making are also detailed.
comment: 54 pages, 24 figures
☆ Reward Adaptation Via Q-Manipulation
In this paper, we propose a new solution to reward adaptation (RA), the problem where the learning agent adapts to a target reward function based on one or multiple existing behaviors learned a priori under the same domain dynamics but different reward functions. Learning the target behavior from scratch is possible but often inefficient given the available source behaviors. Our work represents a new approach to RA via the manipulation of Q-functions. Assuming that the target reward function is a known function of the source reward functions, our approach to RA computes bounds of the Q function. We introduce an iterative process to tighten the bounds, similar to value iteration. This enables action pruning in the target domain before learning even starts. We refer to such a method as Q-Manipulation (Q-M). We formally prove that our pruning strategy does not affect the optimality of the returned policy while empirically show that it improves the sample complexity. Q-M is evaluated in a variety of synthetic and simulation domains to demonstrate its effectiveness, generalizability, and practicality.
☆ Fed-Joint: Joint Modeling of Nonlinear Degradation Signals and Failure Events for Remaining Useful Life Prediction using Federated Learning
Many failure mechanisms of machinery are closely related to the behavior of condition monitoring (CM) signals. To achieve a cost-effective preventive maintenance strategy, accurate remaining useful life (RUL) prediction based on the signals is of paramount importance. However, the CM signals are often recorded at different factories and production lines, with limited amounts of data. Unfortunately, these datasets have rarely been shared between the sites due to data confidentiality and ownership issues, a lack of computing and storage power, and high communication costs associated with data transfer between sites and a data center. Another challenge in real applications is that the CM signals are often not explicitly specified \textit{a priori}, meaning that existing methods, which often usually a parametric form, may not be applicable. To address these challenges, we propose a new prognostic framework for RUL prediction using the joint modeling of nonlinear degradation signals and time-to-failure data within a federated learning scheme. The proposed method constructs a nonparametric degradation model using a federated multi-output Gaussian process and then employs a federated survival model to predict failure times and probabilities for in-service machinery. The superiority of the proposed method over other alternatives is demonstrated through comprehensive simulation studies and a case study using turbofan engine degradation signal data that include run-to-failure events.
☆ Using the Tools of Cognitive Science to Understand Large Language Models at Different Levels of Analysis
Modern artificial intelligence systems, such as large language models, are increasingly powerful but also increasingly hard to understand. Recognizing this problem as analogous to the historical difficulties in understanding the human mind, we argue that methods developed in cognitive science can be useful for understanding large language models. We propose a framework for applying these methods based on Marr's three levels of analysis. By revisiting established cognitive science techniques relevant to each level and illustrating their potential to yield insights into the behavior and internal organization of large language models, we aim to provide a toolkit for making sense of these new kinds of minds.
☆ MicroVQA: A Multimodal Reasoning Benchmark for Microscopy-Based Scientific Research CVPR 2025
Scientific research demands sophisticated reasoning over multimodal data, a challenge especially prevalent in biology. Despite recent advances in multimodal large language models (MLLMs) for AI-assisted research, existing multimodal reasoning benchmarks only target up to college-level difficulty, while research-level benchmarks emphasize lower-level perception, falling short of the complex multimodal reasoning needed for scientific discovery. To bridge this gap, we introduce MicroVQA, a visual-question answering (VQA) benchmark designed to assess three reasoning capabilities vital in research workflows: expert image understanding, hypothesis generation, and experiment proposal. MicroVQA consists of 1,042 multiple-choice questions (MCQs) curated by biology experts across diverse microscopy modalities, ensuring VQA samples represent real scientific practice. In constructing the benchmark, we find that standard MCQ generation methods induce language shortcuts, motivating a new two-stage pipeline: an optimized LLM prompt structures question-answer pairs into MCQs; then, an agent-based `RefineBot' updates them to remove shortcuts. Benchmarking on state-of-the-art MLLMs reveal a peak performance of 53\%; models with smaller LLMs only slightly underperform top models, suggesting that language-based reasoning is less challenging than multimodal reasoning; and tuning with scientific articles enhances performance. Expert analysis of chain-of-thought responses shows that perception errors are the most frequent, followed by knowledge errors and then overgeneralization errors. These insights highlight the challenges in multimodal scientific reasoning, showing MicroVQA is a valuable resource advancing AI-driven biomedical research. MicroVQA is available at https://huggingface.co/datasets/jmhb/microvqa, and project page at https://jmhb0.github.io/microvqa.
comment: CVPR 2025 (Conference on Computer Vision and Pattern Recognition) Project page at https://jmhb0.github.io/microvqa Benchmark at https://huggingface.co/datasets/jmhb/microvqa
☆ Scale Efficient Training for Large Datasets CVPR2025
The rapid growth of dataset scales has been a key driver in advancing deep learning research. However, as dataset scale increases, the training process becomes increasingly inefficient due to the presence of low-value samples, including excessive redundant samples, overly challenging samples, and inefficient easy samples that contribute little to model improvement.To address this challenge, we propose Scale Efficient Training (SeTa) for large datasets, a dynamic sample pruning approach that losslessly reduces training time. To remove low-value samples, SeTa first performs random pruning to eliminate redundant samples, then clusters the remaining samples according to their learning difficulty measured by loss. Building upon this clustering, a sliding window strategy is employed to progressively remove both overly challenging and inefficient easy clusters following an easy-to-hard curriculum.We conduct extensive experiments on large-scale synthetic datasets, including ToCa, SS1M, and ST+MJ, each containing over 3 million samples.SeTa reduces training costs by up to 50\% while maintaining or improving performance, with minimal degradation even at 70\% cost reduction. Furthermore, experiments on various scale real datasets across various backbones (CNNs, Transformers, and Mambas) and diverse tasks (instruction tuning, multi-view stereo, geo-localization, composed image retrieval, referring image segmentation) demonstrate the powerful effectiveness and universality of our approach. Code is available at https://github.com/mrazhou/SeTa.
comment: Accepted by CVPR2025
Cream of the Crop: Harvesting Rich, Scalable and Transferable Multi-Modal Data for Instruction Fine-Tuning
The hypothesis that pretrained large language models (LLMs) necessitate only minimal supervision during the fine-tuning (SFT) stage (Zhou et al., 2024) has been substantiated by recent advancements in data curation and selection research. However, their stability and generalizability are compromised due to the vulnerability to experimental setups and validation protocols, falling short of surpassing random sampling (Diddee & Ippolito, 2024; Xia et al., 2024b). Built upon LLMs, multi-modal LLMs (MLLMs), combined with the sheer token volume and heightened heterogeneity of data sources, amplify both the significance and complexity of data selection. To harvest multi-modal instructional data in a robust and efficient manner, we re-define the granularity of the quality metric by decomposing it into 14 vision-language-related capabilities, and introduce multi-modal rich scorers to evaluate the capabilities of each data candidate. To promote diversity, in light of the inherent objective of the alignment stage, we take interaction style as diversity indicator and use a multi-modal rich styler to identify data instruction patterns. In doing so, our multi-modal rich scorers and styler (mmSSR) guarantee that high-scoring information is conveyed to users in diversified forms. Free from embedding-based clustering or greedy sampling, mmSSR efficiently scales to millions of data with varying budget constraints, supports customization for general or specific capability acquisition, and facilitates training-free generalization to new domains for curation. Across 10+ experimental settings, validated by 14 multi-modal benchmarks, we demonstrate consistent improvements over random sampling, baseline strategies and state-of-the-art selection methods, achieving 99.1% of full performance with only 30% of the 2.6M data.
comment: update comparison with sota and analysis
☆ TimeZero: Temporal Video Grounding with Reasoning-Guided LVLM
We introduce TimeZero, a reasoning-guided LVLM designed for the temporal video grounding (TVG) task. This task requires precisely localizing relevant video segments within long videos based on a given language query. TimeZero tackles this challenge by extending the inference process, enabling the model to reason about video-language relationships solely through reinforcement learning. To evaluate the effectiveness of TimeZero, we conduct experiments on two benchmarks, where TimeZero achieves state-of-the-art performance on Charades-STA. Code is available at https://github.com/www-Ye/TimeZero.
comment: Code: https://github.com/www-Ye/TimeZero
☆ Sightation Counts: Leveraging Sighted User Feedback in Building a BLV-aligned Dataset of Diagram Descriptions
Often, the needs and visual abilities differ between the annotator group and the end user group. Generating detailed diagram descriptions for blind and low-vision (BLV) users is one such challenging domain. Sighted annotators could describe visuals with ease, but existing studies have shown that direct generations by them are costly, bias-prone, and somewhat lacking by BLV standards. In this study, we ask sighted individuals to assess -- rather than produce -- diagram descriptions generated by vision-language models (VLM) that have been guided with latent supervision via a multi-pass inference. The sighted assessments prove effective and useful to professional educators who are themselves BLV and teach visually impaired learners. We release Sightation, a collection of diagram description datasets spanning 5k diagrams and 137k samples for completion, preference, retrieval, question answering, and reasoning training purposes and demonstrate their fine-tuning potential in various downstream tasks.
comment: 37 pages, 10 figures, 21 tables
☆ Mitigating Visual Forgetting via Take-along Visual Conditioning for Multi-modal Long CoT Reasoning
Recent advancements in Large Language Models (LLMs) have demonstrated enhanced reasoning capabilities, evolving from Chain-of-Thought (CoT) prompting to advanced, product-oriented solutions like OpenAI o1. During our re-implementation of this model, we noticed that in multimodal tasks requiring visual input (e.g., geometry problems), Multimodal LLMs (MLLMs) struggle to maintain focus on the visual information, in other words, MLLMs suffer from a gradual decline in attention to visual information as reasoning progresses, causing text-over-relied outputs. To investigate this, we ablate image inputs during long-chain reasoning. Concretely, we truncate the reasoning process midway, then re-complete the reasoning process with the input image removed. We observe only a ~2% accuracy drop on MathVista's test-hard subset, revealing the model's textual outputs dominate the following reasoning process. Motivated by this, we propose Take-along Visual Conditioning (TVC), a strategy that shifts image input to critical reasoning stages and compresses redundant visual tokens via dynamic pruning. This methodology helps the model retain attention to the visual components throughout the reasoning. Our approach achieves state-of-the-art performance on average across five mathematical reasoning benchmarks (+3.4% vs previous sota), demonstrating the effectiveness of TVC in enhancing multimodal reasoning systems.
comment: The project page is available at https://sun-hailong.github.io/projects/TVC
☆ Scalable Runtime Architecture for Data-driven, Hybrid HPC and ML Workflow Applications
Hybrid workflows combining traditional HPC and novel ML methodologies are transforming scientific computing. This paper presents the architecture and implementation of a scalable runtime system that extends RADICAL-Pilot with service-based execution to support AI-out-HPC workflows. Our runtime system enables distributed ML capabilities, efficient resource management, and seamless HPC/ML coupling across local and remote platforms. Preliminary experimental results show that our approach manages concurrent execution of ML models across local and remote HPC/cloud resources with minimal architectural overheads. This lays the foundation for prototyping three representative data-driven workflow applications and executing them at scale on leadership-class HPC platforms.
☆ Valid Text-to-SQL Generation with Unification-based DeepStochLog
Large language models have been used to translate natural language questions to SQL queries. Without hard constraints on syntax and database schema, they occasionally produce invalid queries that are not executable. These failures limit the usage of these systems in real-life scenarios. We propose a neurosymbolic framework that imposes SQL syntax and schema constraints with unification-based definite clause grammars and thus guarantees the generation of valid queries. Our framework also builds a bi-directional interface to language models to leverage their natural language understanding abilities. The evaluation results on a subset of SQL grammars show that all our output queries are valid. This work is the first step towards extending language models with unification-based grammars. We demonstrate this extension enhances the validity, execution accuracy, and ground truth alignment of the underlying language model by a large margin. Our code is available at https://github.com/ML-KULeuven/deepstochlog-lm.
☆ Reliable and Efficient Amortized Model-based Evaluation
Comprehensive evaluations of language models (LM) during both development and deployment phases are necessary because these models possess numerous capabilities (e.g., mathematical reasoning, legal support, or medical diagnostic) as well as safety risks (e.g., racial bias, toxicity, or misinformation). The average score across a wide range of benchmarks provides a signal that helps guide the use of these LMs in practice. Currently, holistic evaluations are costly due to the large volume of benchmark questions, making frequent evaluations impractical. A popular attempt to lower the cost is to compute the average score on a subset of the benchmark. This approach, unfortunately, often renders an unreliable measure of LM performance because the average score is often confounded with the difficulty of the questions in the benchmark subset. Item response theory (IRT) was designed to address this challenge, providing a reliable measurement by careful controlling for question difficulty. Unfortunately, question difficulty is expensive to estimate. Facing this challenge, we train a model that predicts question difficulty from its content, enabling a reliable measurement at a fraction of the cost. In addition, we leverage this difficulty predictor to further improve the evaluation efficiency through training a question generator given a difficulty level. This question generator is essential in adaptive testing, where, instead of using a random subset of the benchmark questions, informative questions are adaptively chosen based on the current estimation of LLM performance. Experiments on 22 common natural language benchmarks and 172 LMs show that this approach is more reliable and efficient compared to current common practice.
☆ LEAVS: An LLM-based Labeler for Abdominal CT Supervision
Extracting structured labels from radiology reports has been employed to create vision models to simultaneously detect several types of abnormalities. However, existing works focus mainly on the chest region. Few works have been investigated on abdominal radiology reports due to more complex anatomy and a wider range of pathologies in the abdomen. We propose LEAVS (Large language model Extractor for Abdominal Vision Supervision). This labeler can annotate the certainty of presence and the urgency of seven types of abnormalities for nine abdominal organs on CT radiology reports. To ensure broad coverage, we chose abnormalities that encompass most of the finding types from CT reports. Our approach employs a specialized chain-of-thought prompting strategy for a locally-run LLM using sentence extraction and multiple-choice questions in a tree-based decision system. We demonstrate that the LLM can extract several abnormality types across abdominal organs with an average F1 score of 0.89, significantly outperforming competing labelers and humans. Additionally, we show that extraction of urgency labels achieved performance comparable to human annotations. Finally, we demonstrate that the abnormality labels contain valuable information for training a single vision model that classifies several organs as normal or abnormal. We release our code and structured annotations for a public CT dataset containing over 1,000 CT volumes.
☆ RainScaleGAN: a Conditional Generative Adversarial Network for Rainfall Downscaling
To this day, accurately simulating local-scale precipitation and reliably reproducing its distribution remains a challenging task. The limited horizontal resolution of Global Climate Models is among the primary factors undermining their skill in this context. The physical mechanisms driving the onset and development of precipitation, especially in extreme events, operate at spatio-temporal scales smaller than those numerically resolved, thus struggling to be captured accurately. In order to circumvent this limitation, several downscaling approaches have been developed over the last decades to address the discrepancy between the spatial resolution of models output and the resolution required by local-scale applications. In this paper, we introduce RainScaleGAN, a conditional deep convolutional Generative Adversarial Network (GAN) for precipitation downscaling. GANs have been effectively used in image super-resolution, an approach highly relevant for downscaling tasks. RainScaleGAN's capabilities are tested in a perfect-model setup, where the spatial resolution of a precipitation dataset is artificially degraded from 0.25$^{\circ}\times$0.25$^{\circ}$ to 2$^{\circ}\times$2$^\circ$, and RainScaleGAN is used to restore it. The developed model outperforms one of the leading precipitation downscaling method found in the literature. RainScaleGAN not only generates a synthetic dataset featuring plausible high-resolution spatial patterns and intensities, but also produces a precipitation distribution with statistics closely mirroring those of the ground-truth dataset. Given that RainScaleGAN's approach is agnostic with respect to the underlying physics, the method has the potential to be applied to other physical variables such as surface winds or temperature.
comment: 38 pages, 16 figures
☆ Generative AI for Software Architecture. Applications, Trends, Challenges, and Future Directions
Context: Generative Artificial Intelligence (GenAI) is transforming much of software development, yet its application in software architecture is still in its infancy, and no prior study has systematically addressed the topic. Aim: We aim to systematically synthesize the use, rationale, contexts, usability, and future challenges of GenAI in software architecture. Method: We performed a multivocal literature review (MLR), analyzing peer-reviewed and gray literature, identifying current practices, models, adoption contexts, and reported challenges, extracting themes via open coding. Results: Our review identified significant adoption of GenAI for architectural decision support and architectural reconstruction. OpenAI GPT models are predominantly applied, and there is consistent use of techniques such as few-shot prompting and retrieved-augmented generation (RAG). GenAI has been applied mostly to initial stages of the Software Development Life Cycle (SDLC), such as Requirements-to-Architecture and Architecture-to-Code. Monolithic and microservice architectures were the dominant targets. However, rigorous testing of GenAI outputs was typically missing from the studies. Among the most frequent challenges are model precision, hallucinations, ethical aspects, privacy issues, lack of architecture-specific datasets, and the absence of sound evaluation frameworks. Conclusions: GenAI shows significant potential in software design, but several challenges remain on its path to greater adoption. Research efforts should target designing general evaluation methodologies, handling ethics and precision, increasing transparency and explainability, and promoting architecture-specific datasets and benchmarks to bridge the gap between theoretical possibilities and practical use.
☆ Integrating AI for Human-Centric Breast Cancer Diagnostics: A Multi-Scale and Multi-View Swin Transformer Framework
Despite advancements in Computer-Aided Diagnosis (CAD) systems, breast cancer remains one of the leading causes of cancer-related deaths among women worldwide. Recent breakthroughs in Artificial Intelligence (AI) have shown significant promise in development of advanced Deep Learning (DL) architectures for breast cancer diagnosis through mammography. In this context, the paper focuses on the integration of AI within a Human-Centric workflow to enhance breast cancer diagnostics. Key challenges are, however, largely overlooked such as reliance on detailed tumor annotations and susceptibility to missing views, particularly during test time. To address these issues, we propose a hybrid, multi-scale and multi-view Swin Transformer-based framework (MSMV-Swin) that enhances diagnostic robustness and accuracy. The proposed MSMV-Swin framework is designed to work as a decision-support tool, helping radiologists analyze multi-view mammograms more effectively. More specifically, the MSMV-Swin framework leverages the Segment Anything Model (SAM) to isolate the breast lobe, reducing background noise and enabling comprehensive feature extraction. The multi-scale nature of the proposed MSMV-Swin framework accounts for tumor-specific regions as well as the spatial characteristics of tissues surrounding the tumor, capturing both localized and contextual information. The integration of contextual and localized data ensures that MSMV-Swin's outputs align with the way radiologists interpret mammograms, fostering better human-AI interaction and trust. A hybrid fusion structure is then designed to ensure robustness against missing views, a common occurrence in clinical practice when only a single mammogram view is available.
☆ Computation Mechanism Behind LLM Position Generalization
Most written natural languages are composed of sequences of words and sentences. Similar to humans, large language models (LLMs) exhibit flexibility in handling textual positions - a phenomenon we term position generalization. They can understand texts with position perturbations and generalize to longer texts than those encountered during training with the latest techniques. These phenomena suggest that LLMs handle positions tolerantly, but how LLMs computationally process positional relevance remains largely unexplored. This work connects the linguistic phenomenon with LLMs' computational mechanisms. We show how LLMs enforce certain computational mechanisms for the aforementioned tolerance in position perturbations. Despite the complex design of the self-attention mechanism, this work reveals that LLMs learn a counterintuitive disentanglement of attention logits. Their values show a 0.959 linear correlation with an approximation of the arithmetic sum of positional relevance and semantic importance. Furthermore, we identify a prevalent pattern in intermediate features, which we prove theoretically enables this effect. The pattern, which is different from how randomly initialized parameters would behave, suggests that it is a learned behavior rather than a natural result of the model architecture. Based on these findings, we provide computational explanations and criteria for LLMs' position flexibilities. This work takes a pioneering step in linking position generalization with modern LLMs' internal mechanisms.
comment: 8 pages
☆ A Survey on Transformer Context Extension: Approaches and Evaluation
Large language models (LLMs) based on Transformer have been widely applied in the filed of natural language processing (NLP), demonstrating strong performance, particularly in handling short text tasks. However, when it comes to long context scenarios, the performance of LLMs degrades due to some challenges. To alleviate this phenomenon, there is a number of work proposed recently. In this survey, we first list the challenges of applying pre-trained LLMs to process long contexts. Then systematically review the approaches related to long context and propose our taxonomy categorizing them into four main types: positional encoding, context compression, retrieval augmented, and attention pattern. In addition to the approaches, we focus on the evaluation of long context, organizing relevant data, tasks, and metrics based on existing long context benchmarks. Finally, we summarize unresolved issues in the long context domain and put forward our views on future developments.
comment: preprint
☆ $φ$-Decoding: Adaptive Foresight Sampling for Balanced Inference-Time Exploration and Exploitation
Inference-time optimization scales computation to derive deliberate reasoning steps for effective performance. While previous search-based strategies address the short-sightedness of auto-regressive generation, the vast search space leads to excessive exploration and insufficient exploitation. To strike an efficient balance to derive the optimal step, we frame the decoding strategy as foresight sampling, leveraging simulated future steps to obtain globally optimal step estimation. Built on it, we propose a novel decoding strategy, named $\phi$-Decoding. To provide a precise and expressive estimation of step value, $\phi$-Decoding approximates two distributions via foresight and clustering. Sampling from the joint distribution, the optimal steps can be selected for exploitation. To support adaptive computation allocation, we propose in-width and in-depth pruning strategies, featuring a light-weight solution to achieve inference efficiency. Extensive experiments across seven benchmarks show $\phi$-Decoding outperforms strong baselines in both performance and efficiency. Additional analysis demonstrates its generalization across various LLMs and scalability across a wide range of computing budgets. The code will be released at https://github.com/xufangzhi/phi-Decoding, and the open-source PyPI package is coming soon.
comment: 13 pages, 6 figures
☆ Goal2Story: A Multi-Agent Fleet based on Privately Enabled sLLMs for Impacting Mapping on Requirements Elicitation
As requirements drift with rapid iterations, agile development becomes the dominant paradigm. Goal-driven Requirements Elicitation (RE) is a pivotal yet challenging task in agile project development due to its heavy tangling with adaptive planning and efficient collaboration. Recently, AI agents have shown promising ability in supporting requirements analysis by saving significant time and effort for stakeholders. However, current research mainly focuses on functional RE, and research works have not been reported bridging the long journey from goal to user stories. Moreover, considering the cost of LLM facilities and the need for data and idea protection, privately hosted small-sized LLM should be further utilized in RE. To address these challenges, we propose Goal2Story, a multi-agent fleet that adopts the Impact Mapping (IM) framework while merely using cost-effective sLLMs for goal-driven RE. Moreover, we introduce a StorySeek dataset that contains over 1,000 user stories (USs) with corresponding goals and project context information, as well as the semi-automatic dataset construction method. For evaluation, we proposed two metrics: Factuality Hit Rate (FHR) to measure consistency between the generated USs with the dataset and Quality And Consistency Evaluation (QuACE) to evaluate the quality of the generated USs. Experimental results demonstrate that Goal2Story outperforms the baseline performance of the Super-Agent adopting powerful LLMs, while also showcasing the performance improvements in key metrics brought by CoT and Agent Profile to Goal2Story, as well as its exploration in identifying latent needs.
☆ Artificial Intelligence-Driven Prognostic Classification of COVID-19 Using Chest X-rays: A Deep Learning Approach
Background: The COVID-19 pandemic has overwhelmed healthcare systems, emphasizing the need for AI-driven tools to assist in rapid and accurate patient prognosis. Chest X-ray imaging is a widely available diagnostic tool, but existing methods for prognosis classification lack scalability and efficiency. Objective: This study presents a high-accuracy deep learning model for classifying COVID-19 severity (Mild, Moderate, and Severe) using Chest X-ray images, developed on Microsoft Azure Custom Vision. Methods: Using a dataset of 1,103 confirmed COVID-19 X-ray images from AIforCOVID, we trained and validated a deep learning model leveraging Convolutional Neural Networks (CNNs). The model was evaluated on an unseen dataset to measure accuracy, precision, and recall. Results: Our model achieved an average accuracy of 97%, with specificity of 99%, sensitivity of 87%, and an F1-score of 93.11%. When classifying COVID-19 severity, the model achieved accuracies of 89.03% (Mild), 95.77% (Moderate), and 81.16% (Severe). These results demonstrate the model's potential for real-world clinical applications, aiding in faster decision-making and improved resource allocation. Conclusion: AI-driven prognosis classification using deep learning can significantly enhance COVID-19 patient management, enabling early intervention and efficient triaging. Our study provides a scalable, high-accuracy AI framework for integrating deep learning into routine clinical workflows. Future work should focus on expanding datasets, external validation, and regulatory compliance to facilitate clinical adoption.
comment: 27 pages, 6 figures, 10 tables
☆ Knowledge-Aware Iterative Retrieval for Multi-Agent Systems
We introduce a novel large language model (LLM)-driven agent framework, which iteratively refines queries and filters contextual evidence by leveraging dynamically evolving knowledge. A defining feature of the system is its decoupling of external sources from an internal knowledge cache that is progressively updated to guide both query generation and evidence selection. This design mitigates bias-reinforcement loops and enables dynamic, trackable search exploration paths, thereby optimizing the trade-off between exploring diverse information and maintaining accuracy through autonomous agent decision-making. Our approach is evaluated on a broad range of open-domain question answering benchmarks, including multi-step tasks that mirror real-world scenarios where integrating information from multiple sources is critical, especially given the vulnerabilities of LLMs that lack explicit reasoning or planning capabilities. The results show that the proposed system not only outperforms single-step baselines regardless of task difficulty but also, compared to conventional iterative retrieval methods, demonstrates pronounced advantages in complex tasks through precise evidence-based reasoning and enhanced efficiency. The proposed system supports both competitive and collaborative sharing of updated context, enabling multi-agent extension. The benefits of multi-agent configurations become especially prominent as task difficulty increases. The number of convergence steps scales with task difficulty, suggesting cost-effective scalability.
☆ Robust Decision-Making Via Free Energy Minimization
Despite their groundbreaking performance, state-of-the-art autonomous agents can misbehave when training and environmental conditions become inconsistent, with minor mismatches leading to undesirable behaviors or even catastrophic failures. Robustness towards these training/environment ambiguities is a core requirement for intelligent agents and its fulfillment is a long-standing challenge when deploying agents in the real world. Here, departing from mainstream views seeking robustness through training, we introduce DR-FREE, a free energy model that installs this core property by design. It directly wires robustness into the agent decision-making mechanisms via free energy minimization. By combining a robust extension of the free energy principle with a novel resolution engine, DR-FREE returns a policy that is optimal-yet-robust against ambiguity. Moreover, for the first time, it reveals the mechanistic role of ambiguity on optimal decisions and requisite Bayesian belief updating. We evaluate DR-FREE on an experimental testbed involving real rovers navigating an ambiguous environment filled with obstacles. Across all the experiments, DR-FREE enables robots to successfully navigate towards their goal even when, in contrast, standard free energy minimizing agents that do not use DR-FREE fail. In short, DR-FREE can tackle scenarios that elude previous methods: this milestone may inspire both deployment in multi-agent settings and, at a perhaps deeper level, the quest for a biologically plausible explanation of how natural agents - with little or no training - survive in capricious environments.
comment: Contains main text and supplementary information
☆ Can Language Models Follow Multiple Turns of Entangled Instructions?
Despite significant achievements in improving the instruction-following capabilities of large language models (LLMs), the ability to process multiple potentially entangled or conflicting instructions remains a considerable challenge. Real-world scenarios often require consistency across multiple instructions over time, such as secret privacy, personal preferences, and prioritization, which demand sophisticated abilities to integrate multiple turns and carefully balance competing objectives when instructions intersect or conflict. This work presents a systematic investigation of LLMs' capabilities in handling multiple turns of instructions, covering three levels of difficulty: (1) retrieving information from instructions, (2) tracking and reasoning across turns, and (3) resolving conflicts among instructions. We construct MultiTurnInstruct with around 1.1K high-quality multi-turn conversations through the human-in-the-loop approach and result in nine capability categories, including statics and dynamics, reasoning, and multitasking. Our finding reveals an intriguing trade-off between different capabilities. While GPT models demonstrate superior memorization, they show reduced effectiveness in privacy-protection tasks requiring selective information withholding. Larger models exhibit stronger reasoning capabilities but still struggle with resolving conflicting instructions. Importantly, these performance gaps cannot be attributed solely to information loss, as models demonstrate strong BLEU scores on memorization tasks but their attention mechanisms fail to integrate multiple related instructions effectively. These findings highlight critical areas for improvement in complex real-world tasks involving multi-turn instructions.
comment: 8 pages
☆ A General Adaptive Dual-level Weighting Mechanism for Remote Sensing Pansharpening CVPR
Currently, deep learning-based methods for remote sensing pansharpening have advanced rapidly. However, many existing methods struggle to fully leverage feature heterogeneity and redundancy, thereby limiting their effectiveness. We use the covariance matrix to model the feature heterogeneity and redundancy and propose Correlation-Aware Covariance Weighting (CACW) to adjust them. CACW captures these correlations through the covariance matrix, which is then processed by a nonlinear function to generate weights for adjustment. Building upon CACW, we introduce a general adaptive dual-level weighting mechanism (ADWM) to address these challenges from two key perspectives, enhancing a wide range of existing deep-learning methods. First, Intra-Feature Weighting (IFW) evaluates correlations among channels within each feature to reduce redundancy and enhance unique information. Second, Cross-Feature Weighting (CFW) adjusts contributions across layers based on inter-layer correlations, refining the final output. Extensive experiments demonstrate the superior performance of ADWM compared to recent state-of-the-art (SOTA) methods. Furthermore, we validate the effectiveness of our approach through generality experiments, redundancy visualization, comparison experiments, key variables and complexity analysis, and ablation studies. Our code is available at https://github.com/Jie-1203/ADWM.
comment: This paper is accepted at the CVPR Conference on Computer Vision and Pattern Recognition 2025
☆ MedLoRD: A Medical Low-Resource Diffusion Model for High-Resolution 3D CT Image Synthesis
Advancements in AI for medical imaging offer significant potential. However, their applications are constrained by the limited availability of data and the reluctance of medical centers to share it due to patient privacy concerns. Generative models present a promising solution by creating synthetic data as a substitute for real patient data. However, medical images are typically high-dimensional, and current state-of-the-art methods are often impractical for computational resource-constrained healthcare environments. These models rely on data sub-sampling, raising doubts about their feasibility and real-world applicability. Furthermore, many of these models are evaluated on quantitative metrics that alone can be misleading in assessing the image quality and clinical meaningfulness of the generated images. To address this, we introduce MedLoRD, a generative diffusion model designed for computational resource-constrained environments. MedLoRD is capable of generating high-dimensional medical volumes with resolutions up to 512$\times$512$\times$256, utilizing GPUs with only 24GB VRAM, which are commonly found in standard desktop workstations. MedLoRD is evaluated across multiple modalities, including Coronary Computed Tomography Angiography and Lung Computed Tomography datasets. Extensive evaluations through radiological evaluation, relative regional volume analysis, adherence to conditional masks, and downstream tasks show that MedLoRD generates high-fidelity images closely adhering to segmentation mask conditions, surpassing the capabilities of current state-of-the-art generative models for medical image synthesis in computational resource-constrained environments.
☆ Improving Complex Reasoning with Dynamic Prompt Corruption: A soft prompt Optimization Approach ICLR 2025
Prompt-tuning (PT) for large language models (LLMs) can facilitate the performance on various conventional NLP tasks with significantly fewer trainable parameters. However, our investigation reveals that PT provides limited improvement and may even degrade the primitive performance of LLMs on complex reasoning tasks. Such a phenomenon suggests that soft prompts can positively impact certain instances while negatively affecting others, particularly during the later phases of reasoning. To address these challenges, We first identify an information accumulation within the soft prompts. Through detailed analysis, we demonstrate that this phenomenon is often accompanied by erroneous information flow patterns in the deeper layers of the model, which ultimately lead to incorrect reasoning outcomes. we propose a novel method called \textbf{D}ynamic \textbf{P}rompt \textbf{C}orruption (DPC) to take better advantage of soft prompts in complex reasoning tasks, which dynamically adjusts the influence of soft prompts based on their impact on the reasoning process. Specifically, DPC consists of two stages: Dynamic Trigger and Dynamic Corruption. First, Dynamic Trigger measures the impact of soft prompts, identifying whether beneficial or detrimental. Then, Dynamic Corruption mitigates the negative effects of soft prompts by selectively masking key tokens that interfere with the reasoning process. We validate the proposed approach through extensive experiments on various LLMs and reasoning tasks, including GSM8K, MATH, and AQuA. Experimental results demonstrate that DPC can consistently enhance the performance of PT, achieving 4\%-8\% accuracy gains compared to vanilla prompt tuning, highlighting the effectiveness of our approach and its potential to enhance complex reasoning in LLMs.
comment: Accepted by ICLR 2025
☆ MAP: Evaluation and Multi-Agent Enhancement of Large Language Models for Inpatient Pathways
Inpatient pathways demand complex clinical decision-making based on comprehensive patient information, posing critical challenges for clinicians. Despite advancements in large language models (LLMs) in medical applications, limited research focused on artificial intelligence (AI) inpatient pathways systems, due to the lack of large-scale inpatient datasets. Moreover, existing medical benchmarks typically concentrated on medical question-answering and examinations, ignoring the multifaceted nature of clinical decision-making in inpatient settings. To address these gaps, we first developed the Inpatient Pathway Decision Support (IPDS) benchmark from the MIMIC-IV database, encompassing 51,274 cases across nine triage departments and 17 major disease categories alongside 16 standardized treatment options. Then, we proposed the Multi-Agent Inpatient Pathways (MAP) framework to accomplish inpatient pathways with three clinical agents, including a triage agent managing the patient admission, a diagnosis agent serving as the primary decision maker at the department, and a treatment agent providing treatment plans. Additionally, our MAP framework includes a chief agent overseeing the inpatient pathways to guide and promote these three clinician agents. Extensive experiments showed our MAP improved the diagnosis accuracy by 25.10% compared to the state-of-the-art LLM HuatuoGPT2-13B. It is worth noting that our MAP demonstrated significant clinical compliance, outperforming three board-certified clinicians by 10%-12%, establishing a foundation for inpatient pathways systems.
☆ Timing the Match: A Deep Reinforcement Learning Approach for Ride-Hailing and Ride-Pooling Services
Efficient timing in ride-matching is crucial for improving the performance of ride-hailing and ride-pooling services, as it determines the number of drivers and passengers considered in each matching process. Traditional batched matching methods often use fixed time intervals to accumulate ride requests before assigning matches. While this approach increases the number of available drivers and passengers for matching, it fails to adapt to real-time supply-demand fluctuations, often leading to longer passenger wait times and driver idle periods. To address this limitation, we propose an adaptive ride-matching strategy using deep reinforcement learning (RL) to dynamically determine when to perform matches based on real-time system conditions. Unlike fixed-interval approaches, our method continuously evaluates system states and executes matching at moments that minimize total passenger wait time. Additionally, we incorporate a potential-based reward shaping (PBRS) mechanism to mitigate sparse rewards, accelerating RL training and improving decision quality. Extensive empirical evaluations using a realistic simulator trained on real-world data demonstrate that our approach outperforms fixed-interval matching strategies, significantly reducing passenger waiting times and detour delays, thereby enhancing the overall efficiency of ride-hailing and ride-pooling systems.
☆ A representational framework for learning and encoding structurally enriched trajectories in complex agent environments
The ability of artificial intelligence agents to make optimal decisions and generalise them to different domains and tasks is compromised in complex scenarios. One way to address this issue has focused on learning efficient representations of the world and on how the actions of agents affect them, such as disentangled representations that exploit symmetries. Whereas such representations are procedurally efficient, they are based on the compression of low-level state-action transitions, which lack structural richness. To address this problem, we propose to enrich the agent's ontology and extend the traditional conceptualisation of trajectories to provide a more nuanced view of task execution. Structurally Enriched Trajectories (SETs) extend the encoding of sequences of states and their transitions by incorporating hierarchical relations between objects, interactions and affordances. SETs are built as multi-level graphs, providing a detailed representation of the agent dynamics and a transferable functional abstraction of the task. SETs are integrated into an architecture, Structurally Enriched Trajectory Learning and Encoding (SETLE), that employs a heterogeneous graph-based memory structure of multi-level relational dependencies essential for generalisation. Using reinforcement learning as a data generation tool, we demonstrate that SETLE can support downstream tasks, enabling agents to recognise task-relevant structural patterns across diverse environments.
☆ 3DAxisPrompt: Promoting the 3D Grounding and Reasoning in GPT-4o
Multimodal Large Language Models (MLLMs) exhibit impressive capabilities across a variety of tasks, especially when equipped with carefully designed visual prompts. However, existing studies primarily focus on logical reasoning and visual understanding, while the capability of MLLMs to operate effectively in 3D vision remains an ongoing area of exploration. In this paper, we introduce a novel visual prompting method, called 3DAxisPrompt, to elicit the 3D understanding capabilities of MLLMs in real-world scenes. More specifically, our method leverages the 3D coordinate axis and masks generated from the Segment Anything Model (SAM) to provide explicit geometric priors to MLLMs and then extend their impressive 2D grounding and reasoning ability to real-world 3D scenarios. Besides, we first provide a thorough investigation of the potential visual prompting formats and conclude our findings to reveal the potential and limits of 3D understanding capabilities in GPT-4o, as a representative of MLLMs. Finally, we build evaluation environments with four datasets, i.e., ScanRefer, ScanNet, FMB, and nuScene datasets, covering various 3D tasks. Based on this, we conduct extensive quantitative and qualitative experiments, which demonstrate the effectiveness of the proposed method. Overall, our study reveals that MLLMs, with the help of 3DAxisPrompt, can effectively perceive an object's 3D position in real-world scenarios. Nevertheless, a single prompt engineering approach does not consistently achieve the best outcomes for all 3D tasks. This study highlights the feasibility of leveraging MLLMs for 3D vision grounding/reasoning with prompt engineering techniques.
☆ GC-Fed: Gradient Centralized Federated Learning with Partial Client Participation
Multi-source information fusion (MSIF) leverages diverse data streams to enhance decision-making, situational awareness, and system resilience. Federated Learning (FL) enables MSIF while preserving privacy but suffers from client drift under high data heterogeneity, leading to performance degradation. Traditional mitigation strategies rely on reference-based gradient adjustments, which can be unstable in partial participation settings. To address this, we propose Gradient Centralized Federated Learning (GC-Fed), a reference-free gradient correction method inspired by Gradient Centralization (GC). We introduce Local GC and Global GC, applying GC during local training and global aggregation, respectively. Our hybrid GC-Fed approach selectively applies GC at the feature extraction layer locally and at the classifier layer globally, improving training stability and model performance. Theoretical analysis and empirical results demonstrate that GC-Fed mitigates client drift and achieves state-of-the-art accuracy gains of up to 20% in heterogeneous settings.
☆ Rapfi: Distilling Efficient Neural Network for the Game of Gomoku
Games have played a pivotal role in advancing artificial intelligence, with AI agents using sophisticated techniques to compete. Despite the success of neural network based game AIs, their performance often requires significant computational resources. In this paper, we present Rapfi, an efficient Gomoku agent that outperforms CNN-based agents in limited computation environments. Rapfi leverages a compact neural network with a pattern-based codebook distilled from CNNs, and an incremental update scheme that minimizes computation when input changes are minor. This new network uses computation that is orders of magnitude less to reach a similar accuracy of much larger neural networks such as Resnet. Thanks to our incremental update scheme, depth-first search methods such as the alpha-beta search can be significantly accelerated. With a carefully tuned evaluation and search, Rapfi reached strength surpassing Katagomo, the strongest open-source Gomoku AI based on AlphaZero's algorithm, under limited computational resources where accelerators like GPUs are absent. Rapfi ranked first among 520 Gomoku agents on Botzone and won the championship in GomoCup 2024.
☆ HybridGen: VLM-Guided Hybrid Planning for Scalable Data Generation of Imitation Learning
The acquisition of large-scale and diverse demonstration data are essential for improving robotic imitation learning generalization. However, generating such data for complex manipulations is challenging in real-world settings. We introduce HybridGen, an automated framework that integrates Vision-Language Model (VLM) and hybrid planning. HybridGen uses a two-stage pipeline: first, VLM to parse expert demonstrations, decomposing tasks into expert-dependent (object-centric pose transformations for precise control) and plannable segments (synthesizing diverse trajectories via path planning); second, pose transformations substantially expand the first-stage data. Crucially, HybridGen generates a large volume of training data without requiring specific data formats, making it broadly applicable to a wide range of imitation learning algorithms, a characteristic which we also demonstrate empirically across multiple algorithms. Evaluations across seven tasks and their variants demonstrate that agents trained with HybridGen achieve substantial performance and generalization gains, averaging a 5% improvement over state-of-the-art methods. Notably, in the most challenging task variants, HybridGen achieves significant improvement, reaching a 59.7% average success rate, significantly outperforming Mimicgen's 49.5%. These results demonstrating its effectiveness and practicality.
☆ Collaborative AI Enhances Image Understanding in Materials Science
The Copilot for Real-world Experimental Scientist (CRESt) system empowers researchers to control autonomous laboratories through conversational AI, providing a seamless interface for managing complex experimental workflows. We have enhanced CRESt by integrating a multi-agent collaboration mechanism that utilizes the complementary strengths of the ChatGPT and Gemini models for precise image analysis in materials science. This innovative approach significantly improves the accuracy of experimental outcomes by fostering structured debates between the AI models, which enhances decision-making processes in materials phase analysis. Additionally, to evaluate the generalizability of this approach, we tested it on a quantitative task of counting particles. Here, the collaboration between the AI models also led to improved results, demonstrating the versatility and robustness of this method. By harnessing this dual-AI framework, this approach stands as a pioneering method for enhancing experimental accuracy and efficiency in materials research, with applications extending beyond CRESt to broader scientific experimentation and analysis.
comment: 10 pages, 4 figures
☆ Efficient Imitation Under Misspecification ICLR 2025
Interactive imitation learning (IL) is a powerful paradigm for learning to make sequences of decisions from an expert demonstrating how to perform a task. Prior work in efficient imitation learning has focused on the realizable setting, where the expert's policy lies within the learner's policy class (i.e. the learner can perfectly imitate the expert in all states). However, in practice, perfect imitation of the expert is often impossible due to differences in state information and action space expressiveness (e.g. morphological differences between robots and humans.) In this paper, we consider the more general misspecified setting, where no assumptions are made about the expert policy's realizability. We introduce a novel structural condition, reward-agnostic policy completeness, and prove that it is sufficient for interactive IL algorithms to efficiently avoid the quadratically compounding errors that stymie offline approaches like behavioral cloning. We address an additional practical constraint-the case of limited expert data-and propose a principled method for using additional offline data to further improve the sample-efficiency of interactive IL algorithms. Finally, we empirically investigate the optimal reset distribution in efficient IL under misspecification with a suite of continuous control tasks.
comment: 37 pages, 5 figures. Published as a conference paper at ICLR 2025
☆ Are LLMs (Really) Ideological? An IRT-based Analysis and Alignment Tool for Perceived Socio-Economic Bias in LLMs
We introduce an Item Response Theory (IRT)-based framework to detect and quantify socioeconomic bias in large language models (LLMs) without relying on subjective human judgments. Unlike traditional methods, IRT accounts for item difficulty, improving ideological bias estimation. We fine-tune two LLM families (Meta-LLaMa 3.2-1B-Instruct and Chat- GPT 3.5) to represent distinct ideological positions and introduce a two-stage approach: (1) modeling response avoidance and (2) estimating perceived bias in answered responses. Our results show that off-the-shelf LLMs often avoid ideological engagement rather than exhibit bias, challenging prior claims of partisanship. This empirically validated framework enhances AI alignment research and promotes fairer AI governance.
☆ Logic-in-Frames: Dynamic Keyframe Search via Visual Semantic-Logical Verification for Long Video Understanding
Understanding long video content is a complex endeavor that often relies on densely sampled frame captions or end-to-end feature selectors, yet these techniques commonly overlook the logical relationships between textual queries and visual elements. In practice, computational constraints necessitate coarse frame subsampling, a challenge analogous to ``finding a needle in a haystack.'' To address this issue, we introduce a semantics-driven search framework that reformulates keyframe selection under the paradigm of Visual Semantic-Logical Search. Specifically, we systematically define four fundamental logical dependencies: 1) spatial co-occurrence, 2) temporal proximity, 3) attribute dependency, and 4) causal order. These relations dynamically update frame sampling distributions through an iterative refinement process, enabling context-aware identification of semantically critical frames tailored to specific query requirements. Our method establishes new SOTA performance on the manually annotated benchmark in key-frame selection metrics. Furthermore, when applied to downstream video question-answering tasks, the proposed approach demonstrates the best performance gains over existing methods on LongVideoBench and Video-MME, validating its effectiveness in bridging the logical gap between textual queries and visual-temporal reasoning. The code will be publicly available.
comment: 18 pages, under review
☆ MIXPINN: Mixed-Material Simulations by Physics-Informed Neural Network IROS 2025
Simulating the complex interactions between soft tissues and rigid anatomy is critical for applications in surgical training, planning, and robotic-assisted interventions. Traditional Finite Element Method (FEM)-based simulations, while accurate, are computationally expensive and impractical for real-time scenarios. Learning-based approaches have shown promise in accelerating predictions but have fallen short in modeling soft-rigid interactions effectively. We introduce MIXPINN, a physics-informed Graph Neural Network (GNN) framework for mixed-material simulations, explicitly capturing soft-rigid interactions using graph-based augmentations. Our approach integrates Virtual Nodes (VNs) and Virtual Edges (VEs) to enhance rigid body constraint satisfaction while preserving computational efficiency. By leveraging a graph-based representation of biomechanical structures, MIXPINN learns high-fidelity deformations from FEM-generated data and achieves real-time inference with sub-millimeter accuracy. We validate our method in a realistic clinical scenario, demonstrating superior performance compared to baseline GNN models and traditional FEM methods. Our results show that MIXPINN reduces computational cost by an order of magnitude while maintaining high physical accuracy, making it a viable solution for real-time surgical simulation and robotic-assisted procedures.
comment: This work has been submitted to the lEEE IROS 2025 for possible publication
☆ Beyond Propagation of Chaos: A Stochastic Algorithm for Mean Field Optimization
Gradient flow in the 2-Wasserstein space is widely used to optimize functionals over probability distributions and is typically implemented using an interacting particle system with $n$ particles. Analyzing these algorithms requires showing (a) that the finite-particle system converges and/or (b) that the resultant empirical distribution of the particles closely approximates the optimal distribution (i.e., propagation of chaos). However, establishing efficient sufficient conditions can be challenging, as the finite particle system may produce heavily dependent random variables. In this work, we study the virtual particle stochastic approximation, originally introduced for Stein Variational Gradient Descent. This method can be viewed as a form of stochastic gradient descent in the Wasserstein space and can be implemented efficiently. In popular settings, we demonstrate that our algorithm's output converges to the optimal distribution under conditions similar to those for the infinite particle limit, and it produces i.i.d. samples without the need to explicitly establish propagation of chaos bounds.
☆ Lifting the Veil on Visual Information Flow in MLLMs: Unlocking Pathways to Faster Inference
Multimodal large language models (MLLMs) improve performance on vision-language tasks by integrating visual features from pre-trained vision encoders into large language models (LLMs). However, how MLLMs process and utilize visual information remains unclear. In this paper, a shift in the dominant flow of visual information is uncovered: (1) in shallow layers, strong interactions are observed between image tokens and instruction tokens, where most visual information is injected into instruction tokens to form cross-modal semantic representations; (2) in deeper layers, image tokens primarily interact with each other, aggregating the remaining visual information to optimize semantic representations within visual modality. Based on these insights, we propose Hierarchical Modality-Aware Pruning (HiMAP), a plug-and-play inference acceleration method that dynamically prunes image tokens at specific layers, reducing computational costs by approximately 65% without sacrificing performance. Our findings offer a new understanding of visual information processing in MLLMs and provide a state-of-the-art solution for efficient inference.
☆ ClearSight: Visual Signal Enhancement for Object Hallucination Mitigation in Multimodal Large language Models
Contrastive decoding strategies are widely used to mitigate object hallucinations in multimodal large language models (MLLMs). By reducing over-reliance on language priors, these strategies ensure that generated content remains closely grounded in visual inputs, producing contextually accurate outputs. Since contrastive decoding requires no additional training or external tools, it offers both computational efficiency and versatility, making it highly attractive. However, these methods present two main limitations: (1) bluntly suppressing language priors can compromise coherence and accuracy of generated content, and (2) processing contrastive inputs adds computational load, significantly slowing inference speed. To address these challenges, we propose Visual Amplification Fusion (VAF), a plug-and-play technique that enhances attention to visual signals within the model's middle layers, where modality fusion predominantly occurs. This approach enables more effective capture of visual features, reducing the model's bias toward language modality. Experimental results demonstrate that VAF significantly reduces hallucinations across various MLLMs without affecting inference speed, while maintaining coherence and accuracy in generated outputs.
☆ ClusComp: A Simple Paradigm for Model Compression and Efficient Finetuning
As large language models (LLMs) scale, model compression is crucial for edge deployment and accessibility. Weight-only quantization reduces model size but suffers from performance degradation at lower bit widths. Moreover, standard finetuning is incompatible with quantized models, and alternative methods often fall short of full finetuning. In this paper, we propose ClusComp, a simple yet effective compression paradigm that clusters weight matrices into codebooks and finetunes them block-by-block. ClusComp (1) achieves superior performance in 2-4 bit quantization, (2) pushes compression to 1-bit while outperforming ultra-low-bit methods with minimal finetuning, and (3) enables efficient finetuning, even surpassing existing quantization-based approaches and rivaling full FP16 finetuning. Notably, ClusComp supports compression and finetuning of 70B LLMs on a single A6000-48GB GPU.
comment: 26 pages, 11 figures, 18 tables
☆ Free-form language-based robotic reasoning and grasping
Performing robotic grasping from a cluttered bin based on human instructions is a challenging task, as it requires understanding both the nuances of free-form language and the spatial relationships between objects. Vision-Language Models (VLMs) trained on web-scale data, such as GPT-4o, have demonstrated remarkable reasoning capabilities across both text and images. But can they truly be used for this task in a zero-shot setting? And what are their limitations? In this paper, we explore these research questions via the free-form language-based robotic grasping task, and propose a novel method, FreeGrasp, leveraging the pre-trained VLMs' world knowledge to reason about human instructions and object spatial arrangements. Our method detects all objects as keypoints and uses these keypoints to annotate marks on images, aiming to facilitate GPT-4o's zero-shot spatial reasoning. This allows our method to determine whether a requested object is directly graspable or if other objects must be grasped and removed first. Since no existing dataset is specifically designed for this task, we introduce a synthetic dataset FreeGraspData by extending the MetaGraspNetV2 dataset with human-annotated instructions and ground-truth grasping sequences. We conduct extensive analyses with both FreeGraspData and real-world validation with a gripper-equipped robotic arm, demonstrating state-of-the-art performance in grasp reasoning and execution. Project website: https://tev-fbk.github.io/FreeGrasp/.
comment: Project website: https://tev-fbk.github.io/FreeGrasp/
☆ A Framework to Assess Multilingual Vulnerabilities of LLMs
Large Language Models (LLMs) are acquiring a wider range of capabilities, including understanding and responding in multiple languages. While they undergo safety training to prevent them from answering illegal questions, imbalances in training data and human evaluation resources can make these models more susceptible to attacks in low-resource languages (LRL). This paper proposes a framework to automatically assess the multilingual vulnerabilities of commonly used LLMs. Using our framework, we evaluated six LLMs across eight languages representing varying levels of resource availability. We validated the assessments generated by our automated framework through human evaluation in two languages, demonstrating that the framework's results align with human judgments in most cases. Our findings reveal vulnerabilities in LRL; however, these may pose minimal risk as they often stem from the model's poor performance, resulting in incoherent responses.
☆ Mitigating Cross-Modal Distraction and Ensuring Geometric Feasibility via Affordance-Guided, Self-Consistent MLLMs for Food Preparation Task Planning
We study Multimodal Large Language Models (MLLMs) with in-context learning for food preparation task planning. In this context, we identify two key challenges: cross-modal distraction and geometric feasibility. Cross-modal distraction occurs when the inclusion of visual input degrades the reasoning performance of a MLLM. Geometric feasibility refers to the ability of MLLMs to ensure that the selected skills are physically executable in the environment. To address these issues, we adapt Chain of Thought (CoT) with Self-Consistency to mitigate reasoning loss from cross-modal distractions and use affordance predictor as skill preconditions to guide MLLM on geometric feasibility. We construct a dataset to evaluate the ability of MLLMs on quantity estimation, reachability analysis, relative positioning and collision avoidance. We conducted a detailed evaluation to identify issues among different baselines and analyze the reasons for improvement, providing insights into each approach. Our method reaches a success rate of 76.7% on the entire dataset, showing a substantial improvement over the CoT baseline at 36.7%.
☆ PoseSyn: Synthesizing Diverse 3D Pose Data from In-the-Wild 2D Data
Despite considerable efforts to enhance the generalization of 3D pose estimators without costly 3D annotations, existing data augmentation methods struggle in real world scenarios with diverse human appearances and complex poses. We propose PoseSyn, a novel data synthesis framework that transforms abundant in the wild 2D pose dataset into diverse 3D pose image pairs. PoseSyn comprises two key components: Error Extraction Module (EEM), which identifies challenging poses from the 2D pose datasets, and Motion Synthesis Module (MSM), which synthesizes motion sequences around the challenging poses. Then, by generating realistic 3D training data via a human animation model aligned with challenging poses and appearances PoseSyn boosts the accuracy of various 3D pose estimators by up to 14% across real world benchmarks including various backgrounds and occlusions, challenging poses, and multi view scenarios. Extensive experiments further confirm that PoseSyn is a scalable and effective approach for improving generalization without relying on expensive 3D annotations, regardless of the pose estimator's model size or design.
comment: The first three authors contributed equally to this work
☆ Test-Time Domain Generalization via Universe Learning: A Multi-Graph Matching Approach for Medical Image Segmentation
Despite domain generalization (DG) has significantly addressed the performance degradation of pre-trained models caused by domain shifts, it often falls short in real-world deployment. Test-time adaptation (TTA), which adjusts a learned model using unlabeled test data, presents a promising solution. However, most existing TTA methods struggle to deliver strong performance in medical image segmentation, primarily because they overlook the crucial prior knowledge inherent to medical images. To address this challenge, we incorporate morphological information and propose a framework based on multi-graph matching. Specifically, we introduce learnable universe embeddings that integrate morphological priors during multi-source training, along with novel unsupervised test-time paradigms for domain adaptation. This approach guarantees cycle-consistency in multi-matching while enabling the model to more effectively capture the invariant priors of unseen data, significantly mitigating the effects of domain shifts. Extensive experiments demonstrate that our method outperforms other state-of-the-art approaches on two medical image segmentation benchmarks for both multi-source and single-source domain generalization tasks. The source code is available at https://github.com/Yore0/TTDG-MGM.
☆ Concept-as-Tree: Synthetic Data is All You Need for VLM Personalization
Vision-Language Models (VLMs) have demonstrated exceptional performance in various multi-modal tasks. Recently, there has been an increasing interest in improving the personalization capabilities of VLMs. To better integrate user-provided concepts into VLMs, many methods use positive and negative samples to fine-tune these models. However, the scarcity of user-provided positive samples and the low quality of retrieved negative samples pose challenges for fine-tuning. To reveal the relationship between sample and model performance, we systematically investigate the impact of positive and negative samples (easy and hard) and their diversity on VLM personalization tasks. Based on the detailed analysis, we introduce Concept-as-Tree (CaT), which represents a concept as a tree structure, thereby enabling the data generation of positive and negative samples with varying difficulty and diversity for VLM personalization. With a well-designed data filtering strategy, our CaT framework can ensure the quality of generated data, constituting a powerful pipeline. We perform thorough experiments with various VLM personalization baselines to assess the effectiveness of the pipeline, alleviating the lack of positive samples and the low quality of negative samples. Our results demonstrate that CaT equipped with the proposed data filter significantly enhances the personalization capabilities of VLMs across the MyVLM, Yo'LLaVA, and MC-LLaVA datasets. To our knowledge, this work is the first controllable synthetic data pipeline for VLM personalization. The code is released at \href{https://github.com/zengkaiya/CaT}{https://github.com/zengkaiya/CaT}.
☆ Robot Policy Transfer with Online Demonstrations: An Active Reinforcement Learning Approach
Transfer Learning (TL) is a powerful tool that enables robots to transfer learned policies across different environments, tasks, or embodiments. To further facilitate this process, efforts have been made to combine it with Learning from Demonstrations (LfD) for more flexible and efficient policy transfer. However, these approaches are almost exclusively limited to offline demonstrations collected before policy transfer starts, which may suffer from the intrinsic issue of covariance shift brought by LfD and harm the performance of policy transfer. Meanwhile, extensive work in the learning-from-scratch setting has shown that online demonstrations can effectively alleviate covariance shift and lead to better policy performance with improved sample efficiency. This work combines these insights to introduce online demonstrations into a policy transfer setting. We present Policy Transfer with Online Demonstrations, an active LfD algorithm for policy transfer that can optimize the timing and content of queries for online episodic expert demonstrations under a limited demonstration budget. We evaluate our method in eight robotic scenarios, involving policy transfer across diverse environment characteristics, task objectives, and robotic embodiments, with the aim to transfer a trained policy from a source task to a related but different target task. The results show that our method significantly outperforms all baselines in terms of average success rate and sample efficiency, compared to two canonical LfD methods with offline demonstrations and one active LfD method with online demonstrations. Additionally, we conduct preliminary sim-to-real tests of the transferred policy on three transfer scenarios in the real-world environment, demonstrating the policy effectiveness on a real robot manipulator.
☆ Intra-neuronal attention within language models Relationships between activation and semantics
This study investigates the ability of perceptron-type neurons in language models to perform intra-neuronal attention; that is, to identify different homogeneous categorical segments within the synthetic thought category they encode, based on a segmentation of specific activation zones for the tokens to which they are particularly responsive. The objective of this work is therefore to determine to what extent formal neurons can establish a homomorphic relationship between activation-based and categorical segmentations. The results suggest the existence of such a relationship, albeit tenuous, only at the level of tokens with very high activation levels. This intra-neuronal attention subsequently enables categorical restructuring processes at the level of neurons in the following layer, thereby contributing to the progressive formation of high-level categorical abstractions.
☆ A Multi-Stage Framework with Taxonomy-Guided Reasoning for Occupation Classification Using Large Language Models
Automatically annotating job data with standardized occupations from taxonomies, known as occupation classification, is crucial for labor market analysis. However, this task is often hindered by data scarcity and the challenges of manual annotations. While large language models (LLMs) hold promise due to their extensive world knowledge and in-context learning capabilities, their effectiveness depends on their knowledge of occupational taxonomies, which remains unclear. In this study, we assess the ability of LLMs to generate precise taxonomic entities from taxonomy, highlighting their limitations. To address these challenges, we propose a multi-stage framework consisting of inference, retrieval, and reranking stages, which integrates taxonomy-guided reasoning examples to enhance performance by aligning outputs with taxonomic knowledge. Evaluations on a large-scale dataset show significant improvements in classification accuracy. Furthermore, we demonstrate the framework's adaptability for multi-label skill classification. Our results indicate that the framework outperforms existing LLM-based methods, offering a practical and scalable solution for occupation classification and related tasks across LLMs.
☆ ROMA: a Read-Only-Memory-based Accelerator for QLoRA-based On-Device LLM
As large language models (LLMs) demonstrate powerful capabilities, deploying them on edge devices has become increasingly crucial, offering advantages in privacy and real-time interaction. QLoRA has emerged as the standard approach for on-device LLMs, leveraging quantized models to reduce memory and computational costs while utilizing LoRA for task-specific adaptability. In this work, we propose ROMA, a QLoRA accelerator with a hybrid storage architecture that uses ROM for quantized base models and SRAM for LoRA weights and KV cache. Our insight is that the quantized base model is stable and converged, making it well-suited for ROM storage. Meanwhile, LoRA modules offer the flexibility to adapt to new data without requiring updates to the base model. To further reduce the area cost of ROM, we introduce a novel B-ROM design and integrate it with the compute unit to form a fused cell for efficient use of chip resources. ROMA can effectively store both a 4-bit 3B and a 2-bit 8B LLaMA model entirely on-chip, achieving a notable generation speed exceeding 20,000 tokens/s without requiring external memory.
Aligning Vision to Language: Text-Free Multimodal Knowledge Graph Construction for Enhanced LLMs Reasoning
Multimodal reasoning in Large Language Models (LLMs) struggles with incomplete knowledge and hallucination artifacts, challenges that textual Knowledge Graphs (KGs) only partially mitigate due to their modality isolation. While Multimodal Knowledge Graphs (MMKGs) promise enhanced cross-modal understanding, their practical construction is impeded by semantic narrowness of manual text annotations and inherent noise in visual-semantic entity linkages. In this paper, we propose Vision-align-to-Language integrated Knowledge Graph (VaLiK), a novel approach for constructing MMKGs that enhances LLMs reasoning through cross-modal information supplementation. Specifically, we cascade pre-trained Vision-Language Models (VLMs) to align image features with text, transforming them into descriptions that encapsulate image-specific information. Furthermore, we developed a cross-modal similarity verification mechanism to quantify semantic consistency, effectively filtering out noise introduced during feature alignment. Even without manually annotated image captions, the refined descriptions alone suffice to construct the MMKG. Compared to conventional MMKGs construction paradigms, our approach achieves substantial storage efficiency gains while maintaining direct entity-to-image linkage capability. Experimental results on multimodal reasoning tasks demonstrate that LLMs augmented with VaLiK outperform previous state-of-the-art models. Our code is published at https://github.com/Wings-Of-Disaster/VaLiK.
comment: 14 pages, 7 figures, 6 tables
☆ Training Video Foundation Models with NVIDIA NeMo
Video Foundation Models (VFMs) have recently been used to simulate the real world to train physical AI systems and develop creative visual experiences. However, there are significant challenges in training large-scale, high quality VFMs that can generate high-quality videos. We present a scalable, open-source VFM training pipeline with NVIDIA NeMo, providing accelerated video dataset curation, multimodal data loading, and parallelized video diffusion model training and inference. We also provide a comprehensive performance analysis highlighting best practices for efficient VFM training and inference.
☆ Open3DBench: Open-Source Benchmark for 3D-IC Backend Implementation and PPA Evaluation
This work introduces Open3DBench, an open-source 3D-IC backend implementation benchmark built upon the OpenROAD-flow-scripts framework, enabling comprehensive evaluation of power, performance, area, and thermal metrics. Our proposed flow supports modular integration of 3D partitioning, placement, 3D routing, RC extraction, and thermal simulation, aligning with advanced 3D flows that rely on commercial tools and in-house scripts. We present two foundational 3D placement algorithms: Open3D-Tiling, which emphasizes regular macro placement, and Open3D-DMP, which enhances wirelength optimization through cross-die co-placement with analytical placer DREAMPlace. Experimental results show significant improvements in area (51.19%), wirelength (24.06%), timing (30.84%), and power (5.72%) compared to 2D flows. The results also highlight that better wirelength does not necessarily lead to PPA gain, emphasizing the need of developing PPA-driven methods. Open3DBench offers a standardized, reproducible platform for evaluating 3D EDA methods, effectively bridging the gap between open-source tools and commercial solutions in 3D-IC design.
☆ R1-VL: Learning to Reason with Multimodal Large Language Models via Step-wise Group Relative Policy Optimization
Recent studies generally enhance MLLMs' reasoning capabilities via supervised fine-tuning on high-quality chain-of-thought reasoning data, which often leads models to merely imitate successful reasoning paths without understanding what the wrong reasoning paths are. In this work, we aim to enhance the MLLMs' reasoning ability beyond passively imitating positive reasoning paths. To this end, we design Step-wise Group Relative Policy Optimization (StepGRPO), a new online reinforcement learning framework that enables MLLMs to self-improve reasoning ability via simple, effective and dense step-wise rewarding. Specifically, StepGRPO introduces two novel rule-based reasoning rewards: Step-wise Reasoning Accuracy Reward (StepRAR) and Step-wise Reasoning Validity Reward (StepRVR). StepRAR rewards the reasoning paths that contain necessary intermediate reasoning steps via a soft key-step matching technique, while StepRAR rewards reasoning paths that follow a well-structured and logically consistent reasoning process through a reasoning completeness and logic evaluation strategy. With the proposed StepGRPO, we introduce R1-VL, a series of MLLMs with outstanding capabilities in step-by-step reasoning. Extensive experiments over 8 benchmarks demonstrate the superiority of our methods.
☆ MirrorGuard: Adaptive Defense Against Jailbreaks via Entropy-Guided Mirror Crafting
Defending large language models (LLMs) against jailbreak attacks is crucial for ensuring their safe deployment. Existing defense strategies generally rely on predefined static criteria to differentiate between harmful and benign prompts. However, such rigid rules are incapable of accommodating the inherent complexity and dynamic nature of real jailbreak attacks. In this paper, we propose a novel concept of ``mirror'' to enable dynamic and adaptive defense. A mirror refers to a dynamically generated prompt that mirrors the syntactic structure of the input while ensuring semantic safety. The personalized discrepancies between the input prompts and their corresponding mirrors serve as the guiding principles for defense. A new defense paradigm, MirrorGuard, is further proposed to detect and calibrate risky inputs based on such mirrors. An entropy-based detection metric, Relative Input Uncertainty (RIU), is integrated into MirrorGuard to quantify the discrepancies between input prompts and mirrors. MirrorGuard is evaluated on several popular datasets, demonstrating state-of-the-art defense performance while maintaining general effectiveness.
☆ MMLNB: Multi-Modal Learning for Neuroblastoma Subtyping Classification Assisted with Textual Description Generation
Neuroblastoma (NB), a leading cause of childhood cancer mortality, exhibits significant histopathological variability, necessitating precise subtyping for accurate prognosis and treatment. Traditional diagnostic methods rely on subjective evaluations that are time-consuming and inconsistent. To address these challenges, we introduce MMLNB, a multi-modal learning (MML) model that integrates pathological images with generated textual descriptions to improve classification accuracy and interpretability. The approach follows a two-stage process. First, we fine-tune a Vision-Language Model (VLM) to enhance pathology-aware text generation. Second, the fine-tuned VLM generates textual descriptions, using a dual-branch architecture to independently extract visual and textual features. These features are fused via Progressive Robust Multi-Modal Fusion (PRMF) Block for stable training. Experimental results show that the MMLNB model is more accurate than the single modal model. Ablation studies demonstrate the importance of multi-modal fusion, fine-tuning, and the PRMF mechanism. This research creates a scalable AI-driven framework for digital pathology, enhancing reliability and interpretability in NB subtyping classification. Our source code is available at https://github.com/HovChen/MMLNB.
comment: 25 pages, 7 figures
☆ Verification Learning: Make Unsupervised Neuro-Symbolic System Feasible
The current Neuro-Symbolic (NeSy) Learning paradigm suffers from an over-reliance on labeled data. If we completely disregard labels, it leads to less symbol information, a larger solution space, and more shortcuts-issues that current Nesy systems cannot resolve. This paper introduces a novel learning paradigm, Verification Learning (VL), which addresses this challenge by transforming the label-based reasoning process in Nesy into a label-free verification process. VL achieves excellent learning results solely by relying on unlabeled data and a function that verifies whether the current predictions conform to the rules. We formalize this problem as a Constraint Optimization Problem (COP) and propose a Dynamic combinatorial Sorting (DCS) algorithm that accelerates the solution by reducing verification attempts, effectively lowering computational costs to the level of a Constraint Satisfaction Problem (CSP). To further enhance performance, we introduce a prior alignment method to address potential shortcuts. Our theoretical analysis points out which tasks in Nesy systems can be completed without labels and explains why rules can replace infinite labels, such as in addition, for some tasks, while for others, like Sudoku, the rules have no effect. We validate the proposed framework through several fully unsupervised tasks including addition, sort, match, and chess, each showing significant performance and efficiency improvements.
☆ HICD: Hallucination-Inducing via Attention Dispersion for Contrastive Decoding to Mitigate Hallucinations in Large Language Models
Large Language Models (LLMs) often generate hallucinations, producing outputs that are contextually inaccurate or factually incorrect. We introduce HICD, a novel method designed to induce hallucinations for contrastive decoding to mitigate hallucinations. Unlike existing contrastive decoding methods, HICD selects attention heads crucial to the model's prediction as inducing heads, then induces hallucinations by dispersing attention of these inducing heads and compares the hallucinated outputs with the original outputs to obtain the final result. Our approach significantly improves performance on tasks requiring contextual faithfulness, such as context completion, reading comprehension, and question answering. It also improves factuality in tasks requiring accurate knowledge recall. We demonstrate that our inducing heads selection and attention dispersion method leads to more "contrast-effective" hallucinations for contrastive decoding, outperforming other hallucination-inducing methods. Our findings provide a promising strategy for reducing hallucinations by inducing hallucinations in a controlled manner, enhancing the performance of LLMs in a wide range of tasks.
comment: Under review at ARR - February 2025
☆ Federated Continual Instruction Tuning
A vast amount of instruction tuning data is crucial for the impressive performance of Large Multimodal Models (LMMs), but the associated computational costs and data collection demands during supervised fine-tuning make it impractical for most researchers. Federated learning (FL) has the potential to leverage all distributed data and training resources to reduce the overhead of joint training. However, most existing methods assume a fixed number of tasks, while in real-world scenarios, clients continuously encounter new knowledge and often struggle to retain old tasks due to memory constraints. In this work, we introduce the Federated Continual Instruction Tuning (FCIT) benchmark to model this real-world challenge. Our benchmark includes two realistic scenarios, encompassing four different settings and twelve carefully curated instruction tuning datasets. To address the challenges posed by FCIT, we propose dynamic knowledge organization to effectively integrate updates from different tasks during training and subspace selective activation to allocate task-specific output during inference. Extensive experimental results demonstrate that our proposed method significantly enhances model performance across varying levels of data heterogeneity and catastrophic forgetting. Our source code and dataset will be made publicly available.
comment: Preprint
☆ nvBench 2.0: A Benchmark for Natural Language to Visualization under Ambiguity
Natural Language to Visualization (NL2VIS) enables users to create visualizations from natural language queries, making data insights more accessible. However, NL2VIS faces challenges in interpreting ambiguous queries, as users often express their visualization needs in imprecise language. To address this challenge, we introduce nvBench 2.0, a new benchmark designed to evaluate NL2VIS systems in scenarios involving ambiguous queries. nvBench 2.0 includes 7,878 natural language queries and 24,076 corresponding visualizations, derived from 780 tables across 153 domains. It is built using a controlled ambiguity-injection pipeline that generates ambiguous queries through a reverse-generation workflow. By starting with unambiguous seed visualizations and selectively injecting ambiguities, the pipeline yields multiple valid interpretations for each query, with each ambiguous query traceable to its corresponding visualization through step-wise reasoning paths. We evaluate various Large Language Models (LLMs) on their ability to perform ambiguous NL2VIS tasks using nvBench 2.0. We also propose Step-NL2VIS, an LLM-based model trained on nvBench 2.0, which enhances performance in ambiguous scenarios through step-wise preference optimization. Our results show that Step-NL2VIS outperforms all baselines, setting a new state-of-the-art for ambiguous NL2VIS tasks.
☆ VITED: Video Temporal Evidence Distillation
We investigate complex video question answering via chain-of-evidence reasoning -- identifying sequences of temporal spans from multiple relevant parts of the video, together with visual evidence within them. Existing models struggle with multi-step reasoning as they uniformly sample a fixed number of frames, which can miss critical evidence distributed nonuniformly throughout the video. Moreover, they lack the ability to temporally localize such evidence in the broader context of the full video, which is required for answering complex questions. We propose a framework to enhance existing VideoQA datasets with evidence reasoning chains, automatically constructed by searching for optimal intervals of interest in the video with supporting evidence, that maximizes the likelihood of answering a given question. We train our model (VITED) to generate these evidence chains directly, enabling it to both localize evidence windows as well as perform multi-step reasoning across them in long-form video content. We show the value of our evidence-distilled models on a suite of long video QA benchmarks where we outperform state-of-the-art approaches that lack evidence reasoning capabilities.
☆ CompMarkGS: Robust Watermarking for Compression 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) enables rapid differentiable rendering for 3D reconstruction and novel view synthesis, leading to its widespread commercial use. Consequently, copyright protection via watermarking has become critical. However, because 3DGS relies on millions of Gaussians, which require gigabytes of storage, efficient transfer and storage require compression. Existing 3DGS watermarking methods are vulnerable to quantization-based compression, often resulting in the loss of the embedded watermark. To address this challenge, we propose a novel watermarking method that ensures watermark robustness after model compression while maintaining high rendering quality. In detail, we incorporate a quantization distortion layer that simulates compression during training, preserving the watermark under quantization-based compression. Also, we propose a learnable watermark embedding feature that embeds the watermark into the anchor feature, ensuring structural consistency and seamless integration into the 3D scene. Furthermore, we present a frequency-aware anchor growing mechanism to enhance image quality in high-frequency regions by effectively identifying Guassians within these regions. Experimental results confirm that our method preserves the watermark and maintains superior image quality under high compression, validating it as a promising approach for a secure 3DGS model.
comment: 23 pages, 17 figures
☆ PASTA: Part-Aware Sketch-to-3D Shape Generation with Text-Aligned Prior
A fundamental challenge in conditional 3D shape generation is to minimize the information loss and maximize the intention of user input. Existing approaches have predominantly focused on two types of isolated conditional signals, i.e., user sketches and text descriptions, each of which does not offer flexible control of the generated shape. In this paper, we introduce PASTA, the flexible approach that seamlessly integrates a user sketch and a text description for 3D shape generation. The key idea is to use text embeddings from a vision-language model to enrich the semantic representation of sketches. Specifically, these text-derived priors specify the part components of the object, compensating for missing visual cues from ambiguous sketches. In addition, we introduce ISG-Net which employs two types of graph convolutional networks: IndivGCN, which processes fine-grained details, and PartGCN, which aggregates these details into parts and refines the structure of objects. Extensive experiments demonstrate that PASTA outperforms existing methods in part-level editing and achieves state-of-the-art results in sketch-to-3D shape generation.
comment: 19 pages, 18 figures
☆ SparseLUT: Sparse Connectivity Optimization for Lookup Table-based Deep Neural Networks
The deployment of deep neural networks (DNNs) on resource-constrained edge devices such as field-programmable gate arrays (FPGAs) requires a careful balance of latency, power, and resource usage while maintaining high accuracy. Existing Lookup Table (LUT)-based DNNs, including LogicNets, PolyLUT, PolyLUT-Add, and NeuraLUT, exploit native FPGA resources with random sparse connectivity. This paper introduces SparseLUT, a connectivity-centric training technique tailored for LUT-based DNNs. SparseLUT leverages a non-greedy training strategy that prioritizes the pruning of less significant connections and strategically regrows alternative ones, resulting in efficient convergence to the target sparsity. Experimental results show consistent accuracy improvements across benchmarks, including up to a 2.13\% increase on MNIST and a 0.94\% improvement for Jet Substructure Classification compared to random sparsity. This is done without any hardware overhead and achieves state-of-the-art results for LUT-based DNNs.
☆ Versatile Physics-based Character Control with Hybrid Latent Representation
We present a versatile latent representation that enables physically simulated character to efficiently utilize motion priors. To build a powerful motion embedding that is shared across multiple tasks, the physics controller should employ rich latent space that is easily explored and capable of generating high-quality motion. We propose integrating continuous and discrete latent representations to build a versatile motion prior that can be adapted to a wide range of challenging control tasks. Specifically, we build a discrete latent model to capture distinctive posterior distribution without collapse, and simultaneously augment the sampled vector with the continuous residuals to generate high-quality, smooth motion without jittering. We further incorporate Residual Vector Quantization, which not only maximizes the capacity of the discrete motion prior, but also efficiently abstracts the action space during the task learning phase. We demonstrate that our agent can produce diverse yet smooth motions simply by traversing the learned motion prior through unconditional motion generation. Furthermore, our model robustly satisfies sparse goal conditions with highly expressive natural motions, including head-mounted device tracking and motion in-betweening at irregular intervals, which could not be achieved with existing latent representations.
☆ A Multi-Power Law for Loss Curve Prediction Across Learning Rate Schedules
Training large models is both resource-intensive and time-consuming, making it crucial to understand the quantitative relationship between model performance and hyperparameters. In this paper, we present an empirical law that describes how the pretraining loss of large language models evolves under different learning rate schedules, such as constant, cosine, and step decay schedules. Our proposed law takes a multi-power form, combining a power law based on the sum of learning rates and additional power laws to account for a loss reduction effect induced by learning rate decay. We extensively validate this law on various model sizes and architectures, and demonstrate that after fitting on a few learning rate schedules, the law accurately predicts the loss curves for unseen schedules of different shapes and horizons. Moreover, by minimizing the predicted final pretraining loss across learning rate schedules, we are able to find a schedule that outperforms the widely used cosine learning rate schedule. Interestingly, this automatically discovered schedule bears some resemblance to the recently proposed Warmup-Stable-Decay (WSD) schedule (Hu et al, 2024) but achieves a slightly lower final loss. We believe these results could offer valuable insights for understanding the dynamics of pretraining and designing learning rate schedules to improve efficiency.
☆ Quantum-Enhanced LLM Efficient Fine Tuning
Low-Rank Adaptation (LoRA) enables efficient fine-tuning of pre-trained language models via low-rank matrix approximation, which is effective in many scenarios. However, its low-rank representation capacity is constrained in complex tasks or high-rank dependency settings, potentially limiting model adaptability. Addressing the expressive bottleneck of classical low-rank approximation in fine-tuning large language models, this paper proposes a parameter-efficient fine-tuning method based on a Quantum Weighted Tensor Hybrid Network (QWTHN), which leverages Quantum Neural Network (QNN). The study investigates quantum-classical hybrid parameter-efficient fine-tuning in low-rank spaces. QWTHN decomposes pre-trained weights into quantum neural network and tensor network representations, utilizing quantum state superposition and other methods to break through classical rank limitations. Experiments show that the proposed quantum fine-tuning technique for large models approaches or even surpasses the parameter efficiency of LoRA. On the CPsyCounD and R1-Distill-SFT datasets, QWTHN, compared to classical LoRA, reduces training loss by up to 15% while using 76% fewer parameters, and achieves an 8.4% performance improvement on the CPsyCounD test set. This research not only realizes lightweight and efficient adaptation of quantum resources to billion-parameter models but also validates the practical path of quantum hardware driven by large model tasks, laying the first engineering-ready technical foundation for future quantum-enhanced AGI systems.
☆ SAM2 for Image and Video Segmentation: A Comprehensive Survey
Despite significant advances in deep learning for image and video segmentation, existing models continue to face challenges in cross-domain adaptability and generalization. Image and video segmentation are fundamental tasks in computer vision with wide-ranging applications in healthcare, agriculture, industrial inspection, and autonomous driving. With the advent of large-scale foundation models, SAM2 - an improved version of SAM (Segment Anything Model)has been optimized for segmentation tasks, demonstrating enhanced performance in complex scenarios. However, SAM2's adaptability and limitations in specific domains require further investigation. This paper systematically analyzes the application of SAM2 in image and video segmentation and evaluates its performance in various fields. We begin by introducing the foundational concepts of image segmentation, categorizing foundation models, and exploring the technical characteristics of SAM and SAM2. Subsequently, we delve into SAM2's applications in static image and video segmentation, emphasizing its performance in specialized areas such as medical imaging and the challenges of cross-domain adaptability. As part of our research, we reviewed over 200 related papers to provide a comprehensive analysis of the topic. Finally, the paper highlights the strengths and weaknesses of SAM2 in segmentation tasks, identifies the technical challenges it faces, and proposes future development directions. This review provides valuable insights and practical recommendations for optimizing and applying SAM2 in real-world scenarios.
comment: 20 pages, 4 figures, 7 Tables
☆ LangDA: Building Context-Awareness via Language for Domain Adaptive Semantic Segmentation
Unsupervised domain adaptation for semantic segmentation (DASS) aims to transfer knowledge from a label-rich source domain to a target domain with no labels. Two key approaches in DASS are (1) vision-only approaches using masking or multi-resolution crops, and (2) language-based approaches that use generic class-wise prompts informed by target domain (e.g. "a {snowy} photo of a {class}"). However, the former is susceptible to noisy pseudo-labels that are biased to the source domain. The latter does not fully capture the intricate spatial relationships of objects -- key for dense prediction tasks. To this end, we propose LangDA. LangDA addresses these challenges by, first, learning contextual relationships between objects via VLM-generated scene descriptions (e.g. "a pedestrian is on the sidewalk, and the street is lined with buildings."). Second, LangDA aligns the entire image features with text representation of this context-aware scene caption and learns generalized representations via text. With this, LangDA sets the new state-of-the-art across three DASS benchmarks, outperforming existing methods by 2.6%, 1.4% and 3.9%.
☆ Adaptive Deep Learning for Multiclass Breast Cancer Classification via Misprediction Risk Analysis
Breast cancer remains one of the leading causes of cancer-related deaths worldwide. Early detection is crucial for improving patient outcomes, yet the diagnostic process is often complex and prone to inconsistencies among pathologists. Computer-aided diagnostic approaches have significantly enhanced breast cancer detection, particularly in binary classification (benign vs. malignant). However, these methods face challenges in multiclass classification, leading to frequent mispredictions. In this work, we propose a novel adaptive learning approach for multiclass breast cancer classification using H&E-stained histopathology images. First, we introduce a misprediction risk analysis framework that quantifies and ranks the likelihood of an image being mislabeled by a classifier. This framework leverages an interpretable risk model that requires only a small number of labeled samples for training. Next, we present an adaptive learning strategy that fine-tunes classifiers based on the specific characteristics of a given dataset. This approach minimizes misprediction risk, allowing the classifier to adapt effectively to the target workload. We evaluate our proposed solutions on real benchmark datasets, demonstrating that our risk analysis framework more accurately identifies mispredictions compared to existing methods. Furthermore, our adaptive learning approach significantly improves the performance of state-of-the-art deep neural network classifiers.
☆ NuPlanQA: A Large-Scale Dataset and Benchmark for Multi-View Driving Scene Understanding in Multi-Modal Large Language Models
Recent advances in multi-modal large language models (MLLMs) have demonstrated strong performance across various domains; however, their ability to comprehend driving scenes remains less proven. The complexity of driving scenarios, which includes multi-view information, poses significant challenges for existing MLLMs. In this paper, we introduce NuPlanQA-Eval, a multi-view, multi-modal evaluation benchmark for driving scene understanding. To further support generalization to multi-view driving scenarios, we also propose NuPlanQA-1M, a large-scale dataset comprising 1M real-world visual question-answering (VQA) pairs. For context-aware analysis of traffic scenes, we categorize our dataset into nine subtasks across three core skills: Road Environment Perception, Spatial Relations Recognition, and Ego-Centric Reasoning. Furthermore, we present BEV-LLM, integrating Bird's-Eye-View (BEV) features from multi-view images into MLLMs. Our evaluation results reveal key challenges that existing MLLMs face in driving scene-specific perception and spatial reasoning from ego-centric perspectives. In contrast, BEV-LLM demonstrates remarkable adaptability to this domain, outperforming other models in six of the nine subtasks. These findings highlight how BEV integration enhances multi-view MLLMs while also identifying key areas that require further refinement for effective adaptation to driving scenes. To facilitate further research, we publicly release NuPlanQA at https://github.com/sungyeonparkk/NuPlanQA.
☆ Analyzing sequential activity and travel decisions with interpretable deep inverse reinforcement learning
Travel demand modeling has shifted from aggregated trip-based models to behavior-oriented activity-based models because daily trips are essentially driven by human activities. To analyze the sequential activity-travel decisions, deep inverse reinforcement learning (DIRL) has proven effective in learning the decision mechanisms by approximating a reward function to represent preferences and a policy function to replicate observed behavior using deep neural networks (DNNs). However, most existing research has focused on using DIRL to enhance only prediction accuracy, with limited exploration into interpreting the underlying decision mechanisms guiding sequential decision-making. To address this gap, we introduce an interpretable DIRL framework for analyzing activity-travel decision processes, bridging the gap between data-driven machine learning and theory-driven behavioral models. Our proposed framework adapts an adversarial IRL approach to infer the reward and policy functions of activity-travel behavior. The policy function is interpreted through a surrogate interpretable model based on choice probabilities from the policy function, while the reward function is interpreted by deriving both short-term rewards and long-term returns for various activity-travel patterns. Our analysis of real-world travel survey data reveals promising results in two key areas: (i) behavioral pattern insights from the policy function, highlighting critical factors in decision-making and variations among socio-demographic groups, and (ii) behavioral preference insights from the reward function, indicating the utility individuals gain from specific activity sequences.
☆ MAP: Multi-user Personalization with Collaborative LLM-powered Agents
The widespread adoption of Large Language Models (LLMs) and LLM-powered agents in multi-user settings underscores the need for reliable, usable methods to accommodate diverse preferences and resolve conflicting directives. Drawing on conflict resolution theory, we introduce a user-centered workflow for multi-user personalization comprising three stages: Reflection, Analysis, and Feedback. We then present MAP -- a \textbf{M}ulti-\textbf{A}gent system for multi-user \textbf{P}ersonalization -- to operationalize this workflow. By delegating subtasks to specialized agents, MAP (1) retrieves and reflects on relevant user information, while enhancing reliability through agent-to-agent interactions, (2) provides detailed analysis for improved transparency and usability, and (3) integrates user feedback to iteratively refine results. Our user study findings (n=12) highlight MAP's effectiveness and usability for conflict resolution while emphasizing the importance of user involvement in resolution verification and failure management. This work highlights the potential of multi-agent systems to implement user-centered, multi-user personalization workflows and concludes by offering insights for personalization in multi-user contexts.
comment: In Extended Abstracts of the CHI Conference on Human Factors in Computing Systems (CHI EA '25), April 26-May 1, 2025, Yokohama, Japan
☆ SafeSlice: Enabling SLA-Compliant O-RAN Slicing via Safe Deep Reinforcement Learning ICML
Deep reinforcement learning (DRL)-based slicing policies have shown significant success in simulated environments but face challenges in physical systems such as open radio access networks (O-RANs) due to simulation-to-reality gaps. These policies often lack safety guarantees to ensure compliance with service level agreements (SLAs), such as the strict latency requirements of immersive applications. As a result, a deployed DRL slicing agent may make resource allocation (RA) decisions that degrade system performance, particularly in previously unseen scenarios. Real-world immersive applications require maintaining SLA constraints throughout deployment to prevent risky DRL exploration. In this paper, we propose SafeSlice to address both the cumulative (trajectory-wise) and instantaneous (state-wise) latency constraints of O-RAN slices. We incorporate the cumulative constraints by designing a sigmoid-based risk-sensitive reward function that reflects the slices' latency requirements. Moreover, we build a supervised learning cost model as part of a safety layer that projects the slicing agent's RA actions to the nearest safe actions, fulfilling instantaneous constraints. We conduct an exhaustive experiment that supports multiple services, including real virtual reality (VR) gaming traffic, to investigate the performance of SafeSlice under extreme and changing deployment conditions. SafeSlice achieves reductions of up to 83.23% in average cumulative latency, 93.24% in instantaneous latency violations, and 22.13% in resource consumption compared to the baselines. The results also indicate SafeSlice's robustness to changing the threshold configurations of latency constraints, a vital deployment scenario that will be realized by the O-RAN paradigm to empower mobile network operators (MNOs).
comment: This article has been accepted for presentation in the IEEE International Conference on Machine Learning for Communication and Networking (ICMLCN) 2025
☆ TNCSE: Tensor's Norm Constraints for Unsupervised Contrastive Learning of Sentence Embeddings
Unsupervised sentence embedding representation has become a hot research topic in natural language processing. As a tensor, sentence embedding has two critical properties: direction and norm. Existing works have been limited to constraining only the orientation of the samples' representations while ignoring the features of their module lengths. To address this issue, we propose a new training objective that optimizes the training of unsupervised contrastive learning by constraining the module length features between positive samples. We combine the training objective of Tensor's Norm Constraints with ensemble learning to propose a new Sentence Embedding representation framework, TNCSE. We evaluate seven semantic text similarity tasks, and the results show that TNCSE and derived models are the current state-of-the-art approach; in addition, we conduct extensive zero-shot evaluations, and the results show that TNCSE outperforms other baselines.
☆ TinySQL: A Progressive Text-to-SQL Dataset for Mechanistic Interpretability Research
Mechanistic interpretability research faces a gap between analyzing simple circuits in toy tasks and discovering features in large models. To bridge this gap, we propose text-to-SQL generation as an ideal task to study, as it combines the formal structure of toy tasks with real-world complexity. We introduce TinySQL, a synthetic dataset progressing from basic to advanced SQL operations, and train models ranging from 33M to 1B parameters to establish a comprehensive testbed for interpretability. We apply multiple complementary interpretability techniques, including edge attribution patching and sparse autoencoders, to identify minimal circuits and components supporting SQL generation. Our analysis reveals both the potential and limitations of current interpretability methods, showing how circuits can vary even across similar queries. Lastly, we demonstrate how mechanistic interpretability can identify flawed heuristics in models and improve synthetic dataset design. Our work provides a comprehensive framework for evaluating and advancing interpretability techniques while establishing clear boundaries for their reliable application.
comment: 9 pages, 19 figures, 7 tables, 18 trained models
☆ Identifying Cooperative Personalities in Multi-agent Contexts through Personality Steering with Representation Engineering
As Large Language Models (LLMs) gain autonomous capabilities, their coordination in multi-agent settings becomes increasingly important. However, they often struggle with cooperation, leading to suboptimal outcomes. Inspired by Axelrod's Iterated Prisoner's Dilemma (IPD) tournaments, we explore how personality traits influence LLM cooperation. Using representation engineering, we steer Big Five traits (e.g., Agreeableness, Conscientiousness) in LLMs and analyze their impact on IPD decision-making. Our results show that higher Agreeableness and Conscientiousness improve cooperation but increase susceptibility to exploitation, highlighting both the potential and limitations of personality-based steering for aligning AI agents.
comment: Poster, Technical AI Safety Conference 2025
☆ Can Reasoning Models Reason about Hardware? An Agentic HLS Perspective
Recent Large Language Models (LLMs) such as OpenAI o3-mini and DeepSeek-R1 use enhanced reasoning through Chain-of-Thought (CoT). Their potential in hardware design, which relies on expert-driven iterative optimization, remains unexplored. This paper investigates whether reasoning LLMs can address challenges in High-Level Synthesis (HLS) design space exploration and optimization. During HLS, engineers manually define pragmas/directives to balance performance and resource constraints. We propose an LLM-based optimization agentic framework that automatically restructures code, inserts pragmas, and identifies optimal design points via feedback from HLs tools and access to integer-linear programming (ILP) solvers. Experiments compare reasoning models against conventional LLMs on benchmarks using success rate, efficiency, and design quality (area/latency) metrics, and provide the first-ever glimpse into the CoTs produced by a powerful open-source reasoning model like DeepSeek-R1.
comment: 7 pages, submitted for peer review
☆ Using 3D reconstruction from image motion to predict total leaf area in dwarf tomato plants
Accurate estimation of total leaf area (TLA) is crucial for evaluating plant growth, photosynthetic activity, and transpiration. However, it remains challenging for bushy plants like dwarf tomatoes due to their complex canopies. Traditional methods are often labor-intensive, damaging to plants, or limited in capturing canopy complexity. This study evaluated a non-destructive method combining sequential 3D reconstructions from RGB images and machine learning to estimate TLA for three dwarf tomato cultivars: Mohamed, Hahms Gelbe Topftomate, and Red Robin -- grown under controlled greenhouse conditions. Two experiments (spring-summer and autumn-winter) included 73 plants, yielding 418 TLA measurements via an "onion" approach. High-resolution videos were recorded, and 500 frames per plant were used for 3D reconstruction. Point clouds were processed using four algorithms (Alpha Shape, Marching Cubes, Poisson's, Ball Pivoting), and meshes were evaluated with seven regression models: Multivariable Linear Regression, Lasso Regression, Ridge Regression, Elastic Net Regression, Random Forest, Extreme Gradient Boosting, and Multilayer Perceptron. The Alpha Shape reconstruction ($\alpha = 3$) with Extreme Gradient Boosting achieved the best performance ($R^2 = 0.80$, $MAE = 489 cm^2$). Cross-experiment validation showed robust results ($R^2 = 0.56$, $MAE = 579 cm^2$). Feature importance analysis identified height, width, and surface area as key predictors. This scalable, automated TLA estimation method is suited for urban farming and precision agriculture, offering applications in automated pruning, resource efficiency, and sustainable food production. The approach demonstrated robustness across variable environmental conditions and canopy structures.
comment: 24 pages, 11 figures, submitted to Computers and Electronics in Agriculture
☆ Towards AI-assisted Academic Writing NAACL 2025
We present components of an AI-assisted academic writing system including citation recommendation and introduction writing. The system recommends citations by considering the user's current document context to provide relevant suggestions. It generates introductions in a structured fashion, situating the contributions of the research relative to prior work. We demonstrate the effectiveness of the components through quantitative evaluations. Finally, the paper presents qualitative research exploring how researchers incorporate citations into their writing workflows. Our findings indicate that there is demand for precise AI-assisted writing systems and simple, effective methods for meeting those needs.
comment: accepted to NAACL 2025 Workshop on AI for Scientific Discovery
☆ Optimizing ML Training with Metagradient Descent
A major challenge in training large-scale machine learning models is configuring the training process to maximize model performance, i.e., finding the best training setup from a vast design space. In this work, we unlock a gradient-based approach to this problem. We first introduce an algorithm for efficiently calculating metagradients -- gradients through model training -- at scale. We then introduce a "smooth model training" framework that enables effective optimization using metagradients. With metagradient descent (MGD), we greatly improve on existing dataset selection methods, outperform accuracy-degrading data poisoning attacks by an order of magnitude, and automatically find competitive learning rate schedules.
☆ A Circular Construction Product Ontology for End-of-Life Decision-Making
Efficient management of end-of-life (EoL) products is critical for advancing circularity in supply chains, particularly within the construction industry where EoL strategies are hindered by heterogenous lifecycle data and data silos. Current tools like Environmental Product Declarations (EPDs) and Digital Product Passports (DPPs) are limited by their dependency on seamless data integration and interoperability which remain significant challenges. To address these, we present the Circular Construction Product Ontology (CCPO), an applied framework designed to overcome semantic and data heterogeneity challenges in EoL decision-making for construction products. CCPO standardises vocabulary and facilitates data integration across supply chain stakeholders enabling lifecycle assessments (LCA) and robust decision-making. By aggregating disparate data into a unified product provenance, CCPO enables automated EoL recommendations through customisable SWRL rules aligned with European standards and stakeholder-specific circularity SLAs, demonstrating its scalability and integration capabilities. The adopted circular product scenario depicts CCPO's application while competency question evaluations show its superior performance in generating accurate EoL suggestions highlighting its potential to greatly improve decision-making in circular supply chains and its applicability in real-world construction environments.
☆ Atyaephyra at SemEval-2025 Task 4: Low-Rank NPO SemEval
We present a submission to the SemEval 2025 shared task on unlearning sensitive content from LLMs. Our approach employs negative preference optimization using low-rank adaptation. We show that we can utilize this combination to cheaply compute additional regularization terms, which help with unlearning stabilization. The results of our approach significantly exceed the shared task baselines.
comment: 5 pages, 1 figure, 1 table, submitted to SemEval proceedings for ACL Anthology
☆ INPROVF: Leveraging Large Language Models to Repair High-level Robot Controllers from Assumption Violations ICLR 2025
This paper presents INPROVF, an automatic framework that combines large language models (LLMs) and formal methods to speed up the repair process of high-level robot controllers. Previous approaches based solely on formal methods are computationally expensive and cannot scale to large state spaces. In contrast, INPROVF uses LLMs to generate repair candidates, and formal methods to verify their correctness. To improve the quality of these candidates, our framework first translates the symbolic representations of the environment and controllers into natural language descriptions. If a candidate fails the verification, INPROVF provides feedback on potential unsafe behaviors or unsatisfied tasks, and iteratively prompts LLMs to generate improved solutions. We demonstrate the effectiveness of INPROVF through 12 violations with various workspaces, tasks, and state space sizes.
comment: To appear in ICLR 2025 Workshop: VerifAI: AI Verification in the Wild; in submission to 2025 IEEE 21th International Conference on Automation Science and Engineering (CASE), Los Angeles, CA, USA: IEEE, Aug. 2025
☆ Why Do Multi-Agent LLM Systems Fail?
Despite growing enthusiasm for Multi-Agent Systems (MAS), where multiple LLM agents collaborate to accomplish tasks, their performance gains across popular benchmarks remain minimal compared to single-agent frameworks. This gap highlights the need to analyze the challenges hindering MAS effectiveness. In this paper, we present the first comprehensive study of MAS challenges. We analyze five popular MAS frameworks across over 150 tasks, involving six expert human annotators. We identify 14 unique failure modes and propose a comprehensive taxonomy applicable to various MAS frameworks. This taxonomy emerges iteratively from agreements among three expert annotators per study, achieving a Cohen's Kappa score of 0.88. These fine-grained failure modes are organized into 3 categories, (i) specification and system design failures, (ii) inter-agent misalignment, and (iii) task verification and termination. To support scalable evaluation, we integrate MASFT with LLM-as-a-Judge. We also explore if identified failures could be easily prevented by proposing two interventions: improved specification of agent roles and enhanced orchestration strategies. Our findings reveal that identified failures require more complex solutions, highlighting a clear roadmap for future research. We open-source our dataset and LLM annotator.
☆ Superalignment with Dynamic Human Values ICLR 2025
Two core challenges of alignment are 1) scalable oversight and 2) accounting for the dynamic nature of human values. While solutions like recursive reward modeling address 1), they do not simultaneously account for 2). We sketch a roadmap for a novel algorithmic framework that trains a superhuman reasoning model to decompose complex tasks into subtasks that are still amenable to human-level guidance. Our approach relies on what we call the part-to-complete generalization hypothesis, which states that the alignment of subtask solutions generalizes to the alignment of complete solutions. We advocate for the need to measure this generalization and propose ways to improve it in the future.
comment: Published at the ICLR 2025 Workshop on Bidirectional Human-AI Alignment (BiAlign)
☆ LLM Test Generation via Iterative Hybrid Program Analysis
Automating unit test generation remains a significant challenge, particularly for complex methods in real-world projects. While Large Language Models (LLMs) have made strides in code generation, they struggle to achieve high branch coverage due to their limited ability to reason about intricate control flow structures. To address this limitation, we introduce Panta, a technique that emulates the iterative process human developers follow when analyzing code and constructing test cases. Panta integrates static control flow analysis and dynamic code coverage analysis to systematically guide LLMs in identifying uncovered execution paths and generating better test cases. By incorporating an iterative feedback-driven mechanism, our technique continuously refines test generation based on static and dynamic path coverage insights, ensuring more comprehensive and effective testing. Our empirical evaluation, conducted on classes with high cyclomatic complexity from open-source projects, demonstrates that Panta achieves 26% higher line coverage and 23% higher branch coverage compared to the state-of-the-art.
☆ ASMR: Adaptive Skeleton-Mesh Rigging and Skinning via 2D Generative Prior
Despite the growing accessibility of skeletal motion data, integrating it for animating character meshes remains challenging due to diverse configurations of both skeletons and meshes. Specifically, the body scale and bone lengths of the skeleton should be adjusted in accordance with the size and proportions of the mesh, ensuring that all joints are accurately positioned within the character mesh. Furthermore, defining skinning weights is complicated by variations in skeletal configurations, such as the number of joints and their hierarchy, as well as differences in mesh configurations, including their connectivity and shapes. While existing approaches have made efforts to automate this process, they hardly address the variations in both skeletal and mesh configurations. In this paper, we present a novel method for the automatic rigging and skinning of character meshes using skeletal motion data, accommodating arbitrary configurations of both meshes and skeletons. The proposed method predicts the optimal skeleton aligned with the size and proportion of the mesh as well as defines skinning weights for various mesh-skeleton configurations, without requiring explicit supervision tailored to each of them. By incorporating Diffusion 3D Features (Diff3F) as semantic descriptors of character meshes, our method achieves robust generalization across different configurations. To assess the performance of our method in comparison to existing approaches, we conducted comprehensive evaluations encompassing both quantitative and qualitative analyses, specifically examining the predicted skeletons, skinning weights, and deformation quality.
comment: Eurographics 2025; Project Page https://seokhyeonhong.github.io/projects/asmr/
☆ Convolutional neural network for early detection of lameness and irregularity in horses using an IMU sensor
Lameness and gait irregularities are significant concerns in equine health management, affecting performance, welfare, and economic value. Traditional observational methods rely on subjective expert assessments, which can lead to inconsistencies in detecting subtle or early-stage lameness. While AI-based approaches have emerged, many require multiple sensors, force plates, or video systems, making them costly and impractical for field deployment. In this applied research study, we present a stride-level classification system that utilizes a single inertial measurement unit (IMU) and a one-dimensional convolutional neural network (1D CNN) to objectively differentiate between sound and lame horses, with a primary focus on the trot gait. The proposed system was tested under real-world conditions, achieving a 90% session-level accuracy with no false positives, demonstrating its robustness for practical applications. By employing a single, non-intrusive, and readily available sensor, our approach significantly reduces the complexity and cost of hardware requirements while maintaining high classification performance. These results highlight the potential of our CNN-based method as a field-tested, scalable solution for automated lameness detection. By enabling early diagnosis, this system offers a valuable tool for preventing minor gait irregularities from developing into severe conditions, ultimately contributing to improved equine welfare and performance in veterinary and equestrian practice.
comment: Accepted at AMLDS 2025
☆ Analytic Subspace Routing: How Recursive Least Squares Works in Continual Learning of Large Language Model
Large Language Models (LLMs) possess encompassing capabilities that can process diverse language-related tasks. However, finetuning on LLMs will diminish this general skills and continual finetuning will further cause severe degradation on accumulated knowledge. Recently, Continual Learning (CL) in Large Language Models (LLMs) arises which aims to continually adapt the LLMs to new tasks while maintaining previously learned knowledge and inheriting general skills. Existing techniques either leverage previous data to replay, leading to extra computational costs, or utilize a single parameter-efficient module to learn the downstream task, constraining new knowledge absorption with interference between different tasks. Toward these issues, this paper proposes Analytic Subspace Routing(ASR) to address these challenges. For each task, we isolate the learning within a subspace of deep layers' features via low-rank adaptation, eliminating knowledge interference between different tasks. Additionally, we propose an analytic routing mechanism to properly utilize knowledge learned in different subspaces. Our approach employs Recursive Least Squares to train a multi-task router model, allowing the router to dynamically adapt to incoming data without requiring access to historical data. Also, the router effectively assigns the current task to an appropriate subspace and has a non-forgetting property of previously learned tasks with a solid theoretical guarantee. Experimental results demonstrate that our method achieves near-perfect retention of prior knowledge while seamlessly integrating new information, effectively overcoming the core limitations of existing methods. Our code will be released after acceptance.
comment: 11 pages, 4 figures
♻ ☆ GKG-LLM: A Unified Framework for Generalized Knowledge Graph Construction
The construction of Generalized Knowledge Graph (GKG), including knowledge graph, event knowledge graph and commonsense knowledge graph, is fundamental for various natural language processing tasks. Current studies typically construct these types of graph separately, overlooking holistic insights and potential unification that could be beneficial in computing resources and usage perspectives. However, a key challenge in developing a unified framework for GKG is obstacles arising from task-specific differences. In this study, we propose a unified framework for constructing generalized knowledge graphs to address this challenge. First, we collect data from 15 sub-tasks in 29 datasets across the three types of graphs, categorizing them into in-sample, counter-task, and out-of-distribution (OOD) data. Then, we propose a three-stage curriculum learning fine-tuning framework, by iteratively injecting knowledge from the three types of graphs into the Large Language Models. Extensive experiments show that our proposed model improves the construction of all three graph types across in-domain, OOD and counter-task data.
♻ ☆ Reinforcement Learning Outperforms Supervised Fine-Tuning: A Case Study on Audio Question Answering
Recently, reinforcement learning (RL) has been shown to greatly enhance the reasoning capabilities of large language models (LLMs), and RL-based approaches have been progressively applied to visual multimodal tasks. However, the audio modality has largely been overlooked in these developments. Thus, we conduct a series of RL explorations in audio understanding and reasoning, specifically focusing on the audio question answering (AQA) task. We leverage the group relative policy optimization (GRPO) algorithm to Qwen2-Audio-7B-Instruct, and our experiments demonstrated state-of-the-art performance on the MMAU Test-mini benchmark, achieving an accuracy rate of 64.5%. The main findings in this technical report are as follows: 1) The GRPO algorithm can be effectively applied to large audio language models (LALMs), even when the model has only 8.2B parameters; 2) With only 38k post-training samples, RL significantly outperforms supervised fine-tuning (SFT), indicating that RL-based approaches can be effective without large datasets; 3) The explicit reasoning process has not shown significant benefits for AQA tasks, and how to efficiently utilize deep thinking remains an open question for further research; 4) LALMs still lag far behind humans auditory-language reasoning, suggesting that the RL-based approaches warrant further exploration. Our project is available at https://github.com/xiaomi-research/r1-aqa and https://huggingface.co/mispeech/r1-aqa.
♻ ☆ A Survey of State of the Art Large Vision Language Models: Alignment, Benchmark, Evaluations and Challenges
Multimodal Vision Language Models (VLMs) have emerged as a transformative technology at the intersection of computer vision and natural language processing, enabling machines to perceive and reason about the world through both visual and textual modalities. For example, models such as CLIP, Claude, and GPT-4V demonstrate strong reasoning and understanding abilities on visual and textual data and beat classical single modality vision models on zero-shot classification. Despite their rapid advancements in research and growing popularity in applications, a comprehensive survey of existing studies on VLMs is notably lacking, particularly for researchers aiming to leverage VLMs in their specific domains. To this end, we provide a systematic overview of VLMs in the following aspects: model information of the major VLMs developed over the past five years (2019-2024); the main architectures and training methods of these VLMs; summary and categorization of the popular benchmarks and evaluation metrics of VLMs; the applications of VLMs including embodied agents, robotics, and video generation; the challenges and issues faced by current VLMs such as hallucination, fairness, and safety. Detailed collections including papers and model repository links are listed in https://github.com/zli12321/Vision-Language-Models-Overview.
comment: 22 pages, 3 figures
♻ ☆ Top General Performance = Top Domain Performance? DomainCodeBench: A Multi-domain Code Generation Benchmark
With the rapid advancement of large language models (LLMs), extensive research has been conducted to investigate the code generation capabilities of LLMs. However, existing efforts primarily focus on general-domain tasks, leaving LLMs' code generation performance in real-world application domains underexplored. This raises a critical question: can a model's general-domain coding ability reliably represent its ability in specialized domains? In this paper, we introduce DomainCodeBench, a multi-domain code generation benchmark designed to systematically evaluate LLMs across 12 software application domains and 15 programming languages. DomainCodeBench contains 2,400 manually verified tasks with ground truth, human-annotated docstrings, and fine-grained dependency information to ensure more coverage of domain-specific challenges. Specifically, we first identify the most popular application domains by topic mining. Then, we curate coding tasks based on commonly used frameworks and platforms in each domain. We obtain several findings through extensive experiments on DomainCodeBench with ten mainstream LLMs. (1) Performance decoupling: experiments reveal that top general-domain models do not consistently excel in specific application domains; (2) Domain-specific weaknesses: LLMs often fail due to domain knowledge gaps and third-party library misusage; (3) Contextual enhancement: we show that augmenting prompts with domain-specific knowledge improves performance by around 38.17%, providing actionable insights for performance optimization. Our replication package, including the benchmark, source code, and experimental results, is available at https://github.com/DeepSoftwareAnalytics/DomainCodeBench.
♻ ☆ Robust Latent Matters: Boosting Image Generation with Sampling Error Synthesis
Recent image generation schemes typically capture image distribution in a pre-constructed latent space relying on a frozen image tokenizer. Though the performance of tokenizer plays an essential role to the successful generation, its current evaluation metrics (e.g. rFID) fail to precisely assess the tokenizer and correlate its performance to the generation quality (e.g. gFID). In this paper, we comprehensively analyze the reason for the discrepancy of reconstruction and generation qualities in a discrete latent space, and, from which, we propose a novel plug-and-play tokenizer training scheme to facilitate latent space construction. Specifically, a latent perturbation approach is proposed to simulate sampling noises, i.e., the unexpected tokens sampled, from the generative process. With the latent perturbation, we further propose (1) a novel tokenizer evaluation metric, i.e., pFID, which successfully correlates the tokenizer performance to generation quality and (2) a plug-and-play tokenizer training scheme, which significantly enhances the robustness of tokenizer thus boosting the generation quality and convergence speed. Extensive benchmarking are conducted with 11 advanced discrete image tokenizers with 2 autoregressive generation models to validate our approach. The tokenizer trained with our proposed latent perturbation achieve a notable 1.60 gFID with classifier-free guidance (CFG) and 3.45 gFID without CFG with a $\sim$400M generator. Code: https://github.com/lxa9867/ImageFolder.
comment: 17 pages, 13 figures, 6 tables
♻ ☆ Challenges and recommendations for Electronic Health Records data extraction and preparation for dynamic prediction modelling in hospitalized patients -- a practical guide
Dynamic predictive modelling using electronic health record (EHR) data has gained significant attention in recent years. The reliability and trustworthiness of such models depend heavily on the quality of the underlying data, which is, in part, determined by the stages preceding the model development: data extraction from EHR systems and data preparation. In this article, we identified over forty challenges encountered during these stages and provide actionable recommendations for addressing them. These challenges are organized into four categories: cohort definition, outcome definition, feature engineering, and data cleaning. This comprehensive list serves as a practical guide for data extraction engineers and researchers, promoting best practices and improving the quality and real-world applicability of dynamic prediction models in clinical settings.
♻ ☆ Booster: Tackling Harmful Fine-tuning for Large Language Models via Attenuating Harmful Perturbation
Harmful fine-tuning attack poses serious safety concerns for large language models' fine-tuning-as-a-service. While existing defenses have been proposed to mitigate the issue, their performances are still far away from satisfactory, and the root cause of the problem has not been fully recovered. To this end, we in this paper show that harmful perturbation over the model weights could be a probable cause of alignment-broken. In order to attenuate the negative impact of harmful perturbation, we propose an alignment-stage solution, dubbed Booster. Technically, along with the original alignment loss, we append a loss regularizer in the alignment stage's optimization. The regularizer ensures that the model's harmful loss reduction after the simulated harmful perturbation is attenuated, thereby mitigating the subsequent fine-tuning risk. Empirical results show that Booster can effectively reduce the harmful score of the fine-tuned models while maintaining the performance of downstream tasks. Our code is available at https://github.com/git-disl/Booster.
♻ ☆ A deep cut into Split Federated Self-supervised Learning ECML
Collaborative self-supervised learning has recently become feasible in highly distributed environments by dividing the network layers between client devices and a central server. However, state-of-the-art methods, such as MocoSFL, are optimized for network division at the initial layers, which decreases the protection of the client data and increases communication overhead. In this paper, we demonstrate that splitting depth is crucial for maintaining privacy and communication efficiency in distributed training. We also show that MocoSFL suffers from a catastrophic quality deterioration for the minimal communication overhead. As a remedy, we introduce Momentum-Aligned contrastive Split Federated Learning (MonAcoSFL), which aligns online and momentum client models during training procedure. Consequently, we achieve state-of-the-art accuracy while significantly reducing the communication overhead, making MonAcoSFL more practical in real-world scenarios.
comment: European Conference on Machine Learning (ECML) 2024
♻ ☆ Fine-Tuning Discrete Diffusion Models via Reward Optimization with Applications to DNA and Protein Design ICLR 2025
Recent studies have demonstrated the strong empirical performance of diffusion models on discrete sequences across domains from natural language to biological sequence generation. For example, in the protein inverse folding task, conditional diffusion models have achieved impressive results in generating natural-like sequences that fold back into the original structure. However, practical design tasks often require not only modeling a conditional distribution but also optimizing specific task objectives. For instance, we may prefer protein sequences with high stability. To address this, we consider the scenario where we have pre-trained discrete diffusion models that can generate natural-like sequences, as well as reward models that map sequences to task objectives. We then formulate the reward maximization problem within discrete diffusion models, analogous to reinforcement learning (RL), while minimizing the KL divergence against pretrained diffusion models to preserve naturalness. To solve this RL problem, we propose a novel algorithm, DRAKES, that enables direct backpropagation of rewards through entire trajectories generated by diffusion models, by making the originally non-differentiable trajectories differentiable using the Gumbel-Softmax trick. Our theoretical analysis indicates that our approach can generate sequences that are both natural-like and yield high rewards. While similar tasks have been recently explored in diffusion models for continuous domains, our work addresses unique algorithmic and theoretical challenges specific to discrete diffusion models, which arise from their foundation in continuous-time Markov chains rather than Brownian motion. Finally, we demonstrate the effectiveness of DRAKES in generating DNA and protein sequences that optimize enhancer activity and protein stability, respectively, important tasks for gene therapies and protein-based therapeutics.
comment: ICLR 2025
♻ ☆ An Information Criterion for Controlled Disentanglement of Multimodal Data ICLR 2025
Multimodal representation learning seeks to relate and decompose information inherent in multiple modalities. By disentangling modality-specific information from information that is shared across modalities, we can improve interpretability and robustness and enable downstream tasks such as the generation of counterfactual outcomes. Separating the two types of information is challenging since they are often deeply entangled in many real-world applications. We propose Disentangled Self-Supervised Learning (DisentangledSSL), a novel self-supervised approach for learning disentangled representations. We present a comprehensive analysis of the optimality of each disentangled representation, particularly focusing on the scenario not covered in prior work where the so-called Minimum Necessary Information (MNI) point is not attainable. We demonstrate that DisentangledSSL successfully learns shared and modality-specific features on multiple synthetic and real-world datasets and consistently outperforms baselines on various downstream tasks, including prediction tasks for vision-language data, as well as molecule-phenotype retrieval tasks for biological data. The code is available at https://github.com/uhlerlab/DisentangledSSL.
comment: ICLR 2025
♻ ☆ Spider 2.0: Evaluating Language Models on Real-World Enterprise Text-to-SQL Workflows ICLR 2025
Real-world enterprise text-to-SQL workflows often involve complex cloud or local data across various database systems, multiple SQL queries in various dialects, and diverse operations from data transformation to analytics. We introduce Spider 2.0, an evaluation framework comprising 632 real-world text-to-SQL workflow problems derived from enterprise-level database use cases. The databases in Spider 2.0 are sourced from real data applications, often containing over 1,000 columns and stored in local or cloud database systems such as BigQuery and Snowflake. We show that solving problems in Spider 2.0 frequently requires understanding and searching through database metadata, dialect documentation, and even project-level codebases. This challenge calls for models to interact with complex SQL workflow environments, process extremely long contexts, perform intricate reasoning, and generate multiple SQL queries with diverse operations, often exceeding 100 lines, which goes far beyond traditional text-to-SQL challenges. Our evaluations indicate that based on o1-preview, our code agent framework successfully solves only 21.3% of the tasks, compared with 91.2% on Spider 1.0 and 73.0% on BIRD. Our results on Spider 2.0 show that while language models have demonstrated remarkable performance in code generation -- especially in prior text-to-SQL benchmarks -- they require significant improvement in order to achieve adequate performance for real-world enterprise usage. Progress on Spider 2.0 represents crucial steps towards developing intelligent, autonomous, code agents for real-world enterprise settings. Our code, baseline models, and data are available at https://spider2-sql.github.io
comment: ICLR 2025 Oral
♻ ☆ Investigating the contribution of terrain-following coordinates and conservation schemes in AI-driven precipitation forecasts
Artificial Intelligence (AI) weather prediction (AIWP) models often produce "blurry" precipitation forecasts that overestimate drizzle and underestimate extremes. This study provides a novel solution to tackle this problem -- integrating terrain-following coordinates with global mass and energy conservation schemes into AIWP models. Forecast experiments are conducted to evaluate the effectiveness of this solution using FuXi, an example AIWP model, adapted to 1.0-degree grid spacing data. Verification results show large performance gains. The conservation schemes are found to reduce drizzle bias, whereas using terrain-following coordinates improves the estimation of extreme events and precipitation intensity spectra. Furthermore, a case study reveals that terrain-following coordinates capture near-surface winds better over mountains, offering AIWP models more accurate information on understanding the dynamics of precipitation processes. The proposed solution of this study can benefit a wide range of AIWP models and bring insights into how atmospheric domain knowledge can support the development of AIWP models.
♻ ☆ Classifier-Free Guidance inside the Attraction Basin May Cause Memorization CVPR 2025
Diffusion models are prone to exactly reproduce images from the training data. This exact reproduction of the training data is concerning as it can lead to copyright infringement and/or leakage of privacy-sensitive information. In this paper, we present a novel perspective on the memorization phenomenon and propose a simple yet effective approach to mitigate it. We argue that memorization occurs because of an attraction basin in the denoising process which steers the diffusion trajectory towards a memorized image. However, this can be mitigated by guiding the diffusion trajectory away from the attraction basin by not applying classifier-free guidance until an ideal transition point occurs from which classifier-free guidance is applied. This leads to the generation of non-memorized images that are high in image quality and well-aligned with the conditioning mechanism. To further improve on this, we present a new guidance technique, opposite guidance, that escapes the attraction basin sooner in the denoising process. We demonstrate the existence of attraction basins in various scenarios in which memorization occurs, and we show that our proposed approach successfully mitigates memorization.
comment: CVPR 2025
♻ ☆ Explaining the Unexplainable: A Systematic Review of Explainable AI in Finance
Practitioners and researchers trying to strike a balance between accuracy and transparency center Explainable Artificial Intelligence (XAI) at the junction of finance. This paper offers a thorough overview of the changing scene of XAI applications in finance together with domain-specific implementations, methodological developments, and trend mapping of research. Using bibliometric and content analysis, we find topic clusters, significant research, and most often used explainability strategies used in financial industries. Our results show a substantial dependence on post-hoc interpretability techniques; attention mechanisms, feature importance analysis and SHAP are the most often used techniques among them. This review stresses the need of multidisciplinary approaches combining financial knowledge with improved explainability paradigms and exposes important shortcomings in present XAI systems.
comment: 2 tables, 11 figures
♻ ☆ TraSCE: Trajectory Steering for Concept Erasure
Recent advancements in text-to-image diffusion models have brought them to the public spotlight, becoming widely accessible and embraced by everyday users. However, these models have been shown to generate harmful content such as not-safe-for-work (NSFW) images. While approaches have been proposed to erase such abstract concepts from the models, jail-breaking techniques have succeeded in bypassing such safety measures. In this paper, we propose TraSCE, an approach to guide the diffusion trajectory away from generating harmful content. Our approach is based on negative prompting, but as we show in this paper, a widely used negative prompting strategy is not a complete solution and can easily be bypassed in some corner cases. To address this issue, we first propose using a specific formulation of negative prompting instead of the widely used one. Furthermore, we introduce a localized loss-based guidance that enhances the modified negative prompting technique by steering the diffusion trajectory. We demonstrate that our proposed method achieves state-of-the-art results on various benchmarks in removing harmful content, including ones proposed by red teams, and erasing artistic styles and objects. Our proposed approach does not require any training, weight modifications, or training data (either image or prompt), making it easier for model owners to erase new concepts.
♻ ☆ GraphRouter: A Graph-based Router for LLM Selections
The rapidly growing number and variety of Large Language Models (LLMs) present significant challenges in efficiently selecting the appropriate LLM for a given query, especially considering the trade-offs between performance and computational cost. Current LLM selection methods often struggle to generalize across new LLMs and different tasks because of their limited ability to leverage contextual interactions among tasks, queries, and LLMs, as well as their dependence on a transductive learning framework. To address these shortcomings, we introduce a novel inductive graph framework, named as GraphRouter, which fully utilizes the contextual information among tasks, queries, and LLMs to enhance the LLM selection process. GraphRouter constructs a heterogeneous graph comprising task, query, and LLM nodes, with interactions represented as edges, which efficiently captures the contextual information between the query's requirements and the LLM's capabilities. Through an innovative edge prediction mechanism, GraphRouter is able to predict attributes (the effect and cost of LLM response) of potential edges, allowing for optimized recommendations that adapt to both existing and newly introduced LLMs without requiring retraining. Comprehensive experiments across three distinct effect-cost weight scenarios have shown that GraphRouter substantially surpasses existing routers, delivering a minimum performance improvement of 12.3%. In addition, it achieves enhanced generalization across new LLMs settings and supports diverse tasks with at least a 9.5% boost in effect and a significant reduction in computational demands. This work endeavors to apply a graph-based approach for the contextual and adaptive selection of LLMs, offering insights for real-world applications. Our codes for GraphRouter is released at https://github.com/ulab-uiuc/GraphRouter.
♻ ☆ Causal Graphs Meet Thoughts: Enhancing Complex Reasoning in Graph-Augmented LLMs
In knowledge-intensive tasks, especially in high-stakes domains like medicine and law, it is critical not only to retrieve relevant information but also to provide causal reasoning and explainability. Large language models (LLMs) have achieved remarkable performance in natural language understanding and generation tasks. However, they often suffer from limitations such as difficulty in incorporating new knowledge, generating hallucinations, and explaining their reasoning process. To address these challenges, integrating knowledge graphs with Graph Retrieval-Augmented Generation (Graph RAG) has emerged as an effective solution. Traditional Graph RAG methods often rely on simple graph traversal or semantic similarity, which do not capture causal relationships or align well with the model's internal reasoning steps. This paper proposes a novel pipeline that filters large knowledge graphs to emphasize cause-effect edges, aligns the retrieval process with the model's chain-of-thought (CoT), and enhances reasoning through multi-stage path improvements. Experiments on medical question-answering tasks show consistent gains, with up to a 10\% absolute improvement across multiple large language models (LLMs). This approach demonstrates the value of combining causal reasoning with stepwise retrieval, leading to more interpretable and logically grounded solutions for complex queries.
comment: 18 pages, 3 figures, 3 tables
♻ ☆ Towards Efficient Mixture of Experts: A Holistic Study of Compression Techniques
Scaling large language models has driven remarkable advancements across various domains, yet the continual increase in model size presents significant challenges for real-world deployment. The Mixture of Experts (MoE) architecture offers a promising solution by dynamically selecting and activating only a subset of experts during inference, thus substantially reducing computational costs while preserving high performance. Despite these benefits, MoE introduces new inefficiencies, such as excessive parameters and communication overhead. In this work, we present a holistic study of compression techniques for Mixture of Experts to enhance both efficiency and scalability. While recent efforts have focused on Expert Trimming, which reduces the number of experts, these approaches still suffer from considerable communication and computational costs. To address this, we propose more aggressive strategies, such as Layer Drop, which removes entire MoE layers, and Block Drop, which eliminates transformer blocks. Surprisingly, these aggressive pruning techniques not only preserve model performance but also substantially improve computation and memory efficiency. Furthermore, beyond Expert Trimming, we also introduce Expert Slimming, which compresses individual experts to further boost performance and can be seamlessly integrated with Expert Trimming. Extensive experimental results demonstrate the effectiveness of our proposed methods-Layer Drop and Block Drop-along with the comprehensive recipe that integrates Expert Slimming and Expert Trimming, achieving a 6.05x speedup with 77.1% reduced memory usage while maintaining over 92% of performance on Mixtral-8x7B. Our code is released at https://github.com/CASE-Lab-UMD/Unified-MoE-Compression.
comment: Transactions on Machine Learning Research (TMLR)
♻ ☆ Could AI Leapfrog the Web? Evidence from Teachers in Sierra Leone
Although 85% of sub-Saharan Africa's population is covered by mobile broadband signal, only 37% use the internet, and those who do seldom use the web. The most frequently cited reason for low internet usage is the cost of data. We investigate whether AI can bridge this gap by analyzing 40,350 queries submitted to an AI chatbot by 469 teachers in Sierra Leone over 17 months. Teachers use AI for teaching assistance more frequently than web search. We compare the AI responses to the corresponding top search results for the same queries from the most popular local web search engine, google.com.sl. Only 2% of results for corresponding web searches contain content from in country. Additionally, the average web search result consumes 3,107 times more data than an AI response. Bandwidth alone costs \$2.41 per thousand web search results loaded, while the total cost of AI is \$0.30 per thousand responses. As a result, AI is 87% less expensive than web search. In blinded evaluations, an independent sample of teachers rate AI responses as more relevant, helpful, and correct than web search results. These findings suggest that AI-driven solutions can cost-effectively bridge information gaps in low-connectivity regions.
♻ ☆ On the Byzantine-Resilience of Distillation-Based Federated Learning
Federated Learning (FL) algorithms using Knowledge Distillation (KD) have received increasing attention due to their favorable properties with respect to privacy, non-i.i.d. data and communication cost. These methods depart from transmitting model parameters and instead communicate information about a learning task by sharing predictions on a public dataset. In this work, we study the performance of such approaches in the byzantine setting, where a subset of the clients act in an adversarial manner aiming to disrupt the learning process. We show that KD-based FL algorithms are remarkably resilient and analyze how byzantine clients can influence the learning process. Based on these insights, we introduce two new byzantine attacks and demonstrate their ability to break existing byzantine-resilient methods. Additionally, we propose a novel defence method which enhances the byzantine resilience of KD-based FL algorithms. Finally, we provide a general framework to obfuscate attacks, making them significantly harder to detect, thereby improving their effectiveness. Our findings serve as an important building block in the analysis of byzantine FL, contributing through the development of new attacks and new defence mechanisms, further advancing the robustness of KD-based FL algorithms.
♻ ☆ Human-Centric Video Anomaly Detection Through Spatio-Temporal Pose Tokenization and Transformer
Video Anomaly Detection (VAD) presents a significant challenge in computer vision, particularly due to the unpredictable and infrequent nature of anomalous events, coupled with the diverse and dynamic environments in which they occur. Human-centric VAD, a specialized area within this domain, faces additional complexities, including variations in human behavior, potential biases in data, and substantial privacy concerns related to human subjects. These issues complicate the development of models that are both robust and generalizable. To address these challenges, recent advancements have focused on pose-based VAD, which leverages human pose as a high-level feature to mitigate privacy concerns, reduce appearance biases, and minimize background interference. In this paper, we introduce SPARTA, a novel transformer-based architecture designed specifically for human-centric pose-based VAD. SPARTA introduces an innovative Spatio-Temporal Pose and Relative Pose (ST-PRP) tokenization method that produces an enriched representation of human motion over time. This approach ensures that the transformer's attention mechanism captures both spatial and temporal patterns simultaneously, rather than focusing on only one aspect. The addition of the relative pose further emphasizes subtle deviations from normal human movements. The architecture's core, a novel Unified Encoder Twin Decoders (UETD) transformer, significantly improves the detection of anomalous behaviors in video data. Extensive evaluations across multiple benchmark datasets demonstrate that SPARTA consistently outperforms existing methods, establishing a new state-of-the-art in pose-based VAD.
♻ ☆ Leveraging Taxonomy Similarity for Next Activity Prediction in Patient Treatment
The rapid progress in modern medicine presents physicians with complex challenges when planning patient treatment. Techniques from the field of Predictive Business Process Monitoring, like Next-activity-prediction (NAP) can be used as a promising technique to support physicians in treatment planning, by proposing a possible next treatment step. Existing patient data, often in the form of electronic health records, can be analyzed to recommend the next suitable step in the treatment process. However, the use of patient data poses many challenges due to its knowledge-intensive character, high variability and scarcity of medical data. To overcome these challenges, this article examines the use of the knowledge encoded in taxonomies to improve and explain the prediction of the next activity in the treatment process. This study proposes the TS4NAP approach, which uses medical taxonomies (ICD-10-CM and ICD-10-PCS) in combination with graph matching to assess the similarities of medical codes to predict the next treatment step. The effectiveness of the proposed approach will be evaluated using event logs that are derived from the MIMIC-IV dataset. The results highlight the potential of using domain-specific knowledge held in taxonomies to improve the prediction of the next activity, and thus can improve treatment planning and decision-making by making the predictions more explainable.
♻ ☆ A Recipe for Improving Remote Sensing VLM Zero Shot Generalization
Foundation models have had a significant impact across various AI applications, enabling use cases that were previously impossible. Contrastive Visual Language Models (VLMs), in particular, have outperformed other techniques in many tasks. However, their prevalence in remote sensing (RS) is still limited, due to the scarcity of diverse remote-sensing visual-language datasets. In this work we introduce two novel image-caption datasets for training of remote sensing foundation models. The first dataset pairs aerial and satellite imagery with captions generated by Gemini using landmarks extracted from Google Maps. The second dataset utilizes public web images and their corresponding alt-text, filtered for the remote sensing domain, resulting in a diverse dataset with greater breadth in image styles and subject matter. These datasets are used to pre-train the MaMMUT~\citep{kuo2023mammutsimplearchitecturejoint} VLM architecture, resulting in state-of-the-art generalization performance in zero-shot cross-modal retrieval on well-known public benchmarks. Finally, we present our ongoing research to distill image-level knowledge gained in the VLM contrastive training procedure to enhance the model's localization ability. Specifically, we iteratively generate pseudo-labels for image regions based on the model's attention maps and use these labels for further training. To mitigate noisy attention maps and create robust segmentation masks, we introduce a novel attention-pooling mechanism called the Smooth-Attention-Operation.
♻ ☆ Influence Functions for Scalable Data Attribution in Diffusion Models
Diffusion models have led to significant advancements in generative modelling. Yet their widespread adoption poses challenges regarding data attribution and interpretability. In this paper, we aim to help address such challenges in diffusion models by developing an influence functions framework. Influence function-based data attribution methods approximate how a model's output would have changed if some training data were removed. In supervised learning, this is usually used for predicting how the loss on a particular example would change. For diffusion models, we focus on predicting the change in the probability of generating a particular example via several proxy measurements. We show how to formulate influence functions for such quantities and how previously proposed methods can be interpreted as particular design choices in our framework. To ensure scalability of the Hessian computations in influence functions, we systematically develop K-FAC approximations based on generalised Gauss-Newton matrices specifically tailored to diffusion models. We recast previously proposed methods as specific design choices in our framework and show that our recommended method outperforms previous data attribution approaches on common evaluations, such as the Linear Data-modelling Score (LDS) or retraining without top influences, without the need for method-specific hyperparameter tuning.
♻ ☆ Empowering Edge Intelligence: A Comprehensive Survey on On-Device AI Models
The rapid advancement of artificial intelligence (AI) technologies has led to an increasing deployment of AI models on edge and terminal devices, driven by the proliferation of the Internet of Things (IoT) and the need for real-time data processing. This survey comprehensively explores the current state, technical challenges, and future trends of on-device AI models. We define on-device AI models as those designed to perform local data processing and inference, emphasizing their characteristics such as real-time performance, resource constraints, and enhanced data privacy. The survey is structured around key themes, including the fundamental concepts of AI models, application scenarios across various domains, and the technical challenges faced in edge environments. We also discuss optimization and implementation strategies, such as data preprocessing, model compression, and hardware acceleration, which are essential for effective deployment. Furthermore, we examine the impact of emerging technologies, including edge computing and foundation models, on the evolution of on-device AI models. By providing a structured overview of the challenges, solutions, and future directions, this survey aims to facilitate further research and application of on-device AI, ultimately contributing to the advancement of intelligent systems in everyday life.
comment: This paper has been accepted by ACM Computing Surveys
♻ ☆ The Empirical Impact of Reducing Symmetries on the Performance of Deep Ensembles and MoE ICLR
Recent studies have shown that reducing symmetries in neural networks enhances linear mode connectivity between networks without requiring parameter space alignment, leading to improved performance in linearly interpolated neural networks. However, in practical applications, neural network interpolation is rarely used; instead, ensembles of networks are more common. In this paper, we empirically investigate the impact of reducing symmetries on the performance of deep ensembles and Mixture of Experts (MoE) across five datasets. Additionally, to explore deeper linear mode connectivity, we introduce the Mixture of Interpolated Experts (MoIE). Our results show that deep ensembles built on asymmetric neural networks achieve significantly better performance as ensemble size increases compared to their symmetric counterparts. In contrast, our experiments do not provide conclusive evidence on whether reducing symmetries affects both MoE and MoIE architectures.
comment: Accepted at the ICLR Workshop on Neural Network Weights as a New Data Modality 2025
♻ ☆ Reangle-A-Video: 4D Video Generation as Video-to-Video Translation
We introduce Reangle-A-Video, a unified framework for generating synchronized multi-view videos from a single input video. Unlike mainstream approaches that train multi-view video diffusion models on large-scale 4D datasets, our method reframes the multi-view video generation task as video-to-videos translation, leveraging publicly available image and video diffusion priors. In essence, Reangle-A-Video operates in two stages. (1) Multi-View Motion Learning: An image-to-video diffusion transformer is synchronously fine-tuned in a self-supervised manner to distill view-invariant motion from a set of warped videos. (2) Multi-View Consistent Image-to-Images Translation: The first frame of the input video is warped and inpainted into various camera perspectives under an inference-time cross-view consistency guidance using DUSt3R, generating multi-view consistent starting images. Extensive experiments on static view transport and dynamic camera control show that Reangle-A-Video surpasses existing methods, establishing a new solution for multi-view video generation. We will publicly release our code and data. Project page: https://hyeonho99.github.io/reangle-a-video/
comment: Project page: https://hyeonho99.github.io/reangle-a-video/
♻ ☆ DeepDiveAI: Identifying AI Related Documents in Large Scale Literature Data
In this paper, we propose a method to automatically classify AI-related documents from large-scale literature databases, leading to the creation of an AI-related literature dataset, named DeepDiveAI. The dataset construction approach integrates expert knowledge with the capabilities of advanced models, structured across two global stages. In the first stage, expert-curated classification datasets are used to train an LSTM model, which classifies coarse AI related records from large-scale datasets. In the second stage, we use Qwen2.5 Plus to annotate a random 10% of the coarse AI-related records, which are then used to train a BERT binary classifier. This step further refines the coarse AI related record set to obtain the final DeepDiveAI dataset. Evaluation results demonstrate that the entire workflow can efficiently and accurately identify AI-related literature from large-scale datasets.
♻ ☆ Fine-tuning can Help Detect Pretraining Data from Large Language Models
In the era of large language models (LLMs), detecting pretraining data has been increasingly important due to concerns about fair evaluation and ethical risks. Current methods differentiate members and non-members by designing scoring functions, like Perplexity and Min-k%. However, the diversity and complexity of training data magnifies the difficulty of distinguishing, leading to suboptimal performance in detecting pretraining data. In this paper, we first explore the benefits of unseen data, which can be easily collected after the release of the LLM. We find that the perplexities of LLMs shift differently for members and non-members, after fine-tuning with a small amount of previously unseen data. In light of this, we introduce a novel and effective method termed Fine-tuned Score Deviation(FSD), which improves the performance of current scoring functions for pretraining data detection. In particular, we propose to measure the deviation distance of current scores after fine-tuning on a small amount of unseen data within the same domain. In effect, using a few unseen data can largely decrease the scores of all non-members, leading to a larger deviation distance than members. Extensive experiments demonstrate the effectiveness of our method, significantly improving the AUC score on common benchmark datasets across various models.
♻ ☆ ShapeShifter: 3D Variations Using Multiscale and Sparse Point-Voxel Diffusion
This paper proposes ShapeShifter, a new 3D generative model that learns to synthesize shape variations based on a single reference model. While generative methods for 3D objects have recently attracted much attention, current techniques often lack geometric details and/or require long training times and large resources. Our approach remedies these issues by combining sparse voxel grids and point, normal, and color sampling within a multiscale neural architecture that can be trained efficiently and in parallel. We show that our resulting variations better capture the fine details of their original input and can handle more general types of surfaces than previous SDF-based methods. Moreover, we offer interactive generation of 3D shape variants, allowing more human control in the design loop if needed.
♻ ☆ A Survey on Knowledge-Oriented Retrieval-Augmented Generation
Retrieval-Augmented Generation (RAG) has gained significant attention in recent years for its potential to enhance natural language understanding and generation by combining large-scale retrieval systems with generative models. RAG leverages external knowledge sources, such as documents, databases, or structured data, to improve model performance and generate more accurate and contextually relevant outputs. This survey aims to provide a comprehensive overview of RAG by examining its fundamental components, including retrieval mechanisms, generation processes, and the integration between the two. We discuss the key characteristics of RAG, such as its ability to augment generative models with dynamic external knowledge, and the challenges associated with aligning retrieved information with generative objectives. We also present a taxonomy that categorizes RAG methods, ranging from basic retrieval-augmented approaches to more advanced models incorporating multi-modal data and reasoning capabilities. Additionally, we review the evaluation benchmarks and datasets commonly used to assess RAG systems, along with a detailed exploration of its applications in fields such as question answering, summarization, and information retrieval. Finally, we highlight emerging research directions and opportunities for improving RAG systems, such as enhanced retrieval efficiency, model interpretability, and domain-specific adaptations. This paper concludes by outlining the prospects for RAG in addressing real-world challenges and its potential to drive further advancements in natural language processing.
♻ ☆ TinyR1-32B-Preview: Boosting Accuracy with Branch-Merge Distillation
The challenge of reducing the size of Large Language Models (LLMs) while maintaining their performance has gained significant attention. However, existing methods, such as model distillation and transfer learning, often fail to achieve high accuracy. To address this limitation, we introduce the Branch-Merge distillation approach, which enhances model compression through two phases: (1) the Branch Phase, where knowledge from a large teacher model is \textit{selectively distilled} into specialized student models via domain-specific supervised fine-tuning (SFT); And (2) the Merge Phase, where these student models are merged to enable cross-domain knowledge transfer and improve generalization. We validate our distillation approach using DeepSeek-R1 as the teacher and DeepSeek-R1-Distill-Qwen-32B as the student. The resulting merged model, TinyR1-32B-Preview, outperforms its counterpart DeepSeek-R1-Distill-Qwen-32B across multiple benchmarks, including Mathematics (+5.5 points), Coding (+4.4 points) and Science (+2.9 points), while achieving near-equal performance to DeepSeek-R1 on AIME 2024. The Branch-Merge distillation approach provides a scalable solution for creating smaller, high-performing LLMs with reduced computational cost and time.
comment: Preprint
♻ ☆ Probabilistic Shielding for Safe Reinforcement Learning AAAI 2025
In real-life scenarios, a Reinforcement Learning (RL) agent aiming to maximise their reward, must often also behave in a safe manner, including at training time. Thus, much attention in recent years has been given to Safe RL, where an agent aims to learn an optimal policy among all policies that satisfy a given safety constraint. However, strict safety guarantees are often provided through approaches based on linear programming, and thus have limited scaling. In this paper we present a new, scalable method, which enjoys strict formal guarantees for Safe RL, in the case where the safety dynamics of the Markov Decision Process (MDP) are known, and safety is defined as an undiscounted probabilistic avoidance property. Our approach is based on state-augmentation of the MDP, and on the design of a shield that restricts the actions available to the agent. We show that our approach provides a strict formal safety guarantee that the agent stays safe at training and test time. Furthermore, we demonstrate that our approach is viable in practice through experimental evaluation.
comment: 13 pages, 3 figures, Conference: AAAI 2025
♻ ☆ A Comprehensive Overview and Comparative Analysis on Deep Learning Models: CNN, RNN, LSTM, GRU
Deep learning (DL) has emerged as a powerful subset of machine learning (ML) and artificial intelligence (AI), outperforming traditional ML methods, especially in handling unstructured and large datasets. Its impact spans across various domains, including speech recognition, healthcare, autonomous vehicles, cybersecurity, predictive analytics, and more. However, the complexity and dynamic nature of real-world problems present challenges in designing effective deep learning models. Consequently, several deep learning models have been developed to address different problems and applications. In this article, we conduct a comprehensive survey of various deep learning models, including Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Temporal Convolutional Networks (TCN), Transformer, Kolmogorov-Arnold networks (KAN), Generative Models, Deep Reinforcement Learning (DRL), and Deep Transfer Learning. We examine the structure, applications, benefits, and limitations of each model. Furthermore, we perform an analysis using three publicly available datasets: IMDB, ARAS, and Fruit-360. We compared the performance of six renowned deep learning models: CNN, RNN, Long Short-Term Memory (LSTM), Bidirectional LSTM, Gated Recurrent Unit (GRU), and Bidirectional GRU alongside two newer models, TCN and Transformer, using the IMDB and ARAS datasets. Additionally, we evaluated the performance of eight CNN-based models, including VGG (Visual Geometry Group), Inception, ResNet (Residual Network), InceptionResNet, Xception (Extreme Inception), MobileNet, DenseNet (Dense Convolutional Network), and NASNet (Neural Architecture Search Network), for image classification tasks using the Fruit-360 dataset.
comment: 62 pages, 37 figures
♻ ☆ Job Shop Scheduling Benchmark: Environments and Instances for Learning and Non-learning Methods
Job shop scheduling problems address the routing and sequencing of tasks in a job shop setting. Despite significant interest from operations research and machine learning communities over the years, a comprehensive platform for testing and comparing solution methods has been notably lacking. To fill this gap, we introduce a unified implementation of job shop scheduling problems and their solution methods, addressing the long-standing need for a standardized benchmarking platform in this domain. Our platform supports classic Job Shop (JSP), Flow Shop (FSP), Flexible Job Shop (FJSP), and Assembly Job Shop (AJSP), as well as variants featuring Sequence-Dependent Setup Times (SDST), variants with online arrivals of jobs, and combinations of these problems (e.g., FJSP-SDST and FAJSP). The platfrom provides a wide range of scheduling solution methods, from heuristics, metaheuristics, and exact optimization to deep reinforcement learning. The implementation is available as an open-source GitHub repository, serving as a collaborative hub for researchers, practitioners, and those new to the field. Beyond enabling direct comparisons with existing methods on widely studied benchmark problems, this resource serves as a robust starting point for addressing constrained and complex problem variants. By establishing a comprehensive and unified foundation, this platform is designed to consolidate existing knowledge and to inspire the development of next-generation algorithms in job shop scheduling research.
♻ ☆ Exploring ReAct Prompting for Task-Oriented Dialogue: Insights and Shortcomings
Large language models (LLMs) gained immense popularity due to their impressive capabilities in unstructured conversations. Empowering LLMs with advanced prompting strategies such as reasoning and acting (ReAct) (Yao et al., 2022) has shown promise in solving complex tasks traditionally requiring reinforcement learning. In this work, we apply the ReAct strategy to guide LLMs performing task-oriented dialogue (TOD). We evaluate ReAct-based LLMs (ReAct-LLMs) both in simulation and with real users. While ReAct-LLMs severely underperform state-of-the-art approaches on success rate in simulation, this difference becomes less pronounced in human evaluation. Moreover, compared to the baseline, humans report higher subjective satisfaction with ReAct-LLM despite its lower success rate, most likely thanks to its natural and confidently phrased responses.
♻ ☆ Believing is Seeing: Unobserved Object Detection using Generative Models
Can objects that are not visible in an image -- but are in the vicinity of the camera -- be detected? This study introduces the novel tasks of 2D, 2.5D and 3D unobserved object detection for predicting the location of nearby objects that are occluded or lie outside the image frame. We adapt several state-of-the-art pre-trained generative models to address this task, including 2D and 3D diffusion models and vision-language models, and show that they can be used to infer the presence of objects that are not directly observed. To benchmark this task, we propose a suite of metrics that capture different aspects of performance. Our empirical evaluation on indoor scenes from the RealEstate10k and NYU Depth v2 datasets demonstrate results that motivate the use of generative models for the unobserved object detection task.
comment: IEEE/CVF Computer Vision and Pattern Recognition 2025; 22 pages
♻ ☆ Exact Computation of Any-Order Shapley Interactions for Graph Neural Networks ICLR 2025
Albeit the ubiquitous use of Graph Neural Networks (GNNs) in machine learning (ML) prediction tasks involving graph-structured data, their interpretability remains challenging. In explainable artificial intelligence (XAI), the Shapley Value (SV) is the predominant method to quantify contributions of individual features to a ML model's output. Addressing the limitations of SVs in complex prediction models, Shapley Interactions (SIs) extend the SV to groups of features. In this work, we explain single graph predictions of GNNs with SIs that quantify node contributions and interactions among multiple nodes. By exploiting the GNN architecture, we show that the structure of interactions in node embeddings are preserved for graph prediction. As a result, the exponential complexity of SIs depends only on the receptive fields, i.e. the message-passing ranges determined by the connectivity of the graph and the number of convolutional layers. Based on our theoretical results, we introduce GraphSHAP-IQ, an efficient approach to compute any-order SIs exactly. GraphSHAP-IQ is applicable to popular message passing techniques in conjunction with a linear global pooling and output layer. We showcase that GraphSHAP-IQ substantially reduces the exponential complexity of computing exact SIs on multiple benchmark datasets. Beyond exact computation, we evaluate GraphSHAP-IQ's approximation of SIs on popular GNN architectures and compare with existing baselines. Lastly, we visualize SIs of real-world water distribution networks and molecule structures using a SI-Graph.
comment: Preprint Version. Accepted at ICLR 2025
♻ ☆ Advanced computer vision for extracting georeferenced vehicle trajectories from drone imagery
This paper presents a framework for extracting georeferenced vehicle trajectories from high-altitude drone imagery, addressing key challenges in urban traffic monitoring and the limitations of traditional ground-based systems. Our approach integrates several novel contributions, including a tailored object detector optimized for high-altitude bird's-eye view perspectives, a unique track stabilization method that uses detected vehicle bounding boxes as exclusion masks during image registration, and an orthophoto and master frame-based georeferencing strategy that enhances consistent alignment across multiple drone viewpoints. Additionally, our framework features robust vehicle dimension estimation and detailed road segmentation, enabling comprehensive traffic analysis. Conducted in the Songdo International Business District, South Korea, the study utilized a multi-drone experiment covering 20 intersections, capturing approximately 12TB of 4K video data over four days. The framework produced two high-quality datasets: the Songdo Traffic dataset, comprising approximately 700,000 unique vehicle trajectories, and the Songdo Vision dataset, containing over 5,000 human-annotated images with about 300,000 vehicle instances in four classes. Comparisons with high-precision sensor data from an instrumented probe vehicle highlight the accuracy and consistency of our extraction pipeline in dense urban environments. The public release of Songdo Traffic and Songdo Vision, and the complete source code for the extraction pipeline, establishes new benchmarks in data quality, reproducibility, and scalability in traffic research. Results demonstrate the potential of integrating drone technology with advanced computer vision for precise and cost-effective urban traffic monitoring, providing valuable resources for developing intelligent transportation systems and enhancing traffic management strategies.
♻ ☆ Is Contrasting All You Need? Contrastive Learning for the Detection and Attribution of AI-generated Text
The significant progress in the development of Large Language Models has contributed to blurring the distinction between human and AI-generated text. The increasing pervasiveness of AI-generated text and the difficulty in detecting it poses new challenges for our society. In this paper, we tackle the problem of detecting and attributing AI-generated text by proposing WhosAI, a triplet-network contrastive learning framework designed to predict whether a given input text has been generated by humans or AI and to unveil the authorship of the text. Unlike most existing approaches, our proposed framework is conceived to learn semantic similarity representations from multiple generators at once, thus equally handling both detection and attribution tasks. Furthermore, WhosAI is model-agnostic and scalable to the release of new AI text-generation models by incorporating their generated instances into the embedding space learned by our framework. Experimental results on the TuringBench benchmark of 200K news articles show that our proposed framework achieves outstanding results in both the Turing Test and Authorship Attribution tasks, outperforming all the methods listed in the TuringBench benchmark leaderboards.
comment: Accepted for publication at the 27th European Conference on Artificial Intelligence (ECAI-2024), Volume 392, Pages 3179 - 3186, October 2024
♻ ☆ Visually Wired NFTs: Exploring the Role of Inspiration in Non-Fungible Tokens
The fervor for Non-Fungible Tokens (NFTs) attracted countless creators, leading to a Big Bang of digital assets driven by latent or explicit forms of inspiration, as in many creative processes. This work exploits Vision Transformers and graph-based modeling to delve into visual inspiration phenomena between NFTs over the years. Our goals include unveiling the main structural traits that shape visual inspiration networks, exploring the interrelation between visual inspiration and asset performances, investigating crypto influence on inspiration processes, and explaining the inspiration relationships among NFTs. Our findings unveil how the pervasiveness of inspiration led to a temporary saturation of the visual feature space, the impact of the dichotomy between inspiring and inspired NFTs on their financial performance, and an intrinsic self-regulatory mechanism between markets and inspiration waves. Our work can serve as a starting point for gaining a broader view of the evolution of Web3.
comment: Accepted for publication with ACM Trans. on the Web, Jan 2025. https://dl.acm.org/doi/10.1145/3703411
♻ ☆ Interleaved-Modal Chain-of-Thought CVPR 2025
Chain-of-Thought (CoT) prompting elicits large language models (LLMs) to produce a series of intermediate reasoning steps before arriving at the final answer. However, when transitioning to vision-language models (VLMs), their text-only rationales struggle to express the fine-grained associations with the original image. In this paper, we propose an image-incorporated multimodal Chain-of-Thought, named \textbf{Interleaved-modal Chain-of-Thought (ICoT)}, which generates sequential reasoning steps consisting of paired visual and textual rationales to infer the final answer. Intuitively, the novel ICoT requires VLMs to enable the generation of fine-grained interleaved-modal content, which is hard for current VLMs to fulfill. Considering that the required visual information is usually part of the input image, we propose \textbf{Attention-driven Selection (ADS)} to realize ICoT over existing VLMs. ADS intelligently inserts regions of the input image to generate the interleaved-modal reasoning steps with ignorable additional latency. ADS relies solely on the attention map of VLMs without the need for parameterization, and therefore it is a plug-and-play strategy that can be generalized to a spectrum of VLMs. We apply ADS to realize ICoT on two popular VLMs of different architectures. Extensive evaluations of three benchmarks have shown that ICoT prompting achieves substantial performance (up to 14\%) and interpretability improvements compared to existing multimodal CoT prompting methods.
comment: CVPR 2025 Main Conference
♻ ☆ Leveraging Joint Predictive Embedding and Bayesian Inference in Graph Self Supervised Learning
Graph representation learning has emerged as a cornerstone for tasks like node classification and link prediction, yet prevailing self-supervised learning (SSL) methods face challenges such as computational inefficiency, reliance on contrastive objectives, and representation collapse. Existing approaches often depend on feature reconstruction, negative sampling, or complex decoders, which introduce training overhead and hinder generalization. Further, current techniques which address such limitations fail to account for the contribution of node embeddings to a certain prediction in the absence of labeled nodes. To address these limitations, we propose a novel joint embedding predictive framework for graph SSL that eliminates contrastive objectives and negative sampling while preserving semantic and structural information. Additionally, we introduce a semantic-aware objective term that incorporates pseudo-labels derived from Gaussian Mixture Models (GMMs), enhancing node discriminability by evaluating latent feature contributions. Extensive experiments demonstrate that our framework outperforms state-of-the-art graph SSL methods across benchmarks, achieving superior performance without contrastive loss or complex decoders. Key innovations include (1) a non-contrastive, view-invariant joint embedding predictive architecture, (2) Leveraging single context and multiple targets relationship between subgraphs, and (3) GMM-based pseudo-label scoring to capture semantic contributions. This work advances graph SSL by offering a computationally efficient, collapse-resistant paradigm that bridges spatial and semantic graph features for downstream tasks. The code for our paper can be found at https://github.com/Deceptrax123/JPEB-GSSL
comment: Preprit. Under Review
♻ ☆ Decoupled Graph Energy-based Model for Node Out-of-Distribution Detection on Heterophilic Graphs ICLR 2025
Despite extensive research efforts focused on OOD detection on images, OOD detection on nodes in graph learning remains underexplored. The dependence among graph nodes hinders the trivial adaptation of existing approaches on images that assume inputs to be i.i.d. sampled, since many unique features and challenges specific to graphs are not considered, such as the heterophily issue. Recently, GNNSafe, which considers node dependence, adapted energy-based detection to the graph domain with state-of-the-art performance, however, it has two serious issues: 1) it derives node energy from classification logits without specifically tailored training for modeling data distribution, making it less effective at recognizing OOD data; 2) it highly relies on energy propagation, which is based on homophily assumption and will cause significant performance degradation on heterophilic graphs, where the node tends to have dissimilar distribution with its neighbors. To address the above issues, we suggest training EBMs by MLE to enhance data distribution modeling and remove energy propagation to overcome the heterophily issues. However, training EBMs via MLE requires performing MCMC sampling on both node feature and node neighbors, which is challenging due to the node interdependence and discrete graph topology. To tackle the sampling challenge, we introduce DeGEM, which decomposes the learning process into two parts: a graph encoder that leverages topology information for node representations and an energy head that operates in latent space. Extensive experiments validate that DeGEM, without OOD exposure during training, surpasses previous state-of-the-art methods, achieving an average AUROC improvement of 6.71% on homophilic graphs and 20.29% on heterophilic graphs, and even outperform methods trained with OOD exposure. Our code is available at: https://github.com/draym28/DeGEM.
comment: The first two authors contributed equally to this work; ICLR 2025
♻ ☆ Treble Counterfactual VLMs: A Causal Approach to Hallucination
Vision-Language Models (VLMs) have advanced multi-modal tasks like image captioning, visual question answering, and reasoning. However, they often generate hallucinated outputs inconsistent with the visual context or prompt, limiting reliability in critical applications like autonomous driving and medical imaging. Existing studies link hallucination to statistical biases, language priors, and biased feature learning but lack a structured causal understanding. In this work, we introduce a causal perspective to analyze and mitigate hallucination in VLMs. We hypothesize that hallucination arises from unintended direct influences of either the vision or text modality, bypassing proper multi-modal fusion. To address this, we construct a causal graph for VLMs and employ counterfactual analysis to estimate the Natural Direct Effect (NDE) of vision, text, and their cross-modal interaction on the output. We systematically identify and mitigate these unintended direct effects to ensure that responses are primarily driven by genuine multi-modal fusion. Our approach consists of three steps: (1) designing structural causal graphs to distinguish correct fusion pathways from spurious modality shortcuts, (2) estimating modality-specific and cross-modal NDE using perturbed image representations, hallucinated text embeddings, and degraded visual inputs, and (3) implementing a test-time intervention module to dynamically adjust the model's dependence on each modality. Experimental results demonstrate that our method significantly reduces hallucination while preserving task performance, providing a robust and interpretable framework for improving VLM reliability. To enhance accessibility and reproducibility, our code is publicly available at https://github.com/TREE985/Treble-Counterfactual-VLMs.
♻ ☆ Other Vehicle Trajectories Are Also Needed: A Driving World Model Unifies Ego-Other Vehicle Trajectories in Video Latent Space
Advanced end-to-end autonomous driving systems predict other vehicles' motions and plan ego vehicle's trajectory. The world model that can foresee the outcome of the trajectory has been used to evaluate the end-to-end autonomous driving system. However, existing world models predominantly emphasize the trajectory of the ego vehicle and leave other vehicles uncontrollable. This limitation hinders their ability to realistically simulate the interaction between the ego vehicle and the driving scenario. In addition, it remains a challenge to match multiple trajectories with each vehicle in the video to control the video generation. To address above issues, a driving World Model named EOT-WM is proposed in this paper, unifying Ego-Other vehicle Trajectories in videos. Specifically, we first project ego and other vehicle trajectories in the BEV space into the image coordinate to match each trajectory with its corresponding vehicle in the video. Then, trajectory videos are encoded by the Spatial-Temporal Variational Auto Encoder to align with driving video latents spatially and temporally in the unified visual space. A trajectory-injected diffusion Transformer is further designed to denoise the noisy video latents for video generation with the guidance of ego-other vehicle trajectories. In addition, we propose a metric based on control latent similarity to evaluate the controllability of trajectories. Extensive experiments are conducted on the nuScenes dataset, and the proposed model outperforms the state-of-the-art method by 30% in FID and 55% in FVD. The model can also predict unseen driving scenes with self-produced trajectories.
comment: 8 pages, 7 figures
♻ ☆ Secure On-Device Video OOD Detection Without Backpropagation
Out-of-Distribution (OOD) detection is critical for ensuring the reliability of machine learning models in safety-critical applications such as autonomous driving and medical diagnosis. While deploying personalized OOD detection directly on edge devices is desirable, it remains challenging due to large model sizes and the computational infeasibility of on-device training. Federated learning partially addresses this but still requires gradient computation and backpropagation, exceeding the capabilities of many edge devices. To overcome these challenges, we propose SecDOOD, a secure cloud-device collaboration framework for efficient on-device OOD detection without requiring device-side backpropagation. SecDOOD utilizes cloud resources for model training while ensuring user data privacy by retaining sensitive information on-device. Central to SecDOOD is a HyperNetwork-based personalized parameter generation module, which adapts cloud-trained models to device-specific distributions by dynamically generating local weight adjustments, effectively combining central and local information without local fine-tuning. Additionally, our dynamic feature sampling and encryption strategy selectively encrypts only the most informative feature channels, largely reducing encryption overhead without compromising detection performance. Extensive experiments across multiple datasets and OOD scenarios demonstrate that SecDOOD achieves performance comparable to fully fine-tuned models, enabling secure, efficient, and personalized OOD detection on resource-limited edge devices. To enhance accessibility and reproducibility, our code is publicly available at https://github.com/Dystopians/SecDOOD.
♻ ☆ Multi-Agent Image Restoration
Image restoration (IR) is challenging due to the complexity of real-world degradations. While many specialized and all-in-one IR models have been developed, they fail to effectively handle complex, mixed degradations. Recent agentic methods RestoreAgent and AgenticIR leverage intelligent, autonomous workflows to alleviate this issue, yet they suffer from suboptimal results and inefficiency due to their resource-intensive finetunings, and ineffective searches and tool execution trials for satisfactory outputs. In this paper, we propose MAIR, a novel Multi-Agent approach for complex IR problems. We introduce a real-world degradation prior, categorizing degradations into three types: (1) scene, (2) imaging, and (3) compression, which are observed to occur sequentially in real world, and reverse them in the opposite order. Built upon this three-stage restoration framework, MAIR emulates a team of collaborative human specialists, including a "scheduler" for overall planning and multiple "experts" dedicated to specific degradations. This design minimizes search space and trial efforts, improving image quality while reducing inference costs. In addition, a registry mechanism is introduced to enable easy integration of new tools. Experiments on both synthetic and real-world datasets show that proposed MAIR achieves competitive performance and improved efficiency over the previous agentic IR system. Code and models will be made available.
♻ ☆ Seeing World Dynamics in a Nutshell
We consider the problem of efficiently representing casually captured monocular videos in a spatially- and temporally-coherent manner. While existing approaches predominantly rely on 2D/2.5D techniques treating videos as collections of spatiotemporal pixels, they struggle with complex motions, occlusions, and geometric consistency due to absence of temporal coherence and explicit 3D structure. Drawing inspiration from monocular video as a projection of the dynamic 3D world, we explore representing videos in their intrinsic 3D form through continuous flows of Gaussian primitives in space-time. In this paper, we propose NutWorld, a novel framework that efficiently transforms monocular videos into dynamic 3D Gaussian representations in a single forward pass. At its core, NutWorld introduces a structured spatial-temporal aligned Gaussian (STAG) representation, enabling optimization-free scene modeling with effective depth and flow regularization. Through comprehensive experiments, we demonstrate that NutWorld achieves high-fidelity video reconstruction quality while enabling various downstream applications in real-time. Demos and code will be available at https://github.com/Nut-World/NutWorld.
♻ ☆ ACL-QL: Adaptive Conservative Level in Q-Learning for Offline Reinforcement Learning
Offline Reinforcement Learning (RL), which operates solely on static datasets without further interactions with the environment, provides an appealing alternative to learning a safe and promising control policy. The prevailing methods typically learn a conservative policy to mitigate the problem of Q-value overestimation, but it is prone to overdo it, leading to an overly conservative policy. Moreover, they optimize all samples equally with fixed constraints, lacking the nuanced ability to control conservative levels in a fine-grained manner. Consequently, this limitation results in a performance decline. To address the above two challenges in a united way, we propose a framework, Adaptive Conservative Level in Q-Learning (ACL-QL), which limits the Q-values in a mild range and enables adaptive control on the conservative level over each state-action pair, i.e., lifting the Q-values more for good transitions and less for bad transitions. We theoretically analyze the conditions under which the conservative level of the learned Q-function can be limited in a mild range and how to optimize each transition adaptively. Motivated by the theoretical analysis, we propose a novel algorithm, ACL-QL, which uses two learnable adaptive weight functions to control the conservative level over each transition. Subsequently, we design a monotonicity loss and surrogate losses to train the adaptive weight functions, Q-function, and policy network alternatively. We evaluate ACL-QL on the commonly used D4RL benchmark and conduct extensive ablation studies to illustrate the effectiveness and state-of-the-art performance compared to existing offline DRL baselines.
comment: 19 pages, 4 figures, IEEE Transactions on Neural Networks and Learning Systems (2024)
♻ ☆ Learning from Imperfect Demonstrations with Self-Supervision for Robotic Manipulation
Improving data utilization, especially for imperfect data from task failures, is crucial for robotic manipulation due to the challenging, time-consuming, and expensive data collection process in the real world. Current imitation learning (IL) typically discards imperfect data, focusing solely on successful expert data. While reinforcement learning (RL) can learn from explorations and failures, the sim2real gap and its reliance on dense reward and online exploration make it difficult to apply effectively in real-world scenarios. In this work, we aim to conquer the challenge of leveraging imperfect data without the need for reward information to improve the model performance for robotic manipulation in an offline manner. Specifically, we introduce a Self-Supervised Data Filtering framework (SSDF) that combines expert and imperfect data to compute quality scores for failed trajectory segments. High-quality segments from the failed data are used to expand the training dataset. Then, the enhanced dataset can be used with any downstream policy learning method for robotic manipulation tasks. Extensive experiments on the ManiSkill2 benchmark built on the high-fidelity Sapien simulator and real-world robotic manipulation tasks using the Franka robot arm demonstrated that the SSDF can accurately expand the training dataset with high-quality imperfect data and improve the success rates for all robotic manipulation tasks.
comment: 8 pages, 4 figures
♻ ☆ Exploiting Edited Large Language Models as General Scientific Optimizers
Large language models (LLMs) have been widely adopted in mathematical optimization in scientific scenarios for their extensive knowledge and advanced reasoning capabilities. Existing methods mainly focus on utilizing LLMs to solve optimization problems in a prompt-based manner, which takes observational feedback as additional textual descriptions. However, due to LLM's \textbf{high sensitivity to the prompts} and \textbf{tendency to get lost in lengthy prompts}, these methods struggle to effectively utilize the {observational} feedback from each optimization step, which severely hinders the applications for real-world scenarios. To address these challenges, we propose a conceptually simple and general {bi-level} optimization method, namely \textbf{G}eneral \textbf{S}cientific \textbf{O}ptimizers (GSO). Specifically, GSO first utilizes inner-level simulators as experimental platforms to evaluate the current solution and provide observational feedback. Then, LLMs serve as knowledgeable and versatile scientists, generating new solutions by refining potential errors from the feedback as the outer-level optimization. Finally, simulations together with the expert knowledge in LLMs are jointly updated with bi-level interactions via model editing. Extensive experiments show that GSO consistently outperforms existing state-of-the-art methods using \textit{six} different LLM backbones on \textit{seven} different tasks, demonstrating the effectiveness and a wide range of applications.
♻ ☆ Compositional Models for Estimating Causal Effects
Many real-world systems can be usefully represented as sets of interacting components. Examples include computational systems, such as query processors and compilers, natural systems, such as cells and ecosystems, and social systems, such as families and organizations. However, current approaches to estimating potential outcomes and causal effects typically treat such systems as single units, represent them with a fixed set of variables, and assume a homogeneous data-generating process. In this work, we study a compositional approach for estimating individual-level potential outcomes and causal effects in structured systems, where each unit is represented by an instance-specific composition of multiple heterogeneous components. The compositional approach decomposes unit-level causal queries into more fine-grained queries, explicitly modeling how unit-level interventions affect component-level outcomes to generate a unit's outcome. We demonstrate this approach using modular neural network architectures and show that it provides benefits for causal effect estimation from observational data, such as accurate causal effect estimation for structured units, increased sample efficiency, improved overlap between treatment and control groups, and compositional generalization to units with unseen combinations of components. Remarkably, our results show that compositional modeling can improve the accuracy of causal estimation even when component-level outcomes are unobserved. We also create and use a set of real-world evaluation environments for the empirical evaluation of compositional approaches for causal effect estimation and demonstrate the role of composition structure, varying amounts of component-level data access, and component heterogeneity in the performance of compositional models as compared to the non-compositional approaches.
comment: Accepted at the Fourth Conference on Causal Learning and Reasoning (CLeaR), 2025
♻ ☆ To Trust or Not to Trust? Enhancing Large Language Models' Situated Faithfulness to External Contexts
Large Language Models (LLMs) are often augmented with external contexts, such as those used in retrieval-augmented generation (RAG). However, these contexts can be inaccurate or intentionally misleading, leading to conflicts with the model's internal knowledge. We argue that robust LLMs should demonstrate situated faithfulness, dynamically calibrating their trust in external information based on their confidence in the internal knowledge and the external context to resolve knowledge conflicts. To benchmark this capability, we evaluate LLMs across several QA datasets, including a newly created dataset featuring in-the-wild incorrect contexts sourced from Reddit posts. We show that when provided with both correct and incorrect contexts, both open-source and proprietary models tend to overly rely on external information, regardless of its factual accuracy. To enhance situated faithfulness, we propose two approaches: Self-Guided Confidence Reasoning (SCR) and Rule-Based Confidence Reasoning (RCR). SCR enables models to self-assess the confidence of external information relative to their own internal knowledge to produce the most accurate answer. RCR, in contrast, extracts explicit confidence signals from the LLM and determines the final answer using predefined rules. Our results show that for LLMs with strong reasoning capabilities, such as GPT-4o and GPT-4o mini, SCR outperforms RCR, achieving improvements of up to 24.2% over a direct input augmentation baseline. Conversely, for a smaller model like Llama-3-8B, RCR outperforms SCR. Fine-tuning SCR with our proposed Confidence Reasoning Direct Preference Optimization (CR-DPO) method improves performance on both seen and unseen datasets, yielding an average improvement of 8.9% on Llama-3-8B. In addition to quantitative results, we offer insights into the relative strengths of SCR and RCR.
♻ ☆ STORM: A Spatio-Temporal Factor Model Based on Dual Vector Quantized Variational Autoencoders for Financial Trading
In financial trading, factor models are widely used to price assets and capture excess returns from mispricing. Recently, we have witnessed the rise of variational autoencoder-based latent factor models, which learn latent factors self-adaptively. While these models focus on modeling overall market conditions, they often fail to effectively capture the temporal patterns of individual stocks. Additionally, representing multiple factors as single values simplifies the model but limits its ability to capture complex relationships and dependencies. As a result, the learned factors are of low quality and lack diversity, reducing their effectiveness and robustness across different trading periods. To address these issues, we propose a Spatio-Temporal factOR Model based on dual vector quantized variational autoencoders, named STORM, which extracts features of stocks from temporal and spatial perspectives, then fuses and aligns these features at the fine-grained and semantic level, and represents the factors as multi-dimensional embeddings. The discrete codebooks cluster similar factor embeddings, ensuring orthogonality and diversity, which helps distinguish between different factors and enables factor selection in financial trading. To show the performance of the proposed factor model, we apply it to two downstream experiments: portfolio management on two stock datasets and individual trading tasks on six specific stocks. The extensive experiments demonstrate STORM's flexibility in adapting to downstream tasks and superior performance over baseline models.
♻ ☆ Diffusion Suction Grasping with Large-Scale Parcel Dataset
While recent advances in object suction grasping have shown remarkable progress, significant challenges persist particularly in cluttered and complex parcel handling scenarios. Two fundamental limitations hinder current approaches: (1) the lack of a comprehensive suction grasp dataset tailored for parcel manipulation tasks, and (2) insufficient adaptability to diverse object characteristics including size variations, geometric complexity, and textural diversity. To address these challenges, we present Parcel-Suction-Dataset, a large-scale synthetic dataset containing 25 thousand cluttered scenes with 410 million precision-annotated suction grasp poses. This dataset is generated through our novel geometric sampling algorithm that enables efficient generation of optimal suction grasps incorporating both physical constraints and material properties. We further propose Diffusion-Suction, an innovative framework that reformulates suction grasp prediction as a conditional generation task through denoising diffusion probabilistic models. Our method iteratively refines random noise into suction grasp score maps through visual-conditioned guidance from point cloud observations, effectively learning spatial point-wise affordances from our synthetic dataset. Extensive experiments demonstrate that the simple yet efficient Diffusion-Suction achieves new state-of-the-art performance compared to previous models on both Parcel-Suction-Dataset and the public SuctionNet-1Billion benchmark.
♻ ☆ Economic Rationality under Specialization: Evidence of Decision Bias in AI Agents
In the study by Chen et al. (2023) [01], the large language model GPT demonstrated economic rationality comparable to or exceeding the average human level in tasks such as budget allocation and risk preference. Building on this finding, this paper further incorporates specialized agents, such as biotechnology experts and economists, for a horizontal comparison to explore whether specialization can enhance or maintain economic rationality equivalent to that of GPT in similar decision-making scenarios. The results indicate that when agents invest more effort in specialized fields, their decision-making behavior is more prone to 'rationality shift,' specifically manifested as increased violations of GARP (Generalized Axiom of Revealed Preference), decreased CCEI (Critical Cost Efficiency Index), and more significant decision deviations under high-risk conditions. In contrast, GPT and more generalized basic agents maintain a more stable and consistent level of rationality across multiple tasks. This study reveals the inherent conflict between specialization and economic rationality, providing new insights for constructing AI decision-making systems that balance specialization and generalization across various scenarios.
♻ ☆ PDMX: A Large-Scale Public Domain MusicXML Dataset for Symbolic Music Processing ICASSP
The recent explosion of generative AI-Music systems has raised numerous concerns over data copyright, licensing music from musicians, and the conflict between open-source AI and large prestige companies. Such issues highlight the need for publicly available, copyright-free musical data, in which there is a large shortage, particularly for symbolic music data. To alleviate this issue, we present PDMX: a large-scale open-source dataset of over 250K public domain MusicXML scores collected from the score-sharing forum MuseScore, making it the largest available copyright-free symbolic music dataset to our knowledge. PDMX additionally includes a wealth of both tag and user interaction metadata, allowing us to efficiently analyze the dataset and filter for high quality user-generated scores. Given the additional metadata afforded by our data collection process, we conduct multitrack music generation experiments evaluating how different representative subsets of PDMX lead to different behaviors in downstream models, and how user-rating statistics can be used as an effective measure of data quality. Examples can be found at https://pnlong.github.io/PDMX.demo/.
comment: Accepted to 2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
♻ ☆ SQLCritic: Correcting Text-to-SQL Generation via Clause-wise Critic
Recent advancements in Text-to-SQL systems have improved the conversion of natural language queries into SQL, but challenges remain in ensuring accuracy and reliability. While self-correction techniques refine outputs, they often introduce new errors. Existing methods focused on execution feedback mainly address syntax issues, leaving semantic errors -- where the query's logic fails to align with the user's intent -- largely unaddressed. We propose a novel approach combining structured execution feedback with a trained critic agent that provides detailed, interpretable critiques. This method effectively identifies and corrects both syntactic and semantic errors, enhancing accuracy and interpretability. Experimental results show significant improvements on two major Text-to-SQL benchmarks, Spider and BIRD, demonstrating the effectiveness of our approach.
♻ ☆ Leveraging Large Language Models for Code Translation and Software Development in Scientific Computing
The emergence of foundational models and generative artificial intelligence (GenAI) is poised to transform productivity in scientific computing, especially in code development, refactoring, and translating from one programming language to another. However, because the output of GenAI cannot be guaranteed to be correct, manual intervention remains necessary. Some of this intervention can be automated through task-specific tools, alongside additional methodologies for correctness verification and effective prompt development. We explored the application of GenAI in assisting with code translation, language interoperability, and codebase inspection within a legacy Fortran codebase used to simulate particle interactions at the Large Hadron Collider (LHC). In the process, we developed a tool, CodeScribe, which combines prompt engineering with user supervision to establish an efficient process for code conversion. In this paper, we demonstrate how CodeScribe assists in converting Fortran code to C++, generating Fortran-C APIs for integrating legacy systems with modern C++ libraries, and providing developer support for code organization and algorithm implementation. We also address the challenges of AI-driven code translation and highlight its benefits for enhancing productivity in scientific computing workflows.
♻ ☆ A Model Stealing Attack Against Multi-Exit Networks
Compared to traditional neural networks with a single output channel, a multi-exit network has multiple exits that allow for early outputs from the model's intermediate layers, thus significantly improving computational efficiency while maintaining similar main task accuracy. Existing model stealing attacks can only steal the model's utility while failing to capture its output strategy, i.e., a set of thresholds used to determine from which exit to output. This leads to a significant decrease in computational efficiency for the extracted model, thereby losing the advantage of multi-exit networks. In this paper, we propose the first model stealing attack against multi-exit networks to extract both the model utility and the output strategy. We employ Kernel Density Estimation to analyze the target model's output strategy and use performance loss and strategy loss to guide the training of the extracted model. Furthermore, we design a novel output strategy search algorithm to maximize the consistency between the victim model and the extracted model's output behaviors. In experiments across multiple multi-exit networks and benchmark datasets, our method always achieves accuracy and efficiency closest to the victim models.
♻ ☆ Sparse Autoencoders Reveal Universal Feature Spaces Across Large Language Models
We investigate feature universality in large language models (LLMs), a research field that aims to understand how different models similarly represent concepts in the latent spaces of their intermediate layers. Demonstrating feature universality allows discoveries about latent representations to generalize across several models. However, comparing features across LLMs is challenging due to polysemanticity, in which individual neurons often correspond to multiple features rather than distinct ones, making it difficult to disentangle and match features across different models. To address this issue, we employ a method known as dictionary learning by using sparse autoencoders (SAEs) to transform LLM activations into more interpretable spaces spanned by neurons corresponding to individual features. After matching feature neurons across models via activation correlation, we apply representational space similarity metrics on SAE feature spaces across different LLMs. Our experiments reveal significant similarities in SAE feature spaces across various LLMs, providing new evidence for feature universality.
♻ ☆ Prompting Medical Large Vision-Language Models to Diagnose Pathologies by Visual Question Answering
Large Vision-Language Models (LVLMs) have achieved significant success in recent years, and they have been extended to the medical domain. Although demonstrating satisfactory performance on medical Visual Question Answering (VQA) tasks, Medical LVLMs (MLVLMs) suffer from the hallucination problem, which makes them fail to diagnose complex pathologies. Moreover, they readily fail to learn minority pathologies due to imbalanced training data. We propose two prompting strategies for MLVLMs that reduce hallucination and improve VQA performance. In the first strategy, we provide a detailed explanation of the queried pathology. In the second strategy, we fine-tune a cheap, weak learner to achieve high performance on a specific metric, and textually provide its judgment to the MLVLM. Tested on the MIMIC-CXR-JPG and Chexpert datasets, our methods significantly improve the diagnostic F1 score, with the highest increase being 0.27. We also demonstrate that our prompting strategies can be extended to general LVLM domains. Based on POPE metrics, it effectively suppresses the false negative predictions of existing LVLMs and improves Recall by approximately 0.07.
comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2025:004
Scaling Large Language Model-based Multi-Agent Collaboration ICLR-2025
Recent breakthroughs in large language model-driven autonomous agents have revealed that multi-agent collaboration often surpasses each individual through collective reasoning. Inspired by the neural scaling law--increasing neurons enhances performance, this study explores whether the continuous addition of collaborative agents can yield similar benefits. Technically, we utilize directed acyclic graphs to organize agents into a multi-agent collaboration network (MacNet), upon which their interactive reasoning is topologically orchestrated for autonomous task solving. Extensive evaluations reveal that it effectively supports collaboration among over a thousand agents, with irregular topologies outperforming regular ones. We also identify a collaborative scaling law--the overall performance follows a logistic growth pattern as agents scale, with collaborative emergence occurring earlier than traditional neural emergence. We speculate this may be because scaling agents catalyzes their multidimensional considerations during interactive reflection and refinement, thereby producing more comprehensive artifacts. The code is available at https://github.com/OpenBMB/ChatDev/tree/macnet.
comment: Accepted to ICLR-2025
♻ ☆ Bridging Neural and Symbolic Representations with Transitional Dictionary Learning ICLR 2024
This paper introduces a novel Transitional Dictionary Learning (TDL) framework that can implicitly learn symbolic knowledge, such as visual parts and relations, by reconstructing the input as a combination of parts with implicit relations. We propose a game-theoretic diffusion model to decompose the input into visual parts using the dictionaries learned by the Expectation Maximization (EM) algorithm, implemented as the online prototype clustering, based on the decomposition results. Additionally, two metrics, clustering information gain, and heuristic shape score are proposed to evaluate the model. Experiments are conducted on three abstract compositional visual object datasets, which require the model to utilize the compositionality of data instead of simply exploiting visual features. Then, three tasks on symbol grounding to predefined classes of parts and relations, as well as transfer learning to unseen classes, followed by a human evaluation, were carried out on these datasets. The results show that the proposed method discovers compositional patterns, which significantly outperforms the state-of-the-art unsupervised part segmentation methods that rely on visual features from pre-trained backbones. Furthermore, the proposed metrics are consistent with human evaluations.
comment: ICLR 2024
♻ ☆ Imputation Strategies Under Clinical Presence: Impact on Algorithmic Fairness ML4H
Machine learning risks reinforcing biases present in data and, as we argue in this work, in what is absent from data. In healthcare, societal and decision biases shape patterns in missing data, yet the algorithmic fairness implications of group-specific missingness are poorly understood. The way we address missingness in healthcare can have detrimental impacts on downstream algorithmic fairness. Our work questions current recommendations and practices aimed at handling missing data with a focus on their effect on algorithmic fairness, and offers a path forward. Specifically, we consider the theoretical underpinnings of existing recommendations as well as their empirical predictive performance and corresponding algorithmic fairness measured through subgroup performances. Our results show that current practices for handling missingness lack principled foundations, are disconnected from the realities of missingness mechanisms in healthcare, and can be counterproductive. For example, we show that favouring group-specific imputation strategy can be misguided and exacerbate prediction disparities. We then build on our findings to propose a framework for empirically guiding imputation choices, and an accompanying reporting framework. Our work constitutes an important contribution to recent efforts by regulators and practitioners to grapple with the realities of real-world data, and to foster the responsible and transparent deployment of machine learning systems. We demonstrate the practical utility of the proposed framework through experimentation on widely used datasets, where we show how the proposed framework can guide the selection of imputation strategies, allowing us to choose among strategies that yield equal overall predictive performance but present different algorithmic fairness properties.
comment: Full Journal Version under review; Presented at the conference Machine Learning for Health (ML4H) 2022 Published in the Proceedings of Machine Learning Research (193)
♻ ☆ Reinforcement learning with combinatorial actions for coupled restless bandits ICLR 2025
Reinforcement learning (RL) has increasingly been applied to solve real-world planning problems, with progress in handling large state spaces and time horizons. However, a key bottleneck in many domains is that RL methods cannot accommodate large, combinatorially structured action spaces. In such settings, even representing the set of feasible actions at a single step may require a complex discrete optimization formulation. We leverage recent advances in embedding trained neural networks into optimization problems to propose SEQUOIA, an RL algorithm that directly optimizes for long-term reward over the feasible action space. Our approach embeds a Q-network into a mixed-integer program to select a combinatorial action in each timestep. Here, we focus on planning over restless bandits, a class of planning problems which capture many real-world examples of sequential decision making. We introduce coRMAB, a broader class of restless bandits with combinatorial actions that cannot be decoupled across the arms of the restless bandit, requiring direct solving over the joint, exponentially large action space. We empirically validate SEQUOIA on four novel restless bandit problems with combinatorial constraints: multiple interventions, path constraints, bipartite matching, and capacity constraints. Our approach significantly outperforms existing methods -- which cannot address sequential planning and combinatorial selection simultaneously -- by an average of 24.8\% on these difficult instances.
comment: To appear at ICLR 2025. Code at https://github.com/lily-x/combinatorial-rmab
♻ ☆ Self-Supervised Z-Slice Augmentation for 3D Bio-Imaging via Knowledge Distillation
Three-dimensional biological microscopy has significantly advanced our understanding of complex biological structures. However, limitations due to microscopy techniques, sample properties or phototoxicity often result in poor z-resolution, hindering accurate cellular measurements. Here, we introduce ZAugNet, a fast, accurate, and self-supervised deep learning method for enhancing z-resolution in biological images. By performing nonlinear interpolation between consecutive slices, ZAugNet effectively doubles resolution with each iteration. Compared on several microscopy modalities and biological objects, it outperforms competing methods on most metrics. Our method leverages a generative adversarial network (GAN) architecture combined with knowledge distillation to maximize prediction speed without compromising accuracy. We also developed ZAugNet+, an extended version enabling continuous interpolation at arbitrary distances, making it particularly useful for datasets with nonuniform slice spacing. Both ZAugNet and ZAugNet+ provide high-performance, scalable z-slice augmentation solutions for large-scale 3D imaging. They are available as open-source frameworks in PyTorch, with an intuitive Colab notebook interface for easy access by the scientific community.
comment: 25 pages, 5 figures, 1 table
Synthesizing Interpretable Control Policies through Large Language Model Guided Search
The combination of Large Language Models (LLMs), systematic evaluation, and evolutionary algorithms has enabled breakthroughs in combinatorial optimization and scientific discovery. We propose to extend this powerful combination to the control of dynamical systems, generating interpretable control policies capable of complex behaviors. With our novel method, we represent control policies as programs in standard languages like Python. We evaluate candidate controllers in simulation and evolve them using a pre-trained LLM. Unlike conventional learning-based control techniques, which rely on black-box neural networks to encode control policies, our approach enhances transparency and interpretability. We still take advantage of the power of large AI models, but only at the policy design phase, ensuring that all system components remain interpretable and easily verifiable at runtime. Additionally, the use of standard programming languages makes it straightforward for humans to finetune or adapt the controllers based on their expertise and intuition. We illustrate our method through its application to the synthesis of an interpretable control policy for the pendulum swing-up and the ball in cup tasks. We make the code available at https://github.com/muellerlab/synthesizing_interpretable_control_policies.git.
comment: 8 pages, 7 figures, conference paper
♻ ☆ Collapse or Thrive? Perils and Promises of Synthetic Data in a Self-Generating World NeurIPS 2024
What happens when generative machine learning models are pretrained on web-scale datasets containing data generated by earlier models? Some prior work warns of "model collapse" as the web is overwhelmed by synthetic data; other work suggests the problem can be contained (i.e. collapse can be avoided) by managing how available data are used in pretraining. In this paper, we report experiments on three ways of using data (training-workflows), across three generative model task-settings (multivariate Gaussian estimation, kernel density estimation, and language-model fine-tuning) to further confirm the possibility of containment: (a) we confirm that the training-workflow of {\it replacing} all real data by successive generations of purely synthetic data indeed suffers model collapse in all task-settings studied; (b) we consider the training-workflow of {\it accumulating} synthetic data alongside real data and training on all data combined and confirming that, although the proportion of real data eventually becomes zero, models remain stable and their test losses do not diverge under this training-workflow; (c) we consider a training-workflow where real and synthetic data accumulate together but successive generations of pretraining are constrained to use fixed-size data subsets each generation. In this workflow, we observe slow and gradual rather than explosive degradation of test loss performance across generations. Our insights are particularly important when forecasting whether future frontier generative models will collapse or thrive, and our results open avenues for empirically and mathematically studying the context-dependent value of synthetic data.
comment: Accepted at NeurIPS 2024 Workshops: Mathematics of Modern Machine Learning (M3L) and Attributing Model Behavior at Scale (ATTRIB)
♻ ☆ AutoEval: Autonomous Evaluation of LLMs for Truth Maintenance and Reasoning Tasks
This paper presents AutoEval, a novel benchmark for scaling Large Language Model (LLM) assessment in formal tasks with clear notions of correctness, such as truth maintenance in translation and logical reasoning. AutoEval is the first benchmarking paradigm that offers several key advantages necessary for scaling objective evaluation of LLMs without human labeling: (a) ability to evaluate LLMs of increasing sophistication by auto-generating tasks at different levels of difficulty; (b) auto-generation of ground truth that eliminates dependence on expensive and time-consuming human annotation; (c) the use of automatically generated, randomized datasets that mitigate the ability of successive LLMs to overfit to static datasets used in many contemporary benchmarks. Empirical analysis shows that an LLM's performance on AutoEval is highly indicative of its performance on a diverse array of other benchmarks focusing on translation and reasoning tasks, making it a valuable autonomous evaluation paradigm in settings where hand-curated datasets can be hard to obtain and/or update.
♻ ☆ Learning to Inference Adaptively for Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have shown impressive capabilities in reasoning, yet come with substantial computational cost, limiting their deployment in resource-constrained settings. Despite recent efforts on improving the efficiency of MLLMs, prior solutions fall short in responding to varying runtime conditions, in particular changing resource availability (e.g., contention due to the execution of other programs on the device). To bridge this gap, we introduce AdaLLaVA, an adaptive inference framework that learns to dynamically reconfigure operations in an MLLM during inference, accounting for the input data and a latency budget. We conduct extensive experiments across benchmarks involving question-answering, reasoning, and hallucination. Our results show that AdaLLaVA effectively adheres to input latency budget, achieving varying accuracy and latency tradeoffs at runtime. Further, we demonstrate that AdaLLaVA adapts to both input latency and content, can be integrated with token selection for enhanced efficiency, and generalizes across MLLMs. Our project webpage with code release is at https://zhuoyan-xu.github.io/ada-llava/.
♻ ☆ NVR: Vector Runahead on NPUs for Sparse Memory Access
Deep Neural Networks are increasingly leveraging sparsity to reduce the scaling up of model parameter size. However, reducing wall-clock time through sparsity and pruning remains challenging due to irregular memory access patterns, leading to frequent cache misses. In this paper, we present NPU Vector Runahead (NVR), a prefetching mechanism tailored for NPUs to address cache miss problems in sparse DNN workloads. Rather than optimising memory patterns with high overhead and poor portability, NVR adapts runahead execution to the unique architecture of NPUs. NVR provides a general micro-architectural solution for sparse DNN workloads without requiring compiler or algorithmic support, operating as a decoupled, speculative, lightweight hardware sub-thread alongside the NPU, with minimal hardware overhead (under 5%). NVR achieves an average 90% reduction in cache misses compared to SOTA prefetching in general-purpose processors, delivering 4x average speedup on sparse workloads versus NPUs without prefetching. Moreover, we investigate the advantages of incorporating a small cache (16KB) into the NPU combined with NVR. Our evaluation shows that expanding this modest cache delivers 5x higher performance benefits than increasing the L2 cache size by the same amount.
♻ ☆ Align and Distill: Unifying and Improving Domain Adaptive Object Detection
Object detectors often perform poorly on data that differs from their training set. Domain adaptive object detection (DAOD) methods have recently demonstrated strong results on addressing this challenge. Unfortunately, we identify systemic benchmarking pitfalls that call past results into question and hamper further progress: (a) Overestimation of performance due to underpowered baselines, (b) Inconsistent implementation practices preventing transparent comparisons of methods, and (c) Lack of generality due to outdated backbones and lack of diversity in benchmarks. We address these problems by introducing: (1) A unified benchmarking and implementation framework, Align and Distill (ALDI), enabling comparison of DAOD methods and supporting future development, (2) A fair and modern training and evaluation protocol for DAOD that addresses benchmarking pitfalls, (3) A new DAOD benchmark dataset, CFC-DAOD, enabling evaluation on diverse real-world data, and (4) A new method, ALDI++, that achieves state-of-the-art results by a large margin. ALDI++ outperforms the previous state-of-the-art by +3.5 AP50 on Cityscapes to Foggy Cityscapes, +5.7 AP50 on Sim10k to Cityscapes (where ours is the only method to outperform a fair baseline), and +0.6 AP50 on CFC Kenai to Channel. ALDI and ALDI++ are architecture-agnostic, setting a new state-of-the-art for YOLO and DETR-based DAOD as well without additional hyperparameter tuning. Our framework, dataset, and state-of-the-art method offer a critical reset for DAOD and provide a strong foundation for future research. Code and data are available: https://github.com/justinkay/aldi and https://github.com/visipedia/caltech-fish-counting.
comment: TMLR camera ready (Featured Certification). 33 pages, 15 figures
♻ ☆ Towards Resource-Efficient Compound AI Systems
Compound AI Systems, integrating multiple interacting components like models, retrievers, and external tools, have emerged as essential for addressing complex AI tasks. However, current implementations suffer from inefficient resource utilization due to tight coupling between application logic and execution details, a disconnect between orchestration and resource management layers, and the perceived exclusiveness between efficiency and quality. We propose a vision for resource-efficient Compound AI Systems through a declarative workflow programming model and an adaptive runtime system for dynamic scheduling and resource-aware decision-making. Decoupling application logic from low-level details exposes levers for the runtime to flexibly configure the execution environment and resources, without compromising on quality. Enabling collaboration between the workflow orchestration and cluster manager enables higher efficiency through better scheduling and resource management. We are building a prototype system, called Murakkab, to realize this vision. Our preliminary evaluation demonstrates speedups up to $\sim 3.4\times$ in workflow completion times while delivering $\sim 4.5\times$ higher energy efficiency, showing promise in optimizing resources and advancing AI system design.
♻ ☆ The Future of Data Science Education
The definition of Data Science is a hotly debated topic. For many, the definition is a simple shortcut to Artificial Intelligence or Machine Learning. However, there is far more depth and nuance to the field of Data Science than a simple shortcut can provide. The School of Data Science at the University of Virginia has developed a novel model for the definition of Data Science. This model is based on identifying a unified understanding of the data work done across all areas of Data Science. It represents a generational leap forward in how we understand and teach Data Science. In this paper we will present the core features of the model and explain how it unifies various concepts going far beyond the analytics component of AI. From this foundation we will present our Undergraduate Major curriculum in Data Science and demonstrate how it prepares students to be well-rounded Data Science team members and leaders. The paper will conclude with an in-depth overview of the Foundations of Data Science course designed to introduce students to the field while also implementing proven STEM oriented pedagogical methods. These include, for example, specifications grading, active learning lectures, guest lectures from industry experts and weekly gamification labs.
comment: 12 pages, 5 figures, publish at the 53rd Annual Southeast Decision Science Institute 2024, won best paper for Innovation track
♻ ☆ Sable: a Performant, Efficient and Scalable Sequence Model for MARL
As multi-agent reinforcement learning (MARL) progresses towards solving larger and more complex problems, it becomes increasingly important that algorithms exhibit the key properties of (1) strong performance, (2) memory efficiency and (3) scalability. In this work, we introduce Sable, a performant, memory efficient and scalable sequence modeling approach to MARL. Sable works by adapting the retention mechanism in Retentive Networks (Sun et al., 2023) to achieve computationally efficient processing of multi-agent observations with long context memory for temporal reasoning. Through extensive evaluations across six diverse environments, we demonstrate how Sable is able to significantly outperform existing state-of-the-art methods in a large number of diverse tasks (34 out of 45 tested). Furthermore, Sable maintains performance as we scale the number of agents, handling environments with more than a thousand agents while exhibiting a linear increase in memory usage. Finally, we conduct ablation studies to isolate the source of Sable's performance gains and confirm its efficient computational memory usage.
♻ ☆ Quantifying the Reliability of Predictions in Detection Transformers: Object-Level Calibration and Image-Level Uncertainty
DEtection TRansformer (DETR) has emerged as a promising architecture for object detection, offering an end-to-end prediction pipeline. In practice, however, DETR generates hundreds of predictions that far outnumber the actual number of objects present in an image. This raises the question: can we trust and use all of these predictions? Addressing this concern, we present empirical evidence highlighting how different predictions within the same image play distinct roles, resulting in varying reliability levels across those predictions. More specifically, while multiple predictions are often made for a single object, our findings show that most often one such prediction is well-calibrated, and the others are poorly calibrated. Based on these insights, we demonstrate that identifying a reliable subset of DETR's predictions is crucial for accurately assessing the reliability of the model at both object and image levels. Building on this viewpoint, we first address the shortcomings of widely used performance and calibration metrics, such as average precision and various forms of expected calibration error. Specifically, they are inadequate for determining which subset of DETR's predictions should be trusted and utilized. In response, we present Object-level Calibration Error (OCE), which assesses the calibration quality more effectively and is suitable for both ranking different models and identifying the most reliable predictions within a specific model. As a final contribution, we introduce a post hoc uncertainty quantification (UQ) framework that predicts the accuracy of the model on a per-image basis. By contrasting the average confidence scores of positive (i.e., likely to be matched) and negative predictions determined by OCE, our framework assesses the reliability of the DETR model for each test image.
♻ ☆ ArtFormer: Controllable Generation of Diverse 3D Articulated Objects CVPR 2025
This paper presents a novel framework for modeling and conditional generation of 3D articulated objects. Troubled by flexibility-quality tradeoffs, existing methods are often limited to using predefined structures or retrieving shapes from static datasets. To address these challenges, we parameterize an articulated object as a tree of tokens and employ a transformer to generate both the object's high-level geometry code and its kinematic relations. Subsequently, each sub-part's geometry is further decoded using a signed-distance-function (SDF) shape prior, facilitating the synthesis of high-quality 3D shapes. Our approach enables the generation of diverse objects with high-quality geometry and varying number of parts. Comprehensive experiments on conditional generation from text descriptions demonstrate the effectiveness and flexibility of our method.
comment: CVPR 2025. impl. repo: https://github.com/ShuYuMo2003/ArtFormer
♻ ☆ MusicLIME: Explainable Multimodal Music Understanding ICASSP 2025
Multimodal models are critical for music understanding tasks, as they capture the complex interplay between audio and lyrics. However, as these models become more prevalent, the need for explainability grows-understanding how these systems make decisions is vital for ensuring fairness, reducing bias, and fostering trust. In this paper, we introduce MusicLIME, a model-agnostic feature importance explanation method designed for multimodal music models. Unlike traditional unimodal methods, which analyze each modality separately without considering the interaction between them, often leading to incomplete or misleading explanations, MusicLIME reveals how audio and lyrical features interact and contribute to predictions, providing a holistic view of the model's decision-making. Additionally, we enhance local explanations by aggregating them into global explanations, giving users a broader perspective of model behavior. Through this work, we contribute to improving the interpretability of multimodal music models, empowering users to make informed choices, and fostering more equitable, fair, and transparent music understanding systems.
comment: GitHub repository: https://github.com/IamTheo2000/MusicLIME. To be presented at ICASSP 2025
♻ ☆ Program Synthesis Dialog Agents for Interactive Decision-Making
Many real-world eligibility problems, ranging from medical diagnosis to tax planning, can be mapped to decision problems expressed in natural language, wherein a model must make a binary choice based on user features. Large-scale domains such as legal codes or frequently updated funding opportunities render human annotation (e.g., web forms or decision trees) impractical, highlighting the need for agents that can automatically assist in decision-making. Since relevant information is often only known to the user, it is crucial that these agents ask the right questions. As agents determine when to terminate a conversation, they face a trade-off between accuracy and the number of questions asked, a key metric for both user experience and cost. To evaluate this task, we propose BeNYfits, a new benchmark for determining user eligibility for multiple overlapping social benefits opportunities through interactive decision-making. Our experiments show that current language models struggle with frequent hallucinations, with GPT-4o scoring only 35.7 F1 using a ReAct-style chain-of-thought. To address this, we introduce ProADA, a novel approach that leverages program synthesis to assist in decision-making by mapping dialog planning to a code generation problem and using gaps in structured data to determine the best next action. Our agent, ProADA, improves the F1 score to 55.6 while maintaining nearly the same number of dialog turns.
Scalable and Interpretable Verification of Image-based Neural Network Controllers for Autonomous Vehicles
Existing formal verification methods for image-based neural network controllers in autonomous vehicles often struggle with high-dimensional inputs, computational inefficiency, and a lack of explainability. These challenges make it difficult to ensure safety and reliability, as processing high-dimensional image data is computationally intensive and neural networks are typically treated as black boxes. To address these issues, we propose SEVIN (Scalable and Explainable Verification of Image-Based Neural Network Controllers), a framework that leverages a Variational Autoencoders (VAE) to encode high-dimensional images into a lower-dimensional, explainable latent space. By annotating latent variables with corresponding control actions, we generate convex polytopes that serve as structured input spaces for verification, significantly reducing computational complexity and enhancing scalability. Integrating the VAE's decoder with the neural network controller allows for formal and robustness verification using these explainable polytopes. Our approach also incorporates robustness verification under real-world perturbations by augmenting the dataset and retraining the VAE to capture environmental variations. Experimental results demonstrate that SEVIN achieves efficient and scalable verification while providing explainable insights into controller behavior, bridging the gap between formal verification techniques and practical applications in safety-critical systems.
comment: 11 pages, 5 figures
♻ ☆ Neural Interactive Proofs ICLR'25
We consider the problem of how a trusted, but computationally bounded agent (a 'verifier') can learn to interact with one or more powerful but untrusted agents ('provers') in order to solve a given task. More specifically, we study the case in which agents are represented using neural networks and refer to solutions of this problem as neural interactive proofs. First we introduce a unifying framework based on prover-verifier games, which generalises previously proposed interaction protocols. We then describe several new protocols for generating neural interactive proofs, and provide a theoretical comparison of both new and existing approaches. Finally, we support this theory with experiments in two domains: a toy graph isomorphism problem that illustrates the key ideas, and a code validation task using large language models. In so doing, we aim to create a foundation for future work on neural interactive proofs and their application in building safer AI systems.
comment: ICLR'25 camera-ready version; 51 pages, 17 figures
♻ ☆ Leveraging Large Language Models for Collective Decision-Making SC
In various work contexts, such as meeting scheduling, collaborating, and project planning, collective decision-making is essential but often challenging due to diverse individual preferences, varying work focuses, and power dynamics among members. To address this, we propose a system leveraging Large Language Models (LLMs) to facilitate group decision-making by managing conversations and balancing preferences among individuals. Our system aims to extract individual preferences from each member's conversation with the system and suggest options that satisfy the preferences of the members. We specifically apply this system to corporate meeting scheduling. We create synthetic employee profiles and simulate conversations at scale, leveraging LLMs to evaluate the system performance as a novel approach to conducting a user study. Our results indicate efficient coordination with reduced interactions between the members and the LLM-based system. The system refines and improves its proposed options over time, ensuring that many of the members' individual preferences are satisfied in an equitable way. Finally, we conduct a survey study involving human participants to assess our system's ability to aggregate preferences and reasoning about them. Our findings show that the system exhibits strong performance in both dimensions.
comment: To appear at ACM CSCW 2025
♻ ☆ Life-inspired Interoceptive Artificial Intelligence for Autonomous and Adaptive Agents
Building autonomous -- i.e., choosing goals based on one's needs -- and adaptive -- i.e., surviving in ever-changing environments -- agents has been a holy grail of artificial intelligence (AI). A living organism is a prime example of such an agent, offering important lessons about adaptive autonomy. Here, we focus on interoception, a process of monitoring one's internal environment to keep it within certain bounds, which underwrites the survival of an organism. To develop AI with interoception, we need to factorize the state variables representing internal environments from external environments and adopt life-inspired mathematical properties of internal environment states. This paper offers a new perspective on how interoception can help build autonomous and adaptive agents by integrating the legacy of cybernetics with recent advances in theories of life, reinforcement learning, and neuroscience.
comment: 27 pages, 3 figures, 2 boxes
♻ ☆ Valley: Video Assistant with Large Language model Enhanced abilitY
Large Language Models (LLMs), with remarkable conversational capability, have emerged as AI assistants that can handle both visual and textual modalities. However, their effectiveness in joint video and language understanding has not been extensively explored. In the paper, we introduce Valley, a multi-modal foundation model that is designed to enable enhanced video comprehension and instruction-following capabilities. To this end, we construct two datasets, namely Valley-702k and Valley-instruct-73k, to cover a diverse range of video-text alignment and video-based instruction tasks, such as multi-shot captions, long video descriptions, action recognition, causal inference, etc. Then, we adopt ViT-L/14 as the vision encoder and explore three different temporal modeling modules to learn multifaceted features for enhanced video understanding. In addition, we implement a two-phase training approach for Valley: the first phase focuses solely on training the projection module to facilitate the LLM's capacity to understand visual input, and the second phase jointly trains the projection module and the LLM to improve their instruction following ability. Extensive experiments demonstrate that Valley has the potential to serve as an effective video assistant, simplifying complex video-understanding scenarios. Our code and data are published anonymously at https://github.com/valley-vl/Valley.
Graphics 11
☆ Introducing GPGPUs to smartphone-based digital holographic microscope for 3D imaging
Digital holography (DH) enables non-contact, noninvasive 3D imaging of transparent and moving microscopic samples by capturing amplitude and phase information in a single shot. In this work, we present a compact, low-cost, real-time smartphone-based DHM system accelerated by GPUs. The system comprises a 3D-printed optical system using readily available image sensors and lasers, coupled with an Android app for hologram reconstruction, extracting amplitude and phase information. Results show a frame rate improvement of approximately 1.65x compared to a CPU-only system. This inexpensive, compact DHM, combining 3D-printed optics and smartphone-based reconstruction, offers a novel approach compared to existing systems and holds promise for fieldwork and remote diagnostics.
☆ Versatile Physics-based Character Control with Hybrid Latent Representation
We present a versatile latent representation that enables physically simulated character to efficiently utilize motion priors. To build a powerful motion embedding that is shared across multiple tasks, the physics controller should employ rich latent space that is easily explored and capable of generating high-quality motion. We propose integrating continuous and discrete latent representations to build a versatile motion prior that can be adapted to a wide range of challenging control tasks. Specifically, we build a discrete latent model to capture distinctive posterior distribution without collapse, and simultaneously augment the sampled vector with the continuous residuals to generate high-quality, smooth motion without jittering. We further incorporate Residual Vector Quantization, which not only maximizes the capacity of the discrete motion prior, but also efficiently abstracts the action space during the task learning phase. We demonstrate that our agent can produce diverse yet smooth motions simply by traversing the learned motion prior through unconditional motion generation. Furthermore, our model robustly satisfies sparse goal conditions with highly expressive natural motions, including head-mounted device tracking and motion in-betweening at irregular intervals, which could not be achieved with existing latent representations.
☆ Next-Scale Autoregressive Models are Zero-Shot Single-Image Object View Synthesizers
Methods based on diffusion backbones have recently revolutionized novel view synthesis (NVS). However, those models require pretrained 2D diffusion checkpoints (e.g., Stable Diffusion) as the basis for geometrical priors. Since such checkpoints require exorbitant amounts of data and compute to train, this greatly limits the scalability of diffusion-based NVS models. We present Next-Scale Autoregression Conditioned by View (ArchonView), a method that significantly exceeds state-of-the-art methods despite being trained from scratch with 3D rendering data only and no 2D pretraining. We achieve this by incorporating both global (pose-augmented semantics) and local (multi-scale hierarchical encodings) conditioning into a backbone based on the next-scale autoregression paradigm. Our model also exhibits robust performance even for difficult camera poses where previous methods fail, and is several times faster in inference speed compared to diffusion. We experimentally verify that performance scales with model and dataset size, and conduct extensive demonstration of our method's synthesis quality across several tasks. Our code is open-sourced at https://github.com/Shiran-Yuan/ArchonView.
comment: Full codebase, training set, and eval benchmark at https://github.com/Shiran-Yuan/ArchonView
☆ ASMR: Adaptive Skeleton-Mesh Rigging and Skinning via 2D Generative Prior
Despite the growing accessibility of skeletal motion data, integrating it for animating character meshes remains challenging due to diverse configurations of both skeletons and meshes. Specifically, the body scale and bone lengths of the skeleton should be adjusted in accordance with the size and proportions of the mesh, ensuring that all joints are accurately positioned within the character mesh. Furthermore, defining skinning weights is complicated by variations in skeletal configurations, such as the number of joints and their hierarchy, as well as differences in mesh configurations, including their connectivity and shapes. While existing approaches have made efforts to automate this process, they hardly address the variations in both skeletal and mesh configurations. In this paper, we present a novel method for the automatic rigging and skinning of character meshes using skeletal motion data, accommodating arbitrary configurations of both meshes and skeletons. The proposed method predicts the optimal skeleton aligned with the size and proportion of the mesh as well as defines skinning weights for various mesh-skeleton configurations, without requiring explicit supervision tailored to each of them. By incorporating Diffusion 3D Features (Diff3F) as semantic descriptors of character meshes, our method achieves robust generalization across different configurations. To assess the performance of our method in comparison to existing approaches, we conducted comprehensive evaluations encompassing both quantitative and qualitative analyses, specifically examining the predicted skeletons, skinning weights, and deformation quality.
comment: Eurographics 2025; Project Page https://seokhyeonhong.github.io/projects/asmr/
♻ ☆ MeshPad: Interactive Sketch-Conditioned Artist-Designed Mesh Generation and Editing
We introduce MeshPad, a generative approach that creates 3D meshes from sketch inputs. Building on recent advances in artist-designed triangle mesh generation, our approach addresses the need for interactive mesh creation. To this end, we focus on enabling consistent edits by decomposing editing into 'deletion' of regions of a mesh, followed by 'addition' of new mesh geometry. Both operations are invoked by simple user edits of a sketch image, facilitating an iterative content creation process and enabling the construction of complex 3D meshes. Our approach is based on a triangle sequence-based mesh representation, exploiting a large Transformer model for mesh triangle addition and deletion. In order to perform edits interactively, we introduce a vertex-aligned speculative prediction strategy on top of our additive mesh generator. This speculator predicts multiple output tokens corresponding to a vertex, thus significantly reducing the computational cost of inference and accelerating the editing process, making it possible to execute each editing step in only a few seconds. Comprehensive experiments demonstrate that MeshPad outperforms state-of-the-art sketch-conditioned mesh generation methods, achieving more than 22% mesh quality improvement in Chamfer distance, and being preferred by 90% of participants in perceptual evaluations.
comment: Project page: https://derkleineli.github.io/meshpad/ Video: https://www.youtube.com/watch?v=_T6UTGTMZ1E
♻ ☆ Sparse Voxels Rasterization: Real-time High-fidelity Radiance Field Rendering CVPR 2025
We propose an efficient radiance field rendering algorithm that incorporates a rasterization process on adaptive sparse voxels without neural networks or 3D Gaussians. There are two key contributions coupled with the proposed system. The first is to adaptively and explicitly allocate sparse voxels to different levels of detail within scenes, faithfully reproducing scene details with $65536^3$ grid resolution while achieving high rendering frame rates. Second, we customize a rasterizer for efficient adaptive sparse voxels rendering. We render voxels in the correct depth order by using ray direction-dependent Morton ordering, which avoids the well-known popping artifact found in Gaussian splatting. Our method improves the previous neural-free voxel model by over 4db PSNR and more than 10x FPS speedup, achieving state-of-the-art comparable novel-view synthesis results. Additionally, our voxel representation is seamlessly compatible with grid-based 3D processing techniques such as Volume Fusion, Voxel Pooling, and Marching Cubes, enabling a wide range of future extensions and applications.
comment: CVPR 2025; Project page at https://svraster.github.io/ ; Code at https://github.com/NVlabs/svraster
♻ ☆ Seeing World Dynamics in a Nutshell
We consider the problem of efficiently representing casually captured monocular videos in a spatially- and temporally-coherent manner. While existing approaches predominantly rely on 2D/2.5D techniques treating videos as collections of spatiotemporal pixels, they struggle with complex motions, occlusions, and geometric consistency due to absence of temporal coherence and explicit 3D structure. Drawing inspiration from monocular video as a projection of the dynamic 3D world, we explore representing videos in their intrinsic 3D form through continuous flows of Gaussian primitives in space-time. In this paper, we propose NutWorld, a novel framework that efficiently transforms monocular videos into dynamic 3D Gaussian representations in a single forward pass. At its core, NutWorld introduces a structured spatial-temporal aligned Gaussian (STAG) representation, enabling optimization-free scene modeling with effective depth and flow regularization. Through comprehensive experiments, we demonstrate that NutWorld achieves high-fidelity video reconstruction quality while enabling various downstream applications in real-time. Demos and code will be available at https://github.com/Nut-World/NutWorld.
♻ ☆ LAGA: Layered 3D Avatar Generation and Customization via Gaussian Splatting
Creating and customizing a 3D clothed avatar from textual descriptions is a critical and challenging task. Traditional methods often treat the human body and clothing as inseparable, limiting users' ability to freely mix and match garments. In response to this limitation, we present LAyered Gaussian Avatar (LAGA), a carefully designed framework enabling the creation of high-fidelity decomposable avatars with diverse garments. By decoupling garments from avatar, our framework empowers users to conviniently edit avatars at the garment level. Our approach begins by modeling the avatar using a set of Gaussian points organized in a layered structure, where each layer corresponds to a specific garment or the human body itself. To generate high-quality garments for each layer, we introduce a coarse-to-fine strategy for diverse garment generation and a novel dual-SDS loss function to maintain coherence between the generated garments and avatar components, including the human body and other garments. Moreover, we introduce three regularization losses to guide the movement of Gaussians for garment transfer, allowing garments to be freely transferred to various avatars. Extensive experimentation demonstrates that our approach surpasses existing methods in the generation of 3D clothed humans.
♻ ☆ VQ-SGen: A Vector Quantized Stroke Representation for Creative Sketch Generation
This paper presents VQ-SGen, a novel algorithm for high-quality creative sketch generation. Recent approaches have framed the task as pixel-based generation either as a whole or part-by-part, neglecting the intrinsic and contextual relationships among individual strokes, such as the shape and spatial positioning of both proximal and distant strokes. To overcome these limitations, we propose treating each stroke within a sketch as an entity and introducing a vector-quantized (VQ) stroke representation for fine-grained sketch generation. Our method follows a two-stage framework - in stage one, we decouple each stroke's shape and location information to ensure the VQ representation prioritizes stroke shape learning. In stage two, we feed the precise and compact representation into an auto-decoding Transformer to incorporate stroke semantics, positions, and shapes into the generation process. By utilizing tokenized stroke representation, our approach generates strokes with high fidelity and facilitates novel applications, such as text or class label conditioned generation and sketch completion. Comprehensive experiments demonstrate our method surpasses existing state-of-the-art techniques on the CreativeSketch dataset, underscoring its effectiveness.
♻ ☆ 3DTopia-XL: Scaling High-quality 3D Asset Generation via Primitive Diffusion CVPR 2025
The increasing demand for high-quality 3D assets across various industries necessitates efficient and automated 3D content creation. Despite recent advancements in 3D generative models, existing methods still face challenges with optimization speed, geometric fidelity, and the lack of assets for physically based rendering (PBR). In this paper, we introduce 3DTopia-XL, a scalable native 3D generative model designed to overcome these limitations. 3DTopia-XL leverages a novel primitive-based 3D representation, PrimX, which encodes detailed shape, albedo, and material field into a compact tensorial format, facilitating the modeling of high-resolution geometry with PBR assets. On top of the novel representation, we propose a generative framework based on Diffusion Transformer (DiT), which comprises 1) Primitive Patch Compression, 2) and Latent Primitive Diffusion. 3DTopia-XL learns to generate high-quality 3D assets from textual or visual inputs. We conduct extensive qualitative and quantitative experiments to demonstrate that 3DTopia-XL significantly outperforms existing methods in generating high-quality 3D assets with fine-grained textures and materials, efficiently bridging the quality gap between generative models and real-world applications.
comment: CVPR 2025, Code https://github.com/3DTopia/3DTopia-XL Project Page https://3dtopia.github.io/3DTopia-XL/
♻ ☆ IRIS: Inverse Rendering of Indoor Scenes from Low Dynamic Range Images CVPR 2025
Inverse rendering seeks to recover 3D geometry, surface material, and lighting from captured images, enabling advanced applications such as novel-view synthesis, relighting, and virtual object insertion. However, most existing techniques rely on high dynamic range (HDR) images as input, limiting accessibility for general users. In response, we introduce IRIS, an inverse rendering framework that recovers the physically based material, spatially-varying HDR lighting, and camera response functions from multi-view, low-dynamic-range (LDR) images. By eliminating the dependence on HDR input, we make inverse rendering technology more accessible. We evaluate our approach on real-world and synthetic scenes and compare it with state-of-the-art methods. Our results show that IRIS effectively recovers HDR lighting, accurate material, and plausible camera response functions, supporting photorealistic relighting and object insertion.
comment: CVPR 2025 Project Website: https://irisldr.github.io/
Robotics 33
☆ CDKFormer: Contextual Deviation Knowledge-Based Transformer for Long-Tail Trajectory Prediction
Predicting the future movements of surrounding vehicles is essential for ensuring the safe operation and efficient navigation of autonomous vehicles (AVs) in urban traffic environments. Existing vehicle trajectory prediction methods primarily focus on improving overall performance, yet they struggle to address long-tail scenarios effectively. This limitation often leads to poor predictions in rare cases, significantly increasing the risk of safety incidents. Taking Argoverse 2 motion forecasting dataset as an example, we first investigate the long-tail characteristics in trajectory samples from two perspectives, individual motion and group interaction, and deriving deviation features to distinguish abnormal from regular scenarios. On this basis, we propose CDKFormer, a Contextual Deviation Knowledge-based Transformer model for long-tail trajectory prediction. CDKFormer integrates an attention-based scene context fusion module to encode spatiotemporal interaction and road topology. An additional deviation feature fusion module is proposed to capture the dynamic deviations in the target vehicle status. We further introduce a dual query-based decoder, supported by a multi-stream decoder block, to sequentially decode heterogeneous scene deviation features and generate multimodal trajectory predictions. Extensive experiments demonstrate that CDKFormer achieves state-of-the-art performance, significantly enhancing prediction accuracy and robustness for long-tailed trajectories compared to existing methods, thus advancing the reliability of AVs in complex real-world environments.
☆ Agent-Based Simulation of UAV Battery Recharging for IoT Applications: Precision Agriculture, Disaster Recovery, and Dengue Vector Control
The low battery autonomy of Unnamed Aerial Vehicles (UAVs or drones) can make smart farming (precision agriculture), disaster recovery, and the fighting against dengue vector applications difficult. This article considers two approaches, first enumerating the characteristics observed in these three IoT application types and then modeling an UAV's battery recharge coordination using the Agent-Based Simulation (ABS) approach. In this way, we propose that each drone inside the swarm does not communicate concerning this recharge coordination decision, reducing energy usage and permitting remote usage. A total of 6000 simulations were run to evaluate how two proposed policies, the BaseLine (BL) and ChargerThershold (CT) coordination recharging policy, behave in 30 situations regarding how each simulation sets conclude the simulation runs and how much time they work until recharging results. CT policy shows more reliable results in extreme system usage. This work conclusion presents the potential of these three IoT applications to achieve their perpetual service without communication between drones and ground stations. This work can be a baseline for future policies and simulation parameter enhancements.
comment: 22 pages
☆ Logic-RAG: Augmenting Large Multimodal Models with Visual-Spatial Knowledge for Road Scene Understanding
Large multimodal models (LMMs) are increasingly integrated into autonomous driving systems for user interaction. However, their limitations in fine-grained spatial reasoning pose challenges for system interpretability and user trust. We introduce Logic-RAG, a novel Retrieval-Augmented Generation (RAG) framework that improves LMMs' spatial understanding in driving scenarios. Logic-RAG constructs a dynamic knowledge base (KB) about object-object relationships in first-order logic (FOL) using a perception module, a query-to-logic embedder, and a logical inference engine. We evaluated Logic-RAG on visual-spatial queries using both synthetic and real-world driving videos. When using popular LMMs (GPT-4V, Claude 3.5) as proxies for an autonomous driving system, these models achieved only 55% accuracy on synthetic driving scenes and under 75% on real-world driving scenes. Augmenting them with Logic-RAG increased their accuracies to over 80% and 90%, respectively. An ablation study showed that even without logical inference, the fact-based context constructed by Logic-RAG alone improved accuracy by 15%. Logic-RAG is extensible: it allows seamless replacement of individual components with improved versions and enables domain experts to compose new knowledge in both FOL and natural language. In sum, Logic-RAG addresses critical spatial reasoning deficiencies in LMMs for autonomous driving applications. Code and data are available at https://github.com/Imran2205/LogicRAG.
☆ KISS-SLAM: A Simple, Robust, and Accurate 3D LiDAR SLAM System With Enhanced Generalization Capabilities
Robust and accurate localization and mapping of an environment using laser scanners, so-called LiDAR SLAM, is essential to many robotic applications. Early 3D LiDAR SLAM methods often exploited additional information from IMU or GNSS sensors to enhance localization accuracy and mitigate drift. Later, advanced systems further improved the estimation at the cost of a higher runtime and complexity. This paper explores the limits of what can be achieved with a LiDAR-only SLAM approach while following the "Keep It Small and Simple" (KISS) principle. By leveraging this minimalistic design principle, our system, KISS-SLAM, archives state-of-the-art performances in pose accuracy while requiring little to no parameter tuning for deployment across diverse environments, sensors, and motion profiles. We follow best practices in graph-based SLAM and build upon LiDAR odometry to compute the relative motion between scans and construct local maps of the environment. To correct drift, we match local maps and optimize the trajectory in a pose graph optimization step. The experimental results demonstrate that this design achieves competitive performance while reducing complexity and reliance on additional sensor modalities. By prioritizing simplicity, this work provides a new strong baseline for LiDAR-only SLAM and a high-performing starting point for future research. Further, our pipeline builds consistent maps that can be used directly for further downstream tasks like navigation. Our open-source system operates faster than the sensor frame rate in all presented datasets and is designed for real-world scenarios.
comment: 8 pages
☆ VISO-Grasp: Vision-Language Informed Spatial Object-centric 6-DoF Active View Planning and Grasping in Clutter and Invisibility
We propose VISO-Grasp, a novel vision-language-informed system designed to systematically address visibility constraints for grasping in severely occluded environments. By leveraging Foundation Models (FMs) for spatial reasoning and active view planning, our framework constructs and updates an instance-centric representation of spatial relationships, enhancing grasp success under challenging occlusions. Furthermore, this representation facilitates active Next-Best-View (NBV) planning and optimizes sequential grasping strategies when direct grasping is infeasible. Additionally, we introduce a multi-view uncertainty-driven grasp fusion mechanism that refines grasp confidence and directional uncertainty in real-time, ensuring robust and stable grasp execution. Extensive real-world experiments demonstrate that VISO-Grasp achieves a success rate of $87.5\%$ in target-oriented grasping with the fewest grasp attempts outperforming baselines. To the best of our knowledge, VISO-Grasp is the first unified framework integrating FMs into target-aware active view planning and 6-DoF grasping in environments with severe occlusions and entire invisibility constraints.
comment: Under review
☆ MUKCa: Accurate and Affordable Cobot Calibration Without External Measurement Devices
To increase the reliability of collaborative robots in performing daily tasks, we require them to be accurate and not only repeatable. However, having a calibrated kinematics model is regrettably a luxury, as available calibration tools are usually more expensive than the robots themselves. With this work, we aim to contribute to the democratization of cobots calibration by providing an inexpensive yet highly effective alternative to existing tools. The proposed minimalist calibration routine relies on a 3D-printable tool as the only physical aid to the calibration process. This two-socket spherical-joint tool kinematically constrains the robot at the end effector while collecting the training set. An optimization routine updates the nominal model to ensure a consistent prediction for each socket and the undistorted mean distance between them. We validated the algorithm on three robotic platforms: Franka, Kuka, and Kinova Cobots. The calibrated models reduce the mean absolute error from the order of 10 mm to 0.2 mm for both Franka and Kuka robots. We provide two additional experimental campaigns with the Franka Robot to render the improvements more tangible. First, we implement Cartesian control with and without the calibrated model and use it to perform a standard peg-in-the-hole task with a tolerance of 0.4 mm between the peg and the hole. Second, we perform a repeated drawing task combining Cartesian control with learning from demonstration. Both tasks consistently failed when the model was not calibrated, while they consistently succeeded after calibration.
☆ Focusing Robot Open-Ended Reinforcement Learning Through Users' Purposes
Open-Ended Learning (OEL) autonomous robots can acquire new skills and knowledge through direct interaction with their environment, relying on mechanisms such as intrinsic motivations and self-generated goals to guide learning processes. OEL robots are highly relevant for applications as they can autonomously leverage acquired knowledge to perform tasks beneficial to human users in unstructured environments, addressing challenges unforeseen at design time. However, OEL robots face a significant limitation: their openness may lead them to waste time learning information that is irrelevant to tasks desired by specific users. Here, we propose a solution called `Purpose-Directed Open-Ended Learning' (POEL), based on the novel concept of `purpose' introduced in previous work. A purpose specifies what users want the robot to achieve. The key insight of this work is that purpose can focus OEL on learning self-generated classes of tasks that, while unknown during autonomous learning (as typical in OEL), involve objects relevant to the purpose. This concept is operationalised in a novel robot architecture capable of receiving a human purpose through speech-to-text, analysing the scene to identify objects, and using a Large Language Model to reason about which objects are purpose-relevant. These objects are then used to bias OEL exploration towards their spatial proximity and to self-generate rewards that favour interactions with them. The solution is tested in a simulated scenario where a camera-arm-gripper robot interacts freely with purpose-related and distractor objects. For the first time, the results demonstrate the potential advantages of purpose-focused OEL over state-of-the-art OEL methods, enabling robots to handle unstructured environments while steering their learning toward knowledge acquisition relevant to users.
comment: 4 pages, 2 figures, accepted at RLDM 2025
☆ Grasping Partially Occluded Objects Using Autoencoder-Based Point Cloud Inpainting ECML
Flexible industrial production systems will play a central role in the future of manufacturing due to higher product individualization and customization. A key component in such systems is the robotic grasping of known or unknown objects in random positions. Real-world applications often come with challenges that might not be considered in grasping solutions tested in simulation or lab settings. Partial occlusion of the target object is the most prominent. Examples of occlusion can be supporting structures in the camera's field of view, sensor imprecision, or parts occluding each other due to the production process. In all these cases, the resulting lack of information leads to shortcomings in calculating grasping points. In this paper, we present an algorithm to reconstruct the missing information. Our inpainting solution facilitates the real-world utilization of robust object matching approaches for grasping point calculation. We demonstrate the benefit of our solution by enabling an existing grasping system embedded in a real-world industrial application to handle occlusions in the input. With our solution, we drastically decrease the number of objects discarded by the process.
comment: Published at ECML PKDD 2022
☆ Polytope Volume Monitoring Problem: Formulation and Solution via Parametric Linear Program Based Control Barrier Function
Motivated by the latest research on feasible space monitoring of multiple control barrier functions (CBFs) as well as polytopic collision avoidance, this paper studies the Polytope Volume Monitoring (PVM) problem, whose goal is to design a control law for inputs of nonlinear systems to prevent the volume of some state-dependent polytope from decreasing to zero. Recent studies have explored the idea of applying Chebyshev ball method in optimization theory to solve the case study of PVM; however, the underlying difficulties caused by nonsmoothness have not been addressed. This paper continues the study on this topic, where our main contribution is to establish the relationship between nonsmooth CBF and parametric optimization theory through directional derivatives for the first time, so as to solve PVM problems more conveniently. In detail, inspired by Chebyshev ball approach, a parametric linear program (PLP) based nonsmooth barrier function candidate is established for PVM, and then, sufficient conditions for it to be a nonsmooth CBF are proposed, based on which a quadratic program (QP) based safety filter with guaranteed feasibility is proposed to address PVM problems. Finally, a numerical simulation example is given to show the efficiency of the proposed safety filter.
comment: Submitted to CDC2025
☆ Histogram Transporter: Learning Rotation-Equivariant Orientation Histograms for High-Precision Robotic Kitting
Robotic kitting is a critical task in industrial automation that requires the precise arrangement of objects into kits to support downstream production processes. However, when handling complex kitting tasks that involve fine-grained orientation alignment, existing approaches often suffer from limited accuracy and computational efficiency. To address these challenges, we propose Histogram Transporter, a novel kitting framework that learns high-precision pick-and-place actions from scratch using only a few demonstrations. First, our method extracts rotation-equivariant orientation histograms (EOHs) from visual observations using an efficient Fourier-based discretization strategy. These EOHs serve a dual purpose: improving picking efficiency by directly modeling action success probabilities over high-resolution orientations and enhancing placing accuracy by serving as local, discriminative feature descriptors for object-to-placement matching. Second, we introduce a subgroup alignment strategy in the place model that compresses the full spectrum of EOHs into a compact orientation representation, enabling efficient feature matching while preserving accuracy. Finally, we examine the proposed framework on the simulated Hand-Tool Kitting Dataset (HTKD), where it outperforms competitive baselines in both success rates and computational efficiency. Further experiments on five Raven-10 tasks exhibits the remarkable adaptability of our approach, with real-robot trials confirming its applicability for real-world deployment.
comment: This manuscript is currently under review
☆ EmoBipedNav: Emotion-aware Social Navigation for Bipedal Robots with Deep Reinforcement Learning
This study presents an emotion-aware navigation framework -- EmoBipedNav -- using deep reinforcement learning (DRL) for bipedal robots walking in socially interactive environments. The inherent locomotion constraints of bipedal robots challenge their safe maneuvering capabilities in dynamic environments. When combined with the intricacies of social environments, including pedestrian interactions and social cues, such as emotions, these challenges become even more pronounced. To address these coupled problems, we propose a two-stage pipeline that considers both bipedal locomotion constraints and complex social environments. Specifically, social navigation scenarios are represented using sequential LiDAR grid maps (LGMs), from which we extract latent features, including collision regions, emotion-related discomfort zones, social interactions, and the spatio-temporal dynamics of evolving environments. The extracted features are directly mapped to the actions of reduced-order models (ROMs) through a DRL architecture. Furthermore, the proposed framework incorporates full-order dynamics and locomotion constraints during training, effectively accounting for tracking errors and restrictions of the locomotion controller while planning the trajectory with ROMs. Comprehensive experiments demonstrate that our approach exceeds both model-based planners and DRL-based baselines. The hardware videos and open-source code are available at https://gatech-lidar.github.io/emobipednav.github.io/.
comment: 13 pages
☆ Being-0: A Humanoid Robotic Agent with Vision-Language Models and Modular Skills
Building autonomous robotic agents capable of achieving human-level performance in real-world embodied tasks is an ultimate goal in humanoid robot research. Recent advances have made significant progress in high-level cognition with Foundation Models (FMs) and low-level skill development for humanoid robots. However, directly combining these components often results in poor robustness and efficiency due to compounding errors in long-horizon tasks and the varied latency of different modules. We introduce Being-0, a hierarchical agent framework that integrates an FM with a modular skill library. The FM handles high-level cognitive tasks such as instruction understanding, task planning, and reasoning, while the skill library provides stable locomotion and dexterous manipulation for low-level control. To bridge the gap between these levels, we propose a novel Connector module, powered by a lightweight vision-language model (VLM). The Connector enhances the FM's embodied capabilities by translating language-based plans into actionable skill commands and dynamically coordinating locomotion and manipulation to improve task success. With all components, except the FM, deployable on low-cost onboard computation devices, Being-0 achieves efficient, real-time performance on a full-sized humanoid robot equipped with dexterous hands and active vision. Extensive experiments in large indoor environments demonstrate Being-0's effectiveness in solving complex, long-horizon tasks that require challenging navigation and manipulation subtasks. For further details and videos, visit https://beingbeyond.github.io/being-0.
☆ Closed-Loop Control and Disturbance Mitigation of an Underwater Multi-Segment Continuum Manipulator
The use of soft and compliant manipulators in marine environments represents a promising paradigm shift for subsea inspection, with devices better suited to tasks owing to their ability to safely conform to items during contact. However, limitations driven by material characteristics often restrict the reach of such devices, with the complexity of obtaining state estimations making control non-trivial. Here, a detailed analysis of a 1m long compliant manipulator prototype for subsea inspection tasks is presented, including its mechanical design, state estimation technique, closed-loop control strategies, and experimental performance evaluation in underwater conditions. Results indicate that both the configuration-space and task-space controllers implemented are capable of positioning the end effector to desired locations, with deviations of <5% of the manipulator length spatially and to within 5^{o} of the desired configuration angles. The manipulator was also tested when subjected to various disturbances, such as loads of up to 300g and random point disturbances, and was proven to be able to limit displacement and restore the desired configuration. This work is a significant step towards the implementation of compliant manipulators in real-world subsea environments, proving their potential as an alternative to classical rigid-link designs.
comment: Accepted for presentation at RoboSoft 2025, Lausanne
☆ Modality-Composable Diffusion Policy via Inference-Time Distribution-level Composition ICLR 2025
Diffusion Policy (DP) has attracted significant attention as an effective method for policy representation due to its capacity to model multi-distribution dynamics. However, current DPs are often based on a single visual modality (e.g., RGB or point cloud), limiting their accuracy and generalization potential. Although training a generalized DP capable of handling heterogeneous multimodal data would enhance performance, it entails substantial computational and data-related costs. To address these challenges, we propose a novel policy composition method: by leveraging multiple pre-trained DPs based on individual visual modalities, we can combine their distributional scores to form a more expressive Modality-Composable Diffusion Policy (MCDP), without the need for additional training. Through extensive empirical experiments on the RoboTwin dataset, we demonstrate the potential of MCDP to improve both adaptability and performance. This exploration aims to provide valuable insights into the flexible composition of existing DPs, facilitating the development of generalizable cross-modality, cross-domain, and even cross-embodiment policies. Our code is open-sourced at https://github.com/AndyCao1125/MCDP.
comment: Accepted to ICLR 2025 Generative Models for Robot Learning Workshop
☆ EgoEvGesture: Gesture Recognition Based on Egocentric Event Camera
Egocentric gesture recognition is a pivotal technology for enhancing natural human-computer interaction, yet traditional RGB-based solutions suffer from motion blur and illumination variations in dynamic scenarios. While event cameras show distinct advantages in handling high dynamic range with ultra-low power consumption, existing RGB-based architectures face inherent limitations in processing asynchronous event streams due to their synchronous frame-based nature. Moreover, from an egocentric perspective, event cameras record data that include events generated by both head movements and hand gestures, thereby increasing the complexity of gesture recognition. To address this, we propose a novel network architecture specifically designed for event data processing, incorporating (1) a lightweight CNN with asymmetric depthwise convolutions to reduce parameters while preserving spatiotemporal features, (2) a plug-and-play state-space model as context block that decouples head movement noise from gesture dynamics, and (3) a parameter-free Bins-Temporal Shift Module (BSTM) that shifts features along bins and temporal dimensions to fuse sparse events efficiently. We further build the EgoEvGesture dataset, the first large-scale dataset for egocentric gesture recognition using event cameras. Experimental results demonstrate that our method achieves 62.7% accuracy in heterogeneous testing with only 7M parameters, 3.1% higher than state-of-the-art approaches. Notable misclassifications in freestyle motions stem from high inter-personal variability and unseen test patterns differing from training data. Moreover, our approach achieved a remarkable accuracy of 96.97% on DVS128 Gesture, demonstrating strong cross-dataset generalization capability. The dataset and models are made publicly available at https://github.com/3190105222/EgoEv_Gesture.
comment: The dataset and models are made publicly available at https://github.com/3190105222/EgoEv_Gesture
☆ Bio-Inspired Plastic Neural Networks for Zero-Shot Out-of-Distribution Generalization in Complex Animal-Inspired Robots
Artificial neural networks can be used to solve a variety of robotic tasks. However, they risk failing catastrophically when faced with out-of-distribution (OOD) situations. Several approaches have employed a type of synaptic plasticity known as Hebbian learning that can dynamically adjust weights based on local neural activities. Research has shown that synaptic plasticity can make policies more robust and help them adapt to unforeseen changes in the environment. However, networks augmented with Hebbian learning can lead to weight divergence, resulting in network instability. Furthermore, such Hebbian networks have not yet been applied to solve legged locomotion in complex real robots with many degrees of freedom. In this work, we improve the Hebbian network with a weight normalization mechanism for preventing weight divergence, analyze the principal components of the Hebbian's weights, and perform a thorough evaluation of network performance in locomotion control for real 18-DOF dung beetle-like and 16-DOF gecko-like robots. We find that the Hebbian-based plastic network can execute zero-shot sim-to-real adaptation locomotion and generalize to unseen conditions, such as uneven terrain and morphological damage.
☆ TERL: Large-Scale Multi-Target Encirclement Using Transformer-Enhanced Reinforcement Learning IROS
Pursuit-evasion (PE) problem is a critical challenge in multi-robot systems (MRS). While reinforcement learning (RL) has shown its promise in addressing PE tasks, research has primarily focused on single-target pursuit, with limited exploration of multi-target encirclement, particularly in large-scale settings. This paper proposes a Transformer-Enhanced Reinforcement Learning (TERL) framework for large-scale multi-target encirclement. By integrating a transformer-based policy network with target selection, TERL enables robots to adaptively prioritize targets and safely coordinate robots. Results show that TERL outperforms existing RL-based methods in terms of encirclement success rate and task completion time, while maintaining good performance in large-scale scenarios. Notably, TERL, trained on small-scale scenarios (15 pursuers, 4 targets), generalizes effectively to large-scale settings (80 pursuers, 20 targets) without retraining, achieving a 100% success rate.
comment: This paper is currently under review at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
M2UD: A Multi-model, Multi-scenario, Uneven-terrain Dataset for Ground Robot with Localization and Mapping Evaluation
Ground robots play a crucial role in inspection, exploration, rescue, and other applications. In recent years, advancements in LiDAR technology have made sensors more accurate, lightweight, and cost-effective. Therefore, researchers increasingly integrate sensors, for SLAM studies, providing robust technical support for ground robots and expanding their application domains. Public datasets are essential for advancing SLAM technology. However, existing datasets for ground robots are typically restricted to flat-terrain motion with 3 DOF and cover only a limited range of scenarios. Although handheld devices and UAV exhibit richer and more aggressive movements, their datasets are predominantly confined to small-scale environments due to endurance limitations. To fill these gap, we introduce M2UD, a multi-modal, multi-scenario, uneven-terrain SLAM dataset for ground robots. This dataset contains a diverse range of highly challenging environments, including cities, open fields, long corridors, and mixed scenarios. Additionally, it presents extreme weather conditions. The aggressive motion and degradation characteristics of this dataset not only pose challenges for testing and evaluating existing SLAM methods but also advance the development of more advanced SLAM algorithms. To benchmark SLAM algorithms, M2UD provides smoothed ground truth localization data obtained via RTK and introduces a novel localization evaluation metric that considers both accuracy and efficiency. Additionally, we utilize a high-precision laser scanner to acquire ground truth maps of two representative scenes, facilitating the development and evaluation of mapping algorithms. We select 12 localization sequences and 2 mapping sequences to evaluate several classical SLAM algorithms, verifying usability of the dataset. To enhance usability, the dataset is accompanied by a suite of development kits.
comment: 18 pages, 12 figures
☆ GameChat: Multi-LLM Dialogue for Safe, Agile, and Socially Optimal Multi-Agent Navigation in Constrained Environments
Safe, agile, and socially compliant multi-robot navigation in cluttered and constrained environments remains a critical challenge. This is especially difficult with self-interested agents in decentralized settings, where there is no central authority to resolve conflicts induced by spatial symmetry. We address this challenge by proposing a novel approach, GameChat, which facilitates safe, agile, and deadlock-free navigation for both cooperative and self-interested agents. Key to our approach is the use of natural language communication to resolve conflicts, enabling agents to prioritize more urgent tasks and break spatial symmetry in a socially optimal manner. Our algorithm ensures subgame perfect equilibrium, preventing agents from deviating from agreed-upon behaviors and supporting cooperation. Furthermore, we guarantee safety through control barrier functions and preserve agility by minimizing disruptions to agents' planned trajectories. We evaluate GameChat in simulated environments with doorways and intersections. The results show that even in the worst case, GameChat reduces the time for all agents to reach their goals by over 35% from a naive baseline and by over 20% from SMG-CBF in the intersection scenario, while doubling the rate of ensuring the agent with a higher priority task reaches the goal first, from 50% (equivalent to random chance) to a 100% perfect performance at maximizing social welfare.
♻ ☆ UniGoal: Towards Universal Zero-shot Goal-oriented Navigation CVPR 2025
In this paper, we propose a general framework for universal zero-shot goal-oriented navigation. Existing zero-shot methods build inference framework upon large language models (LLM) for specific tasks, which differs a lot in overall pipeline and fails to generalize across different types of goal. Towards the aim of universal zero-shot navigation, we propose a uniform graph representation to unify different goals, including object category, instance image and text description. We also convert the observation of agent into an online maintained scene graph. With this consistent scene and goal representation, we preserve most structural information compared with pure text and are able to leverage LLM for explicit graph-based reasoning. Specifically, we conduct graph matching between the scene graph and goal graph at each time instant and propose different strategies to generate long-term goal of exploration according to different matching states. The agent first iteratively searches subgraph of goal when zero-matched. With partial matching, the agent then utilizes coordinate projection and anchor pair alignment to infer the goal location. Finally scene graph correction and goal verification are applied for perfect matching. We also present a blacklist mechanism to enable robust switch between stages. Extensive experiments on several benchmarks show that our UniGoal achieves state-of-the-art zero-shot performance on three studied navigation tasks with a single model, even outperforming task-specific zero-shot methods and supervised universal methods.
comment: Accepted to CVPR 2025. Project page: https://bagh2178.github.io/UniGoal/
♻ ☆ MotionScript: Natural Language Descriptions for Expressive 3D Human Motions
We introduce MotionScript, a novel framework for generating highly detailed, natural language descriptions of 3D human motions. Unlike existing motion datasets that rely on broad action labels or generic captions, MotionScript provides fine-grained, structured descriptions that capture the full complexity of human movement including expressive actions (e.g., emotions, stylistic walking) and interactions beyond standard motion capture datasets. MotionScript serves as both a descriptive tool and a training resource for text-to-motion models, enabling the synthesis of highly realistic and diverse human motions from text. By augmenting motion datasets with MotionScript captions, we demonstrate significant improvements in out-of-distribution motion generation, allowing large language models (LLMs) to generate motions that extend beyond existing data. Additionally, MotionScript opens new applications in animation, virtual human simulation, and robotics, providing an interpretable bridge between intuitive descriptions and motion synthesis. To the best of our knowledge, this is the first attempt to systematically translate 3D motion into structured natural language without requiring training data.
comment: Project webpage: https://pjyazdian.github.io/MotionScript
♻ ☆ DexGrasp Anything: Towards Universal Robotic Dexterous Grasping with Physics Awareness CVPR 2025
A dexterous hand capable of grasping any object is essential for the development of general-purpose embodied intelligent robots. However, due to the high degree of freedom in dexterous hands and the vast diversity of objects, generating high-quality, usable grasping poses in a robust manner is a significant challenge. In this paper, we introduce DexGrasp Anything, a method that effectively integrates physical constraints into both the training and sampling phases of a diffusion-based generative model, achieving state-of-the-art performance across nearly all open datasets. Additionally, we present a new dexterous grasping dataset containing over 3.4 million diverse grasping poses for more than 15k different objects, demonstrating its potential to advance universal dexterous grasping. The code of our method and our dataset will be publicly released soon.
comment: Accepted by CVPR 2025
♻ ☆ Rough Stochastic Pontryagin Maximum Principle and an Indirect Shooting Method
We derive first-order Pontryagin optimality conditions for stochastic optimal control with deterministic controls for systems modeled by rough differential equations (RDE) driven by Gaussian rough paths. This Pontryagin Maximum Principle (PMP) applies to systems following stochastic differential equations (SDE) driven by Brownian motion, yet it does not rely on forward-backward SDEs and involves the same Hamiltonian as the deterministic PMP. The proof consists of first deriving various integrable error bounds for solutions to nonlinear and linear RDEs by leveraging recent results on Gaussian rough paths. The PMP then follows using standard techniques based on needle-like variations. As an application, we propose the first indirect shooting method for nonlinear stochastic optimal control and show that it converges 10x faster than a direct method on a stabilization task.
comment: Small improvements to the presentation
♻ ☆ vMF-Contact: Uncertainty-aware Evidential Learning for Probabilistic Contact-grasp in Noisy Clutter ICRA 2025
Grasp learning in noisy environments, such as occlusions, sensor noise, and out-of-distribution (OOD) objects, poses significant challenges. Recent learning-based approaches focus primarily on capturing aleatoric uncertainty from inherent data noise. The epistemic uncertainty, which represents the OOD recognition, is often addressed by ensembles with multiple forward paths, limiting real-time application. In this paper, we propose an uncertainty-aware approach for 6-DoF grasp detection using evidential learning to comprehensively capture both uncertainties in real-world robotic grasping. As a key contribution, we introduce vMF-Contact, a novel architecture for learning hierarchical contact grasp representations with probabilistic modeling of directional uncertainty as von Mises-Fisher (vMF) distribution. To achieve this, we analyze the theoretical formulation of the second-order objective on the posterior parametrization, providing formal guarantees for the model's ability to quantify uncertainty and improve grasp prediction performance. Moreover, we enhance feature expressiveness by applying partial point reconstructions as an auxiliary task, improving the comprehension of uncertainty quantification as well as the generalization to unseen objects. In the real-world experiments, our method demonstrates a significant improvement by 39% in the overall clearance rate compared to the baselines. The code is available under: https://github.com/YitianShi/vMF-Contact/
comment: Accepted to ICRA 2025
♻ ☆ Depth Any Camera: Zero-Shot Metric Depth Estimation from Any Camera
While recent depth foundation models exhibit strong zero-shot generalization, achieving accurate metric depth across diverse camera types-particularly those with large fields of view (FoV) such as fisheye and 360-degree cameras-remains a significant challenge. This paper presents Depth Any Camera (DAC), a powerful zero-shot metric depth estimation framework that extends a perspective-trained model to effectively handle cameras with varying FoVs. The framework is designed to ensure that all existing 3D data can be leveraged, regardless of the specific camera types used in new applications. Remarkably, DAC is trained exclusively on perspective images but generalizes seamlessly to fisheye and 360-degree cameras without the need for specialized training data. DAC employs Equi-Rectangular Projection (ERP) as a unified image representation, enabling consistent processing of images with diverse FoVs. Its core components include pitch-aware Image-to-ERP conversion with efficient online augmentation to simulate distorted ERP patches from undistorted inputs, FoV alignment operations to enable effective training across a wide range of FoVs, and multi-resolution data augmentation to further address resolution disparities between training and testing. DAC achieves state-of-the-art zero-shot metric depth estimation, improving $\delta_1$ accuracy by up to 50% on multiple fisheye and 360-degree datasets compared to prior metric depth foundation models, demonstrating robust generalization across camera types.
♻ ☆ Three-dimensional Nonlinear Path-following Guidance with Bounded Input Constraints
In this paper, we consider the tracking of arbitrary curvilinear geometric paths in three-dimensional output spaces of unmanned aerial vehicles (UAVs) without pre-specified timing requirements, commonly referred to as path-following problems, subjected to bounded inputs. Specifically, we propose a novel nonlinear path-following guidance law for a UAV that enables it to follow any smooth curvilinear path in three dimensions while accounting for the bounded control authority in the design. The proposed solution offers a general treatment of the path-following problem by removing the dependency on the path's geometry, which makes it applicable to paths with varying levels of complexity and smooth curvatures. Additionally, the proposed strategy draws inspiration from the pursuit guidance approach, which is known for its simplicity and ease of implementation. Theoretical analysis guarantees that the UAV converges to its desired path within a fixed time and remains on it irrespective of its initial configuration with respect to the path. Finally, the simulations demonstrate the merits and effectiveness of the proposed guidance strategy through a wide range of engagement scenarios, showcasing the UAV's ability to follow diverse curvilinear paths accurately.
♻ ☆ Evaluating Uncertainty-based Failure Detection for Closed-Loop LLM Planners ICRA 2024
Recently, Large Language Models (LLMs) have witnessed remarkable performance as zero-shot task planners for robotic manipulation tasks. However, the open-loop nature of previous works makes LLM-based planning error-prone and fragile. On the other hand, failure detection approaches for closed-loop planning are often limited by task-specific heuristics or following an unrealistic assumption that the prediction is trustworthy all the time. As a general-purpose reasoning machine, LLMs or Multimodal Large Language Models (MLLMs) are promising for detecting failures. However, However, the appropriateness of the aforementioned assumption diminishes due to the notorious hullucination problem. In this work, we attempt to mitigate these issues by introducing a framework for closed-loop LLM-based planning called KnowLoop, backed by an uncertainty-based MLLMs failure detector, which is agnostic to any used MLLMs or LLMs. Specifically, we evaluate three different ways for quantifying the uncertainty of MLLMs, namely token probability, entropy, and self-explained confidence as primary metrics based on three carefully designed representative prompting strategies. With a self-collected dataset including various manipulation tasks and an LLM-based robot system, our experiments demonstrate that token probability and entropy are more reflective compared to self-explained confidence. By setting an appropriate threshold to filter out uncertain predictions and seek human help actively, the accuracy of failure detection can be significantly enhanced. This improvement boosts the effectiveness of closed-loop planning and the overall success rate of tasks.
comment: Accepted at ICRA 2024 Workshop on Back to the Future: Robot Learning Going Probabilistic. Website: https://sites.google.com/view/konwloop/home
♻ ☆ Self-Supervised Monocular 4D Scene Reconstruction for Egocentric Videos
Egocentric videos provide valuable insights into human interactions with the physical world, which has sparked growing interest in the computer vision and robotics communities. A critical challenge in fully understanding the geometry and dynamics of egocentric videos is dense scene reconstruction. However, the lack of high-quality labeled datasets in this field has hindered the effectiveness of current supervised learning methods. In this work, we aim to address this issue by exploring an self-supervised dynamic scene reconstruction approach. We introduce EgoMono4D, a novel model that unifies the estimation of multiple variables necessary for Egocentric Monocular 4D reconstruction, including camera intrinsic, camera poses, and video depth, all within a fast feed-forward framework. Starting from pretrained single-frame depth and intrinsic estimation model, we extend it with camera poses estimation and align multi-frame results on large-scale unlabeled egocentric videos. We evaluate EgoMono4D in both in-domain and zero-shot generalization settings, achieving superior performance in dense pointclouds sequence reconstruction compared to all baselines. EgoMono4D represents the first attempt to apply self-supervised learning for pointclouds sequence reconstruction to the label-scarce egocentric field, enabling fast, dense, and generalizable reconstruction. The interactable visualization, code and trained models are released https://egomono4d.github.io/
♻ ☆ GravMAD: Grounded Spatial Value Maps Guided Action Diffusion for Generalized 3D Manipulation ICLR 2025
Robots' ability to follow language instructions and execute diverse 3D manipulation tasks is vital in robot learning. Traditional imitation learning-based methods perform well on seen tasks but struggle with novel, unseen ones due to variability. Recent approaches leverage large foundation models to assist in understanding novel tasks, thereby mitigating this issue. However, these methods lack a task-specific learning process, which is essential for an accurate understanding of 3D environments, often leading to execution failures. In this paper, we introduce GravMAD, a sub-goal-driven, language-conditioned action diffusion framework that combines the strengths of imitation learning and foundation models. Our approach breaks tasks into sub-goals based on language instructions, allowing auxiliary guidance during both training and inference. During training, we introduce Sub-goal Keypose Discovery to identify key sub-goals from demonstrations. Inference differs from training, as there are no demonstrations available, so we use pre-trained foundation models to bridge the gap and identify sub-goals for the current task. In both phases, GravMaps are generated from sub-goals, providing GravMAD with more flexible 3D spatial guidance compared to fixed 3D positions. Empirical evaluations on RLBench show that GravMAD significantly outperforms state-of-the-art methods, with a 28.63% improvement on novel tasks and a 13.36% gain on tasks encountered during training. Evaluations on real-world robotic tasks further show that GravMAD can reason about real-world tasks, associate them with relevant visual information, and generalize to novel tasks. These results demonstrate GravMAD's strong multi-task learning and generalization in 3D manipulation. Video demonstrations are available at: https://gravmad.github.io.
comment: ICLR 2025. The first two authors contributed equally
♻ ☆ Skill Expansion and Composition in Parameter Space ICLR 2025
Humans excel at reusing prior knowledge to address new challenges and developing skills while solving problems. This paradigm becomes increasingly popular in the development of autonomous agents, as it develops systems that can self-evolve in response to new challenges like human beings. However, previous methods suffer from limited training efficiency when expanding new skills and fail to fully leverage prior knowledge to facilitate new task learning. In this paper, we propose Parametric Skill Expansion and Composition (PSEC), a new framework designed to iteratively evolve the agents' capabilities and efficiently address new challenges by maintaining a manageable skill library. This library can progressively integrate skill primitives as plug-and-play Low-Rank Adaptation (LoRA) modules in parameter-efficient finetuning, facilitating efficient and flexible skill expansion. This structure also enables the direct skill compositions in parameter space by merging LoRA modules that encode different skills, leveraging shared information across skills to effectively program new skills. Based on this, we propose a context-aware module to dynamically activate different skills to collaboratively handle new tasks. Empowering diverse applications including multi-objective composition, dynamics shift, and continual policy shift, the results on D4RL, DSRL benchmarks, and the DeepMind Control Suite show that PSEC exhibits superior capacity to leverage prior knowledge to efficiently tackle new challenges, as well as expand its skill libraries to evolve the capabilities. Project website: https://ltlhuuu.github.io/PSEC/.
comment: ICLR 2025, 37 pages
♻ ☆ BaB-ND: Long-Horizon Motion Planning with Branch-and-Bound and Neural Dynamics
Neural-network-based dynamics models learned from observational data have shown strong predictive capabilities for scene dynamics in robotic manipulation tasks. However, their inherent non-linearity presents significant challenges for effective planning. Current planning methods, often dependent on extensive sampling or local gradient descent, struggle with long-horizon motion planning tasks involving complex contact events. In this paper, we present a GPU-accelerated branch-and-bound (BaB) framework for motion planning in manipulation tasks that require trajectory optimization over neural dynamics models. Our approach employs a specialized branching heuristics to divide the search space into subdomains, and applies a modified bound propagation method, inspired by the state-of-the-art neural network verifier alpha-beta-CROWN, to efficiently estimate objective bounds within these subdomains. The branching process guides planning effectively, while the bounding process strategically reduces the search space. Our framework achieves superior planning performance, generating high-quality state-action trajectories and surpassing existing methods in challenging, contact-rich manipulation tasks such as non-prehensile planar pushing with obstacles, object sorting, and rope routing in both simulated and real-world settings. Furthermore, our framework supports various neural network architectures, ranging from simple multilayer perceptrons to advanced graph neural dynamics models, and scales efficiently with different model sizes.
comment: The first two authors contributed equally. Project Page: https://robopil.github.io/bab-nd/
♻ ☆ Language-Guided Object-Centric Diffusion Policy for Generalizable and Collision-Aware Robotic Manipulation ICRA 2025
Learning from demonstrations faces challenges in generalizing beyond the training data and often lacks collision awareness. This paper introduces Lan-o3dp, a language-guided object-centric diffusion policy framework that can adapt to unseen situations such as cluttered scenes, shifting camera views, and ambiguous similar objects while offering training-free collision avoidance and achieving a high success rate with few demonstrations. We train a diffusion model conditioned on 3D point clouds of task-relevant objects to predict the robot's end-effector trajectories, enabling it to complete the tasks. During inference, we incorporate cost optimization into denoising steps to guide the generated trajectory to be collision-free. We leverage open-set segmentation to obtain the 3D point clouds of related objects. We use a large language model to identify the target objects and possible obstacles by interpreting the user's natural language instructions. To effectively guide the conditional diffusion model using a time-independent cost function, we proposed a novel guided generation mechanism based on the estimated clean trajectories. In the simulation, we showed that diffusion policy based on the object-centric 3D representation achieves a much higher success rate (68.7%) compared to baselines with simple 2D (39.3%) and 3D scene (43.6%) representations across 21 challenging RLBench tasks with only 40 demonstrations. In real-world experiments, we extensively evaluated the generalization in various unseen situations and validated the effectiveness of the proposed zero-shot cost-guided collision avoidance.
comment: ICRA 2025
♻ ☆ Surgical-LVLM: Learning to Adapt Large Vision-Language Model for Grounded Visual Question Answering in Robotic Surgery ICLR 2025
Recent advancements in Surgical Visual Question Answering (Surgical-VQA) and related region grounding have shown great promise for robotic and medical applications, addressing the critical need for automated methods in personalized surgical mentorship. However, existing models primarily provide simple structured answers and struggle with complex scenarios due to their limited capability in recognizing long-range dependencies and aligning multimodal information. In this paper, we introduce Surgical-LVLM, a novel personalized large vision-language model tailored for complex surgical scenarios. Leveraging the pre-trained large vision-language model and specialized Visual Perception LoRA (VP-LoRA) blocks, our model excels in understanding complex visual-language tasks within surgical contexts. In addressing the visual grounding task, we propose the Token-Interaction (TIT) module, which strengthens the interaction between the grounding module and the language responses of the Large Visual Language Model (LVLM) after projecting them into the latent space. We demonstrate the effectiveness of Surgical-LVLM on several benchmarks, including EndoVis-17-VQLA, EndoVis-18-VQLA, and a newly introduced EndoVis Conversations dataset, which sets new performance standards. Our work contributes to advancing the field of automated surgical mentorship by providing a context-aware solution.
comment: The manuscript is accepted by ICLR 2025 FM-Wild Workshop
Artificial Intelligence 90
Dynamic Angle Selection in X-Ray CT: A Reinforcement Learning Approach to Optimal Stopping
In industrial X-ray Computed Tomography (CT), the need for rapid in-line inspection is critical. Sparse-angle tomography plays a significant role in this by reducing the required number of projections, thereby accelerating processing and conserving resources. Most existing methods aim to balance reconstruction quality and scanning time, typically relying on fixed scan durations. Adaptive adjustment of the number of angles is essential; for instance, more angles may be required for objects with complex geometries or noisier projections. The concept of optimal stopping, which dynamically adjusts this balance according to varying industrial needs, remains underutilized. Building on our previous work, we integrate optimal stopping into sequential Optimal Experimental Design (OED). We propose a novel method for computing the policy gradient within the Actor-Critic framework, enabling the development of adaptive policies for informative angle selection and scan termination. Additionally, we investigated the gap between simulation and real-world applications in the context of the developed learning-based method. Our trained model, developed using synthetic data, demonstrates reliable performance when applied to real-world data. This approach enhances the flexibility of CT operations and expands the applicability of sparse-angle tomography in industrial settings.
☆ AI Agents: Evolution, Architecture, and Real-World Applications
This paper examines the evolution, architecture, and practical applications of AI agents from their early, rule-based incarnations to modern sophisticated systems that integrate large language models with dedicated modules for perception, planning, and tool use. Emphasizing both theoretical foundations and real-world deployments, the paper reviews key agent paradigms, discusses limitations of current evaluation benchmarks, and proposes a holistic evaluation framework that balances task effectiveness, efficiency, robustness, and safety. Applications across enterprise, personal assistance, and specialized domains are analyzed, with insights into future research directions for more resilient and adaptive AI agent systems.
comment: 52 pages, 4 figures, comprehensive survey and analysis of AI agent evolution, architecture, evaluation frameworks, and applications
☆ Plausibility Vaccine: Injecting LLM Knowledge for Event Plausibility
Despite advances in language modelling, distributional methods that build semantic representations from co-occurrences fail to discriminate between plausible and implausible events. In this work, we investigate how plausibility prediction can be improved by injecting latent knowledge prompted from large language models using parameter-efficient fine-tuning. We train 12 task adapters to learn various physical properties and association measures and perform adapter fusion to compose latent semantic knowledge from each task on top of pre-trained AlBERT embeddings. We automate auxiliary task data generation, which enables us to scale our approach and fine-tune our learned representations across two plausibility datasets. Our code is available at https://github.com/Jacob-Chmura/plausibility-vaccine.
☆ VeriLA: A Human-Centered Evaluation Framework for Interpretable Verification of LLM Agent Failures
AI practitioners increasingly use large language model (LLM) agents in compound AI systems to solve complex reasoning tasks, these agent executions often fail to meet human standards, leading to errors that compromise the system's overall performance. Addressing these failures through human intervention is challenging due to the agents' opaque reasoning processes, misalignment with human expectations, the complexity of agent dependencies, and the high cost of manual inspection. This paper thus introduces a human-centered evaluation framework for Verifying LLM Agent failures (VeriLA), which systematically assesses agent failures to reduce human effort and make these agent failures interpretable to humans. The framework first defines clear expectations of each agent by curating human-designed agent criteria. Then, it develops a human-aligned agent verifier module, trained with human gold standards, to assess each agent's execution output. This approach enables granular evaluation of each agent's performance by revealing failures from a human standard, offering clear guidelines for revision, and reducing human cognitive load. Our case study results show that VeriLA is both interpretable and efficient in helping practitioners interact more effectively with the system. By upholding accountability in human-agent collaboration, VeriLA paves the way for more trustworthy and human-aligned compound AI systems.
☆ FW-Merging: Scaling Model Merging with Frank-Wolfe Optimization
Model merging has emerged as a promising approach for multi-task learning (MTL), offering a data-efficient alternative to conventional fine-tuning. However, with the rapid development of the open-source AI ecosystem and the increasing availability of fine-tuned foundation models, existing model merging methods face two key limitations: (i) They are primarily designed for in-house fine-tuned models, making them less adaptable to diverse model sources with partially unknown model and task information, (ii) They struggle to scale effectively when merging numerous model checkpoints. To address these challenges, we formulate model merging as a constrained optimization problem and introduce a novel approach: Frank-Wolfe Merging (FW-Merging). Inspired by Frank-Wolfe optimization, our approach iteratively selects the most relevant model in the pool to minimize a linear approximation of the objective function and then executes a local merging similar to the Frank-Wolfe update. The objective function is designed to capture the desired behavior of the target-merged model, while the fine-tuned candidate models define the constraint set. More importantly, FW-Merging serves as an orthogonal technique for existing merging methods, seamlessly integrating with them to further enhance accuracy performance. Our experiments show that FW-Merging scales across diverse model sources, remaining stable with 16 irrelevant models and improving by 15.3% with 16 relevant models on 20 CV tasks, while maintaining constant memory overhead, unlike the linear overhead of data-informed merging methods. Compared with the state-of-the-art approaches, FW-Merging surpasses the data-free merging method by 32.8% and outperforms the data-informed Adamerging by 8.39% when merging 20 ViT models.
☆ COVID 19 Diagnosis Analysis using Transfer Learning
Coronaviruses transmit COVID-19, a rapidly spreading disease. A Coronavirus infection (COVID-19) was first discovered in December 2019 in Wuhan, China, and spread rapidly throughout the planet in exactly some months. because of this, the virus can cause severe symptoms and even death, especially within the elderly and in people with medical conditions. The virus causes acute respiratory infections in humans. the primary case was diagnosed in China in 2019 and the pandemic started in 2020. Since the quantity of cases of COVID-19 is increasing daily, there are only a limited number of test kits available in hospitals. So, to stop COVID-19 from spreading among people, an automatic diagnosis system must be implemented. during this study, three pre-trained neural networks supported convolutional neural networks (VGG16, VGG19, ResNet50) are proposed for detecting Coronavirus pneumonia infected patients through X-rays and computerized tomography (CT). By using cross-validation, we've got implemented binary classifications with two classes (COVID-19, Normal (healthy)). Taking into consideration the results obtained, the pre-trained ResNet50 model provides the simplest classification performance (97.77% accuracy, 100% sensitivity, 93.33% specificity, 98.00% F1-score) among the opposite three used models over 6259 images.
☆ Understanding Driver Cognition and Decision-Making Behaviors in High-Risk Scenarios: A Drift Diffusion Perspective
Ensuring safe interactions between autonomous vehicles (AVs) and human drivers in mixed traffic systems remains a major challenge, particularly in complex, high-risk scenarios. This paper presents a cognition-decision framework that integrates individual variability and commonalities in driver behavior to quantify risk cognition and model dynamic decision-making. First, a risk sensitivity model based on a multivariate Gaussian distribution is developed to characterize individual differences in risk cognition. Then, a cognitive decision-making model based on the drift diffusion model (DDM) is introduced to capture common decision-making mechanisms in high-risk environments. The DDM dynamically adjusts decision thresholds by integrating initial bias, drift rate, and boundary parameters, adapting to variations in speed, relative distance, and risk sensitivity to reflect diverse driving styles and risk preferences. By simulating high-risk scenarios with lateral, longitudinal, and multidimensional risk sources in a driving simulator, the proposed model accurately predicts cognitive responses and decision behaviors during emergency maneuvers. Specifically, by incorporating driver-specific risk sensitivity, the model enables dynamic adjustments of key DDM parameters, allowing for personalized decision-making representations in diverse scenarios. Comparative analysis with IDM, Gipps, and MOBIL demonstrates that DDM more precisely captures human cognitive processes and adaptive decision-making in high-risk scenarios. These findings provide a theoretical basis for modeling human driving behavior and offer critical insights for enhancing AV-human interaction in real-world traffic environments.
comment: 23 pages, 11 figures
☆ Hybrid Learners Do Not Forget: A Brain-Inspired Neuro-Symbolic Approach to Continual Learning
Continual learning is crucial for creating AI agents that can learn and improve themselves autonomously. A primary challenge in continual learning is to learn new tasks without losing previously learned knowledge. Current continual learning methods primarily focus on enabling a neural network with mechanisms that mitigate forgetting effects. Inspired by the two distinct systems in the human brain, System 1 and System 2, we propose a Neuro-Symbolic Brain-Inspired Continual Learning (NeSyBiCL) framework that incorporates two subsystems to solve continual learning: A neural network model responsible for quickly adapting to the most recent task, together with a symbolic reasoner responsible for retaining previously acquired knowledge from previous tasks. Moreover, we design an integration mechanism between these components to facilitate knowledge transfer from the symbolic reasoner to the neural network. We also introduce two compositional continual learning benchmarks and demonstrate that NeSyBiCL is effective and leads to superior performance compared to continual learning methods that merely rely on neural architectures to address forgetting.
☆ Automated Planning for Optimal Data Pipeline Instantiation
Data pipeline frameworks provide abstractions for implementing sequences of data-intensive transformation operators, automating the deployment and execution of such transformations in a cluster. Deploying a data pipeline, however, requires computing resources to be allocated in a data center, ideally minimizing the overhead for communicating data and executing operators in the pipeline while considering each operator's execution requirements. In this paper, we model the problem of optimal data pipeline deployment as planning with action costs, where we propose heuristics aiming to minimize total execution time. Experimental results indicate that the heuristics can outperform the baseline deployment and that a heuristic based on connections outperforms other strategies.
MAVEN: Multi-modal Attention for Valence-Arousal Emotion Network
This paper introduces MAVEN (Multi-modal Attention for Valence-Arousal Emotion Network), a novel architecture for dynamic emotion recognition through dimensional modeling of affect. The model uniquely integrates visual, audio, and textual modalities via a bi-directional cross-modal attention mechanism with six distinct attention pathways, enabling comprehensive interactions between all modality pairs. Our proposed approach employs modality-specific encoders to extract rich feature representations from synchronized video frames, audio segments, and transcripts. The architecture's novelty lies in its cross-modal enhancement strategy, where each modality representation is refined through weighted attention from other modalities, followed by self-attention refinement through modality-specific encoders. Rather than directly predicting valence-arousal values, MAVEN predicts emotions in a polar coordinate form, aligning with psychological models of the emotion circumplex. Experimental evaluation on the Aff-Wild2 dataset demonstrates the effectiveness of our approach, with performance measured using Concordance Correlation Coefficient (CCC). The multi-stage architecture demonstrates superior ability to capture the complex, nuanced nature of emotional expressions in conversational videos, advancing the state-of-the-art (SOTA) in continuous emotion recognition in-the-wild. Code can be found at: https://github.com/Vrushank-Ahire/MAVEN_8th_ABAW.
☆ Scaling Semantic Categories: Investigating the Impact on Vision Transformer Labeling Performance CVPR
This study explores the impact of scaling semantic categories on the image classification performance of vision transformers (ViTs). In this specific case, the CLIP server provided by Jina AI is used for experimentation. The research hypothesizes that as the number of ground truth and artificially introduced semantically equivalent categories increases, the labeling accuracy of ViTs improves until a theoretical maximum or limit is reached. A wide variety of image datasets were chosen to test this hypothesis. These datasets were processed through a custom function in Python designed to evaluate the model's accuracy, with adjustments being made to account for format differences between datasets. By exponentially introducing new redundant categories, the experiment assessed accuracy trends until they plateaued, decreased, or fluctuated inconsistently. The findings show that while semantic scaling initially increases model performance, the benefits diminish or reverse after surpassing a critical threshold, providing insight into the limitations and possible optimization of category labeling strategies for ViTs.
comment: 4 pages, 7 figures, submitted to CVPR (feedback pending)
☆ Negotiative Alignment: Embracing Disagreement to Achieve Fairer Outcomes -- Insights from Urban Studies
Cities are not monolithic; they are arenas of negotiation among groups that hold varying needs, values, and experiences. Conventional methods of urban assessment -- from standardized surveys to AI-driven evaluations -- frequently rely on a single consensus metric (e.g., an average measure of inclusivity or safety). Although such aggregations simplify design decisions, they risk obscuring the distinct perspectives of marginalized populations. In this paper, we present findings from a community-centered study in Montreal involving 35 residents with diverse demographic and social identities, particularly wheelchair users, seniors, and LGBTQIA2+ individuals. Using rating and ranking tasks on 20 urban sites, we observe that disagreements are systematic rather than random, reflecting structural inequalities, differing cultural values, and personal experiences of safety and accessibility. Based on these empirical insights, we propose negotiative alignment, an AI framework that treats disagreement as an essential input to be preserved, analyzed, and addressed. Negotiative alignment builds on pluralistic models by dynamically updating stakeholder preferences through multi-agent negotiation mechanisms, ensuring no single perspective is marginalized. We outline how this framework can be integrated into urban analytics -- and other decision-making contexts -- to retain minority viewpoints, adapt to changing stakeholder concerns, and enhance fairness and accountability. The study demonstrates that preserving and engaging with disagreement, rather than striving for an artificial consensus, can produce more equitable and responsive AI-driven outcomes in urban design.
comment: 16 pages, 13 figures
☆ Point Cloud Based Scene Segmentation: A Survey
Autonomous driving is a safety-critical application, and it is therefore a top priority that the accompanying assistance systems are able to provide precise information about the surrounding environment of the vehicle. Tasks such as 3D Object Detection deliver an insufficiently detailed understanding of the surrounding scene because they only predict a bounding box for foreground objects. In contrast, 3D Semantic Segmentation provides richer and denser information about the environment by assigning a label to each individual point, which is of paramount importance for autonomous driving tasks, such as navigation or lane changes. To inspire future research, in this review paper, we provide a comprehensive overview of the current state-of-the-art methods in the field of Point Cloud Semantic Segmentation for autonomous driving. We categorize the approaches into projection-based, 3D-based and hybrid methods. Moreover, we discuss the most important and commonly used datasets for this task and also emphasize the importance of synthetic data to support research when real-world data is limited. We further present the results of the different methods and compare them with respect to their segmentation accuracy and efficiency.
☆ Fourier-Based 3D Multistage Transformer for Aberration Correction in Multicellular Specimens
High-resolution tissue imaging is often compromised by sample-induced optical aberrations that degrade resolution and contrast. While wavefront sensor-based adaptive optics (AO) can measure these aberrations, such hardware solutions are typically complex, expensive to implement, and slow when serially mapping spatially varying aberrations across large fields of view. Here, we introduce AOViFT (Adaptive Optical Vision Fourier Transformer) -- a machine learning-based aberration sensing framework built around a 3D multistage Vision Transformer that operates on Fourier domain embeddings. AOViFT infers aberrations and restores diffraction-limited performance in puncta-labeled specimens with substantially reduced computational cost, training time, and memory footprint compared to conventional architectures or real-space networks. We validated AOViFT on live gene-edited zebrafish embryos, demonstrating its ability to correct spatially varying aberrations using either a deformable mirror or post-acquisition deconvolution. By eliminating the need for the guide star and wavefront sensing hardware and simplifying the experimental workflow, AOViFT lowers technical barriers for high-resolution volumetric microscopy across diverse biological samples.
comment: 52 pages, 6 figures, 23 si figures, 8 si tables
☆ MoECollab: Democratizing LLM Development Through Collaborative Mixture of Experts
Large Language Model (LLM) development has become increasingly centralized, limiting participation to well-resourced organizations. This paper introduces MoECollab, a novel framework leveraging Mixture of Experts (MoE) architecture to enable distributed, collaborative LLM development. By decomposing monolithic models into specialized expert modules coordinated by a trainable gating network, our framework allows diverse contributors to participate regardless of computational resources. We provide a complete technical implementation with mathematical foundations for expert dynamics, gating mechanisms, and integration strategies. Experiments on multiple datasets demonstrate that our approach achieves accuracy improvements of 3-7% over baseline models while reducing computational requirements by 34%. Expert specialization yields significant domain-specific gains, with improvements from 51% to 88% F1 score in general classification and from 23% to 44% accuracy in news categorization. We formalize the routing entropy optimization problem and demonstrate how proper regularization techniques lead to 14% higher expert utilization rates. These results validate MoECollab as an effective approach for democratizing LLM development through architecturally-supported collaboration.
☆ BalancedDPO: Adaptive Multi-Metric Alignment
Text-to-image (T2I) diffusion models have made remarkable advancements, yet aligning them with diverse preferences remains a persistent challenge. Current methods often optimize single metrics or depend on narrowly curated datasets, leading to overfitting and limited generalization across key visual quality metrics. We present BalancedDPO, a novel extension of Direct Preference Optimization (DPO) that addresses these limitations by simultaneously aligning T2I diffusion models with multiple metrics, including human preference, CLIP score, and aesthetic quality. Our key novelty lies in aggregating consensus labels from diverse metrics in the preference distribution space as compared to existing reward mixing approaches, enabling robust and scalable multi-metric alignment while maintaining the simplicity of the standard DPO pipeline that we refer to as BalancedDPO. Our evaluations on the Pick-a-Pic, PartiPrompt and HPD datasets show that BalancedDPO achieves state-of-the-art results, outperforming existing approaches across all major metrics. BalancedDPO improves the average win rates by 15%, 7.1%, and 10.3% on Pick-a-pic, PartiPrompt and HPD, respectively, from the DiffusionDPO.
Deblur Gaussian Splatting SLAM
We present Deblur-SLAM, a robust RGB SLAM pipeline designed to recover sharp reconstructions from motion-blurred inputs. The proposed method bridges the strengths of both frame-to-frame and frame-to-model approaches to model sub-frame camera trajectories that lead to high-fidelity reconstructions in motion-blurred settings. Moreover, our pipeline incorporates techniques such as online loop closure and global bundle adjustment to achieve a dense and precise global trajectory. We model the physical image formation process of motion-blurred images and minimize the error between the observed blurry images and rendered blurry images obtained by averaging sharp virtual sub-frame images. Additionally, by utilizing a monocular depth estimator alongside the online deformation of Gaussians, we ensure precise mapping and enhanced image deblurring. The proposed SLAM pipeline integrates all these components to improve the results. We achieve state-of-the-art results for sharp map estimation and sub-frame trajectory recovery both on synthetic and real-world blurry input data.
☆ From Guessing to Asking: An Approach to Resolving the Persona Knowledge Gap in LLMs during Multi-Turn Conversations NAACL 2025
In multi-turn dialogues, large language models (LLM) face a critical challenge of ensuring coherence while adapting to user-specific information. This study introduces the persona knowledge gap, the discrepancy between a model's internal understanding and the knowledge required for coherent, personalized conversations. While prior research has recognized these gaps, computational methods for their identification and resolution remain underexplored. We propose Conversation Preference Elicitation and Recommendation (CPER), a novel framework that dynamically detects and resolves persona knowledge gaps using intrinsic uncertainty quantification and feedback-driven refinement. CPER consists of three key modules: a Contextual Understanding Module for preference extraction, a Dynamic Feedback Module for measuring uncertainty and refining persona alignment, and a Persona-Driven Response Generation module for adapting responses based on accumulated user context. We evaluate CPER on two real-world datasets: CCPE-M for preferential movie recommendations and ESConv for mental health support. Using A/B testing, human evaluators preferred CPER's responses 42% more often than baseline models in CCPE-M and 27% more often in ESConv. A qualitative human evaluation confirms that CPER's responses are preferred for maintaining contextual relevance and coherence, particularly in longer (12+ turn) conversations.
comment: 12 pages, 1 Figure, Oral Presentation at NAACL 2025
☆ Grasping Partially Occluded Objects Using Autoencoder-Based Point Cloud Inpainting ECML
Flexible industrial production systems will play a central role in the future of manufacturing due to higher product individualization and customization. A key component in such systems is the robotic grasping of known or unknown objects in random positions. Real-world applications often come with challenges that might not be considered in grasping solutions tested in simulation or lab settings. Partial occlusion of the target object is the most prominent. Examples of occlusion can be supporting structures in the camera's field of view, sensor imprecision, or parts occluding each other due to the production process. In all these cases, the resulting lack of information leads to shortcomings in calculating grasping points. In this paper, we present an algorithm to reconstruct the missing information. Our inpainting solution facilitates the real-world utilization of robust object matching approaches for grasping point calculation. We demonstrate the benefit of our solution by enabling an existing grasping system embedded in a real-world industrial application to handle occlusions in the input. With our solution, we drastically decrease the number of objects discarded by the process.
comment: Published at ECML PKDD 2022
☆ STEVE: AStep Verification Pipeline for Computer-use Agent Training
Developing AI agents to autonomously manipulate graphical user interfaces is a long challenging task. Recent advances in data scaling law inspire us to train computer-use agents with a scaled instruction set, yet using behavior cloning to train agents still requires immense high-quality trajectories. To meet the scalability need, we designed STEVE, a step verification pipeline for computer-use agent training. First, we establish a large instruction set for computer-use agents and collect trajectory data with some suboptimal agents. GPT-4o is used to verify the correctness of each step in the trajectories based on the screens before and after the action execution, assigning each step with a binary label. Last, we adopt the Kahneman and Tversky Optimization to optimize the agent from the binary stepwise labels. Extensive experiments manifest that our agent outperforms supervised finetuning by leveraging both positive and negative actions within a trajectory. Also, STEVE enables us to train a 7B vision-language model as a computer-use agent, achieving leading performance in the challenging live desktop environment WinAgentArena with great efficiency at a reduced cost. Code and data: https://github.com/FanbinLu/STEVE.
☆ HyConEx: Hypernetwork classifier with counterfactual explanations
In recent years, there has been a growing interest in explainable AI methods. We want not only to make accurate predictions using sophisticated neural networks but also to understand what the model's decision is based on. One of the fundamental levels of interpretability is to provide counterfactual examples explaining the rationale behind the decision and identifying which features, and to what extent, must be modified to alter the model's outcome. To address these requirements, we introduce HyConEx, a classification model based on deep hypernetworks specifically designed for tabular data. Owing to its unique architecture, HyConEx not only provides class predictions but also delivers local interpretations for individual data samples in the form of counterfactual examples that steer a given sample toward an alternative class. While many explainable methods generated counterfactuals for external models, there have been no interpretable classifiers simultaneously producing counterfactual samples so far. HyConEx achieves competitive performance on several metrics assessing classification accuracy and fulfilling the criteria of a proper counterfactual attack. This makes HyConEx a distinctive deep learning model, which combines predictions and explainers as an all-in-one neural network. The code is available at https://github.com/gmum/HyConEx.
☆ EXAONE Deep: Reasoning Enhanced Language Models
We present EXAONE Deep series, which exhibits superior capabilities in various reasoning tasks, including math and coding benchmarks. We train our models mainly on the reasoning-specialized dataset that incorporates long streams of thought processes. Evaluation results show that our smaller models, EXAONE Deep 2.4B and 7.8B, outperform other models of comparable size, while the largest model, EXAONE Deep 32B, demonstrates competitive performance against leading open-weight models. All EXAONE Deep models are openly available for research purposes and can be downloaded from https://huggingface.co/LGAI-EXAONE
comment: arXiv admin note: substantial text overlap with arXiv:2412.04862, arXiv:2408.03541
☆ A Reservoir-based Model for Human-like Perception of Complex Rhythm Pattern
Rhythm is a fundamental aspect of human behaviour, present from infancy and deeply embedded in cultural practices. Rhythm anticipation is a spontaneous cognitive process that typically occurs before the onset of actual beats. While most research in both neuroscience and artificial intelligence has focused on metronome-based rhythm tasks, studies investigating the perception of complex musical rhythm patterns remain limited. To address this gap, we propose a hierarchical oscillator-based model to better understand the perception of complex musical rhythms in biological systems. The model consists of two types of coupled neurons that generate oscillations, with different layers tuned to respond to distinct perception levels. We evaluate the model using several representative rhythm patterns spanning the upper, middle, and lower bounds of human musical perception. Our findings demonstrate that, while maintaining a high degree of synchronization accuracy, the model exhibits human-like rhythmic behaviours. Additionally, the beta band neuronal activity in the model mirrors patterns observed in the human brain, further validating the biological plausibility of the approach.
☆ A General Close-loop Predictive Coding Framework for Auditory Working Memory
Auditory working memory is essential for various daily activities, such as language acquisition, conversation. It involves the temporary storage and manipulation of information that is no longer present in the environment. While extensively studied in neuroscience and cognitive science, research on its modeling within neural networks remains limited. To address this gap, we propose a general framework based on a close-loop predictive coding paradigm to perform short auditory signal memory tasks. The framework is evaluated on two widely used benchmark datasets for environmental sound and speech, demonstrating high semantic similarity across both datasets.
☆ MPBench: A Comprehensive Multimodal Reasoning Benchmark for Process Errors Identification
Reasoning is an essential capacity for large language models (LLMs) to address complex tasks, where the identification of process errors is vital for improving this ability. Recently, process-level reward models (PRMs) were proposed to provide step-wise rewards that facilitate reinforcement learning and data production during training and guide LLMs toward correct steps during inference, thereby improving reasoning accuracy. However, existing benchmarks of PRMs are text-based and focus on error detection, neglecting other scenarios like reasoning search. To address this gap, we introduce MPBench, a comprehensive, multi-task, multimodal benchmark designed to systematically assess the effectiveness of PRMs in diverse scenarios. MPBench employs three evaluation paradigms, each targeting a specific role of PRMs in the reasoning process: (1) Step Correctness, which assesses the correctness of each intermediate reasoning step; (2) Answer Aggregation, which aggregates multiple solutions and selects the best one; and (3) Reasoning Process Search, which guides the search for optimal reasoning steps during inference. Through these paradigms, MPBench makes comprehensive evaluations and provides insights into the development of multimodal PRMs.
☆ Facilitating Automated Online Consensus Building through Parallel Thinking
Consensus building is inherently challenging due to the diverse opinions held by stakeholders. Effective facilitation is crucial to support the consensus building process and enable efficient group decision making. However, the effectiveness of facilitation is often constrained by human factors such as limited experience and scalability. In this research, we propose a Parallel Thinking-based Facilitation Agent (PTFA) that facilitates online, text-based consensus building processes. The PTFA automatically collects textual posts and leverages large language models (LLMs) to perform all of the six distinct roles of the well-established Six Thinking Hats technique in parallel thinking. To illustrate the potential of PTFA, a pilot study was carried out and PTFA's ability in idea generation, emotional probing, and deeper analysis of ideas was demonstrated. Furthermore, a comprehensive dataset that contains not only the conversational content among the participants but also between the participants and the agent is constructed for future study.
☆ Defense Against Model Stealing Based on Account-Aware Distribution Discrepancy AAAI 2025
Malicious users attempt to replicate commercial models functionally at low cost by training a clone model with query responses. It is challenging to timely prevent such model-stealing attacks to achieve strong protection and maintain utility. In this paper, we propose a novel non-parametric detector called Account-aware Distribution Discrepancy (ADD) to recognize queries from malicious users by leveraging account-wise local dependency. We formulate each class as a Multivariate Normal distribution (MVN) in the feature space and measure the malicious score as the sum of weighted class-wise distribution discrepancy. The ADD detector is combined with random-based prediction poisoning to yield a plug-and-play defense module named D-ADD for image classification models. Results of extensive experimental studies show that D-ADD achieves strong defense against different types of attacks with little interference in serving benign users for both soft and hard-label settings.
comment: 11 pages, 7 figures, published in AAAI 2025
☆ GeoRSMLLM: A Multimodal Large Language Model for Vision-Language Tasks in Geoscience and Remote Sensing
The application of Vision-Language Models (VLMs) in remote sensing (RS) has demonstrated significant potential in traditional tasks such as scene classification, object detection, and image captioning. However, current models, which excel in Referring Expression Comprehension (REC), struggle with tasks involving complex instructions (e.g., exists multiple conditions) or pixel-level operations like segmentation and change detection. In this white paper, we provide a comprehensive hierarchical summary of vision-language tasks in RS, categorized by the varying levels of cognitive capability required. We introduce the Remote Sensing Vision-Language Task Set (RSVLTS), which includes Open-Vocabulary Tasks (OVT), Referring Expression Tasks (RET), and Described Object Tasks (DOT) with increased difficulty, and Visual Question Answering (VQA) aloneside. Moreover, we propose a novel unified data representation using a set-of-points approach for RSVLTS, along with a condition parser and a self-augmentation strategy based on cyclic referring. These features are integrated into the GeoRSMLLM model, and this enhanced model is designed to handle a broad range of tasks of RSVLTS, paving the way for a more generalized solution for vision-language tasks in geoscience and remote sensing.
☆ SING: Semantic Image Communications using Null-Space and INN-Guided Diffusion Models
Joint source-channel coding systems based on deep neural networks (DeepJSCC) have recently demonstrated remarkable performance in wireless image transmission. Existing methods primarily focus on minimizing distortion between the transmitted image and the reconstructed version at the receiver, often overlooking perceptual quality. This can lead to severe perceptual degradation when transmitting images under extreme conditions, such as low bandwidth compression ratios (BCRs) and low signal-to-noise ratios (SNRs). In this work, we propose SING, a novel two-stage JSCC framework that formulates the recovery of high-quality source images from corrupted reconstructions as an inverse problem. Depending on the availability of information about the DeepJSCC encoder/decoder and the channel at the receiver, SING can either approximate the stochastic degradation as a linear transformation, or leverage invertible neural networks (INNs) for precise modeling. Both approaches enable the seamless integration of diffusion models into the reconstruction process, enhancing perceptual quality. Experimental results demonstrate that SING outperforms DeepJSCC and other approaches, delivering superior perceptual quality even under extremely challenging conditions, including scenarios with significant distribution mismatches between the training and test data.
☆ KDSelector: A Knowledge-Enhanced and Data-Efficient Model Selector Learning Framework for Time Series Anomaly Detection SIGMOD 2025
Model selection has been raised as an essential problem in the area of time series anomaly detection (TSAD), because there is no single best TSAD model for the highly heterogeneous time series in real-world applications. However, despite the success of existing model selection solutions that train a classification model (especially neural network, NN) using historical data as a selector to predict the correct TSAD model for each series, the NN-based selector learning methods used by existing solutions do not make full use of the knowledge in the historical data and require iterating over all training samples, which limits the accuracy and training speed of the selector. To address these limitations, we propose KDSelector, a novel knowledge-enhanced and data-efficient framework for learning the NN-based TSAD model selector, of which three key components are specifically designed to integrate available knowledge into the selector and dynamically prune less important and redundant samples during the learning. We develop a TSAD model selection system with KDSelector as the internal, to demonstrate how users improve the accuracy and training speed of their selectors by using KDSelector as a plug-and-play module. Our demonstration video is hosted at https://youtu.be/2uqupDWvTF0.
comment: This paper has been accepted by SIGMOD 2025
☆ ISLR101: an Iranian Word-Level Sign Language Recognition Dataset
Sign language recognition involves modeling complex multichannel information, such as hand shapes and movements while relying on sufficient sign language-specific data. However, sign languages are often under-resourced, posing a significant challenge for research and development in this field. To address this gap, we introduce ISLR101, the first publicly available Iranian Sign Language dataset for isolated sign language recognition. This comprehensive dataset includes 4,614 videos covering 101 distinct signs, recorded by 10 different signers (3 deaf individuals, 2 sign language interpreters, and 5 L2 learners) against varied backgrounds, with a resolution of 800x600 pixels and a frame rate of 25 frames per second. It also includes skeleton pose information extracted using OpenPose. We establish both a visual appearance-based and a skeleton-based framework as baseline models, thoroughly training and evaluating them on ISLR101. These models achieve 97.01% and 94.02% accuracy on the test set, respectively. Additionally, we publish the train, validation, and test splits to facilitate fair comparisons.
☆ Causality Model for Semantic Understanding on Videos
After a decade of prosperity, the development of video understanding has reached a critical juncture, where the sole reliance on massive data and complex architectures is no longer a one-size-fits-all solution to all situations. The presence of ubiquitous data imbalance hampers DNNs from effectively learning the underlying causal mechanisms, leading to significant performance drops when encountering distribution shifts, such as long-tail imbalances and perturbed imbalances. This realization has prompted researchers to seek alternative methodologies to capture causal patterns in video data. To tackle these challenges and increase the robustness of DNNs, causal modeling emerged as a principle to discover the true causal patterns behind the observed correlations. This thesis focuses on the domain of semantic video understanding and explores the potential of causal modeling to advance two fundamental tasks: Video Relation Detection (VidVRD) and Video Question Answering (VideoQA).
comment: PhD Thesis
☆ BREEN: Bridge Data-Efficient Encoder-Free Multimodal Learning with Learnable Queries
Encoder-free multimodal large language models(MLLMs) eliminate the need for a well-trained vision encoder by directly processing image tokens before the language model. While this approach reduces computational overhead and model complexity, it often requires large amounts of training data to effectively capture the visual knowledge typically encoded by vision models like CLIP. The absence of a vision encoder implies that the model is likely to rely on substantial data to learn the necessary visual-semantic alignments. In this work, we present BREEN, a data-efficient encoder-free multimodal architecture that mitigates this issue. BREEN leverages a learnable query and image experts to achieve comparable performance with significantly less training data. The learnable query, positioned between image and text tokens, is supervised by the output of a pretrained CLIP model to distill visual knowledge, bridging the gap between visual and textual modalities. Additionally, the image expert processes image tokens and learnable queries independently, improving efficiency and reducing interference with the LLM's textual capabilities. BREEN achieves comparable performance to prior encoder-free state-of-the-art models like Mono-InternVL, using only 13 million text-image pairs in training about one percent of the data required by existing methods. Our work highlights a promising direction for data-efficient encoder-free multimodal learning, offering an alternative to traditional encoder-based approaches.
☆ A Survey on the Optimization of Large Language Model-based Agents
With the rapid development of Large Language Models (LLMs), LLM-based agents have been widely adopted in various fields, becoming essential for autonomous decision-making and interactive tasks. However, current work typically relies on prompt design or fine-tuning strategies applied to vanilla LLMs, which often leads to limited effectiveness or suboptimal performance in complex agent-related environments. Although LLM optimization techniques can improve model performance across many general tasks, they lack specialized optimization towards critical agent functionalities such as long-term planning, dynamic environmental interaction, and complex decision-making. Although numerous recent studies have explored various strategies to optimize LLM-based agents for complex agent tasks, a systematic review summarizing and comparing these methods from a holistic perspective is still lacking. In this survey, we provide a comprehensive review of LLM-based agent optimization approaches, categorizing them into parameter-driven and parameter-free methods. We first focus on parameter-driven optimization, covering fine-tuning-based optimization, reinforcement learning-based optimization, and hybrid strategies, analyzing key aspects such as trajectory data construction, fine-tuning techniques, reward function design, and optimization algorithms. Additionally, we briefly discuss parameter-free strategies that optimize agent behavior through prompt engineering and external knowledge retrieval. Finally, we summarize the datasets and benchmarks used for evaluation and tuning, review key applications of LLM-based agents, and discuss major challenges and promising future directions. Our repository for related references is available at https://github.com/YoungDubbyDu/LLM-Agent-Optimization.
☆ Towards Learnable Anchor for Deep Multi-View Clustering AAAI25
Deep multi-view clustering incorporating graph learning has presented tremendous potential. Most methods encounter costly square time consumption w.r.t. data size. Theoretically, anchor-based graph learning can alleviate this limitation, but related deep models mainly rely on manual discretization approaches to select anchors, which indicates that 1) the anchors are fixed during model training and 2) they may deviate from the true cluster distribution. Consequently, the unreliable anchors may corrupt clustering results. In this paper, we propose the Deep Multi-view Anchor Clustering (DMAC) model that performs clustering in linear time. Concretely, the initial anchors are intervened by the positive-incentive noise sampled from Gaussian distribution, such that they can be optimized with a newly designed anchor learning loss, which promotes a clear relationship between samples and anchors. Afterwards, anchor graph convolution is devised to model the cluster structure formed by the anchors, and the mutual information maximization loss is built to provide cross-view clustering guidance. In this way, the learned anchors can better represent clusters. With the optimal anchors, the full sample graph is calculated to derive a discriminative embedding for clustering. Extensive experiments on several datasets demonstrate the superior performance and efficiency of DMAC compared to state-of-the-art competitors.
comment: Accepted by AAAI25
☆ Bio-Inspired Plastic Neural Networks for Zero-Shot Out-of-Distribution Generalization in Complex Animal-Inspired Robots
Artificial neural networks can be used to solve a variety of robotic tasks. However, they risk failing catastrophically when faced with out-of-distribution (OOD) situations. Several approaches have employed a type of synaptic plasticity known as Hebbian learning that can dynamically adjust weights based on local neural activities. Research has shown that synaptic plasticity can make policies more robust and help them adapt to unforeseen changes in the environment. However, networks augmented with Hebbian learning can lead to weight divergence, resulting in network instability. Furthermore, such Hebbian networks have not yet been applied to solve legged locomotion in complex real robots with many degrees of freedom. In this work, we improve the Hebbian network with a weight normalization mechanism for preventing weight divergence, analyze the principal components of the Hebbian's weights, and perform a thorough evaluation of network performance in locomotion control for real 18-DOF dung beetle-like and 16-DOF gecko-like robots. We find that the Hebbian-based plastic network can execute zero-shot sim-to-real adaptation locomotion and generalize to unseen conditions, such as uneven terrain and morphological damage.
☆ FedGAI: Federated Style Learning with Cloud-Edge Collaboration for Generative AI in Fashion Design
Collaboration can amalgamate diverse ideas, styles, and visual elements, fostering creativity and innovation among different designers. In collaborative design, sketches play a pivotal role as a means of expressing design creativity. However, designers often tend to not openly share these meticulously crafted sketches. This phenomenon of data island in the design area hinders its digital transformation under the third wave of AI. In this paper, we introduce a Federated Generative Artificial Intelligence Clothing system, namely FedGAI, employing federated learning to aid in sketch design. FedGAI is committed to establishing an ecosystem wherein designers can exchange sketch styles among themselves. Through FedGAI, designers can generate sketches that incorporate various designers' styles from their peers, drawing inspiration from collaboration without the need for data disclosure or upload. Extensive performance evaluations indicate that our FedGAI system can produce multi-styled sketches of comparable quality to human-designed ones while significantly enhancing efficiency compared to hand-drawn sketches.
☆ Unveiling Pitfalls: Understanding Why AI-driven Code Agents Fail at GitHub Issue Resolution
AI-driven software development has rapidly advanced with the emergence of software development agents that leverage large language models (LLMs) to tackle complex, repository-level software engineering tasks. These agents go beyond just generation of final code; they engage in multi-step reasoning, utilize various tools for code modification and debugging, and interact with execution environments to diagnose and iteratively resolve issues. However, most existing evaluations focus primarily on static analyses of final code outputs, yielding limited insights into the agents' dynamic problem-solving processes. To fill this gap, we conduct an in-depth empirical study on 3,977 solving-phase trajectories and 3,931 testing-phase logs from 8 top-ranked agents evaluated on 500 GitHub issues in the SWE-Bench benchmark. Our exploratory analysis shows that Python execution errors during the issue resolution phase correlate with lower resolution rates and increased reasoning overheads. We have identified the most prevalent errors -- such as ModuleNotFoundError and TypeError -- and highlighted particularly challenging errors like OSError and database-related issues (e.g., IntegrityError) that demand significantly more debugging effort. Furthermore, we have discovered 3 bugs in the SWE-Bench platform that affect benchmark fairness and accuracy; these issues have been reported to and confirmed by the maintainers. To promote transparency and foster future research, we publicly share our datasets and analysis scripts.
☆ Localized Concept Erasure for Text-to-Image Diffusion Models Using Training-Free Gated Low-Rank Adaptation CVPR 2025
Fine-tuning based concept erasing has demonstrated promising results in preventing generation of harmful contents from text-to-image diffusion models by removing target concepts while preserving remaining concepts. To maintain the generation capability of diffusion models after concept erasure, it is necessary to remove only the image region containing the target concept when it locally appears in an image, leaving other regions intact. However, prior arts often compromise fidelity of the other image regions in order to erase the localized target concept appearing in a specific area, thereby reducing the overall performance of image generation. To address these limitations, we first introduce a framework called localized concept erasure, which allows for the deletion of only the specific area containing the target concept in the image while preserving the other regions. As a solution for the localized concept erasure, we propose a training-free approach, dubbed Gated Low-rank adaptation for Concept Erasure (GLoCE), that injects a lightweight module into the diffusion model. GLoCE consists of low-rank matrices and a simple gate, determined only by several generation steps for concepts without training. By directly applying GLoCE to image embeddings and designing the gate to activate only for target concepts, GLoCE can selectively remove only the region of the target concepts, even when target and remaining concepts coexist within an image. Extensive experiments demonstrated GLoCE not only improves the image fidelity to text prompts after erasing the localized target concepts, but also outperforms prior arts in efficacy, specificity, and robustness by large margin and can be extended to mass concept erasure.
comment: Accepted to CVPR 2025
☆ Synthetic Data for Robust AI Model Development in Regulated Enterprises
In today's business landscape, organizations need to find the right balance between using their customers' data ethically to power AI solutions and being compliant regarding data privacy and data usage regulations. In this paper, we discuss synthetic data as a possible solution to this dilemma. Synthetic data is simulated data that mimics the real data. We explore how organizations in heavily regulated industries, such as financial institutions or healthcare organizations, can leverage synthetic data to build robust AI solutions while staying compliant. We demonstrate that synthetic data offers two significant advantages by allowing AI models to learn from more diverse data and by helping organizations stay compliant against data privacy laws with the use of synthetic data instead of customer information. We discuss case studies to show how synthetic data can be effectively used in the finance and healthcare sector while discussing the challenges of using synthetic data and some ethical questions it raises. Our research finds that synthetic data could be a game-changer for AI in regulated industries. The potential can be realized when industry, academia, and regulators collaborate to build solutions. We aim to initiate discussions on the use of synthetic data to build ethical, responsible, and effective AI systems in regulated enterprise industries.
☆ General Table Question Answering via Answer-Formula Joint Generation
Advanced table question answering (TableQA) methods prompt large language models (LLMs) to generate answer text, SQL query, Python code, or custom operations, which impressively improve the complex reasoning problems in the TableQA task. However, these methods lack the versatility to cope with specific question types or table structures. In contrast, the Spreadsheet Formula, the widely-used and well-defined operation language for tabular data, has not been thoroughly explored to solve TableQA. In this paper, we first attempt to use Formula as the logical form for solving complex reasoning on the tables with different structures. Specifically, we construct a large Formula-annotated TableQA dataset \texttt{FromulaQA} from existing datasets. In addition, we propose \texttt{TabAF}, a general table answering framework to solve multiple types of tasks over multiple types of tables simultaneously. Unlike existing methods, \texttt{TabAF} decodes answers and Formulas with a single LLM backbone, demonstrating great versatility and generalization. \texttt{TabAF} based on Llama3.1-70B achieves new state-of-the-art performance on the WikiTableQuestion, HiTab and TabFact.
comment: work in progress
☆ Augmented Adversarial Trigger Learning
Gradient optimization-based adversarial attack methods automate the learning of adversarial triggers to generate jailbreak prompts or leak system prompts. In this work, we take a closer look at the optimization objective of adversarial trigger learning and propose ATLA: Adversarial Trigger Learning with Augmented objectives. ATLA improves the negative log-likelihood loss used by previous studies into a weighted loss formulation that encourages the learned adversarial triggers to optimize more towards response format tokens. This enables ATLA to learn an adversarial trigger from just one query-response pair and the learned trigger generalizes well to other similar queries. We further design a variation to augment trigger optimization with an auxiliary loss that suppresses evasive responses. We showcase how to use ATLA to learn adversarial suffixes jailbreaking LLMs and to extract hidden system prompts. Empirically we demonstrate that ATLA consistently outperforms current state-of-the-art techniques, achieving nearly 100% success in attacking while requiring 80% fewer queries. ATLA learned jailbreak suffixes demonstrate high generalization to unseen queries and transfer well to new LLMs.
☆ When neural implant meets multimodal LLM: A dual-loop system for neuromodulation and naturalistic neuralbehavioral research
We propose a novel dual-loop system that synergistically combines responsive neurostimulation (RNS) implants with artificial intelligence-driven wearable devices for treating post-traumatic stress disorder (PTSD) and enabling naturalistic brain research. In PTSD Therapy Mode, an implanted closed-loop neural device monitors amygdala activity and provides on-demand stimulation upon detecting pathological theta oscillations, while an ensemble of wearables (smart glasses, smartwatches, smartphones) uses multimodal large language model (LLM) analysis of sensory data to detect environmental or physiological PTSD triggers and deliver timely audiovisual interventions. Logged events from both the neural and wearable loops are analyzed to personalize trigger detection and progressively transition patients to non-invasive interventions. In Neuroscience Research Mode, the same platform is adapted for real-world brain activity capture. Wearable-LLM systems recognize naturalistic events (social interactions, emotional situations, compulsive behaviors, decision making) and signal implanted RNS devices (via wireless triggers) to record synchronized intracranial data during these moments. This approach builds on recent advances in mobile intracranial EEG recording and closed-loop neuromodulation in humans (BRAIN Initiative, 2023) (Mobbs et al., 2021). We discuss how our interdisciplinary system could revolutionize PTSD therapy and cognitive neuroscience by enabling 24/7 monitoring, context-aware intervention, and rich data collection outside traditional labs. The vision is a future where AI-enhanced devices continuously collaborate with the human brain, offering therapeutic support and deep insights into neural function, with the resulting real-world context rich neural data, in turn, accelerating the development of more biologically-grounded and human-centric AI.
☆ Leveraging Vision Capabilities of Multimodal LLMs for Automated Data Extraction from Plots
Automated data extraction from research texts has been steadily improving, with the emergence of large language models (LLMs) accelerating progress even further. Extracting data from plots in research papers, however, has been such a complex task that it has predominantly been confined to manual data extraction. We show that current multimodal large language models, with proper instructions and engineered workflows, are capable of accurately extracting data from plots. This capability is inherent to the pretrained models and can be achieved with a chain-of-thought sequence of zero-shot engineered prompts we call PlotExtract, without the need to fine-tune. We demonstrate PlotExtract here and assess its performance on synthetic and published plots. We consider only plots with two axes in this analysis. For plots identified as extractable, PlotExtract finds points with over 90% precision (and around 90% recall) and errors in x and y position of around 5% or lower. These results prove that multimodal LLMs are a viable path for high-throughput data extraction for plots and in many circumstances can replace the current manual methods of data extraction.
comment: 8 pages, 3 figures
☆ A Transformer-based survival model for prediction of all-cause mortality in heart failure patients: a multi-cohort study
We developed and validated TRisk, a Transformer-based AI model predicting 36-month mortality in heart failure patients by analysing temporal patient journeys from UK electronic health records (EHR). Our study included 403,534 heart failure patients (ages 40-90) from 1,418 English general practices, with 1,063 practices for model derivation and 355 for external validation. TRisk was compared against the MAGGIC-EHR model across various patient subgroups. With median follow-up of 9 months, TRisk achieved a concordance index of 0.845 (95% confidence interval: [0.841, 0.849]), significantly outperforming MAGGIC-EHR's 0.728 (0.723, 0.733) for predicting 36-month all-cause mortality. TRisk showed more consistent performance across sex, age, and baseline characteristics, suggesting less bias. We successfully adapted TRisk to US hospital data through transfer learning, achieving a C-index of 0.802 (0.789, 0.816) with 21,767 patients. Explainability analyses revealed TRisk captured established risk factors while identifying underappreciated predictors like cancers and hepatic failure that were important across both cohorts. Notably, cancers maintained strong prognostic value even a decade after diagnosis. TRisk demonstrated well-calibrated mortality prediction across both healthcare systems. Our findings highlight the value of tracking longitudinal health profiles and revealed risk factors not included in previous expert-driven models.
☆ Swift4D:Adaptive divide-and-conquer Gaussian Splatting for compact and efficient reconstruction of dynamic scene ICLR 2025
Novel view synthesis has long been a practical but challenging task, although the introduction of numerous methods to solve this problem, even combining advanced representations like 3D Gaussian Splatting, they still struggle to recover high-quality results and often consume too much storage memory and training time. In this paper we propose Swift4D, a divide-and-conquer 3D Gaussian Splatting method that can handle static and dynamic primitives separately, achieving a good trade-off between rendering quality and efficiency, motivated by the fact that most of the scene is the static primitive and does not require additional dynamic properties. Concretely, we focus on modeling dynamic transformations only for the dynamic primitives which benefits both efficiency and quality. We first employ a learnable decomposition strategy to separate the primitives, which relies on an additional parameter to classify primitives as static or dynamic. For the dynamic primitives, we employ a compact multi-resolution 4D Hash mapper to transform these primitives from canonical space into deformation space at each timestamp, and then mix the static and dynamic primitives to produce the final output. This divide-and-conquer method facilitates efficient training and reduces storage redundancy. Our method not only achieves state-of-the-art rendering quality while being 20X faster in training than previous SOTA methods with a minimum storage requirement of only 30MB on real-world datasets. Code is available at https://github.com/WuJH2001/swift4d.
comment: ICLR 2025
♻ ☆ Siege: Autonomous Multi-Turn Jailbreaking of Large Language Models with Tree Search ICLR 2025
We introduce Siege, a multi-turn adversarial framework that models the gradual erosion of Large Language Model (LLM) safety through a tree search perspective. Unlike single-turn jailbreaks that rely on one meticulously engineered prompt, Siege expands the conversation at each turn in a breadth-first fashion, branching out multiple adversarial prompts that exploit partial compliance from previous responses. By tracking these incremental policy leaks and re-injecting them into subsequent queries, Siege reveals how minor concessions can accumulate into fully disallowed outputs. Evaluations on the JailbreakBench dataset show that Siege achieves a 100% success rate on GPT-3.5-turbo and 97% on GPT-4 in a single multi-turn run, using fewer queries than baselines such as Crescendo or GOAT. This tree search methodology offers an in-depth view of how model safeguards degrade over successive dialogue turns, underscoring the urgency of robust multi-turn testing procedures for language models.
comment: Accepted to ICLR 2025 Trustworthy LLM
♻ ☆ Compositional Subspace Representation Fine-tuning for Adaptive Large Language Models ICLR 2025
Adapting large language models to multiple tasks can cause cross-skill interference, where improvements for one skill degrade another. While methods such as LoRA impose orthogonality constraints at the weight level, they do not fully address interference in hidden-state representations. We propose Compositional Subspace Representation Fine-tuning (CS-ReFT), a novel representation-based approach that learns multiple orthonormal subspace transformations, each specializing in a distinct skill, and composes them via a lightweight router. By isolating these subspace edits in the hidden state, rather than weight matrices, CS-ReFT prevents cross-task conflicts more effectively. On the AlpacaEval benchmark, applying CS-ReFT to Llama-2-7B achieves a 93.94% win rate, surpassing GPT-3.5 Turbo (86.30%) while requiring only 0.0098% of model parameters. These findings show that specialized representation edits, composed via a simple router, significantly enhance multi-task instruction following with minimal overhead.
comment: Accepted to ICLR 2025 SCOPE
♻ ☆ Universal Narrative Model: an Author-centric Storytelling Framework for Generative AI
Generative AI promises to finally realize dynamic, personalized storytelling technologies across a range of media. To date, experimentation with generative AI in the field of procedural narrative generation has been quite promising from a technical perspective. However, fundamental narrative dilemmas remain, such as the balance between player agency and narrative coherence, and no rigorous narrative standard has been proposed to specifically leverage the strengths of generative AI. In this paper, we propose the Universal Narrative Model (UNM), an open and extensible standard designed to place writers at the center of future narrative design workflows and enable interoperability across authoring platforms. By encoding an author's intent according to an objective narrative model, the UNM enables narrative portability as well as intent-based constraints for generative systems.
♻ ☆ When "Competency" in Reasoning Opens the Door to Vulnerability: Jailbreaking LLMs via Novel Complex Ciphers
Recent advancements in Large Language Model (LLM) safety have primarily focused on mitigating attacks crafted in natural language or common ciphers (e.g. Base64), which are likely integrated into newer models' safety training. However, we reveal a paradoxical vulnerability: as LLMs advance in reasoning, they inadvertently become more susceptible to novel jailbreaking attacks. Enhanced reasoning enables LLMs to interpret complex instructions and decode complex user-defined ciphers, creating an exploitable security gap. To study this vulnerability, we introduce Attacks using Custom Encryptions (ACE), a jailbreaking technique that encodes malicious queries with novel ciphers. Extending ACE, we introduce Layered Attacks using Custom Encryptions (LACE), which applies multi-layer ciphers to amplify attack complexity. Furthermore, we develop CipherBench, a benchmark designed to evaluate LLMs' accuracy in decoding encrypted benign text. Our experiments reveal a critical trade-off: LLMs that are more capable of decoding ciphers are more vulnerable to these jailbreaking attacks, with success rates on GPT-4o escalating from 40% under ACE to 78% with LACE. These findings highlight a critical insight: as LLMs become more adept at deciphering complex user ciphers--many of which cannot be preemptively included in safety training--they become increasingly exploitable.
♻ ☆ A Generative AI-driven Metadata Modelling Approach
Since decades, the modelling of metadata has been core to the functioning of any academic library. Its importance has only enhanced with the increasing pervasiveness of Generative Artificial Intelligence (AI)-driven information activities and services which constitute a library's outreach. However, with the rising importance of metadata, there arose several outstanding problems with the process of designing a library metadata model impacting its reusability, crosswalk and interoperability with other metadata models. This paper posits that the above problems stem from an underlying thesis that there should only be a few core metadata models which would be necessary and sufficient for any information service using them, irrespective of the heterogeneity of intra-domain or inter-domain settings. To that end, this paper advances a contrary view of the above thesis and substantiates its argument in three key steps. First, it introduces a novel way of thinking about a library metadata model as an ontology-driven composition of five functionally interlinked representation levels from perception to its intensional definition via properties. Second, it introduces the representational manifoldness implicit in each of the five levels which cumulatively contributes to a conceptually entangled library metadata model. Finally, and most importantly, it proposes a Generative AI-driven Human-Large Language Model (LLM) collaboration based metadata modelling approach to disentangle the entanglement inherent in each representation level leading to the generation of a conceptually disentangled metadata model. Throughout the paper, the arguments are exemplified by motivating scenarios and examples from representative libraries handling cancer information.
comment: Accepted for publication @ Special Issue on "Generative AI and Libraries" - Library Trends Journal, Johns Hopkins University Press, Maryland, USA
♻ ☆ IQA-Adapter: Exploring Knowledge Transfer from Image Quality Assessment to Diffusion-based Generative Models
Diffusion-based models have recently revolutionized image generation, achieving unprecedented levels of fidelity. However, consistent generation of high-quality images remains challenging partly due to the lack of conditioning mechanisms for perceptual quality. In this work, we propose methods to integrate image quality assessment (IQA) models into diffusion-based generators, enabling quality-aware image generation. We show that diffusion models can learn complex qualitative relationships from both IQA models' outputs and internal activations. First, we experiment with gradient-based guidance to optimize image quality directly and show this method has limited generalizability. To address this, we introduce IQA-Adapter, a novel framework that conditions generation on target quality levels by learning the implicit relationship between images and quality scores. When conditioned on high target quality, IQA-Adapter can shift the distribution of generated images towards a higher-quality subdomain, and, inversely, it can be used as a degradation model, generating progressively more distorted images when provided with a lower-quality signal. Under high-quality condition, IQA-Adapter achieves up to a 10% improvement across multiple objective metrics, as confirmed by a user preference study, while preserving generative diversity and content. Furthermore, we extend IQA-Adapter to a reference-based conditioning scenario, utilizing the rich activation space of IQA models to transfer highly specific, content-agnostic qualitative features between images.
comment: GitHub repo: https://github.com/X1716/IQA-Adapter
♻ ☆ Evaluating Large Language Models on the Spanish Medical Intern Resident (MIR) Examination 2024/2025:A Comparative Analysis of Clinical Reasoning and Knowledge Application
This study presents a comparative evaluation of 22 large language models LLMs on the Spanish Medical Intern Resident MIR examinations for 2024 and 2025 with a focus on clinical reasoning domain specific expertise and multimodal processing capabilities The MIR exam consisting of 210 multiple choice questions some requiring image interpretation serves as a stringent benchmark for assessing both factual recall and complex clinical problem solving skills Our investigation encompasses general purpose models such as GPT4 Claude LLaMA and Gemini as well as specialized fine tuned systems like Miri Pro which leverages proprietary Spanish healthcare data to excel in medical contexts Recent market entries Deepseek and Grok have further enriched the evaluation landscape particularly for tasks that demand advanced visual and semantic analysis The findings indicate that while general purpose LLMs perform robustly overall fine tuned models consistently achieve superior accuracy especially in addressing nuanced domain specific challenges A modest performance decline observed between the two exam cycles appears attributable to the implementation of modified questions designed to mitigate reliance on memorization The results underscore the transformative potential of domain specific fine tuning and multimodal integration in advancing medical AI applications They also highlight critical implications for the future integration of LLMs into medical education training and clinical decision making emphasizing the importance of balancing automated reasoning with ethical and context aware judgment
comment: 26 pages, 1 table, 7 figures
♻ ☆ Budgeted Online Continual Learning by Adaptive Layer Freezing and Frequency-based Sampling ICLR 2025
The majority of online continual learning (CL) advocates single-epoch training and imposes restrictions on the size of replay memory. However, single-epoch training would incur a different amount of computations per CL algorithm, and the additional storage cost to store logit or model in addition to replay memory is largely ignored in calculating the storage budget. Arguing different computational and storage budgets hinder fair comparison among CL algorithms in practice, we propose to use floating point operations (FLOPs) and total memory size in Byte as a metric for computational and memory budgets, respectively, to compare and develop CL algorithms in the same 'total resource budget.' To improve a CL method in a limited total budget, we propose adaptive layer freezing that does not update the layers for less informative batches to reduce computational costs with a negligible loss of accuracy. In addition, we propose a memory retrieval method that allows the model to learn the same amount of knowledge as using random retrieval in fewer iterations. Empirical validations on the CIFAR-10/100, CLEAR-10/100, and ImageNet-1K datasets demonstrate that the proposed approach outperforms the state-of-the-art methods within the same total budget
comment: ICLR 2025 Spotlight
♻ ☆ AV-GS: Learning Material and Geometry Aware Priors for Novel View Acoustic Synthesis NeurIPS 2024
Novel view acoustic synthesis (NVAS) aims to render binaural audio at any target viewpoint, given a mono audio emitted by a sound source at a 3D scene. Existing methods have proposed NeRF-based implicit models to exploit visual cues as a condition for synthesizing binaural audio. However, in addition to low efficiency originating from heavy NeRF rendering, these methods all have a limited ability of characterizing the entire scene environment such as room geometry, material properties, and the spatial relation between the listener and sound source. To address these issues, we propose a novel Audio-Visual Gaussian Splatting (AV-GS) model. To obtain a material-aware and geometry-aware condition for audio synthesis, we learn an explicit point-based scene representation with an audio-guidance parameter on locally initialized Gaussian points, taking into account the space relation from the listener and sound source. To make the visual scene model audio adaptive, we propose a point densification and pruning strategy to optimally distribute the Gaussian points, with the per-point contribution in sound propagation (e.g., more points needed for texture-less wall surfaces as they affect sound path diversion). Extensive experiments validate the superiority of our AV-GS over existing alternatives on the real-world RWAS and simulation-based SoundSpaces datasets.
comment: Accepted to NeurIPS 2024
♻ ☆ Semantic Consistency-Based Uncertainty Quantification for Factuality in Radiology Report Generation
Radiology report generation (RRG) has shown great potential in assisting radiologists by automating the labor-intensive task of report writing. While recent advancements have improved the quality and coherence of generated reports, ensuring their factual correctness remains a critical challenge. Although generative medical Vision Large Language Models (VLLMs) have been proposed to address this issue, these models are prone to hallucinations and can produce inaccurate diagnostic information. To address these concerns, we introduce a novel Semantic Consistency-Based Uncertainty Quantification framework that provides both report-level and sentence-level uncertainties. Unlike existing approaches, our method does not require modifications to the underlying model or access to its inner state, such as output token logits, thus serving as a plug-and-play module that can be seamlessly integrated with state-of-the-art models. Extensive experiments demonstrate the efficacy of our method in detecting hallucinations and enhancing the factual accuracy of automatically generated radiology reports. By abstaining from high-uncertainty reports, our approach improves factuality scores by $10$\%, achieved by rejecting $20$\% of reports using the \texttt{Radialog} model on the MIMIC-CXR dataset. Furthermore, sentence-level uncertainty flags the lowest-precision sentence in each report with an $82.9$\% success rate. Our implementation is open-source and available at https://github.com/BU-DEPEND-Lab/SCUQ-RRG.
♻ ☆ Depth Any Camera: Zero-Shot Metric Depth Estimation from Any Camera
While recent depth foundation models exhibit strong zero-shot generalization, achieving accurate metric depth across diverse camera types-particularly those with large fields of view (FoV) such as fisheye and 360-degree cameras-remains a significant challenge. This paper presents Depth Any Camera (DAC), a powerful zero-shot metric depth estimation framework that extends a perspective-trained model to effectively handle cameras with varying FoVs. The framework is designed to ensure that all existing 3D data can be leveraged, regardless of the specific camera types used in new applications. Remarkably, DAC is trained exclusively on perspective images but generalizes seamlessly to fisheye and 360-degree cameras without the need for specialized training data. DAC employs Equi-Rectangular Projection (ERP) as a unified image representation, enabling consistent processing of images with diverse FoVs. Its core components include pitch-aware Image-to-ERP conversion with efficient online augmentation to simulate distorted ERP patches from undistorted inputs, FoV alignment operations to enable effective training across a wide range of FoVs, and multi-resolution data augmentation to further address resolution disparities between training and testing. DAC achieves state-of-the-art zero-shot metric depth estimation, improving $\delta_1$ accuracy by up to 50% on multiple fisheye and 360-degree datasets compared to prior metric depth foundation models, demonstrating robust generalization across camera types.
♻ ☆ CRScore: Grounding Automated Evaluation of Code Review Comments in Code Claims and Smells
The task of automated code review has recently gained a lot of attention from the machine learning community. However, current review comment evaluation metrics rely on comparisons with a human-written reference for a given code change (also called a diff). Furthermore, code review is a one-to-many problem, like generation and summarization, with many "valid reviews" for a diff. Thus, we develop CRScore - a reference-free metric to measure dimensions of review quality like conciseness, comprehensiveness, and relevance. We design CRScore to evaluate reviews in a way that is grounded in claims and potential issues detected in the code by LLMs and static analyzers. We demonstrate that CRScore can produce valid, fine-grained scores of review quality that have the greatest alignment with human judgment among open source metrics (0.54 Spearman correlation) and are more sensitive than reference-based metrics. We also release a corpus of 2.9k human-annotated review quality scores for machine-generated and GitHub review comments to support the development of automated metrics.
♻ ☆ MotionScript: Natural Language Descriptions for Expressive 3D Human Motions
We introduce MotionScript, a novel framework for generating highly detailed, natural language descriptions of 3D human motions. Unlike existing motion datasets that rely on broad action labels or generic captions, MotionScript provides fine-grained, structured descriptions that capture the full complexity of human movement including expressive actions (e.g., emotions, stylistic walking) and interactions beyond standard motion capture datasets. MotionScript serves as both a descriptive tool and a training resource for text-to-motion models, enabling the synthesis of highly realistic and diverse human motions from text. By augmenting motion datasets with MotionScript captions, we demonstrate significant improvements in out-of-distribution motion generation, allowing large language models (LLMs) to generate motions that extend beyond existing data. Additionally, MotionScript opens new applications in animation, virtual human simulation, and robotics, providing an interpretable bridge between intuitive descriptions and motion synthesis. To the best of our knowledge, this is the first attempt to systematically translate 3D motion into structured natural language without requiring training data.
comment: Project webpage: https://pjyazdian.github.io/MotionScript
♻ ☆ Imitation Learning of Correlated Policies in Stackelberg Games
Stackelberg games, widely applied in domains like economics and security, involve asymmetric interactions where a leader's strategy drives follower responses. Accurately modeling these dynamics allows domain experts to optimize strategies in interactive scenarios, such as turn-based sports like badminton. In multi-agent systems, agent behaviors are interdependent, and traditional Multi-Agent Imitation Learning (MAIL) methods often fail to capture these complex interactions. Correlated policies, which account for opponents' strategies, are essential for accurately modeling such dynamics. However, even methods designed for learning correlated policies, like CoDAIL, struggle in Stackelberg games due to their asymmetric decision-making, where leaders and followers cannot simultaneously account for each other's actions, often leading to non-correlated policies. Furthermore, existing MAIL methods that match occupancy measures or use adversarial techniques like GAIL or Inverse RL face scalability challenges, particularly in high-dimensional environments, and suffer from unstable training. To address these challenges, we propose a correlated policy occupancy measure specifically designed for Stackelberg games and introduce the Latent Stackelberg Differential Network (LSDN) to match it. LSDN models two-agent interactions as shared latent state trajectories and uses multi-output Geometric Brownian Motion (MO-GBM) to effectively capture joint policies. By leveraging MO-GBM, LSDN disentangles environmental influences from agent-driven transitions in latent space, enabling the simultaneous learning of interdependent policies. This design eliminates the need for adversarial training and simplifies the learning process. Extensive experiments on Iterative Matrix Games and multi-agent particle environments demonstrate that LSDN can better reproduce complex interaction dynamics than existing MAIL methods.
comment: Preprint. Code will be released at this GitHub link: https://github.com/NYCU-RL-Bandits-Lab/LSDN
♻ ☆ Evaluating Uncertainty-based Failure Detection for Closed-Loop LLM Planners ICRA 2024
Recently, Large Language Models (LLMs) have witnessed remarkable performance as zero-shot task planners for robotic manipulation tasks. However, the open-loop nature of previous works makes LLM-based planning error-prone and fragile. On the other hand, failure detection approaches for closed-loop planning are often limited by task-specific heuristics or following an unrealistic assumption that the prediction is trustworthy all the time. As a general-purpose reasoning machine, LLMs or Multimodal Large Language Models (MLLMs) are promising for detecting failures. However, However, the appropriateness of the aforementioned assumption diminishes due to the notorious hullucination problem. In this work, we attempt to mitigate these issues by introducing a framework for closed-loop LLM-based planning called KnowLoop, backed by an uncertainty-based MLLMs failure detector, which is agnostic to any used MLLMs or LLMs. Specifically, we evaluate three different ways for quantifying the uncertainty of MLLMs, namely token probability, entropy, and self-explained confidence as primary metrics based on three carefully designed representative prompting strategies. With a self-collected dataset including various manipulation tasks and an LLM-based robot system, our experiments demonstrate that token probability and entropy are more reflective compared to self-explained confidence. By setting an appropriate threshold to filter out uncertain predictions and seek human help actively, the accuracy of failure detection can be significantly enhanced. This improvement boosts the effectiveness of closed-loop planning and the overall success rate of tasks.
comment: Accepted at ICRA 2024 Workshop on Back to the Future: Robot Learning Going Probabilistic. Website: https://sites.google.com/view/konwloop/home
♻ ☆ Compositional Causal Reasoning Evaluation in Language Models
Causal reasoning and compositional reasoning are two core aspirations in generative AI. Measuring the extent of these behaviors requires principled evaluation methods. We explore a unified perspective that considers both behaviors simultaneously, termed compositional causal reasoning (CCR): the ability to infer how causal measures compose and, equivalently, how causal quantities propagate through graphs. We instantiate a framework for the systematic evaluation of CCR for the average treatment effect and the probability of necessity and sufficiency. As proof of concept, we demonstrate the design of CCR tasks for language models in the LLama, Phi, and GPT families. On a math word problem, our framework revealed a range of taxonomically distinct error patterns. Additionally, CCR errors increased with the complexity of causal paths for all models except o1.
♻ ☆ On the Privacy Risks of Spiking Neural Networks: A Membership Inference Analysis
Spiking Neural Networks (SNNs) are increasingly explored for their energy efficiency and robustness in real-world applications, yet their privacy risks remain largely unexamined. In this work, we investigate the susceptibility of SNNs to Membership Inference Attacks (MIAs) -- a major privacy threat where an adversary attempts to determine whether a given sample was part of the training dataset. While prior work suggests that SNNs may offer inherent robustness due to their discrete, event-driven nature, we find that its resilience diminishes as latency (T) increases. Furthermore, we introduce an input dropout strategy under black box setting, that significantly enhances membership inference in SNNs. Our findings challenge the assumption that SNNs are inherently more secure, and even though they are expected to be better, our results reveal that SNNs exhibit privacy vulnerabilities that are equally comparable to Artificial Neural Networks (ANNs). Our code is available at https://anonymous.4open.science/r/MIA_SNN-3610.
comment: 13 pages, 6 figures
♻ ☆ PLADIS: Pushing the Limits of Attention in Diffusion Models at Inference Time by Leveraging Sparsity
Diffusion models have shown impressive results in generating high-quality conditional samples using guidance techniques such as Classifier-Free Guidance (CFG). However, existing methods often require additional training or neural function evaluations (NFEs), making them incompatible with guidance-distilled models. Also, they rely on heuristic approaches that need identifying target layers. In this work, we propose a novel and efficient method, termed PLADIS, which boosts pre-trained models (U-Net/Transformer) by leveraging sparse attention. Specifically, we extrapolate query-key correlations using softmax and its sparse counterpart in the cross-attention layer during inference, without requiring extra training or NFEs. By leveraging the noise robustness of sparse attention, our PLADIS unleashes the latent potential of text-to-image diffusion models, enabling them to excel in areas where they once struggled with newfound effectiveness. It integrates seamlessly with guidance techniques, including guidance-distilled models. Extensive experiments show notable improvements in text alignment and human preference, offering a highly efficient and universally applicable solution. See Our project page : https://cubeyoung.github.io/pladis-proejct/
comment: 29 pages, 19 figures, project page : https://cubeyoung.github.io/pladis-proejct/
♻ ☆ From Fog to Failure: The Unintended Consequences of Dehazing on Object Detection in Clear Images
This study explores the challenges of integrating human visual cue-based dehazing into object detection, given the selective nature of human perception. While human vision adapts dynamically to environmental conditions, computational dehazing does not always enhance detection uniformly. We propose a multi-stage framework where a lightweight detector identifies regions of interest (RoIs), which are then improved via spatial attention-based dehazing before final detection by a heavier model. Though effective in foggy conditions, this approach unexpectedly degrades the performance on clear images. We analyze this phenomenon, investigate possible causes, and offer insights for designing hybrid pipelines that balance enhancement and detection. Our findings highlight the need for selective preprocessing and challenge assumptions about universal benefits from cascading transformations.
♻ ☆ DexGrasp Anything: Towards Universal Robotic Dexterous Grasping with Physics Awareness CVPR 2025
A dexterous hand capable of grasping any object is essential for the development of general-purpose embodied intelligent robots. However, due to the high degree of freedom in dexterous hands and the vast diversity of objects, generating high-quality, usable grasping poses in a robust manner is a significant challenge. In this paper, we introduce DexGrasp Anything, a method that effectively integrates physical constraints into both the training and sampling phases of a diffusion-based generative model, achieving state-of-the-art performance across nearly all open datasets. Additionally, we present a new dexterous grasping dataset containing over 3.4 million diverse grasping poses for more than 15k different objects, demonstrating its potential to advance universal dexterous grasping. The code of our method and our dataset will be publicly released soon.
comment: Accepted by CVPR 2025
♻ ☆ M$^{3}$-20M: A Large-Scale Multi-Modal Molecule Dataset for AI-driven Drug Design and Discovery
This paper introduces M$^{3}$-20M, a large-scale Multi-Modal Molecule dataset that contains over 20 million molecules, with the data mainly being integrated from existing databases and partially generated by large language models. Designed to support AI-driven drug design and discovery, M$^{3}$-20M is 71 times more in the number of molecules than the largest existing dataset, providing an unprecedented scale that can highly benefit the training or fine-tuning of models, including large language models for drug design and discovery tasks. This dataset integrates one-dimensional SMILES, two-dimensional molecular graphs, three-dimensional molecular structures, physicochemical properties, and textual descriptions collected through web crawling and generated using GPT-3.5, offering a comprehensive view of each molecule. To demonstrate the power of M$^{3}$-20M in drug design and discovery, we conduct extensive experiments on two key tasks: molecule generation and molecular property prediction, using large language models including GLM4, GPT-3.5, GPT-4, and Llama3-8b. Our experimental results show that M$^{3}$-20M can significantly boost model performance in both tasks. Specifically, it enables the models to generate more diverse and valid molecular structures and achieve higher property prediction accuracy than existing single-modal datasets, which validates the value and potential of M$^{3}$-20M in supporting AI-driven drug design and discovery. The dataset is available at https://github.com/bz99bz/M-3.
♻ ☆ Transformers Struggle to Learn to Search ICLR 2025
Search is an ability foundational in many important tasks, and recent studies have shown that large language models (LLMs) struggle to perform search robustly. It is unknown whether this inability is due to a lack of data, insufficient model parameters, or fundamental limitations of the transformer architecture. In this work, we use the foundational graph connectivity problem as a testbed to generate effectively limitless high-coverage data to train small transformers and test whether they can learn to perform search. We find that, when given the right training distribution, the transformer is able to learn to search. We analyze the algorithm that the transformer has learned through a novel mechanistic interpretability technique that enables us to extract the computation graph from the trained model. We find that transformers perform search at every vertex in parallel: For each vertex in the input graph, transformers compute the set of vertices reachable from that vertex. Each layer then progressively expands these sets, allowing the model to search over a number of vertices exponential in $n_{\text{layers}}$. However, we find that as the input graph size increases, the transformer has greater difficulty in learning the task. This difficulty is not resolved even as the number of parameters is increased, suggesting that increasing model scale will not lead to robust search abilities. We also find that performing search in-context (i.e., chain-of-thought) does not resolve this inability to learn to search on larger graphs.
comment: Published as a conference paper at ICLR 2025
♻ ☆ Skill Expansion and Composition in Parameter Space ICLR 2025
Humans excel at reusing prior knowledge to address new challenges and developing skills while solving problems. This paradigm becomes increasingly popular in the development of autonomous agents, as it develops systems that can self-evolve in response to new challenges like human beings. However, previous methods suffer from limited training efficiency when expanding new skills and fail to fully leverage prior knowledge to facilitate new task learning. In this paper, we propose Parametric Skill Expansion and Composition (PSEC), a new framework designed to iteratively evolve the agents' capabilities and efficiently address new challenges by maintaining a manageable skill library. This library can progressively integrate skill primitives as plug-and-play Low-Rank Adaptation (LoRA) modules in parameter-efficient finetuning, facilitating efficient and flexible skill expansion. This structure also enables the direct skill compositions in parameter space by merging LoRA modules that encode different skills, leveraging shared information across skills to effectively program new skills. Based on this, we propose a context-aware module to dynamically activate different skills to collaboratively handle new tasks. Empowering diverse applications including multi-objective composition, dynamics shift, and continual policy shift, the results on D4RL, DSRL benchmarks, and the DeepMind Control Suite show that PSEC exhibits superior capacity to leverage prior knowledge to efficiently tackle new challenges, as well as expand its skill libraries to evolve the capabilities. Project website: https://ltlhuuu.github.io/PSEC/.
comment: ICLR 2025, 37 pages
♻ ☆ UnitedVLN: Generalizable Gaussian Splatting for Continuous Vision-Language Navigation
Vision-and-Language Navigation (VLN), where an agent follows instructions to reach a target destination, has recently seen significant advancements. In contrast to navigation in discrete environments with predefined trajectories, VLN in Continuous Environments (VLN-CE) presents greater challenges, as the agent is free to navigate any unobstructed location and is more vulnerable to visual occlusions or blind spots. Recent approaches have attempted to address this by imagining future environments, either through predicted future visual images or semantic features, rather than relying solely on current observations. However, these RGB-based and feature-based methods lack intuitive appearance-level information or high-level semantic complexity crucial for effective navigation. To overcome these limitations, we introduce a novel, generalizable 3DGS-based pre-training paradigm, called UnitedVLN, which enables agents to better explore future environments by unitedly rendering high-fidelity 360 visual images and semantic features. UnitedVLN employs two key schemes: search-then-query sampling and separate-then-united rendering, which facilitate efficient exploitation of neural primitives, helping to integrate both appearance and semantic information for more robust navigation. Extensive experiments demonstrate that UnitedVLN outperforms state-of-the-art methods on existing VLN-CE benchmarks.
♻ ☆ L3Ms -- Lagrange Large Language Models ICLR
Supervised fine-tuning (SFT) and alignment of large language models (LLMs) are key steps in providing a good user experience. However, the concept of an appropriate alignment is inherently application-dependent, and current methods often rely on heuristic choices to drive optimization. In this work, we formulate SFT and alignment as a constrained optimization problem: the LLM is fine-tuned on a task while being required to meet application-specific requirements, without resorting to heuristics. To solve this, we propose Lagrange Large Language Models (L3Ms), which employ logarithmic barriers to enforce the constraints. This approach allows for the customization of L3Ms across diverse applications while avoiding heuristic-driven processes. We experimentally demonstrate the versatility and efficacy of L3Ms in achieving tailored alignments for various applications.
comment: International Conference on Learning Representations (ICLR), 2025
♻ ☆ Versatile Multimodal Controls for Whole-Body Talking Human Animation
Human animation from a single reference image shall be flexible to synthesize whole-body motion for either a headshot or whole-body portrait, where the motions are readily controlled by audio signal and text prompts. This is hard for most existing methods as they only support producing pre-specified head or half-body motion aligned with audio inputs. In this paper, we propose a versatile human animation method, i.e., VersaAnimator, which generates whole-body talking human from arbitrary portrait images, not only driven by audio signal but also flexibly controlled by text prompts. Specifically, we design a text-controlled, audio-driven motion generator that produces whole-body motion representations in 3D synchronized with audio inputs while following textual motion descriptions. To promote natural smooth motion, we propose a code-pose translation module to link VAE codebooks with 2D DWposes extracted from template videos. Moreover, we introduce a multi-modal video diffusion that generates photorealistic human animation from a reference image according to both audio inputs and whole-body motion representations. Extensive experiments show that VersaAnimator outperforms existing methods in visual quality, identity preservation, and audio-lip synchronization.
♻ ☆ SPaR: Self-Play with Tree-Search Refinement to Improve Instruction-Following in Large Language Models ICLR 2025
Instruction-following is a fundamental capability of language models, requiring the model to recognize even the most subtle requirements in the instructions and accurately reflect them in its output. Such an ability is well-suited for and often optimized by preference learning. However, existing methods often directly sample multiple independent responses from the model when creating preference pairs. Such practice can introduce content variations irrelevant to whether the instruction is precisely followed (e.g., different expressions about the same semantic), interfering with the goal of teaching models to recognize the key differences that lead to improved instruction following. In light of this, we introduce SPaR, a self-play framework integrating tree-search self-refinement to yield valid and comparable preference pairs free from distractions. By playing against itself, an LLM employs a tree-search strategy to refine its previous responses with respect to the instruction while minimizing unnecessary variations. Our experiments show that a LLaMA3-8B model, trained over three iterations guided by SPaR, surpasses GPT-4-Turbo on the IFEval benchmark without losing general capabilities. Furthermore, SPaR demonstrates promising scalability, greatly enhancing models like GLM-4-9B and LLaMA3-70B. We also identify how inference scaling in tree search would impact model performance. Our code and data are publicly available at https://github.com/thu-coai/SPaR.
comment: ICLR 2025
♻ ☆ Learning under Temporal Label Noise ICLR 2025
Many time series classification tasks, where labels vary over time, are affected by label noise that also varies over time. Such noise can cause label quality to improve, worsen, or periodically change over time. We first propose and formalize temporal label noise, an unstudied problem for sequential classification of time series. In this setting, multiple labels are recorded over time while being corrupted by a time-dependent noise function. We first demonstrate the importance of modeling the temporal nature of the label noise function and how existing methods will consistently underperform. We then propose methods to train noise-tolerant classifiers by estimating the temporal label noise function directly from data. We show that our methods lead to state-of-the-art performance under diverse types of temporal label noise on real-world datasets
comment: The Thirteenth International Conference on Learning Representations (ICLR 2025)
♻ ☆ h4rm3l: A language for Composable Jailbreak Attack Synthesis
Despite their demonstrated valuable capabilities, state-of-the-art (SOTA) widely deployed large language models (LLMs) still have the potential to cause harm to society due to the ineffectiveness of their safety filters, which can be bypassed by prompt transformations called jailbreak attacks. Current approaches to LLM safety assessment, which employ datasets of templated prompts and benchmarking pipelines, fail to cover sufficiently large and diverse sets of jailbreak attacks, leading to the widespread deployment of unsafe LLMs. Recent research showed that novel jailbreak attacks could be derived by composition; however, a formal composable representation for jailbreak attacks, which, among other benefits, could enable the exploration of a large compositional space of jailbreak attacks through program synthesis methods, has not been previously proposed. We introduce h4rm3l, a novel approach that addresses this gap with a human-readable domain-specific language (DSL). Our framework comprises: (1) The h4rm3l DSL, which formally expresses jailbreak attacks as compositions of parameterized string transformation primitives. (2) A synthesizer with bandit algorithms that efficiently generates jailbreak attacks optimized for a target black box LLM. (3) The h4rm3l red-teaming software toolkit that employs the previous two components and an automated harmful LLM behavior classifier that is strongly aligned with human judgment. We demonstrate h4rm3l's efficacy by synthesizing a dataset of 2656 successful novel jailbreak attacks targeting 6 SOTA open-source and proprietary LLMs, and by benchmarking those models against a subset of these synthesized attacks. Our results show that h4rm3l's synthesized attacks are diverse and more successful than existing jailbreak attacks in literature, with success rates exceeding 90% on SOTA LLMs.
♻ ☆ MrT5: Dynamic Token Merging for Efficient Byte-level Language Models
Models that rely on subword tokenization have significant drawbacks, such as sensitivity to character-level noise like spelling errors and inconsistent compression rates across different languages and scripts. While character- or byte-level models like ByT5 attempt to address these concerns, they have not gained widespread adoption -- processing raw byte streams without tokenization results in significantly longer sequence lengths, making training and inference inefficient. This work introduces MrT5 (MergeT5), a more efficient variant of ByT5 that integrates a token deletion mechanism in its encoder to dynamically shorten the input sequence length. After processing through a fixed number of encoder layers, a learned delete gate determines which tokens are to be removed and which are to be retained for subsequent layers. MrT5 effectively "merges" critical information from deleted tokens into a more compact sequence, leveraging contextual information from the remaining tokens. In continued pre-training experiments, we find that MrT5 can achieve significant gains in inference runtime with minimal effect on performance, as measured by bits-per-byte. Additionally, with multilingual training, MrT5 adapts to the orthographic characteristics of each language, learning language-specific compression rates. Furthermore, MrT5 shows comparable accuracy to ByT5 on downstream evaluations such as XNLI, TyDi QA, and character-level tasks while reducing sequence lengths by up to 75%. Our approach presents a solution to the practical limitations of existing byte-level models.
♻ ☆ Self-Introspective Decoding: Alleviating Hallucinations for Large Vision-Language Models ICLR2025
While Large Vision-Language Models (LVLMs) have rapidly advanced in recent years, the prevalent issue known as the `hallucination' problem has emerged as a significant bottleneck, hindering their real-world deployments. Existing methods mitigate this issue mainly from two perspectives: One approach leverages extra knowledge like robust instruction tuning LVLMs with curated datasets or employing auxiliary analysis networks, which inevitable incur additional costs. Another approach, known as contrastive decoding, induces hallucinations by manually disturbing the vision or instruction raw inputs and mitigates them by contrasting the outputs of the disturbed and original LVLMs. However, these approaches rely on empirical holistic input disturbances and double the inference cost. To avoid these issues, we propose a simple yet effective method named Self-Introspective Decoding (SID). Our empirical investigation reveals that pretrained LVLMs can introspectively assess the importance of vision tokens based on preceding vision and text (both instruction and generated) tokens. We develop the Context and Text-aware Token Selection (CT2S) strategy, which preserves only unimportant vision tokens after early layers of LVLMs to adaptively amplify text-informed hallucination during the auto-regressive decoding. This approach ensures that multimodal knowledge absorbed in the early layers induces multimodal contextual rather than aimless hallucinations. Subsequently, the original token logits subtract the amplified vision-and-text association hallucinations, guiding LVLMs decoding faithfully. Extensive experiments illustrate SID generates less-hallucination and higher-quality texts across various metrics, without extra knowledge and much additional computation burdens.
comment: ICLR2025
♻ ☆ Generating Plausible Distractors for Multiple-Choice Questions via Student Choice Prediction
In designing multiple-choice questions (MCQs) in education, creating plausible distractors is crucial for identifying students' misconceptions and gaps in knowledge and accurately assessing their understanding. However, prior studies on distractor generation have not paid sufficient attention to enhancing the difficulty of distractors, resulting in reduced effectiveness of MCQs. This study presents a pipeline for training a model to generate distractors that are more likely to be selected by students. First, we train a pairwise ranker to reason about students' misconceptions and assess the relative plausibility of two distractors. Using this model, we create a dataset of pairwise distractor ranks and then train a distractor generator via Direct Preference Optimization (DPO) to generate more plausible distractors. Experiments on computer science subjects (Python, DB, MLDL) demonstrate that our pairwise ranker effectively identifies students' potential misunderstandings and achieves ranking accuracy comparable to human experts. Furthermore, our distractor generator outperforms several baselines in generating plausible distractors and produces questions with a higher item discrimination index (DI).
♻ ☆ Human-like conceptual representations emerge from language prediction
Recent advances in large language models (LLMs) provide a new opportunity to address the long-standing question of how concepts are represented and organized in the mind, which is central to unravelling the nature of human cognition. Here, we reframed the classic reverse dictionary task to simulate human concept inference in context and investigated the emergence of human-like conceptual representations within LLMs. We found that LLMs were able to infer concepts from definitional descriptions and construct representation spaces that converge towards a shared, context-independent structure. These representations effectively predicted human behavioural judgments and aligned well with neural activity patterns in the human brain, offering evidence for biological plausibility. These findings demonstrate that human-like conceptual representations and organization can naturally emerge from language prediction, even without real-world grounding. Our work supports the view that LLMs serve as valuable tools for understanding complex human cognition and paves the way for better alignment between artificial and human intelligence.
comment: 51 pages
♻ ☆ A Systematic Survey of Prompt Engineering in Large Language Models: Techniques and Applications
Prompt engineering has emerged as an indispensable technique for extending the capabilities of large language models (LLMs) and vision-language models (VLMs). This approach leverages task-specific instructions, known as prompts, to enhance model efficacy without modifying the core model parameters. Rather than updating the model parameters, prompts allow seamless integration of pre-trained models into downstream tasks by eliciting desired model behaviors solely based on the given prompt. Prompts can be natural language instructions that provide context to guide the model or learned vector representations that activate relevant knowledge. This burgeoning field has enabled success across various applications, from question-answering to commonsense reasoning. However, there remains a lack of systematic organization and understanding of the diverse prompt engineering methods and techniques. This survey paper addresses the gap by providing a structured overview of recent advancements in prompt engineering, categorized by application area. For each prompting approach, we provide a summary detailing the prompting methodology, its applications, the models involved, and the datasets utilized. We also delve into the strengths and limitations of each approach and include a taxonomy diagram and table summarizing datasets, models, and critical points of each prompting technique. This systematic analysis enables a better understanding of this rapidly developing field and facilitates future research by illuminating open challenges and opportunities for prompt engineering.
comment: 12 pages, 2 figures
♻ ☆ PICASO: Permutation-Invariant Context Composition with State Space Models ICLR 2025
Providing Large Language Models with relevant contextual knowledge at inference time has been shown to greatly improve the quality of their generations. This is often achieved by prepending informative passages of text, or 'contexts', retrieved from external knowledge bases to their input. However, processing additional contexts online incurs significant computation costs that scale with their length. State Space Models (SSMs) offer a promising solution by allowing a database of contexts to be mapped onto fixed-dimensional states from which to start the generation. A key challenge arises when attempting to leverage information present across multiple contexts, since there is no straightforward way to condition generation on multiple independent states in existing SSMs. To address this, we leverage a simple mathematical relation derived from SSM dynamics to compose multiple states into one that efficiently approximates the effect of concatenating raw context tokens. Since the temporal ordering of contexts can often be uninformative, we enforce permutation-invariance by efficiently averaging states obtained via our composition algorithm across all possible context orderings. We evaluate our resulting method on WikiText and MSMARCO in both zero-shot and fine-tuned settings, and show that we can match the strongest performing baseline while enjoying on average 5.4x speedup.
comment: Published in The Thirteenth International Conference on Learning Representations, ICLR 2025
♻ ☆ MCCoder: Streamlining Motion Control with LLM-Assisted Code Generation and Rigorous Verification
Large Language Models (LLMs) have demonstrated significant potential in code generation. However, in the factory automation sector, particularly motion control, manual programming, alongside inefficient and unsafe debugging practices, remains prevalent. This stems from the complex interplay of mechanical and electrical systems and stringent safety requirements. Moreover, most current AI-assisted motion control programming efforts focus on PLCs, with little attention given to high-level languages and function libraries. To address these challenges, we introduce MCCoder, an LLM-powered system tailored for generating motion control code, integrated with a soft-motion controller. MCCoder improves code generation through a structured workflow that combines multitask decomposition, hybrid retrieval-augmented generation (RAG), and iterative self-correction, utilizing a well-established motion library. Additionally, it integrates a 3D simulator for intuitive motion validation and logs of full motion trajectories for data verification, significantly enhancing accuracy and safety. In the absence of benchmark datasets and metrics tailored for evaluating motion control code generation, we propose MCEVAL, a dataset spanning motion tasks of varying complexity. Experiments show that MCCoder outperforms baseline models using Advanced RAG, achieving an overall performance gain of 33.09% and a 131.77% improvement on complex tasks in the MCEVAL dataset.
♻ ☆ Can A Society of Generative Agents Simulate Human Behavior and Inform Public Health Policy? A Case Study on Vaccine Hesitancy
Can we simulate a sandbox society with generative agents to model human behavior, thereby reducing the over-reliance on real human trials for assessing public policies? In this work, we investigate the feasibility of simulating health-related decision-making, using vaccine hesitancy, defined as the delay in acceptance or refusal of vaccines despite the availability of vaccination services (MacDonald, 2015), as a case study. To this end, we introduce the VacSim framework with 100 generative agents powered by Large Language Models (LLMs). VacSim simulates vaccine policy outcomes with the following steps: 1) instantiate a population of agents with demographics based on census data; 2) connect the agents via a social network and model vaccine attitudes as a function of social dynamics and disease-related information; 3) design and evaluate various public health interventions aimed at mitigating vaccine hesitancy. To align with real-world results, we also introduce simulation warmup and attitude modulation to adjust agents' attitudes. We propose a series of evaluations to assess the reliability of various LLM simulations. Experiments indicate that models like Llama and Qwen can simulate aspects of human behavior but also highlight real-world alignment challenges, such as inconsistent responses with demographic profiles. This early exploration of LLM-driven simulations is not meant to serve as definitive policy guidance; instead, it serves as a call for action to examine social simulation for policy development.
♻ ☆ SIMS: Simulating Stylized Human-Scene Interactions with Retrieval-Augmented Script Generation
Simulating stylized human-scene interactions (HSI) in physical environments is a challenging yet fascinating task. Prior works emphasize long-term execution but fall short in achieving both diverse style and physical plausibility. To tackle this challenge, we introduce a novel hierarchical framework named SIMS that seamlessly bridges highlevel script-driven intent with a low-level control policy, enabling more expressive and diverse human-scene interactions. Specifically, we employ Large Language Models with Retrieval-Augmented Generation (RAG) to generate coherent and diverse long-form scripts, providing a rich foundation for motion planning. A versatile multicondition physics-based control policy is also developed, which leverages text embeddings from the generated scripts to encode stylistic cues, simultaneously perceiving environmental geometries and accomplishing task goals. By integrating the retrieval-augmented script generation with the multi-condition controller, our approach provides a unified solution for generating stylized HSI motions. We further introduce a comprehensive planning dataset produced by RAG and a stylized motion dataset featuring diverse locomotions and interactions. Extensive experiments demonstrate SIMS's effectiveness in executing various tasks and generalizing across different scenarios, significantly outperforming previous methods.
♻ ☆ Semi-supervised Concept Bottleneck Models
Concept Bottleneck Models (CBMs) have garnered increasing attention due to their ability to provide concept-based explanations for black-box deep learning models while achieving high final prediction accuracy using human-like concepts. However, the training of current CBMs heavily relies on the accuracy and richness of annotated concepts in the dataset. These concept labels are typically provided by experts, which can be costly and require significant resources and effort. Additionally, concept saliency maps frequently misalign with input saliency maps, causing concept predictions to correspond to irrelevant input features - an issue related to annotation alignment. To address these limitations, we propose a new framework called SSCBM (Semi-supervised Concept Bottleneck Model). Our SSCBM is suitable for practical situations where annotated data is scarce. By leveraging joint training on both labeled and unlabeled data and aligning the unlabeled data at the concept level, we effectively solve these issues. We proposed a strategy to generate pseudo labels and an alignment loss. Experiments demonstrate that our SSCBM is both effective and efficient. With only 20% labeled data, we achieved 93.19% (96.39% in a fully supervised setting) concept accuracy and 75.51% (79.82% in a fully supervised setting) prediction accuracy.
comment: 17 pages
♻ ☆ Does Training on Synthetic Data Make Models Less Robust?
An increasingly common practice is to train large language models (LLMs) using synthetic data. Often this synthetic data is produced by the same or similar LLMs as those it is being used to train. This raises the question of whether the synthetic data might in fact exacerbate certain "blindspots" by reinforcing heuristics that the LLM already encodes. In this paper, we conduct simulated experiments on the natural language inference (NLI) task with Llama-2-7B-hf models. We use MultiNLI as the general task and HANS, a targeted evaluation set designed to measure the presence of specific heuristic strategies for NLI, as our "blindspot" task. Our goal is to determine whether performance disparities between the general and blind spot tasks emerge. Our results indicate that synthetic data does not reinforce blindspots in the way we expected. Specifically, we see that, while fine-tuning with synthetic data doesn't necessarily reduce the use of the heuristic, it also does not make it worse as we hypothesized.
♻ ☆ AI's Spatial Intelligence: Evaluating AI's Understanding of Spatial Transformations in PSVT:R and Augmented Reality
Spatial intelligence is important in Architecture, Construction, Science, Technology, Engineering, and Mathematics (STEM), and Medicine. Understanding three-dimensional (3D) spatial rotations can involve verbal descriptions and visual or interactive examples, illustrating how objects change orientation in 3D space. Recent studies show Artificial Intelligence (AI) with language and vision capabilities still face limitations in spatial reasoning. In this paper, we have studied generative AI's spatial capabilities of understanding rotations of objects utilizing its image and language processing features. We examined the spatial intelligence of the GPT-4 model with vision in understanding spatial rotation process with diagrams based on the Revised Purdue Spatial Visualization Test: Visualization of Rotations (Revised PSVT:R). Next, we incorporated a layer of coordinate system axes on Revised PSVT:R to study the variations in GPT-4's performance. We also examined GPT-4's understanding of 3D rotations in Augmented Reality (AR) scenes that visualize spatial rotations of an object in 3D space and observed increased accuracy of GPT-4's understanding of the rotations by adding supplementary textual information depicting the rotation process or mathematical representations of the rotation (e.g., matrices). The results indicate that while GPT-4 as a major current Generative AI model lacks the understanding of a spatial rotation process, it has the potential to understand the rotation process with additional information that can be provided by methods such as AR. By combining the potentials in spatial intelligence of AI with AR's interactive visualization abilities, we expect to offer enhanced guidance for students' spatial learning activities. Such spatial guidance can benefit understanding spatial transformations and additionally support processes like assembly, fabrication, and manufacturing.
♻ ☆ Cascaded Self-Evaluation Augmented Training for Lightweight Multimodal LLMs
Efficient Multimodal Large Language Models (EMLLMs) can improve performance through Chain-of-Thought (CoT) reasoning, but they have poor self-evaluation capabilities during the CoT reasoning process. This is due to their tendency to simplify the reasoning process and the degradation of self-evaluation ability during downstream task fine-tuning. To address this, we intuitively propose \textit{Self-Evaluation Augmented Training (SEAT)}, which uses more powerful EMLLMs to evaluate CoT reasoning data. The evaluation data is then used to train EMLLMs. However, due to the difficulties EMLLMs face with processing long token input-output sequences, and the degradation of self-evaluation ability as a basis for CoT reasoning, the SEAT method is not fully adapted. Therefore, we further propose \textit{Cascaded Self-Evaluation Augmented Training (Cas-SEAT)}, which converts long prompts into cascaded short prompts, each focusing on a specific task. Additionally, we mix CoT reasoning and self-evaluation data to preserve its CoT reasoning ability while enhancing the self-evaluation capability of EMLLMs. We also conduct \textit{Double-level Data Filtering (DDF)}, which includes source data filtering and labeled data filtering, using both manual selection and MLLMs for filtering. Cas-SEAT and DDF work together to improve the performance of EMLLMs. Experiments show that Cas-SEAT achieves an average improvement of 22.16% across multiple datasets, and DDF significantly reduces the resource consumption of training
♻ ☆ General Scales Unlock AI Evaluation with Explanatory and Predictive Power
Ensuring safe and effective use of AI requires understanding and anticipating its performance on novel tasks, from advanced scientific challenges to transformed workplace activities. So far, benchmarking has guided progress in AI, but it has offered limited explanatory and predictive power for general-purpose AI systems, given the low transferability across diverse tasks. In this paper, we introduce general scales for AI evaluation that can explain what common AI benchmarks really measure, extract ability profiles of AI systems, and predict their performance for new task instances, in- and out-of-distribution. Our fully-automated methodology builds on 18 newly-crafted rubrics that place instance demands on general scales that do not saturate. Illustrated for 15 large language models and 63 tasks, high explanatory power is unleashed from inspecting the demand and ability profiles, bringing insights on the sensitivity and specificity exhibited by different benchmarks, and how knowledge, metacognition and reasoning are affected by model size, chain-of-thought and distillation. Surprisingly, high predictive power at the instance level becomes possible using these demand levels, providing superior estimates over black-box baseline predictors based on embeddings or finetuning, especially in out-of-distribution settings (new tasks and new benchmarks). The scales, rubrics, battery, techniques and results presented here represent a major step for AI evaluation, underpinning the reliable deployment of AI in the years ahead. (Collaborative platform: https://kinds-of-intelligence-cfi.github.io/ADELE.)
♻ ☆ Surgical-LVLM: Learning to Adapt Large Vision-Language Model for Grounded Visual Question Answering in Robotic Surgery ICLR 2025
Recent advancements in Surgical Visual Question Answering (Surgical-VQA) and related region grounding have shown great promise for robotic and medical applications, addressing the critical need for automated methods in personalized surgical mentorship. However, existing models primarily provide simple structured answers and struggle with complex scenarios due to their limited capability in recognizing long-range dependencies and aligning multimodal information. In this paper, we introduce Surgical-LVLM, a novel personalized large vision-language model tailored for complex surgical scenarios. Leveraging the pre-trained large vision-language model and specialized Visual Perception LoRA (VP-LoRA) blocks, our model excels in understanding complex visual-language tasks within surgical contexts. In addressing the visual grounding task, we propose the Token-Interaction (TIT) module, which strengthens the interaction between the grounding module and the language responses of the Large Visual Language Model (LVLM) after projecting them into the latent space. We demonstrate the effectiveness of Surgical-LVLM on several benchmarks, including EndoVis-17-VQLA, EndoVis-18-VQLA, and a newly introduced EndoVis Conversations dataset, which sets new performance standards. Our work contributes to advancing the field of automated surgical mentorship by providing a context-aware solution.
comment: The manuscript is accepted by ICLR 2025 FM-Wild Workshop
Graphics 6
☆ Niagara: Normal-Integrated Geometric Affine Field for Scene Reconstruction from a Single View
Recent advances in single-view 3D scene reconstruction have highlighted the challenges in capturing fine geometric details and ensuring structural consistency, particularly in high-fidelity outdoor scene modeling. This paper presents Niagara, a new single-view 3D scene reconstruction framework that can faithfully reconstruct challenging outdoor scenes from a single input image for the first time. Our approach integrates monocular depth and normal estimation as input, which substantially improves its ability to capture fine details, mitigating common issues like geometric detail loss and deformation. Additionally, we introduce a geometric affine field (GAF) and 3D self-attention as geometry-constraint, which combines the structural properties of explicit geometry with the adaptability of implicit feature fields, striking a balance between efficient rendering and high-fidelity reconstruction. Our framework finally proposes a specialized encoder-decoder architecture, where a depth-based 3D Gaussian decoder is proposed to predict 3D Gaussian parameters, which can be used for novel view synthesis. Extensive results and analyses suggest that our Niagara surpasses prior SoTA approaches such as Flash3D in both single-view and dual-view settings, significantly enhancing the geometric accuracy and visual fidelity, especially in outdoor scenes.
☆ MTGS: Multi-Traversal Gaussian Splatting
Multi-traversal data, commonly collected through daily commutes or by self-driving fleets, provides multiple viewpoints for scene reconstruction within a road block. This data offers significant potential for high-quality novel view synthesis, which is crucial for applications such as autonomous vehicle simulators. However, inherent challenges in multi-traversal data often result in suboptimal reconstruction quality, including variations in appearance and the presence of dynamic objects. To address these issues, we propose Multi-Traversal Gaussian Splatting (MTGS), a novel approach that reconstructs high-quality driving scenes from arbitrarily collected multi-traversal data by modeling a shared static geometry while separately handling dynamic elements and appearance variations. Our method employs a multi-traversal dynamic scene graph with a shared static node and traversal-specific dynamic nodes, complemented by color correction nodes with learnable spherical harmonics coefficient residuals. This approach enables high-fidelity novel view synthesis and provides flexibility to navigate any viewpoint. We conduct extensive experiments on a large-scale driving dataset, nuPlan, with multi-traversal data. Our results demonstrate that MTGS improves LPIPS by 23.5% and geometry accuracy by 46.3% compared to single-traversal baselines. The code and data would be available to the public.
☆ DDPM-Polycube: A Denoising Diffusion Probabilistic Model for Polycube-Based Hexahedral Mesh Generation and Volumetric Spline Construction
In this paper, we propose DDPM-Polycube, a generative polycube creation approach based on denoising diffusion probabilistic models (DDPM) for generating high-quality hexahedral (hex) meshes and constructing volumetric splines. Unlike DL-Polycube methods that rely on predefined polycube structure templates, DDPM-Polycube models the deformation from input geometry to its corresponding polycube structures as a denoising task. By learning the deformation characteristics of simple geometric primitives (a cube and a cube with a hole), the DDPM-Polycube model progressively reconstructs polycube structures from input geometry by removing non-standard Gaussian noise. Once valid polycube structures are generated, they are used for surface segmentation and parametric mapping to generate high-quality hex meshes. Truncated hierarchical B-splines are then applied to construct volumetric splines that satisfy the requirements of isogeometric analysis (IGA). Experimental results demonstrate that DDPM-Polycube model can directly generate polycube structures from input geometries, even when the topology of these geometries falls outside its trained range. This provides greater generalization and adaptability for diverse engineering geometries. Overall, this research shows the potential of diffusion models in advancing mesh generation and IGA applications.
♻ ☆ Sprite Sheet Diffusion: Generate Game Character for Animation
In the game development process, creating character animations is a vital step that involves several stages. Typically for 2D games, illustrators begin by designing the main character image, which serves as the foundation for all subsequent animations. To create a smooth motion sequence, these subsequent animations involve drawing the character in different poses and actions, such as running, jumping, or attacking. This process requires significant manual effort from illustrators, as they must meticulously ensure consistency in design, proportions, and style across multiple motion frames. Each frame is drawn individually, making this a time-consuming and labor-intensive task. Generative models, such as diffusion models, have the potential to revolutionize this process by automating the creation of sprite sheets. Diffusion models, known for their ability to generate diverse images, can be adapted to create character animations. By leveraging the capabilities of diffusion models, we can significantly reduce the manual workload for illustrators, accelerate the animation creation process, and open up new creative possibilities in game development.
comment: https://chenganhsieh.github.io/spritesheet-diffusion/
♻ ☆ Patch-Grid: An Efficient and Feature-Preserving Neural Implicit Surface Representation
Neural implicit representations are widely used for 3D shape modeling due to their smoothness and compactness, but traditional MLP-based methods struggle with sharp features, such as edges and corners in CAD models, and require long training times. To address these limitations, we propose Patch-Grid, a unified neural implicit representation that efficiently fits complex shapes, preserves sharp features, and handles open boundaries and thin geometric structures. Patch-Grid learns a signed distance field (SDF) for each surface patch using a learnable patch feature volume. To represent sharp edges and corners, it merges the learned SDFs via constructive solid geometry (CSG) operations. A novel merge grid organizes patch feature volumes within a shared octree structure, localizing and simplifying CSG operations. This design ensures robust merging of SDFs and significantly reduces computational complexity, enabling training within seconds while maintaining high fidelity. Experimental results show that Patch-Grid achieves state-of-the-art reconstruction quality for shapes with intricate sharp features, open surfaces, and thin structures, offering superior robustness, efficiency, and accuracy.
♻ ☆ SIMS: Simulating Stylized Human-Scene Interactions with Retrieval-Augmented Script Generation
Simulating stylized human-scene interactions (HSI) in physical environments is a challenging yet fascinating task. Prior works emphasize long-term execution but fall short in achieving both diverse style and physical plausibility. To tackle this challenge, we introduce a novel hierarchical framework named SIMS that seamlessly bridges highlevel script-driven intent with a low-level control policy, enabling more expressive and diverse human-scene interactions. Specifically, we employ Large Language Models with Retrieval-Augmented Generation (RAG) to generate coherent and diverse long-form scripts, providing a rich foundation for motion planning. A versatile multicondition physics-based control policy is also developed, which leverages text embeddings from the generated scripts to encode stylistic cues, simultaneously perceiving environmental geometries and accomplishing task goals. By integrating the retrieval-augmented script generation with the multi-condition controller, our approach provides a unified solution for generating stylized HSI motions. We further introduce a comprehensive planning dataset produced by RAG and a stylized motion dataset featuring diverse locomotions and interactions. Extensive experiments demonstrate SIMS's effectiveness in executing various tasks and generalizing across different scenarios, significantly outperforming previous methods.
Artificial Intelligence 46
☆ The Lucie-7B LLM and the Lucie Training Dataset: Open resources for multilingual language generation
We present both the Lucie Training Dataset and the Lucie-7B foundation model. The Lucie Training Dataset is a multilingual collection of textual corpora centered around French and designed to offset anglo-centric biases found in many datasets for large language model pretraining. Its French data is pulled not only from traditional web sources, but also from French cultural heritage documents, filling an important gap in modern datasets. Beyond French, which makes up the largest share of the data, we added documents to support several other European languages, including English, Spanish, German, and Italian. Apart from its value as a resource for French language and culture, an important feature of this dataset is that it prioritizes data rights by minimizing copyrighted material. In addition, building on the philosophy of past open projects, it is redistributed in the form used for training and its processing is described on Hugging Face and GitHub. The Lucie-7B foundation model is trained on equal amounts of data in French and English -- roughly 33% each -- in an effort to better represent cultural aspects of French-speaking communities. We also describe two instruction fine-tuned models, Lucie-7B-Instruct-v1.1 and Lucie-7B-Instruct-human-data, which we release as demonstrations of Lucie-7B in use. These models achieve promising results compared to state-of-the-art models, demonstrating that an open approach prioritizing data rights can still deliver strong performance. We see these models as an initial step toward developing more performant, aligned models in the near future. Model weights for Lucie-7B and the Lucie instruct models, along with intermediate checkpoints for the former, are published on Hugging Face, while model training and data preparation code is available on GitHub. This makes Lucie-7B one of the first OSI compliant language models according to the new OSI definition.
☆ Integrating Chain-of-Thought and Retrieval Augmented Generation Enhances Rare Disease Diagnosis from Clinical Notes
Background: Several studies show that large language models (LLMs) struggle with phenotype-driven gene prioritization for rare diseases. These studies typically use Human Phenotype Ontology (HPO) terms to prompt foundation models like GPT and LLaMA to predict candidate genes. However, in real-world settings, foundation models are not optimized for domain-specific tasks like clinical diagnosis, yet inputs are unstructured clinical notes rather than standardized terms. How LLMs can be instructed to predict candidate genes or disease diagnosis from unstructured clinical notes remains a major challenge. Methods: We introduce RAG-driven CoT and CoT-driven RAG, two methods that combine Chain-of-Thought (CoT) and Retrieval Augmented Generation (RAG) to analyze clinical notes. A five-question CoT protocol mimics expert reasoning, while RAG retrieves data from sources like HPO and OMIM (Online Mendelian Inheritance in Man). We evaluated these approaches on rare disease datasets, including 5,980 Phenopacket-derived notes, 255 literature-based narratives, and 220 in-house clinical notes from Childrens Hospital of Philadelphia. Results: We found that recent foundations models, including Llama 3.3-70B-Instruct and DeepSeek-R1-Distill-Llama-70B, outperformed earlier versions such as Llama 2 and GPT-3.5. We also showed that RAG-driven CoT and CoT-driven RAG both outperform foundation models in candidate gene prioritization from clinical notes; in particular, both methods with DeepSeek backbone resulted in a top-10 gene accuracy of over 40% on Phenopacket-derived clinical notes. RAG-driven CoT works better for high-quality notes, where early retrieval can anchor the subsequent reasoning steps in domain-specific evidence, while CoT-driven RAG has advantage when processing lengthy and noisy notes.
comment: 31 pages, 3 figures
☆ Bi-Criteria Optimization for Combinatorial Bandits: Sublinear Regret and Constraint Violation under Bandit Feedback
In this paper, we study bi-criteria optimization for combinatorial multi-armed bandits (CMAB) with bandit feedback. We propose a general framework that transforms discrete bi-criteria offline approximation algorithms into online algorithms with sublinear regret and cumulative constraint violation (CCV) guarantees. Our framework requires the offline algorithm to provide an $(\alpha, \beta)$-bi-criteria approximation ratio with $\delta$-resilience and utilize $\texttt{N}$ oracle calls to evaluate the objective and constraint functions. We prove that the proposed framework achieves sub-linear regret and CCV, with both bounds scaling as ${O}\left(\delta^{2/3} \texttt{N}^{1/3}T^{2/3}\log^{1/3}(T)\right)$. Crucially, the framework treats the offline algorithm with $\delta$-resilience as a black box, enabling flexible integration of existing approximation algorithms into the CMAB setting. To demonstrate its versatility, we apply our framework to several combinatorial problems, including submodular cover, submodular cost covering, and fair submodular maximization. These applications highlight the framework's broad utility in adapting offline guarantees to online bi-criteria optimization under bandit feedback.
☆ Toward Foundation Models for Online Complex Event Detection in CPS-IoT: A Case Study
Complex events (CEs) play a crucial role in CPS-IoT applications, enabling high-level decision-making in domains such as smart monitoring and autonomous systems. However, most existing models focus on short-span perception tasks, lacking the long-term reasoning required for CE detection. CEs consist of sequences of short-time atomic events (AEs) governed by spatiotemporal dependencies. Detecting them is difficult due to long, noisy sensor data and the challenge of filtering out irrelevant AEs while capturing meaningful patterns. This work explores CE detection as a case study for CPS-IoT foundation models capable of long-term reasoning. We evaluate three approaches: (1) leveraging large language models (LLMs), (2) employing various neural architectures that learn CE rules from data, and (3) adopting a neurosymbolic approach that integrates neural models with symbolic engines embedding human knowledge. Our results show that the state-space model, Mamba, which belongs to the second category, outperforms all methods in accuracy and generalization to longer, unseen sensor traces. These findings suggest that state-space models could be a strong backbone for CPS-IoT foundation models for long-span reasoning tasks.
☆ Agentic Search Engine for Real-Time IoT Data
The Internet of Things (IoT) has enabled diverse devices to communicate over the Internet, yet the fragmentation of IoT systems limits seamless data sharing and coordinated management. We have recently introduced SensorsConnect, a unified framework to enable seamless content and sensor data sharing in collaborative IoT systems, inspired by how the World Wide Web (WWW) enabled a shared and accessible space for information among humans. This paper presents the IoT Agentic Search Engine (IoT-ASE), a real-time search engine tailored for IoT environments. IoT-ASE leverages Large Language Models (LLMs) and Retrieval Augmented Generation (RAG) techniques to address the challenge of searching vast, real-time IoT data, enabling it to handle complex queries and deliver accurate, contextually relevant results. We implemented a use-case scenario in Toronto to demonstrate how IoT-ASE can improve service quality recommendations by leveraging real-time IoT data. Our evaluation shows that IoT-ASE achieves a 92\% accuracy in retrieving intent-based services and produces responses that are concise, relevant, and context-aware, outperforming generalized responses from systems like Gemini. These findings highlight the potential IoT-ASE to make real-time IoT data accessible and support effective, real-time decision-making.
☆ GenOSIL: Generalized Optimal and Safe Robot Control using Parameter-Conditioned Imitation Learning
Ensuring safe and generalizable control remains a fundamental challenge in robotics, particularly when deploying imitation learning in dynamic environments. Traditional behavior cloning (BC) struggles to generalize beyond its training distribution, as it lacks an understanding of the safety critical reasoning behind expert demonstrations. To address this limitation, we propose GenOSIL, a novel imitation learning framework that explicitly incorporates environment parameters into policy learning via a structured latent representation. Unlike conventional methods that treat the environment as a black box, GenOSIL employs a variational autoencoder (VAE) to encode measurable safety parameters such as obstacle position, velocity, and geometry into a latent space that captures intrinsic correlations between expert behavior and environmental constraints. This enables the policy to infer the rationale behind expert trajectories rather than merely replicating them. We validate our approach on two robotic platforms an autonomous ground vehicle and a Franka Emika Panda manipulator demonstrating superior safety and goal reaching performance compared to baseline methods. The simulation and hardware videos can be viewed on the project webpage: https://mumukshtayal.github.io/GenOSIL/.
comment: 6 pages, 5 figures
☆ A Novel Double Pruning method for Imbalanced Data using Information Entropy and Roulette Wheel Selection for Breast Cancer Diagnosis
Accurate illness diagnosis is vital for effective treatment and patient safety. Machine learning models are widely used for cancer diagnosis based on historical medical data. However, data imbalance remains a major challenge, leading to hindering classifier performance and reliability. The SMOTEBoost method addresses this issue by generating synthetic data to balance the dataset, but it may overlook crucial overlapping regions near the decision boundary and can produce noisy samples. This paper proposes RE-SMOTEBoost, an enhanced version of SMOTEBoost, designed to overcome these limitations. Firstly, RE-SMOTEBoost focuses on generating synthetic samples in overlapping regions to better capture the decision boundary using roulette wheel selection. Secondly, it incorporates a filtering mechanism based on information entropy to reduce noise, and borderline cases and improve the quality of generated data. Thirdly, we introduce a double regularization penalty to control the synthetic samples proximity to the decision boundary and avoid class overlap. These enhancements enable higher-quality oversampling of the minority class, resulting in a more balanced and effective training dataset. The proposed method outperforms existing state-of-the-art techniques when evaluated on imbalanced datasets. Compared to the top-performing sampling algorithms, RE-SMOTEBoost demonstrates a notable improvement of 3.22\% in accuracy and a variance reduction of 88.8\%. These results indicate that the proposed model offers a solid solution for medical settings, effectively overcoming data scarcity and severe imbalance caused by limited samples, data collection difficulties, and privacy constraints.
☆ LIAM: Multimodal Transformer for Language Instructions, Images, Actions and Semantic Maps
The availability of large language models and open-vocabulary object perception methods enables more flexibility for domestic service robots. The large variability of domestic tasks can be addressed without implementing each task individually by providing the robot with a task description along with appropriate environment information. In this work, we propose LIAM - an end-to-end model that predicts action transcripts based on language, image, action, and map inputs. Language and image inputs are encoded with a CLIP backbone, for which we designed two pre-training tasks to fine-tune its weights and pre-align the latent spaces. We evaluate our method on the ALFRED dataset, a simulator-generated benchmark for domestic tasks. Our results demonstrate the importance of pre-aligning embedding spaces from different modalities and the efficacy of incorporating semantic maps.
☆ Adaptive Fault Tolerance Mechanisms of Large Language Models in Cloud Computing Environments
With the rapid evolution of Large Language Models (LLMs) and their large-scale experimentation in cloud-computing spaces, the challenge of guaranteeing their security and efficiency in a failure scenario has become a main issue. To ensure the reliability and availability of large-scale language models in cloud computing scenarios, such as frequent resource failures, network problems, and computational overheads, this study proposes a novel adaptive fault tolerance mechanism. It builds upon known fault-tolerant mechanisms, such as checkpointing, redundancy, and state transposition, introducing dynamic resource allocation and prediction of failure based on real-time performance metrics. The hybrid model integrates data driven deep learning-based anomaly detection technique underlining the contribution of cloud orchestration middleware for predictive prevention of system failures. Additionally, the model integrates adaptive checkpointing and recovery strategies that dynamically adapt according to load and system state to minimize the influence on the performance of the model and minimize downtime. The experimental results demonstrate that the designed model considerably enhances the fault tolerance in large-scale cloud surroundings, and decreases the system downtime by $\mathbf{30\%}$, and has a better modeling availability than the classical fault tolerance mechanism.
comment: Accepted by IEEE ICCEA 2025
☆ Research on Large Language Model Cross-Cloud Privacy Protection and Collaborative Training based on Federated Learning
The fast development of large language models (LLMs) and popularization of cloud computing have led to increasing concerns on privacy safeguarding and data security of cross-cloud model deployment and training as the key challenges. We present a new framework for addressing these issues along with enabling privacy preserving collaboration on training between distributed clouds based on federated learning. Our mechanism encompasses cutting-edge cryptographic primitives, dynamic model aggregation techniques, and cross-cloud data harmonization solutions to enhance security, efficiency, and scalability to the traditional federated learning paradigm. Furthermore, we proposed a hybrid aggregation scheme to mitigate the threat of Data Leakage and to optimize the aggregation of model updates, thus achieving substantial enhancement on the model effectiveness and stability. Experimental results demonstrate that the training efficiency, privacy protection, and model accuracy of the proposed model compare favorably to those of the traditional federated learning method.
comment: Accepted by IEEE AINIT 2025
☆ Evaluation-Time Policy Switching for Offline Reinforcement Learning AAMAS 2025
Offline reinforcement learning (RL) looks at learning how to optimally solve tasks using a fixed dataset of interactions from the environment. Many off-policy algorithms developed for online learning struggle in the offline setting as they tend to over-estimate the behaviour of out of distributions actions. Existing offline RL algorithms adapt off-policy algorithms, employing techniques such as constraining the policy or modifying the value function to achieve good performance on individual datasets but struggle to adapt to different tasks or datasets of different qualities without tuning hyper-parameters. We introduce a policy switching technique that dynamically combines the behaviour of a pure off-policy RL agent, for improving behaviour, and a behavioural cloning (BC) agent, for staying close to the data. We achieve this by using a combination of epistemic uncertainty, quantified by our RL model, and a metric for aleatoric uncertainty extracted from the dataset. We show empirically that our policy switching technique can outperform not only the individual algorithms used in the switching process but also compete with state-of-the-art methods on numerous benchmarks. Our use of epistemic uncertainty for policy switching also allows us to naturally extend our method to the domain of offline to online fine-tuning allowing our model to adapt quickly and safely from online data, either matching or exceeding the performance of current methods that typically require additional modification or hyper-parameter fine-tuning.
comment: Proc. of the 24th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2025)
☆ Changing Base Without Losing Pace: A GPU-Efficient Alternative to MatMul in DNNs
We propose a cheaper alternative bilinear operator to matrix-multiplication in deep neural networks (DNNs). Unlike many stubborn attempts to accelerate MatMuls in DNN inference, this operator is supported by capabilities of existing GPU hardware, most notably NVIDIA TensorCores. To our knowledge, this is the first GPU-native acceleration technique which \emph{does not decrease} (in fact, increases) the number of trainable parameters of the network, mitigating the accuracy-loss of compression-based techniques. Hence, this operator is at the same time more expressive than MatMul, yet requires substantially \emph{fewer} FLOPs to evaluate. We term this new operator \emph{Strassen-Tile} (STL). The main idea behind STL$(X,W)$ is a \emph{local} change-of-basis (learnable encoder) on weights and activation \emph{tiles}, after which we perform batched \emph{elementwise} products between tiles, and a final decoding transformation (inspired by algebraic pipelines from fast matrix and polynomial multiplication). We compare STL against two benchmarks. The first one is SoTA T2T-ViT on Imagenet-1K. Here we show that replacing \emph{all} linear layers with STL and training from scratch, results in factor x2.7 reduction in FLOPs with a 0.5 \emph{accuracy improvement}. Our second speed-accuracy comparison benchmark for pretrained LLMs is the most practical GPU-acceleration technique, \twofour structured Sparsity. Finetuning TinyLlama \cite{tinyllama24} with STL layers on the Slim Pajama dataset, achieves similar accuracy to 2:4, with x2.2 FLOP speedup compared to x1.7 of the latter. Finally, we discuss a group-theoretic approach for discovering \emph{universal} encoders for STL, which could lead to fast \emph{black-box} acceleration via approximate matrix-multiplication (AMM).
☆ Value Gradients with Action Adaptive Search Trees in Continuous (PO)MDPs
Solving Partially Observable Markov Decision Processes (POMDPs) in continuous state, action and observation spaces is key for autonomous planning in many real-world mobility and robotics applications. Current approaches are mostly sample based, and cannot hope to reach near-optimal solutions in reasonable time. We propose two complementary theoretical contributions. First, we formulate a novel Multiple Importance Sampling (MIS) tree for value estimation, that allows to share value information between sibling action branches. The novel MIS tree supports action updates during search time, such as gradient-based updates. Second, we propose a novel methodology to compute value gradients with online sampling based on transition likelihoods. It is applicable to MDPs, and we extend it to POMDPs via particle beliefs with the application of the propagated belief trick. The gradient estimator is computed in practice using the MIS tree with efficient Monte Carlo sampling. These two parts are combined into a new planning algorithm Action Gradient Monte Carlo Tree Search (AGMCTS). We demonstrate in a simulated environment its applicability, advantages over continuous online POMDP solvers that rely solely on sampling, and we discuss further implications.
☆ Probabilistic Graph Circuits: Deep Generative Models for Tractable Probabilistic Inference over Graphs
Deep generative models (DGMs) have recently demonstrated remarkable success in capturing complex probability distributions over graphs. Although their excellent performance is attributed to powerful and scalable deep neural networks, it is, at the same time, exactly the presence of these highly non-linear transformations that makes DGMs intractable. Indeed, despite representing probability distributions, intractable DGMs deny probabilistic foundations by their inability to answer even the most basic inference queries without approximations or design choices specific to a very narrow range of queries. To address this limitation, we propose probabilistic graph circuits (PGCs), a framework of tractable DGMs that provide exact and efficient probabilistic inference over (arbitrary parts of) graphs. Nonetheless, achieving both exactness and efficiency is challenging in the permutation-invariant setting of graphs. We design PGCs that are inherently invariant and satisfy these two requirements, yet at the cost of low expressive power. Therefore, we investigate two alternative strategies to achieve the invariance: the first sacrifices the efficiency, and the second sacrifices the exactness. We demonstrate that ignoring the permutation invariance can have severe consequences in anomaly detection, and that the latter approach is competitive with, and sometimes better than, existing intractable DGMs in the context of molecular graph generation.
☆ Aristotle's Original Idea: For and Against Logic in the era of AI
Aristotle is generally accepted as the father of logic. The ideas that he raised in his study of logical reasoning carried the development of science over the centuries. Today, in the era of AI, this title of the fatherhood of logic has a renewed significance. Behind it lies his original idea that human reasoning could be studied as a process and that perhaps there exist universal systems of reasoning that underly all human reasoning irrespective of the content of what we are reasoning about. In this article, we look into Aristotle's work on human thought, his work on reasoning itself but also on how it relates to science and human endeavor more generally, from a modern perspective of Artificial Intelligence and ask if this can help enlighten our understanding of AI and Science more generally.
comment: 40 pages
☆ Weighted Graph Structure Learning with Attention Denoising for Node Classification
Node classification in graphs aims to predict the categories of unlabeled nodes by utilizing a small set of labeled nodes. However, weighted graphs often contain noisy edges and anomalous edge weights, which can distort fine-grained relationships between nodes and hinder accurate classification. We propose the Edge Weight-aware Graph Structure Learning (EWGSL) method, which combines weight learning and graph structure learning to address these issues. EWGSL improves node classification by redefining attention coefficients in graph attention networks to incorporate node features and edge weights. It also applies graph structure learning to sparsify attention coefficients and uses a modified InfoNCE loss function to enhance performance by adapting to denoised graph weights. Extensive experimental results show that EWGSL has an average Micro-F1 improvement of 17.8% compared with the best baseline.
comment: 6 pages, 3 figures, 2 tables
☆ Language Models for Automated Classification of Brain MRI Reports and Growth Chart Generation
Clinically acquired brain MRIs and radiology reports are valuable but underutilized resources due to the challenges of manual analysis and data heterogeneity. We developed fine-tuned language models (LMs) to classify brain MRI reports as normal (reports with limited pathology) or abnormal, fine-tuning BERT, BioBERT, ClinicalBERT, and RadBERT on 44,661 reports. We also explored the reasoning capabilities of a leading LM, Gemini 1.5-Pro, for normal report categorization. Automated image processing and modeling generated brain growth charts from LM-classified normal scans, comparing them to human-derived charts. Fine-tuned LMs achieved high classification performance (F1-Score >97%), with unbalanced training mitigating class imbalance. Performance was robust on out-of-distribution data, with full text outperforming summary (impression) sections. Gemini 1.5-Pro showed a promising categorization performance, especially with clinical inference. LM-derived brain growth charts were nearly identical to human-annotated charts (r = 0.99, p < 2.2e-16). Our LMs offer scalable analysis of radiology reports, enabling automated classification of brain MRIs in large datasets. One application is automated generation of brain growth charts for benchmarking quantitative image features. Further research is needed to address data heterogeneity and optimize LM reasoning.
☆ DiffGAP: A Lightweight Diffusion Module in Contrastive Space for Bridging Cross-Model Gap
Recent works in cross-modal understanding and generation, notably through models like CLAP (Contrastive Language-Audio Pretraining) and CAVP (Contrastive Audio-Visual Pretraining), have significantly enhanced the alignment of text, video, and audio embeddings via a single contrastive loss. However, these methods often overlook the bidirectional interactions and inherent noises present in each modality, which can crucially impact the quality and efficacy of cross-modal integration. To address this limitation, we introduce DiffGAP, a novel approach incorporating a lightweight generative module within the contrastive space. Specifically, our DiffGAP employs a bidirectional diffusion process tailored to bridge the cross-modal gap more effectively. This involves a denoising process on text and video embeddings conditioned on audio embeddings and vice versa, thus facilitating a more nuanced and robust cross-modal interaction. Our experimental results on VGGSound and AudioCaps datasets demonstrate that DiffGAP significantly improves performance in video/text-audio generation and retrieval tasks, confirming its effectiveness in enhancing cross-modal understanding and generation capabilities.
☆ Hyperbolic Safety-Aware Vision-Language Models CVPR 2025
Addressing the retrieval of unsafe content from vision-language models such as CLIP is an important step towards real-world integration. Current efforts have relied on unlearning techniques that try to erase the model's knowledge of unsafe concepts. While effective in reducing unwanted outputs, unlearning limits the model's capacity to discern between safe and unsafe content. In this work, we introduce a novel approach that shifts from unlearning to an awareness paradigm by leveraging the inherent hierarchical properties of the hyperbolic space. We propose to encode safe and unsafe content as an entailment hierarchy, where both are placed in different regions of hyperbolic space. Our HySAC, Hyperbolic Safety-Aware CLIP, employs entailment loss functions to model the hierarchical and asymmetrical relations between safe and unsafe image-text pairs. This modelling, ineffective in standard vision-language models due to their reliance on Euclidean embeddings, endows the model with awareness of unsafe content, enabling it to serve as both a multimodal unsafe classifier and a flexible content retriever, with the option to dynamically redirect unsafe queries toward safer alternatives or retain the original output. Extensive experiments show that our approach not only enhances safety recognition but also establishes a more adaptable and interpretable framework for content moderation in vision-language models. Our source code is available at https://github.com/aimagelab/HySAC.
comment: CVPR 2025
☆ Robust Isolation Forest using Soft Sparse Random Projection and Valley Emphasis Method
Isolation Forest (iForest) is an unsupervised anomaly detection algorithm designed to effectively detect anomalies under the assumption that anomalies are ``few and different." Various studies have aimed to enhance iForest, but the resulting algorithms often exhibited significant performance disparities across datasets. Additionally, the challenge of isolating rare and widely distributed anomalies persisted in research focused on improving splits. To address these challenges, we introduce Robust iForest (RiForest). RiForest leverages both existing features and random hyperplanes obtained through soft sparse random projection to identify superior split features for anomaly detection, independent of datasets. It utilizes the underutilized valley emphasis method for optimal split point determination and incorporates sparsity randomization in soft sparse random projection for enhanced anomaly detection robustness. Across 24 benchmark datasets, experiments demonstrate RiForest's consistent outperformance of existing algorithms in anomaly detection, emphasizing stability and robustness to noise variables.
☆ MT-RewardTree: A Comprehensive Framework for Advancing LLM-Based Machine Translation via Reward Modeling
Process reward models (PRMs) have shown success in complex reasoning tasks for large language models (LLMs). However, their application to machine translation (MT) remains underexplored due to the lack of systematic methodologies and evaluation benchmarks. To address this gap, we introduce \textbf{MT-RewardTree}, a comprehensive framework for constructing, evaluating, and deploying process reward models in MT. Unlike traditional vanilla preference pair construction, we propose a novel method for automatically generating token-level preference pairs using approximate Monte Carlo Tree Search (MCTS), which mitigates the prohibitive cost of human annotation for fine-grained steps. Then, we establish the first MT-specific reward model benchmark and provide a systematic comparison of different reward modeling architectures, revealing that token-level supervision effectively captures fine-grained preferences. Experimental results demonstrate that our MT-PRM-Qwen-2.5-3B achieves state-of-the-art performance in both token-level and sequence-level evaluation given the same input prefix. Furthermore, we showcase practical applications where PRMs enable test-time alignment for LLMs without additional alignment training and significantly improve performance in hypothesis ensembling. Our work provides valuable insights into the role of reward models in MT research. Our code and data are released in \href{https://sabijun.github.io/MT_RewardTreePage/}{https://sabijun.github.io/MT\_RewardTreePage}.
comment: Under review. Project page:https://sabijun.github.io/MT_RewardTreePage
☆ ICCO: Learning an Instruction-conditioned Coordinator for Language-guided Task-aligned Multi-robot Control
Recent advances in Large Language Models (LLMs) have permitted the development of language-guided multi-robot systems, which allow robots to execute tasks based on natural language instructions. However, achieving effective coordination in distributed multi-agent environments remains challenging due to (1) misalignment between instructions and task requirements and (2) inconsistency in robot behaviors when they independently interpret ambiguous instructions. To address these challenges, we propose Instruction-Conditioned Coordinator (ICCO), a Multi-Agent Reinforcement Learning (MARL) framework designed to enhance coordination in language-guided multi-robot systems. ICCO consists of a Coordinator agent and multiple Local Agents, where the Coordinator generates Task-Aligned and Consistent Instructions (TACI) by integrating language instructions with environmental states, ensuring task alignment and behavioral consistency. The Coordinator and Local Agents are jointly trained to optimize a reward function that balances task efficiency and instruction following. A Consistency Enhancement Term is added to the learning objective to maximize mutual information between instructions and robot behaviors, further improving coordination. Simulation and real-world experiments validate the effectiveness of ICCO in achieving language-guided task-aligned multi-robot control. The demonstration can be found at https://yanoyoshiki.github.io/ICCO/.
comment: 9 pages, 9 figures
☆ Universal Speech Token Learning via Low-Bitrate Neural Codec and Pretrained Representations SP
Current large speech language models are mainly based on semantic tokens from discretization of self-supervised learned representations and acoustic tokens from a neural codec, following a semantic-modeling and acoustic-synthesis paradigm. However, semantic tokens discard paralinguistic attributes of speakers that is important for natural spoken communication, while prompt-based acoustic synthesis from semantic tokens has limits in recovering paralinguistic details and suffers from robustness issues, especially when there are domain gaps between the prompt and the target. This paper unifies two types of tokens and proposes the UniCodec, a universal speech token learning that encapsulates all semantics of speech, including linguistic and paralinguistic information, into a compact and semantically-disentangled unified token. Such a unified token can not only benefit speech language models in understanding with paralinguistic hints but also help speech generation with high-quality output. A low-bitrate neural codec is leveraged to learn such disentangled discrete representations at global and local scales, with knowledge distilled from self-supervised learned features. Extensive evaluations on multilingual datasets demonstrate its effectiveness in generating natural, expressive and long-term consistent output quality with paralinguistic attributes well preserved in several speech processing tasks.
comment: Accepted by IEEE Journal of Selected Topics in Signal Processing(JSTSP)
☆ RECSIP: REpeated Clustering of Scores Improving the Precision
The latest research on Large Language Models (LLMs) has demonstrated significant advancement in the field of Natural Language Processing (NLP). However, despite this progress, there is still a lack of reliability in these models. This is due to the stochastic architecture of LLMs, which presents a challenge for users attempting to ascertain the reliability of a model's response. These responses may cause serious harm in high-risk environments or expensive failures in industrial contexts. Therefore, we introduce the framework REpeated Clustering of Scores Improving the Precision (RECSIP) which focuses on improving the precision of LLMs by asking multiple models in parallel, scoring and clustering their responses to ensure a higher reliability on the response. The evaluation of our reference implementation recsip on the benchmark MMLU-Pro using the models GPT-4o, Claude and Gemini shows an overall increase of 5.8 per cent points compared to the best used model.
comment: Conference paper accepted for IntelliSys2025
☆ ChronosX: Adapting Pretrained Time Series Models with Exogenous Variables AISTATS
Covariates provide valuable information on external factors that influence time series and are critical in many real-world time series forecasting tasks. For example, in retail, covariates may indicate promotions or peak dates such as holiday seasons that heavily influence demand forecasts. Recent advances in pretraining large language model architectures for time series forecasting have led to highly accurate forecasters. However, the majority of these models do not readily use covariates as they are often specific to a certain task or domain. This paper introduces a new method to incorporate covariates into pretrained time series forecasting models. Our proposed approach incorporates covariate information into pretrained forecasting models through modular blocks that inject past and future covariate information, without necessarily modifying the pretrained model in consideration. In order to evaluate our approach, we introduce a benchmark composed of 32 different synthetic datasets with varying dynamics to evaluate the effectivity of forecasting models with covariates. Extensive evaluations on both synthetic and real datasets show that our approach effectively incorporates covariate information into pretrained models, outperforming existing baselines.
comment: Accepted at the 28th International Conference on Artificial Intelligence and Statistics (AISTATS), 2025
☆ Automating the loop in traffic incident management on highway
Effective traffic incident management is essential for ensuring safety, minimizing congestion, and reducing response times in emergency situations. Traditional highway incident management relies heavily on radio room operators, who must make rapid, informed decisions in high-stakes environments. This paper proposes an innovative solution to support and enhance these decisions by integrating Large Language Models (LLMs) into a decision-support system for traffic incident management. We introduce two approaches: (1) an LLM + Optimization hybrid that leverages both the flexibility of natural language interaction and the robustness of optimization techniques, and (2) a Full LLM approach that autonomously generates decisions using only LLM capabilities. We tested our solutions using historical event data from Autostrade per l'Italia. Experimental results indicate that while both approaches show promise, the LLM + Optimization solution demonstrates superior reliability, making it particularly suited to critical applications where consistency and accuracy are paramount. This research highlights the potential for LLMs to transform highway incident management by enabling accessible, data-driven decision-making support.
♻ ☆ VisualWebInstruct: Scaling up Multimodal Instruction Data through Web Search
Vision-Language Models have made significant progress on many perception-focused tasks. However, their progress on reasoning-focused tasks remains limited due to the lack of high-quality and diverse training data. In this work, we aim to address the scarcity of reasoning-focused multimodal datasets. We propose VisualWebInstruct, a novel approach that leverages search engines to create a diverse and high-quality dataset spanning multiple disciplines, including mathematics, physics, finance, and chemistry, etc. Starting with a meticulously selected set of 30,000 seed images, we employ Google Image Search to identify websites containing similar images. We collect and process HTML data from over 700K unique URLs. Through a pipeline of content extraction, filtering, and synthesis, we construct a dataset of approximately 900K question-answer (QA) pairs, with 40% consisting of visual QA pairs and the remaining comprising text-based QA pairs. Models fine-tuned on VisualWebInstruct demonstrate significant performance improvements: (1) fine-tuning on Llava-OV results in 10-20 absolute points improvement across benchmarks, and (2) fine-tuning from MAmmoTH-VL yields a 5 absolute points gain across benchmarks. Our best model, MAmmoTH-VL2, achieves state-of-the-art performance within the 10B parameter class on MMMU-Pro (40.7), MathVerse (42.6), and DynaMath (55.7). These results highlight the effectiveness of our dataset in enhancing the reasoning capabilities of vision-language models for complex multimodal tasks.
comment: Technical Report
♻ ☆ Can LLMs Reason About Program Semantics? A Comprehensive Evaluation of LLMs on Formal Specification Inference
Large Language Models (LLMs) are increasingly being used to automate programming tasks. Yet, LLMs' capabilities in reasoning about program semantics are still inadequately studied, leaving significant potential for further exploration. This paper introduces FormalBench, a comprehensive benchmark designed to evaluate LLMs' reasoning abilities on program semantics, particularly via the task of synthesizing formal program specifications to assist verifying program correctness. This task requires both comprehensive reasoning over all possible program executions and the generation of precise, syntactically correct expressions that adhere to formal syntax and semantics. Using this benchmark, we evaluated the ability of LLMs in synthesizing consistent and complete specifications. Our findings show that LLMs perform well with simple control flows but struggle with more complex structures, especially loops, even with advanced prompting. Additionally, LLMs exhibit limited robustness against semantic-preserving transformations. We also highlight common failure patterns and design self-repair prompts, improving success rates by 25%.
♻ ☆ Forecasting Open-Weight AI Model Growth on HuggingFace
As the open-weight AI landscape continues to proliferate-with model development, significant investment, and user interest-it becomes increasingly important to predict which models will ultimately drive innovation and shape AI ecosystems. Building on parallels with citation dynamics in scientific literature, we propose a framework to quantify how an open-weight model's influence evolves. Specifically, we adapt the model introduced by Wang et al. for scientific citations, using three key parameters-immediacy, longevity, and relative fitness-to track the cumulative number of fine-tuned models of an open-weight model. Our findings reveal that this citation-style approach can effectively capture the diverse trajectories of open-weight model adoption, with most models fitting well and outliers indicating unique patterns or abrupt jumps in usage.
comment: Link to the website for trajectory visualization: https://forecasthuggingfacemodels.onrender.com/
♻ ☆ Mark Your LLM: Detecting the Misuse of Open-Source Large Language Models via Watermarking ICLR 2025
As open-source large language models (LLMs) like Llama3 become more capable, it is crucial to develop watermarking techniques to detect their potential misuse. Existing watermarking methods either add watermarks during LLM inference, which is unsuitable for open-source LLMs, or primarily target classification LLMs rather than recent generative LLMs. Adapting these watermarks to open-source LLMs for misuse detection remains an open challenge. This work defines two misuse scenarios for open-source LLMs: intellectual property (IP) violation and LLM Usage Violation. Then, we explore the application of inference-time watermark distillation and backdoor watermarking in these contexts. We propose comprehensive evaluation methods to assess the impact of various real-world further fine-tuning scenarios on watermarks and the effect of these watermarks on LLM performance. Our experiments reveal that backdoor watermarking could effectively detect IP Violation, while inference-time watermark distillation is applicable in both scenarios but less robust to further fine-tuning and has a more significant impact on LLM performance compared to backdoor watermarking. Exploring more advanced watermarking methods for open-source LLMs to detect their misuse should be an important future direction.
comment: Accepted by the ICLR 2025 Workshop on GenAI Watermarking
♻ ☆ Second Order Bounds for Contextual Bandits with Function Approximation
Many works have developed no-regret algorithms for contextual bandits with function approximation, where the mean reward function over context-action pairs belongs to a function class. Although there are many approaches to this problem, one that has gained in importance is the use of algorithms based on the optimism principle such as optimistic least squares. It can be shown the regret of this algorithm scales as square root of the product of the eluder dimension (a statistical measure of the complexity of the function class), the logarithm of the function class size and the time horizon. Unfortunately, even if the variance of the measurement noise of the rewards at each time is changing and is very small, the regret of the optimistic least squares algorithm scales with square root of the time horizon. In this work we are the first to develop algorithms that satisfy regret bounds of scaling not with the square root of the time horizon, but the square root of the sum of the measurement variances in the setting of contextual bandits with function approximation when the variances are unknown. These bounds generalize existing techniques for deriving second order bounds in contextual linear problems.
comment: 13 pages main, 34 pages total
♻ ☆ Taming Sensitive Weights : Noise Perturbation Fine-tuning for Robust LLM Quantization
Quantization is a critical step to enable efficient LLM serving under limited resource. However, previous research observes that certain weights in the LLM, known as outliers, are significantly sensitive to quantization noises. Existing quantization methods leave these outliers as floating points or higher precisions to retain performance, posting challenges on the efficient hardware deployment of the mixed-precision model. This work investigates an alternative way to tame the sensitive weights' impact on the quantization error, by reducing the loss Hessian trace with respect to outliers through an efficient fine-tuning process. We propose Noise Perturbation Fine-tuning (NPFT), which identifies outlier weights and add random weight perturbations on the outliers as the model going through a PEFT optimization. NPFT tames the sensitivity of outlier weights so that the quantized model performance can be improved without special treatment to the outliers. When applied to OPT and LLaMA models, our NPFT method achieves stable performance improvements for both uniform and non-uniform quantizers, while also offering better inference efficiency. Notably, the simplest RTN can achieve performance on par with GPTQ using our NPFT on LLaMA2-7B-4bits benchmark.
comment: Accepted as poster by CPAL2025
♻ ☆ Reasoning Elicitation in Language Models via Counterfactual Feedback ICLR 2025
Despite the increasing effectiveness of language models, their reasoning capabilities remain underdeveloped. In particular, causal reasoning through counterfactual question answering is lacking. This work aims to bridge this gap. We first derive novel metrics that balance accuracy in factual and counterfactual questions, capturing a more complete view of the reasoning abilities of language models than traditional factual-only based metrics. Second, we propose several fine-tuning approaches that aim to elicit better reasoning mechanisms, in the sense of the proposed metrics. Finally, we evaluate the performance of the fine-tuned language models in a variety of realistic scenarios. In particular, we investigate to what extent our fine-tuning approaches systemically achieve better generalization with respect to the base models in several problems that require, among others, inductive and deductive reasoning capabilities.
comment: The 13th International Conference on Learning Representations (ICLR 2025)
♻ ☆ Optimizing Attention with Mirror Descent: Generalized Max-Margin Token Selection
Attention mechanisms have revolutionized several domains of artificial intelligence, such as natural language processing and computer vision, by enabling models to selectively focus on relevant parts of the input data. While recent work has characterized the optimization dynamics of gradient descent (GD) in attention-based models and the structural properties of its preferred solutions, less is known about more general optimization algorithms such as mirror descent (MD). In this paper, we investigate the convergence properties and implicit biases of a family of MD algorithms tailored for softmax attention mechanisms, with the potential function chosen as the $p$-th power of the $\ell_p$-norm. Specifically, we show that these algorithms converge in direction to a generalized hard-margin SVM with an $\ell_p$-norm objective when applied to a classification problem using a softmax attention model. Notably, our theoretical results reveal that the convergence rate is comparable to that of traditional GD in simpler models, despite the highly nonlinear and nonconvex nature of the present problem. Additionally, we delve into the joint optimization dynamics of the key-query matrix and the decoder, establishing conditions under which this complex joint optimization converges to their respective hard-margin SVM solutions. Lastly, our numerical experiments on real data demonstrate that MD algorithms improve generalization over standard GD and excel in optimal token selection.
♻ ☆ A Practical Review of Mechanistic Interpretability for Transformer-Based Language Models
Mechanistic interpretability (MI) is an emerging sub-field of interpretability that seeks to understand a neural network model by reverse-engineering its internal computations. Recently, MI has garnered significant attention for interpreting transformer-based language models (LMs), resulting in many novel insights yet introducing new challenges. However, there has not been work that comprehensively reviews these insights and challenges, particularly as a guide for newcomers to this field. To fill this gap, we provide a comprehensive survey from a task-centric perspective, organizing the taxonomy of MI research around specific research questions or tasks. We outline the fundamental objects of study in MI, along with the techniques, evaluation methods, and key findings for each task in the taxonomy. In particular, we present a task-centric taxonomy as a roadmap for beginners to navigate the field by helping them quickly identify impactful problems in which they are most interested and leverage MI for their benefit. Finally, we discuss the current gaps in the field and suggest potential future directions for MI research.
comment: 35 pages, 13 figures, Preprint
♻ ☆ Predictable Scale: Part I -- Optimal Hyperparameter Scaling Law in Large Language Model Pretraining
The impressive capabilities of Large Language Models (LLMs) across diverse tasks are now well-established, yet their effective deployment necessitates careful hyperparameter optimization. Through extensive empirical studies involving grid searches across diverse configurations, we discover universal scaling laws governing these hyperparameters: optimal learning rate follows a power-law relationship with both model parameters and data sizes, while optimal batch size scales primarily with data sizes. Our analysis reveals a convex optimization landscape for hyperparameters under fixed models and data size conditions. This convexity implies an optimal hyperparameter plateau. We contribute a universal, plug-and-play optimal hyperparameter tool for the community. Its estimated values on the test set are merely 0.09% away from the globally optimal LLM performance found via an exhaustive search. These laws demonstrate remarkable robustness across variations in model sparsity, training data distribution, and model shape. To our best known, this is the first work that unifies different model shapes and structures, such as Mixture-of-Experts models and dense transformers, as well as establishes optimal hyperparameter scaling laws across diverse data distributions. This exhaustive optimization process demands substantial computational resources, utilizing nearly one million NVIDIA H800 GPU hours to train 3,700 LLMs of varying sizes and hyperparameters from scratch and consuming approximately 100 trillion tokens in total. To facilitate reproducibility and further research, we will progressively release all loss measurements and model checkpoints through our designated repository https://step-law.github.io/
comment: 22 pages
♻ ☆ Asynchronous RLHF: Faster and More Efficient Off-Policy RL for Language Models
The dominant paradigm for RLHF is online and on-policy RL: synchronously generating from the large language model (LLM) policy, labelling with a reward model, and learning using feedback on the LLM's own outputs. While performant, this paradigm is computationally inefficient. Inspired by classical deep RL literature, we propose separating generation and learning in RLHF. This enables asynchronous generation of new samples while simultaneously training on old samples, leading to faster training and more compute-optimal scaling. However, asynchronous training relies on an underexplored regime, online but off-policy RLHF: learning on samples from previous iterations of our model which give a worse training signal. We tackle the fundamental challenge in this regime: how much off-policyness can we tolerate for asynchronous training to speed up learning but maintain performance? Among several RLHF algorithms we test, online DPO is found to be most robust to off-policy data, and robustness increases with the scale of the policy model. We study further compute optimizations for asynchronous RLHF but find that they come at a performance cost, giving rise to a trade-off. We verify the scalability of asynchronous RLHF by training a general-purpose chatbot from LLaMA 3.1 8B on an instruction-following task ~40% faster than a synchronous run while matching final performance. Finally, we extend our results to math and reasoning to demonstrate asynchronous RL can finetune Rho 1B on GSM8k ~70% faster while matching synchronous accuracy.
comment: code at https://github.com/mnoukhov/async_rlhf
♻ ☆ MAP: Unleashing Hybrid Mamba-Transformer Vision Backbone's Potential with Masked Autoregressive Pretraining
Hybrid Mamba-Transformer networks have recently garnered broad attention. These networks can leverage the scalability of Transformers while capitalizing on Mamba's strengths in long-context modeling and computational efficiency. However, the challenge of effectively pretraining such hybrid networks remains an open question. Existing methods, such as Masked Autoencoders (MAE) or autoregressive (AR) pretraining, primarily focus on single-type network architectures. In contrast, pretraining strategies for hybrid architectures must be effective for both Mamba and Transformer components. Based on this, we propose Masked Autoregressive Pretraining (MAP) to pretrain a hybrid Mamba-Transformer vision backbone network. This strategy combines the strengths of both MAE and Autoregressive pretraining, improving the performance of Mamba and Transformer modules within a unified paradigm. Experimental results show that the hybrid Mamba-Transformer vision backbone network pretrained with MAP significantly outperforms other pretraining strategies, achieving state-of-the-art performance. We validate the method's effectiveness on both 2D and 3D datasets and provide detailed ablation studies to support the design choices for each component. The code and checkpoints are available at https://github.com/yunzeliu/MAP
♻ ☆ Drop-Upcycling: Training Sparse Mixture of Experts with Partial Re-initialization ICLR 2025
The Mixture of Experts (MoE) architecture reduces the training and inference cost significantly compared to a dense model of equivalent capacity. Upcycling is an approach that initializes and trains an MoE model using a pre-trained dense model. While upcycling leads to initial performance gains, the training progresses slower than when trained from scratch, leading to suboptimal performance in the long term. We propose Drop-Upcycling - a method that effectively addresses this problem. Drop-Upcycling combines two seemingly contradictory approaches: utilizing the knowledge of pre-trained dense models while statistically re-initializing some parts of the weights. This approach strategically promotes expert specialization, significantly enhancing the MoE model's efficiency in knowledge acquisition. Extensive large-scale experiments demonstrate that Drop-Upcycling significantly outperforms previous MoE construction methods in the long term, specifically when training on hundreds of billions of tokens or more. As a result, our MoE model with 5.9B active parameters achieves comparable performance to a 13B dense model in the same model family, while requiring approximately 1/4 of the training FLOPs. All experimental resources, including source code, training data, model checkpoints and logs, are publicly available to promote reproducibility and future research on MoE.
comment: To appear at the 13th International Conference on Learning Representations (ICLR 2025)
♻ ☆ Unsupervised Disentanglement of Content and Style via Variance-Invariance Constraints
We contribute an unsupervised method that effectively learns disentangled content and style representations from sequences of observations. Unlike most disentanglement algorithms that rely on domain-specific labels or knowledge, our method is based on the insight of domain-general statistical differences between content and style -- content varies more among different fragments within a sample but maintains an invariant vocabulary across data samples, whereas style remains relatively invariant within a sample but exhibits more significant variation across different samples. We integrate such inductive bias into an encoder-decoder architecture and name our method after V3 (variance-versus-invariance). Experimental results show that V3 generalizes across multiple domains and modalities, successfully learning disentangled content and style representations, such as pitch and timbre from music audio, digit and color from images of hand-written digits, and action and character appearance from simple animations. V3 demonstrates strong disentanglement performance compared to existing unsupervised methods, along with superior out-of-distribution generalization under few-shot adaptation compared to supervised counterparts. Lastly, symbolic-level interpretability emerges in the learned content codebook, forging a near one-to-one alignment between machine representation and human knowledge.
♻ ☆ An AI-driven multimodal smart home platform for continuous monitoring and intelligent assistance in post-stroke patients
At-home rehabilitation for post-stroke patients presents significant challenges, as continuous, personalized care is often limited outside clinical settings. Additionally, the absence of comprehensive solutions addressing diverse monitoring and assistance needs in home environments complicates recovery efforts. Here, we present a multimodal smart home platform designed for continuous, at-home rehabilitation of post-stroke patients, integrating wearable sensing, ambient monitoring, and adaptive automation. A plantar pressure insole equipped with a machine learning pipeline classifies users into motor recovery stages with up to 94% accuracy, enabling quantitative tracking of walking patterns. A head-mounted eye-tracking module supports cognitive assessments and hands-free control of household devices, while ambient sensors ensure sub-second response times for interaction. These data streams are fused locally via a hierarchical Internet of Things (IoT) architecture, protecting privacy and minimizing latency. An embedded large language model (LLM) agent, Auto-Care, continuously interprets multimodal data to provide real-time interventions-issuing personalized reminders, adjusting environmental conditions, and notifying caregivers. Implemented in a post-stroke context, this integrated smart home platform increases overall user satisfaction by an average of 115% (p<0.01) compared to traditional home environment. Beyond stroke, the system offers a scalable framework for patient-centered, long-term care in broader neurorehabilitation and aging-in-place applications.
comment: 5 figures, 41 references
♻ ☆ A Survey on Deep Learning based Time Series Analysis with Frequency Transformation
Recently, frequency transformation (FT) has been increasingly incorporated into deep learning models to significantly enhance state-of-the-art accuracy and efficiency in time series analysis. The advantages of FT, such as high efficiency and a global view, have been rapidly explored and exploited in various time series tasks and applications, demonstrating the promising potential of FT as a new deep learning paradigm for time series analysis. Despite the growing attention and the proliferation of research in this emerging field, there is currently a lack of a systematic review and in-depth analysis of deep learning-based time series models with FT. It is also unclear why FT can enhance time series analysis and what its limitations are in the field. To address these gaps, we present a comprehensive review that systematically investigates and summarizes the recent research advancements in deep learning-based time series analysis with FT. Specifically, we explore the primary approaches used in current models that incorporate FT, the types of neural networks that leverage FT, and the representative FT-equipped models in deep time series analysis. We propose a novel taxonomy to categorize the existing methods in this field, providing a structured overview of the diverse approaches employed in incorporating FT into deep learning models for time series analysis. Finally, we highlight the advantages and limitations of FT for time series modeling and identify potential future research directions that can further contribute to the community of time series analysis.
♻ ☆ LAVCap: LLM-based Audio-Visual Captioning using Optimal Transport ICASSP 2025
Automated audio captioning is a task that generates textual descriptions for audio content, and recent studies have explored using visual information to enhance captioning quality. However, current methods often fail to effectively fuse audio and visual data, missing important semantic cues from each modality. To address this, we introduce LAVCap, a large language model (LLM)-based audio-visual captioning framework that effectively integrates visual information with audio to improve audio captioning performance. LAVCap employs an optimal transport-based alignment loss to bridge the modality gap between audio and visual features, enabling more effective semantic extraction. Additionally, we propose an optimal transport attention module that enhances audio-visual fusion using an optimal transport assignment map. Combined with the optimal training strategy, experimental results demonstrate that each component of our framework is effective. LAVCap outperforms existing state-of-the-art methods on the AudioCaps dataset, without relying on large datasets or post-processing. Code is available at https://github.com/NAVER-INTEL-Co-Lab/gaudi-lavcap.
comment: 5 pages, 2 figures; Accepted to ICASSP 2025
♻ ☆ Lean-STaR: Learning to Interleave Thinking and Proving
Traditional language model-based theorem proving assumes that by training on a sufficient amount of formal proof data, a model will learn to prove theorems. Our key observation is that a wealth of informal information that is not present in formal proofs can be useful for learning to prove theorems. For instance, humans think through steps of a proof, but this thought process is not visible in the resulting code. We present Lean-STaR, a framework for training language models to produce informal thoughts prior to each step of a proof, thereby boosting the model's theorem-proving capabilities. Lean-STaR uses retrospective ground-truth tactics to generate synthetic thoughts for training the language model. At inference time, the trained model directly generates the thoughts prior to the prediction of the tactics in each proof step. Building on the self-taught reasoner framework, we then apply expert iteration to further fine-tune the model on the correct proofs it samples and verifies using the Lean solver. Lean-STaR achieves state-of-the-art results on the miniF2F-test benchmark within the Lean theorem proving environment, significantly outperforming base models ($\boldsymbol{43.4\% \rightarrow 46.3\%,}$ Pass@64). We also analyze the impact of the augmented thoughts on various aspects of the theorem proving process, providing insights into their effectiveness.
♻ ☆ DPEC: Dual-Path Error Compensation Method for Enhanced Low-Light Image Clarity
For the task of low-light image enhancement, deep learning-based algorithms have demonstrated superiority and effectiveness compared to traditional methods. However, these methods, primarily based on Retinex theory, tend to overlook the noise and color distortions in input images, leading to significant noise amplification and local color distortions in enhanced results. To address these issues, we propose the Dual-Path Error Compensation (DPEC) method, designed to improve image quality under low-light conditions by preserving local texture details while restoring global image brightness without amplifying noise. DPEC incorporates precise pixel-level error estimation to capture subtle differences and an independent denoising mechanism to prevent noise amplification. We introduce the HIS-Retinex loss to guide DPEC's training, ensuring the brightness distribution of enhanced images closely aligns with real-world conditions. To balance computational speed and resource efficiency while training DPEC for a comprehensive understanding of the global context, we integrated the VMamba architecture into its backbone. Comprehensive quantitative and qualitative experimental results demonstrate that our algorithm significantly outperforms state-of-the-art methods in low-light image enhancement. The code is publicly available online at https://github.com/wangshuang233/DPEC.
♻ ☆ Can LLMs be Good Graph Judger for Knowledge Graph Construction?
In real-world scenarios, most of the data obtained from information retrieval (IR) system is unstructured. Converting natural language sentences into structured Knowledge Graphs (KGs) remains a critical challenge. The quality of constructed KGs may also impact the performance of some KG-dependent domains like GraphRAG systems and recommendation systems. Recently, Large Language Models (LLMs) have demonstrated impressive capabilities in addressing a wide range of natural language processing tasks. However, there are still challenges when utilizing LLMs to address the task of generating structured KGs. And we have identified three limitations with respect to existing KG construction methods. (1)There is a large amount of information and excessive noise in real-world documents, which could result in extracting messy information. (2)Native LLMs struggle to effectively extract accuracy knowledge from some domain-specific documents. (3)Hallucinations phenomenon cannot be overlooked when utilizing LLMs directly as an unsupervised method for constructing KGs. In this paper, we propose GraphJudger, a knowledge graph construction framework to address the aforementioned challenges. We introduce three innovative modules in our method, which are entity-centric iterative text denoising, knowledge aware instruction tuning and graph judgement, respectively. We seek to utilize the capacity of LLMs to function as a graph judger, a capability superior to their role only as a predictor for KG construction problems. Experiments conducted on two general text-graph pair datasets and one domain-specific text-graph pair dataset show superior performances compared to baseline methods. The code of our proposed method is available at https://github.com/hhy-huang/GraphJudger.
Graphics 9
☆ Text-Driven Video Style Transfer with State-Space Models: Extending StyleMamba for Temporal Coherence
StyleMamba has recently demonstrated efficient text-driven image style transfer by leveraging state-space models (SSMs) and masked directional losses. In this paper, we extend the StyleMamba framework to handle video sequences. We propose new temporal modules, including a \emph{Video State-Space Fusion Module} to model inter-frame dependencies and a novel \emph{Temporal Masked Directional Loss} that ensures style consistency while addressing scene changes and partial occlusions. Additionally, we introduce a \emph{Temporal Second-Order Loss} to suppress abrupt style variations across consecutive frames. Our experiments on DAVIS and UCF101 show that the proposed approach outperforms competing methods in terms of style consistency, smoothness, and computational efficiency. We believe our new framework paves the way for real-time text-driven video stylization with state-of-the-art perceptual results.
☆ Shadow Art Kanji: Inverse Rendering Application
Finding a balance between artistic beauty and machine-generated imagery is always a difficult task. This project seeks to create 3D models that, when illuminated, cast shadows resembling Kanji characters. It aims to combine artistic expression with computational techniques, providing an accurate and efficient approach to visualizing these Japanese characters through shadows.
comment: 7 pages, 10 figures, 8 references
☆ DPCS: Path Tracing-Based Differentiable Projector-Camera Systems
Projector-camera systems (ProCams) simulation aims to model the physical project-and-capture process and associated scene parameters of a ProCams, and is crucial for spatial augmented reality (SAR) applications such as ProCams relighting and projector compensation. Recent advances use an end-to-end neural network to learn the project-and-capture process. However, these neural network-based methods often implicitly encapsulate scene parameters, such as surface material, gamma, and white balance in the network parameters, and are less interpretable and hard for novel scene simulation. Moreover, neural networks usually learn the indirect illumination implicitly in an image-to-image translation way which leads to poor performance in simulating complex projection effects such as soft-shadow and interreflection. In this paper, we introduce a novel path tracing-based differentiable projector-camera systems (DPCS), offering a differentiable ProCams simulation method that explicitly integrates multi-bounce path tracing. Our DPCS models the physical project-and-capture process using differentiable physically-based rendering (PBR), enabling the scene parameters to be explicitly decoupled and learned using much fewer samples. Moreover, our physically-based method not only enables high-quality downstream ProCams tasks, such as ProCams relighting and projector compensation, but also allows novel scene simulation using the learned scene parameters. In experiments, DPCS demonstrates clear advantages over previous approaches in ProCams simulation, offering better interpretability, more efficient handling of complex interreflection and shadow, and requiring fewer training samples.
comment: 16 pages,16 figures
☆ Snapmoji: Instant Generation of Animatable Dual-Stylized Avatars
The increasing popularity of personalized avatar systems, such as Snapchat Bitmojis and Apple Memojis, highlights the growing demand for digital self-representation. Despite their widespread use, existing avatar platforms face significant limitations, including restricted expressivity due to predefined assets, tedious customization processes, or inefficient rendering requirements. Addressing these shortcomings, we introduce Snapmoji, an avatar generation system that instantly creates animatable, dual-stylized avatars from a selfie. We propose Gaussian Domain Adaptation (GDA), which is pre-trained on large-scale Gaussian models using 3D data from sources such as Objaverse and fine-tuned with 2D style transfer tasks, endowing it with a rich 3D prior. This enables Snapmoji to transform a selfie into a primary stylized avatar, like the Bitmoji style, and apply a secondary style, such as Plastic Toy or Alien, all while preserving the user's identity and the primary style's integrity. Our system is capable of producing 3D Gaussian avatars that support dynamic animation, including accurate facial expression transfer. Designed for efficiency, Snapmoji achieves selfie-to-avatar conversion in just 0.9 seconds and supports real-time interactions on mobile devices at 30 to 40 frames per second. Extensive testing confirms that Snapmoji outperforms existing methods in versatility and speed, making it a convenient tool for automatic avatar creation in various styles.
comment: N/A
☆ ReBot: Scaling Robot Learning with Real-to-Sim-to-Real Robotic Video Synthesis
Vision-language-action (VLA) models present a promising paradigm by training policies directly on real robot datasets like Open X-Embodiment. However, the high cost of real-world data collection hinders further data scaling, thereby restricting the generalizability of VLAs. In this paper, we introduce ReBot, a novel real-to-sim-to-real approach for scaling real robot datasets and adapting VLA models to target domains, which is the last-mile deployment challenge in robot manipulation. Specifically, ReBot replays real-world robot trajectories in simulation to diversify manipulated objects (real-to-sim), and integrates the simulated movements with inpainted real-world background to synthesize physically realistic and temporally consistent robot videos (sim-to-real). Our approach has several advantages: 1) it enjoys the benefit of real data to minimize the sim-to-real gap; 2) it leverages the scalability of simulation; and 3) it can generalize a pretrained VLA to a target domain with fully automated data pipelines. Extensive experiments in both simulation and real-world environments show that ReBot significantly enhances the performance and robustness of VLAs. For example, in SimplerEnv with the WidowX robot, ReBot improved the in-domain performance of Octo by 7.2% and OpenVLA by 21.8%, and out-of-domain generalization by 19.9% and 9.4%, respectively. For real-world evaluation with a Franka robot, ReBot increased the success rates of Octo by 17% and OpenVLA by 20%. More information can be found at: https://yuffish.github.io/rebot/
comment: Website: https://yuffish.github.io/rebot/
♻ ☆ Corotational Hinge-based Thin Plates/Shells
We present six thin plate/shell models, derived from three distinct types of curvature operators formulated within the corotational frame, for simulating both rest-flat and rest-curved triangular meshes. Each curvature operator derives a curvature expression corresponding to both a plate model and a shell model. The corotational edge-based hinge model uses an edge-based stencil to compute directional curvature, while the corotational FVM hinge model utilizes a triangle-centered stencil, applying the finite volume method (FVM) to superposition directional curvatures across edges, yielding a generalized curvature. The corotational smoothed hinge model also employs a triangle-centered stencil but transforms directional curvatures into a generalized curvature based on a quadratic surface fit. All models assume small strain and small curvature, leading to constant bending energy Hessians, which benefit implicit integrators. Through quantitative benchmarks and qualitative elastodynamic simulations with large time steps, we demonstrate the accuracy, efficiency, and stability of these models. Our contributions enhance the thin plate/shell library for use in both computer graphics and engineering applications.
♻ ☆ GenVDM: Generating Vector Displacement Maps From a Single Image CVPR2025
We introduce the first method for generating Vector Displacement Maps (VDMs): parameterized, detailed geometric stamps commonly used in 3D modeling. Given a single input image, our method first generates multi-view normal maps and then reconstructs a VDM from the normals via a novel reconstruction pipeline. We also propose an efficient algorithm for extracting VDMs from 3D objects, and present the first academic VDM dataset. Compared to existing 3D generative models focusing on complete shapes, we focus on generating parts that can be seamlessly attached to shape surfaces. The method gives artists rich control over adding geometric details to a 3D shape. Experiments demonstrate that our approach outperforms existing baselines. Generating VDMs offers additional benefits, such as using 2D image editing to customize and refine 3D details.
comment: accepted to CVPR2025
♻ ☆ Stable Flow: Vital Layers for Training-Free Image Editing CVPR 2025
Diffusion models have revolutionized the field of content synthesis and editing. Recent models have replaced the traditional UNet architecture with the Diffusion Transformer (DiT), and employed flow-matching for improved training and sampling. However, they exhibit limited generation diversity. In this work, we leverage this limitation to perform consistent image edits via selective injection of attention features. The main challenge is that, unlike the UNet-based models, DiT lacks a coarse-to-fine synthesis structure, making it unclear in which layers to perform the injection. Therefore, we propose an automatic method to identify "vital layers" within DiT, crucial for image formation, and demonstrate how these layers facilitate a range of controlled stable edits, from non-rigid modifications to object addition, using the same mechanism. Next, to enable real-image editing, we introduce an improved image inversion method for flow models. Finally, we evaluate our approach through qualitative and quantitative comparisons, along with a user study, and demonstrate its effectiveness across multiple applications. The project page is available at https://omriavrahami.com/stable-flow
comment: CVPR 2025. Project page is available at https://omriavrahami.com/stable-flow
♻ ☆ One-Shot Real-to-Sim via End-to-End Differentiable Simulation and Rendering
Identifying predictive world models for robots in novel environments from sparse online observations is essential for robot task planning and execution in novel environments. However, existing methods that leverage differentiable programming to identify world models are incapable of jointly optimizing the geometry, appearance, and physical properties of the scene. In this work, we introduce a novel rigid object representation that allows the joint identification of these properties. Our method employs a novel differentiable point-based geometry representation coupled with a grid-based appearance field, which allows differentiable object collision detection and rendering. Combined with a differentiable physical simulator, we achieve end-to-end optimization of world models, given the sparse visual and tactile observations of a physical motion sequence. Through a series of world model identification tasks in simulated and real environments, we show that our method can learn both simulation- and rendering-ready world models from only one robot action sequence.
comment: 8 pages, 8 figures. Under review at Robotics Automation Letters
Robotics 29
☆ Train Robots in a JIF: Joint Inverse and Forward Dynamics with Human and Robot Demonstrations RSS 2025
Pre-training on large datasets of robot demonstrations is a powerful technique for learning diverse manipulation skills but is often limited by the high cost and complexity of collecting robot-centric data, especially for tasks requiring tactile feedback. This work addresses these challenges by introducing a novel method for pre-training with multi-modal human demonstrations. Our approach jointly learns inverse and forward dynamics to extract latent state representations, towards learning manipulation specific representations. This enables efficient fine-tuning with only a small number of robot demonstrations, significantly improving data efficiency. Furthermore, our method allows for the use of multi-modal data, such as combination of vision and touch for manipulation. By leveraging latent dynamics modeling and tactile sensing, this approach paves the way for scalable robot manipulation learning based on human demonstrations.
comment: 9 pages, 8 figures, submission to RSS 2025
☆ SharedAssembly: A Data Collection Approach via Shared Tele-Assembly
Assembly is a fundamental skill for robots in both modern manufacturing and service robotics. Existing datasets aim to address the data bottleneck in training general-purpose robot models, falling short of capturing contact-rich assembly tasks. To bridge this gap, we introduce SharedAssembly, a novel bilateral teleoperation approach with shared autonomy for scalable assembly execution and data collection. User studies demonstrate that the proposed approach enhances both success rates and efficiency, achieving a 97.0% success rate across various sub-millimeter-level assembly tasks. Notably, novice and intermediate users achieve performance comparable to experts using baseline teleoperation methods, significantly enhancing large-scale data collection.
comment: 7 pages, 6 figures
☆ Clarke Coordinates Are Generalized Improved State Parametrization for Continuum Robots
In this letter, we demonstrate that previously proposed improved state parameterizations for soft and continuum robots are specific cases of Clarke coordinates. By explicitly deriving these improved parameterizations from a generalized Clarke transformation matrix, we unify various approaches into one comprehensive mathematical framework. This unified representation provides clarity regarding their relationships and generalizes them beyond existing constraints, including arbitrary joint numbers, joint distributions, and underlying modeling assumptions. This unification consolidates prior insights and establishes Clarke coordinates as a foundational tool, enabling systematic knowledge transfer across different subfields within soft and continuum robotics.
comment: 7 pages, 2 figures, and 1 table
☆ Nonparametric adaptive payload tracking for an offshore crane
A nonparametric adaptive crane control system is proposed where the crane payload tracks a desired trajectory with feedback from the payload position. The payload motion is controlled with the position of the crane tip using partial feedback linearization. This is made possible by introducing a novel model structure given in Cartesian coordinates. This Cartesian model structure makes it possible to implement a nonparametric adaptive controller which cancels disturbances by approximating the effects of unknown disturbance forces and structurally unknown dynamics in a reproducing kernel Hilbert space (RKHS). It is shown that the nonparametric adaptive controller leads to uniformly ultimately bounded errors in the presence of unknown forces and unmodeled dynamics. Moreover, it is shown that the Cartesian formulation has certain advantages in payload tracking control also in the non-adaptive case. The performance of the nonparametric adaptive controller is validated in simulation and experiments with good results.
☆ GenOSIL: Generalized Optimal and Safe Robot Control using Parameter-Conditioned Imitation Learning
Ensuring safe and generalizable control remains a fundamental challenge in robotics, particularly when deploying imitation learning in dynamic environments. Traditional behavior cloning (BC) struggles to generalize beyond its training distribution, as it lacks an understanding of the safety critical reasoning behind expert demonstrations. To address this limitation, we propose GenOSIL, a novel imitation learning framework that explicitly incorporates environment parameters into policy learning via a structured latent representation. Unlike conventional methods that treat the environment as a black box, GenOSIL employs a variational autoencoder (VAE) to encode measurable safety parameters such as obstacle position, velocity, and geometry into a latent space that captures intrinsic correlations between expert behavior and environmental constraints. This enables the policy to infer the rationale behind expert trajectories rather than merely replicating them. We validate our approach on two robotic platforms an autonomous ground vehicle and a Franka Emika Panda manipulator demonstrating superior safety and goal reaching performance compared to baseline methods. The simulation and hardware videos can be viewed on the project webpage: https://mumukshtayal.github.io/GenOSIL/.
comment: 6 pages, 5 figures
☆ LIAM: Multimodal Transformer for Language Instructions, Images, Actions and Semantic Maps
The availability of large language models and open-vocabulary object perception methods enables more flexibility for domestic service robots. The large variability of domestic tasks can be addressed without implementing each task individually by providing the robot with a task description along with appropriate environment information. In this work, we propose LIAM - an end-to-end model that predicts action transcripts based on language, image, action, and map inputs. Language and image inputs are encoded with a CLIP backbone, for which we designed two pre-training tasks to fine-tune its weights and pre-align the latent spaces. We evaluate our method on the ALFRED dataset, a simulator-generated benchmark for domestic tasks. Our results demonstrate the importance of pre-aligning embedding spaces from different modalities and the efficacy of incorporating semantic maps.
☆ D4orm: Multi-Robot Trajectories with Dynamics-aware Diffusion Denoised Deformations
This work presents an optimization method for generating kinodynamically feasible and collision-free multi-robot trajectories that exploits an incremental denoising scheme in diffusion models. Our key insight is that high-quality trajectories can be discovered merely by denoising noisy trajectories sampled from a distribution. This approach has no learning component, relying instead on only two ingredients: a dynamical model of the robots to obtain feasible trajectories via rollout, and a score function to guide denoising with Monte Carlo gradient approximation. The proposed framework iteratively optimizes the deformation from the previous round with this denoising process, allows \textit{anytime} refinement as time permits, supports different dynamics, and benefits from GPU acceleration. Our evaluations for differential-drive and holonomic teams with up to 16 robots in 2D and 3D worlds show its ability to discover high-quality solutions faster than other black-box optimization methods such as MPPI, approximately three times faster in a 3D holonomic case with 16 robots. As evidence for feasibility, we demonstrate zero-shot deployment of the planned trajectories on eight multirotors.
☆ Formation Control of Multi-agent System with Local Interaction and Artificial Potential Field
A novel local interaction control method (LICM) is proposed in this paper to realize the formation control of multi-agent system (MAS). A local interaction leader follower (LILF) structure is provided by coupling the advantages of information consensus and leader follower frame, the agents can obtain the state information of the leader by interacting with their neighbours, which will reduce the communication overhead of the system and the dependence on a single node of the topology. In addition, the artificial potential field (APF) method is introduced to achieve obstacle avoidance and collision avoidance between agents. Inspired by the stress response of animals, a stress response mechanism-artificial potential field (SRM-APF) is proposed, which will be triggered when the local minimum problem of APF occurs. Ultimately, the simulation experiments of three formation shapes, including triangular formation, square formation and hexagonal formation, validate the effectiveness of the proposed method.
☆ Value Gradients with Action Adaptive Search Trees in Continuous (PO)MDPs
Solving Partially Observable Markov Decision Processes (POMDPs) in continuous state, action and observation spaces is key for autonomous planning in many real-world mobility and robotics applications. Current approaches are mostly sample based, and cannot hope to reach near-optimal solutions in reasonable time. We propose two complementary theoretical contributions. First, we formulate a novel Multiple Importance Sampling (MIS) tree for value estimation, that allows to share value information between sibling action branches. The novel MIS tree supports action updates during search time, such as gradient-based updates. Second, we propose a novel methodology to compute value gradients with online sampling based on transition likelihoods. It is applicable to MDPs, and we extend it to POMDPs via particle beliefs with the application of the propagated belief trick. The gradient estimator is computed in practice using the MIS tree with efficient Monte Carlo sampling. These two parts are combined into a new planning algorithm Action Gradient Monte Carlo Tree Search (AGMCTS). We demonstrate in a simulated environment its applicability, advantages over continuous online POMDP solvers that rely solely on sampling, and we discuss further implications.
☆ Bench2FreeAD: A Benchmark for Vision-based End-to-end Navigation in Unstructured Robotic Environments
Most current end-to-end (E2E) autonomous driving algorithms are built on standard vehicles in structured transportation scenarios, lacking exploration of robot navigation for unstructured scenarios such as auxiliary roads, campus roads, and indoor settings. This paper investigates E2E robot navigation in unstructured road environments. First, we introduce two data collection pipelines - one for real-world robot data and another for synthetic data generated using the Isaac Sim simulator, which together produce an unstructured robotics navigation dataset -- FreeWorld Dataset. Second, we fine-tuned an efficient E2E autonomous driving model -- VAD -- using our datasets to validate the performance and adaptability of E2E autonomous driving models in these environments. Results demonstrate that fine-tuning through our datasets significantly enhances the navigation potential of E2E autonomous driving models in unstructured robotic environments. Thus, this paper presents the first dataset targeting E2E robot navigation tasks in unstructured scenarios, and provides a benchmark based on vision-based E2E autonomous driving algorithms to facilitate the development of E2E navigation technology for logistics and service robots. The project is available on Github.
comment: 7 pages, 9 figures
☆ DiffAD: A Unified Diffusion Modeling Approach for Autonomous Driving
End-to-end autonomous driving (E2E-AD) has rapidly emerged as a promising approach toward achieving full autonomy. However, existing E2E-AD systems typically adopt a traditional multi-task framework, addressing perception, prediction, and planning tasks through separate task-specific heads. Despite being trained in a fully differentiable manner, they still encounter issues with task coordination, and the system complexity remains high. In this work, we introduce DiffAD, a novel diffusion probabilistic model that redefines autonomous driving as a conditional image generation task. By rasterizing heterogeneous targets onto a unified bird's-eye view (BEV) and modeling their latent distribution, DiffAD unifies various driving objectives and jointly optimizes all driving tasks in a single framework, significantly reducing system complexity and harmonizing task coordination. The reverse process iteratively refines the generated BEV image, resulting in more robust and realistic driving behaviors. Closed-loop evaluations in Carla demonstrate the superiority of the proposed method, achieving a new state-of-the-art Success Rate and Driving Score. The code will be made publicly available.
comment: 8 pages, 6 figures
☆ ICCO: Learning an Instruction-conditioned Coordinator for Language-guided Task-aligned Multi-robot Control
Recent advances in Large Language Models (LLMs) have permitted the development of language-guided multi-robot systems, which allow robots to execute tasks based on natural language instructions. However, achieving effective coordination in distributed multi-agent environments remains challenging due to (1) misalignment between instructions and task requirements and (2) inconsistency in robot behaviors when they independently interpret ambiguous instructions. To address these challenges, we propose Instruction-Conditioned Coordinator (ICCO), a Multi-Agent Reinforcement Learning (MARL) framework designed to enhance coordination in language-guided multi-robot systems. ICCO consists of a Coordinator agent and multiple Local Agents, where the Coordinator generates Task-Aligned and Consistent Instructions (TACI) by integrating language instructions with environmental states, ensuring task alignment and behavioral consistency. The Coordinator and Local Agents are jointly trained to optimize a reward function that balances task efficiency and instruction following. A Consistency Enhancement Term is added to the learning objective to maximize mutual information between instructions and robot behaviors, further improving coordination. Simulation and real-world experiments validate the effectiveness of ICCO in achieving language-guided task-aligned multi-robot control. The demonstration can be found at https://yanoyoshiki.github.io/ICCO/.
comment: 9 pages, 9 figures
☆ MUSE: A Real-Time Multi-Sensor State Estimator for Quadruped Robots
This paper introduces an innovative state estimator, MUSE (MUlti-sensor State Estimator), designed to enhance state estimation's accuracy and real-time performance in quadruped robot navigation. The proposed state estimator builds upon our previous work presented in [1]. It integrates data from a range of onboard sensors, including IMUs, encoders, cameras, and LiDARs, to deliver a comprehensive and reliable estimation of the robot's pose and motion, even in slippery scenarios. We tested MUSE on a Unitree Aliengo robot, successfully closing the locomotion control loop in difficult scenarios, including slippery and uneven terrain. Benchmarking against Pronto [2] and VILENS [3] showed 67.6% and 26.7% reductions in translational errors, respectively. Additionally, MUSE outperformed DLIO [4], a LiDAR-inertial odometry system in rotational errors and frequency, while the proprioceptive version of MUSE (P-MUSE) outperformed TSIF [5], with a 45.9% reduction in absolute trajectory error (ATE).
comment: Accepted for publication in IEEE Robotics and Automation Letters
☆ Maritime Mission Planning for Unmanned Surface Vessel using Large Language Model
Unmanned Surface Vessels (USVs) are essential for various maritime operations. USV mission planning approach offers autonomous solutions for monitoring, surveillance, and logistics. Existing approaches, which are based on static methods, struggle to adapt to dynamic environments, leading to suboptimal performance, higher costs, and increased risk of failure. This paper introduces a novel mission planning framework that uses Large Language Models (LLMs), such as GPT-4, to address these challenges. LLMs are proficient at understanding natural language commands, executing symbolic reasoning, and flexibly adjusting to changing situations. Our approach integrates LLMs into maritime mission planning to bridge the gap between high-level human instructions and executable plans, allowing real-time adaptation to environmental changes and unforeseen obstacles. In addition, feedback from low-level controllers is utilized to refine symbolic mission plans, ensuring robustness and adaptability. This framework improves the robustness and effectiveness of USV operations by integrating the power of symbolic planning with the reasoning abilities of LLMs. In addition, it simplifies the mission specification, allowing operators to focus on high-level objectives without requiring complex programming. The simulation results validate the proposed approach, demonstrating its ability to optimize mission execution while seamlessly adapting to dynamic maritime conditions.
comment: IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots
☆ Generative Modeling of Adversarial Lane-Change Scenario
Decision-making in long-tail scenarios is crucial to autonomous driving development, with realistic and challenging simulations playing a pivotal role in testing safety-critical situations. However, the current open-source datasets do not systematically include long-tail distributed scenario data, making acquiring such scenarios a formidable task. To address this problem, a data mining framework is proposed, which performs in-depth analysis on two widely-used datasets, NGSIM and INTERACTION, to pinpoint data with hazardous behavioral traits, aiming to bridge the gap in these overlooked scenarios. The approach utilizes Generative Adversarial Imitation Learning (GAIL) based on an enhanced Proximal Policy Optimization (PPO) model, integrated with the vehicle's environmental analysis, to iteratively refine and represent the newly generated vehicle trajectory. Innovatively, the solution optimizes the generation of adversarial scenario data from the perspectives of sensitivity and reasonable adversarial. It is demonstrated through experiments that, compared to the unfiltered data and baseline models, the approach exhibits more adversarial yet natural behavior regarding collision rate, acceleration, and lane changes, thereby validating its suitability for generating scenario data and providing constructive insights for the development of future scenarios and subsequent decision training.
☆ Hierarchical Reinforcement Learning for Safe Mapless Navigation with Congestion Estimation
Reinforcement learning-based mapless navigation holds significant potential. However, it faces challenges in indoor environments with local minima area. This paper introduces a safe mapless navigation framework utilizing hierarchical reinforcement learning (HRL) to enhance navigation through such areas. The high-level policy creates a sub-goal to direct the navigation process. Notably, we have developed a sub-goal update mechanism that considers environment congestion, efficiently avoiding the entrapment of the robot in local minimum areas. The low-level motion planning policy, trained through safe reinforcement learning, outputs real-time control instructions based on acquired sub-goal. Specifically, to enhance the robot's environmental perception, we introduce a new obstacle encoding method that evaluates the impact of obstacles on the robot's motion planning. To validate the performance of our HRL-based navigation framework, we conduct simulations in office, home, and restaurant environments. The findings demonstrate that our HRL-based navigation framework excels in both static and dynamic scenarios. Finally, we implement the HRL-based navigation framework on a TurtleBot3 robot for physical validation experiments, which exhibits its strong generalization capabilities.
☆ Hydra-NeXt: Robust Closed-Loop Driving with Open-Loop Training
End-to-end autonomous driving research currently faces a critical challenge in bridging the gap between open-loop training and closed-loop deployment. Current approaches are trained to predict trajectories in an open-loop environment, which struggle with quick reactions to other agents in closed-loop environments and risk generating kinematically infeasible plans due to the gap between open-loop training and closed-loop driving. In this paper, we introduce Hydra-NeXt, a novel multi-branch planning framework that unifies trajectory prediction, control prediction, and a trajectory refinement network in one model. Unlike current open-loop trajectory prediction models that only handle general-case planning, Hydra-NeXt further utilizes a control decoder to focus on short-term actions, which enables faster responses to dynamic situations and reactive agents. Moreover, we propose the Trajectory Refinement module to augment and refine the planning decisions by effectively adhering to kinematic constraints in closed-loop environments. This unified approach bridges the gap between open-loop training and closed-loop driving, demonstrating superior performance of 65.89 Driving Score (DS) and 48.20% Success Rate (SR) on the Bench2Drive dataset without relying on external experts for data collection. Hydra-NeXt surpasses the previous state-of-the-art by 22.98 DS and 17.49 SR, marking a significant advancement in autonomous driving. Code will be available at https://github.com/woxihuanjiangguo/Hydra-NeXt.
☆ Non-Normalized Solutions of Generalized Nash Equilibrium in Autonomous Racing
In dynamic games with shared constraints, Generalized Nash Equilibria (GNE) are often computed using the normalized solution concept, which assumes identical Lagrange multipliers for shared constraints across all players. While widely used, this approach excludes other potentially valuable GNE. This paper addresses the limitations of normalized solutions in racing scenarios through three key contributions. First, we highlight the shortcomings of normalized solutions with a simple racing example. Second, we propose a novel method based on the Mixed Complementarity Problem (MCP) formulation to compute non-normalized Generalized Nash Equilibria (GNE). Third, we demonstrate that our proposed method overcomes the limitations of normalized GNE solutions and enables richer multi-modal interactions in realistic racing scenarios.
comment: arXiv admin note: substantial text overlap with arXiv:2502.19569
☆ Diffusion Dynamics Models with Generative State Estimation for Cloth Manipulation
Manipulating deformable objects like cloth is challenging due to their complex dynamics, near-infinite degrees of freedom, and frequent self-occlusions, which complicate state estimation and dynamics modeling. Prior work has struggled with robust cloth state estimation, while dynamics models, primarily based on Graph Neural Networks (GNNs), are limited by their locality. Inspired by recent advances in generative models, we hypothesize that these expressive models can effectively capture intricate cloth configurations and deformation patterns from data. Building on this insight, we propose a diffusion-based generative approach for both perception and dynamics modeling. Specifically, we formulate state estimation as reconstructing the full cloth state from sparse RGB-D observations conditioned on a canonical cloth mesh and dynamics modeling as predicting future states given the current state and robot actions. Leveraging a transformer-based diffusion model, our method achieves high-fidelity state reconstruction while reducing long-horizon dynamics prediction errors by an order of magnitude compared to GNN-based approaches. Integrated with model-predictive control (MPC), our framework successfully executes cloth folding on a real robotic system, demonstrating the potential of generative models for manipulation tasks with partial observability and complex dynamics.
☆ CHOrD: Generation of Collision-Free, House-Scale, and Organized Digital Twins for 3D Indoor Scenes with Controllable Floor Plans and Optimal Layouts
We introduce CHOrD, a novel framework for scalable synthesis of 3D indoor scenes, designed to create house-scale, collision-free, and hierarchically structured indoor digital twins. In contrast to existing methods that directly synthesize the scene layout as a scene graph or object list, CHOrD incorporates a 2D image-based intermediate layout representation, enabling effective prevention of collision artifacts by successfully capturing them as out-of-distribution (OOD) scenarios during generation. Furthermore, unlike existing methods, CHOrD is capable of generating scene layouts that adhere to complex floor plans with multi-modal controls, enabling the creation of coherent, house-wide layouts robust to both geometric and semantic variations in room structures. Additionally, we propose a novel dataset with expanded coverage of household items and room configurations, as well as significantly improved data quality. CHOrD demonstrates state-of-the-art performance on both the 3D-FRONT and our proposed datasets, delivering photorealistic, spatially coherent indoor scene synthesis adaptable to arbitrary floor plan variations.
comment: Chong Su and Yingbin Fu contributed equally to this work
☆ ReBot: Scaling Robot Learning with Real-to-Sim-to-Real Robotic Video Synthesis
Vision-language-action (VLA) models present a promising paradigm by training policies directly on real robot datasets like Open X-Embodiment. However, the high cost of real-world data collection hinders further data scaling, thereby restricting the generalizability of VLAs. In this paper, we introduce ReBot, a novel real-to-sim-to-real approach for scaling real robot datasets and adapting VLA models to target domains, which is the last-mile deployment challenge in robot manipulation. Specifically, ReBot replays real-world robot trajectories in simulation to diversify manipulated objects (real-to-sim), and integrates the simulated movements with inpainted real-world background to synthesize physically realistic and temporally consistent robot videos (sim-to-real). Our approach has several advantages: 1) it enjoys the benefit of real data to minimize the sim-to-real gap; 2) it leverages the scalability of simulation; and 3) it can generalize a pretrained VLA to a target domain with fully automated data pipelines. Extensive experiments in both simulation and real-world environments show that ReBot significantly enhances the performance and robustness of VLAs. For example, in SimplerEnv with the WidowX robot, ReBot improved the in-domain performance of Octo by 7.2% and OpenVLA by 21.8%, and out-of-domain generalization by 19.9% and 9.4%, respectively. For real-world evaluation with a Franka robot, ReBot increased the success rates of Octo by 17% and OpenVLA by 20%. More information can be found at: https://yuffish.github.io/rebot/
comment: Website: https://yuffish.github.io/rebot/
♻ ☆ An Active Perception Game for Robust Information Gathering
Active perception approaches select future viewpoints by using some estimate of the information gain. An inaccurate estimate can be detrimental in critical situations, e.g., locating a person in distress. However the true information gained can only be calculated post hoc, i.e., after the observation is realized. We present an approach to estimate the discrepancy between the estimated information gain (which is the expectation over putative future observations while neglecting correlations among them) and the true information gain. The key idea is to analyze the mathematical relationship between active perception and the estimation error of the information gain in a game-theoretic setting. Using this, we develop an online estimation approach that achieves sub-linear regret (in the number of time-steps) for the estimation of the true information gain and reduces the sub-optimality of active perception systems. We demonstrate our approach for active perception using a comprehensive set of experiments on: (a) different types of environments, including a quadrotor in a photorealistic simulation, real-world robotic data, and real-world experiments with ground robots exploring indoor and outdoor scenes; (b) different types of robotic perception data; and (c) different map representations. On average, our approach reduces information gain estimation errors by 42%, increases the information gain by 7%, PSNR by 5%, and semantic accuracy (measured as the number of objects that are localized correctly) by 6%. In real-world experiments with a Jackal ground robot, our approach demonstrated complex trajectories to explore occluded regions.
♻ ☆ TOP-ERL: Transformer-based Off-Policy Episodic Reinforcement Learning ICLR 2025
This work introduces Transformer-based Off-Policy Episodic Reinforcement Learning (TOP-ERL), a novel algorithm that enables off-policy updates in the ERL framework. In ERL, policies predict entire action trajectories over multiple time steps instead of single actions at every time step. These trajectories are typically parameterized by trajectory generators such as Movement Primitives (MP), allowing for smooth and efficient exploration over long horizons while capturing high-level temporal correlations. However, ERL methods are often constrained to on-policy frameworks due to the difficulty of evaluating state-action values for entire action sequences, limiting their sample efficiency and preventing the use of more efficient off-policy architectures. TOP-ERL addresses this shortcoming by segmenting long action sequences and estimating the state-action values for each segment using a transformer-based critic architecture alongside an n-step return estimation. These contributions result in efficient and stable training that is reflected in the empirical results conducted on sophisticated robot learning environments. TOP-ERL significantly outperforms state-of-the-art RL methods. Thorough ablation studies additionally show the impact of key design choices on the model performance.
comment: Accepted as a Spotlight at ICLR 2025
♻ ☆ Instrument-Splatting: Controllable Photorealistic Reconstruction of Surgical Instruments Using Gaussian Splatting
Real2Sim is becoming increasingly important with the rapid development of surgical artificial intelligence (AI) and autonomy. In this work, we propose a novel Real2Sim methodology, Instrument-Splatting, that leverages 3D Gaussian Splatting to provide fully controllable 3D reconstruction of surgical instruments from monocular surgical videos. To maintain both high visual fidelity and manipulability, we introduce a geometry pre-training to bind Gaussian point clouds on part mesh with accurate geometric priors and define a forward kinematics to control the Gaussians as flexible as real instruments. Afterward, to handle unposed videos, we design a novel instrument pose tracking method leveraging semantics-embedded Gaussians to robustly refine per-frame instrument poses and joint states in a render-and-compare manner, which allows our instrument Gaussian to accurately learn textures and reach photorealistic rendering. We validated our method on 2 publicly released surgical videos and 4 videos collected on ex vivo tissues and green screens. Quantitative and qualitative evaluations demonstrate the effectiveness and superiority of the proposed method.
comment: 11 pages, 5 figures
♻ ☆ DVMNet++: Rethinking Relative Pose Estimation for Unseen Objects
Determining the relative pose of a previously unseen object between two images is pivotal to the success of generalizable object pose estimation. Existing approaches typically predict 3D translation utilizing the ground-truth object bounding box and approximate 3D rotation with a large number of discrete hypotheses. This strategy makes unrealistic assumptions about the availability of ground truth and incurs a computationally expensive process of scoring each hypothesis at test time. By contrast, we rethink the problem of relative pose estimation for unseen objects by presenting a Deep Voxel Matching Network (DVMNet++). Our method computes the relative object pose in a single pass, eliminating the need for ground-truth object bounding boxes and rotation hypotheses. We achieve open-set object detection by leveraging image feature embedding and natural language understanding as reference. The detection result is then employed to approximate the translation parameters and crop the object from the query image. For rotation estimation, we map the two RGB images, i.e., reference and cropped query, to their respective voxelized 3D representations. The resulting voxels are passed through a rotation estimation module, which aligns the voxels and computes the rotation in an end-to-end fashion by solving a least-squares problem. To enhance robustness, we introduce a weighted closest voxel algorithm capable of mitigating the impact of noisy voxels. We conduct extensive experiments on the CO3D, Objaverse, LINEMOD, and LINEMOD-O datasets, demonstrating that our approach delivers more accurate relative pose estimates for novel objects at a lower computational cost compared to state-of-the-art methods. Our code is released at https://github.com/sailor-z/DVMNet/.
♻ ☆ Online Temporal Fusion for Vectorized Map Construction in Mapless Autonomous Driving
To reduce the reliance on high-definition (HD) maps, a growing trend in autonomous driving is leveraging onboard sensors to generate vectorized maps online. However, current methods are mostly constrained by processing only single-frame inputs, which hampers their robustness and effectiveness in complex scenarios. To overcome this problem, we propose an online map construction system that exploits the long-term temporal information to build a consistent vectorized map. First, the system efficiently fuses all historical road marking detections from an off-the-shelf network into a semantic voxel map, which is implemented using a hashing-based strategy to exploit the sparsity of road elements. Then reliable voxels are found by examining the fused information and incrementally clustered into an instance-level representation of road markings. Finally, the system incorporates domain knowledge to estimate the geometric and topological structures of roads, which can be directly consumed by the planning and control (PnC) module. Through experiments conducted in complicated urban environments, we have demonstrated that the output of our system is more consistent and accurate than the network output by a large margin and can be effectively used in a closed-loop autonomous driving system.
comment: 8 pages, 9 figures
♻ ☆ One-Shot Real-to-Sim via End-to-End Differentiable Simulation and Rendering
Identifying predictive world models for robots in novel environments from sparse online observations is essential for robot task planning and execution in novel environments. However, existing methods that leverage differentiable programming to identify world models are incapable of jointly optimizing the geometry, appearance, and physical properties of the scene. In this work, we introduce a novel rigid object representation that allows the joint identification of these properties. Our method employs a novel differentiable point-based geometry representation coupled with a grid-based appearance field, which allows differentiable object collision detection and rendering. Combined with a differentiable physical simulator, we achieve end-to-end optimization of world models, given the sparse visual and tactile observations of a physical motion sequence. Through a series of world model identification tasks in simulated and real environments, we show that our method can learn both simulation- and rendering-ready world models from only one robot action sequence.
comment: 8 pages, 8 figures. Under review at Robotics Automation Letters
♻ ☆ GDRNPP: A Geometry-guided and Fully Learning-based Object Pose Estimator
6D pose estimation of rigid objects is a long-standing and challenging task in computer vision. Recently, the emergence of deep learning reveals the potential of Convolutional Neural Networks (CNNs) to predict reliable 6D poses. Given that direct pose regression networks currently exhibit suboptimal performance, most methods still resort to traditional techniques to varying degrees. For example, top-performing methods often adopt an indirect strategy by first establishing 2D-3D or 3D-3D correspondences followed by applying the RANSAC-based PnP or Kabsch algorithms, and further employing ICP for refinement. Despite the performance enhancement, the integration of traditional techniques makes the networks time-consuming and not end-to-end trainable. Orthogonal to them, this paper introduces a fully learning-based object pose estimator. In this work, we first perform an in-depth investigation of both direct and indirect methods and propose a simple yet effective Geometry-guided Direct Regression Network (GDRN) to learn the 6D pose from monocular images in an end-to-end manner. Afterwards, we introduce a geometry-guided pose refinement module, enhancing pose accuracy when extra depth data is available. Guided by the predicted coordinate map, we build an end-to-end differentiable architecture that establishes robust and accurate 3D-3D correspondences between the observed and rendered RGB-D images to refine the pose. Our enhanced pose estimation pipeline GDRNPP (GDRN Plus Plus) conquered the leaderboard of the BOP Challenge for two consecutive years, becoming the first to surpass all prior methods that relied on traditional techniques in both accuracy and speed. The code and models are available at https://github.com/shanice-l/gdrnpp_bop2022.
comment: accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), code: https://github.com/shanice-l/gdrnpp_bop2022
♻ ☆ ShieldNN: A Provably Safe NN Filter for Unsafe NN Controllers
In this paper, we develop a novel closed-form Control Barrier Function (CBF) and associated controller shield for the Kinematic Bicycle Model (KBM) with respect to obstacle avoidance. The proposed CBF and shield -- designed by an algorithm we call ShieldNN -- provide two crucial advantages over existing methodologies. First, ShieldNN considers steering and velocity constraints directly with the non-affine KBM dynamics; this is in contrast to more general methods, which typically consider only affine dynamics and do not guarantee invariance properties under control constraints. Second, ShieldNN provides a closed-form set of safe controls for each state unlike more general methods, which typically rely on optimization algorithms to generate a single instantaneous for each state. Together, these advantages make ShieldNN uniquely suited as an efficient Multi-Obstacle Safe Actions (i.e. multiple-barrier-function shielding) during training time of a Reinforcement Learning (RL) enabled Neural Network controller. We show via experiments that ShieldNN dramatically increases the completion rate of RL training episodes in the presence of multiple obstacles, thus establishing the value of ShieldNN in training RL-based controllers.
Robotics 69
☆ Centaur: Robust End-to-End Autonomous Driving with Test-Time Training
How can we rely on an end-to-end autonomous vehicle's complex decision-making system during deployment? One common solution is to have a ``fallback layer'' that checks the planned trajectory for rule violations and replaces it with a pre-defined safe action if necessary. Another approach involves adjusting the planner's decisions to minimize a pre-defined ``cost function'' using additional system predictions such as road layouts and detected obstacles. However, these pre-programmed rules or cost functions cannot learn and improve with new training data, often resulting in overly conservative behaviors. In this work, we propose Centaur (Cluster Entropy for Test-time trAining using Uncertainty) which updates a planner's behavior via test-time training, without relying on hand-engineered rules or cost functions. Instead, we measure and minimize the uncertainty in the planner's decisions. For this, we develop a novel uncertainty measure, called Cluster Entropy, which is simple, interpretable, and compatible with state-of-the-art planning algorithms. Using data collected at prior test-time time-steps, we perform an update to the model's parameters using a gradient that minimizes the Cluster Entropy. With only this sole gradient update prior to inference, Centaur exhibits significant improvements, ranking first on the navtest leaderboard with notable gains in safety-critical metrics such as time to collision. To provide detailed insights on a per-scenario basis, we also introduce navsafe, a challenging new benchmark, which highlights previously undiscovered failure modes of driving models.
☆ Adversarial Data Collection: Human-Collaborative Perturbations for Efficient and Robust Robotic Imitation Learning
The pursuit of data efficiency, where quality outweighs quantity, has emerged as a cornerstone in robotic manipulation, especially given the high costs associated with real-world data collection. We propose that maximizing the informational density of individual demonstrations can dramatically reduce reliance on large-scale datasets while improving task performance. To this end, we introduce Adversarial Data Collection, a Human-in-the-Loop (HiL) framework that redefines robotic data acquisition through real-time, bidirectional human-environment interactions. Unlike conventional pipelines that passively record static demonstrations, ADC adopts a collaborative perturbation paradigm: during a single episode, an adversarial operator dynamically alters object states, environmental conditions, and linguistic commands, while the tele-operator adaptively adjusts actions to overcome these evolving challenges. This process compresses diverse failure-recovery behaviors, compositional task variations, and environmental perturbations into minimal demonstrations. Our experiments demonstrate that ADC-trained models achieve superior compositional generalization to unseen task instructions, enhanced robustness to perceptual perturbations, and emergent error recovery capabilities. Strikingly, models trained with merely 20% of the demonstration volume collected through ADC significantly outperform traditional approaches using full datasets. These advances bridge the gap between data-centric learning paradigms and practical robotic deployment, demonstrating that strategic data acquisition, not merely post-hoc processing, is critical for scalable, real-world robot learning. Additionally, we are curating a large-scale ADC-Robotics dataset comprising real-world manipulation tasks with adversarial perturbations. This benchmark will be open-sourced to facilitate advancements in robotic imitation learning.
comment: More information can be found on our project page:https://sites.google.com/view/adc-robot
☆ Disentangled Object-Centric Image Representation for Robotic Manipulation
Learning robotic manipulation skills from vision is a promising approach for developing robotics applications that can generalize broadly to real-world scenarios. As such, many approaches to enable this vision have been explored with fruitful results. Particularly, object-centric representation methods have been shown to provide better inductive biases for skill learning, leading to improved performance and generalization. Nonetheless, we show that object-centric methods can struggle to learn simple manipulation skills in multi-object environments. Thus, we propose DOCIR, an object-centric framework that introduces a disentangled representation for objects of interest, obstacles, and robot embodiment. We show that this approach leads to state-of-the-art performance for learning pick and place skills from visual inputs in multi-object environments and generalizes at test time to changing objects of interest and distractors in the scene. Furthermore, we show its efficacy both in simulation and zero-shot transfer to the real world.
☆ Vectorable Thrust Control for Multimodal Locomotion of Quadruped Robot SPIDAR
In this paper, I present vectorable thrust control for different locomotion modes by a novel quadruped robot, SPIDAR, equipped with vectoring rotor in each link. First, the robot's unique mechanical design, the dynamics model, and the basic control framework for terrestrial/aerial locomotion are briefly introduced. Second, a vectorable thrust control method derived from the basic control framework for aerial locomotion is presented. A key feature of this extended flight control is its ability to avoid interrotor aerodynamics interference under specific joint configuration. Third, another extended thrust control method and a fundamental gait strategy is proposed for special terrestrial locomotion called crawling that requires all legs to be lifted at the same time. Finally, the experimental results of the flight with a complex joint motion and the repeatable crawling motion are explained, which demonstrate the feasibility of the proposed thrust control methods for different locomotion modes.
comment: 16 Pages. Presented in International Symposium of Robotics Research (ISRR) 2024, Long Beach, USA
☆ Multi-robot coordination for connectivity recovery after unpredictable environment changes
In the present paper we develop a distributed method to reconnect a multi-robot team after connectivity failures, caused by unpredictable environment changes, i.e. appearance of new obstacles. After the changes, the team is divided into different groups of robots. The groups have a limited communication range and only a partial information in their field of view about the current scenario. Their objective is to form a chain from a static base station to a goal location. In the proposed distributed replanning approach, the robots predict new plans for the other groups from the new observed information by each robot in the changed scenario, to restore the connectivity with a base station and reach the initial joint objective. If a solution exists, the method achieves the reconnection of all the groups in a unique chain. The proposed method is compared with other two cases: 1) when all the agents have full information of the environment, and 2) when some robots must move to reach other waiting robots for reconnection. Numerical simulations are provided to evaluate the proposed approach in the presence of unpredictable scenario changes.
☆ Multi-agent coordination for on-demand data gathering with periodic information upload
In this paper we develop a method for planning and coordinating a multi-agent team deployment to periodically gather information on demand. A static operation center (OC) periodically requests information from changing goal locations. The objective is to gather data in the goals and to deliver it to the OC, balancing the refreshing time and the total number of information packages. The system automatically splits the team in two roles: workers to gather data, or collectors to retransmit the data to the OC. The proposed three step method: 1) finds out the best area partition for the workers; 2) obtains the best balance between workers and collectors, and with whom the workers must to communicate, a collector or the OC; 3) computes the best tour for the workers to visit the goals and deliver them to the OC or to a collector in movement. The method is tested in simulations in different scenarios, providing the best area partition algorithm and the best balance between collectors and workers.
☆ Unicorn: A Universal and Collaborative Reinforcement Learning Approach Towards Generalizable Network-Wide Traffic Signal Control
Adaptive traffic signal control (ATSC) is crucial in reducing congestion, maximizing throughput, and improving mobility in rapidly growing urban areas. Recent advancements in parameter-sharing multi-agent reinforcement learning (MARL) have greatly enhanced the scalable and adaptive optimization of complex, dynamic flows in large-scale homogeneous networks. However, the inherent heterogeneity of real-world traffic networks, with their varied intersection topologies and interaction dynamics, poses substantial challenges to achieving scalable and effective ATSC across different traffic scenarios. To address these challenges, we present Unicorn, a universal and collaborative MARL framework designed for efficient and adaptable network-wide ATSC. Specifically, we first propose a unified approach to map the states and actions of intersections with varying topologies into a common structure based on traffic movements. Next, we design a Universal Traffic Representation (UTR) module with a decoder-only network for general feature extraction, enhancing the model's adaptability to diverse traffic scenarios. Additionally, we incorporate an Intersection Specifics Representation (ISR) module, designed to identify key latent vectors that represent the unique intersection's topology and traffic dynamics through variational inference techniques. To further refine these latent representations, we employ a contrastive learning approach in a self-supervised manner, which enables better differentiation of intersection-specific features. Moreover, we integrate the state-action dependencies of neighboring agents into policy optimization, which effectively captures dynamic agent interactions and facilitates efficient regional collaboration. Our results show that Unicorn outperforms other methods across various evaluation metrics, highlighting its potential in complex, dynamic traffic networks.
☆ Exo-muscle: A semi-rigid assistive device for the knee
In this work, we introduce the principle, design and mechatronics of Exo-Muscle, a novel assistive device for the knee joint. Different from the existing systems based on rigid exoskeleton structures or soft-tendon driven approaches, the proposed device leverages a new semi-rigid principle that explores the benefits of both rigid and soft systems. The use of a novel semi-rigid chain mechanism around the knee joint eliminates the presence of misalignment between the device and the knee joint center of rotation, while at the same time, it forms a well-defined route for the tendon. This results in more deterministic load compensation functionality compared to the fully soft systems. The proposed device can provide up to 38Nm assistive torque to the knee joint. In the experiment section, the device was successfully validated through a series of experiments demonstrating the capacity of the device to provide the target assistive functionality in the knee joint.
Dynamic Obstacle Avoidance with Bounded Rationality Adversarial Reinforcement Learning
Reinforcement Learning (RL) has proven largely effective in obtaining stable locomotion gaits for legged robots. However, designing control algorithms which can robustly navigate unseen environments with obstacles remains an ongoing problem within quadruped locomotion. To tackle this, it is convenient to solve navigation tasks by means of a hierarchical approach with a low-level locomotion policy and a high-level navigation policy. Crucially, the high-level policy needs to be robust to dynamic obstacles along the path of the agent. In this work, we propose a novel way to endow navigation policies with robustness by a training process that models obstacles as adversarial agents, following the adversarial RL paradigm. Importantly, to improve the reliability of the training process, we bound the rationality of the adversarial agent resorting to quantal response equilibria, and place a curriculum over its rationality. We called this method Hierarchical policies via Quantal response Adversarial Reinforcement Learning (Hi-QARL). We demonstrate the robustness of our method by benchmarking it in unseen randomized mazes with multiple obstacles. To prove its applicability in real scenarios, our method is applied on a Unitree GO1 robot in simulation.
☆ MRS-CWC: A Weakly Constrained Multi-Robot System with Controllable Constraint Stiffness for Mobility and Navigation in Unknown 3D Rough Environments
Navigating unknown three-dimensional (3D) rugged environments is challenging for multi-robot systems. Traditional discrete systems struggle with rough terrain due to limited individual mobility, while modular systems--where rigid, controllable constraints link robot units--improve traversal but suffer from high control complexity and reduced flexibility. To address these limitations, we propose the Multi-Robot System with Controllable Weak Constraints (MRS-CWC), where robot units are connected by constraints with dynamically adjustable stiffness. This adaptive mechanism softens or stiffens in real-time during environmental interactions, ensuring a balance between flexibility and mobility. We formulate the system's dynamics and control model and evaluate MRS-CWC against six baseline methods and an ablation variant in a benchmark dataset with 100 different simulation terrains. Results show that MRS-CWC achieves the highest navigation completion rate and ranks second in success rate, efficiency, and energy cost in the highly rugged terrain group, outperforming all baseline methods without relying on environmental modeling, path planning, or complex control. Even where MRS-CWC ranks second, its performance is only slightly behind a more complex ablation variant with environmental modeling and path planning. Finally, we develop a physical prototype and validate its feasibility in a constructed rugged environment. For videos, simulation benchmarks, and code, please visit https://wyd0817.github.io/project-mrs-cwc/.
☆ Adaptive Torque Control of Exoskeletons under Spasticity Conditions via Reinforcement Learning
Spasticity is a common movement disorder symptom in individuals with cerebral palsy, hereditary spastic paraplegia, spinal cord injury and stroke, being one of the most disabling features in the progression of these diseases. Despite the potential benefit of using wearable robots to treat spasticity, their use is not currently recommended to subjects with a level of spasticity above ${1^+}$ on the Modified Ashworth Scale. The varying dynamics of this velocity-dependent tonic stretch reflex make it difficult to deploy safe personalized controllers. Here, we describe a novel adaptive torque controller via deep reinforcement learning (RL) for a knee exoskeleton under joint spasticity conditions, which accounts for task performance and interaction forces reduction. To train the RL agent, we developed a digital twin, including a musculoskeletal-exoskeleton system with joint misalignment and a differentiable spastic reflexes model for the muscles activation. Results for a simulated knee extension movement showed that the agent learns to control the exoskeleton for individuals with different levels of spasticity. The proposed controller was able to reduce maximum torques applied to the human joint under spastic conditions by an average of 10.6\% and decreases the root mean square until the settling time by 8.9\% compared to a conventional compliant controller.
comment: Accepted for publication in IEEE 19th International Conference on Rehabilitation Robotics (ICORR2025)
☆ TASTE-Rob: Advancing Video Generation of Task-Oriented Hand-Object Interaction for Generalizable Robotic Manipulation
We address key limitations in existing datasets and models for task-oriented hand-object interaction video generation, a critical approach of generating video demonstrations for robotic imitation learning. Current datasets, such as Ego4D, often suffer from inconsistent view perspectives and misaligned interactions, leading to reduced video quality and limiting their applicability for precise imitation learning tasks. Towards this end, we introduce TASTE-Rob -- a pioneering large-scale dataset of 100,856 ego-centric hand-object interaction videos. Each video is meticulously aligned with language instructions and recorded from a consistent camera viewpoint to ensure interaction clarity. By fine-tuning a Video Diffusion Model (VDM) on TASTE-Rob, we achieve realistic object interactions, though we observed occasional inconsistencies in hand grasping postures. To enhance realism, we introduce a three-stage pose-refinement pipeline that improves hand posture accuracy in generated videos. Our curated dataset, coupled with the specialized pose-refinement framework, provides notable performance gains in generating high-quality, task-oriented hand-object interaction videos, resulting in achieving superior generalizable robotic manipulation. The TASTE-Rob dataset will be made publicly available upon publication to foster further advancements in the field.
comment: Conference on Computer Vision and Pattern Recognition 2025
☆ AQUA-SLAM: Tightly-Coupled Underwater Acoustic-Visual-Inertial SLAM with Sensor Calibration
Underwater environments pose significant challenges for visual Simultaneous Localization and Mapping (SLAM) systems due to limited visibility, inadequate illumination, and sporadic loss of structural features in images. Addressing these challenges, this paper introduces a novel, tightly-coupled Acoustic-Visual-Inertial SLAM approach, termed AQUA-SLAM, to fuse a Doppler Velocity Log (DVL), a stereo camera, and an Inertial Measurement Unit (IMU) within a graph optimization framework. Moreover, we propose an efficient sensor calibration technique, encompassing multi-sensor extrinsic calibration (among the DVL, camera and IMU) and DVL transducer misalignment calibration, with a fast linear approximation procedure for real-time online execution. The proposed methods are extensively evaluated in a tank environment with ground truth, and validated for offshore applications in the North Sea. The results demonstrate that our method surpasses current state-of-the-art underwater and visual-inertial SLAM systems in terms of localization accuracy and robustness. The proposed system will be made open-source for the community.
LuSeg: Efficient Negative and Positive Obstacles Segmentation via Contrast-Driven Multi-Modal Feature Fusion on the Lunar
As lunar exploration missions grow increasingly complex, ensuring safe and autonomous rover-based surface exploration has become one of the key challenges in lunar exploration tasks. In this work, we have developed a lunar surface simulation system called the Lunar Exploration Simulator System (LESS) and the LunarSeg dataset, which provides RGB-D data for lunar obstacle segmentation that includes both positive and negative obstacles. Additionally, we propose a novel two-stage segmentation network called LuSeg. Through contrastive learning, it enforces semantic consistency between the RGB encoder from Stage I and the depth encoder from Stage II. Experimental results on our proposed LunarSeg dataset and additional public real-world NPO road obstacle dataset demonstrate that LuSeg achieves state-of-the-art segmentation performance for both positive and negative obstacles while maintaining a high inference speed of approximately 57\,Hz. We have released the implementation of our LESS system, LunarSeg dataset, and the code of LuSeg at:https://github.com/nubot-nudt/LuSeg.
☆ A Framework for a Capability-driven Evaluation of Scenario Understanding for Multimodal Large Language Models in Autonomous Driving
Multimodal large language models (MLLMs) hold the potential to enhance autonomous driving by combining domain-independent world knowledge with context-specific language guidance. Their integration into autonomous driving systems shows promising results in isolated proof-of-concept applications, while their performance is evaluated on selective singular aspects of perception, reasoning, or planning. To leverage their full potential a systematic framework for evaluating MLLMs in the context of autonomous driving is required. This paper proposes a holistic framework for a capability-driven evaluation of MLLMs in autonomous driving. The framework structures scenario understanding along the four core capability dimensions semantic, spatial, temporal, and physical. They are derived from the general requirements of autonomous driving systems, human driver cognition, and language-based reasoning. It further organises the domain into context layers, processing modalities, and downstream tasks such as language-based interaction and decision-making. To illustrate the framework's applicability, two exemplary traffic scenarios are analysed, grounding the proposed dimensions in realistic driving situations. The framework provides a foundation for the structured evaluation of MLLMs' potential for scenario understanding in autonomous driving.
comment: Submitted to IEEE IAVVC 2025, Under Review
BEVDiffLoc: End-to-End LiDAR Global Localization in BEV View based on Diffusion Model
Localization is one of the core parts of modern robotics. Classic localization methods typically follow the retrieve-then-register paradigm, achieving remarkable success. Recently, the emergence of end-to-end localization approaches has offered distinct advantages, including a streamlined system architecture and the elimination of the need to store extensive map data. Although these methods have demonstrated promising results, current end-to-end localization approaches still face limitations in robustness and accuracy. Bird's-Eye-View (BEV) image is one of the most widely adopted data representations in autonomous driving. It significantly reduces data complexity while preserving spatial structure and scale consistency, making it an ideal representation for localization tasks. However, research on BEV-based end-to-end localization remains notably insufficient. To fill this gap, we propose BEVDiffLoc, a novel framework that formulates LiDAR localization as a conditional generation of poses. Leveraging the properties of BEV, we first introduce a specific data augmentation method to significantly enhance the diversity of input data. Then, the Maximum Feature Aggregation Module and Vision Transformer are employed to learn robust features while maintaining robustness against significant rotational view variations. Finally, we incorporate a diffusion model that iteratively refines the learned features to recover the absolute pose. Extensive experiments on the Oxford Radar RobotCar and NCLT datasets demonstrate that BEVDiffLoc outperforms the baseline methods. Our code is available at https://github.com/nubot-nudt/BEVDiffLoc.
☆ Enhancing Hand Palm Motion Gesture Recognition by Eliminating Reference Frame Bias via Frame-Invariant Similarity Measures
The ability of robots to recognize human gestures facilitates a natural and accessible human-robot collaboration. However, most work in gesture recognition remains rooted in reference frame-dependent representations. This poses a challenge when reference frames vary due to different work cell layouts, imprecise frame calibrations, or other environmental changes. This paper investigated the use of invariant trajectory descriptors for robust hand palm motion gesture recognition under reference frame changes. First, a novel dataset of recorded Hand Palm Motion (HPM) gestures is introduced. The motion gestures in this dataset were specifically designed to be distinguishable without dependence on specific reference frames or directional cues. Afterwards, multiple invariant trajectory descriptor approaches were benchmarked to assess how their performances generalize to this novel HPM dataset. After this offline benchmarking, the best scoring approach is validated for online recognition by developing a real-time Proof of Concept (PoC). In this PoC, hand palm motion gestures were used to control the real-time movement of a manipulator arm. The PoC demonstrated a high recognition reliability in real-time operation, achieving an $F_1$-score of 92.3%. This work demonstrates the effectiveness of the invariant descriptor approach as a standalone solution. Moreover, we believe that the invariant descriptor approach can also be utilized within other state-of-the-art pattern recognition and learning systems to improve their robustness against reference frame variations.
comment: 8 pages, 4 figures, this work has been submitted as a conference paper for consideration in the 2025 IEEE International Conference on Automation Science and Engineering (CASE), the content in this preprint is identical to the version submitted for peer review
☆ Six-DoF Stewart Platform Motion Simulator Control using Switchable Model Predictive Control
Due to excellent mechanism characteristics of high rigidity, maneuverability and strength-to-weight ratio, 6 Degree-of-Freedom (DoF) Stewart structure is widely adopted to construct flight simulator platforms for replicating motion feelings during training pilots. Unlike conventional serial link manipulator based mechanisms, Upset Prevention and Recovery Training (UPRT) in complex flight status is often accompanied by large speed and violent rate of change in angular velocity of the simulator. However, Classical Washout Filter (CWF) based Motion Cueing Algorithm (MCA) shows limitations in providing rapid response to drive motors to satisfy high accuracy performance requirements. This paper aims at exploiting Model Predictive Control (MPC) based MCA which is proved to be efficient in Hexapod-based motion simulators through controlling over limited linear workspace. With respect to uncertainties and control solution errors from the extraction of Terminal Constraints (COTC), this paper proposes a Switchable Model Predictive Control (S-MPC) based MCA under model adaptive architecture to mitigate the solution uncertainties and inaccuracies. It is verified that high accurate tracking is achievable using the MPC-based MCA with COTC within the simulator operating envelope. The proposed method provides optimal tracking solutions by switching to MPC based MCA without COTC outside the operating envelope. By demonstrating the UPRT with horizontal stall conditions following Average Absolute Scale(AAS) evaluation criteria, the proposed S-MPC based MCA outperforms MPC based MCA and SWF based MCA by 42.34% and 65.30%, respectively.
☆ Ergodic exploration of dynamic distribution
This research addresses the challenge of performing search missions in dynamic environments, particularly for drifting targets whose movement is dictated by a flow field. This is accomplished through a dynamical system that integrates two partial differential equations: one governing the dynamics and uncertainty of the probability distribution, and the other regulating the potential field for ergodic multi-agent search. The target probability field evolves in response to the target dynamics imposed by the environment and accomplished sensing efforts, while being explored by multiple robot agents guided by the potential field gradient. The proposed methodology was tested on two simulated search scenarios, one of which features a synthetically generated domain and showcases better performance when compared to the baseline method with static target probability over a range of agent to flow field velocity ratios. The second search scenario represents a realistic sea search and rescue mission where the search start is delayed, the search is performed in multiple robot flight missions, and the procedure for target drift uncertainty compensation is demonstrated. Furthermore, the proposed method provides an accurate survey completion metric, based on the known detection/sensing parameters, that correlates with the actual number of targets found independently.
comment: Initial version
☆ GAIPAT -Dataset on Human Gaze and Actions for Intent Prediction in Assembly Tasks
The primary objective of the dataset is to provide a better understanding of the coupling between human actions and gaze in a shared working environment with a cobot, with the aim of signifcantly enhancing the effciency and safety of humancobot interactions. More broadly, by linking gaze patterns with physical actions, the dataset offers valuable insights into cognitive processes and attention dynamics in the context of assembly tasks. The proposed dataset contains gaze and action data from approximately 80 participants, recorded during simulated industrial assembly tasks. The tasks were simulated using controlled scenarios in which participants manipulated educational building blocks. Gaze data was collected using two different eye-tracking setups -head-mounted and remote-while participants worked in two positions: sitting and standing.
☆ Hand Over or Place On The Table? A Study On Robotic Object Delivery When The Recipient Is Occupied
This study investigates the subjective experiences of users in two robotic object delivery methods: direct handover and table placement, when users are occupied with another task. A user study involving 15 participants engaged in a typing game revealed that table placement significantly enhances user experience compared to direct handovers, particularly in terms of satisfaction, perceived safety and intuitiveness. Additionally, handovers negatively impacted typing performance, while all participants expressed a clear preference for table placement as the delivery method. These findings highlight the advantages of table placement in scenarios requiring minimal user disruption.
comment: 3 pages, 2 figures
☆ A Benchmarking Study of Vision-based Robotic Grasping Algorithms
We present a benchmarking study of vision-based robotic grasping algorithms with distinct approaches, and provide a comparative analysis. In particular, we compare two machine-learning-based and two analytical algorithms using an existing benchmarking protocol from the literature and determine the algorithm's strengths and weaknesses under different experimental conditions. These conditions include variations in lighting, background textures, cameras with different noise levels, and grippers. We also run analogous experiments in simulations and with real robots and present the discrepancies. Some experiments are also run in two different laboratories using same protocols to further analyze the repeatability of our results. We believe that this study, comprising 5040 experiments, provides important insights into the role and challenges of systematic experimentation in robotic manipulation, and guides the development of new algorithms by considering the factors that could impact the performance. The experiment recordings and our benchmarking software are publicly available.
comment: Submitted to The IEEE Robotics and Automation Magazine
Leveraging Semantic Graphs for Efficient and Robust LiDAR SLAM
Accurate and robust simultaneous localization and mapping (SLAM) is crucial for autonomous mobile systems, typically achieved by leveraging the geometric features of the environment. Incorporating semantics provides a richer scene representation that not only enhances localization accuracy in SLAM but also enables advanced cognitive functionalities for downstream navigation and planning tasks. Existing point-wise semantic LiDAR SLAM methods often suffer from poor efficiency and generalization, making them less robust in diverse real-world scenarios. In this paper, we propose a semantic graph-enhanced SLAM framework, named SG-SLAM, which effectively leverages the geometric, semantic, and topological characteristics inherent in environmental structures. The semantic graph serves as a fundamental component that facilitates critical functionalities of SLAM, including robust relocalization during odometry failures, accurate loop closing, and semantic graph map construction. Our method employs a dual-threaded architecture, with one thread dedicated to online odometry and relocalization, while the other handles loop closure, pose graph optimization, and map update. This design enables our method to operate in real time and generate globally consistent semantic graph maps and point cloud maps. We extensively evaluate our method across the KITTI, MulRAN, and Apollo datasets, and the results demonstrate its superiority compared to state-of-the-art methods. Our method has been released at https://github.com/nubot-nudt/SG-SLAM.
comment: 8 pages, 4 figures
☆ Flow-Aware Navigation of Magnetic Micro-Robots in Complex Fluids via PINN-Based Prediction
While magnetic micro-robots have demonstrated significant potential across various applications, including drug delivery and microsurgery, the open issue of precise navigation and control in complex fluid environments is crucial for in vivo implementation. This paper introduces a novel flow-aware navigation and control strategy for magnetic micro-robots that explicitly accounts for the impact of fluid flow on their movement. First, the proposed method employs a Physics-Informed U-Net (PI-UNet) to refine the numerically predicted fluid velocity using local observations. Then, the predicted velocity is incorporated in a flow-aware A* path planning algorithm, ensuring efficient navigation while mitigating flow-induced disturbances. Finally, a control scheme is developed to compensate for the predicted fluid velocity, thereby optimizing the micro-robot's performance. A series of simulation studies and real-world experiments are conducted to validate the efficacy of the proposed approach. This method enhances both planning accuracy and control precision, expanding the potential applications of magnetic micro-robots in fluid-affected environments typical of many medical scenarios.
comment: 8
☆ EmbodiedVSR: Dynamic Scene Graph-Guided Chain-of-Thought Reasoning for Visual Spatial Tasks
While multimodal large language models (MLLMs) have made groundbreaking progress in embodied intelligence, they still face significant challenges in spatial reasoning for complex long-horizon tasks. To address this gap, we propose EmbodiedVSR (Embodied Visual Spatial Reasoning), a novel framework that integrates dynamic scene graph-guided Chain-of-Thought (CoT) reasoning to enhance spatial understanding for embodied agents. By explicitly constructing structured knowledge representations through dynamic scene graphs, our method enables zero-shot spatial reasoning without task-specific fine-tuning. This approach not only disentangles intricate spatial relationships but also aligns reasoning steps with actionable environmental dynamics. To rigorously evaluate performance, we introduce the eSpatial-Benchmark, a comprehensive dataset including real-world embodied scenarios with fine-grained spatial annotations and adaptive task difficulty levels. Experiments demonstrate that our framework significantly outperforms existing MLLM-based methods in accuracy and reasoning coherence, particularly in long-horizon tasks requiring iterative environment interaction. The results reveal the untapped potential of MLLMs for embodied intelligence when equipped with structured, explainable reasoning mechanisms, paving the way for more reliable deployment in real-world spatial applications. The codes and datasets will be released soon.
comment: technical report
☆ GP-enhanced Autonomous Drifting Framework using ADMM-based iLQR
Autonomous drifting is a complex challenge due to the highly nonlinear dynamics and the need for precise real-time control, especially in uncertain environments. To address these limitations, this paper presents a hierarchical control framework for autonomous vehicles drifting along general paths, primarily focusing on addressing model inaccuracies and mitigating computational challenges in real-time control. The framework integrates Gaussian Process (GP) regression with an Alternating Direction Method of Multipliers (ADMM)-based iterative Linear Quadratic Regulator (iLQR). GP regression effectively compensates for model residuals, improving accuracy in dynamic conditions. ADMM-based iLQR not only combines the rapid trajectory optimization of iLQR but also utilizes ADMM's strength in decomposing the problem into simpler sub-problems. Simulation results demonstrate the effectiveness of the proposed framework, with significant improvements in both drift trajectory tracking and computational efficiency. Our approach resulted in a 38$\%$ reduction in RMSE lateral error and achieved an average computation time that is 75$\%$ lower than that of the Interior Point OPTimizer (IPOPT).
☆ MoMa-Kitchen: A 100K+ Benchmark for Affordance-Grounded Last-Mile Navigation in Mobile Manipulation
In mobile manipulation, navigation and manipulation are often treated as separate problems, resulting in a significant gap between merely approaching an object and engaging with it effectively. Many navigation approaches primarily define success by proximity to the target, often overlooking the necessity for optimal positioning that facilitates subsequent manipulation. To address this, we introduce MoMa-Kitchen, a benchmark dataset comprising over 100k samples that provide training data for models to learn optimal final navigation positions for seamless transition to manipulation. Our dataset includes affordance-grounded floor labels collected from diverse kitchen environments, in which robotic mobile manipulators of different models attempt to grasp target objects amidst clutter. Using a fully automated pipeline, we simulate diverse real-world scenarios and generate affordance labels for optimal manipulation positions. Visual data are collected from RGB-D inputs captured by a first-person view camera mounted on the robotic arm, ensuring consistency in viewpoint during data collection. We also develop a lightweight baseline model, NavAff, for navigation affordance grounding that demonstrates promising performance on the MoMa-Kitchen benchmark. Our approach enables models to learn affordance-based final positioning that accommodates different arm types and platform heights, thereby paving the way for more robust and generalizable integration of navigation and manipulation in embodied AI. Project page: \href{https://momakitchen.github.io/}{https://momakitchen.github.io/}.
☆ A High-Speed Time-Optimal Trajectory Generation Strategy via a Two-layer Planning Model
Motion planning and trajectory generation are crucial technologies in various domains including the control of Unmanned Aerial Vehicles (UAV), manipulators, and rockets. However, optimization-based real-time motion planning becomes increasingly challenging due to the problem's probable non-convexity and the inherent limitations of Non-Linear Programming algorithms. Highly nonlinear dynamics, obstacle avoidance constraints, and non-convex inputs can exacerbate these difficulties. To address these hurdles, this paper proposes a two-layer optimization algorithm for 2D vehicles by dynamically reformulating small time horizon convex programming subproblems, aiming to provide real-time guarantees for trajectory optimization. Our approach involves breaking down the original problem into small horizon-based planning cycles with fixed final times, referred to as planning cycles. Each planning cycle is then solved within a series of restricted convex sets identified by our customized search algorithms incrementally. The key benefits of our proposed algorithm include fast computation speeds and lower task time. We demonstrate these advantages through mathematical proofs under some moderate preconditions and experimental results.
☆ Low-cost Real-world Implementation of the Swing-up Pendulum for Deep Reinforcement Learning Experiments
Deep reinforcement learning (DRL) has had success in virtual and simulated domains, but due to key differences between simulated and real-world environments, DRL-trained policies have had limited success in real-world applications. To assist researchers to bridge the \textit{sim-to-real gap}, in this paper, we describe a low-cost physical inverted pendulum apparatus and software environment for exploring sim-to-real DRL methods. In particular, the design of our apparatus enables detailed examination of the delays that arise in physical systems when sensing, communicating, learning, inferring and actuating. Moreover, we wish to improve access to educational systems, so our apparatus uses readily available materials and parts to reduce cost and logistical barriers. Our design shows how commercial, off-the-shelf electronics and electromechanical and sensor systems, combined with common metal extrusions, dowel and 3D printed couplings provide a pathway for affordable physical DRL apparatus. The physical apparatus is complemented with a simulated environment implemented using a high-fidelity physics engine and OpenAI Gym interface.
comment: Australasian Conference on Robotics and Automation (ACRA) 2022
☆ Training Directional Locomotion for Quadrupedal Low-Cost Robotic Systems via Deep Reinforcement Learning
In this work we present Deep Reinforcement Learning (DRL) training of directional locomotion for low-cost quadrupedal robots in the real world. In particular, we exploit randomization of heading that the robot must follow to foster exploration of action-state transitions most useful for learning both forward locomotion as well as course adjustments. Changing the heading in episode resets to current yaw plus a random value drawn from a normal distribution yields policies able to follow complex trajectories involving frequent turns in both directions as well as long straight-line stretches. By repeatedly changing the heading, this method keeps the robot moving within the training platform and thus reduces human involvement and need for manual resets during the training. Real world experiments on a custom-built, low-cost quadruped demonstrate the efficacy of our method with the robot successfully navigating all validation tests. When trained with other approaches, the robot only succeeds in forward locomotion test and fails when turning is required.
comment: Australasian Conference on Robotics and Automation (ACRA) 2022
☆ Enhancing Regrasping Efficiency Using Prior Grasping Perceptions with Soft Fingertips
Grasping the same object in different postures is often necessary, especially when handling tools or stacked items. Due to unknown object properties and changes in grasping posture, the required grasping force is uncertain and variable. Traditional methods rely on real-time feedback to control the grasping force cautiously, aiming to prevent slipping or damage. However, they overlook reusable information from the initial grasp, treating subsequent regrasping attempts as if they were the first, which significantly reduces efficiency. To improve this, we propose a method that utilizes perception from prior grasping attempts to predict the required grasping force, even with changes in position. We also introduce a calculation method that accounts for fingertip softness and object asymmetry. Theoretical analyses demonstrate the feasibility of predicting grasping forces across various postures after a single grasp. Experimental verifications attest to the accuracy and adaptability of our prediction method. Furthermore, results show that incorporating the predicted grasping force into feedback-based approaches significantly enhances grasping efficiency across a range of everyday objects.
☆ Fish Mouth Inspired Origami Gripper for Robust Multi-Type Underwater Grasping
Robotic grasping and manipulation in underwater environments present unique challenges for robotic hands traditionally used on land. These challenges stem from dynamic water conditions, a wide range of object properties from soft to stiff, irregular object shapes, and varying surface frictions. One common approach involves developing finger-based hands with embedded compliance using underactuation and soft actuators. This study introduces an effective alternative solution that does not rely on finger-based hand designs. We present a fish mouth inspired origami gripper that utilizes a single degree of freedom to perform a variety of robust grasping tasks underwater. The innovative structure transforms a simple uniaxial pulling motion into a grasping action based on the Yoshimura crease pattern folding. The origami gripper offers distinct advantages, including scalable and optimizable design, grasping compliance, and robustness, with four grasping types: pinch, power grasp, simultaneous grasping of multiple objects, and scooping from the seabed. In this work, we detail the design, modeling, fabrication, and validation of a specialized underwater gripper capable of handling various marine creatures, including jellyfish, crabs, and abalone. By leveraging an origami and bio-inspired approach, the presented gripper demonstrates promising potential for robotic grasping and manipulation in underwater environments.
☆ Distributed Multi-robot Source Seeking in Unknown Environments with Unknown Number of Sources ICRA 2025
We introduce a novel distributed source seeking framework, DIAS, designed for multi-robot systems in scenarios where the number of sources is unknown and potentially exceeds the number of robots. Traditional robotic source seeking methods typically focused on directing each robot to a specific strong source and may fall short in comprehensively identifying all potential sources. DIAS addresses this gap by introducing a hybrid controller that identifies the presence of sources and then alternates between exploration for data gathering and exploitation for guiding robots to identified sources. It further enhances search efficiency by dividing the environment into Voronoi cells and approximating source density functions based on Gaussian process regression. Additionally, DIAS can be integrated with existing source seeking algorithms. We compare DIAS with existing algorithms, including DoSS and GMES in simulated gas leakage scenarios where the number of sources outnumbers or is equal to the number of robots. The numerical results show that DIAS outperforms the baseline methods in both the efficiency of source identification by the robots and the accuracy of the estimated environmental density function.
comment: ICRA 2025
☆ Enhancing Adaptivity of Two-Fingered Object Reorientation Using Tactile-based Online Optimization of Deconstructed Actions
Object reorientation is a critical task for robotic grippers, especially when manipulating objects within constrained environments. The task poses significant challenges for motion planning due to the high-dimensional output actions with the complex input information, including unknown object properties and nonlinear contact forces. Traditional approaches simplify the problem by reducing degrees of freedom, limiting contact forms, or acquiring environment/object information in advance, which significantly compromises adaptability. To address these challenges, we deconstruct the complex output actions into three fundamental types based on tactile sensing: task-oriented actions, constraint-oriented actions, and coordinating actions. These actions are then optimized online using gradient optimization to enhance adaptability. Key contributions include simplifying contact state perception, decomposing complex gripper actions, and enabling online action optimization for handling unknown objects or environmental constraints. Experimental results demonstrate that the proposed method is effective across a range of everyday objects, regardless of environmental contact. Additionally, the method exhibits robust performance even in the presence of unknown contacts and nonlinear external disturbances.
☆ Fast and Robust Localization for Humanoid Soccer Robot via Iterative Landmark Matching
Accurate robot localization is essential for effective operation. Monte Carlo Localization (MCL) is commonly used with known maps but is computationally expensive due to landmark matching for each particle. Humanoid robots face additional challenges, including sensor noise from locomotion vibrations and a limited field of view (FOV) due to camera placement. This paper proposes a fast and robust localization method via iterative landmark matching (ILM) for humanoid robots. The iterative matching process improves the accuracy of the landmark association so that it does not need MCL to match landmarks to particles. Pose estimation with the outlier removal process enhances its robustness to measurement noise and faulty detections. Furthermore, an additional filter can be utilized to fuse inertial data from the inertial measurement unit (IMU) and pose data from localization. We compared ILM with Iterative Closest Point (ICP), which shows that ILM method is more robust towards the error in the initial guess and easier to get a correct matching. We also compared ILM with the Augmented Monte Carlo Localization (aMCL), which shows that ILM method is much faster than aMCL and even more accurate. The proposed method's effectiveness is thoroughly evaluated through experiments and validated on the humanoid robot ARTEMIS during RoboCup 2024 adult-sized soccer competition.
☆ Robotic Sim-to-Real Transfer for Long-Horizon Pick-and-Place Tasks in the Robotic Sim2Real Competition ICRA 2025
This paper presents a fully autonomous robotic system that performs sim-to-real transfer in complex long-horizon tasks involving navigation, recognition, grasping, and stacking in an environment with multiple obstacles. The key feature of the system is the ability to overcome typical sensing and actuation discrepancies during sim-to-real transfer and to achieve consistent performance without any algorithmic modifications. To accomplish this, a lightweight noise-resistant visual perception system and a nonlinearity-robust servo system are adopted. We conduct a series of tests in both simulated and real-world environments. The visual perception system achieves the speed of 11 ms per frame due to its lightweight nature, and the servo system achieves sub-centimeter accuracy with the proposed controller. Both exhibit high consistency during sim-to-real transfer. Benefiting from these, our robotic system took first place in the mineral searching task of the Robotic Sim2Real Challenge hosted at ICRA 2024.
comment: 7 pages, 7 figures, accepted for presentation at ICRA 2025. The final version will be available in IEEE Xplore
☆ From Abstraction to Reality: DARPA's Vision for Robust Sim-to-Real Autonomy
The DARPA Transfer from Imprecise and Abstract Models to Autonomous Technologies (TIAMAT) program aims to address rapid and robust transfer of autonomy technologies across dynamic and complex environments, goals, and platforms. Existing methods for simulation-to-reality (sim-to-real) transfer often rely on high-fidelity simulations and struggle with broad adaptation, particularly in time-sensitive scenarios. Although many approaches have shown incredible performance at specific tasks, most techniques fall short when posed with unforeseen, complex, and dynamic real-world scenarios due to the inherent limitations of simulation. In contrast to current research that aims to bridge the gap between simulation environments and the real world through increasingly sophisticated simulations and a combination of methods typically assuming a small sim-to-real gap -- such as domain randomization, domain adaptation, imitation learning, meta-learning, policy distillation, and dynamic optimization -- TIAMAT takes a different approach by instead emphasizing transfer and adaptation of the autonomy stack directly to real-world environments by utilizing a breadth of low(er)-fidelity simulations to create broadly effective sim-to-real transfers. By abstractly learning from multiple simulation environments in reference to their shared semantics, TIAMAT's approaches aim to achieve abstract-to-real transfer for effective and rapid real-world adaptation. Furthermore, this program endeavors to improve the overall autonomy pipeline by addressing the inherent challenges in translating simulated behaviors into effective real-world performance.
☆ Optimal Design of Continuum Robots with Reachability Constraints
While multi-joint continuum robots are highly dexterous and flexible, designing an optimal robot can be challenging due to its kinematics involving curvatures. Hence, the current work presents a computational method developed to find optimal designs of continuum robots given reachability constraints. First, we leverage both forward and inverse kinematic computations to perform reachability analysis in an efficient yet accurate manner. While implementing inverse kinematics, we also integrate torque minimization at joints such that robot configurations with the minimum actuator torque required to reach a given workspace could be found. Lastly, we apply an estimation of distribution algorithm (EDA) to find optimal robot dimensions while considering reachability, where the objective function could be the total length of the robot or the actuator torque required to operate the robot. Through three application problems, we show that the EDA is superior to a genetic algorithm (GA) in finding better solutions within a given number of iterations, as the objective values of the best solutions found by the EDA are 4-15\% lower than those found by the GA.
Image-Goal Navigation Using Refined Feature Guidance and Scene Graph Enhancement
In this paper, we introduce a novel image-goal navigation approach, named RFSG. Our focus lies in leveraging the fine-grained connections between goals, observations, and the environment within limited image data, all the while keeping the navigation architecture simple and lightweight. To this end, we propose the spatial-channel attention mechanism, enabling the network to learn the importance of multi-dimensional features to fuse the goal and observation features. In addition, a selfdistillation mechanism is incorporated to further enhance the feature representation capabilities. Given that the navigation task needs surrounding environmental information for more efficient navigation, we propose an image scene graph to establish feature associations at both the image and object levels, effectively encoding the surrounding scene information. Crossscene performance validation was conducted on the Gibson and HM3D datasets, and the proposed method achieved stateof-the-art results among mainstream methods, with a speed of up to 53.5 frames per second on an RTX3080. This contributes to the realization of end-to-end image-goal navigation in realworld scenarios. The implementation and model of our method have been released at: https://github.com/nubot-nudt/RFSG.
☆ Is Your Imitation Learning Policy Better than Mine? Policy Comparison with Near-Optimal Stopping
Imitation learning has enabled robots to perform complex, long-horizon tasks in challenging dexterous manipulation settings. As new methods are developed, they must be rigorously evaluated and compared against corresponding baselines through repeated evaluation trials. However, policy comparison is fundamentally constrained by a small feasible sample size (e.g., 10 or 50) due to significant human effort and limited inference throughput of policies. This paper proposes a novel statistical framework for rigorously comparing two policies in the small sample size regime. Prior work in statistical policy comparison relies on batch testing, which requires a fixed, pre-determined number of trials and lacks flexibility in adapting the sample size to the observed evaluation data. Furthermore, extending the test with additional trials risks inducing inadvertent p-hacking, undermining statistical assurances. In contrast, our proposed statistical test is sequential, allowing researchers to decide whether or not to run more trials based on intermediate results. This adaptively tailors the number of trials to the difficulty of the underlying comparison, saving significant time and effort without sacrificing probabilistic correctness. Extensive numerical simulation and real-world robot manipulation experiments show that our test achieves near-optimal stopping, letting researchers stop evaluation and make a decision in a near-minimal number of trials. Specifically, it reduces the number of evaluation trials by up to 40% as compared to state-of-the-art baselines, while preserving the probabilistic correctness and statistical power of the comparison. Moreover, our method is strongest in the most challenging comparison instances (requiring the most evaluation trials); in a multi-task comparison scenario, we save the evaluator more than 200 simulation rollouts.
comment: 19 pages, 10 figures. In submission
☆ Sketch-to-Skill: Bootstrapping Robot Learning with Human Drawn Trajectory Sketches
Training robotic manipulation policies traditionally requires numerous demonstrations and/or environmental rollouts. While recent Imitation Learning (IL) and Reinforcement Learning (RL) methods have reduced the number of required demonstrations, they still rely on expert knowledge to collect high-quality data, limiting scalability and accessibility. We propose Sketch-to-Skill, a novel framework that leverages human-drawn 2D sketch trajectories to bootstrap and guide RL for robotic manipulation. Our approach extends beyond previous sketch-based methods, which were primarily focused on imitation learning or policy conditioning, limited to specific trained tasks. Sketch-to-Skill employs a Sketch-to-3D Trajectory Generator that translates 2D sketches into 3D trajectories, which are then used to autonomously collect initial demonstrations. We utilize these sketch-generated demonstrations in two ways: to pre-train an initial policy through behavior cloning and to refine this policy through RL with guided exploration. Experimental results demonstrate that Sketch-to-Skill achieves ~96% of the performance of the baseline model that leverages teleoperated demonstration data, while exceeding the performance of a pure reinforcement learning policy by ~170%, only from sketch inputs. This makes robotic manipulation learning more accessible and potentially broadens its applications across various domains.
comment: Peihong Yu and Amisha Bhaskar contributed equally to this work
Learning-based Estimation of Forward Kinematics for an Orthotic Parallel Robotic Mechanism
This paper introduces a 3D parallel robot with three identical five-degree-of-freedom chains connected to a circular brace end-effector, aimed to serve as an assistive device for patients with cervical spondylosis. The inverse kinematics of the system is solved analytically, whereas learning-based methods are deployed to solve the forward kinematics. The methods considered herein include a Koopman operator-based approach as well as a neural network-based approach. The task is to predict the position and orientation of end-effector trajectories. The dataset used to train these methods is based on the analytical solutions derived via inverse kinematics. The methods are tested both in simulation and via physical hardware experiments with the developed robot. Results validate the suitability of deploying learning-based methods for studying parallel mechanism forward kinematics that are generally hard to resolve analytically.
☆ Learning Closed-Loop Parametric Nash Equilibria of Multi-Agent Collaborative Field Coverage
Multi-agent reinforcement learning is a challenging and active field of research due to the inherent nonstationary property and coupling between agents. A popular approach to modeling the multi-agent interactions underlying the multi-agent RL problem is the Markov Game. There is a special type of Markov Game, termed Markov Potential Game, which allows us to reduce the Markov Game to a single-objective optimal control problem where the objective function is a potential function. In this work, we prove that a multi-agent collaborative field coverage problem, which is found in many engineering applications, can be formulated as a Markov Potential Game, and we can learn a parameterized closed-loop Nash Equilibrium by solving an equivalent single-objective optimal control problem. As a result, our algorithm is 10x faster during training compared to a game-theoretic baseline and converges faster during policy execution.
comment: submitted to conference; in review
☆ Diffuse-CLoC: Guided Diffusion for Physics-based Character Look-ahead Control
We present Diffuse-CLoC, a guided diffusion framework for physics-based look-ahead control that enables intuitive, steerable, and physically realistic motion generation. While existing kinematics motion generation with diffusion models offer intuitive steering capabilities with inference-time conditioning, they often fail to produce physically viable motions. In contrast, recent diffusion-based control policies have shown promise in generating physically realizable motion sequences, but the lack of kinematics prediction limits their steerability. Diffuse-CLoC addresses these challenges through a key insight: modeling the joint distribution of states and actions within a single diffusion model makes action generation steerable by conditioning it on the predicted states. This approach allows us to leverage established conditioning techniques from kinematic motion generation while producing physically realistic motions. As a result, we achieve planning capabilities without the need for a high-level planner. Our method handles a diverse set of unseen long-horizon downstream tasks through a single pre-trained model, including static and dynamic obstacle avoidance, motion in-betweening, and task-space control. Experimental results show that our method significantly outperforms the traditional hierarchical framework of high-level motion diffusion and low-level tracking.
☆ Safe Multi-Robotic Arm Interaction via 3D Convex Shapes
Inter-robot collisions pose a significant safety risk when multiple robotic arms operate in close proximity. We present an online collision avoidance methodology leveraging 3D convex shape-based High-Order Control Barrier Functions (HOCBFs) to address this issue. While prior works focused on using Control Barrier Functions (CBFs) for human-robotic arm and single-arm collision avoidance, we explore the problem of collision avoidance between multiple robotic arms operating in a shared space. In our methodology, we utilize the proposed HOCBFs as centralized and decentralized safety filters. These safety filters are compatible with any nominal controller and ensure safety without significantly restricting the robots' workspace. A key challenge in implementing these filters is the computational overhead caused by the large number of safety constraints and the computation of a Hessian matrix per constraint. We address this challenge by employing numerical differentiation methods to approximate computationally intensive terms. The effectiveness of our method is demonstrated through extensive simulation studies and real-world experiments with Franka Research 3 robotic arms.
comment: 8 pages, 4 figures
Controllable Latent Diffusion for Traffic Simulation IROS
The validation of autonomous driving systems benefits greatly from the ability to generate scenarios that are both realistic and precisely controllable. Conventional approaches, such as real-world test drives, are not only expensive but also lack the flexibility to capture targeted edge cases for thorough evaluation. To address these challenges, we propose a controllable latent diffusion that guides the training of diffusion models via reinforcement learning to automatically generate a diverse and controllable set of driving scenarios for virtual testing. Our approach removes the reliance on large-scale real-world data by generating complex scenarios whose properties can be finely tuned to challenge and assess autonomous vehicle systems. Experimental results show that our approach has the lowest collision rate of $0.098$ and lowest off-road rate of $0.096$, demonstrating superiority over existing baselines. The proposed approach significantly improves the realism, stability and controllability of the generated scenarios, enabling more nuanced safety evaluation of autonomous vehicles.
comment: 7 pages,2 figures, submitted to IROS conference
☆ A Smooth Analytical Formulation of Collision Detection and Rigid Body Dynamics With Contact
Generating intelligent robot behavior in contact-rich settings is a research problem where zeroth-order methods currently prevail. A major contributor to the success of such methods is their robustness in the face of non-smooth and discontinuous optimization landscapes that are characteristic of contact interactions, yet zeroth-order methods remain computationally inefficient. It is therefore desirable to develop methods for perception, planning and control in contact-rich settings that can achieve further efficiency by making use of first and second order information (i.e., gradients and Hessians). To facilitate this, we present a joint formulation of collision detection and contact modelling which, compared to existing differentiable simulation approaches, provides the following benefits: i) it results in forward and inverse dynamics that are entirely analytical (i.e. do not require solving optimization or root-finding problems with iterative methods) and smooth (i.e. twice differentiable), ii) it supports arbitrary collision geometries without needing a convex decomposition, and iii) its runtime is independent of the number of contacts. Through simulation experiments, we demonstrate the validity of the proposed formulation as a "physics for inference" that can facilitate future development of efficient methods to generate intelligent contact-rich behavior.
Industrial-Grade Sensor Simulation via Gaussian Splatting: A Modular Framework for Scalable Editing and Full-Stack Validation
Sensor simulation is pivotal for scalable validation of autonomous driving systems, yet existing Neural Radiance Fields (NeRF) based methods face applicability and efficiency challenges in industrial workflows. This paper introduces a Gaussian Splatting (GS) based system to address these challenges: We first break down sensor simulator components and analyze the possible advantages of GS over NeRF. Then in practice, we refactor three crucial components through GS, to leverage its explicit scene representation and real-time rendering: (1) choosing the 2D neural Gaussian representation for physics-compliant scene and sensor modeling, (2) proposing a scene editing pipeline to leverage Gaussian primitives library for data augmentation, and (3) coupling a controllable diffusion model for scene expansion and harmonization. We implement this framework on a proprietary autonomous driving dataset supporting cameras and LiDAR sensors. We demonstrate through ablation studies that our approach reduces frame-wise simulation latency, achieves better geometric and photometric consistency, and enables interpretable explicit scene editing and expansion. Furthermore, we showcase how integrating such a GS-based sensor simulator with traffic and dynamic simulators enables full-stack testing of end-to-end autonomy algorithms. Our work provides both algorithmic insights and practical validation, establishing GS as a cornerstone for industrial-grade sensor simulation.
♻ ☆ LEVA: A high-mobility logistic vehicle with legged suspension ICRA
The autonomous transportation of materials over challenging terrain is a challenge with major economic implications and remains unsolved. This paper introduces LEVA, a high-payload, high-mobility robot designed for autonomous logistics across varied terrains, including those typical in agriculture, construction, and search and rescue operations. LEVA uniquely integrates an advanced legged suspension system using parallel kinematics. It is capable of traversing stairs using a rl controller, has steerable wheels, and includes a specialized box pickup mechanism that enables autonomous payload loading as well as precise and reliable cargo transportation of up to 85 kg across uneven surfaces, steps and inclines while maintaining a cot of as low as 0.15. Through extensive experimental validation, LEVA demonstrates its off-road capabilities and reliability regarding payload loading and transport.
comment: Accepted for publication at the 2025 IEEE International Conference on Robotics and Automation (ICRA). This is the author's preprint version. 6 pages, 8 figures, 2 tables
♻ ☆ Generalized Nash Equilibrium Solutions in Dynamic Games With Shared Constraints
In dynamic games with shared constraints, Generalized Nash Equilibria (GNE) are often computed using the normalized solution concept, which assumes identical Lagrange multipliers for shared constraints across all players. While widely used, this approach excludes other potentially valuable GNE. This paper presents a novel method based on the Mixed Complementarity Problem (MCP) formulation to compute non-normalized GNE, expanding the solution space. We also propose a systematic approach for selecting the optimal GNE based on predefined criteria, enhancing practical flexibility. Numerical examples illustrate the methods effectiveness, offering an alternative to traditional normalized solutions.
♻ ☆ The Duke Humanoid: Design and Control For Energy Efficient Bipedal Locomotion Using Passive Dynamics
We present the Duke Humanoid, an open-source 10-degrees-of-freedom humanoid, as an extensible platform for locomotion research. The design mimics human physiology, with symmetrical body alignment in the frontal plane to maintain static balance with straight knees. We develop a reinforcement learning policy that can be deployed zero-shot on the hardware for velocity-tracking walking tasks. Additionally, to enhance energy efficiency in locomotion, we propose an end-to-end reinforcement learning algorithm that encourages the robot to leverage passive dynamics. Our experimental results show that our passive policy reduces the cost of transport by up to $50\%$ in simulation and $31\%$ in real-world tests. Our website is http://generalroboticslab.com/DukeHumanoidv1/ .
♻ ☆ Optimization-based Task and Motion Planning under Signal Temporal Logic Specifications using Logic Network Flow ICRA
This paper proposes an optimization-based task and motion planning framework, named ``Logic Network Flow", to integrate signal temporal logic (STL) specifications into efficient mixed-binary linear programmings. In this framework, temporal predicates are encoded as polyhedron constraints on each edge of the network flow, instead of as constraints between the nodes as in the traditional Logic Tree formulation. Synthesized with Dynamic Network Flows, Logic Network Flows render a tighter convex relaxation compared to Logic Trees derived from these STL specifications. Our formulation is evaluated on several multi-robot motion planning case studies. Empirical results demonstrate that our formulation outperforms Logic Tree formulation in terms of computation time for several planning problems. As the problem size scales up, our method still discovers better lower and upper bounds by exploring fewer number of nodes during the branch-and-bound process, although this comes at the cost of increased computational load for each node when exploring branches.
comment: Accepted to IEEE International Conference on Robotics and Automation (ICRA) 2025
♻ ☆ CoPAL: Corrective Planning of Robot Actions with Large Language Models ICRA
In the pursuit of fully autonomous robotic systems capable of taking over tasks traditionally performed by humans, the complexity of open-world environments poses a considerable challenge. Addressing this imperative, this study contributes to the field of Large Language Models (LLMs) applied to task and motion planning for robots. We propose a system architecture that orchestrates a seamless interplay between multiple cognitive levels, encompassing reasoning, planning, and motion generation. At its core lies a novel replanning strategy that handles physically grounded, logical, and semantic errors in the generated plans. We demonstrate the efficacy of the proposed feedback architecture, particularly its impact on executability, correctness, and time complexity via empirical evaluation in the context of a simulation and two intricate real-world scenarios: blocks world, barman and pizza preparation.
comment: IEEE International Conference on Robotics and Automation (ICRA) 2024
♻ ☆ Online Context Learning for Socially Compliant Navigation
Robot social navigation needs to adapt to different human factors and environmental contexts. However, since these factors and contexts are difficult to predict and cannot be exhaustively enumerated, traditional learning-based methods have difficulty in ensuring the social attributes of robots in long-term and cross-environment deployments. This letter introduces an online context learning method that aims to empower robots to adapt to new social environments online. The proposed method adopts a two-layer structure. The bottom layer is built using a deep reinforcement learning-based method to ensure the output of basic robot navigation commands. The upper layer is implemented using an online robot learning-based method to socialize the control commands suggested by the bottom layer. Experiments using a community-wide simulator show that our method outperforms the state-of-the-art ones. Experimental results in the most challenging scenarios show that our method improves the performance of the state-of-the-art by 8%. The source code of the proposed method, the data used, and the tools for the per-training step are publicly available at https://github.com/Nedzhaken/SOCSARL-OL.
comment: 8 pages, 4 figures, 1 table, 1 algorithm
♻ ☆ LIX: Implicitly Infusing Spatial Geometric Prior Knowledge into Visual Semantic Segmentation for Autonomous Driving
Despite the impressive performance achieved by data-fusion networks with duplex encoders for visual semantic segmentation, they become ineffective when spatial geometric data are not available. Implicitly infusing the spatial geometric prior knowledge acquired by a data-fusion teacher network into a single-modal student network is a practical, albeit less explored research avenue. This article delves into this topic and resorts to knowledge distillation approaches to address this problem. We introduce the Learning to Infuse ''X'' (LIX) framework, with novel contributions in both logit distillation and feature distillation aspects. We present a mathematical proof that underscores the limitation of using a single, fixed weight in decoupled knowledge distillation and introduce a logit-wise dynamic weight controller as a solution to this issue. Furthermore, we develop an adaptively-recalibrated feature distillation algorithm, including two novel techniques: feature recalibration via kernel regression and in-depth feature consistency quantification via centered kernel alignment. Extensive experiments conducted with intermediate-fusion and late-fusion networks across various public datasets provide both quantitative and qualitative evaluations, demonstrating the superior performance of our LIX framework when compared to other state-of-the-art approaches.
comment: 13 pages, 7 figures, 5 tables
♻ ☆ $\mathcal{D(R,O)}$ Grasp: A Unified Representation of Robot and Object Interaction for Cross-Embodiment Dexterous Grasping ICRA 2025
Dexterous grasping is a fundamental yet challenging skill in robotic manipulation, requiring precise interaction between robotic hands and objects. In this paper, we present $\mathcal{D(R,O)}$ Grasp, a novel framework that models the interaction between the robotic hand in its grasping pose and the object, enabling broad generalization across various robot hands and object geometries. Our model takes the robot hand's description and object point cloud as inputs and efficiently predicts kinematically valid and stable grasps, demonstrating strong adaptability to diverse robot embodiments and object geometries. Extensive experiments conducted in both simulated and real-world environments validate the effectiveness of our approach, with significant improvements in success rate, grasp diversity, and inference speed across multiple robotic hands. Our method achieves an average success rate of 87.53% in simulation in less than one second, tested across three different dexterous robotic hands. In real-world experiments using the LeapHand, the method also demonstrates an average success rate of 89%. $\mathcal{D(R,O)}$ Grasp provides a robust solution for dexterous grasping in complex and varied environments. The code, appendix, and videos are available on our project website at https://nus-lins-lab.github.io/drograspweb/.
comment: Accepted to the 2025 International Conference on Robotics and Automation (ICRA 2025). Project Website: https://nus-lins-lab.github.io/drograspweb/
♻ ☆ Virtual Guidance as a Mid-level Representation for Navigation with Augmented Reality
In the context of autonomous navigation, effectively conveying abstract navigational cues to agents in dynamic environments presents significant challenges, particularly when navigation information is derived from diverse modalities such as both vision and high-level language descriptions. To address this issue, we introduce a novel technique termed `Virtual Guidance,' which is designed to visually represent non-visual instructional signals. These visual cues are overlaid onto the agent's camera view and served as comprehensible navigational guidance signals. To validate the concept of virtual guidance, we propose a sim-to-real framework that enables the transfer of the trained policy from simulated environments to real world, ensuring the adaptability of virtual guidance in practical scenarios. We evaluate and compare the proposed method against a non-visual guidance baseline through detailed experiments in simulation. The experimental results demonstrate that the proposed virtual guidance approach outperforms the baseline methods across multiple scenarios and offers clear evidence of its effectiveness in autonomous navigation tasks.
comment: Tsung-Chih Chiang, Jou-Min Liu, Ting-Ru Liu, and Chun-Wei Huang contributed equally to this work; This work has been submitted to the IEEE for possible publication
♻ ☆ Fast Global Localization on Neural Radiance Field ICRA 2025
Neural Radiance Fields (NeRF) presented a novel way to represent scenes, allowing for high-quality 3D reconstruction from 2D images. Following its remarkable achievements, global localization within NeRF maps is an essential task for enabling a wide range of applications. Recently, Loc-NeRF demonstrated a localization approach that combines traditional Monte Carlo Localization with NeRF, showing promising results for using NeRF as an environment map. However, despite its advancements, Loc-NeRF encounters the challenge of a time-intensive ray rendering process, which can be a significant limitation in practical applications. To address this issue, we introduce Fast Loc-NeRF, which leverages a coarse-to-fine approach to enable more efficient and accurate NeRF map-based global localization. Specifically, Fast Loc-NeRF matches rendered pixels and observed images on a multi-resolution from low to high resolution. As a result, it speeds up the costly particle update process while maintaining precise localization results. Additionally, to reject the abnormal particles, we propose particle rejection weighting, which estimates the uncertainty of particles by exploiting NeRF's characteristics and considers them in the particle weighting process. Our Fast Loc-NeRF sets new state-of-the-art localization performances on several benchmarks, convincing its accuracy and efficiency.
comment: Accepted at ICRA 2025
♻ ☆ MR-COGraphs: Communication-efficient Multi-Robot Open-vocabulary Mapping System via 3D Scene Graphs
Collaborative perception in unknown environments is crucial for multi-robot systems. With the emergence of foundation models, robots can now not only perceive geometric information but also achieve open-vocabulary scene understanding. However, existing map representations that support open-vocabulary queries often involve large data volumes, which becomes a bottleneck for multi-robot transmission in communication-limited environments. To address this challenge, we develop a method to construct a graph-structured 3D representation called COGraph, where nodes represent objects with semantic features and edges capture their spatial adjacency relationships. Before transmission, a data-driven feature encoder is applied to compress the feature dimensions of the COGraph. Upon receiving COGraphs from other robots, the semantic features of each node are recovered using a decoder. We also propose a feature-based approach for place recognition and translation estimation, enabling the merging of local COGraphs into a unified global map. We validate our framework on two realistic datasets and the real-world environment. The results demonstrate that, compared to existing baselines for open-vocabulary map construction, our framework reduces the data volume by over 80\% while maintaining mapping and query performance without compromise. For more details, please visit our website at https://github.com/efc-robot/MR-COGraphs.
♻ ☆ UGotMe: An Embodied System for Affective Human-Robot Interaction ICRA 2025
Equipping humanoid robots with the capability to understand emotional states of human interactants and express emotions appropriately according to situations is essential for affective human-robot interaction. However, enabling current vision-aware multimodal emotion recognition models for affective human-robot interaction in the real-world raises embodiment challenges: addressing the environmental noise issue and meeting real-time requirements. First, in multiparty conversation scenarios, the noises inherited in the visual observation of the robot, which may come from either 1) distracting objects in the scene or 2) inactive speakers appearing in the field of view of the robot, hinder the models from extracting emotional cues from vision inputs. Secondly, realtime response, a desired feature for an interactive system, is also challenging to achieve. To tackle both challenges, we introduce an affective human-robot interaction system called UGotMe designed specifically for multiparty conversations. Two denoising strategies are proposed and incorporated into the system to solve the first issue. Specifically, to filter out distracting objects in the scene, we propose extracting face images of the speakers from the raw images and introduce a customized active face extraction strategy to rule out inactive speakers. As for the second issue, we employ efficient data transmission from the robot to the local server to improve realtime response capability. We deploy UGotMe on a human robot named Ameca to validate its real-time inference capabilities in practical scenarios. Videos demonstrating real-world deployment are available at https://pi3-141592653.github.io/UGotMe/.
comment: Accepted at ICRA 2025
♻ ☆ SERN: Simulation-Enhanced Realistic Navigation for Multi-Agent Robotic Systems in Contested Environments IROS 2025
The increasing deployment of autonomous systems in complex environments necessitates efficient communication and task completion among multiple agents. This paper presents SERN (Simulation-Enhanced Realistic Navigation), a novel framework integrating virtual and physical environments for real-time collaborative decision-making in multi-robot systems. SERN addresses key challenges in asset deployment and coordination through our bi-directional SERN ROS Bridge communication framework. Our approach advances the SOTA through: accurate real-world representation in virtual environments using Unity high-fidelity simulator; synchronization of physical and virtual robot movements; efficient ROS data distribution between remote locations; and integration of SOTA semantic segmentation for enhanced environmental perception. Additionally, we introduce a Multi-Metric Cost Function (MMCF) that dynamically balances latency, reliability, computational overhead, and bandwidth consumption to optimize system performance in contested environments. We further provide theoretical justification for synchronization accuracy by proving that the positional error between physical and virtual robots remains bounded under varying network conditions. Our evaluations show a 15% to 24% improvement in latency and up to a 15% increase in processing efficiency compared to traditional ROS setups. Real-world and virtual simulation experiments with multiple robots (Clearpath Jackal and Husky) demonstrate synchronization accuracy, achieving less than $5\text{ cm}$ positional error and under $2^\circ$ rotational error. These results highlight SERN's potential to enhance situational awareness and multi-agent coordination in diverse, contested environments.
comment: Under Review for IROS 2025
♻ ☆ Residual-MPPI: Online Policy Customization for Continuous Control
Policies developed through Reinforcement Learning (RL) and Imitation Learning (IL) have shown great potential in continuous control tasks, but real-world applications often require adapting trained policies to unforeseen requirements. While fine-tuning can address such needs, it typically requires additional data and access to the original training metrics and parameters. In contrast, an online planning algorithm, if capable of meeting the additional requirements, can eliminate the necessity for extensive training phases and customize the policy without knowledge of the original training scheme or task. In this work, we propose a generic online planning algorithm for customizing continuous-control policies at the execution time, which we call Residual-MPPI. It can customize a given prior policy on new performance metrics in few-shot and even zero-shot online settings, given access to the prior action distribution alone. Through our experiments, we demonstrate that the proposed Residual-MPPI algorithm can accomplish the few-shot/zero-shot online policy customization task effectively, including customizing the champion-level racing agent, Gran Turismo Sophy (GT Sophy) 1.0, in the challenging car racing scenario, Gran Turismo Sport (GTS) environment. Code for MuJoCo experiments is included in the supplementary and will be open-sourced upon acceptance. Demo videos and code are available on our website: https://sites.google.com/view/residual-mppi.
♻ ☆ Relative Pose Observability Analysis Using Dual Quaternions
Relative pose (position and orientation) estimation is an essential component of many robotics applications. Fiducial markers, such as the AprilTag visual fiducial system, yield a relative pose measurement from a single marker detection and provide a powerful tool for pose estimation. In this paper, we perform a Lie algebraic nonlinear observability analysis on a nonlinear dual quaternion system that is composed of a relative pose measurement model and a relative motion model. We prove that many common dual quaternion expressions yield Jacobian matrices with advantageous block structures and rank properties that are beneficial for analysis. We show that using a dual quaternion representation yields an observability matrix with a simple block triangular structure and satisfies the necessary full rank condition.
comment: 6 pages, 0 figures, 1 table, presented at 2024 IEEE Conference on Decision and Control (CDC)
♻ ☆ DRAPER: Towards a Robust Robot Deployment and Reliable Evaluation for Quasi-Static Pick-and-Place Cloth-Shaping Neural Controllers
Comparing robotic cloth-manipulation systems in a real-world setup is challenging. The fidelity gap between simulation-trained cloth neural controllers and real-world operation hinders the reliable deployment of these methods in physical trials. Inconsistent experimental setups and hardware limitations among different approaches obstruct objective evaluations. This study demonstrates a reliable real-world comparison of different simulation-trained neural controllers on both flattening and folding tasks with different types of fabrics varying in material, size, and colour. We introduce the DRAPER framework to enable this comprehensive study, which reliably reflects the true capabilities of these neural controllers. It specifically addresses real-world grasping errors, such as misgrasping and multilayer grasping, through real-world adaptations of the simulation environment to provide data trajectories that closely reflect real-world grasping scenarios. It also employs a special set of vision processing techniques to close the simulation-to-reality gap in the perception. Furthermore, it achieves robust grasping by adopting a tweezer-extended gripper and a grasping procedure. We demonstrate DRAPER's generalisability across different deep-learning methods and robotic platforms, offering valuable insights to the cloth manipulation research community.
comment: 8 pages main texts, 3 figures, and 4 tables. It is submitted to 2025 IEEE 21st International Conference on Automation Science and Engineering
♻ ☆ Constraint-Generation Policy Optimization (CGPO): Nonlinear Programming for Policy Optimization in Mixed Discrete-Continuous MDPs
We propose the Constraint-Generation Policy Optimization (CGPO) framework to optimize policy parameters within compact and interpretable policy classes for mixed discrete-continuous Markov Decision Processes (DC-MDP). CGPO can not only provide bounded policy error guarantees over an infinite range of initial states for many DC-MDPs with expressive nonlinear dynamics, but it can also provably derive optimal policies in cases where it terminates with zero error. Furthermore, CGPO can generate worst-case state trajectories to diagnose policy deficiencies and provide counterfactual explanations of optimal actions. To achieve such results, CGPO proposes a bilevel mixed-integer nonlinear optimization framework for optimizing policies in defined expressivity classes (e.g. piecewise linear) and reduces it to an optimal constraint generation methodology that adversarially generates worst-case state trajectories. Furthermore, leveraging modern nonlinear optimizers, CGPO can obtain solutions with bounded optimality gap guarantees. We handle stochastic transitions through chance constraints, providing high-probability performance guarantees. We also present a roadmap for understanding the computational complexities of different expressivity classes of policy, reward, and transition dynamics. We experimentally demonstrate the applicability of CGPO across various domains, including inventory control, management of a water reservoir system, and physics control. In summary, CGPO provides structured, compact and explainable policies with bounded performance guarantees, enabling worst-case scenario generation and counterfactual policy diagnostics.
comment: Published in 22nd International Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research
♻ ☆ Toward Unified Practices in Trajectory Prediction Research on Drone Datasets
The availability of high-quality datasets is crucial for the development of behavior prediction algorithms in autonomous vehicles. This paper highlights the need to standardize the use of certain datasets for motion forecasting research to simplify comparative analysis and proposes a set of tools and practices to achieve this. Drawing on extensive experience and a comprehensive review of current literature, we summarize our proposals for preprocessing, visualization, and evaluation in the form of an open-sourced toolbox designed for researchers working on trajectory prediction problems. The clear specification of necessary preprocessing steps and evaluation metrics is intended to alleviate development efforts and facilitate the comparison of results across different studies. The toolbox is available at: https://github.com/westny/dronalize.
comment: https://github.com/westny/dronalize
VXP: Voxel-Cross-Pixel Large-scale Image-LiDAR Place Recognition
Cross-modal place recognition methods are flexible GPS-alternatives under varying environment conditions and sensor setups. However, this task is non-trivial since extracting consistent and robust global descriptors from different modalities is challenging. To tackle this issue, we propose Voxel-Cross-Pixel (VXP), a novel camera-to-LiDAR place recognition framework that enforces local similarities in a self-supervised manner and effectively brings global context from images and LiDAR scans into a shared feature space. Specifically, VXP is trained in three stages: first, we deploy a visual transformer to compactly represent input images. Secondly, we establish local correspondences between image-based and point cloud-based feature spaces using our novel geometric alignment module. We then aggregate local similarities into an expressive shared latent space. Extensive experiments on the three benchmarks (Oxford RobotCar, ViViD++ and KITTI) demonstrate that our method surpasses the state-of-the-art cross-modal retrieval by a large margin. Our evaluations show that the proposed method is accurate, efficient and light-weight. Our project page is available at: https://yunjinli.github.io/projects-vxp/
comment: Project page https://yunjinli.github.io/projects-vxp/
♻ ☆ REBEL: Rule-based and Experience-enhanced Learning with LLMs for Initial Task Allocation in Multi-Human Multi-Robot Teaming
Multi-human multi-robot teams are increasingly recognized for their efficiency in executing large-scale, complex tasks by integrating heterogeneous yet potentially synergistic humans and robots. However, this inherent heterogeneity presents significant challenges in teaming, necessitating efficient initial task allocation (ITA) strategies that optimally form complementary human-robot pairs or collaborative chains and establish well-matched task distributions. While current learning-based methods demonstrate promising performance, they often incur high computational costs and lack the flexibility to incorporate user preferences in multi-objective optimization (MOO) or adapt to last-minute changes in dynamic real-world environments. To address these limitations, we propose REBEL, an LLM-based ITA framework that integrates rule-based and experience-enhanced learning to enhance LLM reasoning capabilities and improve in-context adaptability to MOO and situational changes. Extensive experiments validate the effectiveness of REBEL in both single-objective and multi-objective scenarios, demonstrating superior alignment with user preferences and enhanced situational awareness to handle unexpected team composition changes. Additionally, we show that REBEL can complement pre-trained ITA policies, further boosting situational adaptability and overall team performance. Website at https://sites.google.com/view/ita-rebel .
♻ ☆ Learn to Teach: Sample-Efficient Privileged Learning for Humanoid Locomotion over Diverse Terrains
Humanoid robots promise transformative capabilities for industrial and service applications. While recent advances in Reinforcement Learning (RL) yield impressive results in locomotion, manipulation, and navigation, the proposed methods typically require enormous simulation samples to account for real-world variability. This work proposes a novel one-stage training framework-Learn to Teach (L2T)-which unifies teacher and student policy learning. Our approach recycles simulator samples and synchronizes the learning trajectories through shared dynamics, significantly reducing sample complexities and training time while achieving state-of-the-art performance. Furthermore, we validate the RL variant (L2T-RL) through extensive simulations and hardware tests on the Digit robot, demonstrating zero-shot sim-to-real transfer and robust performance over 12+ challenging terrains without depth estimation modules.
Computer Vision 147
☆ Bring Your Rear Cameras for Egocentric 3D Human Pose Estimation
Egocentric 3D human pose estimation has been actively studied using cameras installed in front of a head-mounted device (HMD). While frontal placement is the optimal and the only option for some tasks, such as hand tracking, it remains unclear if the same holds for full-body tracking due to self-occlusion and limited field-of-view coverage. Notably, even the state-of-the-art methods often fail to estimate accurate 3D poses in many scenarios, such as when HMD users tilt their heads upward (a common motion in human activities). A key limitation of existing HMD designs is their neglect of the back of the body, despite its potential to provide crucial 3D reconstruction cues. Hence, this paper investigates the usefulness of rear cameras in the HMD design for full-body tracking. We also show that simply adding rear views to the frontal inputs is not optimal for existing methods due to their dependence on individual 2D joint detectors without effective multi-view integration. To address this issue, we propose a new transformer-based method that refines 2D joint heatmap estimation with multi-view information and heatmap uncertainty, thereby improving 3D pose tracking. Moreover, we introduce two new large-scale datasets, Ego4View-Syn and Ego4View-RW, for a rear-view evaluation. Our experiments show that the new camera configurations with back views provide superior support for 3D pose tracking compared to only frontal placements. The proposed method achieves significant improvement over the current state of the art (>10% on MPJPE). We will release the source code, trained models, and new datasets on our project page https://4dqv.mpi-inf.mpg.de/EgoRear/.
comment: Project page: https://4dqv.mpi-inf.mpg.de/EgoRear/
☆ VGGT: Visual Geometry Grounded Transformer CVPR 2025
We present VGGT, a feed-forward neural network that directly infers all key 3D attributes of a scene, including camera parameters, point maps, depth maps, and 3D point tracks, from one, a few, or hundreds of its views. This approach is a step forward in 3D computer vision, where models have typically been constrained to and specialized for single tasks. It is also simple and efficient, reconstructing images in under one second, and still outperforming alternatives that require post-processing with visual geometry optimization techniques. The network achieves state-of-the-art results in multiple 3D tasks, including camera parameter estimation, multi-view depth estimation, dense point cloud reconstruction, and 3D point tracking. We also show that using pretrained VGGT as a feature backbone significantly enhances downstream tasks, such as non-rigid point tracking and feed-forward novel view synthesis. Code and models are publicly available at https://github.com/facebookresearch/vggt.
comment: CVPR 2025, Project Page: https://vgg-t.github.io/
☆ Centaur: Robust End-to-End Autonomous Driving with Test-Time Training
How can we rely on an end-to-end autonomous vehicle's complex decision-making system during deployment? One common solution is to have a ``fallback layer'' that checks the planned trajectory for rule violations and replaces it with a pre-defined safe action if necessary. Another approach involves adjusting the planner's decisions to minimize a pre-defined ``cost function'' using additional system predictions such as road layouts and detected obstacles. However, these pre-programmed rules or cost functions cannot learn and improve with new training data, often resulting in overly conservative behaviors. In this work, we propose Centaur (Cluster Entropy for Test-time trAining using Uncertainty) which updates a planner's behavior via test-time training, without relying on hand-engineered rules or cost functions. Instead, we measure and minimize the uncertainty in the planner's decisions. For this, we develop a novel uncertainty measure, called Cluster Entropy, which is simple, interpretable, and compatible with state-of-the-art planning algorithms. Using data collected at prior test-time time-steps, we perform an update to the model's parameters using a gradient that minimizes the Cluster Entropy. With only this sole gradient update prior to inference, Centaur exhibits significant improvements, ranking first on the navtest leaderboard with notable gains in safety-critical metrics such as time to collision. To provide detailed insights on a per-scenario basis, we also introduce navsafe, a challenging new benchmark, which highlights previously undiscovered failure modes of driving models.
☆ ReCamMaster: Camera-Controlled Generative Rendering from A Single Video
Camera control has been actively studied in text or image conditioned video generation tasks. However, altering camera trajectories of a given video remains under-explored, despite its importance in the field of video creation. It is non-trivial due to the extra constraints of maintaining multiple-frame appearance and dynamic synchronization. To address this, we present ReCamMaster, a camera-controlled generative video re-rendering framework that reproduces the dynamic scene of an input video at novel camera trajectories. The core innovation lies in harnessing the generative capabilities of pre-trained text-to-video models through a simple yet powerful video conditioning mechanism -- its capability often overlooked in current research. To overcome the scarcity of qualified training data, we construct a comprehensive multi-camera synchronized video dataset using Unreal Engine 5, which is carefully curated to follow real-world filming characteristics, covering diverse scenes and camera movements. It helps the model generalize to in-the-wild videos. Lastly, we further improve the robustness to diverse inputs through a meticulously designed training strategy. Extensive experiments tell that our method substantially outperforms existing state-of-the-art approaches and strong baselines. Our method also finds promising applications in video stabilization, super-resolution, and outpainting. Project page: https://jianhongbai.github.io/ReCamMaster/
comment: Project page: https://jianhongbai.github.io/ReCamMaster/
☆ Seeing and Seeing Through the Glass: Real and Synthetic Data for Multi-Layer Depth Estimation
Transparent objects are common in daily life, and understanding their multi-layer depth information -- perceiving both the transparent surface and the objects behind it -- is crucial for real-world applications that interact with transparent materials. In this paper, we introduce LayeredDepth, the first dataset with multi-layer depth annotations, including a real-world benchmark and a synthetic data generator, to support the task of multi-layer depth estimation. Our real-world benchmark consists of 1,500 images from diverse scenes, and evaluating state-of-the-art depth estimation methods on it reveals that they struggle with transparent objects. The synthetic data generator is fully procedural and capable of providing training data for this task with an unlimited variety of objects and scene compositions. Using this generator, we create a synthetic dataset with 15,300 images. Baseline models training solely on this synthetic dataset produce good cross-domain multi-layer depth estimation. Fine-tuning state-of-the-art single-layer depth models on it substantially improves their performance on transparent objects, with quadruplet accuracy on our benchmark increased from 55.14% to 75.20%. All images and validation annotations are available under CC0 at https://layereddepth.cs.princeton.edu.
☆ TreeMeshGPT: Artistic Mesh Generation with Autoregressive Tree Sequencing CVPR 2025
We introduce TreeMeshGPT, an autoregressive Transformer designed to generate high-quality artistic meshes aligned with input point clouds. Instead of the conventional next-token prediction in autoregressive Transformer, we propose a novel Autoregressive Tree Sequencing where the next input token is retrieved from a dynamically growing tree structure that is built upon the triangle adjacency of faces within the mesh. Our sequencing enables the mesh to extend locally from the last generated triangular face at each step, and therefore reduces training difficulty and improves mesh quality. Our approach represents each triangular face with two tokens, achieving a compression rate of approximately 22% compared to the naive face tokenization. This efficient tokenization enables our model to generate highly detailed artistic meshes with strong point cloud conditioning, surpassing previous methods in both capacity and fidelity. Furthermore, our method generates mesh with strong normal orientation constraints, minimizing flipped normals commonly encountered in previous methods. Our experiments show that TreeMeshGPT enhances the mesh generation quality with refined details and normal orientation consistency.
comment: CVPR 2025. Code: https://github.com/sail-sg/TreeMeshGPT
☆ Rethinking Few-Shot Adaptation of Vision-Language Models in Two Stages CVPR 2025
An old-school recipe for training a classifier is to (i) learn a good feature extractor and (ii) optimize a linear layer atop. When only a handful of samples are available per category, as in Few-Shot Adaptation (FSA), data are insufficient to fit a large number of parameters, rendering the above impractical. This is especially true with large pre-trained Vision-Language Models (VLMs), which motivated successful research at the intersection of Parameter-Efficient Fine-tuning (PEFT) and FSA. In this work, we start by analyzing the learning dynamics of PEFT techniques when trained on few-shot data from only a subset of categories, referred to as the ``base'' classes. We show that such dynamics naturally splits into two distinct phases: (i) task-level feature extraction and (ii) specialization to the available concepts. To accommodate this dynamic, we then depart from prompt- or adapter-based methods and tackle FSA differently. Specifically, given a fixed computational budget, we split it to (i) learn a task-specific feature extractor via PEFT and (ii) train a linear classifier on top. We call this scheme Two-Stage Few-Shot Adaptation (2SFS). Differently from established methods, our scheme enables a novel form of selective inference at a category level, i.e., at test time, only novel categories are embedded by the adapted text encoder, while embeddings of base categories are available within the classifier. Results with fixed hyperparameters across two settings, three backbones, and eleven datasets, show that 2SFS matches or surpasses the state-of-the-art, while established methods degrade significantly across settings.
comment: Camera-ready version for CVPR 2025 (w/ SuppMat, 23 pages)
☆ Advancing 3D Gaussian Splatting Editing with Complementary and Consensus Information
We present a novel framework for enhancing the visual fidelity and consistency of text-guided 3D Gaussian Splatting (3DGS) editing. Existing editing approaches face two critical challenges: inconsistent geometric reconstructions across multiple viewpoints, particularly in challenging camera positions, and ineffective utilization of depth information during image manipulation, resulting in over-texture artifacts and degraded object boundaries. To address these limitations, we introduce: 1) A complementary information mutual learning network that enhances depth map estimation from 3DGS, enabling precise depth-conditioned 3D editing while preserving geometric structures. 2) A wavelet consensus attention mechanism that effectively aligns latent codes during the diffusion denoising process, ensuring multi-view consistency in the edited results. Through extensive experimentation, our method demonstrates superior performance in rendering quality and view consistency compared to state-of-the-art approaches. The results validate our framework as an effective solution for text-guided editing of 3D scenes.
comment: 7 pages, 9 figures
☆ Pathology Image Compression with Pre-trained Autoencoders
The growing volume of high-resolution Whole Slide Images in digital histopathology poses significant storage, transmission, and computational efficiency challenges. Standard compression methods, such as JPEG, reduce file sizes but often fail to preserve fine-grained phenotypic details critical for downstream tasks. In this work, we repurpose autoencoders (AEs) designed for Latent Diffusion Models as an efficient learned compression framework for pathology images. We systematically benchmark three AE models with varying compression levels and evaluate their reconstruction ability using pathology foundation models. We introduce a fine-tuning strategy to further enhance reconstruction fidelity that optimizes a pathology-specific learned perceptual metric. We validate our approach on downstream tasks, including segmentation, patch classification, and multiple instance learning, showing that replacing images with AE-compressed reconstructions leads to minimal performance degradation. Additionally, we propose a K-means clustering-based quantization method for AE latents, improving storage efficiency while maintaining reconstruction quality. We provide the weights of the fine-tuned autoencoders at https://huggingface.co/collections/StonyBrook-CVLab/pathology-fine-tuned-aes-67d45f223a659ff2e3402dd0.
☆ Vamba: Understanding Hour-Long Videos with Hybrid Mamba-Transformers
State-of-the-art transformer-based large multimodal models (LMMs) struggle to handle hour-long video inputs due to the quadratic complexity of the causal self-attention operations, leading to high computational costs during training and inference. Existing token compression-based methods reduce the number of video tokens but often incur information loss and remain inefficient for extremely long sequences. In this paper, we explore an orthogonal direction to build a hybrid Mamba-Transformer model (VAMBA) that employs Mamba-2 blocks to encode video tokens with linear complexity. Without any token reduction, VAMBA can encode more than 1024 frames (640$\times$360) on a single GPU, while transformer-based models can only encode 256 frames. On long video input, VAMBA achieves at least 50% reduction in GPU memory usage during training and inference, and nearly doubles the speed per training step compared to transformer-based LMMs. Our experimental results demonstrate that VAMBA improves accuracy by 4.3% on the challenging hour-long video understanding benchmark LVBench over prior efficient video LMMs, and maintains strong performance on a broad spectrum of long and short video understanding tasks.
comment: Project Page: https://tiger-ai-lab.github.io/Vamba/
☆ SmolDocling: An ultra-compact vision-language model for end-to-end multi-modal document conversion
We introduce SmolDocling, an ultra-compact vision-language model targeting end-to-end document conversion. Our model comprehensively processes entire pages by generating DocTags, a new universal markup format that captures all page elements in their full context with location. Unlike existing approaches that rely on large foundational models, or ensemble solutions that rely on handcrafted pipelines of multiple specialized models, SmolDocling offers an end-to-end conversion for accurately capturing content, structure and spatial location of document elements in a 256M parameters vision-language model. SmolDocling exhibits robust performance in correctly reproducing document features such as code listings, tables, equations, charts, lists, and more across a diverse range of document types including business documents, academic papers, technical reports, patents, and forms -- significantly extending beyond the commonly observed focus on scientific papers. Additionally, we contribute novel publicly sourced datasets for charts, tables, equations, and code recognition. Experimental results demonstrate that SmolDocling competes with other Vision Language Models that are up to 27 times larger in size, while reducing computational requirements substantially. The model is currently available, datasets will be publicly available soon.
comment: 24 pages, 10 figures
☆ RASA: Replace Anyone, Say Anything -- A Training-Free Framework for Audio-Driven and Universal Portrait Video Editing RAS
Portrait video editing focuses on modifying specific attributes of portrait videos, guided by audio or video streams. Previous methods typically either concentrate on lip-region reenactment or require training specialized models to extract keypoints for motion transfer to a new identity. In this paper, we introduce a training-free universal portrait video editing framework that provides a versatile and adaptable editing strategy. This framework supports portrait appearance editing conditioned on the changed first reference frame, as well as lip editing conditioned on varied speech, or a combination of both. It is based on a Unified Animation Control (UAC) mechanism with source inversion latents to edit the entire portrait, including visual-driven shape control, audio-driven speaking control, and inter-frame temporal control. Furthermore, our method can be adapted to different scenarios by adjusting the initial reference frame, enabling detailed editing of portrait videos with specific head rotations and facial expressions. This comprehensive approach ensures a holistic and flexible solution for portrait video editing. The experimental results show that our model can achieve more accurate and synchronized lip movements for the lip editing task, as well as more flexible motion transfer for the appearance editing task. Demo is available at https://alice01010101.github.io/RASA/.
comment: Demo is available at https://alice01010101.github.io/RASA/
☆ Disentangled Object-Centric Image Representation for Robotic Manipulation
Learning robotic manipulation skills from vision is a promising approach for developing robotics applications that can generalize broadly to real-world scenarios. As such, many approaches to enable this vision have been explored with fruitful results. Particularly, object-centric representation methods have been shown to provide better inductive biases for skill learning, leading to improved performance and generalization. Nonetheless, we show that object-centric methods can struggle to learn simple manipulation skills in multi-object environments. Thus, we propose DOCIR, an object-centric framework that introduces a disentangled representation for objects of interest, obstacles, and robot embodiment. We show that this approach leads to state-of-the-art performance for learning pick and place skills from visual inputs in multi-object environments and generalizes at test time to changing objects of interest and distractors in the scene. Furthermore, we show its efficacy both in simulation and zero-shot transfer to the real world.
☆ VERIFY: A Benchmark of Visual Explanation and Reasoning for Investigating Multimodal Reasoning Fidelity
Visual reasoning is central to human cognition, enabling individuals to interpret and abstractly understand their environment. Although recent Multimodal Large Language Models (MLLMs) have demonstrated impressive performance across language and vision-language tasks, existing benchmarks primarily measure recognition-based skills and inadequately assess true visual reasoning capabilities. To bridge this critical gap, we introduce VERIFY, a benchmark explicitly designed to isolate and rigorously evaluate the visual reasoning capabilities of state-of-the-art MLLMs. VERIFY compels models to reason primarily from visual information, providing minimal textual context to reduce reliance on domain-specific knowledge and linguistic biases. Each problem is accompanied by a human-annotated reasoning path, making it the first to provide in-depth evaluation of model decision-making processes. Additionally, we propose novel metrics that assess visual reasoning fidelity beyond mere accuracy, highlighting critical imbalances in current model reasoning patterns. Our comprehensive benchmarking of leading MLLMs uncovers significant limitations, underscoring the need for a balanced and holistic approach to both perception and reasoning. For more teaser and testing, visit our project page (https://verify-eqh.pages.dev/).
☆ Similarity-Aware Token Pruning: Your VLM but Faster
The computational demands of Vision Transformers (ViTs) and Vision-Language Models (VLMs) remain a significant challenge due to the quadratic complexity of self-attention. While token pruning offers a promising solution, existing methods often introduce training overhead or fail to adapt dynamically across layers. We present SAINT, a training-free token pruning framework that leverages token similarity and a graph-based formulation to dynamically optimize pruning rates and redundancy thresholds. Through systematic analysis, we identify a universal three-stage token evolution process (aligner-explorer-aggregator) in transformers, enabling aggressive pruning in early stages without sacrificing critical information. For ViTs, SAINT doubles the throughput of ViT-H/14 at 224px with only 0.6% accuracy loss on ImageNet-1K, surpassing the closest competitor by 0.8%. For VLMs, we apply SAINT in three modes: ViT-only, LLM-only, and hybrid. SAINT reduces LLaVA-13B's tokens by 75%, achieving latency comparable to LLaVA-7B with less than 1% performance loss across benchmarks. Our work establishes a unified, practical framework for efficient inference in ViTs and VLMs.
comment: 15 pages, 8 figures, 8 tables
☆ AugGen: Synthetic Augmentation Can Improve Discriminative Models
The increasing dependence on large-scale datasets in machine learning introduces significant privacy and ethical challenges. Synthetic data generation offers a promising solution; however, most current methods rely on external datasets or pre-trained models, which add complexity and escalate resource demands. In this work, we introduce a novel self-contained synthetic augmentation technique that strategically samples from a conditional generative model trained exclusively on the target dataset. This approach eliminates the need for auxiliary data sources. Applied to face recognition datasets, our method achieves 1--12\% performance improvements on the IJB-C and IJB-B benchmarks. It outperforms models trained solely on real data and exceeds the performance of state-of-the-art synthetic data generation baselines. Notably, these enhancements often surpass those achieved through architectural improvements, underscoring the significant impact of synthetic augmentation in data-scarce environments. These findings demonstrate that carefully integrated synthetic data not only addresses privacy and resource constraints but also substantially boosts model performance. Project page https://parsa-ra.github.io/auggen
☆ FLASHμ: Fast Localizing And Sizing of Holographic Microparticles
Reconstructing the 3D location and size of microparticles from diffraction images - holograms - is a computationally expensive inverse problem that has traditionally been solved using physics-based reconstruction methods. More recently, researchers have used machine learning methods to speed up the process. However, for small particles in large sample volumes the performance of these methods falls short of standard physics-based reconstruction methods. Here we designed a two-stage neural network architecture, FLASH$\mu$, to detect small particles (6-100$\mu$m) from holograms with large sample depths up to 20cm. Trained only on synthetic data with added physical noise, our method reliably detects particles of at least 9$\mu$m diameter in real holograms, comparable to the standard reconstruction-based approaches while operating on smaller crops, at quarter of the original resolution and providing roughly a 600-fold speedup. In addition to introducing a novel approach to a non-local object detection or signal demixing problem, our work could enable low-cost, real-time holographic imaging setups.
☆ Exploring Typographic Visual Prompts Injection Threats in Cross-Modality Generation Models
Current Cross-Modality Generation Models (GMs) demonstrate remarkable capabilities in various generative tasks. Given the ubiquity and information richness of vision modality inputs in real-world scenarios, Cross-vision, encompassing Vision-Language Perception (VLP) and Image-to-Image (I2I), tasks have attracted significant attention. Large Vision Language Models (LVLMs) and I2I GMs are employed to handle VLP and I2I tasks, respectively. Previous research indicates that printing typographic words into input images significantly induces LVLMs and I2I GMs to generate disruptive outputs semantically related to those words. Additionally, visual prompts, as a more sophisticated form of typography, are also revealed to pose security risks to various applications of VLP tasks when injected into images. In this paper, we comprehensively investigate the performance impact induced by Typographic Visual Prompt Injection (TVPI) in various LVLMs and I2I GMs. To better observe performance modifications and characteristics of this threat, we also introduce the TVPI Dataset. Through extensive explorations, we deepen the understanding of the underlying causes of the TVPI threat in various GMs and offer valuable insights into its potential origins.
☆ HiTVideo: Hierarchical Tokenizers for Enhancing Text-to-Video Generation with Autoregressive Large Language Models
Text-to-video generation poses significant challenges due to the inherent complexity of video data, which spans both temporal and spatial dimensions. It introduces additional redundancy, abrupt variations, and a domain gap between language and vision tokens while generation. Addressing these challenges requires an effective video tokenizer that can efficiently encode video data while preserving essential semantic and spatiotemporal information, serving as a critical bridge between text and vision. Inspired by the observation in VQ-VAE-2 and workflows of traditional animation, we propose HiTVideo for text-to-video generation with hierarchical tokenizers. It utilizes a 3D causal VAE with a multi-layer discrete token framework, encoding video content into hierarchically structured codebooks. Higher layers capture semantic information with higher compression, while lower layers focus on fine-grained spatiotemporal details, striking a balance between compression efficiency and reconstruction quality. Our approach efficiently encodes longer video sequences (e.g., 8 seconds, 64 frames), reducing bits per pixel (bpp) by approximately 70\% compared to baseline tokenizers, while maintaining competitive reconstruction quality. We explore the trade-offs between compression and reconstruction, while emphasizing the advantages of high-compressed semantic tokens in text-to-video tasks. HiTVideo aims to address the potential limitations of existing video tokenizers in text-to-video generation tasks, striving for higher compression ratios and simplify LLMs modeling under language guidance, offering a scalable and promising framework for advancing text to video generation. Demo page: https://ziqinzhou66.github.io/project/HiTVideo.
☆ Alzheimer's Disease Classification Using Retinal OCT: TransnetOCT and Swin Transformer Models
Retinal optical coherence tomography (OCT) images are the biomarkers for neurodegenerative diseases, which are rising in prevalence. Early detection of Alzheimer's disease using retinal OCT is a primary challenging task. This work utilizes advanced deep learning techniques to classify retinal OCT images of subjects with Alzheimer's disease (AD) and healthy controls (CO). The goal is to enhance diagnostic capabilities through efficient image analysis. In the proposed model, Raw OCT images have been preprocessed with ImageJ and given to various deep-learning models to evaluate the accuracy. The best classification architecture is TransNetOCT, which has an average accuracy of 98.18% for input OCT images and 98.91% for segmented OCT images for five-fold cross-validation compared to other models, and the Swin Transformer model has achieved an accuracy of 93.54%. The evaluation accuracy metric demonstrated TransNetOCT and Swin transformer models capability to classify AD and CO subjects reliably, contributing to the potential for improved diagnostic processes in clinical settings.
comment: 18 pages, 25 figures
☆ TikZero: Zero-Shot Text-Guided Graphics Program Synthesis
With the rise of generative AI, synthesizing figures from text captions becomes a compelling application. However, achieving high geometric precision and editability requires representing figures as graphics programs in languages like TikZ, and aligned training data (i.e., graphics programs with captions) remains scarce. Meanwhile, large amounts of unaligned graphics programs and captioned raster images are more readily available. We reconcile these disparate data sources by presenting TikZero, which decouples graphics program generation from text understanding by using image representations as an intermediary bridge. It enables independent training on graphics programs and captioned images and allows for zero-shot text-guided graphics program synthesis during inference. We show that our method substantially outperforms baselines that can only operate with caption-aligned graphics programs. Furthermore, when leveraging caption-aligned graphics programs as a complementary training signal, TikZero matches or exceeds the performance of much larger models, including commercial systems like GPT-4o. Our code, datasets, and select models are publicly available.
comment: Project page: https://github.com/potamides/DeTikZify
☆ Cloud2BIM: An open-source automatic pipeline for efficient conversion of large-scale point clouds into IFC format
Building Information Modeling (BIM) is an essential component in the sustainable reconstruction and revitalization of ageing structures. However, model creation usually relies on laborious manual transformation of the unstructured point cloud data provided by laser scans or photogrammetry. This paper presents Cloud2BIM, an open-source software tool designed to automate the conversion of point clouds into BIM models compliant with the Industry Foundation Classes (IFC) standard. Cloud2BIM integrates advanced algorithms for wall and slab segmentation, opening detection, and room zoning based on real wall surfaces, resulting in a comprehensive and fully automated workflow. Unlike existing tools, it avoids computationally- and calibration-intensive techniques such as RANSAC, supports non-orthogonal geometries, and provides unprecedented processing speed-achieving results up to seven times faster than fastest competing solutions. Systematic validation using benchmark datasets confirms that Cloud2BIM is an easy-to-use, efficient, and scalable solution for generating accurate BIM models, capable of converting extensive point cloud datasets for entire buildings into IFC format with minimal user input.
comment: 42 pages, 18 figures
☆ Cognitive Disentanglement for Referring Multi-Object Tracking
As a significant application of multi-source information fusion in intelligent transportation perception systems, Referring Multi-Object Tracking (RMOT) involves localizing and tracking specific objects in video sequences based on language references. However, existing RMOT approaches often treat language descriptions as holistic embeddings and struggle to effectively integrate the rich semantic information contained in language expressions with visual features. This limitation is especially apparent in complex scenes requiring comprehensive understanding of both static object attributes and spatial motion information. In this paper, we propose a Cognitive Disentanglement for Referring Multi-Object Tracking (CDRMT) framework that addresses these challenges. It adapts the "what" and "where" pathways from human visual processing system to RMOT tasks. Specifically, our framework comprises three collaborative components: (1)The Bidirectional Interactive Fusion module first establishes cross-modal connections while preserving modality-specific characteristics; (2) Building upon this foundation, the Progressive Semantic-Decoupled Query Learning mechanism hierarchically injects complementary information into object queries, progressively refining object understanding from coarse to fine-grained semantic levels; (3) Finally, the Structural Consensus Constraint enforces bidirectional semantic consistency between visual features and language descriptions, ensuring that tracked objects faithfully reflect the referring expression. Extensive experiments on different benchmark datasets demonstrate that CDRMT achieves substantial improvements over state-of-the-art methods, with average gains of 6.0% in HOTA score on Refer-KITTI and 3.2% on Refer-KITTI-V2. Our approach advances the state-of-the-art in RMOT while simultaneously providing new insights into multi-source information fusion.
comment: 24 pages, 9 figures
☆ V-STaR: Benchmarking Video-LLMs on Video Spatio-Temporal Reasoning
Human processes video reasoning in a sequential spatio-temporal reasoning logic, we first identify the relevant frames ("when") and then analyse the spatial relationships ("where") between key objects, and finally leverage these relationships to draw inferences ("what"). However, can Video Large Language Models (Video-LLMs) also "reason through a sequential spatio-temporal logic" in videos? Existing Video-LLM benchmarks primarily focus on assessing object presence, neglecting relational reasoning. Consequently, it is difficult to measure whether a model truly comprehends object interactions (actions/events) in videos or merely relies on pre-trained "memory" of co-occurrences as biases in generating answers. In this work, we introduce a Video Spatio-Temporal Reasoning (V-STaR) benchmark to address these shortcomings. The key idea is to decompose video understanding into a Reverse Spatio-Temporal Reasoning (RSTR) task that simultaneously evaluates what objects are present, when events occur, and where they are located while capturing the underlying Chain-of-thought (CoT) logic. To support this evaluation, we construct a dataset to elicit the spatial-temporal reasoning process of Video-LLMs. It contains coarse-to-fine CoT questions generated by a semi-automated GPT-4-powered pipeline, embedding explicit reasoning chains to mimic human cognition. Experiments from 14 Video-LLMs on our V-STaR reveal significant gaps between current Video-LLMs and the needs for robust and consistent spatio-temporal reasoning.
comment: A benchmark for Video Spatio-Temporal Reasoning
☆ T2I-FineEval: Fine-Grained Compositional Metric for Text-to-Image Evaluation ECCV 2024
Although recent text-to-image generative models have achieved impressive performance, they still often struggle with capturing the compositional complexities of prompts including attribute binding, and spatial relationships between different entities. This misalignment is not revealed by common evaluation metrics such as CLIPScore. Recent works have proposed evaluation metrics that utilize Visual Question Answering (VQA) by decomposing prompts into questions about the generated image for more robust compositional evaluation. Although these methods align better with human evaluations, they still fail to fully cover the compositionality within the image. To address this, we propose a novel metric that breaks down images into components, and texts into fine-grained questions about the generated image for evaluation. Our method outperforms previous state-of-the-art metrics, demonstrating its effectiveness in evaluating text-to-image generative models. Code is available at https://github.com/hadi-hosseini/ T2I-FineEval.
comment: Accepted at ECCV 2024 Workshop EVAL-FoMo
☆ Remote Photoplethysmography in Real-World and Extreme Lighting Scenarios
Physiological activities can be manifested by the sensitive changes in facial imaging. While they are barely observable to our eyes, computer vision manners can, and the derived remote photoplethysmography (rPPG) has shown considerable promise. However, existing studies mainly rely on spatial skin recognition and temporal rhythmic interactions, so they focus on identifying explicit features under ideal light conditions, but perform poorly in-the-wild with intricate obstacles and extreme illumination exposure. In this paper, we propose an end-to-end video transformer model for rPPG. It strives to eliminate complex and unknown external time-varying interferences, whether they are sufficient to occupy subtle biosignal amplitudes or exist as periodic perturbations that hinder network training. In the specific implementation, we utilize global interference sharing, subject background reference, and self-supervised disentanglement to eliminate interference, and further guide learning based on spatiotemporal filtering, reconstruction guidance, and frequency domain and biological prior constraints to achieve effective rPPG. To the best of our knowledge, this is the first robust rPPG model for real outdoor scenarios based on natural face videos, and is lightweight to deploy. Extensive experiments show the competitiveness and performance of our model in rPPG prediction across datasets and scenes.
☆ TASTE-Rob: Advancing Video Generation of Task-Oriented Hand-Object Interaction for Generalizable Robotic Manipulation
We address key limitations in existing datasets and models for task-oriented hand-object interaction video generation, a critical approach of generating video demonstrations for robotic imitation learning. Current datasets, such as Ego4D, often suffer from inconsistent view perspectives and misaligned interactions, leading to reduced video quality and limiting their applicability for precise imitation learning tasks. Towards this end, we introduce TASTE-Rob -- a pioneering large-scale dataset of 100,856 ego-centric hand-object interaction videos. Each video is meticulously aligned with language instructions and recorded from a consistent camera viewpoint to ensure interaction clarity. By fine-tuning a Video Diffusion Model (VDM) on TASTE-Rob, we achieve realistic object interactions, though we observed occasional inconsistencies in hand grasping postures. To enhance realism, we introduce a three-stage pose-refinement pipeline that improves hand posture accuracy in generated videos. Our curated dataset, coupled with the specialized pose-refinement framework, provides notable performance gains in generating high-quality, task-oriented hand-object interaction videos, resulting in achieving superior generalizable robotic manipulation. The TASTE-Rob dataset will be made publicly available upon publication to foster further advancements in the field.
comment: Conference on Computer Vision and Pattern Recognition 2025
☆ AQUA-SLAM: Tightly-Coupled Underwater Acoustic-Visual-Inertial SLAM with Sensor Calibration
Underwater environments pose significant challenges for visual Simultaneous Localization and Mapping (SLAM) systems due to limited visibility, inadequate illumination, and sporadic loss of structural features in images. Addressing these challenges, this paper introduces a novel, tightly-coupled Acoustic-Visual-Inertial SLAM approach, termed AQUA-SLAM, to fuse a Doppler Velocity Log (DVL), a stereo camera, and an Inertial Measurement Unit (IMU) within a graph optimization framework. Moreover, we propose an efficient sensor calibration technique, encompassing multi-sensor extrinsic calibration (among the DVL, camera and IMU) and DVL transducer misalignment calibration, with a fast linear approximation procedure for real-time online execution. The proposed methods are extensively evaluated in a tank environment with ground truth, and validated for offshore applications in the North Sea. The results demonstrate that our method surpasses current state-of-the-art underwater and visual-inertial SLAM systems in terms of localization accuracy and robustness. The proposed system will be made open-source for the community.
☆ MTV-Inpaint: Multi-Task Long Video Inpainting
Video inpainting involves modifying local regions within a video, ensuring spatial and temporal consistency. Most existing methods focus primarily on scene completion (i.e., filling missing regions) and lack the capability to insert new objects into a scene in a controllable manner. Fortunately, recent advancements in text-to-video (T2V) diffusion models pave the way for text-guided video inpainting. However, directly adapting T2V models for inpainting remains limited in unifying completion and insertion tasks, lacks input controllability, and struggles with long videos, thereby restricting their applicability and flexibility. To address these challenges, we propose MTV-Inpaint, a unified multi-task video inpainting framework capable of handling both traditional scene completion and novel object insertion tasks. To unify these distinct tasks, we design a dual-branch spatial attention mechanism in the T2V diffusion U-Net, enabling seamless integration of scene completion and object insertion within a single framework. In addition to textual guidance, MTV-Inpaint supports multimodal control by integrating various image inpainting models through our proposed image-to-video (I2V) inpainting mode. Additionally, we propose a two-stage pipeline that combines keyframe inpainting with in-between frame propagation, enabling MTV-Inpaint to effectively handle long videos with hundreds of frames. Extensive experiments demonstrate that MTV-Inpaint achieves state-of-the-art performance in both scene completion and object insertion tasks. Furthermore, it demonstrates versatility in derived applications such as multi-modal inpainting, object editing, removal, image object brush, and the ability to handle long videos. Project page: https://mtv-inpaint.github.io/.
LuSeg: Efficient Negative and Positive Obstacles Segmentation via Contrast-Driven Multi-Modal Feature Fusion on the Lunar
As lunar exploration missions grow increasingly complex, ensuring safe and autonomous rover-based surface exploration has become one of the key challenges in lunar exploration tasks. In this work, we have developed a lunar surface simulation system called the Lunar Exploration Simulator System (LESS) and the LunarSeg dataset, which provides RGB-D data for lunar obstacle segmentation that includes both positive and negative obstacles. Additionally, we propose a novel two-stage segmentation network called LuSeg. Through contrastive learning, it enforces semantic consistency between the RGB encoder from Stage I and the depth encoder from Stage II. Experimental results on our proposed LunarSeg dataset and additional public real-world NPO road obstacle dataset demonstrate that LuSeg achieves state-of-the-art segmentation performance for both positive and negative obstacles while maintaining a high inference speed of approximately 57\,Hz. We have released the implementation of our LESS system, LunarSeg dataset, and the code of LuSeg at:https://github.com/nubot-nudt/LuSeg.
☆ Towards A Correct Usage of Cryptography in Semantic Watermarks for Diffusion Models ICLR
Semantic watermarking methods enable the direct integration of watermarks into the generation process of latent diffusion models by only modifying the initial latent noise. One line of approaches building on Gaussian Shading relies on cryptographic primitives to steer the sampling process of the latent noise. However, we identify several issues in the usage of cryptographic techniques in Gaussian Shading, particularly in its proof of lossless performance and key management, causing ambiguity in follow-up works, too. In this work, we therefore revisit the cryptographic primitives for semantic watermarking. We introduce a novel, general proof of lossless performance based on IND\$-CPA security for semantic watermarks. We then discuss the configuration of the cryptographic primitives in semantic watermarks with respect to security, efficiency, and generation quality.
comment: 8 pages, 3 figures, WMark@ICLR
☆ A Framework for a Capability-driven Evaluation of Scenario Understanding for Multimodal Large Language Models in Autonomous Driving
Multimodal large language models (MLLMs) hold the potential to enhance autonomous driving by combining domain-independent world knowledge with context-specific language guidance. Their integration into autonomous driving systems shows promising results in isolated proof-of-concept applications, while their performance is evaluated on selective singular aspects of perception, reasoning, or planning. To leverage their full potential a systematic framework for evaluating MLLMs in the context of autonomous driving is required. This paper proposes a holistic framework for a capability-driven evaluation of MLLMs in autonomous driving. The framework structures scenario understanding along the four core capability dimensions semantic, spatial, temporal, and physical. They are derived from the general requirements of autonomous driving systems, human driver cognition, and language-based reasoning. It further organises the domain into context layers, processing modalities, and downstream tasks such as language-based interaction and decision-making. To illustrate the framework's applicability, two exemplary traffic scenarios are analysed, grounding the proposed dimensions in realistic driving situations. The framework provides a foundation for the structured evaluation of MLLMs' potential for scenario understanding in autonomous driving.
comment: Submitted to IEEE IAVVC 2025, Under Review
☆ Watch and Learn: Leveraging Expert Knowledge and Language for Surgical Video Understanding
Automated surgical workflow analysis is crucial for education, research, and clinical decision-making, but the lack of annotated datasets hinders the development of accurate and comprehensive workflow analysis solutions. We introduce a novel approach for addressing the sparsity and heterogeneity of annotated training data inspired by the human learning procedure of watching experts and understanding their explanations. Our method leverages a video-language model trained on alignment, denoising, and generative tasks to learn short-term spatio-temporal and multimodal representations. A task-specific temporal model is then used to capture relationships across entire videos. To achieve comprehensive video-language understanding in the surgical domain, we introduce a data collection and filtering strategy to construct a large-scale pretraining dataset from educational YouTube videos. We then utilize parameter-efficient fine-tuning by projecting downstream task annotations from publicly available surgical datasets into the language domain. Extensive experiments in two surgical domains demonstrate the effectiveness of our approach, with performance improvements of up to 7% in phase segmentation tasks, 8% in zero-shot phase segmentation, and comparable capabilities to fully-supervised models in few-shot settings. Harnessing our model's capabilities for long-range temporal localization and text generation, we present the first comprehensive solution for dense video captioning (DVC) of surgical videos, addressing this task despite the absence of existing DVC datasets in the surgical domain. We introduce a novel approach to surgical workflow understanding that leverages video-language pretraining, large-scale video pretraining, and optimized fine-tuning. Our method improves performance over state-of-the-art techniques and enables new downstream tasks for surgical video understanding.
comment: 14 pages main manuscript with 3 figures; 6 pages supplementary material with 3 figures. To be presented at International Conference on Information Processing in Computer-Assisted Interventions (IPCAI 2025). To be published in International Journal of Computer Assisted Radiology and Surgery (IJCARS)
☆ Deepfake Detection of Face Images based on a Convolutional Neural Network
Fake News and especially deepfakes (generated, non-real image or video content) have become a serious topic over the last years. With the emergence of machine learning algorithms it is now easier than ever before to generate such fake content, even for private persons. This issue of generated fake images is especially critical in the context of politics and public figures. We want to address this conflict by building a model based on a Convolutions Neural Network in order to detect such generated and fake images showing human portraits. As a basis, we use a pre-trained ResNet-50 model due to its effectiveness in terms of classifying images. We then adopted the base model to our task of classifying a single image as authentic/real or fake by adding an fully connected output layer containing a single neuron indicating the authenticity of an image. We applied fine tuning and transfer learning to develop the model and improve its parameters. For the training process we collected the image data set "Diverse Face Fake Dataset" containing a wide range of different image manipulation methods and also diversity in terms of faces visible on the images. With our final model we reached the following outstanding performance metrics: precision = 0.98, recall 0.96, F1-Score = 0.97 and an area-under-curve = 0.99.
BEVDiffLoc: End-to-End LiDAR Global Localization in BEV View based on Diffusion Model
Localization is one of the core parts of modern robotics. Classic localization methods typically follow the retrieve-then-register paradigm, achieving remarkable success. Recently, the emergence of end-to-end localization approaches has offered distinct advantages, including a streamlined system architecture and the elimination of the need to store extensive map data. Although these methods have demonstrated promising results, current end-to-end localization approaches still face limitations in robustness and accuracy. Bird's-Eye-View (BEV) image is one of the most widely adopted data representations in autonomous driving. It significantly reduces data complexity while preserving spatial structure and scale consistency, making it an ideal representation for localization tasks. However, research on BEV-based end-to-end localization remains notably insufficient. To fill this gap, we propose BEVDiffLoc, a novel framework that formulates LiDAR localization as a conditional generation of poses. Leveraging the properties of BEV, we first introduce a specific data augmentation method to significantly enhance the diversity of input data. Then, the Maximum Feature Aggregation Module and Vision Transformer are employed to learn robust features while maintaining robustness against significant rotational view variations. Finally, we incorporate a diffusion model that iteratively refines the learned features to recover the absolute pose. Extensive experiments on the Oxford Radar RobotCar and NCLT datasets demonstrate that BEVDiffLoc outperforms the baseline methods. Our code is available at https://github.com/nubot-nudt/BEVDiffLoc.
☆ PBR3DGen: A VLM-guided Mesh Generation with High-quality PBR Texture
Generating high-quality physically based rendering (PBR) materials is important to achieve realistic rendering in the downstream tasks, yet it remains challenging due to the intertwined effects of materials and lighting. While existing methods have made breakthroughs by incorporating material decomposition in the 3D generation pipeline, they tend to bake highlights into albedo and ignore spatially varying properties of metallicity and roughness. In this work, we present PBR3DGen, a two-stage mesh generation method with high-quality PBR materials that integrates the novel multi-view PBR material estimation model and a 3D PBR mesh reconstruction model. Specifically, PBR3DGen leverages vision language models (VLM) to guide multi-view diffusion, precisely capturing the spatial distribution and inherent attributes of reflective-metalness material. Additionally, we incorporate view-dependent illumination-aware conditions as pixel-aware priors to enhance spatially varying material properties. Furthermore, our reconstruction model reconstructs high-quality mesh with PBR materials. Experimental results demonstrate that PBR3DGen significantly outperforms existing methods, achieving new state-of-the-art results for PBR estimation and mesh generation. More results and visualization can be found on our project page: https://pbr3dgen1218.github.io/.
comment: Homepage: https://pbr3dgen1218.github.io/
☆ PARIC: Probabilistic Attention Regularization for Language Guided Image Classification from Pre-trained Vison Language Models
Language-guided attention frameworks have significantly enhanced both interpretability and performance in image classification; however, the reliance on deterministic embeddings from pre-trained vision-language foundation models to generate reference attention maps frequently overlooks the intrinsic multivaluedness and ill-posed characteristics of cross-modal mappings. To address these limitations, we introduce PARIC, a probabilistic framework for guiding visual attention via language specifications. Our approach enables pre-trained vision-language models to generate probabilistic reference attention maps, which align textual and visual modalities more effectively while incorporating uncertainty estimates, as compared to their deterministic counterparts. Experiments on benchmark test problems demonstrate that PARIC enhances prediction accuracy, mitigates bias, ensures consistent predictions, and improves robustness across various datasets.
☆ Enhancing Hand Palm Motion Gesture Recognition by Eliminating Reference Frame Bias via Frame-Invariant Similarity Measures
The ability of robots to recognize human gestures facilitates a natural and accessible human-robot collaboration. However, most work in gesture recognition remains rooted in reference frame-dependent representations. This poses a challenge when reference frames vary due to different work cell layouts, imprecise frame calibrations, or other environmental changes. This paper investigated the use of invariant trajectory descriptors for robust hand palm motion gesture recognition under reference frame changes. First, a novel dataset of recorded Hand Palm Motion (HPM) gestures is introduced. The motion gestures in this dataset were specifically designed to be distinguishable without dependence on specific reference frames or directional cues. Afterwards, multiple invariant trajectory descriptor approaches were benchmarked to assess how their performances generalize to this novel HPM dataset. After this offline benchmarking, the best scoring approach is validated for online recognition by developing a real-time Proof of Concept (PoC). In this PoC, hand palm motion gestures were used to control the real-time movement of a manipulator arm. The PoC demonstrated a high recognition reliability in real-time operation, achieving an $F_1$-score of 92.3%. This work demonstrates the effectiveness of the invariant descriptor approach as a standalone solution. Moreover, we believe that the invariant descriptor approach can also be utilized within other state-of-the-art pattern recognition and learning systems to improve their robustness against reference frame variations.
comment: 8 pages, 4 figures, this work has been submitted as a conference paper for consideration in the 2025 IEEE International Conference on Automation Science and Engineering (CASE), the content in this preprint is identical to the version submitted for peer review
☆ EgoSplat: Open-Vocabulary Egocentric Scene Understanding with Language Embedded 3D Gaussian Splatting
Egocentric scenes exhibit frequent occlusions, varied viewpoints, and dynamic interactions compared to typical scene understanding tasks. Occlusions and varied viewpoints can lead to multi-view semantic inconsistencies, while dynamic objects may act as transient distractors, introducing artifacts into semantic feature modeling. To address these challenges, we propose EgoSplat, a language-embedded 3D Gaussian Splatting framework for open-vocabulary egocentric scene understanding. A multi-view consistent instance feature aggregation method is designed to leverage the segmentation and tracking capabilities of SAM2 to selectively aggregate complementary features across views for each instance, ensuring precise semantic representation of scenes. Additionally, an instance-aware spatial-temporal transient prediction module is constructed to improve spatial integrity and temporal continuity in predictions by incorporating spatial-temporal associations across multi-view instances, effectively reducing artifacts in the semantic reconstruction of egocentric scenes. EgoSplat achieves state-of-the-art performance in both localization and segmentation tasks on two datasets, outperforming existing methods with a 8.2% improvement in localization accuracy and a 3.7% improvement in segmentation mIoU on the ADT dataset, and setting a new benchmark in open-vocabulary egocentric scene understanding. The code will be made publicly available.
☆ FG-DFPN: Flow Guided Deformable Frame Prediction Network
Video frame prediction remains a fundamental challenge in computer vision with direct implications for autonomous systems, video compression, and media synthesis. We present FG-DFPN, a novel architecture that harnesses the synergy between optical flow estimation and deformable convolutions to model complex spatio-temporal dynamics. By guiding deformable sampling with motion cues, our approach addresses the limitations of fixed-kernel networks when handling diverse motion patterns. The multi-scale design enables FG-DFPN to simultaneously capture global scene transformations and local object movements with remarkable precision. Our experiments demonstrate that FG-DFPN achieves state-of-the-art performance on eight diverse MPEG test sequences, outperforming existing methods by 1dB PSNR while maintaining competitive inference speeds. The integration of motion cues with adaptive geometric transformations makes FG-DFPN a promising solution for next-generation video processing systems that require high-fidelity temporal predictions. The model and instructions to reproduce our results will be released at: https://github.com/KUIS-AI-Tekalp-Research Group/frame-prediction
comment: Submitted to 33th European Signal Processing Conference (EUSIPCO) 2025
☆ Road Rage Reasoning with Vision-language Models (VLMs): Task Definition and Evaluation Dataset
Road rage, triggered by driving-related stimuli such as traffic congestion and aggressive driving, poses a significant threat to road safety. Previous research on road rage regulation has primarily focused on response suppression, lacking proactive prevention capabilities. With the advent of Vision-Language Models (VLMs), it has become possible to reason about trigger events visually and then engage in dialog-based comforting before drivers' anger escalates. To this end, we propose the road rage reasoning task, along with a finely annotated test dataset and evaluation metrics, to assess the capabilities of current mainstream VLMs in scene understanding, event recognition, and road rage reasoning. The results indicate that current VLMs exhibit significant shortcomings in scene understanding within the visual modality, as well as in comprehending the spatial relationships between objects in the textual modality. Improving VLMs' performance in these areas will greatly benefit downstream tasks like antecedent-focused road rage regulation.
☆ Self-Supervised Pretraining for Fine-Grained Plankton Recognition
Plankton recognition is an important computer vision problem due to plankton's essential role in ocean food webs and carbon capture, highlighting the need for species-level monitoring. However, this task is challenging due to its fine-grained nature and dataset shifts caused by different imaging instruments and varying species distributions. As new plankton image datasets are collected at an increasing pace, there is a need for general plankton recognition models that require minimal expert effort for data labeling. In this work, we study large-scale self-supervised pretraining for fine-grained plankton recognition. We first employ masked autoencoding and a large volume of diverse plankton image data to pretrain a general-purpose plankton image encoder. Then we utilize fine-tuning to obtain accurate plankton recognition models for new datasets with a very limited number of labeled training images. Our experiments show that self-supervised pretraining with diverse plankton data clearly increases plankton recognition accuracy compared to standard ImageNet pretraining when the amount of training data is limited. Moreover, the accuracy can be further improved when unlabeled target data is available and utilized during the pretraining.
☆ APLA: A Simple Adaptation Method for Vision Transformers
Existing adaptation techniques typically require architectural modifications or added parameters, leading to high computational costs and complexity. We introduce Attention Projection Layer Adaptation (APLA), a simple approach to adapt vision transformers (ViTs) without altering the architecture or adding parameters. Through a systematic analysis, we find that the layer immediately after the attention mechanism is crucial for adaptation. By updating only this projection layer, or even just a random subset of this layer's weights, APLA achieves state-of-the-art performance while reducing GPU memory usage by up to 52.63% and training time by up to 43.0%, with no extra cost at inference. Across 46 datasets covering a variety of tasks including scene classification, medical imaging, satellite imaging, and fine-grained classification, APLA consistently outperforms 17 other leading adaptation methods, including full fine-tuning, on classification, segmentation, and detection tasks. The code is available at https://github.com/MoeinSorkhei/APLA.
☆ Advancements in Real-Time Oncology Diagnosis: Harnessing AI and Image Fusion Techniques
Real-time computer-aided diagnosis using artificial intelligence (AI), with images, can help oncologists diagnose cancer with high accuracy and in an early phase. We reviewed real-time AI-based analyzed images for decision-making in different cancer types. This paper provides insights into the present and future potential of real-time imaging and image fusion. It explores various real-time techniques, encompassing technical solutions, AI-based imaging, and image fusion diagnosis across multiple anatomical areas, and electromagnetic needle tracking. To provide a thorough overview, this paper discusses ultrasound image fusion, real-time in vivo cancer diagnosis with different spectroscopic techniques, different real-time optical imaging-based cancer diagnosis techniques, elastography-based cancer diagnosis, cervical cancer detection using neuromorphic architectures, different fluorescence image-based cancer diagnosis techniques, and hyperspectral imaging-based cancer diagnosis. We close by offering a more futuristic overview to solve existing problems in real-time image-based cancer diagnosis.
comment: This paper is under review
☆ Cardiomyopathy Diagnosis Model from Endomyocardial Biopsy Specimens: Appropriate Feature Space and Class Boundary in Small Sample Size Data
As the number of patients with heart failure increases, machine learning (ML) has garnered attention in cardiomyopathy diagnosis, driven by the shortage of pathologists. However, endomyocardial biopsy specimens are often small sample size and require techniques such as feature extraction and dimensionality reduction. This study aims to determine whether texture features are effective for feature extraction in the pathological diagnosis of cardiomyopathy. Furthermore, model designs that contribute toward improving generalization performance are examined by applying feature selection (FS) and dimensional compression (DC) to several ML models. The obtained results were verified by visualizing the inter-class distribution differences and conducting statistical hypothesis testing based on texture features. Additionally, they were evaluated using predictive performance across different model designs with varying combinations of FS and DC (applied or not) and decision boundaries. The obtained results confirmed that texture features may be effective for the pathological diagnosis of cardiomyopathy. Moreover, when the ratio of features to the sample size is high, a multi-step process involving FS and DC improved the generalization performance, with the linear kernel support vector machine achieving the best results. This process was demonstrated to be potentially effective for models with reduced complexity, regardless of whether the decision boundaries were linear, curved, perpendicular, or parallel to the axes. These findings are expected to facilitate the development of an effective cardiomyopathy diagnostic model for its rapid adoption in medical practice.
☆ Colour Morphological Distance Ordering based on the Log-Exp-Supremum
Mathematical morphology, a field within image processing, includes various filters that either highlight, modify, or eliminate certain information in images based on an application's needs. Key operations in these filters are dilation and erosion, which determine the supremum or infimum for each pixel with respect to an order of the tonal values over a subset of the image surrounding the pixel. This subset is formed by a structuring element at the specified pixel, which weighs the tonal values. Unlike grey-scale morphology, where tonal order is clearly defined, colour morphology lacks a definitive total order. As no method fully meets all desired properties for colour, because of this difficulty, some limitations are always present. This paper shows how to combine the theory of the log-exp-supremum of colour matrices that employs the Loewner semi-order with a well-known colour distance approach in the form of a pre-ordering. The log-exp-supremum will therefore serve as the reference colour for determining the colour distance. To the resulting pre-ordering with respect to these distance values, we add a lexicographic cascade to ensure a total order and a unique result. The objective of this approach is to identify the original colour within the structuring element that most closely resembles a supremum, which fulfils a number of desired properties. Consequently, this approach avoids the false-colour problem. The behaviour of the introduced operators is illustrated by application examples of dilation and closing for synthetic and natural images.
comment: 13 pages, 13 figures, submitted to SSVM 2025
☆ TransiT: Transient Transformer for Non-line-of-sight Videography
High quality and high speed videography using Non-Line-of-Sight (NLOS) imaging benefit autonomous navigation, collision prevention, and post-disaster search and rescue tasks. Current solutions have to balance between the frame rate and image quality. High frame rates, for example, can be achieved by reducing either per-point scanning time or scanning density, but at the cost of lowering the information density at individual frames. Fast scanning process further reduces the signal-to-noise ratio and different scanning systems exhibit different distortion characteristics. In this work, we design and employ a new Transient Transformer architecture called TransiT to achieve real-time NLOS recovery under fast scans. TransiT directly compresses the temporal dimension of input transients to extract features, reducing computation costs and meeting high frame rate requirements. It further adopts a feature fusion mechanism as well as employs a spatial-temporal Transformer to help capture features of NLOS transient videos. Moreover, TransiT applies transfer learning to bridge the gap between synthetic and real-measured data. In real experiments, TransiT manages to reconstruct from sparse transients of $16 \times 16$ measured at an exposure time of 0.4 ms per point to NLOS videos at a $64 \times 64$ resolution at 10 frames per second. We will make our code and dataset available to the community.
☆ Safe-VAR: Safe Visual Autoregressive Model for Text-to-Image Generative Watermarking
With the success of autoregressive learning in large language models, it has become a dominant approach for text-to-image generation, offering high efficiency and visual quality. However, invisible watermarking for visual autoregressive (VAR) models remains underexplored, despite its importance in misuse prevention. Existing watermarking methods, designed for diffusion models, often struggle to adapt to the sequential nature of VAR models. To bridge this gap, we propose Safe-VAR, the first watermarking framework specifically designed for autoregressive text-to-image generation. Our study reveals that the timing of watermark injection significantly impacts generation quality, and watermarks of different complexities exhibit varying optimal injection times. Motivated by this observation, we propose an Adaptive Scale Interaction Module, which dynamically determines the optimal watermark embedding strategy based on the watermark information and the visual characteristics of the generated image. This ensures watermark robustness while minimizing its impact on image quality. Furthermore, we introduce a Cross-Scale Fusion mechanism, which integrates mixture of both heads and experts to effectively fuse multi-resolution features and handle complex interactions between image content and watermark patterns. Experimental results demonstrate that Safe-VAR achieves state-of-the-art performance, significantly surpassing existing counterparts regarding image quality, watermarking fidelity, and robustness against perturbations. Moreover, our method exhibits strong generalization to an out-of-domain watermark dataset QR Codes.
☆ Leveraging Diffusion Knowledge for Generative Image Compression with Fractal Frequency-Aware Band Learning
By optimizing the rate-distortion-realism trade-off, generative image compression approaches produce detailed, realistic images instead of the only sharp-looking reconstructions produced by rate-distortion-optimized models. In this paper, we propose a novel deep learning-based generative image compression method injected with diffusion knowledge, obtaining the capacity to recover more realistic textures in practical scenarios. Efforts are made from three perspectives to navigate the rate-distortion-realism trade-off in the generative image compression task. First, recognizing the strong connection between image texture and frequency-domain characteristics, we design a Fractal Frequency-Aware Band Image Compression (FFAB-IC) network to effectively capture the directional frequency components inherent in natural images. This network integrates commonly used fractal band feature operations within a neural non-linear mapping design, enhancing its ability to retain essential given information and filter out unnecessary details. Then, to improve the visual quality of image reconstruction under limited bandwidth, we integrate diffusion knowledge into the encoder and implement diffusion iterations into the decoder process, thus effectively recovering lost texture details. Finally, to fully leverage the spatial and frequency intensity information, we incorporate frequency- and content-aware regularization terms to regularize the training of the generative image compression network. Extensive experiments in quantitative and qualitative evaluations demonstrate the superiority of the proposed method, advancing the boundaries of achievable distortion-realism pairs, i.e., our method achieves better distortions at high realism and better realism at low distortion than ever before.
☆ Open-Set Plankton Recognition ECCV 2024
This paper considers open-set recognition (OSR) of plankton images. Plankton include a diverse range of microscopic aquatic organisms that have an important role in marine ecosystems as primary producers and as a base of food webs. Given their sensitivity to environmental changes, fluctuations in plankton populations offer valuable information about oceans' health and climate change motivating their monitoring. Modern automatic plankton imaging devices enable the collection of large-scale plankton image datasets, facilitating species-level analysis. Plankton species recognition can be seen as an image classification task and is typically solved using deep learning-based image recognition models. However, data collection in real aquatic environments results in imaging devices capturing a variety of non-plankton particles and plankton species not present in the training set. This creates a challenging fine-grained OSR problem, characterized by subtle differences between taxonomically close plankton species. We address this challenge by conducting extensive experiments on three OSR approaches using both phyto- and zooplankton images analyzing also on the effect of the rejection thresholds for OSR. The results demonstrate that high OSR accuracy can be obtained promoting the use of these methods in operational plankton research. We have made the data publicly available to the research community.
comment: ECCV 2024, OOD-CV workshop paper
☆ MMS-LLaMA: Efficient LLM-based Audio-Visual Speech Recognition with Minimal Multimodal Speech Tokens
Audio-Visual Speech Recognition (AVSR) achieves robust speech recognition in noisy environments by combining auditory and visual information. However, recent Large Language Model (LLM) based AVSR systems incur high computational costs due to the high temporal resolution of audio-visual speech processed by LLMs. In this work, we introduce an efficient multimodal speech LLM framework that minimizes token length while preserving essential linguistic content. Our approach employs an early av-fusion module for streamlined feature integration, an audio-visual speech Q-Former that dynamically allocates tokens based on input duration, and a refined query allocation strategy with a speech rate predictor to adjust token allocation according to speaking speed of each audio sample. Extensive experiments on the LRS3 dataset show that our method achieves state-of-the-art performance with a WER of 0.74% while using only 3.5 tokens per second. Moreover, our approach not only reduces token usage by 86% compared to the previous multimodal speech LLM framework, but also improves computational efficiency by reducing FLOPs by 35.7%.
comment: The code and models are available https://github.com/JeongHun0716/MMS-LLaMA
☆ GMG: A Video Prediction Method Based on Global Focus and Motion Guided
Recent years, weather forecasting has gained significant attention. However, accurately predicting weather remains a challenge due to the rapid variability of meteorological data and potential teleconnections. Current spatiotemporal forecasting models primarily rely on convolution operations or sliding windows for feature extraction. These methods are limited by the size of the convolutional kernel or sliding window, making it difficult to capture and identify potential teleconnection features in meteorological data. Additionally, weather data often involve non-rigid bodies, whose motion processes are accompanied by unpredictable deformations, further complicating the forecasting task. In this paper, we propose the GMG model to address these two core challenges. The Global Focus Module, a key component of our model, enhances the global receptive field, while the Motion Guided Module adapts to the growth or dissipation processes of non-rigid bodies. Through extensive evaluations, our method demonstrates competitive performance across various complex tasks, providing a novel approach to improving the predictive accuracy of complex spatiotemporal data.
EmoAgent: Multi-Agent Collaboration of Plan, Edit, and Critic, for Affective Image Manipulation
Affective Image Manipulation (AIM) aims to alter an image's emotional impact by adjusting multiple visual elements to evoke specific feelings.Effective AIM is inherently complex, necessitating a collaborative approach that involves identifying semantic cues within source images, manipulating these elements to elicit desired emotional responses, and verifying that the combined adjustments successfully evoke the target emotion.To address these challenges, we introduce EmoAgent, the first multi-agent collaboration framework for AIM. By emulating the cognitive behaviors of a human painter, EmoAgent incorporates three specialized agents responsible for planning, editing, and critical evaluation. Furthermore, we develop an emotion-factor knowledge retriever, a decision-making tree space, and a tool library to enhance EmoAgent's effectiveness in handling AIM. Experiments demonstrate that the proposed multi-agent framework outperforms existing methods, offering more reasonable and effective emotional expression.
☆ CyclePose -- Leveraging Cycle-Consistency for Annotation-Free Nuclei Segmentation in Fluorescence Microscopy MICCAI 2025
In recent years, numerous neural network architectures specifically designed for the instance segmentation of nuclei in microscopic images have been released. These models embed nuclei-specific priors to outperform generic architectures like U-Nets; however, they require large annotated datasets, which are often not available. Generative models (GANs, diffusion models) have been used to compensate for this by synthesizing training data. These two-stage approaches are computationally expensive, as first a generative model and then a segmentation model has to be trained. We propose CyclePose, a hybrid framework integrating synthetic data generation and segmentation training. CyclePose builds on a CycleGAN architecture, which allows unpaired translation between microscopy images and segmentation masks. We embed a segmentation model into CycleGAN and leverage a cycle consistency loss for self-supervision. Without annotated data, CyclePose outperforms other weakly or unsupervised methods on two public datasets. Code is available at https://github.com/jonasutz/CyclePose
comment: under review for MICCAI 2025
☆ DynRsl-VLM: Enhancing Autonomous Driving Perception with Dynamic Resolution Vision-Language Models
Visual Question Answering (VQA) models, which fall under the category of vision-language models, conventionally execute multiple downsampling processes on image inputs to strike a balance between computational efficiency and model performance. Although this approach aids in concentrating on salient features and diminishing computational burden, it incurs the loss of vital detailed information, a drawback that is particularly damaging in end-to-end autonomous driving scenarios. Downsampling can lead to an inadequate capture of distant or small objects such as pedestrians, road signs, or obstacles, all of which are crucial for safe navigation. This loss of features negatively impacts an autonomous driving system's capacity to accurately perceive the environment, potentially escalating the risk of accidents. To tackle this problem, we put forward the Dynamic Resolution Vision Language Model (DynRsl-VLM). DynRsl-VLM incorporates a dynamic resolution image input processing approach that captures all entity feature information within an image while ensuring that the image input remains computationally tractable for the Vision Transformer (ViT). Moreover, we devise a novel image-text alignment module to replace the Q-Former, enabling simple and efficient alignment with text when dealing with dynamic resolution image inputs. Our method enhances the environmental perception capabilities of autonomous driving systems without overstepping computational constraints.
☆ Noise Synthesis for Low-Light Image Denoising with Diffusion Models
Low-light photography produces images with low signal-to-noise ratios due to limited photons. In such conditions, common approximations like the Gaussian noise model fall short, and many denoising techniques fail to remove noise effectively. Although deep-learning methods perform well, they require large datasets of paired images that are impractical to acquire. As a remedy, synthesizing realistic low-light noise has gained significant attention. In this paper, we investigate the ability of diffusion models to capture the complex distribution of low-light noise. We show that a naive application of conventional diffusion models is inadequate for this task and propose three key adaptations that enable high-precision noise generation without calibration or post-processing: a two-branch architecture to better model signal-dependent and signal-independent noise, the incorporation of positional information to capture fixed-pattern noise, and a tailored diffusion noise schedule. Consequently, our model enables the generation of large datasets for training low-light denoising networks, leading to state-of-the-art performance. Through comprehensive analysis, including statistical evaluation and noise decomposition, we provide deeper insights into the characteristics of the generated data.
☆ Step-Video-TI2V Technical Report: A State-of-the-Art Text-Driven Image-to-Video Generation Model
We present Step-Video-TI2V, a state-of-the-art text-driven image-to-video generation model with 30B parameters, capable of generating videos up to 102 frames based on both text and image inputs. We build Step-Video-TI2V-Eval as a new benchmark for the text-driven image-to-video task and compare Step-Video-TI2V with open-source and commercial TI2V engines using this dataset. Experimental results demonstrate the state-of-the-art performance of Step-Video-TI2V in the image-to-video generation task. Both Step-Video-TI2V and Step-Video-TI2V-Eval are available at https://github.com/stepfun-ai/Step-Video-TI2V.
comment: 7 pages
☆ Breaking Shallow Limits: Task-Driven Pixel Fusion for Gap-free RGBT Tracking
Current RGBT tracking methods often overlook the impact of fusion location on mitigating modality gap, which is key factor to effective tracking. Our analysis reveals that shallower fusion yields smaller distribution gap. However, the limited discriminative power of shallow networks hard to distinguish task-relevant information from noise, limiting the potential of pixel-level fusion. To break shallow limits, we propose a novel \textbf{T}ask-driven \textbf{P}ixel-level \textbf{F}usion network, named \textbf{TPF}, which unveils the power of pixel-level fusion in RGBT tracking through a progressive learning framework. In particular, we design a lightweight Pixel-level Fusion Adapter (PFA) that exploits Mamba's linear complexity to ensure real-time, low-latency RGBT tracking. To enhance the fusion capabilities of the PFA, our task-driven progressive learning framework first utilizes adaptive multi-expert distillation to inherits fusion knowledge from state-of-the-art image fusion models, establishing robust initialization, and then employs a decoupled representation learning scheme to achieve task-relevant information fusion. Moreover, to overcome appearance variations between the initial template and search frames, we presents a nearest-neighbor dynamic template updating scheme, which selects the most reliable frame closest to the current search frame as the dynamic template. Extensive experiments demonstrate that TPF significantly outperforms existing most of advanced trackers on four public RGBT tracking datasets. The code will be released upon acceptance.
comment: In peer review
☆ L2RSI: Cross-view LiDAR-based Place Recognition for Large-scale Urban Scenes via Remote Sensing Imagery
We tackle the challenge of LiDAR-based place recognition, which traditionally depends on costly and time-consuming prior 3D maps. To overcome this, we first construct XA-L&RSI dataset, which encompasses approximately $110,000$ remote sensing submaps and $13,000$ LiDAR point cloud submaps captured in urban scenes, and propose a novel method, L2RSI, for cross-view LiDAR place recognition using high-resolution Remote Sensing Imagery. This approach enables large-scale localization capabilities at a reduced cost by leveraging readily available overhead images as map proxies. L2RSI addresses the dual challenges of cross-view and cross-modal place recognition by learning feature alignment between point cloud submaps and remote sensing submaps in the semantic domain. Additionally, we introduce a novel probability propagation method based on a dynamic Gaussian mixture model to refine position predictions, effectively leveraging temporal and spatial information. This approach enables large-scale retrieval and cross-scene generalization without fine-tuning. Extensive experiments on XA-L&RSI demonstrate that, within a $100km^2$ retrieval range, L2RSI accurately localizes $95.08\%$ of point cloud submaps within a $30m$ radius for top-$1$ retrieved location. We provide a video to more vividly display the place recognition results of L2RSI at https://shizw695.github.io/L2RSI/.
☆ Compound Expression Recognition via Large Vision-Language Models
Compound Expression Recognition (CER) is crucial for understanding human emotions and improving human-computer interaction. However, CER faces challenges due to the complexity of facial expressions and the difficulty of capturing subtle emotional cues. To address these issues, we propose a novel approach leveraging Large Vision-Language Models (LVLMs). Our method employs a two-stage fine-tuning process: first, pre-trained LVLMs are fine-tuned on basic facial expressions to establish foundational patterns; second, the model is further optimized on a compound-expression dataset to refine visual-language feature interactions. Our approach achieves advanced accuracy on the RAF-DB dataset and demonstrates strong zero-shot generalization on the C-EXPR-DB dataset, showcasing its potential for real-world applications in emotion analysis and human-computer interaction.
☆ Towards Better Alignment: Training Diffusion Models with Reinforcement Learning Against Sparse Rewards CVPR 2025
Diffusion models have achieved remarkable success in text-to-image generation. However, their practical applications are hindered by the misalignment between generated images and corresponding text prompts. To tackle this issue, reinforcement learning (RL) has been considered for diffusion model fine-tuning. Yet, RL's effectiveness is limited by the challenge of sparse reward, where feedback is only available at the end of the generation process. This makes it difficult to identify which actions during the denoising process contribute positively to the final generated image, potentially leading to ineffective or unnecessary denoising policies. To this end, this paper presents a novel RL-based framework that addresses the sparse reward problem when training diffusion models. Our framework, named $\text{B}^2\text{-DiffuRL}$, employs two strategies: \textbf{B}ackward progressive training and \textbf{B}ranch-based sampling. For one thing, backward progressive training focuses initially on the final timesteps of denoising process and gradually extends the training interval to earlier timesteps, easing the learning difficulty from sparse rewards. For another, we perform branch-based sampling for each training interval. By comparing the samples within the same branch, we can identify how much the policies of the current training interval contribute to the final image, which helps to learn effective policies instead of unnecessary ones. $\text{B}^2\text{-DiffuRL}$ is compatible with existing optimization algorithms. Extensive experiments demonstrate the effectiveness of $\text{B}^2\text{-DiffuRL}$ in improving prompt-image alignment and maintaining diversity in generated images. The code for this work is available.
comment: Accepted to CVPR 2025
☆ Deep Lossless Image Compression via Masked Sampling and Coarse-to-Fine Auto-Regression
Learning-based lossless image compression employs pixel-based or subimage-based auto-regression for probability estimation, which achieves desirable performances. However, the existing works only consider context dependencies in one direction, namely, those symbols that appear before the current symbol in raster order. We believe that the dependencies between the current and future symbols should be further considered. In this work, we propose a deep lossless image compression via masked sampling and coarse-to-fine auto-regression. It combines lossy reconstruction and progressive residual compression, which fuses contexts from various directions and is more consistent with human perception. Specifically, the residuals are decomposed via $T$ iterative masked sampling, and each sampling consists of three steps: 1) probability estimation, 2) mask computation, and 3) arithmetic coding. The iterative process progressively refines our prediction and gradually presents a real image. Extensive experimental results show that compared with the existing traditional and learned lossless compression, our method achieves comparable compression performance on extensive datasets with competitive coding speed and more flexibility.
comment: 8 pages
☆ Non Line-of-Sight Optical Wireless Communication using Neuromorphic Cameras
Neuromorphic or event cameras, inspired by biological vision systems, capture changes in illumination with high temporal resolution and efficiency, producing streams of events rather than traditional images. In this paper, we explore the use of neuromorphic cameras for passive optical wireless communication (OWC), leveraging their asynchronous detection of illumination changes to decode data transmitted through reflections of light from objects. We propose a novel system that utilizes neuromorphic cameras for passive visible light communication (VLC), extending the concept to Non Line-of-Sight (NLoS) scenarios through passive reflections from everyday objects. Our experiments demonstrate the feasibility and advantages of using neuromorphic cameras for VLC, characterizing the performance of various modulation schemes, including traditional On-Off Keying (OOK) and advanced N-pulse modulation. We introduce an adaptive N-pulse modulation scheme that dynamically adjusts encoding based on the packet's bit composition, achieving higher data rates and robustness in different scenarios. Our results show that lighter-colored, glossy objects are better for NLoS communication, while larger objects and those with matte finishes experience higher error rates due to multipath reflections.
comment: Accepted to be Presented at THE 22ND INTERNATIONAL CONFERENCE ON EMBEDDED WIRELESS SYSTEMS AND NETWORKS
☆ Toward Generalized Image Quality Assessment: Relaxing the Perfect Reference Quality Assumption CVPR 2025
Full-reference image quality assessment (FR-IQA) generally assumes that reference images are of perfect quality. However, this assumption is flawed due to the sensor and optical limitations of modern imaging systems. Moreover, recent generative enhancement methods are capable of producing images of higher quality than their original. All of these challenge the effectiveness and applicability of current FR-IQA models. To relax the assumption of perfect reference image quality, we build a large-scale IQA database, namely DiffIQA, containing approximately 180,000 images generated by a diffusion-based image enhancer with adjustable hyper-parameters. Each image is annotated by human subjects as either worse, similar, or better quality compared to its reference. Building on this, we present a generalized FR-IQA model, namely Adaptive Fidelity-Naturalness Evaluator (A-FINE), to accurately assess and adaptively combine the fidelity and naturalness of a test image. A-FINE aligns well with standard FR-IQA when the reference image is much more natural than the test image. We demonstrate by extensive experiments that A-FINE surpasses standard FR-IQA models on well-established IQA datasets and our newly created DiffIQA. To further validate A-FINE, we additionally construct a super-resolution IQA benchmark (SRIQA-Bench), encompassing test images derived from ten state-of-the-art SR methods with reliable human quality annotations. Tests on SRIQA-Bench re-affirm the advantages of A-FINE. The code and dataset are available at https://tianhewu.github.io/A-FINE-page.github.io/.
comment: Accepted by CVPR 2025
☆ MEET: A Million-Scale Dataset for Fine-Grained Geospatial Scene Classification with Zoom-Free Remote Sensing Imagery
Accurate fine-grained geospatial scene classification using remote sensing imagery is essential for a wide range of applications. However, existing approaches often rely on manually zooming remote sensing images at different scales to create typical scene samples. This approach fails to adequately support the fixed-resolution image interpretation requirements in real-world scenarios. To address this limitation, we introduce the Million-scale finE-grained geospatial scEne classification dataseT (MEET), which contains over 1.03 million zoom-free remote sensing scene samples, manually annotated into 80 fine-grained categories. In MEET, each scene sample follows a scene-inscene layout, where the central scene serves as the reference, and auxiliary scenes provide crucial spatial context for finegrained classification. Moreover, to tackle the emerging challenge of scene-in-scene classification, we present the Context-Aware Transformer (CAT), a model specifically designed for this task, which adaptively fuses spatial context to accurately classify the scene samples. CAT adaptively fuses spatial context to accurately classify the scene samples by learning attentional features that capture the relationships between the center and auxiliary scenes. Based on MEET, we establish a comprehensive benchmark for fine-grained geospatial scene classification, evaluating CAT against 11 competitive baselines. The results demonstrate that CAT significantly outperforms these baselines, achieving a 1.88% higher balanced accuracy (BA) with the Swin-Large backbone, and a notable 7.87% improvement with the Swin-Huge backbone. Further experiments validate the effectiveness of each module in CAT and show the practical applicability of CAT in the urban functional zone mapping. The source code and dataset will be publicly available at https://jerrywyn.github.io/project/MEET.html.
☆ Towards General Multimodal Visual Tracking
Existing multimodal tracking studies focus on bi-modal scenarios such as RGB-Thermal, RGB-Event, and RGB-Language. Although promising tracking performance is achieved through leveraging complementary cues from different sources, it remains challenging in complex scenes due to the limitations of bi-modal scenarios. In this work, we introduce a general multimodal visual tracking task that fully exploits the advantages of four modalities, including RGB, thermal infrared, event, and language, for robust tracking under challenging conditions. To provide a comprehensive evaluation platform for general multimodal visual tracking, we construct QuadTrack600, a large-scale, high-quality benchmark comprising 600 video sequences (totaling 384.7K high-resolution (640x480) frame groups). In each frame group, all four modalities are spatially aligned and meticulously annotated with bounding boxes, while 21 sequence-level challenge attributes are provided for detailed performance analysis. Despite quad-modal data provides richer information, the differences in information quantity among modalities and the computational burden from four modalities are two challenging issues in fusing four modalities. To handle these issues, we propose a novel approach called QuadFusion, which incorporates an efficient Multiscale Fusion Mamba with four different scanning scales to achieve sufficient interactions of the four modalities while overcoming the exponential computational burden, for general multimodal visual tracking. Extensive experiments on the QuadTrack600 dataset and three bi-modal tracking datasets, including LasHeR, VisEvent, and TNL2K, validate the effectiveness of our QuadFusion.
comment: In peer review
☆ Simulating Dual-Pixel Images From Ray Tracing For Depth Estimation
Many studies utilize dual-pixel (DP) sensor phase characteristics for various applications, such as depth estimation and deblurring. However, since the DP image features are entirely determined by the camera hardware, DP-depth paired datasets are very scarce, especially when performing depth estimation on customized cameras. To overcome this, studies simulate DP images using ideal optical system models. However, these simulations often violate real optical propagation laws,leading to poor generalization to real DP data. To address this, we investigate the domain gap between simulated and real DP data, and propose solutions using the Simulating DP images from ray tracing (Sdirt) scheme. The Sdirt generates realistic DP images via ray tracing and integrates them into the depth estimation training pipeline. Experimental results show that models trained with Sdirt-simulated images generalize better to real DP data.
☆ LLaVA-MLB: Mitigating and Leveraging Attention Bias for Training-Free Video LLMs
Training-free video large language models (LLMs) leverage pretrained Image LLMs to process video content without the need for further training. A key challenge in such approaches is the difficulty of retaining essential visual and temporal information, constrained by the token limits in Image LLMs. To address this, we propose a two-stage method for selecting query-relevant tokens based on the LLM attention scores: compressing the video sequence and then expanding the sequence. However, during the compression stage, Image LLMs often exhibit a positional attention bias in video sequences, where attention is overly concentrated on later frames, causing early-frame information to be underutilized. To alleviate this attention bias during sequence compression, we propose Gridded Attention Pooling for preserving spatiotemporal structure. Additionally, we introduce Visual Summarization Tail to effectively utilize this bias, facilitating overall video understanding during sequence expansion. In this way, our method effectively Mitigates and Leverages attention Bias (LLaVA-MLB), enabling the frozen Image LLM for detailed video understanding. Experiments on several benchmarks demonstrate that our approach outperforms state-of-the-art methods, achieving superior performance in both efficiency and accuracy. Our code will be released.
☆ NF-SLAM: Effective, Normalizing Flow-supported Neural Field representations for object-level visual SLAM in automotive applications IROS 2024
We propose a novel, vision-only object-level SLAM framework for automotive applications representing 3D shapes by implicit signed distance functions. Our key innovation consists of augmenting the standard neural representation by a normalizing flow network. As a result, achieving strong representation power on the specific class of road vehicles is made possible by compact networks with only 16-dimensional latent codes. Furthermore, the newly proposed architecture exhibits a significant performance improvement in the presence of only sparse and noisy data, which is demonstrated through comparative experiments on synthetic data. The module is embedded into the back-end of a stereo-vision based framework for joint, incremental shape optimization. The loss function is given by a combination of a sparse 3D point-based SDF loss, a sparse rendering loss, and a semantic mask-based silhouette-consistency term. We furthermore leverage semantic information to determine keypoint extraction density in the front-end. Finally, experimental results on real-world data reveal accurate and reliable performance comparable to alternative frameworks that make use of direct depth readings. The proposed method performs well with only sparse 3D points obtained from bundle adjustment, and eventually continues to deliver stable results even under exclusive use of the mask-consistency term.
comment: 9 pages, 5 figures, IROS 2024
☆ Provenance Detection for AI-Generated Images: Combining Perceptual Hashing, Homomorphic Encryption, and AI Detection Models
As AI-generated sensitive images become more prevalent, identifying their source is crucial for distinguishing them from real images. Conventional image watermarking methods are vulnerable to common transformations like filters, lossy compression, and screenshots, often applied during social media sharing. Watermarks can also be faked or removed if models are open-sourced or leaked since images can be rewatermarked. We have developed a three-part framework for secure, transformation-resilient AI content provenance detection, to address these limitations. We develop an adversarially robust state-of-the-art perceptual hashing model, DinoHash, derived from DINOV2, which is robust to common transformations like filters, compression, and crops. Additionally, we integrate a Multi-Party Fully Homomorphic Encryption~(MP-FHE) scheme into our proposed framework to ensure the protection of both user queries and registry privacy. Furthermore, we improve previous work on AI-generated media detection. This approach is useful in cases where the content is absent from our registry. DinoHash significantly improves average bit accuracy by 12% over state-of-the-art watermarking and perceptual hashing methods while maintaining superior true positive rate (TPR) and false positive rate (FPR) tradeoffs across various transformations. Our AI-generated media detection results show a 25% improvement in classification accuracy on commonly used real-world AI image generators over existing algorithms. By combining perceptual hashing, MP-FHE, and an AI content detection model, our proposed framework provides better robustness and privacy compared to previous work.
☆ Online Test-time Adaptation for 3D Human Pose Estimation: A Practical Perspective with Estimated 2D Poses
Online test-time adaptation for 3D human pose estimation is used for video streams that differ from training data. Ground truth 2D poses are used for adaptation, but only estimated 2D poses are available in practice. This paper addresses adapting models to streaming videos with estimated 2D poses. Comparing adaptations reveals the challenge of limiting estimation errors while preserving accurate pose information. To this end, we propose adaptive aggregation, a two-stage optimization, and local augmentation for handling varying levels of estimated pose error. First, we perform adaptive aggregation across videos to initialize the model state with labeled representative samples. Within each video, we use a two-stage optimization to benefit from 2D fitting while minimizing the impact of erroneous updates. Second, we employ local augmentation, using adjacent confident samples to update the model before adapting to the current non-confident sample. Our method surpasses state-of-the-art by a large margin, advancing adaptation towards more practical settings of using estimated 2D poses.
☆ FastVID: Dynamic Density Pruning for Fast Video Large Language Models
Video Large Language Models have shown impressive capabilities in video comprehension, yet their practical deployment is hindered by substantial inference costs caused by redundant video tokens. Existing pruning techniques fail to fully exploit the spatiotemporal redundancy inherent in video data. To bridge this gap, we perform a systematic analysis of video redundancy from two perspectives: temporal context and visual context. Leveraging this insight, we propose Dynamic Density Pruning for Fast Video LLMs termed FastVID. Specifically, FastVID dynamically partitions videos into temporally ordered segments to preserve temporal structure and applies a density-based token pruning strategy to maintain essential visual information. Our method significantly reduces computational overhead while maintaining temporal and visual integrity. Extensive evaluations show that FastVID achieves state-of-the-art performance across various short- and long-video benchmarks on leading Video LLMs, including LLaVA-OneVision and LLaVA-Video. Notably, FastVID effectively prunes 90% of video tokens while retaining 98.0% of LLaVA-OneVision's original performance. The code is available at https://github.com/LunarShen/FastVID.
☆ Multimodal-Aware Fusion Network for Referring Remote Sensing Image Segmentation
Referring remote sensing image segmentation (RRSIS) is a novel visual task in remote sensing images segmentation, which aims to segment objects based on a given text description, with great significance in practical application. Previous studies fuse visual and linguistic modalities by explicit feature interaction, which fail to effectively excavate useful multimodal information from dual-branch encoder. In this letter, we design a multimodal-aware fusion network (MAFN) to achieve fine-grained alignment and fusion between the two modalities. We propose a correlation fusion module (CFM) to enhance multi-scale visual features by introducing adaptively noise in transformer, and integrate cross-modal aware features. In addition, MAFN employs multi-scale refinement convolution (MSRC) to adapt to the various orientations of objects at different scales to boost their representation ability to enhances segmentation accuracy. Extensive experiments have shown that MAFN is significantly more effective than the state of the art on RRSIS-D datasets. The source code is available at https://github.com/Roaxy/MAFN.
comment: 5 pages, 5 figures, accepted in IEEE Geoscience and Remote Sensing Letters (GRSL)
☆ Multi-Stage Generative Upscaler: Reconstructing Football Broadcast Images via Diffusion Models
The reconstruction of low-resolution football broadcast images presents a significant challenge in sports broadcasting, where detailed visuals are essential for analysis and audience engagement. This study introduces a multi-stage generative upscaling framework leveraging Diffusion Models to enhance degraded images, transforming inputs as small as $64 \times 64$ pixels into high-fidelity $1024 \times 1024$ outputs. By integrating an image-to-image pipeline, ControlNet conditioning, and LoRA fine-tuning, our approach surpasses traditional upscaling methods in restoring intricate textures and domain-specific elements such as player details and jersey logos. The custom LoRA is trained on a custom football dataset, ensuring adaptability to sports broadcast needs. Experimental results demonstrate substantial improvements over conventional models, with ControlNet refining fine details and LoRA enhancing task-specific elements. These findings highlight the potential of diffusion-based image reconstruction in sports media, paving the way for future applications in automated video enhancement and real-time sports analytics.
☆ Zero-TIG: Temporal Consistency-Aware Zero-Shot Illumination-Guided Low-light Video Enhancement
Low-light and underwater videos suffer from poor visibility, low contrast, and high noise, necessitating enhancements in visual quality. However, existing approaches typically rely on paired ground truth, which limits their practicality and often fails to maintain temporal consistency. To overcome these obstacles, this paper introduces a novel zero-shot learning approach named Zero-TIG, leveraging the Retinex theory and optical flow techniques. The proposed network consists of an enhancement module and a temporal feedback module. The enhancement module comprises three subnetworks: low-light image denoising, illumination estimation, and reflection denoising. The temporal enhancement module ensures temporal consistency by incorporating histogram equalization, optical flow computation, and image warping to align the enhanced previous frame with the current frame, thereby maintaining continuity. Additionally, we address color distortion in underwater data by adaptively balancing RGB channels. The experimental results demonstrate that our method achieves low-light video enhancement without the need for paired training data, making it a promising and applicable method for real-world scenario enhancement.
Uncertainty-Aware Normal-Guided Gaussian Splatting for Surface Reconstruction from Sparse Image Sequences
3D Gaussian Splatting (3DGS) has achieved impressive rendering performance in novel view synthesis. However, its efficacy diminishes considerably in sparse image sequences, where inherent data sparsity amplifies geometric uncertainty during optimization. This often leads to convergence at suboptimal local minima, resulting in noticeable structural artifacts in the reconstructed scenes.To mitigate these issues, we propose Uncertainty-aware Normal-Guided Gaussian Splatting (UNG-GS), a novel framework featuring an explicit Spatial Uncertainty Field (SUF) to quantify geometric uncertainty within the 3DGS pipeline. UNG-GS enables high-fidelity rendering and achieves high-precision reconstruction without relying on priors. Specifically, we first integrate Gaussian-based probabilistic modeling into the training of 3DGS to optimize the SUF, providing the model with adaptive error tolerance. An uncertainty-aware depth rendering strategy is then employed to weight depth contributions based on the SUF, effectively reducing noise while preserving fine details. Furthermore, an uncertainty-guided normal refinement method adjusts the influence of neighboring depth values in normal estimation, promoting robust results. Extensive experiments demonstrate that UNG-GS significantly outperforms state-of-the-art methods in both sparse and dense sequences. The code will be open-source.
comment: 12 pages, 8 figures
☆ Neurons: Emulating the Human Visual Cortex Improves Fidelity and Interpretability in fMRI-to-Video Reconstruction
Decoding visual stimuli from neural activity is essential for understanding the human brain. While fMRI methods have successfully reconstructed static images, fMRI-to-video reconstruction faces challenges due to the need for capturing spatiotemporal dynamics like motion and scene transitions. Recent approaches have improved semantic and perceptual alignment but struggle to integrate coarse fMRI data with detailed visual features. Inspired by the hierarchical organization of the visual system, we propose NEURONS, a novel framework that decouples learning into four correlated sub-tasks: key object segmentation, concept recognition, scene description, and blurry video reconstruction. This approach simulates the visual cortex's functional specialization, allowing the model to capture diverse video content. In the inference stage, NEURONS generates robust conditioning signals for a pre-trained text-to-video diffusion model to reconstruct the videos. Extensive experiments demonstrate that NEURONS outperforms state-of-the-art baselines, achieving solid improvements in video consistency (26.6%) and semantic-level accuracy (19.1%). Notably, NEURONS shows a strong functional correlation with the visual cortex, highlighting its potential for brain-computer interfaces and clinical applications. Code and model weights will be available at: https://github.com/xmed-lab/NEURONS.
☆ A Benchmarking Study of Vision-based Robotic Grasping Algorithms
We present a benchmarking study of vision-based robotic grasping algorithms with distinct approaches, and provide a comparative analysis. In particular, we compare two machine-learning-based and two analytical algorithms using an existing benchmarking protocol from the literature and determine the algorithm's strengths and weaknesses under different experimental conditions. These conditions include variations in lighting, background textures, cameras with different noise levels, and grippers. We also run analogous experiments in simulations and with real robots and present the discrepancies. Some experiments are also run in two different laboratories using same protocols to further analyze the repeatability of our results. We believe that this study, comprising 5040 experiments, provides important insights into the role and challenges of systematic experimentation in robotic manipulation, and guides the development of new algorithms by considering the factors that could impact the performance. The experiment recordings and our benchmarking software are publicly available.
comment: Submitted to The IEEE Robotics and Automation Magazine
☆ Stabilizing Quantization-Aware Training by Implicit-Regularization on Hessian Matrix
Quantization-Aware Training (QAT) is one of the prevailing neural network compression solutions. However, its stability has been challenged for yielding deteriorating performances as the quantization error is inevitable. We find that the sharp landscape of loss, which leads to a dramatic performance drop, is an essential factor that causes instability. Theoretically, we have discovered that the perturbations in the feature would bring a flat local minima. However, simply adding perturbations into either weight or feature empirically deteriorates the performance of the Full Precision (FP) model. In this paper, we propose Feature-Perturbed Quantization (FPQ) to stochastically perturb the feature and employ the feature distillation method to the quantized model. Our method generalizes well to different network architectures and various QAT methods. Furthermore, we mathematically show that FPQ implicitly regularizes the Hessian norm, which calibrates the smoothness of a loss landscape. Extensive experiments demonstrate that our approach significantly outperforms the current State-Of-The-Art (SOTA) QAT methods and even the FP counterparts.
comment: 9 pages, 5 figures
☆ MoLEx: Mixture of Layer Experts for Finetuning with Sparse Upcycling
Large-scale pre-training of deep models, followed by fine-tuning them, has become the cornerstone of natural language processing (NLP). The prevalence of data coupled with computational resources has led to large models with a considerable number of parameters. While the massive size of these models has led to remarkable success in many NLP tasks, a detriment is the expense required to retrain all the base model's parameters for the adaptation to each task or domain. Parameter Efficient Fine-Tuning (PEFT) provides an effective solution for this challenge by minimizing the number of parameters required to be fine-tuned while maintaining the quality of the model. While existing methods have achieved impressive results, they mainly focus on adapting a subset of parameters, weight reparameterization, and prompt engineering. In this paper, we study layers as extractors of different types of linguistic information that are valuable when used in conjunction. We then propose the Mixture of Layer Experts (MoLEx), a novel sparse mixture of experts (SMoE) whose experts are layers in the pre-trained model. It performs a conditional computation of a mixture of layers during fine-tuning to provide the model with more structural knowledge about the data. By providing an avenue for information exchange between layers, MoLEx enables the model to make a more well-informed prediction for the downstream task, leading to better fine-tuning results with the same number of effective parameters. As experts can be processed in parallel, MoLEx introduces minimal additional computational overhead. We empirically corroborate the advantages of MoLEx when combined with popular PEFT baseline methods on a variety of downstream fine-tuning tasks, including the popular GLUE benchmark as well as the End-to-End Challenge (E2E). The code is publicly available at https://github.com/rachtsy/molex.
☆ GaussianIP: Identity-Preserving Realistic 3D Human Generation via Human-Centric Diffusion Prior CVPR 2025
Text-guided 3D human generation has advanced with the development of efficient 3D representations and 2D-lifting methods like Score Distillation Sampling (SDS). However, current methods suffer from prolonged training times and often produce results that lack fine facial and garment details. In this paper, we propose GaussianIP, an effective two-stage framework for generating identity-preserving realistic 3D humans from text and image prompts. Our core insight is to leverage human-centric knowledge to facilitate the generation process. In stage 1, we propose a novel Adaptive Human Distillation Sampling (AHDS) method to rapidly generate a 3D human that maintains high identity consistency with the image prompt and achieves a realistic appearance. Compared to traditional SDS methods, AHDS better aligns with the human-centric generation process, enhancing visual quality with notably fewer training steps. To further improve the visual quality of the face and clothes regions, we design a View-Consistent Refinement (VCR) strategy in stage 2. Specifically, it produces detail-enhanced results of the multi-view images from stage 1 iteratively, ensuring the 3D texture consistency across views via mutual attention and distance-guided attention fusion. Then a polished version of the 3D human can be achieved by directly perform reconstruction with the refined images. Extensive experiments demonstrate that GaussianIP outperforms existing methods in both visual quality and training efficiency, particularly in generating identity-preserving results. Our code is available at: https://github.com/silence-tang/GaussianIP.
comment: Accepted by CVPR 2025
☆ Minding Fuzzy Regions: A Data-driven Alternating Learning Paradigm for Stable Lesion Segmentation CVPR 2025
Deep learning has achieved significant advancements in medical image segmentation, but existing models still face challenges in accurately segmenting lesion regions. The main reason is that some lesion regions in medical images have unclear boundaries, irregular shapes, and small tissue density differences, leading to label ambiguity. However, the existing model treats all data equally without taking quality differences into account in the training process, resulting in noisy labels negatively impacting model training and unstable feature representations. In this paper, a data-driven alternating learning (DALE) paradigm is proposed to optimize the model's training process, achieving stable and high-precision segmentation. The paradigm focuses on two key points: (1) reducing the impact of noisy labels, and (2) calibrating unstable representations. To mitigate the negative impact of noisy labels, a loss consistency-based collaborative optimization method is proposed, and its effectiveness is theoretically demonstrated. Specifically, the label confidence parameters are introduced to dynamically adjust the influence of labels of different confidence levels during model training, thus reducing the influence of noise labels. To calibrate the learning bias of unstable representations, a distribution alignment method is proposed. This method restores the underlying distribution of unstable representations, thereby enhancing the discriminative capability of fuzzy region representations. Extensive experiments on various benchmarks and model backbones demonstrate the superiority of the DALE paradigm, achieving an average performance improvement of up to 7.16%.
comment: 10 pages, 11 figures, accepted by CVPR 2025
☆ SpaceSeg: A High-Precision Intelligent Perception Segmentation Method for Multi-Spacecraft On-Orbit Targets
With the continuous advancement of human exploration into deep space, intelligent perception and high-precision segmentation technology for on-orbit multi-spacecraft targets have become critical factors for ensuring the success of modern space missions. However, the complex deep space environment, diverse imaging conditions, and high variability in spacecraft morphology pose significant challenges to traditional segmentation methods. This paper proposes SpaceSeg, an innovative vision foundation model-based segmentation framework with four core technical innovations: First, the Multi-Scale Hierarchical Attention Refinement Decoder (MSHARD) achieves high-precision feature decoding through cross-resolution feature fusion via hierarchical attention. Second, the Multi-spacecraft Connected Component Analysis (MS-CCA) effectively resolves topological structure confusion in dense targets. Third, the Spatial Domain Adaptation Transform framework (SDAT) eliminates cross-domain disparities and resist spatial sensor perturbations through composite enhancement strategies. Finally, a custom Multi-Spacecraft Segmentation Task Loss Function is created to significantly improve segmentation robustness in deep space scenarios. To support algorithm validation, we construct the first multi-scale on-orbit multi-spacecraft semantic segmentation dataset SpaceES, which covers four types of spatial backgrounds and 17 typical spacecraft targets. In testing, SpaceSeg achieves state-of-the-art performance with 89.87$\%$ mIoU and 99.98$\%$ mAcc, surpassing existing best methods by 5.71 percentage points. The dataset and code are open-sourced at https://github.com/Akibaru/SpaceSeg to provide critical technical support for next-generation space situational awareness systems.
☆ Direction-Aware Diagonal Autoregressive Image Generation
The raster-ordered image token sequence exhibits a significant Euclidean distance between index-adjacent tokens at line breaks, making it unsuitable for autoregressive generation. To address this issue, this paper proposes Direction-Aware Diagonal Autoregressive Image Generation (DAR) method, which generates image tokens following a diagonal scanning order. The proposed diagonal scanning order ensures that tokens with adjacent indices remain in close proximity while enabling causal attention to gather information from a broader range of directions. Additionally, two direction-aware modules: 4D-RoPE and direction embeddings are introduced, enhancing the model's capability to handle frequent changes in generation direction. To leverage the representational capacity of the image tokenizer, we use its codebook as the image token embeddings. We propose models of varying scales, ranging from 485M to 2.0B. On the 256$\times$256 ImageNet benchmark, our DAR-XL (2.0B) outperforms all previous autoregressive image generators, achieving a state-of-the-art FID score of 1.37.
☆ DriveGEN: Generalized and Robust 3D Detection in Driving via Controllable Text-to-Image Diffusion Generation CVPR 2025
In autonomous driving, vision-centric 3D detection aims to identify 3D objects from images. However, high data collection costs and diverse real-world scenarios limit the scale of training data. Once distribution shifts occur between training and test data, existing methods often suffer from performance degradation, known as Out-of-Distribution (OOD) problems. To address this, controllable Text-to-Image (T2I) diffusion offers a potential solution for training data enhancement, which is required to generate diverse OOD scenarios with precise 3D object geometry. Nevertheless, existing controllable T2I approaches are restricted by the limited scale of training data or struggle to preserve all annotated 3D objects. In this paper, we present DriveGEN, a method designed to improve the robustness of 3D detectors in Driving via Training-Free Controllable Text-to-Image Diffusion Generation. Without extra diffusion model training, DriveGEN consistently preserves objects with precise 3D geometry across diverse OOD generations, consisting of 2 stages: 1) Self-Prototype Extraction: We empirically find that self-attention features are semantic-aware but require accurate region selection for 3D objects. Thus, we extract precise object features via layouts to capture 3D object geometry, termed self-prototypes. 2) Prototype-Guided Diffusion: To preserve objects across various OOD scenarios, we perform semantic-aware feature alignment and shallow feature alignment during denoising. Extensive experiments demonstrate the effectiveness of DriveGEN in improving 3D detection. The code is available at https://github.com/Hongbin98/DriveGEN.
comment: Accepted by CVPR 2025
☆ A Multi-Objective Evaluation Framework for Analyzing Utility-Fairness Trade-Offs in Machine Learning Systems
The evaluation of fairness models in Machine Learning involves complex challenges, such as defining appropriate metrics, balancing trade-offs between utility and fairness, and there are still gaps in this stage. This work presents a novel multi-objective evaluation framework that enables the analysis of utility-fairness trade-offs in Machine Learning systems. The framework was developed using criteria from Multi-Objective Optimization that collect comprehensive information regarding this complex evaluation task. The assessment of multiple Machine Learning systems is summarized, both quantitatively and qualitatively, in a straightforward manner through a radar chart and a measurement table encompassing various aspects such as convergence, system capacity, and diversity. The framework's compact representation of performance facilitates the comparative analysis of different Machine Learning strategies for decision-makers, in real-world applications, with single or multiple fairness requirements. The framework is model-agnostic and flexible to be adapted to any kind of Machine Learning systems, that is, black- or white-box, any kind and quantity of evaluation metrics, including multidimensional fairness criteria. The functionality and effectiveness of the proposed framework is shown with different simulations, and an empirical study conducted on a real-world dataset with various Machine Learning systems.
comment: 11 pages, 13 figures
☆ Beyond the Destination: A Novel Benchmark for Exploration-Aware Embodied Question Answering
Embodied Question Answering (EQA) is a challenging task in embodied intelligence that requires agents to dynamically explore 3D environments, actively gather visual information, and perform multi-step reasoning to answer questions. However, current EQA approaches suffer from critical limitations in exploration efficiency, dataset design, and evaluation metrics. Moreover, existing datasets often introduce biases or prior knowledge, leading to disembodied reasoning, while frontier-based exploration strategies struggle in cluttered environments and fail to ensure fine-grained exploration of task-relevant areas. To address these challenges, we construct the EXPloration-awaRe Embodied queStion anSwering Benchmark (EXPRESS-Bench), the largest dataset designed specifically to evaluate both exploration and reasoning capabilities. EXPRESS-Bench consists of 777 exploration trajectories and 2,044 question-trajectory pairs. To improve exploration efficiency, we propose Fine-EQA, a hybrid exploration model that integrates frontier-based and goal-oriented navigation to guide agents toward task-relevant regions more effectively. Additionally, we introduce a novel evaluation metric, Exploration-Answer Consistency (EAC), which ensures faithful assessment by measuring the alignment between answer grounding and exploration reliability. Extensive experimental comparisons with state-of-the-art EQA models demonstrate the effectiveness of our EXPRESS-Bench in advancing embodied exploration and question reasoning.
☆ Solution for 8th Competition on Affective & Behavior Analysis in-the-wild
In this report, we present our solution for the Action Unit (AU) Detection Challenge, in 8th Competition on Affective Behavior Analysis in-the-wild. In order to achieve robust and accurate classification of facial action unit in the wild environment, we introduce an innovative method that leverages audio-visual multimodal data. Our method employs ConvNeXt as the image encoder and uses Whisper to extract Mel spectrogram features. For these features, we utilize a Transformer encoder-based feature fusion module to integrate the affective information embedded in audio and image features. This ensures the provision of rich high-dimensional feature representations for the subsequent multilayer perceptron (MLP) trained on the Aff-Wild2 dataset, enhancing the accuracy of AU detection.
☆ Quantifying Interpretability in CLIP Models with Concept Consistency
CLIP is one of the most popular foundational models and is heavily used for many vision-language tasks. However, little is known about the inner workings of CLIP. While recent work has proposed decomposition-based interpretability methods for identifying textual descriptions of attention heads in CLIP, the implications of conceptual consistency in these text labels on interpretability and model performance has not been explored. To bridge this gap, we study the conceptual consistency of text descriptions for attention heads in CLIP-like models. We conduct extensive experiments on six different models from OpenAI and OpenCLIP which vary by size, type of pre-training data and patch size. We propose Concept Consistency Score (CCS), a novel interpretability metric that measures how consistently individual attention heads in CLIP models align with specific concepts. To assign concept labels to heads, we use in-context learning with ChatGPT, guided by a few manually-curated examples, and validate these labels using an LLM-as-a-judge approach. Our soft-pruning experiments reveal that high CCS heads are critical for preserving model performance, as pruning them leads to a significantly larger performance drop than pruning random or low CCS heads. Notably, we find that high CCS heads capture essential concepts and play a key role in out-of-domain detection, concept-specific reasoning, and video-language understanding. These results position CCS as a powerful interpretability metric for analyzing CLIP-like models.
☆ A Survey on Self-supervised Contrastive Learning for Multimodal Text-Image Analysis
Self-supervised learning is a machine learning approach that generates implicit labels by learning underlined patterns and extracting discriminative features from unlabeled data without manual labelling. Contrastive learning introduces the concept of "positive" and "negative" samples, where positive pairs (e.g., variation of the same image/object) are brought together in the embedding space, and negative pairs (e.g., views from different images/objects) are pushed farther away. This methodology has shown significant improvements in image understanding and image text analysis without much reliance on labeled data. In this paper, we comprehensively discuss the terminologies, recent developments and applications of contrastive learning with respect to text-image models. Specifically, we provide an overview of the approaches of contrastive learning in text-image models in recent years. Secondly, we categorize the approaches based on different model structures. Thirdly, we further introduce and discuss the latest advances of the techniques used in the process such as pretext tasks for both images and text, architectural structures, and key trends. Lastly, we discuss the recent state-of-art applications of self-supervised contrastive learning Text-Image based models.
A Novel Decomposed Feature-Oriented Framework for Open-Set Semantic Segmentation on LiDAR Data ICRA
Semantic segmentation is a key technique that enables mobile robots to understand and navigate surrounding environments autonomously. However, most existing works focus on segmenting known objects, overlooking the identification of unknown classes, which is common in real-world applications. In this paper, we propose a feature-oriented framework for open-set semantic segmentation on LiDAR data, capable of identifying unknown objects while retaining the ability to classify known ones. We design a decomposed dual-decoder network to simultaneously perform closed-set semantic segmentation and generate distinctive features for unknown objects. The network is trained with multi-objective loss functions to capture the characteristics of known and unknown objects. Using the extracted features, we introduce an anomaly detection mechanism to identify unknown objects. By integrating the results of close-set semantic segmentation and anomaly detection, we achieve effective feature-driven LiDAR open-set semantic segmentation. Evaluations on both SemanticKITTI and nuScenes datasets demonstrate that our proposed framework significantly outperforms state-of-the-art methods. The source code will be made publicly available at https://github.com/nubot-nudt/DOSS.
comment: This paper has been accepted by 2025 ICRA
☆ Augmenting Image Annotation: A Human-LMM Collaborative Framework for Efficient Object Selection and Label Generation ICLR 2025
Traditional image annotation tasks rely heavily on human effort for object selection and label assignment, making the process time-consuming and prone to decreased efficiency as annotators experience fatigue after extensive work. This paper introduces a novel framework that leverages the visual understanding capabilities of large multimodal models (LMMs), particularly GPT, to assist annotation workflows. In our proposed approach, human annotators focus on selecting objects via bounding boxes, while the LMM autonomously generates relevant labels. This human-AI collaborative framework enhances annotation efficiency by reducing the cognitive and time burden on human annotators. By analyzing the system's performance across various types of annotation tasks, we demonstrate its ability to generalize to tasks such as object recognition, scene description, and fine-grained categorization. Our proposed framework highlights the potential of this approach to redefine annotation workflows, offering a scalable and efficient solution for large-scale data labeling in computer vision. Finally, we discuss how integrating LMMs into the annotation pipeline can advance bidirectional human-AI alignment, as well as the challenges of alleviating the "endless annotation" burden in the face of information overload by shifting some of the work to AI.
comment: This paper will appear at ICLR 2025 Workshop on Bidirectional Human-AI Alignment
☆ Open3DVQA: A Benchmark for Comprehensive Spatial Reasoning with Multimodal Large Language Model in Open Space
Spatial reasoning is a fundamental capability of embodied agents and has garnered widespread attention in the field of multimodal large language models (MLLMs). In this work, we propose a novel benchmark, Open3DVQA, to comprehensively evaluate the spatial reasoning capacities of current state-of-the-art (SOTA) foundation models in open 3D space. Open3DVQA consists of 9k VQA samples, collected using an efficient semi-automated tool in a high-fidelity urban simulator. We evaluate several SOTA MLLMs across various aspects of spatial reasoning, such as relative and absolute spatial relationships, situational reasoning, and object-centric spatial attributes. Our results reveal that: 1) MLLMs perform better at answering questions regarding relative spatial relationships than absolute spatial relationships, 2) MLLMs demonstrate similar spatial reasoning abilities for both egocentric and allocentric perspectives, and 3) Fine-tuning large models significantly improves their performance across different spatial reasoning tasks. We believe that our open-source data collection tools and in-depth analyses will inspire further research on MLLM spatial reasoning capabilities. The benchmark is available at https://github.com/WeichenZh/Open3DVQA.
☆ OmniDiff: A Comprehensive Benchmark for Fine-grained Image Difference Captioning
Image Difference Captioning (IDC) aims to generate natural language descriptions of subtle differences between image pairs, requiring both precise visual change localization and coherent semantic expression. Despite recent advancements, existing datasets often lack breadth and depth, limiting their applicability in complex and dynamic environments: (1) from a breadth perspective, current datasets are constrained to limited variations of objects in specific scenes, and (2) from a depth perspective, prior benchmarks often provide overly simplistic descriptions. To address these challenges, we introduce OmniDiff, a comprehensive dataset comprising 324 diverse scenarios-spanning real-world complex environments and 3D synthetic settings-with fine-grained human annotations averaging 60 words in length and covering 12 distinct change types. Building on this foundation, we propose M$^3$Diff, a MultiModal large language model enhanced by a plug-and-play Multi-scale Differential Perception (MDP) module. This module improves the model's ability to accurately identify and describe inter-image differences while maintaining the foundational model's generalization capabilities. With the addition of the OmniDiff dataset, M$^3$Diff achieves state-of-the-art performance across multiple benchmarks, including Spot-the-Diff, IEdit, CLEVR-Change, CLEVR-DC, and OmniDiff, demonstrating significant improvements in cross-scenario difference recognition accuracy compared to existing methods. The dataset, code, and models will be made publicly available to support further research.
Aerial Vision-and-Language Navigation with Grid-based View Selection and Map Construction
Aerial Vision-and-Language Navigation (Aerial VLN) aims to obtain an unmanned aerial vehicle agent to navigate aerial 3D environments following human instruction. Compared to ground-based VLN, aerial VLN requires the agent to decide the next action in both horizontal and vertical directions based on the first-person view observations. Previous methods struggle to perform well due to the longer navigation path, more complicated 3D scenes, and the neglect of the interplay between vertical and horizontal actions. In this paper, we propose a novel grid-based view selection framework that formulates aerial VLN action prediction as a grid-based view selection task, incorporating vertical action prediction in a manner that accounts for the coupling with horizontal actions, thereby enabling effective altitude adjustments. We further introduce a grid-based bird's eye view map for aerial space to fuse the visual information in the navigation history, provide contextual scene information, and mitigate the impact of obstacles. Finally, a cross-modal transformer is adopted to explicitly align the long navigation history with the instruction. We demonstrate the superiority of our method in extensive experiments.
comment: Under Submission
☆ EmbodiedVSR: Dynamic Scene Graph-Guided Chain-of-Thought Reasoning for Visual Spatial Tasks
While multimodal large language models (MLLMs) have made groundbreaking progress in embodied intelligence, they still face significant challenges in spatial reasoning for complex long-horizon tasks. To address this gap, we propose EmbodiedVSR (Embodied Visual Spatial Reasoning), a novel framework that integrates dynamic scene graph-guided Chain-of-Thought (CoT) reasoning to enhance spatial understanding for embodied agents. By explicitly constructing structured knowledge representations through dynamic scene graphs, our method enables zero-shot spatial reasoning without task-specific fine-tuning. This approach not only disentangles intricate spatial relationships but also aligns reasoning steps with actionable environmental dynamics. To rigorously evaluate performance, we introduce the eSpatial-Benchmark, a comprehensive dataset including real-world embodied scenarios with fine-grained spatial annotations and adaptive task difficulty levels. Experiments demonstrate that our framework significantly outperforms existing MLLM-based methods in accuracy and reasoning coherence, particularly in long-horizon tasks requiring iterative environment interaction. The results reveal the untapped potential of MLLMs for embodied intelligence when equipped with structured, explainable reasoning mechanisms, paving the way for more reliable deployment in real-world spatial applications. The codes and datasets will be released soon.
comment: technical report
♻ ☆ The Curse of Conditions: Analyzing and Improving Optimal Transport for Conditional Flow-Based Generation
Minibatch optimal transport coupling straightens paths in unconditional flow matching. This leads to computationally less demanding inference as fewer integration steps and less complex numerical solvers can be employed when numerically solving an ordinary differential equation at test time. However, in the conditional setting, minibatch optimal transport falls short. This is because the default optimal transport mapping disregards conditions, resulting in a conditionally skewed prior distribution during training. In contrast, at test time, we have no access to the skewed prior, and instead sample from the full, unbiased prior distribution. This gap between training and testing leads to a subpar performance. To bridge this gap, we propose conditional optimal transport C^2OT that adds a conditional weighting term in the cost matrix when computing the optimal transport assignment. Experiments demonstrate that this simple fix works with both discrete and continuous conditions in 8gaussians-to-moons, CIFAR-10, ImageNet-32x32, and ImageNet-256x256. Our method performs better overall compared to the existing baselines across different function evaluation budgets. Code is available at https://hkchengrex.github.io/C2OT
comment: Project page: https://hkchengrex.github.io/C2OT
♻ ☆ Distilling Diversity and Control in Diffusion Models
Distilled diffusion models suffer from a critical limitation: reduced sample diversity compared to their base counterparts. In this work, we uncover that despite this diversity loss, distilled models retain the fundamental concept representations of base models. We demonstrate control distillation - where control mechanisms like Concept Sliders and LoRAs trained on base models can be seamlessly transferred to distilled models and vice-versa, effectively distilling control without any retraining. This preservation of representational structure prompted our investigation into the mechanisms of diversity collapse during distillation. To understand how distillation affects diversity, we introduce Diffusion Target (DT) Visualization, an analysis and debugging tool that reveals how models predict final outputs at intermediate steps. Through DT-Visualization, we identify generation artifacts, inconsistencies, and demonstrate that initial diffusion timesteps disproportionately determine output diversity, while later steps primarily refine details. Based on these insights, we introduce diversity distillation - a hybrid inference approach that strategically employs the base model for only the first critical timestep before transitioning to the efficient distilled model. Our experiments demonstrate that this simple modification not only restores the diversity capabilities from base to distilled models but surprisingly exceeds it, while maintaining nearly the computational efficiency of distilled inference, all without requiring additional training or model modifications. Our code and data are available at https://distillation.baulab.info
comment: Project Page: https://distillation.baulab.info
♻ ☆ Dual-Stage Cross-Modal Network with Dynamic Feature Fusion for Emotional Mimicry Intensity Estimation
Emotional Mimicry Intensity (EMI) estimation serves as a critical technology for understanding human social behavior and enhancing human-computer interaction experiences, where the core challenge lies in dynamic correlation modeling and robust fusion of multimodal temporal signals. To address the limitations of existing methods in insufficient exploitation of modal synergistic effects, noise sensitivity, and limited fine-grained alignment capabilities, this paper proposes a dual-stage cross-modal alignment framework. First, we construct vision-text and audio-text contrastive learning networks based on an improved CLIP architecture, achieving preliminary alignment in the feature space through modality-decoupled pre-training. Subsequently, we design a temporal-aware dynamic fusion module that combines Temporal Convolutional Networks (TCN) and gated bidirectional LSTM to respectively capture the macro-evolution patterns of facial expressions and local dynamics of acoustic features. Innovatively, we introduce a quality-guided modality fusion strategy that enables modality compensation under occlusion and noisy scenarios through differentiable weight allocation. Experimental results on the Hume-Vidmimic2 dataset demonstrate that our method achieves an average Pearson correlation coefficient of 0.35 across six emotion dimensions, outperforming the best baseline by 40\%. Ablation studies further validate the effectiveness of the dual-stage training strategy and dynamic fusion mechanism, providing a novel technical pathway for fine-grained emotion analysis in open environments.
♻ ☆ Category Prompt Mamba Network for Nuclei Segmentation and Classification
Nuclei segmentation and classification provide an essential basis for tumor immune microenvironment analysis. The previous nuclei segmentation and classification models require splitting large images into smaller patches for training, leading to two significant issues. First, nuclei at the borders of adjacent patches often misalign during inference. Second, this patch-based approach significantly increases the model's training and inference time. Recently, Mamba has garnered attention for its ability to model large-scale images with linear time complexity and low memory consumption. It offers a promising solution for training nuclei segmentation and classification models on full-sized images. However, the Mamba orientation-based scanning method lacks account for category-specific features, resulting in sub-optimal performance in scenarios with imbalanced class distributions. To address these challenges, this paper introduces a novel scanning strategy based on category probability sorting, which independently ranks and scans features for each category according to confidence from high to low. This approach enhances the feature representation of uncertain samples and mitigates the issues caused by imbalanced distributions. Extensive experiments conducted on four public datasets demonstrate that our method outperforms state-of-the-art approaches, delivering superior performance in nuclei segmentation and classification tasks.
♻ ☆ PEMF-VTO: Point-Enhanced Video Virtual Try-on via Mask-free Paradigm
Video Virtual Try-on aims to seamlessly transfer a reference garment onto a target person in a video while preserving both visual fidelity and temporal coherence. Existing methods typically rely on inpainting masks to define the try-on area, enabling accurate garment transfer for simple scenes (e.g., in-shop videos). However, these mask-based approaches struggle with complex real-world scenarios, as overly large and inconsistent masks often destroy spatial-temporal information, leading to distorted results. Mask-free methods alleviate this issue but face challenges in accurately determining the try-on area, especially for videos with dynamic body movements. To address these limitations, we propose PEMF-VTO, a novel Point-Enhanced Mask-Free Video Virtual Try-On framework that leverages sparse point alignments to explicitly guide garment transfer. Our key innovation is the introduction of point-enhanced guidance, which provides flexible and reliable control over both spatial-level garment transfer and temporal-level video coherence. Specifically, we design a Point-Enhanced Transformer (PET) with two core components: Point-Enhanced Spatial Attention (PSA), which uses frame-cloth point alignments to precisely guide garment transfer, and Point-Enhanced Temporal Attention (PTA), which leverages frame-frame point correspondences to enhance temporal coherence and ensure smooth transitions across frames. Extensive experiments demonstrate that our PEMF-VTO outperforms state-of-the-art methods, generating more natural, coherent, and visually appealing try-on videos, particularly for challenging in-the-wild scenarios. The link to our paper's homepage is https://pemf-vto.github.io/.
♻ ☆ An Ensemble-Based Two-Step Framework for Classification of Pap Smear Cell Images
Early detection of cervical cancer is crucial for improving patient outcomes and reducing mortality by identifying precancerous lesions as soon as possible. As a result, the use of pap smear screening has significantly increased, leading to a growing demand for automated tools that can assist cytologists managing their rising workload. To address this, the Pap Smear Cell Classification Challenge (PS3C) has been organized in association with ISBI in 2025. This project aims to promote the development of automated tools for pap smear images classification. The analyzed images are grouped into four categories: healthy, unhealthy, both, and rubbish images which are considered as unsuitable for diagnosis. In this work, we propose a two-stage ensemble approach: first, a neural network determines whether an image is rubbish or not. If not, a second neural network classifies the image as containing a healthy cell, an unhealthy cell, or both.
comment: 7 pages, 3 figures, Grand Challenge paper accepted at ISBI 2025
♻ ☆ Through the Magnifying Glass: Adaptive Perception Magnification for Hallucination-Free VLM Decoding
Existing vision-language models (VLMs) often suffer from visual hallucination, where the generated responses contain inaccuracies that are not grounded in the visual input. Efforts to address this issue without model finetuning primarily mitigate hallucination by reducing biases contrastively or amplifying the weights of visual embedding during decoding. However, these approaches improve visual perception at the cost of impairing the language reasoning capability. In this work, we propose the Perception Magnifier (PM), a novel visual decoding method that iteratively isolates relevant visual tokens based on attention and magnifies the corresponding regions, spurring the model to concentrate on fine-grained visual details during decoding. Specifically, by magnifying critical regions while preserving the structural and contextual information at each decoding step, PM allows the VLM to enhance its scrutiny of the visual input, hence producing more accurate and faithful responses. Extensive experimental results demonstrate that PM not only achieves superior hallucination mitigation but also enhances language generation while preserving strong reasoning capabilities. Code is available at https://github.com/ShunqiM/PM .
comment: 19 pages, 5 figures, 9 tables
♻ ☆ Filter, Correlate, Compress: Training-Free Token Reduction for MLLM Acceleration
The quadratic complexity of Multimodal Large Language Models (MLLMs) with respect to sequence length poses significant computational and memory challenges, hindering their real-world deployment. While existing training-free token reduction methods aim to address these inefficiencies, how to precisely identify redundant visual tokens and recover the essential information from the discarded tokens remain unclear. In this paper, we propose a ''filter-correlate-compress'' framework that decomposes the token reduction into three stages: filtering redundant tokens, correlating discarded information to preserved tokens, and compressing tokens to minimize redundancy. Following the framework, we propose a solution FiCoCo to identify limitations in single redundancy assessment, propose adaptive strategies to retain critical information from discarded tokens, and mitigate semantic dilution during token fusion. Two specialized variants, FiCoCo-V (for vision encoders) and FiCoCo-L (for LLM decoders), further optimize efficiency across MLLM architectures. Extensive experiments demonstrate that FiCoCo achieves up to 5.7x/14.7x FLOPs reduction with 92.8%/93.6% performance retention on LLaVA-1.5-7B/LLaVA-NeXT-7B. Our methods consistently outperform state-of-the-art training-free approaches, showcasing effectiveness and generalizability across model architectures, sizes, and tasks without requiring retraining. Our project page is at https://ficoco-accelerate.github.io/.
♻ ☆ Towards Few-Call Model Stealing via Active Self-Paced Knowledge Distillation and Diffusion-Based Image Generation
Diffusion models showcase strong capabilities in image synthesis, being used in many computer vision tasks with great success. To this end, we propose to explore a new use case, namely to copy black-box classification models without having access to the original training data, the architecture, and the weights of the model, i.e. the model is only exposed through an inference API. More specifically, we can only observe the (soft or hard) labels for some image samples passed as input to the model. Furthermore, we consider an additional constraint limiting the number of model calls, mostly focusing our research on few-call model stealing. In order to solve the model extraction task given the applied restrictions, we propose the following framework. As training data, we create a synthetic data set (called proxy data set) by leveraging the ability of diffusion models to generate realistic and diverse images. Given a maximum number of allowed API calls, we pass the respective number of samples through the black-box model to collect labels. Finally, we distill the knowledge of the black-box teacher (attacked model) into a student model (copy of the attacked model), harnessing both labeled and unlabeled data generated by the diffusion model. We employ a novel active self-paced learning framework to make the most of the proxy data during distillation. Our empirical results on three data sets confirm the superiority of our framework over four state-of-the-art methods in the few-call model extraction scenario. We release our code for free non-commercial use at https://github.com/vladhondru25/model-stealing.
comment: Accepted in Artificial Intelligence Review
♻ ☆ Anchors Aweigh! Sail for Optimal Unified Multi-Modal Representations
A unified representation space in multi-modal learning is essential for effectively integrating diverse data sources, such as text, images, and audio, to enhance efficiency and performance across various downstream tasks. Recent binding methods, such as ImageBind (Girdhar et al., 2023), typically rely on a single, fixed anchor modality for aligning multi-modal data. We mathematically analyze these fixed anchor binding method and uncover significant limitations: (1) over-reliance on the choice of the anchor modality, (2) inadequate capture of intra-modal information, and (3) failure to account for cross-modal correlation among non-anchored modalities. To address these issues, we propose the need for adaptive anchor binding methods, exemplified by our framework CentroBind. The proposed method uses adaptively adjustable centroid-based anchors generated from all available modalities, leading to a balanced and rich representation space. We theoretically demonstrate that our approach captures three critical properties of multi-modal learning -- intra-modal learning, inter-modal learning, and multi-modal alignment -- while constructing a unified representation that spans all modalities. Experiments on both synthetic and real-world datasets show that adaptive anchor methods such as CentroBind consistently outperform fixed anchor binding methods, verifying our analysis.
♻ ☆ Affinity-VAE: incorporating prior knowledge in representation learning from scientific images
Learning compact and interpretable representations of data is a critical challenge in scientific image analysis. Here, we introduce Affinity-VAE, a generative model that enables us to impose our scientific intuition about the similarity of instances in the dataset on the learned representation during training. We demonstrate the utility of the approach in the scientific domain of cryo-electron tomography (cryo-ET) where a significant current challenge is to identify similar molecules within a noisy and low contrast tomographic image volume. This task is distinct from classification in that, at inference time, it is unknown whether an instance is part of the training set or not. We trained affinity-VAE using prior knowledge of protein structure to inform the latent space. Our model is able to create rotationally-invariant, morphologically homogeneous clusters in the latent representation, with improved cluster separation compared to other approaches. It achieves competitive performance on protein classification with the added benefit of disentangling object pose, structural similarity and an interpretable latent representation. In the context of cryo-ET data, affinity-VAE captures the orientation of identified proteins in 3D which can be used as a prior for subsequent scientific experiments. Extracting physical principles from a trained network is of significant importance in scientific imaging where a ground truth training set is not always feasible.
♻ ☆ Training Noise Token Pruning
In the present work we present Training Noise Token (TNT) Pruning for vision transformers. Our method relaxes the discrete token dropping condition to continuous additive noise, providing smooth optimization in training, while retaining discrete dropping computational gains in deployment settings. We provide theoretical connections to Rate-Distortion literature, and empirical evaluations on the ImageNet dataset using ViT and DeiT architectures demonstrating TNT's advantages over previous pruning methods.
comment: 25 pages, 8 figures
♻ ☆ AdaptGCD: Multi-Expert Adapter Tuning for Generalized Category Discovery
Different from the traditional semi-supervised learning paradigm that is constrained by the close-world assumption, Generalized Category Discovery (GCD) presumes that the unlabeled dataset contains new categories not appearing in the labeled set, and aims to not only classify old categories but also discover new categories in the unlabeled data. Existing studies on GCD typically devote to transferring the general knowledge from the self-supervised pretrained model to the target GCD task via some fine-tuning strategies, such as partial tuning and prompt learning. Nevertheless, these fine-tuning methods fail to make a sound balance between the generalization capacity of pretrained backbone and the adaptability to the GCD task. To fill this gap, in this paper, we propose a novel adapter-tuning-based method named AdaptGCD, which is the first work to introduce the adapter tuning into the GCD task and provides some key insights expected to enlighten future research. Furthermore, considering the discrepancy of supervision information between the old and new classes, a multi-expert adapter structure equipped with a route assignment constraint is elaborately devised, such that the data from old and new classes are separated into different expert groups. Extensive experiments are conducted on 7 widely-used datasets. The remarkable improvements in performance highlight the effectiveness of our proposals.
♻ ☆ Visual Adaptive Prompting for Compositional Zero-Shot Learning
Vision-Language Models (VLMs) have demonstrated impressive capabilities in learning joint representations of visual and textual data, making them powerful tools for tasks such as Compositional Zero-Shot Learning (CZSL). CZSL requires models to generalize to novel combinations of visual primitives-such as attributes and objects-that were not explicitly encountered during training. Recent works in prompting for CZSL have focused on modifying inputs for the text encoder, often using static prompts that do not change across varying visual contexts. However, these approaches struggle to fully capture varying visual contexts, as they focus on text adaptation rather than leveraging visual features for compositional reasoning. To address this, we propose Visual Adaptive Prompting System (VAPS) that leverages a learnable visual prompt repository and similarity-based retrieval mechanism within the framework of VLMs to bridge the gap between semantic and visual features. Our method introduces a dynamic visual prompt repository mechanism that selects the most relevant attribute and object prompts based on the visual features of the image. Our proposed system includes a visual prompt adapter that encourages the model to learn a more generalizable embedding space. Experiments on three CZSL benchmarks, across both closed and open-world scenarios, demonstrate state-of-the-art results.
♻ ☆ Multi-modal Vision Pre-training for Medical Image Analysis
Self-supervised learning has greatly facilitated medical image analysis by suppressing the training data requirement for real-world applications. Current paradigms predominantly rely on self-supervision within uni-modal image data, thereby neglecting the inter-modal correlations essential for effective learning of cross-modal image representations. This limitation is particularly significant for naturally grouped multi-modal data, e.g., multi-parametric MRI scans for a patient undergoing various functional imaging protocols in the same study. To bridge this gap, we conduct a novel multi-modal image pre-training with three proxy tasks to facilitate the learning of cross-modality representations and correlations using multi-modal brain MRI scans (over 2.4 million images in 16,022 scans of 3,755 patients), i.e., cross-modal image reconstruction, modality-aware contrastive learning, and modality template distillation. To demonstrate the generalizability of our pre-trained model, we conduct extensive experiments on various benchmarks with ten downstream tasks. The superior performance of our method is reported in comparison to state-of-the-art pre-training methods, with Dice Score improvement of 0.28\%-14.47\% across six segmentation benchmarks and a consistent accuracy boost of 0.65\%-18.07\% in four individual image classification tasks.
♻ ☆ Aligning First, Then Fusing: A Novel Weakly Supervised Multimodal Violence Detection Method
Weakly supervised violence detection refers to the technique of training models to identify violent segments in videos using only video-level labels. Among these approaches, multimodal violence detection, which integrates modalities such as audio and optical flow, holds great potential. Existing methods in this domain primarily focus on designing multimodal fusion models to address modality discrepancies. In contrast, we take a different approach; leveraging the inherent discrepancies across modalities in violence event representation to propose a novel multimodal semantic feature alignment method. This method sparsely maps the semantic features of local, transient, and less informative modalities ( such as audio and optical flow ) into the more informative RGB semantic feature space. Through an iterative process, the method identifies the suitable no-zero feature matching subspace and aligns the modality-specific event representations based on this subspace, enabling the full exploitation of information from all modalities during the subsequent modality fusion stage. Building on this, we design a new weakly supervised violence detection framework that consists of unimodal multiple-instance learning for extracting unimodal semantic features, multimodal alignment, multimodal fusion, and final detection. Experimental results on benchmark datasets demonstrate the effectiveness of our method, achieving an average precision (AP) of 86.07% on the XD-Violence dataset. Our code is available at https://github.com/xjpp2016/MAVD.
♻ ☆ VideoTree: Adaptive Tree-based Video Representation for LLM Reasoning on Long Videos CVPR 2025
Long-form video understanding is complicated by the high redundancy of video data and the abundance of query-irrelevant information. To tackle these challenges, we propose VideoTree, a training-free framework which builds a query-adaptive and hierarchical video representation for LLM reasoning over long-form videos. First, VideoTree extracts query-relevant information from the input video through an iterative process, progressively refining the selection of keyframes based on their relevance to the query. Furthermore, VideoTree leverages the inherent hierarchical structure of long video data, which is often overlooked by existing LLM-based methods. Specifically, we incorporate multi-granularity information into a tree-based representation, allowing VideoTree to extract query-relevant details from long videos in a coarse-to-fine manner. This enables the model to effectively handle a wide range of video queries with varying levels of detail. Finally, VideoTree aggregates the hierarchical query-relevant information within the tree structure and feeds it into an LLM reasoning model to answer the query. Our experiments show that our method improves both reasoning accuracy and efficiency. Specifically, VideoTree outperforms existing training-free approaches on EgoSchema and NExT-QA with less inference time, achieving 61.1% and 75.6% accuracy on the test set without additional video-specific training. Moreover, on the long split of Video-MME (average 44 minutes), VideoTree achieves better performance than GPT-4V and many other MLLMs that were extensively trained on video data.
comment: CVPR 2025; First three authors contributed equally; Project page: https://videotree2024.github.io/
♻ ☆ RectifiedHR: Enable Efficient High-Resolution Image Generation via Energy Rectification
Diffusion models have achieved remarkable advances in various image generation tasks. However, their performance notably declines when generating images at resolutions higher than those used during the training period. Despite the existence of numerous methods for producing high-resolution images, they either suffer from inefficiency or are hindered by complex operations. In this paper, we propose RectifiedHR, an straightforward and efficient solution for training-free high-resolution image generation. Specifically, we introduce the noise refresh strategy, which theoretically only requires a few lines of code to unlock the model's high-resolution generation ability and improve efficiency. Additionally, we first observe the phenomenon of energy decay that may cause image blurriness during the high-resolution image generation process. To address this issue, we introduce average latent energy analysis and discover that an improved classifier-free guidance hyperparameter can significantly enhance generation performance. Our method is entirely training-free and boasts a simple implementation logic and efficient performance. Through extensive comparisons with numerous baseline methods, our RectifiedHR demonstrates superior effectiveness and efficiency.
comment: Project Page: https://zhenyangcs.github.io/RectifiedHR-Diffusion/
♻ ☆ Towards Sample-specific Backdoor Attack with Clean Labels via Attribute Trigger SC
Currently, sample-specific backdoor attacks (SSBAs) are the most advanced and malicious methods since they can easily circumvent most of the current backdoor defenses. In this paper, we reveal that SSBAs are not sufficiently stealthy due to their poisoned-label nature, where users can discover anomalies if they check the image-label relationship. In particular, we demonstrate that it is ineffective to directly generalize existing SSBAs to their clean-label variants by poisoning samples solely from the target class. We reveal that it is primarily due to two reasons, including \textbf{(1)} the `antagonistic effects' of ground-truth features and \textbf{(2)} the learning difficulty of sample-specific features. Accordingly, trigger-related features of existing SSBAs cannot be effectively learned under the clean-label setting due to their mild trigger intensity required for ensuring stealthiness. We argue that the intensity constraint of existing SSBAs is mostly because their trigger patterns are `content-irrelevant' and therefore act as `noises' for both humans and DNNs. Motivated by this understanding, we propose to exploit content-relevant features, $a.k.a.$ (human-relied) attributes, as the trigger patterns to design clean-label SSBAs. This new attack paradigm is dubbed backdoor attack with attribute trigger (BAAT). Extensive experiments are conducted on benchmark datasets, which verify the effectiveness of our BAAT and its resistance to existing defenses.
comment: This paper is accepted by IEEE Transactions on Dependable and Secure Computing (TDSC), 2025. The first two authors contributed equally to this work. 14 pages
♻ ☆ Data Pruning in Generative Diffusion Models
Data pruning is the problem of identifying a core subset that is most beneficial to training and discarding the remainder. While pruning strategies are well studied for discriminative models like those used in classification, little research has gone into their application to generative models. Generative models aim to estimate the underlying distribution of the data, so presumably they should benefit from larger datasets. In this work we aim to shed light on the accuracy of this statement, specifically answer the question of whether data pruning for generative diffusion models could have a positive impact. Contrary to intuition, we show that eliminating redundant or noisy data in large datasets is beneficial particularly when done strategically. We experiment with several pruning methods including recent-state-of-art methods, and evaluate over CelebA-HQ and ImageNet datasets. We demonstrate that a simple clustering method outperforms other sophisticated and computationally demanding methods. We further exhibit how we can leverage clustering to balance skewed datasets in an unsupervised manner to allow fair sampling for underrepresented populations in the data distribution, which is a crucial problem in generative models.
♻ ☆ Compositional Generative Model of Unbounded 4D Cities
3D scene generation has garnered growing attention in recent years and has made significant progress. Generating 4D cities is more challenging than 3D scenes due to the presence of structurally complex, visually diverse objects like buildings and vehicles, and heightened human sensitivity to distortions in urban environments. To tackle these issues, we propose CityDreamer4D, a compositional generative model specifically tailored for generating unbounded 4D cities. Our main insights are 1) 4D city generation should separate dynamic objects (e.g., vehicles) from static scenes (e.g., buildings and roads), and 2) all objects in the 4D scene should be composed of different types of neural fields for buildings, vehicles, and background stuff. Specifically, we propose Traffic Scenario Generator and Unbounded Layout Generator to produce dynamic traffic scenarios and static city layouts using a highly compact BEV representation. Objects in 4D cities are generated by combining stuff-oriented and instance-oriented neural fields for background stuff, buildings, and vehicles. To suit the distinct characteristics of background stuff and instances, the neural fields employ customized generative hash grids and periodic positional embeddings as scene parameterizations. Furthermore, we offer a comprehensive suite of datasets for city generation, including OSM, GoogleEarth, and CityTopia. The OSM dataset provides a variety of real-world city layouts, while the Google Earth and CityTopia datasets deliver large-scale, high-quality city imagery complete with 3D instance annotations. Leveraging its compositional design, CityDreamer4D supports a range of downstream applications, such as instance editing, city stylization, and urban simulation, while delivering state-of-the-art performance in generating realistic 4D cities.
♻ ☆ Enhanced Low-Dose CT Image Reconstruction by Domain and Task Shifting Gaussian Denoisers
Computed tomography from a low radiation dose (LDCT) is challenging due to high noise in the projection data. Popular approaches for LDCT image reconstruction are two-stage methods, typically consisting of the filtered backprojection (FBP) algorithm followed by a neural network for LDCT image enhancement. Two-stage methods are attractive for their simplicity and potential for computational efficiency, typically requiring only a single FBP and a neural network forward pass for inference. However, the best reconstruction quality is currently achieved by unrolled iterative methods (Learned Primal-Dual and ItNet), which are more complex and thus have a higher computational cost for training and inference. We propose a method combining the simplicity and efficiency of two-stage methods with state-of-the-art reconstruction quality. Our strategy utilizes a neural network pretrained for Gaussian noise removal from natural grayscale images, fine-tuned for LDCT image enhancement. We call this method FBP-DTSGD (Domain and Task Shifted Gaussian Denoisers) as the fine-tuning is a task shift from Gaussian denoising to enhancing LDCT images and a domain shift from natural grayscale to LDCT images. An ablation study with three different pretrained Gaussian denoisers indicates that the performance of FBP-DTSGD does not depend on a specific denoising architecture, suggesting future advancements in Gaussian denoising could benefit the method. The study also shows that pretraining on natural images enhances LDCT reconstruction quality, especially with limited training data. Notably, pretraining involves no additional cost, as existing pretrained models are used. The proposed method currently holds the top mean position in the LoDoPaB-CT challenge.
comment: 24 pages, 5 figures
♻ ☆ V$^2$Dial: Unification of Video and Visual Dialog via Multimodal Experts CVPR 2025
We present V$^2$Dial - a novel expert-based model specifically geared towards simultaneously handling image and video input data for multimodal conversational tasks. Current multimodal models primarily focus on simpler tasks (e.g., VQA, VideoQA, video-text retrieval) and often neglect the more challenging conversational counterparts, such as video and visual/image dialog. Moreover, works on both conversational tasks evolved separately from each other despite their apparent similarities limiting their applicability potential. To this end, we propose to unify both tasks using a single model that for the first time jointly learns the spatial and temporal features of images and videos by routing them through dedicated experts and aligns them using matching and contrastive learning techniques. Furthermore, we systemically study the domain shift between the two tasks by investigating whether and to what extent these seemingly related tasks can mutually benefit from their respective training data. Extensive evaluations on the widely used video and visual dialog datasets of AVSD and VisDial show that our model achieves new state-of-the-art results across four benchmarks both in zero-shot and fine-tuning settings.
comment: CVPR 2025
♻ ☆ Polyhedral Surface: Self-supervised Point Cloud Reconstruction Based on Polyhedral Surface
Point cloud reconstruction from raw point cloud has been an important topic in computer graphics for decades, especially due to its high demand in modeling and rendering applications. An important way to solve this problem is establishing a local geometry to fit the local curve. However, previous methods build either a local plane or polynomial curve. Local plane brings the loss of sharp feature and the boundary artefacts on open surface. Polynomial curve is hard to combine with neural network due to the local coordinate consistent problem. To address this, we propose a novel polyhedral surface to represent local surface. This method provides more flexible to represent sharp feature and surface boundary on open surface. It does not require any local coordinate system, which is important when introducing neural networks. Specifically, we use normals to construct the polyhedral surface, including both dihedral and trihedral surfaces using 2 and 3 normals, respectively. Our method achieves state-of-the-art results on three commonly used datasets (ShapeNetCore, ABC, and ScanNet). Code will be released upon acceptance.
♻ ☆ Foundation Cures Personalization: Improving Personalized Models' Prompt Consistency via Hidden Foundation Knowledge
Facial personalization faces challenges to maintain identity fidelity without disrupting the foundation model's prompt consistency. The mainstream personalization models employ identity embedding to integrate identity information within the cross-attention mechanisms of UNet. However, our preliminary experimental findings reveal that identity embeddings compromise the effectiveness of other tokens in the prompt, thereby limiting high prompt consistency and controllability. Moreover, by deactivating identity embedding, personalization models still demonstrate the underlying foundation models' ability to control facial attributes precisely. It suggests that such foundation models' knowledge can be leveraged to \textbf{cure} the ill-aligned prompt consistency of personalization models. Building upon these insights, we propose \textbf{FreeCure}, a framework that improves the prompt consistency of personalization models with their latent foundation models' knowledge. First, by setting a dual inference paradigm with/without identity embedding, we identify attributes (\textit{e.g.}, hair, accessories, etc.) for enhancements. Second, we introduce a novel foundation-aware self-attention module, coupled with an inversion-based process to bring well-aligned attribute information to the personalization process. Our approach is \textbf{training-free}, and can effectively enhance a wide array of facial attributes in a non-intrusive manner; and it can be seamlessly integrated into existing popular personalization models, without harming their well-trained modules. FreeCure has demonstrated significant improvements in prompt consistency across a diverse set of state-of-the-art facial personalization models while maintaining the integrity of original identity fidelity. The project page is available \href{https://github.com/YIYANGCAI/freecure-project-page}{here}.
comment: 20 pages
♻ ☆ A study of why we need to reassess full reference image quality assessment with medical images
Image quality assessment (IQA) is indispensable in clinical practice to ensure high standards, as well as in the development stage of machine learning algorithms that operate on medical images. The popular full reference (FR) IQA measures PSNR and SSIM are known and tested for working successfully in many natural imaging tasks, but discrepancies in medical scenarios have been reported in the literature, highlighting the gap between development and actual clinical application. Such inconsistencies are not surprising, as medical images have very different properties than natural images, and PSNR and SSIM have neither been targeted nor properly tested for medical images. This may cause unforeseen problems in clinical applications due to wrong judgment of novel methods. This paper provides a structured and comprehensive overview of examples where PSNR and SSIM prove to be unsuitable for the assessment of novel algorithms using different kinds of medical images, including real-world MRI, CT, OCT, X-Ray, digital pathology and photoacoustic imaging data. Therefore, improvement is urgently needed in particular in this era of AI to increase reliability and explainability in machine learning for medical imaging and beyond. Lastly, we will provide ideas for future research as well as suggesting guidelines for the usage of FR-IQA measures applied to medical images.
♻ ☆ M2LADS Demo: A System for Generating Multimodal Learning Analytics Dashboards AAAI 2025
We present a demonstration of a web-based system called M2LADS ("System for Generating Multimodal Learning Analytics Dashboards"), designed to integrate, synchronize, visualize, and analyze multimodal data recorded during computer-based learning sessions with biosensors. This system presents a range of biometric and behavioral data on web-based dashboards, providing detailed insights into various physiological and activity-based metrics. The multimodal data visualized include electroencephalogram (EEG) data for assessing attention and brain activity, heart rate metrics, eye-tracking data to measure visual attention, webcam video recordings, and activity logs of the monitored tasks. M2LADS aims to assist data scientists in two key ways: (1) by providing a comprehensive view of participants' experiences, displaying all data categorized by the activities in which participants are engaged, and (2) by synchronizing all biosignals and videos, facilitating easier data relabeling if any activity information contains errors.
comment: Published in the Workshop on Innovation and Responsibility in AI-Supported Education (iRAISE25) at AAAI 2025
♻ ☆ Continuous, Subject-Specific Attribute Control in T2I Models by Identifying Semantic Directions CVPR 2025
Recent advances in text-to-image (T2I) diffusion models have significantly improved the quality of generated images. However, providing efficient control over individual subjects, particularly the attributes characterizing them, remains a key challenge. While existing methods have introduced mechanisms to modulate attribute expression, they typically provide either detailed, object-specific localization of such a modification or full-scale fine-grained, nuanced control of attributes. No current approach offers both simultaneously, resulting in a gap when trying to achieve precise continuous and subject-specific attribute modulation in image generation. In this work, we demonstrate that token-level directions exist within commonly used CLIP text embeddings that enable fine-grained, subject-specific control of high-level attributes in T2I models. We introduce two methods to identify these directions: a simple, optimization-free technique and a learning-based approach that utilizes the T2I model to characterize semantic concepts more specifically. Our methods allow the augmentation of the prompt text input, enabling fine-grained control over multiple attributes of individual subjects simultaneously, without requiring any modifications to the diffusion model itself. This approach offers a unified solution that fills the gap between global and localized control, providing competitive flexibility and precision in text-guided image generation. Project page: https://compvis.github.io/attribute-control. Code is available at https://github.com/CompVis/attribute-control.
comment: CVPR 2025. Project page: https://compvis.github.io/attribute-control
♻ ☆ Rethinking Epistemic and Aleatoric Uncertainty for Active Open-Set Annotation: An Energy-Based Approach CVPR 2025
Active learning (AL), which iteratively queries the most informative examples from a large pool of unlabeled candidates for model training, faces significant challenges in the presence of open-set classes. Existing methods either prioritize query examples likely to belong to known classes, indicating low epistemic uncertainty (EU), or focus on querying those with highly uncertain predictions, reflecting high aleatoric uncertainty (AU). However, they both yield suboptimal performance, as low EU corresponds to limited useful information, and closed-set AU metrics for unknown class examples are less meaningful. In this paper, we propose an Energy-based Active Open-set Annotation (EAOA) framework, which effectively integrates EU and AU to achieve superior performance. EAOA features a $(C+1)$-class detector and a target classifier, incorporating an energy-based EU measure and a margin-based energy loss designed for the detector, alongside an energy-based AU measure for the target classifier. Another crucial component is the target-driven adaptive sampling strategy. It first forms a smaller candidate set with low EU scores to ensure closed-set properties, making AU metrics meaningful. Subsequently, examples with high AU scores are queried to form the final query set, with the candidate set size adjusted adaptively. Extensive experiments show that EAOA achieves state-of-the-art performance while maintaining high query precision and low training overhead. The code is available at https://github.com/chenchenzong/EAOA.
comment: Accepted to CVPR 2025
♻ ☆ Hiding Local Manipulations on SAR Images: a Counter-Forensic Attack
The vast accessibility of Synthetic Aperture Radar (SAR) images through online portals has propelled the research across various fields. This widespread use and easy availability have unfortunately made SAR data susceptible to malicious alterations, such as local editing applied to the images for inserting or covering the presence of sensitive targets. Vulnerability is further emphasized by the fact that most SAR products, despite their original complex nature, are often released as amplitude-only information, allowing even inexperienced attackers to edit and easily alter the pixel content. To contrast malicious manipulations, in the last years the forensic community has begun to dig into the SAR manipulation issue, proposing detectors that effectively localize the tampering traces in amplitude images. Nonetheless, in this paper we demonstrate that an expert practitioner can exploit the complex nature of SAR data to obscure any signs of manipulation within a locally altered amplitude image. We refer to this approach as a counter-forensic attack. To achieve the concealment of manipulation traces, the attacker can simulate a re-acquisition of the manipulated scene by the SAR system that initially generated the pristine image. In doing so, the attacker can obscure any evidence of manipulation, making it appear as if the image was legitimately produced by the system. This attack has unique features that make it both highly generalizable and relatively easy to apply. First, it is a black-box attack, meaning it is not designed to deceive a specific forensic detector. Furthermore, it does not require a training phase and is not based on adversarial operations. We assess the effectiveness of the proposed counter-forensic approach across diverse scenarios, examining various manipulation operations.
♻ ☆ CreatiLayout: Siamese Multimodal Diffusion Transformer for Creative Layout-to-Image Generation
Diffusion models have been recognized for their ability to generate images that are not only visually appealing but also of high artistic quality. As a result, Layout-to-Image (L2I) generation has been proposed to leverage region-specific positions and descriptions to enable more precise and controllable generation. However, previous methods primarily focus on UNet-based models (e.g., SD1.5 and SDXL), and limited effort has explored Multimodal Diffusion Transformers (MM-DiTs), which have demonstrated powerful image generation capabilities. Enabling MM-DiT for layout-to-image generation seems straightforward but is challenging due to the complexity of how layout is introduced, integrated, and balanced among multiple modalities. To this end, we explore various network variants to efficiently incorporate layout guidance into MM-DiT, and ultimately present SiamLayout. To Inherit the advantages of MM-DiT, we use a separate set of network weights to process the layout, treating it as equally important as the image and text modalities. Meanwhile, to alleviate the competition among modalities, we decouple the image-layout interaction into a siamese branch alongside the image-text one and fuse them in the later stage. Moreover, we contribute a large-scale layout dataset, named LayoutSAM, which includes 2.7 million image-text pairs and 10.7 million entities. Each entity is annotated with a bounding box and a detailed description. We further construct the LayoutSAM-Eval benchmark as a comprehensive tool for evaluating the L2I generation quality. Finally, we introduce the Layout Designer, which taps into the potential of large language models in layout planning, transforming them into experts in layout generation and optimization. Our code, model, and dataset will be available at https://creatilayout.github.io.
♻ ☆ Structure-guided Deep Multi-View Clustering
Deep multi-view clustering seeks to utilize the abundant information from multiple views to improve clustering performance. However, most of the existing clustering methods often neglect to fully mine multi-view structural information and fail to explore the distribution of multi-view data, limiting clustering performance. To address these limitations, we propose a structure-guided deep multi-view clustering model. Specifically, we introduce a positive sample selection strategy based on neighborhood relationships, coupled with a corresponding loss function. This strategy constructs multi-view nearest neighbor graphs to dynamically redefine positive sample pairs, enabling the mining of local structural information within multi-view data and enhancing the reliability of positive sample selection. Additionally, we introduce a Gaussian distribution model to uncover latent structural information and introduce a loss function to reduce discrepancies between view embeddings. These two strategies explore multi-view structural information and data distribution from different perspectives, enhancing consistency across views and increasing intra-cluster compactness. Experimental evaluations demonstrate the efficacy of our method, showing significant improvements in clustering performance on multiple benchmark datasets compared to state-of-the-art multi-view clustering approaches.
comment: We have found that our paper has many imperfections and incorrect formulas and derivations, and we insist on retracting the manuscript in order to avoid misleading readers
♻ ☆ Holmes-VAU: Towards Long-term Video Anomaly Understanding at Any Granularity CVPR2025
How can we enable models to comprehend video anomalies occurring over varying temporal scales and contexts? Traditional Video Anomaly Understanding (VAU) methods focus on frame-level anomaly prediction, often missing the interpretability of complex and diverse real-world anomalies. Recent multimodal approaches leverage visual and textual data but lack hierarchical annotations that capture both short-term and long-term anomalies. To address this challenge, we introduce HIVAU-70k, a large-scale benchmark for hierarchical video anomaly understanding across any granularity. We develop a semi-automated annotation engine that efficiently scales high-quality annotations by combining manual video segmentation with recursive free-text annotation using large language models (LLMs). This results in over 70,000 multi-granular annotations organized at clip-level, event-level, and video-level segments. For efficient anomaly detection in long videos, we propose the Anomaly-focused Temporal Sampler (ATS). ATS integrates an anomaly scorer with a density-aware sampler to adaptively select frames based on anomaly scores, ensuring that the multimodal LLM concentrates on anomaly-rich regions, which significantly enhances both efficiency and accuracy. Extensive experiments demonstrate that our hierarchical instruction data markedly improves anomaly comprehension. The integrated ATS and visual-language model outperform traditional methods in processing long videos. Our benchmark and model are publicly available at https://github.com/pipixin321/HolmesVAU.
comment: Accepted by CVPR2025
♻ ☆ GauSTAR: Gaussian Surface Tracking and Reconstruction
3D Gaussian Splatting techniques have enabled efficient photo-realistic rendering of static scenes. Recent works have extended these approaches to support surface reconstruction and tracking. However, tracking dynamic surfaces with 3D Gaussians remains challenging due to complex topology changes, such as surfaces appearing, disappearing, or splitting. To address these challenges, we propose GauSTAR, a novel method that achieves photo-realistic rendering, accurate surface reconstruction, and reliable 3D tracking for general dynamic scenes with changing topology. Given multi-view captures as input, GauSTAR binds Gaussians to mesh faces to represent dynamic objects. For surfaces with consistent topology, GauSTAR maintains the mesh topology and tracks the meshes using Gaussians. For regions where topology changes, GauSTAR adaptively unbinds Gaussians from the mesh, enabling accurate registration and generation of new surfaces based on these optimized Gaussians. Additionally, we introduce a surface-based scene flow method that provides robust initialization for tracking between frames. Experiments demonstrate that our method effectively tracks and reconstructs dynamic surfaces, enabling a range of applications. Our project page with the code release is available at https://eth-ait.github.io/GauSTAR/.
♻ ☆ COMMA: Coordinate-aware Modulated Mamba Network for 3D Dispersed Vessel Segmentation
Accurate segmentation of 3D vascular structures is essential for various medical imaging applications. The dispersed nature of vascular structures leads to inherent spatial uncertainty and necessitates location awareness, yet most current 3D medical segmentation models rely on the patch-wise training strategy that usually loses this spatial context. In this study, we introduce the Coordinate-aware Modulated Mamba Network (COMMA) and contribute a manually labeled dataset of 570 cases, the largest publicly available 3D vessel dataset to date. COMMA leverages both entire and cropped patch data through global and local branches, ensuring robust and efficient spatial location awareness. Specifically, COMMA employs a channel-compressed Mamba (ccMamba) block to encode entire image data, capturing long-range dependencies while optimizing computational costs. Additionally, we propose a coordinate-aware modulated (CaM) block to enhance interactions between the global and local branches, allowing the local branch to better perceive spatial information. We evaluate COMMA on six datasets, covering two imaging modalities and five types of vascular tissues. The results demonstrate COMMA's superior performance compared to state-of-the-art methods with computational efficiency, especially in segmenting small vessels. Ablation studies further highlight the importance of our proposed modules and spatial information. The code and data will be open source at https://github.com/shigen-StoneRoot/COMMA.
♻ ☆ Decouple-Then-Merge: Finetune Diffusion Models as Multi-Task Learning CVPR2025
Diffusion models are trained by learning a sequence of models that reverse each step of noise corruption. Typically, the model parameters are fully shared across multiple timesteps to enhance training efficiency. However, since the denoising tasks differ at each timestep, the gradients computed at different timesteps may conflict, potentially degrading the overall performance of image generation. To solve this issue, this work proposes a \textbf{De}couple-then-\textbf{Me}rge (\textbf{DeMe}) framework, which begins with a pretrained model and finetunes separate models tailored to specific timesteps. We introduce several improved techniques during the finetuning stage to promote effective knowledge sharing while minimizing training interference across timesteps. Finally, after finetuning, these separate models can be merged into a single model in the parameter space, ensuring efficient and practical inference. Experimental results show significant generation quality improvements upon 6 benchmarks including Stable Diffusion on COCO30K, ImageNet1K, PartiPrompts, and DDPM on LSUN Church, LSUN Bedroom, and CIFAR10. Code is available at \href{https://github.com/MqLeet/DeMe}{GitHub}.
comment: Accepted by CVPR2025
LiDAR-GS:Real-time LiDAR Re-Simulation using Gaussian Splatting
We present LiDAR-GS, a Gaussian Splatting (GS) method for real-time, high-fidelity re-simulation of LiDAR scans in public urban road scenes. Recent GS methods proposed for cameras have achieved significant advancements in real-time rendering beyond Neural Radiance Fields (NeRF). However, applying GS representation to LiDAR, an active 3D sensor type, poses several challenges that must be addressed to preserve high accuracy and unique characteristics. Specifically, LiDAR-GS designs a differentiable laser beam splatting, using range-view representation for precise surface splatting by projecting lasers onto micro cross-sections, effectively eliminating artifacts associated with local affine approximations. Furthermore, LiDAR-GS leverages Neural Gaussian Representation, which further integrate view-dependent clues, to represent key LiDAR properties that are influenced by the incident direction and external factors. Combining these practices with some essential adaptations, e.g., dynamic instances decomposition, LiDAR-GS succeeds in simultaneously re-simulating depth, intensity, and ray-drop channels, achieving state-of-the-art results in both rendering frame rate and quality on publically available large scene datasets when compared with the methods using explicit mesh or implicit NeRF. Our source code is publicly available at https://www.github.com/cqf7419/LiDAR-GS.
♻ ☆ A Two-Step Concept-Based Approach for Enhanced Interpretability and Trust in Skin Lesion Diagnosis
The main challenges hindering the adoption of deep learning-based systems in clinical settings are the scarcity of annotated data and the lack of interpretability and trust in these systems. Concept Bottleneck Models (CBMs) offer inherent interpretability by constraining the final disease prediction on a set of human-understandable concepts. However, this inherent interpretability comes at the cost of greater annotation burden. Additionally, adding new concepts requires retraining the entire system. In this work, we introduce a novel two-step methodology that addresses both of these challenges. By simulating the two stages of a CBM, we utilize a pretrained Vision Language Model (VLM) to automatically predict clinical concepts, and an off-the-shelf Large Language Model (LLM) to generate disease diagnoses based on the predicted concepts. Furthermore, our approach supports test-time human intervention, enabling corrections to predicted concepts, which improves final diagnoses and enhances transparency in decision-making. We validate our approach on three skin lesion datasets, demonstrating that it outperforms traditional CBMs and state-of-the-art explainable methods, all without requiring any training and utilizing only a few annotated examples. The code is available at https://github.com/CristianoPatricio/2-step-concept-based-skin-diagnosis.
comment: Published in the Computational and Structural Biotechnology Journal
♻ ☆ LIX: Implicitly Infusing Spatial Geometric Prior Knowledge into Visual Semantic Segmentation for Autonomous Driving
Despite the impressive performance achieved by data-fusion networks with duplex encoders for visual semantic segmentation, they become ineffective when spatial geometric data are not available. Implicitly infusing the spatial geometric prior knowledge acquired by a data-fusion teacher network into a single-modal student network is a practical, albeit less explored research avenue. This article delves into this topic and resorts to knowledge distillation approaches to address this problem. We introduce the Learning to Infuse ''X'' (LIX) framework, with novel contributions in both logit distillation and feature distillation aspects. We present a mathematical proof that underscores the limitation of using a single, fixed weight in decoupled knowledge distillation and introduce a logit-wise dynamic weight controller as a solution to this issue. Furthermore, we develop an adaptively-recalibrated feature distillation algorithm, including two novel techniques: feature recalibration via kernel regression and in-depth feature consistency quantification via centered kernel alignment. Extensive experiments conducted with intermediate-fusion and late-fusion networks across various public datasets provide both quantitative and qualitative evaluations, demonstrating the superior performance of our LIX framework when compared to other state-of-the-art approaches.
comment: 13 pages, 7 figures, 5 tables
♻ ☆ S$^3$AD: Semi-supervised Small Apple Detection in Orchard Environments WACV 2024
Crop detection is integral for precision agriculture applications such as automated yield estimation or fruit picking. However, crop detection, e.g., apple detection in orchard environments remains challenging due to a lack of large-scale datasets and the small relative size of the crops in the image. In this work, we address these challenges by reformulating the apple detection task in a semi-supervised manner. To this end, we provide the large, high-resolution dataset MAD comprising 105 labeled images with 14,667 annotated apple instances and 4,440 unlabeled images. Utilizing this dataset, we also propose a novel Semi-Supervised Small Apple Detection system S$^3$AD based on contextual attention and selective tiling to improve the challenging detection of small apples, while limiting the computational overhead. We conduct an extensive evaluation on MAD and the MSU dataset, showing that S$^3$AD substantially outperforms strong fully-supervised baselines, including several small object detection systems, by up to $14.9\%$. Additionally, we exploit the detailed annotations of our dataset w.r.t. apple properties to analyze the influence of relative size or level of occlusion on the results of various systems, quantifying current challenges.
comment: Accepted at WACV 2024. The code and the dataset MAD are available at http://www.inf.uni-hamburg.de/mad
♻ ☆ ParGo: Bridging Vision-Language with Partial and Global Views AAAI 2025
This work presents ParGo, a novel Partial-Global projector designed to connect the vision and language modalities for Multimodal Large Language Models (MLLMs). Unlike previous works that rely on global attention-based projectors, our ParGo bridges the representation gap between the separately pre-trained vision encoders and the LLMs by integrating global and partial views, which alleviates the overemphasis on prominent regions. To facilitate the effective training of ParGo, we collect a large-scale detail-captioned image-text dataset named ParGoCap-1M-PT, consisting of 1 million images paired with high-quality captions. Extensive experiments on several MLLM benchmarks demonstrate the effectiveness of our ParGo, highlighting its superiority in aligning vision and language modalities. Compared to conventional Q-Former projector, our ParGo achieves an improvement of 259.96 in MME benchmark. Furthermore, our experiments reveal that ParGo significantly outperforms other projectors, particularly in tasks that emphasize detail perception ability.
comment: Accepted by AAAI 2025
♻ ☆ Homogeneous Dynamics Space for Heterogeneous Humans CVPR 2025
Analyses of human motion kinematics have achieved tremendous advances. However, the production mechanism, known as human dynamics, is still undercovered. In this paper, we aim to push data-driven human dynamics understanding forward. We identify a major obstacle to this as the heterogeneity of existing human motion understanding efforts. Specifically, heterogeneity exists in not only the diverse kinematics representations and hierarchical dynamics representations but also in the data from different domains, namely biomechanics and reinforcement learning. With an in-depth analysis of the existing heterogeneity, we propose to emphasize the beneath homogeneity: all of them represent the homogeneous fact of human motion, though from different perspectives. Given this, we propose Homogeneous Dynamics Space (HDyS) as a fundamental space for human dynamics by aggregating heterogeneous data and training a homogeneous latent space with inspiration from the inverse-forward dynamics procedure. Leveraging the heterogeneous representations and datasets, HDyS achieves decent mapping between human kinematics and dynamics. We demonstrate the feasibility of HDyS with extensive experiments and applications. The project page is https://foruck.github.io/HDyS.
comment: Accepted by CVPR 2025. Cewu Lu and Yong-Lu Li are the corresponding authors
♻ ☆ Learnable Cross-modal Knowledge Distillation for Multi-modal Learning with Missing Modality
The problem of missing modalities is both critical and non-trivial to be handled in multi-modal models. It is common for multi-modal tasks that certain modalities contribute more compared to other modalities, and if those important modalities are missing, the model performance drops significantly. Such fact remains unexplored by current multi-modal approaches that recover the representation from missing modalities by feature reconstruction or blind feature aggregation from other modalities, instead of extracting useful information from the best performing modalities. In this paper, we propose a Learnable Cross-modal Knowledge Distillation (LCKD) model to adaptively identify important modalities and distil knowledge from them to help other modalities from the cross-modal perspective for solving the missing modality issue. Our approach introduces a teacher election procedure to select the most ``qualified'' teachers based on their single modality performance on certain tasks. Then, cross-modal knowledge distillation is performed between teacher and student modalities for each task to push the model parameters to a point that is beneficial for all tasks. Hence, even if the teacher modalities for certain tasks are missing during testing, the available student modalities can accomplish the task well enough based on the learned knowledge from their automatically elected teacher modalities. Experiments on the Brain Tumour Segmentation Dataset 2018 (BraTS2018) shows that LCKD outperforms other methods by a considerable margin, improving the state-of-the-art performance by 3.61% for enhancing tumour, 5.99% for tumour core, and 3.76% for whole tumour in terms of segmentation Dice score.
♻ ☆ RECAST: Reparameterized, Compact weight Adaptation for Sequential Tasks ICLR
Incremental learning aims to adapt to new sets of categories over time with minimal computational overhead. Prior work often addresses this task by training efficient task-specific adaptors that modify frozen layer weights or features to capture relevant information without affecting predictions on previously learned categories. While these adaptors are generally more efficient than finetuning the entire network, they still require tens to hundreds of thousands of task-specific trainable parameters even for relatively small networks, making it challenging to operate on resource-constrained environments with high communication costs like edge devices or mobile phones. Thus, we propose Reparameterized, Compact weight Adaptation for Sequential Tasks (RECAST), a novel method that dramatically reduces task-specific trainable parameters to fewer than 50 - several orders of magnitude less than competing methods like LoRA. RECAST accomplishes this efficiency by learning to decompose layer weights into a soft parameter-sharing framework consisting of shared weight templates and very few module-specific scaling factors or coefficients. This soft parameter-sharing framework allows for effective task-wise reparameterization by tuning only these coefficients while keeping templates frozen.A key innovation of RECAST is the novel weight reconstruction pipeline called Neural Mimicry, which eliminates the need for pretraining from scratch. This allows for high-fidelity emulation of existing pretrained weights within our framework and provides quick adaptability to any model scale and architecture. Extensive experiments across six datasets demonstrate RECAST outperforms the state-of-the-art by up to 3% across various scales, architectures, and parameter spaces Moreover, we show that RECAST's architecture-agnostic nature allows for seamless integration with existing methods, further boosting performance.
comment: Accepted as a conference paper in ICLR, 2025
♻ ☆ LLaVA-Octopus: Unlocking Instruction-Driven Adaptive Projector Fusion for Video Understanding
In this paper, we introduce LLaVA-Octopus, a novel video multimodal large language model. LLaVA-Octopus adaptively weights features from different visual projectors based on user instructions, enabling us to leverage the complementary strengths of each projector. We observe that different visual projectors exhibit distinct characteristics when handling specific tasks. For instance, some projectors excel at capturing static details, while others are more effective at processing temporal information, and some are better suited for tasks requiring temporal coherence. By dynamically adjusting feature weights according to user instructions, LLaVA-Octopus dynamically selects and combines the most suitable features, significantly enhancing the model's performance in multimodal tasks. Experimental results demonstrate that LLaVA-Octopus achieves excellent performance across multiple benchmarks, especially in tasks such as video question answering, long video understanding, and comprehensive multi-choices benchmarks, highlighting its broad application potential.
comment: 18 pages, 10 figures
♻ ☆ Virtual Guidance as a Mid-level Representation for Navigation with Augmented Reality
In the context of autonomous navigation, effectively conveying abstract navigational cues to agents in dynamic environments presents significant challenges, particularly when navigation information is derived from diverse modalities such as both vision and high-level language descriptions. To address this issue, we introduce a novel technique termed `Virtual Guidance,' which is designed to visually represent non-visual instructional signals. These visual cues are overlaid onto the agent's camera view and served as comprehensible navigational guidance signals. To validate the concept of virtual guidance, we propose a sim-to-real framework that enables the transfer of the trained policy from simulated environments to real world, ensuring the adaptability of virtual guidance in practical scenarios. We evaluate and compare the proposed method against a non-visual guidance baseline through detailed experiments in simulation. The experimental results demonstrate that the proposed virtual guidance approach outperforms the baseline methods across multiple scenarios and offers clear evidence of its effectiveness in autonomous navigation tasks.
comment: Tsung-Chih Chiang, Jou-Min Liu, Ting-Ru Liu, and Chun-Wei Huang contributed equally to this work; This work has been submitted to the IEEE for possible publication
♻ ☆ Skip Tuning: Pre-trained Vision-Language Models are Effective and Efficient Adapters Themselves
Prompt tuning (PT) has long been recognized as an effective and efficient paradigm for transferring large pre-trained vision-language models (VLMs) to downstream tasks by learning a tiny set of context vectors. Nevertheless, in this work, we reveal that freezing the parameters of VLMs during learning the context vectors neither facilitates the transferability of pre-trained knowledge nor improves the memory and time efficiency significantly. Upon further investigation, we find that reducing both the length and width of the feature-gradient propagation flows of the full fine-tuning (FT) baseline is key to achieving effective and efficient knowledge transfer. Motivated by this, we propose Skip Tuning, a novel paradigm for adapting VLMs to downstream tasks. Unlike existing PT or adapter-based methods, Skip Tuning applies Layer-wise Skipping (LSkip) and Class-wise Skipping (CSkip) upon the FT baseline without introducing extra context vectors or adapter modules. Extensive experiments across a wide spectrum of benchmarks demonstrate the superior effectiveness and efficiency of our Skip Tuning over both PT and adapter-based methods. Code: https://github.com/Koorye/SkipTuning.
♻ ☆ SiMHand: Mining Similar Hands for Large-Scale 3D Hand Pose Pre-training ICLR 2025
We present a framework for pre-training of 3D hand pose estimation from in-the-wild hand images sharing with similar hand characteristics, dubbed SimHand. Pre-training with large-scale images achieves promising results in various tasks, but prior methods for 3D hand pose pre-training have not fully utilized the potential of diverse hand images accessible from in-the-wild videos. To facilitate scalable pre-training, we first prepare an extensive pool of hand images from in-the-wild videos and design our pre-training method with contrastive learning. Specifically, we collect over 2.0M hand images from recent human-centric videos, such as 100DOH and Ego4D. To extract discriminative information from these images, we focus on the similarity of hands: pairs of non-identical samples with similar hand poses. We then propose a novel contrastive learning method that embeds similar hand pairs closer in the feature space. Our method not only learns from similar samples but also adaptively weights the contrastive learning loss based on inter-sample distance, leading to additional performance gains. Our experiments demonstrate that our method outperforms conventional contrastive learning approaches that produce positive pairs sorely from a single image with data augmentation. We achieve significant improvements over the state-of-the-art method (PeCLR) in various datasets, with gains of 15% on FreiHand, 10% on DexYCB, and 4% on AssemblyHands. Our code is available at https://github.com/ut-vision/SiMHand.
comment: ICLR 2025. arXiv admin note: text overlap with arXiv:2409.09714
♻ ☆ MoVE-KD: Knowledge Distillation for VLMs with Mixture of Visual Encoders CVPR2025
Visual encoders are fundamental components in vision-language models (VLMs), each showcasing unique strengths derived from various pre-trained visual foundation models. To leverage the various capabilities of these encoders, recent studies incorporate multiple encoders within a single VLM, leading to a considerable increase in computational cost. In this paper, we present Mixture-of-Visual-Encoder Knowledge Distillation (MoVE-KD), a novel framework that distills the unique proficiencies of multiple vision encoders into a single, efficient encoder model. Specifically, to mitigate conflicts and retain the unique characteristics of each teacher encoder, we employ low-rank adaptation (LoRA) and mixture-of-experts (MoEs) to selectively activate specialized knowledge based on input features, enhancing both adaptability and efficiency. To regularize the KD process and enhance performance, we propose an attention-based distillation strategy that adaptively weighs the different encoders and emphasizes valuable visual tokens, reducing the burden of replicating comprehensive but distinct features from multiple teachers. Comprehensive experiments on popular VLMs, such as LLaVA and LLaVA-NeXT, validate the effectiveness of our method. Our code is available at: https://github.com/hey-cjj/MoVE-KD.
comment: Accepted by CVPR2025
♻ ☆ GuardSplat: Efficient and Robust Watermarking for 3D Gaussian Splatting CVPR
3D Gaussian Splatting (3DGS) has recently created impressive 3D assets for various applications. However, considering security, capacity, invisibility, and training efficiency, the copyright of 3DGS assets is not well protected as existing watermarking methods are unsuited for its rendering pipeline. In this paper, we propose GuardSplat, an innovative and efficient framework for watermarking 3DGS assets. Specifically, 1) We propose a CLIP-guided pipeline for optimizing the message decoder with minimal costs. The key objective is to achieve high-accuracy extraction by leveraging CLIP's aligning capability and rich representations, demonstrating exceptional capacity and efficiency. 2) We tailor a Spherical-Harmonic-aware (SH-aware) Message Embedding module for 3DGS, seamlessly embedding messages into the SH features of each 3D Gaussian while preserving the original 3D structure. This enables watermarking 3DGS assets with minimal fidelity trade-offs and prevents malicious users from removing the watermarks from the model files, meeting the demands for invisibility and security. 3) We present an Anti-distortion Message Extraction module to improve robustness against various distortions. Experiments demonstrate that GuardSplat outperforms state-of-the-art and achieves fast optimization speed. Project page is at https://narcissusex.github.io/GuardSplat, and Code is at https://github.com/NarcissusEx/GuardSplat.
comment: This paper is accepted by the IEEE/CVF International Conference on Computer Vision and Pattern Recognition (CVPR), 2025
♻ ☆ Discovering Hidden Visual Concepts Beyond Linguistic Input in Infant Learning CVPR 2025
Infants develop complex visual understanding rapidly, even preceding of the acquisition of linguistic inputs. As computer vision seeks to replicate the human vision system, understanding infant visual development may offer valuable insights. In this paper, we present an interdisciplinary study exploring this question: can a computational model that imitates the infant learning process develop broader visual concepts that extend beyond the vocabulary it has heard, similar to how infants naturally learn? To investigate this, we analyze a recently published model in Science by Vong et al.,which is trained on longitudinal, egocentric images of a single child paired with transcribed parental speech. We introduce a training-free framework that can discover visual concept neurons hidden in the model's internal representations. Our findings show that these neurons can classify objects outside its original vocabulary. Furthermore, we compare the visual representations in infant-like models with those in moder computer vision models, such as CLIP or ImageNet pre-trained model, highlighting key similarities and differences. Ultimately, our work bridges cognitive science and computer vision by analyzing the internal representations of a computational model trained on an infant's visual and linguistic inputs.
comment: 12 pages, 11 figures. Accepted at CVPR 2025
Artificial Intelligence 134
☆ Centaur: Robust End-to-End Autonomous Driving with Test-Time Training
How can we rely on an end-to-end autonomous vehicle's complex decision-making system during deployment? One common solution is to have a ``fallback layer'' that checks the planned trajectory for rule violations and replaces it with a pre-defined safe action if necessary. Another approach involves adjusting the planner's decisions to minimize a pre-defined ``cost function'' using additional system predictions such as road layouts and detected obstacles. However, these pre-programmed rules or cost functions cannot learn and improve with new training data, often resulting in overly conservative behaviors. In this work, we propose Centaur (Cluster Entropy for Test-time trAining using Uncertainty) which updates a planner's behavior via test-time training, without relying on hand-engineered rules or cost functions. Instead, we measure and minimize the uncertainty in the planner's decisions. For this, we develop a novel uncertainty measure, called Cluster Entropy, which is simple, interpretable, and compatible with state-of-the-art planning algorithms. Using data collected at prior test-time time-steps, we perform an update to the model's parameters using a gradient that minimizes the Cluster Entropy. With only this sole gradient update prior to inference, Centaur exhibits significant improvements, ranking first on the navtest leaderboard with notable gains in safety-critical metrics such as time to collision. To provide detailed insights on a per-scenario basis, we also introduce navsafe, a challenging new benchmark, which highlights previously undiscovered failure modes of driving models.
☆ Enhancing Deep Learning Based Structured Illumination Microscopy Reconstruction with Light Field Awareness
Structured illumination microscopy (SIM) is a pivotal technique for dynamic subcellular imaging in live cells. Conventional SIM reconstruction algorithms depend on accurately estimating the illumination pattern and can introduce artefacts when this estimation is imprecise. Although recent deep learning-based SIM reconstruction methods have improved speed, accuracy, and robustness, they often struggle with out-of-distribution data. To address this limitation, we propose an Awareness-of-Light-field SIM (AL-SIM) reconstruction approach that directly estimates the actual light field to correct for errors arising from data distribution shifts. Through comprehensive experiments on both simulated filament structures and live BSC1 cells, our method demonstrates a 7% reduction in the normalized root mean square error (NRMSE) and substantially lowers reconstruction artefacts. By minimizing these artefacts and improving overall accuracy, AL-SIM broadens the applicability of SIM for complex biological systems.
ASMA-Tune: Unlocking LLMs' Assembly Code Comprehension via Structural-Semantic Instruction Tuning
Analysis and comprehension of assembly code are crucial in various applications, such as reverse engineering. However, the low information density and lack of explicit syntactic structures in assembly code pose significant challenges. Pioneering approaches with masked language modeling (MLM)-based methods have been limited by facilitating natural language interaction. While recent methods based on decoder-focused large language models (LLMs) have significantly enhanced semantic representation, they still struggle to capture the nuanced and sparse semantics in assembly code. In this paper, we propose Assembly Augmented Tuning (ASMA-Tune), an end-to-end structural-semantic instruction-tuning framework. Our approach synergizes encoder architectures with decoder-based LLMs through projector modules to enable comprehensive code understanding. Experiments show that ASMA-Tune outperforms existing benchmarks, significantly enhancing assembly code comprehension and instruction-following abilities. Our model and dataset are public at https://github.com/wxy3596/ASMA-Tune.
comment: 19 pages, multiple figures
☆ Broaden your SCOPE! Efficient Multi-turn Conversation Planning for LLMs using Semantic Space ICLR 2025
Large language models (LLMs) are used in chatbots or AI assistants to hold conversations with a human user. In such applications, the quality (e.g., user engagement, safety) of a conversation is important and can only be exactly known at the end of the conversation. To maximize its expected quality, conversation planning reasons about the stochastic transitions within a conversation to select the optimal LLM response at each turn. Existing simulation-based conversation planning algorithms typically select the optimal response by simulating future conversations with a large number of LLM queries at every turn. However, this process is extremely time-consuming and hence impractical for real-time conversations. This paper presents a novel approach called Semantic space COnversation Planning with improved Efficiency (SCOPE) that exploits the dense semantic representation of conversations to perform conversation planning efficiently. In particular, SCOPE models the stochastic transitions in conversation semantics and their associated rewards to plan entirely within the semantic space. This allows us to select the optimal LLM response at every conversation turn without needing additional LLM queries for simulation. As a result, SCOPE can perform conversation planning 70 times faster than conventional simulation-based planning algorithms when applied to a wide variety of conversation starters and two reward functions seen in the real world, yet achieving a higher reward within a practical planning budget. Our code can be found at: https://github.com/chenzhiliang94/convo-plan-SCOPE.
comment: ICLR 2025 Spotlight
☆ Synthesizing Access Control Policies using Large Language Models ICSE 2025
Cloud compute systems allow administrators to write access control policies that govern access to private data. While policies are written in convenient languages, such as AWS Identity and Access Management Policy Language, manually written policies often become complex and error prone. In this paper, we investigate whether and how well Large Language Models (LLMs) can be used to synthesize access control policies. Our investigation focuses on the task of taking an access control request specification and zero-shot prompting LLMs to synthesize a well-formed access control policy which correctly adheres to the request specification. We consider two scenarios, one which the request specification is given as a concrete list of requests to be allowed or denied, and another in which a natural language description is used to specify sets of requests to be allowed or denied. We then argue that for zero-shot prompting, more precise and structured prompts using a syntax based approach are necessary and experimentally show preliminary results validating our approach.
comment: to be published in the NLBSE Workshop at ICSE 2025
☆ Implicit Bias-Like Patterns in Reasoning Models
Implicit bias refers to automatic or spontaneous mental processes that shape perceptions, judgments, and behaviors. Previous research examining `implicit bias' in large language models (LLMs) has often approached the phenomenon differently than how it is studied in humans by focusing primarily on model outputs rather than on model processing. To examine model processing, we present a method called the Reasoning Model Implicit Association Test (RM-IAT) for studying implicit bias-like patterns in reasoning models: LLMs that employ step-by-step reasoning to solve complex tasks. Using this method, we find that reasoning models require more tokens when processing association-incompatible information compared to association-compatible information. These findings suggest AI systems harbor patterns in processing information that are analogous to human implicit bias. We consider the implications of these implicit bias-like patterns for their deployment in real-world applications.
☆ RASA: Replace Anyone, Say Anything -- A Training-Free Framework for Audio-Driven and Universal Portrait Video Editing RAS
Portrait video editing focuses on modifying specific attributes of portrait videos, guided by audio or video streams. Previous methods typically either concentrate on lip-region reenactment or require training specialized models to extract keypoints for motion transfer to a new identity. In this paper, we introduce a training-free universal portrait video editing framework that provides a versatile and adaptable editing strategy. This framework supports portrait appearance editing conditioned on the changed first reference frame, as well as lip editing conditioned on varied speech, or a combination of both. It is based on a Unified Animation Control (UAC) mechanism with source inversion latents to edit the entire portrait, including visual-driven shape control, audio-driven speaking control, and inter-frame temporal control. Furthermore, our method can be adapted to different scenarios by adjusting the initial reference frame, enabling detailed editing of portrait videos with specific head rotations and facial expressions. This comprehensive approach ensures a holistic and flexible solution for portrait video editing. The experimental results show that our model can achieve more accurate and synchronized lip movements for the lip editing task, as well as more flexible motion transfer for the appearance editing task. Demo is available at https://alice01010101.github.io/RASA/.
comment: Demo is available at https://alice01010101.github.io/RASA/
☆ Designing Neural Synthesizers for Low Latency Interaction
Neural Audio Synthesis (NAS) models offer interactive musical control over high-quality, expressive audio generators. While these models can operate in real-time, they often suffer from high latency, making them unsuitable for intimate musical interaction. The impact of architectural choices in deep learning models on audio latency remains largely unexplored in the NAS literature. In this work, we investigate the sources of latency and jitter typically found in interactive NAS models. We then apply this analysis to the task of timbre transfer using RAVE, a convolutional variational autoencoder for audio waveforms introduced by Caillon et al. in 2021. Finally, we present an iterative design approach for optimizing latency. This culminates with a model we call BRAVE (Bravely Realtime Audio Variational autoEncoder), which is low-latency and exhibits better pitch and loudness replication while showing timbre modification capabilities similar to RAVE. We implement it in a specialized inference framework for low-latency, real-time inference and present a proof-of-concept audio plugin compatible with audio signals from musical instruments. We expect the challenges and guidelines described in this document to support NAS researchers in designing models for low-latency inference from the ground up, enriching the landscape of possibilities for musicians.
comment: See website at fcaspe.github.io/brave - 13 pages, 5 figures, accepted to the Journal of the Audio Engineering Society
☆ FLASHμ: Fast Localizing And Sizing of Holographic Microparticles
Reconstructing the 3D location and size of microparticles from diffraction images - holograms - is a computationally expensive inverse problem that has traditionally been solved using physics-based reconstruction methods. More recently, researchers have used machine learning methods to speed up the process. However, for small particles in large sample volumes the performance of these methods falls short of standard physics-based reconstruction methods. Here we designed a two-stage neural network architecture, FLASH$\mu$, to detect small particles (6-100$\mu$m) from holograms with large sample depths up to 20cm. Trained only on synthetic data with added physical noise, our method reliably detects particles of at least 9$\mu$m diameter in real holograms, comparable to the standard reconstruction-based approaches while operating on smaller crops, at quarter of the original resolution and providing roughly a 600-fold speedup. In addition to introducing a novel approach to a non-local object detection or signal demixing problem, our work could enable low-cost, real-time holographic imaging setups.
☆ Potential of large language model-powered nudges for promoting daily water and energy conservation
The increasing amount of pressure related to water and energy shortages has increased the urgency of cultivating individual conservation behaviors. While the concept of nudging, i.e., providing usage-based feedback, has shown promise in encouraging conservation behaviors, its efficacy is often constrained by the lack of targeted and actionable content. This study investigates the impact of the use of large language models (LLMs) to provide tailored conservation suggestions for conservation intentions and their rationale. Through a survey experiment with 1,515 university participants, we compare three virtual nudging scenarios: no nudging, traditional nudging with usage statistics, and LLM-powered nudging with usage statistics and personalized conservation suggestions. The results of statistical analyses and causal forest modeling reveal that nudging led to an increase in conservation intentions among 86.9%-98.0% of the participants. LLM-powered nudging achieved a maximum increase of 18.0% in conservation intentions, surpassing traditional nudging by 88.6%. Furthermore, structural equation modeling results reveal that exposure to LLM-powered nudges enhances self-efficacy and outcome expectations while diminishing dependence on social norms, thereby increasing intrinsic motivation to conserve. These findings highlight the transformative potential of LLMs in promoting individual water and energy conservation, representing a new frontier in the design of sustainable behavioral interventions and resource management.
☆ Prompt Injection Detection and Mitigation via AI Multi-Agent NLP Frameworks
Prompt injection constitutes a significant challenge for generative AI systems by inducing unintended outputs. We introduce a multi-agent NLP framework specifically designed to address prompt injection vulnerabilities through layered detection and enforcement mechanisms. The framework orchestrates specialized agents for generating responses, sanitizing outputs, and enforcing policy compliance. Evaluation on 500 engineered injection prompts demonstrates a marked reduction in injection success and policy breaches. Novel metrics, including Injection Success Rate (ISR), Policy Override Frequency (POF), Prompt Sanitization Rate (PSR), and Compliance Consistency Score (CCS), are proposed to derive a composite Total Injection Vulnerability Score (TIVS). The system utilizes the OVON (Open Voice Network) framework for inter-agent communication via structured JSON messages, extending a previously established multi-agent architecture from hallucination mitigation to address the unique challenges of prompt injection.
comment: 22 pages, 9 figures
☆ HiTVideo: Hierarchical Tokenizers for Enhancing Text-to-Video Generation with Autoregressive Large Language Models
Text-to-video generation poses significant challenges due to the inherent complexity of video data, which spans both temporal and spatial dimensions. It introduces additional redundancy, abrupt variations, and a domain gap between language and vision tokens while generation. Addressing these challenges requires an effective video tokenizer that can efficiently encode video data while preserving essential semantic and spatiotemporal information, serving as a critical bridge between text and vision. Inspired by the observation in VQ-VAE-2 and workflows of traditional animation, we propose HiTVideo for text-to-video generation with hierarchical tokenizers. It utilizes a 3D causal VAE with a multi-layer discrete token framework, encoding video content into hierarchically structured codebooks. Higher layers capture semantic information with higher compression, while lower layers focus on fine-grained spatiotemporal details, striking a balance between compression efficiency and reconstruction quality. Our approach efficiently encodes longer video sequences (e.g., 8 seconds, 64 frames), reducing bits per pixel (bpp) by approximately 70\% compared to baseline tokenizers, while maintaining competitive reconstruction quality. We explore the trade-offs between compression and reconstruction, while emphasizing the advantages of high-compressed semantic tokens in text-to-video tasks. HiTVideo aims to address the potential limitations of existing video tokenizers in text-to-video generation tasks, striving for higher compression ratios and simplify LLMs modeling under language guidance, offering a scalable and promising framework for advancing text to video generation. Demo page: https://ziqinzhou66.github.io/project/HiTVideo.
☆ Alzheimer's Disease Classification Using Retinal OCT: TransnetOCT and Swin Transformer Models
Retinal optical coherence tomography (OCT) images are the biomarkers for neurodegenerative diseases, which are rising in prevalence. Early detection of Alzheimer's disease using retinal OCT is a primary challenging task. This work utilizes advanced deep learning techniques to classify retinal OCT images of subjects with Alzheimer's disease (AD) and healthy controls (CO). The goal is to enhance diagnostic capabilities through efficient image analysis. In the proposed model, Raw OCT images have been preprocessed with ImageJ and given to various deep-learning models to evaluate the accuracy. The best classification architecture is TransNetOCT, which has an average accuracy of 98.18% for input OCT images and 98.91% for segmented OCT images for five-fold cross-validation compared to other models, and the Swin Transformer model has achieved an accuracy of 93.54%. The evaluation accuracy metric demonstrated TransNetOCT and Swin transformer models capability to classify AD and CO subjects reliably, contributing to the potential for improved diagnostic processes in clinical settings.
comment: 18 pages, 25 figures
☆ Unicorn: A Universal and Collaborative Reinforcement Learning Approach Towards Generalizable Network-Wide Traffic Signal Control
Adaptive traffic signal control (ATSC) is crucial in reducing congestion, maximizing throughput, and improving mobility in rapidly growing urban areas. Recent advancements in parameter-sharing multi-agent reinforcement learning (MARL) have greatly enhanced the scalable and adaptive optimization of complex, dynamic flows in large-scale homogeneous networks. However, the inherent heterogeneity of real-world traffic networks, with their varied intersection topologies and interaction dynamics, poses substantial challenges to achieving scalable and effective ATSC across different traffic scenarios. To address these challenges, we present Unicorn, a universal and collaborative MARL framework designed for efficient and adaptable network-wide ATSC. Specifically, we first propose a unified approach to map the states and actions of intersections with varying topologies into a common structure based on traffic movements. Next, we design a Universal Traffic Representation (UTR) module with a decoder-only network for general feature extraction, enhancing the model's adaptability to diverse traffic scenarios. Additionally, we incorporate an Intersection Specifics Representation (ISR) module, designed to identify key latent vectors that represent the unique intersection's topology and traffic dynamics through variational inference techniques. To further refine these latent representations, we employ a contrastive learning approach in a self-supervised manner, which enables better differentiation of intersection-specific features. Moreover, we integrate the state-action dependencies of neighboring agents into policy optimization, which effectively captures dynamic agent interactions and facilitates efficient regional collaboration. Our results show that Unicorn outperforms other methods across various evaluation metrics, highlighting its potential in complex, dynamic traffic networks.
☆ Heterogeneous Causal Discovery of Repeated Undesirable Health Outcomes
Understanding factors triggering or preventing undesirable health outcomes across patient subpopulations is essential for designing targeted interventions. While randomized controlled trials and expert-led patient interviews are standard methods for identifying these factors, they can be time-consuming and infeasible. Causal discovery offers an alternative to conventional approaches by generating cause-and-effect hypotheses from observational data. However, it often relies on strong or untestable assumptions, which can limit its practical application. This work aims to make causal discovery more practical by considering multiple assumptions and identifying heterogeneous effects. We formulate the problem of discovering causes and effect modifiers of an outcome, where effect modifiers are contexts (e.g., age groups) with heterogeneous causal effects. Then, we present a novel, end-to-end framework that incorporates an ensemble of causal discovery algorithms and estimation of heterogeneous effects to discover causes and effect modifiers that trigger or inhibit the outcome. We demonstrate that the ensemble approach improves robustness by enhancing recall of causal factors while maintaining precision. Our study examines the causes of repeat emergency room visits for diabetic patients and hospital readmissions for ICU patients. Our framework generates causal hypotheses consistent with existing literature and can help practitioners identify potential interventions and patient subpopulations to focus on.
☆ Research Vision: Multi-Agent Path Planning for Cops And Robbers Via Reactive Synthesis
We propose the problem of multi-agent path planning for a generalization of the classic Cops and Robbers game via reactive synthesis. Specifically, through the application of LTLt and Coordination Synthesis, we aim to check whether various Cops and Robbers games are realizable (a strategy exists for the cops which guarantees they catch the robbers). Additionally, we construct this strategy as an executable program for the multiple system players in our games. In this paper we formalize the problem space, and propose potential directions for solutions. We also show how our formalization of this generalized cops and robbers game can be mapped to a broad range of other problems in the reactive program synthesis space.
☆ Integrating LLMs in Gamified Systems
In this work, a thorough mathematical framework for incorporating Large Language Models (LLMs) into gamified systems is presented with an emphasis on improving task dynamics, user engagement, and reward systems. Personalized feedback, adaptive learning, and dynamic content creation are all made possible by integrating LLMs and are crucial for improving user engagement and system performance. A simulated environment tests the framework's adaptability and demonstrates its potential for real-world applications in various industries, including business, healthcare, and education. The findings demonstrate how LLMs can offer customized experiences that raise system effectiveness and user retention. This study also examines the difficulties this framework aims to solve, highlighting its importance in maximizing involvement and encouraging sustained behavioral change in a range of sectors.
comment: 9 pages, 2 figures, 1 table
☆ Cerebrum (AIOS SDK): A Platform for Agent Development, Deployment, Distribution, and Discovery NAACL
Autonomous LLM-based agents have emerged as a powerful paradigm for complex task execution, yet the field lacks standardized tools for development, deployment, distribution and discovery of agents. We present Cerebrum, an Agent SDK for AIOS that addresses this gap through three key components: (1) a comprehensive SDK featuring a modular four-layer architecture for agent development, encompassing LLM, memory, storage, and tool management; (2) a community-driven Agent Hub for sharing and discovering agents, complete with version control and dependency management; (3) an interactive web interface for testing and evaluating agents. The platform's effectiveness is demonstrated through implementations of various agent architectures, including Chain of Thought (CoT), ReAct, and tool-use agents. Cerebrum advances the field by providing a unified framework that standardizes agent development while maintaining flexibility for researchers and developers to innovate and distribute their agents. The live website is at https://app.aios.foundation, the code is at https://github.com/agiresearch/Cerebrum, and video is at https://app.aios.foundation/video-demo.
comment: Accepted to the 2025 Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL) - System Demonstration Track
☆ Preference Elicitation for Multi-objective Combinatorial Optimization with Active Learning and Maximum Likelihood Estimation
Real-life combinatorial optimization problems often involve several conflicting objectives, such as price, product quality and sustainability. A computationally-efficient way to tackle multiple objectives is to aggregate them into a single-objective function, such as a linear combination. However, defining the weights of the linear combination upfront is hard; alternatively, the use of interactive learning methods that ask users to compare candidate solutions is highly promising. The key challenges are to generate candidates quickly, to learn an objective function that leads to high-quality solutions and to do so with few user interactions. We build upon the Constructive Preference Elicitation framework and show how each of the three properties can be improved: to increase the interaction speed we investigate using pools of (relaxed) solutions, to improve the learning we adopt Maximum Likelihood Estimation of a Bradley-Terry preference model; and to reduce the number of user interactions, we select the pair of candidates to compare with an ensemble-based acquisition function inspired from Active Learning. Our careful experimentation demonstrates each of these improvements: on a PC configuration task and a realistic multi-instance routing problem, our method selects queries faster, needs fewer queries and synthesizes higher-quality combinatorial solutions than previous CPE methods.
comment: 9 pages, 2 figures
☆ Adaptive Torque Control of Exoskeletons under Spasticity Conditions via Reinforcement Learning
Spasticity is a common movement disorder symptom in individuals with cerebral palsy, hereditary spastic paraplegia, spinal cord injury and stroke, being one of the most disabling features in the progression of these diseases. Despite the potential benefit of using wearable robots to treat spasticity, their use is not currently recommended to subjects with a level of spasticity above ${1^+}$ on the Modified Ashworth Scale. The varying dynamics of this velocity-dependent tonic stretch reflex make it difficult to deploy safe personalized controllers. Here, we describe a novel adaptive torque controller via deep reinforcement learning (RL) for a knee exoskeleton under joint spasticity conditions, which accounts for task performance and interaction forces reduction. To train the RL agent, we developed a digital twin, including a musculoskeletal-exoskeleton system with joint misalignment and a differentiable spastic reflexes model for the muscles activation. Results for a simulated knee extension movement showed that the agent learns to control the exoskeleton for individuals with different levels of spasticity. The proposed controller was able to reduce maximum torques applied to the human joint under spastic conditions by an average of 10.6\% and decreases the root mean square until the settling time by 8.9\% compared to a conventional compliant controller.
comment: Accepted for publication in IEEE 19th International Conference on Rehabilitation Robotics (ICORR2025)
☆ Combining Causal Models for More Accurate Abstractions of Neural Networks
Mechanistic interpretability aims to reverse engineer neural networks by uncovering which high-level algorithms they implement. Causal abstraction provides a precise notion of when a network implements an algorithm, i.e., a causal model of the network contains low-level features that realize the high-level variables in a causal model of the algorithm. A typical problem in practical settings is that the algorithm is not an entirely faithful abstraction of the network, meaning it only partially captures the true reasoning process of a model. We propose a solution where we combine different simple high-level models to produce a more faithful representation of the network. Through learning this combination, we can model neural networks as being in different computational states depending on the input provided, which we show is more accurate to GPT 2-small fine-tuned on two toy tasks. We observe a trade-off between the strength of an interpretability hypothesis, which we define in terms of the number of inputs explained by the high-level models, and its faithfulness, which we define as the interchange intervention accuracy. Our method allows us to modulate between the two, providing the most accurate combination of models that describe the behavior of a neural network given a faithfulness level.
☆ From Generative AI to Innovative AI: An Evolutionary Roadmap
This paper explores the critical transition from Generative Artificial Intelligence (GenAI) to Innovative Artificial Intelligence (InAI). While recent advancements in GenAI have enabled systems to produce high-quality content across various domains, these models often lack the capacity for true innovation. In this context, innovation is defined as the ability to generate novel and useful outputs that go beyond mere replication of learned data. The paper examines this shift and proposes a roadmap for developing AI systems that can generate content and engage in autonomous problem-solving and creative ideation. The work provides both theoretical insights and practical strategies for advancing AI to a stage where it can genuinely innovate, contributing meaningfully to science, technology, and the arts.
☆ A Neural Network Architecture Based on Attention Gate Mechanism for 3D Magnetotelluric Forward Modeling
Traditional three-dimensional magnetotelluric (MT) numerical forward modeling methods, such as the finite element method (FEM) and finite volume method (FVM), suffer from high computational costs and low efficiency due to limitations in mesh refinement and computational resources. We propose a novel neural network architecture named MTAGU-Net, which integrates an attention gating mechanism for 3D MT forward modeling. Specifically, a dual-path attention gating module is designed based on forward response data images and embedded in the skip connections between the encoder and decoder. This module enables the fusion of critical anomaly information from shallow feature maps during the decoding of deep feature maps, significantly enhancing the network's capability to extract features from anomalous regions. Furthermore, we introduce a synthetic model generation method utilizing 3D Gaussian random field (GRF), which accurately replicates the electrical structures of real-world geological scenarios with high fidelity. Numerical experiments demonstrate that MTAGU-Net outperforms conventional 3D U-Net in terms of convergence stability and prediction accuracy, with the structural similarity index (SSIM) of the forward response data consistently exceeding 0.98. Moreover, the network can accurately predict forward response data on previously unseen datasets models, demonstrating its strong generalization ability and validating the feasibility and effectiveness of this method in practical applications.
comment: 12 pages, 16 figures
☆ Towards A Correct Usage of Cryptography in Semantic Watermarks for Diffusion Models ICLR
Semantic watermarking methods enable the direct integration of watermarks into the generation process of latent diffusion models by only modifying the initial latent noise. One line of approaches building on Gaussian Shading relies on cryptographic primitives to steer the sampling process of the latent noise. However, we identify several issues in the usage of cryptographic techniques in Gaussian Shading, particularly in its proof of lossless performance and key management, causing ambiguity in follow-up works, too. In this work, we therefore revisit the cryptographic primitives for semantic watermarking. We introduce a novel, general proof of lossless performance based on IND\$-CPA security for semantic watermarks. We then discuss the configuration of the cryptographic primitives in semantic watermarks with respect to security, efficiency, and generation quality.
comment: 8 pages, 3 figures, WMark@ICLR
☆ Hierarchical Information-Guided Spatio-Temporal Mamba for Stock Time Series Forecasting
Mamba has demonstrated excellent performance in various time series forecasting tasks due to its superior selection mechanism. Nevertheless, conventional Mamba-based models encounter significant challenges in accurately predicting stock time series, as they fail to adequately capture both the overarching market dynamics and the intricate interdependencies among individual stocks. To overcome these constraints, we introduce the Hierarchical Information-Guided Spatio-Temporal Mamba (HIGSTM) framework. HIGSTM introduces Index-Guided Frequency Filtering Decomposition to extract commonality and specificity from time series. The model architecture features a meticulously designed hierarchical framework that systematically captures both temporal dynamic patterns and global static relationships within the stock market. Furthermore, we propose an Information-Guided Mamba that integrates macro informations into the sequence selection process, thereby facilitating more market-conscious decision-making. Comprehensive experimental evaluations conducted on the CSI500, CSI800 and CSI1000 datasets demonstrate that HIGSTM achieves state-of-the-art performance.
☆ Optimizing Large Language Models for Detecting Symptoms of Comorbid Depression or Anxiety in Chronic Diseases: Insights from Patient Messages
Patients with diabetes are at increased risk of comorbid depression or anxiety, complicating their management. This study evaluated the performance of large language models (LLMs) in detecting these symptoms from secure patient messages. We applied multiple approaches, including engineered prompts, systemic persona, temperature adjustments, and zero-shot and few-shot learning, to identify the best-performing model and enhance performance. Three out of five LLMs demonstrated excellent performance (over 90% of F-1 and accuracy), with Llama 3.1 405B achieving 93% in both F-1 and accuracy using a zero-shot approach. While LLMs showed promise in binary classification and handling complex metrics like Patient Health Questionnaire-4, inconsistencies in challenging cases warrant further real-life assessment. The findings highlight the potential of LLMs to assist in timely screening and referrals, providing valuable empirical knowledge for real-world triage systems that could improve mental health care for patients with chronic diseases.
☆ Annotating Scientific Uncertainty: A comprehensive model using linguistic patterns and comparison with existing approaches
UnScientify, a system designed to detect scientific uncertainty in scholarly full text. The system utilizes a weakly supervised technique to identify verbally expressed uncertainty in scientific texts and their authorial references. The core methodology of UnScientify is based on a multi-faceted pipeline that integrates span pattern matching, complex sentence analysis and author reference checking. This approach streamlines the labeling and annotation processes essential for identifying scientific uncertainty, covering a variety of uncertainty expression types to support diverse applications including information retrieval, text mining and scientific document processing. The evaluation results highlight the trade-offs between modern large language models (LLMs) and the UnScientify system. UnScientify, which employs more traditional techniques, achieved superior performance in the scientific uncertainty detection task, attaining an accuracy score of 0.808. This finding underscores the continued relevance and efficiency of UnScientify's simple rule-based and pattern matching strategy for this specific application. The results demonstrate that in scenarios where resource efficiency, interpretability, and domain-specific adaptability are critical, traditional methods can still offer significant advantages.
comment: Paper Accepted for Publication in the Journal of Informetrics (2025)
☆ PARIC: Probabilistic Attention Regularization for Language Guided Image Classification from Pre-trained Vison Language Models
Language-guided attention frameworks have significantly enhanced both interpretability and performance in image classification; however, the reliance on deterministic embeddings from pre-trained vision-language foundation models to generate reference attention maps frequently overlooks the intrinsic multivaluedness and ill-posed characteristics of cross-modal mappings. To address these limitations, we introduce PARIC, a probabilistic framework for guiding visual attention via language specifications. Our approach enables pre-trained vision-language models to generate probabilistic reference attention maps, which align textual and visual modalities more effectively while incorporating uncertainty estimates, as compared to their deterministic counterparts. Experiments on benchmark test problems demonstrate that PARIC enhances prediction accuracy, mitigates bias, ensures consistent predictions, and improves robustness across various datasets.
☆ An experimental approach on Few Shot Class Incremental Learning
Few-Shot Class-Incremental Learning (FSCIL) represents a cutting-edge paradigm within the broader scope of machine learning, designed to empower models with the ability to assimilate new classes of data with limited examples while safeguarding existing knowledge. The paper will present different solutions which contain extensive experiments across large-scale datasets, domain shifts, and network architectures to evaluate and compare the selected methods. We highlight their advantages and then present an experimental approach with the purpose of improving the most promising one by replacing the visual-language (V-L) model (CLIP) with another V-L model (CLOOB) that seem to outperform it on zero-shot learning tasks. The aim of this report is to present an experimental method for FSCIL that would improve its performance. We also plan to offer an overview followed by an analysis of the recent advancements in FSCIL domain, focusing on various strategies to mitigate catastrophic forgetting and improve the adaptability of models to evolving tasks and datasets.
☆ AIstorian lets AI be a historian: A KG-powered multi-agent system for accurate biography generation
Huawei has always been committed to exploring the AI application in historical research. Biography generation, as a specialized form of abstractive summarization, plays a crucial role in historical research but faces unique challenges that existing large language models (LLMs) struggle to address. These challenges include maintaining stylistic adherence to historical writing conventions, ensuring factual fidelity, and handling fragmented information across multiple documents. We present AIstorian, a novel end-to-end agentic system featured with a knowledge graph (KG)-powered retrieval-augmented generation (RAG) and anti-hallucination multi-agents. Specifically, AIstorian introduces an in-context learning based chunking strategy and a KG-based index for accurate and efficient reference retrieval. Meanwhile, AIstorian orchestrates multi-agents to conduct on-the-fly hallucination detection and error-type-aware correction. Additionally, to teach LLMs a certain language style, we finetune LLMs based on a two-step training approach combining data augmentation-enhanced supervised fine-tuning with stylistic preference optimization. Extensive experiments on a real-life historical Jinshi dataset demonstrate that AIstorian achieves a 3.8x improvement in factual accuracy and a 47.6% reduction in hallucination rate compared to existing baselines. The data and code are available at: https://github.com/ZJU-DAILY/AIstorian.
☆ Contextual Similarity Distillation: Ensemble Uncertainties with a Single Model
Uncertainty quantification is a critical aspect of reinforcement learning and deep learning, with numerous applications ranging from efficient exploration and stable offline reinforcement learning to outlier detection in medical diagnostics. The scale of modern neural networks, however, complicates the use of many theoretically well-motivated approaches such as full Bayesian inference. Approximate methods like deep ensembles can provide reliable uncertainty estimates but still remain computationally expensive. In this work, we propose contextual similarity distillation, a novel approach that explicitly estimates the variance of an ensemble of deep neural networks with a single model, without ever learning or evaluating such an ensemble in the first place. Our method builds on the predictable learning dynamics of wide neural networks, governed by the neural tangent kernel, to derive an efficient approximation of the predictive variance of an infinite ensemble. Specifically, we reinterpret the computation of ensemble variance as a supervised regression problem with kernel similarities as regression targets. The resulting model can estimate predictive variance at inference time with a single forward pass, and can make use of unlabeled target-domain data or data augmentations to refine its uncertainty estimates. We empirically validate our method across a variety of out-of-distribution detection benchmarks and sparse-reward reinforcement learning environments. We find that our single-model method performs competitively and sometimes superior to ensemble-based baselines and serves as a reliable signal for efficient exploration. These results, we believe, position contextual similarity distillation as a principled and scalable alternative for uncertainty quantification in reinforcement learning and general deep learning.
☆ Cardiomyopathy Diagnosis Model from Endomyocardial Biopsy Specimens: Appropriate Feature Space and Class Boundary in Small Sample Size Data
As the number of patients with heart failure increases, machine learning (ML) has garnered attention in cardiomyopathy diagnosis, driven by the shortage of pathologists. However, endomyocardial biopsy specimens are often small sample size and require techniques such as feature extraction and dimensionality reduction. This study aims to determine whether texture features are effective for feature extraction in the pathological diagnosis of cardiomyopathy. Furthermore, model designs that contribute toward improving generalization performance are examined by applying feature selection (FS) and dimensional compression (DC) to several ML models. The obtained results were verified by visualizing the inter-class distribution differences and conducting statistical hypothesis testing based on texture features. Additionally, they were evaluated using predictive performance across different model designs with varying combinations of FS and DC (applied or not) and decision boundaries. The obtained results confirmed that texture features may be effective for the pathological diagnosis of cardiomyopathy. Moreover, when the ratio of features to the sample size is high, a multi-step process involving FS and DC improved the generalization performance, with the linear kernel support vector machine achieving the best results. This process was demonstrated to be potentially effective for models with reduced complexity, regardless of whether the decision boundaries were linear, curved, perpendicular, or parallel to the axes. These findings are expected to facilitate the development of an effective cardiomyopathy diagnostic model for its rapid adoption in medical practice.
☆ Learning to reset in target search problems
Target search problems are central to a wide range of fields, from biological foraging to the optimization algorithms. Recently, the ability to reset the search has been shown to significantly improve the searcher's efficiency. However, the optimal resetting strategy depends on the specific properties of the search problem and can often be challenging to determine. In this work, we propose a reinforcement learning (RL)-based framework to train agents capable of optimizing their search efficiency in environments by learning how to reset. First, we validate the approach in a well-established benchmark: the Brownian search with resetting. There, RL agents consistently recover strategies closely resembling the sharp resetting distribution, known to be optimal in this scenario. We then extend the framework by allowing agents to control not only when to reset, but also their spatial dynamics through turning actions. In this more complex setting, the agents discover strategies that adapt both resetting and turning to the properties of the environment, outperforming the proposed benchmarks. These results demonstrate how reinforcement learning can serve both as an optimization tool and a mechanism for uncovering new, interpretable strategies in stochastic search processes with resetting.
☆ BriLLM: Brain-inspired Large Language Model
This paper reports the first brain-inspired large language model (BriLLM). This is a non-Transformer, non-GPT, non-traditional machine learning input-output controlled generative language model. The model is based on the Signal Fully-connected flowing (SiFu) definition on the directed graph in terms of the neural network, and has the interpretability of all nodes on the graph of the whole model, instead of the traditional machine learning model that only has limited interpretability at the input and output ends. In the language model scenario, the token is defined as a node in the graph. A randomly shaped or user-defined signal flow flows between nodes on the principle of "least resistance" along paths. The next token or node to be predicted or generated is the target of the signal flow. As a language model, BriLLM theoretically supports infinitely long $n$-gram models when the model size is independent of the input and predicted length of the model. The model's working signal flow provides the possibility of recall activation and innate multi-modal support similar to the cognitive patterns of the human brain. At present, we released the first BriLLM version in Chinese, with 4000 tokens, 32-dimensional node width, 16-token long sequence prediction ability, and language model prediction performance comparable to GPT-1. More computing power will help us explore the infinite possibilities depicted above.
☆ AI and Deep Learning for Automated Segmentation and Quantitative Measurement of Spinal Structures in MRI
Background: Accurate spinal structure measurement is crucial for assessing spine health and diagnosing conditions like spondylosis, disc herniation, and stenosis. Manual methods for measuring intervertebral disc height and spinal canal diameter are subjective and time-consuming. Automated solutions are needed to improve accuracy, efficiency, and reproducibility in clinical practice. Purpose: This study develops an autonomous AI system for segmenting and measuring key spinal structures in MRI scans, focusing on intervertebral disc height and spinal canal anteroposterior (AP) diameter in the cervical, lumbar, and thoracic regions. The goal is to reduce clinician workload, enhance diagnostic consistency, and improve assessments. Methods: The AI model leverages deep learning architectures, including UNet, nnU-Net, and CNNs. Trained on a large proprietary MRI dataset, it was validated against expert annotations. Performance was evaluated using Dice coefficients and segmentation accuracy. Results: The AI model achieved Dice coefficients of 0.94 for lumbar, 0.91 for cervical, and 0.90 for dorsal spine segmentation (D1-D12). It precisely measured spinal parameters like disc height and canal diameter, demonstrating robustness and clinical applicability. Conclusion: The AI system effectively automates MRI-based spinal measurements, improving accuracy and reducing clinician workload. Its consistent performance across spinal regions supports clinical decision-making, particularly in high-demand settings, enhancing spinal assessments and patient outcomes.
comment: 16 pages, 2 figures
☆ Financial Fraud Detection with Entropy Computing
We introduce CVQBoost, a novel classification algorithm that leverages early hardware implementing Quantum Computing Inc's Entropy Quantum Computing (EQC) paradigm, Dirac-3 [Nguyen et. al. arXiv:2407.04512]. We apply CVQBoost to a fraud detection test case and benchmark its performance against XGBoost, a widely utilized ML method. Running on Dirac-3, CVQBoost demonstrates a significant runtime advantage over XGBoost, which we evaluate on high-performance hardware comprising up to 48 CPUs and four NVIDIA L4 GPUs using the RAPIDS AI framework. Our results show that CVQBoost maintains competitive accuracy (measured by AUC) while significantly reducing training time, particularly as dataset size and feature complexity increase. To assess scalability, we extend our study to large synthetic datasets ranging from 1M to 70M samples, demonstrating that CVQBoost on Dirac-3 is well-suited for large-scale classification tasks. These findings position CVQBoost as a promising alternative to gradient boosting methods, offering superior scalability and efficiency for high-dimensional ML applications such as fraud detection.
comment: 15 pages including references and appendix, 6 figures
☆ Line of Duty: Evaluating LLM Self-Knowledge via Consistency in Feasibility Boundaries NAACL 2025
As LLMs grow more powerful, their most profound achievement may be recognising when to say "I don't know". Existing studies on LLM self-knowledge have been largely constrained by human-defined notions of feasibility, often neglecting the reasons behind unanswerability by LLMs and failing to study deficient types of self-knowledge. This study aims to obtain intrinsic insights into different types of LLM self-knowledge with a novel methodology: allowing them the flexibility to set their own feasibility boundaries and then analysing the consistency of these limits. We find that even frontier models like GPT-4o and Mistral Large are not sure of their own capabilities more than 80% of the time, highlighting a significant lack of trustworthiness in responses. Our analysis of confidence balance in LLMs indicates that models swing between overconfidence and conservatism in feasibility boundaries depending on task categories and that the most significant self-knowledge weaknesses lie in temporal awareness and contextual understanding. These difficulties in contextual comprehension additionally lead models to question their operational boundaries, resulting in considerable confusion within the self-knowledge of LLMs. We make our code and results available publicly at https://github.com/knowledge-verse-ai/LLM-Self_Knowledge_Eval
comment: 14 pages, 8 figures, Accepted to the 5th TrustNLP Workshop at NAACL 2025
☆ Spherical Tree-Sliced Wasserstein Distance
Sliced Optimal Transport (OT) simplifies the OT problem in high-dimensional spaces by projecting supports of input measures onto one-dimensional lines and then exploiting the closed-form expression of the univariate OT to reduce the computational burden of OT. Recently, the Tree-Sliced method has been introduced to replace these lines with more intricate structures, known as tree systems. This approach enhances the ability to capture topological information of integration domains in Sliced OT while maintaining low computational cost. Inspired by this approach, in this paper, we present an adaptation of tree systems on OT problems for measures supported on a sphere. As a counterpart to the Radon transform variant on tree systems, we propose a novel spherical Radon transform with a new integration domain called spherical trees. By leveraging this transform and exploiting the spherical tree structures, we derive closed-form expressions for OT problems on the sphere. Consequently, we obtain an efficient metric for measures on the sphere, named Spherical Tree-Sliced Wasserstein (STSW) distance. We provide an extensive theoretical analysis to demonstrate the topology of spherical trees and the well-definedness and injectivity of our Radon transform variant, which leads to an orthogonally invariant distance between spherical measures. Finally, we conduct a wide range of numerical experiments, including gradient flows and self-supervised learning, to assess the performance of our proposed metric, comparing it to recent benchmarks.
☆ Compound Expression Recognition via Large Vision-Language Models
Compound Expression Recognition (CER) is crucial for understanding human emotions and improving human-computer interaction. However, CER faces challenges due to the complexity of facial expressions and the difficulty of capturing subtle emotional cues. To address these issues, we propose a novel approach leveraging Large Vision-Language Models (LVLMs). Our method employs a two-stage fine-tuning process: first, pre-trained LVLMs are fine-tuned on basic facial expressions to establish foundational patterns; second, the model is further optimized on a compound-expression dataset to refine visual-language feature interactions. Our approach achieves advanced accuracy on the RAF-DB dataset and demonstrates strong zero-shot generalization on the C-EXPR-DB dataset, showcasing its potential for real-world applications in emotion analysis and human-computer interaction.
☆ Collaboration is all you need: LLM Assisted Safe Code Translation
This paper introduces UniTranslator, a visionary framework that re-imagines code translation as a collaborative endeavor among multiple, compact LLMs. By orchestrating the interaction of specialized agents, each focused on different aspects of the translation process and grounded in a deep understanding of programming concepts, UniTranslator achieves a level of accuracy and efficiency that rivals larger, monolithic models. Our preliminary evaluation demonstrates the potential of UniTranslator to overcome the limitations of existing approaches and unlock the power of smaller LLMs for complex code translation tasks. We explore the effectiveness of this dynamic multi-agent paradigm in handling diverse language pairs, including low-resource languages, and in mitigating common issues such as code artifacts and hallucinations through the use of Natural Language Inference (NLI) grounding and iterative feedback mechanisms
☆ Technologies on Effectiveness and Efficiency: A Survey of State Spaces Models
State Space Models (SSMs) have emerged as a promising alternative to the popular transformer-based models and have been increasingly gaining attention. Compared to transformers, SSMs excel at tasks with sequential data or longer contexts, demonstrating comparable performances with significant efficiency gains. In this survey, we provide a coherent and systematic overview for SSMs, including their theoretical motivations, mathematical formulations, comparison with existing model classes, and various applications. We divide the SSM series into three main sections, providing a detailed introduction to the original SSM, the structured SSM represented by S4, and the selective SSM typified by Mamba. We put an emphasis on technicality, and highlight the various key techniques introduced to address the effectiveness and efficiency of SSMs. We hope this manuscript serves as an introduction for researchers to explore the theoretical foundations of SSMs.
☆ MEET: A Million-Scale Dataset for Fine-Grained Geospatial Scene Classification with Zoom-Free Remote Sensing Imagery
Accurate fine-grained geospatial scene classification using remote sensing imagery is essential for a wide range of applications. However, existing approaches often rely on manually zooming remote sensing images at different scales to create typical scene samples. This approach fails to adequately support the fixed-resolution image interpretation requirements in real-world scenarios. To address this limitation, we introduce the Million-scale finE-grained geospatial scEne classification dataseT (MEET), which contains over 1.03 million zoom-free remote sensing scene samples, manually annotated into 80 fine-grained categories. In MEET, each scene sample follows a scene-inscene layout, where the central scene serves as the reference, and auxiliary scenes provide crucial spatial context for finegrained classification. Moreover, to tackle the emerging challenge of scene-in-scene classification, we present the Context-Aware Transformer (CAT), a model specifically designed for this task, which adaptively fuses spatial context to accurately classify the scene samples. CAT adaptively fuses spatial context to accurately classify the scene samples by learning attentional features that capture the relationships between the center and auxiliary scenes. Based on MEET, we establish a comprehensive benchmark for fine-grained geospatial scene classification, evaluating CAT against 11 competitive baselines. The results demonstrate that CAT significantly outperforms these baselines, achieving a 1.88% higher balanced accuracy (BA) with the Swin-Large backbone, and a notable 7.87% improvement with the Swin-Huge backbone. Further experiments validate the effectiveness of each module in CAT and show the practical applicability of CAT in the urban functional zone mapping. The source code and dataset will be publicly available at https://jerrywyn.github.io/project/MEET.html.
☆ Can Large Reasoning Models do Analogical Reasoning under Perceptual Uncertainty?
This work presents a first evaluation of two state-of-the-art Large Reasoning Models (LRMs), OpenAI's o3-mini and DeepSeek R1, on analogical reasoning, focusing on well-established nonverbal human IQ tests based on Raven's progressive matrices. We benchmark with the I-RAVEN dataset and its more difficult extension, I-RAVEN-X, which tests the ability to generalize to longer reasoning rules and ranges of the attribute values. To assess the influence of visual uncertainties on these nonverbal analogical reasoning tests, we extend the I-RAVEN-X dataset, which otherwise assumes an oracle perception. We adopt a two-fold strategy to simulate this imperfect visual perception: 1) we introduce confounding attributes which, being sampled at random, do not contribute to the prediction of the correct answer of the puzzles and 2) smoothen the distributions of the input attributes' values. We observe a sharp decline in OpenAI's o3-mini task accuracy, dropping from 86.6% on the original I-RAVEN to just 17.0% -- approaching random chance -- on the more challenging I-RAVEN-X, which increases input length and range and emulates perceptual uncertainty. This drop occurred despite spending 3.4x more reasoning tokens. A similar trend is also observed for DeepSeek R1: from 80.6% to 23.2%. On the other hand, a neuro-symbolic probabilistic abductive model, ARLC, that achieves state-of-the-art performances on I-RAVEN, can robustly reason under all these out-of-distribution tests, maintaining strong accuracy with only a modest reduction from 98.6% to 88.0%. Our code is available at https://github.com/IBM/raven-large-language-models.
☆ Cross-Modal Learning for Music-to-Music-Video Description Generation RepL4NLP 2025
Music-to-music-video generation is a challenging task due to the intrinsic differences between the music and video modalities. The advent of powerful text-to-video diffusion models has opened a promising pathway for music-video (MV) generation by first addressing the music-to-MV description task and subsequently leveraging these models for video generation. In this study, we focus on the MV description generation task and propose a comprehensive pipeline encompassing training data construction and multimodal model fine-tuning. We fine-tune existing pre-trained multimodal models on our newly constructed music-to-MV description dataset based on the Music4All dataset, which integrates both musical and visual information. Our experimental results demonstrate that music representations can be effectively mapped to textual domains, enabling the generation of meaningful MV description directly from music inputs. We also identify key components in the dataset construction pipeline that critically impact the quality of MV description and highlight specific musical attributes that warrant greater focus for improved MV description generation.
comment: Accepted by RepL4NLP 2025 @ NAACL 2025
☆ Align in Depth: Defending Jailbreak Attacks via Progressive Answer Detoxification
Large Language Models (LLMs) are vulnerable to jailbreak attacks, which use crafted prompts to elicit toxic responses. These attacks exploit LLMs' difficulty in dynamically detecting harmful intents during the generation process. Traditional safety alignment methods, often relying on the initial few generation steps, are ineffective due to limited computational budget. This paper proposes DEEPALIGN, a robust defense framework that fine-tunes LLMs to progressively detoxify generated content, significantly improving both the computational budget and effectiveness of mitigating harmful generation. Our approach uses a hybrid loss function operating on hidden states to directly improve LLMs' inherent awareness of toxity during generation. Furthermore, we redefine safe responses by generating semantically relevant answers to harmful queries, thereby increasing robustness against representation-mutation attacks. Evaluations across multiple LLMs demonstrate state-of-the-art defense performance against six different attack types, reducing Attack Success Rates by up to two orders of magnitude compared to previous state-of-the-art defense while preserving utility. This work advances LLM safety by addressing limitations of conventional alignment through dynamic, context-aware mitigation.
☆ Multi-Stage Generative Upscaler: Reconstructing Football Broadcast Images via Diffusion Models
The reconstruction of low-resolution football broadcast images presents a significant challenge in sports broadcasting, where detailed visuals are essential for analysis and audience engagement. This study introduces a multi-stage generative upscaling framework leveraging Diffusion Models to enhance degraded images, transforming inputs as small as $64 \times 64$ pixels into high-fidelity $1024 \times 1024$ outputs. By integrating an image-to-image pipeline, ControlNet conditioning, and LoRA fine-tuning, our approach surpasses traditional upscaling methods in restoring intricate textures and domain-specific elements such as player details and jersey logos. The custom LoRA is trained on a custom football dataset, ensuring adaptability to sports broadcast needs. Experimental results demonstrate substantial improvements over conventional models, with ControlNet refining fine details and LoRA enhancing task-specific elements. These findings highlight the potential of diffusion-based image reconstruction in sports media, paving the way for future applications in automated video enhancement and real-time sports analytics.
☆ Zero-TIG: Temporal Consistency-Aware Zero-Shot Illumination-Guided Low-light Video Enhancement
Low-light and underwater videos suffer from poor visibility, low contrast, and high noise, necessitating enhancements in visual quality. However, existing approaches typically rely on paired ground truth, which limits their practicality and often fails to maintain temporal consistency. To overcome these obstacles, this paper introduces a novel zero-shot learning approach named Zero-TIG, leveraging the Retinex theory and optical flow techniques. The proposed network consists of an enhancement module and a temporal feedback module. The enhancement module comprises three subnetworks: low-light image denoising, illumination estimation, and reflection denoising. The temporal enhancement module ensures temporal consistency by incorporating histogram equalization, optical flow computation, and image warping to align the enhanced previous frame with the current frame, thereby maintaining continuity. Additionally, we address color distortion in underwater data by adaptively balancing RGB channels. The experimental results demonstrate that our method achieves low-light video enhancement without the need for paired training data, making it a promising and applicable method for real-world scenario enhancement.
☆ Neurons: Emulating the Human Visual Cortex Improves Fidelity and Interpretability in fMRI-to-Video Reconstruction
Decoding visual stimuli from neural activity is essential for understanding the human brain. While fMRI methods have successfully reconstructed static images, fMRI-to-video reconstruction faces challenges due to the need for capturing spatiotemporal dynamics like motion and scene transitions. Recent approaches have improved semantic and perceptual alignment but struggle to integrate coarse fMRI data with detailed visual features. Inspired by the hierarchical organization of the visual system, we propose NEURONS, a novel framework that decouples learning into four correlated sub-tasks: key object segmentation, concept recognition, scene description, and blurry video reconstruction. This approach simulates the visual cortex's functional specialization, allowing the model to capture diverse video content. In the inference stage, NEURONS generates robust conditioning signals for a pre-trained text-to-video diffusion model to reconstruct the videos. Extensive experiments demonstrate that NEURONS outperforms state-of-the-art baselines, achieving solid improvements in video consistency (26.6%) and semantic-level accuracy (19.1%). Notably, NEURONS shows a strong functional correlation with the visual cortex, highlighting its potential for brain-computer interfaces and clinical applications. Code and model weights will be available at: https://github.com/xmed-lab/NEURONS.
☆ Unifying Perplexing Behaviors in Modified BP Attributions through Alignment Perspective
Attributions aim to identify input pixels that are relevant to the decision-making process. A popular approach involves using modified backpropagation (BP) rules to reverse decisions, which improves interpretability compared to the original gradients. However, these methods lack a solid theoretical foundation and exhibit perplexing behaviors, such as reduced sensitivity to parameter randomization, raising concerns about their reliability and highlighting the need for theoretical justification. In this work, we present a unified theoretical framework for methods like GBP, RectGrad, LRP, and DTD, demonstrating that they achieve input alignment by combining the weights of activated neurons. This alignment improves the visualization quality and reduces sensitivity to weight randomization. Our contributions include: (1) Providing a unified explanation for multiple behaviors, rather than focusing on just one. (2) Accurately predicting novel behaviors. (3) Offering insights into decision-making processes, including layer-wise information changes and the relationship between attributions and model decisions.
comment: 11 pages, 9 figures
☆ Don't Take Things Out of Context: Attention Intervention for Enhancing Chain-of-Thought Reasoning in Large Language Models ICLR2025
Few-shot Chain-of-Thought (CoT) significantly enhances the reasoning capabilities of large language models (LLMs), functioning as a whole to guide these models in generating reasoning steps toward final answers. However, we observe that isolated segments, words, or tokens within CoT demonstrations can unexpectedly disrupt the generation process of LLMs. The model may overly concentrate on certain local information present in the demonstration, introducing irrelevant noise into the reasoning process and potentially leading to incorrect answers. In this paper, we investigate the underlying mechanism of CoT through dynamically tracing and manipulating the inner workings of LLMs at each output step, which demonstrates that tokens exhibiting specific attention characteristics are more likely to induce the model to take things out of context; these tokens directly attend to the hidden states tied with prediction, without substantial integration of non-local information. Building upon these insights, we propose a Few-shot Attention Intervention method (FAI) that dynamically analyzes the attention patterns of demonstrations to accurately identify these tokens and subsequently make targeted adjustments to the attention weights to effectively suppress their distracting effect on LLMs. Comprehensive experiments across multiple benchmarks demonstrate consistent improvements over baseline methods, with a remarkable 5.91% improvement on the AQuA dataset, further highlighting the effectiveness of FAI.
comment: Accepted by ICLR2025
☆ MoLEx: Mixture of Layer Experts for Finetuning with Sparse Upcycling
Large-scale pre-training of deep models, followed by fine-tuning them, has become the cornerstone of natural language processing (NLP). The prevalence of data coupled with computational resources has led to large models with a considerable number of parameters. While the massive size of these models has led to remarkable success in many NLP tasks, a detriment is the expense required to retrain all the base model's parameters for the adaptation to each task or domain. Parameter Efficient Fine-Tuning (PEFT) provides an effective solution for this challenge by minimizing the number of parameters required to be fine-tuned while maintaining the quality of the model. While existing methods have achieved impressive results, they mainly focus on adapting a subset of parameters, weight reparameterization, and prompt engineering. In this paper, we study layers as extractors of different types of linguistic information that are valuable when used in conjunction. We then propose the Mixture of Layer Experts (MoLEx), a novel sparse mixture of experts (SMoE) whose experts are layers in the pre-trained model. It performs a conditional computation of a mixture of layers during fine-tuning to provide the model with more structural knowledge about the data. By providing an avenue for information exchange between layers, MoLEx enables the model to make a more well-informed prediction for the downstream task, leading to better fine-tuning results with the same number of effective parameters. As experts can be processed in parallel, MoLEx introduces minimal additional computational overhead. We empirically corroborate the advantages of MoLEx when combined with popular PEFT baseline methods on a variety of downstream fine-tuning tasks, including the popular GLUE benchmark as well as the End-to-End Challenge (E2E). The code is publicly available at https://github.com/rachtsy/molex.
☆ Direction-Aware Diagonal Autoregressive Image Generation
The raster-ordered image token sequence exhibits a significant Euclidean distance between index-adjacent tokens at line breaks, making it unsuitable for autoregressive generation. To address this issue, this paper proposes Direction-Aware Diagonal Autoregressive Image Generation (DAR) method, which generates image tokens following a diagonal scanning order. The proposed diagonal scanning order ensures that tokens with adjacent indices remain in close proximity while enabling causal attention to gather information from a broader range of directions. Additionally, two direction-aware modules: 4D-RoPE and direction embeddings are introduced, enhancing the model's capability to handle frequent changes in generation direction. To leverage the representational capacity of the image tokenizer, we use its codebook as the image token embeddings. We propose models of varying scales, ranging from 485M to 2.0B. On the 256$\times$256 ImageNet benchmark, our DAR-XL (2.0B) outperforms all previous autoregressive image generators, achieving a state-of-the-art FID score of 1.37.
☆ Don't Forget It! Conditional Sparse Autoencoder Clamping Works for Unlearning
Recent developments in Large Language Model (LLM) capabilities have brought great potential but also posed new risks. For example, LLMs with knowledge of bioweapons, advanced chemistry, or cyberattacks could cause violence if placed in the wrong hands or during malfunctions. Because of their nature as near-black boxes, intuitive interpretation of LLM internals remains an open research question, preventing developers from easily controlling model behavior and capabilities. The use of Sparse Autoencoders (SAEs) has recently emerged as a potential method of unraveling representations of concepts in LLMs internals, and has allowed developers to steer model outputs by directly modifying the hidden activations. In this paper, we use SAEs to identify unwanted concepts from the Weapons of Mass Destruction Proxy (WMDP) dataset within gemma-2-2b internals and use feature steering to reduce the model's ability to answer harmful questions while retaining its performance on harmless queries. Our results bring back optimism to the viability of SAE-based explicit knowledge unlearning techniques.
comment: 6 pages, 6 figures
☆ UMB@PerAnsSumm 2025: Enhancing Perspective-Aware Summarization with Prompt Optimization and Supervised Fine-Tuning NAACL
We present our approach to the PerAnsSumm Shared Task, which involves perspective span identification and perspective-aware summarization in community question-answering (CQA) threads. For span identification, we adopt ensemble learning that integrates three transformer models through averaging to exploit individual model strengths, achieving an 82.91% F1-score on test data. For summarization, we design a suite of Chain-of-Thought (CoT) prompting strategies that incorporate keyphrases and guide information to structure summary generation into manageable steps. To further enhance summary quality, we apply prompt optimization using the DSPy framework and supervised fine-tuning (SFT) on Llama-3 to adapt the model to domain-specific data. Experimental results on validation and test sets show that structured prompts with keyphrases and guidance improve summaries aligned with references, while the combination of prompt optimization and fine-tuning together yields significant improvement in both relevance and factuality evaluation metrics.
comment: CL4HEALTH NAACL: Annual Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics
☆ Limits of KV Cache Compression for Tensor Attention based Autoregressive Transformers
The key-value (KV) cache in autoregressive transformers presents a significant bottleneck during inference, which restricts the context length capabilities of large language models (LLMs). While previous work analyzes the fundamental space complexity barriers in standard attention mechanism [Haris and Onak, 2025], our work generalizes the space complexity barriers result to tensor attention version. Our theoretical contributions rely on a novel reduction from communication complexity and deduce the memory lower bound for tensor-structured attention mechanisms when $d = \Omega(\log n)$. In the low dimensional regime where $d = o(\log n)$, we analyze the theoretical bounds of the space complexity as well. Overall, our work provides a theoretical foundation for us to understand the compression-expressivity tradeoff in tensor attention mechanisms and offers more perspectives in developing more memory-efficient transformer architectures.
☆ Quantifying Interpretability in CLIP Models with Concept Consistency
CLIP is one of the most popular foundational models and is heavily used for many vision-language tasks. However, little is known about the inner workings of CLIP. While recent work has proposed decomposition-based interpretability methods for identifying textual descriptions of attention heads in CLIP, the implications of conceptual consistency in these text labels on interpretability and model performance has not been explored. To bridge this gap, we study the conceptual consistency of text descriptions for attention heads in CLIP-like models. We conduct extensive experiments on six different models from OpenAI and OpenCLIP which vary by size, type of pre-training data and patch size. We propose Concept Consistency Score (CCS), a novel interpretability metric that measures how consistently individual attention heads in CLIP models align with specific concepts. To assign concept labels to heads, we use in-context learning with ChatGPT, guided by a few manually-curated examples, and validate these labels using an LLM-as-a-judge approach. Our soft-pruning experiments reveal that high CCS heads are critical for preserving model performance, as pruning them leads to a significantly larger performance drop than pruning random or low CCS heads. Notably, we find that high CCS heads capture essential concepts and play a key role in out-of-domain detection, concept-specific reasoning, and video-language understanding. These results position CCS as a powerful interpretability metric for analyzing CLIP-like models.
☆ Augmenting Image Annotation: A Human-LMM Collaborative Framework for Efficient Object Selection and Label Generation ICLR 2025
Traditional image annotation tasks rely heavily on human effort for object selection and label assignment, making the process time-consuming and prone to decreased efficiency as annotators experience fatigue after extensive work. This paper introduces a novel framework that leverages the visual understanding capabilities of large multimodal models (LMMs), particularly GPT, to assist annotation workflows. In our proposed approach, human annotators focus on selecting objects via bounding boxes, while the LMM autonomously generates relevant labels. This human-AI collaborative framework enhances annotation efficiency by reducing the cognitive and time burden on human annotators. By analyzing the system's performance across various types of annotation tasks, we demonstrate its ability to generalize to tasks such as object recognition, scene description, and fine-grained categorization. Our proposed framework highlights the potential of this approach to redefine annotation workflows, offering a scalable and efficient solution for large-scale data labeling in computer vision. Finally, we discuss how integrating LMMs into the annotation pipeline can advance bidirectional human-AI alignment, as well as the challenges of alleviating the "endless annotation" burden in the face of information overload by shifting some of the work to AI.
comment: This paper will appear at ICLR 2025 Workshop on Bidirectional Human-AI Alignment
☆ EmbodiedVSR: Dynamic Scene Graph-Guided Chain-of-Thought Reasoning for Visual Spatial Tasks
While multimodal large language models (MLLMs) have made groundbreaking progress in embodied intelligence, they still face significant challenges in spatial reasoning for complex long-horizon tasks. To address this gap, we propose EmbodiedVSR (Embodied Visual Spatial Reasoning), a novel framework that integrates dynamic scene graph-guided Chain-of-Thought (CoT) reasoning to enhance spatial understanding for embodied agents. By explicitly constructing structured knowledge representations through dynamic scene graphs, our method enables zero-shot spatial reasoning without task-specific fine-tuning. This approach not only disentangles intricate spatial relationships but also aligns reasoning steps with actionable environmental dynamics. To rigorously evaluate performance, we introduce the eSpatial-Benchmark, a comprehensive dataset including real-world embodied scenarios with fine-grained spatial annotations and adaptive task difficulty levels. Experiments demonstrate that our framework significantly outperforms existing MLLM-based methods in accuracy and reasoning coherence, particularly in long-horizon tasks requiring iterative environment interaction. The results reveal the untapped potential of MLLMs for embodied intelligence when equipped with structured, explainable reasoning mechanisms, paving the way for more reliable deployment in real-world spatial applications. The codes and datasets will be released soon.
comment: technical report
☆ A Survey of Cross-domain Graph Learning: Progress and Future Directions
Graph learning plays a vital role in mining and analyzing complex relationships involved in graph data, which is widely used in many real-world applications like transaction networks and communication networks. Foundation models in CV and NLP have shown powerful cross-domain capabilities that are also significant in graph domains. However, existing graph learning approaches struggle with cross-domain tasks. Inspired by successes in CV and NLP, cross-domain graph learning has once again become a focal point of attention to realizing true graph foundation models. In this survey, we present a comprehensive review and analysis of existing works on cross-domain graph learning. Concretely, we first propose a new taxonomy, categorizing existing approaches based on the learned cross-domain information: structure, feature, and structure-feature mixture. Next, we systematically survey representative methods in these categories. Finally, we discuss the remaining limitations of existing studies and highlight promising avenues for future research. Relevant papers are summarized and will be consistently updated at: https://github.com/cshhzhao/Awesome-Cross-Domain-Graph-Learning.
☆ MoMa-Kitchen: A 100K+ Benchmark for Affordance-Grounded Last-Mile Navigation in Mobile Manipulation
In mobile manipulation, navigation and manipulation are often treated as separate problems, resulting in a significant gap between merely approaching an object and engaging with it effectively. Many navigation approaches primarily define success by proximity to the target, often overlooking the necessity for optimal positioning that facilitates subsequent manipulation. To address this, we introduce MoMa-Kitchen, a benchmark dataset comprising over 100k samples that provide training data for models to learn optimal final navigation positions for seamless transition to manipulation. Our dataset includes affordance-grounded floor labels collected from diverse kitchen environments, in which robotic mobile manipulators of different models attempt to grasp target objects amidst clutter. Using a fully automated pipeline, we simulate diverse real-world scenarios and generate affordance labels for optimal manipulation positions. Visual data are collected from RGB-D inputs captured by a first-person view camera mounted on the robotic arm, ensuring consistency in viewpoint during data collection. We also develop a lightweight baseline model, NavAff, for navigation affordance grounding that demonstrates promising performance on the MoMa-Kitchen benchmark. Our approach enables models to learn affordance-based final positioning that accommodates different arm types and platform heights, thereby paving the way for more robust and generalizable integration of navigation and manipulation in embodied AI. Project page: \href{https://momakitchen.github.io/}{https://momakitchen.github.io/}.
☆ Large Reasoning Models in Agent Scenarios: Exploring the Necessity of Reasoning Capabilities
The rise of Large Reasoning Models (LRMs) signifies a paradigm shift toward advanced computational reasoning. Yet, this progress disrupts traditional agent frameworks, traditionally anchored by execution-oriented Large Language Models (LLMs). To explore this transformation, we propose the LaRMA framework, encompassing nine tasks across Tool Usage, Plan Design, and Problem Solving, assessed with three top LLMs (e.g., Claude3.5-sonnet) and five leading LRMs (e.g., DeepSeek-R1). Our findings address four research questions: LRMs surpass LLMs in reasoning-intensive tasks like Plan Design, leveraging iterative reflection for superior outcomes; LLMs excel in execution-driven tasks such as Tool Usage, prioritizing efficiency; hybrid LLM-LRM configurations, pairing LLMs as actors with LRMs as reflectors, optimize agent performance by blending execution speed with reasoning depth; and LRMs' enhanced reasoning incurs higher computational costs, prolonged processing, and behavioral challenges, including overthinking and fact-ignoring tendencies. This study fosters deeper inquiry into LRMs' balance of deep thinking and overthinking, laying a critical foundation for future agent design advancements.
comment: 71 pages, 5 figures, 6 tables
☆ API Agents vs. GUI Agents: Divergence and Convergence
Large language models (LLMs) have evolved beyond simple text generation to power software agents that directly translate natural language commands into tangible actions. While API-based LLM agents initially rose to prominence for their robust automation capabilities and seamless integration with programmatic endpoints, recent progress in multimodal LLM research has enabled GUI-based LLM agents that interact with graphical user interfaces in a human-like manner. Although these two paradigms share the goal of enabling LLM-driven task automation, they diverge significantly in architectural complexity, development workflows, and user interaction models. This paper presents the first comprehensive comparative study of API-based and GUI-based LLM agents, systematically analyzing their divergence and potential convergence. We examine key dimensions and highlight scenarios in which hybrid approaches can harness their complementary strengths. By proposing clear decision criteria and illustrating practical use cases, we aim to guide practitioners and researchers in selecting, combining, or transitioning between these paradigms. Ultimately, we indicate that continuing innovations in LLM-based automation are poised to blur the lines between API- and GUI-driven agents, paving the way for more flexible, adaptive solutions in a wide range of real-world applications.
☆ Low-cost Real-world Implementation of the Swing-up Pendulum for Deep Reinforcement Learning Experiments
Deep reinforcement learning (DRL) has had success in virtual and simulated domains, but due to key differences between simulated and real-world environments, DRL-trained policies have had limited success in real-world applications. To assist researchers to bridge the \textit{sim-to-real gap}, in this paper, we describe a low-cost physical inverted pendulum apparatus and software environment for exploring sim-to-real DRL methods. In particular, the design of our apparatus enables detailed examination of the delays that arise in physical systems when sensing, communicating, learning, inferring and actuating. Moreover, we wish to improve access to educational systems, so our apparatus uses readily available materials and parts to reduce cost and logistical barriers. Our design shows how commercial, off-the-shelf electronics and electromechanical and sensor systems, combined with common metal extrusions, dowel and 3D printed couplings provide a pathway for affordable physical DRL apparatus. The physical apparatus is complemented with a simulated environment implemented using a high-fidelity physics engine and OpenAI Gym interface.
comment: Australasian Conference on Robotics and Automation (ACRA) 2022
☆ Training Directional Locomotion for Quadrupedal Low-Cost Robotic Systems via Deep Reinforcement Learning
In this work we present Deep Reinforcement Learning (DRL) training of directional locomotion for low-cost quadrupedal robots in the real world. In particular, we exploit randomization of heading that the robot must follow to foster exploration of action-state transitions most useful for learning both forward locomotion as well as course adjustments. Changing the heading in episode resets to current yaw plus a random value drawn from a normal distribution yields policies able to follow complex trajectories involving frequent turns in both directions as well as long straight-line stretches. By repeatedly changing the heading, this method keeps the robot moving within the training platform and thus reduces human involvement and need for manual resets during the training. Real world experiments on a custom-built, low-cost quadruped demonstrate the efficacy of our method with the robot successfully navigating all validation tests. When trained with other approaches, the robot only succeeds in forward locomotion test and fails when turning is required.
comment: Australasian Conference on Robotics and Automation (ACRA) 2022
☆ Distance-Based Tree-Sliced Wasserstein Distance
To overcome computational challenges of Optimal Transport (OT), several variants of Sliced Wasserstein (SW) has been developed in the literature. These approaches exploit the closed-form expression of the univariate OT by projecting measures onto (one-dimensional) lines. However, projecting measures onto low-dimensional spaces can lead to a loss of topological information. Tree-Sliced Wasserstein distance on Systems of Lines (TSW-SL) has emerged as a promising alternative that replaces these lines with a more advanced structure called tree systems. The tree structures enhance the ability to capture topological information of the metric while preserving computational efficiency. However, at the core of TSW-SL, the splitting maps, which serve as the mechanism for pushing forward measures onto tree systems, focus solely on the position of the measure supports while disregarding the projecting domains. Moreover, the specific splitting map used in TSW-SL leads to a metric that is not invariant under Euclidean transformations, a typically expected property for OT on Euclidean space. In this work, we propose a novel class of splitting maps that generalizes the existing one studied in TSW-SL enabling the use of all positional information from input measures, resulting in a novel Distance-based Tree-Sliced Wasserstein (Db-TSW) distance. In addition, we introduce a simple tree sampling process better suited for Db-TSW, leading to an efficient GPU-friendly implementation for tree systems, similar to the original SW. We also provide a comprehensive theoretical analysis of proposed class of splitting maps to verify the injectivity of the corresponding Radon Transform, and demonstrate that Db-TSW is an Euclidean invariant metric. We empirically show that Db-TSW significantly improves accuracy compared to recent SW variants while maintaining low computational cost via a wide range of experiments.
☆ Measuring Similarity in Causal Graphs: A Framework for Semantic and Structural Analysis
Causal graphs are commonly used to understand and model complex systems. Researchers often construct these graphs from different perspectives, leading to significant variations for the same problem. Comparing causal graphs is, therefore, essential for evaluating assumptions, integrating insights, and resolving disagreements. The rise of AI tools has further amplified this need, as they are increasingly used to generate hypothesized causal graphs by synthesizing information from various sources such as prior research and community inputs, providing the potential for automating and scaling causal modeling for complex systems. Similar to humans, these tools also produce inconsistent results across platforms, versions, and iterations. Despite its importance, research on causal graph comparison remains scarce. Existing methods often focus solely on structural similarities, assuming identical variable names, and fail to capture nuanced semantic relationships, which is essential for causal graph comparison. We address these gaps by investigating methods for comparing causal graphs from both semantic and structural perspectives. First, we reviewed over 40 existing metrics and, based on predefined criteria, selected nine for evaluation from two threads of machine learning: four semantic similarity metrics and five learning graph kernels. We discuss the usability of these metrics in simple examples to illustrate their strengths and limitations. We then generated a synthetic dataset of 2,000 causal graphs using generative AI based on a reference diagram. Our findings reveal that each metric captures a different aspect of similarity, highlighting the need to use multiple metrics.
comment: 27 pages
☆ Resource Constrained Pathfinding with A* and Negative Weights
Constrained pathfinding is a well-studied, yet challenging network optimisation problem that can be seen in a broad range of real-world applications. Pathfinding with multiple resource limits, which is known as the Resource Constrained Shortest Path Problem (RCSP), aims to plan a cost-optimum path subject to limited usage of resources. Given the recent advances in constrained and multi-criteria search with A*, this paper introduces a new resource constrained search framework on the basis of A* to tackle RCSP in large networks, even in the presence of negative cost and negative resources. We empirically evaluate our new algorithm on a set of large instances and show up to two orders of magnitude faster performance compared to state-of-the-art RCSP algorithms in the literature.
comment: 9 pages 2 figures 2 tables
☆ Fourier Neural Operator based surrogates for $CO_2$ storage in realistic geologies
This study aims to develop surrogate models for accelerating decision making processes associated with carbon capture and storage (CCS) technologies. Selection of sub-surface $CO_2$ storage sites often necessitates expensive and involved simulations of $CO_2$ flow fields. Here, we develop a Fourier Neural Operator (FNO) based model for real-time, high-resolution simulation of $CO_2$ plume migration. The model is trained on a comprehensive dataset generated from realistic subsurface parameters and offers $O(10^5)$ computational acceleration with minimal sacrifice in prediction accuracy. We also explore super-resolution experiments to improve the computational cost of training the FNO based models. Additionally, we present various strategies for improving the reliability of predictions from the model, which is crucial while assessing actual geological sites. This novel framework, based on NVIDIA's Modulus library, will allow rapid screening of sites for CCS. The discussed workflows and strategies can be applied to other energy solutions like geothermal reservoir modeling and hydrogen storage. Our work scales scientific machine learning models to realistic 3D systems that are more consistent with real-life subsurface aquifers/reservoirs, paving the way for next-generation digital twins for subsurface CCS applications.
☆ FMNet: Frequency-Assisted Mamba-Like Linear Attention Network for Camouflaged Object Detection
Camouflaged Object Detection (COD) is challenging due to the strong similarity between camouflaged objects and their surroundings, which complicates identification. Existing methods mainly rely on spatial local features, failing to capture global information, while Transformers increase computational costs.To address this, the Frequency-Assisted Mamba-Like Linear Attention Network (FMNet) is proposed, which leverages frequency-domain learning to efficiently capture global features and mitigate ambiguity between objects and the background. FMNet introduces the Multi-Scale Frequency-Assisted Mamba-Like Linear Attention (MFM) module, integrating frequency and spatial features through a multi-scale structure to handle scale variations while reducing computational complexity. Additionally, the Pyramidal Frequency Attention Extraction (PFAE) module and the Frequency Reverse Decoder (FRD) enhance semantics and reconstruct features. Experimental results demonstrate that FMNet outperforms existing methods on multiple COD datasets, showcasing its advantages in both performance and efficiency. Code available at https://anonymous.4open.science/r/FMNet-3CE5.
☆ From Abstraction to Reality: DARPA's Vision for Robust Sim-to-Real Autonomy
The DARPA Transfer from Imprecise and Abstract Models to Autonomous Technologies (TIAMAT) program aims to address rapid and robust transfer of autonomy technologies across dynamic and complex environments, goals, and platforms. Existing methods for simulation-to-reality (sim-to-real) transfer often rely on high-fidelity simulations and struggle with broad adaptation, particularly in time-sensitive scenarios. Although many approaches have shown incredible performance at specific tasks, most techniques fall short when posed with unforeseen, complex, and dynamic real-world scenarios due to the inherent limitations of simulation. In contrast to current research that aims to bridge the gap between simulation environments and the real world through increasingly sophisticated simulations and a combination of methods typically assuming a small sim-to-real gap -- such as domain randomization, domain adaptation, imitation learning, meta-learning, policy distillation, and dynamic optimization -- TIAMAT takes a different approach by instead emphasizing transfer and adaptation of the autonomy stack directly to real-world environments by utilizing a breadth of low(er)-fidelity simulations to create broadly effective sim-to-real transfers. By abstractly learning from multiple simulation environments in reference to their shared semantics, TIAMAT's approaches aim to achieve abstract-to-real transfer for effective and rapid real-world adaptation. Furthermore, this program endeavors to improve the overall autonomy pipeline by addressing the inherent challenges in translating simulated behaviors into effective real-world performance.
☆ Observation-Graph Interaction and Key-Detail Guidance for Vision and Language Navigation
Vision and Language Navigation (VLN) requires an agent to navigate through environments following natural language instructions. However, existing methods often struggle with effectively integrating visual observations and instruction details during navigation, leading to suboptimal path planning and limited success rates. In this paper, we propose OIKG (Observation-graph Interaction and Key-detail Guidance), a novel framework that addresses these limitations through two key components: (1) an observation-graph interaction module that decouples angular and visual information while strengthening edge representations in the navigation space, and (2) a key-detail guidance module that dynamically extracts and utilizes fine-grained location and object information from instructions. By enabling more precise cross-modal alignment and dynamic instruction interpretation, our approach significantly improves the agent's ability to follow complex navigation instructions. Extensive experiments on the R2R and RxR datasets demonstrate that OIKG achieves state-of-the-art performance across multiple evaluation metrics, validating the effectiveness of our method in enhancing navigation precision through better observation-instruction alignment.
comment: 8 pages, 4 figures
☆ RONA: Pragmatically Diverse Image Captioning with Coherence Relations NAACL
Writing Assistants (e.g., Grammarly, Microsoft Copilot) traditionally generate diverse image captions by employing syntactic and semantic variations to describe image components. However, human-written captions prioritize conveying a central message alongside visual descriptions using pragmatic cues. To enhance pragmatic diversity, it is essential to explore alternative ways of communicating these messages in conjunction with visual content. To address this challenge, we propose RONA, a novel prompting strategy for Multi-modal Large Language Models (MLLM) that leverages Coherence Relations as an axis for variation. We demonstrate that RONA generates captions with better overall diversity and ground-truth alignment, compared to MLLM baselines across multiple domains. Our code is available at: https://github.com/aashish2000/RONA
comment: To appear in the NAACL Fourth Workshop on Intelligent and Interactive Writing Assistants (In2Writing), Albuquerque, New Mexico, May 2025, https://in2writing.glitch.me
Image-Goal Navigation Using Refined Feature Guidance and Scene Graph Enhancement
In this paper, we introduce a novel image-goal navigation approach, named RFSG. Our focus lies in leveraging the fine-grained connections between goals, observations, and the environment within limited image data, all the while keeping the navigation architecture simple and lightweight. To this end, we propose the spatial-channel attention mechanism, enabling the network to learn the importance of multi-dimensional features to fuse the goal and observation features. In addition, a selfdistillation mechanism is incorporated to further enhance the feature representation capabilities. Given that the navigation task needs surrounding environmental information for more efficient navigation, we propose an image scene graph to establish feature associations at both the image and object levels, effectively encoding the surrounding scene information. Crossscene performance validation was conducted on the Gibson and HM3D datasets, and the proposed method achieved stateof-the-art results among mainstream methods, with a speed of up to 53.5 frames per second on an RTX3080. This contributes to the realization of end-to-end image-goal navigation in realworld scenarios. The implementation and model of our method have been released at: https://github.com/nubot-nudt/RFSG.
☆ The Problem of the Priors, or Posteriors?
The problem of the priors is well known: it concerns the challenge of identifying norms that govern one's prior credences. I argue that a key to addressing this problem lies in considering what I call the problem of the posteriors -- the challenge of identifying norms that directly govern one's posterior credences, which then induce constraints on the priors via the diachronic requirement of conditionalization. This forward-looking approach can be summarized as: Think ahead, work backward. Although this idea can be traced to Freedman (1963), Carnap (1963), and Shimony (1970), it has received little attention in philosophy. In this paper, I initiate a systematic defense of forward-looking Bayesianism, addressing potential objections from more traditional views (both subjectivist and objectivist) and arguing for its advantages. In particular, I develop a specific approach to forward-looking Bayesianism -- one that treats the convergence of posterior credences to the truth as a fundamental rather than derived normative requirement. This approach, called convergentist Bayesianism, is argued to be crucial for a Bayesian foundation of Ockham's razor and related inference methods in statistics and machine learning.
☆ TxAgent: An AI Agent for Therapeutic Reasoning Across a Universe of Tools
Precision therapeutics require multimodal adaptive models that generate personalized treatment recommendations. We introduce TxAgent, an AI agent that leverages multi-step reasoning and real-time biomedical knowledge retrieval across a toolbox of 211 tools to analyze drug interactions, contraindications, and patient-specific treatment strategies. TxAgent evaluates how drugs interact at molecular, pharmacokinetic, and clinical levels, identifies contraindications based on patient comorbidities and concurrent medications, and tailors treatment strategies to individual patient characteristics. It retrieves and synthesizes evidence from multiple biomedical sources, assesses interactions between drugs and patient conditions, and refines treatment recommendations through iterative reasoning. It selects tools based on task objectives and executes structured function calls to solve therapeutic tasks that require clinical reasoning and cross-source validation. The ToolUniverse consolidates 211 tools from trusted sources, including all US FDA-approved drugs since 1939 and validated clinical insights from Open Targets. TxAgent outperforms leading LLMs, tool-use models, and reasoning agents across five new benchmarks: DrugPC, BrandPC, GenericPC, TreatmentPC, and DescriptionPC, covering 3,168 drug reasoning tasks and 456 personalized treatment scenarios. It achieves 92.1% accuracy in open-ended drug reasoning tasks, surpassing GPT-4o and outperforming DeepSeek-R1 (671B) in structured multi-step reasoning. TxAgent generalizes across drug name variants and descriptions. By integrating multi-step inference, real-time knowledge grounding, and tool-assisted decision-making, TxAgent ensures that treatment recommendations align with established clinical guidelines and real-world evidence, reducing the risk of adverse events and improving therapeutic decision-making.
comment: Project page: https://zitniklab.hms.harvard.edu/TxAgent TxAgent code: https://github.com/mims-harvard/TxAgent ToolUniverse code: https://github.com/mims-harvard/ToolUniverse
☆ Combinatorial Optimization for All: Using LLMs to Aid Non-Experts in Improving Optimization Algorithms
Large Language Models (LLMs) have shown notable potential in code generation for optimization algorithms, unlocking exciting new opportunities. This paper examines how LLMs, rather than creating algorithms from scratch, can improve existing ones without the need for specialized expertise. To explore this potential, we selected 10 baseline optimization algorithms from various domains (metaheuristics, reinforcement learning, deterministic, and exact methods) to solve the classic Travelling Salesman Problem. The results show that our simple methodology often results in LLM-generated algorithm variants that improve over the baseline algorithms in terms of solution quality, reduction in computational time, and simplification of code complexity, all without requiring specialized optimization knowledge or advanced algorithmic implementation skills.
☆ Auditing language models for hidden objectives
We study the feasibility of conducting alignment audits: investigations into whether models have undesired objectives. As a testbed, we train a language model with a hidden objective. Our training pipeline first teaches the model about exploitable errors in RLHF reward models (RMs), then trains the model to exploit some of these errors. We verify via out-of-distribution evaluations that the model generalizes to exhibit whatever behaviors it believes RMs rate highly, including ones not reinforced during training. We leverage this model to study alignment audits in two ways. First, we conduct a blind auditing game where four teams, unaware of the model's hidden objective or training, investigate it for concerning behaviors and their causes. Three teams successfully uncovered the model's hidden objective using techniques including interpretability with sparse autoencoders (SAEs), behavioral attacks, and training data analysis. Second, we conduct an unblinded follow-up study of eight techniques for auditing the model, analyzing their strengths and limitations. Overall, our work provides a concrete example of using alignment audits to discover a model's hidden objective and proposes a methodology for practicing and validating progress in alignment auditing.
♻ ☆ Dual-Stage Cross-Modal Network with Dynamic Feature Fusion for Emotional Mimicry Intensity Estimation
Emotional Mimicry Intensity (EMI) estimation serves as a critical technology for understanding human social behavior and enhancing human-computer interaction experiences, where the core challenge lies in dynamic correlation modeling and robust fusion of multimodal temporal signals. To address the limitations of existing methods in insufficient exploitation of modal synergistic effects, noise sensitivity, and limited fine-grained alignment capabilities, this paper proposes a dual-stage cross-modal alignment framework. First, we construct vision-text and audio-text contrastive learning networks based on an improved CLIP architecture, achieving preliminary alignment in the feature space through modality-decoupled pre-training. Subsequently, we design a temporal-aware dynamic fusion module that combines Temporal Convolutional Networks (TCN) and gated bidirectional LSTM to respectively capture the macro-evolution patterns of facial expressions and local dynamics of acoustic features. Innovatively, we introduce a quality-guided modality fusion strategy that enables modality compensation under occlusion and noisy scenarios through differentiable weight allocation. Experimental results on the Hume-Vidmimic2 dataset demonstrate that our method achieves an average Pearson correlation coefficient of 0.35 across six emotion dimensions, outperforming the best baseline by 40\%. Ablation studies further validate the effectiveness of the dual-stage training strategy and dynamic fusion mechanism, providing a novel technical pathway for fine-grained emotion analysis in open environments.
♻ ☆ dFLMoE: Decentralized Federated Learning via Mixture of Experts for Medical Data Analysis
Federated learning has wide applications in the medical field. It enables knowledge sharing among different healthcare institutes while protecting patients' privacy. However, existing federated learning systems are typically centralized, requiring clients to upload client-specific knowledge to a central server for aggregation. This centralized approach would integrate the knowledge from each client into a centralized server, and the knowledge would be already undermined during the centralized integration before it reaches back to each client. Besides, the centralized approach also creates a dependency on the central server, which may affect training stability if the server malfunctions or connections are unstable. To address these issues, we propose a decentralized federated learning framework named dFLMoE. In our framework, clients directly exchange lightweight head models with each other. After exchanging, each client treats both local and received head models as individual experts, and utilizes a client-specific Mixture of Experts (MoE) approach to make collective decisions. This design not only reduces the knowledge damage with client-specific aggregations but also removes the dependency on the central server to enhance the robustness of the framework. We validate our framework on multiple medical tasks, demonstrating that our method evidently outperforms state-of-the-art approaches under both model homogeneity and heterogeneity settings.
♻ ☆ PEMF-VTO: Point-Enhanced Video Virtual Try-on via Mask-free Paradigm
Video Virtual Try-on aims to seamlessly transfer a reference garment onto a target person in a video while preserving both visual fidelity and temporal coherence. Existing methods typically rely on inpainting masks to define the try-on area, enabling accurate garment transfer for simple scenes (e.g., in-shop videos). However, these mask-based approaches struggle with complex real-world scenarios, as overly large and inconsistent masks often destroy spatial-temporal information, leading to distorted results. Mask-free methods alleviate this issue but face challenges in accurately determining the try-on area, especially for videos with dynamic body movements. To address these limitations, we propose PEMF-VTO, a novel Point-Enhanced Mask-Free Video Virtual Try-On framework that leverages sparse point alignments to explicitly guide garment transfer. Our key innovation is the introduction of point-enhanced guidance, which provides flexible and reliable control over both spatial-level garment transfer and temporal-level video coherence. Specifically, we design a Point-Enhanced Transformer (PET) with two core components: Point-Enhanced Spatial Attention (PSA), which uses frame-cloth point alignments to precisely guide garment transfer, and Point-Enhanced Temporal Attention (PTA), which leverages frame-frame point correspondences to enhance temporal coherence and ensure smooth transitions across frames. Extensive experiments demonstrate that our PEMF-VTO outperforms state-of-the-art methods, generating more natural, coherent, and visually appealing try-on videos, particularly for challenging in-the-wild scenarios. The link to our paper's homepage is https://pemf-vto.github.io/.
♻ ☆ Through the Magnifying Glass: Adaptive Perception Magnification for Hallucination-Free VLM Decoding
Existing vision-language models (VLMs) often suffer from visual hallucination, where the generated responses contain inaccuracies that are not grounded in the visual input. Efforts to address this issue without model finetuning primarily mitigate hallucination by reducing biases contrastively or amplifying the weights of visual embedding during decoding. However, these approaches improve visual perception at the cost of impairing the language reasoning capability. In this work, we propose the Perception Magnifier (PM), a novel visual decoding method that iteratively isolates relevant visual tokens based on attention and magnifies the corresponding regions, spurring the model to concentrate on fine-grained visual details during decoding. Specifically, by magnifying critical regions while preserving the structural and contextual information at each decoding step, PM allows the VLM to enhance its scrutiny of the visual input, hence producing more accurate and faithful responses. Extensive experimental results demonstrate that PM not only achieves superior hallucination mitigation but also enhances language generation while preserving strong reasoning capabilities. Code is available at https://github.com/ShunqiM/PM .
comment: 19 pages, 5 figures, 9 tables
♻ ☆ Compute Optimal Scaling of Skills: Knowledge vs Reasoning
Scaling laws are a critical component of the LLM development pipeline, most famously as a way to forecast training decisions such as 'compute-optimally' trading-off parameter count and dataset size, alongside a more recent growing list of other crucial decisions. In this work, we ask whether compute-optimal scaling behaviour can be skill-dependent. In particular, we examine knowledge and reasoning-based skills such as knowledge-based QA and code generation, and we answer this question in the affirmative: scaling laws are skill-dependent. Next, to understand whether skill-dependent scaling is an artefact of the pretraining datamix, we conduct an extensive ablation of different datamixes and find that, also when correcting for datamix differences, knowledge and code exhibit fundamental differences in scaling behaviour. We conclude with an analysis of how our findings relate to standard compute-optimal scaling using a validation set, and find that a misspecified validation set can impact compute-optimal parameter count by nearly 50%, depending on its skill composition.
♻ ☆ On the Limitations of Vision-Language Models in Understanding Image Transforms
Vision Language Models (VLMs) have demonstrated significant potential in various downstream tasks, including Image/Video Generation, Visual Question Answering, Multimodal Chatbots, and Video Understanding. However, these models often struggle with basic image transformations. This paper investigates the image-level understanding of VLMs, specifically CLIP by OpenAI and SigLIP by Google. Our findings reveal that these models lack comprehension of multiple image-level augmentations. To facilitate this study, we created an augmented version of the Flickr8k dataset, pairing each image with a detailed description of the applied transformation. We further explore how this deficiency impacts downstream tasks, particularly in image editing, and evaluate the performance of state-of-the-art Image2Image models on simple transformations.
comment: 8 pages, 15 images
♻ ☆ Real-Time Decision-Making for Digital Twin in Additive Manufacturing with Model Predictive Control using Time-Series Deep Neural Networks
Digital Twin -- a virtual replica of a physical system enabling real-time monitoring, model updating, prediction, and decision-making -- combined with recent advances in machine learning, offers new opportunities for proactive control strategies in autonomous manufacturing. However, achieving real-time decision-making with Digital Twins requires efficient optimization driven by accurate predictions of highly nonlinear manufacturing systems. This paper presents a simultaneous multi-step Model Predictive Control (MPC) framework for real-time decision-making, using a multivariate deep neural network, named Time-Series Dense Encoder (TiDE), as the surrogate model. Unlike conventional MPC models which only provide one-step ahead prediction, TiDE is capable of predicting future states within the prediction horizon in one shot (multi-step), significantly accelerating the MPC. Using Directed Energy Deposition (DED) additive manufacturing as a case study, we demonstrate the effectiveness of the proposed MPC in achieving melt pool temperature tracking to ensure part quality, while reducing porosity defects by regulating laser power to maintain melt pool depth constraints. In this work, we first show that TiDE is capable of accurately predicting melt pool temperature and depth. Second, we demonstrate that the proposed MPC achieves precise temperature tracking while satisfying melt pool depth constraints within a targeted dilution range (10\%-30\%), reducing potential porosity defects. Compared to PID controller, the MPC results in smoother and less fluctuating laser power profiles with competitive or superior melt pool temperature control performance. This demonstrates the MPC's proactive control capabilities, leveraging time-series prediction and real-time optimization, positioning it as a powerful tool for future Digital Twin applications and real-time process optimization in manufacturing.
♻ ☆ ReMA: Learning to Meta-think for LLMs with Multi-Agent Reinforcement Learning
Recent research on Reasoning of Large Language Models (LLMs) has sought to further enhance their performance by integrating meta-thinking -- enabling models to monitor, evaluate, and control their reasoning processes for more adaptive and effective problem-solving. However, current single-agent work lacks a specialized design for acquiring meta-thinking, resulting in low efficacy. To address this challenge, we introduce Reinforced Meta-thinking Agents (ReMA), a novel framework that leverages Multi-Agent Reinforcement Learning (MARL) to elicit meta-thinking behaviors, encouraging LLMs to think about thinking. ReMA decouples the reasoning process into two hierarchical agents: a high-level meta-thinking agent responsible for generating strategic oversight and plans, and a low-level reasoning agent for detailed executions. Through iterative reinforcement learning with aligned objectives, these agents explore and learn collaboration, leading to improved generalization and robustness. Experimental results demonstrate that ReMA outperforms single-agent RL baselines on complex reasoning tasks, including competitive-level mathematical benchmarks and LLM-as-a-Judge benchmarks. Comprehensive ablation studies further illustrate the evolving dynamics of each distinct agent, providing valuable insights into how the meta-thinking reasoning process enhances the reasoning capabilities of LLMs.
♻ ☆ Master Stability Functions in Complex Networks
Synchronization is an emergent and fundamental phenomenon in nature and engineered systems. Understanding the stability of a synchronized phenomenon is crucial for ensuring functionality in various complex systems. The stability of the synchronization phenomenon is extensively studied using the Master Stability Function (MSF). This powerful and elegant tool plays a pivotal role in determining the stability of synchronization states, providing deep insights into synchronization in coupled systems. Although MSF analysis has been used for 25 years to study the stability of synchronization states, a systematic investigation of MSF across various networked systems remains missing from the literature. In this article, we present a simplified and unified MSF analysis for diverse undirected and directed networked systems. We begin with the analytical MSF framework for pairwise-coupled identical systems with diffusive and natural coupling schemes and extend our analysis to directed networks and multilayer networks, considering both intra-layer and inter-layer interactions. Furthermore, we revisit the MSF framework to incorporate higher-order interactions alongside pairwise interactions. To enhance understanding, we also provide a numerical analysis of synchronization in coupled R\"ossler systems under pairwise diffusive coupling and propose algorithms for determining the MSF, identifying stability regimes, and classifying MSF functions. Overall, the primary goal of this review is to present a systematic study of MSF in coupled dynamical networks in a clear and structured manner, making this powerful tool more accessible. Furthermore, we highlight cases where the study of synchronization states using MSF remains underexplored. Additionally, we discuss recent research focusing on MSF analysis using time series data and machine learning approaches.
comment: 49 pages, 5 figures
♻ ☆ Do Not Trust Licenses You See: Dataset Compliance Requires Massive-Scale AI-Powered Lifecycle Tracing
This paper argues that a dataset's legal risk cannot be accurately assessed by its license terms alone; instead, tracking dataset redistribution and its full lifecycle is essential. However, this process is too complex for legal experts to handle manually at scale. Tracking dataset provenance, verifying redistribution rights, and assessing evolving legal risks across multiple stages require a level of precision and efficiency that exceeds human capabilities. Addressing this challenge effectively demands AI agents that can systematically trace dataset redistribution, analyze compliance, and identify legal risks. We develop an automated data compliance system called NEXUS and show that AI can perform these tasks with higher accuracy, efficiency, and cost-effectiveness than human experts. Our massive legal analysis of 17,429 unique entities and 8,072 license terms using this approach reveals the discrepancies in legal rights between the original datasets before redistribution and their redistributed subsets, underscoring the necessity of the data lifecycle-aware compliance. For instance, we find that out of 2,852 datasets with commercially viable individual license terms, only 605 (21%) are legally permissible for commercialization. This work sets a new standard for AI data governance, advocating for a framework that systematically examines the entire lifecycle of dataset redistribution to ensure transparent, legal, and responsible dataset management.
♻ ☆ Playing with words: Comparing the vocabulary and lexical diversity of ChatGPT and humans
The introduction of Artificial Intelligence (AI) generative language models such as GPT (Generative Pre-trained Transformer) and tools such as ChatGPT has triggered a revolution that can transform how text is generated. This has many implications, for example, as AI-generated text becomes a significant fraction of the text, would this have an effect on the language capabilities of readers and also on the training of newer AI tools? Would it affect the evolution of languages? Focusing on one specific aspect of the language: words; will the use of tools such as ChatGPT increase or reduce the vocabulary used or the lexical richness? This has implications for words, as those not included in AI-generated content will tend to be less and less popular and may eventually be lost. In this work, we perform an initial comparison of the vocabulary and lexical richness of ChatGPT and humans when performing the same tasks. In more detail, two datasets containing the answers to different types of questions answered by ChatGPT and humans, and a third dataset in which ChatGPT paraphrases sentences and questions are used. The analysis shows that ChatGPT tends to use fewer distinct words and lower lexical richness than humans. These results are very preliminary and additional datasets and ChatGPT configurations have to be evaluated to extract more general conclusions. Therefore, further research is needed to understand how the use of ChatGPT and more broadly generative AI tools will affect the vocabulary and lexical richness in different types of text and languages.
♻ ☆ Dynamic-Width Speculative Beam Decoding for Efficient LLM Inference
Large language models (LLMs) have shown outstanding performance across numerous real-world tasks. However, the autoregressive nature of these models makes the inference process slow and costly. Speculative decoding has emerged as a promising solution, leveraging a smaller auxiliary model to draft future tokens, which are then validated simultaneously by the larger model, achieving a speed-up of 1-2x. Although speculative decoding matches the same distribution as multinomial sampling, multinomial sampling itself is prone to suboptimal outputs, whereas beam sampling is widely recognized for producing higher-quality results by maintaining multiple candidate sequences at each step. This paper explores the novel integration of speculative decoding with beam sampling. However, there are four key challenges: (1) how to generate multiple sequences from the larger model's distribution given drafts sequences from the small model; (2) how to dynamically optimize the number of beams to balance efficiency and accuracy; (3) how to efficiently verify the multiple drafts in parallel; and (4) how to address the extra memory costs inherent in beam sampling. To address these challenges, we propose dynamic-width speculative beam decoding (DSBD). Specifically, we first introduce a novel draft and verification scheme that generates multiple sequences following the large model's distribution based on beam sampling trajectories from the small model. Then, we introduce an adaptive mechanism to dynamically tune the number of beams based on the context, optimizing efficiency and effectiveness. Besides, we extend tree-based parallel verification to handle multiple trees simultaneously, accelerating the verification process. Finally, we illustrate a simple modification to our algorithm to mitigate the memory overhead of beam sampling...
♻ ☆ Standards for Belief Representations in LLMs
As large language models (LLMs) continue to demonstrate remarkable abilities across various domains, computer scientists are developing methods to understand their cognitive processes, particularly concerning how (and if) LLMs internally represent their beliefs about the world. However, this field currently lacks a unified theoretical foundation to underpin the study of belief in LLMs. This article begins filling this gap by proposing adequacy conditions for a representation in an LLM to count as belief-like. We argue that, while the project of belief measurement in LLMs shares striking features with belief measurement as carried out in decision theory and formal epistemology, it also differs in ways that should change how we measure belief. Thus, drawing from insights in philosophy and contemporary practices of machine learning, we establish four criteria that balance theoretical considerations with practical constraints. Our proposed criteria include accuracy, coherence, uniformity, and use, which together help lay the groundwork for a comprehensive understanding of belief representation in LLMs. We draw on empirical work showing the limitations of using various criteria in isolation to identify belief representations.
♻ ☆ AdaptGCD: Multi-Expert Adapter Tuning for Generalized Category Discovery
Different from the traditional semi-supervised learning paradigm that is constrained by the close-world assumption, Generalized Category Discovery (GCD) presumes that the unlabeled dataset contains new categories not appearing in the labeled set, and aims to not only classify old categories but also discover new categories in the unlabeled data. Existing studies on GCD typically devote to transferring the general knowledge from the self-supervised pretrained model to the target GCD task via some fine-tuning strategies, such as partial tuning and prompt learning. Nevertheless, these fine-tuning methods fail to make a sound balance between the generalization capacity of pretrained backbone and the adaptability to the GCD task. To fill this gap, in this paper, we propose a novel adapter-tuning-based method named AdaptGCD, which is the first work to introduce the adapter tuning into the GCD task and provides some key insights expected to enlighten future research. Furthermore, considering the discrepancy of supervision information between the old and new classes, a multi-expert adapter structure equipped with a route assignment constraint is elaborately devised, such that the data from old and new classes are separated into different expert groups. Extensive experiments are conducted on 7 widely-used datasets. The remarkable improvements in performance highlight the effectiveness of our proposals.
♻ ☆ Multiple Heads are Better than One: Mixture of Modality Knowledge Experts for Entity Representation Learning ICLR 2025
Learning high-quality multi-modal entity representations is an important goal of multi-modal knowledge graph (MMKG) representation learning, which can enhance reasoning tasks within the MMKGs, such as MMKG completion (MMKGC). The main challenge is to collaboratively model the structural information concealed in massive triples and the multi-modal features of the entities. Existing methods focus on crafting elegant entity-wise multi-modal fusion strategies, yet they overlook the utilization of multi-perspective features concealed within the modalities under diverse relational contexts. To address this issue, we introduce a novel framework with Mixture of Modality Knowledge experts (MoMoK for short) to learn adaptive multi-modal entity representations for better MMKGC. We design relation-guided modality knowledge experts to acquire relation-aware modality embeddings and integrate the predictions from multi-modalities to achieve joint decisions. Additionally, we disentangle the experts by minimizing their mutual information. Experiments on four public MMKG benchmarks demonstrate the outstanding performance of MoMoK under complex scenarios.
comment: ICLR 2025 Camera-ready Version. Code and data will be released at https://github.com/zjukg/MoMoK
♻ ☆ It's complicated. The relationship of algorithmic fairness and non-discrimination regulations in the EU AI Act
What constitutes a fair decision? This question is not only difficult for humans but becomes more challenging when Artificial Intelligence (AI) models are used. In light of discriminatory algorithmic behaviors, the EU has recently passed the AI Act, which mandates specific rules for AI models, incorporating both traditional legal non-discrimination regulations and machine learning based algorithmic fairness concepts. This paper aims to bridge these two different concepts in the AI Act through: First a high-level introduction of both concepts targeting legal and computer science-oriented scholars, and second an in-depth analysis of the AI Act's relationship between legal non-discrimination regulations and algorithmic fairness. Our analysis reveals three key findings: (1.), most non-discrimination regulations target only high-risk AI systems. (2.), the regulation of high-risk systems encompasses both data input requirements and output monitoring, though these regulations are often inconsistent and raise questions of computational feasibility. (3.) Regulations for General Purpose AI Models, such as Large Language Models that are not simultaneously classified as high-risk systems, currently lack specificity compared to other regulations. Based on these findings, we recommend developing more specific auditing and testing methodologies for AI systems. This paper aims to serve as a foundation for future interdisciplinary collaboration between legal scholars and computer science-oriented machine learning researchers studying discrimination in AI systems.
♻ ☆ Instance Temperature Knowledge Distillation
Knowledge distillation (KD) enhances the performance of a student network by allowing it to learn the knowledge transferred from a teacher network incrementally. Existing methods dynamically adjust the temperature to enable the student network to adapt to the varying learning difficulties at different learning stages of KD. KD is a continuous process, but when adjusting the temperature, these methods consider only the immediate benefits of the operation in the current learning phase and fail to take into account its future returns. To address this issue, we formulate the adjustment of temperature as a sequential decision-making task and propose a method based on reinforcement learning, termed RLKD. Importantly, we design a novel state representation to enable the agent to make more informed action (i.e. instance temperature adjustment). To handle the problem of delayed rewards in our method due to the KD setting, we explore an instance reward calibration approach. In addition,we devise an efficient exploration strategy that enables the agent to learn valuable instance temperature adjustment policy more efficiently. Our framework can serve as a plug-and-play technique to be inserted into various KD methods easily, and we validate its effectiveness on both image classification and object detection tasks. Our project is at https://www.zayx.me/ITKD.github.io/.
comment: Serious updates are needed
♻ ☆ Multi-modal Vision Pre-training for Medical Image Analysis
Self-supervised learning has greatly facilitated medical image analysis by suppressing the training data requirement for real-world applications. Current paradigms predominantly rely on self-supervision within uni-modal image data, thereby neglecting the inter-modal correlations essential for effective learning of cross-modal image representations. This limitation is particularly significant for naturally grouped multi-modal data, e.g., multi-parametric MRI scans for a patient undergoing various functional imaging protocols in the same study. To bridge this gap, we conduct a novel multi-modal image pre-training with three proxy tasks to facilitate the learning of cross-modality representations and correlations using multi-modal brain MRI scans (over 2.4 million images in 16,022 scans of 3,755 patients), i.e., cross-modal image reconstruction, modality-aware contrastive learning, and modality template distillation. To demonstrate the generalizability of our pre-trained model, we conduct extensive experiments on various benchmarks with ten downstream tasks. The superior performance of our method is reported in comparison to state-of-the-art pre-training methods, with Dice Score improvement of 0.28\%-14.47\% across six segmentation benchmarks and a consistent accuracy boost of 0.65\%-18.07\% in four individual image classification tasks.
♻ ☆ Diverse Projection Ensembles for Distributional Reinforcement Learning ICLR 2024
In contrast to classical reinforcement learning (RL), distributional RL algorithms aim to learn the distribution of returns rather than their expected value. Since the nature of the return distribution is generally unknown a priori or arbitrarily complex, a common approach finds approximations within a set of representable, parametric distributions. Typically, this involves a projection of the unconstrained distribution onto the set of simplified distributions. We argue that this projection step entails a strong inductive bias when coupled with neural networks and gradient descent, thereby profoundly impacting the generalization behavior of learned models. In order to facilitate reliable uncertainty estimation through diversity, we study the combination of several different projections and representations in a distributional ensemble. We establish theoretical properties of such projection ensembles and derive an algorithm that uses ensemble disagreement, measured by the average 1-Wasserstein distance, as a bonus for deep exploration. We evaluate our algorithm on the behavior suite benchmark and VizDoom and find that diverse projection ensembles lead to significant performance improvements over existing methods on a variety of tasks with the most pronounced gains in directed exploration problems.
comment: ICLR 2024
♻ ☆ VideoTree: Adaptive Tree-based Video Representation for LLM Reasoning on Long Videos CVPR 2025
Long-form video understanding is complicated by the high redundancy of video data and the abundance of query-irrelevant information. To tackle these challenges, we propose VideoTree, a training-free framework which builds a query-adaptive and hierarchical video representation for LLM reasoning over long-form videos. First, VideoTree extracts query-relevant information from the input video through an iterative process, progressively refining the selection of keyframes based on their relevance to the query. Furthermore, VideoTree leverages the inherent hierarchical structure of long video data, which is often overlooked by existing LLM-based methods. Specifically, we incorporate multi-granularity information into a tree-based representation, allowing VideoTree to extract query-relevant details from long videos in a coarse-to-fine manner. This enables the model to effectively handle a wide range of video queries with varying levels of detail. Finally, VideoTree aggregates the hierarchical query-relevant information within the tree structure and feeds it into an LLM reasoning model to answer the query. Our experiments show that our method improves both reasoning accuracy and efficiency. Specifically, VideoTree outperforms existing training-free approaches on EgoSchema and NExT-QA with less inference time, achieving 61.1% and 75.6% accuracy on the test set without additional video-specific training. Moreover, on the long split of Video-MME (average 44 minutes), VideoTree achieves better performance than GPT-4V and many other MLLMs that were extensively trained on video data.
comment: CVPR 2025; First three authors contributed equally; Project page: https://videotree2024.github.io/
♻ ☆ Reproducible Machine Learning-based Voice Pathology Detection: Introducing the Pitch Difference Feature
Purpose: We introduce a novel methodology for voice pathology detection using the publicly available Saarbr\"ucken Voice Database (SVD) and a robust feature set combining commonly used acoustic handcrafted features with two novel ones: pitch difference (relative variation in fundamental frequency) and NaN feature (failed fundamental frequency estimation). Methods: We evaluate six machine learning (ML) algorithms -- support vector machine, k-nearest neighbors, naive Bayes, decision tree, random forest, and AdaBoost -- using grid search for feasible hyperparameters and 20480 different feature subsets. Top 1000 classification models -- feature subset combinations for each ML algorithm are validated with repeated stratified cross-validation. To address class imbalance, we apply K-Means SMOTE to augment the training data. Results: Our approach achieves 85.61%, 84.69% and 85.22% unweighted average recall (UAR) for females, males and combined results respectively. We intentionally omit accuracy as it is a highly biased metric for imbalanced data. Conclusion: Our study demonstrates that by following the proposed methodology and feature engineering, there is a potential in detection of various voice pathologies using ML models applied to the simplest vocal task, a sustained utterance of the vowel /a:/. To enable easier use of our methodology and to support our claims, we provide a publicly available GitHub repository with DOI 10.5281/zenodo.13771573. Finally, we provide a REFORMS checklist to enhance readability, reproducibility and justification of our approach
comment: Code repository: https://github.com/aailab-uct/Automated-Robust-and-Reproducible-Voice-Pathology-Detection, Supplementary materials: https://doi.org/10.5281/zenodo.14793017
♻ ☆ RectifiedHR: Enable Efficient High-Resolution Image Generation via Energy Rectification
Diffusion models have achieved remarkable advances in various image generation tasks. However, their performance notably declines when generating images at resolutions higher than those used during the training period. Despite the existence of numerous methods for producing high-resolution images, they either suffer from inefficiency or are hindered by complex operations. In this paper, we propose RectifiedHR, an straightforward and efficient solution for training-free high-resolution image generation. Specifically, we introduce the noise refresh strategy, which theoretically only requires a few lines of code to unlock the model's high-resolution generation ability and improve efficiency. Additionally, we first observe the phenomenon of energy decay that may cause image blurriness during the high-resolution image generation process. To address this issue, we introduce average latent energy analysis and discover that an improved classifier-free guidance hyperparameter can significantly enhance generation performance. Our method is entirely training-free and boasts a simple implementation logic and efficient performance. Through extensive comparisons with numerous baseline methods, our RectifiedHR demonstrates superior effectiveness and efficiency.
comment: Project Page: https://zhenyangcs.github.io/RectifiedHR-Diffusion/
♻ ☆ Towards Sample-specific Backdoor Attack with Clean Labels via Attribute Trigger SC
Currently, sample-specific backdoor attacks (SSBAs) are the most advanced and malicious methods since they can easily circumvent most of the current backdoor defenses. In this paper, we reveal that SSBAs are not sufficiently stealthy due to their poisoned-label nature, where users can discover anomalies if they check the image-label relationship. In particular, we demonstrate that it is ineffective to directly generalize existing SSBAs to their clean-label variants by poisoning samples solely from the target class. We reveal that it is primarily due to two reasons, including \textbf{(1)} the `antagonistic effects' of ground-truth features and \textbf{(2)} the learning difficulty of sample-specific features. Accordingly, trigger-related features of existing SSBAs cannot be effectively learned under the clean-label setting due to their mild trigger intensity required for ensuring stealthiness. We argue that the intensity constraint of existing SSBAs is mostly because their trigger patterns are `content-irrelevant' and therefore act as `noises' for both humans and DNNs. Motivated by this understanding, we propose to exploit content-relevant features, $a.k.a.$ (human-relied) attributes, as the trigger patterns to design clean-label SSBAs. This new attack paradigm is dubbed backdoor attack with attribute trigger (BAAT). Extensive experiments are conducted on benchmark datasets, which verify the effectiveness of our BAAT and its resistance to existing defenses.
comment: This paper is accepted by IEEE Transactions on Dependable and Secure Computing (TDSC), 2025. The first two authors contributed equally to this work. 14 pages
♻ ☆ Emergent Abilities in Large Language Models: A Survey
Large Language Models (LLMs) are leading a new technological revolution as one of the most promising research streams toward artificial general intelligence. The scaling of these models, accomplished by increasing the number of parameters and the magnitude of the training datasets, has been linked to various so-called emergent abilities that were previously unobserved. These emergent abilities, ranging from advanced reasoning and in-context learning to coding and problem-solving, have sparked an intense scientific debate: Are they truly emergent, or do they simply depend on external factors, such as training dynamics, the type of problems, or the chosen metric? What underlying mechanism causes them? Despite their transformative potential, emergent abilities remain poorly understood, leading to misconceptions about their definition, nature, predictability, and implications. In this work, we shed light on emergent abilities by conducting a comprehensive review of the phenomenon, addressing both its scientific underpinnings and real-world consequences. We first critically analyze existing definitions, exposing inconsistencies in conceptualizing emergent abilities. We then explore the conditions under which these abilities appear, evaluating the role of scaling laws, task complexity, pre-training loss, quantization, and prompting strategies. Our review extends beyond traditional LLMs and includes Large Reasoning Models (LRMs), which leverage reinforcement learning and inference-time search to amplify reasoning and self-reflection. However, emergence is not inherently positive. As AI systems gain autonomous reasoning capabilities, they also develop harmful behaviors, including deception, manipulation, and reward hacking. We highlight growing concerns about safety and governance, emphasizing the need for better evaluation frameworks and regulatory oversight.
♻ ☆ Fine-Grained and Multi-Dimensional Metrics for Document-Level Machine Translation NAACL 2025
Large language models (LLMs) have excelled in various NLP tasks, including machine translation (MT), yet most studies focus on sentence-level translation. This work investigates the inherent capability of instruction-tuned LLMs for document-level translation (docMT). Unlike prior approaches that require specialized techniques, we evaluate LLMs by directly prompting them to translate entire documents in a single pass. Our results show that this method improves translation quality compared to translating sentences separately, even without document-level fine-tuning. However, this advantage is not reflected in BLEU scores, which often favor sentence-based translations. We propose using the LLM-as-a-judge paradigm for evaluation, where GPT-4 is used to assess document coherence, accuracy, and fluency in a more nuanced way than n-gram-based metrics. Overall, our work demonstrates that instruction-tuned LLMs can effectively leverage document context for translation. However, we caution against using BLEU scores for evaluating docMT, as they often provide misleading outcomes, failing to capture the quality of document-level translation. Code and the outputs from GPT4-as-a-judge are available at https://github.com/EIT-NLP/BLEUless_DocMT
comment: Accepted at NAACL 2025 Student Research Workshop
♻ ☆ CoPAL: Corrective Planning of Robot Actions with Large Language Models ICRA
In the pursuit of fully autonomous robotic systems capable of taking over tasks traditionally performed by humans, the complexity of open-world environments poses a considerable challenge. Addressing this imperative, this study contributes to the field of Large Language Models (LLMs) applied to task and motion planning for robots. We propose a system architecture that orchestrates a seamless interplay between multiple cognitive levels, encompassing reasoning, planning, and motion generation. At its core lies a novel replanning strategy that handles physically grounded, logical, and semantic errors in the generated plans. We demonstrate the efficacy of the proposed feedback architecture, particularly its impact on executability, correctness, and time complexity via empirical evaluation in the context of a simulation and two intricate real-world scenarios: blocks world, barman and pizza preparation.
comment: IEEE International Conference on Robotics and Automation (ICRA) 2024
♻ ☆ Continuous, Subject-Specific Attribute Control in T2I Models by Identifying Semantic Directions CVPR 2025
Recent advances in text-to-image (T2I) diffusion models have significantly improved the quality of generated images. However, providing efficient control over individual subjects, particularly the attributes characterizing them, remains a key challenge. While existing methods have introduced mechanisms to modulate attribute expression, they typically provide either detailed, object-specific localization of such a modification or full-scale fine-grained, nuanced control of attributes. No current approach offers both simultaneously, resulting in a gap when trying to achieve precise continuous and subject-specific attribute modulation in image generation. In this work, we demonstrate that token-level directions exist within commonly used CLIP text embeddings that enable fine-grained, subject-specific control of high-level attributes in T2I models. We introduce two methods to identify these directions: a simple, optimization-free technique and a learning-based approach that utilizes the T2I model to characterize semantic concepts more specifically. Our methods allow the augmentation of the prompt text input, enabling fine-grained control over multiple attributes of individual subjects simultaneously, without requiring any modifications to the diffusion model itself. This approach offers a unified solution that fills the gap between global and localized control, providing competitive flexibility and precision in text-guided image generation. Project page: https://compvis.github.io/attribute-control. Code is available at https://github.com/CompVis/attribute-control.
comment: CVPR 2025. Project page: https://compvis.github.io/attribute-control
♻ ☆ Rethinking Epistemic and Aleatoric Uncertainty for Active Open-Set Annotation: An Energy-Based Approach CVPR 2025
Active learning (AL), which iteratively queries the most informative examples from a large pool of unlabeled candidates for model training, faces significant challenges in the presence of open-set classes. Existing methods either prioritize query examples likely to belong to known classes, indicating low epistemic uncertainty (EU), or focus on querying those with highly uncertain predictions, reflecting high aleatoric uncertainty (AU). However, they both yield suboptimal performance, as low EU corresponds to limited useful information, and closed-set AU metrics for unknown class examples are less meaningful. In this paper, we propose an Energy-based Active Open-set Annotation (EAOA) framework, which effectively integrates EU and AU to achieve superior performance. EAOA features a $(C+1)$-class detector and a target classifier, incorporating an energy-based EU measure and a margin-based energy loss designed for the detector, alongside an energy-based AU measure for the target classifier. Another crucial component is the target-driven adaptive sampling strategy. It first forms a smaller candidate set with low EU scores to ensure closed-set properties, making AU metrics meaningful. Subsequently, examples with high AU scores are queried to form the final query set, with the candidate set size adjusted adaptively. Extensive experiments show that EAOA achieves state-of-the-art performance while maintaining high query precision and low training overhead. The code is available at https://github.com/chenchenzong/EAOA.
comment: Accepted to CVPR 2025
♻ ☆ Hiding Local Manipulations on SAR Images: a Counter-Forensic Attack
The vast accessibility of Synthetic Aperture Radar (SAR) images through online portals has propelled the research across various fields. This widespread use and easy availability have unfortunately made SAR data susceptible to malicious alterations, such as local editing applied to the images for inserting or covering the presence of sensitive targets. Vulnerability is further emphasized by the fact that most SAR products, despite their original complex nature, are often released as amplitude-only information, allowing even inexperienced attackers to edit and easily alter the pixel content. To contrast malicious manipulations, in the last years the forensic community has begun to dig into the SAR manipulation issue, proposing detectors that effectively localize the tampering traces in amplitude images. Nonetheless, in this paper we demonstrate that an expert practitioner can exploit the complex nature of SAR data to obscure any signs of manipulation within a locally altered amplitude image. We refer to this approach as a counter-forensic attack. To achieve the concealment of manipulation traces, the attacker can simulate a re-acquisition of the manipulated scene by the SAR system that initially generated the pristine image. In doing so, the attacker can obscure any evidence of manipulation, making it appear as if the image was legitimately produced by the system. This attack has unique features that make it both highly generalizable and relatively easy to apply. First, it is a black-box attack, meaning it is not designed to deceive a specific forensic detector. Furthermore, it does not require a training phase and is not based on adversarial operations. We assess the effectiveness of the proposed counter-forensic approach across diverse scenarios, examining various manipulation operations.
♻ ☆ Online Context Learning for Socially Compliant Navigation
Robot social navigation needs to adapt to different human factors and environmental contexts. However, since these factors and contexts are difficult to predict and cannot be exhaustively enumerated, traditional learning-based methods have difficulty in ensuring the social attributes of robots in long-term and cross-environment deployments. This letter introduces an online context learning method that aims to empower robots to adapt to new social environments online. The proposed method adopts a two-layer structure. The bottom layer is built using a deep reinforcement learning-based method to ensure the output of basic robot navigation commands. The upper layer is implemented using an online robot learning-based method to socialize the control commands suggested by the bottom layer. Experiments using a community-wide simulator show that our method outperforms the state-of-the-art ones. Experimental results in the most challenging scenarios show that our method improves the performance of the state-of-the-art by 8%. The source code of the proposed method, the data used, and the tools for the per-training step are publicly available at https://github.com/Nedzhaken/SOCSARL-OL.
comment: 8 pages, 4 figures, 1 table, 1 algorithm
♻ ☆ Aligning Graphical and Functional Causal Abstractions
Causal abstractions allow us to relate causal models on different levels of granularity. To ensure that the models agree on cause and effect, frameworks for causal abstractions define notions of consistency. Two distinct methods for causal abstraction are common in the literature: (i) graphical abstractions, such as Cluster DAGs, which relate models on a structural level, and (ii) functional abstractions, like $\alpha$-abstractions, which relate models by maps between variables and their ranges. In this paper we will align the notions of graphical and functional consistency and show an equivalence between the class of Cluster DAGs, consistent $\alpha$-abstractions with the range of abstracted variables mapped bijectively, and constructive $\tau$-abstractions. Furthermore, we extend this alignment and the expressivity of graphical abstractions by introducing Partial Cluster DAGs. Our results provide a rigorous bridge between the functional and graphical frameworks and allow for adoption and transfer of results between them.
♻ ☆ TimeMixer++: A General Time Series Pattern Machine for Universal Predictive Analysis ICLR 2025
Time series analysis plays a critical role in numerous applications, supporting tasks such as forecasting, classification, anomaly detection, and imputation. In this work, we present the time series pattern machine (TSPM), a model designed to excel in a broad range of time series tasks through powerful representation and pattern extraction capabilities. Traditional time series models often struggle to capture universal patterns, limiting their effectiveness across diverse tasks. To address this, we define multiple scales in the time domain and various resolutions in the frequency domain, employing various mixing strategies to extract intricate, task-adaptive time series patterns. Specifically, we introduce a general-purpose TSPM that processes multi-scale time series using (1) multi-resolution time imaging (MRTI), (2) time image decomposition (TID), (3) multi-scale mixing (MCM), and (4) multi-resolution mixing (MRM) to extract comprehensive temporal patterns. MRTI transforms multi-scale time series into multi-resolution time images, capturing patterns across both temporal and frequency domains. TID leverages dual-axis attention to extract seasonal and trend patterns, while MCM hierarchically aggregates these patterns across scales. MRM adaptively integrates all representations across resolutions. This method achieves state-of-the-art performance across 8 time series analytical tasks, consistently surpassing both general-purpose and task-specific models. Our work marks a promising step toward the next generation of TSPMs, paving the way for further advancements in time series analysis.
comment: Accepted by the 13th International Conference on Learning Representations (ICLR 2025)
♻ ☆ Logit-Q Dynamics for Efficient Learning in Stochastic Teams
We present a new family of logit-Q dynamics for efficient learning in stochastic games by combining the log-linear learning (also known as logit dynamics) for the repeated play of normal-form games with Q-learning for unknown Markov decision processes within the auxiliary stage-game framework. In this framework, we view stochastic games as agents repeatedly playing some stage game associated with the current state of the underlying game while the agents' Q-functions determine the payoffs of these stage games. We show that the logit-Q dynamics presented reach (near) efficient equilibrium in stochastic teams with unknown dynamics and quantify the approximation error. We also show the rationality of the logit-Q dynamics against agents following pure stationary strategies and the convergence of the dynamics in stochastic games where the stage-payoffs induce potential games, yet only a single agent controls the state transitions beyond stochastic teams. The key idea is to approximate the dynamics with a fictional scenario where the Q-function estimates are stationary over epochs whose lengths grow at a sufficiently slow rate. We then couple the dynamics in the main and fictional scenarios to show that these two scenarios become more and more similar across epochs due to the vanishing step size and growing epoch lengths.
♻ ☆ Decouple-Then-Merge: Finetune Diffusion Models as Multi-Task Learning CVPR2025
Diffusion models are trained by learning a sequence of models that reverse each step of noise corruption. Typically, the model parameters are fully shared across multiple timesteps to enhance training efficiency. However, since the denoising tasks differ at each timestep, the gradients computed at different timesteps may conflict, potentially degrading the overall performance of image generation. To solve this issue, this work proposes a \textbf{De}couple-then-\textbf{Me}rge (\textbf{DeMe}) framework, which begins with a pretrained model and finetunes separate models tailored to specific timesteps. We introduce several improved techniques during the finetuning stage to promote effective knowledge sharing while minimizing training interference across timesteps. Finally, after finetuning, these separate models can be merged into a single model in the parameter space, ensuring efficient and practical inference. Experimental results show significant generation quality improvements upon 6 benchmarks including Stable Diffusion on COCO30K, ImageNet1K, PartiPrompts, and DDPM on LSUN Church, LSUN Bedroom, and CIFAR10. Code is available at \href{https://github.com/MqLeet/DeMe}{GitHub}.
comment: Accepted by CVPR2025
♻ ☆ PharmacoMatch: Efficient 3D Pharmacophore Screening via Neural Subgraph Matching
The increasing size of screening libraries poses a significant challenge for the development of virtual screening methods for drug discovery, necessitating a re-evaluation of traditional approaches in the era of big data. Although 3D pharmacophore screening remains a prevalent technique, its application to very large datasets is limited by the computational cost associated with matching query pharmacophores to database molecules. In this study, we introduce PharmacoMatch, a novel contrastive learning approach based on neural subgraph matching. Our method reinterprets pharmacophore screening as an approximate subgraph matching problem and enables efficient querying of conformational databases by encoding query-target relationships in the embedding space. We conduct comprehensive investigations of the learned representations and evaluate PharmacoMatch as pre-screening tool in a zero-shot setting. We demonstrate significantly shorter runtimes and comparable performance metrics to existing solutions, providing a promising speed-up for screening very large datasets.
♻ ☆ Concise and Organized Perception Facilitates Reasoning in Large Language Models NAACL2025
Exploiting large language models (LLMs) to tackle reasoning has garnered growing attention. It still remains highly challenging to achieve satisfactory results in complex logical problems, characterized by plenty of premises within the context and requiring multi-hop reasoning. In particular, the reasoning capabilities of LLMs are brittle to disorder and distractibility. In this work, we first examine the mechanism from the perspective of information flow and reveal that LLMs confront difficulties akin to human-like cognitive biases when dealing with disordered and irrelevant content in reasoning tasks. However, in contrast to LLMs, disordered and irrelevant content does not significantly decrease human performance, as humans have a propensity to distill the most relevant information and systematically organize their thoughts, aiding them in responding to questions.Stem from that, we further propose a novel reasoning approach named Concise and Organized Perception (COP). COP carefully analyzes the given statements to identify the most pertinent information while eliminating redundancy efficiently. It then prompts the LLMs in a more organized form that adapts to the model's inference process. By perceiving concise and organized context, the reasoning abilities of LLMs can be better elicited. Extensive experimental results on several popular logical benchmarks (ProofWriter, PrOntoQA, PrOntoQA-OOD, and FOLIO) and mathematical benchmark (DI-GSM) show that COP significantly outperforms previous state-of-the-art methods.
comment: Accepted by NAACL2025 Findings
♻ ☆ LIX: Implicitly Infusing Spatial Geometric Prior Knowledge into Visual Semantic Segmentation for Autonomous Driving
Despite the impressive performance achieved by data-fusion networks with duplex encoders for visual semantic segmentation, they become ineffective when spatial geometric data are not available. Implicitly infusing the spatial geometric prior knowledge acquired by a data-fusion teacher network into a single-modal student network is a practical, albeit less explored research avenue. This article delves into this topic and resorts to knowledge distillation approaches to address this problem. We introduce the Learning to Infuse ''X'' (LIX) framework, with novel contributions in both logit distillation and feature distillation aspects. We present a mathematical proof that underscores the limitation of using a single, fixed weight in decoupled knowledge distillation and introduce a logit-wise dynamic weight controller as a solution to this issue. Furthermore, we develop an adaptively-recalibrated feature distillation algorithm, including two novel techniques: feature recalibration via kernel regression and in-depth feature consistency quantification via centered kernel alignment. Extensive experiments conducted with intermediate-fusion and late-fusion networks across various public datasets provide both quantitative and qualitative evaluations, demonstrating the superior performance of our LIX framework when compared to other state-of-the-art approaches.
comment: 13 pages, 7 figures, 5 tables
♻ ☆ Wearable intelligent throat enables natural speech in stroke patients with dysarthria
Wearable silent speech systems hold significant potential for restoring communication in patients with speech impairments. However, seamless, coherent speech remains elusive, and clinical efficacy is still unproven. Here, we present an AI-driven intelligent throat (IT) system that integrates throat muscle vibrations and carotid pulse signal sensors with large language model (LLM) processing to enable fluent, emotionally expressive communication. The system utilizes ultrasensitive textile strain sensors to capture high-quality signals from the neck area and supports token-level processing for real-time, continuous speech decoding, enabling seamless, delay-free communication. In tests with five stroke patients with dysarthria, IT's LLM agents intelligently corrected token errors and enriched sentence-level emotional and logical coherence, achieving low error rates (4.2% word error rate, 2.9% sentence error rate) and a 55% increase in user satisfaction. This work establishes a portable, intuitive communication platform for patients with dysarthria with the potential to be applied broadly across different neurological conditions and in multi-language support systems.
comment: 5 figures, 45 references
♻ ☆ CSCE: Boosting LLM Reasoning by Simultaneous Enhancing of Causal Significance and Consistency
Chain-based reasoning methods like chain of thought (CoT) play a rising role in solving reasoning tasks for large language models (LLMs). However, the causal illusions between \textit{a step of reasoning} and \textit{corresponding state transitions} are becoming a significant obstacle to advancing LLMs' reasoning capabilities, especially in long-range reasoning tasks. This paper proposes a non-chain-based reasoning framework for simultaneous consideration of causal significance and consistency, i.e., the Causal Significance and Consistency Enhancer (CSCE). We customize LLM's loss function utilizing treatment effect assessments to enhance its reasoning ability from two aspects: causal significance and consistency. This ensures that the model captures essential causal relationships and maintains robust and consistent performance across various scenarios. Additionally, we transform the reasoning process from the cascading multiple one-step reasoning commonly used in Chain-Based methods, like CoT, to a causal-enhanced method that outputs the entire reasoning process in one go, further improving the model's reasoning efficiency. Extensive experiments show that our method improves both the reasoning success rate and speed. These improvements further demonstrate that non-chain-based methods can also aid LLMs in completing reasoning tasks.
♻ ☆ Homogeneous Dynamics Space for Heterogeneous Humans CVPR 2025
Analyses of human motion kinematics have achieved tremendous advances. However, the production mechanism, known as human dynamics, is still undercovered. In this paper, we aim to push data-driven human dynamics understanding forward. We identify a major obstacle to this as the heterogeneity of existing human motion understanding efforts. Specifically, heterogeneity exists in not only the diverse kinematics representations and hierarchical dynamics representations but also in the data from different domains, namely biomechanics and reinforcement learning. With an in-depth analysis of the existing heterogeneity, we propose to emphasize the beneath homogeneity: all of them represent the homogeneous fact of human motion, though from different perspectives. Given this, we propose Homogeneous Dynamics Space (HDyS) as a fundamental space for human dynamics by aggregating heterogeneous data and training a homogeneous latent space with inspiration from the inverse-forward dynamics procedure. Leveraging the heterogeneous representations and datasets, HDyS achieves decent mapping between human kinematics and dynamics. We demonstrate the feasibility of HDyS with extensive experiments and applications. The project page is https://foruck.github.io/HDyS.
comment: Accepted by CVPR 2025. Cewu Lu and Yong-Lu Li are the corresponding authors
♻ ☆ LLaVA-Octopus: Unlocking Instruction-Driven Adaptive Projector Fusion for Video Understanding
In this paper, we introduce LLaVA-Octopus, a novel video multimodal large language model. LLaVA-Octopus adaptively weights features from different visual projectors based on user instructions, enabling us to leverage the complementary strengths of each projector. We observe that different visual projectors exhibit distinct characteristics when handling specific tasks. For instance, some projectors excel at capturing static details, while others are more effective at processing temporal information, and some are better suited for tasks requiring temporal coherence. By dynamically adjusting feature weights according to user instructions, LLaVA-Octopus dynamically selects and combines the most suitable features, significantly enhancing the model's performance in multimodal tasks. Experimental results demonstrate that LLaVA-Octopus achieves excellent performance across multiple benchmarks, especially in tasks such as video question answering, long video understanding, and comprehensive multi-choices benchmarks, highlighting its broad application potential.
comment: 18 pages, 10 figures
♻ ☆ Virtual Guidance as a Mid-level Representation for Navigation with Augmented Reality
In the context of autonomous navigation, effectively conveying abstract navigational cues to agents in dynamic environments presents significant challenges, particularly when navigation information is derived from diverse modalities such as both vision and high-level language descriptions. To address this issue, we introduce a novel technique termed `Virtual Guidance,' which is designed to visually represent non-visual instructional signals. These visual cues are overlaid onto the agent's camera view and served as comprehensible navigational guidance signals. To validate the concept of virtual guidance, we propose a sim-to-real framework that enables the transfer of the trained policy from simulated environments to real world, ensuring the adaptability of virtual guidance in practical scenarios. We evaluate and compare the proposed method against a non-visual guidance baseline through detailed experiments in simulation. The experimental results demonstrate that the proposed virtual guidance approach outperforms the baseline methods across multiple scenarios and offers clear evidence of its effectiveness in autonomous navigation tasks.
comment: Tsung-Chih Chiang, Jou-Min Liu, Ting-Ru Liu, and Chun-Wei Huang contributed equally to this work; This work has been submitted to the IEEE for possible publication
♻ ☆ Generative AI in Transportation Planning: A Survey
The integration of generative artificial intelligence (GenAI) into transportation planning has the potential to revolutionize tasks such as demand forecasting, infrastructure design, policy evaluation, and traffic simulation. However, there is a critical need for a systematic framework to guide the adoption of GenAI in this interdisciplinary domain. In this survey, we, a multidisciplinary team of researchers spanning computer science and transportation engineering, present the first comprehensive framework for leveraging GenAI in transportation planning. Specifically, we introduce a new taxonomy that categorizes existing applications and methodologies into two perspectives: transportation planning tasks and computational techniques. From the transportation planning perspective, we examine the role of GenAI in automating descriptive, predictive, generative, simulation, and explainable tasks to enhance mobility systems. From the computational perspective, we detail advancements in data preparation, domain-specific fine-tuning, and inference strategies, such as retrieval-augmented generation and zero-shot learning tailored to transportation applications. Additionally, we address critical challenges, including data scarcity, explainability, bias mitigation, and the development of domain-specific evaluation frameworks that align with transportation goals like sustainability, equity, and system efficiency. This survey aims to bridge the gap between traditional transportation planning methodologies and modern AI techniques, fostering collaboration and innovation. By addressing these challenges and opportunities, we seek to inspire future research that ensures ethical, equitable, and impactful use of generative AI in transportation planning.
comment: 56 pages
♻ ☆ Pesti-Gen: Unleashing a Generative Molecule Approach for Toxicity Aware Pesticide Design
Global climate change has reduced crop resilience and pesticide efficacy, making reliance on synthetic pesticides inevitable, even though their widespread use poses significant health and environmental risks. While these pesticides remain a key tool in pest management, previous machine-learning applications in pesticide and agriculture have focused on classification or regression, leaving the fundamental challenge of generating new molecular structures or designing novel candidates unaddressed. In this paper, we propose Pesti-Gen, a novel generative model based on variational auto-encoders, designed to create pesticide candidates with optimized properties for the first time. Specifically, Pesti-Gen leverages a two-stage learning process: an initial pre-training phase that captures a generalized chemical structure representation, followed by a fine-tuning stage that incorporates toxicity-specific information. The model simultaneously optimizes over multiple toxicity metrics, such as (1) livestock toxicity and (2) aqua toxicity to generate environmentally friendly pesticide candidates. Notably, Pesti-Gen achieves approximately 68\% structural validity in generating new molecular structures, demonstrating the model's effectiveness in producing optimized and feasible pesticide candidates, thereby providing a new way for safer and more sustainable pest management solutions.
comment: Accepted to the RECOMB 2025 Poster Track
♻ ☆ PrivacyLens: Evaluating Privacy Norm Awareness of Language Models in Action NeurIPS 2024
As language models (LMs) are widely utilized in personalized communication scenarios (e.g., sending emails, writing social media posts) and endowed with a certain level of agency, ensuring they act in accordance with the contextual privacy norms becomes increasingly critical. However, quantifying the privacy norm awareness of LMs and the emerging privacy risk in LM-mediated communication is challenging due to (1) the contextual and long-tailed nature of privacy-sensitive cases, and (2) the lack of evaluation approaches that capture realistic application scenarios. To address these challenges, we propose PrivacyLens, a novel framework designed to extend privacy-sensitive seeds into expressive vignettes and further into agent trajectories, enabling multi-level evaluation of privacy leakage in LM agents' actions. We instantiate PrivacyLens with a collection of privacy norms grounded in privacy literature and crowdsourced seeds. Using this dataset, we reveal a discrepancy between LM performance in answering probing questions and their actual behavior when executing user instructions in an agent setup. State-of-the-art LMs, like GPT-4 and Llama-3-70B, leak sensitive information in 25.68% and 38.69% of cases, even when prompted with privacy-enhancing instructions. We also demonstrate the dynamic nature of PrivacyLens by extending each seed into multiple trajectories to red-team LM privacy leakage risk. Dataset and code are available at https://github.com/SALT-NLP/PrivacyLens.
comment: NeurIPS 2024 Datasets and Benchmarks Track
♻ ☆ MoVE-KD: Knowledge Distillation for VLMs with Mixture of Visual Encoders CVPR2025
Visual encoders are fundamental components in vision-language models (VLMs), each showcasing unique strengths derived from various pre-trained visual foundation models. To leverage the various capabilities of these encoders, recent studies incorporate multiple encoders within a single VLM, leading to a considerable increase in computational cost. In this paper, we present Mixture-of-Visual-Encoder Knowledge Distillation (MoVE-KD), a novel framework that distills the unique proficiencies of multiple vision encoders into a single, efficient encoder model. Specifically, to mitigate conflicts and retain the unique characteristics of each teacher encoder, we employ low-rank adaptation (LoRA) and mixture-of-experts (MoEs) to selectively activate specialized knowledge based on input features, enhancing both adaptability and efficiency. To regularize the KD process and enhance performance, we propose an attention-based distillation strategy that adaptively weighs the different encoders and emphasizes valuable visual tokens, reducing the burden of replicating comprehensive but distinct features from multiple teachers. Comprehensive experiments on popular VLMs, such as LLaVA and LLaVA-NeXT, validate the effectiveness of our method. Our code is available at: https://github.com/hey-cjj/MoVE-KD.
comment: Accepted by CVPR2025
♻ ☆ Discovering Hidden Visual Concepts Beyond Linguistic Input in Infant Learning CVPR 2025
Infants develop complex visual understanding rapidly, even preceding of the acquisition of linguistic inputs. As computer vision seeks to replicate the human vision system, understanding infant visual development may offer valuable insights. In this paper, we present an interdisciplinary study exploring this question: can a computational model that imitates the infant learning process develop broader visual concepts that extend beyond the vocabulary it has heard, similar to how infants naturally learn? To investigate this, we analyze a recently published model in Science by Vong et al.,which is trained on longitudinal, egocentric images of a single child paired with transcribed parental speech. We introduce a training-free framework that can discover visual concept neurons hidden in the model's internal representations. Our findings show that these neurons can classify objects outside its original vocabulary. Furthermore, we compare the visual representations in infant-like models with those in moder computer vision models, such as CLIP or ImageNet pre-trained model, highlighting key similarities and differences. Ultimately, our work bridges cognitive science and computer vision by analyzing the internal representations of a computational model trained on an infant's visual and linguistic inputs.
comment: 12 pages, 11 figures. Accepted at CVPR 2025
♻ ☆ SAFREE: Training-Free and Adaptive Guard for Safe Text-to-Image And Video Generation ICLR 2025
Recent advances in diffusion models have significantly enhanced their ability to generate high-quality images and videos, but they have also increased the risk of producing unsafe content. Existing unlearning/editing-based methods for safe generation remove harmful concepts from models but face several challenges: (1) They cannot instantly remove harmful concepts without training. (2) Their safe generation capabilities depend on collected training data. (3) They alter model weights, risking degradation in quality for content unrelated to toxic concepts. To address these, we propose SAFREE, a novel, training-free approach for safe T2I and T2V, that does not alter the model's weights. Specifically, we detect a subspace corresponding to a set of toxic concepts in the text embedding space and steer prompt embeddings away from this subspace, thereby filtering out harmful content while preserving intended semantics. To balance the trade-off between filtering toxicity and preserving safe concepts, SAFREE incorporates a novel self-validating filtering mechanism that dynamically adjusts the denoising steps when applying the filtered embeddings. Additionally, we incorporate adaptive re-attention mechanisms within the diffusion latent space to selectively diminish the influence of features related to toxic concepts at the pixel level. In the end, SAFREE ensures coherent safety checking, preserving the fidelity, quality, and safety of the output. SAFREE achieves SOTA performance in suppressing unsafe content in T2I generation compared to training-free baselines and effectively filters targeted concepts while maintaining high-quality images. It also shows competitive results against training-based methods. We extend SAFREE to various T2I backbones and T2V tasks, showcasing its flexibility and generalization. SAFREE provides a robust and adaptable safeguard for ensuring safe visual generation.
comment: ICLR 2025; The first two authors contributed equally; Project page: https://safree-safe-t2i-t2v.github.io/
♻ ☆ Mitigating Object Hallucinations in Large Vision-Language Models with Assembly of Global and Local Attention CVPR 2025
Despite great success across various multimodal tasks, Large Vision-Language Models (LVLMs) often encounter object hallucinations with generated textual responses being inconsistent with the actual objects in images. We examine different LVLMs and pinpoint that one root cause of object hallucinations lies with deficient attention on discriminative image features. Specifically, LVLMs often predominantly attend to prompt-irrelevant global features instead of prompt-relevant local features, undermining their visual grounding capacity and leading to object hallucinations. We propose Assembly of Global and Local Attention (AGLA), a training-free and plug-and-play approach that mitigates hallucinations by assembling global features for response generation and local features for visual discrimination simultaneously. Specifically, we introduce an image-prompt matching scheme that captures prompt-relevant local features from images, leading to an augmented view of the input image where prompt-relevant content is highlighted while irrelevant distractions are suppressed. Hallucinations can thus be mitigated with a calibrated logit distribution that is from generative global features of the original image and discriminative local features of the augmented image. Extensive experiments show the superiority of AGLA in LVLM hallucination mitigation, demonstrating its wide applicability across both discriminative and generative tasks. Our code is available at https://github.com/Lackel/AGLA.
comment: Accepted by CVPR 2025
♻ ☆ Hierarchical Mixture of Experts: Generalizable Learning for High-Level Synthesis AAAI 2025
High-level synthesis (HLS) is a widely used tool in designing Field Programmable Gate Array (FPGA). HLS enables FPGA design with software programming languages by compiling the source code into an FPGA circuit. The source code includes a program (called "kernel") and several pragmas that instruct hardware synthesis, such as parallelization, pipeline, etc. While it is relatively easy for software developers to design the program, it heavily relies on hardware knowledge to design the pragmas, posing a big challenge for software developers. Recently, different machine learning algorithms, such as GNNs, have been proposed to automate the pragma design via performance prediction. However, when applying the trained model on new kernels, the significant domain shift often leads to unsatisfactory performance. We propose a more domain-generalizable model structure: a two-level hierarchical Mixture of Experts (MoE), that can be flexibly adapted to any GNN model. Different expert networks can learn to deal with different regions in the representation space, and they can utilize similar patterns between the old kernels and new kernels. In the low-level MoE, we apply MoE on three natural granularities of a program: node, basic block, and graph. The high-level MoE learns to aggregate the three granularities for the final decision. To train the hierarchical MoE stably, we further propose a two-stage training method to avoid expert polarization. Extensive experiments verify the effectiveness of the proposed hierarchical MoE. We publicized our codes at https://github.com/weikai-li/HierarchicalMoE.
comment: Accepted by AAAI 2025
♻ ☆ AnywhereDoor: Multi-Target Backdoor Attacks on Object Detection
As object detection becomes integral to many safety-critical applications, understanding its vulnerabilities is essential. Backdoor attacks, in particular, pose a serious threat by implanting hidden triggers in victim models, which adversaries can later exploit to induce malicious behaviors during inference. However, current understanding is limited to single-target attacks, where adversaries must define a fixed malicious behavior (target) before training, making inference-time adaptability impossible. Given the large output space of object detection (including object existence prediction, bounding box estimation, and classification), the feasibility of flexible, inference-time model control remains unexplored. This paper introduces AnywhereDoor, a multi-target backdoor attack for object detection. Once implanted, AnywhereDoor allows adversaries to make objects disappear, fabricate new ones, or mislabel them, either across all object classes or specific ones, offering an unprecedented degree of control. This flexibility is enabled by three key innovations: (i) objective disentanglement to scale the number of supported targets; (ii) trigger mosaicking to ensure robustness even against region-based detectors; and (iii) strategic batching to address object-level data imbalances that hinder manipulation. Extensive experiments demonstrate that AnywhereDoor grants attackers a high degree of control, improving attack success rates by 26% compared to adaptations of existing methods for such flexible control.
comment: 15 pages; This update was mistakenly uploaded as a new manuscript on arXiv (2503.06529). The wrong submission has now been withdrawn, and we replace the old one here
♻ ☆ Standalone 16-bit Neural Network Training: Missing Study for Hardware-Limited Deep Learning Practitioners
With the increasing complexity of machine learning models, managing computational resources like memory and processing power has become a critical concern. Mixed precision techniques, which leverage different numerical precisions during model training and inference to optimize resource usage, have been widely adopted. However, access to hardware that supports lower precision formats (e.g., FP8 or FP4) remains limited, especially for practitioners with hardware constraints. For many with limited resources, the available options are restricted to using 32-bit, 16-bit, or a combination of the two. While it is commonly believed that 16-bit precision can achieve results comparable to full (32-bit) precision, this study is the first to systematically validate this assumption through both rigorous theoretical analysis and extensive empirical evaluation. Our theoretical formalization of floating-point errors and classification tolerance provides new insights into the conditions under which 16-bit precision can approximate 32-bit results. This study fills a critical gap, proving for the first time that standalone 16-bit precision neural networks match 32-bit and mixed-precision in accuracy while boosting computational speed. Given the widespread availability of 16-bit across GPUs, these findings are especially valuable for machine learning practitioners with limited hardware resources to make informed decisions.
♻ ☆ Multi-Knowledge-oriented Nighttime Haze Imaging Enhancer for Vision-driven Intelligent Transportation Systems
Salient object detection (SOD) plays a critical role in intelligent transportation systems (ITS), facilitating the detection and segmentation of key visual elements in an image. However, adverse imaging conditions such as haze during the day, low light, and haze at night severely degrade image quality and hinder reliable object detection in real-world scenarios. To address these challenges, we propose a multi-knowledge-oriented nighttime haze imaging enhancer (MKoIE), which integrates three tasks: daytime dehazing, low-light enhancement, and nighttime dehazing. The MKoIE incorporates two key innovative components: First, the network employs a task-oriented node learning mechanism to handle three specific degradation types: day-time haze, low light, and night-time haze conditions, with an embedded self-attention module enhancing its performance in nighttime imaging. In addition, multi-receptive field enhancement module that efficiently extracts multi-scale features through three parallel depthwise separable convolution branches with different dilation rates, capturing comprehensive spatial information with minimal computational overhead to meet the requirements of real-time ITS deployment. To ensure optimal image reconstruction quality and visual characteristics, we suggest a hybrid loss function. Extensive experiments on different types of weather/imaging conditions illustrate that MKoIE surpasses existing methods, enhancing the reliability, accuracy, and operational efficiency of ITS. The code is available at https://github.com/Ai-Chen-Lab/MKoIE.
♻ ☆ ChartMoE: Mixture of Diversely Aligned Expert Connector for Chart Understanding
Automatic chart understanding is crucial for content comprehension and document parsing. Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in chart understanding through domain-specific alignment and fine-tuning. However, current MLLMs still struggle to provide faithful data and reliable analysis only based on charts. To address it, we propose ChartMoE, which employs the Mixture of Expert (MoE) architecture to replace the traditional linear projector to bridge the modality gap. Specifically, we train several linear connectors through distinct alignment tasks, which are utilized as the foundational initialization parameters for different experts. Additionally, we introduce ChartMoE-Align, a dataset with nearly 1 million chart-table-JSON-code quadruples to conduct three alignment tasks (chart-table/JSON/code). Combined with the vanilla connector, we initialize different experts diversely and adopt high-quality knowledge learning to further refine the MoE connector and LLM parameters. Extensive experiments demonstrate the effectiveness of the MoE connector and our initialization strategy, e.g., ChartMoE improves the accuracy of the previous state-of-the-art from 80.48\% to 84.64\% on the ChartQA benchmark.
♻ ☆ PersonaCraft: Personalized and Controllable Full-Body Multi-Human Scene Generation Using Occlusion-Aware 3D-Conditioned Diffusion
We present PersonaCraft, a framework for controllable and occlusion-robust full-body personalized image synthesis of multiple individuals in complex scenes. Current methods struggle with occlusion-heavy scenarios and complete body personalization, as 2D pose conditioning lacks 3D geometry, often leading to ambiguous occlusions and anatomical distortions, and many approaches focus solely on facial identity. In contrast, our PersonaCraft integrates diffusion models with 3D human modeling, employing SMPLx-ControlNet, to utilize 3D geometry like depth and normal maps for robust 3D-aware pose conditioning and enhanced anatomical coherence. To handle fine-grained occlusions, we propose Occlusion Boundary Enhancer Network that exploits depth edge signals with occlusion-focused training, and Occlusion-Aware Classifier-Free Guidance strategy that selectively reinforces conditioning in occluded regions without affecting unoccluded areas. PersonaCraft can seamlessly be combined with Face Identity ControlNet, achieving full-body multi-human personalization and thus marking a significant advancement beyond prior approaches that concentrate only on facial identity. Our dual-pathway body shape representation with SMPLx-based shape parameters and textual refinement, enables precise full-body personalization and flexible user-defined body shape adjustments. Extensive quantitative experiments and user studies demonstrate that PersonaCraft significantly outperforms existing methods in generating high-quality, multi-person images with accurate personalization and robust occlusion handling.
comment: Project page: https://gwang-kim.github.io/persona_craft
♻ ☆ Few-Shot Learning for Mental Disorder Detection: A Continuous Multi-Prompt Engineering Approach with Medical Knowledge Injection
This study harnesses state-of-the-art AI technology for detecting mental disorders through user-generated textual content. Existing studies typically rely on fully supervised machine learning, which presents challenges such as the labor-intensive manual process of annotating extensive training data for each research problem and the need to design specialized deep learning architectures for each task. We propose a novel method to address these challenges by leveraging large language models and continuous multi-prompt engineering, which offers two key advantages: (1) developing personalized prompts that capture each user's unique characteristics and (2) integrating structured medical knowledge into prompts to provide context for disease detection and facilitate predictive modeling. We evaluate our method using three widely prevalent mental disorders as research cases. Our method significantly outperforms existing methods, including feature engineering, architecture engineering, and discrete prompt engineering. Meanwhile, our approach demonstrates success in few-shot learning, i.e., requiring only a minimal number of training examples. Moreover, our method can be generalized to other rare mental disorder detection tasks with few positive labels. In addition to its technical contributions, our method has the potential to enhance the well-being of individuals with mental disorders and offer a cost-effective, accessible alternative for stakeholders beyond traditional mental disorder screening methods.
♻ ☆ Evaluating System 1 vs. 2 Reasoning Approaches for Zero-Shot Time Series Forecasting: A Benchmark and Insights
Reasoning ability is crucial for solving challenging tasks. With the advancement of foundation models, such as the emergence of large language models (LLMs), a wide range of reasoning strategies has been proposed, including test-time enhancements, such as Chain-ofThought, and post-training optimizations, as used in DeepSeek-R1. While these reasoning strategies have demonstrated effectiveness across various challenging language or vision tasks, their applicability and impact on time-series forecasting (TSF), particularly the challenging zero-shot TSF, remain largely unexplored. In particular, it is unclear whether zero-shot TSF benefits from reasoning and, if so, what types of reasoning strategies are most effective. To bridge this gap, we propose ReC4TS, the first benchmark that systematically evaluates the effectiveness of popular reasoning strategies when applied to zero-shot TSF tasks. ReC4TS conducts comprehensive evaluations across datasets spanning eight domains, covering both unimodal and multimodal with short-term and longterm forecasting tasks. More importantly, ReC4TS provides key insights: (1) Self-consistency emerges as the most effective test-time reasoning strategy; (2) Group-relative policy optimization emerges as a more suitable approach for incentivizing reasoning ability during post-training; (3) Multimodal TSF benefits more from reasoning strategies compared to unimodal TSF. Beyond these insights, ReC4TS establishes two pioneering starting blocks to support future zero-shot TSF reasoning research: (1) A novel dataset, TimeThinking, containing forecasting samples annotated with reasoning trajectories from multiple advanced LLMs, and (2) A new and simple test-time scaling-law validated on foundational TSF models enabled by self-consistency reasoning strategy. All data and code are publicly accessible at: https://github.com/AdityaLab/OpenTimeR
Graphics 5
☆ TreeMeshGPT: Artistic Mesh Generation with Autoregressive Tree Sequencing CVPR 2025
We introduce TreeMeshGPT, an autoregressive Transformer designed to generate high-quality artistic meshes aligned with input point clouds. Instead of the conventional next-token prediction in autoregressive Transformer, we propose a novel Autoregressive Tree Sequencing where the next input token is retrieved from a dynamically growing tree structure that is built upon the triangle adjacency of faces within the mesh. Our sequencing enables the mesh to extend locally from the last generated triangular face at each step, and therefore reduces training difficulty and improves mesh quality. Our approach represents each triangular face with two tokens, achieving a compression rate of approximately 22% compared to the naive face tokenization. This efficient tokenization enables our model to generate highly detailed artistic meshes with strong point cloud conditioning, surpassing previous methods in both capacity and fidelity. Furthermore, our method generates mesh with strong normal orientation constraints, minimizing flipped normals commonly encountered in previous methods. Our experiments show that TreeMeshGPT enhances the mesh generation quality with refined details and normal orientation consistency.
comment: CVPR 2025. Code: https://github.com/sail-sg/TreeMeshGPT
☆ LUSD: Localized Update Score Distillation for Text-Guided Image Editing
While diffusion models show promising results in image editing given a target prompt, achieving both prompt fidelity and background preservation remains difficult. Recent works have introduced score distillation techniques that leverage the rich generative prior of text-to-image diffusion models to solve this task without additional fine-tuning. However, these methods often struggle with tasks such as object insertion. Our investigation of these failures reveals significant variations in gradient magnitude and spatial distribution, making hyperparameter tuning highly input-specific or unsuccessful. To address this, we propose two simple yet effective modifications: attention-based spatial regularization and gradient filtering-normalization, both aimed at reducing these variations during gradient updates. Experimental results show our method outperforms state-of-the-art score distillation techniques in prompt fidelity, improving successful edits while preserving the background. Users also preferred our method over state-of-the-art techniques across three metrics, and by 58-64% overall.
comment: Project page: https://github.com/sincostanx/LUSD
☆ Diffuse-CLoC: Guided Diffusion for Physics-based Character Look-ahead Control
We present Diffuse-CLoC, a guided diffusion framework for physics-based look-ahead control that enables intuitive, steerable, and physically realistic motion generation. While existing kinematics motion generation with diffusion models offer intuitive steering capabilities with inference-time conditioning, they often fail to produce physically viable motions. In contrast, recent diffusion-based control policies have shown promise in generating physically realizable motion sequences, but the lack of kinematics prediction limits their steerability. Diffuse-CLoC addresses these challenges through a key insight: modeling the joint distribution of states and actions within a single diffusion model makes action generation steerable by conditioning it on the predicted states. This approach allows us to leverage established conditioning techniques from kinematic motion generation while producing physically realistic motions. As a result, we achieve planning capabilities without the need for a high-level planner. Our method handles a diverse set of unseen long-horizon downstream tasks through a single pre-trained model, including static and dynamic obstacle avoidance, motion in-betweening, and task-space control. Experimental results show that our method significantly outperforms the traditional hierarchical framework of high-level motion diffusion and low-level tracking.
♻ ☆ Distilling Diversity and Control in Diffusion Models
Distilled diffusion models suffer from a critical limitation: reduced sample diversity compared to their base counterparts. In this work, we uncover that despite this diversity loss, distilled models retain the fundamental concept representations of base models. We demonstrate control distillation - where control mechanisms like Concept Sliders and LoRAs trained on base models can be seamlessly transferred to distilled models and vice-versa, effectively distilling control without any retraining. This preservation of representational structure prompted our investigation into the mechanisms of diversity collapse during distillation. To understand how distillation affects diversity, we introduce Diffusion Target (DT) Visualization, an analysis and debugging tool that reveals how models predict final outputs at intermediate steps. Through DT-Visualization, we identify generation artifacts, inconsistencies, and demonstrate that initial diffusion timesteps disproportionately determine output diversity, while later steps primarily refine details. Based on these insights, we introduce diversity distillation - a hybrid inference approach that strategically employs the base model for only the first critical timestep before transitioning to the efficient distilled model. Our experiments demonstrate that this simple modification not only restores the diversity capabilities from base to distilled models but surprisingly exceeds it, while maintaining nearly the computational efficiency of distilled inference, all without requiring additional training or model modifications. Our code and data are available at https://distillation.baulab.info
comment: Project Page: https://distillation.baulab.info
♻ ☆ Neural Geometry Processing via Spherical Neural Surfaces
Neural surfaces (e.g., neural map encoding, deep implicits and neural radiance fields) have recently gained popularity because of their generic structure (e.g., multi-layer perceptron) and easy integration with modern learning-based setups. Traditionally, we have a rich toolbox of geometry processing algorithms designed for polygonal meshes to analyze and operate on surface geometry. In the absence of an analogous toolbox, neural representations are typically discretized and converted into a mesh, before applying any geometry processing algorithm. This is unsatisfactory and, as we demonstrate, unnecessary. In this work, we propose a spherical neural surface representation for genus-0 surfaces and demonstrate how to compute core geometric operators directly on this representation. Namely, we estimate surface normals and first and second fundamental forms of the surface, as well as compute surface gradient, surface divergence and Laplace-Beltrami operator on scalar/vector fields defined on the surface. Our representation is fully seamless, overcoming a key limitation of similar explicit representations such as Neural Surface Maps [Morreale et al. 2021]. These operators, in turn, enable geometry processing directly on the neural representations without any unnecessary meshing. We demonstrate illustrative applications in (neural) spectral analysis, heat flow and mean curvature flow, and evaluate robustness to isometric shape variations. We propose theoretical formulations and validate their numerical estimates, against analytical estimates, mesh-based baselines, and neural alternatives, where available. By systematically linking neural surface representations with classical geometry processing algorithms, we believe that this work can become a key ingredient in enabling neural geometry processing. Code is accessible from the project webpage.
comment: 14 pages, 14 figures
Robotics 76
HybridVLA: Collaborative Diffusion and Autoregression in a Unified Vision-Language-Action Model
Recent advancements in vision-language models (VLMs) for common-sense reasoning have led to the development of vision-language-action (VLA) models, enabling robots to perform generalized manipulation. Although existing autoregressive VLA methods leverage large-scale pretrained knowledge, they disrupt the continuity of actions. Meanwhile, some VLA methods incorporate an additional diffusion head to predict continuous actions, relying solely on VLM-extracted features, which limits their reasoning capabilities. In this paper, we introduce HybridVLA, a unified framework that seamlessly integrates the strengths of both autoregressive and diffusion policies within a single large language model, rather than simply connecting them. To bridge the generation gap, a collaborative training recipe is proposed that injects the diffusion modeling directly into the next-token prediction. With this recipe, we find that these two forms of action prediction not only reinforce each other but also exhibit varying performance across different tasks. Therefore, we design a collaborative action ensemble mechanism that adaptively fuses these two predictions, leading to more robust control. In experiments, HybridVLA outperforms previous state-of-the-art VLA methods across various simulation and real-world tasks, including both single-arm and dual-arm robots, while demonstrating stable manipulation in previously unseen configurations.
☆ UniGoal: Towards Universal Zero-shot Goal-oriented Navigation CVPR 2025
In this paper, we propose a general framework for universal zero-shot goal-oriented navigation. Existing zero-shot methods build inference framework upon large language models (LLM) for specific tasks, which differs a lot in overall pipeline and fails to generalize across different types of goal. Towards the aim of universal zero-shot navigation, we propose a uniform graph representation to unify different goals, including object category, instance image and text description. We also convert the observation of agent into an online maintained scene graph. With this consistent scene and goal representation, we preserve most structural information compared with pure text and are able to leverage LLM for explicit graph-based reasoning. Specifically, we conduct graph matching between the scene graph and goal graph at each time instant and propose different strategies to generate long-term goal of exploration according to different matching states. The agent first iteratively searches subgraph of goal when zero-matched. With partial matching, the agent then utilizes coordinate projection and anchor pair alignment to infer the goal location. Finally scene graph correction and goal verification are applied for perfect matching. We also present a blacklist mechanism to enable robust switch between stages. Extensive experiments on several benchmarks show that our UniGoal achieves state-of-the-art zero-shot performance on three studied navigation tasks with a single model, even outperforming task-specific zero-shot methods and supervised universal methods.
comment: Accepted to CVPR 2025
☆ NIL: No-data Imitation Learning by Leveraging Pre-trained Video Diffusion Models
Acquiring physically plausible motor skills across diverse and unconventional morphologies-including humanoid robots, quadrupeds, and animals-is essential for advancing character simulation and robotics. Traditional methods, such as reinforcement learning (RL) are task- and body-specific, require extensive reward function engineering, and do not generalize well. Imitation learning offers an alternative but relies heavily on high-quality expert demonstrations, which are difficult to obtain for non-human morphologies. Video diffusion models, on the other hand, are capable of generating realistic videos of various morphologies, from humans to ants. Leveraging this capability, we propose a data-independent approach for skill acquisition that learns 3D motor skills from 2D-generated videos, with generalization capability to unconventional and non-human forms. Specifically, we guide the imitation learning process by leveraging vision transformers for video-based comparisons by calculating pair-wise distance between video embeddings. Along with video-encoding distance, we also use a computed similarity between segmented video frames as a guidance reward. We validate our method on locomotion tasks involving unique body configurations. In humanoid robot locomotion tasks, we demonstrate that 'No-data Imitation Learning' (NIL) outperforms baselines trained on 3D motion-capture data. Our results highlight the potential of leveraging generative video models for physically plausible skill learning with diverse morphologies, effectively replacing data collection with data generation for imitation learning.
☆ DriveLMM-o1: A Step-by-Step Reasoning Dataset and Large Multimodal Model for Driving Scenario Understanding
While large multimodal models (LMMs) have demonstrated strong performance across various Visual Question Answering (VQA) tasks, certain challenges require complex multi-step reasoning to reach accurate answers. One particularly challenging task is autonomous driving, which demands thorough cognitive processing before decisions can be made. In this domain, a sequential and interpretive understanding of visual cues is essential for effective perception, prediction, and planning. Nevertheless, common VQA benchmarks often focus on the accuracy of the final answer while overlooking the reasoning process that enables the generation of accurate responses. Moreover, existing methods lack a comprehensive framework for evaluating step-by-step reasoning in realistic driving scenarios. To address this gap, we propose DriveLMM-o1, a new dataset and benchmark specifically designed to advance step-wise visual reasoning for autonomous driving. Our benchmark features over 18k VQA examples in the training set and more than 4k in the test set, covering diverse questions on perception, prediction, and planning, each enriched with step-by-step reasoning to ensure logical inference in autonomous driving scenarios. We further introduce a large multimodal model that is fine-tuned on our reasoning dataset, demonstrating robust performance in complex driving scenarios. In addition, we benchmark various open-source and closed-source methods on our proposed dataset, systematically comparing their reasoning capabilities for autonomous driving tasks. Our model achieves a +7.49% gain in final answer accuracy, along with a 3.62% improvement in reasoning score over the previous best open-source model. Our framework, dataset, and model are available at https://github.com/ayesha-ishaq/DriveLMM-o1.
comment: 8 pages, 4 figures, 3 tables, github: https://github.com/ayesha-ishaq/DriveLMM-o1
☆ Towards Safe Path Tracking Using the Simplex Architecture
Robot navigation in complex environments necessitates controllers that are adaptive and safe. Traditional controllers like Regulated Pure Pursuit, Dynamic Window Approach, and Model-Predictive Path Integral, while reliable, struggle to adapt to dynamic conditions. Reinforcement Learning offers adaptability but lacks formal safety guarantees. To address this, we propose a path tracking controller leveraging the Simplex architecture. It combines a Reinforcement Learning controller for adaptiveness and performance with a high-assurance controller providing safety and stability. Our contribution is twofold. We firstly discuss general stability and safety considerations for designing controllers using the Simplex architecture. Secondly, we present a Simplex-based path tracking controller. Our simulation results, supported by preliminary in-field tests, demonstrate the controller's effectiveness in maintaining safety while achieving comparable performance to state-of-the-art methods.
☆ NuExo: A Wearable Exoskeleton Covering all Upper Limb ROM for Outdoor Data Collection and Teleoperation of Humanoid Robots
The evolution from motion capture and teleoperation to robot skill learning has emerged as a hotspot and critical pathway for advancing embodied intelligence. However, existing systems still face a persistent gap in simultaneously achieving four objectives: accurate tracking of full upper limb movements over extended durations (Accuracy), ergonomic adaptation to human biomechanics (Comfort), versatile data collection (e.g., force data) and compatibility with humanoid robots (Versatility), and lightweight design for outdoor daily use (Convenience). We present a wearable exoskeleton system, incorporating user-friendly immersive teleoperation and multi-modal sensing collection to bridge this gap. Due to the features of a novel shoulder mechanism with synchronized linkage and timing belt transmission, this system can adapt well to compound shoulder movements and replicate 100% coverage of natural upper limb motion ranges. Weighing 5.2 kg, NuExo supports backpack-type use and can be conveniently applied in daily outdoor scenarios. Furthermore, we develop a unified intuitive teleoperation framework and a comprehensive data collection system integrating multi-modal sensing for various humanoid robots. Experiments across distinct humanoid platforms and different users validate our exoskeleton's superiority in motion range and flexibility, while confirming its stability in data collection and teleoperation accuracy in dynamic scenarios.
comment: 8 pages
☆ KUDA: Keypoints to Unify Dynamics Learning and Visual Prompting for Open-Vocabulary Robotic Manipulation
With the rapid advancement of large language models (LLMs) and vision-language models (VLMs), significant progress has been made in developing open-vocabulary robotic manipulation systems. However, many existing approaches overlook the importance of object dynamics, limiting their applicability to more complex, dynamic tasks. In this work, we introduce KUDA, an open-vocabulary manipulation system that integrates dynamics learning and visual prompting through keypoints, leveraging both VLMs and learning-based neural dynamics models. Our key insight is that a keypoint-based target specification is simultaneously interpretable by VLMs and can be efficiently translated into cost functions for model-based planning. Given language instructions and visual observations, KUDA first assigns keypoints to the RGB image and queries the VLM to generate target specifications. These abstract keypoint-based representations are then converted into cost functions, which are optimized using a learned dynamics model to produce robotic trajectories. We evaluate KUDA on a range of manipulation tasks, including free-form language instructions across diverse object categories, multi-object interactions, and deformable or granular objects, demonstrating the effectiveness of our framework. The project page is available at http://kuda-dynamics.github.io.
comment: Project website: http://kuda-dynamics.github.io
☆ Learning Robotic Policy with Imagined Transition: Mitigating the Trade-off between Robustness and Optimality
Existing quadrupedal locomotion learning paradigms usually rely on extensive domain randomization to alleviate the sim2real gap and enhance robustness. It trains policies with a wide range of environment parameters and sensor noises to perform reliably under uncertainty. However, since optimal performance under ideal conditions often conflicts with the need to handle worst-case scenarios, there is a trade-off between optimality and robustness. This trade-off forces the learned policy to prioritize stability in diverse and challenging conditions over efficiency and accuracy in ideal ones, leading to overly conservative behaviors that sacrifice peak performance. In this paper, we propose a two-stage framework that mitigates this trade-off by integrating policy learning with imagined transitions. This framework enhances the conventional reinforcement learning (RL) approach by incorporating imagined transitions as demonstrative inputs. These imagined transitions are derived from an optimal policy and a dynamics model operating within an idealized setting. Our findings indicate that this approach significantly mitigates the domain randomization-induced negative impact of existing RL algorithms. It leads to accelerated training, reduced tracking errors within the distribution, and enhanced robustness outside the distribution.
☆ World Modeling Makes a Better Planner: Dual Preference Optimization for Embodied Task Planning
Recent advances in large vision-language models (LVLMs) have shown promise for embodied task planning, yet they struggle with fundamental challenges like dependency constraints and efficiency. Existing approaches either solely optimize action selection or leverage world models during inference, overlooking the benefits of learning to model the world as a way to enhance planning capabilities. We propose Dual Preference Optimization (D$^2$PO), a new learning framework that jointly optimizes state prediction and action selection through preference learning, enabling LVLMs to understand environment dynamics for better planning. To automatically collect trajectories and stepwise preference data without human annotation, we introduce a tree search mechanism for extensive exploration via trial-and-error. Extensive experiments on VoTa-Bench demonstrate that our D$^2$PO-based method significantly outperforms existing methods and GPT-4o when applied to Qwen2-VL (7B), LLaVA-1.6 (7B), and LLaMA-3.2 (11B), achieving superior task success rates with more efficient execution paths.
☆ Stratified Topological Autonomy for Long-Range Coordination (STALC)
Achieving unified multi-robot coordination and motion planning in complex environments is a challenging problem. In this paper, we present a hierarchical approach to long-range coordination, which we call Stratified Topological Autonomy for Long-Range Coordination (STALC). In particular, we look at the problem of minimizing visibility to observers and maximizing safety with a multi-robot team navigating through a hazardous environment. At its core, our approach relies on the notion of a dynamic topological graph, where the edge weights vary dynamically based on the locations of the robots in the graph. To create this dynamic topological graph, we evaluate the visibility of the robot team from a discrete set of observer locations (both adversarial and friendly), and construct a topological graph whose edge weights depend on both adversary position and robot team configuration. We then impose temporal constraints on the evolution of those edge weights based on robot team state and use Mixed-Integer Programming (MIP) to generate optimal multirobot plans through the graph. The visibility information also informs the lower layers of the autonomy stack to plan minimal visibility paths through the environment for the team of robots. Our approach presents methods to reduce the computational complexity for a team of robots that interact and coordinate across the team to accomplish a common goal. We demonstrate our approach in simulated and hardware experiments in forested and urban environments.
comment: This work has been submitted to the IEEE for possible publication. arXiv admin note: text overlap with arXiv:2303.11966
Finetuning Generative Trajectory Model with Reinforcement Learning from Human Feedback
Generating human-like and adaptive trajectories is essential for autonomous driving in dynamic environments. While generative models have shown promise in synthesizing feasible trajectories, they often fail to capture the nuanced variability of human driving styles due to dataset biases and distributional shifts. To address this, we introduce TrajHF, a human feedback-driven finetuning framework for generative trajectory models, designed to align motion planning with diverse driving preferences. TrajHF incorporates multi-conditional denoiser and reinforcement learning with human feedback to refine multi-modal trajectory generation beyond conventional imitation learning. This enables better alignment with human driving preferences while maintaining safety and feasibility constraints. TrajHF achieves PDMS of 93.95 on NavSim benchmark, significantly exceeding other methods. TrajHF sets a new paradigm for personalized and adaptable trajectory generation in autonomous driving.
comment: 10 pages, 5 figures
☆ A nonlinear real time capable motion cueing algorithm based on deep reinforcement learning
In motion simulation, motion cueing algorithms are used for the trajectory planning of the motion simulator platform, where workspace limitations prevent direct reproduction of reference trajectories. Strategies such as motion washout, which return the platform to its center, are crucial in these settings. For serial robotic MSPs with highly nonlinear workspaces, it is essential to maximize the efficient utilization of the MSPs kinematic and dynamic capabilities. Traditional approaches, including classical washout filtering and linear model predictive control, fail to consider platform-specific, nonlinear properties, while nonlinear model predictive control, though comprehensive, imposes high computational demands that hinder real-time, pilot-in-the-loop application without further simplification. To overcome these limitations, we introduce a novel approach using deep reinforcement learning for motion cueing, demonstrated here for the first time in a 6-degree-of-freedom setting with full consideration of the MSPs kinematic nonlinearities. Previous work by the authors successfully demonstrated the application of DRL to a simplified 2-DOF setup, which did not consider kinematic or dynamic constraints. This approach has been extended to all 6 DOF by incorporating a complete kinematic model of the MSP into the algorithm, a crucial step for enabling its application on a real motion simulator. The training of the DRL-MCA is based on Proximal Policy Optimization in an actor-critic implementation combined with an automated hyperparameter optimization. After detailing the necessary training framework and the algorithm itself, we provide a comprehensive validation, demonstrating that the DRL MCA achieves competitive performance against established algorithms. Moreover, it generates feasible trajectories by respecting all system constraints and meets all real-time requirements with low...
☆ Compliant Control of Quadruped Robots for Assistive Load Carrying
This paper presents a novel method for assistive load carrying using quadruped robots. The controller uses proprioceptive sensor data to estimate external base wrench, that is used for precise control of the robot's acceleration during payload transport. The acceleration is controlled using a combination of admittance control and Control Barrier Function (CBF) based quadratic program (QP). The proposed controller rejects disturbances and maintains consistent performance under varying load conditions. Additionally, the built-in CBF guarantees collision avoidance with the collaborative agent in front of the robot. The efficacy of the overall controller is shown by its implementation on the physical hardware as well as numerical simulations. The proposed control framework aims to enhance the quadruped robot's ability to perform assistive tasks in various scenarios, from industrial applications to search and rescue operations.
comment: 12 pages, 20 figures
LUMOS: Language-Conditioned Imitation Learning with World Models ICRA
We introduce LUMOS, a language-conditioned multi-task imitation learning framework for robotics. LUMOS learns skills by practicing them over many long-horizon rollouts in the latent space of a learned world model and transfers these skills zero-shot to a real robot. By learning on-policy in the latent space of the learned world model, our algorithm mitigates policy-induced distribution shift which most offline imitation learning methods suffer from. LUMOS learns from unstructured play data with fewer than 1% hindsight language annotations but is steerable with language commands at test time. We achieve this coherent long-horizon performance by combining latent planning with both image- and language-based hindsight goal relabeling during training, and by optimizing an intrinsic reward defined in the latent space of the world model over multiple time steps, effectively reducing covariate shift. In experiments on the difficult long-horizon CALVIN benchmark, LUMOS outperforms prior learning-based methods with comparable approaches on chained multi-task evaluations. To the best of our knowledge, we are the first to learn a language-conditioned continuous visuomotor control for a real-world robot within an offline world model. Videos, dataset and code are available at http://lumos.cs.uni-freiburg.de.
comment: Accepted at the 2025 IEEE International Conference on Robotics and Automation (ICRA)
☆ Autonomous Robotic Radio Source Localization via a Novel Gaussian Mixture Filtering Approach
This study proposes a new Gaussian Mixture Filter (GMF) to improve the estimation performance for the autonomous robotic radio signal source search and localization problem in unknown environments. The proposed filter is first tested with a benchmark numerical problem to validate the performance with other state-of-practice approaches such as Particle Gaussian Mixture (PGM) filters and Particle Filter (PF). Then the proposed approach is tested and compared against PF and PGM filters in real-world robotic field experiments to validate its impact for real-world robotic applications. The considered real-world scenarios have partial observability with the range-only measurement and uncertainty with the measurement model. The results show that the proposed filter can handle this partial observability effectively whilst showing improved performance compared to PF, reducing the computation requirements while demonstrating improved robustness over compared techniques.
☆ HALO: Fault-Tolerant Safety Architecture For High-Speed Autonomous Racing
The field of high-speed autonomous racing has seen significant advances in recent years, with the rise of competitions such as RoboRace and the Indy Autonomous Challenge providing a platform for researchers to develop software stacks for autonomous race vehicles capable of reaching speeds in excess of 170 mph. Ensuring the safety of these vehicles requires the software to continuously monitor for different faults and erroneous operating conditions during high-speed operation, with the goal of mitigating any unreasonable risks posed by malfunctions in sub-systems and components. This paper presents a comprehensive overview of the HALO safety architecture, which has been implemented on a full-scale autonomous racing vehicle as part of the Indy Autonomous Challenge. The paper begins with a failure mode and criticality analysis of the perception, planning, control, and communication modules of the software stack. Specifically, we examine three different types of faults - node health, data health, and behavioral-safety faults. To mitigate these faults, the paper then outlines HALO safety archetypes and runtime monitoring methods. Finally, the paper demonstrates the effectiveness of the HALO safety architecture for each of the faults, through real-world data gathered from autonomous racing vehicle trials during multi-agent scenarios.
comment: 27 pages, 7 figures
☆ Enhanced View Planning for Robotic Harvesting: Tackling Occlusions with Imitation Learning ICRA 2025
In agricultural automation, inherent occlusion presents a major challenge for robotic harvesting. We propose a novel imitation learning-based viewpoint planning approach to actively adjust camera viewpoint and capture unobstructed images of the target crop. Traditional viewpoint planners and existing learning-based methods, depend on manually designed evaluation metrics or reward functions, often struggle to generalize to complex, unseen scenarios. Our method employs the Action Chunking with Transformer (ACT) algorithm to learn effective camera motion policies from expert demonstrations. This enables continuous six-degree-of-freedom (6-DoF) viewpoint adjustments that are smoother, more precise and reveal occluded targets. Extensive experiments in both simulated and real-world environments, featuring agricultural scenarios and a 6-DoF robot arm equipped with an RGB-D camera, demonstrate our method's superior success rate and efficiency, especially in complex occlusion conditions, as well as its ability to generalize across different crops without reprogramming. This study advances robotic harvesting by providing a practical "learn from demonstration" (LfD) solution to occlusion challenges, ultimately enhancing autonomous harvesting performance and productivity.
comment: Accepted at ICRA 2025
☆ OSMa-Bench: Evaluating Open Semantic Mapping Under Varying Lighting Conditions
Open Semantic Mapping (OSM) is a key technology in robotic perception, combining semantic segmentation and SLAM techniques. This paper introduces a dynamically configurable and highly automated LLM/LVLM-powered pipeline for evaluating OSM solutions called OSMa-Bench (Open Semantic Mapping Benchmark). The study focuses on evaluating state-of-the-art semantic mapping algorithms under varying indoor lighting conditions, a critical challenge in indoor environments. We introduce a novel dataset with simulated RGB-D sequences and ground truth 3D reconstructions, facilitating the rigorous analysis of mapping performance across different lighting conditions. Through experiments on leading models such as ConceptGraphs, BBQ and OpenScene, we evaluate the semantic fidelity of object recognition and segmentation. Additionally, we introduce a Scene Graph evaluation method to analyze the ability of models to interpret semantic structure. The results provide insights into the robustness of these models, forming future research directions for developing resilient and adaptable robotic systems. Our code is available at https://be2rlab.github.io/OSMa-Bench/.
comment: Project page: https://be2rlab.github.io/OSMa-Bench/
☆ 6D Object Pose Tracking in Internet Videos for Robotic Manipulation ICLR 2025
We seek to extract a temporally consistent 6D pose trajectory of a manipulated object from an Internet instructional video. This is a challenging set-up for current 6D pose estimation methods due to uncontrolled capturing conditions, subtle but dynamic object motions, and the fact that the exact mesh of the manipulated object is not known. To address these challenges, we present the following contributions. First, we develop a new method that estimates the 6D pose of any object in the input image without prior knowledge of the object itself. The method proceeds by (i) retrieving a CAD model similar to the depicted object from a large-scale model database, (ii) 6D aligning the retrieved CAD model with the input image, and (iii) grounding the absolute scale of the object with respect to the scene. Second, we extract smooth 6D object trajectories from Internet videos by carefully tracking the detected objects across video frames. The extracted object trajectories are then retargeted via trajectory optimization into the configuration space of a robotic manipulator. Third, we thoroughly evaluate and ablate our 6D pose estimation method on YCB-V and HOPE-Video datasets as well as a new dataset of instructional videos manually annotated with approximate 6D object trajectories. We demonstrate significant improvements over existing state-of-the-art RGB 6D pose estimation methods. Finally, we show that the 6D object motion estimated from Internet videos can be transferred to a 7-axis robotic manipulator both in a virtual simulator as well as in a real world set-up. We also successfully apply our method to egocentric videos taken from the EPIC-KITCHENS dataset, demonstrating potential for Embodied AI applications.
comment: Accepted to ICLR 2025. Project page available at https://ponimatkin.github.io/wildpose/
☆ CODEI: Resource-Efficient Task-Driven Co-Design of Perception and Decision Making for Mobile Robots Applied to Autonomous Vehicles
This paper discusses the integration challenges and strategies for designing mobile robots, by focusing on the task-driven, optimal selection of hardware and software to balance safety, efficiency, and minimal usage of resources such as costs, energy, computational requirements, and weight. We emphasize the interplay between perception and motion planning in decision-making by introducing the concept of occupancy queries to quantify the perception requirements for sampling-based motion planners. Sensor and algorithm performance are evaluated using False Negative Rates (FPR) and False Positive Rates (FPR) across various factors such as geometric relationships, object properties, sensor resolution, and environmental conditions. By integrating perception requirements with perception performance, an Integer Linear Programming (ILP) approach is proposed for efficient sensor and algorithm selection and placement. This forms the basis for a co-design optimization that includes the robot body, motion planner, perception pipeline, and computing unit. We refer to this framework for solving the co-design problem of mobile robots as CODEI, short for Co-design of Embodied Intelligence. A case study on developing an Autonomous Vehicle (AV) for urban scenarios provides actionable information for designers, and shows that complex tasks escalate resource demands, with task performance affecting choices of the autonomy stack. The study demonstrates that resource prioritization influences sensor choice: cameras are preferred for cost-effective and lightweight designs, while lidar sensors are chosen for better energy and computational efficiency.
comment: 20 pages, 33 images, IEEE Transactions on Robotics
SurgRAW: Multi-Agent Workflow with Chain-of-Thought Reasoning for Surgical Intelligence
Integration of Vision-Language Models (VLMs) in surgical intelligence is hindered by hallucinations, domain knowledge gaps, and limited understanding of task interdependencies within surgical scenes, undermining clinical reliability. While recent VLMs demonstrate strong general reasoning and thinking capabilities, they still lack the domain expertise and task-awareness required for precise surgical scene interpretation. Although Chain-of-Thought (CoT) can structure reasoning more effectively, current approaches rely on self-generated CoT steps, which often exacerbate inherent domain gaps and hallucinations. To overcome this, we present SurgRAW, a CoT-driven multi-agent framework that delivers transparent, interpretable insights for most tasks in robotic-assisted surgery. By employing specialized CoT prompts across five tasks: instrument recognition, action recognition, action prediction, patient data extraction, and outcome assessment, SurgRAW mitigates hallucinations through structured, domain-aware reasoning. Retrieval-Augmented Generation (RAG) is also integrated to external medical knowledge to bridge domain gaps and improve response reliability. Most importantly, a hierarchical agentic system ensures that CoT-embedded VLM agents collaborate effectively while understanding task interdependencies, with a panel discussion mechanism promotes logical consistency. To evaluate our method, we introduce SurgCoTBench, the first reasoning-based dataset with structured frame-level annotations. With comprehensive experiments, we demonstrate the effectiveness of proposed SurgRAW with 29.32% accuracy improvement over baseline VLMs on 12 robotic procedures, achieving the state-of-the-art performance and advancing explainable, trustworthy, and autonomous surgical assistance.
☆ SCOOP: A Framework for Proactive Collaboration and Social Continual Learning through Natural Language Interaction andCausal Reasoning
Multimodal information-gathering settings, where users collaborate with AI in dynamic environments, are increasingly common. These involve complex processes with textual and multimodal interactions, often requiring additional structural information via cost-incurring requests. AI helpers lack access to users' true goals, beliefs, and preferences and struggle to integrate diverse information effectively. We propose a social continual learning framework for causal knowledge acquisition and collaborative decision-making. It focuses on autonomous agents learning through dialogues, question-asking, and interaction in open, partially observable environments. A key component is a natural language oracle that answers the agent's queries about environmental mechanisms and states, refining causal understanding while balancing exploration or learning, and exploitation or knowledge use. Evaluation tasks inspired by developmental psychology emphasize causal reasoning and question-asking skills. They complement benchmarks by assessing the agent's ability to identify knowledge gaps, generate meaningful queries, and incrementally update reasoning. The framework also evaluates how knowledge acquisition costs are amortized across tasks within the same environment. We propose two architectures: 1) a system combining Large Language Models (LLMs) with the ReAct framework and question-generation, and 2) an advanced system with a causal world model, symbolic, graph-based, or subsymbolic, for reasoning and decision-making. The latter builds a causal knowledge graph for efficient inference and adaptability under constraints. Challenges include integrating causal reasoning into ReAct and optimizing exploration and question-asking in error-prone scenarios. Beyond applications, this framework models developmental processes combining causal reasoning, question generation, and social learning.
comment: 5 pages
☆ PRISM: Preference Refinement via Implicit Scene Modeling for 3D Vision-Language Preference-Based Reinforcement Learning
We propose PRISM, a novel framework designed to overcome the limitations of 2D-based Preference-Based Reinforcement Learning (PBRL) by unifying 3D point cloud modeling and future-aware preference refinement. At its core, PRISM adopts a 3D Point Cloud-Language Model (3D-PC-LLM) to mitigate occlusion and viewpoint biases, ensuring more stable and spatially consistent preference signals. Additionally, PRISM leverages Chain-of-Thought (CoT) reasoning to incorporate long-horizon considerations, thereby preventing the short-sighted feedback often seen in static preference comparisons. In contrast to conventional PBRL techniques, this integration of 3D perception and future-oriented reasoning leads to significant gains in preference agreement rates, faster policy convergence, and robust generalization across unseen robotic environments. Our empirical results, spanning tasks such as robotic manipulation and autonomous navigation, highlight PRISM's potential for real-world applications where precise spatial understanding and reliable long-term decision-making are critical. By bridging 3D geometric awareness with CoT-driven preference modeling, PRISM establishes a comprehensive foundation for scalable, human-aligned reinforcement learning.
GS-SDF: LiDAR-Augmented Gaussian Splatting and Neural SDF for Geometrically Consistent Rendering and Reconstruction
Digital twins are fundamental to the development of autonomous driving and embodied artificial intelligence. However, achieving high-granularity surface reconstruction and high-fidelity rendering remains a challenge. Gaussian splatting offers efficient photorealistic rendering but struggles with geometric inconsistencies due to fragmented primitives and sparse observational data in robotics applications. Existing regularization methods, which rely on render-derived constraints, often fail in complex environments. Moreover, effectively integrating sparse LiDAR data with Gaussian splatting remains challenging. We propose a unified LiDAR-visual system that synergizes Gaussian splatting with a neural signed distance field. The accurate LiDAR point clouds enable a trained neural signed distance field to offer a manifold geometry field, This motivates us to offer an SDF-based Gaussian initialization for physically grounded primitive placement and a comprehensive geometric regularization for geometrically consistent rendering and reconstruction. Experiments demonstrate superior reconstruction accuracy and rendering quality across diverse trajectories. To benefit the community, the codes will be released at https://github.com/hku-mars/GS-SDF.
☆ Mapless Collision-Free Flight via MPC using Dual KD-Trees in Cluttered Environments
Collision-free flight in cluttered environments is a critical capability for autonomous quadrotors. Traditional methods often rely on detailed 3D map construction, trajectory generation, and tracking. However, this cascade pipeline can introduce accumulated errors and computational delays, limiting flight agility and safety. In this paper, we propose a novel method for enabling collision-free flight in cluttered environments without explicitly constructing 3D maps or generating and tracking collision-free trajectories. Instead, we leverage Model Predictive Control (MPC) to directly produce safe actions from sparse waypoints and point clouds from a depth camera. These sparse waypoints are dynamically adjusted online based on nearby obstacles detected from point clouds. To achieve this, we introduce a dual KD-Tree mechanism: the Obstacle KD-Tree quickly identifies the nearest obstacle for avoidance, while the Edge KD-Tree provides a robust initial guess for the MPC solver, preventing it from getting stuck in local minima during obstacle avoidance. We validate our approach through extensive simulations and real-world experiments. The results show that our approach significantly outperforms the mapping-based methods and is also superior to imitation learning-based methods, demonstrating reliable obstacle avoidance at up to 12 m/s in simulations and 6 m/s in real-world tests. Our method provides a simple and robust alternative to existing methods.
☆ An Real-Sim-Real (RSR) Loop Framework for Generalizable Robotic Policy Transfer with Differentiable Simulation
The sim-to-real gap remains a critical challenge in robotics, hindering the deployment of algorithms trained in simulation to real-world systems. This paper introduces a novel Real-Sim-Real (RSR) loop framework leveraging differentiable simulation to address this gap by iteratively refining simulation parameters, aligning them with real-world conditions, and enabling robust and efficient policy transfer. A key contribution of our work is the design of an informative cost function that encourages the collection of diverse and representative real-world data, minimizing bias and maximizing the utility of each data point for simulation refinement. This cost function integrates seamlessly into existing reinforcement learning algorithms (e.g., PPO, SAC) and ensures a balanced exploration of critical regions in the real domain. Furthermore, our approach is implemented on the versatile Mujoco MJX platform, and our framework is compatible with a wide range of robotic systems. Experimental results on several robotic manipulation tasks demonstrate that our method significantly reduces the sim-to-real gap, achieving high task performance and generalizability across diverse scenarios of both explicit and implicit environmental uncertainties.
☆ IMPACT: Intelligent Motion Planning with Acceptable Contact Trajectories via Vision-Language Models
Motion planning involves determining a sequence of robot configurations to reach a desired pose, subject to movement and safety constraints. Traditional motion planning finds collision-free paths, but this is overly restrictive in clutter, where it may not be possible for a robot to accomplish a task without contact. In addition, contacts range from relatively benign (e.g., brushing a soft pillow) to more dangerous (e.g., toppling a glass vase). Due to this diversity, it is difficult to characterize which contacts may be acceptable or unacceptable. In this paper, we propose IMPACT, a novel motion planning framework that uses Vision-Language Models (VLMs) to infer environment semantics, identifying which parts of the environment can best tolerate contact based on object properties and locations. Our approach uses the VLM's outputs to produce a dense 3D "cost map" that encodes contact tolerances and seamlessly integrates with standard motion planners. We perform experiments using 20 simulation and 10 real-world scenes and assess using task success rate, object displacements, and feedback from human evaluators. Our results over 3620 simulation and 200 real-world trials suggest that IMPACT enables efficient contact-rich motion planning in cluttered settings while outperforming alternative methods and ablations. Supplementary material is available at https://impact-planning.github.io/.
☆ AhaRobot: A Low-Cost Open-Source Bimanual Mobile Manipulator for Embodied AI
Navigation and manipulation in open-world environments remain unsolved challenges in the Embodied AI. The high cost of commercial mobile manipulation robots significantly limits research in real-world scenes. To address this issue, we propose AhaRobot, a low-cost and fully open-source dual-arm mobile manipulation robot system with a hardware cost of only $1,000 (excluding optional computational resources), which is less than 1/15 of the cost of popular mobile robots. The AhaRobot system consists of three components: (1) a novel low-cost hardware architecture primarily composed of off-the-shelf components, (2) an optimized control solution to enhance operational precision integrating dual-motor backlash control and static friction compensation, and (3) a simple remote teleoperation method RoboPilot. We use handles to control the dual arms and pedals for whole-body movement. The teleoperation process is low-burden and easy to operate, much like piloting. RoboPilot is designed for remote data collection in embodied scenarios. Experimental results demonstrate that RoboPilot significantly enhances data collection efficiency in complex manipulation tasks, achieving a 30% increase compared to methods using 3D mouse and leader-follower systems. It also excels at completing extremely long-horizon tasks in one go. Furthermore, AhaRobot can be used to learn end-to-end policies and autonomously perform complex manipulation tasks, such as pen insertion and cleaning up the floor. We aim to build an affordable yet powerful platform to promote the development of embodied tasks on real devices, advancing more robust and reliable embodied AI. All hardware and software systems are available at https://aha-robot.github.io.
comment: The first two authors contributed equally. Website: https://aha-robot.github.io
☆ SmartWay: Enhanced Waypoint Prediction and Backtracking for Zero-Shot Vision-and-Language Navigation
Vision-and-Language Navigation (VLN) in continuous environments requires agents to interpret natural language instructions while navigating unconstrained 3D spaces. Existing VLN-CE frameworks rely on a two-stage approach: a waypoint predictor to generate waypoints and a navigator to execute movements. However, current waypoint predictors struggle with spatial awareness, while navigators lack historical reasoning and backtracking capabilities, limiting adaptability. We propose a zero-shot VLN-CE framework integrating an enhanced waypoint predictor with a Multi-modal Large Language Model (MLLM)-based navigator. Our predictor employs a stronger vision encoder, masked cross-attention fusion, and an occupancy-aware loss for better waypoint quality. The navigator incorporates history-aware reasoning and adaptive path planning with backtracking, improving robustness. Experiments on R2R-CE and MP3D benchmarks show our method achieves state-of-the-art (SOTA) performance in zero-shot settings, demonstrating competitive results compared to fully supervised methods. Real-world validation on Turtlebot 4 further highlights its adaptability.
☆ V2X-ReaLO: An Open Online Framework and Dataset for Cooperative Perception in Reality
Cooperative perception enabled by Vehicle-to-Everything (V2X) communication holds significant promise for enhancing the perception capabilities of autonomous vehicles, allowing them to overcome occlusions and extend their field of view. However, existing research predominantly relies on simulated environments or static datasets, leaving the feasibility and effectiveness of V2X cooperative perception especially for intermediate fusion in real-world scenarios largely unexplored. In this work, we introduce V2X-ReaLO, an open online cooperative perception framework deployed on real vehicles and smart infrastructure that integrates early, late, and intermediate fusion methods within a unified pipeline and provides the first practical demonstration of online intermediate fusion's feasibility and performance under genuine real-world conditions. Additionally, we present an open benchmark dataset specifically designed to assess the performance of online cooperative perception systems. This new dataset extends V2X-Real dataset to dynamic, synchronized ROS bags and provides 25,028 test frames with 6,850 annotated key frames in challenging urban scenarios. By enabling real-time assessments of perception accuracy and communication lantency under dynamic conditions, V2X-ReaLO sets a new benchmark for advancing and optimizing cooperative perception systems in real-world applications. The codes and datasets will be released to further advance the field.
☆ LEVA: A high-mobility logistic vehicle with legged suspension ICRA
The autonomous transportation of materials over challenging terrain is a challenge with major economic implications and remains unsolved. This paper introduces LEVA, a high-payload, high-mobility robot designed for autonomous logistics across varied terrains, including those typical in agriculture, construction, and search and rescue operations. LEVA uniquely integrates an advanced legged suspension system using parallel kinematics. It is capable of traversing stairs using a rl controller, has steerable wheels, and includes a specialized box pickup mechanism that enables autonomous payload loading as well as precise and reliable cargo transportation of up to 85 kg across uneven surfaces, steps and inclines while maintaining a cot of as low as 0.15. Through extensive experimental validation, LEVA demonstrates its off-road capabilities and reliability regarding payload loading and transport.
comment: Accepted for publication at the 2025 IEEE International Conference on Robotics and Automation (ICRA). This is the author's preprint version. 6 pages, 8 figures, 2 tables
☆ Post-disaster building indoor damage and survivor detection using autonomous path planning and deep learning with unmanned aerial vehicles
Rapid response to natural disasters such as earthquakes is a crucial element in ensuring the safety of civil infrastructures and minimizing casualties. Traditional manual inspection is labour-intensive, time-consuming, and can be dangerous for inspectors and rescue workers. This paper proposed an autonomous inspection approach for structural damage inspection and survivor detection in the post-disaster building indoor scenario, which incorporates an autonomous navigation method, deep learning-based damage and survivor detection method, and a customized low-cost micro aerial vehicle (MAV) with onboard sensors. Experimental studies in a pseudo-post-disaster office building have shown the proposed methodology can achieve high accuracy in structural damage inspection and survivor detection. Overall, the proposed inspection approach shows great potential to improve the efficiency of existing manual post-disaster building inspection.
comment: 10 pages, 9 figures, accepted in the International Association for Bridge and Structural Engineering (IABSE) Symposium 2025, Tokyo, Japan
☆ ES-Parkour: Advanced Robot Parkour with Bio-inspired Event Camera and Spiking Neural Network
In recent years, quadruped robotics has advanced significantly, particularly in perception and motion control via reinforcement learning, enabling complex motions in challenging environments. Visual sensors like depth cameras enhance stability and robustness but face limitations, such as low operating frequencies relative to joint control and sensitivity to lighting, which hinder outdoor deployment. Additionally, deep neural networks in sensor and control systems increase computational demands. To address these issues, we introduce spiking neural networks (SNNs) and event cameras to perform a challenging quadruped parkour task. Event cameras capture dynamic visual data, while SNNs efficiently process spike sequences, mimicking biological perception. Experimental results demonstrate that this approach significantly outperforms traditional models, achieving excellent parkour performance with just 11.7% of the energy consumption of an artificial neural network (ANN)-based model, yielding an 88.3% energy reduction. By integrating event cameras with SNNs, our work advances robotic reinforcement learning and opens new possibilities for applications in demanding environments.
☆ RMG: Real-Time Expressive Motion Generation with Self-collision Avoidance for 6-DOF Companion Robotic Arms
The six-degree-of-freedom (6-DOF) robotic arm has gained widespread application in human-coexisting environments. While previous research has predominantly focused on functional motion generation, the critical aspect of expressive motion in human-robot interaction remains largely unexplored. This paper presents a novel real-time motion generation planner that enhances interactivity by creating expressive robotic motions between arbitrary start and end states within predefined time constraints. Our approach involves three key contributions: first, we develop a mapping algorithm to construct an expressive motion dataset derived from human dance movements; second, we train motion generation models in both Cartesian and joint spaces using this dataset; third, we introduce an optimization algorithm that guarantees smooth, collision-free motion while maintaining the intended expressive style. Experimental results demonstrate the effectiveness of our method, which can generate expressive and generalized motions in under 0.5 seconds while satisfying all specified constraints.
☆ PanoGen++: Domain-Adapted Text-Guided Panoramic Environment Generation for Vision-and-Language Navigation
Vision-and-language navigation (VLN) tasks require agents to navigate three-dimensional environments guided by natural language instructions, offering substantial potential for diverse applications. However, the scarcity of training data impedes progress in this field. This paper introduces PanoGen++, a novel framework that addresses this limitation by generating varied and pertinent panoramic environments for VLN tasks. PanoGen++ incorporates pre-trained diffusion models with domain-specific fine-tuning, employing parameter-efficient techniques such as low-rank adaptation to minimize computational costs. We investigate two settings for environment generation: masked image inpainting and recursive image outpainting. The former maximizes novel environment creation by inpainting masked regions based on textual descriptions, while the latter facilitates agents' learning of spatial relationships within panoramas. Empirical evaluations on room-to-room (R2R), room-for-room (R4R), and cooperative vision-and-dialog navigation (CVDN) datasets reveal significant performance enhancements: a 2.44% increase in success rate on the R2R test leaderboard, a 0.63% improvement on the R4R validation unseen set, and a 0.75-meter enhancement in goal progress on the CVDN validation unseen set. PanoGen++ augments the diversity and relevance of training environments, resulting in improved generalization and efficacy in VLN tasks.
comment: This paper was accepted by Neural Networks
☆ Safe Continual Domain Adaptation after Sim2Real Transfer of Reinforcement Learning Policies in Robotics
Domain randomization has emerged as a fundamental technique in reinforcement learning (RL) to facilitate the transfer of policies from simulation to real-world robotic applications. Many existing domain randomization approaches have been proposed to improve robustness and sim2real transfer. These approaches rely on wide randomization ranges to compensate for the unknown actual system parameters, leading to robust but inefficient real-world policies. In addition, the policies pretrained in the domain-randomized simulation are fixed after deployment due to the inherent instability of the optimization processes based on RL and the necessity of sampling exploitative but potentially unsafe actions on the real system. This limits the adaptability of the deployed policy to the inevitably changing system parameters or environment dynamics over time. We leverage safe RL and continual learning under domain-randomized simulation to address these limitations and enable safe deployment-time policy adaptation in real-world robot control. The experiments show that our method enables the policy to adapt and fit to the current domain distribution and environment dynamics of the real system while minimizing safety risks and avoiding issues like catastrophic forgetting of the general policy found in randomized simulation during the pretraining phase. Videos and supplementary material are available at https://safe-cda.github.io/.
comment: 8 pages, 5 figures, under review
Graph-Grounded LLMs: Leveraging Graphical Function Calling to Minimize LLM Hallucinations
The adoption of Large Language Models (LLMs) is rapidly expanding across various tasks that involve inherent graphical structures. Graphs are integral to a wide range of applications, including motion planning for autonomous vehicles, social networks, scene understanding, and knowledge graphs. Many problems, even those not initially perceived as graph-based, can be effectively addressed through graph theory. However, when applied to these tasks, LLMs often encounter challenges, such as hallucinations and mathematical inaccuracies. To overcome these limitations, we propose Graph-Grounded LLMs, a system that improves LLM performance on graph-related tasks by integrating a graph library through function calls. By grounding LLMs in this manner, we demonstrate significant reductions in hallucinations and improved mathematical accuracy in solving graph-based problems, as evidenced by the performance on the NLGraph benchmark. Finally, we showcase a disaster rescue application where the Graph-Grounded LLM acts as a decision-support system.
☆ Design and Development of the MeCO Open-Source Autonomous Underwater Vehicle
We present MeCO, the Medium Cost Open-source autonomous underwater vehicle (AUV), a versatile autonomous vehicle designed to support research and development in underwater human-robot interaction (UHRI) and marine robotics in general. An inexpensive platform to build compared to similarly-capable AUVs, the MeCO design and software are released under open-source licenses, making it a cost effective, extensible, and open platform. It is equipped with UHRI-focused systems, such as front and side facing displays, light-based communication devices, a transducer for acoustic interaction, and stereo vision, in addition to typical AUV sensing and actuation components. Additionally, MeCO is capable of real-time deep learning inference using the latest edge computing devices, while maintaining low-latency, closed-loop control through high-performance microcontrollers. MeCO is designed from the ground up for modularity in internal electronics, external payloads, and software architecture, exploiting open-source robotics and containerarization tools. We demonstrate the diverse capabilities of MeCO through simulated, closed-water, and open-water experiments. All resources necessary to build and run MeCO, including software and hardware design, have been made publicly available.
☆ Data-Driven Soft Robot Control via Adiabatic Spectral Submanifolds
The mechanical complexity of soft robots creates significant challenges for their model-based control. Specifically, linear data-driven models have struggled to control soft robots on complex, spatially extended paths that explore regions with significant nonlinear behavior. To account for these nonlinearities, we develop here a model-predictive control strategy based on the recent theory of adiabatic spectral submanifolds (aSSMs). This theory is applicable because the internal vibrations of heavily overdamped robots decay at a speed that is much faster than the desired speed of the robot along its intended path. In that case, low-dimensional attracting invariant manifolds (aSSMs) emanate from the path and carry the dominant dynamics of the robot. Aided by this recent theory, we devise an aSSM-based model-predictive control scheme purely from data. We demonstrate the effectiveness of this data-driven model on various dynamic trajectory tracking tasks on a high-fidelity and high-dimensional finite-element model of a soft trunk robot. Notably, we find that four- or five-dimensional aSSM-reduced models outperform the tracking performance of other data-driven modeling methods by a factor up to 10 across all closed-loop control tasks.
comment: 33 pages, 19 figures
☆ Transferring Kinesthetic Demonstrations across Diverse Objects for Manipulation Planning
Given a demonstration of a complex manipulation task such as pouring liquid from one container to another, we seek to generate a motion plan for a new task instance involving objects with different geometries. This is non-trivial since we need to simultaneously ensure that the implicit motion constraints are satisfied (glass held upright while moving), the motion is collision-free, and that the task is successful (e.g. liquid is poured into the target container). We solve this problem by identifying positions of critical locations and associating a reference frame (called motion transfer frames) on the manipulated object and the target, selected based on their geometries and the task at hand. By tracking and transferring the path of the motion transfer frames, we generate motion plans for arbitrary task instances with objects of different geometries and poses. We show results from simulation as well as robot experiments on physical objects to evaluate the effectiveness of our solution.
Fusion of Indirect Methods and Iterative Learning for Persistent Velocity Trajectory Optimization of a Sustainably Powered Autonomous Surface Vessel
In this paper, we present the methodology and results for a real-time velocity trajectory optimization for a solar-powered autonomous surface vessel (ASV), where we combine indirect optimal control techniques with iterative learning. The ASV exhibits cyclic operation due to the nature of the solar profile, but weather patterns create inevitable disturbances in this profile. The nature of the problem results in a formulation where the satisfaction of pointwise-in-time state of charge constraints does not generally guarantee persistent feasibility, and the goal is to maximize information gathered over a very long (ultimately persistent) time duration. To address these challenges, we first use barrier functions to tighten pointwise-in-time state of charge constraints by the minimal amount necessary to achieve persistent feasibility. We then use indirect methods to derive a simple switching control law, where the optimal velocity is shown to be an undetermined constant value during each constraint-inactive time segment. To identify this optimal constant velocity (which can vary from one segment to the next), we employ an iterative learning approach. The result is a simple closed-form control law that does not require a solar forecast. We present simulation-based validation results, based on a model of the SeaTrac SP-48 ASV and solar data from the North Carolina coast. These simulation results show that the proposed methodology, which amounts to a closed-form controller and simple iterative learning update law, performs nearly as well as a model predictive control approach that requires an accurate future solar forecast and significantly greater computational capability.
☆ Rapidly Converging Time-Discounted Ergodicity on Graphs for Active Inspection of Confined Spaces
Ergodic exploration has spawned a lot of interest in mobile robotics due to its ability to design time trajectories that match desired spatial coverage statistics. However, current ergodic approaches are for continuous spaces, which require detailed sensory information at each point and can lead to fractal-like trajectories that cannot be tracked easily. This paper presents a new ergodic approach for graph-based discretization of continuous spaces. It also introduces a new time-discounted ergodicity metric, wherein early visitations of information-rich nodes are weighted more than late visitations. A Markov chain synthesized using a convex program is shown to converge more rapidly to time-discounted ergodicity than the traditional fastest mixing Markov chain. The resultant ergodic traversal method is used within a hierarchical framework for active inspection of confined spaces with the goal of detecting anomalies robustly using SLAM-driven Bayesian hypothesis testing. Both simulation and physical experiments on a ground robot show the advantages of this framework over greedy and random exploration methods for left-behind foreign object debris detection in a ballast tank.
☆ Communication-Aware Iterative Map Compression for Online Path-Planning
This paper addresses the problem of optimizing communicated information among heterogeneous, resource-aware robot teams to facilitate their navigation. In such operations, a mobile robot compresses its local map to assist another robot in reaching a target within an uncharted environment. The primary challenge lies in ensuring that the map compression step balances network load while transmitting only the most essential information for effective navigation. We propose a communication framework that sequentially selects the optimal map compression in a task-driven, communication-aware manner. It introduces a decoder capable of iterative map estimation, handling noise through Kalman filter techniques. The computational speed of our decoder allows for a larger compression template set compared to previous methods, and enables applications in more challenging environments. Specifically, our simulations demonstrate a remarkable 98% reduction in communicated information, compared to a framework that transmits the raw data, on a large Mars inclination map and an Earth map, all while maintaining similar planning costs. Furthermore, our method significantly reduces computational time compared to the state-of-the-art approach.
comment: 7 pages, 6 figures
☆ Unifying 2D and 3D Vision-Language Understanding
Progress in 3D vision-language learning has been hindered by the scarcity of large-scale 3D datasets. We introduce UniVLG, a unified architecture for 2D and 3D vision-language understanding that bridges the gap between existing 2D-centric models and the rich 3D sensory data available in embodied systems. Our approach initializes most model weights from pre-trained 2D models and trains on both 2D and 3D vision-language data. We propose a novel language-conditioned mask decoder shared across 2D and 3D modalities to ground objects effectively in both RGB and RGB-D images, outperforming box-based approaches. To further reduce the domain gap between 2D and 3D, we incorporate 2D-to-3D lifting strategies, enabling UniVLG to utilize 2D data to enhance 3D performance. With these innovations, our model achieves state-of-the-art performance across multiple 3D vision-language grounding tasks, demonstrating the potential of transferring advances from 2D vision-language learning to the data-constrained 3D domain. Furthermore, co-training on both 2D and 3D data enhances performance across modalities without sacrificing 2D capabilities. By removing the reliance on 3D mesh reconstruction and ground-truth object proposals, UniVLG sets a new standard for realistic, embodied-aligned evaluation. Code and additional visualizations are available at $\href{https://univlg.github.io}{univlg.github.io}$.
comment: The first two authors contributed equally
☆ Spatial-Temporal Graph Diffusion Policy with Kinematic Modeling for Bimanual Robotic Manipulation CVPR 2025
Despite the significant success of imitation learning in robotic manipulation, its application to bimanual tasks remains highly challenging. Existing approaches mainly learn a policy to predict a distant next-best end-effector pose (NBP) and then compute the corresponding joint rotation angles for motion using inverse kinematics. However, they suffer from two important issues: (1) rarely considering the physical robotic structure, which may cause self-collisions or interferences, and (2) overlooking the kinematics constraint, which may result in the predicted poses not conforming to the actual limitations of the robot joints. In this paper, we propose Kinematics enhanced Spatial-TemporAl gRaph Diffuser (KStar Diffuser). Specifically, (1) to incorporate the physical robot structure information into action prediction, KStar Diffuser maintains a dynamic spatial-temporal graph according to the physical bimanual joint motions at continuous timesteps. This dynamic graph serves as the robot-structure condition for denoising the actions; (2) to make the NBP learning objective consistent with kinematics, we introduce the differentiable kinematics to provide the reference for optimizing KStar Diffuser. This module regularizes the policy to predict more reliable and kinematics-aware next end-effector poses. Experimental results show that our method effectively leverages the physical structural information and generates kinematics-aware actions in both simulation and real-world
comment: Accepted by CVPR 2025
☆ Reparametrization of 3D CSC Dubins Paths Enabling 2D Search
This paper addresses the Dubins path planning problem for vehicles in 3D space. In particular, we consider the problem of computing CSC paths -- paths that consist of a circular arc (C) followed by a straight segment (S) followed by a circular arc (C). These paths are useful for vehicles such as fixed-wing aircraft and underwater submersibles that are subject to lower bounds on turn radius. We present a new parameterization that reduces the 3D CSC planning problem to a search over 2 variables, thus lowering search complexity, while also providing gradients that assist that search. We use these equations with a numerical solver to explore numbers and types of solutions computed for a variety of planar and 3D scenarios. Our method successfully computes CSC paths for the large majority of test cases, indicating that it could be useful for future generation of robust, efficient curvature-constrained trajectories.
☆ 3D Extended Object Tracking based on Extruded B-Spline Side View Profiles
Object tracking is an essential task for autonomous systems. With the advancement of 3D sensors, these systems can better perceive their surroundings using effective 3D Extended Object Tracking (EOT) methods. Based on the observation that common road users are symmetrical on the right and left sides in the traveling direction, we focus on the side view profile of the object. In order to leverage of the development in 2D EOT and balance the number of parameters of a shape model in the tracking algorithms, we propose a method for 3D extended object tracking (EOT) by describing the side view profile of the object with B-spline curves and forming an extrusion to obtain a 3D extent. The use of B-spline curves exploits their flexible representation power by allowing the control points to move freely. The algorithm is developed into an Extended Kalman Filter (EKF). For a through evaluation of this method, we use simulated traffic scenario of different vehicle models and realworld open dataset containing both radar and lidar data.
comment: 8 pages, 7 figures, submitted to FUSION 2025
☆ Low-pass sampling in Model Predictive Path Integral Control IROS'25
Model Predictive Path Integral (MPPI) control is a widely used sampling-based approach for real-time control, offering flexibility in handling arbitrary dynamics and cost functions. However, the original MPPI suffers from high-frequency noise in the sampled control trajectories, leading to actuator wear and inefficient exploration. In this work, we introduce Low-Pass Model Predictive Path Integral Control (LP-MPPI), which integrates low-pass filtering into the sampling process to eliminate detrimental high-frequency components and improve the effectiveness of the control trajectories exploration. Unlike prior approaches, LP-MPPI provides direct and interpretable control over the frequency spectrum of sampled trajectories, enhancing sampling efficiency and control smoothness. Through extensive evaluations in Gymnasium environments, simulated quadruped locomotion, and real-world F1TENTH autonomous racing, we demonstrate that LP-MPPI consistently outperforms state-of-the-art MPPI variants, achieving significant performance improvements while reducing control signal chattering.
comment: Under review for IROS'25
☆ A Robust and Energy-Efficient Trajectory Planning Framework for High-Degree-of-Freedom Robots
Energy efficiency and motion smoothness are essential in trajectory planning for high-degree-of-freedom robots to ensure optimal performance and reduce mechanical wear. This paper presents a novel framework integrating sinusoidal trajectory generation with velocity scaling to minimize energy consumption while maintaining motion accuracy and smoothness. The framework is evaluated using a physics-based simulation environment with metrics such as energy consumption, motion smoothness, and trajectory accuracy. Results indicate significant energy savings and smooth transitions, demonstrating the framework's effectiveness for precision-based applications. Future work includes real-time trajectory adjustments and enhanced energy models.
♻ ☆ PCLA: A Framework for Testing Autonomous Agents in the CARLA Simulator
Recent research on testing autonomous driving agents has grown significantly, especially in simulation environments. The CARLA simulator is often the preferred choice, and the autonomous agents from the CARLA Leaderboard challenge are regarded as the best-performing agents within this environment. However, researchers who test these agents, rather than training their own ones from scratch, often face challenges in utilizing them within customized test environments and scenarios. To address these challenges, we introduce PCLA (Pretrained CARLA Leaderboard Agents), an open-source Python testing framework that includes nine high-performing pre-trained autonomous agents from the Leaderboard challenges. PCLA is the first infrastructure specifically designed for testing various autonomous agents in arbitrary CARLA environments/scenarios. PCLA provides a simple way to deploy Leaderboard agents onto a vehicle without relying on the Leaderboard codebase, it allows researchers to easily switch between agents without requiring modifications to CARLA versions or programming environments, and it is fully compatible with the latest version of CARLA while remaining independent of the Leaderboard's specific CARLA version. PCLA is publicly accessible at https://github.com/MasoudJTehrani/PCLA.
comment: This work will be published at the FSE 2025 demonstration track
♻ ☆ 2HandedAfforder: Learning Precise Actionable Bimanual Affordances from Human Videos
When interacting with objects, humans effectively reason about which regions of objects are viable for an intended action, i.e., the affordance regions of the object. They can also account for subtle differences in object regions based on the task to be performed and whether one or two hands need to be used. However, current vision-based affordance prediction methods often reduce the problem to naive object part segmentation. In this work, we propose a framework for extracting affordance data from human activity video datasets. Our extracted 2HANDS dataset contains precise object affordance region segmentations and affordance class-labels as narrations of the activity performed. The data also accounts for bimanual actions, i.e., two hands co-ordinating and interacting with one or more objects. We present a VLM-based affordance prediction model, 2HandedAfforder, trained on the dataset and demonstrate superior performance over baselines in affordance region segmentation for various activities. Finally, we show that our predicted affordance regions are actionable, i.e., can be used by an agent performing a task, through demonstration in robotic manipulation scenarios.
comment: Project site: https://sites.google.com/view/2handedafforder
♻ ☆ HumanoidPano: Hybrid Spherical Panoramic-LiDAR Cross-Modal Perception for Humanoid Robots
The perceptual system design for humanoid robots poses unique challenges due to inherent structural constraints that cause severe self-occlusion and limited field-of-view (FOV). We present HumanoidPano, a novel hybrid cross-modal perception framework that synergistically integrates panoramic vision and LiDAR sensing to overcome these limitations. Unlike conventional robot perception systems that rely on monocular cameras or standard multi-sensor configurations, our method establishes geometrically-aware modality alignment through a spherical vision transformer, enabling seamless fusion of 360 visual context with LiDAR's precise depth measurements. First, Spherical Geometry-aware Constraints (SGC) leverage panoramic camera ray properties to guide distortion-regularized sampling offsets for geometric alignment. Second, Spatial Deformable Attention (SDA) aggregates hierarchical 3D features via spherical offsets, enabling efficient 360{\deg}-to-BEV fusion with geometrically complete object representations. Third, Panoramic Augmentation (AUG) combines cross-view transformations and semantic alignment to enhance BEV-panoramic feature consistency during data augmentation. Extensive evaluations demonstrate state-of-the-art performance on the 360BEV-Matterport benchmark. Real-world deployment on humanoid platforms validates the system's capability to generate accurate BEV segmentation maps through panoramic-LiDAR co-perception, directly enabling downstream navigation tasks in complex environments. Our work establishes a new paradigm for embodied perception in humanoid robotics.
comment: Technical Report
♻ ☆ PhysVLM: Enabling Visual Language Models to Understand Robotic Physical Reachability
Understanding the environment and a robot's physical reachability is crucial for task execution. While state-of-the-art vision-language models (VLMs) excel in environmental perception, they often generate inaccurate or impractical responses in embodied visual reasoning tasks due to a lack of understanding of robotic physical reachability. To address this issue, we propose a unified representation of physical reachability across diverse robots, i.e., Space-Physical Reachability Map (S-P Map), and PhysVLM, a vision-language model that integrates this reachability information into visual reasoning. Specifically, the S-P Map abstracts a robot's physical reachability into a generalized spatial representation, independent of specific robot configurations, allowing the model to focus on reachability features rather than robot-specific parameters. Subsequently, PhysVLM extends traditional VLM architectures by incorporating an additional feature encoder to process the S-P Map, enabling the model to reason about physical reachability without compromising its general vision-language capabilities. To train and evaluate PhysVLM, we constructed a large-scale multi-robot dataset, Phys100K, and a challenging benchmark, EQA-phys, which includes tasks for six different robots in both simulated and real-world environments. Experimental results demonstrate that PhysVLM outperforms existing models, achieving a 14\% improvement over GPT-4o on EQA-phys and surpassing advanced embodied VLMs such as RoboMamba and SpatialVLM on the RoboVQA-val and OpenEQA benchmarks. Additionally, the S-P Map shows strong compatibility with various VLMs, and its integration into GPT-4o-mini yields a 7.1\% performance improvement.
♻ ☆ ForceGrip: Data-Free Curriculum Learning for Realistic Grip Force Control in VR Hand Manipulation
Realistic hand manipulation is a key component of immersive virtual reality (VR), yet existing methods often rely on a kinematic approach or motion-capture datasets that omit crucial physical attributes such as contact forces and finger torques. Consequently, these approaches prioritize tight, one-size-fits-all grips rather than reflecting users' intended force levels. We present ForceGrip, a deep learning agent that synthesizes realistic hand manipulation motions, faithfully reflecting the user's grip force intention. Instead of mimicking predefined motion datasets, ForceGrip uses generated training scenarios-randomizing object shapes, wrist movements, and trigger input flows-to challenge the agent with a broad spectrum of physical interactions. To effectively learn from these complex tasks, we employ a three-phase curriculum learning framework comprising Finger Positioning, Intention Adaptation, and Dynamic Stabilization. This progressive strategy ensures stable hand-object contact, adaptive force control based on user inputs, and robust handling under dynamic conditions. Additionally, a proximity reward function enhances natural finger motions and accelerates training convergence. Quantitative and qualitative evaluations reveal ForceGrip's superior force controllability and plausibility compared to state-of-the-art methods. The video presentation of our paper is accessible at https://youtu.be/lR-YAfninJw.
comment: 19 pages, 10 figs (with appendix). Demo Video: https://youtu.be/lR-YAfninJw
AgiBot World Colosseo: A Large-scale Manipulation Platform for Scalable and Intelligent Embodied Systems
We explore how scalable robot data can address real-world challenges for generalized robotic manipulation. Introducing AgiBot World, a large-scale platform comprising over 1 million trajectories across 217 tasks in five deployment scenarios, we achieve an order-of-magnitude increase in data scale compared to existing datasets. Accelerated by a standardized collection pipeline with human-in-the-loop verification, AgiBot World guarantees high-quality and diverse data distribution. It is extensible from grippers to dexterous hands and visuo-tactile sensors for fine-grained skill acquisition. Building on top of data, we introduce Genie Operator-1 (GO-1), a novel generalist policy that leverages latent action representations to maximize data utilization, demonstrating predictable performance scaling with increased data volume. Policies pre-trained on our dataset achieve an average performance improvement of 30% over those trained on Open X-Embodiment, both in in-domain and out-of-distribution scenarios. GO-1 exhibits exceptional capability in real-world dexterous and long-horizon tasks, achieving over 60% success rate on complex tasks and outperforming prior RDT approach by 32%. By open-sourcing the dataset, tools, and models, we aim to democratize access to large-scale, high-quality robot data, advancing the pursuit of scalable and general-purpose intelligence.
comment: Project website: https://agibot-world.com/. Github repo: https://github.com/OpenDriveLab/AgiBot-World. The author list is ordered alphabetically by surname, with detailed contributions provided in the appendix
♻ ☆ Confidence-Controlled Exploration: Efficient Sparse-Reward Policy Learning for Robot Navigation
Reinforcement learning (RL) is a promising approach for robotic navigation, allowing robots to learn through trial and error. However, real-world robotic tasks often suffer from sparse rewards, leading to inefficient exploration and suboptimal policies due to sample inefficiency of RL. In this work, we introduce Confidence-Controlled Exploration (CCE), a novel method that improves sample efficiency in RL-based robotic navigation without modifying the reward function. Unlike existing approaches, such as entropy regularization and reward shaping, which can introduce instability by altering rewards, CCE dynamically adjusts trajectory length based on policy entropy. Specifically, it shortens trajectories when uncertainty is high to enhance exploration and extends them when confidence is high to prioritize exploitation. CCE is a principled and practical solution inspired by a theoretical connection between policy entropy and gradient estimation. It integrates seamlessly with on-policy and off-policy RL methods and requires minimal modifications. We validate CCE across REINFORCE, PPO, and SAC in both simulated and real-world navigation tasks. CCE outperforms fixed-trajectory and entropy-regularized baselines, achieving an 18\% higher success rate, 20-38\% shorter paths, and 9.32\% lower elevation costs under a fixed training sample budget. Finally, we deploy CCE on a Clearpath Husky robot, demonstrating its effectiveness in complex outdoor environments.
comment: 10 pages, 6 figures, 2 tables
♻ ☆ Versatile Demonstration Interface: Toward More Flexible Robot Demonstration Collection
Previous methods for Learning from Demonstration leverage several approaches for a human to teach motions to a robot, including teleoperation, kinesthetic teaching, and natural demonstrations. However, little previous work has explored more general interfaces that allow for multiple demonstration types. Given the varied preferences of human demonstrators and task characteristics, a flexible tool that enables multiple demonstration types could be crucial for broader robot skill training. In this work, we propose Versatile Demonstration Interface (VDI), an attachment for collaborative robots that simplifies the collection of three common types of demonstrations. Designed for flexible deployment in industrial settings, our tool requires no additional instrumentation of the environment. Our prototype interface captures human demonstrations through a combination of vision, force sensing, and state tracking (e.g., through the robot proprioception or AprilTag tracking). Through a user study where we deployed our prototype VDI at a local manufacturing innovation center with manufacturing experts, we demonstrated VDI in representative industrial tasks. Interactions from our study highlight the practical value of VDI's varied demonstration types, expose a range of industrial use cases for VDI, and provide insights for future tool design.
comment: 8 pages, 6 figures
♻ ☆ Maintaining Strong $r$-Robustness in Reconfigurable Multi-Robot Networks using Control Barrier Functions ICRA
In leader-follower consensus, strong $r$-robustness of the communication graph provides a sufficient condition for followers to achieve consensus in the presence of misbehaving agents. Previous studies have assumed that robots can form and/or switch between predetermined network topologies with known robustness properties. However, robots with distance-based communication models may not be able to achieve these topologies while moving through spatially constrained environments, such as narrow corridors, to complete their objectives. This paper introduces a Control Barrier Function (CBF) that ensures robots maintain strong $r$-robustness of their communication graph above a certain threshold without maintaining any fixed topologies. Our CBF directly addresses robustness, allowing robots to have flexible reconfigurable network structure while navigating to achieve their objectives. The efficacy of our method is tested through various simulation and hardware experiments.
comment: Accepted and will appear at IEEE International Conference on Robotics and Automation (ICRA) 2025
♻ ☆ Knowledge-data fusion dominated vehicle platoon dynamics modeling and analysis: A physics-encoded deep learning approach
Recently, artificial intelligence (AI)-enabled nonlinear vehicle platoon dynamics modeling plays a crucial role in predicting and optimizing the interactions between vehicles. Existing efforts lack the extraction and capture of vehicle behavior interaction features at the platoon scale. More importantly, maintaining high modeling accuracy without losing physical analyzability remains to be solved. To this end, this paper proposes a novel physics-encoded deep learning network, named PeMTFLN, to model the nonlinear vehicle platoon dynamics. Specifically, an analyzable parameters encoded computational graph (APeCG) is designed to guide the platoon to respond to the driving behavior of the lead vehicle while ensuring local stability. Besides, a multi-scale trajectory feature learning network (MTFLN) is constructed to capture platoon following patterns and infer the physical parameters required for APeCG from trajectory data. The human-driven vehicle trajectory datasets (HIGHSIM) were used to train the proposed PeMTFLN. The trajectories prediction experiments show that PeMTFLN exhibits superior compared to the baseline models in terms of predictive accuracy in speed and gap. The stability analysis result shows that the physical parameters in APeCG is able to reproduce the platoon stability in real-world condition. In simulation experiments, PeMTFLN performs low inference error in platoon trajectories generation. Moreover, PeMTFLN also accurately reproduces ground-truth safety statistics. The code of proposed PeMTFLN is open source.
♻ ☆ A Generalized Adaptive Jacobian Controller for Soft Robots
The nonlinearity and hysteresis of soft robot motions have posed challenges in control. The Jacobian controller is transferred from rigid robot controllers and exhibits conciseness, but the improper assumption of soft robots induces the feasibility only in a small local area. Accurate controllers like neural networks can deal with delayed and nonlinear motion, achieving high accuracy, but they suffer from the high data amount requirement and black-box property. Inspired by these approaches, we propose an adaptive generalized Jacobian controller for soft robots. This controller is constructed by the concise format of the Jacobian controller but includes more states and independent matrices, which is suitable for soft robotics. In addition, the initialization leverages the motor babbling strategy and batch optimization from neural network controllers. In experiments, we first analyze the online controllers, including the Jacobian controller, the Gaussian process regression, and our controller. Real experiments have validated that our controller outperforms the RNN controller even with fewer data samples, and it is adaptive to various situations without fine-tuning, like different control frequencies, softness, and even manufacturing errors. Future work may include online adjustment of the controller format and adaptability validation in more scenarios.
comment: 10 pages, 8 figures, 4 tables
♻ ☆ A new metaheuristic approach for the art gallery problem
In the problem "Localization and trilateration with the minimum number of landmarks", we faced the 3-Guard and classic Art Gallery Problems. The goal of the art gallery problem is to find the minimum number of guards within a simple polygon to observe and protect its entirety. It has many applications in robotics, telecommunications, etc. There are some approaches to handle the art gallery problem that is theoretically NP-hard. This paper offers an efficient method based on the Particle Filter algorithm which solves the most fundamental state of the problem in a nearly optimal manner. The experimental results on the random polygons generated by Bottino et al. \cite{bottino2011nearly} show that the new method is more accurate with fewer or equal guards. Furthermore, we discuss resampling and particle numbers to minimize the run time.
comment: This article has undergone many changes and should be reviewed and rewritten in a different format
♻ ☆ Unified Feedback Linearization for Nonlinear Systems with Dexterous and Energy-Saving Modes
Systems with a high number of inputs compared to the degrees of freedom (e.g. a mobile robot with Mecanum wheels) often have a minimal set of energy-efficient inputs needed to achieve a main task (e.g. position tracking) and a set of energy-intense inputs needed to achieve an additional auxiliary task (e.g. orientation tracking). This letter presents a unified control scheme, derived through feedback linearization, that can switch between two modes: an energy-saving mode, which tracks the main task using only the energy-efficient inputs while forcing the energy-intense inputs to zero, and a dexterous mode, which also uses the energy-intense inputs to track the auxiliary task as needed. The proposed control guarantees the exponential tracking of the main task and that the dynamics associated with the main task evolve independently of the a priori unknown switching signal. When the control is operating in dexterous mode, the exponential tracking of the auxiliary task is also guaranteed. Numerical simulations on an omnidirectional Mecanum wheel robot validate the effectiveness of the proposed approach and demonstrate the effect of the switching signal on the exponential tracking behavior of the main and auxiliary tasks.
♻ ☆ ReVLA: Reverting Visual Domain Limitation of Robotic Foundation Models ICRA-2025
Recent progress in large language models and access to large-scale robotic datasets has sparked a paradigm shift in robotics models transforming them into generalists able to adapt to various tasks, scenes, and robot modalities. A large step for the community are open Vision Language Action models which showcase strong performance in a wide variety of tasks. In this work, we study the visual generalization capabilities of three existing robotic foundation models, and propose a corresponding evaluation framework. Our study shows that the existing models do not exhibit robustness to visual out-of-domain scenarios. This is potentially caused by limited variations in the training data and/or catastrophic forgetting, leading to domain limitations in the vision foundation models. We further explore OpenVLA, which uses two pre-trained vision foundation models and is, therefore, expected to generalize to out-of-domain experiments. However, we showcase catastrophic forgetting by DINO-v2 in OpenVLA through its failure to fulfill the task of depth regression. To overcome the aforementioned issue of visual catastrophic forgetting, we propose a gradual backbone reversal approach founded on model merging. This enables OpenVLA which requires the adaptation of the visual backbones during initial training -- to regain its visual generalization ability. Regaining this capability enables our ReVLA model to improve over OpenVLA by a factor of 77% and 66% for grasping and lifting in visual OOD tasks .
comment: Accepted at ICRA-2025, Atlanta
♻ ☆ Efficient End-to-End 6-Dof Grasp Detection Framework for Edge Devices with Hierarchical Heatmaps and Feature Propagation
6-DoF grasp detection is critically important for the advancement of intelligent embodied systems, as it provides feasible robot poses for object grasping. Various methods have been proposed to detect 6-DoF grasps through the extraction of 3D geometric features from RGBD or point cloud data. However, most of these approaches encounter challenges during real robot deployment due to their significant computational demands, which can be particularly problematic for mobile robot platforms, especially those reliant on edge computing devices. This paper presents an Efficient End-to-End Grasp Detection Network (E3GNet) for 6-DoF grasp detection utilizing hierarchical heatmap representations. E3GNet effectively identifies high-quality and diverse grasps in cluttered real-world environments.Benefiting from our end-to-end methodology and efficient network design, our approach surpasses previous methods in model inference efficiency and achieves real-time 6-Dof grasp detection on edge devices. Furthermore, real-world experiments validate the effectiveness of our method, achieving a satisfactory 94% object grasping success rate.
comment: Accepted by 2025 IEEE International Symposium on Circuits and Systems
♻ ☆ Long-horizon Embodied Planning with Implicit Logical Inference and Hallucination Mitigation
Long-horizon embodied planning underpins embodied AI. To accomplish long-horizon tasks, one of the most feasible ways is to decompose abstract instructions into a sequence of actionable steps. Foundation models still face logical errors and hallucinations in long-horizon planning, unless provided with highly relevant examples to the tasks. However, providing highly relevant examples for any random task is unpractical. Therefore, we present ReLEP, a novel framework for Real-time Long-horizon Embodied Planning. ReLEP can complete a wide range of long-horizon tasks without in-context examples by learning implicit logical inference through fine-tuning. The fine-tuned large vision-language model formulates plans as sequences of skill functions. These functions are selected from a carefully designed skill library. ReLEP is also equipped with a Memory module for plan and status recall, and a Robot Configuration module for versatility across robot types. In addition, we propose a data generation pipeline to tackle dataset scarcity. When constructing the dataset, we considered the implicit logical relationships, enabling the model to learn implicit logical relationships and dispel hallucinations. Through comprehensive evaluations across various long-horizon tasks, ReLEP demonstrates high success rates and compliance to execution even on unseen tasks and outperforms state-of-the-art baseline methods.
♻ ☆ ECBench: Can Multi-modal Foundation Models Understand the Egocentric World? A Holistic Embodied Cognition Benchmark
The enhancement of generalization in robots by large vision-language models (LVLMs) is increasingly evident. Therefore, the embodied cognitive abilities of LVLMs based on egocentric videos are of great interest. However, current datasets for embodied video question answering lack comprehensive and systematic evaluation frameworks. Critical embodied cognitive issues, such as robotic self-cognition, dynamic scene perception, and hallucination, are rarely addressed. To tackle these challenges, we propose ECBench, a high-quality benchmark designed to systematically evaluate the embodied cognitive abilities of LVLMs. ECBench features a diverse range of scene video sources, open and varied question formats, and 30 dimensions of embodied cognition. To ensure quality, balance, and high visual dependence, ECBench uses class-independent meticulous human annotation and multi-round question screening strategies. Additionally, we introduce ECEval, a comprehensive evaluation system that ensures the fairness and rationality of the indicators. Utilizing ECBench, we conduct extensive evaluations of proprietary, open-source, and task-specific LVLMs. ECBench is pivotal in advancing the embodied cognitive capabilities of LVLMs, laying a solid foundation for developing reliable core models for embodied agents. All data and code are available at https://github.com/Rh-Dang/ECBench.
♻ ☆ LaMMA-P: Generalizable Multi-Agent Long-Horizon Task Allocation and Planning with LM-Driven PDDL Planner ICRA 2025
Language models (LMs) possess a strong capability to comprehend natural language, making them effective in translating human instructions into detailed plans for simple robot tasks. Nevertheless, it remains a significant challenge to handle long-horizon tasks, especially in subtask identification and allocation for cooperative heterogeneous robot teams. To address this issue, we propose a Language Model-Driven Multi-Agent PDDL Planner (LaMMA-P), a novel multi-agent task planning framework that achieves state-of-the-art performance on long-horizon tasks. LaMMA-P integrates the strengths of the LMs' reasoning capability and the traditional heuristic search planner to achieve a high success rate and efficiency while demonstrating strong generalization across tasks. Additionally, we create MAT-THOR, a comprehensive benchmark that features household tasks with two different levels of complexity based on the AI2-THOR environment. The experimental results demonstrate that LaMMA-P achieves a 105% higher success rate and 36% higher efficiency than existing LM-based multiagent planners. The experimental videos, code, datasets, and detailed prompts used in each module can be found on the project website: https://lamma-p.github.io.
comment: IEEE Conference on Robotics and Automation (ICRA 2025); Project website: https://lamma-p.github.io/
♻ ☆ A Diver Attention Estimation Framework for Effective Underwater Human-Robot Interaction
Many underwater tasks, such as cable-and-wreckage inspection and search-and-rescue, can benefit from robust Human-Robot Interaction (HRI) capabilities. With the recent advancements in vision-based underwater HRI methods, Autonomous Underwater Vehicles (AUVs) have the capability to interact with their human partners without requiring assistance from a topside operator. However, in these methods, the AUV assumes that the diver is ready for interaction, while in reality, the diver may be distracted. In this paper, we attempt to address this problem by presenting a diver attention estimation framework for AUVs to autonomously determine the attentiveness of a diver, and developing a robot controller to allow the AUV to navigate and reorient itself with respect to the diver before initiating interaction. The core element of the framework is a deep convolutional neural network called DATT-Net. It is based on a pyramid structure that can exploit the geometric relations among 10 facial keypoints of a diver to estimate their head orientation, which we use as an indicator of attentiveness. Our on-the-bench experimental evaluations and real-world experiments during both closed- and open-water robot trials confirm the efficacy of the proposed framework.
comment: 9 pages, 6 figures, 2 tables
♻ ☆ Sensor-Invariant Tactile Representation ICLR'25
High-resolution tactile sensors have become critical for embodied perception and robotic manipulation. However, a key challenge in the field is the lack of transferability between sensors due to design and manufacturing variations, which result in significant differences in tactile signals. This limitation hinders the ability to transfer models or knowledge learned from one sensor to another. To address this, we introduce a novel method for extracting Sensor-Invariant Tactile Representations (SITR), enabling zero-shot transfer across optical tactile sensors. Our approach utilizes a transformer-based architecture trained on a diverse dataset of simulated sensor designs, allowing it to generalize to new sensors in the real world with minimal calibration. Experimental results demonstrate the method's effectiveness across various tactile sensing applications, facilitating data and model transferability for future advancements in the field.
comment: Accepted to ICLR'25. Project webpage: https://hgupt3.github.io/sitr/
♻ ☆ Low Fidelity Visuo-Tactile Pretraining Improves Vision-Only Manipulation Performance
Tactile perception is essential for real-world manipulation tasks, yet the high cost and fragility of tactile sensors can limit their practicality. In this work, we explore BeadSight (a low-cost, open-source tactile sensor) alongside a tactile pre-training approach, an alternative method to precise, pre-calibrated sensors. By pre-training with the tactile sensor and then disabling it during downstream tasks, we aim to enhance robustness and reduce costs in manipulation systems. We investigate whether tactile pre-training, even with a low-fidelity sensor like BeadSight, can improve the performance of an imitation learning agent on complex manipulation tasks. Through visuo-tactile pre-training on both similar and dissimilar tasks, we analyze its impact on a longer-horizon downstream task. Our experiments show that visuo-tactile pre-training improved performance on a USB cable plugging task by up to 65% with vision-only inference. Additionally, on a longer-horizon drawer pick-and-place task, pre-training--whether on a similar, dissimilar, or identical task--consistently improved performance, highlighting the potential for a large-scale visuo-tactile pre-trained encoder.
♻ ☆ A Semi-Lagrangian Approach for Time and Energy Path Planning Optimization in Static Flow Fields
Efficient path planning for autonomous mobile robots is a critical problem across numerous domains, where optimizing both time and energy consumption is paramount. This paper introduces a novel methodology that considers the dynamic influence of an environmental flow field and considers geometric constraints, including obstacles and forbidden zones, enriching the complexity of the planning problem. We formulate it as a multi-objective optimal control problem, propose a novel transformation called Harmonic Transformation, and apply a semi-Lagrangian scheme to solve it. The set of Pareto efficient solutions is obtained considering two distinct approaches: a deterministic method and an evolutionary-based one, both of which are designed to make use of the proposed Harmonic Transformation. Through an extensive analysis of these approaches, we demonstrate their efficacy in finding optimized paths.
comment: 50 pages, accepted manuscript; Preprint submitted to Journal of the Franklin Institute (accepted manuscript)
♻ ☆ System 0/1/2/3: Quad-process theory for multi-timescale embodied collective cognitive systems
This paper introduces the System 0/1/2/3 framework as an extension of dual-process theory, employing a quad-process model of cognition. Expanding upon System 1 (fast, intuitive thinking) and System 2 (slow, deliberative thinking), we incorporate System 0, which represents pre-cognitive embodied processes, and System 3, which encompasses collective intelligence and symbol emergence. We contextualize this model within Bergson's philosophy by adopting multi-scale time theory to unify the diverse temporal dynamics of cognition. System 0 emphasizes morphological computation and passive dynamics, illustrating how physical embodiment enables adaptive behavior without explicit neural processing. Systems 1 and 2 are explained from a constructive perspective, incorporating neurodynamical and AI viewpoints. In System 3, we introduce collective predictive coding to explain how societal-level adaptation and symbol emergence operate over extended timescales. This comprehensive framework ranges from rapid embodied reactions to slow-evolving collective intelligence, offering a unified perspective on cognition across multiple timescales, levels of abstraction, and forms of human intelligence. The System 0/1/2/3 model provides a novel theoretical foundation for understanding the interplay between adaptive and cognitive processes, thereby opening new avenues for research in cognitive science, AI, robotics, and collective intelligence.
comment: Under review
♻ ☆ Survival of the fastest -- algorithm-guided evolution of light-powered underwater microrobots
Depending on multiple parameters, soft robots can exhibit different modes of locomotion that are difficult to model numerically. As a result, improving their performance is complex, especially in small-scale systems characterized by low Reynolds numbers, when multiple aero- and hydrodynamical processes influence their movement. In this work, we optimize light-powered millimetre-scale underwater swimmer locomotion by applying experimental results - measured swimming speed - as the fitness function in two evolutionary algorithms: particle swarm optimization and genetic algorithm. As these soft, light-powered robots with different characteristics (phenotypes) can be fabricated quickly, they provide a great platform for optimisation experiments, using many competing robots to improve swimming speed over consecutive generations. Interestingly, just like in natural evolution, unexpected gene combinations led to surprisingly good results, including eight-fold increase in speed or the discovery of a self-oscillating underwater locomotion mode.
comment: 14 pages
♻ ☆ Baloo: A Large-Scale Hybrid Soft Robotic Torso for Whole-Arm Manipulation
Soft robotic actuators can simplify the design of controllers when operating in contact-rich environments. Importantly, their passive compliance fundamentally alters contact mechanics by smoothing impacts and distributing forces over large areas. By integrating soft actuators, we can perform high-impact, dynamic, and contact-rich tasks that are challenging or impossible for traditional rigid robots. In order to explore the benefits of passive structural compliance and learn to utilize it effectively, we present a prototype robotic torso named Baloo. Baloo's hybrid soft-rigid design incorporates both adaptability from soft components and strength from rigid components with two meter-long, pneumatic robot arms mounted on a rigid torso. The hybrid design is capable of lifting end effector payloads of up to 19 kg, far exceeding many hybrid robot designs. Such payloads are competitive with similar-sized rigid robots, but with a much higher strength-to-weight ratio. Through 30 physical whole-body grasping experiments, we also demonstrate how a simple control strategy can generalize for effective lifting across six challenging objects with diverse shapes, sizes, and weights. A 100% success rate across all objects--achieved with the simple control strategy--underscores the potential of our hybrid soft-rigid robot design for contact-rich, whole-body tasks.
comment: Submitted to IEEE Transactions on Mechatronics for review
♻ ☆ Discrete GCBF Proximal Policy Optimization for Multi-agent Safe Optimal Control ICLR 2025
Control policies that can achieve high task performance and satisfy safety constraints are desirable for any system, including multi-agent systems (MAS). One promising technique for ensuring the safety of MAS is distributed control barrier functions (CBF). However, it is difficult to design distributed CBF-based policies for MAS that can tackle unknown discrete-time dynamics, partial observability, changing neighborhoods, and input constraints, especially when a distributed high-performance nominal policy that can achieve the task is unavailable. To tackle these challenges, we propose DGPPO, a new framework that simultaneously learns both a discrete graph CBF which handles neighborhood changes and input constraints, and a distributed high-performance safe policy for MAS with unknown discrete-time dynamics. We empirically validate our claims on a suite of multi-agent tasks spanning three different simulation engines. The results suggest that, compared with existing methods, our DGPPO framework obtains policies that achieve high task performance (matching baselines that ignore the safety constraints), and high safety rates (matching the most conservative baselines), with a constant set of hyperparameters across all environments.
comment: 31 pages, 15 figures; Accepted by the thirteenth International Conference on Learning Representations (ICLR 2025)
♻ ☆ SkinGrip: An Adaptive Soft Robotic Manipulator with Capacitive Sensing for Whole-Limb Bed Bathing Assistance
Robotics presents a promising opportunity for enhancing bathing assistance, potentially to alleviate labor shortages and reduce care costs, while offering consistent and gentle care for individuals with physical disabilities. However, ensuring flexible and efficient cleaning of the human body poses challenges as it involves direct physical contact between the human and the robot, and necessitates simple, safe, and effective control. In this paper, we introduce a soft, expandable robotic manipulator with embedded capacitive proximity sensing arrays, designed for safe and efficient bathing assistance. We conduct a thorough evaluation of our soft manipulator, comparing it with a baseline rigid end effector in a human study involving 12 participants across $96$ bathing trails. Our soft manipulator achieves an an average cleaning effectiveness of 88.8% on arms and 81.4% on legs, far exceeding the performance of the baseline. Participant feedback further validates the manipulator's ability to maintain safety, comfort, and thorough cleaning.
Computer Vision 152
☆ Studying Classifier(-Free) Guidance From a Classifier-Centric Perspective
Classifier-free guidance has become a staple for conditional generation with denoising diffusion models. However, a comprehensive understanding of classifier-free guidance is still missing. In this work, we carry out an empirical study to provide a fresh perspective on classifier-free guidance. Concretely, instead of solely focusing on classifier-free guidance, we trace back to the root, i.e., classifier guidance, pinpoint the key assumption for the derivation, and conduct a systematic study to understand the role of the classifier. We find that both classifier guidance and classifier-free guidance achieve conditional generation by pushing the denoising diffusion trajectories away from decision boundaries, i.e., areas where conditional information is usually entangled and is hard to learn. Based on this classifier-centric understanding, we propose a generic postprocessing step built upon flow-matching to shrink the gap between the learned distribution for a pre-trained denoising diffusion model and the real data distribution, majorly around the decision boundaries. Experiments on various datasets verify the effectiveness of the proposed approach.
☆ GoT: Unleashing Reasoning Capability of Multimodal Large Language Model for Visual Generation and Editing
Current image generation and editing methods primarily process textual prompts as direct inputs without reasoning about visual composition and explicit operations. We present Generation Chain-of-Thought (GoT), a novel paradigm that enables generation and editing through an explicit language reasoning process before outputting images. This approach transforms conventional text-to-image generation and editing into a reasoning-guided framework that analyzes semantic relationships and spatial arrangements. We define the formulation of GoT and construct large-scale GoT datasets containing over 9M samples with detailed reasoning chains capturing semantic-spatial relationships. To leverage the advantages of GoT, we implement a unified framework that integrates Qwen2.5-VL for reasoning chain generation with an end-to-end diffusion model enhanced by our novel Semantic-Spatial Guidance Module. Experiments show our GoT framework achieves excellent performance on both generation and editing tasks, with significant improvements over baselines. Additionally, our approach enables interactive visual generation, allowing users to explicitly modify reasoning steps for precise image adjustments. GoT pioneers a new direction for reasoning-driven visual generation and editing, producing images that better align with human intent. To facilitate future research, we make our datasets, code, and pretrained models publicly available at https://github.com/rongyaofang/GoT.
comment: Dataset and models are released in https://github.com/rongyaofang/GoT
☆ The Curse of Conditions: Analyzing and Improving Optimal Transport for Conditional Flow-Based Generation
Minibatch optimal transport coupling straightens paths in unconditional flow matching. This leads to computationally less demanding inference as fewer integration steps and less complex numerical solvers can be employed when numerically solving an ordinary differential equation at test time. However, in the conditional setting, minibatch optimal transport falls short. This is because the default optimal transport mapping disregards conditions, resulting in a conditionally skewed prior distribution during training. In contrast, at test time, we have no access to the skewed prior, and instead sample from the full, unbiased prior distribution. This gap between training and testing leads to a subpar performance. To bridge this gap, we propose conditional optimal transport C^2OT that adds a conditional weighting term in the cost matrix when computing the optimal transport assignment. Experiments demonstrate that this simple fix works with both discrete and continuous conditions in 8gaussians-to-moons, CIFAR-10, ImageNet-32x32, and ImageNet-256x256. Our method performs better overall compared to the existing baselines across different function evaluation budgets. Code is available at https://hkchengrex.github.io/C2OT
comment: Project page: https://hkchengrex.github.io/C2OT
☆ Distilling Diversity and Control in Diffusion Models
Distilled diffusion models suffer from a critical limitation: reduced sample diversity compared to their base counterparts. In this work, we uncover that despite this diversity loss, distilled models retain the fundamental concept representations of base models. We demonstrate control distillation - where control mechanisms like Concept Sliders and LoRAs trained on base models can be seamlessly transferred to distilled models and vice-versa, effectively distilling control without any retraining. This preservation of representational structure prompted our investigation into the mechanisms of diversity collapse during distillation. To understand how distillation affects diversity, we introduce Diffusion Target (DT) Visualization, an analysis and debugging tool that reveals how models predict final outputs at intermediate steps. Through DT-Visualization, we identify generation artifacts, inconsistencies, and demonstrate that initial diffusion timesteps disproportionately determine output diversity, while later steps primarily refine details. Based on these insights, we introduce diversity distillation - a hybrid inference approach that strategically employs the base model for only the first critical timestep before transitioning to the efficient distilled model. Our experiments demonstrate that this simple modification not only restores the diversity capabilities from base to distilled models but surprisingly exceeds it, while maintaining nearly the computational efficiency of distilled inference, all without requiring additional training or model modifications. Our code and data are available at https://distillation.baulab.info
comment: Project Page: https://distillation.baulab.info
☆ V2Edit: Versatile Video Diffusion Editor for Videos and 3D Scenes
This paper introduces V$^2$Edit, a novel training-free framework for instruction-guided video and 3D scene editing. Addressing the critical challenge of balancing original content preservation with editing task fulfillment, our approach employs a progressive strategy that decomposes complex editing tasks into a sequence of simpler subtasks. Each subtask is controlled through three key synergistic mechanisms: the initial noise, noise added at each denoising step, and cross-attention maps between text prompts and video content. This ensures robust preservation of original video elements while effectively applying the desired edits. Beyond its native video editing capability, we extend V$^2$Edit to 3D scene editing via a "render-edit-reconstruct" process, enabling high-quality, 3D-consistent edits even for tasks involving substantial geometric changes such as object insertion. Extensive experiments demonstrate that our V$^2$Edit achieves high-quality and successful edits across various challenging video editing tasks and complex 3D scene editing tasks, thereby establishing state-of-the-art performance in both domains.
comment: Project Website: https://immortalco.github.io/V2Edit/
☆ A Frustratingly Simple Yet Highly Effective Attack Baseline: Over 90% Success Rate Against the Strong Black-box Models of GPT-4.5/4o/o1
Despite promising performance on open-source large vision-language models (LVLMs), transfer-based targeted attacks often fail against black-box commercial LVLMs. Analyzing failed adversarial perturbations reveals that the learned perturbations typically originate from a uniform distribution and lack clear semantic details, resulting in unintended responses. This critical absence of semantic information leads commercial LVLMs to either ignore the perturbation entirely or misinterpret its embedded semantics, thereby causing the attack to fail. To overcome these issues, we notice that identifying core semantic objects is a key objective for models trained with various datasets and methodologies. This insight motivates our approach that refines semantic clarity by encoding explicit semantic details within local regions, thus ensuring interoperability and capturing finer-grained features, and by concentrating modifications on semantically rich areas rather than applying them uniformly. To achieve this, we propose a simple yet highly effective solution: at each optimization step, the adversarial image is cropped randomly by a controlled aspect ratio and scale, resized, and then aligned with the target image in the embedding space. Experimental results confirm our hypothesis. Our adversarial examples crafted with local-aggregated perturbations focused on crucial regions exhibit surprisingly good transferability to commercial LVLMs, including GPT-4.5, GPT-4o, Gemini-2.0-flash, Claude-3.5-sonnet, Claude-3.7-sonnet, and even reasoning models like o1, Claude-3.7-thinking and Gemini-2.0-flash-thinking. Our approach achieves success rates exceeding 90% on GPT-4.5, 4o, and o1, significantly outperforming all prior state-of-the-art attack methods. Our optimized adversarial examples under different configurations and training code are available at https://github.com/VILA-Lab/M-Attack.
comment: Code at: https://github.com/VILA-Lab/M-Attack
☆ Charting and Navigating Hugging Face's Model Atlas
As there are now millions of publicly available neural networks, searching and analyzing large model repositories becomes increasingly important. Navigating so many models requires an atlas, but as most models are poorly documented charting such an atlas is challenging. To explore the hidden potential of model repositories, we chart a preliminary atlas representing the documented fraction of Hugging Face. It provides stunning visualizations of the model landscape and evolution. We demonstrate several applications of this atlas including predicting model attributes (e.g., accuracy), and analyzing trends in computer vision models. However, as the current atlas remains incomplete, we propose a method for charting undocumented regions. Specifically, we identify high-confidence structural priors based on dominant real-world model training practices. Leveraging these priors, our approach enables accurate mapping of previously undocumented areas of the atlas. We publicly release our datasets, code, and interactive atlas.
HybridVLA: Collaborative Diffusion and Autoregression in a Unified Vision-Language-Action Model
Recent advancements in vision-language models (VLMs) for common-sense reasoning have led to the development of vision-language-action (VLA) models, enabling robots to perform generalized manipulation. Although existing autoregressive VLA methods leverage large-scale pretrained knowledge, they disrupt the continuity of actions. Meanwhile, some VLA methods incorporate an additional diffusion head to predict continuous actions, relying solely on VLM-extracted features, which limits their reasoning capabilities. In this paper, we introduce HybridVLA, a unified framework that seamlessly integrates the strengths of both autoregressive and diffusion policies within a single large language model, rather than simply connecting them. To bridge the generation gap, a collaborative training recipe is proposed that injects the diffusion modeling directly into the next-token prediction. With this recipe, we find that these two forms of action prediction not only reinforce each other but also exhibit varying performance across different tasks. Therefore, we design a collaborative action ensemble mechanism that adaptively fuses these two predictions, leading to more robust control. In experiments, HybridVLA outperforms previous state-of-the-art VLA methods across various simulation and real-world tasks, including both single-arm and dual-arm robots, while demonstrating stable manipulation in previously unseen configurations.
☆ Kolmogorov-Arnold Attention: Is Learnable Attention Better For Vision Transformers?
Kolmogorov-Arnold networks (KANs) are a remarkable innovation consisting of learnable activation functions with the potential to capture more complex relationships from data. Although KANs are useful in finding symbolic representations and continual learning of one-dimensional functions, their effectiveness in diverse machine learning (ML) tasks, such as vision, remains questionable. Presently, KANs are deployed by replacing multilayer perceptrons (MLPs) in deep network architectures, including advanced architectures such as vision Transformers (ViTs). In this paper, we are the first to design a general learnable Kolmogorov-Arnold Attention (KArAt) for vanilla ViTs that can operate on any choice of basis. However, the computing and memory costs of training them motivated us to propose a more modular version, and we designed particular learnable attention, called Fourier-KArAt. Fourier-KArAt and its variants either outperform their ViT counterparts or show comparable performance on CIFAR-10, CIFAR-100, and ImageNet-1K datasets. We dissect these architectures' performance and generalization capacity by analyzing their loss landscapes, weight distributions, optimizer path, attention visualization, and spectral behavior, and contrast them with vanilla ViTs. The goal of this paper is not to produce parameter- and compute-efficient attention, but to encourage the community to explore KANs in conjunction with more advanced architectures that require a careful understanding of learnable activations. Our open-source code and implementation details are available on: https://subhajitmaity.me/KArAt
comment: Preprint, Appendix included
☆ UniGoal: Towards Universal Zero-shot Goal-oriented Navigation CVPR 2025
In this paper, we propose a general framework for universal zero-shot goal-oriented navigation. Existing zero-shot methods build inference framework upon large language models (LLM) for specific tasks, which differs a lot in overall pipeline and fails to generalize across different types of goal. Towards the aim of universal zero-shot navigation, we propose a uniform graph representation to unify different goals, including object category, instance image and text description. We also convert the observation of agent into an online maintained scene graph. With this consistent scene and goal representation, we preserve most structural information compared with pure text and are able to leverage LLM for explicit graph-based reasoning. Specifically, we conduct graph matching between the scene graph and goal graph at each time instant and propose different strategies to generate long-term goal of exploration according to different matching states. The agent first iteratively searches subgraph of goal when zero-matched. With partial matching, the agent then utilizes coordinate projection and anchor pair alignment to infer the goal location. Finally scene graph correction and goal verification are applied for perfect matching. We also present a blacklist mechanism to enable robust switch between stages. Extensive experiments on several benchmarks show that our UniGoal achieves state-of-the-art zero-shot performance on three studied navigation tasks with a single model, even outperforming task-specific zero-shot methods and supervised universal methods.
comment: Accepted to CVPR 2025
☆ Hierarchical Self-Supervised Adversarial Training for Robust Vision Models in Histopathology
Adversarial attacks pose significant challenges for vision models in critical fields like healthcare, where reliability is essential. Although adversarial training has been well studied in natural images, its application to biomedical and microscopy data remains limited. Existing self-supervised adversarial training methods overlook the hierarchical structure of histopathology images, where patient-slide-patch relationships provide valuable discriminative signals. To address this, we propose Hierarchical Self-Supervised Adversarial Training (HSAT), which exploits these properties to craft adversarial examples using multi-level contrastive learning and integrate it into adversarial training for enhanced robustness. We evaluate HSAT on multiclass histopathology dataset OpenSRH and the results show that HSAT outperforms existing methods from both biomedical and natural image domains. HSAT enhances robustness, achieving an average gain of 54.31% in the white-box setting and reducing performance drops to 3-4% in the black-box setting, compared to 25-30% for the baseline. These results set a new benchmark for adversarial training in this domain, paving the way for more robust models. Our Code for training and evaluation is available at https://github.com/HashmatShadab/HSAT.
☆ SciVerse: Unveiling the Knowledge Comprehension and Visual Reasoning of LMMs on Multi-modal Scientific Problems
The rapid advancement of Large Multi-modal Models (LMMs) has enabled their application in scientific problem-solving, yet their fine-grained capabilities remain under-explored. In this paper, we introduce SciVerse, a multi-modal scientific evaluation benchmark to thoroughly assess LMMs across 5,735 test instances in five distinct versions. We aim to investigate three key dimensions of LMMs: scientific knowledge comprehension, multi-modal content interpretation, and Chain-of-Thought (CoT) reasoning. To unveil whether LMMs possess sufficient scientific expertise, we first transform each problem into three versions containing different levels of knowledge required for solving, i.e., Knowledge-free, -lite, and -rich. Then, to explore how LMMs interpret multi-modal scientific content, we annotate another two versions, i.e., Vision-rich and -only, marking more question information from texts to diagrams. Comparing the results of different versions, SciVerse systematically examines the professional knowledge stock and visual perception skills of LMMs in scientific domains. In addition, to rigorously assess CoT reasoning, we propose a new scientific CoT evaluation strategy, conducting a step-wise assessment on knowledge and logical errors in model outputs. Our extensive evaluation of different LMMs on SciVerse reveals critical limitations in their scientific proficiency and provides new insights into future developments. Project page: https://sciverse-cuhk.github.io
comment: Initially released in September 2024. Project page: https://sciverse-cuhk.github.io
☆ NIL: No-data Imitation Learning by Leveraging Pre-trained Video Diffusion Models
Acquiring physically plausible motor skills across diverse and unconventional morphologies-including humanoid robots, quadrupeds, and animals-is essential for advancing character simulation and robotics. Traditional methods, such as reinforcement learning (RL) are task- and body-specific, require extensive reward function engineering, and do not generalize well. Imitation learning offers an alternative but relies heavily on high-quality expert demonstrations, which are difficult to obtain for non-human morphologies. Video diffusion models, on the other hand, are capable of generating realistic videos of various morphologies, from humans to ants. Leveraging this capability, we propose a data-independent approach for skill acquisition that learns 3D motor skills from 2D-generated videos, with generalization capability to unconventional and non-human forms. Specifically, we guide the imitation learning process by leveraging vision transformers for video-based comparisons by calculating pair-wise distance between video embeddings. Along with video-encoding distance, we also use a computed similarity between segmented video frames as a guidance reward. We validate our method on locomotion tasks involving unique body configurations. In humanoid robot locomotion tasks, we demonstrate that 'No-data Imitation Learning' (NIL) outperforms baselines trained on 3D motion-capture data. Our results highlight the potential of leveraging generative video models for physically plausible skill learning with diverse morphologies, effectively replacing data collection with data generation for imitation learning.
☆ LHM: Large Animatable Human Reconstruction Model from a Single Image in Seconds
Animatable 3D human reconstruction from a single image is a challenging problem due to the ambiguity in decoupling geometry, appearance, and deformation. Recent advances in 3D human reconstruction mainly focus on static human modeling, and the reliance of using synthetic 3D scans for training limits their generalization ability. Conversely, optimization-based video methods achieve higher fidelity but demand controlled capture conditions and computationally intensive refinement processes. Motivated by the emergence of large reconstruction models for efficient static reconstruction, we propose LHM (Large Animatable Human Reconstruction Model) to infer high-fidelity avatars represented as 3D Gaussian splatting in a feed-forward pass. Our model leverages a multimodal transformer architecture to effectively encode the human body positional features and image features with attention mechanism, enabling detailed preservation of clothing geometry and texture. To further boost the face identity preservation and fine detail recovery, we propose a head feature pyramid encoding scheme to aggregate multi-scale features of the head regions. Extensive experiments demonstrate that our LHM generates plausible animatable human in seconds without post-processing for face and hands, outperforming existing methods in both reconstruction accuracy and generalization ability.
comment: Project Page: https://lingtengqiu.github.io/LHM/
☆ ETCH: Generalizing Body Fitting to Clothed Humans via Equivariant Tightness
Fitting a body to a 3D clothed human point cloud is a common yet challenging task. Traditional optimization-based approaches use multi-stage pipelines that are sensitive to pose initialization, while recent learning-based methods often struggle with generalization across diverse poses and garment types. We propose Equivariant Tightness Fitting for Clothed Humans, or ETCH, a novel pipeline that estimates cloth-to-body surface mapping through locally approximate SE(3) equivariance, encoding tightness as displacement vectors from the cloth surface to the underlying body. Following this mapping, pose-invariant body features regress sparse body markers, simplifying clothed human fitting into an inner-body marker fitting task. Extensive experiments on CAPE and 4D-Dress show that ETCH significantly outperforms state-of-the-art methods -- both tightness-agnostic and tightness-aware -- in body fitting accuracy on loose clothing (16.7% ~ 69.5%) and shape accuracy (average 49.9%). Our equivariant tightness design can even reduce directional errors by (67.2% ~ 89.8%) in one-shot (or out-of-distribution) settings. Qualitative results demonstrate strong generalization of ETCH, regardless of challenging poses, unseen shapes, loose clothing, and non-rigid dynamics. We will release the code and models soon for research purposes at https://boqian-li.github.io/ETCH/.
comment: Page: https://boqian-li.github.io/ETCH/, Code: https://github.com/boqian-li/ETCH
☆ Transformers without Normalization CVPR 2025
Normalization layers are ubiquitous in modern neural networks and have long been considered essential. This work demonstrates that Transformers without normalization can achieve the same or better performance using a remarkably simple technique. We introduce Dynamic Tanh (DyT), an element-wise operation $DyT($x$) = \tanh(\alpha $x$)$, as a drop-in replacement for normalization layers in Transformers. DyT is inspired by the observation that layer normalization in Transformers often produces tanh-like, $S$-shaped input-output mappings. By incorporating DyT, Transformers without normalization can match or exceed the performance of their normalized counterparts, mostly without hyperparameter tuning. We validate the effectiveness of Transformers with DyT across diverse settings, ranging from recognition to generation, supervised to self-supervised learning, and computer vision to language models. These findings challenge the conventional understanding that normalization layers are indispensable in modern neural networks, and offer new insights into their role in deep networks.
comment: CVPR 2025; Project page: https://jiachenzhu.github.io/DyT/
☆ DriveLMM-o1: A Step-by-Step Reasoning Dataset and Large Multimodal Model for Driving Scenario Understanding
While large multimodal models (LMMs) have demonstrated strong performance across various Visual Question Answering (VQA) tasks, certain challenges require complex multi-step reasoning to reach accurate answers. One particularly challenging task is autonomous driving, which demands thorough cognitive processing before decisions can be made. In this domain, a sequential and interpretive understanding of visual cues is essential for effective perception, prediction, and planning. Nevertheless, common VQA benchmarks often focus on the accuracy of the final answer while overlooking the reasoning process that enables the generation of accurate responses. Moreover, existing methods lack a comprehensive framework for evaluating step-by-step reasoning in realistic driving scenarios. To address this gap, we propose DriveLMM-o1, a new dataset and benchmark specifically designed to advance step-wise visual reasoning for autonomous driving. Our benchmark features over 18k VQA examples in the training set and more than 4k in the test set, covering diverse questions on perception, prediction, and planning, each enriched with step-by-step reasoning to ensure logical inference in autonomous driving scenarios. We further introduce a large multimodal model that is fine-tuned on our reasoning dataset, demonstrating robust performance in complex driving scenarios. In addition, we benchmark various open-source and closed-source methods on our proposed dataset, systematically comparing their reasoning capabilities for autonomous driving tasks. Our model achieves a +7.49% gain in final answer accuracy, along with a 3.62% improvement in reasoning score over the previous best open-source model. Our framework, dataset, and model are available at https://github.com/ayesha-ishaq/DriveLMM-o1.
comment: 8 pages, 4 figures, 3 tables, github: https://github.com/ayesha-ishaq/DriveLMM-o1
☆ DiT-Air: Revisiting the Efficiency of Diffusion Model Architecture Design in Text to Image Generation
In this work, we empirically study Diffusion Transformers (DiTs) for text-to-image generation, focusing on architectural choices, text-conditioning strategies, and training protocols. We evaluate a range of DiT-based architectures--including PixArt-style and MMDiT variants--and compare them with a standard DiT variant which directly processes concatenated text and noise inputs. Surprisingly, our findings reveal that the performance of standard DiT is comparable with those specialized models, while demonstrating superior parameter-efficiency, especially when scaled up. Leveraging the layer-wise parameter sharing strategy, we achieve a further reduction of 66% in model size compared to an MMDiT architecture, with minimal performance impact. Building on an in-depth analysis of critical components such as text encoders and Variational Auto-Encoders (VAEs), we introduce DiT-Air and DiT-Air-Lite. With supervised and reward fine-tuning, DiT-Air achieves state-of-the-art performance on GenEval and T2I CompBench, while DiT-Air-Lite remains highly competitive, surpassing most existing models despite its compact size.
☆ OVTR: End-to-End Open-Vocabulary Multiple Object Tracking with Transformer ICLR 2025
Open-vocabulary multiple object tracking aims to generalize trackers to unseen categories during training, enabling their application across a variety of real-world scenarios. However, the existing open-vocabulary tracker is constrained by its framework structure, isolated frame-level perception, and insufficient modal interactions, which hinder its performance in open-vocabulary classification and tracking. In this paper, we propose OVTR (End-to-End Open-Vocabulary Multiple Object Tracking with TRansformer), the first end-to-end open-vocabulary tracker that models motion, appearance, and category simultaneously. To achieve stable classification and continuous tracking, we design the CIP (Category Information Propagation) strategy, which establishes multiple high-level category information priors for subsequent frames. Additionally, we introduce a dual-branch structure for generalization capability and deep multimodal interaction, and incorporate protective strategies in the decoder to enhance performance. Experimental results show that our method surpasses previous trackers on the open-vocabulary MOT benchmark while also achieving faster inference speeds and significantly reducing preprocessing requirements. Moreover, the experiment transferring the model to another dataset demonstrates its strong adaptability. Models and code are released at https://github.com/jinyanglii/OVTR.
comment: Accepted by ICLR 2025
☆ R1-Onevision: Advancing Generalized Multimodal Reasoning through Cross-Modal Formalization
Large Language Models have demonstrated remarkable reasoning capability in complex textual tasks. However, multimodal reasoning, which requires integrating visual and textual information, remains a significant challenge. Existing visual-language models often struggle to effectively analyze and reason visual content, resulting in suboptimal performance on complex reasoning tasks. Moreover, the absence of comprehensive benchmarks hinders the accurate assessment of multimodal reasoning capabilities. In this paper, we introduce R1-Onevision, a multimodal reasoning model designed to bridge the gap between visual perception and deep reasoning. To achieve this, we propose a cross-modal reasoning pipeline that transforms images into formal textural representations, enabling precise language-based reasoning. Leveraging this pipeline, we construct the R1-Onevision dataset which provides detailed, step-by-step multimodal reasoning annotations across diverse domains. We further develop the R1-Onevision model through supervised fine-tuning and reinforcement learning to cultivate advanced reasoning and robust generalization abilities. To comprehensively evaluate multimodal reasoning performance across different grades, we introduce R1-Onevision-Bench, a benchmark aligned with human educational stages, covering exams from junior high school to university and beyond. Experimental results show that R1-Onevision achieves state-of-the-art performance, outperforming models such as GPT-4o and Qwen2.5-VL on multiple challenging multimodal reasoning benchmarks.
comment: Code and Model: https://github.com/Fancy-MLLM/R1-onevision
☆ ConsisLoRA: Enhancing Content and Style Consistency for LoRA-based Style Transfer
Style transfer involves transferring the style from a reference image to the content of a target image. Recent advancements in LoRA-based (Low-Rank Adaptation) methods have shown promise in effectively capturing the style of a single image. However, these approaches still face significant challenges such as content inconsistency, style misalignment, and content leakage. In this paper, we comprehensively analyze the limitations of the standard diffusion parameterization, which learns to predict noise, in the context of style transfer. To address these issues, we introduce ConsisLoRA, a LoRA-based method that enhances both content and style consistency by optimizing the LoRA weights to predict the original image rather than noise. We also propose a two-step training strategy that decouples the learning of content and style from the reference image. To effectively capture both the global structure and local details of the content image, we introduce a stepwise loss transition strategy. Additionally, we present an inference guidance method that enables continuous control over content and style strengths during inference. Through both qualitative and quantitative evaluations, our method demonstrates significant improvements in content and style consistency while effectively reducing content leakage.
☆ CoSTA$\ast$: Cost-Sensitive Toolpath Agent for Multi-turn Image Editing
Text-to-image models like stable diffusion and DALLE-3 still struggle with multi-turn image editing. We decompose such a task as an agentic workflow (path) of tool use that addresses a sequence of subtasks by AI tools of varying costs. Conventional search algorithms require expensive exploration to find tool paths. While large language models (LLMs) possess prior knowledge of subtask planning, they may lack accurate estimations of capabilities and costs of tools to determine which to apply in each subtask. Can we combine the strengths of both LLMs and graph search to find cost-efficient tool paths? We propose a three-stage approach "CoSTA*" that leverages LLMs to create a subtask tree, which helps prune a graph of AI tools for the given task, and then conducts A* search on the small subgraph to find a tool path. To better balance the total cost and quality, CoSTA* combines both metrics of each tool on every subtask to guide the A* search. Each subtask's output is then evaluated by a vision-language model (VLM), where a failure will trigger an update of the tool's cost and quality on the subtask. Hence, the A* search can recover from failures quickly to explore other paths. Moreover, CoSTA* can automatically switch between modalities across subtasks for a better cost-quality trade-off. We build a novel benchmark of challenging multi-turn image editing, on which CoSTA* outperforms state-of-the-art image-editing models or agents in terms of both cost and quality, and performs versatile trade-offs upon user preference.
☆ OCCUQ: Exploring Efficient Uncertainty Quantification for 3D Occupancy Prediction ICRA 2025
Autonomous driving has the potential to significantly enhance productivity and provide numerous societal benefits. Ensuring robustness in these safety-critical systems is essential, particularly when vehicles must navigate adverse weather conditions and sensor corruptions that may not have been encountered during training. Current methods often overlook uncertainties arising from adversarial conditions or distributional shifts, limiting their real-world applicability. We propose an efficient adaptation of an uncertainty estimation technique for 3D occupancy prediction. Our method dynamically calibrates model confidence using epistemic uncertainty estimates. Our evaluation under various camera corruption scenarios, such as fog or missing cameras, demonstrates that our approach effectively quantifies epistemic uncertainty by assigning higher uncertainty values to unseen data. We introduce region-specific corruptions to simulate defects affecting only a single camera and validate our findings through both scene-level and region-level assessments. Our results show superior performance in Out-of-Distribution (OoD) detection and confidence calibration compared to common baselines such as Deep Ensembles and MC-Dropout. Our approach consistently demonstrates reliable uncertainty measures, indicating its potential for enhancing the robustness of autonomous driving systems in real-world scenarios. Code and dataset are available at https://github.com/ika-rwth-aachen/OCCUQ .
comment: Accepted for publication at ICRA 2025
☆ MuDG: Taming Multi-modal Diffusion with Gaussian Splatting for Urban Scene Reconstruction
Recent breakthroughs in radiance fields have significantly advanced 3D scene reconstruction and novel view synthesis (NVS) in autonomous driving. Nevertheless, critical limitations persist: reconstruction-based methods exhibit substantial performance deterioration under significant viewpoint deviations from training trajectories, while generation-based techniques struggle with temporal coherence and precise scene controllability. To overcome these challenges, we present MuDG, an innovative framework that integrates Multi-modal Diffusion model with Gaussian Splatting (GS) for Urban Scene Reconstruction. MuDG leverages aggregated LiDAR point clouds with RGB and geometric priors to condition a multi-modal video diffusion model, synthesizing photorealistic RGB, depth, and semantic outputs for novel viewpoints. This synthesis pipeline enables feed-forward NVS without computationally intensive per-scene optimization, providing comprehensive supervision signals to refine 3DGS representations for rendering robustness enhancement under extreme viewpoint changes. Experiments on the Open Waymo Dataset demonstrate that MuDG outperforms existing methods in both reconstruction and synthesis quality.
☆ Dual-Stage Cross-Modal Network with Dynamic Feature Fusion for Emotional Mimicry Intensity Estimation
Emotional Mimicry Intensity (EMI) estimation serves as a critical technology for understanding human social behavior and enhancing human-computer interaction experiences, where the core challenge lies in dynamic correlation modeling and robust fusion of multimodal temporal signals. To address the limitations of existing methods in insufficient exploitation of modal synergistic effects, noise sensitivity, and limited fine-grained alignment capabilities, this paper proposes a dual-stage cross-modal alignment framework. First, we construct vision-text and audio-text contrastive learning networks based on an improved CLIP architecture, achieving preliminary alignment in the feature space through modality-decoupled pre-training. Subsequently, we design a temporal-aware dynamic fusion module that combines Temporal Convolutional Networks (TCN) and gated bidirectional LSTM to respectively capture the macro-evolution patterns of facial expressions and local dynamics of acoustic features. Innovatively, we introduce a quality-guided modality fusion strategy that enables modality compensation under occlusion and noisy scenarios through differentiable weight allocation. Experimental results on the Hume-Vidmimic2 dataset demonstrate that our method achieves an average Pearson correlation coefficient of 0.35 across six emotion dimensions, outperforming the best baseline by 40\%. Ablation studies further validate the effectiveness of the dual-stage training strategy and dynamic fusion mechanism, providing a novel technical pathway for fine-grained emotion analysis in open environments.
☆ TruthPrInt: Mitigating LVLM Object Hallucination Via Latent Truthful-Guided Pre-Intervention
Object Hallucination (OH) has been acknowledged as one of the major trustworthy challenges in Large Vision-Language Models (LVLMs). Recent advancements in Large Language Models (LLMs) indicate that internal states, such as hidden states, encode the "overall truthfulness" of generated responses. However, it remains under-explored how internal states in LVLMs function and whether they could serve as "per-token" hallucination indicators, which is essential for mitigating OH. In this paper, we first conduct an in-depth exploration of LVLM internal states in relation to OH issues and discover that (1) LVLM internal states are high-specificity per-token indicators of hallucination behaviors. Moreover, (2) different LVLMs encode universal patterns of hallucinations in common latent subspaces, indicating that there exist "generic truthful directions" shared by various LVLMs. Based on these discoveries, we propose Truthful-Guided Pre-Intervention (TruthPrInt) that first learns the truthful direction of LVLM decoding and then applies truthful-guided inference-time intervention during LVLM decoding. We further propose ComnHallu to enhance both cross-LVLM and cross-data hallucination detection transferability by constructing and aligning hallucination latent subspaces. We evaluate TruthPrInt in extensive experimental settings, including in-domain and out-of-domain scenarios, over popular LVLMs and OH benchmarks. Experimental results indicate that TruthPrInt significantly outperforms state-of-the-art methods. Codes will be available at https://github.com/jinhaoduan/TruthPrInt.
comment: 15 pages, 9 figures, the first two authors contributed equally
☆ GroomLight: Hybrid Inverse Rendering for Relightable Human Hair Appearance Modeling
We present GroomLight, a novel method for relightable hair appearance modeling from multi-view images. Existing hair capture methods struggle to balance photorealistic rendering with relighting capabilities. Analytical material models, while physically grounded, often fail to fully capture appearance details. Conversely, neural rendering approaches excel at view synthesis but generalize poorly to novel lighting conditions. GroomLight addresses this challenge by combining the strengths of both paradigms. It employs an extended hair BSDF model to capture primary light transport and a light-aware residual model to reconstruct the remaining details. We further propose a hybrid inverse rendering pipeline to optimize both components, enabling high-fidelity relighting, view synthesis, and material editing. Extensive evaluations on real-world hair data demonstrate state-of-the-art performance of our method.
comment: Project Page: https://syntec-research.github.io/GroomLight
☆ GroundingSuite: Measuring Complex Multi-Granular Pixel Grounding
Pixel grounding, encompassing tasks such as Referring Expression Segmentation (RES), has garnered considerable attention due to its immense potential for bridging the gap between vision and language modalities. However, advancements in this domain are currently constrained by limitations inherent in existing datasets, including limited object categories, insufficient textual diversity, and a scarcity of high-quality annotations. To mitigate these limitations, we introduce GroundingSuite, which comprises: (1) an automated data annotation framework leveraging multiple Vision-Language Model (VLM) agents; (2) a large-scale training dataset encompassing 9.56 million diverse referring expressions and their corresponding segmentations; and (3) a meticulously curated evaluation benchmark consisting of 3,800 images. The GroundingSuite training dataset facilitates substantial performance improvements, enabling models trained on it to achieve state-of-the-art results. Specifically, a cIoU of 68.9 on gRefCOCO and a gIoU of 55.3 on RefCOCOm. Moreover, the GroundingSuite annotation framework demonstrates superior efficiency compared to the current leading data annotation method, i.e., $4.5 \times$ faster than the GLaMM.
comment: Work in progress. Code: https://github.com/hustvl/GroundingSuite
☆ Poly-MgNet: Polynomial Building Blocks in Multigrid-Inspired ResNets
The structural analogies of ResNets and Multigrid (MG) methods such as common building blocks like convolutions and poolings where already pointed out by He et al.\ in 2016. Multigrid methods are used in the context of scientific computing for solving large sparse linear systems arising from partial differential equations. MG methods particularly rely on two main concepts: smoothing and residual restriction / coarsening. Exploiting these analogies, He and Xu developed the MgNet framework, which integrates MG schemes into the design of ResNets. In this work, we introduce a novel neural network building block inspired by polynomial smoothers from MG theory. Our polynomial block from an MG perspective naturally extends the MgNet framework to Poly-Mgnet and at the same time reduces the number of weights in MgNet. We present a comprehensive study of our polynomial block, analyzing the choice of initial coefficients, the polynomial degree, the placement of activation functions, as well as of batch normalizations. Our results demonstrate that constructing (quadratic) polynomial building blocks based on real and imaginary polynomial roots enhances Poly-MgNet's capacity in terms of accuracy. Furthermore, our approach achieves an improved trade-off of model accuracy and number of weights compared to ResNet as well as compared to specific configurations of MgNet.
☆ CameraCtrl II: Dynamic Scene Exploration via Camera-controlled Video Diffusion Models
This paper introduces CameraCtrl II, a framework that enables large-scale dynamic scene exploration through a camera-controlled video diffusion model. Previous camera-conditioned video generative models suffer from diminished video dynamics and limited range of viewpoints when generating videos with large camera movement. We take an approach that progressively expands the generation of dynamic scenes -- first enhancing dynamic content within individual video clip, then extending this capability to create seamless explorations across broad viewpoint ranges. Specifically, we construct a dataset featuring a large degree of dynamics with camera parameter annotations for training while designing a lightweight camera injection module and training scheme to preserve dynamics of the pretrained models. Building on these improved single-clip techniques, we enable extended scene exploration by allowing users to iteratively specify camera trajectories for generating coherent video sequences. Experiments across diverse scenarios demonstrate that CameraCtrl Ii enables camera-controlled dynamic scene synthesis with substantially wider spatial exploration than previous approaches.
comment: Project page: https://hehao13.github.io/Projects-CameraCtrl-II/
Long Context Tuning for Video Generation
Recent advances in video generation can produce realistic, minute-long single-shot videos with scalable diffusion transformers. However, real-world narrative videos require multi-shot scenes with visual and dynamic consistency across shots. In this work, we introduce Long Context Tuning (LCT), a training paradigm that expands the context window of pre-trained single-shot video diffusion models to learn scene-level consistency directly from data. Our method expands full attention mechanisms from individual shots to encompass all shots within a scene, incorporating interleaved 3D position embedding and an asynchronous noise strategy, enabling both joint and auto-regressive shot generation without additional parameters. Models with bidirectional attention after LCT can further be fine-tuned with context-causal attention, facilitating auto-regressive generation with efficient KV-cache. Experiments demonstrate single-shot models after LCT can produce coherent multi-shot scenes and exhibit emerging capabilities, including compositional generation and interactive shot extension, paving the way for more practical visual content creation. See https://guoyww.github.io/projects/long-context-video/ for more details.
comment: Project Page: https://guoyww.github.io/projects/long-context-video/
☆ Unlock the Power of Unlabeled Data in Language Driving Model ICRA2025
Recent Vision-based Large Language Models~(VisionLLMs) for autonomous driving have seen rapid advancements. However, such promotion is extremely dependent on large-scale high-quality annotated data, which is costly and labor-intensive. To address this issue, we propose unlocking the value of abundant yet unlabeled data to improve the language-driving model in a semi-supervised learning manner. Specifically, we first introduce a series of template-based prompts to extract scene information, generating questions that create pseudo-answers for the unlabeled data based on a model trained with limited labeled data. Next, we propose a Self-Consistency Refinement method to improve the quality of these pseudo-annotations, which are later used for further training. By utilizing a pre-trained VisionLLM (e.g., InternVL), we build a strong Language Driving Model (LDM) for driving scene question-answering, outperforming previous state-of-the-art methods. Extensive experiments on the DriveLM benchmark show that our approach performs well with just 5% labeled data, achieving competitive performance against models trained with full datasets. In particular, our LDM achieves 44.85% performance with limited labeled data, increasing to 54.27% when using unlabeled data, while models trained with full datasets reach 60.68% on the DriveLM benchmark.
comment: Accepted by ICRA2025
☆ VisualWebInstruct: Scaling up Multimodal Instruction Data through Web Search
Vision-Language Models have made significant progress on many perception-focused tasks, however, their progress on reasoning-focused tasks seem to be limited due to the lack of high-quality and diverse training data. In this work, we aim to address the scarcity issue of reasoning-focused multimodal datasets. We propose VisualWebInstruct - a novel approach that leverages search engine to create a diverse, and high-quality dataset spanning multiple disciplines like math, physics, finance, chemistry, etc. Starting with meticulously selected 30,000 seed images, we employ Google Image search to identify websites containing similar images. We collect and process the HTMLs from over 700K unique URL sources. Through a pipeline of content extraction, filtering and synthesis, we build a dataset of approximately 900K question-answer pairs, with 40% being visual QA pairs and the rest as text QA pairs. Models fine-tuned on VisualWebInstruct demonstrate significant performance gains: (1) training from Llava-OV-mid shows 10-20% absolute point gains across benchmarks, (2) training from MAmmoTH-VL shows 5% absoluate gain. Our best model MAmmoTH-VL2 shows state-of-the-art performance within the 10B parameter class on MMMU-Pro-std (40.7%), MathVerse (42.6%), and DynaMath (55.7%). These remarkable results highlight the effectiveness of our dataset in enhancing VLMs' reasoning capabilities for complex multimodal tasks.
comment: Technical Report
☆ Semantic-Supervised Spatial-Temporal Fusion for LiDAR-based 3D Object Detection ICRA2025
LiDAR-based 3D object detection presents significant challenges due to the inherent sparsity of LiDAR points. A common solution involves long-term temporal LiDAR data to densify the inputs. However, efficiently leveraging spatial-temporal information remains an open problem. In this paper, we propose a novel Semantic-Supervised Spatial-Temporal Fusion (ST-Fusion) method, which introduces a novel fusion module to relieve the spatial misalignment caused by the object motion over time and a feature-level semantic supervision to sufficiently unlock the capacity of the proposed fusion module. Specifically, the ST-Fusion consists of a Spatial Aggregation (SA) module and a Temporal Merging (TM) module. The SA module employs a convolutional layer with progressively expanding receptive fields to aggregate the object features from the local regions to alleviate the spatial misalignment, the TM module dynamically extracts object features from the preceding frames based on the attention mechanism for a comprehensive sequential presentation. Besides, in the semantic supervision, we propose a Semantic Injection method to enrich the sparse LiDAR data via injecting the point-wise semantic labels, using it for training a teacher model and providing a reconstruction target at the feature level supervised by the proposed object-aware loss. Extensive experiments on various LiDAR-based detectors demonstrate the effectiveness and universality of our proposal, yielding an improvement of approximately +2.8% in NDS based on the nuScenes benchmark.
comment: Accepted by ICRA2025
☆ Autoregressive Image Generation with Randomized Parallel Decoding
We introduce ARPG, a novel visual autoregressive model that enables randomized parallel generation, addressing the inherent limitations of conventional raster-order approaches, which hinder inference efficiency and zero-shot generalization due to their sequential, predefined token generation order. Our key insight is that effective random-order modeling necessitates explicit guidance for determining the position of the next predicted token. To this end, we propose a novel guided decoding framework that decouples positional guidance from content representation, encoding them separately as queries and key-value pairs. By directly incorporating this guidance into the causal attention mechanism, our approach enables fully random-order training and generation, eliminating the need for bidirectional attention. Consequently, ARPG readily generalizes to zero-shot tasks such as image inpainting, outpainting, and resolution expansion. Furthermore, it supports parallel inference by concurrently processing multiple queries using a shared KV cache. On the ImageNet-1K 256 benchmark, our approach attains an FID of 1.94 with only 64 sampling steps, achieving over a 20-fold increase in throughput while reducing memory consumption by over 75% compared to representative recent autoregressive models at a similar scale.
☆ MASQUE: A Text-Guided Diffusion-Based Framework for Localized and Customized Adversarial Makeup
As facial recognition is increasingly adopted for government and commercial services, its potential misuse has raised serious concerns about privacy and civil rights. To counteract, various anti-facial recognition techniques have been proposed for privacy protection by adversarially perturbing face images, among which generative makeup-based approaches are the most popular. However, these methods, designed primarily to impersonate specific target identities, can only achieve weak dodging success rates while increasing the risk of targeted abuse. In addition, they often introduce global visual artifacts or a lack of adaptability to accommodate diverse makeup prompts, compromising user satisfaction. To address the above limitations, we develop MASQUE, a novel diffusion-based framework that generates localized adversarial makeups guided by user-defined text prompts. Built upon precise null-text inversion, customized cross-attention fusion with masking, and a pairwise adversarial guidance mechanism using images of the same individual, MASQUE achieves robust dodging performance without requiring any external identity. Comprehensive evaluations on open-source facial recognition models and commercial APIs demonstrate that MASQUE significantly improves dodging success rates over all baselines, along with higher perceptual fidelity and stronger adaptability to various text makeup prompts.
Learning Interpretable Logic Rules from Deep Vision Models
We propose a general framework called VisionLogic to extract interpretable logic rules from deep vision models, with a focus on image classification tasks. Given any deep vision model that uses a fully connected layer as the output head, VisionLogic transforms neurons in the last layer into predicates and grounds them into vision concepts using causal validation. In this way, VisionLogic can provide local explanations for single images and global explanations for specific classes in the form of logic rules. Compared to existing interpretable visualization tools such as saliency maps, VisionLogic addresses several key challenges, including the lack of causal explanations, overconfidence in visualizations, and ambiguity in interpretation. VisionLogic also facilitates the study of visual concepts encoded by predicates, particularly how they behave under perturbation -- an area that remains underexplored in the field of hidden semantics. Apart from providing better visual explanations and insights into the visual concepts learned by the model, we show that VisionLogic retains most of the neural network's discriminative power in an interpretable and transparent manner. We envision it as a bridge between complex model behavior and human-understandable explanations, providing trustworthy and actionable insights for real-world applications.
comment: 10 pages, 6 figures
☆ Lightweight Models for Emotional Analysis in Video
In this study, we present an approach for efficient spatiotemporal feature extraction using MobileNetV4 and a multi-scale 3D MLP-Mixer-based temporal aggregation module. MobileNetV4, with its Universal Inverted Bottleneck (UIB) blocks, serves as the backbone for extracting hierarchical feature representations from input image sequences, ensuring both computational efficiency and rich semantic encoding. To capture temporal dependencies, we introduce a three-level MLP-Mixer module, which processes spatial features at multiple resolutions while maintaining structural integrity. Experimental results on the ABAW 8th competition demonstrate the effectiveness of our approach, showing promising performance in affective behavior analysis. By integrating an efficient vision backbone with a structured temporal modeling mechanism, the proposed framework achieves a balance between computational efficiency and predictive accuracy, making it well-suited for real-time applications in mobile and embedded computing environments.
☆ PiSA: A Self-Augmented Data Engine and Training Strategy for 3D Understanding with Large Models
3D Multimodal Large Language Models (MLLMs) have recently made substantial advancements. However, their potential remains untapped, primarily due to the limited quantity and suboptimal quality of 3D datasets. Current approaches attempt to transfer knowledge from 2D MLLMs to expand 3D instruction data, but still face modality and domain gaps. To this end, we introduce PiSA-Engine (Point-Self-Augmented-Engine), a new framework for generating instruction point-language datasets enriched with 3D spatial semantics. We observe that existing 3D MLLMs offer a comprehensive understanding of point clouds for annotation, while 2D MLLMs excel at cross-validation by providing complementary information. By integrating holistic 2D and 3D insights from off-the-shelf MLLMs, PiSA-Engine enables a continuous cycle of high-quality data generation. We select PointLLM as the baseline and adopt this co-evolution training framework to develop an enhanced 3D MLLM, termed PointLLM-PiSA. Additionally, we identify limitations in previous 3D benchmarks, which often feature coarse language captions and insufficient category diversity, resulting in inaccurate evaluations. To address this gap, we further introduce PiSA-Bench, a comprehensive 3D benchmark covering six key aspects with detailed and diverse labels. Experimental results demonstrate PointLLM-PiSA's state-of-the-art performance in zero-shot 3D object captioning and generative classification on our PiSA-Bench, achieving significant improvements of 46.45% (+8.33%) and 63.75% (+16.25%), respectively. We will release the code, datasets, and benchmark.
comment: Technical Report
☆ How Should We Evaluate Uncertainty in Accelerated MRI Reconstruction?
Reconstructing accelerated MRI is an ill-posed problem. Machine learning has recently shown great promise at this task, but current approaches to quantifying uncertainty focus on measuring the variability in pixelwise intensity variation. Although these provide interpretable maps, they lack structural understanding and they do not have a clear relationship to how the data will be analysed subsequently. In this paper, we propose a new approach to evaluating reconstruction variability based on apparent anatomical changes in the reconstruction, which is more tightly related to common downstream tasks. We use image registration and segmentation to evaluate several common MRI reconstruction approaches, where uncertainty is measured via ensembling, for accelerated imaging. We demonstrate the intrinsic variability in reconstructed images and show that models with high scores on often used quality metrics such as SSIM and PSNR, can nonetheless display high levels of variance and bias in anatomical measures.
☆ NeighborRetr: Balancing Hub Centrality in Cross-Modal Retrieval CVPR 2025
Cross-modal retrieval aims to bridge the semantic gap between different modalities, such as visual and textual data, enabling accurate retrieval across them. Despite significant advancements with models like CLIP that align cross-modal representations, a persistent challenge remains: the hubness problem, where a small subset of samples (hubs) dominate as nearest neighbors, leading to biased representations and degraded retrieval accuracy. Existing methods often mitigate hubness through post-hoc normalization techniques, relying on prior data distributions that may not be practical in real-world scenarios. In this paper, we directly mitigate hubness during training and introduce NeighborRetr, a novel method that effectively balances the learning of hubs and adaptively adjusts the relations of various kinds of neighbors. Our approach not only mitigates the hubness problem but also enhances retrieval performance, achieving state-of-the-art results on multiple cross-modal retrieval benchmarks. Furthermore, NeighborRetr demonstrates robust generalization to new domains with substantial distribution shifts, highlighting its effectiveness in real-world applications. We make our code publicly available at: https://github.com/zzezze/NeighborRetr .
comment: Accepted at CVPR 2025, 18 pages, 7 figures, 13 tables
☆ Interactive Multimodal Fusion with Temporal Modeling
This paper presents our method for the estimation of valence-arousal (VA) in the 8th Affective Behavior Analysis in-the-Wild (ABAW) competition. Our approach integrates visual and audio information through a multimodal framework. The visual branch uses a pre-trained ResNet model to extract spatial features from facial images. The audio branches employ pre-trained VGG models to extract VGGish and LogMel features from speech signals. These features undergo temporal modeling using Temporal Convolutional Networks (TCNs). We then apply cross-modal attention mechanisms, where visual features interact with audio features through query-key-value attention structures. Finally, the features are concatenated and passed through a regression layer to predict valence and arousal. Our method achieves competitive performance on the Aff-Wild2 dataset, demonstrating effective multimodal fusion for VA estimation in-the-wild.
☆ AudioX: Diffusion Transformer for Anything-to-Audio Generation
Audio and music generation have emerged as crucial tasks in many applications, yet existing approaches face significant limitations: they operate in isolation without unified capabilities across modalities, suffer from scarce high-quality, multi-modal training data, and struggle to effectively integrate diverse inputs. In this work, we propose AudioX, a unified Diffusion Transformer model for Anything-to-Audio and Music Generation. Unlike previous domain-specific models, AudioX can generate both general audio and music with high quality, while offering flexible natural language control and seamless processing of various modalities including text, video, image, music, and audio. Its key innovation is a multi-modal masked training strategy that masks inputs across modalities and forces the model to learn from masked inputs, yielding robust and unified cross-modal representations. To address data scarcity, we curate two comprehensive datasets: vggsound-caps with 190K audio captions based on the VGGSound dataset, and V2M-caps with 6 million music captions derived from the V2M dataset. Extensive experiments demonstrate that AudioX not only matches or outperforms state-of-the-art specialized models, but also offers remarkable versatility in handling diverse input modalities and generation tasks within a unified architecture. The code and datasets will be available at https://zeyuet.github.io/AudioX/
comment: The code and datasets will be available at https://zeyuet.github.io/AudioX/
☆ CountPath: Automating Fragment Counting in Digital Pathology
Quality control of medical images is a critical component of digital pathology, ensuring that diagnostic images meet required standards. A pre-analytical task within this process is the verification of the number of specimen fragments, a process that ensures that the number of fragments on a slide matches the number documented in the macroscopic report. This step is important to ensure that the slides contain the appropriate diagnostic material from the grossing process, thereby guaranteeing the accuracy of subsequent microscopic examination and diagnosis. Traditionally, this assessment is performed manually, requiring significant time and effort while being subject to significant variability due to its subjective nature. To address these challenges, this study explores an automated approach to fragment counting using the YOLOv9 and Vision Transformer models. Our results demonstrate that the automated system achieves a level of performance comparable to expert assessments, offering a reliable and efficient alternative to manual counting. Additionally, we present findings on interobserver variability, showing that the automated approach achieves an accuracy of 86%, which falls within the range of variation observed among experts (82-88%), further supporting its potential for integration into routine pathology workflows.
comment: 10 pages, 3 figures
☆ Hoi2Anomaly: An Explainable Anomaly Detection Approach Guided by Human-Object Interaction
In the domain of Image Anomaly Detection (IAD), Existing methods frequently exhibit a paucity of fine-grained, interpretable semantic information, resulting in the detection of anomalous entities or activities that are susceptible to machine illusions. This deficiency often leads to the detection of anomalous entities or actions that are susceptible to machine illusions and lack sufficient explanation. In this thesis, we propose a novel approach to anomaly detection, termed Hoi2Anomaly, which aims to achieve precise discrimination and localization of anomalies. The proposed methodology involves the construction of a multi-modal instruction tuning dataset comprising human-object interaction (HOI) pairs in anomalous scenarios. Second, we have trained an HOI extractor in threat scenarios to localize and match anomalous actions and entities. Finally, explanatory content is generated for the detected anomalous HOI by fine-tuning the visual language pretraining (VLP) framework. The experimental results demonstrate that Hoi2Anomaly surpasses existing generative approaches in terms of precision and explainability. We will release Hoi2Anomaly for the advancement of the field of anomaly detection.
☆ TokenCarve: Information-Preserving Visual Token Compression in Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) are becoming increasingly popular, while the high computational cost associated with multimodal data input, particularly from visual tokens, poses a significant challenge. Existing training-based token compression methods improve inference efficiency but require costly retraining, while training-free methods struggle to maintain performance when aggressively reducing token counts. In this study, we reveal that the performance degradation of MLLM closely correlates with the accelerated loss of information in the attention output matrix. This insight introduces a novel information-preserving perspective, making it possible to maintain performance even under extreme token compression. Based on this finding, we propose TokenCarve, a training-free, plug-and-play, two-stage token compression framework. The first stage employs an Information-Preservation-Guided Selection (IPGS) strategy to prune low-information tokens, while the second stage further leverages IPGS to guide token merging, minimizing information loss. Extensive experiments on 11 datasets and 2 model variants demonstrate the effectiveness of TokenCarve. It can even reduce the number of visual tokens to 22.2% of the original count, achieving a 1.23x speedup in inference, a 64% reduction in KV cache storage, and only a 1.54% drop in accuracy. Our code is available at https://github.com/ShawnTan86/TokenCarve.
☆ OmniSTVG: Toward Spatio-Temporal Omni-Object Video Grounding
In this paper, we propose spatio-temporal omni-object video grounding, dubbed OmniSTVG, a new STVG task that aims at localizing spatially and temporally all targets mentioned in the textual query from videos. Compared to classic STVG locating only a single target, OmniSTVG enables localization of not only an arbitrary number of text-referred targets but also their interacting counterparts in the query from the video, making it more flexible and practical in real scenarios for comprehensive understanding. In order to facilitate exploration of OmniSTVG, we introduce BOSTVG, a large-scale benchmark dedicated to OmniSTVG. Specifically, our BOSTVG consists of 10,018 videos with 10.2M frames and covers a wide selection of 287 classes from diverse scenarios. Each sequence in BOSTVG, paired with a free-form textual query, encompasses a varying number of targets ranging from 1 to 10. To ensure high quality, each video is manually annotated with meticulous inspection and refinement. To our best knowledge, BOSTVG is to date the first and the largest benchmark for OmniSTVG. To encourage future research, we introduce a simple yet effective approach, named OmniTube, which, drawing inspiration from Transformer-based STVG methods, is specially designed for OmniSTVG and demonstrates promising results. By releasing BOSTVG, we hope to go beyond classic STVG by locating every object appearing in the query for more comprehensive understanding, opening up a new direction for STVG. Our benchmark, model, and results will be released at https://github.com/JellyYao3000/OmniSTVG.
☆ Streaming Generation of Co-Speech Gestures via Accelerated Rolling Diffusion
Generating co-speech gestures in real time requires both temporal coherence and efficient sampling. We introduce Accelerated Rolling Diffusion, a novel framework for streaming gesture generation that extends rolling diffusion models with structured progressive noise scheduling, enabling seamless long-sequence motion synthesis while preserving realism and diversity. We further propose Rolling Diffusion Ladder Acceleration (RDLA), a new approach that restructures the noise schedule into a stepwise ladder, allowing multiple frames to be denoised simultaneously. This significantly improves sampling efficiency while maintaining motion consistency, achieving up to a 2x speedup with high visual fidelity and temporal coherence. We evaluate our approach on ZEGGS and BEAT, strong benchmarks for real-world applicability. Our framework is universally applicable to any diffusion-based gesture generation model, transforming it into a streaming approach. Applied to three state-of-the-art methods, it consistently outperforms them, demonstrating its effectiveness as a generalizable and efficient solution for real-time, high-fidelity co-speech gesture synthesis.
☆ World Modeling Makes a Better Planner: Dual Preference Optimization for Embodied Task Planning
Recent advances in large vision-language models (LVLMs) have shown promise for embodied task planning, yet they struggle with fundamental challenges like dependency constraints and efficiency. Existing approaches either solely optimize action selection or leverage world models during inference, overlooking the benefits of learning to model the world as a way to enhance planning capabilities. We propose Dual Preference Optimization (D$^2$PO), a new learning framework that jointly optimizes state prediction and action selection through preference learning, enabling LVLMs to understand environment dynamics for better planning. To automatically collect trajectories and stepwise preference data without human annotation, we introduce a tree search mechanism for extensive exploration via trial-and-error. Extensive experiments on VoTa-Bench demonstrate that our D$^2$PO-based method significantly outperforms existing methods and GPT-4o when applied to Qwen2-VL (7B), LLaVA-1.6 (7B), and LLaMA-3.2 (11B), achieving superior task success rates with more efficient execution paths.
☆ OODD: Test-time Out-of-Distribution Detection with Dynamic Dictionary
Out-of-distribution (OOD) detection remains challenging for deep learning models, particularly when test-time OOD samples differ significantly from training outliers. We propose OODD, a novel test-time OOD detection method that dynamically maintains and updates an OOD dictionary without fine-tuning. Our approach leverages a priority queue-based dictionary that accumulates representative OOD features during testing, combined with an informative inlier sampling strategy for in-distribution (ID) samples. To ensure stable performance during early testing, we propose a dual OOD stabilization mechanism that leverages strategically generated outliers derived from ID data. To our best knowledge, extensive experiments on the OpenOOD benchmark demonstrate that OODD significantly outperforms existing methods, achieving a 26.0% improvement in FPR95 on CIFAR-100 Far OOD detection compared to the state-of-the-art approach. Furthermore, we present an optimized variant of the KNN-based OOD detection framework that achieves a 3x speedup while maintaining detection performance.
☆ Flow-NeRF: Joint Learning of Geometry, Poses, and Dense Flow within Unified Neural Representations
Learning accurate scene reconstruction without pose priors in neural radiance fields is challenging due to inherent geometric ambiguity. Recent development either relies on correspondence priors for regularization or uses off-the-shelf flow estimators to derive analytical poses. However, the potential for jointly learning scene geometry, camera poses, and dense flow within a unified neural representation remains largely unexplored. In this paper, we present Flow-NeRF, a unified framework that simultaneously optimizes scene geometry, camera poses, and dense optical flow all on-the-fly. To enable the learning of dense flow within the neural radiance field, we design and build a bijective mapping for flow estimation, conditioned on pose. To make the scene reconstruction benefit from the flow estimation, we develop an effective feature enhancement mechanism to pass canonical space features to world space representations, significantly enhancing scene geometry. We validate our model across four important tasks, i.e., novel view synthesis, depth estimation, camera pose prediction, and dense optical flow estimation, using several datasets. Our approach surpasses previous methods in almost all metrics for novel-view view synthesis and depth estimation and yields both qualitatively sound and quantitatively accurate novel-view flow. Our project page is https://zhengxunzhi.github.io/flownerf/.
☆ Consistent multi-animal pose estimation in cattle using dynamic Kalman filter based tracking
Over the past decade, studying animal behaviour with the help of computer vision has become more popular. Replacing human observers by computer vision lowers the cost of data collection and therefore allows to collect more extensive datasets. However, the majority of available computer vision algorithms to study animal behaviour is highly tailored towards a single research objective, limiting possibilities for data reuse. In this perspective, pose-estimation in combination with animal tracking offers opportunities to yield a higher level representation capturing both the spatial and temporal component of animal behaviour. Such a higher level representation allows to answer a wide variety of research questions simultaneously, without the need to develop repeatedly tailored computer vision algorithms. In this paper, we therefore first cope with several weaknesses of current pose-estimation algorithms and thereafter introduce KeySORT (Keypoint Simple and Online Realtime Tracking). KeySORT deploys an adaptive Kalman filter to construct tracklets in a bounding-box free manner, significantly improving the temporal consistency of detected keypoints. In this paper, we focus on pose estimation in cattle, but our methodology can easily be generalised to any other animal species. Our test results indicate our algorithm is able to detect up to 80% of the ground truth keypoints with high accuracy, with only a limited drop in performance when daylight recordings are compared to nightvision recordings. Moreover, by using KeySORT to construct skeletons, the temporal consistency of generated keypoint coordinates was largely improved, offering opportunities with regard to automated behaviour monitoring of animals.
☆ Learning Disease State from Noisy Ordinal Disease Progression Labels
Learning from noisy ordinal labels is a key challenge in medical imaging. In this work, we ask whether ordinal disease progression labels (better, worse, or stable) can be used to learn a representation allowing to classify disease state. For neovascular age-related macular degeneration (nAMD), we cast the problem of modeling disease progression between medical visits as a classification task with ordinal ranks. To enhance generalization, we tailor our model to the problem setting by (1) independent image encoding, (2) antisymmetric logit space equivariance, and (3) ordinal scale awareness. In addition, we address label noise by learning an uncertainty estimate for loss re-weighting. Our approach learns an interpretable disease representation enabling strong few-shot performance for the related task of nAMD activity classification from single images, despite being trained only on image pairs with ordinal disease progression labels.
☆ EFC++: Elastic Feature Consolidation with Prototype Re-balancing for Cold Start Exemplar-free Incremental Learning
Exemplar-Free Class Incremental Learning (EFCIL) aims to learn from a sequence of tasks without having access to previous task data. In this paper, we consider the challenging Cold Start scenario in which insufficient data is available in the first task to learn a high-quality backbone. This is especially challenging for EFCIL since it requires high plasticity, resulting in feature drift which is difficult to compensate for in the exemplar-free setting. To address this problem, we propose an effective approach to consolidate feature representations by regularizing drift in directions highly relevant to previous tasks and employs prototypes to reduce task-recency bias. Our approach, which we call Elastic Feature Consolidation++ (EFC++) exploits a tractable second-order approximation of feature drift based on a proposed Empirical Feature Matrix (EFM). The EFM induces a pseudo-metric in feature space which we use to regularize feature drift in important directions and to update Gaussian prototypes. In addition, we introduce a post-training prototype re-balancing phase that updates classifiers to compensate for feature drift. Experimental results on CIFAR-100, Tiny-ImageNet, ImageNet-Subset, ImageNet-1K and DomainNet demonstrate that EFC++ is better able to learn new tasks by maintaining model plasticity and significantly outperform the state-of-the-art.
comment: Submitted on July 2024. Under Review. arXiv admin note: text overlap with arXiv:2402.03917
☆ 4D LangSplat: 4D Language Gaussian Splatting via Multimodal Large Language Models CVPR 2025
Learning 4D language fields to enable time-sensitive, open-ended language queries in dynamic scenes is essential for many real-world applications. While LangSplat successfully grounds CLIP features into 3D Gaussian representations, achieving precision and efficiency in 3D static scenes, it lacks the ability to handle dynamic 4D fields as CLIP, designed for static image-text tasks, cannot capture temporal dynamics in videos. Real-world environments are inherently dynamic, with object semantics evolving over time. Building a precise 4D language field necessitates obtaining pixel-aligned, object-wise video features, which current vision models struggle to achieve. To address these challenges, we propose 4D LangSplat, which learns 4D language fields to handle time-agnostic or time-sensitive open-vocabulary queries in dynamic scenes efficiently. 4D LangSplat bypasses learning the language field from vision features and instead learns directly from text generated from object-wise video captions via Multimodal Large Language Models (MLLMs). Specifically, we propose a multimodal object-wise video prompting method, consisting of visual and text prompts that guide MLLMs to generate detailed, temporally consistent, high-quality captions for objects throughout a video. These captions are encoded using a Large Language Model into high-quality sentence embeddings, which then serve as pixel-aligned, object-specific feature supervision, facilitating open-vocabulary text queries through shared embedding spaces. Recognizing that objects in 4D scenes exhibit smooth transitions across states, we further propose a status deformable network to model these continuous changes over time effectively. Our results across multiple benchmarks demonstrate that 4D LangSplat attains precise and efficient results for both time-sensitive and time-agnostic open-vocabulary queries.
comment: CVPR 2025. Project Page: https://4d-langsplat.github.io
Finetuning Generative Trajectory Model with Reinforcement Learning from Human Feedback
Generating human-like and adaptive trajectories is essential for autonomous driving in dynamic environments. While generative models have shown promise in synthesizing feasible trajectories, they often fail to capture the nuanced variability of human driving styles due to dataset biases and distributional shifts. To address this, we introduce TrajHF, a human feedback-driven finetuning framework for generative trajectory models, designed to align motion planning with diverse driving preferences. TrajHF incorporates multi-conditional denoiser and reinforcement learning with human feedback to refine multi-modal trajectory generation beyond conventional imitation learning. This enables better alignment with human driving preferences while maintaining safety and feasibility constraints. TrajHF achieves PDMS of 93.95 on NavSim benchmark, significantly exceeding other methods. TrajHF sets a new paradigm for personalized and adaptable trajectory generation in autonomous driving.
comment: 10 pages, 5 figures
☆ Low Complexity Point Tracking of the Myocardium in 2D Echocardiography
Deep learning methods for point tracking are applicable in 2D echocardiography, but do not yet take advantage of domain specifics that enable extremely fast and efficient configurations. We developed MyoTracker, a low-complexity architecture (0.3M parameters) for point tracking in echocardiography. It builds on the CoTracker2 architecture by simplifying its components and extending the temporal context to provide point predictions for the entire sequence in a single step. We applied MyoTracker to the right ventricular (RV) myocardium in RV-focused recordings and compared the results with those of CoTracker2 and EchoTracker, another specialized point tracking architecture for echocardiography. MyoTracker achieved the lowest average point trajectory error at 2.00 $\pm$ 0.53 mm. Calculating RV Free Wall Strain (RV FWS) using MyoTracker's point predictions resulted in a -0.3$\%$ bias with 95$\%$ limits of agreement from -6.1$\%$ to 5.4$\%$ compared to reference values from commercial software. This range falls within the interobserver variability reported in previous studies. The limits of agreement were wider for both CoTracker2 and EchoTracker, worse than the interobserver variability. At inference, MyoTracker used 67$\%$ less GPU memory than CoTracker2 and 84$\%$ less than EchoTracker on large sequences (100 frames). MyoTracker was 74 times faster during inference than CoTracker2 and 11 times faster than EchoTracker with our setup. Maintaining the entire sequence in the temporal context was the greatest contributor to MyoTracker's accuracy. Slight additional gains can be made by re-enabling iterative refinement, at the cost of longer processing time.
☆ Improving Medical Waste Classification with Hybrid Capsule Networks
The improper disposal and mismanagement of medical waste pose severe environmental and public health risks, contributing to greenhouse gas emissions and the spread of infectious diseases. Efficient and accurate medical waste classification is crucial for mitigating these risks. We explore the integration of capsule networks with a pretrained DenseNet model to improve medical waste classification. To the best of our knowledge, capsule networks have not yet been applied to this task, making this study the first to assess their effectiveness. A diverse dataset of medical waste images collected from multiple public sources, is used to evaluate three model configurations: (1) a pretrained DenseNet model as a baseline, (2) a pretrained DenseNet with frozen layers combined with a capsule network, and (3) a pretrained DenseNet with unfrozen layers combined with a capsule network. Experimental results demonstrate that incorporating capsule networks improves classification performance, with F1 scores increasing from 0.89 (baseline) to 0.92 (hybrid model with unfrozen layers). This highlights the potential of capsule networks to address the spatial limitations of traditional convolutional models and improve classification robustness. While the capsule-enhanced model demonstrated improved classification performance, direct comparisons with prior studies were challenging due to differences in dataset size and diversity. Previous studies relied on smaller, domain-specific datasets, which inherently yielded higher accuracy. In contrast, our study employs a significantly larger and more diverse dataset, leading to better generalization but introducing additional classification challenges. This highlights the trade-off between dataset complexity and model performance.
☆ Category Prompt Mamba Network for Nuclei Segmentation and Classification
Nuclei segmentation and classification provide an essential basis for tumor immune microenvironment analysis. The previous nuclei segmentation and classification models require splitting large images into smaller patches for training, leading to two significant issues. First, nuclei at the borders of adjacent patches often misalign during inference. Second, this patch-based approach significantly increases the model's training and inference time. Recently, Mamba has garnered attention for its ability to model large-scale images with linear time complexity and low memory consumption. It offers a promising solution for training nuclei segmentation and classification models on full-sized images. However, the Mamba orientation-based scanning method lacks account for category-specific features, resulting in sub-optimal performance in scenarios with imbalanced class distributions. To address these challenges, this paper introduces a novel scanning strategy based on category probability sorting, which independently ranks and scans features for each category according to confidence from high to low. This approach enhances the feature representation of uncertain samples and mitigates the issues caused by imbalanced distributions. Extensive experiments conducted on four public datasets demonstrate that our method outperforms state-of-the-art approaches, delivering superior performance in nuclei segmentation and classification tasks.
☆ RoCo-Sim: Enhancing Roadside Collaborative Perception through Foreground Simulation
Roadside Collaborative Perception refers to a system where multiple roadside units collaborate to pool their perceptual data, assisting vehicles in enhancing their environmental awareness. Existing roadside perception methods concentrate on model design but overlook data issues like calibration errors, sparse information, and multi-view consistency, leading to poor performance on recent published datasets. To significantly enhance roadside collaborative perception and address critical data issues, we present the first simulation framework RoCo-Sim for road-side collaborative perception. RoCo-Sim is capable of generating diverse, multi-view consistent simulated roadside data through dynamic foreground editing and full-scene style transfer of a single image. RoCo-Sim consists of four components: (1) Camera Extrinsic Optimization ensures accurate 3D to 2D projection for roadside cameras; (2) A novel Multi-View Occlusion-Aware Sampler (MOAS) determines the placement of diverse digital assets within 3D space; (3) DepthSAM innovatively models foreground-background relationships from single-frame fixed-view images, ensuring multi-view consistency of foreground; and (4) Scalable Post-Processing Toolkit generates more realistic and enriched scenes through style transfer and other enhancements. RoCo-Sim significantly improves roadside 3D object detection, outperforming SOTA methods by 83.74 on Rcooper-Intersection and 83.12 on TUMTraf-V2X for AP70. RoCo-Sim fills a critical gap in roadside perception simulation. Code and pre-trained models will be released soon: https://github.com/duyuwen-duen/RoCo-Sim
☆ RealGeneral: Unifying Visual Generation via Temporal In-Context Learning with Video Models
Unifying diverse image generation tasks within a single framework remains a fundamental challenge in visual generation. While large language models (LLMs) achieve unification through task-agnostic data and generation, existing visual generation models fail to meet these principles. Current approaches either rely on per-task datasets and large-scale training or adapt pre-trained image models with task-specific modifications, limiting their generalizability. In this work, we explore video models as a foundation for unified image generation, leveraging their inherent ability to model temporal correlations. We introduce RealGeneral, a novel framework that reformulates image generation as a conditional frame prediction task, analogous to in-context learning in LLMs. To bridge the gap between video models and condition-image pairs, we propose (1) a Unified Conditional Embedding module for multi-modal alignment and (2) a Unified Stream DiT Block with decoupled adaptive LayerNorm and attention mask to mitigate cross-modal interference. RealGeneral demonstrates effectiveness in multiple important visual generation tasks, e.g., it achieves a 14.5% improvement in subject similarity for customized generation and a 10% enhancement in image quality for canny-to-image task. Project page: https://lyne1.github.io/RealGeneral/
☆ Architecture-Aware Minimization (A$^2$M): How to Find Flat Minima in Neural Architecture Search
Neural Architecture Search (NAS) has become an essential tool for designing effective and efficient neural networks. In this paper, we investigate the geometric properties of neural architecture spaces commonly used in differentiable NAS methods, specifically NAS-Bench-201 and DARTS. By defining flatness metrics such as neighborhoods and loss barriers along paths in architecture space, we reveal locality and flatness characteristics analogous to the well-known properties of neural network loss landscapes in weight space. In particular, we find that highly accurate architectures cluster together in flat regions, while suboptimal architectures remain isolated, unveiling the detailed geometrical structure of the architecture search landscape. Building on these insights, we propose Architecture-Aware Minimization (A$^2$M), a novel analytically derived algorithmic framework that explicitly biases, for the first time, the gradient of differentiable NAS methods towards flat minima in architecture space. A$^2$M consistently improves generalization over state-of-the-art DARTS-based algorithms on benchmark datasets including CIFAR-10, CIFAR-100, and ImageNet16-120, across both NAS-Bench-201 and DARTS search spaces. Notably, A$^2$M is able to increase the test accuracy, on average across different differentiable NAS methods, by +3.60\% on CIFAR-10, +4.60\% on CIFAR-100, and +3.64\% on ImageNet16-120, demonstrating its superior effectiveness in practice. A$^2$M can be easily integrated into existing differentiable NAS frameworks, offering a versatile tool for future research and applications in automated machine learning. We open-source our code at https://github.com/AI-Tech-Research-Lab/AsquaredM.
comment: 22 pages, 11 figures, 3 tables
☆ Hyper3D: Efficient 3D Representation via Hybrid Triplane and Octree Feature for Enhanced 3D Shape Variational Auto-Encoders
Recent 3D content generation pipelines often leverage Variational Autoencoders (VAEs) to encode shapes into compact latent representations, facilitating diffusion-based generation. Efficiently compressing 3D shapes while preserving intricate geometric details remains a key challenge. Existing 3D shape VAEs often employ uniform point sampling and 1D/2D latent representations, such as vector sets or triplanes, leading to significant geometric detail loss due to inadequate surface coverage and the absence of explicit 3D representations in the latent space. Although recent work explores 3D latent representations, their large scale hinders high-resolution encoding and efficient training. Given these challenges, we introduce Hyper3D, which enhances VAE reconstruction through efficient 3D representation that integrates hybrid triplane and octree features. First, we adopt an octree-based feature representation to embed mesh information into the network, mitigating the limitations of uniform point sampling in capturing geometric distributions along the mesh surface. Furthermore, we propose a hybrid latent space representation that integrates a high-resolution triplane with a low-resolution 3D grid. This design not only compensates for the lack of explicit 3D representations but also leverages a triplane to preserve high-resolution details. Experimental results demonstrate that Hyper3D outperforms traditional representations by reconstructing 3D shapes with higher fidelity and finer details, making it well-suited for 3D generation pipelines.
☆ HSEmotion Team at ABAW-8 Competition: Audiovisual Ambivalence/Hesitancy, Emotional Mimicry Intensity and Facial Expression Recognition CVPR 2025
This article presents our results for the eighth Affective Behavior Analysis in-the-Wild (ABAW) competition. We combine facial emotional descriptors extracted by pre-trained models, namely, our EmotiEffLib library, with acoustic features and embeddings of texts recognized from speech. The frame-level features are aggregated and fed into simple classifiers, e.g., multi-layered perceptron (feed-forward neural network with one hidden layer), to predict ambivalence/hesitancy and facial expressions. In the latter case, we also use the pre-trained facial expression recognition model to select high-score video frames and prevent their processing with a domain-specific video classifier. The video-level prediction of emotional mimicry intensity is implemented by simply aggregating frame-level features and training a multi-layered perceptron. Experimental results for three tasks from the ABAW challenge demonstrate that our approach significantly increases validation metrics compared to existing baselines.
comment: submitted to ABAW CVPR 2025 Workshop
☆ RoMA: Scaling up Mamba-based Foundation Models for Remote Sensing
Recent advances in self-supervised learning for Vision Transformers (ViTs) have fueled breakthroughs in remote sensing (RS) foundation models. However, the quadratic complexity of self-attention poses a significant barrier to scalability, particularly for large models and high-resolution images. While the linear-complexity Mamba architecture offers a promising alternative, existing RS applications of Mamba remain limited to supervised tasks on small, domain-specific datasets. To address these challenges, we propose RoMA, a framework that enables scalable self-supervised pretraining of Mamba-based RS foundation models using large-scale, diverse, unlabeled data. RoMA enhances scalability for high-resolution images through a tailored auto-regressive learning strategy, incorporating two key innovations: 1) a rotation-aware pretraining mechanism combining adaptive cropping with angular embeddings to handle sparsely distributed objects with arbitrary orientations, and 2) multi-scale token prediction objectives that address the extreme variations in object scales inherent to RS imagery. Systematic empirical studies validate that Mamba adheres to RS data and parameter scaling laws, with performance scaling reliably as model and data size increase. Furthermore, experiments across scene classification, object detection, and semantic segmentation tasks demonstrate that RoMA-pretrained Mamba models consistently outperform ViT-based counterparts in both accuracy and computational efficiency. The source code and pretrained models will be released at https://github.com/MiliLab/RoMA.
☆ CINEMA: Coherent Multi-Subject Video Generation via MLLM-Based Guidance
Video generation has witnessed remarkable progress with the advent of deep generative models, particularly diffusion models. While existing methods excel in generating high-quality videos from text prompts or single images, personalized multi-subject video generation remains a largely unexplored challenge. This task involves synthesizing videos that incorporate multiple distinct subjects, each defined by separate reference images, while ensuring temporal and spatial consistency. Current approaches primarily rely on mapping subject images to keywords in text prompts, which introduces ambiguity and limits their ability to model subject relationships effectively. In this paper, we propose CINEMA, a novel framework for coherent multi-subject video generation by leveraging Multimodal Large Language Model (MLLM). Our approach eliminates the need for explicit correspondences between subject images and text entities, mitigating ambiguity and reducing annotation effort. By leveraging MLLM to interpret subject relationships, our method facilitates scalability, enabling the use of large and diverse datasets for training. Furthermore, our framework can be conditioned on varying numbers of subjects, offering greater flexibility in personalized content creation. Through extensive evaluations, we demonstrate that our approach significantly improves subject consistency, and overall video coherence, paving the way for advanced applications in storytelling, interactive media, and personalized video generation.
☆ A Multimodal Fusion Model Leveraging MLP Mixer and Handcrafted Features-based Deep Learning Networks for Facial Palsy Detection PAKDD 2025
Algorithmic detection of facial palsy offers the potential to improve current practices, which usually involve labor-intensive and subjective assessments by clinicians. In this paper, we present a multimodal fusion-based deep learning model that utilizes an MLP mixer-based model to process unstructured data (i.e. RGB images or images with facial line segments) and a feed-forward neural network to process structured data (i.e. facial landmark coordinates, features of facial expressions, or handcrafted features) for detecting facial palsy. We then contribute to a study to analyze the effect of different data modalities and the benefits of a multimodal fusion-based approach using videos of 20 facial palsy patients and 20 healthy subjects. Our multimodal fusion model achieved 96.00 F1, which is significantly higher than the feed-forward neural network trained on handcrafted features alone (82.80 F1) and an MLP mixer-based model trained on raw RGB images (89.00 F1).
comment: PAKDD 2025. arXiv admin note: text overlap with arXiv:2405.16496
LUMOS: Language-Conditioned Imitation Learning with World Models ICRA
We introduce LUMOS, a language-conditioned multi-task imitation learning framework for robotics. LUMOS learns skills by practicing them over many long-horizon rollouts in the latent space of a learned world model and transfers these skills zero-shot to a real robot. By learning on-policy in the latent space of the learned world model, our algorithm mitigates policy-induced distribution shift which most offline imitation learning methods suffer from. LUMOS learns from unstructured play data with fewer than 1% hindsight language annotations but is steerable with language commands at test time. We achieve this coherent long-horizon performance by combining latent planning with both image- and language-based hindsight goal relabeling during training, and by optimizing an intrinsic reward defined in the latent space of the world model over multiple time steps, effectively reducing covariate shift. In experiments on the difficult long-horizon CALVIN benchmark, LUMOS outperforms prior learning-based methods with comparable approaches on chained multi-task evaluations. To the best of our knowledge, we are the first to learn a language-conditioned continuous visuomotor control for a real-world robot within an offline world model. Videos, dataset and code are available at http://lumos.cs.uni-freiburg.de.
comment: Accepted at the 2025 IEEE International Conference on Robotics and Automation (ICRA)
☆ Piece it Together: Part-Based Concepting with IP-Priors
Advanced generative models excel at synthesizing images but often rely on text-based conditioning. Visual designers, however, often work beyond language, directly drawing inspiration from existing visual elements. In many cases, these elements represent only fragments of a potential concept-such as an uniquely structured wing, or a specific hairstyle-serving as inspiration for the artist to explore how they can come together creatively into a coherent whole. Recognizing this need, we introduce a generative framework that seamlessly integrates a partial set of user-provided visual components into a coherent composition while simultaneously sampling the missing parts needed to generate a plausible and complete concept. Our approach builds on a strong and underexplored representation space, extracted from IP-Adapter+, on which we train IP-Prior, a lightweight flow-matching model that synthesizes coherent compositions based on domain-specific priors, enabling diverse and context-aware generations. Additionally, we present a LoRA-based fine-tuning strategy that significantly improves prompt adherence in IP-Adapter+ for a given task, addressing its common trade-off between reconstruction quality and prompt adherence.
comment: Project page available at https://eladrich.github.io/PiT/
☆ ConceptGuard: Continual Personalized Text-to-Image Generation with Forgetting and Confusion Mitigation CVPR 2025
Diffusion customization methods have achieved impressive results with only a minimal number of user-provided images. However, existing approaches customize concepts collectively, whereas real-world applications often require sequential concept integration. This sequential nature can lead to catastrophic forgetting, where previously learned concepts are lost. In this paper, we investigate concept forgetting and concept confusion in the continual customization. To tackle these challenges, we present ConceptGuard, a comprehensive approach that combines shift embedding, concept-binding prompts and memory preservation regularization, supplemented by a priority queue which can adaptively update the importance and occurrence order of different concepts. These strategies can dynamically update, unbind and learn the relationship of the previous concepts, thus alleviating concept forgetting and confusion. Through comprehensive experiments, we show that our approach outperforms all the baseline methods consistently and significantly in both quantitative and qualitative analyses.
comment: Accepted at CVPR 2025
☆ Do I look like a `cat.n.01` to you? A Taxonomy Image Generation Benchmark
This paper explores the feasibility of using text-to-image models in a zero-shot setup to generate images for taxonomy concepts. While text-based methods for taxonomy enrichment are well-established, the potential of the visual dimension remains unexplored. To address this, we propose a comprehensive benchmark for Taxonomy Image Generation that assesses models' abilities to understand taxonomy concepts and generate relevant, high-quality images. The benchmark includes common-sense and randomly sampled WordNet concepts, alongside the LLM generated predictions. The 12 models are evaluated using 9 novel taxonomy-related text-to-image metrics and human feedback. Moreover, we pioneer the use of pairwise evaluation with GPT-4 feedback for image generation. Experimental results show that the ranking of models differs significantly from standard T2I tasks. Playground-v2 and FLUX consistently outperform across metrics and subsets and the retrieval-based approach performs poorly. These findings highlight the potential for automating the curation of structured data resources.
comment: Labeled data and generated image Wordnet are published at https://huggingface.co/collections/VityaVitalich/generated-image-wordnet-67d2c868ff1414ec2f8e0d3d
☆ Object detection characteristics in a learning factory environment using YOLOv8
AI-based object detection, and efforts to explain and investigate their characteristics, is a topic of high interest. The impact of, e.g., complex background structures with similar appearances as the objects of interest, on the detection accuracy and, beforehand, the necessary dataset composition are topics of ongoing research. In this paper, we present a systematic investigation of background influences and different features of the object to be detected. The latter includes various materials and surfaces, partially transparent and with shiny reflections in the context of an Industry 4.0 learning factory. Different YOLOv8 models have been trained for each of the materials on different sized datasets, where the appearance was the only changing parameter. In the end, similar characteristics tend to show different behaviours and sometimes unexpected results. While some background components tend to be detected, others with the same features are not part of the detection. Additionally, some more precise conclusions can be drawn from the results. Therefore, we contribute a challenging dataset with detailed investigations on 92 trained YOLO models, addressing some issues on the detection accuracy and possible overfitting.
☆ Enhancing Facial Privacy Protection via Weakening Diffusion Purification
The rapid growth of social media has led to the widespread sharing of individual portrait images, which pose serious privacy risks due to the capabilities of automatic face recognition (AFR) systems for mass surveillance. Hence, protecting facial privacy against unauthorized AFR systems is essential. Inspired by the generation capability of the emerging diffusion models, recent methods employ diffusion models to generate adversarial face images for privacy protection. However, they suffer from the diffusion purification effect, leading to a low protection success rate (PSR). In this paper, we first propose learning unconditional embeddings to increase the learning capacity for adversarial modifications and then use them to guide the modification of the adversarial latent code to weaken the diffusion purification effect. Moreover, we integrate an identity-preserving structure to maintain structural consistency between the original and generated images, allowing human observers to recognize the generated image as having the same identity as the original. Extensive experiments conducted on two public datasets, i.e., CelebA-HQ and LADN, demonstrate the superiority of our approach. The protected faces generated by our method outperform those produced by existing facial privacy protection approaches in terms of transferability and natural appearance.
☆ DreamInsert: Zero-Shot Image-to-Video Object Insertion from A Single Image
Recent developments in generative diffusion models have turned many dreams into realities. For video object insertion, existing methods typically require additional information, such as a reference video or a 3D asset of the object, to generate the synthetic motion. However, inserting an object from a single reference photo into a target background video remains an uncharted area due to the lack of unseen motion information. We propose DreamInsert, which achieves Image-to-Video Object Insertion in a training-free manner for the first time. By incorporating the trajectory of the object into consideration, DreamInsert can predict the unseen object movement, fuse it harmoniously with the background video, and generate the desired video seamlessly. More significantly, DreamInsert is both simple and effective, achieving zero-shot insertion without end-to-end training or additional fine-tuning on well-designed image-video data pairs. We demonstrated the effectiveness of DreamInsert through a variety of experiments. Leveraging this capability, we present the first results for Image-to-Video object insertion in a training-free manner, paving exciting new directions for future content creation and synthesis. The code will be released soon.
☆ Generative Binary Memory: Pseudo-Replay Class-Incremental Learning on Binarized Embeddings
In dynamic environments where new concepts continuously emerge, Deep Neural Networks (DNNs) must adapt by learning new classes while retaining previously acquired ones. This challenge is addressed by Class-Incremental Learning (CIL). This paper introduces Generative Binary Memory (GBM), a novel CIL pseudo-replay approach which generates synthetic binary pseudo-exemplars. Relying on Bernoulli Mixture Models (BMMs), GBM effectively models the multi-modal characteristics of class distributions, in a latent, binary space. With a specifically-designed feature binarizer, our approach applies to any conventional DNN. GBM also natively supports Binary Neural Networks (BNNs) for highly-constrained model sizes in embedded systems. The experimental results demonstrate that GBM achieves higher than state-of-the-art average accuracy on CIFAR100 (+2.9%) and TinyImageNet (+1.5%) for a ResNet-18 equipped with our binarizer. GBM also outperforms emerging CIL methods for BNNs, with +3.1% in final accuracy and x4.7 memory reduction, on CORE50.
☆ OSMa-Bench: Evaluating Open Semantic Mapping Under Varying Lighting Conditions
Open Semantic Mapping (OSM) is a key technology in robotic perception, combining semantic segmentation and SLAM techniques. This paper introduces a dynamically configurable and highly automated LLM/LVLM-powered pipeline for evaluating OSM solutions called OSMa-Bench (Open Semantic Mapping Benchmark). The study focuses on evaluating state-of-the-art semantic mapping algorithms under varying indoor lighting conditions, a critical challenge in indoor environments. We introduce a novel dataset with simulated RGB-D sequences and ground truth 3D reconstructions, facilitating the rigorous analysis of mapping performance across different lighting conditions. Through experiments on leading models such as ConceptGraphs, BBQ and OpenScene, we evaluate the semantic fidelity of object recognition and segmentation. Additionally, we introduce a Scene Graph evaluation method to analyze the ability of models to interpret semantic structure. The results provide insights into the robustness of these models, forming future research directions for developing resilient and adaptable robotic systems. Our code is available at https://be2rlab.github.io/OSMa-Bench/.
comment: Project page: https://be2rlab.github.io/OSMa-Bench/
☆ IDEA: Inverted Text with Cooperative Deformable Aggregation for Multi-modal Object Re-Identification CVPR2025
Multi-modal object Re-IDentification (ReID) aims to retrieve specific objects by utilizing complementary information from various modalities. However, existing methods focus on fusing heterogeneous visual features, neglecting the potential benefits of text-based semantic information. To address this issue, we first construct three text-enhanced multi-modal object ReID benchmarks. To be specific, we propose a standardized multi-modal caption generation pipeline for structured and concise text annotations with Multi-modal Large Language Models (MLLMs). Besides, current methods often directly aggregate multi-modal information without selecting representative local features, leading to redundancy and high complexity. To address the above issues, we introduce IDEA, a novel feature learning framework comprising the Inverted Multi-modal Feature Extractor (IMFE) and Cooperative Deformable Aggregation (CDA). The IMFE utilizes Modal Prefixes and an InverseNet to integrate multi-modal information with semantic guidance from inverted text. The CDA adaptively generates sampling positions, enabling the model to focus on the interplay between global features and discriminative local features. With the constructed benchmarks and the proposed modules, our framework can generate more robust multi-modal features under complex scenarios. Extensive experiments on three multi-modal object ReID benchmarks demonstrate the effectiveness of our proposed method.
comment: This work is accepted by CVPR2025. More modifications may be performed
☆ Towards Fast, Memory-based and Data-Efficient Vision-Language Policy
Vision Language Models (VLMs) pretrained on Internet-scale vision-language data have demonstrated the potential to transfer their knowledge to robotic learning. However, the existing paradigm encounters three critical challenges: (1) expensive inference cost resulting from large-scale model parameters, (2) frequent domain shifts caused by mismatched data modalities, and (3) limited capacity to handle past or future experiences. In this work, we propose LiteVLP, a lightweight, memory-based, and general-purpose vision-language policy generation model. LiteVLP is built upon a pre-trained 1B-parameter VLM and fine-tuned on a tiny-scale and conversation-style robotic dataset. Through extensive experiments, we demonstrate that LiteVLP outperforms state-of-the-art vision-language policy on VIMA-Bench, with minimal training time. Furthermore, LiteVLP exhibits superior inference speed while maintaining exceptional high accuracy. In long-horizon manipulation tasks, LiteVLP also shows remarkable memory ability, outperforming the best-performing baseline model by 18.8%. These results highlight LiteVLP as a promising model to integrating the intelligence of VLMs into robotic learning.
comment: 11 pages, 7 figures, 6 tables
☆ PS3C: An Ensemble-Based Two-Step Framework for Classification of Pep Smear Cell Images
Early detection of cervical cancer is crucial for improving patient outcomes and reducing mortality by identifying precancerous lesions as soon as possible. As a result, the use of pap smear screening has significantly increased, leading to a growing demand for automated tools that can assist cytologists managing their rising workload. To address this, the Pep Smear Cell Classification Challenge (PS3C) has been organized in association with ISBI in 2025. This project aims to promote the development of automated tools for pep smear images classification. The analyzed images are grouped into four categories: healthy, unhealthy, both, and rubbish images which are considered as unsuitable for diagnosis. In this work, we propose a two-stage ensemble approach: first, a neural network determines whether an image is rubbish or not. If not, a second neural network classifies the image as containing a healthy cell, an unhealthy cell, or both.
comment: 7 pages, 3 figures, Grand Challenge paper accepted at ISBI 2025
☆ 6D Object Pose Tracking in Internet Videos for Robotic Manipulation ICLR 2025
We seek to extract a temporally consistent 6D pose trajectory of a manipulated object from an Internet instructional video. This is a challenging set-up for current 6D pose estimation methods due to uncontrolled capturing conditions, subtle but dynamic object motions, and the fact that the exact mesh of the manipulated object is not known. To address these challenges, we present the following contributions. First, we develop a new method that estimates the 6D pose of any object in the input image without prior knowledge of the object itself. The method proceeds by (i) retrieving a CAD model similar to the depicted object from a large-scale model database, (ii) 6D aligning the retrieved CAD model with the input image, and (iii) grounding the absolute scale of the object with respect to the scene. Second, we extract smooth 6D object trajectories from Internet videos by carefully tracking the detected objects across video frames. The extracted object trajectories are then retargeted via trajectory optimization into the configuration space of a robotic manipulator. Third, we thoroughly evaluate and ablate our 6D pose estimation method on YCB-V and HOPE-Video datasets as well as a new dataset of instructional videos manually annotated with approximate 6D object trajectories. We demonstrate significant improvements over existing state-of-the-art RGB 6D pose estimation methods. Finally, we show that the 6D object motion estimated from Internet videos can be transferred to a 7-axis robotic manipulator both in a virtual simulator as well as in a real world set-up. We also successfully apply our method to egocentric videos taken from the EPIC-KITCHENS dataset, demonstrating potential for Embodied AI applications.
comment: Accepted to ICLR 2025. Project page available at https://ponimatkin.github.io/wildpose/
☆ Eye on the Target: Eye Tracking Meets Rodent Tracking
Analyzing animal behavior from video recordings is crucial for scientific research, yet manual annotation remains labor-intensive and prone to subjectivity. Efficient segmentation methods are needed to automate this process while maintaining high accuracy. In this work, we propose a novel pipeline that utilizes eye-tracking data from Aria glasses to generate prompt points, which are then used to produce segmentation masks via a fast zero-shot segmentation model. Additionally, we apply post-processing to refine the prompts, leading to improved segmentation quality. Through our approach, we demonstrate that combining eye-tracking-based annotation with smart prompt refinement can enhance segmentation accuracy, achieving an improvement of 70.6% from 38.8 to 66.2 in the Jaccard Index for segmentation results in the rats dataset.
☆ CODEI: Resource-Efficient Task-Driven Co-Design of Perception and Decision Making for Mobile Robots Applied to Autonomous Vehicles
This paper discusses the integration challenges and strategies for designing mobile robots, by focusing on the task-driven, optimal selection of hardware and software to balance safety, efficiency, and minimal usage of resources such as costs, energy, computational requirements, and weight. We emphasize the interplay between perception and motion planning in decision-making by introducing the concept of occupancy queries to quantify the perception requirements for sampling-based motion planners. Sensor and algorithm performance are evaluated using False Negative Rates (FPR) and False Positive Rates (FPR) across various factors such as geometric relationships, object properties, sensor resolution, and environmental conditions. By integrating perception requirements with perception performance, an Integer Linear Programming (ILP) approach is proposed for efficient sensor and algorithm selection and placement. This forms the basis for a co-design optimization that includes the robot body, motion planner, perception pipeline, and computing unit. We refer to this framework for solving the co-design problem of mobile robots as CODEI, short for Co-design of Embodied Intelligence. A case study on developing an Autonomous Vehicle (AV) for urban scenarios provides actionable information for designers, and shows that complex tasks escalate resource demands, with task performance affecting choices of the autonomy stack. The study demonstrates that resource prioritization influences sensor choice: cameras are preferred for cost-effective and lightweight designs, while lidar sensors are chosen for better energy and computational efficiency.
comment: 20 pages, 33 images, IEEE Transactions on Robotics
☆ VisualPRM: An Effective Process Reward Model for Multimodal Reasoning
We introduce VisualPRM, an advanced multimodal Process Reward Model (PRM) with 8B parameters, which improves the reasoning abilities of existing Multimodal Large Language Models (MLLMs) across different model scales and families with Best-of-N (BoN) evaluation strategies. Specifically, our model improves the reasoning performance of three types of MLLMs and four different model scales. Even when applied to the highly capable InternVL2.5-78B, it achieves a 5.9-point improvement across seven multimodal reasoning benchmarks. Experimental results show that our model exhibits superior performance compared to Outcome Reward Models and Self-Consistency during BoN evaluation. To facilitate the training of multimodal PRMs, we construct a multimodal process supervision dataset VisualPRM400K using an automated data pipeline. For the evaluation of multimodal PRMs, we propose VisualProcessBench, a benchmark with human-annotated step-wise correctness labels, to measure the abilities of PRMs to detect erroneous steps in multimodal reasoning tasks. We hope that our work can inspire more future research and contribute to the development of MLLMs. Our model, data, and benchmark are released in https://internvl.github.io/blog/2025-03-13-VisualPRM/.
☆ MaterialMVP: Illumination-Invariant Material Generation via Multi-view PBR Diffusion
Physically-based rendering (PBR) has become a cornerstone in modern computer graphics, enabling realistic material representation and lighting interactions in 3D scenes. In this paper, we present MaterialMVP, a novel end-to-end model for generating PBR textures from 3D meshes and image prompts, addressing key challenges in multi-view material synthesis. Our approach leverages Reference Attention to extract and encode informative latent from the input reference images, enabling intuitive and controllable texture generation. We also introduce a Consistency-Regularized Training strategy to enforce stability across varying viewpoints and illumination conditions, ensuring illumination-invariant and geometrically consistent results. Additionally, we propose Dual-Channel Material Generation, which separately optimizes albedo and metallic-roughness (MR) textures while maintaining precise spatial alignment with the input images through Multi-Channel Aligned Attention. Learnable material embeddings are further integrated to capture the distinct properties of albedo and MR. Experimental results demonstrate that our model generates PBR textures with realistic behavior across diverse lighting scenarios, outperforming existing methods in both consistency and quality for scalable 3D asset creation.
☆ MACS: Multi-source Audio-to-image Generation with Contextual Significance and Semantic Alignment
Propelled by the breakthrough in deep generative models, audio-to-image generation has emerged as a pivotal cross-model task that converts complex auditory signals into rich visual representations. However, previous works only focus on single-source audio inputs for image generation, ignoring the multi-source characteristic in natural auditory scenes, thus limiting the performance in generating comprehensive visual content. To bridge this gap, a method called MACS is proposed to conduct multi-source audio-to-image generation. This is the first work that explicitly separates multi-source audio to capture the rich audio components before image generation. MACS is a two-stage method. In the first stage, multi-source audio inputs are separated by a weakly supervised method, where the audio and text labels are semantically aligned by casting into a common space using the large pre-trained CLAP model. We introduce a ranking loss to consider the contextual significance of the separated audio signals. In the second stage, efficient image generation is achieved by mapping the separated audio signals to the generation condition using only a trainable adapter and a MLP layer. We preprocess the LLP dataset as the first full multi-source audio-to-image generation benchmark. The experiments are conducted on multi-source, mixed-source, and single-source audio-to-image generation tasks. The proposed MACS outperforms the current state-of-the-art methods in 17 of the 21 evaluation indexes on all tasks and delivers superior visual quality. The code will be publicly available.
☆ VicaSplat: A Single Run is All You Need for 3D Gaussian Splatting and Camera Estimation from Unposed Video Frames
We present VicaSplat, a novel framework for joint 3D Gaussians reconstruction and camera pose estimation from a sequence of unposed video frames, which is a critical yet underexplored task in real-world 3D applications. The core of our method lies in a novel transformer-based network architecture. In particular, our model starts with an image encoder that maps each image to a list of visual tokens. All visual tokens are concatenated with additional inserted learnable camera tokens. The obtained tokens then fully communicate with each other within a tailored transformer decoder. The camera tokens causally aggregate features from visual tokens of different views, and further modulate them frame-wisely to inject view-dependent features. 3D Gaussian splats and camera pose parameters can then be estimated via different prediction heads. Experiments show that VicaSplat surpasses baseline methods for multi-view inputs, and achieves comparable performance to prior two-view approaches. Remarkably, VicaSplat also demonstrates exceptional cross-dataset generalization capability on the ScanNet benchmark, achieving superior performance without any fine-tuning. Project page: https://lizhiqi49.github.io/VicaSplat.
☆ EEdit : Rethinking the Spatial and Temporal Redundancy for Efficient Image Editing
Inversion-based image editing is rapidly gaining momentum while suffering from significant computation overhead, hindering its application in real-time interactive scenarios. In this paper, we rethink that the redundancy in inversion-based image editing exists in both the spatial and temporal dimensions, such as the unnecessary computation in unedited regions and the redundancy in the inversion progress. To tackle these challenges, we propose a practical framework, named EEdit, to achieve efficient image editing. Specifically, we introduce three techniques to solve them one by one. For spatial redundancy, spatial locality caching is introduced to compute the edited region and its neighboring regions while skipping the unedited regions, and token indexing preprocessing is designed to further accelerate the caching. For temporal redundancy, inversion step skipping is proposed to reuse the latent for efficient editing. Our experiments demonstrate an average of 2.46 $\times$ acceleration without performance drop in a wide range of editing tasks including prompt-guided image editing, dragging and image composition. Our codes are available at https://github.com/yuriYanZeXuan/EEdit
comment: 17 pages
☆ A Multi-Modal Federated Learning Framework for Remote Sensing Image Classification
Federated learning (FL) enables the collaborative training of deep neural networks across decentralized data archives (i.e., clients) without sharing the local data of the clients. Most of the existing FL methods assume that the data distributed across all clients is associated with the same data modality. However, remote sensing (RS) images present in different clients can be associated with diverse data modalities. The joint use of the multi-modal RS data can significantly enhance classification performance. To effectively exploit decentralized and unshared multi-modal RS data, our paper introduces a novel multi-modal FL framework for RS image classification problems. The proposed framework comprises three modules: 1) multi-modal fusion (MF); 2) feature whitening (FW); and 3) mutual information maximization (MIM). The MF module employs iterative model averaging to facilitate learning without accessing multi-modal training data on clients. The FW module aims to address the limitations of training data heterogeneity by aligning data distributions across clients. The MIM module aims to model mutual information by maximizing the similarity between images from different modalities. For the experimental analyses, we focus our attention on multi-label classification and pixel-based classification tasks in RS. The results obtained using two benchmark archives show the effectiveness of the proposed framework when compared to state-of-the-art algorithms in the literature. The code of the proposed framework will be available at https://git.tu-berlin.de/rsim/multi-modal-FL.
☆ Markerless Tracking-Based Registration for Medical Image Motion Correction
Our study focuses on isolating swallowing dynamics from interfering patient motion in videofluoroscopy, an X-ray technique that records patients swallowing a radiopaque bolus. These recordings capture multiple motion sources, including head movement, anatomical displacements, and bolus transit. To enable precise analysis of swallowing physiology, we aim to eliminate distracting motion, particularly head movement, while preserving essential swallowing-related dynamics. Optical flow methods fail due to artifacts like flickering and instability, making them unreliable for distinguishing different motion groups. We evaluated markerless tracking approaches (CoTracker, PIPs++, TAP-Net) and quantified tracking accuracy in key medical regions of interest. Our findings show that even sparse tracking points generate morphing displacement fields that outperform leading registration methods such as ANTs, LDDMM, and VoxelMorph. To compare all approaches, we assessed performance using MSE and SSIM metrics post-registration. We introduce a novel motion correction pipeline that effectively removes disruptive motion while preserving swallowing dynamics and surpassing competitive registration techniques. Code will be available after review.
comment: Under review
☆ KVQ: Boosting Video Quality Assessment via Saliency-guided Local Perception
Video Quality Assessment (VQA), which intends to predict the perceptual quality of videos, has attracted increasing attention. Due to factors like motion blur or specific distortions, the quality of different regions in a video varies. Recognizing the region-wise local quality within a video is beneficial for assessing global quality and can guide us in adopting fine-grained enhancement or transcoding strategies. Due to the heavy cost of annotating region-wise quality, the lack of ground truth constraints from relevant datasets further complicates the utilization of local perception. Inspired by the Human Visual System (HVS) that links global quality to the local texture of different regions and their visual saliency, we propose a Kaleidoscope Video Quality Assessment (KVQ) framework, which aims to effectively assess both saliency and local texture, thereby facilitating the assessment of global quality. Our framework extracts visual saliency and allocates attention using Fusion-Window Attention (FWA) while incorporating a Local Perception Constraint (LPC) to mitigate the reliance of regional texture perception on neighboring areas. KVQ obtains significant improvements across multiple scenarios on five VQA benchmarks compared to SOTA methods. Furthermore, to assess local perception, we establish a new Local Perception Visual Quality (LPVQ) dataset with region-wise annotations. Experimental results demonstrate the capability of KVQ in perceiving local distortions. KVQ models and the LPVQ dataset will be available at https://github.com/qyp2000/KVQ.
comment: 11 pages, 7 figures
☆ ROODI: Reconstructing Occluded Objects with Denoising Inpainters
While the quality of novel-view images has improved dramatically with 3D Gaussian Splatting, extracting specific objects from scenes remains challenging. Isolating individual 3D Gaussian primitives for each object and handling occlusions in scenes remain far from being solved. We propose a novel object extraction method based on two key principles: (1) being object-centric by pruning irrelevant primitives; and (2) leveraging generative inpainting to compensate for missing observations caused by occlusions. For pruning, we analyze the local structure of primitives using K-nearest neighbors, and retain only relevant ones. For inpainting, we employ an off-the-shelf diffusion-based inpainter combined with occlusion reasoning, utilizing the 3D representation of the entire scene. Our findings highlight the crucial synergy between pruning and inpainting, both of which significantly enhance extraction performance. We evaluate our method on a standard real-world dataset and introduce a synthetic dataset for quantitative analysis. Our approach outperforms the state-of-the-art, demonstrating its effectiveness in object extraction from complex scenes.
comment: Project page: https://yeonjin-chang.github.io/ROODI/
☆ SVIP: Semantically Contextualized Visual Patches for Zero-Shot Learning
Zero-shot learning (ZSL) aims to recognize unseen classes without labeled training examples by leveraging class-level semantic descriptors such as attributes. A fundamental challenge in ZSL is semantic misalignment, where semantic-unrelated information involved in visual features introduce ambiguity to visual-semantic interaction. Unlike existing methods that suppress semantic-unrelated information post hoc either in the feature space or the model space, we propose addressing this issue at the input stage, preventing semantic-unrelated patches from propagating through the network. To this end, we introduce Semantically contextualized VIsual Patches (SVIP) for ZSL, a transformer-based framework designed to enhance visual-semantic alignment. Specifically, we propose a self-supervised patch selection mechanism that preemptively learns to identify semantic-unrelated patches in the input space. This is trained with the supervision from aggregated attention scores across all transformer layers, which estimate each patch's semantic score. As removing semantic-unrelated patches from the input sequence may disrupt object structure, we replace them with learnable patch embeddings. With initialization from word embeddings, we can ensure they remain semantically meaningful throughout feature extraction. Extensive experiments on ZSL benchmarks demonstrate that SVIP achieves state-of-the-art performance results while providing more interpretable and semantically rich feature representations.
comment: Pre-print
☆ Interpretable Image Classification via Non-parametric Part Prototype Learning
Classifying images with an interpretable decision-making process is a long-standing problem in computer vision. In recent years, Prototypical Part Networks has gained traction as an approach for self-explainable neural networks, due to their ability to mimic human visual reasoning by providing explanations based on prototypical object parts. However, the quality of the explanations generated by these methods leaves room for improvement, as the prototypes usually focus on repetitive and redundant concepts. Leveraging recent advances in prototype learning, we present a framework for part-based interpretable image classification that learns a set of semantically distinctive object parts for each class, and provides diverse and comprehensive explanations. The core of our method is to learn the part-prototypes in a non-parametric fashion, through clustering deep features extracted from foundation vision models that encode robust semantic information. To quantitatively evaluate the quality of explanations provided by ProtoPNets, we introduce Distinctiveness Score and Comprehensiveness Score. Through evaluation on CUB-200-2011, Stanford Cars and Stanford Dogs datasets, we show that our framework compares favourably against existing ProtoPNets while achieving better interpretability. Code is available at: https://github.com/zijizhu/proto-non-param.
☆ Unveiling the Invisible: Reasoning Complex Occlusions Amodally with AURA
Amodal segmentation aims to infer the complete shape of occluded objects, even when the occluded region's appearance is unavailable. However, current amodal segmentation methods lack the capability to interact with users through text input and struggle to understand or reason about implicit and complex purposes. While methods like LISA integrate multi-modal large language models (LLMs) with segmentation for reasoning tasks, they are limited to predicting only visible object regions and face challenges in handling complex occlusion scenarios. To address these limitations, we propose a novel task named amodal reasoning segmentation, aiming to predict the complete amodal shape of occluded objects while providing answers with elaborations based on user text input. We develop a generalizable dataset generation pipeline and introduce a new dataset focusing on daily life scenarios, encompassing diverse real-world occlusions. Furthermore, we present AURA (Amodal Understanding and Reasoning Assistant), a novel model with advanced global and spatial-level designs specifically tailored to handle complex occlusions. Extensive experiments validate AURA's effectiveness on the proposed dataset. The code, model, and dataset will be publicly released.
comment: 11 pages, 5 figures, 5 tables
☆ CoStoDet-DDPM: Collaborative Training of Stochastic and Deterministic Models Improves Surgical Workflow Anticipation and Recognition
Anticipating and recognizing surgical workflows are critical for intelligent surgical assistance systems. However, existing methods rely on deterministic decision-making, struggling to generalize across the large anatomical and procedural variations inherent in real-world surgeries.In this paper, we introduce an innovative framework that incorporates stochastic modeling through a denoising diffusion probabilistic model (DDPM) into conventional deterministic learning for surgical workflow analysis. At the heart of our approach is a collaborative co-training paradigm: the DDPM branch captures procedural uncertainties to enrich feature representations, while the task branch focuses on predicting surgical phases and instrument usage.Theoretically, we demonstrate that this mutual refinement mechanism benefits both branches: the DDPM reduces prediction errors in uncertain scenarios, and the task branch directs the DDPM toward clinically meaningful representations. Notably, the DDPM branch is discarded during inference, enabling real-time predictions without sacrificing accuracy.Experiments on the Cholec80 dataset show that for the anticipation task, our method achieves a 16% reduction in eMAE compared to state-of-the-art approaches, and for phase recognition, it improves the Jaccard score by 1.0%. Additionally, on the AutoLaparo dataset, our method achieves a 1.5% improvement in the Jaccard score for phase recognition, while also exhibiting robust generalization to patient-specific variations. Our code and weight are available at https://github.com/kk42yy/CoStoDet-DDPM.
☆ Singular Value Fine-tuning for Few-Shot Class-Incremental Learning
Class-Incremental Learning (CIL) aims to prevent catastrophic forgetting of previously learned classes while sequentially incorporating new ones. The more challenging Few-shot CIL (FSCIL) setting further complicates this by providing only a limited number of samples for each new class, increasing the risk of overfitting in addition to standard CIL challenges. While catastrophic forgetting has been extensively studied, overfitting in FSCIL, especially with large foundation models, has received less attention. To fill this gap, we propose the Singular Value Fine-tuning for FSCIL (SVFCL) and compared it with existing approaches for adapting foundation models to FSCIL, which primarily build on Parameter Efficient Fine-Tuning (PEFT) methods like prompt tuning and Low-Rank Adaptation (LoRA). Specifically, SVFCL applies singular value decomposition to the foundation model weights, keeping the singular vectors fixed while fine-tuning the singular values for each task, and then merging them. This simple yet effective approach not only alleviates the forgetting problem but also mitigates overfitting more effectively while significantly reducing trainable parameters. Extensive experiments on four benchmark datasets, along with visualizations and ablation studies, validate the effectiveness of SVFCL. The code will be made available.
comment: 12 pages, 8 figures
☆ MouseGPT: A Large-scale Vision-Language Model for Mouse Behavior Analysis
Analyzing animal behavior is crucial in advancing neuroscience, yet quantifying and deciphering its intricate dynamics remains a significant challenge. Traditional machine vision approaches, despite their ability to detect spontaneous behaviors, fall short due to limited interpretability and reliance on manual labeling, which restricts the exploration of the full behavioral spectrum. Here, we introduce MouseGPT, a Vision-Language Model (VLM) that integrates visual cues with natural language to revolutionize mouse behavior analysis. Built upon our first-of-its-kind dataset - incorporating pose dynamics and open-vocabulary behavioral annotations across over 42 million frames of diverse psychiatric conditions - MouseGPT provides a novel, context-rich method for comprehensive behavior interpretation. Our holistic analysis framework enables detailed behavior profiling, clustering, and novel behavior discovery, offering deep insights without the need for labor - intensive manual annotation. Evaluations reveal that MouseGPT surpasses existing models in precision, adaptability, and descriptive richness, positioning it as a transformative tool for ethology and for unraveling complex behavioral dynamics in animal models.
comment: 53 pages, 5 figures, 7 extended figures
☆ TARS: Traffic-Aware Radar Scene Flow Estimation
Scene flow provides crucial motion information for autonomous driving. Recent LiDAR scene flow models utilize the rigid-motion assumption at the instance level, assuming objects are rigid bodies. However, these instance-level methods are not suitable for sparse radar point clouds. In this work, we present a novel $\textbf{T}$raffic-$\textbf{A}$ware $\textbf{R}$adar $\textbf{S}$cene flow estimation method, named $\textbf{TARS}$, which utilizes the motion rigidity at the traffic level. To address the challenges in radar scene flow, we perform object detection and scene flow jointly and boost the latter. We incorporate the feature map from the object detector, trained with detection losses, to make radar scene flow aware of the environment and road users. Therefrom, we construct a Traffic Vector Field (TVF) in the feature space, enabling a holistic traffic-level scene understanding in our scene flow branch. When estimating the scene flow, we consider both point-level motion cues from point neighbors and traffic-level consistency of rigid motion within the space. TARS outperforms the state of the art on a proprietary dataset and the View-of-Delft dataset, improving the benchmarks by 23% and 15%, respectively.
☆ LVAgent: Long Video Understanding by Multi-Round Dynamical Collaboration of MLLM Agents
Existing Multimodal Large Language Models (MLLMs) encounter significant challenges in modeling the temporal context within long videos. Currently, mainstream Agent-based methods use external tools (e.g., search engine, memory banks, OCR, retrieval models) to assist a single MLLM in answering long video questions. Despite such tool-based support, a solitary MLLM still offers only a partial understanding of long videos, resulting in limited performance. In order to better address long video tasks, we introduce LVAgent, the first framework enabling multi-round dynamic collaboration of MLLM agents in long video understanding. Our methodology consists of four key steps: 1. Selection: We pre-select appropriate agents from the model library to form optimal agent teams based on different tasks. 2. Perception: We design an effective retrieval scheme for long videos, improving the coverage of critical temporal segments while maintaining computational efficiency. 3. Action: Agents answer long video-related questions and exchange reasons. 4. Reflection: We evaluate the performance of each agent in each round of discussion and optimize the agent team for dynamic collaboration. The agents iteratively refine their answers by multi-round dynamical collaboration of MLLM agents. LVAgent is the first agent system method that outperforms all closed-source models (including GPT-4o) and open-source models (including InternVL-2.5 and Qwen2-VL) in the long video understanding tasks. Our LVAgent achieves an accuracy of 80% on four mainstream long video understanding tasks. Notably, on the LongVideoBench dataset, LVAgent improves accuracy by up to 14.3% compared with SOTA.
☆ ST-FlowNet: An Efficient Spiking Neural Network for Event-Based Optical Flow Estimation
Spiking Neural Networks (SNNs) have emerged as a promising tool for event-based optical flow estimation tasks due to their ability to leverage spatio-temporal information and low-power capabilities. However, the performance of SNN models is often constrained, limiting their application in real-world scenarios. In this work, we address this gap by proposing a novel neural network architecture, ST-FlowNet, specifically tailored for optical flow estimation from event-based data. The ST-FlowNet architecture integrates ConvGRU modules to facilitate cross-modal feature augmentation and temporal alignment of the predicted optical flow, improving the network's ability to capture complex motion dynamics. Additionally, to overcome the challenges associated with training SNNs, we introduce a novel approach to derive SNN models from pre-trained artificial neural networks (ANNs) through ANN-to-SNN conversion or our proposed BISNN method. Notably, the BISNN method alleviates the complexities involved in biological parameter selection, further enhancing the robustness of SNNs in optical flow estimation tasks. Extensive evaluations on three benchmark event-based datasets demonstrate that the SNN-based ST-FlowNet model outperforms state-of-the-art methods, delivering superior performance in accurate optical flow estimation across a diverse range of dynamic visual scenes. Furthermore, the inherent energy efficiency of SNN models is highlighted, establishing a compelling advantage for their practical deployment. Overall, our work presents a novel framework for optical flow estimation using SNNs and event-based data, contributing to the advancement of neuromorphic vision applications.
comment: 12 pages, 5 figures, 5 tables; This work has been submitted for possible publication
☆ Robustness Tokens: Towards Adversarial Robustness of Transformers ECCV
Recently, large pre-trained foundation models have become widely adopted by machine learning practitioners for a multitude of tasks. Given that such models are publicly available, relying on their use as backbone models for downstream tasks might result in high vulnerability to adversarial attacks crafted with the same public model. In this work, we propose Robustness Tokens, a novel approach specific to the transformer architecture that fine-tunes a few additional private tokens with low computational requirements instead of tuning model parameters as done in traditional adversarial training. We show that Robustness Tokens make Vision Transformer models significantly more robust to white-box adversarial attacks while also retaining the original downstream performances.
comment: This paper has been accepted for publication at the European Conference on Computer Vision (ECCV), 2024
☆ Through the Magnifying Glass: Adaptive Perception Magnification for Hallucination-Free VLM Decoding
Existing vision-language models (VLMs) often suffer from visual hallucination, where the generated responses contain inaccuracies that are not grounded in the visual input. Efforts to address this issue without model finetuning primarily mitigate hallucination by reducing biases contrastively or amplifying the weights of visual embedding during decoding. However, these approaches improve visual perception at the cost of impairing the language reasoning capability. In this work, we propose the Perception Magnifier (PM), a novel visual decoding method that iteratively isolates relevant visual tokens based on attention and magnifies the corresponding regions, spurring the model to concentrate on fine-grained visual details during decoding. Specifically, by magnifying critical regions while preserving the structural and contextual information at each decoding step, PM allows the VLM to enhance its scrutiny of the visual input, hence producing more accurate and faithful responses. Extensive experimental results demonstrate that PM not only achieves superior hallucination mitigation but also enhances language generation while preserving strong reasoning capabilities.Code is available at https://github.com/ShunqiM/PM .
comment: 19 pages, 5 figures, 9 tables
GS-SDF: LiDAR-Augmented Gaussian Splatting and Neural SDF for Geometrically Consistent Rendering and Reconstruction
Digital twins are fundamental to the development of autonomous driving and embodied artificial intelligence. However, achieving high-granularity surface reconstruction and high-fidelity rendering remains a challenge. Gaussian splatting offers efficient photorealistic rendering but struggles with geometric inconsistencies due to fragmented primitives and sparse observational data in robotics applications. Existing regularization methods, which rely on render-derived constraints, often fail in complex environments. Moreover, effectively integrating sparse LiDAR data with Gaussian splatting remains challenging. We propose a unified LiDAR-visual system that synergizes Gaussian splatting with a neural signed distance field. The accurate LiDAR point clouds enable a trained neural signed distance field to offer a manifold geometry field, This motivates us to offer an SDF-based Gaussian initialization for physically grounded primitive placement and a comprehensive geometric regularization for geometrically consistent rendering and reconstruction. Experiments demonstrate superior reconstruction accuracy and rendering quality across diverse trajectories. To benefit the community, the codes will be released at https://github.com/hku-mars/GS-SDF.
♻ ☆ RewardSDS: Aligning Score Distillation via Reward-Weighted Sampling
Score Distillation Sampling (SDS) has emerged as an effective technique for leveraging 2D diffusion priors for tasks such as text-to-3D generation. While powerful, SDS struggles with achieving fine-grained alignment to user intent. To overcome this, we introduce RewardSDS, a novel approach that weights noise samples based on alignment scores from a reward model, producing a weighted SDS loss. This loss prioritizes gradients from noise samples that yield aligned high-reward output. Our approach is broadly applicable and can extend SDS-based methods. In particular, we demonstrate its applicability to Variational Score Distillation (VSD) by introducing RewardVSD. We evaluate RewardSDS and RewardVSD on text-to-image, 2D editing, and text-to-3D generation tasks, showing significant improvements over SDS and VSD on a diverse set of metrics measuring generation quality and alignment to desired reward models, enabling state-of-the-art performance. Project page is available at https://itaychachy.github.io/reward-sds/.
♻ ☆ BIMBA: Selective-Scan Compression for Long-Range Video Question Answering CVPR 2025
Video Question Answering (VQA) in long videos poses the key challenge of extracting relevant information and modeling long-range dependencies from many redundant frames. The self-attention mechanism provides a general solution for sequence modeling, but it has a prohibitive cost when applied to a massive number of spatiotemporal tokens in long videos. Most prior methods rely on compression strategies to lower the computational cost, such as reducing the input length via sparse frame sampling or compressing the output sequence passed to the large language model (LLM) via space-time pooling. However, these naive approaches over-represent redundant information and often miss salient events or fast-occurring space-time patterns. In this work, we introduce BIMBA, an efficient state-space model to handle long-form videos. Our model leverages the selective scan algorithm to learn to effectively select critical information from high-dimensional video and transform it into a reduced token sequence for efficient LLM processing. Extensive experiments demonstrate that BIMBA achieves state-of-the-art accuracy on multiple long-form VQA benchmarks, including PerceptionTest, NExT-QA, EgoSchema, VNBench, LongVideoBench, and Video-MME. Code, and models are publicly available at https://sites.google.com/view/bimba-mllm.
comment: Accepted by CVPR 2025
♻ ☆ The R2D2 Deep Neural Network Series for Scalable Non-Cartesian Magnetic Resonance Imaging
We introduce the R2D2 Deep Neural Network (DNN) series paradigm for fast and scalable image reconstruction from highly-accelerated non-Cartesian k-space acquisitions in Magnetic Resonance Imaging (MRI). While unrolled DNN architectures provide a robust image formation approach via data-consistency layers, embedding non-uniform fast Fourier transform operators in a DNN can become impractical to train at large scale, e.g in 2D MRI with a large number of coils, or for higher-dimensional imaging. Plug-and-play approaches that alternate a learned denoiser blind to the measurement setting with a data-consistency step are not affected by this limitation but their highly iterative nature implies slow reconstruction. To address this scalability challenge, we leverage the R2D2 paradigm that was recently introduced to enable ultra-fast reconstruction for large-scale Fourier imaging in radio astronomy. R2D2's reconstruction is formed as a series of residual images iteratively estimated as outputs of DNN modules taking the previous iteration's data residual as input. The method can be interpreted as a learned version of the Matching Pursuit algorithm. A series of R2D2 DNN modules were sequentially trained in a supervised manner on the fastMRI dataset and validated for 2D multi-coil MRI in simulation and on real data, targeting highly under-sampled radial k-space sampling. Results suggest that a series with only few DNNs achieves superior reconstruction quality over its unrolled incarnation R2D2-Net (whose training is also much less scalable), and over the state-of-the-art diffusion-based "Decomposed Diffusion Sampler" approach (also characterised by a slower reconstruction process).
comment: 13 pages, 10 figures
♻ ☆ DoF-Gaussian: Controllable Depth-of-Field for 3D Gaussian Splatting CVPR 2025
Recent advances in 3D Gaussian Splatting (3D-GS) have shown remarkable success in representing 3D scenes and generating high-quality, novel views in real-time. However, 3D-GS and its variants assume that input images are captured based on pinhole imaging and are fully in focus. This assumption limits their applicability, as real-world images often feature shallow depth-of-field (DoF). In this paper, we introduce DoF-Gaussian, a controllable depth-of-field method for 3D-GS. We develop a lens-based imaging model based on geometric optics principles to control DoF effects. To ensure accurate scene geometry, we incorporate depth priors adjusted per scene, and we apply defocus-to-focus adaptation to minimize the gap in the circle of confusion. We also introduce a synthetic dataset to assess refocusing capabilities and the model's ability to learn precise lens parameters. Our framework is customizable and supports various interactive applications. Extensive experiments confirm the effectiveness of our method. Our project is available at https://dof-gaussian.github.io.
comment: CVPR 2025
♻ ☆ 2HandedAfforder: Learning Precise Actionable Bimanual Affordances from Human Videos
When interacting with objects, humans effectively reason about which regions of objects are viable for an intended action, i.e., the affordance regions of the object. They can also account for subtle differences in object regions based on the task to be performed and whether one or two hands need to be used. However, current vision-based affordance prediction methods often reduce the problem to naive object part segmentation. In this work, we propose a framework for extracting affordance data from human activity video datasets. Our extracted 2HANDS dataset contains precise object affordance region segmentations and affordance class-labels as narrations of the activity performed. The data also accounts for bimanual actions, i.e., two hands co-ordinating and interacting with one or more objects. We present a VLM-based affordance prediction model, 2HandedAfforder, trained on the dataset and demonstrate superior performance over baselines in affordance region segmentation for various activities. Finally, we show that our predicted affordance regions are actionable, i.e., can be used by an agent performing a task, through demonstration in robotic manipulation scenarios.
comment: Project site: https://sites.google.com/view/2handedafforder
♻ ☆ Audio-Visual Deepfake Detection With Local Temporal Inconsistencies ICASSP 2025
This paper proposes an audio-visual deepfake detection approach that aims to capture fine-grained temporal inconsistencies between audio and visual modalities. To achieve this, both architectural and data synthesis strategies are introduced. From an architectural perspective, a temporal distance map, coupled with an attention mechanism, is designed to capture these inconsistencies while minimizing the impact of irrelevant temporal subsequences. Moreover, we explore novel pseudo-fake generation techniques to synthesize local inconsistencies. Our approach is evaluated against state-of-the-art methods using the DFDC and FakeAVCeleb datasets, demonstrating its effectiveness in detecting audio-visual deepfakes.
comment: Accepted in ICASSP 2025
♻ ☆ WonderVerse: Extendable 3D Scene Generation with Video Generative Models
We introduce \textit{WonderVerse}, a simple but effective framework for generating extendable 3D scenes. Unlike existing methods that rely on iterative depth estimation and image inpainting, often leading to geometric distortions and inconsistencies, WonderVerse leverages the powerful world-level priors embedded within video generative foundation models to create highly immersive and geometrically coherent 3D environments. Furthermore, we propose a new technique for controllable 3D scene extension to substantially increase the scale of the generated environments. Besides, we introduce a novel abnormal sequence detection module that utilizes camera trajectory to address geometric inconsistency in the generated videos. Finally, WonderVerse is compatible with various 3D reconstruction methods, allowing both efficient and high-quality generation. Extensive experiments on 3D scene generation demonstrate that our WonderVerse, with an elegant and simple pipeline, delivers extendable and highly-realistic 3D scenes, markedly outperforming existing works that rely on more complex architectures.
♻ ☆ FaVChat: Unlocking Fine-Grained Facial Video Understanding with Multimodal Large Language Models
Video-based multimodal large language models (VMLLMs) have demonstrated remarkable potential in cross-modal video understanding. However, their abilities in fine-grained face comprehension remain largely underexplored. Given its pivotal role in human-centric intelligence, developing VMLLMs for facial understanding holds a fundamental problem. To address this gap, we propose FaVChat, the first VMLLM specifically designed for fine-grained facial video understanding. To facilitate its training, we construct a large-scale facial video dataset comprising over 60k videos, with the majority annotated with 83 fine-grained facial attributes. These attributes are incorporated to enrich GPT-4o-generated captions, yielding 60k high-quality video-summary pairs and an additional 170k fine-grained question-answering (QA) pairs. To effectively capture rich facial clues, we propose a hybrid model architecture composed of a general visual encoder, a dedicated facial encoder, and a mixture-of-experts-enhanced adapter for adaptive fusion of multi-source visual features. To mitigate information loss during feature transformation, we extract multi-granularity representations from the facial encoder and integrate them into the subsequent LLM. This design enhances the model's ability to comprehend and respond to questions involving diverse levels of visual details. We employ a progressive training paradigm, transitioning from video summarization to a high-quality subset of video QA, gradually increasing task complexity to enhance the model's fine-grained visual perception. We conduct extensive zero-shot evaluation on a couple of public benchmarks, demonstrating that FaVChat consistently surpasses existing VMLLMs across multiple tasks.
♻ ☆ Complexity Experts are Task-Discriminative Learners for Any Image Restoration CVPR 2025
Recent advancements in all-in-one image restoration models have revolutionized the ability to address diverse degradations through a unified framework. However, parameters tied to specific tasks often remain inactive for other tasks, making mixture-of-experts (MoE) architectures a natural extension. Despite this, MoEs often show inconsistent behavior, with some experts unexpectedly generalizing across tasks while others struggle within their intended scope. This hinders leveraging MoEs' computational benefits by bypassing irrelevant experts during inference. We attribute this undesired behavior to the uniform and rigid architecture of traditional MoEs. To address this, we introduce ``complexity experts" -- flexible expert blocks with varying computational complexity and receptive fields. A key challenge is assigning tasks to each expert, as degradation complexity is unknown in advance. Thus, we execute tasks with a simple bias toward lower complexity. To our surprise, this preference effectively drives task-specific allocation, assigning tasks to experts with the appropriate complexity. Extensive experiments validate our approach, demonstrating the ability to bypass irrelevant experts during inference while maintaining superior performance. The proposed MoCE-IR model outperforms state-of-the-art methods, affirming its efficiency and practical applicability. The source code and models are publicly available at \href{https://eduardzamfir.github.io/moceir/}{\texttt{eduardzamfir.github.io/MoCE-IR/}}
comment: Accepted at CVPR 2025
♻ ☆ Tiled Diffusion
Image tiling -- the seamless connection of disparate images to create a coherent visual field -- is crucial for applications such as texture creation, video game asset development, and digital art. Traditionally, tiles have been constructed manually, a method that poses significant limitations in scalability and flexibility. Recent research has attempted to automate this process using generative models. However, current approaches primarily focus on tiling textures and manipulating models for single-image generation, without inherently supporting the creation of multiple interconnected tiles across diverse domains. This paper presents Tiled Diffusion, a novel approach that extends the capabilities of diffusion models to accommodate the generation of cohesive tiling patterns across various domains of image synthesis that require tiling. Our method supports a wide range of tiling scenarios, from self-tiling to complex many-to-many connections, enabling seamless integration of multiple images. Tiled Diffusion automates the tiling process, eliminating the need for manual intervention and enhancing creative possibilities in various applications, such as seamlessly tiling of existing images, tiled texture creation, and 360$^\circ$ synthesis.
comment: Please visit our website for more information and the code: https://madaror.github.io/tiled-diffusion.github.io/
♻ ☆ ACDiT: Interpolating Autoregressive Conditional Modeling and Diffusion Transformer
We present ACDiT, a novel Autoregressive blockwise Conditional Diffusion Transformer, that innovatively combines autoregressive and diffusion paradigms for modeling continuous visual information. By introducing a block-wise autoregressive unit, ACDiT offers a flexible interpolation between token-wise autoregression and full-sequence diffusion, bypassing the limitations of discrete tokenization. The generation of each block is formulated as a conditional diffusion process, conditioned on prior blocks. ACDiT is easy to implement, as simple as creating a Skip-Causal Attention Mask (SCAM) on standard diffusion transformer during training. During inference, the process iterates between diffusion denoising and autoregressive decoding that can make full use of KV-Cache. We show that ACDiT performs best among all autoregressive baselines under similar model scales on image and video generation tasks. We also demonstrate that benefiting from autoregressive modeling, pretrained ACDiT can be transferred in visual understanding tasks despite being trained with the diffusion objective. The analysis of the trade-off between autoregressive modeling and diffusion demonstrates the potential of ACDiT to be used in long-horizon visual generation tasks. We hope that ACDiT offers a novel perspective on visual autoregressive generation and unlocks new avenues for unified models.
♻ ☆ Video Super-Resolution: All You Need is a Video Diffusion Model
We present a generic video super-resolution algorithm in this paper, based on the Diffusion Posterior Sampling framework with an unconditional video generation model in latent space. The video generation model, a diffusion transformer, functions as a space-time model. We argue that a powerful model, which learns the physics of the real world, can easily handle various kinds of motion patterns as prior knowledge, thus eliminating the need for explicit estimation of optical flows or motion parameters for pixel alignment. Furthermore, a single instance of the proposed video diffusion transformer model can adapt to different sampling conditions without re-training. Empirical results on synthetic and real-world datasets demonstrate that our method has strong capabilities to address video super-resolution challenges.
♻ ☆ UniGaze: Towards Universal Gaze Estimation via Large-scale Pre-Training
Despite decades of research on data collection and model architectures, current gaze estimation models encounter significant challenges in generalizing across diverse data domains. Recent advances in self-supervised pre-training have shown remarkable performances in generalization across various vision tasks. However, their effectiveness in gaze estimation remains unexplored. We propose UniGaze, for the first time, leveraging large-scale in-the-wild facial datasets for gaze estimation through self-supervised pre-training. Through systematic investigation, we clarify critical factors that are essential for effective pretraining in gaze estimation. Our experiments reveal that self-supervised approaches designed for semantic tasks fail when applied to gaze estimation, while our carefully designed pre-training pipeline consistently improves cross-domain performance. Through comprehensive experiments of challenging cross-dataset evaluation and novel protocols including leave-one-dataset-out and joint-dataset settings, we demonstrate that UniGaze significantly improves generalization across multiple data domains while minimizing reliance on costly labeled data. source code and model are available at https://github.com/ut-vision/UniGaze.
♻ ☆ Fast MRI for All: Bridging Equity Gaps via Training without Raw Data Access
Physics-driven deep learning (PD-DL) approaches have become popular for improved reconstruction of fast magnetic resonance imaging (MRI) scans. Though PD-DL offers higher acceleration rates than existing clinical fast MRI techniques, their use has been limited outside specialized MRI centers. A key challenge is generalization to underrepresented pathologies or populations, noted in multiple studies, with fine-tuning on target populations suggested for improvement. However, current approaches for PD-DL training require access to raw k-space measurements, which is typically only available at specialized MRI centers that have research agreements for such data access. This is especially an issue for rural and underserved areas, where commercial MRI scanners only provide access to a final reconstructed image. To tackle these challenges, we propose Compressibility-inspired Unsupervised Learning via Parallel Imaging Fidelity (CUPID) for high-quality PD-DL training using only routine clinical reconstructed images exported from an MRI scanner. CUPID evaluates output quality with a compressibility-based approach while ensuring that the output stays consistent with the clinical parallel imaging reconstruction through well-designed perturbations. Our results show CUPID achieves similar quality to established PD-DL training that requires k-space data while outperforming compressed sensing (CS) and diffusion-based generative methods. We further demonstrate its effectiveness in a zero-shot training setup for retrospectively and prospectively sub-sampled acquisitions, attesting to its minimal training burden. As an approach that radically deviates from existing strategies, CUPID presents an opportunity to provide equitable access to fast MRI for underserved populations in an attempt to reduce the inequalities associated with this expensive imaging modality.
♻ ☆ SpotLight: Shadow-Guided Object Relighting via Diffusion
Recent work has shown that diffusion models can serve as powerful neural rendering engines that can be leveraged for inserting virtual objects into images. However, unlike typical physics-based renderers, these neural rendering engines are limited by the lack of manual control over the lighting, which is often essential for improving or personalizing the desired image outcome. In this paper, we show that precise lighting control can be achieved for object relighting simply by providing a coarse shadow of the object. Indeed, we show that injecting only the desired shadow of the object into a pre-trained diffusion-based neural renderer enables it to accurately shade the object according to the desired light position, while properly harmonizing the object (and its shadow) within the target background image. Our method, SpotLight, leverages existing neural rendering approaches and achieves controllable relighting results with no additional training. We show that SpotLight achieves superior object compositing results, both quantitatively and perceptually, as confirmed by a user study, outperforming existing diffusion-based models specifically designed for relighting. We also demonstrate other applications, such as hand-scribbling shadows and full-image relighting, demonstrating its versatility.
comment: Project page: https://lvsn.github.io/spotlight
♻ ☆ HecVL: Hierarchical Video-Language Pretraining for Zero-shot Surgical Phase Recognition MICCAI2024
Natural language could play an important role in developing generalist surgical models by providing a broad source of supervision from raw texts. This flexible form of supervision can enable the model's transferability across datasets and tasks as natural language can be used to reference learned visual concepts or describe new ones. In this work, we present HecVL, a novel hierarchical video-language pretraining approach for building a generalist surgical model. Specifically, we construct a hierarchical video-text paired dataset by pairing the surgical lecture video with three hierarchical levels of texts: at clip-level, atomic actions using transcribed audio texts; at phase-level, conceptual text summaries; and at video-level, overall abstract text of the surgical procedure. Then, we propose a novel fine-to-coarse contrastive learning framework that learns separate embedding spaces for the three video-text hierarchies using a single model. By disentangling embedding spaces of different hierarchical levels, the learned multi-modal representations encode short-term and long-term surgical concepts in the same model. Thanks to the injected textual semantics, we demonstrate that the HecVL approach can enable zero-shot surgical phase recognition without any human annotation. Furthermore, we show that the same HecVL model for surgical phase recognition can be transferred across different surgical procedures and medical centers. The code is available at https://github.com/CAMMA-public/SurgVLP
comment: Accepted by MICCAI2024
♻ ☆ Procedure-Aware Surgical Video-language Pretraining with Hierarchical Knowledge Augmentation NeurIPS 2024
Surgical video-language pretraining (VLP) faces unique challenges due to the knowledge domain gap and the scarcity of multi-modal data. This study aims to bridge the gap by addressing issues regarding textual information loss in surgical lecture videos and the spatial-temporal challenges of surgical VLP. We propose a hierarchical knowledge augmentation approach and a novel Procedure-Encoded Surgical Knowledge-Augmented Video-Language Pretraining (PeskaVLP) framework to tackle these issues. The knowledge augmentation uses large language models (LLM) for refining and enriching surgical concepts, thus providing comprehensive language supervision and reducing the risk of overfitting. PeskaVLP combines language supervision with visual self-supervision, constructing hard negative samples and employing a Dynamic Time Warping (DTW) based loss function to effectively comprehend the cross-modal procedural alignment. Extensive experiments on multiple public surgical scene understanding and cross-modal retrieval datasets show that our proposed method significantly improves zero-shot transferring performance and offers a generalist visual representation for further advancements in surgical scene understanding.The code is available at https://github.com/CAMMA-public/SurgVLP
comment: Accepted at the 38th Conference on Neural Information Processing Systems (NeurIPS 2024 Spolight)
♻ ☆ Making Every Frame Matter: Continuous Activity Recognition in Streaming Video via Adaptive Video Context Modeling
Video activity recognition has become increasingly important in robots and embodied AI. Recognizing continuous video activities poses considerable challenges due to the fast expansion of streaming video, which contains multi-scale and untrimmed activities. We introduce a novel system, CARS, to overcome these issues through adaptive video context modeling. Adaptive video context modeling refers to selectively maintaining activity-related features in temporal and spatial dimensions. CARS has two key designs. The first is an activity spatial feature extraction by eliminating irrelevant visual features while maintaining recognition accuracy. The second is an activity-aware state update introducing dynamic adaptability to better preserve the video context for multi-scale activity recognition. Our CARS runs at speeds $>$30 FPS on typical edge devices and outperforms all baselines by 1.2\% to 79.7\% in accuracy. Moreover, we explore applying CARS to a large video model as a video encoder. Experimental results show that our CARS can result in a 0.46-point enhancement (on a 5-point scale) on the in-distribution video activity dataset, and an improvement ranging from 1.19\% to 4\% on zero-shot video activity datasets.
♻ ☆ Meissonic: Revitalizing Masked Generative Transformers for Efficient High-Resolution Text-to-Image Synthesis ICLR 2025
We present Meissonic, which elevates non-autoregressive masked image modeling (MIM) text-to-image to a level comparable with state-of-the-art diffusion models like SDXL. By incorporating a comprehensive suite of architectural innovations, advanced positional encoding strategies, and optimized sampling conditions, Meissonic substantially improves MIM's performance and efficiency. Additionally, we leverage high-quality training data, integrate micro-conditions informed by human preference scores, and employ feature compression layers to further enhance image fidelity and resolution. Our model not only matches but often exceeds the performance of existing models like SDXL in generating high-quality, high-resolution images. Extensive experiments validate Meissonic's capabilities, demonstrating its potential as a new standard in text-to-image synthesis. We release a model checkpoint capable of producing $1024 \times 1024$ resolution images.
comment: Accepted to ICLR 2025. Codes and Supplementary Material: https://github.com/viiika/Meissonic
♻ ☆ MVGSR: Multi-View Consistency Gaussian Splatting for Robust Surface Reconstruction
3D Gaussian Splatting (3DGS) has gained significant attention for its high-quality rendering capabilities, ultra-fast training, and inference speeds. However, when we apply 3DGS to surface reconstruction tasks, especially in environments with dynamic objects and distractors, the method suffers from floating artifacts and color errors due to inconsistency from different viewpoints. To address this challenge, we propose Multi-View Consistency Gaussian Splatting for the domain of Robust Surface Reconstruction (\textbf{MVGSR}), which takes advantage of lightweight Gaussian models and a {heuristics-guided distractor masking} strategy for robust surface reconstruction in non-static environments. Compared to existing methods that rely on MLPs for distractor segmentation strategies, our approach separates distractors from static scene elements by comparing multi-view feature consistency, allowing us to obtain precise distractor masks early in training. Furthermore, we introduce a pruning measure based on multi-view contributions to reset transmittance, effectively reducing floating artifacts. Finally, a multi-view consistency loss is applied to achieve high-quality performance in surface reconstruction tasks. Experimental results demonstrate that MVGSR achieves competitive geometric accuracy and rendering fidelity compared to the state-of-the-art surface reconstruction algorithms. More information is available on our project page (https://mvgsr.github.io).
comment: project page https://mvgsr.github.io
♻ ☆ COMBO: Compositional World Models for Embodied Multi-Agent Cooperation ICLR 2025
In this paper, we investigate the problem of embodied multi-agent cooperation, where decentralized agents must cooperate given only egocentric views of the world. To effectively plan in this setting, in contrast to learning world dynamics in a single-agent scenario, we must simulate world dynamics conditioned on an arbitrary number of agents' actions given only partial egocentric visual observations of the world. To address this issue of partial observability, we first train generative models to estimate the overall world state given partial egocentric observations. To enable accurate simulation of multiple sets of actions on this world state, we then propose to learn a compositional world model for multi-agent cooperation by factorizing the naturally composable joint actions of multiple agents and compositionally generating the video conditioned on the world state. By leveraging this compositional world model, in combination with Vision Language Models to infer the actions of other agents, we can use a tree search procedure to integrate these modules and facilitate online cooperative planning. We evaluate our methods on three challenging benchmarks with 2-4 agents. The results show our compositional world model is effective and the framework enables the embodied agents to cooperate efficiently with different agents across various tasks and an arbitrary number of agents, showing the promising future of our proposed methods. More videos can be found at https://embodied-agi.cs.umass.edu/combo/.
comment: Published at ICLR 2025. 24 pages. The first three authors contributed equally
♻ ☆ EMOVA: Empowering Language Models to See, Hear and Speak with Vivid Emotions CVPR 2025
GPT-4o, an omni-modal model that enables vocal conversations with diverse emotions and tones, marks a milestone for omni-modal foundation models. However, empowering Large Language Models to perceive and generate images, texts, and speeches end-to-end with publicly available data remains challenging for the open-source community. Existing vision-language models rely on external tools for speech processing, while speech-language models still suffer from limited or totally without vision-understanding capabilities. To address this gap, we propose the EMOVA (EMotionally Omni-present Voice Assistant), to enable Large Language Models with end-to-end speech abilities while maintaining the leading vision-language performance. With a semantic-acoustic disentangled speech tokenizer, we surprisingly notice that omni-modal alignment can further enhance vision-language and speech abilities compared with the bi-modal aligned counterparts. Moreover, a lightweight style module is introduced for the flexible speech style controls including emotions and pitches. For the first time, EMOVA achieves state-of-the-art performance on both the vision-language and speech benchmarks, and meanwhile, supporting omni-modal spoken dialogue with vivid emotions.
comment: Accepted by CVPR 2025. Project Page: https://emova-ollm.github.io/
♻ ☆ SplatAD: Real-Time Lidar and Camera Rendering with 3D Gaussian Splatting for Autonomous Driving
Ensuring the safety of autonomous robots, such as self-driving vehicles, requires extensive testing across diverse driving scenarios. Simulation is a key ingredient for conducting such testing in a cost-effective and scalable way. Neural rendering methods have gained popularity, as they can build simulation environments from collected logs in a data-driven manner. However, existing neural radiance field (NeRF) methods for sensor-realistic rendering of camera and lidar data suffer from low rendering speeds, limiting their applicability for large-scale testing. While 3D Gaussian Splatting (3DGS) enables real-time rendering, current methods are limited to camera data and are unable to render lidar data essential for autonomous driving. To address these limitations, we propose SplatAD, the first 3DGS-based method for realistic, real-time rendering of dynamic scenes for both camera and lidar data. SplatAD accurately models key sensor-specific phenomena such as rolling shutter effects, lidar intensity, and lidar ray dropouts, using purpose-built algorithms to optimize rendering efficiency. Evaluation across three autonomous driving datasets demonstrates that SplatAD achieves state-of-the-art rendering quality with up to +2 PSNR for NVS and +3 PSNR for reconstruction while increasing rendering speed over NeRF-based methods by an order of magnitude. See https://research.zenseact.com/publications/splatad/ for our project page.
♻ ☆ PEMF-VTO: Point-Enhanced Video Virtual Try-on via Mask-free Paradigm
Video Virtual Try-on aims to seamlessly transfer a reference garment onto a target person in a video while preserving both visual fidelity and temporal coherence. Existing methods typically rely on inpainting masks to define the try-on area, enabling accurate garment transfer for simple scenes (e.g., in-shop videos). However, these mask-based approaches struggle with complex real-world scenarios, as overly large and inconsistent masks often destroy spatial-temporal information, leading to distorted results. Mask-free methods alleviate this issue but face challenges in accurately determining the try-on area, especially for videos with dynamic body movements. To address these limitations, we propose PEMF-VTO, a novel Point-Enhanced Mask-Free Video Virtual Try-On framework that leverages sparse point alignments to explicitly guide garment transfer. Our key innovation is the introduction of point-enhanced guidance, which provides flexible and reliable control over both spatial-level garment transfer and temporal-level video coherence. Specifically, we design a Point-Enhanced Transformer (PET) with two core components: Point-Enhanced Spatial Attention (PSA), which uses frame-cloth point alignments to precisely guide garment transfer, and Point-Enhanced Temporal Attention (PTA), which leverages frame-frame point correspondences to enhance temporal coherence and ensure smooth transitions across frames. Extensive experiments demonstrate that our PEMF-VTO outperforms state-of-the-art methods, generating more natural, coherent, and visually appealing try-on videos, particularly for challenging in-the-wild scenarios.
♻ ☆ Semi-supervised Semantic Segmentation for Remote Sensing Images via Multi-scale Uncertainty Consistency and Cross-Teacher-Student Attention
Semi-supervised learning offers an appealing solution for remote sensing (RS) image segmentation to relieve the burden of labor-intensive pixel-level labeling. However, RS images pose unique challenges, including rich multi-scale features and high inter-class similarity. To address these problems, this paper proposes a novel semi-supervised Multi-Scale Uncertainty and Cross-Teacher-Student Attention (MUCA) model for RS image semantic segmentation tasks. Specifically, MUCA constrains the consistency among feature maps at different layers of the network by introducing a multi-scale uncertainty consistency regularization. It improves the multi-scale learning capability of semi-supervised algorithms on unlabeled data. Additionally, MUCA utilizes a Cross-Teacher-Student attention mechanism to guide the student network, guiding the student network to construct more discriminative feature representations through complementary features from the teacher network. This design effectively integrates weak and strong augmentations (WA and SA) to further boost segmentation performance. To verify the effectiveness of our model, we conduct extensive experiments on ISPRS-Potsdam and LoveDA datasets. The experimental results show the superiority of our method over state-of-the-art semi-supervised methods. Notably, our model excels in distinguishing highly similar objects, showcasing its potential for advancing semi-supervised RS image segmentation tasks.
♻ ☆ Are you Struggling? Dataset and Baselines for Struggle Determination in Assembly Videos
Determining when people are struggling from video enables a finer-grained understanding of actions and opens opportunities for building intelligent support visual interfaces. In this paper, we present a new dataset with three assembly activities and corresponding performance baselines for the determination of struggle from video. Three real-world problem-solving activities including assembling plumbing pipes (Pipes-Struggle), pitching camping tents (Tent-Struggle) and solving the Tower of Hanoi puzzle (Tower-Struggle) are introduced. Video segments were scored w.r.t. the level of struggle as perceived by annotators using a forced choice 4-point scale. Each video segment was annotated by a single expert annotator in addition to crowd-sourced annotations. The dataset is the first struggle annotation dataset and contains 5.1 hours of video and 725,100 frames from 73 participants in total. We evaluate three decision-making tasks: struggle classification, struggle level regression, and struggle label distribution learning. We provide baseline results for each of the tasks utilising several mainstream deep neural networks, along with an ablation study and visualisation of results. Our work is motivated toward assistive systems that analyze struggle, support users during manual activities and encourage learning, as well as other video understanding competencies.
♻ ☆ Reasoning to Attend: Try to Understand How Token Works CVPR 2025
Current Large Multimodal Models (LMMs) empowered visual grounding typically rely on $\texttt{}$ tokens as a text prompt to jointly optimize the vision-language model (e.g., LLaVA) and the downstream task-specific model (e.g., SAM). However, we observe that little research has looked into how it works.In this work, we first visualize the similarity maps, which are obtained by computing the semantic similarity between the $\texttt{}$ token and the image token embeddings derived from the last hidden layer in both the LLaVA encoder and SAM decoder. Intriguingly, we have found that a striking consistency holds in terms of activation responses in the similarity map, which reveals that what the $\texttt{}$ token contributes to is semantic similarity within image-text pairs. Specifically, the $\texttt{}$ token, a placeholder expanded in text vocabulary, extensively queries among individual tokenized image patches to match the semantics of an object from text to the paired image, while the Large Language Models (LLMs) are being fine-tuned. Upon the above findings, we present READ, which facilitates LMMs' resilient $\textbf{REA}$soning capability of where to atten$\textbf{D}$ under the guidance of highly activated points borrowed from similarity maps. Remarkably, READ features an intuitive design, Similarity as Points module (SasP), which can be seamlessly applied to $\texttt{}$-like paradigms in a plug-and-play fashion. Also, extensive experiments have been conducted on ReasonSeg and RefCOCO(+/g) datasets. To validate whether READ suffers from catastrophic forgetting of previous skills after fine-tuning, we further assess its generation ability on an augmented FP-RefCOCO(+/g) dataset. All codes and models are publicly available at https://github.com/rui-qian/READ.
comment: This work has been accepted to CVPR 2025, please refer to https://github.com/rui-qian/READ
♻ ☆ Exploring a Multimodal Fusion-based Deep Learning Network for Detecting Facial Palsy IJCAI 2024
Algorithmic detection of facial palsy offers the potential to improve current practices, which usually involve labor-intensive and subjective assessment by clinicians. In this paper, we present a multimodal fusion-based deep learning model that utilizes unstructured data (i.e. an image frame with facial line segments) and structured data (i.e. features of facial expressions) to detect facial palsy. We then contribute to a study to analyze the effect of different data modalities and the benefits of a multimodal fusion-based approach using videos of 21 facial palsy patients. Our experimental results show that among various data modalities (i.e. unstructured data - RGB images and images of facial line segments and structured data - coordinates of facial landmarks and features of facial expressions), the feed-forward neural network using features of facial expression achieved the highest precision of 76.22 while the ResNet-based model using images of facial line segments achieved the highest recall of 83.47. When we leveraged both images of facial line segments and features of facial expressions, our multimodal fusion-based deep learning model slightly improved the precision score to 77.05 at the expense of a decrease in the recall score.
comment: IJCAI 2024 4th AI for Ageless Aging Workshop (AIAA)
♻ ☆ Towards Generalizable Scene Change Detection CVPR 2025
While current state-of-the-art Scene Change Detection (SCD) approaches achieve impressive results in well-trained research data, they become unreliable under unseen environments and different temporal conditions; in-domain performance drops from 77.6% to 8.0% in a previously unseen environment and to 4.6% under a different temporal condition -- calling for generalizable SCD and benchmark. In this work, we propose the Generalizable Scene Change Detection Framework (GeSCF), which addresses unseen domain performance and temporal consistency -- to meet the growing demand for anything SCD. Our method leverages the pre-trained Segment Anything Model (SAM) in a zero-shot manner. For this, we design Initial Pseudo-mask Generation and Geometric-Semantic Mask Matching -- seamlessly turning user-guided prompt and single-image based segmentation into scene change detection for a pair of inputs without guidance. Furthermore, we define the Generalizable Scene Change Detection (GeSCD) benchmark along with novel metrics and an evaluation protocol to facilitate SCD research in generalizability. In the process, we introduce the ChangeVPR dataset, a collection of challenging image pairs with diverse environmental scenarios -- including urban, suburban, and rural settings. Extensive experiments across various datasets demonstrate that GeSCF achieves an average performance gain of 19.2% on existing SCD datasets and 30.0% on the ChangeVPR dataset, nearly doubling the prior art performance. We believe our work can lay a solid foundation for robust and generalizable SCD research.
comment: Camera-ready version. Accepted to CVPR 2025
♻ ☆ Arbitrary-steps Image Super-resolution via Diffusion Inversion CVPR 2025
This study presents a new image super-resolution (SR) technique based on diffusion inversion, aiming at harnessing the rich image priors encapsulated in large pre-trained diffusion models to improve SR performance. We design a Partial noise Prediction strategy to construct an intermediate state of the diffusion model, which serves as the starting sampling point. Central to our approach is a deep noise predictor to estimate the optimal noise maps for the forward diffusion process. Once trained, this noise predictor can be used to initialize the sampling process partially along the diffusion trajectory, generating the desirable high-resolution result. Compared to existing approaches, our method offers a flexible and efficient sampling mechanism that supports an arbitrary number of sampling steps, ranging from one to five. Even with a single sampling step, our method demonstrates superior or comparable performance to recent state-of-the-art approaches. The code and model are publicly available at https://github.com/zsyOAOA/InvSR.
comment: Accepted by CVPR 2025. Project: https://github.com/zsyOAOA/InvSR
♻ ☆ Towards Class-wise Robustness Analysis
While being very successful in solving many downstream tasks, the application of deep neural networks is limited in real-life scenarios because of their susceptibility to domain shifts such as common corruptions, and adversarial attacks. The existence of adversarial examples and data corruption significantly reduces the performance of deep classification models. Researchers have made strides in developing robust neural architectures to bolster decisions of deep classifiers. However, most of these works rely on effective adversarial training methods, and predominantly focus on overall model robustness, disregarding class-wise differences in robustness, which are critical. Exploiting weakly robust classes is a potential avenue for attackers to fool the image recognition models. Therefore, this study investigates class-to-class biases across adversarially trained robust classification models to understand their latent space structures and analyze their strong and weak class-wise properties. We further assess the robustness of classes against common corruptions and adversarial attacks, recognizing that class vulnerability extends beyond the number of correct classifications for a specific class. We find that the number of false positives of classes as specific target classes significantly impacts their vulnerability to attacks. Through our analysis on the Class False Positive Score, we assess a fair evaluation of how susceptible each class is to misclassification.
♻ ☆ Revealing Bias Formation in Deep Neural Networks Through the Geometric Mechanisms of Human Visual Decoupling
Deep neural networks (DNNs) often exhibit biases toward certain categories during object recognition, even under balanced training data conditions. The intrinsic mechanisms underlying these biases remain unclear. Inspired by the human visual system, which decouples object manifolds through hierarchical processing to achieve object recognition, we propose a geometric analysis framework linking the geometric complexity of class-specific perceptual manifolds in DNNs to model bias. Our findings reveal that differences in geometric complexity can lead to varying recognition capabilities across categories, introducing biases. To support this analysis, we present the Perceptual-Manifold-Geometry library, designed for calculating the geometric properties of perceptual manifolds.
♻ ☆ SMIRK: 3D Facial Expressions through Analysis-by-Neural-Synthesis
While existing methods for 3D face reconstruction from in-the-wild images excel at recovering the overall face shape, they commonly miss subtle, extreme, asymmetric, or rarely observed expressions. We improve upon these methods with SMIRK (Spatial Modeling for Image-based Reconstruction of Kinesics), which faithfully reconstructs expressive 3D faces from images. We identify two key limitations in existing methods: shortcomings in their self-supervised training formulation, and a lack of expression diversity in the training images. For training, most methods employ differentiable rendering to compare a predicted face mesh with the input image, along with a plethora of additional loss functions. This differentiable rendering loss not only has to provide supervision to optimize for 3D face geometry, camera, albedo, and lighting, which is an ill-posed optimization problem, but the domain gap between rendering and input image further hinders the learning process. Instead, SMIRK replaces the differentiable rendering with a neural rendering module that, given the rendered predicted mesh geometry, and sparsely sampled pixels of the input image, generates a face image. As the neural rendering gets color information from sampled image pixels, supervising with neural rendering-based reconstruction loss can focus solely on the geometry. Further, it enables us to generate images of the input identity with varying expressions while training. These are then utilized as input to the reconstruction model and used as supervision with ground truth geometry. This effectively augments the training data and enhances the generalization for diverse expressions. Our qualitative, quantitative and particularly our perceptual evaluations demonstrate that SMIRK achieves the new state-of-the art performance on accurate expression reconstruction. Project webpage: https://georgeretsi.github.io/smirk/.
♻ ☆ Uni-Sign: Toward Unified Sign Language Understanding at Scale ICLR 2025
Sign language pre-training has gained increasing attention for its ability to enhance performance across various sign language understanding (SLU) tasks. However, existing methods often suffer from a gap between pre-training and fine-tuning, leading to suboptimal results. To address this, we propose Uni-Sign, a unified pre-training framework that eliminates the gap between pre-training and downstream SLU tasks through a large-scale generative pre-training strategy and a novel fine-tuning paradigm. First, we introduce CSL-News, a large-scale Chinese Sign Language (CSL) dataset containing 1,985 hours of video paired with textual annotations, which enables effective large-scale pre-training. Second, Uni-Sign unifies SLU tasks by treating downstream tasks as a single sign language translation (SLT) task during fine-tuning, ensuring seamless knowledge transfer between pre-training and fine-tuning. Furthermore, we incorporate a prior-guided fusion (PGF) module and a score-aware sampling strategy to efficiently fuse pose and RGB information, addressing keypoint inaccuracies and improving computational efficiency. Extensive experiments across multiple SLU benchmarks demonstrate that Uni-Sign achieves state-of-the-art performance across multiple downstream SLU tasks. Dataset and code are available at github.com/ZechengLi19/Uni-Sign.
comment: Accepted by ICLR 2025
♻ ☆ Ultra-high resolution multimodal MRI dense labelled holistic brain atlas
In this paper, we introduce holiAtlas, a holistic, multimodal and high-resolution human brain atlas. This atlas covers different levels of details of the human brain anatomy, from the organ to the substructure level, using a new dense labelled protocol generated from the fusion of multiple local protocols at different scales. This atlas has been constructed averaging images and segmentations of 75 healthy subjects from the Human Connectome Project database. Specifically, MR images of T1, T2 and WMn (White Matter nulled) contrasts at 0.125 $mm^{3}$ resolution that were nonlinearly registered and averaged using symmetric group-wise normalisation to construct the atlas. At the finest level, the holiAtlas protocol has 350 different labels derived from 10 different delineation protocols. These labels were grouped at different scales to provide a holistic view of the brain at different levels in a coherent and consistent manner. This multiscale and multimodal atlas can be used for the development of new ultra-high resolution segmentation methods that can potentially leverage the early detection of neurological disorders.
comment: 22 pages
♻ ☆ Prompt-SID: Learning Structural Representation Prompt via Latent Diffusion for Single-Image Denoising
Many studies have concentrated on constructing supervised models utilizing paired datasets for image denoising, which proves to be expensive and time-consuming. Current self-supervised and unsupervised approaches typically rely on blind-spot networks or sub-image pairs sampling, resulting in pixel information loss and destruction of detailed structural information, thereby significantly constraining the efficacy of such methods. In this paper, we introduce Prompt-SID, a prompt-learning-based single image denoising framework that emphasizes preserving of structural details. This approach is trained in a self-supervised manner using downsampled image pairs. It captures original-scale image information through structural encoding and integrates this prompt into the denoiser. To achieve this, we propose a structural representation generation model based on the latent diffusion process and design a structural attention module within the transformer-based denoiser architecture to decode the prompt. Additionally, we introduce a scale replay training mechanism, which effectively mitigates the scale gap from images of different resolutions. We conduct comprehensive experiments on synthetic, real-world, and fluorescence imaging datasets, showcasing the remarkable effectiveness of Prompt-SID. Our code will be released at https://github.com/huaqlili/Prompt-SID.
♻ ☆ Continuous K-space Recovery Network with Image Guidance for Fast MRI Reconstruction
Magnetic resonance imaging (MRI) is a crucial tool for clinical diagnosis while facing the challenge of long scanning time. To reduce the acquisition time, fast MRI reconstruction aims to restore high-quality images from the undersampled k-space. Existing methods typically train deep learning models to map the undersampled data to artifact-free MRI images. However, these studies often overlook the unique properties of k-space and directly apply general networks designed for image processing to k-space recovery, leaving the precise learning of k-space largely underexplored. In this work, we propose a continuous k-space recovery network from a new perspective of implicit neural representation with image domain guidance, which boosts the performance of MRI reconstruction. Specifically, (1) an implicit neural representation based encoder-decoder structure is customized to continuously query unsampled k-values. (2) an image guidance module is designed to mine the semantic information from the low-quality MRI images to further guide the k-space recovery. (3) a multi-stage training strategy is proposed to recover dense k-space progressively. Extensive experiments conducted on CC359, fastMRI, and IXI datasets demonstrate the effectiveness of our method and its superiority over other competitors.
♻ ☆ DeepThalamus: A novel deep learning method for automatic segmentation of brain thalamic nuclei from multimodal ultra-high resolution MRI
The implication of the thalamus in multiple neurological pathologies makes it a structure of interest for volumetric analysis. In the present work, we have designed and implemented a multimodal volumetric deep neural network for the segmentation of thalamic nuclei at ultra-high resolution (0.125 mm3). Current tools either operate at standard resolution (1 mm3) or use monomodal data. To achieve the proposed objective, first, a database of semiautomatically segmented thalamic nuclei was created using ultra-high resolution T1, T2 and White Matter nulled (WMn) images. Then, a novel Deep learning based strategy was designed to obtain the automatic segmentations and trained to improve its robustness and accuaracy using a semisupervised approach. The proposed method was compared with a related state-of-the-art method showing competitive results both in terms of segmentation quality and efficiency. To make the proposed method fully available to the scientific community, a full pipeline able to work with monomodal standard resolution T1 images is also proposed.
♻ ☆ ReVLA: Reverting Visual Domain Limitation of Robotic Foundation Models ICRA-2025
Recent progress in large language models and access to large-scale robotic datasets has sparked a paradigm shift in robotics models transforming them into generalists able to adapt to various tasks, scenes, and robot modalities. A large step for the community are open Vision Language Action models which showcase strong performance in a wide variety of tasks. In this work, we study the visual generalization capabilities of three existing robotic foundation models, and propose a corresponding evaluation framework. Our study shows that the existing models do not exhibit robustness to visual out-of-domain scenarios. This is potentially caused by limited variations in the training data and/or catastrophic forgetting, leading to domain limitations in the vision foundation models. We further explore OpenVLA, which uses two pre-trained vision foundation models and is, therefore, expected to generalize to out-of-domain experiments. However, we showcase catastrophic forgetting by DINO-v2 in OpenVLA through its failure to fulfill the task of depth regression. To overcome the aforementioned issue of visual catastrophic forgetting, we propose a gradual backbone reversal approach founded on model merging. This enables OpenVLA which requires the adaptation of the visual backbones during initial training -- to regain its visual generalization ability. Regaining this capability enables our ReVLA model to improve over OpenVLA by a factor of 77% and 66% for grasping and lifting in visual OOD tasks .
comment: Accepted at ICRA-2025, Atlanta
♻ ☆ Narrating the Video: Boosting Text-Video Retrieval via Comprehensive Utilization of Frame-Level Captions CVPR 2025
In recent text-video retrieval, the use of additional captions from vision-language models has shown promising effects on the performance. However, existing models using additional captions often have struggled to capture the rich semantics, including temporal changes, inherent in the video. In addition, incorrect information caused by generative models can lead to inaccurate retrieval. To address these issues, we propose a new framework, Narrating the Video (NarVid), which strategically leverages the comprehensive information available from frame-level captions, the narration. The proposed NarVid exploits narration in multiple ways: 1) feature enhancement through cross-modal interactions between narration and video, 2) query-aware adaptive filtering to suppress irrelevant or incorrect information, 3) dual-modal matching score by adding query-video similarity and query-narration similarity, and 4) hard-negative loss to learn discriminative features from multiple perspectives using the two similarities from different views. Experimental results demonstrate that NarVid achieves state-of-the-art performance on various benchmark datasets.
comment: Accepted at CVPR 2025
♻ ☆ PhysVLM: Enabling Visual Language Models to Understand Robotic Physical Reachability
Understanding the environment and a robot's physical reachability is crucial for task execution. While state-of-the-art vision-language models (VLMs) excel in environmental perception, they often generate inaccurate or impractical responses in embodied visual reasoning tasks due to a lack of understanding of robotic physical reachability. To address this issue, we propose a unified representation of physical reachability across diverse robots, i.e., Space-Physical Reachability Map (S-P Map), and PhysVLM, a vision-language model that integrates this reachability information into visual reasoning. Specifically, the S-P Map abstracts a robot's physical reachability into a generalized spatial representation, independent of specific robot configurations, allowing the model to focus on reachability features rather than robot-specific parameters. Subsequently, PhysVLM extends traditional VLM architectures by incorporating an additional feature encoder to process the S-P Map, enabling the model to reason about physical reachability without compromising its general vision-language capabilities. To train and evaluate PhysVLM, we constructed a large-scale multi-robot dataset, Phys100K, and a challenging benchmark, EQA-phys, which includes tasks for six different robots in both simulated and real-world environments. Experimental results demonstrate that PhysVLM outperforms existing models, achieving a 14\% improvement over GPT-4o on EQA-phys and surpassing advanced embodied VLMs such as RoboMamba and SpatialVLM on the RoboVQA-val and OpenEQA benchmarks. Additionally, the S-P Map shows strong compatibility with various VLMs, and its integration into GPT-4o-mini yields a 7.1\% performance improvement.
♻ ☆ ATRNet-STAR: A Large Dataset and Benchmark Towards Remote Sensing Object Recognition in the Wild
The absence of publicly available, large-scale, high-quality datasets for Synthetic Aperture Radar Automatic Target Recognition (SAR ATR) has significantly hindered the application of rapidly advancing deep learning techniques, which hold huge potential to unlock new capabilities in this field. This is primarily because collecting large volumes of diverse target samples from SAR images is prohibitively expensive, largely due to privacy concerns, the characteristics of microwave radar imagery perception, and the need for specialized expertise in data annotation. Throughout the history of SAR ATR research, there have been only a number of small datasets, mainly including targets like ships, airplanes, buildings, etc. There is only one vehicle dataset MSTAR collected in the 1990s, which has been a valuable source for SAR ATR. To fill this gap, this paper introduces a large-scale, new dataset named ATRNet-STAR with 40 different vehicle categories collected under various realistic imaging conditions and scenes. It marks a substantial advancement in dataset scale and diversity, comprising over 190,000 well-annotated samples, 10 times larger than its predecessor, the famous MSTAR. Building such a large dataset is a challenging task, and the data collection scheme will be detailed. Secondly, we illustrate the value of ATRNet-STAR via extensively evaluating the performance of 15 representative methods with 7 different experimental settings on challenging classification and detection benchmarks derived from the dataset. Finally, based on our extensive experiments, we identify valuable insights for SAR ATR and discuss potential future research directions in this field. We hope that the scale, diversity, and benchmark of ATRNet-STAR can significantly facilitate the advancement of SAR ATR.
comment: 17 pages, 14 figures; ATRNet-STAR: https://github.com/waterdisappear/ATRNet-STAR
♻ ☆ Hidden in the Noise: Two-Stage Robust Watermarking for Images
As the quality of image generators continues to improve, deepfakes become a topic of considerable societal debate. Image watermarking allows responsible model owners to detect and label their AI-generated content, which can mitigate the harm. Yet, current state-of-the-art methods in image watermarking remain vulnerable to forgery and removal attacks. This vulnerability occurs in part because watermarks distort the distribution of generated images, unintentionally revealing information about the watermarking techniques. In this work, we first demonstrate a distortion-free watermarking method for images, based on a diffusion model's initial noise. However, detecting the watermark requires comparing the initial noise reconstructed for an image to all previously used initial noises. To mitigate these issues, we propose a two-stage watermarking framework for efficient detection. During generation, we augment the initial noise with generated Fourier patterns to embed information about the group of initial noises we used. For detection, we (i) retrieve the relevant group of noises, and (ii) search within the given group for an initial noise that might match our image. This watermarking approach achieves state-of-the-art robustness to forgery and removal against a large battery of attacks.
♻ ☆ GoalFlow: Goal-Driven Flow Matching for Multimodal Trajectories Generation in End-to-End Autonomous Driving
We propose GoalFlow, an end-to-end autonomous driving method for generating high-quality multimodal trajectories. In autonomous driving scenarios, there is rarely a single suitable trajectory. Recent methods have increasingly focused on modeling multimodal trajectory distributions. However, they suffer from trajectory selection complexity and reduced trajectory quality due to high trajectory divergence and inconsistencies between guidance and scene information. To address these issues, we introduce GoalFlow, a novel method that effectively constrains the generative process to produce high-quality, multimodal trajectories. To resolve the trajectory divergence problem inherent in diffusion-based methods, GoalFlow constrains the generated trajectories by introducing a goal point. GoalFlow establishes a novel scoring mechanism that selects the most appropriate goal point from the candidate points based on scene information. Furthermore, GoalFlow employs an efficient generative method, Flow Matching, to generate multimodal trajectories, and incorporates a refined scoring mechanism to select the optimal trajectory from the candidates. Our experimental results, validated on the Navsim\cite{Dauner2024_navsim}, demonstrate that GoalFlow achieves state-of-the-art performance, delivering robust multimodal trajectories for autonomous driving. GoalFlow achieved PDMS of 90.3, significantly surpassing other methods. Compared with other diffusion-policy-based methods, our approach requires only a single denoising step to obtain excellent performance. The code is available at https://github.com/YvanYin/GoalFlow.
♻ ☆ $ShiftwiseConv:$ Small Convolutional Kernel with Large Kernel Effect CVPR 2025
Large kernels make standard convolutional neural networks (CNNs) great again over transformer architectures in various vision tasks. Nonetheless, recent studies meticulously designed around increasing kernel size have shown diminishing returns or stagnation in performance. Thus, the hidden factors of large kernel convolution that affect model performance remain unexplored. In this paper, we reveal that the key hidden factors of large kernels can be summarized as two separate components: extracting features at a certain granularity and fusing features by multiple pathways. To this end, we leverage the multi-path long-distance sparse dependency relationship to enhance feature utilization via the proposed Shiftwise (SW) convolution operator with a pure CNN architecture. In a wide range of vision tasks such as classification, segmentation, and detection, SW surpasses state-of-the-art transformers and CNN architectures, including SLaK and UniRepLKNet. More importantly, our experiments demonstrate that $3 \times 3$ convolutions can replace large convolutions in existing large kernel CNNs to achieve comparable effects, which may inspire follow-up works. Code and all the models at https://github.com/lidc54/shift-wiseConv.
comment: CVPR 2025
♻ ☆ AnomalyDINO: Boosting Patch-based Few-shot Anomaly Detection with DINOv2 WACV 2025
Recent advances in multimodal foundation models have set new standards in few-shot anomaly detection. This paper explores whether high-quality visual features alone are sufficient to rival existing state-of-the-art vision-language models. We affirm this by adapting DINOv2 for one-shot and few-shot anomaly detection, with a focus on industrial applications. We show that this approach does not only rival existing techniques but can even outmatch them in many settings. Our proposed vision-only approach, AnomalyDINO, follows the well-established patch-level deep nearest neighbor paradigm, and enables both image-level anomaly prediction and pixel-level anomaly segmentation. The approach is methodologically simple and training-free and, thus, does not require any additional data for fine-tuning or meta-learning. The approach is methodologically simple and training-free and, thus, does not require any additional data for fine-tuning or meta-learning. Despite its simplicity, AnomalyDINO achieves state-of-the-art results in one- and few-shot anomaly detection (e.g., pushing the one-shot performance on MVTec-AD from an AUROC of 93.1% to 96.6%). The reduced overhead, coupled with its outstanding few-shot performance, makes AnomalyDINO a strong candidate for fast deployment, e.g., in industrial contexts.
comment: Accepted at WACV 2025 (Oral)
♻ ☆ Reliable Representation Learning for Incomplete Multi-View Missing Multi-Label Classification
As a cross-topic of multi-view learning and multi-label classification, multi-view multi-label classification has gradually gained traction in recent years. The application of multi-view contrastive learning has further facilitated this process, however, the existing multi-view contrastive learning methods crudely separate the so-called negative pair, which largely results in the separation of samples belonging to the same category or similar ones. Besides, plenty of multi-view multi-label learning methods ignore the possible absence of views and labels. To address these issues, in this paper, we propose an incomplete multi-view missing multi-label classification network named RANK. In this network, a label-driven multi-view contrastive learning strategy is proposed to leverage supervised information to preserve the intra-view structure and perform the cross-view consistency alignment. Furthermore, we break through the view-level weights inherent in existing methods and propose a quality-aware sub-network to dynamically assign quality scores to each view of each sample. The label correlation information is fully utilized in the final multi-label cross-entropy classification loss, effectively improving the discriminative power. Last but not least, our model is not only able to handle complete multi-view multi-label data, but also works on datasets with missing instances and labels. Extensive experiments confirm that our RANK outperforms existing state-of-the-art methods.
comment: Accepted by TPAMI. Please contact me if you have any questions: liucl1996@163.com
♻ ☆ LatentSync: Taming Audio-Conditioned Latent Diffusion Models for Lip Sync with SyncNet Supervision
End-to-end audio-conditioned latent diffusion models (LDMs) have been widely adopted for audio-driven portrait animation, demonstrating their effectiveness in generating lifelike and high-resolution talking videos. However, direct application of audio-conditioned LDMs to lip-synchronization (lip-sync) tasks results in suboptimal lip-sync accuracy. Through an in-depth analysis, we identified the underlying cause as the "shortcut learning problem", wherein the model predominantly learns visual-visual shortcuts while neglecting the critical audio-visual correlations. To address this issue, we explored different approaches for integrating SyncNet supervision into audio-conditioned LDMs to explicitly enforce the learning of audio-visual correlations. Since the performance of SyncNet directly influences the lip-sync accuracy of the supervised model, the training of a well-converged SyncNet becomes crucial. We conducted the first comprehensive empirical studies to identify key factors affecting SyncNet convergence. Based on our analysis, we introduce StableSyncNet, with an architecture designed for stable convergence. Our StableSyncNet achieved a significant improvement in accuracy, increasing from 91% to 94% on the HDTF test set. Additionally, we introduce a novel Temporal Representation Alignment (TREPA) mechanism to enhance temporal consistency in the generated videos. Experimental results show that our method surpasses state-of-the-art lip-sync approaches across various evaluation metrics on the HDTF and VoxCeleb2 datasets.
♻ ☆ M2IST: Multi-Modal Interactive Side-Tuning for Efficient Referring Expression Comprehension
Referring expression comprehension (REC) is a vision-language task to locate a target object in an image based on a language expression. Fully fine-tuning general-purpose pre-trained vision-language foundation models for REC yields impressive performance but becomes increasingly costly. Parameter-efficient transfer learning (PETL) methods have shown strong performance with fewer tunable parameters. However, directly applying PETL to REC faces two challenges: (1) insufficient multi-modal interaction between pre-trained vision-language foundation models, and (2) high GPU memory usage due to gradients passing through the heavy vision-language foundation models. To this end, we present M2IST: Multi-Modal Interactive Side-Tuning with M3ISAs: Mixture of Multi-Modal Interactive Side-Adapters. During fine-tuning, we fix the pre-trained uni-modal encoders and update M3ISAs to enable efficient vision-language alignment for REC. Empirical results reveal that M2IST achieves better performance-efficiency trade-off than full fine-tuning and other PETL methods, requiring only 2.11\% tunable parameters, 39.61\% GPU memory, and 63.46\% training time while maintaining competitive performance. Our code is released at https://github.com/xuyang-liu16/M2IST.
comment: Accepted by IEEE Transactions on Circuits and Systems for Video Technology (TCSVT)
Artificial Intelligence 203
☆ Studying Classifier(-Free) Guidance From a Classifier-Centric Perspective
Classifier-free guidance has become a staple for conditional generation with denoising diffusion models. However, a comprehensive understanding of classifier-free guidance is still missing. In this work, we carry out an empirical study to provide a fresh perspective on classifier-free guidance. Concretely, instead of solely focusing on classifier-free guidance, we trace back to the root, i.e., classifier guidance, pinpoint the key assumption for the derivation, and conduct a systematic study to understand the role of the classifier. We find that both classifier guidance and classifier-free guidance achieve conditional generation by pushing the denoising diffusion trajectories away from decision boundaries, i.e., areas where conditional information is usually entangled and is hard to learn. Based on this classifier-centric understanding, we propose a generic postprocessing step built upon flow-matching to shrink the gap between the learned distribution for a pre-trained denoising diffusion model and the real data distribution, majorly around the decision boundaries. Experiments on various datasets verify the effectiveness of the proposed approach.
☆ A Frustratingly Simple Yet Highly Effective Attack Baseline: Over 90% Success Rate Against the Strong Black-box Models of GPT-4.5/4o/o1
Despite promising performance on open-source large vision-language models (LVLMs), transfer-based targeted attacks often fail against black-box commercial LVLMs. Analyzing failed adversarial perturbations reveals that the learned perturbations typically originate from a uniform distribution and lack clear semantic details, resulting in unintended responses. This critical absence of semantic information leads commercial LVLMs to either ignore the perturbation entirely or misinterpret its embedded semantics, thereby causing the attack to fail. To overcome these issues, we notice that identifying core semantic objects is a key objective for models trained with various datasets and methodologies. This insight motivates our approach that refines semantic clarity by encoding explicit semantic details within local regions, thus ensuring interoperability and capturing finer-grained features, and by concentrating modifications on semantically rich areas rather than applying them uniformly. To achieve this, we propose a simple yet highly effective solution: at each optimization step, the adversarial image is cropped randomly by a controlled aspect ratio and scale, resized, and then aligned with the target image in the embedding space. Experimental results confirm our hypothesis. Our adversarial examples crafted with local-aggregated perturbations focused on crucial regions exhibit surprisingly good transferability to commercial LVLMs, including GPT-4.5, GPT-4o, Gemini-2.0-flash, Claude-3.5-sonnet, Claude-3.7-sonnet, and even reasoning models like o1, Claude-3.7-thinking and Gemini-2.0-flash-thinking. Our approach achieves success rates exceeding 90% on GPT-4.5, 4o, and o1, significantly outperforming all prior state-of-the-art attack methods. Our optimized adversarial examples under different configurations and training code are available at https://github.com/VILA-Lab/M-Attack.
comment: Code at: https://github.com/VILA-Lab/M-Attack
☆ Uncertainty in Action: Confidence Elicitation in Embodied Agents
Expressing confidence is challenging for embodied agents navigating dynamic multimodal environments, where uncertainty arises from both perception and decision-making processes. We present the first work investigating embodied confidence elicitation in open-ended multimodal environments. We introduce Elicitation Policies, which structure confidence assessment across inductive, deductive, and abductive reasoning, along with Execution Policies, which enhance confidence calibration through scenario reinterpretation, action sampling, and hypothetical reasoning. Evaluating agents in calibration and failure prediction tasks within the Minecraft environment, we show that structured reasoning approaches, such as Chain-of-Thoughts, improve confidence calibration. However, our findings also reveal persistent challenges in distinguishing uncertainty, particularly under abductive settings, underscoring the need for more sophisticated embodied confidence elicitation methods.
comment: Project page: https://plan-lab.github.io/ece/
☆ SciVerse: Unveiling the Knowledge Comprehension and Visual Reasoning of LMMs on Multi-modal Scientific Problems
The rapid advancement of Large Multi-modal Models (LMMs) has enabled their application in scientific problem-solving, yet their fine-grained capabilities remain under-explored. In this paper, we introduce SciVerse, a multi-modal scientific evaluation benchmark to thoroughly assess LMMs across 5,735 test instances in five distinct versions. We aim to investigate three key dimensions of LMMs: scientific knowledge comprehension, multi-modal content interpretation, and Chain-of-Thought (CoT) reasoning. To unveil whether LMMs possess sufficient scientific expertise, we first transform each problem into three versions containing different levels of knowledge required for solving, i.e., Knowledge-free, -lite, and -rich. Then, to explore how LMMs interpret multi-modal scientific content, we annotate another two versions, i.e., Vision-rich and -only, marking more question information from texts to diagrams. Comparing the results of different versions, SciVerse systematically examines the professional knowledge stock and visual perception skills of LMMs in scientific domains. In addition, to rigorously assess CoT reasoning, we propose a new scientific CoT evaluation strategy, conducting a step-wise assessment on knowledge and logical errors in model outputs. Our extensive evaluation of different LMMs on SciVerse reveals critical limitations in their scientific proficiency and provides new insights into future developments. Project page: https://sciverse-cuhk.github.io
comment: Initially released in September 2024. Project page: https://sciverse-cuhk.github.io
☆ NIL: No-data Imitation Learning by Leveraging Pre-trained Video Diffusion Models
Acquiring physically plausible motor skills across diverse and unconventional morphologies-including humanoid robots, quadrupeds, and animals-is essential for advancing character simulation and robotics. Traditional methods, such as reinforcement learning (RL) are task- and body-specific, require extensive reward function engineering, and do not generalize well. Imitation learning offers an alternative but relies heavily on high-quality expert demonstrations, which are difficult to obtain for non-human morphologies. Video diffusion models, on the other hand, are capable of generating realistic videos of various morphologies, from humans to ants. Leveraging this capability, we propose a data-independent approach for skill acquisition that learns 3D motor skills from 2D-generated videos, with generalization capability to unconventional and non-human forms. Specifically, we guide the imitation learning process by leveraging vision transformers for video-based comparisons by calculating pair-wise distance between video embeddings. Along with video-encoding distance, we also use a computed similarity between segmented video frames as a guidance reward. We validate our method on locomotion tasks involving unique body configurations. In humanoid robot locomotion tasks, we demonstrate that 'No-data Imitation Learning' (NIL) outperforms baselines trained on 3D motion-capture data. Our results highlight the potential of leveraging generative video models for physically plausible skill learning with diverse morphologies, effectively replacing data collection with data generation for imitation learning.
☆ LHM: Large Animatable Human Reconstruction Model from a Single Image in Seconds
Animatable 3D human reconstruction from a single image is a challenging problem due to the ambiguity in decoupling geometry, appearance, and deformation. Recent advances in 3D human reconstruction mainly focus on static human modeling, and the reliance of using synthetic 3D scans for training limits their generalization ability. Conversely, optimization-based video methods achieve higher fidelity but demand controlled capture conditions and computationally intensive refinement processes. Motivated by the emergence of large reconstruction models for efficient static reconstruction, we propose LHM (Large Animatable Human Reconstruction Model) to infer high-fidelity avatars represented as 3D Gaussian splatting in a feed-forward pass. Our model leverages a multimodal transformer architecture to effectively encode the human body positional features and image features with attention mechanism, enabling detailed preservation of clothing geometry and texture. To further boost the face identity preservation and fine detail recovery, we propose a head feature pyramid encoding scheme to aggregate multi-scale features of the head regions. Extensive experiments demonstrate that our LHM generates plausible animatable human in seconds without post-processing for face and hands, outperforming existing methods in both reconstruction accuracy and generalization ability.
comment: Project Page: https://lingtengqiu.github.io/LHM/
☆ ETCH: Generalizing Body Fitting to Clothed Humans via Equivariant Tightness
Fitting a body to a 3D clothed human point cloud is a common yet challenging task. Traditional optimization-based approaches use multi-stage pipelines that are sensitive to pose initialization, while recent learning-based methods often struggle with generalization across diverse poses and garment types. We propose Equivariant Tightness Fitting for Clothed Humans, or ETCH, a novel pipeline that estimates cloth-to-body surface mapping through locally approximate SE(3) equivariance, encoding tightness as displacement vectors from the cloth surface to the underlying body. Following this mapping, pose-invariant body features regress sparse body markers, simplifying clothed human fitting into an inner-body marker fitting task. Extensive experiments on CAPE and 4D-Dress show that ETCH significantly outperforms state-of-the-art methods -- both tightness-agnostic and tightness-aware -- in body fitting accuracy on loose clothing (16.7% ~ 69.5%) and shape accuracy (average 49.9%). Our equivariant tightness design can even reduce directional errors by (67.2% ~ 89.8%) in one-shot (or out-of-distribution) settings. Qualitative results demonstrate strong generalization of ETCH, regardless of challenging poses, unseen shapes, loose clothing, and non-rigid dynamics. We will release the code and models soon for research purposes at https://boqian-li.github.io/ETCH/.
comment: Page: https://boqian-li.github.io/ETCH/, Code: https://github.com/boqian-li/ETCH
☆ Transformers without Normalization CVPR 2025
Normalization layers are ubiquitous in modern neural networks and have long been considered essential. This work demonstrates that Transformers without normalization can achieve the same or better performance using a remarkably simple technique. We introduce Dynamic Tanh (DyT), an element-wise operation $DyT($x$) = \tanh(\alpha $x$)$, as a drop-in replacement for normalization layers in Transformers. DyT is inspired by the observation that layer normalization in Transformers often produces tanh-like, $S$-shaped input-output mappings. By incorporating DyT, Transformers without normalization can match or exceed the performance of their normalized counterparts, mostly without hyperparameter tuning. We validate the effectiveness of Transformers with DyT across diverse settings, ranging from recognition to generation, supervised to self-supervised learning, and computer vision to language models. These findings challenge the conventional understanding that normalization layers are indispensable in modern neural networks, and offer new insights into their role in deep networks.
comment: CVPR 2025; Project page: https://jiachenzhu.github.io/DyT/
☆ Siege: Autonomous Multi-Turn Jailbreaking of Large Language Models with Tree Search ICLR 2025
We introduce Siege, a multi-turn adversarial framework that models the gradual erosion of Large Language Model (LLM) safety through a tree search perspective. Unlike single-turn jailbreaks that rely on one meticulously engineered prompt, Siege expands the conversation at each turn in a breadth-first fashion, branching out multiple adversarial prompts that exploit partial compliance from previous responses. By tracking these incremental policy leaks and re-injecting them into subsequent queries, Siege reveals how minor concessions can accumulate into fully disallowed outputs. Evaluations on the JailbreakBench dataset show that Siege achieves a 100% success rate on GPT-3.5-turbo and 97% on GPT-4 in a single multi-turn run, using fewer queries than baselines such as Crescendo or GOAT. This tree search methodology offers an in-depth view of how model safeguards degrade over successive dialogue turns, underscoring the urgency of robust multi-turn testing procedures for language models.
comment: Accepted to ICLR 2025 Trustworthy LLM
☆ Compositional Subspace Representation Fine-tuning for Adaptive Large Language Models ICLR 2025
Adapting large language models to multiple tasks can cause cross-skill interference, where improvements for one skill degrade another. While methods such as LoRA impose orthogonality constraints at the weight level, they do not fully address interference in hidden-state representations. We propose Compositional Subspace Representation Fine-tuning (CS-ReFT), a novel representation-based approach that learns multiple orthonormal subspace transformations, each specializing in a distinct skill, and composes them via a lightweight router. By isolating these subspace edits in the hidden state, rather than weight matrices, CS-ReFT prevents cross-task conflicts more effectively. On the AlpacaEval benchmark, applying CS-ReFT to Llama-2-7B achieves a 93.94% win rate, surpassing GPT-3.5 Turbo (86.30%) while requiring only 0.0098% of model parameters. These findings show that specialized representation edits, composed via a simple router, significantly enhance multi-task instruction following with minimal overhead.
comment: Accepted to ICLR 2025 SCOPE
☆ Dual-Stage Cross-Modal Network with Dynamic Feature Fusion for Emotional Mimicry Intensity Estimation
Emotional Mimicry Intensity (EMI) estimation serves as a critical technology for understanding human social behavior and enhancing human-computer interaction experiences, where the core challenge lies in dynamic correlation modeling and robust fusion of multimodal temporal signals. To address the limitations of existing methods in insufficient exploitation of modal synergistic effects, noise sensitivity, and limited fine-grained alignment capabilities, this paper proposes a dual-stage cross-modal alignment framework. First, we construct vision-text and audio-text contrastive learning networks based on an improved CLIP architecture, achieving preliminary alignment in the feature space through modality-decoupled pre-training. Subsequently, we design a temporal-aware dynamic fusion module that combines Temporal Convolutional Networks (TCN) and gated bidirectional LSTM to respectively capture the macro-evolution patterns of facial expressions and local dynamics of acoustic features. Innovatively, we introduce a quality-guided modality fusion strategy that enables modality compensation under occlusion and noisy scenarios through differentiable weight allocation. Experimental results on the Hume-Vidmimic2 dataset demonstrate that our method achieves an average Pearson correlation coefficient of 0.35 across six emotion dimensions, outperforming the best baseline by 40\%. Ablation studies further validate the effectiveness of the dual-stage training strategy and dynamic fusion mechanism, providing a novel technical pathway for fine-grained emotion analysis in open environments.
☆ TruthPrInt: Mitigating LVLM Object Hallucination Via Latent Truthful-Guided Pre-Intervention
Object Hallucination (OH) has been acknowledged as one of the major trustworthy challenges in Large Vision-Language Models (LVLMs). Recent advancements in Large Language Models (LLMs) indicate that internal states, such as hidden states, encode the "overall truthfulness" of generated responses. However, it remains under-explored how internal states in LVLMs function and whether they could serve as "per-token" hallucination indicators, which is essential for mitigating OH. In this paper, we first conduct an in-depth exploration of LVLM internal states in relation to OH issues and discover that (1) LVLM internal states are high-specificity per-token indicators of hallucination behaviors. Moreover, (2) different LVLMs encode universal patterns of hallucinations in common latent subspaces, indicating that there exist "generic truthful directions" shared by various LVLMs. Based on these discoveries, we propose Truthful-Guided Pre-Intervention (TruthPrInt) that first learns the truthful direction of LVLM decoding and then applies truthful-guided inference-time intervention during LVLM decoding. We further propose ComnHallu to enhance both cross-LVLM and cross-data hallucination detection transferability by constructing and aligning hallucination latent subspaces. We evaluate TruthPrInt in extensive experimental settings, including in-domain and out-of-domain scenarios, over popular LVLMs and OH benchmarks. Experimental results indicate that TruthPrInt significantly outperforms state-of-the-art methods. Codes will be available at https://github.com/jinhaoduan/TruthPrInt.
comment: 15 pages, 9 figures, the first two authors contributed equally
☆ The Spectral Bias of Shallow Neural Network Learning is Shaped by the Choice of Non-linearity
Despite classical statistical theory predicting severe overfitting, modern massively overparameterized neural networks still generalize well. This unexpected property is attributed to the network's so-called implicit bias, which describes its propensity to converge to solutions that generalize effectively, among the many possible that correctly label the training data. The aim of our research is to explore this bias from a new perspective, focusing on how non-linear activation functions contribute to shaping it. First, we introduce a reparameterization which removes a continuous weight rescaling symmetry. Second, in the kernel regime, we leverage this reparameterization to generalize recent findings that relate shallow Neural Networks to the Radon transform, deriving an explicit formula for the implicit bias induced by a broad class of activation functions. Specifically, by utilizing the connection between the Radon transform and the Fourier transform, we interpret the kernel regime's inductive bias as minimizing a spectral seminorm that penalizes high-frequency components, in a manner dependent on the activation function. Finally, in the adaptive regime, we demonstrate the existence of local dynamical attractors that facilitate the formation of clusters of hyperplanes where the input to a neuron's activation function is zero, yielding alignment between many neurons' response functions. We confirm these theoretical results with simulations. All together, our work provides a deeper understanding of the mechanisms underlying the generalization capabilities of overparameterized neural networks and its relation with the implicit bias, offering potential pathways for designing more efficient and robust models.
comment: 18 pages, 10 figures in main text
☆ VisualWebInstruct: Scaling up Multimodal Instruction Data through Web Search
Vision-Language Models have made significant progress on many perception-focused tasks, however, their progress on reasoning-focused tasks seem to be limited due to the lack of high-quality and diverse training data. In this work, we aim to address the scarcity issue of reasoning-focused multimodal datasets. We propose VisualWebInstruct - a novel approach that leverages search engine to create a diverse, and high-quality dataset spanning multiple disciplines like math, physics, finance, chemistry, etc. Starting with meticulously selected 30,000 seed images, we employ Google Image search to identify websites containing similar images. We collect and process the HTMLs from over 700K unique URL sources. Through a pipeline of content extraction, filtering and synthesis, we build a dataset of approximately 900K question-answer pairs, with 40% being visual QA pairs and the rest as text QA pairs. Models fine-tuned on VisualWebInstruct demonstrate significant performance gains: (1) training from Llava-OV-mid shows 10-20% absolute point gains across benchmarks, (2) training from MAmmoTH-VL shows 5% absoluate gain. Our best model MAmmoTH-VL2 shows state-of-the-art performance within the 10B parameter class on MMMU-Pro-std (40.7%), MathVerse (42.6%), and DynaMath (55.7%). These remarkable results highlight the effectiveness of our dataset in enhancing VLMs' reasoning capabilities for complex multimodal tasks.
comment: Technical Report
☆ KUDA: Keypoints to Unify Dynamics Learning and Visual Prompting for Open-Vocabulary Robotic Manipulation
With the rapid advancement of large language models (LLMs) and vision-language models (VLMs), significant progress has been made in developing open-vocabulary robotic manipulation systems. However, many existing approaches overlook the importance of object dynamics, limiting their applicability to more complex, dynamic tasks. In this work, we introduce KUDA, an open-vocabulary manipulation system that integrates dynamics learning and visual prompting through keypoints, leveraging both VLMs and learning-based neural dynamics models. Our key insight is that a keypoint-based target specification is simultaneously interpretable by VLMs and can be efficiently translated into cost functions for model-based planning. Given language instructions and visual observations, KUDA first assigns keypoints to the RGB image and queries the VLM to generate target specifications. These abstract keypoint-based representations are then converted into cost functions, which are optimized using a learned dynamics model to produce robotic trajectories. We evaluate KUDA on a range of manipulation tasks, including free-form language instructions across diverse object categories, multi-object interactions, and deformable or granular objects, demonstrating the effectiveness of our framework. The project page is available at http://kuda-dynamics.github.io.
comment: Project website: http://kuda-dynamics.github.io
☆ Language Models, Graph Searching, and Supervision Adulteration: When More Supervision is Less and How to Make More More SC
This work concerns the path-star task, a minimal example of searching over a graph. The graph, $G$, is star-shaped with $D$ arms radiating from a start node, $s$. A language model (LM) is given $G$, $s$, and a target node $t$, which ends one of the arms and is tasked with generating the arm containing $t$. The minimal nature of this task means only a single choice needs to be made: which of the $D$ arms contains $t$? Decoder-only LMs fail to solve this elementary task above $1/D$ chance due to a learned shortcut that absorbs training supervision. We show how this pathology is caused by excess supervision and we present a series of solutions demonstrating that the task is solvable via decoder-only LMs. We find that the task's minimal nature causes its difficulty, as it prevents task decomposition. Our solutions provide insight into the pathology and its implications for LMs trained via next-token prediction.
comment: A reduced version of this work has been accepted to the Workshop on Spurious Correlation and Shortcut Learning: Foundations and Solutions (SCSL) at ICLR 2025. Full version under review
☆ GBSVR: Granular Ball Support Vector Regression
Support Vector Regression (SVR) and its variants are widely used to handle regression tasks, however, since their solution involves solving an expensive quadratic programming problem, it limits its application, especially when dealing with large datasets. Additionally, SVR uses an epsilon-insensitive loss function which is sensitive to outliers and therefore can adversely affect its performance. We propose Granular Ball Support Vector Regression (GBSVR) to tackle problem of regression by using granular ball concept. These balls are useful in simplifying complex data spaces for machine learning tasks, however, to the best of our knowledge, they have not been sufficiently explored for regression problems. Granular balls group the data points into balls based on their proximity and reduce the computational cost in SVR by replacing the large number of data points with far fewer granular balls. This work also suggests a discretization method for continuous-valued attributes to facilitate the construction of granular balls. The effectiveness of the proposed approach is evaluated on several benchmark datasets and it outperforms existing state-of-the-art approaches
☆ The Impact of Item-Writing Flaws on Difficulty and Discrimination in Item Response Theory
High-quality test items are essential for educational assessments, particularly within Item Response Theory (IRT). Traditional validation methods rely on resource-intensive pilot testing to estimate item difficulty and discrimination. More recently, Item-Writing Flaw (IWF) rubrics emerged as a domain-general approach for evaluating test items based on textual features. However, their relationship to IRT parameters remains underexplored. To address this gap, we conducted a study involving over 7,000 multiple-choice questions across various STEM subjects (e.g., math and biology). Using an automated approach, we annotated each question with a 19-criteria IWF rubric and studied relationships to data-driven IRT parameters. Our analysis revealed statistically significant links between the number of IWFs and IRT difficulty and discrimination parameters, particularly in life and physical science domains. We further observed how specific IWF criteria can impact item quality more and less severely (e.g., negative wording vs. implausible distractors). Overall, while IWFs are useful for predicting IRT parameters--particularly for screening low-difficulty MCQs--they cannot replace traditional data-driven validation methods. Our findings highlight the need for further research on domain-general evaluation rubrics and algorithms that understand domain-specific content for robust item validation.
☆ Lightweight Models for Emotional Analysis in Video
In this study, we present an approach for efficient spatiotemporal feature extraction using MobileNetV4 and a multi-scale 3D MLP-Mixer-based temporal aggregation module. MobileNetV4, with its Universal Inverted Bottleneck (UIB) blocks, serves as the backbone for extracting hierarchical feature representations from input image sequences, ensuring both computational efficiency and rich semantic encoding. To capture temporal dependencies, we introduce a three-level MLP-Mixer module, which processes spatial features at multiple resolutions while maintaining structural integrity. Experimental results on the ABAW 8th competition demonstrate the effectiveness of our approach, showing promising performance in affective behavior analysis. By integrating an efficient vision backbone with a structured temporal modeling mechanism, the proposed framework achieves a balance between computational efficiency and predictive accuracy, making it well-suited for real-time applications in mobile and embedded computing environments.
☆ PiSA: A Self-Augmented Data Engine and Training Strategy for 3D Understanding with Large Models
3D Multimodal Large Language Models (MLLMs) have recently made substantial advancements. However, their potential remains untapped, primarily due to the limited quantity and suboptimal quality of 3D datasets. Current approaches attempt to transfer knowledge from 2D MLLMs to expand 3D instruction data, but still face modality and domain gaps. To this end, we introduce PiSA-Engine (Point-Self-Augmented-Engine), a new framework for generating instruction point-language datasets enriched with 3D spatial semantics. We observe that existing 3D MLLMs offer a comprehensive understanding of point clouds for annotation, while 2D MLLMs excel at cross-validation by providing complementary information. By integrating holistic 2D and 3D insights from off-the-shelf MLLMs, PiSA-Engine enables a continuous cycle of high-quality data generation. We select PointLLM as the baseline and adopt this co-evolution training framework to develop an enhanced 3D MLLM, termed PointLLM-PiSA. Additionally, we identify limitations in previous 3D benchmarks, which often feature coarse language captions and insufficient category diversity, resulting in inaccurate evaluations. To address this gap, we further introduce PiSA-Bench, a comprehensive 3D benchmark covering six key aspects with detailed and diverse labels. Experimental results demonstrate PointLLM-PiSA's state-of-the-art performance in zero-shot 3D object captioning and generative classification on our PiSA-Bench, achieving significant improvements of 46.45% (+8.33%) and 63.75% (+16.25%), respectively. We will release the code, datasets, and benchmark.
comment: Technical Report
☆ CountPath: Automating Fragment Counting in Digital Pathology
Quality control of medical images is a critical component of digital pathology, ensuring that diagnostic images meet required standards. A pre-analytical task within this process is the verification of the number of specimen fragments, a process that ensures that the number of fragments on a slide matches the number documented in the macroscopic report. This step is important to ensure that the slides contain the appropriate diagnostic material from the grossing process, thereby guaranteeing the accuracy of subsequent microscopic examination and diagnosis. Traditionally, this assessment is performed manually, requiring significant time and effort while being subject to significant variability due to its subjective nature. To address these challenges, this study explores an automated approach to fragment counting using the YOLOv9 and Vision Transformer models. Our results demonstrate that the automated system achieves a level of performance comparable to expert assessments, offering a reliable and efficient alternative to manual counting. Additionally, we present findings on interobserver variability, showing that the automated approach achieves an accuracy of 86%, which falls within the range of variation observed among experts (82-88%), further supporting its potential for integration into routine pathology workflows.
comment: 10 pages, 3 figures
☆ Why the Brain Cannot Be a Digital Computer: History-Dependence and the Computational Limits of Consciousness
This paper presents a novel information-theoretic proof demonstrating that the human brain as currently understood cannot function as a classical digital computer. Through systematic quantification of distinguishable conscious states and their historical dependencies, we establish that the minimum information required to specify a conscious state exceeds the physical information capacity of the human brain by a significant factor. Our analysis calculates the bit-length requirements for representing consciously distinguishable sensory "stimulus frames" and demonstrates that consciousness exhibits mandatory temporal-historical dependencies that multiply these requirements beyond the brain's storage capabilities. This mathematical approach offers new insights into the fundamental limitations of computational models of consciousness and suggests that non-classical information processing mechanisms may be necessary to account for conscious experience.
comment: 10 pages, 1 figure
☆ Conformal Prediction Sets for Deep Generative Models via Reduction to Conformal Regression
We consider the problem of generating valid and small prediction sets by sampling outputs (e.g., software code and natural language text) from a black-box deep generative model for a given input (e.g., textual prompt). The validity of a prediction set is determined by a user-defined binary admissibility function depending on the target application. For example, requiring at least one program in the set to pass all test cases in code generation application. To address this problem, we develop a simple and effective conformal inference algorithm referred to as Generative Prediction Sets (GPS). Given a set of calibration examples and black-box access to a deep generative model, GPS can generate prediction sets with provable guarantees. The key insight behind GPS is to exploit the inherent structure within the distribution over the minimum number of samples needed to obtain an admissible output to develop a simple conformal regression approach over the minimum number of samples. Experiments on multiple datasets for code and math word problems using different large language models demonstrate the efficacy of GPS over state-of-the-art methods.
☆ Explainable Bayesian deep learning through input-skip Latent Binary Bayesian Neural Networks
Modeling natural phenomena with artificial neural networks (ANNs) often provides highly accurate predictions. However, ANNs often suffer from over-parameterization, complicating interpretation and raising uncertainty issues. Bayesian neural networks (BNNs) address the latter by representing weights as probability distributions, allowing for predictive uncertainty evaluation. Latent binary Bayesian neural networks (LBBNNs) further handle structural uncertainty and sparsify models by removing redundant weights. This article advances LBBNNs by enabling covariates to skip to any succeeding layer or be excluded, simplifying networks and clarifying input impacts on predictions. Ultimately, a linear model or even a constant can be found to be optimal for a specific problem at hand. Furthermore, the input-skip LBBNN approach reduces network density significantly compared to standard LBBNNs, achieving over 99% reduction for small networks and over 99.9% for larger ones, while still maintaining high predictive accuracy and uncertainty measurement. For example, on MNIST, we reached 97% accuracy and great calibration with just 935 weights, reaching state-of-the-art for compression of neural networks. Furthermore, the proposed method accurately identifies the true covariates and adjusts for system non-linearity. The main contribution is the introduction of active paths, enhancing directly designed global and local explanations within the LBBNN framework, that have theoretical guarantees and do not require post hoc external tools for explanations.
comment: 44 pages, 19 tables, 25 figures. Code available at https://github.com/eirihoyh/ISLaB-LBBNN
☆ LLMs in Disease Diagnosis: A Comparative Study of DeepSeek-R1 and O3 Mini Across Chronic Health Conditions
Large Language Models (LLMs) are revolutionizing medical diagnostics by enhancing both disease classification and clinical decision-making. In this study, we evaluate the performance of two LLM- based diagnostic tools, DeepSeek R1 and O3 Mini, using a structured dataset of symptoms and diagnoses. We assessed their predictive accuracy at both the disease and category levels, as well as the reliability of their confidence scores. DeepSeek R1 achieved a disease-level accuracy of 76% and an overall accuracy of 82%, outperforming O3 Mini, which attained 72% and 75% respectively. Notably, DeepSeek R1 demonstrated exceptional performance in Mental Health, Neurological Disorders, and Oncology, where it reached 100% accuracy, while O3 Mini excelled in Autoimmune Disease classification with 100% accuracy. Both models, however, struggled with Respiratory Disease classification, recording accuracies of only 40% for DeepSeek R1 and 20% for O3 Mini. Additionally, the analysis of confidence scores revealed that DeepSeek R1 provided high-confidence predictions in 92% of cases, compared to 68% for O3 Mini. Ethical considerations regarding bias, model interpretability, and data privacy are also discussed to ensure the responsible integration of LLMs into clinical practice. Overall, our findings offer valuable insights into the strengths and limitations of LLM-based diagnostic systems and provide a roadmap for future enhancements in AI-driven healthcare.
comment: 12 pages, 3 figures
☆ DeclareAligner: A Leap Towards Efficient Optimal Alignments for Declarative Process Model Conformance Checking
In many engineering applications, processes must be followed precisely, making conformance checking between event logs and declarative process models crucial for ensuring adherence to desired behaviors. This is a critical area where Artificial Intelligence (AI) plays a pivotal role in driving effective process improvement. However, computing optimal alignments poses significant computational challenges due to the vast search space inherent in these models. Consequently, existing approaches often struggle with scalability and efficiency, limiting their applicability in real-world settings. This paper introduces DeclareAligner, a novel algorithm that uses the A* search algorithm, an established AI pathfinding technique, to tackle the problem from a fresh perspective leveraging the flexibility of declarative models. Key features of DeclareAligner include only performing actions that actively contribute to fixing constraint violations, utilizing a tailored heuristic to navigate towards optimal solutions, and employing early pruning to eliminate unproductive branches, while also streamlining the process through preprocessing and consolidating multiple fixes into unified actions. The proposed method is evaluated using 8,054 synthetic and real-life alignment problems, demonstrating its ability to efficiently compute optimal alignments by significantly outperforming the current state of the art. By enabling process analysts to more effectively identify and understand conformance issues, DeclareAligner has the potential to drive meaningful process improvement and management.
☆ Siamese Foundation Models for Crystal Structure Prediction
Crystal Structure Prediction (CSP), which aims to generate stable crystal structures from compositions, represents a critical pathway for discovering novel materials. While structure prediction tasks in other domains, such as proteins, have seen remarkable progress, CSP remains a relatively underexplored area due to the more complex geometries inherent in crystal structures. In this paper, we propose Siamese foundation models specifically designed to address CSP. Our pretrain-finetune framework, named DAO, comprises two complementary foundation models: DAO-G for structure generation and DAO-P for energy prediction. Experiments on CSP benchmarks (MP-20 and MPTS-52) demonstrate that our DAO-G significantly surpasses state-of-the-art (SOTA) methods across all metrics. Extensive ablation studies further confirm that DAO-G excels in generating diverse polymorphic structures, and the dataset relaxation and energy guidance provided by DAO-P are essential for enhancing DAO-G's performance. When applied to three real-world superconductors ($\text{CsV}_3\text{Sb}_5$, $ \text{Zr}_{16}\text{Rh}_8\text{O}_4$ and $\text{Zr}_{16}\text{Pd}_8\text{O}_4$) that are known to be challenging to analyze, our foundation models achieve accurate critical temperature predictions and structure generations. For instance, on $\text{CsV}_3\text{Sb}_5$, DAO-G generates a structure close to the experimental one with an RMSE of 0.0085; DAO-P predicts the $T_c$ value with high accuracy (2.26 K vs. the ground-truth value of 2.30 K). In contrast, conventional DFT calculators like Quantum Espresso only successfully derive the structure of the first superconductor within an acceptable time, while the RMSE is nearly 8 times larger, and the computation speed is more than 1000 times slower. These compelling results collectively highlight the potential of our approach for advancing materials science research and development.
☆ DynaCode: A Dynamic Complexity-Aware Code Benchmark for Evaluating Large Language Models in Code Generation
The rapid advancement of large language models (LLMs) has significantly improved their performance in code generation tasks. However, existing code benchmarks remain static, consisting of fixed datasets with predefined problems. This makes them vulnerable to memorization during training, where LLMs recall specific test cases instead of generalizing to new problems, leading to data contamination and unreliable evaluation results. To address these issues, we introduce DynaCode, a dynamic, complexity-aware benchmark that overcomes the limitations of static datasets. DynaCode evaluates LLMs systematically using a complexity-aware metric, incorporating both code complexity and call-graph structures. DynaCode achieves large-scale diversity, generating up to 189 million unique nested code problems across four distinct levels of code complexity, referred to as units, and 16 types of call graphs. Results on 12 latest LLMs show an average performance drop of 16.8% to 45.7% compared to MBPP+, a static code generation benchmark, with performance progressively decreasing as complexity increases. This demonstrates DynaCode's ability to effectively differentiate LLMs. Additionally, by leveraging call graphs, we gain insights into LLM behavior, particularly their preference for handling subfunction interactions within nested code.
comment: 16 pages, 11 figures
☆ Whisper Speaker Identification: Leveraging Pre-Trained Multilingual Transformers for Robust Speaker Embeddings
Speaker identification in multilingual settings presents unique challenges, particularly when conventional models are predominantly trained on English data. In this paper, we propose WSI (Whisper Speaker Identification), a framework that repurposes the encoder of the Whisper automatic speech recognition model pre trained on extensive multilingual data to generate robust speaker embeddings via a joint loss optimization strategy that leverages online hard triplet mining and self supervised Normalized Temperature-scaled Cross Entropy loss. By capitalizing on Whisper language-agnostic acoustic representations, our approach effectively distinguishes speakers across diverse languages and recording conditions. Extensive evaluations on multiple corpora, including VoxTube (multilingual), JVS (Japanese), CallHome (German, Spanish, Chinese, and Japanese), and Voxconverse (English), demonstrate that WSI consistently outperforms state-of-the-art baselines, namely Pyannote Embedding, ECAPA TDNN, and Xvector, in terms of lower equal error rates and higher AUC scores. These results validate our hypothesis that a multilingual pre-trained ASR encoder, combined with joint loss optimization, substantially improves speaker identification performance in non-English languages.
comment: 6 pages
☆ dFLMoE: Decentralized Federated Learning via Mixture of Experts for Medical Data Analysis
Federated learning has wide applications in the medical field. It enables knowledge sharing among different healthcare institutes while protecting patients' privacy. However, existing federated learning systems are typically centralized, requiring clients to upload client-specific knowledge to a central server for aggregation. This centralized approach would integrate the knowledge from each client into a centralized server, and the knowledge would be already undermined during the centralized integration before it reaches back to each client. Besides, the centralized approach also creates a dependency on the central server, which may affect training stability if the server malfunctions or connections are unstable. To address these issues, we propose a decentralized federated learning framework named dFLMoE. In our framework, clients directly exchange lightweight head models with each other. After exchanging, each client treats both local and received head models as individual experts, and utilizes a client-specific Mixture of Experts (MoE) approach to make collective decisions. This design not only reduces the knowledge damage with client-specific aggregations but also removes the dependency on the central server to enhance the robustness of the framework. We validate our framework on multiple medical tasks, demonstrating that our method evidently outperforms state-of-the-art approaches under both model homogeneity and heterogeneity settings.
☆ RealGeneral: Unifying Visual Generation via Temporal In-Context Learning with Video Models
Unifying diverse image generation tasks within a single framework remains a fundamental challenge in visual generation. While large language models (LLMs) achieve unification through task-agnostic data and generation, existing visual generation models fail to meet these principles. Current approaches either rely on per-task datasets and large-scale training or adapt pre-trained image models with task-specific modifications, limiting their generalizability. In this work, we explore video models as a foundation for unified image generation, leveraging their inherent ability to model temporal correlations. We introduce RealGeneral, a novel framework that reformulates image generation as a conditional frame prediction task, analogous to in-context learning in LLMs. To bridge the gap between video models and condition-image pairs, we propose (1) a Unified Conditional Embedding module for multi-modal alignment and (2) a Unified Stream DiT Block with decoupled adaptive LayerNorm and attention mask to mitigate cross-modal interference. RealGeneral demonstrates effectiveness in multiple important visual generation tasks, e.g., it achieves a 14.5% improvement in subject similarity for customized generation and a 10% enhancement in image quality for canny-to-image task. Project page: https://lyne1.github.io/RealGeneral/
☆ RoMA: Scaling up Mamba-based Foundation Models for Remote Sensing
Recent advances in self-supervised learning for Vision Transformers (ViTs) have fueled breakthroughs in remote sensing (RS) foundation models. However, the quadratic complexity of self-attention poses a significant barrier to scalability, particularly for large models and high-resolution images. While the linear-complexity Mamba architecture offers a promising alternative, existing RS applications of Mamba remain limited to supervised tasks on small, domain-specific datasets. To address these challenges, we propose RoMA, a framework that enables scalable self-supervised pretraining of Mamba-based RS foundation models using large-scale, diverse, unlabeled data. RoMA enhances scalability for high-resolution images through a tailored auto-regressive learning strategy, incorporating two key innovations: 1) a rotation-aware pretraining mechanism combining adaptive cropping with angular embeddings to handle sparsely distributed objects with arbitrary orientations, and 2) multi-scale token prediction objectives that address the extreme variations in object scales inherent to RS imagery. Systematic empirical studies validate that Mamba adheres to RS data and parameter scaling laws, with performance scaling reliably as model and data size increase. Furthermore, experiments across scene classification, object detection, and semantic segmentation tasks demonstrate that RoMA-pretrained Mamba models consistently outperform ViT-based counterparts in both accuracy and computational efficiency. The source code and pretrained models will be released at https://github.com/MiliLab/RoMA.
☆ CINEMA: Coherent Multi-Subject Video Generation via MLLM-Based Guidance
Video generation has witnessed remarkable progress with the advent of deep generative models, particularly diffusion models. While existing methods excel in generating high-quality videos from text prompts or single images, personalized multi-subject video generation remains a largely unexplored challenge. This task involves synthesizing videos that incorporate multiple distinct subjects, each defined by separate reference images, while ensuring temporal and spatial consistency. Current approaches primarily rely on mapping subject images to keywords in text prompts, which introduces ambiguity and limits their ability to model subject relationships effectively. In this paper, we propose CINEMA, a novel framework for coherent multi-subject video generation by leveraging Multimodal Large Language Model (MLLM). Our approach eliminates the need for explicit correspondences between subject images and text entities, mitigating ambiguity and reducing annotation effort. By leveraging MLLM to interpret subject relationships, our method facilitates scalability, enabling the use of large and diverse datasets for training. Furthermore, our framework can be conditioned on varying numbers of subjects, offering greater flexibility in personalized content creation. Through extensive evaluations, we demonstrate that our approach significantly improves subject consistency, and overall video coherence, paving the way for advanced applications in storytelling, interactive media, and personalized video generation.
☆ A Multimodal Fusion Model Leveraging MLP Mixer and Handcrafted Features-based Deep Learning Networks for Facial Palsy Detection PAKDD 2025
Algorithmic detection of facial palsy offers the potential to improve current practices, which usually involve labor-intensive and subjective assessments by clinicians. In this paper, we present a multimodal fusion-based deep learning model that utilizes an MLP mixer-based model to process unstructured data (i.e. RGB images or images with facial line segments) and a feed-forward neural network to process structured data (i.e. facial landmark coordinates, features of facial expressions, or handcrafted features) for detecting facial palsy. We then contribute to a study to analyze the effect of different data modalities and the benefits of a multimodal fusion-based approach using videos of 20 facial palsy patients and 20 healthy subjects. Our multimodal fusion model achieved 96.00 F1, which is significantly higher than the feed-forward neural network trained on handcrafted features alone (82.80 F1) and an MLP mixer-based model trained on raw RGB images (89.00 F1).
comment: PAKDD 2025. arXiv admin note: text overlap with arXiv:2405.16496
☆ G-Boost: Boosting Private SLMs with General LLMs
Due to the limited computational resources, most Large Language Models (LLMs) developers can only fine-tune Small Language Models (SLMs) on their own data. These private SLMs typically have limited effectiveness. To boost the performance of private SLMs, this paper proposes to ask general LLMs for help. The general LLMs can be APIs or larger LLMs whose inference cost the developers can afford. Specifically, we propose the G-Boost framework where a private SLM adaptively performs collaborative inference with a general LLM under the guide of process reward. Experiments demonstrate that our framework can significantly boost the performance of private SLMs.
☆ Object detection characteristics in a learning factory environment using YOLOv8
AI-based object detection, and efforts to explain and investigate their characteristics, is a topic of high interest. The impact of, e.g., complex background structures with similar appearances as the objects of interest, on the detection accuracy and, beforehand, the necessary dataset composition are topics of ongoing research. In this paper, we present a systematic investigation of background influences and different features of the object to be detected. The latter includes various materials and surfaces, partially transparent and with shiny reflections in the context of an Industry 4.0 learning factory. Different YOLOv8 models have been trained for each of the materials on different sized datasets, where the appearance was the only changing parameter. In the end, similar characteristics tend to show different behaviours and sometimes unexpected results. While some background components tend to be detected, others with the same features are not part of the detection. Additionally, some more precise conclusions can be drawn from the results. Therefore, we contribute a challenging dataset with detailed investigations on 92 trained YOLO models, addressing some issues on the detection accuracy and possible overfitting.
☆ KV-Distill: Nearly Lossless Learnable Context Compression for LLMs
Sequence-to-sequence tasks often benefit from long contexts, but the quadratic complexity of self-attention in standard Transformers renders this non-trivial. During generation, temporary representations -stored in the so-called KV cache-account for a large portion of GPU memory usage and scale linearly with context length. We introduce KV-Distill, a Transformer compression framework that distills long context KV caches into significantly shorter representations in a question-independent fashion. KV-Distill can be trained as a parameter-efficient adaptor for pretrained models, and enables the compression of arbitrary spans of a context while preserving pre-trained model capabilities. We treat a compressed-uncompressed cache as a student-teacher pairing and apply a KL-type divergence to match the generated outputs. KV-Distill outperforms other compression techniques in worst-case extractive tasks and approaches uncompressed performance in long context question answering and summarization, and it can be fine-tuned on domain-specific contexts to reduce lengths by up to 99% while preserving downstream performance. We demonstrate the generalizability of KV-Distill across various model sizes and architectures.
☆ OSMa-Bench: Evaluating Open Semantic Mapping Under Varying Lighting Conditions
Open Semantic Mapping (OSM) is a key technology in robotic perception, combining semantic segmentation and SLAM techniques. This paper introduces a dynamically configurable and highly automated LLM/LVLM-powered pipeline for evaluating OSM solutions called OSMa-Bench (Open Semantic Mapping Benchmark). The study focuses on evaluating state-of-the-art semantic mapping algorithms under varying indoor lighting conditions, a critical challenge in indoor environments. We introduce a novel dataset with simulated RGB-D sequences and ground truth 3D reconstructions, facilitating the rigorous analysis of mapping performance across different lighting conditions. Through experiments on leading models such as ConceptGraphs, BBQ and OpenScene, we evaluate the semantic fidelity of object recognition and segmentation. Additionally, we introduce a Scene Graph evaluation method to analyze the ability of models to interpret semantic structure. The results provide insights into the robustness of these models, forming future research directions for developing resilient and adaptable robotic systems. Our code is available at https://be2rlab.github.io/OSMa-Bench/.
comment: Project page: https://be2rlab.github.io/OSMa-Bench/
☆ Enhance Exploration in Safe Reinforcement Learning with Contrastive Representation Learning
In safe reinforcement learning, agent needs to balance between exploration actions and safety constraints. Following this paradigm, domain transfer approaches learn a prior Q-function from the related environments to prevent unsafe actions. However, because of the large number of false positives, some safe actions are never executed, leading to inadequate exploration in sparse-reward environments. In this work, we aim to learn an efficient state representation to balance the exploration and safety-prefer action in a sparse-reward environment. Firstly, the image input is mapped to latent representation by an auto-encoder. A further contrastive learning objective is employed to distinguish safe and unsafe states. In the learning phase, the latent distance is used to construct an additional safety check, which allows the agent to bias the exploration if it visits an unsafe state. To verify the effectiveness of our method, the experiment is carried out in three navigation-based MiniGrid environments. The result highlights that our method can explore the environment better while maintaining a good balance between safety and efficiency.
comment: Accepted at ACIIDS 2025
☆ Nash Equilibrium Constrained Auto-bidding With Bi-level Reinforcement Learning
Many online advertising platforms provide advertisers with auto-bidding services to enhance their advertising performance. However, most existing auto-bidding algorithms fail to accurately capture the auto-bidding problem formulation that the platform truly faces, let alone solve it. Actually, we argue that the platform should try to help optimize each advertiser's performance to the greatest extent -- which makes $\epsilon$-Nash Equilibrium ($\epsilon$-NE) a necessary solution concept -- while maximizing the social welfare of all the advertisers for the platform's long-term value. Based on this, we introduce the \emph{Nash-Equilibrium Constrained Bidding} (NCB), a new formulation of the auto-bidding problem from the platform's perspective. Specifically, it aims to maximize the social welfare of all advertisers under the $\epsilon$-NE constraint. However, the NCB problem presents significant challenges due to its constrained bi-level structure and the typically large number of advertisers involved. To address these challenges, we propose a \emph{Bi-level Policy Gradient} (BPG) framework with theoretical guarantees. Notably, its computational complexity is independent of the number of advertisers, and the associated gradients are straightforward to compute. Extensive simulated and real-world experiments validate the effectiveness of the BPG framework.
☆ Bilingual Dual-Head Deep Model for Parkinson's Disease Detection from Speech ICASSP 2025
This work aims to tackle the Parkinson's disease (PD) detection problem from the speech signal in a bilingual setting by proposing an ad-hoc dual-head deep neural architecture for type-based binary classification. One head is specialized for diadochokinetic patterns. The other head looks for natural speech patterns present in continuous spoken utterances. Only one of the two heads is operative accordingly to the nature of the input. Speech representations are extracted from self-supervised learning (SSL) models and wavelet transforms. Adaptive layers, convolutional bottlenecks, and contrastive learning are exploited to reduce variations across languages. Our solution is assessed against two distinct datasets, EWA-DB, and PC-GITA, which cover Slovak and Spanish languages, respectively. Results indicate that conventional models trained on a single language dataset struggle with cross-linguistic generalization, and naive combinations of datasets are suboptimal. In contrast, our model improves generalization on both languages, simultaneously.
comment: Accepted at ICASSP 2025 - Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses
☆ CODEI: Resource-Efficient Task-Driven Co-Design of Perception and Decision Making for Mobile Robots Applied to Autonomous Vehicles
This paper discusses the integration challenges and strategies for designing mobile robots, by focusing on the task-driven, optimal selection of hardware and software to balance safety, efficiency, and minimal usage of resources such as costs, energy, computational requirements, and weight. We emphasize the interplay between perception and motion planning in decision-making by introducing the concept of occupancy queries to quantify the perception requirements for sampling-based motion planners. Sensor and algorithm performance are evaluated using False Negative Rates (FPR) and False Positive Rates (FPR) across various factors such as geometric relationships, object properties, sensor resolution, and environmental conditions. By integrating perception requirements with perception performance, an Integer Linear Programming (ILP) approach is proposed for efficient sensor and algorithm selection and placement. This forms the basis for a co-design optimization that includes the robot body, motion planner, perception pipeline, and computing unit. We refer to this framework for solving the co-design problem of mobile robots as CODEI, short for Co-design of Embodied Intelligence. A case study on developing an Autonomous Vehicle (AV) for urban scenarios provides actionable information for designers, and shows that complex tasks escalate resource demands, with task performance affecting choices of the autonomy stack. The study demonstrates that resource prioritization influences sensor choice: cameras are preferred for cost-effective and lightweight designs, while lidar sensors are chosen for better energy and computational efficiency.
comment: 20 pages, 33 images, IEEE Transactions on Robotics
☆ PyGDA: A Python Library for Graph Domain Adaptation
Graph domain adaptation has emerged as a promising approach to facilitate knowledge transfer across different domains. Recently, numerous models have been proposed to enhance their generalization capabilities in this field. However, there is still no unified library that brings together existing techniques and simplifies their implementation. To fill this gap, we introduce PyGDA, an open-source Python library tailored for graph domain adaptation. As the first comprehensive library in this area, PyGDA covers more than 20 widely used graph domain adaptation methods together with different types of graph datasets. Specifically, PyGDA offers modular components, enabling users to seamlessly build custom models with a variety of commonly used utility functions. To handle large-scale graphs, PyGDA includes support for features such as sampling and mini-batch processing, ensuring efficient computation. In addition, PyGDA also includes comprehensive performance benchmarks and well-documented user-friendly API for both researchers and practitioners. To foster convenient accessibility, PyGDA is released under the MIT license at https://github.com/pygda-team/pygda, and the API documentation is https://pygda.readthedocs.io/en/stable/.
comment: Under Review
SurgRAW: Multi-Agent Workflow with Chain-of-Thought Reasoning for Surgical Intelligence
Integration of Vision-Language Models (VLMs) in surgical intelligence is hindered by hallucinations, domain knowledge gaps, and limited understanding of task interdependencies within surgical scenes, undermining clinical reliability. While recent VLMs demonstrate strong general reasoning and thinking capabilities, they still lack the domain expertise and task-awareness required for precise surgical scene interpretation. Although Chain-of-Thought (CoT) can structure reasoning more effectively, current approaches rely on self-generated CoT steps, which often exacerbate inherent domain gaps and hallucinations. To overcome this, we present SurgRAW, a CoT-driven multi-agent framework that delivers transparent, interpretable insights for most tasks in robotic-assisted surgery. By employing specialized CoT prompts across five tasks: instrument recognition, action recognition, action prediction, patient data extraction, and outcome assessment, SurgRAW mitigates hallucinations through structured, domain-aware reasoning. Retrieval-Augmented Generation (RAG) is also integrated to external medical knowledge to bridge domain gaps and improve response reliability. Most importantly, a hierarchical agentic system ensures that CoT-embedded VLM agents collaborate effectively while understanding task interdependencies, with a panel discussion mechanism promotes logical consistency. To evaluate our method, we introduce SurgCoTBench, the first reasoning-based dataset with structured frame-level annotations. With comprehensive experiments, we demonstrate the effectiveness of proposed SurgRAW with 29.32% accuracy improvement over baseline VLMs on 12 robotic procedures, achieving the state-of-the-art performance and advancing explainable, trustworthy, and autonomous surgical assistance.
☆ PIMRL: Physics-Informed Multi-Scale Recurrent Learning for Spatiotemporal Prediction
Simulation of spatiotemporal systems governed by partial differential equations is widely applied in fields such as biology, chemistry, aerospace dynamics, and meteorology. Traditional numerical methods incur high computational costs due to the requirement of small time steps for accurate predictions. While machine learning has reduced these costs, long-term predictions remain challenged by error accumulation, particularly in scenarios with insufficient data or varying time scales, where stability and accuracy are compromised. Existing methods often neglect the effective utilization of multi-scale data, leading to suboptimal robustness in predictions. To address these issues, we propose a novel multi-scale learning framework, namely, the Physics-Informed Multi-Scale Recurrent Learning (PIMRL), to effectively leverage multi-scale data for spatiotemporal dynamics prediction. The PIMRL framework comprises two modules: the micro-scale module embeds physical knowledge into neural networks via pretraining, and the macro-scale module adopts a data-driven approach to learn the temporal evolution of physics in the latent space. Experimental results demonstrate that the PIMRL framework consistently achieves state-of-the-art performance across five benchmark datasets ranging from one to three dimensions, showing average improvements of over 9\% in both RMSE and MAE evaluation metrics, with maximum enhancements reaching up to 80%.
☆ LLM Agents Display Human Biases but Exhibit Distinct Learning Patterns
We investigate the choice patterns of Large Language Models (LLMs) in the context of Decisions from Experience tasks that involve repeated choice and learning from feedback, and compare their behavior to human participants. We find that on the aggregate, LLMs appear to display behavioral biases similar to humans: both exhibit underweighting rare events and correlation effects. However, more nuanced analyses of the choice patterns reveal that this happens for very different reasons. LLMs exhibit strong recency biases, unlike humans, who appear to respond in more sophisticated ways. While these different processes may lead to similar behavior on average, choice patterns contingent on recent events differ vastly between the two groups. Specifically, phenomena such as ``surprise triggers change" and the ``wavy recency effect of rare events" are robustly observed in humans, but entirely absent in LLMs. Our findings provide insights into the limitations of using LLMs to simulate and predict humans in learning environments and highlight the need for refined analyses of their behavior when investigating whether they replicate human decision making tendencies.
☆ MinorBench: A hand-built benchmark for content-based risks for children
Large Language Models (LLMs) are rapidly entering children's lives - through parent-driven adoption, schools, and peer networks - yet current AI ethics and safety research do not adequately address content-related risks specific to minors. In this paper, we highlight these gaps with a real-world case study of an LLM-based chatbot deployed in a middle school setting, revealing how students used and sometimes misused the system. Building on these findings, we propose a new taxonomy of content-based risks for minors and introduce MinorBench, an open-source benchmark designed to evaluate LLMs on their ability to refuse unsafe or inappropriate queries from children. We evaluate six prominent LLMs under different system prompts, demonstrating substantial variability in their child-safety compliance. Our results inform practical steps for more robust, child-focused safety mechanisms and underscore the urgency of tailoring AI systems to safeguard young users.
☆ Efficient Federated Fine-Tuning of Large Language Models with Layer Dropout
Fine-tuning plays a crucial role in enabling pre-trained LLMs to evolve from general language comprehension to task-specific expertise. To preserve user data privacy, federated fine-tuning is often employed and has emerged as the de facto paradigm. However, federated fine-tuning is prohibitively inefficient due to the tension between LLM complexity and the resource constraint of end devices, incurring unaffordable fine-tuning overhead. Existing literature primarily utilizes parameter-efficient fine-tuning techniques to mitigate communication costs, yet computational and memory burdens continue to pose significant challenges for developers. This work proposes DropPEFT, an innovative federated PEFT framework that employs a novel stochastic transformer layer dropout method, enabling devices to deactivate a considerable fraction of LLMs layers during training, thereby eliminating the associated computational load and memory footprint. In DropPEFT, a key challenge is the proper configuration of dropout ratios for layers, as overhead and training performance are highly sensitive to this setting. To address this challenge, we adaptively assign optimal dropout-ratio configurations to devices through an exploration-exploitation strategy, achieving efficient and effective fine-tuning. Extensive experiments show that DropPEFT can achieve a 1.3-6.3\times speedup in model convergence and a 40%-67% reduction in memory footprint compared to state-of-the-art methods.
comment: 13 pages
☆ Adaptive Preference Aggregation
AI alignment, the challenge of ensuring AI systems act in accordance with human values, has emerged as a critical problem in the development of systems such as foundation models and recommender systems. Still, the current dominant approach, reinforcement learning with human feedback (RLHF) faces known theoretical limitations in aggregating diverse human preferences. Social choice theory provides a framework to aggregate preferences, but was not developed for the multidimensional applications typical of AI. Leveraging insights from a recently published urn process, this work introduces a preference aggregation strategy that adapts to the user's context and that inherits the good properties of the maximal lottery, a Condorcet-consistent solution concept.
☆ Deep Learning for Time Series Forecasting: A Survey
Time series forecasting (TSF) has long been a crucial task in both industry and daily life. Most classical statistical models may have certain limitations when applied to practical scenarios in fields such as energy, healthcare, traffic, meteorology, and economics, especially when high accuracy is required. With the continuous development of deep learning, numerous new models have emerged in the field of time series forecasting in recent years. However, existing surveys have not provided a unified summary of the wide range of model architectures in this field, nor have they given detailed summaries of works in feature extraction and datasets. To address this gap, in this review, we comprehensively study the previous works and summarize the general paradigms of Deep Time Series Forecasting (DTSF) in terms of model architectures. Besides, we take an innovative approach by focusing on the composition of time series and systematically explain important feature extraction methods. Additionally, we provide an overall compilation of datasets from various domains in existing works. Finally, we systematically emphasize the significant challenges faced and future research directions in this field.
☆ Predicting Chemical Reaction Outcomes Based on Electron Movements Using Machine Learning
Accurately predicting chemical reaction outcomes and potential byproducts is a fundamental task of modern chemistry, enabling the efficient design of synthetic pathways and driving progress in chemical science. Reaction mechanism, which tracks electron movements during chemical reactions, is critical for understanding reaction kinetics and identifying unexpected products. Here, we present Reactron, the first electron-based machine learning model for general reaction prediction. Reactron integrates electron movement into its predictions, generating detailed arrow-pushing diagrams that elucidate each mechanistic step leading to product formation. We demonstrate the high predictive performance of Reactron over existing product-only models by a large-scale reaction outcome prediction benchmark, and the adaptability of the model to learn new reactivity upon providing a few examples. Furthermore, it explores combinatorial reaction spaces, uncovering novel reactivities beyond its training data. With robust performance in both in- and out-of-distribution predictions, Reactron embodies human-like reasoning in chemistry and opens new frontiers in reaction discovery and synthesis design.
comment: 15 pages, 3 figures
☆ Robustness Tokens: Towards Adversarial Robustness of Transformers ECCV
Recently, large pre-trained foundation models have become widely adopted by machine learning practitioners for a multitude of tasks. Given that such models are publicly available, relying on their use as backbone models for downstream tasks might result in high vulnerability to adversarial attacks crafted with the same public model. In this work, we propose Robustness Tokens, a novel approach specific to the transformer architecture that fine-tunes a few additional private tokens with low computational requirements instead of tuning model parameters as done in traditional adversarial training. We show that Robustness Tokens make Vision Transformer models significantly more robust to white-box adversarial attacks while also retaining the original downstream performances.
comment: This paper has been accepted for publication at the European Conference on Computer Vision (ECCV), 2024
☆ Multi-Agent Q-Learning Dynamics in Random Networks: Convergence due to Exploration and Sparsity
Beyond specific settings, many multi-agent learning algorithms fail to converge to an equilibrium solution, and instead display complex, non-stationary behaviours such as recurrent or chaotic orbits. In fact, recent literature suggests that such complex behaviours are likely to occur when the number of agents increases. In this paper, we study Q-learning dynamics in network polymatrix games where the network structure is drawn from classical random graph models. In particular, we focus on the Erdos-Renyi model, a well-studied model for social networks, and the Stochastic Block model, which generalizes the above by accounting for community structures within the network. In each setting, we establish sufficient conditions under which the agents' joint strategies converge to a unique equilibrium. We investigate how this condition depends on the exploration rates, payoff matrices and, crucially, the sparsity of the network. Finally, we validate our theoretical findings through numerical simulations and demonstrate that convergence can be reliably achieved in many-agent systems, provided network sparsity is controlled.
☆ Through the Magnifying Glass: Adaptive Perception Magnification for Hallucination-Free VLM Decoding
Existing vision-language models (VLMs) often suffer from visual hallucination, where the generated responses contain inaccuracies that are not grounded in the visual input. Efforts to address this issue without model finetuning primarily mitigate hallucination by reducing biases contrastively or amplifying the weights of visual embedding during decoding. However, these approaches improve visual perception at the cost of impairing the language reasoning capability. In this work, we propose the Perception Magnifier (PM), a novel visual decoding method that iteratively isolates relevant visual tokens based on attention and magnifies the corresponding regions, spurring the model to concentrate on fine-grained visual details during decoding. Specifically, by magnifying critical regions while preserving the structural and contextual information at each decoding step, PM allows the VLM to enhance its scrutiny of the visual input, hence producing more accurate and faithful responses. Extensive experimental results demonstrate that PM not only achieves superior hallucination mitigation but also enhances language generation while preserving strong reasoning capabilities.Code is available at https://github.com/ShunqiM/PM .
comment: 19 pages, 5 figures, 9 tables
☆ ImageScope: Unifying Language-Guided Image Retrieval via Large Multimodal Model Collective Reasoning WWW 2025
With the proliferation of images in online content, language-guided image retrieval (LGIR) has emerged as a research hotspot over the past decade, encompassing a variety of subtasks with diverse input forms. While the development of large multimodal models (LMMs) has significantly facilitated these tasks, existing approaches often address them in isolation, requiring the construction of separate systems for each task. This not only increases system complexity and maintenance costs, but also exacerbates challenges stemming from language ambiguity and complex image content, making it difficult for retrieval systems to provide accurate and reliable results. To this end, we propose ImageScope, a training-free, three-stage framework that leverages collective reasoning to unify LGIR tasks. The key insight behind the unification lies in the compositional nature of language, which transforms diverse LGIR tasks into a generalized text-to-image retrieval process, along with the reasoning of LMMs serving as a universal verification to refine the results. To be specific, in the first stage, we improve the robustness of the framework by synthesizing search intents across varying levels of semantic granularity using chain-of-thought (CoT) reasoning. In the second and third stages, we then reflect on retrieval results by verifying predicate propositions locally, and performing pairwise evaluations globally. Experiments conducted on six LGIR datasets demonstrate that ImageScope outperforms competitive baselines. Comprehensive evaluations and ablation studies further confirm the effectiveness of our design.
comment: WWW 2025
☆ Retrieval-Augmented Generation with Hierarchical Knowledge
Graph-based Retrieval-Augmented Generation (RAG) methods have significantly enhanced the performance of large language models (LLMs) in domain-specific tasks. However, existing RAG methods do not adequately utilize the naturally inherent hierarchical knowledge in human cognition, which limits the capabilities of RAG systems. In this paper, we introduce a new RAG approach, called HiRAG, which utilizes hierarchical knowledge to enhance the semantic understanding and structure capturing capabilities of RAG systems in the indexing and retrieval processes. Our extensive experiments demonstrate that HiRAG achieves significant performance improvements over the state-of-the-art baseline methods. The code of our proposed method is available at \href{https://github.com/hhy-huang/HiRAG}{https://github.com/hhy-huang/HiRAG}.
☆ Multiplicative Learning
Efficient training of artificial neural networks remains a key challenge in deep learning. Backpropagation (BP), the standard learning algorithm, relies on gradient descent and typically requires numerous iterations for convergence. In this study, we introduce Expectation Reflection (ER), a novel learning approach that updates weights multiplicatively based on the ratio of observed to predicted outputs. Unlike traditional methods, ER maintains consistency without requiring ad hoc loss functions or learning rate hyperparameters. We extend ER to multilayer networks and demonstrate its effectiveness in performing image classification tasks. Notably, ER achieves optimal weight updates in a single iteration. Additionally, we reinterpret ER as a modified form of gradient descent incorporating the inverse mapping of target propagation. These findings suggest that ER provides an efficient and scalable alternative for training neural networks.
☆ Gumiho: A Hybrid Architecture to Prioritize Early Tokens in Speculative Decoding
Speculative decoding (SPD) aims to accelerate the auto-regressive token generation process of a target Large Language Model (LLM). Some approaches employ a draft model with multiple heads to predict a sequence of future tokens, where each head handles a token in the sequence. The target LLM verifies the predicted sequence and accepts aligned tokens, enabling efficient multi-token generation. However, existing methods assume that all tokens within a sequence are equally important, employing identical head structures and relying on a single-generation paradigm, either serial or parallel. To this end, we theoretically demonstrate that initial tokens in the draft sequence are more important than later ones. Building on this insight, we propose Gumiho, a hybrid model combining serial and parallel heads. Specifically, given the critical importance of early tokens, we employ a sophisticated Transformer architecture for the early draft heads in a serial configuration to improve accuracy. For later tokens, we utilize multiple lightweight MLP heads operating in parallel to enhance efficiency. By allocating more advanced model structures and longer running times to the early heads, Gumiho achieves improved overall performance. The experimental results demonstrate that our method outperforms existing approaches, fully validating its effectiveness.
comment: Paper under review
☆ Deep Learning-Based Direct Leaf Area Estimation using Two RGBD Datasets for Model Development
Estimation of a single leaf area can be a measure of crop growth and a phenotypic trait to breed new varieties. It has also been used to measure leaf area index and total leaf area. Some studies have used hand-held cameras, image processing 3D reconstruction and unsupervised learning-based methods to estimate the leaf area in plant images. Deep learning works well for object detection and segmentation tasks; however, direct area estimation of objects has not been explored. This work investigates deep learning-based leaf area estimation, for RGBD images taken using a mobile camera setup in real-world scenarios. A dataset for attached leaves captured with a top angle view and a dataset for detached single leaves were collected for model development and testing. First, image processing-based area estimation was tested on manually segmented leaves. Then a Mask R-CNN-based model was investigated, and modified to accept RGBD images and to estimate the leaf area. The detached-leaf data set was then mixed with the attached-leaf plant data set to estimate the single leaf area for plant images, and another network design with two backbones was proposed: one for segmentation and the other for area estimation. Instead of trying all possibilities or random values, an agile approach was used in hyperparameter tuning. The final model was cross-validated with 5-folds and tested with two unseen datasets: detached and attached leaves. The F1 score with 90% IoA for segmentation result on unseen detached-leaf data was 1.0, while R-squared of area estimation was 0.81. For unseen plant data segmentation, the F1 score with 90% IoA was 0.59, while the R-squared score was 0.57. The research suggests using attached leaves with ground truth area to improve the results.
☆ StepMathAgent: A Step-Wise Agent for Evaluating Mathematical Processes through Tree-of-Error
Evaluating mathematical capabilities is critical for assessing the overall performance of large language models (LLMs). However, existing evaluation methods often focus solely on final answers, resulting in highly inaccurate and uninterpretable evaluation outcomes, as well as their failure to assess proof or open-ended problems. To address these issues, we propose a novel mathematical process evaluation agent based on Tree-of-Error, called StepMathAgent. This agent incorporates four internal core operations: logical step segmentation, step scoring, score aggregation and error tree generation, along with four external extension modules: difficulty calibration, simplicity evaluation, completeness validation and format assessment. Furthermore, we introduce StepMathBench, a benchmark comprising 1,000 step-divided process evaluation instances, derived from 200 high-quality math problems grouped by problem type, subject category and difficulty level. Experiments on StepMathBench show that our proposed StepMathAgent outperforms all state-of-the-art methods, demonstrating human-aligned evaluation preferences and broad applicability to various scenarios. Our data and code are available at https://github.com/SHU-XUN/StepMathAgent.
☆ Cognitive-Mental-LLM: Leveraging Reasoning in Large Language Models for Mental Health Prediction via Online Text
Large Language Models (LLMs) have demonstrated potential in predicting mental health outcomes from online text, yet traditional classification methods often lack interpretability and robustness. This study evaluates structured reasoning techniques-Chain-of-Thought (CoT), Self-Consistency (SC-CoT), and Tree-of-Thought (ToT)-to improve classification accuracy across multiple mental health datasets sourced from Reddit. We analyze reasoning-driven prompting strategies, including Zero-shot CoT and Few-shot CoT, using key performance metrics such as Balanced Accuracy, F1 score, and Sensitivity/Specificity. Our findings indicate that reasoning-enhanced techniques improve classification performance over direct prediction, particularly in complex cases. Compared to baselines such as Zero Shot non-CoT Prompting, and fine-tuned pre-trained transformers such as BERT and Mental-RoBerta, and fine-tuned Open Source LLMs such as Mental Alpaca and Mental-Flan-T5, reasoning-driven LLMs yield notable gains on datasets like Dreaddit (+0.52\% over M-LLM, +0.82\% over BERT) and SDCNL (+4.67\% over M-LLM, +2.17\% over BERT). However, performance declines in Depression Severity, and CSSRS predictions suggest dataset-specific limitations, likely due to our using a more extensive test set. Among prompting strategies, Few-shot CoT consistently outperforms others, reinforcing the effectiveness of reasoning-driven LLMs. Nonetheless, dataset variability highlights challenges in model reliability and interpretability. This study provides a comprehensive benchmark of reasoning-based LLM techniques for mental health text classification. It offers insights into their potential for scalable clinical applications while identifying key challenges for future improvements.
comment: 8 pages, 4 Figures, 3 tables
☆ Semantic Synergy: Unlocking Policy Insights and Learning Pathways Through Advanced Skill Mapping
This research introduces a comprehensive system based on state-of-the-art natural language processing, semantic embedding, and efficient search techniques for retrieving similarities and thus generating actionable insights from raw textual information. The system automatically extracts and aggregates normalized competencies from multiple documents (such as policy files and curricula vitae) and creates strong relationships between recognized competencies, occupation profiles, and related learning courses. To validate its performance, we conducted a multi-tier evaluation that included both explicit and implicit skill references in synthetic and real-world documents. The results showed near-human-level accuracy, with F1 scores exceeding 0.95 for explicit skill detection and above 0.93 for implicit mentions. The system thereby establishes a sound foundation for supporting in-depth collaboration across the AE4RIA network. The methodology involves a multi-stage pipeline based on extensive preprocessing and data cleaning, semantic embedding and segmentation via SentenceTransformer, and skill extraction using a FAISS-based search method. The extracted skills are associated with occupation frameworks (as formulated in the ESCO ontology) and with learning paths offered through the Sustainable Development Goals Academy. Moreover, interactive visualization software, implemented with Dash and Plotly, presents graphs and tables for real-time exploration and informed decision-making by those involved in policymaking, training and learning supply, career transitions, and recruitment. Overall, this system, backed by rigorous validation, offers promising prospects for improved policymaking, human resource development, and lifelong learning by providing structured and actionable insights from raw, complex textual information.
☆ Parallelizing Multi-objective A* Search
The Multi-objective Shortest Path (MOSP) problem is a classic network optimization problem that aims to find all Pareto-optimal paths between two points in a graph with multiple edge costs. Recent studies on multi-objective search with A* (MOA*) have demonstrated superior performance in solving difficult MOSP instances. This paper presents a novel search framework that allows efficient parallelization of MOA* with different objective orders. The framework incorporates a unique upper bounding strategy that helps the search reduce the problem's dimensionality to one in certain cases. Experimental results demonstrate that the proposed framework can enhance the performance of recent A*-based solutions, with the speed-up proportional to the problem dimension.
comment: 8 page, 2 tables, 2 figures
☆ Advanced Tool Learning and Selection System (ATLASS): A Closed-Loop Framework Using LLM
The combination of LLM agents with external tools enables models to solve complex tasks beyond their knowledge base. Human-designed tools are inflexible and restricted to solutions within the scope of pre-existing tools created by experts. To address this problem, we propose ATLASS, an advanced tool learning and selection system designed as a closed-loop framework. It enables the LLM to solve problems by dynamically generating external tools on demand. In this framework, agents play a crucial role in orchestrating tool selection, execution, and refinement, ensuring adaptive problem-solving capabilities. The operation of ATLASS follows three phases: The first phase, Understanding Tool Requirements, involves the Agents determining whether tools are required and specifying their functionality; the second phase, Tool Retrieval/Generation, involves the Agents retrieving or generating tools based on their availability; and the third phase, Task Solving, involves combining all the component tools necessary to complete the initial task. The Tool Dataset stores the generated tools, ensuring reusability and minimizing inference cost. Current LLM-based tool generation systems have difficulty creating complex tools that need APIs or external packages. In ATLASS, we solve the problem by automatically setting up the environment, fetching relevant API documentation online, and using a Python interpreter to create a reliable, versatile tool that works in a wider range of situations. OpenAI GPT-4.0 is used as the LLM agent, and safety and ethical concerns are handled through human feedback before executing generated code. By addressing the limitations of predefined toolsets and enhancing adaptability, ATLASS serves as a real-world solution that empowers users with dynamically generated tools for complex problem-solving.
☆ AhaRobot: A Low-Cost Open-Source Bimanual Mobile Manipulator for Embodied AI
Navigation and manipulation in open-world environments remain unsolved challenges in the Embodied AI. The high cost of commercial mobile manipulation robots significantly limits research in real-world scenes. To address this issue, we propose AhaRobot, a low-cost and fully open-source dual-arm mobile manipulation robot system with a hardware cost of only $1,000 (excluding optional computational resources), which is less than 1/15 of the cost of popular mobile robots. The AhaRobot system consists of three components: (1) a novel low-cost hardware architecture primarily composed of off-the-shelf components, (2) an optimized control solution to enhance operational precision integrating dual-motor backlash control and static friction compensation, and (3) a simple remote teleoperation method RoboPilot. We use handles to control the dual arms and pedals for whole-body movement. The teleoperation process is low-burden and easy to operate, much like piloting. RoboPilot is designed for remote data collection in embodied scenarios. Experimental results demonstrate that RoboPilot significantly enhances data collection efficiency in complex manipulation tasks, achieving a 30% increase compared to methods using 3D mouse and leader-follower systems. It also excels at completing extremely long-horizon tasks in one go. Furthermore, AhaRobot can be used to learn end-to-end policies and autonomously perform complex manipulation tasks, such as pen insertion and cleaning up the floor. We aim to build an affordable yet powerful platform to promote the development of embodied tasks on real devices, advancing more robust and reliable embodied AI. All hardware and software systems are available at https://aha-robot.github.io.
comment: The first two authors contributed equally. Website: https://aha-robot.github.io
☆ Compute Optimal Scaling of Skills: Knowledge vs Reasoning
Scaling laws are a critical component of the LLM development pipeline, most famously as a way to forecast training decisions such as 'compute-optimally' trading-off parameter count and dataset size, alongside a more recent growing list of other crucial decisions. In this work, we ask whether compute-optimal scaling behaviour can be skill-dependent. In particular, we examine knowledge and reasoning-based skills such as knowledge-based QA and code generation, and we answer this question in the affirmative: $\textbf{scaling laws are skill-dependent}$. Next, to understand whether skill-dependent scaling is an artefact of the pretraining datamix, we conduct an extensive ablation of different datamixes and find that, also when correcting for datamix differences, $\textbf{knowledge and code exhibit fundamental differences in scaling behaviour}$. We conclude with an analysis of how our findings relate to standard compute-optimal scaling using a validation set, and find that $\textbf{a misspecified validation set can impact compute-optimal parameter count by nearly 50%,}$ depending on its skill composition.
☆ Deep Learning Approaches for Anti-Money Laundering on Mobile Transactions: Review, Framework, and Directions
Money laundering is a financial crime that obscures the origin of illicit funds, necessitating the development and enforcement of anti-money laundering (AML) policies by governments and organizations. The proliferation of mobile payment platforms and smart IoT devices has significantly complicated AML investigations. As payment networks become more interconnected, there is an increasing need for efficient real-time detection to process large volumes of transaction data on heterogeneous payment systems by different operators such as digital currencies, cryptocurrencies and account-based payments. Most of these mobile payment networks are supported by connected devices, many of which are considered loT devices in the FinTech space that constantly generate data. Furthermore, the growing complexity and unpredictability of transaction patterns across these networks contribute to a higher incidence of false positives. While machine learning solutions have the potential to enhance detection efficiency, their application in AML faces unique challenges, such as addressing privacy concerns tied to sensitive financial data and managing the real-world constraint of limited data availability due to data regulations. Existing surveys in the AML literature broadly review machine learning approaches for money laundering detection, but they often lack an in-depth exploration of advanced deep learning techniques - an emerging field with significant potential. To address this gap, this paper conducts a comprehensive review of deep learning solutions and the challenges associated with their use in AML. Additionally, we propose a novel framework that applies the least-privilege principle by integrating machine learning techniques, codifying AML red flags, and employing account profiling to provide context for predictions and enable effective fraud detection under limited data availability....
☆ DTA: Dual Temporal-channel-wise Attention for Spiking Neural Networks WACV
Spiking Neural Networks (SNNs) present a more energy-efficient alternative to Artificial Neural Networks (ANNs) by harnessing spatio-temporal dynamics and event-driven spikes. Effective utilization of temporal information is crucial for SNNs, leading to the exploration of attention mechanisms to enhance this capability. Conventional attention operations either apply identical operation or employ non-identical operations across target dimensions. We identify that these approaches provide distinct perspectives on temporal information. To leverage the strengths of both operations, we propose a novel Dual Temporal-channel-wise Attention (DTA) mechanism that integrates both identical/non-identical attention strategies. To the best of our knowledge, this is the first attempt to concentrate on both the correlation and dependency of temporal-channel using both identical and non-identical attention operations. Experimental results demonstrate that the DTA mechanism achieves state-of-the-art performance on both static datasets (CIFAR10, CIFAR100, ImageNet-1k) and dynamic dataset (CIFAR10-DVS), elevating spike representation and capturing complex temporal-channel relationship. We open-source our code: https://github.com/MnJnKIM/DTA-SNN.
comment: Accepted by IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2025
☆ Rapid analysis of point-contact Andreev reflection spectra via machine learning with adaptive data augmentation
Delineating the superconducting order parameters is a pivotal task in investigating superconductivity for probing pairing mechanisms, as well as their symmetry and topology. Point-contact Andreev reflection (PCAR) measurement is a simple yet powerful tool for identifying the order parameters. The PCAR spectra exhibit significant variations depending on the type of the order parameter in a superconductor, including its magnitude ($\mathit{\Delta}$), as well as temperature, interfacial quality, Fermi velocity mismatch, and other factors. The information on the order parameter can be obtained by finding the combination of these parameters, generating a theoretical spectrum that fits a measured experimental spectrum. However, due to the complexity of the spectra and the high dimensionality of parameters, extracting the fitting parameters is often time-consuming and labor-intensive. In this study, we employ a convolutional neural network (CNN) algorithm to create models for rapid and automated analysis of PCAR spectra of various superconductors with different pairing symmetries (conventional $s$-wave, chiral $p_x+ip_y$-wave, and $d_{x^2-y^2}$-wave). The training datasets are generated based on the Blonder-Tinkham-Klapwijk (BTK) theory and further modified and augmented by selectively incorporating noise and peaks according to the bias voltages. This approach not only replicates the experimental spectra but also brings the model's attention to important features within the spectra. The optimized models provide fitting parameters for experimentally measured spectra in less than 100 ms per spectrum. Our approaches and findings pave the way for rapid and automated spectral analysis which will help accelerate research on superconductors with complex order parameters.
comment: 18 pages, 3 figures
☆ OR-LLM-Agent: Automating Modeling and Solving of Operations Research Optimization Problem with Reasoning Large Language Model
Operations Research (OR) has been widely applied in various fields such as resource allocation, production planning, and supply chain management. However, addressing real-world OR problems requires OR experts to perform mathematical modeling and programmers to develop solution algorithms. This traditional method, heavily reliant on experts, is costly and has long development cycles, severely limiting the widespread adoption of OR techniques. Few have considered using Artificial Intelligence (AI) to replace professionals to achieve fully automated solutions for OR problems. We propose OR-LLM-Agent, the first AI agent that enables end-to-end automation for solving real-world OR problems. OR-LLM-Agent leverages the Chain-of-Thought (CoT) reasoning capabilities of Large Language Models (LLMs) to translate natural language problem descriptions into formal mathematical models and automatically generate Gurobi solver code. In OR-LLM-Agent, OR-CodeAgent is designed to automate code execution and repair within a sandbox environment, facilitating the derivation of the final solution. Due to the lack of dedicated benchmark datasets for evaluating the automated solving of OR problems, we construct a benchmark dataset comprising 83 real-world OR problems described in natural language. We conduct comparative experiments with state-of-the-art (SOTA) reasoning LLMs, including GPT-o3-mini, DeepSeek-R1, and Gemini 2.0 Flash Thinking. The OR-LLM-Agent achieved the highest pass rate of 100% and the highest solution accuracy of 85%, demonstrating the feasibility of automated OR problem-solving. Data and code have been publicly available at https://github.com/bwz96sco/or_llm_agent.
comment: 11 pages, 6 figures
☆ A New Benchmark for Few-Shot Class-Incremental Learning: Redefining the Upper Bound
Class-incremental learning (CIL) aims to continuously adapt to emerging classes while retaining knowledge of previously learned ones. Few-shot class-incremental learning (FSCIL) presents an even greater challenge which requires the model to learn incremental classes with only a limited number of samples. In conventional CIL, joint training is widely considered the upper bound, serving as both a benchmark and a methodological guide. However, we find that joint training fails to be a meaningful upper bound in FSCIL due to the inherent difficulty of inter-task class separation (ICS) caused by severe class imbalance. In this work, we introduce a new joint training benchmark tailored for FSCIL by integrating imbalance-aware techniques, effectively bridging the performance gap between base and incremental classes. Furthermore, we point out inconsistencies in the experimental setup and evaluation of existing FSCIL methods. To ensure fair comparisons between different FSCIL approaches and joint training, we standardize training conditions and propose a unified evaluation protocol that simultaneously considers the validation set and computational complexity. By establishing a reliable upper bound and a standardized evaluation framework for FSCIL, our work provides a clear benchmark and a practical foundation for future research.
☆ Label Unbalance in High-frequency Trading
In financial trading, return prediction is one of the foundation for a successful trading system. By the fast development of the deep learning in various areas such as graphical processing, natural language, it has also demonstrate significant edge in handling with financial data. While the success of the deep learning relies on huge amount of labeled sample, labeling each time/event as profitable or unprofitable, under the transaction cost, especially in the high-frequency trading world, suffers from serious label imbalance issue.In this paper, we adopts rigurious end-to-end deep learning framework with comprehensive label imbalance adjustment methods and succeed in predicting in high-frequency return in the Chinese future market. The code for our method is publicly available at https://github.com/RS2002/Label-Unbalance-in-High-Frequency-Trading .
comment: Technical Report
☆ Uncertainty-aware Long-tailed Weights Model the Utility of Pseudo-labels for Semi-supervised Learning
Current Semi-supervised Learning (SSL) adopts the pseudo-labeling strategy and further filters pseudo-labels based on confidence thresholds. However, this mechanism has notable drawbacks: 1) setting the reasonable threshold is an open problem which significantly influences the selection of the high-quality pseudo-labels; and 2) deep models often exhibit the over-confidence phenomenon which makes the confidence value an unreliable indicator for assessing the quality of pseudo-labels due to the scarcity of labeled data. In this paper, we propose an Uncertainty-aware Ensemble Structure (UES) to assess the utility of pseudo-labels for unlabeled samples. We further model the utility of pseudo-labels as long-tailed weights to avoid the open problem of setting the threshold. Concretely, the advantage of the long-tailed weights ensures that even unreliable pseudo-labels still contribute to enhancing the model's robustness. Besides, UES is lightweight and architecture-agnostic, easily extending to various computer vision tasks, including classification and regression. Experimental results demonstrate that combining the proposed method with DualPose leads to a 3.47% improvement in Percentage of Correct Keypoints (PCK) on the Sniffing dataset with 100 data points (30 labeled), a 7.29\% improvement in PCK on the FLIC dataset with 100 data points (50 labeled), and a 3.91% improvement in PCK on the LSP dataset with 200 data points (100 labeled). Furthermore, when combined with FixMatch, the proposed method achieves a 0.2% accuracy improvement on the CIFAR-10 dataset with 40 labeled data points and a 0.26% accuracy improvement on the CIFAR-100 dataset with 400 labeled data points.
comment: arXiv admin note: text overlap with arXiv:2408.04150
Detecting Dataset Bias in Medical AI: A Generalized and Modality-Agnostic Auditing Framework
Data-driven AI is establishing itself at the center of evidence-based medicine. However, reports of shortcomings and unexpected behavior are growing due to AI's reliance on association-based learning. A major reason for this behavior: latent bias in machine learning datasets can be amplified during training and/or hidden during testing. We present a data modality-agnostic auditing framework for generating targeted hypotheses about sources of bias which we refer to as Generalized Attribute Utility and Detectability-Induced bias Testing (G-AUDIT) for datasets. Our method examines the relationship between task-level annotations and data properties including protected attributes (e.g., race, age, sex) and environment and acquisition characteristics (e.g., clinical site, imaging protocols). G-AUDIT automatically quantifies the extent to which the observed data attributes may enable shortcut learning, or in the case of testing data, hide predictions made based on spurious associations. We demonstrate the broad applicability and value of our method by analyzing large-scale medical datasets for three distinct modalities and learning tasks: skin lesion classification in images, stigmatizing language classification in Electronic Health Records (EHR), and mortality prediction for ICU tabular data. In each setting, G-AUDIT successfully identifies subtle biases commonly overlooked by traditional qualitative methods that focus primarily on social and ethical objectives, underscoring its practical value in exposing dataset-level risks and supporting the downstream development of reliable AI systems. Our method paves the way for achieving deeper understanding of machine learning datasets throughout the AI development life-cycle from initial prototyping all the way to regulation, and creates opportunities to reduce model bias, enabling safer and more trustworthy AI systems.
☆ Optimizing Fire Safety: Reducing False Alarms Using Advanced Machine Learning Techniques
Fire safety practices are important to reduce the extent of destruction caused by fire. While smoke alarms help save lives, firefighters struggle with the increasing number of false alarms. This paper presents a precise and efficient Weighted ensemble model for decreasing false alarms. It estimates the density, computes weights according to the high and low-density regions, forwards the high region weights to KNN and low region weights to XGBoost and combines the predictions. The proposed model is effective at reducing response time, increasing fire safety, and minimizing the damage that fires cause. A specifically designed dataset for smoke detection is utilized to test the proposed model. In addition, a variety of ML models, such as Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), Nai:ve Bayes (NB), K-Nearest Neighbour (KNN), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), Adaptive Boosting (ADAB), have also been utilized. To maximize the use of the smoke detection dataset, all the algorithms utilize the SMOTE re-sampling technique. After evaluating the assessment criteria, this paper presents a concise summary of the comprehensive findings obtained by comparing the outcomes of all models.
☆ Exploring Mutual Empowerment Between Wireless Networks and RL-based LLMs: A Survey
Reinforcement learning (RL)-based large language models (LLMs), such as ChatGPT, DeepSeek, and Grok-3, have gained significant attention for their exceptional capabilities in natural language processing and multimodal data understanding. Meanwhile, the rapid expansion of information services has driven the growing need for intelligence, efficient, and adaptable wireless networks. Wireless networks require the empowerment of RL-based LLMs while these models also benefit from wireless networks to broaden their application scenarios. Specifically, RL-based LLMs can enhance wireless communication systems through intelligent resource allocation, adaptive network optimization, and real-time decision-making. Conversely, wireless networks provide a vital infrastructure for the efficient training, deployment, and distributed inference of RL-based LLMs, especially in decentralized and edge computing environments. This mutual empowerment highlights the need for a deeper exploration of the interplay between these two domains. We first review recent advancements in wireless communications, highlighting the associated challenges and potential solutions. We then discuss the progress of RL-based LLMs, focusing on key technologies for LLM training, challenges, and potential solutions. Subsequently, we explore the mutual empowerment between these two fields, highlighting key motivations, open challenges, and potential solutions. Finally, we provide insights into future directions, applications, and their societal impact to further explore this intersection, paving the way for next-generation intelligent communication systems. Overall, this survey provides a comprehensive overview of the relationship between RL-based LLMs and wireless networks, offering a vision where these domains empower each other to drive innovations.
comment: 25 pages, 13 figures
☆ MoFlow: One-Step Flow Matching for Human Trajectory Forecasting via Implicit Maximum Likelihood Estimation based Distillation CVPR 2025
In this paper, we address the problem of human trajectory forecasting, which aims to predict the inherently multi-modal future movements of humans based on their past trajectories and other contextual cues. We propose a novel motion prediction conditional flow matching model, termed MoFlow, to predict K-shot future trajectories for all agents in a given scene. We design a novel flow matching loss function that not only ensures at least one of the $K$ sets of future trajectories is accurate but also encourages all $K$ sets of future trajectories to be diverse and plausible. Furthermore, by leveraging the implicit maximum likelihood estimation (IMLE), we propose a novel distillation method for flow models that only requires samples from the teacher model. Extensive experiments on the real-world datasets, including SportVU NBA games, ETH-UCY, and SDD, demonstrate that both our teacher flow model and the IMLE-distilled student model achieve state-of-the-art performance. These models can generate diverse trajectories that are physically and socially plausible. Moreover, our one-step student model is $\textbf{100}$ times faster than the teacher flow model during sampling. The code, model, and data are available at our project page: https://moflow-imle.github.io
comment: Accepted to CVPR 2025
☆ Identifying Trustworthiness Challenges in Deep Learning Models for Continental-Scale Water Quality Prediction
Water quality is foundational to environmental sustainability, ecosystem resilience, and public health. Deep learning models, particularly Long Short-Term Memory (LSTM) networks, offer transformative potential for large-scale water quality prediction and scientific insights generation. However, their widespread adoption in high-stakes decision-making, such as pollution mitigation and equitable resource allocation, is prevented by unresolved trustworthiness challenges including fairness, uncertainty, interpretability, robustness, generalizability, and reproducibility. In this work, we present the first comprehensive evaluation of trustworthiness in a continental-scale multi-task LSTM model predicting 20 water quality variables (encompassing physical/chemical processes, geochemical weathering, and nutrient cycling) across 482 U.S. basins. Our investigation uncovers systematic patterns of model performance disparities linked to basin characteristics, the inherent complexity of biogeochemical processes, and variable predictability, emphasizing critical performance fairness concerns. We further propose methodological frameworks for quantitatively evaluating critical aspects of trustworthiness, including uncertainty, interpretability, and robustness, identifying key limitations that could challenge reliable real-world deployment. This work serves as a timely call to action for advancing trustworthy data-driven methods for water resources management and provides a pathway to offering critical insights for researchers, decision-makers, and practitioners seeking to leverage artificial intelligence (AI) responsibly in environmental management.
comment: 33 pages, 9 figures, 2 tables
☆ TGP: Two-modal occupancy prediction with 3D Gaussian and sparse points for 3D Environment Awareness
3D semantic occupancy has rapidly become a research focus in the fields of robotics and autonomous driving environment perception due to its ability to provide more realistic geometric perception and its closer integration with downstream tasks. By performing occupancy prediction of the 3D space in the environment, the ability and robustness of scene understanding can be effectively improved. However, existing occupancy prediction tasks are primarily modeled using voxel or point cloud-based approaches: voxel-based network structures often suffer from the loss of spatial information due to the voxelization process, while point cloud-based methods, although better at retaining spatial location information, face limitations in representing volumetric structural details. To address this issue, we propose a dual-modal prediction method based on 3D Gaussian sets and sparse points, which balances both spatial location and volumetric structural information, achieving higher accuracy in semantic occupancy prediction. Specifically, our method adopts a Transformer-based architecture, taking 3D Gaussian sets, sparse points, and queries as inputs. Through the multi-layer structure of the Transformer, the enhanced queries and 3D Gaussian sets jointly contribute to the semantic occupancy prediction, and an adaptive fusion mechanism integrates the semantic outputs of both modalities to generate the final prediction results. Additionally, to further improve accuracy, we dynamically refine the point cloud at each layer, allowing for more precise location information during occupancy prediction. We conducted experiments on the Occ3DnuScenes dataset, and the experimental results demonstrate superior performance of the proposed method on IoU based metrics.
☆ Developing and Evaluating an AI-Assisted Prediction Model for Unplanned Intensive Care Admissions following Elective Neurosurgery using Natural Language Processing within an Electronic Healthcare Record System
Introduction: Timely care in a specialised neuro-intensive therapy unit (ITU) reduces mortality and hospital stays, with planned admissions being safer than unplanned ones. However, post-operative care decisions remain subjective. This study used artificial intelligence (AI), specifically natural language processing (NLP) to analyse electronic health records (EHRs) and predict ITU admissions for elective surgery patients. Methods: This study analysed the EHRs of elective neurosurgery patients from University College London Hospital (UCLH) using NLP. Patients were categorised into planned high dependency unit (HDU) or ITU admission; unplanned HDU or ITU admission; or ward / overnight recovery (ONR). The Medical Concept Annotation Tool (MedCAT) was used to identify SNOMED-CT concepts within the clinical notes. We then explored the utility of these identified concepts for a range of AI algorithms trained to predict ITU admission. Results: The CogStack-MedCAT NLP model, initially trained on hospital-wide EHRs, underwent two refinements: first with data from patients with Normal Pressure Hydrocephalus (NPH) and then with data from Vestibular Schwannoma (VS) patients, achieving a concept detection F1-score of 0.93. This refined model was then used to extract concepts from EHR notes of 2,268 eligible neurosurgical patients. We integrated the extracted concepts into AI models, including a decision tree model and a neural time-series model. Using the simpler decision tree model, we achieved a recall of 0.87 (CI 0.82 - 0.91) for ITU admissions, reducing the proportion of unplanned ITU cases missed by human experts from 36% to 4%. Conclusion: The NLP model, refined for accuracy, has proven its efficiency in extracting relevant concepts, providing a reliable basis for predictive AI models to use in clinically valid applications.
☆ eXpLogic: Explaining Logic Types and Patterns in DiffLogic Networks
Constraining deep neural networks (DNNs) to learn individual logic types per node, as performed using the DiffLogic network architecture, opens the door to model-specific explanation techniques that quell the complexity inherent to DNNs. Inspired by principles of circuit analysis from computer engineering, this work presents an algorithm (eXpLogic) for producing saliency maps which explain input patterns that activate certain functions. The eXpLogic explanations: (1) show the exact set of inputs responsible for a decision, which helps interpret false negative and false positive predictions, (2) highlight common input patterns that activate certain outputs, and (3) help reduce the network size to improve class-specific inference. To evaluate the eXpLogic saliency map, we introduce a metric that quantifies how much an input changes before switching a model's class prediction (the SwitchDist) and use this metric to compare eXpLogic against the Vanilla Gradients (VG) and Integrated Gradient (IG) methods. Generally, we show that eXpLogic saliency maps are better at predicting which inputs will change the class score. These maps help reduce the network size and inference times by 87\% and 8\%, respectively, while having a limited impact (-3.8\%) on class-specific predictions. The broader value of this work to machine learning is in demonstrating how certain DNN architectures promote explainability, which is relevant to healthcare, defense, and law.
comment: Conference submission, 6 pages, 2 figures
☆ OuroMamba: A Data-Free Quantization Framework for Vision Mamba Models
We present OuroMamba, the first data-free post-training quantization (DFQ) method for vision Mamba-based models (VMMs). We identify two key challenges in enabling DFQ for VMMs, (1) VMM's recurrent state transitions restricts capturing of long-range interactions and leads to semantically weak synthetic data, (2) VMM activations exhibit dynamic outlier variations across time-steps, rendering existing static PTQ techniques ineffective. To address these challenges, OuroMamba presents a two-stage framework: (1) OuroMamba-Gen to generate semantically rich and meaningful synthetic data. It applies contrastive learning on patch level VMM features generated through neighborhood interactions in the latent state space, (2) OuroMamba-Quant to employ mixed-precision quantization with lightweight dynamic outlier detection during inference. In specific, we present a thresholding based outlier channel selection strategy for activations that gets updated every time-step. Extensive experiments across vision and generative tasks show that our data-free OuroMamba surpasses existing data-driven PTQ techniques, achieving state-of-the-art performance across diverse quantization settings. Additionally, we implement efficient GPU kernels to achieve practical latency speedup of up to 2.36x. Code will be released soon.
☆ Predicting Stock Movement with BERTweet and Transformers
Applying deep learning and computational intelligence to finance has been a popular area of applied research, both within academia and industry, and continues to attract active attention. The inherently high volatility and non-stationary of the data pose substantial challenges to machine learning models, especially so for today's expressive and highly-parameterized deep learning models. Recent work has combined natural language processing on data from social media to augment models based purely on historic price data to improve performance has received particular attention. Previous work has achieved state-of-the-art performance on this task by combining techniques such as bidirectional GRUs, variational autoencoders, word and document embeddings, self-attention, graph attention, and adversarial training. In this paper, we demonstrated the efficacy of BERTweet, a variant of BERT pre-trained specifically on a Twitter corpus, and the transformer architecture by achieving competitive performance with the existing literature and setting a new baseline for Matthews Correlation Coefficient on the Stocknet dataset without auxiliary data sources.
comment: 9 pages, 4 figures, 2 tables
☆ Empirical Computation
In this vision paper, we explore the challenges and opportunities of a form of computation that employs an empirical (rather than a formal) approach, where the solution of a computational problem is returned as empirically most likely (rather than necessarily correct). We call this approach as *empirical computation* and observe that its capabilities and limits *cannot* be understood within the classic, rationalist framework of computation. While we take a very broad view of "computational problem", a classic, well-studied example is *sorting*: Given a set of $n$ numbers, return these numbers sorted in ascending order. * To run a classical, *formal computation*, we might first think about a *specific algorithm* (e.g., merge sort) before developing a *specific* program that implements it. The program will expect the input to be given in a *specific* format, type, or data structure (e.g., unsigned 32-bit integers). In software engineering, we have many approaches to analyze the correctness of such programs. From complexity theory, we know that there exists no correct program that can solve the average instance of the sorting problem faster than $O(n\log n)$. * To run an *empirical computation*, we might directly ask a large language model (LLM) to solve *any* computational problem (which can be stated informally in natural language) and provide the input in *any* format (e.g., negative numbers written as Chinese characters). There is no (problem-specific) program that could be analyzed for correctness. Also, the time it takes an LLM to return an answer is entirely *independent* of the computational complexity of the problem that is solved. What are the capabilities or limits of empirical computation in the general, in the problem-, or in the instance-specific? Our purpose is to establish empirical computation as a field in SE that is timely and rich with interesting problems.
comment: Open challenges in the analysis of properties and limits of empirical computation
☆ Safe Continual Domain Adaptation after Sim2Real Transfer of Reinforcement Learning Policies in Robotics
Domain randomization has emerged as a fundamental technique in reinforcement learning (RL) to facilitate the transfer of policies from simulation to real-world robotic applications. Many existing domain randomization approaches have been proposed to improve robustness and sim2real transfer. These approaches rely on wide randomization ranges to compensate for the unknown actual system parameters, leading to robust but inefficient real-world policies. In addition, the policies pretrained in the domain-randomized simulation are fixed after deployment due to the inherent instability of the optimization processes based on RL and the necessity of sampling exploitative but potentially unsafe actions on the real system. This limits the adaptability of the deployed policy to the inevitably changing system parameters or environment dynamics over time. We leverage safe RL and continual learning under domain-randomized simulation to address these limitations and enable safe deployment-time policy adaptation in real-world robot control. The experiments show that our method enables the policy to adapt and fit to the current domain distribution and environment dynamics of the real system while minimizing safety risks and avoiding issues like catastrophic forgetting of the general policy found in randomized simulation during the pretraining phase. Videos and supplementary material are available at https://safe-cda.github.io/.
comment: 8 pages, 5 figures, under review
☆ $(\varepsilon, δ)$ Considered Harmful: Best Practices for Reporting Differential Privacy Guarantees
Current practices for reporting the level of differential privacy (DP) guarantees for machine learning (ML) algorithms provide an incomplete and potentially misleading picture of the guarantees and make it difficult to compare privacy levels across different settings. We argue for using Gaussian differential privacy (GDP) as the primary means of communicating DP guarantees in ML, with the full privacy profile as a secondary option in case GDP is too inaccurate. Unlike other widely used alternatives, GDP has only one parameter, which ensures easy comparability of guarantees, and it can accurately capture the full privacy profile of many important ML applications. To support our claims, we investigate the privacy profiles of state-of-the-art DP large-scale image classification, and the TopDown algorithm for the U.S. Decennial Census, observing that GDP fits the profiles remarkably well in all three cases. Although GDP is ideal for reporting the final guarantees, other formalisms (e.g., privacy loss random variables) are needed for accurate privacy accounting. We show that such intermediate representations can be efficiently converted to GDP with minimal loss in tightness.
Graph-Grounded LLMs: Leveraging Graphical Function Calling to Minimize LLM Hallucinations
The adoption of Large Language Models (LLMs) is rapidly expanding across various tasks that involve inherent graphical structures. Graphs are integral to a wide range of applications, including motion planning for autonomous vehicles, social networks, scene understanding, and knowledge graphs. Many problems, even those not initially perceived as graph-based, can be effectively addressed through graph theory. However, when applied to these tasks, LLMs often encounter challenges, such as hallucinations and mathematical inaccuracies. To overcome these limitations, we propose Graph-Grounded LLMs, a system that improves LLM performance on graph-related tasks by integrating a graph library through function calls. By grounding LLMs in this manner, we demonstrate significant reductions in hallucinations and improved mathematical accuracy in solving graph-based problems, as evidenced by the performance on the NLGraph benchmark. Finally, we showcase a disaster rescue application where the Graph-Grounded LLM acts as a decision-support system.
☆ ChatGPT Encounters Morphing Attack Detection: Zero-Shot MAD with Multi-Modal Large Language Models and General Vision Models
Face Recognition Systems (FRS) are increasingly vulnerable to face-morphing attacks, prompting the development of Morphing Attack Detection (MAD) algorithms. However, a key challenge in MAD lies in its limited generalizability to unseen data and its lack of explainability-critical for practical application environments such as enrolment stations and automated border control systems. Recognizing that most existing MAD algorithms rely on supervised learning paradigms, this work explores a novel approach to MAD using zero-shot learning leveraged on Large Language Models (LLMs). We propose two types of zero-shot MAD algorithms: one leveraging general vision models and the other utilizing multimodal LLMs. For general vision models, we address the MAD task by computing the mean support embedding of an independent support set without using morphed images. For the LLM-based approach, we employ the state-of-the-art GPT-4 Turbo API with carefully crafted prompts. To evaluate the feasibility of zero-shot MAD and the effectiveness of the proposed methods, we constructed a print-scan morph dataset featuring various unseen morphing algorithms, simulating challenging real-world application scenarios. Experimental results demonstrated notable detection accuracy, validating the applicability of zero-shot learning for MAD tasks. Additionally, our investigation into LLM-based MAD revealed that multimodal LLMs, such as ChatGPT, exhibit remarkable generalizability to untrained MAD tasks. Furthermore, they possess a unique ability to provide explanations and guidance, which can enhance transparency and usability for end-users in practical applications.
☆ OASST-ETC Dataset: Alignment Signals from Eye-tracking Analysis of LLM Responses
While Large Language Models (LLMs) have significantly advanced natural language processing, aligning them with human preferences remains an open challenge. Although current alignment methods rely primarily on explicit feedback, eye-tracking (ET) data offers insights into real-time cognitive processing during reading. In this paper, we present OASST-ETC, a novel eye-tracking corpus capturing reading patterns from 24 participants, while evaluating LLM-generated responses from the OASST1 dataset. Our analysis reveals distinct reading patterns between preferred and non-preferred responses, which we compare with synthetic eye-tracking data. Furthermore, we examine the correlation between human reading measures and attention patterns from various transformer-based models, discovering stronger correlations in preferred responses. This work introduces a unique resource for studying human cognitive processing in LLM evaluation and suggests promising directions for incorporating eye-tracking data into alignment methods. The dataset and analysis code are publicly available.
comment: This paper has been accepted to ACM ETRA 2025
☆ Predicting Clinical Outcomes with Waveform LSTMs
Data mining and machine learning hold great potential to enable health systems to systematically use data and analytics to identify inefficiencies and best practices that improve care and reduce costs. Waveform data offers particularly detailed information on how patient health evolves over time and has the potential to significantly improve prediction accuracy on multiple benchmarks, but has been widely under-utilized, largely because of the challenges in working with these large and complex datasets. This study evaluates the potential of leveraging clinical waveform data to improve prediction accuracy on a single benchmark task: the risk of mortality in the intensive care unit. We identify significant potential from this data, beating the existing baselines for both logistic regression and deep learning models.
comment: 7 pages,. arXiv admin note: text overlap with arXiv:1803.06589 by other authors
☆ Resource Heterogeneity-Aware and Utilization-Enhanced Scheduling for Deep Learning Clusters
Scheduling deep learning (DL) models to train on powerful clusters with accelerators like GPUs and TPUs, presently falls short, either lacking fine-grained heterogeneity awareness or leaving resources substantially under-utilized. To fill this gap, we propose a novel design of a task-level heterogeneity-aware scheduler, {\em Hadar}, based on an optimization framework that can boost resource utilization. {\em Hadar} leverages the performance traits of DL jobs on a heterogeneous DL cluster, characterizes the task-level performance heterogeneity in the optimization problem, and makes scheduling decisions across both spatial and temporal dimensions. %with the objective to reduce the average job completion time of DL jobs. It involves the primal-dual framework employing a dual subroutine, to solve the optimization problem and guide the scheduling design. Our trace-driven simulation with representative DL model training workloads demonstrates that {\em Hadar} accelerates the total time duration by 1.20$\times$ when compared with its state-of-the-art heterogeneity-aware counterpart, Gavel. Further, our {\em Hadar} scheduler is enhanced to {\em HadarE} by forking each job into multiple copies to let a job train concurrently on heterogeneous GPUs resided on separate available nodes (i.e., machines or servers) for resource utilization enhancement. {\em HadarE} is evaluated extensively on physical DL clusters for comparison with {\em Hadar} and Gavel. With substantial enhancement in cluster resource utilization (by 1.45$\times$), {\em HadarE} exhibits considerable speed-ups in DL model training, reducing the total time duration by 50\% (or 80\%) on an Amazon's AWS (or our lab) cluster, while producing trained DL models with consistently better inference quality than those trained by \textit{Hadar}.
comment: 14 pages, 12 figures, IEEE Transactions on Computers
☆ JPEG Compliant Compression for Both Human and Machine, A Report
Deep Neural Networks (DNNs) have become an integral part of our daily lives, especially in vision-related applications. However, the conventional lossy image compression algorithms are primarily designed for the Human Vision System (HVS), which can non-trivially compromise the DNNs' validation accuracy after compression, as noted in \cite{liu2018deepn}. Thus developing an image compression algorithm for both human and machine (DNNs) is on the horizon. To address the challenge mentioned above, in this paper, we first formulate the image compression as a multi-objective optimization problem which take both human and machine prespectives into account, then we solve it by linear combination, and proposed a novel distortion measure for both human and machine, dubbed Human and Machine-Oriented Error (HMOE). After that, we develop Human And Machine Oriented Soft Decision Quantization (HMOSDQ) based on HMOE, a lossy image compression algorithm for both human and machine (DNNs), and fully complied with JPEG format. In order to evaluate the performance of HMOSDQ, finally we conduct the experiments for two pre-trained well-known DNN-based image classifiers named Alexnet \cite{Alexnet} and VGG-16 \cite{simonyan2014VGG} on two subsets of the ImageNet \cite{deng2009imagenet} validation set: one subset included images with shorter side in the range of 496 to 512, while the other included images with shorter side in the range of 376 to 384. Our results demonstrate that HMOSDQ outperforms the default JPEG algorithm in terms of rate-accuracy and rate-distortion performance. For the Alexnet comparing with the default JPEG algorithm, HMOSDQ can improve the validation accuracy by more than $0.81\%$ at $0.61$ BPP, or equivalently reduce the compression rate of default JPEG by $9.6\times$ while maintaining the same validation accuracy.
comment: 9 pages, 6 figures
☆ Ecological Neural Architecture Search
When employing an evolutionary algorithm to optimize a neural networks architecture, developers face the added challenge of tuning the evolutionary algorithm's own hyperparameters - population size, mutation rate, cloning rate, and number of generations. This paper introduces Neuvo Ecological Neural Architecture Search (ENAS), a novel method that incorporates these evolutionary parameters directly into the candidate solutions' phenotypes, allowing them to evolve dynamically alongside architecture specifications. Experimental results across four binary classification datasets demonstrate that ENAS not only eliminates manual tuning of evolutionary parameters but also outperforms competitor NAS methodologies in convergence speed (reducing computational time by 18.3%) and accuracy (improving classification performance in 3 out of 4 datasets). By enabling "greedy individuals" to optimize resource allocation based on fitness, ENAS provides an efficient, self-regulating approach to neural architecture search.
comment: 5 pages, 4 figures
☆ H2-MARL: Multi-Agent Reinforcement Learning for Pareto Optimality in Hospital Capacity Strain and Human Mobility during Epidemic
The necessity of achieving an effective balance between minimizing the losses associated with restricting human mobility and ensuring hospital capacity has gained significant attention in the aftermath of COVID-19. Reinforcement learning (RL)-based strategies for human mobility management have recently advanced in addressing the dynamic evolution of cities and epidemics; however, they still face challenges in achieving coordinated control at the township level and adapting to cities of varying scales. To address the above issues, we propose a multi-agent RL approach that achieves Pareto optimality in managing hospital capacity and human mobility (H2-MARL), applicable across cities of different scales. We first develop a township-level infection model with online-updatable parameters to simulate disease transmission and construct a city-wide dynamic spatiotemporal epidemic simulator. On this basis, H2-MARL is designed to treat each division as an agent, with a trade-off dual-objective reward function formulated and an experience replay buffer enriched with expert knowledge built. To evaluate the effectiveness of the model, we construct a township-level human mobility dataset containing over one billion records from four representative cities of varying scales. Extensive experiments demonstrate that H2-MARL has the optimal dual-objective trade-off capability, which can minimize hospital capacity strain while minimizing human mobility restriction loss. Meanwhile, the applicability of the proposed model to epidemic control in cities of varying scales is verified, which showcases its feasibility and versatility in practical applications.
☆ Learning to Inference Adaptively for Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have shown impressive capabilities in reasoning, yet come with substantial computational cost, limiting their deployment in resource-constrained settings. Despite recent efforts on improving the efficiency of MLLMs, prior solutions fall short in responding to varying runtime conditions, in particular changing resource availability (e.g., contention due to the execution of other programs on the device). To bridge this gap, we introduce AdaLLaVA, an adaptive inference framework that learns to dynamically reconfigure operations in an MLLM during inference, accounting for the input data and a latency budget. We conduct extensive experiments across benchmarks involving question-answering, reasoning, and hallucination. Our results show that AdaLLaVA effectively adheres to input latency budget, achieving varying accuracy and latency tradeoffs at runtime. Further, we demonstrate that AdaLLaVA adapts to both input latency and content, can be integrated with token selection for enhanced efficiency, and generalizes across MLLMs.Our project webpage with code release is at https://zhuoyan-xu.github.io/ada-llava/.
☆ HyperDAS: Towards Automating Mechanistic Interpretability with Hypernetworks ICLR 2025
Mechanistic interpretability has made great strides in identifying neural network features (e.g., directions in hidden activation space) that mediate concepts(e.g., the birth year of a person) and enable predictable manipulation. Distributed alignment search (DAS) leverages supervision from counterfactual data to learn concept features within hidden states, but DAS assumes we can afford to conduct a brute force search over potential feature locations. To address this, we present HyperDAS, a transformer-based hypernetwork architecture that (1) automatically locates the token-positions of the residual stream that a concept is realized in and (2) constructs features of those residual stream vectors for the concept. In experiments with Llama3-8B, HyperDAS achieves state-of-the-art performance on the RAVEL benchmark for disentangling concepts in hidden states. In addition, we review the design decisions we made to mitigate the concern that HyperDAS (like all powerful interpretabilty methods) might inject new information into the target model rather than faithfully interpreting it.
comment: ICLR 2025
☆ Taxonomic Reasoning for Rare Arthropods: Combining Dense Image Captioning and RAG for Interpretable Classification
In the context of pressing climate change challenges and the significant biodiversity loss among arthropods, automated taxonomic classification from organismal images is a subject of intense research. However, traditional AI pipelines based on deep neural visual architectures such as CNNs or ViTs face limitations such as degraded performance on the long-tail of classes and the inability to reason about their predictions. We integrate image captioning and retrieval-augmented generation (RAG) with large language models (LLMs) to enhance biodiversity monitoring, showing particular promise for characterizing rare and unknown arthropod species. While a naive Vision-Language Model (VLM) excels in classifying images of common species, the RAG model enables classification of rarer taxa by matching explicit textual descriptions of taxonomic features to contextual biodiversity text data from external sources. The RAG model shows promise in reducing overconfidence and enhancing accuracy relative to naive LLMs, suggesting its viability in capturing the nuances of taxonomic hierarchy, particularly at the challenging family and genus levels. Our findings highlight the potential for modern vision-language AI pipelines to support biodiversity conservation initiatives, emphasizing the role of comprehensive data curation and collaboration with citizen science platforms to improve species identification, unknown species characterization and ultimately inform conservation strategies.
comment: 12 pages, 3 figures
☆ Chat-TS: Enhancing Multi-Modal Reasoning Over Time-Series and Natural Language Data
Time-series analysis is critical for a wide range of fields such as healthcare, finance, transportation, and energy, among many others. The practical applications often involve analyzing time-series data alongside contextual information in the form of natural language to support informed decisions. However, current time-series models are limited in their ability to perform reasoning that involves both time-series and their textual content. In this work, we address this gap by introducing \textit{Chat-TS}, a large language model (LLM) based framework, designed to support reasoning over time series and textual data. Unlike traditional models, Chat-TS integrates time-series tokens into LLMs' vocabulary, enhancing its reasoning ability over both modalities without compromising the core natural language capabilities, enabling practical analysis and reasoning across modalities. To support learning and evaluation in this setup, we contribute new datasets: the \textit{TS Instruct Training Dataset} which pairs diverse time-series data with relevant text instructions and responses for instruction tuning, the \textit{TS Instruct Question and Answer (QA) Gold Dataset} which provides multiple-choice questions designed to evaluate multimodal reasoning, and a \textit{TS Instruct Quantitative Probing Set} which contains a small subset of the TS Instruct QA tasks alongside math and decision-making questions for LLM evaluation. We designed a training strategy to preserve the inherent reasoning capabilities of LLMs while augmenting them for time-series reasoning. Experiments show that Chat-TS achieves state-of-the-art performance in multi-modal reasoning tasks by maintaining strong natural language proficiency while improving time-series reasoning. ~\footnote{To ensure replicability and facilitate future research, all models, datasets, and code will be available at [\texttt{Github-URL}].}
☆ Task-Specific Activation Functions for Neuroevolution using Grammatical Evolution
Activation functions play a critical role in the performance and behaviour of neural networks, significantly impacting their ability to learn and generalise. Traditional activation functions, such as ReLU, sigmoid, and tanh, have been widely used with considerable success. However, these functions may not always provide optimal performance for all tasks and datasets. In this paper, we introduce Neuvo GEAF - an innovative approach leveraging grammatical evolution (GE) to automatically evolve novel activation functions tailored to specific neural network architectures and datasets. Experiments conducted on well-known binary classification datasets show statistically significant improvements in F1-score (between 2.4% and 9.4%) over ReLU using identical network architectures. Notably, these performance gains were achieved without increasing the network's parameter count, supporting the trend toward more efficient neural networks that can operate effectively on resource-constrained edge devices. This paper's findings suggest that evolved activation functions can provide significant performance improvements for compact networks while maintaining energy efficiency during both training and inference phases.
comment: 8 pages, 4 figures, IEEE
☆ TAIJI: Textual Anchoring for Immunizing Jailbreak Images in Vision Language Models IJCAI-25
Vision Language Models (VLMs) have demonstrated impressive inference capabilities, but remain vulnerable to jailbreak attacks that can induce harmful or unethical responses. Existing defence methods are predominantly white-box approaches that require access to model parameters and extensive modifications, making them costly and impractical for many real-world scenarios. Although some black-box defences have been proposed, they often impose input constraints or require multiple queries, limiting their effectiveness in safety-critical tasks such as autonomous driving. To address these challenges, we propose a novel black-box defence framework called \textbf{T}extual \textbf{A}nchoring for \textbf{I}mmunizing \textbf{J}ailbreak \textbf{I}mages (\textbf{TAIJI}). TAIJI leverages key phrase-based textual anchoring to enhance the model's ability to assess and mitigate the harmful content embedded within both visual and textual prompts. Unlike existing methods, TAIJI operates effectively with a single query during inference, while preserving the VLM's performance on benign tasks. Extensive experiments demonstrate that TAIJI significantly enhances the safety and reliability of VLMs, providing a practical and efficient solution for real-world deployment.
comment: Under review of IJCAI-25
☆ Evaluating a Novel Neuroevolution and Neural Architecture Search System
The choice of neural network features can have a large impact on both the accuracy and speed of the network. Despite the current industry shift towards large transformer models, specialized binary classifiers remain critical for numerous practical applications where computational efficiency and low latency are essential. Neural network features tend to be developed homogeneously, resulting in slower or less accurate networks when testing against multiple datasets. In this paper, we show the effectiveness of Neuvo NAS+ a novel Python implementation of an extended Neural Architecture Search (NAS+) which allows the user to optimise the training parameters of a network as well as the network's architecture. We provide an in-depth analysis of the importance of catering a network's architecture to each dataset. We also describe the design of the Neuvo NAS+ system that selects network features on a task-specific basis including network training hyper-parameters such as the number of epochs and batch size. Results show that the Neuvo NAS+ task-specific approach significantly outperforms several machine learning approaches such as Naive Bayes, C4.5, Support Vector Machine and a standard Artificial Neural Network for solving a range of binary classification problems in terms of accuracy. Our experiments demonstrate substantial diversity in evolved network architectures across different datasets, confirming the value of task-specific optimization. Additionally, Neuvo NAS+ outperforms other evolutionary algorithm optimisers in terms of both accuracy and computational efficiency, showing that properly optimized binary classifiers can match or exceed the performance of more complex models while requiring significantly fewer computational resources.
comment: 10 pages, 5 figures, IEEE
☆ Towards Understanding Graphical Perception in Large Multimodal Models
Despite the promising results of large multimodal models (LMMs) in complex vision-language tasks that require knowledge, reasoning, and perception abilities together, we surprisingly found that these models struggle with simple tasks on infographics that require perception only. As existing benchmarks primarily focus on end tasks that require various abilities, they provide limited, fine-grained insights into the limitations of the models' perception abilities. To address this gap, we leverage the theory of graphical perception, an approach used to study how humans decode visual information encoded on charts and graphs, to develop an evaluation framework for analyzing gaps in LMMs' perception abilities in charts. With automated task generation and response evaluation designs, our framework enables comprehensive and controlled testing of LMMs' graphical perception across diverse chart types, visual elements, and task types. We apply our framework to evaluate and diagnose the perception capabilities of state-of-the-art LMMs at three granularity levels (chart, visual element, and pixel). Our findings underscore several critical limitations of current state-of-the-art LMMs, including GPT-4o: their inability to (1) generalize across chart types, (2) understand fundamental visual elements, and (3) cross reference values within a chart. These insights provide guidance for future improvements in perception abilities of LMMs. The evaluation framework and labeled data are publicly available at https://github.com/microsoft/lmm-graphical-perception.
comment: Work in Progress
☆ Rotated Bitboards in FUSc# and Reinforcement Learning in Computer Chess and Beyond
There exist several techniques for representing the chess board inside the computer. In the first part of this paper, the concepts of the bitboard-representation and the advantages of (rotated) bitboards in move generation are explained. In order to illustrate those ideas practice, the concrete implementation of the move-generator in FUSc# is discussed and we explain a technique how to verify the move-generator with the "perft"-command. We show that the move-generator of FUSc# works 100% correct. The second part of this paper deals with reinforcement learning in computer chess (and beyond). We exemplify the progress that has been made in this field in the last 15-20 years by comparing the "state of the art" from 2002-2008, when FUSc# was developed, with recent innovations connected to "AlphaZero". We discuss how a "FUSc#-Zero" could be implemented and what would be necessary to reduce the number of training games necessary to achieve a good performance. This can be seen as a test case to the general prblem of improving "sample effciency" in reinforcement learning. In the final part, we move beyond computer chess, as the importance of sample effciency extends far beyond board games into a wide range of applications where data is costly, diffcult to obtain, or time consuming to generate. We review some application of the ideas developed in AlphaZero in other domains, i.e. the "other Alphas" like AlphaFold, AlphaTensor, AlphaGeometry and AlphaProof. We also discuss future research and the potential for such methods for ecological economic planning.
comment: 23 pages
☆ Byzantine-Resilient Federated Learning via Distributed Optimization
Byzantine attacks present a critical challenge to Federated Learning (FL), where malicious participants can disrupt the training process, degrade model accuracy, and compromise system reliability. Traditional FL frameworks typically rely on aggregation-based protocols for model updates, leaving them vulnerable to sophisticated adversarial strategies. In this paper, we demonstrate that distributed optimization offers a principled and robust alternative to aggregation-centric methods. Specifically, we show that the Primal-Dual Method of Multipliers (PDMM) inherently mitigates Byzantine impacts by leveraging its fault-tolerant consensus mechanism. Through extensive experiments on three datasets (MNIST, FashionMNIST, and Olivetti), under various attack scenarios including bit-flipping and Gaussian noise injection, we validate the superior resilience of distributed optimization protocols. Compared to traditional aggregation-centric approaches, PDMM achieves higher model utility, faster convergence, and improved stability. Our results highlight the effectiveness of distributed optimization in defending against Byzantine threats, paving the way for more secure and resilient federated learning systems.
☆ Vulnerability Detection: From Formal Verification to Large Language Models and Hybrid Approaches: A Comprehensive Overview
Software testing and verification are critical for ensuring the reliability and security of modern software systems. Traditionally, formal verification techniques, such as model checking and theorem proving, have provided rigorous frameworks for detecting bugs and vulnerabilities. However, these methods often face scalability challenges when applied to complex, real-world programs. Recently, the advent of Large Language Models (LLMs) has introduced a new paradigm for software analysis, leveraging their ability to understand insecure coding practices. Although LLMs demonstrate promising capabilities in tasks such as bug prediction and invariant generation, they lack the formal guarantees of classical methods. This paper presents a comprehensive study of state-of-the-art software testing and verification, focusing on three key approaches: classical formal methods, LLM-based analysis, and emerging hybrid techniques, which combine their strengths. We explore each approach's strengths, limitations, and practical applications, highlighting the potential of hybrid systems to address the weaknesses of standalone methods. We analyze whether integrating formal rigor with LLM-driven insights can enhance the effectiveness and scalability of software verification, exploring their viability as a pathway toward more robust and adaptive testing frameworks.
☆ Unifying 2D and 3D Vision-Language Understanding
Progress in 3D vision-language learning has been hindered by the scarcity of large-scale 3D datasets. We introduce UniVLG, a unified architecture for 2D and 3D vision-language understanding that bridges the gap between existing 2D-centric models and the rich 3D sensory data available in embodied systems. Our approach initializes most model weights from pre-trained 2D models and trains on both 2D and 3D vision-language data. We propose a novel language-conditioned mask decoder shared across 2D and 3D modalities to ground objects effectively in both RGB and RGB-D images, outperforming box-based approaches. To further reduce the domain gap between 2D and 3D, we incorporate 2D-to-3D lifting strategies, enabling UniVLG to utilize 2D data to enhance 3D performance. With these innovations, our model achieves state-of-the-art performance across multiple 3D vision-language grounding tasks, demonstrating the potential of transferring advances from 2D vision-language learning to the data-constrained 3D domain. Furthermore, co-training on both 2D and 3D data enhances performance across modalities without sacrificing 2D capabilities. By removing the reliance on 3D mesh reconstruction and ground-truth object proposals, UniVLG sets a new standard for realistic, embodied-aligned evaluation. Code and additional visualizations are available at $\href{https://univlg.github.io}{univlg.github.io}$.
comment: The first two authors contributed equally
☆ Predicting Treatment Response in Body Dysmorphic Disorder with Interpretable Machine Learning
Body Dysmorphic Disorder (BDD) is a highly prevalent and frequently underdiagnosed condition characterized by persistent, intrusive preoccupations with perceived defects in physical appearance. In this extended analysis, we employ multiple machine learning approaches to predict treatment outcomes -- specifically treatment response and remission -- with an emphasis on interpretability to ensure clinical relevance and utility. Across the various models investigated, treatment credibility emerged as the most potent predictor, surpassing traditional markers such as baseline symptom severity or comorbid conditions. Notably, while simpler models (e.g., logistic regression and support vector machines) achieved competitive predictive performance, decision tree analyses provided unique insights by revealing clinically interpretable threshold values in credibility scores. These thresholds can serve as practical guideposts for clinicians when tailoring interventions or allocating treatment resources. We further contextualize our findings within the broader literature on BDD, addressing technology-based therapeutics, digital interventions, and the psychosocial determinants of treatment engagement. An extensive array of references situates our results within current research on BDD prevalence, suicidality risks, and digital innovation. Our work underscores the potential of integrating rigorous statistical methodologies with transparent machine learning models. By systematically identifying modifiable predictors -- such as treatment credibility -- we propose a pathway toward more targeted, personalized, and ultimately efficacious interventions for individuals with BDD.
☆ Commenting Higher-level Code Unit: Full Code, Reduced Code, or Hierarchical Code Summarization
Commenting code is a crucial activity in software development, as it aids in facilitating future maintenance and updates. To enhance the efficiency of writing comments and reduce developers' workload, researchers has proposed various automated code summarization (ACS) techniques to automatically generate comments/summaries for given code units. However, these ACS techniques primarily focus on generating summaries for code units at the method level. There is a significant lack of research on summarizing higher-level code units, such as file-level and module-level code units, despite the fact that summaries of these higher-level code units are highly useful for quickly gaining a macro-level understanding of software components and architecture. To fill this gap, in this paper, we conduct a systematic study on how to use LLMs for commenting higher-level code units, including file level and module level. These higher-level units are significantly larger than method-level ones, which poses challenges in handling long code inputs within LLM constraints and maintaining efficiency. To address these issues, we explore various summarization strategies for ACS of higher-level code units, which can be divided into three types: full code summarization, reduced code summarization, and hierarchical code summarization. The experimental results suggest that for summarizing file-level code units, using the full code is the most effective approach, with reduced code serving as a cost-efficient alternative. However, for summarizing module-level code units, hierarchical code summarization becomes the most promising strategy. In addition, inspired by the research on method-level ACS, we also investigate using the LLM as an evaluator to evaluate the quality of summaries of higher-level code units. The experimental results demonstrate that the LLM's evaluation results strongly correlate with human evaluations.
☆ OCPM$^2$: Extending the Process Mining Methodology for Object-Centric Event Data Extraction
Object-Centric Process Mining (OCPM) enables business process analysis from multiple perspectives. For example, an educational path can be examined from the viewpoints of students, teachers, and groups. This analysis depends on Object-Centric Event Data (OCED), which captures relationships between events and object types, representing different perspectives. Unlike traditional process mining techniques, extracting OCED minimizes the need for repeated log extractions when shifting the analytical focus. However, recording these complex relationships increases the complexity of the log extraction process. To address this challenge, this paper proposes a method for extracting OCED based on PM\inst{2}, a well-established process mining framework. Our approach introduces a structured framework that guides data analysts and engineers in extracting OCED for process analysis. We validate this framework by applying it in a real-world educational setting, demonstrating its effectiveness in extracting an Object-Centric Event Log (OCEL), which serves as the standard format for recording OCED, from a learning management system and an administrative grading system.
☆ DarkBench: Benchmarking Dark Patterns in Large Language Models ICLR 2025
We introduce DarkBench, a comprehensive benchmark for detecting dark design patterns--manipulative techniques that influence user behavior--in interactions with large language models (LLMs). Our benchmark comprises 660 prompts across six categories: brand bias, user retention, sycophancy, anthropomorphism, harmful generation, and sneaking. We evaluate models from five leading companies (OpenAI, Anthropic, Meta, Mistral, Google) and find that some LLMs are explicitly designed to favor their developers' products and exhibit untruthful communication, among other manipulative behaviors. Companies developing LLMs should recognize and mitigate the impact of dark design patterns to promote more ethical AI.
comment: Accepted as an Oral paper at ICLR 2025
☆ Word-level Annotation of GDPR Transparency Compliance in Privacy Policies using Large Language Models
Ensuring transparency of data practices related to personal information is a fundamental requirement under the General Data Protection Regulation (GDPR), particularly as mandated by Articles 13 and 14. However, assessing compliance at scale remains a challenge due to the complexity and variability of privacy policy language. Manual audits are resource-intensive and inconsistent, while existing automated approaches lack the granularity needed to capture nuanced transparency disclosures. In this paper, we introduce a large language model (LLM)-based framework for word-level GDPR transparency compliance annotation. Our approach comprises a two-stage annotation pipeline that combines initial LLM-based annotation with a self-correction mechanism for iterative refinement. This annotation pipeline enables the systematic identification and fine-grained annotation of transparency-related content in privacy policies, aligning with 21 GDPR-derived transparency requirements. To enable large-scale analysis, we compile a dataset of 703,791 English-language policies, from which we generate a sample of 200 manually annotated privacy policies. To evaluate our approach, we introduce a two-tiered methodology assessing both label- and span-level annotation performance. We conduct a comparative analysis of eight high-profile LLMs, providing insights into their effectiveness in identifying GDPR transparency disclosures. Our findings contribute to advancing the automation of GDPR compliance assessments and provide valuable resources for future research in privacy policy analysis.
☆ Samoyeds: Accelerating MoE Models with Structured Sparsity Leveraging Sparse Tensor Cores
The escalating size of Mixture-of-Experts (MoE) based Large Language Models (LLMs) presents significant computational and memory challenges, necessitating innovative solutions to enhance efficiency without compromising model accuracy. Structured sparsity emerges as a compelling strategy to address these challenges by leveraging the emerging sparse computing hardware. Prior works mainly focus on the sparsity in model parameters, neglecting the inherent sparse patterns in activations. This oversight can lead to additional computational costs associated with activations, potentially resulting in suboptimal performance. This paper presents Samoyeds, an innovative acceleration system for MoE LLMs utilizing Sparse Tensor Cores (SpTCs). Samoyeds is the first to apply sparsity simultaneously to both activations and model parameters. It introduces a bespoke sparse data format tailored for MoE computation and develops a specialized sparse-sparse matrix multiplication kernel. Furthermore, Samoyeds incorporates systematic optimizations specifically designed for the execution of dual-side structured sparse MoE LLMs on SpTCs, further enhancing system performance. Evaluations show that Samoyeds outperforms SOTA works by up to 1.99$\times$ at the kernel level and 1.58$\times$ at the model level. Moreover, it enhances memory efficiency, increasing maximum supported batch sizes by 4.41$\times$ on average. Additionally, Samoyeds surpasses existing SOTA structured sparse solutions in both model accuracy and hardware portability.
☆ RankPO: Preference Optimization for Job-Talent Matching
Matching job descriptions (JDs) with suitable talent requires models capable of understanding not only textual similarities between JDs and candidate resumes but also contextual factors such as geographical location and academic seniority. To address this challenge, we propose a two-stage training framework for large language models (LLMs). In the first stage, a contrastive learning approach is used to train the model on a dataset constructed from real-world matching rules, such as geographical alignment and research area overlap. While effective, this model primarily learns patterns that defined by the matching rules. In the second stage, we introduce a novel preference-based fine-tuning method inspired by Direct Preference Optimization (DPO), termed Rank Preference Optimization (RankPO), to align the model with AI-curated pairwise preferences emphasizing textual understanding. Our experiments show that while the first-stage model achieves strong performance on rule-based data (nDCG@20 = 0.706), it lacks robust textual understanding (alignment with AI annotations = 0.46). By fine-tuning with RankPO, we achieve a balanced model that retains relatively good performance in the original tasks while significantly improving the alignment with AI preferences. The code and data are available at https://github.com/yflyzhang/RankPO.
comment: 15 pages, 3 figures, 7 tables
☆ TacticExpert: Spatial-Temporal Graph Language Model for Basketball Tactics
The core challenge in basketball tactic modeling lies in efficiently extracting complex spatial-temporal dependencies from historical data and accurately predicting various in-game events. Existing state-of-the-art (SOTA) models, primarily based on graph neural networks (GNNs), encounter difficulties in capturing long-term, long-distance, and fine-grained interactions among heterogeneous player nodes, as well as in recognizing interaction patterns. Additionally, they exhibit limited generalization to untrained downstream tasks and zero-shot scenarios. In this work, we propose a Spatial-Temporal Propagation Symmetry-Aware Graph Transformer for fine-grained game modeling. This architecture explicitly captures delay effects in the spatial space to enhance player node representations across discrete-time slices, employing symmetry-invariant priors to guide the attention mechanism. We also introduce an efficient contrastive learning strategy to train a Mixture of Tactics Experts module, facilitating differentiated modeling of offensive tactics. By integrating dense training with sparse inference, we achieve a 2.4x improvement in model efficiency. Moreover, the incorporation of Lightweight Graph Grounding for Large Language Models enables robust performance in open-ended downstream tasks and zero-shot scenarios, including novel teams or players. The proposed model, TacticExpert, delineates a vertically integrated large model framework for basketball, unifying pretraining across multiple datasets and downstream prediction tasks. Fine-grained modeling modules significantly enhance spatial-temporal representations, and visualization analyzes confirm the strong interpretability of the model.
From Understanding to Excelling: Template-Free Algorithm Design through Structural-Functional Co-Evolution
Large language models (LLMs) have greatly accelerated the automation of algorithm generation and optimization. However, current methods such as EoH and FunSearch mainly rely on predefined templates and expert-specified functions that focus solely on the local evolution of key functionalities. Consequently, they fail to fully leverage the synergistic benefits of the overall architecture and the potential of global optimization. In this paper, we introduce an end-to-end algorithm generation and optimization framework based on LLMs. Our approach utilizes the deep semantic understanding of LLMs to convert natural language requirements or human-authored papers into code solutions, and employs a two-dimensional co-evolution strategy to optimize both functional and structural aspects. This closed-loop process spans problem analysis, code generation, and global optimization, automatically identifying key algorithm modules for multi-level joint optimization and continually enhancing performance and design innovation. Extensive experiments demonstrate that our method outperforms traditional local optimization approaches in both performance and innovation, while also exhibiting strong adaptability to unknown environments and breakthrough potential in structural design. By building on human research, our framework generates and optimizes novel algorithms that surpass those designed by human experts, broadening the applicability of LLMs for algorithm design and providing a novel solution pathway for automated algorithm development.
☆ AttentionRAG: Attention-Guided Context Pruning in Retrieval-Augmented Generation
While RAG demonstrates remarkable capabilities in LLM applications, its effectiveness is hindered by the ever-increasing length of retrieved contexts, which introduces information redundancy and substantial computational overhead. Existing context pruning methods, such as LLMLingua, lack contextual awareness and offer limited flexibility in controlling compression rates, often resulting in either insufficient pruning or excessive information loss. In this paper, we propose AttentionRAG, an attention-guided context pruning method for RAG systems. The core idea of AttentionRAG lies in its attention focus mechanism, which reformulates RAG queries into a next-token prediction paradigm. This mechanism isolates the query's semantic focus to a single token, enabling precise and efficient attention calculation between queries and retrieved contexts. Extensive experiments on LongBench and Babilong benchmarks show that AttentionRAG achieves up to 6.3$\times$ context compression while outperforming LLMLingua methods by around 10\% in key metrics.
☆ Exploring the Vulnerabilities of Federated Learning: A Deep Dive into Gradient Inversion Attacks
Federated Learning (FL) has emerged as a promising privacy-preserving collaborative model training paradigm without sharing raw data. However, recent studies have revealed that private information can still be leaked through shared gradient information and attacked by Gradient Inversion Attacks (GIA). While many GIA methods have been proposed, a detailed analysis, evaluation, and summary of these methods are still lacking. Although various survey papers summarize existing privacy attacks in FL, few studies have conducted extensive experiments to unveil the effectiveness of GIA and their associated limiting factors in this context. To fill this gap, we first undertake a systematic review of GIA and categorize existing methods into three types, i.e., \textit{optimization-based} GIA (OP-GIA), \textit{generation-based} GIA (GEN-GIA), and \textit{analytics-based} GIA (ANA-GIA). Then, we comprehensively analyze and evaluate the three types of GIA in FL, providing insights into the factors that influence their performance, practicality, and potential threats. Our findings indicate that OP-GIA is the most practical attack setting despite its unsatisfactory performance, while GEN-GIA has many dependencies and ANA-GIA is easily detectable, making them both impractical. Finally, we offer a three-stage defense pipeline to users when designing FL frameworks and protocols for better privacy protection and share some future research directions from the perspectives of attackers and defenders that we believe should be pursued. We hope that our study can help researchers design more robust FL frameworks to defend against these attacks.
☆ Team NYCU at Defactify4: Robust Detection and Source Identification of AI-Generated Images Using CNN and CLIP-Based Models
With the rapid advancement of generative AI, AI-generated images have become increasingly realistic, raising concerns about creativity, misinformation, and content authenticity. Detecting such images and identifying their source models has become a critical challenge in ensuring the integrity of digital media. This paper tackles the detection of AI-generated images and identifying their source models using CNN and CLIP-ViT classifiers. For the CNN-based classifier, we leverage EfficientNet-B0 as the backbone and feed with RGB channels, frequency features, and reconstruction errors, while for CLIP-ViT, we adopt a pretrained CLIP image encoder to extract image features and SVM to perform classification. Evaluated on the Defactify 4 dataset, our methods demonstrate strong performance in both tasks, with CLIP-ViT showing superior robustness to image perturbations. Compared to baselines like AEROBLADE and OCC-CLIP, our approach achieves competitive results. Notably, our method ranked Top-3 overall in the Defactify 4 competition, highlighting its effectiveness and generalizability. All of our implementations can be found in https://github.com/uuugaga/Defactify_4
☆ IMPACT: Intelligent Motion Planning with Acceptable Contact Trajectories via Vision-Language Models
Motion planning involves determining a sequence of robot configurations to reach a desired pose, subject to movement and safety constraints. Traditional motion planning finds collision-free paths, but this is overly restrictive in clutter, where it may not be possible for a robot to accomplish a task without contact. In addition, contacts range from relatively benign (e.g., brushing a soft pillow) to more dangerous (e.g., toppling a glass vase). Due to this diversity, it is difficult to characterize which contacts may be acceptable or unacceptable. In this paper, we propose IMPACT, a novel motion planning framework that uses Vision-Language Models (VLMs) to infer environment semantics, identifying which parts of the environment can best tolerate contact based on object properties and locations. Our approach uses the VLM's outputs to produce a dense 3D "cost map" that encodes contact tolerances and seamlessly integrates with standard motion planners. We perform experiments using 20 simulation and 10 real-world scenes and assess using task success rate, object displacements, and feedback from human evaluators. Our results over 3620 simulation and 200 real-world trials suggest that IMPACT enables efficient contact-rich motion planning in cluttered settings while outperforming alternative methods and ablations. Supplementary material is available at https://impact-planning.github.io/.
☆ Deep Learning-Based Automated Workflow for Accurate Segmentation and Measurement of Abdominal Organs in CT Scans
Background: Automated analysis of CT scans for abdominal organ measurement is crucial for improving diagnostic efficiency and reducing inter-observer variability. Manual segmentation and measurement of organs such as the kidneys, liver, spleen, and prostate are time-consuming and subject to inconsistency, underscoring the need for automated approaches. Purpose: The purpose of this study is to develop and validate an automated workflow for the segmentation and measurement of abdominal organs in CT scans using advanced deep learning models, in order to improve accuracy, reliability, and efficiency in clinical evaluations. Methods: The proposed workflow combines nnU-Net, U-Net++ for organ segmentation, followed by a 3D RCNN model for measuring organ volumes and dimensions. The models were trained and evaluated on CT datasets with metrics such as precision, recall, and Mean Squared Error (MSE) to assess performance. Segmentation quality was verified for its adaptability to variations in patient anatomy and scanner settings. Results: The developed workflow achieved high precision and recall values, exceeding 95 for all targeted organs. The Mean Squared Error (MSE) values were low, indicating a high level of consistency between predicted and ground truth measurements. The segmentation and measurement pipeline demonstrated robust performance, providing accurate delineation and quantification of the kidneys, liver, spleen, and prostate. Conclusion: The proposed approach offers an automated, efficient, and reliable solution for abdominal organ measurement in CT scans. By significantly reducing manual intervention, this workflow enhances measurement accuracy and consistency, with potential for widespread clinical implementation. Future work will focus on expanding the approach to other organs and addressing complex pathological cases.
comment: 13 pages , 3 figures
♻ ☆ Towards Reasoning Era: A Survey of Long Chain-of-Thought for Reasoning Large Language Models
Recent advancements in reasoning with large language models (RLLMs), such as OpenAI-O1 and DeepSeek-R1, have demonstrated their impressive capabilities in complex domains like mathematics and coding. A central factor in their success lies in the application of long chain-of-thought (Long CoT) characteristics, which enhance reasoning abilities and enable the solution of intricate problems. However, despite these developments, a comprehensive survey on Long CoT is still lacking, limiting our understanding of its distinctions from traditional short chain-of-thought (Short CoT) and complicating ongoing debates on issues like "overthinking" and "test-time scaling." This survey seeks to fill this gap by offering a unified perspective on Long CoT. (1) We first distinguish Long CoT from Short CoT and introduce a novel taxonomy to categorize current reasoning paradigms. (2) Next, we explore the key characteristics of Long CoT: deep reasoning, extensive exploration, and feasible reflection, which enable models to handle more complex tasks and produce more efficient, coherent outcomes compared to the shallower Short CoT. (3) We then investigate key phenomena such as the emergence of Long CoT with these characteristics, including overthinking, and test-time scaling, offering insights into how these processes manifest in practice. (4) Finally, we identify significant research gaps and highlight promising future directions, including the integration of multi-modal reasoning, efficiency improvements, and enhanced knowledge frameworks. By providing a structured overview, this survey aims to inspire future research and further the development of logical reasoning in artificial intelligence.
comment: Paper are available at https://long-cot.github.io/
♻ ☆ DeepInnovation AI: A Global Dataset Mapping the AI innovation from Academic Research to Industrial Patents
In the rapidly evolving field of artificial intelligence (AI), mapping innovation patterns and understanding effective technology transfer from research to applications are essential for economic growth. However, existing data infrastructures suffer from fragmentation, incomplete coverage, and insufficient evaluative capacity. Here, we present DeepInnovationAI, a comprehensive global dataset containing three structured files. DeepPatentAI.csv: Contains 2,356,204 patent records with 8 field-specific attributes. DeepDiveAI.csv: Encompasses 3,511,929 academic publications with 13 metadata fields. These two datasets leverage large language models, multilingual text analysis and dual-layer BERT classifiers to accurately identify AI-related content, while utilizing hypergraph analysis to create robust innovation metrics. Additionally, DeepCosineAI.csv: By applying semantic vector proximity analysis, this file presents approximately one hundred million calculated paper-patent similarity pairs to enhance understanding of how theoretical advancements translate into commercial technologies. DeepInnovationAI enables researchers, policymakers, and industry leaders to anticipate trends and identify collaboration opportunities. With extensive temporal and geographical scope, it supports detailed analysis of technological development patterns and international competition dynamics, establishing a foundation for modeling AI innovation and technology transfer processes.
comment: 32 pages and 8 figures
♻ ☆ ProtTeX: Structure-In-Context Reasoning and Editing of Proteins with Large Language Models
Large language models have made remarkable progress in the field of molecular science, particularly in understanding and generating functional small molecules. This success is largely attributed to the effectiveness of molecular tokenization strategies. In protein science, the amino acid sequence serves as the sole tokenizer for LLMs. However, many fundamental challenges in protein science are inherently structure-dependent. The absence of structure-aware tokens significantly limits the capabilities of LLMs for comprehensive biomolecular comprehension and multimodal generation. To address these challenges, we introduce a novel framework, ProtTeX, which tokenizes the protein sequences, structures, and textual information into a unified discrete space. This innovative approach enables joint training of the LLM exclusively through the Next-Token Prediction paradigm, facilitating multimodal protein reasoning and generation. ProtTeX enables general LLMs to perceive and process protein structures through sequential text input, leverage structural information as intermediate reasoning components, and generate or manipulate structures via sequential text output. Experiments demonstrate that our model achieves significant improvements in protein function prediction, outperforming the state-of-the-art domain expert model with a twofold increase in accuracy. Our framework enables high-quality conformational generation and customizable protein design. For the first time, we demonstrate that by adopting the standard training and inference pipelines from the LLM domain, ProtTeX empowers decoder-only LLMs to effectively address diverse spectrum of protein-related tasks.
comment: 26 pages, 9 figures
♻ ☆ Chain-of-Thought Reasoning In The Wild Is Not Always Faithful ICLR 25
Chain-of-Thought (CoT) reasoning has significantly advanced state-of-the-art AI capabilities. However, recent studies have shown that CoT reasoning is not always faithful, i.e. CoT reasoning does not always reflect how models arrive at conclusions. So far, most of these studies have focused on unfaithfulness in unnatural contexts where an explicit bias has been introduced. In contrast, we show that unfaithful CoT can occur on realistic prompts with no artificial bias. Our results reveal non-negligible rates of several forms of unfaithful reasoning in frontier models: Sonnet 3.7 (16.3%), DeepSeek R1 (5.3%) and ChatGPT-4o (7.0%) all answer a notable proportion of question pairs unfaithfully. Specifically, we find that models rationalize their implicit biases in answers to binary questions ("implicit post-hoc rationalization"). For example, when separately presented with the questions "Is X bigger than Y?" and "Is Y bigger than X?", models sometimes produce superficially coherent arguments to justify answering Yes to both questions or No to both questions, despite such responses being logically contradictory. We also investigate restoration errors (Dziri et al., 2023), where models make and then silently correct errors in their reasoning, and unfaithful shortcuts, where models use clearly illogical reasoning to simplify solving problems in Putnam questions (a hard benchmark). Our findings raise challenges for AI safety work that relies on monitoring CoT to detect undesired behavior.
comment: Accepted to the Reasoning and Planning for Large Language Models Workshop (ICLR 25), 10 main paper pages, 38 appendix pages
♻ ☆ A Triple-Inertial Accelerated Alternating Optimization Method for Deep Learning Training
The stochastic gradient descent (SGD) algorithm has achieved remarkable success in training deep learning models. However, it has several limitations, including susceptibility to vanishing gradients, sensitivity to input data, and a lack of robust theoretical guarantees. In recent years, alternating minimization (AM) methods have emerged as a promising alternative for model training by employing gradient-free approaches to iteratively update model parameters. Despite their potential, these methods often exhibit slow convergence rates. To address this challenge, we propose a novel Triple-Inertial Accelerated Alternating Minimization (TIAM) framework for neural network training. The TIAM approach incorporates a triple-inertial acceleration strategy with a specialized approximation method, facilitating targeted acceleration of different terms in each sub-problem optimization. This integration improves the efficiency of convergence, achieving superior performance with fewer iterations. Additionally, we provide a convergence analysis of the TIAM algorithm, including its global convergence properties and convergence rate. Extensive experiments validate the effectiveness of the TIAM method, showing significant improvements in generalization capability and computational efficiency compared to existing approaches, particularly when applied to the rectified linear unit (ReLU) and its variants.
♻ ☆ V-LoRA: An Efficient and Flexible System Boosts Vision Applications with LoRA LMM EuroSys'2025
Large Multimodal Models (LMMs) have shown significant progress in various complex vision tasks with the solid linguistic and reasoning capacity inherited from large language models (LMMs). Low-rank adaptation (LoRA) offers a promising method to integrate external knowledge into LMMs, compensating for their limitations on domain-specific tasks. However, the existing LoRA model serving is excessively computationally expensive and causes extremely high latency. In this paper, we present an end-to-end solution that empowers diverse vision tasks and enriches vision applications with LoRA LMMs. Our system, VaLoRA, enables accurate and efficient vision tasks by 1) an accuracy-aware LoRA adapter generation approach that generates LoRA adapters rich in domain-specific knowledge to meet application-specific accuracy requirements, 2) an adaptive-tiling LoRA adapters batching operator that efficiently computes concurrent heterogeneous LoRA adapters, and 3) a flexible LoRA adapter orchestration mechanism that manages application requests and LoRA adapters to achieve the lowest average response latency. We prototype VaLoRA on five popular vision tasks on three LMMs. Experiment results reveal that VaLoRA improves 24-62% of the accuracy compared to the original LMMs and reduces 20-89% of the latency compared to the state-of-the-art LoRA model serving systems.
comment: EuroSys'2025
♻ ☆ Toward an Evaluation Science for Generative AI Systems
There is an increasing imperative to anticipate and understand the performance and safety of generative AI systems in real-world deployment contexts. However, the current evaluation ecosystem is insufficient: Commonly used static benchmarks face validity challenges, and ad hoc case-by-case audits rarely scale. In this piece, we advocate for maturing an evaluation science for generative AI systems. While generative AI creates unique challenges for system safety engineering and measurement science, the field can draw valuable insights from the development of safety evaluation practices in other fields, including transportation, aerospace, and pharmaceutical engineering. In particular, we present three key lessons: Evaluation metrics must be applicable to real-world performance, metrics must be iteratively refined, and evaluation institutions and norms must be established. Applying these insights, we outline a concrete path toward a more rigorous approach for evaluating generative AI systems.
comment: First two authors contributed equally to this work
♻ ☆ Correlated Proxies: A New Definition and Improved Mitigation for Reward Hacking ICLR 2025
Because it is difficult to precisely specify complex objectives, reinforcement learning policies are often optimized using proxy reward functions that only approximate the true goal. However, optimizing proxy rewards frequently leads to reward hacking: the optimized reward function ceases to be a good proxy and the resulting policy performs poorly with respect to the unspecified true reward. Principled solutions to reward hacking have been impeded by the lack of a good definition for the problem. To address this gap, we introduce a definition of reward hacking based on the correlation between proxy and true rewards for states and actions seen by a "reference policy" that breaks down under optimization. We show that this definition captures reward hacking behavior across several realistic settings, including in reinforcement learning from human feedback (RLHF). Using our formulation, we show theoretically that regularization to the reference policy can effectively prevent reward hacking. While the current practice in RLHF applies a KL penalty between action distributions for this purpose, our theory suggests regularizing the $\chi^2$ divergence between the policies' occupancy measures can be more effective. We intuitively show the benefits of this type of regularization and demonstrate that it better mitigates reward hacking in practice across four realistic settings, including RLHF. Our code is available at https://github.com/cassidylaidlaw/orpo.
comment: Spotlight at ICLR 2025
♻ ☆ DataEnvGym: Data Generation Agents in Teacher Environments with Student Feedback ICLR 2025
The process of creating training data to teach models is currently driven by humans, who manually analyze model weaknesses and plan how to create data that improves a student model. Approaches using LLMs as annotators reduce human effort, but still require humans to interpret feedback from evaluations and control the LLM to produce data the student needs. Automating this labor-intensive process by creating autonomous data generation agents - or teachers - is desirable, but requires environments that can simulate the feedback-driven, iterative, closed loop of data creation. To enable rapid, scalable testing for such agents and their modules, we introduce DataEnvGym, a testbed of teacher environments for data generation agents. DataEnvGym frames data generation as a sequential decision-making task, involving an agent consisting of a data generation policy (which generates a plan for creating training data) and a data generation engine (which transforms the plan into data), inside an environment that provides student feedback. The agent's goal is to improve student performance. Students are iteratively trained and evaluated on generated data, and their feedback (in the form of errors or weak skills) is reported to the agent after each iteration. DataEnvGym includes multiple teacher environment instantiations across 3 levels of structure in the state representation and action space. More structured environments are based on inferred skills and offer more interpretability and curriculum control. We support 4 domains (math, code, VQA, and tool-use) and test multiple students and teachers. Example agents in our teaching environments can iteratively improve students across tasks and settings. Moreover, we show that environments teach different skill levels and test variants of key modules, pointing to future work in improving data generation agents, engines, and feedback mechanisms.
comment: ICLR 2025 Spotlight; Project Page: https://DataEnvGym.github.io
♻ ☆ What is the Alignment Objective of GRPO?
In this note, we examine the aggregation of preferences achieved by the Group Policy Optimisation (GRPO) algorithm, a reinforcement learning method used to train advanced artificial intelligence models such as DeepSeek-R1-Zero and DeepSeekMath. The GRPO algorithm trains a policy using a reward preference model, which is computed by sampling a set of outputs for a given context, observing the corresponding rewards, and applying shift-and-scale normalisation to these reward values. Additionally, it incorporates a penalty function to discourage deviations from a reference policy. We present a framework that enables us to characterise the stationary policies of the GRPO algorithm. This analysis reveals that the aggregation of preferences differs fundamentally from standard logarithmic pooling, which is implemented by other approaches such as RLHF. The precise form of preference aggregation arises from the way the reward preference model is defined and from the penalty function, which we show to essentially correspond to the reverse Kullback-Leibler (KL) divergence between the aggregation policy and the reference policy. Interestingly, we demonstrate that for groups of size two, the reward preference model corresponds to pairwise comparison preferences, similar to those in other alignment methods based on pairwise comparison feedback. We provide explicit characterisations of the aggregate preference for binary questions, for groups of size two, and in the limit of large group size. This provides insights into the dependence of the aggregate preference on parameters such as the regularisation constant and the confidence margin of question answers. Finally, we discuss the aggregation of preferences obtained by modifying the GRPO algorithm to use direct KL divergence as the penalty or to use rewards without scale normalisation.
♻ ☆ YouTube Comments Decoded: Leveraging LLMs for Low Resource Language Classification
Sarcasm detection is a significant challenge in sentiment analysis, particularly due to its nature of conveying opinions where the intended meaning deviates from the literal expression. This challenge is heightened in social media contexts where code-mixing, especially in Dravidian languages, is prevalent. Code-mixing involves the blending of multiple languages within a single utterance, often with non-native scripts, complicating the task for systems trained on monolingual data. This shared task introduces a novel gold standard corpus designed for sarcasm and sentiment detection within code-mixed texts, specifically in Tamil-English and Malayalam-English languages. The primary objective of this task is to identify sarcasm and sentiment polarity within a code-mixed dataset of Tamil-English and Malayalam-English comments and posts collected from social media platforms. Each comment or post is annotated at the message level for sentiment polarity, with particular attention to the challenges posed by class imbalance, reflecting real-world scenarios.In this work, we experiment with state-of-the-art large language models like GPT-3.5 Turbo via prompting to classify comments into sarcastic or non-sarcastic categories. We obtained a macro-F1 score of 0.61 for Tamil language. We obtained a macro-F1 score of 0.50 for Malayalam language.
comment: Updated and Final Version
♻ ☆ Joint Fine-tuning and Conversion of Pretrained Speech and Language Models towards Linear Complexity ICLR 2025
Architectures such as Linformer and Mamba have recently emerged as competitive linear time replacements for transformers. However, corresponding large pretrained models are often unavailable, especially in non-text domains. To remedy this, we present a Cross-Architecture Layerwise Distillation (CALD) approach that jointly converts a transformer model to a linear time substitute and fine-tunes it to a target task. We also compare several means to guide the fine-tuning to optimally retain the desired inference capability from the original model. The methods differ in their use of the target model and the trajectory of the parameters. In a series of empirical studies on language processing, language modeling, and speech processing, we show that CALD can effectively recover the result of the original model, and that the guiding strategy contributes to the result. Some reasons for the variation are suggested.
comment: 18 pages, 5 figures; ICLR 2025 camera ready. Code: https://github.com/idiap/linearize-distill-pretrained-transformers
♻ ☆ Latent Space Chain-of-Embedding Enables Output-free LLM Self-Evaluation ICLR 2025
LLM self-evaluation relies on the LLM's own ability to estimate response correctness, which can greatly improve its deployment reliability. In this research track, we propose the Chain-of-Embedding (CoE) in the latent space to enable LLMs to perform output-free self-evaluation. CoE consists of all progressive hidden states produced during the inference time, which can be treated as the latent thinking path of LLMs. We find that when LLMs respond correctly and incorrectly, their CoE features differ, these discrepancies assist us in estimating LLM response correctness. Experiments in four diverse domains and seven LLMs fully demonstrate the effectiveness of our method. Meanwhile, its label-free design intent without any training and millisecond-level computational cost ensures real-time feedback in large-scale scenarios. More importantly, we provide interesting insights into LLM response correctness from the perspective of hidden state changes inside LLMs.
comment: Accepted by ICLR 2025
♻ ☆ When Text Embedding Meets Large Language Model: A Comprehensive Survey
Text embedding has become a foundational technology in natural language processing (NLP) during the deep learning era, driving advancements across a wide array of downstream tasks. While many natural language understanding challenges can now be modeled using generative paradigms and leverage the robust generative and comprehension capabilities of large language models (LLMs), numerous practical applications-such as semantic matching, clustering, and information retrieval-continue to rely on text embeddings for their efficiency and effectiveness. Therefore, how to combine the LLMs and the text embeddings has become one of the hotspots of academic attention in recent years. In this survey, we categorize the interplay between LLMs and text embeddings into three overarching themes: (1) LLM-augmented text embedding, enhancing traditional embedding methods with LLMs; (2) LLMs as text embedders, adapting their innate capabilities for high-quality embedding; and (3) Text embedding understanding with LLMs, leveraging LLMs to analyze and interpret embeddings. By organizing recent works based on interaction patterns rather than specific downstream applications, we offer a novel and systematic overview of contributions from various research and application domains in the era of LLMs. Furthermore, we highlight the unresolved challenges that persisted in the pre-LLM era with pre-trained language models (PLMs) and explore the emerging obstacles brought forth by LLMs. Building on this analysis, we outline prospective directions for the evolution of text embedding, addressing both theoretical and practical opportunities in the rapidly advancing landscape of NLP.
comment: Work in progress
♻ ☆ Confidence-Controlled Exploration: Efficient Sparse-Reward Policy Learning for Robot Navigation
Reinforcement learning (RL) is a promising approach for robotic navigation, allowing robots to learn through trial and error. However, real-world robotic tasks often suffer from sparse rewards, leading to inefficient exploration and suboptimal policies due to sample inefficiency of RL. In this work, we introduce Confidence-Controlled Exploration (CCE), a novel method that improves sample efficiency in RL-based robotic navigation without modifying the reward function. Unlike existing approaches, such as entropy regularization and reward shaping, which can introduce instability by altering rewards, CCE dynamically adjusts trajectory length based on policy entropy. Specifically, it shortens trajectories when uncertainty is high to enhance exploration and extends them when confidence is high to prioritize exploitation. CCE is a principled and practical solution inspired by a theoretical connection between policy entropy and gradient estimation. It integrates seamlessly with on-policy and off-policy RL methods and requires minimal modifications. We validate CCE across REINFORCE, PPO, and SAC in both simulated and real-world navigation tasks. CCE outperforms fixed-trajectory and entropy-regularized baselines, achieving an 18\% higher success rate, 20-38\% shorter paths, and 9.32\% lower elevation costs under a fixed training sample budget. Finally, we deploy CCE on a Clearpath Husky robot, demonstrating its effectiveness in complex outdoor environments.
comment: 10 pages, 6 figures, 2 tables
♻ ☆ InftyThink: Breaking the Length Limits of Long-Context Reasoning in Large Language Models
Advanced reasoning in large language models has achieved remarkable performance on challenging tasks, but the prevailing long-context reasoning paradigm faces critical limitations: quadratic computational scaling with sequence length, reasoning constrained by maximum context boundaries, and performance degradation beyond pre-training context windows. Existing approaches primarily compress reasoning chains without addressing the fundamental scaling problem. To overcome these challenges, we introduce InftyThink, a paradigm that transforms monolithic reasoning into an iterative process with intermediate summarization. By interleaving short reasoning segments with concise progress summaries, our approach enables unbounded reasoning depth while maintaining bounded computational costs. This creates a characteristic sawtooth memory pattern that significantly reduces computational complexity compared to traditional approaches. Furthermore, we develop a methodology for reconstructing long-context reasoning datasets into our iterative format, transforming OpenR1-Math into 333K training instances. Experiments across multiple model architectures demonstrate that our approach reduces computational costs while improving performance, with Qwen2.5-Math-7B showing 3-13% improvements across MATH500, AIME24, and GPQA_diamond benchmarks. Our work challenges the assumed trade-off between reasoning depth and computational efficiency, providing a more scalable approach to complex reasoning without architectural modifications.
♻ ☆ Fast MRI for All: Bridging Equity Gaps via Training without Raw Data Access
Physics-driven deep learning (PD-DL) approaches have become popular for improved reconstruction of fast magnetic resonance imaging (MRI) scans. Though PD-DL offers higher acceleration rates than existing clinical fast MRI techniques, their use has been limited outside specialized MRI centers. A key challenge is generalization to underrepresented pathologies or populations, noted in multiple studies, with fine-tuning on target populations suggested for improvement. However, current approaches for PD-DL training require access to raw k-space measurements, which is typically only available at specialized MRI centers that have research agreements for such data access. This is especially an issue for rural and underserved areas, where commercial MRI scanners only provide access to a final reconstructed image. To tackle these challenges, we propose Compressibility-inspired Unsupervised Learning via Parallel Imaging Fidelity (CUPID) for high-quality PD-DL training using only routine clinical reconstructed images exported from an MRI scanner. CUPID evaluates output quality with a compressibility-based approach while ensuring that the output stays consistent with the clinical parallel imaging reconstruction through well-designed perturbations. Our results show CUPID achieves similar quality to established PD-DL training that requires k-space data while outperforming compressed sensing (CS) and diffusion-based generative methods. We further demonstrate its effectiveness in a zero-shot training setup for retrospectively and prospectively sub-sampled acquisitions, attesting to its minimal training burden. As an approach that radically deviates from existing strategies, CUPID presents an opportunity to provide equitable access to fast MRI for underserved populations in an attempt to reduce the inequalities associated with this expensive imaging modality.
♻ ☆ DataMan: Data Manager for Pre-training Large Language Models ICLR2025
The performance emergence of large language models (LLMs) driven by data scaling laws makes the selection of pre-training data increasingly important. However, existing methods rely on limited heuristics and human intuition, lacking comprehensive and clear guidelines. To address this, we are inspired by ``reverse thinking'' -- prompting LLMs to self-identify which criteria benefit its performance. As its pre-training capabilities are related to perplexity (PPL), we derive 14 quality criteria from the causes of text perplexity anomalies and introduce 15 common application domains to support domain mixing. In this paper, we train a Data Manager (DataMan) to learn quality ratings and domain recognition from pointwise rating, and use it to annotate a 447B token pre-training corpus with 14 quality ratings and domain type. Our experiments validate our approach, using DataMan to select 30B tokens to train a 1.3B-parameter language model, demonstrating significant improvements in in-context learning (ICL), perplexity, and instruction-following ability over the state-of-the-art baseline. The best-performing model, based on the Overall Score l=5 surpasses a model trained with 50% more data using uniform sampling. We continue pre-training with high-rated, domain-specific data annotated by DataMan to enhance domain-specific ICL performance and thus verify DataMan's domain mixing ability. Our findings emphasize the importance of quality ranking, the complementary nature of quality criteria, and their low correlation with perplexity, analyzing misalignment between PPL and ICL performance. We also thoroughly analyzed our pre-training dataset, examining its composition, the distribution of quality ratings, and the original document sources.
comment: ICLR2025 paper
♻ ☆ HecVL: Hierarchical Video-Language Pretraining for Zero-shot Surgical Phase Recognition MICCAI2024
Natural language could play an important role in developing generalist surgical models by providing a broad source of supervision from raw texts. This flexible form of supervision can enable the model's transferability across datasets and tasks as natural language can be used to reference learned visual concepts or describe new ones. In this work, we present HecVL, a novel hierarchical video-language pretraining approach for building a generalist surgical model. Specifically, we construct a hierarchical video-text paired dataset by pairing the surgical lecture video with three hierarchical levels of texts: at clip-level, atomic actions using transcribed audio texts; at phase-level, conceptual text summaries; and at video-level, overall abstract text of the surgical procedure. Then, we propose a novel fine-to-coarse contrastive learning framework that learns separate embedding spaces for the three video-text hierarchies using a single model. By disentangling embedding spaces of different hierarchical levels, the learned multi-modal representations encode short-term and long-term surgical concepts in the same model. Thanks to the injected textual semantics, we demonstrate that the HecVL approach can enable zero-shot surgical phase recognition without any human annotation. Furthermore, we show that the same HecVL model for surgical phase recognition can be transferred across different surgical procedures and medical centers. The code is available at https://github.com/CAMMA-public/SurgVLP
comment: Accepted by MICCAI2024
♻ ☆ Procedure-Aware Surgical Video-language Pretraining with Hierarchical Knowledge Augmentation NeurIPS 2024
Surgical video-language pretraining (VLP) faces unique challenges due to the knowledge domain gap and the scarcity of multi-modal data. This study aims to bridge the gap by addressing issues regarding textual information loss in surgical lecture videos and the spatial-temporal challenges of surgical VLP. We propose a hierarchical knowledge augmentation approach and a novel Procedure-Encoded Surgical Knowledge-Augmented Video-Language Pretraining (PeskaVLP) framework to tackle these issues. The knowledge augmentation uses large language models (LLM) for refining and enriching surgical concepts, thus providing comprehensive language supervision and reducing the risk of overfitting. PeskaVLP combines language supervision with visual self-supervision, constructing hard negative samples and employing a Dynamic Time Warping (DTW) based loss function to effectively comprehend the cross-modal procedural alignment. Extensive experiments on multiple public surgical scene understanding and cross-modal retrieval datasets show that our proposed method significantly improves zero-shot transferring performance and offers a generalist visual representation for further advancements in surgical scene understanding.The code is available at https://github.com/CAMMA-public/SurgVLP
comment: Accepted at the 38th Conference on Neural Information Processing Systems (NeurIPS 2024 Spolight)
♻ ☆ COMBO: Compositional World Models for Embodied Multi-Agent Cooperation ICLR 2025
In this paper, we investigate the problem of embodied multi-agent cooperation, where decentralized agents must cooperate given only egocentric views of the world. To effectively plan in this setting, in contrast to learning world dynamics in a single-agent scenario, we must simulate world dynamics conditioned on an arbitrary number of agents' actions given only partial egocentric visual observations of the world. To address this issue of partial observability, we first train generative models to estimate the overall world state given partial egocentric observations. To enable accurate simulation of multiple sets of actions on this world state, we then propose to learn a compositional world model for multi-agent cooperation by factorizing the naturally composable joint actions of multiple agents and compositionally generating the video conditioned on the world state. By leveraging this compositional world model, in combination with Vision Language Models to infer the actions of other agents, we can use a tree search procedure to integrate these modules and facilitate online cooperative planning. We evaluate our methods on three challenging benchmarks with 2-4 agents. The results show our compositional world model is effective and the framework enables the embodied agents to cooperate efficiently with different agents across various tasks and an arbitrary number of agents, showing the promising future of our proposed methods. More videos can be found at https://embodied-agi.cs.umass.edu/combo/.
comment: Published at ICLR 2025. 24 pages. The first three authors contributed equally
♻ ☆ Similarity Equivariant Graph Neural Networks for Homogenization of Metamaterials
Soft, porous mechanical metamaterials exhibit pattern transformations that may have important applications in soft robotics, sound reduction and biomedicine. To design these innovative materials, it is important to be able to simulate them accurately and quickly, in order to tune their mechanical properties. Since conventional simulations using the finite element method entail a high computational cost, in this article we aim to develop a machine learning-based approach that scales favorably to serve as a surrogate model. To ensure that the model is also able to handle various microstructures, including those not encountered during training, we include the microstructure as part of the network input. Therefore, we introduce a graph neural network that predicts global quantities (energy, stress stiffness) as well as the pattern transformations that occur (the kinematics). To make our model as accurate and data-efficient as possible, various symmetries are incorporated into the model. The starting point is an E(n)-equivariant graph neural network (which respects translation, rotation and reflection) that has periodic boundary conditions (i.e., it is in-/equivariant with respect to the choice of RVE), is scale in-/equivariant, can simulate large deformations, and can predict scalars, vectors as well as second and fourth order tensors (specifically energy, stress and stiffness). The incorporation of scale equivariance makes the model equivariant with respect to the similarities group, of which the Euclidean group E(n) is a subgroup. We show that this network is more accurate and data-efficient than graph neural networks with fewer symmetries. To create an efficient graph representation of the finite element discretization, we use only the internal geometrical hole boundaries from the finite element mesh to achieve a better speed-up and scaling with the mesh size.
comment: 60 pages, 22 figures. Published in CMAME (Computer Methods in Applied Mechanics and Engineering)
♻ ☆ PEMF-VTO: Point-Enhanced Video Virtual Try-on via Mask-free Paradigm
Video Virtual Try-on aims to seamlessly transfer a reference garment onto a target person in a video while preserving both visual fidelity and temporal coherence. Existing methods typically rely on inpainting masks to define the try-on area, enabling accurate garment transfer for simple scenes (e.g., in-shop videos). However, these mask-based approaches struggle with complex real-world scenarios, as overly large and inconsistent masks often destroy spatial-temporal information, leading to distorted results. Mask-free methods alleviate this issue but face challenges in accurately determining the try-on area, especially for videos with dynamic body movements. To address these limitations, we propose PEMF-VTO, a novel Point-Enhanced Mask-Free Video Virtual Try-On framework that leverages sparse point alignments to explicitly guide garment transfer. Our key innovation is the introduction of point-enhanced guidance, which provides flexible and reliable control over both spatial-level garment transfer and temporal-level video coherence. Specifically, we design a Point-Enhanced Transformer (PET) with two core components: Point-Enhanced Spatial Attention (PSA), which uses frame-cloth point alignments to precisely guide garment transfer, and Point-Enhanced Temporal Attention (PTA), which leverages frame-frame point correspondences to enhance temporal coherence and ensure smooth transitions across frames. Extensive experiments demonstrate that our PEMF-VTO outperforms state-of-the-art methods, generating more natural, coherent, and visually appealing try-on videos, particularly for challenging in-the-wild scenarios.
♻ ☆ The Society of HiveMind: Multi-Agent Optimization of Foundation Model Swarms to Unlock the Potential of Collective Intelligence
Multi-agent systems address issues of accessibility and scalability of artificial intelligence (AI) foundation models, which are often represented by large language models. We develop a framework - the "Society of HiveMind" (SOHM) - that orchestrates the interaction between multiple AI foundation models, imitating the observed behavior of animal swarms in nature by following modern evolutionary theories. On the one hand, we find that the SOHM provides a negligible benefit on tasks that mainly require real-world knowledge. On the other hand, we remark a significant improvement on tasks that require intensive logical reasoning, indicating that multi-agent systems are capable of increasing the reasoning capabilities of the collective compared to the individual agents. Our findings demonstrate the potential of combining a multitude of diverse AI foundation models to form an artificial swarm intelligence capable of self-improvement through interactions with a given environment.
comment: 11 pages (excl. appendix)
♻ ☆ Semi-supervised Semantic Segmentation for Remote Sensing Images via Multi-scale Uncertainty Consistency and Cross-Teacher-Student Attention
Semi-supervised learning offers an appealing solution for remote sensing (RS) image segmentation to relieve the burden of labor-intensive pixel-level labeling. However, RS images pose unique challenges, including rich multi-scale features and high inter-class similarity. To address these problems, this paper proposes a novel semi-supervised Multi-Scale Uncertainty and Cross-Teacher-Student Attention (MUCA) model for RS image semantic segmentation tasks. Specifically, MUCA constrains the consistency among feature maps at different layers of the network by introducing a multi-scale uncertainty consistency regularization. It improves the multi-scale learning capability of semi-supervised algorithms on unlabeled data. Additionally, MUCA utilizes a Cross-Teacher-Student attention mechanism to guide the student network, guiding the student network to construct more discriminative feature representations through complementary features from the teacher network. This design effectively integrates weak and strong augmentations (WA and SA) to further boost segmentation performance. To verify the effectiveness of our model, we conduct extensive experiments on ISPRS-Potsdam and LoveDA datasets. The experimental results show the superiority of our method over state-of-the-art semi-supervised methods. Notably, our model excels in distinguishing highly similar objects, showcasing its potential for advancing semi-supervised RS image segmentation tasks.
♻ ☆ Networked Communication for Decentralised Agents in Mean-Field Games
We introduce networked communication to the mean-field game framework, in particular to oracle-free settings where $N$ decentralised agents learn along a single, non-episodic run of the empirical system. We prove that our architecture has sample guarantees bounded between those of the centralised- and independent-learning cases. We provide the order of the difference in these bounds in terms of network structure and number of communication rounds, and also contribute a policy-update stability guarantee. We discuss how the sample guarantees of the three theoretical algorithms do not actually result in practical convergence. We therefore show that in practical settings where the theoretical parameters are not observed (leading to poor estimation of the Q-function), our communication scheme considerably accelerates learning over the independent case, often performing similarly to a centralised learner while removing the restrictive assumption of the latter. We contribute further practical enhancements to all three theoretical algorithms, allowing us to present their first empirical demonstrations. Our experiments confirm that we can remove several of the theoretical assumptions of the algorithms, and display the empirical convergence benefits brought by our new networked communication. We additionally show that our networked approach has significant advantages over both alternatives in terms of robustness to update failures and to changes in population size.
♻ ☆ Exploring a Multimodal Fusion-based Deep Learning Network for Detecting Facial Palsy IJCAI 2024
Algorithmic detection of facial palsy offers the potential to improve current practices, which usually involve labor-intensive and subjective assessment by clinicians. In this paper, we present a multimodal fusion-based deep learning model that utilizes unstructured data (i.e. an image frame with facial line segments) and structured data (i.e. features of facial expressions) to detect facial palsy. We then contribute to a study to analyze the effect of different data modalities and the benefits of a multimodal fusion-based approach using videos of 21 facial palsy patients. Our experimental results show that among various data modalities (i.e. unstructured data - RGB images and images of facial line segments and structured data - coordinates of facial landmarks and features of facial expressions), the feed-forward neural network using features of facial expression achieved the highest precision of 76.22 while the ResNet-based model using images of facial line segments achieved the highest recall of 83.47. When we leveraged both images of facial line segments and features of facial expressions, our multimodal fusion-based deep learning model slightly improved the precision score to 77.05 at the expense of a decrease in the recall score.
comment: IJCAI 2024 4th AI for Ageless Aging Workshop (AIAA)
♻ ☆ Towards Generalizable Scene Change Detection CVPR 2025
While current state-of-the-art Scene Change Detection (SCD) approaches achieve impressive results in well-trained research data, they become unreliable under unseen environments and different temporal conditions; in-domain performance drops from 77.6% to 8.0% in a previously unseen environment and to 4.6% under a different temporal condition -- calling for generalizable SCD and benchmark. In this work, we propose the Generalizable Scene Change Detection Framework (GeSCF), which addresses unseen domain performance and temporal consistency -- to meet the growing demand for anything SCD. Our method leverages the pre-trained Segment Anything Model (SAM) in a zero-shot manner. For this, we design Initial Pseudo-mask Generation and Geometric-Semantic Mask Matching -- seamlessly turning user-guided prompt and single-image based segmentation into scene change detection for a pair of inputs without guidance. Furthermore, we define the Generalizable Scene Change Detection (GeSCD) benchmark along with novel metrics and an evaluation protocol to facilitate SCD research in generalizability. In the process, we introduce the ChangeVPR dataset, a collection of challenging image pairs with diverse environmental scenarios -- including urban, suburban, and rural settings. Extensive experiments across various datasets demonstrate that GeSCF achieves an average performance gain of 19.2% on existing SCD datasets and 30.0% on the ChangeVPR dataset, nearly doubling the prior art performance. We believe our work can lay a solid foundation for robust and generalizable SCD research.
comment: Camera-ready version. Accepted to CVPR 2025
♻ ☆ NotaGen: Advancing Musicality in Symbolic Music Generation with Large Language Model Training Paradigms
We introduce NotaGen, a symbolic music generation model aiming to explore the potential of producing high-quality classical sheet music. Inspired by the success of Large Language Models (LLMs), NotaGen adopts pre-training, fine-tuning, and reinforcement learning paradigms (henceforth referred to as the LLM training paradigms). It is pre-trained on 1.6M pieces of music in ABC notation, and then fine-tuned on approximately 9K high-quality classical compositions conditioned on "period-composer-instrumentation" prompts. For reinforcement learning, we propose the CLaMP-DPO method, which further enhances generation quality and controllability without requiring human annotations or predefined rewards. Our experiments demonstrate the efficacy of CLaMP-DPO in symbolic music generation models with different architectures and encoding schemes. Furthermore, subjective A/B tests show that NotaGen outperforms baseline models against human compositions, greatly advancing musical aesthetics in symbolic music generation.
♻ ☆ Knowledge-data fusion dominated vehicle platoon dynamics modeling and analysis: A physics-encoded deep learning approach
Recently, artificial intelligence (AI)-enabled nonlinear vehicle platoon dynamics modeling plays a crucial role in predicting and optimizing the interactions between vehicles. Existing efforts lack the extraction and capture of vehicle behavior interaction features at the platoon scale. More importantly, maintaining high modeling accuracy without losing physical analyzability remains to be solved. To this end, this paper proposes a novel physics-encoded deep learning network, named PeMTFLN, to model the nonlinear vehicle platoon dynamics. Specifically, an analyzable parameters encoded computational graph (APeCG) is designed to guide the platoon to respond to the driving behavior of the lead vehicle while ensuring local stability. Besides, a multi-scale trajectory feature learning network (MTFLN) is constructed to capture platoon following patterns and infer the physical parameters required for APeCG from trajectory data. The human-driven vehicle trajectory datasets (HIGHSIM) were used to train the proposed PeMTFLN. The trajectories prediction experiments show that PeMTFLN exhibits superior compared to the baseline models in terms of predictive accuracy in speed and gap. The stability analysis result shows that the physical parameters in APeCG is able to reproduce the platoon stability in real-world condition. In simulation experiments, PeMTFLN performs low inference error in platoon trajectories generation. Moreover, PeMTFLN also accurately reproduces ground-truth safety statistics. The code of proposed PeMTFLN is open source.
♻ ☆ PAD: Personalized Alignment of LLMs at Decoding-Time ICLR 2025
Aligning with personalized preferences, which vary significantly across cultural, educational, and political differences, poses a significant challenge due to the computational costs and data demands of traditional alignment methods. In response, this paper presents Personalized Alignment at Decoding-time (PAD), a novel framework designed to align LLM outputs with diverse personalized preferences during the inference phase, eliminating the need for additional training. By introducing a unique personalized reward modeling strategy, this framework decouples the text generation process from personalized preferences, facilitating the generation of generalizable token-level personalized rewards. The PAD algorithm leverages these rewards to guide the decoding process, dynamically tailoring the base model's predictions to personalized preferences. Extensive experimental results demonstrate that PAD not only outperforms existing training-based alignment methods in terms of aligning with diverse preferences but also shows significant generalizability to preferences unseen during training and scalability across different base models. This work advances the capability of LLMs to meet user needs in real-time applications, presenting a substantial step forward in personalized LLM alignment.
comment: ICLR 2025
♻ ☆ Networked Communication for Mean-Field Games with Function Approximation and Empirical Mean-Field Estimation
Recent algorithms allow decentralised agents, possibly connected via a communication network, to learn equilibria in Mean-Field Games from a non-episodic run of the empirical system. However, these algorithms are for tabular settings: this computationally limits the size of agents' observation space, meaning the algorithms cannot handle anything but small state spaces, nor generalise beyond policies depending only on the agent's local state to so-called 'population-dependent' policies. We address this limitation by introducing function approximation to the existing setting, drawing on the Munchausen Online Mirror Descent method that has previously been employed only in finite-horizon, episodic, centralised settings. While this permits us to include the mean field in the observation for players' policies, it is unrealistic to assume decentralised agents have access to this global information: we therefore also provide new algorithms allowing agents to locally estimate the global empirical distribution, and to improve this estimate via inter-agent communication. We show theoretically that exchanging policy information helps networked agents outperform both independent and even centralised agents in function-approximation settings. Our experiments demonstrate this happening empirically, by an even greater margin than in tabular settings, and show that the communication network allows decentralised agents to estimate the mean field for population-dependent policies.
♻ ☆ Adaptive Split Learning over Energy-Constrained Wireless Edge Networks
Split learning (SL) is a promising approach for training artificial intelligence (AI) models, in which devices collaborate with a server to train an AI model in a distributed manner, based on a same fixed split point. However, due to the device heterogeneity and variation of channel conditions, this way is not optimal in training delay and energy consumption. In this paper, we design an adaptive split learning (ASL) scheme which can dynamically select split points for devices and allocate computing resource for the server in wireless edge networks. We formulate an optimization problem to minimize the average training latency subject to long-term energy consumption constraint. The difficulties in solving this problem are the lack of future information and mixed integer programming (MIP). To solve it, we propose an online algorithm leveraging the Lyapunov theory, named OPEN, which decomposes it into a new MIP problem only with the current information. Then, a two-layer optimization method is proposed to solve the MIP problem. Extensive simulation results demonstrate that the ASL scheme can reduce the average training delay and energy consumption by 53.7% and 22.1%, respectively, as compared to the existing SL schemes.
comment: 6 pages, 5 figures, 20 conferences
♻ ☆ KnowPath: Knowledge-enhanced Reasoning via LLM-generated Inference Paths over Knowledge Graphs
Large language models (LLMs) have demonstrated remarkable capabilities in various complex tasks, yet they still suffer from hallucinations. Introducing external knowledge, such as knowledge graph, can enhance the LLMs' ability to provide factual answers. LLMs have the ability to interactively explore knowledge graphs. However, most approaches have been affected by insufficient internal knowledge excavation in LLMs, limited generation of trustworthy knowledge reasoning paths, and a vague integration between internal and external knowledge. Therefore, we propose KnowPath, a knowledge-enhanced large model framework driven by the collaboration of internal and external knowledge. It relies on the internal knowledge of the LLM to guide the exploration of interpretable directed subgraphs in external knowledge graphs, better integrating the two knowledge sources for more accurate reasoning. Extensive experiments on multiple real-world datasets confirm the superiority of KnowPath.
♻ ☆ Diabetica: Adapting Large Language Model to Enhance Multiple Medical Tasks in Diabetes Care and Management ICLR 2025
Diabetes is a chronic disease with a significant global health burden, requiring multi-stakeholder collaboration for optimal management. Large language models (LLMs) have shown promise in various healthcare scenarios, but their effectiveness across diverse diabetes tasks remains unproven. Our study introduced a framework to train and validate diabetes-specific LLMs. We first developed a comprehensive data processing pipeline that includes data collection, filtering, augmentation and refinement. This created a high-quality, diabetes-specific dataset and evaluation benchmarks from scratch. Fine-tuned on the collected training dataset, our diabetes-specific LLM family demonstrated state-of-the-art proficiency in processing various diabetes tasks compared to other LLMs. Furthermore, clinical studies revealed the potential applications of our models in diabetes care, including providing personalized healthcare, assisting medical education, and streamlining clinical tasks. Generally, our introduced framework helps develop diabetes-specific LLMs and highlights their potential to enhance clinical practice and provide personalized, data-driven support for diabetes management across different end users. Our codes, benchmarks and models are available at https://github.com/waltonfuture/Diabetica.
comment: Accepted by ICLR 2025 SCI-FM workshop
♻ ☆ Deep Reinforcement Learning for Dynamic Resource Allocation in Wireless Networks
This report investigates the application of deep reinforcement learning (DRL) algorithms for dynamic resource allocation in wireless communication systems. An environment that includes a base station, multiple antennas, and user equipment is created. Using the RLlib library, various DRL algorithms such as Deep Q-Network (DQN) and Proximal Policy Optimization (PPO) are then applied. These algorithms are compared based on their ability to optimize resource allocation, focusing on the impact of different learning rates and scheduling policies. The findings demonstrate that the choice of algorithm and learning rate significantly influences system performance, with DRL providing more efficient resource allocation compared to traditional methods.
comment: Upon further review, we found inconsistencies in our analysis and decided to conduct additional research before resubmitting a revised version
♻ ☆ Revealing Bias Formation in Deep Neural Networks Through the Geometric Mechanisms of Human Visual Decoupling
Deep neural networks (DNNs) often exhibit biases toward certain categories during object recognition, even under balanced training data conditions. The intrinsic mechanisms underlying these biases remain unclear. Inspired by the human visual system, which decouples object manifolds through hierarchical processing to achieve object recognition, we propose a geometric analysis framework linking the geometric complexity of class-specific perceptual manifolds in DNNs to model bias. Our findings reveal that differences in geometric complexity can lead to varying recognition capabilities across categories, introducing biases. To support this analysis, we present the Perceptual-Manifold-Geometry library, designed for calculating the geometric properties of perceptual manifolds.
♻ ☆ Prompt-SID: Learning Structural Representation Prompt via Latent Diffusion for Single-Image Denoising
Many studies have concentrated on constructing supervised models utilizing paired datasets for image denoising, which proves to be expensive and time-consuming. Current self-supervised and unsupervised approaches typically rely on blind-spot networks or sub-image pairs sampling, resulting in pixel information loss and destruction of detailed structural information, thereby significantly constraining the efficacy of such methods. In this paper, we introduce Prompt-SID, a prompt-learning-based single image denoising framework that emphasizes preserving of structural details. This approach is trained in a self-supervised manner using downsampled image pairs. It captures original-scale image information through structural encoding and integrates this prompt into the denoiser. To achieve this, we propose a structural representation generation model based on the latent diffusion process and design a structural attention module within the transformer-based denoiser architecture to decode the prompt. Additionally, we introduce a scale replay training mechanism, which effectively mitigates the scale gap from images of different resolutions. We conduct comprehensive experiments on synthetic, real-world, and fluorescence imaging datasets, showcasing the remarkable effectiveness of Prompt-SID. Our code will be released at https://github.com/huaqlili/Prompt-SID.
♻ ☆ Continuous K-space Recovery Network with Image Guidance for Fast MRI Reconstruction
Magnetic resonance imaging (MRI) is a crucial tool for clinical diagnosis while facing the challenge of long scanning time. To reduce the acquisition time, fast MRI reconstruction aims to restore high-quality images from the undersampled k-space. Existing methods typically train deep learning models to map the undersampled data to artifact-free MRI images. However, these studies often overlook the unique properties of k-space and directly apply general networks designed for image processing to k-space recovery, leaving the precise learning of k-space largely underexplored. In this work, we propose a continuous k-space recovery network from a new perspective of implicit neural representation with image domain guidance, which boosts the performance of MRI reconstruction. Specifically, (1) an implicit neural representation based encoder-decoder structure is customized to continuously query unsampled k-values. (2) an image guidance module is designed to mine the semantic information from the low-quality MRI images to further guide the k-space recovery. (3) a multi-stage training strategy is proposed to recover dense k-space progressively. Extensive experiments conducted on CC359, fastMRI, and IXI datasets demonstrate the effectiveness of our method and its superiority over other competitors.
♻ ☆ Is My Text in Your AI Model? Gradient-based Membership Inference Test applied to LLMs
This work adapts and studies the gradient-based Membership Inference Test (gMINT) to the classification of text based on LLMs. MINT is a general approach intended to determine if given data was used for training machine learning models, and this work focuses on its application to the domain of Natural Language Processing. Using gradient-based analysis, the MINT model identifies whether particular data samples were included during the language model training phase, addressing growing concerns about data privacy in machine learning. The method was evaluated in seven Transformer-based models and six datasets comprising over 2.5 million sentences, focusing on text classification tasks. Experimental results demonstrate MINTs robustness, achieving AUC scores between 85% and 99%, depending on data size and model architecture. These findings highlight MINTs potential as a scalable and reliable tool for auditing machine learning models, ensuring transparency, safeguarding sensitive data, and fostering ethical compliance in the deployment of AI/NLP technologies.
♻ ☆ Determination of galaxy photometric redshifts using Conditional Generative Adversarial Networks (CGANs)
Accurate and reliable photometric redshift determination is one of the key aspects for wide-field photometric surveys. Determination of photometric redshift for galaxies, has been traditionally solved by use of machine-learning and artificial intelligence techniques trained on a calibration sample of galaxies, where both photometry and spectrometry are available. On this paper, we present a new algorithmic approach for determining photometric redshifts of galaxies using Conditional Generative Adversarial Networks (CGANs). The proposed implementation is able to determine both point-estimation and probability-density estimations for photometric redshifts. The methodology is tested with data from Dark Energy Survey (DES) Y1 data and compared with other existing algorithm such as a Mixture Density Network (MDN). Although results obtained show a superiority of MDN, CGAN quality-metrics are close to the MDN results, opening the door to the use of CGAN at photometric redshift estimation.
♻ ☆ InstructPipe: Generating Visual Blocks Pipelines with Human Instructions and LLMs
Visual programming has the potential of providing novice programmers with a low-code experience to build customized processing pipelines. Existing systems typically require users to build pipelines from scratch, implying that novice users are expected to set up and link appropriate nodes from a blank workspace. In this paper, we introduce InstructPipe, an AI assistant for prototyping machine learning (ML) pipelines with text instructions. We contribute two large language model (LLM) modules and a code interpreter as part of our framework. The LLM modules generate pseudocode for a target pipeline, and the interpreter renders the pipeline in the node-graph editor for further human-AI collaboration. Both technical and user evaluation (N=16) shows that InstructPipe empowers users to streamline their ML pipeline workflow, reduce their learning curve, and leverage open-ended commands to spark innovative ideas.
comment: CHI 2025
♻ ☆ Column-wise Quantization of Weights and Partial Sums for Accurate and Efficient Compute-In-Memory Accelerators
Compute-in-memory (CIM) is an efficient method for implementing deep neural networks (DNNs) but suffers from substantial overhead from analog-to-digital converters (ADCs), especially as ADC precision increases. Low-precision ADCs can reduce this overhead but introduce partial-sum quantization errors degrading accuracy. Additionally, low-bit weight constraints, imposed by cell limitations and the need for multiple cells for higher-bit weights, present further challenges. While fine-grained partial-sum quantization has been studied to lower ADC resolution effectively, weight granularity, which limits overall partial-sum quantized accuracy, remains underexplored. This work addresses these challenges by aligning weight and partial-sum quantization granularities at the column-wise level. Our method improves accuracy while maintaining dequantization overhead, simplifies training by removing two-stage processes, and ensures robustness to memory cell variations via independent column-wise scale factors. We also propose an open-source CIM-oriented convolution framework to handle fine-grained weights and partial-sums efficiently, incorporating a novel tiling method and group convolution. Experimental results on ResNet-20 (CIFAR-10, CIFAR-100) and ResNet-18 (ImageNet) show accuracy improvements of 0.99%, 2.69%, and 1.01%, respectively, compared to the best-performing related works. Additionally, variation analysis reveals the robustness of our method against memory cell variations. These findings highlight the effectiveness of our quantization scheme in enhancing accuracy and robustness while maintaining hardware efficiency in CIM-based DNN implementations. Our code is available at https://github.com/jiyoonkm/ColumnQuant.
♻ ☆ The Algorithmic State Architecture (ASA): An Integrated Framework for AI-Enabled Government
As artificial intelligence transforms public sector operations, governments struggle to integrate technological innovations into coherent systems for effective service delivery. This paper introduces the Algorithmic State Architecture (ASA), a novel four-layer framework conceptualising how Digital Public Infrastructure, Data-for-Policy, Algorithmic Government/Governance, and GovTech interact as an integrated system in AI-enabled states. Unlike approaches that treat these as parallel developments, ASA positions them as interdependent layers with specific enabling relationships and feedback mechanisms. Through comparative analysis of implementations in Estonia, Singapore, India, and the UK, we demonstrate how foundational digital infrastructure enables systematic data collection, which powers algorithmic decision-making processes, ultimately manifesting in user-facing services. Our analysis reveals that successful implementations require balanced development across all layers, with particular attention to integration mechanisms between them. The framework contributes to both theory and practice by bridging previously disconnected domains of digital government research, identifying critical dependencies that influence implementation success, and providing a structured approach for analysing the maturity and development pathways of AI-enabled government systems.
comment: Main text: 25 pages, with references: 35 pages, 2 figures
♻ ☆ FlashRNN: I/O-Aware Optimization of Traditional RNNs on modern hardware
While Transformers and other sequence-parallelizable neural network architectures seem like the current state of the art in sequence modeling, they specifically lack state-tracking capabilities. These are important for time-series tasks and logical reasoning. Traditional RNNs like LSTMs and GRUs, as well as modern variants like sLSTM do have these capabilities at the cost of strictly sequential processing. While this is often seen as a strong limitation, we show how fast these networks can get with our hardware-optimization FlashRNN in Triton and CUDA, optimizing kernels to the register level on modern GPUs. We extend traditional RNNs with a parallelization variant that processes multiple RNNs of smaller hidden state in parallel, similar to the head-wise processing in Transformers. To enable flexibility on different GPU variants, we introduce a new optimization framework for hardware-internal cache sizes, memory and compute handling. It models the hardware in a setting using polyhedral-like constraints, including the notion of divisibility. This speeds up the solution process in our ConstrINT library for general integer constraint satisfaction problems (integer CSPs). We show that our kernels can achieve 50x speed-ups over a vanilla PyTorch implementation and allow 40x larger hidden sizes compared to our Triton implementation. Our open-source kernels and the optimization library are released here to boost research in the direction of state-tracking enabled RNNs and sequence modeling: https://github.com/NX-AI/flashrnn
♻ ☆ TH-Bench: Evaluating Evading Attacks via Humanizing AI Text on Machine-Generated Text Detectors
As Large Language Models (LLMs) advance, Machine-Generated Texts (MGTs) have become increasingly fluent, high-quality, and informative. Existing wide-range MGT detectors are designed to identify MGTs to prevent the spread of plagiarism and misinformation. However, adversaries attempt to humanize MGTs to evade detection (named evading attacks), which requires only minor modifications to bypass MGT detectors. Unfortunately, existing attacks generally lack a unified and comprehensive evaluation framework, as they are assessed using different experimental settings, model architectures, and datasets. To fill this gap, we introduce the Text-Humanization Benchmark (TH-Bench), the first comprehensive benchmark to evaluate evading attacks against MGT detectors. TH-Bench evaluates attacks across three key dimensions: evading effectiveness, text quality, and computational overhead. Our extensive experiments evaluate 6 state-of-the-art attacks against 13 MGT detectors across 6 datasets, spanning 19 domains and generated by 11 widely used LLMs. Our findings reveal that no single evading attack excels across all three dimensions. Through in-depth analysis, we highlight the strengths and limitations of different attacks. More importantly, we identify a trade-off among three dimensions and propose two optimization insights. Through preliminary experiments, we validate their correctness and effectiveness, offering potential directions for future research.
♻ ☆ Hidden in the Noise: Two-Stage Robust Watermarking for Images
As the quality of image generators continues to improve, deepfakes become a topic of considerable societal debate. Image watermarking allows responsible model owners to detect and label their AI-generated content, which can mitigate the harm. Yet, current state-of-the-art methods in image watermarking remain vulnerable to forgery and removal attacks. This vulnerability occurs in part because watermarks distort the distribution of generated images, unintentionally revealing information about the watermarking techniques. In this work, we first demonstrate a distortion-free watermarking method for images, based on a diffusion model's initial noise. However, detecting the watermark requires comparing the initial noise reconstructed for an image to all previously used initial noises. To mitigate these issues, we propose a two-stage watermarking framework for efficient detection. During generation, we augment the initial noise with generated Fourier patterns to embed information about the group of initial noises we used. For detection, we (i) retrieve the relevant group of noises, and (ii) search within the given group for an initial noise that might match our image. This watermarking approach achieves state-of-the-art robustness to forgery and removal against a large battery of attacks.
♻ ☆ Long-horizon Embodied Planning with Implicit Logical Inference and Hallucination Mitigation
Long-horizon embodied planning underpins embodied AI. To accomplish long-horizon tasks, one of the most feasible ways is to decompose abstract instructions into a sequence of actionable steps. Foundation models still face logical errors and hallucinations in long-horizon planning, unless provided with highly relevant examples to the tasks. However, providing highly relevant examples for any random task is unpractical. Therefore, we present ReLEP, a novel framework for Real-time Long-horizon Embodied Planning. ReLEP can complete a wide range of long-horizon tasks without in-context examples by learning implicit logical inference through fine-tuning. The fine-tuned large vision-language model formulates plans as sequences of skill functions. These functions are selected from a carefully designed skill library. ReLEP is also equipped with a Memory module for plan and status recall, and a Robot Configuration module for versatility across robot types. In addition, we propose a data generation pipeline to tackle dataset scarcity. When constructing the dataset, we considered the implicit logical relationships, enabling the model to learn implicit logical relationships and dispel hallucinations. Through comprehensive evaluations across various long-horizon tasks, ReLEP demonstrates high success rates and compliance to execution even on unseen tasks and outperforms state-of-the-art baseline methods.
♻ ☆ MarS: a Financial Market Simulation Engine Powered by Generative Foundation Model ICLR 2025
Generative models aim to simulate realistic effects of various actions across different contexts, from text generation to visual effects. Despite significant efforts to build real-world simulators, the application of generative models to virtual worlds, like financial markets, remains under-explored. In financial markets, generative models can simulate complex market effects of participants with various behaviors, enabling interaction under different market conditions, and training strategies without financial risk. This simulation relies on the finest structured data in financial market like orders thus building the finest realistic simulation. We propose Large Market Model (LMM), an order-level generative foundation model, for financial market simulation, akin to language modeling in the digital world. Our financial Market Simulation engine (MarS), powered by LMM, addresses the domain-specific need for realistic, interactive and controllable order generation. Key observations include LMM's strong scalability across data size and model complexity, and MarS's robust and practicable realism in controlled generation with market impact. We showcase MarS as a forecast tool, detection system, analysis platform, and agent training environment, thus demonstrating MarS's "paradigm shift" potential for a variety of financial applications. We release the code of MarS at https://github.com/microsoft/MarS/.
comment: 35 pages, 26 figures, ICLR 2025
♻ ☆ Next-Generation Database Interfaces: A Survey of LLM-based Text-to-SQL
Generating accurate SQL from users' natural language questions (text-to-SQL) remains a long-standing challenge due to the complexities involved in user question understanding, database schema comprehension, and SQL generation. Traditional text-to-SQL systems, which combine human engineering and deep neural networks, have made significant progress. Subsequently, pre-trained language models (PLMs) have been developed for text-to-SQL tasks, achieving promising results. However, as modern databases and user questions grow more complex, PLMs with a limited parameter size often produce incorrect SQL. This necessitates more sophisticated and tailored optimization methods, which restricts the application of PLM-based systems. Recently, large language models (LLMs) have shown significant capabilities in natural language understanding as model scale increases. Thus, integrating LLM-based solutions can bring unique opportunities, improvements, and solutions to text-to-SQL research. In this survey, we provide a comprehensive review of existing LLM-based text-to-SQL studies. Specifically, we offer a brief overview of the technical challenges and evolutionary process of text-to-SQL. Next, we introduce the datasets and metrics designed to evaluate text-to-SQL systems. Subsequently, we present a systematic analysis of recent advances in LLM-based text-to-SQL. Finally, we make a summarization and discuss the remaining challenges in this field and suggest expectations for future research directions.
♻ ☆ HERO: Human-Feedback Efficient Reinforcement Learning for Online Diffusion Model Finetuning ICLR
Controllable generation through Stable Diffusion (SD) fine-tuning aims to improve fidelity, safety, and alignment with human guidance. Existing reinforcement learning from human feedback methods usually rely on predefined heuristic reward functions or pretrained reward models built on large-scale datasets, limiting their applicability to scenarios where collecting such data is costly or difficult. To effectively and efficiently utilize human feedback, we develop a framework, HERO, which leverages online human feedback collected on the fly during model learning. Specifically, HERO features two key mechanisms: (1) Feedback-Aligned Representation Learning, an online training method that captures human feedback and provides informative learning signals for fine-tuning, and (2) Feedback-Guided Image Generation, which involves generating images from SD's refined initialization samples, enabling faster convergence towards the evaluator's intent. We demonstrate that HERO is 4x more efficient in online feedback for body part anomaly correction compared to the best existing method. Additionally, experiments show that HERO can effectively handle tasks like reasoning, counting, personalization, and reducing NSFW content with only 0.5K online feedback. The code and project page are available at https://hero-dm.github.io/.
comment: Published in International Conference on Learning Representations (ICLR) 2025
♻ ☆ Can LLMs Reason About Program Semantics? A Comprehensive Evaluation of LLMs on Formal Specification Inference
Large Language Models (LLMs) are increasingly being used to automate programming tasks. Yet, LLMs' capabilities in reasoning about program semantics are still inadequately studied, leaving significant potential for further exploration. This paper introduces FormalBench, a comprehensive benchmark designed to evaluate LLMs' reasoning abilities on program semantics, particularly via the task of synthesizing formal program specifications to assist verifying program correctness. This task requires both comprehensive reasoning over all possible program executions and the generation of precise, syntactically correct expressions that adhere to formal syntax and semantics. Using this benchmark, we evaluated the ability of LLMs in synthesizing consistent and complete specifications. Our findings show that LLMs perform well with simple control flows but struggle with more complex structures, especially loops, even with advanced prompting. Additionally, LLMs exhibit limited robustness against semantic-preserving transformations. We also highlight common failure patterns and design self-repair prompts, improving success rates by 25%.
♻ ☆ Reinforcement Learning-Enhanced Procedural Generation for Dynamic Narrative-Driven AR Experiences
Procedural Content Generation (PCG) is widely used to create scalable and diverse environments in games. However, existing methods, such as the Wave Function Collapse (WFC) algorithm, are often limited to static scenarios and lack the adaptability required for dynamic, narrative-driven applications, particularly in augmented reality (AR) games. This paper presents a reinforcement learning-enhanced WFC framework designed for mobile AR environments. By integrating environment-specific rules and dynamic tile weight adjustments informed by reinforcement learning (RL), the proposed method generates maps that are both contextually coherent and responsive to gameplay needs. Comparative evaluations and user studies demonstrate that the framework achieves superior map quality and delivers immersive experiences, making it well-suited for narrative-driven AR games. Additionally, the method holds promise for broader applications in education, simulation training, and immersive extended reality (XR) experiences, where dynamic and adaptive environments are critical.
comment: Published in Proceedings of the 20th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - GRAPP 2025 https://www.scitepress.org/PublicationsDetail.aspx?ID=LfPv9Lfiya8=&t=1
♻ ☆ TPO: Aligning Large Language Models with Multi-branch & Multi-step Preference Trees
In the domain of complex reasoning tasks, such as mathematical reasoning, recent advancements have proposed the use of Direct Preference Optimization (DPO) to suppress output of dispreferred responses, thereby enhancing the long-chain reasoning capabilities of large language models (LLMs). To this end, these studies employed LLMs to generate preference trees via Tree-of-thoughts (ToT) and sample the paired preference responses required by the DPO algorithm. However, the DPO algorithm based on binary preference optimization is unable to learn multiple responses with varying degrees of preference/dispreference that provided by the preference trees, resulting in incomplete preference learning. In this work, we introduce Tree Preference Optimization (TPO), that does not sample paired preference responses from the preference tree; instead, it directly learns from the entire preference tree during the fine-tuning. Specifically, TPO formulates the language model alignment as a Preference List Ranking problem, where the policy can potentially learn more effectively from a ranked preference list of responses given the prompt. In addition, to further assist LLMs in identifying discriminative steps within long-chain reasoning and increase the relative reward margin in the preference list, TPO utilizes Adaptive Step Reward to adjust the reward values of each step in trajectory for performing fine-grained preference optimization. We carry out extensive experiments on mathematical reasoning tasks to evaluate TPO. The experimental results indicate that TPO consistently outperforms DPO across five public large language models on four datasets.
♻ ☆ LaMMA-P: Generalizable Multi-Agent Long-Horizon Task Allocation and Planning with LM-Driven PDDL Planner ICRA 2025
Language models (LMs) possess a strong capability to comprehend natural language, making them effective in translating human instructions into detailed plans for simple robot tasks. Nevertheless, it remains a significant challenge to handle long-horizon tasks, especially in subtask identification and allocation for cooperative heterogeneous robot teams. To address this issue, we propose a Language Model-Driven Multi-Agent PDDL Planner (LaMMA-P), a novel multi-agent task planning framework that achieves state-of-the-art performance on long-horizon tasks. LaMMA-P integrates the strengths of the LMs' reasoning capability and the traditional heuristic search planner to achieve a high success rate and efficiency while demonstrating strong generalization across tasks. Additionally, we create MAT-THOR, a comprehensive benchmark that features household tasks with two different levels of complexity based on the AI2-THOR environment. The experimental results demonstrate that LaMMA-P achieves a 105% higher success rate and 36% higher efficiency than existing LM-based multiagent planners. The experimental videos, code, datasets, and detailed prompts used in each module can be found on the project website: https://lamma-p.github.io.
comment: IEEE Conference on Robotics and Automation (ICRA 2025); Project website: https://lamma-p.github.io/
♻ ☆ Prompt-Driven Contrastive Learning for Transferable Adversarial Attacks ECCV 2024
Recent vision-language foundation models, such as CLIP, have demonstrated superior capabilities in learning representations that can be transferable across diverse range of downstream tasks and domains. With the emergence of such powerful models, it has become crucial to effectively leverage their capabilities in tackling challenging vision tasks. On the other hand, only a few works have focused on devising adversarial examples that transfer well to both unknown domains and model architectures. In this paper, we propose a novel transfer attack method called PDCL-Attack, which leverages the CLIP model to enhance the transferability of adversarial perturbations generated by a generative model-based attack framework. Specifically, we formulate an effective prompt-driven feature guidance by harnessing the semantic representation power of text, particularly from the ground-truth class labels of input images. To the best of our knowledge, we are the first to introduce prompt learning to enhance the transferable generative attacks. Extensive experiments conducted across various cross-domain and cross-model settings empirically validate our approach, demonstrating its superiority over state-of-the-art methods.
comment: Accepted to ECCV 2024 (Oral), Project Page: https://PDCL-Attack.github.io
Oasis: One Image is All You Need for Multimodal Instruction Data Synthesis
The success of multi-modal large language models (MLLMs) has been largely attributed to the large-scale training data. However, the training data of many MLLMs is unavailable due to privacy concerns. The expensive and labor-intensive process of collecting multi-modal data further exacerbates the problem. Is it possible to synthesize multi-modal training data automatically without compromising diversity and quality? In this paper, we propose a new method, Oasis, to synthesize high-quality multi-modal data with only images. Oasis breaks through traditional methods by prompting only images to the MLLMs, thus extending the data diversity by a large margin. Our method features a delicate quality control method which ensures the data quality. We collected over 500k data and conducted incremental experiments on LLaVA-NeXT. Extensive experiments demonstrate that our method can significantly improve the performance of MLLMs. The image-based synthesis also allows us to focus on the specific-domain ability of MLLMs. Code and data will be publicly available.
♻ ☆ AnywhereDoor: Multi-Target Backdoor Attacks on Object Detection
As object detection becomes integral to many safety-critical applications, understanding its vulnerabilities is essential. Backdoor attacks, in particular, pose a serious threat by implanting hidden triggers in victim models, which adversaries can later exploit to induce malicious behaviors during inference. However, current understanding is limited to single-target attacks, where adversaries must define a fixed malicious behavior (target) before training, making inference-time adaptability impossible. Given the large output space of object detection (including object existence prediction, bounding box estimation, and classification), the feasibility of flexible, inference-time model control remains unexplored. This paper introduces AnywhereDoor, a multi-target backdoor attack for object detection. Once implanted, AnywhereDoor allows adversaries to make objects disappear, fabricate new ones, or mislabel them, either across all object classes or specific ones, offering an unprecedented degree of control. This flexibility is enabled by three key innovations: (i) objective disentanglement to scale the number of supported targets; (ii) trigger mosaicking to ensure robustness even against region-based detectors; and (iii) strategic batching to address object-level data imbalances that hinder manipulation. Extensive experiments demonstrate that AnywhereDoor grants attackers a high degree of control, improving attack success rates by 26% compared to adaptations of existing methods for such flexible control.
comment: This work was intended as a replacement of arXiv:2411.14243 and any subsequent updates will appear there
♻ ☆ Driving with Regulation: Interpretable Decision-Making for Autonomous Vehicles with Retrieval-Augmented Reasoning via LLM
This work presents an interpretable decision-making framework for autonomous vehicles that integrates traffic regulations, norms, and safety guidelines comprehensively and enables seamless adaptation to different regions. While traditional rule-based methods struggle to incorporate the full scope of traffic rules, we develop a Traffic Regulation Retrieval (TRR) Agent based on Retrieval-Augmented Generation (RAG) to automatically retrieve relevant traffic rules and guidelines from extensive regulation documents and relevant records based on the ego vehicle's situation. Given the semantic complexity of the retrieved rules, we also design a reasoning module powered by a Large Language Model (LLM) to interpret these rules, differentiate between mandatory rules and safety guidelines, and assess actions on legal compliance and safety. Additionally, the reasoning is designed to be interpretable, enhancing both transparency and reliability. The framework demonstrates robust performance on both hypothesized and real-world cases across diverse scenarios, along with the ability to adapt to different regions with ease.
♻ ☆ Multi-agent KTO: Reinforcing Strategic Interactions of Large Language Model in Language Game
Achieving Artificial General Intelligence (AGI) requires AI agents that can not only make stratigic decisions but also engage in flexible and meaningful communication. Inspired by Wittgenstein's language game theory in Philosophical Investigations, we propose that language agents can learn through in-context interaction rather than traditional multi-stage frameworks that separate decision-making from language expression. Using Werewolf, a social deduction game that tests language understanding, strategic interaction, and adaptability, we develop the Multi-agent Kahneman & Tversky's Optimization (MaKTO). MaKTO engages diverse models in extensive gameplay to generate unpaired desirable and unacceptable responses, then employs KTO to refine the model's decision-making process. In 9-player Werewolf games, MaKTO achieves a 61% average win rate across various models, outperforming GPT-4o and two-stage RL agents by relative improvements of 23.0% and 10.9%, respectively. Notably, MaKTO also demonstrates human-like performance, winning 60% against expert players and showing only 49% detectability in Turing-style blind tests.
comment: Preprint. Code and data will be available at https://reneeye.github.io/MaKTO.html
♻ ☆ DA-STGCN: 4D Trajectory Prediction Based on Spatiotemporal Feature Extraction
The importance of four-dimensional (4D) trajectory prediction within air traffic management systems is on the rise. Key operations such as conflict detection and resolution, aircraft anomaly monitoring, and the management of congested flight paths are increasingly reliant on this foundational technology, underscoring the urgent demand for intelligent solutions. The dynamics in airport terminal zones and crowded airspaces are intricate and ever-changing; however, current methodologies do not sufficiently account for the interactions among aircraft. To tackle these challenges, we propose DA-STGCN, an innovative spatiotemporal graph convolutional network that integrates a dual attention mechanism. Our model reconstructs the adjacency matrix through a self-attention approach, enhancing the capture of node correlations, and employs graph attention to distill spatiotemporal characteristics, thereby generating a probabilistic distribution of predicted trajectories. This novel adjacency matrix, reconstructed with the self-attention mechanism, is dynamically optimized throughout the network's training process, offering a more nuanced reflection of the inter-node relationships compared to traditional algorithms. The performance of the model is validated on two ADS-B datasets, one near the airport terminal area and the other in dense airspace. Experimental results demonstrate a notable improvement over current 4D trajectory prediction methods, achieving a 20% and 30% reduction in the Average Displacement Error (ADE) and Final Displacement Error (FDE), respectively. The incorporation of a Dual-Attention module has been shown to significantly enhance the extraction of node correlations, as verified by ablation experiments.
♻ ☆ KG4Diagnosis: A Hierarchical Multi-Agent LLM Framework with Knowledge Graph Enhancement for Medical Diagnosis AAAI-25
Integrating Large Language Models (LLMs) in healthcare diagnosis demands systematic frameworks that can handle complex medical scenarios while maintaining specialized expertise. We present KG4Diagnosis, a novel hierarchical multi-agent framework that combines LLMs with automated knowledge graph construction, encompassing 362 common diseases across medical specialties. Our framework mirrors real-world medical systems through a two-tier architecture: a general practitioner (GP) agent for initial assessment and triage, coordinating with specialized agents for in-depth diagnosis in specific domains. The core innovation lies in our end-to-end knowledge graph generation methodology, incorporating: (1) semantic-driven entity and relation extraction optimized for medical terminology, (2) multi-dimensional decision relationship reconstruction from unstructured medical texts, and (3) human-guided reasoning for knowledge expansion. KG4Diagnosis serves as an extensible foundation for specialized medical diagnosis systems, with capabilities to incorporate new diseases and medical knowledge. The framework's modular design enables seamless integration of domain-specific enhancements, making it valuable for developing targeted medical diagnosis systems. We provide architectural guidelines and protocols to facilitate adoption across medical contexts.
comment: 10 pages,5 figures,published to AAAI-25 Bridge Program
♻ ☆ Preference Alignment for Diffusion Model via Explicit Denoised Distribution Estimation
Diffusion models have shown remarkable success in text-to-image generation, making preference alignment for these models increasingly important. The preference labels are typically available only at the terminal of denoising trajectories, which poses challenges in optimizing the intermediate denoising steps. In this paper, we propose to conduct Denoised Distribution Estimation (DDE) that explicitly connects intermediate steps to the terminal denoised distribution. Therefore, preference labels can be used for the entire trajectory optimization. To this end, we design two estimation strategies for our DDE. The first is stepwise estimation, which utilizes the conditional denoised distribution to estimate the model denoised distribution. The second is single-shot estimation, which converts the model output into the terminal denoised distribution via DDIM modeling. Analytically and empirically, we reveal that DDE equipped with two estimation strategies naturally derives a novel credit assignment scheme that prioritizes optimizing the middle part of the denoising trajectory. Extensive experiments demonstrate that our approach achieves superior performance, both quantitatively and qualitatively.
♻ ☆ MedHallBench: A New Benchmark for Assessing Hallucination in Medical Large Language Models AAAI-25
Medical Large Language Models (MLLMs) have demonstrated potential in healthcare applications, yet their propensity for hallucinations -- generating medically implausible or inaccurate information -- presents substantial risks to patient care. This paper introduces MedHallBench, a comprehensive benchmark framework for evaluating and mitigating hallucinations in MLLMs. Our methodology integrates expert-validated medical case scenarios with established medical databases to create a robust evaluation dataset. The framework employs a sophisticated measurement system that combines automated ACHMI (Automatic Caption Hallucination Measurement in Medical Imaging) scoring with rigorous clinical expert evaluations and utilizes reinforcement learning methods to achieve automatic annotation. Through an optimized reinforcement learning from human feedback (RLHF) training pipeline specifically designed for medical applications, MedHallBench enables thorough evaluation of MLLMs across diverse clinical contexts while maintaining stringent accuracy standards. We conducted comparative experiments involving various models, utilizing the benchmark to establish a baseline for widely adopted large language models (LLMs). Our findings indicate that ACHMI provides a more nuanced understanding of the effects of hallucinations compared to traditional metrics, thereby highlighting its advantages in hallucination assessment. This research establishes a foundational framework for enhancing MLLMs' reliability in healthcare settings and presents actionable strategies for addressing the critical challenge of AI hallucinations in medical applications.
comment: Published to AAAI-25 Bridge Program
♻ ☆ Conditional diffusions for amortized neural posterior estimation
Neural posterior estimation (NPE), a simulation-based computational approach for Bayesian inference, has shown great success in approximating complex posterior distributions. Existing NPE methods typically rely on normalizing flows, which approximate a distribution by composing many simple, invertible transformations. But flow-based models, while state of the art for NPE, are known to suffer from several limitations, including training instability and sharp trade-offs between representational power and computational cost. In this work, we demonstrate the effectiveness of conditional diffusions coupled with high-capacity summary networks for amortized NPE. Conditional diffusions address many of the challenges faced by flow-based methods. Our results show that, across a highly varied suite of benchmarking problems for NPE architectures, diffusions offer improved stability, superior accuracy, and faster training times, even with simpler, shallower models. Building on prior work on diffusions for NPE, we show that these gains persist across a variety of different summary network architectures. Code is available at https://github.com/TianyuCodings/cDiff.
♻ ☆ SHIP: A Shapelet-based Approach for Interpretable Patient-Ventilator Asynchrony Detection PAKDD 2025
Patient-ventilator asynchrony (PVA) is a common and critical issue during mechanical ventilation, affecting up to 85% of patients. PVA can result in clinical complications such as discomfort, sleep disruption, and potentially more severe conditions like ventilator-induced lung injury and diaphragm dysfunction. Traditional PVA management, which relies on manual adjustments by healthcare providers, is often inadequate due to delays and errors. While various computational methods, including rule-based, statistical, and deep learning approaches, have been developed to detect PVA events, they face challenges related to dataset imbalances and lack of interpretability. In this work, we propose a shapelet-based approach SHIP for PVA detection, utilizing shapelets - discriminative subsequences in time-series data - to enhance detection accuracy and interpretability. Our method addresses dataset imbalances through shapelet-based data augmentation and constructs a shapelet pool to transform the dataset for more effective classification. The combined shapelet and statistical features are then used in a classifier to identify PVA events. Experimental results on medical datasets show that SHIP significantly improves PVA detection while providing interpretable insights into model decisions.
comment: Accepted at PAKDD 2025
♻ ☆ Seeing is Understanding: Unlocking Causal Attention into Modality-Mutual Attention for Multimodal LLMs
Recent Multimodal Large Language Models (MLLMs) have demonstrated significant progress in perceiving and reasoning over multimodal inquiries, ushering in a new research era for foundation models. However, vision-language misalignment in MLLMs has emerged as a critical challenge, where the textual responses generated by these models are not factually aligned with the given text-image inputs. Existing efforts to address vision-language misalignment have focused on developing specialized vision-language connectors or leveraging visual instruction tuning from diverse domains. In this paper, we tackle this issue from a fundamental yet unexplored perspective by revisiting the core architecture of MLLMs. Most MLLMs are typically built on decoder-only LLMs consisting of a causal attention mechanism, which limits the ability of the earlier modalities (e.g., images) to incorporate information from the latter modalities (e.g., text). To address this problem, we propose \MapleLeaf AKI, a novel MLLM that unlocks causal attention into modality-mutual attention (MMA) to enable image tokens to attend to text tokens. This simple yet effective design allows AKI to achieve superior performance in 12 multimodal understanding benchmarks (+7.2% on average) without introducing additional parameters and increasing training time. Our MMA design is intended to be generic, allowing for application across various modalities, and scalable to accommodate diverse multimodal scenarios. The code and model are publicly available at https://github.com/sony/aki to encourage further advancements in MLLMs across various directions.
comment: Preprint
♻ ☆ There and Back Again: On the relation between Noise and Image Inversions in Diffusion Models
Diffusion Models achieve state-of-the-art performance in generating new samples but lack low-dimensional latent space that encodes the data into meaningful features. Inversion-based techniques try to solve this issue by reversing the denoising process and mapping images back to their approximated starting noise. In this work, we thoroughly analyze this procedure and focus on the relation between the initial Gaussian noise, the generated samples, and their corresponding latent encodings obtained through the DDIM inversion. First, we show that latents exhibit structural patterns in the form of less diverse noise predicted for smooth image regions. Next, we explain the origin of this phenomenon, demonstrating that, during the first inversion steps, the noise prediction error is much more significant for the plain areas than for the rest of the image. Finally, we present the consequences of the divergence between latents and noises by showing that the space of image inversions is notably less manipulative than the original Gaussian noise. This leads to a low diversity of generated interpolations or editions based on the DDIM inversion procedure and ill-defined latent-to-image mapping. Code is available at https://github.com/luk-st/taba.
♻ ☆ Accelerating Flood Warnings by 10 Hours: The Power of River Network Topology in AI-enhanced Flood Forecasting
Climate change-driven floods demand advanced forecasting models, yet Graph Neural Networks (GNNs) underutilize river network topology due to tree-like structures causing over-squashing from high node resistance distances. This study identifies this limitation and introduces a reachability-based graph transformation to densify topological connections, reducing resistance distances. Empirical tests show transformed-GNNs outperform EA-LSTM in extreme flood prediction, achieving 24-h water level accuracy equivalent to EA-LSTM's 14-h forecasts - a 71% improvement in long-term predictive horizon. The dense graph retains flow dynamics across hierarchical river branches, enabling GNNs to capture distal node interactions critical for rare flood events. This topological innovation bridges the gap between river network structure and GNN modeling, offering a scalable framework for early warning systems.
♻ ☆ Non-autoregressive Sequence-to-Sequence Vision-Language Models CVPR 2024
Sequence-to-sequence vision-language models are showing promise, but their applicability is limited by their inference latency due to their autoregressive way of generating predictions. We propose a parallel decoding sequence-to-sequence vision-language model, trained with a Query-CTC loss, that marginalizes over multiple inference paths in the decoder. This allows us to model the joint distribution of tokens, rather than restricting to conditional distribution as in an autoregressive model. The resulting model, NARVL, achieves performance on-par with its state-of-the-art autoregressive counterpart, but is faster at inference time, reducing from the linear complexity associated with the sequential generation of tokens to a paradigm of constant time joint inference.
comment: Accepted to CVPR 2024
♻ ☆ System 0/1/2/3: Quad-process theory for multi-timescale embodied collective cognitive systems
This paper introduces the System 0/1/2/3 framework as an extension of dual-process theory, employing a quad-process model of cognition. Expanding upon System 1 (fast, intuitive thinking) and System 2 (slow, deliberative thinking), we incorporate System 0, which represents pre-cognitive embodied processes, and System 3, which encompasses collective intelligence and symbol emergence. We contextualize this model within Bergson's philosophy by adopting multi-scale time theory to unify the diverse temporal dynamics of cognition. System 0 emphasizes morphological computation and passive dynamics, illustrating how physical embodiment enables adaptive behavior without explicit neural processing. Systems 1 and 2 are explained from a constructive perspective, incorporating neurodynamical and AI viewpoints. In System 3, we introduce collective predictive coding to explain how societal-level adaptation and symbol emergence operate over extended timescales. This comprehensive framework ranges from rapid embodied reactions to slow-evolving collective intelligence, offering a unified perspective on cognition across multiple timescales, levels of abstraction, and forms of human intelligence. The System 0/1/2/3 model provides a novel theoretical foundation for understanding the interplay between adaptive and cognitive processes, thereby opening new avenues for research in cognitive science, AI, robotics, and collective intelligence.
comment: Under review
♻ ☆ Is a Good Foundation Necessary for Efficient Reinforcement Learning? The Computational Role of the Base Model in Exploration
Language model alignment (or, reinforcement learning) techniques that leverage active exploration -- deliberately encouraging the model to produce diverse, informative responses -- offer the promise of super-human capabilities. However, current understanding of algorithm design primitives for computationally efficient exploration with language models is limited. To better understand how to leverage access to powerful pre-trained generative models to improve the efficiency of exploration, we introduce a new computational framework for RL with language models, in which the learner interacts with the model through a sampling oracle. Focusing on the linear softmax model parameterization, we provide new results that reveal the computational-statistical tradeoffs of efficient exploration: 1. Necessity of coverage: Coverage refers to the extent to which the pre-trained model covers near-optimal responses -- a form of hidden knowledge. We show that coverage, while not necessary for data efficiency, lower bounds the runtime of any algorithm in our framework. 2. Inference-time exploration: We introduce a new algorithm, SpannerSampling, which obtains optimal data efficiency and is computationally efficient whenever the pre-trained model enjoys sufficient coverage, matching our lower bound. SpannerSampling leverages inference-time computation with the pre-trained model to reduce the effective search space for exploration. 3. Insufficiency of training-time interventions: We contrast the result above by showing that training-time interventions that produce proper policies cannot achieve similar guarantees in polynomial time. 4. Computational benefits of multi-turn exploration: Finally, we show that under additional representational assumptions, one can achieve improved runtime (replacing sequence-level coverage with token-level coverage) through multi-turn exploration.
comment: V2: Improved number of prompts used by Algorithm 1
♻ ☆ Towards a Systematic Evaluation of Hallucinations in Large-Vision Language Models
Large Vision-Language Models (LVLMs) have demonstrated remarkable performance in complex multimodal tasks. However, these models still suffer from hallucinations, particularly when required to implicitly recognize or infer diverse visual entities from images for complex vision-language tasks. To address this challenge, we propose HALLUCINOGEN, a novel visual question answering (VQA) benchmark that employs contextual reasoning prompts as hallucination attacks to evaluate the extent of hallucination in state-of-the-art LVLMs. Our benchmark provides a comprehensive study of the implicit reasoning capabilities of these models by first categorizing visual entities based on the ease of recognition in an image as either salient (prominent, visibly recognizable objects such as a car) or latent entities (such as identifying a disease from a chest X-ray), which are not readily visible and require domain knowledge or contextual reasoning for accurate inference. Next, we design hallucination attacks for both types of entities to assess hallucinations in LVLMs while performing various vision-language tasks, such as locating or reasoning about specific entities within an image, where models must perform implicit reasoning by verifying the existence of the queried entity within the image before generating responses. Finally, our extensive evaluations of eleven LVLMs, including powerful open-source models (like LLaMA-3.2 and DeepSeek-V2), commercial models like Gemini, and two hallucination mitigation strategies across multiple datasets, demonstrate that current LVLMs remain susceptible to hallucination attacks.
♻ ☆ Foundation Model of Electronic Medical Records for Adaptive Risk Estimation
The U.S. allocates nearly 18% of its GDP to healthcare but experiences lower life expectancy and higher preventable death rates compared to other high-income nations. Hospitals struggle to predict critical outcomes such as mortality, ICU admission, and prolonged hospital stays. Traditional early warning systems, like NEWS and MEWS, rely on static variables and fixed thresholds, limiting their adaptability, accuracy, and personalization. We developed the Enhanced Transformer for Health Outcome Simulation (ETHOS), an AI model that tokenizes patient health timelines (PHTs) from EHRs and uses transformer-based architectures to predict future PHTs. The Adaptive Risk Estimation System (ARES) leverages ETHOS to compute dynamic, personalized risk probabilities for clinician-defined critical events. ARES also features a personalized explainability module highlighting key clinical factors influencing risk estimates. We evaluated ARES on the MIMIC-IV v2.2 dataset in emergency department settings, benchmarking its performance against traditional early warning systems and machine learning models. From 299,721 unique patients, 285,622 PHTs (60% with hospital admissions) were processed, comprising over 357 million tokens. ETHOS outperformed benchmark models in predicting hospital admissions, ICU admissions, and prolonged stays, achieving superior AUC scores. Its risk estimates were robust across demographic subgroups, with calibration curves confirming model reliability. The explainability module provided valuable insights into patient-specific risk factors. ARES, powered by ETHOS, advances predictive healthcare AI by delivering dynamic, real-time, personalized risk estimation with patient-specific explainability. Its adaptability and accuracy offer a transformative tool for clinical decision-making, potentially improving patient outcomes and resource allocation.
comment: Fix affiliation list
♻ ☆ Seeing Eye to AI: Human Alignment via Gaze-Based Response Rewards for Large Language Models ICLR 2025
Advancements in Natural Language Processing (NLP), have led to the emergence of Large Language Models (LLMs) such as GPT, Llama, Claude, and Gemini, which excel across a range of tasks but require extensive fine-tuning to align their outputs with human expectations. A widely used method for achieving this alignment is Reinforcement Learning from Human Feedback (RLHF), which, despite its success, faces challenges in accurately modelling human preferences. In this paper, we introduce GazeReward, a novel framework that integrates implicit feedback -- and specifically eye-tracking (ET) data -- into the Reward Model (RM). In addition, we explore how ET-based features can provide insights into user preferences. Through ablation studies we test our framework with different integration methods, LLMs, and ET generator models, demonstrating that our approach significantly improves the accuracy of the RM on established human preference datasets. This work advances the ongoing discussion on optimizing AI alignment with human values, exploring the potential of cognitive data for shaping future NLP research.
comment: This paper has been accepted to ICLR 2025
♻ ☆ On the Diagram of Thought
We introduce Diagram of Thought (DoT), a framework that models iterative reasoning in large language models (LLMs) as the construction of a directed acyclic graph (DAG) within a single model. Unlike conventional approaches that represent reasoning as linear chains or tree structures, DoT organizes propositions, critiques, refinements, and verifications into a unified DAG, enabling the exploration of complex reasoning pathways while preserving logical consistency. In this framework, each node encapsulates a proposition at various stages of evaluation, thereby facilitating iterative self-improvement through detailed natural language feedback. By leveraging auto-regressive next-token prediction augmented with role-specific tokens, DoT seamlessly transitions between generating ideas and engaging in critical evaluation, offering richer, context-aware feedback than binary signals. Moreover, we establish a rigorous mathematical foundation for DoT through Topos Theory, ensuring soundness and consistency in the reasoning process. This integrated approach not only simplifies both training and inference by eliminating the need for multiple models or external control mechanisms but also provides a principled framework for the design of next-generation reasoning-specialized models.
♻ ☆ KernelGPT: Enhanced Kernel Fuzzing via Large Language Models ASPLOS 2025
Bugs in operating system kernels can affect billions of devices and users all over the world. As a result, a large body of research has been focused on kernel fuzzing, i.e., automatically generating syscall (system call) sequences to detect potential kernel bugs or vulnerabilities. Kernel fuzzing aims to generate valid syscall sequences guided by syscall specifications that define both the syntax and semantics of syscalls. While there has been existing work trying to automate syscall specification generation, this remains largely manual work, and a large number of important syscalls are still uncovered. In this paper, we propose KernelGPT, the first approach to automatically synthesizing syscall specifications via Large Language Models (LLMs) for enhanced kernel fuzzing. Our key insight is that LLMs have seen massive kernel code, documentation, and use cases during pre-training, and thus can automatically distill the necessary information for making valid syscalls. More specifically, KernelGPT leverages an iterative approach to automatically infer the specifications, and further debug and repair them based on the validation feedback. Our results demonstrate that KernelGPT can generate more new and valid specifications and achieve higher coverage than state-of-the-art techniques. So far, by using newly generated specifications, KernelGPT has already detected 24 new unique bugs in Linux kernel, with 12 fixed and 11 assigned with CVE numbers. Moreover, a number of specifications generated by KernelGPT have already been merged into the kernel fuzzer Syzkaller, following the request from its development team.
comment: ASPLOS 2025
♻ ☆ CSA: Data-efficient Mapping of Unimodal Features to Multimodal Features
Multimodal encoders like CLIP excel in tasks such as zero-shot image classification and cross-modal retrieval. However, they require excessive training data. We propose canonical similarity analysis (CSA), which uses two unimodal encoders to replicate multimodal encoders using limited data. CSA maps unimodal features into a multimodal space, using a new similarity score to retain only the multimodal information. CSA only involves the inference of unimodal encoders and a cubic-complexity matrix decomposition, eliminating the need for extensive GPU-based model training. Experiments show that CSA outperforms CLIP while requiring $50,000\times$ fewer multimodal data pairs to bridge the modalities given pre-trained unimodal encoders on ImageNet classification and misinformative news caption detection. CSA surpasses the state-of-the-art method to map unimodal features to multimodal features. We also demonstrate the ability of CSA with modalities beyond image and text, paving the way for future modality pairs with limited paired multimodal data but abundant unpaired unimodal data, such as lidar and text.
♻ ☆ Informed Correctors for Discrete Diffusion Models
Discrete diffusion has emerged as a powerful framework for generative modeling in discrete domains, yet efficiently sampling from these models remains challenging. Existing sampling strategies often struggle to balance computation and sample quality when the number of sampling steps is reduced, even when the model has learned the data distribution well. To address these limitations, we propose a predictor-corrector sampling scheme where the corrector is informed by the diffusion model to more reliably counter the accumulating approximation errors. To further enhance the effectiveness of our informed corrector, we introduce complementary architectural modifications based on hollow transformers and a simple tailored training objective that leverages more training signal. We use a synthetic example to illustrate the failure modes of existing samplers and show how informed correctors alleviate these problems. On tokenized ImageNet 256x256, this approach consistently produces superior samples with fewer steps, achieving improved FID scores for discrete diffusion models. These results underscore the potential of informed correctors for fast and high-fidelity generation using discrete diffusion.
♻ ☆ Large Language Models are Biased Because They Are Large Language Models
This position paper's primary goal is to provoke thoughtful discussion about the relationship between bias and fundamental properties of large language models. I do this by seeking to convince the reader that harmful biases are an inevitable consequence arising from the design of any large language model as LLMs are currently formulated. To the extent that this is true, it suggests that the problem of harmful bias cannot be properly addressed without a serious reconsideration of AI driven by LLMs, going back to the foundational assumptions underlying their design.
comment: To appear in Computational Linguistics. Significantly revised since the prior arXiv version. This preprint has 22 pages
♻ ☆ Heuristics and Biases in AI Decision-Making: Implications for Responsible AGI
We investigate the presence of cognitive biases in three large language models (LLMs): GPT-4o, Gemma 2, and Llama 3.1. The study uses 1,500 experiments across nine established cognitive biases to evaluate the models' responses and consistency. GPT-4o demonstrated the strongest overall performance. Gemma 2 showed strengths in addressing the sunk cost fallacy and prospect theory, however its performance varied across different biases. Llama 3.1 consistently underperformed, relying on heuristics and exhibiting frequent inconsistencies and contradictions. The findings highlight the challenges of achieving robust and generalizable reasoning in LLMs, and underscore the need for further development to mitigate biases in artificial general intelligence (AGI). The study emphasizes the importance of integrating statistical reasoning and ethical considerations in future AI development.
♻ ☆ Lightweight Embedded FPGA Deployment of Learned Image Compression with Knowledge Distillation and Hybrid Quantization
Learnable Image Compression (LIC) has shown the potential to outperform standardized video codecs in RD efficiency, prompting the research for hardware-friendly implementations. Most existing LIC hardware implementations prioritize latency to RD-efficiency and through an extensive exploration of the hardware design space. We present a novel design paradigm where the burden of tuning the design for a specific hardware platform is shifted towards model dimensioning and without compromising on RD-efficiency. First, we design a framework for distilling a leaner student LIC model from a reference teacher: by tuning a single model hyperparameters, we can meet the constraints of different hardware platforms without a complex hardware design exploration. Second, we propose a hardware-friendly implementation of the Generalized Divisive Normalization - GDN activation that preserves RD efficiency even post parameter quantization. Third, we design a pipelined FPGA configuration which takes full advantage of available FPGA resources by leveraging parallel processing and optimizing resource allocation. Our experiments with a state of the art LIC model show that we outperform all existing FPGA implementations while performing very close to the original model.
♻ ☆ Large Language Model Strategic Reasoning Evaluation through Behavioral Game Theory
Strategic decision-making involves interactive reasoning where agents adapt their choices in response to others, yet existing evaluations of large language models (LLMs) often emphasize Nash Equilibrium (NE) approximation, overlooking the mechanisms driving their strategic choices. To bridge this gap, we introduce an evaluation framework grounded in behavioral game theory, disentangling reasoning capability from contextual effects. Testing 22 state-of-the-art LLMs, we find that GPT-o3-mini, GPT-o1, and DeepSeek-R1 dominate most games yet also demonstrate that the model scale alone does not determine performance. In terms of prompting enhancement, Chain-of-Thought (CoT) prompting is not universally effective, as it increases strategic reasoning only for models at certain levels while providing limited gains elsewhere. Additionally, we investigate the impact of encoded demographic features on the models, observing that certain assignments impact the decision-making pattern. For instance, GPT-4o shows stronger strategic reasoning with female traits than males, while Gemma assigns higher reasoning levels to heterosexual identities compared to other sexual orientations, indicating inherent biases. These findings underscore the need for ethical standards and contextual alignment to balance improved reasoning with fairness.
comment: *Co-first author: Jingru Jia, Zehua Yuan
Graphics 13
☆ Distilling Diversity and Control in Diffusion Models
Distilled diffusion models suffer from a critical limitation: reduced sample diversity compared to their base counterparts. In this work, we uncover that despite this diversity loss, distilled models retain the fundamental concept representations of base models. We demonstrate control distillation - where control mechanisms like Concept Sliders and LoRAs trained on base models can be seamlessly transferred to distilled models and vice-versa, effectively distilling control without any retraining. This preservation of representational structure prompted our investigation into the mechanisms of diversity collapse during distillation. To understand how distillation affects diversity, we introduce Diffusion Target (DT) Visualization, an analysis and debugging tool that reveals how models predict final outputs at intermediate steps. Through DT-Visualization, we identify generation artifacts, inconsistencies, and demonstrate that initial diffusion timesteps disproportionately determine output diversity, while later steps primarily refine details. Based on these insights, we introduce diversity distillation - a hybrid inference approach that strategically employs the base model for only the first critical timestep before transitioning to the efficient distilled model. Our experiments demonstrate that this simple modification not only restores the diversity capabilities from base to distilled models but surprisingly exceeds it, while maintaining nearly the computational efficiency of distilled inference, all without requiring additional training or model modifications. Our code and data are available at https://distillation.baulab.info
comment: Project Page: https://distillation.baulab.info
☆ ETCH: Generalizing Body Fitting to Clothed Humans via Equivariant Tightness
Fitting a body to a 3D clothed human point cloud is a common yet challenging task. Traditional optimization-based approaches use multi-stage pipelines that are sensitive to pose initialization, while recent learning-based methods often struggle with generalization across diverse poses and garment types. We propose Equivariant Tightness Fitting for Clothed Humans, or ETCH, a novel pipeline that estimates cloth-to-body surface mapping through locally approximate SE(3) equivariance, encoding tightness as displacement vectors from the cloth surface to the underlying body. Following this mapping, pose-invariant body features regress sparse body markers, simplifying clothed human fitting into an inner-body marker fitting task. Extensive experiments on CAPE and 4D-Dress show that ETCH significantly outperforms state-of-the-art methods -- both tightness-agnostic and tightness-aware -- in body fitting accuracy on loose clothing (16.7% ~ 69.5%) and shape accuracy (average 49.9%). Our equivariant tightness design can even reduce directional errors by (67.2% ~ 89.8%) in one-shot (or out-of-distribution) settings. Qualitative results demonstrate strong generalization of ETCH, regardless of challenging poses, unseen shapes, loose clothing, and non-rigid dynamics. We will release the code and models soon for research purposes at https://boqian-li.github.io/ETCH/.
comment: Page: https://boqian-li.github.io/ETCH/, Code: https://github.com/boqian-li/ETCH
☆ GroomLight: Hybrid Inverse Rendering for Relightable Human Hair Appearance Modeling
We present GroomLight, a novel method for relightable hair appearance modeling from multi-view images. Existing hair capture methods struggle to balance photorealistic rendering with relighting capabilities. Analytical material models, while physically grounded, often fail to fully capture appearance details. Conversely, neural rendering approaches excel at view synthesis but generalize poorly to novel lighting conditions. GroomLight addresses this challenge by combining the strengths of both paradigms. It employs an extended hair BSDF model to capture primary light transport and a light-aware residual model to reconstruct the remaining details. We further propose a hybrid inverse rendering pipeline to optimize both components, enabling high-fidelity relighting, view synthesis, and material editing. Extensive evaluations on real-world hair data demonstrate state-of-the-art performance of our method.
comment: Project Page: https://syntec-research.github.io/GroomLight
☆ MACS: Multi-source Audio-to-image Generation with Contextual Significance and Semantic Alignment
Propelled by the breakthrough in deep generative models, audio-to-image generation has emerged as a pivotal cross-model task that converts complex auditory signals into rich visual representations. However, previous works only focus on single-source audio inputs for image generation, ignoring the multi-source characteristic in natural auditory scenes, thus limiting the performance in generating comprehensive visual content. To bridge this gap, a method called MACS is proposed to conduct multi-source audio-to-image generation. This is the first work that explicitly separates multi-source audio to capture the rich audio components before image generation. MACS is a two-stage method. In the first stage, multi-source audio inputs are separated by a weakly supervised method, where the audio and text labels are semantically aligned by casting into a common space using the large pre-trained CLAP model. We introduce a ranking loss to consider the contextual significance of the separated audio signals. In the second stage, efficient image generation is achieved by mapping the separated audio signals to the generation condition using only a trainable adapter and a MLP layer. We preprocess the LLP dataset as the first full multi-source audio-to-image generation benchmark. The experiments are conducted on multi-source, mixed-source, and single-source audio-to-image generation tasks. The proposed MACS outperforms the current state-of-the-art methods in 17 of the 21 evaluation indexes on all tasks and delivers superior visual quality. The code will be publicly available.
☆ AI-assisted 3D Preservation and Reconstruction of Temple Arts
How does AI connect to the past in conservation? What can 17 years old photos be helpful in a renewed effort of preservation? This research aims to use AI to connect both in a seamless 3D reconstruction of heritage from imagery data taken from Gongfan Palace, Yunlin Taiwan. AI-assisted 3D modeling was used to reconstruct correspondent details across different 3D platforms of 3DGS or NeRF models generated by Postshot or KIRI Engine. Polygon or point models by Zephyr were referred to and assessed in two sets. The results also include AI-assist modeling outcomes in Stable Diffusion and Postshot-based animation. The evolved documenta-tion and interpretation in AI presents a novel arrangement of working processes contributed by new structure and management of resources, formats, and interfaces, as a continuous preservation effort.
comment: 13 pages, 9 figures, 1 table
☆ RI3D: Few-Shot Gaussian Splatting With Repair and Inpainting Diffusion Priors
In this paper, we propose RI3D, a novel 3DGS-based approach that harnesses the power of diffusion models to reconstruct high-quality novel views given a sparse set of input images. Our key contribution is separating the view synthesis process into two tasks of reconstructing visible regions and hallucinating missing regions, and introducing two personalized diffusion models, each tailored to one of these tasks. Specifically, one model ('repair') takes a rendered image as input and predicts the corresponding high-quality image, which in turn is used as a pseudo ground truth image to constrain the optimization. The other model ('inpainting') primarily focuses on hallucinating details in unobserved areas. To integrate these models effectively, we introduce a two-stage optimization strategy: the first stage reconstructs visible areas using the repair model, and the second stage reconstructs missing regions with the inpainting model while ensuring coherence through further optimization. Moreover, we augment the optimization with a novel Gaussian initialization method that obtains per-image depth by combining 3D-consistent and smooth depth with highly detailed relative depth. We demonstrate that by separating the process into two tasks and addressing them with the repair and inpainting models, we produce results with detailed textures in both visible and missing regions that outperform state-of-the-art approaches on a diverse set of scenes with extremely sparse inputs.
comment: Project page: https://people.engr.tamu.edu/nimak/Papers/RI3D, Code: https://github.com/avinashpaliwal/RI3D
☆ Towards Understanding Graphical Perception in Large Multimodal Models
Despite the promising results of large multimodal models (LMMs) in complex vision-language tasks that require knowledge, reasoning, and perception abilities together, we surprisingly found that these models struggle with simple tasks on infographics that require perception only. As existing benchmarks primarily focus on end tasks that require various abilities, they provide limited, fine-grained insights into the limitations of the models' perception abilities. To address this gap, we leverage the theory of graphical perception, an approach used to study how humans decode visual information encoded on charts and graphs, to develop an evaluation framework for analyzing gaps in LMMs' perception abilities in charts. With automated task generation and response evaluation designs, our framework enables comprehensive and controlled testing of LMMs' graphical perception across diverse chart types, visual elements, and task types. We apply our framework to evaluate and diagnose the perception capabilities of state-of-the-art LMMs at three granularity levels (chart, visual element, and pixel). Our findings underscore several critical limitations of current state-of-the-art LMMs, including GPT-4o: their inability to (1) generalize across chart types, (2) understand fundamental visual elements, and (3) cross reference values within a chart. These insights provide guidance for future improvements in perception abilities of LMMs. The evaluation framework and labeled data are publicly available at https://github.com/microsoft/lmm-graphical-perception.
comment: Work in Progress
♻ ☆ Bokeh Diffusion: Defocus Blur Control in Text-to-Image Diffusion Models
Recent advances in large-scale text-to-image models have revolutionized creative fields by generating visually captivating outputs from textual prompts; however, while traditional photography offers precise control over camera settings to shape visual aesthetics -- such as depth-of-field -- current diffusion models typically rely on prompt engineering to mimic such effects. This approach often results in crude approximations and inadvertently altering the scene content. In this work, we propose Bokeh Diffusion, a scene-consistent bokeh control framework that explicitly conditions a diffusion model on a physical defocus blur parameter. By grounding depth-of-field adjustments, our method preserves the underlying scene structure as the level of blur is varied. To overcome the scarcity of paired real-world images captured under different camera settings, we introduce a hybrid training pipeline that aligns in-the-wild images with synthetic blur augmentations. Extensive experiments demonstrate that our approach not only achieves flexible, lens-like blur control but also supports applications such as real image editing via inversion.
comment: Project page: https://atfortes.github.io/projects/bokeh-diffusion/
♻ ☆ ForceGrip: Data-Free Curriculum Learning for Realistic Grip Force Control in VR Hand Manipulation
Realistic hand manipulation is a key component of immersive virtual reality (VR), yet existing methods often rely on a kinematic approach or motion-capture datasets that omit crucial physical attributes such as contact forces and finger torques. Consequently, these approaches prioritize tight, one-size-fits-all grips rather than reflecting users' intended force levels. We present ForceGrip, a deep learning agent that synthesizes realistic hand manipulation motions, faithfully reflecting the user's grip force intention. Instead of mimicking predefined motion datasets, ForceGrip uses generated training scenarios-randomizing object shapes, wrist movements, and trigger input flows-to challenge the agent with a broad spectrum of physical interactions. To effectively learn from these complex tasks, we employ a three-phase curriculum learning framework comprising Finger Positioning, Intention Adaptation, and Dynamic Stabilization. This progressive strategy ensures stable hand-object contact, adaptive force control based on user inputs, and robust handling under dynamic conditions. Additionally, a proximity reward function enhances natural finger motions and accelerates training convergence. Quantitative and qualitative evaluations reveal ForceGrip's superior force controllability and plausibility compared to state-of-the-art methods. The video presentation of our paper is accessible at https://youtu.be/lR-YAfninJw.
comment: 19 pages, 10 figs (with appendix). Demo Video: https://youtu.be/lR-YAfninJw
♻ ☆ SpotLight: Shadow-Guided Object Relighting via Diffusion
Recent work has shown that diffusion models can serve as powerful neural rendering engines that can be leveraged for inserting virtual objects into images. However, unlike typical physics-based renderers, these neural rendering engines are limited by the lack of manual control over the lighting, which is often essential for improving or personalizing the desired image outcome. In this paper, we show that precise lighting control can be achieved for object relighting simply by providing a coarse shadow of the object. Indeed, we show that injecting only the desired shadow of the object into a pre-trained diffusion-based neural renderer enables it to accurately shade the object according to the desired light position, while properly harmonizing the object (and its shadow) within the target background image. Our method, SpotLight, leverages existing neural rendering approaches and achieves controllable relighting results with no additional training. We show that SpotLight achieves superior object compositing results, both quantitatively and perceptually, as confirmed by a user study, outperforming existing diffusion-based models specifically designed for relighting. We also demonstrate other applications, such as hand-scribbling shadows and full-image relighting, demonstrating its versatility.
comment: Project page: https://lvsn.github.io/spotlight
♻ ☆ SplatAD: Real-Time Lidar and Camera Rendering with 3D Gaussian Splatting for Autonomous Driving
Ensuring the safety of autonomous robots, such as self-driving vehicles, requires extensive testing across diverse driving scenarios. Simulation is a key ingredient for conducting such testing in a cost-effective and scalable way. Neural rendering methods have gained popularity, as they can build simulation environments from collected logs in a data-driven manner. However, existing neural radiance field (NeRF) methods for sensor-realistic rendering of camera and lidar data suffer from low rendering speeds, limiting their applicability for large-scale testing. While 3D Gaussian Splatting (3DGS) enables real-time rendering, current methods are limited to camera data and are unable to render lidar data essential for autonomous driving. To address these limitations, we propose SplatAD, the first 3DGS-based method for realistic, real-time rendering of dynamic scenes for both camera and lidar data. SplatAD accurately models key sensor-specific phenomena such as rolling shutter effects, lidar intensity, and lidar ray dropouts, using purpose-built algorithms to optimize rendering efficiency. Evaluation across three autonomous driving datasets demonstrates that SplatAD achieves state-of-the-art rendering quality with up to +2 PSNR for NVS and +3 PSNR for reconstruction while increasing rendering speed over NeRF-based methods by an order of magnitude. See https://research.zenseact.com/publications/splatad/ for our project page.
♻ ☆ Hallo3: Highly Dynamic and Realistic Portrait Image Animation with Video Diffusion Transformer
Existing methodologies for animating portrait images face significant challenges, particularly in handling non-frontal perspectives, rendering dynamic objects around the portrait, and generating immersive, realistic backgrounds. In this paper, we introduce the first application of a pretrained transformer-based video generative model that demonstrates strong generalization capabilities and generates highly dynamic, realistic videos for portrait animation, effectively addressing these challenges. The adoption of a new video backbone model makes previous U-Net-based methods for identity maintenance, audio conditioning, and video extrapolation inapplicable. To address this limitation, we design an identity reference network consisting of a causal 3D VAE combined with a stacked series of transformer layers, ensuring consistent facial identity across video sequences. Additionally, we investigate various speech audio conditioning and motion frame mechanisms to enable the generation of continuous video driven by speech audio. Our method is validated through experiments on benchmark and newly proposed wild datasets, demonstrating substantial improvements over prior methods in generating realistic portraits characterized by diverse orientations within dynamic and immersive scenes. Further visualizations and the source code are available at: https://fudan-generative-vision.github.io/hallo3/.
♻ ☆ Reinforcement Learning-Enhanced Procedural Generation for Dynamic Narrative-Driven AR Experiences
Procedural Content Generation (PCG) is widely used to create scalable and diverse environments in games. However, existing methods, such as the Wave Function Collapse (WFC) algorithm, are often limited to static scenarios and lack the adaptability required for dynamic, narrative-driven applications, particularly in augmented reality (AR) games. This paper presents a reinforcement learning-enhanced WFC framework designed for mobile AR environments. By integrating environment-specific rules and dynamic tile weight adjustments informed by reinforcement learning (RL), the proposed method generates maps that are both contextually coherent and responsive to gameplay needs. Comparative evaluations and user studies demonstrate that the framework achieves superior map quality and delivers immersive experiences, making it well-suited for narrative-driven AR games. Additionally, the method holds promise for broader applications in education, simulation training, and immersive extended reality (XR) experiences, where dynamic and adaptive environments are critical.
comment: Published in Proceedings of the 20th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - GRAPP 2025 https://www.scitepress.org/PublicationsDetail.aspx?ID=LfPv9Lfiya8=&t=1
Robotics 63
☆ SimLingo: Vision-Only Closed-Loop Autonomous Driving with Language-Action Alignment CVPR 2025
Integrating large language models (LLMs) into autonomous driving has attracted significant attention with the hope of improving generalization and explainability. However, existing methods often focus on either driving or vision-language understanding but achieving both high driving performance and extensive language understanding remains challenging. In addition, the dominant approach to tackle vision-language understanding is using visual question answering. However, for autonomous driving, this is only useful if it is aligned with the action space. Otherwise, the model's answers could be inconsistent with its behavior. Therefore, we propose a model that can handle three different tasks: (1) closed-loop driving, (2) vision-language understanding, and (3) language-action alignment. Our model SimLingo is based on a vision language model (VLM) and works using only camera, excluding expensive sensors like LiDAR. SimLingo obtains state-of-the-art performance on the widely used CARLA simulator on the Bench2Drive benchmark and is the winning entry at the CARLA challenge 2024. Additionally, we achieve strong results in a wide variety of language-related tasks while maintaining high driving performance.
comment: CVPR 2025. 1st Place @ CARLA Challenge 2024. Challenge tech report (preliminary version of SimLingo): arXiv:2406.10165
☆ Action-Aware Pro-Active Safe Exploration for Mobile Robot Mapping
Safe autonomous exploration of unknown environments is an essential skill for mobile robots to effectively and adaptively perform environmental mapping for diverse critical tasks. Due to its simplicity, most existing exploration methods rely on the standard frontier-based exploration strategy, which directs a robot to the boundary between the known safe and the unknown unexplored spaces to acquire new information about the environment. This typically follows a recurrent persistent planning strategy, first selecting an informative frontier viewpoint, then moving the robot toward the selected viewpoint until reaching it, and repeating these steps until termination. However, exploration with persistent planning may lack adaptivity to continuously updated maps, whereas highly adaptive exploration with online planning often suffers from high computational costs and potential issues with livelocks. In this paper, as an alternative to less-adaptive persistent planning and costly online planning, we introduce a new proactive preventive replanning strategy for effective exploration using the immediately available actionable information at a viewpoint to avoid redundant, uninformative last-mile exploration motion. We also use the actionable information of a viewpoint as a systematic termination criterion for exploration. To close the gap between perception and action, we perform safe and informative path planning that minimizes the risk of collision with detected obstacles and the distance to unexplored regions, and we apply action-aware viewpoint selection with maximal information utility per total navigation cost. We demonstrate the effectiveness of our action-aware proactive exploration method in numerical simulations and hardware experiments.
comment: 15 pages, 10 figures, 4 algorithms, preprint version of a paper submitted to a journal publication
☆ Neural reservoir control of a soft bio-hybrid arm
A long-standing engineering problem, the control of soft robots is difficult because of their highly non-linear, heterogeneous, anisotropic, and distributed nature. Here, bridging engineering and biology, a neural reservoir is employed for the dynamic control of a bio-hybrid model arm made of multiple muscle-tendon groups enveloping an elastic spine. We show how the use of reservoirs facilitates simultaneous control and self-modeling across a set of challenging tasks, outperforming classic neural network approaches. Further, by implementing a spiking reservoir on neuromorphic hardware, energy efficiency is achieved, with nearly two-orders of magnitude improvement relative to standard CPUs, with implications for the on-board control of untethered, small-scale soft robots.
comment: 12 pages; 4 figures
☆ Online Language Splatting
To enable AI agents to interact seamlessly with both humans and 3D environments, they must not only perceive the 3D world accurately but also align human language with 3D spatial representations. While prior work has made significant progress by integrating language features into geometrically detailed 3D scene representations using 3D Gaussian Splatting (GS), these approaches rely on computationally intensive offline preprocessing of language features for each input image, limiting adaptability to new environments. In this work, we introduce Online Language Splatting, the first framework to achieve online, near real-time, open-vocabulary language mapping within a 3DGS-SLAM system without requiring pre-generated language features. The key challenge lies in efficiently fusing high-dimensional language features into 3D representations while balancing the computation speed, memory usage, rendering quality and open-vocabulary capability. To this end, we innovatively design: (1) a high-resolution CLIP embedding module capable of generating detailed language feature maps in 18ms per frame, (2) a two-stage online auto-encoder that compresses 768-dimensional CLIP features to 15 dimensions while preserving open-vocabulary capabilities, and (3) a color-language disentangled optimization approach to improve rendering quality. Experimental results show that our online method not only surpasses the state-of-the-art offline methods in accuracy but also achieves more than 40x efficiency boost, demonstrating the potential for dynamic and interactive AI applications.
☆ Neural-Augmented Incremental Nonlinear Dynamic Inversion for Quadrotors with Payload Adaptation IROS 2025
The increasing complexity of multirotor applications has led to the need of more accurate flight controllers that can reliably predict all forces acting on the robot. Traditional flight controllers model a large part of the forces but do not take so called residual forces into account. A reason for this is that accurately computing the residual forces can be computationally expensive. Incremental Nonlinear Dynamic Inversion (INDI) is a method that computes the difference between different sensor measurements in order to estimate these residual forces. The main issue with INDI is it's reliance on special sensor measurements which can be very noisy. Recent work has also shown that residual forces can be predicted using learning-based methods. In this work, we demonstrate that a learning algorithm can predict a smoother version of INDI outputs without requiring additional sensor measurements. In addition, we introduce a new method that combines learning based predictions with INDI. We also adapt the two approaches to work on quadrotors carrying a slung-type payload. The results show that using a neural network to predict residual forces can outperform INDI while using the combination of neural network and INDI can yield even better results than each method individually.
comment: Submitted to IROS 2025
Efficient Alignment of Unconditioned Action Prior for Language-conditioned Pick and Place in Clutter
We study the task of language-conditioned pick and place in clutter, where a robot should grasp a target object in open clutter and move it to a specified place. Some approaches learn end-to-end policies with features from vision foundation models, requiring large datasets. Others combine foundation models in a zero-shot setting, suffering from cascading errors. In addition, they primarily leverage vision and language foundation models, focusing less on action priors. In this paper, we aim to develop an effective policy by integrating foundation priors from vision, language, and action. We propose A$^2$, an action prior alignment method that aligns unconditioned action priors with 3D vision-language priors by learning one attention layer. The alignment formulation enables our policy to train with less data and preserve zero-shot generalization capabilities. We show that a shared policy for both pick and place actions enhances the performance for each task, and introduce a policy adaptation scheme to accommodate the multi-modal nature of actions. Extensive experiments in simulation and the real-world show that our policy achieves higher task success rates with fewer steps for both pick and place tasks in clutter, effectively generalizing to unseen objects and language instructions.
☆ AI-based Framework for Robust Model-Based Connector Mating in Robotic Wire Harness Installation
Despite the widespread adoption of industrial robots in automotive assembly, wire harness installation remains a largely manual process, as it requires precise and flexible manipulation. To address this challenge, we design a novel AI-based framework that automates cable connector mating by integrating force control with deep visuotactile learning. Our system optimizes search-and-insertion strategies using first-order optimization over a multimodal transformer architecture trained on visual, tactile, and proprioceptive data. Additionally, we design a novel automated data collection and optimization pipeline that minimizes the need for machine learning expertise. The framework optimizes robot programs that run natively on standard industrial controllers, permitting human experts to audit and certify them. Experimental validations on a center console assembly task demonstrate significant improvements in cycle times and robustness compared to conventional robot programming approaches. Videos are available under https://claudius-kienle.github.io/AppMuTT.
comment: 6 pages, 6 figures, 4 tables, submitted to the 2025 IEEE 21st International Conference on Automation Science and Engineering
☆ Robust Self-Reconfiguration for Fault-Tolerant Control of Modular Aerial Robot Systems
Modular Aerial Robotic Systems (MARS) consist of multiple drone units assembled into a single, integrated rigid flying platform. With inherent redundancy, MARS can self-reconfigure into different configurations to mitigate rotor or unit failures and maintain stable flight. However, existing works on MARS self-reconfiguration often overlook the practical controllability of intermediate structures formed during the reassembly process, which limits their applicability. In this paper, we address this gap by considering the control-constrained dynamic model of MARS and proposing a robust and efficient self-reconstruction algorithm that maximizes the controllability margin at each intermediate stage. Specifically, we develop algorithms to compute optimal, controllable disassembly and assembly sequences, enabling robust self-reconfiguration. Finally, we validate our method in several challenging fault-tolerant self-reconfiguration scenarios, demonstrating significant improvements in both controllability and trajectory tracking while reducing the number of assembly steps. The videos and source code of this work are available at https://github.com/RuiHuangNUS/MARS-Reconfig/
☆ Robust Fault-Tolerant Control and Agile Trajectory Planning for Modular Aerial Robotic Systems
Modular Aerial Robotic Systems (MARS) consist of multiple drone units that can self-reconfigure to adapt to various mission requirements and fault conditions. However, existing fault-tolerant control methods exhibit significant oscillations during docking and separation, impacting system stability. To address this issue, we propose a novel fault-tolerant control reallocation method that adapts to arbitrary number of modular robots and their assembly formations. The algorithm redistributes the expected collective force and torque required for MARS to individual unit according to their moment arm relative to the center of MARS mass. Furthermore, We propose an agile trajectory planning method for MARS of arbitrary configurations, which is collision-avoiding and dynamically feasible. Our work represents the first comprehensive approach to enable fault-tolerant and collision avoidance flight for MARS. We validate our method through extensive simulations, demonstrating improved fault tolerance, enhanced trajectory tracking accuracy, and greater robustness in cluttered environments. The videos and source code of this work are available at https://github.com/RuiHuangNUS/MARS-FTCC/
☆ NVP-HRI: Zero Shot Natural Voice and Posture-based Human-Robot Interaction via Large Language Model
Effective Human-Robot Interaction (HRI) is crucial for future service robots in aging societies. Existing solutions are biased toward only well-trained objects, creating a gap when dealing with new objects. Currently, HRI systems using predefined gestures or language tokens for pretrained objects pose challenges for all individuals, especially elderly ones. These challenges include difficulties in recalling commands, memorizing hand gestures, and learning new names. This paper introduces NVP-HRI, an intuitive multi-modal HRI paradigm that combines voice commands and deictic posture. NVP-HRI utilizes the Segment Anything Model (SAM) to analyze visual cues and depth data, enabling precise structural object representation. Through a pre-trained SAM network, NVP-HRI allows interaction with new objects via zero-shot prediction, even without prior knowledge. NVP-HRI also integrates with a large language model (LLM) for multimodal commands, coordinating them with object selection and scene distribution in real time for collision-free trajectory solutions. We also regulate the action sequence with the essential control syntax to reduce LLM hallucination risks. The evaluation of diverse real-world tasks using a Universal Robot showcased up to 59.2\% efficiency improvement over traditional gesture control, as illustrated in the video https://youtu.be/EbC7al2wiAc. Our code and design will be openly available at https://github.com/laiyuzhi/NVP-HRI.git.
comment: This work has been accepted for publication in ESWA @ 2025 Elsevier. Personal use of this material is permitted. Permission from Elsevier must be obtained for all other uses, including reprinting/redistribution, creating new works, or reuse of any copyrighted components of this work in other media
☆ MonoSLAM: Robust Monocular SLAM with Global Structure Optimization
This paper presents a robust monocular visual SLAM system that simultaneously utilizes point, line, and vanishing point features for accurate camera pose estimation and mapping. To address the critical challenge of achieving reliable localization in low-texture environments, where traditional point-based systems often fail due to insufficient visual features, we introduce a novel approach leveraging Global Primitives structural information to improve the system's robustness and accuracy performance. Our key innovation lies in constructing vanishing points from line features and proposing a weighted fusion strategy to build Global Primitives in the world coordinate system. This strategy associates multiple frames with non-overlapping regions and formulates a multi-frame reprojection error optimization, significantly improving tracking accuracy in texture-scarce scenarios. Evaluations on various datasets show that our system outperforms state-of-the-art methods in trajectory precision, particularly in challenging environments.
☆ GarmentPile: Point-Level Visual Affordance Guided Retrieval and Adaptation for Cluttered Garments Manipulation
Cluttered garments manipulation poses significant challenges due to the complex, deformable nature of garments and intricate garment relations. Unlike single-garment manipulation, cluttered scenarios require managing complex garment entanglements and interactions, while maintaining garment cleanliness and manipulation stability. To address these demands, we propose to learn point-level affordance, the dense representation modeling the complex space and multi-modal manipulation candidates, while being aware of garment geometry, structure, and inter-object relations. Additionally, as it is difficult to directly retrieve a garment in some extremely entangled clutters, we introduce an adaptation module, guided by learned affordance, to reorganize highly-entangled garments into states plausible for manipulation. Our framework demonstrates effectiveness over environments featuring diverse garment types and pile configurations in both simulation and the real world. Project page: https://garmentpile.github.io/.
☆ MarineGym: A High-Performance Reinforcement Learning Platform for Underwater Robotics
This work presents the MarineGym, a high-performance reinforcement learning (RL) platform specifically designed for underwater robotics. It aims to address the limitations of existing underwater simulation environments in terms of RL compatibility, training efficiency, and standardized benchmarking. MarineGym integrates a proposed GPU-accelerated hydrodynamic plugin based on Isaac Sim, achieving a rollout speed of 250,000 frames per second on a single NVIDIA RTX 3060 GPU. It also provides five models of unmanned underwater vehicles (UUVs), multiple propulsion systems, and a set of predefined tasks covering core underwater control challenges. Additionally, the DR toolkit allows flexible adjustments of simulation and task parameters during training to improve Sim2Real transfer. Further benchmark experiments demonstrate that MarineGym improves training efficiency over existing platforms and supports robust policy adaptation under various perturbations. We expect this platform could drive further advancements in RL research for underwater robotics. For more details about MarineGym and its applications, please visit our project page: https://marine-gym.com/.
☆ Learning Appearance and Motion Cues for Panoptic Tracking
Panoptic tracking enables pixel-level scene interpretation of videos by integrating instance tracking in panoptic segmentation. This provides robots with a spatio-temporal understanding of the environment, an essential attribute for their operation in dynamic environments. In this paper, we propose a novel approach for panoptic tracking that simultaneously captures general semantic information and instance-specific appearance and motion features. Unlike existing methods that overlook dynamic scene attributes, our approach leverages both appearance and motion cues through dedicated network heads. These interconnected heads employ multi-scale deformable convolutions that reason about scene motion offsets with semantic context and motion-enhanced appearance features to learn tracking embeddings. Furthermore, we introduce a novel two-step fusion module that integrates the outputs from both heads by first matching instances from the current time step with propagated instances from previous time steps and subsequently refines associations using motion-enhanced appearance embeddings, improving robustness in challenging scenarios. Extensive evaluations of our proposed \netname model on two benchmark datasets demonstrate that it achieves state-of-the-art performance in panoptic tracking accuracy, surpassing prior methods in maintaining object identities over time. To facilitate future research, we make the code available at http://panoptictracking.cs.uni-freiburg.de
☆ Rethinking Bimanual Robotic Manipulation: Learning with Decoupled Interaction Framework
Bimanual robotic manipulation is an emerging and critical topic in the robotics community. Previous works primarily rely on integrated control models that take the perceptions and states of both arms as inputs to directly predict their actions. However, we think bimanual manipulation involves not only coordinated tasks but also various uncoordinated tasks that do not require explicit cooperation during execution, such as grasping objects with the closest hand, which integrated control frameworks ignore to consider due to their enforced cooperation in the early inputs. In this paper, we propose a novel decoupled interaction framework that considers the characteristics of different tasks in bimanual manipulation. The key insight of our framework is to assign an independent model to each arm to enhance the learning of uncoordinated tasks, while introducing a selective interaction module that adaptively learns weights from its own arm to improve the learning of coordinated tasks. Extensive experiments on seven tasks in the RoboTwin dataset demonstrate that: (1) Our framework achieves outstanding performance, with a 23.5% boost over the SOTA method. (2) Our framework is flexible and can be seamlessly integrated into existing methods. (3) Our framework can be effectively extended to multi-agent manipulation tasks, achieving a 28% boost over the integrated control SOTA. (4) The performance boost stems from the decoupled design itself, surpassing the SOTA by 16.5% in success rate with only 1/6 of the model size.
comment: 14 pages, 8 figures
☆ Long-Term Planning Around Humans in Domestic Environments with 3D Scene Graphs
Long-term planning for robots operating in domestic environments poses unique challenges due to the interactions between humans, objects, and spaces. Recent advancements in trajectory planning have leveraged vision-language models (VLMs) to extract contextual information for robots operating in real-world environments. While these methods achieve satisfying performance, they do not explicitly model human activities. Such activities influence surrounding objects and reshape spatial constraints. This paper presents a novel approach to trajectory planning that integrates human preferences, activities, and spatial context through an enriched 3D scene graph (3DSG) representation. By incorporating activity-based relationships, our method captures the spatial impact of human actions, leading to more context-sensitive trajectory adaptation. Preliminary results demonstrate that our approach effectively assigns costs to spaces influenced by human activities, ensuring that the robot trajectory remains contextually appropriate and sensitive to the ongoing environment. This balance between task efficiency and social appropriateness enhances context-aware human-robot interactions in domestic settings. Future work includes implementing a full planning pipeline and conducting user studies to evaluate trajectory acceptability.
comment: 5 pages, 2 figures, 1 table
☆ Predictor-Based Time Delay Control of A Hex-Jet Unmanned Aerial Vehicle
Turbojet-powered VTOL UAVs have garnered increased attention in heavy-load transport and emergency services, due to their superior power density and thrust-to-weight ratio compared to existing electronic propulsion systems. The main challenge with jet-powered UAVs lies in the complexity of thrust vectoring mechanical systems, which aim to mitigate the slow dynamics of the turbojet. In this letter, we introduce a novel turbojet-powered UAV platform named Hex-Jet. Our concept integrates thrust vectoring and differential thrust for comprehensive attitude control. This approach notably simplifies the thrust vectoring mechanism. We utilize a predictor-based time delay control method based on the frequency domain model in our Hex-Jet controller design to mitigate the delay in roll attitude control caused by turbojet dynamics. Our comparative studies provide valuable insights for the UAV community, and flight tests on the scaled prototype demonstrate the successful implementation and verification of the proposed predictor-based time delay control technique.
comment: Accepted by IEEE Robotics and Automation Letters. 8 pages, 11 figures
☆ Tacchi 2.0: A Low Computational Cost and Comprehensive Dynamic Contact Simulator for Vision-based Tactile Sensors
With the development of robotics technology, some tactile sensors, such as vision-based sensors, have been applied to contact-rich robotics tasks. However, the durability of vision-based tactile sensors significantly increases the cost of tactile information acquisition. Utilizing simulation to generate tactile data has emerged as a reliable approach to address this issue. While data-driven methods for tactile data generation lack robustness, finite element methods (FEM) based approaches require significant computational costs. To address these issues, we integrated a pinhole camera model into the low computational cost vision-based tactile simulator Tacchi that used the Material Point Method (MPM) as the simulated method, completing the simulation of marker motion images. We upgraded Tacchi and introduced Tacchi 2.0. This simulator can simulate tactile images, marked motion images, and joint images under different motion states like pressing, slipping, and rotating. Experimental results demonstrate the reliability of our method and its robustness across various vision-based tactile sensors.
☆ Sequential Multi-Object Grasping with One Dexterous Hand
Sequentially grasping multiple objects with multi-fingered hands is common in daily life, where humans can fully leverage the dexterity of their hands to enclose multiple objects. However, the diversity of object geometries and the complex contact interactions required for high-DOF hands to grasp one object while enclosing another make sequential multi-object grasping challenging for robots. In this paper, we propose SeqMultiGrasp, a system for sequentially grasping objects with a four-fingered Allegro Hand. We focus on sequentially grasping two objects, ensuring that the hand fully encloses one object before lifting it and then grasps the second object without dropping the first. Our system first synthesizes single-object grasp candidates, where each grasp is constrained to use only a subset of the hand's links. These grasps are then validated in a physics simulator to ensure stability and feasibility. Next, we merge the validated single-object grasp poses to construct multi-object grasp configurations. For real-world deployment, we train a diffusion model conditioned on point clouds to propose grasp poses, followed by a heuristic-based execution strategy. We test our system using $8 \times 8$ object combinations in simulation and $6 \times 3$ object combinations in real. Our diffusion-based grasp model obtains an average success rate of 65.8% over 1600 simulation trials and 56.7% over 90 real-world trials, suggesting that it is a promising approach for sequential multi-object grasping with multi-fingered hands. Supplementary material is available on our project website: https://hesic73.github.io/SeqMultiGrasp.
☆ Motion Blender Gaussian Splatting for Dynamic Reconstruction
Gaussian splatting has emerged as a powerful tool for high-fidelity reconstruction of dynamic scenes. However, existing methods primarily rely on implicit motion representations, such as encoding motions into neural networks or per-Gaussian parameters, which makes it difficult to further manipulate the reconstructed motions. This lack of explicit controllability limits existing methods to replaying recorded motions only, which hinders a wider application. To address this, we propose Motion Blender Gaussian Splatting (MB-GS), a novel framework that uses motion graph as an explicit and sparse motion representation. The motion of graph links is propagated to individual Gaussians via dual quaternion skinning, with learnable weight painting functions determining the influence of each link. The motion graphs and 3D Gaussians are jointly optimized from input videos via differentiable rendering. Experiments show that MB-GS achieves state-of-the-art performance on the iPhone dataset while being competitive on HyperNeRF. Additionally, we demonstrate the application potential of our method in generating novel object motions and robot demonstrations through motion editing. Video demonstrations can be found at https://mlzxy.github.io/mbgs.
☆ ManeuverGPT Agentic Control for Safe Autonomous Stunt Maneuvers IROS
The next generation of active safety features in autonomous vehicles should be capable of safely executing evasive hazard-avoidance maneuvers akin to those performed by professional stunt drivers to achieve high-agility motion at the limits of vehicle handling. This paper presents a novel framework, ManeuverGPT, for generating and executing high-dynamic stunt maneuvers in autonomous vehicles using large language model (LLM)-based agents as controllers. We target aggressive maneuvers, such as J-turns, within the CARLA simulation environment and demonstrate an iterative, prompt-based approach to refine vehicle control parameters, starting tabula rasa without retraining model weights. We propose an agentic architecture comprised of three specialized agents (1) a Query Enricher Agent for contextualizing user commands, (2) a Driver Agent for generating maneuver parameters, and (3) a Parameter Validator Agent that enforces physics-based and safety constraints. Experimental results demonstrate successful J-turn execution across multiple vehicle models through textual prompts that adapt to differing vehicle dynamics. We evaluate performance via established success criteria and discuss limitations regarding numeric precision and scenario complexity. Our findings underscore the potential of LLM-driven control for flexible, high-dynamic maneuvers, while highlighting the importance of hybrid approaches that combine language-based reasoning with algorithmic validation.
comment: 6 Pages, Submitted to IROS
☆ RFUAV: A Benchmark Dataset for Unmanned Aerial Vehicle Detection and Identification
In this paper, we propose RFUAV as a new benchmark dataset for radio-frequency based (RF-based) unmanned aerial vehicle (UAV) identification and address the following challenges: Firstly, many existing datasets feature a restricted variety of drone types and insufficient volumes of raw data, which fail to meet the demands of practical applications. Secondly, existing datasets often lack raw data covering a broad range of signal-to-noise ratios (SNR), or do not provide tools for transforming raw data to different SNR levels. This limitation undermines the validity of model training and evaluation. Lastly, many existing datasets do not offer open-access evaluation tools, leading to a lack of unified evaluation standards in current research within this field. RFUAV comprises approximately 1.3 TB of raw frequency data collected from 37 distinct UAVs using the Universal Software Radio Peripheral (USRP) device in real-world environments. Through in-depth analysis of the RF data in RFUAV, we define a drone feature sequence called RF drone fingerprint, which aids in distinguishing drone signals. In addition to the dataset, RFUAV provides a baseline preprocessing method and model evaluation tools. Rigorous experiments demonstrate that these preprocessing methods achieve state-of-the-art (SOTA) performance using the provided evaluation tools. The RFUAV dataset and baseline implementation are publicly available at https://github.com/kitoweeknd/RFUAV/.
comment: 23 pages, 13 figures, conference
☆ Traffic Regulation-aware Path Planning with Regulation Databases and Vision-Language Models ICRA
This paper introduces and tests a framework integrating traffic regulation compliance into automated driving systems (ADS). The framework enables ADS to follow traffic laws and make informed decisions based on the driving environment. Using RGB camera inputs and a vision-language model (VLM), the system generates descriptive text to support a regulation-aware decision-making process, ensuring legal and safe driving practices. This information is combined with a machine-readable ADS regulation database to guide future driving plans within legal constraints. Key features include: 1) a regulation database supporting ADS decision-making, 2) an automated process using sensor input for regulation-aware path planning, and 3) validation in both simulated and real-world environments. Particularly, the real-world vehicle tests not only assess the framework's performance but also evaluate the potential and challenges of VLMs to solve complex driving problems by integrating detection, reasoning, and planning. This work enhances the legality, safety, and public trust in ADS, representing a significant step forward in the field.
comment: 7 pages, 7 figures, submitted to ICRA
☆ Feasibility-aware Imitation Learning from Observations through a Hand-mounted Demonstration Interface
Imitation learning through a demonstration interface is expected to learn policies for robot automation from intuitive human demonstrations. However, due to the differences in human and robot movement characteristics, a human expert might unintentionally demonstrate an action that the robot cannot execute. We propose feasibility-aware behavior cloning from observation (FABCO). In the FABCO framework, the feasibility of each demonstration is assessed using the robot's pre-trained forward and inverse dynamics models. This feasibility information is provided as visual feedback to the demonstrators, encouraging them to refine their demonstrations. During policy learning, estimated feasibility serves as a weight for the demonstration data, improving both the data efficiency and the robustness of the learned policy. We experimentally validated FABCO's effectiveness by applying it to a pipette insertion task involving a pipette and a vial. Four participants assessed the impact of the feasibility feedback and the weighted policy learning in FABCO. Additionally, we used the NASA Task Load Index (NASA-TLX) to evaluate the workload induced by demonstrations with visual feedback.
☆ Accurate Control under Voltage Drop for Rotor Drones
This letter proposes an anti-disturbance control scheme for rotor drones to counteract voltage drop (VD) disturbance caused by voltage drop of the battery, which is a common case for long-time flight or aggressive maneuvers. Firstly, the refined dynamics of rotor drones considering VD disturbance are presented. Based on the dynamics, a voltage drop observer (VDO) is developed to accurately estimate the VD disturbance by decoupling the disturbance and state information of the drone, reducing the conservativeness of conventional disturbance observers. Subsequently, the control scheme integrates the VDO within the translational loop and a fixed-time sliding mode observer (SMO) within the rotational loop, enabling it to address force and torque disturbances caused by voltage drop of the battery. Sufficient real flight experiments are conducted to demonstrate the effectiveness of the proposed control scheme under VD disturbance.
Natural Humanoid Robot Locomotion with Generative Motion Prior
Natural and lifelike locomotion remains a fundamental challenge for humanoid robots to interact with human society. However, previous methods either neglect motion naturalness or rely on unstable and ambiguous style rewards. In this paper, we propose a novel Generative Motion Prior (GMP) that provides fine-grained motion-level supervision for the task of natural humanoid robot locomotion. To leverage natural human motions, we first employ whole-body motion retargeting to effectively transfer them to the robot. Subsequently, we train a generative model offline to predict future natural reference motions for the robot based on a conditional variational auto-encoder. During policy training, the generative motion prior serves as a frozen online motion generator, delivering precise and comprehensive supervision at the trajectory level, including joint angles and keypoint positions. The generative motion prior significantly enhances training stability and improves interpretability by offering detailed and dense guidance throughout the learning process. Experimental results in both simulation and real-world environments demonstrate that our method achieves superior motion naturalness compared to existing approaches. Project page can be found at https://sites.google.com/view/humanoid-gmp
☆ Unified Locomotion Transformer with Simultaneous Sim-to-Real Transfer for Quadrupeds
Quadrupeds have gained rapid advancement in their capability of traversing across complex terrains. The adoption of deep Reinforcement Learning (RL), transformers and various knowledge transfer techniques can greatly reduce the sim-to-real gap. However, the classical teacher-student framework commonly used in existing locomotion policies requires a pre-trained teacher and leverages the privilege information to guide the student policy. With the implementation of large-scale models in robotics controllers, especially transformers-based ones, this knowledge distillation technique starts to show its weakness in efficiency, due to the requirement of multiple supervised stages. In this paper, we propose Unified Locomotion Transformer (ULT), a new transformer-based framework to unify the processes of knowledge transfer and policy optimization in a single network while still taking advantage of privilege information. The policies are optimized with reinforcement learning, next state-action prediction, and action imitation, all in just one training stage, to achieve zero-shot deployment. Evaluation results demonstrate that with ULT, optimal teacher and student policies can be obtained at the same time, greatly easing the difficulty in knowledge transfer, even with complex transformer-based models.
comment: Project website for video: https://johnliudk.github.io/ult/
☆ TetraGrip: Sensor-Driven Multi-Suction Reactive Object Manipulation in Cluttered Scenes
Warehouse robotic systems equipped with vacuum grippers must reliably grasp a diverse range of objects from densely packed shelves. However, these environments present significant challenges, including occlusions, diverse object orientations, stacked and obstructed items, and surfaces that are difficult to suction. We introduce \tetra, a novel vacuum-based grasping strategy featuring four suction cups mounted on linear actuators. Each actuator is equipped with an optical time-of-flight (ToF) proximity sensor, enabling reactive grasping. We evaluate \tetra in a warehouse-style setting, demonstrating its ability to manipulate objects in stacked and obstructed configurations. Our results show that our RL-based policy improves picking success in stacked-object scenarios by 22.86\% compared to a single-suction gripper. Additionally, we demonstrate that TetraGrip can successfully grasp objects in scenarios where a single-suction gripper fails due to physical limitations, specifically in two cases: (1) picking an object occluded by another object and (2) retrieving an object in a complex scenario. These findings highlight the advantages of multi-actuated, suction-based grasping in unstructured warehouse environments. The project website is available at: \href{https://tetragrip.github.io/}{https://tetragrip.github.io/}.
☆ CleverDistiller: Simple and Spatially Consistent Cross-modal Distillation
Vision foundation models (VFMs) such as DINO have led to a paradigm shift in 2D camera-based perception towards extracting generalized features to support many downstream tasks. Recent works introduce self-supervised cross-modal knowledge distillation (KD) as a way to transfer these powerful generalization capabilities into 3D LiDAR-based models. However, they either rely on highly complex distillation losses, pseudo-semantic maps, or limit KD to features useful for semantic segmentation only. In this work, we propose CleverDistiller, a self-supervised, cross-modal 2D-to-3D KD framework introducing a set of simple yet effective design choices: Unlike contrastive approaches relying on complex loss design choices, our method employs a direct feature similarity loss in combination with a multi layer perceptron (MLP) projection head to allow the 3D network to learn complex semantic dependencies throughout the projection. Crucially, our approach does not depend on pseudo-semantic maps, allowing for direct knowledge transfer from a VFM without explicit semantic supervision. Additionally, we introduce the auxiliary self-supervised spatial task of occupancy prediction to enhance the semantic knowledge, obtained from a VFM through KD, with 3D spatial reasoning capabilities. Experiments on standard autonomous driving benchmarks for 2D-to-3D KD demonstrate that CleverDistiller achieves state-of-the-art performance in both semantic segmentation and 3D object detection (3DOD) by up to 10% mIoU, especially when fine tuning on really low data amounts, showing the effectiveness of our simple yet powerful KD strategy
☆ Training Human-Robot Teams by Improving Transparency Through a Virtual Spectator Interface ICRA 2025
After-action reviews (AARs) are professional discussions that help operators and teams enhance their task performance by analyzing completed missions with peers and professionals. Previous studies that compared different formats of AARs have mainly focused on human teams. However, the inclusion of robotic teammates brings along new challenges in understanding teammate intent and communication. Traditional AAR between human teammates may not be satisfactory for human-robot teams. To address this limitation, we propose a new training review (TR) tool, called the Virtual Spectator Interface (VSI), to enhance human-robot team performance and situational awareness (SA) in a simulated search mission. The proposed VSI primarily utilizes visual feedback to review subjects' behavior. To examine the effectiveness of VSI, we took elements from AAR to conduct our own TR, designed a 1 x 3 between-subjects experiment with experimental conditions: TR with (1) VSI, (2) screen recording, and (3) non-technology (only verbal descriptions). The results of our experiments demonstrated that the VSI did not result in significantly better team performance than other conditions. However, the TR with VSI led to more improvement in the subjects SA over the other conditions.
comment: 7 pages, 4 figures, Accepted to ICRA 2025
☆ SE(3)-Equivariant Robot Learning and Control: A Tutorial Survey
Recent advances in deep learning and Transformers have driven major breakthroughs in robotics by employing techniques such as imitation learning, reinforcement learning, and LLM-based multimodal perception and decision-making. However, conventional deep learning and Transformer models often struggle to process data with inherent symmetries and invariances, typically relying on large datasets or extensive data augmentation. Equivariant neural networks overcome these limitations by explicitly integrating symmetry and invariance into their architectures, leading to improved efficiency and generalization. This tutorial survey reviews a wide range of equivariant deep learning and control methods for robotics, from classic to state-of-the-art, with a focus on SE(3)-equivariant models that leverage the natural 3D rotational and translational symmetries in visual robotic manipulation and control design. Using unified mathematical notation, we begin by reviewing key concepts from group theory, along with matrix Lie groups and Lie algebras. We then introduce foundational group-equivariant neural network design and show how the group-equivariance can be obtained through their structure. Next, we discuss the applications of SE(3)-equivariant neural networks in robotics in terms of imitation learning and reinforcement learning. The SE(3)-equivariant control design is also reviewed from the perspective of geometric control. Finally, we highlight the challenges and future directions of equivariant methods in developing more robust, sample-efficient, and multi-modal real-world robotic systems.
comment: Submitted to International Journcal of Control, Automation and Systems (IJCAS), Under Review
☆ Vi-LAD: Vision-Language Attention Distillation for Socially-Aware Robot Navigation in Dynamic Environments
We introduce Vision-Language Attention Distillation (Vi-LAD), a novel approach for distilling socially compliant navigation knowledge from a large Vision-Language Model (VLM) into a lightweight transformer model for real-time robotic navigation. Unlike traditional methods that rely on expert demonstrations or human-annotated datasets, Vi-LAD performs knowledge distillation and fine-tuning at the intermediate layer representation level (i.e., attention maps) by leveraging the backbone of a pre-trained vision-action model. These attention maps highlight key navigational regions in a given scene, which serve as implicit guidance for socially aware motion planning. Vi-LAD fine-tunes a transformer-based model using intermediate attention maps extracted from the pre-trained vision-action model, combined with attention-like semantic maps constructed from a large VLM. To achieve this, we introduce a novel attention-level distillation loss that fuses knowledge from both sources, generating augmented attention maps with enhanced social awareness. These refined attention maps are then utilized as a traversability costmap within a socially aware model predictive controller (MPC) for navigation. We validate our approach through real-world experiments on a Husky wheeled robot, demonstrating significant improvements over state-of-the-art (SOTA) navigation methods. Our results show up to 14.2% - 50% improvement in success rate, which highlights the effectiveness of Vi-LAD in enabling socially compliant and efficient robot navigation.
☆ Multi-Agent LLM Actor-Critic Framework for Social Robot Navigation
Recent advances in robotics and large language models (LLMs) have sparked growing interest in human-robot collaboration and embodied intelligence. To enable the broader deployment of robots in human-populated environments, socially-aware robot navigation (SAN) has become a key research area. While deep reinforcement learning approaches that integrate human-robot interaction (HRI) with path planning have demonstrated strong benchmark performance, they often struggle to adapt to new scenarios and environments. LLMs offer a promising avenue for zero-shot navigation through commonsense inference. However, most existing LLM-based frameworks rely on centralized decision-making, lack robust verification mechanisms, and face inconsistencies in translating macro-actions into precise low-level control signals. To address these challenges, we propose SAMALM, a decentralized multi-agent LLM actor-critic framework for multi-robot social navigation. In this framework, a set of parallel LLM actors, each reflecting distinct robot personalities or configurations, directly generate control signals. These actions undergo a two-tier verification process via a global critic that evaluates group-level behaviors and individual critics that assess each robot's context. An entropy-based score fusion mechanism further enhances self-verification and re-query, improving both robustness and coordination. Experimental results confirm that SAMALM effectively balances local autonomy with global oversight, yielding socially compliant behaviors and strong adaptability across diverse multi-robot scenarios. More details and videos about this work are available at: https://sites.google.com/view/SAMALM.
☆ Distributionally Robust Multi-Agent Reinforcement Learning for Dynamic Chute Mapping
In Amazon robotic warehouses, the destination-to-chute mapping problem is crucial for efficient package sorting. Often, however, this problem is complicated by uncertain and dynamic package induction rates, which can lead to increased package recirculation. To tackle this challenge, we introduce a Distributionally Robust Multi-Agent Reinforcement Learning (DRMARL) framework that learns a destination-to-chute mapping policy that is resilient to adversarial variations in induction rates. Specifically, DRMARL relies on group distributionally robust optimization (DRO) to learn a policy that performs well not only on average but also on each individual subpopulation of induction rates within the group that capture, for example, different seasonality or operation modes of the system. This approach is then combined with a novel contextual bandit-based predictor of the worst-case induction distribution for each state-action pair, significantly reducing the cost of exploration and thereby increasing the learning efficiency and scalability of our framework. Extensive simulations demonstrate that DRMARL achieves robust chute mapping in the presence of varying induction distributions, reducing package recirculation by an average of 80\% in the simulation scenario.
☆ Edge AI-Powered Real-Time Decision-Making for Autonomous Vehicles in Adverse Weather Conditions
Autonomous vehicles (AVs) are transforming modern transportation, but their reliability and safety are significantly challenged by harsh weather conditions such as heavy rain, fog, and snow. These environmental factors impair the performance of cameras, LiDAR, and radar, leading to reduced situational awareness and increased accident risks. Conventional cloud-based AI systems introduce communication delays, making them unsuitable for the rapid decision-making required in real-time autonomous navigation. This paper presents a novel Edge AI-driven real-time decision-making framework designed to enhance AV responsiveness under adverse weather conditions. The proposed approach integrates convolutional neural networks (CNNs) and recurrent neural networks (RNNs) for improved perception, alongside reinforcement learning (RL)-based strategies to optimize vehicle control in uncertain environments. By processing data at the network edge, this system significantly reduces decision latency while improving AV adaptability. The framework is evaluated using simulated driving scenarios in CARLA and real-world data from the Waymo Open Dataset, covering diverse weather conditions. Experimental results indicate that the proposed model achieves a 40% reduction in processing time and a 25% enhancement in perception accuracy compared to conventional cloud-based systems. These findings highlight the potential of Edge AI in improving AV autonomy, safety, and efficiency, paving the way for more reliable self-driving technology in challenging real-world environments.
☆ SciFi-Benchmark: How Would AI-Powered Robots Behave in Science Fiction Literature?
Given the recent rate of progress in artificial intelligence (AI) and robotics, a tantalizing question is emerging: would robots controlled by emerging AI systems be strongly aligned with human values? In this work, we propose a scalable way to probe this question by generating a benchmark spanning the key moments in 824 major pieces of science fiction literature (movies, tv, novels and scientific books) where an agent (AI or robot) made critical decisions (good or bad). We use a LLM's recollection of each key moment to generate questions in similar situations, the decisions made by the agent, and alternative decisions it could have made (good or bad). We then measure an approximation of how well models align with human values on a set of human-voted answers. We also generate rules that can be automatically improved via amendment process in order to generate the first Sci-Fi inspired constitutions for promoting ethical behavior in AIs and robots in the real world. Our first finding is that modern LLMs paired with constitutions turn out to be well-aligned with human values (95.8%), contrary to unsettling decisions typically made in SciFi (only 21.2% alignment). Secondly, we find that generated constitutions substantially increase alignment compared to the base model (79.4% to 95.8%), and show resilience to an adversarial prompt setting (23.3% to 92.3%). Additionally, we find that those constitutions are among the top performers on the ASIMOV Benchmark which is derived from real-world images and hospital injury reports. Sci-Fi-inspired constitutions are thus highly aligned and applicable in real-world situations. We release SciFi-Benchmark: a large-scale dataset to advance robot ethics and safety research. It comprises 9,056 questions and 53,384 answers, in addition to a smaller human-labeled evaluation set. Data is available at https://scifi-benchmark.github.io
☆ Video Individual Counting for Moving Drones
Video Individual Counting (VIC) has received increasing attentions recently due to its importance in intelligent video surveillance. Existing works are limited in two aspects, i.e., dataset and method. Previous crowd counting datasets are captured with fixed or rarely moving cameras with relatively sparse individuals, restricting evaluation for a highly varying view and time in crowded scenes. While VIC methods have been proposed based on localization-then-association or localization-then-classification, they may not perform well due to difficulty in accurate localization of crowded and small targets under challenging scenarios. To address these issues, we collect a MovingDroneCrowd Dataset and propose a density map based VIC method. Different from existing datasets, our dataset consists of videos captured by fast-moving drones in crowded scenes under diverse illuminations, shooting heights and angles. Other than localizing individuals, we propose a Depth-wise Cross-Frame Attention (DCFA) module, which directly estimate inflow and outflow density maps through learning shared density maps between consecutive frames. The inflow density maps across frames are summed up to obtain the number of unique pedestrians in a video. Experiments on our datasets and publicly available ones show the superiority of our method over the state of the arts for VIC in highly dynamic and complex crowded scenes. Our dataset and codes will be released publicly.
☆ Exploring the best way for UAV visual localization under Low-altitude Multi-view Observation Condition: a Benchmark
Absolute Visual Localization (AVL) enables Unmanned Aerial Vehicle (UAV) to determine its position in GNSS-denied environments by establishing geometric relationships between UAV images and geo-tagged reference maps. While many previous works have achieved AVL with image retrieval and matching techniques, research in low-altitude multi-view scenarios still remains limited. Low-altitude Multi-view condition presents greater challenges due to extreme viewpoint changes. To explore the best UAV AVL approach in such condition, we proposed this benchmark. Firstly, a large-scale Low-altitude Multi-view dataset called AnyVisLoc was constructed. This dataset includes 18,000 images captured at multiple scenes and altitudes, along with 2.5D reference maps containing aerial photogrammetry maps and historical satellite maps. Secondly, a unified framework was proposed to integrate the state-of-the-art AVL approaches and comprehensively test their performance. The best combined method was chosen as the baseline and the key factors that influencing localization accuracy are thoroughly analyzed based on it. This baseline achieved a 74.1% localization accuracy within 5m under Low-altitude, Multi-view conditions. In addition, a novel retrieval metric called PDM@K was introduced to better align with the characteristics of the UAV AVL task. Overall, this benchmark revealed the challenges of Low-altitude, Multi-view UAV AVL and provided valuable guidance for future research. The dataset and codes are available at https://github.com/UAV-AVL/Benchmark
♻ ☆ Hierarchical Contact-Rich Trajectory Optimization for Multi-Modal Manipulation using Tight Convex Relaxations ICRA
Designing trajectories for manipulation through contact is challenging as it requires reasoning of object \& robot trajectories as well as complex contact sequences simultaneously. In this paper, we present a novel framework for simultaneously designing trajectories of robots, objects, and contacts efficiently for contact-rich manipulation. We propose a hierarchical optimization framework where Mixed-Integer Linear Program (MILP) selects optimal contacts between robot \& object using approximate dynamical constraints, and then a NonLinear Program (NLP) optimizes trajectory of the robot(s) and object considering full nonlinear constraints. We present a convex relaxation of bilinear constraints using binary encoding technique such that MILP can provide tighter solutions with better computational complexity. The proposed framework is evaluated on various manipulation tasks where it can reason about complex multi-contact interactions while providing computational advantages. We also demonstrate our framework in hardware experiments using a bimanual robot system. The video summarizing this paper and hardware experiments is found https://youtu.be/s2S1Eg5RsRE?si=chPkftz_a3NAHxLq
comment: 2025 IEEE International Conference on Robotics and Automation (2025 ICRA)
♻ ☆ RS2V-L: Vehicle-Mounted LiDAR Data Generation from Roadside Sensor Observations
End-to-end autonomous driving solutions, which process multi-modal sensory data to directly generate refined control commands, have become a dominant paradigm in autonomous driving research. However, these approaches predominantly depend on single-vehicle data collection for model training and optimization, resulting in significant challenges such as high data acquisition and annotation costs, the scarcity of critical driving scenarios, and fragmented datasets that impede model generalization. To mitigate these limitations, we introduce RS2V-L, a novel framework for reconstructing and synthesizing vehicle-mounted LiDAR data from roadside sensor observations. Specifically, our method transforms roadside LiDAR point clouds into the vehicle-mounted LiDAR coordinate system by leveraging the target vehicle's relative pose. Subsequently, high-fidelity vehicle-mounted LiDAR data is synthesized through virtual LiDAR modeling, point cloud classification, and resampling techniques. To the best of our knowledge, this is the first approach to reconstruct vehicle-mounted LiDAR data from roadside sensor inputs. Extensive experimental evaluations demonstrate that incorporating the generated data into model training-complementing the KITTI dataset-enhances 3D object detection accuracy by over \text{30\%} while improving the efficiency of end-to-end autonomous driving data generation by more than an order of magnitude. These findings strongly validate the effectiveness of the proposed method and underscore its potential in reducing dependence on costly vehicle-mounted data collection while improving the robustness of autonomous driving models.
comment: Upon self-examination, we have found that the data in the experimental section of our paper is uncertain. To ensure academic rigor, we are applying for the withdrawal of the paper. We will resubmit it after reconfirming and correcting the data. Thank you for your understanding
♻ ☆ Object-Centric World Model for Language-Guided Manipulation
A world model is essential for an agent to predict the future and plan in domains such as autonomous driving and robotics. To achieve this, recent advancements have focused on video generation, which has gained significant attention due to the impressive success of diffusion models. However, these models require substantial computational resources. To address these challenges, we propose a world model leveraging object-centric representation space using slot attention, guided by language instructions. Our model perceives the current state as an object-centric representation and predicts future states in this representation space conditioned on natural language instructions. This approach results in a more compact and computationally efficient model compared to diffusion-based generative alternatives. Furthermore, it flexibly predicts future states based on language instructions, and offers a significant advantage in manipulation tasks where object recognition is crucial. In this paper, we demonstrate that our latent predictive world model surpasses generative world models in visuo-linguo-motor control tasks, achieving superior sample and computation efficiency. We also investigate the generalization performance of the proposed method and explore various strategies for predicting actions using object-centric representations.
♻ ☆ DeepUKF-VIN: Adaptively-tuned Deep Unscented Kalman Filter for 3D Visual-Inertial Navigation based on IMU-Vision-Net
This paper addresses the challenge of estimating the orientation, position, and velocity of a vehicle operating in three-dimensional (3D) space with six degrees of freedom (6-DoF). A Deep Learning-based Adaptation Mechanism (DLAM) is proposed to adaptively tune the noise covariance matrices of Kalman-type filters for the Visual-Inertial Navigation (VIN) problem, leveraging IMU-Vision-Net. Subsequently, an adaptively tuned Deep Learning Unscented Kalman Filter for 3D VIN (DeepUKF-VIN) is introduced to utilize the proposed DLAM, thereby robustly estimating key navigation components, including orientation, position, and linear velocity. The proposed DeepUKF-VIN integrates data from onboard sensors, specifically an inertial measurement unit (IMU) and visual feature points extracted from a camera, and is applicable for GPS-denied navigation. Its quaternion-based design effectively captures navigation nonlinearities and avoids the singularities commonly encountered with Euler-angle-based filters. Implemented in discrete space, the DeepUKF-VIN facilitates practical filter deployment. The filter's performance is evaluated using real-world data collected from an IMU and a stereo camera at low sampling rates. The results demonstrate filter stability and rapid attenuation of estimation errors, highlighting its high estimation accuracy. Furthermore, comparative testing against the standard Unscented Kalman Filter (UKF) in two scenarios consistently shows superior performance across all navigation components, thereby validating the efficacy and robustness of the proposed DeepUKF-VIN. Keywords: Deep Learning, Unscented Kalman Filter, Adaptive tuning, Estimation, Navigation, Unmanned Aerial Vehicle, Sensor-fusion.
♻ ☆ Grounding Video Models to Actions through Goal Conditioned Exploration ICLR 2025
Large video models, pretrained on massive amounts of Internet video, provide a rich source of physical knowledge about the dynamics and motions of objects and tasks. However, video models are not grounded in the embodiment of an agent, and do not describe how to actuate the world to reach the visual states depicted in a video. To tackle this problem, current methods use a separate vision-based inverse dynamic model trained on embodiment-specific data to map image states to actions. Gathering data to train such a model is often expensive and challenging, and this model is limited to visual settings similar to the ones in which data are available. In this paper, we investigate how to directly ground video models to continuous actions through self-exploration in the embodied environment -- using generated video states as visual goals for exploration. We propose a framework that uses trajectory level action generation in combination with video guidance to enable an agent to solve complex tasks without any external supervision, e.g., rewards, action labels, or segmentation masks. We validate the proposed approach on 8 tasks in Libero, 6 tasks in MetaWorld, 4 tasks in Calvin, and 12 tasks in iThor Visual Navigation. We show how our approach is on par with or even surpasses multiple behavior cloning baselines trained on expert demonstrations while without requiring any action annotations.
comment: ICLR 2025 (Spotlight). Project page: https://video-to-action.github.io/
♻ ☆ Fair Play in the Fast Lane: Integrating Sportsmanship into Autonomous Racing Systems
Autonomous racing has gained significant attention as a platform for high-speed decision-making and motion control. While existing methods primarily focus on trajectory planning and overtaking strategies, the role of sportsmanship in ensuring fair competition remains largely unexplored. In human racing, rules such as the one-motion rule and the enough-space rule prevent dangerous and unsportsmanlike behavior. However, autonomous racing systems often lack mechanisms to enforce these principles, potentially leading to unsafe maneuvers. This paper introduces a bi-level game-theoretic framework to integrate sportsmanship (SPS) into versus racing. At the high level, we model racing intentions using a Stackelberg game, where Monte Carlo Tree Search (MCTS) is employed to derive optimal strategies. At the low level, vehicle interactions are formulated as a Generalized Nash Equilibrium Problem (GNEP), ensuring that all agents follow sportsmanship constraints while optimizing their trajectories. Simulation results demonstrate the effectiveness of the proposed approach in enforcing sportsmanship rules while maintaining competitive performance. We analyze different scenarios where attackers and defenders adhere to or disregard sportsmanship rules and show how knowledge of these constraints influences strategic decision-making. This work highlights the importance of balancing competition and fairness in autonomous racing and provides a foundation for developing ethical and safe AI-driven racing systems.
♻ ☆ ReloPush: Multi-object Rearrangement in Confined Spaces with a Nonholonomic Mobile Robot Pusher ICRA 2025
We focus on push-based multi-object rearrangement planning using a nonholonomically constrained mobile robot. The simultaneous geometric, kinematic, and physics constraints make this problem especially challenging. Prior work on rearrangement planning often relaxes some of these constraints by assuming dexterous hardware, prehensile manipulation, or sparsely occupied workspaces. Our key insight is that by capturing these constraints into a unified representation, we could empower a constrained robot to tackle difficult problem instances by modifying the environment in its favor. To this end, we introduce a Push-Traversability graph, whose vertices represent poses that the robot can push objects from, and edges represent optimal, kinematically feasible, and stable transitions between them. Based on this graph, we develop ReloPush, a graph-based planning framework that takes as input a complex multi-object rearrangement task and breaks it down into a sequence of single-object pushing tasks. We evaluate ReloPush across a series of challenging scenarios, involving the rearrangement of densely cluttered workspaces with up to nine objects, using a 1/10-scale robot racecar. ReloPush exhibits orders of magnitude faster runtimes and significantly more robust execution in the real world, evidenced in lower execution times and fewer losses of object contact, compared to two baselines lacking our proposed graph structure.
comment: Preprint of final version, accepted to ICRA 2025
♻ ☆ EHC-MM: Embodied Holistic Control for Mobile Manipulation ICRA2025
Mobile manipulation typically entails the base for mobility, the arm for accurate manipulation, and the camera for perception. The principle of Distant Mobility, Close Grasping(DMCG) is essential for holistic control. We propose Embodied Holistic Control for Mobile Manipulation(EHC-MM) with the embodied function of sig(w): By formulating the DMCG principle as a Quadratic Programming (QP) problem, sig(w) dynamically balances the robot's emphasis between movement and manipulation with the consideration of the robot's state and environment. In addition, we propose the Monitor-Position-Based Servoing (MPBS) with sig(w), enabling the tracking of the target during the operation. This approach enables coordinated control among the robot's base, arm, and camera, enhancing task efficiency. Through extensive simulations and real-world experiments, our approach significantly improves both the success rate and efficiency of mobile manipulation tasks, achieving a 95.6% success rate in real-world scenarios and a 52.8% increase in time efficiency.
comment: accepted by ICRA2025
♻ ☆ A cheat sheet for probability distributions of orientational data
The need for statistical models of orientations arises in many applications in engineering and computer science. Orientational data appear as sets of angles, unit vectors, rotation matrices or quaternions. In the field of directional statistics, a lot of advances have been made in modelling such types of data. However, only a few of these tools are used in engineering and computer science applications. Hence, this paper aims to serve as a cheat sheet for those probability distributions of orientations. Models for 1-DOF, 2-DOF and 3-DOF orientations are discussed. For each of them, expressions for the density function, fitting to data, and sampling are presented. The paper is written with a compromise between engineering and statistics in terms of notation and terminology. A Python library with functions for some of these models is provided. Using this library, two examples of applications to real data are presented.
comment: Added section 7, improved the experiments description (Sec. 8), fixed typos
♻ ☆ Flow-Inspired Multi-Robot Real-Time Scheduling Planner
Collision avoidance and trajectory planning are crucial in multi-robot systems, particularly in environments with numerous obstacles. Although extensive research has been conducted in this field, the challenge of rapid traversal through such environments has not been fully addressed. This paper addresses this problem by proposing a novel real-time scheduling scheme designed to optimize the passage of multi-robot systems through complex, obstacle-rich maps. Inspired from network flow optimization, our scheme decomposes the environment into a network structure, enabling the efficient allocation of robots to paths based on real-time congestion data. The proposed scheduling planner operates on top of existing collision avoidance algorithms, focusing on minimizing traversal time by balancing robot detours and waiting times. Our simulation results demonstrate the efficiency of the proposed scheme. Additionally, we validated its effectiveness through real world flight tests using ten quadrotors. This work contributes a lightweight, effective scheduling planner capable of meeting the real-time demands of multi-robot systems in obstacle-rich environments.
♻ ☆ Input-Output Feedback Linearization Preserving Task Priority for Multivariate Nonlinear Systems Having Singular Input Gain Matrix
We propose an extension of the input-output feedback linearization for a class of multivariate systems that are not input-output linearizable in a classical manner. The key observation is that the usual input-output linearization problem can be interpreted as the problem of solving simultaneous linear equations associated with the input gain matrix: thus, even at points where the input gain matrix becomes singular, it is still possible to solve a part of linear equations, by which a subset of input-output relations is made linear or close to be linear. Based on this observation, we adopt the task priority-based approach in the input-output linearization problem. First, we generalize the classical Byrnes-Isidori normal form to a prioritized normal form having a triangular structure, so that the singularity of a subblock of the input gain matrix related to lower-priority tasks does not directly propagate to higher-priority tasks. Next, we present a prioritized input-output linearization via the multi-objective optimization with the lexicographical ordering, resulting in a prioritized semilinear form that establishes input output relations whose subset with higher priority is linear or close to be linear. Finally, Lyapunov analysis on ultimate boundedness and task achievement is provided, particularly when the proposed prioritized input-output linearization is applied to the output tracking problem. This work introduces a new control framework for complex systems having critical and noncritical control issues, by assigning higher priority to the critical ones.
comment: A part of this work has been accepted to be published in the IEEE Transactions on Automatic Control
♻ ☆ MAC-VO: Metrics-aware Covariance for Learning-based Stereo Visual Odometry
We propose the MAC-VO, a novel learning-based stereo VO that leverages the learned metrics-aware matching uncertainty for dual purposes: selecting keypoint and weighing the residual in pose graph optimization. Compared to traditional geometric methods prioritizing texture-affluent features like edges, our keypoint selector employs the learned uncertainty to filter out the low-quality features based on global inconsistency. In contrast to the learning-based algorithms that model the scale-agnostic diagonal weight matrix for covariance, we design a metrics-aware covariance model to capture the spatial error during keypoint registration and the correlations between different axes. Integrating this covariance model into pose graph optimization enhances the robustness and reliability of pose estimation, particularly in challenging environments with varying illumination, feature density, and motion patterns. On public benchmark datasets, MAC-VO outperforms existing VO algorithms and even some SLAM algorithms in challenging environments. The covariance map also provides valuable information about the reliability of the estimated poses, which can benefit decision-making for autonomous systems.
♻ ☆ Intelligent logistics management robot path planning algorithm integrating transformer and GCN network
This research delves into advanced route optimization for robots in smart logistics, leveraging a fusion of Transformer architectures, Graph Neural Networks (GNNs), and Generative Adversarial Networks (GANs). The approach utilizes a graph-based representation encompassing geographical data, cargo allocation, and robot dynamics, addressing both spatial and resource limitations to refine route efficiency. Through extensive testing with authentic logistics datasets, the proposed method achieves notable improvements, including a 15% reduction in travel distance, a 20% boost in time efficiency, and a 10% decrease in energy consumption. These findings highlight the algorithm's effectiveness, promoting enhanced performance in intelligent logistics operations.
comment: 21 pages
♻ ☆ Masked Sensory-Temporal Attention for Sensor Generalization in Quadruped Locomotion ICRA 2025
With the rising focus on quadrupeds, a generalized policy capable of handling different robot models and sensor inputs becomes highly beneficial. Although several methods have been proposed to address different morphologies, it remains a challenge for learning-based policies to manage various combinations of proprioceptive information. This paper presents Masked Sensory-Temporal Attention (MSTA), a novel transformer-based mechanism with masking for quadruped locomotion. It employs direct sensor-level attention to enhance the sensory-temporal understanding and handle different combinations of sensor data, serving as a foundation for incorporating unseen information. MSTA can effectively understand its states even with a large portion of missing information, and is flexible enough to be deployed on physical systems despite the long input sequence.
comment: Accepted for ICRA 2025. Project website for video: https://johnliudk.github.io/msta/
♻ ☆ ExBody2: Advanced Expressive Humanoid Whole-Body Control
This paper tackles the challenge of enabling real-world humanoid robots to perform expressive and dynamic whole-body motions while maintaining overall stability and robustness. We propose Advanced Expressive Whole-Body Control (Exbody2), a method for producing whole-body tracking controllers that are trained on both human motion capture and simulated data and then transferred to the real world. We introduce a technique for decoupling the velocity tracking of the entire body from tracking body landmarks. We use a teacher policy to produce intermediate data that better conforms to the robot's kinematics and to automatically filter away infeasible whole-body motions. This two-step approach enabled us to produce a student policy that can be deployed on the robot that can walk, crouch, and dance. We also provide insight into the trade-off between versatility and the tracking performance on specific motions. We observed significant improvement of tracking performance after fine-tuning on a small amount of data, at the expense of the others.
comment: website: https://exbody2.github.io
♻ ☆ Reasoning in visual navigation of end-to-end trained agents: a dynamical systems approach
Progress in Embodied AI has made it possible for end-to-end-trained agents to navigate in photo-realistic environments with high-level reasoning and zero-shot or language-conditioned behavior, but benchmarks are still dominated by simulation. In this work, we focus on the fine-grained behavior of fast-moving real robots and present a large-scale experimental study involving \numepisodes{} navigation episodes in a real environment with a physical robot, where we analyze the type of reasoning emerging from end-to-end training. In particular, we study the presence of realistic dynamics which the agent learned for open-loop forecasting, and their interplay with sensing. We analyze the way the agent uses latent memory to hold elements of the scene structure and information gathered during exploration. We probe the planning capabilities of the agent, and find in its memory evidence for somewhat precise plans over a limited horizon. Furthermore, we show in a post-hoc analysis that the value function learned by the agent relates to long-term planning. Put together, our experiments paint a new picture on how using tools from computer vision and sequential decision making have led to new capabilities in robotics and control. An interactive tool is available at europe.naverlabs.com/research/publications/reasoning-in-visual-navigation-of-end-to-end-trained-agents.
♻ ☆ Robust Deterministic Policy Gradient for Disturbance Attenuation and Its Application to Quadrotor Control
Practical control systems pose significant challenges in identifying optimal control policies due to uncertainties in the system model and external disturbances. While $H_\infty$ control techniques are commonly used to design robust controllers that mitigate the effects of disturbances, these methods often require complex and computationally intensive calculations. To address this issue, this paper proposes a reinforcement learning algorithm called Robust Deterministic Policy Gradient (RDPG), which formulates the $H_\infty$ control problem as a two-player zero-sum dynamic game. In this formulation, one player (the user) aims to minimize the cost, while the other player (the adversary) seeks to maximize it. We then employ deterministic policy gradient (DPG) and its deep reinforcement learning counterpart to train a robust control policy with effective disturbance attenuation. In particular, for practical implementation, we introduce an algorithm called robust deep deterministic policy gradient (RDDPG), which employs a deep neural network architecture and integrates techniques from the twin-delayed deep deterministic policy gradient (TD3) to enhance stability and learning efficiency. To evaluate the proposed algorithm, we implement it on an unmanned aerial vehicle (UAV) tasked with following a predefined path in a disturbance-prone environment. The experimental results demonstrate that the proposed method outperforms other control approaches in terms of robustness against disturbances, enabling precise real-time tracking of moving targets even under severe disturbance conditions.
comment: 8 pages
♻ ☆ Planning with Adaptive World Models for Autonomous Driving ICRA
Motion planning is crucial for safe navigation in complex urban environments. Historically, motion planners (MPs) have been evaluated with procedurally-generated simulators like CARLA. However, such synthetic benchmarks do not capture real-world multi-agent interactions. nuPlan, a recently released MP benchmark, addresses this limitation by augmenting real-world driving logs with closed-loop simulation logic, effectively turning the fixed dataset into a reactive simulator. We analyze the characteristics of nuPlan's recorded logs and find that each city has its own unique driving behaviors, suggesting that robust planners must adapt to different environments. We learn to model such unique behaviors with BehaviorNet, a graph convolutional neural network (GCNN) that predicts reactive agent behaviors using features derived from recently-observed agent histories; intuitively, some aggressive agents may tailgate lead vehicles, while others may not. To model such phenomena, BehaviorNet predicts the parameters of an agent's motion controller rather than directly predicting its spacetime trajectory (as most forecasters do). Finally, we present AdaptiveDriver, a model-predictive control (MPC) based planner that unrolls different world models conditioned on BehaviorNet's predictions. Our extensive experiments demonstrate that AdaptiveDriver achieves state-of-the-art results on the nuPlan closed-loop planning benchmark, improving over prior work by 2% on Test-14 Hard R-CLS, and generalizes even when evaluated on never-before-seen cities.
comment: This project has been accepted to the International Conference on Robotics and Automation (ICRA) 2025. Project Page: https://arunbalajeev.github.io/world_models_planning/world_model_paper.html
♻ ☆ HiFi-CS: Towards Open Vocabulary Visual Grounding For Robotic Grasping Using Vision-Language Models
Robots interacting with humans through natural language can unlock numerous applications such as Referring Grasp Synthesis (RGS). Given a text query, RGS determines a stable grasp pose to manipulate the referred object in the robot's workspace. RGS comprises two steps: visual grounding and grasp pose estimation. Recent studies leverage powerful Vision-Language Models (VLMs) for visually grounding free-flowing natural language in real-world robotic execution. However, comparisons in complex, cluttered environments with multiple instances of the same object are lacking. This paper introduces HiFi-CS, featuring hierarchical application of Featurewise Linear Modulation (FiLM) to fuse image and text embeddings, enhancing visual grounding for complex attribute rich text queries encountered in robotic grasping. Visual grounding associates an object in 2D/3D space with natural language input and is studied in two scenarios: Closed and Open Vocabulary. HiFi-CS features a lightweight decoder combined with a frozen VLM and outperforms competitive baselines in closed vocabulary settings while being 100x smaller in size. Our model can effectively guide open-set object detectors like GroundedSAM to enhance open-vocabulary performance. We validate our approach through real-world RGS experiments using a 7-DOF robotic arm, achieving 90.33\% visual grounding accuracy in 15 tabletop scenes. Our codebase is provided here: https://github.com/vineet2104/hifics
♻ ☆ MotionScript: Natural Language Descriptions for Expressive 3D Human Motions
We introduce MotionScript, a novel framework for generating highly detailed, natural language descriptions of 3D human motions. Unlike existing motion datasets that rely on broad action labels or generic captions, MotionScript provides fine-grained, structured descriptions that capture the full complexity of human movement including expressive actions (e.g., emotions, stylistic walking) and interactions beyond standard motion capture datasets. MotionScript serves as both a descriptive tool and a training resource for text-to-motion models, enabling the synthesis of highly realistic and diverse human motions from text. By augmenting motion datasets with MotionScript captions, we demonstrate significant improvements in out-of-distribution motion generation, allowing large language models (LLMs) to generate motions that extend beyond existing data. Additionally, MotionScript opens new applications in animation, virtual human simulation, and robotics, providing an interpretable bridge between intuitive descriptions and motion synthesis. To the best of our knowledge, this is the first attempt to systematically translate 3D motion into structured natural language without requiring training data.
comment: Project webpage: https://pjyazdian.github.io/MotionScript
Extrapolated Urban View Synthesis Benchmark
Photorealistic simulators are essential for the training and evaluation of vision-centric autonomous vehicles (AVs). At their core is Novel View Synthesis (NVS), a crucial capability that generates diverse unseen viewpoints to accommodate the broad and continuous pose distribution of AVs. Recent advances in radiance fields, such as 3D Gaussian Splatting, achieve photorealistic rendering at real-time speeds and have been widely used in modeling large-scale driving scenes. However, their performance is commonly evaluated using an interpolated setup with highly correlated training and test views. In contrast, extrapolation, where test views largely deviate from training views, remains underexplored, limiting progress in generalizable simulation technology. To address this gap, we leverage publicly available AV datasets with multiple traversals, multiple vehicles, and multiple cameras to build the first Extrapolated Urban View Synthesis (EUVS) benchmark. Meanwhile, we conduct both quantitative and qualitative evaluations of state-of-the-art NVS methods across different evaluation settings. Our results show that current NVS methods are prone to overfitting to training views. Besides, incorporating diffusion priors and improving geometry cannot fundamentally improve NVS under large view changes, highlighting the need for more robust approaches and large-scale training. We will release the data to help advance self-driving and urban robotics simulation technology.
comment: Project page: https://ai4ce.github.io/EUVS-Benchmark/
♻ ☆ CMP: Cooperative Motion Prediction with Multi-Agent Communication
The confluence of the advancement of Autonomous Vehicles (AVs) and the maturity of Vehicle-to-Everything (V2X) communication has enabled the capability of cooperative connected and automated vehicles (CAVs). Building on top of cooperative perception, this paper explores the feasibility and effectiveness of cooperative motion prediction. Our method, CMP, takes LiDAR signals as model input to enhance tracking and prediction capabilities. Unlike previous work that focuses separately on either cooperative perception or motion prediction, our framework, to the best of our knowledge, is the first to address the unified problem where CAVs share information in both perception and prediction modules. Incorporated into our design is the unique capability to tolerate realistic V2X transmission delays, while dealing with bulky perception representations. We also propose a prediction aggregation module, which unifies the predictions obtained by different CAVs and generates the final prediction. Through extensive experiments and ablation studies on the OPV2V and V2V4Real datasets, we demonstrate the effectiveness of our method in cooperative perception, tracking, and motion prediction. In particular, CMP reduces the average prediction error by 12.3% compared with the strongest baseline. Our work marks a significant step forward in the cooperative capabilities of CAVs, showcasing enhanced performance in complex scenarios. More details can be found on the project website: https://cmp-cooperative-prediction.github.io.
comment: IEEE Robotics and Automation Letters; Project website: https://cmp-cooperative-prediction.github.io/
♻ ☆ Quantifying Aleatoric and Epistemic Dynamics Uncertainty via Local Conformal Calibration
Whether learned, simulated, or analytical, approximations of a robot's dynamics can be inaccurate when encountering novel environments. Many approaches have been proposed to quantify the aleatoric uncertainty of such methods, i.e. uncertainty resulting from stochasticity, however these estimates alone are not enough to properly estimate the uncertainty of a model in a novel environment, where the actual dynamics can change. Such changes can induce epistemic uncertainty, i.e. uncertainty due to a lack of information/data. Accounting for both epistemic and aleatoric dynamics uncertainty in a theoretically-grounded way remains an open problem. We introduce Local Uncertainty Conformal Calibration (LUCCa), a conformal prediction-based approach that calibrates the aleatoric uncertainty estimates provided by dynamics models to generate probabilistically-valid prediction regions of the system's state. We account for both epistemic and aleatoric uncertainty non-asymptotically, without strong assumptions about the form of the true dynamics or how it changes. The calibration is performed locally in the state-action space, leading to uncertainty estimates that are useful for planning. We validate our method by constructing probabilistically-safe plans for a double-integrator under significant changes in dynamics.
comment: 24 pages, 9 figures. Accepted to the 16th International Workshop on the Algorithmic Foundations of Robotics (WAFR) 2024
♻ ☆ Safe and Dynamically-Feasible Motion Planning using Control Lyapunov and Barrier Functions
This paper considers the problem of designing motion planning algorithms for control-affine systems that generate collision-free paths from an initial to a final destination and can be executed using safe and dynamically-feasible controllers. We introduce the C-CLF-CBF-RRT algorithm, which produces paths with such properties and leverages rapidly exploring random trees (RRTs), control Lyapunov functions (CLFs) and control barrier functions (CBFs). We show that C-CLF-CBF-RRT is computationally efficient for linear systems with polytopic and ellipsoidal constraints, and establish its probabilistic completeness. We showcase the performance of C-CLF-CBF-RRT in different simulation and hardware experiments.
♻ ☆ DeformPAM: Data-Efficient Learning for Long-horizon Deformable Object Manipulation via Preference-based Action Alignment ICRA 2025
In recent years, imitation learning has made progress in the field of robotic manipulation. However, it still faces challenges when addressing complex long-horizon tasks with deformable objects, such as high-dimensional state spaces, complex dynamics, and multimodal action distributions. Traditional imitation learning methods often require a large amount of data and encounter distributional shifts and accumulative errors in these tasks. To address these issues, we propose a data-efficient general learning framework (DeformPAM) based on preference learning and reward-guided action selection. DeformPAM decomposes long-horizon tasks into multiple action primitives, utilizes 3D point cloud inputs and diffusion models to model action distributions, and trains an implicit reward model using human preference data. During the inference phase, the reward model scores multiple candidate actions, selecting the optimal action for execution, thereby reducing the occurrence of anomalous actions and improving task completion quality. Experiments conducted on three challenging real-world long-horizon deformable object manipulation tasks demonstrate the effectiveness of this method. Results show that DeformPAM improves both task completion quality and efficiency compared to baseline methods even with limited data. Code and data will be available at https://deform-pam.robotflow.ai.
comment: Accepted to ICRA 2025. Project page: https://deform-pam.robotflow.ai
Computer Vision 143
☆ PISA Experiments: Exploring Physics Post-Training for Video Diffusion Models by Watching Stuff Drop
Large-scale pre-trained video generation models excel in content creation but are not reliable as physically accurate world simulators out of the box. This work studies the process of post-training these models for accurate world modeling through the lens of the simple, yet fundamental, physics task of modeling object freefall. We show state-of-the-art video generation models struggle with this basic task, despite their visually impressive outputs. To remedy this problem, we find that fine-tuning on a relatively small amount of simulated videos is effective in inducing the dropping behavior in the model, and we can further improve results through a novel reward modeling procedure we introduce. Our study also reveals key limitations of post-training in generalization and distribution modeling. Additionally, we release a benchmark for this task that may serve as a useful diagnostic tool for tracking physical accuracy in large-scale video generative model development.
☆ SimLingo: Vision-Only Closed-Loop Autonomous Driving with Language-Action Alignment CVPR 2025
Integrating large language models (LLMs) into autonomous driving has attracted significant attention with the hope of improving generalization and explainability. However, existing methods often focus on either driving or vision-language understanding but achieving both high driving performance and extensive language understanding remains challenging. In addition, the dominant approach to tackle vision-language understanding is using visual question answering. However, for autonomous driving, this is only useful if it is aligned with the action space. Otherwise, the model's answers could be inconsistent with its behavior. Therefore, we propose a model that can handle three different tasks: (1) closed-loop driving, (2) vision-language understanding, and (3) language-action alignment. Our model SimLingo is based on a vision language model (VLM) and works using only camera, excluding expensive sensors like LiDAR. SimLingo obtains state-of-the-art performance on the widely used CARLA simulator on the Bench2Drive benchmark and is the winning entry at the CARLA challenge 2024. Additionally, we achieve strong results in a wide variety of language-related tasks while maintaining high driving performance.
comment: CVPR 2025. 1st Place @ CARLA Challenge 2024. Challenge tech report (preliminary version of SimLingo): arXiv:2406.10165
☆ Fair Federated Medical Image Classification Against Quality Shift via Inter-Client Progressive State Matching
Despite the potential of federated learning in medical applications, inconsistent imaging quality across institutions-stemming from lower-quality data from a minority of clients-biases federated models toward more common high-quality images. This raises significant fairness concerns. Existing fair federated learning methods have demonstrated some effectiveness in solving this problem by aligning a single 0th- or 1st-order state of convergence (e.g., training loss or sharpness). However, we argue in this work that fairness based on such a single state is still not an adequate surrogate for fairness during testing, as these single metrics fail to fully capture the convergence characteristics, making them suboptimal for guiding fair learning. To address this limitation, we develop a generalized framework. Specifically, we propose assessing convergence using multiple states, defined as sharpness or perturbed loss computed at varying search distances. Building on this comprehensive assessment, we propose promoting fairness for these states across clients to achieve our ultimate fairness objective. This is accomplished through the proposed method, FedISM+. In FedISM+, the search distance evolves over time, progressively focusing on different states. We then incorporate two components in local training and global aggregation to ensure cross-client fairness for each state. This gradually makes convergence equitable for all states, thereby improving fairness during testing. Our empirical evaluations, performed on the well-known RSNA ICH and ISIC 2019 datasets, demonstrate the superiority of FedISM+ over existing state-of-the-art methods for fair federated learning. The code is available at https://github.com/wnn2000/FFL4MIA.
comment: Preprint
☆ TPDiff: Temporal Pyramid Video Diffusion Model
The development of video diffusion models unveils a significant challenge: the substantial computational demands. To mitigate this challenge, we note that the reverse process of diffusion exhibits an inherent entropy-reducing nature. Given the inter-frame redundancy in video modality, maintaining full frame rates in high-entropy stages is unnecessary. Based on this insight, we propose TPDiff, a unified framework to enhance training and inference efficiency. By dividing diffusion into several stages, our framework progressively increases frame rate along the diffusion process with only the last stage operating on full frame rate, thereby optimizing computational efficiency. To train the multi-stage diffusion model, we introduce a dedicated training framework: stage-wise diffusion. By solving the partitioned probability flow ordinary differential equations (ODE) of diffusion under aligned data and noise, our training strategy is applicable to various diffusion forms and further enhances training efficiency. Comprehensive experimental evaluations validate the generality of our method, demonstrating 50% reduction in training cost and 1.5x improvement in inference efficiency.
comment: Project page: https://showlab.github.io/TPDiff/
☆ FCaS: Fine-grained Cardiac Image Synthesis based on 3D Template Conditional Diffusion Model
Solving medical imaging data scarcity through semantic image generation has attracted significant attention in recent years. However, existing methods primarily focus on generating whole-organ or large-tissue structures, showing limited effectiveness for organs with fine-grained structure. Due to stringent topological consistency, fragile coronary features, and complex 3D morphological heterogeneity in cardiac imaging, accurately reconstructing fine-grained anatomical details of the heart remains a great challenge. To address this problem, in this paper, we propose the Fine-grained Cardiac image Synthesis(FCaS) framework, established on 3D template conditional diffusion model. FCaS achieves precise cardiac structure generation using Template-guided Conditional Diffusion Model (TCDM) through bidirectional mechanisms, which provides the fine-grained topological structure information of target image through the guidance of template. Meanwhile, we design a deformable Mask Generation Module (MGM) to mitigate the scarcity of high-quality and diverse reference mask in the generation process. Furthermore, to alleviate the confusion caused by imprecise synthetic images, we propose a Confidence-aware Adaptive Learning (CAL) strategy to facilitate the pre-training of downstream segmentation tasks. Specifically, we introduce the Skip-Sampling Variance (SSV) estimation to obtain confidence maps, which are subsequently employed to rectify the pre-training on downstream tasks. Experimental results demonstrate that images generated from FCaS achieves state-of-the-art performance in topological consistency and visual quality, which significantly facilitates the downstream tasks as well. Code will be released in the future.
comment: 16 pages, 9 figures
☆ Electromyography-Informed Facial Expression Reconstruction for Physiological-Based Synthesis and Analysis CVPR 2025
The relationship between muscle activity and resulting facial expressions is crucial for various fields, including psychology, medicine, and entertainment. The synchronous recording of facial mimicry and muscular activity via surface electromyography (sEMG) provides a unique window into these complex dynamics. Unfortunately, existing methods for facial analysis cannot handle electrode occlusion, rendering them ineffective. Even with occlusion-free reference images of the same person, variations in expression intensity and execution are unmatchable. Our electromyography-informed facial expression reconstruction (EIFER) approach is a novel method to restore faces under sEMG occlusion faithfully in an adversarial manner. We decouple facial geometry and visual appearance (e.g., skin texture, lighting, electrodes) by combining a 3D Morphable Model (3DMM) with neural unpaired image-to-image translation via reference recordings. Then, EIFER learns a bidirectional mapping between 3DMM expression parameters and muscle activity, establishing correspondence between the two domains. We validate the effectiveness of our approach through experiments on a dataset of synchronized sEMG recordings and facial mimicry, demonstrating faithful geometry and appearance reconstruction. Further, we synthesize expressions based on muscle activity and how observed expressions can predict dynamic muscle activity. Consequently, EIFER introduces a new paradigm for facial electromyography, which could be extended to other forms of multi-modal face recordings.
comment: Accepted at CVPR 2025, 41 pages, 37 figures, 8 tables
☆ GenHPE: Generative Counterfactuals for 3D Human Pose Estimation with Radio Frequency Signals
Human pose estimation (HPE) detects the positions of human body joints for various applications. Compared to using cameras, HPE using radio frequency (RF) signals is non-intrusive and more robust to adverse conditions, exploiting the signal variations caused by human interference. However, existing studies focus on single-domain HPE confined by domain-specific confounders, which cannot generalize to new domains and result in diminished HPE performance. Specifically, the signal variations caused by different human body parts are entangled, containing subject-specific confounders. RF signals are also intertwined with environmental noise, involving environment-specific confounders. In this paper, we propose GenHPE, a 3D HPE approach that generates counterfactual RF signals to eliminate domain-specific confounders. GenHPE trains generative models conditioned on human skeleton labels, learning how human body parts and confounders interfere with RF signals. We manipulate skeleton labels (i.e., removing body parts) as counterfactual conditions for generative models to synthesize counterfactual RF signals. The differences between counterfactual signals approximately eliminate domain-specific confounders and regularize an encoder-decoder model to learn domain-independent representations. Such representations help GenHPE generalize to new subjects/environments for cross-domain 3D HPE. We evaluate GenHPE on three public datasets from WiFi, ultra-wideband, and millimeter wave. Experimental results show that GenHPE outperforms state-of-the-art methods and reduces estimation errors by up to 52.2mm for cross-subject HPE and 10.6mm for cross-environment HPE.
☆ Evaluating Visual Explanations of Attention Maps for Transformer-based Medical Imaging MICCAI 2024
Although Vision Transformers (ViTs) have recently demonstrated superior performance in medical imaging problems, they face explainability issues similar to previous architectures such as convolutional neural networks. Recent research efforts suggest that attention maps, which are part of decision-making process of ViTs can potentially address the explainability issue by identifying regions influencing predictions, especially in models pretrained with self-supervised learning. In this work, we compare the visual explanations of attention maps to other commonly used methods for medical imaging problems. To do so, we employ four distinct medical imaging datasets that involve the identification of (1) colonic polyps, (2) breast tumors, (3) esophageal inflammation, and (4) bone fractures and hardware implants. Through large-scale experiments on the aforementioned datasets using various supervised and self-supervised pretrained ViTs, we find that although attention maps show promise under certain conditions and generally surpass GradCAM in explainability, they are outperformed by transformer-specific interpretability methods. Our findings indicate that the efficacy of attention maps as a method of interpretability is context-dependent and may be limited as they do not consistently provide the comprehensive insights required for robust medical decision-making.
comment: Accepted for publication in MICCAI 2024 Workshop on Interpretability of Machine Intelligence in Medical Image Computing (iMIMIC)
☆ CombatVLA: An Efficient Vision-Language-Action Model for Combat Tasks in 3D Action Role-Playing Games
Recent advances in Vision-Language-Action models (VLAs) have expanded the capabilities of embodied intelligence. However, significant challenges remain in real-time decision-making in complex 3D environments, which demand second-level responses, high-resolution perception, and tactical reasoning under dynamic conditions. To advance the field, we introduce CombatVLA, an efficient VLA model optimized for combat tasks in 3D action role-playing games(ARPGs). Specifically, our CombatVLA is a 3B model trained on video-action pairs collected by an action tracker, where the data is formatted as action-of-thought (AoT) sequences. Thereafter, CombatVLA seamlessly integrates into an action execution framework, allowing efficient inference through our truncated AoT strategy. Experimental results demonstrate that CombatVLA not only outperforms all existing models on the combat understanding benchmark but also achieves a 50-fold acceleration in game combat. Moreover, it has a higher task success rate than human players. We will open-source all resources, including the action tracker, dataset, benchmark, model weights, training code, and the implementation of the framework at https://combatvla.github.io/.
☆ Patch-Wise Hypergraph Contrastive Learning with Dual Normal Distribution Weighting for Multi-Domain Stain Transfer
Virtual stain transfer leverages computer-assisted technology to transform the histochemical staining patterns of tissue samples into other staining types. However, existing methods often lose detailed pathological information due to the limitations of the cycle consistency assumption. To address this challenge, we propose STNHCL, a hypergraph-based patch-wise contrastive learning method. STNHCL captures higher-order relationships among patches through hypergraph modeling, ensuring consistent higher-order topology between input and output images. Additionally, we introduce a novel negative sample weighting strategy that leverages discriminator heatmaps to apply different weights based on the Gaussian distribution for tissue and background, thereby enhancing traditional weighting methods. Experiments demonstrate that STNHCL achieves state-of-the-art performance in the two main categories of stain transfer tasks. Furthermore, our model also performs excellently in downstream tasks. Code will be made available.
☆ CM-Diff: A Single Generative Network for Bidirectional Cross-Modality Translation Diffusion Model Between Infrared and Visible Images
The image translation method represents a crucial approach for mitigating information deficiencies in the infrared and visible modalities, while also facilitating the enhancement of modality-specific datasets. However, existing methods for infrared and visible image translation either achieve unidirectional modality translation or rely on cycle consistency for bidirectional modality translation, which may result in suboptimal performance. In this work, we present the cross-modality translation diffusion model (CM-Diff) for simultaneously modeling data distributions in both the infrared and visible modalities. We address this challenge by combining translation direction labels for guidance during training with cross-modality feature control. Specifically, we view the establishment of the mapping relationship between the two modalities as the process of learning data distributions and understanding modality differences, achieved through a novel Bidirectional Diffusion Training (BDT) strategy. Additionally, we propose a Statistical Constraint Inference (SCI) strategy to ensure the generated image closely adheres to the data distribution of the target modality. Experimental results demonstrate the superiority of our CM-Diff over state-of-the-art methods, highlighting its potential for generating dual-modality datasets.
☆ ViM-VQ: Efficient Post-Training Vector Quantization for Visual Mamba
Visual Mamba networks (ViMs) extend the selective space state model (Mamba) to various vision tasks and demonstrate significant potential. Vector quantization (VQ), on the other hand, decomposes network weights into codebooks and assignments, significantly reducing memory usage and computational latency to enable ViMs deployment on edge devices. Although existing VQ methods have achieved extremely low-bit quantization (e.g., 3-bit, 2-bit, and 1-bit) in convolutional neural networks and Transformer-based networks, directly applying these methods to ViMs results in unsatisfactory accuracy. We identify several key challenges: 1) The weights of Mamba-based blocks in ViMs contain numerous outliers, significantly amplifying quantization errors. 2) When applied to ViMs, the latest VQ methods suffer from excessive memory consumption, lengthy calibration procedures, and suboptimal performance in the search for optimal codewords. In this paper, we propose ViM-VQ, an efficient post-training vector quantization method tailored for ViMs. ViM-VQ consists of two innovative components: 1) a fast convex combination optimization algorithm that efficiently updates both the convex combinations and the convex hulls to search for optimal codewords, and 2) an incremental vector quantization strategy that incrementally confirms optimal codewords to mitigate truncation errors. Experimental results demonstrate that ViM-VQ achieves state-of-the-art performance in low-bit quantization across various visual tasks.
☆ Double-Stage Feature-Level Clustering-Based Mixture of Experts Framework
The Mixture-of-Experts (MoE) model has succeeded in deep learning (DL). However, its complex architecture and advantages over dense models in image classification remain unclear. In previous studies, MoE performance has often been affected by noise and outliers in the input space. Some approaches incorporate input clustering for training MoE models, but most clustering algorithms lack access to labeled data, limiting their effectiveness. This paper introduces the Double-stage Feature-level Clustering and Pseudo-labeling-based Mixture of Experts (DFCP-MoE) framework, which consists of input feature extraction, feature-level clustering, and a computationally efficient pseudo-labeling strategy. This approach reduces the impact of noise and outliers while leveraging a small subset of labeled data to label a large portion of unlabeled inputs. We propose a conditional end-to-end joint training method that improves expert specialization by training the MoE model on well-labeled, clustered inputs. Unlike traditional MoE and dense models, the DFCP-MoE framework effectively captures input space diversity, leading to competitive inference results. We validate our approach on three benchmark datasets for multi-class classification tasks.
comment: 14 Pages, 1 Figure, and 3 Tables
☆ MindGYM: Enhancing Vision-Language Models via Synthetic Self-Challenging Questions
Large vision-language models (VLMs) face challenges in achieving robust, transferable reasoning abilities due to reliance on labor-intensive manual instruction datasets or computationally expensive self-supervised methods. To address these issues, we introduce MindGYM, a framework that enhances VLMs through synthetic self-challenging questions, consisting of three stages: (1) Seed Single-Hop Question Synthesis, generating cognitive questions across textual (e.g., logical deduction) and multimodal contexts (e.g., diagram-based queries) spanning eight semantic areas like ethical analysis; (2) Challenging Multi-Hop Question Synthesis, combining seed questions via diverse principles like bridging, visual-textual alignment, to create multi-step problems demanding deeper reasoning; and (3) Thinking-Induced Curriculum Fine-Tuning, a structured pipeline that progressively trains the model from scaffolded reasoning to standalone inference. By leveraging the model's self-synthesis capability, MindGYM achieves high data efficiency (e.g., +16% gains on MathVision-Mini with only 400 samples), computational efficiency (reducing both training and inference costs), and robust generalization across tasks. Extensive evaluations on seven benchmarks demonstrate superior performance over strong baselines, with notable improvements (+15.77% win rates) in reasoning depth and breadth validated via GPT-based scoring. MindGYM underscores the viability of self-challenging for refining VLM capabilities while minimizing human intervention and resource demands. Code and data are released to advance multimodal reasoning research.
comment: 16 pages
☆ Towards Robust Multimodal Representation: A Unified Approach with Adaptive Experts and Alignment
Healthcare relies on multiple types of data, such as medical images, genetic information, and clinical records, to improve diagnosis and treatment. However, missing data is a common challenge due to privacy restrictions, cost, and technical issues, making many existing multi-modal models unreliable. To address this, we propose a new multi-model model called Mixture of Experts, Symmetric Aligning, and Reconstruction (MoSARe), a deep learning framework that handles incomplete multimodal data while maintaining high accuracy. MoSARe integrates expert selection, cross-modal attention, and contrastive learning to improve feature representation and decision-making. Our results show that MoSARe outperforms existing models in situations when the data is complete. Furthermore, it provides reliable predictions even when some data are missing. This makes it especially useful in real-world healthcare settings, including resource-limited environments. Our code is publicly available at https://github.com/NazaninMn/MoSARe.
☆ Robust Multimodal Survival Prediction with the Latent Differentiation Conditional Variational AutoEncoder CVPR2025
The integrative analysis of histopathological images and genomic data has received increasing attention for survival prediction of human cancers. However, the existing studies always hold the assumption that full modalities are available. As a matter of fact, the cost for collecting genomic data is high, which sometimes makes genomic data unavailable in testing samples. A common way of tackling such incompleteness is to generate the genomic representations from the pathology images. Nevertheless, such strategy still faces the following two challenges: (1) The gigapixel whole slide images (WSIs) are huge and thus hard for representation. (2) It is difficult to generate the genomic embeddings with diverse function categories in a unified generative framework. To address the above challenges, we propose a Conditional Latent Differentiation Variational AutoEncoder (LD-CVAE) for robust multimodal survival prediction, even with missing genomic data. Specifically, a Variational Information Bottleneck Transformer (VIB-Trans) module is proposed to learn compressed pathological representations from the gigapixel WSIs. To generate different functional genomic features, we develop a novel Latent Differentiation Variational AutoEncoder (LD-VAE) to learn the common and specific posteriors for the genomic embeddings with diverse functions. Finally, we use the product-of-experts technique to integrate the genomic common posterior and image posterior for the joint latent distribution estimation in LD-CVAE. We test the effectiveness of our method on five different cancer datasets, and the experimental results demonstrate its superiority in both complete and missing modality scenarios.
comment: Accepted by CVPR2025
☆ Parameter-Efficient Adaptation of Geospatial Foundation Models through Embedding Deflection
As large-scale heterogeneous data sets become increasingly available, adapting foundation models at low cost has become a key issue. Seminal works in natural language processing, e.g. Low-Rank Adaptation (LoRA), leverage the low "intrinsic rank" of parameter updates during adaptation. In this paper, we argue that incorporating stronger inductive biases in both data and models can enhance the adaptation of Geospatial Foundation Models (GFMs), pretrained on RGB satellite images, to other types of optical satellite data. Specifically, the pretrained parameters of GFMs serve as a strong prior for the spatial structure of multispectral images. For this reason, we introduce DEFLECT (Deflecting Embeddings for Finetuning Latent representations for Earth and Climate Tasks), a novel strategy for adapting GFMs to multispectral satellite imagery with very few additional parameters. DEFLECT improves the representation capabilities of the extracted features, particularly enhancing spectral information, which is essential for geoscience and environmental-related tasks. We demonstrate the effectiveness of our method across three different GFMs and five diverse datasets, ranging from forest monitoring to marine environment segmentation. Compared to competing methods, DEFLECT achieves on-par or higher accuracy with 5-10$\times$ fewer parameters for classification and segmentation tasks. The code will be made publicly available.
☆ DAMM-Diffusion: Learning Divergence-Aware Multi-Modal Diffusion Model for Nanoparticles Distribution Prediction CVPR 2025
The prediction of nanoparticles (NPs) distribution is crucial for the diagnosis and treatment of tumors. Recent studies indicate that the heterogeneity of tumor microenvironment (TME) highly affects the distribution of NPs across tumors. Hence, it has become a research hotspot to generate the NPs distribution by the aid of multi-modal TME components. However, the distribution divergence among multi-modal TME components may cause side effects i.e., the best uni-modal model may outperform the joint generative model. To address the above issues, we propose a \textbf{D}ivergence-\textbf{A}ware \textbf{M}ulti-\textbf{M}odal \textbf{Diffusion} model (i.e., \textbf{DAMM-Diffusion}) to adaptively generate the prediction results from uni-modal and multi-modal branches in a unified network. In detail, the uni-modal branch is composed of the U-Net architecture while the multi-modal branch extends it by introducing two novel fusion modules i.e., Multi-Modal Fusion Module (MMFM) and Uncertainty-Aware Fusion Module (UAFM). Specifically, the MMFM is proposed to fuse features from multiple modalities, while the UAFM module is introduced to learn the uncertainty map for cross-attention computation. Following the individual prediction results from each branch, the Divergence-Aware Multi-Modal Predictor (DAMMP) module is proposed to assess the consistency of multi-modal data with the uncertainty map, which determines whether the final prediction results come from multi-modal or uni-modal predictions. We predict the NPs distribution given the TME components of tumor vessels and cell nuclei, and the experimental results show that DAMM-Diffusion can generate the distribution of NPs with higher accuracy than the comparing methods. Additional results on the multi-modal brain image synthesis task further validate the effectiveness of the proposed method.
comment: Accepted by CVPR 2025
☆ Project-Probe-Aggregate: Efficient Fine-Tuning for Group Robustness CVPR 2025
While image-text foundation models have succeeded across diverse downstream tasks, they still face challenges in the presence of spurious correlations between the input and label. To address this issue, we propose a simple three-step approach,Project-Probe-Aggregate (PPA), that enables parameter-efficient fine-tuning for foundation models without relying on group annotations. Building upon the failure-based debiasing scheme, our method, PPA, improves its two key components: minority samples identification and the robust training algorithm. Specifically, we first train biased classifiers by projecting image features onto the nullspace of class proxies from text encoders. Next, we infer group labels using the biased classifier and probe group targets with prior correction. Finally, we aggregate group weights of each class to produce the debiased classifier. Our theoretical analysis shows that our PPA enhances minority group identification and is Bayes optimal for minimizing the balanced group error, mitigating spurious correlations. Extensive experimental results confirm the effectiveness of our PPA: it outperforms the state-of-the-art by an average worst-group accuracy while requiring less than 0.01% tunable parameters without training group labels.
comment: Accepted by CVPR 2025
☆ Learning Spatially Adaptive $\ell_1$-Norms Weights for Convolutional Synthesis Regularization
We propose an unrolled algorithm approach for learning spatially adaptive parameter maps in the framework of convolutional synthesis-based $\ell_1$ regularization. More precisely, we consider a family of pre-trained convolutional filters and estimate deeply parametrized spatially varying parameters applied to the sparse feature maps by means of unrolling a FISTA algorithm to solve the underlying sparse estimation problem. The proposed approach is evaluated for image reconstruction of low-field MRI and compared to spatially adaptive and non-adaptive analysis-type procedures relying on Total Variation regularization and to a well-established model-based deep learning approach. We show that the proposed approach produces visually and quantitatively comparable results with the latter approaches and at the same time remains highly interpretable. In particular, the inferred parameter maps quantify the local contribution of each filter in the reconstruction, which provides valuable insight into the algorithm mechanism and could potentially be used to discard unsuited filters.
comment: To be submitted to the EUSIPCO 2025 conference
☆ SurgicalVLM-Agent: Towards an Interactive AI Co-Pilot for Pituitary Surgery
Image-guided surgery demands adaptive, real-time decision support, yet static AI models struggle with structured task planning and providing interactive guidance. Large vision-language models (VLMs) offer a promising solution by enabling dynamic task planning and predictive decision support. We introduce SurgicalVLM-Agent, an AI co-pilot for image-guided pituitary surgery, capable of conversation, planning, and task execution. The agent dynamically processes surgeon queries and plans the tasks such as MRI tumor segmentation, endoscope anatomy segmentation, overlaying preoperative imaging with intraoperative views, instrument tracking, and surgical visual question answering (VQA). To enable structured task planning, we develop the PitAgent dataset, a surgical context-aware dataset covering segmentation, overlaying, instrument localization, tool tracking, tool-tissue interactions, phase identification, and surgical activity recognition. Additionally, we propose FFT-GaLore, a fast Fourier transform (FFT)-based gradient projection technique for efficient low-rank adaptation, optimizing fine-tuning for LLaMA 3.2 in surgical environments. We validate SurgicalVLM-Agent by assessing task planning and prompt generation on our PitAgent dataset and evaluating zero-shot VQA using a public pituitary dataset. Results demonstrate state-of-the-art performance in task planning and query interpretation, with highly semantically meaningful VQA responses, advancing AI-driven surgical assistance.
comment: 11 pages
☆ Hybrid Rendering for Multimodal Autonomous Driving: Merging Neural and Physics-Based Simulation
Neural reconstruction models for autonomous driving simulation have made significant strides in recent years, with dynamic models becoming increasingly prevalent. However, these models are typically limited to handling in-domain objects closely following their original trajectories. We introduce a hybrid approach that combines the strengths of neural reconstruction with physics-based rendering. This method enables the virtual placement of traditional mesh-based dynamic agents at arbitrary locations, adjustments to environmental conditions, and rendering from novel camera viewpoints. Our approach significantly enhances novel view synthesis quality -- especially for road surfaces and lane markings -- while maintaining interactive frame rates through our novel training method, NeRF2GS. This technique leverages the superior generalization capabilities of NeRF-based methods and the real-time rendering speed of 3D Gaussian Splatting (3DGS). We achieve this by training a customized NeRF model on the original images with depth regularization derived from a noisy LiDAR point cloud, then using it as a teacher model for 3DGS training. This process ensures accurate depth, surface normals, and camera appearance modeling as supervision. With our block-based training parallelization, the method can handle large-scale reconstructions (greater than or equal to 100,000 square meters) and predict segmentation masks, surface normals, and depth maps. During simulation, it supports a rasterization-based rendering backend with depth-based composition and multiple camera models for real-time camera simulation, as well as a ray-traced backend for precise LiDAR simulation.
☆ Fast computation of the TGOSPA metric for multiple target tracking via unbalanced optimal transport
In multiple target tracking, it is important to be able to evaluate the performance of different tracking algorithms. The trajectory generalized optimal sub-pattern assignment metric (TGOSPA) is a recently proposed metric for such evaluations. The TGOSPA metric is computed as the solution to an optimization problem, but for large tracking scenarios, solving this problem becomes computationally demanding. In this paper, we present an approximation algorithm for evaluating the TGOSPA metric, based on casting the TGOSPA problem as an unbalanced multimarginal optimal transport problem. Following recent advances in computational optimal transport, we introduce an entropy regularization and derive an iterative scheme for solving the Lagrangian dual of the regularized problem. Numerical results suggest that our proposed algorithm is more computationally efficient than the alternative of computing the exact metric using a linear programming solver, while still providing an adequate approximation of the metric.
comment: 6 pages
☆ Online Language Splatting
To enable AI agents to interact seamlessly with both humans and 3D environments, they must not only perceive the 3D world accurately but also align human language with 3D spatial representations. While prior work has made significant progress by integrating language features into geometrically detailed 3D scene representations using 3D Gaussian Splatting (GS), these approaches rely on computationally intensive offline preprocessing of language features for each input image, limiting adaptability to new environments. In this work, we introduce Online Language Splatting, the first framework to achieve online, near real-time, open-vocabulary language mapping within a 3DGS-SLAM system without requiring pre-generated language features. The key challenge lies in efficiently fusing high-dimensional language features into 3D representations while balancing the computation speed, memory usage, rendering quality and open-vocabulary capability. To this end, we innovatively design: (1) a high-resolution CLIP embedding module capable of generating detailed language feature maps in 18ms per frame, (2) a two-stage online auto-encoder that compresses 768-dimensional CLIP features to 15 dimensions while preserving open-vocabulary capabilities, and (3) a color-language disentangled optimization approach to improve rendering quality. Experimental results show that our online method not only surpasses the state-of-the-art offline methods in accuracy but also achieves more than 40x efficiency boost, demonstrating the potential for dynamic and interactive AI applications.
☆ Sparse Autoencoder as a Zero-Shot Classifier for Concept Erasing in Text-to-Image Diffusion Models
Text-to-image (T2I) diffusion models have achieved remarkable progress in generating high-quality images but also raise people's concerns about generating harmful or misleading content. While extensive approaches have been proposed to erase unwanted concepts without requiring retraining from scratch, they inadvertently degrade performance on normal generation tasks. In this work, we propose Interpret then Deactivate (ItD), a novel framework to enable precise concept removal in T2I diffusion models while preserving overall performance. ItD first employs a sparse autoencoder (SAE) to interpret each concept as a combination of multiple features. By permanently deactivating the specific features associated with target concepts, we repurpose SAE as a zero-shot classifier that identifies whether the input prompt includes target concepts, allowing selective concept erasure in diffusion models. Moreover, we demonstrate that ItD can be easily extended to erase multiple concepts without requiring further training. Comprehensive experiments across celebrity identities, artistic styles, and explicit content demonstrate ItD's effectiveness in eliminating targeted concepts without interfering with normal concept generation. Additionally, ItD is also robust against adversarial prompts designed to circumvent content filters. Code is available at: https://github.com/NANSirun/Interpret-then-deactivate.
comment: 25 pages
☆ Astrea: A MOE-based Visual Understanding Model with Progressive Alignment
Vision-Language Models (VLMs) based on Mixture-of-Experts (MoE) architectures have emerged as a pivotal paradigm in multimodal understanding, offering a powerful framework for integrating visual and linguistic information. However, the increasing complexity and diversity of tasks present significant challenges in coordinating load balancing across heterogeneous visual experts, where optimizing one specialist's performance often compromises others' capabilities. To address task heterogeneity and expert load imbalance, we propose Astrea, a novel multi-expert collaborative VLM architecture based on progressive pre-alignment. Astrea introduces three key innovations: 1) A heterogeneous expert coordination mechanism that integrates four specialized models (detection, segmentation, classification, captioning) into a comprehensive expert matrix covering essential visual comprehension elements; 2) A dynamic knowledge fusion strategy featuring progressive pre-alignment to harmonize experts within the VLM latent space through contrastive learning, complemented by probabilistically activated stochastic residual connections to preserve knowledge continuity; 3) An enhanced optimization framework utilizing momentum contrastive learning for long-range dependency modeling and adaptive weight allocators for real-time expert contribution calibration. Extensive evaluations across 12 benchmark tasks spanning VQA, image captioning, and cross-modal retrieval demonstrate Astrea's superiority over state-of-the-art models, achieving an average performance gain of +4.7\%. This study provides the first empirical demonstration that progressive pre-alignment strategies enable VLMs to overcome task heterogeneity limitations, establishing new methodological foundations for developing general-purpose multimodal agents.
☆ SuperCarver: Texture-Consistent 3D Geometry Super-Resolution for High-Fidelity Surface Detail Generation
Traditional production workflow of high-precision 3D mesh assets necessitates a cumbersome and laborious process of manual sculpting by specialized modelers. The recent years have witnessed remarkable advances in AI-empowered 3D content creation. However, although the latest state-of-the-arts are already capable of generating plausible structures and intricate appearances from images or text prompts, the actual mesh surfaces are typically over-smoothing and lack geometric details. This paper introduces SuperCarver, a 3D geometry super-resolution framework particularly tailored for adding texture-consistent surface details to given coarse meshes. Technically, we start by rendering the original textured mesh into the image domain from multiple viewpoints. To achieve geometric detail generation, we develop a deterministic prior-guided normal diffusion model fine-tuned on a carefully curated dataset of paired low-poly and high-poly normal renderings. To optimize mesh structures from potentially imperfect normal map predictions, we design a simple yet effective noise-resistant inverse rendering scheme based on distance field deformation. Extensive experiments show that SuperCarver generates realistic and expressive surface details as depicted by specific texture appearances, making it a powerful tool for automatically upgrading massive outdated low-quality assets and shortening the iteration cycle of high-quality mesh production in practical applications.
Efficient Alignment of Unconditioned Action Prior for Language-conditioned Pick and Place in Clutter
We study the task of language-conditioned pick and place in clutter, where a robot should grasp a target object in open clutter and move it to a specified place. Some approaches learn end-to-end policies with features from vision foundation models, requiring large datasets. Others combine foundation models in a zero-shot setting, suffering from cascading errors. In addition, they primarily leverage vision and language foundation models, focusing less on action priors. In this paper, we aim to develop an effective policy by integrating foundation priors from vision, language, and action. We propose A$^2$, an action prior alignment method that aligns unconditioned action priors with 3D vision-language priors by learning one attention layer. The alignment formulation enables our policy to train with less data and preserve zero-shot generalization capabilities. We show that a shared policy for both pick and place actions enhances the performance for each task, and introduce a policy adaptation scheme to accommodate the multi-modal nature of actions. Extensive experiments in simulation and the real-world show that our policy achieves higher task success rates with fewer steps for both pick and place tasks in clutter, effectively generalizing to unseen objects and language instructions.
☆ Alias-Free Latent Diffusion Models:Improving Fractional Shift Equivariance of Diffusion Latent Space
Latent Diffusion Models (LDMs) are known to have an unstable generation process, where even small perturbations or shifts in the input noise can lead to significantly different outputs. This hinders their applicability in applications requiring consistent results. In this work, we redesign LDMs to enhance consistency by making them shift-equivariant. While introducing anti-aliasing operations can partially improve shift-equivariance, significant aliasing and inconsistency persist due to the unique challenges in LDMs, including 1) aliasing amplification during VAE training and multiple U-Net inferences, and 2) self-attention modules that inherently lack shift-equivariance. To address these issues, we redesign the attention modules to be shift-equivariant and propose an equivariance loss that effectively suppresses the frequency bandwidth of the features in the continuous domain. The resulting alias-free LDM (AF-LDM) achieves strong shift-equivariance and is also robust to irregular warping. Extensive experiments demonstrate that AF-LDM produces significantly more consistent results than vanilla LDM across various applications, including video editing and image-to-image translation. Code is available at: https://github.com/SingleZombie/AFLDM
☆ OpenVidVRD: Open-Vocabulary Video Visual Relation Detection via Prompt-Driven Semantic Space Alignment
The video visual relation detection (VidVRD) task is to identify objects and their relationships in videos, which is challenging due to the dynamic content, high annotation costs, and long-tailed distribution of relations. Visual language models (VLMs) help explore open-vocabulary visual relation detection tasks, yet often overlook the connections between various visual regions and their relations. Moreover, using VLMs to directly identify visual relations in videos poses significant challenges because of the large disparity between images and videos. Therefore, we propose a novel open-vocabulary VidVRD framework, termed OpenVidVRD, which transfers VLMs' rich knowledge and powerful capabilities to improve VidVRD tasks through prompt learning. Specificall y, We use VLM to extract text representations from automatically generated region captions based on the video's regions. Next, we develop a spatiotemporal refiner module to derive object-level relationship representations in the video by integrating cross-modal spatiotemporal complementary information. Furthermore, a prompt-driven strategy to align semantic spaces is employed to harness the semantic understanding of VLMs, enhancing the overall generalization ability of OpenVidVRD. Extensive experiments conducted on the VidVRD and VidOR public datasets show that the proposed model outperforms existing methods.
☆ Monte Carlo Diffusion for Generalizable Learning-Based RANSAC
Random Sample Consensus (RANSAC) is a fundamental approach for robustly estimating parametric models from noisy data. Existing learning-based RANSAC methods utilize deep learning to enhance the robustness of RANSAC against outliers. However, these approaches are trained and tested on the data generated by the same algorithms, leading to limited generalization to out-of-distribution data during inference. Therefore, in this paper, we introduce a novel diffusion-based paradigm that progressively injects noise into ground-truth data, simulating the noisy conditions for training learning-based RANSAC. To enhance data diversity, we incorporate Monte Carlo sampling into the diffusion paradigm, approximating diverse data distributions by introducing different types of randomness at multiple stages. We evaluate our approach in the context of feature matching through comprehensive experiments on the ScanNet and MegaDepth datasets. The experimental results demonstrate that our Monte Carlo diffusion mechanism significantly improves the generalization ability of learning-based RANSAC. We also develop extensive ablation studies that highlight the effectiveness of key components in our framework.
☆ Diff-CL: A Novel Cross Pseudo-Supervision Method for Semi-supervised Medical Image Segmentation
Semi-supervised learning utilizes insights from unlabeled data to improve model generalization, thereby reducing reliance on large labeled datasets. Most existing studies focus on limited samples and fail to capture the overall data distribution. We contend that combining distributional information with detailed information is crucial for achieving more robust and accurate segmentation results. On the one hand, with its robust generative capabilities, diffusion models (DM) learn data distribution effectively. However, it struggles with fine detail capture, leading to generated images with misleading details. Combining DM with convolutional neural networks (CNNs) enables the former to learn data distribution while the latter corrects fine details. While capturing complete high-frequency details by CNNs requires substantial computational resources and is susceptible to local noise. On the other hand, given that both labeled and unlabeled data come from the same distribution, we believe that regions in unlabeled data similar to overall class semantics to labeled data are likely to belong to the same class, while regions with minimal similarity are less likely to. This work introduces a semi-supervised medical image segmentation framework from the distribution perspective (Diff-CL). Firstly, we propose a cross-pseudo-supervision learning mechanism between diffusion and convolution segmentation networks. Secondly, we design a high-frequency mamba module to capture boundary and detail information globally. Finally, we apply contrastive learning for label propagation from labeled to unlabeled data. Our method achieves state-of-the-art (SOTA) performance across three datasets, including left atrium, brain tumor, and NIH pancreas datasets.
☆ Multi-Agent Image Restoration
Image restoration (IR) is challenging due to the complexity of real-world degradations. While many specialized and all-in-one IR models have been developed, they fail to effectively handle complex, mixed degradations. Recent agentic methods RestoreAgent and AgenticIR leverage intelligent, autonomous workflows to alleviate this issue, yet they suffer from suboptimal results and inefficiency due to their resource-intensive finetunings, and ineffective searches and tool execution trials for satisfactory outputs. In this paper, we propose MAIR, a novel Multi-Agent approach for complex IR problems. We introduce a real-world degradation prior, categorizing degradations into three types: (1) scene, (2) imaging, and (3) compression, which are observed to occur sequentially in real world, and reverse them in the opposite order. Built upon this three-stage restoration framework, MAIR emulates a team of collaborative human specialists, including a "scheduler" for overall planning and multiple "experts" dedicated to specific degradations. This design minimizes search space and trial efforts, improving image quality while reducing inference costs. In addition, a registry mechanism is introduced to enable easy integration of new tools. Experiments on both synthetic and real-world datasets show that proposed MAIR achieves competitive performance and improved efficiency over the previous agentic IR system. Code and models will be made available.
☆ VLog: Video-Language Models by Generative Retrieval of Narration Vocabulary CVPR 2025
Human daily activities can be concisely narrated as sequences of routine events (e.g., turning off an alarm) in video streams, forming an event vocabulary. Motivated by this, we introduce VLog, a novel video understanding framework that define video narrations as vocabulary, going beyond the typical subword vocabularies in existing generative video-language models. Built on the lightweight language model GPT-2, VLog feature three key innovations: (i) A generative retrieval model, marrying language model's complex reasoning capabilities with contrastive retrieval's efficient similarity search. (ii) A hierarchical vocabulary derived from large-scale video narrations using our narration pair encoding algorithm, enabling efficient indexing of specific events (e.g., cutting a tomato) by identifying broader scenarios (e.g., kitchen) with expressive postfixes (e.g., by the left hand). (iii) A vocabulary update strategy leveraging generative models to extend the vocabulary for novel events encountered during inference. To validate our approach, we introduce VidCap-Eval, a development set requiring concise narrations with reasoning relationships (e.g., before and after). Experiments on EgoSchema, COIN, and HiREST further demonstrate the effectiveness of VLog, highlighting its ability to generate concise, contextually accurate, and efficient narrations, offering a novel perspective on video understanding. Codes are released at https://github.com/showlab/VLog.
comment: Accepted by CVPR 2025. Github: https://github.com/showlab/VLog
☆ ForAug: Recombining Foregrounds and Backgrounds to Improve Vision Transformer Training with Bias Mitigation
Transformers, particularly Vision Transformers (ViTs), have achieved state-of-the-art performance in large-scale image classification. However, they often require large amounts of data and can exhibit biases that limit their robustness and generalizability. This paper introduces ForAug, a novel data augmentation scheme that addresses these challenges and explicitly includes inductive biases, which commonly are part of the neural network architecture, into the training data. ForAug is constructed by using pretrained foundation models to separate and recombine foreground objects with different backgrounds, enabling fine-grained control over image composition during training. It thus increases the data diversity and effective number of training samples. We demonstrate that training on ForNet, the application of ForAug to ImageNet, significantly improves the accuracy of ViTs and other architectures by up to 4.5 percentage points (p.p.) on ImageNet and 7.3 p.p. on downstream tasks. Importantly, ForAug enables novel ways of analyzing model behavior and quantifying biases. Namely, we introduce metrics for background robustness, foreground focus, center bias, and size bias and show that training on ForNet substantially reduces these biases compared to training on ImageNet. In summary, ForAug provides a valuable tool for analyzing and mitigating biases, enabling the development of more robust and reliable computer vision models. Our code and dataset are publicly available at https://github.com/tobna/ForAug.
☆ Close-up-GS: Enhancing Close-Up View Synthesis in 3D Gaussian Splatting with Progressive Self-Training
3D Gaussian Splatting (3DGS) has demonstrated impressive performance in synthesizing novel views after training on a given set of viewpoints. However, its rendering quality deteriorates when the synthesized view deviates significantly from the training views. This decline occurs due to (1) the model's difficulty in generalizing to out-of-distribution scenarios and (2) challenges in interpolating fine details caused by substantial resolution changes and occlusions. A notable case of this limitation is close-up view generation--producing views that are significantly closer to the object than those in the training set. To tackle this issue, we propose a novel approach for close-up view generation based by progressively training the 3DGS model with self-generated data. Our solution is based on three key ideas. First, we leverage the See3D model, a recently introduced 3D-aware generative model, to enhance the details of rendered views. Second, we propose a strategy to progressively expand the ``trust regions'' of the 3DGS model and update a set of reference views for See3D. Finally, we introduce a fine-tuning strategy to carefully update the 3DGS model with training data generated from the above schemes. We further define metrics for close-up views evaluation to facilitate better research on this problem. By conducting evaluations on specifically selected scenarios for close-up views, our proposed approach demonstrates a clear advantage over competitive solutions.
☆ Bidirectional Prototype-Reward co-Evolution for Test-Time Adaptation of Vision-Language Models
Test-time adaptation (TTA) is crucial in maintaining Vision-Language Models (VLMs) performance when facing real-world distribution shifts, particularly when the source data or target labels are inaccessible. Existing TTA methods rely on CLIP's output probability distribution for feature evaluation, which can introduce biases under domain shifts. This misalignment may cause features to be misclassified due to text priors or incorrect textual associations. To address these limitations, we propose Bidirectional Prototype-Reward co-Evolution (BPRE), a novel TTA framework for VLMs that integrates feature quality assessment with prototype evolution through a synergistic feedback loop. BPRE first employs a Multi-Dimensional Quality-Aware Reward Module to evaluate feature quality and guide prototype refinement precisely. The continuous refinement of prototype quality through Prototype-Reward Interactive Evolution will subsequently enhance the computation of more robust Multi-Dimensional Quality-Aware Reward Scores. Through the bidirectional interaction, the precision of rewards and the evolution of prototypes mutually reinforce each other, forming a self-evolving cycle. Extensive experiments are conducted across 15 diverse recognition datasets encompassing natural distribution shifts and cross-dataset generalization scenarios. Results demonstrate that BPRE consistently achieves superior average performance compared to state-of-the-art methods across different model architectures, such as ResNet-50 and ViT-B/16. By emphasizing comprehensive feature evaluation and bidirectional knowledge refinement, BPRE advances VLM generalization capabilities, offering a new perspective on TTA.
☆ VideoScan: Enabling Efficient Streaming Video Understanding via Frame-level Semantic Carriers
This paper introduces VideoScan, an efficient vision-language model (VLM) inference framework designed for real-time video interaction that effectively comprehends and retains streamed video inputs while delivering rapid and accurate responses. A longstanding challenge in video understanding--particularly for long-term or real-time applications--stems from the substantial computational overhead caused by the extensive length of visual tokens. To address this, VideoScan employs a single semantic carrier token to represent each frame, progressively reducing computational and memory overhead during its two-phase inference process: prefilling and decoding. The embedding of the semantic carrier token is derived from an optimized aggregation of frame-level visual features, ensuring compact yet semantically rich representations. Critically, the corresponding key-value pairs are trained to retain contextual semantics from prior frames, enabling efficient memory management without sacrificing temporal coherence. During inference, the visual tokens of each frame are processed only once during the prefilling phase and subsequently discarded in the decoding stage, eliminating redundant computations. This design ensures efficient VLM inference even under stringent real-time constraints. Comprehensive experiments on diverse offline and online benchmarks demonstrate that LLaVA-Video, supported by our method, achieves up to $\sim 5\times$ and $1.29\times$ speedups compared to its original version and previous efficient streaming video understanding approaches, respectively. Crucially, these improvements are attained while maintaining competitive performance and ensuring stable GPU memory consumption (consistently $\sim 18$GB, independent of video duration).
comment: 11 pages, 4 figures
☆ Pig behavior dataset and Spatial-temporal perception and enhancement networks based on the attention mechanism for pig behavior recognition
The recognition of pig behavior plays a crucial role in smart farming and welfare assurance for pigs. Currently, in the field of pig behavior recognition, the lack of publicly available behavioral datasets not only limits the development of innovative algorithms but also hampers model robustness and algorithm optimization.This paper proposes a dataset containing 13 pig behaviors that significantly impact welfare.Based on this dataset, this paper proposes a spatial-temporal perception and enhancement networks based on the attention mechanism to model the spatiotemporal features of pig behaviors and their associated interaction areas in video data. The network is composed of a spatiotemporal perception network and a spatiotemporal feature enhancement network. The spatiotemporal perception network is responsible for establishing connections between the pigs and the key regions of their behaviors in the video data. The spatiotemporal feature enhancement network further strengthens the important spatial features of individual pigs and captures the long-term dependencies of the spatiotemporal features of individual behaviors by remodeling these connections, thereby enhancing the model's perception of spatiotemporal changes in pig behaviors. Experimental results demonstrate that on the dataset established in this paper, our proposed model achieves a MAP score of 75.92%, which is an 8.17% improvement over the best-performing traditional model. This study not only improces the accuracy and generalizability of individual pig behavior recognition but also provides new technological tools for modern smart farming. The dataset and related code will be made publicly available alongside this paper.
☆ Revisiting Medical Image Retrieval via Knowledge Consolidation
As artificial intelligence and digital medicine increasingly permeate healthcare systems, robust governance frameworks are essential to ensure ethical, secure, and effective implementation. In this context, medical image retrieval becomes a critical component of clinical data management, playing a vital role in decision-making and safeguarding patient information. Existing methods usually learn hash functions using bottleneck features, which fail to produce representative hash codes from blended embeddings. Although contrastive hashing has shown superior performance, current approaches often treat image retrieval as a classification task, using category labels to create positive/negative pairs. Moreover, many methods fail to address the out-of-distribution (OOD) issue when models encounter external OOD queries or adversarial attacks. In this work, we propose a novel method to consolidate knowledge of hierarchical features and optimisation functions. We formulate the knowledge consolidation by introducing Depth-aware Representation Fusion (DaRF) and Structure-aware Contrastive Hashing (SCH). DaRF adaptively integrates shallow and deep representations into blended features, and SCH incorporates image fingerprints to enhance the adaptability of positive/negative pairings. These blended features further facilitate OOD detection and content-based recommendation, contributing to a secure AI-driven healthcare environment. Moreover, we present a content-guided ranking to improve the robustness and reproducibility of retrieval results. Our comprehensive assessments demonstrate that the proposed method could effectively recognise OOD samples and significantly outperform existing approaches in medical image retrieval (p<0.05). In particular, our method achieves a 5.6-38.9% improvement in mean Average Precision on the anatomical radiology dataset.
☆ PerCoV2: Improved Ultra-Low Bit-Rate Perceptual Image Compression with Implicit Hierarchical Masked Image Modeling
We introduce PerCoV2, a novel and open ultra-low bit-rate perceptual image compression system designed for bandwidth- and storage-constrained applications. Building upon prior work by Careil et al., PerCoV2 extends the original formulation to the Stable Diffusion 3 ecosystem and enhances entropy coding efficiency by explicitly modeling the discrete hyper-latent image distribution. To this end, we conduct a comprehensive comparison of recent autoregressive methods (VAR and MaskGIT) for entropy modeling and evaluate our approach on the large-scale MSCOCO-30k benchmark. Compared to previous work, PerCoV2 (i) achieves higher image fidelity at even lower bit-rates while maintaining competitive perceptual quality, (ii) features a hybrid generation mode for further bit-rate savings, and (iii) is built solely on public components. Code and trained models will be released at https://github.com/Nikolai10/PerCoV2.
☆ Post-interactive Multimodal Trajectory Prediction for Autonomous Driving
Modeling the interactions among agents for trajectory prediction of autonomous driving has been challenging due to the inherent uncertainty in agents' behavior. The interactions involved in the predicted trajectories of agents, also called post-interactions, have rarely been considered in trajectory prediction models. To this end, we propose a coarse-to-fine Transformer for multimodal trajectory prediction, i.e., Pioformer, which explicitly extracts the post-interaction features to enhance the prediction accuracy. Specifically, we first build a Coarse Trajectory Network to generate coarse trajectories based on the observed trajectories and lane segments, in which the low-order interaction features are extracted with the graph neural networks. Next, we build a hypergraph neural network-based Trajectory Proposal Network to generate trajectory proposals, where the high-order interaction features are learned by the hypergraphs. Finally, the trajectory proposals are sent to the Proposal Refinement Network for further refinement. The observed trajectories and trajectory proposals are concatenated together as the inputs of the Proposal Refinement Network, in which the post-interaction features are learned by combining the previous interaction features and trajectory consistency features. Moreover, we propose a three-stage training scheme to facilitate the learning process. Extensive experiments on the Argoverse 1 dataset demonstrate the superiority of our method. Compared with the baseline HiVT-64, our model has reduced the prediction errors by 4.4%, 8.4%, 14.4%, 5.7% regarding metrics minADE6, minFDE6, MR6, and brier-minFDE6, respectively.
☆ Deep Learning for Climate Action: Computer Vision Analysis of Visual Narratives on X
Climate change is one of the most pressing challenges of the 21st century, sparking widespread discourse across social media platforms. Activists, policymakers, and researchers seek to understand public sentiment and narratives while access to social media data has become increasingly restricted in the post-API era. In this study, we analyze a dataset of climate change-related tweets from X (formerly Twitter) shared in 2019, containing 730k tweets along with the shared images. Our approach integrates statistical analysis, image classification, object detection, and sentiment analysis to explore visual narratives in climate discourse. Additionally, we introduce a graphical user interface (GUI) to facilitate interactive data exploration. Our findings reveal key themes in climate communication, highlight sentiment divergence between images and text, and underscore the strengths and limitations of foundation models in analyzing social media imagery. By releasing our code and tools, we aim to support future research on the intersection of climate change, social media, and computer vision.
☆ GIGP: A Global Information Interacting and Geometric Priors Focusing Framework for Semi-supervised Medical Image Segmentation
Semi-supervised learning enhances medical image segmentation by leveraging unlabeled data, reducing reliance on extensive labeled datasets. On the one hand, the distribution discrepancy between limited labeled data and abundant unlabeled data can hinder model generalization. Most existing methods rely on local similarity matching, which may introduce bias. In contrast, Mamba effectively models global context with linear complexity, learning more comprehensive data representations. On the other hand, medical images usually exhibit consistent anatomical structures defined by geometric features. Most existing methods fail to fully utilize global geometric priors, such as volumes, moments etc. In this work, we introduce a global information interaction and geometric priors focus framework (GIGP). Firstly, we present a Global Information Interaction Mamba module to reduce distribution discrepancy between labeled and unlabeled data. Secondly, we propose a Geometric Moment Attention Mechanism to extract richer global geometric features. Finally, we propose Global Geometric Perturbation Consistency to simulate organ dynamics and geometric variations, enhancing the ability of the model to learn generalized features. The superior performance on the NIH Pancreas and Left Atrium datasets demonstrates the effectiveness of our approach.
☆ Fully-Synthetic Training for Visual Quality Inspection in Automotive Production
Visual Quality Inspection plays a crucial role in modern manufacturing environments as it ensures customer safety and satisfaction. The introduction of Computer Vision (CV) has revolutionized visual quality inspection by improving the accuracy and efficiency of defect detection. However, traditional CV models heavily rely on extensive datasets for training, which can be costly, time-consuming, and error-prone. To overcome these challenges, synthetic images have emerged as a promising alternative. They offer a cost-effective solution with automatically generated labels. In this paper, we propose a pipeline for generating synthetic images using domain randomization. We evaluate our approach in three real inspection scenarios and demonstrate that an object detection model trained solely on synthetic data can outperform models trained on real images.
comment: Accepted for publication in Procedia CIRP
☆ MOAT: Evaluating LMMs for Capability Integration and Instruction Grounding
Large multimodal models (LMMs) have demonstrated significant potential as generalists in vision-language (VL) tasks. However, there remains a significant gap between state-of-the-art LMMs and human performance when it comes to complex tasks that require a combination of fundamental VL capabilities, as well as tasks involving the grounding of complex instructions. To thoroughly investigate the human-LMM gap and its underlying causes, we propose MOAT, a diverse benchmark with complex real-world VL tasks that are challenging for LMMs. Specifically, the tasks in MOAT require LMMs to engage in generalist problem solving by integrating fundamental VL capabilities such as reading text, counting, understanding spatial relations, grounding textual and visual instructions, etc. All these abilities fit into a taxonomy proposed by us that contains 10 fundamental VL capabilities, enabling MOAT to provide a fine-grained view of LMMs' strengths and weaknesses. Besides, MOAT is the first benchmark to explicitly evaluate LMMs' ability to ground complex text and visual instructions, which is essential to many real-world applications. We evaluate over 20 proprietary and open source LMMs, as well as humans, on MOAT, and found that humans achieved 82.7% accuracy while the best performing LMM (OpenAI o1) achieved only 38.8%. To guide future model development, we analyze common trends in our results and discuss the underlying causes of observed performance gaps between LMMs and humans, focusing on which VL capability forms the bottleneck in complex tasks, whether test time scaling improves performance on MOAT, and how tiling harms LMMs' capability to count. Code and data are available at https://cambrian-yzt.github.io/MOAT.
comment: Project page: https://cambrian-yzt.github.io/MOAT
☆ Unified Dense Prediction of Video Diffusion CVPR2025
We present a unified network for simultaneously generating videos and their corresponding entity segmentation and depth maps from text prompts. We utilize colormap to represent entity masks and depth maps, tightly integrating dense prediction with RGB video generation. Introducing dense prediction information improves video generation's consistency and motion smoothness without increasing computational costs. Incorporating learnable task embeddings brings multiple dense prediction tasks into a single model, enhancing flexibility and further boosting performance. We further propose a large-scale dense prediction video dataset~\datasetname, addressing the issue that existing datasets do not concurrently contain captions, videos, segmentation, or depth maps. Comprehensive experiments demonstrate the high efficiency of our method, surpassing the state-of-the-art in terms of video quality, consistency, and motion smoothness.
comment: Accepted by CVPR2025
☆ GASPACHO: Gaussian Splatting for Controllable Humans and Objects
We present GASPACHO: a method for generating photorealistic controllable renderings of human-object interactions. Given a set of multi-view RGB images of human-object interactions, our method reconstructs animatable templates of the human and object as separate sets of Gaussians simultaneously. Different from existing work, which focuses on human reconstruction and ignores objects as background, our method explicitly reconstructs both humans and objects, thereby allowing for controllable renderings of novel human object interactions in different poses from novel-camera viewpoints. During reconstruction, we constrain the Gaussians that generate rendered images to be a linear function of a set of canonical Gaussians. By simply changing the parameters of the linear deformation functions after training, our method can generate renderings of novel human-object interaction in novel poses from novel camera viewpoints. We learn the 3D Gaussian properties of the canonical Gaussians on the underlying 2D manifold of the canonical human and object templates. This in turns requires a canonical object template with a fixed UV unwrapping. To define such an object template, we use a feature based representation to track the object across the multi-view sequence. We further propose an occlusion aware photometric loss that allows for reconstructions under significant occlusions. Several experiments on two human-object datasets - BEHAVE and DNA-Rendering - demonstrate that our method allows for high-quality reconstruction of human and object templates under significant occlusion and the synthesis of controllable renderings of novel human-object interactions in novel human poses from novel camera views.
☆ Stealthy Patch-Wise Backdoor Attack in 3D Point Cloud via Curvature Awareness
Backdoor attacks pose a severe threat to deep neural networks (DNN) by implanting hidden backdoors that can be activated with predefined triggers to manipulate model behaviors maliciously. Existing 3D point cloud backdoor attacks primarily rely on sample-wise global modifications, resulting in suboptimal stealthiness. To address this limitation, we propose Stealthy Patch-Wise Backdoor Attack (SPBA), which employs the first patch-wise trigger for 3D point clouds and restricts perturbations to local regions, significantly enhancing stealthiness. Specifically, SPBA decomposes point clouds into local patches and evaluates their geometric complexity using a curvature-based patch imperceptibility score, ensuring that the trigger remains less perceptible to the human eye by strategically applying it across multiple geometrically complex patches with lower visual sensitivity. By leveraging the Graph Fourier Transform (GFT), SPBA optimizes a patch-wise spectral trigger that perturbs the spectral features of selected patches, enhancing attack effectiveness while preserving the global geometric structure of the point cloud. Extensive experiments on ModelNet40 and ShapeNetPart demonstrate that SPBA consistently achieves an attack success rate (ASR) exceeding 96.5% across different models while achieving state-of-the-art imperceptibility compared to existing backdoor attack methods.
comment: 12 pages, 8 figures, 6 tables
☆ SDD-4DGS: Static-Dynamic Aware Decoupling in Gaussian Splatting for 4D Scene Reconstruction
Dynamic and static components in scenes often exhibit distinct properties, yet most 4D reconstruction methods treat them indiscriminately, leading to suboptimal performance in both cases. This work introduces SDD-4DGS, the first framework for static-dynamic decoupled 4D scene reconstruction based on Gaussian Splatting. Our approach is built upon a novel probabilistic dynamic perception coefficient that is naturally integrated into the Gaussian reconstruction pipeline, enabling adaptive separation of static and dynamic components. With carefully designed implementation strategies to realize this theoretical framework, our method effectively facilitates explicit learning of motion patterns for dynamic elements while maintaining geometric stability for static structures. Extensive experiments on five benchmark datasets demonstrate that SDD-4DGS consistently outperforms state-of-the-art methods in reconstruction fidelity, with enhanced detail restoration for static structures and precise modeling of dynamic motions. The code will be released.
☆ DAVE: Diagnostic benchmark for Audio Visual Evaluation
Audio-visual understanding is a rapidly evolving field that seeks to integrate and interpret information from both auditory and visual modalities. Despite recent advances in multi-modal learning, existing benchmarks often suffer from strong visual bias -- where answers can be inferred from visual data alone -- and provide only aggregate scores that conflate multiple sources of error. This makes it difficult to determine whether models struggle with visual understanding, audio interpretation, or audio-visual alignment. In this work, we introduce DAVE (Diagnostic Audio Visual Evaluation), a novel benchmark dataset designed to systematically evaluate audio-visual models across controlled challenges. DAVE alleviates existing limitations by (i) ensuring both modalities are necessary to answer correctly and (ii) decoupling evaluation into atomic subcategories. Our detailed analysis of state-of-the-art models reveals specific failure modes and provides targeted insights for improvement. By offering this standardized diagnostic framework, we aim to facilitate more robust development of audio-visual models. The dataset is released: https://github.com/gorjanradevski/dave
comment: First two authors contributed equally
☆ Revealing the Implicit Noise-based Imprint of Generative Models
With the rapid advancement of vision generation models, the potential security risks stemming from synthetic visual content have garnered increasing attention, posing significant challenges for AI-generated image detection. Existing methods suffer from inadequate generalization capabilities, resulting in unsatisfactory performance on emerging generative models. To address this issue, this paper presents a novel framework that leverages noise-based model-specific imprint for the detection task. Specifically, we propose a novel noise-based imprint simulator to capture intrinsic patterns imprinted in images generated by different models. By aggregating imprints from various generative models, imprints of future models can be extrapolated to expand training data, thereby enhancing generalization and robustness. Furthermore, we design a new pipeline that pioneers the use of noise patterns, derived from a noise-based imprint extractor, alongside other visual features for AI-generated image detection, resulting in a significant improvement in performance. Our approach achieves state-of-the-art performance across three public benchmarks including GenImage, Synthbuster and Chameleon.
☆ Revealing Unintentional Information Leakage in Low-Dimensional Facial Portrait Representations
We evaluate the information that can unintentionally leak into the low dimensional output of a neural network, by reconstructing an input image from a 40- or 32-element feature vector that intends to only describe abstract attributes of a facial portrait. The reconstruction uses blackbox-access to the image encoder which generates the feature vector. Other than previous work, we leverage recent knowledge about image generation and facial similarity, implementing a method that outperforms the current state-of-the-art. Our strategy uses a pretrained StyleGAN and a new loss function that compares the perceptual similarity of portraits by mapping them into the latent space of a FaceNet embedding. Additionally, we present a new technique that fuses the output of an ensemble, to deliberately generate specific aspects of the recreated image.
☆ IQPFR: An Image Quality Prior for Blind Face Restoration and Beyond
Blind Face Restoration (BFR) addresses the challenge of reconstructing degraded low-quality (LQ) facial images into high-quality (HQ) outputs. Conventional approaches predominantly rely on learning feature representations from ground-truth (GT) data; however, inherent imperfections in GT datasets constrain restoration performance to the mean quality level of the training data, rather than attaining maximally attainable visual quality. To overcome this limitation, we propose a novel framework that incorporates an Image Quality Prior (IQP) derived from No-Reference Image Quality Assessment (NR-IQA) models to guide the restoration process toward optimal HQ reconstructions. Our methodology synergizes this IQP with a learned codebook prior through two critical innovations: (1) During codebook learning, we devise a dual-branch codebook architecture that disentangles feature extraction into universal structural components and HQ-specific attributes, ensuring comprehensive representation of both common and high-quality facial characteristics. (2) In the codebook lookup stage, we implement a quality-conditioned Transformer-based framework. NR-IQA-derived quality scores act as dynamic conditioning signals to steer restoration toward the highest feasible quality standard. This score-conditioned paradigm enables plug-and-play enhancement of existing BFR architectures without modifying the original structure. We also formulate a discrete representation-based quality optimization strategy that circumvents over-optimization artifacts prevalent in continuous latent space approaches. Extensive experiments demonstrate that our method outperforms state-of-the-art techniques across multiple benchmarks. Besides, our quality-conditioned framework demonstrates consistent performance improvements when integrated with prior BFR models. The code will be released.
☆ Better Together: Unified Motion Capture and 3D Avatar Reconstruction
We present Better Together, a method that simultaneously solves the human pose estimation problem while reconstructing a photorealistic 3D human avatar from multi-view videos. While prior art usually solves these problems separately, we argue that joint optimization of skeletal motion with a 3D renderable body model brings synergistic effects, i.e. yields more precise motion capture and improved visual quality of real-time rendering of avatars. To achieve this, we introduce a novel animatable avatar with 3D Gaussians rigged on a personalized mesh and propose to optimize the motion sequence with time-dependent MLPs that provide accurate and temporally consistent pose estimates. We first evaluate our method on highly challenging yoga poses and demonstrate state-of-the-art accuracy on multi-view human pose estimation, reducing error by 35% on body joints and 45% on hand joints compared to keypoint-based methods. At the same time, our method significantly boosts the visual quality of animatable avatars (+2dB PSNR on novel view synthesis) on diverse challenging subjects.
comment: 14 pages, 6 figures
☆ Noise2Score3D: Tweedie's Approach for Unsupervised Point Cloud Denoising
Building on recent advances in Bayesian statistics and image denoising, we propose Noise2Score3D, a fully unsupervised framework for point cloud denoising. Noise2Score3D learns the score function of the underlying point cloud distribution directly from noisy data, eliminating the need for clean data during training. Using Tweedie's formula, our method performs denoising in a single step, avoiding the iterative processes used in existing unsupervised methods, thus improving both accuracy and efficiency. Additionally, we introduce Total Variation for Point Clouds as a denoising quality metric, which allows for the estimation of unknown noise parameters. Experimental results demonstrate that Noise2Score3D achieves state-of-the-art performance on standard benchmarks among unsupervised learning methods in Chamfer distance and point-to-mesh metrics. Noise2Score3D also demonstrates strong generalization ability beyond training datasets. Our method, by addressing the generalization issue and challenge of the absence of clean data in learning-based methods, paves the way for learning-based point cloud denoising methods in real-world applications.
comment: arXiv admin note: substantial text overlap with arXiv:2502.16826
☆ Cockatiel: Ensembling Synthetic and Human Preferenced Training for Detailed Video Caption
Video Detailed Captioning (VDC) is a crucial task for vision-language bridging, enabling fine-grained descriptions of complex video content. In this paper, we first comprehensively benchmark current state-of-the-art approaches and systematically identified two critical limitations: biased capability towards specific captioning aspect and misalignment with human preferences. To address these deficiencies, we propose Cockatiel, a novel three-stage training pipeline that ensembles synthetic and human-aligned training for improving VDC performance. In the first stage, we derive a scorer from a meticulously annotated dataset to select synthetic captions high-performing on certain fine-grained video-caption alignment and human-preferred while disregarding others. Then, we train Cockatiel-13B, using this curated dataset to infuse it with assembled model strengths and human preferences. Finally, we further distill Cockatiel-8B from Cockatiel-13B for the ease of usage. Extensive quantitative and qualitative experiments reflect the effectiveness of our method, as we not only set new state-of-the-art performance on VDCSCORE in a dimension-balanced way but also surpass leading alternatives on human preference by a large margin as depicted by the human evaluation results.
comment: For more details, please refer to our project page: https://sais-fuxi.github.io/projects/cockatiel/
☆ UniCombine: Unified Multi-Conditional Combination with Diffusion Transformer
With the rapid development of diffusion models in image generation, the demand for more powerful and flexible controllable frameworks is increasing. Although existing methods can guide generation beyond text prompts, the challenge of effectively combining multiple conditional inputs while maintaining consistency with all of them remains unsolved. To address this, we introduce UniCombine, a DiT-based multi-conditional controllable generative framework capable of handling any combination of conditions, including but not limited to text prompts, spatial maps, and subject images. Specifically, we introduce a novel Conditional MMDiT Attention mechanism and incorporate a trainable LoRA module to build both the training-free and training-based versions. Additionally, we propose a new pipeline to construct SubjectSpatial200K, the first dataset designed for multi-conditional generative tasks covering both the subject-driven and spatially-aligned conditions. Extensive experimental results on multi-conditional generation demonstrate the outstanding universality and powerful capability of our approach with state-of-the-art performance.
☆ DitHub: A Modular Framework for Incremental Open-Vocabulary Object Detection
Open-Vocabulary object detectors can recognize a wide range of categories using simple textual prompts. However, improving their ability to detect rare classes or specialize in certain domains remains a challenge. While most recent methods rely on a single set of model weights for adaptation, we take a different approach by using modular deep learning. We introduce DitHub, a framework designed to create and manage a library of efficient adaptation modules. Inspired by Version Control Systems, DitHub organizes expert modules like branches that can be fetched and merged as needed. This modular approach enables a detailed study of how adaptation modules combine, making it the first method to explore this aspect in Object Detection. Our approach achieves state-of-the-art performance on the ODinW-13 benchmark and ODinW-O, a newly introduced benchmark designed to evaluate how well models adapt when previously seen classes reappear. For more details, visit our project page: https://aimagelab.github.io/DitHub/
☆ Bayesian Test-Time Adaptation for Vision-Language Models
Test-time adaptation with pre-trained vision-language models, such as CLIP, aims to adapt the model to new, potentially out-of-distribution test data. Existing methods calculate the similarity between visual embedding and learnable class embeddings, which are initialized by text embeddings, for zero-shot image classification. In this work, we first analyze this process based on Bayes theorem, and observe that the core factors influencing the final prediction are the likelihood and the prior. However, existing methods essentially focus on adapting class embeddings to adapt likelihood, but they often ignore the importance of prior. To address this gap, we propose a novel approach, \textbf{B}ayesian \textbf{C}lass \textbf{A}daptation (BCA), which in addition to continuously updating class embeddings to adapt likelihood, also uses the posterior of incoming samples to continuously update the prior for each class embedding. This dual updating mechanism allows the model to better adapt to distribution shifts and achieve higher prediction accuracy. Our method not only surpasses existing approaches in terms of performance metrics but also maintains superior inference rates and memory usage, making it highly efficient and practical for real-world applications.
☆ How To Make Your Cell Tracker Say "I dunno!"
Cell tracking is a key computational task in live-cell microscopy, but fully automated analysis of high-throughput imaging requires reliable and, thus, uncertainty-aware data analysis tools, as the amount of data recorded within a single experiment exceeds what humans are able to overlook. We here propose and benchmark various methods to reason about and quantify uncertainty in linear assignment-based cell tracking algorithms. Our methods take inspiration from statistics and machine learning, leveraging two perspectives on the cell tracking problem explored throughout this work: Considering it as a Bayesian inference problem and as a classification problem. Our methods admit a framework-like character in that they equip any frame-to-frame tracking method with uncertainty quantification. We demonstrate this by applying it to various existing tracking algorithms including the recently presented Transformer-based trackers. We demonstrate empirically that our methods yield useful and well-calibrated tracking uncertainties.
☆ GarmentPile: Point-Level Visual Affordance Guided Retrieval and Adaptation for Cluttered Garments Manipulation
Cluttered garments manipulation poses significant challenges due to the complex, deformable nature of garments and intricate garment relations. Unlike single-garment manipulation, cluttered scenarios require managing complex garment entanglements and interactions, while maintaining garment cleanliness and manipulation stability. To address these demands, we propose to learn point-level affordance, the dense representation modeling the complex space and multi-modal manipulation candidates, while being aware of garment geometry, structure, and inter-object relations. Additionally, as it is difficult to directly retrieve a garment in some extremely entangled clutters, we introduce an adaptation module, guided by learned affordance, to reorganize highly-entangled garments into states plausible for manipulation. Our framework demonstrates effectiveness over environments featuring diverse garment types and pile configurations in both simulation and the real world. Project page: https://garmentpile.github.io/.
☆ NAMI: Efficient Image Generation via Progressive Rectified Flow Transformers
Flow-based transformer models for image generation have achieved state-of-the-art performance with larger model parameters, but their inference deployment cost remains high. To enhance inference performance while maintaining generation quality, we propose progressive rectified flow transformers. We divide the rectified flow into different stages according to resolution, using fewer transformer layers at the low-resolution stages to generate image layouts and concept contours, and progressively adding more layers as the resolution increases. Experiments demonstrate that our approach achieves fast convergence and reduces inference time while ensuring generation quality. The main contributions of this paper are summarized as follows: (1) We introduce progressive rectified flow transformers that enable multi-resolution training, accelerating model convergence; (2) NAMI leverages piecewise flow and spatial cascading of Diffusion Transformer (DiT) to rapidly generate images, reducing inference time by 40% to generate a 1024 resolution image; (3) We propose NAMI-1K benchmark to evaluate human preference performance, aiming to mitigate distributional bias and prevent data leakage from open-source benchmarks. The results show that our model is competitive with state-of-the-art models.
☆ Active Learning Inspired ControlNet Guidance for Augmenting Semantic Segmentation Datasets
Recent advances in conditional image generation from diffusion models have shown great potential in achieving impressive image quality while preserving the constraints introduced by the user. In particular, ControlNet enables precise alignment between ground truth segmentation masks and the generated image content, allowing the enhancement of training datasets in segmentation tasks. This raises a key question: Can ControlNet additionally be guided to generate the most informative synthetic samples for a specific task? Inspired by active learning, where the most informative real-world samples are selected based on sample difficulty or model uncertainty, we propose the first approach to integrate active learning-based selection metrics into the backward diffusion process for sample generation. Specifically, we explore uncertainty, query by committee, and expected model change, which are commonly used in active learning, and demonstrate their application for guiding the sample generation process through gradient approximation. Our method is training-free, modifying only the backward diffusion process, allowing it to be used on any pretrained ControlNet. Using this process, we show that segmentation models trained with guided synthetic data outperform those trained on non-guided synthetic data. Our work underscores the need for advanced control mechanisms for diffusion-based models, which are not only aligned with image content but additionally downstream task performance, highlighting the true potential of synthetic data generation.
☆ Other Vehicle Trajectories Are Also Needed: A Driving World Model Unifies Ego-Other Vehicle Trajectories in Video Latant Space
Advanced end-to-end autonomous driving systems predict other vehicles' motions and plan ego vehicle's trajectory. The world model that can foresee the outcome of the trajectory has been used to evaluate the end-to-end autonomous driving system. However, existing world models predominantly emphasize the trajectory of the ego vehicle and leave other vehicles uncontrollable. This limitation hinders their ability to realistically simulate the interaction between the ego vehicle and the driving scenario. In addition, it remains a challenge to match multiple trajectories with each vehicle in the video to control the video generation. To address above issues, a driving \textbf{W}orld \textbf{M}odel named EOT-WM is proposed in this paper, unifying \textbf{E}go-\textbf{O}ther vehicle \textbf{T}rajectories in videos. Specifically, we first project ego and other vehicle trajectories in the BEV space into the image coordinate to match each trajectory with its corresponding vehicle in the video. Then, trajectory videos are encoded by the Spatial-Temporal Variational Auto Encoder to align with driving video latents spatially and temporally in the unified visual space. A trajectory-injected diffusion Transformer is further designed to denoise the noisy video latents for video generation with the guidance of ego-other vehicle trajectories. In addition, we propose a metric based on control latent similarity to evaluate the controllability of trajectories. Extensive experiments are conducted on the nuScenes dataset, and the proposed model outperforms the state-of-the-art method by 30\% in FID and 55\% in FVD. The model can also predict unseen driving scenes with self-produced trajectories.
comment: 8 pages, 7 figures
☆ Robust Asymmetric Heterogeneous Federated Learning with Corrupted Clients
This paper studies a challenging robust federated learning task with model heterogeneous and data corrupted clients, where the clients have different local model structures. Data corruption is unavoidable due to factors such as random noise, compression artifacts, or environmental conditions in real-world deployment, drastically crippling the entire federated system. To address these issues, this paper introduces a novel Robust Asymmetric Heterogeneous Federated Learning (RAHFL) framework. We propose a Diversity-enhanced supervised Contrastive Learning technique to enhance the resilience and adaptability of local models on various data corruption patterns. Its basic idea is to utilize complex augmented samples obtained by the mixed-data augmentation strategy for supervised contrastive learning, thereby enhancing the ability of the model to learn robust and diverse feature representations. Furthermore, we design an Asymmetric Heterogeneous Federated Learning strategy to resist corrupt feedback from external clients. The strategy allows clients to perform selective one-way learning during collaborative learning phase, enabling clients to refrain from incorporating lower-quality information from less robust or underperforming collaborators. Extensive experimental results demonstrate the effectiveness and robustness of our approach in diverse, challenging federated learning environments. Our code and models are public available at https://github.com/FangXiuwen/RAHFL.
☆ Teaching LMMs for Image Quality Scoring and Interpreting
Image quality scoring and interpreting are two fundamental components of Image Quality Assessment (IQA). The former quantifies image quality, while the latter enables descriptive question answering about image quality. Traditionally, these two tasks have been addressed independently. However, from the perspective of the Human Visual System (HVS) and the Perception-Decision Integration Model, they are inherently interconnected: interpreting serves as the foundation for scoring, while scoring provides an abstract summary of interpreting. Thus, unifying these capabilities within a single model is both intuitive and logically coherent. In this paper, we propose Q-SiT (Quality Scoring and Interpreting joint Teaching), a unified framework that enables large multimodal models (LMMs) to learn both image quality scoring and interpreting simultaneously. We achieve this by transforming conventional IQA datasets into learnable question-answering datasets and incorporating human-annotated quality interpreting data for training. Furthermore, we introduce an efficient scoring & interpreting balance strategy, which first determines the optimal data mix ratio on lightweight LMMs and then maps this ratio to primary LMMs for fine-tuning adjustment. This strategy not only mitigates task interference and enhances cross-task knowledge transfer but also significantly reduces computational costs compared to direct optimization on full-scale LMMs. With this joint learning framework and corresponding training strategy, we develop Q-SiT, the first model capable of simultaneously performing image quality scoring and interpreting tasks, along with its lightweight variant, Q-SiT-mini. Experimental results demonstrate that Q-SiT achieves strong performance in both tasks with superior generalization IQA abilities.Project page at https://github.com/Q-Future/Q-SiT.
☆ Learning Appearance and Motion Cues for Panoptic Tracking
Panoptic tracking enables pixel-level scene interpretation of videos by integrating instance tracking in panoptic segmentation. This provides robots with a spatio-temporal understanding of the environment, an essential attribute for their operation in dynamic environments. In this paper, we propose a novel approach for panoptic tracking that simultaneously captures general semantic information and instance-specific appearance and motion features. Unlike existing methods that overlook dynamic scene attributes, our approach leverages both appearance and motion cues through dedicated network heads. These interconnected heads employ multi-scale deformable convolutions that reason about scene motion offsets with semantic context and motion-enhanced appearance features to learn tracking embeddings. Furthermore, we introduce a novel two-step fusion module that integrates the outputs from both heads by first matching instances from the current time step with propagated instances from previous time steps and subsequently refines associations using motion-enhanced appearance embeddings, improving robustness in challenging scenarios. Extensive evaluations of our proposed \netname model on two benchmark datasets demonstrate that it achieves state-of-the-art performance in panoptic tracking accuracy, surpassing prior methods in maintaining object identities over time. To facilitate future research, we make the code available at http://panoptictracking.cs.uni-freiburg.de
☆ Polygonizing Roof Segments from High-Resolution Aerial Images Using Yolov8-Based Edge Detection
This study presents a novel approach for roof detail extraction and vectorization using remote sensing images. Unlike previous geometric-primitive-based methods that rely on the detection of corners, our method focuses on edge detection as the primary mechanism for roof reconstruction, while utilizing geometric relationships to define corners and faces. We adapt the YOLOv8 OBB model, originally designed for rotated object detection, to extract roof edges effectively. Our method demonstrates robustness against noise and occlusion, leading to precise vectorized representations of building roofs. Experiments conducted on the SGA and Melville datasets highlight the method's effectiveness. At the raster level, our model outperforms the state-of-the-art foundation segmentation model (SAM), achieving a mIoU between 0.85 and 1 for most samples and an ovIoU close to 0.97. At the vector level, evaluation using the Hausdorff distance, PolyS metric, and our raster-vector-metric demonstrates significant improvements after polygonization, with a close approximation to the reference data. The method successfully handles diverse roof structures and refines edge gaps, even on complex roof structures of new, excluded from training datasets. Our findings underscore the potential of this approach to address challenges in automatic roof structure vectorization, supporting various applications such as urban terrain reconstruction.
comment: 12 pages, 6 figures, conference paper (VISAPP 2025, part of the 20th International Joint Conference on Computer Vision, Imaging, and Computer Graphics Theory and Applications)
☆ Incomplete Multi-view Clustering via Diffusion Contrastive Generation
Incomplete multi-view clustering (IMVC) has garnered increasing attention in recent years due to the common issue of missing data in multi-view datasets. The primary approach to address this challenge involves recovering the missing views before applying conventional multi-view clustering methods. Although imputation-based IMVC methods have achieved significant improvements, they still encounter notable limitations: 1) heavy reliance on paired data for training the data recovery module, which is impractical in real scenarios with high missing data rates; 2) the generated data often lacks diversity and discriminability, resulting in suboptimal clustering results. To address these shortcomings, we propose a novel IMVC method called Diffusion Contrastive Generation (DCG). Motivated by the consistency between the diffusion and clustering processes, DCG learns the distribution characteristics to enhance clustering by applying forward diffusion and reverse denoising processes to intra-view data. By performing contrastive learning on a limited set of paired multi-view samples, DCG can align the generated views with the real views, facilitating accurate recovery of views across arbitrary missing view scenarios. Additionally, DCG integrates instance-level and category-level interactive learning to exploit the consistent and complementary information available in multi-view data, achieving robust and end-to-end clustering. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches.
☆ SwapAnyone: Consistent and Realistic Video Synthesis for Swapping Any Person into Any Video
Video body-swapping aims to replace the body in an existing video with a new body from arbitrary sources, which has garnered more attention in recent years. Existing methods treat video body-swapping as a composite of multiple tasks instead of an independent task and typically rely on various models to achieve video body-swapping sequentially. However, these methods fail to achieve end-to-end optimization for the video body-swapping which causes issues such as variations in luminance among frames, disorganized occlusion relationships, and the noticeable separation between bodies and background. In this work, we define video body-swapping as an independent task and propose three critical consistencies: identity consistency, motion consistency, and environment consistency. We introduce an end-to-end model named SwapAnyone, treating video body-swapping as a video inpainting task with reference fidelity and motion control. To improve the ability to maintain environmental harmony, particularly luminance harmony in the resulting video, we introduce a novel EnvHarmony strategy for training our model progressively. Additionally, we provide a dataset named HumanAction-32K covering various videos about human actions. Extensive experiments demonstrate that our method achieves State-Of-The-Art (SOTA) performance among open-source methods while approaching or surpassing closed-source models across multiple dimensions. All code, model weights, and the HumanAction-32K dataset will be open-sourced at https://github.com/PKU-YuanGroup/SwapAnyone.
☆ Reangle-A-Video: 4D Video Generation as Video-to-Video Translation
We introduce Reangle-A-Video, a unified framework for generating synchronized multi-view videos from a single input video. Unlike mainstream approaches that train multi-view video diffusion models on large-scale 4D datasets, our method reframes the multi-view video generation task as video-to-videos translation, leveraging publicly available image and video diffusion priors. In essence, Reangle-A-Video operates in two stages. (1) Multi-View Motion Learning: An image-to-video diffusion transformer is synchronously fine-tuned in a self-supervised manner to distill view-invariant motion from a set of warped videos. (2) Multi-View Consistent Image-to-Images Translation: The first frame of the input video is warped and inpainted into various camera perspectives under an inference-time cross-view consistency guidance using DUSt3R, generating multi-view consistent starting images. Extensive experiments on static view transport and dynamic camera control show that Reangle-A-Video surpasses existing methods, establishing a new solution for multi-view video generation. We will publicly release our code and data. Project page: https://hyeonho99.github.io/reangle-a-video/
comment: Project page: https://hyeonho99.github.io/reangle-a-video/
☆ Memory-enhanced Retrieval Augmentation for Long Video Understanding
Retrieval-augmented generation (RAG) shows strong potential in addressing long-video understanding (LVU) tasks. However, traditional RAG methods remain fundamentally limited due to their dependence on explicit search queries, which are unavailable in many situations. To overcome this challenge, we introduce a novel RAG-based LVU approach inspired by the cognitive memory of human beings, which is called MemVid. Our approach operates with four basics steps: memorizing holistic video information, reasoning about the task's information needs based on the memory, retrieving critical moments based on the information needs, and focusing on the retrieved moments to produce the final answer. To enhance the system's memory-grounded reasoning capabilities and achieve optimal end-to-end performance, we propose a curriculum learning strategy. This approach begins with supervised learning on well-annotated reasoning results, then progressively explores and reinforces more plausible reasoning outcomes through reinforcement learning. We perform extensive evaluations on popular LVU benchmarks, including MLVU, VideoMME and LVBench. In our experiment, MemVid significantly outperforms existing RAG-based methods and popular LVU models, which demonstrate the effectiveness of our approach. Our model and source code will be made publicly available upon acceptance.
☆ Generative Frame Sampler for Long Video Understanding
Despite recent advances in Video Large Language Models (VideoLLMs), effectively understanding long-form videos remains a significant challenge. Perceiving lengthy videos containing thousands of frames poses substantial computational burden. To mitigate this issue, this paper introduces Generative Frame Sampler (GenS), a plug-and-play module integrated with VideoLLMs to facilitate efficient lengthy video perception. Built upon a lightweight VideoLLM, GenS leverages its inherent vision-language capabilities to identify question-relevant frames. To facilitate effective retrieval, we construct GenS-Video-150K, a large-scale video instruction dataset with dense frame relevance annotations. Extensive experiments demonstrate that GenS consistently boosts the performance of various VideoLLMs, including open-source models (Qwen2-VL-7B, Aria-25B, VILA-40B, LLaVA-Video-7B/72B) and proprietary assistants (GPT-4o, Gemini). When equipped with GenS, open-source VideoLLMs achieve impressive state-of-the-art results on long-form video benchmarks: LLaVA-Video-72B reaches 66.8 (+4.3) on LongVideoBench and 77.0 (+2.7) on MLVU, while Aria obtains 39.2 on HourVideo surpassing the Gemini-1.5-pro by 1.9 points. We will release all datasets and models at https://generative-sampler.github.io.
☆ Exo2Ego: Exocentric Knowledge Guided MLLM for Egocentric Video Understanding
AI personal assistants, deployed through robots or wearables, require embodied understanding to collaborate effectively with humans. Current Multimodal Large Language Models (MLLMs) primarily focus on third-person (exocentric) vision, overlooking the unique aspects of first-person (egocentric) videos. Additionally, high acquisition costs limit data size, impairing MLLM performance. To address these challenges, we propose learning the mapping between exocentric and egocentric domains, leveraging the extensive exocentric knowledge within existing MLLMs to enhance egocentric video understanding. To this end, we introduce Ego-ExoClip, a pre-training dataset comprising 1.1M synchronized ego-exo clip-text pairs derived from Ego-Exo4D. Our approach features a progressive training pipeline with three stages: Teacher Self-Preparation, Teacher-Student Guidance, and Student Self-Practice. Additionally, we propose an instruction-tuning data EgoIT from multiple sources to strengthen the model's instruction-following capabilities, along with the EgoBench benchmark comprising eight different tasks for thorough evaluation. Extensive experiments across diverse egocentric tasks reveal that existing MLLMs perform inadequately in egocentric video understanding, while our model significantly outperforms these leading models.
comment: Project: https://egovisiongroup.github.io/Exo2Ego.github.io/
☆ Investigation of Frame Differences as Motion Cues for Video Object Segmentation ICML
Automatic Video Object Segmentation (AVOS) refers to the task of autonomously segmenting target objects in video sequences without relying on human-provided annotations in the first frames. In AVOS, the use of motion information is crucial, with optical flow being a commonly employed method for capturing motion cues. However, the computation of optical flow is resource-intensive, making it unsuitable for real-time applications, especially on edge devices with limited computational resources. In this study, we propose using frame differences as an alternative to optical flow for motion cue extraction. We developed an extended U-Net-like AVOS model that takes a frame on which segmentation is performed and a frame difference as inputs, and outputs an estimated segmentation map. Our experimental results demonstrate that the proposed model achieves performance comparable to the model with optical flow as an input, particularly when applied to videos captured by stationary cameras. Our results suggest the usefulness of employing frame differences as motion cues in cases with limited computational resources.
comment: 8 pages, 3 figures, 2 tables. Accepted to The 9th International Conference on Machine Learning and Soft Computing (ICMLSC 2025)
☆ MP-HSIR: A Multi-Prompt Framework for Universal Hyperspectral Image Restoration
Hyperspectral images (HSIs) often suffer from diverse and unknown degradations during imaging, leading to severe spectral and spatial distortions. Existing HSI restoration methods typically rely on specific degradation assumptions, limiting their effectiveness in complex scenarios. In this paper, we propose MP-HSIR, a novel multi-prompt framework that effectively integrates spectral, textual, and visual prompts to achieve universal HSI restoration across diverse degradation types and intensities. Specifically, we develop a prompt-guided spatial-spectral transformer, which incorporates spatial self-attention and a prompt-guided dual-branch spectral self-attention. Since degradations affect spectral features differently, we introduce spectral prompts in the local spectral branch to provide universal low-rank spectral patterns as prior knowledge for enhancing spectral reconstruction. Furthermore, the text-visual synergistic prompt fuses high-level semantic representations with fine-grained visual features to encode degradation information, thereby guiding the restoration process. Extensive experiments on 9 HSI restoration tasks, including all-in-one scenarios, generalization tests, and real-world cases, demonstrate that MP-HSIR not only consistently outperforms existing all-in-one methods but also surpasses state-of-the-art task-specific approaches across multiple tasks. The code and models will be released at https://github.com/ZhehuiWu/MP-HSIR.
☆ InteractEdit: Zero-Shot Editing of Human-Object Interactions in Images
This paper presents InteractEdit, a novel framework for zero-shot Human-Object Interaction (HOI) editing, addressing the challenging task of transforming an existing interaction in an image into a new, desired interaction while preserving the identities of the subject and object. Unlike simpler image editing scenarios such as attribute manipulation, object replacement or style transfer, HOI editing involves complex spatial, contextual, and relational dependencies inherent in humans-objects interactions. Existing methods often overfit to the source image structure, limiting their ability to adapt to the substantial structural modifications demanded by new interactions. To address this, InteractEdit decomposes each scene into subject, object, and background components, then employs Low-Rank Adaptation (LoRA) and selective fine-tuning to preserve pretrained interaction priors while learning the visual identity of the source image. This regularization strategy effectively balances interaction edits with identity consistency. We further introduce IEBench, the most comprehensive benchmark for HOI editing, which evaluates both interaction editing and identity preservation. Our extensive experiments show that InteractEdit significantly outperforms existing methods, establishing a strong baseline for future HOI editing research and unlocking new possibilities for creative and practical applications. Code will be released upon publication.
comment: Website: https://jiuntian.github.io/interactedit
☆ AdvAD: Exploring Non-Parametric Diffusion for Imperceptible Adversarial Attacks NeurIPS 2024
Imperceptible adversarial attacks aim to fool DNNs by adding imperceptible perturbation to the input data. Previous methods typically improve the imperceptibility of attacks by integrating common attack paradigms with specifically designed perception-based losses or the capabilities of generative models. In this paper, we propose Adversarial Attacks in Diffusion (AdvAD), a novel modeling framework distinct from existing attack paradigms. AdvAD innovatively conceptualizes attacking as a non-parametric diffusion process by theoretically exploring basic modeling approach rather than using the denoising or generation abilities of regular diffusion models requiring neural networks. At each step, much subtler yet effective adversarial guidance is crafted using only the attacked model without any additional network, which gradually leads the end of diffusion process from the original image to a desired imperceptible adversarial example. Grounded in a solid theoretical foundation of the proposed non-parametric diffusion process, AdvAD achieves high attack efficacy and imperceptibility with intrinsically lower overall perturbation strength. Additionally, an enhanced version AdvAD-X is proposed to evaluate the extreme of our novel framework under an ideal scenario. Extensive experiments demonstrate the effectiveness of the proposed AdvAD and AdvAD-X. Compared with state-of-the-art imperceptible attacks, AdvAD achieves an average of 99.9$\%$ (+17.3$\%$) ASR with 1.34 (-0.97) $l_2$ distance, 49.74 (+4.76) PSNR and 0.9971 (+0.0043) SSIM against four prevalent DNNs with three different architectures on the ImageNet-compatible dataset. Code is available at https://github.com/XianguiKang/AdvAD.
comment: Accept by NeurIPS 2024. Please cite this paper using the following format: J. Li, Z. He, A. Luo, J. Hu, Z. Wang, X. Kang*, "AdvAD: Exploring Non-Parametric Diffusion for Imperceptible Adversarial Attacks", the 38th Annual Conference on Neural Information Processing Systems (NeurIPS), Vancouver, Canada, Dec 9-15, 2024. Code: https://github.com/XianguiKang/AdvAD
♻ ☆ OmniPaint: Mastering Object-Oriented Editing via Disentangled Insertion-Removal Inpainting
Diffusion-based generative models have revolutionized object-oriented image editing, yet their deployment in realistic object removal and insertion remains hampered by challenges such as the intricate interplay of physical effects and insufficient paired training data. In this work, we introduce OmniPaint, a unified framework that re-conceptualizes object removal and insertion as interdependent processes rather than isolated tasks. Leveraging a pre-trained diffusion prior along with a progressive training pipeline comprising initial paired sample optimization and subsequent large-scale unpaired refinement via CycleFlow, OmniPaint achieves precise foreground elimination and seamless object insertion while faithfully preserving scene geometry and intrinsic properties. Furthermore, our novel CFD metric offers a robust, reference-free evaluation of context consistency and object hallucination, establishing a new benchmark for high-fidelity image editing. Project page: https://yeates.github.io/OmniPaint-Page/
♻ ☆ MsaMIL-Net: An End-to-End Multi-Scale Aware Multiple Instance Learning Network for Efficient Whole Slide Image Classification ICCV2025
Bag-based Multiple Instance Learning (MIL) approaches have emerged as the mainstream methodology for Whole Slide Image (WSI) classification. However, most existing methods adopt a segmented training strategy, which first extracts features using a pre-trained feature extractor and then aggregates these features through MIL. This segmented training approach leads to insufficient collaborative optimization between the feature extraction network and the MIL network, preventing end-to-end joint optimization and thereby limiting the overall performance of the model. Additionally, conventional methods typically extract features from all patches of fixed size, ignoring the multi-scale observation characteristics of pathologists. This not only results in significant computational resource waste when tumor regions represent a minimal proportion (as in the Camelyon16 dataset) but may also lead the model to suboptimal solutions. To address these limitations, this paper proposes an end-to-end multi-scale WSI classification framework that integrates multi-scale feature extraction with multiple instance learning. Specifically, our approach includes: (1) a semantic feature filtering module to reduce interference from non-lesion areas; (2) a multi-scale feature extraction module to capture pathological information at different levels; and (3) a multi-scale fusion MIL module for global modeling and feature integration. Through an end-to-end training strategy, we simultaneously optimize both the feature extractor and MIL network, ensuring maximum compatibility between them. Experiments were conducted on three cross-center datasets (DigestPath2019, BCNB, and UBC-OCEAN). Results demonstrate that our proposed method outperforms existing state-of-the-art approaches in terms of both accuracy (ACC) and AUC metrics.
comment: summited to ICCV2025
♻ ☆ Layton: Latent Consistency Tokenizer for 1024-pixel Image Reconstruction and Generation by 256 Tokens
Image tokenization has significantly advanced visual generation and multimodal modeling, particularly when paired with autoregressive models. However, current methods face challenges in balancing efficiency and fidelity: high-resolution image reconstruction either requires an excessive number of tokens or compromises critical details through token reduction. To resolve this, we propose Latent Consistency Tokenizer (Layton) that bridges discrete visual tokens with the compact latent space of pre-trained Latent Diffusion Models (LDMs), enabling efficient representation of 1024x1024 images using only 256 tokens-a 16 times compression over VQGAN. Layton integrates a transformer encoder, a quantized codebook, and a latent consistency decoder. Direct application of LDM as the decoder results in color and brightness discrepancies. Thus, we convert it to latent consistency decoder, reducing multi-step sampling to 1-2 steps for direct pixel-level supervision. Experiments demonstrate Layton's superiority in high-fidelity reconstruction, with 10.8 reconstruction Frechet Inception Distance on MSCOCO-2017 5K benchmark for 1024x1024 image reconstruction. We also extend Layton to a text-to-image generation model, LaytonGen, working in autoregression. It achieves 0.73 score on GenEval benchmark, surpassing current state-of-the-art methods. Project homepage: https://github.com/OPPO-Mente-Lab/Layton
♻ ☆ Attention Reallocation: Towards Zero-cost and Controllable Hallucination Mitigation of MLLMs
Multi-Modal Large Language Models (MLLMs) stand out in various tasks but still struggle with hallucinations. While recent training-free mitigation methods mostly introduce additional inference overhead via retrospection strategy and contrastive decoding, we propose attention reallocation (AttnReal) to mitigate hallucinations with nearly zero extra cost. Our approach is motivated by the key observations that, MLLM's unreasonable attention distribution causes features to be dominated by historical output tokens, which further contributes to hallucinated responses because of the distribution gap between different token types. Based on the observations, AttnReal recycles excessive attention from output tokens and reallocates it to visual tokens, which reduces MLLM's reliance on language priors and ensures the decoding process depends more on the visual inputs. More interestingly, we find that, by controlling the intensity of AttnReal, we can achieve a wide-range trade-off between the response faithfulness and overall performance. Comprehensive results from different benchmarks validate the effectiveness of AttnReal across six open-source MLLMs and three decoding strategies.
♻ ☆ $^R$FLAV: Rolling Flow matching for infinite Audio Video generation
Joint audio-video (AV) generation is still a significant challenge in generative AI, primarily due to three critical requirements: quality of the generated samples, seamless multimodal synchronization and temporal coherence, with audio tracks that match the visual data and vice versa, and limitless video duration. In this paper, we present $^R$-FLAV, a novel transformer-based architecture that addresses all the key challenges of AV generation. We explore three distinct cross modality interaction modules, with our lightweight temporal fusion module emerging as the most effective and computationally efficient approach for aligning audio and visual modalities. Our experimental results demonstrate that $^R$-FLAV outperforms existing state-of-the-art models in multimodal AV generation tasks. Our code and checkpoints are available at https://github.com/ErgastiAlex/R-FLAV.
♻ ☆ HERMES: A Unified Self-Driving World Model for Simultaneous 3D Scene Understanding and Generation
Driving World Models (DWMs) have become essential for autonomous driving by enabling future scene prediction. However, existing DWMs are limited to scene generation and fail to incorporate scene understanding, which involves interpreting and reasoning about the driving environment. In this paper, we present a unified Driving World Model named HERMES. We seamlessly integrate 3D scene understanding and future scene evolution (generation) through a unified framework in driving scenarios. Specifically, HERMES leverages a Bird's-Eye View (BEV) representation to consolidate multi-view spatial information while preserving geometric relationships and interactions. We also introduce world queries, which incorporate world knowledge into BEV features via causal attention in the Large Language Model, enabling contextual enrichment for understanding and generation tasks. We conduct comprehensive studies on nuScenes and OmniDrive-nuScenes datasets to validate the effectiveness of our method. HERMES achieves state-of-the-art performance, reducing generation error by 32.4% and improving understanding metrics such as CIDEr by 8.0%. The model and code will be publicly released at https://github.com/LMD0311/HERMES.
comment: The code will be available at https://github.com/LMD0311/HERMES
♻ ☆ DAWN-FM: Data-Aware and Noise-Informed Flow Matching for Solving Inverse Problems
Inverse problems, which involve estimating parameters from incomplete or noisy observations, arise in various fields such as medical imaging, geophysics, and signal processing. These problems are often ill-posed, requiring regularization techniques to stabilize the solution. In this work, we employ Flow Matching (FM), a generative framework that integrates a deterministic processes to map a simple reference distribution, such as a Gaussian, to the target distribution. Our method DAWN-FM: Data-AWare and Noise-informed Flow Matching incorporates data and noise embedding, allowing the model to access representations about the measured data explicitly and also account for noise in the observations, making it particularly robust in scenarios where data is noisy or incomplete. By learning a time-dependent velocity field, FM not only provides accurate solutions but also enables uncertainty quantification by generating multiple plausible outcomes. Unlike pre-trained diffusion models, which may struggle in highly ill-posed settings, our approach is trained specifically for each inverse problem and adapts to varying noise levels. We validate the effectiveness and robustness of our method through extensive numerical experiments on tasks such as image deblurring and tomography.
comment: 27 pages, 11 figures, 6 tables
♻ ☆ RRWNet: Recursive Refinement Network for effective retinal artery/vein segmentation and classification
The caliber and configuration of retinal blood vessels serve as important biomarkers for various diseases and medical conditions. A thorough analysis of the retinal vasculature requires the segmentation of the blood vessels and their classification into arteries and veins, typically performed on color fundus images obtained by retinography. However, manually performing these tasks is labor-intensive and prone to human error. While several automated methods have been proposed to address this task, the current state of art faces challenges due to manifest classification errors affecting the topological consistency of segmentation maps. In this work, we introduce RRWNet, a novel end-to-end deep learning framework that addresses this limitation. The framework consists of a fully convolutional neural network that recursively refines semantic segmentation maps, correcting manifest classification errors and thus improving topological consistency. In particular, RRWNet is composed of two specialized subnetworks: a Base subnetwork that generates base segmentation maps from the input images, and a Recursive Refinement subnetwork that iteratively and recursively improves these maps. Evaluation on three different public datasets demonstrates the state-of-the-art performance of the proposed method, yielding more topologically consistent segmentation maps with fewer manifest classification errors than existing approaches. In addition, the Recursive Refinement module within RRWNet proves effective in post-processing segmentation maps from other methods, further demonstrating its potential. The model code, weights, and predictions will be publicly available at https://github.com/j-morano/rrwnet.
♻ ☆ Grounding Video Models to Actions through Goal Conditioned Exploration ICLR 2025
Large video models, pretrained on massive amounts of Internet video, provide a rich source of physical knowledge about the dynamics and motions of objects and tasks. However, video models are not grounded in the embodiment of an agent, and do not describe how to actuate the world to reach the visual states depicted in a video. To tackle this problem, current methods use a separate vision-based inverse dynamic model trained on embodiment-specific data to map image states to actions. Gathering data to train such a model is often expensive and challenging, and this model is limited to visual settings similar to the ones in which data are available. In this paper, we investigate how to directly ground video models to continuous actions through self-exploration in the embodied environment -- using generated video states as visual goals for exploration. We propose a framework that uses trajectory level action generation in combination with video guidance to enable an agent to solve complex tasks without any external supervision, e.g., rewards, action labels, or segmentation masks. We validate the proposed approach on 8 tasks in Libero, 6 tasks in MetaWorld, 4 tasks in Calvin, and 12 tasks in iThor Visual Navigation. We show how our approach is on par with or even surpasses multiple behavior cloning baselines trained on expert demonstrations while without requiring any action annotations.
comment: ICLR 2025 (Spotlight). Project page: https://video-to-action.github.io/
♻ ☆ MaskFlow: Discrete Flows For Flexible and Efficient Long Video Generation
Generating long, high-quality videos remains a challenge due to the complex interplay of spatial and temporal dynamics and hardware limitations. In this work, we introduce MaskFlow, a unified video generation framework that combines discrete representations with flow-matching to enable efficient generation of high-quality long videos. By leveraging a frame-level masking strategy during training, MaskFlow conditions on previously generated unmasked frames to generate videos with lengths ten times beyond that of the training sequences. MaskFlow does so very efficiently by enabling the use of fast Masked Generative Model (MGM)-style sampling and can be deployed in both fully autoregressive as well as full-sequence generation modes. We validate the quality of our method on the FaceForensics (FFS) and Deepmind Lab (DMLab) datasets and report Frechet Video Distance (FVD) competitive with state-of-the-art approaches. We also provide a detailed analysis on the sampling efficiency of our method and demonstrate that MaskFlow can be applied to both timestep-dependent and timestep-independent models in a training-free manner.
comment: Project page: https://compvis.github.io/maskflow/
♻ ☆ RAID-Database: human Responses to Affine Image Distortions
Image quality databases are used to train models for predicting subjective human perception. However, most existing databases focus on distortions commonly found in digital media and not in natural conditions. Affine transformations are particularly relevant to study, as they are among the most commonly encountered by human observers in everyday life. This Data Descriptor presents a set of human responses to suprathreshold affine image transforms (rotation, translation, scaling) and Gaussian noise as convenient reference to compare with previously existing image quality databases. The responses were measured using well established psychophysics: the Maximum Likelihood Difference Scaling method. The set contains responses to 864 distorted images. The experiments involved 105 observers and more than 20000 comparisons of quadruples of images. The quality of the dataset is ensured because (a) it reproduces the classical Pi\'eron's law, (b) it reproduces classical absolute detection thresholds, and (c) it is consistent with conventional image quality databases but improves them according to Group-MAD experiments.
♻ ☆ FastTextSpotter: A High-Efficiency Transformer for Multilingual Scene Text Spotting ICPR 2024
The proliferation of scene text in both structured and unstructured environments presents significant challenges in optical character recognition (OCR), necessitating more efficient and robust text spotting solutions. This paper presents FastTextSpotter, a framework that integrates a Swin Transformer visual backbone with a Transformer Encoder-Decoder architecture, enhanced by a novel, faster self-attention unit, SAC2, to improve processing speeds while maintaining accuracy. FastTextSpotter has been validated across multiple datasets, including ICDAR2015 for regular texts and CTW1500 and TotalText for arbitrary-shaped texts, benchmarking against current state-of-the-art models. Our results indicate that FastTextSpotter not only achieves superior accuracy in detecting and recognizing multilingual scene text (English and Vietnamese) but also improves model efficiency, thereby setting new benchmarks in the field. This study underscores the potential of advanced transformer architectures in improving the adaptability and speed of text spotting applications in diverse real-world settings. The dataset, code, and pre-trained models have been released in our Github.
comment: Accepted in ICPR 2024
♻ ☆ MonoDGP: Monocular 3D Object Detection with Decoupled-Query and Geometry-Error Priors
Perspective projection has been extensively utilized in monocular 3D object detection methods. It introduces geometric priors from 2D bounding boxes and 3D object dimensions to reduce the uncertainty of depth estimation. However, due to depth errors originating from the object's visual surface, the height of the bounding box often fails to represent the actual projected central height, which undermines the effectiveness of geometric depth. Direct prediction for the projected height unavoidably results in a loss of 2D priors, while multi-depth prediction with complex branches does not fully leverage geometric depth. This paper presents a Transformer-based monocular 3D object detection method called MonoDGP, which adopts perspective-invariant geometry errors to modify the projection formula. We also try to systematically discuss and explain the mechanisms and efficacy behind geometry errors, which serve as a simple but effective alternative to multi-depth prediction. Additionally, MonoDGP decouples the depth-guided decoder and constructs a 2D decoder only dependent on visual features, providing 2D priors and initializing object queries without the disturbance of 3D detection. To further optimize and fine-tune input tokens of the transformer decoder, we also introduce a Region Segment Head (RSH) that generates enhanced features and segment embeddings. Our monocular method demonstrates state-of-the-art performance on the KITTI benchmark without extra data. Code is available at https://github.com/PuFanqi23/MonoDGP.
♻ ☆ SVGBuilder: Component-Based Colored SVG Generation with Text-Guided Autoregressive Transformers
Scalable Vector Graphics (SVG) are essential XML-based formats for versatile graphics, offering resolution independence and scalability. Unlike raster images, SVGs use geometric shapes and support interactivity, animation, and manipulation via CSS and JavaScript. Current SVG generation methods face challenges related to high computational costs and complexity. In contrast, human designers use component-based tools for efficient SVG creation. Inspired by this, SVGBuilder introduces a component-based, autoregressive model for generating high-quality colored SVGs from textual input. It significantly reduces computational overhead and improves efficiency compared to traditional methods. Our model generates SVGs up to 604 times faster than optimization-based approaches. To address the limitations of existing SVG datasets and support our research, we introduce ColorSVG-100K, the first large-scale dataset of colored SVGs, comprising 100,000 graphics. This dataset fills the gap in color information for SVG generation models and enhances diversity in model training. Evaluation against state-of-the-art models demonstrates SVGBuilder's superior performance in practical applications, highlighting its efficiency and quality in generating complex SVG graphics.
comment: Project: https://svgbuilder.github.io
♻ ☆ RS2V-L: Vehicle-Mounted LiDAR Data Generation from Roadside Sensor Observations
End-to-end autonomous driving solutions, which process multi-modal sensory data to directly generate refined control commands, have become a dominant paradigm in autonomous driving research. However, these approaches predominantly depend on single-vehicle data collection for model training and optimization, resulting in significant challenges such as high data acquisition and annotation costs, the scarcity of critical driving scenarios, and fragmented datasets that impede model generalization. To mitigate these limitations, we introduce RS2V-L, a novel framework for reconstructing and synthesizing vehicle-mounted LiDAR data from roadside sensor observations. Specifically, our method transforms roadside LiDAR point clouds into the vehicle-mounted LiDAR coordinate system by leveraging the target vehicle's relative pose. Subsequently, high-fidelity vehicle-mounted LiDAR data is synthesized through virtual LiDAR modeling, point cloud classification, and resampling techniques. To the best of our knowledge, this is the first approach to reconstruct vehicle-mounted LiDAR data from roadside sensor inputs. Extensive experimental evaluations demonstrate that incorporating the generated data into model training-complementing the KITTI dataset-enhances 3D object detection accuracy by over \text{30\%} while improving the efficiency of end-to-end autonomous driving data generation by more than an order of magnitude. These findings strongly validate the effectiveness of the proposed method and underscore its potential in reducing dependence on costly vehicle-mounted data collection while improving the robustness of autonomous driving models.
comment: Upon self-examination, we have found that the data in the experimental section of our paper is uncertain. To ensure academic rigor, we are applying for the withdrawal of the paper. We will resubmit it after reconfirming and correcting the data. Thank you for your understanding
♻ ☆ COMAE: COMprehensive Attribute Exploration for Zero-shot Hashing
Zero-shot hashing (ZSH) has shown excellent success owing to its efficiency and generalization in large-scale retrieval scenarios. While considerable success has been achieved, there still exist urgent limitations. Existing works ignore the locality relationships of representations and attributes, which have effective transferability between seeable classes and unseeable classes. Also, the continuous-value attributes are not fully harnessed. In response, we conduct a COMprehensive Attribute Exploration for ZSH, named COMAE, which depicts the relationships from seen classes to unseen ones through three meticulously designed explorations, i.e., point-wise, pair-wise and class-wise consistency constraints. By regressing attributes from the proposed attribute prototype network, COMAE learns the local features that are relevant to the visual attributes. Then COMAE utilizes contrastive learning to comprehensively depict the context of attributes, rather than instance-independent optimization. Finally, the class-wise constraint is designed to cohesively learn the hash code, image representation, and visual attributes more effectively. Experimental results on the popular ZSH datasets demonstrate that COMAE outperforms state-of-the-art hashing techniques, especially in scenarios with a larger number of unseen label classes.
comment: 18 pages, 7 figures
♻ ☆ Detection, Pose Estimation and Segmentation for Multiple Bodies: Closing the Virtuous Circle
Human pose estimation methods work well on isolated people but struggle with multiple-bodies-in-proximity scenarios. Previous work has addressed this problem by conditioning pose estimation by detected bounding boxes or keypoints, but overlooked instance masks. We propose to iteratively enforce mutual consistency of bounding boxes, instance masks, and poses. The introduced BBox-Mask-Pose (BMP) method uses three specialized models that improve each other's output in a closed loop. All models are adapted for mutual conditioning, which improves robustness in multi-body scenes. MaskPose, a new mask-conditioned pose estimation model, is the best among top-down approaches on OCHuman. BBox-Mask-Pose pushes SOTA on OCHuman dataset in all three tasks - detection, instance segmentation, and pose estimation. It also achieves SOTA performance on COCO pose estimation. The method is especially good in scenes with large instances overlap, where it improves detection by 39% over the baseline detector. With small specialized models and faster runtime, BMP is an effective alternative to large human-centered foundational models. Code and models are available on https://MiraPurkrabek.github.io/BBox-Mask-Pose.
comment: Code: https://mirapurkrabek.github.io/BBox-Mask-Pose
♻ ☆ WildAvatar: Learning In-the-wild 3D Avatars from the Web CVPR2025
Existing research on avatar creation is typically limited to laboratory datasets, which require high costs against scalability and exhibit insufficient representation of the real world. On the other hand, the web abounds with off-the-shelf real-world human videos, but these videos vary in quality and require accurate annotations for avatar creation. To this end, we propose an automatic annotating pipeline with filtering protocols to curate these humans from the web. Our pipeline surpasses state-of-the-art methods on the EMDB benchmark, and the filtering protocols boost verification metrics on web videos. We then curate WildAvatar, a web-scale in-the-wild human avatar creation dataset extracted from YouTube, with $10000+$ different human subjects and scenes. WildAvatar is at least $10\times$ richer than previous datasets for 3D human avatar creation and closer to the real world. To explore its potential, we demonstrate the quality and generalizability of avatar creation methods on WildAvatar. We will publicly release our code, data source links and annotations to push forward 3D human avatar creation and other related fields for real-world applications.
comment: CVPR2025, Project page: https://wildavatar.github.io/
♻ ☆ P3P: Pseudo-3D Pre-training for Scaling 3D Masked Autoencoders
Pre-training in 3D is pivotal for advancing 3D perception tasks. However, the scarcity of clean 3D data poses significant challenges for scaling 3D pre-training efforts. Drawing inspiration from semi-supervised learning, which effectively combines limited labeled data with abundant unlabeled data, we introduce an innovative self-supervised pre-training framework. This framework leverages both authentic 3D data and pseudo-3D data generated from images using a robust depth estimation model. Another critical challenge is the efficiency of the pre-training process. Existing approaches, such as Point-BERT and Point-MAE, utilize k-nearest neighbors for 3D token embedding, resulting in quadratic time complexity. To address this, we propose a novel token embedding strategy with linear time complexity, coupled with a training-efficient 2D reconstruction target. Our method not only achieves state-of-the-art performance in 3D classification, detection, and few-shot learning but also ensures high efficiency in both pre-training and downstream fine-tuning processes.
comment: Under review. Pre-print
♻ ☆ Text-to-3D Generation by 2D Editing
Distilling 3D representations from pretrained 2D diffusion models is essential for 3D creative applications across gaming, film, and interior design. Current SDS-based methods are hindered by inefficient information distillation from diffusion models, which prevents the creation of photorealistic 3D contents. In this paper, we first reevaluate the SDS approach by analyzing its fundamental nature as a basic image editing process that commonly results in over-saturation, over-smoothing, lack of rich content and diversity due to the poor-quality single-step denoising. In light of this, we then propose a novel method called 3D Generation by Editing (GE3D). Each iteration of GE3D utilizes a 2D editing framework that combines a noising trajectory to preserve the information of the input image, alongside a text-guided denoising trajectory. We optimize the process by aligning the latents across both trajectories. This approach fully exploits pretrained diffusion models to distill multi-granularity information through multiple denoising steps, resulting in photorealistic 3D outputs. Both theoretical and experimental results confirm the effectiveness of our approach, which not only advances 3D generation technology but also establishes a novel connection between 3D generation and 2D editing. This could potentially inspire further research in the field. Code and demos are released at https://jahnsonblack.github.io/GE3D/.
♻ ☆ Probabilistic Language-Image Pre-Training
Vision-language models (VLMs) embed aligned image-text pairs into a joint space but often rely on deterministic embeddings, assuming a one-to-one correspondence between images and texts. This oversimplifies real-world relationships, which are inherently many-to-many, with multiple captions describing a single image and vice versa. We introduce Probabilistic Language-Image Pre-training (ProLIP), the first probabilistic VLM pre-trained on a billion-scale image-text dataset using only probabilistic objectives, achieving a strong zero-shot capability (e.g., 74.6% ImageNet zero-shot accuracy with ViT-B/16). ProLIP efficiently estimates uncertainty by an "uncertainty token" without extra parameters. We also introduce a novel inclusion loss that enforces distributional inclusion relationships between image-text pairs and between original and masked inputs. Experiments demonstrate that, by leveraging uncertainty estimates, ProLIP benefits downstream tasks and aligns with intuitive notions of uncertainty, e.g., shorter texts being more uncertain and more general inputs including specific ones. Utilizing text uncertainties, we further improve ImageNet accuracy from 74.6% to 75.8% (under a few-shot setting), supporting the practical advantages of our probabilistic approach. The code is available at https://github.com/naver-ai/prolip
comment: Code: https://github.com/naver-ai/prolip HuggingFace Hub: https://huggingface.co/collections/SanghyukChun/prolip-6712595dfc87fd8597350291 33 pages, 4.8 MB; LongProLIP paper: arXiv:2503.08048
♻ ☆ Object-Centric World Model for Language-Guided Manipulation
A world model is essential for an agent to predict the future and plan in domains such as autonomous driving and robotics. To achieve this, recent advancements have focused on video generation, which has gained significant attention due to the impressive success of diffusion models. However, these models require substantial computational resources. To address these challenges, we propose a world model leveraging object-centric representation space using slot attention, guided by language instructions. Our model perceives the current state as an object-centric representation and predicts future states in this representation space conditioned on natural language instructions. This approach results in a more compact and computationally efficient model compared to diffusion-based generative alternatives. Furthermore, it flexibly predicts future states based on language instructions, and offers a significant advantage in manipulation tasks where object recognition is crucial. In this paper, we demonstrate that our latent predictive world model surpasses generative world models in visuo-linguo-motor control tasks, achieving superior sample and computation efficiency. We also investigate the generalization performance of the proposed method and explore various strategies for predicting actions using object-centric representations.
♻ ☆ Fast Feedforward 3D Gaussian Splatting Compression
With 3D Gaussian Splatting (3DGS) advancing real-time and high-fidelity rendering for novel view synthesis, storage requirements pose challenges for their widespread adoption. Although various compression techniques have been proposed, previous art suffers from a common limitation: for any existing 3DGS, per-scene optimization is needed to achieve compression, making the compression sluggish and slow. To address this issue, we introduce Fast Compression of 3D Gaussian Splatting (FCGS), an optimization-free model that can compress 3DGS representations rapidly in a single feed-forward pass, which significantly reduces compression time from minutes to seconds. To enhance compression efficiency, we propose a multi-path entropy module that assigns Gaussian attributes to different entropy constraint paths for balance between size and fidelity. We also carefully design both inter- and intra-Gaussian context models to remove redundancies among the unstructured Gaussian blobs. Overall, FCGS achieves a compression ratio of over 20X while maintaining fidelity, surpassing most per-scene SOTA optimization-based methods. Our code is available at: https://github.com/YihangChen-ee/FCGS.
comment: Project Page: https://yihangchen-ee.github.io/project_fcgs/ Code: https://github.com/yihangchen-ee/fcgs/
♻ ☆ Single Image, Any Face: Generalisable 3D Face Generation
The creation of 3D human face avatars from a single unconstrained image is a fundamental task that underlies numerous real-world vision and graphics applications. Despite the significant progress made in generative models, existing methods are either less suited in design for human faces or fail to generalise from the restrictive training domain to unconstrained facial images. To address these limitations, we propose a novel model, Gen3D-Face, which generates 3D human faces with unconstrained single image input within a multi-view consistent diffusion framework. Given a specific input image, our model first produces multi-view images, followed by neural surface construction. To incorporate face geometry information in a generalisable manner, we utilise input-conditioned mesh estimation instead of ground-truth mesh along with synthetic multi-view training data. Importantly, we introduce a multi-view joint generation scheme to enhance appearance consistency among different views. To the best of our knowledge, this is the first attempt and benchmark for creating photorealistic 3D human face avatars from single images for generic human subject across domains. Extensive experiments demonstrate the superiority of our method over previous alternatives for out-of-domain singe image 3D face generation and top competition for in-domain setting.
♻ ☆ Single-Shot Metric Depth from Focused Plenoptic Cameras ICRA 2025
Metric depth estimation from visual sensors is crucial for robots to perceive, navigate, and interact with their environment. Traditional range imaging setups, such as stereo or structured light cameras, face hassles including calibration, occlusions, and hardware demands, with accuracy limited by the baseline between cameras. Single- and multi-view monocular depth offers a more compact alternative, but is constrained by the unobservability of the metric scale. Light field imaging provides a promising solution for estimating metric depth by using a unique lens configuration through a single device. However, its application to single-view dense metric depth is under-addressed mainly due to the technology's high cost, the lack of public benchmarks, and proprietary geometrical models and software. Our work explores the potential of focused plenoptic cameras for dense metric depth. We propose a novel pipeline that predicts metric depth from a single plenoptic camera shot by first generating a sparse metric point cloud using machine learning, which is then used to scale and align a dense relative depth map regressed by a foundation depth model, resulting in dense metric depth. To validate it, we curated the Light Field & Stereo Image Dataset (LFS) of real-world light field images with stereo depth labels, filling a current gap in existing resources. Experimental results show that our pipeline produces accurate metric depth predictions, laying a solid groundwork for future research in this field.
comment: 8 pages (6 for text + 2 for references), 6 figures, 2 tables. Accepted at IEEE ICRA 2025
♻ ☆ On Distributed Larger-Than-Memory Subset Selection With Pairwise Submodular Functions
Modern datasets span billions of samples, making training on all available data infeasible. Selecting a high quality subset helps in reducing training costs and enhancing model quality. Submodularity, a discrete analogue of convexity, is commonly used for solving such subset selection problems. However, existing algorithms for optimizing submodular functions are sequential, and the prior distributed methods require at least one central machine to fit the target subset in DRAM. At billion datapoint scale, even the subset may not fit a single machine, and the sequential algorithms are prohibitively slow. In this paper, we relax the requirement of having a central machine for the target subset by proposing a novel distributed bounding algorithm with provable approximation guarantees. The algorithm iteratively bounds the minimum and maximum utility values to select high quality points and discard the unimportant ones. When bounding does not find the complete subset, we use a multi-round, partition-based distributed greedy algorithm to identify the remaining subset. We discuss how to implement these algorithms in a distributed data processing framework and empirically analyze different configurations. We find high quality subsets on CIFAR-100 and ImageNet with marginal or no loss in quality compared to centralized methods, and scale to a dataset with 13 billion points.
comment: accepted at MLSys 2025
♻ ☆ Endo-FASt3r: Endoscopic Foundation model Adaptation for Structure from motion
Accurate depth and camera pose estimation is essential for achieving high-quality 3D visualisations in robotic-assisted surgery. Despite recent advancements in foundation model adaptation to monocular depth estimation of endoscopic scenes via self-supervised learning (SSL), no prior work has explored their use for pose estimation. These methods rely on low rank-based adaptation approaches, which constrain model updates to a low-rank space. We propose Endo-FASt3r, the first monocular SSL depth and pose estimation framework that uses foundation models for both tasks. We extend the Reloc3r relative pose estimation foundation model by designing Reloc3rX, introducing modifications necessary for convergence in SSL. We also present DoMoRA, a novel adaptation technique that enables higher-rank updates and faster convergence. Experiments on the SCARED dataset show that Endo-FASt3r achieves a substantial $10\%$ improvement in pose estimation and a $2\%$ improvement in depth estimation over prior work. Similar performance gains on the Hamlyn and StereoMIS datasets reinforce the generalisability of Endo-FASt3r across different datasets.
♻ ☆ A Simple and Effective Reinforcement Learning Method for Text-to-Image Diffusion Fine-tuning
Reinforcement learning (RL)-based fine-tuning has emerged as a powerful approach for aligning diffusion models with black-box objectives. Proximal policy optimization (PPO) is the most popular choice of method for policy optimization. While effective in terms of performance, PPO is highly sensitive to hyper-parameters and involves substantial computational overhead. REINFORCE, on the other hand, mitigates some computational complexities such as high memory overhead and sensitive hyper-parameter tuning, but has suboptimal performance due to high-variance and sample inefficiency. While the variance of the REINFORCE can be reduced by sampling multiple actions per input prompt and using a baseline correction term, it still suffers from sample inefficiency. To address these challenges, we systematically analyze the efficiency-effectiveness trade-off between REINFORCE and PPO, and propose leave-one-out PPO (LOOP), a novel RL for diffusion fine-tuning method. LOOP combines variance reduction techniques from REINFORCE, such as sampling multiple actions per input prompt and a baseline correction term, with the robustness and sample efficiency of PPO via clipping and importance sampling. Our results demonstrate that LOOP effectively improves diffusion models on various black-box objectives, and achieves a better balance between computational efficiency and performance.
♻ ☆ Auto-Vocabulary Semantic Segmentation
Open-Vocabulary Segmentation (OVS) methods are capable of performing semantic segmentation without relying on a fixed vocabulary, and in some cases, without training or fine-tuning. However, OVS methods typically require a human in the loop to specify the vocabulary based on the task or dataset at hand. In this paper, we introduce Auto-Vocabulary Semantic Segmentation (AVS), advancing open-ended image understanding by eliminating the necessity to predefine object categories for segmentation. Our approach, AutoSeg, presents a framework that autonomously identifies relevant class names using semantically enhanced BLIP embeddings and segments them afterwards. Given that open-ended object category predictions cannot be directly compared with a fixed ground truth, we develop a Large Language Model-based Auto-Vocabulary Evaluator (LAVE) to efficiently evaluate the automatically generated classes and their corresponding segments. With AVS, our method sets new benchmarks on datasets PASCAL VOC, Context, ADE20K, and Cityscapes, while showing competitive performance to OVS methods that require specified class names.
♻ ☆ Modeling Variants of Prompts for Vision-Language Models
Large pre-trained vision-language models (VLMs) offer a promising approach to leveraging human language for enhancing downstream tasks. However, VLMs such as CLIP face significant limitation: its performance is highly sensitive to prompt template design. Although prompt learning methods can address the sensitivity issue by replacing natural language prompts with learnable ones, they are incomprehensible to humans. Ensuring consistent performance across various prompt templates enables models to adapt seamlessly to diverse phrasings, enhancing their ability to handle downstream tasks without requiring extensive prompt engineering. In this work, we introduce the RobustPrompt Benchmark, a systematic benchmark to evaluate robustness to different prompt templates for VLMs. It includes a dataset with hundreds of carefully designed prompt templates, divided into six types, covering a wide variety of commonly used templates. Beside the benchmark, we propose Modeling Variants of Prompts (MVP), a simple yet effective method that mitigates sensitivity by modeling variants of prompt structures. The innovation of MVP lies in decoupling prompts into templates and class names, and using Variational Autoencoders (VAE) to model the distribution of diverse prompt structures. Experiments across 11 datasets demonstrate that MVP can greatly enhance model robustness to variations in input prompts without a drop in performance. The code is available at https://github.com/liaolea/MVP.
comment: 10 pages
♻ ☆ Learning Few-Step Diffusion Models by Trajectory Distribution Matching
Accelerating diffusion model sampling is crucial for efficient AIGC deployment. While diffusion distillation methods -- based on distribution matching and trajectory matching -- reduce sampling to as few as one step, they fall short on complex tasks like text-to-image generation. Few-step generation offers a better balance between speed and quality, but existing approaches face a persistent trade-off: distribution matching lacks flexibility for multi-step sampling, while trajectory matching often yields suboptimal image quality. To bridge this gap, we propose learning few-step diffusion models by Trajectory Distribution Matching (TDM), a unified distillation paradigm that combines the strengths of distribution and trajectory matching. Our method introduces a data-free score distillation objective, aligning the student's trajectory with the teacher's at the distribution level. Further, we develop a sampling-steps-aware objective that decouples learning targets across different steps, enabling more adjustable sampling. This approach supports both deterministic sampling for superior image quality and flexible multi-step adaptation, achieving state-of-the-art performance with remarkable efficiency. Our model, TDM, outperforms existing methods on various backbones, such as SDXL and PixArt-$\alpha$, delivering superior quality and significantly reduced training costs. In particular, our method distills PixArt-$\alpha$ into a 4-step generator that outperforms its teacher on real user preference at 1024 resolution. This is accomplished with 500 iterations and 2 A800 hours -- a mere 0.01% of the teacher's training cost. In addition, our proposed TDM can be extended to accelerate text-to-video diffusion. Notably, TDM can outperform its teacher model (CogVideoX-2B) by using only 4 NFE on VBench, improving the total score from 80.91 to 81.65. Project page: https://tdm-t2x.github.io/
comment: Project page: https://tdm-t2x.github.io/
♻ ☆ Adding Additional Control to One-Step Diffusion with Joint Distribution Matching
While diffusion distillation has enabled one-step generation through methods like Variational Score Distillation, adapting distilled models to emerging new controls -- such as novel structural constraints or latest user preferences -- remains challenging. Conventional approaches typically requires modifying the base diffusion model and redistilling it -- a process that is both computationally intensive and time-consuming. To address these challenges, we introduce Joint Distribution Matching (JDM), a novel approach that minimizes the reverse KL divergence between image-condition joint distributions. By deriving a tractable upper bound, JDM decouples fidelity learning from condition learning. This asymmetric distillation scheme enables our one-step student to handle controls unknown to the teacher model and facilitates improved classifier-free guidance (CFG) usage and seamless integration of human feedback learning (HFL). Experimental results demonstrate that JDM surpasses baseline methods such as multi-step ControlNet by mere one-step in most cases, while achieving state-of-the-art performance in one-step text-to-image synthesis through improved usage of CFG or HFL integration.
♻ ☆ Enhancing Ultra High Resolution Remote Sensing Imagery Analysis with ImageRAG
Ultra High Resolution (UHR) remote sensing imagery (RSI) (e.g. 100,000 $\times$ 100,000 pixels or more) poses a significant challenge for current Remote Sensing Multimodal Large Language Models (RSMLLMs). If choose to resize the UHR image to standard input image size, the extensive spatial and contextual information that UHR images contain will be neglected. Otherwise, the original size of these images often exceeds the token limits of standard RSMLLMs, making it difficult to process the entire image and capture long-range dependencies to answer the query based on the abundant visual context. In this paper, we introduce ImageRAG for RS, a training-free framework to address the complexities of analyzing UHR remote sensing imagery. By transforming UHR remote sensing image analysis task to image's long context selection task, we design an innovative image contextual retrieval mechanism based on the Retrieval-Augmented Generation (RAG) technique, denoted as ImageRAG. ImageRAG's core innovation lies in its ability to selectively retrieve and focus on the most relevant portions of the UHR image as visual contexts that pertain to a given query. Fast path and slow path are proposed in this framework to handle this task efficiently and effectively. ImageRAG allows RSMLLMs to manage extensive context and spatial information from UHR RSI, ensuring the analysis is both accurate and efficient.
comment: full paper
♻ ☆ EVA-Gaussian: 3D Gaussian-based Real-time Human Novel View Synthesis under Diverse Multi-view Camera Settings
Feed-forward based 3D Gaussian Splatting methods have demonstrated exceptional capability in real-time novel view synthesis for human models. However, current approaches are confined to either dense viewpoint configurations or restricted image resolutions. These limitations hinder their flexibility in free-viewpoint rendering across a wide range of camera view angle discrepancies, and also restrict their ability to recover fine-grained human details in real time using commonly available GPUs. To address these challenges, we propose a novel pipeline named EVA-Gaussian for 3D human novel view synthesis across diverse multi-view camera settings. Specifically, we first design an Efficient Cross-View Attention (EVA) module to effectively fuse cross-view information under high resolution inputs and sparse view settings, while minimizing temporal and computational overhead. Additionally, we introduce a feature refinement mechianism to predict the attributes of the 3D Gaussians and assign a feature value to each Gaussian, enabling the correction of artifacts caused by geometric inaccuracies in position estimation and enhancing overall visual fidelity. Experimental results on the THuman2.0 and THumansit datasets showcase the superiority of EVA-Gaussian in rendering quality across diverse camera settings. Project page: https://zhenliuzju.github.io/huyingdong/EVA-Gaussian.
♻ ☆ Diffusion Models as Cartoonists: The Curious Case of High Density Regions ICLR 2025
We investigate what kind of images lie in the high-density regions of diffusion models. We introduce a theoretical mode-tracking process capable of pinpointing the exact mode of the denoising distribution, and we propose a practical high-density sampler that consistently generates images of higher likelihood than usual samplers. Our empirical findings reveal the existence of significantly higher likelihood samples that typical samplers do not produce, often manifesting as cartoon-like drawings or blurry images depending on the noise level. Curiously, these patterns emerge in datasets devoid of such examples. We also present a novel approach to track sample likelihoods in diffusion SDEs, which remarkably incurs no additional computational cost.
comment: ICLR 2025
♻ ☆ Generalized and Efficient 2D Gaussian Splatting for Arbitrary-scale Super-Resolution
Implicit Neural Representation (INR) has been successfully employed for Arbitrary-scale Super-Resolution (ASR). However, INR-based models need to query the multi-layer perceptron module numerous times and render a pixel in each query, resulting in insufficient representation capability and computational efficiency. Recently, Gaussian Splatting (GS) has shown its advantages over INR in both visual quality and rendering speed in 3D tasks, which motivates us to explore whether GS can be employed for the ASR task. However, directly applying GS to ASR is exceptionally challenging because the original GS is an optimization-based method through overfitting each single scene, while in ASR we aim to learn a single model that can generalize to different images and scaling factors. We overcome these challenges by developing two novel techniques. Firstly, to generalize GS for ASR, we elaborately design an architecture to predict the corresponding image-conditioned Gaussians of the input low-resolution image in a feed-forward manner. Each Gaussian can fit the shape and direction of an area of complex textures, showing powerful representation capability. Secondly, we implement an efficient differentiable 2D GPU/CUDA-based scale-aware rasterization to render super-resolved images by sampling discrete RGB values from the predicted continuous Gaussians. Via end-to-end training, our optimized network, namely GSASR, can perform ASR for any image and unseen scaling factors. Extensive experiments validate the effectiveness of our proposed method.
♻ ☆ MRGen: Segmentation Data Engine For Underrepresented MRI Modalities
Training medical image segmentation models for rare yet clinically significant imaging modalities is challenging due to the scarcity of annotated data, and manual mask annotations can be costly and labor-intensive to acquire. This paper investigates leveraging generative models to synthesize training data, to train segmentation models for underrepresented modalities, particularly on annotation-scarce MRI. Concretely, our contributions are threefold: (i) we introduce MRGen-DB, a large-scale radiology image-text dataset comprising extensive samples with rich metadata, including modality labels, attributes, regions, and organs information, with a subset having pixelwise mask annotations; (ii) we present MRGen, a diffusion-based data engine for controllable medical image synthesis, conditioned on text prompts and segmentation masks. MRGen can generate realistic images for diverse MRI modalities lacking mask annotations, facilitating segmentation training in low-source domains; (iii) extensive experiments across multiple modalities demonstrate that MRGen significantly improves segmentation performance on unannotated modalities by providing high-quality synthetic data. We believe that our method bridges a critical gap in medical image analysis, extending segmentation capabilities to scenarios that are challenging to acquire manual annotations.
comment: Technical Report; Project Page: https://haoningwu3639.github.io/MRGen/
♻ ☆ MotionLab: Unified Human Motion Generation and Editing via the Motion-Condition-Motion Paradigm
Human motion generation and editing are key components of computer graphics and vision. However, current approaches in this field tend to offer isolated solutions tailored to specific tasks, which can be inefficient and impractical for real-world applications. While some efforts have aimed to unify motion-related tasks, these methods simply use different modalities as conditions to guide motion generation. Consequently, they lack editing capabilities, fine-grained control, and fail to facilitate knowledge sharing across tasks. To address these limitations and provide a versatile, unified framework capable of handling both human motion generation and editing, we introduce a novel paradigm: Motion-Condition-Motion, which enables the unified formulation of diverse tasks with three concepts: source motion, condition, and target motion. Based on this paradigm, we propose a unified framework, MotionLab, which incorporates rectified flows to learn the mapping from source motion to target motion, guided by the specified conditions. In MotionLab, we introduce the 1) MotionFlow Transformer to enhance conditional generation and editing without task-specific modules; 2) Aligned Rotational Position Encoding} to guarantee the time synchronization between source motion and target motion; 3) Task Specified Instruction Modulation; and 4) Motion Curriculum Learning for effective multi-task learning and knowledge sharing across tasks. Notably, our MotionLab demonstrates promising generalization capabilities and inference efficiency across multiple benchmarks for human motion. Our code and additional video results are available at: https://diouo.github.io/motionlab.github.io/.
♻ ☆ DistilDoc: Knowledge Distillation for Visually-Rich Document Applications ICDAR 2024
This work explores knowledge distillation (KD) for visually-rich document (VRD) applications such as document layout analysis (DLA) and document image classification (DIC). While VRD research is dependent on increasingly sophisticated and cumbersome models, the field has neglected to study efficiency via model compression. Here, we design a KD experimentation methodology for more lean, performant models on document understanding (DU) tasks that are integral within larger task pipelines. We carefully selected KD strategies (response-based, feature-based) for distilling knowledge to and from backbones with different architectures (ResNet, ViT, DiT) and capacities (base, small, tiny). We study what affects the teacher-student knowledge gap and find that some methods (tuned vanilla KD, MSE, SimKD with an apt projector) can consistently outperform supervised student training. Furthermore, we design downstream task setups to evaluate covariate shift and the robustness of distilled DLA models on zero-shot layout-aware document visual question answering (DocVQA). DLA-KD experiments result in a large mAP knowledge gap, which unpredictably translates to downstream robustness, accentuating the need to further explore how to efficiently obtain more semantic document layout awareness.
comment: Accepted to ICDAR 2024 (Athens, Greece)
♻ ☆ Locality-aware Gaussian Compression for Fast and High-quality Rendering ICLR 2025
We present LocoGS, a locality-aware 3D Gaussian Splatting (3DGS) framework that exploits the spatial coherence of 3D Gaussians for compact modeling of volumetric scenes. To this end, we first analyze the local coherence of 3D Gaussian attributes, and propose a novel locality-aware 3D Gaussian representation that effectively encodes locally-coherent Gaussian attributes using a neural field representation with a minimal storage requirement. On top of the novel representation, LocoGS is carefully designed with additional components such as dense initialization, an adaptive spherical harmonics bandwidth scheme and different encoding schemes for different Gaussian attributes to maximize compression performance. Experimental results demonstrate that our approach outperforms the rendering quality of existing compact Gaussian representations for representative real-world 3D datasets while achieving from 54.6$\times$ to 96.6$\times$ compressed storage size and from 2.1$\times$ to 2.4$\times$ rendering speed than 3DGS. Even our approach also demonstrates an averaged 2.4$\times$ higher rendering speed than the state-of-the-art compression method with comparable compression performance.
comment: Accepted to ICLR 2025. Project page: https://seungjooshin.github.io/LocoGS
♻ ☆ SLayR: Scene Layout Generation with Rectified Flow
We introduce SLayR, Scene Layout Generation with Rectified flow, a novel transformer-based model for text-to-layout generation which can then be paired with existing layout-to-image models to produce images. SLayR addresses a domain in which current text-to-image pipelines struggle: generating scene layouts that are of significant variety and plausibility, when the given prompt is ambiguous and does not provide constraints on the scene. SLayR surpasses existing baselines including LLMs in unconstrained generation, and can generate layouts from an open caption set. To accurately evaluate the layout generation, we introduce a new benchmark suite, including numerical metrics and a carefully designed repeatable human-evaluation procedure that assesses the plausibility and variety of generated images. We show that our method sets a new state of the art for achieving both at the same time, while being at least 3x times smaller in the number of parameters.
comment: 43 pages, 29 figures, 6 tables
♻ ☆ ReCon: Enhancing True Correspondence Discrimination through Relation Consistency for Robust Noisy Correspondence Learning CVPR2025
Can we accurately identify the true correspondences from multimodal datasets containing mismatched data pairs? Existing methods primarily emphasize the similarity matching between the representations of objects across modalities, potentially neglecting the crucial relation consistency within modalities that are particularly important for distinguishing the true and false correspondences. Such an omission often runs the risk of misidentifying negatives as positives, thus leading to unanticipated performance degradation. To address this problem, we propose a general Relation Consistency learning framework, namely ReCon, to accurately discriminate the true correspondences among the multimodal data and thus effectively mitigate the adverse impact caused by mismatches. Specifically, ReCon leverages a novel relation consistency learning to ensure the dual-alignment, respectively of, the cross-modal relation consistency between different modalities and the intra-modal relation consistency within modalities. Thanks to such dual constrains on relations, ReCon significantly enhances its effectiveness for true correspondence discrimination and therefore reliably filters out the mismatched pairs to mitigate the risks of wrong supervisions. Extensive experiments on three widely-used benchmark datasets, including Flickr30K, MS-COCO, and Conceptual Captions, are conducted to demonstrate the effectiveness and superiority of ReCon compared with other SOTAs. The code is available at: https://github.com/qxzha/ReCon.
comment: 10 pages, 4 figures, Accepted by CVPR2025
♻ ☆ L-FUSION: Laplacian Fetal Ultrasound Segmentation & Uncertainty Estimation
Accurate analysis of prenatal ultrasound (US) is essential for early detection of developmental anomalies. However, operator dependency and technical limitations (e.g. intrinsic artefacts and effects, setting errors) can complicate image interpretation and the assessment of diagnostic uncertainty. We present L-FUSION (Laplacian Fetal US Segmentation with Integrated FoundatiON models), a framework that integrates uncertainty quantification through unsupervised, normative learning and large-scale foundation models for robust segmentation of fetal structures in normal and pathological scans. We propose to utilise the aleatoric logit distributions of Stochastic Segmentation Networks and Laplace approximations with fast Hessian estimations to estimate epistemic uncertainty only from the segmentation head. This enables us to achieve reliable abnormality quantification for instant diagnostic feedback. Combined with an integrated Dropout component, L-FUSION enables reliable differentiation of lesions from normal fetal anatomy with enhanced uncertainty maps and segmentation counterfactuals in US imaging. It improves epistemic and aleatoric uncertainty interpretation and removes the need for manual disease-labelling. Evaluations across multiple datasets show that L-FUSION achieves superior segmentation accuracy and consistent uncertainty quantification, supporting on-site decision-making and offering a scalable solution for advancing fetal ultrasound analysis in clinical settings.
comment: Under Review
♻ ☆ Autoregressive Image Generation with Vision Full-view Prompt
In autoregressive (AR) image generation, models based on the 'next-token prediction' paradigm of LLMs have shown comparable performance to diffusion models by reducing inductive biases. However, directly applying LLMs to complex image generation can struggle with reconstructing the image's structure and details, impacting the generation's accuracy and stability. Additionally, the 'next-token prediction' paradigm in the AR model does not align with the contextual scanning and logical reasoning processes involved in human visual perception, limiting effective image generation. Prompt engineering, as a key technique for guiding LLMs, leverages specifically designed prompts to improve model performance on complex natural language processing (NLP) tasks, enhancing accuracy and stability of generation while maintaining contextual coherence and logical consistency, similar to human reasoning. Inspired by prompt engineering from the field of NLP, we propose Vision Full-view prompt (VF prompt) to enhance autoregressive image generation. Specifically, we design specialized image-related VF prompts for AR image generation to simulate the process of human image creation. This enhances contextual logic ability by allowing the model to first perceive overall distribution information before generating the image, and improve generation stability by increasing the inference steps. Compared to the AR method without VF prompts, our method shows outstanding performance and achieves an approximate improvement of 20%.
♻ ☆ EFSA: Episodic Few-Shot Adaptation for Text-to-Image Retrieval
Text-to-image retrieval is a critical task for managing diverse visual content, but common benchmarks for the task rely on small, single-domain datasets that fail to capture real-world complexity. Pre-trained vision-language models tend to perform well with easy negatives but struggle with hard negatives--visually similar yet incorrect images--especially in open-domain scenarios. To address this, we introduce Episodic Few-Shot Adaptation (EFSA), a novel test-time framework that adapts pre-trained models dynamically to a query's domain by fine-tuning on top-k retrieved candidates and synthetic captions generated for them. EFSA improves performance across diverse domains while preserving generalization, as shown in evaluations on queries from eight highly distinct visual domains and an open-domain retrieval pool of over one million images. Our work highlights the potential of episodic few-shot adaptation to enhance robustness in the critical and understudied task of open-domain text-to-image retrieval.
♻ ☆ A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
Advancements in image segmentation play an integral role within the broad scope of Deep Learning-based Computer Vision. Furthermore, their widespread applicability in critical real-world tasks has resulted in challenges related to the reliability of such algorithms. Hence, uncertainty quantification has been extensively studied within this context, enabling the expression of model ignorance (epistemic uncertainty) or data ambiguity (aleatoric uncertainty) to prevent uninformed decision-making. Due to the rapid adoption of Convolutional Neural Network (CNN)-based segmentation models in high-stake applications, a substantial body of research has been published on this very topic, causing its swift expansion into a distinct field. This work provides a comprehensive overview of probabilistic segmentation, by discussing fundamental concepts of uncertainty quantification, governing advancements in the field as well as the application to various tasks. Moreover, literature on both types of uncertainties trace back to four key applications: (1) to quantify statistical inconsistencies in the annotation process due ambiguous images, (2) correlating prediction error with uncertainty, (3) expanding the model hypothesis space for better generalization, and (4) Active Learning. An extensive discussion follows that includes an overview of utilized datasets for each of the applications and evaluation of the available methods. We also highlight challenges related to architectures, uncertainty quantification methods, standardization and benchmarking, and finally end with recommendations for future work such as methods based on single forward passes and models that appropriately leverage volumetric data.
comment: 20 pages, revised
♻ ☆ EVOKE: Elevating Chest X-ray Report Generation via Multi-View Contrastive Learning and Patient-Specific Knowledge
Radiology reports are crucial for planning treatment strategies and facilitating effective doctor-patient communication. However, the manual creation of these reports places a significant burden on radiologists. While automatic radiology report generation presents a promising solution, existing methods often rely on single-view radiographs, which constrain diagnostic accuracy. To address this challenge, we propose \textbf{EVOKE}, a novel chest X-ray report generation framework that incorporates multi-view contrastive learning and patient-specific knowledge. Specifically, we introduce a multi-view contrastive learning method that enhances visual representation by aligning multi-view radiographs with their corresponding report. After that, we present a knowledge-guided report generation module that integrates available patient-specific indications (e.g., symptom descriptions) to trigger the production of accurate and coherent radiology reports. To support research in multi-view report generation, we construct Multi-view CXR and Two-view CXR datasets using publicly available sources. Our proposed EVOKE surpasses recent state-of-the-art methods across multiple datasets, achieving a 2.9\% F\textsubscript{1} RadGraph improvement on MIMIC-CXR, a 7.3\% BLEU-1 improvement on MIMIC-ABN, a 3.1\% BLEU-4 improvement on Multi-view CXR, and an 8.2\% F\textsubscript{1,mic-14} CheXbert improvement on Two-view CXR.
comment: The code is available at https://github.com/mk-runner/EVOKE
♻ ☆ PersonaBooth: Personalized Text-to-Motion Generation
This paper introduces Motion Personalization, a new task that generates personalized motions aligned with text descriptions using several basic motions containing Persona. To support this novel task, we introduce a new large-scale motion dataset called PerMo (PersonaMotion), which captures the unique personas of multiple actors. We also propose a multi-modal finetuning method of a pretrained motion diffusion model called PersonaBooth. PersonaBooth addresses two main challenges: i) A significant distribution gap between the persona-focused PerMo dataset and the pretraining datasets, which lack persona-specific data, and ii) the difficulty of capturing a consistent persona from the motions vary in content (action type). To tackle the dataset distribution gap, we introduce a persona token to accept new persona features and perform multi-modal adaptation for both text and visuals during finetuning. To capture a consistent persona, we incorporate a contrastive learning technique to enhance intra-cohesion among samples with the same persona. Furthermore, we introduce a context-aware fusion mechanism to maximize the integration of persona cues from multiple input motions. PersonaBooth outperforms state-of-the-art motion style transfer methods, establishing a new benchmark for motion personalization.
♻ ☆ Memory-Efficient 4-bit Preconditioned Stochastic Optimization
Preconditioned stochastic optimization algorithms, exemplified by Shampoo, outperform first-order optimizers by offering theoretical convergence benefits and practical gains in large-scale neural network training. However, they incur substantial memory overhead due to the storage demands of non-diagonal preconditioning matrices. To address this, we introduce 4-bit quantization for Shampoo's preconditioners. We introduce two key methods: First, we apply Cholesky decomposition followed by quantization of the Cholesky factors, reducing memory usage by leveraging their lower triangular structure while better preserving spectral properties to minimize information loss. To our knowledge, this is the first quantization approach applied to Cholesky factors of preconditioners. Second, we incorporate error feedback in the quantization process, efficiently storing Cholesky factor and error state in the lower and upper triangular parts of the same matrix. Through extensive experiments, we demonstrate that combining Cholesky quantization with error feedback enhances memory efficiency and algorithm performance in large-scale deep-learning tasks. Theoretically, we also provide convergence proofs for quantized Shampoo under both smooth and non-smooth stochastic optimization settings.
♻ ☆ Depth Any Video with Scalable Synthetic Data
Video depth estimation has long been hindered by the scarcity of consistent and scalable ground truth data, leading to inconsistent and unreliable results. In this paper, we introduce Depth Any Video, a model that tackles the challenge through two key innovations. First, we develop a scalable synthetic data pipeline, capturing real-time video depth data from diverse virtual environments, yielding 40,000 video clips of 5-second duration, each with precise depth annotations. Second, we leverage the powerful priors of generative video diffusion models to handle real-world videos effectively, integrating advanced techniques such as rotary position encoding and flow matching to further enhance flexibility and efficiency. Unlike previous models, which are limited to fixed-length video sequences, our approach introduces a novel mixed-duration training strategy that handles videos of varying lengths and performs robustly across different frame rates-even on single frames. At inference, we propose a depth interpolation method that enables our model to infer high-resolution video depth across sequences of up to 150 frames. Our model outperforms all previous generative depth models in terms of spatial accuracy and temporal consistency. The code and model weights are open-sourced.
comment: Project Page: https://depthanyvideo.github.io/
♻ ☆ TempMe: Video Temporal Token Merging for Efficient Text-Video Retrieval ICLR 2025
Most text-video retrieval methods utilize the text-image pre-trained models like CLIP as a backbone. These methods process each sampled frame independently by the image encoder, resulting in high computational overhead and limiting practical deployment. Addressing this, we focus on efficient text-video retrieval by tackling two key challenges: 1. From the perspective of trainable parameters, current parameter-efficient fine-tuning methods incur high inference costs; 2. From the perspective of model complexity, current token compression methods are mainly designed for images to reduce spatial redundancy but overlook temporal redundancy in consecutive frames of a video. To tackle these challenges, we propose Temporal Token Merging (TempMe), a parameter-efficient and training-inference efficient text-video retrieval architecture that minimizes trainable parameters and model complexity. Specifically, we introduce a progressive multi-granularity framework. By gradually combining neighboring clips, we reduce spatio-temporal redundancy and enhance temporal modeling across different frames, leading to improved efficiency and performance. Extensive experiments validate the superiority of our TempMe. Compared to previous parameter-efficient text-video retrieval methods, TempMe achieves superior performance with just 0.50M trainable parameters. It significantly reduces output tokens by 95% and GFLOPs by 51%, while achieving a 1.8X speedup and a 4.4% R-Sum improvement. With full fine-tuning, TempMe achieves a significant 7.9% R-Sum improvement, trains 1.57X faster, and utilizes 75.2% GPU memory usage. The code is available at https://github.com/LunarShen/TempMe.
comment: ICLR 2025
♻ ☆ Puzzle Similarity: A Perceptually-guided Cross-Reference Metric for Artifact Detection in 3D Scene Reconstructions
Modern reconstruction techniques can effectively model complex 3D scenes from sparse 2D views. However, automatically assessing the quality of novel views and identifying artifacts is challenging due to the lack of ground truth images and the limitations of No-Reference image metrics in predicting reliable artifact maps. The absence of such metrics hinders the assessment of the quality of novel views and limits the adoption of post-processing techniques, such as inpainting, to enhance reconstruction quality. To tackle this, recent work has established a new category of metrics (Cross-Reference), predicting image quality solely by leveraging context from alternate viewpoint captures (arXiv:2404.14409). In this work, we propose a new Cross-Reference metric, Puzzle Similarity, which is designed to localize artifacts in novel views. Our approach utilizes image patch statistics from the input views to establish a scene-specific distribution, later used to identify poorly reconstructed regions in the novel views. Given the lack of good measures to evaluate Cross-Reference methods in the context of 3D reconstruction, we collected a novel human-labeled dataset of artifact and distortion maps in unseen reconstructed views. Through this dataset, we demonstrate that our method achieves state-of-the-art localization of artifacts in novel views, correlating with human assessment, even without aligned references. We can leverage our new metric to enhance applications like automatic image restoration, guided acquisition, or 3D reconstruction from sparse inputs. Find the project page at https://nihermann.github.io/puzzlesim/ .
♻ ☆ Unveiling Concept Attribution in Diffusion Models
Diffusion models have shown remarkable abilities in generating realistic and high-quality images from text prompts. However, a trained model remains largely black-box; little do we know about the roles of its components in exhibiting a concept such as objects or styles. Recent works employ causal tracing to localize knowledge-storing layers in generative models without showing how other layers contribute to the target concept. In this work, we approach diffusion models' interpretability problem from a more general perspective and pose a question: \textit{``How do model components work jointly to demonstrate knowledge?''}. To answer this question, we decompose diffusion models using component attribution, systematically unveiling the importance of each component (specifically the model parameter) in generating a concept. The proposed framework, called \textbf{C}omponent \textbf{A}ttribution for \textbf{D}iffusion Model (CAD), discovers the localization of concept-inducing (positive) components, while interestingly uncovers another type of components that contribute negatively to generating a concept, which is missing in the previous knowledge localization work. Based on this holistic understanding of diffusion models, we introduce two fast, inference-time model editing algorithms, CAD-Erase and CAD-Amplify; in particular, CAD-Erase enables erasure and CAD-Amplify allows amplification of a generated concept by ablating the positive and negative components, respectively, while retaining knowledge of other concepts. Extensive experimental results validate the significance of both positive and negative components pinpointed by our framework, demonstrating the potential of providing a complete view of interpreting generative models. Our code is available \href{https://github.com/mail-research/CAD-attribution4diffusion}{here}.
♻ ☆ DynOMo: Online Point Tracking by Dynamic Online Monocular Gaussian Reconstruction 3DV 2025
Reconstructing scenes and tracking motion are two sides of the same coin. Tracking points allow for geometric reconstruction [14], while geometric reconstruction of (dynamic) scenes allows for 3D tracking of points over time [24, 39]. The latter was recently also exploited for 2D point tracking to overcome occlusion ambiguities by lifting tracking directly into 3D [38]. However, above approaches either require offline processing or multi-view camera setups both unrealistic for real-world applications like robot navigation or mixed reality. We target the challenge of online 2D and 3D point tracking from unposed monocular camera input introducing Dynamic Online Monocular Reconstruction (DynOMo). We leverage 3D Gaussian splatting to reconstruct dynamic scenes in an online fashion. Our approach extends 3D Gaussians to capture new content and object motions while estimating camera movements from a single RGB frame. DynOMo stands out by enabling emergence of point trajectories through robust image feature reconstruction and a novel similarity-enhanced regularization term, without requiring any correspondence-level supervision. It sets the first baseline for online point tracking with monocular unposed cameras, achieving performance on par with existing methods. We aim to inspire the community to advance online point tracking and reconstruction, expanding the applicability to diverse real-world scenarios.
comment: Accepted to 3DV 2025
♻ ☆ Beyond the Eye: A Relational Model for Early Dementia Detection Using Retinal OCTA Images
Early detection of dementia, such as Alzheimer's disease (AD) or mild cognitive impairment (MCI), is essential to enable timely intervention and potential treatment. Accurate detection of AD/MCI is challenging due to the high complexity, cost, and often invasive nature of current diagnostic techniques, which limit their suitability for large-scale population screening. Given the shared embryological origins and physiological characteristics of the retina and brain, retinal imaging is emerging as a potentially rapid and cost-effective alternative for the identification of individuals with or at high risk of AD. In this paper, we present a novel PolarNet+ that uses retinal optical coherence tomography angiography (OCTA) to discriminate early-onset AD (EOAD) and MCI subjects from controls. Our method first maps OCTA images from Cartesian coordinates to polar coordinates, allowing approximate sub-region calculation to implement the clinician-friendly early treatment of diabetic retinopathy study (ETDRS) grid analysis. We then introduce a multi-view module to serialize and analyze the images along three dimensions for comprehensive, clinically useful information extraction. Finally, we abstract the sequence embedding into a graph, transforming the detection task into a general graph classification problem. A regional relationship module is applied after the multi-view module to excavate the relationship between the sub-regions. Such regional relationship analyses validate known eye-brain links and reveal new discriminative patterns.
♻ ☆ ProAPO: Progressively Automatic Prompt Optimization for Visual Classification CVPR
Vision-language models (VLMs) have made significant progress in image classification by training with large-scale paired image-text data. Their performances largely depend on the prompt quality. While recent methods show that visual descriptions generated by large language models (LLMs) enhance the generalization of VLMs, class-specific prompts may be inaccurate or lack discrimination due to the hallucination in LLMs. In this paper, we aim to find visually discriminative prompts for fine-grained categories with minimal supervision and no human-in-the-loop. An evolution-based algorithm is proposed to progressively optimize language prompts from task-specific templates to class-specific descriptions. Unlike optimizing templates, the search space shows an explosion in class-specific candidate prompts. This increases prompt generation costs, iterative times, and the overfitting problem. To this end, we first introduce several simple yet effective edit-based and evolution-based operations to generate diverse candidate prompts by one-time query of LLMs. Then, two sampling strategies are proposed to find a better initial search point and reduce traversed categories, saving iteration costs. Moreover, we apply a novel fitness score with entropy constraints to mitigate overfitting. In a challenging one-shot image classification setting, our method outperforms existing textual prompt-based methods and improves LLM-generated description methods across 13 datasets. Meanwhile, we demonstrate that our optimal prompts improve adapter-based methods and transfer effectively across different backbones.
comment: Accepted to the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2025
♻ ☆ Light-A-Video: Training-free Video Relighting via Progressive Light Fusion
Recent advancements in image relighting models, driven by large-scale datasets and pre-trained diffusion models, have enabled the imposition of consistent lighting. However, video relighting still lags, primarily due to the excessive training costs and the scarcity of diverse, high-quality video relighting datasets. A simple application of image relighting models on a frame-by-frame basis leads to several issues: lighting source inconsistency and relighted appearance inconsistency, resulting in flickers in the generated videos. In this work, we propose Light-A-Video, a training-free approach to achieve temporally smooth video relighting. Adapted from image relighting models, Light-A-Video introduces two key techniques to enhance lighting consistency. First, we design a Consistent Light Attention (CLA) module, which enhances cross-frame interactions within the self-attention layers of the image relight model to stabilize the generation of the background lighting source. Second, leveraging the physical principle of light transport independence, we apply linear blending between the source video's appearance and the relighted appearance, using a Progressive Light Fusion (PLF) strategy to ensure smooth temporal transitions in illumination. Experiments show that Light-A-Video improves the temporal consistency of relighted video while maintaining the relighted image quality, ensuring coherent lighting transitions across frames. Project page: https://bujiazi.github.io/light-a-video.github.io/.
comment: Project Page: https://bujiazi.github.io/light-a-video.github.io/
♻ ☆ Diverse Target and Contribution Scheduling for Domain Generalization
Generalization under the distribution shift has been a great challenge in computer vision. The prevailing practice of directly employing the one-hot labels as the training targets in domain generalization~(DG) can lead to gradient conflicts, making it insufficient for capturing the intrinsic class characteristics and hard to increase the intra-class variation. Besides, existing methods in DG mostly overlook the distinct contributions of source (seen) domains, resulting in uneven learning from these domains. To address these issues, we firstly present a theoretical and empirical analysis of the existence of gradient conflicts in DG, unveiling the previously unexplored relationship between distribution shifts and gradient conflicts during the optimization process. In this paper, we present a novel perspective of DG from the empirical source domain's risk and propose a new paradigm for DG called Diverse Target and Contribution Scheduling (DTCS). DTCS comprises two innovative modules: Diverse Target Supervision (DTS) and Diverse Contribution Balance (DCB), with the aim of addressing the limitations associated with the common utilization of one-hot labels and equal contributions for source domains in DG. In specific, DTS employs distinct soft labels as training targets to account for various feature distributions across domains and thereby mitigates the gradient conflicts, and DCB dynamically balances the contributions of source domains by ensuring a fair decline in losses of different source domains. Extensive experiments with analysis on four benchmark datasets show that the proposed method achieves a competitive performance in comparison with the state-of-the-art approaches, demonstrating the effectiveness and advantages of the proposed DTCS.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ HisTrackMap: Global Vectorized High-Definition Map Construction via History Map Tracking
As an essential component of autonomous driving systems, high-definition (HD) maps provide rich and precise environmental information for auto-driving scenarios; however, existing methods, which primarily rely on query-based detection frameworks to directly model map elements or implicitly propagate queries over time, often struggle to maintain consistent temporal perception outcomes. These inconsistencies pose significant challenges to the stability and reliability of real-world autonomous driving and map data collection systems. To address this limitation, we propose a novel end-to-end tracking framework for global map construction by temporally tracking map elements' historical trajectories. Firstly, instance-level historical rasterization map representation is designed to explicitly store previous perception results, which can control and maintain different global instances' history information in a fine-grained way. Secondly, we introduce a Map-Trajectory Prior Fusion module within this tracking framework, leveraging historical priors for tracked instances to improve temporal smoothness and continuity. Thirdly, we propose a global perspective metric to evaluate the quality of temporal geometry construction in HD maps, filling the gap in current metrics for assessing global geometric perception results. Substantial experiments on the nuScenes and Argoverse2 datasets demonstrate that the proposed method outperforms state-of-the-art (SOTA) methods in both single-frame and temporal metrics. The project page is available at: https://yj772881654.github.io/HisTrackMap.
♻ ☆ Hybrid Mask Generation for Infrared Small Target Detection with Single-Point Supervision
Single-frame infrared small target (SIRST) detection poses a significant challenge due to the requirement to discern minute targets amidst complex infrared background clutter. In this paper, we focus on a weakly-supervised paradigm to obtain high-quality pseudo masks from the point-level annotation by integrating a novel learning-free method with the hybrid of the learning-based method. The learning-free method adheres to a sequential process, progressing from a point annotation to the bounding box that encompasses the target, and subsequently to detailed pseudo masks, while the hybrid is achieved through filtering out false alarms and retrieving missed detections in the network's prediction to provide a reliable supplement for learning-free masks. The experimental results show that our learning-free method generates pseudo masks with an average Intersection over Union (IoU) that is 4.3% higher than the second-best learning-free competitor across three datasets, while the hybrid learning-based method further enhances the quality of pseudo masks, achieving an additional average IoU increase of 3.4%.
comment: 11 pages, 9 figures
♻ ☆ High-Quality Mask Tuning Matters for Open-Vocabulary Segmentation ICLR2025
Open-vocabulary image segmentation has been advanced through the synergy between mask generators and vision-language models like Contrastive Language-Image Pre-training (CLIP). Previous approaches focus on generating masks while aligning mask features with text embeddings during training. In this paper, we observe that relying on generated low-quality masks can weaken the alignment of vision and language in regional representations. This motivates us to present a new fine-tuning framework, named MaskCLIP++, which uses ground-truth masks instead of generated masks to enhance the mask classification capability of CLIP. Due to the limited diversity of image segmentation datasets with mask annotations, we propose incorporating a consistency alignment principle during fine-tuning, which alleviates categorical bias toward the fine-tuning dataset. After low-cost fine-tuning, MaskCLIP++ significantly improves the mask classification performance on multi-domain datasets. Combining with the mask generator in previous state-of-the-art mask-based open vocabulary segmentation methods, we achieve performance improvements of +1.7, +2.3, +2.1, +3.1, and +0.3 mIoU on the A-847, PC-459, A-150, PC-59, and PAS-20 datasets, respectively. Code is avaliable at https://github.com/HVision-NKU/MaskCLIPpp .
comment: Revised version according to comments from reviewers of ICLR2025
♻ ☆ TrackGS: Optimizing COLMAP-Free 3D Gaussian Splatting with Global Track Constraints
While 3D Gaussian Splatting (3DGS) has advanced ability on novel view synthesis, it still depends on accurate pre-computaed camera parameters, which are hard to obtain and prone to noise. Previous COLMAP-Free methods optimize camera poses using local constraints, but they often struggle in complex scenarios. To address this, we introduce TrackGS, which incorporates feature tracks to globally constrain multi-view geometry. We select the Gaussians associated with each track, which will be trained and rescaled to an infinitesimally small size to guarantee the spatial accuracy. We also propose minimizing both reprojection and backprojection errors for better geometric consistency. Moreover, by deriving the gradient of intrinsics, we unify camera parameter estimation with 3DGS training into a joint optimization framework, achieving SOTA performance on challenging datasets with severe camera movements.
♻ ☆ Señorita-2M: A High-Quality Instruction-based Dataset for General Video Editing by Video Specialists
Recent advancements in video generation have spurred the development of video editing techniques, which can be divided into inversion-based and end-to-end methods. However, current video editing methods still suffer from several challenges. Inversion-based methods, though training-free and flexible, are time-consuming during inference, struggle with fine-grained editing instructions, and produce artifacts and jitter. On the other hand, end-to-end methods, which rely on edited video pairs for training, offer faster inference speeds but often produce poor editing results due to a lack of high-quality training video pairs. In this paper, to close the gap in end-to-end methods, we introduce Se\~norita-2M, a high-quality video editing dataset. Se\~norita-2M consists of approximately 2 millions of video editing pairs. It is built by crafting four high-quality, specialized video editing models, each crafted and trained by our team to achieve state-of-the-art editing results. We also propose a filtering pipeline to eliminate poorly edited video pairs. Furthermore, we explore common video editing architectures to identify the most effective structure based on current pre-trained generative model. Extensive experiments show that our dataset can help to yield remarkably high-quality video editing results. More details are available at https://senorita-2m-dataset.github.io.
♻ ☆ KV-Edit: Training-Free Image Editing for Precise Background Preservation
Background consistency remains a significant challenge in image editing tasks. Despite extensive developments, existing works still face a trade-off between maintaining similarity to the original image and generating content that aligns with the target. Here, we propose KV-Edit, a training-free approach that uses KV cache in DiTs to maintain background consistency, where background tokens are preserved rather than regenerated, eliminating the need for complex mechanisms or expensive training, ultimately generating new content that seamlessly integrates with the background within user-provided regions. We further explore the memory consumption of the KV cache during editing and optimize the space complexity to $O(1)$ using an inversion-free method. Our approach is compatible with any DiT-based generative model without additional training. Experiments demonstrate that KV-Edit significantly outperforms existing approaches in terms of both background and image quality, even surpassing training-based methods. Project webpage is available at https://xilluill.github.io/projectpages/KV-Edit
comment: Project webpage is available at https://xilluill.github.io/projectpages/KV-Edit
Artificial Intelligence 200
☆ How to Protect Yourself from 5G Radiation? Investigating LLM Responses to Implicit Misinformation
As Large Language Models (LLMs) are widely deployed in diverse scenarios, the extent to which they could tacitly spread misinformation emerges as a critical safety concern. Current research primarily evaluates LLMs on explicit false statements, overlooking how misinformation often manifests subtly as unchallenged premises in real-world user interactions. We curated ECHOMIST, the first comprehensive benchmark for implicit misinformation, where the misinformed assumptions are embedded in a user query to LLMs. ECHOMIST is based on rigorous selection criteria and carefully curated data from diverse sources, including real-world human-AI conversations and social media interactions. We also introduce a new evaluation metric to measure whether LLMs can recognize and counter false information rather than amplify users' misconceptions. Through an extensive empirical study on a wide range of LLMs, including GPT-4, Claude, and Llama, we find that current models perform alarmingly poorly on this task, often failing to detect false premises and generating misleading explanations. Our findings underscore the critical need for an increased focus on implicit misinformation in LLM safety research.
☆ Auspex: Building Threat Modeling Tradecraft into an Artificial Intelligence-based Copilot
We present Auspex - a threat modeling system built using a specialized collection of generative artificial intelligence-based methods that capture threat modeling tradecraft. This new approach, called tradecraft prompting, centers on encoding the on-the-ground knowledge of threat modelers within the prompts that drive a generative AI-based threat modeling system. Auspex employs tradecraft prompts in two processing stages. The first stage centers on ingesting and processing system architecture information using prompts that encode threat modeling tradecraft knowledge pertaining to system decomposition and description. The second stage centers on chaining the resulting system analysis through a collection of prompts that encode tradecraft knowledge on threat identification, classification, and mitigation. The two-stage process yields a threat matrix for a system that specifies threat scenarios, threat types, information security categorizations and potential mitigations. Auspex produces formalized threat model output in minutes, relative to the weeks or months a manual process takes. More broadly, the focus on bespoke tradecraft prompting, as opposed to fine-tuning or agent-based add-ons, makes Auspex a lightweight, flexible, modular, and extensible foundational system capable of addressing the complexity, resource, and standardization limitations of both existing manual and automated threat modeling processes. In this connection, we establish the baseline value of Auspex to threat modelers through an evaluation procedure based on feedback collected from cybersecurity subject matter experts measuring the quality and utility of threat models generated by Auspex on real banking systems. We conclude with a discussion of system performance and plans for enhancements to Auspex.
☆ Cost-Optimal Grouped-Query Attention for Long-Context LLMs
Building effective and efficient Transformer-based large language models (LLMs) has recently become a research focus, requiring maximizing model language capabilities and minimizing training and deployment costs. Existing efforts have primarily described complex relationships among model performance, parameter size, and data size, as well as searched for the optimal compute allocation to train LLMs. However, they overlook the impacts of context length and attention head configuration (the number of query and key-value heads in grouped-query attention) on training and inference. In this paper, we systematically compare models with different parameter sizes, context lengths, and attention head configurations in terms of model performance, computational cost, and memory cost. Then, we extend the existing scaling methods, which are based solely on parameter size and training compute, to guide the construction of cost-optimal LLMs during both training and inference. Our quantitative scaling studies show that, when processing sufficiently long sequences, a larger model with fewer attention heads can achieve a lower loss while incurring lower computational and memory costs. Our findings provide valuable insights for developing practical LLMs, especially in long-context processing scenarios. We will publicly release our code and data.
comment: 16 pages, 17 figures
☆ Block Diffusion: Interpolating Between Autoregressive and Diffusion Language Models ICLR 2025
Diffusion language models offer unique benefits over autoregressive models due to their potential for parallelized generation and controllability, yet they lag in likelihood modeling and are limited to fixed-length generation. In this work, we introduce a class of block diffusion language models that interpolate between discrete denoising diffusion and autoregressive models. Block diffusion overcomes key limitations of both approaches by supporting flexible-length generation and improving inference efficiency with KV caching and parallel token sampling. We propose a recipe for building effective block diffusion models that includes an efficient training algorithm, estimators of gradient variance, and data-driven noise schedules to minimize the variance. Block diffusion sets a new state-of-the-art performance among diffusion models on language modeling benchmarks and enables generation of arbitrary-length sequences. We provide the code, along with the model weights and blog post on the project page: https://m-arriola.com/bd3lms/
comment: ICLR 2025 Oral. We provide the code at https://github.com/kuleshov-group/bd3lms
☆ Global Convergence and Rich Feature Learning in $L$-Layer Infinite-Width Neural Networks under $μ$P Parametrization
Despite deep neural networks' powerful representation learning capabilities, theoretical understanding of how networks can simultaneously achieve meaningful feature learning and global convergence remains elusive. Existing approaches like the neural tangent kernel (NTK) are limited because features stay close to their initialization in this parametrization, leaving open questions about feature properties during substantial evolution. In this paper, we investigate the training dynamics of infinitely wide, $L$-layer neural networks using the tensor program (TP) framework. Specifically, we show that, when trained with stochastic gradient descent (SGD) under the Maximal Update parametrization ($\mu$P) and mild conditions on the activation function, SGD enables these networks to learn linearly independent features that substantially deviate from their initial values. This rich feature space captures relevant data information and ensures that any convergent point of the training process is a global minimum. Our analysis leverages both the interactions among features across layers and the properties of Gaussian random variables, providing new insights into deep representation learning. We further validate our theoretical findings through experiments on real-world datasets.
comment: 29 pages, 5 figures, 2 tables
☆ The Value of Goal Commitment in Planning
In this paper, we revisit the concept of goal commitment from early planners in the presence of current forward chaining heuristic planners. We present a compilation that extends the original planning task with commit actions that enforce the persistence of specific goals once achieved, thereby committing to them in the search sub-tree. This approach imposes a specific goal achievement order in parts of the search tree, potentially introducing dead-end states. This can reduce search effort if the goal achievement order is correct. Otherwise, the search algorithm can expand nodes in the open list where goals do not persist. Experimental results demonstrate that the reformulated tasks suit state-of-the-art agile planners, enabling them to find better
☆ Differentially Private Equilibrium Finding in Polymatrix Games
We study equilibrium finding in polymatrix games under differential privacy constraints. To start, we show that high accuracy and asymptotically vanishing differential privacy budget (as the number of players goes to infinity) cannot be achieved simultaneously under either of the two settings: (i) We seek to establish equilibrium approximation guarantees in terms of Euclidean distance to the equilibrium set, and (ii) the adversary has access to all communication channels. Then, assuming the adversary has access to a constant number of communication channels, we develop a novel distributed algorithm that recovers strategies with simultaneously vanishing Nash gap (in expected utility, also referred to as exploitability and privacy budget as the number of players increases.
☆ GenHPE: Generative Counterfactuals for 3D Human Pose Estimation with Radio Frequency Signals
Human pose estimation (HPE) detects the positions of human body joints for various applications. Compared to using cameras, HPE using radio frequency (RF) signals is non-intrusive and more robust to adverse conditions, exploiting the signal variations caused by human interference. However, existing studies focus on single-domain HPE confined by domain-specific confounders, which cannot generalize to new domains and result in diminished HPE performance. Specifically, the signal variations caused by different human body parts are entangled, containing subject-specific confounders. RF signals are also intertwined with environmental noise, involving environment-specific confounders. In this paper, we propose GenHPE, a 3D HPE approach that generates counterfactual RF signals to eliminate domain-specific confounders. GenHPE trains generative models conditioned on human skeleton labels, learning how human body parts and confounders interfere with RF signals. We manipulate skeleton labels (i.e., removing body parts) as counterfactual conditions for generative models to synthesize counterfactual RF signals. The differences between counterfactual signals approximately eliminate domain-specific confounders and regularize an encoder-decoder model to learn domain-independent representations. Such representations help GenHPE generalize to new subjects/environments for cross-domain 3D HPE. We evaluate GenHPE on three public datasets from WiFi, ultra-wideband, and millimeter wave. Experimental results show that GenHPE outperforms state-of-the-art methods and reduces estimation errors by up to 52.2mm for cross-subject HPE and 10.6mm for cross-environment HPE.
☆ Evaluating Visual Explanations of Attention Maps for Transformer-based Medical Imaging MICCAI 2024
Although Vision Transformers (ViTs) have recently demonstrated superior performance in medical imaging problems, they face explainability issues similar to previous architectures such as convolutional neural networks. Recent research efforts suggest that attention maps, which are part of decision-making process of ViTs can potentially address the explainability issue by identifying regions influencing predictions, especially in models pretrained with self-supervised learning. In this work, we compare the visual explanations of attention maps to other commonly used methods for medical imaging problems. To do so, we employ four distinct medical imaging datasets that involve the identification of (1) colonic polyps, (2) breast tumors, (3) esophageal inflammation, and (4) bone fractures and hardware implants. Through large-scale experiments on the aforementioned datasets using various supervised and self-supervised pretrained ViTs, we find that although attention maps show promise under certain conditions and generally surpass GradCAM in explainability, they are outperformed by transformer-specific interpretability methods. Our findings indicate that the efficacy of attention maps as a method of interpretability is context-dependent and may be limited as they do not consistently provide the comprehensive insights required for robust medical decision-making.
comment: Accepted for publication in MICCAI 2024 Workshop on Interpretability of Machine Intelligence in Medical Image Computing (iMIMIC)
☆ CombatVLA: An Efficient Vision-Language-Action Model for Combat Tasks in 3D Action Role-Playing Games
Recent advances in Vision-Language-Action models (VLAs) have expanded the capabilities of embodied intelligence. However, significant challenges remain in real-time decision-making in complex 3D environments, which demand second-level responses, high-resolution perception, and tactical reasoning under dynamic conditions. To advance the field, we introduce CombatVLA, an efficient VLA model optimized for combat tasks in 3D action role-playing games(ARPGs). Specifically, our CombatVLA is a 3B model trained on video-action pairs collected by an action tracker, where the data is formatted as action-of-thought (AoT) sequences. Thereafter, CombatVLA seamlessly integrates into an action execution framework, allowing efficient inference through our truncated AoT strategy. Experimental results demonstrate that CombatVLA not only outperforms all existing models on the combat understanding benchmark but also achieves a 50-fold acceleration in game combat. Moreover, it has a higher task success rate than human players. We will open-source all resources, including the action tracker, dataset, benchmark, model weights, training code, and the implementation of the framework at https://combatvla.github.io/.
☆ PairVDN - Pair-wise Decomposed Value Functions
Extending deep Q-learning to cooperative multi-agent settings is challenging due to the exponential growth of the joint action space, the non-stationary environment, and the credit assignment problem. Value decomposition allows deep Q-learning to be applied at the joint agent level, at the cost of reduced expressivity. Building on past work in this direction, our paper proposes PairVDN, a novel method for decomposing the value function into a collection of pair-wise, rather than per-agent, functions, improving expressivity at the cost of requiring a more complex (but still efficient) dynamic programming maximisation algorithm. Our method enables the representation of value functions which cannot be expressed as a monotonic combination of per-agent functions, unlike past approaches such as VDN and QMIX. We implement a novel many-agent cooperative environment, Box Jump, and demonstrate improved performance over these baselines in this setting. We open-source our code and environment at https://github.com/zzbuzzard/PairVDN.
comment: 8 pages, 5 figures
☆ Search-R1: Training LLMs to Reason and Leverage Search Engines with Reinforcement Learning
Efficiently acquiring external knowledge and up-to-date information is essential for effective reasoning and text generation in large language models (LLMs). Retrieval augmentation and tool-use training approaches where a search engine is treated as a tool lack complex multi-turn retrieval flexibility or require large-scale supervised data. Prompting advanced LLMs with reasoning capabilities during inference to use search engines is not optimal, since the LLM does not learn how to optimally interact with the search engine. This paper introduces Search-R1, an extension of the DeepSeek-R1 model where the LLM learns -- solely through reinforcement learning (RL) -- to autonomously generate (multiple) search queries during step-by-step reasoning with real-time retrieval. Search-R1 optimizes LLM rollouts with multi-turn search interactions, leveraging retrieved token masking for stable RL training and a simple outcome-based reward function. Experiments on seven question-answering datasets show that Search-R1 improves performance by 26% (Qwen2.5-7B), 21% (Qwen2.5-3B), and 10% (LLaMA3.2-3B) over SOTA baselines. This paper further provides empirical insights into RL optimization methods, LLM choices, and response length dynamics in retrieval-augmented reasoning. The code and model checkpoints are available at https://github.com/PeterGriffinJin/Search-R1.
comment: 16 pages
☆ RESTRAIN: Reinforcement Learning-Based Secure Framework for Trigger-Action IoT Environment
Internet of Things (IoT) platforms with trigger-action capability allow event conditions to trigger actions in IoT devices autonomously by creating a chain of interactions. Adversaries exploit this chain of interactions to maliciously inject fake event conditions into IoT hubs, triggering unauthorized actions on target IoT devices to implement remote injection attacks. Existing defense mechanisms focus mainly on the verification of event transactions using physical event fingerprints to enforce the security policies to block unsafe event transactions. These approaches are designed to provide offline defense against injection attacks. The state-of-the-art online defense mechanisms offer real-time defense, but extensive reliability on the inference of attack impacts on the IoT network limits the generalization capability of these approaches. In this paper, we propose a platform-independent multi-agent online defense system, namely RESTRAIN, to counter remote injection attacks at runtime. RESTRAIN allows the defense agent to profile attack actions at runtime and leverages reinforcement learning to optimize a defense policy that complies with the security requirements of the IoT network. The experimental results show that the defense agent effectively takes real-time defense actions against complex and dynamic remote injection attacks and maximizes the security gain with minimal computational overhead.
☆ Double-Stage Feature-Level Clustering-Based Mixture of Experts Framework
The Mixture-of-Experts (MoE) model has succeeded in deep learning (DL). However, its complex architecture and advantages over dense models in image classification remain unclear. In previous studies, MoE performance has often been affected by noise and outliers in the input space. Some approaches incorporate input clustering for training MoE models, but most clustering algorithms lack access to labeled data, limiting their effectiveness. This paper introduces the Double-stage Feature-level Clustering and Pseudo-labeling-based Mixture of Experts (DFCP-MoE) framework, which consists of input feature extraction, feature-level clustering, and a computationally efficient pseudo-labeling strategy. This approach reduces the impact of noise and outliers while leveraging a small subset of labeled data to label a large portion of unlabeled inputs. We propose a conditional end-to-end joint training method that improves expert specialization by training the MoE model on well-labeled, clustered inputs. Unlike traditional MoE and dense models, the DFCP-MoE framework effectively captures input space diversity, leading to competitive inference results. We validate our approach on three benchmark datasets for multi-class classification tasks.
comment: 14 Pages, 1 Figure, and 3 Tables
☆ ReMA: Learning to Meta-think for LLMs with Multi-Agent Reinforcement Learning
Recent research on Reasoning of Large Language Models (LLMs) has sought to further enhance their performance by integrating meta-thinking -- enabling models to monitor, evaluate, and control their reasoning processes for more adaptive and effective problem-solving. However, current single-agent work lacks a specialized design for acquiring meta-thinking, resulting in low efficacy. To address this challenge, we introduce Reinforced Meta-thinking Agents (ReMA), a novel framework that leverages Multi-Agent Reinforcement Learning (MARL) to elicit meta-thinking behaviors, encouraging LLMs to think about thinking. ReMA decouples the reasoning process into two hierarchical agents: a high-level meta-thinking agent responsible for generating strategic oversight and plans, and a low-level reasoning agent for detailed executions. Through iterative reinforcement learning with aligned objectives, these agents explore and learn collaboration, leading to improved generalization and robustness. Experimental results demonstrate that ReMA outperforms single-agent RL baselines on complex reasoning tasks, including competitive-level mathematical benchmarks and LLM-as-a-Judge benchmarks. Comprehensive ablation studies further illustrate the evolving dynamics of each distinct agent, providing valuable insights into how the meta-thinking reasoning process enhances the reasoning capabilities of LLMs.
☆ MindGYM: Enhancing Vision-Language Models via Synthetic Self-Challenging Questions
Large vision-language models (VLMs) face challenges in achieving robust, transferable reasoning abilities due to reliance on labor-intensive manual instruction datasets or computationally expensive self-supervised methods. To address these issues, we introduce MindGYM, a framework that enhances VLMs through synthetic self-challenging questions, consisting of three stages: (1) Seed Single-Hop Question Synthesis, generating cognitive questions across textual (e.g., logical deduction) and multimodal contexts (e.g., diagram-based queries) spanning eight semantic areas like ethical analysis; (2) Challenging Multi-Hop Question Synthesis, combining seed questions via diverse principles like bridging, visual-textual alignment, to create multi-step problems demanding deeper reasoning; and (3) Thinking-Induced Curriculum Fine-Tuning, a structured pipeline that progressively trains the model from scaffolded reasoning to standalone inference. By leveraging the model's self-synthesis capability, MindGYM achieves high data efficiency (e.g., +16% gains on MathVision-Mini with only 400 samples), computational efficiency (reducing both training and inference costs), and robust generalization across tasks. Extensive evaluations on seven benchmarks demonstrate superior performance over strong baselines, with notable improvements (+15.77% win rates) in reasoning depth and breadth validated via GPT-based scoring. MindGYM underscores the viability of self-challenging for refining VLM capabilities while minimizing human intervention and resource demands. Code and data are released to advance multimodal reasoning research.
comment: 16 pages
☆ Online Language Splatting
To enable AI agents to interact seamlessly with both humans and 3D environments, they must not only perceive the 3D world accurately but also align human language with 3D spatial representations. While prior work has made significant progress by integrating language features into geometrically detailed 3D scene representations using 3D Gaussian Splatting (GS), these approaches rely on computationally intensive offline preprocessing of language features for each input image, limiting adaptability to new environments. In this work, we introduce Online Language Splatting, the first framework to achieve online, near real-time, open-vocabulary language mapping within a 3DGS-SLAM system without requiring pre-generated language features. The key challenge lies in efficiently fusing high-dimensional language features into 3D representations while balancing the computation speed, memory usage, rendering quality and open-vocabulary capability. To this end, we innovatively design: (1) a high-resolution CLIP embedding module capable of generating detailed language feature maps in 18ms per frame, (2) a two-stage online auto-encoder that compresses 768-dimensional CLIP features to 15 dimensions while preserving open-vocabulary capabilities, and (3) a color-language disentangled optimization approach to improve rendering quality. Experimental results show that our online method not only surpasses the state-of-the-art offline methods in accuracy but also achieves more than 40x efficiency boost, demonstrating the potential for dynamic and interactive AI applications.
☆ Sparse Autoencoder as a Zero-Shot Classifier for Concept Erasing in Text-to-Image Diffusion Models
Text-to-image (T2I) diffusion models have achieved remarkable progress in generating high-quality images but also raise people's concerns about generating harmful or misleading content. While extensive approaches have been proposed to erase unwanted concepts without requiring retraining from scratch, they inadvertently degrade performance on normal generation tasks. In this work, we propose Interpret then Deactivate (ItD), a novel framework to enable precise concept removal in T2I diffusion models while preserving overall performance. ItD first employs a sparse autoencoder (SAE) to interpret each concept as a combination of multiple features. By permanently deactivating the specific features associated with target concepts, we repurpose SAE as a zero-shot classifier that identifies whether the input prompt includes target concepts, allowing selective concept erasure in diffusion models. Moreover, we demonstrate that ItD can be easily extended to erase multiple concepts without requiring further training. Comprehensive experiments across celebrity identities, artistic styles, and explicit content demonstrate ItD's effectiveness in eliminating targeted concepts without interfering with normal concept generation. Additionally, ItD is also robust against adversarial prompts designed to circumvent content filters. Code is available at: https://github.com/NANSirun/Interpret-then-deactivate.
comment: 25 pages
☆ Astrea: A MOE-based Visual Understanding Model with Progressive Alignment
Vision-Language Models (VLMs) based on Mixture-of-Experts (MoE) architectures have emerged as a pivotal paradigm in multimodal understanding, offering a powerful framework for integrating visual and linguistic information. However, the increasing complexity and diversity of tasks present significant challenges in coordinating load balancing across heterogeneous visual experts, where optimizing one specialist's performance often compromises others' capabilities. To address task heterogeneity and expert load imbalance, we propose Astrea, a novel multi-expert collaborative VLM architecture based on progressive pre-alignment. Astrea introduces three key innovations: 1) A heterogeneous expert coordination mechanism that integrates four specialized models (detection, segmentation, classification, captioning) into a comprehensive expert matrix covering essential visual comprehension elements; 2) A dynamic knowledge fusion strategy featuring progressive pre-alignment to harmonize experts within the VLM latent space through contrastive learning, complemented by probabilistically activated stochastic residual connections to preserve knowledge continuity; 3) An enhanced optimization framework utilizing momentum contrastive learning for long-range dependency modeling and adaptive weight allocators for real-time expert contribution calibration. Extensive evaluations across 12 benchmark tasks spanning VQA, image captioning, and cross-modal retrieval demonstrate Astrea's superiority over state-of-the-art models, achieving an average performance gain of +4.7\%. This study provides the first empirical demonstration that progressive pre-alignment strategies enable VLMs to overcome task heterogeneity limitations, establishing new methodological foundations for developing general-purpose multimodal agents.
☆ PromptMap: An Alternative Interaction Style for AI-Based Image Generation
Recent technological advances popularized the use of image generation among the general public. Crafting effective prompts can, however, be difficult for novice users. To tackle this challenge, we developed PromptMap, a new interaction style for text-to-image AI that allows users to freely explore a vast collection of synthetic prompts through a map-like view with semantic zoom. PromptMap groups images visually by their semantic similarity, allowing users to discover relevant examples. We evaluated PromptMap in a between-subject online study ($n=60$) and a qualitative within-subject study ($n=12$). We found that PromptMap supported users in crafting prompts by providing them with examples. We also demonstrated the feasibility of using LLMs to create vast example collections. Our work contributes a new interaction style that supports users unfamiliar with prompting in achieving a satisfactory image output.
comment: To be published in the proceedings of 30th International Conference on Intelligent User Interfaces (IUI '25), March 24-27, 2025, Cagliari, Italy
☆ CASTLE: Benchmarking Dataset for Static Code Analyzers and LLMs towards CWE Detection
Identifying vulnerabilities in source code is crucial, especially in critical software components. Existing methods such as static analysis, dynamic analysis, formal verification, and recently Large Language Models are widely used to detect security flaws. This paper introduces CASTLE (CWE Automated Security Testing and Low-Level Evaluation), a benchmarking framework for evaluating the vulnerability detection capabilities of different methods. We assess 13 static analysis tools, 10 LLMs, and 2 formal verification tools using a hand-crafted dataset of 250 micro-benchmark programs covering 25 common CWEs. We propose the CASTLE Score, a novel evaluation metric to ensure fair comparison. Our results reveal key differences: ESBMC (a formal verification tool) minimizes false positives but struggles with vulnerabilities beyond model checking, such as weak cryptography or SQL injection. Static analyzers suffer from high false positives, increasing manual validation efforts for developers. LLMs perform exceptionally well in the CASTLE dataset when identifying vulnerabilities in small code snippets. However, their accuracy declines, and hallucinations increase as the code size grows. These results suggest that LLMs could play a pivotal role in future security solutions, particularly within code completion frameworks, where they can provide real-time guidance to prevent vulnerabilities. The dataset is accessible at https://github.com/CASTLE-Benchmark.
☆ Multimodal Language Modeling for High-Accuracy Single Cell Transcriptomics Analysis and Generation
Pre-trained language models (PLMs) have revolutionized scientific research, yet their application to single-cell analysis remains limited. Text PLMs cannot process single-cell RNA sequencing data, while cell PLMs lack the ability to handle free text, restricting their use in multimodal tasks. Existing efforts to bridge these modalities often suffer from information loss or inadequate single-modal pre-training, leading to suboptimal performances. To address these challenges, we propose Single-Cell MultiModal Generative Pre-trained Transformer (scMMGPT), a unified PLM for joint cell and text modeling. scMMGPT effectively integrates the state-of-the-art cell and text PLMs, facilitating cross-modal knowledge sharing for improved performance. To bridge the text-cell modality gap, scMMGPT leverages dedicated cross-modal projectors, and undergoes extensive pre-training on 27 million cells -- the largest dataset for multimodal cell-text PLMs to date. This large-scale pre-training enables scMMGPT to excel in joint cell-text tasks, achieving an 84\% relative improvement of textual discrepancy for cell description generation, 20.5\% higher accuracy for cell type annotation, and 4\% improvement in $k$-NN accuracy for text-conditioned pseudo-cell generation, outperforming baselines.
☆ AI-based Framework for Robust Model-Based Connector Mating in Robotic Wire Harness Installation
Despite the widespread adoption of industrial robots in automotive assembly, wire harness installation remains a largely manual process, as it requires precise and flexible manipulation. To address this challenge, we design a novel AI-based framework that automates cable connector mating by integrating force control with deep visuotactile learning. Our system optimizes search-and-insertion strategies using first-order optimization over a multimodal transformer architecture trained on visual, tactile, and proprioceptive data. Additionally, we design a novel automated data collection and optimization pipeline that minimizes the need for machine learning expertise. The framework optimizes robot programs that run natively on standard industrial controllers, permitting human experts to audit and certify them. Experimental validations on a center console assembly task demonstrate significant improvements in cycle times and robustness compared to conventional robot programming approaches. Videos are available under https://claudius-kienle.github.io/AppMuTT.
comment: 6 pages, 6 figures, 4 tables, submitted to the 2025 IEEE 21st International Conference on Automation Science and Engineering
☆ Multi-Agent Image Restoration
Image restoration (IR) is challenging due to the complexity of real-world degradations. While many specialized and all-in-one IR models have been developed, they fail to effectively handle complex, mixed degradations. Recent agentic methods RestoreAgent and AgenticIR leverage intelligent, autonomous workflows to alleviate this issue, yet they suffer from suboptimal results and inefficiency due to their resource-intensive finetunings, and ineffective searches and tool execution trials for satisfactory outputs. In this paper, we propose MAIR, a novel Multi-Agent approach for complex IR problems. We introduce a real-world degradation prior, categorizing degradations into three types: (1) scene, (2) imaging, and (3) compression, which are observed to occur sequentially in real world, and reverse them in the opposite order. Built upon this three-stage restoration framework, MAIR emulates a team of collaborative human specialists, including a "scheduler" for overall planning and multiple "experts" dedicated to specific degradations. This design minimizes search space and trial efforts, improving image quality while reducing inference costs. In addition, a registry mechanism is introduced to enable easy integration of new tools. Experiments on both synthetic and real-world datasets show that proposed MAIR achieves competitive performance and improved efficiency over the previous agentic IR system. Code and models will be made available.
☆ ForAug: Recombining Foregrounds and Backgrounds to Improve Vision Transformer Training with Bias Mitigation
Transformers, particularly Vision Transformers (ViTs), have achieved state-of-the-art performance in large-scale image classification. However, they often require large amounts of data and can exhibit biases that limit their robustness and generalizability. This paper introduces ForAug, a novel data augmentation scheme that addresses these challenges and explicitly includes inductive biases, which commonly are part of the neural network architecture, into the training data. ForAug is constructed by using pretrained foundation models to separate and recombine foreground objects with different backgrounds, enabling fine-grained control over image composition during training. It thus increases the data diversity and effective number of training samples. We demonstrate that training on ForNet, the application of ForAug to ImageNet, significantly improves the accuracy of ViTs and other architectures by up to 4.5 percentage points (p.p.) on ImageNet and 7.3 p.p. on downstream tasks. Importantly, ForAug enables novel ways of analyzing model behavior and quantifying biases. Namely, we introduce metrics for background robustness, foreground focus, center bias, and size bias and show that training on ForNet substantially reduces these biases compared to training on ImageNet. In summary, ForAug provides a valuable tool for analyzing and mitigating biases, enabling the development of more robust and reliable computer vision models. Our code and dataset are publicly available at https://github.com/tobna/ForAug.
☆ Close-up-GS: Enhancing Close-Up View Synthesis in 3D Gaussian Splatting with Progressive Self-Training
3D Gaussian Splatting (3DGS) has demonstrated impressive performance in synthesizing novel views after training on a given set of viewpoints. However, its rendering quality deteriorates when the synthesized view deviates significantly from the training views. This decline occurs due to (1) the model's difficulty in generalizing to out-of-distribution scenarios and (2) challenges in interpolating fine details caused by substantial resolution changes and occlusions. A notable case of this limitation is close-up view generation--producing views that are significantly closer to the object than those in the training set. To tackle this issue, we propose a novel approach for close-up view generation based by progressively training the 3DGS model with self-generated data. Our solution is based on three key ideas. First, we leverage the See3D model, a recently introduced 3D-aware generative model, to enhance the details of rendered views. Second, we propose a strategy to progressively expand the ``trust regions'' of the 3DGS model and update a set of reference views for See3D. Finally, we introduce a fine-tuning strategy to carefully update the 3DGS model with training data generated from the above schemes. We further define metrics for close-up views evaluation to facilitate better research on this problem. By conducting evaluations on specifically selected scenarios for close-up views, our proposed approach demonstrates a clear advantage over competitive solutions.
☆ Towards Next-Generation Recommender Systems: A Benchmark for Personalized Recommendation Assistant with LLMs
Recommender systems (RecSys) are widely used across various modern digital platforms and have garnered significant attention. Traditional recommender systems usually focus only on fixed and simple recommendation scenarios, making it difficult to generalize to new and unseen recommendation tasks in an interactive paradigm. Recently, the advancement of large language models (LLMs) has revolutionized the foundational architecture of RecSys, driving their evolution into more intelligent and interactive personalized recommendation assistants. However, most existing studies rely on fixed task-specific prompt templates to generate recommendations and evaluate the performance of personalized assistants, which limits the comprehensive assessments of their capabilities. This is because commonly used datasets lack high-quality textual user queries that reflect real-world recommendation scenarios, making them unsuitable for evaluating LLM-based personalized recommendation assistants. To address this gap, we introduce RecBench+, a new dataset benchmark designed to access LLMs' ability to handle intricate user recommendation needs in the era of LLMs. RecBench+ encompasses a diverse set of queries that span both hard conditions and soft preferences, with varying difficulty levels. We evaluated commonly used LLMs on RecBench+ and uncovered below findings: 1) LLMs demonstrate preliminary abilities to act as recommendation assistants, 2) LLMs are better at handling queries with explicitly stated conditions, while facing challenges with queries that require reasoning or contain misleading information. Our dataset has been released at https://github.com/jiani-huang/RecBench.git.
☆ Pig behavior dataset and Spatial-temporal perception and enhancement networks based on the attention mechanism for pig behavior recognition
The recognition of pig behavior plays a crucial role in smart farming and welfare assurance for pigs. Currently, in the field of pig behavior recognition, the lack of publicly available behavioral datasets not only limits the development of innovative algorithms but also hampers model robustness and algorithm optimization.This paper proposes a dataset containing 13 pig behaviors that significantly impact welfare.Based on this dataset, this paper proposes a spatial-temporal perception and enhancement networks based on the attention mechanism to model the spatiotemporal features of pig behaviors and their associated interaction areas in video data. The network is composed of a spatiotemporal perception network and a spatiotemporal feature enhancement network. The spatiotemporal perception network is responsible for establishing connections between the pigs and the key regions of their behaviors in the video data. The spatiotemporal feature enhancement network further strengthens the important spatial features of individual pigs and captures the long-term dependencies of the spatiotemporal features of individual behaviors by remodeling these connections, thereby enhancing the model's perception of spatiotemporal changes in pig behaviors. Experimental results demonstrate that on the dataset established in this paper, our proposed model achieves a MAP score of 75.92%, which is an 8.17% improvement over the best-performing traditional model. This study not only improces the accuracy and generalizability of individual pig behavior recognition but also provides new technological tools for modern smart farming. The dataset and related code will be made publicly available alongside this paper.
☆ Revisiting Medical Image Retrieval via Knowledge Consolidation
As artificial intelligence and digital medicine increasingly permeate healthcare systems, robust governance frameworks are essential to ensure ethical, secure, and effective implementation. In this context, medical image retrieval becomes a critical component of clinical data management, playing a vital role in decision-making and safeguarding patient information. Existing methods usually learn hash functions using bottleneck features, which fail to produce representative hash codes from blended embeddings. Although contrastive hashing has shown superior performance, current approaches often treat image retrieval as a classification task, using category labels to create positive/negative pairs. Moreover, many methods fail to address the out-of-distribution (OOD) issue when models encounter external OOD queries or adversarial attacks. In this work, we propose a novel method to consolidate knowledge of hierarchical features and optimisation functions. We formulate the knowledge consolidation by introducing Depth-aware Representation Fusion (DaRF) and Structure-aware Contrastive Hashing (SCH). DaRF adaptively integrates shallow and deep representations into blended features, and SCH incorporates image fingerprints to enhance the adaptability of positive/negative pairings. These blended features further facilitate OOD detection and content-based recommendation, contributing to a secure AI-driven healthcare environment. Moreover, we present a content-guided ranking to improve the robustness and reproducibility of retrieval results. Our comprehensive assessments demonstrate that the proposed method could effectively recognise OOD samples and significantly outperform existing approaches in medical image retrieval (p<0.05). In particular, our method achieves a 5.6-38.9% improvement in mean Average Precision on the anatomical radiology dataset.
☆ Membership Inference Attacks fueled by Few-Short Learning to detect privacy leakage tackling data integrity
Deep learning models have an intrinsic privacy issue as they memorize parts of their training data, creating a privacy leakage. Membership Inference Attacks (MIA) exploit it to obtain confidential information about the data used for training, aiming to steal information. They can be repurposed as a measurement of data integrity by inferring whether it was used to train a machine learning model. While state-of-the-art attacks achieve a significant privacy leakage, their requirements are not feasible enough, hindering their role as practical tools to assess the magnitude of the privacy risk. Moreover, the most appropriate evaluation metric of MIA, the True Positive Rate at low False Positive Rate lacks interpretability. We claim that the incorporation of Few-Shot Learning techniques to the MIA field and a proper qualitative and quantitative privacy evaluation measure should deal with these issues. In this context, our proposal is twofold. We propose a Few-Shot learning based MIA, coined as the FeS-MIA model, which eases the evaluation of the privacy breach of a deep learning model by significantly reducing the number of resources required for the purpose. Furthermore, we propose an interpretable quantitative and qualitative measure of privacy, referred to as Log-MIA measure. Jointly, these proposals provide new tools to assess the privacy leakage and to ease the evaluation of the training data integrity of deep learning models, that is, to analyze the privacy breach of a deep learning model. Experiments carried out with MIA over image classification and language modeling tasks and its comparison to the state-of-the-art show that our proposals excel at reporting the privacy leakage of a deep learning model with little extra information.
☆ RetSTA: An LLM-Based Approach for Standardizing Clinical Fundus Image Reports
Standardization of clinical reports is crucial for improving the quality of healthcare and facilitating data integration. The lack of unified standards, including format, terminology, and style, is a great challenge in clinical fundus diagnostic reports, which increases the difficulty for large language models (LLMs) to understand the data. To address this, we construct a bilingual standard terminology, containing fundus clinical terms and commonly used descriptions in clinical diagnosis. Then, we establish two models, RetSTA-7B-Zero and RetSTA-7B. RetSTA-7B-Zero, fine-tuned on an augmented dataset simulating clinical scenarios, demonstrates powerful standardization behaviors. However, it encounters a challenge of limitation to cover a wider range of diseases. To further enhance standardization performance, we build RetSTA-7B, which integrates a substantial amount of standardized data generated by RetSTA-7B-Zero along with corresponding English data, covering diverse complex clinical scenarios and achieving report-level standardization for the first time. Experimental results demonstrate that RetSTA-7B outperforms other compared LLMs in bilingual standardization task, which validates its superior performance and generalizability. The checkpoints are available at https://github.com/AB-Story/RetSTA-7B.
☆ Automatic Operator-level Parallelism Planning for Distributed Deep Learning -- A Mixed-Integer Programming Approach
As the artificial intelligence community advances into the era of large models with billions of parameters, distributed training and inference have become essential. While various parallelism strategies-data, model, sequence, and pipeline-have been successfully implemented for popular neural networks on main-stream hardware, optimizing the distributed deployment schedule requires extensive expertise and manual effort. Further more, while existing frameworks with most simple chain-like structures, they struggle with complex non-linear architectures. Mixture-of-experts and multi-modal models feature intricate MIMO and branch-rich topologies that require fine-grained operator-level parallelization beyond the capabilities of existing frameworks. We propose formulating parallelism planning as a scheduling optimization problem using mixed-integer programming. We propose a bi-level solution framework balancing optimality with computational efficiency, automatically generating effective distributed plans that capture both the heterogeneous structure of modern neural networks and the underlying hardware constraints. In experiments comparing against expert-designed strategies like DeepSeek's DualPipe, our framework achieves comparable or superior performance, reducing computational bubbles by half under the same memory constraints. The framework's versatility extends beyond throughput optimization to incorporate hardware utilization maximization, memory capacity constraints, and other considerations or potential strategies. Such capabilities position our solution as both a valuable research tool for exploring optimal parallelization strategies and a practical industrial solution for large-scale AI deployment.
☆ MOAT: Evaluating LMMs for Capability Integration and Instruction Grounding
Large multimodal models (LMMs) have demonstrated significant potential as generalists in vision-language (VL) tasks. However, there remains a significant gap between state-of-the-art LMMs and human performance when it comes to complex tasks that require a combination of fundamental VL capabilities, as well as tasks involving the grounding of complex instructions. To thoroughly investigate the human-LMM gap and its underlying causes, we propose MOAT, a diverse benchmark with complex real-world VL tasks that are challenging for LMMs. Specifically, the tasks in MOAT require LMMs to engage in generalist problem solving by integrating fundamental VL capabilities such as reading text, counting, understanding spatial relations, grounding textual and visual instructions, etc. All these abilities fit into a taxonomy proposed by us that contains 10 fundamental VL capabilities, enabling MOAT to provide a fine-grained view of LMMs' strengths and weaknesses. Besides, MOAT is the first benchmark to explicitly evaluate LMMs' ability to ground complex text and visual instructions, which is essential to many real-world applications. We evaluate over 20 proprietary and open source LMMs, as well as humans, on MOAT, and found that humans achieved 82.7% accuracy while the best performing LMM (OpenAI o1) achieved only 38.8%. To guide future model development, we analyze common trends in our results and discuss the underlying causes of observed performance gaps between LMMs and humans, focusing on which VL capability forms the bottleneck in complex tasks, whether test time scaling improves performance on MOAT, and how tiling harms LMMs' capability to count. Code and data are available at https://cambrian-yzt.github.io/MOAT.
comment: Project page: https://cambrian-yzt.github.io/MOAT
☆ Safer or Luckier? LLMs as Safety Evaluators Are Not Robust to Artifacts
Large Language Models (LLMs) are increasingly employed as automated evaluators to assess the safety of generated content, yet their reliability in this role remains uncertain. This study evaluates a diverse set of 11 LLM judge models across critical safety domains, examining three key aspects: self-consistency in repeated judging tasks, alignment with human judgments, and susceptibility to input artifacts such as apologetic or verbose phrasing. Our findings reveal that biases in LLM judges can significantly distort the final verdict on which content source is safer, undermining the validity of comparative evaluations. Notably, apologetic language artifacts alone can skew evaluator preferences by up to 98\%. Contrary to expectations, larger models do not consistently exhibit greater robustness, while smaller models sometimes show higher resistance to specific artifacts. To mitigate LLM evaluator robustness issues, we investigate jury-based evaluations aggregating decisions from multiple models. Although this approach both improves robustness and enhances alignment to human judgements, artifact sensitivity persists even with the best jury configurations. These results highlight the urgent need for diversified, artifact-resistant methodologies to ensure reliable safety assessments.
comment: 8 pages, preprint
☆ NVP-HRI: Zero Shot Natural Voice and Posture-based Human-Robot Interaction via Large Language Model
Effective Human-Robot Interaction (HRI) is crucial for future service robots in aging societies. Existing solutions are biased toward only well-trained objects, creating a gap when dealing with new objects. Currently, HRI systems using predefined gestures or language tokens for pretrained objects pose challenges for all individuals, especially elderly ones. These challenges include difficulties in recalling commands, memorizing hand gestures, and learning new names. This paper introduces NVP-HRI, an intuitive multi-modal HRI paradigm that combines voice commands and deictic posture. NVP-HRI utilizes the Segment Anything Model (SAM) to analyze visual cues and depth data, enabling precise structural object representation. Through a pre-trained SAM network, NVP-HRI allows interaction with new objects via zero-shot prediction, even without prior knowledge. NVP-HRI also integrates with a large language model (LLM) for multimodal commands, coordinating them with object selection and scene distribution in real time for collision-free trajectory solutions. We also regulate the action sequence with the essential control syntax to reduce LLM hallucination risks. The evaluation of diverse real-world tasks using a Universal Robot showcased up to 59.2\% efficiency improvement over traditional gesture control, as illustrated in the video https://youtu.be/EbC7al2wiAc. Our code and design will be openly available at https://github.com/laiyuzhi/NVP-HRI.git.
comment: This work has been accepted for publication in ESWA @ 2025 Elsevier. Personal use of this material is permitted. Permission from Elsevier must be obtained for all other uses, including reprinting/redistribution, creating new works, or reuse of any copyrighted components of this work in other media
☆ CyberLLMInstruct: A New Dataset for Analysing Safety of Fine-Tuned LLMs Using Cyber Security Data SIGIR
The integration of large language models (LLMs) into cyber security applications presents significant opportunities, such as enhancing threat analysis and malware detection, but can also introduce critical risks and safety concerns, including personal data leakage and automated generation of new malware. To address these challenges, we developed CyberLLMInstruct, a dataset of 54,928 instruction-response pairs spanning cyber security tasks such as malware analysis, phishing simulations, and zero-day vulnerabilities. The dataset was constructed through a multi-stage process. This involved sourcing data from multiple resources, filtering and structuring it into instruction-response pairs, and aligning it with real-world scenarios to enhance its applicability. Seven open-source LLMs were chosen to test the usefulness of CyberLLMInstruct: Phi 3 Mini 3.8B, Mistral 7B, Qwen 2.5 7B, Llama 3 8B, Llama 3.1 8B, Gemma 2 9B, and Llama 2 70B. In our primary example, we rigorously assess the safety of fine-tuned models using the OWASP top 10 framework, finding that fine-tuning reduces safety resilience across all tested LLMs and every adversarial attack (e.g., the security score of Llama 3.1 8B against prompt injection drops from 0.95 to 0.15). In our second example, we show that these same fine-tuned models can also achieve up to 92.50 percent accuracy on the CyberMetric benchmark. These findings highlight a trade-off between performance and safety, showing the importance of adversarial testing and further research into fine-tuning methodologies that can mitigate safety risks while still improving performance across diverse datasets and domains. All scripts required to reproduce the dataset, along with examples and relevant resources for replicating our results, will be made available upon the paper's acceptance.
comment: The paper is submitted to "The 48th International ACM SIGIR Conference on Research and Development in Information Retrieval" and is currently under review
☆ SDD-4DGS: Static-Dynamic Aware Decoupling in Gaussian Splatting for 4D Scene Reconstruction
Dynamic and static components in scenes often exhibit distinct properties, yet most 4D reconstruction methods treat them indiscriminately, leading to suboptimal performance in both cases. This work introduces SDD-4DGS, the first framework for static-dynamic decoupled 4D scene reconstruction based on Gaussian Splatting. Our approach is built upon a novel probabilistic dynamic perception coefficient that is naturally integrated into the Gaussian reconstruction pipeline, enabling adaptive separation of static and dynamic components. With carefully designed implementation strategies to realize this theoretical framework, our method effectively facilitates explicit learning of motion patterns for dynamic elements while maintaining geometric stability for static structures. Extensive experiments on five benchmark datasets demonstrate that SDD-4DGS consistently outperforms state-of-the-art methods in reconstruction fidelity, with enhanced detail restoration for static structures and precise modeling of dynamic motions. The code will be released.
☆ Group-robust Machine Unlearning
Machine unlearning is an emerging paradigm to remove the influence of specific training data (i.e., the forget set) from a model while preserving its knowledge of the rest of the data (i.e., the retain set). Previous approaches assume the forget data to be uniformly distributed from all training datapoints. However, if the data to unlearn is dominant in one group, we empirically show that performance for this group degrades, leading to fairness issues. This work tackles the overlooked problem of non-uniformly distributed forget sets, which we call group-robust machine unlearning, by presenting a simple, effective strategy that mitigates the performance loss in dominant groups via sample distribution reweighting. Moreover, we present MIU (Mutual Information-aware Machine Unlearning), the first approach for group robustness in approximate machine unlearning. MIU minimizes the mutual information between model features and group information, achieving unlearning while reducing performance degradation in the dominant group of the forget set. Additionally, MIU exploits sample distribution reweighting and mutual information calibration with the original model to preserve group robustness. We conduct experiments on three datasets and show that MIU outperforms standard methods, achieving unlearning without compromising model robustness. Source code available at https://github.com/tdemin16/group-robust_machine_unlearning.
comment: Work in progress
☆ A Survey on Enhancing Causal Reasoning Ability of Large Language Models
Large language models (LLMs) have recently shown remarkable performance in language tasks and beyond. However, due to their limited inherent causal reasoning ability, LLMs still face challenges in handling tasks that require robust causal reasoning ability, such as health-care and economic analysis. As a result, a growing body of research has focused on enhancing the causal reasoning ability of LLMs. Despite the booming research, there lacks a survey to well review the challenges, progress and future directions in this area. To bridge this significant gap, we systematically review literature on how to strengthen LLMs' causal reasoning ability in this paper. We start from the introduction of background and motivations of this topic, followed by the summarisation of key challenges in this area. Thereafter, we propose a novel taxonomy to systematically categorise existing methods, together with detailed comparisons within and between classes of methods. Furthermore, we summarise existing benchmarks and evaluation metrics for assessing LLMs' causal reasoning ability. Finally, we outline future research directions for this emerging field, offering insights and inspiration to researchers and practitioners in the area.
☆ DAVE: Diagnostic benchmark for Audio Visual Evaluation
Audio-visual understanding is a rapidly evolving field that seeks to integrate and interpret information from both auditory and visual modalities. Despite recent advances in multi-modal learning, existing benchmarks often suffer from strong visual bias -- where answers can be inferred from visual data alone -- and provide only aggregate scores that conflate multiple sources of error. This makes it difficult to determine whether models struggle with visual understanding, audio interpretation, or audio-visual alignment. In this work, we introduce DAVE (Diagnostic Audio Visual Evaluation), a novel benchmark dataset designed to systematically evaluate audio-visual models across controlled challenges. DAVE alleviates existing limitations by (i) ensuring both modalities are necessary to answer correctly and (ii) decoupling evaluation into atomic subcategories. Our detailed analysis of state-of-the-art models reveals specific failure modes and provides targeted insights for improvement. By offering this standardized diagnostic framework, we aim to facilitate more robust development of audio-visual models. The dataset is released: https://github.com/gorjanradevski/dave
comment: First two authors contributed equally
☆ Adaptive political surveys and GPT-4: Tackling the cold start problem with simulated user interactions
Adaptive questionnaires dynamically select the next question for a survey participant based on their previous answers. Due to digitalisation, they have become a viable alternative to traditional surveys in application areas such as political science. One limitation, however, is their dependency on data to train the model for question selection. Often, such training data (i.e., user interactions) are unavailable a priori. To address this problem, we (i) test whether Large Language Models (LLM) can accurately generate such interaction data and (ii) explore if these synthetic data can be used to pre-train the statistical model of an adaptive political survey. To evaluate this approach, we utilise existing data from the Swiss Voting Advice Application (VAA) Smartvote in two ways: First, we compare the distribution of LLM-generated synthetic data to the real distribution to assess its similarity. Second, we compare the performance of an adaptive questionnaire that is randomly initialised with one pre-trained on synthetic data to assess their suitability for training. We benchmark these results against an "oracle" questionnaire with perfect prior knowledge. We find that an off-the-shelf LLM (GPT-4) accurately generates answers to the Smartvote questionnaire from the perspective of different Swiss parties. Furthermore, we demonstrate that initialising the statistical model with synthetic data can (i) significantly reduce the error in predicting user responses and (ii) increase the candidate recommendation accuracy of the VAA. Our work emphasises the considerable potential of LLMs to create training data to improve the data collection process in adaptive questionnaires in LLM-affine areas such as political surveys.
comment: 23 pages. Under review at PLOS One
☆ Steering No-Regret Agents in MFGs under Model Uncertainty AISTATS 2025
Incentive design is a popular framework for guiding agents' learning dynamics towards desired outcomes by providing additional payments beyond intrinsic rewards. However, most existing works focus on a finite, small set of agents or assume complete knowledge of the game, limiting their applicability to real-world scenarios involving large populations and model uncertainty. To address this gap, we study the design of steering rewards in Mean-Field Games (MFGs) with density-independent transitions, where both the transition dynamics and intrinsic reward functions are unknown. This setting presents non-trivial challenges, as the mediator must incentivize the agents to explore for its model learning under uncertainty, while simultaneously steer them to converge to desired behaviors without incurring excessive incentive payments. Assuming agents exhibit no(-adaptive) regret behaviors, we contribute novel optimistic exploration algorithms. Theoretically, we establish sub-linear regret guarantees for the cumulative gaps between the agents' behaviors and the desired ones. In terms of the steering cost, we demonstrate that our total incentive payments incur only sub-linear excess, competing with a baseline steering strategy that stabilizes the target policy as an equilibrium. Our work presents an effective framework for steering agents behaviors in large-population systems under uncertainty.
comment: AISTATS 2025; 34 Pages
☆ Unmask It! AI-Generated Product Review Detection in Dravidian Languages NAACL 2025
The rise of Generative AI has led to a surge in AI-generated reviews, often posing a serious threat to the credibility of online platforms. Reviews serve as the primary source of information about products and services. Authentic reviews play a vital role in consumer decision-making. The presence of fabricated content misleads consumers, undermines trust and facilitates potential fraud in digital marketplaces. This study focuses on detecting AI-generated product reviews in Tamil and Malayalam, two low-resource languages where research in this domain is relatively under-explored. We worked on a range of approaches - from traditional machine learning methods to advanced transformer-based models such as Indic-BERT, IndicSBERT, MuRIL, XLM-RoBERTa and MalayalamBERT. Our findings highlight the effectiveness of leveraging the state-of-the-art transformers in accurately identifying AI-generated content, demonstrating the potential in enhancing the detection of fake reviews in low-resource language settings.
comment: 10 pages, 9 figures, Accepted to DravidianLangTech Workshop proceedings at NAACL 2025
☆ UniCombine: Unified Multi-Conditional Combination with Diffusion Transformer
With the rapid development of diffusion models in image generation, the demand for more powerful and flexible controllable frameworks is increasing. Although existing methods can guide generation beyond text prompts, the challenge of effectively combining multiple conditional inputs while maintaining consistency with all of them remains unsolved. To address this, we introduce UniCombine, a DiT-based multi-conditional controllable generative framework capable of handling any combination of conditions, including but not limited to text prompts, spatial maps, and subject images. Specifically, we introduce a novel Conditional MMDiT Attention mechanism and incorporate a trainable LoRA module to build both the training-free and training-based versions. Additionally, we propose a new pipeline to construct SubjectSpatial200K, the first dataset designed for multi-conditional generative tasks covering both the subject-driven and spatially-aligned conditions. Extensive experimental results on multi-conditional generation demonstrate the outstanding universality and powerful capability of our approach with state-of-the-art performance.
☆ Single-Qudit Quantum Neural Networks for Multiclass Classification
This paper proposes a single-qudit quantum neural network for multiclass classification, by using the enhanced representational capacity of high-dimensional qudit states. Our design employs an $d$-dimensional unitary operator, where $d$ corresponds to the number of classes, constructed using the Cayley transform of a skew-symmetric matrix, to efficiently encode and process class information. This architecture enables a direct mapping between class labels and quantum measurement outcomes, reducing circuit depth and computational overhead. To optimize network parameters, we introduce a hybrid training approach that combines an extended activation function -- derived from a truncated multivariable Taylor series expansion -- with support vector machine optimization for weight determination. We evaluate our model on the MNIST and EMNIST datasets, demonstrating competitive accuracy while maintaining a compact single-qudit quantum circuit. Our findings highlight the potential of qudit-based QNNs as scalable alternatives to classical deep learning models, particularly for multiclass classification. However, practical implementation remains constrained by current quantum hardware limitations. This research advances quantum machine learning by demonstrating the feasibility of higher-dimensional quantum systems for efficient learning tasks.
comment: 24 pages, 3 figures, 6 tables
☆ SCOPE-DTI: Semi-Inductive Dataset Construction and Framework Optimization for Practical Usability Enhancement in Deep Learning-Based Drug Target Interaction Prediction
Deep learning-based drug-target interaction (DTI) prediction methods have demonstrated strong performance; however, real-world applicability remains constrained by limited data diversity and modeling complexity. To address these challenges, we propose SCOPE-DTI, a unified framework combining a large-scale, balanced semi-inductive human DTI dataset with advanced deep learning modeling. Constructed from 13 public repositories, the SCOPE dataset expands data volume by up to 100-fold compared to common benchmarks such as the Human dataset. The SCOPE model integrates three-dimensional protein and compound representations, graph neural networks, and bilinear attention mechanisms to effectively capture cross domain interaction patterns, significantly outperforming state-of-the-art methods across various DTI prediction tasks. Additionally, SCOPE-DTI provides a user-friendly interface and database. We further validate its effectiveness by experimentally identifying anticancer targets of Ginsenoside Rh1. By offering comprehensive data, advanced modeling, and accessible tools, SCOPE-DTI accelerates drug discovery research.
☆ Considering Length Diversity in Retrieval-Augmented Summarization NAACL 2025
This study investigates retrieval-augmented summarization by specifically examining the impact of exemplar summary lengths under length constraints, not covered by previous work. We propose a Diverse Length-aware Maximal Marginal Relevance (DL-MMR) algorithm to better control summary lengths. This algorithm combines the query relevance with diverse target lengths in retrieval-augmented summarization. Unlike previous methods that necessitate exhaustive exemplar exemplar relevance comparisons using MMR, DL-MMR considers the exemplar target length as well and avoids comparing exemplars to each other, thereby reducing computational cost and conserving memory during the construction of an exemplar pool. Experimental results showed the effectiveness of DL-MMR, which considers length diversity, compared to the original MMR algorithm. DL-MMR additionally showed the effectiveness in memory saving of 781,513 times and computational cost reduction of 500,092 times, while maintaining the same level of informativeness.
comment: 12 pages, accepted to NAACL 2025 Findings
☆ In-Context Defense in Computer Agents: An Empirical Study
Computer agents powered by vision-language models (VLMs) have significantly advanced human-computer interaction, enabling users to perform complex tasks through natural language instructions. However, these agents are vulnerable to context deception attacks, an emerging threat where adversaries embed misleading content into the agent's operational environment, such as a pop-up window containing deceptive instructions. Existing defenses, such as instructing agents to ignore deceptive elements, have proven largely ineffective. As the first systematic study on protecting computer agents, we introduce textbf{in-context defense}, leveraging in-context learning and chain-of-thought (CoT) reasoning to counter such attacks. Our approach involves augmenting the agent's context with a small set of carefully curated exemplars containing both malicious environments and corresponding defensive responses. These exemplars guide the agent to first perform explicit defensive reasoning before action planning, reducing susceptibility to deceptive attacks. Experiments demonstrate the effectiveness of our method, reducing attack success rates by 91.2% on pop-up window attacks, 74.6% on average on environment injection attacks, while achieving 100% successful defenses against distracting advertisements. Our findings highlight that (1) defensive reasoning must precede action planning for optimal performance, and (2) a minimal number of exemplars (fewer than three) is sufficient to induce an agent's defensive behavior.
☆ LREF: A Novel LLM-based Relevance Framework for E-commerce
Query and product relevance prediction is a critical component for ensuring a smooth user experience in e-commerce search. Traditional studies mainly focus on BERT-based models to assess the semantic relevance between queries and products. However, the discriminative paradigm and limited knowledge capacity of these approaches restrict their ability to comprehend the relevance between queries and products fully. With the rapid advancement of Large Language Models (LLMs), recent research has begun to explore their application to industrial search systems, as LLMs provide extensive world knowledge and flexible optimization for reasoning processes. Nonetheless, directly leveraging LLMs for relevance prediction tasks introduces new challenges, including a high demand for data quality, the necessity for meticulous optimization of reasoning processes, and an optimistic bias that can result in over-recall. To overcome the above problems, this paper proposes a novel framework called the LLM-based RElevance Framework (LREF) aimed at enhancing e-commerce search relevance. The framework comprises three main stages: supervised fine-tuning (SFT) with Data Selection, Multiple Chain of Thought (Multi-CoT) tuning, and Direct Preference Optimization (DPO) for de-biasing. We evaluate the performance of the framework through a series of offline experiments on large-scale real-world datasets, as well as online A/B testing. The results indicate significant improvements in both offline and online metrics. Ultimately, the model was deployed in a well-known e-commerce application, yielding substantial commercial benefits.
☆ Evaluating the Generalizability of LLMs in Automated Program Repair ICSE2025
LLM-based automated program repair methods have attracted significant attention for their state-of-the-art performance. However, they were primarily evaluated on a few well known datasets like Defects4J, raising questions about their effectiveness on new datasets. In this study, we evaluate 11 top-performing LLMs on DEFECTS4J-TRANS, a new dataset derived from transforming Defects4J while maintaining the original semantics. Results from experiments on both Defects4J and DEFECTS4J-TRANS show that all studied LLMs have limited generalizability in APR tasks, with the average number of correct and plausible patches decreasing by 49.48% and 42.90%, respectively, on DEFECTS4J-TRANS. Further investigation into incorporating additional repair-relevant information in repair prompts reveals that, although this information significantly enhances the LLMs' capabilities (increasing the number of correct and plausible patches by up to 136.67% and 121.82%, respectively), performance still falls short of their original results. This indicates that prompt engineering alone is insufficient to substantially enhance LLMs' repair capabilities. Based on our study, we also offer several recommendations for future research.
comment: 5 pages, 1 figure, to be published in ICSE2025-NIER
☆ Other Vehicle Trajectories Are Also Needed: A Driving World Model Unifies Ego-Other Vehicle Trajectories in Video Latant Space
Advanced end-to-end autonomous driving systems predict other vehicles' motions and plan ego vehicle's trajectory. The world model that can foresee the outcome of the trajectory has been used to evaluate the end-to-end autonomous driving system. However, existing world models predominantly emphasize the trajectory of the ego vehicle and leave other vehicles uncontrollable. This limitation hinders their ability to realistically simulate the interaction between the ego vehicle and the driving scenario. In addition, it remains a challenge to match multiple trajectories with each vehicle in the video to control the video generation. To address above issues, a driving \textbf{W}orld \textbf{M}odel named EOT-WM is proposed in this paper, unifying \textbf{E}go-\textbf{O}ther vehicle \textbf{T}rajectories in videos. Specifically, we first project ego and other vehicle trajectories in the BEV space into the image coordinate to match each trajectory with its corresponding vehicle in the video. Then, trajectory videos are encoded by the Spatial-Temporal Variational Auto Encoder to align with driving video latents spatially and temporally in the unified visual space. A trajectory-injected diffusion Transformer is further designed to denoise the noisy video latents for video generation with the guidance of ego-other vehicle trajectories. In addition, we propose a metric based on control latent similarity to evaluate the controllability of trajectories. Extensive experiments are conducted on the nuScenes dataset, and the proposed model outperforms the state-of-the-art method by 30\% in FID and 55\% in FVD. The model can also predict unseen driving scenes with self-produced trajectories.
comment: 8 pages, 7 figures
☆ Robust Asymmetric Heterogeneous Federated Learning with Corrupted Clients
This paper studies a challenging robust federated learning task with model heterogeneous and data corrupted clients, where the clients have different local model structures. Data corruption is unavoidable due to factors such as random noise, compression artifacts, or environmental conditions in real-world deployment, drastically crippling the entire federated system. To address these issues, this paper introduces a novel Robust Asymmetric Heterogeneous Federated Learning (RAHFL) framework. We propose a Diversity-enhanced supervised Contrastive Learning technique to enhance the resilience and adaptability of local models on various data corruption patterns. Its basic idea is to utilize complex augmented samples obtained by the mixed-data augmentation strategy for supervised contrastive learning, thereby enhancing the ability of the model to learn robust and diverse feature representations. Furthermore, we design an Asymmetric Heterogeneous Federated Learning strategy to resist corrupt feedback from external clients. The strategy allows clients to perform selective one-way learning during collaborative learning phase, enabling clients to refrain from incorporating lower-quality information from less robust or underperforming collaborators. Extensive experimental results demonstrate the effectiveness and robustness of our approach in diverse, challenging federated learning environments. Our code and models are public available at https://github.com/FangXiuwen/RAHFL.
☆ GENEOnet: Statistical analysis supporting explainability and trustworthiness
Group Equivariant Non-Expansive Operators (GENEOs) have emerged as mathematical tools for constructing networks for Machine Learning and Artificial Intelligence. Recent findings suggest that such models can be inserted within the domain of eXplainable Artificial Intelligence (XAI) due to their inherent interpretability. In this study, we aim to verify this claim with respect to GENEOnet, a GENEO network developed for an application in computational biochemistry by employing various statistical analyses and experiments. Such experiments first allow us to perform a sensitivity analysis on GENEOnet's parameters to test their significance. Subsequently, we show that GENEOnet exhibits a significantly higher proportion of equivariance compared to other methods. Lastly, we demonstrate that GENEOnet is on average robust to perturbations arising from molecular dynamics. These results collectively serve as proof of the explainability, trustworthiness, and robustness of GENEOnet and confirm the beneficial use of GENEOs in the context of Trustworthy Artificial Intelligence.
☆ Long-Term Planning Around Humans in Domestic Environments with 3D Scene Graphs
Long-term planning for robots operating in domestic environments poses unique challenges due to the interactions between humans, objects, and spaces. Recent advancements in trajectory planning have leveraged vision-language models (VLMs) to extract contextual information for robots operating in real-world environments. While these methods achieve satisfying performance, they do not explicitly model human activities. Such activities influence surrounding objects and reshape spatial constraints. This paper presents a novel approach to trajectory planning that integrates human preferences, activities, and spatial context through an enriched 3D scene graph (3DSG) representation. By incorporating activity-based relationships, our method captures the spatial impact of human actions, leading to more context-sensitive trajectory adaptation. Preliminary results demonstrate that our approach effectively assigns costs to spaces influenced by human activities, ensuring that the robot trajectory remains contextually appropriate and sensitive to the ongoing environment. This balance between task efficiency and social appropriateness enhances context-aware human-robot interactions in domestic settings. Future work includes implementing a full planning pipeline and conducting user studies to evaluate trajectory acceptability.
comment: 5 pages, 2 figures, 1 table
☆ AI-Driven Decision Support in Oncology: Evaluating Data Readiness for Skin Cancer Treatment
This research focuses on evaluating and enhancing data readiness for the development of an Artificial Intelligence (AI)-based Clinical Decision Support System (CDSS) in the context of skin cancer treatment. The study, conducted at the Skin Tumor Center of the University Hospital M\"unster, delves into the essential role of data quality, availability, and extractability in implementing effective AI applications in oncology. By employing a multifaceted methodology, including literature review, data readiness assessment, and expert workshops, the study addresses the challenges of integrating AI into clinical decision-making. The research identifies crucial data points for skin cancer treatment decisions, evaluates their presence and quality in various information systems, and highlights the difficulties in extracting information from unstructured data. The findings underline the significance of high-quality, accessible data for the success of AI-driven CDSS in medical settings, particularly in the complex field of oncology.
☆ Is LLMs Hallucination Usable? LLM-based Negative Reasoning for Fake News Detection
The questionable responses caused by knowledge hallucination may lead to LLMs' unstable ability in decision-making. However, it has never been investigated whether the LLMs' hallucination is possibly usable to generate negative reasoning for facilitating the detection of fake news. This study proposes a novel supervised self-reinforced reasoning rectification approach - SR$^3$ that yields both common reasonable reasoning and wrong understandings (negative reasoning) for news via LLMs reflection for semantic consistency learning. Upon that, we construct a negative reasoning-based news learning model called - \emph{NRFE}, which leverages positive or negative news-reasoning pairs for learning the semantic consistency between them. To avoid the impact of label-implicated reasoning, we deploy a student model - \emph{NRFE-D} that only takes news content as input to inspect the performance of our method by distilling the knowledge from \emph{NRFE}. The experimental results verified on three popular fake news datasets demonstrate the superiority of our method compared with three kinds of baselines including prompting on LLMs, fine-tuning on pre-trained SLMs, and other representative fake news detection methods.
comment: 9 pages, 12 figures, conference
☆ Reangle-A-Video: 4D Video Generation as Video-to-Video Translation
We introduce Reangle-A-Video, a unified framework for generating synchronized multi-view videos from a single input video. Unlike mainstream approaches that train multi-view video diffusion models on large-scale 4D datasets, our method reframes the multi-view video generation task as video-to-videos translation, leveraging publicly available image and video diffusion priors. In essence, Reangle-A-Video operates in two stages. (1) Multi-View Motion Learning: An image-to-video diffusion transformer is synchronously fine-tuned in a self-supervised manner to distill view-invariant motion from a set of warped videos. (2) Multi-View Consistent Image-to-Images Translation: The first frame of the input video is warped and inpainted into various camera perspectives under an inference-time cross-view consistency guidance using DUSt3R, generating multi-view consistent starting images. Extensive experiments on static view transport and dynamic camera control show that Reangle-A-Video surpasses existing methods, establishing a new solution for multi-view video generation. We will publicly release our code and data. Project page: https://hyeonho99.github.io/reangle-a-video/
comment: Project page: https://hyeonho99.github.io/reangle-a-video/
☆ Efficient UAV Swarm-Based Multi-Task Federated Learning with Dynamic Task Knowledge Sharing
UAV swarms are widely used in emergency communications, area monitoring, and disaster relief. Coordinated by control centers, they are ideal for federated learning (FL) frameworks. However, current UAV-assisted FL methods primarily focus on single tasks, overlooking the need for multi-task training. In disaster relief scenarios, UAVs perform tasks such as crowd detection, road feasibility analysis, and disaster assessment, which exhibit time-varying demands and potential correlations. In order to meet the time-varying requirements of tasks and complete multiple tasks efficiently under resource constraints, in this paper, we propose a UAV swarm based multi-task FL framework, where ground emergency vehicles (EVs) collaborate with UAVs to accomplish multiple tasks efficiently under constrained energy and bandwidth resources. Through theoretical analysis, we identify key factors affecting task performance and introduce a task attention mechanism to dynamically evaluate task importance, thereby achieving efficient resource allocation. Additionally, we propose a task affinity (TA) metric to capture the dynamic correlation among tasks, thereby promoting task knowledge sharing to accelerate training and improve the generalization ability of the model in different scenarios. To optimize resource allocation, we formulate a two-layer optimization problem to jointly optimize UAV transmission power, computation frequency, bandwidth allocation, and UAV-EV associations. For the inner problem, we derive closed-form solutions for transmission power, computation frequency, and bandwidth allocation and apply a block coordinate descent method for optimization. For the outer problem, a two-stage algorithm is designed to determine optimal UAV-EV associations. Furthermore, theoretical analysis reveals a trade-off between UAV energy consumption and multi-task performance.
comment: Due to the limitation "The abstract field cannot be longer than 1,920 characters", the abstract here is shorter than that in the PDF file
☆ Investigation of Frame Differences as Motion Cues for Video Object Segmentation ICML
Automatic Video Object Segmentation (AVOS) refers to the task of autonomously segmenting target objects in video sequences without relying on human-provided annotations in the first frames. In AVOS, the use of motion information is crucial, with optical flow being a commonly employed method for capturing motion cues. However, the computation of optical flow is resource-intensive, making it unsuitable for real-time applications, especially on edge devices with limited computational resources. In this study, we propose using frame differences as an alternative to optical flow for motion cue extraction. We developed an extended U-Net-like AVOS model that takes a frame on which segmentation is performed and a frame difference as inputs, and outputs an estimated segmentation map. Our experimental results demonstrate that the proposed model achieves performance comparable to the model with optical flow as an input, particularly when applied to videos captured by stationary cameras. Our results suggest the usefulness of employing frame differences as motion cues in cases with limited computational resources.
comment: 8 pages, 3 figures, 2 tables. Accepted to The 9th International Conference on Machine Learning and Soft Computing (ICMLSC 2025)
☆ On the Internal Representations of Graph Metanetworks ICLR 2025
Weight space learning is an emerging paradigm in the deep learning community. The primary goal of weight space learning is to extract informative features from a set of parameters using specially designed neural networks, often referred to as \emph{metanetworks}. However, it remains unclear how these metanetworks learn solely from parameters. To address this, we take the first step toward understanding \emph{representations} of metanetworks, specifically graph metanetworks (GMNs), which achieve state-of-the-art results in this field, using centered kernel alignment (CKA). Through various experiments, we reveal that GMNs and general neural networks (\textit{e.g.,} multi-layer perceptrons (MLPs) and convolutional neural networks (CNNs)) differ in terms of their representation space.
comment: ICLR 2025 Workshop on Weight Space Learning
☆ Sometimes Painful but Certainly Promising: Feasibility and Trade-offs of Language Model Inference at the Edge
The rapid rise of Language Models (LMs) has expanded the capabilities of natural language processing, powering applications from text generation to complex decision-making. While state-of-the-art LMs often boast hundreds of billions of parameters and are primarily deployed in data centers, recent trends show a growing focus on compact models-typically under 10 billion parameters-enabled by techniques such as quantization and other model compression techniques. This shift paves the way for LMs on edge devices, offering potential benefits such as enhanced privacy, reduced latency, and improved data sovereignty. However, the inherent complexity of even these smaller models, combined with the limited computing resources of edge hardware, raises critical questions about the practical trade-offs in executing LM inference outside the cloud. To address these challenges, we present a comprehensive evaluation of generative LM inference on representative CPU-based and GPU-accelerated edge devices. Our study measures key performance indicators-including memory usage, inference speed, and energy consumption-across various device configurations. Additionally, we examine throughput-energy trade-offs, cost considerations, and usability, alongside an assessment of qualitative model performance. While quantization helps mitigate memory overhead, it does not fully eliminate resource bottlenecks, especially for larger models. Our findings quantify the memory and energy constraints that must be considered for practical real-world deployments, offering concrete insights into the trade-offs between model size, inference performance, and efficiency. The exploration of LMs at the edge is still in its early stages. We hope this study provides a foundation for future research, guiding the refinement of models, the enhancement of inference efficiency, and the advancement of edge-centric AI systems.
comment: This paper is currently under review for publication in an ACM journal. If accepted, the copyright will be transferred to ACM
☆ Constraint-Guided Learning of Data-driven Health Indicator Models: An Application on the Pronostia Bearing Dataset
This paper presents a constraint-guided deep learning framework for developing physically consistent health indicators in bearing prognostics and health management. Conventional data-driven methods often lack physical plausibility, while physics-based models are limited by incomplete system knowledge. To address this, we integrate domain knowledge into deep learning using constraints to enforce monotonicity, bound output values between 1 and 0 (representing healthy to failed states), and ensure consistency between signal energy trends and health indicator estimates. This eliminates the need for complex loss term balancing. We implement constraint-guided gradient descent within an autoencoder architecture, creating a constrained autoencoder. However, the framework is adaptable to other architectures. Using time-frequency representations of accelerometer signals from the Pronostia dataset, our constrained model generates smoother, more reliable degradation profiles compared to conventional methods, aligning with expected physical behavior. Performance is assessed using three metrics: trendability, robustness, and consistency. Compared to a conventional baseline, the constrained model improves all three. Another baseline, incorporating monotonicity via a soft-ranking loss function, outperforms in trendability but falls short in robustness and consistency. An ablation study confirms that the monotonicity constraint enhances trendability, the boundary constraint ensures consistency, and the energy-health consistency constraint improves robustness. These findings highlight the effectiveness of constraint-guided deep learning in producing reliable, physically meaningful health indicators, offering a promising direction for future prognostic applications.
☆ Freeze and Cluster: A Simple Baseline for Rehearsal-Free Continual Category Discovery
This paper addresses the problem of Rehearsal-Free Continual Category Discovery (RF-CCD), which focuses on continuously identifying novel class by leveraging knowledge from labeled data. Existing methods typically train from scratch, overlooking the potential of base models, and often resort to data storage to prevent forgetting. Moreover, because RF-CCD encompasses both continual learning and novel class discovery, previous approaches have struggled to effectively integrate advanced techniques from these fields, resulting in less convincing comparisons and failing to reveal the unique challenges posed by RF-CCD. To address these challenges, we lead the way in integrating advancements from both domains and conducting extensive experiments and analyses. Our findings demonstrate that this integration can achieve state-of-the-art results, leading to the conclusion that in the presence of pre-trained models, the representation does not improve and may even degrade with the introduction of unlabeled data. To mitigate representation degradation, we propose a straightforward yet highly effective baseline method. This method first utilizes prior knowledge of known categories to estimate the number of novel classes. It then acquires representations using a model specifically trained on the base classes, generates high-quality pseudo-labels through k-means clustering, and trains only the classifier layer. We validate our conclusions and methods by conducting extensive experiments across multiple benchmarks, including the Stanford Cars, CUB, iNat, and Tiny-ImageNet datasets. The results clearly illustrate our findings, demonstrate the effectiveness of our baseline, and pave the way for future advancements in RF-CCD.
comment: Underreview
☆ The Shape of Attraction in UMAP: Exploring the Embedding Forces in Dimensionality Reduction
Uniform manifold approximation and projection (UMAP) is among the most popular neighbor embedding methods. The method relies on attractive and repulsive forces among high-dimensional data points to obtain a low-dimensional embedding. In this paper, we analyze the forces to reveal their effects on cluster formations and visualization. Repulsion emphasizes differences, controlling cluster boundaries and inter-cluster distance. Attraction is more subtle, as attractive tension between points can manifest simultaneously as attraction and repulsion in the lower-dimensional mapping. This explains the need for learning rate annealing and motivates the different treatments between attractive and repulsive terms. Moreover, by modifying attraction, we improve the consistency of cluster formation under random initialization. Overall, our analysis makes UMAP and similar embedding methods more interpretable, more robust, and more accurate.
comment: 9 page + appendix
☆ Multi-Modal Foundation Models for Computational Pathology: A Survey
Foundation models have emerged as a powerful paradigm in computational pathology (CPath), enabling scalable and generalizable analysis of histopathological images. While early developments centered on uni-modal models trained solely on visual data, recent advances have highlighted the promise of multi-modal foundation models that integrate heterogeneous data sources such as textual reports, structured domain knowledge, and molecular profiles. In this survey, we provide a comprehensive and up-to-date review of multi-modal foundation models in CPath, with a particular focus on models built upon hematoxylin and eosin (H&E) stained whole slide images (WSIs) and tile-level representations. We categorize 32 state-of-the-art multi-modal foundation models into three major paradigms: vision-language, vision-knowledge graph, and vision-gene expression. We further divide vision-language models into non-LLM-based and LLM-based approaches. Additionally, we analyze 28 available multi-modal datasets tailored for pathology, grouped into image-text pairs, instruction datasets, and image-other modality pairs. Our survey also presents a taxonomy of downstream tasks, highlights training and evaluation strategies, and identifies key challenges and future directions. We aim for this survey to serve as a valuable resource for researchers and practitioners working at the intersection of pathology and AI.
☆ LocAgent: Graph-Guided LLM Agents for Code Localization
Code localization--identifying precisely where in a codebase changes need to be made--is a fundamental yet challenging task in software maintenance. Existing approaches struggle to efficiently navigate complex codebases when identifying relevant code sections. The challenge lies in bridging natural language problem descriptions with the appropriate code elements, often requiring reasoning across hierarchical structures and multiple dependencies. We introduce LocAgent, a framework that addresses code localization through graph-based representation. By parsing codebases into directed heterogeneous graphs, LocAgent creates a lightweight representation that captures code structures (files, classes, functions) and their dependencies (imports, invocations, inheritance), enabling LLM agents to effectively search and locate relevant entities through powerful multi-hop reasoning. Experimental results on real-world benchmarks demonstrate that our approach significantly enhances accuracy in code localization. Notably, our method with the fine-tuned Qwen-2.5-Coder-Instruct-32B model achieves comparable results to SOTA proprietary models at greatly reduced cost (approximately 86% reduction), reaching up to 92.7% accuracy on file-level localization while improving downstream GitHub issue resolution success rates by 12% for multiple attempts (Pass@10). Our code is available at https://github.com/gersteinlab/LocAgent.
☆ Everything Can Be Described in Words: A Simple Unified Multi-Modal Framework with Semantic and Temporal Alignment
Long Video Question Answering (LVQA) is challenging due to the need for temporal reasoning and large-scale multimodal data processing. Existing methods struggle with retrieving cross-modal information from long videos, especially when relevant details are sparsely distributed. We introduce UMaT (Unified Multi-modal as Text), a retrieval-augmented generation (RAG) framework that efficiently processes extremely long videos while maintaining cross-modal coherence. UMaT converts visual and auditory data into a unified textual representation, ensuring semantic and temporal alignment. Short video clips are analyzed using a vision-language model, while automatic speech recognition (ASR) transcribes dialogue. These text-based representations are structured into temporally aligned segments, with adaptive filtering to remove redundancy and retain salient details. The processed data is embedded into a vector database, enabling precise retrieval of dispersed yet relevant content. Experiments on a benchmark LVQA dataset show that UMaT outperforms existing methods in multimodal integration, long-form video understanding, and sparse information retrieval. Its scalability and interpretability allow it to process videos over an hour long while maintaining semantic and temporal coherence. These findings underscore the importance of structured retrieval and multimodal synchronization for advancing LVQA and long-form AI systems.
☆ Theoretical Guarantees for High Order Trajectory Refinement in Generative Flows
Flow matching has emerged as a powerful framework for generative modeling, offering computational advantages over diffusion models by leveraging deterministic Ordinary Differential Equations (ODEs) instead of stochastic dynamics. While prior work established the worst case optimality of standard flow matching under Wasserstein distances, the theoretical guarantees for higher-order flow matching - which incorporates acceleration terms to refine sample trajectories - remain unexplored. In this paper, we bridge this gap by proving that higher-order flow matching preserves worst case optimality as a distribution estimator. We derive upper bounds on the estimation error for second-order flow matching, demonstrating that the convergence rates depend polynomially on the smoothness of the target distribution (quantified via Besov spaces) and key parameters of the ODE dynamics. Our analysis employs neural network approximations with carefully controlled depth, width, and sparsity to bound acceleration errors across both small and large time intervals, ultimately unifying these results into a general worst case optimal bound for all time steps.
comment: arXiv admin note: text overlap with arXiv:2410.11261
☆ Probing Network Decisions: Capturing Uncertainties and Unveiling Vulnerabilities Without Label Information ICPR
To improve trust and transparency, it is crucial to be able to interpret the decisions of Deep Neural classifiers (DNNs). Instance-level examinations, such as attribution techniques, are commonly employed to interpret the model decisions. However, when interpreting misclassified decisions, human intervention may be required. Analyzing the attribu tions across each class within one instance can be particularly labor intensive and influenced by the bias of the human interpreter. In this paper, we present a novel framework to uncover the weakness of the classifier via counterfactual examples. A prober is introduced to learn the correctness of the classifier's decision in terms of binary code-hit or miss. It enables the creation of the counterfactual example concerning the prober's decision. We test the performance of our prober's misclassification detection and verify its effectiveness on the image classification benchmark datasets. Furthermore, by generating counterfactuals that penetrate the prober, we demonstrate that our framework effectively identifies vulnerabilities in the target classifier without relying on label information on the MNIST dataset.
comment: ICPRAI 2024
☆ Probing Latent Subspaces in LLM for AI Security: Identifying and Manipulating Adversarial States
Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks, yet they remain vulnerable to adversarial manipulations such as jailbreaking via prompt injection attacks. These attacks bypass safety mechanisms to generate restricted or harmful content. In this study, we investigated the underlying latent subspaces of safe and jailbroken states by extracting hidden activations from a LLM. Inspired by attractor dynamics in neuroscience, we hypothesized that LLM activations settle into semi stable states that can be identified and perturbed to induce state transitions. Using dimensionality reduction techniques, we projected activations from safe and jailbroken responses to reveal latent subspaces in lower dimensional spaces. We then derived a perturbation vector that when applied to safe representations, shifted the model towards a jailbreak state. Our results demonstrate that this causal intervention results in statistically significant jailbreak responses in a subset of prompts. Next, we probed how these perturbations propagate through the model's layers, testing whether the induced state change remains localized or cascades throughout the network. Our findings indicate that targeted perturbations induced distinct shifts in activations and model responses. Our approach paves the way for potential proactive defenses, shifting from traditional guardrail based methods to preemptive, model agnostic techniques that neutralize adversarial states at the representation level.
comment: 4 figures
☆ Implicit Contrastive Representation Learning with Guided Stop-gradient
In self-supervised representation learning, Siamese networks are a natural architecture for learning transformation-invariance by bringing representations of positive pairs closer together. But it is prone to collapse into a degenerate solution. To address the issue, in contrastive learning, a contrastive loss is used to prevent collapse by moving representations of negative pairs away from each other. But it is known that algorithms with negative sampling are not robust to a reduction in the number of negative samples. So, on the other hand, there are algorithms that do not use negative pairs. Many positive-only algorithms adopt asymmetric network architecture consisting of source and target encoders as a key factor in coping with collapse. By exploiting the asymmetric architecture, we introduce a methodology to implicitly incorporate the idea of contrastive learning. As its implementation, we present a novel method guided stop-gradient. We apply our method to benchmark algorithms SimSiam and BYOL and show that our method stabilizes training and boosts performance. We also show that the algorithms with our method work well with small batch sizes and do not collapse even when there is no predictor. The code is available at https://github.com/bych-lee/gsg.
comment: Neurips 2023
☆ TreeX: Generating Global Graphical GNN Explanations via Critical Subtree Extraction
The growing demand for transparency and interpretability in critical domains has driven increased interests in comprehending the explainability of Message-Passing (MP) Graph Neural Networks (GNNs). Although substantial research efforts have been made to generate explanations for individual graph instances, identifying global explaining concepts for a GNN still poses great challenges, especially when concepts are desired in a graphical form on the dataset level. While most prior works treat GNNs as black boxes, in this paper, we propose to unbox GNNs by analyzing and extracting critical subtrees incurred by the inner workings of message passing, which correspond to critical subgraphs in the datasets. By aggregating subtrees in an embedding space with an efficient algorithm, which does not require complex subgraph matching or search, we can make intuitive graphical explanations for Message-Passing GNNs on local, class and global levels. We empirically show that our proposed approach not only generates clean subgraph concepts on a dataset level in contrast to existing global explaining methods which generate non-graphical rules (e.g., language or embeddings) as explanations, but it is also capable of providing explanations for individual instances with a comparable or even superior performance as compared to leading local-level GNN explainers.
☆ Discovering Influential Neuron Path in Vision Transformers ICLR 2025
Vision Transformer models exhibit immense power yet remain opaque to human understanding, posing challenges and risks for practical applications. While prior research has attempted to demystify these models through input attribution and neuron role analysis, there's been a notable gap in considering layer-level information and the holistic path of information flow across layers. In this paper, we investigate the significance of influential neuron paths within vision Transformers, which is a path of neurons from the model input to output that impacts the model inference most significantly. We first propose a joint influence measure to assess the contribution of a set of neurons to the model outcome. And we further provide a layer-progressive neuron locating approach that efficiently selects the most influential neuron at each layer trying to discover the crucial neuron path from input to output within the target model. Our experiments demonstrate the superiority of our method finding the most influential neuron path along which the information flows, over the existing baseline solutions. Additionally, the neuron paths have illustrated that vision Transformers exhibit some specific inner working mechanism for processing the visual information within the same image category. We further analyze the key effects of these neurons on the image classification task, showcasing that the found neuron paths have already preserved the model capability on downstream tasks, which may also shed some lights on real-world applications like model pruning. The project website including implementation code is available at https://foundation-model-research.github.io/NeuronPath/.
comment: Accepted in ICLR 2025
☆ ManeuverGPT Agentic Control for Safe Autonomous Stunt Maneuvers IROS
The next generation of active safety features in autonomous vehicles should be capable of safely executing evasive hazard-avoidance maneuvers akin to those performed by professional stunt drivers to achieve high-agility motion at the limits of vehicle handling. This paper presents a novel framework, ManeuverGPT, for generating and executing high-dynamic stunt maneuvers in autonomous vehicles using large language model (LLM)-based agents as controllers. We target aggressive maneuvers, such as J-turns, within the CARLA simulation environment and demonstrate an iterative, prompt-based approach to refine vehicle control parameters, starting tabula rasa without retraining model weights. We propose an agentic architecture comprised of three specialized agents (1) a Query Enricher Agent for contextualizing user commands, (2) a Driver Agent for generating maneuver parameters, and (3) a Parameter Validator Agent that enforces physics-based and safety constraints. Experimental results demonstrate successful J-turn execution across multiple vehicle models through textual prompts that adapt to differing vehicle dynamics. We evaluate performance via established success criteria and discuss limitations regarding numeric precision and scenario complexity. Our findings underscore the potential of LLM-driven control for flexible, high-dynamic maneuvers, while highlighting the importance of hybrid approaches that combine language-based reasoning with algorithmic validation.
comment: 6 Pages, Submitted to IROS
☆ RFUAV: A Benchmark Dataset for Unmanned Aerial Vehicle Detection and Identification
In this paper, we propose RFUAV as a new benchmark dataset for radio-frequency based (RF-based) unmanned aerial vehicle (UAV) identification and address the following challenges: Firstly, many existing datasets feature a restricted variety of drone types and insufficient volumes of raw data, which fail to meet the demands of practical applications. Secondly, existing datasets often lack raw data covering a broad range of signal-to-noise ratios (SNR), or do not provide tools for transforming raw data to different SNR levels. This limitation undermines the validity of model training and evaluation. Lastly, many existing datasets do not offer open-access evaluation tools, leading to a lack of unified evaluation standards in current research within this field. RFUAV comprises approximately 1.3 TB of raw frequency data collected from 37 distinct UAVs using the Universal Software Radio Peripheral (USRP) device in real-world environments. Through in-depth analysis of the RF data in RFUAV, we define a drone feature sequence called RF drone fingerprint, which aids in distinguishing drone signals. In addition to the dataset, RFUAV provides a baseline preprocessing method and model evaluation tools. Rigorous experiments demonstrate that these preprocessing methods achieve state-of-the-art (SOTA) performance using the provided evaluation tools. The RFUAV dataset and baseline implementation are publicly available at https://github.com/kitoweeknd/RFUAV/.
comment: 23 pages, 13 figures, conference
☆ Teaching LLMs How to Learn with Contextual Fine-Tuning ICLR 2025
Prompting Large Language Models (LLMs), or providing context on the expected model of operation, is an effective way to steer the outputs of such models to satisfy human desiderata after they have been trained. But in rapidly evolving domains, there is often need to fine-tune LLMs to improve either the kind of knowledge in their memory or their abilities to perform open ended reasoning in new domains. When human's learn new concepts, we often do so by linking the new material that we are studying to concepts we have already learned before. To that end, we ask, "can prompting help us teach LLMs how to learn". In this work, we study a novel generalization of instruction tuning, called contextual fine-tuning, to fine-tune LLMs. Our method leverages instructional prompts designed to mimic human cognitive strategies in learning and problem-solving to guide the learning process during training, aiming to improve the model's interpretation and understanding of domain-specific knowledge. We empirically demonstrate that this simple yet effective modification improves the ability of LLMs to be fine-tuned rapidly on new datasets both within the medical and financial domains.
comment: ICLR 2025
☆ Enhancing High-Quality Code Generation in Large Language Models with Comparative Prefix-Tuning
Large Language Models (LLMs) have been widely adopted in commercial code completion engines, significantly enhancing coding efficiency and productivity. However, LLMs may generate code with quality issues that violate coding standards and best practices, such as poor code style and maintainability, even when the code is functionally correct. This necessitates additional effort from developers to improve the code, potentially negating the efficiency gains provided by LLMs. To address this problem, we propose a novel comparative prefix-tuning method for controllable high-quality code generation. Our method introduces a single, property-specific prefix that is prepended to the activations of the LLM, serving as a lightweight alternative to fine-tuning. Unlike existing methods that require training multiple prefixes, our approach trains only one prefix and leverages pairs of high-quality and low-quality code samples, introducing a sequence-level ranking loss to guide the model's training. This comparative approach enables the model to better understand the differences between high-quality and low-quality code, focusing on aspects that impact code quality. Additionally, we design a data construction pipeline to collect and annotate pairs of high-quality and low-quality code, facilitating effective training. Extensive experiments on the Code Llama 7B model demonstrate that our method improves code quality by over 100% in certain task categories, while maintaining functional correctness. We also conduct ablation studies and generalization experiments, confirming the effectiveness of our method's components and its strong generalization capability.
☆ Towards Quantifying Long-Range Interactions in Graph Machine Learning: a Large Graph Dataset and a Measurement
Long-range dependencies are critical for effective graph representation learning, yet most existing datasets focus on small graphs tailored to inductive tasks, offering limited insight into long-range interactions. Current evaluations primarily compare models employing global attention (e.g., graph transformers) with those using local neighborhood aggregation (e.g., message-passing neural networks) without a direct measurement of long-range dependency. In this work, we introduce City-Networks, a novel large-scale transductive learning dataset derived from real-world city roads. This dataset features graphs with over $10^5$ nodes and significantly larger diameters than those in existing benchmarks, naturally embodying long-range information. We annotate the graphs using an eccentricity-based approach, ensuring that the classification task inherently requires information from distant nodes. Furthermore, we propose a model-agnostic measurement based on the Jacobians of neighbors from distant hops, offering a principled quantification of long-range dependencies. Finally, we provide theoretical justifications for both our dataset design and the proposed measurement - particularly by focusing on over-smoothing and influence score dilution - which establishes a robust foundation for further exploration of long-range interactions in graph neural networks.
comment: work in progress
☆ KNighter: Transforming Static Analysis with LLM-Synthesized Checkers
Static analysis is a powerful technique for bug detection in critical systems like operating system kernels. However, designing and implementing static analyzers is challenging, time-consuming, and typically limited to predefined bug patterns. While large language models (LLMs) have shown promise for static analysis, directly applying them to scan large codebases remains impractical due to computational constraints and contextual limitations. We present KNighter, the first approach that unlocks practical LLM-based static analysis by automatically synthesizing static analyzers from historical bug patterns. Rather than using LLMs to directly analyze massive codebases, our key insight is leveraging LLMs to generate specialized static analyzers guided by historical patch knowledge. KNighter implements this vision through a multi-stage synthesis pipeline that validates checker correctness against original patches and employs an automated refinement process to iteratively reduce false positives. Our evaluation on the Linux kernel demonstrates that KNighter generates high-precision checkers capable of detecting diverse bug patterns overlooked by existing human-written analyzers. To date, KNighter-synthesized checkers have discovered 70 new bugs/vulnerabilities in the Linux kernel, with 56 confirmed and 41 already fixed. 11 of these findings have been assigned CVE numbers. This work establishes an entirely new paradigm for scalable, reliable, and traceable LLM-based static analysis for real-world systems via checker synthesis.
☆ DistJoin: A Decoupled Join Cardinality Estimator based on Adaptive Neural Predicate Modulation
Research on learned cardinality estimation has achieved significant progress in recent years. However, existing methods still face distinct challenges that hinder their practical deployment in production environments. We conceptualize these challenges as the "Trilemma of Cardinality Estimation", where learned cardinality estimation methods struggle to balance generality, accuracy, and updatability. To address these challenges, we introduce DistJoin, a join cardinality estimator based on efficient distribution prediction using multi-autoregressive models. Our contributions are threefold: (1) We propose a method for estimating both equi and non-equi join cardinality by leveraging the conditional probability distributions of individual tables in a decoupled manner. (2) To meet the requirements of efficient training and inference for DistJoin, we develop Adaptive Neural Predicate Modulation (ANPM), a high-throughput conditional probability distribution estimation model. (3) We formally analyze the variance of existing similar methods and demonstrate that such approaches suffer from variance accumulation issues. To mitigate this problem, DistJoin employs a selectivity-based approach rather than a count-based approach to infer join cardinality, effectively reducing variance. In summary, DistJoin not only represents the first data-driven method to effectively support both equi and non-equi joins but also demonstrates superior accuracy while enabling fast and flexible updates. We evaluate DistJoin on JOB-light and JOB-light-ranges, extending the evaluation to non-equi join conditions. The results demonstrate that our approach achieves the highest accuracy, robustness to data updates, generality, and comparable update and inference speed relative to existing methods.
☆ JBFuzz: Jailbreaking LLMs Efficiently and Effectively Using Fuzzing
Large language models (LLMs) have shown great promise as language understanding and decision making tools, and they have permeated various aspects of our everyday life. However, their widespread availability also comes with novel risks, such as generating harmful, unethical, or offensive content, via an attack called jailbreaking. Despite extensive efforts from LLM developers to align LLMs using human feedback, they are still susceptible to jailbreak attacks. To tackle this issue, researchers often employ red-teaming to understand and investigate jailbreak prompts. However, existing red-teaming approaches lack effectiveness, scalability, or both. To address these issues, we propose JBFuzz, a novel effective, automated, and scalable red-teaming technique for jailbreaking LLMs. JBFuzz is inspired by the success of fuzzing for detecting bugs/vulnerabilities in software. We overcome three challenges related to effectiveness and scalability by devising novel seed prompts, a lightweight mutation engine, and a lightweight and accurate evaluator for guiding the fuzzer. Assimilating all three solutions results in a potent fuzzer that only requires black-box access to the target LLM. We perform extensive experimental evaluation of JBFuzz using nine popular and widely-used LLMs. We find that JBFuzz successfully jailbreaks all LLMs for various harmful/unethical questions, with an average attack success rate of 99%. We also find that JBFuzz is extremely efficient as it jailbreaks a given LLM for a given question in 60 seconds on average. Our work highlights the susceptibility of the state-of-the-art LLMs to jailbreak attacks even after safety alignment, and serves as a valuable red-teaming tool for LLM developers.
☆ AI Rivalry as a Craft: How Resisting and Embracing Generative AI Reshape Writing Professions
Generative AI (GAI) technologies are disrupting professional writing, challenging traditional practices. Recent studies explore GAI adoption experiences of creative practitioners, but we know little about how these experiences evolve into established practices and how GAI resistance alters these practices. To address this gap, we conducted 25 semi-structured interviews with writing professionals who adopted and/or resisted GAI. Using the theoretical lens of Job Crafting, we identify four strategies professionals employ to reshape their roles. Writing professionals employed GAI resisting strategies to maximize human potential, reinforce professional identity, carve out a professional niche, and preserve credibility within their networks. In contrast, GAI-enabled strategies allowed writers who embraced GAI to enhance desirable workflows, minimize mundane tasks, and engage in new AI-managerial labor. These strategies amplified their collaborations with GAI while reducing their reliance on other people. We conclude by discussing implications of GAI practices on writers' identity and practices as well as crafting theory.
☆ A Rule Based Solution to Co-reference Resolution in Clinical Text
Objective: The aim of this study was to build an effective co-reference resolution system tailored for the biomedical domain. Materials and Methods: Experiment materials used in this study is provided by the 2011 i2b2 Natural Language Processing Challenge. The 2011 i2b2 challenge involves coreference resolution in medical documents. Concept mentions have been annotated in clinical texts, and the mentions that co-refer in each document are to be linked by coreference chains. Normally, there are two ways of constructing a system to automatically discover co-referent links. One is to manually build rules for co-reference resolution, and the other category of approaches is to use machine learning systems to learn automatically from training datasets and then perform the resolution task on testing datasets. Results: Experiments show the existing co-reference resolution systems are able to find some of the co-referent links, and our rule based system performs well finding the majority of the co-referent links. Our system achieved 89.6% overall performance on multiple medical datasets. Conclusion: The experiment results show that manually crafted rules based on observation of training data is a valid way to accomplish high performance in this coreference resolution task for the critical biomedical domain.
☆ CleverDistiller: Simple and Spatially Consistent Cross-modal Distillation
Vision foundation models (VFMs) such as DINO have led to a paradigm shift in 2D camera-based perception towards extracting generalized features to support many downstream tasks. Recent works introduce self-supervised cross-modal knowledge distillation (KD) as a way to transfer these powerful generalization capabilities into 3D LiDAR-based models. However, they either rely on highly complex distillation losses, pseudo-semantic maps, or limit KD to features useful for semantic segmentation only. In this work, we propose CleverDistiller, a self-supervised, cross-modal 2D-to-3D KD framework introducing a set of simple yet effective design choices: Unlike contrastive approaches relying on complex loss design choices, our method employs a direct feature similarity loss in combination with a multi layer perceptron (MLP) projection head to allow the 3D network to learn complex semantic dependencies throughout the projection. Crucially, our approach does not depend on pseudo-semantic maps, allowing for direct knowledge transfer from a VFM without explicit semantic supervision. Additionally, we introduce the auxiliary self-supervised spatial task of occupancy prediction to enhance the semantic knowledge, obtained from a VFM through KD, with 3D spatial reasoning capabilities. Experiments on standard autonomous driving benchmarks for 2D-to-3D KD demonstrate that CleverDistiller achieves state-of-the-art performance in both semantic segmentation and 3D object detection (3DOD) by up to 10% mIoU, especially when fine tuning on really low data amounts, showing the effectiveness of our simple yet powerful KD strategy
☆ Media and responsible AI governance: a game-theoretic and LLM analysis
This paper investigates the complex interplay between AI developers, regulators, users, and the media in fostering trustworthy AI systems. Using evolutionary game theory and large language models (LLMs), we model the strategic interactions among these actors under different regulatory regimes. The research explores two key mechanisms for achieving responsible governance, safe AI development and adoption of safe AI: incentivising effective regulation through media reporting, and conditioning user trust on commentariats' recommendation. The findings highlight the crucial role of the media in providing information to users, potentially acting as a form of "soft" regulation by investigating developers or regulators, as a substitute to institutional AI regulation (which is still absent in many regions). Both game-theoretic analysis and LLM-based simulations reveal conditions under which effective regulation and trustworthy AI development emerge, emphasising the importance of considering the influence of different regulatory regimes from an evolutionary game-theoretic perspective. The study concludes that effective governance requires managing incentives and costs for high quality commentaries.
☆ Who Are You Behind the Screen? Implicit MBTI and Gender Detection Using Artificial Intelligence
In personalized technology and psychological research, precisely detecting demographic features and personality traits from digital interactions becomes ever more important. This work investigates implicit categorization, inferring personality and gender variables directly from linguistic patterns in Telegram conversation data, while conventional personality prediction techniques mostly depend on explicitly self-reported labels. We refine a Transformer-based language model (RoBERTa) to capture complex linguistic cues indicative of personality traits and gender differences using a dataset comprising 138,866 messages from 1,602 users annotated with MBTI types and 195,016 messages from 2,598 users annotated with gender. Confidence levels help to greatly raise model accuracy to 86.16\%, hence proving RoBERTa's capacity to consistently identify implicit personality types from conversational text data. Our results highlight the usefulness of Transformer topologies for implicit personality and gender classification, hence stressing their efficiency and stressing important trade-offs between accuracy and coverage in realistic conversational environments. With regard to gender classification, the model obtained an accuracy of 74.4\%, therefore capturing gender-specific language patterns. Personality dimension analysis showed that people with introverted and intuitive preferences are especially more active in text-based interactions. This study emphasizes practical issues in balancing accuracy and data coverage as Transformer-based models show their efficiency in implicit personality and gender prediction tasks from conversational texts.
☆ Training Human-Robot Teams by Improving Transparency Through a Virtual Spectator Interface ICRA 2025
After-action reviews (AARs) are professional discussions that help operators and teams enhance their task performance by analyzing completed missions with peers and professionals. Previous studies that compared different formats of AARs have mainly focused on human teams. However, the inclusion of robotic teammates brings along new challenges in understanding teammate intent and communication. Traditional AAR between human teammates may not be satisfactory for human-robot teams. To address this limitation, we propose a new training review (TR) tool, called the Virtual Spectator Interface (VSI), to enhance human-robot team performance and situational awareness (SA) in a simulated search mission. The proposed VSI primarily utilizes visual feedback to review subjects' behavior. To examine the effectiveness of VSI, we took elements from AAR to conduct our own TR, designed a 1 x 3 between-subjects experiment with experimental conditions: TR with (1) VSI, (2) screen recording, and (3) non-technology (only verbal descriptions). The results of our experiments demonstrated that the VSI did not result in significantly better team performance than other conditions. However, the TR with VSI led to more improvement in the subjects SA over the other conditions.
comment: 7 pages, 4 figures, Accepted to ICRA 2025
☆ On the Limitations of Vision-Language Models in Understanding Image Transforms
Vision Language Models (VLMs) have demonstrated significant potential in various downstream tasks, including Image/Video Generation, Visual Question Answering, Multimodal Chatbots, and Video Understanding. However, these models often struggle with basic image transformations. This paper investigates the image-level understanding of VLMs, specifically CLIP by OpenAI and SigLIP by Google. Our findings reveal that these models lack comprehension of multiple image-level augmentations. To facilitate this study, we created an augmented version of the Flickr8k dataset, pairing each image with a detailed description of the applied transformation. We further explore how this deficiency impacts downstream tasks, particularly in image editing, and evaluate the performance of state-of-the-art Image2Image models on simple transformations.
comment: 8 pages, 15 images
☆ Generative AI for Named Entity Recognition in Low-Resource Language Nepali
Generative Artificial Intelligence (GenAI), particularly Large Language Models (LLMs), has significantly advanced Natural Language Processing (NLP) tasks, such as Named Entity Recognition (NER), which involves identifying entities like person, location, and organization names in text. LLMs are especially promising for low-resource languages due to their ability to learn from limited data. However, the performance of GenAI models for Nepali, a low-resource language, has not been thoroughly evaluated. This paper investigates the application of state-of-the-art LLMs for Nepali NER, conducting experiments with various prompting techniques to assess their effectiveness. Our results provide insights into the challenges and opportunities of using LLMs for NER in low-resource settings and offer valuable contributions to the advancement of NLP research in languages like Nepali.
comment: This paper has been accepted in the FLAIRS Conference 2025
☆ Vi-LAD: Vision-Language Attention Distillation for Socially-Aware Robot Navigation in Dynamic Environments
We introduce Vision-Language Attention Distillation (Vi-LAD), a novel approach for distilling socially compliant navigation knowledge from a large Vision-Language Model (VLM) into a lightweight transformer model for real-time robotic navigation. Unlike traditional methods that rely on expert demonstrations or human-annotated datasets, Vi-LAD performs knowledge distillation and fine-tuning at the intermediate layer representation level (i.e., attention maps) by leveraging the backbone of a pre-trained vision-action model. These attention maps highlight key navigational regions in a given scene, which serve as implicit guidance for socially aware motion planning. Vi-LAD fine-tunes a transformer-based model using intermediate attention maps extracted from the pre-trained vision-action model, combined with attention-like semantic maps constructed from a large VLM. To achieve this, we introduce a novel attention-level distillation loss that fuses knowledge from both sources, generating augmented attention maps with enhanced social awareness. These refined attention maps are then utilized as a traversability costmap within a socially aware model predictive controller (MPC) for navigation. We validate our approach through real-world experiments on a Husky wheeled robot, demonstrating significant improvements over state-of-the-art (SOTA) navigation methods. Our results show up to 14.2% - 50% improvement in success rate, which highlights the effectiveness of Vi-LAD in enabling socially compliant and efficient robot navigation.
☆ Temporal Difference Flows
Predictive models of the future are fundamental for an agent's ability to reason and plan. A common strategy learns a world model and unrolls it step-by-step at inference, where small errors can rapidly compound. Geometric Horizon Models (GHMs) offer a compelling alternative by directly making predictions of future states, avoiding cumulative inference errors. While GHMs can be conveniently learned by a generative analog to temporal difference (TD) learning, existing methods are negatively affected by bootstrapping predictions at train time and struggle to generate high-quality predictions at long horizons. This paper introduces Temporal Difference Flows (TD-Flow), which leverages the structure of a novel Bellman equation on probability paths alongside flow-matching techniques to learn accurate GHMs at over 5x the horizon length of prior methods. Theoretically, we establish a new convergence result and primarily attribute TD-Flow's efficacy to reduced gradient variance during training. We further show that similar arguments can be extended to diffusion-based methods. Empirically, we validate TD-Flow across a diverse set of domains on both generative metrics and downstream tasks including policy evaluation. Moreover, integrating TD-Flow with recent behavior foundation models for planning over pre-trained policies demonstrates substantial performance gains, underscoring its promise for long-horizon decision-making.
☆ Fine-tuning Vision Language Models with Graph-based Knowledge for Explainable Medical Image Analysis
Accurate staging of Diabetic Retinopathy (DR) is essential for guiding timely interventions and preventing vision loss. However, current staging models are hardly interpretable, and most public datasets contain no clinical reasoning or interpretation beyond image-level labels. In this paper, we present a novel method that integrates graph representation learning with vision-language models (VLMs) to deliver explainable DR diagnosis. Our approach leverages optical coherence tomography angiography (OCTA) images by constructing biologically informed graphs that encode key retinal vascular features such as vessel morphology and spatial connectivity. A graph neural network (GNN) then performs DR staging while integrated gradients highlight critical nodes and edges and their individual features that drive the classification decisions. We collect this graph-based knowledge which attributes the model's prediction to physiological structures and their characteristics. We then transform it into textual descriptions for VLMs. We perform instruction-tuning with these textual descriptions and the corresponding image to train a student VLM. This final agent can classify the disease and explain its decision in a human interpretable way solely based on a single image input. Experimental evaluations on both proprietary and public datasets demonstrate that our method not only improves classification accuracy but also offers more clinically interpretable results. An expert study further demonstrates that our method provides more accurate diagnostic explanations and paves the way for precise localization of pathologies in OCTA images.
comment: 11 pages, 3 figures
☆ Un-Straightening Generative AI: How Queer Artists Surface and Challenge the Normativity of Generative AI Models
Queer people are often discussed as targets of bias, harm, or discrimination in research on generative AI. However, the specific ways that queer people engage with generative AI, and thus possible uses that support queer people, have yet to be explored. We conducted a workshop study with 13 queer artists, during which we gave participants access to GPT-4 and DALL-E 3 and facilitated group sensemaking activities. We found our participants struggled to use these models due to various normative values embedded in their designs, such as hyper-positivity and anti-sexuality. We describe various strategies our participants developed to overcome these models' limitations and how, nevertheless, our participants found value in these highly-normative technologies. Drawing on queer feminist theory, we discuss implications for the conceptualization of "state-of-the-art" models and consider how FAccT researchers might support queer alternatives.
☆ SeqSAM: Autoregressive Multiple Hypothesis Prediction for Medical Image Segmentation using SAM
Pre-trained segmentation models are a powerful and flexible tool for segmenting images. Recently, this trend has extended to medical imaging. Yet, often these methods only produce a single prediction for a given image, neglecting inherent uncertainty in medical images, due to unclear object boundaries and errors caused by the annotation tool. Multiple Choice Learning is a technique for generating multiple masks, through multiple learned prediction heads. However, this cannot readily be extended to producing more outputs than its initial pre-training hyperparameters, as the sparse, winner-takes-all loss function makes it easy for one prediction head to become overly dominant, thus not guaranteeing the clinical relevancy of each mask produced. We introduce SeqSAM, a sequential, RNN-inspired approach to generating multiple masks, which uses a bipartite matching loss for ensuring the clinical relevancy of each mask, and can produce an arbitrary number of masks. We show notable improvements in quality of each mask produced across two publicly available datasets. Our code is available at https://github.com/BenjaminTowle/SeqSAM.
comment: Accepted to ISBI 2025
☆ AgentDAM: Privacy Leakage Evaluation for Autonomous Web Agents
LLM-powered AI agents are an emerging frontier with tremendous potential to increase human productivity. However, empowering AI agents to take action on their user's behalf in day-to-day tasks involves giving them access to potentially sensitive and private information, which leads to a possible risk of inadvertent privacy leakage when the agent malfunctions. In this work, we propose one way to address that potential risk, by training AI agents to better satisfy the privacy principle of data minimization. For the purposes of this benchmark, by "data minimization" we mean instances where private information is shared only when it is necessary to fulfill a specific task-relevant purpose. We develop a benchmark called AgentDAM to evaluate how well existing and future AI agents can limit processing of potentially private information that we designate "necessary" to fulfill the task. Our benchmark simulates realistic web interaction scenarios and is adaptable to all existing web navigation agents. We use AgentDAM to evaluate how well AI agents built on top of GPT-4, Llama-3 and Claude can limit processing of potentially private information when unnecessary, and show that these agents are often prone to inadvertent use of unnecessary sensitive information. We finally propose a prompting-based approach that reduces this.
comment: project page: https://github.com/facebookresearch/ai-agent-privacy
Solving Bayesian inverse problems with diffusion priors and off-policy RL ICLR 2025
This paper presents a practical application of Relative Trajectory Balance (RTB), a recently introduced off-policy reinforcement learning (RL) objective that can asymptotically solve Bayesian inverse problems optimally. We extend the original work by using RTB to train conditional diffusion model posteriors from pretrained unconditional priors for challenging linear and non-linear inverse problems in vision, and science. We use the objective alongside techniques such as off-policy backtracking exploration to improve training. Importantly, our results show that existing training-free diffusion posterior methods struggle to perform effective posterior inference in latent space due to inherent biases.
comment: Accepted as workshop paper at DeLTa workshop, ICLR 2025. arXiv admin note: substantial text overlap with arXiv:2405.20971
☆ Unveiling Hidden Pivotal Players with GoalNet: A GNN-Based Soccer Player Evaluation System
Soccer analysis tools emphasize metrics such as expected goals, leading to an overrepresentation of attacking players' contributions and overlooking players who facilitate ball control and link attacks. Examples include Rodri from Manchester City and Palhinha who just transferred to Bayern Munich. To address this bias, we aim to identify players with pivotal roles in a soccer team, incorporating both spatial and temporal features. In this work, we introduce a GNN-based framework that assigns individual credit for changes in expected threat (xT), thus capturing overlooked yet vital contributions in soccer. Our pipeline encodes both spatial and temporal features in event-centric graphs, enabling fair attribution of non-scoring actions such as defensive or transitional plays. We incorporate centrality measures into the learned player embeddings, ensuring that ball-retaining defenders and defensive midfielders receive due recognition for their overall impact. Furthermore, we explore diverse GNN variants-including Graph Attention Networks and Transformer-based models-to handle long-range dependencies and evolving match contexts, discussing their relative performance and computational complexity. Experiments on real match data confirm the robustness of our approach in highlighting pivotal roles that traditional attacking metrics typically miss, underscoring the model's utility for more comprehensive soccer analytics.
comment: 14 pages, 4-5 figures
☆ Local Look-Ahead Guidance via Verifier-in-the-Loop for Automated Theorem Proving ICLR 2025
The most promising recent methods for AI reasoning require applying variants of reinforcement learning (RL) either on rolled out trajectories from the model, even for the step-wise rewards, or large quantities of human annotated trajectory data. The reliance on the rolled-out trajectory renders the compute cost and time prohibitively high. In particular, the correctness of a reasoning trajectory can typically only be judged at its completion, leading to sparse rewards in RL or requiring expensive synthetic data generation in expert iteration-like methods. In this work, we focus on the Automatic Theorem Proving (ATP) task and propose a novel verifier-in-the-loop design, which unlike existing approaches that leverage feedback on the entire reasoning trajectory, employs an automated verifier to give intermediate feedback at each step of the reasoning process. Using Lean as the verifier, we empirically show that the step-by-step local verification produces a global improvement in the model's reasoning accuracy and efficiency.
comment: Accepted at ICLR 2025 Workshop on Reasoning and Planning for Large Language Models
☆ Finding the Muses: Identifying Coresets through Loss Trajectories
Deep learning models achieve state-of-the-art performance across domains but face scalability challenges in real-time or resource-constrained scenarios. To address this, we propose Loss Trajectory Correlation (LTC), a novel metric for coreset selection that identifies critical training samples driving generalization. $LTC$ quantifies the alignment between training sample loss trajectories and validation set loss trajectories, enabling the construction of compact, representative subsets. Unlike traditional methods with computational and storage overheads that are infeasible to scale to large datasets, $LTC$ achieves superior efficiency as it can be computed as a byproduct of training. Our results on CIFAR-100 and ImageNet-1k show that $LTC$ consistently achieves accuracy on par with or surpassing state-of-the-art coreset selection methods, with any differences remaining under 1%. LTC also effectively transfers across various architectures, including ResNet, VGG, DenseNet, and Swin Transformer, with minimal performance degradation (<2%). Additionally, LTC offers insights into training dynamics, such as identifying aligned and conflicting sample behaviors, at a fraction of the computational cost of traditional methods. This framework paves the way for scalable coreset selection and efficient dataset optimization.
☆ Revisiting Backdoor Attacks on Time Series Classification in the Frequency Domain WWW 2025
Time series classification (TSC) is a cornerstone of modern web applications, powering tasks such as financial data analysis, network traffic monitoring, and user behavior analysis. In recent years, deep neural networks (DNNs) have greatly enhanced the performance of TSC models in these critical domains. However, DNNs are vulnerable to backdoor attacks, where attackers can covertly implant triggers into models to induce malicious outcomes. Existing backdoor attacks targeting DNN-based TSC models remain elementary. In particular, early methods borrow trigger designs from computer vision, which are ineffective for time series data. More recent approaches utilize generative models for trigger generation, but at the cost of significant computational complexity. In this work, we analyze the limitations of existing attacks and introduce an enhanced method, FreqBack. Drawing inspiration from the fact that DNN models inherently capture frequency domain features in time series data, we identify that improper perturbations in the frequency domain are the root cause of ineffective attacks. To address this, we propose to generate triggers both effectively and efficiently, guided by frequency analysis. FreqBack exhibits substantial performance across five models and eight datasets, achieving an impressive attack success rate of over 90%, while maintaining less than a 3% drop in model accuracy on clean data.
comment: WWW 2025 (Oral)
☆ Revisiting semi-supervised learning in the era of foundation models
Semi-supervised learning (SSL) leverages abundant unlabeled data alongside limited labeled data to enhance learning. As vision foundation models (VFMs) increasingly serve as the backbone of vision applications, it remains unclear how SSL interacts with these pre-trained models. To address this gap, we develop new SSL benchmark datasets where frozen VFMs underperform and systematically evaluate representative SSL methods. We make a surprising observation: parameter-efficient fine-tuning (PEFT) using only labeled data often matches SSL performance, even without leveraging unlabeled data. This motivates us to revisit self-training, a conceptually simple SSL baseline, where we use the supervised PEFT model to pseudo-label unlabeled data for further training. To overcome the notorious issue of noisy pseudo-labels, we propose ensembling multiple PEFT approaches and VFM backbones to produce more robust pseudo-labels. Empirical results validate the effectiveness of this simple yet powerful approach, providing actionable insights into SSL with VFMs and paving the way for more scalable and practical semi-supervised learning in the era of foundation models.
☆ Silent Branding Attack: Trigger-free Data Poisoning Attack on Text-to-Image Diffusion Models CVPR 2025
Text-to-image diffusion models have achieved remarkable success in generating high-quality contents from text prompts. However, their reliance on publicly available data and the growing trend of data sharing for fine-tuning make these models particularly vulnerable to data poisoning attacks. In this work, we introduce the Silent Branding Attack, a novel data poisoning method that manipulates text-to-image diffusion models to generate images containing specific brand logos or symbols without any text triggers. We find that when certain visual patterns are repeatedly in the training data, the model learns to reproduce them naturally in its outputs, even without prompt mentions. Leveraging this, we develop an automated data poisoning algorithm that unobtrusively injects logos into original images, ensuring they blend naturally and remain undetected. Models trained on this poisoned dataset generate images containing logos without degrading image quality or text alignment. We experimentally validate our silent branding attack across two realistic settings on large-scale high-quality image datasets and style personalization datasets, achieving high success rates even without a specific text trigger. Human evaluation and quantitative metrics including logo detection show that our method can stealthily embed logos.
comment: CVPR 2025. Project page: https://silent-branding.github.io/
☆ Towards Robust Model Evolution with Algorithmic Recourse
Algorithmic Recourse is a way for users to modify their attributes to align with a model's expectations, thereby improving their outcomes after receiving unfavorable decisions. In real-world scenarios, users often need to strategically adjust their attributes to compete for limited resources. However, such strategic behavior induces users to "game" algorithms, causing model collapse due to distribution shifts. These shifts arise from user competition, resource constraints, and adaptive user responses. While prior research on Algorithmic Recourse has explored its effects on both systems and users, the impact of resource constraints and competition over time remains underexplored. In this work, we develop a general framework to model user strategic behaviors and their interactions with decision-making systems under resource constraints and competitive dynamics. Through theoretical analysis and empirical evaluation, we identify three key phenomena that arise consistently in both synthetic and real-world datasets: escalating decision boundaries, non-robust model predictions, and inequitable recourse actions. Finally, we discuss the broader social implications of these findings and present two algorithmic strategies aimed at mitigating these challenges.
comment: 9 pages,4 figures
♻ ☆ MsaMIL-Net: An End-to-End Multi-Scale Aware Multiple Instance Learning Network for Efficient Whole Slide Image Classification ICCV2025
Bag-based Multiple Instance Learning (MIL) approaches have emerged as the mainstream methodology for Whole Slide Image (WSI) classification. However, most existing methods adopt a segmented training strategy, which first extracts features using a pre-trained feature extractor and then aggregates these features through MIL. This segmented training approach leads to insufficient collaborative optimization between the feature extraction network and the MIL network, preventing end-to-end joint optimization and thereby limiting the overall performance of the model. Additionally, conventional methods typically extract features from all patches of fixed size, ignoring the multi-scale observation characteristics of pathologists. This not only results in significant computational resource waste when tumor regions represent a minimal proportion (as in the Camelyon16 dataset) but may also lead the model to suboptimal solutions. To address these limitations, this paper proposes an end-to-end multi-scale WSI classification framework that integrates multi-scale feature extraction with multiple instance learning. Specifically, our approach includes: (1) a semantic feature filtering module to reduce interference from non-lesion areas; (2) a multi-scale feature extraction module to capture pathological information at different levels; and (3) a multi-scale fusion MIL module for global modeling and feature integration. Through an end-to-end training strategy, we simultaneously optimize both the feature extractor and MIL network, ensuring maximum compatibility between them. Experiments were conducted on three cross-center datasets (DigestPath2019, BCNB, and UBC-OCEAN). Results demonstrate that our proposed method outperforms existing state-of-the-art approaches in terms of both accuracy (ACC) and AUC metrics.
comment: summited to ICCV2025
♻ ☆ A Unified Framework for Motion Reasoning and Generation in Human Interaction
Recent advancements in large language models (LLMs) have significantly improved their ability to generate natural and contextually relevant text, enabling more human-like AI interactions. However, generating and understanding interactive human-like motion, where multiple individuals engage in coordinated movements, remains challenging due to the complexity of modeling these interactions. Additionally, a unified and versatile model is needed to handle diverse interactive scenarios, such as chat systems that dynamically adapt to user instructions and assigned roles. To address these challenges, we introduce VIM, the Versatile Interactive Motion-language model, which integrates both language and motion modalities to effectively understand, generate, and control interactive motions in multi-turn conversational contexts. Unlike previous studies that primarily focus on uni-directional tasks such as text-to-motion or motion-to-text, VIM employs a unified architecture capable of simultaneously understanding and generating both motion and text modalities. Given the absence of an appropriate dataset to support this task, we introduce Inter-MT2, a large-scale instruction-tuning dataset containing 82.7K multi-turn interactive motion instructions, covering 153K interactive motion samples. Inter-MT2 spans diverse instructional scenarios, including motion editing, question answering, and story generation, leveraging off-the-shelf large language models and motion diffusion models to construct a broad set of interactive motion instructions. We extensively evaluate the versatility of VIM across multiple interactive motion-related tasks, including motion-to-text, text-to-motion, reaction generation, motion editing, and reasoning about motion sequences.
comment: https://vim-motion-language.github.io/
♻ ☆ Status and Future Prospects of the Standardization Framework Industry 4.0: A European Perspective
The rapid development of Industry 4.0 technologies requires robust and comprehensive standardization to ensure interoperability, safety and efficiency in the Industry of the Future. This paper examines the fundamental role and functionality of standardization, with a particular focus on its importance in Europe's regulatory framework. Based on this, selected topics in context of standardization activities in context intelligent manufacturing and digital twins are highlighted and, by that, an overview of the Industry 4.0 standards framework is provided. This paper serves both as an informative guide to the existing standards in Industry 4.0 with respect to Artificial Intelligence and Digital Twins, and as a call to action for increased cooperation between standardization bodies and the research community. By fostering such collaboration, we aim to facilitate the continued development and implementation of standards that will drive innovation and progress in the manufacturing sector.
♻ ☆ Detect, Investigate, Judge and Determine: A Knowledge-guided Framework for Few-shot Fake News Detection
Few-Shot Fake News Detection (FS-FND) aims to distinguish inaccurate news from real ones in extremely low-resource scenarios. This task has garnered increased attention due to the widespread dissemination and harmful impact of fake news on social media. Large Language Models (LLMs) have demonstrated competitive performance with the help of their rich prior knowledge and excellent in-context learning abilities. However, existing methods face significant limitations, such as the Understanding Ambiguity and Information Scarcity, which significantly undermine the potential of LLMs. To address these shortcomings, we propose a Dual-perspective Knowledge-guided Fake News Detection (DKFND) model, designed to enhance LLMs from both inside and outside perspectives. Specifically, DKFND first identifies the knowledge concepts of each news article through a Detection Module. Subsequently, DKFND creatively designs an Investigation Module to retrieve inside and outside valuable information concerning to the current news, followed by another Judge Module to evaluate the relevance and confidence of them. Finally, a Determination Module further derives two respective predictions and obtain the final result. Extensive experiments on two public datasets show the efficacy of our proposed method, particularly in low-resource settings.
♻ ☆ Large Language Model as Meta-Surrogate for Data-Driven Many-Task Optimization: A Proof-of-Principle Study
In many-task optimization scenarios, surrogate models are valuable for mitigating the computational burden of repeated fitness evaluations across tasks. This study proposes a novel meta-surrogate framework to assist many-task optimization, by leveraging the knowledge transfer strengths and emergent capabilities of large language models (LLMs). We formulate a unified framework for many-task fitness prediction, by defining a universal model with metadata to fit a group of problems. Fitness prediction is performed on metadata and decision variables, enabling efficient knowledge sharing across tasks and adaptability to new tasks. The LLM-based meta-surrogate treats fitness prediction as conditional probability estimation, employing a unified token sequence representation for task metadata, inputs, and outputs. This approach facilitates efficient inter-task knowledge sharing through shared token embeddings and captures complex task dependencies via multi-task model training. Experimental results demonstrate the model's emergent generalization ability, including zero-shot performance on problems with unseen dimensions. When integrated into evolutionary transfer optimization (ETO), our framework supports dual-level knowledge transfer -- at both the surrogate and individual levels -- enhancing optimization efficiency and robustness. This work establishes a novel foundation for applying LLMs in surrogate modeling, offering a versatile solution for many-task optimization.
comment: 13 pages
♻ ☆ ProtTeX: Structure-In-Context Reasoning and Editing of Proteins with Large Language Models
Large language models have made remarkable progress in the field of molecular science, particularly in understanding and generating functional small molecules. This success is largely attributed to the effectiveness of molecular tokenization strategies. In protein science, the amino acid sequence serves as the sole tokenizer for LLMs. However, many fundamental challenges in protein science are inherently structure-dependent. The absence of structure-aware tokens significantly limits the capabilities of LLMs for comprehensive biomolecular comprehension and multimodal generation. To address these challenges, we introduce a novel framework, ProtTeX, which tokenizes the protein sequences, structures, and textual information into a unified discrete space. This innovative approach enables joint training of the LLM exclusively through the Next-Token Prediction paradigm, facilitating multimodal protein reasoning and generation. ProtTeX enables general LLMs to perceive and process protein structures through sequential text input, leverage structural information as intermediate reasoning components, and generate or manipulate structures via sequential text output. Experiments demonstrate that our model achieves significant improvements in protein function prediction, outperforming the state-of-the-art domain expert model with a twofold increase in accuracy. Our framework enables high-quality conformational generation and customizable protein design. For the first time, we demonstrate that by adopting the standard training and inference pipelines from the LLM domain, ProtTeX empowers decoder-only LLMs to effectively address diverse spectrum of protein-related tasks.
comment: 26 pages, 9 figures
♻ ☆ AI-native Memory 2.0: Second Me
Human interaction with the external world fundamentally involves the exchange of personal memory, whether with other individuals, websites, applications, or, in the future, AI agents. A significant portion of this interaction is redundant, requiring users to repeatedly provide the same information across different contexts. Existing solutions, such as browser-stored credentials, autofill mechanisms, and unified authentication systems, have aimed to mitigate this redundancy by serving as intermediaries that store and retrieve commonly used user data. The advent of large language models (LLMs) presents an opportunity to redefine memory management through an AI-native paradigm: SECOND ME. SECOND ME acts as an intelligent, persistent memory offload system that retains, organizes, and dynamically utilizes user-specific knowledge. By serving as an intermediary in user interactions, it can autonomously generate context-aware responses, prefill required information, and facilitate seamless communication with external systems, significantly reducing cognitive load and interaction friction. Unlike traditional memory storage solutions, SECOND ME extends beyond static data retention by leveraging LLM-based memory parameterization. This enables structured organization, contextual reasoning, and adaptive knowledge retrieval, facilitating a more systematic and intelligent approach to memory management. As AI-driven personal agents like SECOND ME become increasingly integrated into digital ecosystems, SECOND ME further represents a critical step toward augmenting human-world interaction with persistent, contextually aware, and self-optimizing memory systems. We have open-sourced the fully localizable deployment system at GitHub: https://github.com/Mindverse/Second-Me.
♻ ☆ SQLCritic: Correcting Text-to-SQL Generation via Clause-wise Critic
Recent advancements in Text-to-SQL systems have improved the conversion of natural language queries into SQL, but challenges remain in ensuring accuracy and reliability. While self-correction techniques refine outputs, they often introduce new errors. Existing methods focused on execution feedback mainly address syntax issues, leaving semantic errors -- where the query's logic fails to align with the user's intent -- largely unaddressed. We propose a novel approach combining structured execution feedback with a trained critic agent that provides detailed, interpretable critiques. This method effectively identifies and corrects both syntactic and semantic errors, enhancing accuracy and interpretability. Experimental results show significant improvements on two major Text-to-SQL benchmarks, Spider and BIRD, demonstrating the effectiveness of our approach.
♻ ☆ Inductive Moment Matching
Diffusion models and Flow Matching generate high-quality samples but are slow at inference, and distilling them into few-step models often leads to instability and extensive tuning. To resolve these trade-offs, we propose Inductive Moment Matching (IMM), a new class of generative models for one- or few-step sampling with a single-stage training procedure. Unlike distillation, IMM does not require pre-training initialization and optimization of two networks; and unlike Consistency Models, IMM guarantees distribution-level convergence and remains stable under various hyperparameters and standard model architectures. IMM surpasses diffusion models on ImageNet-256x256 with 1.99 FID using only 8 inference steps and achieves state-of-the-art 2-step FID of 1.98 on CIFAR-10 for a model trained from scratch.
♻ ☆ Hierarchical Contact-Rich Trajectory Optimization for Multi-Modal Manipulation using Tight Convex Relaxations ICRA
Designing trajectories for manipulation through contact is challenging as it requires reasoning of object \& robot trajectories as well as complex contact sequences simultaneously. In this paper, we present a novel framework for simultaneously designing trajectories of robots, objects, and contacts efficiently for contact-rich manipulation. We propose a hierarchical optimization framework where Mixed-Integer Linear Program (MILP) selects optimal contacts between robot \& object using approximate dynamical constraints, and then a NonLinear Program (NLP) optimizes trajectory of the robot(s) and object considering full nonlinear constraints. We present a convex relaxation of bilinear constraints using binary encoding technique such that MILP can provide tighter solutions with better computational complexity. The proposed framework is evaluated on various manipulation tasks where it can reason about complex multi-contact interactions while providing computational advantages. We also demonstrate our framework in hardware experiments using a bimanual robot system. The video summarizing this paper and hardware experiments is found https://youtu.be/s2S1Eg5RsRE?si=chPkftz_a3NAHxLq
comment: 2025 IEEE International Conference on Robotics and Automation (2025 ICRA)
♻ ☆ Measuring directional bias amplification in image captions using predictability
When we train models on biased ML datasets, they not only learn these biases but can inflate them at test time - a phenomenon called bias amplification. To measure bias amplification in ML datasets, many co-occurrence-based metrics have been proposed. Co-occurrence-based metrics are effective in measuring bias amplification in simple problems like image classification. However, these metrics are ineffective for complex problems like image captioning as they cannot capture the semantics of a caption. To measure bias amplification in captions, prior work introduced a predictability-based metric called Leakage in Captioning (LIC). While LIC captures the semantics and context of captions, it has limitations. LIC cannot identify the direction in which bias is amplified, poorly estimates dataset bias due to a weak vocabulary substitution strategy, and is highly sensitive to attacker models (a hyperparameter in predictability-based metrics). To overcome these issues, we propose Directional Predictability Amplification in Captioning (DPAC). DPAC measures directional bias amplification in captions, provides a better estimate of dataset bias using an improved substitution strategy, and is less sensitive to attacker models. Our experiments on the COCO captioning dataset show how DPAC is the most reliable metric to measure bias amplification in captions.
♻ ☆ Multi-Task Reinforcement Learning Enables Parameter Scaling
Multi-task reinforcement learning (MTRL) aims to endow a single agent with the ability to perform well on multiple tasks. Recent works have focused on developing novel sophisticated architectures to improve performance, often resulting in larger models; it is unclear, however, whether the performance gains are a consequence of the architecture design itself or the extra parameters. We argue that gains are mostly due to scale by demonstrating that naively scaling up a simple MTRL baseline to match parameter counts outperforms the more sophisticated architectures, and these gains benefit most from scaling the critic over the actor. Additionally, we explore the training stability advantages that come with task diversity, demonstrating that increasing the number of tasks can help mitigate plasticity loss. Our findings suggest that MTRL's simultaneous training across multiple tasks provides a natural framework for beneficial parameter scaling in reinforcement learning, challenging the need for complex architectural innovations.
♻ ☆ Language Models Fail to Introspect About Their Knowledge of Language
There has been recent interest in whether large language models (LLMs) can introspect about their own internal states. Such abilities would make LLMs more interpretable, and also validate the use of standard introspective methods in linguistics to evaluate grammatical knowledge in models (e.g., asking "Is this sentence grammatical?"). We systematically investigate emergent introspection across 21 open-source LLMs, in two domains where introspection is of theoretical interest: grammatical knowledge and word prediction. Crucially, in both domains, a model's internal linguistic knowledge can be theoretically grounded in direct measurements of string probability. We then evaluate whether models' responses to metalinguistic prompts faithfully reflect their internal knowledge. We propose a new measure of introspection: the degree to which a model's prompted responses predict its own string probabilities, beyond what would be predicted by another model with nearly identical internal knowledge. While both metalinguistic prompting and probability comparisons lead to high task accuracy, we do not find evidence that LLMs have privileged "self-access". Our findings complicate recent results suggesting that models can introspect, and add new evidence to the argument that prompted responses should not be conflated with models' linguistic generalizations.
comment: Corrected Fig 5a and removed unused figures from source files
♻ ☆ From Idea to Implementation: Evaluating the Influence of Large Language Models in Software Development -- An Opinion Paper
The introduction of transformer architecture was a turning point in Natural Language Processing (NLP). Models based on the transformer architecture such as Bidirectional Encoder Representations from Transformers (BERT) and Generative Pre-Trained Transformer (GPT) have gained widespread popularity in various applications such as software development and education. The availability of Large Language Models (LLMs) such as ChatGPT and Bard to the general public has showcased the tremendous potential of these models and encouraged their integration into various domains such as software development for tasks such as code generation, debugging, and documentation generation. In this study, opinions from 11 experts regarding their experience with LLMs for software development have been gathered and analysed to draw insights that can guide successful and responsible integration. The overall opinion of the experts is positive, with the experts identifying advantages such as increase in productivity and reduced coding time. Potential concerns and challenges such as risk of over-dependence and ethical considerations have also been highlighted.
comment: The project is partially supported by the DkIT Postgraduate Scholarship, Research Ireland under Grant number 13/RC/2094_2, and Grant number 21/FFP-A/925
♻ ☆ Folded Context Condensation in Path Integral Formalism for Infinite Context Transformers
In this work, we present a generalized formulation of the Transformer algorithm by reinterpreting its core mechanisms within the framework of Path Integral formalism. In this perspective, the attention mechanism is recast as a process that integrates all possible transition paths leading to future token states, with temporal evolution governed by the Feed-Forward Network. By systematically mapping each component of the Transformer to its counterpart in the Path Integral formulation, we obtain a more compact and efficient representation, in which the contextual information of a sequence is condensed into memory-like segments. These segments are recurrently processed across Transformer layers, enabling more effective long-term information retention. We validate the effectiveness of this approach through the Passkey retrieval task and a summarization task, demonstrating that the proposed method preserves historical information while exhibiting memory usage that scales linearly with sequence length. This contrasts with the non-linear memory growth typically observed in standard attention mechanisms. We expect that this quantum-inspired generalization of the Transformer architecture will open new avenues for enhancing both the efficiency and expressiveness of future Transformer models.
comment: 10 pages, 12 figures
♻ ☆ PRISM: Efficient Long-Range Reasoning With Short-Context LLMs
Long-range tasks demand reasoning over long inputs. Current solutions require large compute budgets, training data, model weight access, or complex task-specific designs. We introduce PRISM, which processes information as a stream of chunks while maintaining a structured in-context memory specified with a typed hierarchical schema. PRISM outperforms baselines on diverse tasks while using at least 4x shorter contexts than long-context models. This approach is token-efficient, producing concise outputs and efficiently leveraging key-value (KV) caches to reduce costs by up to 54% compared to alternative short-context methods. PRISM scales down to tiny chunks (<500 tokens) without increasing encoding costs or sacrificing quality, and generalizes to new tasks with minimal effort by automatically generating schemas from task descriptions.
comment: 28 pages, 7 figures, 5 tables
♻ ☆ DAWN-FM: Data-Aware and Noise-Informed Flow Matching for Solving Inverse Problems
Inverse problems, which involve estimating parameters from incomplete or noisy observations, arise in various fields such as medical imaging, geophysics, and signal processing. These problems are often ill-posed, requiring regularization techniques to stabilize the solution. In this work, we employ Flow Matching (FM), a generative framework that integrates a deterministic processes to map a simple reference distribution, such as a Gaussian, to the target distribution. Our method DAWN-FM: Data-AWare and Noise-informed Flow Matching incorporates data and noise embedding, allowing the model to access representations about the measured data explicitly and also account for noise in the observations, making it particularly robust in scenarios where data is noisy or incomplete. By learning a time-dependent velocity field, FM not only provides accurate solutions but also enables uncertainty quantification by generating multiple plausible outcomes. Unlike pre-trained diffusion models, which may struggle in highly ill-posed settings, our approach is trained specifically for each inverse problem and adapts to varying noise levels. We validate the effectiveness and robustness of our method through extensive numerical experiments on tasks such as image deblurring and tomography.
comment: 27 pages, 11 figures, 6 tables
♻ ☆ Generative AI Policies under the Microscope: How CS Conferences Are Navigating the New Frontier in Scholarly Writing
As the use of Generative AI (Gen-AI) in scholarly writing and peer reviews continues to rise, it is essential for the computing field to establish and adopt clear Gen-AI policies. This study examines the landscape of Gen-AI policies across 64 major Computer Science conferences and offers recommendations for promoting more effective and responsible use of Gen-AI in the field.
comment: Accepted and to appear in Communications of the ACM (CACM) in 2025
♻ ☆ Grounding Video Models to Actions through Goal Conditioned Exploration ICLR 2025
Large video models, pretrained on massive amounts of Internet video, provide a rich source of physical knowledge about the dynamics and motions of objects and tasks. However, video models are not grounded in the embodiment of an agent, and do not describe how to actuate the world to reach the visual states depicted in a video. To tackle this problem, current methods use a separate vision-based inverse dynamic model trained on embodiment-specific data to map image states to actions. Gathering data to train such a model is often expensive and challenging, and this model is limited to visual settings similar to the ones in which data are available. In this paper, we investigate how to directly ground video models to continuous actions through self-exploration in the embodied environment -- using generated video states as visual goals for exploration. We propose a framework that uses trajectory level action generation in combination with video guidance to enable an agent to solve complex tasks without any external supervision, e.g., rewards, action labels, or segmentation masks. We validate the proposed approach on 8 tasks in Libero, 6 tasks in MetaWorld, 4 tasks in Calvin, and 12 tasks in iThor Visual Navigation. We show how our approach is on par with or even surpasses multiple behavior cloning baselines trained on expert demonstrations while without requiring any action annotations.
comment: ICLR 2025 (Spotlight). Project page: https://video-to-action.github.io/
♻ ☆ Fair Play in the Fast Lane: Integrating Sportsmanship into Autonomous Racing Systems
Autonomous racing has gained significant attention as a platform for high-speed decision-making and motion control. While existing methods primarily focus on trajectory planning and overtaking strategies, the role of sportsmanship in ensuring fair competition remains largely unexplored. In human racing, rules such as the one-motion rule and the enough-space rule prevent dangerous and unsportsmanlike behavior. However, autonomous racing systems often lack mechanisms to enforce these principles, potentially leading to unsafe maneuvers. This paper introduces a bi-level game-theoretic framework to integrate sportsmanship (SPS) into versus racing. At the high level, we model racing intentions using a Stackelberg game, where Monte Carlo Tree Search (MCTS) is employed to derive optimal strategies. At the low level, vehicle interactions are formulated as a Generalized Nash Equilibrium Problem (GNEP), ensuring that all agents follow sportsmanship constraints while optimizing their trajectories. Simulation results demonstrate the effectiveness of the proposed approach in enforcing sportsmanship rules while maintaining competitive performance. We analyze different scenarios where attackers and defenders adhere to or disregard sportsmanship rules and show how knowledge of these constraints influences strategic decision-making. This work highlights the importance of balancing competition and fairness in autonomous racing and provides a foundation for developing ethical and safe AI-driven racing systems.
♻ ☆ Discovering new robust local search algorithms with neuro-evolution
This paper explores a novel approach aimed at overcoming existing challenges in the realm of local search algorithms. Our aim is to improve the decision process that takes place within a local search algorithm so as to make the best possible transitions in the neighborhood at each iteration. To improve this process, we propose to use a neural network that has the same input information as conventional local search algorithms. In this paper, which is an extension of the work presented at EvoCOP2024, we investigate different ways of representing this information so as to make the algorithm as efficient as possible but also robust to monotonic transformations of the problem objective function. To assess the efficiency of this approach, we develop an experimental setup centered around NK landscape problems, offering the flexibility to adjust problem size and ruggedness. This approach offers a promising avenue for the emergence of new local search algorithms and the improvement of their problem-solving capabilities for black-box problems. The last version of this article is published in the journal SN Computer Science (Springer).
♻ ☆ Algebraic Evaluation Theorems
Majority voting (MV) is the prototypical ``wisdom of the crowd'' algorithm. Theorems considering when MV is optimal for group decisions date back to Condorcet's 1785 jury \emph{decision} theorem. The same error independence assumption underlying the theorem can be used to prove a jury \emph{evaluation} theorem that does purely algebraic evaluation (AE) of juror performance based on a batch of their decisions. Three or more binary jurors are enough to obtain the only two possible statistics of their correctness on a test they took. AE is superior to MV in three ways. First, its empirical assumptions are looser and can handle jurors less than 50\% accurate in making decisions. Second, it has point-like precision in evaluating them given its assumption of error independence. This precision enables a multi-accuracy approach that has higher labeling accuracy than MV and comes with empirical uncertainty bounds. And, third, it is self-alarming about the failure of its error independence assumption. Experiments using demographic data from the American Community Survey confirm the practical utility of AE over MV. Two implications of the theorem for AI safety are discussed - a principled way to terminate infinite monitoring chains (who grades the graders?) and the super-alignment problem (how do we evaluate agents doing tasks we do not understand?).
comment: 28 pages
♻ ☆ The Interaction Layer: An Exploration for Co-Designing User-LLM Interactions in Parental Wellbeing Support Systems
Parenting brings emotional and physical challenges, from balancing work, childcare, and finances to coping with exhaustion and limited personal time. Yet, one in three parents never seek support. AI systems potentially offer stigma-free, accessible, and affordable solutions. Yet, user adoption often fails due to issues with explainability and reliability. To see if these issues could be solved using a co-design approach, we developed and tested NurtureBot, a wellbeing support assistant for new parents. 32 parents co-designed the system through Asynchronous Remote Communities method, identifying the key challenge as achieving a "successful chat." As part of co-design, parents role-played as NurtureBot, rewriting its dialogues to improve user understanding, control, and outcomes. The refined prototype, featuring an Interaction Layer, was evaluated by 32 initial and 46 new parents, showing improved user experience and usability, with final CUQ score of 91.3/100, demonstrating successful interaction patterns. Our process revealed useful interaction design lessons for effective AI parenting support.
♻ ☆ ANPMI: Assessing the True Comprehension Capabilities of LLMs for Multiple Choice Questions
Multiple-choice benchmarks, consisting of various prompts and choices, are among the most widely used methods to assess a language model's natural language understanding capability. Given a specific prompt, we typically compute $P(Choice|Prompt)$ to evaluate how likely a language model is to generate the correct choice compared to incorrect ones. However, we observe that performance measured using this approach reflects not only the model's comprehension of the prompt but also its inherent biases for certain choices regardless of the prompt. This issue makes it challenging to accurately measure a model's natural language understanding, as models may select the answer without fully understanding the prompt. To address this limitation, we propose a novel metric called ANPMI, which normalizes Pointwise Mutual Information (PMI) by $-\log P(Choice)$. ANPMI provides a more accurate assessment of the model's natural language understanding by ensuring that it is challenging to answer a question without properly understanding the prompt.
♻ ☆ Med-gte-hybrid: A contextual embedding transformer model for extracting actionable information from clinical texts
We introduce a novel contextual embedding model med-gte-hybrid that was derived from the gte-large sentence transformer to extract information from unstructured clinical narratives. Our model tuning strategy for med-gte-hybrid combines contrastive learning and a denoising autoencoder. To evaluate the performance of med-gte-hybrid, we investigate several clinical prediction tasks in large patient cohorts extracted from the MIMIC-IV dataset, including Chronic Kidney Disease (CKD) patient prognosis, estimated glomerular filtration rate (eGFR) prediction, and patient mortality prediction. Furthermore, we demonstrate that the med-gte-hybrid model improves patient stratification, clustering, and text retrieval, thus outperforms current state-of-the-art models on the Massive Text Embedding Benchmark (MTEB). While some of our evaluations focus on CKD, our hybrid tuning of sentence transformers could be transferred to other medical domains and has the potential to improve clinical decision-making and personalised treatment pathways in various healthcare applications.
comment: 22 pages, 4 figures, 2 tables
♻ ☆ Mixture of Experts based Multi-task Supervise Learning from Crowds
Existing truth inference methods in crowdsourcing aim to map redundant labels and items to the ground truth. They treat the ground truth as hidden variables and use statistical or deep learning-based worker behavior models to infer the ground truth. However, worker behavior models that rely on ground truth hidden variables overlook workers' behavior at the item feature level, leading to imprecise characterizations and negatively impacting the quality of truth inference. This paper proposes a new paradigm of multi-task supervised learning from crowds, which eliminates the need for modeling of items's ground truth in worker behavior models. Within this paradigm, we propose a worker behavior model at the item feature level called Mixture of Experts based Multi-task Supervised Learning from Crowds (MMLC). Two truth inference strategies are proposed within MMLC. The first strategy, named MMLC-owf, utilizes clustering methods in the worker spectral space to identify the projection vector of the oracle worker. Subsequently, the labels generated based on this vector are considered as the inferred truth. The second strategy, called MMLC-df, employs the MMLC model to fill the crowdsourced data, which can enhance the effectiveness of existing truth inference methods. Experimental results demonstrate that MMLC-owf outperforms state-of-the-art methods and MMLC-df enhances the quality of existing truth inference methods.
♻ ☆ Hierarchical Neuro-Symbolic Decision Transformer
We present a hierarchical neuro-symbolic control framework that couples classical symbolic planning with transformer-based policies to address complex, long-horizon decision-making tasks. At the high level, a symbolic planner constructs an interpretable sequence of operators based on logical propositions, ensuring systematic adherence to global constraints and goals. At the low level, each symbolic operator is translated into a sub-goal token that conditions a decision transformer to generate a fine-grained sequence of actions in uncertain, high-dimensional environments. We provide theoretical analysis showing how approximation errors from both the symbolic planner and the neural execution layer accumulate. Empirical evaluations in grid-worlds with multiple keys, locked doors, and item-collection tasks show that our hierarchical approach outperforms purely end-to-end neural approach in success rates and policy efficiency.
♻ ☆ Training Foundation Models as Data Compression: On Information, Model Weights and Copyright Law
The training process of foundation models as for other classes of deep learning systems is based on minimizing the reconstruction error over a training set. For this reason, they are susceptible to the memorization and subsequent reproduction of training samples. In this paper, we introduce a training-as-compressing perspective, wherein the model's weights embody a compressed representation of the training data. From a copyright standpoint, this point of view implies that the weights can be considered a reproduction or, more likely, a derivative work of a potentially protected set of works. We investigate the technical and legal challenges that emerge from this framing of the copyright of outputs generated by foundation models, including their implications for practitioners and researchers. We demonstrate that adopting an information-centric approach to the problem presents a promising pathway for tackling these emerging complex legal issues.
comment: Spotlight presentation at GenLaw'24, see https://www.genlaw.org/2024-icml-papers#training-foundation-models-as-data-compression-on-information-model-weights-and-copyright-law
♻ ☆ Ext2Gen: Alignment through Unified Extraction and Generation for Robust Retrieval-Augmented Generation
Retrieval-augmented generation (RAG) enhances LLMs by integrating external knowledge, but generation remains fragile due to the uncertain placement of relevant chunks and retrieval-induced information overload, leading to hallucinations. We propose Ext2Gen, a novel extract-then-generate model that enhances RAG robustness by first extracting query-relevant sentences before generating answers. To optimize this model, we employ preference alignment through pairwise feedback learning, enabling the model to generate robust answers regardless of variations in retrieval results. Extensive experiments demonstrate that Ext2Gen effectively identifies query-relevant sentences with high precision and recall, leading to highly reliable answers. Furthermore, deploying our model in a RAG environment reveals that it not only boosts the performance of the base LLM but also synergizes with advanced retrieval strategies like query expansion. The model is available at https://huggingface.co/DISLab/Ext2Gen-8B-R2.
♻ ☆ SVGBuilder: Component-Based Colored SVG Generation with Text-Guided Autoregressive Transformers
Scalable Vector Graphics (SVG) are essential XML-based formats for versatile graphics, offering resolution independence and scalability. Unlike raster images, SVGs use geometric shapes and support interactivity, animation, and manipulation via CSS and JavaScript. Current SVG generation methods face challenges related to high computational costs and complexity. In contrast, human designers use component-based tools for efficient SVG creation. Inspired by this, SVGBuilder introduces a component-based, autoregressive model for generating high-quality colored SVGs from textual input. It significantly reduces computational overhead and improves efficiency compared to traditional methods. Our model generates SVGs up to 604 times faster than optimization-based approaches. To address the limitations of existing SVG datasets and support our research, we introduce ColorSVG-100K, the first large-scale dataset of colored SVGs, comprising 100,000 graphics. This dataset fills the gap in color information for SVG generation models and enhances diversity in model training. Evaluation against state-of-the-art models demonstrates SVGBuilder's superior performance in practical applications, highlighting its efficiency and quality in generating complex SVG graphics.
comment: Project: https://svgbuilder.github.io
♻ ☆ A Finite-Sample Analysis of an Actor-Critic Algorithm for Mean-Variance Optimization in a Discounted MDP
Motivated by applications in risk-sensitive reinforcement learning, we study mean-variance optimization in a discounted reward Markov Decision Process (MDP). Specifically, we analyze a Temporal Difference (TD) learning algorithm with linear function approximation (LFA) for policy evaluation. We derive finite-sample bounds that hold (i) in the mean-squared sense and (ii) with high probability under tail iterate averaging, both with and without regularization. Our bounds exhibit an exponentially decaying dependence on the initial error and a convergence rate of $O(1/t)$ after $t$ iterations. Moreover, for the regularized TD variant, our bound holds for a universal step size. Next, we integrate a Simultaneous Perturbation Stochastic Approximation (SPSA)-based actor update with an LFA critic and establish an $O(n^{-1/4})$ convergence guarantee, where $n$ denotes the iterations of the SPSA-based actor-critic algorithm. These results establish finite-sample theoretical guarantees for risk-sensitive actor-critic methods in reinforcement learning, with a focus on variance as a risk measure.
♻ ☆ A Survey on Spoken Italian Datasets and Corpora
Spoken language datasets are vital for advancing linguistic research, Natural Language Processing, and speech technology. However, resources dedicated to Italian, a linguistically rich and diverse Romance language, remain underexplored compared to major languages like English or Mandarin. This survey provides a comprehensive analysis of 66 spoken Italian datasets, highlighting their characteristics, methodologies, and applications. The datasets are categorized by speech type, source and context, and demographic and linguistic features, with a focus on their utility in fields such as Automatic Speech Recognition, emotion detection, and education. Challenges related to dataset scarcity, representativeness, and accessibility are discussed alongside recommendations for enhancing dataset creation and utilization. The full dataset inventory is publicly accessible via GitHub and archived on Zenodo, serving as a valuable resource for researchers and developers. By addressing current gaps and proposing future directions, this work aims to support the advancement of Italian speech technologies and linguistic research.
comment: Published on IEEE Access Journal on Feb 2025
♻ ☆ Object-Centric World Model for Language-Guided Manipulation
A world model is essential for an agent to predict the future and plan in domains such as autonomous driving and robotics. To achieve this, recent advancements have focused on video generation, which has gained significant attention due to the impressive success of diffusion models. However, these models require substantial computational resources. To address these challenges, we propose a world model leveraging object-centric representation space using slot attention, guided by language instructions. Our model perceives the current state as an object-centric representation and predicts future states in this representation space conditioned on natural language instructions. This approach results in a more compact and computationally efficient model compared to diffusion-based generative alternatives. Furthermore, it flexibly predicts future states based on language instructions, and offers a significant advantage in manipulation tasks where object recognition is crucial. In this paper, we demonstrate that our latent predictive world model surpasses generative world models in visuo-linguo-motor control tasks, achieving superior sample and computation efficiency. We also investigate the generalization performance of the proposed method and explore various strategies for predicting actions using object-centric representations.
♻ ☆ CryptoX : Compositional Reasoning Evaluation of Large Language Models
The compositional reasoning capacity has long been regarded as critical to the generalization and intelligence emergence of large language models LLMs. However, despite numerous reasoning-related benchmarks, the compositional reasoning capacity of LLMs is rarely studied or quantified in the existing benchmarks. In this paper, we introduce CryptoX, an evaluation framework that, for the first time, combines existing benchmarks and cryptographic, to quantify the compositional reasoning capacity of LLMs. Building upon CryptoX, we construct CryptoBench, which integrates these principles into several benchmarks for systematic evaluation. We conduct detailed experiments on widely used open-source and closed-source LLMs using CryptoBench, revealing a huge gap between open-source and closed-source LLMs. We further conduct thorough mechanical interpretability experiments to reveal the inner mechanism of LLMs' compositional reasoning, involving subproblem decomposition, subproblem inference, and summarizing subproblem conclusions. Through analysis based on CryptoBench, we highlight the value of independently studying compositional reasoning and emphasize the need to enhance the compositional reasoning capabilities of LLMs.
♻ ☆ In Context Learning and Reasoning for Symbolic Regression with Large Language Models
Large Language Models (LLMs) are transformer-based machine learning models that have shown remarkable performance in tasks for which they were not explicitly trained. Here, we explore the potential of LLMs to perform symbolic regression -- a machine-learning method for finding simple and accurate equations from datasets. We prompt GPT-4 to suggest expressions from data, which are then optimized and evaluated using external Python tools. These results are fed back to GPT-4, which proposes improved expressions while optimizing for complexity and loss. Using chain-of-thought prompting, we instruct GPT-4 to analyze the data, prior expressions, and the scientific context (expressed in natural language) for each problem before generating new expressions. We evaluated the workflow in rediscovery of five well-known scientific equations from experimental data, and on an additional dataset without a known equation. GPT-4 successfully rediscovered all five equations, and in general, performed better when prompted to use a scratchpad and consider scientific context. We demonstrate how strategic prompting improves the model's performance and how the natural language interface simplifies integrating theory with data. We also observe how theory can sometimes offset noisy data and, in other cases, data can make up for poor context. Although this approach does not outperform established SR programs where target equations are more complex, LLMs can nonetheless iterate toward improved solutions while following instructions and incorporating scientific context in natural language.
♻ ☆ On Distributed Larger-Than-Memory Subset Selection With Pairwise Submodular Functions
Modern datasets span billions of samples, making training on all available data infeasible. Selecting a high quality subset helps in reducing training costs and enhancing model quality. Submodularity, a discrete analogue of convexity, is commonly used for solving such subset selection problems. However, existing algorithms for optimizing submodular functions are sequential, and the prior distributed methods require at least one central machine to fit the target subset in DRAM. At billion datapoint scale, even the subset may not fit a single machine, and the sequential algorithms are prohibitively slow. In this paper, we relax the requirement of having a central machine for the target subset by proposing a novel distributed bounding algorithm with provable approximation guarantees. The algorithm iteratively bounds the minimum and maximum utility values to select high quality points and discard the unimportant ones. When bounding does not find the complete subset, we use a multi-round, partition-based distributed greedy algorithm to identify the remaining subset. We discuss how to implement these algorithms in a distributed data processing framework and empirically analyze different configurations. We find high quality subsets on CIFAR-100 and ImageNet with marginal or no loss in quality compared to centralized methods, and scale to a dataset with 13 billion points.
comment: accepted at MLSys 2025
♻ ☆ A Simple and Effective Reinforcement Learning Method for Text-to-Image Diffusion Fine-tuning
Reinforcement learning (RL)-based fine-tuning has emerged as a powerful approach for aligning diffusion models with black-box objectives. Proximal policy optimization (PPO) is the most popular choice of method for policy optimization. While effective in terms of performance, PPO is highly sensitive to hyper-parameters and involves substantial computational overhead. REINFORCE, on the other hand, mitigates some computational complexities such as high memory overhead and sensitive hyper-parameter tuning, but has suboptimal performance due to high-variance and sample inefficiency. While the variance of the REINFORCE can be reduced by sampling multiple actions per input prompt and using a baseline correction term, it still suffers from sample inefficiency. To address these challenges, we systematically analyze the efficiency-effectiveness trade-off between REINFORCE and PPO, and propose leave-one-out PPO (LOOP), a novel RL for diffusion fine-tuning method. LOOP combines variance reduction techniques from REINFORCE, such as sampling multiple actions per input prompt and a baseline correction term, with the robustness and sample efficiency of PPO via clipping and importance sampling. Our results demonstrate that LOOP effectively improves diffusion models on various black-box objectives, and achieves a better balance between computational efficiency and performance.
♻ ☆ Mixture of Experts for Node Classification
Nodes in the real-world graphs exhibit diverse patterns in numerous aspects, such as degree and homophily. However, most existent node predictors fail to capture a wide range of node patterns or to make predictions based on distinct node patterns, resulting in unsatisfactory classification performance. In this paper, we reveal that different node predictors are good at handling nodes with specific patterns and only apply one node predictor uniformly could lead to suboptimal result. To mitigate this gap, we propose a mixture of experts framework, MoE-NP, for node classification. Specifically, MoE-NP combines a mixture of node predictors and strategically selects models based on node patterns. Experimental results from a range of real-world datasets demonstrate significant performance improvements from MoE-NP.
♻ ☆ Enhancing Ultra High Resolution Remote Sensing Imagery Analysis with ImageRAG
Ultra High Resolution (UHR) remote sensing imagery (RSI) (e.g. 100,000 $\times$ 100,000 pixels or more) poses a significant challenge for current Remote Sensing Multimodal Large Language Models (RSMLLMs). If choose to resize the UHR image to standard input image size, the extensive spatial and contextual information that UHR images contain will be neglected. Otherwise, the original size of these images often exceeds the token limits of standard RSMLLMs, making it difficult to process the entire image and capture long-range dependencies to answer the query based on the abundant visual context. In this paper, we introduce ImageRAG for RS, a training-free framework to address the complexities of analyzing UHR remote sensing imagery. By transforming UHR remote sensing image analysis task to image's long context selection task, we design an innovative image contextual retrieval mechanism based on the Retrieval-Augmented Generation (RAG) technique, denoted as ImageRAG. ImageRAG's core innovation lies in its ability to selectively retrieve and focus on the most relevant portions of the UHR image as visual contexts that pertain to a given query. Fast path and slow path are proposed in this framework to handle this task efficiently and effectively. ImageRAG allows RSMLLMs to manage extensive context and spatial information from UHR RSI, ensuring the analysis is both accurate and efficient.
comment: full paper
♻ ☆ MRGen: Segmentation Data Engine For Underrepresented MRI Modalities
Training medical image segmentation models for rare yet clinically significant imaging modalities is challenging due to the scarcity of annotated data, and manual mask annotations can be costly and labor-intensive to acquire. This paper investigates leveraging generative models to synthesize training data, to train segmentation models for underrepresented modalities, particularly on annotation-scarce MRI. Concretely, our contributions are threefold: (i) we introduce MRGen-DB, a large-scale radiology image-text dataset comprising extensive samples with rich metadata, including modality labels, attributes, regions, and organs information, with a subset having pixelwise mask annotations; (ii) we present MRGen, a diffusion-based data engine for controllable medical image synthesis, conditioned on text prompts and segmentation masks. MRGen can generate realistic images for diverse MRI modalities lacking mask annotations, facilitating segmentation training in low-source domains; (iii) extensive experiments across multiple modalities demonstrate that MRGen significantly improves segmentation performance on unannotated modalities by providing high-quality synthetic data. We believe that our method bridges a critical gap in medical image analysis, extending segmentation capabilities to scenarios that are challenging to acquire manual annotations.
comment: Technical Report; Project Page: https://haoningwu3639.github.io/MRGen/
♻ ☆ DistilDoc: Knowledge Distillation for Visually-Rich Document Applications ICDAR 2024
This work explores knowledge distillation (KD) for visually-rich document (VRD) applications such as document layout analysis (DLA) and document image classification (DIC). While VRD research is dependent on increasingly sophisticated and cumbersome models, the field has neglected to study efficiency via model compression. Here, we design a KD experimentation methodology for more lean, performant models on document understanding (DU) tasks that are integral within larger task pipelines. We carefully selected KD strategies (response-based, feature-based) for distilling knowledge to and from backbones with different architectures (ResNet, ViT, DiT) and capacities (base, small, tiny). We study what affects the teacher-student knowledge gap and find that some methods (tuned vanilla KD, MSE, SimKD with an apt projector) can consistently outperform supervised student training. Furthermore, we design downstream task setups to evaluate covariate shift and the robustness of distilled DLA models on zero-shot layout-aware document visual question answering (DocVQA). DLA-KD experiments result in a large mAP knowledge gap, which unpredictably translates to downstream robustness, accentuating the need to further explore how to efficiently obtain more semantic document layout awareness.
comment: Accepted to ICDAR 2024 (Athens, Greece)
♻ ☆ Distributional Counterfactual Explanations With Optimal Transport
Counterfactual explanations (CE) are the de facto method for providing insights into black-box decision-making models by identifying alternative inputs that lead to different outcomes. However, existing CE approaches, including group and global methods, focus predominantly on specific input modifications, lacking the ability to capture nuanced distributional characteristics that influence model outcomes across the entire input-output spectrum. This paper proposes distributional counterfactual explanation (DCE), shifting focus to the distributional properties of observed and counterfactual data, thus providing broader insights. DCE is particularly beneficial for stakeholders making strategic decisions based on statistical data analysis, as it makes the statistical distribution of the counterfactual resembles the one of the factual when aligning model outputs with a target distribution\textemdash something that the existing CE methods cannot fully achieve. We leverage optimal transport (OT) to formulate a chance-constrained optimization problem, deriving a counterfactual distribution aligned with its factual counterpart, supported by statistical confidence. The efficacy of this approach is demonstrated through experiments, highlighting its potential to provide deeper insights into decision-making models.
♻ ☆ DetectRL: Benchmarking LLM-Generated Text Detection in Real-World Scenarios NeurIPS 2024
Detecting text generated by large language models (LLMs) is of great recent interest. With zero-shot methods like DetectGPT, detection capabilities have reached impressive levels. However, the reliability of existing detectors in real-world applications remains underexplored. In this study, we present a new benchmark, DetectRL, highlighting that even state-of-the-art (SOTA) detection techniques still underperformed in this task. We collected human-written datasets from domains where LLMs are particularly prone to misuse. Using popular LLMs, we generated data that better aligns with real-world applications. Unlike previous studies, we employed heuristic rules to create adversarial LLM-generated text, simulating various prompts usages, human revisions like word substitutions, and writing noises like spelling mistakes. Our development of DetectRL reveals the strengths and limitations of current SOTA detectors. More importantly, we analyzed the potential impact of writing styles, model types, attack methods, the text lengths, and real-world human writing factors on different types of detectors. We believe DetectRL could serve as an effective benchmark for assessing detectors in real-world scenarios, evolving with advanced attack methods, thus providing more stressful evaluation to drive the development of more efficient detectors. Data and code are publicly available at: https://github.com/NLP2CT/DetectRL.
comment: Accepted to NeurIPS 2024 Datasets and Benchmarks Track (Camera-Ready)
♻ ☆ AI Conversational Interviewing: Transforming Surveys with LLMs as Adaptive Interviewers
Traditional methods for eliciting people's opinions face a trade-off between depth and scale: structured surveys enable large-scale data collection but limit respondents' ability to voice their opinions in their own words, while conversational interviews provide deeper insights but are resource-intensive. This study explores the potential of replacing human interviewers with large language models (LLMs) to conduct scalable conversational interviews. Our goal is to assess the performance of AI Conversational Interviewing and to identify opportunities for improvement in a controlled environment. We conducted a small-scale, in-depth study with university students who were randomly assigned to a conversational interview by either AI or human interviewers, both employing identical questionnaires on political topics. Various quantitative and qualitative measures assessed interviewer adherence to guidelines, response quality, participant engagement, and overall interview efficacy. The findings indicate the viability of AI Conversational Interviewing in producing quality data comparable to traditional methods, with the added benefit of scalability. We publish our data and materials for re-use and present specific recommendations for effective implementation.
♻ ☆ A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
Advancements in image segmentation play an integral role within the broad scope of Deep Learning-based Computer Vision. Furthermore, their widespread applicability in critical real-world tasks has resulted in challenges related to the reliability of such algorithms. Hence, uncertainty quantification has been extensively studied within this context, enabling the expression of model ignorance (epistemic uncertainty) or data ambiguity (aleatoric uncertainty) to prevent uninformed decision-making. Due to the rapid adoption of Convolutional Neural Network (CNN)-based segmentation models in high-stake applications, a substantial body of research has been published on this very topic, causing its swift expansion into a distinct field. This work provides a comprehensive overview of probabilistic segmentation, by discussing fundamental concepts of uncertainty quantification, governing advancements in the field as well as the application to various tasks. Moreover, literature on both types of uncertainties trace back to four key applications: (1) to quantify statistical inconsistencies in the annotation process due ambiguous images, (2) correlating prediction error with uncertainty, (3) expanding the model hypothesis space for better generalization, and (4) Active Learning. An extensive discussion follows that includes an overview of utilized datasets for each of the applications and evaluation of the available methods. We also highlight challenges related to architectures, uncertainty quantification methods, standardization and benchmarking, and finally end with recommendations for future work such as methods based on single forward passes and models that appropriately leverage volumetric data.
comment: 20 pages, revised
♻ ☆ Enhancing elusive clues in knowledge learning by contrasting attention of language models AAAI 2025
Causal language models acquire vast amount of knowledge from general text corpus during pretraining, but the efficiency of knowledge learning is known to be unsatisfactory, especially when learning from knowledge-dense and small-sized corpora. The deficiency can come from long-distance dependencies which are hard to capture by language models, and overfitting to co-occurrence patterns and distracting clues in the training text. To address these issues, the paper proposes a method to enhance knowledge learning during language model pretraining, by enhancing elusive but important clues in text discovered by the language model themselves. We found that larger language models pay more attention to non-obvious but important clues, which are often overlooked by smaller language models. Therefore, we can identify these clues by contrasting the attention weights of large and small language models. We use the identified clues as a guide to perform token-dropout data augmentation on the training text, and observed a significant boost in both small and large models' performance in fact memorization. This shows that the behavior contrast between more and less-performant language models contains important clues for knowledge learning, and it can be ``amplified" for a straight-forward improvement in knowledge learning efficiency.
comment: Oral presentation in AAAI 2025
♻ ☆ EVOKE: Elevating Chest X-ray Report Generation via Multi-View Contrastive Learning and Patient-Specific Knowledge
Radiology reports are crucial for planning treatment strategies and facilitating effective doctor-patient communication. However, the manual creation of these reports places a significant burden on radiologists. While automatic radiology report generation presents a promising solution, existing methods often rely on single-view radiographs, which constrain diagnostic accuracy. To address this challenge, we propose \textbf{EVOKE}, a novel chest X-ray report generation framework that incorporates multi-view contrastive learning and patient-specific knowledge. Specifically, we introduce a multi-view contrastive learning method that enhances visual representation by aligning multi-view radiographs with their corresponding report. After that, we present a knowledge-guided report generation module that integrates available patient-specific indications (e.g., symptom descriptions) to trigger the production of accurate and coherent radiology reports. To support research in multi-view report generation, we construct Multi-view CXR and Two-view CXR datasets using publicly available sources. Our proposed EVOKE surpasses recent state-of-the-art methods across multiple datasets, achieving a 2.9\% F\textsubscript{1} RadGraph improvement on MIMIC-CXR, a 7.3\% BLEU-1 improvement on MIMIC-ABN, a 3.1\% BLEU-4 improvement on Multi-view CXR, and an 8.2\% F\textsubscript{1,mic-14} CheXbert improvement on Two-view CXR.
comment: The code is available at https://github.com/mk-runner/EVOKE
♻ ☆ Depth Any Video with Scalable Synthetic Data
Video depth estimation has long been hindered by the scarcity of consistent and scalable ground truth data, leading to inconsistent and unreliable results. In this paper, we introduce Depth Any Video, a model that tackles the challenge through two key innovations. First, we develop a scalable synthetic data pipeline, capturing real-time video depth data from diverse virtual environments, yielding 40,000 video clips of 5-second duration, each with precise depth annotations. Second, we leverage the powerful priors of generative video diffusion models to handle real-world videos effectively, integrating advanced techniques such as rotary position encoding and flow matching to further enhance flexibility and efficiency. Unlike previous models, which are limited to fixed-length video sequences, our approach introduces a novel mixed-duration training strategy that handles videos of varying lengths and performs robustly across different frame rates-even on single frames. At inference, we propose a depth interpolation method that enables our model to infer high-resolution video depth across sequences of up to 150 frames. Our model outperforms all previous generative depth models in terms of spatial accuracy and temporal consistency. The code and model weights are open-sourced.
comment: Project Page: https://depthanyvideo.github.io/
♻ ☆ Puzzle Similarity: A Perceptually-guided Cross-Reference Metric for Artifact Detection in 3D Scene Reconstructions
Modern reconstruction techniques can effectively model complex 3D scenes from sparse 2D views. However, automatically assessing the quality of novel views and identifying artifacts is challenging due to the lack of ground truth images and the limitations of No-Reference image metrics in predicting reliable artifact maps. The absence of such metrics hinders the assessment of the quality of novel views and limits the adoption of post-processing techniques, such as inpainting, to enhance reconstruction quality. To tackle this, recent work has established a new category of metrics (Cross-Reference), predicting image quality solely by leveraging context from alternate viewpoint captures (arXiv:2404.14409). In this work, we propose a new Cross-Reference metric, Puzzle Similarity, which is designed to localize artifacts in novel views. Our approach utilizes image patch statistics from the input views to establish a scene-specific distribution, later used to identify poorly reconstructed regions in the novel views. Given the lack of good measures to evaluate Cross-Reference methods in the context of 3D reconstruction, we collected a novel human-labeled dataset of artifact and distortion maps in unseen reconstructed views. Through this dataset, we demonstrate that our method achieves state-of-the-art localization of artifacts in novel views, correlating with human assessment, even without aligned references. We can leverage our new metric to enhance applications like automatic image restoration, guided acquisition, or 3D reconstruction from sparse inputs. Find the project page at https://nihermann.github.io/puzzlesim/ .
♻ ☆ Beyond the Eye: A Relational Model for Early Dementia Detection Using Retinal OCTA Images
Early detection of dementia, such as Alzheimer's disease (AD) or mild cognitive impairment (MCI), is essential to enable timely intervention and potential treatment. Accurate detection of AD/MCI is challenging due to the high complexity, cost, and often invasive nature of current diagnostic techniques, which limit their suitability for large-scale population screening. Given the shared embryological origins and physiological characteristics of the retina and brain, retinal imaging is emerging as a potentially rapid and cost-effective alternative for the identification of individuals with or at high risk of AD. In this paper, we present a novel PolarNet+ that uses retinal optical coherence tomography angiography (OCTA) to discriminate early-onset AD (EOAD) and MCI subjects from controls. Our method first maps OCTA images from Cartesian coordinates to polar coordinates, allowing approximate sub-region calculation to implement the clinician-friendly early treatment of diabetic retinopathy study (ETDRS) grid analysis. We then introduce a multi-view module to serialize and analyze the images along three dimensions for comprehensive, clinically useful information extraction. Finally, we abstract the sequence embedding into a graph, transforming the detection task into a general graph classification problem. A regional relationship module is applied after the multi-view module to excavate the relationship between the sub-regions. Such regional relationship analyses validate known eye-brain links and reveal new discriminative patterns.
♻ ☆ SePer: Measure Retrieval Utility Through The Lens Of Semantic Perplexity Reduction ICLR 2025
Large Language Models (LLMs) have demonstrated improved generation performance by incorporating externally retrieved knowledge, a process known as retrieval-augmented generation (RAG). Despite the potential of this approach, existing studies evaluate RAG effectiveness by 1) assessing retrieval and generation components jointly, which obscures retrieval's distinct contribution, or 2) examining retrievers using traditional metrics such as NDCG, which creates a gap in understanding retrieval's true utility in the overall generation process. To address the above limitations, in this work, we introduce an automatic evaluation method that measures retrieval quality through the lens of information gain within the RAG framework. Specifically, we propose Semantic Perplexity (SePer), a metric that captures the LLM's internal belief about the correctness of the retrieved information. We quantify the utility of retrieval by the extent to which it reduces semantic perplexity post-retrieval. Extensive experiments demonstrate that SePer not only aligns closely with human preferences but also offers a more precise and efficient evaluation of retrieval utility across diverse RAG scenarios.
comment: ICLR 2025 Spotlight
♻ ☆ Can open source large language models be used for tumor documentation in Germany? -- An evaluation on urological doctors' notes
Tumor documentation in Germany is largely done manually, requiring reading patient records and entering data into structured databases. Large language models (LLMs) could potentially enhance this process by improving efficiency and reliability. This evaluation tests eleven different open source LLMs with sizes ranging from 1-70 billion model parameters on three basic tasks of the tumor documentation process: identifying tumor diagnoses, assigning ICD-10 codes, and extracting the date of first diagnosis. For evaluating the LLMs on these tasks, a dataset of annotated text snippets based on anonymized doctors' notes from urology was prepared. Different prompting strategies were used to investigate the effect of the number of examples in few-shot prompting and to explore the capabilities of the LLMs in general. The models Llama 3.1 8B, Mistral 7B, and Mistral NeMo 12 B performed comparably well in the tasks. Models with less extensive training data or having fewer than 7 billion parameters showed notably lower performance, while larger models did not display performance gains. Examples from a different medical domain than urology could also improve the outcome in few-shot prompting, which demonstrates the ability of LLMs to handle tasks needed for tumor documentation. Open source LLMs show a strong potential for automating tumor documentation. Models from 7-12 billion parameters could offer an optimal balance between performance and resource efficiency. With tailored fine-tuning and well-designed prompting, these models might become important tools for clinical documentation in the future. The code for the evaluation is available from https://github.com/stefan-m-lenz/UroLlmEval. We also release the dataset as a new valuable resource that addresses the shortage of authentic and easily accessible benchmarks in German-language medical NLP.
comment: 48 pages, 5 figures
♻ ☆ QUCE: The Minimisation and Quantification of Path-Based Uncertainty for Generative Counterfactual Explanations ICDM 2024
Deep Neural Networks (DNNs) stand out as one of the most prominent approaches within the Machine Learning (ML) domain. The efficacy of DNNs has surged alongside recent increases in computational capacity, allowing these approaches to scale to significant complexities for addressing predictive challenges in big data. However, as the complexity of DNN models rises, interpretability diminishes. In response to this challenge, explainable models such as Adversarial Gradient Integration (AGI) leverage path-based gradients provided by DNNs to elucidate their decisions. Yet the performance of path-based explainers can be compromised when gradients exhibit irregularities during out-of-distribution path traversal. In this context, we introduce Quantified Uncertainty Counterfactual Explanations (QUCE), a method designed to mitigate out-of-distribution traversal by minimizing path uncertainty. QUCE not only quantifies uncertainty when presenting explanations but also generates more certain counterfactual examples. We showcase the performance of the QUCE method by comparing it with competing methods for both path-based explanations and generative counterfactual examples.
comment: Final version published in ICDM 2024, International Conference on Data Mining
♻ ☆ ANLS* -- A Universal Document Processing Metric for Generative Large Language Models
Traditionally, discriminative models have been the predominant choice for tasks like document classification and information extraction. These models make predictions that fall into a limited number of predefined classes, facilitating a binary true or false evaluation and enabling the direct calculation of metrics such as the F1 score. However, recent advancements in generative large language models (GLLMs) have prompted a shift in the field due to their enhanced zero-shot capabilities, which eliminate the need for a downstream dataset and computationally expensive fine-tuning. However, evaluating GLLMs presents a challenge as the binary true or false evaluation used for discriminative models is not applicable to the predictions made by GLLMs. This paper introduces a new metric for generative models called ANLS* for evaluating a wide variety of tasks, including information extraction and classification tasks. The ANLS* metric extends existing ANLS metrics as a drop-in-replacement and is still compatible with previously reported ANLS scores. An evaluation of 7 different datasets, and more than 20 different GLLMs together with 3 different prompting methods using the ANLS* metric is also provided, demonstrating the importance of the proposed metric. We also benchmark a novel approach to generate prompts for documents, called SFT, against other prompting techniques such as LATIN. In almost all cases, SFT outperforms other techniques and improves the state-of-the-art, sometimes by as much as $10$ percentage points. Sources are available at https://github.com/deepopinion/anls_star_metric
♻ ☆ Bayesian WeakS-to-Strong from Text Classification to Generation ICLR2025
Advances in large language models raise the question of how alignment techniques will adapt as models become increasingly complex and humans will only be able to supervise them weakly. Weak-to-Strong mimics such a scenario where weak model supervision attempts to harness the full capabilities of a much stronger model. This work extends Weak-to-Strong to WeakS-to-Strong by exploring an ensemble of weak models which simulate the variability in human opinions. Confidence scores are estimated using a Bayesian approach to guide the WeakS-to-Strong generalization. Furthermore, we extend the application of WeakS-to-Strong from text classification tasks to text generation tasks where more advanced strategies are investigated for supervision. Moreover, direct preference optimization is applied to advance the student model's preference learning, beyond the basic learning framework of teacher forcing. Results demonstrate the effectiveness of the proposed approach for the reliability of a strong student model, showing potential for superalignment.
comment: Accepted by ICLR2025
♻ ☆ Enhancing LLM Reliability via Explicit Knowledge Boundary Modeling
Large language models (LLMs) frequently hallucinate due to misaligned self-awareness, generating erroneous outputs when addressing queries beyond their knowledge boundaries. While existing approaches mitigate hallucinations via uncertainty estimation or query rejection, they suffer from computational inefficiency or sacrificed helpfulness. To address these issues, we propose the Explicit Knowledge Boundary Modeling (EKBM) framework, integrating fast and slow reasoning systems to harmonize reliability and usability. The framework first employs a fast-thinking model to generate confidence-labeled responses, enabling immediate use of high-confidence outputs. For uncertain predictions, a slow refinement model conducts targeted reasoning to improve accuracy. To align model behavior with our proposed object, we propose a hybrid training pipeline, enhancing self-awareness without degrading task performance. Evaluations on dialogue state tracking tasks demonstrate that EKBM achieves superior model reliability over uncertainty-based baselines. Further analysis reveals that refinement substantially boosts accuracy while maintaining low computational overhead. Our work establishes a scalable paradigm for advancing LLM reliability and balancing accuracy and practical utility in error-sensitive applications.
♻ ☆ A Comprehensive Survey on Enterprise Financial Risk Analysis from Big Data Perspective
Enterprise financial risk analysis aims at predicting the future financial risk of enterprises. Due to its wide and significant application, enterprise financial risk analysis has always been the core research topic in the fields of Finance and Management. Based on advanced computer science and artificial intelligence technologies, enterprise risk analysis research is experiencing rapid developments and making significant progress. Therefore, it is both necessary and challenging to comprehensively review the relevant studies. Although there are already some valuable and impressive surveys on enterprise risk analysis from the perspective of Finance and Management, these surveys introduce approaches in a relatively isolated way and lack recent advances in enterprise financial risk analysis. In contrast, this paper attempts to provide a systematic literature survey of enterprise risk analysis approaches from Big Data perspective, which reviews more than 250 representative articles in the past almost 50 years (from 1968 to 2023). To the best of our knowledge, this is the first and only survey work on enterprise financial risk from Big Data perspective. Specifically, this survey connects and systematizes the existing enterprise financial risk studies, i.e. to summarize and interpret the problems, methods, and spotlights in a comprehensive way. In particular, we first introduce the issues of enterprise financial risks in terms of their types,granularity, intelligence, and evaluation metrics, and summarize the corresponding representative works. Then, we compare the analysis methods used to learn enterprise financial risk, and finally summarize the spotlights of the most representative works. Our goal is to clarify current cutting-edge research and its possible future directions to model enterprise risk, aiming to fully understand the mechanisms of enterprise risk generation and contagion.
♻ ☆ Interactive-KBQA: Multi-Turn Interactions for Knowledge Base Question Answering with Large Language Models ACL 2024
This study explores the realm of knowledge base question answering (KBQA). KBQA is considered a challenging task, particularly in parsing intricate questions into executable logical forms. Traditional semantic parsing (SP)-based methods require extensive data annotations, which result in significant costs. Recently, the advent of few-shot in-context learning, powered by large language models (LLMs), has showcased promising capabilities. However, fully leveraging LLMs to parse questions into logical forms in low-resource scenarios poses a substantial challenge. To tackle these hurdles, we introduce Interactive-KBQA, a framework designed to generate logical forms through direct interaction with knowledge bases (KBs). Within this framework, we have developed three generic APIs for KB interaction. For each category of complex question, we devised exemplars to guide LLMs through the reasoning processes. Our method achieves competitive results on the WebQuestionsSP, ComplexWebQuestions, KQA Pro, and MetaQA datasets with a minimal number of examples (shots). Importantly, our approach supports manual intervention, allowing for the iterative refinement of LLM outputs. By annotating a dataset with step-wise reasoning processes, we showcase our model's adaptability and highlight its potential for contributing significant enhancements to the field.
comment: This work has been accepted by the ACL 2024 main conference. Code and data are available at: https://github.com/JimXiongGM/Interactive-KBQA
♻ ☆ Derivation of Output Correlation Inferences for Multi-Output (aka Multi-Task) Gaussian Process
Gaussian process (GP) is arguably one of the most widely used machine learning algorithms in practice. One of its prominent applications is Bayesian optimization (BO). Although the vanilla GP itself is already a powerful tool for BO, it is often beneficial to be able to consider the dependencies of multiple outputs. To do so, Multi-task GP (MTGP) is formulated, but it is not trivial to fully understand the derivations of its formulations and their gradients from the previous literature. This paper serves friendly derivations of the MTGP formulations and their gradients.
♻ ☆ Large Language Model Enhanced Knowledge Representation Learning: A Survey
Knowledge Representation Learning (KRL) is crucial for enabling applications of symbolic knowledge from Knowledge Graphs (KGs) to downstream tasks by projecting knowledge facts into vector spaces. Despite their effectiveness in modeling KG structural information, KRL methods are suffering from the sparseness of KGs. The rise of Large Language Models (LLMs) built on the Transformer architecture presents promising opportunities for enhancing KRL by incorporating textual information to address information sparsity in KGs. LLM-enhanced KRL methods, including three key approaches, encoder-based methods that leverage detailed contextual information, encoder-decoder-based methods that utilize a unified Seq2Seq model for comprehensive encoding and decoding, and decoder-based methods that utilize extensive knowledge from large corpora, have significantly advanced the effectiveness and generalization of KRL in addressing a wide range of downstream tasks. This work provides a broad overview of downstream tasks while simultaneously identifying emerging research directions in these evolving domains.
♻ ☆ Uncovering Hidden Connections: Iterative Search and Reasoning for Video-grounded Dialog
In contrast to conventional visual question answering, video-grounded dialog necessitates a profound understanding of both dialog history and video content for accurate response generation. Despite commendable progress made by existing approaches, they still face the challenges of incrementally understanding complex dialog history and assimilating video information. In response to these challenges, we present an iterative search and reasoning framework, which consists of a textual encoder, a visual encoder, and a generator. Specifically, we devise a path search and aggregation strategy in the textual encoder, mining core cues from dialog history that are pivotal to understanding the posed questions. Concurrently, our visual encoder harnesses an iterative reasoning network to extract and emphasize critical visual markers from videos, enhancing the depth of visual comprehension. Finally, we utilize the pre-trained GPT-2 model as our answer generator to decode the mined hidden clues into coherent and contextualized answers. Extensive experiments on three public datasets demonstrate the effectiveness and generalizability of our proposed framework.
♻ ☆ On the Learn-to-Optimize Capabilities of Transformers in In-Context Sparse Recovery
An intriguing property of the Transformer is its ability to perform in-context learning (ICL), where the Transformer can solve different inference tasks without parameter updating based on the contextual information provided by the corresponding input-output demonstration pairs. It has been theoretically proved that ICL is enabled by the capability of Transformers to perform gradient-descent algorithms (Von Oswald et al., 2023a; Bai et al., 2024). This work takes a step further and shows that Transformers can perform learning-to-optimize (L2O) algorithms. Specifically, for the ICL sparse recovery (formulated as LASSO) tasks, we show that a K-layer Transformer can perform an L2O algorithm with a provable convergence rate linear in K. This provides a new perspective explaining the superior ICL capability of Transformers, even with only a few layers, which cannot be achieved by the standard gradient-descent algorithms. Moreover, unlike the conventional L2O algorithms that require the measurement matrix involved in training to match that in testing, the trained Transformer is able to solve sparse recovery problems generated with different measurement matrices. Besides, Transformers as an L2O algorithm can leverage structural information embedded in the training tasks to accelerate its convergence during ICL, and generalize across different lengths of demonstration pairs, where conventional L2O algorithms typically struggle or fail. Such theoretical findings are supported by our experimental results.
♻ ☆ Chain of Thoughtlessness? An Analysis of CoT in Planning NeurIPS 2024
Large language model (LLM) performance on reasoning problems typically does not generalize out of distribution. Previous work has claimed that this can be mitigated with chain of thought prompting-a method of demonstrating solution procedures-with the intuition that it is possible to in-context teach an LLM an algorithm for solving the problem. This paper presents a case study of chain of thought on problems from Blocksworld, a classical planning domain, and examines the performance of two state-of-the-art LLMs across two axes: generality of examples given in prompt, and complexity of problems queried with each prompt. While our problems are very simple, we only find meaningful performance improvements from chain of thought prompts when those prompts are exceedingly specific to their problem class, and that those improvements quickly deteriorate as the size n of the query-specified stack grows past the size of stacks shown in the examples. We also create scalable variants of three domains commonly studied in previous CoT papers and demonstrate the existence of similar failure modes. Our results hint that, contrary to previous claims in the literature, CoT's performance improvements do not stem from the model learning general algorithmic procedures via demonstrations but depend on carefully engineering highly problem specific prompts. This spotlights drawbacks of chain of thought, especially the sharp tradeoff between possible performance gains and the amount of human labor necessary to generate examples with correct reasoning traces.
comment: NeurIPS 2024
♻ ☆ Overcoming Data and Model Heterogeneities in Decentralized Federated Learning via Synthetic Anchors ICML 2024
Conventional Federated Learning (FL) involves collaborative training of a global model while maintaining user data privacy. One of its branches, decentralized FL, is a serverless network that allows clients to own and optimize different local models separately, which results in saving management and communication resources. Despite the promising advancements in decentralized FL, it may reduce model generalizability due to lacking a global model. In this scenario, managing data and model heterogeneity among clients becomes a crucial problem, which poses a unique challenge that must be overcome: How can every client's local model learn generalizable representation in a decentralized manner? To address this challenge, we propose a novel Decentralized FL technique by introducing Synthetic Anchors, dubbed as DeSA. Based on the theory of domain adaptation and Knowledge Distillation (KD), we theoretically and empirically show that synthesizing global anchors based on raw data distribution facilitates mutual knowledge transfer. We further design two effective regularization terms for local training: 1) REG loss that regularizes the distribution of the client's latent embedding with the anchors and 2) KD loss that enables clients to learn from others. Through extensive experiments on diverse client data distributions, we showcase the effectiveness of DeSA in enhancing both inter- and intra-domain accuracy of each client.
comment: Paper Accepted at ICML 2024, 23 pages
♻ ☆ Are Small Language Models Ready to Compete with Large Language Models for Practical Applications? NAACL
The rapid rise of Language Models (LMs) has expanded their use in several applications. Yet, due to constraints of model size, associated cost, or proprietary restrictions, utilizing state-of-the-art (SOTA) LLMs is not always feasible. With open, smaller LMs emerging, more applications can leverage their capabilities, but selecting the right LM can be challenging as smaller LMs do not perform well universally. This work tries to bridge this gap by proposing a framework to experimentally evaluate small, open LMs in practical settings through measuring semantic correctness of outputs across three practical aspects: task types, application domains, and reasoning types, using diverse prompt styles. It also conducts an in-depth comparison of 10 small, open LMs to identify the best LM and prompt style depending on specific application requirements using the proposed framework. We also show that if selected appropriately, they can outperform SOTA LLMs like DeepSeek-v2, GPT-4o, GPT-4o-mini, Gemini-1.5-Pro, and even compete with GPT-4o.
comment: Accepted at The Fifth Workshop on Trustworthy Natural Language Processing (TrustNLP 2025) in Annual Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics (NAACL), 2025. 8 pages + references + Appendix
♻ ☆ Knowledge Entropy Decay during Language Model Pretraining Hinders New Knowledge Acquisition ICLR 2025
In this work, we investigate how a model's tendency to broadly integrate its parametric knowledge evolves throughout pretraining, and how this behavior affects overall performance, particularly in terms of knowledge acquisition and forgetting. We introduce the concept of knowledge entropy, which quantifies the range of memory sources the model engages with; high knowledge entropy indicates that the model utilizes a wide range of memory sources, while low knowledge entropy suggests reliance on specific sources with greater certainty. Our analysis reveals a consistent decline in knowledge entropy as pretraining advances. We also find that the decline is closely associated with a reduction in the model's ability to acquire and retain knowledge, leading us to conclude that diminishing knowledge entropy (smaller number of active memory sources) impairs the model's knowledge acquisition and retention capabilities. We find further support for this by demonstrating that increasing the activity of inactive memory sources enhances the model's capacity for knowledge acquisition and retention.
comment: ICLR 2025, Oral
♻ ☆ ByteCheckpoint: A Unified Checkpointing System for Large Foundation Model Development
Checkpointing to preserve training states is crucial during the development of Large Foundation Models (LFMs), for training resumption upon various failures or changes in GPU resources and parallelism configurations. In addition, saved checkpoints are dispatched to evaluation tasks or transferred across different training stages (e.g., from pre-training to post-training). All these scenarios require resharding distributed checkpoints from one parallelism to another. In production environments, different LFMs are trained with various frameworks and storage backends, depending on model sizes and training scales. A high-performance checkpointing system is needed to enable efficient checkpoint management at scale throughout the lifecycle of LFM development. We introduce ByteCheckpoint, an industrial-grade checkpointing system for large-scale LFM training. ByteCheckpoint features: a parallelism-agnostic checkpoint representation that enables efficient load-time checkpoint resharding; a generic checkpoint saving/loading workflow to accommodate multiple training frameworks and support different storage backends; full-stack optimizations to ensure high I/O efficiency and scalability; a suite of monitoring tools to streamline large-scale performance analysis and bottleneck detection. Compared to existing open-source checkpointing systems [52, 58], ByteCheckpoint significantly reduces runtime checkpoint stalls, achieving an average reduction of 54.20x. For saving and loading times, ByteCheckpoint achieves improvements of up to 9.96x and 8.80x, respectively.
♻ ☆ Balancing Content Size in RAG-Text2SQL System
Large Language Models (LLMs) have emerged as a promising solution for converting natural language queries into SQL commands, enabling seamless database interaction. However, these Text-to-SQL (Text2SQL) systems face inherent limitations, hallucinations, outdated knowledge, and untraceable reasoning. To address these challenges, the integration of retrieval-augmented generation (RAG) with Text2SQL models has gained traction. RAG serves as a retrieval mechanism, providing essential contextual information, such as table schemas and metadata, to enhance the query generation process. Despite their potential, RAG + Text2SQL systems are susceptible to the quality and size of retrieved documents. While richer document content can improve schema relevance and retrieval accuracy, it also introduces noise, increasing the risk of hallucinations and reducing query fidelity as the prompt size of the Text2SQL model increases. This research investigates the nuanced trade-off between document size and quality, aiming to strike a balance that optimizes system performance. Key thresholds are identified where performance degradation occurs, along with actionable strategies to mitigate these challenges. Additionally, we explore the phenomenon of hallucinations in Text2SQL models, emphasizing the critical role of curated document presentation in minimizing errors. Our findings provide a roadmap for enhancing the robustness of RAG + Text2SQL systems, offering practical insights for real-world applications.
♻ ☆ HumanVBench: Exploring Human-Centric Video Understanding Capabilities of MLLMs with Synthetic Benchmark Data
In the domain of Multimodal Large Language Models (MLLMs), achieving human-centric video understanding remains a formidable challenge. Existing benchmarks primarily emphasize object and action recognition, often neglecting the intricate nuances of human emotions, behaviors, and speech-visual alignment within video content. We present HumanVBench, an innovative benchmark meticulously crafted to bridge these gaps in the evaluation of video MLLMs. HumanVBench comprises 16 carefully designed tasks that explore two primary dimensions: inner emotion and outer manifestations, spanning static and dynamic, basic and complex, as well as single-modal and cross-modal aspects. With two advanced automated pipelines for video annotation and distractor-included QA generation, HumanVBench utilizes diverse state-of-the-art (SOTA) techniques to streamline benchmark data synthesis and quality assessment, minimizing human annotation dependency tailored to human-centric multimodal attributes. A comprehensive evaluation across 22 SOTA video MLLMs reveals notable limitations in current performance, especially in cross-modal and emotion perception, underscoring the necessity for further refinement toward achieving more human-like understanding. HumanVBench is open-sourced to facilitate future advancements and real-world applications in video MLLMs.
comment: 22 pages, 23 figures, 7 tables
♻ ☆ Intelligent logistics management robot path planning algorithm integrating transformer and GCN network
This research delves into advanced route optimization for robots in smart logistics, leveraging a fusion of Transformer architectures, Graph Neural Networks (GNNs), and Generative Adversarial Networks (GANs). The approach utilizes a graph-based representation encompassing geographical data, cargo allocation, and robot dynamics, addressing both spatial and resource limitations to refine route efficiency. Through extensive testing with authentic logistics datasets, the proposed method achieves notable improvements, including a 15% reduction in travel distance, a 20% boost in time efficiency, and a 10% decrease in energy consumption. These findings highlight the algorithm's effectiveness, promoting enhanced performance in intelligent logistics operations.
comment: 21 pages
♻ ☆ A Real-time Multimodal Transformer Neural Network-powered Wildfire Forecasting System
Due to climate change, the extreme wildfire has become one of the most dangerous natural hazards to human civilization. Even though, some wildfires may be initially caused by human activity, but the spread of wildfires is mainly determined by environmental factors, for examples, (1) weather conditions such as temperature, wind direction and intensity, and moisture levels; (2) the amount and types of dry vegetation in a local area, and (3) topographic or local terrian conditions, which affects how much rain an area gets and how fire dynamics will be constrained or faciliated. Thus, to accurately forecast wildfire occurrence has become one of most urgent and taunting environmental challenges in global scale. In this work, we developed a real-time Multimodal Transformer Neural Network Machine Learning model that combines several advanced artificial intelligence techniques and statistical methods to practically forecast the occurrence of wildfire at the precise location in real time, which not only utilizes large scale data information such as hourly weather forecasting data, but also takes into account small scale topographical data such as local terrain condition and local vegetation conditions collecting from Google Earth images to determine the probabilities of wildfire occurrence location at small scale as well as their timing synchronized with weather forecast information. By using the wildfire data in the United States from 1992 to 2015 to train the multimodal transformer neural network, it can predict the probabilities of wildfire occurrence according to the real-time weather forecast and the synchronized Google Earth image data to provide the wildfire occurrence probability in any small location ($100m^2$) within 24 hours ahead.
♻ ☆ Cumulative Reasoning with Large Language Models
Recent advancements in large language models (LLMs) have shown remarkable progress, yet their ability to solve complex problems remains limited. In this work, we introduce Cumulative Reasoning (CR), an approach that utilizes LLMs cumulatively and iteratively, mirroring human thought processes for problem-solving. CR decomposes tasks into smaller, manageable components and leverages previous propositions for effective composition, significantly enhancing problem-solving capabilities. We demonstrate CR's advantage through several complex reasoning tasks: it outperforms existing methods in logical inference tasks with up to a 9.3% improvement, achieving 98.04% accuracy on the curated FOLIO wiki dataset. In the Game of 24, it achieves 98% accuracy, marking a 24% improvement over the prior state-of-the-art. In solving MATH problems, CR achieves a 4.2% increase from previous methods and a 43% relative improvement in the most challenging level 5 problems. When incorporating a code environment with CR, we further harness LLMs' reasoning capabilities and outperform the Program of Thought (PoT) method by 38.8%. The code is available at https://github.com/iiis-ai/cumulative-reasoning.
♻ ☆ Generative Models in Decision Making: A Survey
In recent years, the exceptional performance of generative models in generative tasks has sparked significant interest in their integration into decision-making processes. Due to their ability to handle complex data distributions and their strong model capacity, generative models can be effectively incorporated into decision-making systems by generating trajectories that guide agents toward high-reward state-action regions or intermediate sub-goals. This paper presents a comprehensive review of the application of generative models in decision-making tasks. We classify seven fundamental types of generative models: energy-based models, generative adversarial networks, variational autoencoders, normalizing flows, diffusion models, generative flow networks, and autoregressive models. Regarding their applications, we categorize their functions into three main roles: controllers, modelers and optimizers, and discuss how each role contributes to decision-making. Furthermore, we examine the deployment of these models across five critical real-world decision-making scenarios. Finally, we summarize the strengths and limitations of current approaches and propose three key directions for advancing next-generation generative directive models: high-performance algorithms, large-scale generalized decision-making models, and self-evolving and adaptive models.
comment: Project page:https://github.com/xyshao23/Awesome-Generative-Models-for-Decision-Making-Taxonomy
♻ ☆ The Logic of Counterfactuals and the Epistemology of Causal Inference
The 2021 Nobel Prize in Economics recognized an epistemology of causal inference based on the Rubin causal model (Rubin 1974), which merits broader attention in philosophy. This model, in fact, presupposes a logical principle of counterfactuals, Conditional Excluded Middle (CEM), the locus of a pivotal debate between Stalnaker (1968) and Lewis (1973) on the semantics of counterfactuals. Proponents of CEM should recognize that this connection points to a new argument for CEM -- a Quine-Putnam indispensability argument grounded in the Nobel-winning applications of the Rubin model in health and social sciences. To advance the dialectic, I challenge this argument with an updated Rubin causal model that retains its successes while dispensing with CEM. This novel approach combines the strengths of the Rubin causal model and a causal model familiar in philosophy, the causal Bayes net. The takeaway: deductive logic and inductive inference, often studied in isolation, are deeply interconnected.
♻ ☆ Federated Learning on Virtual Heterogeneous Data with Local-global Distillation
While Federated Learning (FL) is gaining popularity for training machine learning models in a decentralized fashion, numerous challenges persist, such as asynchronization, computational expenses, data heterogeneity, and gradient and membership privacy attacks. Lately, dataset distillation has emerged as a promising solution for addressing the aforementioned challenges by generating a compact synthetic dataset that preserves a model's training efficacy. However, we discover that using distilled local datasets can amplify the heterogeneity issue in FL. To address this, we propose Federated Learning on Virtual Heterogeneous Data with Local-Global Dataset Distillation (FedLGD), where we seamlessly integrate dataset distillation algorithms into FL pipeline and train FL using a smaller synthetic dataset (referred as virtual data). Specifically, to harmonize the domain shifts, we propose iterative distribution matching to inpaint global information to local virtual data and use federated gradient matching to distill global virtual data that serve as anchor points to rectify heterogeneous local training, without compromising data privacy. We experiment on both benchmark and real-world datasets that contain heterogeneous data from different sources, and further scale up to an FL scenario that contains a large number of clients with heterogeneous and class-imbalanced data. Our method outperforms state-of-the-art heterogeneous FL algorithms under various settings. Our code is available at https://github.com/ubc-tea/FedLGD.
♻ ☆ RandLoRA: Full-rank parameter-efficient fine-tuning of large models ICLR
Low-Rank Adaptation (LoRA) and its variants have shown impressive results in reducing the number of trainable parameters and memory requirements of large transformer networks while maintaining fine-tuning performance. The low-rank nature of the weight update inherently limits the representation power of fine-tuned models, however, thus potentially compromising performance on complex tasks. This raises a critical question: when a performance gap between LoRA and standard fine-tuning is observed, is it due to the reduced number of trainable parameters or the rank deficiency? This paper aims to answer this question by introducing RandLoRA, a parameter-efficient method that performs full-rank updates using a learned linear combinations of low-rank, non-trainable random matrices. Our method limits the number of trainable parameters by restricting optimization to diagonal scaling matrices applied to the fixed random matrices. This allows us to effectively overcome the low-rank limitations while maintaining parameter and memory efficiency during training. Through extensive experimentation across vision, language, and vision-language benchmarks, we systematically evaluate the limitations of LoRA and existing random basis methods. Our findings reveal that full-rank updates are beneficial across vision and language tasks individually, and even more so for vision-language tasks, where RandLoRA significantly reduces -- and sometimes eliminates -- the performance gap between standard fine-tuning and LoRA, demonstrating its efficacy.
comment: To appear at the International Conference on Learning Representations (ICLR) 2025
♻ ☆ ExBody2: Advanced Expressive Humanoid Whole-Body Control
This paper tackles the challenge of enabling real-world humanoid robots to perform expressive and dynamic whole-body motions while maintaining overall stability and robustness. We propose Advanced Expressive Whole-Body Control (Exbody2), a method for producing whole-body tracking controllers that are trained on both human motion capture and simulated data and then transferred to the real world. We introduce a technique for decoupling the velocity tracking of the entire body from tracking body landmarks. We use a teacher policy to produce intermediate data that better conforms to the robot's kinematics and to automatically filter away infeasible whole-body motions. This two-step approach enabled us to produce a student policy that can be deployed on the robot that can walk, crouch, and dance. We also provide insight into the trade-off between versatility and the tracking performance on specific motions. We observed significant improvement of tracking performance after fine-tuning on a small amount of data, at the expense of the others.
comment: website: https://exbody2.github.io
♻ ☆ COAP: Memory-Efficient Training with Correlation-Aware Gradient Projection CVPR 2025
Training large-scale neural networks in vision, and multimodal domains demands substantial memory resources, primarily due to the storage of optimizer states. While LoRA, a popular parameter-efficient method, reduces memory usage, it often suffers from suboptimal performance due to the constraints of low-rank updates. Low-rank gradient projection methods (e.g., GaLore, Flora) reduce optimizer memory by projecting gradients and moment estimates into low-rank spaces via singular value decomposition or random projection. However, they fail to account for inter-projection correlation, causing performance degradation, and their projection strategies often incur high computational costs. In this paper, we present COAP (Correlation-Aware Gradient Projection), a memory-efficient method that minimizes computational overhead while maintaining training performance. Evaluated across various vision, language, and multimodal tasks, COAP outperforms existing methods in both training speed and model performance. For LLaMA-1B, it reduces optimizer memory by 61% with only 2% additional time cost, achieving the same PPL as AdamW. With 8-bit quantization, COAP cuts optimizer memory by 81% and achieves 4x speedup over GaLore for LLaVA-v1.5-7B fine-tuning, while delivering higher accuracy.
comment: CVPR 2025
♻ ☆ Synthio: Augmenting Small-Scale Audio Classification Datasets with Synthetic Data ICLR 2025
We present Synthio, a novel approach for augmenting small-scale audio classification datasets with synthetic data. Our goal is to improve audio classification accuracy with limited labeled data. Traditional data augmentation techniques, which apply artificial transformations (e.g., adding random noise or masking segments), struggle to create data that captures the true diversity present in real-world audios. To address this shortcoming, we propose to augment the dataset with synthetic audio generated from text-to-audio (T2A) diffusion models. However, synthesizing effective augmentations is challenging because not only should the generated data be acoustically consistent with the underlying small-scale dataset, but they should also have sufficient compositional diversity. To overcome the first challenge, we align the generations of the T2A model with the small-scale dataset using preference optimization. This ensures that the acoustic characteristics of the generated data remain consistent with the small-scale dataset. To address the second challenge, we propose a novel caption generation technique that leverages the reasoning capabilities of Large Language Models to (1) generate diverse and meaningful audio captions and (2) iteratively refine their quality. The generated captions are then used to prompt the aligned T2A model. We extensively evaluate Synthio on ten datasets and four simulated limited-data settings. Results indicate our method consistently outperforms all baselines by 0.1%-39% using a T2A model trained only on weakly-captioned AudioSet.
comment: Accepted at ICLR 2025. Code and Checkpoints available here: https://github.com/Sreyan88/Synthio
♻ ☆ Robust Deterministic Policy Gradient for Disturbance Attenuation and Its Application to Quadrotor Control
Practical control systems pose significant challenges in identifying optimal control policies due to uncertainties in the system model and external disturbances. While $H_\infty$ control techniques are commonly used to design robust controllers that mitigate the effects of disturbances, these methods often require complex and computationally intensive calculations. To address this issue, this paper proposes a reinforcement learning algorithm called Robust Deterministic Policy Gradient (RDPG), which formulates the $H_\infty$ control problem as a two-player zero-sum dynamic game. In this formulation, one player (the user) aims to minimize the cost, while the other player (the adversary) seeks to maximize it. We then employ deterministic policy gradient (DPG) and its deep reinforcement learning counterpart to train a robust control policy with effective disturbance attenuation. In particular, for practical implementation, we introduce an algorithm called robust deep deterministic policy gradient (RDDPG), which employs a deep neural network architecture and integrates techniques from the twin-delayed deep deterministic policy gradient (TD3) to enhance stability and learning efficiency. To evaluate the proposed algorithm, we implement it on an unmanned aerial vehicle (UAV) tasked with following a predefined path in a disturbance-prone environment. The experimental results demonstrate that the proposed method outperforms other control approaches in terms of robustness against disturbances, enabling precise real-time tracking of moving targets even under severe disturbance conditions.
comment: 8 pages
♻ ☆ AI Suggestions Homogenize Writing Toward Western Styles and Diminish Cultural Nuances
Large language models (LLMs) are being increasingly integrated into everyday products and services, such as coding tools and writing assistants. As these embedded AI applications are deployed globally, there is a growing concern that the AI models underlying these applications prioritize Western values. This paper investigates what happens when a Western-centric AI model provides writing suggestions to users from a different cultural background. We conducted a cross-cultural controlled experiment with 118 participants from India and the United States who completed culturally grounded writing tasks with and without AI suggestions. Our analysis reveals that AI provided greater efficiency gains for Americans compared to Indians. Moreover, AI suggestions led Indian participants to adopt Western writing styles, altering not just what is written but also how it is written. These findings show that Western-centric AI models homogenize writing toward Western norms, diminishing nuances that differentiate cultural expression.
comment: Accepted at CHI 2025
♻ ☆ The erasure of intensive livestock farming in text-to-image generative AI
Generative AI (e.g., ChatGPT) is increasingly integrated into people's daily lives. While it is known that AI perpetuates biases against marginalized human groups, their impact on non-human animals remains understudied. We found that ChatGPT's text-to-image model (DALL-E 3) introduces a strong bias toward romanticizing livestock farming as dairy cows on pasture and pigs rooting in mud. This bias remained when we requested realistic depictions and was only mitigated when the automatic prompt revision was inhibited. Most farmed animal in industrialized countries are reared indoors with limited space per animal, which fail to resonate with societal values. Inhibiting prompt revision resulted in images that more closely reflected modern farming practices; for example, cows housed indoors accessing feed through metal headlocks, and pigs behind metal railings on concrete floors in indoor facilities. While OpenAI introduced prompt revision to mitigate bias, in the case of farmed animal production systems, it paradoxically introduces a strong bias towards unrealistic farming practices.
♻ ☆ Improving the Diffusability of Autoencoders
Latent diffusion models have emerged as the leading approach for generating high-quality images and videos, utilizing compressed latent representations to reduce the computational burden of the diffusion process. While recent advancements have primarily focused on scaling diffusion backbones and improving autoencoder reconstruction quality, the interaction between these components has received comparatively less attention. In this work, we perform a spectral analysis of modern autoencoders and identify inordinate high-frequency components in their latent spaces, which are especially pronounced in the autoencoders with a large bottleneck channel size. We hypothesize that this high-frequency component interferes with the coarse-to-fine nature of the diffusion synthesis process and hinders the generation quality. To mitigate the issue, we propose scale equivariance: a simple regularization strategy that aligns latent and RGB spaces across frequencies by enforcing scale equivariance in the decoder. It requires minimal code changes and only up to 20K autoencoder fine-tuning steps, yet significantly improves generation quality, reducing FID by 19% for image generation on ImageNet-1K 256x256 and FVD by at least 44% for video generation on Kinetics-700 17x256x256.
comment: 26 pages, 22 figures, 9 tables
♻ ☆ Adversarial Vulnerabilities in Large Language Models for Time Series Forecasting AISTATS 2025
Large Language Models (LLMs) have recently demonstrated significant potential in time series forecasting, offering impressive capabilities in handling complex temporal data. However, their robustness and reliability in real-world applications remain under-explored, particularly concerning their susceptibility to adversarial attacks. In this paper, we introduce a targeted adversarial attack framework for LLM-based time series forecasting. By employing both gradient-free and black-box optimization methods, we generate minimal yet highly effective perturbations that significantly degrade the forecasting accuracy across multiple datasets and LLM architectures. Our experiments, which include models like LLMTime with GPT-3.5, GPT-4, LLaMa, and Mistral, TimeGPT, and TimeLLM show that adversarial attacks lead to much more severe performance degradation than random noise, and demonstrate the broad effectiveness of our attacks across different LLMs. The results underscore the critical vulnerabilities of LLMs in time series forecasting, highlighting the need for robust defense mechanisms to ensure their reliable deployment in practical applications. The code repository can be found at https://github.com/JohnsonJiang1996/AdvAttack_LLM4TS.
comment: AISTATS 2025
♻ ☆ HiFi-CS: Towards Open Vocabulary Visual Grounding For Robotic Grasping Using Vision-Language Models
Robots interacting with humans through natural language can unlock numerous applications such as Referring Grasp Synthesis (RGS). Given a text query, RGS determines a stable grasp pose to manipulate the referred object in the robot's workspace. RGS comprises two steps: visual grounding and grasp pose estimation. Recent studies leverage powerful Vision-Language Models (VLMs) for visually grounding free-flowing natural language in real-world robotic execution. However, comparisons in complex, cluttered environments with multiple instances of the same object are lacking. This paper introduces HiFi-CS, featuring hierarchical application of Featurewise Linear Modulation (FiLM) to fuse image and text embeddings, enhancing visual grounding for complex attribute rich text queries encountered in robotic grasping. Visual grounding associates an object in 2D/3D space with natural language input and is studied in two scenarios: Closed and Open Vocabulary. HiFi-CS features a lightweight decoder combined with a frozen VLM and outperforms competitive baselines in closed vocabulary settings while being 100x smaller in size. Our model can effectively guide open-set object detectors like GroundedSAM to enhance open-vocabulary performance. We validate our approach through real-world RGS experiments using a 7-DOF robotic arm, achieving 90.33\% visual grounding accuracy in 15 tabletop scenes. Our codebase is provided here: https://github.com/vineet2104/hifics
♻ ☆ MotionScript: Natural Language Descriptions for Expressive 3D Human Motions
We introduce MotionScript, a novel framework for generating highly detailed, natural language descriptions of 3D human motions. Unlike existing motion datasets that rely on broad action labels or generic captions, MotionScript provides fine-grained, structured descriptions that capture the full complexity of human movement including expressive actions (e.g., emotions, stylistic walking) and interactions beyond standard motion capture datasets. MotionScript serves as both a descriptive tool and a training resource for text-to-motion models, enabling the synthesis of highly realistic and diverse human motions from text. By augmenting motion datasets with MotionScript captions, we demonstrate significant improvements in out-of-distribution motion generation, allowing large language models (LLMs) to generate motions that extend beyond existing data. Additionally, MotionScript opens new applications in animation, virtual human simulation, and robotics, providing an interpretable bridge between intuitive descriptions and motion synthesis. To the best of our knowledge, this is the first attempt to systematically translate 3D motion into structured natural language without requiring training data.
comment: Project webpage: https://pjyazdian.github.io/MotionScript
Extrapolated Urban View Synthesis Benchmark
Photorealistic simulators are essential for the training and evaluation of vision-centric autonomous vehicles (AVs). At their core is Novel View Synthesis (NVS), a crucial capability that generates diverse unseen viewpoints to accommodate the broad and continuous pose distribution of AVs. Recent advances in radiance fields, such as 3D Gaussian Splatting, achieve photorealistic rendering at real-time speeds and have been widely used in modeling large-scale driving scenes. However, their performance is commonly evaluated using an interpolated setup with highly correlated training and test views. In contrast, extrapolation, where test views largely deviate from training views, remains underexplored, limiting progress in generalizable simulation technology. To address this gap, we leverage publicly available AV datasets with multiple traversals, multiple vehicles, and multiple cameras to build the first Extrapolated Urban View Synthesis (EUVS) benchmark. Meanwhile, we conduct both quantitative and qualitative evaluations of state-of-the-art NVS methods across different evaluation settings. Our results show that current NVS methods are prone to overfitting to training views. Besides, incorporating diffusion priors and improving geometry cannot fundamentally improve NVS under large view changes, highlighting the need for more robust approaches and large-scale training. We will release the data to help advance self-driving and urban robotics simulation technology.
comment: Project page: https://ai4ce.github.io/EUVS-Benchmark/
♻ ☆ Real-Time Decision-Making for Digital Twin in Additive Manufacturing with Model Predictive Control using Time-Series Deep Neural Networks
Digital Twin -- a virtual replica of a physical system enabling real-time monitoring, model updating, prediction, and decision-making -- combined with recent advances in machine learning, offers new opportunities for proactive control strategies in autonomous manufacturing. However, achieving real-time decision-making with Digital Twins requires efficient optimization driven by accurate predictions of highly nonlinear manufacturing systems. This paper presents a simultaneous multi-step Model Predictive Control (MPC) framework for real-time decision-making, using a multivariate deep neural network, named Time-Series Dense Encoder (TiDE), as the surrogate model. Unlike conventional MPC models which only provide one-step ahead prediction, TiDE is capable of predicting future states within the prediction horizon in one shot (multi-step), significantly accelerating the MPC. Using Directed Energy Deposition (DED) additive manufacturing as a case study, we demonstrate the effectiveness of the proposed MPC in achieving melt pool temperature tracking to ensure part quality, while reducing porosity defects by regulating laser power to maintain melt pool depth constraints. In this work, we first show that TiDE is capable of accurately predicting melt pool temperature and depth. Second, we demonstrate that the proposed MPC achieves precise temperature tracking while satisfying melt pool depth constraints within a targeted dilution range (10\%-30\%), reducing potential porosity defects. Compared to PID controller, the MPC results in smoother and less fluctuating laser power profiles with competitive or superior melt pool temperature control performance. This demonstrates the MPC's proactive control capabilities, leveraging time-series prediction and real-time optimization, positioning it as a powerful tool for future Digital Twin applications and real-time process optimization in manufacturing.
♻ ☆ EIA: Environmental Injection Attack on Generalist Web Agents for Privacy Leakage ICLR 2025
Generalist web agents have demonstrated remarkable potential in autonomously completing a wide range of tasks on real websites, significantly boosting human productivity. However, web tasks, such as booking flights, usually involve users' PII, which may be exposed to potential privacy risks if web agents accidentally interact with compromised websites, a scenario that remains largely unexplored in the literature. In this work, we narrow this gap by conducting the first study on the privacy risks of generalist web agents in adversarial environments. First, we present a realistic threat model for attacks on the website, where we consider two adversarial targets: stealing users' specific PII or the entire user request. Then, we propose a novel attack method, termed Environmental Injection Attack (EIA). EIA injects malicious content designed to adapt well to environments where the agents operate and our work instantiates EIA specifically for privacy scenarios in web environments. We collect 177 action steps that involve diverse PII categories on realistic websites from the Mind2Web, and conduct experiments using one of the most capable generalist web agent frameworks to date. The results demonstrate that EIA achieves up to 70% ASR in stealing specific PII and 16% ASR for full user request. Additionally, by accessing the stealthiness and experimenting with a defensive system prompt, we indicate that EIA is hard to detect and mitigate. Notably, attacks that are not well adapted for a webpage can be detected via human inspection, leading to our discussion about the trade-off between security and autonomy. However, extra attackers' efforts can make EIA seamlessly adapted, rendering such supervision ineffective. Thus, we further discuss the defenses at the pre- and post-deployment stages of the websites without relying on human supervision and call for more advanced defense strategies.
comment: Accepted by ICLR 2025
♻ ☆ Bimodal Connection Attention Fusion for Speech Emotion Recognition
Multi-modal emotion recognition is challenging due to the difficulty of extracting features that capture subtle emotional differences. Understanding multi-modal interactions and connections is key to building effective bimodal speech emotion recognition systems. In this work, we propose Bimodal Connection Attention Fusion (BCAF) method, which includes three main modules: the interactive connection network, the bimodal attention network, and the correlative attention network. The interactive connection network uses an encoder-decoder architecture to model modality connections between audio and text while leveraging modality-specific features. The bimodal attention network enhances semantic complementation and exploits intra- and inter-modal interactions. The correlative attention network reduces cross-modal noise and captures correlations between audio and text. Experiments on the MELD and IEMOCAP datasets demonstrate that the proposed BCAF method outperforms existing state-of-the-art baselines.
♻ ☆ On strategies for risk management and decision making under uncertainty shared across multiple fields
Decision theory recognizes two principal approaches to solving problems under uncertainty: probabilistic models and cognitive heuristics. However, engineers, public planners and decision-makers in other fields seem to employ solution strategies that do not fall into either field, i.e., strategies such as robust design and contingency planning. In addition, identical strategies appear in several fields and disciplines, pointing to an important shared toolkit. The focus of this paper is to develop a systematic understanding of such strategies and develop a framework to better employ them in decision making and risk management. The paper finds more than 110 examples of such strategies and this approach to risk is termed RDOT: Risk-reducing Design and Operations Toolkit. RDOT strategies fall into six broad categories: structural, reactive, formal, adversarial, multi-stage and positive. RDOT strategies provide an efficient response even to radical uncertainty or unknown unknowns that are challenging to address with probabilistic methods. RDOT could be incorporated into decision theory using workflows, multi-objective optimization and multi-attribute utility theory. Overall, RDOT represents an overlooked class of versatile responses to uncertainty. Because RDOT strategies do not require precise estimation or forecasting, they are particularly helpful in decision problems affected by uncertainty and for resource-constrained decision making.
comment: v2: expanded catalog
♻ ☆ CMP: Cooperative Motion Prediction with Multi-Agent Communication
The confluence of the advancement of Autonomous Vehicles (AVs) and the maturity of Vehicle-to-Everything (V2X) communication has enabled the capability of cooperative connected and automated vehicles (CAVs). Building on top of cooperative perception, this paper explores the feasibility and effectiveness of cooperative motion prediction. Our method, CMP, takes LiDAR signals as model input to enhance tracking and prediction capabilities. Unlike previous work that focuses separately on either cooperative perception or motion prediction, our framework, to the best of our knowledge, is the first to address the unified problem where CAVs share information in both perception and prediction modules. Incorporated into our design is the unique capability to tolerate realistic V2X transmission delays, while dealing with bulky perception representations. We also propose a prediction aggregation module, which unifies the predictions obtained by different CAVs and generates the final prediction. Through extensive experiments and ablation studies on the OPV2V and V2V4Real datasets, we demonstrate the effectiveness of our method in cooperative perception, tracking, and motion prediction. In particular, CMP reduces the average prediction error by 12.3% compared with the strongest baseline. Our work marks a significant step forward in the cooperative capabilities of CAVs, showcasing enhanced performance in complex scenarios. More details can be found on the project website: https://cmp-cooperative-prediction.github.io.
comment: IEEE Robotics and Automation Letters; Project website: https://cmp-cooperative-prediction.github.io/
♻ ☆ User-centric Immersive Communications in 6G: A Data-oriented Framework via Digital Twin
In this article, we present a novel user-centric service provision for immersive communications (IC) in 6G to deal with the uncertainty of individual user behaviors while satisfying unique requirements on the quality of multi-sensory experience. To this end, we propose a data-oriented framework for network resource management, featuring personalized data management that can support network modeling tailored to different user demands. Our framework leverages the digital twin (DT) technique as a key enabler. Particularly, a DT is established for each user, and the data attributes in the DT are customized based on the characteristics of the user. The DT functions, corresponding to various data operations, are customized in the development, evaluation, and update of network models to meet unique user demands. A trace-driven case study demonstrates the effectiveness of our framework in achieving user-centric IC and the significance of personalized data management in 6G.
comment: Accepted by IEEE Wireless Communications
Shaping Inductive Bias in Diffusion Models through Frequency-Based Noise Control ICLR 2025
Diffusion Probabilistic Models (DPMs) are powerful generative models that have achieved unparalleled success in a number of generative tasks. In this work, we aim to build inductive biases into the training and sampling of diffusion models to better accommodate the target distribution of the data to model. For topologically structured data, we devise a frequency-based noising operator to purposefully manipulate, and set, these inductive biases. We first show that appropriate manipulations of the noising forward process can lead DPMs to focus on particular aspects of the distribution to learn. We show that different datasets necessitate different inductive biases, and that appropriate frequency-based noise control induces increased generative performance compared to standard diffusion. Finally, we demonstrate the possibility of ignoring information at particular frequencies while learning. We show this in an image corruption and recovery task, where we train a DPM to recover the original target distribution after severe noise corruption.
comment: Published as workshop paper at DeLTa and FPI workshops, ICLR 2025
♻ ☆ Universal Narrative Model: an Author-centric Storytelling Framework for Generative AI
Generative AI promises to finally realize dynamic, personalized storytelling technologies across a range of media. To date, experimentation with generative AI in the field of procedural narrative generation has been quite promising from a technical perspective. However, fundamental narrative dilemmas remain, such as the balance between player agency and narrative coherence, and no rigorous narrative standard has been proposed to specifically leverage the strengths of generative AI. In this paper, we propose the Universal Narrative Model (UNM), an open and extensible standard designed to place writers at the center of future narrative design workflows and enable interoperability across authoring platforms. By encoding an author's intent according to an objective narrative model, the UNM enables narrative portability as well as intent-based constraints for generative systems.
♻ ☆ A primer on optimal transport for causal inference with observational data
The theory of optimal transportation has developed into a powerful and elegant framework for comparing probability distributions, with wide-ranging applications in all areas of science. The fundamental idea of analyzing probabilities by comparing their underlying state space naturally aligns with the core idea of causal inference, where understanding and quantifying counterfactual states is paramount. Despite this intuitive connection, explicit research at the intersection of optimal transport and causal inference is only beginning to develop. Yet, many foundational models in causal inference have implicitly relied on optimal transport principles for decades, without recognizing the underlying connection. Therefore, the goal of this review is to offer an introduction to the surprisingly deep existing connections between optimal transport and the identification of causal effects with observational data -- where optimal transport is not just a set of potential tools, but actually builds the foundation of model assumptions. As a result, this review is intended to unify the language and notation between different areas of statistics, mathematics, and econometrics, by pointing out these existing connections, and to explore novel problems and directions for future work in both areas derived from this realization.
comment: 24 pages, 5 figures
♻ ☆ DeformPAM: Data-Efficient Learning for Long-horizon Deformable Object Manipulation via Preference-based Action Alignment ICRA 2025
In recent years, imitation learning has made progress in the field of robotic manipulation. However, it still faces challenges when addressing complex long-horizon tasks with deformable objects, such as high-dimensional state spaces, complex dynamics, and multimodal action distributions. Traditional imitation learning methods often require a large amount of data and encounter distributional shifts and accumulative errors in these tasks. To address these issues, we propose a data-efficient general learning framework (DeformPAM) based on preference learning and reward-guided action selection. DeformPAM decomposes long-horizon tasks into multiple action primitives, utilizes 3D point cloud inputs and diffusion models to model action distributions, and trains an implicit reward model using human preference data. During the inference phase, the reward model scores multiple candidate actions, selecting the optimal action for execution, thereby reducing the occurrence of anomalous actions and improving task completion quality. Experiments conducted on three challenging real-world long-horizon deformable object manipulation tasks demonstrate the effectiveness of this method. Results show that DeformPAM improves both task completion quality and efficiency compared to baseline methods even with limited data. Code and data will be available at https://deform-pam.robotflow.ai.
comment: Accepted to ICRA 2025. Project page: https://deform-pam.robotflow.ai
Graphics 13
☆ Hybrid Rendering for Multimodal Autonomous Driving: Merging Neural and Physics-Based Simulation
Neural reconstruction models for autonomous driving simulation have made significant strides in recent years, with dynamic models becoming increasingly prevalent. However, these models are typically limited to handling in-domain objects closely following their original trajectories. We introduce a hybrid approach that combines the strengths of neural reconstruction with physics-based rendering. This method enables the virtual placement of traditional mesh-based dynamic agents at arbitrary locations, adjustments to environmental conditions, and rendering from novel camera viewpoints. Our approach significantly enhances novel view synthesis quality -- especially for road surfaces and lane markings -- while maintaining interactive frame rates through our novel training method, NeRF2GS. This technique leverages the superior generalization capabilities of NeRF-based methods and the real-time rendering speed of 3D Gaussian Splatting (3DGS). We achieve this by training a customized NeRF model on the original images with depth regularization derived from a noisy LiDAR point cloud, then using it as a teacher model for 3DGS training. This process ensures accurate depth, surface normals, and camera appearance modeling as supervision. With our block-based training parallelization, the method can handle large-scale reconstructions (greater than or equal to 100,000 square meters) and predict segmentation masks, surface normals, and depth maps. During simulation, it supports a rasterization-based rendering backend with depth-based composition and multiple camera models for real-time camera simulation, as well as a ray-traced backend for precise LiDAR simulation.
☆ InteractEdit: Zero-Shot Editing of Human-Object Interactions in Images
This paper presents InteractEdit, a novel framework for zero-shot Human-Object Interaction (HOI) editing, addressing the challenging task of transforming an existing interaction in an image into a new, desired interaction while preserving the identities of the subject and object. Unlike simpler image editing scenarios such as attribute manipulation, object replacement or style transfer, HOI editing involves complex spatial, contextual, and relational dependencies inherent in humans-objects interactions. Existing methods often overfit to the source image structure, limiting their ability to adapt to the substantial structural modifications demanded by new interactions. To address this, InteractEdit decomposes each scene into subject, object, and background components, then employs Low-Rank Adaptation (LoRA) and selective fine-tuning to preserve pretrained interaction priors while learning the visual identity of the source image. This regularization strategy effectively balances interaction edits with identity consistency. We further introduce IEBench, the most comprehensive benchmark for HOI editing, which evaluates both interaction editing and identity preservation. Our extensive experiments show that InteractEdit significantly outperforms existing methods, establishing a strong baseline for future HOI editing research and unlocking new possibilities for creative and practical applications. Code will be released upon publication.
comment: Website: https://jiuntian.github.io/interactedit
☆ Spiritus: An AI-Assisted Tool for Creating 2D Characters and Animations
This research presents Spiritus, an AI-assisted creation tool designed to streamline 2D character animation creation while enhancing creative flexibility. By integrating natural language processing and diffusion models, users can efficiently transform natural language descriptions into personalized 2D characters and animations. The system employs automated segmentation, layered costume techniques, and dynamic mesh-skeleton binding solutions to support flexible adaptation of complex costumes and additional components. Spiritus further achieves real-time animation generation and efficient animation resource reuse between characters through the integration of BVH data and motion diffusion models. Experimental results demonstrate Spiritus's effectiveness in reducing technical barriers, enhancing creative freedom, and supporting resource universality. Future work will focus on optimizing user experience and further exploring the system's human-computer collaboration potential.
☆ Computational Design and Fabrication of Protective Foam
This paper proposes a method to design protective foam for packaging 3D objects. Users first load a 3D object and define a block-based design space by setting the block resolution and the size of each block. The system then constructs a block map in the space using depth textures of the input object, separates the map into two regions, and outputs the regions as foams. The proposed method is fast and stable, allowing the user to interactively make protective foams. The generated foam is a height field in each direction, so the foams can easily be fabricated using various materials, such as LEGO blocks, sponge with slits, glass, and wood. This paper shows some examples of fabrication results to demonstrate the robustness of our system. In addition, we conducted a user study and confirmed that our system is effective for manually designing protective foams envisioned by users.
☆ Leveraging Semantic Attribute Binding for Free-Lunch Color Control in Diffusion Models
Recent advances in text-to-image (T2I) diffusion models have enabled remarkable control over various attributes, yet precise color specification remains a fundamental challenge. Existing approaches, such as ColorPeel, rely on model personalization, requiring additional optimization and limiting flexibility in specifying arbitrary colors. In this work, we introduce ColorWave, a novel training-free approach that achieves exact RGB-level color control in diffusion models without fine-tuning. By systematically analyzing the cross-attention mechanisms within IP-Adapter, we uncover an implicit binding between textual color descriptors and reference image features. Leveraging this insight, our method rewires these bindings to enforce precise color attribution while preserving the generative capabilities of pretrained models. Our approach maintains generation quality and diversity, outperforming prior methods in accuracy and applicability across diverse object categories. Through extensive evaluations, we demonstrate that ColorWave establishes a new paradigm for structured, color-consistent diffusion-based image synthesis.
comment: Project page: https://hecoding.github.io/colorwave-page
☆ Global Position Aware Group Choreography using Large Language Model
Dance serves as a profound and universal expression of human culture, conveying emotions and stories through movements synchronized with music. Although some current works have achieved satisfactory results in the task of single-person dance generation, the field of multi-person dance generation remains relatively novel. In this work, we present a group choreography framework that leverages recent advancements in Large Language Models (LLM) by modeling the group dance generation problem as a sequence-to-sequence translation task. Our framework consists of a tokenizer that transforms continuous features into discrete tokens, and an LLM that is fine-tuned to predict motion tokens given the audio tokens. We show that by proper tokenization of input modalities and careful design of the LLM training strategies, our framework can generate realistic and diverse group dances while maintaining strong music correlation and dancer-wise consistency. Extensive experiments and evaluations demonstrate that our framework achieves state-of-the-art performance.
☆ Open-Sora 2.0: Training a Commercial-Level Video Generation Model in $200k
Video generation models have achieved remarkable progress in the past year. The quality of AI video continues to improve, but at the cost of larger model size, increased data quantity, and greater demand for training compute. In this report, we present Open-Sora 2.0, a commercial-level video generation model trained for only $200k. With this model, we demonstrate that the cost of training a top-performing video generation model is highly controllable. We detail all techniques that contribute to this efficiency breakthrough, including data curation, model architecture, training strategy, and system optimization. According to human evaluation results and VBench scores, Open-Sora 2.0 is comparable to global leading video generation models including the open-source HunyuanVideo and the closed-source Runway Gen-3 Alpha. By making Open-Sora 2.0 fully open-source, we aim to democratize access to advanced video generation technology, fostering broader innovation and creativity in content creation. All resources are publicly available at: https://github.com/hpcaitech/Open-Sora.
☆ SANA-Sprint: One-Step Diffusion with Continuous-Time Consistency Distillation
This paper presents SANA-Sprint, an efficient diffusion model for ultra-fast text-to-image (T2I) generation. SANA-Sprint is built on a pre-trained foundation model and augmented with hybrid distillation, dramatically reducing inference steps from 20 to 1-4. We introduce three key innovations: (1) We propose a training-free approach that transforms a pre-trained flow-matching model for continuous-time consistency distillation (sCM), eliminating costly training from scratch and achieving high training efficiency. Our hybrid distillation strategy combines sCM with latent adversarial distillation (LADD): sCM ensures alignment with the teacher model, while LADD enhances single-step generation fidelity. (2) SANA-Sprint is a unified step-adaptive model that achieves high-quality generation in 1-4 steps, eliminating step-specific training and improving efficiency. (3) We integrate ControlNet with SANA-Sprint for real-time interactive image generation, enabling instant visual feedback for user interaction. SANA-Sprint establishes a new Pareto frontier in speed-quality tradeoffs, achieving state-of-the-art performance with 7.59 FID and 0.74 GenEval in only 1 step - outperforming FLUX-schnell (7.94 FID / 0.71 GenEval) while being 10x faster (0.1s vs 1.1s on H100). It also achieves 0.1s (T2I) and 0.25s (ControlNet) latency for 1024 x 1024 images on H100, and 0.31s (T2I) on an RTX 4090, showcasing its exceptional efficiency and potential for AI-powered consumer applications (AIPC). Code and pre-trained models will be open-sourced.
comment: 22 pages, 11 figures, 8 tables, In submission
☆ Physics-Aware Human-Object Rendering from Sparse Views via 3D Gaussian Splatting
Rendering realistic human-object interactions (HOIs) from sparse-view inputs is challenging due to occlusions and incomplete observations, yet crucial for various real-world applications. Existing methods always struggle with either low rendering qualities (\eg, visual fidelity and physically plausible HOIs) or high computational costs. To address these limitations, we propose HOGS (Human-Object Rendering via 3D Gaussian Splatting), a novel framework for efficient and physically plausible HOI rendering from sparse views. Specifically, HOGS combines 3D Gaussian Splatting with a physics-aware optimization process. It incorporates a Human Pose Refinement module for accurate pose estimation and a Sparse-View Human-Object Contact Prediction module for efficient contact region identification. This combination enables coherent joint rendering of human and object Gaussians while enforcing physically plausible interactions. Extensive experiments on the HODome dataset demonstrate that HOGS achieves superior rendering quality, efficiency, and physical plausibility compared to existing methods. We further show its extensibility to hand-object grasp rendering tasks, presenting its broader applicability to articulated object interactions.
♻ ☆ Free Your Hands: Lightweight Relightable Turntable Capture Pipeline
Novel view synthesis (NVS) from multiple captured photos of an object is a widely studied problem. Achieving high quality typically requires dense sampling of input views, which can lead to frustrating and tedious manual labor. Manually positioning cameras to maintain an optimal desired distribution can be difficult for humans, and if a good distribution is found, it is not easy to replicate. Additionally, the captured data can suffer from motion blur and defocus due to human error. In this paper, we present a lightweight object capture pipeline to reduce the manual workload and standardize the acquisition setup. We use a consumer turntable to carry the object and a tripod to hold the camera. As the turntable rotates, we automatically capture dense samples from various views and lighting conditions; we can repeat this for several camera positions. This way, we can easily capture hundreds of valid images in several minutes without hands-on effort. However, in the object reference frame, the light conditions vary; this is harmful to a standard NVS method like 3D Gaussian splatting (3DGS) which assumes fixed lighting. We design a neural radiance representation conditioned on light rotations, which addresses this issue and allows relightability as an additional benefit. We demonstrate our pipeline using 3DGS as the underlying framework, achieving competitive quality compared to previous methods with exhaustive acquisition and showcasing its potential for relighting and harmonization tasks.
♻ ☆ SVGBuilder: Component-Based Colored SVG Generation with Text-Guided Autoregressive Transformers
Scalable Vector Graphics (SVG) are essential XML-based formats for versatile graphics, offering resolution independence and scalability. Unlike raster images, SVGs use geometric shapes and support interactivity, animation, and manipulation via CSS and JavaScript. Current SVG generation methods face challenges related to high computational costs and complexity. In contrast, human designers use component-based tools for efficient SVG creation. Inspired by this, SVGBuilder introduces a component-based, autoregressive model for generating high-quality colored SVGs from textual input. It significantly reduces computational overhead and improves efficiency compared to traditional methods. Our model generates SVGs up to 604 times faster than optimization-based approaches. To address the limitations of existing SVG datasets and support our research, we introduce ColorSVG-100K, the first large-scale dataset of colored SVGs, comprising 100,000 graphics. This dataset fills the gap in color information for SVG generation models and enhances diversity in model training. Evaluation against state-of-the-art models demonstrates SVGBuilder's superior performance in practical applications, highlighting its efficiency and quality in generating complex SVG graphics.
comment: Project: https://svgbuilder.github.io
♻ ☆ Puzzle Similarity: A Perceptually-guided Cross-Reference Metric for Artifact Detection in 3D Scene Reconstructions
Modern reconstruction techniques can effectively model complex 3D scenes from sparse 2D views. However, automatically assessing the quality of novel views and identifying artifacts is challenging due to the lack of ground truth images and the limitations of No-Reference image metrics in predicting reliable artifact maps. The absence of such metrics hinders the assessment of the quality of novel views and limits the adoption of post-processing techniques, such as inpainting, to enhance reconstruction quality. To tackle this, recent work has established a new category of metrics (Cross-Reference), predicting image quality solely by leveraging context from alternate viewpoint captures (arXiv:2404.14409). In this work, we propose a new Cross-Reference metric, Puzzle Similarity, which is designed to localize artifacts in novel views. Our approach utilizes image patch statistics from the input views to establish a scene-specific distribution, later used to identify poorly reconstructed regions in the novel views. Given the lack of good measures to evaluate Cross-Reference methods in the context of 3D reconstruction, we collected a novel human-labeled dataset of artifact and distortion maps in unseen reconstructed views. Through this dataset, we demonstrate that our method achieves state-of-the-art localization of artifacts in novel views, correlating with human assessment, even without aligned references. We can leverage our new metric to enhance applications like automatic image restoration, guided acquisition, or 3D reconstruction from sparse inputs. Find the project page at https://nihermann.github.io/puzzlesim/ .
♻ ☆ Self-Ensembling Gaussian Splatting for Few-Shot Novel View Synthesis
3D Gaussian Splatting (3DGS) has demonstrated remarkable effectiveness in novel view synthesis (NVS). However, 3DGS tends to overfit when trained with sparse views, limiting its generalization to novel viewpoints. In this paper, we address this overfitting issue by introducing Self-Ensembling Gaussian Splatting (SE-GS). We achieve self-ensembling by incorporating an uncertainty-aware perturbation strategy during training. A $\mathbf{\Delta}$-model and a $\mathbf{\Sigma}$-model are jointly trained on the available images. The $\mathbf{\Delta}$-model is dynamically perturbed based on rendering uncertainty across training steps, generating diverse perturbed models with negligible computational overhead. Discrepancies between the $\mathbf{\Sigma}$-model and these perturbed models are minimized throughout training, forming a robust ensemble of 3DGS models. This ensemble, represented by the $\mathbf{\Sigma}$-model, is then used to generate novel-view images during inference. Experimental results on the LLFF, Mip-NeRF360, DTU, and MVImgNet datasets demonstrate that our approach enhances NVS quality under few-shot training conditions, outperforming existing state-of-the-art methods. The code is released at: https://sailor-z.github.io/projects/SEGS.html.
Robotics 103
☆ Generating Robot Constitutions & Benchmarks for Semantic Safety
Until recently, robotics safety research was predominantly about collision avoidance and hazard reduction in the immediate vicinity of a robot. Since the advent of large vision and language models (VLMs), robots are now also capable of higher-level semantic scene understanding and natural language interactions with humans. Despite their known vulnerabilities (e.g. hallucinations or jail-breaking), VLMs are being handed control of robots capable of physical contact with the real world. This can lead to dangerous behaviors, making semantic safety for robots a matter of immediate concern. Our contributions in this paper are two fold: first, to address these emerging risks, we release the ASIMOV Benchmark, a large-scale and comprehensive collection of datasets for evaluating and improving semantic safety of foundation models serving as robot brains. Our data generation recipe is highly scalable: by leveraging text and image generation techniques, we generate undesirable situations from real-world visual scenes and human injury reports from hospitals. Secondly, we develop a framework to automatically generate robot constitutions from real-world data to steer a robot's behavior using Constitutional AI mechanisms. We propose a novel auto-amending process that is able to introduce nuances in written rules of behavior; this can lead to increased alignment with human preferences on behavior desirability and safety. We explore trade-offs between generality and specificity across a diverse set of constitutions of different lengths, and demonstrate that a robot is able to effectively reject unconstitutional actions. We measure a top alignment rate of 84.3% on the ASIMOV Benchmark using generated constitutions, outperforming no-constitution baselines and human-written constitutions. Data is available at asimov-benchmark.github.io
☆ Cross-Embodiment Robotic Manipulation Synthesis via Guided Demonstrations through CycleVAE and Human Behavior Transformer IROS 2025
Cross-embodiment robotic manipulation synthesis for complicated tasks is challenging, partially due to the scarcity of paired cross-embodiment datasets and the impediment of designing intricate controllers. Inspired by robotic learning via guided human expert demonstration, we here propose a novel cross-embodiment robotic manipulation algorithm via CycleVAE and human behavior transformer. First, we utilize unsupervised CycleVAE together with a bidirectional subspace alignment algorithm to align latent motion sequences between cross-embodiments. Second, we propose a casual human behavior transformer design to learn the intrinsic motion dynamics of human expert demonstrations. During the test case, we leverage the proposed transformer for the human expert demonstration generation, which will be aligned using CycleVAE for the final human-robotic manipulation synthesis. We validated our proposed algorithm through extensive experiments using a dexterous robotic manipulator with the robotic hand. Our results successfully generate smooth trajectories across intricate tasks, outperforming prior learning-based robotic motion planning algorithms. These results have implications for performing unsupervised cross-embodiment alignment and future autonomous robotics design. Complete video demonstrations of our experiments can be found in https://sites.google.com/view/humanrobots/home.
comment: Under Review in IROS 2025
☆ HiP-AD: Hierarchical and Multi-Granularity Planning with Deformable Attention for Autonomous Driving in a Single Decoder
Although end-to-end autonomous driving (E2E-AD) technologies have made significant progress in recent years, there remains an unsatisfactory performance on closed-loop evaluation. The potential of leveraging planning in query design and interaction has not yet been fully explored. In this paper, we introduce a multi-granularity planning query representation that integrates heterogeneous waypoints, including spatial, temporal, and driving-style waypoints across various sampling patterns. It provides additional supervision for trajectory prediction, enhancing precise closed-loop control for the ego vehicle. Additionally, we explicitly utilize the geometric properties of planning trajectories to effectively retrieve relevant image features based on physical locations using deformable attention. By combining these strategies, we propose a novel end-to-end autonomous driving framework, termed HiP-AD, which simultaneously performs perception, prediction, and planning within a unified decoder. HiP-AD enables comprehensive interaction by allowing planning queries to iteratively interact with perception queries in the BEV space while dynamically extracting image features from perspective views. Experiments demonstrate that HiP-AD outperforms all existing end-to-end autonomous driving methods on the closed-loop benchmark Bench2Drive and achieves competitive performance on the real-world dataset nuScenes.
☆ EMMOE: A Comprehensive Benchmark for Embodied Mobile Manipulation in Open Environments
Developing autonomous home robots controlled by natural language has long been a pursuit of human. While advancements in large language models (LLMs) and embodied intelligence make this goal closer, several challenges persist: the lack of a unified benchmark for more complex robot tasks, limited evaluation methods and metrics, data incompatibility between LLMs and mobile manipulation trajectories. To address these issues, we introduce Embodied Mobile Manipulation in Open Environments (EMMOE), which requires agents to interpret user instructions and execute long-horizon everyday tasks in continuous space. EMMOE seamlessly integrates high-level and low-level embodied tasks into a unified framework, along with three new metrics for more diverse assessment. Additionally, we collect EMMOE-100, which features in various task attributes, detailed process annotations, re-plans after failures, and two sub-datasets for LLM training. Furthermore, we design HomieBot, a sophisticated agent system consists of LLM with Direct Preference Optimization (DPO), light weighted navigation and manipulation models, and multiple error detection mechanisms. Finally, we demonstrate HomieBot's performance and the evaluation of different models and policies.
☆ Proc4Gem: Foundation models for physical agency through procedural generation
In robot learning, it is common to either ignore the environment semantics, focusing on tasks like whole-body control which only require reasoning about robot-environment contacts, or conversely to ignore contact dynamics, focusing on grounding high-level movement in vision and language. In this work, we show that advances in generative modeling, photorealistic rendering, and procedural generation allow us to tackle tasks requiring both. By generating contact-rich trajectories with accurate physics in semantically-diverse simulations, we can distill behaviors into large multimodal models that directly transfer to the real world: a system we call Proc4Gem. Specifically, we show that a foundation model, Gemini, fine-tuned on only simulation data, can be instructed in language to control a quadruped robot to push an object with its body to unseen targets in unseen real-world environments. Our real-world results demonstrate the promise of using simulation to imbue foundation models with physical agency. Videos can be found at our website: https://sites.google.com/view/proc4gem
MoE-Loco: Mixture of Experts for Multitask Locomotion
We present MoE-Loco, a Mixture of Experts (MoE) framework for multitask locomotion for legged robots. Our method enables a single policy to handle diverse terrains, including bars, pits, stairs, slopes, and baffles, while supporting quadrupedal and bipedal gaits. Using MoE, we mitigate the gradient conflicts that typically arise in multitask reinforcement learning, improving both training efficiency and performance. Our experiments demonstrate that different experts naturally specialize in distinct locomotion behaviors, which can be leveraged for task migration and skill composition. We further validate our approach in both simulation and real-world deployment, showcasing its robustness and adaptability.
comment: 8 pages, 10 figures
☆ Can We Detect Failures Without Failure Data? Uncertainty-Aware Runtime Failure Detection for Imitation Learning Policies
Recent years have witnessed impressive robotic manipulation systems driven by advances in imitation learning and generative modeling, such as diffusion- and flow-based approaches. As robot policy performance increases, so does the complexity and time horizon of achievable tasks, inducing unexpected and diverse failure modes that are difficult to predict a priori. To enable trustworthy policy deployment in safety-critical human environments, reliable runtime failure detection becomes important during policy inference. However, most existing failure detection approaches rely on prior knowledge of failure modes and require failure data during training, which imposes a significant challenge in practicality and scalability. In response to these limitations, we present FAIL-Detect, a modular two-stage approach for failure detection in imitation learning-based robotic manipulation. To accurately identify failures from successful training data alone, we frame the problem as sequential out-of-distribution (OOD) detection. We first distill policy inputs and outputs into scalar signals that correlate with policy failures and capture epistemic uncertainty. FAIL-Detect then employs conformal prediction (CP) as a versatile framework for uncertainty quantification with statistical guarantees. Empirically, we thoroughly investigate both learned and post-hoc scalar signal candidates on diverse robotic manipulation tasks. Our experiments show learned signals to be mostly consistently effective, particularly when using our novel flow-based density estimator. Furthermore, our method detects failures more accurately and faster than state-of-the-art (SOTA) failure detection baselines. These results highlight the potential of FAIL-Detect to enhance the safety and reliability of imitation learning-based robotic systems as they progress toward real-world deployment.
☆ TLA: Tactile-Language-Action Model for Contact-Rich Manipulation
Significant progress has been made in vision-language models. However, language-conditioned robotic manipulation for contact-rich tasks remains underexplored, particularly in terms of tactile sensing. To address this gap, we introduce the Tactile-Language-Action (TLA) model, which effectively processes sequential tactile feedback via cross-modal language grounding to enable robust policy generation in contact-intensive scenarios. In addition, we construct a comprehensive dataset that contains 24k pairs of tactile action instruction data, customized for fingertip peg-in-hole assembly, providing essential resources for TLA training and evaluation. Our results show that TLA significantly outperforms traditional imitation learning methods (e.g., diffusion policy) in terms of effective action generation and action accuracy, while demonstrating strong generalization capabilities by achieving over 85\% success rate on previously unseen assembly clearances and peg shapes. We publicly release all data and code in the hope of advancing research in language-conditioned tactile manipulation skill learning. Project website: https://sites.google.com/view/tactile-language-action/
☆ Deformable Linear Object Surface Placement Using Elastica Planning and Local Shape Control
Manipulation of deformable linear objects (DLOs) in constrained environments is a challenging task. This paper describes a two-layered approach for placing DLOs on a flat surface using a single robot hand. The high-level layer is a novel DLO surface placement method based on Euler's elastica solutions. During this process one DLO endpoint is manipulated by the robot gripper while a variable interior point of the DLO serves as the start point of the portion aligned with the placement surface. The low-level layer forms a pipeline controller. The controller estimates the DLO current shape using a Residual Neural Network (ResNet) and uses low-level feedback to ensure task execution in the presence of modeling and placement errors. The resulting DLO placement approach can recover from states where the high-level manipulation planner has failed as required by practical robot manipulation systems. The DLO placement approach is demonstrated with simulations and experiments that use silicon mock-up objects prepared for fresh food applications.
☆ LightPlanner: Unleashing the Reasoning Capabilities of Lightweight Large Language Models in Task Planning
In recent years, lightweight large language models (LLMs) have garnered significant attention in the robotics field due to their low computational resource requirements and suitability for edge deployment. However, in task planning -- particularly for complex tasks that involve dynamic semantic logic reasoning -- lightweight LLMs have underperformed. To address this limitation, we propose a novel task planner, LightPlanner, which enhances the performance of lightweight LLMs in complex task planning by fully leveraging their reasoning capabilities. Unlike conventional planners that use fixed skill templates, LightPlanner controls robot actions via parameterized function calls, dynamically generating parameter values. This approach allows for fine-grained skill control and improves task planning success rates in complex scenarios. Furthermore, we introduce hierarchical deep reasoning. Before generating each action decision step, LightPlanner thoroughly considers three levels: action execution (feedback verification), semantic parsing (goal consistency verification), and parameter generation (parameter validity verification). This ensures the correctness of subsequent action controls. Additionally, we incorporate a memory module to store historical actions, thereby reducing context length and enhancing planning efficiency for long-term tasks. We train the LightPlanner-1.5B model on our LightPlan-40k dataset, which comprises 40,000 action controls across tasks with 2 to 13 action steps. Experiments demonstrate that our model achieves the highest task success rate despite having the smallest number of parameters. In tasks involving spatial semantic reasoning, the success rate exceeds that of ReAct by 14.9 percent. Moreover, we demonstrate LightPlanner's potential to operate on edge devices.
☆ Hybrid Deep Reinforcement Learning for Radio Tracer Localisation in Robotic-assisted Radioguided Surgery ICRA
Radioguided surgery, such as sentinel lymph node biopsy, relies on the precise localization of radioactive targets by non-imaging gamma/beta detectors. Manual radioactive target detection based on visual display or audible indication of gamma level is highly dependent on the ability of the surgeon to track and interpret the spatial information. This paper presents a learning-based method to realize the autonomous radiotracer detection in robot-assisted surgeries by navigating the probe to the radioactive target. We proposed novel hybrid approach that combines deep reinforcement learning (DRL) with adaptive robotic scanning. The adaptive grid-based scanning could provide initial direction estimation while the DRL-based agent could efficiently navigate to the target utilising historical data. Simulation experiments demonstrate a 95% success rate, and improved efficiency and robustness compared to conventional techniques. Real-world evaluation on the da Vinci Research Kit (dVRK) further confirms the feasibility of the approach, achieving an 80% success rate in radiotracer detection. This method has the potential to enhance consistency, reduce operator dependency, and improve procedural accuracy in radioguided surgeries.
comment: Accepted to IEEE International Conference on Robotics and Automation (ICRA) 2025
☆ PhysVLM: Enabling Visual Language Models to Understand Robotic Physical Reachability
Understanding the environment and a robot's physical reachability is crucial for task execution. While state-of-the-art vision-language models (VLMs) excel in environmental perception, they often generate inaccurate or impractical responses in embodied visual reasoning tasks due to a lack of understanding of robotic physical reachability. To address this issue, we propose a unified representation of physical reachability across diverse robots, i.e., Space-Physical Reachability Map (S-P Map), and PhysVLM, a vision-language model that integrates this reachability information into visual reasoning. Specifically, the S-P Map abstracts a robot's physical reachability into a generalized spatial representation, independent of specific robot configurations, allowing the model to focus on reachability features rather than robot-specific parameters. Subsequently, PhysVLM extends traditional VLM architectures by incorporating an additional feature encoder to process the S-P Map, enabling the model to reason about physical reachability without compromising its general vision-language capabilities. To train and evaluate PhysVLM, we constructed a large-scale multi-robot dataset, Phys100K, and a challenging benchmark, EQA-phys, which includes tasks for six different robots in both simulated and real-world environments. Experimental results demonstrate that PhysVLM outperforms existing models, achieving a 14\% improvement over GPT-4o on EQA-phys and surpassing advanced embodied VLMs such as RoboMamba and SpatialVLM on the RoboVQA-val and OpenEQA benchmarks. Additionally, the S-P Map shows strong compatibility with various VLMs, and its integration into GPT-4o-mini yields a 7.1\% performance improvement.
☆ Soft Actor-Critic-based Control Barrier Adaptation for Robust Autonomous Navigation in Unknown Environments ICRA
Motion planning failures during autonomous navigation often occur when safety constraints are either too conservative, leading to deadlocks, or too liberal, resulting in collisions. To improve robustness, a robot must dynamically adapt its safety constraints to ensure it reaches its goal while balancing safety and performance measures. To this end, we propose a Soft Actor-Critic (SAC)-based policy for adapting Control Barrier Function (CBF) constraint parameters at runtime, ensuring safe yet non-conservative motion. The proposed approach is designed for a general high-level motion planner, low-level controller, and target system model, and is trained in simulation only. Through extensive simulations and physical experiments, we demonstrate that our framework effectively adapts CBF constraints, enabling the robot to reach its final goal without compromising safety.
comment: To Appear in 2025 IEEE/RSJ International Conference on Robotics and Automation (ICRA), 2025
☆ Collaborative Dynamic 3D Scene Graphs for Open-Vocabulary Urban Scene Understanding
Mapping and scene representation are fundamental to reliable planning and navigation in mobile robots. While purely geometric maps using voxel grids allow for general navigation, obtaining up-to-date spatial and semantically rich representations that scale to dynamic large-scale environments remains challenging. In this work, we present CURB-OSG, an open-vocabulary dynamic 3D scene graph engine that generates hierarchical decompositions of urban driving scenes via multi-agent collaboration. By fusing the camera and LiDAR observations from multiple perceiving agents with unknown initial poses, our approach generates more accurate maps compared to a single agent while constructing a unified open-vocabulary semantic hierarchy of the scene. Unlike previous methods that rely on ground truth agent poses or are evaluated purely in simulation, CURB-OSG alleviates these constraints. We evaluate the capabilities of CURB-OSG on real-world multi-agent sensor data obtained from multiple sessions of the Oxford Radar RobotCar dataset. We demonstrate improved mapping and object prediction accuracy through multi-agent collaboration as well as evaluate the environment partitioning capabilities of the proposed approach. To foster further research, we release our code and supplementary material at https://ov-curb.cs.uni-freiburg.de.
☆ Optimizing Ride-Pooling Operations with Extended Pickup and Drop-Off Flexibility
The Ride-Pool Matching Problem (RMP) is central to on-demand ride-pooling services, where vehicles must be matched with multiple requests while adhering to service constraints such as pickup delays, detour limits, and vehicle capacity. Most existing RMP solutions assume passengers are picked up and dropped off at their original locations, neglecting the potential for passengers to walk to nearby spots to meet vehicles. This assumption restricts the optimization potential in ride-pooling operations. In this paper, we propose a novel matching method that incorporates extended pickup and drop-off areas for passengers. We first design a tree-based approach to efficiently generate feasible matches between passengers and vehicles. Next, we optimize vehicle routes to cover all designated pickup and drop-off locations while minimizing total travel distance. Finally, we employ dynamic assignment strategies to achieve optimal matching outcomes. Experiments on city-scale taxi datasets demonstrate that our method improves the number of served requests by up to 13\% and average travel distance by up to 21\% compared to leading existing solutions, underscoring the potential of leveraging passenger mobility to significantly enhance ride-pooling service efficiency.
☆ Automatic Robotic-Assisted Diffuse Reflectance Spectroscopy Scanning System ICRA
Diffuse Reflectance Spectroscopy (DRS) is a well-established optical technique for tissue composition assessment which has been clinically evaluated for tumour detection to ensure the complete removal of cancerous tissue. While point-wise assessment has many potential applications, incorporating automated large-area scanning would enable holistic tissue sampling with higher consistency. We propose a robotic system to facilitate autonomous DRS scanning with hybrid visual servoing control. A specially designed height compensation module enables precise contact condition control. The evaluation results show that the system can accurately execute the scanning command and acquire consistent DRS spectra with comparable results to the manual collection, which is the current gold standard protocol. Integrating the proposed system into surgery lays the groundwork for autonomous intra-operative DRS tissue assessment with high reliability and repeatability. This could reduce the need for manual scanning by the surgeon while ensuring complete tumor removal in clinical practice.
comment: Accepted to IEEE International Conference on Robotics and Automation (ICRA) 2025
LLM-Pack: Intuitive Grocery Handling for Logistics Applications
Robotics and automation are increasingly influential in logistics but remain largely confined to traditional warehouses. In grocery retail, advancements such as cashier-less supermarkets exist, yet customers still manually pick and pack groceries. While there has been a substantial focus in robotics on the bin picking problem, the task of packing objects and groceries has remained largely untouched. However, packing grocery items in the right order is crucial for preventing product damage, e.g., heavy objects should not be placed on top of fragile ones. However, the exact criteria for the right packing order are hard to define, in particular given the huge variety of objects typically found in stores. In this paper, we introduce LLM-Pack, a novel approach for grocery packing. LLM-Pack leverages language and vision foundation models for identifying groceries and generating a packing sequence that mimics human packing strategy. LLM-Pack does not require dedicated training to handle new grocery items and its modularity allows easy upgrades of the underlying foundation models. We extensively evaluate our approach to demonstrate its performance. We will make the source code of LLMPack publicly available upon the publication of this manuscript.
comment: 6 Pages, 6 Figures
☆ ICPR 2024 Competition on Rider Intention Prediction
The recent surge in the vehicle market has led to an alarming increase in road accidents. This underscores the critical importance of enhancing road safety measures, particularly for vulnerable road users like motorcyclists. Hence, we introduce the rider intention prediction (RIP) competition that aims to address challenges in rider safety by proactively predicting maneuvers before they occur, thereby strengthening rider safety. This capability enables the riders to react to the potential incorrect maneuvers flagged by advanced driver assistance systems (ADAS). We collect a new dataset, namely, rider action anticipation dataset (RAAD) for the competition consisting of two tasks: single-view RIP and multi-view RIP. The dataset incorporates a spectrum of traffic conditions and challenging navigational maneuvers on roads with varying lighting conditions. For the competition, we received seventy-five registrations and five team submissions for inference of which we compared the methods of the top three performing teams on both the RIP tasks: one state-space model (Mamba2) and two learning-based approaches (SVM and CNN-LSTM). The results indicate that the state-space model outperformed the other methods across the entire dataset, providing a balanced performance across maneuver classes. The SVM-based RIP method showed the second-best performance when using random sampling and SMOTE. However, the CNN-LSTM method underperformed, primarily due to class imbalance issues, particularly struggling with minority classes. This paper details the proposed RAAD dataset and provides a summary of the submissions for the RIP 2024 competition.
☆ V-Max: Making RL practical for Autonomous Driving
Learning-based decision-making has the potential to enable generalizable Autonomous Driving (AD) policies, reducing the engineering overhead of rule-based approaches. Imitation Learning (IL) remains the dominant paradigm, benefiting from large-scale human demonstration datasets, but it suffers from inherent limitations such as distribution shift and imitation gaps. Reinforcement Learning (RL) presents a promising alternative, yet its adoption in AD remains limited due to the lack of standardized and efficient research frameworks. To this end, we introduce V-Max, an open research framework providing all the necessary tools to make RL practical for AD. V-Max is built on Waymax, a hardware-accelerated AD simulator designed for large-scale experimentation. We extend it using ScenarioNet's approach, enabling the fast simulation of diverse AD datasets. V-Max integrates a set of observation and reward functions, transformer-based encoders, and training pipelines. Additionally, it includes adversarial evaluation settings and an extensive set of evaluation metrics. Through a large-scale benchmark, we analyze how network architectures, observation functions, training data, and reward shaping impact RL performance.
☆ Gait in Eight: Efficient On-Robot Learning for Omnidirectional Quadruped Locomotion
On-robot Reinforcement Learning is a promising approach to train embodiment-aware policies for legged robots. However, the computational constraints of real-time learning on robots pose a significant challenge. We present a framework for efficiently learning quadruped locomotion in just 8 minutes of raw real-time training utilizing the sample efficiency and minimal computational overhead of the new off-policy algorithm CrossQ. We investigate two control architectures: Predicting joint target positions for agile, high-speed locomotion and Central Pattern Generators for stable, natural gaits. While prior work focused on learning simple forward gaits, our framework extends on-robot learning to omnidirectional locomotion. We demonstrate the robustness of our approach in different indoor and outdoor environments.
☆ MetaFold: Language-Guided Multi-Category Garment Folding Framework via Trajectory Generation and Foundation Model
Garment folding is a common yet challenging task in robotic manipulation. The deformability of garments leads to a vast state space and complex dynamics, which complicates precise and fine-grained manipulation. Previous approaches often rely on predefined key points or demonstrations, limiting their generalization across diverse garment categories. This paper presents a framework, MetaFold, that disentangles task planning from action prediction, learning each independently to enhance model generalization. It employs language-guided point cloud trajectory generation for task planning and a low-level foundation model for action prediction. This structure facilitates multi-category learning, enabling the model to adapt flexibly to various user instructions and folding tasks. Experimental results demonstrate the superiority of our proposed framework. Supplementary materials are available on our website: https://meta-fold.github.io/.
☆ DG16M: A Large-Scale Dataset for Dual-Arm Grasping with Force-Optimized Grasps
Dual-arm robotic grasping is crucial for handling large objects that require stable and coordinated manipulation. While single-arm grasping has been extensively studied, datasets tailored for dual-arm settings remain scarce. We introduce a large-scale dataset of 16 million dual-arm grasps, evaluated under improved force-closure constraints. Additionally, we develop a benchmark dataset containing 300 objects with approximately 30,000 grasps, evaluated in a physics simulation environment, providing a better grasp quality assessment for dual-arm grasp synthesis methods. Finally, we demonstrate the effectiveness of our dataset by training a Dual-Arm Grasp Classifier network that outperforms the state-of-the-art methods by 15\%, achieving higher grasp success rates and improved generalization across objects.
☆ LiPS: Large-Scale Humanoid Robot Reinforcement Learning with Parallel-Series Structures
In recent years, research on humanoid robots has garnered significant attention, particularly in reinforcement learning based control algorithms, which have achieved major breakthroughs. Compared to traditional model-based control algorithms, reinforcement learning based algorithms demonstrate substantial advantages in handling complex tasks. Leveraging the large-scale parallel computing capabilities of GPUs, contemporary humanoid robots can undergo extensive parallel training in simulated environments. A physical simulation platform capable of large-scale parallel training is crucial for the development of humanoid robots. As one of the most complex robot forms, humanoid robots typically possess intricate mechanical structures, encompassing numerous series and parallel mechanisms. However, many reinforcement learning based humanoid robot control algorithms currently employ open-loop topologies during training, deferring the conversion to series-parallel structures until the sim2real phase. This approach is primarily due to the limitations of physics engines, as current GPU-based physics engines often only support open-loop topologies or have limited capabilities in simulating multi-rigid-body closed-loop topologies. For enabling reinforcement learning-based humanoid robot control algorithms to train in large-scale parallel environments, we propose a novel training method LiPS. By incorporating multi-rigid-body dynamics modeling in the simulation environment, we significantly reduce the sim2real gap and the difficulty of converting to parallel structures during model deployment, thereby robustly supporting large-scale reinforcement learning for humanoid robots.
☆ Trinity: A Modular Humanoid Robot AI System
In recent years, research on humanoid robots has garnered increasing attention. With breakthroughs in various types of artificial intelligence algorithms, embodied intelligence, exemplified by humanoid robots, has been highly anticipated. The advancements in reinforcement learning (RL) algorithms have significantly improved the motion control and generalization capabilities of humanoid robots. Simultaneously, the groundbreaking progress in large language models (LLM) and visual language models (VLM) has brought more possibilities and imagination to humanoid robots. LLM enables humanoid robots to understand complex tasks from language instructions and perform long-term task planning, while VLM greatly enhances the robots' understanding and interaction with their environment. This paper introduces \textcolor{magenta}{Trinity}, a novel AI system for humanoid robots that integrates RL, LLM, and VLM. By combining these technologies, Trinity enables efficient control of humanoid robots in complex environments. This innovative approach not only enhances the capabilities but also opens new avenues for future research and applications of humanoid robotics.
☆ KiteRunner: Language-Driven Cooperative Local-Global Navigation Policy with UAV Mapping in Outdoor Environments
Autonomous navigation in open-world outdoor environments faces challenges in integrating dynamic conditions, long-distance spatial reasoning, and semantic understanding. Traditional methods struggle to balance local planning, global planning, and semantic task execution, while existing large language models (LLMs) enhance semantic comprehension but lack spatial reasoning capabilities. Although diffusion models excel in local optimization, they fall short in large-scale long-distance navigation. To address these gaps, this paper proposes KiteRunner, a language-driven cooperative local-global navigation strategy that combines UAV orthophoto-based global planning with diffusion model-driven local path generation for long-distance navigation in open-world scenarios. Our method innovatively leverages real-time UAV orthophotography to construct a global probability map, providing traversability guidance for the local planner, while integrating large models like CLIP and GPT to interpret natural language instructions. Experiments demonstrate that KiteRunner achieves 5.6% and 12.8% improvements in path efficiency over state-of-the-art methods in structured and unstructured environments, respectively, with significant reductions in human interventions and execution time.
☆ Uni-Gaussians: Unifying Camera and Lidar Simulation with Gaussians for Dynamic Driving Scenarios
Ensuring the safety of autonomous vehicles necessitates comprehensive simulation of multi-sensor data, encompassing inputs from both cameras and LiDAR sensors, across various dynamic driving scenarios. Neural rendering techniques, which utilize collected raw sensor data to simulate these dynamic environments, have emerged as a leading methodology. While NeRF-based approaches can uniformly represent scenes for rendering data from both camera and LiDAR, they are hindered by slow rendering speeds due to dense sampling. Conversely, Gaussian Splatting-based methods employ Gaussian primitives for scene representation and achieve rapid rendering through rasterization. However, these rasterization-based techniques struggle to accurately model non-linear optical sensors. This limitation restricts their applicability to sensors beyond pinhole cameras. To address these challenges and enable unified representation of dynamic driving scenarios using Gaussian primitives, this study proposes a novel hybrid approach. Our method utilizes rasterization for rendering image data while employing Gaussian ray-tracing for LiDAR data rendering. Experimental results on public datasets demonstrate that our approach outperforms current state-of-the-art methods. This work presents a unified and efficient solution for realistic simulation of camera and LiDAR data in autonomous driving scenarios using Gaussian primitives, offering significant advancements in both rendering quality and computational efficiency.
comment: 10 pages
Dynamic Risk Assessment for Human-Robot Collaboration Using a Heuristics-based Approach
Human-robot collaboration (HRC) introduces significant safety challenges, particularly in protecting human operators working alongside collaborative robots (cobots). While current ISO standards emphasize risk assessment and hazard identification, these procedures are often insufficient for addressing the complexity of HRC environments, which involve numerous design factors and dynamic interactions. This publication presents a method for objective hazard analysis to support Dynamic Risk Assessment, extending beyond reliance on expert knowledge. The approach monitors scene parameters, such as the distance between human body parts and the cobot, as well as the cobot`s Cartesian velocity. Additionally, an anthropocentric parameter focusing on the orientation of the human head within the collaborative workspace is introduced. These parameters are transformed into hazard indicators using non-linear heuristic functions. The hazard indicators are then aggregated to estimate the total hazard level of a given scenario. The proposed method is evaluated using an industrial dataset that depicts various interactions between a human operator and a cobot.
☆ Reasoning in visual navigation of end-to-end trained agents: a dynamical systems approach
Progress in Embodied AI has made it possible for end-to-end-trained agents to navigate in photo-realistic environments with high-level reasoning and zero-shot or language-conditioned behavior, but benchmarks are still dominated by simulation. In this work, we focus on the fine-grained behavior of fast-moving real robots and present a large-scale experimental study involving \numepisodes{} navigation episodes in a real environment with a physical robot, where we analyze the type of reasoning emerging from end-to-end training. In particular, we study the presence of realistic dynamics which the agent learned for open-loop forecasting, and their interplay with sensing. We analyze the way the agent uses latent memory to hold elements of the scene structure and information gathered during exploration. We probe the planning capabilities of the agent, and find in its memory evidence for somewhat precise plans over a limited horizon. Furthermore, we show in a post-hoc analysis that the value function learned by the agent relates to long-term planning. Put together, our experiments paint a new picture on how using tools from computer vision and sequential decision making have led to new capabilities in robotics and control. An interactive tool is available at europe.naverlabs.com/research/publications/reasoning-in-visual-navigation-of-end-to-end-trained-agents.
☆ General-Purpose Aerial Intelligent Agents Empowered by Large Language Models
The emergence of large language models (LLMs) opens new frontiers for unmanned aerial vehicle (UAVs), yet existing systems remain confined to predefined tasks due to hardware-software co-design challenges. This paper presents the first aerial intelligent agent capable of open-world task execution through tight integration of LLM-based reasoning and robotic autonomy. Our hardware-software co-designed system addresses two fundamental limitations: (1) Onboard LLM operation via an edge-optimized computing platform, achieving 5-6 tokens/sec inference for 14B-parameter models at 220W peak power; (2) A bidirectional cognitive architecture that synergizes slow deliberative planning (LLM task planning) with fast reactive control (state estimation, mapping, obstacle avoidance, and motion planning). Validated through preliminary results using our prototype, the system demonstrates reliable task planning and scene understanding in communication-constrained environments, such as sugarcane monitoring, power grid inspection, mine tunnel exploration, and biological observation applications. This work establishes a novel framework for embodied aerial artificial intelligence, bridging the gap between task planning and robotic autonomy in open environments.
☆ Distillation-PPO: A Novel Two-Stage Reinforcement Learning Framework for Humanoid Robot Perceptive Locomotion
In recent years, humanoid robots have garnered significant attention from both academia and industry due to their high adaptability to environments and human-like characteristics. With the rapid advancement of reinforcement learning, substantial progress has been made in the walking control of humanoid robots. However, existing methods still face challenges when dealing with complex environments and irregular terrains. In the field of perceptive locomotion, existing approaches are generally divided into two-stage methods and end-to-end methods. Two-stage methods first train a teacher policy in a simulated environment and then use distillation techniques, such as DAgger, to transfer the privileged information learned as latent features or actions to the student policy. End-to-end methods, on the other hand, forgo the learning of privileged information and directly learn policies from a partially observable Markov decision process (POMDP) through reinforcement learning. However, due to the lack of supervision from a teacher policy, end-to-end methods often face difficulties in training and exhibit unstable performance in real-world applications. This paper proposes an innovative two-stage perceptive locomotion framework that combines the advantages of teacher policies learned in a fully observable Markov decision process (MDP) to regularize and supervise the student policy. At the same time, it leverages the characteristics of reinforcement learning to ensure that the student policy can continue to learn in a POMDP, thereby enhancing the model's upper bound. Our experimental results demonstrate that our two-stage training framework achieves higher training efficiency and stability in simulated environments, while also exhibiting better robustness and generalization capabilities in real-world applications.
☆ Multitask Reinforcement Learning for Quadcopter Attitude Stabilization and Tracking using Graph Policy
Quadcopter attitude control involves two tasks: smooth attitude tracking and aggressive stabilization from arbitrary states. Although both can be formulated as tracking problems, their distinct state spaces and control strategies complicate a unified reward function. We propose a multitask deep reinforcement learning framework that leverages parallel simulation with IsaacGym and a Graph Convolutional Network (GCN) policy to address both tasks effectively. Our multitask Soft Actor-Critic (SAC) approach achieves faster, more reliable learning and higher sample efficiency than single-task methods. We validate its real-world applicability by deploying the learned policy - a compact two-layer network with 24 neurons per layer - on a Pixhawk flight controller, achieving 400 Hz control without extra computational resources. We provide our code at https://github.com/robot-perception-group/GraphMTSAC\_UAV/.
☆ DexGrasp Anything: Towards Universal Robotic Dexterous Grasping with Physics Awareness CVPR 2025
A dexterous hand capable of grasping any object is essential for the development of general-purpose embodied intelligent robots. However, due to the high degree of freedom in dexterous hands and the vast diversity of objects, generating high-quality, usable grasping poses in a robust manner is a significant challenge. In this paper, we introduce DexGrasp Anything, a method that effectively integrates physical constraints into both the training and sampling phases of a diffusion-based generative model, achieving state-of-the-art performance across nearly all open datasets. Additionally, we present a new dexterous grasping dataset containing over 3.4 million diverse grasping poses for more than 15k different objects, demonstrating its potential to advance universal dexterous grasping. The code of our method and our dataset will be publicly released soon.
comment: Accepted by CVPR 2025
☆ HASARD: A Benchmark for Vision-Based Safe Reinforcement Learning in Embodied Agents ICLR 2025
Advancing safe autonomous systems through reinforcement learning (RL) requires robust benchmarks to evaluate performance, analyze methods, and assess agent competencies. Humans primarily rely on embodied visual perception to safely navigate and interact with their surroundings, making it a valuable capability for RL agents. However, existing vision-based 3D benchmarks only consider simple navigation tasks. To address this shortcoming, we introduce \textbf{HASARD}, a suite of diverse and complex tasks to $\textbf{HA}$rness $\textbf{SA}$fe $\textbf{R}$L with $\textbf{D}$oom, requiring strategic decision-making, comprehending spatial relationships, and predicting the short-term future. HASARD features three difficulty levels and two action spaces. An empirical evaluation of popular baseline methods demonstrates the benchmark's complexity, unique challenges, and reward-cost trade-offs. Visualizing agent navigation during training with top-down heatmaps provides insight into a method's learning process. Incrementally training across difficulty levels offers an implicit learning curriculum. HASARD is the first safe RL benchmark to exclusively target egocentric vision-based learning, offering a cost-effective and insightful way to explore the potential and boundaries of current and future safe RL methods. The environments and baseline implementations are open-sourced at https://sites.google.com/view/hasard-bench/.
comment: Accepted to ICLR 2025
☆ Trajectory Optimization for In-Hand Manipulation with Tactile Force Control IROS 2025
The strength of the human hand lies in its ability to manipulate small objects precisely and robustly. In contrast, simple robotic grippers have low dexterity and fail to handle small objects effectively. This is why many automation tasks remain unsolved by robots. This paper presents an optimization-based framework for in-hand manipulation with a robotic hand equipped with compact Magnetic Tactile Sensors (MTSs). The small form factor of the robotic hand from Shadow Robot introduces challenges in estimating the state of the object while satisfying contact constraints. To address this, we formulate a trajectory optimization problem using Nonlinear Programming (NLP) for finger movements while ensuring contact points to change along the geometry of the fingers. Using the optimized trajectory from the solver, we implement and test an open-loop controller for rolling motion. To further enhance robustness and accuracy, we introduce a force controller for the fingers and a state estimator for the object utilizing MTSs. The proposed framework is validated through comparative experiments, showing that incorporating the force control with compliance consideration improves the accuracy and robustness of the rolling motion. Rolling an object with the force controller is 30\% more likely to succeed than running an open-loop controller. The demonstration video is available at https://youtu.be/6J_muL_AyE8.
comment: This paper has been submitted to IROS 2025 for possible publication
☆ Safety-Ensured Control Framework for Robotic Endoscopic Task Automation
There is growing interest in automating surgical tasks using robotic systems, such as endoscopy for treating gastrointestinal (GI) cancer. However, previous studies have primarily focused on detecting and analyzing objects or robots, with limited attention to ensuring safety, which is critical for clinical applications, where accidents can be caused by unsafe robot motions. In this study, we propose a new control framework that can formally ensure the safety of automating certain processes involved in endoscopic submucosal dissection (ESD), a representative endoscopic surgical method for the treatment of early GI cancer, by using an endoscopic robot. The proposed framework utilizes Control Barrier Functions (CBFs) to accurately identify the boundaries of individual tumors, even in close proximity within the GI tract, ensuring precise treatment and removal while preserving the surrounding normal tissue. Additionally, by adopting a model-free control scheme, safety assurance is made possible even in endoscopic robotic systems where dynamic modeling is challenging. We demonstrate the proposed framework in cases where the tumors to be removed are close to each other, showing that the safety constraints are enforced. We show that the model-free CBF-based controlled robot eliminates one tumor completely without damaging it, while not invading another nearby tumor.
comment: This paper is submitted to IEEE Access
☆ Investigating the Effectiveness of a Socratic Chain-of-Thoughts Reasoning Method for Task Planning in Robotics, A Case Study
Large language models (LLMs) have demonstrated unprecedented capability in reasoning with natural language. Coupled with this development is the emergence of embodied AI in robotics. Despite showing promise for verbal and written reasoning tasks, it remains unknown whether LLMs are capable of navigating complex spatial tasks with physical actions in the real world. To this end, it is of interest to investigate applying LLMs to robotics in zero-shot learning scenarios, and in the absence of fine-tuning - a feat which could significantly improve human-robot interaction, alleviate compute cost, and eliminate low-level programming tasks associated with robot tasks. To explore this question, we apply GPT-4(Omni) with a simulated Tiago robot in Webots engine for an object search task. We evaluate the effectiveness of three reasoning strategies based on Chain-of-Thought (CoT) sub-task list generation with the Socratic method (SocraCoT) (in order of increasing rigor): (1) Non-CoT/Non-SocraCoT, (2) CoT only, and (3) SocraCoT. Performance was measured in terms of the proportion of tasks successfully completed and execution time (N = 20). Our preliminary results show that when combined with chain-of-thought reasoning, the Socratic method can be used for code generation for robotic tasks that require spatial awareness. In extension of this finding, we propose EVINCE-LoC; a modified EVINCE method that could further enhance performance in highly complex and or dynamic testing scenarios.
FASIONAD++ : Integrating High-Level Instruction and Information Bottleneck in FAt-Slow fusION Systems for Enhanced Safety in Autonomous Driving with Adaptive Feedback
Ensuring safe, comfortable, and efficient planning is crucial for autonomous driving systems. While end-to-end models trained on large datasets perform well in standard driving scenarios, they struggle with complex low-frequency events. Recent Large Language Models (LLMs) and Vision Language Models (VLMs) advancements offer enhanced reasoning but suffer from computational inefficiency. Inspired by the dual-process cognitive model "Thinking, Fast and Slow", we propose $\textbf{FASIONAD}$ -- a novel dual-system framework that synergizes a fast end-to-end planner with a VLM-based reasoning module. The fast system leverages end-to-end learning to achieve real-time trajectory generation in common scenarios, while the slow system activates through uncertainty estimation to perform contextual analysis and complex scenario resolution. Our architecture introduces three key innovations: (1) A dynamic switching mechanism enabling slow system intervention based on real-time uncertainty assessment; (2) An information bottleneck with high-level plan feedback that optimizes the slow system's guidance capability; (3) A bidirectional knowledge exchange where visual prompts enhance the slow system's reasoning while its feedback refines the fast planner's decision-making. To strengthen VLM reasoning, we develop a question-answering mechanism coupled with reward-instruct training strategy. In open-loop experiments, FASIONAD achieves a $6.7\%$ reduction in average $L2$ trajectory error and $28.1\%$ lower collision rate.
comment: 8 pages, 4 figures
☆ HOTFormerLoc: Hierarchical Octree Transformer for Versatile Lidar Place Recognition Across Ground and Aerial Views CVPR 2025
We present HOTFormerLoc, a novel and versatile Hierarchical Octree-based Transformer, for large-scale 3D place recognition in both ground-to-ground and ground-to-aerial scenarios across urban and forest environments. We propose an octree-based multi-scale attention mechanism that captures spatial and semantic features across granularities. To address the variable density of point distributions from spinning lidar, we present cylindrical octree attention windows to reflect the underlying distribution during attention. We introduce relay tokens to enable efficient global-local interactions and multi-scale representation learning at reduced computational cost. Our pyramid attentional pooling then synthesises a robust global descriptor for end-to-end place recognition in challenging environments. In addition, we introduce CS-Wild-Places, a novel 3D cross-source dataset featuring point cloud data from aerial and ground lidar scans captured in dense forests. Point clouds in CS-Wild-Places contain representational gaps and distinctive attributes such as varying point densities and noise patterns, making it a challenging benchmark for cross-view localisation in the wild. HOTFormerLoc achieves a top-1 average recall improvement of 5.5% - 11.5% on the CS-Wild-Places benchmark. Furthermore, it consistently outperforms SOTA 3D place recognition methods, with an average performance gain of 5.8% on well-established urban and forest datasets. The code and CS-Wild-Places benchmark is available at https://csiro-robotics.github.io/HOTFormerLoc .
comment: 16 pages, 13 figures, 10 tables, Accepted to CVPR 2025
Control Barrier Functions for Prescribed-time Reach-Avoid-Stay Tasks using Spatiotemporal Tubes
Prescribed-time reach-avoid-stay (PT-RAS) specifications are crucial in applications requiring precise timing, state constraints, and safety guarantees. While control carrier functions (CBFs) have emerged as a promising approach, providing formal guarantees of safety, constructing CBFs that satisfy PT-RAS specifications remains challenging. In this paper, we present a novel approach using a spatiotemporal tubes (STTs) framework to construct CBFs for PT-RAS tasks. The STT framework allows for the systematic design of CBFs that dynamically manage both spatial and temporal constraints, ensuring the system remains within a safe operational envelope while achieving the desired temporal objectives. The proposed method is validated with two case studies: temporal motion planning of an omnidirectional robot and temporal waypoint navigation of a drone with obstacles, using higher-order CBFs.
comment: Accepted in ECC 2025
☆ LATMOS: Latent Automaton Task Model from Observation Sequences
Robot task planning from high-level instructions is an important step towards deploying fully autonomous robot systems in the service sector. Three key aspects of robot task planning present challenges yet to be resolved simultaneously, namely, (i) factorization of complex tasks specifications into simpler executable subtasks, (ii) understanding of the current task state from raw observations, and (iii) planning and verification of task executions. To address these challenges, we propose LATMOS, an automata-inspired task model that, given observations from correct task executions, is able to factorize the task, while supporting verification and planning operations. LATMOS combines an observation encoder to extract the features from potentially high-dimensional observations with automata theory to learn a sequential model that encapsulates an automaton with symbols in the latent feature space. We conduct extensive evaluations in three task model learning setups: (i) abstract tasks described by logical formulas, (ii) real-world human tasks described by videos and natural language prompts and (iii) a robot task described by image and state observations. The results demonstrate the improved plan generation and verification capabilities of LATMOS across observation modalities and tasks.
comment: under review
☆ Instruction-Augmented Long-Horizon Planning: Embedding Grounding Mechanisms in Embodied Mobile Manipulation
Enabling humanoid robots to perform long-horizon mobile manipulation planning in real-world environments based on embodied perception and comprehension abilities has been a longstanding challenge. With the recent rise of large language models (LLMs), there has been a notable increase in the development of LLM-based planners. These approaches either utilize human-provided textual representations of the real world or heavily depend on prompt engineering to extract such representations, lacking the capability to quantitatively understand the environment, such as determining the feasibility of manipulating objects. To address these limitations, we present the Instruction-Augmented Long-Horizon Planning (IALP) system, a novel framework that employs LLMs to generate feasible and optimal actions based on real-time sensor feedback, including grounded knowledge of the environment, in a closed-loop interaction. Distinct from prior works, our approach augments user instructions into PDDL problems by leveraging both the abstract reasoning capabilities of LLMs and grounding mechanisms. By conducting various real-world long-horizon tasks, each consisting of seven distinct manipulatory skills, our results demonstrate that the IALP system can efficiently solve these tasks with an average success rate exceeding 80%. Our proposed method can operate as a high-level planner, equipping robots with substantial autonomy in unstructured environments through the utilization of multi-modal sensor inputs.
comment: 17 pages, 11 figures
Efficient Trajectory Generation Based on Traversable Planes in 3D Complex Architectural Spaces ICRA 2025
With the increasing integration of robots into human life, their role in architectural spaces where people spend most of their time has become more prominent. While motion capabilities and accurate localization for automated robots have rapidly developed, the challenge remains to generate efficient, smooth, comprehensive, and high-quality trajectories in these areas. In this paper, we propose a novel efficient planner for ground robots to autonomously navigate in large complex multi-layered architectural spaces. Considering that traversable regions typically include ground, slopes, and stairs, which are planar or nearly planar structures, we simplify the problem to navigation within and between complex intersecting planes. We first extract traversable planes from 3D point clouds through segmenting, merging, classifying, and connecting to build a plane-graph, which is lightweight but fully represents the traversable regions. We then build a trajectory optimization based on motion state trajectory and fully consider special constraints when crossing multi-layer planes to maximize the robot's maneuverability. We conduct experiments in simulated environments and test on a CubeTrack robot in real-world scenarios, validating the method's effectiveness and practicality.
comment: 7 pages, 8 figures, 2tables. The paper has been accepted by ICRA 2025
☆ GigaSLAM: Large-Scale Monocular SLAM with Hierachical Gaussian Splats
Tracking and mapping in large-scale, unbounded outdoor environments using only monocular RGB input presents substantial challenges for existing SLAM systems. Traditional Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS) SLAM methods are typically limited to small, bounded indoor settings. To overcome these challenges, we introduce GigaSLAM, the first NeRF/3DGS-based SLAM framework for kilometer-scale outdoor environments, as demonstrated on the KITTI and KITTI 360 datasets. Our approach employs a hierarchical sparse voxel map representation, where Gaussians are decoded by neural networks at multiple levels of detail. This design enables efficient, scalable mapping and high-fidelity viewpoint rendering across expansive, unbounded scenes. For front-end tracking, GigaSLAM utilizes a metric depth model combined with epipolar geometry and PnP algorithms to accurately estimate poses, while incorporating a Bag-of-Words-based loop closure mechanism to maintain robust alignment over long trajectories. Consequently, GigaSLAM delivers high-precision tracking and visually faithful rendering on urban outdoor benchmarks, establishing a robust SLAM solution for large-scale, long-term scenarios, and significantly extending the applicability of Gaussian Splatting SLAM systems to unbounded outdoor environments.
☆ ForceGrip: Data-Free Curriculum Learning for Realistic Grip Force Control in VR Hand Manipulation
Realistic hand manipulation is a key component of immersive virtual reality (VR), yet existing methods often rely on a kinematic approach or motion-capture datasets that omit crucial physical attributes such as contact forces and finger torques. Consequently, these approaches prioritize tight, one-size-fits-all grips rather than reflecting users' intended force levels. We present ForceGrip, a deep learning agent that synthesizes realistic hand manipulation motions, faithfully reflecting the user's grip force intention. Instead of mimicking predefined motion datasets, ForceGrip uses generated training scenarios-randomizing object shapes, wrist movements, and trigger input flows-to challenge the agent with a broad spectrum of physical interactions. To effectively learn from these complex tasks, we employ a three-phase curriculum learning framework comprising Finger Positioning, Intention Adaptation, and Dynamic Stabilization. This progressive strategy ensures stable hand-object contact, adaptive force control based on user inputs, and robust handling under dynamic conditions. Additionally, a proximity reward function enhances natural finger motions and accelerates training convergence. Quantitative and qualitative evaluations reveal ForceGrip's superior force controllability and plausibility compared to state-of-the-art methods.
comment: 19 pages, 10 figs (with appendix)
☆ Elastic Motion Policy: An Adaptive Dynamical System for Robust and Efficient One-Shot Imitation Learning
Behavior cloning (BC) has become a staple imitation learning paradigm in robotics due to its ease of teaching robots complex skills directly from expert demonstrations. However, BC suffers from an inherent generalization issue. To solve this, the status quo solution is to gather more data. Yet, regardless of how much training data is available, out-of-distribution performance is still sub-par, lacks any formal guarantee of convergence and success, and is incapable of allowing and recovering from physical interactions with humans. These are critical flaws when robots are deployed in ever-changing human-centric environments. Thus, we propose Elastic Motion Policy (EMP), a one-shot imitation learning framework that allows robots to adjust their behavior based on the scene change while respecting the task specification. Trained from a single demonstration, EMP follows the dynamical systems paradigm where motion planning and control are governed by first-order differential equations with convergence guarantees. We leverage Laplacian editing in full end-effector space, $\mathbb{R}^3\times SO(3)$, and online convex learning of Lyapunov functions, to adapt EMP online to new contexts, avoiding the need to collect new demonstrations. We extensively validate our framework in real robot experiments, demonstrating its robust and efficient performance in dynamic environments, with obstacle avoidance and multi-step task capabilities. Project Website: https://elastic-motion-policy.github.io/EMP/
☆ MoRE: Unlocking Scalability in Reinforcement Learning for Quadruped Vision-Language-Action Models ICRA 2025
Developing versatile quadruped robots that can smoothly perform various actions and tasks in real-world environments remains a significant challenge. This paper introduces a novel vision-language-action (VLA) model, mixture of robotic experts (MoRE), for quadruped robots that aim to introduce reinforcement learning (RL) for fine-tuning large-scale VLA models with a large amount of mixed-quality data. MoRE integrates multiple low-rank adaptation modules as distinct experts within a dense multi-modal large language model (MLLM), forming a sparse-activated mixture-of-experts model. This design enables the model to effectively adapt to a wide array of downstream tasks. Moreover, we employ a reinforcement learning-based training objective to train our model as a Q-function after deeply exploring the structural properties of our tasks. Effective learning from automatically collected mixed-quality data enhances data efficiency and model performance. Extensive experiments demonstrate that MoRE outperforms all baselines across six different skills and exhibits superior generalization capabilities in out-of-distribution scenarios. We further validate our method in real-world scenarios, confirming the practicality of our approach and laying a solid foundation for future research on multi-task learning in quadruped robots.
comment: Accepted by ICRA 2025
☆ Bio-Skin: A Cost-Effective Thermostatic Tactile Sensor with Multi-Modal Force and Temperature Detection
Tactile sensors can significantly enhance the perception of humanoid robotics systems by providing contact information that facilitates human-like interactions. However, existing commercial tactile sensors focus on improving the resolution and sensitivity of single-modal detection with high-cost components and densely integrated design, incurring complex manufacturing processes and unaffordable prices. In this work, we present Bio-Skin, a cost-effective multi-modal tactile sensor that utilizes single-axis Hall-effect sensors for planar normal force measurement and bar-shape piezo resistors for 2D shear force measurement. A thermistor coupling with a heating wire is integrated into a silicone body to achieve temperature sensation and thermostatic function analogous to human skin. We also present a cross-reference framework to validate the two modalities of the force sensing signal, improving the sensing fidelity in a complex electromagnetic environment. Bio-Skin has a multi-layer design, and each layer is manufactured sequentially and subsequently integrated, thereby offering a fast production pathway. After calibration, Bio-Skin demonstrates performance metrics-including signal-to-range ratio, sampling rate, and measurement range-comparable to current commercial products, with one-tenth of the cost. The sensor's real-world performance is evaluated using an Allegro hand in object grasping tasks, while its temperature regulation functionality was assessed in a material detection task.
comment: This work has been submitted to the IEEE for possible publication
☆ HEATS: A Hierarchical Framework for Efficient Autonomous Target Search with Mobile Manipulators
Utilizing robots for autonomous target search in complex and unknown environments can greatly improve the efficiency of search and rescue missions. However, existing methods have shown inadequate performance due to hardware platform limitations, inefficient viewpoint selection strategies, and conservative motion planning. In this work, we propose HEATS, which enhances the search capability of mobile manipulators in complex and unknown environments. We design a target viewpoint planner tailored to the strengths of mobile manipulators, ensuring efficient and comprehensive viewpoint planning. Supported by this, a whole-body motion planner integrates global path search with local IPC optimization, enabling the mobile manipulator to safely and agilely visit target viewpoints, significantly improving search performance. We present extensive simulated and real-world tests, in which our method demonstrates reduced search time, higher target search completeness, and lower movement cost compared to classic and state-of-the-art approaches. Our method will be open-sourced for community benefit.
comment: 8 pages, 9 figures, conference
☆ PLK-Calib: Single-shot and Target-less LiDAR-Camera Extrinsic Calibration using Plücker Lines
Accurate LiDAR-Camera (LC) calibration is challenging but crucial for autonomous systems and robotics. In this paper, we propose two single-shot and target-less algorithms to estimate the calibration parameters between LiDAR and camera using line features. The first algorithm constructs line-to-line constraints by defining points-to-line projection errors and minimizes the projection error. The second algorithm (PLK-Calib) utilizes the co-perpendicular and co-parallel geometric properties of lines in Pl\"ucker (PLK) coordinate, and decouples the rotation and translation into two constraints, enabling more accurate estimates. Our degenerate analysis and Monte Carlo simulation indicate that three nonparallel line pairs are the minimal requirements to estimate the extrinsic parameters. Furthermore, we collect an LC calibration dataset with varying extrinsic under three different scenarios and use it to evaluate the performance of our proposed algorithms.
☆ NeRF-VIO: Map-Based Visual-Inertial Odometry with Initialization Leveraging Neural Radiance Fields
A prior map serves as a foundational reference for localization in context-aware applications such as augmented reality (AR). Providing valuable contextual information about the environment, the prior map is a vital tool for mitigating drift. In this paper, we propose a map-based visual-inertial localization algorithm (NeRF-VIO) with initialization using neural radiance fields (NeRF). Our algorithm utilizes a multilayer perceptron model and redefines the loss function as the geodesic distance on \(SE(3)\), ensuring the invariance of the initialization model under a frame change within \(\mathfrak{se}(3)\). The evaluation demonstrates that our model outperforms existing NeRF-based initialization solution in both accuracy and efficiency. By integrating a two-stage update mechanism within a multi-state constraint Kalman filter (MSCKF) framework, the state of NeRF-VIO is constrained by both captured images from an onboard camera and rendered images from a pre-trained NeRF model. The proposed algorithm is validated using a real-world AR dataset, the results indicate that our two-stage update pipeline outperforms MSCKF across all data sequences.
☆ QLIO: Quantized LiDAR-Inertial Odometry
LiDAR-Inertial Odometry (LIO) is widely used for autonomous navigation, but its deployment on Size, Weight, and Power (SWaP)-constrained platforms remains challenging due to the computational cost of processing dense point clouds. Conventional LIO frameworks rely on a single onboard processor, leading to computational bottlenecks and high memory demands, making real-time execution difficult on embedded systems. To address this, we propose QLIO, a multi-processor distributed quantized LIO framework that reduces computational load and bandwidth consumption while maintaining localization accuracy. QLIO introduces a quantized state estimation pipeline, where a co-processor pre-processes LiDAR measurements, compressing point-to-plane residuals before transmitting only essential features to the host processor. Additionally, an rQ-vector-based adaptive resampling strategy intelligently selects and compresses key observations, further reducing computational redundancy. Real-world evaluations demonstrate that QLIO achieves a 14.1% reduction in per-observation residual data while preserving localization accuracy. Furthermore, we release an open-source implementation to facilitate further research and real-world deployment. These results establish QLIO as an efficient and scalable solution for real-time autonomous systems operating under computational and bandwidth constraints.
BUFFER-X: Towards Zero-Shot Point Cloud Registration in Diverse Scenes
Recent advances in deep learning-based point cloud registration have improved generalization, yet most methods still require retraining or manual parameter tuning for each new environment. In this paper, we identify three key factors limiting generalization: (a) reliance on environment-specific voxel size and search radius, (b) poor out-of-domain robustness of learning-based keypoint detectors, and (c) raw coordinate usage, which exacerbates scale discrepancies. To address these issues, we present a zero-shot registration pipeline called BUFFER-X by (a) adaptively determining voxel size/search radii, (b) using farthest point sampling to bypass learned detectors, and (c) leveraging patch-wise scale normalization for consistent coordinate bounds. In particular, we present a multi-scale patch-based descriptor generation and a hierarchical inlier search across scales to improve robustness in diverse scenes. We also propose a novel generalizability benchmark using 11 datasets that cover various indoor/outdoor scenarios and sensor modalities, demonstrating that BUFFER-X achieves substantial generalization without prior information or manual parameter tuning for the test datasets. Our code is available at https://github.com/MIT-SPARK/BUFFER-X.
comment: 20 pages, 14 figures
☆ Learning Gentle Grasping Using Vision, Sound, and Touch
In our daily life, we often encounter objects that are fragile and can be damaged by excessive grasping force, such as fruits. For these objects, it is paramount to grasp gently -- not using the maximum amount of force possible, but rather the minimum amount of force necessary. This paper proposes using visual, tactile, and auditory signals to learn to grasp and regrasp objects stably and gently. Specifically, we use audio signals as an indicator of gentleness during the grasping, and then train end-to-end an action-conditional model from raw visuo-tactile inputs that predicts both the stability and the gentleness of future grasping candidates, thus allowing the selection and execution of the most promising action. Experimental results on a multi-fingered hand over 1,500 grasping trials demonstrated that our model is useful for gentle grasping by validating the predictive performance (3.27\% higher accuracy than the vision-only variant) and providing interpretations of their behavior. Finally, real-world experiments confirmed that the grasping performance with the trained multi-modal model outperformed other baselines (17\% higher rate for stable and gentle grasps than vision-only). Our approach requires neither tactile sensor calibration nor analytical force modeling, drastically reducing the engineering effort to grasp fragile objects. Dataset and videos are available at https://lasr.org/research/gentle-grasping.
comment: 8 pages
☆ FP3: A 3D Foundation Policy for Robotic Manipulation
Following its success in natural language processing and computer vision, foundation models that are pre-trained on large-scale multi-task datasets have also shown great potential in robotics. However, most existing robot foundation models rely solely on 2D image observations, ignoring 3D geometric information, which is essential for robots to perceive and reason about the 3D world. In this paper, we introduce FP3, a first large-scale 3D foundation policy model for robotic manipulation. FP3 builds on a scalable diffusion transformer architecture and is pre-trained on 60k trajectories with point cloud observations. With the model design and diverse pre-training data, FP3 can be efficiently fine-tuned for downstream tasks while exhibiting strong generalization capabilities. Experiments on real robots demonstrate that with only 80 demonstrations, FP3 is able to learn a new task with over 90% success rates in novel environments with unseen objects, significantly surpassing existing robot foundation models.
comment: Project website: https://3d-foundation-policy.github.io
☆ Simulator Ensembles for Trustworthy Autonomous Driving Testing
Scenario-based testing with driving simulators is extensively used to identify failing conditions of automated driving assistance systems (ADAS) and reduce the amount of in-field road testing. However, existing studies have shown that repeated test execution in the same as well as in distinct simulators can yield different outcomes, which can be attributed to sources of flakiness or different implementations of the physics, among other factors. In this paper, we present MultiSim, a novel approach to multi-simulation ADAS testing based on a search-based testing approach that leverages an ensemble of simulators to identify failure-inducing, simulator-agnostic test scenarios. During the search, each scenario is evaluated jointly on multiple simulators. Scenarios that produce consistent results across simulators are prioritized for further exploration, while those that fail on only a subset of simulators are given less priority, as they may reflect simulator-specific issues rather than generalizable failures. Our case study, which involves testing a deep neural network-based ADAS on different pairs of three widely used simulators, demonstrates that MultiSim outperforms single-simulator testing by achieving on average a higher rate of simulator-agnostic failures by 51%. Compared to a state-of-the-art multi-simulator approach that combines the outcome of independent test generation campaigns obtained in different simulators, MultiSim identifies 54% more simulator-agnostic failing tests while showing a comparable validity rate. An enhancement of MultiSim that leverages surrogate models to predict simulator disagreements and bypass executions does not only increase the average number of valid failures but also improves efficiency in finding the first valid failure.
☆ Acoustic Neural 3D Reconstruction Under Pose Drift
We consider the problem of optimizing neural implicit surfaces for 3D reconstruction using acoustic images collected with drifting sensor poses. The accuracy of current state-of-the-art 3D acoustic modeling algorithms is highly dependent on accurate pose estimation; small errors in sensor pose can lead to severe reconstruction artifacts. In this paper, we propose an algorithm that jointly optimizes the neural scene representation and sonar poses. Our algorithm does so by parameterizing the 6DoF poses as learnable parameters and backpropagating gradients through the neural renderer and implicit representation. We validated our algorithm on both real and simulated datasets. It produces high-fidelity 3D reconstructions even under significant pose drift.
comment: 8 pages, 8 figures. This paper is under review
☆ HessianForge: Scalable LiDAR reconstruction with Physics-Informed Neural Representation and Smoothness Energy Constraints
Accurate and efficient 3D mapping of large-scale outdoor environments from LiDAR measurements is a fundamental challenge in robotics, particularly towards ensuring smooth and artifact-free surface reconstructions. Although the state-of-the-art methods focus on memory-efficient neural representations for high-fidelity surface generation, they often fail to produce artifact-free manifolds, with artifacts arising due to noisy and sparse inputs. To address this issue, we frame surface mapping as a physics-informed energy optimization problem, enforcing surface smoothness by optimizing an energy functional that penalizes sharp surface ridges. Specifically, we propose a deep learning based approach that learns the signed distance field (SDF) of the surface manifold from raw LiDAR point clouds using a physics-informed loss function that optimizes the $L_2$-Hessian energy of the surface. Our learning framework includes a hierarchical octree based input feature encoding and a multi-scale neural network to iteratively refine the signed distance field at different scales of resolution. Lastly, we introduce a test-time refinement strategy to correct topological inconsistencies and edge distortions that can arise in the generated mesh. We propose a \texttt{CUDA}-accelerated least-squares optimization that locally adjusts vertex positions to enforce feature-preserving smoothing. We evaluate our approach on large-scale outdoor datasets and demonstrate that our approach outperforms current state-of-the-art methods in terms of improved accuracy and smoothness. Our code is available at \href{https://github.com/HrishikeshVish/HessianForge/}{https://github.com/HrishikeshVish/HessianForge/}
☆ Mutual Adaptation in Human-Robot Co-Transportation with Human Preference Uncertainty
Mutual adaptation can significantly enhance overall task performance in human-robot co-transportation by integrating both the robot's and human's understanding of the environment. While human modeling helps capture humans' subjective preferences, two challenges persist: (i) the uncertainty of human preference parameters and (ii) the need to balance adaptation strategies that benefit both humans and robots. In this paper, we propose a unified framework to address these challenges and improve task performance through mutual adaptation. First, instead of relying on fixed parameters, we model a probability distribution of human choices by incorporating a range of uncertain human parameters. Next, we introduce a time-varying stubbornness measure and a coordination mode transition model, which allows either the robot to lead the team's trajectory or, if a human's preferred path conflicts with the robot's plan and their stubbornness exceeds a threshold, the robot to transition to following the human. Finally, we introduce a pose optimization strategy to mitigate the uncertain human behaviors when they are leading. To validate the framework, we design and perform experiments with real human feedback. We then demonstrate, through simulations, the effectiveness of our models in enhancing task performance with mutual adaptation and pose optimization.
comment: 8 pages, 6 figures
☆ Real-time simulation enabled navigation control of magnetic soft continuum robots in confined lumens
Magnetic soft continuum robots (MSCRs) have emerged as a promising technology for minimally invasive interventions, offering enhanced dexterity and remote-controlled navigation in confined lumens. Unlike conventional guidewires with pre-shaped tips, MSCRs feature a magnetic tip that actively bends under applied magnetic fields. Despite extensive studies in modeling and simulation, achieving real-time navigation control of MSCRs in confined lumens remains a significant challenge. The primary reasons are due to robot-lumen contact interactions and computational limitations in modeling MSCR nonlinear behavior under magnetic actuation. Existing approaches, such as Finite Element Method (FEM) simulations and energy-minimization techniques, suffer from high computational costs and oversimplified contact interactions, making them impractical for real-world applications. In this work, we develop a real-time simulation and navigation control framework that integrates hard-magnetic elastic rod theory, formulated within the Discrete Differential Geometry (DDG) framework, with an order-reduced contact handling strategy. Our approach captures large deformations and complex interactions while maintaining computational efficiency. Next, the navigation control problem is formulated as an inverse design task, where optimal magnetic fields are computed in real time by minimizing the constrained forces and enhancing navigation accuracy. We validate the proposed framework through comprehensive numerical simulations and experimental studies, demonstrating its robustness, efficiency, and accuracy. The results show that our method significantly reduces computational costs while maintaining high-fidelity modeling, making it feasible for real-time deployment in clinical settings.
comment: 22 pages, 12 figures
☆ SICNav-Diffusion: Safe and Interactive Crowd Navigation with Diffusion Trajectory Predictions
To navigate crowds without collisions, robots must interact with humans by forecasting their future motion and reacting accordingly. While learning-based prediction models have shown success in generating likely human trajectory predictions, integrating these stochastic models into a robot controller presents several challenges. The controller needs to account for interactive coupling between planned robot motion and human predictions while ensuring both predictions and robot actions are safe (i.e. collision-free). To address these challenges, we present a receding horizon crowd navigation method for single-robot multi-human environments. We first propose a diffusion model to generate joint trajectory predictions for all humans in the scene. We then incorporate these multi-modal predictions into a SICNav Bilevel MPC problem that simultaneously solves for a robot plan (upper-level) and acts as a safety filter to refine the predictions for non-collision (lower-level). Combining planning and prediction refinement into one bilevel problem ensures that the robot plan and human predictions are coupled. We validate the open-loop trajectory prediction performance of our diffusion model on the commonly used ETH/UCY benchmark and evaluate the closed-loop performance of our robot navigation method in simulation and extensive real-robot experiments demonstrating safe, efficient, and reactive robot motion.
☆ Keypoint Semantic Integration for Improved Feature Matching in Outdoor Agricultural Environments
Robust robot navigation in outdoor environments requires accurate perception systems capable of handling visual challenges such as repetitive structures and changing appearances. Visual feature matching is crucial to vision-based pipelines but remains particularly challenging in natural outdoor settings due to perceptual aliasing. We address this issue in vineyards, where repetitive vine trunks and other natural elements generate ambiguous descriptors that hinder reliable feature matching. We hypothesise that semantic information tied to keypoint positions can alleviate perceptual aliasing by enhancing keypoint descriptor distinctiveness. To this end, we introduce a keypoint semantic integration technique that improves the descriptors in semantically meaningful regions within the image, enabling more accurate differentiation even among visually similar local features. We validate this approach in two vineyard perception tasks: (i) relative pose estimation and (ii) visual localisation. Across all tested keypoint types and descriptors, our method improves matching accuracy by 12.6%, demonstrating its effectiveness over multiple months in challenging vineyard conditions.
comment: Project Page: https://github.com/LCAS/GAIA
☆ Geometric Data-Driven Multi-Jet Locomotion Inspired by Salps
Salps are marine animals consisting of chains of jellyfish-like units. Their capacity for effective underwater undulatory locomotion through coordinating multi-jet propulsion has aroused significant interest in the field of robotics and inspired extensive research including design, modeling, and control. In this paper, we conduct a comprehensive analysis of the locomotion of salp-like systems using the robotic platform "LandSalp" based on geometric mechanics, including mechanism design, dynamic modeling, system identification, and motion planning and control. Our work takes a step toward a better understanding of salps' underwater locomotion and provides a clear path for extending these insights to more complex and capable underwater robotic systems. Furthermore, this study illustrates the effectiveness of geometric mechanics in bio-inspired robots for efficient data-driven locomotion modeling, demonstrated by learning the dynamics of LandSalp from only 3 minutes of experimental data. Lastly, we extend the geometric mechanics principles to multi-jet propulsion systems with stability considerations and validate the theory through experiments on the LandSalp hardware.
comment: 17 pages, 13 figures
☆ Cooperative Bearing-Only Target Pursuit via Multiagent Reinforcement Learning: Design and Experiment
This paper addresses the multi-robot pursuit problem for an unknown target, encompassing both target state estimation and pursuit control. First, in state estimation, we focus on using only bearing information, as it is readily available from vision sensors and effective for small, distant targets. Challenges such as instability due to the nonlinearity of bearing measurements and singularities in the two-angle representation are addressed through a proposed uniform bearing-only information filter. This filter integrates multiple 3D bearing measurements, provides a concise formulation, and enhances stability and resilience to target loss caused by limited field of view (FoV). Second, in target pursuit control within complex environments, where challenges such as heterogeneity and limited FoV arise, conventional methods like differential games or Voronoi partitioning often prove inadequate. To address these limitations, we propose a novel multiagent reinforcement learning (MARL) framework, enabling multiple heterogeneous vehicles to search, localize, and follow a target while effectively handling those challenges. Third, to bridge the sim-to-real gap, we propose two key techniques: incorporating adjustable low-level control gains in training to replicate the dynamics of real-world autonomous ground vehicles (AGVs), and proposing spectral-normalized RL algorithms to enhance policy smoothness and robustness. Finally, we demonstrate the successful zero-shot transfer of the MARL controllers to AGVs, validating the effectiveness and practical feasibility of our approach. The accompanying video is available at https://youtu.be/HO7FJyZiJ3E.
☆ Real-Time Neuromorphic Navigation: Guiding Physical Robots with Event-Based Sensing and Task-Specific Reconfigurable Autonomy Stack
Neuromorphic vision, inspired by biological neural systems, has recently gained significant attention for its potential in enhancing robotic autonomy. This paper presents a systematic exploration of a proposed Neuromorphic Navigation framework that uses event-based neuromorphic vision to enable efficient, real-time navigation in robotic systems. We discuss the core concepts of neuromorphic vision and navigation, highlighting their impact on improving robotic perception and decision-making. The proposed reconfigurable Neuromorphic Navigation framework adapts to the specific needs of both ground robots (Turtlebot) and aerial robots (Bebop2 quadrotor), addressing the task-specific design requirements (algorithms) for optimal performance across the autonomous navigation stack -- Perception, Planning, and Control. We demonstrate the versatility and the effectiveness of the framework through two case studies: a Turtlebot performing local replanning for real-time navigation and a Bebop2 quadrotor navigating through moving gates. Our work provides a scalable approach to task-specific, real-time robot autonomy leveraging neuromorphic systems, paving the way for energy-efficient autonomous navigation.
☆ Adaptive Anomaly Recovery for Telemanipulation: A Diffusion Model Approach to Vision-Based Tracking
Dexterous telemanipulation critically relies on the continuous and stable tracking of the human operator's commands to ensure robust operation. Vison-based tracking methods are widely used but have low stability due to anomalies such as occlusions, inadequate lighting, and loss of sight. Traditional filtering, regression, and interpolation methods are commonly used to compensate for explicit information such as angles and positions. These approaches are restricted to low-dimensional data and often result in information loss compared to the original high-dimensional image and video data. Recent advances in diffusion-based approaches, which can operate on high-dimensional data, have achieved remarkable success in video reconstruction and generation. However, these methods have not been fully explored in continuous control tasks in robotics. This work introduces the Diffusion-Enhanced Telemanipulation (DET) framework, which incorporates the Frame-Difference Detection (FDD) technique to identify and segment anomalies in video streams. These anomalous clips are replaced after reconstruction using diffusion models, ensuring robust telemanipulation performance under challenging visual conditions. We validated this approach in various anomaly scenarios and compared it with the baseline methods. Experiments show that DET achieves an average RMSE reduction of 17.2% compared to the cubic spline and 51.1% compared to FFT-based interpolation for different occlusion durations.
comment: This work has been submitted to the IEEE for possible publication
☆ Optimizing AUV speed dynamics with a data-driven Koopman operator approach
Autonomous Underwater Vehicles (AUVs) play an essential role in modern ocean exploration, and their speed control systems are fundamental to their efficient operation. Like many other robotic systems, AUVs exhibit multivariable nonlinear dynamics and face various constraints, including state limitations, input constraints, and constraints on the increment input, making controller design challenging and requiring significant effort and time. This paper addresses these challenges by employing a data-driven Koopman operator theory combined with Model Predictive Control (MPC), which takes into account the aforementioned constraints. The proposed approach not only ensures the performance of the AUV under state and input limitations but also considers the variation in incremental input to prevent rapid and potentially damaging changes to the vehicle's operation. Additionally, we develop a platform based on ROS2 and Gazebo to validate the effectiveness of the proposed algorithms, providing new control strategies for underwater vehicles against the complex and dynamic nature of underwater environments.
comment: 26 pages, 8 figures
♻ ☆ TinySense: A Lighter Weight and More Power-efficient Avionics System for Flying Insect-scale Robots ICRA 2025
In this paper, we introduce advances in the sensor suite of an autonomous flying insect robot (FIR) weighing less than a gram. FIRs, because of their small weight and size, offer unparalleled advantages in terms of material cost and scalability. However, their size introduces considerable control challenges, notably high-speed dynamics, restricted power, and limited payload capacity. While there have been advancements in developing lightweight sensors, often drawing inspiration from biological systems, no sub-gram aircraft has been able to attain sustained hover without relying on feedback from external sensing such as a motion capture system. The lightest vehicle capable of sustained hovering -- the first level of ``sensor autonomy'' -- is the much larger 28 g Crazyflie. Previous work reported a reduction in size of that vehicle's avionics suite to 187 mg and 21 mW. Here, we report a further reduction in mass and power to only 78.4 mg and 15 mW. We replaced the laser rangefinder with a lighter and more efficient pressure sensor, and built a smaller optic flow sensor around a global-shutter imaging chip. A Kalman Filter (KF) fuses these measurements to estimate the state variables that are needed to control hover: pitch angle, translational velocity, and altitude. Our system achieved performance comparable to that of the Crazyflie's estimator while in flight, with root mean squared errors of 1.573 deg, 0.186 m/s, and 0.136 m, respectively, relative to motion capture.
comment: Accepted to ICRA 2025
♻ ☆ Force Aware Branch Manipulation To Assist Agricultural Tasks
This study presents a methodology to safely manipulate branches to aid various agricultural tasks. Humans in a real agricultural environment often manipulate branches to perform agricultural tasks effectively, but current agricultural robots lack this capability. This proposed strategy to manipulate branches can aid in different precision agriculture tasks, such as fruit picking in dense foliage, pollinating flowers under occlusion, and moving overhanging vines and branches for navigation. The proposed method modifies RRT* to plan a path that satisfies the branch geometric constraints and obeys branch deformable characteristics. Re-planning is done to obtain a path that helps the robot exert force within a desired range so that branches are not damaged during manipulation. Experimentally, this method achieved a success rate of 78% across 50 trials, successfully moving a branch from different starting points to a target region.
♻ ☆ PoseLess: Depth-Free Vision-to-Joint Control via Direct Image Mapping with VLM
This paper introduces PoseLess, a novel framework for robot hand control that eliminates the need for explicit pose estimation by directly mapping 2D images to joint angles using projected representations. Our approach leverages synthetic training data generated through randomized joint configurations, enabling zero-shot generalization to real-world scenarios and cross-morphology transfer from robotic to human hands. By projecting visual inputs and employing a transformer-based decoder, PoseLess achieves robust, low-latency control while addressing challenges such as depth ambiguity and data scarcity. Experimental results demonstrate competitive performance in joint angle prediction accuracy without relying on any human-labelled dataset.
♻ ☆ Online Control-Informed Learning
This paper proposes an Online Control-Informed Learning (OCIL) framework, which employs the well-established optimal control and state estimation techniques in the field of control to solve a broad class of learning tasks in an online fashion. This novel integration effectively handles practical issues in machine learning such as noisy measurement data, online learning, and data efficiency. By considering any robot as a tunable optimal control system, we propose an online parameter estimator based on extended Kalman filter (EKF) to incrementally tune the system in an online fashion, enabling it to complete designated learning or control tasks. The proposed method also improves the robustness in learning by effectively managing noise in the data. Theoretical analysis is provided to demonstrate the convergence of OCIL. Three learning modes of OCIL, i.e. Online Imitation Learning, Online System Identification, and Policy Tuning On-the-fly, are investigated via experiments, which validate their effectiveness.
♻ ☆ Automating High Quality RT Planning at Scale
Radiotherapy (RT) planning is complex, subjective, and time-intensive. Advances in artificial intelligence (AI) promise to improve its precision, efficiency, and consistency, but progress is often limited by the scarcity of large, standardized datasets. To address this, we introduce the Automated Iterative RT Planning (AIRTP) system, a scalable solution for generating high-quality treatment plans. This scalable solution is designed to generate substantial volumes of consistently high-quality treatment plans, overcoming a key obstacle in the advancement of AI-driven RT planning. Our AIRTP pipeline adheres to clinical guidelines and automates essential steps, including organ-at-risk (OAR) contouring, helper structure creation, beam setup, optimization, and plan quality improvement, using AI integrated with RT planning software like Eclipse of Varian. Furthermore, a novel approach for determining optimization parameters to reproduce 3D dose distributions, i.e. a method to convert dose predictions to deliverable treatment plans constrained by machine limitations. A comparative analysis of plan quality reveals that our automated pipeline produces treatment plans of quality comparable to those generated manually, which traditionally require several hours of labor per plan. Committed to public research, the first data release of our AIRTP pipeline includes nine cohorts covering head-and-neck and lung cancer sites to support an AAPM 2025 challenge. This data set features more than 10 times the number of plans compared to the largest existing well-curated public data set to our best knowledge. Repo: https://github.com/RiqiangGao/GDP-HMM_AAPMChallenge.
comment: radiotherapy planning
♻ ☆ GraphSCENE: On-Demand Critical Scenario Generation for Autonomous Vehicles in Simulation
Testing and validating Autonomous Vehicle (AV) performance in safety-critical and diverse scenarios is crucial before real-world deployment. However, manually creating such scenarios in simulation remains a significant and time-consuming challenge. This work introduces a novel method that generates dynamic temporal scene graphs corresponding to diverse traffic scenarios, on-demand, tailored to user-defined preferences, such as AV actions, sets of dynamic agents, and criticality levels. A temporal Graph Neural Network (GNN) model learns to predict relationships between ego-vehicle, agents, and static structures, guided by real-world spatiotemporal interaction patterns and constrained by an ontology that restricts predictions to semantically valid links. Our model consistently outperforms the baselines in accurately generating links corresponding to the requested scenarios. We render the predicted scenarios in simulation to further demonstrate their effectiveness as testing environments for AV agents.
comment: 8 pages, 8 figures
♻ ☆ QUART-Online: Latency-Free Large Multimodal Language Model for Quadruped Robot Learning ICRA 2025
This paper addresses the inherent inference latency challenges associated with deploying multimodal large language models (MLLM) in quadruped vision-language-action (QUAR-VLA) tasks. Our investigation reveals that conventional parameter reduction techniques ultimately impair the performance of the language foundation model during the action instruction tuning phase, making them unsuitable for this purpose. We introduce a novel latency-free quadruped MLLM model, dubbed QUART-Online, designed to enhance inference efficiency without degrading the performance of the language foundation model. By incorporating Action Chunk Discretization (ACD), we compress the original action representation space, mapping continuous action values onto a smaller set of discrete representative vectors while preserving critical information. Subsequently, we fine-tune the MLLM to integrate vision, language, and compressed actions into a unified semantic space. Experimental results demonstrate that QUART-Online operates in tandem with the existing MLLM system, achieving real-time inference in sync with the underlying controller frequency, significantly boosting the success rate across various tasks by 65%. Our project page is https://quart-online.github.io.
comment: Accepted to ICRA 2025; Github page: https://quart-online.github.io
♻ ☆ Enhancing Autonomous Navigation by Imaging Hidden Objects using Single-Photon LiDAR
Robust autonomous navigation in environments with limited visibility remains a critical challenge in robotics. We present a novel approach that leverages Non-Line-of-Sight (NLOS) sensing using single-photon LiDAR to improve visibility and enhance autonomous navigation. Our method enables mobile robots to "see around corners" by utilizing multi-bounce light information, effectively expanding their perceptual range without additional infrastructure. We propose a three-module pipeline: (1) Sensing, which captures multi-bounce histograms using SPAD-based LiDAR; (2) Perception, which estimates occupancy maps of hidden regions from these histograms using a convolutional neural network; and (3) Control, which allows a robot to follow safe paths based on the estimated occupancy. We evaluate our approach through simulations and real-world experiments on a mobile robot navigating an L-shaped corridor with hidden obstacles. Our work represents the first experimental demonstration of NLOS imaging for autonomous navigation, paving the way for safer and more efficient robotic systems operating in complex environments. We also contribute a novel dynamics-integrated transient rendering framework for simulating NLOS scenarios, facilitating future research in this domain.
comment: Project webpage: https://camera-culture.github.io/nlos-aided-autonomous-navigation
♻ ☆ Surgical SAM 2: Real-time Segment Anything in Surgical Video by Efficient Frame Pruning NeurIPS 2024
Surgical video segmentation is a critical task in computer-assisted surgery and is vital for enhancing surgical quality and patient outcomes. Recently, the Segment Anything Model 2 (SAM2) framework has shown superior advancements in image and video segmentation. However, SAM2 struggles with efficiency due to the high computational demands of processing high-resolution images and complex and long-range temporal dynamics in surgical videos. To address these challenges, we introduce Surgical SAM 2 (SurgSAM2), an advanced model to utilize SAM2 with an Efficient Frame Pruning (EFP) mechanism, to facilitate real-time surgical video segmentation. The EFP mechanism dynamically manages the memory bank by selectively retaining only the most informative frames, reducing memory usage and computational cost while maintaining high segmentation accuracy. Our extensive experiments demonstrate that SurgSAM2 significantly improves both efficiency and segmentation accuracy compared to the vanilla SAM2. Remarkably, SurgSAM2 achieves a 3$\times$ FPS compared with SAM2, while also delivering state-of-the-art performance after fine-tuning with lower-resolution data. These advancements establish SurgSAM2 as a leading model for surgical video analysis, making real-time surgical video segmentation in resource-constrained environments a reality. Our source code is available at https://github.com/jinlab-imvr/Surgical-SAM-2.
comment: Accepted by NeurIPS 2024 Workshop AIM-FM
♻ ☆ CrackESS: A Self-Prompting Crack Segmentation System for Edge Devices
Structural Health Monitoring (SHM) is a sustainable and essential approach for infrastructure maintenance, enabling the early detection of structural defects. Leveraging computer vision (CV) methods for automated infrastructure monitoring can significantly enhance monitoring efficiency and precision. However, these methods often face challenges in efficiency and accuracy, particularly in complex environments. Recent CNN-based and SAM-based approaches have demonstrated excellent performance in crack segmentation, but their high computational demands limit their applicability on edge devices. This paper introduces CrackESS, a novel system for detecting and segmenting concrete cracks. The approach first utilizes a YOLOv8 model for self-prompting and a LoRA-based fine-tuned SAM model for crack segmentation, followed by refining the segmentation masks through the proposed Crack Mask Refinement Module (CMRM). We conduct experiments on three datasets(Khanhha's dataset, Crack500, CrackCR) and validate CrackESS on a climbing robot system to demonstrate the advantage and effectiveness of our approach.
♻ ☆ Leveraging Symmetry in RL-based Legged Locomotion Control
Model-free reinforcement learning is a promising approach for autonomously solving challenging robotics control problems, but faces exploration difficulty without information of the robot's kinematics and dynamics morphology. The under-exploration of multiple modalities with symmetric states leads to behaviors that are often unnatural and sub-optimal. This issue becomes particularly pronounced in the context of robotic systems with morphological symmetries, such as legged robots for which the resulting asymmetric and aperiodic behaviors compromise performance, robustness, and transferability to real hardware. To mitigate this challenge, we can leverage symmetry to guide and improve the exploration in policy learning via equivariance/invariance constraints. In this paper, we investigate the efficacy of two approaches to incorporate symmetry: modifying the network architectures to be strictly equivariant/invariant, and leveraging data augmentation to approximate equivariant/invariant actor-critics. We implement the methods on challenging loco-manipulation and bipedal locomotion tasks and compare with an unconstrained baseline. We find that the strictly equivariant policy consistently outperforms other methods in sample efficiency and task performance in simulation. In addition, symmetry-incorporated approaches exhibit better gait quality, higher robustness and can be deployed zero-shot in real-world experiments.
♻ ☆ CogNav: Cognitive Process Modeling for Object Goal Navigation with LLMs
Object goal navigation (ObjectNav) is a fundamental task in embodied AI, requiring an agent to locate a target object in previously unseen environments. This task is particularly challenging because it requires both perceptual and cognitive processes, including object recognition and decision-making. While substantial advancements in perception have been driven by the rapid development of visual foundation models, progress on the cognitive aspect remains constrained, primarily limited to either implicit learning through simulator rollouts or explicit reliance on predefined heuristic rules. Inspired by neuroscientific findings demonstrating that humans maintain and dynamically update fine-grained cognitive states during object search tasks in novel environments, we propose CogNav, a framework designed to mimic this cognitive process using large language models. Specifically, we model the cognitive process using a finite state machine comprising fine-grained cognitive states, ranging from exploration to identification. Transitions between states are determined by a large language model based on a dynamically constructed heterogeneous cognitive map, which contains spatial and semantic information about the scene being explored. Extensive evaluations on the HM3D, MP3D, and RoboTHOR benchmarks demonstrate that our cognitive process modeling significantly improves the success rate of ObjectNav at least by relative 14% over the state-of-the-arts.
♻ ☆ RoboCAP: Robotic Classification and Precision Pouring of Diverse Liquids and Granular Media with Capacitive Sensing
Liquids and granular media are pervasive throughout human environments, yet remain particularly challenging for robots to sense and manipulate precisely. In this work, we present a systematic approach at integrating capacitive sensing within robotic end effectors to enable robust sensing and precise manipulation of liquids and granular media. We introduce the parallel-jaw RoboCAP Gripper with embedded capacitive sensing arrays that enable a robot to directly sense the materials and dynamics of liquids inside of diverse containers, including some visually opaque. When coupled with model-based control, we demonstrate that the proposed system enables a robotic manipulator to achieve state-of-the-art precision pouring accuracy for a range of substances with varying dynamics properties. Code, designs, and build details are available on the project website.
♻ ☆ Collision-Aware Traversability Analysis for Autonomous Vehicles in the Context of Agricultural Robotics ICRA25
In this paper, we introduce a novel method for safe navigation in agricultural robotics. As global environmental challenges intensify, robotics offers a powerful solution to reduce chemical usage while meeting the increasing demands for food production. However, significant challenges remain in ensuring the autonomy and resilience of robots operating in unstructured agricultural environments. Obstacles such as crops and tall grass, which are deformable, must be identified as safely traversable, compared to rigid obstacles. To address this, we propose a new traversability analysis method based on a 3D spectral map reconstructed using a LIDAR and a multispectral camera. This approach enables the robot to distinguish between safe and unsafe collisions with deformable obstacles. We perform a comprehensive evaluation of multispectral metrics for vegetation detection and incorporate these metrics into an augmented environmental map. Utilizing this map, we compute a physics-based traversability metric that accounts for the robot's weight and size, ensuring safe navigation over deformable obstacles.
comment: Accepted for publication in the 2025 IEEE International Conference on Robotics and Automation (ICRA25)
♻ ☆ SICNav: Safe and Interactive Crowd Navigation using Model Predictive Control and Bilevel Optimization
Robots need to predict and react to human motions to navigate through a crowd without collisions. Many existing methods decouple prediction from planning, which does not account for the interaction between robot and human motions and can lead to the robot getting stuck. We propose SICNav, a Model Predictive Control (MPC) method that jointly solves for robot motion and predicted crowd motion in closed-loop. We model each human in the crowd to be following an Optimal Reciprocal Collision Avoidance (ORCA) scheme and embed that model as a constraint in the robot's local planner, resulting in a bilevel nonlinear MPC optimization problem. We use a KKT-reformulation to cast the bilevel problem as a single level and use a nonlinear solver to optimize. Our MPC method can influence pedestrian motion while explicitly satisfying safety constraints in a single-robot multi-human environment. We analyze the performance of SICNav in two simulation environments and indoor experiments with a real robot to demonstrate safe robot motion that can influence the surrounding humans. We also validate the trajectory forecasting performance of ORCA on a human trajectory dataset.
comment: Published in the IEEE Transactions on Robotics (T-RO)
♻ ☆ Online 6DoF Global Localisation in Forests using Semantically-Guided Re-Localisation and Cross-View Factor-Graph Optimisation IROS2025
This paper presents FGLoc6D, a novel approach for robust global localisation and online 6DoF pose estimation of ground robots in forest environments by leveraging deep semantically-guided re-localisation and cross-view factor graph optimisation. The proposed method addresses the challenges of aligning aerial and ground data for pose estimation, which is crucial for accurate point-to-point navigation in GPS-degraded environments. By integrating information from both perspectives into a factor graph framework, our approach effectively estimates the robot's global position and orientation. Additionally, we enhance the repeatability of deep-learned keypoints for metric localisation in forests by incorporating a semantically-guided regression loss. This loss encourages greater attention to wooden structures, e.g., tree trunks, which serve as stable and distinguishable features, thereby improving the consistency of keypoints and increasing the success rate of global registration, a process we refer to as re-localisation. The re-localisation module along with the factor-graph structure, populated by odometry and ground-to-aerial factors over time, allows global localisation under dense canopies. We validate the performance of our method through extensive experiments in three forest scenarios, demonstrating its global localisation capability and superiority over alternative state-of-the-art in terms of accuracy and robustness in these challenging environments. Experimental results show that our proposed method can achieve drift-free localisation with bounded positioning errors, ensuring reliable and safe robot navigation through dense forests.
comment: 8 pages, 7 figures, Submitted to IROS2025
Lost & Found: Tracking Changes from Egocentric Observations in 3D Dynamic Scene Graphs
Recent approaches have successfully focused on the segmentation of static reconstructions, thereby equipping downstream applications with semantic 3D understanding. However, the world in which we live is dynamic, characterized by numerous interactions between the environment and humans or robotic agents. Static semantic maps are unable to capture this information, and the naive solution of rescanning the environment after every change is both costly and ineffective in tracking e.g. objects being stored away in drawers. With Lost & Found we present an approach that addresses this limitation. Based solely on egocentric recordings with corresponding hand position and camera pose estimates, we are able to track the 6DoF poses of the moving object within the detected interaction interval. These changes are applied online to a transformable scene graph that captures object-level relations. Compared to state-of-the-art object pose trackers, our approach is more reliable in handling the challenging egocentric viewpoint and the lack of depth information. It outperforms the second-best approach by 34% and 56% for translational and orientational error, respectively, and produces visibly smoother 6DoF object trajectories. In addition, we illustrate how the acquired interaction information in the dynamic scene graph can be employed in the context of robotic applications that would otherwise be unfeasible: We show how our method allows to command a mobile manipulator through teach & repeat, and how information about prior interaction allows a mobile manipulator to retrieve an object hidden in a drawer. Code, videos and corresponding data are accessible at https://behretj.github.io/LostAndFound.
comment: Webpage: https://behretj.github.io/LostAndFound; accepted at IEEE Robotics and Automation Letters
♻ ☆ A Parallel-in-Time Newton's Method for Nonlinear Model Predictive Control
Model predictive control (MPC) is a powerful framework for optimal control of dynamical systems. However, MPC solvers suffer from a high computational burden that restricts their application to systems with low sampling frequency. This issue is further amplified in nonlinear and constrained systems that require nesting MPC solvers within iterative procedures. In this paper, we address these issues by developing parallel-in-time algorithms for constrained nonlinear optimization problems that take advantage of massively parallel hardware to achieve logarithmic computational time scaling over the planning horizon. We develop time-parallel second-order solvers based on interior point methods and the alternating direction method of multipliers, leveraging fast convergence and lower computational cost per iteration. The parallelization is based on a reformulation of the subproblems in terms of associative operations that can be parallelized using the associative scan algorithm. We validate our approach on numerical examples of nonlinear and constrained dynamical systems.
♻ ☆ Multi-Agent Obstacle Avoidance using Velocity Obstacles and Control Barrier Functions ICRA
Velocity Obstacles (VO) methods form a paradigm for collision avoidance strategies among moving obstacles and agents. While VO methods perform well in simple multi-agent environments, they don't guarantee safety and can show overly conservative behavior in common situations. In this paper, we propose to combine a VO-strategy for guidance with a CBF-approach for safety, which overcomes the overly conservative behavior of VOs and formally guarantees safety. We validate our method in a baseline comparison study, using 2nd order integrator and car-like dynamics. Results support that our method outperforms the baselines w.r.t. path smoothness, collision avoidance, and success rates.
comment: Accepted for publication in IEEE International Conference on Robotics and Automation (ICRA) 2025
♻ ☆ Interaction-Aware Multi-Robot Kinodynamic Motion Planning
Kinodynamic motion planning for a multi-robot system with different dynamics and actuation limits is a challenging problem. The difficulty increases with the presence of an aerodynamic interaction force that occur in aerial robots flying in close-proximity. Due to these complexities, existing planners either rely on simplified assumption like ignoring robot dynamics, interaction forces or produce highly suboptimal solutions. This paper presents a kinodynamic motion planner for a heterogeneous team of robots that respects robot dynamics and directly reasons about interaction forces between aerial robots operating in close-proximity. Our method, db-ECBS, generalizes the multi-agent path finding method Enhanced Conflict-Based Search (ECBS) to the continuous domain by using the single-robot kinodynamic motion planner discontinuity-bounded A*. Db-ECBS operates on three levels. Initially, individual robot trajectories are computed using a graph search that allows bounded discontinuities between precomputed motion primitives. The second level identifies inter-robot collisions, interaction force violations and resolves them by imposing constraints on the first level. The third and final level uses the resulting solution with discontinuities as an initial guess for a joint space trajectory optimization. The procedure is repeated with a reduced discontinuity bound resulting in a anytime, probabilistically complete, and asymptotically bounded suboptimal planner. We provide a benchmark of 65 problems with six different dynamics. We demonstrate that db-ECBS produces trajectories that are less than half the cost of existing planners. We show that the interaction-awareness is in particular important for very dense scenarios.
comment: This work is currently under review
♻ ☆ LLM-HDR: Bridging LLM-based Perception and Self-Supervision for Unpaired LDR-to-HDR Image Reconstruction
The translation of Low Dynamic Range (LDR) to High Dynamic Range (HDR) images is an important computer vision task. There is a significant amount of research utilizing both conventional non-learning methods and modern data-driven approaches, focusing on using both single-exposed and multi-exposed LDR for HDR image reconstruction. However, most current state-of-the-art methods require high-quality paired {LDR,HDR} datasets for model training. In addition, there is limited literature on using unpaired datasets for this task, that is, the model learns a mapping between domains, i.e., {LDR,HDR}. This paper proposes LLM-HDR, a method that integrates the perception of Large Language Models (LLM) into a modified semantic- and cycle-consistent adversarial architecture that utilizes unpaired {LDR,HDR} datasets for training. The method introduces novel artifact- and exposure-aware generators to address visual artifact removal and an encoder and loss to address semantic consistency, another under-explored topic. LLM-HDR is the first to use an LLM for the {LDR,HDR} translation task in a self-supervised setup. The method achieves state-of-the-art performance across several benchmark datasets and reconstructs high-quality HDR images. The official website of this work is available at: https://github.com/HrishavBakulBarua/LLM-HDR
♻ ☆ AquaFuse: Waterbody Fusion for Physics Guided View Synthesis of Underwater Scenes
We introduce the idea of AquaFuse, a physics-based method for synthesizing waterbody properties in underwater imagery. We formulate a closed-form solution for waterbody fusion that facilitates realistic data augmentation and geometrically consistent underwater scene rendering. AquaFuse leverages the physical characteristics of light propagation underwater to synthesize the waterbody from one scene to the object contents of another. Unlike data-driven style transfer, AquaFuse preserves the depth consistency and object geometry in an input scene. We validate this unique feature by comprehensive experiments over diverse underwater scenes. We find that the AquaFused images preserve over 94% depth consistency and 90-95% structural similarity of the input scenes. We also demonstrate that it generates accurate 3D view synthesis by preserving object geometry while adapting to the inherent waterbody fusion process. AquaFuse opens up a new research direction in data augmentation by geometry-preserving style transfer for underwater imaging and robot vision applications.
♻ ☆ Behavior-Inspired Neural Networks for Relational Inference AISTATS 2025
From pedestrians to Kuramoto oscillators, interactions between agents govern how dynamical systems evolve in space and time. Discovering how these agents relate to each other has the potential to improve our understanding of the often complex dynamics that underlie these systems. Recent works learn to categorize relationships between agents based on observations of their physical behavior. These approaches model relationship categories as outcomes of a categorical distribution which is limiting and contrary to real-world systems, where relationship categories often intermingle and interact. In this work, we introduce a level of abstraction between the observable behavior of agents and the latent categories that determine their behavior. To do this, we learn a mapping from agent observations to agent preferences for a set of latent categories. The learned preferences and inter-agent proximity are integrated in a nonlinear opinion dynamics model, which allows us to naturally identify mutually exclusive categories, predict an agent's evolution in time, and control an agent's behavior. Through extensive experiments, we demonstrate the utility of our model for learning interpretable categories, and the efficacy of our model for long-horizon trajectory prediction.
comment: Accept to The 28th International Conference on Artificial Intelligence and Statistics (AISTATS 2025)
♻ ☆ OTTER: A Vision-Language-Action Model with Text-Aware Visual Feature Extraction
Vision-Language-Action (VLA) models aim to predict robotic actions based on visual observations and language instructions. Existing approaches require fine-tuning pre-trained visionlanguage models (VLMs) as visual and language features are independently fed into downstream policies, degrading the pre-trained semantic alignments. We propose OTTER, a novel VLA architecture that leverages these existing alignments through explicit, text-aware visual feature extraction. Instead of processing all visual features, OTTER selectively extracts and passes only task-relevant visual features that are semantically aligned with the language instruction to the policy transformer. This allows OTTER to keep the pre-trained vision-language encoders frozen. Thereby, OTTER preserves and utilizes the rich semantic understanding learned from large-scale pre-training, enabling strong zero-shot generalization capabilities. In simulation and real-world experiments, OTTER significantly outperforms existing VLA models, demonstrating strong zeroshot generalization to novel objects and environments. Video, code, checkpoints, and dataset: https://ottervla.github.io/.
♻ ☆ Generative Artificial Intelligence in Robotic Manipulation: A Survey
This survey provides a comprehensive review on recent advancements of generative learning models in robotic manipulation, addressing key challenges in the field. Robotic manipulation faces critical bottlenecks, including significant challenges in insufficient data and inefficient data acquisition, long-horizon and complex task planning, and the multi-modality reasoning ability for robust policy learning performance across diverse environments. To tackle these challenges, this survey introduces several generative model paradigms, including Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), diffusion models, probabilistic flow models, and autoregressive models, highlighting their strengths and limitations. The applications of these models are categorized into three hierarchical layers: the Foundation Layer, focusing on data generation and reward generation; the Intermediate Layer, covering language, code, visual, and state generation; and the Policy Layer, emphasizing grasp generation and trajectory generation. Each layer is explored in detail, along with notable works that have advanced the state of the art. Finally, the survey outlines future research directions and challenges, emphasizing the need for improved efficiency in data utilization, better handling of long-horizon tasks, and enhanced generalization across diverse robotic scenarios. All the related resources, including research papers, open-source data, and projects, are collected for the community in https://github.com/GAI4Manipulation/AwesomeGAIManipulation
♻ ☆ Adaptive Task Allocation in Multi-Human Multi-Robot Teams under Team Heterogeneity and Dynamic Information Uncertainty ICRA 2025
Task allocation in multi-human multi-robot (MH-MR) teams presents significant challenges due to the inherent heterogeneity of team members, the dynamics of task execution, and the information uncertainty of operational states. Existing approaches often fail to address these challenges simultaneously, resulting in suboptimal performance. To tackle this, we propose ATA-HRL, an adaptive task allocation framework using hierarchical reinforcement learning (HRL), which incorporates initial task allocation (ITA) that leverages team heterogeneity and conditional task reallocation in response to dynamic operational states. Additionally, we introduce an auxiliary state representation learning task to manage information uncertainty and enhance task execution. Through an extensive case study in large-scale environmental monitoring tasks, we demonstrate the benefits of our approach.
comment: ICRA 2025
♻ ☆ PrefMMT: Modeling Human Preferences in Preference-based Reinforcement Learning with Multimodal Transformers
Preference-based reinforcement learning (PbRL) shows promise in aligning robot behaviors with human preferences, but its success depends heavily on the accurate modeling of human preferences through reward models. Most methods adopt Markovian assumptions for preference modeling (PM), which overlook the temporal dependencies within robot behavior trajectories that impact human evaluations. While recent works have utilized sequence modeling to mitigate this by learning sequential non-Markovian rewards, they ignore the multimodal nature of robot trajectories, which consist of elements from two distinctive modalities: state and action. As a result, they often struggle to capture the complex interplay between these modalities that significantly shapes human preferences. In this paper, we propose a multimodal sequence modeling approach for PM by disentangling state and action modalities. We introduce a multimodal transformer network, named PrefMMT, which hierarchically leverages intra-modal temporal dependencies and inter-modal state-action interactions to capture complex preference patterns. We demonstrate that PrefMMT consistently outperforms state-of-the-art PM baselines on locomotion tasks from the D4RL benchmark and manipulation tasks from the Meta-World benchmark.
♻ ☆ Personalization in Human-Robot Interaction through Preference-based Action Representation Learning ICRA 2025
Preference-based reinforcement learning (PbRL) has shown significant promise for personalization in human-robot interaction (HRI) by explicitly integrating human preferences into the robot learning process. However, existing practices often require training a personalized robot policy from scratch, resulting in inefficient use of human feedback. In this paper, we propose preference-based action representation learning (PbARL), an efficient fine-tuning method that decouples common task structure from preference by leveraging pre-trained robot policies. Instead of directly fine-tuning the pre-trained policy with human preference, PbARL uses it as a reference for an action representation learning task that maximizes the mutual information between the pre-trained source domain and the target user preference-aligned domain. This approach allows the robot to personalize its behaviors while preserving original task performance and eliminates the need for extensive prior information from the source domain, thereby enhancing efficiency and practicality in real-world HRI scenarios. Empirical results on the Assistive Gym benchmark and a real-world user study (N=8) demonstrate the benefits of our method compared to state-of-the-art approaches.
comment: ICRA 2025
♻ ☆ IMLE Policy: Fast and Sample Efficient Visuomotor Policy Learning via Implicit Maximum Likelihood Estimation
Recent advances in imitation learning, particularly using generative modelling techniques like diffusion, have enabled policies to capture complex multi-modal action distributions. However, these methods often require large datasets and multiple inference steps for action generation, posing challenges in robotics where the cost for data collection is high and computation resources are limited. To address this, we introduce IMLE Policy, a novel behaviour cloning approach based on Implicit Maximum Likelihood Estimation (IMLE). IMLE Policy excels in low-data regimes, effectively learning from minimal demonstrations and requiring 38\% less data on average to match the performance of baseline methods in learning complex multi-modal behaviours. Its simple generator-based architecture enables single-step action generation, improving inference speed by 97.3\% compared to Diffusion Policy, while outperforming single-step Flow Matching. We validate our approach across diverse manipulation tasks in simulated and real-world environments, showcasing its ability to capture complex behaviours under data constraints. Videos and code are provided on our project page: https://imle-policy.github.io/.
comment: Videos and code are available at https://imle-policy.github.io/
♻ ☆ GraphGarment: Learning Garment Dynamics for Bimanual Cloth Manipulation Tasks
Physical manipulation of garments is often crucial when performing fabric-related tasks, such as hanging garments. However, due to the deformable nature of fabrics, these operations remain a significant challenge for robots in household, healthcare, and industrial environments. In this paper, we propose GraphGarment, a novel approach that models garment dynamics based on robot control inputs and applies the learned dynamics model to facilitate garment manipulation tasks such as hanging. Specifically, we use graphs to represent the interactions between the robot end-effector and the garment. GraphGarment uses a graph neural network (GNN) to learn a dynamics model that can predict the next garment state given the current state and input action in simulation. To address the substantial sim-to-real gap, we propose a residual model that compensates for garment state prediction errors, thereby improving real-world performance. The garment dynamics model is then applied to a model-based action sampling strategy, where it is utilized to manipulate the garment to a reference pre-hanging configuration for garment-hanging tasks. We conducted four experiments using six types of garments to validate our approach in both simulation and real-world settings. In simulation experiments, GraphGarment achieves better garment state prediction performance, with a prediction error 0.46 cm lower than the best baseline. Our approach also demonstrates improved performance in the garment-hanging simulation experiment with enhancements of 12%, 24%, and 10%, respectively. Moreover, real-world robot experiments confirm the robustness of sim-to-real transfer, with an error increase of 0.17 cm compared to simulation results. Supplementary material is available at:https://sites.google.com/view/graphgarment.
♻ ☆ Guide-LLM: An Embodied LLM Agent and Text-Based Topological Map for Robotic Guidance of People with Visual Impairments
Navigation presents a significant challenge for persons with visual impairments (PVI). While traditional aids such as white canes and guide dogs are invaluable, they fall short in delivering detailed spatial information and precise guidance to desired locations. Recent developments in large language models (LLMs) and vision-language models (VLMs) offer new avenues for enhancing assistive navigation. In this paper, we introduce Guide-LLM, an embodied LLM-based agent designed to assist PVI in navigating large indoor environments. Our approach features a novel text-based topological map that enables the LLM to plan global paths using a simplified environmental representation, focusing on straight paths and right-angle turns to facilitate navigation. Additionally, we utilize the LLM's commonsense reasoning for hazard detection and personalized path planning based on user preferences. Simulated experiments demonstrate the system's efficacy in guiding PVI, underscoring its potential as a significant advancement in assistive technology. The results highlight Guide-LLM's ability to offer efficient, adaptive, and personalized navigation assistance, pointing to promising advancements in this field.
♻ ☆ Object-Pose Estimation With Neural Population Codes
Robotic assembly tasks require object-pose estimation, particularly for tasks that avoid costly mechanical constraints. Object symmetry complicates the direct mapping of sensory input to object rotation, as the rotation becomes ambiguous and lacks a unique training target. Some proposed solutions involve evaluating multiple pose hypotheses against the input or predicting a probability distribution, but these approaches suffer from significant computational overhead. Here, we show that representing object rotation with a neural population code overcomes these limitations, enabling a direct mapping to rotation and end-to-end learning. As a result, population codes facilitate fast and accurate pose estimation. On the T-LESS dataset, we achieve inference in 3.2 milliseconds on an Apple M1 CPU and a Maximum Symmetry-Aware Surface Distance accuracy of 84.7% using only gray-scale image input, compared to 69.7% accuracy when directly mapping to pose.
♻ ☆ Recursive Model-agnostic Inverse Dynamics of Serial Soft-Rigid Robots
Robotics is shifting from rigid, articulated systems to more sophisticated and heterogeneous mechanical structures. Soft robots, for example, have continuously deformable elements capable of large deformations. The flourishing of control techniques developed for this class of systems is fueling the need of efficient procedures for evaluating their inverse dynamics (ID), which is challenging due to the complex and mixed nature of these systems. As of today, no single ID algorithm can describe the behavior of generic (combinations of) models of soft robots. We address this challenge for generic series-like interconnections of possibly soft structures that may require heterogeneous modeling techniques. Our proposed algorithm requires as input a purely geometric description (forward-kinematics-like) of the mapping from configuration space to deformation space. With this information only, the complete equations of motion can be given an exact recursive structure which is essentially independent from (or `agnostic' to) the underlying reduced-order kinematic modeling techniques. We achieve this goal by exploiting Kane's method to manipulate the equations of motion, showing then their recursive structure. The resulting ID algorithms have optimal computational complexity within the proposed setting, i.e., linear in the number of distinct modules. Further, a variation of the algorithm is introduced that can evaluate the generalized mass matrix without increasing computation costs. We showcase the applicability of this method to robot models involving a mixture of rigid and soft elements, described via possibly heterogeneous reduced order models (ROMs), such as Volumetric FEM, Cosserat strain-based, and volume-preserving deformation primitives. None of these systems can be handled using existing ID techniques.
♻ ☆ An Unsupervised C-Uniform Trajectory Sampler with Applications to Model Predictive Path Integral Control IROS2025
Sampling-based model predictive controllers generate trajectories by sampling control inputs from a fixed, simple distribution such as the normal or uniform distributions. This sampling method yields trajectory samples that are tightly clustered around a mean trajectory. This clustering behavior in turn, limits the exploration capability of the controller and reduces the likelihood of finding feasible solutions in complex environments. Recent work has attempted to address this problem by either reshaping the resulting trajectory distribution or increasing the sample entropy to enhance diversity and promote exploration. In our recent work, we introduced the concept of C-Uniform trajectory generation [1] which allows the computation of control input probabilities to generate trajectories that sample the configuration space uniformly. In this work, we first address the main limitation of this method: lack of scalability due to computational complexity. We introduce Neural C-Uniform, an unsupervised C-Uniform trajectory sampler that mitigates scalability issues by computing control input probabilities without relying on a discretized configuration space. Experiments show that Neural C-Uniform achieves a similar uniformity ratio to the original C-Uniform approach and generates trajectories over a longer time horizon while preserving uniformity. Next, we present CU-MPPI, which integrates Neural C-Uniform sampling into existing MPPI variants. We analyze the performance of CU-MPPI in simulation and real-world experiments. Our results indicate that in settings where the optimal solution has high curvature, CU-MPPI leads to drastic improvements in performance.
comment: Submitted to IROS2025
♻ ☆ Towards Motion Compensation in Autonomous Robotic Subretinal Injections
Exudative (wet) age-related macular degeneration (AMD) is a leading cause of vision loss in older adults, typically treated with intravitreal injections. Emerging therapies, such as subretinal injections of stem cells, gene therapy, small molecules and RPE cells require precise delivery to avoid damaging delicate retinal structures. Robotic systems can potentially offer the necessary precision for these procedures. This paper presents a novel approach for motion compensation in robotic subretinal injections, utilizing real time Optical Coherence Tomography (OCT). The proposed method leverages B$^5$-scans, a rapid acquisition of small-volume OCT data, for dynamic tracking of retinal motion along the Z-axis, compensating for physiological movements such as breathing and heartbeat. Validation experiments on ex vivo porcine eyes revealed challenges in maintaining a consistent tool-to-retina distance, with deviations of up to 200 $\mu m$ for 100 $\mu m$ amplitude motions and over 80 $\mu m$ for 25 $\mu m$ amplitude motions over one minute. Subretinal injections faced additional difficulties, with phase shifts causing the needle to move off-target and inject into the vitreous. These results highlight the need for improved motion prediction and horizontal stability to enhance the accuracy and safety of robotic subretinal procedures.
♻ ☆ Real-time Deformation-aware Control for Autonomous Robotic Subretinal Injection under iOCT Guidance
Robotic platforms provide consistent and precise tool positioning that significantly enhances retinal microsurgery. Integrating such systems with intraoperative optical coherence tomography (iOCT) enables image-guided robotic interventions, allowing autonomous performance of advanced treatments, such as injecting therapeutic agents into the subretinal space. However, tissue deformations due to tool-tissue interactions constitute a significant challenge in autonomous iOCT-guided robotic subretinal injections. Such interactions impact correct needle positioning and procedure outcomes. This paper presents a novel method for autonomous subretinal injection under iOCT guidance that considers tissue deformations during the insertion procedure. The technique is achieved through real-time segmentation and 3D reconstruction of the surgical scene from densely sampled iOCT B-scans, which we refer to as B${^5}$-scans. Using B${^5}$-scans we monitor the position of the instrument relative to a virtual target layer between the ILM and RPE. Our experiments on ex vivo porcine eyes demonstrate dynamic adjustment of the insertion depth and overall improved accuracy in needle positioning compared to prior autonomous insertion approaches. Compared to a 35% success rate in subretinal bleb generation with previous approaches, our method reliably created subretinal blebs in 90% our experiments.
♻ ☆ Data-driven tool wear prediction in milling, based on a process-integrated single-sensor approach
Accurate tool wear prediction is essential for maintaining productivity and minimizing costs in machining. However, the complex nature of the tool wear process poses significant challenges to achieving reliable predictions. This study explores data-driven methods, in particular deep learning, for tool wear prediction. Traditional data-driven approaches often focus on a single process, relying on multi-sensor setups and extensive data generation, which limits generalization to new settings. Moreover, multi-sensor integration is often impractical in industrial environments. To address these limitations, this research investigates the transferability of predictive models using minimal training data, validated across two processes. Furthermore, it uses a simple setup with a single acceleration sensor to establish a low-cost data generation approach that facilitates the generalization of models to other processes via transfer learning. The study evaluates several machine learning models, including transformer-inspired convolutional neural networks (CNN), long short-term memory networks (LSTM), support vector machines (SVM), and decision trees, trained on different input formats such as feature vectors and short-time Fourier transform (STFT). The performance of the models is evaluated on two machines and on different amounts of training data, including scenarios with significantly reduced datasets, providing insight into their effectiveness under constrained data conditions. The results demonstrate the potential of specific models and configurations for effective tool wear prediction, contributing to the development of more adaptable and efficient predictive maintenance strategies in machining. Notably, the ConvNeXt model has an exceptional performance, achieving 99.1\% accuracy in identifying tool wear using data from only four milling tools operated until they are worn.
comment: This preprint has been submitted to Robotics and Computer-Integrated Manufacturing for possible publication ,14 pages, 12 figures
Computer Vision 151
☆ QuoTA: Query-oriented Token Assignment via CoT Query Decouple for Long Video Comprehension
Recent advances in long video understanding typically mitigate visual redundancy through visual token pruning based on attention distribution. However, while existing methods employ post-hoc low-response token pruning in decoder layers, they overlook the input-level semantic correlation between visual tokens and instructions (query). In this paper, we propose QuoTA, an ante-hoc training-free modular that extends existing large video-language models (LVLMs) for visual token assignment based on query-oriented frame-level importance assessment. The query-oriented token selection is crucial as it aligns visual processing with task-specific requirements, optimizing token budget utilization while preserving semantically relevant content. Specifically, (i) QuoTA strategically allocates frame-level importance scores based on query relevance, enabling one-time visual token assignment before cross-modal interactions in decoder layers, (ii) we decouple the query through Chain-of-Thoughts reasoning to facilitate more precise LVLM-based frame importance scoring, and (iii) QuoTA offers a plug-and-play functionality that extends to existing LVLMs. Extensive experimental results demonstrate that implementing QuoTA with LLaVA-Video-7B yields an average performance improvement of 3.2% across six benchmarks (including Video-MME and MLVU) while operating within an identical visual token budget as the baseline. Codes are open-sourced at https://github.com/MAC-AutoML/QuoTA.
comment: Project page: https://github.com/MAC-AutoML/QuoTA
☆ OmniMamba: Efficient and Unified Multimodal Understanding and Generation via State Space Models
Recent advancements in unified multimodal understanding and visual generation (or multimodal generation) models have been hindered by their quadratic computational complexity and dependence on large-scale training data. We present OmniMamba, the first linear-architecture-based multimodal generation model that generates both text and images through a unified next-token prediction paradigm. The model fully leverages Mamba-2's high computational and memory efficiency, extending its capabilities from text generation to multimodal generation. To address the data inefficiency of existing unified models, we propose two key innovations: (1) decoupled vocabularies to guide modality-specific generation, and (2) task-specific LoRA for parameter-efficient adaptation. Furthermore, we introduce a decoupled two-stage training strategy to mitigate data imbalance between two tasks. Equipped with these techniques, OmniMamba achieves competitive performance with JanusFlow while surpassing Show-o across benchmarks, despite being trained on merely 2M image-text pairs, which is 1,000 times fewer than Show-o. Notably, OmniMamba stands out with outstanding inference efficiency, achieving up to a 119.2 times speedup and 63% GPU memory reduction for long-sequence generation compared to Transformer-based counterparts. Code and models are released at https://github.com/hustvl/OmniMamba
☆ "Principal Components" Enable A New Language of Images
We introduce a novel visual tokenization framework that embeds a provable PCA-like structure into the latent token space. While existing visual tokenizers primarily optimize for reconstruction fidelity, they often neglect the structural properties of the latent space -- a critical factor for both interpretability and downstream tasks. Our method generates a 1D causal token sequence for images, where each successive token contributes non-overlapping information with mathematically guaranteed decreasing explained variance, analogous to principal component analysis. This structural constraint ensures the tokenizer extracts the most salient visual features first, with each subsequent token adding diminishing yet complementary information. Additionally, we identified and resolved a semantic-spectrum coupling effect that causes the unwanted entanglement of high-level semantic content and low-level spectral details in the tokens by leveraging a diffusion decoder. Experiments demonstrate that our approach achieves state-of-the-art reconstruction performance and enables better interpretability to align with the human vision system. Moreover, auto-regressive models trained on our token sequences achieve performance comparable to current state-of-the-art methods while requiring fewer tokens for training and inference.
comment: The first two authors contributed equally, project page: https://visual-gen.github.io/semanticist/
☆ CoLMDriver: LLM-based Negotiation Benefits Cooperative Autonomous Driving
Vehicle-to-vehicle (V2V) cooperative autonomous driving holds great promise for improving safety by addressing the perception and prediction uncertainties inherent in single-agent systems. However, traditional cooperative methods are constrained by rigid collaboration protocols and limited generalization to unseen interactive scenarios. While LLM-based approaches offer generalized reasoning capabilities, their challenges in spatial planning and unstable inference latency hinder their direct application in cooperative driving. To address these limitations, we propose CoLMDriver, the first full-pipeline LLM-based cooperative driving system, enabling effective language-based negotiation and real-time driving control. CoLMDriver features a parallel driving pipeline with two key components: (i) an LLM-based negotiation module under an actor-critic paradigm, which continuously refines cooperation policies through feedback from previous decisions of all vehicles; and (ii) an intention-guided waypoint generator, which translates negotiation outcomes into executable waypoints. Additionally, we introduce InterDrive, a CARLA-based simulation benchmark comprising 10 challenging interactive driving scenarios for evaluating V2V cooperation. Experimental results demonstrate that CoLMDriver significantly outperforms existing approaches, achieving an 11% higher success rate across diverse highly interactive V2V driving scenarios. Code will be released on https://github.com/cxliu0314/CoLMDriver.
☆ GarmentCrafter: Progressive Novel View Synthesis for Single-View 3D Garment Reconstruction and Editing
We introduce GarmentCrafter, a new approach that enables non-professional users to create and modify 3D garments from a single-view image. While recent advances in image generation have facilitated 2D garment design, creating and editing 3D garments remains challenging for non-professional users. Existing methods for single-view 3D reconstruction often rely on pre-trained generative models to synthesize novel views conditioning on the reference image and camera pose, yet they lack cross-view consistency, failing to capture the internal relationships across different views. In this paper, we tackle this challenge through progressive depth prediction and image warping to approximate novel views. Subsequently, we train a multi-view diffusion model to complete occluded and unknown clothing regions, informed by the evolving camera pose. By jointly inferring RGB and depth, GarmentCrafter enforces inter-view coherence and reconstructs precise geometries and fine details. Extensive experiments demonstrate that our method achieves superior visual fidelity and inter-view coherence compared to state-of-the-art single-view 3D garment reconstruction methods.
comment: Project Page: https://humansensinglab.github.io/garment-crafter/
☆ Language-Depth Navigated Thermal and Visible Image Fusion
Depth-guided multimodal fusion combines depth information from visible and infrared images, significantly enhancing the performance of 3D reconstruction and robotics applications. Existing thermal-visible image fusion mainly focuses on detection tasks, ignoring other critical information such as depth. By addressing the limitations of single modalities in low-light and complex environments, the depth information from fused images not only generates more accurate point cloud data, improving the completeness and precision of 3D reconstruction, but also provides comprehensive scene understanding for robot navigation, localization, and environmental perception. This supports precise recognition and efficient operations in applications such as autonomous driving and rescue missions. We introduce a text-guided and depth-driven infrared and visible image fusion network. The model consists of an image fusion branch for extracting multi-channel complementary information through a diffusion model, equipped with a text-guided module, and two auxiliary depth estimation branches. The fusion branch uses CLIP to extract semantic information and parameters from depth-enriched image descriptions to guide the diffusion model in extracting multi-channel features and generating fused images. These fused images are then input into the depth estimation branches to calculate depth-driven loss, optimizing the image fusion network. This framework aims to integrate vision-language and depth to directly generate color-fused images from multimodal inputs.
☆ Keypoint Detection and Description for Raw Bayer Images
Keypoint detection and local feature description are fundamental tasks in robotic perception, critical for applications such as SLAM, robot localization, feature matching, pose estimation, and 3D mapping. While existing methods predominantly operate on RGB images, we propose a novel network that directly processes raw images, bypassing the need for the Image Signal Processor (ISP). This approach significantly reduces hardware requirements and memory consumption, which is crucial for robotic vision systems. Our method introduces two custom-designed convolutional kernels capable of performing convolutions directly on raw images, preserving inter-channel information without converting to RGB. Experimental results show that our network outperforms existing algorithms on raw images, achieving higher accuracy and stability under large rotations and scale variations. This work represents the first attempt to develop a keypoint detection and feature description network specifically for raw images, offering a more efficient solution for resource-constrained environments.
☆ SSVQ: Unleashing the Potential of Vector Quantization with Sign-Splitting
Vector Quantization (VQ) has emerged as a prominent weight compression technique, showcasing substantially lower quantization errors than uniform quantization across diverse models, particularly in extreme compression scenarios. However, its efficacy during fine-tuning is limited by the constraint of the compression format, where weight vectors assigned to the same codeword are restricted to updates in the same direction. Consequently, many quantized weights are compelled to move in directions contrary to their local gradient information. To mitigate this issue, we introduce a novel VQ paradigm, Sign-Splitting VQ (SSVQ), which decouples the sign bit of weights from the codebook. Our approach involves extracting the sign bits of uncompressed weights and performing clustering and compression on all-positive weights. We then introduce latent variables for the sign bit and jointly optimize both the signs and the codebook. Additionally, we implement a progressive freezing strategy for the learnable sign to ensure training stability. Extensive experiments on various modern models and tasks demonstrate that SSVQ achieves a significantly superior compression-accuracy trade-off compared to conventional VQ. Furthermore, we validate our algorithm on a hardware accelerator, showing that SSVQ achieves a 3$\times$ speedup over the 8-bit compressed model by reducing memory access.
☆ REGEN: Learning Compact Video Embedding with (Re-)Generative Decoder
We present a novel perspective on learning video embedders for generative modeling: rather than requiring an exact reproduction of an input video, an effective embedder should focus on synthesizing visually plausible reconstructions. This relaxed criterion enables substantial improvements in compression ratios without compromising the quality of downstream generative models. Specifically, we propose replacing the conventional encoder-decoder video embedder with an encoder-generator framework that employs a diffusion transformer (DiT) to synthesize missing details from a compact latent space. Therein, we develop a dedicated latent conditioning module to condition the DiT decoder on the encoded video latent embedding. Our experiments demonstrate that our approach enables superior encoding-decoding performance compared to state-of-the-art methods, particularly as the compression ratio increases. To demonstrate the efficacy of our approach, we report results from our video embedders achieving a temporal compression ratio of up to 32x (8x higher than leading video embedders) and validate the robustness of this ultra-compact latent space for text-to-video generation, providing a significant efficiency boost in latent diffusion model training and inference.
☆ MEAT: Multiview Diffusion Model for Human Generation on Megapixels with Mesh Attention CVPR 2025
Multiview diffusion models have shown considerable success in image-to-3D generation for general objects. However, when applied to human data, existing methods have yet to deliver promising results, largely due to the challenges of scaling multiview attention to higher resolutions. In this paper, we explore human multiview diffusion models at the megapixel level and introduce a solution called mesh attention to enable training at 1024x1024 resolution. Using a clothed human mesh as a central coarse geometric representation, the proposed mesh attention leverages rasterization and projection to establish direct cross-view coordinate correspondences. This approach significantly reduces the complexity of multiview attention while maintaining cross-view consistency. Building on this foundation, we devise a mesh attention block and combine it with keypoint conditioning to create our human-specific multiview diffusion model, MEAT. In addition, we present valuable insights into applying multiview human motion videos for diffusion training, addressing the longstanding issue of data scarcity. Extensive experiments show that MEAT effectively generates dense, consistent multiview human images at the megapixel level, outperforming existing multiview diffusion methods.
comment: CVPR 2025. Code https://github.com/johannwyh/MEAT Project Page https://johann.wang/MEAT/
☆ Generating Robot Constitutions & Benchmarks for Semantic Safety
Until recently, robotics safety research was predominantly about collision avoidance and hazard reduction in the immediate vicinity of a robot. Since the advent of large vision and language models (VLMs), robots are now also capable of higher-level semantic scene understanding and natural language interactions with humans. Despite their known vulnerabilities (e.g. hallucinations or jail-breaking), VLMs are being handed control of robots capable of physical contact with the real world. This can lead to dangerous behaviors, making semantic safety for robots a matter of immediate concern. Our contributions in this paper are two fold: first, to address these emerging risks, we release the ASIMOV Benchmark, a large-scale and comprehensive collection of datasets for evaluating and improving semantic safety of foundation models serving as robot brains. Our data generation recipe is highly scalable: by leveraging text and image generation techniques, we generate undesirable situations from real-world visual scenes and human injury reports from hospitals. Secondly, we develop a framework to automatically generate robot constitutions from real-world data to steer a robot's behavior using Constitutional AI mechanisms. We propose a novel auto-amending process that is able to introduce nuances in written rules of behavior; this can lead to increased alignment with human preferences on behavior desirability and safety. We explore trade-offs between generality and specificity across a diverse set of constitutions of different lengths, and demonstrate that a robot is able to effectively reject unconstitutional actions. We measure a top alignment rate of 84.3% on the ASIMOV Benchmark using generated constitutions, outperforming no-constitution baselines and human-written constitutions. Data is available at asimov-benchmark.github.io
☆ Task-Oriented Co-Design of Communication, Computing, and Control for Edge-Enabled Industrial Cyber-Physical Systems
This paper proposes a task-oriented co-design framework that integrates communication, computing, and control to address the key challenges of bandwidth limitations, noise interference, and latency in mission-critical industrial Cyber-Physical Systems (CPS). To improve communication efficiency and robustness, we design a task-oriented Joint Source-Channel Coding (JSCC) using Information Bottleneck (IB) to enhance data transmission efficiency by prioritizing task-specific information. To mitigate the perceived End-to-End (E2E) delays, we develop a Delay-Aware Trajectory-Guided Control Prediction (DTCP) strategy that integrates trajectory planning with control prediction, predicting commands based on E2E delay. Moreover, the DTCP is co-designed with task-oriented JSCC, focusing on transmitting task-specific information for timely and reliable autonomous driving. Experimental results in the CARLA simulator demonstrate that, under an E2E delay of 1 second (20 time slots), the proposed framework achieves a driving score of 48.12, which is 31.59 points higher than using Better Portable Graphics (BPG) while reducing bandwidth usage by 99.19%.
comment: This paper has been accepted for publication in IEEE Journal on Selected Areas in Communications (JSAC), with publication expected in 2025
☆ MF-VITON: High-Fidelity Mask-Free Virtual Try-On with Minimal Input
Recent advancements in Virtual Try-On (VITON) have significantly improved image realism and garment detail preservation, driven by powerful text-to-image (T2I) diffusion models. However, existing methods often rely on user-provided masks, introducing complexity and performance degradation due to imperfect inputs, as shown in Fig.1(a). To address this, we propose a Mask-Free VITON (MF-VITON) framework that achieves realistic VITON using only a single person image and a target garment, eliminating the requirement for auxiliary masks. Our approach introduces a novel two-stage pipeline: (1) We leverage existing Mask-based VITON models to synthesize a high-quality dataset. This dataset contains diverse, realistic pairs of person images and corresponding garments, augmented with varied backgrounds to mimic real-world scenarios. (2) The pre-trained Mask-based model is fine-tuned on the generated dataset, enabling garment transfer without mask dependencies. This stage simplifies the input requirements while preserving garment texture and shape fidelity. Our framework achieves state-of-the-art (SOTA) performance regarding garment transfer accuracy and visual realism. Notably, the proposed Mask-Free model significantly outperforms existing Mask-based approaches, setting a new benchmark and demonstrating a substantial lead over previous approaches. For more details, visit our project page: https://zhenchenwan.github.io/MF-VITON/.
comment: The project page is available at: https://zhenchenwan.github.io/MF-VITON/
☆ Rethinking Diffusion Model in High Dimension
Curse of Dimensionality is an unavoidable challenge in statistical probability models, yet diffusion models seem to overcome this limitation, achieving impressive results in high-dimensional data generation. Diffusion models assume that they can learn the statistical properties of the underlying probability distribution, enabling sampling from this distribution to generate realistic samples. But is this really how they work? To address this question, this paper conducts a detailed analysis of the objective function and inference methods of diffusion models, leading to several important conclusions that help answer the above question: 1) In high-dimensional sparse scenarios, the target of the objective function fitting degrades from a weighted sum of multiple samples to a single sample. 2) The mainstream inference methods can all be represented within a simple unified framework, without requiring statistical concepts such as Markov chains and SDEs. 3) Guided by this simple framework, more efficient inference methods can be discovered.
☆ GBlobs: Explicit Local Structure via Gaussian Blobs for Improved Cross-Domain LiDAR-based 3D Object Detection CVPR 2025
LiDAR-based 3D detectors need large datasets for training, yet they struggle to generalize to novel domains. Domain Generalization (DG) aims to mitigate this by training detectors that are invariant to such domain shifts. Current DG approaches exclusively rely on global geometric features (point cloud Cartesian coordinates) as input features. Over-reliance on these global geometric features can, however, cause 3D detectors to prioritize object location and absolute position, resulting in poor cross-domain performance. To mitigate this, we propose to exploit explicit local point cloud structure for DG, in particular by encoding point cloud neighborhoods with Gaussian blobs, GBlobs. Our proposed formulation is highly efficient and requires no additional parameters. Without any bells and whistles, simply by integrating GBlobs in existing detectors, we beat the current state-of-the-art in challenging single-source DG benchmarks by over 21 mAP (Waymo->KITTI), 13 mAP (KITTI->Waymo), and 12 mAP (nuScenes->KITTI), without sacrificing in-domain performance. Additionally, GBlobs demonstrate exceptional performance in multi-source DG, surpassing the current state-of-the-art by 17, 12, and 5 mAP on Waymo, KITTI, and ONCE, respectively.
comment: Accepted at CVPR 2025
☆ Birds look like cars: Adversarial analysis of intrinsically interpretable deep learning
A common belief is that intrinsically interpretable deep learning models ensure a correct, intuitive understanding of their behavior and offer greater robustness against accidental errors or intentional manipulation. However, these beliefs have not been comprehensively verified, and growing evidence casts doubt on them. In this paper, we highlight the risks related to overreliance and susceptibility to adversarial manipulation of these so-called "intrinsically (aka inherently) interpretable" models by design. We introduce two strategies for adversarial analysis with prototype manipulation and backdoor attacks against prototype-based networks, and discuss how concept bottleneck models defend against these attacks. Fooling the model's reasoning by exploiting its use of latent prototypes manifests the inherent uninterpretability of deep neural networks, leading to a false sense of security reinforced by a visual confirmation bias. The reported limitations of prototype-based networks put their trustworthiness and applicability into question, motivating further work on the robustness and alignment of (deep) interpretable models.
comment: Preprint
☆ SegAgent: Exploring Pixel Understanding Capabilities in MLLMs by Imitating Human Annotator Trajectories CVPR2025
While MLLMs have demonstrated adequate image understanding capabilities, they still struggle with pixel-level comprehension, limiting their practical applications. Current evaluation tasks like VQA and visual grounding remain too coarse to assess fine-grained pixel comprehension accurately. Though segmentation is foundational for pixel-level understanding, existing methods often require MLLMs to generate implicit tokens, decoded through external pixel decoders. This approach disrupts the MLLM's text output space, potentially compromising language capabilities and reducing flexibility and extensibility, while failing to reflect the model's intrinsic pixel-level understanding. Thus, we introduce the Human-Like Mask Annotation Task (HLMAT), a new paradigm where MLLMs mimic human annotators using interactive segmentation tools. Modeling segmentation as a multi-step Markov Decision Process, HLMAT enables MLLMs to iteratively generate text-based click points, achieving high-quality masks without architectural changes or implicit tokens. Through this setup, we develop SegAgent, a model fine-tuned on human-like annotation trajectories, which achieves performance comparable to state-of-the-art (SOTA) methods and supports additional tasks like mask refinement and annotation filtering. HLMAT provides a protocol for assessing fine-grained pixel understanding in MLLMs and introduces a vision-centric, multi-step decision-making task that facilitates exploration of MLLMs' visual reasoning abilities. Our adaptations of policy improvement method StaR and PRM-guided tree search further enhance model robustness in complex segmentation tasks, laying a foundation for future advancements in fine-grained visual perception and multi-step decision-making for MLLMs.
comment: CVPR2025;Code will be released at \url{https://github.com/aim-uofa/SegAgent}
☆ LightGen: Efficient Image Generation through Knowledge Distillation and Direct Preference Optimization
Recent advances in text-to-image generation have primarily relied on extensive datasets and parameter-heavy architectures. These requirements severely limit accessibility for researchers and practitioners who lack substantial computational resources. In this paper, we introduce \model, an efficient training paradigm for image generation models that uses knowledge distillation (KD) and Direct Preference Optimization (DPO). Drawing inspiration from the success of data KD techniques widely adopted in Multi-Modal Large Language Models (MLLMs), LightGen distills knowledge from state-of-the-art (SOTA) text-to-image models into a compact Masked Autoregressive (MAR) architecture with only $0.7B$ parameters. Using a compact synthetic dataset of just $2M$ high-quality images generated from varied captions, we demonstrate that data diversity significantly outweighs data volume in determining model performance. This strategy dramatically reduces computational demands and reduces pre-training time from potentially thousands of GPU-days to merely 88 GPU-days. Furthermore, to address the inherent shortcomings of synthetic data, particularly poor high-frequency details and spatial inaccuracies, we integrate the DPO technique that refines image fidelity and positional accuracy. Comprehensive experiments confirm that LightGen achieves image generation quality comparable to SOTA models while significantly reducing computational resources and expanding accessibility for resource-constrained environments. Code is available at https://github.com/XianfengWu01/LightGen
comment: Code: https://github.com/XianfengWu01/LightGen
☆ HiP-AD: Hierarchical and Multi-Granularity Planning with Deformable Attention for Autonomous Driving in a Single Decoder
Although end-to-end autonomous driving (E2E-AD) technologies have made significant progress in recent years, there remains an unsatisfactory performance on closed-loop evaluation. The potential of leveraging planning in query design and interaction has not yet been fully explored. In this paper, we introduce a multi-granularity planning query representation that integrates heterogeneous waypoints, including spatial, temporal, and driving-style waypoints across various sampling patterns. It provides additional supervision for trajectory prediction, enhancing precise closed-loop control for the ego vehicle. Additionally, we explicitly utilize the geometric properties of planning trajectories to effectively retrieve relevant image features based on physical locations using deformable attention. By combining these strategies, we propose a novel end-to-end autonomous driving framework, termed HiP-AD, which simultaneously performs perception, prediction, and planning within a unified decoder. HiP-AD enables comprehensive interaction by allowing planning queries to iteratively interact with perception queries in the BEV space while dynamically extracting image features from perspective views. Experiments demonstrate that HiP-AD outperforms all existing end-to-end autonomous driving methods on the closed-loop benchmark Bench2Drive and achieves competitive performance on the real-world dataset nuScenes.
☆ Vision Transformer for Intracranial Hemorrhage Classification in CT Scans Using an Entropy-Aware Fuzzy Integral Strategy for Adaptive Scan-Level Decision Fusion
Intracranial hemorrhage (ICH) is a critical medical emergency caused by the rupture of cerebral blood vessels, leading to internal bleeding within the skull. Accurate and timely classification of hemorrhage subtypes is essential for effective clinical decision-making. To address this challenge, we propose an advanced pyramid vision transformer (PVT)-based model, leveraging its hierarchical attention mechanisms to capture both local and global spatial dependencies in brain CT scans. Instead of processing all extracted features indiscriminately, A SHAP-based feature selection method is employed to identify the most discriminative components, which are then used as a latent feature space to train a boosting neural network, reducing computational complexity. We introduce an entropy-aware aggregation strategy along with a fuzzy integral operator to fuse information across multiple CT slices, ensuring a more comprehensive and reliable scan-level diagnosis by accounting for inter-slice dependencies. Experimental results show that our PVT-based framework significantly outperforms state-of-the-art deep learning architectures in terms of classification accuracy, precision, and robustness. By combining SHAP-driven feature selection, transformer-based modeling, and an entropy-aware fuzzy integral operator for decision fusion, our method offers a scalable and computationally efficient AI-driven solution for automated ICH subtype classification.
☆ Tuning-Free Multi-Event Long Video Generation via Synchronized Coupled Sampling
While recent advancements in text-to-video diffusion models enable high-quality short video generation from a single prompt, generating real-world long videos in a single pass remains challenging due to limited data and high computational costs. To address this, several works propose tuning-free approaches, i.e., extending existing models for long video generation, specifically using multiple prompts to allow for dynamic and controlled content changes. However, these methods primarily focus on ensuring smooth transitions between adjacent frames, often leading to content drift and a gradual loss of semantic coherence over longer sequences. To tackle such an issue, we propose Synchronized Coupled Sampling (SynCoS), a novel inference framework that synchronizes denoising paths across the entire video, ensuring long-range consistency across both adjacent and distant frames. Our approach combines two complementary sampling strategies: reverse and optimization-based sampling, which ensure seamless local transitions and enforce global coherence, respectively. However, directly alternating between these samplings misaligns denoising trajectories, disrupting prompt guidance and introducing unintended content changes as they operate independently. To resolve this, SynCoS synchronizes them through a grounded timestep and a fixed baseline noise, ensuring fully coupled sampling with aligned denoising paths. Extensive experiments show that SynCoS significantly improves multi-event long video generation, achieving smoother transitions and superior long-range coherence, outperforming previous approaches both quantitatively and qualitatively.
comment: Project page with visuals: https://syncos2025.github.io/
☆ CellStyle: Improved Zero-Shot Cell Segmentation via Style Transfer
Cell microscopy data are abundant; however, corresponding segmentation annotations remain scarce. Moreover, variations in cell types, imaging devices, and staining techniques introduce significant domain gaps between datasets. As a result, even large, pretrained segmentation models trained on diverse datasets (source datasets) struggle to generalize to unseen datasets (target datasets). To overcome this generalization problem, we propose CellStyle, which improves the segmentation quality of such models without requiring labels for the target dataset, thereby enabling zero-shot adaptation. CellStyle transfers the attributes of an unannotated target dataset, such as texture, color, and noise, to the annotated source dataset. This transfer is performed while preserving the cell shapes of the source images, ensuring that the existing source annotations can still be used while maintaining the visual characteristics of the target dataset. The styled synthetic images with the existing annotations enable the finetuning of a generalist segmentation model for application to the unannotated target data. We demonstrate that CellStyle significantly improves zero-shot cell segmentation performance across diverse datasets by finetuning multiple segmentation models on the style-transferred data. The code will be made publicly available.
☆ LiSu: A Dataset and Method for LiDAR Surface Normal Estimation CVPR 2025
While surface normals are widely used to analyse 3D scene geometry, surface normal estimation from LiDAR point clouds remains severely underexplored. This is caused by the lack of large-scale annotated datasets on the one hand, and lack of methods that can robustly handle the sparse and often noisy LiDAR data in a reasonable time on the other hand. We address these limitations using a traffic simulation engine and present LiSu, the first large-scale, synthetic LiDAR point cloud dataset with ground truth surface normal annotations, eliminating the need for tedious manual labeling. Additionally, we propose a novel method that exploits the spatiotemporal characteristics of autonomous driving data to enhance surface normal estimation accuracy. By incorporating two regularization terms, we enforce spatial consistency among neighboring points and temporal smoothness across consecutive LiDAR frames. These regularizers are particularly effective in self-training settings, where they mitigate the impact of noisy pseudo-labels, enabling robust real-world deployment. We demonstrate the effectiveness of our method on LiSu, achieving state-of-the-art performance in LiDAR surface normal estimation. Moreover, we showcase its full potential in addressing the challenging task of synthetic-to-real domain adaptation, leading to improved neural surface reconstruction on real-world data.
comment: Accepted at CVPR 2025
☆ X-Field: A Physically Grounded Representation for 3D X-ray Reconstruction
X-ray imaging is indispensable in medical diagnostics, yet its use is tightly regulated due to potential health risks. To mitigate radiation exposure, recent research focuses on generating novel views from sparse inputs and reconstructing Computed Tomography (CT) volumes, borrowing representations from the 3D reconstruction area. However, these representations originally target visible light imaging that emphasizes reflection and scattering effects, while neglecting penetration and attenuation properties of X-ray imaging. In this paper, we introduce X-Field, the first 3D representation specifically designed for X-ray imaging, rooted in the energy absorption rates across different materials. To accurately model diverse materials within internal structures, we employ 3D ellipsoids with distinct attenuation coefficients. To estimate each material's energy absorption of X-rays, we devise an efficient path partitioning algorithm accounting for complex ellipsoid intersections. We further propose hybrid progressive initialization to refine the geometric accuracy of X-Filed and incorporate material-based optimization to enhance model fitting along material boundaries. Experiments show that X-Field achieves superior visual fidelity on both real-world human organ and synthetic object datasets, outperforming state-of-the-art methods in X-ray Novel View Synthesis and CT Reconstruction.
comment: Project Page: \url{https://brack-wang.github.io/XField/}, Github Code: \url{https://github.com/Brack-Wang/X-Field}
☆ 3D Point Cloud Generation via Autoregressive Up-sampling
We introduce a pioneering autoregressive generative model for 3D point cloud generation. Inspired by visual autoregressive modeling (VAR), we conceptualize point cloud generation as an autoregressive up-sampling process. This leads to our novel model, PointARU, which progressively refines 3D point clouds from coarse to fine scales. PointARU follows a two-stage training paradigm: first, it learns multi-scale discrete representations of point clouds, and then it trains an autoregressive transformer for next-scale prediction. To address the inherent unordered and irregular structure of point clouds, we incorporate specialized point-based up-sampling network modules in both stages and integrate 3D absolute positional encoding based on the decoded point cloud at each scale during the second stage. Our model surpasses state-of-the-art (SoTA) diffusion-based approaches in both generation quality and parameter efficiency across diverse experimental settings, marking a new milestone for autoregressive methods in 3D point cloud generation. Furthermore, PointARU demonstrates exceptional performance in completing partial 3D shapes and up-sampling sparse point clouds, outperforming existing generative models in these tasks.
☆ Integration of nested cross-validation, automated hyperparameter optimization, high-performance computing to reduce and quantify the variance of test performance estimation of deep learning models
The variability and biases in the real-world performance benchmarking of deep learning models for medical imaging compromise their trustworthiness for real-world deployment. The common approach of holding out a single fixed test set fails to quantify the variance in the estimation of test performance metrics. This study introduces NACHOS (Nested and Automated Cross-validation and Hyperparameter Optimization using Supercomputing) to reduce and quantify the variance of test performance metrics of deep learning models. NACHOS integrates Nested Cross-Validation (NCV) and Automated Hyperparameter Optimization (AHPO) within a parallelized high-performance computing (HPC) framework. NACHOS was demonstrated on a chest X-ray repository and an Optical Coherence Tomography (OCT) dataset under multiple data partitioning schemes. Beyond performance estimation, DACHOS (Deployment with Automated Cross-validation and Hyperparameter Optimization using Supercomputing) is introduced to leverage AHPO and cross-validation to build the final model on the full dataset, improving expected deployment performance. The findings underscore the importance of NCV in quantifying and reducing estimation variance, AHPO in optimizing hyperparameters consistently across test folds, and HPC in ensuring computational feasibility. By integrating these methodologies, NACHOS and DACHOS provide a scalable, reproducible, and trustworthy framework for DL model evaluation and deployment in medical imaging.
☆ HierarQ: Task-Aware Hierarchical Q-Former for Enhanced Video Understanding CVPR 2025
Despite advancements in multimodal large language models (MLLMs), current approaches struggle in medium-to-long video understanding due to frame and context length limitations. As a result, these models often depend on frame sampling, which risks missing key information over time and lacks task-specific relevance. To address these challenges, we introduce HierarQ, a task-aware hierarchical Q-Former based framework that sequentially processes frames to bypass the need for frame sampling, while avoiding LLM's context length limitations. We introduce a lightweight two-stream language-guided feature modulator to incorporate task awareness in video understanding, with the entity stream capturing frame-level object information within a short context and the scene stream identifying their broader interactions over longer period of time. Each stream is supported by dedicated memory banks which enables our proposed Hierachical Querying transformer (HierarQ) to effectively capture short and long-term context. Extensive evaluations on 10 video benchmarks across video understanding, question answering, and captioning tasks demonstrate HierarQ's state-of-the-art performance across most datasets, proving its robustness and efficiency for comprehensive video analysis.
comment: Accepted in CVPR 2025
☆ Comparing Satellite Data for Next-Day Wildfire Predictability
Multiple studies have performed next-day fire prediction using satellite imagery. Two main satellites are used to detect wildfires: MODIS and VIIRS. Both satellites provide fire mask products, called MOD14 and VNP14, respectively. Studies have used one or the other, but there has been no comparison between them to determine which might be more suitable for next-day fire prediction. In this paper, we first evaluate how well VIIRS and MODIS data can be used to forecast wildfire spread one day ahead. We find that the model using VIIRS as input and VNP14 as target achieves the best results. Interestingly, the model using MODIS as input and VNP14 as target performs significantly better than using VNP14 as input and MOD14 as target. Next, we discuss why MOD14 might be harder to use for predicting next-day fires. We find that the MOD14 fire mask is highly stochastic and does not correlate with reasonable fire spread patterns. This is detrimental for machine learning tasks, as the model learns irrational patterns. Therefore, we conclude that MOD14 is unsuitable for next-day fire prediction and that VNP14 is a much better option. However, using MODIS input and VNP14 as target, we achieve a significant improvement in predictability. This indicates that an improved fire detection model is possible for MODIS. The full code and dataset is available online: https://github.com/justuskarlsson/wildfire-mod14-vnp14
☆ RAG-Adapter: A Plug-and-Play RAG-enhanced Framework for Long Video Understanding
Multi-modal Large Language Models (MLLMs) capable of video understanding are advancing rapidly. To effectively assess their video comprehension capabilities, long video understanding benchmarks, such as Video-MME and MLVU, are proposed. However, these benchmarks directly use uniform frame sampling for testing, which results in significant information loss and affects the accuracy of the evaluations in reflecting the true abilities of MLLMs. To address this, we propose RAG-Adapter, a plug-and-play framework that reduces information loss during testing by sampling frames most relevant to the given question. Additionally, we introduce a Grouped-supervised Contrastive Learning (GCL) method to further enhance sampling effectiveness of RAG-Adapter through fine-tuning on our constructed MMAT dataset. Finally, we test numerous baseline MLLMs on various video understanding benchmarks, finding that RAG-Adapter sampling consistently outperforms uniform sampling (e.g., Accuracy of GPT-4o increases by 9.3 percent on Video-MME), providing a more accurate testing method for long video benchmarks.
comment: 37 pages, 36 figures
☆ Modular Customization of Diffusion Models via Blockwise-Parameterized Low-Rank Adaptation
Recent diffusion model customization has shown impressive results in incorporating subject or style concepts with a handful of images. However, the modular composition of multiple concepts into a customized model, aimed to efficiently merge decentralized-trained concepts without influencing their identities, remains unresolved. Modular customization is essential for applications like concept stylization and multi-concept customization using concepts trained by different users. Existing post-training methods are only confined to a fixed set of concepts, and any different combinations require a new round of retraining. In contrast, instant merging methods often cause identity loss and interference of individual merged concepts and are usually limited to a small number of concepts. To address these issues, we propose BlockLoRA, an instant merging method designed to efficiently combine multiple concepts while accurately preserving individual concepts' identity. With a careful analysis of the underlying reason for interference, we develop the Randomized Output Erasure technique to minimize the interference of different customized models. Additionally, Blockwise LoRA Parameterization is proposed to reduce the identity loss during instant model merging. Extensive experiments validate the effectiveness of BlockLoRA, which can instantly merge 15 concepts of people, subjects, scenes, and styles with high fidelity.
☆ ComicsPAP: understanding comic strips by picking the correct panel
Large multimodal models (LMMs) have made impressive strides in image captioning, VQA, and video comprehension, yet they still struggle with the intricate temporal and spatial cues found in comics. To address this gap, we introduce ComicsPAP, a large-scale benchmark designed for comic strip understanding. Comprising over 100k samples and organized into 5 subtasks under a Pick-a-Panel framework, ComicsPAP demands models to identify the missing panel in a sequence. Our evaluations, conducted under both multi-image and single-image protocols, reveal that current state-of-the-art LMMs perform near chance on these tasks, underscoring significant limitations in capturing sequential and contextual dependencies. To close the gap, we adapted LMMs for comic strip understanding, obtaining better results on ComicsPAP than 10x bigger models, demonstrating that ComicsPAP offers a robust resource to drive future research in multimodal comic comprehension.
☆ TLA: Tactile-Language-Action Model for Contact-Rich Manipulation
Significant progress has been made in vision-language models. However, language-conditioned robotic manipulation for contact-rich tasks remains underexplored, particularly in terms of tactile sensing. To address this gap, we introduce the Tactile-Language-Action (TLA) model, which effectively processes sequential tactile feedback via cross-modal language grounding to enable robust policy generation in contact-intensive scenarios. In addition, we construct a comprehensive dataset that contains 24k pairs of tactile action instruction data, customized for fingertip peg-in-hole assembly, providing essential resources for TLA training and evaluation. Our results show that TLA significantly outperforms traditional imitation learning methods (e.g., diffusion policy) in terms of effective action generation and action accuracy, while demonstrating strong generalization capabilities by achieving over 85\% success rate on previously unseen assembly clearances and peg shapes. We publicly release all data and code in the hope of advancing research in language-conditioned tactile manipulation skill learning. Project website: https://sites.google.com/view/tactile-language-action/
☆ Posterior-Mean Denoising Diffusion Model for Realistic PET Image Reconstruction
Positron Emission Tomography (PET) is a functional imaging modality that enables the visualization of biochemical and physiological processes across various tissues. Recently, deep learning (DL)-based methods have demonstrated significant progress in directly mapping sinograms to PET images. However, regression-based DL models often yield overly smoothed reconstructions lacking of details (i.e., low distortion, low perceptual quality), whereas GAN-based and likelihood-based posterior sampling models tend to introduce undesirable artifacts in predictions (i.e., high distortion, high perceptual quality), limiting their clinical applicability. To achieve a robust perception-distortion tradeoff, we propose Posterior-Mean Denoising Diffusion Model (PMDM-PET), a novel approach that builds upon a recently established mathematical theory to explore the closed-form expression of perception-distortion function in diffusion model space for PET image reconstruction from sinograms. Specifically, PMDM-PET first obtained posterior-mean PET predictions under minimum mean square error (MSE), then optimally transports the distribution of them to the ground-truth PET images distribution. Experimental results demonstrate that PMDM-PET not only generates realistic PET images with possible minimum distortion and optimal perceptual quality but also outperforms five recent state-of-the-art (SOTA) DL baselines in both qualitative visual inspection and quantitative pixel-wise metrics PSNR (dB)/SSIM/NRMSE.
comment: 12 pages, 2 figures
☆ Deformable Linear Object Surface Placement Using Elastica Planning and Local Shape Control
Manipulation of deformable linear objects (DLOs) in constrained environments is a challenging task. This paper describes a two-layered approach for placing DLOs on a flat surface using a single robot hand. The high-level layer is a novel DLO surface placement method based on Euler's elastica solutions. During this process one DLO endpoint is manipulated by the robot gripper while a variable interior point of the DLO serves as the start point of the portion aligned with the placement surface. The low-level layer forms a pipeline controller. The controller estimates the DLO current shape using a Residual Neural Network (ResNet) and uses low-level feedback to ensure task execution in the presence of modeling and placement errors. The resulting DLO placement approach can recover from states where the high-level manipulation planner has failed as required by practical robot manipulation systems. The DLO placement approach is demonstrated with simulations and experiments that use silicon mock-up objects prepared for fresh food applications.
☆ ChromaFormer: A Scalable and Accurate Transformer Architecture for Land Cover Classification
Remote sensing imagery from systems such as Sentinel provides full coverage of the Earth's surface at around 10-meter resolution. The remote sensing community has transitioned to extensive use of deep learning models due to their high performance on benchmarks such as the UCMerced and ISPRS Vaihingen datasets. Convolutional models such as UNet and ResNet variations are commonly employed for remote sensing but typically only accept three channels, as they were developed for RGB imagery, while satellite systems provide more than ten. Recently, several transformer architectures have been proposed for remote sensing, but they have not been extensively benchmarked and are typically used on small datasets such as Salinas Valley. Meanwhile, it is becoming feasible to obtain dense spatial land-use labels for entire first-level administrative divisions of some countries. Scaling law observations suggest that substantially larger multi-spectral transformer models could provide a significant leap in remote sensing performance in these settings. In this work, we propose ChromaFormer, a family of multi-spectral transformer models, which we evaluate across orders of magnitude differences in model parameters to assess their performance and scaling effectiveness on a densely labeled imagery dataset of Flanders, Belgium, covering more than 13,500 km^2 and containing 15 classes. We propose a novel multi-spectral attention strategy and demonstrate its effectiveness through ablations. Furthermore, we show that models many orders of magnitude larger than conventional architectures, such as UNet, lead to substantial accuracy improvements: a UNet++ model with 23M parameters achieves less than 65% accuracy, while a multi-spectral transformer with 655M parameters achieves over 95% accuracy on the Biological Valuation Map of Flanders.
☆ Visual Attention Graph
Visual attention plays a critical role when our visual system executes active visual tasks by interacting with the physical scene. However, how to encode the visual object relationship in the psychological world of our brain deserves to be explored. In the field of computer vision, predicting visual fixations or scanpaths is a usual way to explore the visual attention and behaviors of human observers when viewing a scene. Most existing methods encode visual attention using individual fixations or scanpaths based on the raw gaze shift data collected from human observers. This may not capture the common attention pattern well, because without considering the semantic information of the viewed scene, raw gaze shift data alone contain high inter- and intra-observer variability. To address this issue, we propose a new attention representation, called Attention Graph, to simultaneously code the visual saliency and scanpath in a graph-based representation and better reveal the common attention behavior of human observers. In the attention graph, the semantic-based scanpath is defined by the path on the graph, while saliency of objects can be obtained by computing fixation density on each node. Systemic experiments demonstrate that the proposed attention graph combined with our new evaluation metrics provides a better benchmark for evaluating attention prediction methods. Meanwhile, extra experiments demonstrate the promising potentials of the proposed attention graph in assessing human cognitive states, such as autism spectrum disorder screening and age classification.
comment: 20 pages, 14 figures
☆ SignRep: Enhancing Self-Supervised Sign Representations
Sign language representation learning presents unique challenges due to the complex spatio-temporal nature of signs and the scarcity of labeled datasets. Existing methods often rely either on models pre-trained on general visual tasks, that lack sign-specific features, or use complex multimodal and multi-branch architectures. To bridge this gap, we introduce a scalable, self-supervised framework for sign representation learning. We leverage important inductive (sign) priors during the training of our RGB model. To do this, we leverage simple but important cues based on skeletons while pretraining a masked autoencoder. These sign specific priors alongside feature regularization and an adversarial style agnostic loss provide a powerful backbone. Notably, our model does not require skeletal keypoints during inference, avoiding the limitations of keypoint-based models during downstream tasks. When finetuned, we achieve state-of-the-art performance for sign recognition on the WLASL, ASL-Citizen and NMFs-CSL datasets, using a simpler architecture and with only a single-modality. Beyond recognition, our frozen model excels in sign dictionary retrieval and sign translation, surpassing standard MAE pretraining and skeletal-based representations in retrieval. It also reduces computational costs for training existing sign translation models while maintaining strong performance on Phoenix2014T, CSL-Daily and How2Sign.
☆ GTR: Guided Thought Reinforcement Prevents Thought Collapse in RL-based VLM Agent Training
Reinforcement learning with verifiable outcome rewards (RLVR) has effectively scaled up chain-of-thought (CoT) reasoning in large language models (LLMs). Yet, its efficacy in training vision-language model (VLM) agents for goal-directed action reasoning in visual environments is less established. This work investigates this problem through extensive experiments on complex card games, such as 24 points, and embodied tasks from ALFWorld. We find that when rewards are based solely on action outcomes, RL fails to incentivize CoT reasoning in VLMs, instead leading to a phenomenon we termed thought collapse, characterized by a rapid loss of diversity in the agent's thoughts, state-irrelevant and incomplete reasoning, and subsequent invalid actions, resulting in negative rewards. To counteract thought collapse, we highlight the necessity of process guidance and propose an automated corrector that evaluates and refines the agent's reasoning at each RL step. This simple and scalable GTR (Guided Thought Reinforcement) framework trains reasoning and action simultaneously without the need for dense, per-step human labeling. Our experiments demonstrate that GTR significantly enhances the performance and generalization of the LLaVA-7b model across various visual environments, achieving 3-5 times higher task success rates compared to SoTA models with notably smaller model sizes.
High-Quality 3D Head Reconstruction from Any Single Portrait Image
In this work, we introduce a novel high-fidelity 3D head reconstruction method from a single portrait image, regardless of perspective, expression, or accessories. Despite significant efforts in adapting 2D generative models for novel view synthesis and 3D optimization, most methods struggle to produce high-quality 3D portraits. The lack of crucial information, such as identity, expression, hair, and accessories, limits these approaches in generating realistic 3D head models. To address these challenges, we construct a new high-quality dataset containing 227 sequences of digital human portraits captured from 96 different perspectives, totalling 21,792 frames, featuring diverse expressions and accessories. To further improve performance, we integrate identity and expression information into the multi-view diffusion process to enhance facial consistency across views. Specifically, we apply identity- and expression-aware guidance and supervision to extract accurate facial representations, which guide the model and enforce objective functions to ensure high identity and expression consistency during generation. Finally, we generate an orbital video around the portrait consisting of 96 multi-view frames, which can be used for 3D portrait model reconstruction. Our method demonstrates robust performance across challenging scenarios, including side-face angles and complex accessories
☆ Segmentation-Guided CT Synthesis with Pixel-Wise Conformal Uncertainty Bounds MICCAI 2025
Accurate dose calculations in proton therapy rely on high-quality CT images. While planning CTs (pCTs) serve as a reference for dosimetric planning, Cone Beam CT (CBCT) is used throughout Adaptive Radiotherapy (ART) to generate sCTs for improved dose calculations. Despite its lower cost and reduced radiation exposure advantages, CBCT suffers from severe artefacts and poor image quality, making it unsuitable for precise dosimetry. Deep learning-based CBCT-to-CT translation has emerged as a promising approach. Still, existing methods often introduce anatomical inconsistencies and lack reliable uncertainty estimates, limiting their clinical adoption. To bridge this gap, we propose STF-RUE, a novel framework integrating two key components. First, STF, a segmentation-guided CBCT-to-CT translation method that enhances anatomical consistency by leveraging segmentation priors extracted from pCTs. Second, RUE, a conformal prediction method that augments predicted CTs with pixel-wise conformal prediction intervals, providing clinicians with robust reliability indicator. Comprehensive experiments using UNet++ and Fast-DDPM on two benchmark datasets demonstrate that STF-RUE significantly improves translation accuracy, as measured by a novel soft-tissue-focused metric designed for precise dose computation. Additionally, STF-RUE provides better-calibrated uncertainty sets for synthetic CT, reinforcing trust in synthetic CTs. By addressing both anatomical fidelity and uncertainty quantification, STF-RUE marks a crucial step toward safer and more effective adaptive proton therapy. Code is available at https://anonymous.4open.science/r/cbct2ct_translation-B2D9/.
comment: MICCAI 2025 Conference Submission. Follows the required LNCS format. 12 pages including references. Contains 4 figures and 1 table
☆ SAS: Segment Any 3D Scene with Integrated 2D Priors
The open vocabulary capability of 3D models is increasingly valued, as traditional methods with models trained with fixed categories fail to recognize unseen objects in complex dynamic 3D scenes. In this paper, we propose a simple yet effective approach, SAS, to integrate the open vocabulary capability of multiple 2D models and migrate it to 3D domain. Specifically, we first propose Model Alignment via Text to map different 2D models into the same embedding space using text as a bridge. Then, we propose Annotation-Free Model Capability Construction to explicitly quantify the 2D model's capability of recognizing different categories using diffusion models. Following this, point cloud features from different 2D models are fused with the guide of constructed model capabilities. Finally, the integrated 2D open vocabulary capability is transferred to 3D domain through feature distillation. SAS outperforms previous methods by a large margin across multiple datasets, including ScanNet v2, Matterport3D, and nuScenes, while its generalizability is further validated on downstream tasks, e.g., gaussian segmentation and instance segmentation.
☆ PCGS: Progressive Compression of 3D Gaussian Splatting
3D Gaussian Splatting (3DGS) achieves impressive rendering fidelity and speed for novel view synthesis. However, its substantial data size poses a significant challenge for practical applications. While many compression techniques have been proposed, they fail to efficiently utilize existing bitstreams in on-demand applications due to their lack of progressivity, leading to a waste of resource. To address this issue, we propose PCGS (Progressive Compression of 3D Gaussian Splatting), which adaptively controls both the quantity and quality of Gaussians (or anchors) to enable effective progressivity for on-demand applications. Specifically, for quantity, we introduce a progressive masking strategy that incrementally incorporates new anchors while refining existing ones to enhance fidelity. For quality, we propose a progressive quantization approach that gradually reduces quantization step sizes to achieve finer modeling of Gaussian attributes. Furthermore, to compact the incremental bitstreams, we leverage existing quantization results to refine probability prediction, improving entropy coding efficiency across progressive levels. Overall, PCGS achieves progressivity while maintaining compression performance comparable to SoTA non-progressive methods. Code available at: github.com/YihangChen-ee/PCGS.
comment: Project Page: https://yihangchen-ee.github.io/project_pcgs/ Code: https://github.com/YihangChen-ee/PCGS
☆ External Knowledge Injection for CLIP-Based Class-Incremental Learning
Class-Incremental Learning (CIL) enables learning systems to continuously adapt to evolving data streams. With the advancement of pre-training, leveraging pre-trained vision-language models (e.g., CLIP) offers a promising starting point for CIL. However, CLIP makes decisions by matching visual embeddings to class names, overlooking the rich contextual information conveyed through language. For instance, the concept of ``cat'' can be decomposed into features like tail, fur, and face for recognition. Besides, since the model is continually updated, these detailed features are overwritten in CIL, requiring external knowledge for compensation. In this paper, we introduce ExterNal knowledGe INjEction (ENGINE) for CLIP-based CIL. To enhance knowledge transfer from outside the dataset, we propose a dual-branch injection tuning framework that encodes informative knowledge from both visual and textual modalities. The visual branch is enhanced with data augmentation to enrich the visual features, while the textual branch leverages GPT-4 to rewrite discriminative descriptors. In addition to this on-the-fly knowledge injection, we also implement post-tuning knowledge by re-ranking the prediction results during inference. With the injected knowledge, the model can better capture informative features for downstream tasks as data evolves. Extensive experiments demonstrate the state-of-the-art performance of ENGINE. Code is available at: https://github.com/RenaissCode/ENGINE
comment: Code is available at: https://github.com/RenaissCode/ENGINE
☆ Referring to Any Person
Humans are undoubtedly the most important participants in computer vision, and the ability to detect any individual given a natural language description, a task we define as referring to any person, holds substantial practical value. However, we find that existing models generally fail to achieve real-world usability, and current benchmarks are limited by their focus on one-to-one referring, that hinder progress in this area. In this work, we revisit this task from three critical perspectives: task definition, dataset design, and model architecture. We first identify five aspects of referable entities and three distinctive characteristics of this task. Next, we introduce HumanRef, a novel dataset designed to tackle these challenges and better reflect real-world applications. From a model design perspective, we integrate a multimodal large language model with an object detection framework, constructing a robust referring model named RexSeek. Experimental results reveal that state-of-the-art models, which perform well on commonly used benchmarks like RefCOCO/+/g, struggle with HumanRef due to their inability to detect multiple individuals. In contrast, RexSeek not only excels in human referring but also generalizes effectively to common object referring, making it broadly applicable across various perception tasks. Code is available at https://github.com/IDEA-Research/RexSeek
☆ CFNet: Optimizing Remote Sensing Change Detection through Content-Aware Enhancement
Change detection is a crucial and widely applied task in remote sensing, aimed at identifying and analyzing changes occurring in the same geographical area over time. Due to variability in acquisition conditions, bi-temporal remote sensing images often exhibit significant differences in image style. Even with the powerful generalization capabilities of DNNs, these unpredictable style variations between bi-temporal images inevitably affect model's ability to accurately detect changed areas. To address issue above, we propose the Content Focuser Network (CFNet), which takes content-aware strategy as a key insight. CFNet employs EfficientNet-B5 as the backbone for feature extraction. To enhance the model's focus on the content features of images while mitigating the misleading effects of style features, we develop a constraint strategy that prioritizes the content features of bi-temporal images, termed Content-Aware. Furthermore, to enable the model to flexibly focus on changed and unchanged areas according to the requirements of different stages, we design a reweighting module based on the cosine distance between bi-temporal image features, termed Focuser. CFNet achieve outstanding performance across three well-known change detection datasets: CLCD (F1: 81.41%, IoU: 68.65%), LEVIR-CD (F1: 92.18%, IoU: 85.49%), and SYSU-CD (F1: 82.89%, IoU: 70.78%). The code and pretrained models of CFNet are publicly released at https://github.com/wifiBlack/CFNet.
comment: 17 pages, 12 figures
☆ MMRL: Multi-Modal Representation Learning for Vision-Language Models CVPR 2025
Large-scale pre-trained Vision-Language Models (VLMs) have become essential for transfer learning across diverse tasks. However, adapting these models with limited few-shot data often leads to overfitting, diminishing their performance on new tasks. To tackle this issue, we propose a novel Multi-Modal Representation Learning (MMRL) framework that introduces a shared, learnable, and modality-agnostic representation space. MMRL projects the space tokens to text and image representation tokens, facilitating more effective multi-modal interactions. Unlike previous approaches that solely optimize class token features, MMRL integrates representation tokens at higher layers of the encoders--where dataset-specific features are more prominent--while preserving generalized knowledge in the lower layers. During training, both representation and class features are optimized, with trainable projection layer applied to the representation tokens, whereas the class token projection layer remains frozen to retain pre-trained knowledge. Furthermore, a regularization term is introduced to align the class features and text features with the zero-shot features from the frozen VLM, thereby safeguarding the model's generalization capacity. For inference, a decoupling strategy is employed, wherein both representation and class features are utilized for base classes, while only the class features, which retain more generalized knowledge, are used for new tasks. Extensive experiments across 15 datasets demonstrate that MMRL outperforms state-of-the-art methods, achieving a balanced trade-off between task-specific adaptation and generalization. Code is available at https://github.com/yunncheng/MMRL.
comment: Accepted by CVPR 2025
☆ SuperCap: Multi-resolution Superpixel-based Image Captioning
It has been a longstanding goal within image captioning to move beyond a dependence on object detection. We investigate using superpixels coupled with Vision Language Models (VLMs) to bridge the gap between detector-based captioning architectures and those that solely pretrain on large datasets. Our novel superpixel approach ensures that the model receives object-like features whilst the use of VLMs provides our model with open set object understanding. Furthermore, we extend our architecture to make use of multi-resolution inputs, allowing our model to view images in different levels of detail, and use an attention mechanism to determine which parts are most relevant to the caption. We demonstrate our model's performance with multiple VLMs and through a range of ablations detailing the impact of different architectural choices. Our full model achieves a competitive CIDEr score of $136.9$ on the COCO Karpathy split.
comment: 12 pages, 4 figures
☆ TT-GaussOcc: Test-Time Compute for Self-Supervised Occupancy Prediction via Spatio-Temporal Gaussian Splatting
Self-supervised 3D occupancy prediction offers a promising solution for understanding complex driving scenes without requiring costly 3D annotations. However, training dense voxel decoders to capture fine-grained geometry and semantics can demand hundreds of GPU hours, and such models often fail to adapt to varying voxel resolutions or new classes without extensive retraining. To overcome these limitations, we propose a practical and flexible test-time occupancy prediction framework termed TT-GaussOcc. Our approach incrementally optimizes time-aware 3D Gaussians instantiated from raw sensor streams at runtime, enabling voxelization at arbitrary user-specified resolution. Specifically, TT-GaussOcc operates in a "lift-move-voxel" symphony: we first "lift" surrounding-view semantics obtained from 2D vision foundation models (VLMs) to instantiate Gaussians at non-empty 3D space; Next, we "move" dynamic Gaussians from previous frames along estimated Gaussian scene flow to complete appearance and eliminate trailing artifacts of fast-moving objects, while accumulating static Gaussians to enforce temporal consistency; Finally, we mitigate inherent noises in semantic predictions and scene flow vectors by periodically smoothing neighboring Gaussians during optimization, using proposed trilateral RBF kernels that jointly consider color, semantic, and spatial affinities. The historical static and current dynamic Gaussians are then combined and voxelized to generate occupancy prediction. Extensive experiments on Occ3D and nuCraft with varying voxel resolutions demonstrate that TT-GaussOcc surpasses self-supervised baselines by 46% on mIoU without any offline training, and supports finer voxel resolutions at 2.6 FPS inference speed.
GAS-NeRF: Geometry-Aware Stylization of Dynamic Radiance Fields
Current 3D stylization techniques primarily focus on static scenes, while our world is inherently dynamic, filled with moving objects and changing environments. Existing style transfer methods primarily target appearance -- such as color and texture transformation -- but often neglect the geometric characteristics of the style image, which are crucial for achieving a complete and coherent stylization effect. To overcome these shortcomings, we propose GAS-NeRF, a novel approach for joint appearance and geometry stylization in dynamic Radiance Fields. Our method leverages depth maps to extract and transfer geometric details into the radiance field, followed by appearance transfer. Experimental results on synthetic and real-world datasets demonstrate that our approach significantly enhances the stylization quality while maintaining temporal coherence in dynamic scenes.
Generalizable AI-Generated Image Detection Based on Fractal Self-Similarity in the Spectrum
The generalization performance of AI-generated image detection remains a critical challenge. Although most existing methods perform well in detecting images from generative models included in the training set, their accuracy drops significantly when faced with images from unseen generators. To address this limitation, we propose a novel detection method based on the fractal self-similarity of the spectrum, a common feature among images generated by different models. Specifically, we demonstrate that AI-generated images exhibit fractal-like spectral growth through periodic extension and low-pass filtering. This observation motivates us to exploit the similarity among different fractal branches of the spectrum. Instead of directly analyzing the spectrum, our method mitigates the impact of varying spectral characteristics across different generators, improving detection performance for images from unseen models. Experiments on a public benchmark demonstrated the generalized detection performance across both GANs and diffusion models.
☆ A Multimodal Physics-Informed Neural Network Approach for Mean Radiant Temperature Modeling
Outdoor thermal comfort is a critical determinant of urban livability, particularly in hot desert climates where extreme heat poses challenges to public health, energy consumption, and urban planning. Mean Radiant Temperature ($T_{mrt}$) is a key parameter for evaluating outdoor thermal comfort, especially in urban environments where radiation dynamics significantly impact human thermal exposure. Traditional methods of estimating $T_{mrt}$ rely on field measurements and computational simulations, both of which are resource intensive. This study introduces a Physics-Informed Neural Network (PINN) approach that integrates shortwave and longwave radiation modeling with deep learning techniques. By leveraging a multimodal dataset that includes meteorological data, built environment characteristics, and fisheye image-derived shading information, our model enhances predictive accuracy while maintaining physical consistency. Our experimental results demonstrate that the proposed PINN framework outperforms conventional deep learning models, with the best-performing configurations achieving an RMSE of 3.50 and an $R^2$ of 0.88. This approach highlights the potential of physics-informed machine learning in bridging the gap between computational modeling and real-world applications, offering a scalable and interpretable solution for urban thermal comfort assessments.
☆ PhysVLM: Enabling Visual Language Models to Understand Robotic Physical Reachability
Understanding the environment and a robot's physical reachability is crucial for task execution. While state-of-the-art vision-language models (VLMs) excel in environmental perception, they often generate inaccurate or impractical responses in embodied visual reasoning tasks due to a lack of understanding of robotic physical reachability. To address this issue, we propose a unified representation of physical reachability across diverse robots, i.e., Space-Physical Reachability Map (S-P Map), and PhysVLM, a vision-language model that integrates this reachability information into visual reasoning. Specifically, the S-P Map abstracts a robot's physical reachability into a generalized spatial representation, independent of specific robot configurations, allowing the model to focus on reachability features rather than robot-specific parameters. Subsequently, PhysVLM extends traditional VLM architectures by incorporating an additional feature encoder to process the S-P Map, enabling the model to reason about physical reachability without compromising its general vision-language capabilities. To train and evaluate PhysVLM, we constructed a large-scale multi-robot dataset, Phys100K, and a challenging benchmark, EQA-phys, which includes tasks for six different robots in both simulated and real-world environments. Experimental results demonstrate that PhysVLM outperforms existing models, achieving a 14\% improvement over GPT-4o on EQA-phys and surpassing advanced embodied VLMs such as RoboMamba and SpatialVLM on the RoboVQA-val and OpenEQA benchmarks. Additionally, the S-P Map shows strong compatibility with various VLMs, and its integration into GPT-4o-mini yields a 7.1\% performance improvement.
☆ NullFace: Training-Free Localized Face Anonymization
Privacy concerns around ever increasing number of cameras are increasing in today's digital age. Although existing anonymization methods are able to obscure identity information, they often struggle to preserve the utility of the images. In this work, we introduce a training-free method for face anonymization that preserves key non-identity-related attributes. Our approach utilizes a pre-trained text-to-image diffusion model without requiring optimization or training. It begins by inverting the input image to recover its initial noise. The noise is then denoised through an identity-conditioned diffusion process, where modified identity embeddings ensure the anonymized face is distinct from the original identity. Our approach also supports localized anonymization, giving users control over which facial regions are anonymized or kept intact. Comprehensive evaluations against state-of-the-art methods show our approach excels in anonymization, attribute preservation, and image quality. Its flexibility, robustness, and practicality make it well-suited for real-world applications. Code and data can be found at https://github.com/hanweikung/nullface .
TrackOcc: Camera-based 4D Panoptic Occupancy Tracking ICRA 2025
Comprehensive and consistent dynamic scene understanding from camera input is essential for advanced autonomous systems. Traditional camera-based perception tasks like 3D object tracking and semantic occupancy prediction lack either spatial comprehensiveness or temporal consistency. In this work, we introduce a brand-new task, Camera-based 4D Panoptic Occupancy Tracking, which simultaneously addresses panoptic occupancy segmentation and object tracking from camera-only input. Furthermore, we propose TrackOcc, a cutting-edge approach that processes image inputs in a streaming, end-to-end manner with 4D panoptic queries to address the proposed task. Leveraging the localization-aware loss, TrackOcc enhances the accuracy of 4D panoptic occupancy tracking without bells and whistles. Experimental results demonstrate that our method achieves state-of-the-art performance on the Waymo dataset. The source code will be released at https://github.com/Tsinghua-MARS-Lab/TrackOcc.
comment: Accepted at ICRA 2025
☆ A Data Aggregation Visualization System supported by Processing-in-Memory
Data visualization of aggregation queries is one of the most common ways of doing data exploration and data science as it can help identify correlations and patterns in the data. We propose DIVAN, a system that automatically normalizes the one-dimensional axes by frequency to generate large numbers of two-dimensional visualizations. DIVAN normalizes the input data via binning to allocate more pixels to data values that appear more frequently in the dataset. DIVAN can utilize either CPUs or Processing-in-Memory (PIM) architectures to quickly calculate aggregates to support the visualizations. On real world datasets, we show that DIVAN generates visualizations that highlight patterns and correlations, some expected and some unexpected. By using PIM, we can calculate aggregates 45%-64% faster than modern CPUs on large datasets. For use cases with 100 million rows and 32 columns, our system is able to compute 4,960 aggregates (each of size 128x128x128) in about a minute.
comment: 13 pages, 11 figures
Controlling Latent Diffusion Using Latent CLIP
Instead of performing text-conditioned denoising in the image domain, latent diffusion models (LDMs) operate in latent space of a variational autoencoder (VAE), enabling more efficient processing at reduced computational costs. However, while the diffusion process has moved to the latent space, the contrastive language-image pre-training (CLIP) models, as used in many image processing tasks, still operate in pixel space. Doing so requires costly VAE-decoding of latent images before they can be processed. In this paper, we introduce Latent-CLIP, a CLIP model that operates directly in the latent space. We train Latent-CLIP on 2.7B pairs of latent images and descriptive texts, and show that it matches zero-shot classification performance of similarly sized CLIP models on both the ImageNet benchmark and a LDM-generated version of it, demonstrating its effectiveness in assessing both real and generated content. Furthermore, we construct Latent-CLIP rewards for reward-based noise optimization (ReNO) and show that they match the performance of their CLIP counterparts on GenEval and T2I-CompBench while cutting the cost of the total pipeline by 21%. Finally, we use Latent-CLIP to guide generation away from harmful content, achieving strong performance on the inappropriate image prompts (I2P) benchmark and a custom evaluation, without ever requiring the costly step of decoding intermediate images.
☆ ICPR 2024 Competition on Rider Intention Prediction
The recent surge in the vehicle market has led to an alarming increase in road accidents. This underscores the critical importance of enhancing road safety measures, particularly for vulnerable road users like motorcyclists. Hence, we introduce the rider intention prediction (RIP) competition that aims to address challenges in rider safety by proactively predicting maneuvers before they occur, thereby strengthening rider safety. This capability enables the riders to react to the potential incorrect maneuvers flagged by advanced driver assistance systems (ADAS). We collect a new dataset, namely, rider action anticipation dataset (RAAD) for the competition consisting of two tasks: single-view RIP and multi-view RIP. The dataset incorporates a spectrum of traffic conditions and challenging navigational maneuvers on roads with varying lighting conditions. For the competition, we received seventy-five registrations and five team submissions for inference of which we compared the methods of the top three performing teams on both the RIP tasks: one state-space model (Mamba2) and two learning-based approaches (SVM and CNN-LSTM). The results indicate that the state-space model outperformed the other methods across the entire dataset, providing a balanced performance across maneuver classes. The SVM-based RIP method showed the second-best performance when using random sampling and SMOTE. However, the CNN-LSTM method underperformed, primarily due to class imbalance issues, particularly struggling with minority classes. This paper details the proposed RAAD dataset and provides a summary of the submissions for the RIP 2024 competition.
☆ Bokeh Diffusion: Defocus Blur Control in Text-to-Image Diffusion Models
Recent advances in large-scale text-to-image models have revolutionized creative fields by generating visually captivating outputs from textual prompts; however, while traditional photography offers precise control over camera settings to shape visual aesthetics -- such as depth-of-field -- current diffusion models typically rely on prompt engineering to mimic such effects. This approach often results in crude approximations and inadvertently altering the scene content. In this work, we propose Bokeh Diffusion, a scene-consistent bokeh control framework that explicitly conditions a diffusion model on a physical defocus blur parameter. By grounding depth-of-field adjustments, our method preserves the underlying scene structure as the level of blur is varied. To overcome the scarcity of paired real-world images captured under different camera settings, we introduce a hybrid training pipeline that aligns in-the-wild images with synthetic blur augmentations. Extensive experiments demonstrate that our approach not only achieves flexible, lens-like blur control but also supports applications such as real image editing via inversion.
comment: Project page: https://atfortes.github.io/projects/bokeh-diffusion/
☆ Using Powerful Prior Knowledge of Diffusion Model in Deep Unfolding Networks for Image Compressive Sensing CVPR2025
Recently, Deep Unfolding Networks (DUNs) have achieved impressive reconstruction quality in the field of image Compressive Sensing (CS) by unfolding iterative optimization algorithms into neural networks. The reconstruction quality of DUNs depends on the learned prior knowledge, so introducing stronger prior knowledge can further improve reconstruction quality. On the other hand, pre-trained diffusion models contain powerful prior knowledge and have a solid theoretical foundation and strong scalability, but it requires a large number of iterative steps to achieve reconstruction. In this paper, we propose to use the powerful prior knowledge of pre-trained diffusion model in DUNs to achieve high-quality reconstruction with less steps for image CS. Specifically, we first design an iterative optimization algorithm named Diffusion Message Passing (DMP), which embeds a pre-trained diffusion model into each iteration process of DMP. Then, we deeply unfold the DMP algorithm into a neural network named DMP-DUN. The proposed DMP-DUN can use lightweight neural networks to achieve mapping from measurement data to the intermediate steps of the reverse diffusion process and directly approximate the divergence of the diffusion model, thereby further improving reconstruction efficiency. Extensive experiments show that our proposed DMP-DUN achieves state-of-the-art performance and requires at least only 2 steps to reconstruct the image. Codes are available at https://github.com/FengodChen/DMP-DUN-CVPR2025.
comment: CVPR2025 accepted
☆ JiSAM: Alleviate Labeling Burden and Corner Case Problems in Autonomous Driving via Minimal Real-World Data
Deep-learning-based autonomous driving (AD) perception introduces a promising picture for safe and environment-friendly transportation. However, the over-reliance on real labeled data in LiDAR perception limits the scale of on-road attempts. 3D real world data is notoriously time-and-energy-consuming to annotate and lacks corner cases like rare traffic participants. On the contrary, in simulators like CARLA, generating labeled LiDAR point clouds with corner cases is a piece of cake. However, introducing synthetic point clouds to improve real perception is non-trivial. This stems from two challenges: 1) sample efficiency of simulation datasets 2) simulation-to-real gaps. To overcome both challenges, we propose a plug-and-play method called JiSAM , shorthand for Jittering augmentation, domain-aware backbone and memory-based Sectorized AlignMent. In extensive experiments conducted on the famous AD dataset NuScenes, we demonstrate that, with SOTA 3D object detector, JiSAM is able to utilize the simulation data and only labels on 2.5% available real data to achieve comparable performance to models trained on all real data. Additionally, JiSAM achieves more than 15 mAPs on the objects not labeled in the real training set. We will release models and codes.
☆ Learning to Detect Objects from Multi-Agent LiDAR Scans without Manual Labels
Unsupervised 3D object detection serves as an important solution for offline 3D object annotation. However, due to the data sparsity and limited views, the clustering-based label fitting in unsupervised object detection often generates low-quality pseudo-labels. Multi-agent collaborative dataset, which involves the sharing of complementary observations among agents, holds the potential to break through this bottleneck. In this paper, we introduce a novel unsupervised method that learns to Detect Objects from Multi-Agent LiDAR scans, termed DOtA, without using labels from external. DOtA first uses the internally shared ego-pose and ego-shape of collaborative agents to initialize the detector, leveraging the generalization performance of neural networks to infer preliminary labels. Subsequently,DOtA uses the complementary observations between agents to perform multi-scale encoding on preliminary labels, then decodes high-quality and low-quality labels. These labels are further used as prompts to guide a correct feature learning process, thereby enhancing the performance of the unsupervised object detection task. Extensive experiments on the V2V4Real and OPV2V datasets show that our DOtA outperforms state-of-the-art unsupervised 3D object detection methods. Additionally, we also validate the effectiveness of the DOtA labels under various collaborative perception frameworks.The code is available at https://github.com/xmuqimingxia/DOtA.
comment: 11 pages, 5 figures
☆ Generalizable and Explainable Deep Learning for Medical Image Computing: An Overview
Objective. This paper presents an overview of generalizable and explainable artificial intelligence (XAI) in deep learning (DL) for medical imaging, aimed at addressing the urgent need for transparency and explainability in clinical applications. Methodology. We propose to use four CNNs in three medical datasets (brain tumor, skin cancer, and chest x-ray) for medical image classification tasks. In addition, we perform paired t-tests to show the significance of the differences observed between different methods. Furthermore, we propose to combine ResNet50 with five common XAI techniques to obtain explainable results for model prediction, aiming at improving model transparency. We also involve a quantitative metric (confidence increase) to evaluate the usefulness of XAI techniques. Key findings. The experimental results indicate that ResNet50 can achieve feasible accuracy and F1 score in all datasets (e.g., 86.31\% accuracy in skin cancer). Furthermore, the findings show that while certain XAI methods, such as XgradCAM, effectively highlight relevant abnormal regions in medical images, others, like EigenGradCAM, may perform less effectively in specific scenarios. In addition, XgradCAM indicates higher confidence increase (e.g., 0.12 in glioma tumor) compared to GradCAM++ (0.09) and LayerCAM (0.08). Implications. Based on the experimental results and recent advancements, we outline future research directions to enhance the robustness and generalizability of DL models in the field of biomedical imaging.
comment: Published in Current Opinion in Biomedical Engineering
☆ AnyMoLe: Any Character Motion In-betweening Leveraging Video Diffusion Models CVPR 2025
Despite recent advancements in learning-based motion in-betweening, a key limitation has been overlooked: the requirement for character-specific datasets. In this work, we introduce AnyMoLe, a novel method that addresses this limitation by leveraging video diffusion models to generate motion in-between frames for arbitrary characters without external data. Our approach employs a two-stage frame generation process to enhance contextual understanding. Furthermore, to bridge the domain gap between real-world and rendered character animations, we introduce ICAdapt, a fine-tuning technique for video diffusion models. Additionally, we propose a ``motion-video mimicking'' optimization technique, enabling seamless motion generation for characters with arbitrary joint structures using 2D and 3D-aware features. AnyMoLe significantly reduces data dependency while generating smooth and realistic transitions, making it applicable to a wide range of motion in-betweening tasks.
comment: 11 pages, 10 figures, CVPR 2025
☆ WildSeg3D: Segment Any 3D Objects in the Wild from 2D Images
Recent advances in interactive 3D segmentation from 2D images have demonstrated impressive performance. However, current models typically require extensive scene-specific training to accurately reconstruct and segment objects, which limits their applicability in real-time scenarios. In this paper, we introduce WildSeg3D, an efficient approach that enables the segmentation of arbitrary 3D objects across diverse environments using a feed-forward mechanism. A key challenge of this feed-forward approach lies in the accumulation of 3D alignment errors across multiple 2D views, which can lead to inaccurate 3D segmentation results. To address this issue, we propose Dynamic Global Aligning (DGA), a technique that improves the accuracy of global multi-view alignment by focusing on difficult-to-match 3D points across images, using a dynamic adjustment function. Additionally, for real-time interactive segmentation, we introduce Multi-view Group Mapping (MGM), a method that utilizes an object mask cache to integrate multi-view segmentations and respond rapidly to user prompts. WildSeg3D demonstrates robust generalization across arbitrary scenes, thereby eliminating the need for scene-specific training. Specifically, WildSeg3D not only attains the accuracy of state-of-the-art (SOTA) methods but also achieves a $40\times$ speedup compared to existing SOTA models. Our code will be publicly available.
☆ DyArtbank: Diverse Artistic Style Transfer via Pre-trained Stable Diffusion and Dynamic Style Prompt Artbank
Artistic style transfer aims to transfer the learned style onto an arbitrary content image. However, most existing style transfer methods can only render consistent artistic stylized images, making it difficult for users to get enough stylized images to enjoy. To solve this issue, we propose a novel artistic style transfer framework called DyArtbank, which can generate diverse and highly realistic artistic stylized images. Specifically, we introduce a Dynamic Style Prompt ArtBank (DSPA), a set of learnable parameters. It can learn and store the style information from the collection of artworks, dynamically guiding pre-trained stable diffusion to generate diverse and highly realistic artistic stylized images. DSPA can also generate random artistic image samples with the learned style information, providing a new idea for data augmentation. Besides, a Key Content Feature Prompt (KCFP) module is proposed to provide sufficient content prompts for pre-trained stable diffusion to preserve the detailed structure of the input content image. Extensive qualitative and quantitative experiments verify the effectiveness of our proposed method. Code is available: https://github.com/Jamie-Cheung/DyArtbank
comment: Accepted by Knowledge-Based Systems
☆ Recognition-Synergistic Scene Text Editing CVPR2025
Scene text editing aims to modify text content within scene images while maintaining style consistency. Traditional methods achieve this by explicitly disentangling style and content from the source image and then fusing the style with the target content, while ensuring content consistency using a pre-trained recognition model. Despite notable progress, these methods suffer from complex pipelines, leading to suboptimal performance in complex scenarios. In this work, we introduce Recognition-Synergistic Scene Text Editing (RS-STE), a novel approach that fully exploits the intrinsic synergy of text recognition for editing. Our model seamlessly integrates text recognition with text editing within a unified framework, and leverages the recognition model's ability to implicitly disentangle style and content while ensuring content consistency. Specifically, our approach employs a multi-modal parallel decoder based on transformer architecture, which predicts both text content and stylized images in parallel. Additionally, our cyclic self-supervised fine-tuning strategy enables effective training on unpaired real-world data without ground truth, enhancing style and content consistency through a twice-cyclic generation process. Built on a relatively simple architecture, \mymodel achieves state-of-the-art performance on both synthetic and real-world benchmarks, and further demonstrates the effectiveness of leveraging the generated hard cases to boost the performance of downstream recognition tasks. Code is available at https://github.com/ZhengyaoFang/RS-STE.
comment: accepted by CVPR2025
☆ Prototype-Based Multiple Instance Learning for Gigapixel Whole Slide Image Classification
Multiple Instance Learning (MIL) methods have succeeded remarkably in histopathology whole slide image (WSI) analysis. However, most MIL models only offer attention-based explanations that do not faithfully capture the model's decision mechanism and do not allow human-model interaction. To address these limitations, we introduce ProtoMIL, an inherently interpretable MIL model for WSI analysis that offers user-friendly explanations and supports human intervention. Our approach employs a sparse autoencoder to discover human-interpretable concepts from the image feature space, which are then used to train ProtoMIL. The model represents predictions as linear combinations of concepts, making the decision process transparent. Furthermore, ProtoMIL allows users to perform model interventions by altering the input concepts. Experiments on two widely used pathology datasets demonstrate that ProtoMIL achieves a classification performance comparable to state-of-the-art MIL models while offering intuitively understandable explanations. Moreover, we demonstrate that our method can eliminate reliance on diagnostically irrelevant information via human intervention, guiding the model toward being right for the right reason. Code will be publicly available at https://github.com/ss-sun/ProtoMIL.
☆ Twinner: Shining Light on Digital Twins in a Few Snaps
We present the first large reconstruction model, Twinner, capable of recovering a scene's illumination as well as an object's geometry and material properties from only a few posed images. Twinner is based on the Large Reconstruction Model and innovates in three key ways: 1) We introduce a memory-efficient voxel-grid transformer whose memory scales only quadratically with the size of the voxel grid. 2) To deal with scarcity of high-quality ground-truth PBR-shaded models, we introduce a large fully-synthetic dataset of procedurally-generated PBR-textured objects lit with varied illumination. 3) To narrow the synthetic-to-real gap, we finetune the model on real life datasets by means of a differentiable physically-based shading model, eschewing the need for ground-truth illumination or material properties which are challenging to obtain in real life. We demonstrate the efficacy of our model on the real life StanfordORB benchmark where, given few input views, we achieve reconstruction quality significantly superior to existing feedforward reconstruction networks, and comparable to significantly slower per-scene optimization methods.
☆ nnInteractive: Redefining 3D Promptable Segmentation
Accurate and efficient 3D segmentation is essential for both clinical and research applications. While foundation models like SAM have revolutionized interactive segmentation, their 2D design and domain shift limitations make them ill-suited for 3D medical images. Current adaptations address some of these challenges but remain limited, either lacking volumetric awareness, offering restricted interactivity, or supporting only a small set of structures and modalities. Usability also remains a challenge, as current tools are rarely integrated into established imaging platforms and often rely on cumbersome web-based interfaces with restricted functionality. We introduce nnInteractive, the first comprehensive 3D interactive open-set segmentation method. It supports diverse prompts-including points, scribbles, boxes, and a novel lasso prompt-while leveraging intuitive 2D interactions to generate full 3D segmentations. Trained on 120+ diverse volumetric 3D datasets (CT, MRI, PET, 3D Microscopy, etc.), nnInteractive sets a new state-of-the-art in accuracy, adaptability, and usability. Crucially, it is the first method integrated into widely used image viewers (e.g., Napari, MITK), ensuring broad accessibility for real-world clinical and research applications. Extensive benchmarking demonstrates that nnInteractive far surpasses existing methods, setting a new standard for AI-driven interactive 3D segmentation. nnInteractive is publicly available: https://github.com/MIC-DKFZ/napari-nninteractive (Napari plugin), https://www.mitk.org/MITK-nnInteractive (MITK integration), https://github.com/MIC-DKFZ/nnInteractive (Python backend).
comment: Fabian Isensee, Maximilian Rokuss and Lars Kr\"amer contributed equally. Each co-first author may list themselves as lead author on their CV
☆ Ev-Layout: A Large-scale Event-based Multi-modal Dataset for Indoor Layout Estimation and Tracking
This paper presents Ev-Layout, a novel large-scale event-based multi-modal dataset designed for indoor layout estimation and tracking. Ev-Layout makes key contributions to the community by: Utilizing a hybrid data collection platform (with a head-mounted display and VR interface) that integrates both RGB and bio-inspired event cameras to capture indoor layouts in motion. Incorporating time-series data from inertial measurement units (IMUs) and ambient lighting conditions recorded during data collection to highlight the potential impact of motion speed and lighting on layout estimation accuracy. The dataset consists of 2.5K sequences, including over 771.3K RGB images and 10 billion event data points. Of these, 39K images are annotated with indoor layouts, enabling research in both event-based and video-based indoor layout estimation. Based on the dataset, we propose an event-based layout estimation pipeline with a novel event-temporal distribution feature module to effectively aggregate the spatio-temporal information from events. Additionally, we introduce a spatio-temporal feature fusion module that can be easily integrated into a transformer module for fusion purposes. Finally, we conduct benchmarking and extensive experiments on the Ev-Layout dataset, demonstrating that our approach significantly improves the accuracy of dynamic indoor layout estimation compared to existing event-based methods.
☆ Debiased Prompt Tuning in Vision-Language Model without Annotations
Prompt tuning of Vision-Language Models (VLMs) such as CLIP, has demonstrated the ability to rapidly adapt to various downstream tasks. However, recent studies indicate that tuned VLMs may suffer from the problem of spurious correlations, where the model relies on spurious features (e.g. background and gender) in the data. This may lead to the model having worse robustness in out-of-distribution data. Standard methods for eliminating spurious correlation typically require us to know the spurious attribute labels of each sample, which is hard in the real world. In this work, we explore improving the group robustness of prompt tuning in VLMs without relying on manual annotation of spurious features. We notice the zero - shot image recognition ability of VLMs and use this ability to identify spurious features, thus avoiding the cost of manual annotation. By leveraging pseudo-spurious attribute annotations, we further propose a method to automatically adjust the training weights of different groups. Extensive experiments show that our approach efficiently improves the worst-group accuracy on CelebA, Waterbirds, and MetaShift datasets, achieving the best robustness gap between the worst-group accuracy and the overall accuracy.
☆ Embodied Crowd Counting
Occlusion is one of the fundamental challenges in crowd counting. In the community, various data-driven approaches have been developed to address this issue, yet their effectiveness is limited. This is mainly because most existing crowd counting datasets on which the methods are trained are based on passive cameras, restricting their ability to fully sense the environment. Recently, embodied navigation methods have shown significant potential in precise object detection in interactive scenes. These methods incorporate active camera settings, holding promise in addressing the fundamental issues in crowd counting. However, most existing methods are designed for indoor navigation, showing unknown performance in analyzing complex object distribution in large scale scenes, such as crowds. Besides, most existing embodied navigation datasets are indoor scenes with limited scale and object quantity, preventing them from being introduced into dense crowd analysis. Based on this, a novel task, Embodied Crowd Counting (ECC), is proposed. We first build up an interactive simulator, Embodied Crowd Counting Dataset (ECCD), which enables large scale scenes and large object quantity. A prior probability distribution that approximates realistic crowd distribution is introduced to generate crowds. Then, a zero-shot navigation method (ZECC) is proposed. This method contains a MLLM driven coarse-to-fine navigation mechanism, enabling active Z-axis exploration, and a normal-line-based crowd distribution analysis method for fine counting. Experimental results against baselines show that the proposed method achieves the best trade-off between counting accuracy and navigation cost.
☆ Parametric Point Cloud Completion for Polygonal Surface Reconstruction CVPR 2025
Existing polygonal surface reconstruction methods heavily depend on input completeness and struggle with incomplete point clouds. We argue that while current point cloud completion techniques may recover missing points, they are not optimized for polygonal surface reconstruction, where the parametric representation of underlying surfaces remains overlooked. To address this gap, we introduce parametric completion, a novel paradigm for point cloud completion, which recovers parametric primitives instead of individual points to convey high-level geometric structures. Our presented approach, PaCo, enables high-quality polygonal surface reconstruction by leveraging plane proxies that encapsulate both plane parameters and inlier points, proving particularly effective in challenging scenarios with highly incomplete data. Comprehensive evaluations of our approach on the ABC dataset establish its effectiveness with superior performance and set a new standard for polygonal surface reconstruction from incomplete data. Project page: https://parametric-completion.github.io.
comment: CVPR 2025
☆ 3D Medical Imaging Segmentation on Non-Contrast CT
This technical report analyzes non-contrast CT image segmentation in computer vision. It revisits a proposed method, examines the background of non-contrast CT imaging, and highlights the significance of segmentation. The study reviews representative methods, including convolutional-based and CNN-Transformer hybrid approaches, discussing their contributions, advantages, and limitations. The nnUNet stands out as the state-of-the-art method across various segmentation tasks. The report explores the relationship between the proposed method and existing approaches, emphasizing the role of global context modeling in semantic labeling and mask generation. Future directions include addressing the long-tail problem, utilizing pre-trained models for medical imaging, and exploring self-supervised or contrastive pre-training techniques. This report offers insights into non-contrast CT image segmentation and potential advancements in the field.
comment: tech report
☆ Robust Latent Matters: Boosting Image Generation with Sampling Error
Recent image generation schemes typically capture image distribution in a pre-constructed latent space relying on a frozen image tokenizer. Though the performance of tokenizer plays an essential role to the successful generation, its current evaluation metrics (e.g. rFID) fail to precisely assess the tokenizer and correlate its performance to the generation quality (e.g. gFID). In this paper, we comprehensively analyze the reason for the discrepancy of reconstruction and generation qualities in a discrete latent space, and, from which, we propose a novel plug-and-play tokenizer training scheme to facilitate latent space construction. Specifically, a latent perturbation approach is proposed to simulate sampling noises, i.e., the unexpected tokens sampled, from the generative process. With the latent perturbation, we further propose (1) a novel tokenizer evaluation metric, i.e., pFID, which successfully correlates the tokenizer performance to generation quality and (2) a plug-and-play tokenizer training scheme, which significantly enhances the robustness of tokenizer thus boosting the generation quality and convergence speed. Extensive benchmarking are conducted with 11 advanced discrete image tokenizers with 2 autoregressive generation models to validate our approach. The tokenizer trained with our proposed latent perturbation achieve a notable 1.60 gFID with classifier-free guidance (CFG) and 3.45 gFID without CFG with a $\sim$400M generator. Code: https://github.com/lxa9867/ImageFolder.
comment: 17 pages, 13 figures, 6 tables
☆ Mitigating Ambiguities in 3D Classification with Gaussian Splatting CVPR 2025
3D classification with point cloud input is a fundamental problem in 3D vision. However, due to the discrete nature and the insufficient material description of point cloud representations, there are ambiguities in distinguishing wire-like and flat surfaces, as well as transparent or reflective objects. To address these issues, we propose Gaussian Splatting (GS) point cloud-based 3D classification. We find that the scale and rotation coefficients in the GS point cloud help characterize surface types. Specifically, wire-like surfaces consist of multiple slender Gaussian ellipsoids, while flat surfaces are composed of a few flat Gaussian ellipsoids. Additionally, the opacity in the GS point cloud represents the transparency characteristics of objects. As a result, ambiguities in point cloud-based 3D classification can be mitigated utilizing GS point cloud as input. To verify the effectiveness of GS point cloud input, we construct the first real-world GS point cloud dataset in the community, which includes 20 categories with 200 objects in each category. Experiments not only validate the superiority of GS point cloud input, especially in distinguishing ambiguous objects, but also demonstrate the generalization ability across different classification methods.
comment: Accepted by CVPR 2025
☆ Design and Implementation of FourCropNet: A CNN-Based System for Efficient Multi-Crop Disease Detection and Management
Plant disease detection is a critical task in agriculture, directly impacting crop yield, food security, and sustainable farming practices. This study proposes FourCropNet, a novel deep learning model designed to detect diseases in multiple crops, including CottonLeaf, Grape, Soybean, and Corn. The model leverages an advanced architecture comprising residual blocks for efficient feature extraction, attention mechanisms to enhance focus on disease-relevant regions, and lightweight layers for computational efficiency. These components collectively enable FourCropNet to achieve superior performance across varying datasets and class complexities, from single-crop datasets to combined datasets with 15 classes. The proposed model was evaluated on diverse datasets, demonstrating high accuracy, specificity, sensitivity, and F1 scores. Notably, FourCropNet achieved the highest accuracy of 99.7% for Grape, 99.5% for Corn, and 95.3% for the combined dataset. Its scalability and ability to generalize across datasets underscore its robustness. Comparative analysis shows that FourCropNet consistently outperforms state-of-the-art models such as MobileNet, VGG16, and EfficientNet across various metrics. FourCropNet's innovative design and consistent performance make it a reliable solution for real-time disease detection in agriculture. This model has the potential to assist farmers in timely disease diagnosis, reducing economic losses and promoting sustainable agricultural practices.
☆ Pathology-Aware Adaptive Watermarking for Text-Driven Medical Image Synthesis
As recent text-conditioned diffusion models have enabled the generation of high-quality images, concerns over their potential misuse have also grown. This issue is critical in the medical domain, where text-conditioned generated medical images could enable insurance fraud or falsified records, highlighting the urgent need for reliable safeguards against unethical use. While watermarking techniques have emerged as a promising solution in general image domains, their direct application to medical imaging presents significant challenges. A key challenge is preserving fine-grained disease manifestations, as even minor distortions from a watermark may lead to clinical misinterpretation, which compromises diagnostic integrity. To overcome this gap, we present MedSign, a deep learning-based watermarking framework specifically designed for text-to-medical image synthesis, which preserves pathologically significant regions by adaptively adjusting watermark strength. Specifically, we generate a pathology localization map using cross-attention between medical text tokens and the diffusion denoising network, aggregating token-wise attention across layers, heads, and time steps. Leveraging this map, we optimize the LDM decoder to incorporate watermarking during image synthesis, ensuring cohesive integration while minimizing interference in diagnostically critical regions. Experimental results show that our MedSign preserves diagnostic integrity while ensuring watermark robustness, achieving state-of-the-art performance in image quality and detection accuracy on MIMIC-CXR and OIA-ODIR datasets.
☆ DIV-FF: Dynamic Image-Video Feature Fields For Environment Understanding in Egocentric Videos
Environment understanding in egocentric videos is an important step for applications like robotics, augmented reality and assistive technologies. These videos are characterized by dynamic interactions and a strong dependence on the wearer engagement with the environment. Traditional approaches often focus on isolated clips or fail to integrate rich semantic and geometric information, limiting scene comprehension. We introduce Dynamic Image-Video Feature Fields (DIV FF), a framework that decomposes the egocentric scene into persistent, dynamic, and actor based components while integrating both image and video language features. Our model enables detailed segmentation, captures affordances, understands the surroundings and maintains consistent understanding over time. DIV-FF outperforms state-of-the-art methods, particularly in dynamically evolving scenarios, demonstrating its potential to advance long term, spatio temporal scene understanding.
Diffusion Transformer Meets Random Masks: An Advanced PET Reconstruction Framework
Deep learning has significantly advanced PET image re-construction, achieving remarkable improvements in image quality through direct training on sinogram or image data. Traditional methods often utilize masks for inpainting tasks, but their incorporation into PET reconstruction frameworks introduces transformative potential. In this study, we pro-pose an advanced PET reconstruction framework called Diffusion tRansformer mEets rAndom Masks (DREAM). To the best of our knowledge, this is the first work to integrate mask mechanisms into both the sinogram domain and the latent space, pioneering their role in PET reconstruction and demonstrating their ability to enhance reconstruction fidelity and efficiency. The framework employs a high-dimensional stacking approach, transforming masked data from two to three dimensions to expand the solution space and enable the model to capture richer spatial rela-tionships. Additionally, a mask-driven latent space is de-signed to accelerate the diffusion process by leveraging sinogram-driven and mask-driven compact priors, which reduce computational complexity while preserving essen-tial data characteristics. A hierarchical masking strategy is also introduced, guiding the model from focusing on fi-ne-grained local details in the early stages to capturing broader global patterns over time. This progressive ap-proach ensures a balance between detailed feature preservation and comprehensive context understanding. Experimental results demonstrate that DREAM not only improves the overall quality of reconstructed PET images but also preserves critical clinical details, highlighting its potential to advance PET imaging technology. By inte-grating compact priors and hierarchical masking, DREAM offers a promising and efficient avenue for future research and application in PET imaging. The open-source code is available at: https://github.com/yqx7150/DREAM.
☆ Talk2PC: Enhancing 3D Visual Grounding through LiDAR and Radar Point Clouds Fusion for Autonomous Driving
Embodied outdoor scene understanding forms the foundation for autonomous agents to perceive, analyze, and react to dynamic driving environments. However, existing 3D understanding is predominantly based on 2D Vision-Language Models (VLMs), collecting and processing limited scene-aware contexts. Instead, compared to the 2D planar visual information, point cloud sensors like LiDAR offer rich depth information and fine-grained 3D representations of objects. Meanwhile, the emerging 4D millimeter-wave (mmWave) radar is capable of detecting the motion trend, velocity, and reflection intensity of each object. Therefore, the integration of these two modalities provides more flexible querying conditions for natural language, enabling more accurate 3D visual grounding. To this end, in this paper, we exploratively propose a novel method called TPCNet, the first outdoor 3D visual grounding model upon the paradigm of prompt-guided point cloud sensor combination, including both LiDAR and radar contexts. To adaptively balance the features of these two sensors required by the prompt, we have designed a multi-fusion paradigm called Two-Stage Heterogeneous Modal Adaptive Fusion. Specifically, this paradigm initially employs Bidirectional Agent Cross-Attention (BACA), which feeds dual-sensor features, characterized by global receptive fields, to the text features for querying. Additionally, we have designed a Dynamic Gated Graph Fusion (DGGF) module to locate the regions of interest identified by the queries. To further enhance accuracy, we innovatively devise an C3D-RECHead, based on the nearest object edge. Our experiments have demonstrated that our TPCNet, along with its individual modules, achieves the state-of-the-art performance on both the Talk2Radar and Talk2Car datasets.
comment: 14 pages, 11 figures
☆ Prompt2LVideos: Exploring Prompts for Understanding Long-Form Multimodal Videos
Learning multimodal video understanding typically relies on datasets comprising video clips paired with manually annotated captions. However, this becomes even more challenging when dealing with long-form videos, lasting from minutes to hours, in educational and news domains due to the need for more annotators with subject expertise. Hence, there arises a need for automated solutions. Recent advancements in Large Language Models (LLMs) promise to capture concise and informative content that allows the comprehension of entire videos by leveraging Automatic Speech Recognition (ASR) and Optical Character Recognition (OCR) technologies. ASR provides textual content from audio, while OCR extracts textual content from specific frames. This paper introduces a dataset comprising long-form lectures and news videos. We present baseline approaches to understand their limitations on this dataset and advocate for exploring prompt engineering techniques to comprehend long-form multimodal video datasets comprehensively.
comment: CVIP 2024
☆ 1LoRA: Summation Compression for Very Low-Rank Adaptation
Parameter-Efficient Fine-Tuning (PEFT) methods have transformed the approach to fine-tuning large models for downstream tasks by enabling the adjustment of significantly fewer parameters than those in the original model matrices. In this work, we study the "very low rank regime", where we fine-tune the lowest amount of parameters per linear layer for each considered PEFT method. We propose 1LoRA (Summation Low-Rank Adaptation), a compute, parameter and memory efficient fine-tuning method which uses the feature sum as fixed compression and a single trainable vector as decompression. Differently from state-of-the-art PEFT methods like LoRA, VeRA, and the recent MoRA, 1LoRA uses fewer parameters per layer, reducing the memory footprint and the computational cost. We extensively evaluate our method against state-of-the-art PEFT methods on multiple fine-tuning tasks, and show that our method not only outperforms them, but is also more parameter, memory and computationally efficient. Moreover, thanks to its memory efficiency, 1LoRA allows to fine-tune more evenly across layers, instead of focusing on specific ones (e.g. attention layers), improving performance further.
☆ MINT-Demo: Membership Inference Test Demonstrator CVPR 24
We present the Membership Inference Test Demonstrator, to emphasize the need for more transparent machine learning training processes. MINT is a technique for experimentally determining whether certain data has been used during the training of machine learning models. We conduct experiments with popular face recognition models and 5 public databases containing over 22M images. Promising results, up to 89% accuracy are achieved, suggesting that it is possible to recognize if an AI model has been trained with specific data. Finally, we present a MINT platform as demonstrator of this technology aimed to promote transparency in AI training.
comment: Demo Paper Presented at Demo Track CVPR 24' and at AAAI 25' AIGOV workshop
☆ i-WiViG: Interpretable Window Vision GNN
Deep learning models based on graph neural networks have emerged as a popular approach for solving computer vision problems. They encode the image into a graph structure and can be beneficial for efficiently capturing the long-range dependencies typically present in remote sensing imagery. However, an important drawback of these methods is their black-box nature which may hamper their wider usage in critical applications. In this work, we tackle the self-interpretability of the graph-based vision models by proposing our Interpretable Window Vision GNN (i-WiViG) approach, which provides explanations by automatically identifying the relevant subgraphs for the model prediction. This is achieved with window-based image graph processing that constrains the node receptive field to a local image region and by using a self-interpretable graph bottleneck that ranks the importance of the long-range relations between the image regions. We evaluate our approach to remote sensing classification and regression tasks, showing it achieves competitive performance while providing inherent and faithful explanations through the identified relations. Further, the quantitative evaluation reveals that our model reduces the infidelity of post-hoc explanations compared to other Vision GNN models, without sacrificing explanation sparsity.
☆ Reasoning in visual navigation of end-to-end trained agents: a dynamical systems approach
Progress in Embodied AI has made it possible for end-to-end-trained agents to navigate in photo-realistic environments with high-level reasoning and zero-shot or language-conditioned behavior, but benchmarks are still dominated by simulation. In this work, we focus on the fine-grained behavior of fast-moving real robots and present a large-scale experimental study involving \numepisodes{} navigation episodes in a real environment with a physical robot, where we analyze the type of reasoning emerging from end-to-end training. In particular, we study the presence of realistic dynamics which the agent learned for open-loop forecasting, and their interplay with sensing. We analyze the way the agent uses latent memory to hold elements of the scene structure and information gathered during exploration. We probe the planning capabilities of the agent, and find in its memory evidence for somewhat precise plans over a limited horizon. Furthermore, we show in a post-hoc analysis that the value function learned by the agent relates to long-term planning. Put together, our experiments paint a new picture on how using tools from computer vision and sequential decision making have led to new capabilities in robotics and control. An interactive tool is available at europe.naverlabs.com/research/publications/reasoning-in-visual-navigation-of-end-to-end-trained-agents.
☆ Feature Alignment with Equivariant Convolutions for Burst Image Super-Resolution
Burst image processing (BIP), which captures and integrates multiple frames into a single high-quality image, is widely used in consumer cameras. As a typical BIP task, Burst Image Super-Resolution (BISR) has achieved notable progress through deep learning in recent years. Existing BISR methods typically involve three key stages: alignment, upsampling, and fusion, often in varying orders and implementations. Among these stages, alignment is particularly critical for ensuring accurate feature matching and further reconstruction. However, existing methods often rely on techniques such as deformable convolutions and optical flow to realize alignment, which either focus only on local transformations or lack theoretical grounding, thereby limiting their performance. To alleviate these issues, we propose a novel framework for BISR, featuring an equivariant convolution-based alignment, ensuring consistent transformations between the image and feature domains. This enables the alignment transformation to be learned via explicit supervision in the image domain and easily applied in the feature domain in a theoretically sound way, effectively improving alignment accuracy. Additionally, we design an effective reconstruction module with advanced deep architectures for upsampling and fusion to obtain the final BISR result. Extensive experiments on BISR benchmarks show the superior performance of our approach in both quantitative metrics and visual quality.
☆ SegDesicNet: Lightweight Semantic Segmentation in Remote Sensing with Geo-Coordinate Embeddings for Domain Adaptation WACV2025
Semantic segmentation is essential for analyzing highdefinition remote sensing images (HRSIs) because it allows the precise classification of objects and regions at the pixel level. However, remote sensing data present challenges owing to geographical location, weather, and environmental variations, making it difficult for semantic segmentation models to generalize across diverse scenarios. Existing methods are often limited to specific data domains and require expert annotators and specialized equipment for semantic labeling. In this study, we propose a novel unsupervised domain adaptation technique for remote sensing semantic segmentation by utilizing geographical coordinates that are readily accessible in remote sensing setups as metadata in a dataset. To bridge the domain gap, we propose a novel approach that considers the combination of an image\'s location encoding trait and the spherical nature of Earth\'s surface. Our proposed SegDesicNet module regresses the GRID positional encoding of the geo coordinates projected over the unit sphere to obtain the domain loss. Our experimental results demonstrate that the proposed SegDesicNet outperforms state of the art domain adaptation methods in remote sensing image segmentation, achieving an improvement of approximately ~6% in the mean intersection over union (MIoU) with a ~ 27\% drop in parameter count on benchmarked subsets of the publicly available FLAIR #1 dataset. We also benchmarked our method performance on the custom split of the ISPRS Potsdam dataset. Our algorithm seeks to reduce the modeling disparity between artificial neural networks and human comprehension of the physical world, making the technology more human centric and scalable.
comment: https://openaccess.thecvf.com/content/WACV2025/papers/Verma_SegDesicNet_Lightweight_Semantic_Segmentation_in_Remote_Sensing_with_Geo-Coordinate_Embeddings_WACV_2025_paper.pdf
☆ OminiControl2: Efficient Conditioning for Diffusion Transformers
Fine-grained control of text-to-image diffusion transformer models (DiT) remains a critical challenge for practical deployment. While recent advances such as OminiControl and others have enabled a controllable generation of diverse control signals, these methods face significant computational inefficiency when handling long conditional inputs. We present OminiControl2, an efficient framework that achieves efficient image-conditional image generation. OminiControl2 introduces two key innovations: (1) a dynamic compression strategy that streamlines conditional inputs by preserving only the most semantically relevant tokens during generation, and (2) a conditional feature reuse mechanism that computes condition token features only once and reuses them across denoising steps. These architectural improvements preserve the original framework's parameter efficiency and multi-modal versatility while dramatically reducing computational costs. Our experiments demonstrate that OminiControl2 reduces conditional processing overhead by over 90% compared to its predecessor, achieving an overall 5.9$\times$ speedup in multi-conditional generation scenarios. This efficiency enables the practical implementation of complex, multi-modal control for high-quality image synthesis with DiT models.
☆ PromptLNet: Region-Adaptive Aesthetic Enhancement via Prompt Guidance in Low-Light Enhancement Net
Learning and improving large language models through human preference feedback has become a mainstream approach, but it has rarely been applied to the field of low-light image enhancement. Existing low-light enhancement evaluations typically rely on objective metrics (such as FID, PSNR, etc.), which often result in models that perform well objectively but lack aesthetic quality. Moreover, most low-light enhancement models are primarily designed for global brightening, lacking detailed refinement. Therefore, the generated images often require additional local adjustments, leading to research gaps in practical applications. To bridge this gap, we propose the following innovations: 1) We collect human aesthetic evaluation text pairs and aesthetic scores from multiple low-light image datasets (e.g., LOL, LOL2, LOM, DCIM, MEF, etc.) to train a low-light image aesthetic evaluation model, supplemented by an optimization algorithm designed to fine-tune the diffusion model. 2) We propose a prompt-driven brightness adjustment module capable of performing fine-grained brightness and aesthetic adjustments for specific instances or regions. 3) We evaluate our method alongside existing state-of-the-art algorithms on mainstream benchmarks. Experimental results show that our method not only outperforms traditional methods in terms of visual quality but also provides greater flexibility and controllability, paving the way for improved aesthetic quality.
☆ HERO: Human Reaction Generation from Videos
Human reaction generation represents a significant research domain for interactive AI, as humans constantly interact with their surroundings. Previous works focus mainly on synthesizing the reactive motion given a human motion sequence. This paradigm limits interaction categories to human-human interactions and ignores emotions that may influence reaction generation. In this work, we propose to generate 3D human reactions from RGB videos, which involves a wider range of interaction categories and naturally provides information about expressions that may reflect the subject's emotions. To cope with this task, we present HERO, a simple yet powerful framework for Human rEaction geneRation from videOs. HERO considers both global and frame-level local representations of the video to extract the interaction intention, and then uses the extracted interaction intention to guide the synthesis of the reaction. Besides, local visual representations are continuously injected into the model to maximize the exploitation of the dynamic properties inherent in videos. Furthermore, the ViMo dataset containing paired Video-Motion data is collected to support the task. In addition to human-human interactions, these video-motion pairs also cover animal-human interactions and scene-human interactions. Extensive experiments demonstrate the superiority of our methodology. The code and dataset will be publicly available at https://jackyu6.github.io/HERO.
☆ Adv-CPG: A Customized Portrait Generation Framework with Facial Adversarial Attacks CVPR-25
Recent Customized Portrait Generation (CPG) methods, taking a facial image and a textual prompt as inputs, have attracted substantial attention. Although these methods generate high-fidelity portraits, they fail to prevent the generated portraits from being tracked and misused by malicious face recognition systems. To address this, this paper proposes a Customized Portrait Generation framework with facial Adversarial attacks (Adv-CPG). Specifically, to achieve facial privacy protection, we devise a lightweight local ID encryptor and an encryption enhancer. They implement progressive double-layer encryption protection by directly injecting the target identity and adding additional identity guidance, respectively. Furthermore, to accomplish fine-grained and personalized portrait generation, we develop a multi-modal image customizer capable of generating controlled fine-grained facial features. To the best of our knowledge, Adv-CPG is the first study that introduces facial adversarial attacks into CPG. Extensive experiments demonstrate the superiority of Adv-CPG, e.g., the average attack success rate of the proposed Adv-CPG is 28.1% and 2.86% higher compared to the SOTA noise-based attack methods and unconstrained attack methods, respectively.
comment: Accepted by CVPR-25
☆ DexGrasp Anything: Towards Universal Robotic Dexterous Grasping with Physics Awareness CVPR 2025
A dexterous hand capable of grasping any object is essential for the development of general-purpose embodied intelligent robots. However, due to the high degree of freedom in dexterous hands and the vast diversity of objects, generating high-quality, usable grasping poses in a robust manner is a significant challenge. In this paper, we introduce DexGrasp Anything, a method that effectively integrates physical constraints into both the training and sampling phases of a diffusion-based generative model, achieving state-of-the-art performance across nearly all open datasets. Additionally, we present a new dexterous grasping dataset containing over 3.4 million diverse grasping poses for more than 15k different objects, demonstrating its potential to advance universal dexterous grasping. The code of our method and our dataset will be publicly released soon.
comment: Accepted by CVPR 2025
☆ SARA: Structural and Adversarial Representation Alignment for Training-efficient Diffusion Models
Modern diffusion models encounter a fundamental trade-off between training efficiency and generation quality. While existing representation alignment methods, such as REPA, accelerate convergence through patch-wise alignment, they often fail to capture structural relationships within visual representations and ensure global distribution consistency between pretrained encoders and denoising networks. To address these limitations, we introduce SARA, a hierarchical alignment framework that enforces multi-level representation constraints: (1) patch-wise alignment to preserve local semantic details, (2) autocorrelation matrix alignment to maintain structural consistency within representations, and (3) adversarial distribution alignment to mitigate global representation discrepancies. Unlike previous approaches, SARA explicitly models both intra-representation correlations via self-similarity matrices and inter-distribution coherence via adversarial alignment, enabling comprehensive alignment across local and global scales. Experiments on ImageNet-256 show that SARA achieves an FID of 1.36 while converging twice as fast as REPA, surpassing recent state-of-the-art image generation methods. This work establishes a systematic paradigm for optimizing diffusion training through hierarchical representation alignment.
comment: Technical report
☆ Aligning Text to Image in Diffusion Models is Easier Than You Think
While recent advancements in generative modeling have significantly improved text-image alignment, some residual misalignment between text and image representations still remains. Although many approaches have attempted to address this issue by fine-tuning models using various reward models, etc., we revisit the challenge from the perspective of representation alignment-an approach that has gained popularity with the success of REPresentation Alignment (REPA). We first argue that conventional text-to-image (T2I) diffusion models, typically trained on paired image and text data (i.e., positive pairs) by minimizing score matching or flow matching losses, is suboptimal from the standpoint of representation alignment. Instead, a better alignment can be achieved through contrastive learning that leverages both positive and negative pairs. To achieve this efficiently even with pretrained models, we introduce a lightweight contrastive fine tuning strategy called SoftREPA that uses soft text tokens. This approach improves alignment with minimal computational overhead by adding fewer than 1M trainable parameters to the pretrained model. Our theoretical analysis demonstrates that our method explicitly increases the mutual information between text and image representations, leading to enhanced semantic consistency. Experimental results across text-to-image generation and text-guided image editing tasks validate the effectiveness of our approach in improving the semantic consistency of T2I generative models.
♻ ☆ AthletePose3D: A Benchmark Dataset for 3D Human Pose Estimation and Kinematic Validation in Athletic Movements
Human pose estimation is a critical task in computer vision and sports biomechanics, with applications spanning sports science, rehabilitation, and biomechanical research. While significant progress has been made in monocular 3D pose estimation, current datasets often fail to capture the complex, high-acceleration movements typical of competitive sports. In this work, we introduce AthletePose3D, a novel dataset designed to address this gap. AthletePose3D includes 12 types of sports motions across various disciplines, with approximately 1.3 million frames and 165 thousand individual postures, specifically capturing high-speed, high-acceleration athletic movements. We evaluate state-of-the-art (SOTA) monocular 2D and 3D pose estimation models on the dataset, revealing that models trained on conventional datasets perform poorly on athletic motions. However, fine-tuning these models on AthletePose3D notably reduces the SOTA model mean per joint position error (MPJPE) from 214mm to 65mm-a reduction of over 69%. We also validate the kinematic accuracy of monocular pose estimations through waveform analysis, highlighting strong correlations in joint angle estimations but limitations in velocity estimation. Our work provides a comprehensive evaluation of monocular pose estimation models in the context of sports, contributing valuable insights for advancing monocular pose estimation techniques in high-performance sports environments. The dataset, code, and model checkpoints are available at: https://github.com/calvinyeungck/AthletePose3D
♻ ☆ DaD: Distilled Reinforcement Learning for Diverse Keypoint Detection
Keypoints are what enable Structure-from-Motion (SfM) systems to scale to thousands of images. However, designing a keypoint detection objective is a non-trivial task, as SfM is non-differentiable. Typically, an auxiliary objective involving a descriptor is optimized. This however induces a dependency on the descriptor, which is undesirable. In this paper we propose a fully self-supervised and descriptor-free objective for keypoint detection, through reinforcement learning. To ensure training does not degenerate, we leverage a balanced top-K sampling strategy. While this already produces competitive models, we find that two qualitatively different types of detectors emerge, which are only able to detect light and dark keypoints respectively. To remedy this, we train a third detector, DaD, that optimizes the Kullback-Leibler divergence of the pointwise maximum of both light and dark detectors. Our approach significantly improve upon SotA across a range of benchmarks. Code and model weights are publicly available at https://github.com/parskatt/dad
comment: fixed incorrect url
♻ ☆ Revisiting Point Cloud Completion: Are We Ready For The Real-World?
Point clouds acquired in constrained, challenging, uncontrolled, and multi-sensor real-world settings are noisy, incomplete, and non-uniformly sparse. This presents acute challenges for the vital task of point cloud completion. Using tools from Algebraic Topology and Persistent Homology (PH), we demonstrate that current benchmark object point clouds lack rich topological features that are integral part of point clouds captured in realistic environments. To facilitate research in this direction, we contribute the first real-world industrial dataset for point cloud completion, RealPC - a diverse, rich and varied set of point clouds. It consists of ~ 40,000 pairs across 21 categories of industrial structures in railway establishments. Benchmark results on several strong baselines reveal that existing methods fail in real-world scenarios. We discover a striking observation - unlike current datasets, RealPC consists of multiple 0- and 1-dimensional PH-based topological features. We prove that integrating these topological priors into existing works helps improve completion. We present how 0-dimensional PH priors extract the global topology of a complete shape in the form of a 3D skeleton and assist a model in generating topologically consistent complete shapes. Since computing Homology is expensive, we present a simple, yet effective Homology Sampler guided network, BOSHNet that bypasses the Homology computation by sampling proxy backbones akin to 0-dim PH. These backbones provide similar benefits of 0-dim PH right from the start of the training, unlike similar methods where accurate backbones are obtained only during later phases of the training.
♻ ☆ AnomalyPainter: Vision-Language-Diffusion Synergy for Zero-Shot Realistic and Diverse Industrial Anomaly Synthesis
While existing anomaly synthesis methods have made remarkable progress, achieving both realism and diversity in synthesis remains a major obstacle. To address this, we propose AnomalyPainter, a zero-shot framework that breaks the diversity-realism trade-off dilemma through synergizing Vision Language Large Model (VLLM), Latent Diffusion Model (LDM), and our newly introduced texture library Tex-9K. Tex-9K is a professional texture library containing 75 categories and 8,792 texture assets crafted for diverse anomaly synthesis. Leveraging VLLM's general knowledge, reasonable anomaly text descriptions are generated for each industrial object and matched with relevant diverse textures from Tex-9K. These textures then guide the LDM via ControlNet to paint on normal images. Furthermore, we introduce Texture-Aware Latent Init to stabilize the natural-image-trained ControlNet for industrial images. Extensive experiments show that AnomalyPainter outperforms existing methods in realism, diversity, and generalization, achieving superior downstream performance.
comment: anomaly synthesis,anomaly detection
♻ ☆ Boosting Diffusion-Based Text Image Super-Resolution Model Towards Generalized Real-World Scenarios
Restoring low-resolution text images presents a significant challenge, as it requires maintaining both the fidelity and stylistic realism of the text in restored images. Existing text image restoration methods often fall short in hard situations, as the traditional super-resolution models cannot guarantee clarity, while diffusion-based methods fail to maintain fidelity. In this paper, we introduce a novel framework aimed at improving the generalization ability of diffusion models for text image super-resolution (SR), especially promoting fidelity. First, we propose a progressive data sampling strategy that incorporates diverse image types at different stages of training, stabilizing the convergence and improving the generalization. For the network architecture, we leverage a pre-trained SR prior to provide robust spatial reasoning capabilities, enhancing the model's ability to preserve textual information. Additionally, we employ a cross-attention mechanism to better integrate textual priors. To further reduce errors in textual priors, we utilize confidence scores to dynamically adjust the importance of textual features during training. Extensive experiments on real-world datasets demonstrate that our approach not only produces text images with more realistic visual appearances but also improves the accuracy of text structure.
♻ ☆ Towards Open-Vocabulary Audio-Visual Event Localization CVPR 2025
The Audio-Visual Event Localization (AVEL) task aims to temporally locate and classify video events that are both audible and visible. Most research in this field assumes a closed-set setting, which restricts these models' ability to handle test data containing event categories absent (unseen) during training. Recently, a few studies have explored AVEL in an open-set setting, enabling the recognition of unseen events as ``unknown'', but without providing category-specific semantics. In this paper, we advance the field by introducing the Open-Vocabulary Audio-Visual Event Localization (OV-AVEL) problem, which requires localizing audio-visual events and predicting explicit categories for both seen and unseen data at inference. To address this new task, we propose the OV-AVEBench dataset, comprising 24,800 videos across 67 real-life audio-visual scenes (seen:unseen = 46:21), each with manual segment-level annotation. We also establish three evaluation metrics for this task. Moreover, we investigate two baseline approaches, one training-free and one using a further fine-tuning paradigm. Specifically, we utilize the unified multimodal space from the pretrained ImageBind model to extract audio, visual, and textual (event classes) features. The training-free baseline then determines predictions by comparing the consistency of audio-text and visual-text feature similarities. The fine-tuning baseline incorporates lightweight temporal layers to encode temporal relations within the audio and visual modalities, using OV-AVEBench training data for model fine-tuning. We evaluate these baselines on the proposed OV-AVEBench dataset and discuss potential directions for future work in this new field.
comment: accepted by CVPR 2025; Project page: https://github.com/jasongief/OV-AVEL
♻ ☆ FaceID-6M: A Large-Scale, Open-Source FaceID Customization Dataset
Due to the data-driven nature of current face identity (FaceID) customization methods, all state-of-the-art models rely on large-scale datasets containing millions of high-quality text-image pairs for training. However, none of these datasets are publicly available, which restricts transparency and hinders further advancements in the field. To address this issue, in this paper, we collect and release FaceID-6M, the first large-scale, open-source FaceID dataset containing 6 million high-quality text-image pairs. Filtered from LAION-5B \cite{schuhmann2022laion}, FaceID-6M undergoes a rigorous image and text filtering steps to ensure dataset quality, including resolution filtering to maintain high-quality images and faces, face filtering to remove images that lack human faces, and keyword-based strategy to retain descriptions containing human-related terms (e.g., nationality, professions and names). Through these cleaning processes, FaceID-6M provides a high-quality dataset optimized for training powerful FaceID customization models, facilitating advancements in the field by offering an open resource for research and development. We conduct extensive experiments to show the effectiveness of our FaceID-6M, demonstrating that models trained on our FaceID-6M dataset achieve performance that is comparable to, and slightly better than currently available industrial models. Additionally, to support and advance research in the FaceID customization community, we make our code, datasets, and models fully publicly available. Our codes, models, and datasets are available at: https://github.com/ShuheSH/FaceID-6M.
comment: arXiv admin note: text overlap with arXiv:2501.15407
♻ ☆ Adversarial Guided Diffusion Models for Adversarial Purification
Diffusion model (DM) based adversarial purification (AP) has proven to be a powerful defense method that can remove adversarial perturbations and generate a purified example without threats. In principle, the pre-trained DMs can only ensure that purified examples conform to the same distribution of the training data, but it may inadvertently compromise the semantic information of input examples, leading to misclassification of purified examples. Recent advancements introduce guided diffusion techniques to preserve semantic information while removing the perturbations. However, these guidances often rely on distance measures between purified examples and diffused examples, which can also preserve perturbations in purified examples. To further unleash the robustness power of DM-based AP, we propose an adversarial guided diffusion model (AGDM) by introducing a novel adversarial guidance that contains sufficient semantic information but does not explicitly involve adversarial perturbations. The guidance is modeled by an auxiliary neural network obtained with adversarial training, considering the distance in the latent representations rather than at the pixel-level values. Extensive experiments are conducted on CIFAR-10, CIFAR-100 and ImageNet to demonstrate that our method is effective for simultaneously maintaining semantic information and removing the adversarial perturbations. In addition, comprehensive comparisons show that our method significantly enhances the robustness of existing DM-based AP, with an average robust accuracy improved by up to 7.30% on CIFAR-10.
♻ ☆ TED-VITON: Transformer-Empowered Diffusion Models for Virtual Try-On
Recent advancements in Virtual Try-On (VTO) have demonstrated exceptional efficacy in generating realistic images and preserving garment details, largely attributed to the robust generative capabilities of text-to-image (T2I) diffusion backbones. However, the T2I models that underpin these methods have become outdated, thereby limiting the potential for further improvement in VTO. Additionally, current methods face notable challenges in accurately rendering text on garments without distortion and preserving fine-grained details, such as textures and material fidelity. The emergence of Diffusion Transformer (DiT) based T2I models has showcased impressive performance and offers a promising opportunity for advancing VTO. Directly applying existing VTO techniques to transformer-based T2I models is ineffective due to substantial architectural differences, which hinder their ability to fully leverage the models' advanced capabilities for improved text generation. To address these challenges and unlock the full potential of DiT-based T2I models for VTO, we propose TED-VITON, a novel framework that integrates a Garment Semantic (GS) Adapter for enhancing garment-specific features, a Text Preservation Loss to ensure accurate and distortion-free text rendering, and a constraint mechanism to generate prompts by optimizing Large Language Model (LLM). These innovations enable state-of-the-art (SOTA) performance in visual quality and text fidelity, establishing a new benchmark for VTO task. Project page: https://zhenchenwan.github.io/TED-VITON/
comment: Project page: https://github.com/ZhenchenWan/TED-VITON
♻ ☆ Visual Haystacks: A Vision-Centric Needle-In-A-Haystack Benchmark ICLR 2025
Large Multimodal Models (LMMs) have made significant strides in visual question-answering for single images. Recent advancements like long-context LMMs have allowed them to ingest larger, or even multiple, images. However, the ability to process a large number of visual tokens does not guarantee effective retrieval and reasoning for multi-image question answering (MIQA), especially in real-world applications like photo album searches or satellite imagery analysis. In this work, we first assess the limitations of current benchmarks for long-context LMMs. We address these limitations by introducing a new vision-centric, long-context benchmark, "Visual Haystacks (VHs)". We comprehensively evaluate both open-source and proprietary models on VHs, and demonstrate that these models struggle when reasoning across potentially unrelated images, perform poorly on cross-image reasoning, as well as exhibit biases based on the placement of key information within the context window. Towards a solution, we introduce MIRAGE (Multi-Image Retrieval Augmented Generation), an open-source, lightweight visual-RAG framework that processes up to 10k images on a single 40G A100 GPU -- far surpassing the 1k-image limit of contemporary models. MIRAGE demonstrates up to 13% performance improvement over existing open-source LMMs on VHs, sets a new state-of-the-art on the RetVQA multi-image QA benchmark, and achieves competitive performance on single-image QA with state-of-the-art LMMs. Our dataset, model, and code are available at: https://visual-haystacks.github.io.
comment: Accepted to ICLR 2025; Project page: https://visual-haystacks.github.io
♻ ☆ Going Beyond Conventional OOD Detection
Out-of-distribution (OOD) detection is critical to ensure the safe deployment of deep learning models in critical applications. Deep learning models can often misidentify OOD samples as in-distribution (ID) samples. This vulnerability worsens in the presence of spurious correlation in the training set. Likewise, in fine-grained classification settings, detection of fine-grained OOD samples becomes inherently challenging due to their high similarity to ID samples. However, current research on OOD detection has largely ignored these challenging scenarios, focusing instead on relatively easier (conventional) cases. In this work, we present a unified Approach to Spurious, fine-grained, and Conventional OOD Detection (ASCOOD). First, we propose synthesizing virtual outliers from ID data by approximating the destruction of invariant features. To this end, we identify invariant features with the pixel attribution method using the model being learned. This approach eliminates the burden of curating external OOD datasets. Then, we simultaneously incentivize ID classification and predictive uncertainty towards virtual outliers leveraging standardized feature representation. Our approach effectively mitigates the impact of spurious correlations and encourages capturing fine-grained attributes. Extensive experiments across seven datasets demonstrate the merit of ASCOOD in spurious, fine-grained, and conventional settings. The code is available at: https://github.com/sudarshanregmi/ASCOOD/
♻ ☆ PanoDreamer: Optimization-Based Single Image to 360 3D Scene With Diffusion
In this paper, we present PanoDreamer, a novel method for producing a coherent 360{\deg} 3D scene from a single input image. Unlike existing methods that generate the scene sequentially, we frame the problem as single-image panorama and depth estimation. Once the coherent panoramic image and its corresponding depth are obtained, the scene can be reconstructed by inpainting the small occluded regions and projecting them into 3D space. Our key contribution is formulating single-image panorama and depth estimation as two optimization tasks and introducing alternating minimization strategies to effectively solve their objectives. We demonstrate that our approach outperforms existing techniques in single-image 360{\deg} 3D scene reconstruction in terms of consistency and overall quality.
comment: Project page: https://people.engr.tamu.edu/nimak/Papers/PanoDreamer, Code: https://github.com/avinashpaliwal/PanoDreamer
♻ ☆ RealmDreamer: Text-Driven 3D Scene Generation with Inpainting and Depth Diffusion 3DV 2025
We introduce RealmDreamer, a technique for generating forward-facing 3D scenes from text descriptions. Our method optimizes a 3D Gaussian Splatting representation to match complex text prompts using pretrained diffusion models. Our key insight is to leverage 2D inpainting diffusion models conditioned on an initial scene estimate to provide low variance supervision for unknown regions during 3D distillation. In conjunction, we imbue high-fidelity geometry with geometric distillation from a depth diffusion model, conditioned on samples from the inpainting model. We find that the initialization of the optimization is crucial, and provide a principled methodology for doing so. Notably, our technique doesn't require video or multi-view data and can synthesize various high-quality 3D scenes in different styles with complex layouts. Further, the generality of our method allows 3D synthesis from a single image. As measured by a comprehensive user study, our method outperforms all existing approaches, preferred by 88-95%. Project Page: https://realmdreamer.github.io/
comment: Published at 3DV 2025
♻ ☆ INPC: Implicit Neural Point Clouds for Radiance Field Rendering
We introduce a new approach for reconstruction and novel view synthesis of unbounded real-world scenes. In contrast to previous methods using either volumetric fields, grid-based models, or discrete point cloud proxies, we propose a hybrid scene representation, which implicitly encodes the geometry in a continuous octree-based probability field and view-dependent appearance in a multi-resolution hash grid. This allows for extraction of arbitrary explicit point clouds, which can be rendered using rasterization. In doing so, we combine the benefits of both worlds and retain favorable behavior during optimization: Our novel implicit point cloud representation and differentiable bilinear rasterizer enable fast rendering while preserving the fine geometric detail captured by volumetric neural fields. Furthermore, this representation does not depend on priors like structure-from-motion point clouds. Our method achieves state-of-the-art image quality on common benchmarks. Furthermore, we achieve fast inference at interactive frame rates, and can convert our trained model into a large, explicit point cloud to further enhance performance.
comment: Project page: https://fhahlbohm.github.io/inpc/
♻ ☆ HO-Cap: A Capture System and Dataset for 3D Reconstruction and Pose Tracking of Hand-Object Interaction
We introduce a data capture system and a new dataset, HO-Cap, for 3D reconstruction and pose tracking of hands and objects in videos. The system leverages multiple RGBD cameras and a HoloLens headset for data collection, avoiding the use of expensive 3D scanners or mocap systems. We propose a semi-automatic method for annotating the shape and pose of hands and objects in the collected videos, significantly reducing the annotation time compared to manual labeling. With this system, we captured a video dataset of humans interacting with objects to perform various tasks, including simple pick-and-place actions, handovers between hands, and using objects according to their affordance, which can serve as human demonstrations for research in embodied AI and robot manipulation. Our data capture setup and annotation framework will be available for the community to use in reconstructing 3D shapes of objects and human hands and tracking their poses in videos.
♻ ☆ Curriculum Direct Preference Optimization for Diffusion and Consistency Models CVPR 2025
Direct Preference Optimization (DPO) has been proposed as an effective and efficient alternative to reinforcement learning from human feedback (RLHF). In this paper, we propose a novel and enhanced version of DPO based on curriculum learning for text-to-image generation. Our method is divided into two training stages. First, a ranking of the examples generated for each prompt is obtained by employing a reward model. Then, increasingly difficult pairs of examples are sampled and provided to a text-to-image generative (diffusion or consistency) model. Generated samples that are far apart in the ranking are considered to form easy pairs, while those that are close in the ranking form hard pairs. In other words, we use the rank difference between samples as a measure of difficulty. The sampled pairs are split into batches according to their difficulty levels, which are gradually used to train the generative model. Our approach, Curriculum DPO, is compared against state-of-the-art fine-tuning approaches on nine benchmarks, outperforming the competing methods in terms of text alignment, aesthetics and human preference. Our code is available at https://github.com/CroitoruAlin/Curriculum-DPO.
comment: Accepted at CVPR 2025
♻ ☆ ReTaKe: Reducing Temporal and Knowledge Redundancy for Long Video Understanding
Video Large Language Models (VideoLLMs) have achieved remarkable progress in video understanding. However, existing VideoLLMs often inherit the limitations of their backbone LLMs in handling long sequences, leading to challenges for long video understanding. Common solutions either simply uniformly sample videos' frames or compress visual tokens, which focus primarily on low-level temporal visual redundancy, overlooking high-level knowledge redundancy. This limits the achievable compression rate with minimal loss. To this end. we introduce a training-free method, $\textbf{ReTaKe}$, containing two novel modules DPSelect and PivotKV, to jointly model and reduce both temporal visual redundancy and knowledge redundancy for long video understanding. Specifically, DPSelect identifies keyframes with local maximum peak distance based on their visual features, which are closely aligned with human video perception. PivotKV employs the obtained keyframes as pivots and conducts KV-Cache compression for the non-pivot tokens with low attention scores, which are derived from the learned prior knowledge of LLMs. Experiments on benchmarks VideoMME, MLVU, and LVBench, show that ReTaKe can support 4x longer video sequences with minimal performance loss (<1%) and outperform all similar-size VideoLLMs with 3%-5%, even surpassing or on par with much larger ones. Our code is available at https://github.com/SCZwangxiao/video-ReTaKe
comment: Rewrite the methods section. Add more ablation studies and results in LongVideoBench
♻ ☆ Collaborative Uncertainty Benefits Multi-Agent Multi-Modal Trajectory Forecasting
In multi-modal multi-agent trajectory forecasting, two major challenges have not been fully tackled: 1) how to measure the uncertainty brought by the interaction module that causes correlations among the predicted trajectories of multiple agents; 2) how to rank the multiple predictions and select the optimal predicted trajectory. In order to handle these challenges, this work first proposes a novel concept, collaborative uncertainty (CU), which models the uncertainty resulting from interaction modules. Then we build a general CU-aware regression framework with an original permutation-equivariant uncertainty estimator to do both tasks of regression and uncertainty estimation. Further, we apply the proposed framework to current SOTA multi-agent multi-modal forecasting systems as a plugin module, which enables the SOTA systems to 1) estimate the uncertainty in the multi-agent multi-modal trajectory forecasting task; 2) rank the multiple predictions and select the optimal one based on the estimated uncertainty. We conduct extensive experiments on a synthetic dataset and two public large-scale multi-agent trajectory forecasting benchmarks. Experiments show that: 1) on the synthetic dataset, the CU-aware regression framework allows the model to appropriately approximate the ground-truth Laplace distribution; 2) on the multi-agent trajectory forecasting benchmarks, the CU-aware regression framework steadily helps SOTA systems improve their performances. Specially, the proposed framework helps VectorNet improve by 262 cm regarding the Final Displacement Error of the chosen optimal prediction on the nuScenes dataset; 3) for multi-agent multi-modal trajectory forecasting systems, prediction uncertainty is positively correlated with future stochasticity; and 4) the estimated CU values are highly related to the interactive information among agents.
comment: arXiv admin note: text overlap with arXiv:2110.13947
♻ ☆ Deformable Mamba for Wide Field of View Segmentation
Recent advancements in the Mamba architecture, with its linear computational complexity, being a promising alternative to transformer architectures suffering from quadratic complexity. While existing works primarily focus on adapting Mamba as vision encoders, the critical role of task-specific Mamba decoders remains under-explored, particularly for distortion-prone dense prediction tasks. This paper addresses two interconnected challenges: (1) The design of a Mamba-based decoder that seamlessly adapts to various architectures (e.g., CNN-, Transformer-, and Mamba-based backbones), and (2) The performance degradation in decoders lacking distortion-aware capability when processing wide-FoV images (e.g., 180{\deg} fisheye and 360{\deg} panoramic settings). We propose the Deformable Mamba Decoder, an efficient distortion-aware decoder that integrates Mamba's computational efficiency with adaptive distortion awareness. Comprehensive experiments on five wide-FoV segmentation benchmarks validate its effectiveness. Notably, our decoder achieves a +2.5% performance improvement on the 360{\deg} Stanford2D3D segmentation benchmark while reducing 72% parameters and 97% FLOPs, as compared to the widely-used decoder heads.
comment: Models and code will be made publicly available at: https://github.com/JieHu1996/DeformableMamba
♻ ☆ Video-to-Audio Generation with Hidden Alignment
Generating semantically and temporally aligned audio content in accordance with video input has become a focal point for researchers, particularly following the remarkable breakthrough in text-to-video generation. In this work, we aim to offer insights into the video-to-audio generation paradigm, focusing on three crucial aspects: vision encoders, auxiliary embeddings, and data augmentation techniques. Beginning with a foundational model built on a simple yet surprisingly effective intuition, we explore various vision encoders and auxiliary embeddings through ablation studies. Employing a comprehensive evaluation pipeline that emphasizes generation quality and video-audio synchronization alignment, we demonstrate that our model exhibits state-of-the-art video-to-audio generation capabilities. Furthermore, we provide critical insights into the impact of different data augmentation methods on enhancing the generation framework's overall capacity. We showcase possibilities to advance the challenge of generating synchronized audio from semantic and temporal perspectives. We hope these insights will serve as a stepping stone toward developing more realistic and accurate audio-visual generation models.
comment: https://sites.google.com/view/vta-ldm
♻ ☆ CAD-Recode: Reverse Engineering CAD Code from Point Clouds
Computer-Aided Design (CAD) models are typically constructed by sequentially drawing parametric sketches and applying CAD operations to obtain a 3D model. The problem of 3D CAD reverse engineering consists of reconstructing the sketch and CAD operation sequences from 3D representations such as point clouds. In this paper, we address this challenge through novel contributions across three levels: CAD sequence representation, network design, and training dataset. In particular, we represent CAD sketch-extrude sequences as Python code. The proposed CAD-Recode translates a point cloud into Python code that, when executed, reconstructs the CAD model. Taking advantage of the exposure of pre-trained Large Language Models (LLMs) to Python code, we leverage a relatively small LLM as a decoder for CAD-Recode and combine it with a lightweight point cloud projector. CAD-Recode is trained on a procedurally generated dataset of one million CAD sequences. CAD-Recode significantly outperforms existing methods across the DeepCAD, Fusion360 and real-world CC3D datasets. Furthermore, we show that our CAD Python code output is interpretable by off-the-shelf LLMs, enabling CAD editing and CAD-specific question answering from point clouds.
♻ ☆ Critic-V: VLM Critics Help Catch VLM Errors in Multimodal Reasoning
Vision-language models (VLMs) have shown remarkable advancements in multimodal reasoning tasks. However, they still often generate inaccurate or irrelevant responses due to issues like hallucinated image understandings or unrefined reasoning paths. To address these challenges, we introduce Critic-V, a novel framework inspired by the Actor-Critic paradigm to boost the reasoning capability of VLMs. This framework decouples the reasoning process and critic process by integrating two independent components: the Reasoner, which generates reasoning paths based on visual and textual inputs, and the Critic, which provides constructive critique to refine these paths. In this approach, the Reasoner generates reasoning responses according to text prompts, which can evolve iteratively as a policy based on feedback from the Critic. This interaction process was theoretically driven by a reinforcement learning framework where the Critic offers natural language critiques instead of scalar rewards, enabling more nuanced feedback to boost the Reasoner's capability on complex reasoning tasks. The Critic model is trained using Direct Preference Optimization (DPO), leveraging a preference dataset of critiques ranked by Rule-based Reward~(RBR) to enhance its critic capabilities. Evaluation results show that the Critic-V framework significantly outperforms existing methods, including GPT-4V, on 5 out of 8 benchmarks, especially regarding reasoning accuracy and efficiency. Combining a dynamic text-based policy for the Reasoner and constructive feedback from the preference-optimized Critic enables a more reliable and context-sensitive multimodal reasoning process. Our approach provides a promising solution to enhance the reliability of VLMs, improving their performance in real-world reasoning-heavy multimodal applications such as autonomous driving and embodied intelligence.
comment: 16 pages, 11 figures
♻ ☆ GraPE: A Generate-Plan-Edit Framework for Compositional T2I Synthesis
Text-to-image (T2I) generation has seen significant progress with diffusion models, enabling generation of photo-realistic images from text prompts. Despite this progress, existing methods still face challenges in following complex text prompts, especially those requiring compositional and multi-step reasoning. Given such complex instructions, SOTA models often make mistakes in faithfully modeling object attributes, and relationships among them. In this work, we present an alternate paradigm for T2I synthesis, decomposing the task of complex multi-step generation into three steps, (a) Generate: we first generate an image using existing diffusion models (b) Plan: we make use of Multi-Modal LLMs (MLLMs) to identify the mistakes in the generated image expressed in terms of individual objects and their properties, and produce a sequence of corrective steps required in the form of an edit-plan. (c) Edit: we make use of an existing text-guided image editing models to sequentially execute our edit-plan over the generated image to get the desired image which is faithful to the original instruction. Our approach derives its strength from the fact that it is modular in nature, is training free, and can be applied over any combination of image generation and editing models. As an added contribution, we also develop a model capable of compositional editing, which further helps improve the overall accuracy of our proposed approach. Our method flexibly trades inference time compute with performance on compositional text prompts. We perform extensive experimental evaluation across 3 benchmarks and 10 T2I models including DALLE-3 and the latest -- SD-3.5-Large. Our approach not only improves the performance of the SOTA models, by upto 3 points, it also reduces the performance gap between weaker and stronger models. $\href{https://dair-iitd.github.io/GraPE/}{https://dair-iitd.github.io/GraPE/}$
♻ ☆ Forgotten Polygons: Multimodal Large Language Models are Shape-Blind
Despite strong performance on vision-language tasks, Multimodal Large Language Models (MLLMs) struggle with mathematical problem-solving, with both open-source and state-of-the-art models falling short of human performance on visual-math benchmarks. To systematically examine visual-mathematical reasoning in MLLMs, we (1) evaluate their understanding of geometric primitives, (2) test multi-step reasoning, and (3) explore a potential solution to improve visual reasoning capabilities. Our findings reveal fundamental shortcomings in shape recognition, with top models achieving under 50% accuracy in identifying regular polygons. We analyze these failures through the lens of dual-process theory and show that MLLMs rely on System 1 (intuitive, memorized associations) rather than System 2 (deliberate reasoning). Consequently, MLLMs fail to count the sides of both familiar and novel shapes, suggesting they have neither learned the concept of sides nor effectively process visual inputs. Finally, we propose Visually Cued Chain-of-Thought (VC-CoT) prompting, which enhances multi-step mathematical reasoning by explicitly referencing visual annotations in diagrams, boosting GPT-4o's accuracy on an irregular polygon side-counting task from 7% to 93%. Our findings suggest that System 2 reasoning in MLLMs remains an open problem, and visually-guided prompting is essential for successfully engaging visual reasoning. Code available at: https://github.com/rsinghlab/Shape-Blind.
♻ ☆ Prediction of Frozen Region Growth in Kidney Cryoablation Intervention Using a 3D Flow-Matching Model MICCAI 2025
This study presents a 3D flow-matching model designed to predict the progression of the frozen region (iceball) during kidney cryoablation. Precise intraoperative guidance is critical in cryoablation to ensure complete tumor eradication while preserving adjacent healthy tissue. However, conventional methods, typically based on physics driven or diffusion based simulations, are computationally demanding and often struggle to represent complex anatomical structures accurately. To address these limitations, our approach leverages intraoperative CT imaging to inform the model. The proposed 3D flow matching model is trained to learn a continuous deformation field that maps early-stage CT scans to future predictions. This transformation not only estimates the volumetric expansion of the iceball but also generates corresponding segmentation masks, effectively capturing spatial and morphological changes over time. Quantitative analysis highlights the model robustness, demonstrating strong agreement between predictions and ground-truth segmentations. The model achieves an Intersection over Union (IoU) score of 0.61 and a Dice coefficient of 0.75. By integrating real time CT imaging with advanced deep learning techniques, this approach has the potential to enhance intraoperative guidance in kidney cryoablation, improving procedural outcomes and advancing the field of minimally invasive surgery.
comment: MICCAI 2025 submitted version (author list included)
♻ ☆ Measuring the Discrepancy between 3D Geometric Models using Directional Distance Fields
Qualifying the discrepancy between 3D geometric models, which could be represented with either point clouds or triangle meshes, is a pivotal issue with board applications. Existing methods mainly focus on directly establishing the correspondence between two models and then aggregating point-wise distance between corresponding points, resulting in them being either inefficient or ineffective. In this paper, we propose DirDist, an efficient, effective, robust, and differentiable distance metric for 3D geometry data. Specifically, we construct DirDist based on the proposed implicit representation of 3D models, namely directional distance field (DDF), which defines the directional distances of 3D points to a model to capture its local surface geometry. We then transfer the discrepancy between two 3D geometric models as the discrepancy between their DDFs defined on an identical domain, naturally establishing model correspondence. To demonstrate the advantage of our DirDist, we explore various distance metric-driven 3D geometric modeling tasks, including template surface fitting, rigid registration, non-rigid registration, scene flow estimation and human pose optimization. Extensive experiments show that our DirDist achieves significantly higher accuracy under all tasks. As a generic distance metric, DirDist has the potential to advance the field of 3D geometric modeling. The source code is available at https://github.com/rsy6318/DirDist.
♻ ☆ Q-PETR: Quant-aware Position Embedding Transformation for Multi-View 3D Object Detection
Camera-based multi-view 3D detection has emerged as an attractive solution for autonomous driving due to its low cost and broad applicability. However, despite the strong performance of PETR-based methods in 3D perception benchmarks, their direct INT8 quantization for onboard deployment leads to drastic accuracy drops-up to 58.2% in mAP and 36.9% in NDS on the NuScenes dataset. In this work, we propose Q-PETR, a quantization-aware position embedding transformation that re-engineers key components of the PETR framework to reconcile the discrepancy between the dynamic ranges of positional encodings and image features, and to adapt the cross-attention mechanism for low-bit inference. By redesigning the positional encoding module and introducing an adaptive quantization strategy, Q-PETR maintains floating-point performance with a performance degradation of less than 1% under standard 8-bit per-tensor post-training quantization. Moreover, compared to its FP32 counterpart, Q-PETR achieves a two-fold speedup and reduces memory usage by three times, thereby offering a deployment-friendly solution for resource-constrained onboard devices. Extensive experiments across various PETR-series models validate the strong generalization and practical benefits of our approach.
♻ ☆ PointDiffuse: A Dual-Conditional Diffusion Model for Enhanced Point Cloud Semantic Segmentation
Diffusion probabilistic models are traditionally used to generate colors at fixed pixel positions in 2D images. Building on this, we extend diffusion models to point cloud semantic segmentation, where point positions also remain fixed, and the diffusion model generates point labels instead of colors. To accelerate the denoising process in reverse diffusion, we introduce a noisy label embedding mechanism. This approach integrates semantic information into the noisy label, providing an initial semantic reference that improves the reverse diffusion efficiency. Additionally, we propose a point frequency transformer that enhances the adjustment of high-level context in point clouds. To reduce computational complexity, we introduce the position condition into MLP and propose denoising PointNet to process the high-resolution point cloud without sacrificing geometric details. Finally, we integrate the proposed noisy label embedding, point frequency transformer and denoising PointNet in our proposed dual conditional diffusion model-based network (PointDiffuse) to perform large-scale point cloud semantic segmentation. Extensive experiments on five benchmarks demonstrate the superiority of PointDiffuse, achieving the state-of-the-art mIoU of 74.2\% on S3DIS Area 5, 81.2\% on S3DIS 6-fold and 64.8\% on SWAN dataset.
comment: 8 pages, 3 figures, 7 tables
♻ ☆ Structure Preserving Diffusion Models
In recent years, diffusion models have become the leading approach for distribution learning. This paper focuses on structure-preserving diffusion models (SPDM), a specific subset of diffusion processes tailored for distributions with inherent structures, such as group symmetries. We complement existing sufficient conditions for constructing SPDMs by proving complementary necessary ones. Additionally, we propose a new framework that considers the geometric structures affecting the diffusion process. Leveraging this framework, we design a structure-preserving bridge model that maintains alignment between the model's endpoint couplings. Empirical evaluations on equivariant diffusion models demonstrate their effectiveness in learning symmetric distributions and modeling transitions between them. Experiments on real-world medical images confirm that our models preserve equivariance while maintaining high sample quality. We also showcase the practical utility of our framework by implementing an equivariant denoising diffusion bridge model, which achieves reliable equivariant image noise reduction and style transfer, irrespective of prior knowledge of image orientation.
♻ ☆ TSP3D: Text-guided Sparse Voxel Pruning for Efficient 3D Visual Grounding CVPR2025
In this paper, we propose an efficient multi-level convolution architecture for 3D visual grounding. Conventional methods are difficult to meet the requirements of real-time inference due to the two-stage or point-based architecture. Inspired by the success of multi-level fully sparse convolutional architecture in 3D object detection, we aim to build a new 3D visual grounding framework following this technical route. However, as in 3D visual grounding task the 3D scene representation should be deeply interacted with text features, sparse convolution-based architecture is inefficient for this interaction due to the large amount of voxel features. To this end, we propose text-guided pruning (TGP) and completion-based addition (CBA) to deeply fuse 3D scene representation and text features in an efficient way by gradual region pruning and target completion. Specifically, TGP iteratively sparsifies the 3D scene representation and thus efficiently interacts the voxel features with text features by cross-attention. To mitigate the affect of pruning on delicate geometric information, CBA adaptively fixes the over-pruned region by voxel completion with negligible computational overhead. Compared with previous single-stage methods, our method achieves top inference speed and surpasses previous fastest method by 100\% FPS. Our method also achieves state-of-the-art accuracy even compared with two-stage methods, with $+1.13$ lead of Acc@0.5 on ScanRefer, and $+2.6$ and $+3.2$ leads on NR3D and SR3D respectively. The code is available at \href{https://github.com/GWxuan/TSP3D}{https://github.com/GWxuan/TSP3D}.
comment: Accepted at CVPR2025 with a top score
♻ ☆ Silent Hazards of Token Reduction in Vision-Language Models: The Hidden Impact on Consistency
Vision language models (VLMs) have excelled in visual reasoning but often incur high computational costs. One key reason is the redundancy of visual tokens. Although recent token reduction methods claim to achieve minimal performance loss, our extensive experiments reveal that token reduction can substantially alter a model's output distribution, leading to changes in prediction patterns that standard metrics such as accuracy loss do not fully capture. Such inconsistencies are especially concerning for practical applications where system stability is critical. To investigate this phenomenon, we analyze how token reduction influences the energy distribution of a VLM's internal representations using a lower-rank approximation via Singular Value Decomposition (SVD). Our results show that changes in the Inverse Participation Ratio of the singular value spectrum are strongly correlated with the model's consistency after token reduction. Based on these insights, we propose LoFi--a training-free visual token reduction method that utilizes the leverage score from SVD for token pruning. Experimental evaluations demonstrate that LoFi not only reduces computational costs with minimal performance degradation but also significantly outperforms state-of-the-art methods in terms of output consistency.
♻ ☆ KinMo: Kinematic-aware Human Motion Understanding and Generation
Current human motion synthesis frameworks rely on global action descriptions, creating a modality gap that limits both motion understanding and generation capabilities. A single coarse description, such as ``run", fails to capture details like variations in speed, limb positioning, and kinematic dynamics, leading to ambiguities between text and motion modalities. To address this challenge, we introduce \textbf{KinMo}, a unified framework built on a hierarchical describable motion representation that extends beyond global action by incorporating kinematic group movements and their interactions. We design an automated annotation pipeline to generate high-quality, fine-grained descriptions for this decomposition, resulting in the KinMo dataset. To leverage these structured descriptions, we propose Hierarchical Text-Motion Alignment, improving spatial understanding by integrating additional motion details. Furthermore, we introduce a coarse-to-fine generation procedure to leverage enhanced spatial understanding to improve motion synthesis. Experimental results show that KinMo significantly improves motion understanding, demonstrated by enhanced text-motion retrieval performance and enabling more fine-grained motion generation and editing capabilities. Project Page: https://andypinxinliu.github.io/KinMo
♻ ☆ ChatRex: Taming Multimodal LLM for Joint Perception and Understanding
Perception and understanding are two pillars of computer vision. While multimodal large language models (MLLM) have demonstrated remarkable visual understanding capabilities, they arguably lack accurate perception abilities, e.g. the stage-of-the-art model Qwen2-VL only achieves a 43.9 recall rate on the COCO dataset, limiting many tasks requiring the combination of perception and understanding. In this work, we aim to bridge this perception gap from both model designing and data development perspectives. We first introduce ChatRex, an MLLM with a decoupled perception design. Instead of having the LLM directly predict box coordinates, we feed the output boxes from a universal proposal network into the LLM, allowing it to output the corresponding box indices to represent its detection results, turning the regression task into a retrieval-based task that LLM handles more proficiently. From the data perspective, we build a fully automated data engine and construct the Rexverse-2M dataset which possesses multiple granularities to support the joint training of perception and understanding. After a three-stage training approach, ChatRex demonstrates strong perception and understanding performance, and the combination of these two capabilities also unlocks many attractive applications, demonstrating their complementary roles in MLLM. Code is available at https://github.com/IDEA-Research/ChatRex.
comment: 35 pages, 19 figures
♻ ☆ QUART-Online: Latency-Free Large Multimodal Language Model for Quadruped Robot Learning ICRA 2025
This paper addresses the inherent inference latency challenges associated with deploying multimodal large language models (MLLM) in quadruped vision-language-action (QUAR-VLA) tasks. Our investigation reveals that conventional parameter reduction techniques ultimately impair the performance of the language foundation model during the action instruction tuning phase, making them unsuitable for this purpose. We introduce a novel latency-free quadruped MLLM model, dubbed QUART-Online, designed to enhance inference efficiency without degrading the performance of the language foundation model. By incorporating Action Chunk Discretization (ACD), we compress the original action representation space, mapping continuous action values onto a smaller set of discrete representative vectors while preserving critical information. Subsequently, we fine-tune the MLLM to integrate vision, language, and compressed actions into a unified semantic space. Experimental results demonstrate that QUART-Online operates in tandem with the existing MLLM system, achieving real-time inference in sync with the underlying controller frequency, significantly boosting the success rate across various tasks by 65%. Our project page is https://quart-online.github.io.
comment: Accepted to ICRA 2025; Github page: https://quart-online.github.io
♻ ☆ OmniEraser: Remove Objects and Their Effects in Images with Paired Video-Frame Data
Inpainting algorithms have achieved remarkable progress in removing objects from images, yet still face two challenges: 1) struggle to handle the object's visual effects such as shadow and reflection; 2) easily generate shape-like artifacts and unintended content. In this paper, we propose Video4Removal, a large-scale dataset comprising over 100,000 high-quality samples with realistic object shadows and reflections. By constructing object-background pairs from video frames with off-the-shelf vision models, the labor costs of data acquisition can be significantly reduced. To avoid generating shape-like artifacts and unintended content, we propose Object-Background Guidance, an elaborated paradigm that takes both the foreground object and background images. It can guide the diffusion process to harness richer contextual information. Based on the above two designs, we present OmniEraser, a novel method that seamlessly removes objects and their visual effects using only object masks as input. Extensive experiments show that OmniEraser significantly outperforms previous methods, particularly in complex in-the-wild scenes. And it also exhibits a strong generalization ability in anime-style images. Datasets, models, and codes will be published.
♻ ☆ Unified CNNs and transformers underlying learning mechanism reveals multi-head attention modus vivendi
Convolutional neural networks (CNNs) evaluate short-range correlations in input images which progress along the layers, whereas vision transformer (ViT) architectures evaluate long-range correlations, using repeated transformer encoders composed of fully connected layers. Both are designed to solve complex classification tasks but from different perspectives. This study demonstrates that CNNs and ViT architectures stem from a unified underlying learning mechanism, which quantitatively measures the single-nodal performance (SNP) of each node in feedforward (FF) and multi-head attention (MHA) sub-blocks. Each node identifies small clusters of possible output labels, with additional noise represented as labels outside these clusters. These features are progressively sharpened along the transformer encoders, enhancing the signal-to-noise ratio. This unified underlying learning mechanism leads to two main findings. First, it enables an efficient applied nodal diagonal connection (ANDC) pruning technique without affecting the accuracy. Second, based on the SNP, spontaneous symmetry breaking occurs among the MHA heads, such that each head focuses its attention on a subset of labels through cooperation among its SNPs. Consequently, each head becomes an expert in recognizing its designated labels, representing a quantitative MHA modus vivendi mechanism. This statistical mechanics inspired viewpoint enables to reveal macroscopic behavior of the entire network from the microscopic performance of each node. These results are based on a compact convolutional transformer architecture trained on the CIFAR-100 and Flowers-102 datasets and call for their extension to other architectures and applications, such as natural language processing.
comment: 31 pages, 11 figures (two new figures)
♻ ☆ VAGUE: Visual Contexts Clarify Ambiguous Expressions
Human communication often relies on visual cues to resolve ambiguity. While humans can intuitively integrate these cues, AI systems often find it challenging to engage in sophisticated multimodal reasoning. We introduce VAGUE, a benchmark evaluating multimodal AI systems' ability to integrate visual context for intent disambiguation. VAGUE consists of 1.6K ambiguous textual expressions, each paired with an image and multiple-choice interpretations, where the correct answer is only apparent with visual context. The dataset spans both staged, complex (Visual Commonsense Reasoning) and natural, personal (Ego4D) scenes, ensuring diversity. Our experiments reveal that existing multimodal AI models struggle to infer the speaker's true intent. While performance consistently improves from the introduction of more visual cues, the overall accuracy remains far below human performance, highlighting a critical gap in multimodal reasoning. Analysis of failure cases demonstrates that current models fail to distinguish true intent from superficial correlations in the visual scene, indicating that they perceive images but do not effectively reason with them. We release our code and data at https://github.com/Hazel-Heejeong-Nam/VAGUE.git.
comment: 31 pages
♻ ☆ V-LoRA: An Efficient and Flexible System Boosts Vision Applications with LoRA LMM EuroSys'2025
Large Multimodal Models (LMMs) have shown significant progress in various complex vision tasks with the solid linguistic and reasoning capacity inherited from large language models (LMMs). Low-rank adaptation (LoRA) offers a promising method to integrate external knowledge into LMMs, compensating for their limitations on domain-specific tasks. However, the existing LoRA model serving is excessively computationally expensive and causes extremely high latency. In this paper, we present an end-to-end solution that empowers diverse vision tasks and enriches vision applications with LoRA LMMs. Our system, VaLoRA, enables accurate and efficient vision tasks by 1) an accuracy-aware LoRA adapter generation approach that generates LoRA adapters rich in domain-specific knowledge to meet application-specific accuracy requirements, 2) an adaptive-tiling LoRA adapters batching operator that efficiently computes concurrent heterogeneous LoRA adapters, and 3) a flexible LoRA adapter orchestration mechanism that manages application requests and LoRA adapters to achieve the lowest average response latency. We prototype VaLoRA on five popular vision tasks on three LMMs. Experiment results reveal that VaLoRA improves 24-62% of the accuracy compared to the original LMMs and reduces 20-89% of the latency compared to the state-of-the-art LoRA model serving systems.
comment: EuroSys'2025
♻ ☆ Coherent Video Inpainting Using Optical Flow-Guided Efficient Diffusion
The text-guided video inpainting technique has significantly improved the performance of content generation applications. A recent family for these improvements uses diffusion models, which have become essential for achieving high-quality video inpainting results, yet they still face performance bottlenecks in temporal consistency and computational efficiency. This motivates us to propose a new video inpainting framework using optical Flow-guided Efficient Diffusion (FloED) for higher video coherence. Specifically, FloED employs a dual-branch architecture, where the time-agnostic flow branch restores corrupted flow first, and the multi-scale flow adapters provide motion guidance to the main inpainting branch. Besides, a training-free latent interpolation method is proposed to accelerate the multi-step denoising process using flow warping. With the flow attention cache mechanism, FLoED efficiently reduces the computational cost of incorporating optical flow. Extensive experiments on background restoration and object removal tasks show that FloED outperforms state-of-the-art diffusion-based methods in both quality and efficiency. Our codes and models will be made publicly available.
comment: Project page: https://nevsnev.github.io/FloED/
♻ ☆ Enhancing Autonomous Navigation by Imaging Hidden Objects using Single-Photon LiDAR
Robust autonomous navigation in environments with limited visibility remains a critical challenge in robotics. We present a novel approach that leverages Non-Line-of-Sight (NLOS) sensing using single-photon LiDAR to improve visibility and enhance autonomous navigation. Our method enables mobile robots to "see around corners" by utilizing multi-bounce light information, effectively expanding their perceptual range without additional infrastructure. We propose a three-module pipeline: (1) Sensing, which captures multi-bounce histograms using SPAD-based LiDAR; (2) Perception, which estimates occupancy maps of hidden regions from these histograms using a convolutional neural network; and (3) Control, which allows a robot to follow safe paths based on the estimated occupancy. We evaluate our approach through simulations and real-world experiments on a mobile robot navigating an L-shaped corridor with hidden obstacles. Our work represents the first experimental demonstration of NLOS imaging for autonomous navigation, paving the way for safer and more efficient robotic systems operating in complex environments. We also contribute a novel dynamics-integrated transient rendering framework for simulating NLOS scenarios, facilitating future research in this domain.
comment: Project webpage: https://camera-culture.github.io/nlos-aided-autonomous-navigation
♻ ☆ SemTalk: Holistic Co-speech Motion Generation with Frame-level Semantic Emphasis
A good co-speech motion generation cannot be achieved without a careful integration of common rhythmic motion and rare yet essential semantic motion. In this work, we propose SemTalk for holistic co-speech motion generation with frame-level semantic emphasis. Our key insight is to separately learn base motions and sparse motions, and then adaptively fuse them. In particular, coarse2fine cross-attention module and rhythmic consistency learning are explored to establish rhythm-related base motion, ensuring a coherent foundation that synchronizes gestures with the speech rhythm. Subsequently, semantic emphasis learning is designed to generate semantic-aware sparse motion, focusing on frame-level semantic cues. Finally, to integrate sparse motion into the base motion and generate semantic-emphasized co-speech gestures, we further leverage a learned semantic score for adaptive synthesis. Qualitative and quantitative comparisons on two public datasets demonstrate that our method outperforms the state-of-the-art, delivering high-quality co-speech motion with enhanced semantic richness over a stable base motion.
comment: 11 pages, 8 figures
♻ ☆ Surgical SAM 2: Real-time Segment Anything in Surgical Video by Efficient Frame Pruning NeurIPS 2024
Surgical video segmentation is a critical task in computer-assisted surgery and is vital for enhancing surgical quality and patient outcomes. Recently, the Segment Anything Model 2 (SAM2) framework has shown superior advancements in image and video segmentation. However, SAM2 struggles with efficiency due to the high computational demands of processing high-resolution images and complex and long-range temporal dynamics in surgical videos. To address these challenges, we introduce Surgical SAM 2 (SurgSAM2), an advanced model to utilize SAM2 with an Efficient Frame Pruning (EFP) mechanism, to facilitate real-time surgical video segmentation. The EFP mechanism dynamically manages the memory bank by selectively retaining only the most informative frames, reducing memory usage and computational cost while maintaining high segmentation accuracy. Our extensive experiments demonstrate that SurgSAM2 significantly improves both efficiency and segmentation accuracy compared to the vanilla SAM2. Remarkably, SurgSAM2 achieves a 3$\times$ FPS compared with SAM2, while also delivering state-of-the-art performance after fine-tuning with lower-resolution data. These advancements establish SurgSAM2 as a leading model for surgical video analysis, making real-time surgical video segmentation in resource-constrained environments a reality. Our source code is available at https://github.com/jinlab-imvr/Surgical-SAM-2.
comment: Accepted by NeurIPS 2024 Workshop AIM-FM
♻ ☆ CrackESS: A Self-Prompting Crack Segmentation System for Edge Devices
Structural Health Monitoring (SHM) is a sustainable and essential approach for infrastructure maintenance, enabling the early detection of structural defects. Leveraging computer vision (CV) methods for automated infrastructure monitoring can significantly enhance monitoring efficiency and precision. However, these methods often face challenges in efficiency and accuracy, particularly in complex environments. Recent CNN-based and SAM-based approaches have demonstrated excellent performance in crack segmentation, but their high computational demands limit their applicability on edge devices. This paper introduces CrackESS, a novel system for detecting and segmenting concrete cracks. The approach first utilizes a YOLOv8 model for self-prompting and a LoRA-based fine-tuned SAM model for crack segmentation, followed by refining the segmentation masks through the proposed Crack Mask Refinement Module (CMRM). We conduct experiments on three datasets(Khanhha's dataset, Crack500, CrackCR) and validate CrackESS on a climbing robot system to demonstrate the advantage and effectiveness of our approach.
♻ ☆ Are foundation models for computer vision good conformal predictors?
Recent advances in self-supervision and contrastive learning have brought the performance of foundation models to unprecedented levels in a variety of tasks. Fueled by this progress, these models are becoming the prevailing approach for a wide array of real-world vision problems, including risk-sensitive and high-stakes applications. However, ensuring safe deployment in these scenarios requires a more comprehensive understanding of their uncertainty modeling capabilities, which has been barely explored. In this work, we delve into the behaviour of vision and vision-language foundation models under Conformal Prediction (CP), a statistical framework that provides theoretical guarantees of marginal coverage of the true class. Across extensive experiments including popular vision classification benchmarks, well-known foundation vision models, and three CP methods, our findings reveal that foundation models are well-suited for conformalization procedures, particularly those integrating Vision Transformers. We also show that calibrating the confidence predictions of these models, a popular strategy to improve their uncertainty quantification, actually leads to efficiency degradation of the conformal set on adaptive CP methods. Furthermore, few-shot adaptation of Vision-Language Models (VLMs) to downstream tasks, whose popularity is surging, enhances conformal scores compared to zero-shot predictions. Last, our empirical study exposes APS as particularly promising in the context of vision foundation models, as it does not violate the marginal coverage guarantees across multiple challenging, yet realistic scenarios.
♻ ☆ Beyond Subspace Isolation: Many-to-Many Transformer for Light Field Image Super-resolution
The effective extraction of spatial-angular features plays a crucial role in light field image super-resolution (LFSR) tasks, and the introduction of convolution and Transformers leads to significant improvement in this area. Nevertheless, due to the large 4D data volume of light field images, many existing methods opted to decompose the data into a number of lower-dimensional subspaces and perform Transformers in each sub-space individually. As a side effect, these methods inadvertently restrict the self-attention mechanisms to a One-to-One scheme accessing only a limited subset of LF data, explicitly preventing comprehensive optimization on all spatial and angular cues. In this paper, we identify this limitation as subspace isolation and introduce a novel Many-to-Many Transformer (M2MT) to address it. M2MT aggregates angular information in the spatial subspace before performing the self-attention mechanism. It enables complete access to all information across all sub-aperture images (SAIs) in a light field image. Consequently, M2MT is enabled to comprehensively capture long-range correlation dependencies. With M2MT as the pivotal component, we develop a simple yet effective M2MT network for LFSR. Our experimental results demonstrate that M2MT achieves state-of-the-art performance across various public datasets. We further conduct in-depth analysis using local attribution maps (LAM) to obtain visual interpretability, and the results validate that M2MT is empowered with a truly non-local context in both spatial and angular subspaces to mitigate subspace isolation and acquire effective spatial-angular representation.
comment: Accepted by IEEE Transactions on Multimedia
♻ ☆ DiffDoctor: Diagnosing Image Diffusion Models Before Treating
In spite of recent progress, image diffusion models still produce artifacts. A common solution is to leverage the feedback provided by quality assessment systems or human annotators to optimize the model, where images are generally rated in their entirety. In this work, we believe problem-solving starts with identification, yielding the request that the model should be aware of not just the presence of defects in an image, but their specific locations. Motivated by this, we propose DiffDoctor, a two-stage pipeline to assist image diffusion models in generating fewer artifacts. Concretely, the first stage targets developing a robust artifact detector, for which we collect a dataset of over 1M flawed synthesized images and set up an efficient human-in-the-loop annotation process, incorporating a carefully designed class-balance strategy. The learned artifact detector is then involved in the second stage to optimize the diffusion model by providing pixel-level feedback. Extensive experiments on text-to-image diffusion models demonstrate the effectiveness of our artifact detector as well as the soundness of our diagnose-then-treat design.
comment: 8 pages of main body
♻ ☆ UniScene: Unified Occupancy-centric Driving Scene Generation CVPR 2025
Generating high-fidelity, controllable, and annotated training data is critical for autonomous driving. Existing methods typically generate a single data form directly from a coarse scene layout, which not only fails to output rich data forms required for diverse downstream tasks but also struggles to model the direct layout-to-data distribution. In this paper, we introduce UniScene, the first unified framework for generating three key data forms - semantic occupancy, video, and LiDAR - in driving scenes. UniScene employs a progressive generation process that decomposes the complex task of scene generation into two hierarchical steps: (a) first generating semantic occupancy from a customized scene layout as a meta scene representation rich in both semantic and geometric information, and then (b) conditioned on occupancy, generating video and LiDAR data, respectively, with two novel transfer strategies of Gaussian-based Joint Rendering and Prior-guided Sparse Modeling. This occupancy-centric approach reduces the generation burden, especially for intricate scenes, while providing detailed intermediate representations for the subsequent generation stages. Extensive experiments demonstrate that UniScene outperforms previous SOTAs in the occupancy, video, and LiDAR generation, which also indeed benefits downstream driving tasks. Project page: https://arlo0o.github.io/uniscene/
comment: CVPR 2025
♻ ☆ Reframing Dense Action Detection (RefDense): A Paradigm Shift in Problem Solving & a Novel Optimization Strategy
Dense action detection involves detecting multiple co-occurring actions while action classes are often ambiguous and represent overlapping concepts. We argue that handling the dual challenge of temporal and class overlaps is too complex to effectively be tackled by a single network. To address this, we propose to decompose the task of detecting dense ambiguous actions into detecting dense, unambiguous sub-concepts that form the action classes (i.e., action entities and action motions), and assigning these sub-tasks to distinct sub-networks. By isolating these unambiguous concepts, the sub-networks can focus exclusively on resolving a single challenge, dense temporal overlaps. Furthermore, simultaneous actions in a video often exhibit interrelationships, and exploiting these relationships can improve the method performance. However, current dense action detection networks fail to effectively learn these relationships due to their reliance on binary cross-entropy optimization, which treats each class independently. To address this limitation, we propose providing explicit supervision on co-occurring concepts during network optimization through a novel language-guided contrastive learning loss. Our extensive experiments demonstrate the superiority of our approach over state-of-the-art methods, achieving substantial improvements of 3.8% and 1.7% on average across all metrics on the challenging benchmark datasets, Charades and MultiTHUMOS.
comment: Computer Vision
♻ ☆ CogNav: Cognitive Process Modeling for Object Goal Navigation with LLMs
Object goal navigation (ObjectNav) is a fundamental task in embodied AI, requiring an agent to locate a target object in previously unseen environments. This task is particularly challenging because it requires both perceptual and cognitive processes, including object recognition and decision-making. While substantial advancements in perception have been driven by the rapid development of visual foundation models, progress on the cognitive aspect remains constrained, primarily limited to either implicit learning through simulator rollouts or explicit reliance on predefined heuristic rules. Inspired by neuroscientific findings demonstrating that humans maintain and dynamically update fine-grained cognitive states during object search tasks in novel environments, we propose CogNav, a framework designed to mimic this cognitive process using large language models. Specifically, we model the cognitive process using a finite state machine comprising fine-grained cognitive states, ranging from exploration to identification. Transitions between states are determined by a large language model based on a dynamically constructed heterogeneous cognitive map, which contains spatial and semantic information about the scene being explored. Extensive evaluations on the HM3D, MP3D, and RoboTHOR benchmarks demonstrate that our cognitive process modeling significantly improves the success rate of ObjectNav at least by relative 14% over the state-of-the-arts.
♻ ☆ Bringing the Context Back into Object Recognition, Robustly
In object recognition, both the subject of interest (referred to as foreground, FG, for simplicity) and its surrounding context (background, BG) may play an important role. However, standard supervised learning often leads to unintended over-reliance on the BG, limiting model robustness in real-world deployment settings. The problem is mainly addressed by suppressing the BG, sacrificing context information for improved generalization. We propose "Localize to Recognize Robustly" (L2R2), a novel recognition approach which exploits the benefits of context-aware classification while maintaining robustness to distribution shifts. L2R2 leverages advances in zero-shot detection to localize the FG before recognition. It improves the performance of both standard recognition with supervised training, as well as multimodal zero-shot recognition with VLMs, while being robust to long-tail BGs and distribution shifts. The results confirm localization before recognition is possible for a wide range of datasets and they highlight the limits of object detection on others
♻ ☆ Bridge Frame and Event: Common Spatiotemporal Fusion for High-Dynamic Scene Optical Flow
High-dynamic scene optical flow is a challenging task, which suffers spatial blur and temporal discontinuous motion due to large displacement in frame imaging, thus deteriorating the spatiotemporal feature of optical flow. Typically, existing methods mainly introduce event camera to directly fuse the spatiotemporal features between the two modalities. However, this direct fusion is ineffective, since there exists a large gap due to the heterogeneous data representation between frame and event modalities. To address this issue, we explore a common-latent space as an intermediate bridge to mitigate the modality gap. In this work, we propose a novel common spatiotemporal fusion between frame and event modalities for high-dynamic scene optical flow, including visual boundary localization and motion correlation fusion. Specifically, in visual boundary localization, we figure out that frame and event share the similar spatiotemporal gradients, whose similarity distribution is consistent with the extracted boundary distribution. This motivates us to design the common spatiotemporal gradient to constrain the reference boundary localization. In motion correlation fusion, we discover that the frame-based motion possesses spatially dense but temporally discontinuous correlation, while the event-based motion has spatially sparse but temporally continuous correlation. This inspires us to use the reference boundary to guide the complementary motion knowledge fusion between the two modalities. Moreover, common spatiotemporal fusion can not only relieve the cross-modal feature discrepancy, but also make the fusion process interpretable for dense and continuous optical flow. Extensive experiments have been performed to verify the superiority of the proposed method.
♻ ☆ To which reference class do you belong? Measuring racial fairness of reference classes with normative modeling
Reference classes in healthcare establish healthy norms, such as pediatric growth charts of height and weight, and are used to chart deviations from these norms which represent potential clinical risk. How the demographics of the reference class influence clinical interpretation of deviations is unknown. Using normative modeling, a method for building reference classes, we evaluate the fairness (racial bias) in reference models of structural brain images that are widely used in psychiatry and neurology. We test whether including race in the model creates fairer models. We predict self-reported race using the deviation scores from three different reference class normative models, to better understand bias in an integrated, multivariate sense. Across all of these tasks, we uncover racial disparities that are not easily addressed with existing data or commonly used modeling techniques. Our work suggests that deviations from the norm could be due to demographic mismatch with the reference class, and assigning clinical meaning to these deviations should be done with caution. Our approach also suggests that acquiring more representative samples is an urgent research priority.
♻ ☆ Co-learning Single-Step Diffusion Upsampler and Downsampler with Two Discriminators and Distillation
Super-resolution (SR) aims to reconstruct high-resolution (HR) images from their low-resolution (LR) counterparts, often relying on effective downsampling to generate diverse and realistic training pairs. In this work, we propose a co-learning framework that jointly optimizes a single-step diffusion-based upsampler and a learnable downsampler, enhanced by two discriminators and a cyclic distillation strategy. Our learnable downsampler is designed to better capture realistic degradation patterns while preserving structural details in the LR domain, which is crucial for enhancing SR performance. By leveraging a diffusion-based approach, our model generates diverse LR-HR pairs during training, enabling robust learning across varying degradations. We demonstrate the effectiveness of our method on both general real-world and domain-specific face SR tasks, achieving state-of-the-art performance in both fidelity and perceptual quality. Our approach not only improves efficiency with a single inference step but also ensures high-quality image reconstruction, bridging the gap between synthetic and real-world SR scenarios.
♻ ☆ OminiControl: Minimal and Universal Control for Diffusion Transformer
We present OminiControl, a novel approach that rethinks how image conditions are integrated into Diffusion Transformer (DiT) architectures. Current image conditioning methods either introduce substantial parameter overhead or handle only specific control tasks effectively, limiting their practical versatility. OminiControl addresses these limitations through three key innovations: (1) a minimal architectural design that leverages the DiT's own VAE encoder and transformer blocks, requiring just 0.1% additional parameters; (2) a unified sequence processing strategy that combines condition tokens with image tokens for flexible token interactions; and (3) a dynamic position encoding mechanism that adapts to both spatially-aligned and non-aligned control tasks. Our extensive experiments show that this streamlined approach not only matches but surpasses the performance of specialized methods across multiple conditioning tasks. To overcome data limitations in subject-driven generation, we also introduce Subjects200K, a large-scale dataset of identity-consistent image pairs synthesized using DiT models themselves. This work demonstrates that effective image control can be achieved without architectural complexity, opening new possibilities for efficient and versatile image generation systems.
♻ ☆ Gaussian Smoothing in Saliency Maps: The Stability-Fidelity Trade-Off in Neural Network Interpretability AISTATS 2025
Saliency maps have been widely used to interpret the decisions of neural network classifiers and discover phenomena from their learned functions. However, standard gradient-based maps are frequently observed to be highly sensitive to the randomness of training data and the stochasticity in the training process. In this work, we study the role of Gaussian smoothing in the well-known Smooth-Grad algorithm in the stability of the gradient-based maps to the randomness of training samples. We extend the algorithmic stability framework to gradient-based interpretation maps and prove bounds on the stability error of standard Simple-Grad, Integrated-Gradients, and Smooth-Grad saliency maps. Our theoretical results suggest the role of Gaussian smoothing in boosting the stability of gradient-based maps to the randomness of training settings. On the other hand, we analyze the faithfulness of the Smooth-Grad maps to the original Simple-Grad and show the lower fidelity under a more intense Gaussian smoothing. We support our theoretical results by performing several numerical experiments on standard image datasets. Our empirical results confirm our hypothesis on the fidelity-stability trade-off in the application of Gaussian smoothing to gradient-based interpretation maps.
comment: Accepted at AISTATS 2025
♻ ☆ OTCXR: Rethinking Self-supervised Alignment using Optimal Transport for Chest X-ray Analysis
Self-supervised learning (SSL) has emerged as a promising technique for analyzing medical modalities such as X-rays due to its ability to learn without annotations. However, conventional SSL methods face challenges in achieving semantic alignment and capturing subtle details, which limits their ability to accurately represent the underlying anatomical structures and pathological features. To address these limitations, we propose OTCXR, a novel SSL framework that leverages optimal transport (OT) to learn dense semantic invariance. By integrating OT with our innovative Cross-Viewpoint Semantics Infusion Module (CV-SIM), OTCXR enhances the model's ability to capture not only local spatial features but also global contextual dependencies across different viewpoints. This approach enriches the effectiveness of SSL in the context of chest radiographs. Furthermore, OTCXR incorporates variance and covariance regularizations within the OT framework to prioritize clinically relevant information while suppressing less informative features. This ensures that the learned representations are comprehensive and discriminative, particularly beneficial for tasks such as thoracic disease diagnosis. We validate OTCXR's efficacy through comprehensive experiments on three publicly available chest X-ray datasets. Our empirical results demonstrate the superiority of OTCXR over state-of-the-art methods across all evaluated tasks, confirming its capability to learn semantically rich representations.
Artificial Intelligence 215
☆ Perplexity Trap: PLM-Based Retrievers Overrate Low Perplexity Documents ICLR 2025
Previous studies have found that PLM-based retrieval models exhibit a preference for LLM-generated content, assigning higher relevance scores to these documents even when their semantic quality is comparable to human-written ones. This phenomenon, known as source bias, threatens the sustainable development of the information access ecosystem. However, the underlying causes of source bias remain unexplored. In this paper, we explain the process of information retrieval with a causal graph and discover that PLM-based retrievers learn perplexity features for relevance estimation, causing source bias by ranking the documents with low perplexity higher. Theoretical analysis further reveals that the phenomenon stems from the positive correlation between the gradients of the loss functions in language modeling task and retrieval task. Based on the analysis, a causal-inspired inference-time debiasing method is proposed, called Causal Diagnosis and Correction (CDC). CDC first diagnoses the bias effect of the perplexity and then separates the bias effect from the overall estimated relevance score. Experimental results across three domains demonstrate the superior debiasing effectiveness of CDC, emphasizing the validity of our proposed explanatory framework. Source codes are available at https://github.com/WhyDwelledOnAi/Perplexity-Trap.
comment: ICLR 2025
☆ CoLMDriver: LLM-based Negotiation Benefits Cooperative Autonomous Driving
Vehicle-to-vehicle (V2V) cooperative autonomous driving holds great promise for improving safety by addressing the perception and prediction uncertainties inherent in single-agent systems. However, traditional cooperative methods are constrained by rigid collaboration protocols and limited generalization to unseen interactive scenarios. While LLM-based approaches offer generalized reasoning capabilities, their challenges in spatial planning and unstable inference latency hinder their direct application in cooperative driving. To address these limitations, we propose CoLMDriver, the first full-pipeline LLM-based cooperative driving system, enabling effective language-based negotiation and real-time driving control. CoLMDriver features a parallel driving pipeline with two key components: (i) an LLM-based negotiation module under an actor-critic paradigm, which continuously refines cooperation policies through feedback from previous decisions of all vehicles; and (ii) an intention-guided waypoint generator, which translates negotiation outcomes into executable waypoints. Additionally, we introduce InterDrive, a CARLA-based simulation benchmark comprising 10 challenging interactive driving scenarios for evaluating V2V cooperation. Experimental results demonstrate that CoLMDriver significantly outperforms existing approaches, achieving an 11% higher success rate across diverse highly interactive V2V driving scenarios. Code will be released on https://github.com/cxliu0314/CoLMDriver.
☆ Chain-of-Thought Reasoning In The Wild Is Not Always Faithful ICLR 2025
Chain-of-Thought (CoT) reasoning has significantly advanced state-of-the-art AI capabilities. However, recent studies have shown that CoT reasoning is not always faithful, i.e. CoT reasoning does not always reflect how models arrive at conclusions. So far, most of these studies have focused on unfaithfulness in unnatural contexts where an explicit bias has been introduced. In contrast, we show that unfaithful CoT can occur on realistic prompts with no artificial bias. Our results reveal concerning rates of several forms of unfaithful reasoning in frontier models: Sonnet 3.7 (30.6%), DeepSeek R1 (15.8%) and ChatGPT-4o (12.6%) all answer a high proportion of question pairs unfaithfully. Specifically, we find that models rationalize their implicit biases in answers to binary questions ("implicit post-hoc rationalization"). For example, when separately presented with the questions "Is X bigger than Y?" and "Is Y bigger than X?", models sometimes produce superficially coherent arguments to justify answering Yes to both questions or No to both questions, despite such responses being logically contradictory. We also investigate restoration errors (Dziri et al., 2023), where models make and then silently correct errors in their reasoning, and unfaithful shortcuts, where models use clearly illogical reasoning to simplify solving problems in Putnam questions (a hard benchmark). Our findings raise challenges for AI safety work that relies on monitoring CoT to detect undesired behavior.
comment: Accepted to the ICLR 2025 Workshop, 10 main paper pages, 38 appendix pages
☆ GarmentCrafter: Progressive Novel View Synthesis for Single-View 3D Garment Reconstruction and Editing
We introduce GarmentCrafter, a new approach that enables non-professional users to create and modify 3D garments from a single-view image. While recent advances in image generation have facilitated 2D garment design, creating and editing 3D garments remains challenging for non-professional users. Existing methods for single-view 3D reconstruction often rely on pre-trained generative models to synthesize novel views conditioning on the reference image and camera pose, yet they lack cross-view consistency, failing to capture the internal relationships across different views. In this paper, we tackle this challenge through progressive depth prediction and image warping to approximate novel views. Subsequently, we train a multi-view diffusion model to complete occluded and unknown clothing regions, informed by the evolving camera pose. By jointly inferring RGB and depth, GarmentCrafter enforces inter-view coherence and reconstructs precise geometries and fine details. Extensive experiments demonstrate that our method achieves superior visual fidelity and inter-view coherence compared to state-of-the-art single-view 3D garment reconstruction methods.
comment: Project Page: https://humansensinglab.github.io/garment-crafter/
☆ AgentOrca: A Dual-System Framework to Evaluate Language Agents on Operational Routine and Constraint Adherence
As language agents progressively automate critical tasks across domains, their ability to operate within operational constraints and safety protocols becomes essential. While extensive research has demonstrated these agents' effectiveness in downstream task completion, their reliability in following operational procedures and constraints remains largely unexplored. To this end, we present AgentOrca, a dual-system framework for evaluating language agents' compliance with operational constraints and routines. Our framework encodes action constraints and routines through both natural language prompts for agents and corresponding executable code serving as ground truth for automated verification. Through an automated pipeline of test case generation and evaluation across five real-world domains, we quantitatively assess current language agents' adherence to operational constraints. Our findings reveal notable performance gaps among state-of-the-art models, with large reasoning models like o1 demonstrating superior compliance while others show significantly lower performance, particularly when encountering complex constraints or user persuasion attempts.
☆ REGEN: Learning Compact Video Embedding with (Re-)Generative Decoder
We present a novel perspective on learning video embedders for generative modeling: rather than requiring an exact reproduction of an input video, an effective embedder should focus on synthesizing visually plausible reconstructions. This relaxed criterion enables substantial improvements in compression ratios without compromising the quality of downstream generative models. Specifically, we propose replacing the conventional encoder-decoder video embedder with an encoder-generator framework that employs a diffusion transformer (DiT) to synthesize missing details from a compact latent space. Therein, we develop a dedicated latent conditioning module to condition the DiT decoder on the encoded video latent embedding. Our experiments demonstrate that our approach enables superior encoding-decoding performance compared to state-of-the-art methods, particularly as the compression ratio increases. To demonstrate the efficacy of our approach, we report results from our video embedders achieving a temporal compression ratio of up to 32x (8x higher than leading video embedders) and validate the robustness of this ultra-compact latent space for text-to-video generation, providing a significant efficiency boost in latent diffusion model training and inference.
☆ MEAT: Multiview Diffusion Model for Human Generation on Megapixels with Mesh Attention CVPR 2025
Multiview diffusion models have shown considerable success in image-to-3D generation for general objects. However, when applied to human data, existing methods have yet to deliver promising results, largely due to the challenges of scaling multiview attention to higher resolutions. In this paper, we explore human multiview diffusion models at the megapixel level and introduce a solution called mesh attention to enable training at 1024x1024 resolution. Using a clothed human mesh as a central coarse geometric representation, the proposed mesh attention leverages rasterization and projection to establish direct cross-view coordinate correspondences. This approach significantly reduces the complexity of multiview attention while maintaining cross-view consistency. Building on this foundation, we devise a mesh attention block and combine it with keypoint conditioning to create our human-specific multiview diffusion model, MEAT. In addition, we present valuable insights into applying multiview human motion videos for diffusion training, addressing the longstanding issue of data scarcity. Extensive experiments show that MEAT effectively generates dense, consistent multiview human images at the megapixel level, outperforming existing multiview diffusion methods.
comment: CVPR 2025. Code https://github.com/johannwyh/MEAT Project Page https://johann.wang/MEAT/
☆ Generating Robot Constitutions & Benchmarks for Semantic Safety
Until recently, robotics safety research was predominantly about collision avoidance and hazard reduction in the immediate vicinity of a robot. Since the advent of large vision and language models (VLMs), robots are now also capable of higher-level semantic scene understanding and natural language interactions with humans. Despite their known vulnerabilities (e.g. hallucinations or jail-breaking), VLMs are being handed control of robots capable of physical contact with the real world. This can lead to dangerous behaviors, making semantic safety for robots a matter of immediate concern. Our contributions in this paper are two fold: first, to address these emerging risks, we release the ASIMOV Benchmark, a large-scale and comprehensive collection of datasets for evaluating and improving semantic safety of foundation models serving as robot brains. Our data generation recipe is highly scalable: by leveraging text and image generation techniques, we generate undesirable situations from real-world visual scenes and human injury reports from hospitals. Secondly, we develop a framework to automatically generate robot constitutions from real-world data to steer a robot's behavior using Constitutional AI mechanisms. We propose a novel auto-amending process that is able to introduce nuances in written rules of behavior; this can lead to increased alignment with human preferences on behavior desirability and safety. We explore trade-offs between generality and specificity across a diverse set of constitutions of different lengths, and demonstrate that a robot is able to effectively reject unconstitutional actions. We measure a top alignment rate of 84.3% on the ASIMOV Benchmark using generated constitutions, outperforming no-constitution baselines and human-written constitutions. Data is available at asimov-benchmark.github.io
☆ Exploring the Word Sense Disambiguation Capabilities of Large Language Models
Word Sense Disambiguation (WSD) is a historical task in computational linguistics that has received much attention over the years. However, with the advent of Large Language Models (LLMs), interest in this task (in its classical definition) has decreased. In this study, we evaluate the performance of various LLMs on the WSD task. We extend a previous benchmark (XL-WSD) to re-design two subtasks suitable for LLM: 1) given a word in a sentence, the LLM must generate the correct definition; 2) given a word in a sentence and a set of predefined meanings, the LLM must select the correct one. The extended benchmark is built using the XL-WSD and BabelNet. The results indicate that LLMs perform well in zero-shot learning but cannot surpass current state-of-the-art methods. However, a fine-tuned model with a medium number of parameters outperforms all other models, including the state-of-the-art.
☆ Exploiting Instruction-Following Retrievers for Malicious Information Retrieval
Instruction-following retrievers have been widely adopted alongside LLMs in real-world applications, but little work has investigated the safety risks surrounding their increasing search capabilities. We empirically study the ability of retrievers to satisfy malicious queries, both when used directly and when used in a retrieval augmented generation-based setup. Concretely, we investigate six leading retrievers, including NV-Embed and LLM2Vec, and find that given malicious requests, most retrievers can (for >50% of queries) select relevant harmful passages. For example, LLM2Vec correctly selects passages for 61.35% of our malicious queries. We further uncover an emerging risk with instruction-following retrievers, where highly relevant harmful information can be surfaced by exploiting their instruction-following capabilities. Finally, we show that even safety-aligned LLMs, such as Llama3, can satisfy malicious requests when provided with harmful retrieved passages in-context. In summary, our findings underscore the malicious misuse risks associated with increasing retriever capability.
☆ Rethinking Diffusion Model in High Dimension
Curse of Dimensionality is an unavoidable challenge in statistical probability models, yet diffusion models seem to overcome this limitation, achieving impressive results in high-dimensional data generation. Diffusion models assume that they can learn the statistical properties of the underlying probability distribution, enabling sampling from this distribution to generate realistic samples. But is this really how they work? To address this question, this paper conducts a detailed analysis of the objective function and inference methods of diffusion models, leading to several important conclusions that help answer the above question: 1) In high-dimensional sparse scenarios, the target of the objective function fitting degrades from a weighted sum of multiple samples to a single sample. 2) The mainstream inference methods can all be represented within a simple unified framework, without requiring statistical concepts such as Markov chains and SDEs. 3) Guided by this simple framework, more efficient inference methods can be discovered.
☆ YuE: Scaling Open Foundation Models for Long-Form Music Generation
We tackle the task of long-form music generation--particularly the challenging \textbf{lyrics-to-song} problem--by introducing YuE, a family of open foundation models based on the LLaMA2 architecture. Specifically, YuE scales to trillions of tokens and generates up to five minutes of music while maintaining lyrical alignment, coherent musical structure, and engaging vocal melodies with appropriate accompaniment. It achieves this through (1) track-decoupled next-token prediction to overcome dense mixture signals, (2) structural progressive conditioning for long-context lyrical alignment, and (3) a multitask, multiphase pre-training recipe to converge and generalize. In addition, we redesign the in-context learning technique for music generation, enabling versatile style transfer (e.g., converting Japanese city pop into an English rap while preserving the original accompaniment) and bidirectional generation. Through extensive evaluation, we demonstrate that YuE matches or even surpasses some of the proprietary systems in musicality and vocal agility. In addition, fine-tuning YuE enables additional controls and enhanced support for tail languages. Furthermore, beyond generation, we show that YuE's learned representations can perform well on music understanding tasks, where the results of YuE match or exceed state-of-the-art methods on the MARBLE benchmark. Keywords: lyrics2song, song generation, long-form, foundation model, music generation
comment: https://github.com/multimodal-art-projection/YuE
☆ Vision Transformer for Intracranial Hemorrhage Classification in CT Scans Using an Entropy-Aware Fuzzy Integral Strategy for Adaptive Scan-Level Decision Fusion
Intracranial hemorrhage (ICH) is a critical medical emergency caused by the rupture of cerebral blood vessels, leading to internal bleeding within the skull. Accurate and timely classification of hemorrhage subtypes is essential for effective clinical decision-making. To address this challenge, we propose an advanced pyramid vision transformer (PVT)-based model, leveraging its hierarchical attention mechanisms to capture both local and global spatial dependencies in brain CT scans. Instead of processing all extracted features indiscriminately, A SHAP-based feature selection method is employed to identify the most discriminative components, which are then used as a latent feature space to train a boosting neural network, reducing computational complexity. We introduce an entropy-aware aggregation strategy along with a fuzzy integral operator to fuse information across multiple CT slices, ensuring a more comprehensive and reliable scan-level diagnosis by accounting for inter-slice dependencies. Experimental results show that our PVT-based framework significantly outperforms state-of-the-art deep learning architectures in terms of classification accuracy, precision, and robustness. By combining SHAP-driven feature selection, transformer-based modeling, and an entropy-aware fuzzy integral operator for decision fusion, our method offers a scalable and computationally efficient AI-driven solution for automated ICH subtype classification.
☆ A Grid Cell-Inspired Structured Vector Algebra for Cognitive Maps
The entorhinal-hippocampal formation is the mammalian brain's navigation system, encoding both physical and abstract spaces via grid cells. This system is well-studied in neuroscience, and its efficiency and versatility make it attractive for applications in robotics and machine learning. While continuous attractor networks (CANs) successfully model entorhinal grid cells for encoding physical space, integrating both continuous spatial and abstract spatial computations into a unified framework remains challenging. Here, we attempt to bridge this gap by proposing a mechanistic model for versatile information processing in the entorhinal-hippocampal formation inspired by CANs and Vector Symbolic Architectures (VSAs), a neuro-symbolic computing framework. The novel grid-cell VSA (GC-VSA) model employs a spatially structured encoding scheme with 3D neuronal modules mimicking the discrete scales and orientations of grid cell modules, reproducing their characteristic hexagonal receptive fields. In experiments, the model demonstrates versatility in spatial and abstract tasks: (1) accurate path integration for tracking locations, (2) spatio-temporal representation for querying object locations and temporal relations, and (3) symbolic reasoning using family trees as a structured test case for hierarchical relationships.
comment: 10 pages, 5 figures, accepted at the 2025 Neuro Inspired Computational Elements (NICE) conference
☆ Tuning-Free Multi-Event Long Video Generation via Synchronized Coupled Sampling
While recent advancements in text-to-video diffusion models enable high-quality short video generation from a single prompt, generating real-world long videos in a single pass remains challenging due to limited data and high computational costs. To address this, several works propose tuning-free approaches, i.e., extending existing models for long video generation, specifically using multiple prompts to allow for dynamic and controlled content changes. However, these methods primarily focus on ensuring smooth transitions between adjacent frames, often leading to content drift and a gradual loss of semantic coherence over longer sequences. To tackle such an issue, we propose Synchronized Coupled Sampling (SynCoS), a novel inference framework that synchronizes denoising paths across the entire video, ensuring long-range consistency across both adjacent and distant frames. Our approach combines two complementary sampling strategies: reverse and optimization-based sampling, which ensure seamless local transitions and enforce global coherence, respectively. However, directly alternating between these samplings misaligns denoising trajectories, disrupting prompt guidance and introducing unintended content changes as they operate independently. To resolve this, SynCoS synchronizes them through a grounded timestep and a fixed baseline noise, ensuring fully coupled sampling with aligned denoising paths. Extensive experiments show that SynCoS significantly improves multi-event long video generation, achieving smoother transitions and superior long-range coherence, outperforming previous approaches both quantitatively and qualitatively.
comment: Project page with visuals: https://syncos2025.github.io/
☆ EMMOE: A Comprehensive Benchmark for Embodied Mobile Manipulation in Open Environments
Developing autonomous home robots controlled by natural language has long been a pursuit of human. While advancements in large language models (LLMs) and embodied intelligence make this goal closer, several challenges persist: the lack of a unified benchmark for more complex robot tasks, limited evaluation methods and metrics, data incompatibility between LLMs and mobile manipulation trajectories. To address these issues, we introduce Embodied Mobile Manipulation in Open Environments (EMMOE), which requires agents to interpret user instructions and execute long-horizon everyday tasks in continuous space. EMMOE seamlessly integrates high-level and low-level embodied tasks into a unified framework, along with three new metrics for more diverse assessment. Additionally, we collect EMMOE-100, which features in various task attributes, detailed process annotations, re-plans after failures, and two sub-datasets for LLM training. Furthermore, we design HomieBot, a sophisticated agent system consists of LLM with Direct Preference Optimization (DPO), light weighted navigation and manipulation models, and multiple error detection mechanisms. Finally, we demonstrate HomieBot's performance and the evaluation of different models and policies.
☆ BiasEdit: Debiasing Stereotyped Language Models via Model Editing NAACL 2025
Previous studies have established that language models manifest stereotyped biases. Existing debiasing strategies, such as retraining a model with counterfactual data, representation projection, and prompting often fail to efficiently eliminate bias or directly alter the models' biased internal representations. To address these issues, we propose BiasEdit, an efficient model editing method to remove stereotypical bias from language models through lightweight networks that act as editors to generate parameter updates. BiasEdit employs a debiasing loss guiding editor networks to conduct local edits on partial parameters of a language model for debiasing while preserving the language modeling abilities during editing through a retention loss. Experiments on StereoSet and Crows-Pairs demonstrate the effectiveness, efficiency, and robustness of BiasEdit in eliminating bias compared to tangental debiasing baselines and little to no impact on the language models' general capabilities. In addition, we conduct bias tracing to probe bias in various modules and explore bias editing impacts on different components of language models.
comment: Accepted by TrustNLP @ NAACL 2025
☆ When Discourse Stalls: Moving Past Five Semantic Stopsigns about Generative AI in Design Research
This essay examines how Generative AI (GenAI) is rapidly transforming design practices and how discourse often falls into over-simplified narratives that impede meaningful research and practical progress. We identify and deconstruct five prevalent "semantic stopsigns" -- reductive framings about GenAI in design that halt deeper inquiry and limit productive engagement. Reflecting upon two expert workshops at ACM conferences and semi-structured interviews with design practitioners, we analyze how these stopsigns manifest in research and practice. Our analysis develops mid-level knowledge that bridges theoretical discourse and practical implementation, helping designers and researchers interrogate common assumptions about GenAI in their own contexts. By recasting these stopsigns into more nuanced frameworks, we provide the design research community with practical approaches for thinking about and working with these emerging technologies.
MoE-Loco: Mixture of Experts for Multitask Locomotion
We present MoE-Loco, a Mixture of Experts (MoE) framework for multitask locomotion for legged robots. Our method enables a single policy to handle diverse terrains, including bars, pits, stairs, slopes, and baffles, while supporting quadrupedal and bipedal gaits. Using MoE, we mitigate the gradient conflicts that typically arise in multitask reinforcement learning, improving both training efficiency and performance. Our experiments demonstrate that different experts naturally specialize in distinct locomotion behaviors, which can be leveraged for task migration and skill composition. We further validate our approach in both simulation and real-world deployment, showcasing its robustness and adaptability.
comment: 8 pages, 10 figures
☆ Can We Detect Failures Without Failure Data? Uncertainty-Aware Runtime Failure Detection for Imitation Learning Policies
Recent years have witnessed impressive robotic manipulation systems driven by advances in imitation learning and generative modeling, such as diffusion- and flow-based approaches. As robot policy performance increases, so does the complexity and time horizon of achievable tasks, inducing unexpected and diverse failure modes that are difficult to predict a priori. To enable trustworthy policy deployment in safety-critical human environments, reliable runtime failure detection becomes important during policy inference. However, most existing failure detection approaches rely on prior knowledge of failure modes and require failure data during training, which imposes a significant challenge in practicality and scalability. In response to these limitations, we present FAIL-Detect, a modular two-stage approach for failure detection in imitation learning-based robotic manipulation. To accurately identify failures from successful training data alone, we frame the problem as sequential out-of-distribution (OOD) detection. We first distill policy inputs and outputs into scalar signals that correlate with policy failures and capture epistemic uncertainty. FAIL-Detect then employs conformal prediction (CP) as a versatile framework for uncertainty quantification with statistical guarantees. Empirically, we thoroughly investigate both learned and post-hoc scalar signal candidates on diverse robotic manipulation tasks. Our experiments show learned signals to be mostly consistently effective, particularly when using our novel flow-based density estimator. Furthermore, our method detects failures more accurately and faster than state-of-the-art (SOTA) failure detection baselines. These results highlight the potential of FAIL-Detect to enhance the safety and reliability of imitation learning-based robotic systems as they progress toward real-world deployment.
☆ Reasoning and Sampling-Augmented MCQ Difficulty Prediction via LLMs
The difficulty of multiple-choice questions (MCQs) is a crucial factor for educational assessments. Predicting MCQ difficulty is challenging since it requires understanding both the complexity of reaching the correct option and the plausibility of distractors, i.e., incorrect options. In this paper, we propose a novel, two-stage method to predict the difficulty of MCQs. First, to better estimate the complexity of each MCQ, we use large language models (LLMs) to augment the reasoning steps required to reach each option. We use not just the MCQ itself but also these reasoning steps as input to predict the difficulty. Second, to capture the plausibility of distractors, we sample knowledge levels from a distribution to account for variation among students responding to the MCQ. This setup, inspired by item response theory (IRT), enable us to estimate the likelihood of students selecting each (both correct and incorrect) option. We align these predictions with their ground truth values, using a Kullback-Leibler (KL) divergence-based regularization objective, and use estimated likelihoods to predict MCQ difficulty. We evaluate our method on two real-world \emph{math} MCQ and response datasets with ground truth difficulty values estimated using IRT. Experimental results show that our method outperforms all baselines, up to a 28.3\% reduction in mean squared error and a 34.6\% improvement in the coefficient of determination. We also qualitatively discuss how our novel method results in higher accuracy in predicting MCQ difficulty.
Graph of AI Ideas: Leveraging Knowledge Graphs and LLMs for AI Research Idea Generation
Reading relevant scientific papers and analyzing research development trends is a critical step in generating new scientific ideas. However, the rapid increase in the volume of research literature and the complex citation relationships make it difficult for researchers to quickly analyze and derive meaningful research trends. The development of large language models (LLMs) has provided a novel approach for automatically summarizing papers and generating innovative research ideas. However, existing paper-based idea generation methods either simply input papers into LLMs via prompts or form logical chains of creative development based on citation relationships, without fully exploiting the semantic information embedded in these citations. Inspired by knowledge graphs and human cognitive processes, we propose a framework called the Graph of AI Ideas (GoAI) for the AI research field, which is dominated by open-access papers. This framework organizes relevant literature into entities within a knowledge graph and summarizes the semantic information contained in citations into relations within the graph. This organization effectively reflects the relationships between two academic papers and the advancement of the AI research field. Such organization aids LLMs in capturing the current progress of research, thereby enhancing their creativity. Experimental results demonstrate the effectiveness of our approach in generating novel, clear, and effective research ideas.
comment: Work in progress
☆ DAFE: LLM-Based Evaluation Through Dynamic Arbitration for Free-Form Question-Answering
Evaluating Large Language Models (LLMs) free-form generated responses remains a challenge due to their diverse and open-ended nature. Traditional supervised signal-based automatic metrics fail to capture semantic equivalence or handle the variability of open-ended responses, while human evaluation, though reliable, is resource-intensive. Leveraging LLMs as evaluators offers a promising alternative due to their strong language understanding and instruction-following capabilities. Taking advantage of these capabilities, we propose the Dynamic Arbitration Framework for Evaluation (DAFE), which employs two primary LLM-as-judges and engages a third arbitrator only in cases of disagreements. This selective arbitration prioritizes evaluation reliability while reducing unnecessary computational demands compared to conventional majority voting. DAFE utilizes task-specific reference answers with dynamic arbitration to enhance judgment accuracy, resulting in significant improvements in evaluation metrics such as Macro F1 and Cohen's Kappa. Through experiments, including a comprehensive human evaluation, we demonstrate DAFE's ability to provide consistent, scalable, and resource-efficient assessments, establishing it as a robust framework for evaluating free-form model outputs.
☆ Mellow: a small audio language model for reasoning
Multimodal Audio-Language Models (ALMs) can understand and reason over both audio and text. Typically, reasoning performance correlates with model size, with the best results achieved by models exceeding 8 billion parameters. However, no prior work has explored enabling small audio-language models to perform reasoning tasks, despite the potential applications for edge devices. To address this gap, we introduce Mellow, a small Audio-Language Model specifically designed for reasoning. Mellow achieves state-of-the-art performance among existing small audio-language models and surpasses several larger models in reasoning capabilities. For instance, Mellow scores 52.11 on MMAU, comparable to SoTA Qwen2 Audio (which scores 52.5) while using 50 times fewer parameters and being trained on 60 times less data (audio hrs). To train Mellow, we introduce ReasonAQA, a dataset designed to enhance audio-grounded reasoning in models. It consists of a mixture of existing datasets (30% of the data) and synthetically generated data (70%). The synthetic dataset is derived from audio captioning datasets, where Large Language Models (LLMs) generate detailed and multiple-choice questions focusing on audio events, objects, acoustic scenes, signal properties, semantics, and listener emotions. To evaluate Mellow's reasoning ability, we benchmark it on a diverse set of tasks, assessing on both in-distribution and out-of-distribution data, including audio understanding, deductive reasoning, and comparative reasoning. Finally, we conduct extensive ablation studies to explore the impact of projection layer choices, synthetic data generation methods, and language model pretraining on reasoning performance. Our training dataset, findings, and baseline pave the way for developing small ALMs capable of reasoning.
comment: Checkpoint and dataset available at: https://github.com/soham97/mellow
☆ Chemical reasoning in LLMs unlocks steerable synthesis planning and reaction mechanism elucidation
While machine learning algorithms have been shown to excel at specific chemical tasks, they have struggled to capture the strategic thinking that characterizes expert chemical reasoning, limiting their widespread adoption. Here we demonstrate that large language models (LLMs) can serve as powerful chemical reasoning engines when integrated with traditional search algorithms, enabling a new approach to computer-aided chemistry that mirrors human expert thinking. Rather than using LLMs to directly manipulate chemical structures, we leverage their ability to evaluate chemical strategies and guide search algorithms toward chemically meaningful solutions. We demonstrate this paradigm through two fundamental challenges: strategy-aware retrosynthetic planning and mechanism elucidation. In retrosynthetic planning, our method allows chemists to specify desired synthetic strategies in natural language to find routes that satisfy these constraints in vast searches. In mechanism elucidation, LLMs guide the search for plausible reaction mechanisms by combining chemical principles with systematic exploration. Our approach shows strong performance across diverse chemical tasks, with larger models demonstrating increasingly sophisticated chemical reasoning. Our approach establishes a new paradigm for computer-aided chemistry that combines the strategic understanding of LLMs with the precision of traditional chemical tools, opening possibilities for more intuitive and powerful chemical reasoning systems.
☆ GTR: Guided Thought Reinforcement Prevents Thought Collapse in RL-based VLM Agent Training
Reinforcement learning with verifiable outcome rewards (RLVR) has effectively scaled up chain-of-thought (CoT) reasoning in large language models (LLMs). Yet, its efficacy in training vision-language model (VLM) agents for goal-directed action reasoning in visual environments is less established. This work investigates this problem through extensive experiments on complex card games, such as 24 points, and embodied tasks from ALFWorld. We find that when rewards are based solely on action outcomes, RL fails to incentivize CoT reasoning in VLMs, instead leading to a phenomenon we termed thought collapse, characterized by a rapid loss of diversity in the agent's thoughts, state-irrelevant and incomplete reasoning, and subsequent invalid actions, resulting in negative rewards. To counteract thought collapse, we highlight the necessity of process guidance and propose an automated corrector that evaluates and refines the agent's reasoning at each RL step. This simple and scalable GTR (Guided Thought Reinforcement) framework trains reasoning and action simultaneously without the need for dense, per-step human labeling. Our experiments demonstrate that GTR significantly enhances the performance and generalization of the LLaVA-7b model across various visual environments, achieving 3-5 times higher task success rates compared to SoTA models with notably smaller model sizes.
☆ A Triple-Inertial Accelerated Alternating Optimization Method for Deep Learning Training
The stochastic gradient descent (SGD) algorithm has achieved remarkable success in training deep learning models. However, it has several limitations, including susceptibility to vanishing gradients, sensitivity to input data, and a lack of robust theoretical guarantees. In recent years, alternating minimization (AM) methods have emerged as a promising alternative for model training by employing gradient-free approaches to iteratively update model parameters. Despite their potential, these methods often exhibit slow convergence rates. To address this challenge, we propose a novel Triple-Inertial Accelerated Alternating Minimization (TIAM) framework for neural network training. The TIAM approach incorporates a triple-inertial acceleration strategy with a specialized approximation method, facilitating targeted acceleration of different terms in each sub-problem optimization. This integration improves the efficiency of convergence, achieving superior performance with fewer iterations. Additionally, we provide a convergence analysis of the TIAM algorithm, including its global convergence properties and convergence rate. Extensive experiments validate the effectiveness of the TIAM method, showing significant improvements in generalization capability and computational efficiency compared to existing approaches, particularly when applied to the rectified linear unit (ReLU) and its variants.
☆ Optimizing Ride-Pooling Operations with Extended Pickup and Drop-Off Flexibility
The Ride-Pool Matching Problem (RMP) is central to on-demand ride-pooling services, where vehicles must be matched with multiple requests while adhering to service constraints such as pickup delays, detour limits, and vehicle capacity. Most existing RMP solutions assume passengers are picked up and dropped off at their original locations, neglecting the potential for passengers to walk to nearby spots to meet vehicles. This assumption restricts the optimization potential in ride-pooling operations. In this paper, we propose a novel matching method that incorporates extended pickup and drop-off areas for passengers. We first design a tree-based approach to efficiently generate feasible matches between passengers and vehicles. Next, we optimize vehicle routes to cover all designated pickup and drop-off locations while minimizing total travel distance. Finally, we employ dynamic assignment strategies to achieve optimal matching outcomes. Experiments on city-scale taxi datasets demonstrate that our method improves the number of served requests by up to 13\% and average travel distance by up to 21\% compared to leading existing solutions, underscoring the potential of leveraging passenger mobility to significantly enhance ride-pooling service efficiency.
☆ Accelerating MoE Model Inference with Expert Sharding
Mixture of experts (MoE) models achieve state-of-the-art results in language modeling but suffer from inefficient hardware utilization due to imbalanced token routing and communication overhead. While prior work has focused on optimizing MoE training and decoder architectures, inference for encoder-based MoE models in a multi-GPU with expert parallelism setting remains underexplored. We introduce MoEShard, an inference system that achieves perfect load balancing through tensor sharding of MoE experts. Unlike existing approaches that rely on heuristic capacity factors or drop tokens, MoEShard evenly distributes computation across GPUs and ensures full token retention, maximizing utilization regardless of routing skewness. We achieve this through a strategic row- and column-wise decomposition of expert matrices. This reduces idle time and avoids bottlenecks caused by imbalanced expert assignments. Furthermore, MoEShard minimizes kernel launches by fusing decomposed expert computations, significantly improving throughput. We evaluate MoEShard against DeepSpeed on encoder-based architectures, demonstrating speedups of up to 6.4$\times$ in time to first token (TTFT). Our results show that tensor sharding, when properly applied to experts, is a viable and effective strategy for efficient MoE inference.
comment: To appear in the proceedings of the 5th Workshop on Machine Learning and Systems (EuroMLSys 25)
Controlling Latent Diffusion Using Latent CLIP
Instead of performing text-conditioned denoising in the image domain, latent diffusion models (LDMs) operate in latent space of a variational autoencoder (VAE), enabling more efficient processing at reduced computational costs. However, while the diffusion process has moved to the latent space, the contrastive language-image pre-training (CLIP) models, as used in many image processing tasks, still operate in pixel space. Doing so requires costly VAE-decoding of latent images before they can be processed. In this paper, we introduce Latent-CLIP, a CLIP model that operates directly in the latent space. We train Latent-CLIP on 2.7B pairs of latent images and descriptive texts, and show that it matches zero-shot classification performance of similarly sized CLIP models on both the ImageNet benchmark and a LDM-generated version of it, demonstrating its effectiveness in assessing both real and generated content. Furthermore, we construct Latent-CLIP rewards for reward-based noise optimization (ReNO) and show that they match the performance of their CLIP counterparts on GenEval and T2I-CompBench while cutting the cost of the total pipeline by 21%. Finally, we use Latent-CLIP to guide generation away from harmful content, achieving strong performance on the inappropriate image prompts (I2P) benchmark and a custom evaluation, without ever requiring the costly step of decoding intermediate images.
☆ ICPR 2024 Competition on Rider Intention Prediction
The recent surge in the vehicle market has led to an alarming increase in road accidents. This underscores the critical importance of enhancing road safety measures, particularly for vulnerable road users like motorcyclists. Hence, we introduce the rider intention prediction (RIP) competition that aims to address challenges in rider safety by proactively predicting maneuvers before they occur, thereby strengthening rider safety. This capability enables the riders to react to the potential incorrect maneuvers flagged by advanced driver assistance systems (ADAS). We collect a new dataset, namely, rider action anticipation dataset (RAAD) for the competition consisting of two tasks: single-view RIP and multi-view RIP. The dataset incorporates a spectrum of traffic conditions and challenging navigational maneuvers on roads with varying lighting conditions. For the competition, we received seventy-five registrations and five team submissions for inference of which we compared the methods of the top three performing teams on both the RIP tasks: one state-space model (Mamba2) and two learning-based approaches (SVM and CNN-LSTM). The results indicate that the state-space model outperformed the other methods across the entire dataset, providing a balanced performance across maneuver classes. The SVM-based RIP method showed the second-best performance when using random sampling and SMOTE. However, the CNN-LSTM method underperformed, primarily due to class imbalance issues, particularly struggling with minority classes. This paper details the proposed RAAD dataset and provides a summary of the submissions for the RIP 2024 competition.
☆ AnyMoLe: Any Character Motion In-betweening Leveraging Video Diffusion Models CVPR 2025
Despite recent advancements in learning-based motion in-betweening, a key limitation has been overlooked: the requirement for character-specific datasets. In this work, we introduce AnyMoLe, a novel method that addresses this limitation by leveraging video diffusion models to generate motion in-between frames for arbitrary characters without external data. Our approach employs a two-stage frame generation process to enhance contextual understanding. Furthermore, to bridge the domain gap between real-world and rendered character animations, we introduce ICAdapt, a fine-tuning technique for video diffusion models. Additionally, we propose a ``motion-video mimicking'' optimization technique, enabling seamless motion generation for characters with arbitrary joint structures using 2D and 3D-aware features. AnyMoLe significantly reduces data dependency while generating smooth and realistic transitions, making it applicable to a wide range of motion in-betweening tasks.
comment: 11 pages, 10 figures, CVPR 2025
☆ V-Max: Making RL practical for Autonomous Driving
Learning-based decision-making has the potential to enable generalizable Autonomous Driving (AD) policies, reducing the engineering overhead of rule-based approaches. Imitation Learning (IL) remains the dominant paradigm, benefiting from large-scale human demonstration datasets, but it suffers from inherent limitations such as distribution shift and imitation gaps. Reinforcement Learning (RL) presents a promising alternative, yet its adoption in AD remains limited due to the lack of standardized and efficient research frameworks. To this end, we introduce V-Max, an open research framework providing all the necessary tools to make RL practical for AD. V-Max is built on Waymax, a hardware-accelerated AD simulator designed for large-scale experimentation. We extend it using ScenarioNet's approach, enabling the fast simulation of diverse AD datasets. V-Max integrates a set of observation and reward functions, transformer-based encoders, and training pipelines. Additionally, it includes adversarial evaluation settings and an extensive set of evaluation metrics. Through a large-scale benchmark, we analyze how network architectures, observation functions, training data, and reward shaping impact RL performance.
☆ InfluenceNet: AI Models for Banzhaf and Shapley Value Prediction
Power indices are essential in assessing the contribution and influence of individual agents in multi-agent systems, providing crucial insights into collaborative dynamics and decision-making processes. While invaluable, traditional computational methods for exact or estimated power indices values require significant time and computational constraints, especially for large $(n\ge10)$ coalitions. These constraints have historically limited researchers' ability to analyse complex multi-agent interactions comprehensively. To address this limitation, we introduce a novel Neural Networks-based approach that efficiently estimates power indices for voting games, demonstrating comparable and often superiour performance to existing tools in terms of both speed and accuracy. This method not only addresses existing computational bottlenecks, but also enables rapid analysis of large coalitions, opening new avenues for multi-agent system research by overcoming previous computational limitations and providing researchers with a more accessible, scalable analytical tool.This increased efficiency will allow for the analysis of more complex and realistic multi-agent scenarios.
comment: 20 pages main text + 6 pages appendix, 11 figures. Accepted to IntelliSys 2025
☆ Robust Latent Matters: Boosting Image Generation with Sampling Error
Recent image generation schemes typically capture image distribution in a pre-constructed latent space relying on a frozen image tokenizer. Though the performance of tokenizer plays an essential role to the successful generation, its current evaluation metrics (e.g. rFID) fail to precisely assess the tokenizer and correlate its performance to the generation quality (e.g. gFID). In this paper, we comprehensively analyze the reason for the discrepancy of reconstruction and generation qualities in a discrete latent space, and, from which, we propose a novel plug-and-play tokenizer training scheme to facilitate latent space construction. Specifically, a latent perturbation approach is proposed to simulate sampling noises, i.e., the unexpected tokens sampled, from the generative process. With the latent perturbation, we further propose (1) a novel tokenizer evaluation metric, i.e., pFID, which successfully correlates the tokenizer performance to generation quality and (2) a plug-and-play tokenizer training scheme, which significantly enhances the robustness of tokenizer thus boosting the generation quality and convergence speed. Extensive benchmarking are conducted with 11 advanced discrete image tokenizers with 2 autoregressive generation models to validate our approach. The tokenizer trained with our proposed latent perturbation achieve a notable 1.60 gFID with classifier-free guidance (CFG) and 3.45 gFID without CFG with a $\sim$400M generator. Code: https://github.com/lxa9867/ImageFolder.
comment: 17 pages, 13 figures, 6 tables
☆ MINT-Demo: Membership Inference Test Demonstrator CVPR 24
We present the Membership Inference Test Demonstrator, to emphasize the need for more transparent machine learning training processes. MINT is a technique for experimentally determining whether certain data has been used during the training of machine learning models. We conduct experiments with popular face recognition models and 5 public databases containing over 22M images. Promising results, up to 89% accuracy are achieved, suggesting that it is possible to recognize if an AI model has been trained with specific data. Finally, we present a MINT platform as demonstrator of this technology aimed to promote transparency in AI training.
comment: Demo Paper Presented at Demo Track CVPR 24' and at AAAI 25' AIGOV workshop
☆ Adding Chocolate to Mint: Mitigating Metric Interference in Machine Translation
As automatic metrics become increasingly stronger and widely adopted, the risk of unintentionally "gaming the metric" during model development rises. This issue is caused by metric interference (Mint), i.e., the use of the same or related metrics for both model tuning and evaluation. Mint can misguide practitioners into being overoptimistic about the performance of their systems: as system outputs become a function of the interfering metric, their estimated quality loses correlation with human judgments. In this work, we analyze two common cases of Mint in machine translation-related tasks: filtering of training data, and decoding with quality signals. Importantly, we find that Mint strongly distorts instance-level metric scores, even when metrics are not directly optimized for -- questioning the common strategy of leveraging a different, yet related metric for evaluation that is not used for tuning. To address this problem, we propose MintAdjust, a method for more reliable evaluation under Mint. On the WMT24 MT shared task test set, MintAdjust ranks translations and systems more accurately than state-of-the-art-metrics across a majority of language pairs, especially for high-quality systems. Furthermore, MintAdjust outperforms AutoRank, the ensembling method used by the organizers.
☆ Prototype-based Heterogeneous Federated Learning for Blade Icing Detection in Wind Turbines with Class Imbalanced Data
Wind farms, typically in high-latitude regions, face a high risk of blade icing. Traditional centralized training methods raise serious privacy concerns. To enhance data privacy in detecting wind turbine blade icing, traditional federated learning (FL) is employed. However, data heterogeneity, resulting from collections across wind farms in varying environmental conditions, impacts the model's optimization capabilities. Moreover, imbalances in wind turbine data lead to models that tend to favor recognizing majority classes, thus neglecting critical icing anomalies. To tackle these challenges, we propose a federated prototype learning model for class-imbalanced data in heterogeneous environments to detect wind turbine blade icing. We also propose a contrastive supervised loss function to address the class imbalance problem. Experiments on real data from 20 turbines across two wind farms show our method outperforms five FL models and five class imbalance methods, with an average improvement of 19.64\% in \( mF_{\beta} \) and 5.73\% in \( m \)BA compared to the second-best method, BiFL.
☆ Evaluating Interpretable Reinforcement Learning by Distilling Policies into Programs
There exist applications of reinforcement learning like medicine where policies need to be ''interpretable'' by humans. User studies have shown that some policy classes might be more interpretable than others. However, it is costly to conduct human studies of policy interpretability. Furthermore, there is no clear definition of policy interpretabiliy, i.e., no clear metrics for interpretability and thus claims depend on the chosen definition. We tackle the problem of empirically evaluating policies interpretability without humans. Despite this lack of clear definition, researchers agree on the notions of ''simulatability'': policy interpretability should relate to how humans understand policy actions given states. To advance research in interpretable reinforcement learning, we contribute a new methodology to evaluate policy interpretability. This new methodology relies on proxies for simulatability that we use to conduct a large-scale empirical evaluation of policy interpretability. We use imitation learning to compute baseline policies by distilling expert neural networks into small programs. We then show that using our methodology to evaluate the baselines interpretability leads to similar conclusions as user studies. We show that increasing interpretability does not necessarily reduce performances and can sometimes increase them. We also show that there is no policy class that better trades off interpretability and performance across tasks making it necessary for researcher to have methodologies for comparing policies interpretability.
comment: 12 pages of main text, under review
☆ Seeing and Reasoning with Confidence: Supercharging Multimodal LLMs with an Uncertainty-Aware Agentic Framework
Multimodal large language models (MLLMs) show promise in tasks like visual question answering (VQA) but still face challenges in multimodal reasoning. Recent works adapt agentic frameworks or chain-of-thought (CoT) reasoning to improve performance. However, CoT-based multimodal reasoning often demands costly data annotation and fine-tuning, while agentic approaches relying on external tools risk introducing unreliable output from these tools. In this paper, we propose Seeing and Reasoning with Confidence (SRICE), a training-free multimodal reasoning framework that integrates external vision models with uncertainty quantification (UQ) into an MLLM to address these challenges. Specifically, SRICE guides the inference process by allowing MLLM to autonomously select regions of interest through multi-stage interactions with the help of external tools. We propose to use a conformal prediction-based approach to calibrate the output of external tools and select the optimal tool by estimating the uncertainty of an MLLM's output. Our experiment shows that the average improvement of SRICE over the base MLLM is 4.6% on five datasets and the performance on some datasets even outperforms fine-tuning-based methods, revealing the significance of ensuring reliable tool use in an MLLM agent.
☆ General-Purpose Aerial Intelligent Agents Empowered by Large Language Models
The emergence of large language models (LLMs) opens new frontiers for unmanned aerial vehicle (UAVs), yet existing systems remain confined to predefined tasks due to hardware-software co-design challenges. This paper presents the first aerial intelligent agent capable of open-world task execution through tight integration of LLM-based reasoning and robotic autonomy. Our hardware-software co-designed system addresses two fundamental limitations: (1) Onboard LLM operation via an edge-optimized computing platform, achieving 5-6 tokens/sec inference for 14B-parameter models at 220W peak power; (2) A bidirectional cognitive architecture that synergizes slow deliberative planning (LLM task planning) with fast reactive control (state estimation, mapping, obstacle avoidance, and motion planning). Validated through preliminary results using our prototype, the system demonstrates reliable task planning and scene understanding in communication-constrained environments, such as sugarcane monitoring, power grid inspection, mine tunnel exploration, and biological observation applications. This work establishes a novel framework for embodied aerial artificial intelligence, bridging the gap between task planning and robotic autonomy in open environments.
☆ D3PO: Preference-Based Alignment of Discrete Diffusion Models
Diffusion models have achieved state-of-the-art performance across multiple domains, with recent advancements extending their applicability to discrete data. However, aligning discrete diffusion models with task-specific preferences remains challenging, particularly in scenarios where explicit reward functions are unavailable. In this work, we introduce Discrete Diffusion DPO (D3PO), the first adaptation of Direct Preference Optimization (DPO) to discrete diffusion models formulated as continuous-time Markov chains. Our approach derives a novel loss function that directly fine-tunes the generative process using preference data while preserving fidelity to a reference distribution. We validate D3PO on a structured binary sequence generation task, demonstrating that the method effectively aligns model outputs with preferences while maintaining structural validity. Our results highlight that D3PO enables controlled fine-tuning without requiring explicit reward models, making it a practical alternative to reinforcement learning-based approaches. Future research will explore extending D3PO to more complex generative tasks, including language modeling and protein sequence generation, as well as investigating alternative noise schedules, such as uniform noising, to enhance flexibility across different applications.
☆ Large Language Models for Outpatient Referral: Problem Definition, Benchmarking and Challenges
Large language models (LLMs) are increasingly applied to outpatient referral tasks across healthcare systems. However, there is a lack of standardized evaluation criteria to assess their effectiveness, particularly in dynamic, interactive scenarios. In this study, we systematically examine the capabilities and limitations of LLMs in managing tasks within Intelligent Outpatient Referral (IOR) systems and propose a comprehensive evaluation framework specifically designed for such systems. This framework comprises two core tasks: static evaluation, which focuses on evaluating the ability of predefined outpatient referrals, and dynamic evaluation, which evaluates capabilities of refining outpatient referral recommendations through iterative dialogues. Our findings suggest that LLMs offer limited advantages over BERT-like models, but show promise in asking effective questions during interactive dialogues.
☆ OminiControl2: Efficient Conditioning for Diffusion Transformers
Fine-grained control of text-to-image diffusion transformer models (DiT) remains a critical challenge for practical deployment. While recent advances such as OminiControl and others have enabled a controllable generation of diverse control signals, these methods face significant computational inefficiency when handling long conditional inputs. We present OminiControl2, an efficient framework that achieves efficient image-conditional image generation. OminiControl2 introduces two key innovations: (1) a dynamic compression strategy that streamlines conditional inputs by preserving only the most semantically relevant tokens during generation, and (2) a conditional feature reuse mechanism that computes condition token features only once and reuses them across denoising steps. These architectural improvements preserve the original framework's parameter efficiency and multi-modal versatility while dramatically reducing computational costs. Our experiments demonstrate that OminiControl2 reduces conditional processing overhead by over 90% compared to its predecessor, achieving an overall 5.9$\times$ speedup in multi-conditional generation scenarios. This efficiency enables the practical implementation of complex, multi-modal control for high-quality image synthesis with DiT models.
☆ Beyond Outlining: Heterogeneous Recursive Planning for Adaptive Long-form Writing with Language Models
Long-form writing agents require flexible integration and interaction across information retrieval, reasoning, and composition. Current approaches rely on predetermined workflows and rigid thinking patterns to generate outlines before writing, resulting in constrained adaptability during writing. In this paper we propose a general agent framework that achieves human-like adaptive writing through recursive task decomposition and dynamic integration of three fundamental task types, i.e. retrieval, reasoning, and composition. Our methodology features: 1) a planning mechanism that interleaves recursive task decomposition and execution, eliminating artificial restrictions on writing workflow; and 2) integration of task types that facilitates heterogeneous task decomposition. Evaluations on both fiction writing and technical report generation show that our method consistently outperforms state-of-the-art approaches across all automatic evaluation metrics, which demonstrate the effectiveness and broad applicability of our proposed framework.
comment: 29 pages, 2 figures
☆ Adv-CPG: A Customized Portrait Generation Framework with Facial Adversarial Attacks CVPR-25
Recent Customized Portrait Generation (CPG) methods, taking a facial image and a textual prompt as inputs, have attracted substantial attention. Although these methods generate high-fidelity portraits, they fail to prevent the generated portraits from being tracked and misused by malicious face recognition systems. To address this, this paper proposes a Customized Portrait Generation framework with facial Adversarial attacks (Adv-CPG). Specifically, to achieve facial privacy protection, we devise a lightweight local ID encryptor and an encryption enhancer. They implement progressive double-layer encryption protection by directly injecting the target identity and adding additional identity guidance, respectively. Furthermore, to accomplish fine-grained and personalized portrait generation, we develop a multi-modal image customizer capable of generating controlled fine-grained facial features. To the best of our knowledge, Adv-CPG is the first study that introduces facial adversarial attacks into CPG. Extensive experiments demonstrate the superiority of Adv-CPG, e.g., the average attack success rate of the proposed Adv-CPG is 28.1% and 2.86% higher compared to the SOTA noise-based attack methods and unconstrained attack methods, respectively.
comment: Accepted by CVPR-25
☆ DexGrasp Anything: Towards Universal Robotic Dexterous Grasping with Physics Awareness CVPR 2025
A dexterous hand capable of grasping any object is essential for the development of general-purpose embodied intelligent robots. However, due to the high degree of freedom in dexterous hands and the vast diversity of objects, generating high-quality, usable grasping poses in a robust manner is a significant challenge. In this paper, we introduce DexGrasp Anything, a method that effectively integrates physical constraints into both the training and sampling phases of a diffusion-based generative model, achieving state-of-the-art performance across nearly all open datasets. Additionally, we present a new dexterous grasping dataset containing over 3.4 million diverse grasping poses for more than 15k different objects, demonstrating its potential to advance universal dexterous grasping. The code of our method and our dataset will be publicly released soon.
comment: Accepted by CVPR 2025
☆ MT-NAM: An Efficient and Adaptive Model for Epileptic Seizure Detection
Enhancing the accuracy and efficiency of machine learning algorithms employed in neural interface systems is crucial for advancing next-generation intelligent therapeutic devices. However, current systems often utilize basic machine learning models that do not fully exploit the natural structure of brain signals. Additionally, existing learning models used for neural signal processing often demonstrate low speed and efficiency during inference. To address these challenges, this study introduces Micro Tree-based NAM (MT-NAM), a distilled model based on the recently proposed Neural Additive Models (NAM). The MT-NAM achieves a remarkable 100$\times$ improvement in inference speed compared to standard NAM, without compromising accuracy. We evaluate our approach on the CHB-MIT scalp EEG dataset, which includes recordings from 24 patients with varying numbers of sessions and seizures. NAM achieves an 85.3\% window-based sensitivity and 95\% specificity. Interestingly, our proposed MT-NAM shows only a 2\% reduction in sensitivity compared to the original NAM. To regain this sensitivity, we utilize a test-time template adjuster (T3A) as an update mechanism, enabling our model to achieve higher sensitivity during test time by accommodating transient shifts in neural signals. With this online update approach, MT-NAM achieves the same sensitivity as the standard NAM while achieving approximately 50$\times$ acceleration in inference speed.
comment: Submitted to IEEE-TBME
☆ Aligning Text to Image in Diffusion Models is Easier Than You Think
While recent advancements in generative modeling have significantly improved text-image alignment, some residual misalignment between text and image representations still remains. Although many approaches have attempted to address this issue by fine-tuning models using various reward models, etc., we revisit the challenge from the perspective of representation alignment-an approach that has gained popularity with the success of REPresentation Alignment (REPA). We first argue that conventional text-to-image (T2I) diffusion models, typically trained on paired image and text data (i.e., positive pairs) by minimizing score matching or flow matching losses, is suboptimal from the standpoint of representation alignment. Instead, a better alignment can be achieved through contrastive learning that leverages both positive and negative pairs. To achieve this efficiently even with pretrained models, we introduce a lightweight contrastive fine tuning strategy called SoftREPA that uses soft text tokens. This approach improves alignment with minimal computational overhead by adding fewer than 1M trainable parameters to the pretrained model. Our theoretical analysis demonstrates that our method explicitly increases the mutual information between text and image representations, leading to enhanced semantic consistency. Experimental results across text-to-image generation and text-guided image editing tasks validate the effectiveness of our approach in improving the semantic consistency of T2I generative models.
☆ HASARD: A Benchmark for Vision-Based Safe Reinforcement Learning in Embodied Agents ICLR 2025
Advancing safe autonomous systems through reinforcement learning (RL) requires robust benchmarks to evaluate performance, analyze methods, and assess agent competencies. Humans primarily rely on embodied visual perception to safely navigate and interact with their surroundings, making it a valuable capability for RL agents. However, existing vision-based 3D benchmarks only consider simple navigation tasks. To address this shortcoming, we introduce \textbf{HASARD}, a suite of diverse and complex tasks to $\textbf{HA}$rness $\textbf{SA}$fe $\textbf{R}$L with $\textbf{D}$oom, requiring strategic decision-making, comprehending spatial relationships, and predicting the short-term future. HASARD features three difficulty levels and two action spaces. An empirical evaluation of popular baseline methods demonstrates the benchmark's complexity, unique challenges, and reward-cost trade-offs. Visualizing agent navigation during training with top-down heatmaps provides insight into a method's learning process. Incrementally training across difficulty levels offers an implicit learning curriculum. HASARD is the first safe RL benchmark to exclusively target egocentric vision-based learning, offering a cost-effective and insightful way to explore the potential and boundaries of current and future safe RL methods. The environments and baseline implementations are open-sourced at https://sites.google.com/view/hasard-bench/.
comment: Accepted to ICLR 2025
☆ Investigating Execution-Aware Language Models for Code Optimization
Code optimization is the process of enhancing code efficiency, while preserving its intended functionality. This process often requires a deep understanding of the code execution behavior at run-time to identify and address inefficiencies effectively. Recent studies have shown that language models can play a significant role in automating code optimization. However, these models may have insufficient knowledge of how code execute at run-time. To address this limitation, researchers have developed strategies that integrate code execution information into language models. These strategies have shown promise, enhancing the effectiveness of language models in various software engineering tasks. However, despite the close relationship between code execution behavior and efficiency, the specific impact of these strategies on code optimization remains largely unexplored. This study investigates how incorporating code execution information into language models affects their ability to optimize code. Specifically, we apply three different training strategies to incorporate four code execution aspects -- line executions, line coverage, branch coverage, and variable states -- into CodeT5+, a well-known language model for code. Our results indicate that execution-aware models provide limited benefits compared to the standard CodeT5+ model in optimizing code.
☆ A Grey-box Text Attack Framework using Explainable AI
Explainable AI is a strong strategy implemented to understand complex black-box model predictions in a human interpretable language. It provides the evidence required to execute the use of trustworthy and reliable AI systems. On the other hand, however, it also opens the door to locating possible vulnerabilities in an AI model. Traditional adversarial text attack uses word substitution, data augmentation techniques and gradient-based attacks on powerful pre-trained Bidirectional Encoder Representations from Transformers (BERT) variants to generate adversarial sentences. These attacks are generally whitebox in nature and not practical as they can be easily detected by humans E.g. Changing the word from "Poor" to "Rich". We proposed a simple yet effective Grey-box cum Black-box approach that does not require the knowledge of the model while using a set of surrogate Transformer/BERT models to perform the attack using Explainable AI techniques. As Transformers are the current state-of-the-art models for almost all Natural Language Processing (NLP) tasks, an attack generated from BERT1 is transferable to BERT2. This transferability is made possible due to the attention mechanism in the transformer that allows the model to capture long-range dependencies in a sequence. Using the power of BERT generalisation via attention, we attempt to exploit how transformers learn by attacking a few surrogate transformer variants which are all based on a different architecture. We demonstrate that this approach is highly effective to generate semantically good sentences by changing as little as one word that is not detectable by humans while still fooling other BERT models.
☆ EgoBlind: Towards Egocentric Visual Assistance for the Blind People
We present EgoBlind, the first egocentric VideoQA dataset collected from blind individuals to evaluate the assistive capabilities of contemporary multimodal large language models (MLLMs). EgoBlind comprises 1,210 videos that record the daily lives of real blind users from a first-person perspective. It also features 4,927 questions directly posed or generated and verified by blind individuals to reflect their needs for visual assistance under various scenarios. We provide each question with an average of 3 reference answers to alleviate subjective evaluation. Using EgoBlind, we comprehensively evaluate 15 leading MLLMs and find that all models struggle, with the best performers achieving accuracy around 56\%, far behind human performance of 87.4\%. To guide future advancements, we identify and summarize major limitations of existing MLLMs in egocentric visual assistance for the blind and provide heuristic suggestions for improvement. With these efforts, we hope EgoBlind can serve as a valuable foundation for developing more effective AI assistants to enhance the independence of the blind individuals' lives.
comment: Preprint. Under Review
☆ CL-MVSNet: Unsupervised Multi-view Stereo with Dual-level Contrastive Learning ICCV2023
Unsupervised Multi-View Stereo (MVS) methods have achieved promising progress recently. However, previous methods primarily depend on the photometric consistency assumption, which may suffer from two limitations: indistinguishable regions and view-dependent effects, e.g., low-textured areas and reflections. To address these issues, in this paper, we propose a new dual-level contrastive learning approach, named CL-MVSNet. Specifically, our model integrates two contrastive branches into an unsupervised MVS framework to construct additional supervisory signals. On the one hand, we present an image-level contrastive branch to guide the model to acquire more context awareness, thus leading to more complete depth estimation in indistinguishable regions. On the other hand, we exploit a scene-level contrastive branch to boost the representation ability, improving robustness to view-dependent effects. Moreover, to recover more accurate 3D geometry, we introduce an L0.5 photometric consistency loss, which encourages the model to focus more on accurate points while mitigating the gradient penalty of undesirable ones. Extensive experiments on DTU and Tanks&Temples benchmarks demonstrate that our approach achieves state-of-the-art performance among all end-to-end unsupervised MVS frameworks and outperforms its supervised counterpart by a considerable margin without fine-tuning.
comment: Accpetd by ICCV2023
☆ DeepRAG: Building a Custom Hindi Embedding Model for Retrieval Augmented Generation from Scratch
In this paper, I present our work on DeepRAG, a specialized embedding model we built specifically for Hindi language in RAG systems. While LLMs have gotten really good at generating text, their performance in retrieval tasks still depends heavily on having quality embeddings - something that's been lacking for Hindi despite being one of the world's most spoken languages. We tackled this by creating embeddings from the ground up rather than just fine-tuning existing models. Our process involved collecting diverse Hindi texts (over 2.7M samples), training a custom SentencePiece tokenizer that actually understands Hindi morphology, designing transformer architecture with Hindi-specific attention mechanisms, and optimizing with contrastive learning. Results were honestly better than I expected - we saw a 23% improvement in retrieval precision compared to the multilingual models everyone's been using. The paper details our methodology, which I think could help others working with low-resource languages where the one-size-fits-all multilingual models fall short. We've also integrated our embeddings with LangChain to build complete Hindi RAG systems, which might be useful for practitioners. While there's still tons more to explore, I believe this work addresses a critical gap for Hindi NLP and demonstrates why language-specific approaches matter.
☆ OLMD: Orientation-aware Long-term Motion Decoupling for Continuous Sign Language Recognition
The primary challenge in continuous sign language recognition (CSLR) mainly stems from the presence of multi-orientational and long-term motions. However, current research overlooks these crucial aspects, significantly impacting accuracy. To tackle these issues, we propose a novel CSLR framework: Orientation-aware Long-term Motion Decoupling (OLMD), which efficiently aggregates long-term motions and decouples multi-orientational signals into easily interpretable components. Specifically, our innovative Long-term Motion Aggregation (LMA) module filters out static redundancy while adaptively capturing abundant features of long-term motions. We further enhance orientation awareness by decoupling complex movements into horizontal and vertical components, allowing for motion purification in both orientations. Additionally, two coupling mechanisms are proposed: stage and cross-stage coupling, which together enrich multi-scale features and improve the generalization capabilities of the model. Experimentally, OLMD shows SOTA performance on three large-scale datasets: PHOENIX14, PHOENIX14-T, and CSL-Daily. Notably, we improved the word error rate (WER) on PHOENIX14 by an absolute 1.6% compared to the previous SOTA
☆ A Cascading Cooperative Multi-agent Framework for On-ramp Merging Control Integrating Large Language Models
Traditional Reinforcement Learning (RL) suffers from replicating human-like behaviors, generalizing effectively in multi-agent scenarios, and overcoming inherent interpretability issues.These tasks are compounded when deep environment understanding, agent coordination and dynamic optimization are required. While Large Language Model (LLM) enhanced methods have shown promise in generalization and interoperability, they often neglect necessary multi-agent coordination. Therefore, we introduce the Cascading Cooperative Multi-agent (CCMA) framework, integrating RL for individual interactions, a fine-tuned LLM for regional cooperation, a reward function for global optimization, and the Retrieval-augmented Generation mechanism to dynamically optimize decision-making across complex driving scenarios. Our experiments demonstrate that the CCMA outperforms existing RL methods, demonstrating significant improvements in both micro and macro-level performance in complex driving environments.
☆ Guess What I am Thinking: A Benchmark for Inner Thought Reasoning of Role-Playing Language Agents
Recent advances in LLM-based role-playing language agents (RPLAs) have attracted broad attention in various applications. While chain-of-thought reasoning has shown importance in many tasks for LLMs, the internal thinking processes of RPLAs remain unexplored. Understanding characters' inner thoughts is crucial for developing advanced RPLAs. In this paper, we introduce ROLETHINK, a novel benchmark constructed from literature for evaluating character thought generation. We propose the task of inner thought reasoning, which includes two sets: the gold set that compares generated thoughts with original character monologues, and the silver set that uses expert synthesized character analyses as references. To address this challenge, we propose MIRROR, a chain-of-thought approach that generates character thoughts by retrieving memories, predicting character reactions, and synthesizing motivations. Through extensive experiments, we demonstrate the importance of inner thought reasoning for RPLAs, and MIRROR consistently outperforms existing methods. Resources are available at https://github.com/airaer1998/RPA_Thought.
☆ RigoChat 2: an adapted language model to Spanish using a bounded dataset and reduced hardware
Large Language Models (LLMs) have become a key element of modern artificial intelligence, demonstrating the ability to address a wide range of language processing tasks at unprecedented levels of accuracy without the need of collecting problem-specific data. However, these versatile models face a significant challenge: both their training and inference processes require substantial computational resources, time, and memory. Consequently, optimizing this kind of models to minimize these requirements is crucial. In this article, we demonstrate that, with minimal resources and in a remarkably short time, it is possible to enhance a state-of-the-art model, specifically for a given language task, without compromising its overall capabilities using a relatively small pretrained LLM as a basis. Specifically, we present our use case, RigoChat 2, illustrating how LLMs can be adapted to achieve superior results in Spanish-language tasks.
☆ Privacy-Enhancing Paradigms within Federated Multi-Agent Systems
LLM-based Multi-Agent Systems (MAS) have proven highly effective in solving complex problems by integrating multiple agents, each performing different roles. However, in sensitive domains, they face emerging privacy protection challenges. In this paper, we introduce the concept of Federated MAS, highlighting the fundamental differences between Federated MAS and traditional FL. We then identify key challenges in developing Federated MAS, including: 1) heterogeneous privacy protocols among agents, 2) structural differences in multi-party conversations, and 3) dynamic conversational network structures. To address these challenges, we propose Embedded Privacy-Enhancing Agents (EPEAgent), an innovative solution that integrates seamlessly into the Retrieval-Augmented Generation (RAG) phase and the context retrieval stage. This solution minimizes data flows, ensuring that only task-relevant, agent-specific information is shared. Additionally, we design and generate a comprehensive dataset to evaluate the proposed paradigm. Extensive experiments demonstrate that EPEAgent effectively enhances privacy protection while maintaining strong system performance. The code will be availiable at https://github.com/ZitongShi/EPEAgent
☆ Investigating the Effectiveness of a Socratic Chain-of-Thoughts Reasoning Method for Task Planning in Robotics, A Case Study
Large language models (LLMs) have demonstrated unprecedented capability in reasoning with natural language. Coupled with this development is the emergence of embodied AI in robotics. Despite showing promise for verbal and written reasoning tasks, it remains unknown whether LLMs are capable of navigating complex spatial tasks with physical actions in the real world. To this end, it is of interest to investigate applying LLMs to robotics in zero-shot learning scenarios, and in the absence of fine-tuning - a feat which could significantly improve human-robot interaction, alleviate compute cost, and eliminate low-level programming tasks associated with robot tasks. To explore this question, we apply GPT-4(Omni) with a simulated Tiago robot in Webots engine for an object search task. We evaluate the effectiveness of three reasoning strategies based on Chain-of-Thought (CoT) sub-task list generation with the Socratic method (SocraCoT) (in order of increasing rigor): (1) Non-CoT/Non-SocraCoT, (2) CoT only, and (3) SocraCoT. Performance was measured in terms of the proportion of tasks successfully completed and execution time (N = 20). Our preliminary results show that when combined with chain-of-thought reasoning, the Socratic method can be used for code generation for robotic tasks that require spatial awareness. In extension of this finding, we propose EVINCE-LoC; a modified EVINCE method that could further enhance performance in highly complex and or dynamic testing scenarios.
☆ XAI4Extremes: An interpretable machine learning framework for understanding extreme-weather precursors under climate change
Extreme weather events are increasing in frequency and intensity due to climate change. This, in turn, is exacting a significant toll in communities worldwide. While prediction skills are increasing with advances in numerical weather prediction and artificial intelligence tools, extreme weather still present challenges. More specifically, identifying the precursors of such extreme weather events and how these precursors may evolve under climate change remain unclear. In this paper, we propose to use post-hoc interpretability methods to construct relevance weather maps that show the key extreme-weather precursors identified by deep learning models. We then compare this machine view with existing domain knowledge to understand whether deep learning models identified patterns in data that may enrich our understanding of extreme-weather precursors. We finally bin these relevant maps into different multi-year time periods to understand the role that climate change is having on these precursors. The experiments are carried out on Indochina heatwaves, but the methodology can be readily extended to other extreme weather events worldwide.
☆ Attention to Trajectory: Trajectory-Aware Open-Vocabulary Tracking
Open-Vocabulary Multi-Object Tracking (OV-MOT) aims to enable approaches to track objects without being limited to a predefined set of categories. Current OV-MOT methods typically rely primarily on instance-level detection and association, often overlooking trajectory information that is unique and essential for object tracking tasks. Utilizing trajectory information can enhance association stability and classification accuracy, especially in cases of occlusion and category ambiguity, thereby improving adaptability to novel classes. Thus motivated, in this paper we propose \textbf{TRACT}, an open-vocabulary tracker that leverages trajectory information to improve both object association and classification in OV-MOT. Specifically, we introduce a \textit{Trajectory Consistency Reinforcement} (\textbf{TCR}) strategy, that benefits tracking performance by improving target identity and category consistency. In addition, we present \textbf{TraCLIP}, a plug-and-play trajectory classification module. It integrates \textit{Trajectory Feature Aggregation} (\textbf{TFA}) and \textit{Trajectory Semantic Enrichment} (\textbf{TSE}) strategies to fully leverage trajectory information from visual and language perspectives for enhancing the classification results. Extensive experiments on OV-TAO show that our TRACT significantly improves tracking performance, highlighting trajectory information as a valuable asset for OV-MOT. Code will be released.
☆ FlowDPS: Flow-Driven Posterior Sampling for Inverse Problems
Flow matching is a recent state-of-the-art framework for generative modeling based on ordinary differential equations (ODEs). While closely related to diffusion models, it provides a more general perspective on generative modeling. Although inverse problem solving has been extensively explored using diffusion models, it has not been rigorously examined within the broader context of flow models. Therefore, here we extend the diffusion inverse solvers (DIS) - which perform posterior sampling by combining a denoising diffusion prior with an likelihood gradient - into the flow framework. Specifically, by driving the flow-version of Tweedie's formula, we decompose the flow ODE into two components: one for clean image estimation and the other for noise estimation. By integrating the likelihood gradient and stochastic noise into each component, respectively, we demonstrate that posterior sampling for inverse problem solving can be effectively achieved using flows. Our proposed solver, Flow-Driven Posterior Sampling (FlowDPS), can also be seamlessly integrated into a latent flow model with a transformer architecture. Across four linear inverse problems, we confirm that FlowDPS outperforms state-of-the-art alternatives, all without requiring additional training.
☆ MGHanD: Multi-modal Guidance for authentic Hand Diffusion
Diffusion-based methods have achieved significant successes in T2I generation, providing realistic images from text prompts. Despite their capabilities, these models face persistent challenges in generating realistic human hands, often producing images with incorrect finger counts and structurally deformed hands. MGHanD addresses this challenge by applying multi-modal guidance during the inference process. For visual guidance, we employ a discriminator trained on a dataset comprising paired real and generated images with captions, derived from various hand-in-the-wild datasets. We also employ textual guidance with LoRA adapter, which learns the direction from `hands' towards more detailed prompts such as `natural hands', and `anatomically correct fingers' at the latent level. A cumulative hand mask which is gradually enlarged in the assigned time step is applied to the added guidance, allowing the hand to be refined while maintaining the rich generative capabilities of the pre-trained model. In the experiments, our method achieves superior hand generation qualities, without any specific conditions or priors. We carry out both quantitative and qualitative evaluations, along with user studies, to showcase the benefits of our approach in producing high-quality hand images.
comment: 8 pages, 7 figures
☆ Toward Stable World Models: Measuring and Addressing World Instability in Generative Environments
We present a novel study on enhancing the capability of preserving the content in world models, focusing on a property we term World Stability. Recent diffusion-based generative models have advanced the synthesis of immersive and realistic environments that are pivotal for applications such as reinforcement learning and interactive game engines. However, while these models excel in quality and diversity, they often neglect the preservation of previously generated scenes over time--a shortfall that can introduce noise into agent learning and compromise performance in safety-critical settings. In this work, we introduce an evaluation framework that measures world stability by having world models perform a sequence of actions followed by their inverses to return to their initial viewpoint, thereby quantifying the consistency between the starting and ending observations. Our comprehensive assessment of state-of-the-art diffusion-based world models reveals significant challenges in achieving high world stability. Moreover, we investigate several improvement strategies to enhance world stability. Our results underscore the importance of world stability in world modeling and provide actionable insights for future research in this domain.
comment: Preprint
☆ Uni$\textbf{F}^2$ace: Fine-grained Face Understanding and Generation with Unified Multimodal Models
Unified multimodal models (UMMs) have emerged as a powerful paradigm in foundational computer vision research, demonstrating significant potential in both image understanding and generation. However, existing research in the face domain primarily focuses on $\textbf{coarse}$ facial attribute understanding, with limited capacity to handle $\textbf{fine-grained}$ facial attributes and without addressing generation capabilities. To overcome these limitations, we propose Uni$\textbf{F}^2$ace, the first UMM tailored specifically for fine-grained face understanding and generation. In general, we train Uni$\textbf{F}^2$ace on a self-constructed, specialized dataset utilizing two mutually beneficial diffusion techniques and a two-level mixture-of-experts architecture. Specifically, we first build a large-scale facial dataset, Uni$\textbf{F}^2$ace-130K, which contains 130K image-text pairs with one million question-answering pairs that span a wide range of facial attributes. Second, we establish a theoretical connection between discrete diffusion score matching and masked generative models, optimizing both evidence lower bounds simultaneously, which significantly improves the model's ability to synthesize facial details. Finally, we introduce both token-level and sequence-level mixture-of-experts, enabling efficient fine-grained representation learning for both understanding and generation tasks. Extensive experiments on Uni$\textbf{F}^2$ace-130K demonstrate that Uni$\textbf{F}^2$ace outperforms existing UMMs and generative models, achieving superior performance across both understanding and generation tasks.
☆ Convergence Dynamics and Stabilization Strategies of Co-Evolving Generative Models
The increasing prevalence of synthetic data in training loops has raised concerns about model collapse, where generative models degrade when trained on their own outputs. While prior work focuses on this self-consuming process, we study an underexplored yet prevalent phenomenon: co-evolving generative models that shape each other's training through iterative feedback. This is common in multimodal AI ecosystems, such as social media platforms, where text models generate captions that guide image models, and the resulting images influence the future adaptation of the text model. We take a first step by analyzing such a system, modeling the text model as a multinomial distribution and the image model as a conditional multi-dimensional Gaussian distribution. Our analysis uncovers three key results. First, when one model remains fixed, the other collapses: a frozen image model causes the text model to lose diversity, while a frozen text model leads to an exponential contraction of image diversity, though fidelity remains bounded. Second, in fully interactive systems, mutual reinforcement accelerates collapse, with image contraction amplifying text homogenization and vice versa, leading to a Matthew effect where dominant texts sustain higher image diversity while rarer texts collapse faster. Third, we analyze stabilization strategies implicitly introduced by real-world external influences. Random corpus injections for text models and user-content injections for image models prevent collapse while preserving both diversity and fidelity. Our theoretical findings are further validated through experiments.
comment: 37 pages, 11 figures
☆ Revolution of Wireless Signal Recognition for 6G: Recent Advances, Challenges and Future Directions
Wireless signal recognition (WSR) is a crucial technique for intelligent communications and spectrum sharing in the next six-generation (6G) wireless communication networks. It can be utilized to enhance network performance and efficiency, improve quality of service (QoS), and improve network security and reliability. Additionally, WSR can be applied for military applications such as signal interception, signal race, and signal abduction. In the past decades, great efforts have been made for the research of WSR. Earlier works mainly focus on model-based methods, including likelihood-based (LB) and feature-based (FB) methods, which have taken the leading position for many years. With the emergence of artificial intelligence (AI), intelligent methods including machine learning-based (ML-based) and deep learning-based (DL-based) methods have been developed to extract the features of the received signals and perform the classification. In this work, we provide a comprehensive review of WSR from the view of applications, main tasks, recent advances, datasets and evaluation metrics, challenges, and future directions. Specifically, intelligent WSR methods are introduced from the perspective of model, data, learning and implementation. Moreover, we analyze the challenges for WSR from the view of complex, dynamic, and open 6G wireless environments and discuss the future directions for WSR. This survey is expected to provide a comprehensive overview of the state-of-the-art WSR techniques and inspire new research directions for WSR in 6G networks.
comment: submitted to IEEE Communications Surveys & Tutorials
☆ Instruction-Augmented Long-Horizon Planning: Embedding Grounding Mechanisms in Embodied Mobile Manipulation
Enabling humanoid robots to perform long-horizon mobile manipulation planning in real-world environments based on embodied perception and comprehension abilities has been a longstanding challenge. With the recent rise of large language models (LLMs), there has been a notable increase in the development of LLM-based planners. These approaches either utilize human-provided textual representations of the real world or heavily depend on prompt engineering to extract such representations, lacking the capability to quantitatively understand the environment, such as determining the feasibility of manipulating objects. To address these limitations, we present the Instruction-Augmented Long-Horizon Planning (IALP) system, a novel framework that employs LLMs to generate feasible and optimal actions based on real-time sensor feedback, including grounded knowledge of the environment, in a closed-loop interaction. Distinct from prior works, our approach augments user instructions into PDDL problems by leveraging both the abstract reasoning capabilities of LLMs and grounding mechanisms. By conducting various real-world long-horizon tasks, each consisting of seven distinct manipulatory skills, our results demonstrate that the IALP system can efficiently solve these tasks with an average success rate exceeding 80%. Our proposed method can operate as a high-level planner, equipping robots with substantial autonomy in unstructured environments through the utilization of multi-modal sensor inputs.
comment: 17 pages, 11 figures
☆ Degradation Self-Supervised Learning for Lithium-ion Battery Health Diagnostics
Health evaluation for lithium-ion batteries (LIBs) typically relies on constant charging/discharging protocols, often neglecting scenarios involving dynamic current profiles prevalent in electric vehicles. Conventional health indicators for LIBs also depend on the uniformity of measured data, restricting their adaptability to non-uniform conditions. In this study, a novel training strategy for estimating LIB health based on the paradigm of self-supervised learning is proposed. A multiresolution analysis technique, empirical wavelet transform, is utilized to decompose non-stationary voltage signals in the frequency domain. This allows the removal of ineffective components for the health evaluation model. The transformer neural network serves as the model backbone, and a loss function is designed to describe the capacity degradation behavior with the assumption that the degradation in LIBs across most operating conditions is inevitable and irreversible. The results show that the model can learn the aging characteristics by analyzing sequences of voltage and current profiles obtained at various time intervals from the same LIB cell. The proposed method is successfully applied to the Stanford University LIB aging dataset, derived from electric vehicle real driving profiles. Notably, this approach achieves an average correlation coefficient of 0.9 between the evaluated health index and the degradation of actual capacity, demonstrating its efficacy in capturing LIB health degradation. This research highlights the feasibility of training deep neural networks using unlabeled LIB data, offering cost-efficient means and unleashing the potential of the measured information.
☆ STGDPM:Vessel Trajectory Prediction with Spatio-Temporal Graph Diffusion Probabilistic Model DASFAA 2025
Vessel trajectory prediction is a critical component for ensuring maritime traffic safety and avoiding collisions. Due to the inherent uncertainty in vessel behavior, trajectory prediction systems must adopt a multimodal approach to accurately model potential future motion states. However, existing vessel trajectory prediction methods lack the ability to comprehensively model behavioral multi-modality. To better capture multimodal behavior in interactive scenarios, we propose modeling interactions as dynamic graphs, replacing traditional aggregation-based techniques that rely on vessel states. By leveraging the natural multimodal capabilities of diffusion models, we frame the trajectory prediction task as an inverse process of motion uncertainty diffusion, wherein uncertainties across potential navigational areas are progressively eliminated until the desired trajectories is produced. In summary, we pioneer the integration of Spatio-Temporal Graph (STG) with diffusion models in ship trajectory prediction. Extensive experiments on real Automatic Identification System (AIS) data validate the superiority of our approach.
comment: This paper has been ACCEPTED as a FULL PAPER at DASFAA 2025
☆ Continual Learning for Multiple Modalities
Continual learning aims to learn knowledge of tasks observed in sequential time steps while mitigating the forgetting of previously learned knowledge. Existing methods were proposed under the assumption of learning a single modality (e.g., image) over time, which limits their applicability in scenarios involving multiple modalities. In this work, we propose a novel continual learning framework that accommodates multiple modalities (image, video, audio, depth, and text). We train a model to align various modalities with text, leveraging its rich semantic information. However, this increases the risk of forgetting previously learned knowledge, exacerbated by the differing input traits of each task. To alleviate the overwriting of the previous knowledge of modalities, we propose a method for aggregating knowledge within and across modalities. The aggregated knowledge is obtained by assimilating new information through self-regularization within each modality and associating knowledge between modalities by prioritizing contributions from relevant modalities. Furthermore, we propose a strategy that re-aligns the embeddings of modalities to resolve biased alignment between modalities. We evaluate the proposed method in a wide range of continual learning scenarios using multiple datasets with different modalities. Extensive experiments demonstrate that ours outperforms existing methods in the scenarios, regardless of whether the identity of the modality is given.
comment: 14 pages, 7 figures
☆ Counterfactual Language Reasoning for Explainable Recommendation Systems
Explainable recommendation systems leverage transparent reasoning to foster user trust and improve decision-making processes. Current approaches typically decouple recommendation generation from explanation creation, violating causal precedence principles where explanatory factors should logically precede outcomes. This paper introduces a novel framework integrating structural causal models with large language models to establish causal consistency in recommendation pipelines. Our methodology enforces explanation factors as causal antecedents to recommendation predictions through causal graph construction and counterfactual adjustment. We particularly address the confounding effect of item popularity that distorts personalization signals in explanations, developing a debiasing mechanism that disentangles genuine user preferences from conformity bias. Through comprehensive experiments across multiple recommendation scenarios, we demonstrate that CausalX achieves superior performance in recommendation accuracy, explanation plausibility, and bias mitigation compared to baselines.
☆ Generalized Kullback-Leibler Divergence Loss NeurIPS
In this paper, we delve deeper into the Kullback-Leibler (KL) Divergence loss and mathematically prove that it is equivalent to the Decoupled Kullback-Leibler (DKL) Divergence loss that consists of (1) a weighted Mean Square Error (wMSE) loss and (2) a Cross-Entropy loss incorporating soft labels. Thanks to the decoupled structure of DKL loss, we have identified two areas for improvement. Firstly, we address the limitation of KL loss in scenarios like knowledge distillation by breaking its asymmetric optimization property along with a smoother weight function. This modification effectively alleviates convergence challenges in optimization, particularly for classes with high predicted scores in soft labels. Secondly, we introduce class-wise global information into KL/DKL to reduce bias arising from individual samples. With these two enhancements, we derive the Generalized Kullback-Leibler (GKL) Divergence loss and evaluate its effectiveness by conducting experiments on CIFAR-10/100, ImageNet, and vision-language datasets, focusing on adversarial training, and knowledge distillation tasks. Specifically, we achieve new state-of-the-art adversarial robustness on the public leaderboard -- RobustBench and competitive knowledge distillation performance across CIFAR/ImageNet models and CLIP models, demonstrating the substantial practical merits. Our code is available at https://github.com/jiequancui/DKL.
comment: extension of our NeurIPS paper "Decoupled Kullback-Leibler Divergence Loss". arXiv admin note: substantial text overlap with arXiv:2305.13948
☆ ObjectMover: Generative Object Movement with Video Prior CVPR 2025
Simple as it seems, moving an object to another location within an image is, in fact, a challenging image-editing task that requires re-harmonizing the lighting, adjusting the pose based on perspective, accurately filling occluded regions, and ensuring coherent synchronization of shadows and reflections while maintaining the object identity. In this paper, we present ObjectMover, a generative model that can perform object movement in highly challenging scenes. Our key insight is that we model this task as a sequence-to-sequence problem and fine-tune a video generation model to leverage its knowledge of consistent object generation across video frames. We show that with this approach, our model is able to adjust to complex real-world scenarios, handling extreme lighting harmonization and object effect movement. As large-scale data for object movement are unavailable, we construct a data generation pipeline using a modern game engine to synthesize high-quality data pairs. We further propose a multi-task learning strategy that enables training on real-world video data to improve the model generalization. Through extensive experiments, we demonstrate that ObjectMover achieves outstanding results and adapts well to real-world scenarios.
comment: CVPR 2025, Project Page: https://xinyu-andy.github.io/ObjMover
☆ HOFAR: High-Order Augmentation of Flow Autoregressive Transformers
Flow Matching and Transformer architectures have demonstrated remarkable performance in image generation tasks, with recent work FlowAR [Ren et al., 2024] synergistically integrating both paradigms to advance synthesis fidelity. However, current FlowAR implementations remain constrained by first-order trajectory modeling during the generation process. This paper introduces a novel framework that systematically enhances flow autoregressive transformers through high-order supervision. We provide theoretical analysis and empirical evaluation showing that our High-Order FlowAR (HOFAR) demonstrates measurable improvements in generation quality compared to baseline models. The proposed approach advances the understanding of flow-based autoregressive modeling by introducing a systematic framework for analyzing trajectory dynamics through high-order expansion.
☆ In Prospect and Retrospect: Reflective Memory Management for Long-term Personalized Dialogue Agents
Large Language Models (LLMs) have made significant progress in open-ended dialogue, yet their inability to retain and retrieve relevant information from long-term interactions limits their effectiveness in applications requiring sustained personalization. External memory mechanisms have been proposed to address this limitation, enabling LLMs to maintain conversational continuity. However, existing approaches struggle with two key challenges. First, rigid memory granularity fails to capture the natural semantic structure of conversations, leading to fragmented and incomplete representations. Second, fixed retrieval mechanisms cannot adapt to diverse dialogue contexts and user interaction patterns. In this work, we propose Reflective Memory Management (RMM), a novel mechanism for long-term dialogue agents, integrating forward- and backward-looking reflections: (1) Prospective Reflection, which dynamically summarizes interactions across granularities-utterances, turns, and sessions-into a personalized memory bank for effective future retrieval, and (2) Retrospective Reflection, which iteratively refines the retrieval in an online reinforcement learning (RL) manner based on LLMs' cited evidence. Experiments show that RMM demonstrates consistent improvement across various metrics and benchmarks. For example, RMM shows more than 10% accuracy improvement over the baseline without memory management on the LongMemEval dataset.
☆ Exploring Bias in over 100 Text-to-Image Generative Models ICLR 2025
We investigate bias trends in text-to-image generative models over time, focusing on the increasing availability of models through open platforms like Hugging Face. While these platforms democratize AI, they also facilitate the spread of inherently biased models, often shaped by task-specific fine-tuning. Ensuring ethical and transparent AI deployment requires robust evaluation frameworks and quantifiable bias metrics. To this end, we assess bias across three key dimensions: (i) distribution bias, (ii) generative hallucination, and (iii) generative miss-rate. Analyzing over 100 models, we reveal how bias patterns evolve over time and across generative tasks. Our findings indicate that artistic and style-transferred models exhibit significant bias, whereas foundation models, benefiting from broader training distributions, are becoming progressively less biased. By identifying these systemic trends, we contribute a large-scale evaluation corpus to inform bias research and mitigation strategies, fostering more responsible AI development. Keywords: Bias, Ethical AI, Text-to-Image, Generative Models, Open-Source Models
comment: Accepted to ICLR 2025 Workshop on Open Science for Foundation Models (SCI-FM)
☆ SKALD: Learning-Based Shot Assembly for Coherent Multi-Shot Video Creation
We present SKALD, a multi-shot video assembly method that constructs coherent video sequences from candidate shots with minimal reliance on text. Central to our approach is the Learned Clip Assembly (LCA) score, a learning-based metric that measures temporal and semantic relationships between shots to quantify narrative coherence. We tackle the exponential complexity of combining multiple shots with an efficient beam-search algorithm guided by the LCA score. To train our model effectively with limited human annotations, we propose two tasks for the LCA encoder: Shot Coherence Learning, which uses contrastive learning to distinguish coherent and incoherent sequences, and Feature Regression, which converts these learned representations into a real-valued coherence score. We develop two variants: a base SKALD model that relies solely on visual coherence and SKALD-text, which integrates auxiliary text information when available. Experiments on the VSPD and our curated MSV3C datasets show that SKALD achieves an improvement of up to 48.6% in IoU and a 43% speedup over the state-of-the-art methods. A user study further validates our approach, with 45% of participants favoring SKALD-assembled videos, compared to 22% preferring text-based assembly methods.
☆ MoRE: Unlocking Scalability in Reinforcement Learning for Quadruped Vision-Language-Action Models ICRA 2025
Developing versatile quadruped robots that can smoothly perform various actions and tasks in real-world environments remains a significant challenge. This paper introduces a novel vision-language-action (VLA) model, mixture of robotic experts (MoRE), for quadruped robots that aim to introduce reinforcement learning (RL) for fine-tuning large-scale VLA models with a large amount of mixed-quality data. MoRE integrates multiple low-rank adaptation modules as distinct experts within a dense multi-modal large language model (MLLM), forming a sparse-activated mixture-of-experts model. This design enables the model to effectively adapt to a wide array of downstream tasks. Moreover, we employ a reinforcement learning-based training objective to train our model as a Q-function after deeply exploring the structural properties of our tasks. Effective learning from automatically collected mixed-quality data enhances data efficiency and model performance. Extensive experiments demonstrate that MoRE outperforms all baselines across six different skills and exhibits superior generalization capabilities in out-of-distribution scenarios. We further validate our method in real-world scenarios, confirming the practicality of our approach and laying a solid foundation for future research on multi-task learning in quadruped robots.
comment: Accepted by ICRA 2025
☆ Injecting Imbalance Sensitivity for Multi-Task Learning
Multi-task learning (MTL) has emerged as a promising approach for deploying deep learning models in real-life applications. Recent studies have proposed optimization-based learning paradigms to establish task-shared representations in MTL. However, our paper empirically argues that these studies, specifically gradient-based ones, primarily emphasize the conflict issue while neglecting the potentially more significant impact of imbalance/dominance in MTL. In line with this perspective, we enhance the existing baseline method by injecting imbalance-sensitivity through the imposition of constraints on the projected norms. To demonstrate the effectiveness of our proposed IMbalance-sensitive Gradient (IMGrad) descent method, we evaluate it on multiple mainstream MTL benchmarks, encompassing supervised learning tasks as well as reinforcement learning. The experimental results consistently demonstrate competitive performance.
comment: 9 pages, 6 figures, 4 tables
☆ LLM-Powered Knowledge Graphs for Enterprise Intelligence and Analytics
Disconnected data silos within enterprises obstruct the extraction of actionable insights, diminishing efficiency in areas such as product development, client engagement, meeting preparation, and analytics-driven decision-making. This paper introduces a framework that uses large language models (LLMs) to unify various data sources into a comprehensive, activity-centric knowledge graph. The framework automates tasks such as entity extraction, relationship inference, and semantic enrichment, enabling advanced querying, reasoning, and analytics across data types like emails, calendars, chats, documents, and logs. Designed for enterprise flexibility, it supports applications such as contextual search, task prioritization, expertise discovery, personalized recommendations, and advanced analytics to identify trends and actionable insights. Experimental results demonstrate its success in the discovery of expertise, task management, and data-driven decision making. By integrating LLMs with knowledge graphs, this solution bridges disconnected systems and delivers intelligent analytics-powered enterprise tools.
☆ A Neural Symbolic Model for Space Physics
In this study, we unveil a new AI model, termed PhyE2E, to discover physical formulas through symbolic regression. PhyE2E simplifies symbolic regression by decomposing it into sub-problems using the second-order derivatives of an oracle neural network, and employs a transformer model to translate data into symbolic formulas in an end-to-end manner. The resulting formulas are refined through Monte-Carlo Tree Search and Genetic Programming. We leverage a large language model to synthesize extensive symbolic expressions resembling real physics, and train the model to recover these formulas directly from data. A comprehensive evaluation reveals that PhyE2E outperforms existing state-of-the-art approaches, delivering superior symbolic accuracy, precision in data fitting, and consistency in physical units. We deployed PhyE2E to five applications in space physics, including the prediction of sunspot numbers, solar rotational angular velocity, emission line contribution functions, near-Earth plasma pressure, and lunar-tide plasma signals. The physical formulas generated by AI demonstrate a high degree of accuracy in fitting the experimental data from satellites and astronomical telescopes. We have successfully upgraded the formula proposed by NASA in 1993 regarding solar activity, and for the first time, provided the explanations for the long cycle of solar activity in an explicit form. We also found that the decay of near-Earth plasma pressure is proportional to r^2 to Earth, where subsequent mathematical derivations are consistent with satellite data from another independent study. Moreover, we found physical formulas that can describe the relationships between emission lines in the extreme ultraviolet spectrum of the Sun, temperatures, electron densities, and magnetic fields. The formula obtained is consistent with the properties that physicists had previously hypothesized it should possess.
☆ Efficient and Accurate Estimation of Lipschitz Constants for Hybrid Quantum-Classical Decision Models TASE 2025
In this paper, we propose a novel framework for efficiently and accurately estimating Lipschitz constants in hybrid quantum-classical decision models. Our approach integrates classical neural network with quantum variational circuits to address critical issues in learning theory such as fairness verification, robust training, and generalization. By a unified convex optimization formulation, we extend existing classical methods to capture the interplay between classical and quantum layers. This integrated strategy not only provide a tight bound on the Lipschitz constant but also improves computational efficiency with respect to the previous methods.
comment: 14 pages, 5 figuers, Submitted to TASE 2025
☆ Boundary Prompting: Elastic Urban Region Representation via Graph-based Spatial Tokenization
Urban region representation is essential for various applications such as urban planning, resource allocation, and policy development. Traditional methods rely on fixed, predefined region boundaries, which fail to capture the dynamic and complex nature of real-world urban areas. In this paper, we propose the Boundary Prompting Urban Region Representation Framework (BPURF), a novel approach that allows for elastic urban region definitions. BPURF comprises two key components: (1) A spatial token dictionary, where urban entities are treated as tokens and integrated into a unified token graph, and (2) a region token set representation model which utilize token aggregation and a multi-channel model to embed token sets corresponding to region boundaries. Additionally, we propose fast token set extraction strategy to enable online token set extraction during training and prompting. This framework enables the definition of urban regions through boundary prompting, supporting varying region boundaries and adapting to different tasks. Extensive experiments demonstrate the effectiveness of BPURF in capturing the complex characteristics of urban regions.
☆ Provable Zero-Shot Generalization in Offline Reinforcement Learning
In this work, we study offline reinforcement learning (RL) with zero-shot generalization property (ZSG), where the agent has access to an offline dataset including experiences from different environments, and the goal of the agent is to train a policy over the training environments which performs well on test environments without further interaction. Existing work showed that classical offline RL fails to generalize to new, unseen environments. We propose pessimistic empirical risk minimization (PERM) and pessimistic proximal policy optimization (PPPO), which leverage pessimistic policy evaluation to guide policy learning and enhance generalization. We show that both PERM and PPPO are capable of finding a near-optimal policy with ZSG. Our result serves as a first step in understanding the foundation of the generalization phenomenon in offline reinforcement learning.
comment: 30 pages, 1 figure, 1 table
☆ EFPC: Towards Efficient and Flexible Prompt Compression
The emergence of large language models (LLMs) like GPT-4 has revolutionized natural language processing (NLP), enabling diverse, complex tasks. However, extensive token counts lead to high computational and financial burdens. To address this, we propose Efficient and Flexible Prompt Compression (EFPC), a novel method unifying task-aware and task-agnostic compression for a favorable accuracy-efficiency trade-off. EFPC uses GPT-4 to generate compressed prompts and integrates them with original prompts for training. During training and inference, we selectively prepend user instructions and compress prompts based on predicted probabilities. EFPC is highly data-efficient, achieving significant performance with minimal data. Compared to the state-of-the-art method LLMLingua-2, EFPC achieves a 4.8% relative improvement in F1-score with 1% additional data at a 4x compression rate, and an 11.4% gain with 10% additional data on the LongBench single-doc QA benchmark. EFPC's unified framework supports broad applicability and enhances performance across various models, tasks, and domains, offering a practical advancement in NLP.
comment: 10 pages, 6 figures
☆ 7DGS: Unified Spatial-Temporal-Angular Gaussian Splatting
Real-time rendering of dynamic scenes with view-dependent effects remains a fundamental challenge in computer graphics. While recent advances in Gaussian Splatting have shown promising results separately handling dynamic scenes (4DGS) and view-dependent effects (6DGS), no existing method unifies these capabilities while maintaining real-time performance. We present 7D Gaussian Splatting (7DGS), a unified framework representing scene elements as seven-dimensional Gaussians spanning position (3D), time (1D), and viewing direction (3D). Our key contribution is an efficient conditional slicing mechanism that transforms 7D Gaussians into view- and time-conditioned 3D Gaussians, maintaining compatibility with existing 3D Gaussian Splatting pipelines while enabling joint optimization. Experiments demonstrate that 7DGS outperforms prior methods by up to 7.36 dB in PSNR while achieving real-time rendering (401 FPS) on challenging dynamic scenes with complex view-dependent effects. The project page is: https://gaozhongpai.github.io/7dgs/.
☆ LLM-based Corroborating and Refuting Evidence Retrieval for Scientific Claim Verification
In this paper, we introduce CIBER (Claim Investigation Based on Evidence Retrieval), an extension of the Retrieval-Augmented Generation (RAG) framework designed to identify corroborating and refuting documents as evidence for scientific claim verification. CIBER addresses the inherent uncertainty in Large Language Models (LLMs) by evaluating response consistency across diverse interrogation probes. By focusing on the behavioral analysis of LLMs without requiring access to their internal information, CIBER is applicable to both white-box and black-box models. Furthermore, CIBER operates in an unsupervised manner, enabling easy generalization across various scientific domains. Comprehensive evaluations conducted using LLMs with varying levels of linguistic proficiency reveal CIBER's superior performance compared to conventional RAG approaches. These findings not only highlight the effectiveness of CIBER but also provide valuable insights for future advancements in LLM-based scientific claim verification.
☆ A Theory of Learning with Autoregressive Chain of Thought
For a given base class of sequence-to-next-token generators, we consider learning prompt-to-answer mappings obtained by iterating a fixed, time-invariant generator for multiple steps, thus generating a chain-of-thought, and then taking the final token as the answer. We formalize the learning problems both when the chain-of-thought is observed and when training only on prompt-answer pairs, with the chain-of-thought latent. We analyze the sample and computational complexity both in terms of general properties of the base class (e.g. its VC dimension) and for specific base classes such as linear thresholds. We present a simple base class that allows for universal representability and computationally tractable chain-of-thought learning. Central to our development is that time invariance allows for sample complexity that is independent of the length of the chain-of-thought. Attention arises naturally in our construction.
comment: Comments are welcome
☆ The StudyChat Dataset: Student Dialogues With ChatGPT in an Artificial Intelligence Course
The widespread availability of large language models (LLMs), such as ChatGPT, has significantly impacted education, raising both opportunities and challenges. Students can frequently interact with LLM-powered, interactive learning tools, but their usage patterns need to be analyzed to ensure ethical usage of these tools. To better understand how students interact with LLMs in an academic setting, we introduce \textbf{StudyChat}, a publicly available dataset capturing real-world student interactions with an LLM-powered tutoring chatbot in a semester-long, university-level artificial intelligence (AI) course. We deploy a web application that replicates ChatGPT's core functionalities, and use it to log student interactions with the LLM while working on programming assignments. We collect 1,197 conversations, which we annotate using a dialogue act labeling schema inspired by observed interaction patterns and prior research. Additionally, we analyze these interactions, highlight behavioral trends, and analyze how specific usage patterns relate to course outcomes. \textbf{StudyChat} provides a rich resource for the learning sciences and AI in education communities, enabling further research into the evolving role of LLMs in education.
comment: Pre-print
☆ Are ECGs enough? Deep learning classification of cardiac anomalies using only electrocardiograms
Electrocardiography (ECG) is an essential tool for diagnosing multiple cardiac anomalies: it provides valuable clinical insights, while being affordable, fast and available in many settings. However, in the current literature, the role of ECG analysis is often unclear: many approaches either rely on additional imaging modalities, such as Computed Tomography Pulmonary Angiography (CTPA), which may not always be available, or do not effectively generalize across different classification problems. Furthermore, the availability of public ECG datasets is limited and, in practice, these datasets tend to be small, making it essential to optimize learning strategies. In this study, we investigate the performance of multiple neural network architectures in order to assess the impact of various approaches. Moreover, we check whether these practices enhance model generalization when transfer learning is used to translate information learned in larger ECG datasets, such as PTB-XL and CPSC18, to a smaller, more challenging dataset for pulmonary embolism (PE) detection. By leveraging transfer learning, we analyze the extent to which we can improve learning efficiency and predictive performance on limited data. Code available at https://github.com/joaodsmarques/Are-ECGs-enough-Deep-Learning-Classifiers .
☆ FP3: A 3D Foundation Policy for Robotic Manipulation
Following its success in natural language processing and computer vision, foundation models that are pre-trained on large-scale multi-task datasets have also shown great potential in robotics. However, most existing robot foundation models rely solely on 2D image observations, ignoring 3D geometric information, which is essential for robots to perceive and reason about the 3D world. In this paper, we introduce FP3, a first large-scale 3D foundation policy model for robotic manipulation. FP3 builds on a scalable diffusion transformer architecture and is pre-trained on 60k trajectories with point cloud observations. With the model design and diverse pre-training data, FP3 can be efficiently fine-tuned for downstream tasks while exhibiting strong generalization capabilities. Experiments on real robots demonstrate that with only 80 demonstrations, FP3 is able to learn a new task with over 90% success rates in novel environments with unseen objects, significantly surpassing existing robot foundation models.
comment: Project website: https://3d-foundation-policy.github.io
☆ KAN-Mixers: a new deep learning architecture for image classification
Due to their effective performance, Convolutional Neural Network (CNN) and Vision Transformer (ViT) architectures have become the standard for solving computer vision tasks. Such architectures require large data sets and rely on convolution and self-attention operations. In 2021, MLP-Mixer emerged, an architecture that relies only on Multilayer Perceptron (MLP) and achieves extremely competitive results when compared to CNNs and ViTs. Despite its good performance in computer vision tasks, the MLP-Mixer architecture may not be suitable for refined feature extraction in images. Recently, the Kolmogorov-Arnold Network (KAN) was proposed as a promising alternative to MLP models. KANs promise to improve accuracy and interpretability when compared to MLPs. Therefore, the present work aims to design a new mixer-based architecture, called KAN-Mixers, using KANs as main layers and evaluate its performance, in terms of several performance metrics, in the image classification task. As main results obtained, the KAN-Mixers model was superior to the MLP, MLP-Mixer and KAN models in the Fashion-MNIST and CIFAR-10 datasets, with 0.9030 and 0.6980 of average accuracy, respectively.
comment: 8 pages, 6 figures
☆ Simulator Ensembles for Trustworthy Autonomous Driving Testing
Scenario-based testing with driving simulators is extensively used to identify failing conditions of automated driving assistance systems (ADAS) and reduce the amount of in-field road testing. However, existing studies have shown that repeated test execution in the same as well as in distinct simulators can yield different outcomes, which can be attributed to sources of flakiness or different implementations of the physics, among other factors. In this paper, we present MultiSim, a novel approach to multi-simulation ADAS testing based on a search-based testing approach that leverages an ensemble of simulators to identify failure-inducing, simulator-agnostic test scenarios. During the search, each scenario is evaluated jointly on multiple simulators. Scenarios that produce consistent results across simulators are prioritized for further exploration, while those that fail on only a subset of simulators are given less priority, as they may reflect simulator-specific issues rather than generalizable failures. Our case study, which involves testing a deep neural network-based ADAS on different pairs of three widely used simulators, demonstrates that MultiSim outperforms single-simulator testing by achieving on average a higher rate of simulator-agnostic failures by 51%. Compared to a state-of-the-art multi-simulator approach that combines the outcome of independent test generation campaigns obtained in different simulators, MultiSim identifies 54% more simulator-agnostic failing tests while showing a comparable validity rate. An enhancement of MultiSim that leverages surrogate models to predict simulator disagreements and bypass executions does not only increase the average number of valid failures but also improves efficiency in finding the first valid failure.
☆ HessianForge: Scalable LiDAR reconstruction with Physics-Informed Neural Representation and Smoothness Energy Constraints
Accurate and efficient 3D mapping of large-scale outdoor environments from LiDAR measurements is a fundamental challenge in robotics, particularly towards ensuring smooth and artifact-free surface reconstructions. Although the state-of-the-art methods focus on memory-efficient neural representations for high-fidelity surface generation, they often fail to produce artifact-free manifolds, with artifacts arising due to noisy and sparse inputs. To address this issue, we frame surface mapping as a physics-informed energy optimization problem, enforcing surface smoothness by optimizing an energy functional that penalizes sharp surface ridges. Specifically, we propose a deep learning based approach that learns the signed distance field (SDF) of the surface manifold from raw LiDAR point clouds using a physics-informed loss function that optimizes the $L_2$-Hessian energy of the surface. Our learning framework includes a hierarchical octree based input feature encoding and a multi-scale neural network to iteratively refine the signed distance field at different scales of resolution. Lastly, we introduce a test-time refinement strategy to correct topological inconsistencies and edge distortions that can arise in the generated mesh. We propose a \texttt{CUDA}-accelerated least-squares optimization that locally adjusts vertex positions to enforce feature-preserving smoothing. We evaluate our approach on large-scale outdoor datasets and demonstrate that our approach outperforms current state-of-the-art methods in terms of improved accuracy and smoothness. Our code is available at \href{https://github.com/HrishikeshVish/HessianForge/}{https://github.com/HrishikeshVish/HessianForge/}
☆ Backtracking for Safety
Large language models (LLMs) have demonstrated remarkable capabilities across various tasks, but ensuring their safety and alignment with human values remains crucial. Current safety alignment methods, such as supervised fine-tuning and reinforcement learning-based approaches, can exhibit vulnerabilities to adversarial attacks and often result in shallow safety alignment, primarily focusing on preventing harmful content in the initial tokens of the generated output. While methods like resetting can help recover from unsafe generations by discarding previous tokens and restarting the generation process, they are not well-suited for addressing nuanced safety violations like toxicity that may arise within otherwise benign and lengthy generations. In this paper, we propose a novel backtracking method designed to address these limitations. Our method allows the model to revert to a safer generation state, not necessarily at the beginning, when safety violations occur during generation. This approach enables targeted correction of problematic segments without discarding the entire generated text, thereby preserving efficiency. We demonstrate that our method dramatically reduces toxicity appearing through the generation process with minimal impact to efficiency.
Robust Unsupervised Fault Diagnosis For High-Dimensional Nonlinear Noisy Data
Traditional fault diagnosis methods struggle to handle fault data, with complex data characteristics such as high dimensions and large noise. Deep learning is a promising solution, which typically works well only when labeled fault data are available. To address these problems, a robust unsupervised fault diagnosis using machine learning is proposed in this paper. First, a special dimension reduction method for the high-dimensional fault data is designed. Second, the extracted features are enhanced by incorporating nonlinear information through the learning of a graph structure. Third, to alleviate the problem of reduced fault-diagnosis accuracy attributed to noise and outliers, $l_{2,1}$-norm and typicality-aware constraints are introduced from the perspective of model optimization, respectively. Finally, this paper provides comprehensive theoretical and experimental evidence supporting the effectiveness and robustness of the proposed method. The experiments on both the benchmark Tennessee-Eastman process and a real hot-steel milling process show that the proposed method exhibits better robustness compared to other methods, maintaining high diagnostic accuracy even in the presence of outliers or noise.
☆ Interpreting the Repeated Token Phenomenon in Large Language Models
Large Language Models (LLMs), despite their impressive capabilities, often fail to accurately repeat a single word when prompted to, and instead output unrelated text. This unexplained failure mode represents a vulnerability, allowing even end-users to diverge models away from their intended behavior. We aim to explain the causes for this phenomenon and link it to the concept of ``attention sinks'', an emergent LLM behavior crucial for fluency, in which the initial token receives disproportionately high attention scores. Our investigation identifies the neural circuit responsible for attention sinks and shows how long repetitions disrupt this circuit. We extend this finding to other non-repeating sequences that exhibit similar circuit disruptions. To address this, we propose a targeted patch that effectively resolves the issue without negatively impacting the model's overall performance. This study provides a mechanistic explanation for an LLM vulnerability, demonstrating how interpretability can diagnose and address issues, and offering insights that pave the way for more secure and reliable models.
☆ Prompt-OT: An Optimal Transport Regularization Paradigm for Knowledge Preservation in Vision-Language Model Adaptation
Vision-language models (VLMs) such as CLIP demonstrate strong performance but struggle when adapted to downstream tasks. Prompt learning has emerged as an efficient and effective strategy to adapt VLMs while preserving their pre-trained knowledge. However, existing methods still lead to overfitting and degrade zero-shot generalization. To address this challenge, we propose an optimal transport (OT)-guided prompt learning framework that mitigates forgetting by preserving the structural consistency of feature distributions between pre-trained and fine-tuned models. Unlike conventional point-wise constraints, OT naturally captures cross-instance relationships and expands the feasible parameter space for prompt tuning, allowing a better trade-off between adaptation and generalization. Our approach enforces joint constraints on both vision and text representations, ensuring a holistic feature alignment. Extensive experiments on benchmark datasets demonstrate that our simple yet effective method can outperform existing prompt learning strategies in base-to-novel generalization, cross-dataset evaluation, and domain generalization without additional augmentation or ensemble techniques. The code is available at https://github.com/ChongQingNoSubway/Prompt-OT
☆ Imitation Learning of Correlated Policies in Stackelberg Games
Stackelberg games, widely applied in domains like economics and security, involve asymmetric interactions where a leader's strategy drives follower responses. Accurately modeling these dynamics allows domain experts to optimize strategies in interactive scenarios, such as turn-based sports like badminton. In multi-agent systems, agent behaviors are interdependent, and traditional Multi-Agent Imitation Learning (MAIL) methods often fail to capture these complex interactions. Correlated policies, which account for opponents' strategies, are essential for accurately modeling such dynamics. However, even methods designed for learning correlated policies, like CoDAIL, struggle in Stackelberg games due to their asymmetric decision-making, where leaders and followers cannot simultaneously account for each other's actions, often leading to non-correlated policies. Furthermore, existing MAIL methods that match occupancy measures or use adversarial techniques like GAIL or Inverse RL face scalability challenges, particularly in high-dimensional environments, and suffer from unstable training. To address these challenges, we propose a correlated policy occupancy measure specifically designed for Stackelberg games and introduce the Latent Stackelberg Differential Network (LSDN) to match it. LSDN models two-agent interactions as shared latent state trajectories and uses multi-output Geometric Brownian Motion (MO-GBM) to effectively capture joint policies. By leveraging MO-GBM, LSDN disentangles environmental influences from agent-driven transitions in latent space, enabling the simultaneous learning of interdependent policies. This design eliminates the need for adversarial training and simplifies the learning process. Extensive experiments on Iterative Matrix Games and multi-agent particle environments demonstrate that LSDN can better reproduce complex interaction dynamics than existing MAIL methods.
comment: Preprint. Code will be released at this GitHub link: https://github.com/NYCU-RL-Bandits-Lab/LSDN
☆ LLMs Know What to Drop: Self-Attention Guided KV Cache Eviction for Efficient Long-Context Inference
Efficient long-context inference is critical as large language models (LLMs) adopt context windows of ranging from 128K to 1M tokens. However, the growing key-value (KV) cache and the high computational complexity of attention create significant bottlenecks in memory usage and latency. In this paper, we find that attention in diverse long-context tasks exhibits sparsity, and LLMs implicitly "know" which tokens can be dropped or evicted at the head level after the pre-filling stage. Based on this insight, we propose Self-Attention Guided Eviction~(SAGE-KV), a simple and effective KV eviction cache method for long-context inference. After prefilling, our method performs a one-time top-k selection at both the token and head levels to compress the KV cache, enabling efficient inference with the reduced cache. Evaluations on LongBench and three long-context LLMs (Llama3.1-8B-Instruct-128k, Llama3-8B-Prolong-512k-Instruct, and Qwen2.5-7B-Instruct-128k) show that SAGE-KV maintains accuracy comparable to full attention while significantly improving efficiency. Specifically, SAGE-KV achieves 4x higher memory efficiency with improved accuracy over the static KV cache selection method StreamLLM, and 2x higher memory efficiency with better accuracy than the dynamic KV cache selection method Quest.
☆ Meta-Reinforcement Learning with Discrete World Models for Adaptive Load Balancing
We integrate a meta-reinforcement learning algorithm with the DreamerV3 architecture to improve load balancing in operating systems. This approach enables rapid adaptation to dynamic workloads with minimal retraining, outperforming the Advantage Actor-Critic (A2C) algorithm in standard and adaptive trials. It demonstrates robust resilience to catastrophic forgetting, maintaining high performance under varying workload distributions and sizes. These findings have important implications for optimizing resource management and performance in modern operating systems. By addressing the challenges posed by dynamic and heterogeneous workloads, our approach advances the adaptability and efficiency of reinforcement learning in real-world system management tasks.
comment: 6 pages, 1 figure, to be published in ACMSE 2025
☆ Zero-Shot Action Generalization with Limited Observations AISTATS 2025
Reinforcement Learning (RL) has demonstrated remarkable success in solving sequential decision-making problems. However, in real-world scenarios, RL agents often struggle to generalize when faced with unseen actions that were not encountered during training. Some previous works on zero-shot action generalization rely on large datasets of action observations to capture the behaviors of new actions, making them impractical for real-world applications. In this paper, we introduce a novel zero-shot framework, Action Generalization from Limited Observations (AGLO). Our framework has two main components: an action representation learning module and a policy learning module. The action representation learning module extracts discriminative embeddings of actions from limited observations, while the policy learning module leverages the learned action representations, along with augmented synthetic action representations, to learn a policy capable of handling tasks with unseen actions. The experimental results demonstrate that our framework significantly outperforms state-of-the-art methods for zero-shot action generalization across multiple benchmark tasks, showcasing its effectiveness in generalizing to new actions with minimal action observations.
comment: AISTATS 2025
☆ ResBench: Benchmarking LLM-Generated FPGA Designs with Resource Awareness
Field-Programmable Gate Arrays (FPGAs) are widely used in modern hardware design, yet writing Hardware Description Language (HDL) code for FPGA implementation remains labor-intensive and complex. Large Language Models (LLMs) have emerged as a promising tool for automating HDL generation, but existing benchmarks for LLM HDL code generation primarily evaluate functional correctness while overlooking the critical aspect of hardware resource efficiency. Moreover, current benchmarks lack diversity, failing to capture the broad range of real-world FPGA applications. To address these gaps, we introduce ResBench, the first resource-oriented benchmark explicitly designed to differentiate between resource-optimized and inefficient LLM-generated HDL. ResBench consists of 56 problems across 12 categories, covering applications from finite state machines to financial computing. Our evaluation framework systematically integrates FPGA resource constraints, with a primary focus on Lookup Table (LUT) usage, enabling a realistic assessment of hardware efficiency. Experimental results reveal substantial differences in resource utilization across LLMs, demonstrating ResBench's effectiveness in distinguishing models based on their ability to generate resource-optimized FPGA designs.
comment: to be published in International Symposium on Highly Efficient Accelerators and Reconfigurable Technologies 2025
☆ Cross-Examiner: Evaluating Consistency of Large Language Model-Generated Explanations
Large Language Models (LLMs) are often asked to explain their outputs to enhance accuracy and transparency. However, evidence suggests that these explanations can misrepresent the models' true reasoning processes. One effective way to identify inaccuracies or omissions in these explanations is through consistency checking, which typically involves asking follow-up questions. This paper introduces, cross-examiner, a new method for generating follow-up questions based on a model's explanation of an initial question. Our method combines symbolic information extraction with language model-driven question generation, resulting in better follow-up questions than those produced by LLMs alone. Additionally, this approach is more flexible than other methods and can generate a wider variety of follow-up questions.
comment: 21 pages, 4 figures
☆ Robust Multi-Objective Controlled Decoding of Large Language Models
Test-time alignment of Large Language Models (LLMs) to human preferences offers a flexible way to generate responses aligned to diverse objectives without extensive retraining of LLMs. Existing methods achieve alignment to multiple objectives simultaneously (e.g., instruction-following, helpfulness, conciseness) by optimizing their corresponding reward functions. However, they often rely on predefined weights or optimize for averages, sacrificing one objective for another and leading to unbalanced outcomes. To address this, we introduce Robust Multi-Objective Decoding (RMOD), a novel inference-time algorithm that optimizes for improving worst-case rewards. RMOD formalizes the robust decoding problem as a maximin two-player game between reward weights and the sampling policy, solving for the Nash equilibrium. We show that the game reduces to a convex optimization problem to find the worst-case weights, while the best response policy can be computed analytically. We also introduce a practical RMOD variant designed for efficient decoding with contemporary LLMs, incurring minimal computational overhead compared to non-robust Multi-Objective Decoding (MOD) methods. Our experimental results showcase the effectiveness of RMOD in generating responses equitably aligned with diverse objectives, outperforming baselines up to 20%.
comment: 24 pages, 9 figures
☆ Combining Local Symmetry Exploitation and Reinforcement Learning for Optimised Probabilistic Inference -- A Work In Progress IJCAI 2024
Efficient probabilistic inference by variable elimination in graphical models requires an optimal elimination order. However, finding an optimal order is a challenging combinatorial optimisation problem for models with a large number of random variables. Most recently, a reinforcement learning approach has been proposed to find efficient contraction orders in tensor networks. Due to the duality between graphical models and tensor networks, we adapt this approach to probabilistic inference in graphical models. Furthermore, we incorporate structure exploitation into the process of finding an optimal order. Currently, the agent's cost function is formulated in terms of intermediate result sizes which are exponential in the number of indices (i.e., random variables). We show that leveraging specific structures during inference allows for introducing compact encodings of intermediate results which can be significantly smaller. By considering the compact encoding sizes for the cost function instead, we enable the agent to explore more efficient contraction orders. The structure we consider in this work is the presence of local symmetries (i.e., symmetries within a model's factors).
comment: Contributed to: Sixth Data Science Meets Optimisation (DSO) Workshop at IJCAI 2024
☆ Towards Interpretable Protein Structure Prediction with Sparse Autoencoders ICLR 2025
Protein language models have revolutionized structure prediction, but their nonlinear nature obscures how sequence representations inform structure prediction. While sparse autoencoders (SAEs) offer a path to interpretability here by learning linear representations in high-dimensional space, their application has been limited to smaller protein language models unable to perform structure prediction. In this work, we make two key advances: (1) we scale SAEs to ESM2-3B, the base model for ESMFold, enabling mechanistic interpretability of protein structure prediction for the first time, and (2) we adapt Matryoshka SAEs for protein language models, which learn hierarchically organized features by forcing nested groups of latents to reconstruct inputs independently. We demonstrate that our Matryoshka SAEs achieve comparable or better performance than standard architectures. Through comprehensive evaluations, we show that SAEs trained on ESM2-3B significantly outperform those trained on smaller models for both biological concept discovery and contact map prediction. Finally, we present an initial case study demonstrating how our approach enables targeted steering of ESMFold predictions, increasing structure solvent accessibility while fixing the input sequence. To facilitate further investigation by the broader community, we open-source our code, dataset, pretrained models https://github.com/johnyang101/reticular-sae , and visualizer https://sae.reticular.ai .
comment: Published at the GEMBio ICLR 2025 Workshop
☆ Neurosymbolic Decision Trees
Neurosymbolic (NeSy) AI studies the integration of neural networks (NNs) and symbolic reasoning based on logic. Usually, NeSy techniques focus on learning the neural, probabilistic and/or fuzzy parameters of NeSy models. Learning the symbolic or logical structure of such models has, so far, received less attention. We introduce neurosymbolic decision trees (NDTs), as an extension of decision trees together with a novel NeSy structure learning algorithm, which we dub NeuID3. NeuID3 adapts the standard top-down induction of decision tree algorithms and combines it with a neural probabilistic logic representation, inherited from the DeepProbLog family of models. The key advantage of learning NDTs with NeuID3 is the support of both symbolic and subsymbolic data (such as images), and that they can exploit background knowledge during the induction of the tree structure, In our experimental evaluation we demonstrate the benefits of NeSys structure learning over more traditonal approaches such as purely data-driven learning with neural networks.
☆ Heterogeneous Graph Structure Learning through the Lens of Data-generating Processes
Inferring the graph structure from observed data is a key task in graph machine learning to capture the intrinsic relationship between data entities. While significant advancements have been made in learning the structure of homogeneous graphs, many real-world graphs exhibit heterogeneous patterns where nodes and edges have multiple types. This paper fills this gap by introducing the first approach for heterogeneous graph structure learning (HGSL). To this end, we first propose a novel statistical model for the data-generating process (DGP) of heterogeneous graph data, namely hidden Markov networks for heterogeneous graphs (H2MN). Then we formalize HGSL as a maximum a-posterior estimation problem parameterized by such DGP and derive an alternating optimization method to obtain a solution together with a theoretical justification of the optimization conditions. Finally, we conduct extensive experiments on both synthetic and real-world datasets to demonstrate that our proposed method excels in learning structure on heterogeneous graphs in terms of edge type identification and edge weight recovery.
☆ Exposing Product Bias in LLM Investment Recommendation
Large language models (LLMs), as a new generation of recommendation engines, possess powerful summarization and data analysis capabilities, surpassing traditional recommendation systems in both scope and performance. One promising application is investment recommendation. In this paper, we reveal a novel product bias in LLM investment recommendation, where LLMs exhibit systematic preferences for specific products. Such preferences can subtly influence user investment decisions, potentially leading to inflated valuations of products and financial bubbles, posing risks to both individual investors and market stability. To comprehensively study the product bias, we develop an automated pipeline to create a dataset of 567,000 samples across five asset classes (stocks, mutual funds, cryptocurrencies, savings, and portfolios). With this dataset, we present the bf first study on product bias in LLM investment recommendations. Our findings reveal that LLMs exhibit clear product preferences, such as certain stocks (e.g., `AAPL' from Apple and `MSFT' from Microsoft). Notably, this bias persists even after applying debiasing techniques. We urge AI researchers to take heed of the product bias in LLM investment recommendations and its implications, ensuring fairness and security in the digital space and market.
☆ Source-free domain adaptation based on label reliability for cross-domain bearing fault diagnosis
Source-free domain adaptation (SFDA) has been exploited for cross-domain bearing fault diagnosis without access to source data. Current methods select partial target samples with reliable pseudo-labels for model adaptation, which is sub-optimal due to the ignored target samples. We argue that every target sample can contribute to model adaptation, and accordingly propose in this paper a novel SFDA-based approach for bearing fault diagnosis that exploits both reliable and unreliable pseudo-labels. We develop a data-augmentation-based label voting strategy to divide the target samples into reliable and unreliable ones. We propose to explore the underlying relation between feature space and label space by using the reliable pseudo-labels as ground-truth labels, meanwhile, alleviating negative transfer by maximizing the entropy of the unreliable pseudo-labels. The proposed method achieves well-balance between discriminability and diversity by taking advantage of reliable and unreliable pseudo-labels. Extensive experiments are conducted on two bearing fault benchmarks, demonstrating that our approach achieves significant performance improvements against existing SFDA-based bearing fault diagnosis methods. Our code is available at https://github.com/BdLab405/SDALR.
comment: 15 pages, 12 figures and 7 tables
☆ Mirror Descent and Novel Exponentiated Gradient Algorithms Using Trace-Form Entropies and Deformed Logarithms
In this paper we propose and investigate a wide class of Mirror Descent updates (MD) and associated novel Generalized Exponentiated Gradient (GEG) algorithms by exploiting various trace-form entropies and associated deformed logarithms and their inverses - deformed (generalized) exponential functions. The proposed algorithms can be considered as extension of entropic MD and generalization of multiplicative updates. In the literature, there exist nowadays over fifty mathematically well defined generalized entropies, so impossible to exploit all of them in one research paper. So we focus on a few selected most popular entropies and associated logarithms like the Tsallis, Kaniadakis and Sharma-Taneja-Mittal and some of their extension like Tempesta or Kaniadakis-Scarfone entropies. The shape and properties of the deformed logarithms and their inverses are tuned by one or more hyperparameters. By learning these hyperparameters, we can adapt to distribution of training data, which can be designed to the specific geometry of the optimization problem, leading to potentially faster convergence and better performance. The using generalized entropies and associated deformed logarithms in the Bregman divergence, used as a regularization term, provides some new insight into exponentiated gradient descent updates.
comment: 22 pages, 9 figures
☆ Neural Network for Blind Unmixing: a novel MatrixConv Unmixing (MCU) Approach
Hyperspectral image (HSI) unmixing is a challenging research problem that tries to identify the constituent components, known as endmembers, and their corresponding proportions, known as abundances, in the scene by analysing images captured by hyperspectral cameras. Recently, many deep learning based unmixing approaches have been proposed with the surge of machine learning techniques, especially convolutional neural networks (CNN). However, these methods face two notable challenges: 1. They frequently yield results lacking physical significance, such as signatures corresponding to unknown or non-existent materials. 2. CNNs, as general-purpose network structures, are not explicitly tailored for unmixing tasks. In response to these concerns, our work draws inspiration from double deep image prior (DIP) techniques and algorithm unrolling, presenting a novel network structure that effectively addresses both issues. Specifically, we first propose a MatrixConv Unmixing (MCU) approach for endmember and abundance estimation, respectively, which can be solved via certain iterative solvers. We then unroll these solvers to build two sub-networks, endmember estimation DIP (UEDIP) and abundance estimation DIP (UADIP), to generate the estimation of endmember and abundance, respectively. The overall network is constructed by assembling these two sub-networks. In order to generate meaningful unmixing results, we also propose a composite loss function. To further improve the unmixing quality, we also add explicitly a regularizer for endmember and abundance estimation, respectively. The proposed methods are tested for effectiveness on both synthetic and real datasets.
♻ ☆ Inductive Moment Matching
Diffusion models and Flow Matching generate high-quality samples but are slow at inference, and distilling them into few-step models often leads to instability and extensive tuning. To resolve these trade-offs, we propose Inductive Moment Matching (IMM), a new class of generative models for one- or few-step sampling with a single-stage training procedure. Unlike distillation, IMM does not require pre-training initialization and optimization of two networks; and unlike Consistency Models, IMM guarantees distribution-level convergence and remains stable under various hyperparameters and standard model architectures. IMM surpasses diffusion models on ImageNet-256x256 with 1.99 FID using only 8 inference steps and achieves state-of-the-art 2-step FID of 1.98 on CIFAR-10 for a model trained from scratch.
♻ ☆ LMM-R1: Empowering 3B LMMs with Strong Reasoning Abilities Through Two-Stage Rule-Based RL
Enhancing reasoning in Large Multimodal Models (LMMs) faces unique challenges from the complex interplay between visual perception and logical reasoning, particularly in compact 3B-parameter architectures where architectural constraints limit reasoning capacity and modality alignment. While rule-based reinforcement learning (RL) excels in text-only domains, its multimodal extension confronts two critical barriers: (1) data limitations due to ambiguous answers and scarce complex reasoning examples, and (2) degraded foundational reasoning induced by multimodal pretraining. To address these challenges, we propose \textbf{LMM-R1}, a two-stage framework adapting rule-based RL for multimodal reasoning through \textbf{Foundational Reasoning Enhancement (FRE)} followed by \textbf{Multimodal Generalization Training (MGT)}. The FRE stage first strengthens reasoning abilities using text-only data with rule-based RL, then the MGT stage generalizes these reasoning capabilities to multimodal domains. Experiments on Qwen2.5-VL-Instruct-3B demonstrate that LMM-R1 achieves 4.83\% and 4.5\% average improvements over baselines in multimodal and text-only benchmarks, respectively, with a 3.63\% gain in complex Football Game tasks. These results validate that text-based reasoning enhancement enables effective multimodal generalization, offering a data-efficient paradigm that bypasses costly high-quality multimodal training data.
♻ ☆ ToolFuzz -- Automated Agent Tool Testing
Large Language Model (LLM) Agents leverage the advanced reasoning capabilities of LLMs in real-world applications. To interface with an environment, these agents often rely on tools, such as web search or database APIs. As the agent provides the LLM with tool documentation along the user query, the completeness and correctness of this documentation is critical. However, tool documentation is often over-, under-, or ill-specified, impeding the agent's accuracy. Standard software testing approaches struggle to identify these errors as they are expressed in natural language. Thus, despite its importance, there currently exists no automated method to test the tool documentation for agents. To address this issue, we present ToolFuzz, the first method for automated testing of tool documentations. ToolFuzz is designed to discover two types of errors: (1) user queries leading to tool runtime errors and (2) user queries that lead to incorrect agent responses. ToolFuzz can generate a large and diverse set of natural inputs, effectively finding tool description errors at a low false positive rate. Further, we present two straightforward prompt-engineering approaches. We evaluate all three tool testing approaches on 32 common LangChain tools and 35 newly created custom tools and 2 novel benchmarks to further strengthen the assessment. We find that many publicly available tools suffer from underspecification. Specifically, we show that ToolFuzz identifies 20x more erroneous inputs compared to the prompt-engineering approaches, making it a key component for building reliable AI agents.
♻ ☆ KAA: Kolmogorov-Arnold Attention for Enhancing Attentive Graph Neural Networks
Graph neural networks (GNNs) with attention mechanisms, often referred to as attentive GNNs, have emerged as a prominent paradigm in advanced GNN models in recent years. However, our understanding of the critical process of scoring neighbor nodes remains limited, leading to the underperformance of many existing attentive GNNs. In this paper, we unify the scoring functions of current attentive GNNs and propose Kolmogorov-Arnold Attention (KAA), which integrates the Kolmogorov-Arnold Network (KAN) architecture into the scoring process. KAA enhances the performance of scoring functions across the board and can be applied to nearly all existing attentive GNNs. To compare the expressive power of KAA with other scoring functions, we introduce Maximum Ranking Distance (MRD) to quantitatively estimate their upper bounds in ranking errors for node importance. Our analysis reveals that, under limited parameters and constraints on width and depth, both linear transformation-based and MLP-based scoring functions exhibit finite expressive power. In contrast, our proposed KAA, even with a single-layer KAN parameterized by zero-order B-spline functions, demonstrates nearly infinite expressive power. Extensive experiments on both node-level and graph-level tasks using various backbone models show that KAA-enhanced scoring functions consistently outperform their original counterparts, achieving performance improvements of over 20% in some cases.
♻ ☆ Ideas in Inference-time Scaling can Benefit Generative Pre-training Algorithms
Recent years have seen significant advancements in foundation models through generative pre-training, yet algorithmic innovation in this space has largely stagnated around autoregressive models for discrete signals and diffusion models for continuous signals. This stagnation creates a bottleneck that prevents us from fully unlocking the potential of rich multi-modal data, which in turn limits the progress on multimodal intelligence. We argue that an inference-first perspective, which prioritizes scaling efficiency during inference time across sequence length and refinement steps, can inspire novel generative pre-training algorithms. Using Inductive Moment Matching (IMM) as a concrete example, we demonstrate how addressing limitations in diffusion models' inference process through targeted modifications yields a stable, single-stage algorithm that achieves superior sample quality with over an order of magnitude greater inference efficiency.
♻ ☆ FaceID-6M: A Large-Scale, Open-Source FaceID Customization Dataset
Due to the data-driven nature of current face identity (FaceID) customization methods, all state-of-the-art models rely on large-scale datasets containing millions of high-quality text-image pairs for training. However, none of these datasets are publicly available, which restricts transparency and hinders further advancements in the field. To address this issue, in this paper, we collect and release FaceID-6M, the first large-scale, open-source FaceID dataset containing 6 million high-quality text-image pairs. Filtered from LAION-5B \cite{schuhmann2022laion}, FaceID-6M undergoes a rigorous image and text filtering steps to ensure dataset quality, including resolution filtering to maintain high-quality images and faces, face filtering to remove images that lack human faces, and keyword-based strategy to retain descriptions containing human-related terms (e.g., nationality, professions and names). Through these cleaning processes, FaceID-6M provides a high-quality dataset optimized for training powerful FaceID customization models, facilitating advancements in the field by offering an open resource for research and development. We conduct extensive experiments to show the effectiveness of our FaceID-6M, demonstrating that models trained on our FaceID-6M dataset achieve performance that is comparable to, and slightly better than currently available industrial models. Additionally, to support and advance research in the FaceID customization community, we make our code, datasets, and models fully publicly available. Our codes, models, and datasets are available at: https://github.com/ShuheSH/FaceID-6M.
comment: arXiv admin note: text overlap with arXiv:2501.15407
♻ ☆ Adversarial Guided Diffusion Models for Adversarial Purification
Diffusion model (DM) based adversarial purification (AP) has proven to be a powerful defense method that can remove adversarial perturbations and generate a purified example without threats. In principle, the pre-trained DMs can only ensure that purified examples conform to the same distribution of the training data, but it may inadvertently compromise the semantic information of input examples, leading to misclassification of purified examples. Recent advancements introduce guided diffusion techniques to preserve semantic information while removing the perturbations. However, these guidances often rely on distance measures between purified examples and diffused examples, which can also preserve perturbations in purified examples. To further unleash the robustness power of DM-based AP, we propose an adversarial guided diffusion model (AGDM) by introducing a novel adversarial guidance that contains sufficient semantic information but does not explicitly involve adversarial perturbations. The guidance is modeled by an auxiliary neural network obtained with adversarial training, considering the distance in the latent representations rather than at the pixel-level values. Extensive experiments are conducted on CIFAR-10, CIFAR-100 and ImageNet to demonstrate that our method is effective for simultaneously maintaining semantic information and removing the adversarial perturbations. In addition, comprehensive comparisons show that our method significantly enhances the robustness of existing DM-based AP, with an average robust accuracy improved by up to 7.30% on CIFAR-10.
♻ ☆ Interactive Medical Image Analysis with Concept-based Similarity Reasoning CVPR2025
The ability to interpret and intervene model decisions is important for the adoption of computer-aided diagnosis methods in clinical workflows. Recent concept-based methods link the model predictions with interpretable concepts and modify their activation scores to interact with the model. However, these concepts are at the image level, which hinders the model from pinpointing the exact patches the concepts are activated. Alternatively, prototype-based methods learn representations from training image patches and compare these with test image patches, using the similarity scores for final class prediction. However, interpreting the underlying concepts of these patches can be challenging and often necessitates post-hoc guesswork. To address this issue, this paper introduces the novel Concept-based Similarity Reasoning network (CSR), which offers (i) patch-level prototype with intrinsic concept interpretation, and (ii) spatial interactivity. First, the proposed CSR provides localized explanation by grounding prototypes of each concept on image regions. Second, our model introduces novel spatial-level interaction, allowing doctors to engage directly with specific image areas, making it an intuitive and transparent tool for medical imaging. CSR improves upon prior state-of-the-art interpretable methods by up to 4.5\% across three biomedical datasets. Our code is released at https://github.com/tadeephuy/InteractCSR.
comment: Accepted CVPR2025
♻ ☆ Towards Million-Scale Adversarial Robustness Evaluation With Stronger Individual Attacks
As deep learning models are increasingly deployed in safety-critical applications, evaluating their vulnerabilities to adversarial perturbations is essential for ensuring their reliability and trustworthiness. Over the past decade, a large number of white-box adversarial robustness evaluation methods (i.e., attacks) have been proposed, ranging from single-step to multi-step methods and from individual to ensemble methods. Despite these advances, challenges remain in conducting meaningful and comprehensive robustness evaluations, particularly when it comes to large-scale testing and ensuring evaluations reflect real-world adversarial risks. In this work, we focus on image classification models and propose a novel individual attack method, Probability Margin Attack (PMA), which defines the adversarial margin in the probability space rather than the logits space. We analyze the relationship between PMA and existing cross-entropy or logits-margin-based attacks, and show that PMA can outperform the current state-of-the-art individual methods. Building on PMA, we propose two types of ensemble attacks that balance effectiveness and efficiency. Furthermore, we create a million-scale dataset, CC1M, derived from the existing CC3M dataset, and use it to conduct the first million-scale white-box adversarial robustness evaluation of adversarially-trained ImageNet models. Our findings provide valuable insights into the robustness gaps between individual versus ensemble attacks and small-scale versus million-scale evaluations.
♻ ☆ Vision-R1: Incentivizing Reasoning Capability in Multimodal Large Language Models
DeepSeek-R1-Zero has successfully demonstrated the emergence of reasoning capabilities in LLMs purely through Reinforcement Learning (RL). Inspired by this breakthrough, we explore how RL can be utilized to enhance the reasoning capability of MLLMs. However, direct training with RL struggles to activate complex reasoning capabilities such as questioning and reflection in MLLMs, due to the absence of substantial high-quality multimodal reasoning data. To address this issue, we propose the reasoning MLLM, Vision-R1, to improve multimodal reasoning capability. Specifically, we first construct a high-quality multimodal CoT dataset without human annotations by leveraging an existing MLLM and DeepSeek-R1 through modality bridging and data filtering to obtain a 200K multimodal CoT dataset, Vision-R1-cold dataset. It serves as cold-start initialization data for Vision-R1. To mitigate the optimization challenges caused by overthinking after cold start, we propose Progressive Thinking Suppression Training (PTST) strategy and employ Group Relative Policy Optimization (GRPO) with the hard formatting result reward function to gradually refine the model's ability to learn correct and complex reasoning processes on a 10K multimodal math dataset. Comprehensive experiments show our model achieves an average improvement of $\sim$6% across various multimodal math reasoning benchmarks. Vision-R1-7B achieves a 73.5% accuracy on the widely used MathVista benchmark, which is only 0.4% lower than the leading reasoning model, OpenAI O1. The datasets and code will be released in: https://github.com/Osilly/Vision-R1 .
♻ ☆ ChatGPT-4 in the Turing Test: A Critical Analysis
This paper critically examines the recent publication "ChatGPT-4 in the Turing Test" by Restrepo Echavarr\'ia (2025), challenging its central claims regarding the absence of minimally serious test implementations and the conclusion that ChatGPT-4 fails the Turing Test. The analysis reveals that the criticisms based on rigid criteria and limited experimental data are not fully justified. More importantly, the paper makes several constructive contributions that enrich our understanding of Turing Test implementations. It demonstrates that two distinct formats--the three-player and two-player tests--are both valid, each with unique methodological implications. The work distinguishes between absolute criteria (reflecting an optimal 50% identification rate in a three-player format) and relative criteria (which measure how closely a machine's performance approximates that of a human), offering a more nuanced evaluation framework. Furthermore, the paper clarifies the probabilistic underpinnings of both test types by modeling them as Bernoulli experiments--correlated in the three-player version and uncorrelated in the two-player version. This formalization allows for a rigorous separation between the theoretical criteria for passing the test, defined in probabilistic terms, and the experimental data that require robust statistical methods for proper interpretation. In doing so, the paper not only refutes key aspects of the criticized study but also lays a solid foundation for future research on objective measures of how closely an AI's behavior aligns with, or deviates from, that of a human being.
comment: 14 pages, 1 Appendix, added 1 missing item in References, corrected typos
♻ ☆ DMin: Scalable Training Data Influence Estimation for Diffusion Models
Identifying the training data samples that most influence a generated image is a critical task in understanding diffusion models (DMs), yet existing influence estimation methods are constrained to small-scale or LoRA-tuned models due to computational limitations. To address this challenge, we propose DMin (Diffusion Model influence), a scalable framework for estimating the influence of each training data sample on a given generated image. To the best of our knowledge, it is the first method capable of influence estimation for DMs with billions of parameters. Leveraging efficient gradient compression, DMin reduces storage requirements from hundreds of TBs to mere MBs or even KBs, and retrieves the top-k most influential training samples in under 1 second, all while maintaining performance. Our empirical results demonstrate DMin is both effective in identifying influential training samples and efficient in terms of computational and storage requirements.
comment: 14 pages, 6 figures, 8 tables. Under Review
♻ ☆ LightMotion: A Light and Tuning-free Method for Simulating Camera Motion in Video Generation
Existing camera motion-controlled video generation methods face computational bottlenecks in fine-tuning and inference. This paper proposes LightMotion, a light and tuning-free method for simulating camera motion in video generation. Operating in the latent space, it eliminates additional fine-tuning, inpainting, and depth estimation, making it more streamlined than existing methods. The endeavors of this paper comprise: (i) The latent space permutation operation effectively simulates various camera motions like panning, zooming, and rotation. (ii) The latent space resampling strategy combines background-aware sampling and cross-frame alignment to accurately fill new perspectives while maintaining coherence across frames. (iii) Our in-depth analysis shows that the permutation and resampling cause an SNR shift in latent space, leading to poor-quality generation. To address this, we propose latent space correction, which reintroduces noise during denoising to mitigate SNR shift and enhance video generation quality. Exhaustive experiments show that our LightMotion outperforms existing methods, both quantitatively and qualitatively.
comment: 18 pages in total
♻ ☆ LayoutVLM: Differentiable Optimization of 3D Layout via Vision-Language Models CVPR 2025
Spatial reasoning is a fundamental aspect of human cognition, enabling intuitive understanding and manipulation of objects in three-dimensional space. While foundation models demonstrate remarkable performance on some benchmarks, they still struggle with 3D reasoning tasks like arranging objects in space according to open-ended language instructions, particularly in dense and physically constrained environments. We introduce LayoutVLM, a framework and scene layout representation that exploits the semantic knowledge of Vision-Language Models (VLMs) and supports differentiable optimization to ensure physical plausibility. LayoutVLM employs VLMs to generate two mutually reinforcing representations from visually marked images, and a self-consistent decoding process to improve VLMs spatial planning. Our experiments show that LayoutVLM addresses the limitations of existing LLM and constraint-based approaches, producing physically plausible 3D layouts better aligned with the semantic intent of input language instructions. We also demonstrate that fine-tuning VLMs with the proposed scene layout representation extracted from existing scene datasets can improve their reasoning performance.
comment: CVPR 2025, project website: https://ai.stanford.edu/~sunfanyun/layoutvlm/
♻ ☆ Proto Successor Measure: Representing the Behavior Space of an RL Agent
Having explored an environment, intelligent agents should be able to transfer their knowledge to most downstream tasks within that environment without additional interactions. Referred to as "zero-shot learning", this ability remains elusive for general-purpose reinforcement learning algorithms. While recent works have attempted to produce zero-shot RL agents, they make assumptions about the nature of the tasks or the structure of the MDP. We present Proto Successor Measure: the basis set for all possible behaviors of a Reinforcement Learning Agent in a dynamical system. We prove that any possible behavior (represented using visitation distributions) can be represented using an affine combination of these policy-independent basis functions. Given a reward function at test time, we simply need to find the right set of linear weights to combine these bases corresponding to the optimal policy. We derive a practical algorithm to learn these basis functions using reward-free interaction data from the environment and show that our approach can produce the optimal policy at test time for any given reward function without additional environmental interactions. Project page: https://agarwalsiddhant10.github.io/projects/psm.html.
comment: Under submission, 20 pages
♻ ☆ Rationalization Models for Text-to-SQL ICLR 2025
We introduce a framework for generating Chain-of-Thought (CoT) rationales to enhance text-to-SQL model fine-tuning. These rationales consist of intermediate SQL statements and explanations, serving as incremental steps toward constructing the final SQL query. The process begins with manually annotating a small set of examples, which are then used to prompt a large language model in an iterative, dynamic few-shot knowledge distillation procedure from a teacher model. A rationalization model is subsequently trained on the validated decomposed queries, enabling extensive synthetic CoT annotations for text-to-SQL datasets. To evaluate the approach, we fine-tune small language models with and without these rationales on the BIRD dataset. Results indicate that step-by-step query generation improves execution accuracy, especially for moderately and highly complex queries, while also enhancing explainability.
comment: Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs
♻ ☆ Exponential Speedups by Rerooting Levin Tree Search
Levin Tree Search (LTS) (Orseau et al., 2018) is a search algorithm for deterministic environments that uses a user-specified policy to guide the search. It comes with a formal guarantee on the number of search steps (node visits) for finding a solution node that depends on the quality of the policy. In this paper, we introduce a new algorithm, called $\sqrt{\text{LTS}}$ (pronounce root-LTS), which implicitly starts an LTS search rooted at every node of the search tree. Each LTS search is assigned a rerooting weight by a (user-defined or learnt) rerooter, and the search effort is shared between all LTS searches proportionally to their weights. The rerooting mechanism implicitly decomposes the search space into subtasks, leading to significant speedups. We prove that the number of node visits that $\sqrt{\text{LTS}}$ takes is competitive with the best decomposition into subtasks, at the price of a factor that relates to the uncertainty of the rerooter. If LTS takes time $T$, in the best case with $q$ rerooting points, $\sqrt{\text{LTS}}$ only takes time $O(q\sqrt[q]{T})$. Like the policy, the rerooter can be learnt from data, and we expect $\sqrt{\text{LTS}}$ to be applicable to a wide range of domains.
♻ ☆ IRepair: An Intent-Aware Approach to Repair Data-Driven Errors in Large Language Models
Not a day goes by without hearing about the impressive feats of large language models (LLMs), and equally, not a day passes without hearing about their challenges. LLMs are notoriously vulnerable to biases in their dataset, leading to issues such as toxicity. While domain-adaptive training has been employed to mitigate these issues, these techniques often address all model parameters indiscriminately during the repair process, resulting in poor repair quality and reduced model versatility. In this paper, we introduce a novel dynamic slicing-based intent-aware LLM repair strategy, IRepair. This approach selectively targets the most error-prone sections of the model for repair. Specifically, we propose dynamically slicing the model's most sensitive layers that require immediate attention, concentrating repair efforts on those areas. This method enables more effective repairs with potentially less impact on the model's overall performance by altering a smaller portion of the model. We evaluated our technique on three models from the GPT2 and GPT-Neo families, with parameters ranging from 800M to 1.6B, in a toxicity mitigation setup. Our results show that IRepair repairs errors 43.6% more effectively while causing 46% less disruption to general performance compared to the closest baseline, direct preference optimization. Our empirical analysis also reveals that errors are more concentrated in a smaller section of the model, with the top 20% of layers exhibiting 773% more error density than the remaining 80\%. This highlights the need for selective repair. Additionally, we demonstrate that a dynamic selection approach is essential for addressing errors dispersed throughout the model, ensuring a robust and efficient repair.
comment: Accepted as full research paper at FSE'2025
♻ ☆ RealmDreamer: Text-Driven 3D Scene Generation with Inpainting and Depth Diffusion 3DV 2025
We introduce RealmDreamer, a technique for generating forward-facing 3D scenes from text descriptions. Our method optimizes a 3D Gaussian Splatting representation to match complex text prompts using pretrained diffusion models. Our key insight is to leverage 2D inpainting diffusion models conditioned on an initial scene estimate to provide low variance supervision for unknown regions during 3D distillation. In conjunction, we imbue high-fidelity geometry with geometric distillation from a depth diffusion model, conditioned on samples from the inpainting model. We find that the initialization of the optimization is crucial, and provide a principled methodology for doing so. Notably, our technique doesn't require video or multi-view data and can synthesize various high-quality 3D scenes in different styles with complex layouts. Further, the generality of our method allows 3D synthesis from a single image. As measured by a comprehensive user study, our method outperforms all existing approaches, preferred by 88-95%. Project Page: https://realmdreamer.github.io/
comment: Published at 3DV 2025
♻ ☆ Fair Summarization: Bridging Quality and Diversity in Extractive Summaries NeurIPS 2024
Fairness in multi-document summarization of user-generated content remains a critical challenge in natural language processing (NLP). Existing summarization methods often fail to ensure equitable representation across different social groups, leading to biased outputs. In this paper, we introduce two novel methods for fair extractive summarization: FairExtract, a clustering-based approach, and FairGPT, which leverages GPT-3.5-turbo with fairness constraints. We evaluate these methods using Divsumm summarization dataset of White-aligned, Hispanic, and African-American dialect tweets and compare them against relevant baselines. The results obtained using a comprehensive set of summarization quality metrics such as SUPERT, BLANC, SummaQA, BARTScore, and UniEval, as well as a fairness metric F, demonstrate that FairExtract and FairGPT achieve superior fairness while maintaining competitive summarization quality. Additionally, we introduce composite metrics (e.g., SUPERT+F, BLANC+F) that integrate quality and fairness into a single evaluation framework, offering a more nuanced understanding of the trade-offs between these objectives. Our code is available online.
comment: Accepted at AFLME@NeurIPS 2024 & C3NLP@NAACL 2025
♻ ☆ Curriculum Direct Preference Optimization for Diffusion and Consistency Models CVPR 2025
Direct Preference Optimization (DPO) has been proposed as an effective and efficient alternative to reinforcement learning from human feedback (RLHF). In this paper, we propose a novel and enhanced version of DPO based on curriculum learning for text-to-image generation. Our method is divided into two training stages. First, a ranking of the examples generated for each prompt is obtained by employing a reward model. Then, increasingly difficult pairs of examples are sampled and provided to a text-to-image generative (diffusion or consistency) model. Generated samples that are far apart in the ranking are considered to form easy pairs, while those that are close in the ranking form hard pairs. In other words, we use the rank difference between samples as a measure of difficulty. The sampled pairs are split into batches according to their difficulty levels, which are gradually used to train the generative model. Our approach, Curriculum DPO, is compared against state-of-the-art fine-tuning approaches on nine benchmarks, outperforming the competing methods in terms of text alignment, aesthetics and human preference. Our code is available at https://github.com/CroitoruAlin/Curriculum-DPO.
comment: Accepted at CVPR 2025
♻ ☆ Hypergraph Structure Inference From Data Under Smoothness Prior
Hypergraphs are important for processing data with higher-order relationships involving more than two entities. In scenarios where explicit hypergraphs are not readily available, it is desirable to infer a meaningful hypergraph structure from the node features to capture the intrinsic relations within the data. However, existing methods either adopt simple pre-defined rules that fail to precisely capture the distribution of the potential hypergraph structure, or learn a mapping between hypergraph structures and node features but require a large amount of labelled data, i.e., pre-existing hypergraph structures, for training. Both restrict their applications in practical scenarios. To fill this gap, we propose a novel smoothness prior that enables us to design a method to infer the probability for each potential hyperedge without labelled data as supervision. The proposed prior indicates features of nodes in a hyperedge are highly correlated by the features of the hyperedge containing them. We use this prior to derive the relation between the hypergraph structure and the node features via probabilistic modelling. This allows us to develop an unsupervised inference method to estimate the probability for each potential hyperedge via solving an optimisation problem that has an analytical solution. Experiments on both synthetic and real-world data demonstrate that our method can learn meaningful hypergraph structures from data more efficiently than existing hypergraph structure inference methods.
♻ ☆ Training-Free Message Passing for Learning on Hypergraphs
Hypergraphs are crucial for modelling higher-order interactions in real-world data. Hypergraph neural networks (HNNs) effectively utilise these structures by message passing to generate informative node features for various downstream tasks like node classification. However, the message passing module in existing HNNs typically requires a computationally intensive training process, which limits their practical use. To tackle this challenge, we propose an alternative approach by decoupling the usage of hypergraph structural information from the model learning stage. This leads to a novel training-free message passing module, named TF-MP-Module, which can be precomputed in the data preprocessing stage, thereby reducing the computational burden. We refer to the hypergraph neural network equipped with our TF-MP-Module as TF-HNN. We theoretically support the efficiency and effectiveness of TF-HNN by showing that: 1) It is more training-efficient compared to existing HNNs; 2) It utilises as much information as existing HNNs for node feature generation; and 3) It is robust against the oversmoothing issue while using long-range interactions. Experiments based on seven real-world hypergraph benchmarks in node classification and hyperlink prediction show that, compared to state-of-the-art HNNs, TF-HNN exhibits both competitive performance and superior training efficiency. Specifically, on the large-scale benchmark, Trivago, TF-HNN outperforms the node classification accuracy of the best baseline by 10% with just 1% of the training time of that baseline.
♻ ☆ AI Data Readiness Inspector (AIDRIN) for Quantitative Assessment of Data Readiness for AI
"Garbage In Garbage Out" is a universally agreed quote by computer scientists from various domains, including Artificial Intelligence (AI). As data is the fuel for AI, models trained on low-quality, biased data are often ineffective. Computer scientists who use AI invest a considerable amount of time and effort in preparing the data for AI. However, there are no standard methods or frameworks for assessing the "readiness" of data for AI. To provide a quantifiable assessment of the readiness of data for AI processes, we define parameters of AI data readiness and introduce AIDRIN (AI Data Readiness Inspector). AIDRIN is a framework covering a broad range of readiness dimensions available in the literature that aid in evaluating the readiness of data quantitatively and qualitatively. AIDRIN uses metrics in traditional data quality assessment such as completeness, outliers, and duplicates for data evaluation. Furthermore, AIDRIN uses metrics specific to assess data for AI, such as feature importance, feature correlations, class imbalance, fairness, privacy, and FAIR (Findability, Accessibility, Interoperability, and Reusability) principle compliance. AIDRIN provides visualizations and reports to assist data scientists in further investigating the readiness of data. The AIDRIN framework enhances the efficiency of the machine learning pipeline to make informed decisions on data readiness for AI applications.
comment: 12 pages, 9 figures, Accepted to SSDBM 2024
♻ ☆ Building Interval Type-2 Fuzzy Membership Function: A Deck of Cards based Co-constructive Approach
Since its inception, Fuzzy Set has been widely used to handle uncertainty and imprecision in decision-making. However, conventional fuzzy sets, often referred to as type-1 fuzzy sets (T1FSs) have limitations in capturing higher levels of uncertainty, particularly when decision-makers (DMs) express hesitation or ambiguity in membership degree. To address this, Interval Type-2 Fuzzy Sets (IT2FSs) have been introduced by incorporating uncertainty in membership degree allocation, which enhanced flexibility in modelling subjective judgments. Despite their advantages, existing IT2FS construction methods often lack active involvement from DMs and that limits the interpretability and effectiveness of decision models. This study proposes a socio-technical co-constructive approach for developing IT2FS models of linguistic terms by facilitating the active involvement of DMs in preference elicitation and its application in multicriteria decision-making (MCDM) problems. Our methodology is structured in two phases. The first phase involves an interactive process between the DM and the decision analyst, in which a modified version of Deck-of-Cards (DoC) method is proposed to construct T1FS membership functions on a ratio scale. We then extend this method to incorporate ambiguity in subjective judgment and that resulted in an IT2FS model that better captures uncertainty in DM's linguistic assessments. The second phase formalizes the constructed IT2FS model for application in MCDM by defining an appropriate mathematical representation of such information, aggregation rules, and an admissible ordering principle. The proposed framework enhances the reliability and effectiveness of fuzzy decision-making not only by accurately representing DM's personalized semantics of linguistic information.
♻ ☆ (How) Do Language Models Track State?
Transformer language models (LMs) exhibit behaviors -- from storytelling to code generation -- that appear to require tracking the unobserved state of an evolving world. How do they do so? We study state tracking in LMs trained or fine-tuned to compose permutations (i.e., to compute the order of a set of objects after a sequence of swaps). Despite the simple algebraic structure of this problem, many other tasks (e.g., simulation of finite automata and evaluation of boolean expressions) can be reduced to permutation composition, making it a natural model for state tracking in general. We show that LMs consistently learn one of two state tracking mechanisms for this task. The first closely resembles the "associative scan" construction used in recent theoretical work by Liu et al. (2023) and Merrill et al. (2024). The second uses an easy-to-compute feature (permutation parity) to partially prune the space of outputs, then refines this with an associative scan. The two mechanisms exhibit markedly different robustness properties, and we show how to steer LMs toward one or the other with intermediate training tasks that encourage or suppress the heuristics. Our results demonstrate that transformer LMs, whether pretrained or fine-tuned, can learn to implement efficient and interpretable state tracking mechanisms, and the emergence of these mechanisms can be predicted and controlled.
comment: 21 pages, 17 figures, 1 table. Code: http://github.com/belindal/state-tracking
♻ ☆ Forgotten Polygons: Multimodal Large Language Models are Shape-Blind
Despite strong performance on vision-language tasks, Multimodal Large Language Models (MLLMs) struggle with mathematical problem-solving, with both open-source and state-of-the-art models falling short of human performance on visual-math benchmarks. To systematically examine visual-mathematical reasoning in MLLMs, we (1) evaluate their understanding of geometric primitives, (2) test multi-step reasoning, and (3) explore a potential solution to improve visual reasoning capabilities. Our findings reveal fundamental shortcomings in shape recognition, with top models achieving under 50% accuracy in identifying regular polygons. We analyze these failures through the lens of dual-process theory and show that MLLMs rely on System 1 (intuitive, memorized associations) rather than System 2 (deliberate reasoning). Consequently, MLLMs fail to count the sides of both familiar and novel shapes, suggesting they have neither learned the concept of sides nor effectively process visual inputs. Finally, we propose Visually Cued Chain-of-Thought (VC-CoT) prompting, which enhances multi-step mathematical reasoning by explicitly referencing visual annotations in diagrams, boosting GPT-4o's accuracy on an irregular polygon side-counting task from 7% to 93%. Our findings suggest that System 2 reasoning in MLLMs remains an open problem, and visually-guided prompting is essential for successfully engaging visual reasoning. Code available at: https://github.com/rsinghlab/Shape-Blind.
♻ ☆ PaCA: Partial Connection Adaptation for Efficient Fine-Tuning
Prior parameter-efficient fine-tuning (PEFT) algorithms reduce memory usage and computational costs of fine-tuning large neural network models by training only a few additional adapter parameters, rather than the entire model. However, the reduction in computational costs due to PEFT does not necessarily translate to a reduction in training time; although the computational costs of the adapter layers are much smaller than the pretrained layers, it is well known that those two types of layers are processed sequentially on GPUs, resulting in significant latency overhead. LoRA and its variants merge low-rank adapter matrices with pretrained weights during inference to avoid latency overhead, but during training, the pretrained weights remain frozen while the adapter matrices are continuously updated, preventing such merging. To mitigate this issue, we propose Partial Connection Adaptation (PaCA), which fine-tunes randomly selected partial connections within the pretrained weights instead of introducing adapter layers in the model. PaCA not only enhances training speed by eliminating the time overhead due to the sequential processing of the adapter and pretrained layers but also reduces activation memory since only partial activations, rather than full activations, need to be stored for gradient computation. Compared to LoRA, PaCA reduces training time by 22% and total memory usage by 16%, while maintaining comparable accuracy across various fine-tuning scenarios, such as fine-tuning on the MMLU dataset and instruction tuning on the Oasst1 dataset. PaCA can also be combined with quantization, enabling the fine-tuning of large models such as LLaMA3.1-70B. In addition, PaCA enables training with 23% longer sequence and improves throughput by 16% on both NVIDIA A100 GPU and INTEL Gaudi2 HPU compared to LoRA. The code is available at https://github.com/WooSunghyeon/paca.
♻ ☆ Learning to Plan with Personalized Preferences
Effective integration of AI agents into daily life requires them to understand and adapt to individual human preferences, particularly in collaborative roles. Although recent studies on embodied intelligence have advanced significantly, they typically adopt generalized approaches that overlook personal preferences in planning. We address this limitation by developing agents that not only learn preferences from few demonstrations but also learn to adapt their planning strategies based on these preferences. Our research leverages the observation that preferences, though implicitly expressed through minimal demonstrations, can generalize across diverse planning scenarios. To systematically evaluate this hypothesis, we introduce Preference-based Planning (PbP) benchmark, an embodied benchmark featuring hundreds of diverse preferences spanning from atomic actions to complex sequences. Our evaluation of SOTA methods reveals that while symbol-based approaches show promise in scalability, significant challenges remain in learning to generate and execute plans that satisfy personalized preferences. We further demonstrate that incorporating learned preferences as intermediate representations in planning significantly improves the agent's ability to construct personalized plans. These findings establish preferences as a valuable abstraction layer for adaptive planning, opening new directions for research in preference-guided plan generation and execution.
♻ ☆ Prediction of Frozen Region Growth in Kidney Cryoablation Intervention Using a 3D Flow-Matching Model MICCAI 2025
This study presents a 3D flow-matching model designed to predict the progression of the frozen region (iceball) during kidney cryoablation. Precise intraoperative guidance is critical in cryoablation to ensure complete tumor eradication while preserving adjacent healthy tissue. However, conventional methods, typically based on physics driven or diffusion based simulations, are computationally demanding and often struggle to represent complex anatomical structures accurately. To address these limitations, our approach leverages intraoperative CT imaging to inform the model. The proposed 3D flow matching model is trained to learn a continuous deformation field that maps early-stage CT scans to future predictions. This transformation not only estimates the volumetric expansion of the iceball but also generates corresponding segmentation masks, effectively capturing spatial and morphological changes over time. Quantitative analysis highlights the model robustness, demonstrating strong agreement between predictions and ground-truth segmentations. The model achieves an Intersection over Union (IoU) score of 0.61 and a Dice coefficient of 0.75. By integrating real time CT imaging with advanced deep learning techniques, this approach has the potential to enhance intraoperative guidance in kidney cryoablation, improving procedural outcomes and advancing the field of minimally invasive surgery.
comment: MICCAI 2025 submitted version (author list included)
♻ ☆ Q-PETR: Quant-aware Position Embedding Transformation for Multi-View 3D Object Detection
Camera-based multi-view 3D detection has emerged as an attractive solution for autonomous driving due to its low cost and broad applicability. However, despite the strong performance of PETR-based methods in 3D perception benchmarks, their direct INT8 quantization for onboard deployment leads to drastic accuracy drops-up to 58.2% in mAP and 36.9% in NDS on the NuScenes dataset. In this work, we propose Q-PETR, a quantization-aware position embedding transformation that re-engineers key components of the PETR framework to reconcile the discrepancy between the dynamic ranges of positional encodings and image features, and to adapt the cross-attention mechanism for low-bit inference. By redesigning the positional encoding module and introducing an adaptive quantization strategy, Q-PETR maintains floating-point performance with a performance degradation of less than 1% under standard 8-bit per-tensor post-training quantization. Moreover, compared to its FP32 counterpart, Q-PETR achieves a two-fold speedup and reduces memory usage by three times, thereby offering a deployment-friendly solution for resource-constrained onboard devices. Extensive experiments across various PETR-series models validate the strong generalization and practical benefits of our approach.
♻ ☆ Chemistry-Inspired Diffusion with Non-Differentiable Guidance ICLR 2025
Recent advances in diffusion models have shown remarkable potential in the conditional generation of novel molecules. These models can be guided in two ways: (i) explicitly, through additional features representing the condition, or (ii) implicitly, using a property predictor. However, training property predictors or conditional diffusion models requires an abundance of labeled data and is inherently challenging in real-world applications. We propose a novel approach that attenuates the limitations of acquiring large labeled datasets by leveraging domain knowledge from quantum chemistry as a non-differentiable oracle to guide an unconditional diffusion model. Instead of relying on neural networks, the oracle provides accurate guidance in the form of estimated gradients, allowing the diffusion process to sample from a conditional distribution specified by quantum chemistry. We show that this results in more precise conditional generation of novel and stable molecular structures. Our experiments demonstrate that our method: (1) significantly reduces atomic forces, enhancing the validity of generated molecules when used for stability optimization; (2) is compatible with both explicit and implicit guidance in diffusion models, enabling joint optimization of molecular properties and stability; and (3) generalizes effectively to molecular optimization tasks beyond stability optimization.
comment: accepted by ICLR 2025
♻ ☆ KinMo: Kinematic-aware Human Motion Understanding and Generation
Current human motion synthesis frameworks rely on global action descriptions, creating a modality gap that limits both motion understanding and generation capabilities. A single coarse description, such as ``run", fails to capture details like variations in speed, limb positioning, and kinematic dynamics, leading to ambiguities between text and motion modalities. To address this challenge, we introduce \textbf{KinMo}, a unified framework built on a hierarchical describable motion representation that extends beyond global action by incorporating kinematic group movements and their interactions. We design an automated annotation pipeline to generate high-quality, fine-grained descriptions for this decomposition, resulting in the KinMo dataset. To leverage these structured descriptions, we propose Hierarchical Text-Motion Alignment, improving spatial understanding by integrating additional motion details. Furthermore, we introduce a coarse-to-fine generation procedure to leverage enhanced spatial understanding to improve motion synthesis. Experimental results show that KinMo significantly improves motion understanding, demonstrated by enhanced text-motion retrieval performance and enabling more fine-grained motion generation and editing capabilities. Project Page: https://andypinxinliu.github.io/KinMo
♻ ☆ Helix-mRNA: A Hybrid Foundation Model For Full Sequence mRNA Therapeutics
mRNA-based vaccines have become a major focus in the pharmaceutical industry. The coding sequence as well as the Untranslated Regions (UTRs) of an mRNA can strongly influence translation efficiency, stability, degradation, and other factors that collectively determine a vaccine's effectiveness. However, optimizing mRNA sequences for those properties remains a complex challenge. Existing deep learning models often focus solely on coding region optimization, overlooking the UTRs. We present Helix-mRNA, a structured state-space-based and attention hybrid model to address these challenges. In addition to a first pre-training, a second pre-training stage allows us to specialise the model with high-quality data. We employ single nucleotide tokenization of mRNA sequences with codon separation, ensuring prior biological and structural information from the original mRNA sequence is not lost. Our model, Helix-mRNA, outperforms existing methods in analysing both UTRs and coding region properties. It can process sequences 6x longer than current approaches while using only 10% of the parameters of existing foundation models. Its predictive capabilities extend to all mRNA regions. We open-source the model (https://github.com/helicalAI/helical) and model weights (https://huggingface.co/helical-ai/helix-mRNA).
comment: 8 pages, 3 figures, 3 tables
♻ ☆ The Lazy Student's Dream: ChatGPT Passing an Engineering Course on Its Own
This paper presents a comprehensive investigation into the capability of Large Language Models (LLMs) to successfully complete a semester-long undergraduate control systems course. Through evaluation of 115 course deliverables, we assess LLM performance using ChatGPT under a "minimal effort" protocol that simulates realistic student usage patterns. The investigation employs a rigorous testing methodology across multiple assessment formats, from auto-graded multiple choice questions to complex Python programming tasks and long-form analytical writing. Our analysis provides quantitative insights into AI's strengths and limitations in handling mathematical formulations, coding challenges, and theoretical concepts in control systems engineering. The LLM achieved a B-grade performance (82.24\%), approaching but not exceeding the class average (84.99\%), with strongest results in structured assignments and greatest limitations in open-ended projects. The findings inform discussions about course design adaptation in response to AI advancement, moving beyond simple prohibition towards thoughtful integration of these tools in engineering education. Additional materials including syllabus, examination papers, design projects, and example responses can be found at the project website: https://gradegpt.github.io.
♻ ☆ M-HOF-Opt: Multi-Objective Hierarchical Output Feedback Optimization via Multiplier Induced Loss Landscape Scheduling
A probabilistic graphical model is proposed, modeling the joint model parameter and multiplier evolution, with a hypervolume based likelihood, promoting multi-objective descent in structural risk minimization. We address multi-objective model parameter optimization via a surrogate single objective penalty loss with time-varying multipliers, equivalent to online scheduling of loss landscape. The multi-objective descent goal is dispatched hierarchically into a series of constraint optimization sub-problems with shrinking bounds according to Pareto dominance. The bound serves as setpoint for the low-level multiplier controller to schedule loss landscapes via output feedback of each loss term. Our method forms closed loop of model parameter dynamic, circumvents excessive memory requirements and extra computational burden of existing multi-objective deep learning methods, and is robust against controller hyperparameter variation, demonstrated on domain generalization tasks with multi-dimensional regularization losses.
♻ ☆ V-LoRA: An Efficient and Flexible System Boosts Vision Applications with LoRA LMM EuroSys'2025
Large Multimodal Models (LMMs) have shown significant progress in various complex vision tasks with the solid linguistic and reasoning capacity inherited from large language models (LMMs). Low-rank adaptation (LoRA) offers a promising method to integrate external knowledge into LMMs, compensating for their limitations on domain-specific tasks. However, the existing LoRA model serving is excessively computationally expensive and causes extremely high latency. In this paper, we present an end-to-end solution that empowers diverse vision tasks and enriches vision applications with LoRA LMMs. Our system, VaLoRA, enables accurate and efficient vision tasks by 1) an accuracy-aware LoRA adapter generation approach that generates LoRA adapters rich in domain-specific knowledge to meet application-specific accuracy requirements, 2) an adaptive-tiling LoRA adapters batching operator that efficiently computes concurrent heterogeneous LoRA adapters, and 3) a flexible LoRA adapter orchestration mechanism that manages application requests and LoRA adapters to achieve the lowest average response latency. We prototype VaLoRA on five popular vision tasks on three LMMs. Experiment results reveal that VaLoRA improves 24-62% of the accuracy compared to the original LMMs and reduces 20-89% of the latency compared to the state-of-the-art LoRA model serving systems.
comment: EuroSys'2025
♻ ☆ Surgical SAM 2: Real-time Segment Anything in Surgical Video by Efficient Frame Pruning NeurIPS 2024
Surgical video segmentation is a critical task in computer-assisted surgery and is vital for enhancing surgical quality and patient outcomes. Recently, the Segment Anything Model 2 (SAM2) framework has shown superior advancements in image and video segmentation. However, SAM2 struggles with efficiency due to the high computational demands of processing high-resolution images and complex and long-range temporal dynamics in surgical videos. To address these challenges, we introduce Surgical SAM 2 (SurgSAM2), an advanced model to utilize SAM2 with an Efficient Frame Pruning (EFP) mechanism, to facilitate real-time surgical video segmentation. The EFP mechanism dynamically manages the memory bank by selectively retaining only the most informative frames, reducing memory usage and computational cost while maintaining high segmentation accuracy. Our extensive experiments demonstrate that SurgSAM2 significantly improves both efficiency and segmentation accuracy compared to the vanilla SAM2. Remarkably, SurgSAM2 achieves a 3$\times$ FPS compared with SAM2, while also delivering state-of-the-art performance after fine-tuning with lower-resolution data. These advancements establish SurgSAM2 as a leading model for surgical video analysis, making real-time surgical video segmentation in resource-constrained environments a reality. Our source code is available at https://github.com/jinlab-imvr/Surgical-SAM-2.
comment: Accepted by NeurIPS 2024 Workshop AIM-FM
♻ ☆ Synthesizing Programmatic Reinforcement Learning Policies with Large Language Model Guided Search
Programmatic reinforcement learning (PRL) has been explored for representing policies through programs as a means to achieve interpretability and generalization. Despite promising outcomes, current state-of-the-art PRL methods are hindered by sample inefficiency, necessitating tens of millions of program-environment interactions. To tackle this challenge, we introduce a novel LLM-guided search framework (LLM-GS). Our key insight is to leverage the programming expertise and common sense reasoning of LLMs to enhance the efficiency of assumption-free, random-guessing search methods. We address the challenge of LLMs' inability to generate precise and grammatically correct programs in domain-specific languages (DSLs) by proposing a Pythonic-DSL strategy - an LLM is instructed to initially generate Python codes and then convert them into DSL programs. To further optimize the LLM-generated programs, we develop a search algorithm named Scheduled Hill Climbing, designed to efficiently explore the programmatic search space to improve the programs consistently. Experimental results in the Karel domain demonstrate our LLM-GS framework's superior effectiveness and efficiency. Extensive ablation studies further verify the critical role of our Pythonic-DSL strategy and Scheduled Hill Climbing algorithm. Moreover, we conduct experiments with two novel tasks, showing that LLM-GS enables users without programming skills and knowledge of the domain or DSL to describe the tasks in natural language to obtain performant programs.
♻ ☆ Training with Differential Privacy: A Gradient-Preserving Noise Reduction Approach with Provable Security
Deep learning models have been extensively adopted in various regions due to their ability to represent hierarchical features, which highly rely on the training set and procedures. Thus, protecting the training process and deep learning algorithms is paramount in privacy preservation. Although Differential Privacy (DP) as a powerful cryptographic primitive has achieved satisfying results in deep learning training, the existing schemes still fall short in preserving model utility, i.e., they either invoke a high noise scale or inevitably harm the original gradients. To address the above issues, in this paper, we present a more robust and provably secure approach for differentially private training called GReDP. Specifically, we compute the model gradients in the frequency domain and adopt a new approach to reduce the noise level. Unlike previous work, our GReDP only requires half of the noise scale compared to DPSGD [1] while keeping all the gradient information intact. We present a detailed analysis of our method both theoretically and empirically. The experimental results show that our GReDP works consistently better than the baselines on all models and training settings.
♻ ☆ Toward an Evaluation Science for Generative AI Systems
There is an increasing imperative to anticipate and understand the performance and safety of generative AI systems in real-world deployment contexts. However, the current evaluation ecosystem is insufficient: Commonly used static benchmarks face validity challenges, and ad hoc case-by-case audits rarely scale. In this piece, we advocate for maturing an evaluation science for generative AI systems. While generative AI creates unique challenges for system safety engineering and measurement science, the field can draw valuable insights from the development of safety evaluation practices in other fields, including transportation, aerospace, and pharmaceutical engineering. In particular, we present three key lessons: Evaluation metrics must be applicable to real-world performance, metrics must be iteratively refined, and evaluation institutions and norms must be established. Applying these insights, we outline a concrete path toward a more rigorous approach for evaluating generative AI systems.
comment: First two authors contributed equally to this work
♻ ☆ X-SHIELD: Regularization for eXplainable Artificial Intelligence
As artificial intelligence systems become integral across domains, the demand for explainability grows, the called eXplainable artificial intelligence (XAI). Existing efforts primarily focus on generating and evaluating explanations for black-box models while a critical gap in directly enhancing models remains through these evaluations. It is important to consider the potential of this explanation process to improve model quality with a feedback on training as well. XAI may be used to improve model performance while boosting its explainability. Under this view, this paper introduces Transformation - Selective Hidden Input Evaluation for Learning Dynamics (T-SHIELD), a regularization family designed to improve model quality by hiding features of input, forcing the model to generalize without those features. Within this family, we propose the XAI - SHIELD(X-SHIELD), a regularization for explainable artificial intelligence, which uses explanations to select specific features to hide. In contrast to conventional approaches, X-SHIELD regularization seamlessly integrates into the objective function enhancing model explainability while also improving performance. Experimental validation on benchmark datasets underscores X-SHIELD's effectiveness in improving performance and overall explainability. The improvement is validated through experiments comparing models with and without the X-SHIELD regularization, with further analysis exploring the rationale behind its design choices. This establishes X-SHIELD regularization as a promising pathway for developing reliable artificial intelligence regularization.
comment: 18 pages, 9 figures
♻ ☆ WritingBench: A Comprehensive Benchmark for Generative Writing
Recent advancements in large language models (LLMs) have significantly enhanced text generation capabilities, yet evaluating their performance in generative writing remains a challenge. Existing benchmarks primarily focus on generic text generation or limited in writing tasks, failing to capture the diverse requirements of high-quality written contents across various domains. To bridge this gap, we present WritingBench, a comprehensive benchmark designed to evaluate LLMs across 6 core writing domains and 100 subdomains, encompassing creative, persuasive, informative, and technical writing. We further propose a query-dependent evaluation framework that empowers LLMs to dynamically generate instance-specific assessment criteria. This framework is complemented by a fine-tuned critic model for criteria-aware scoring, enabling evaluations in style, format and length. The framework's validity is further demonstrated by its data curation capability, which enables 7B-parameter models to approach state-of-the-art (SOTA) performance. We open-source the benchmark, along with evaluation tools and modular framework components, to advance the development of LLMs in writing.
♻ ☆ CAX: Cellular Automata Accelerated in JAX
Cellular automata have become a cornerstone for investigating emergence and self-organization across diverse scientific disciplines. However, the absence of a hardware-accelerated cellular automata library limits the exploration of new research directions, hinders collaboration, and impedes reproducibility. In this work, we introduce CAX (Cellular Automata Accelerated in JAX), a high-performance and flexible open-source library designed to accelerate cellular automata research. CAX delivers cutting-edge performance through hardware acceleration while maintaining flexibility through its modular architecture, intuitive API, and support for both discrete and continuous cellular automata in arbitrary dimensions. We demonstrate CAX's performance and flexibility through a wide range of benchmarks and applications. From classic models like elementary cellular automata and Conway's Game of Life to advanced applications such as growing neural cellular automata and self-classifying MNIST digits, CAX speeds up simulations up to 2,000 times faster. Furthermore, we demonstrate CAX's potential to accelerate research by presenting a collection of three novel cellular automata experiments, each implemented in just a few lines of code thanks to the library's modular architecture. Notably, we show that a simple one-dimensional cellular automaton can outperform GPT-4 on the 1D-ARC challenge.
♻ ☆ Value Improved Actor Critic Algorithms
To learn approximately optimal acting policies for decision problems, modern Actor Critic algorithms rely on deep Neural Networks (DNNs) to parameterize the acting policy and greedification operators to iteratively improve it. The reliance on DNNs suggests an improvement that is gradient based, which is per step much less greedy than the improvement possible by greedier operators such as the greedy update used by Q-learning algorithms. On the other hand, slow and steady changes to the policy can also be beneficial for the stability of the learning process, resulting in a tradeoff between greedification and stability. To address this tradeoff, we propose to extend the standard framework of actor critic algorithms with value-improvement: a second greedification operator applied only when updating the policy's value estimate. In this framework the agent can evaluate non-parameterized policies and perform much greedier updates while maintaining the steady gradient-based improvement to the parameterized acting policy. We prove that this approach converges in the popular analysis scheme of Generalized Policy Iteration in the finite-horizon domain. Empirically, incorporating value-improvement into the popular off-policy actor-critic algorithms TD3 and SAC significantly improves or matches performance over their respective baselines, across different environments from the DeepMind continuous control domain, with negligible compute and implementation cost.
♻ ☆ Agent-Oriented Planning in Multi-Agent Systems ICLR'2025
Through the collaboration of multiple LLM-empowered agents possessing diverse expertise and tools, multi-agent systems achieve impressive progress in solving real-world problems. Given the user queries, the meta-agents, serving as the brain within multi-agent systems, are required to decompose the queries into multiple sub-tasks that can be allocated to suitable agents capable of solving them, so-called agent-oriented planning. In this study, we identify three critical design principles of agent-oriented planning, including solvability, completeness, and non-redundancy, to ensure that each sub-task can be effectively resolved, resulting in satisfactory responses to user queries. These principles further inspire us to propose AOP, a novel framework for agent-oriented planning in multi-agent systems, leveraging a fast task decomposition and allocation process followed by an effective and efficient evaluation via a reward model. According to the evaluation results, the meta-agent is also responsible for promptly making necessary adjustments to sub-tasks and scheduling. Besides, we integrate a feedback loop into AOP to further enhance the effectiveness and robustness of such a problem-solving process. Extensive experiments demonstrate the advancement of AOP in solving real-world problems compared to both single-agent systems and existing planning strategies for multi-agent systems. The source code is available at https://github.com/lalaliat/Agent-Oriented-Planning
comment: Accepted by ICLR'2025
♻ ☆ OminiControl: Minimal and Universal Control for Diffusion Transformer
We present OminiControl, a novel approach that rethinks how image conditions are integrated into Diffusion Transformer (DiT) architectures. Current image conditioning methods either introduce substantial parameter overhead or handle only specific control tasks effectively, limiting their practical versatility. OminiControl addresses these limitations through three key innovations: (1) a minimal architectural design that leverages the DiT's own VAE encoder and transformer blocks, requiring just 0.1% additional parameters; (2) a unified sequence processing strategy that combines condition tokens with image tokens for flexible token interactions; and (3) a dynamic position encoding mechanism that adapts to both spatially-aligned and non-aligned control tasks. Our extensive experiments show that this streamlined approach not only matches but surpasses the performance of specialized methods across multiple conditioning tasks. To overcome data limitations in subject-driven generation, we also introduce Subjects200K, a large-scale dataset of identity-consistent image pairs synthesized using DiT models themselves. This work demonstrates that effective image control can be achieved without architectural complexity, opening new possibilities for efficient and versatile image generation systems.
♻ ☆ Emotion-Aware Embedding Fusion in LLMs (Flan-T5, LLAMA 2, DeepSeek-R1, and ChatGPT 4) for Intelligent Response Generation
Empathetic and coherent responses are critical in auto-mated chatbot-facilitated psychotherapy. This study addresses the challenge of enhancing the emotional and contextual understanding of large language models (LLMs) in psychiatric applications. We introduce Emotion-Aware Embedding Fusion, a novel framework integrating hierarchical fusion and attention mechanisms to prioritize semantic and emotional features in therapy transcripts. Our approach combines multiple emotion lexicons, including NRC Emotion Lexicon, VADER, WordNet, and SentiWordNet, with state-of-the-art LLMs such as Flan-T5, LLAMA 2, DeepSeek-R1, and ChatGPT 4. Therapy session transcripts, comprising over 2,000 samples are segmented into hierarchical levels (word, sentence, and session) using neural networks, while hierarchical fusion combines these features with pooling techniques to refine emotional representations. Atten-tion mechanisms, including multi-head self-attention and cross-attention, further prioritize emotional and contextual features, enabling temporal modeling of emotion-al shifts across sessions. The processed embeddings, computed using BERT, GPT-3, and RoBERTa are stored in the Facebook AI similarity search vector database, which enables efficient similarity search and clustering across dense vector spaces. Upon user queries, relevant segments are retrieved and provided as context to LLMs, enhancing their ability to generate empathetic and con-textually relevant responses. The proposed framework is evaluated across multiple practical use cases to demonstrate real-world applicability, including AI-driven therapy chatbots. The system can be integrated into existing mental health platforms to generate personalized responses based on retrieved therapy session data.
♻ ☆ Meta-RTL: Reinforcement-Based Meta-Transfer Learning for Low-Resource Commonsense Reasoning
Meta learning has been widely used to exploit rich-resource source tasks to improve the performance of low-resource target tasks. Unfortunately, most existing meta learning approaches treat different source tasks equally, ignoring the relatedness of source tasks to the target task in knowledge transfer. To mitigate this issue, we propose a reinforcement-based multi-source meta-transfer learning framework (Meta-RTL) for low-resource commonsense reasoning. In this framework, we present a reinforcement-based approach to dynamically estimating source task weights that measure the contribution of the corresponding tasks to the target task in the meta-transfer learning. The differences between the general loss of the meta model and task-specific losses of source-specific temporal meta models on sampled target data are fed into the policy network of the reinforcement learning module as rewards. The policy network is built upon LSTMs that capture long-term dependencies on source task weight estimation across meta learning iterations. We evaluate the proposed Meta-RTL using both BERT and ALBERT as the backbone of the meta model on three commonsense reasoning benchmark datasets. Experimental results demonstrate that Meta-RTL substantially outperforms strong baselines and previous task selection strategies and achieves larger improvements on extremely low-resource settings.
♻ ☆ PyGen: A Collaborative Human-AI Approach to Python Package Creation
The principles of automation and innovation serve as foundational elements for advancement in contemporary science and technology. Here, we introduce Pygen, an automation platform designed to empower researchers, technologists, and hobbyists to bring abstract ideas to life as core, usable software tools written in Python. Pygen leverages the immense power of autoregressive large language models to augment human creativity during the ideation, iteration, and innovation process. By combining state-of-the-art language models with open-source code generation technologies, Pygen has significantly reduced the manual overhead of tool development. From a user prompt, Pygen automatically generates Python packages for a complete workflow from concept to package generation and documentation. The findings of our work show that Pygen considerably enhances the researcher's productivity by enabling the creation of resilient, modular, and well-documented packages for various specialized purposes. We employ a prompt enhancement approach to distill the user's package description into increasingly specific and actionable. While being inherently an open-ended task, we have evaluated the generated packages and the documentation using Human Evaluation, LLM-based evaluation, and CodeBLEU, with detailed results in the results section. Furthermore, we documented our results, analyzed the limitations, and suggested strategies to alleviate them. Pygen is our vision of ethical automation, a framework that promotes inclusivity, accessibility, and collaborative development. This project marks the beginning of a large-scale effort towards creating tools where intelligent agents collaborate with humans to improve scientific and technological development substantially. Our code and generated examples are open-sourced at [https://github.com/GitsSaikat/Pygen]
comment: 33 pages, 13 figures
♻ ☆ FR-Spec: Accelerating Large-Vocabulary Language Models via Frequency-Ranked Speculative Sampling
Speculative sampling has emerged as an important technique for accelerating the auto-regressive generation process of large language models (LLMs) by utilizing a draft-then-verify mechanism to produce multiple tokens per forward pass. While state-of-the-art speculative sampling methods use only a single layer and a language modeling (LM) head as the draft model to achieve impressive layer compression, their efficiency gains are substantially reduced for large-vocabulary LLMs, such as Llama-3-8B with a vocabulary of 128k tokens. To address this, we present FR-Spec, a frequency-ranked speculative sampling framework that optimizes draft candidate selection through vocabulary space compression. By constraining the draft search to a frequency-prioritized token subset, our method reduces LM Head computation overhead by 75% while ensuring the equivalence of the final output distribution. Experiments across multiple datasets demonstrate an average of 1.12$\times$ speedup over the state-of-the-art speculative sampling method EAGLE-2. Code available at https://github.com/thunlp/FR-Spec.
♻ ☆ Inference-Time Selective Debiasing to Enhance Fairness in Text Classification Models NAACL 2025
We propose selective debiasing -- an inference-time safety mechanism designed to enhance the overall model quality in terms of prediction performance and fairness, especially in scenarios where retraining the model is impractical. The method draws inspiration from selective classification, where at inference time, predictions with low quality, as indicated by their uncertainty scores, are discarded. In our approach, we identify the potentially biased model predictions and, instead of discarding them, we remove bias from these predictions using LEACE -- a post-processing debiasing method. To select problematic predictions, we propose a bias quantification approach based on KL divergence, which achieves better results than standard uncertainty quantification methods. Experiments on text classification datasets with encoder-based classification models demonstrate that selective debiasing helps to reduce the performance gap between post-processing methods and debiasing techniques from the at-training and pre-processing categories.
comment: Accepted to NAACL 2025
♻ ☆ A Transformer Model for Predicting Chemical Reaction Products from Generic Templates
The accurate prediction of chemical reaction outcomes is a major challenge in computational chemistry. Current models rely heavily on either highly specific reaction templates or template-free methods, both of which present limitations. To address these limitations, this work proposes the Broad Reaction Set (BRS), a dataset featuring 20 generic reaction templates that allow for the efficient exploration of the chemical space. Additionally, ProPreT5 is introduced, a T5 model tailored to chemistry that achieves a balance between rigid templates and template-free methods. ProPreT5 demonstrates its capability to generate accurate, valid, and realistic reaction products, making it a promising solution that goes beyond the current state-of-the-art on the complex reaction product prediction task.
♻ ☆ RL-MILP Solver: A Reinforcement Learning Approach for Solving Mixed-Integer Linear Programs with Graph Neural Networks AAAI
Mixed-integer linear programming (MILP) is a widely used optimization technique across various fields. Existing $\textit{end-to-end learning}$ methods for MILP generate values for a subset of decision variables and delegate the remaining problem to traditional MILP solvers. However, this approach often fails to guarantee solution feasibility (i.e., satisfying all constraints) due to inaccurate predictions and primarily focuses on binary decision variables. Satisfying all constraints is a prerequisite for obtaining the optimal solution, and the feasibility issue becomes even more critical with non-binary integer (integer, for short) variables. Thus, addressing the feasibility of MILP involving integer variables is crucial. To address these challenges, we propose a novel reinforcement learning (RL)-based solver that not only finds the first feasible solution but also incrementally discovers better feasible solutions without delegating the remainder to off-the-shelf solvers. Our experimental results demonstrate that the proposed method achieves (near-)optimal solutions.
comment: Extended version (17 pages, 8 figures). Accepted at the 2025 AAAI Workshop on AI to Accelerate Science and Engineering (AI2ASE)
♻ ☆ HowkGPT: Investigating the Detection of ChatGPT-generated University Student Homework through Context-Aware Perplexity Analysis
As the use of Large Language Models (LLMs) in text generation tasks proliferates, concerns arise over their potential to compromise academic integrity. The education sector currently tussles with distinguishing student-authored homework assignments from AI-generated ones. This paper addresses the challenge by introducing HowkGPT, designed to identify homework assignments generated by AI. HowkGPT is built upon a dataset of academic assignments and accompanying metadata [17] and employs a pretrained LLM to compute perplexity scores for student-authored and ChatGPT-generated responses. These scores then assist in establishing a threshold for discerning the origin of a submitted assignment. Given the specificity and contextual nature of academic work, HowkGPT further refines its analysis by defining category-specific thresholds derived from the metadata, enhancing the precision of the detection. This study emphasizes the critical need for effective strategies to uphold academic integrity amidst the growing influence of LLMs and provides an approach to ensuring fair and accurate grading in educational institutions.
♻ ☆ Bayesian Flow Networks
This paper introduces Bayesian Flow Networks (BFNs), a new class of generative model in which the parameters of a set of independent distributions are modified with Bayesian inference in the light of noisy data samples, then passed as input to a neural network that outputs a second, interdependent distribution. Starting from a simple prior and iteratively updating the two distributions yields a generative procedure similar to the reverse process of diffusion models; however it is conceptually simpler in that no forward process is required. Discrete and continuous-time loss functions are derived for continuous, discretised and discrete data, along with sample generation procedures. Notably, the network inputs for discrete data lie on the probability simplex, and are therefore natively differentiable, paving the way for gradient-based sample guidance and few-step generation in discrete domains such as language modelling. The loss function directly optimises data compression and places no restrictions on the network architecture. In our experiments BFNs achieve competitive log-likelihoods for image modelling on dynamically binarized MNIST and CIFAR-10, and outperform all known discrete diffusion models on the text8 character-level language modelling task.
♻ ☆ Regularization by Texts for Latent Diffusion Inverse Solvers ICLR 2025
The recent development of diffusion models has led to significant progress in solving inverse problems by leveraging these models as powerful generative priors. However, challenges persist due to the ill-posed nature of such problems, often arising from ambiguities in measurements or intrinsic system symmetries. To address this, here we introduce a novel latent diffusion inverse solver, regularization by text (TReg), inspired by the human ability to resolve visual ambiguities through perceptual biases. TReg integrates textual descriptions of preconceptions about the solution during reverse diffusion sampling, dynamically reinforcing these descriptions through null-text optimization, which we refer to as adaptive negation. Our comprehensive experimental results demonstrate that TReg effectively mitigates ambiguity in inverse problems, improving both accuracy and efficiency.
comment: ICLR 2025 (Spotlight)
♻ ☆ Optimus-2: Multimodal Minecraft Agent with Goal-Observation-Action Conditioned Policy CVPR 2025
Building an agent that can mimic human behavior patterns to accomplish various open-world tasks is a long-term goal. To enable agents to effectively learn behavioral patterns across diverse tasks, a key challenge lies in modeling the intricate relationships among observations, actions, and language. To this end, we propose Optimus-2, a novel Minecraft agent that incorporates a Multimodal Large Language Model (MLLM) for high-level planning, alongside a Goal-Observation-Action Conditioned Policy (GOAP) for low-level control. GOAP contains (1) an Action-guided Behavior Encoder that models causal relationships between observations and actions at each timestep, then dynamically interacts with the historical observation-action sequence, consolidating it into fixed-length behavior tokens, and (2) an MLLM that aligns behavior tokens with open-ended language instructions to predict actions auto-regressively. Moreover, we introduce a high-quality Minecraft Goal-Observation-Action (MGOA)} dataset, which contains 25,000 videos across 8 atomic tasks, providing about 30M goal-observation-action pairs. The automated construction method, along with the MGOA dataset, can contribute to the community's efforts to train Minecraft agents. Extensive experimental results demonstrate that Optimus-2 exhibits superior performance across atomic tasks, long-horizon tasks, and open-ended instruction tasks in Minecraft. Please see the project page at https://cybertronagent.github.io/Optimus-2.github.io/.
comment: Accept to CVPR 2025, Project page: https://cybertronagent.github.io/Optimus-2.github.io/
♻ ☆ Equivariant Masked Position Prediction for Efficient Molecular Representation
Graph neural networks (GNNs) have shown considerable promise in computational chemistry. However, the limited availability of molecular data raises concerns regarding GNNs' ability to effectively capture the fundamental principles of physics and chemistry, which constrains their generalization capabilities. To address this challenge, we introduce a novel self-supervised approach termed Equivariant Masked Position Prediction (EMPP), grounded in intramolecular potential and force theory. Unlike conventional attribute masking techniques, EMPP formulates a nuanced position prediction task that is more well-defined and enhances the learning of quantum mechanical features. EMPP also bypasses the approximation of the Gaussian mixture distribution commonly used in denoising methods, allowing for more accurate acquisition of physical properties. Experimental results indicate that EMPP significantly enhances performance of advanced molecular architectures, surpassing state-of-the-art self-supervised approaches. Our code is released in https://github.com/ajy112/EMPP
comment: 24 pages, 6 figures
♻ ☆ MAGIC: Mastering Physical Adversarial Generation in Context through Collaborative LLM Agents
Physical adversarial attacks in driving scenarios can expose critical vulnerabilities in visual perception models. However, developing such attacks remains challenging due to diverse real-world environments and the requirement for maintaining visual naturality. Building upon this challenge, we reformulate physical adversarial attacks as a one-shot patch generation problem. Our approach generates adversarial patches through a deep generative model that considers the specific scene context, enabling direct physical deployment in matching environments. The primary challenge lies in simultaneously achieving two objectives: generating adversarial patches that effectively mislead object detection systems while determining contextually appropriate deployment within the scene. We propose MAGIC (Mastering Physical Adversarial Generation In Context), a novel framework powered by multi-modal LLM agents to address these challenges. MAGIC automatically understands scene context and generates adversarial patch through the synergistic interaction of language and vision capabilities. In particular, MAGIC orchestrates three specialized LLM agents: The adv-patch generation agent (GAgent) masters the creation of deceptive patches through strategic prompt engineering for text-to-image models. The adv-patch deployment agent (DAgent) ensures contextual coherence by determining optimal deployment strategies based on scene understanding. The self-examination agent (EAgent) completes this trilogy by providing critical oversight and iterative refinement of both processes. We validate our method on both digital and physical levels, i.e., nuImage and manually captured real-world scenes, where both statistical and visual results prove that our MAGIC is powerful and effective for attacking widely applied object detection systems, i.e., YOLO and DETR series.
♻ ☆ Call for Rigor in Reporting Quality of Instruction Tuning Data
Instruction tuning is crucial for adapting large language models (LLMs) to align with user intentions. Numerous studies emphasize the significance of the quality of instruction tuning (IT) data, revealing a strong correlation between IT data quality and the alignment performance of LLMs. In these studies, the quality of IT data is typically assessed by evaluating the performance of LLMs trained with that data. However, we identified a prevalent issue in such practice: hyperparameters for training models are often selected arbitrarily without adequate justification. We observed significant variations in hyperparameters applied across different studies, even when training the same model with the same data. In this study, we demonstrate the potential problems arising from this practice and emphasize the need for careful consideration in verifying data quality. Through our experiments on the quality of LIMA data and a selected set of 1,000 Alpaca data points, we demonstrate that arbitrary hyperparameter decisions can make any arbitrary conclusion.
comment: 10 pages
♻ ☆ MambaQuant: Quantizing the Mamba Family with Variance Aligned Rotation Methods
Mamba is an efficient sequence model that rivals Transformers and demonstrates significant potential as a foundational architecture for various tasks. Quantization is commonly used in neural networks to reduce model size and computational latency. However, applying quantization to Mamba remains underexplored, and existing quantization methods, which have been effective for CNN and Transformer models, appear inadequate for Mamba models (e.g., Quarot suffers a 21% accuracy drop on Vim-T$^\dagger$ even under W8A8). We have pioneered the exploration of this issue and identified several key challenges. First, significant outliers are present in gate projections, output projections, and matrix multiplications. Second, Mamba's unique parallel scan further amplifies these outliers, leading to uneven and heavy-tailed data distributions. Third, even with the application of the Hadamard transform, the variance across channels in weights and activations still remains inconsistent. To these ends, we propose MambaQuant, a post-training quantization (PTQ) framework consisting of: 1) Karhunen-Loeve Transformation (KLT) enhanced rotation, rendering the rotation matrix adaptable to diverse channel distributions. 2) Smooth-Fused rotation, which equalizes channel variances and can merge additional parameters into model weights. Experiments show that MambaQuant can quantize both weights and activations into 8-bit with less than 1% accuracy loss for Mamba-based vision and language tasks. To the best of our knowledge, MambaQuant is the first comprehensive PTQ design for the Mamba family, paving the way for further advancements in its application.
♻ ☆ LLM-HDR: Bridging LLM-based Perception and Self-Supervision for Unpaired LDR-to-HDR Image Reconstruction
The translation of Low Dynamic Range (LDR) to High Dynamic Range (HDR) images is an important computer vision task. There is a significant amount of research utilizing both conventional non-learning methods and modern data-driven approaches, focusing on using both single-exposed and multi-exposed LDR for HDR image reconstruction. However, most current state-of-the-art methods require high-quality paired {LDR,HDR} datasets for model training. In addition, there is limited literature on using unpaired datasets for this task, that is, the model learns a mapping between domains, i.e., {LDR,HDR}. This paper proposes LLM-HDR, a method that integrates the perception of Large Language Models (LLM) into a modified semantic- and cycle-consistent adversarial architecture that utilizes unpaired {LDR,HDR} datasets for training. The method introduces novel artifact- and exposure-aware generators to address visual artifact removal and an encoder and loss to address semantic consistency, another under-explored topic. LLM-HDR is the first to use an LLM for the {LDR,HDR} translation task in a self-supervised setup. The method achieves state-of-the-art performance across several benchmark datasets and reconstructs high-quality HDR images. The official website of this work is available at: https://github.com/HrishavBakulBarua/LLM-HDR
♻ ☆ Deep Tensor Network
We introduce the Deep Tensor Network, a novel framework that integrates tensor-based operations into the attention mechanism, thereby enhancing both the expressivity and computational efficiency of deep neural networks. Our approach leverages the algebraic structure of tensor products to generalize the conventional dot-product attention and to formulate new operators, namely, Tensor Attention and Tensor Interaction, which capture higher-order token dependencies. Through rigorous theoretical analysis based on the universal properties of tensor products, we demonstrate that our framework not only improves efficiency by reducing computational complexity but also offers a principled method for modeling complex interactions in sequential data. Empirical evaluations further substantiate that the proposed deep tensor network can serve as a robust building block for advancing state-of-the-art performance in various deep learning tasks.
♻ ☆ Data Duplication: A Novel Multi-Purpose Attack Paradigm in Machine Unlearning USENIX Security 2025
Duplication is a prevalent issue within datasets. Existing research has demonstrated that the presence of duplicated data in training datasets can significantly influence both model performance and data privacy. However, the impact of data duplication on the unlearning process remains largely unexplored. This paper addresses this gap by pioneering a comprehensive investigation into the role of data duplication, not only in standard machine unlearning but also in federated and reinforcement unlearning paradigms. Specifically, we propose an adversary who duplicates a subset of the target model's training set and incorporates it into the training set. After training, the adversary requests the model owner to unlearn this duplicated subset, and analyzes the impact on the unlearned model. For example, the adversary can challenge the model owner by revealing that, despite efforts to unlearn it, the influence of the duplicated subset remains in the model. Moreover, to circumvent detection by de-duplication techniques, we propose three novel near-duplication methods for the adversary, each tailored to a specific unlearning paradigm. We then examine their impacts on the unlearning process when de-duplication techniques are applied. Our findings reveal several crucial insights: 1) the gold standard unlearning method, retraining from scratch, fails to effectively conduct unlearning under certain conditions; 2) unlearning duplicated data can lead to significant model degradation in specific scenarios; and 3) meticulously crafted duplicates can evade detection by de-duplication methods.
comment: Accepted at USENIX Security 2025
♻ ☆ Multi-P$^2$A: A Multi-perspective Benchmark on Privacy Assessment for Large Vision-Language Models
Large Vision-Language Models (LVLMs) exhibit impressive potential across various tasks but also face significant privacy risks, limiting their practical applications. Current researches on privacy assessment for LVLMs is limited in scope, with gaps in both assessment dimensions and privacy categories. To bridge this gap, we propose Multi-P$^2$A, a comprehensive benchmark for evaluating the privacy preservation capabilities of LVLMs in terms of privacy awareness and leakage. Privacy awareness measures the model's ability to recognize the privacy sensitivity of input data, while privacy leakage assesses the risk of the model unintentionally disclosing privacy information in its output. We design a range of sub-tasks to thoroughly evaluate the model's privacy protection offered by LVLMs. Multi-P$^2$A covers 26 categories of personal privacy, 15 categories of trade secrets, and 18 categories of state secrets, totaling 31,962 samples. Based on Multi-P$^2$A, we evaluate the privacy preservation capabilities of 21 open-source and 2 closed-source LVLMs. Our results reveal that current LVLMs generally pose a high risk of facilitating privacy breaches, with vulnerabilities varying across personal privacy, trade secret, and state secret.
♻ ☆ The VampPrior Mixture Model
Widely used deep latent variable models (DLVMs), in particular Variational Autoencoders (VAEs), employ overly simplistic priors on the latent space. To achieve strong clustering performance, existing methods that replace the standard normal prior with a Gaussian mixture model (GMM) require defining the number of clusters to be close to the number of expected ground truth classes a-priori and are susceptible to poor initializations. We leverage VampPrior concepts (Tomczak and Welling, 2018) to fit a Bayesian GMM prior, resulting in the VampPrior Mixture Model (VMM), a novel prior for DLVMs. In a VAE, the VMM attains highly competitive clustering performance on benchmark datasets. Integrating the VMM into scVI (Lopez et al., 2018), a popular scRNA-seq integration method, significantly improves its performance and automatically arranges cells into clusters with similar biological characteristics.
♻ ☆ SweetTok: Semantic-Aware Spatial-Temporal Tokenizer for Compact Video Discretization
This paper presents the \textbf{S}emantic-a\textbf{W}ar\textbf{E} spatial-t\textbf{E}mporal \textbf{T}okenizer (SweetTok), a novel video tokenizer to overcome the limitations in current video tokenization methods for compacted yet effective discretization. Unlike previous approaches that process flattened local visual patches via direct discretization or adaptive query tokenization, SweetTok proposes a decoupling framework, compressing visual inputs through distinct spatial and temporal queries via \textbf{D}ecoupled \textbf{Q}uery \textbf{A}uto\textbf{E}ncoder (DQAE). This design allows SweetTok to efficiently compress video token count while achieving superior fidelity by capturing essential information across spatial and temporal dimensions. Furthermore, we design a \textbf{M}otion-enhanced \textbf{L}anguage \textbf{C}odebook (MLC) tailored for spatial and temporal compression to address the differences in semantic representation between appearance and motion information. SweetTok significantly improves video reconstruction results by \textbf{42.8\%} w.r.t rFVD on UCF-101 dataset. With a better token compression strategy, it also boosts downstream video generation results by \textbf{15.1\%} w.r.t gFVD. Additionally, the compressed decoupled tokens are imbued with semantic information, enabling few-shot recognition capabilities powered by LLMs in downstream applications.
♻ ☆ Reasoning-Augmented Conversation for Multi-Turn Jailbreak Attacks on Large Language Models
Multi-turn jailbreak attacks simulate real-world human interactions by engaging large language models (LLMs) in iterative dialogues, exposing critical safety vulnerabilities. However, existing methods often struggle to balance semantic coherence with attack effectiveness, resulting in either benign semantic drift or ineffective detection evasion. To address this challenge, we propose Reasoning-Augmented Conversation, a novel multi-turn jailbreak framework that reformulates harmful queries into benign reasoning tasks and leverages LLMs' strong reasoning capabilities to compromise safety alignment. Specifically, we introduce an attack state machine framework to systematically model problem translation and iterative reasoning, ensuring coherent query generation across multiple turns. Building on this framework, we design gain-guided exploration, self-play, and rejection feedback modules to preserve attack semantics, enhance effectiveness, and sustain reasoning-driven attack progression. Extensive experiments on multiple LLMs demonstrate that RACE achieves state-of-the-art attack effectiveness in complex conversational scenarios, with attack success rates (ASRs) increasing by up to 96%. Notably, our approach achieves ASRs of 82% and 92% against leading commercial models, OpenAI o1 and DeepSeek R1, underscoring its potency. We release our code at https://github.com/NY1024/RACE to facilitate further research in this critical domain.
♻ ☆ Dynamic Analysis and Adaptive Discriminator for Fake News Detection
In current web environment, fake news spreads rapidly across online social networks, posing serious threats to society. Existing multimodal fake news detection methods can generally be classified into knowledge-based and semantic-based approaches. However, these methods are heavily rely on human expertise and feedback, lacking flexibility. To address this challenge, we propose a Dynamic Analysis and Adaptive Discriminator (DAAD) approach for fake news detection. For knowledge-based methods, we introduce the Monte Carlo Tree Search algorithm to leverage the self-reflective capabilities of large language models (LLMs) for prompt optimization, providing richer, domain-specific details and guidance to the LLMs, while enabling more flexible integration of LLM comment on news content. For semantic-based methods, we define four typical deceit patterns: emotional exaggeration, logical inconsistency, image manipulation, and semantic inconsistency, to reveal the mechanisms behind fake news creation. To detect these patterns, we carefully design four discriminators and expand them in depth and breadth, using the soft-routing mechanism to explore optimal detection models. Experimental results on three real-world datasets demonstrate the superiority of our approach. The code will be available at: https://github.com/SuXinqi/DAAD.
♻ ☆ ReasonFlux: Hierarchical LLM Reasoning via Scaling Thought Templates
We present that hierarchical LLM reasoning via scaling thought templates can effectively optimize the reasoning search space and outperform the mathematical reasoning capabilities of powerful LLMs like OpenAI o1-preview and DeepSeek V3. We train our ReasonFlux-32B model with only 8 GPUs and introduces three innovations: (i) a structured and generic thought template library, containing around 500 high-level thought templates capable of generalizing to similar or relevant reasoning problems; (ii) performing hierarchical reinforcement learning on a sequence of thought templates instead of long CoTs, optimizing a base LLM to plan out an optimal template trajectory for gradually handling complex problems; (iii) a brand new inference scaling system that enables hierarchical LLM reasoning by adaptively scaling thought templates at inference time. With a template trajectory containing more explainable reasoning structures than DeepSeek-R1 and o3-mini, our ReasonFlux-32B significantly advances math reasoning capabilities to state-of-the-art levels. Notably, on the MATH benchmark, it achieves an accuracy of 91.2% and surpasses o1-preview by 6.7%. On the USA Math Olympiad (AIME) benchmark, ReasonFlux-32B solves an average of 56.7% of problems, surpassing o1-preview and DeepSeek-V3 by 27% and 45%, respectively. Code: https://github.com/Gen-Verse/ReasonFlux
comment: Code: https://github.com/Gen-Verse/ReasonFlux
♻ ☆ Agentic Bug Reproduction for Effective Automated Program Repair at Google
Bug reports often lack sufficient detail for developers to reproduce and fix the underlying defects. Bug Reproduction Tests (BRTs), tests that fail when the bug is present and pass when it has been resolved, are crucial for debugging, but they are rarely included in bug reports, both in open-source and in industrial settings. Thus, automatically generating BRTs from bug reports has the potential to accelerate the debugging process and lower time to repair. This paper investigates automated BRT generation within an industry setting, specifically at Google, focusing on the challenges of a large-scale, proprietary codebase and considering real-world industry bugs extracted from Google's internal issue tracker. We adapt and evaluate a state-of-the-art BRT generation technique, LIBRO, and present our agent-based approach, BRT Agent, which makes use of a fine-tuned Large Language Model (LLM) for code editing. Our BRT Agent significantly outperforms LIBRO, achieving a 28% plausible BRT generation rate, compared to 10% by LIBRO, on 80 human-reported bugs from Google's internal issue tracker. We further investigate the practical value of generated BRTs by integrating them with an Automated Program Repair (APR) system at Google. Our results show that providing BRTs to the APR system results in 30% more bugs with plausible fixes. Additionally, we introduce Ensemble Pass Rate (EPR), a metric which leverages the generated BRTs to select the most promising fixes from all fixes generated by APR system. Our evaluation on EPR for Top-K and threshold-based fix selections demonstrates promising results and trade-offs. For example, EPR correctly selects a plausible fix from a pool of 20 candidates in 70% of cases, based on its top-1 ranking.
♻ ☆ AtlasSeg: Atlas Prior Guided Dual-U-Net for Cortical Segmentation in Fetal Brain MRI
Accurate automatic tissue segmentation in fetal brain MRI is a crucial step in clinical diagnosis but remains challenging, particularly due to the dynamically changing anatomy and tissue contrast during fetal development. Existing segmentation networks can only implicitly learn age-related features, leading to a decline in accuracy at extreme early or late gestational ages (GAs). To improve segmentation performance throughout gestation, we introduce AtlasSeg, a dual-U-shape convolution network that explicitly integrates GA-specific information as guidance. By providing a publicly available fetal brain atlas with segmentation labels corresponding to relevant GAs, AtlasSeg effectively extracts age-specific patterns in the atlas branch and generates precise tissue segmentation in the segmentation branch. Multi-scale spatial attention feature fusions are constructed during both encoding and decoding stages to enhance feature flow and facilitate better information interactions between two branches. We compared AtlasSeg with six well-established networks in a seven-tissue segmentation task, achieving the highest average Dice similarity coefficient of 0.91. The improvement was particularly evident in extreme early or late GA cases, where training data was scare. Furthermore, AtlasSeg exhibited minimal performance degradation on low-quality images with contrast changes and noise, attributed to its anatomical shape priors. Overall, AtlasSeg demonstrated enhanced segmentation accuracy, better consistency across fetal ages, and robustness to perturbations, making it a powerful tool for reliable fetal brain MRI tissue segmentation, particularly suited for diagnostic assessments during early gestation.
♻ ☆ Taylor Unswift: Secured Weight Release for Large Language Models via Taylor Expansion
Ensuring the security of released large language models (LLMs) poses a significant dilemma, as existing mechanisms either compromise ownership rights or raise data privacy concerns. To address this dilemma, we introduce TaylorMLP to protect the ownership of released LLMs and prevent their abuse. Specifically, TaylorMLP preserves the ownership of LLMs by transforming the weights of LLMs into parameters of Taylor-series. Instead of releasing the original weights, developers can release the Taylor-series parameters with users, thereby ensuring the security of LLMs. Moreover, TaylorMLP can prevent abuse of LLMs by adjusting the generation speed. It can induce low-speed token generation for the protected LLMs by increasing the terms in the Taylor-series. This intentional delay helps LLM developers prevent potential large-scale unauthorized uses of their models. Empirical experiments across five datasets and three LLM architectures demonstrate that TaylorMLP induces over 4x increase in latency, producing the tokens precisely matched with original LLMs. Subsequent defensive experiments further confirm that TaylorMLP effectively prevents users from reconstructing the weight values based on downstream datasets.
♻ ☆ Faster Vision Mamba is Rebuilt in Minutes via Merged Token Re-training
Vision Mamba has shown close to state of the art performance on computer vision tasks, drawing much interest in increasing it's efficiency. A promising approach is token reduction (that has been successfully implemented in ViTs). Pruning informative tokens in Mamba leads to a high loss of key knowledge and degraded performance. An alternative, of merging tokens preserves more information than pruning, also suffers for large compression ratios. Our key insight is that a quick round of retraining after token merging yeilds robust results across various compression ratios. Empirically, pruned Vims only drop up to 0.9% accuracy on ImageNet-1K, recovered by our proposed framework R-MeeTo in our main evaluation. We show how simple and effective the fast recovery can be achieved at minute-level, in particular, a 35.9% accuracy spike over 3 epochs of training on Vim-Ti. Moreover, Vim-Ti/S/B are re-trained within 5/7/17 minutes, and Vim-S only drops 1.3% with 1.2x (up to 1.5x) speed up in inference.
♻ ☆ KunlunBaize: LLM with Multi-Scale Convolution and Multi-Token Prediction Under TransformerX Framework
Large language models have demonstrated remarkable performance across various tasks, yet they face challenges such as low computational efficiency, gradient vanishing, and difficulties in capturing complex feature interactions. To address these limitations, a novel framework has been proposed. This framework incorporates a learnable dense residual skip connection mechanism, a TransformerX module a transformer based component integrating multiscale convolution and adaptive activation functions and a multitoken prediction interaction module. The learnable dense residual connections enhance information flow and feature capture across layers. Within the TransformerX module, large convolutional kernels aggregate semantic information from extensive text segments, while smaller convolutions focus on local word order and syntactic structures. The adaptive activation function dynamically adjusts its parameters based on the semantic features of the input text, improving the model's ability to handle diverse semantic expressions and complex relationships. The multitoken prediction module boosts data utilization and accelerates inference by predicting multiple future tokens. These components significantly enhance the performance and efficiency of large language models.
comment: 21 pages
♻ ☆ What Information Contributes to Log-based Anomaly Detection? Insights from a Configurable Transformer-Based Approach
Log data are generated from logging statements in the source code, providing insights into the execution processes of software applications and systems. State-of-the-art log-based anomaly detection approaches typically leverage deep learning models to capture the semantic or sequential information in the log data and detect anomalous runtime behaviors. However, the impacts of these different types of information are not clear. In addition, most existing approaches ignore the timestamps in log data, which can potentially provide fine-grained sequential and temporal information. In this work, we propose a configurable Transformer-based anomaly detection model that can capture the semantic, sequential, and temporal information in the log data and allows us to configure the different types of information as the model's features. Additionally, we train and evaluate the proposed model using log sequences of different lengths, thus overcoming the constraint of existing methods that rely on fixed-length or time-windowed log sequences as inputs. With the proposed model, we conduct a series of experiments with different combinations of input features to evaluate the roles of different types of information in anomaly detection. The model can attain competitive and consistently stable performance compared to the baselines when presented with log sequences of varying lengths. The results indicate that the event occurrence information plays a key role in identifying anomalies, while the impact of the sequential and temporal information is not significant for anomaly detection on the studied public datasets. On the other hand, the findings also reveal the simplicity of the studied public datasets and highlight the importance of constructing new datasets that contain different types of anomalies to better evaluate the performance of anomaly detection models.
comment: 30 pages
♻ ☆ Categorical semantics of compositional reinforcement learning
Compositional knowledge representations in reinforcement learning (RL) facilitate modular, interpretable, and safe task specifications. However, generating compositional models requires the characterization of minimal assumptions for the robustness of the compositionality feature, especially in the case of functional decompositions. Using a categorical point of view, we develop a knowledge representation framework for a compositional theory of RL. Our approach relies on the theoretical study of the category $\mathsf{MDP}$, whose objects are Markov decision processes (MDPs) acting as models of tasks. The categorical semantics models the compositionality of tasks through the application of pushout operations akin to combining puzzle pieces. As a practical application of these pushout operations, we introduce zig-zag diagrams that rely on the compositional guarantees engendered by the category $\mathsf{MDP}$. We further prove that properties of the category $\mathsf{MDP}$ unify concepts, such as enforcing safety requirements and exploiting symmetries, generalizing previous abstraction theories for RL.
♻ ☆ 6DGS: Enhanced Direction-Aware Gaussian Splatting for Volumetric Rendering ICLR2025
Novel view synthesis has advanced significantly with the development of neural radiance fields (NeRF) and 3D Gaussian splatting (3DGS). However, achieving high quality without compromising real-time rendering remains challenging, particularly for physically-based ray tracing with view-dependent effects. Recently, N-dimensional Gaussians (N-DG) introduced a 6D spatial-angular representation to better incorporate view-dependent effects, but the Gaussian representation and control scheme are sub-optimal. In this paper, we revisit 6D Gaussians and introduce 6D Gaussian Splatting (6DGS), which enhances color and opacity representations and leverages the additional directional information in the 6D space for optimized Gaussian control. Our approach is fully compatible with the 3DGS framework and significantly improves real-time radiance field rendering by better modeling view-dependent effects and fine details. Experiments demonstrate that 6DGS significantly outperforms 3DGS and N-DG, achieving up to a 15.73 dB improvement in PSNR with a reduction of 66.5% Gaussian points compared to 3DGS. The project page is: https://gaozhongpai.github.io/6dgs/
comment: Accepted by ICLR2025
♻ ☆ CBW: Towards Dataset Ownership Verification for Speaker Verification via Clustering-based Backdoor Watermarking ICASSP'21
With the increasing adoption of deep learning in speaker verification, large-scale speech datasets have become valuable intellectual property. To audit and prevent the unauthorized usage of these valuable released datasets, especially in commercial or open-source scenarios, we propose a novel dataset ownership verification method. Our approach introduces a clustering-based backdoor watermark (CBW), enabling dataset owners to determine whether a suspicious third-party model has been trained on a protected dataset under a black-box setting. The CBW method consists of two key stages: dataset watermarking and ownership verification. During watermarking, we implant multiple trigger patterns in the dataset to make similar samples (measured by their feature similarities) close to the same trigger while dissimilar samples are near different triggers. This ensures that any model trained on the watermarked dataset exhibits specific misclassification behaviors when exposed to trigger-embedded inputs. To verify dataset ownership, we design a hypothesis-test-based framework that statistically evaluates whether a suspicious model exhibits the expected backdoor behavior. We conduct extensive experiments on benchmark datasets, verifying the effectiveness and robustness of our method against potential adaptive attacks. The code for reproducing main experiments is available at https://github.com/Radiant0726/CBW
comment: 14 pages. The journal extension of our ICASSP'21 paper (arXiv:2010.11607)
♻ ☆ IMLE Policy: Fast and Sample Efficient Visuomotor Policy Learning via Implicit Maximum Likelihood Estimation
Recent advances in imitation learning, particularly using generative modelling techniques like diffusion, have enabled policies to capture complex multi-modal action distributions. However, these methods often require large datasets and multiple inference steps for action generation, posing challenges in robotics where the cost for data collection is high and computation resources are limited. To address this, we introduce IMLE Policy, a novel behaviour cloning approach based on Implicit Maximum Likelihood Estimation (IMLE). IMLE Policy excels in low-data regimes, effectively learning from minimal demonstrations and requiring 38\% less data on average to match the performance of baseline methods in learning complex multi-modal behaviours. Its simple generator-based architecture enables single-step action generation, improving inference speed by 97.3\% compared to Diffusion Policy, while outperforming single-step Flow Matching. We validate our approach across diverse manipulation tasks in simulated and real-world environments, showcasing its ability to capture complex behaviours under data constraints. Videos and code are provided on our project page: https://imle-policy.github.io/.
comment: Videos and code are available at https://imle-policy.github.io/
♻ ☆ Investigating Use Cases of AI-Powered Scene Description Applications for Blind and Low Vision People
"Scene description" applications that describe visual content in a photo are useful daily tools for blind and low vision (BLV) people. Researchers have studied their use, but they have only explored those that leverage remote sighted assistants; little is known about applications that use AI to generate their descriptions. Thus, to investigate their use cases, we conducted a two-week diary study where 16 BLV participants used an AI-powered scene description application we designed. Through their diary entries and follow-up interviews, users shared their information goals and assessments of the visual descriptions they received. We analyzed the entries and found frequent use cases, such as identifying visual features of known objects, and surprising ones, such as avoiding contact with dangerous objects. We also found users scored the descriptions relatively low on average, 2.76 out of 5 (SD=1.49) for satisfaction and 2.43 out of 4 (SD=1.16) for trust, showing that descriptions still need significant improvements to deliver satisfying and trustworthy experiences. We discuss future opportunities for AI as it becomes a more powerful accessibility tool for BLV users.
comment: 21 pages, 18 figures, 5 tables, main track CHI 2024
♻ ☆ Guide-LLM: An Embodied LLM Agent and Text-Based Topological Map for Robotic Guidance of People with Visual Impairments
Navigation presents a significant challenge for persons with visual impairments (PVI). While traditional aids such as white canes and guide dogs are invaluable, they fall short in delivering detailed spatial information and precise guidance to desired locations. Recent developments in large language models (LLMs) and vision-language models (VLMs) offer new avenues for enhancing assistive navigation. In this paper, we introduce Guide-LLM, an embodied LLM-based agent designed to assist PVI in navigating large indoor environments. Our approach features a novel text-based topological map that enables the LLM to plan global paths using a simplified environmental representation, focusing on straight paths and right-angle turns to facilitate navigation. Additionally, we utilize the LLM's commonsense reasoning for hazard detection and personalized path planning based on user preferences. Simulated experiments demonstrate the system's efficacy in guiding PVI, underscoring its potential as a significant advancement in assistive technology. The results highlight Guide-LLM's ability to offer efficient, adaptive, and personalized navigation assistance, pointing to promising advancements in this field.
♻ ☆ Evaluating the Performance and Robustness of LLMs in Materials Science Q&A and Property Predictions
Large Language Models (LLMs) have the potential to revolutionize scientific research, yet their robustness and reliability in domain-specific applications remain insufficiently explored. In this study, we evaluate the performance and robustness of LLMs for materials science, focusing on domain-specific question answering and materials property prediction across diverse real-world and adversarial conditions. Three distinct datasets are used in this study: 1) a set of multiple-choice questions from undergraduate-level materials science courses, 2) a dataset including various steel compositions and yield strengths, and 3) a band gap dataset, containing textual descriptions of material crystal structures and band gap values. The performance of LLMs is assessed using various prompting strategies, including zero-shot chain-of-thought, expert prompting, and few-shot in-context learning. The robustness of these models is tested against various forms of 'noise', ranging from realistic disturbances to intentionally adversarial manipulations, to evaluate their resilience and reliability under real-world conditions. Additionally, the study showcases unique phenomena of LLMs during predictive tasks, such as mode collapse behavior when the proximity of prompt examples is altered and performance recovery from train/test mismatch. The findings aim to provide informed skepticism for the broad use of LLMs in materials science and to inspire advancements that enhance their robustness and reliability for practical applications.
♻ ☆ Reduce, Reuse, Recycle: Categories for Compositional Reinforcement Learning
In reinforcement learning, conducting task composition by forming cohesive, executable sequences from multiple tasks remains challenging. However, the ability to (de)compose tasks is a linchpin in developing robotic systems capable of learning complex behaviors. Yet, compositional reinforcement learning is beset with difficulties, including the high dimensionality of the problem space, scarcity of rewards, and absence of system robustness after task composition. To surmount these challenges, we view task composition through the prism of category theory -- a mathematical discipline exploring structures and their compositional relationships. The categorical properties of Markov decision processes untangle complex tasks into manageable sub-tasks, allowing for strategical reduction of dimensionality, facilitating more tractable reward structures, and bolstering system robustness. Experimental results support the categorical theory of reinforcement learning by enabling skill reduction, reuse, and recycling when learning complex robotic arm tasks.
comment: ECAI 2024
♻ ☆ Human-Readable Adversarial Prompts: An Investigation into LLM Vulnerabilities Using Situational Context
Previous studies that uncovered vulnerabilities in large language models (LLMs) frequently employed nonsensical adversarial prompts. However, such prompts can now be readily identified using automated detection techniques. To further strengthen adversarial attacks, we focus on human-readable adversarial prompts, which are more realistic and potent threats. Our key contributions are (1) situation-driven attacks leveraging movie scripts as context to create human-readable prompts that successfully deceive LLMs, (2) adversarial suffix conversion to transform nonsensical adversarial suffixes into independent meaningful text, and (3) AdvPrompter with p-nucleus sampling, a method to generate diverse, human-readable adversarial suffixes, improving attack efficacy in models like GPT-3.5 and Gemma 7B.
comment: arXiv admin note: text overlap with arXiv:2407.14644
♻ ☆ Symbolic Mixture-of-Experts: Adaptive Skill-based Routing for Heterogeneous Reasoning
Combining existing pre-trained expert LLMs is a promising avenue for scalably tackling large-scale and diverse tasks. However, selecting experts at the task level is often too coarse-grained, as heterogeneous tasks may require different expertise for each instance. To enable adaptive instance-level mixing of pre-trained LLM experts, we propose Symbolic-MoE, a symbolic, text-based, and gradient-free Mixture-of-Experts framework. Symbolic-MoE takes a fine-grained approach to selection by emphasizing skills, e.g., algebra in math or molecular biology in biomedical reasoning. We propose a skill-based recruiting strategy that dynamically selects the most relevant set of expert LLMs for diverse reasoning tasks based on their strengths. Each selected expert then generates its own reasoning, resulting in k outputs from k experts, which are then synthesized into a final high-quality response by an aggregator chosen based on its ability to integrate diverse reasoning outputs. We show that Symbolic-MoE's instance-level expert selection improves performance by a large margin but -- when implemented naively -- can introduce a high computational overhead due to the need for constant model loading and offloading. To address this, we implement a batch inference strategy that groups instances based on their assigned experts, loading each model only once. This allows us to integrate 16 expert models on 1 GPU with a time cost comparable to or better than prior multi-agent baselines using 4 GPUs. Through extensive evaluations on diverse benchmarks (MMLU-Pro, GPQA, AIME, and MedMCQA), we demonstrate that Symbolic-MoE outperforms strong LLMs like GPT4o-mini, as well as multi-agent approaches, with an absolute average improvement of 8.15% over the best multi-agent baseline. Moreover, Symbolic-MoE removes the need for expensive multi-round discussions, outperforming discussion baselines with less computation.
comment: The first three authors contributed equally. Project Page: https://symbolic-moe.github.io/
♻ ☆ Solving Functional Optimization with Deep Networks and Variational Principles
Can neural networks solve math problems using first a principle alone? This paper shows how to leverage the fundamental theorem of the calculus of variations to design deep neural networks to solve functional optimization without requiring training data (e.g., ground-truth optimal solutions). Our approach is particularly crucial when the solution is a function defined over an unknown interval or support\textemdash such as in minimum-time control problems. By incorporating the necessary conditions satisfied by the optimal function solution, as derived from the calculus of variation, in the design of the deep architecture, CalVNet leverages overparameterized neural networks to learn these optimal functions directly. We validate CalVNet by showing that, without relying on ground-truth data and simply incorporating first principles, it successfully derives the Kalman filter for linear filtering, the bang-bang optimal control for minimum-time problems, and finds geodesics on manifolds. Our results demonstrate that CalVNet can be trained in an unsupervised manner, without relying on ground-truth data, establishing a promising framework for addressing general, potentially unsolved functional optimization problems that still lack analytical solutions.
comment: 16 pages, 4 figures
♻ ☆ Personality Traits in Large Language Models
The advent of large language models (LLMs) has revolutionized natural language processing, enabling the generation of coherent and contextually relevant human-like text. As LLMs increasingly powerconversational agents used by the general public world-wide, the synthetic personality traits embedded in these models, by virtue of training on large amounts of human data, is becoming increasingly important. Since personality is a key factor determining the effectiveness of communication, we present a novel and comprehensive psychometrically valid and reliable methodology for administering and validating personality tests on widely-used LLMs, as well as for shaping personality in the generated text of such LLMs. Applying this method to 18 LLMs, we found: 1) personality measurements in the outputs of some LLMs under specific prompting configurations are reliable and valid; 2) evidence of reliability and validity of synthetic LLM personality is stronger for larger and instruction fine-tuned models; and 3) personality in LLM outputs can be shaped along desired dimensions to mimic specific human personality profiles. We discuss the application and ethical implications of the measurement and shaping method, in particular regarding responsible AI.
♻ ☆ Tensor Completion for Surrogate Modeling of Material Property Prediction AAAI
When designing materials to optimize certain properties, there are often many possible configurations of designs that need to be explored. For example, the materials' composition of elements will affect properties such as strength or conductivity, which are necessary to know when developing new materials. Exploring all combinations of elements to find optimal materials becomes very time consuming, especially when there are more design variables. For this reason, there is growing interest in using machine learning (ML) to predict a material's properties. In this work, we model the optimization of certain material properties as a tensor completion problem, to leverage the structure of our datasets and navigate the vast number of combinations of material configurations. Across a variety of material property prediction tasks, our experiments show tensor completion methods achieving 10-20% decreased error compared with baseline ML models such as GradientBoosting and Multilayer Perceptron (MLP), while maintaining similar training speed.
comment: 2 page paper accepted to AAAI KGML 2025 bridge program
♻ ☆ Can Large Language Models generalize analogy solving like people can?
When we solve an analogy we transfer information from a known context to a new one through abstract rules and relational similarity. In people, the ability to solve analogies such as "body : feet :: table : ?" emerges in childhood, and appears to transfer easily to other domains, such as the visual domain "( : ) :: < : ?". Recent research shows that large language models (LLMs) can solve various forms of analogies. However, can LLMs generalize analogy solving to new domains like people can? To investigate this, we had children, adults, and LLMs solve a series of letter-string analogies (e.g., a b : a c :: j k : ?) in the Latin alphabet, in a near transfer domain (Greek alphabet), and a far transfer domain (list of symbols). As expected, children and adults easily generalized their knowledge to unfamiliar domains, whereas LLMs did not. This key difference between human and AI performance is evidence that these LLMs still struggle with robust human-like analogical transfer.
♻ ☆ Towards Understanding Link Predictor Generalizability Under Distribution Shifts
State-of-the-art link prediction (LP) models demonstrate impressive benchmark results. However, popular benchmark datasets often assume that training, validation, and testing samples are representative of the overall dataset distribution. In real-world situations, this assumption is often incorrect; uncontrolled factors lead new dataset samples to come from a different distribution than training samples. Additionally, the majority of recent work with graph dataset shift focuses on node- and graph-level tasks, largely ignoring link-level tasks. To bridge this gap, we introduce a novel splitting strategy, known as LPShift, which utilizes structural properties to induce a controlled distribution shift. We verify LPShift's effect through empirical evaluation of SOTA LP models on 16 LPShift variants of original dataset splits, with results indicating drastic changes to model performance. Additional experiments demonstrate graph structure has a strong influence on the success of current generalization methods. Source Code Available Here: https://github.com/revolins/LPShift
comment: 23 pages, 8 figures, 17 tables
♻ ☆ Towards Human-AI Deliberation: Design and Evaluation of LLM-Empowered Deliberative AI for AI-Assisted Decision-Making
In AI-assisted decision-making, humans often passively review AI's suggestion and decide whether to accept or reject it as a whole. In such a paradigm, humans are found to rarely trigger analytical thinking and face difficulties in communicating the nuances of conflicting opinions to the AI when disagreements occur. To tackle this challenge, we propose Human-AI Deliberation, a novel framework to promote human reflection and discussion on conflicting human-AI opinions in decision-making. Based on theories in human deliberation, this framework engages humans and AI in dimension-level opinion elicitation, deliberative discussion, and decision updates. To empower AI with deliberative capabilities, we designed Deliberative AI, which leverages large language models (LLMs) as a bridge between humans and domain-specific models to enable flexible conversational interactions and faithful information provision. An exploratory evaluation on a graduate admissions task shows that Deliberative AI outperforms conventional explainable AI (XAI) assistants in improving humans' appropriate reliance and task performance. Based on a mixed-methods analysis of participant behavior, perception, user experience, and open-ended feedback, we draw implications for future AI-assisted decision tool design.
comment: 23 pages, ACM CHI 2025
♻ ☆ BBScore: A Brownian Bridge Based Metric for Assessing Text Coherence AAAI
Measuring the coherence of text is a vital aspect of evaluating the quality of written content. Recent advancements in neural coherence modeling have demonstrated their efficacy in capturing entity coreference and discourse relations, thereby enhancing coherence evaluation. However, many existing methods heavily depend on static embeddings or focus narrowly on nearby context, constraining their capacity to measure the overarching coherence of long texts. In this paper, we posit that coherent texts inherently manifest a sequential and cohesive interplay among sentences, effectively conveying the central theme, purpose, or standpoint. To explore this abstract relationship, we introduce the "BBScore," a novel reference-free metric grounded in Brownian bridge theory for assessing text coherence. Our findings showcase that when synergized with a simple additional classification component, this metric attains a performance level comparable to state-of-the-art techniques on standard artificial discrimination tasks. We also establish in downstream tasks that this metric effectively differentiates between human-written documents and text generated by large language models under a specific domain. Furthermore, we illustrate the efficacy of this approach in detecting written styles attributed to diverse large language models, underscoring its potential for generalizability. In summary, we present a novel Brownian bridge coherence metric capable of measuring both local and global text coherence, while circumventing the need for end-to-end model training. This flexibility allows for its application in various downstream tasks.
comment: Accepted to the 38th Annual AAAI Conference on Artificial Intelligence (AAAI-24)
♻ ☆ Modeling Dynamic Neural Activity by combining Naturalistic Video Stimuli and Stimulus-independent Latent Factors
Understanding how visual processing of natural stimuli and internal brain states interact in populations of neurons remains an open question in neuroscience. Currently there are no dynamic encoding models that explicitly model a latent state and the entire neuronal response distribution. We address this gap by proposing a probabilistic model that predicts the joint distribution of the neuronal responses from video stimuli and stimulus-independent latent factors. After training and testing our model on mouse V1 neuronal responses, we find that it outperforms video-only models in terms of log-likelihood and achieves improvements in likelihood and correlation when conditioned on responses from other neurons. Furthermore, we find that the learned latent factors strongly correlate with mouse behavior and that they exhibits patterns related to the neurons position on visual cortex, although the model was trained without behavior and cortical coordinates. Our findings demonstrate that unsupervised learning of latent factors from population responses can reveal biologically meaningful structure that bridges sensory processing and behavior, without requiring explicit behavioral annotations during training. Code will be available upon publication.
♻ ☆ Efficient Event-Based Object Detection: A Hybrid Neural Network with Spatial and Temporal Attention
Event cameras offer high temporal resolution and dynamic range with minimal motion blur, making them promising for robust object detection. While Spiking Neural Networks (SNNs) on neuromorphic hardware are often considered for energy-efficient and low latency event-based data processing, they often fall short of Artificial Neural Networks (ANNs) in accuracy and flexibility. Here, we introduce Attention-based Hybrid SNN-ANN backbones for event-based object detection to leverage the strengths of both SNN and ANN architectures. A novel Attention-based SNN-ANN bridge module captures sparse spatial and temporal relations from the SNN layer and converts them into dense feature maps for the ANN part of the backbone. Additionally, we present a variant that integrates DWConvL-STMs to the ANN blocks to capture slower dynamics. This multi-timescale network combines fast SNN processing for short timesteps with long-term dense RNN processing, effectively capturing both fast and slow dynamics. Experimental results demonstrate that our proposed method surpasses SNN-based approaches by significant margins, with results comparable to existing ANN and RNN-based methods. Unlike ANN-only networks, the hybrid setup allows us to implement the SNN blocks on digital neuromorphic hardware to investigate the feasibility of our approach. Extensive ablation studies and implementation on neuromorphic hardware confirm the effectiveness of our proposed modules and architectural choices. Our hybrid SNN-ANN architectures pave the way for ANN-like performance at a drastically reduced parameter, latency, and power budget.
♻ ☆ Optimal Output Feedback Learning Control for Discrete-Time Linear Quadratic Regulation
This paper studies the linear quadratic regulation (LQR) problem of unknown discrete-time systems via dynamic output feedback learning control. In contrast to the state feedback, the optimality of the dynamic output feedback control for solving the LQR problem requires an implicit condition on the convergence of the state observer. Moreover, due to unknown system matrices and the existence of observer error, it is difficult to analyze the convergence and stability of most existing output feedback learning-based control methods. To tackle these issues, we propose a generalized dynamic output feedback learning control approach with guaranteed convergence, stability, and optimality performance for solving the LQR problem of unknown discrete-time linear systems. In particular, a dynamic output feedback controller is designed to be equivalent to a state feedback controller. This equivalence relationship is an inherent property without requiring convergence of the estimated state by the state observer, which plays a key role in establishing the off-policy learning control approaches. By value iteration and policy iteration schemes, the adaptive dynamic programming based learning control approaches are developed to estimate the optimal feedback control gain. In addition, a model-free stability criterion is provided by finding a nonsingular parameterization matrix, which contributes to establishing a switched iteration scheme. Furthermore, the convergence, stability, and optimality analyses of the proposed output feedback learning control approaches are given. Finally, the theoretical results are validated by two numerical examples.
comment: 16 pages, 5 figures
♻ ☆ Mitigating Hallucination for Large Vision Language Model by Inter-Modality Correlation Calibration Decoding
Large vision-language models (LVLMs) have shown remarkable capabilities in visual-language understanding for downstream multi-modal tasks. Despite their success, LVLMs still suffer from generating hallucinations in complex generation tasks, leading to inconsistencies between visual inputs and generated content. To address this issue, some approaches have introduced inference-time interventions, such as contrastive decoding and attention rectification, to reduce overreliance on language priors. However, these approaches overlook hallucinations stemming from spurious inter-modality correlations. In this paper, we propose an Inter-Modality Correlation Calibration Decoding (IMCCD) method to mitigate hallucinations in LVLMs in a training-free manner. In this method, we design a Cross-Modal Value-Enhanced Decoding(CMVED) module to alleviate hallucination by a novel contrastive decoding mechanism. During the estimation of distorted distribution, CMVED masks the value vectors associated with significant cross-modal attention weights, which address both uni-modality overreliance and misleading inter-modality correlations. Additionally, a Content-Driven Attention Refinement(CDAR) module refines cross-modal attention weights, guiding LVLMs to focus on important visual content. Experimental results on diverse hallucination benchmarks validate the superiority of our method over existing state-of-the-art techniques in reducing hallucinations in LVLM text generation. Our code will be available at https://github.com/lijm48/IMCCD.
♻ ☆ Conformal Trajectory Prediction with Multi-View Data Integration in Cooperative Driving
Current research on trajectory prediction primarily relies on data collected by onboard sensors of an ego vehicle. With the rapid advancement in connected technologies, such as vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication, valuable information from alternate views becomes accessible via wireless networks. The integration of information from alternative views has the potential to overcome the inherent limitations associated with a single viewpoint, such as occlusions and limited field of view. In this work, we introduce V2INet, a novel trajectory prediction framework designed to model multi-view data by extending existing single-view models. Unlike previous approaches where the multi-view data is manually fused or formulated as a separate training stage, our model supports end-to-end training, enhancing both flexibility and performance. Moreover, the predicted multimodal trajectories are calibrated by a post-hoc conformal prediction module to get valid and efficient confidence regions. We evaluated the entire framework using the real-world V2I dataset V2X-Seq. Our results demonstrate superior performance in terms of Final Displacement Error (FDE) and Miss Rate (MR) using a single GPU. The code is publicly available at: https://github.com/xichennn/V2I_trajectory_prediction.
Graphics 20
☆ GarmentCrafter: Progressive Novel View Synthesis for Single-View 3D Garment Reconstruction and Editing
We introduce GarmentCrafter, a new approach that enables non-professional users to create and modify 3D garments from a single-view image. While recent advances in image generation have facilitated 2D garment design, creating and editing 3D garments remains challenging for non-professional users. Existing methods for single-view 3D reconstruction often rely on pre-trained generative models to synthesize novel views conditioning on the reference image and camera pose, yet they lack cross-view consistency, failing to capture the internal relationships across different views. In this paper, we tackle this challenge through progressive depth prediction and image warping to approximate novel views. Subsequently, we train a multi-view diffusion model to complete occluded and unknown clothing regions, informed by the evolving camera pose. By jointly inferring RGB and depth, GarmentCrafter enforces inter-view coherence and reconstructs precise geometries and fine details. Extensive experiments demonstrate that our method achieves superior visual fidelity and inter-view coherence compared to state-of-the-art single-view 3D garment reconstruction methods.
comment: Project Page: https://humansensinglab.github.io/garment-crafter/
☆ Bokeh Diffusion: Defocus Blur Control in Text-to-Image Diffusion Models
Recent advances in large-scale text-to-image models have revolutionized creative fields by generating visually captivating outputs from textual prompts; however, while traditional photography offers precise control over camera settings to shape visual aesthetics -- such as depth-of-field -- current diffusion models typically rely on prompt engineering to mimic such effects. This approach often results in crude approximations and inadvertently altering the scene content. In this work, we propose Bokeh Diffusion, a scene-consistent bokeh control framework that explicitly conditions a diffusion model on a physical defocus blur parameter. By grounding depth-of-field adjustments, our method preserves the underlying scene structure as the level of blur is varied. To overcome the scarcity of paired real-world images captured under different camera settings, we introduce a hybrid training pipeline that aligns in-the-wild images with synthetic blur augmentations. Extensive experiments demonstrate that our approach not only achieves flexible, lens-like blur control but also supports applications such as real image editing via inversion.
comment: Project page: https://atfortes.github.io/projects/bokeh-diffusion/
☆ AnyMoLe: Any Character Motion In-betweening Leveraging Video Diffusion Models CVPR 2025
Despite recent advancements in learning-based motion in-betweening, a key limitation has been overlooked: the requirement for character-specific datasets. In this work, we introduce AnyMoLe, a novel method that addresses this limitation by leveraging video diffusion models to generate motion in-between frames for arbitrary characters without external data. Our approach employs a two-stage frame generation process to enhance contextual understanding. Furthermore, to bridge the domain gap between real-world and rendered character animations, we introduce ICAdapt, a fine-tuning technique for video diffusion models. Additionally, we propose a ``motion-video mimicking'' optimization technique, enabling seamless motion generation for characters with arbitrary joint structures using 2D and 3D-aware features. AnyMoLe significantly reduces data dependency while generating smooth and realistic transitions, making it applicable to a wide range of motion in-betweening tasks.
comment: 11 pages, 10 figures, CVPR 2025
☆ Ev-Layout: A Large-scale Event-based Multi-modal Dataset for Indoor Layout Estimation and Tracking
This paper presents Ev-Layout, a novel large-scale event-based multi-modal dataset designed for indoor layout estimation and tracking. Ev-Layout makes key contributions to the community by: Utilizing a hybrid data collection platform (with a head-mounted display and VR interface) that integrates both RGB and bio-inspired event cameras to capture indoor layouts in motion. Incorporating time-series data from inertial measurement units (IMUs) and ambient lighting conditions recorded during data collection to highlight the potential impact of motion speed and lighting on layout estimation accuracy. The dataset consists of 2.5K sequences, including over 771.3K RGB images and 10 billion event data points. Of these, 39K images are annotated with indoor layouts, enabling research in both event-based and video-based indoor layout estimation. Based on the dataset, we propose an event-based layout estimation pipeline with a novel event-temporal distribution feature module to effectively aggregate the spatio-temporal information from events. Additionally, we introduce a spatio-temporal feature fusion module that can be easily integrated into a transformer module for fusion purposes. Finally, we conduct benchmarking and extensive experiments on the Ev-Layout dataset, demonstrating that our approach significantly improves the accuracy of dynamic indoor layout estimation compared to existing event-based methods.
Dynamic Scene Reconstruction: Recent Advance in Real-time Rendering and Streaming
Representing and rendering dynamic scenes from 2D images is a fundamental yet challenging problem in computer vision and graphics. This survey provides a comprehensive review of the evolution and advancements in dynamic scene representation and rendering, with a particular emphasis on recent progress in Neural Radiance Fields based and 3D Gaussian Splatting based reconstruction methods. We systematically summarize existing approaches, categorize them according to their core principles, compile relevant datasets, compare the performance of various methods on these benchmarks, and explore the challenges and future research directions in this rapidly evolving field. In total, we review over 170 relevant papers, offering a broad perspective on the state of the art in this domain.
comment: 20 pages, 6 figures
☆ ForceGrip: Data-Free Curriculum Learning for Realistic Grip Force Control in VR Hand Manipulation
Realistic hand manipulation is a key component of immersive virtual reality (VR), yet existing methods often rely on a kinematic approach or motion-capture datasets that omit crucial physical attributes such as contact forces and finger torques. Consequently, these approaches prioritize tight, one-size-fits-all grips rather than reflecting users' intended force levels. We present ForceGrip, a deep learning agent that synthesizes realistic hand manipulation motions, faithfully reflecting the user's grip force intention. Instead of mimicking predefined motion datasets, ForceGrip uses generated training scenarios-randomizing object shapes, wrist movements, and trigger input flows-to challenge the agent with a broad spectrum of physical interactions. To effectively learn from these complex tasks, we employ a three-phase curriculum learning framework comprising Finger Positioning, Intention Adaptation, and Dynamic Stabilization. This progressive strategy ensures stable hand-object contact, adaptive force control based on user inputs, and robust handling under dynamic conditions. Additionally, a proximity reward function enhances natural finger motions and accelerates training convergence. Quantitative and qualitative evaluations reveal ForceGrip's superior force controllability and plausibility compared to state-of-the-art methods.
comment: 19 pages, 10 figs (with appendix)
☆ ObjectMover: Generative Object Movement with Video Prior CVPR 2025
Simple as it seems, moving an object to another location within an image is, in fact, a challenging image-editing task that requires re-harmonizing the lighting, adjusting the pose based on perspective, accurately filling occluded regions, and ensuring coherent synchronization of shadows and reflections while maintaining the object identity. In this paper, we present ObjectMover, a generative model that can perform object movement in highly challenging scenes. Our key insight is that we model this task as a sequence-to-sequence problem and fine-tune a video generation model to leverage its knowledge of consistent object generation across video frames. We show that with this approach, our model is able to adjust to complex real-world scenarios, handling extreme lighting harmonization and object effect movement. As large-scale data for object movement are unavailable, we construct a data generation pipeline using a modern game engine to synthesize high-quality data pairs. We further propose a multi-task learning strategy that enables training on real-world video data to improve the model generalization. Through extensive experiments, we demonstrate that ObjectMover achieves outstanding results and adapts well to real-world scenarios.
comment: CVPR 2025, Project Page: https://xinyu-andy.github.io/ObjMover
☆ HessianForge: Scalable LiDAR reconstruction with Physics-Informed Neural Representation and Smoothness Energy Constraints
Accurate and efficient 3D mapping of large-scale outdoor environments from LiDAR measurements is a fundamental challenge in robotics, particularly towards ensuring smooth and artifact-free surface reconstructions. Although the state-of-the-art methods focus on memory-efficient neural representations for high-fidelity surface generation, they often fail to produce artifact-free manifolds, with artifacts arising due to noisy and sparse inputs. To address this issue, we frame surface mapping as a physics-informed energy optimization problem, enforcing surface smoothness by optimizing an energy functional that penalizes sharp surface ridges. Specifically, we propose a deep learning based approach that learns the signed distance field (SDF) of the surface manifold from raw LiDAR point clouds using a physics-informed loss function that optimizes the $L_2$-Hessian energy of the surface. Our learning framework includes a hierarchical octree based input feature encoding and a multi-scale neural network to iteratively refine the signed distance field at different scales of resolution. Lastly, we introduce a test-time refinement strategy to correct topological inconsistencies and edge distortions that can arise in the generated mesh. We propose a \texttt{CUDA}-accelerated least-squares optimization that locally adjusts vertex positions to enforce feature-preserving smoothing. We evaluate our approach on large-scale outdoor datasets and demonstrate that our approach outperforms current state-of-the-art methods in terms of improved accuracy and smoothness. Our code is available at \href{https://github.com/HrishikeshVish/HessianForge/}{https://github.com/HrishikeshVish/HessianForge/}
☆ FPGS: Feed-Forward Semantic-aware Photorealistic Style Transfer of Large-Scale Gaussian Splatting
We present FPGS, a feed-forward photorealistic style transfer method of large-scale radiance fields represented by Gaussian Splatting. FPGS, stylizes large-scale 3D scenes with arbitrary, multiple style reference images without additional optimization while preserving multi-view consistency and real-time rendering speed of 3D Gaussians. Prior arts required tedious per-style optimization or time-consuming per-scene training stage and were limited to small-scale 3D scenes. FPGS efficiently stylizes large-scale 3D scenes by introducing a style-decomposed 3D feature field, which inherits AdaIN's feed-forward stylization machinery, supporting arbitrary style reference images. Furthermore, FPGS supports multi-reference stylization with the semantic correspondence matching and local AdaIN, which adds diverse user control for 3D scene styles. FPGS also preserves multi-view consistency by applying semantic matching and style transfer processes directly onto queried features in 3D space. In experiments, we demonstrate that FPGS achieves favorable photorealistic quality scene stylization for large-scale static and dynamic 3D scenes with diverse reference images. Project page: https://kim-geonu.github.io/FPGS/
comment: Project page: https://kim-geonu.github.io/FPGS/. arXiv admin note: substantial text overlap with arXiv:2401.05516
☆ Identity Preserving Latent Diffusion for Brain Aging Modeling
Structural and appearance changes in brain imaging over time are crucial indicators of neurodevelopment and neurodegeneration. The rapid advancement of large-scale generative models provides a promising backbone for modeling these complex global and local changes in brain images, such as transforming the age of a source image to a target age. However, current generative models, typically trained on independently and identically distributed (i.i.d.) data, may struggle to maintain intra-subject spatiotemporal consistency during transformations. We propose the Identity-Preserving Longitudinal Diffusion Model (IP-LDM), designed to accurately transform brain ages while preserving subject identity. Our approach involves first extracting the identity representation from the source image. Then, conditioned on the target age, the latent diffusion model learns to generate the age-transformed target image. To ensure consistency within the same subject over time, we regularize the identity representation using a triplet contrastive formulation. Our experiments on both elderly and infant brain datasets demonstrate that our model outperforms existing conditional generative models, producing realistic age transformations while preserving intra-subject identity.
comment: 19 pages, 10 figures
☆ V2M4: 4D Mesh Animation Reconstruction from a Single Monocular Video
We present V2M4, a novel 4D reconstruction method that directly generates a usable 4D mesh animation asset from a single monocular video. Unlike existing approaches that rely on priors from multi-view image and video generation models, our method is based on native 3D mesh generation models. Naively applying 3D mesh generation models to generate a mesh for each frame in a 4D task can lead to issues such as incorrect mesh poses, misalignment of mesh appearance, and inconsistencies in mesh geometry and texture maps. To address these problems, we propose a structured workflow that includes camera search and mesh reposing, condition embedding optimization for mesh appearance refinement, pairwise mesh registration for topology consistency, and global texture map optimization for texture consistency. Our method outputs high-quality 4D animated assets that are compatible with mainstream graphics and game software. Experimental results across a variety of animation types and motion amplitudes demonstrate the generalization and effectiveness of our method. Project page:https://windvchen.github.io/V2M4/.
comment: Project page:https://windvchen.github.io/V2M4/
☆ CASteer: Steering Diffusion Models for Controllable Generation
Diffusion models have transformed image generation, yet controlling their outputs for diverse applications, including content moderation and creative customization, remains challenging. Existing approaches usually require task-specific training and struggle to generalize across both concrete (e.g., objects) and abstract (e.g., styles) concepts. We propose CASteer (Cross-Attention Steering) a training-free framework for controllable image generation using steering vectors to influence a diffusion model$'$s hidden representations dynamically. CASteer computes these vectors offline by averaging activations from concept-specific generated images, then applies them during inference via a dynamic heuristic that activates modifications only when necessary, removing concepts from affected images or adding them to unaffected ones. This approach enables precise control over a wide range of tasks, including removing harmful content, adding desired attributes, replacing objects, or altering styles, all without model retraining. CASteer handles both concrete and abstract concepts, outperforming state-of-the-art techniques across multiple diffusion models while preserving unrelated content and minimizing unintended effects.
♻ ☆ RealVVT: Towards Photorealistic Video Virtual Try-on via Spatio-Temporal Consistency
Virtual try-on has emerged as a pivotal task at the intersection of computer vision and fashion, aimed at digitally simulating how clothing items fit on the human body. Despite notable progress in single-image virtual try-on (VTO), current methodologies often struggle to preserve a consistent and authentic appearance of clothing across extended video sequences. This challenge arises from the complexities of capturing dynamic human pose and maintaining target clothing characteristics. We leverage pre-existing video foundation models to introduce RealVVT, a photoRealistic Video Virtual Try-on framework tailored to bolster stability and realism within dynamic video contexts. Our methodology encompasses a Clothing & Temporal Consistency strategy, an Agnostic-guided Attention Focus Loss mechanism to ensure spatial consistency, and a Pose-guided Long Video VTO technique adept at handling extended video sequences.Extensive experiments across various datasets confirms that our approach outperforms existing state-of-the-art models in both single-image and video VTO tasks, offering a viable solution for practical applications within the realms of fashion e-commerce and virtual fitting environments.
comment: 10 pages (8 pages main text, 2 pages references), 5 figures in the main text, and 4 pages supplementary materials with 3 additional figures
♻ ☆ PanoDreamer: Optimization-Based Single Image to 360 3D Scene With Diffusion
In this paper, we present PanoDreamer, a novel method for producing a coherent 360{\deg} 3D scene from a single input image. Unlike existing methods that generate the scene sequentially, we frame the problem as single-image panorama and depth estimation. Once the coherent panoramic image and its corresponding depth are obtained, the scene can be reconstructed by inpainting the small occluded regions and projecting them into 3D space. Our key contribution is formulating single-image panorama and depth estimation as two optimization tasks and introducing alternating minimization strategies to effectively solve their objectives. We demonstrate that our approach outperforms existing techniques in single-image 360{\deg} 3D scene reconstruction in terms of consistency and overall quality.
comment: Project page: https://people.engr.tamu.edu/nimak/Papers/PanoDreamer, Code: https://github.com/avinashpaliwal/PanoDreamer
♻ ☆ RealmDreamer: Text-Driven 3D Scene Generation with Inpainting and Depth Diffusion 3DV 2025
We introduce RealmDreamer, a technique for generating forward-facing 3D scenes from text descriptions. Our method optimizes a 3D Gaussian Splatting representation to match complex text prompts using pretrained diffusion models. Our key insight is to leverage 2D inpainting diffusion models conditioned on an initial scene estimate to provide low variance supervision for unknown regions during 3D distillation. In conjunction, we imbue high-fidelity geometry with geometric distillation from a depth diffusion model, conditioned on samples from the inpainting model. We find that the initialization of the optimization is crucial, and provide a principled methodology for doing so. Notably, our technique doesn't require video or multi-view data and can synthesize various high-quality 3D scenes in different styles with complex layouts. Further, the generality of our method allows 3D synthesis from a single image. As measured by a comprehensive user study, our method outperforms all existing approaches, preferred by 88-95%. Project Page: https://realmdreamer.github.io/
comment: Published at 3DV 2025
♻ ☆ INPC: Implicit Neural Point Clouds for Radiance Field Rendering
We introduce a new approach for reconstruction and novel view synthesis of unbounded real-world scenes. In contrast to previous methods using either volumetric fields, grid-based models, or discrete point cloud proxies, we propose a hybrid scene representation, which implicitly encodes the geometry in a continuous octree-based probability field and view-dependent appearance in a multi-resolution hash grid. This allows for extraction of arbitrary explicit point clouds, which can be rendered using rasterization. In doing so, we combine the benefits of both worlds and retain favorable behavior during optimization: Our novel implicit point cloud representation and differentiable bilinear rasterizer enable fast rendering while preserving the fine geometric detail captured by volumetric neural fields. Furthermore, this representation does not depend on priors like structure-from-motion point clouds. Our method achieves state-of-the-art image quality on common benchmarks. Furthermore, we achieve fast inference at interactive frame rates, and can convert our trained model into a large, explicit point cloud to further enhance performance.
comment: Project page: https://fhahlbohm.github.io/inpc/
♻ ☆ KinMo: Kinematic-aware Human Motion Understanding and Generation
Current human motion synthesis frameworks rely on global action descriptions, creating a modality gap that limits both motion understanding and generation capabilities. A single coarse description, such as ``run", fails to capture details like variations in speed, limb positioning, and kinematic dynamics, leading to ambiguities between text and motion modalities. To address this challenge, we introduce \textbf{KinMo}, a unified framework built on a hierarchical describable motion representation that extends beyond global action by incorporating kinematic group movements and their interactions. We design an automated annotation pipeline to generate high-quality, fine-grained descriptions for this decomposition, resulting in the KinMo dataset. To leverage these structured descriptions, we propose Hierarchical Text-Motion Alignment, improving spatial understanding by integrating additional motion details. Furthermore, we introduce a coarse-to-fine generation procedure to leverage enhanced spatial understanding to improve motion synthesis. Experimental results show that KinMo significantly improves motion understanding, demonstrated by enhanced text-motion retrieval performance and enabling more fine-grained motion generation and editing capabilities. Project Page: https://andypinxinliu.github.io/KinMo
♻ ☆ Empirical Study on the Use of 3D Scatterplots as 2D Figures
3D scatterplots are a well-established plotting technique that can be used to represent data with three or more dimensions. On paper and computer monitors they are essentially two-dimensional projections of the three-dimensional Cartesian coordinate system. This transition from the 3D space to two dimensions is not done consistently among scientific software, as there is currently limited quantifiable evidence on the effectiveness of each approach. Notably, the frequent lack of visual cues such as with regard to depth perception is equivalent to a reduction of dimensionality by one. Hence, their use in manuscripts is less common or straightforward. In this empirical study, an online survey is conducted within an academic institution to identify and quantify the effectiveness of feature or feature combinations on 3D scatterplots in terms of reading time and accuracy.
comment: This version does not include the description of the visualisation framework
♻ ☆ Make-It-Animatable: An Efficient Framework for Authoring Animation-Ready 3D Characters CVPR 2025
3D characters are essential to modern creative industries, but making them animatable often demands extensive manual work in tasks like rigging and skinning. Existing automatic rigging tools face several limitations, including the necessity for manual annotations, rigid skeleton topologies, and limited generalization across diverse shapes and poses. An alternative approach is to generate animatable avatars pre-bound to a rigged template mesh. However, this method often lacks flexibility and is typically limited to realistic human shapes. To address these issues, we present Make-It-Animatable, a novel data-driven method to make any 3D humanoid model ready for character animation in less than one second, regardless of its shapes and poses. Our unified framework generates high-quality blend weights, bones, and pose transformations. By incorporating a particle-based shape autoencoder, our approach supports various 3D representations, including meshes and 3D Gaussian splats. Additionally, we employ a coarse-to-fine representation and a structure-aware modeling strategy to ensure both accuracy and robustness, even for characters with non-standard skeleton structures. We conducted extensive experiments to validate our framework's effectiveness. Compared to existing methods, our approach demonstrates significant improvements in both quality and speed. More demos and code are available at https://jasongzy.github.io/Make-It-Animatable/.
comment: CVPR 2025. Project page: https://jasongzy.github.io/Make-It-Animatable/
♻ ☆ LLM-HDR: Bridging LLM-based Perception and Self-Supervision for Unpaired LDR-to-HDR Image Reconstruction
The translation of Low Dynamic Range (LDR) to High Dynamic Range (HDR) images is an important computer vision task. There is a significant amount of research utilizing both conventional non-learning methods and modern data-driven approaches, focusing on using both single-exposed and multi-exposed LDR for HDR image reconstruction. However, most current state-of-the-art methods require high-quality paired {LDR,HDR} datasets for model training. In addition, there is limited literature on using unpaired datasets for this task, that is, the model learns a mapping between domains, i.e., {LDR,HDR}. This paper proposes LLM-HDR, a method that integrates the perception of Large Language Models (LLM) into a modified semantic- and cycle-consistent adversarial architecture that utilizes unpaired {LDR,HDR} datasets for training. The method introduces novel artifact- and exposure-aware generators to address visual artifact removal and an encoder and loss to address semantic consistency, another under-explored topic. LLM-HDR is the first to use an LLM for the {LDR,HDR} translation task in a self-supervised setup. The method achieves state-of-the-art performance across several benchmark datasets and reconstructs high-quality HDR images. The official website of this work is available at: https://github.com/HrishavBakulBarua/LLM-HDR
Robotics 120
☆ Robusto-1 Dataset: Comparing Humans and VLMs on real out-of-distribution Autonomous Driving VQA from Peru
As multimodal foundational models start being deployed experimentally in Self-Driving cars, a reasonable question we ask ourselves is how similar to humans do these systems respond in certain driving situations -- especially those that are out-of-distribution? To study this, we create the Robusto-1 dataset that uses dashcam video data from Peru, a country with one of the worst (aggressive) drivers in the world, a high traffic index, and a high ratio of bizarre to non-bizarre street objects likely never seen in training. In particular, to preliminarly test at a cognitive level how well Foundational Visual Language Models (VLMs) compare to Humans in Driving, we move away from bounding boxes, segmentation maps, occupancy maps or trajectory estimation to multi-modal Visual Question Answering (VQA) comparing both humans and machines through a popular method in systems neuroscience known as Representational Similarity Analysis (RSA). Depending on the type of questions we ask and the answers these systems give, we will show in what cases do VLMs and Humans converge or diverge allowing us to probe on their cognitive alignment. We find that the degree of alignment varies significantly depending on the type of questions asked to each type of system (Humans vs VLMs), highlighting a gap in their alignment.
comment: A pre-print. 26 pages. Link to Code + Data: https://huggingface.co/datasets/Artificio/robusto-1
☆ Analyzing Symmetries of Swarms of Mobile Robots Using Equivariant Dynamical Systems
In this article, we investigate symmetry properties of distributed systems of mobile robots. We consider a swarm of $n\in\mathbb{N}$ robots in the $\mathcal{OBLOT}$ model and analyze their collective $\mathcal{F}$sync dynamics using of equivariant dynamical systems theory. To this end, we show that the corresponding evolution function commutes with rotational and reflective transformations of $\mathbb{R}^2$. These form a group that is isomorphic to $\mathbf{O}(2) \times S_n$, the product group of the orthogonal group and the permutation on $n$ elements. The theory of equivariant dynamical systems is used to deduce a hierarchy along which symmetries of a robot swarm can potentially increase following an arbitrary protocol. By decoupling the Look phase from the Compute and Move phases in the mathematical description of an LCM cycle, this hierarchy can be characterized in terms of automorphisms of connectivity graphs. In particular, we find all possible types of symmetry increase, if the decoupled Compute and Move phase is invertible. Finally, we apply our results to protocols which induce state-dependent linear dynamics, where the reduced system consisting of only the Compute and Move phase is linear.
comment: 23 pages, 6 Figures
☆ AutoSpatial: Visual-Language Reasoning for Social Robot Navigation through Efficient Spatial Reasoning Learning
We present a novel method, AutoSpatial, an efficient approach with structured spatial grounding to enhance VLMs' spatial reasoning. By combining minimal manual supervision with large-scale Visual Question-Answering (VQA) pairs auto-labeling, our approach tackles the challenge of VLMs' limited spatial understanding in social navigation tasks. By applying a hierarchical two-round VQA strategy during training, AutoSpatial achieves both global and detailed understanding of scenarios, demonstrating more accurate spatial perception, movement prediction, Chain of Thought (CoT) reasoning, final action, and explanation compared to other SOTA approaches. These five components are essential for comprehensive social navigation reasoning. Our approach was evaluated using both expert systems (GPT-4o, Gemini 2.0 Flash, and Claude 3.5 Sonnet) that provided cross-validation scores and human evaluators who assigned relative rankings to compare model performances across four key aspects. Augmented by the enhanced spatial reasoning capabilities, AutoSpatial demonstrates substantial improvements by averaged cross-validation score from expert systems in: perception & prediction (up to 10.71%), reasoning (up to 16.26%), action (up to 20.50%), and explanation (up to 18.73%) compared to baseline models trained only on manually annotated data.
☆ Bi-Directional Mental Model Reconciliation for Human-Robot Interaction with Large Language Models AAAI 2025
In human-robot interactions, human and robot agents maintain internal mental models of their environment, their shared task, and each other. The accuracy of these representations depends on each agent's ability to perform theory of mind, i.e. to understand the knowledge, preferences, and intentions of their teammate. When mental models diverge to the extent that it affects task execution, reconciliation becomes necessary to prevent the degradation of interaction. We propose a framework for bi-directional mental model reconciliation, leveraging large language models to facilitate alignment through semi-structured natural language dialogue. Our framework relaxes the assumption of prior model reconciliation work that either the human or robot agent begins with a correct model for the other agent to align to. Through our framework, both humans and robots are able to identify and communicate missing task-relevant context during interaction, iteratively progressing toward a shared mental model.
comment: Advancing Artificial Intelligence through Theory of Mind Workshop at AAAI 2025
☆ Geometric Retargeting: A Principled, Ultrafast Neural Hand Retargeting Algorithm
We introduce Geometric Retargeting (GeoRT), an ultrafast, and principled neural hand retargeting algorithm for teleoperation, developed as part of our recent Dexterity Gen (DexGen) system. GeoRT converts human finger keypoints to robot hand keypoints at 1KHz, achieving state-of-the-art speed and accuracy with significantly fewer hyperparameters. This high-speed capability enables flexible postprocessing, such as leveraging a foundational controller for action correction like DexGen. GeoRT is trained in an unsupervised manner, eliminating the need for manual annotation of hand pairs. The core of GeoRT lies in novel geometric objective functions that capture the essence of retargeting: preserving motion fidelity, ensuring configuration space (C-space) coverage, maintaining uniform response through high flatness, pinch correspondence and preventing self-collisions. This approach is free from intensive test-time optimization, offering a more scalable and practical solution for real-time hand retargeting.
comment: Project Website: https://zhaohengyin.github.io/geort
☆ Real-Time Structural Deflection Estimation in Hydraulically Actuated Systems Using 3D Flexible Multibody Simulation and DNNs SP
The precision, stability, and performance of lightweight high-strength steel structures in heavy machinery is affected by their highly nonlinear dynamics. This, in turn, makes control more difficult, simulation more computationally intensive, and achieving real-time autonomy, using standard approaches, impossible. Machine learning through data-driven, physics-informed and physics-inspired networks, however, promises more computationally efficient and accurate solutions to nonlinear dynamic problems. This study proposes a novel framework that has been developed to estimate real-time structural deflection in hydraulically actuated three-dimensional systems. It is based on SLIDE, a machine-learning-based method to estimate dynamic responses of mechanical systems subjected to forced excitations.~Further, an algorithm is introduced for the data acquisition from a hydraulically actuated system using randomized initial configurations and hydraulic pressures.~The new framework was tested on a hydraulically actuated flexible boom with various sensor combinations and lifting various payloads. The neural network was successfully trained in less time using standard parameters from PyTorch, ADAM optimizer, the various sensor inputs, and minimal output data. The SLIDE-trained neural network accelerated deflection estimation solutions by a factor of $10^7$ in reference to flexible multibody simulation batches and provided reasonable accuracy. These results support the studies goal of providing robust, real-time solutions for control, robotic manipulators, structural health monitoring, and automation problems.
comment: 20 pages and 30 figures, Preprint version of the article submitted to MSSP (Mechanical Systems and Signal Processing)
☆ PointVLA: Injecting the 3D World into Vision-Language-Action Models
Vision-Language-Action (VLA) models excel at robotic tasks by leveraging large-scale 2D vision-language pretraining, but their reliance on RGB images limits spatial reasoning critical for real-world interaction. Retraining these models with 3D data is computationally prohibitive, while discarding existing 2D datasets wastes valuable resources. To bridge this gap, we propose PointVLA, a framework that enhances pre-trained VLAs with point cloud inputs without requiring retraining. Our method freezes the vanilla action expert and injects 3D features via a lightweight modular block. To identify the most effective way of integrating point cloud representations, we conduct a skip-block analysis to pinpoint less useful blocks in the vanilla action expert, ensuring that 3D features are injected only into these blocks--minimizing disruption to pre-trained representations. Extensive experiments demonstrate that PointVLA outperforms state-of-the-art 2D imitation learning methods, such as OpenVLA, Diffusion Policy and DexVLA, across both simulated and real-world robotic tasks. Specifically, we highlight several key advantages of PointVLA enabled by point cloud integration: (1) Few-shot multi-tasking, where PointVLA successfully performs four different tasks using only 20 demonstrations each; (2) Real-vs-photo discrimination, where PointVLA distinguishes real objects from their images, leveraging 3D world knowledge to improve safety and reliability; (3) Height adaptability, Unlike conventional 2D imitation learning methods, PointVLA enables robots to adapt to objects at varying table height that unseen in train data. Furthermore, PointVLA achieves strong performance in long-horizon tasks, such as picking and packing objects from a moving conveyor belt, showcasing its ability to generalize across complex, dynamic environments.
☆ PIPE Planner: Pathwise Information Gain with Map Predictions for Indoor Robot Exploration
Autonomous exploration in unknown environments requires estimating the information gain of an action to guide planning decisions. While prior approaches often compute information gain at discrete waypoints, pathwise integration offers a more comprehensive estimation but is often computationally challenging or infeasible and prone to overestimation. In this work, we propose the Pathwise Information Gain with Map Prediction for Exploration (PIPE) planner, which integrates cumulative sensor coverage along planned trajectories while leveraging map prediction to mitigate overestimation. To enable efficient pathwise coverage computation, we introduce a method to efficiently calculate the expected observation mask along the planned path, significantly reducing computational overhead. We validate PIPE on real-world floorplan datasets, demonstrating its superior performance over state-of-the-art baselines. Our results highlight the benefits of integrating predictive mapping with pathwise information gain for efficient and informed exploration.
comment: 8 pages, 8 figures
☆ Blind-Wayfarer: A Minimalist, Probing-Driven Framework for Resilient Navigation in Perception-Degraded Environments
Navigating autonomous robots through dense forests and rugged terrains is especially daunting when exteroceptive sensors -- such as cameras and LiDAR sensors -- fail under occlusions, low-light conditions, or sensor noise. We present Blind-Wayfarer, a probing-driven navigation framework inspired by maze-solving algorithms that relies primarily on a compass to robustly traverse complex, unstructured environments. In 1,000 simulated forest experiments, Blind-Wayfarer achieved a 99.7% success rate. In real-world tests in two distinct scenarios -- with rover platforms of different sizes -- our approach successfully escaped forest entrapments in all 20 trials. Remarkably, our framework also enabled a robot to escape a dense woodland, traveling from 45 m inside the forest to a paved pathway at its edge. These findings highlight the potential of probing-based methods for reliable navigation in challenging perception-degraded field conditions. Videos and code are available on our website https://sites.google.com/view/blind-wayfarer
☆ Learning Physics-Based Full-Body Human Reaching and Grasping from Brief Walking References
Existing motion generation methods based on mocap data are often limited by data quality and coverage. In this work, we propose a framework that generates diverse, physically feasible full-body human reaching and grasping motions using only brief walking mocap data. Base on the observation that walking data captures valuable movement patterns transferable across tasks and, on the other hand, the advanced kinematic methods can generate diverse grasping poses, which can then be interpolated into motions to serve as task-specific guidance. Our approach incorporates an active data generation strategy to maximize the utility of the generated motions, along with a local feature alignment mechanism that transfers natural movement patterns from walking data to enhance both the success rate and naturalness of the synthesized motions. By combining the fidelity and stability of natural walking with the flexibility and generalizability of task-specific generated data, our method demonstrates strong performance and robust adaptability in diverse scenes and with unseen objects.
☆ QBIT: Quality-Aware Cloud-Based Benchmarking for Robotic Insertion Tasks
Insertion tasks are fundamental yet challenging for robots, particularly in autonomous operations, due to their continuous interaction with the environment. AI-based approaches appear to be up to the challenge, but in production they must not only achieve high success rates. They must also ensure insertion quality and reliability. To address this, we introduce QBIT, a quality-aware benchmarking framework that incorporates additional metrics such as force energy, force smoothness and completion time to provide a comprehensive assessment. To ensure statistical significance and minimize the sim-to-real gap, we randomize contact parameters in the MuJoCo simulator, account for perceptual uncertainty, and conduct large-scale experiments on a Kubernetes-based infrastructure. Our microservice-oriented architecture ensures extensibility, broad applicability, and improved reproducibility. To facilitate seamless transitions to physical robotic testing, we use ROS2 with containerization to reduce integration barriers. We evaluate QBIT using three insertion approaches: geometricbased, force-based, and learning-based, in both simulated and real-world environments. In simulation, we compare the accuracy of contact simulation using different mesh decomposition techniques. Our results demonstrate the effectiveness of QBIT in comparing different insertion approaches and accelerating the transition from laboratory to real-world applications. Code is available on GitHub.
comment: This work has been submitted to the IEEE for possible publication
☆ Augmented Carpentry: Computer Vision-assisted Framework for Manual Fabrication
Ordinary electric woodworking tools are integrated into a multiple-object-aware augmented framework to assist operators in fabrication tasks. This study presents an advanced evaluation of the developed open-source fabrication software Augmented Carpentry (AC), focusing on the technical challenges, potential bottlenecks, and precision of the proposed system, which is designed to recognize both objects and tools. In the workflow, computer vision tools and sensors implement inside-out tracking techniques for the retrofitting tools. This method enables operators to perform precise saw-cutting and drilling tasks using computer-generated feedback. In the design and manufacturing process pipeline, manual fabrication tasks are performed directly from the computer-aided design environment, as computer numerical control machines are widely used in the timber construction industry. Traditional non-digital methods employing execution drawings, markings, and jigs can now be replaced, and manual labor can be directly integrated into the digital value chain. First, this paper introduces the developed methodology and explains its devices and functional phases in detail. Second, the fabrication methodology is evaluated by experimentally scanning the produced one-to-one scale mock-up elements and comparing the discrepancies with their respective three-dimensional execution models. Finally, improvements and limitations in the tool-aware fabrication process, as well as the potential impact of AC in the digital timber fabrication landscape, are discussed.
☆ CATPlan: Loss-based Collision Prediction in End-to-End Autonomous Driving
In recent years, there has been increased interest in the design, training, and evaluation of end-to-end autonomous driving (AD) systems. One often overlooked aspect is the uncertainty of planned trajectories predicted by these systems, despite awareness of their own uncertainty being key to achieve safety and robustness. We propose to estimate this uncertainty by adapting loss prediction from the uncertainty quantification literature. To this end, we introduce a novel light-weight module, dubbed CATPlan, that is trained to decode motion and planning embeddings into estimates of the collision loss used to partially supervise end-to-end AD systems. During inference, these estimates are interpreted as collision risk. We evaluate CATPlan on the safety-critical, nerf-based, closed-loop benchmark NeuroNCAP and find that it manages to detect collisions with a $54.8\%$ relative improvement to average precision over a GMM-based baseline in which the predicted trajectory is compared to the forecasted trajectories of other road users. Our findings indicate that the addition of CATPlan can lead to safer end-to-end AD systems and hope that our work will spark increased interest in uncertainty quantification for such systems.
☆ Advances in Hybrid Modular Climbing Robots: Design Principles and Refinement Strategies
This paper explores the design strategies for hybrid pole- or trunk-climbing robots, focusing on methods to inform design decisions and assess metrics such as adaptability and performance. A wheeled-grasping hybrid robot with modular, tendon-driven grasping arms and a wheeled drive system mounted on a turret was developed to climb columns of varying diameters. Here, the key innovation is the underactuated arms that can be adjusted to different column sizes by adding or removing modular linkages, though the robot also features capabilities like self-locking (the ability of the robot to stay on the column by friction without power), autonomous grasping, and rotation around the column axis. Mathematical models describe conditions for self-locking and vertical climbing. Experimental results demonstrate the robot's efficacy in climbing and self-locking, validating the proposed models and highlighting the potential for fully automated solutions in industrial applications. This work provides a comprehensive framework for evaluating and designing hybrid climbing robots, contributing to advancements in autonomous robotics for environments where climbing tall structures is critical.
comment: 8 pages, 9 figures; This work has been submitted to the IEEE for possible publication
☆ PER-DPP Sampling Framework and Its Application in Path Planning
Autonomous navigation in intelligent mobile systems represents a core research focus within artificial intelligence-driven robotics. Contemporary path planning approaches face constraints in dynamic environmental responsiveness and multi-objective task scalability, limiting their capacity to address growing intelligent operation requirements. Decision-centric reinforcement learning frameworks, capitalizing on their unique strengths in adaptive environmental interaction and self-optimization, have gained prominence in advanced control system research. This investigation introduces methodological improvements to address sample homogeneity challenges in reinforcement learning experience replay mechanisms. By incorporating determinant point processes (DPP) for diversity assessment, we develop a dual-criteria sampling framework with adaptive selection protocols. This approach resolves representation bias in conventional prioritized experience replay (PER) systems while preserving algorithmic interoperability, offering improved decision optimization for dynamic operational scenarios. Key contributions comprise: Develop a hybrid sampling paradigm (PER-DPP) combining priority sequencing with diversity maximization.Based on this,create an integrated optimization scheme (PER-DPP-Elastic DQN) merging diversity-aware sampling with adaptive step-size regulation. Comparative simulations in 2D navigation scenarios demonstrate that the elastic step-size component temporarily delays initial convergence speed but synergistically enhances final-stage optimization with PER-DPP integration. The synthesized method generates navigation paths with optimized length efficiency and directional stability.
☆ Towards Safe Robot Foundation Models
Robot foundation models hold the potential for deployment across diverse environments, from industrial applications to household tasks. While current research focuses primarily on the policies' generalization capabilities across a variety of tasks, it fails to address safety, a critical requirement for deployment on real-world systems. In this paper, we introduce a safety layer designed to constrain the action space of any generalist policy appropriately. Our approach uses ATACOM, a safe reinforcement learning algorithm that creates a safe action space and, therefore, ensures safe state transitions. By extending ATACOM to generalist policies, our method facilitates their deployment in safety-critical scenarios without requiring any specific safety fine-tuning. We demonstrate the effectiveness of this safety layer in an air hockey environment, where it prevents a puck-hitting agent from colliding with its surroundings, a failure observed in generalist policies.
☆ AttentionSwarm: Reinforcement Learning with Attention Control Barier Function for Crazyflie Drones in Dynamic Environments
We introduce AttentionSwarm, a novel benchmark designed to evaluate safe and efficient swarm control across three challenging environments: a landing environment with obstacles, a competitive drone game setting, and a dynamic drone racing scenario. Central to our approach is the Attention Model Based Control Barrier Function (CBF) framework, which integrates attention mechanisms with safety-critical control theory to enable real-time collision avoidance and trajectory optimization. This framework dynamically prioritizes critical obstacles and agents in the swarms vicinity using attention weights, while CBFs formally guarantee safety by enforcing collision-free constraints. The safe attention net algorithm was developed and evaluated using a swarm of Crazyflie 2.1 micro quadrotors, which were tested indoors with the Vicon motion capture system to ensure precise localization and control. Experimental results show that our system achieves landing accuracy of 3.02 cm with a mean time of 23 s and collision-free landings in a dynamic landing environment, 100% and collision-free navigation in a drone game environment, and 95% and collision-free navigation for a dynamic multiagent drone racing environment, underscoring its effectiveness and robustness in real-world scenarios. This work offers a promising foundation for applications in dynamic environments where safety and fastness are paramount.
comment: 6 pages, 6 figures
☆ AffordDexGrasp: Open-set Language-guided Dexterous Grasp with Generalizable-Instructive Affordance
Language-guided robot dexterous generation enables robots to grasp and manipulate objects based on human commands. However, previous data-driven methods are hard to understand intention and execute grasping with unseen categories in the open set. In this work, we explore a new task, Open-set Language-guided Dexterous Grasp, and find that the main challenge is the huge gap between high-level human language semantics and low-level robot actions. To solve this problem, we propose an Affordance Dexterous Grasp (AffordDexGrasp) framework, with the insight of bridging the gap with a new generalizable-instructive affordance representation. This affordance can generalize to unseen categories by leveraging the object's local structure and category-agnostic semantic attributes, thereby effectively guiding dexterous grasp generation. Built upon the affordance, our framework introduces Affordacne Flow Matching (AFM) for affordance generation with language as input, and Grasp Flow Matching (GFM) for generating dexterous grasp with affordance as input. To evaluate our framework, we build an open-set table-top language-guided dexterous grasp dataset. Extensive experiments in the simulation and real worlds show that our framework surpasses all previous methods in open-set generalization.
comment: 8 pages, 4 figures
☆ Research and Design on Intelligent Recognition of Unordered Targets for Robots Based on Reinforcement Learning
In the field of robot target recognition research driven by artificial intelligence (AI), factors such as the disordered distribution of targets, the complexity of the environment, the massive scale of data, and noise interference have significantly restricted the improvement of target recognition accuracy. Against the backdrop of the continuous iteration and upgrading of current AI technologies, to meet the demand for accurate recognition of disordered targets by intelligent robots in complex and changeable scenarios, this study innovatively proposes an AI - based intelligent robot disordered target recognition method using reinforcement learning. This method processes the collected target images with the bilateral filtering algorithm, decomposing them into low - illumination images and reflection images. Subsequently, it adopts differentiated AI strategies, compressing the illumination images and enhancing the reflection images respectively, and then fuses the two parts of images to generate a new image. On this basis, this study deeply integrates deep learning, a core AI technology, with the reinforcement learning algorithm. The enhanced target images are input into a deep reinforcement learning model for training, ultimately enabling the AI - based intelligent robot to efficiently recognize disordered targets. Experimental results show that the proposed method can not only significantly improve the quality of target images but also enable the AI - based intelligent robot to complete the recognition task of disordered targets with higher efficiency and accuracy, demonstrating extremely high application value and broad development prospects in the field of AI robots.
☆ Temporal Triplane Transformers as Occupancy World Models
Recent years have seen significant advances in world models, which primarily focus on learning fine-grained correlations between an agent's motion trajectory and the resulting changes in its surrounding environment. However, existing methods often struggle to capture such fine-grained correlations and achieve real-time predictions. To address this, we propose a new 4D occupancy world model for autonomous driving, termed T$^3$Former. T$^3$Former begins by pre-training a compact triplane representation that efficiently compresses the 3D semantically occupied environment. Next, T$^3$Former extracts multi-scale temporal motion features from the historical triplane and employs an autoregressive approach to iteratively predict the next triplane changes. Finally, T$^3$Former combines the triplane changes with the previous ones to decode them into future occupancy results and ego-motion trajectories. Experimental results demonstrate the superiority of T$^3$Former, achieving 1.44$\times$ faster inference speed (26 FPS), while improving the mean IoU to 36.09 and reducing the mean absolute planning error to 1.0 meters.
Dynamic Path Navigation for Motion Agents with LLM Reasoning
Large Language Models (LLMs) have demonstrated strong generalizable reasoning and planning capabilities. However, their efficacies in spatial path planning and obstacle-free trajectory generation remain underexplored. Leveraging LLMs for navigation holds significant potential, given LLMs' ability to handle unseen scenarios, support user-agent interactions, and provide global control across complex systems, making them well-suited for agentic planning and humanoid motion generation. As one of the first studies in this domain, we explore the zero-shot navigation and path generation capabilities of LLMs by constructing a dataset and proposing an evaluation protocol. Specifically, we represent paths using anchor points connected by straight lines, enabling movement in various directions. This approach offers greater flexibility and practicality compared to previous methods while remaining simple and intuitive for LLMs. We demonstrate that, when tasks are well-structured in this manner, modern LLMs exhibit substantial planning proficiency in avoiding obstacles while autonomously refining navigation with the generated motion to reach the target. Further, this spatial reasoning ability of a single LLM motion agent interacting in a static environment can be seamlessly generalized in multi-motion agents coordination in dynamic environments. Unlike traditional approaches that rely on single-step planning or local policies, our training-free LLM-based method enables global, dynamic, closed-loop planning, and autonomously resolving collision issues.
☆ A Decapod Robot with Rotary Bellows-Enclosed Soft Transmissions
Soft crawling robots exhibit efficient locomotion across various terrains and demonstrate robustness to diverse environmental conditions. Here, we propose a valveless soft-legged robot that integrates a pair of rotary bellows-enclosed soft transmission systems (R-BESTS). The proposed R-BESTS can directly transmit the servo rotation into leg swing motion. A timing belt controls the pair of R-BESTS to maintain synchronous rotation in opposite phases, realizing alternating tripod gaits of walking and turning. We explored several designs to understand the role of a reinforcement skeleton in twisting the R-BESTS' input bellows units. The bending sequences of the robot legs are controlled through structural design for the output bellows units. Finally, we demonstrate untethered locomotion with the soft robotic decapod. Experimental results show that our robot can walk at 1.75 centimeters per second (0.07 body length per second) for 90 min, turn with a 15-centimeter (0.6 BL) radius, carry a payload of 200 g, and adapt to different terrains.
comment: 8 pages, 11 figures, accepted by RoboSoft 2025
☆ Human Machine Co-Adaptation Model and Its Convergence Analysis
The key to robot-assisted rehabilitation lies in the design of the human-machine interface, which must accommodate the needs of both patients and machines. Current interface designs primarily focus on machine control algorithms, often requiring patients to spend considerable time adapting. In this paper, we introduce a novel approach based on the Cooperative Adaptive Markov Decision Process (CAMDPs) model to address the fundamental aspects of the interactive learning process, offering theoretical insights and practical guidance. We establish sufficient conditions for the convergence of CAMDPs and ensure the uniqueness of Nash equilibrium points. Leveraging these conditions, we guarantee the system's convergence to a unique Nash equilibrium point. Furthermore, we explore scenarios with multiple Nash equilibrium points, devising strategies to adjust both Value Evaluation and Policy Improvement algorithms to enhance the likelihood of converging to the global minimal Nash equilibrium point. Through numerical experiments, we illustrate the effectiveness of the proposed conditions and algorithms, demonstrating their applicability and robustness in practical settings. The proposed conditions for convergence and the identification of a unique optimal Nash equilibrium contribute to the development of more effective adaptive systems for human users in robot-assisted rehabilitation.
☆ Self-Corrective Task Planning by Inverse Prompting with Large Language Models ICRA
In robot task planning, large language models (LLMs) have shown significant promise in generating complex and long-horizon action sequences. However, it is observed that LLMs often produce responses that sound plausible but are not accurate. To address these problems, existing methods typically employ predefined error sets or external knowledge sources, requiring human efforts and computation resources. Recently, self-correction approaches have emerged, where LLM generates and refines plans, identifying errors by itself. Despite their effectiveness, they are more prone to failures in correction due to insufficient reasoning. In this paper, we introduce InversePrompt, a novel self-corrective task planning approach that leverages inverse prompting to enhance interpretability. Our method incorporates reasoning steps to provide clear, interpretable feedback. It generates inverse actions corresponding to the initially generated actions and verifies whether these inverse actions can restore the system to its original state, explicitly validating the logical coherence of the generated plans. The results on benchmark datasets show an average 16.3% higher success rate over existing LLM-based task planning methods. Our approach offers clearer justifications for feedback in real-world environments, resulting in more successful task completion than existing self-correction approaches across various scenarios.
comment: 7 pages, 5 figures, IEEE International Conference on Robotics and Automation (ICRA) 2025
☆ Bioinspired Sensing of Undulatory Flow Fields Generated by Leg Kicks in Swimming
The artificial lateral line (ALL) is a bioinspired flow sensing system for underwater robots, comprising of distributed flow sensors. The ALL has been successfully applied to detect the undulatory flow fields generated by body undulation and tail-flapping of bioinspired robotic fish. However, its feasibility and performance in sensing the undulatory flow fields produced by human leg kicks during swimming has not been systematically tested and studied. This paper presents a novel sensing framework to investigate the undulatory flow field generated by swimmer's leg kicks, leveraging bioinspired ALL sensing. To evaluate the feasibility of using the ALL system for sensing the undulatory flow fields generated by swimmer leg kicks, this paper designs an experimental platform integrating an ALL system and a lab-fabricated human leg model. To enhance the accuracy of flow sensing, this paper proposes a feature extraction method that dynamically fuses time-domain and time-frequency characteristics. Specifically, time-domain features are extracted using one-dimensional convolutional neural networks and bidirectional long short-term memory networks (1DCNN-BiLSTM), while time-frequency features are extracted using short-term Fourier transform and two-dimensional convolutional neural networks (STFT-2DCNN). These features are then dynamically fused based on attention mechanisms to achieve accurate sensing of the undulatory flow field. Furthermore, extensive experiments are conducted to test various scenarios inspired by human swimming, such as leg kick pattern recognition and kicking leg localization, achieving satisfactory results.
comment: 12 pages, 13 figures
Multi-Robot System for Cooperative Exploration in Unknown Environments: A Survey
With the advancement of multi-robot technology, cooperative exploration tasks have garnered increasing attention. This paper presents a comprehensive review of multi-robot cooperative exploration systems. First, we review the evolution of robotic exploration and introduce a modular research framework tailored for multi-robot cooperative exploration. Based on this framework, we systematically categorize and summarize key system components. As a foundational module for multi-robot exploration, the localization and mapping module is primarily introduced by focusing on global and relative pose estimation, as well as multi-robot map merging techniques. The cooperative motion module is further divided into learning-based approaches and multi-stage planning, with the latter encompassing target generation, task allocation, and motion planning strategies. Given the communication constraints of real-world environments, we also analyze the communication module, emphasizing how robots exchange information within local communication ranges and under limited transmission capabilities. Finally, we discuss the challenges and future research directions for multi-robot cooperative exploration in light of real-world trends. This review aims to serve as a valuable reference for researchers and practitioners in the field.
☆ A High Efficient and Scalable Obstacle-Avoiding VLSI Global Routing Flow
Routing is a crucial step in the VLSI design flow. With the advancement of manufacturing technologies, more constraints have emerged in design rules, particularly regarding obstacles during routing, leading to increased routing complexity. Unfortunately, many global routers struggle to efficiently generate obstacle-free solutions due to the lack of scalable obstacle-avoiding tree generation methods and the capability of handling modern designs with complex obstacles and nets. In this work, we propose an efficient obstacle-aware global routing flow for VLSI designs with obstacles. The flow includes a rule-based obstacle-avoiding rectilinear Steiner minimal tree (OARSMT) algorithm during the tree generation phase. This algorithm is both scalable and fast to provide tree topologies avoiding obstacles in the early stage globally. With its guidance, OARSMT-guided and obstacle-aware sparse maze routing are proposed in the later stages to minimize obstacle violations further and reduce overflow costs. Compared to advanced methods on the benchmark with obstacles, our approach successfully eliminates obstacle violations, and reduces wirelength and overflow cost, while sacrificing only a limited number of via counts and runtime overhead.
comment: Currently submitting to a journal
☆ WHERE-Bot: a Wheel-less Helical-ring Everting Robot Capable of Omnidirectional Locomotion
Compared to conventional wheeled transportation systems designed for flat surfaces, soft robots exhibit exceptional adaptability to various terrains, enabling stable movement in complex environments. However, due to the risk of collision with obstacles and barriers, most soft robots rely on sensors for navigation in unstructured environments with uncertain boundaries. In this work, we present the WHERE-Bot, a wheel-less everting soft robot capable of omnidirectional locomotion. Our WHERE-Bot can navigate through unstructured environments by leveraging its structural and motion advantages rather than relying on sensors for boundary detection. By configuring a spring toy ``Slinky'' into a loop shape, the WHERE-Bot performs multiple rotational motions: spiral-rotating along the hub circumference, self-rotating around the hub's center, and orbiting around a certain point. The robot's trajectories can be reprogrammed by actively altering its mass distribution. The WHERE-Bot shows significant potential for boundary exploration in unstructured environments.
comment: The paper has been accepted for publication at 2025 IEEE 8th International Conference on Soft Robotics
☆ Learning and planning for optimal synergistic human-robot coordination in manufacturing contexts
Collaborative robotics cells leverage heterogeneous agents to provide agile production solutions. Effective coordination is essential to prevent inefficiencies and risks for human operators working alongside robots. This paper proposes a human-aware task allocation and scheduling model based on Mixed Integer Nonlinear Programming to optimize efficiency and safety starting from task planning stages. The approach exploits synergies that encode the coupling effects between pairs of tasks executed in parallel by the agents, arising from the safety constraints imposed on robot agents. These terms are learned from previous executions using a Bayesian estimation; the inference of the posterior probability distribution of the synergy coefficients is performed using the Markov Chain Monte Carlo method. The synergy enhances task planning by adapting the nominal duration of the plan according to the effect of the operator's presence. Simulations and experimental results demonstrate that the proposed method produces improved human-aware task plans, reducing unuseful interference between agents, increasing human-robot distance, and achieving up to an 18\% reduction in process execution time.
comment: Accepted for publication in Robotics and Computer-Integrated Manufacturing (2025)
CoT-Drive: Efficient Motion Forecasting for Autonomous Driving with LLMs and Chain-of-Thought Prompting
Accurate motion forecasting is crucial for safe autonomous driving (AD). This study proposes CoT-Drive, a novel approach that enhances motion forecasting by leveraging large language models (LLMs) and a chain-of-thought (CoT) prompting method. We introduce a teacher-student knowledge distillation strategy to effectively transfer LLMs' advanced scene understanding capabilities to lightweight language models (LMs), ensuring that CoT-Drive operates in real-time on edge devices while maintaining comprehensive scene understanding and generalization capabilities. By leveraging CoT prompting techniques for LLMs without additional training, CoT-Drive generates semantic annotations that significantly improve the understanding of complex traffic environments, thereby boosting the accuracy and robustness of predictions. Additionally, we present two new scene description datasets, Highway-Text and Urban-Text, designed for fine-tuning lightweight LMs to generate context-specific semantic annotations. Comprehensive evaluations of five real-world datasets demonstrate that CoT-Drive outperforms existing models, highlighting its effectiveness and efficiency in handling complex traffic scenarios. Overall, this study is the first to consider the practical application of LLMs in this field. It pioneers the training and use of a lightweight LLM surrogate for motion forecasting, setting a new benchmark and showcasing the potential of integrating LLMs into AD systems.
☆ Discrete Gaussian Process Representations for Optimising UAV-based Precision Weed Mapping
Accurate agricultural weed mapping using UAVs is crucial for precision farming applications. Traditional methods rely on orthomosaic stitching from rigid flight paths, which is computationally intensive and time-consuming. Gaussian Process (GP)-based mapping offers continuous modelling of the underlying variable (i.e. weed distribution) but requires discretisation for practical tasks like path planning or visualisation. Current implementations often default to quadtrees or gridmaps without systematically evaluating alternatives. This study compares five discretisation methods: quadtrees, wedgelets, top-down binary space partition (BSP) trees using least square error (LSE), bottom-up BSP trees using graph merging, and variable-resolution hexagonal grids. Evaluations on real-world weed distributions measure visual similarity, mean squared error (MSE), and computational efficiency. Results show quadtrees perform best overall, but alternatives excel in specific scenarios: hexagons or BSP LSE suit fields with large, dominant weed patches, while quadtrees are optimal for dispersed small-scale distributions. These findings highlight the need to tailor discretisation approaches to weed distribution patterns (patch size, density, coverage) rather than relying on default methods. By choosing representations based on the underlying distribution, we can improve mapping accuracy and efficiency for precision agriculture applications.
☆ Reactive and Safety-Aware Path Replanning for Collaborative Applications
This paper addresses motion replanning in human-robot collaborative scenarios, emphasizing reactivity and safety-compliant efficiency. While existing human-aware motion planners are effective in structured environments, they often struggle with unpredictable human behavior, leading to safety measures that limit robot performance and throughput. In this study, we combine reactive path replanning and a safety-aware cost function, allowing the robot to adjust its path to changes in the human state. This solution reduces the execution time and the need for trajectory slowdowns without sacrificing safety. Simulations and real-world experiments show the method's effectiveness compared to standard human-robot cooperation approaches, with efficiency enhancements of up to 60\%.
comment: Accepted for publication in IEEE Transactions on Automation Science and Engineering (2025)
Temporal Overlapping Prediction: A Self-supervised Pre-training Method for LiDAR Moving Object Segmentation
Moving object segmentation (MOS) on LiDAR point clouds is crucial for autonomous systems like self-driving vehicles. Previous supervised approaches rely heavily on costly manual annotations, while LiDAR sequences naturally capture temporal motion cues that can be leveraged for self-supervised learning. In this paper, we propose \textbf{T}emporal \textbf{O}verlapping \textbf{P}rediction (\textbf{TOP}), a self-supervised pre-training method that alleviate the labeling burden for MOS. \textbf{TOP} explores the temporal overlapping points that commonly observed by current and adjacent scans, and learns spatiotemporal representations by predicting the occupancy states of temporal overlapping points. Moreover, we utilize current occupancy reconstruction as an auxiliary pre-training objective, which enhances the current structural awareness of the model. We conduct extensive experiments and observe that the conventional metric Intersection-over-Union (IoU) shows strong bias to objects with more scanned points, which might neglect small or distant objects. To compensate for this bias, we introduce an additional metric called $\text{mIoU}_{\text{obj}}$ to evaluate object-level performance. Experiments on nuScenes and SemanticKITTI show that \textbf{TOP} outperforms both supervised training-from-scratch baseline and other self-supervised pre-training baselines by up to 28.77\% relative improvement, demonstrating strong transferability across LiDAR setups and generalization to other tasks. Code and pre-trained models will be publicly available upon publication.
VidBot: Learning Generalizable 3D Actions from In-the-Wild 2D Human Videos for Zero-Shot Robotic Manipulation CVPR 2025
Future robots are envisioned as versatile systems capable of performing a variety of household tasks. The big question remains, how can we bridge the embodiment gap while minimizing physical robot learning, which fundamentally does not scale well. We argue that learning from in-the-wild human videos offers a promising solution for robotic manipulation tasks, as vast amounts of relevant data already exist on the internet. In this work, we present VidBot, a framework enabling zero-shot robotic manipulation using learned 3D affordance from in-the-wild monocular RGB-only human videos. VidBot leverages a pipeline to extract explicit representations from them, namely 3D hand trajectories from videos, combining a depth foundation model with structure-from-motion techniques to reconstruct temporally consistent, metric-scale 3D affordance representations agnostic to embodiments. We introduce a coarse-to-fine affordance learning model that first identifies coarse actions from the pixel space and then generates fine-grained interaction trajectories with a diffusion model, conditioned on coarse actions and guided by test-time constraints for context-aware interaction planning, enabling substantial generalization to novel scenes and embodiments. Extensive experiments demonstrate the efficacy of VidBot, which significantly outperforms counterparts across 13 manipulation tasks in zero-shot settings and can be seamlessly deployed across robot systems in real-world environments. VidBot paves the way for leveraging everyday human videos to make robot learning more scalable.
comment: Accepted to CVPR 2025
☆ Performance-driven Constrained Optimal Auto-Tuner for MPC
A key challenge in tuning Model Predictive Control (MPC) cost function parameters is to ensure that the system performance stays consistently above a certain threshold. To address this challenge, we propose a novel method, COAT-MPC, Constrained Optimal Auto-Tuner for MPC. With every tuning iteration, COAT-MPC gathers performance data and learns by updating its posterior belief. It explores the tuning parameters' domain towards optimistic parameters in a goal-directed fashion, which is key to its sample efficiency. We theoretically analyze COAT-MPC, showing that it satisfies performance constraints with arbitrarily high probability at all times and provably converges to the optimum performance within finite time. Through comprehensive simulations and comparative analyses with a hardware platform, we demonstrate the effectiveness of COAT-MPC in comparison to classical Bayesian Optimization (BO) and other state-of-the-art methods. When applied to autonomous racing, our approach outperforms baselines in terms of constraint violations and cumulative regret over time.
comment: 8 pages
☆ iManip: Skill-Incremental Learning for Robotic Manipulation
The development of a generalist agent with adaptive multiple manipulation skills has been a long-standing goal in the robotics community. In this paper, we explore a crucial task, skill-incremental learning, in robotic manipulation, which is to endow the robots with the ability to learn new manipulation skills based on the previous learned knowledge without re-training. First, we build a skill-incremental environment based on the RLBench benchmark, and explore how traditional incremental methods perform in this setting. We find that they suffer from severe catastrophic forgetting due to the previous methods on classification overlooking the characteristics of temporality and action complexity in robotic manipulation tasks. Towards this end, we propose an incremental Manip}ulation framework, termed iManip, to mitigate the above issues. We firstly design a temporal replay strategy to maintain the integrity of old skills when learning new skill. Moreover, we propose the extendable PerceiverIO, consisting of an action prompt with extendable weight to adapt to new action primitives in new skill. Extensive experiments show that our framework performs well in Skill-Incremental Learning. Codes of the skill-incremental environment with our framework will be open-source.
☆ RS2V-L: Vehicle-Mounted LiDAR Data Generation from Roadside Sensor Observations
End-to-end autonomous driving solutions, which process multi-modal sensory data to directly generate refined control commands, have become a dominant paradigm in autonomous driving research. However, these approaches predominantly depend on single-vehicle data collection for model training and optimization, resulting in significant challenges such as high data acquisition and annotation costs, the scarcity of critical driving scenarios, and fragmented datasets that impede model generalization. To mitigate these limitations, we introduce RS2V-L, a novel framework for reconstructing and synthesizing vehicle-mounted LiDAR data from roadside sensor observations. Specifically, our method transforms roadside LiDAR point clouds into the vehicle-mounted LiDAR coordinate system by leveraging the target vehicle's relative pose. Subsequently, high-fidelity vehicle-mounted LiDAR data is synthesized through virtual LiDAR modeling, point cloud classification, and resampling techniques. To the best of our knowledge, this is the first approach to reconstruct vehicle-mounted LiDAR data from roadside sensor inputs. Extensive experimental evaluations demonstrate that incorporating the generated data into model training-complementing the KITTI dataset-enhances 3D object detection accuracy by over \text{30\%} while improving the efficiency of end-to-end autonomous driving data generation by more than an order of magnitude. These findings strongly validate the effectiveness of the proposed method and underscore its potential in reducing dependence on costly vehicle-mounted data collection while improving the robustness of autonomous driving models.
comment: 7 pages, 4 figures
☆ VMTS: Vision-Assisted Teacher-Student Reinforcement Learning for Multi-Terrain Locomotion in Bipedal Robots
Bipedal robots, due to their anthropomorphic design, offer substantial potential across various applications, yet their control is hindered by the complexity of their structure. Currently, most research focuses on proprioception-based methods, which lack the capability to overcome complex terrain. While visual perception is vital for operation in human-centric environments, its integration complicates control further. Recent reinforcement learning (RL) approaches have shown promise in enhancing legged robot locomotion, particularly with proprioception-based methods. However, terrain adaptability, especially for bipedal robots, remains a significant challenge, with most research focusing on flat-terrain scenarios. In this paper, we introduce a novel mixture of experts teacher-student network RL strategy, which enhances the performance of teacher-student policies based on visual inputs through a simple yet effective approach. Our method combines terrain selection strategies with the teacher policy, resulting in superior performance compared to traditional models. Additionally, we introduce an alignment loss between the teacher and student networks, rather than enforcing strict similarity, to improve the student's ability to navigate diverse terrains. We validate our approach experimentally on the Limx Dynamic P1 bipedal robot, demonstrating its feasibility and robustness across multiple terrain types.
☆ Combating Partial Perception Deficit in Autonomous Driving with Multimodal LLM Commonsense
Partial perception deficits can compromise autonomous vehicle safety by disrupting environmental understanding. Current protocols typically respond with immediate stops or minimal-risk maneuvers, worsening traffic flow and lacking flexibility for rare driving scenarios. In this paper, we propose LLM-RCO, a framework leveraging large language models to integrate human-like driving commonsense into autonomous systems facing perception deficits. LLM-RCO features four key modules: hazard inference, short-term motion planner, action condition verifier, and safety constraint generator. These modules interact with the dynamic driving environment, enabling proactive and context-aware control actions to override the original control policy of autonomous agents. To improve safety in such challenging conditions, we construct DriveLM-Deficit, a dataset of 53,895 video clips featuring deficits of safety-critical objects, complete with annotations for LLM-based hazard inference and motion planning fine-tuning. Extensive experiments in adverse driving conditions with the CARLA simulator demonstrate that systems equipped with LLM-RCO significantly improve driving performance, highlighting its potential for enhancing autonomous driving resilience against adverse perception deficits. Our results also show that LLMs fine-tuned with DriveLM-Deficit can enable more proactive movements instead of conservative stops in the context of perception deficits.
☆ How to Train Your Robots? The Impact of Demonstration Modality on Imitation Learning ICRA
Imitation learning is a promising approach for learning robot policies with user-provided data. The way demonstrations are provided, i.e., demonstration modality, influences the quality of the data. While existing research shows that kinesthetic teaching (physically guiding the robot) is preferred by users for the intuitiveness and ease of use, the majority of existing manipulation datasets were collected through teleoperation via a VR controller or spacemouse. In this work, we investigate how different demonstration modalities impact downstream learning performance as well as user experience. Specifically, we compare low-cost demonstration modalities including kinesthetic teaching, teleoperation with a VR controller, and teleoperation with a spacemouse controller. We experiment with three table-top manipulation tasks with different motion constraints. We evaluate and compare imitation learning performance using data from different demonstration modalities, and collected subjective feedback on user experience. Our results show that kinesthetic teaching is rated the most intuitive for controlling the robot and provides cleanest data for best downstream learning performance. However, it is not preferred as the way for large-scale data collection due to the physical load. Based on such insight, we propose a simple data collection scheme that relies on a small number of kinesthetic demonstrations mixed with data collected through teleoperation to achieve the best overall learning performance while maintaining low data-collection effort.
comment: 8 pages, ICRA
☆ Learning Nash Equilibrial Hamiltonian for Two-Player Collision-Avoiding Interactions
We consider the problem of learning Nash equilibrial policies for two-player risk-sensitive collision-avoiding interactions. Solving the Hamilton-Jacobi-Isaacs equations of such general-sum differential games in real time is an open challenge due to the discontinuity of equilibrium values on the state space. A common solution is to learn a neural network that approximates the equilibrium Hamiltonian for given system states and actions. The learning, however, is usually supervised and requires a large amount of sample equilibrium policies from different initial states in order to mitigate the risks of collisions. This paper claims two contributions towards more data-efficient learning of equilibrium policies: First, instead of computing Hamiltonian through a value network, we show that the equilibrium co-states have simple structures when collision avoidance dominates the agents' loss functions and system dynamics is linear, and therefore are more data-efficient to learn. Second, we introduce theory-driven active learning to guide data sampling, where the acquisition function measures the compliance of the predicted co-states to Pontryagin's Maximum Principle. On an uncontrolled intersection case, the proposed method leads to more generalizable approximation of the equilibrium policies, and in turn, lower collision probabilities, than the state-of-the-art under the same data acquisition budget.
comment: Accepted by 2025 ACC
☆ HELM: Human-Preferred Exploration with Language Models IROS'25
In autonomous exploration tasks, robots are required to explore and map unknown environments while efficiently planning in dynamic and uncertain conditions. Given the significant variability of environments, human operators often have specific preference requirements for exploration, such as prioritizing certain areas or optimizing for different aspects of efficiency. However, existing methods struggle to accommodate these human preferences adaptively, often requiring extensive parameter tuning or network retraining. With the recent advancements in Large Language Models (LLMs), which have been widely applied to text-based planning and complex reasoning, their potential for enhancing autonomous exploration is becoming increasingly promising. Motivated by this, we propose an LLM-based human-preferred exploration framework that seamlessly integrates a mobile robot system with LLMs. By leveraging the reasoning and adaptability of LLMs, our approach enables intuitive and flexible preference control through natural language while maintaining a task success rate comparable to state-of-the-art traditional methods. Experimental results demonstrate that our framework effectively bridges the gap between human intent and policy preference in autonomous exploration, offering a more user-friendly and adaptable solution for real-world robotic applications.
comment: submitted to IROS'25
Physics-informed Neural Network Predictive Control for Quadruped Locomotion
This study introduces a unified control framework that addresses the challenge of precise quadruped locomotion with unknown payloads, named as online payload identification-based physics-informed neural network predictive control (OPI-PINNPC). By integrating online payload identification with physics-informed neural networks (PINNs), our approach embeds identified mass parameters directly into the neural network's loss function, ensuring physical consistency while adapting to changing load conditions. The physics-constrained neural representation serves as an efficient surrogate model within our nonlinear model predictive controller, enabling real-time optimization despite the complex dynamics of legged locomotion. Experimental validation on our quadruped robot platform demonstrates 35% improvement in position and orientation tracking accuracy across diverse payload conditions (25-100 kg), with substantially faster convergence compared to previous adaptive control methods. Our framework provides a adaptive solution for maintaining locomotion performance under variable payload conditions without sacrificing computational efficiency.
☆ Parametric Value Approximation for General-sum Differential Games with State Constraints IROS 2025
General-sum differential games can approximate values solved by Hamilton-Jacobi-Isaacs (HJI) equations for efficient inference when information is incomplete. However, solving such games through conventional methods encounters the curse of dimensionality (CoD). Physics-informed neural networks (PINNs) offer a scalable approach to alleviate the CoD and approximate values, but there exist convergence issues for value approximations through vanilla PINNs when state constraints lead to values with large Lipschitz constants, particularly in safety-critical applications. In addition to addressing CoD, it is necessary to learn a generalizable value across a parametric space of games, rather than training multiple ones for each specific player-type configuration. To overcome these challenges, we propose a Hybrid Neural Operator (HNO), which is an operator that can map parameter functions for games to value functions. HNO leverages informative supervised data and samples PDE-driven data across entire spatial-temporal space for model refinement. We evaluate HNO on 9D and 13D scenarios with nonlinear dynamics and state constraints, comparing it against a Supervised Neural Operator (a variant of DeepONet). Under the same computational budget and training data, HNO outperforms SNO for safety performance. This work provides a step toward scalable and generalizable value function approximation, enabling real-time inference for complex human-robot or multi-agent interactions.
comment: Submitted to IROS 2025
☆ Griffin: Aerial-Ground Cooperative Detection and Tracking Dataset and Benchmark IROS 2025
Despite significant advancements, autonomous driving systems continue to struggle with occluded objects and long-range detection due to the inherent limitations of single-perspective sensing. Aerial-ground cooperation offers a promising solution by integrating UAVs' aerial views with ground vehicles' local observations. However, progress in this emerging field has been hindered by the absence of public datasets and standardized evaluation benchmarks. To address this gap, this paper presents a comprehensive solution for aerial-ground cooperative 3D perception through three key contributions: (1) Griffin, a large-scale multi-modal dataset featuring over 200 dynamic scenes (30k+ frames) with varied UAV altitudes (20-60m), diverse weather conditions, and occlusion-aware 3D annotations, enhanced by CARLA-AirSim co-simulation for realistic UAV dynamics; (2) A unified benchmarking framework for aerial-ground cooperative detection and tracking tasks, including protocols for evaluating communication efficiency, latency tolerance, and altitude adaptability; (3) AGILE, an instance-level intermediate fusion baseline that dynamically aligns cross-view features through query-based interaction, achieving an advantageous balance between communication overhead and perception accuracy. Extensive experiments prove the effectiveness of aerial-ground cooperative perception and demonstrate the direction of further research. The dataset and codes are available at https://github.com/wang-jh18-SVM/Griffin.
comment: 8 pages, 7 figures. This work has been submitted to IROS 2025 for possible publication
☆ Lightweight Multimodal Artificial Intelligence Framework for Maritime Multi-Scene Recognition
Maritime Multi-Scene Recognition is crucial for enhancing the capabilities of intelligent marine robotics, particularly in applications such as marine conservation, environmental monitoring, and disaster response. However, this task presents significant challenges due to environmental interference, where marine conditions degrade image quality, and the complexity of maritime scenes, which requires deeper reasoning for accurate recognition. Pure vision models alone are insufficient to address these issues. To overcome these limitations, we propose a novel multimodal Artificial Intelligence (AI) framework that integrates image data, textual descriptions and classification vectors generated by a Multimodal Large Language Model (MLLM), to provide richer semantic understanding and improve recognition accuracy. Our framework employs an efficient multimodal fusion mechanism to further enhance model robustness and adaptability in complex maritime environments. Experimental results show that our model achieves 98$\%$ accuracy, surpassing previous SOTA models by 3.5$\%$. To optimize deployment on resource-constrained platforms, we adopt activation-aware weight quantization (AWQ) as a lightweight technique, reducing the model size to 68.75MB with only a 0.5$\%$ accuracy drop while significantly lowering computational overhead. This work provides a high-performance solution for real-time maritime scene recognition, enabling Autonomous Surface Vehicles (ASVs) to support environmental monitoring and disaster response in resource-limited settings.
comment: 19 pages, 4 figures, submitted to Engineering Applications of Artificial Intelligence
☆ A Data-Centric Revisit of Pre-Trained Vision Models for Robot Learning CVPR 2025
Pre-trained vision models (PVMs) are fundamental to modern robotics, yet their optimal configuration remains unclear. Through systematic evaluation, we find that while DINO and iBOT outperform MAE across visuomotor control and perception tasks, they struggle when trained on non-(single-)object-centric (NOC) data--a limitation strongly correlated with their diminished ability to learn object-centric representations. This investigation indicates that the ability to form object-centric representations from the non-object-centric robotics dataset is the key to success for PVMs. Motivated by this discovery, we designed SlotMIM, a method that induces object-centric representations by introducing a semantic bottleneck to reduce the number of prototypes to encourage the emergence of objectness as well as cross-view consistency regularization for encouraging multiview invariance. Our experiments encompass pre-training on object-centric, scene-centric, web-crawled, and ego-centric data. Across all settings, our approach learns transferrable representations and achieves significant improvements over prior work in image recognition, scene understanding, and robot learning evaluations. When scaled up with million-scale datasets, our method also demonstrates superior data efficiency and scalability. Our code and models are publicly available at https://github.com/CVMI-Lab/SlotMIM.
comment: Accepted by CVPR 2025
☆ MERLION: Marine ExploRation with Language guIded Online iNformative Visual Sampling and Enhancement ICRA 2025
Autonomous and targeted underwater visual monitoring and exploration using Autonomous Underwater Vehicles (AUVs) can be a challenging task due to both online and offline constraints. The online constraints comprise limited onboard storage capacity and communication bandwidth to the surface, whereas the offline constraints entail the time and effort required for the selection of desired key frames from the video data. An example use case of targeted underwater visual monitoring is finding the most interesting visual frames of fish in a long sequence of an AUV's visual experience. This challenge of targeted informative sampling is further aggravated in murky waters with poor visibility. In this paper, we present MERLION, a novel framework that provides semantically aligned and visually enhanced summaries for murky underwater marine environment monitoring and exploration. Specifically, our framework integrates (a) an image-text model for semantically aligning the visual samples to the users' needs, (b) an image enhancement model for murky water visual data and (c) an informative sampler for summarizing the monitoring experience. We validate our proposed MERLION framework on real-world data with user studies and present qualitative and quantitative results using our evaluation metric and show improved results compared to the state-of-the-art approaches. We have open-sourced the code for MERLION at the following link https://github.com/MARVL-Lab/MERLION.git.
comment: In proceedings of IEEE ICRA 2025
☆ Handle Object Navigation as Weighted Traveling Repairman Problem
Zero-Shot Object Navigation (ZSON) requires agents to navigate to objects specified via open-ended natural language without predefined categories or prior environmental knowledge. While recent methods leverage foundation models or multi-modal maps, they often rely on 2D representations and greedy strategies or require additional training or modules with high computation load, limiting performance in complex environments and real applications. We propose WTRP-Searcher, a novel framework that formulates ZSON as a Weighted Traveling Repairman Problem (WTRP), minimizing the weighted waiting time of viewpoints. Using a Vision-Language Model (VLM), we score viewpoints based on object-description similarity, projected onto a 2D map with depth information. An open-vocabulary detector identifies targets, dynamically updating goals, while a 3D embedding feature map enhances spatial awareness and environmental recall. WTRP-Searcher outperforms existing methods, offering efficient global planning and improved performance in complex ZSON tasks. Code and more demos will be avaliable on https://github.com/lrm20011/WTRP_Searcher.
☆ Accelerated Quasi-Static FEM for Real-Time Modeling of Continuum Robots with Multiple Contacts and Large Deformation ICRA2025
Continuum robots offer high flexibility and multiple degrees of freedom, making them ideal for navigating narrow lumens. However, accurately modeling their behavior under large deformations and frequent environmental contacts remains challenging. Current methods for solving the deformation of these robots, such as the Model Order Reduction and Gauss-Seidel (GS) methods, suffer from significant drawbacks. They experience reduced computational speed as the number of contact points increases and struggle to balance speed with model accuracy. To overcome these limitations, we introduce a novel finite element method (FEM) named Acc-FEM. Acc-FEM employs a large deformation quasi-static finite element model and integrates an accelerated solver scheme to handle multi-contact simulations efficiently. Additionally, it utilizes parallel computing with Graphics Processing Units (GPU) for real-time updates of the finite element models and collision detection. Extensive numerical experiments demonstrate that Acc-FEM significantly improves computational efficiency in modeling continuum robots with multiple contacts while achieving satisfactory accuracy, addressing the deficiencies of existing methods.
comment: Accepted by ICRA2025
☆ SafePlan: Leveraging Formal Logic and Chain-of-Thought Reasoning for Enhanced Safety in LLM-based Robotic Task Planning
Robotics researchers increasingly leverage large language models (LLM) in robotics systems, using them as interfaces to receive task commands, generate task plans, form team coalitions, and allocate tasks among multi-robot and human agents. However, despite their benefits, the growing adoption of LLM in robotics has raised several safety concerns, particularly regarding executing malicious or unsafe natural language prompts. In addition, ensuring that task plans, team formation, and task allocation outputs from LLMs are adequately examined, refined, or rejected is crucial for maintaining system integrity. In this paper, we introduce SafePlan, a multi-component framework that combines formal logic and chain-of-thought reasoners for enhancing the safety of LLM-based robotics systems. Using the components of SafePlan, including Prompt Sanity COT Reasoner and Invariant, Precondition, and Postcondition COT reasoners, we examined the safety of natural language task prompts, task plans, and task allocation outputs generated by LLM-based robotic systems as means of investigating and enhancing system safety profile. Our results show that SafePlan outperforms baseline models by leading to 90.5% reduction in harmful task prompt acceptance while still maintaining reasonable acceptance of safe tasks.
AKF-LIO: LiDAR-Inertial Odometry with Gaussian Map by Adaptive Kalman Filter IROS 2025
Existing LiDAR-Inertial Odometry (LIO) systems typically use sensor-specific or environment-dependent measurement covariances during state estimation, leading to laborious parameter tuning and suboptimal performance in challenging conditions (e.g., sensor degeneracy and noisy observations). Therefore, we propose an Adaptive Kalman Filter (AKF) framework that dynamically estimates time-varying noise covariances of LiDAR and Inertial Measurement Unit (IMU) measurements, enabling context-aware confidence weighting between sensors. During LiDAR degeneracy, the system prioritizes IMU data while suppressing contributions from unreliable inputs like moving objects or noisy point clouds. Furthermore, a compact Gaussian-based map representation is introduced to model environmental planarity and spatial noise. A correlated registration strategy ensures accurate plane normal estimation via pseudo-merge, even in unstructured environments like forests. Extensive experiments validate the robustness of the proposed system across diverse environments, including dynamic scenes and geometrically degraded scenarios. Our method achieves reliable localization results across all MARS-LVIG sequences and ranks 8th on the KITTI Odometry Benchmark. The code will be released at https://github.com/xpxie/AKF-LIO.git.
comment: Submitted to IROS 2025 Conference, https://github.com/xpxie/AKF-LIO.git
☆ AirSwarm: Enabling Cost-Effective Multi-UAV Research with COTS drones
Traditional unmanned aerial vehicle (UAV) swarm missions rely heavily on expensive custom-made drones with onboard perception or external positioning systems, limiting their widespread adoption in research and education. To address this issue, we propose AirSwarm. AirSwarm democratizes multi-drone coordination using low-cost commercially available drones such as Tello or Anafi, enabling affordable swarm aerial robotics research and education. Key innovations include a hierarchical control architecture for reliable multi-UAV coordination, an infrastructure-free visual SLAM system for precise localization without external motion capture, and a ROS-based software framework for simplified swarm development. Experiments demonstrate cm-level tracking accuracy, low-latency control, communication failure resistance, formation flight, and trajectory tracking. By reducing financial and technical barriers, AirSwarm makes multi-robot education and research more accessible. The complete instructions and open source code will be available at
☆ Collective Behavior Clone with Visual Attention via Neural Interaction Graph Prediction
In this paper, we propose a framework, collective behavioral cloning (CBC), to learn the underlying interaction mechanism and control policy of a swarm system. Given the trajectory data of a swarm system, we propose a graph variational autoencoder (GVAE) to learn the local interaction graph. Based on the interaction graph and swarm trajectory, we use behavioral cloning to learn the control policy of the swarm system. To demonstrate the practicality of CBC, we deploy it on a real-world decentralized vision-based robot swarm system. A visual attention network is trained based on the learned interaction graph for online neighbor selection. Experimental results show that our method outperforms previous approaches in predicting both the interaction graph and swarm actions with higher accuracy. This work offers a promising approach for understanding interaction mechanisms and swarm dynamics in future swarm robotics research. Code and data are available.
Graphormer-Guided Task Planning: Beyond Static Rules with LLM Safety Perception
Recent advancements in large language models (LLMs) have expanded their role in robotic task planning. However, while LLMs have been explored for generating feasible task sequences, their ability to ensure safe task execution remains underdeveloped. Existing methods struggle with structured risk perception, making them inadequate for safety-critical applications where low-latency hazard adaptation is required. To address this limitation, we propose a Graphormer-enhanced risk-aware task planning framework that combines LLM-based decision-making with structured safety modeling. Our approach constructs a dynamic spatio-semantic safety graph, capturing spatial and contextual risk factors to enable online hazard detection and adaptive task refinement. Unlike existing methods that rely on predefined safety constraints, our framework introduces a context-aware risk perception module that continuously refines safety predictions based on real-time task execution. This enables a more flexible and scalable approach to robotic planning, allowing for adaptive safety compliance beyond static rules. To validate our framework, we conduct experiments in the AI2-THOR environment. The experiments results validates improvements in risk detection accuracy, rising safety notice, and task adaptability of our framework in continuous environments compared to static rule-based and LLM-only baselines. Our project is available at https://github.com/hwj20/GGTP
☆ HIF: Height Interval Filtering for Efficient Dynamic Points Removal
3D point cloud mapping plays a essential role in localization and autonomous navigation. However, dynamic objects often leave residual traces during the map construction process, which undermine the performance of subsequent tasks. Therefore, dynamic object removal has become a critical challenge in point cloud based map construction within dynamic scenarios. Existing approaches, however, often incur significant computational overhead, making it difficult to meet the real-time processing requirements. To address this issue, we introduce the Height Interval Filtering (HIF) method. This approach constructs pillar-based height interval representations to probabilistically model the vertical dimension, with interval probabilities updated through Bayesian inference. It ensures real-time performance while achieving high accuracy and improving robustness in complex environments. Additionally, we propose a low-height preservation strategy that enhances the detection of unknown spaces, reducing misclassification in areas blocked by obstacles (occluded regions). Experiments on public datasets demonstrate that HIF delivers a 7.7 times improvement in time efficiency with comparable accuracy to existing SOTA methods. The code will be publicly available.
☆ Eye-in-Finger: Smart Fingers for Delicate Assembly and Disassembly of LEGO
Manipulation and insertion of small and tight-toleranced objects in robotic assembly remain a critical challenge for vision-based robotics systems due to the required precision and cluttered environment. Conventional global or wrist-mounted cameras often suffer from occlusions when either assembling or disassembling from an existing structure. To address the challenge, this paper introduces "Eye-in-Finger", a novel tool design approach that enhances robotic manipulation by embedding low-cost, high-resolution perception directly at the tool tip. We validate our approach using LEGO assembly and disassembly tasks, which require the robot to manipulate in a cluttered environment and achieve sub-millimeter accuracy and robust error correction due to the tight tolerances. Experimental results demonstrate that our proposed system enables real-time, fine corrections to alignment error, increasing the tolerance of calibration error from 0.4mm to up to 2.0mm for the LEGO manipulation robot.
☆ A2I-Calib: An Anti-noise Active Multi-IMU Spatial-temporal Calibration Framework for Legged Robots
Recently, multi-node inertial measurement unit (IMU)-based odometry for legged robots has gained attention due to its cost-effectiveness, power efficiency, and high accuracy. However, the spatial and temporal misalignment between foot-end motion derived from forward kinematics and foot IMU measurements can introduce inconsistent constraints, resulting in odometry drift. Therefore, accurate spatial-temporal calibration is crucial for the multi-IMU systems. Although existing multi-IMU calibration methods have addressed passive single-rigid-body sensor calibration, they are inadequate for legged systems. This is due to the insufficient excitation from traditional gaits for calibration, and enlarged sensitivity to IMU noise during kinematic chain transformations. To address these challenges, we propose A$^2$I-Calib, an anti-noise active multi-IMU calibration framework enabling autonomous spatial-temporal calibration for arbitrary foot-mounted IMUs. Our A$^2$I-Calib includes: 1) an anti-noise trajectory generator leveraging a proposed basis function selection theorem to minimize the condition number in correlation analysis, thus reducing noise sensitivity, and 2) a reinforcement learning (RL)-based controller that ensures robust execution of calibration motions. Furthermore, A$^2$I-Calib is validated on simulation and real-world quadruped robot platforms with various multi-IMU settings, which demonstrates a significant reduction in noise sensitivity and calibration errors, thereby improving the overall multi-IMU odometry performance.
☆ One-Shot Dual-Arm Imitation Learning ICRA 2025
We introduce One-Shot Dual-Arm Imitation Learning (ODIL), which enables dual-arm robots to learn precise and coordinated everyday tasks from just a single demonstration of the task. ODIL uses a new three-stage visual servoing (3-VS) method for precise alignment between the end-effector and target object, after which replay of the demonstration trajectory is sufficient to perform the task. This is achieved without requiring prior task or object knowledge, or additional data collection and training following the single demonstration. Furthermore, we propose a new dual-arm coordination paradigm for learning dual-arm tasks from a single demonstration. ODIL was tested on a real-world dual-arm robot, demonstrating state-of-the-art performance across six precise and coordinated tasks in both 4-DoF and 6-DoF settings, and showing robustness in the presence of distractor objects and partial occlusions. Videos are available at: https://www.robot-learning.uk/one-shot-dual-arm.
comment: Accepted at ICRA 2025. Project Webpage: https://www.robot-learning.uk/one-shot-dual-arm
☆ HierDAMap: Towards Universal Domain Adaptive BEV Mapping via Hierarchical Perspective Priors
The exploration of Bird's-Eye View (BEV) mapping technology has driven significant innovation in visual perception technology for autonomous driving. BEV mapping models need to be applied to the unlabeled real world, making the study of unsupervised domain adaptation models an essential path. However, research on unsupervised domain adaptation for BEV mapping remains limited and cannot perfectly accommodate all BEV mapping tasks. To address this gap, this paper proposes HierDAMap, a universal and holistic BEV domain adaptation framework with hierarchical perspective priors. Unlike existing research that solely focuses on image-level learning using prior knowledge, this paper explores the guiding role of perspective prior knowledge across three distinct levels: global, sparse, and instance levels. With these priors, HierDA consists of three essential components, including Semantic-Guided Pseudo Supervision (SGPS), Dynamic-Aware Coherence Learning (DACL), and Cross-Domain Frustum Mixing (CDFM). SGPS constrains the cross-domain consistency of perspective feature distribution through pseudo labels generated by vision foundation models in 2D space. To mitigate feature distribution discrepancies caused by spatial variations, DACL employs uncertainty-aware predicted depth as an intermediary to derive dynamic BEV labels from perspective pseudo-labels, thereby constraining the coarse BEV features derived from corresponding perspective features. CDFM, on the other hand, leverages perspective masks of view frustum to mix multi-view perspective images from both domains, which guides cross-domain view transformation and encoding learning through mixed BEV labels. The proposed method is verified on multiple BEV mapping tasks, such as BEV semantic segmentation, high-definition semantic, and vectorized mapping. The source code will be made publicly available at https://github.com/lynn-yu/HierDAMap.
comment: The source code will be made publicly available at https://github.com/lynn-yu/HierDAMap
☆ Unlocking Generalization for Robotics via Modularity and Scale
How can we build generalist robot systems? Scale may not be enough due to the significant multimodality of robotics tasks, lack of easily accessible data and the challenges of deploying on physical hardware. Meanwhile, most deployed robotic systems today are inherently modular and can leverage the independent generalization capabilities of each module to perform well. Therefore, this thesis seeks to tackle the task of building generalist robot agents by integrating these components into one: combining modularity with large-scale learning for general purpose robot control. The first question we consider is: how can we build modularity and hierarchy into learning systems? Our key insight is that rather than having the agent learn hierarchy and low-level control end-to-end, we can enforce modularity via planning to enable more efficient and capable robot learners. Next, we come to the role of scale in building generalist robot systems. To scale, neural networks require vast amounts of diverse data, expressive architectures to fit the data and a source of supervision to generate the data. We leverage a powerful supervision source: classical planning, which can generalize, but is expensive to run and requires access to privileged information to perform well in practice. We use these planners to supervise large-scale policy learning in simulation to produce generalist agents. Finally, we consider how to unify modularity with large-scale policy learning to build real-world robot systems capable of performing zero-shot manipulation. We do so by tightly integrating key ingredients of modular high and mid-level planning, learned local control, procedural scene generation and large-scale policy learning for sim2real transfer. We demonstrate that this recipe can produce a single, generalist agent that can solve challenging long-horizon manipulation tasks in the real world.
comment: CMU Robotics PhD Thesis, 185 pages
☆ FunGraph: Functionality Aware 3D Scene Graphs for Language-Prompted Scene Interaction
The concept of 3D scene graphs is increasingly recognized as a powerful semantic and hierarchical representation of the environment. Current approaches often address this at a coarse, object-level resolution. In contrast, our goal is to develop a representation that enables robots to directly interact with their environment by identifying both the location of functional interactive elements and how these can be used. To achieve this, we focus on detecting and storing objects at a finer resolution, focusing on affordance-relevant parts. The primary challenge lies in the scarcity of data that extends beyond instance-level detection and the inherent difficulty of capturing detailed object features using robotic sensors. We leverage currently available 3D resources to generate 2D data and train a detector, which is then used to augment the standard 3D scene graph generation pipeline. Through our experiments, we demonstrate that our approach achieves functional element segmentation comparable to state-of-the-art 3D models and that our augmentation enables task-driven affordance grounding with higher accuracy than the current solutions.
☆ LTLCodeGen: Code Generation of Syntactically Correct Temporal Logic for Robot Task Planning
This paper focuses on planning robot navigation tasks from natural language specifications. We develop a modular approach, where a large language model (LLM) translates the natural language instructions into a linear temporal logic (LTL) formula with propositions defined by object classes in a semantic occupancy map. The LTL formula and the semantic occupancy map are provided to a motion planning algorithm to generate a collision-free robot path that satisfies the natural language instructions. Our main contribution is LTLCodeGen, a method to translate natural language to syntactically correct LTL using code generation. We demonstrate the complete task planning method in real-world experiments involving human speech to provide navigation instructions to a mobile robot. We also thoroughly evaluate our approach in simulated and real-world experiments in comparison to end-to-end LLM task planning and state-of-the-art LLM-to-LTL translation methods.
☆ Intelligent Framework for Human-Robot Collaboration: Safety, Dynamic Ergonomics, and Adaptive Decision-Making
The integration of collaborative robots into industrial environments has improved productivity, but has also highlighted significant challenges related to operator safety and ergonomics. This paper proposes an innovative framework that integrates advanced visual perception technologies, real-time ergonomic monitoring, and Behaviour Tree (BT)-based adaptive decision-making. Unlike traditional methods, which often operate in isolation or statically, our approach combines deep learning models (YOLO11 and SlowOnly), advanced tracking (Unscented Kalman Filter) and dynamic ergonomic assessments (OWAS), offering a modular, scalable and adaptive system. Experimental results show that the framework outperforms previous methods in several aspects: accuracy in detecting postures and actions, adaptivity in managing human-robot interactions, and ability to reduce ergonomic risk through timely robotic interventions. In particular, the visual perception module showed superiority over YOLOv9 and YOLOv8, while real-time ergonomic monitoring eliminated the limitations of static analysis. Adaptive role management, made possible by the Behaviour Tree, provided greater responsiveness than rule-based systems, making the framework suitable for complex industrial scenarios. Our system demonstrated a 92.5\% accuracy in grasping intention recognition and successfully classified ergonomic risks with real-time responsiveness (average latency of 0.57 seconds), enabling timely robotic
comment: 14 pagine, 10 figure, 3 tabelle, formato conferenza IEEE
☆ A Landmark-Aided Navigation Approach Using Side-Scan Sonar
Cost-effective localization methods for Autonomous Underwater Vehicle (AUV) navigation are key for ocean monitoring and data collection at high resolution in time and space. Algorithmic solutions suitable for real-time processing that handle nonlinear measurement models and different forms of measurement uncertainty will accelerate the development of field-ready technology. This paper details a Bayesian estimation method for landmark-aided navigation using a Side-scan Sonar (SSS) sensor. The method bounds navigation filter error in the GPS-denied undersea environment and captures the highly nonlinear nature of slant range measurements while remaining computationally tractable. Combining a novel measurement model with the chosen statistical framework facilitates the efficient use of SSS data and, in the future, could be used in real time. The proposed filter has two primary steps: a prediction step using an unscented transform and an update step utilizing particles. The update step performs probabilistic association of sonar detections with known landmarks. We evaluate algorithm performance and tractability using synthetic data and real data collected field experiments. Field experiments were performed using two different marine robotic platforms with two different SSS and at two different sites. Finally, we discuss the computational requirements of the proposed method and how it extends to real-time applications.
comment: 23 pages, 10 figures
☆ Safety Guardrails for LLM-Enabled Robots
Although the integration of large language models (LLMs) into robotics has unlocked transformative capabilities, it has also introduced significant safety concerns, ranging from average-case LLM errors (e.g., hallucinations) to adversarial jailbreaking attacks, which can produce harmful robot behavior in real-world settings. Traditional robot safety approaches do not address the novel vulnerabilities of LLMs, and current LLM safety guardrails overlook the physical risks posed by robots operating in dynamic real-world environments. In this paper, we propose RoboGuard, a two-stage guardrail architecture to ensure the safety of LLM-enabled robots. RoboGuard first contextualizes pre-defined safety rules by grounding them in the robot's environment using a root-of-trust LLM, which employs chain-of-thought (CoT) reasoning to generate rigorous safety specifications, such as temporal logic constraints. RoboGuard then resolves potential conflicts between these contextual safety specifications and a possibly unsafe plan using temporal logic control synthesis, which ensures safety compliance while minimally violating user preferences. Through extensive simulation and real-world experiments that consider worst-case jailbreaking attacks, we demonstrate that RoboGuard reduces the execution of unsafe plans from 92% to below 2.5% without compromising performance on safe plans. We also demonstrate that RoboGuard is resource-efficient, robust against adaptive attacks, and significantly enhanced by enabling its root-of-trust LLM to perform CoT reasoning. These results underscore the potential of RoboGuard to mitigate the safety risks and enhance the reliability of LLM-enabled robots.
☆ Evaluating Path Planning Strategies for Efficient Nitrate Sampling in Crop Rows TRO
This paper presents a pipeline that combines high-resolution orthomosaic maps generated from UAS imagery with GPS-based global navigation to guide a skid-steered ground robot. We evaluated three path planning strategies: A* Graph search, Deep Q-learning (DQN) model, and Heuristic search, benchmarking them on planning time and success rate in realistic simulation environments. Experimental results reveal that the Heuristic search achieves the fastest planning times (0.28 ms) and a 100% success rate, while the A* approach delivers near-optimal performance, and the DQN model, despite its adaptability, incurs longer planning delays and occasional suboptimal routing. These results highlight the advantages of deterministic rule-based methods in geometrically constrained crop-row environments and lay the groundwork for future hybrid strategies in precision agriculture.
comment: 6 pages, 6 figures, submitted to AGRICONTROL 2025 (Under Review)
☆ POp-GS: Next Best View in 3D-Gaussian Splatting with P-Optimality
In this paper, we present a novel algorithm for quantifying uncertainty and information gained within 3D Gaussian Splatting (3D-GS) through P-Optimality. While 3D-GS has proven to be a useful world model with high-quality rasterizations, it does not natively quantify uncertainty. Quantifying uncertainty in parameters of 3D-GS is necessary to understand the information gained from acquiring new images as in active perception, or identify redundant images which can be removed from memory due to resource constraints in online 3D-GS SLAM. We propose to quantify uncertainty and information gain in 3D-GS by reformulating the problem through the lens of optimal experimental design, which is a classical solution to measuring information gain. By restructuring information quantification of 3D-GS through optimal experimental design, we arrive at multiple solutions, of which T-Optimality and D-Optimality perform the best quantitatively and qualitatively as measured on two popular datasets. Additionally, we propose a block diagonal approximation of the 3D-GS uncertainty, which provides a measure of correlation for computing more accurate information gain, at the expense of a greater computation cost.
☆ Serious Play to Encourage Socialization between Unfamiliar Children Facilitated by a LEGO Robot
Socialization is an essential development skill for preschool children. In collaboration with the LEGO Group, we developed Robert Robot, a simplified robot, which enables socialization between children and facilitates shared experiences when meeting for the first time. An exploratory study to observe socialization between preschool children was conducted with 30 respondents in pairs. Additionally, observational data from 212 play sessions with four Robert Robots in the wild were collected. Subsequent analysis found that children have fun as Robert Robot breaks the ice between unfamiliar children. The children relayed audio cues related to the imaginative world of Robert Robot's personalities and mimicked each other as a method of initiating social play and communication with their unfamiliar peers. Furthermore, the study contributes four implications for the design of robots for socialization between children. This chapter provides an example case of serious storytelling using playful interactions engaging children with the character of the robot and the mini-narratives around the build requests.
comment: 14 pages, 5 figures, 2 tables, accepted for inclusion in forthcoming book
☆ RoboCopilot: Human-in-the-loop Interactive Imitation Learning for Robot Manipulation
Learning from human demonstration is an effective approach for learning complex manipulation skills. However, existing approaches heavily focus on learning from passive human demonstration data for its simplicity in data collection. Interactive human teaching has appealing theoretical and practical properties, but they are not well supported by existing human-robot interfaces. This paper proposes a novel system that enables seamless control switching between human and an autonomous policy for bi-manual manipulation tasks, enabling more efficient learning of new tasks. This is achieved through a compliant, bilateral teleoperation system. Through simulation and hardware experiments, we demonstrate the value of our system in an interactive human teaching for learning complex bi-manual manipulation skills.
☆ Multi-layer Motion Planning with Kinodynamic and Spatio-Temporal Constraints SC
We propose a novel, multi-layered planning approach for computing paths that satisfy both kinodynamic and spatiotemporal constraints. Our three-part framework first establishes potential sequences to meet spatial constraints, using them to calculate a geometric lead path. This path then guides an asymptotically optimal sampling-based kinodynamic planner, which minimizes an STL-robustness cost to jointly satisfy spatiotemporal and kinodynamic constraints. In our experiments, we test our method with a velocity-controlled Ackerman-car model and demonstrate significant efficiency gains compared to prior art. Additionally, our method is able to generate complex path maneuvers, such as crossovers, something that previous methods had not demonstrated.
comment: Accepted to ACM Hybrid Systems: Computation and Control (HSCC) 2025
☆ Focused Blind Switching Manipulation Based on Constrained and Regional Touch States of Multi-Fingered Hand Using Deep Learning
To achieve a desired grasping posture (including object position and orientation), multi-finger motions need to be conducted according to the the current touch state. Specifically, when subtle changes happen during correcting the object state, not only proprioception but also tactile information from the entire hand can be beneficial. However, switching motions with high-DOFs of multiple fingers and abundant tactile information is still challenging. In this study, we propose a loss function with constraints of touch states and an attention mechanism for focusing on important modalities depending on the touch states. The policy model is AE-LSTM which consists of Autoencoder (AE) which compresses abundant tactile information and Long Short-Term Memory (LSTM) which switches the motion depending on the touch states. Motion for cap-opening was chosen as a target task which consists of subtasks of sliding an object and opening its cap. As a result, the proposed method achieved the best success rates with a variety of objects for real time cap-opening manipulation. Furthermore, we could confirm that the proposed model acquired the features of each subtask and attention on specific modalities.
☆ SANDRO: a Robust Solver with a Splitting Strategy for Point Cloud Registration ICRA
Point cloud registration is a critical problem in computer vision and robotics, especially in the field of navigation. Current methods often fail when faced with high outlier rates or take a long time to converge to a suitable solution. In this work, we introduce a novel algorithm for point cloud registration called SANDRO (Splitting strategy for point cloud Alignment using Non-convex anD Robust Optimization), which combines an Iteratively Reweighted Least Squares (IRLS) framework with a robust loss function with graduated non-convexity. This approach is further enhanced by a splitting strategy designed to handle high outlier rates and skewed distributions of outliers. SANDRO is capable of addressing important limitations of existing methods, as in challenging scenarios where the presence of high outlier rates and point cloud symmetries significantly hinder convergence. SANDRO achieves superior performance in terms of success rate when compared to the state-of-the-art methods, demonstrating a 20% improvement from the current state of the art when tested on the Redwood real dataset and 60% improvement when tested on synthetic data.
comment: Accepted to the IEEE International Conference on Robotics and Automation (ICRA) 2025
☆ A Simple Approach to Constraint-Aware Imitation Learning with Application to Autonomous Racing IROS 2025
Guaranteeing constraint satisfaction is challenging in imitation learning (IL), particularly in tasks that require operating near a system's handling limits. Traditional IL methods often struggle to enforce constraints, leading to suboptimal performance in high-precision tasks. In this paper, we present a simple approach to incorporating safety into the IL objective. Through simulations, we empirically validate our approach on an autonomous racing task with both full-state and image feedback, demonstrating improved constraint satisfaction and greater consistency in task performance compared to a baseline method.
comment: Submitted to IEEE IROS 2025
☆ AlphaDrive: Unleashing the Power of VLMs in Autonomous Driving via Reinforcement Learning and Reasoning
OpenAI o1 and DeepSeek R1 achieve or even surpass human expert-level performance in complex domains like mathematics and science, with reinforcement learning (RL) and reasoning playing a crucial role. In autonomous driving, recent end-to-end models have greatly improved planning performance but still struggle with long-tailed problems due to limited common sense and reasoning abilities. Some studies integrate vision-language models (VLMs) into autonomous driving, but they typically rely on pre-trained models with simple supervised fine-tuning (SFT) on driving data, without further exploration of training strategies or optimizations specifically tailored for planning. In this paper, we propose AlphaDrive, a RL and reasoning framework for VLMs in autonomous driving. AlphaDrive introduces four GRPO-based RL rewards tailored for planning and employs a two-stage planning reasoning training strategy that combines SFT with RL. As a result, AlphaDrive significantly improves both planning performance and training efficiency compared to using only SFT or without reasoning. Moreover, we are also excited to discover that, following RL training, AlphaDrive exhibits some emergent multimodal planning capabilities, which is critical for improving driving safety and efficiency. To the best of our knowledge, AlphaDrive is the first to integrate GRPO-based RL with planning reasoning into autonomous driving. Code will be released to facilitate future research.
comment: Project Page: https://github.com/hustvl/AlphaDrive
☆ A Representationalist, Functionalist and Naturalistic Conception of Intelligence as a Foundation for AGI
The article analyses foundational principles relevant to the creation of artificial general intelligence (AGI). Intelligence is understood as the ability to create novel skills that allow to achieve goals under previously unknown conditions. To this end, intelligence utilises reasoning methods such as deduction, induction and abduction as well as other methods such as abstraction and classification to develop a world model. The methods are applied to indirect and incomplete representations of the world, which are obtained through perception, for example, and which do not depict the world but only correspond to it. Due to these limitations and the uncertain and contingent nature of reasoning, the world model is constructivist. Its value is functionally determined by its viability, i.e., its potential to achieve the desired goals. In consequence, meaning is assigned to representations by attributing them a function that makes it possible to achieve a goal. This representational and functional conception of intelligence enables a naturalistic interpretation that does not presuppose mental features, such as intentionality and consciousness, which are regarded as independent of intelligence. Based on a phenomenological analysis, it is shown that AGI can gain a more fundamental access to the world than humans, although it is limited by the No Free Lunch theorems, which require assumptions to be made.
☆ A Task and Motion Planning Framework Using Iteratively Deepened AND/OR Graph Networks
In this paper, we present an approach for integrated task and motion planning based on an AND/OR graph network, which is used to represent task-level states and actions, and we leverage it to implement different classes of task and motion planning problems (TAMP). Several problems that fall under task and motion planning do not have a predetermined number of sub-tasks to achieve a goal. For example, while retrieving a target object from a cluttered workspace, in principle the number of object re-arrangements required to finally grasp it cannot be known ahead of time. To address this challenge, and in contrast to traditional planners, also those based on AND/OR graphs, we grow the AND/OR graph at run-time by progressively adding sub-graphs until grasping the target object becomes feasible, which yields a network of AND/OR graphs. The approach is extended to enable multi-robot task and motion planning, and (i) it allows us to perform task allocation while coordinating the activity of a given number of robots, and (ii) can handle multi-robot tasks involving an a priori unknown number of sub-tasks. The approach is evaluated and validated both in simulation and with a real dual-arm robot manipulator, that is, Baxter from Rethink Robotics. In particular, for the single-robot task and motion planning, we validated our approach in three different TAMP domains. Furthermore, we also use three different robots for simulation, namely, Baxter, Franka Emika Panda manipulators, and a PR2 robot. Experiments show that our approach can be readily scaled to scenarios with many objects and robots, and is capable of handling different classes of TAMP problems.
☆ APECS: Adaptive Personalized Control System Architecture
This paper presents the Adaptive Personalized Control System (APECS) architecture, a novel framework for human-in-the-loop control. An architecture is developed which defines appropriate constraints for the system objectives. A method for enacting Lipschitz and sector bounds on the resulting controller is derived to ensure desirable control properties. An analysis of worst-case loss functions and the optimal loss function weighting is made to implement an effective training scheme. Finally, simulations are carried out to demonstrate the effectiveness of the proposed architecture. This architecture resulted in a 4.5% performance increase compared to the human operator and 9% to an unconstrained feedforward neural network trained in the same way.
comment: 8 pages, 11 figures
♻ ☆ Accelerating db-A* for Kinodynamic Motion Planning Using Diffusion
We present a novel approach for generating motion primitives for kinodynamic motion planning using diffusion models. The motions generated by our approach are adapted to each problem instance by utilizing problem-specific parameters, allowing for finding solutions faster and of better quality. The diffusion models used in our approach are trained on randomly cut solution trajectories. These trajectories are created by solving randomly generated problem instances with a kinodynamic motion planner. Experimental results show significant improvements up to 30 percent in both computation time and solution quality across varying robot dynamics such as second-order unicycle or car with trailer.
♻ ☆ GSplatVNM: Point-of-View Synthesis for Visual Navigation Models Using Gaussian Splatting
This paper presents a novel approach to image-goal navigation by integrating 3D Gaussian Splatting (3DGS) with Visual Navigation Models (VNMs), a method we refer to as GSplatVNM. VNMs offer a promising paradigm for image-goal navigation by guiding a robot through a sequence of point-of-view images without requiring metrical localization or environment-specific training. However, constructing a dense and traversable sequence of target viewpoints from start to goal remains a central challenge, particularly when the available image database is sparse. To address these challenges, we propose a 3DGS-based viewpoint synthesis framework for VNMs that synthesizes intermediate viewpoints to seamlessly bridge gaps in sparse data while significantly reducing storage overhead. Experimental results in a photorealistic simulator demonstrate that our approach not only enhances navigation efficiency but also exhibits robustness under varying levels of image database sparsity.
comment: 8 pages, 4 figures
♻ ☆ HWC-Loco: A Hierarchical Whole-Body Control Approach to Robust Humanoid Locomotion
Humanoid robots, capable of assuming human roles in various workplaces, have become essential to the advancement of embodied intelligence. However, as robots with complex physical structures, learning a control model that can operate robustly across diverse environments remains inherently challenging, particularly under the discrepancies between training and deployment environments. In this study, we propose HWC-Loco, a robust whole-body control algorithm tailored for humanoid locomotion tasks. By reformulating policy learning as a robust optimization problem, HWC-Loco explicitly learns to recover from safety-critical scenarios. While prioritizing safety guarantees, overly conservative behavior can compromise the robot's ability to complete the given tasks. To tackle this challenge, HWC-Loco leverages a hierarchical policy for robust control. This policy can dynamically resolve the trade-off between goal-tracking and safety recovery, guided by human behavior norms and dynamic constraints. To evaluate the performance of HWC-Loco, we conduct extensive comparisons against state-of-the-art humanoid control models, demonstrating HWC-Loco's superior performance across diverse terrains, robot structures, and locomotion tasks under both simulated and real-world environments.
♻ ☆ Small-Scale Testbeds for Connected and Automated Vehicles and Robot Swarms: Challenges and a Roadmap
This article proposes a roadmap to address the current challenges in small-scale testbeds for Connected and Automated Vehicles (CAVs) and robot swarms. The roadmap is a joint effort of participants in the workshop "1st Workshop on Small-Scale Testbeds for Connected and Automated Vehicles and Robot Swarms," held on June 2 at the IEEE Intelligent Vehicles Symposium (IV) 2024 in Jeju, South Korea. The roadmap contains three parts: 1) enhancing accessibility and diversity, especially for underrepresented communities, 2) sharing best practices for the development and maintenance of testbeds, and 3) connecting testbeds through an abstraction layer to support collaboration. The workshop features eight invited speakers, four contributed papers [1]-[4], and a presentation of a survey paper on testbeds [5]. The survey paper provides an online comparative table of more than 25 testbeds, available at https://bassamlab.github.io/testbeds-survey. The workshop's own website is available at https://cpm-remote.lrt.unibw-muenchen.de/iv24-workshop.
comment: v1 to v2: a minor correction of a URL
♻ ☆ Maintaining Plasticity in Reinforcement Learning: A Cost-Aware Framework for Aerial Robot Control in Non-stationary Environments
Reinforcement learning (RL) has demonstrated the ability to maintain the plasticity of the policy throughout short-term training in aerial robot control. However, these policies have been shown to loss of plasticity when extended to long-term learning in non-stationary environments. For example, the standard proximal policy optimization (PPO) policy is observed to collapse in long-term training settings and lead to significant control performance degradation. To address this problem, this work proposes a cost-aware framework that uses a retrospective cost mechanism (RECOM) to balance rewards and losses in RL training with a non-stationary environment. Using a cost gradient relation between rewards and losses, our framework dynamically updates the learning rate to actively train the control policy in a disturbed wind environment. Our experimental results show that our framework learned a policy for the hovering task without policy collapse in variable wind conditions and has a successful result of 11.29% less dormant units than L2 regularization with PPO.
♻ ☆ Polyhedral Collision Detection via Vertex Enumeration ICRA 2025
Collision detection is a critical functionality for robotics. The degree to which objects collide cannot be represented as a continuously differentiable function for any shapes other than spheres. This paper proposes a framework for handling collision detection between polyhedral shapes. We frame the signed distance between two polyhedral bodies as the optimal value of a convex optimization, and consider constraining the signed distance in a bilevel optimization problem. To avoid relying on specialized bilevel solvers, our method exploits the fact that the signed distance is the minimal point of a convex region related to the two bodies. Our method enumerates the values obtained at all extreme points of this region and lists them as constraints in the higher-level problem. We compare our formulation to existing methods in terms of reliability and speed when solved using the same mixed complementarity problem solver. We demonstrate that our approach more reliably solves difficult collision detection problems with multiple obstacles than other methods, and is faster than existing methods in some cases.
comment: Accepted to ICRA 2025
♻ ☆ Context-Based Meta Reinforcement Learning for Robust and Adaptable Peg-in-Hole Assembly Tasks
Autonomous assembly is an essential capability for industrial and service robots, with Peg-in-Hole (PiH) insertion being one of the core tasks. However, PiH assembly in unknown environments is still challenging due to uncertainty in task parameters, such as the hole position and orientation, resulting from sensor noise. Although context-based meta reinforcement learning (RL) methods have been previously presented to adapt to unknown task parameters in PiH assembly tasks, the performance depends on a sample-inefficient procedure or human demonstrations. Thus, to enhance the applicability of meta RL in real-world PiH assembly tasks, we propose to train the agent to use information from the robot's forward kinematics and an uncalibrated camera. Furthermore, we improve the performance by efficiently adapting the meta-trained agent to use data from force/torque sensor. Finally, we propose an adaptation procedure for out-of-distribution tasks whose parameters are different from the training tasks. Experiments on simulated and real robots prove that our modifications enhance the sample efficiency during meta training, real-world adaptation performance, and generalization of the context-based meta RL agent in PiH assembly tasks compared to previous approaches.
♻ ☆ Open-Vocabulary Online Semantic Mapping for SLAM
This paper presents an Open-Vocabulary Online 3D semantic mapping pipeline, that we denote by its acronym OVO. Given a sequence of posed RGB-D frames, we detect and track 3D segments, which we describe using CLIP vectors. These are computed from the viewpoints where they are observed by a novel CLIP merging method. Notably, our OVO has a significantly lower computational and memory footprint than offline baselines, while also showing better segmentation metrics than them. Along with superior segmentation performance, we also show experimental results of our mapping contributions integrated with two different SLAM backbones (Gaussian-SLAM and ORB-SLAM2), being the first ones demonstrating end-to-end open-vocabulary online 3D reconstructions without relying on ground-truth camera poses or scene geometry.
♻ ☆ An Imitative Reinforcement Learning Framework for Autonomous Dogfight
Unmanned Combat Aerial Vehicle (UCAV) dogfight, which refers to a fight between two or more UCAVs usually at close quarters, plays a decisive role on the aerial battlefields. With the evolution of artificial intelligence, dogfight progressively transits towards intelligent and autonomous modes. However, the development of autonomous dogfight policy learning is hindered by challenges such as weak exploration capabilities, low learning efficiency, and unrealistic simulated environments. To overcome these challenges, this paper proposes a novel imitative reinforcement learning framework, which efficiently leverages expert data while enabling autonomous exploration. The proposed framework not only enhances learning efficiency through expert imitation, but also ensures adaptability to dynamic environments via autonomous exploration with reinforcement learning. Therefore, the proposed framework can learn a successful dogfight policy of 'pursuit-lock-launch' for UCAVs. To support data-driven learning, we establish a dogfight environment based on the Harfang3D sandbox, where we conduct extensive experiments. The results indicate that the proposed framework excels in multistage dogfight, significantly outperforms state-of-the-art reinforcement learning and imitation learning methods. Thanks to the ability of imitating experts and autonomous exploration, our framework can quickly learn the critical knowledge in complex aerial combat tasks, achieving up to a 100% success rate and demonstrating excellent robustness.
♻ ☆ PriorMotion: Generative Class-Agnostic Motion Prediction with Raster-Vector Motion Field Priors
Reliable spatial and motion perception is essential for safe autonomous navigation. Recently, class-agnostic motion prediction on bird's-eye view (BEV) cell grids derived from LiDAR point clouds has gained significant attention. However, existing frameworks typically perform cell classification and motion prediction on a per-pixel basis, neglecting important motion field priors such as rigidity constraints, temporal consistency, and future interactions between agents. These limitations lead to degraded performance, particularly in sparse and distant regions. To address these challenges, we introduce \textbf{PriorMotion}, an innovative generative framework designed for class-agnostic motion prediction that integrates essential motion priors by modeling them as distributions within a structured latent space. Specifically, our method captures structured motion priors using raster-vector representations and employs a variational autoencoder with distinct dynamic and static components to learn future motion distributions in the latent space. Experiments on the nuScenes dataset demonstrate that \textbf{PriorMotion} outperforms state-of-the-art methods across both traditional metrics and our newly proposed evaluation criteria. Notably, we achieve improvements of approximately 15.24\% in accuracy for fast-moving objects, an 3.59\% increase in generalization, a reduction of 0.0163 in motion stability, and a 31.52\% reduction in prediction errors in distant regions. Further validation on FMCW LiDAR sensors confirms the robustness of our approach.
comment: 17 pages, 9 figures
♻ ☆ Tactile-based force estimation for interaction control with robot fingers IROS 2025
Fine dexterous manipulation requires reactive control based on rich sensing of manipulator-object interactions. Tactile sensing arrays provide rich contact information across the manipulator's surface. However their implementation faces two main challenges: accurate force estimation across complex surfaces like robotic hands, and integration of these estimates into reactive control loops. We present a data-efficient calibration method that enables rapid, full-array force estimation across varying geometries, providing online feedback that accounts for non-linearities and deformation effects. Our force estimation model serves as feedback in an online closed-loop control system for interaction force tracking. The accuracy of our estimates is independently validated against measurements from a calibrated force-torque sensor. Using the Allegro Hand equipped with Xela uSkin sensors, we demonstrate precise force application through an admittance control loop running at 100Hz, achieving up to 0.12+/-0.08 [N] error margin-results that show promising potential for dexterous manipulation.
comment: 8 pages, 5 figures, submitted to IROS 2025
♻ ☆ SafeAgentBench: A Benchmark for Safe Task Planning of Embodied LLM Agents
With the integration of large language models (LLMs), embodied agents have strong capabilities to understand and plan complicated natural language instructions. However, a foreseeable issue is that those embodied agents can also flawlessly execute some hazardous tasks, potentially causing damages in the real world. Existing benchmarks predominantly overlook critical safety risks, focusing solely on planning performance, while a few evaluate LLMs' safety awareness only on non-interactive image-text data. To address this gap, we present SafeAgentBench-the first benchmark for safety-aware task planning of embodied LLM agents in interactive simulation environments. SafeAgentBench includes: (1) an executable, diverse, and high-quality dataset of 750 tasks, rigorously curated to cover 10 potential hazards and 3 task types; (2) SafeAgentEnv, a universal embodied environment with a low-level controller, supporting multi-agent execution with 17 high-level actions for 8 state-of-the-art baselines; and (3) reliable evaluation methods from both execution and semantic perspectives. Experimental results show that, although agents based on different design frameworks exhibit substantial differences in task success rates, their overall safety awareness remains weak. The most safety-conscious baseline achieves only a 10\% rejection rate for detailed hazardous tasks. Moreover, simply replacing the LLM driving the agent does not lead to notable improvements in safety awareness. More details and code are available at https://github.com/shengyin1224/SafeAgentBench.
comment: 23 pages, 17 tables, 14 figures
♻ ☆ CAD-Assistant: Tool-Augmented VLLMs as Generic CAD Task Solvers
We propose CAD-Assistant, a general-purpose CAD agent for AI-assisted design. Our approach is based on a powerful Vision and Large Language Model (VLLM) as a planner and a tool-augmentation paradigm using CAD-specific tools. CAD-Assistant addresses multimodal user queries by generating actions that are iteratively executed on a Python interpreter equipped with the FreeCAD software, accessed via its Python API. Our framework is able to assess the impact of generated CAD commands on geometry and adapts subsequent actions based on the evolving state of the CAD design. We consider a wide range of CAD-specific tools including a sketch image parameterizer, rendering modules, a 2D cross-section generator, and other specialized routines. CAD-Assistant is evaluated on multiple CAD benchmarks, where it outperforms VLLM baselines and supervised task-specific methods. Beyond existing benchmarks, we qualitatively demonstrate the potential of tool-augmented VLLMs as general-purpose CAD solvers across diverse workflows.
♻ ☆ Dream to Manipulate: Compositional World Models Empowering Robot Imitation Learning with Imagination
A world model provides an agent with a representation of its environment, enabling it to predict the causal consequences of its actions. Current world models typically cannot directly and explicitly imitate the actual environment in front of a robot, often resulting in unrealistic behaviors and hallucinations that make them unsuitable for real-world robotics applications. To overcome those challenges, we propose to rethink robot world models as learnable digital twins. We introduce DreMa, a new approach for constructing digital twins automatically using learned explicit representations of the real world and its dynamics, bridging the gap between traditional digital twins and world models. DreMa replicates the observed world and its structure by integrating Gaussian Splatting and physics simulators, allowing robots to imagine novel configurations of objects and to predict the future consequences of robot actions thanks to its compositionality. We leverage this capability to generate new data for imitation learning by applying equivariant transformations to a small set of demonstrations. Our evaluations across various settings demonstrate significant improvements in accuracy and robustness by incrementing actions and object distributions, reducing the data needed to learn a policy and improving the generalization of the agents. As a highlight, we show that a real Franka Emika Panda robot, powered by DreMa's imagination, can successfully learn novel physical tasks from just a single example per task variation (one-shot policy learning). Our project page can be found in: https://dreamtomanipulate.github.io/.
RoboReflect: A Robotic Reflective Reasoning Framework for Grasping Ambiguous-Condition Objects
As robotic technology rapidly develops, robots are being employed in an increasing number of fields. However, due to the complexity of deployment environments or the prevalence of ambiguous-condition objects, the practical application of robotics still faces many challenges, leading to frequent errors. Traditional methods and some LLM-based approaches, although improved, still require substantial human intervention and struggle with autonomous error correction in complex scenarios. In this work, we propose RoboReflect, a novel framework leveraging large vision-language models (LVLMs) to enable self-reflection and autonomous error correction in robotic grasping tasks. RoboReflect allows robots to automatically adjust their strategies based on unsuccessful attempts until successful execution is achieved. The corrected strategies are saved in the memory for future task reference. We evaluate RoboReflect through extensive testing on eight common objects prone to ambiguous conditions of three categories. Our results demonstrate that RoboReflect not only outperforms existing grasp pose estimation methods like AnyGrasp and high-level action planning techniques ReKep with GPT-4V but also significantly enhances the robot's capability to adapt and correct errors independently. These findings underscore the critical importance of autonomous self-reflection in robotic systems while effectively addressing the challenges posed by ambiguous-condition environments.
♻ ☆ Offline Adaptation of Quadruped Locomotion using Diffusion Models
We present a diffusion-based approach to quadrupedal locomotion that simultaneously addresses the limitations of learning and interpolating between multiple skills and of (modes) offline adapting to new locomotion behaviours after training. This is the first framework to apply classifier-free guided diffusion to quadruped locomotion and demonstrate its efficacy by extracting goal-conditioned behaviour from an originally unlabelled dataset. We show that these capabilities are compatible with a multi-skill policy and can be applied with little modification and minimal compute overhead, i.e., running entirely on the robots onboard CPU. We verify the validity of our approach with hardware experiments on the ANYmal quadruped platform.
♻ ☆ Robi Butler: Multimodal Remote Interaction with a Household Robot Assistant ICRA 2025
Imagine a future when we can Zoom-call a robot to manage household chores remotely. This work takes one step in this direction. Robi Butler is a new household robot assistant that enables seamless multimodal remote interaction. It allows the human user to monitor its environment from a first-person view, issue voice or text commands, and specify target objects through hand-pointing gestures. At its core, a high-level behavior module, powered by Large Language Models (LLMs), interprets multimodal instructions to generate multistep action plans. Each plan consists of open-vocabulary primitives supported by vision-language models, enabling the robot to process both textual and gestural inputs. Zoom provides a convenient interface to implement remote interactions between the human and the robot. The integration of these components allows Robi Butler to ground remote multimodal instructions in real-world home environments in a zero-shot manner. We evaluated the system on various household tasks, demonstrating its ability to execute complex user commands with multimodal inputs. We also conducted a user study to examine how multimodal interaction influences user experiences in remote human-robot interaction. These results suggest that with the advances in robot foundation models, we are moving closer to the reality of remote household robot assistants.
comment: Accepted to ICRA 2025
♻ ☆ Hier-SLAM: Scaling-up Semantics in SLAM with a Hierarchically Categorical Gaussian Splatting ICRA 2025
We propose Hier-SLAM, a semantic 3D Gaussian Splatting SLAM method featuring a novel hierarchical categorical representation, which enables accurate global 3D semantic mapping, scaling-up capability, and explicit semantic label prediction in the 3D world. The parameter usage in semantic SLAM systems increases significantly with the growing complexity of the environment, making it particularly challenging and costly for scene understanding. To address this problem, we introduce a novel hierarchical representation that encodes semantic information in a compact form into 3D Gaussian Splatting, leveraging the capabilities of large language models (LLMs). We further introduce a novel semantic loss designed to optimize hierarchical semantic information through both inter-level and cross-level optimization. Furthermore, we enhance the whole SLAM system, resulting in improved tracking and mapping performance. Our \MethodName{} outperforms existing dense SLAM methods in both mapping and tracking accuracy, while achieving a 2x operation speed-up. Additionally, it achieves on-par semantic rendering performance compared to existing methods while significantly reducing storage and training time requirements. Rendering FPS impressively reaches 2,000 with semantic information and 3,000 without it. Most notably, it showcases the capability of handling the complex real-world scene with more than 500 semantic classes, highlighting its valuable scaling-up capability. The open-source code is available at https://github.com/LeeBY68/Hier-SLAM
comment: Accepted for publication at ICRA 2025. Code is available at https://github.com/LeeBY68/Hier-SLAM
♻ ☆ Generalizable Motion Planning via Operator Learning ICLR 2025
In this work, we introduce a planning neural operator (PNO) for predicting the value function of a motion planning problem. We recast value function approximation as learning a single operator from the cost function space to the value function space, which is defined by an Eikonal partial differential equation (PDE). Therefore, our PNO model, despite being trained with a finite number of samples at coarse resolution, inherits the zero-shot super-resolution property of neural operators. We demonstrate accurate value function approximation at $16\times$ the training resolution on the MovingAI lab's 2D city dataset, compare with state-of-the-art neural value function predictors on 3D scenes from the iGibson building dataset and showcase optimal planning with 4-DOF robotic manipulators. Lastly, we investigate employing the value function output of PNO as a heuristic function to accelerate motion planning. We show theoretically that the PNO heuristic is $\epsilon$-consistent by introducing an inductive bias layer that guarantees our value functions satisfy the triangle inequality. With our heuristic, we achieve a $30\%$ decrease in nodes visited while obtaining near optimal path lengths on the MovingAI lab 2D city dataset, compared to classical planning methods ($A^\ast$, $RRT^\ast$).
comment: Published in ICLR 2025
♻ ☆ Spline-FRIDA: Towards Diverse, Humanlike Robot Painting Styles with a Sample-Efficient, Differentiable Brush Stroke Model
A painting is more than just a picture on a wall; a painting is a process comprised of many intentional brush strokes, the shapes of which are an important component of a painting's overall style and message. Prior work in modeling brush stroke trajectories either does not work with real-world robotics or is not flexible enough to capture the complexity of human-made brush strokes. In this work, we introduce Spline-FRIDA which can model complex human brush stroke trajectories. This is achieved by recording artists drawing using motion capture, modeling the extracted trajectories with an autoencoder, and introducing a novel brush stroke dynamics model to the existing robotic painting platform FRIDA. We conducted a survey and found that our open-source Spline-FRIDA approach successfully captures the stroke styles in human drawings and that Spline-FRIDA's brush strokes are more human-like, improve semantic planning, and are more artistic compared to existing robot painting systems with restrictive B\'ezier curve strokes.
♻ ☆ Modeling and Evaluating Trust Dynamics in Multi-Human Multi-Robot Task Allocation
Trust is essential in human-robot collaboration, particularly in multi-human, multi-robot (MH-MR) teams, where it plays a crucial role in maintaining team cohesion in complex operational environments. Despite its importance, trust is rarely incorporated into task allocation and reallocation algorithms for MH-MR collaboration. While prior research in single-human, single-robot interactions has shown that integrating trust significantly enhances both performance outcomes and user experience, its role in MH-MR task allocation remains underexplored. In this paper, we introduce the Expectation Confirmation Trust (ECT) Model, a novel framework for modeling trust dynamics in MH-MR teams. We evaluate the ECT model against five existing trust models and a no-trust baseline to assess its impact on task allocation outcomes across different team configurations (2H-2R, 5H-5R, and 10H-10R). Our results show that the ECT model improves task success rate, reduces mean completion time, and lowers task error rates. These findings highlight the complexities of trust-based task allocation in MH-MR teams. We discuss the implications of incorporating trust into task allocation algorithms and propose future research directions for adaptive trust mechanisms that balance efficiency and performance in dynamic, multi-agent environments.
♻ ☆ Split Covariance Intersection Filter Based Visual Localization With Accurate AprilTag Map For Warehouse Robot Navigation
Accurate and efficient localization with conveniently-established map is the fundamental requirement for mobile robot operation in warehouse environments. An accurate AprilTag map can be conveniently established with the help of LiDAR-based SLAM. It is true that a LiDAR-based system is usually not commercially competitive in contrast with a vision-based system, yet fortunately for warehouse applications, only a single LiDAR-based SLAM system is needed to establish an accurate AprilTag map, whereas a large amount of visual localization systems can share this established AprilTag map for their own operations. Therefore, the cost of a LiDAR-based SLAM system is actually shared by the large amount of visual localization systems, and turns to be acceptable and even negligible for practical warehouse applications. Once an accurate AprilTag map is available, visual localization is realized as recursive estimation that fuses AprilTag measurements (i.e. AprilTag detection results) and robot motion data. AprilTag measurements may be nonlinear partial measurements; this can be handled by the well-known extended Kalman filter (EKF) in the spirit of local linearization. AprilTag measurements tend to have temporal correlation as well; however, this cannot be reasonably handled by the EKF. The split covariance intersection filter (Split CIF) is adopted to handle temporal correlation among AprilTag measurements. The Split CIF (in the spirit of local linearization) can also handle AprilTag nonlinear partial measurements. The Split CIF based visual localization system incorporates a measurement adaptive mechanism to handle outliers in AprilTag measurements and adopts a dynamic initialization mechanism to address the kidnapping problem. A comparative study in real warehouse environments demonstrates the potential and advantage of the Split CIF based visual localization solution.
♻ ☆ Distributionally Robust Statistical Verification with Imprecise Neural Networks
A particularly challenging problem in AI safety is providing guarantees on the behavior of high-dimensional autonomous systems. Verification approaches centered around reachability analysis fail to scale, and purely statistical approaches are constrained by the distributional assumptions about the sampling process. Instead, we pose a distributionally robust version of the statistical verification problem for black-box systems, where our performance guarantees hold over a large family of distributions. This paper proposes a novel approach based on uncertainty quantification using concepts from imprecise probabilities. A central piece of our approach is an ensemble technique called Imprecise Neural Networks, which provides the uncertainty quantification. Additionally, we solve the allied problem of exploring the input set using active learning. The active learning uses an exhaustive neural-network verification tool Sherlock to collect samples. An evaluation on multiple physical simulators in the openAI gym Mujoco environments with reinforcement-learned controllers demonstrates that our approach can provide useful and scalable guarantees for high-dimensional systems.
♻ ☆ Exploring the Adversarial Vulnerabilities of Vision-Language-Action Models in Robotics
Recently in robotics, Vision-Language-Action (VLA) models have emerged as a transformative approach, enabling robots to execute complex tasks by integrating visual and linguistic inputs within an end-to-end learning framework. While VLA models offer significant capabilities, they also introduce new attack surfaces, making them vulnerable to adversarial attacks. With these vulnerabilities largely unexplored, this paper systematically quantifies the robustness of VLA-based robotic systems. Recognizing the unique demands of robotic execution, our attack objectives target the inherent spatial and functional characteristics of robotic systems. In particular, we introduce two untargeted attack objectives that leverage spatial foundations to destabilize robotic actions, and a targeted attack objective that manipulates the robotic trajectory. Additionally, we design an adversarial patch generation approach that places a small, colorful patch within the camera's view, effectively executing the attack in both digital and physical environments. Our evaluation reveals a marked degradation in task success rates, with up to a 100\% reduction across a suite of simulated robotic tasks, highlighting critical security gaps in current VLA architectures. By unveiling these vulnerabilities and proposing actionable evaluation metrics, we advance both the understanding and enhancement of safety for VLA-based robotic systems, underscoring the necessity for continuously developing robust defense strategies prior to physical-world deployments.
comment: Github: https://github.com/William-wAng618/roboticAttack Homepage: https://vlaattacker.github.io/
♻ ☆ CaRtGS: Computational Alignment for Real-Time Gaussian Splatting SLAM
Simultaneous Localization and Mapping (SLAM) is pivotal in robotics, with photorealistic scene reconstruction emerging as a key challenge. To address this, we introduce Computational Alignment for Real-Time Gaussian Splatting SLAM (CaRtGS), a novel method enhancing the efficiency and quality of photorealistic scene reconstruction in real-time environments. Leveraging 3D Gaussian Splatting (3DGS), CaRtGS achieves superior rendering quality and processing speed, which is crucial for scene photorealistic reconstruction. Our approach tackles computational misalignment in Gaussian Splatting SLAM (GS-SLAM) through an adaptive strategy that enhances optimization iterations, addresses long-tail optimization, and refines densification. Experiments on Replica, TUM-RGBD, and VECtor datasets demonstrate CaRtGS's effectiveness in achieving high-fidelity rendering with fewer Gaussian primitives. This work propels SLAM towards real-time, photorealistic dense rendering, significantly advancing photorealistic scene representation. For the benefit of the research community, we release the code and accompanying videos on our project website: https://dapengfeng.github.io/cartgs.
comment: Accepted by IEEE Robotics and Automation Letters (RA-L)
♻ ☆ Local Policies Enable Zero-shot Long-horizon Manipulation ICRA 2025
Sim2real for robotic manipulation is difficult due to the challenges of simulating complex contacts and generating realistic task distributions. To tackle the latter problem, we introduce ManipGen, which leverages a new class of policies for sim2real transfer: local policies. Locality enables a variety of appealing properties including invariances to absolute robot and object pose, skill ordering, and global scene configuration. We combine these policies with foundation models for vision, language and motion planning and demonstrate SOTA zero-shot performance of our method to Robosuite benchmark tasks in simulation (97%). We transfer our local policies from simulation to reality and observe they can solve unseen long-horizon manipulation tasks with up to 8 stages with significant pose, object and scene configuration variation. ManipGen outperforms SOTA approaches such as SayCan, OpenVLA, LLMTrajGen and VoxPoser across 50 real-world manipulation tasks by 36%, 76%, 62% and 60% respectively. Video results at https://mihdalal.github.io/manipgen/
comment: ICRA 2025 accepted paper. Main Paper 7 pages, 3 tables, 3 figures. Appendix 6 pages, 2 figures, 6 tables
♻ ☆ Combined Physics and Event Camera Simulator for Slip Detection
Robot manipulation is a common task in fields like industrial manufacturing. Detecting when objects slip from a robot's grasp is crucial for safe and reliable operation. Event cameras, which register pixel-level brightness changes at high temporal resolution (called ``events''), offer an elegant feature when mounted on a robot's end effector: since they only detect motion relative to their viewpoint, a properly grasped object produces no events, while a slipping object immediately triggers them. To research this feature, representative datasets are essential, both for analytic approaches and for training machine learning models. The majority of current research on slip detection with event-based data is done on real-world scenarios and manual data collection, as well as additional setups for data labeling. This can result in a significant increase in the time required for data collection, a lack of flexibility in scene setups, and a high level of complexity in the repetition of experiments. This paper presents a simulation pipeline for generating slip data using the described camera-gripper configuration in a robot arm, and demonstrates its effectiveness through initial data-driven experiments. The use of a simulator, once it is set up, has the potential to reduce the time spent on data collection, provide the ability to alter the setup at any time, simplify the process of repetition and the generation of arbitrarily large data sets. Two distinct datasets were created and validated through visual inspection and artificial neural networks (ANNs). Visual inspection confirmed photorealistic frame generation and accurate slip modeling, while three ANNs trained on this data achieved high validation accuracy and demonstrated good generalization capabilities on a separate test set, along with initial applicability to real-world data. Project page: https://github.com/tub-rip/event_slip
comment: 9 pages, 8 figures, 2 tables, https://github.com/tub-rip/event_slip
♻ ☆ Right Place, Right Time! Dynamizing Topological Graphs for Embodied Navigation
Embodied Navigation tasks often involve constructing topological graphs of a scene during exploration to facilitate high-level planning and decision-making for execution in continuous environments. Prior literature makes the assumption of static graphs with stationary targets, which does not hold in many real-world environments with moving objects. To address this, we present a novel formulation generalizing navigation to dynamic environments by introducing structured object transitions to dynamize static topological graphs called Object Transition Graphs (OTGs). OTGs simulate portable targets following structured routes inspired by human habits. We apply this technique to Matterport3D (MP3D), a popular simulator for evaluating embodied tasks. On these dynamized OTGs, we establish a navigation benchmark by evaluating Oracle-based, Reinforcement Learning, and Large Language Model (LLM)-based approaches on a multi-object finding task. Further, we quantify agent adaptability, and make key inferences such as agents employing learned decision-making strategies generalize better than those relying on privileged oracle knowledge. To the best of our knowledge, ours is the first work to introduce structured temporal dynamism on topological graphs for studying generalist embodied navigation policies. The code and dataset for our OTGs will be made publicly available to foster research on embodied navigation in dynamic scenes.
comment: 18
♻ ☆ ASMA: An Adaptive Safety Margin Algorithm for Vision-Language Drone Navigation via Scene-Aware Control Barrier Functions
In the rapidly evolving field of vision-language navigation (VLN), ensuring safety for physical agents remains an open challenge. For a human-in-the-loop language-operated drone to navigate safely, it must understand natural language commands, perceive the environment, and simultaneously avoid hazards in real time. Control Barrier Functions (CBFs) are formal methods that enforce safe operating conditions. Model Predictive Control (MPC) is an optimization framework that plans a sequence of future actions over a prediction horizon, ensuring smooth trajectory tracking while obeying constraints. In this work, we consider a VLN-operated drone platform and enhance its safety by formulating a novel scene-aware CBF that leverages ego-centric observations from a camera which has both Red-Green-Blue as well as Depth (RGB-D) channels. A CBF-less baseline system uses a Vision-Language Encoder with cross-modal attention to convert commands into an ordered sequence of landmarks. An object detection model identifies and verifies these landmarks in the captured images to generate a planned path. To further enhance safety, an Adaptive Safety Margin Algorithm (ASMA) is proposed. ASMA tracks moving objects and performs scene-aware CBF evaluation on-the-fly, which serves as an additional constraint within the MPC framework. By continuously identifying potentially risky observations, the system performs prediction in real time about unsafe conditions and proactively adjusts its control actions to maintain safe navigation throughout the trajectory. Deployed on a Parrot Bebop2 quadrotor in the Gazebo environment using the Robot Operating System (ROS), ASMA achieves 64%-67% increase in success rates with only a slight increase (1.4%-5.8%) in trajectory lengths compared to the baseline CBF-less VLN.
♻ ☆ Closed Loop Interactive Embodied Reasoning for Robot Manipulation ICRA 2025
Embodied reasoning systems integrate robotic hardware and cognitive processes to perform complex tasks, typically in response to a natural language query about a specific physical environment. This usually involves changing the belief about the scene or physically interacting and changing the scene (e.g. sort the objects from lightest to heaviest). In order to facilitate the development of such systems we introduce a new modular Closed Loop Interactive Embodied Reasoning (CLIER) approach that takes into account the measurements of non-visual object properties, changes in the scene caused by external disturbances as well as uncertain outcomes of robotic actions. CLIER performs multi-modal reasoning and action planning and generates a sequence of primitive actions that can be executed by a robot manipulator. Our method operates in a closed loop, responding to changes in the environment. Our approach is developed with the use of MuBle simulation environment and tested in 10 interactive benchmark scenarios. We extensively evaluate our reasoning approach in simulation and in real-world manipulation tasks with a success rate above 76% and 64%, respectively.
comment: Accepted to ICRA 2025. Project page: https://michaal94.github.io/CLIER
♻ ☆ Is the House Ready For Sleeptime? Generating and Evaluating Situational Queries for Embodied Question Answering
We present and tackle the problem of Embodied Question Answering (EQA) with Situational Queries (S-EQA) in a household environment. Unlike prior EQA work tackling simple queries that directly reference target objects and properties ("What is the color of the car?"), situational queries (such as "Is the house ready for sleeptime?") are challenging as they require the agent to correctly identify multiple object-states (Doors: Closed, Lights: Off, etc.) and reach a consensus on their states for an answer. Towards this objective, we first introduce a novel Prompt-Generate-Evaluate (PGE) scheme that wraps around an LLM's output to generate unique situational queries and corresponding consensus object information. PGE is used to generate 2K datapoints in the VirtualHome simulator, which is then annotated for ground truth answers via a large scale user-study conducted on M-Turk. With a high rate of answerability (97.26%) on this study, we establish that LLMs are good at generating situational data. However, in evaluating the data using an LLM, we observe a low correlation of 46.2% with the ground truth human annotations; indicating that while LLMs are good at generating situational data, they struggle to answer them according to consensus. When asked for reasoning, we observe the LLM often goes against commonsense in justifying its answer. Finally, we utilize PGE to generate situational data in a real-world environment, exposing LLM hallucination in generating reliable object-states when a structured scene graph is unavailable. To the best of our knowledge, this is the first work to introduce EQA in the context of situational queries and also the first to present a generative approach for query creation. We aim to foster research on improving the real-world usability of embodied agents through this work.
comment: 10 Pages
♻ ☆ MPPI-Generic: A CUDA Library for Stochastic Trajectory Optimization
This paper introduces a new C++/CUDA library for GPU-accelerated stochastic optimization called MPPI-Generic. It provides implementations of Model Predictive Path Integral control, Tube-Model Predictive Path Integral Control, and Robust Model Predictive Path Integral Control, and allows for these algorithms to be used across many pre-existing dynamics models and cost functions. Furthermore, researchers can create their own dynamics models or cost functions following our API definitions without needing to change the actual Model Predictive Path Integral Control code. Finally, we compare computational performance to other popular implementations of Model Predictive Path Integral Control over a variety of GPUs to show the real-time capabilities our library can allow for. Library code can be found at: https://acdslab.github.io/mppi-generic-website/ .
♻ ☆ Generalizable Imitation Learning Through Pre-Trained Representations ICRA 2025
In this paper, we leverage self-supervised vision transformer models and their emergent semantic abilities to improve the generalization abilities of imitation learning policies. We introduce DVK, an imitation learning algorithm that leverages rich pre-trained Visual Transformer patch-level embeddings to obtain better generalization when learning through demonstrations. Our learner sees the world by clustering appearance features into groups associated with semantic concepts, forming stable keypoints that generalize across a wide range of appearance variations and object types. We demonstrate how this representation enables generalized behaviour by evaluating imitation learning across a diverse dataset of object manipulation tasks. To facilitate further study of generalization in Imitation Learning, all of our code for the method and evaluation, as well as the dataset, is made available.
comment: ICRA 2025 Version
♻ ☆ LEMMo-Plan: LLM-Enhanced Learning from Multi-Modal Demonstration for Planning Sequential Contact-Rich Manipulation Tasks
Large Language Models (LLMs) have gained popularity in task planning for long-horizon manipulation tasks. To enhance the validity of LLM-generated plans, visual demonstrations and online videos have been widely employed to guide the planning process. However, for manipulation tasks involving subtle movements but rich contact interactions, visual perception alone may be insufficient for the LLM to fully interpret the demonstration. Additionally, visual data provides limited information on force-related parameters and conditions, which are crucial for effective execution on real robots. In this paper, we introduce an in-context learning framework that incorporates tactile and force-torque information from human demonstrations to enhance LLMs' ability to generate plans for new task scenarios. We propose a bootstrapped reasoning pipeline that sequentially integrates each modality into a comprehensive task plan. This task plan is then used as a reference for planning in new task configurations. Real-world experiments on two different sequential manipulation tasks demonstrate the effectiveness of our framework in improving LLMs' understanding of multi-modal demonstrations and enhancing the overall planning performance.
♻ ☆ M3TR: A Generalist Model for Real-World HD Map Completion
Autonomous vehicles rely on HD maps for their operation, but offline HD maps eventually become outdated. For this reason, online HD map construction methods use live sensor data to infer map information instead. Research on real map changes shows that oftentimes entire parts of an HD map remain unchanged and can be used as a prior. We therefore introduce M3TR (Multi-Masking Map Transformer), a generalist approach for HD map completion both with and without offline HD map priors. As a necessary foundation, we address shortcomings in ground truth labels for Argoverse 2 and nuScenes and propose the first comprehensive benchmark for HD map completion. Unlike existing models that specialize in a single kind of map change, which is unrealistic for deployment, our Generalist model handles all kinds of changes, matching the effectiveness of Expert models. With our map masking as augmentation regime, we can even achieve a +1.4 mAP improvement without a prior. Finally, by fully utilizing prior HD map elements and optimizing query designs, M3TR outperforms existing methods by +4.3 mAP while being the first real-world deployable model for offline HD map priors. Code is available at https://github.com/immel-f/m3tr
♻ ☆ Efficient Model-Based Reinforcement Learning Through Optimistic Thompson Sampling ICLR
Learning complex robot behavior through interactions with the environment necessitates principled exploration. Effective strategies should prioritize exploring regions of the state-action space that maximize rewards, with optimistic exploration emerging as a promising direction aligned with this idea and enabling sample-efficient reinforcement learning. However, existing methods overlook a crucial aspect: the need for optimism to be informed by a belief connecting the reward and state. To address this, we propose a practical, theoretically grounded approach to optimistic exploration based on Thompson sampling. Our model structure is the first that allows for reasoning about joint uncertainty over transitions and rewards. We apply our method on a set of MuJoCo and VMAS continuous control tasks. Our experiments demonstrate that optimistic exploration significantly accelerates learning in environments with sparse rewards, action penalties, and difficult-to-explore regions. Furthermore, we provide insights into when optimism is beneficial and emphasize the critical role of model uncertainty in guiding exploration.
comment: Appearing in ICLR, 2025
♻ ☆ Ergodic Trajectory Optimization on Generalized Domains Using Maximum Mean Discrepancy ICRA 2025
We present a novel formulation of ergodic trajectory optimization that can be specified over general domains using kernel maximum mean discrepancy. Ergodic trajectory optimization is an effective approach that generates coverage paths for problems related to robotic inspection, information gathering problems, and search and rescue. These optimization schemes compel the robot to spend time in a region proportional to the expected utility of visiting that region. Current methods for ergodic trajectory optimization rely on domain-specific knowledge, e.g., a defined utility map, and well-defined spatial basis functions to produce ergodic trajectories. Here, we present a generalization of ergodic trajectory optimization based on maximum mean discrepancy that requires only samples from the search domain. We demonstrate the ability of our approach to produce coverage trajectories on a variety of problem domains including robotic inspection of objects with differential kinematics constraints and on Lie groups without having access to domain specific knowledge. Furthermore, we show favorable computational scaling compared to existing state-of-the-art methods for ergodic trajectory optimization with a trade-off between domain specific knowledge and computational scaling, thus extending the versatility of ergodic coverage on a wider application domain.
comment: 6 pages (excluding references), 1 table, 8 figures, submitted to ICRA 2025
♻ ☆ Demonstration-Enhanced Adaptive Multi-Objective Robot Navigation
Preference-aligned robot navigation in human environments is typically achieved through learning-based approaches, utilizing user feedback or demonstrations for personalization. However, personal preferences are subject to change and might even be context-dependent. Yet traditional reinforcement learning (RL) approaches with static reward functions often fall short in adapting to varying user preferences, inevitably reflecting demonstrations once training is completed. This paper introduces a structured framework that combines demonstration-based learning with multi-objective reinforcement learning (MORL). To ensure real-world applicability, our approach allows for dynamic adaptation of the robot navigation policy to changing user preferences without retraining. It fluently modulates the amount of demonstration data reflection and other preference-related objectives. Through rigorous evaluations, including a baseline comparison and sim-to-real transfer on two robots, we demonstrate our framework's capability to adapt to user preferences accurately while achieving high navigational performance in terms of collision avoidance and goal pursuance.
♻ ☆ Extended Friction Models for the Physics Simulation of Servo Actuators
Accurate physical simulation is crucial for the development and validation of control algorithms in robotic systems. Recent works in Reinforcement Learning (RL) take notably advantage of extensive simulations to produce efficient robot control. State-of-the-art servo actuator models generally fail at capturing the complex friction dynamics of these systems. This limits the transferability of simulated behaviors to real-world applications. In this work, we present extended friction models that allow to more accurately simulate servo actuator dynamics. We propose a comprehensive analysis of various friction models, present a method for identifying model parameters using recorded trajectories from a pendulum test bench, and demonstrate how these models can be integrated into physics engines. The proposed friction models are validated on four distinct servo actuators and tested on 2R manipulators, showing significant improvements in accuracy over the standard Coulomb-Viscous model. Our results highlight the importance of considering advanced friction effects in the simulation of servo actuators to enhance the realism and reliability of robotic simulations.
♻ ☆ FRASA: An End-to-End Reinforcement Learning Agent for Fall Recovery and Stand Up of Humanoid Robots
Humanoid robotics faces significant challenges in achieving stable locomotion and recovering from falls in dynamic environments. Traditional methods, such as Model Predictive Control (MPC) and Key Frame Based (KFB) routines, either require extensive fine-tuning or lack real-time adaptability. This paper introduces FRASA, a Deep Reinforcement Learning (DRL) agent that integrates fall recovery and stand up strategies into a unified framework. Leveraging the Cross-Q algorithm, FRASA significantly reduces training time and offers a versatile recovery strategy that adapts to unpredictable disturbances. Comparative tests on Sigmaban humanoid robots demonstrate FRASA superior performance against the KFB method deployed in the RoboCup 2023 by the Rhoban Team, world champion of the KidSize League.
♻ ☆ Highly dynamic physical interaction for robotics: design and control of an active remote center of compliance
Robot interaction control is often limited to low dynamics or low flexibility, depending on whether an active or passive approach is chosen. In this work, we introduce a hybrid control scheme that combines the advantages of active and passive interaction control. To accomplish this, we propose the design of a novel Active Remote Center of Compliance (ARCC), which is based on a passive and active element which can be used to directly control the interaction forces. We introduce surrogate models for a dynamic comparison against purely robot-based interaction schemes. In a comparative validation, ARCC drastically improves the interaction dynamics, leading to an increase in the motion bandwidth of up to 31 times. We introduce further our control approach as well as the integration in the robot controller. Finally, we analyze ARCC on different industrial benchmarks like peg-in-hole, top-hat rail assembly and contour following problems and compare it against the state of the art, to highlight the dynamic and flexibility. The proposed system is especially suited if the application requires a low cycle time combined with a sensitive manipulation.
comment: \copyright 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
♻ ☆ Reconfiguration and Locomotion with Joint Movements in the Amoebot Model
We are considering the geometric amoebot model where a set of $n$ amoebots is placed on the triangular grid. An amoebot is able to send information to its neighbors, and to move via expansions and contractions. Since amoebots and information can only travel node by node, most problems have a natural lower bound of $\Omega(D)$ where $D$ denotes the diameter of the structure. Inspired by the nervous and muscular system, Feldmann et al. have proposed the reconfigurable circuit extension and the joint movement extension of the amoebot model with the goal of breaking this lower bound. In the joint movement extension, the way amoebots move is altered. Amoebots become able to push and pull other amoebots. Feldmann et al. demonstrated the power of joint movements by transforming a line of amoebots into a rhombus within $O(\log n)$ rounds. However, they left the details of the extension open. The goal of this paper is therefore to formalize and extend the joint movement extension. In order to provide a proof of concept for the extension, we consider two fundamental problems of modular robot systems: reconfiguration and locomotion. We approach these problems by defining meta-modules of rhombical and hexagonal shape, respectively. The meta-modules are capable of movement primitives like sliding, rotating, and tunneling. This allows us to simulate reconfiguration algorithms of various modular robot systems. Finally, we construct three amoebot structures capable of locomotion by rolling, crawling, and walking, respectively.
Computer Vision 146
☆ Robusto-1 Dataset: Comparing Humans and VLMs on real out-of-distribution Autonomous Driving VQA from Peru
As multimodal foundational models start being deployed experimentally in Self-Driving cars, a reasonable question we ask ourselves is how similar to humans do these systems respond in certain driving situations -- especially those that are out-of-distribution? To study this, we create the Robusto-1 dataset that uses dashcam video data from Peru, a country with one of the worst (aggressive) drivers in the world, a high traffic index, and a high ratio of bizarre to non-bizarre street objects likely never seen in training. In particular, to preliminarly test at a cognitive level how well Foundational Visual Language Models (VLMs) compare to Humans in Driving, we move away from bounding boxes, segmentation maps, occupancy maps or trajectory estimation to multi-modal Visual Question Answering (VQA) comparing both humans and machines through a popular method in systems neuroscience known as Representational Similarity Analysis (RSA). Depending on the type of questions we ask and the answers these systems give, we will show in what cases do VLMs and Humans converge or diverge allowing us to probe on their cognitive alignment. We find that the degree of alignment varies significantly depending on the type of questions asked to each type of system (Humans vs VLMs), highlighting a gap in their alignment.
comment: A pre-print. 26 pages. Link to Code + Data: https://huggingface.co/datasets/Artificio/robusto-1
☆ Denoising Score Distillation: From Noisy Diffusion Pretraining to One-Step High-Quality Generation
Diffusion models have achieved remarkable success in generating high-resolution, realistic images across diverse natural distributions. However, their performance heavily relies on high-quality training data, making it challenging to learn meaningful distributions from corrupted samples. This limitation restricts their applicability in scientific domains where clean data is scarce or costly to obtain. In this work, we introduce denoising score distillation (DSD), a surprisingly effective and novel approach for training high-quality generative models from low-quality data. DSD first pretrains a diffusion model exclusively on noisy, corrupted samples and then distills it into a one-step generator capable of producing refined, clean outputs. While score distillation is traditionally viewed as a method to accelerate diffusion models, we show that it can also significantly enhance sample quality, particularly when starting from a degraded teacher model. Across varying noise levels and datasets, DSD consistently improves generative performancewe summarize our empirical evidence in Fig. 1. Furthermore, we provide theoretical insights showing that, in a linear model setting, DSD identifies the eigenspace of the clean data distributions covariance matrix, implicitly regularizing the generator. This perspective reframes score distillation as not only a tool for efficiency but also a mechanism for improving generative models, particularly in low-quality data settings.
comment: First Author and Second Author contributed equally to this work. The last two authors equally advised this work
VisBias: Measuring Explicit and Implicit Social Biases in Vision Language Models
This research investigates both explicit and implicit social biases exhibited by Vision-Language Models (VLMs). The key distinction between these bias types lies in the level of awareness: explicit bias refers to conscious, intentional biases, while implicit bias operates subconsciously. To analyze explicit bias, we directly pose questions to VLMs related to gender and racial differences: (1) Multiple-choice questions based on a given image (e.g., "What is the education level of the person in the image?") (2) Yes-No comparisons using two images (e.g., "Is the person in the first image more educated than the person in the second image?") For implicit bias, we design tasks where VLMs assist users but reveal biases through their responses: (1) Image description tasks: Models are asked to describe individuals in images, and we analyze disparities in textual cues across demographic groups. (2) Form completion tasks: Models draft a personal information collection form with 20 attributes, and we examine correlations among selected attributes for potential biases. We evaluate Gemini-1.5, GPT-4V, GPT-4o, LLaMA-3.2-Vision and LLaVA-v1.6. Our code and data are publicly available at https://github.com/uscnlp-lime/VisBias.
comment: 9 pages
☆ Alligat0R: Pre-Training Through Co-Visibility Segmentation for Relative Camera Pose Regression
Pre-training techniques have greatly advanced computer vision, with CroCo's cross-view completion approach yielding impressive results in tasks like 3D reconstruction and pose regression. However, this method requires substantial overlap between training pairs, limiting its effectiveness. We introduce Alligat0R, a novel pre-training approach that reformulates cross-view learning as a co-visibility segmentation task. Our method predicts whether each pixel in one image is co-visible in the second image, occluded, or outside the field of view (FOV), enabling the use of image pairs with any degree of overlap and providing interpretable predictions. To support this, we present Cub3, a large-scale dataset with 2.5 million image pairs and dense co-visibility annotations derived from the nuScenes dataset. This dataset includes diverse scenarios with varying degrees of overlap. The experiments show that Alligat0R significantly outperforms CroCo in relative pose regression, especially in scenarios with limited overlap. Alligat0R and Cub3 will be made publicly available.
☆ LBM: Latent Bridge Matching for Fast Image-to-Image Translation
In this paper, we introduce Latent Bridge Matching (LBM), a new, versatile and scalable method that relies on Bridge Matching in a latent space to achieve fast image-to-image translation. We show that the method can reach state-of-the-art results for various image-to-image tasks using only a single inference step. In addition to its efficiency, we also demonstrate the versatility of the method across different image translation tasks such as object removal, normal and depth estimation, and object relighting. We also derive a conditional framework of LBM and demonstrate its effectiveness by tackling the tasks of controllable image relighting and shadow generation. We provide an open-source implementation of the method at https://github.com/gojasper/LBM.
☆ VisRL: Intention-Driven Visual Perception via Reinforced Reasoning
Visual understanding is inherently intention-driven - humans selectively focus on different regions of a scene based on their goals. Recent advances in large multimodal models (LMMs) enable flexible expression of such intentions through natural language, allowing queries to guide visual reasoning processes. Frameworks like Visual Chain-of-Thought have demonstrated the benefit of incorporating explicit reasoning steps, where the model predicts a focus region before answering a query. However, existing approaches rely heavily on supervised training with annotated intermediate bounding boxes, which severely limits scalability due to the combinatorial explosion of intention-region pairs. To overcome this limitation, we propose VisRL, the first framework that applies reinforcement learning (RL) to the problem of intention-driven visual perception. VisRL optimizes the entire visual reasoning process using only reward signals. By treating intermediate focus selection as a internal decision optimized through trial-and-error, our method eliminates the need for costly region annotations while aligning more closely with how humans learn to perceive the world. Extensive experiments across multiple benchmarks show that VisRL consistently outperforms strong baselines, demonstrating both its effectiveness and its strong generalization across different LMMs. Our code is available at this [URL](https://github.com/zhangquanchen/VisRL).
comment: 18pages,11 figures
☆ From Limited Labels to Open Domains: An Efficient Learning Paradigm for UAV-view Geo-Localization
Traditional UAV-view Geo-Localization (UVGL) supervised paradigms are constrained by the strict reliance on paired data for positive sample selection, which limits their ability to learn cross-view domain-invariant representations from unpaired data. Moreover, it is necessary to reconstruct the pairing relationship with expensive re-labeling costs for scenario-specific training when deploying in a new domain, which fails to meet the practical demands of open-environment applications. To address this issue, we propose a novel cross-domain invariance knowledge transfer network (CDIKTNet), which comprises a cross-domain invariance sub-network and a cross-domain transfer sub-network to realize a closed-loop framework of invariance feature learning and knowledge transfer. The cross-domain invariance sub-network is utilized to construct an essentially shared feature space across domains by learning structural invariance and spatial invariance in cross-view features. Meanwhile, the cross-domain transfer sub-network uses these invariant features as anchors and employs a dual-path contrastive memory learning mechanism to mine latent cross-domain correlation patterns in unpaired data. Extensive experiments demonstrate that our method achieves state-of-the-art performance under fully supervised conditions. More importantly, with merely 2\% paired data, our method exhibits performance comparable to existing supervised paradigms and possesses the ability to transfer directly to qualify for applications in the other scenarios completely without any prior pairing relationship.
☆ FastInstShadow: A Simple Query-Based Model for Instance Shadow Detection
Instance shadow detection is the task of detecting pairs of shadows and objects, where existing methods first detect shadows and objects independently, then associate them. This paper introduces FastInstShadow, a method that enhances detection accuracy through a query-based architecture featuring an association transformer decoder with two dual-path transformer decoders to assess relationships between shadows and objects during detection. Experimental results using the SOBA dataset showed that the proposed method outperforms all existing methods across all criteria. This method makes real-time processing feasible for moderate-resolution images with better accuracy than SSISv2, the most accurate existing method. Our code is available at https://github.com/wlotkr/FastInstShadow.
☆ CPAny: Couple With Any Encoder to Refer Multi-Object Tracking
Referring Multi-Object Tracking (RMOT) aims to localize target trajectories specified by natural language expressions in videos. Existing RMOT methods mainly follow two paradigms, namely, one-stage strategies and two-stage ones. The former jointly trains tracking with referring but suffers from substantial computational overhead. Although the latter improves computational efficiency, its CLIP-inspired dual-tower architecture restricts compatibility with other visual/text backbones and is not future-proof. To overcome these limitations, we propose CPAny, a novel encoder-decoder framework for two-stage RMOT, which introduces two core components: (1) a Contextual Visual Semantic Abstractor (CVSA) performs context-aware aggregation on visual backbone features and projects them into a unified semantic space; (2) a Parallel Semantic Summarizer (PSS) decodes the visual and linguistic features at the semantic level in parallel and generates referring scores. By replacing the inherent feature alignment of encoders with a self-constructed unified semantic space, CPAny achieves flexible compatibility with arbitrary emerging visual / text encoders. Meanwhile, CPAny aggregates contextual information by encoding only once and processes multiple expressions in parallel, significantly reducing computational redundancy. Extensive experiments on the Refer-KITTI and Refer-KITTI-V2 datasets show that CPAny outperforms SOTA methods across diverse encoder combinations, with a particular 7.77\% HOTA improvement on Refer-KITTI-V2. Code will be available soon.
☆ PointVLA: Injecting the 3D World into Vision-Language-Action Models
Vision-Language-Action (VLA) models excel at robotic tasks by leveraging large-scale 2D vision-language pretraining, but their reliance on RGB images limits spatial reasoning critical for real-world interaction. Retraining these models with 3D data is computationally prohibitive, while discarding existing 2D datasets wastes valuable resources. To bridge this gap, we propose PointVLA, a framework that enhances pre-trained VLAs with point cloud inputs without requiring retraining. Our method freezes the vanilla action expert and injects 3D features via a lightweight modular block. To identify the most effective way of integrating point cloud representations, we conduct a skip-block analysis to pinpoint less useful blocks in the vanilla action expert, ensuring that 3D features are injected only into these blocks--minimizing disruption to pre-trained representations. Extensive experiments demonstrate that PointVLA outperforms state-of-the-art 2D imitation learning methods, such as OpenVLA, Diffusion Policy and DexVLA, across both simulated and real-world robotic tasks. Specifically, we highlight several key advantages of PointVLA enabled by point cloud integration: (1) Few-shot multi-tasking, where PointVLA successfully performs four different tasks using only 20 demonstrations each; (2) Real-vs-photo discrimination, where PointVLA distinguishes real objects from their images, leveraging 3D world knowledge to improve safety and reliability; (3) Height adaptability, Unlike conventional 2D imitation learning methods, PointVLA enables robots to adapt to objects at varying table height that unseen in train data. Furthermore, PointVLA achieves strong performance in long-horizon tasks, such as picking and packing objects from a moving conveyor belt, showcasing its ability to generalize across complex, dynamic environments.
☆ PE3R: Perception-Efficient 3D Reconstruction
Recent advancements in 2D-to-3D perception have significantly improved the understanding of 3D scenes from 2D images. However, existing methods face critical challenges, including limited generalization across scenes, suboptimal perception accuracy, and slow reconstruction speeds. To address these limitations, we propose Perception-Efficient 3D Reconstruction (PE3R), a novel framework designed to enhance both accuracy and efficiency. PE3R employs a feed-forward architecture to enable rapid 3D semantic field reconstruction. The framework demonstrates robust zero-shot generalization across diverse scenes and objects while significantly improving reconstruction speed. Extensive experiments on 2D-to-3D open-vocabulary segmentation and 3D reconstruction validate the effectiveness and versatility of PE3R. The framework achieves a minimum 9-fold speedup in 3D semantic field reconstruction, along with substantial gains in perception accuracy and reconstruction precision, setting new benchmarks in the field. The code is publicly available at: https://github.com/hujiecpp/PE3R.
☆ ADROIT: A Self-Supervised Framework for Learning Robust Representations for Active Learning
Active learning aims to select optimal samples for labeling, minimizing annotation costs. This paper introduces a unified representation learning framework tailored for active learning with task awareness. It integrates diverse sources, comprising reconstruction, adversarial, self-supervised, knowledge-distillation, and classification losses into a unified VAE-based ADROIT approach. The proposed approach comprises three key components - a unified representation generator (VAE), a state discriminator, and a (proxy) task-learner or classifier. ADROIT learns a latent code using both labeled and unlabeled data, incorporating task-awareness by leveraging labeled data with the proxy classifier. Unlike previous approaches, the proxy classifier additionally employs a self-supervised loss on unlabeled data and utilizes knowledge distillation to align with the target task-learner. The state discriminator distinguishes between labeled and unlabeled data, facilitating the selection of informative unlabeled samples. The dynamic interaction between VAE and the state discriminator creates a competitive environment, with the VAE attempting to deceive the discriminator, while the state discriminator learns to differentiate between labeled and unlabeled inputs. Extensive evaluations on diverse datasets and ablation analysis affirm the effectiveness of the proposed model.
☆ Think Before You Segment: High-Quality Reasoning Segmentation with GPT Chain of Thoughts
Reasoning segmentation is a challenging vision-language task that aims to output the segmentation mask with respect to a complex, implicit, and even non-visual query text. Previous works incorporated multimodal Large Language Models (MLLMs) with segmentation models to approach the difficult problem. However, their segmentation quality often falls short in complex cases, particularly when dealing with out-of-domain objects with intricate structures, blurry boundaries, occlusions, or high similarity with surroundings. In this paper, we introduce ThinkFirst, a training-free reasoning segmentation framework that leverages GPT's chain of thought to address these challenging cases. Our approach allows GPT-4o or other powerful MLLMs to generate a detailed, chain-of-thought description of an image. This summarized description is then passed to a language-instructed segmentation assistant to aid the segmentation process. Our framework allows users to easily interact with the segmentation agent using multimodal inputs, such as easy text and image scribbles, for successive refinement or communication. We evaluate the performance of ThinkFirst on diverse objects. Extensive experiments show that, this zero-shot-CoT approach significantly improves the vanilla reasoning segmentation agent, both qualitatively and quantitatively, while being less sensitive or critical to user-supplied prompts after Thinking First.
comment: Project page: https://cse.hkust.edu.hk/~skao/thinkfirst.html
☆ V2Flow: Unifying Visual Tokenization and Large Language Model Vocabularies for Autoregressive Image Generation
We propose V2Flow, a novel tokenizer that produces discrete visual tokens capable of high-fidelity reconstruction, while ensuring structural and latent distribution alignment with the vocabulary space of large language models (LLMs). Leveraging this tight visual-vocabulary coupling, V2Flow enables autoregressive visual generation on top of existing LLMs. Our approach formulates visual tokenization as a flow-matching problem, aiming to learn a mapping from a standard normal prior to the continuous image distribution, conditioned on token sequences embedded within the LLMs vocabulary space. The effectiveness of V2Flow stems from two core designs. First, we propose a Visual Vocabulary resampler, which compresses visual data into compact token sequences, with each represented as a soft categorical distribution over LLM's vocabulary. This allows seamless integration of visual tokens into existing LLMs for autoregressive visual generation. Second, we present a masked autoregressive Rectified-Flow decoder, employing a masked transformer encoder-decoder to refine visual tokens into contextually enriched embeddings. These embeddings then condition a dedicated velocity field for precise reconstruction. Additionally, an autoregressive rectified-flow sampling strategy is incorporated, ensuring flexible sequence lengths while preserving competitive reconstruction quality. Extensive experiments show that V2Flow outperforms mainstream VQ-based tokenizers and facilitates autoregressive visual generation on top of existing. https://github.com/zhangguiwei610/V2Flow
comment: 11 pages, 6 figures
☆ NeAS: 3D Reconstruction from X-ray Images using Neural Attenuation Surface
Reconstructing three-dimensional (3D) structures from two-dimensional (2D) X-ray images is a valuable and efficient technique in medical applications that requires less radiation exposure than computed tomography scans. Recent approaches that use implicit neural representations have enabled the synthesis of novel views from sparse X-ray images. However, although image synthesis has improved the accuracy, the accuracy of surface shape estimation remains insufficient. Therefore, we propose a novel approach for reconstructing 3D scenes using a Neural Attenuation Surface (NeAS) that simultaneously captures the surface geometry and attenuation coefficient fields. NeAS incorporates a signed distance function (SDF), which defines the attenuation field and aids in extracting the 3D surface within the scene. We conducted experiments using simulated and authentic X-ray images, and the results demonstrated that NeAS could accurately extract 3D surfaces within a scene using only 2D X-ray images.
☆ LLaVA-RadZ: Can Multimodal Large Language Models Effectively Tackle Zero-shot Radiology Recognition?
Recently, multimodal large models (MLLMs) have demonstrated exceptional capabilities in visual understanding and reasoning across various vision-language tasks. However, MLLMs usually perform poorly in zero-shot medical disease recognition, as they do not fully exploit the captured features and available medical knowledge. To address this challenge, we propose LLaVA-RadZ, a simple yet effective framework for zero-shot medical disease recognition. Specifically, we design an end-to-end training strategy, termed Decoding-Side Feature Alignment Training (DFAT) to take advantage of the characteristics of the MLLM decoder architecture and incorporate modality-specific tokens tailored for different modalities, which effectively utilizes image and text representations and facilitates robust cross-modal alignment. Additionally, we introduce a Domain Knowledge Anchoring Module (DKAM) to exploit the intrinsic medical knowledge of large models, which mitigates the category semantic gap in image-text alignment. DKAM improves category-level alignment, allowing for accurate disease recognition. Extensive experiments on multiple benchmarks demonstrate that our LLaVA-RadZ significantly outperforms traditional MLLMs in zero-shot disease recognition and exhibits the state-of-the-art performance compared to the well-established and highly-optimized CLIP-based approaches.
Chameleon: Fast-slow Neuro-symbolic Lane Topology Extraction ICRA 2025
Lane topology extraction involves detecting lanes and traffic elements and determining their relationships, a key perception task for mapless autonomous driving. This task requires complex reasoning, such as determining whether it is possible to turn left into a specific lane. To address this challenge, we introduce neuro-symbolic methods powered by vision-language foundation models (VLMs). Existing approaches have notable limitations: (1) Dense visual prompting with VLMs can achieve strong performance but is costly in terms of both financial resources and carbon footprint, making it impractical for robotics applications. (2) Neuro-symbolic reasoning methods for 3D scene understanding fail to integrate visual inputs when synthesizing programs, making them ineffective in handling complex corner cases. To this end, we propose a fast-slow neuro-symbolic lane topology extraction algorithm, named Chameleon, which alternates between a fast system that directly reasons over detected instances using synthesized programs and a slow system that utilizes a VLM with a chain-of-thought design to handle corner cases. Chameleon leverages the strengths of both approaches, providing an affordable solution while maintaining high performance. We evaluate the method on the OpenLane-V2 dataset, showing consistent improvements across various baseline detectors. Our code, data, and models are publicly available at https://github.com/XR-Lee/neural-symbolic
comment: ICRA 2025, Project Page: https://github.com/XR-Lee/neural-symbolic
☆ VLRMBench: A Comprehensive and Challenging Benchmark for Vision-Language Reward Models
Although large visual-language models (LVLMs) have demonstrated strong performance in multimodal tasks, errors may occasionally arise due to biases during the reasoning process. Recently, reward models (RMs) have become increasingly pivotal in the reasoning process. Specifically, process RMs evaluate each reasoning step, outcome RMs focus on the assessment of reasoning results, and critique RMs perform error analysis on the entire reasoning process, followed by corrections. However, existing benchmarks for vision-language RMs (VLRMs) typically assess only a single aspect of their capabilities (e.g., distinguishing between two answers), thus limiting the all-round evaluation and restricting the development of RMs in the visual-language domain. To address this gap, we propose a comprehensive and challenging benchmark, dubbed as VLRMBench, encompassing 12,634 questions. VLRMBench is constructed based on three distinct types of datasets, covering mathematical reasoning, hallucination understanding, and multi-image understanding. We design 12 tasks across three major categories, focusing on evaluating VLRMs in the aspects of process understanding, outcome judgment, and critique generation. Extensive experiments are conducted on 21 open-source models and 5 advanced closed-source models, highlighting the challenges posed by VLRMBench. For instance, in the `Forecasting Future', a binary classification task, the advanced GPT-4o achieves only a 76.0% accuracy. Additionally, we perform comprehensive analytical studies, offering valuable insights for the future development of VLRMs. We anticipate that VLRMBench will serve as a pivotal benchmark in advancing VLRMs. Code and datasets will be available at https://github.com/JCruan519/VLRMBench.
comment: 12 pages, 4 figures. This work is in progress
☆ SOGS: Second-Order Anchor for Advanced 3D Gaussian Splatting CVPR 2025
Anchor-based 3D Gaussian splatting (3D-GS) exploits anchor features in 3D Gaussian prediction, which has achieved impressive 3D rendering quality with reduced Gaussian redundancy. On the other hand, it often encounters the dilemma among anchor features, model size, and rendering quality - large anchor features lead to large 3D models and high-quality rendering whereas reducing anchor features degrades Gaussian attribute prediction which leads to clear artifacts in the rendered textures and geometries. We design SOGS, an anchor-based 3D-GS technique that introduces second-order anchors to achieve superior rendering quality and reduced anchor features and model size simultaneously. Specifically, SOGS incorporates covariance-based second-order statistics and correlation across feature dimensions to augment features within each anchor, compensating for the reduced feature size and improving rendering quality effectively. In addition, it introduces a selective gradient loss to enhance the optimization of scene textures and scene geometries, leading to high-quality rendering with small anchor features. Extensive experiments over multiple widely adopted benchmarks show that SOGS achieves superior rendering quality in novel view synthesis with clearly reduced model size.
comment: Accepted by CVPR 2025
☆ A Review on Geometry and Surface Inspection in 3D Concrete Printing
Given the substantial growth in the use of additive manufacturing in construction (AMC), it is necessary to ensure the quality of printed specimens which can be much more complex than conventionally manufactured parts. This study explores the various aspects of geometry and surface quality control for 3D concrete printing (3DCP), with a particular emphasis on deposition-based methods, namely extrusion and shotcrete 3D printing (SC3DP). A comprehensive overview of existing quality control (QC) methods and strategies is provided and preceded by an in-depth discussion. Four categories of data capture technologies are investigated and their advantages and limitations in the context of AMC are discussed. Additionally, the effects of environmental conditions and objects' properties on data capture are also analyzed. The study extends to automated data capture planning methods for different sensors. Furthermore, various quality control strategies are explored across different stages of the fabrication cycle of the printed object including: (i) During printing, (ii) Layer-wise, (iii) Preassembly, and (iv) Assembly. In addition to reviewing the methods already applied in AMC, we also address various research gaps and future trends and highlight potential methodologies from adjacent domains that could be transferred to AMC.
☆ YOLOE: Real-Time Seeing Anything
Object detection and segmentation are widely employed in computer vision applications, yet conventional models like YOLO series, while efficient and accurate, are limited by predefined categories, hindering adaptability in open scenarios. Recent open-set methods leverage text prompts, visual cues, or prompt-free paradigm to overcome this, but often compromise between performance and efficiency due to high computational demands or deployment complexity. In this work, we introduce YOLOE, which integrates detection and segmentation across diverse open prompt mechanisms within a single highly efficient model, achieving real-time seeing anything. For text prompts, we propose Re-parameterizable Region-Text Alignment (RepRTA) strategy. It refines pretrained textual embeddings via a re-parameterizable lightweight auxiliary network and enhances visual-textual alignment with zero inference and transferring overhead. For visual prompts, we present Semantic-Activated Visual Prompt Encoder (SAVPE). It employs decoupled semantic and activation branches to bring improved visual embedding and accuracy with minimal complexity. For prompt-free scenario, we introduce Lazy Region-Prompt Contrast (LRPC) strategy. It utilizes a built-in large vocabulary and specialized embedding to identify all objects, avoiding costly language model dependency. Extensive experiments show YOLOE's exceptional zero-shot performance and transferability with high inference efficiency and low training cost. Notably, on LVIS, with 3$\times$ less training cost and 1.4$\times$ inference speedup, YOLOE-v8-S surpasses YOLO-Worldv2-S by 3.5 AP. When transferring to COCO, YOLOE-v8-L achieves 0.6 AP$^b$ and 0.4 AP$^m$ gains over closed-set YOLOv8-L with nearly 4$\times$ less training time. Code and models are available at https://github.com/THU-MIG/yoloe.
comment: 15 pages, 9 figures;
☆ Anatomy-Aware Conditional Image-Text Retrieval
Image-Text Retrieval (ITR) finds broad applications in healthcare, aiding clinicians and radiologists by automatically retrieving relevant patient cases in the database given the query image and/or report, for more efficient clinical diagnosis and treatment, especially for rare diseases. However conventional ITR systems typically only rely on global image or text representations for measuring patient image/report similarities, which overlook local distinctiveness across patient cases. This often results in suboptimal retrieval performance. In this paper, we propose an Anatomical Location-Conditioned Image-Text Retrieval (ALC-ITR) framework, which, given a query image and the associated suspicious anatomical region(s), aims to retrieve similar patient cases exhibiting the same disease or symptoms in the same anatomical region. To perform location-conditioned multimodal retrieval, we learn a medical Relevance-Region-Aligned Vision Language (RRA-VL) model with semantic global-level and region-/word-level alignment to produce generalizable, well-aligned multi-modal representations. Additionally, we perform location-conditioned contrastive learning to further utilize cross-pair region-level contrastiveness for improved multi-modal retrieval. We show that our proposed RRA-VL achieves state-of-the-art localization performance in phase-grounding tasks, and satisfying multi-modal retrieval performance with or without location conditioning. Finally, we thoroughly investigate the generalizability and explainability of our proposed ALC-ITR system in providing explanations and preliminary diagnosis reports given retrieved patient cases (conditioned on anatomical regions), with proper off-the-shelf LLM prompts.
comment: 16 pages, 10 figures
☆ EigenGS Representation: From Eigenspace to Gaussian Image Space
Principal Component Analysis (PCA), a classical dimensionality reduction technique, and 2D Gaussian representation, an adaptation of 3D Gaussian Splatting for image representation, offer distinct approaches to modeling visual data. We present EigenGS, a novel method that bridges these paradigms through an efficient transformation pipeline connecting eigenspace and image-space Gaussian representations. Our approach enables instant initialization of Gaussian parameters for new images without requiring per-image optimization from scratch, dramatically accelerating convergence. EigenGS introduces a frequency-aware learning mechanism that encourages Gaussians to adapt to different scales, effectively modeling varied spatial frequencies and preventing artifacts in high-resolution reconstruction. Extensive experiments demonstrate that EigenGS not only achieves superior reconstruction quality compared to direct 2D Gaussian fitting but also reduces necessary parameter count and training time. The results highlight EigenGS's effectiveness and generalization ability across images with varying resolutions and diverse categories, making Gaussian-based image representation both high-quality and viable for real-time applications.
☆ Divide and Conquer Self-Supervised Learning for High-Content Imaging
Self-supervised representation learning methods often fail to learn subtle or complex features, which can be dominated by simpler patterns which are much easier to learn. This limitation is particularly problematic in applications to science and engineering, as complex features can be critical for discovery and analysis. To address this, we introduce Split Component Embedding Registration (SpliCER), a novel architecture which splits the image into sections and distils information from each section to guide the model to learn more subtle and complex features without compromising on simpler features. SpliCER is compatible with any self-supervised loss function and can be integrated into existing methods without modification. The primary contributions of this work are as follows: i) we demonstrate that existing self-supervised methods can learn shortcut solutions when simple and complex features are both present; ii) we introduce a novel self-supervised training method, SpliCER, to overcome the limitations of existing methods, and achieve significant downstream performance improvements; iii) we demonstrate the effectiveness of SpliCER in cutting-edge medical and geospatial imaging settings. SpliCER offers a powerful new tool for representation learning, enabling models to uncover complex features which could be overlooked by other methods.
☆ Open-Set Gait Recognition from Sparse mmWave Radar Point Clouds
The adoption of Millimeter-Wave (mmWave) radar devices for human sensing, particularly gait recognition, has recently gathered significant attention due to their efficiency, resilience to environmental conditions, and privacy-preserving nature. In this work, we tackle the challenging problem of Open-set Gait Recognition (OSGR) from sparse mmWave radar point clouds. Unlike most existing research, which assumes a closed-set scenario, our work considers the more realistic open-set case, where unknown subjects might be present at inference time, and should be correctly recognized by the system. Point clouds are well-suited for edge computing applications with resource constraints, but are more significantly affected by noise and random fluctuations than other representations, like the more common micro-Doppler signature. This is the first work addressing open-set gait recognition with sparse point cloud data. To do so, we propose a novel neural network architecture that combines supervised classification with unsupervised reconstruction of the point clouds, creating a robust, rich, and highly regularized latent space of gait features. To detect unknown subjects at inference time, we introduce a probabilistic novelty detection algorithm that leverages the structured latent space and offers a tunable trade-off between inference speed and prediction accuracy. Along with this paper, we release mmGait10, an original human gait dataset featuring over five hours of measurements from ten subjects, under varied walking modalities. Extensive experimental results show that our solution attains F1-Score improvements by 24% over state-of-the-art methods, on average, and across multiple openness levels.
☆ CATPlan: Loss-based Collision Prediction in End-to-End Autonomous Driving
In recent years, there has been increased interest in the design, training, and evaluation of end-to-end autonomous driving (AD) systems. One often overlooked aspect is the uncertainty of planned trajectories predicted by these systems, despite awareness of their own uncertainty being key to achieve safety and robustness. We propose to estimate this uncertainty by adapting loss prediction from the uncertainty quantification literature. To this end, we introduce a novel light-weight module, dubbed CATPlan, that is trained to decode motion and planning embeddings into estimates of the collision loss used to partially supervise end-to-end AD systems. During inference, these estimates are interpreted as collision risk. We evaluate CATPlan on the safety-critical, nerf-based, closed-loop benchmark NeuroNCAP and find that it manages to detect collisions with a $54.8\%$ relative improvement to average precision over a GMM-based baseline in which the predicted trajectory is compared to the forecasted trajectories of other road users. Our findings indicate that the addition of CATPlan can lead to safer end-to-end AD systems and hope that our work will spark increased interest in uncertainty quantification for such systems.
☆ Analysis of 3D Urticaceae Pollen Classification Using Deep Learning Models
Due to the climate change, hay fever becomes a pressing healthcare problem with an increasing number of affected population, prolonged period of affect and severer symptoms. A precise pollen classification could help monitor the trend of allergic pollen in the air throughout the year and guide preventive strategies launched by municipalities. Most of the pollen classification works use 2D microscopy image or 2D projection derived from 3D image datasets. In this paper, we aim at using whole stack of 3D images for the classification and evaluating the classification performance with different deep learning models. The 3D image dataset used in this paper is from Urticaceae family, particularly the genera Urtica and Parietaria, which are morphologically similar yet differ significantly in allergenic potential. The pre-trained ResNet3D model, using optimal layer selection and extended epochs, achieved the best performance with an F1-score of 98.3%.
☆ AR-Diffusion: Asynchronous Video Generation with Auto-Regressive Diffusion CVPR 2025
The task of video generation requires synthesizing visually realistic and temporally coherent video frames. Existing methods primarily use asynchronous auto-regressive models or synchronous diffusion models to address this challenge. However, asynchronous auto-regressive models often suffer from inconsistencies between training and inference, leading to issues such as error accumulation, while synchronous diffusion models are limited by their reliance on rigid sequence length. To address these issues, we introduce Auto-Regressive Diffusion (AR-Diffusion), a novel model that combines the strengths of auto-regressive and diffusion models for flexible, asynchronous video generation. Specifically, our approach leverages diffusion to gradually corrupt video frames in both training and inference, reducing the discrepancy between these phases. Inspired by auto-regressive generation, we incorporate a non-decreasing constraint on the corruption timesteps of individual frames, ensuring that earlier frames remain clearer than subsequent ones. This setup, together with temporal causal attention, enables flexible generation of videos with varying lengths while preserving temporal coherence. In addition, we design two specialized timestep schedulers: the FoPP scheduler for balanced timestep sampling during training, and the AD scheduler for flexible timestep differences during inference, supporting both synchronous and asynchronous generation. Extensive experiments demonstrate the superiority of our proposed method, which achieves competitive and state-of-the-art results across four challenging benchmarks.
comment: Accepted by CVPR 2025
☆ GM-MoE: Low-Light Enhancement with Gated-Mechanism Mixture-of-Experts
Low-light enhancement has wide applications in autonomous driving, 3D reconstruction, remote sensing, surveillance, and so on, which can significantly improve information utilization. However, most existing methods lack generalization and are limited to specific tasks such as image recovery. To address these issues, we propose \textbf{Gated-Mechanism Mixture-of-Experts (GM-MoE)}, the first framework to introduce a mixture-of-experts network for low-light image enhancement. GM-MoE comprises a dynamic gated weight conditioning network and three sub-expert networks, each specializing in a distinct enhancement task. Combining a self-designed gated mechanism that dynamically adjusts the weights of the sub-expert networks for different data domains. Additionally, we integrate local and global feature fusion within sub-expert networks to enhance image quality by capturing multi-scale features. Experimental results demonstrate that the GM-MoE achieves superior generalization with respect to 25 compared approaches, reaching state-of-the-art performance on PSNR on 5 benchmarks and SSIM on 4 benchmarks, respectively.
☆ TimeStep Master: Asymmetrical Mixture of Timestep LoRA Experts for Versatile and Efficient Diffusion Models in Vision
Diffusion models have driven the advancement of vision generation over the past years. However, it is often difficult to apply these large models in downstream tasks, due to massive fine-tuning cost. Recently, Low-Rank Adaptation (LoRA) has been applied for efficient tuning of diffusion models. Unfortunately, the capabilities of LoRA-tuned diffusion models are limited, since the same LoRA is used for different timesteps of the diffusion process. To tackle this problem, we introduce a general and concise TimeStep Master (TSM) paradigm with two key fine-tuning stages. In the fostering stage (1-stage), we apply different LoRAs to fine-tune the diffusion model at different timestep intervals. This results in different TimeStep LoRA experts that can effectively capture different noise levels. In the assembling stage (2-stage), we design a novel asymmetrical mixture of TimeStep LoRA experts, via core-context collaboration of experts at multi-scale intervals. For each timestep, we leverage TimeStep LoRA expert within the smallest interval as the core expert without gating, and use experts within the bigger intervals as the context experts with time-dependent gating. Consequently, our TSM can effectively model the noise level via the expert in the finest interval, and adaptively integrate contexts from the experts of other scales, boosting the versatility of diffusion models. To show the effectiveness of our TSM paradigm, we conduct extensive experiments on three typical and popular LoRA-related tasks of diffusion models, including domain adaptation, post-pretraining, and model distillation. Our TSM achieves the state-of-the-art results on all these tasks, throughout various model structures (UNet, DiT and MM-DiT) and visual data modalities (Image, Video), showing its remarkable generalization capacity.
comment: 17 pages, 5 figures, 13 tables
☆ REF-VLM: Triplet-Based Referring Paradigm for Unified Visual Decoding
Multimodal Large Language Models (MLLMs) demonstrate robust zero-shot capabilities across diverse vision-language tasks after training on mega-scale datasets. However, dense prediction tasks, such as semantic segmentation and keypoint detection, pose significant challenges for MLLMs when represented solely as text outputs. Simultaneously, current MLLMs utilizing latent embeddings for visual task decoding generally demonstrate limited adaptability to both multi-task learning and multi-granularity scenarios. In this work, we present REF-VLM, an end-to-end framework for unified training of various visual decoding tasks. To address complex visual decoding scenarios, we introduce the Triplet-Based Referring Paradigm (TRP), which explicitly decouples three critical dimensions in visual decoding tasks through a triplet structure: concepts, decoding types, and targets. TRP employs symbolic delimiters to enforce structured representation learning, enhancing the parsability and interpretability of model outputs. Additionally, we construct Visual-Task Instruction Following Dataset (VTInstruct), a large-scale multi-task dataset containing over 100 million multimodal dialogue samples across 25 task types. Beyond text inputs and outputs, VT-Instruct incorporates various visual prompts such as point, box, scribble, and mask, and generates outputs composed of text and visual units like box, keypoint, depth and mask. The combination of different visual prompts and visual units generates a wide variety of task types, expanding the applicability of REF-VLM significantly. Both qualitative and quantitative experiments demonstrate that our REF-VLM outperforms other MLLMs across a variety of standard benchmarks. The code, dataset, and demo available at https://github.com/MacavityT/REF-VLM.
☆ Keeping Representation Similarity in Finetuning for Medical Image Analysis
Foundation models pretrained on large-scale natural images have been widely used to adapt to medical image analysis through finetuning. This is largely attributed to pretrained representations capturing universal, robust, and generalizable features, which can be reutilized by downstream tasks. However, these representations are later found to gradually vanish during finetuning, accompanied by a degradation of foundation model's original abilities, e.g., generalizability. In this paper, we argue that pretrained representations can be well preserved while still effectively adapting to downstream tasks. We study this by proposing a new finetuning method RepSim, which minimizes the distance between pretrained and finetuned representations via constraining learnable orthogonal manifold based on similarity invariance. Compared to standard finetuning methods, e.g., full finetuning, our method improves representation similarity by over 30% while maintaining competitive accuracy, and reduces sharpness by 42% across five medical image classification datasets. The code will be released.
comment: 12 pages, 6 figures
☆ Brain Inspired Adaptive Memory Dual-Net for Few-Shot Image Classification
Few-shot image classification has become a popular research topic for its wide application in real-world scenarios, however the problem of supervision collapse induced by single image-level annotation remains a major challenge. Existing methods aim to tackle this problem by locating and aligning relevant local features. However, the high intra-class variability in real-world images poses significant challenges in locating semantically relevant local regions under few-shot settings. Drawing inspiration from the human's complementary learning system, which excels at rapidly capturing and integrating semantic features from limited examples, we propose the generalization-optimized Systems Consolidation Adaptive Memory Dual-Network, SCAM-Net. This approach simulates the systems consolidation of complementary learning system with an adaptive memory module, which successfully addresses the difficulty of identifying meaningful features in few-shot scenarios. Specifically, we construct a Hippocampus-Neocortex dual-network that consolidates structured representation of each category, the structured representation is then stored and adaptively regulated following the generalization optimization principle in a long-term memory inside Neocortex. Extensive experiments on benchmark datasets show that the proposed model has achieved state-of-the-art performance.
☆ SPEED: Scalable, Precise, and Efficient Concept Erasure for Diffusion Models
Erasing concepts from large-scale text-to-image (T2I) diffusion models has become increasingly crucial due to the growing concerns over copyright infringement, offensive content, and privacy violations. However, existing methods either require costly fine-tuning or degrade image quality for non-target concepts (i.e., prior) due to inherent optimization limitations. In this paper, we introduce SPEED, a model editing-based concept erasure approach that leverages null-space constraints for scalable, precise, and efficient erasure. Specifically, SPEED incorporates Influence-based Prior Filtering (IPF) to retain the most affected non-target concepts during erasing, Directed Prior Augmentation (DPA) to expand prior coverage while maintaining semantic consistency, and Invariant Equality Constraints (IEC) to regularize model editing by explicitly preserving key invariants during the T2I generation process. Extensive evaluations across multiple concept erasure tasks demonstrate that SPEED consistently outperforms existing methods in prior preservation while achieving efficient and high-fidelity concept erasure, successfully removing 100 concepts within just 5 seconds. Our code and models are available at: https://github.com/Ouxiang-Li/SPEED.
☆ PersonaBooth: Personalized Text-to-Motion Generation
This paper introduces Motion Personalization, a new task that generates personalized motions aligned with text descriptions using several basic motions containing Persona. To support this novel task, we introduce a new large-scale motion dataset called PerMo (PersonaMotion), which captures the unique personas of multiple actors. We also propose a multi-modal finetuning method of a pretrained motion diffusion model called PersonaBooth. PersonaBooth addresses two main challenges: i) A significant distribution gap between the persona-focused PerMo dataset and the pretraining datasets, which lack persona-specific data, and ii) the difficulty of capturing a consistent persona from the motions vary in content (action type). To tackle the dataset distribution gap, we introduce a persona token to accept new persona features and perform multi-modal adaptation for both text and visuals during finetuning. To capture a consistent persona, we incorporate a contrastive learning technique to enhance intra-cohesion among samples with the same persona. Furthermore, we introduce a context-aware fusion mechanism to maximize the integration of persona cues from multiple input motions. PersonaBooth outperforms state-of-the-art motion style transfer methods, establishing a new benchmark for motion personalization.
☆ TRCE: Towards Reliable Malicious Concept Erasure in Text-to-Image Diffusion Models
Recent advances in text-to-image diffusion models enable photorealistic image generation, but they also risk producing malicious content, such as NSFW images. To mitigate risk, concept erasure methods are studied to facilitate the model to unlearn specific concepts. However, current studies struggle to fully erase malicious concepts implicitly embedded in prompts (e.g., metaphorical expressions or adversarial prompts) while preserving the model's normal generation capability. To address this challenge, our study proposes TRCE, using a two-stage concept erasure strategy to achieve an effective trade-off between reliable erasure and knowledge preservation. Firstly, TRCE starts by erasing the malicious semantics implicitly embedded in textual prompts. By identifying a critical mapping objective(i.e., the [EoT] embedding), we optimize the cross-attention layers to map malicious prompts to contextually similar prompts but with safe concepts. This step prevents the model from being overly influenced by malicious semantics during the denoising process. Following this, considering the deterministic properties of the sampling trajectory of the diffusion model, TRCE further steers the early denoising prediction toward the safe direction and away from the unsafe one through contrastive learning, thus further avoiding the generation of malicious content. Finally, we conduct comprehensive evaluations of TRCE on multiple malicious concept erasure benchmarks, and the results demonstrate its effectiveness in erasing malicious concepts while better preserving the model's original generation ability. The code is available at: http://github.com/ddgoodgood/TRCE. CAUTION: This paper includes model-generated content that may contain offensive material.
☆ Probabilistic Segmentation for Robust Field of View Estimation
Attacks on sensing and perception threaten the safe deployment of autonomous vehicles (AVs). Security-aware sensor fusion helps mitigate threats but requires accurate field of view (FOV) estimation which has not been evaluated autonomy. To address this gap, we adapt classical computer graphics algorithms to develop the first autonomy-relevant FOV estimators and create the first datasets with ground truth FOV labels. Unfortunately, we find that these approaches are themselves highly vulnerable to attacks on sensing. To improve robustness of FOV estimation against attacks, we propose a learning-based segmentation model that captures FOV features, integrates Monte Carlo dropout (MCD) for uncertainty quantification, and performs anomaly detection on confidence maps. We illustrate through comprehensive evaluations attack resistance and strong generalization across environments. Architecture trade studies demonstrate the model is feasible for real-time deployment in multiple applications.
☆ HGO-YOLO: Advancing Anomaly Behavior Detection with Hierarchical Features and Lightweight Optimized Detection
Accurate and real-time object detection is crucial for anomaly behavior detection, especially in scenarios constrained by hardware limitations, where balancing accuracy and speed is essential for enhancing detection performance. This study proposes a model called HGO-YOLO, which integrates the HGNetv2 architecture into YOLOv8. This combination expands the receptive field and captures a wider range of features while simplifying model complexity through GhostConv. We introduced a lightweight detection head, OptiConvDetect, which utilizes parameter sharing to construct the detection head effectively. Evaluation results show that the proposed algorithm achieves a mAP@0.5 of 87.4% and a recall rate of 81.1%, with a model size of only 4.6 MB and a frame rate of 56 FPS on the CPU. HGO-YOLO not only improves accuracy by 3.0% but also reduces computational load by 51.69% (from 8.9 GFLOPs to 4.3 GFLOPs), while increasing the frame rate by a factor of 1.7. Additionally, real-time tests were conducted on Raspberry Pi4 and NVIDIA platforms. These results indicate that the HGO-YOLO model demonstrates superior performance in anomaly behavior detection.
comment: 10 pages
☆ Skelite: Compact Neural Networks for Efficient Iterative Skeletonization
Skeletonization extracts thin representations from images that compactly encode their geometry and topology. These representations have become an important topological prior for preserving connectivity in curvilinear structures, aiding medical tasks like vessel segmentation. Existing compatible skeletonization algorithms face significant trade-offs: morphology-based approaches are computationally efficient but prone to frequent breakages, while topology-preserving methods require substantial computational resources. We propose a novel framework for training iterative skeletonization algorithms with a learnable component. The framework leverages synthetic data, task-specific augmentation, and a model distillation strategy to learn compact neural networks that produce thin, connected skeletons with a fully differentiable iterative algorithm. Our method demonstrates a 100 times speedup over topology-constrained algorithms while maintaining high accuracy and generalizing effectively to new domains without fine-tuning. Benchmarking and downstream validation in 2D and 3D tasks demonstrate its computational efficiency and real-world applicability
☆ LEGO-Motion: Learning-Enhanced Grids with Occupancy Instance Modeling for Class-Agnostic Motion Prediction
Accurate and reliable spatial and motion information plays a pivotal role in autonomous driving systems. However, object-level perception models struggle with handling open scenario categories and lack precise intrinsic geometry. On the other hand, occupancy-based class-agnostic methods excel in representing scenes but fail to ensure physics consistency and ignore the importance of interactions between traffic participants, hindering the model's ability to learn accurate and reliable motion. In this paper, we introduce a novel occupancy-instance modeling framework for class-agnostic motion prediction tasks, named LEGO-Motion, which incorporates instance features into Bird's Eye View (BEV) space. Our model comprises (1) a BEV encoder, (2) an Interaction-Augmented Instance Encoder, and (3) an Instance-Enhanced BEV Encoder, improving both interaction relationships and physics consistency within the model, thereby ensuring a more accurate and robust understanding of the environment. Extensive experiments on the nuScenes dataset demonstrate that our method achieves state-of-the-art performance, outperforming existing approaches. Furthermore, the effectiveness of our framework is validated on the advanced FMCW LiDAR benchmark, showcasing its practical applicability and generalization capabilities. The code will be made publicly available to facilitate further research.
comment: 8 pages, 4 figures
☆ MM-Eureka: Exploring Visual Aha Moment with Rule-based Large-scale Reinforcement Learning
We present MM-Eureka, a multimodal reasoning model that successfully extends large-scale rule-based reinforcement learning (RL) to multimodal reasoning. While rule-based RL has shown remarkable success in improving LLMs' reasoning abilities in text domains, its application to multimodal settings has remained challenging. Our work reproduces key characteristics of text-based RL systems like DeepSeek-R1 in the multimodal space, including steady increases in accuracy reward and response length, and the emergence of reflection behaviors. We demonstrate that both instruction-tuned and pre-trained models can develop strong multimodal reasoning capabilities through rule-based RL without supervised fine-tuning, showing superior data efficiency compared to alternative approaches. We open-source our complete pipeline to foster further research in this area. We release all our codes, models, data, etc. at https://github.com/ModalMinds/MM-EUREKA
☆ Inversion-Free Video Style Transfer with Trajectory Reset Attention Control and Content-Style Bridging
Video style transfer aims to alter the style of a video while preserving its content. Previous methods often struggle with content leakage and style misalignment, particularly when using image-driven approaches that aim to transfer precise styles. In this work, we introduce Trajectory Reset Attention Control (TRAC), a novel method that allows for high-quality style transfer while preserving content integrity. TRAC operates by resetting the denoising trajectory and enforcing attention control, thus enhancing content consistency while significantly reducing the computational costs against inversion-based methods. Additionally, a concept termed Style Medium is introduced to bridge the gap between content and style, enabling a more precise and harmonious transfer of stylistic elements. Building upon these concepts, we present a tuning-free framework that offers a stable, flexible, and efficient solution for both image and video style transfer. Experimental results demonstrate that our proposed framework accommodates a wide range of stylized outputs, from precise content preservation to the production of visually striking results with vibrant and expressive styles.
☆ Certifiably Optimal Anisotropic Rotation Averaging
Rotation averaging is a key subproblem in applications of computer vision and robotics. Many methods for solving this problem exist, and there are also several theoretical results analyzing difficulty and optimality. However, one aspect that most of these have in common is a focus on the isotropic setting, where the intrinsic uncertainties in the measurements are not fully incorporated into the resulting optimization task. Recent empirical results suggest that moving to an anisotropic framework, where these uncertainties are explicitly included, can result in an improvement of solution quality. However, global optimization for rotation averaging has remained a challenge in this scenario. In this paper we show how anisotropic costs can be incorporated in certifiably optimal rotation averaging. We also demonstrate how existing solvers, designed for isotropic situations, fail in the anisotropic setting. Finally, we propose a stronger relaxation and show empirically that it is able to recover global optima in all tested datasets and leads to a more accurate reconstruction in all but one of the scenes.
☆ Fully Unsupervised Annotation of C. Elegans
In this work we present a novel approach for unsupervised multi-graph matching, which applies to problems for which a Gaussian distribution of keypoint features can be assumed. We leverage cycle consistency as loss for self-supervised learning, and determine Gaussian parameters through Bayesian Optimization, yielding a highly efficient approach that scales to large datasets. Our fully unsupervised approach enables us to reach the accuracy of state-of-the-art supervised methodology for the use case of annotating cell nuclei in 3D microscopy images of the worm C. elegans. To this end, our approach yields the first unsupervised atlas of C. elegans, i.e. a model of the joint distribution of all of its cell nuclei, without the need for any ground truth cell annotation. This advancement enables highly efficient annotation of cell nuclei in large microscopy datasets of C. elegans. Beyond C. elegans, our approach offers fully unsupervised construction of cell-level atlases for any model organism with a stereotyped cell lineage, and thus bears the potential to catalyze respective comparative developmental studies in a range of further species.
☆ Now you see me! A framework for obtaining class-relevant saliency maps
Neural networks are part of daily-life decision-making, including in high-stakes settings where understanding and transparency are key. Saliency maps have been developed to gain understanding into which input features neural networks use for a specific prediction. Although widely employed, these methods often result in overly general saliency maps that fail to identify the specific information that triggered the classification. In this work, we suggest a framework that allows to incorporate attributions across classes to arrive at saliency maps that actually capture the class-relevant information. On established benchmarks for attribution methods, including the grid-pointing game and randomization-based sanity checks, we show that our framework heavily boosts the performance of standard saliency map approaches. It is, by design, agnostic to model architectures and attribution methods and now allows to identify the distinguishing and shared features used for a model prediction.
☆ Unleashing the Potential of Large Language Models for Text-to-Image Generation through Autoregressive Representation Alignment
We present Autoregressive Representation Alignment (ARRA), a new training framework that unlocks global-coherent text-to-image generation in autoregressive LLMs without architectural changes. Unlike prior work that requires complex architectural redesigns, ARRA aligns LLM hidden states with visual representations from external visual foundational models via a global visual alignment loss and a hybrid token, . This token enforces dual constraints: local next-token prediction and global semantic distillation, enabling LLMs to implicitly learn spatial and contextual coherence while retaining their original autoregressive paradigm. Extensive experiments validate ARRA's plug-and-play versatility. When training from text-generation-only LLMs or random initialization, ARRA reduces FID by 25.5% (MIMIC-CXR), 8.8% (DeepEyeNet), and 7.5% (ImageNet) for advanced autoregressive LLMs like Chameleon and LlamaGen, all without framework modifications. For domain adaption, ARRA aligns general-purpose LLMs with specialized models (e.g., BioMedCLIP), achieving an 18.6% FID reduction over direct fine-tuning on medical imaging (MIMIC-CXR). By demonstrating that training objective redesign -- not just architectural innovation -- can resolve cross-modal global coherence challenges, ARRA offers a complementary paradigm for advancing autoregressive models. Code and models will be released to advance autoregressive image generation.
☆ Mitigating Hallucinations in YOLO-based Object Detection Models: A Revisit to Out-of-Distribution Detection
Object detection systems must reliably perceive objects of interest without being overly confident to ensure safe decision-making in dynamic environments. Filtering techniques based on out-of-distribution (OoD) detection are commonly added as an extra safeguard to filter hallucinations caused by overconfidence in novel objects. Nevertheless, evaluating YOLO-family detectors and their filters under existing OoD benchmarks often leads to unsatisfactory performance. This paper studies the underlying reasons for performance bottlenecks and proposes a methodology to improve performance fundamentally. Our first contribution is a calibration of all existing evaluation results: Although images in existing OoD benchmark datasets are claimed not to have objects within in-distribution (ID) classes (i.e., categories defined in the training dataset), around 13% of objects detected by the object detector are actually ID objects. Dually, the ID dataset containing OoD objects can also negatively impact the decision boundary of filters. These ultimately lead to a significantly imprecise performance estimation. Our second contribution is to consider the task of hallucination reduction as a joint pipeline of detectors and filters. By developing a methodology to carefully synthesize an OoD dataset that semantically resembles the objects to be detected, and using the crafted OoD dataset in the fine-tuning of YOLO detectors to suppress the objectness score, we achieve a 88% reduction in overall hallucination error with a combined fine-tuned detection and filtering system on the self-driving benchmark BDD-100K. Our code and dataset are available at: https://gricad-gitlab.univ-grenoble-alpes.fr/dnn-safety/m-hood.
Dynamic Path Navigation for Motion Agents with LLM Reasoning
Large Language Models (LLMs) have demonstrated strong generalizable reasoning and planning capabilities. However, their efficacies in spatial path planning and obstacle-free trajectory generation remain underexplored. Leveraging LLMs for navigation holds significant potential, given LLMs' ability to handle unseen scenarios, support user-agent interactions, and provide global control across complex systems, making them well-suited for agentic planning and humanoid motion generation. As one of the first studies in this domain, we explore the zero-shot navigation and path generation capabilities of LLMs by constructing a dataset and proposing an evaluation protocol. Specifically, we represent paths using anchor points connected by straight lines, enabling movement in various directions. This approach offers greater flexibility and practicality compared to previous methods while remaining simple and intuitive for LLMs. We demonstrate that, when tasks are well-structured in this manner, modern LLMs exhibit substantial planning proficiency in avoiding obstacles while autonomously refining navigation with the generated motion to reach the target. Further, this spatial reasoning ability of a single LLM motion agent interacting in a static environment can be seamlessly generalized in multi-motion agents coordination in dynamic environments. Unlike traditional approaches that rely on single-step planning or local policies, our training-free LLM-based method enables global, dynamic, closed-loop planning, and autonomously resolving collision issues.
☆ Group-robust Sample Reweighting for Subpopulation Shifts via Influence Functions ICLR 2025
Machine learning models often have uneven performance among subpopulations (a.k.a., groups) in the data distributions. This poses a significant challenge for the models to generalize when the proportions of the groups shift during deployment. To improve robustness to such shifts, existing approaches have developed strategies that train models or perform hyperparameter tuning using the group-labeled data to minimize the worst-case loss over groups. However, a non-trivial amount of high-quality labels is often required to obtain noticeable improvements. Given the costliness of the labels, we propose to adopt a different paradigm to enhance group label efficiency: utilizing the group-labeled data as a target set to optimize the weights of other group-unlabeled data. We introduce Group-robust Sample Reweighting (GSR), a two-stage approach that first learns the representations from group-unlabeled data, and then tinkers the model by iteratively retraining its last layer on the reweighted data using influence functions. Our GSR is theoretically sound, practically lightweight, and effective in improving the robustness to subpopulation shifts. In particular, GSR outperforms the previous state-of-the-art approaches that require the same amount or even more group labels.
comment: Accepted to the 13th International Conference on Learning Representations (ICLR 2025). Code is available at https://github.com/qiaoruiyt/GSR
☆ Automated Movie Generation via Multi-Agent CoT Planning
Existing long-form video generation frameworks lack automated planning, requiring manual input for storylines, scenes, cinematography, and character interactions, resulting in high costs and inefficiencies. To address these challenges, we present MovieAgent, an automated movie generation via multi-agent Chain of Thought (CoT) planning. MovieAgent offers two key advantages: 1) We firstly explore and define the paradigm of automated movie/long-video generation. Given a script and character bank, our MovieAgent can generates multi-scene, multi-shot long-form videos with a coherent narrative, while ensuring character consistency, synchronized subtitles, and stable audio throughout the film. 2) MovieAgent introduces a hierarchical CoT-based reasoning process to automatically structure scenes, camera settings, and cinematography, significantly reducing human effort. By employing multiple LLM agents to simulate the roles of a director, screenwriter, storyboard artist, and location manager, MovieAgent streamlines the production pipeline. Experiments demonstrate that MovieAgent achieves new state-of-the-art results in script faithfulness, character consistency, and narrative coherence. Our hierarchical framework takes a step forward and provides new insights into fully automated movie generation. The code and project website are available at: https://github.com/showlab/MovieAgent and https://weijiawu.github.io/MovieAgent.
comment: The code and project website are available at: https://github.com/showlab/MovieAgent and https://weijiawu.github.io/MovieAgent
☆ AttenST: A Training-Free Attention-Driven Style Transfer Framework with Pre-Trained Diffusion Models
While diffusion models have achieved remarkable progress in style transfer tasks, existing methods typically rely on fine-tuning or optimizing pre-trained models during inference, leading to high computational costs and challenges in balancing content preservation with style integration. To address these limitations, we introduce AttenST, a training-free attention-driven style transfer framework. Specifically, we propose a style-guided self-attention mechanism that conditions self-attention on the reference style by retaining the query of the content image while substituting its key and value with those from the style image, enabling effective style feature integration. To mitigate style information loss during inversion, we introduce a style-preserving inversion strategy that refines inversion accuracy through multiple resampling steps. Additionally, we propose a content-aware adaptive instance normalization, which integrates content statistics into the normalization process to optimize style fusion while mitigating the content degradation. Furthermore, we introduce a dual-feature cross-attention mechanism to fuse content and style features, ensuring a harmonious synthesis of structural fidelity and stylistic expression. Extensive experiments demonstrate that AttenST outperforms existing methods, achieving state-of-the-art performance in style transfer dataset.
☆ Goal Conditioned Reinforcement Learning for Photo Finishing Tuning NeurIPS 2024
Photo finishing tuning aims to automate the manual tuning process of the photo finishing pipeline, like Adobe Lightroom or Darktable. Previous works either use zeroth-order optimization, which is slow when the set of parameters increases, or rely on a differentiable proxy of the target finishing pipeline, which is hard to train. To overcome these challenges, we propose a novel goal-conditioned reinforcement learning framework for efficiently tuning parameters using a goal image as a condition. Unlike previous approaches, our tuning framework does not rely on any proxy and treats the photo finishing pipeline as a black box. Utilizing a trained reinforcement learning policy, it can efficiently find the desired set of parameters within just 10 queries, while optimization based approaches normally take 200 queries. Furthermore, our architecture utilizes a goal image to guide the iterative tuning of pipeline parameters, allowing for flexible conditioning on pixel-aligned target images, style images, or any other visually representable goals. We conduct detailed experiments on photo finishing tuning and photo stylization tuning tasks, demonstrating the advantages of our method. Project website: https://openimaginglab.github.io/RLPixTuner/.
comment: 38th Conference on Neural Information Processing Systems (NeurIPS 2024)
☆ ALLVB: All-in-One Long Video Understanding Benchmark AAAI 2025
From image to video understanding, the capabilities of Multi-modal LLMs (MLLMs) are increasingly powerful. However, most existing video understanding benchmarks are relatively short, which makes them inadequate for effectively evaluating the long-sequence modeling capabilities of MLLMs. This highlights the urgent need for a comprehensive and integrated long video understanding benchmark to assess the ability of MLLMs thoroughly. To this end, we propose ALLVB (ALL-in-One Long Video Understanding Benchmark). ALLVB's main contributions include: 1) It integrates 9 major video understanding tasks. These tasks are converted into video QA formats, allowing a single benchmark to evaluate 9 different video understanding capabilities of MLLMs, highlighting the versatility, comprehensiveness, and challenging nature of ALLVB. 2) A fully automated annotation pipeline using GPT-4o is designed, requiring only human quality control, which facilitates the maintenance and expansion of the benchmark. 3) It contains 1,376 videos across 16 categories, averaging nearly 2 hours each, with a total of 252k QAs. To the best of our knowledge, it is the largest long video understanding benchmark in terms of the number of videos, average duration, and number of QAs. We have tested various mainstream MLLMs on ALLVB, and the results indicate that even the most advanced commercial models have significant room for improvement. This reflects the benchmark's challenging nature and demonstrates the substantial potential for development in long video understanding.
comment: AAAI 2025
☆ Distilling Knowledge into Quantum Vision Transformers for Biomedical Image Classification MICCAI 2025
Quantum vision transformers (QViTs) build on vision transformers (ViTs) by replacing linear layers within the self-attention mechanism with parameterised quantum neural networks (QNNs), harnessing quantum mechanical properties to improve feature representation. This hybrid approach aims to achieve superior performance, with significantly reduced model complexity as a result of the enriched feature representation, requiring fewer parameters. This paper proposes a novel QViT model for biomedical image classification and investigates its performance against comparable ViTs across eight diverse datasets, encompassing various modalities and classification tasks. We assess models trained from scratch and those pre-trained using knowledge distillation (KD) from high-quality teacher models. Our findings demonstrate that QViTs outperform comparable ViTs with average ROC AUC (0.863 vs 0.846) and accuracy (0.710 vs 0.687) when trained from scratch, and even compete with state-of-the-art classical models in multiple tasks, whilst being significantly more efficient (89% reduction in GFLOPs and 99.99% in parameter number). Additionally, we find that QViTs and ViTs respond equally well to KD, with QViT pre-training performance scaling with model complexity. This is the first investigation into the efficacy of deploying QViTs with KD for computer-aided diagnosis. Our results highlight the enormous potential of quantum machine learning (QML) in biomedical image analysis.
comment: Submitted for MICCAI 2025
☆ A Systematic Review of ECG Arrhythmia Classification: Adherence to Standards, Fair Evaluation, and Embedded Feasibility
The classification of electrocardiogram (ECG) signals is crucial for early detection of arrhythmias and other cardiac conditions. However, despite advances in machine learning, many studies fail to follow standardization protocols, leading to inconsistencies in performance evaluation and real-world applicability. Additionally, hardware constraints essential for practical deployment, such as in pacemakers, Holter monitors, and wearable ECG patches, are often overlooked. Since real-world impact depends on feasibility in resource-constrained devices, ensuring efficient deployment is critical for continuous monitoring. This review systematically analyzes ECG classification studies published between 2017 and 2024, focusing on those adhering to the E3C (Embedded, Clinical, and Comparative Criteria), which include inter-patient paradigm implementation, compliance with Association for the Advancement of Medical Instrumentation (AAMI) recommendations, and model feasibility for embedded systems. While many studies report high accuracy, few properly consider patient-independent partitioning and hardware limitations. We identify state-of-the-art methods meeting E3C criteria and conduct a comparative analysis of accuracy, inference time, energy consumption, and memory usage. Finally, we propose standardized reporting practices to ensure fair comparisons and practical applicability of ECG classification models. By addressing these gaps, this study aims to guide future research toward more robust and clinically viable ECG classification systems.
☆ Efficient Distillation of Classifier-Free Guidance using Adapters
While classifier-free guidance (CFG) is essential for conditional diffusion models, it doubles the number of neural function evaluations (NFEs) per inference step. To mitigate this inefficiency, we introduce adapter guidance distillation (AGD), a novel approach that simulates CFG in a single forward pass. AGD leverages lightweight adapters to approximate CFG, effectively doubling the sampling speed while maintaining or even improving sample quality. Unlike prior guidance distillation methods that tune the entire model, AGD keeps the base model frozen and only trains minimal additional parameters ($\sim$2%) to significantly reduce the resource requirement of the distillation phase. Additionally, this approach preserves the original model weights and enables the adapters to be seamlessly combined with other checkpoints derived from the same base model. We also address a key mismatch between training and inference in existing guidance distillation methods by training on CFG-guided trajectories instead of standard diffusion trajectories. Through extensive experiments, we show that AGD achieves comparable or superior FID to CFG across multiple architectures with only half the NFEs. Notably, our method enables the distillation of large models ($\sim$2.6B parameters) on a single consumer GPU with 24 GB of VRAM, making it more accessible than previous approaches that require multiple high-end GPUs. We will publicly release the implementation of our method.
☆ Customized SAM 2 for Referring Remote Sensing Image Segmentation
Referring Remote Sensing Image Segmentation (RRSIS) aims to segment target objects in remote sensing (RS) images based on textual descriptions. Although Segment Anything Model 2 (SAM 2) has shown remarkable performance in various segmentation tasks, its application to RRSIS presents several challenges, including understanding the text-described RS scenes and generating effective prompts from text descriptions. To address these issues, we propose RS2-SAM 2, a novel framework that adapts SAM 2 to RRSIS by aligning the adapted RS features and textual features, providing pseudo-mask-based dense prompts, and enforcing boundary constraints. Specifically, we first employ a union encoder to jointly encode the visual and textual inputs, generating aligned visual and text embeddings as well as multimodal class tokens. Then, we design a bidirectional hierarchical fusion module to adapt SAM 2 to RS scenes and align adapted visual features with the visually enhanced text embeddings, improving the model's interpretation of text-described RS scenes. Additionally, a mask prompt generator is introduced to take the visual embeddings and class tokens as input and produce a pseudo-mask as the dense prompt of SAM 2. To further refine segmentation, we introduce a text-guided boundary loss to optimize segmentation boundaries by computing text-weighted gradient differences. Experimental results on several RRSIS benchmarks demonstrate that RS2-SAM 2 achieves state-of-the-art performance.
☆ WISE: A World Knowledge-Informed Semantic Evaluation for Text-to-Image Generation
Text-to-Image (T2I) models are capable of generating high-quality artistic creations and visual content. However, existing research and evaluation standards predominantly focus on image realism and shallow text-image alignment, lacking a comprehensive assessment of complex semantic understanding and world knowledge integration in text to image generation. To address this challenge, we propose $\textbf{WISE}$, the first benchmark specifically designed for $\textbf{W}$orld Knowledge-$\textbf{I}$nformed $\textbf{S}$emantic $\textbf{E}$valuation. WISE moves beyond simple word-pixel mapping by challenging models with 1000 meticulously crafted prompts across 25 sub-domains in cultural common sense, spatio-temporal reasoning, and natural science. To overcome the limitations of traditional CLIP metric, we introduce $\textbf{WiScore}$, a novel quantitative metric for assessing knowledge-image alignment. Through comprehensive testing of 20 models (10 dedicated T2I models and 10 unified multimodal models) using 1,000 structured prompts spanning 25 subdomains, our findings reveal significant limitations in their ability to effectively integrate and apply world knowledge during image generation, highlighting critical pathways for enhancing knowledge incorporation and application in next-generation T2I models. Code and data are available at https://github.com/PKU-YuanGroup/WISE.
comment: Code, data and leaderboard: https://github.com/PKU-YuanGroup/WISE
☆ COMODO: Cross-Modal Video-to-IMU Distillation for Efficient Egocentric Human Activity Recognition
Egocentric video-based models capture rich semantic information and have demonstrated strong performance in human activity recognition (HAR). However, their high power consumption, privacy concerns, and dependence on lighting conditions limit their feasibility for continuous on-device recognition. In contrast, inertial measurement unit (IMU) sensors offer an energy-efficient and privacy-preserving alternative, yet they suffer from limited large-scale annotated datasets, leading to weaker generalization in downstream tasks. To bridge this gap, we propose COMODO, a cross-modal self-supervised distillation framework that transfers rich semantic knowledge from the video modality to the IMU modality without requiring labeled annotations. COMODO leverages a pretrained and frozen video encoder to construct a dynamic instance queue, aligning the feature distributions of video and IMU embeddings. By distilling knowledge from video representations, our approach enables the IMU encoder to inherit rich semantic information from video while preserving its efficiency for real-world applications. Experiments on multiple egocentric HAR datasets demonstrate that COMODO consistently improves downstream classification performance, achieving results comparable to or exceeding fully supervised fine-tuned models. Moreover, COMODO exhibits strong cross-dataset generalization. Benefiting from its simplicity, our method is also generally applicable to various video and time-series pre-trained models, offering the potential to leverage more powerful teacher and student foundation models in future research. The code is available at https://github.com/Breezelled/COMODO .
☆ Semantic Communications with Computer Vision Sensing for Edge Video Transmission
Despite the widespread adoption of vision sensors in edge applications, such as surveillance, the transmission of video data consumes substantial spectrum resources. Semantic communication (SC) offers a solution by extracting and compressing information at the semantic level, preserving the accuracy and relevance of transmitted data while significantly reducing the volume of transmitted information. However, traditional SC methods face inefficiencies due to the repeated transmission of static frames in edge videos, exacerbated by the absence of sensing capabilities, which results in spectrum inefficiency. To address this challenge, we propose a SC with computer vision sensing (SCCVS) framework for edge video transmission. The framework first introduces a compression ratio (CR) adaptive SC (CRSC) model, capable of adjusting CR based on whether the frames are static or dynamic, effectively conserving spectrum resources. Additionally, we implement an object detection and semantic segmentation models-enabled sensing (OSMS) scheme, which intelligently senses the changes in the scene and assesses the significance of each frame through in-context analysis. Hence, The OSMS scheme provides CR prompts to the CRSC model based on real-time sensing results. Moreover, both CRSC and OSMS are designed as lightweight models, ensuring compatibility with resource-constrained sensors commonly used in practical edge applications. Experimental simulations validate the effectiveness of the proposed SCCVS framework, demonstrating its ability to enhance transmission efficiency without sacrificing critical semantic information.
☆ Text-IRSTD: Leveraging Semantic Text to Promote Infrared Small Target Detection in Complex Scenes
Infrared small target detection is currently a hot and challenging task in computer vision. Existing methods usually focus on mining visual features of targets, which struggles to cope with complex and diverse detection scenarios. The main reason is that infrared small targets have limited image information on their own, thus relying only on visual features fails to discriminate targets and interferences, leading to lower detection performance. To address this issue, we introduce a novel approach leveraging semantic text to guide infrared small target detection, called Text-IRSTD. It innovatively expands classical IRSTD to text-guided IRSTD, providing a new research idea. On the one hand, we devise a novel fuzzy semantic text prompt to accommodate ambiguous target categories. On the other hand, we propose a progressive cross-modal semantic interaction decoder (PCSID) to facilitate information fusion between texts and images. In addition, we construct a new benchmark consisting of 2,755 infrared images of different scenarios with fuzzy semantic textual annotations, called FZDT. Extensive experimental results demonstrate that our method achieves better detection performance and target contour recovery than the state-of-the-art methods. Moreover, proposed Text-IRSTD shows strong generalization and wide application prospects in unseen detection scenarios. The dataset and code will be publicly released after acceptance of this paper.
☆ AI-Driven Automated Tool for Abdominal CT Body Composition Analysis in Gastrointestinal Cancer Management
The incidence of gastrointestinal cancers remains significantly high, particularly in China, emphasizing the importance of accurate prognostic assessments and effective treatment strategies. Research shows a strong correlation between abdominal muscle and fat tissue composition and patient outcomes. However, existing manual methods for analyzing abdominal tissue composition are time-consuming and costly, limiting clinical research scalability. To address these challenges, we developed an AI-driven tool for automated analysis of abdominal CT scans to effectively identify and segment muscle, subcutaneous fat, and visceral fat. Our tool integrates a multi-view localization model and a high-precision 2D nnUNet-based segmentation model, demonstrating a localization accuracy of 90% and a Dice Score Coefficient of 0.967 for segmentation. Furthermore, it features an interactive interface that allows clinicians to refine the segmentation results, ensuring high-quality outcomes effectively. Our tool offers a standardized method for effectively extracting critical abdominal tissues, potentially enhancing the management and treatment for gastrointestinal cancers. The code is available at https://github.com/NanXinyu/AI-Tool4Abdominal-Seg.git}{https://github.com/NanXinyu/AI-Tool4Abdominal-Seg.git.
☆ Retinex-MEF: Retinex-based Glare Effects Aware Unsupervised Multi-Exposure Image Fusion
Multi-exposure image fusion consolidates multiple low dynamic range images of the same scene into a singular high dynamic range image. Retinex theory, which separates image illumination from scene reflectance, is naturally adopted to ensure consistent scene representation and effective information fusion across varied exposure levels. However, the conventional pixel-wise multiplication of illumination and reflectance inadequately models the glare effect induced by overexposure. To better adapt this theory for multi-exposure image fusion, we introduce an unsupervised and controllable method termed~\textbf{(Retinex-MEF)}. Specifically, our method decomposes multi-exposure images into separate illumination components and a shared reflectance component, and effectively modeling the glare induced by overexposure. Employing a bidirectional loss constraint to learn the common reflectance component, our approach effectively mitigates the glare effect. Furthermore, we establish a controllable exposure fusion criterion, enabling global exposure adjustments while preserving contrast, thus overcoming the constraints of fixed-level fusion. A series of experiments across multiple datasets, including underexposure-overexposure fusion, exposure control fusion, and homogeneous extreme exposure fusion, demonstrate the effective decomposition and flexible fusion capability of our model.
CoT-Drive: Efficient Motion Forecasting for Autonomous Driving with LLMs and Chain-of-Thought Prompting
Accurate motion forecasting is crucial for safe autonomous driving (AD). This study proposes CoT-Drive, a novel approach that enhances motion forecasting by leveraging large language models (LLMs) and a chain-of-thought (CoT) prompting method. We introduce a teacher-student knowledge distillation strategy to effectively transfer LLMs' advanced scene understanding capabilities to lightweight language models (LMs), ensuring that CoT-Drive operates in real-time on edge devices while maintaining comprehensive scene understanding and generalization capabilities. By leveraging CoT prompting techniques for LLMs without additional training, CoT-Drive generates semantic annotations that significantly improve the understanding of complex traffic environments, thereby boosting the accuracy and robustness of predictions. Additionally, we present two new scene description datasets, Highway-Text and Urban-Text, designed for fine-tuning lightweight LMs to generate context-specific semantic annotations. Comprehensive evaluations of five real-world datasets demonstrate that CoT-Drive outperforms existing models, highlighting its effectiveness and efficiency in handling complex traffic scenarios. Overall, this study is the first to consider the practical application of LLMs in this field. It pioneers the training and use of a lightweight LLM surrogate for motion forecasting, setting a new benchmark and showcasing the potential of integrating LLMs into AD systems.
☆ A Deep Learning Architecture for Land Cover Mapping Using Spatio-Temporal Sentinel-1 Features
Land Cover (LC) mapping using satellite imagery is critical for environmental monitoring and management. Deep Learning (DL), particularly Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs), have revolutionized this field by enhancing the accuracy of classification tasks. In this work, a novel approach combining a transformer-based Swin-Unet architecture with seasonal synthesized spatio-temporal images has been employed to classify LC types using spatio-temporal features extracted from Sentinel-1 (S1) Synthetic Aperture Radar (SAR) data, organized into seasonal clusters. The study focuses on three distinct regions - Amazonia, Africa, and Siberia - and evaluates the model performance across diverse ecoregions within these areas. By utilizing seasonal feature sequences instead of dense temporal sequences, notable performance improvements have been achieved, especially in regions with temporal data gaps like Siberia, where S1 data distribution is uneven and non-uniform. The results demonstrate the effectiveness and the generalization capabilities of the proposed methodology in achieving high overall accuracy (O.A.) values, even in regions with limited training data.
comment: Submitted to IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
☆ ReelWave: A Multi-Agent Framework Toward Professional Movie Sound Generation
Film production is an important application for generative audio, where richer context is provided through multiple scenes. In ReelWave, we propose a multi-agent framework for audio generation inspired by the professional movie production process. We first capture semantic and temporal synchronized "on-screen" sound by training a prediction model that predicts three interpretable time-varying audio control signals comprising loudness, pitch, and timbre. These three parameters are subsequently specified as conditions by a cross-attention module. Then, our framework infers "off-screen" sound to complement the generation through cooperative interaction between communicative agents. Each agent takes up specific roles similar to the movie production team and is supervised by an agent called the director. Besides, we investigate when the conditional video consists of multiple scenes, a case frequently seen in videos extracted from movies of considerable length. Consequently, our framework can capture a richer context of audio generation conditioned on video clips extracted from movies.
☆ Synthetic Lung X-ray Generation through Cross-Attention and Affinity Transformation
Collecting and annotating medical images is a time-consuming and resource-intensive task. However, generating synthetic data through models such as Diffusion offers a cost-effective alternative. This paper introduces a new method for the automatic generation of accurate semantic masks from synthetic lung X-ray images based on a stable diffusion model trained on text-image pairs. This method uses cross-attention mapping between text and image to extend text-driven image synthesis to semantic mask generation. It employs text-guided cross-attention information to identify specific areas in an image and combines this with innovative techniques to produce high-resolution, class-differentiated pixel masks. This approach significantly reduces the costs associated with data collection and annotation. The experimental results demonstrate that segmentation models trained on synthetic data generated using the method are comparable to, and in some cases even better than, models trained on real datasets. This shows the effectiveness of the method and its potential to revolutionize medical image analysis.
☆ Endo-FASt3r: Endoscopic Foundation model Adaptation for Structure from motion
Accurate depth and camera pose estimation is essential for achieving high-quality 3D visualisations in robotic-assisted surgery. Despite recent advancements in foundation model adaptation to monocular depth estimation of endoscopic scenes via self-supervised learning (SSL), no prior work has explored their use for pose estimation. These methods rely on low rank-based adaptation approaches, which constrain model updates to a low-rank space. We propose Endo-FASt3r, the first monocular SSL depth and pose estimation framework that uses foundation models for both tasks. We extend the Reloc3r relative pose estimation foundation model by designing Reloc3rX, introducing modifications necessary for convergence in SSL. We also present DoMoRA, a novel adaptation technique that enables higher-rank updates and faster convergence. Experiments on the SCARED dataset show that Endo-FASt3r achieves a substantial $10\%$ improvement in pose estimation and a $2\%$ improvement in depth estimation over prior work. Similar performance gains on the Hamlyn and StereoMIS datasets reinforce the generalisability of Endo-FASt3r across different datasets.
☆ Effective and Efficient Masked Image Generation Models
Although masked image generation models and masked diffusion models are designed with different motivations and objectives, we observe that they can be unified within a single framework. Building upon this insight, we carefully explore the design space of training and sampling, identifying key factors that contribute to both performance and efficiency. Based on the improvements observed during this exploration, we develop our model, referred to as eMIGM. Empirically, eMIGM demonstrates strong performance on ImageNet generation, as measured by Fr\'echet Inception Distance (FID). In particular, on ImageNet 256x256, with similar number of function evaluations (NFEs) and model parameters, eMIGM outperforms the seminal VAR. Moreover, as NFE and model parameters increase, eMIGM achieves performance comparable to the state-of-the-art continuous diffusion models while requiring less than 40% of the NFE. Additionally, on ImageNet 512x512, with only about 60% of the NFE, eMIGM outperforms the state-of-the-art continuous diffusion models.
☆ All That Glitters Is Not Gold: Key-Secured 3D Secrets within 3D Gaussian Splatting
Recent advances in 3D Gaussian Splatting (3DGS) have revolutionized scene reconstruction, opening new possibilities for 3D steganography by hiding 3D secrets within 3D covers. The key challenge in steganography is ensuring imperceptibility while maintaining high-fidelity reconstruction. However, existing methods often suffer from detectability risks and utilize only suboptimal 3DGS features, limiting their full potential. We propose a novel end-to-end key-secured 3D steganography framework (KeySS) that jointly optimizes a 3DGS model and a key-secured decoder for secret reconstruction. Our approach reveals that Gaussian features contribute unequally to secret hiding. The framework incorporates a key-controllable mechanism enabling multi-secret hiding and unauthorized access prevention, while systematically exploring optimal feature update to balance fidelity and security. To rigorously evaluate steganographic imperceptibility beyond conventional 2D metrics, we introduce 3D-Sinkhorn distance analysis, which quantifies distributional differences between original and steganographic Gaussian parameters in the representation space. Extensive experiments demonstrate that our method achieves state-of-the-art performance in both cover and secret reconstruction while maintaining high security levels, advancing the field of 3D steganography. Code is available at https://github.com/RY-Paper/KeySS
☆ Multi-Modal 3D Mesh Reconstruction from Images and Text
6D object pose estimation for unseen objects is essential in robotics but traditionally relies on trained models that require large datasets, high computational costs, and struggle to generalize. Zero-shot approaches eliminate the need for training but depend on pre-existing 3D object models, which are often impractical to obtain. To address this, we propose a language-guided few-shot 3D reconstruction method, reconstructing a 3D mesh from few input images. In the proposed pipeline, receives a set of input images and a language query. A combination of GroundingDINO and Segment Anything Model outputs segmented masks from which a sparse point cloud is reconstructed with VGGSfM. Subsequently, the mesh is reconstructed with the Gaussian Splatting method SuGAR. In a final cleaning step, artifacts are removed, resulting in the final 3D mesh of the queried object. We evaluate the method in terms of accuracy and quality of the geometry and texture. Furthermore, we study the impact of imaging conditions such as viewing angle, number of input images, and image overlap on 3D object reconstruction quality, efficiency, and computational scalability.
comment: under review
☆ Evaluation of Alignment-Regularity Characteristics in Deformable Image Registration
Evaluating deformable image registration (DIR) is challenging due to the inherent trade-off between achieving high alignment accuracy and maintaining deformation regularity. In this work, we introduce a novel evaluation scheme based on the alignment-regularity characteristic (ARC) to systematically capture and analyze this trade-off. We first introduce the ARC curves, which describe the performance of a given registration algorithm as a spectrum measured by alignment and regularity metrics. We further adopt a HyperNetwork-based approach that learns to continuously interpolate across the full regularization range, accelerating the construction and improving the sample density of ARC curves. We empirically demonstrate our evaluation scheme using representative learning-based deformable image registration methods with various network architectures and transformation models on two public datasets. We present a range of findings not evident from existing evaluation practices and provide general recommendations for model evaluation and selection using our evaluation scheme. All code relevant is made publicly available.
☆ The 4D Human Embryonic Brain Atlas: spatiotemporal atlas generation for rapid anatomical changes using first-trimester ultrasound from the Rotterdam Periconceptional Cohort
Early brain development is crucial for lifelong neurodevelopmental health. However, current clinical practice offers limited knowledge of normal embryonic brain anatomy on ultrasound, despite the brain undergoing rapid changes within the time-span of days. To provide detailed insights into normal brain development and identify deviations, we created the 4D Human Embryonic Brain Atlas using a deep learning-based approach for groupwise registration and spatiotemporal atlas generation. Our method introduced a time-dependent initial atlas and penalized deviations from it, ensuring age-specific anatomy was maintained throughout rapid development. The atlas was generated and validated using 831 3D ultrasound images from 402 subjects in the Rotterdam Periconceptional Cohort, acquired between gestational weeks 8 and 12. We evaluated the effectiveness of our approach with an ablation study, which demonstrated that incorporating a time-dependent initial atlas and penalization produced anatomically accurate results. In contrast, omitting these adaptations led to anatomically incorrect atlas. Visual comparisons with an existing ex-vivo embryo atlas further confirmed the anatomical accuracy of our atlas. In conclusion, the proposed method successfully captures the rapid anotomical development of the embryonic brain. The resulting 4D Human Embryonic Brain Atlas provides a unique insights into this crucial early life period and holds the potential for improving the detection, prevention, and treatment of prenatal neurodevelopmental disorders.
☆ Towards Spatial Transcriptomics-guided Pathological Image Recognition with Batch-Agnostic Encoder
Spatial transcriptomics (ST) is a novel technique that simultaneously captures pathological images and gene expression profiling with spatial coordinates. Since ST is closely related to pathological features such as disease subtypes, it may be valuable to augment image representation with pathological information. However, there are no attempts to leverage ST for image recognition ({\it i.e,} patch-level classification of subtypes of pathological image.). One of the big challenges is significant batch effects in spatial transcriptomics that make it difficult to extract pathological features of images from ST. In this paper, we propose a batch-agnostic contrastive learning framework that can extract consistent signals from gene expression of ST in multiple patients. To extract consistent signals from ST, we utilize the batch-agnostic gene encoder that is trained in a variational inference manner. Experiments demonstrated the effectiveness of our framework on a publicly available dataset. Code is publicly available at https://github.com/naivete5656/TPIRBAE
comment: Accepted to ISBI 2025
☆ HisTrackMap: Global Vectorized High-Definition Map Construction via History Map Tracking
As an essential component of autonomous driving systems, high-definition (HD) maps provide rich and precise environmental information for auto-driving scenarios; however, existing methods, which primarily rely on query-based detection frameworks to directly model map elements or implicitly propagate queries over time, often struggle to maintain consistent temporal perception outcomes. These inconsistencies pose significant challenges to the stability and reliability of real-world autonomous driving and map data collection systems. To address this limitation, we propose a novel end-to-end tracking framework for global map construction by temporally tracking map elements' historical trajectories. Firstly, instance-level historical rasterization map representation is designed to explicitly store previous perception results, which can control and maintain different global instances' history information in a fine-grained way. Secondly, we introduce a Map-Trajectory Prior Fusion module within this tracking framework, leveraging historical priors for tracked instances to improve temporal smoothness and continuity. Thirdly, we propose a global perspective metric to evaluate the quality of temporal geometry construction in HD maps, filling the gap in current metrics for assessing global geometric perception results. Substantial experiments on the nuScenes and Argoverse2 datasets demonstrate that the proposed method outperforms state-of-the-art (SOTA) methods in both single-frame and temporal metrics. our project page: $\href{https://yj772881654.github.io/HisTrackMap/}{https://yj772881654.github.io/HisTrackMap.}$
Temporal Overlapping Prediction: A Self-supervised Pre-training Method for LiDAR Moving Object Segmentation
Moving object segmentation (MOS) on LiDAR point clouds is crucial for autonomous systems like self-driving vehicles. Previous supervised approaches rely heavily on costly manual annotations, while LiDAR sequences naturally capture temporal motion cues that can be leveraged for self-supervised learning. In this paper, we propose \textbf{T}emporal \textbf{O}verlapping \textbf{P}rediction (\textbf{TOP}), a self-supervised pre-training method that alleviate the labeling burden for MOS. \textbf{TOP} explores the temporal overlapping points that commonly observed by current and adjacent scans, and learns spatiotemporal representations by predicting the occupancy states of temporal overlapping points. Moreover, we utilize current occupancy reconstruction as an auxiliary pre-training objective, which enhances the current structural awareness of the model. We conduct extensive experiments and observe that the conventional metric Intersection-over-Union (IoU) shows strong bias to objects with more scanned points, which might neglect small or distant objects. To compensate for this bias, we introduce an additional metric called $\text{mIoU}_{\text{obj}}$ to evaluate object-level performance. Experiments on nuScenes and SemanticKITTI show that \textbf{TOP} outperforms both supervised training-from-scratch baseline and other self-supervised pre-training baselines by up to 28.77\% relative improvement, demonstrating strong transferability across LiDAR setups and generalization to other tasks. Code and pre-trained models will be publicly available upon publication.
☆ MIRAM: Masked Image Reconstruction Across Multiple Scales for Breast Lesion Risk Prediction
Self-supervised learning (SSL) has garnered substantial interest within the machine learning and computer vision communities. Two prominent approaches in SSL include contrastive-based learning and self-distillation utilizing cropping augmentation. Lately, masked image modeling (MIM) has emerged as a more potent SSL technique, employing image inpainting as a pretext task. MIM creates a strong inductive bias toward meaningful spatial and semantic understanding. This has opened up new opportunities for SSL to contribute not only to classification tasks but also to more complex applications like object detection and image segmentation. Building upon this progress, our research paper introduces a scalable and practical SSL approach centered around more challenging pretext tasks that facilitate the acquisition of robust features. Specifically, we leverage multi-scale image reconstruction from randomly masked input images as the foundation for feature learning. Our hypothesis posits that reconstructing high-resolution images enables the model to attend to finer spatial details, particularly beneficial for discerning subtle intricacies within medical images. The proposed SSL features help improve classification performance on the Curated Breast Imaging Subset of Digital Database for Screening Mammography (CBIS-DDSM) dataset. In pathology classification, our method demonstrates a 3\% increase in average precision (AP) and a 1\% increase in the area under the receiver operating characteristic curve (AUC) when compared to state-of-the-art (SOTA) algorithms. Moreover, in mass margins classification, our approach achieves a 4\% increase in AP and a 2\% increase in AUC.
Controllable 3D Outdoor Scene Generation via Scene Graphs
Three-dimensional scene generation is crucial in computer vision, with applications spanning autonomous driving, gaming and the metaverse. Current methods either lack user control or rely on imprecise, non-intuitive conditions. In this work, we propose a method that uses, scene graphs, an accessible, user friendly control format to generate outdoor 3D scenes. We develop an interactive system that transforms a sparse scene graph into a dense BEV (Bird's Eye View) Embedding Map, which guides a conditional diffusion model to generate 3D scenes that match the scene graph description. During inference, users can easily create or modify scene graphs to generate large-scale outdoor scenes. We create a large-scale dataset with paired scene graphs and 3D semantic scenes to train the BEV embedding and diffusion models. Experimental results show that our approach consistently produces high-quality 3D urban scenes closely aligned with the input scene graphs. To the best of our knowledge, this is the first approach to generate 3D outdoor scenes conditioned on scene graphs.
comment: Project Page: https://yuheng.ink/project-page/control-3d-scene/
VidBot: Learning Generalizable 3D Actions from In-the-Wild 2D Human Videos for Zero-Shot Robotic Manipulation CVPR 2025
Future robots are envisioned as versatile systems capable of performing a variety of household tasks. The big question remains, how can we bridge the embodiment gap while minimizing physical robot learning, which fundamentally does not scale well. We argue that learning from in-the-wild human videos offers a promising solution for robotic manipulation tasks, as vast amounts of relevant data already exist on the internet. In this work, we present VidBot, a framework enabling zero-shot robotic manipulation using learned 3D affordance from in-the-wild monocular RGB-only human videos. VidBot leverages a pipeline to extract explicit representations from them, namely 3D hand trajectories from videos, combining a depth foundation model with structure-from-motion techniques to reconstruct temporally consistent, metric-scale 3D affordance representations agnostic to embodiments. We introduce a coarse-to-fine affordance learning model that first identifies coarse actions from the pixel space and then generates fine-grained interaction trajectories with a diffusion model, conditioned on coarse actions and guided by test-time constraints for context-aware interaction planning, enabling substantial generalization to novel scenes and embodiments. Extensive experiments demonstrate the efficacy of VidBot, which significantly outperforms counterparts across 13 manipulation tasks in zero-shot settings and can be seamlessly deployed across robot systems in real-world environments. VidBot paves the way for leveraging everyday human videos to make robot learning more scalable.
comment: Accepted to CVPR 2025
☆ A Light Perspective for 3D Object Detection
Comprehending the environment and accurately detecting objects in 3D space are essential for advancing autonomous vehicle technologies. Integrating Camera and LIDAR data has emerged as an effective approach for achieving high accuracy in 3D Object Detection models. However, existing methodologies often rely on heavy, traditional backbones that are computationally demanding. This paper introduces a novel approach that incorporates cutting-edge Deep Learning techniques into the feature extraction process, aiming to create more efficient models without compromising performance. Our model, NextBEV, surpasses established feature extractors like ResNet50 and MobileNetV2. On the KITTI 3D Monocular detection benchmark, NextBEV achieves an accuracy improvement of 2.39%, having less than 10% of the MobileNetV3 parameters. Moreover, we propose changes in LIDAR backbones that decreased the original inference time to 10 ms. Additionally, by fusing these lightweight proposals, we have enhanced the accuracy of the VoxelNet-based model by 2.93% and improved the F1-score of the PointPillar-based model by approximately 20%. Therefore, this work contributes to establishing lightweight and powerful models for individual or fusion techniques, making them more suitable for onboard implementations.
☆ Learning A Zero-shot Occupancy Network from Vision Foundation Models via Self-supervised Adaptation
Estimating the 3D world from 2D monocular images is a fundamental yet challenging task due to the labour-intensive nature of 3D annotations. To simplify label acquisition, this work proposes a novel approach that bridges 2D vision foundation models (VFMs) with 3D tasks by decoupling 3D supervision into an ensemble of image-level primitives, e.g., semantic and geometric components. As a key motivator, we leverage the zero-shot capabilities of vision-language models for image semantics. However, due to the notorious ill-posed problem - multiple distinct 3D scenes can produce identical 2D projections, directly inferring metric depth from a monocular image in a zero-shot manner is unsuitable. In contrast, 2D VFMs provide promising sources of relative depth, which theoretically aligns with metric depth when properly scaled and offset. Thus, we adapt the relative depth derived from VFMs into metric depth by optimising the scale and offset using temporal consistency, also known as novel view synthesis, without access to ground-truth metric depth. Consequently, we project the semantics into 3D space using the reconstructed metric depth, thereby providing 3D supervision. Extensive experiments on nuScenes and SemanticKITTI demonstrate the effectiveness of our framework. For instance, the proposed method surpasses the current state-of-the-art by 3.34% mIoU on nuScenes for voxel occupancy prediction.
comment: preprint
☆ Exposure Bias Reduction for Enhancing Diffusion Transformer Feature Caching
Diffusion Transformer (DiT) has exhibited impressive generation capabilities but faces great challenges due to its high computational complexity. To address this problem, various methods, notably feature caching, have been introduced. However, these approaches focus on aligning non-cache diffusion without analyzing the impact of caching on the generation of intermediate processes. So the lack of exploration provides us with room for analysis and improvement. In this paper, we analyze the impact of caching on the SNR of the diffusion process and discern that feature caching intensifies the denoising procedure, and we further identify this as a more severe exposure bias issue. Drawing on this insight, we introduce EB-Cache, a joint cache strategy that aligns the Non-exposure bias (which gives us a higher performance ceiling) diffusion process. Our approach incorporates a comprehensive understanding of caching mechanisms and offers a novel perspective on leveraging caches to expedite diffusion processes. Empirical results indicate that EB-Cache optimizes model performance while concurrently facilitating acceleration. Specifically, in the 50-step generation process, EB-Cache achieves 1.49$\times$ acceleration with 0.63 FID reduction from 3.69, surpassing prior acceleration methods. Code will be available at \href{https://github.com/aSleepyTree/EB-Cache}{https://github.com/aSleepyTree/EB-Cache}.
☆ YOLOMG: Vision-based Drone-to-Drone Detection with Appearance and Pixel-Level Motion Fusion
Vision-based drone-to-drone detection has attracted increasing attention due to its importance in numerous tasks such as vision-based swarming, aerial see-and-avoid, and malicious drone detection. However, existing methods often encounter failures when the background is complex or the target is tiny. This paper proposes a novel end-to-end framework that accurately identifies small drones in complex environments using motion guidance. It starts by creating a motion difference map to capture the motion characteristics of tiny drones. Next, this motion difference map is combined with an RGB image using a bimodal fusion module, allowing for adaptive feature learning of the drone. Finally, the fused feature map is processed through an enhanced backbone and detection head based on the YOLOv5 framework to achieve accurate detection results. To validate our method, we propose a new dataset, named ARD100, which comprises 100 videos (202,467 frames) covering various challenging conditions and has the smallest average object size compared with the existing drone detection datasets. Extensive experiments on the ARD100 and NPS-Drones datasets show that our proposed detector performs exceptionally well under challenging conditions and surpasses state-of-the-art algorithms across various metrics. We publicly release the codes and ARD100 dataset at https://github.com/Irisky123/YOLOMG.
comment: 9 pages, 8 figures
☆ Towards Experience Replay for Class-Incremental Learning in Fully-Binary Networks
Binary Neural Networks (BNNs) are a promising approach to enable Artificial Neural Network (ANN) implementation on ultra-low power edge devices. Such devices may compute data in highly dynamic environments, in which the classes targeted for inference can evolve or even novel classes may arise, requiring continual learning. Class Incremental Learning (CIL) is a common type of continual learning for classification problems, that has been scarcely addressed in the context of BNNs. Furthermore, most of existing BNNs models are not fully binary, as they require several real-valued network layers, at the input, the output, and for batch normalization. This paper goes a step further, enabling class incremental learning in Fully-Binarized NNs (FBNNs) through four main contributions. We firstly revisit the FBNN design and its training procedure that is suitable to CIL. Secondly, we explore loss balancing, a method to trade-off the performance of past and current classes. Thirdly, we propose a semi-supervised method to pre-train the feature extractor of the FBNN for transferable representations. Fourthly, two conventional CIL methods, \ie, Latent and Native replay, are thoroughly compared. These contributions are exemplified first on the CIFAR100 dataset, before being scaled up to address the CORE50 continual learning benchmark. The final results based on our 3Mb FBNN on CORE50 exhibit at par and better performance than conventional real-valued larger NN models.
☆ Global Context Is All You Need for Parallel Efficient Tractography Parcellation
Whole-brain tractography in diffusion MRI is often followed by a parcellation in which each streamline is classified as belonging to a specific white matter bundle, or discarded as a false positive. Efficient parcellation is important both in large-scale studies, which have to process huge amounts of data, and in the clinic, where computational resources are often limited. TractCloud is a state-of-the-art approach that aims to maximize accuracy with a local-global representation. We demonstrate that the local context does not contribute to the accuracy of that approach, and is even detrimental when dealing with pathological cases. Based on this observation, we propose PETParc, a new method for Parallel Efficient Tractography Parcellation. PETParc is a transformer-based architecture in which the whole-brain tractogram is randomly partitioned into sub-tractograms whose streamlines are classified in parallel, while serving as global context for each other. This leads to a speedup of up to two orders of magnitude relative to TractCloud, and permits inference even on clinical workstations without a GPU. PETParc accounts for the lack of streamline orientation either via a novel flip-invariant embedding, or by simply using flips as part of data augmentation. Despite the speedup, results are often even better than those of prior methods. The code and pretrained model will be made public upon acceptance.
comment: 8 pages, 2 pages references, 3 figures, 2 tables
☆ SimROD: A Simple Baseline for Raw Object Detection with Global and Local Enhancements
Most visual models are designed for sRGB images, yet RAW data offers significant advantages for object detection by preserving sensor information before ISP processing. This enables improved detection accuracy and more efficient hardware designs by bypassing the ISP. However, RAW object detection is challenging due to limited training data, unbalanced pixel distributions, and sensor noise. To address this, we propose SimROD, a lightweight and effective approach for RAW object detection. We introduce a Global Gamma Enhancement (GGE) module, which applies a learnable global gamma transformation with only four parameters, improving feature representation while keeping the model efficient. Additionally, we leverage the green channel's richer signal to enhance local details, aligning with the human eye's sensitivity and Bayer filter design. Extensive experiments on multiple RAW object detection datasets and detectors demonstrate that SimROD outperforms state-of-the-art methods like RAW-Adapter and DIAP while maintaining efficiency. Our work highlights the potential of RAW data for real-world object detection.
☆ OmniSAM: Omnidirectional Segment Anything Model for UDA in Panoramic Semantic Segmentation
Segment Anything Model 2 (SAM2) has emerged as a strong base model in various pinhole imaging segmentation tasks. However, when applying it to $360^\circ$ domain, the significant field-of-view (FoV) gap between pinhole ($70^\circ \times 70^\circ$) and panoramic images ($180^\circ \times 360^\circ$) poses unique challenges. Two major concerns for this application includes 1) inevitable distortion and object deformation brought by the large FoV disparity between domains; 2) the lack of pixel-level semantic understanding that the original SAM2 cannot provide. To address these issues, we propose a novel OmniSAM framework, which makes the first attempt to apply SAM2 for panoramic semantic segmentation. Specifically, to bridge the first gap, OmniSAM first divides the panorama into sequences of patches. These patches are then treated as image sequences in similar manners as in video segmentation tasks. We then leverage the SAM2's memory mechanism to extract cross-patch correspondences that embeds the cross-FoV dependencies, improving feature continuity and the prediction consistency along mask boundaries. For the second gap, OmniSAM fine-tunes the pretrained image encoder and reutilize the mask decoder for semantic prediction. An FoV-based prototypical adaptation module with dynamic pseudo label update mechanism is also introduced to facilitate the alignment of memory and backbone features, thereby improving model generalization ability across different sizes of source models. Extensive experimental results demonstrate that OmniSAM outperforms the state-of-the-art methods by large margins, e.g., 79.06% (+10.22%) on SPin8-to-SPan8, 62.46% (+6.58%) on CS13-to-DP13.
☆ A Comprehensive Survey on Magnetic Resonance Image Reconstruction
Magnetic resonance imaging (MRI) reconstruction is a fundamental task aimed at recovering high-quality images from undersampled or low-quality MRI data. This process enhances diagnostic accuracy and optimizes clinical applications. In recent years, deep learning-based MRI reconstruction has made significant progress. Advancements include single-modality feature extraction using different network architectures, the integration of multimodal information, and the adoption of unsupervised or semi-supervised learning strategies. However, despite extensive research, MRI reconstruction remains a challenging problem that has yet to be fully resolved. This survey provides a systematic review of MRI reconstruction methods, covering key aspects such as data acquisition and preprocessing, publicly available datasets, single and multi-modal reconstruction models, training strategies, and evaluation metrics based on image reconstruction and downstream tasks. Additionally, we analyze the major challenges in this field and explore potential future directions.
☆ RS2V-L: Vehicle-Mounted LiDAR Data Generation from Roadside Sensor Observations
End-to-end autonomous driving solutions, which process multi-modal sensory data to directly generate refined control commands, have become a dominant paradigm in autonomous driving research. However, these approaches predominantly depend on single-vehicle data collection for model training and optimization, resulting in significant challenges such as high data acquisition and annotation costs, the scarcity of critical driving scenarios, and fragmented datasets that impede model generalization. To mitigate these limitations, we introduce RS2V-L, a novel framework for reconstructing and synthesizing vehicle-mounted LiDAR data from roadside sensor observations. Specifically, our method transforms roadside LiDAR point clouds into the vehicle-mounted LiDAR coordinate system by leveraging the target vehicle's relative pose. Subsequently, high-fidelity vehicle-mounted LiDAR data is synthesized through virtual LiDAR modeling, point cloud classification, and resampling techniques. To the best of our knowledge, this is the first approach to reconstruct vehicle-mounted LiDAR data from roadside sensor inputs. Extensive experimental evaluations demonstrate that incorporating the generated data into model training-complementing the KITTI dataset-enhances 3D object detection accuracy by over \text{30\%} while improving the efficiency of end-to-end autonomous driving data generation by more than an order of magnitude. These findings strongly validate the effectiveness of the proposed method and underscore its potential in reducing dependence on costly vehicle-mounted data collection while improving the robustness of autonomous driving models.
comment: 7 pages, 4 figures
☆ On the Generalization of Representation Uncertainty in Earth Observation
Recent advances in Computer Vision have introduced the concept of pretrained representation uncertainty, enabling zero-shot uncertainty estimation. This holds significant potential for Earth Observation (EO), where trustworthiness is critical, yet the complexity of EO data poses challenges to uncertainty-aware methods. In this work, we investigate the generalization of representation uncertainty in EO, considering the domain's unique semantic characteristics. We pretrain uncertainties on large EO datasets and propose an evaluation framework to assess their zero-shot performance in multi-label classification and segmentation EO tasks. Our findings reveal that, unlike uncertainties pretrained on natural images, EO-pretraining exhibits strong generalization across unseen EO domains, geographic locations, and target granularities, while maintaining sensitivity to variations in ground sampling distance. We demonstrate the practical utility of pretrained uncertainties showcasing their alignment with task-specific uncertainties in downstream tasks, their sensitivity to real-world EO image noise, and their ability to generate spatial uncertainty estimates out-of-the-box. Initiating the discussion on representation uncertainty in EO, our study provides insights into its strengths and limitations, paving the way for future research in the field. Code and weights are available at: https://github.com/Orion-AI-Lab/EOUncertaintyGeneralization.
comment: 18 pages
☆ NFIG: Autoregressive Image Generation with Next-Frequency Prediction
Autoregressive models have achieved promising results in natural language processing. However, for image generation tasks, they encounter substantial challenges in effectively capturing long-range dependencies, managing computational costs, and most crucially, defining meaningful autoregressive sequences that reflect natural image hierarchies. To address these issues, we present \textbf{N}ext-\textbf{F}requency \textbf{I}mage \textbf{G}eneration (\textbf{NFIG}), a novel framework that decomposes the image generation process into multiple frequency-guided stages. Our approach first generates low-frequency components to establish global structure with fewer tokens, then progressively adds higher-frequency details, following the natural spectral hierarchy of images. This principled autoregressive sequence not only improves the quality of generated images by better capturing true causal relationships between image components, but also significantly reduces computational overhead during inference. Extensive experiments demonstrate that NFIG achieves state-of-the-art performance with fewer steps, offering a more efficient solution for image generation, with 1.25$\times$ speedup compared to VAR-d20 while achieving better performance (FID: 2.81) on the ImageNet-256 benchmark. We hope that our insight of incorporating frequency-domain knowledge to guide autoregressive sequence design will shed light on future research. We will make our code publicly available upon acceptance of the paper.
comment: 10 pages, 7 figures, 2 tables
☆ XR-VLM: Cross-Relationship Modeling with Multi-part Prompts and Visual Features for Fine-Grained Recognition
Vision-Language Models (VLMs) have demonstrated impressive performance on various visual tasks, yet they still require adaptation on downstream tasks to achieve optimal performance. Recently, various adaptation technologies have been proposed, but we observe they often underperform in fine-grained visual recognition, which requires models to capture subtle yet discriminative features to distinguish similar sub-categories. Current adaptation methods typically rely on an alignment-based prediction framework, \ie the visual feature is compared with each class prompt for similarity calculation as the final prediction, which lacks class interaction during the forward pass. Besides, learning single uni-modal feature further restricts the model's expressive capacity. Therefore, we propose a novel mechanism, XR-VLM, to discover subtle differences by modeling cross-relationships, which specifically excels in scenarios involving multiple features. Our method introduces a unified multi-part visual feature extraction module designed to seamlessly integrate with the diverse backbones inherent in VLMs. Additionally, we develop a multi-part prompt learning module to capture multi-perspective descriptions of sub-categories. To further enhance discriminative capability, we propose a cross relationship modeling pattern that combines visual feature with all class prompt features, enabling a deeper exploration of the relationships between these two modalities. Extensive experiments have been conducted on various fine-grained datasets, and the results demonstrate that our method achieves significant improvements compared to current state-of-the-art approaches. Code will be released.
☆ Boosting the Generalization and Reasoning of Vision Language Models with Curriculum Reinforcement Learning
While state-of-the-art vision-language models (VLMs) have demonstrated remarkable capabilities in complex visual-text tasks, their success heavily relies on massive model scaling, limiting their practical deployment. Small-scale VLMs offer a more practical alternative but face significant challenges when trained with traditional supervised fine-tuning (SFT), particularly in two aspects: out-of-domain (OOD) generalization and reasoning abilities, which significantly lags behind the contemporary Large language models (LLMs). To address these challenges, we propose Curriculum Reinforcement Finetuning (Curr-ReFT), a novel post-training paradigm specifically designed for small-scale VLMs. Inspired by the success of reinforcement learning in LLMs, Curr-ReFT comprises two sequential stages: (1) Curriculum Reinforcement Learning, which ensures steady progression of model capabilities through difficulty-aware reward design, transitioning from basic visual perception to complex reasoning tasks; and (2) Rejected Sampling-based Self-improvement, which maintains the fundamental capabilities of VLMs through selective learning from high-quality multimodal and language examples. Extensive experiments demonstrate that models trained with Curr-ReFT paradigm achieve state-of-the-art performance across various visual tasks in both in-domain and out-of-domain settings. Moreover, our Curr-ReFT enhanced 3B model matches the performance of 32B-parameter models, demonstrating that efficient training paradigms can effectively bridge the gap between small and large models.
☆ Breaking the Limits of Quantization-Aware Defenses: QADT-R for Robustness Against Patch-Based Adversarial Attacks in QNNs
Quantized Neural Networks (QNNs) have emerged as a promising solution for reducing model size and computational costs, making them well-suited for deployment in edge and resource-constrained environments. While quantization is known to disrupt gradient propagation and enhance robustness against pixel-level adversarial attacks, its effectiveness against patch-based adversarial attacks remains largely unexplored. In this work, we demonstrate that adversarial patches remain highly transferable across quantized models, achieving over 70\% attack success rates (ASR) even at extreme bit-width reductions (e.g., 2-bit). This challenges the common assumption that quantization inherently mitigates adversarial threats. To address this, we propose Quantization-Aware Defense Training with Randomization (QADT-R), a novel defense strategy that integrates Adaptive Quantization-Aware Patch Generation (A-QAPA), Dynamic Bit-Width Training (DBWT), and Gradient-Inconsistent Regularization (GIR) to enhance resilience against highly transferable patch-based attacks. A-QAPA generates adversarial patches within quantized models, ensuring robustness across different bit-widths. DBWT introduces bit-width cycling during training to prevent overfitting to a specific quantization setting, while GIR injects controlled gradient perturbations to disrupt adversarial optimization. Extensive evaluations on CIFAR-10 and ImageNet show that QADT-R reduces ASR by up to 25\% compared to prior defenses such as PBAT and DWQ. Our findings further reveal that PBAT-trained models, while effective against seen patch configurations, fail to generalize to unseen patches due to quantization shift. Additionally, our empirical analysis of gradient alignment, spatial sensitivity, and patch visibility provides insights into the mechanisms that contribute to the high transferability of patch-based attacks in QNNs.
♻ ☆ GoalFlow: Goal-Driven Flow Matching for Multimodal Trajectories Generation in End-to-End Autonomous Driving
We propose GoalFlow, an end-to-end autonomous driving method for generating high-quality multimodal trajectories. In autonomous driving scenarios, there is rarely a single suitable trajectory. Recent methods have increasingly focused on modeling multimodal trajectory distributions. However, they suffer from trajectory selection complexity and reduced trajectory quality due to high trajectory divergence and inconsistencies between guidance and scene information. To address these issues, we introduce GoalFlow, a novel method that effectively constrains the generative process to produce high-quality, multimodal trajectories. To resolve the trajectory divergence problem inherent in diffusion-based methods, GoalFlow constrains the generated trajectories by introducing a goal point. GoalFlow establishes a novel scoring mechanism that selects the most appropriate goal point from the candidate points based on scene information. Furthermore, GoalFlow employs an efficient generative method, Flow Matching, to generate multimodal trajectories, and incorporates a refined scoring mechanism to select the optimal trajectory from the candidates. Our experimental results, validated on the Navsim\cite{Dauner2024_navsim}, demonstrate that GoalFlow achieves state-of-the-art performance, delivering robust multimodal trajectories for autonomous driving. GoalFlow achieved PDMS of 90.3, significantly surpassing other methods. Compared with other diffusion-policy-based methods, our approach requires only a single denoising step to obtain excellent performance. The code is available at https://github.com/YvanYin/GoalFlow.
♻ ☆ Vulnerabilities in AI-generated Image Detection: The Challenge of Adversarial Attacks
Recent advancements in image synthesis, particularly with the advent of GAN and Diffusion models, have amplified public concerns regarding the dissemination of disinformation. To address such concerns, numerous AI-generated Image (AIGI) Detectors have been proposed and achieved promising performance in identifying fake images. However, there still lacks a systematic understanding of the adversarial robustness of AIGI detectors. In this paper, we examine the vulnerability of state-of-the-art AIGI detectors against adversarial attack under white-box and black-box settings, which has been rarely investigated so far. To this end, we propose a new method to attack AIGI detectors. First, inspired by the obvious difference between real images and fake images in the frequency domain, we add perturbations under the frequency domain to push the image away from its original frequency distribution. Second, we explore the full posterior distribution of the surrogate model to further narrow this gap between heterogeneous AIGI detectors, e.g. transferring adversarial examples across CNNs and ViTs. This is achieved by introducing a novel post-train Bayesian strategy that turns a single surrogate into a Bayesian one, capable of simulating diverse victim models using one pre-trained surrogate, without the need for re-training. We name our method as Frequency-based Post-train Bayesian Attack, or FPBA. Through FPBA, we show that adversarial attack is truly a real threat to AIGI detectors, because FPBA can deliver successful black-box attacks across models, generators, defense methods, and even evade cross-generator detection, which is a crucial real-world detection scenario. The code will be shared upon acceptance.
♻ ☆ R1-Omni: Explainable Omni-Multimodal Emotion Recognition with Reinforcement Learning
In this work, we present the first application of Reinforcement Learning with Verifiable Reward (RLVR) to an Omni-multimodal large language model in the context of emotion recognition, a task where both visual and audio modalities play crucial roles. We leverage RLVR to optimize the Omni model, significantly enhancing its performance in three key aspects: reasoning capability, emotion recognition accuracy, and generalization ability. The introduction of RLVR not only improves the model's overall performance on in-distribution data but also demonstrates superior robustness when evaluated on out-of-distribution datasets. More importantly, the improved reasoning capability enables clear analysis of the contributions of different modalities, particularly visual and audio information, in the emotion recognition process. This provides valuable insights into the optimization of multimodal large language models.
♻ ☆ Narrating the Video: Boosting Text-Video Retrieval via Comprehensive Utilization of Frame-Level Captions CVPR 2025
In recent text-video retrieval, the use of additional captions from vision-language models has shown promising effects on the performance. However, existing models using additional captions often have struggled to capture the rich semantics, including temporal changes, inherent in the video. In addition, incorrect information caused by generative models can lead to inaccurate retrieval. To address these issues, we propose a new framework, Narrating the Video (NarVid), which strategically leverages the comprehensive information available from frame-level captions, the narration. The proposed NarVid exploits narration in multiple ways: 1) feature enhancement through cross-modal interactions between narration and video, 2) query-aware adaptive filtering to suppress irrelevant or incorrect information, 3) dual-modal matching score by adding query-video similarity and query-narration similarity, and 4) hard-negative loss to learn discriminative features from multiple perspectives using the two similarities from different views. Experimental results demonstrate that NarVid achieves state-of-the-art performance on various benchmark datasets.
comment: Accepted at CVPR 2025
♻ ☆ R1-Zero's "Aha Moment" in Visual Reasoning on a 2B Non-SFT Model
Recently DeepSeek R1 demonstrated how reinforcement learning with simple rule-based incentives can enable autonomous development of complex reasoning in large language models, characterized by the "aha moment", in which the model manifest self-reflection and increased response length during training. However, attempts to extend this success to multimodal reasoning often failed to reproduce these key characteristics. In this report, we present the first successful replication of these emergent characteristics for multimodal reasoning on only a non-SFT 2B model. Starting with Qwen2-VL-2B and applying reinforcement learning directly on the SAT dataset, our model achieves 59.47% accuracy on CVBench, outperforming the base model by approximately ~30% and exceeding both SFT setting by ~2%. In addition, we share our failed attempts and insights in attempting to achieve R1-like reasoning using RL with instruct models. aiming to shed light on the challenges involved. Our key observations include: (1) applying RL on instruct model often results in trivial reasoning trajectories, and (2) naive length reward are ineffective in eliciting reasoning capabilities. The project code is available at https://github.com/turningpoint-ai/VisualThinker-R1-Zero
comment: 10 pages, 6 figures
♻ ☆ MITO: Enabling Non-Line-of-Sight Perception using Millimeter-waves through Real-World Datasets and Simulation Tools
The ability to observe the world is fundamental to reasoning and making informed decisions on how to interact with the environment. However, optical perception can often be disrupted due to common occurrences, such as occlusions, which can pose challenges to existing vision systems. We present MITO, the first millimeter-wave (mmWave) dataset of diverse, everyday objects, collected using a UR5 robotic arm with two mmWave radars operating at different frequencies and an RGB-D camera. Unlike visible light, mmWave signals can penetrate common occlusions (e.g., cardboard boxes, fabric, plastic) but each mmWave frame has much lower resolution than typical cameras. To capture higher-resolution mmWave images, we leverage the robot's mobility and fuse frames over the synthesized aperture. MITO captures over 24 million mmWave frames and uses them to generate 550 high-resolution mmWave (synthetic aperture) images in line-of-sight and non-light-of-sight (NLOS), as well as RGB-D images, segmentation masks, and raw mmWave signals, taken from 76 different objects. We develop an open-source simulation tool that can be used to generate synthetic mmWave images for any 3D triangle mesh. Finally, we demonstrate the utility of our dataset and simulator for enabling broader NLOS perception by developing benchmarks for NLOS segmentation and classification.
♻ ☆ VideoLifter: Lifting Videos to 3D with Fast Hierarchical Stereo Alignment
Efficiently reconstructing 3D scenes from monocular video remains a core challenge in computer vision, vital for applications in virtual reality, robotics, and scene understanding. Recently, frame-by-frame progressive reconstruction without camera poses is commonly adopted, incurring high computational overhead and compounding errors when scaling to longer videos. To overcome these issues, we introduce VideoLifter, a novel video-to-3D pipeline that leverages a local-to-global strategy on a fragment basis, achieving both extreme efficiency and SOTA quality. Locally, VideoLifter leverages learnable 3D priors to register fragments, extracting essential information for subsequent 3D Gaussian initialization with enforced inter-fragment consistency and optimized efficiency. Globally, it employs a tree-based hierarchical merging method with key frame guidance for inter-fragment alignment, pairwise merging with Gaussian point pruning, and subsequent joint optimization to ensure global consistency while efficiently mitigating cumulative errors. This approach significantly accelerates the reconstruction process, reducing training time by over 82% while holding better visual quality than current SOTA methods.
comment: project page: https://videolifter.github.io
♻ ☆ Physics Context Builders: A Modular Framework for Physical Reasoning in Vision-Language Models
Physical reasoning, which involves interpreting object behaviors within dynamic environments, remains a significant challenge for Vision-Language Models (VLMs). The limitations in physical reasoning arise from an inability to translate learned knowledge into predictions about physical behavior. We perform a careful study to show how continual fine-tuning can mitigate this issue. However, fine-tuning is expensive for large models and impractical to repeatedly perform for every task. This necessitates the creation of modular and scalable ways to teach VLMs about physical reasoning. To that end, we introduce Physics Context Builders (PCBs), a novel modular framework where specialized VLMs are fine-tuned to generate detailed physical scene descriptions. These can be used as physical contexts for larger VLMs to enhance their reasoning capabilities. PCBs enable the separation of visual perception from reasoning, allowing us to analyze their relative contributions to physical understanding. We perform careful experiments on CLEVRER and on Falling Tower, a stability detection dataset with both simulated and real-world scenes, to demonstrate that PCBs provide substantial performance improvements, increasing average accuracy by up to 13.8% on complex physical reasoning tasks. Notably, PCBs show strong Sim2Real transfer, successfully generalizing from simulated training data to real-world scenes. Our work demonstrates that enhancing visual perception through modular, simulation-trained components offers a practical approach to improving physical reasoning in VLMs, while providing insights into the factors affecting physical understanding in these models.
♻ ☆ Sparrow: Data-Efficient Video-LLM with Text-to-Image Augmentation
Recent years have witnessed the success of Multimodal Large Language Models (MLLMs) in the vision understanding domain. The success of these models can largely be attributed to the dominant scaling law, which states that larger parameter sizes and data volumes contribute to better performance. Notably, data scaling has mainly been powered by automatic data pipelines, which center around the self-instruction of LLMs. The paradigm has been taken for granted for quite some time, but the study of the effectiveness of scaling with these data has been neglected for a long time. In this context, this work revisits scaling with synthetic data and focuses on developing video-LLMs from a data-centric perspective. Our main study approach is fine-tuning pre-trained image-LLMs with video data and investigating learning efficiency through data scaling. Results from our preliminary experiments reveal a low learning efficiency phenomenon when simply scaling up video data samples, which, through our probing, can be ascribed to a lack of instruction diversity. Aiming at this issue, we propose a data augmentation method called Sparrow, which synthesizes video-like samples from pure text instruction data. Mixing these synthetic samples with the video data enables a more efficient training scheme. Through comprehensive experiments, we demonstrate that our proposed method achieves performance comparable to or even superior to baselines trained with many more samples. Meanwhile, we find that incorporating these synthetic samples can boost the performance of long video understanding without training with long video data. The code and data examples are available at https://github.com/VITA-MLLM/Sparrow.
comment: Project page: https://github.com/VITA-MLLM/Sparrow
♻ ☆ MGNiceNet: Unified Monocular Geometric Scene Understanding
Monocular geometric scene understanding combines panoptic segmentation and self-supervised depth estimation, focusing on real-time application in autonomous vehicles. We introduce MGNiceNet, a unified approach that uses a linked kernel formulation for panoptic segmentation and self-supervised depth estimation. MGNiceNet is based on the state-of-the-art real-time panoptic segmentation method RT-K-Net and extends the architecture to cover both panoptic segmentation and self-supervised monocular depth estimation. To this end, we introduce a tightly coupled self-supervised depth estimation predictor that explicitly uses information from the panoptic path for depth prediction. Furthermore, we introduce a panoptic-guided motion masking method to improve depth estimation without relying on video panoptic segmentation annotations. We evaluate our method on two popular autonomous driving datasets, Cityscapes and KITTI. Our model shows state-of-the-art results compared to other real-time methods and closes the gap to computationally more demanding methods. Source code and trained models are available at https://github.com/markusschoen/MGNiceNet.
♻ ☆ Look Inside for More: Internal Spatial Modality Perception for 3D Anomaly Detection AAAI2025
3D anomaly detection has recently become a significant focus in computer vision. Several advanced methods have achieved satisfying anomaly detection performance. However, they typically concentrate on the external structure of 3D samples and struggle to leverage the internal information embedded within samples. Inspired by the basic intuition of why not look inside for more, we introduce a straightforward method named Internal Spatial Modality Perception~(ISMP) to explore the feature representation from internal views fully. Specifically, our proposed ISMP consists of a critical perception module, Spatial Insight Engine~(SIE), which abstracts complex internal information of point clouds into essential global features. Besides, to better align structural information with point data, we propose an enhanced key point feature extraction module for amplifying spatial structure feature representation. Simultaneously, a novel feature filtering module is incorporated to reduce noise and redundant features for further aligning precise spatial structure. Extensive experiments validate the effectiveness of our proposed method, achieving object-level and pixel-level AUROC improvements of 3.2\% and 13.1\%, respectively, on the Real3D-AD benchmarks. Note that the strong generalization ability of SIE has been theoretically proven and is verified in both classification and segmentation tasks.
comment: AAAI2025 Poster
♻ ☆ Personalized Generative Low-light Image Denoising and Enhancement
While smartphone cameras today can produce astonishingly good photos, their performance in low light is still not completely satisfactory because of the fundamental limits in photon shot noise and sensor read noise. Generative image restoration methods have demonstrated promising results compared to traditional methods, but they suffer from hallucinatory content generation when the signal-to-noise ratio (SNR) is low. Recognizing the availability of personalized photo galleries on users' smartphones, we propose Personalized Generative Denoising (PGD) by building a diffusion model customized for different users. Our core innovation is an identity-consistent physical buffer that extracts the physical attributes of the person from the gallery. This ID-consistent physical buffer provides a strong prior that can be integrated with the diffusion model to restore the degraded images, without the need of fine-tuning. Over a wide range of low-light testing scenarios, we show that PGD achieves superior image denoising and enhancement performance compared to existing diffusion-based denoising approaches.
♻ ☆ TriDi: Trilateral Diffusion of 3D Humans, Objects, and Interactions
Modeling 3D human-object interaction (HOI) is a problem of great interest for computer vision and a key enabler for virtual and mixed-reality applications. Existing methods work in a one-way direction: some recover plausible human interactions conditioned on a 3D object; others recover the object pose conditioned on a human pose. Instead, we provide the first unified model - TriDi which works in any direction. Concretely, we generate Human, Object, and Interaction modalities simultaneously with a new three-way diffusion process, allowing to model seven distributions with one network. We implement TriDi as a transformer attending to the various modalities' tokens, thereby discovering conditional relations between them. The user can control the interaction either as a text description of HOI or a contact map. We embed these two representations into a shared latent space, combining the practicality of text descriptions with the expressiveness of contact maps. Using a single network, TriDi unifies all the special cases of prior work and extends to new ones, modeling a family of seven distributions. Remarkably, despite using a single model, TriDi generated samples surpass one-way specialized baselines on GRAB and BEHAVE in terms of both qualitative and quantitative metrics, and demonstrating better diversity. We show the applicability of TriDi to scene population, generating objects for human-contact datasets, and generalization to unseen object geometry. The project page is available at: https://virtualhumans.mpi-inf.mpg.de/tridi.
♻ ☆ MIBench: A Comprehensive Framework for Benchmarking Model Inversion Attack and Defense
Model Inversion (MI) attacks aim at leveraging the output information of target models to reconstruct privacy-sensitive training data, raising critical concerns regarding the privacy vulnerabilities of Deep Neural Networks (DNNs). Unfortunately, in tandem with the rapid evolution of MI attacks, the absence of a comprehensive benchmark with standardized metrics and reproducible implementations has emerged as a formidable challenge. This deficiency has hindered objective comparison of methodological advancements and reliable assessment of defense efficacy. To address this critical gap, we build the first practical benchmark named MIBench for systematic evaluation of model inversion attacks and defenses. This benchmark bases on an extensible and reproducible modular-based toolbox which currently integrates a total of 19 state-of-the-art attack and defense methods and encompasses 9 standardized evaluation protocols. Capitalizing on this foundation, we conduct extensive evaluation from multiple perspectives to holistically compare and analyze various methods across different scenarios, such as the impact of target resolution, model predictive power, defense performance and adversarial robustness.
comment: 20 pages
♻ ☆ Open-Vocabulary Online Semantic Mapping for SLAM
This paper presents an Open-Vocabulary Online 3D semantic mapping pipeline, that we denote by its acronym OVO. Given a sequence of posed RGB-D frames, we detect and track 3D segments, which we describe using CLIP vectors. These are computed from the viewpoints where they are observed by a novel CLIP merging method. Notably, our OVO has a significantly lower computational and memory footprint than offline baselines, while also showing better segmentation metrics than them. Along with superior segmentation performance, we also show experimental results of our mapping contributions integrated with two different SLAM backbones (Gaussian-SLAM and ORB-SLAM2), being the first ones demonstrating end-to-end open-vocabulary online 3D reconstructions without relying on ground-truth camera poses or scene geometry.
♻ ☆ SDFit: 3D Object Pose and Shape by Fitting a Morphable SDF to a Single Image
Recovering 3D object pose and shape from a single image is a challenging and highly ill-posed problem. This is due to strong (self-)occlusions, depth ambiguities, the vast intra- and inter-class shape variance, and lack of 3D ground truth for natural images. While existing methods train deep networks on synthetic datasets to predict 3D shapes, they often struggle to generalize to real-world scenarios, lack an explicit feedback loop for refining noisy estimates, and primarily focus on geometry without explicitly considering pixel alignment. To this end, we make two key observations: (1) a robust solution requires a model that imposes a strong category-specific shape prior to constrain the search space, and (2) foundational models embed 2D images and 3D shapes in joint spaces; both help resolve ambiguities. Hence, we propose SDFit, a novel optimization framework that is built on three key innovations: First, we use a learned morphable signed-distance-function (mSDF) model that acts as a strong shape prior, thus constraining the shape space. Second, we use foundational models to establish rich 2D-to-3D correspondences between image features and the mSDF. Third, we develop a fitting pipeline that iteratively refines both shape and pose, aligning the mSDF to the image. We evaluate SDFit on the Pix3D, Pascal3D+, and COMIC image datasets. SDFit performs on par with SotA methods, while demonstrating exceptional robustness to occlusions and requiring no retraining for unseen images. Therefore, SDFit contributes new insights for generalizing in the wild, paving the way for future research. Code will be released.
comment: 12 pages, 10 figures, 5 tables
♻ ☆ Quantifying the Limits of Segmentation Foundation Models: Modeling Challenges in Segmenting Tree-Like and Low-Contrast Objects
Image segmentation foundation models (SFMs) like Segment Anything Model (SAM) have achieved impressive zero-shot and interactive segmentation across diverse domains. However, they struggle to segment objects with certain structures, particularly those with dense, tree-like morphology and low textural contrast from their surroundings. These failure modes are crucial for understanding the limitations of SFMs in real-world applications. To systematically study this issue, we introduce interpretable metrics quantifying object tree-likeness and textural separability. On carefully controlled synthetic experiments and real-world datasets, we show that SFM performance (e.g., SAM, SAM 2, HQ-SAM) noticeably correlates with these factors. We link these failures to "textural confusion", where models misinterpret local structure as global texture, causing over-segmentation or difficulty distinguishing objects from similar backgrounds. Notably, targeted fine-tuning fails to resolve this issue, indicating a fundamental limitation. Our study provides the first quantitative framework for modeling the behavior of SFMs on challenging structures, offering interpretable insights into their segmentation capabilities.
comment: Code: https://github.com/mazurowski-lab/SAM-TexturalConfusion-Metrics
♻ ☆ CustomContrast: A Multilevel Contrastive Perspective For Subject-Driven Text-to-Image Customization
Subject-driven text-to-image (T2I) customization has drawn significant interest in academia and industry. This task enables pre-trained models to generate novel images based on unique subjects. Existing studies adopt a self-reconstructive perspective, focusing on capturing all details of a single image, which will misconstrue the specific image's irrelevant attributes (e.g., view, pose, and background) as the subject intrinsic attributes. This misconstruction leads to both overfitting or underfitting of irrelevant and intrinsic attributes of the subject, i.e., these attributes are over-represented or under-represented simultaneously, causing a trade-off between similarity and controllability. In this study, we argue an ideal subject representation can be achieved by a cross-differential perspective, i.e., decoupling subject intrinsic attributes from irrelevant attributes via contrastive learning, which allows the model to focus more on intrinsic attributes through intra-consistency (features of the same subject are spatially closer) and inter-distinctiveness (features of different subjects have distinguished differences). Specifically, we propose CustomContrast, a novel framework, which includes a Multilevel Contrastive Learning (MCL) paradigm and a Multimodal Feature Injection (MFI) Encoder. The MCL paradigm is used to extract intrinsic features of subjects from high-level semantics to low-level appearance through crossmodal semantic contrastive learning and multiscale appearance contrastive learning. To facilitate contrastive learning, we introduce the MFI encoder to capture cross-modal representations. Extensive experiments show the effectiveness of CustomContrast in subject similarity and text controllability.
♻ ☆ Efficient Perspective-Correct 3D Gaussian Splatting Using Hybrid Transparency
3D Gaussian Splats (3DGS) have proven a versatile rendering primitive, both for inverse rendering as well as real-time exploration of scenes. In these applications, coherence across camera frames and multiple views is crucial, be it for robust convergence of a scene reconstruction or for artifact-free fly-throughs. Recent work started mitigating artifacts that break multi-view coherence, including popping artifacts due to inconsistent transparency sorting and perspective-correct outlines of (2D) splats. At the same time, real-time requirements forced such implementations to accept compromises in how transparency of large assemblies of 3D Gaussians is resolved, in turn breaking coherence in other ways. In our work, we aim at achieving maximum coherence, by rendering fully perspective-correct 3D Gaussians while using a high-quality approximation of accurate blending, hybrid transparency, on a per-pixel level, in order to retain real-time frame rates. Our fast and perspectively accurate approach for evaluation of 3D Gaussians does not require matrix inversions, thereby ensuring numerical stability and eliminating the need for special handling of degenerate splats, and the hybrid transparency formulation for blending maintains similar quality as fully resolved per-pixel transparencies at a fraction of the rendering costs. We further show that each of these two components can be independently integrated into Gaussian splatting systems. In combination, they achieve up to 2$\times$ higher frame rates, 2$\times$ faster optimization, and equal or better image quality with fewer rendering artifacts compared to traditional 3DGS on common benchmarks.
comment: Project page: https://fhahlbohm.github.io/htgs/
♻ ☆ OccLinker: Deflickering Occupancy Networks through Lightweight Spatio-Temporal Correlation
Vision-based occupancy networks (VONs) provide an end-to-end solution for reconstructing 3D environments in autonomous driving. However, existing methods often suffer from temporal inconsistencies, manifesting as flickering effects that compromise visual experience and adversely affect decision-making. While recent approaches have incorporated historical data to mitigate the issue, they often incur high computational costs and introduce noisy information that interferes with object detection. We propose OccLinker, a novel plugin framework designed to seamlessly integrate with existing VONs for boosting performance. Our method employs a three-stage architecture that consolidates historical static and motion cues, correlates them with current features through a Motion-Static Integration (MSI) mechanism, and generates correction occupancy to refine base network predictions. Extensive experiments on two benchmarks demonstrate the efficiency and effectiveness of our method, outperforming the latest baseline models. The source code are available in the supplementary material.
♻ ☆ Extracting Training Data from Unconditional Diffusion Models
As diffusion probabilistic models (DPMs) are being employed as mainstream models for Generative Artificial Intelligence (GenAI), the study of their memorization has attracted growing attention. Existing works in this field aim to establish an understanding of whether or to what extent DPMs learn via memorization. Such an understanding is crucial for identifying potential risks of data leakage and copyright infringement in diffusion models and, more importantly, for trustworthy application of GenAI. Existing works revealed that conditional DPMs are more prone to memorize training data than unconditional DPMs. And most data extraction methods developed so far target conditional DPMs. Although unconditional DPMs are less prone to data extraction, further investigation into these attacks remains essential since they serve as the foundation for conditional models like Stable Diffusion, and exploring these attacks will enhance our understanding of memorization in DPMs. In this work, we propose a novel data extraction method named \textbf{Surrogate condItional Data Extraction (SIDE)} that leverages a time-dependent classifier trained on generated data as surrogate conditions to extract training data from unconditional DPMs. Empirical results demonstrate that it can extract training data in challenging scenarios where previous methods fail, and it is, on average, over 50\% more effective across different scales of the CelebA dataset. Furthermore, we provide a theoretical understanding of memorization in both conditional and unconditional DPMs and why SIDE is effective.
♻ ☆ Large-scale Remote Sensing Image Target Recognition and Automatic Annotation
This paper presents a method for object recognition and automatic labeling in large-area remote sensing images called LRSAA. The method integrates YOLOv11 and MobileNetV3-SSD object detection algorithms through ensemble learning to enhance model performance. Furthermore, it employs Poisson disk sampling segmentation techniques and the EIOU metric to optimize the training and inference processes of segmented images, followed by the integration of results. This approach not only reduces the demand for computational resources but also achieves a good balance between accuracy and speed. The source code for this project has been made publicly available on https://github.com/anaerovane/LRSAA.
comment: My team members have already submitted another version of this paper to arXiv (arXiv:2411.15808). We have to withdraw this version to avoid resubmitting the same paper content
♻ ☆ Structure-guided Deep Multi-View Clustering
Deep multi-view clustering seeks to utilize the abundant information from multiple views to improve clustering performance. However, most of the existing clustering methods often neglect to fully mine multi-view structural information and fail to explore the distribution of multi-view data, limiting clustering performance. To address these limitations, we propose a structure-guided deep multi-view clustering model. Specifically, we introduce a positive sample selection strategy based on neighborhood relationships, coupled with a corresponding loss function. This strategy constructs multi-view nearest neighbor graphs to dynamically redefine positive sample pairs, enabling the mining of local structural information within multi-view data and enhancing the reliability of positive sample selection. Additionally, we introduce a Gaussian distribution model to uncover latent structural information and introduce a loss function to reduce discrepancies between view embeddings. These two strategies explore multi-view structural information and data distribution from different perspectives, enhancing consistency across views and increasing intra-cluster compactness. Experimental evaluations demonstrate the efficacy of our method, showing significant improvements in clustering performance on multiple benchmark datasets compared to state-of-the-art multi-view clustering approaches.
comment: We have found that our paper has many imperfections and incorrect formulas and derivations, and we insist on retracting the manuscript in order to avoid misleading readers
♻ ☆ PriorMotion: Generative Class-Agnostic Motion Prediction with Raster-Vector Motion Field Priors
Reliable spatial and motion perception is essential for safe autonomous navigation. Recently, class-agnostic motion prediction on bird's-eye view (BEV) cell grids derived from LiDAR point clouds has gained significant attention. However, existing frameworks typically perform cell classification and motion prediction on a per-pixel basis, neglecting important motion field priors such as rigidity constraints, temporal consistency, and future interactions between agents. These limitations lead to degraded performance, particularly in sparse and distant regions. To address these challenges, we introduce \textbf{PriorMotion}, an innovative generative framework designed for class-agnostic motion prediction that integrates essential motion priors by modeling them as distributions within a structured latent space. Specifically, our method captures structured motion priors using raster-vector representations and employs a variational autoencoder with distinct dynamic and static components to learn future motion distributions in the latent space. Experiments on the nuScenes dataset demonstrate that \textbf{PriorMotion} outperforms state-of-the-art methods across both traditional metrics and our newly proposed evaluation criteria. Notably, we achieve improvements of approximately 15.24\% in accuracy for fast-moving objects, an 3.59\% increase in generalization, a reduction of 0.0163 in motion stability, and a 31.52\% reduction in prediction errors in distant regions. Further validation on FMCW LiDAR sensors confirms the robustness of our approach.
comment: 17 pages, 9 figures
GAGS: Granularity-Aware Feature Distillation for Language Gaussian Splatting
3D open-vocabulary scene understanding, which accurately perceives complex semantic properties of objects in space, has gained significant attention in recent years. In this paper, we propose GAGS, a framework that distills 2D CLIP features into 3D Gaussian splatting, enabling open-vocabulary queries for renderings on arbitrary viewpoints. The main challenge of distilling 2D features for 3D fields lies in the multiview inconsistency of extracted 2D features, which provides unstable supervision for the 3D feature field. GAGS addresses this challenge with two novel strategies. First, GAGS associates the prompt point density of SAM with the camera distances, which significantly improves the multiview consistency of segmentation results. Second, GAGS further decodes a granularity factor to guide the distillation process and this granularity factor can be learned in a unsupervised manner to only select the multiview consistent 2D features in the distillation process. Experimental results on two datasets demonstrate significant performance and stability improvements of GAGS in visual grounding and semantic segmentation, with an inference speed 2$\times$ faster than baseline methods. The code and additional results are available at https://pz0826.github.io/GAGS-Webpage/ .
comment: Project page: https://pz0826.github.io/GAGS-Webpage/
♻ ☆ BillBoard Splatting (BBSplat): Learnable Textured Primitives for Novel View Synthesis
We present billboard Splatting (BBSplat) - a novel approach for novel view synthesis based on textured geometric primitives. BBSplat represents the scene as a set of optimizable textured planar primitives with learnable RGB textures and alpha-maps to control their shape. BBSplat primitives can be used in any Gaussian Splatting pipeline as drop-in replacements for Gaussians. The proposed primitives close the rendering quality gap between 2D and 3D Gaussian Splatting (GS), enabling the accurate extraction of 3D mesh as in the 2DGS framework. Additionally, the explicit nature of planar primitives enables the use of the ray-tracing effects in rasterization. Our novel regularization term encourages textures to have a sparser structure, enabling an efficient compression that leads to a reduction in the storage space of the model up to x17 times compared to 3DGS. Our experiments show the efficiency of BBSplat on standard datasets of real indoor and outdoor scenes such as Tanks&Temples, DTU, and Mip-NeRF-360. Namely, we achieve a state-of-the-art PSNR of 29.72 for DTU at Full HD resolution.
♻ ☆ LOGen: Toward Lidar Object Generation by Point Diffusion
The generation of LiDAR scans is a growing area of research with diverse applications to autonomous driving. However, scan generation remains challenging, especially when compared to the rapid advancement of 2D and 3D object generation. We introduce a novel task: LiDAR object generation, requiring models to produce 3D objects as viewed by a LiDAR scan. This task focuses LiDAR scan generation on the most interesting aspect of scenes, the objects, while also benefiting from advancements in 3D object generative methods. We introduce a novel diffusion-based model to produce LiDAR point clouds of dataset objects, including intensity, and with an extensive control of the generation via conditioning information. Our experiments on nuScenes show the quality of our generations measured with new 3D metrics developed to suit LiDAR objects.
comment: Project web page: https://nerminsamet.github.io/logen/
♻ ☆ Exploring Token-Level Augmentation in Vision Transformer for Semi-Supervised Semantic Segmentation
Semi-supervised semantic segmentation has witnessed remarkable advancements in recent years. However, existing algorithms are based on convolutional neural networks and directly applying them to Vision Transformers poses certain limitations due to conceptual disparities. To this end, we propose TokenMix, a data augmentation technique specifically designed for semi-supervised semantic segmentation with Vision Transformers. TokenMix aligns well with the global attention mechanism by mixing images at the token level, enhancing learning capability for contextual information among image patches. We further incorporate image augmentation and feature augmentation to promote the diversity of augmentation. Moreover, to enhance consistency regularization, we propose a dual-branch framework where each branch applies image and feature augmentation to the input image. We conduct extensive experiments across multiple benchmark datasets, including Pascal VOC 2012, Cityscapes, and COCO. Results suggest that the proposed method outperforms state-of-the-art algorithms with notably observed accuracy improvement, especially under limited fine annotations.
♻ ☆ CC-Diff: Enhancing Contextual Coherence in Remote Sensing Image Synthesis
Existing image synthesis methods for natural scenes focus primarily on foreground control, often reducing the background to simplistic textures. Consequently, these approaches tend to overlook the intrinsic correlation between foreground and background, which may lead to incoherent and unrealistic synthesis results in remote sensing (RS) scenarios. In this paper, we introduce CC-Diff, a $\underline{\textbf{Diff}}$usion Model-based approach for RS image generation with enhanced $\underline{\textbf{C}}$ontext $\underline{\textbf{C}}$oherence. Specifically, we propose a novel Dual Re-sampler for feature extraction, with a built-in `Context Bridge' to explicitly capture the intricate interdependency between foreground and background. Moreover, we reinforce their connection by employing a foreground-aware attention mechanism during the generation of background features, thereby enhancing the plausibility of the synthesized context. Extensive experiments show that CC-Diff outperforms state-of-the-art methods across critical quality metrics, excelling in the RS domain and effectively generalizing to natural images. Remarkably, CC-Diff also shows high trainability, boosting detection accuracy by 1.83 mAP on DOTA and 2.25 mAP on the COCO benchmark.
♻ ☆ Evaluating Perceptual Distance Models by Fitting Binomial Distributions to Two-Alternative Forced Choice Data
Two-alternative forced choice (2AFC) experiments are popular in the visual perception literature to understand how human observers perceive distances within triplets made of a reference image and two distorted versions. Previously, this had been conducted in controlled environments, with triplets sharing images, making it possible to rank the perceived quality and evaluate perceptual distance models against the ranking. Recently, crowd-sourced perceptual datasets have emerged, with no images shared between triplets, making ranking infeasible. Evaluations using this data reduces the judgements on a triplet to a binary decision, namely, whether the distance model agrees with the human decision - which is suboptimal and prone to misleading conclusions. Instead, we statistically model the underlying decision-making process during 2AFC experiments using a binomial distribution. We estimate a smooth and consistent distribution of the judgements on the reference-distorted distance plane, according to each distance model. We estimate the parameter of the local binomial distribution using maximum likelihood, and a global measurement of the expected log-likelihood of the judgements. We calculate meaningful and well-founded metrics, beyond the mere prediction accuracy as percentage agreement and compare to a neural network counterpart, also optimised to maximise likelihood according to a binomial model.
♻ ☆ Interpretable deformable image registration: A geometric deep learning perspective
Deformable image registration poses a challenging problem where, unlike most deep learning tasks, a complex relationship between multiple coordinate systems has to be considered. Although data-driven methods have shown promising capabilities to model complex non-linear transformations, existing works employ standard deep learning architectures assuming they are general black-box solvers. We argue that understanding how learned operations perform pattern-matching between the features in the source and target domains is the key to building robust, data-efficient, and interpretable architectures. We present a theoretical foundation for designing an interpretable registration framework: separated feature extraction and deformation modeling, dynamic receptive fields, and a data-driven deformation functions awareness of the relationship between both spatial domains. Based on this foundation, we formulate an end-to-end process that refines transformations in a coarse-to-fine fashion. Our architecture employs spatially continuous deformation modeling functions that use geometric deep-learning principles, therefore avoiding the problematic approach of resampling to a regular grid between successive refinements of the transformation. We perform a qualitative investigation to highlight interesting interpretability properties of our architecture. We conclude by showing significant improvement in performance metrics over state-of-the-art approaches for both mono- and multi-modal inter-subject brain registration, as well as the challenging task of longitudinal retinal intra-subject registration. We make our code publicly available
comment: 20 Pages
♻ ☆ EVF-SAM: Early Vision-Language Fusion for Text-Prompted Segment Anything Model
Segment Anything Model (SAM) has attracted widespread attention for its superior interactive segmentation capabilities with visual prompts while lacking further exploration of text prompts. In this paper, we empirically investigate what text prompt encoders (e.g., CLIP or LLM) are good for adapting SAM for referring expression segmentation and introduce the Early Vision-language Fusion-based SAM (EVF-SAM). EVF-SAM is a simple yet effective referring segmentation method which exploits multimodal prompts (i.e., image and text) and comprises a pre-trained vision-language model to generate referring prompts and a SAM model for segmentation. Surprisingly, we observe that: (1) multimodal prompts and (2) vision-language models with early fusion (e.g., BEIT-3) are beneficial for prompting SAM for accurate referring segmentation. Our experiments show that the proposed EVF-SAM based on BEIT-3 can obtain state-of-the-art performance on RefCOCO/+/g for referring expression segmentation and demonstrate the superiority of prompting SAM with early vision-language fusion. In addition, the proposed EVF-SAM with 1.32B parameters achieves remarkably higher performance while reducing nearly 82% of parameters compared to previous SAM methods based on large multimodal models.
comment: Preprint. Update: (1) better performance and (2) versatile segmentation. Code and models are available at: https://github.com/hustvl/EVF-SAM
♻ ☆ MonoSOWA: Scalable monocular 3D Object detector Without human Annotations
Inferring object 3D position and orientation from a single RGB camera is a foundational task in computer vision with many important applications. Traditionally, 3D object detection methods are trained in a fully-supervised setup, requiring LiDAR and vast amounts of human annotations, which are laborious, costly, and do not scale well with the ever-increasing amounts of data being captured. We present a novel method to train a 3D object detector from a single RGB camera without domain-specific human annotations, making orders of magnitude more data available for training. The method uses newly proposed Local Object Motion Model to disentangle object movement source between subsequent frames, is approximately 700 times faster than previous work and compensates camera focal length differences to aggregate multiple datasets. The method is evaluated on three public datasets, where despite using no human labels, it outperforms prior work by a significant margin. It also shows its versatility as a pre-training tool for fully-supervised training and shows that combining pseudo-labels from multiple datasets can achieve comparable accuracy to using human labels from a single dataset. The source code and model will be published soon.
♻ ☆ 10K is Enough: An Ultra-Lightweight Binarized Network for Infrared Small-Target Detection
The widespread deployment of Infrared Small-Target Detection (IRSTD) algorithms on edge devices necessitates the exploration of model compression techniques. Binarized neural networks (BNNs) are distinguished by their exceptional efficiency in model compression. However, the small size of infrared targets introduces stringent precision requirements for the IRSTD task, while the inherent precision loss during binarization presents a significant challenge. To address this, we propose the Binarized Infrared Small-Target Detection Network (BiisNet), which preserves the core operations of binarized convolutions while integrating full-precision features into the network's information flow. Specifically, we propose the Dot Binary Convolution, which retains fine-grained semantic information in feature maps while still leveraging the binarized convolution operations. In addition, we introduce a smooth and adaptive Dynamic Softsign function, which provides more comprehensive and progressively finer gradient during backpropagation, enhancing model stability and promoting an optimal weight distribution. Experimental results demonstrate that BiisNet not only significantly outperforms other binary architectures but also has strong competitiveness among state-of-the-art full-precision models.
♻ ☆ Mask-Adapter: The Devil is in the Masks for Open-Vocabulary Segmentation CVPR 2025
Recent open-vocabulary segmentation methods adopt mask generators to predict segmentation masks and leverage pre-trained vision-language models, e.g., CLIP, to classify these masks via mask pooling. Although these approaches show promising results, it is counterintuitive that accurate masks often fail to yield accurate classification results through pooling CLIP image embeddings within the mask regions. In this paper, we reveal the performance limitations of mask pooling and introduce Mask-Adapter, a simple yet effective method to address these challenges in open-vocabulary segmentation. Compared to directly using proposal masks, our proposed Mask-Adapter extracts semantic activation maps from proposal masks, providing richer contextual information and ensuring alignment between masks and CLIP. Additionally, we propose a mask consistency loss that encourages proposal masks with similar IoUs to obtain similar CLIP embeddings to enhance models' robustness to varying predicted masks. Mask-Adapter integrates seamlessly into open-vocabulary segmentation methods based on mask pooling in a plug-and-play manner, delivering more accurate classification results. Extensive experiments across several zero-shot benchmarks demonstrate significant performance gains for the proposed Mask-Adapter on several well-established methods. Notably, Mask-Adapter also extends effectively to SAM and achieves impressive results on several open-vocabulary segmentation datasets. Code and models are available at https://github.com/hustvl/MaskAdapter.
comment: Accepted by CVPR 2025; Code & models: https://github.com/hustvl/MaskAdapter
♻ ☆ LossAgent: Towards Any Optimization Objectives for Image Processing with LLM Agents
We present the first loss agent, dubbed LossAgent, for low-level image processing tasks, e.g., image super-resolution and restoration, intending to achieve any customized optimization objectives of low-level image processing in different practical applications. Notably, not all optimization objectives, such as complex hand-crafted perceptual metrics, text description, and intricate human feedback, can be instantiated with existing low-level losses, e.g., MSE loss, which presents a crucial challenge in optimizing image processing networks in an end-to-end manner. To eliminate this, our LossAgent introduces the powerful large language model (LLM) as the loss agent, where the rich textual understanding of prior knowledge empowers the loss agent with the potential to understand complex optimization objectives, trajectory, and state feedback from external environments in the optimization process of the low-level image processing networks. In particular, we establish the loss repository by incorporating existing loss functions that support the end-to-end optimization for low-level image processing. Then, we design the optimization-oriented prompt engineering for the loss agent to actively and intelligently decide the compositional weights for each loss in the repository at each optimization interaction, thereby achieving the required optimization trajectory for any customized optimization objectives. Extensive experiments on three typical low-level image processing tasks and multiple optimization objectives have shown the effectiveness and applicability of our proposed LossAgent.
comment: Update format
♻ ☆ MPG-SAM 2: Adapting SAM 2 with Mask Priors and Global Context for Referring Video Object Segmentation
Referring video object segmentation (RVOS) aims to segment objects in a video according to textual descriptions, which requires the integration of multimodal information and temporal dynamics perception. The Segment Anything Model 2 (SAM 2) has shown great effectiveness across various video segmentation tasks. However, its application to offline RVOS is challenged by the translation of the text into effective prompts and a lack of global context awareness. In this paper, we propose a novel RVOS framework, termed MPG-SAM 2, to address these challenges. Specifically, MPG-SAM 2 employs a unified multimodal encoder to jointly encode video and textual features, generating semantically aligned video and text embeddings, along with multimodal class tokens. A mask prior generator utilizes the video embeddings and class tokens to create pseudo masks of target objects and global context. These masks are fed into the prompt encoder as dense prompts along with multimodal class tokens as sparse prompts to generate accurate prompts for SAM 2. To provide the online SAM 2 with a global view, we introduce a hierarchical global-historical aggregator, which allows SAM 2 to aggregate global and historical information of target objects at both pixel and object levels, enhancing the target representation and temporal consistency. Extensive experiments on several RVOS benchmarks demonstrate the superiority of MPG-SAM 2 and the effectiveness of our proposed modules.
♻ ☆ Reconstruction vs. Generation: Taming Optimization Dilemma in Latent Diffusion Models
Latent diffusion models with Transformer architectures excel at generating high-fidelity images. However, recent studies reveal an optimization dilemma in this two-stage design: while increasing the per-token feature dimension in visual tokenizers improves reconstruction quality, it requires substantially larger diffusion models and more training iterations to achieve comparable generation performance. Consequently, existing systems often settle for sub-optimal solutions, either producing visual artifacts due to information loss within tokenizers or failing to converge fully due to expensive computation costs. We argue that this dilemma stems from the inherent difficulty in learning unconstrained high-dimensional latent spaces. To address this, we propose aligning the latent space with pre-trained vision foundation models when training the visual tokenizers. Our proposed VA-VAE (Vision foundation model Aligned Variational AutoEncoder) significantly expands the reconstruction-generation frontier of latent diffusion models, enabling faster convergence of Diffusion Transformers (DiT) in high-dimensional latent spaces. To exploit the full potential of VA-VAE, we build an enhanced DiT baseline with improved training strategies and architecture designs, termed LightningDiT. The integrated system achieves state-of-the-art (SOTA) performance on ImageNet 256x256 generation with an FID score of 1.35 while demonstrating remarkable training efficiency by reaching an FID score of 2.11 in just 64 epochs--representing an over 21 times convergence speedup compared to the original DiT. Models and codes are available at: https://github.com/hustvl/LightningDiT.
comment: Models and codes are available at: https://github.com/hustvl/LightningDiT
♻ ☆ CAD-Assistant: Tool-Augmented VLLMs as Generic CAD Task Solvers
We propose CAD-Assistant, a general-purpose CAD agent for AI-assisted design. Our approach is based on a powerful Vision and Large Language Model (VLLM) as a planner and a tool-augmentation paradigm using CAD-specific tools. CAD-Assistant addresses multimodal user queries by generating actions that are iteratively executed on a Python interpreter equipped with the FreeCAD software, accessed via its Python API. Our framework is able to assess the impact of generated CAD commands on geometry and adapts subsequent actions based on the evolving state of the CAD design. We consider a wide range of CAD-specific tools including a sketch image parameterizer, rendering modules, a 2D cross-section generator, and other specialized routines. CAD-Assistant is evaluated on multiple CAD benchmarks, where it outperforms VLLM baselines and supervised task-specific methods. Beyond existing benchmarks, we qualitatively demonstrate the potential of tool-augmented VLLMs as general-purpose CAD solvers across diverse workflows.
♻ ☆ HouseTune: Two-Stage Floorplan Generation with LLM Assistance
This paper proposes a two-stage text-to-floorplan generation framework that combines the reasoning capability of Large Language Models (LLMs) with the generative power of diffusion models. In the first stage, we leverage a Chain-of-Thought (CoT) prompting strategy to guide an LLM in generating an initial layout (Layout-Init) from natural language descriptions, which ensures a user-friendly and intuitive design process. However, Layout-Init may lack precise geometric alignment and fine-grained structural details. To address this, the second stage employs a conditional diffusion model to refine Layout-Init into a final floorplan (Layout-Final) that better adheres to physical constraints and user requirements. Unlike prior methods, our approach effectively reduces the difficulty of floorplan generation learning without the need for extensive domain-specific training data. Experimental results demonstrate that our approach achieves state-of-the-art performance across all metrics, which validates its effectiveness in practical home design applications.
♻ ☆ SIDA: Social Media Image Deepfake Detection, Localization and Explanation with Large Multimodal Model CVPR-2025
The rapid advancement of generative models in creating highly realistic images poses substantial risks for misinformation dissemination. For instance, a synthetic image, when shared on social media, can mislead extensive audiences and erode trust in digital content, resulting in severe repercussions. Despite some progress, academia has not yet created a large and diversified deepfake detection dataset for social media, nor has it devised an effective solution to address this issue. In this paper, we introduce the Social media Image Detection dataSet (SID-Set), which offers three key advantages: (1) extensive volume, featuring 300K AI-generated/tampered and authentic images with comprehensive annotations, (2) broad diversity, encompassing fully synthetic and tampered images across various classes, and (3) elevated realism, with images that are predominantly indistinguishable from genuine ones through mere visual inspection. Furthermore, leveraging the exceptional capabilities of large multimodal models, we propose a new image deepfake detection, localization, and explanation framework, named SIDA (Social media Image Detection, localization, and explanation Assistant). SIDA not only discerns the authenticity of images, but also delineates tampered regions through mask prediction and provides textual explanations of the model's judgment criteria. Compared with state-of-the-art deepfake detection models on SID-Set and other benchmarks, extensive experiments demonstrate that SIDA achieves superior performance among diversified settings. The code, model, and dataset will be released.
comment: CVPR-2025
♻ ☆ VFX Creator: Animated Visual Effect Generation with Controllable Diffusion Transformer
Crafting magic and illusions is one of the most thrilling aspects of filmmaking, with visual effects (VFX) serving as the powerhouse behind unforgettable cinematic experiences. While recent advances in generative artificial intelligence have driven progress in generic image and video synthesis, the domain of controllable VFX generation remains relatively underexplored. In this work, we propose a novel paradigm for animated VFX generation as image animation, where dynamic effects are generated from user-friendly textual descriptions and static reference images. Our work makes two primary contributions: (i) Open-VFX, the first high-quality VFX video dataset spanning 15 diverse effect categories, annotated with textual descriptions, instance segmentation masks for spatial conditioning, and start-end timestamps for temporal control. (ii) VFX Creator, a simple yet effective controllable VFX generation framework based on a Video Diffusion Transformer. The model incorporates a spatial and temporal controllable LoRA adapter, requiring minimal training videos. Specifically, a plug-and-play mask control module enables instance-level spatial manipulation, while tokenized start-end motion timestamps embedded in the diffusion process, alongside the text encoder, allow precise temporal control over effect timing and pace. Extensive experiments on the Open-VFX test set demonstrate the superiority of the proposed system in generating realistic and dynamic effects, achieving state-of-the-art performance and generalization ability in both spatial and temporal controllability. Furthermore, we introduce a specialized metric to evaluate the precision of temporal control. By bridging traditional VFX techniques with generative approaches, VFX Creator unlocks new possibilities for efficient and high-quality video effect generation, making advanced VFX accessible to a broader audience.
♻ ☆ Perception-as-Control: Fine-grained Controllable Image Animation with 3D-aware Motion Representation
Motion-controllable image animation is a fundamental task with a wide range of potential applications. Recent works have made progress in controlling camera or object motion via various motion representations, while they still struggle to support collaborative camera and object motion control with adaptive control granularity. To this end, we introduce 3D-aware motion representation and propose an image animation framework, called Perception-as-Control, to achieve fine-grained collaborative motion control. Specifically, we construct 3D-aware motion representation from a reference image, manipulate it based on interpreted user instructions, and perceive it from different viewpoints. In this way, camera and object motions are transformed into intuitive and consistent visual changes. Then, our framework leverages the perception results as motion control signals, enabling it to support various motion-related video synthesis tasks in a unified and flexible way. Experiments demonstrate the superiority of the proposed approach. For more details and qualitative results, please refer to our anonymous project webpage: https://chen-yingjie.github.io/projects/Perception-as-Control.
♻ ☆ UniVAD: A Training-free Unified Model for Few-shot Visual Anomaly Detection CVPR 2025
Visual Anomaly Detection (VAD) aims to identify abnormal samples in images that deviate from normal patterns, covering multiple domains, including industrial, logical, and medical fields. Due to the domain gaps between these fields, existing VAD methods are typically tailored to each domain, with specialized detection techniques and model architectures that are difficult to generalize across different domains. Moreover, even within the same domain, current VAD approaches often follow a "one-category-one-model" paradigm, requiring large amounts of normal samples to train class-specific models, resulting in poor generalizability and hindering unified evaluation across domains. To address this issue, we propose a generalized few-shot VAD method, UniVAD, capable of detecting anomalies across various domains, such as industrial, logical, and medical anomalies, with a training-free unified model. UniVAD only needs few normal samples as references during testing to detect anomalies in previously unseen objects, without training on the specific domain. Specifically, UniVAD employs a Contextual Component Clustering ($C^3$) module based on clustering and vision foundation models to segment components within the image accurately, and leverages Component-Aware Patch Matching (CAPM) and Graph-Enhanced Component Modeling (GECM) modules to detect anomalies at different semantic levels, which are aggregated to produce the final detection result. We conduct experiments on nine datasets spanning industrial, logical, and medical fields, and the results demonstrate that UniVAD achieves state-of-the-art performance in few-shot anomaly detection tasks across multiple domains, outperforming domain-specific anomaly detection models. Code is available at https://github.com/FantasticGNU/UniVAD.
comment: Accepted by CVPR 2025; Project page: https://uni-vad.github.io/
♻ ☆ HOPE: A Memory-Based and Composition-Aware Framework for Zero-Shot Learning with Hopfield Network and Soft Mixture of Experts
Compositional Zero-Shot Learning (CZSL) has emerged as an essential paradigm in machine learning, aiming to overcome the constraints of traditional zero-shot learning by incorporating compositional thinking into its methodology. Conventional zero-shot learning has difficulty managing unfamiliar combinations of seen and unseen classes because it depends on pre-defined class embeddings. In contrast, Compositional Zero-Shot Learning leverages the inherent hierarchies and structural connections among classes, creating new class representations by combining attributes, components, or other semantic elements. In our paper, we propose a novel framework that for the first time combines the Modern \underline{H}opfield Network with a Mixture \underline{o}f \underline{E}x\underline{p}erts (HOPE) to classify the compositions of previously unseen objects. Specifically, the Modern Hopfield Network creates a memory that stores label prototypes and identifies relevant labels for a given input image. Subsequently, the Mixture of Expert models integrates the image with the appropriate prototype to produce the final composition classification. Our approach achieves SOTA performance on several benchmarks, including MIT-States and UT-Zappos. We also examine how each component contributes to improved generalization.
♻ ☆ Dream to Manipulate: Compositional World Models Empowering Robot Imitation Learning with Imagination
A world model provides an agent with a representation of its environment, enabling it to predict the causal consequences of its actions. Current world models typically cannot directly and explicitly imitate the actual environment in front of a robot, often resulting in unrealistic behaviors and hallucinations that make them unsuitable for real-world robotics applications. To overcome those challenges, we propose to rethink robot world models as learnable digital twins. We introduce DreMa, a new approach for constructing digital twins automatically using learned explicit representations of the real world and its dynamics, bridging the gap between traditional digital twins and world models. DreMa replicates the observed world and its structure by integrating Gaussian Splatting and physics simulators, allowing robots to imagine novel configurations of objects and to predict the future consequences of robot actions thanks to its compositionality. We leverage this capability to generate new data for imitation learning by applying equivariant transformations to a small set of demonstrations. Our evaluations across various settings demonstrate significant improvements in accuracy and robustness by incrementing actions and object distributions, reducing the data needed to learn a policy and improving the generalization of the agents. As a highlight, we show that a real Franka Emika Panda robot, powered by DreMa's imagination, can successfully learn novel physical tasks from just a single example per task variation (one-shot policy learning). Our project page can be found in: https://dreamtomanipulate.github.io/.
♻ ☆ Enabling Generalized Zero-shot Learning Towards Unseen Domains by Intrinsic Learning from Redundant LLM Semantics
Generalized zero-shot learning (GZSL) focuses on recognizing seen and unseen classes against domain shift problem where data of unseen classes may be misclassified as seen classes. However, existing GZSL is still limited to seen domains. In the current work, we study cross-domain GZSL (CDGZSL) which addresses GZSL towards unseen domains. Different from existing GZSL methods, CDGZSL constructs a common feature space across domains and acquires the corresponding intrinsic semantics shared among domains to transfer from seen to unseen domains. Considering the information asymmetry problem caused by redundant class semantics annotated with large language models (LLMs), we present Meta Domain Alignment Semantic Refinement (MDASR). Technically, MDASR consists of two parts: Inter-class similarity alignment, which eliminates the non-intrinsic semantics not shared across all domains under the guidance of inter-class feature relationships, and unseen-class meta generation, which preserves intrinsic semantics to maintain connectivity between seen and unseen classes by simulating feature generation. MDASR effectively aligns the redundant semantic space with the common feature space, mitigating the information asymmetry in CDGZSL. The effectiveness of MDASR is demonstrated on two datasets, Office-Home and Mini-DomainNet, and we have shared the LLM-based semantics for these datasets as a benchmark.
♻ ☆ Efficient Dataset Distillation via Diffusion-Driven Patch Selection for Improved Generalization
Dataset distillation offers an efficient way to reduce memory and computational costs by optimizing a smaller dataset with performance comparable to the full-scale original. However, for large datasets and complex deep networks (e.g., ImageNet-1K with ResNet-101), the extensive optimization space limits performance, reducing its practicality. Recent approaches employ pre-trained diffusion models to generate informative images directly, avoiding pixel-level optimization and achieving notable results. However, these methods often face challenges due to distribution shifts between pre-trained models and target datasets, along with the need for multiple distillation steps across varying settings. To address these issues, we propose a novel framework orthogonal to existing diffusion-based distillation methods, leveraging diffusion models for selection rather than generation. Our method starts by predicting noise generated by the diffusion model based on input images and text prompts (with or without label text), then calculates the corresponding loss for each pair. With the loss differences, we identify distinctive regions of the original images. Additionally, we perform intra-class clustering and ranking on selected patches to maintain diversity constraints. This streamlined framework enables a single-step distillation process, and extensive experiments demonstrate that our approach outperforms state-of-the-art methods across various metrics.
Second FRCSyn-onGoing: Winning Solutions and Post-Challenge Analysis to Improve Face Recognition with Synthetic Data
Synthetic data is gaining increasing popularity for face recognition technologies, mainly due to the privacy concerns and challenges associated with obtaining real data, including diverse scenarios, quality, and demographic groups, among others. It also offers some advantages over real data, such as the large amount of data that can be generated or the ability to customize it to adapt to specific problem-solving needs. To effectively use such data, face recognition models should also be specifically designed to exploit synthetic data to its fullest potential. In order to promote the proposal of novel Generative AI methods and synthetic data, and investigate the application of synthetic data to better train face recognition systems, we introduce the 2nd FRCSyn-onGoing challenge, based on the 2nd Face Recognition Challenge in the Era of Synthetic Data (FRCSyn), originally launched at CVPR 2024. This is an ongoing challenge that provides researchers with an accessible platform to benchmark i) the proposal of novel Generative AI methods and synthetic data, and ii) novel face recognition systems that are specifically proposed to take advantage of synthetic data. We focus on exploring the use of synthetic data both individually and in combination with real data to solve current challenges in face recognition such as demographic bias, domain adaptation, and performance constraints in demanding situations, such as age disparities between training and testing, changes in the pose, or occlusions. Very interesting findings are obtained in this second edition, including a direct comparison with the first one, in which synthetic databases were restricted to DCFace and GANDiffFace.
comment: Accepted in Information Fusion
♻ ☆ Scalable Image Tokenization with Index Backpropagation Quantization
Existing vector quantization (VQ) methods struggle with scalability, largely attributed to the instability of the codebook that undergoes partial updates during training. The codebook is prone to collapse as utilization decreases, due to the progressively widening distribution gap between non-activated codes and visual features. To solve the problem, we propose Index Backpropagation Quantization (IBQ), a new VQ method for the joint optimization of all codebook embeddings and the visual encoder. Applying a straight-through estimator on the one-hot categorical distribution between the encoded feature and codebook, all codes are differentiable and maintain a consistent latent space with the visual encoder. IBQ enables scalable training of visual tokenizers and, for the first time, achieves a large-scale codebook ($2^{18}$) with high dimension ($256$) and high utilization. Experiments on the standard ImageNet benchmark demonstrate the scalability and superiority of IBQ, achieving competitive results on reconstruction and the application of autoregressive visual generation. The code and models are available at https://github.com/TencentARC/SEED-Voken.
♻ ☆ RD Efficient FPGA Deployment of Learned Image Compression: Knowledge Distillation and Hybrid Quantization
Learnable Image Compression (LIC) has shown the potential to outperform standardized video codecs in RD efficiency, prompting the research for hardware-friendly implementations. Most existing LIC hardware implementations prioritize latency to RD-efficiency and through an extensive exploration of the hardware design space. We present a novel design paradigm where the burden of tuning the design for a specific hardware platform is shifted towards model dimensioning and without compromising on RD-efficiency. First, we design a framework for distilling a leaner student LIC model from a reference teacher: by tuning a single model hyperparameters, we can meet the constraints of different hardware platforms without a complex hardware design exploration. Second, we propose a hardware-friendly implementation of the Generalized Divisive Normalization (GDN) activation that preserves RD efficiency even post parameter quantization. Third, we design a pipelined FPGA configuration which takes full advantage of available FPGA resources by leveraging parallel processing and optimizing resource allocation. Our experiments with a state of the art LIC model show that we outperform all existing FPGA implementations while performing very close to the original model in terms of RD efficiency.
♻ ☆ A Simple Approach to Unifying Diffusion-based Conditional Generation
Recent progress in image generation has sparked research into controlling these models through condition signals, with various methods addressing specific challenges in conditional generation. Instead of proposing another specialized technique, we introduce a simple, unified framework to handle diverse conditional generation tasks involving a specific image-condition correlation. By learning a joint distribution over a correlated image pair (e.g. image and depth) with a diffusion model, our approach enables versatile capabilities via different inference-time sampling schemes, including controllable image generation (e.g. depth to image), estimation (e.g. image to depth), signal guidance, joint generation (image & depth), and coarse control. Previous attempts at unification often introduce significant complexity through multi-stage training, architectural modification, or increased parameter counts. In contrast, our simple formulation requires a single, computationally efficient training stage, maintains the standard model input, and adds minimal learned parameters (15% of the base model). Moreover, our model supports additional capabilities like non-spatially aligned and coarse conditioning. Extensive results show that our single model can produce comparable results with specialized methods and better results than prior unified methods. We also demonstrate that multiple models can be effectively combined for multi-signal conditional generation.
comment: Project page: https://lixirui142.github.io/unicon-diffusion/
Artificial Intelligence 241
☆ Robusto-1 Dataset: Comparing Humans and VLMs on real out-of-distribution Autonomous Driving VQA from Peru
As multimodal foundational models start being deployed experimentally in Self-Driving cars, a reasonable question we ask ourselves is how similar to humans do these systems respond in certain driving situations -- especially those that are out-of-distribution? To study this, we create the Robusto-1 dataset that uses dashcam video data from Peru, a country with one of the worst (aggressive) drivers in the world, a high traffic index, and a high ratio of bizarre to non-bizarre street objects likely never seen in training. In particular, to preliminarly test at a cognitive level how well Foundational Visual Language Models (VLMs) compare to Humans in Driving, we move away from bounding boxes, segmentation maps, occupancy maps or trajectory estimation to multi-modal Visual Question Answering (VQA) comparing both humans and machines through a popular method in systems neuroscience known as Representational Similarity Analysis (RSA). Depending on the type of questions we ask and the answers these systems give, we will show in what cases do VLMs and Humans converge or diverge allowing us to probe on their cognitive alignment. We find that the degree of alignment varies significantly depending on the type of questions asked to each type of system (Humans vs VLMs), highlighting a gap in their alignment.
comment: A pre-print. 26 pages. Link to Code + Data: https://huggingface.co/datasets/Artificio/robusto-1
☆ Denoising Score Distillation: From Noisy Diffusion Pretraining to One-Step High-Quality Generation
Diffusion models have achieved remarkable success in generating high-resolution, realistic images across diverse natural distributions. However, their performance heavily relies on high-quality training data, making it challenging to learn meaningful distributions from corrupted samples. This limitation restricts their applicability in scientific domains where clean data is scarce or costly to obtain. In this work, we introduce denoising score distillation (DSD), a surprisingly effective and novel approach for training high-quality generative models from low-quality data. DSD first pretrains a diffusion model exclusively on noisy, corrupted samples and then distills it into a one-step generator capable of producing refined, clean outputs. While score distillation is traditionally viewed as a method to accelerate diffusion models, we show that it can also significantly enhance sample quality, particularly when starting from a degraded teacher model. Across varying noise levels and datasets, DSD consistently improves generative performancewe summarize our empirical evidence in Fig. 1. Furthermore, we provide theoretical insights showing that, in a linear model setting, DSD identifies the eigenspace of the clean data distributions covariance matrix, implicitly regularizing the generator. This perspective reframes score distillation as not only a tool for efficiency but also a mechanism for improving generative models, particularly in low-quality data settings.
comment: First Author and Second Author contributed equally to this work. The last two authors equally advised this work
☆ Optimizing Test-Time Compute via Meta Reinforcement Fine-Tuning
Training models to effectively use test-time compute is crucial for improving the reasoning performance of LLMs. Current methods mostly do so via fine-tuning on search traces or running RL with 0/1 outcome reward, but do these approaches efficiently utilize test-time compute? Would these approaches continue to scale as the budget improves? In this paper, we try to answer these questions. We formalize the problem of optimizing test-time compute as a meta-reinforcement learning (RL) problem, which provides a principled perspective on spending test-time compute. This perspective enables us to view the long output stream from the LLM as consisting of several episodes run at test time and leads us to use a notion of cumulative regret over output tokens as a way to measure the efficacy of test-time compute. Akin to how RL algorithms can best tradeoff exploration and exploitation over training, minimizing cumulative regret would also provide the best balance between exploration and exploitation in the token stream. While we show that state-of-the-art models do not minimize regret, one can do so by maximizing a dense reward bonus in conjunction with the outcome 0/1 reward RL. This bonus is the ''progress'' made by each subsequent block in the output stream, quantified by the change in the likelihood of eventual success. Using these insights, we develop Meta Reinforcement Fine-Tuning, or MRT, a new class of fine-tuning methods for optimizing test-time compute. MRT leads to a 2-3x relative gain in performance and roughly a 1.5x gain in token efficiency for math reasoning compared to outcome-reward RL.
☆ Runtime Detection of Adversarial Attacks in AI Accelerators Using Performance Counters
Rapid adoption of AI technologies raises several major security concerns, including the risks of adversarial perturbations, which threaten the confidentiality and integrity of AI applications. Protecting AI hardware from misuse and diverse security threats is a challenging task. To address this challenge, we propose SAMURAI, a novel framework for safeguarding against malicious usage of AI hardware and its resilience to attacks. SAMURAI introduces an AI Performance Counter (APC) for tracking dynamic behavior of an AI model coupled with an on-chip Machine Learning (ML) analysis engine, known as TANTO (Trained Anomaly Inspection Through Trace Observation). APC records the runtime profile of the low-level hardware events of different AI operations. Subsequently, the summary information recorded by the APC is processed by TANTO to efficiently identify potential security breaches and ensure secure, responsible use of AI. SAMURAI enables real-time detection of security threats and misuse without relying on traditional software-based solutions that require model integration. Experimental results demonstrate that SAMURAI achieves up to 97% accuracy in detecting adversarial attacks with moderate overhead on various AI models, significantly outperforming conventional software-based approaches. It enhances security and regulatory compliance, providing a comprehensive solution for safeguarding AI against emergent threats.
comment: 7 pages, 8 figures
☆ KSOD: Knowledge Supplement for LLMs On Demand
Large Language Models (LLMs) have demonstrated remarkable capabilities in various tasks, yet still produce errors in domain-specific tasks. To further improve their performance, we propose KSOD (Knowledge Supplement for LLMs On Demand), a novel framework that empowers LLMs to improve their capabilities with knowledge-based supervised fine-tuning (SFT). KSOD analyzes the causes of errors from the perspective of knowledge deficiency by identifying potential missing knowledge in LLM that may lead to the errors. Subsequently, KSOD tunes a knowledge module on knowledge dataset and verifies whether the LLM lacks the identified knowledge based on it. If the knowledge is verified, KSOD supplements the LLM with the identified knowledge using the knowledge module. Tuning LLMs on specific knowledge instead of specific task decouples task and knowledge and our experiments on two domain-specific benchmarks and four general benchmarks empirically demonstrate that KSOD enhances the performance of LLMs on tasks requiring the supplemented knowledge while preserving their performance on other tasks. Our findings shed light on the potential of improving the capabilities of LLMs with knowledge-based SFT.
☆ Queueing, Predictions, and LLMs: Challenges and Open Problems
Queueing systems present many opportunities for applying machine-learning predictions, such as estimated service times, to improve system performance. This integration raises numerous open questions about how predictions can be effectively leveraged to improve scheduling decisions. Recent studies explore queues with predicted service times, typically aiming to minimize job time in the system. We review these works, highlight the effectiveness of predictions, and present open questions on queue performance. We then move to consider an important practical example of using predictions in scheduling, namely Large Language Model (LLM) systems, which presents novel scheduling challenges and highlights the potential for predictions to improve performance. In particular, we consider LLMs performing inference. Inference requests (jobs) in LLM systems are inherently complex; they have variable inference times, dynamic memory footprints that are constrained by key-value (KV) store memory limitations, and multiple possible preemption approaches that affect performance differently. We provide background on the important aspects of scheduling in LLM systems, and introduce new models and open problems that arise from them. We argue that there are significant opportunities for applying insights and analysis from queueing theory to scheduling in LLM systems.
☆ Geometric Retargeting: A Principled, Ultrafast Neural Hand Retargeting Algorithm
We introduce Geometric Retargeting (GeoRT), an ultrafast, and principled neural hand retargeting algorithm for teleoperation, developed as part of our recent Dexterity Gen (DexGen) system. GeoRT converts human finger keypoints to robot hand keypoints at 1KHz, achieving state-of-the-art speed and accuracy with significantly fewer hyperparameters. This high-speed capability enables flexible postprocessing, such as leveraging a foundational controller for action correction like DexGen. GeoRT is trained in an unsupervised manner, eliminating the need for manual annotation of hand pairs. The core of GeoRT lies in novel geometric objective functions that capture the essence of retargeting: preserving motion fidelity, ensuring configuration space (C-space) coverage, maintaining uniform response through high flatness, pinch correspondence and preventing self-collisions. This approach is free from intensive test-time optimization, offering a more scalable and practical solution for real-time hand retargeting.
comment: Project Website: https://zhaohengyin.github.io/geort
☆ AI-Enabled Knowledge Sharing for Enhanced Collaboration and Decision-Making in Non-Profit Healthcare Organizations: A Scoping Review Protocol
This protocol outlines a scoping review designed to systematically map the existing body of evidence on AI-enabled knowledge sharing in resource-limited non-profit healthcare organizations. The review aims to investigate how such technologies enhance collaboration and decision-making, particularly in the context of reduced external support following the cessation of USAID operations. Guided by three theoretical frameworks namely, the Resource-Based View, Dynamic Capabilities Theory, and Absorptive Capacity Theory, this study will explore the dual role of AI as a strategic resource and an enabler of organizational learning and agility. The protocol details a rigorous methodological approach based on PRISMA-ScR guidelines, encompassing a systematic search strategy across multiple databases, inclusion and exclusion criteria, and a structured data extraction process. By integrating theoretical insights with empirical evidence, this scoping review seeks to identify critical gaps in the literature and inform the design of effective, resource-optimized AI solutions in non-profit healthcare settings.
comment: 14 pages
TokenButler: Token Importance is Predictable
Large Language Models (LLMs) rely on the Key-Value (KV) Cache to store token history, enabling efficient decoding of tokens. As the KV-Cache grows, it becomes a major memory and computation bottleneck, however, there is an opportunity to alleviate this bottleneck, especially because prior research has shown that only a small subset of tokens contribute meaningfully to each decoding step. A key challenge in finding these critical tokens is that they are dynamic, and heavily input query-dependent. Existing methods either risk quality by evicting tokens permanently, or retain the full KV-Cache but rely on retrieving chunks (pages) of tokens at generation, failing at dense, context-rich tasks. Additionally, many existing KV-Cache sparsity methods rely on inaccurate proxies for token importance. To address these limitations, we introduce TokenButler, a high-granularity, query-aware predictor that learns to identify these critical tokens. By training a light-weight predictor with less than 1.2% parameter overhead, TokenButler prioritizes tokens based on their contextual, predicted importance. This improves perplexity & downstream accuracy by over 8% relative to SoTA methods for estimating token importance. We evaluate TokenButler on a novel synthetic small-context co-referential retrieval task, demonstrating near-oracle accuracy. Code, models and benchmarks: https://github.com/abdelfattah-lab/TokenButler
☆ Language Models Fail to Introspect About Their Knowledge of Language
There has been recent interest in whether large language models (LLMs) can introspect about their own internal states. Such abilities would make LLMs more interpretable, and also validate the use of standard introspective methods in linguistics to evaluate grammatical knowledge in models (e.g., asking "Is this sentence grammatical?"). We systematically investigate emergent introspection across 21 open-source LLMs, in two domains where introspection is of theoretical interest: grammatical knowledge and word prediction. Crucially, in both domains, a model's internal linguistic knowledge can be theoretically grounded in direct measurements of string probability. We then evaluate whether models' responses to metalinguistic prompts faithfully reflect their internal knowledge. We propose a new measure of introspection: the degree to which a model's prompted responses predict its own string probabilities, beyond what would be predicted by another model with nearly identical internal knowledge. While both metalinguistic prompting and probability comparisons lead to high task accuracy, we do not find evidence that LLMs have privileged "self-access". Our findings complicate recent results suggesting that models can introspect, and add new evidence to the argument that prompted responses should not be conflated with models' linguistic generalizations.
☆ Interference-Aware Super-Constellation Design for NOMA
Non-orthogonal multiple access (NOMA) has gained significant attention as a potential next-generation multiple access technique. However, its implementation with finite-alphabet inputs faces challenges. Particularly, due to inter-user interference, superimposed constellations may have overlapping symbols leading to high bit error rates when successive interference cancellation (SIC) is applied. To tackle the issue, this paper employs autoencoders to design interference-aware super-constellations. Unlike conventional methods where superimposed constellation may have overlapping symbols, the proposed autoencoder-based NOMA (AE-NOMA) is trained to design super-constellations with distinguishable symbols at receivers, regardless of channel gains. The proposed architecture removes the need for SIC, allowing maximum likelihood-based approaches to be used instead. The paper presents the conceptual architecture, loss functions, and training strategies for AE-NOMA. Various test results are provided to demonstrate the effectiveness of interference-aware constellations in improving the bit error rate, indicating the adaptability of AE-NOMA to different channel scenarios and its promising potential for implementing NOMA systems
comment: Accepted for publication at IEEE International Conference on Communications (ICC), 2025
☆ From Centralized to Decentralized Federated Learning: Theoretical Insights, Privacy Preservation, and Robustness Challenges
Federated Learning (FL) enables collaborative learning without directly sharing individual's raw data. FL can be implemented in either a centralized (server-based) or decentralized (peer-to-peer) manner. In this survey, we present a novel perspective: the fundamental difference between centralized FL (CFL) and decentralized FL (DFL) is not merely the network topology, but the underlying training protocol: separate aggregation vs. joint optimization. We argue that this distinction in protocol leads to significant differences in model utility, privacy preservation, and robustness to attacks. We systematically review and categorize existing works in both CFL and DFL according to the type of protocol they employ. This taxonomy provides deeper insights into prior research and clarifies how various approaches relate or differ. Through our analysis, we identify key gaps in the literature. In particular, we observe a surprising lack of exploration of DFL approaches based on distributed optimization methods, despite their potential advantages. We highlight this under-explored direction and call for more research on leveraging distributed optimization for federated learning. Overall, this work offers a comprehensive overview from centralized to decentralized FL, sheds new light on the core distinctions between approaches, and outlines open challenges and future directions for the field.
☆ V2Flow: Unifying Visual Tokenization and Large Language Model Vocabularies for Autoregressive Image Generation
We propose V2Flow, a novel tokenizer that produces discrete visual tokens capable of high-fidelity reconstruction, while ensuring structural and latent distribution alignment with the vocabulary space of large language models (LLMs). Leveraging this tight visual-vocabulary coupling, V2Flow enables autoregressive visual generation on top of existing LLMs. Our approach formulates visual tokenization as a flow-matching problem, aiming to learn a mapping from a standard normal prior to the continuous image distribution, conditioned on token sequences embedded within the LLMs vocabulary space. The effectiveness of V2Flow stems from two core designs. First, we propose a Visual Vocabulary resampler, which compresses visual data into compact token sequences, with each represented as a soft categorical distribution over LLM's vocabulary. This allows seamless integration of visual tokens into existing LLMs for autoregressive visual generation. Second, we present a masked autoregressive Rectified-Flow decoder, employing a masked transformer encoder-decoder to refine visual tokens into contextually enriched embeddings. These embeddings then condition a dedicated velocity field for precise reconstruction. Additionally, an autoregressive rectified-flow sampling strategy is incorporated, ensuring flexible sequence lengths while preserving competitive reconstruction quality. Extensive experiments show that V2Flow outperforms mainstream VQ-based tokenizers and facilitates autoregressive visual generation on top of existing. https://github.com/zhangguiwei610/V2Flow
comment: 11 pages, 6 figures
☆ Efficient Membership Inference Attacks by Bayesian Neural Network
Membership Inference Attacks (MIAs) aim to estimate whether a specific data point was used in the training of a given model. Previous attacks often utilize multiple reference models to approximate the conditional score distribution, leading to significant computational overhead. While recent work leverages quantile regression to estimate conditional thresholds, it fails to capture epistemic uncertainty, resulting in bias in low-density regions. In this work, we propose a novel approach - Bayesian Membership Inference Attack (BMIA), which performs conditional attack through Bayesian inference. In particular, we transform a trained reference model into Bayesian neural networks by Laplace approximation, enabling the direct estimation of the conditional score distribution by probabilistic model parameters. Our method addresses both epistemic and aleatoric uncertainty with only a reference model, enabling efficient and powerful MIA. Extensive experiments on five datasets demonstrate the effectiveness and efficiency of BMIA.
comment: 8 pages, under review
☆ Advancing Vietnamese Information Retrieval with Learning Objective and Benchmark
With the rapid development of natural language processing, many language models have been invented for multiple tasks. One important task is information retrieval (IR), which requires models to retrieve relevant documents. Despite its importance in many real-life applications, especially in retrieval augmented generation (RAG) systems, this task lacks Vietnamese benchmarks. This situation causes difficulty in assessing and comparing many existing Vietnamese embedding language models on the task and slows down the advancement of Vietnamese natural language processing (NLP) research. In this work, we aim to provide the Vietnamese research community with a new benchmark for information retrieval, which mainly focuses on retrieval and reranking tasks. Furthermore, we also present a new objective function based on the InfoNCE loss function, which is used to train our Vietnamese embedding model. Our function aims to be better than the origin in information retrieval tasks. Finally, we analyze the effect of temperature, a hyper-parameter in both objective functions, on the performance of text embedding models.
☆ MedAgentsBench: Benchmarking Thinking Models and Agent Frameworks for Complex Medical Reasoning
Large Language Models (LLMs) have shown impressive performance on existing medical question-answering benchmarks. This high performance makes it increasingly difficult to meaningfully evaluate and differentiate advanced methods. We present MedAgentsBench, a benchmark that focuses on challenging medical questions requiring multi-step clinical reasoning, diagnosis formulation, and treatment planning-scenarios where current models still struggle despite their strong performance on standard tests. Drawing from seven established medical datasets, our benchmark addresses three key limitations in existing evaluations: (1) the prevalence of straightforward questions where even base models achieve high performance, (2) inconsistent sampling and evaluation protocols across studies, and (3) lack of systematic analysis of the interplay between performance, cost, and inference time. Through experiments with various base models and reasoning methods, we demonstrate that the latest thinking models, DeepSeek R1 and OpenAI o3, exhibit exceptional performance in complex medical reasoning tasks. Additionally, advanced search-based agent methods offer promising performance-to-cost ratios compared to traditional approaches. Our analysis reveals substantial performance gaps between model families on complex questions and identifies optimal model selections for different computational constraints. Our benchmark and evaluation framework are publicly available at https://github.com/gersteinlab/medagents-benchmark.
☆ Is a Good Foundation Necessary for Efficient Reinforcement Learning? The Computational Role of the Base Model in Exploration
Language model alignment (or, reinforcement learning) techniques that leverage active exploration -- deliberately encouraging the model to produce diverse, informative responses -- offer the promise of super-human capabilities. However, current understanding of algorithm design primitives for computationally efficient exploration with language models is limited. To better understand how to leverage access to powerful pre-trained generative models to improve the efficiency of exploration, we introduce a new computational framework for RL with language models, in which the learner interacts with the model through a sampling oracle. Focusing on the linear softmax model parameterization, we provide new results that reveal the computational-statistical tradeoffs of efficient exploration: 1. Necessity of coverage: Coverage refers to the extent to which the pre-trained model covers near-optimal responses -- a form of hidden knowledge. We show that coverage, while not necessary for data efficiency, lower bounds the runtime of any algorithm in our framework. 2. Inference-time exploration: We introduce a new algorithm, SpannerSampling, which obtains optimal data efficiency and is computationally efficient whenever the pre-trained model enjoys sufficient coverage, matching our lower bound. SpannerSampling leverages inference-time computation with the pre-trained model to reduce the effective search space for exploration. 3. Insufficiency of training-time interventions: We contrast the result above by showing that training-time interventions that produce proper policies cannot achieve similar guarantees in polynomial time. 4. Computational benefits of multi-turn exploration: Finally, we show that under additional representational assumptions, one can achieve improved runtime (replacing sequence-level coverage with token-level coverage) through multi-turn exploration.
☆ From Idea to Implementation: Evaluating the Influence of Large Language Models in Software Development -- An Opinion Paper
The introduction of transformer architecture was a turning point in Natural Language Processing (NLP). Models based on the transformer architecture such as Bidirectional Encoder Representations from Transformers (BERT) and Generative Pre-Trained Transformer (GPT) have gained widespread popularity in various applications such as software development and education. The availability of Large Language Models (LLMs) such as ChatGPT and Bard to the general public has showcased the tremendous potential of these models and encouraged their integration into various domains such as software development for tasks such as code generation, debugging, and documentation generation. In this study, opinions from 11 experts regarding their experience with LLMs for software development have been gathered and analysed to draw insights that can guide successful and responsible integration. The overall opinion of the experts is positive, with the experts identifying advantages such as increase in productivity and reduced coding time. Potential concerns and challenges such as risk of over-dependence and ethical considerations have also been highlighted.
comment: The project is partially supported by the DkIT Postgraduate Scholarship, Research Ireland under Grant number 13/RC/2094_2, and Grant number 21/FFP-A/925
☆ Divide and Conquer Self-Supervised Learning for High-Content Imaging
Self-supervised representation learning methods often fail to learn subtle or complex features, which can be dominated by simpler patterns which are much easier to learn. This limitation is particularly problematic in applications to science and engineering, as complex features can be critical for discovery and analysis. To address this, we introduce Split Component Embedding Registration (SpliCER), a novel architecture which splits the image into sections and distils information from each section to guide the model to learn more subtle and complex features without compromising on simpler features. SpliCER is compatible with any self-supervised loss function and can be integrated into existing methods without modification. The primary contributions of this work are as follows: i) we demonstrate that existing self-supervised methods can learn shortcut solutions when simple and complex features are both present; ii) we introduce a novel self-supervised training method, SpliCER, to overcome the limitations of existing methods, and achieve significant downstream performance improvements; iii) we demonstrate the effectiveness of SpliCER in cutting-edge medical and geospatial imaging settings. SpliCER offers a powerful new tool for representation learning, enabling models to uncover complex features which could be overlooked by other methods.
☆ From Text to Visuals: Using LLMs to Generate Math Diagrams with Vector Graphics
Advances in large language models (LLMs) offer new possibilities for enhancing math education by automating support for both teachers and students. While prior work has focused on generating math problems and high-quality distractors, the role of visualization in math learning remains under-explored. Diagrams are essential for mathematical thinking and problem-solving, yet manually creating them is time-consuming and requires domain-specific expertise, limiting scalability. Recent research on using LLMs to generate Scalable Vector Graphics (SVG) presents a promising approach to automating diagram creation. Unlike pixel-based images, SVGs represent geometric figures using XML, allowing seamless scaling and adaptability. Educational platforms such as Khan Academy and IXL already use SVGs to display math problems and hints. In this paper, we explore the use of LLMs to generate math-related diagrams that accompany textual hints via intermediate SVG representations. We address three research questions: (1) how to automatically generate math diagrams in problem-solving hints and evaluate their quality, (2) whether SVG is an effective intermediate representation for math diagrams, and (3) what prompting strategies and formats are required for LLMs to generate accurate SVG-based diagrams. Our contributions include defining the task of automatically generating SVG-based diagrams for math hints, developing an LLM prompting-based pipeline, and identifying key strategies for improving diagram generation. Additionally, we introduce a Visual Question Answering-based evaluation setup and conduct ablation studies to assess different pipeline variations. By automating the math diagram creation, we aim to provide students and teachers with accurate, conceptually relevant visual aids that enhance problem-solving and learning experiences.
☆ RePO: ReLU-based Preference Optimization
Aligning large language models (LLMs) with human preferences is critical for real-world deployment, yet existing methods like RLHF face computational and stability challenges. While DPO establishes an offline paradigm with single hyperparameter $\beta$, subsequent methods like SimPO reintroduce complexity through dual parameters ($\beta$, $\gamma$). We propose {ReLU-based Preference Optimization (RePO)}, a streamlined algorithm that eliminates $\beta$ via two advances: (1) retaining SimPO's reference-free margins but removing $\beta$ through gradient analysis, and (2) adopting a ReLU-based max-margin loss that naturally filters trivial pairs. Theoretically, RePO is characterized as SimPO's limiting case ($\beta \to \infty$), where the logistic weighting collapses to binary thresholding, forming a convex envelope of the 0-1 loss. Empirical results on AlpacaEval 2 and Arena-Hard show that RePO outperforms DPO and SimPO across multiple base models, requiring only one hyperparameter to tune.
☆ Brain Inspired Adaptive Memory Dual-Net for Few-Shot Image Classification
Few-shot image classification has become a popular research topic for its wide application in real-world scenarios, however the problem of supervision collapse induced by single image-level annotation remains a major challenge. Existing methods aim to tackle this problem by locating and aligning relevant local features. However, the high intra-class variability in real-world images poses significant challenges in locating semantically relevant local regions under few-shot settings. Drawing inspiration from the human's complementary learning system, which excels at rapidly capturing and integrating semantic features from limited examples, we propose the generalization-optimized Systems Consolidation Adaptive Memory Dual-Network, SCAM-Net. This approach simulates the systems consolidation of complementary learning system with an adaptive memory module, which successfully addresses the difficulty of identifying meaningful features in few-shot scenarios. Specifically, we construct a Hippocampus-Neocortex dual-network that consolidates structured representation of each category, the structured representation is then stored and adaptively regulated following the generalization optimization principle in a long-term memory inside Neocortex. Extensive experiments on benchmark datasets show that the proposed model has achieved state-of-the-art performance.
☆ TRCE: Towards Reliable Malicious Concept Erasure in Text-to-Image Diffusion Models
Recent advances in text-to-image diffusion models enable photorealistic image generation, but they also risk producing malicious content, such as NSFW images. To mitigate risk, concept erasure methods are studied to facilitate the model to unlearn specific concepts. However, current studies struggle to fully erase malicious concepts implicitly embedded in prompts (e.g., metaphorical expressions or adversarial prompts) while preserving the model's normal generation capability. To address this challenge, our study proposes TRCE, using a two-stage concept erasure strategy to achieve an effective trade-off between reliable erasure and knowledge preservation. Firstly, TRCE starts by erasing the malicious semantics implicitly embedded in textual prompts. By identifying a critical mapping objective(i.e., the [EoT] embedding), we optimize the cross-attention layers to map malicious prompts to contextually similar prompts but with safe concepts. This step prevents the model from being overly influenced by malicious semantics during the denoising process. Following this, considering the deterministic properties of the sampling trajectory of the diffusion model, TRCE further steers the early denoising prediction toward the safe direction and away from the unsafe one through contrastive learning, thus further avoiding the generation of malicious content. Finally, we conduct comprehensive evaluations of TRCE on multiple malicious concept erasure benchmarks, and the results demonstrate its effectiveness in erasing malicious concepts while better preserving the model's original generation ability. The code is available at: http://github.com/ddgoodgood/TRCE. CAUTION: This paper includes model-generated content that may contain offensive material.
☆ Is My Text in Your AI Model? Gradient-based Membership Inference Test applied to LLMs
This work adapts and studies the gradient-based Membership Inference Test (gMINT) to the classification of text based on LLMs. MINT is a general approach intended to determine if given data was used for training machine learning models, and this work focuses on its application to the domain of Natural Language Processing. Using gradient-based analysis, the MINT model identifies whether particular data samples were included during the language model training phase, addressing growing concerns about data privacy in machine learning. The method was evaluated in seven Transformer-based models and six datasets comprising over 2.5 million sentences, focusing on text classification tasks. Experimental results demonstrate MINTs robustness, achieving AUC scores between 85% and 99%, depending on data size and model architecture. These findings highlight MINTs potential as a scalable and reliable tool for auditing machine learning models, ensuring transparency, safeguarding sensitive data, and fostering ethical compliance in the deployment of AI/NLP technologies.
☆ Artificial Utopia: Simulation and Intelligent Agents for a Democratised Future
Prevailing top-down systems in politics and economics struggle to keep pace with the pressing challenges of the 21st century, such as climate change, social inequality and conflict. Bottom-up democratisation and participatory approaches in politics and economics are increasingly seen as promising alternatives to confront and overcome these issues, often with utopian overtones, as proponents believe they may dramatically reshape political, social and ecological futures for the better and in contrast to contemporary authoritarian tendencies across various countries. Institutional specifics and the associated collective human behavior or culture remains little understood and debated, however. In this article, I propose a novel research agenda focusing on utopian democratisation efforts with formal and computational methods as well as with artificial intelligence - I call this agenda Artificial Utopia. Artificial Utopias provide safe testing grounds for new political ideas and economic policies in-silico with reduced risk of negative consequences as compared to testing ideas in real-world contexts. An increasing number of advanced simulation and intelligence methods, that aim at representing human cognition and collective decision-making in more realistic ways, could benefit this process. This includes agent-based modelling, reinforcement learning, large language models and more. I clarify what some of these simulation approaches can contribute to the study of Artificial Utopias with the help of two institutional examples: the citizen assembly and the democratic firm.
☆ Encoding Argumentation Frameworks to Propositional Logic Systems
The theory of argumentation frameworks ($AF$s) has been a useful tool for artificial intelligence. The research of the connection between $AF$s and logic is an important branch. This paper generalizes the encoding method by encoding $AF$s as logical formulas in different propositional logic systems. It studies the relationship between models of an AF by argumentation semantics, including Dung's classical semantics and Gabbay's equational semantics, and models of the encoded formulas by semantics of propositional logic systems. Firstly, we supplement the proof of the regular encoding function in the case of encoding $AF$s to the 2-valued propositional logic system. Then we encode $AF$s to 3-valued propositional logic systems and fuzzy propositional logic systems and explore the model relationship. This paper enhances the connection between $AF$s and propositional logic systems. It also provides a new way to construct new equational semantics by choosing different fuzzy logic operations.
comment: 31 pages
☆ The Economics of p(doom): Scenarios of Existential Risk and Economic Growth in the Age of Transformative AI
Recent advances in artificial intelligence (AI) have led to a diverse set of predictions about its long-term impact on humanity. A central focus is the potential emergence of transformative AI (TAI), eventually capable of outperforming humans in all economically valuable tasks and fully automating labor. Discussed scenarios range from human extinction after a misaligned TAI takes over ("AI doom") to unprecedented economic growth and abundance ("post-scarcity"). However, the probabilities and implications of these scenarios remain highly uncertain. Here, we organize the various scenarios and evaluate their associated existential risks and economic outcomes in terms of aggregate welfare. Our analysis shows that even low-probability catastrophic outcomes justify large investments in AI safety and alignment research. We find that the optimizing representative individual would rationally allocate substantial resources to mitigate extinction risk; in some cases, she would prefer not to develop TAI at all. This result highlights that current global efforts in AI safety and alignment research are vastly insufficient relative to the scale and urgency of existential risks posed by TAI. Our findings therefore underscore the need for stronger safeguards to balance the potential economic benefits of TAI with the prevention of irreversible harm. Addressing these risks is crucial for steering technological progress toward sustainable human prosperity.
☆ Research and Design on Intelligent Recognition of Unordered Targets for Robots Based on Reinforcement Learning
In the field of robot target recognition research driven by artificial intelligence (AI), factors such as the disordered distribution of targets, the complexity of the environment, the massive scale of data, and noise interference have significantly restricted the improvement of target recognition accuracy. Against the backdrop of the continuous iteration and upgrading of current AI technologies, to meet the demand for accurate recognition of disordered targets by intelligent robots in complex and changeable scenarios, this study innovatively proposes an AI - based intelligent robot disordered target recognition method using reinforcement learning. This method processes the collected target images with the bilateral filtering algorithm, decomposing them into low - illumination images and reflection images. Subsequently, it adopts differentiated AI strategies, compressing the illumination images and enhancing the reflection images respectively, and then fuses the two parts of images to generate a new image. On this basis, this study deeply integrates deep learning, a core AI technology, with the reinforcement learning algorithm. The enhanced target images are input into a deep reinforcement learning model for training, ultimately enabling the AI - based intelligent robot to efficiently recognize disordered targets. Experimental results show that the proposed method can not only significantly improve the quality of target images but also enable the AI - based intelligent robot to complete the recognition task of disordered targets with higher efficiency and accuracy, demonstrating extremely high application value and broad development prospects in the field of AI robots.
☆ Temporal Triplane Transformers as Occupancy World Models
Recent years have seen significant advances in world models, which primarily focus on learning fine-grained correlations between an agent's motion trajectory and the resulting changes in its surrounding environment. However, existing methods often struggle to capture such fine-grained correlations and achieve real-time predictions. To address this, we propose a new 4D occupancy world model for autonomous driving, termed T$^3$Former. T$^3$Former begins by pre-training a compact triplane representation that efficiently compresses the 3D semantically occupied environment. Next, T$^3$Former extracts multi-scale temporal motion features from the historical triplane and employs an autoregressive approach to iteratively predict the next triplane changes. Finally, T$^3$Former combines the triplane changes with the previous ones to decode them into future occupancy results and ego-motion trajectories. Experimental results demonstrate the superiority of T$^3$Former, achieving 1.44$\times$ faster inference speed (26 FPS), while improving the mean IoU to 36.09 and reducing the mean absolute planning error to 1.0 meters.
☆ Mitigating Hallucinations in YOLO-based Object Detection Models: A Revisit to Out-of-Distribution Detection
Object detection systems must reliably perceive objects of interest without being overly confident to ensure safe decision-making in dynamic environments. Filtering techniques based on out-of-distribution (OoD) detection are commonly added as an extra safeguard to filter hallucinations caused by overconfidence in novel objects. Nevertheless, evaluating YOLO-family detectors and their filters under existing OoD benchmarks often leads to unsatisfactory performance. This paper studies the underlying reasons for performance bottlenecks and proposes a methodology to improve performance fundamentally. Our first contribution is a calibration of all existing evaluation results: Although images in existing OoD benchmark datasets are claimed not to have objects within in-distribution (ID) classes (i.e., categories defined in the training dataset), around 13% of objects detected by the object detector are actually ID objects. Dually, the ID dataset containing OoD objects can also negatively impact the decision boundary of filters. These ultimately lead to a significantly imprecise performance estimation. Our second contribution is to consider the task of hallucination reduction as a joint pipeline of detectors and filters. By developing a methodology to carefully synthesize an OoD dataset that semantically resembles the objects to be detected, and using the crafted OoD dataset in the fine-tuning of YOLO detectors to suppress the objectness score, we achieve a 88% reduction in overall hallucination error with a combined fine-tuned detection and filtering system on the self-driving benchmark BDD-100K. Our code and dataset are available at: https://gricad-gitlab.univ-grenoble-alpes.fr/dnn-safety/m-hood.
☆ Assessing the Macro and Micro Effects of Random Seeds on Fine-Tuning Large Language Models
The impact of random seeds in fine-tuning large language models (LLMs) has been largely overlooked despite its potential influence on model performance.In this study, we systematically evaluate the effects of random seeds on LLMs using the GLUE and SuperGLUE benchmarks. We analyze the macro-level impact through traditional metrics like accuracy and F1, calculating their mean and variance to quantify performance fluctuations. To capture the micro-level effects, we introduce a novel metric, consistency, measuring the stability of individual predictions across runs. Our experiments reveal significant variance at both macro and micro levels, underscoring the need for careful consideration of random seeds in fine-tuning and evaluation.
comment: 7 pages, 5 tables, 3 figures
☆ AI Biases as Asymmetries: A Review to Guide Practice
The understanding of bias in AI is currently undergoing a revolution. Initially understood as errors or flaws, biases are increasingly recognized as integral to AI systems and sometimes preferable to less biased alternatives. In this paper, we review the reasons for this changed understanding and provide new guidance on two questions: First, how should we think about and measure biases in AI systems, consistent with the new understanding? Second, what kinds of bias in an AI system should we accept or even amplify, and what kinds should we minimize or eliminate, and why? The key to answering both questions, we argue, is to understand biases as "violations of a symmetry standard" (following Kelly). We distinguish three main types of asymmetry in AI systems-error biases, inequality biases, and process biases-and highlight places in the pipeline of AI development and application where bias of each type is likely to be good, bad, or inevitable.
comment: 24 pages
Dynamic Path Navigation for Motion Agents with LLM Reasoning
Large Language Models (LLMs) have demonstrated strong generalizable reasoning and planning capabilities. However, their efficacies in spatial path planning and obstacle-free trajectory generation remain underexplored. Leveraging LLMs for navigation holds significant potential, given LLMs' ability to handle unseen scenarios, support user-agent interactions, and provide global control across complex systems, making them well-suited for agentic planning and humanoid motion generation. As one of the first studies in this domain, we explore the zero-shot navigation and path generation capabilities of LLMs by constructing a dataset and proposing an evaluation protocol. Specifically, we represent paths using anchor points connected by straight lines, enabling movement in various directions. This approach offers greater flexibility and practicality compared to previous methods while remaining simple and intuitive for LLMs. We demonstrate that, when tasks are well-structured in this manner, modern LLMs exhibit substantial planning proficiency in avoiding obstacles while autonomously refining navigation with the generated motion to reach the target. Further, this spatial reasoning ability of a single LLM motion agent interacting in a static environment can be seamlessly generalized in multi-motion agents coordination in dynamic environments. Unlike traditional approaches that rely on single-step planning or local policies, our training-free LLM-based method enables global, dynamic, closed-loop planning, and autonomously resolving collision issues.
☆ Experimental Exploration: Investigating Cooperative Interaction Behavior Between Humans and Large Language Model Agents
With the rise of large language models (LLMs), AI agents as autonomous decision-makers present significant opportunities and challenges for human-AI cooperation. While many studies have explored human cooperation with AI as tools, the role of LLM-augmented autonomous agents in competitive-cooperative interactions remains under-examined. This study investigates human cooperative behavior by engaging 30 participants who interacted with LLM agents exhibiting different characteristics (purported human, purported rule-based AI agent, and LLM agent) in repeated Prisoner's Dilemma games. Findings show significant differences in cooperative behavior based on the agents' purported characteristics and the interaction effect of participants' genders and purported characteristics. We also analyzed human response patterns, including game completion time, proactive favorable behavior, and acceptance of repair efforts. These insights offer a new perspective on human interactions with LLM agents in competitive cooperation contexts, such as virtual avatars or future physical entities. The study underscores the importance of understanding human biases toward AI agents and how observed behaviors can influence future human-AI cooperation dynamics.
☆ Human Machine Co-Adaptation Model and Its Convergence Analysis
The key to robot-assisted rehabilitation lies in the design of the human-machine interface, which must accommodate the needs of both patients and machines. Current interface designs primarily focus on machine control algorithms, often requiring patients to spend considerable time adapting. In this paper, we introduce a novel approach based on the Cooperative Adaptive Markov Decision Process (CAMDPs) model to address the fundamental aspects of the interactive learning process, offering theoretical insights and practical guidance. We establish sufficient conditions for the convergence of CAMDPs and ensure the uniqueness of Nash equilibrium points. Leveraging these conditions, we guarantee the system's convergence to a unique Nash equilibrium point. Furthermore, we explore scenarios with multiple Nash equilibrium points, devising strategies to adjust both Value Evaluation and Policy Improvement algorithms to enhance the likelihood of converging to the global minimal Nash equilibrium point. Through numerical experiments, we illustrate the effectiveness of the proposed conditions and algorithms, demonstrating their applicability and robustness in practical settings. The proposed conditions for convergence and the identification of a unique optimal Nash equilibrium contribute to the development of more effective adaptive systems for human users in robot-assisted rehabilitation.
☆ Self-Corrective Task Planning by Inverse Prompting with Large Language Models ICRA
In robot task planning, large language models (LLMs) have shown significant promise in generating complex and long-horizon action sequences. However, it is observed that LLMs often produce responses that sound plausible but are not accurate. To address these problems, existing methods typically employ predefined error sets or external knowledge sources, requiring human efforts and computation resources. Recently, self-correction approaches have emerged, where LLM generates and refines plans, identifying errors by itself. Despite their effectiveness, they are more prone to failures in correction due to insufficient reasoning. In this paper, we introduce InversePrompt, a novel self-corrective task planning approach that leverages inverse prompting to enhance interpretability. Our method incorporates reasoning steps to provide clear, interpretable feedback. It generates inverse actions corresponding to the initially generated actions and verifies whether these inverse actions can restore the system to its original state, explicitly validating the logical coherence of the generated plans. The results on benchmark datasets show an average 16.3% higher success rate over existing LLM-based task planning methods. Our approach offers clearer justifications for feedback in real-world environments, resulting in more successful task completion than existing self-correction approaches across various scenarios.
comment: 7 pages, 5 figures, IEEE International Conference on Robotics and Automation (ICRA) 2025
☆ Group-robust Sample Reweighting for Subpopulation Shifts via Influence Functions ICLR 2025
Machine learning models often have uneven performance among subpopulations (a.k.a., groups) in the data distributions. This poses a significant challenge for the models to generalize when the proportions of the groups shift during deployment. To improve robustness to such shifts, existing approaches have developed strategies that train models or perform hyperparameter tuning using the group-labeled data to minimize the worst-case loss over groups. However, a non-trivial amount of high-quality labels is often required to obtain noticeable improvements. Given the costliness of the labels, we propose to adopt a different paradigm to enhance group label efficiency: utilizing the group-labeled data as a target set to optimize the weights of other group-unlabeled data. We introduce Group-robust Sample Reweighting (GSR), a two-stage approach that first learns the representations from group-unlabeled data, and then tinkers the model by iteratively retraining its last layer on the reweighted data using influence functions. Our GSR is theoretically sound, practically lightweight, and effective in improving the robustness to subpopulation shifts. In particular, GSR outperforms the previous state-of-the-art approaches that require the same amount or even more group labels.
comment: Accepted to the 13th International Conference on Learning Representations (ICLR 2025). Code is available at https://github.com/qiaoruiyt/GSR
☆ Distilling Knowledge into Quantum Vision Transformers for Biomedical Image Classification MICCAI 2025
Quantum vision transformers (QViTs) build on vision transformers (ViTs) by replacing linear layers within the self-attention mechanism with parameterised quantum neural networks (QNNs), harnessing quantum mechanical properties to improve feature representation. This hybrid approach aims to achieve superior performance, with significantly reduced model complexity as a result of the enriched feature representation, requiring fewer parameters. This paper proposes a novel QViT model for biomedical image classification and investigates its performance against comparable ViTs across eight diverse datasets, encompassing various modalities and classification tasks. We assess models trained from scratch and those pre-trained using knowledge distillation (KD) from high-quality teacher models. Our findings demonstrate that QViTs outperform comparable ViTs with average ROC AUC (0.863 vs 0.846) and accuracy (0.710 vs 0.687) when trained from scratch, and even compete with state-of-the-art classical models in multiple tasks, whilst being significantly more efficient (89% reduction in GFLOPs and 99.99% in parameter number). Additionally, we find that QViTs and ViTs respond equally well to KD, with QViT pre-training performance scaling with model complexity. This is the first investigation into the efficacy of deploying QViTs with KD for computer-aided diagnosis. Our results highlight the enormous potential of quantum machine learning (QML) in biomedical image analysis.
comment: Submitted for MICCAI 2025
☆ VizTrust: A Visual Analytics Tool for Capturing User Trust Dynamics in Human-AI Communication
Trust plays a fundamental role in shaping the willingness of users to engage and collaborate with artificial intelligence (AI) systems. Yet, measuring user trust remains challenging due to its complex and dynamic nature. While traditional survey methods provide trust levels for long conversations, they fail to capture its dynamic evolution during ongoing interactions. Here, we present VizTrust, which addresses this challenge by introducing a real-time visual analytics tool that leverages a multi-agent collaboration system to capture and analyze user trust dynamics in human-agent communication. Built on established human-computer trust scales-competence, integrity, benevolence, and predictability-, VizTrust enables stakeholders to observe trust formation as it happens, identify patterns in trust development, and pinpoint specific interaction elements that influence trust. Our tool offers actionable insights into human-agent trust formation and evolution in real time through a dashboard, supporting the design of adaptive conversational agents that responds effectively to user trust signals.
comment: Accepted by ACM CHI conference 2025
☆ Automatic Curriculum Design for Zero-Shot Human-AI Coordination
Zero-shot human-AI coordination is the training of an ego-agent to coordinate with humans without using human data. Most studies on zero-shot human-AI coordination have focused on enhancing the ego-agent's coordination ability in a given environment without considering the issue of generalization to unseen environments. Real-world applications of zero-shot human-AI coordination should consider unpredictable environmental changes and the varying coordination ability of co-players depending on the environment. Previously, the multi-agent UED (Unsupervised Environment Design) approach has investigated these challenges by jointly considering environmental changes and co-player policy in competitive two-player AI-AI scenarios. In this paper, our study extends the multi-agent UED approach to a zero-shot human-AI coordination. We propose a utility function and co-player sampling for a zero-shot human-AI coordination setting that helps train the ego-agent to coordinate with humans more effectively than the previous multi-agent UED approach. The zero-shot human-AI coordination performance was evaluated in the Overcooked-AI environment, using human proxy agents and real humans. Our method outperforms other baseline models and achieves a high human-AI coordination performance in unseen environments.
☆ Federated Learning in NTNs: Design, Architecture and Challenges
Non-terrestrial networks (NTNs) are emerging as a core component of future 6G communication systems, providing global connectivity and supporting data-intensive applications. In this paper, we propose a distributed hierarchical federated learning (HFL) framework within the NTN architecture, leveraging a high altitude platform station (HAPS) constellation as intermediate distributed FL servers. Our framework integrates both low-Earth orbit (LEO) satellites and ground clients in the FL training process while utilizing geostationary orbit (GEO) and medium-Earth orbit (MEO) satellites as relays to exchange FL global models across other HAPS constellations worldwide, enabling seamless, global-scale learning. The proposed framework offers several key benefits: (i) enhanced privacy through the decentralization of the FL mechanism by leveraging the HAPS constellation, (ii) improved model accuracy and reduced training loss while balancing latency, (iii) increased scalability of FL systems through ubiquitous connectivity by utilizing MEO and GEO satellites, and (iv) the ability to use FL data, such as resource utilization metrics, to further optimize the NTN architecture from a network management perspective. A numerical study demonstrates the proposed framework's effectiveness, with improved model accuracy, reduced training loss, and efficient latency management. The article also includes a brief review of FL in NTNs and highlights key challenges and future research directions.
comment: Accepted in IEEE Communications Magazine
☆ WISE: A World Knowledge-Informed Semantic Evaluation for Text-to-Image Generation
Text-to-Image (T2I) models are capable of generating high-quality artistic creations and visual content. However, existing research and evaluation standards predominantly focus on image realism and shallow text-image alignment, lacking a comprehensive assessment of complex semantic understanding and world knowledge integration in text to image generation. To address this challenge, we propose $\textbf{WISE}$, the first benchmark specifically designed for $\textbf{W}$orld Knowledge-$\textbf{I}$nformed $\textbf{S}$emantic $\textbf{E}$valuation. WISE moves beyond simple word-pixel mapping by challenging models with 1000 meticulously crafted prompts across 25 sub-domains in cultural common sense, spatio-temporal reasoning, and natural science. To overcome the limitations of traditional CLIP metric, we introduce $\textbf{WiScore}$, a novel quantitative metric for assessing knowledge-image alignment. Through comprehensive testing of 20 models (10 dedicated T2I models and 10 unified multimodal models) using 1,000 structured prompts spanning 25 subdomains, our findings reveal significant limitations in their ability to effectively integrate and apply world knowledge during image generation, highlighting critical pathways for enhancing knowledge incorporation and application in next-generation T2I models. Code and data are available at https://github.com/PKU-YuanGroup/WISE.
comment: Code, data and leaderboard: https://github.com/PKU-YuanGroup/WISE
☆ COMODO: Cross-Modal Video-to-IMU Distillation for Efficient Egocentric Human Activity Recognition
Egocentric video-based models capture rich semantic information and have demonstrated strong performance in human activity recognition (HAR). However, their high power consumption, privacy concerns, and dependence on lighting conditions limit their feasibility for continuous on-device recognition. In contrast, inertial measurement unit (IMU) sensors offer an energy-efficient and privacy-preserving alternative, yet they suffer from limited large-scale annotated datasets, leading to weaker generalization in downstream tasks. To bridge this gap, we propose COMODO, a cross-modal self-supervised distillation framework that transfers rich semantic knowledge from the video modality to the IMU modality without requiring labeled annotations. COMODO leverages a pretrained and frozen video encoder to construct a dynamic instance queue, aligning the feature distributions of video and IMU embeddings. By distilling knowledge from video representations, our approach enables the IMU encoder to inherit rich semantic information from video while preserving its efficiency for real-world applications. Experiments on multiple egocentric HAR datasets demonstrate that COMODO consistently improves downstream classification performance, achieving results comparable to or exceeding fully supervised fine-tuned models. Moreover, COMODO exhibits strong cross-dataset generalization. Benefiting from its simplicity, our method is also generally applicable to various video and time-series pre-trained models, offering the potential to leverage more powerful teacher and student foundation models in future research. The code is available at https://github.com/Breezelled/COMODO .
☆ AI-Driven Automated Tool for Abdominal CT Body Composition Analysis in Gastrointestinal Cancer Management
The incidence of gastrointestinal cancers remains significantly high, particularly in China, emphasizing the importance of accurate prognostic assessments and effective treatment strategies. Research shows a strong correlation between abdominal muscle and fat tissue composition and patient outcomes. However, existing manual methods for analyzing abdominal tissue composition are time-consuming and costly, limiting clinical research scalability. To address these challenges, we developed an AI-driven tool for automated analysis of abdominal CT scans to effectively identify and segment muscle, subcutaneous fat, and visceral fat. Our tool integrates a multi-view localization model and a high-precision 2D nnUNet-based segmentation model, demonstrating a localization accuracy of 90% and a Dice Score Coefficient of 0.967 for segmentation. Furthermore, it features an interactive interface that allows clinicians to refine the segmentation results, ensuring high-quality outcomes effectively. Our tool offers a standardized method for effectively extracting critical abdominal tissues, potentially enhancing the management and treatment for gastrointestinal cancers. The code is available at https://github.com/NanXinyu/AI-Tool4Abdominal-Seg.git}{https://github.com/NanXinyu/AI-Tool4Abdominal-Seg.git.
☆ LLM-C3MOD: A Human-LLM Collaborative System for Cross-Cultural Hate Speech Moderation NAACL 2025
Content moderation is a global challenge, yet major tech platforms prioritize high-resource languages, leaving low-resource languages with scarce native moderators. Since effective moderation depends on understanding contextual cues, this imbalance increases the risk of improper moderation due to non-native moderators' limited cultural understanding. Through a user study, we identify that non-native moderators struggle with interpreting culturally-specific knowledge, sentiment, and internet culture in the hate speech moderation. To assist them, we present LLM-C3MOD, a human-LLM collaborative pipeline with three steps: (1) RAG-enhanced cultural context annotations; (2) initial LLM-based moderation; and (3) targeted human moderation for cases lacking LLM consensus. Evaluated on a Korean hate speech dataset with Indonesian and German participants, our system achieves 78% accuracy (surpassing GPT-4o's 71% baseline), while reducing human workload by 83.6%. Notably, human moderators excel at nuanced contents where LLMs struggle. Our findings suggest that non-native moderators, when properly supported by LLMs, can effectively contribute to cross-cultural hate speech moderation.
comment: Accepted to NAACL 2025 Workshop - C3NLP (Workshop on Cross-Cultural Considerations in NLP)
CoT-Drive: Efficient Motion Forecasting for Autonomous Driving with LLMs and Chain-of-Thought Prompting
Accurate motion forecasting is crucial for safe autonomous driving (AD). This study proposes CoT-Drive, a novel approach that enhances motion forecasting by leveraging large language models (LLMs) and a chain-of-thought (CoT) prompting method. We introduce a teacher-student knowledge distillation strategy to effectively transfer LLMs' advanced scene understanding capabilities to lightweight language models (LMs), ensuring that CoT-Drive operates in real-time on edge devices while maintaining comprehensive scene understanding and generalization capabilities. By leveraging CoT prompting techniques for LLMs without additional training, CoT-Drive generates semantic annotations that significantly improve the understanding of complex traffic environments, thereby boosting the accuracy and robustness of predictions. Additionally, we present two new scene description datasets, Highway-Text and Urban-Text, designed for fine-tuning lightweight LMs to generate context-specific semantic annotations. Comprehensive evaluations of five real-world datasets demonstrate that CoT-Drive outperforms existing models, highlighting its effectiveness and efficiency in handling complex traffic scenarios. Overall, this study is the first to consider the practical application of LLMs in this field. It pioneers the training and use of a lightweight LLM surrogate for motion forecasting, setting a new benchmark and showcasing the potential of integrating LLMs into AD systems.
☆ Cross-Lingual IPA Contrastive Learning for Zero-Shot NER
Existing approaches to zero-shot Named Entity Recognition (NER) for low-resource languages have primarily relied on machine translation, whereas more recent methods have shifted focus to phonemic representation. Building upon this, we investigate how reducing the phonemic representation gap in IPA transcription between languages with similar phonetic characteristics enables models trained on high-resource languages to perform effectively on low-resource languages. In this work, we propose CONtrastive Learning with IPA (CONLIPA) dataset containing 10 English and high resource languages IPA pairs from 10 frequently used language families. We also propose a cross-lingual IPA Contrastive learning method (IPAC) using the CONLIPA dataset. Furthermore, our proposed dataset and methodology demonstrate a substantial average gain when compared to the best performing baseline.
comment: 17 pages, 6 figures
☆ Discrete Gaussian Process Representations for Optimising UAV-based Precision Weed Mapping
Accurate agricultural weed mapping using UAVs is crucial for precision farming applications. Traditional methods rely on orthomosaic stitching from rigid flight paths, which is computationally intensive and time-consuming. Gaussian Process (GP)-based mapping offers continuous modelling of the underlying variable (i.e. weed distribution) but requires discretisation for practical tasks like path planning or visualisation. Current implementations often default to quadtrees or gridmaps without systematically evaluating alternatives. This study compares five discretisation methods: quadtrees, wedgelets, top-down binary space partition (BSP) trees using least square error (LSE), bottom-up BSP trees using graph merging, and variable-resolution hexagonal grids. Evaluations on real-world weed distributions measure visual similarity, mean squared error (MSE), and computational efficiency. Results show quadtrees perform best overall, but alternatives excel in specific scenarios: hexagons or BSP LSE suit fields with large, dominant weed patches, while quadtrees are optimal for dispersed small-scale distributions. These findings highlight the need to tailor discretisation approaches to weed distribution patterns (patch size, density, coverage) rather than relying on default methods. By choosing representations based on the underlying distribution, we can improve mapping accuracy and efficiency for precision agriculture applications.
☆ A Zero-shot Learning Method Based on Large Language Models for Multi-modal Knowledge Graph Embedding
Zero-shot learning (ZL) is crucial for tasks involving unseen categories, such as natural language processing, image classification, and cross-lingual transfer. Current applications often fail to accurately infer and handle new relations or entities involving unseen categories, severely limiting their scalability and practicality in open-domain scenarios. ZL learning faces the challenge of effectively transferring semantic information of unseen categories in multi-modal knowledge graph (MMKG) embedding representation learning. In this paper, we propose ZSLLM, a framework for zero-shot embedding learning of MMKGs using large language models (LLMs). We leverage textual modality information of unseen categories as prompts to fully utilize the reasoning capabilities of LLMs, enabling semantic information transfer across different modalities for unseen categories. Through model-based learning, the embedding representation of unseen categories in MMKG is enhanced. Extensive experiments conducted on multiple real-world datasets demonstrate the superiority of our approach compared to state-of-the-art methods.
☆ Lawful and Accountable Personal Data Processing with GDPR-based Access and Usage Control in Distributed Systems
Compliance with the GDPR privacy regulation places a significant burden on organisations regarding the handling of personal data. The perceived efforts and risks of complying with the GDPR further increase when data processing activities span across organisational boundaries, as is the case in both small-scale data sharing settings and in large-scale international data spaces. This paper addresses these concerns by proposing a case-generic method for automated normative reasoning that establishes legal arguments for the lawfulness of data processing activities. The arguments are established on the basis of case-specific legal qualifications made by privacy experts, bringing the human in the loop. The obtained expert system promotes transparency and accountability, remains adaptable to extended or altered interpretations of the GDPR, and integrates into novel or existing distributed data processing systems. This result is achieved by defining a formal ontology and semantics for automated normative reasoning based on an analysis of the purpose-limitation principle of the GDPR. The ontology and semantics are implemented in eFLINT, a domain-specific language for specifying and reasoning with norms. The XACML architecture standard, applicable to both access and usage control, is extended, demonstrating how GDPR-based normative reasoning can integrate into (existing, distributed) systems for data processing. The resulting system is designed and critically assessed in reference to requirements extracted from the GPDR.
comment: Submitted for review to the Journal of AI and Law, 49 pages (including)
☆ DeFine: A Decomposed and Fine-Grained Annotated Dataset for Long-form Article Generation
Long-form article generation (LFAG) presents challenges such as maintaining logical consistency, comprehensive topic coverage, and narrative coherence across extended articles. Existing datasets often lack both the hierarchical structure and fine-grained annotation needed to effectively decompose tasks, resulting in shallow, disorganized article generation. To address these limitations, we introduce DeFine, a Decomposed and Fine-grained annotated dataset for long-form article generation. DeFine is characterized by its hierarchical decomposition strategy and the integration of domain-specific knowledge with multi-level annotations, ensuring granular control and enhanced depth in article generation. To construct the dataset, a multi-agent collaborative pipeline is proposed, which systematically segments the generation process into four parts: Data Miner, Cite Retreiver, Q&A Annotator and Data Cleaner. To validate the effectiveness of DeFine, we designed and tested three LFAG baselines: the web retrieval, the local retrieval, and the grounded reference. We fine-tuned the Qwen2-7b-Instruct model using the DeFine training dataset. The experimental results showed significant improvements in text quality, specifically in topic coverage, depth of information, and content fidelity. Our dataset publicly available to facilitate future research.
☆ Generative AI in Transportation Planning: A Survey
The integration of generative artificial intelligence (GenAI) into transportation planning has the potential to revolutionize tasks such as demand forecasting, infrastructure design, policy evaluation, and traffic simulation. However, there is a critical need for a systematic framework to guide the adoption of GenAI in this interdisciplinary domain. In this survey, we, a multidisciplinary team of researchers spanning computer science and transportation engineering, present the first comprehensive framework for leveraging GenAI in transportation planning. Specifically, we introduce a new taxonomy that categorizes existing applications and methodologies into two perspectives: transportation planning tasks and computational techniques. From the transportation planning perspective, we examine the role of GenAI in automating descriptive, predictive, generative, simulation, and explainable tasks to enhance mobility systems. From the computational perspective, we detail advancements in data preparation, domain-specific fine-tuning, and inference strategies, such as retrieval-augmented generation and zero-shot learning tailored to transportation applications. Additionally, we address critical challenges, including data scarcity, explainability, bias mitigation, and the development of domain-specific evaluation frameworks that align with transportation goals like sustainability, equity, and system efficiency. This survey aims to bridge the gap between traditional transportation planning methodologies and modern AI techniques, fostering collaboration and innovation. By addressing these challenges and opportunities, we seek to inspire future research that ensures ethical, equitable, and impactful use of generative AI in transportation planning.
comment: 56 pages
☆ PTMs-TSCIL Pre-Trained Models Based Class-Incremental Learning
Class-incremental learning (CIL) for time series data faces critical challenges in balancing stability against catastrophic forgetting and plasticity for new knowledge acquisition, particularly under real-world constraints where historical data access is restricted. While pre-trained models (PTMs) have shown promise in CIL for vision and NLP domains, their potential in time series class-incremental learning (TSCIL) remains underexplored due to the scarcity of large-scale time series pre-trained models. Prompted by the recent emergence of large-scale pre-trained models (PTMs) for time series data, we present the first exploration of PTM-based Time Series Class-Incremental Learning (TSCIL). Our approach leverages frozen PTM backbones coupled with incrementally tuning the shared adapter, preserving generalization capabilities while mitigating feature drift through knowledge distillation. Furthermore, we introduce a Feature Drift Compensation Network (DCN), designed with a novel two-stage training strategy to precisely model feature space transformations across incremental tasks. This allows for accurate projection of old class prototypes into the new feature space. By employing DCN-corrected prototypes, we effectively enhance the unified classifier retraining, mitigating model feature drift and alleviating catastrophic forgetting. Extensive experiments on five real-world datasets demonstrate state-of-the-art performance, with our method yielding final accuracy gains of 1.4%-6.1% across all datasets compared to existing PTM-based approaches. Our work establishes a new paradigm for TSCIL, providing insights into stability-plasticity optimization for continual learning systems.
comment: 13 pages,6 figures
☆ Hierarchical Neuro-Symbolic Decision Transformer
We present a hierarchical neuro-symbolic control framework that couples classical symbolic planning with transformer-based policies to address complex, long-horizon decision-making tasks. At the high level, a symbolic planner constructs an interpretable sequence of operators based on logical propositions, ensuring systematic adherence to global constraints and goals. At the low level, each symbolic operator is translated into a sub-goal token that conditions a decision transformer to generate a fine-grained sequence of actions in uncertain, high-dimensional environments. We provide theoretical analysis showing how approximation errors from both the symbolic planner and the neural execution layer accumulate. Empirical evaluations in grid-worlds with multiple keys, locked doors, and item-collection tasks show that our hierarchical approach outperforms purely end-to-end neural approach in success rates and policy efficiency.
☆ MRCEval: A Comprehensive, Challenging and Accessible Machine Reading Comprehension Benchmark
Machine Reading Comprehension (MRC) is an essential task in evaluating natural language understanding. Existing MRC datasets primarily assess specific aspects of reading comprehension (RC), lacking a comprehensive MRC benchmark. To fill this gap, we first introduce a novel taxonomy that categorizes the key capabilities required for RC. Based on this taxonomy, we construct MRCEval, an MRC benchmark that leverages advanced Large Language Models (LLMs) as both sample generators and selection judges. MRCEval is a comprehensive, challenging and accessible benchmark designed to assess the RC capabilities of LLMs thoroughly, covering 13 distinct RC skills with a total of 2.1K high-quality multi-choice questions. We perform an extensive evaluation of 28 widely used open-source and proprietary models, highlighting that MRC continues to present significant challenges even in the era of LLMs.
comment: Under review
☆ A Comprehensive Survey of Mixture-of-Experts: Algorithms, Theory, and Applications
Artificial intelligence (AI) has achieved astonishing successes in many domains, especially with the recent breakthroughs in the development of foundational large models. These large models, leveraging their extensive training data, provide versatile solutions for a wide range of downstream tasks. However, as modern datasets become increasingly diverse and complex, the development of large AI models faces two major challenges: (1) the enormous consumption of computational resources and deployment difficulties, and (2) the difficulty in fitting heterogeneous and complex data, which limits the usability of the models. Mixture of Experts (MoE) models has recently attracted much attention in addressing these challenges, by dynamically selecting and activating the most relevant sub-models to process input data. It has been shown that MoEs can significantly improve model performance and efficiency with fewer resources, particularly excelling in handling large-scale, multimodal data. Given the tremendous potential MoE has demonstrated across various domains, it is urgent to provide a comprehensive summary of recent advancements of MoEs in many important fields. Existing surveys on MoE have their limitations, e.g., being outdated or lacking discussion on certain key areas, and we aim to address these gaps. In this paper, we first introduce the basic design of MoE, including gating functions, expert networks, routing mechanisms, training strategies, and system design. We then explore the algorithm design of MoE in important machine learning paradigms such as continual learning, meta-learning, multi-task learning, and reinforcement learning. Additionally, we summarize theoretical studies aimed at understanding MoE and review its applications in computer vision and natural language processing. Finally, we discuss promising future research directions.
comment: 28 pages, 3 figures
☆ ASTRA: A Negotiation Agent with Adaptive and Strategic Reasoning through Action in Dynamic Offer Optimization
Negotiation requires dynamically balancing self-interest and cooperation to maximize one's own utility. Yet, existing agents struggle due to bounded rationality in human data, low adaptability to counterpart behavior, and limited strategic reasoning. To address this, we introduce principle-driven negotiation agents, powered by ASTRA, a novel framework for turn-level offer optimization grounded in two core principles: opponent modeling and Tit-for-Tat reciprocity. ASTRA operates in three stages: (1) interpreting counterpart behavior, (2) optimizing counteroffers via a linear programming (LP) solver, and (3) selecting offers based on negotiation tactics and the partner's acceptance probability. Through simulations and human evaluations, our agent effectively adapts to an opponent's shifting stance and achieves favorable outcomes through enhanced adaptability and strategic reasoning. Beyond improving negotiation performance, it also serves as a powerful coaching tool, offering interpretable strategic feedback and optimal offer recommendations.
☆ A LSTM-Transformer Model for pulsation control of pVADs
Methods: A method of the pulsation for a pVAD is proposed (AP-pVAD Model). AP-pVAD Model consists of two parts: NPQ Model and LSTM-Transformer Model. (1)The NPQ Model determines the mathematical relationship between motor speed, pressure, and flow rate for the pVAD. (2)The Attention module of Transformer neural network is integrated into the LSTM neural network to form the new LSTM-Transformer Model to predict the pulsation time characteristic points for adjusting the motor speed of the pVAD. Results: The AP-pVAD Model is validated in three hydraulic experiments and an animal experiment. (1)The pressure provided by pVAD calculated with the NPQ Model has a maximum error of only 2.15 mmHg compared to the expected values. (2)The pulsation time characteristic points predicted by the LSTM-Transformer Model shows a maximum prediction error of 1.78ms, which is significantly lower than other methods. (3)The in-vivo test of pVAD in animal experiment has significant improvements in aortic pressure. Animals survive for over 27 hours after the initiation of pVAD operation. Conclusion: (1)For a given pVAD, motor speed has a linear relationship with pressure and a quadratic relationship with flow. (2)Deep learning can be used to predict pulsation characteristic time points, with the LSTM-Transformer Model demonstrating minimal prediction error and better robust performance under conditions of limited dataset sizes, elevated noise levels, and diverse hyperparameter combinations, demonstrating its feasibility and effectiveness.
☆ Correctness Learning: Deductive Verification Guided Learning for Human-AI Collaboration
Despite significant progress in AI and decision-making technologies in safety-critical fields, challenges remain in verifying the correctness of decision output schemes and verification-result driven design. We propose correctness learning (CL) to enhance human-AI collaboration integrating deductive verification methods and insights from historical high-quality schemes. The typical pattern hidden in historical high-quality schemes, such as change of task priorities in shared resources, provides critical guidance for intelligent agents in learning and decision-making. By utilizing deductive verification methods, we proposed patten-driven correctness learning (PDCL), formally modeling and reasoning the adaptive behaviors-or 'correctness pattern'-of system agents based on historical high-quality schemes, capturing the logical relationships embedded within these schemes. Using this logical information as guidance, we establish a correctness judgment and feedback mechanism to steer the intelligent decision model toward the 'correctness pattern' reflected in historical high-quality schemes. Extensive experiments across multiple working conditions and core parameters validate the framework's components and demonstrate its effectiveness in improving decision-making and resource optimization.
☆ On the Generalization of Representation Uncertainty in Earth Observation
Recent advances in Computer Vision have introduced the concept of pretrained representation uncertainty, enabling zero-shot uncertainty estimation. This holds significant potential for Earth Observation (EO), where trustworthiness is critical, yet the complexity of EO data poses challenges to uncertainty-aware methods. In this work, we investigate the generalization of representation uncertainty in EO, considering the domain's unique semantic characteristics. We pretrain uncertainties on large EO datasets and propose an evaluation framework to assess their zero-shot performance in multi-label classification and segmentation EO tasks. Our findings reveal that, unlike uncertainties pretrained on natural images, EO-pretraining exhibits strong generalization across unseen EO domains, geographic locations, and target granularities, while maintaining sensitivity to variations in ground sampling distance. We demonstrate the practical utility of pretrained uncertainties showcasing their alignment with task-specific uncertainties in downstream tasks, their sensitivity to real-world EO image noise, and their ability to generate spatial uncertainty estimates out-of-the-box. Initiating the discussion on representation uncertainty in EO, our study provides insights into its strengths and limitations, paving the way for future research in the field. Code and weights are available at: https://github.com/Orion-AI-Lab/EOUncertaintyGeneralization.
comment: 18 pages
☆ An Experience Report on Regression-Free Repair of Deep Neural Network Model
Systems based on Deep Neural Networks (DNNs) are increasingly being used in industry. In the process of system operation, DNNs need to be updated in order to improve their performance. When updating DNNs, systems used in companies that require high reliability must have as few regressions as possible. Since the update of DNNs has a data-driven nature, it is difficult to suppress regressions as expected by developers. This paper identifies the requirements for DNN updating in industry and presents a case study using techniques to meet those requirements. In the case study, we worked on satisfying the requirement to update models trained on car images collected in Fujitsu assuming security applications without regression for a specific class. We were able to suppress regression by customizing the objective function based on NeuRecover, a DNN repair technique. Moreover, we discuss some of the challenges identified in the case study.
☆ Rule-Based Conflict-Free Decision Framework in Swarm Confrontation
Traditional rule--based decision--making methods with interpretable advantage, such as finite state machine, suffer from the jitter or deadlock(JoD) problems in extremely dynamic scenarios. To realize agent swarm confrontation, decision conflicts causing many JoD problems are a key issue to be solved. Here, we propose a novel decision--making framework that integrates probabilistic finite state machine, deep convolutional networks, and reinforcement learning to implement interpretable intelligence into agents. Our framework overcomes state machine instability and JoD problems, ensuring reliable and adaptable decisions in swarm confrontation. The proposed approach demonstrates effective performance via enhanced human--like cooperation and competitive strategies in the rigorous evaluation of real experiments, outperforming other methods.
☆ NFIG: Autoregressive Image Generation with Next-Frequency Prediction
Autoregressive models have achieved promising results in natural language processing. However, for image generation tasks, they encounter substantial challenges in effectively capturing long-range dependencies, managing computational costs, and most crucially, defining meaningful autoregressive sequences that reflect natural image hierarchies. To address these issues, we present \textbf{N}ext-\textbf{F}requency \textbf{I}mage \textbf{G}eneration (\textbf{NFIG}), a novel framework that decomposes the image generation process into multiple frequency-guided stages. Our approach first generates low-frequency components to establish global structure with fewer tokens, then progressively adds higher-frequency details, following the natural spectral hierarchy of images. This principled autoregressive sequence not only improves the quality of generated images by better capturing true causal relationships between image components, but also significantly reduces computational overhead during inference. Extensive experiments demonstrate that NFIG achieves state-of-the-art performance with fewer steps, offering a more efficient solution for image generation, with 1.25$\times$ speedup compared to VAR-d20 while achieving better performance (FID: 2.81) on the ImageNet-256 benchmark. We hope that our insight of incorporating frequency-domain knowledge to guide autoregressive sequence design will shed light on future research. We will make our code publicly available upon acceptance of the paper.
comment: 10 pages, 7 figures, 2 tables
☆ PIED: Physics-Informed Experimental Design for Inverse Problems ICLR 2025
In many science and engineering settings, system dynamics are characterized by governing PDEs, and a major challenge is to solve inverse problems (IPs) where unknown PDE parameters are inferred based on observational data gathered under limited budget. Due to the high costs of setting up and running experiments, experimental design (ED) is often done with the help of PDE simulations to optimize for the most informative design parameters to solve such IPs, prior to actual data collection. This process of optimizing design parameters is especially critical when the budget and other practical constraints make it infeasible to adjust the design parameters between trials during the experiments. However, existing experimental design (ED) methods tend to require sequential and frequent design parameter adjustments between trials. Furthermore, they also have significant computational bottlenecks due to the need for complex numerical simulations for PDEs, and do not exploit the advantages provided by physics informed neural networks (PINNs), such as its meshless solutions, differentiability, and amortized training. This work presents PIED, the first ED framework that makes use of PINNs in a fully differentiable architecture to perform continuous optimization of design parameters for IPs for one-shot deployments. PIED overcomes existing methods' computational bottlenecks through parallelized computation and meta-learning of PINN parameter initialization, and proposes novel methods to effectively take into account PINN training dynamics in optimizing the ED parameters. Through experiments based on noisy simulated data and even real world experimental data, we empirically show that given limited observation budget, PIED significantly outperforms existing ED methods in solving IPs, including challenging settings where the inverse parameters are unknown functions rather than just finite-dimensional.
comment: Accepted to 13th International Conference on Learning Representations (ICLR 2025), 31 pages
☆ DistiLLM-2: A Contrastive Approach Boosts the Distillation of LLMs
Despite the success of distillation in large language models (LLMs), most prior work applies identical loss functions to both teacher- and student-generated data. These strategies overlook the synergy between loss formulations and data types, leading to a suboptimal performance boost in student models. To address this, we propose DistiLLM-2, a contrastive approach that simultaneously increases the likelihood of teacher responses and decreases that of student responses by harnessing this synergy. Our extensive experiments show that DistiLLM-2 not only builds high-performing student models across a wide range of tasks, including instruction-following and code generation, but also supports diverse applications, such as preference alignment and vision-language extensions. These findings highlight the potential of a contrastive approach to enhance the efficacy of LLM distillation by effectively aligning teacher and student models across varied data types.
comment: The code will be available soon at https://github.com/jongwooko/distillm-2
☆ Generative method for aerodynamic optimization based on classifier-free guided denoising diffusion probabilistic model
Inverse design approach, which directly generates optimal aerodynamic shape with neural network models to meet designated performance targets, has drawn enormous attention. However, the current state-of-the-art inverse design approach for airfoils, which is based on generative adversarial network, demonstrates insufficient precision in its generating and training processes and struggles to reveal the coupling relationship among specified performance indicators. To address these issues, the airfoil inverse design framework based on the classifier-free guided denoising diffusion probabilistic model (CDDPM) is proposed innovatively in this paper. First, the CDDPM can effectively capture the correlations among specific performance indicators and, by adjusting the classifier-free guide coefficient, generate corresponding upper and lower surface pressure coefficient distributions based on designated pressure features. These distributions are then accurately translated into airfoil geometries through a mapping model. Experimental results using classical transonic airfoils as examples show that the inverse design based on CDDPM can generate a variety of pressure coefficient distributions, which enriches the diversity of design results. Compared with current state-of-the-art Wasserstein generative adversarial network methods, CDDPM achieves a 33.6% precision improvement in airfoil generating tasks. Moreover, a practical method to readjust each performance indicator value is proposed based on global optimization algorithm in conjunction with active learning strategy, aiming to provide rational value combination of performance indicators for the inverse design framework. This work is not only suitable for the airfoils design, but also has the capability to apply to optimization process of general product parts targeting selected performance indicators.
comment: Under Review
☆ TIDE : Temporal-Aware Sparse Autoencoders for Interpretable Diffusion Transformers in Image Generation
Diffusion Transformers (DiTs) are a powerful yet underexplored class of generative models compared to U-Net-based diffusion models. To bridge this gap, we introduce TIDE (Temporal-aware Sparse Autoencoders for Interpretable Diffusion transformErs), a novel framework that enhances temporal reconstruction within DiT activation layers across denoising steps. TIDE employs Sparse Autoencoders (SAEs) with a sparse bottleneck layer to extract interpretable and hierarchical features, revealing that diffusion models inherently learn hierarchical features at multiple levels (e.g., 3D, semantic, class) during generative pre-training. Our approach achieves state-of-the-art reconstruction performance, with a mean squared error (MSE) of 1e-3 and a cosine similarity of 0.97, demonstrating superior accuracy in capturing activation dynamics along the denoising trajectory. Beyond interpretability, we showcase TIDE's potential in downstream applications such as sparse activation-guided image editing and style transfer, enabling improved controllability for generative systems. By providing a comprehensive training and evaluation protocol tailored for DiTs, TIDE contributes to developing more interpretable, transparent, and trustworthy generative models.
☆ DatawiseAgent: A Notebook-Centric LLM Agent Framework for Automated Data Science
Data Science tasks are multifaceted, dynamic, and often domain-specific. Existing LLM-based approaches largely concentrate on isolated phases, neglecting the interdependent nature of many data science tasks and limiting their capacity for comprehensive end-to-end support. We propose DatawiseAgent, a notebook-centric LLM agent framework that unifies interactions among user, agent and the computational environment through markdown and executable code cells, supporting flexible and adaptive automated data science. Built on a Finite State Transducer(FST), DatawiseAgent orchestrates four stages, including DSF-like planning, incremental execution, self-debugging, and post-filtering. Specifically, the DFS-like planning stage systematically explores the solution space, while incremental execution harnesses real-time feedback and accommodates LLM's limited capabilities to progressively complete tasks. The self-debugging and post-filtering modules further enhance reliability by diagnosing and correcting errors and pruning extraneous information. Extensive experiments on diverse tasks, including data analysis, visualization, and data modeling, show that DatawiseAgent consistently outperforms or matches state-of-the-art methods across multiple model settings. These results highlight its potential to generalize across data science scenarios and lay the groundwork for more efficient, fully automated workflows.
☆ Bot Wars Evolved: Orchestrating Competing LLMs in a Counterstrike Against Phone Scams
We present "Bot Wars," a framework using Large Language Models (LLMs) scam-baiters to counter phone scams through simulated adversarial dialogues. Our key contribution is a formal foundation for strategy emergence through chain-of-thought reasoning without explicit optimization. Through a novel two-layer prompt architecture, our framework enables LLMs to craft demographically authentic victim personas while maintaining strategic coherence. We evaluate our approach using a dataset of 3,200 scam dialogues validated against 179 hours of human scam-baiting interactions, demonstrating its effectiveness in capturing complex adversarial dynamics. Our systematic evaluation through cognitive, quantitative, and content-specific metrics shows that GPT-4 excels in dialogue naturalness and persona authenticity, while Deepseek demonstrates superior engagement sustainability.
☆ Availability-aware Sensor Fusion via Unified Canonical Space for 4D Radar, LiDAR, and Camera
Sensor fusion of camera, LiDAR, and 4-dimensional (4D) Radar has brought a significant performance improvement in autonomous driving (AD). However, there still exist fundamental challenges: deeply coupled fusion methods assume continuous sensor availability, making them vulnerable to sensor degradation and failure, whereas sensor-wise cross-attention fusion methods struggle with computational cost and unified feature representation. This paper presents availability-aware sensor fusion (ASF), a novel method that employs unified canonical projection (UCP) to enable consistency in all sensor features for fusion and cross-attention across sensors along patches (CASAP) to enhance robustness of sensor fusion against sensor degradation and failure. As a result, the proposed ASF shows a superior object detection performance to the existing state-of-the-art fusion methods under various weather and sensor degradation (or failure) conditions; Extensive experiments on the K-Radar dataset demonstrate that ASF achieves improvements of 9.7% in AP BEV (87.2%) and 20.1% in AP 3D (73.6%) in object detection at IoU=0.5, while requiring a low computational cost. The code will be available at https://github.com/kaist-avelab/K-Radar.
comment: Arxiv preprint
☆ Erase Diffusion: Empowering Object Removal Through Calibrating Diffusion Pathways CVPR 2025
Erase inpainting, or object removal, aims to precisely remove target objects within masked regions while preserving the overall consistency of the surrounding content. Despite diffusion-based methods have made significant strides in the field of image inpainting, challenges remain regarding the emergence of unexpected objects or artifacts. We assert that the inexact diffusion pathways established by existing standard optimization paradigms constrain the efficacy of object removal. To tackle these challenges, we propose a novel Erase Diffusion, termed EraDiff, aimed at unleashing the potential power of standard diffusion in the context of object removal. In contrast to standard diffusion, the EraDiff adapts both the optimization paradigm and the network to improve the coherence and elimination of the erasure results. We first introduce a Chain-Rectifying Optimization (CRO) paradigm, a sophisticated diffusion process specifically designed to align with the objectives of erasure. This paradigm establishes innovative diffusion transition pathways that simulate the gradual elimination of objects during optimization, allowing the model to accurately capture the intent of object removal. Furthermore, to mitigate deviations caused by artifacts during the sampling pathways, we develop a simple yet effective Self-Rectifying Attention (SRA) mechanism. The SRA calibrates the sampling pathways by altering self-attention activation, allowing the model to effectively bypass artifacts while further enhancing the coherence of the generated content. With this design, our proposed EraDiff achieves state-of-the-art performance on the OpenImages V5 dataset and demonstrates significant superiority in real-world scenarios.
comment: accepted by CVPR 2025
☆ Weak Supervision for Improved Precision in Search Systems AAAI 2025
Labeled datasets are essential for modern search engines, which increasingly rely on supervised learning methods like Learning to Rank and massive amounts of data to power deep learning models. However, creating these datasets is both time-consuming and costly, leading to the common use of user click and activity logs as proxies for relevance. In this paper, we present a weak supervision approach to infer the quality of query-document pairs and apply it within a Learning to Rank framework to enhance the precision of a large-scale search system.
comment: Accepted to the AAAI 2025 Workshop on Computational Jobs Marketplace
☆ Combating Partial Perception Deficit in Autonomous Driving with Multimodal LLM Commonsense
Partial perception deficits can compromise autonomous vehicle safety by disrupting environmental understanding. Current protocols typically respond with immediate stops or minimal-risk maneuvers, worsening traffic flow and lacking flexibility for rare driving scenarios. In this paper, we propose LLM-RCO, a framework leveraging large language models to integrate human-like driving commonsense into autonomous systems facing perception deficits. LLM-RCO features four key modules: hazard inference, short-term motion planner, action condition verifier, and safety constraint generator. These modules interact with the dynamic driving environment, enabling proactive and context-aware control actions to override the original control policy of autonomous agents. To improve safety in such challenging conditions, we construct DriveLM-Deficit, a dataset of 53,895 video clips featuring deficits of safety-critical objects, complete with annotations for LLM-based hazard inference and motion planning fine-tuning. Extensive experiments in adverse driving conditions with the CARLA simulator demonstrate that systems equipped with LLM-RCO significantly improve driving performance, highlighting its potential for enhancing autonomous driving resilience against adverse perception deficits. Our results also show that LLMs fine-tuned with DriveLM-Deficit can enable more proactive movements instead of conservative stops in the context of perception deficits.
☆ NukesFormers: Unpaired Hyperspectral Image Generation with Non-Uniform Domain Alignment
The inherent difficulty in acquiring accurately co-registered RGB-hyperspectral image (HSI) pairs has significantly impeded the practical deployment of current data-driven Hyperspectral Image Generation (HIG) networks in engineering applications. Gleichzeitig, the ill-posed nature of the aligning constraints, compounded with the complexities of mining cross-domain features, also hinders the advancement of unpaired HIG (UnHIG) tasks. In this paper, we conquer these challenges by modeling the UnHIG to range space interaction and compensations of null space through Range-Null Space Decomposition (RND) methodology. Specifically, the introduced contrastive learning effectively aligns the geometric and spectral distributions of unpaired data by building the interaction of range space, considering the consistent feature in degradation process. Following this, we map the frequency representations of dual-domain input and thoroughly mining the null space, like degraded and high-frequency components, through the proposed Non-uniform Kolmogorov-Arnold Networks. Extensive comparative experiments demonstrate that it establishes a new benchmark in UnHIG.
☆ Social Bias Benchmark for Generation: A Comparison of Generation and QA-Based Evaluations
Measuring social bias in large language models (LLMs) is crucial, but existing bias evaluation methods struggle to assess bias in long-form generation. We propose a Bias Benchmark for Generation (BBG), an adaptation of the Bias Benchmark for QA (BBQ), designed to evaluate social bias in long-form generation by having LLMs generate continuations of story prompts. Building our benchmark in English and Korean, we measure the probability of neutral and biased generations across ten LLMs. We also compare our long-form story generation evaluation results with multiple-choice BBQ evaluation, showing that the two approaches produce inconsistent results.
☆ Understanding the Learning Dynamics of LoRA: A Gradient Flow Perspective on Low-Rank Adaptation in Matrix Factorization
Despite the empirical success of Low-Rank Adaptation (LoRA) in fine-tuning pre-trained models, there is little theoretical understanding of how first-order methods with carefully crafted initialization adapt models to new tasks. In this work, we take the first step towards bridging this gap by theoretically analyzing the learning dynamics of LoRA for matrix factorization (MF) under gradient flow (GF), emphasizing the crucial role of initialization. For small initialization, we theoretically show that GF converges to a neighborhood of the optimal solution, with smaller initialization leading to lower final error. Our analysis shows that the final error is affected by the misalignment between the singular spaces of the pre-trained model and the target matrix, and reducing the initialization scale improves alignment. To address this misalignment, we propose a spectral initialization for LoRA in MF and theoretically prove that GF with small spectral initialization converges to the fine-tuning task with arbitrary precision. Numerical experiments from MF and image classification validate our findings.
☆ Lightweight Multimodal Artificial Intelligence Framework for Maritime Multi-Scene Recognition
Maritime Multi-Scene Recognition is crucial for enhancing the capabilities of intelligent marine robotics, particularly in applications such as marine conservation, environmental monitoring, and disaster response. However, this task presents significant challenges due to environmental interference, where marine conditions degrade image quality, and the complexity of maritime scenes, which requires deeper reasoning for accurate recognition. Pure vision models alone are insufficient to address these issues. To overcome these limitations, we propose a novel multimodal Artificial Intelligence (AI) framework that integrates image data, textual descriptions and classification vectors generated by a Multimodal Large Language Model (MLLM), to provide richer semantic understanding and improve recognition accuracy. Our framework employs an efficient multimodal fusion mechanism to further enhance model robustness and adaptability in complex maritime environments. Experimental results show that our model achieves 98$\%$ accuracy, surpassing previous SOTA models by 3.5$\%$. To optimize deployment on resource-constrained platforms, we adopt activation-aware weight quantization (AWQ) as a lightweight technique, reducing the model size to 68.75MB with only a 0.5$\%$ accuracy drop while significantly lowering computational overhead. This work provides a high-performance solution for real-time maritime scene recognition, enabling Autonomous Surface Vehicles (ASVs) to support environmental monitoring and disaster response in resource-limited settings.
comment: 19 pages, 4 figures, submitted to Engineering Applications of Artificial Intelligence
☆ A Multimodal Benchmark Dataset and Model for Crop Disease Diagnosis ECCV 2024
While conversational generative AI has shown considerable potential in enhancing decision-making for agricultural professionals, its exploration has predominantly been anchored in text-based interactions. The evolution of multimodal conversational AI, leveraging vast amounts of image-text data from diverse sources, marks a significant stride forward. However, the application of such advanced vision-language models in the agricultural domain, particularly for crop disease diagnosis, remains underexplored. In this work, we present the crop disease domain multimodal (CDDM) dataset, a pioneering resource designed to advance the field of agricultural research through the application of multimodal learning techniques. The dataset comprises 137,000 images of various crop diseases, accompanied by 1 million question-answer pairs that span a broad spectrum of agricultural knowledge, from disease identification to management practices. By integrating visual and textual data, CDDM facilitates the development of sophisticated question-answering systems capable of providing precise, useful advice to farmers and agricultural professionals. We demonstrate the utility of the dataset by finetuning state-of-the-art multimodal models, showcasing significant improvements in crop disease diagnosis. Specifically, we employed a novel finetuning strategy that utilizes low-rank adaptation (LoRA) to finetune the visual encoder, adapter and language model simultaneously. Our contributions include not only the dataset but also a finetuning strategy and a benchmark to stimulate further research in agricultural technology, aiming to bridge the gap between advanced AI techniques and practical agricultural applications. The dataset is available at https: //github.com/UnicomAI/UnicomBenchmark/tree/main/CDDMBench.
comment: Accepted by ECCV 2024 (14 pages, 8 figures)
☆ Multi-Behavior Recommender Systems: A Survey PAKDD 2025
Traditional recommender systems primarily rely on a single type of user-item interaction, such as item purchases or ratings, to predict user preferences. However, in real-world scenarios, users engage in a variety of behaviors, such as clicking on items or adding them to carts, offering richer insights into their interests. Multi-behavior recommender systems leverage these diverse interactions to enhance recommendation quality, and research on this topic has grown rapidly in recent years. This survey provides a timely review of multi-behavior recommender systems, focusing on three key steps: (1) Data Modeling: representing multi-behaviors at the input level, (2) Encoding: transforming these inputs into vector representations (i.e., embeddings), and (3) Training: optimizing machine-learning models. We systematically categorize existing multi-behavior recommender systems based on the commonalities and differences in their approaches across the above steps. Additionally, we discuss promising future directions for advancing multi-behavior recommender systems.
comment: Accepted in the PAKDD 2025 Survey Track
☆ Capture Global Feature Statistics for One-Shot Federated Learning AAAI 2025
Traditional Federated Learning (FL) necessitates numerous rounds of communication between the server and clients, posing significant challenges including high communication costs, connection drop risks and susceptibility to privacy attacks. One-shot FL has become a compelling learning paradigm to overcome above drawbacks by enabling the training of a global server model via a single communication round. However, existing one-shot FL methods suffer from expensive computation cost on the server or clients and cannot deal with non-IID (Independent and Identically Distributed) data stably and effectively. To address these challenges, this paper proposes FedCGS, a novel Federated learning algorithm that Capture Global feature Statistics leveraging pre-trained models. With global feature statistics, we achieve training-free and heterogeneity-resistant one-shot FL. Furthermore, we extend its application to personalization scenario, where clients only need execute one extra communication round with server to download global statistics. Extensive experimental results demonstrate the effectiveness of our methods across diverse data heterogeneity settings. Code is available at https://github.com/Yuqin-G/FedCGS.
comment: AAAI 2025
☆ ReAgent: Reversible Multi-Agent Reasoning for Knowledge-Enhanced Multi-Hop QA
Recent advances in large language models (LLMs) have significantly improved multi-hop question answering (QA) through direct Chain-of-Thought (CoT) reasoning. However, the irreversible nature of CoT leads to error accumulation, making it challenging to correct mistakes in multi-hop reasoning. This paper introduces ReAgent: a Reversible multi-Agent collaborative framework augmented with explicit backtracking mechanisms, enabling reversible multi-hop reasoning. By incorporating text-based retrieval, information aggregation and validation, our system can detect and correct errors mid-reasoning, leading to more robust and interpretable QA outcomes. The framework and experiments serve as a foundation for future work on error-tolerant QA systems. Empirical evaluations across three benchmarks indicate ReAgent's efficacy, yielding average about 6\% improvements against baseline models.
comment: 25pages, 3 figures
☆ Large Language Model Guided Progressive Feature Alignment for Multimodal UAV Object Detection
Existing multimodal UAV object detection methods often overlook the impact of semantic gaps between modalities, which makes it difficult to achieve accurate semantic and spatial alignments, limiting detection performance. To address this problem, we propose a Large Language Model (LLM) guided Progressive feature Alignment Network called LPANet, which leverages the semantic features extracted from a large language model to guide the progressive semantic and spatial alignment between modalities for multimodal UAV object detection. To employ the powerful semantic representation of LLM, we generate the fine-grained text descriptions of each object category by ChatGPT and then extract the semantic features using the large language model MPNet. Based on the semantic features, we guide the semantic and spatial alignments in a progressive manner as follows. First, we design the Semantic Alignment Module (SAM) to pull the semantic features and multimodal visual features of each object closer, alleviating the semantic differences of objects between modalities. Second, we design the Explicit Spatial alignment Module (ESM) by integrating the semantic relations into the estimation of feature-level offsets, alleviating the coarse spatial misalignment between modalities. Finally, we design the Implicit Spatial alignment Module (ISM), which leverages the cross-modal correlations to aggregate key features from neighboring regions to achieve implicit spatial alignment. Comprehensive experiments on two public multimodal UAV object detection datasets demonstrate that our approach outperforms state-of-the-art multimodal UAV object detectors.
☆ Effect of Selection Format on LLM Performance
This paper investigates a critical aspect of large language model (LLM) performance: the optimal formatting of classification task options in prompts. Through an extensive experimental study, we compared two selection formats -- bullet points and plain English -- to determine their impact on model performance. Our findings suggest that presenting options via bullet points generally yields better results, although there are some exceptions. Furthermore, our research highlights the need for continued exploration of option formatting to drive further improvements in model performance.
☆ From Reusing to Forecasting: Accelerating Diffusion Models with TaylorSeers
Diffusion Transformers (DiT) have revolutionized high-fidelity image and video synthesis, yet their computational demands remain prohibitive for real-time applications. To solve this problem, feature caching has been proposed to accelerate diffusion models by caching the features in the previous timesteps and then reusing them in the following timesteps. However, at timesteps with significant intervals, the feature similarity in diffusion models decreases substantially, leading to a pronounced increase in errors introduced by feature caching, significantly harming the generation quality. To solve this problem, we propose TaylorSeer, which firstly shows that features of diffusion models at future timesteps can be predicted based on their values at previous timesteps. Based on the fact that features change slowly and continuously across timesteps, TaylorSeer employs a differential method to approximate the higher-order derivatives of features and predict features in future timesteps with Taylor series expansion. Extensive experiments demonstrate its significant effectiveness in both image and video synthesis, especially in high acceleration ratios. For instance, it achieves an almost lossless acceleration of 4.99$\times$ on FLUX and 5.00$\times$ on HunyuanVideo without additional training. On DiT, it achieves $3.41$ lower FID compared with previous SOTA at $4.53$$\times$ acceleration. %Our code is provided in the supplementary materials and will be made publicly available on GitHub. Our codes have been released in Github:https://github.com/Shenyi-Z/TaylorSeer
comment: 13 pages, 14 figures
☆ Improving cognitive diagnostics in pathology: a deep learning approach for augmenting perceptional understanding of histopathology images
In Recent Years, Digital Technologies Have Made Significant Strides In Augmenting-Human-Health, Cognition, And Perception, Particularly Within The Field Of Computational-Pathology. This Paper Presents A Novel Approach To Enhancing The Analysis Of Histopathology Images By Leveraging A Mult-modal-Model That Combines Vision Transformers (Vit) With Gpt-2 For Image Captioning. The Model Is Fine-Tuned On The Specialized Arch-Dataset, Which Includes Dense Image Captions Derived From Clinical And Academic Resources, To Capture The Complexities Of Pathology Images Such As Tissue Morphologies, Staining Variations, And Pathological Conditions. By Generating Accurate, Contextually Captions, The Model Augments The Cognitive Capabilities Of Healthcare Professionals, Enabling More Efficient Disease Classification, Segmentation, And Detection. The Model Enhances The Perception Of Subtle Pathological Features In Images That Might Otherwise Go Unnoticed, Thereby Improving Diagnostic Accuracy. Our Approach Demonstrates The Potential For Digital Technologies To Augment Human Cognitive Abilities In Medical Image Analysis, Providing Steps Toward More Personalized And Accurate Healthcare Outcomes.
☆ Policy Regularization on Globally Accessible States in Cross-Dynamics Reinforcement Learning
To learn from data collected in diverse dynamics, Imitation from Observation (IfO) methods leverage expert state trajectories based on the premise that recovering expert state distributions in other dynamics facilitates policy learning in the current one. However, Imitation Learning inherently imposes a performance upper bound of learned policies. Additionally, as the environment dynamics change, certain expert states may become inaccessible, rendering their distributions less valuable for imitation. To address this, we propose a novel framework that integrates reward maximization with IfO, employing F-distance regularized policy optimization. This framework enforces constraints on globally accessible states--those with nonzero visitation frequency across all considered dynamics--mitigating the challenge posed by inaccessible states. By instantiating F-distance in different ways, we derive two theoretical analysis and develop a practical algorithm called Accessible State Oriented Policy Regularization (ASOR). ASOR serves as a general add-on module that can be incorporated into various RL approaches, including offline RL and off-policy RL. Extensive experiments across multiple benchmarks demonstrate ASOR's effectiveness in enhancing state-of-the-art cross-domain policy transfer algorithms, significantly improving their performance.
comment: Preprint. Under Review
☆ Text-to-Image Diffusion Models Cannot Count, and Prompt Refinement Cannot Help
Generative modeling is widely regarded as one of the most essential problems in today's AI community, with text-to-image generation having gained unprecedented real-world impacts. Among various approaches, diffusion models have achieved remarkable success and have become the de facto solution for text-to-image generation. However, despite their impressive performance, these models exhibit fundamental limitations in adhering to numerical constraints in user instructions, frequently generating images with an incorrect number of objects. While several prior works have mentioned this issue, a comprehensive and rigorous evaluation of this limitation remains lacking. To address this gap, we introduce T2ICountBench, a novel benchmark designed to rigorously evaluate the counting ability of state-of-the-art text-to-image diffusion models. Our benchmark encompasses a diverse set of generative models, including both open-source and private systems. It explicitly isolates counting performance from other capabilities, provides structured difficulty levels, and incorporates human evaluations to ensure high reliability. Extensive evaluations with T2ICountBench reveal that all state-of-the-art diffusion models fail to generate the correct number of objects, with accuracy dropping significantly as the number of objects increases. Additionally, an exploratory study on prompt refinement demonstrates that such simple interventions generally do not improve counting accuracy. Our findings highlight the inherent challenges in numerical understanding within diffusion models and point to promising directions for future improvements.
☆ Lost-in-the-Middle in Long-Text Generation: Synthetic Dataset, Evaluation Framework, and Mitigation
Existing long-text generation methods primarily concentrate on producing lengthy texts from short inputs, neglecting the long-input and long-output tasks. Such tasks have numerous practical applications while lacking available benchmarks. Moreover, as the input grows in length, existing methods inevitably encounter the "lost-in-the-middle" phenomenon. In this paper, we first introduce a Long Input and Output Benchmark (LongInOutBench), including a synthetic dataset and a comprehensive evaluation framework, addressing the challenge of the missing benchmark. We then develop the Retrieval-Augmented Long-Text Writer (RAL-Writer), which retrieves and restates important yet overlooked content, mitigating the "lost-in-the-middle" issue by constructing explicit prompts. We finally employ the proposed LongInOutBench to evaluate our RAL-Writer against comparable baselines, and the results demonstrate the effectiveness of our approach. Our code has been released at https://github.com/OnlyAR/RAL-Writer.
☆ Enhancing Time Series Forecasting via Logic-Inspired Regularization
Time series forecasting (TSF) plays a crucial role in many applications. Transformer-based methods are one of the mainstream techniques for TSF. Existing methods treat all token dependencies equally. However, we find that the effectiveness of token dependencies varies across different forecasting scenarios, and existing methods ignore these differences, which affects their performance. This raises two issues: (1) What are effective token dependencies? (2) How can we learn effective dependencies? From a logical perspective, we align Transformer-based TSF methods with the logical framework and define effective token dependencies as those that ensure the tokens as atomic formulas (Issue 1). We then align the learning process of Transformer methods with the process of obtaining atomic formulas in logic, which inspires us to design a method for learning these effective dependencies (Issue 2). Specifically, we propose Attention Logic Regularization (Attn-L-Reg), a plug-and-play method that guides the model to use fewer but more effective dependencies by making the attention map sparse, thereby ensuring the tokens as atomic formulas and improving prediction performance. Extensive experiments and theoretical analysis confirm the effectiveness of Attn-L-Reg.
Graphormer-Guided Task Planning: Beyond Static Rules with LLM Safety Perception
Recent advancements in large language models (LLMs) have expanded their role in robotic task planning. However, while LLMs have been explored for generating feasible task sequences, their ability to ensure safe task execution remains underdeveloped. Existing methods struggle with structured risk perception, making them inadequate for safety-critical applications where low-latency hazard adaptation is required. To address this limitation, we propose a Graphormer-enhanced risk-aware task planning framework that combines LLM-based decision-making with structured safety modeling. Our approach constructs a dynamic spatio-semantic safety graph, capturing spatial and contextual risk factors to enable online hazard detection and adaptive task refinement. Unlike existing methods that rely on predefined safety constraints, our framework introduces a context-aware risk perception module that continuously refines safety predictions based on real-time task execution. This enables a more flexible and scalable approach to robotic planning, allowing for adaptive safety compliance beyond static rules. To validate our framework, we conduct experiments in the AI2-THOR environment. The experiments results validates improvements in risk detection accuracy, rising safety notice, and task adaptability of our framework in continuous environments compared to static rule-based and LLM-only baselines. Our project is available at https://github.com/hwj20/GGTP
☆ Enhanced Multi-Tuple Extraction for Alloys: Integrating Pointer Networks and Augmented Attention
Extracting high-quality structured information from scientific literature is crucial for advancing material design through data-driven methods. Despite the considerable research in natural language processing for dataset extraction, effective approaches for multi-tuple extraction in scientific literature remain scarce due to the complex interrelations of tuples and contextual ambiguities. In the study, we illustrate the multi-tuple extraction of mechanical properties from multi-principal-element alloys and presents a novel framework that combines an entity extraction model based on MatSciBERT with pointer networks and an allocation model utilizing inter- and intra-entity attention. Our rigorous experiments on tuple extraction demonstrate impressive F1 scores of 0.963, 0.947, 0.848, and 0.753 across datasets with 1, 2, 3, and 4 tuples, confirming the effectiveness of the model. Furthermore, an F1 score of 0.854 was achieved on a randomly curated dataset. These results highlight the model's capacity to deliver precise and structured information, offering a robust alternative to large language models and equipping researchers with essential data for fostering data-driven innovations.
comment: 17 pages, 5 figures
☆ AttFC: Attention Fully-Connected Layer for Large-Scale Face Recognition with One GPU
Nowadays, with the advancement of deep neural networks (DNNs) and the availability of large-scale datasets, the face recognition (FR) model has achieved exceptional performance. However, since the parameter magnitude of the fully connected (FC) layer directly depends on the number of identities in the dataset. If training the FR model on large-scale datasets, the size of the model parameter will be excessively huge, leading to substantial demand for computational resources, such as time and memory. This paper proposes the attention fully connected (AttFC) layer, which could significantly reduce computational resources. AttFC employs an attention loader to generate the generative class center (GCC), and dynamically store the class center with Dynamic Class Container (DCC). DCC only stores a small subset of all class centers in FC, thus its parameter count is substantially less than the FC layer. Also, training face recognition models on large-scale datasets with one GPU often encounter out-of-memory (OOM) issues. AttFC overcomes this and achieves comparable performance to state-of-the-art methods.
☆ Towards a Multimodal MRI-Based Foundation Model for Multi-Level Feature Exploration in Segmentation, Molecular Subtyping, and Grading of Glioma
Accurate, noninvasive glioma characterization is crucial for effective clinical management. Traditional methods, dependent on invasive tissue sampling, often fail to capture the spatial heterogeneity of the tumor. While deep learning has improved segmentation and molecular profiling, few approaches simultaneously integrate tumor morphology and molecular features. Foundation deep learning models, which learn robust, task-agnostic representations from large-scale datasets, hold great promise but remain underutilized in glioma imaging biomarkers. We propose the Multi-Task SWIN-UNETR (MTS-UNET) model, a novel foundation-based framework built on the BrainSegFounder model, pretrained on large-scale neuroimaging data. MTS-UNET simultaneously performs glioma segmentation, histological grading, and molecular subtyping (IDH mutation and 1p/19q co-deletion). It incorporates two key modules: Tumor-Aware Feature Encoding (TAFE) for multi-scale, tumor-focused feature extraction and Cross-Modality Differential (CMD) for highlighting subtle T2-FLAIR mismatch signals associated with IDH mutation. The model was trained and validated on a diverse, multi-center cohort of 2,249 glioma patients from seven public datasets. MTS-UNET achieved a mean Dice score of 84% for segmentation, along with AUCs of 90.58% for IDH mutation, 69.22% for 1p/19q co-deletion prediction, and 87.54% for grading, significantly outperforming baseline models (p<=0.05). Ablation studies validated the essential contributions of the TAFE and CMD modules and demonstrated the robustness of the framework. The foundation-based MTS-UNET model effectively integrates tumor segmentation with multi-level classification, exhibiting strong generalizability across diverse MRI datasets. This framework shows significant potential for advancing noninvasive, personalized glioma management by improving predictive accuracy and interpretability.
☆ Towards Fine-Grained Video Question Answering
In the rapidly evolving domain of video understanding, Video Question Answering (VideoQA) remains a focal point. However, existing datasets exhibit gaps in temporal and spatial granularity, which consequently limits the capabilities of existing VideoQA methods. This paper introduces the Multi-Object Multi-Actor Question Answering (MOMA-QA) dataset, which is designed to address these shortcomings by emphasizing temporal localization, spatial relationship reasoning, and entity-centric queries. With ground truth scene graphs and temporal interval annotations, MOMA-QA is ideal for developing models for fine-grained video understanding. Furthermore, we present a novel video-language model, SGVLM, which incorporates a scene graph predictor, an efficient frame retriever, and a pre-trained large language model for temporal localization and fine-grained relationship understanding. Evaluations on MOMA-QA and other public datasets demonstrate the superior performance of our model, setting new benchmarks for VideoQA.
☆ Semi-Supervised Medical Image Segmentation via Knowledge Mining from Large Models
Large-scale vision models like SAM have extensive visual knowledge, yet their general nature and computational demands limit their use in specialized tasks like medical image segmentation. In contrast, task-specific models such as U-Net++ often underperform due to sparse labeled data. This study introduces a strategic knowledge mining method that leverages SAM's broad understanding to boost the performance of small, locally hosted deep learning models. In our approach, we trained a U-Net++ model on a limited labeled dataset and extend its capabilities by converting SAM's output infered on unlabeled images into prompts. This process not only harnesses SAM's generalized visual knowledge but also iteratively improves SAM's prediction to cater specialized medical segmentation tasks via U-Net++. The mined knowledge, serving as "pseudo labels", enriches the training dataset, enabling the fine-tuning of the local network. Applied to the Kvasir SEG and COVID-QU-Ex datasets which consist of gastrointestinal polyp and lung X-ray images respectively, our proposed method consistently enhanced the segmentation performance on Dice by 3% and 1% respectively over the baseline U-Net++ model, when the same amount of labelled data were used during training (75% and 50% of labelled data). Remarkably, our proposed method surpassed the baseline U-Net++ model even when the latter was trained exclusively on labeled data (100% of labelled data). These results underscore the potential of knowledge mining to overcome data limitations in specialized models by leveraging the broad, albeit general, knowledge of large-scale models like SAM, all while maintaining operational efficiency essential for clinical applications.
comment: 18 pages, 2 figures
☆ Unlocking Generalization for Robotics via Modularity and Scale
How can we build generalist robot systems? Scale may not be enough due to the significant multimodality of robotics tasks, lack of easily accessible data and the challenges of deploying on physical hardware. Meanwhile, most deployed robotic systems today are inherently modular and can leverage the independent generalization capabilities of each module to perform well. Therefore, this thesis seeks to tackle the task of building generalist robot agents by integrating these components into one: combining modularity with large-scale learning for general purpose robot control. The first question we consider is: how can we build modularity and hierarchy into learning systems? Our key insight is that rather than having the agent learn hierarchy and low-level control end-to-end, we can enforce modularity via planning to enable more efficient and capable robot learners. Next, we come to the role of scale in building generalist robot systems. To scale, neural networks require vast amounts of diverse data, expressive architectures to fit the data and a source of supervision to generate the data. We leverage a powerful supervision source: classical planning, which can generalize, but is expensive to run and requires access to privileged information to perform well in practice. We use these planners to supervise large-scale policy learning in simulation to produce generalist agents. Finally, we consider how to unify modularity with large-scale policy learning to build real-world robot systems capable of performing zero-shot manipulation. We do so by tightly integrating key ingredients of modular high and mid-level planning, learned local control, procedural scene generation and large-scale policy learning for sim2real transfer. We demonstrate that this recipe can produce a single, generalist agent that can solve challenging long-horizon manipulation tasks in the real world.
comment: CMU Robotics PhD Thesis, 185 pages
☆ Can Proof Assistants Verify Multi-Agent Systems?
This paper presents the Soda language for verifying multi-agent systems. Soda is a high-level functional and object-oriented language that supports the compilation of its code not only to Scala, a strongly statically typed high-level programming language, but also to Lean, a proof assistant and programming language. Given these capabilities, Soda can implement multi-agent systems, or parts thereof, that can then be integrated into a mainstream software ecosystem on the one hand and formally verified with state-of-the-art tools on the other hand. We provide a brief and informal introduction to Soda and the aforementioned interoperability capabilities, as well as a simple demonstration of how interaction protocols can be designed and verified with Soda. In the course of the demonstration, we highlight challenges with respect to real-world applicability.
☆ Mitigating Preference Hacking in Policy Optimization with Pessimism
This work tackles the problem of overoptimization in reinforcement learning from human feedback (RLHF), a prevalent technique for aligning models with human preferences. RLHF relies on reward or preference models trained on \emph{fixed preference datasets}, and these models are unreliable when evaluated outside the support of this preference data, leading to the common reward or preference hacking phenomenon. We propose novel, pessimistic objectives for RLHF which are provably robust to overoptimization through the use of pessimism in the face of uncertainty, and design practical algorithms, P3O and PRPO, to optimize these objectives. Our approach is derived for the general preference optimization setting, but can be used with reward models as well. We evaluate P3O and PRPO on the tasks of fine-tuning language models for document summarization and creating helpful assistants, demonstrating remarkable resilience to overoptimization.
☆ Crowdsource, Crawl, or Generate? Creating SEA-VL, a Multicultural Vision-Language Dataset for Southeast Asia
Southeast Asia (SEA) is a region of extraordinary linguistic and cultural diversity, yet it remains significantly underrepresented in vision-language (VL) research. This often results in artificial intelligence (AI) models that fail to capture SEA cultural nuances. To fill this gap, we present SEA-VL, an open-source initiative dedicated to developing high-quality, culturally relevant data for SEA languages. By involving contributors from SEA countries, SEA-VL aims to ensure better cultural relevance and diversity, fostering greater inclusivity of underrepresented languages in VL research. Beyond crowdsourcing, our initiative goes one step further in the exploration of the automatic collection of culturally relevant images through crawling and image generation. First, we find that image crawling achieves approximately ~85% cultural relevance while being more cost- and time-efficient than crowdsourcing. Second, despite the substantial progress in generative vision models, synthetic images remain unreliable in accurately reflecting SEA cultures. The generated images often fail to reflect the nuanced traditions and cultural contexts of the region. Collectively, we gather 1.28M SEA culturally-relevant images, more than 50 times larger than other existing datasets. Through SEA-VL, we aim to bridge the representation gap in SEA, fostering the development of more inclusive AI systems that authentically represent diverse cultures across SEA.
comment: SEA-VL Dataset: https://huggingface.co/collections/SEACrowd/sea-vl-multicultural-vl-dataset-for-southeast-asia-67cf223d0c341d4ba2b236e7
☆ BEARCUBS: A benchmark for computer-using web agents
Modern web agents possess computer use abilities that allow them to interact with webpages by sending commands to a virtual keyboard and mouse. While such agents have considerable potential to assist human users with complex tasks, evaluating their capabilities in real-world settings poses a major challenge. To this end, we introduce BEARCUBS, a "small but mighty" benchmark of 111 information-seeking questions designed to evaluate a web agent's ability to search, browse, and identify factual information from the web. Unlike prior web agent benchmarks, solving BEARCUBS requires (1) accessing live web content rather than synthetic or simulated pages, which captures the unpredictability of real-world web interactions; and (2) performing a broad range of multimodal interactions (e.g., video understanding, 3D navigation) that cannot be bypassed via text-based workarounds. Each question in BEARCUBS has a corresponding short, unambiguous answer and a human-validated browsing trajectory, allowing for transparent evaluation of agent performance and strategies. A human study confirms that BEARCUBS questions are solvable but non-trivial (84.7% human accuracy), revealing search inefficiencies and domain knowledge gaps as common failure points. By contrast, state-of-the-art computer-using agents underperform, with the best-scoring system (OpenAI's Operator) reaching only 24.3% accuracy. These results highlight critical areas for improvement, including reliable source selection and more powerful multimodal capabilities. To facilitate future research, BEARCUBS will be updated periodically to replace invalid or contaminated questions, keeping the benchmark fresh for future generations of web agents.
comment: 16 pages
☆ Demystifying the Accuracy-Interpretability Trade-Off: A Case Study of Inferring Ratings from Reviews AAAI-2025
Interpretable machine learning models offer understandable reasoning behind their decision-making process, though they may not always match the performance of their black-box counterparts. This trade-off between interpretability and model performance has sparked discussions around the deployment of AI, particularly in critical applications where knowing the rationale of decision-making is essential for trust and accountability. In this study, we conduct a comparative analysis of several black-box and interpretable models, focusing on a specific NLP use case that has received limited attention: inferring ratings from reviews. Through this use case, we explore the intricate relationship between the performance and interpretability of different models. We introduce a quantitative score called Composite Interpretability (CI) to help visualize the trade-off between interpretability and performance, particularly in the case of composite models. Our results indicate that, in general, the learning performance improves as interpretability decreases, but this relationship is not strictly monotonic, and there are instances where interpretable models are more advantageous.
comment: Accepted at DAI Workshop, AAAI-2025
☆ Visual and Text Prompt Segmentation: A Novel Multi-Model Framework for Remote Sensing
Pixel-level segmentation is essential in remote sensing, where foundational vision models like CLIP and Segment Anything Model(SAM) have demonstrated significant capabilities in zero-shot segmentation tasks. Despite their advances, challenges specific to remote sensing remain substantial. Firstly, The SAM without clear prompt constraints, often generates redundant masks, and making post-processing more complex. Secondly, the CLIP model, mainly designed for global feature alignment in foundational models, often overlooks local objects crucial to remote sensing. This oversight leads to inaccurate recognition or misplaced focus in multi-target remote sensing imagery. Thirdly, both models have not been pre-trained on multi-scale aerial views, increasing the likelihood of detection failures. To tackle these challenges, we introduce the innovative VTPSeg pipeline, utilizing the strengths of Grounding DINO, CLIP, and SAM for enhanced open-vocabulary image segmentation. The Grounding DINO+(GD+) module generates initial candidate bounding boxes, while the CLIP Filter++(CLIP++) module uses a combination of visual and textual prompts to refine and filter out irrelevant object bounding boxes, ensuring that only pertinent objects are considered. Subsequently, these refined bounding boxes serve as specific prompts for the FastSAM model, which executes precise segmentation. Our VTPSeg is validated by experimental and ablation study results on five popular remote sensing image segmentation datasets.
comment: Under Review - IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
☆ FunGraph: Functionality Aware 3D Scene Graphs for Language-Prompted Scene Interaction
The concept of 3D scene graphs is increasingly recognized as a powerful semantic and hierarchical representation of the environment. Current approaches often address this at a coarse, object-level resolution. In contrast, our goal is to develop a representation that enables robots to directly interact with their environment by identifying both the location of functional interactive elements and how these can be used. To achieve this, we focus on detecting and storing objects at a finer resolution, focusing on affordance-relevant parts. The primary challenge lies in the scarcity of data that extends beyond instance-level detection and the inherent difficulty of capturing detailed object features using robotic sensors. We leverage currently available 3D resources to generate 2D data and train a detector, which is then used to augment the standard 3D scene graph generation pipeline. Through our experiments, we demonstrate that our approach achieves functional element segmentation comparable to state-of-the-art 3D models and that our augmentation enables task-driven affordance grounding with higher accuracy than the current solutions.
☆ Gemini Embedding: Generalizable Embeddings from Gemini
In this report, we introduce Gemini Embedding, a state-of-the-art embedding model leveraging the power of Gemini, Google's most capable large language model. Capitalizing on Gemini's inherent multilingual and code understanding capabilities, Gemini Embedding produces highly generalizable embeddings for text spanning numerous languages and textual modalities. The representations generated by Gemini Embedding can be precomputed and applied to a variety of downstream tasks including classification, similarity, clustering, ranking, and retrieval. Evaluated on the Massive Multilingual Text Embedding Benchmark (MMTEB), which includes over one hundred tasks across 250+ languages, Gemini Embedding substantially outperforms prior state-of-the-art models, demonstrating considerable improvements in embedding quality. Achieving state-of-the-art performance across MMTEB's multilingual, English, and code benchmarks, our unified model demonstrates strong capabilities across a broad selection of tasks and surpasses specialized domain-specific models.
comment: 19 pages
☆ Safety Guardrails for LLM-Enabled Robots
Although the integration of large language models (LLMs) into robotics has unlocked transformative capabilities, it has also introduced significant safety concerns, ranging from average-case LLM errors (e.g., hallucinations) to adversarial jailbreaking attacks, which can produce harmful robot behavior in real-world settings. Traditional robot safety approaches do not address the novel vulnerabilities of LLMs, and current LLM safety guardrails overlook the physical risks posed by robots operating in dynamic real-world environments. In this paper, we propose RoboGuard, a two-stage guardrail architecture to ensure the safety of LLM-enabled robots. RoboGuard first contextualizes pre-defined safety rules by grounding them in the robot's environment using a root-of-trust LLM, which employs chain-of-thought (CoT) reasoning to generate rigorous safety specifications, such as temporal logic constraints. RoboGuard then resolves potential conflicts between these contextual safety specifications and a possibly unsafe plan using temporal logic control synthesis, which ensures safety compliance while minimally violating user preferences. Through extensive simulation and real-world experiments that consider worst-case jailbreaking attacks, we demonstrate that RoboGuard reduces the execution of unsafe plans from 92% to below 2.5% without compromising performance on safe plans. We also demonstrate that RoboGuard is resource-efficient, robust against adaptive attacks, and significantly enhanced by enabling its root-of-trust LLM to perform CoT reasoning. These results underscore the potential of RoboGuard to mitigate the safety risks and enhance the reliability of LLM-enabled robots.
☆ LLMIdxAdvis: Resource-Efficient Index Advisor Utilizing Large Language Model
Index recommendation is essential for improving query performance in database management systems (DBMSs) through creating an optimal set of indexes under specific constraints. Traditional methods, such as heuristic and learning-based approaches, are effective but face challenges like lengthy recommendation time, resource-intensive training, and poor generalization across different workloads and database schemas. To address these issues, we propose LLMIdxAdvis, a resource-efficient index advisor that uses large language models (LLMs) without extensive fine-tuning. LLMIdxAdvis frames index recommendation as a sequence-to-sequence task, taking target workload, storage constraint, and corresponding database environment as input, and directly outputting recommended indexes. It constructs a high-quality demonstration pool offline, using GPT-4-Turbo to synthesize diverse SQL queries and applying integrated heuristic methods to collect both default and refined labels. During recommendation, these demonstrations are ranked to inject database expertise via in-context learning. Additionally, LLMIdxAdvis extracts workload features involving specific column statistical information to strengthen LLM's understanding, and introduces a novel inference scaling strategy combining vertical scaling (via ''Index-Guided Major Voting'' and Best-of-N) and horizontal scaling (through iterative ''self-optimization'' with database feedback) to enhance reliability. Experiments on 3 OLAP and 2 real-world benchmarks reveal that LLMIdxAdvis delivers competitive index recommendation with reduced runtime, and generalizes effectively across different workloads and database schemas.
☆ Topology-Preserving Loss for Accurate and Anatomically Consistent Cardiac Mesh Reconstruction
Accurate cardiac mesh reconstruction from volumetric data is essential for personalized cardiac modeling and clinical analysis. However, existing deformation-based approaches are prone to topological inconsistencies, particularly membrane penetration, which undermines the anatomical plausibility of the reconstructed mesh. To address this issue, we introduce Topology-Preserving Mesh Loss (TPM Loss), a novel loss function that explicitly enforces topological constraints during mesh deformation. By identifying topology-violating points, TPM Loss ensures spatially consistent reconstructions. Extensive experiments on CT and MRI datasets show that TPM Loss reduces topology violations by up to 93.1% while maintaining high segmentation accuracy (DSC: 89.1%-92.9%) and improving mesh fidelity (Chamfer Distance reduction up to 0.26 mm). These results demonstrate that TPM Loss effectively prevents membrane penetration and significantly improves cardiac mesh quality, enabling more accurate and anatomically consistent cardiac reconstructions.
☆ MapQA: Open-domain Geospatial Question Answering on Map Data
Geospatial question answering (QA) is a fundamental task in navigation and point of interest (POI) searches. While existing geospatial QA datasets exist, they are limited in both scale and diversity, often relying solely on textual descriptions of geo-entities without considering their geometries. A major challenge in scaling geospatial QA datasets for reasoning lies in the complexity of geospatial relationships, which require integrating spatial structures, topological dependencies, and multi-hop reasoning capabilities that most text-based QA datasets lack. To address these limitations, we introduce MapQA, a novel dataset that not only provides question-answer pairs but also includes the geometries of geo-entities referenced in the questions. MapQA is constructed using SQL query templates to extract question-answer pairs from OpenStreetMap (OSM) for two study regions: Southern California and Illinois. It consists of 3,154 QA pairs spanning nine question types that require geospatial reasoning, such as neighborhood inference and geo-entity type identification. Compared to existing datasets, MapQA expands both the number and diversity of geospatial question types. We explore two approaches to tackle this challenge: (1) a retrieval-based language model that ranks candidate geo-entities by embedding similarity, and (2) a large language model (LLM) that generates SQL queries from natural language questions and geo-entity attributes, which are then executed against an OSM database. Our findings indicate that retrieval-based methods effectively capture concepts like closeness and direction but struggle with questions that require explicit computations (e.g., distance calculations). LLMs (e.g., GPT and Gemini) excel at generating SQL queries for one-hop reasoning but face challenges with multi-hop reasoning, highlighting a key bottleneck in advancing geospatial QA systems.
☆ Right Reward Right Time for Federated Learning
Critical learning periods (CLPs) in federated learning (FL) refer to early stages during which low-quality contributions (e.g., sparse training data availability) can permanently impair the learning performance of the global model owned by the model owner (i.e., the cloud server). However, strategies to motivate clients with high-quality contributions to join the FL training process and share trained model updates during CLPs remain underexplored. Additionally, existing incentive mechanisms in FL treat all training periods equally, which consequently fails to motivate clients to participate early. Compounding this challenge is the cloud's limited knowledge of client training capabilities due to privacy regulations, leading to information asymmetry. Therefore, in this article, we propose a time-aware incentive mechanism, called Right Reward Right Time (R3T), to encourage client involvement, especially during CLPs, to maximize the utility of the cloud in FL. Specifically, the cloud utility function captures the trade-off between the achieved model performance and payments allocated for clients' contributions, while accounting for clients' time and system capabilities, efforts, joining time, and rewards. Then, we analytically derive the optimal contract for the cloud and devise a CLP-aware mechanism to incentivize early participation and efforts while maximizing cloud utility, even under information asymmetry. By providing the right reward at the right time, our approach can attract the highest-quality contributions during CLPs. Simulation and proof-of-concept studies show that R3T increases cloud utility and is more economically effective than benchmarks. Notably, our proof-of-concept results show up to a 47.6% reduction in the total number of clients and up to a 300% improvement in convergence time while reaching competitive test accuracies compared with incentive mechanism benchmarks.
comment: IEEE Journal Submission
☆ Video Action Differencing ICLR 2025
How do two individuals differ when performing the same action? In this work, we introduce Video Action Differencing (VidDiff), the novel task of identifying subtle differences between videos of the same action, which has many applications, such as coaching and skill learning. To enable development on this new task, we first create VidDiffBench, a benchmark dataset containing 549 video pairs, with human annotations of 4,469 fine-grained action differences and 2,075 localization timestamps indicating where these differences occur. Our experiments demonstrate that VidDiffBench poses a significant challenge for state-of-the-art large multimodal models (LMMs), such as GPT-4o and Qwen2-VL. By analyzing failure cases of LMMs on VidDiffBench, we highlight two key challenges for this task: localizing relevant sub-actions over two videos and fine-grained frame comparison. To overcome these, we propose the VidDiff method, an agentic workflow that breaks the task into three stages: action difference proposal, keyframe localization, and frame differencing, each stage utilizing specialized foundation models. To encourage future research in this new task, we release the benchmark at https://huggingface.co/datasets/jmhb/VidDiffBench and code at http://jmhb0.github.io/viddiff.
comment: ICLR 2025 (International Conference on Learning Representations) Project page: http://jmhb0.github.io/viddiff Benchmark: https://huggingface.co/datasets/jmhb/VidDiffBench
☆ CIMAGE: Exploiting the Conditional Independence in Masked Graph Auto-encoders WSDM 2025
Recent Self-Supervised Learning (SSL) methods encapsulating relational information via masking in Graph Neural Networks (GNNs) have shown promising performance. However, most existing approaches rely on random masking strategies in either feature or graph space, which may fail to capture task-relevant information fully. We posit that this limitation stems from an inability to achieve minimum redundancy between masked and unmasked components while ensuring maximum relevance of both to potential downstream tasks. Conditional Independence (CI) inherently satisfies the minimum redundancy and maximum relevance criteria, but its application typically requires access to downstream labels. To address this challenge, we introduce CIMAGE, a novel approach that leverages Conditional Independence to guide an effective masking strategy within the latent space. CIMAGE utilizes CI-aware latent factor decomposition to generate two distinct contexts, leveraging high-confidence pseudo-labels derived from unsupervised graph clustering. In this framework, the pretext task involves reconstructing the masked second context solely from the information provided by the first context. Our theoretical analysis further supports the superiority of CIMAGE's novel CI-aware masking method by demonstrating that the learned embedding exhibits approximate linear separability, which enables accurate predictions for the downstream task. Comprehensive evaluations across diverse graph benchmarks illustrate the advantage of CIMAGE, with notably higher average rankings on node classification and link prediction tasks. Notably, our proposed model highlights the under-explored potential of CI in enhancing graph SSL methodologies and offers enriched insights for effective graph representation learning.
comment: Accepted to the WSDM 2025 Oral. This is an extended version of the original submission. Typos are also corrected
☆ Actual Causation and Nondeterministic Causal Models
In (Beckers, 2025) I introduced nondeterministic causal models as a generalization of Pearl's standard deterministic causal models. I here take advantage of the increased expressivity offered by these models to offer a novel definition of actual causation (that also applies to deterministic models). Instead of motivating the definition by way of (often subjective) intuitions about examples, I proceed by developing it based entirely on the unique function that it can fulfil in communicating and learning a causal model. First I generalize the more basic notion of counterfactual dependence, second I show how this notion has a vital role to play in the logic of causal discovery, third I introduce the notion of a structural simplification of a causal model, and lastly I bring both notions together in my definition of actual causation. Although novel, the resulting definition arrives at verdicts that are almost identical to those of my previous definition (Beckers, 2021, 2022).
comment: Accepted at CLeaR 2025
☆ Safe Explicable Policy Search
When users work with AI agents, they form conscious or subconscious expectations of them. Meeting user expectations is crucial for such agents to engage in successful interactions and teaming. However, users may form expectations of an agent that differ from the agent's planned behaviors. These differences lead to the consideration of two separate decision models in the planning process to generate explicable behaviors. However, little has been done to incorporate safety considerations, especially in a learning setting. We present Safe Explicable Policy Search (SEPS), which aims to provide a learning approach to explicable behavior generation while minimizing the safety risk, both during and after learning. We formulate SEPS as a constrained optimization problem where the agent aims to maximize an explicability score subject to constraints on safety and a suboptimality criterion based on the agent's model. SEPS innovatively combines the capabilities of Constrained Policy Optimization and Explicable Policy Search. We evaluate SEPS in safety-gym environments and with a physical robot experiment to show that it can learn explicable behaviors that adhere to the agent's safety requirements and are efficient. Results show that SEPS can generate safe and explicable behaviors while ensuring a desired level of performance w.r.t. the agent's objective, and has real-world relevance in human-AI teaming.
☆ HalluVerse25: Fine-grained Multilingual Benchmark Dataset for LLM Hallucinations
Large Language Models (LLMs) are increasingly used in various contexts, yet remain prone to generating non-factual content, commonly referred to as "hallucinations". The literature categorizes hallucinations into several types, including entity-level, relation-level, and sentence-level hallucinations. However, existing hallucination datasets often fail to capture fine-grained hallucinations in multilingual settings. In this work, we introduce HalluVerse25, a multilingual LLM hallucination dataset that categorizes fine-grained hallucinations in English, Arabic, and Turkish. Our dataset construction pipeline uses an LLM to inject hallucinations into factual biographical sentences, followed by a rigorous human annotation process to ensure data quality. We evaluate several LLMs on HalluVerse25, providing valuable insights into how proprietary models perform in detecting LLM-generated hallucinations across different contexts.
☆ RefactorBench: Evaluating Stateful Reasoning in Language Agents Through Code ICLR 2025
Recent advances in language model (LM) agents and function calling have enabled autonomous, feedback-driven systems to solve problems across various digital domains. To better understand the unique limitations of LM agents, we introduce RefactorBench, a benchmark consisting of 100 large handcrafted multi-file refactoring tasks in popular open-source repositories. Solving tasks within RefactorBench requires thorough exploration of dependencies across multiple files and strong adherence to relevant instructions. Every task is defined by 3 natural language instructions of varying specificity and is mutually exclusive, allowing for the creation of longer combined tasks on the same repository. Baselines on RefactorBench reveal that current LM agents struggle with simple compositional tasks, solving only 22% of tasks with base instructions, in contrast to a human developer with short time constraints solving 87%. Through trajectory analysis, we identify various unique failure modes of LM agents, and further explore the failure mode of tracking past actions. By adapting a baseline agent to condition on representations of state, we achieve a 43.9% improvement in solving RefactorBench tasks. We further extend our state-aware approach to encompass entire digital environments and outline potential directions for future research. RefactorBench aims to support the study of LM agents by providing a set of real-world, multi-hop tasks within the realm of code.
comment: ICLR 2025 Camera Ready
☆ Group Fairness in Multi-Task Reinforcement Learning
This paper addresses a critical societal consideration in the application of Reinforcement Learning (RL): ensuring equitable outcomes across different demographic groups in multi-task settings. While previous work has explored fairness in single-task RL, many real-world applications are multi-task in nature and require policies to maintain fairness across all tasks. We introduce a novel formulation of multi-task group fairness in RL and propose a constrained optimization algorithm that explicitly enforces fairness constraints across multiple tasks simultaneously. We have shown that our proposed algorithm does not violate fairness constraints with high probability and with sublinear regret in the finite-horizon episodic setting. Through experiments in RiverSwim and MuJoCo environments, we demonstrate that our approach better ensures group fairness across multiple tasks compared to previous methods that lack explicit multi-task fairness constraints in both the finite-horizon setting and the infinite-horizon setting. Our results show that the proposed algorithm achieves smaller fairness gaps while maintaining comparable returns across different demographic groups and tasks, suggesting its potential for addressing fairness concerns in real-world multi-task RL applications.
☆ AgriField3D: A Curated 3D Point Cloud and Procedural Model Dataset of Field-Grown Maize from a Diversity Panel
The application of artificial intelligence (AI) in three-dimensional (3D) agricultural research, particularly for maize, has been limited by the scarcity of large-scale, diverse datasets. While 2D image datasets are abundant, they fail to capture essential structural details such as leaf architecture, plant volume, and spatial arrangements that 3D data provide. To address this limitation, we present AgriField3D (https://baskargroup.github.io/AgriField3D/), a curated dataset of 3D point clouds of field-grown maize plants from a diverse genetic panel, designed to be AI-ready for advancing agricultural research. Our dataset comprises over 1,000 high-quality point clouds collected using a Terrestrial Laser Scanner, complemented by procedural models that provide structured, parametric representations of maize plants. These procedural models, generated using Non-Uniform Rational B-Splines (NURBS) and optimized via a two-step process combining Particle Swarm Optimization (PSO) and differentiable programming, enable precise, scalable reconstructions of leaf surfaces and plant architectures. To enhance usability, we performed graph-based segmentation to isolate individual leaves and stalks, ensuring consistent labeling across all samples. We also conducted rigorous manual quality control on all datasets, correcting errors in segmentation, ensuring accurate leaf ordering, and validating metadata annotations. The dataset further includes metadata detailing plant morphology and quality, alongside multi-resolution subsampled versions (100k, 50k, 10k points) optimized for various computational needs. By integrating point cloud data of field grown plants with high-fidelity procedural models and ensuring meticulous manual validation, AgriField3D provides a comprehensive foundation for AI-driven phenotyping, plant structural analysis, and 3D applications in agricultural research.
comment: Elvis Kimara and Mozhgan Hadadi contributed equally to this work
☆ A primer on optimal transport for causal inference with observational data
The theory of optimal transportation has developed into a powerful and elegant framework for comparing probability distributions, with wide-ranging applications in all areas of science. The fundamental idea of analyzing probabilities by comparing their underlying state space naturally aligns with the core idea of causal inference, where understanding and quantifying counterfactual states is paramount. Despite this intuitive connection, explicit research at the intersection of optimal transport and causal inference is only beginning to develop. Yet, many foundational models in causal inference have implicitly relied on optimal transport principles for decades, without recognizing the underlying connection. Therefore, the goal of this review is to offer an introduction to the surprisingly deep existing connections between optimal transport and the identification of causal effects with observational data -- where optimal transport is not just a set of potential tools, but actually builds the foundation of model assumptions. As a result, this review is intended to unify the language and notation between different areas of statistics, mathematics, and econometrics, by pointing out these existing connections, and to explore novel problems and directions for future work in both areas derived from this realization.
comment: 24 pages, 5 figures
☆ Training Domain Draft Models for Speculative Decoding: Best Practices and Insights SC
Speculative decoding is an effective method for accelerating inference of large language models (LLMs) by employing a small draft model to predict the output of a target model. However, when adapting speculative decoding to domain-specific target models, the acceptance rate of the generic draft model drops significantly due to domain shift. In this work, we systematically investigate knowledge distillation techniques for training domain draft models to improve their speculation accuracy. We compare white-box and black-box distillation approaches and explore their effectiveness in various data accessibility scenarios, including historical user queries, curated domain data, and synthetically generated alignment data. Our experiments across Function Calling, Biology, and Chinese domains show that offline distillation consistently outperforms online distillation by 11% to 25%, white-box distillation surpasses black-box distillation by 2% to 10%, and data scaling trends hold across domains. Additionally, we find that synthetic data can effectively align draft models and achieve 80% to 93% of the performance of training on historical user queries. These findings provide practical guidelines for training domain-specific draft models to improve speculative decoding efficiency.
comment: Published as a workshop paper at SCOPE - ICLR 2025
☆ Towards Large Language Models that Benefit for All: Benchmarking Group Fairness in Reward Models
As Large Language Models (LLMs) become increasingly powerful and accessible to human users, ensuring fairness across diverse demographic groups, i.e., group fairness, is a critical ethical concern. However, current fairness and bias research in LLMs is limited in two aspects. First, compared to traditional group fairness in machine learning classification, it requires that the non-sensitive attributes, in this case, the prompt questions, be the same across different groups. In many practical scenarios, different groups, however, may prefer different prompt questions and this requirement becomes impractical. Second, it evaluates group fairness only for the LLM's final output without identifying the source of possible bias. Namely, the bias in LLM's output can result from both the pretraining and the finetuning. For finetuning, the bias can result from both the RLHF procedure and the learned reward model. Arguably, evaluating the group fairness of each component in the LLM pipeline could help develop better methods to mitigate the possible bias. Recognizing those two limitations, this work benchmarks the group fairness of learned reward models. By using expert-written text from arXiv, we are able to benchmark the group fairness of reward models without requiring the same prompt questions across different demographic groups. Surprisingly, our results demonstrate that all the evaluated reward models (e.g., Nemotron-4-340B-Reward, ArmoRM-Llama3-8B-v0.1, and GRM-llama3-8B-sftreg) exhibit statistically significant group unfairness. We also observed that top-performing reward models (w.r.t. canonical performance metrics) tend to demonstrate better group fairness.
☆ Self-supervised Normality Learning and Divergence Vector-guided Model Merging for Zero-shot Congenital Heart Disease Detection in Fetal Ultrasound Videos
Congenital Heart Disease (CHD) is one of the leading causes of fetal mortality, yet the scarcity of labeled CHD data and strict privacy regulations surrounding fetal ultrasound (US) imaging present significant challenges for the development of deep learning-based models for CHD detection. Centralised collection of large real-world datasets for rare conditions, such as CHD, from large populations requires significant co-ordination and resource. In addition, data governance rules increasingly prevent data sharing between sites. To address these challenges, we introduce, for the first time, a novel privacy-preserving, zero-shot CHD detection framework that formulates CHD detection as a normality modeling problem integrated with model merging. In our framework dubbed Sparse Tube Ultrasound Distillation (STUD), each hospital site first trains a sparse video tube-based self-supervised video anomaly detection (VAD) model on normal fetal heart US clips with self-distillation loss. This enables site-specific models to independently learn the distribution of healthy cases. To aggregate knowledge across the decentralized models while maintaining privacy, we propose a Divergence Vector-Guided Model Merging approach, DivMerge, that combines site-specific models into a single VAD model without data exchange. Our approach preserves domain-agnostic rich spatio-temporal representations, ensuring generalization to unseen CHD cases. We evaluated our approach on real-world fetal US data collected from 5 hospital sites. Our merged model outperformed site-specific models by 23.77% and 30.13% in accuracy and F1-score respectively on external test sets.
☆ Efficient Neural Clause-Selection Reinforcement
Clause selection is arguably the most important choice point in saturation-based theorem proving. Framing it as a reinforcement learning (RL) task is a way to challenge the human-designed heuristics of state-of-the-art provers and to instead automatically evolve -- just from prover experiences -- their potentially optimal replacement. In this work, we present a neural network architecture for scoring clauses for clause selection that is powerful yet efficient to evaluate. Following RL principles to make design decisions, we integrate the network into the Vampire theorem prover and train it from successful proof attempts. An experiment on the diverse TPTP benchmark finds the neurally guided prover improve over a baseline strategy, from which it initially learns--in terms of the number of in-training-unseen problems solved under a practically relevant, short CPU instruction limit--by 20%.
comment: 15 pages main text, 3 page bibliography, 6 page appendix
☆ Joint Explainability-Performance Optimization With Surrogate Models for AI-Driven Edge Services
Explainable AI is a crucial component for edge services, as it ensures reliable decision making based on complex AI models. Surrogate models are a prominent approach of XAI where human-interpretable models, such as a linear regression model, are trained to approximate a complex (black-box) model's predictions. This paper delves into the balance between the predictive accuracy of complex AI models and their approximation by surrogate ones, advocating that both these models benefit from being learned simultaneously. We derive a joint (bi-level) training scheme for both models and we introduce a new algorithm based on multi-objective optimization (MOO) to simultaneously minimize both the complex model's prediction error and the error between its outputs and those of the surrogate. Our approach leads to improvements that exceed 99% in the approximation of the black-box model through the surrogate one, as measured by the metric of Fidelity, for a compromise of less than 3% absolute reduction in the black-box model's predictive accuracy, compared to single-task and multi-task learning baselines. By improving Fidelity, we can derive more trustworthy explanations of the complex model's outcomes from the surrogate, enabling reliable AI applications for intelligent services at the network edge.
☆ Sensemaking in Novel Environments: How Human Cognition Can Inform Artificial Agents
One of the most vital cognitive skills to possess is the ability to make sense of objects, events, and situations in the world. In the current paper, we offer an approach for creating artificially intelligent agents with the capacity for sensemaking in novel environments. Objectives: to present several key ideas: (1) a novel unified conceptual framework for sensemaking (which includes the existence of sign relations embedded within and across frames); (2) interaction among various content-addressable, distributed-knowledge structures via shared attributes (whose net response would represent a synthesized object, event, or situation serving as a sign for sensemaking in a novel environment). Findings: we suggest that attributes across memories can be shared and recombined in novel ways to create synthesized signs, which can denote certain outcomes in novel environments (i.e., sensemaking).
comment: 14 pages, 5 figures
☆ Evaluating LLaMA 3.2 for Software Vulnerability Detection
Deep Learning (DL) has emerged as a powerful tool for vulnerability detection, often outperforming traditional solutions. However, developing effective DL models requires large amounts of real-world data, which can be difficult to obtain in sufficient quantities. To address this challenge, DiverseVul dataset has been curated as the largest dataset of vulnerable and non-vulnerable C/C++ functions extracted exclusively from real-world projects. Its goal is to provide high-quality, large-scale samples for training DL models. However, during our study several inconsistencies were identified in the raw dataset while applying pre-processing techniques, highlighting the need for a refined version. In this work, we present a refined version of DiverseVul dataset, which is used to fine-tune a large language model, LLaMA 3.2, for vulnerability detection. Experimental results show that the use of pre-processing techniques led to an improvement in performance, with the model achieving an F1-Score of 66%, a competitive result when compared to our baseline, which achieved a 47% F1-Score in software vulnerability detection.
comment: 14 pages, 4 tables, EICC 2025: European Interdisciplinary Cybersecurity Conference 2025
☆ A Simple Approach to Constraint-Aware Imitation Learning with Application to Autonomous Racing IROS 2025
Guaranteeing constraint satisfaction is challenging in imitation learning (IL), particularly in tasks that require operating near a system's handling limits. Traditional IL methods often struggle to enforce constraints, leading to suboptimal performance in high-precision tasks. In this paper, we present a simple approach to incorporating safety into the IL objective. Through simulations, we empirically validate our approach on an autonomous racing task with both full-state and image feedback, demonstrating improved constraint satisfaction and greater consistency in task performance compared to a baseline method.
comment: Submitted to IEEE IROS 2025
☆ A Representationalist, Functionalist and Naturalistic Conception of Intelligence as a Foundation for AGI
The article analyses foundational principles relevant to the creation of artificial general intelligence (AGI). Intelligence is understood as the ability to create novel skills that allow to achieve goals under previously unknown conditions. To this end, intelligence utilises reasoning methods such as deduction, induction and abduction as well as other methods such as abstraction and classification to develop a world model. The methods are applied to indirect and incomplete representations of the world, which are obtained through perception, for example, and which do not depict the world but only correspond to it. Due to these limitations and the uncertain and contingent nature of reasoning, the world model is constructivist. Its value is functionally determined by its viability, i.e., its potential to achieve the desired goals. In consequence, meaning is assigned to representations by attributing them a function that makes it possible to achieve a goal. This representational and functional conception of intelligence enables a naturalistic interpretation that does not presuppose mental features, such as intentionality and consciousness, which are regarded as independent of intelligence. Based on a phenomenological analysis, it is shown that AGI can gain a more fundamental access to the world than humans, although it is limited by the No Free Lunch theorems, which require assumptions to be made.
☆ NeuroChat: A Neuroadaptive AI Chatbot for Customizing Learning Experiences
Generative AI is transforming education by enabling personalized, on-demand learning experiences. However, AI tutors lack the ability to assess a learner's cognitive state in real time, limiting their adaptability. Meanwhile, electroencephalography (EEG)-based neuroadaptive systems have successfully enhanced engagement by dynamically adjusting learning content. This paper presents NeuroChat, a proof-of-concept neuroadaptive AI tutor that integrates real-time EEG-based engagement tracking with generative AI. NeuroChat continuously monitors a learner's cognitive engagement and dynamically adjusts content complexity, response style, and pacing using a closed-loop system. We evaluate this approach in a pilot study (n=24), comparing NeuroChat to a standard LLM-based chatbot. Results indicate that NeuroChat enhances cognitive and subjective engagement but does not show an immediate effect on learning outcomes. These findings demonstrate the feasibility of real-time cognitive feedback in LLMs, highlighting new directions for adaptive learning, AI tutoring, and human-AI interaction.
comment: 16 pages, 6 figures, 1 table
☆ Denoising Hamiltonian Network for Physical Reasoning
Machine learning frameworks for physical problems must capture and enforce physical constraints that preserve the structure of dynamical systems. Many existing approaches achieve this by integrating physical operators into neural networks. While these methods offer theoretical guarantees, they face two key limitations: (i) they primarily model local relations between adjacent time steps, overlooking longer-range or higher-level physical interactions, and (ii) they focus on forward simulation while neglecting broader physical reasoning tasks. We propose the Denoising Hamiltonian Network (DHN), a novel framework that generalizes Hamiltonian mechanics operators into more flexible neural operators. DHN captures non-local temporal relationships and mitigates numerical integration errors through a denoising mechanism. DHN also supports multi-system modeling with a global conditioning mechanism. We demonstrate its effectiveness and flexibility across three diverse physical reasoning tasks with distinct inputs and outputs.
☆ Filter Images First, Generate Instructions Later: Pre-Instruction Data Selection for Visual Instruction Tuning CVPR
Visual instruction tuning (VIT) for large vision-language models (LVLMs) requires training on expansive datasets of image-instruction pairs, which can be costly. Recent efforts in VIT data selection aim to select a small subset of high-quality image-instruction pairs, reducing VIT runtime while maintaining performance comparable to full-scale training. However, a major challenge often overlooked is that generating instructions from unlabeled images for VIT is highly expensive. Most existing VIT datasets rely heavily on human annotations or paid services like the GPT API, which limits users with constrained resources from creating VIT datasets for custom applications. To address this, we introduce Pre-Instruction Data Selection (PreSel), a more practical data selection paradigm that directly selects the most beneficial unlabeled images and generates instructions only for the selected images. PreSel first estimates the relative importance of each vision task within VIT datasets to derive task-wise sampling budgets. It then clusters image features within each task, selecting the most representative images with the budget. This approach reduces computational overhead for both instruction generation during VIT data formation and LVLM fine-tuning. By generating instructions for only 15% of the images, PreSel achieves performance comparable to full-data VIT on the LLaVA-1.5 and Vision-Flan datasets. The link to our project page: https://bardisafa.github.io/PreSel
comment: Accepted at Computer Vision and Pattern Recognition Conference (CVPR) 2025
☆ When Large Vision-Language Model Meets Large Remote Sensing Imagery: Coarse-to-Fine Text-Guided Token Pruning
Efficient vision-language understanding of large Remote Sensing Images (RSIs) is meaningful but challenging. Current Large Vision-Language Models (LVLMs) typically employ limited pre-defined grids to process images, leading to information loss when handling gigapixel RSIs. Conversely, using unlimited grids significantly increases computational costs. To preserve image details while reducing computational complexity, we propose a text-guided token pruning method with Dynamic Image Pyramid (DIP) integration. Our method introduces: (i) a Region Focus Module (RFM) that leverages text-aware region localization capability to identify critical vision tokens, and (ii) a coarse-to-fine image tile selection and vision token pruning strategy based on DIP, which is guided by RFM outputs and avoids directly processing the entire large imagery. Additionally, existing benchmarks for evaluating LVLMs' perception ability on large RSI suffer from limited question diversity and constrained image sizes. We construct a new benchmark named LRS-VQA, which contains 7,333 QA pairs across 8 categories, with image length up to 27,328 pixels. Our method outperforms existing high-resolution strategies on four datasets using the same data. Moreover, compared to existing token reduction methods, our approach demonstrates higher efficiency under high-resolution settings. Dataset and code are in https://github.com/VisionXLab/LRS-VQA.
comment: 12 pages, 6 figures, 7 tables
☆ Automated Benchmark Generation for Repository-Level Coding Tasks ICLR'25
Code Agent development is an extremely active research area, where a reliable performance metric is critical for tracking progress and guiding new developments. This demand is underscored by the meteoric rise in popularity of SWE-Bench. This benchmark challenges code agents to generate patches addressing GitHub issues given the full repository as context. The correctness of generated patches is then evaluated by executing a human-written test suite extracted from the repository after the issue's resolution. However, constructing benchmarks like SWE-Bench requires substantial manual effort to set up historically accurate execution environments for testing. Crucially, this severely limits the number of considered repositories, e.g., just 12 for SWE-Bench. Considering so few repositories, selected for their popularity runs the risk of leading to a distributional mismatch, i.e., the measured performance may not be representative of real-world scenarios potentially misguiding development efforts. In this work, we address this challenge and introduce SetUpAgent, a fully automated system capable of historically accurate dependency setup, test execution, and result parsing. Using SetUpAgent, we generate two new datasets: (i) SWEE-Bench an extended version of SWE-Bench encompassing hundreds of repositories, and (ii) SWA-Bench a benchmark focusing on applications rather than libraries. Comparing these datasets to SWE-Bench with respect to their characteristics and code agent performance, we find significant distributional differences, including lower issue description quality and detail level, higher fix complexity, and most importantly up to 40% lower agent success rates.
comment: Accepted at DL4C@ICLR'25 and FMWild@ICLR'25
☆ A Task and Motion Planning Framework Using Iteratively Deepened AND/OR Graph Networks
In this paper, we present an approach for integrated task and motion planning based on an AND/OR graph network, which is used to represent task-level states and actions, and we leverage it to implement different classes of task and motion planning problems (TAMP). Several problems that fall under task and motion planning do not have a predetermined number of sub-tasks to achieve a goal. For example, while retrieving a target object from a cluttered workspace, in principle the number of object re-arrangements required to finally grasp it cannot be known ahead of time. To address this challenge, and in contrast to traditional planners, also those based on AND/OR graphs, we grow the AND/OR graph at run-time by progressively adding sub-graphs until grasping the target object becomes feasible, which yields a network of AND/OR graphs. The approach is extended to enable multi-robot task and motion planning, and (i) it allows us to perform task allocation while coordinating the activity of a given number of robots, and (ii) can handle multi-robot tasks involving an a priori unknown number of sub-tasks. The approach is evaluated and validated both in simulation and with a real dual-arm robot manipulator, that is, Baxter from Rethink Robotics. In particular, for the single-robot task and motion planning, we validated our approach in three different TAMP domains. Furthermore, we also use three different robots for simulation, namely, Baxter, Franka Emika Panda manipulators, and a PR2 robot. Experiments show that our approach can be readily scaled to scenarios with many objects and robots, and is capable of handling different classes of TAMP problems.
☆ Junior Software Developers' Perspectives on Adopting LLMs for Software Engineering: a Systematic Literature Review
Many studies exploring the adoption of Large Language Model-based tools for software development by junior developers have emerged in recent years. These studies have sought to understand developers' perspectives about using those tools, a fundamental pillar for successfully adopting LLM-based tools in Software Engineering. The aim of this paper is to provide an overview of junior software developers' perspectives and use of LLM-based tools for software engineering (LLM4SE). We conducted a systematic literature review (SLR) following guidelines by Kitchenham et al. on 56 primary studies, applying the definition for junior software developers as software developers with equal or less than five years of experience, including Computer Science/Software Engineering students. We found that the majority of the studies focused on comprehending the different aspects of integrating AI tools in SE. Only 8.9\% of the studies provide a clear definition for junior software developers, and there is no uniformity. Searching for relevant information is the most common task using LLM tools. ChatGPT was the most common LLM tool present in the studies (and experiments). A majority of the studies (83.9\%) report both positive and negative perceptions about the impact of adopting LLM tools. We also found and categorised advantages, challenges, and recommendations regarding LLM adoption. Our results indicate that developers are using LLMs not just for code generation, but also to improve their development skills. Critically, they are not just experiencing the benefits of adopting LLM tools, but they are also aware of at least a few LLM limitations, such as the generation of wrong suggestions, potential data leaking, and AI hallucination. Our findings offer implications for software engineering researchers, educators, and developers.
☆ Fully Autonomous Programming using Iterative Multi-Agent Debugging with Large Language Models
Program synthesis with Large Language Models (LLMs) suffers from a "near-miss syndrome": the generated code closely resembles a correct solution but fails unit tests due to minor errors. We address this with a multi-agent framework called Synthesize, Execute, Instruct, Debug, and Repair (SEIDR). Effectively applying SEIDR to instruction-tuned LLMs requires determining (a) optimal prompts for LLMs, (b) what ranking algorithm selects the best programs in debugging rounds, and (c) balancing the repair of unsuccessful programs with the generation of new ones. We empirically explore these trade-offs by comparing replace-focused, repair-focused, and hybrid debug strategies. We also evaluate lexicase and tournament selection to rank candidates in each generation. On Program Synthesis Benchmark 2 (PSB2), our framework outperforms both conventional use of OpenAI Codex without a repair phase and traditional genetic programming approaches. SEIDR outperforms the use of an LLM alone, solving 18 problems in C++ and 20 in Python on PSB2 at least once across experiments. To assess generalizability, we employ GPT-3.5 and Llama 3 on the PSB2 and HumanEval-X benchmarks. Although SEIDR with these models does not surpass current state-of-the-art methods on the Python benchmarks, the results on HumanEval-C++ are promising. SEIDR with Llama 3-8B achieves an average pass@100 of 84.2%. Across all SEIDR runs, 163 of 164 problems are solved at least once with GPT-3.5 in HumanEval-C++, and 162 of 164 with the smaller Llama 3-8B. We conclude that SEIDR effectively overcomes the near-miss syndrome in program synthesis with LLMs.
comment: Accepted for publication in ACM Trans. Evol. Learn. Optim., February 2025. arXiv admin note: text overlap with arXiv:2304.10423
☆ Artificial Intelligence in Deliberation: The AI Penalty and the Emergence of a New Deliberative Divide
Digital deliberation has expanded democratic participation, yet challenges remain. This includes processing information at scale, moderating discussions, fact-checking, or attracting people to participate. Recent advances in artificial intelligence (AI) offer potential solutions, but public perceptions of AI's role in deliberation remain underexplored. Beyond efficiency, democratic deliberation is about voice and recognition. If AI is integrated into deliberation, public trust, acceptance, and willingness to participate may be affected. We conducted a preregistered survey experiment with a representative sample in Germany (n=1850) to examine how information about AI-enabled deliberation influences willingness to participate and perceptions of deliberative quality. Respondents were randomly assigned to treatments that provided them information about deliberative tasks facilitated by either AI or humans. Our findings reveal a significant AI-penalty. Participants were less willing to engage in AI-facilitated deliberation and rated its quality lower than human-led formats. These effects were moderated by individual predispositions. Perceptions of AI's societal benefits and anthropomorphization of AI showed positive interaction effects on people's interest to participate in AI-enabled deliberative formats and positive quality assessments, while AI risk assessments showed negative interactions with information about AI-enabled deliberation. These results suggest AI-enabled deliberation faces substantial public skepticism, potentially even introducing a new deliberative divide. Unlike traditional participation gaps based on education or demographics, this divide is shaped by attitudes toward AI. As democratic engagement increasingly moves online, ensuring AI's role in deliberation does not discourage participation or deepen inequalities will be a key challenge for future research and policy.
☆ Adaptive routing protocols for determining optimal paths in AI multi-agent systems: a priority- and learning-enhanced approach
As distributed artificial intelligence (AI) and multi-agent architectures grow increasingly complex, the need for adaptive, context-aware routing becomes paramount. This paper introduces an enhanced, adaptive routing algorithm tailored for AI multi-agent networks, integrating priority-based cost functions and dynamic learning mechanisms. Building on an extended Dijkstra-based framework, we incorporate multi-faceted parameters such as task complexity, user request priority, agent capabilities, bandwidth, latency, load, model sophistication, and reliability. We further propose dynamically adaptive weighting factors, tuned via reinforcement learning (RL), to continuously evolve routing policies based on observed network performance. Additionally, heuristic filtering and hierarchical routing structures improve scalability and responsiveness. Our approach yields context-sensitive, load-aware, and priority-focused routing decisions that not only reduce latency for critical tasks but also optimize overall resource utilization, ultimately enhancing the robustness, flexibility, and efficiency of multi-agent systems.
♻ ☆ R1-Zero's "Aha Moment" in Visual Reasoning on a 2B Non-SFT Model
Recently DeepSeek R1 demonstrated how reinforcement learning with simple rule-based incentives can enable autonomous development of complex reasoning in large language models, characterized by the "aha moment", in which the model manifest self-reflection and increased response length during training. However, attempts to extend this success to multimodal reasoning often failed to reproduce these key characteristics. In this report, we present the first successful replication of these emergent characteristics for multimodal reasoning on only a non-SFT 2B model. Starting with Qwen2-VL-2B and applying reinforcement learning directly on the SAT dataset, our model achieves 59.47% accuracy on CVBench, outperforming the base model by approximately ~30% and exceeding both SFT setting by ~2%. In addition, we share our failed attempts and insights in attempting to achieve R1-like reasoning using RL with instruct models. aiming to shed light on the challenges involved. Our key observations include: (1) applying RL on instruct model often results in trivial reasoning trajectories, and (2) naive length reward are ineffective in eliciting reasoning capabilities. The project code is available at https://github.com/turningpoint-ai/VisualThinker-R1-Zero
comment: 10 pages, 6 figures
♻ ☆ Coarse Set Theory for AI Ethics and Decision-Making: A Mathematical Framework for Granular Evaluations
In artificial intelligence (AI) and decision-making systems, structured approximations play a crucial role in balancing model interpretability and predictive accuracy. Coarse Set Theory (CST) introduces a mathematical framework to formalize Coarse Ethics (CE), which models coarse-grained decision-making processes commonly used in human evaluations and AI classification systems. CST defines hierarchical relationships among sets using totally ordered structures and coarse mappings, enabling us to adjust decision granularity dynamically. Furthermore, coarse evaluations inherently involve a trade-off between efficiency and information retention, as they simplify complex data representations at the cost of precision. To quantitatively assess this trade-off, we introduce Kullback-Leibler (KL) Divergence as a measure of information loss in coarse evaluations, demonstrating the impact of coarse partitioning on decision accuracy. This study employs CST in grading systems, automated recommendations, and risk assessments, demonstrating its potential to enhance fairness, reduce bias, and improve transparency in AI-driven decision-making.
comment: 28 pages, 2 figures
♻ ☆ MA-LoT: Multi-Agent Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving
Solving mathematical problems using computer-verifiable languages like Lean has significantly impacted mathematical and computer science communities. State-of-the-art methods utilize single Large Language Models (LLMs) as agents or provers to either generate complete proof or perform tree searches. However, single-agent methods inherently lack a structured way to combine high-level reasoning in Natural Language (NL) with Formal Language (FL) verification feedback. To solve these issues, we propose MA-LoT: Multi-Agent Lean-based Long Chain-of-Thought framework, (to the best of our knowledge), the first multi-agent framework for Lean4 theorem proving that balance high-level NL reasoning and FL verification in Long CoT. Using this structured interaction, our approach enables deeper insights and long-term coherence in proof generation, with which past methods struggle. We do this by leveraging emergent formal reasoning ability in Long CoT using our novel LoT-Transfer Learning training-inference pipeline. Extensive experiments show that our framework achieves a 61.07% accuracy rate on the Lean4 version of the MiniF2F-Test dataset, largely outperforming GPT-4 (22.95%), single-agent tree search (InternLM-Step-Prover, 50.70%), and whole-proof generation (Godel-Prover, 55.33%) baselines. Furthermore, our findings highlight the potential of combining Long CoT with formal verification for a more insightful generation in a broader perspective.
♻ ☆ Physics Context Builders: A Modular Framework for Physical Reasoning in Vision-Language Models
Physical reasoning, which involves interpreting object behaviors within dynamic environments, remains a significant challenge for Vision-Language Models (VLMs). The limitations in physical reasoning arise from an inability to translate learned knowledge into predictions about physical behavior. We perform a careful study to show how continual fine-tuning can mitigate this issue. However, fine-tuning is expensive for large models and impractical to repeatedly perform for every task. This necessitates the creation of modular and scalable ways to teach VLMs about physical reasoning. To that end, we introduce Physics Context Builders (PCBs), a novel modular framework where specialized VLMs are fine-tuned to generate detailed physical scene descriptions. These can be used as physical contexts for larger VLMs to enhance their reasoning capabilities. PCBs enable the separation of visual perception from reasoning, allowing us to analyze their relative contributions to physical understanding. We perform careful experiments on CLEVRER and on Falling Tower, a stability detection dataset with both simulated and real-world scenes, to demonstrate that PCBs provide substantial performance improvements, increasing average accuracy by up to 13.8% on complex physical reasoning tasks. Notably, PCBs show strong Sim2Real transfer, successfully generalizing from simulated training data to real-world scenes. Our work demonstrates that enhancing visual perception through modular, simulation-trained components offers a practical approach to improving physical reasoning in VLMs, while providing insights into the factors affecting physical understanding in these models.
♻ ☆ Balancing optimism and pessimism in offline-to-online learning
We consider what we call the offline-to-online learning setting, focusing on stochastic finite-armed bandit problems. In offline-to-online learning, a learner starts with offline data collected from interactions with an unknown environment in a way that is not under the learner's control. Given this data, the learner begins interacting with the environment, gradually improving its initial strategy as it collects more data to maximize its total reward. The learner in this setting faces a fundamental dilemma: if the policy is deployed for only a short period, a suitable strategy (in a number of senses) is the Lower Confidence Bound (LCB) algorithm, which is based on pessimism. LCB can effectively compete with any policy that is sufficiently "covered" by the offline data. However, for longer time horizons, a preferred strategy is the Upper Confidence Bound (UCB) algorithm, which is based on optimism. Over time, UCB converges to the performance of the optimal policy at a rate that is nearly the best possible among all online algorithms. In offline-to-online learning, however, UCB initially explores excessively, leading to worse short-term performance compared to LCB. This suggests that a learner not in control of how long its policy will be in use should start with LCB for short horizons and gradually transition to a UCB-like strategy as more rounds are played. This article explores how and why this transition should occur. Our main result shows that our new algorithm performs nearly as well as the better of LCB and UCB at any point in time. The core idea behind our algorithm is broadly applicable, and we anticipate that our results will extend beyond the multi-armed bandit setting.
♻ ☆ Provably Accurate Shapley Value Estimation via Leverage Score Sampling ICLR 2025
Originally introduced in game theory, Shapley values have emerged as a central tool in explainable machine learning, where they are used to attribute model predictions to specific input features. However, computing Shapley values exactly is expensive: for a general model with $n$ features, $O(2^n)$ model evaluations are necessary. To address this issue, approximation algorithms are widely used. One of the most popular is the Kernel SHAP algorithm, which is model agnostic and remarkably effective in practice. However, to the best of our knowledge, Kernel SHAP has no strong non-asymptotic complexity guarantees. We address this issue by introducing Leverage SHAP, a light-weight modification of Kernel SHAP that provides provably accurate Shapley value estimates with just $O(n\log n)$ model evaluations. Our approach takes advantage of a connection between Shapley value estimation and agnostic active learning by employing leverage score sampling, a powerful regression tool. Beyond theoretical guarantees, we show that Leverage SHAP consistently outperforms even the highly optimized implementation of Kernel SHAP available in the ubiquitous SHAP library [Lundberg & Lee, 2017].
comment: Accepted to ICLR 2025
♻ ☆ Less is more? Rewards in RL for Cyber Defence
The last few years have seen an explosion of interest in autonomous cyber defence agents based on deep reinforcement learning. Such agents are typically trained in a cyber gym environment, also known as a cyber simulator, at least 32 of which have already been built. Most, if not all cyber gyms provide dense "scaffolded" reward functions which combine many penalties or incentives for a range of (un)desirable states and costly actions. Whilst dense rewards help alleviate the challenge of exploring complex environments, yielding seemingly effective strategies from relatively few environment steps; they are also known to bias the solutions an agent can find, potentially towards suboptimal solutions. This is especially a problem in complex cyber environments where policy weaknesses may not be noticed until exploited by an adversary. In this work we set out to evaluate whether sparse reward functions might enable training more effective cyber defence agents. Towards this goal we first break down several evaluation limitations in existing work by proposing a ground truth evaluation score that goes beyond the standard RL paradigm used to train and evaluate agents. By adapting a well-established cyber gym to accommodate our methodology and ground truth score, we propose and evaluate two sparse reward mechanisms and compare them with a typical dense reward. Our evaluation considers a range of network sizes, from 2 to 50 nodes, and both reactive and proactive defensive actions. Our results show that sparse rewards, particularly positive reinforcement for an uncompromised network state, enable the training of more effective cyber defence agents. Furthermore, we show that sparse rewards provide more stable training than dense rewards, and that both effectiveness and training stability are robust to a variety of cyber environment considerations.
comment: 4 Pages
♻ ☆ Look Inside for More: Internal Spatial Modality Perception for 3D Anomaly Detection AAAI2025
3D anomaly detection has recently become a significant focus in computer vision. Several advanced methods have achieved satisfying anomaly detection performance. However, they typically concentrate on the external structure of 3D samples and struggle to leverage the internal information embedded within samples. Inspired by the basic intuition of why not look inside for more, we introduce a straightforward method named Internal Spatial Modality Perception~(ISMP) to explore the feature representation from internal views fully. Specifically, our proposed ISMP consists of a critical perception module, Spatial Insight Engine~(SIE), which abstracts complex internal information of point clouds into essential global features. Besides, to better align structural information with point data, we propose an enhanced key point feature extraction module for amplifying spatial structure feature representation. Simultaneously, a novel feature filtering module is incorporated to reduce noise and redundant features for further aligning precise spatial structure. Extensive experiments validate the effectiveness of our proposed method, achieving object-level and pixel-level AUROC improvements of 3.2\% and 13.1\%, respectively, on the Real3D-AD benchmarks. Note that the strong generalization ability of SIE has been theoretically proven and is verified in both classification and segmentation tasks.
comment: AAAI2025 Poster
♻ ☆ Mixture of Structural-and-Textual Retrieval over Text-rich Graph Knowledge Bases
Text-rich Graph Knowledge Bases (TG-KBs) have become increasingly crucial for answering queries by providing textual and structural knowledge. However, current retrieval methods often retrieve these two types of knowledge in isolation without considering their mutual reinforcement and some hybrid methods even bypass structural retrieval entirely after neighboring aggregation. To fill in this gap, we propose a Mixture of Structural-and-Textual Retrieval (MoR) to retrieve these two types of knowledge via a Planning-Reasoning-Organizing framework. In the Planning stage, MoR generates textual planning graphs delineating the logic for answering queries. Following planning graphs, in the Reasoning stage, MoR interweaves structural traversal and textual matching to obtain candidates from TG-KBs. In the Organizing stage, MoR further reranks fetched candidates based on their structural trajectory. Extensive experiments demonstrate the superiority of MoR in harmonizing structural and textual retrieval with insights, including uneven retrieving performance across different query logics and the benefits of integrating structural trajectories for candidate reranking. Our code is available at https://github.com/Yoega/MoR.
♻ ☆ Token-Supervised Value Models for Enhancing Mathematical Problem-Solving Capabilities of Large Language Models
With the rapid advancement of test-time compute search strategies to improve the mathematical problem-solving capabilities of large language models (LLMs), the need for building robust verifiers has become increasingly important. However, all these inference strategies rely on existing verifiers originally designed for Best-of-N search, which makes them sub-optimal for tree search techniques at test time. During tree search, existing verifiers can only offer indirect and implicit assessments of partial solutions or under-value prospective intermediate steps, thus resulting in the premature pruning of promising intermediate steps. To overcome these limitations, we propose token-supervised value models (TVMs) - a new class of verifiers that assign each token a probability that reflects the likelihood of reaching the correct final answer. This new token-level supervision enables TVMs to directly and explicitly evaluate partial solutions, effectively distinguishing between promising and incorrect intermediate steps during tree search at test time. Experimental results demonstrate that combining tree-search-based inference strategies with TVMs significantly improves the accuracy of LLMs in mathematical problem-solving tasks, surpassing the performance of existing verifiers.
♻ ☆ Every FLOP Counts: Scaling a 300B Mixture-of-Experts LING LLM without Premium GPUs
In this technical report, we tackle the challenges of training large-scale Mixture of Experts (MoE) models, focusing on overcoming cost inefficiency and resource limitations prevalent in such systems. To address these issues, we present two differently sized MoE large language models (LLMs), namely Ling-Lite and Ling-Plus (referred to as "Bailing" in Chinese, spelled B\v{a}il\'ing in Pinyin). Ling-Lite contains 16.8 billion parameters with 2.75 billion activated parameters, while Ling-Plus boasts 290 billion parameters with 28.8 billion activated parameters. Both models exhibit comparable performance to leading industry benchmarks. This report offers actionable insights to improve the efficiency and accessibility of AI development in resource-constrained settings, promoting more scalable and sustainable technologies. Specifically, to reduce training costs for large-scale MoE models, we propose innovative methods for (1) optimization of model architecture and training processes, (2) refinement of training anomaly handling, and (3) enhancement of model evaluation efficiency. Additionally, leveraging high-quality data generated from knowledge graphs, our models demonstrate superior capabilities in tool use compared to other models. Ultimately, our experimental findings demonstrate that a 300B MoE LLM can be effectively trained on lower-performance devices while achieving comparable performance to models of a similar scale, including dense and MoE models. Compared to high-performance devices, utilizing a lower-specification hardware system during the pre-training phase demonstrates significant cost savings, reducing computing costs by approximately 20%. The models can be accessed at https://huggingface.co/inclusionAI.
comment: 34 pages
♻ ☆ Folded Context Condensation in Path Integral Formalism for Infinite Context Transformers
In this work, we present a generalized formulation of the Transformer algorithm by reinterpreting its core mechanisms within the framework of Path Integral formalism. In this perspective, the attention mechanism is recast as a process that integrates all possible transition paths leading to future token states, with temporal evolution governed by the Feed-Forward Network. By systematically mapping each component of the Transformer to its counterpart in the Path Integral formulation, we obtain a more compact and efficient representation, in which the contextual information of a sequence is condensed into memory-like segments. These segments are recurrently processed across Transformer layers, enabling more effective long-term information retention. We validate the effectiveness of this approach through the Passkey retrieval task and a summarization task, demonstrating that the proposed method preserves historical information while exhibiting memory usage that scales linearly with sequence length. This contrasts with the non-linear memory growth typically observed in standard attention mechanisms. We expect that this quantum-inspired generalization of the Transformer architecture will open new avenues for enhancing both the efficiency and expressiveness of future Transformer models.
comment: 9 pages, 12 figures
♻ ☆ Post-detection inference for sequential changepoint localization
This paper addresses a fundamental but largely unexplored challenge in sequential changepoint analysis: conducting inference following a detected change. We study the problem of localizing the changepoint using only the data observed up to a data-dependent stopping time at which a sequential detection algorithm $\mathcal A$ declares a change. We first construct confidence sets for the unknown changepoint when pre- and post-change distributions are assumed to be known. We then extend our framework to composite pre- and post-change scenarios. We impose no conditions on the observation space or on $\mathcal A$ -- we only need to be able to run $\mathcal A$ on simulated data sequences. In summary, this work offers both theoretically sound and practically effective tools for sequential changepoint localization.
♻ ☆ Mapping AI Benchmark Data to Quantitative Risk Estimates Through Expert Elicitation
The literature and multiple experts point to many potential risks from large language models (LLMs), but there are still very few direct measurements of the actual harms posed. AI risk assessment has so far focused on measuring the models' capabilities, but the capabilities of models are only indicators of risk, not measures of risk. Better modeling and quantification of AI risk scenarios can help bridge this disconnect and link the capabilities of LLMs to tangible real-world harm. This paper makes an early contribution to this field by demonstrating how existing AI benchmarks can be used to facilitate the creation of risk estimates. We describe the results of a pilot study in which experts use information from Cybench, an AI benchmark, to generate probability estimates. We show that the methodology seems promising for this purpose, while noting improvements that can be made to further strengthen its application in quantitative AI risk assessment.
comment: 23 pages, 4 figures
♻ ☆ MonoSOWA: Scalable monocular 3D Object detector Without human Annotations
Inferring object 3D position and orientation from a single RGB camera is a foundational task in computer vision with many important applications. Traditionally, 3D object detection methods are trained in a fully-supervised setup, requiring LiDAR and vast amounts of human annotations, which are laborious, costly, and do not scale well with the ever-increasing amounts of data being captured. We present a novel method to train a 3D object detector from a single RGB camera without domain-specific human annotations, making orders of magnitude more data available for training. The method uses newly proposed Local Object Motion Model to disentangle object movement source between subsequent frames, is approximately 700 times faster than previous work and compensates camera focal length differences to aggregate multiple datasets. The method is evaluated on three public datasets, where despite using no human labels, it outperforms prior work by a significant margin. It also shows its versatility as a pre-training tool for fully-supervised training and shows that combining pseudo-labels from multiple datasets can achieve comparable accuracy to using human labels from a single dataset. The source code and model will be published soon.
♻ ☆ SafeAgentBench: A Benchmark for Safe Task Planning of Embodied LLM Agents
With the integration of large language models (LLMs), embodied agents have strong capabilities to understand and plan complicated natural language instructions. However, a foreseeable issue is that those embodied agents can also flawlessly execute some hazardous tasks, potentially causing damages in the real world. Existing benchmarks predominantly overlook critical safety risks, focusing solely on planning performance, while a few evaluate LLMs' safety awareness only on non-interactive image-text data. To address this gap, we present SafeAgentBench-the first benchmark for safety-aware task planning of embodied LLM agents in interactive simulation environments. SafeAgentBench includes: (1) an executable, diverse, and high-quality dataset of 750 tasks, rigorously curated to cover 10 potential hazards and 3 task types; (2) SafeAgentEnv, a universal embodied environment with a low-level controller, supporting multi-agent execution with 17 high-level actions for 8 state-of-the-art baselines; and (3) reliable evaluation methods from both execution and semantic perspectives. Experimental results show that, although agents based on different design frameworks exhibit substantial differences in task success rates, their overall safety awareness remains weak. The most safety-conscious baseline achieves only a 10\% rejection rate for detailed hazardous tasks. Moreover, simply replacing the LLM driving the agent does not lead to notable improvements in safety awareness. More details and code are available at https://github.com/shengyin1224/SafeAgentBench.
comment: 23 pages, 17 tables, 14 figures
♻ ☆ RAG-Enhanced Collaborative LLM Agents for Drug Discovery
Recent advances in large language models (LLMs) have shown great potential to accelerate drug discovery. However, the specialized nature of biochemical data often necessitates costly domain-specific fine-tuning, posing critical challenges. First, it hinders the application of more flexible general-purpose LLMs in cutting-edge drug discovery tasks. More importantly, it impedes the rapid integration of the vast amounts of scientific data continuously generated through experiments and research. To investigate these challenges, we propose CLADD, a retrieval-augmented generation (RAG)-empowered agentic system tailored to drug discovery tasks. Through the collaboration of multiple LLM agents, CLADD dynamically retrieves information from biomedical knowledge bases, contextualizes query molecules, and integrates relevant evidence to generate responses -- all without the need for domain-specific fine-tuning. Crucially, we tackle key obstacles in applying RAG workflows to biochemical data, including data heterogeneity, ambiguity, and multi-source integration. We demonstrate the flexibility and effectiveness of this framework across a variety of drug discovery tasks, showing that it outperforms general-purpose and domain-specific LLMs as well as traditional deep learning approaches.
comment: Machine Learning, Drug Discovery
♻ ☆ The Majority Vote Paradigm Shift: When Popular Meets Optimal
Reliably labelling data typically requires annotations from multiple human workers. However, humans are far from being perfect. Hence, it is a common practice to aggregate labels gathered from multiple annotators to make a more confident estimate of the true label. Among many aggregation methods, the simple and well known Majority Vote (MV) selects the class label polling the highest number of votes. However, despite its importance, the optimality of MV's label aggregation has not been extensively studied. We address this gap in our work by characterising the conditions under which MV achieves the theoretically optimal lower bound on label estimation error. Our results capture the tolerable limits on annotation noise under which MV can optimally recover labels for a given class distribution. This certificate of optimality provides a more principled approach to model selection for label aggregation as an alternative to otherwise inefficient practices that sometimes include higher experts, gold labels, etc., that are all marred by the same human uncertainty despite huge time and monetary costs. Experiments on both synthetic and real world data corroborate our theoretical findings.
comment: 33 pages, 7 figures
♻ ☆ Composing Reinforcement Learning Policies, with Formal Guarantees AAMAS 2025
We propose a novel framework to controller design in environments with a two-level structure: a known high-level graph ("map") in which each vertex is populated by a Markov decision process, called a "room". The framework "separates concerns" by using different design techniques for low- and high-level tasks. We apply reactive synthesis for high-level tasks: given a specification as a logical formula over the high-level graph and a collection of low-level policies obtained together with "concise" latent structures, we construct a "planner" that selects which low-level policy to apply in each room. We develop a reinforcement learning procedure to train low-level policies on latent structures, which unlike previous approaches, circumvents a model distillation step. We pair the policy with probably approximately correct guarantees on its performance and on the abstraction quality, and lift these guarantees to the high-level task. These formal guarantees are the main advantage of the framework. Other advantages include scalability (rooms are large and their dynamics are unknown) and reusability of low-level policies. We demonstrate feasibility in challenging case studies where an agent navigates environments with moving obstacles and visual inputs.
comment: AAMAS 2025, 8 pages main text, 19 pages Appendix (excluding references)
♻ ☆ TimeMixer++: A General Time Series Pattern Machine for Universal Predictive Analysis ICLR 2025
Time series analysis plays a critical role in numerous applications, supporting tasks such as forecasting, classification, anomaly detection, and imputation. In this work, we present the time series pattern machine (TSPM), a model designed to excel in a broad range of time series tasks through powerful representation and pattern extraction capabilities. Traditional time series models often struggle to capture universal patterns, limiting their effectiveness across diverse tasks. To address this, we define multiple scales in the time domain and various resolutions in the frequency domain, employing various mixing strategies to extract intricate, task-adaptive time series patterns. Specifically, we introduce a general-purpose TSPM that processes multi-scale time series using (1) multi-resolution time imaging (MRTI), (2) time image decomposition (TID), (3) multi-scale mixing (MCM), and (4) multi-resolution mixing (MRM) to extract comprehensive temporal patterns. MRTI transforms multi-scale time series into multi-resolution time images, capturing patterns across both temporal and frequency domains. TID leverages dual-axis attention to extract seasonal and trend patterns, while MCM hierarchically aggregates these patterns across scales. MRM adaptively integrates all representations across resolutions. This method achieves state-of-the-art performance across 8 time series analytical tasks, consistently surpassing both general-purpose and task-specific models. Our work marks a promising step toward the next generation of TSPMs, paving the way for further advancements in time series analysis.
comment: Accepted by the 13th International Conference on Learning Representations (ICLR 2025)
♻ ☆ CAD-Assistant: Tool-Augmented VLLMs as Generic CAD Task Solvers
We propose CAD-Assistant, a general-purpose CAD agent for AI-assisted design. Our approach is based on a powerful Vision and Large Language Model (VLLM) as a planner and a tool-augmentation paradigm using CAD-specific tools. CAD-Assistant addresses multimodal user queries by generating actions that are iteratively executed on a Python interpreter equipped with the FreeCAD software, accessed via its Python API. Our framework is able to assess the impact of generated CAD commands on geometry and adapts subsequent actions based on the evolving state of the CAD design. We consider a wide range of CAD-specific tools including a sketch image parameterizer, rendering modules, a 2D cross-section generator, and other specialized routines. CAD-Assistant is evaluated on multiple CAD benchmarks, where it outperforms VLLM baselines and supervised task-specific methods. Beyond existing benchmarks, we qualitatively demonstrate the potential of tool-augmented VLLMs as general-purpose CAD solvers across diverse workflows.
♻ ☆ Privacy and Accuracy Implications of Model Complexity and Integration in Heterogeneous Federated Learning
Federated Learning (FL) has been proposed as a privacy-preserving solution for distributed machine learning, particularly in heterogeneous FL settings where clients have varying computational capabilities and thus train models with different complexities compared to the server's model. However, FL is not without vulnerabilities: recent studies have shown that it is susceptible to membership inference attacks (MIA), which can compromise the privacy of client data. In this paper, we examine the intersection of these two aspects, heterogeneous FL and its privacy vulnerabilities, by focusing on the role of client model integration, the process through which the server integrates parameters from clients' smaller models into its larger model. To better understand this process, we first propose a taxonomy that categorizes existing heterogeneous FL methods and enables the design of seven novel heterogeneous FL model integration strategies. Using CIFAR-10, CIFAR-100, and FEMNIST vision datasets, we evaluate the privacy and accuracy trade-offs of these approaches under three types of MIAs. Our findings reveal significant differences in privacy leakage and performance depending on the integration method. Notably, introducing randomness in the model integration process enhances client privacy while maintaining competitive accuracy for both the clients and the server. This work provides quantitative light on the privacy-accuracy implications client model integration in heterogeneous FL settings, paving the way towards more secure and efficient FL systems.
comment: Code: https://github.com/ellisalicante/ma-fl-mia
♻ ☆ SIDA: Social Media Image Deepfake Detection, Localization and Explanation with Large Multimodal Model CVPR-2025
The rapid advancement of generative models in creating highly realistic images poses substantial risks for misinformation dissemination. For instance, a synthetic image, when shared on social media, can mislead extensive audiences and erode trust in digital content, resulting in severe repercussions. Despite some progress, academia has not yet created a large and diversified deepfake detection dataset for social media, nor has it devised an effective solution to address this issue. In this paper, we introduce the Social media Image Detection dataSet (SID-Set), which offers three key advantages: (1) extensive volume, featuring 300K AI-generated/tampered and authentic images with comprehensive annotations, (2) broad diversity, encompassing fully synthetic and tampered images across various classes, and (3) elevated realism, with images that are predominantly indistinguishable from genuine ones through mere visual inspection. Furthermore, leveraging the exceptional capabilities of large multimodal models, we propose a new image deepfake detection, localization, and explanation framework, named SIDA (Social media Image Detection, localization, and explanation Assistant). SIDA not only discerns the authenticity of images, but also delineates tampered regions through mask prediction and provides textual explanations of the model's judgment criteria. Compared with state-of-the-art deepfake detection models on SID-Set and other benchmarks, extensive experiments demonstrate that SIDA achieves superior performance among diversified settings. The code, model, and dataset will be released.
comment: CVPR-2025
♻ ☆ From Commands to Prompts: LLM-based Semantic File System for AIOS
Large language models (LLMs) have demonstrated significant potential in the development of intelligent applications and systems such as LLM-based agents and agent operating systems (AIOS). However, when these applications and systems interact with the underlying file system, the file system still remains the traditional paradigm: reliant on manual navigation through precise commands. This paradigm poses a bottleneck to the usability of these systems as users are required to navigate complex folder hierarchies and remember cryptic file names. To address this limitation, we propose an LLM-based semantic file system ( LSFS ) for prompt-driven file management. Unlike conventional approaches, LSFS incorporates LLMs to enable users or agents to interact with files through natural language prompts, facilitating semantic file management. At the macro-level, we develop a comprehensive API set to achieve semantic file management functionalities, such as semantic file retrieval, file update monitoring and summarization, and semantic file rollback). At the micro-level, we store files by constructing semantic indexes for them, design and implement syscalls of different semantic operations (e.g., CRUD, group by, join) powered by vector database. Our experiments show that LSFS offers significant improvements over traditional file systems in terms of user convenience, the diversity of supported functions, and the accuracy and efficiency of file operations. Additionally, with the integration of LLM, our system enables more intelligent file management tasks, such as content summarization and version comparison, further enhancing its capabilities.
♻ ☆ Presumed Cultural Identity: How Names Shape LLM Responses
Names are deeply tied to human identity. They can serve as markers of individuality, cultural heritage, and personal history. However, using names as a core indicator of identity can lead to over-simplification of complex identities. When interacting with LLMs, user names are an important point of information for personalisation. Names can enter chatbot conversations through direct user input (requested by chatbots), as part of task contexts such as CV reviews, or as built-in memory features that store user information for personalisation. We study biases associated with names by measuring cultural presumptions in the responses generated by LLMs when presented with common suggestion-seeking queries, which might involve making assumptions about the user. Our analyses demonstrate strong assumptions about cultural identity associated with names present in LLM generations across multiple cultures. Our work has implications for designing more nuanced personalisation systems that avoid reinforcing stereotypes while maintaining meaningful customisation.
comment: 23 Pages, 13 Figures, 4 Tables
♻ ☆ Prompt Selection Matters: Enhancing Text Annotations for Social Sciences with Large Language Models
Large Language Models have recently been applied to text annotation tasks from social sciences, equalling or surpassing the performance of human workers at a fraction of the cost. However, no inquiry has yet been made on the impact of prompt selection on labelling accuracy. In this study, we show that performance greatly varies between prompts, and we apply the method of automatic prompt optimization to systematically craft high quality prompts. We also provide the community with a simple, browser-based implementation of the method at https://prompt-ultra.github.io/ .
Are GNNs Actually Effective for Multimodal Fault Diagnosis in Microservice Systems?
Graph Neural Networks (GNNs) are widely adopted for fault diagnosis in microservice systems, premised on their ability to model service dependencies. However, the necessity of explicit graph structures remains underexamined, as existing evaluations conflate preprocessing with architectural contributions. To isolate the true value of GNNs, we propose DiagMLP, a deliberately minimal, topology-agnostic baseline that retains multimodal fusion capabilities while excluding graph modeling. Through ablation experiments across five datasets, DiagMLP achieves performance parity with state-of-the-art GNN-based methods in fault detection, localization, and classification. These findings challenge the prevailing assumption that graph structures are indispensable, revealing that: (i) preprocessing pipelines already encode critical dependency information, and (ii) GNN modules contribute marginally beyond multimodality fusion. Our work advocates for systematic re-evaluation of architectural complexity and highlights the need for standardized baseline protocols to validate model innovations.
comment: 6 pages, 5 figures, submitted to conference
♻ ☆ SmartRAG: Jointly Learn RAG-Related Tasks From the Environment Feedback
RAG systems consist of multiple modules to work together. However, these modules are usually separately trained. We argue that a system like RAG that incorporates multiple modules should be jointly optimized to achieve optimal performance. To demonstrate this, we design a specific pipeline called \textbf{SmartRAG} that includes a policy network and a retriever. The policy network can serve as 1) a decision maker that decides when to retrieve, 2) a query rewriter to generate a query most suited to the retriever, and 3) an answer generator that produces the final response with/without the observations. We then propose to jointly optimize the whole system using a reinforcement learning algorithm, with the reward designed to encourage the system to achieve the best performance with minimal retrieval cost. When jointly optimized, all the modules can be aware of how other modules are working and thus find the best way to work together as a complete system. Empirical results demonstrate that the jointly optimized SmartRAG can achieve better performance than separately optimized counterparts.
♻ ☆ Detecting mental disorder on social media: a ChatGPT-augmented explainable approach
In the digital era, the prevalence of depressive symptoms expressed on social media has raised serious concerns, necessitating advanced methodologies for timely detection. This paper addresses the challenge of interpretable depression detection by proposing a novel methodology that effectively combines Large Language Models (LLMs) with eXplainable Artificial Intelligence (XAI) and conversational agents like ChatGPT. In our methodology, explanations are achieved by integrating BERTweet, a Twitter-specific variant of BERT, into a novel self-explanatory model, namely BERT-XDD, capable of providing both classification and explanations via masked attention. The interpretability is further enhanced using ChatGPT to transform technical explanations into human-readable commentaries. By introducing an effective and modular approach for interpretable depression detection, our methodology can contribute to the development of socially responsible digital platforms, fostering early intervention and support for mental health challenges under the guidance of qualified healthcare professionals.
Second FRCSyn-onGoing: Winning Solutions and Post-Challenge Analysis to Improve Face Recognition with Synthetic Data
Synthetic data is gaining increasing popularity for face recognition technologies, mainly due to the privacy concerns and challenges associated with obtaining real data, including diverse scenarios, quality, and demographic groups, among others. It also offers some advantages over real data, such as the large amount of data that can be generated or the ability to customize it to adapt to specific problem-solving needs. To effectively use such data, face recognition models should also be specifically designed to exploit synthetic data to its fullest potential. In order to promote the proposal of novel Generative AI methods and synthetic data, and investigate the application of synthetic data to better train face recognition systems, we introduce the 2nd FRCSyn-onGoing challenge, based on the 2nd Face Recognition Challenge in the Era of Synthetic Data (FRCSyn), originally launched at CVPR 2024. This is an ongoing challenge that provides researchers with an accessible platform to benchmark i) the proposal of novel Generative AI methods and synthetic data, and ii) novel face recognition systems that are specifically proposed to take advantage of synthetic data. We focus on exploring the use of synthetic data both individually and in combination with real data to solve current challenges in face recognition such as demographic bias, domain adaptation, and performance constraints in demanding situations, such as age disparities between training and testing, changes in the pose, or occlusions. Very interesting findings are obtained in this second edition, including a direct comparison with the first one, in which synthetic databases were restricted to DCFace and GANDiffFace.
comment: Accepted in Information Fusion
♻ ☆ Length-Controlled AlpacaEval: A Simple Way to Debias Automatic Evaluators
LLM-based auto-annotators have become a key component of the LLM development process due to their cost-effectiveness and scalability compared to human-based evaluation. However, these auto-annotators can introduce biases that are hard to remove. Even simple, known confounders such as preference for longer outputs remain in existing automated evaluation metrics. We propose a simple regression analysis approach for controlling biases in auto-evaluations. As a real case study, we focus on reducing the length bias of AlpacaEval, a fast and affordable benchmark for instruction-tuned LLMs that uses LLMs to estimate response quality. Despite being highly correlated with human preferences, AlpacaEval is known to favor models that generate longer outputs. We introduce a length-controlled AlpacaEval that aims to answer the counterfactual question: "What would the preference be if the model's and baseline's output had the same length?" To achieve this, we first fit a generalized linear model to predict the biased auto-annotator's preferences based on the mediators we want to control for (length difference) and other relevant features. We then obtain length-controlled preferences by predicting preferences while conditioning the GLM with a zero difference in lengths. Length-controlling not only improves the robustness of the metric to manipulations in model verbosity, but we also find that it increases the Spearman correlation with LMSYS Chatbot Arena from 0.94 to 0.98.
comment: COLM 2024
♻ ☆ Dynamic Mixture of Experts: An Auto-Tuning Approach for Efficient Transformer Models ICLR 2025
The Sparse Mixture of Experts (SMoE) has been widely employed to enhance the efficiency of training and inference for Transformer-based foundational models, yielding promising results.However, the performance of SMoE heavily depends on the choice of hyper-parameters, such as the number of experts and the number of experts to be activated (referred to as top-k), resulting in significant computational overhead due to the extensive model training by searching over various hyper-parameter configurations. As a remedy, we introduce the Dynamic Mixture of Experts (DynMoE) technique. DynMoE incorporates (1) a novel gating method that enables each token to automatically determine the number of experts to activate. (2) An adaptive process automatically adjusts the number of experts during training. Extensive numerical results across Vision, Language, and Vision-Language tasks demonstrate the effectiveness of our approach to achieve competitive performance compared to GMoE for vision and language tasks, and MoE-LLaVA for vision-language tasks, while maintaining efficiency by activating fewer parameters. Our code is available at https://github.com/LINs-lab/DynMoE.
comment: ICLR 2025
♻ ☆ SCANIA Component X Dataset: A Real-World Multivariate Time Series Dataset for Predictive Maintenance
Predicting failures and maintenance time in predictive maintenance is challenging due to the scarcity of comprehensive real-world datasets, and among those available, few are of time series format. This paper introduces a real-world, multivariate time series dataset collected exclusively from a single anonymized engine component (Component X) across a fleet of SCANIA trucks. The dataset includes operational data, repair records, and specifications related to Component X, while maintaining confidentiality through anonymization. It is well-suited for a range of machine learning applications, including classification, regression, survival analysis, and anomaly detection, particularly in predictive maintenance scenarios. The dataset's large population size, diverse features (in the form of histograms and numerical counters), and temporal information make it a unique resource in the field. The objective of releasing this dataset is to give a broad range of researchers the possibility of working with real-world data from an internationally well-known company and introduce a standard benchmark to the predictive maintenance field, fostering reproducible research.
comment: 12 pages, 8 figures
♻ ☆ Scalable Image Tokenization with Index Backpropagation Quantization
Existing vector quantization (VQ) methods struggle with scalability, largely attributed to the instability of the codebook that undergoes partial updates during training. The codebook is prone to collapse as utilization decreases, due to the progressively widening distribution gap between non-activated codes and visual features. To solve the problem, we propose Index Backpropagation Quantization (IBQ), a new VQ method for the joint optimization of all codebook embeddings and the visual encoder. Applying a straight-through estimator on the one-hot categorical distribution between the encoded feature and codebook, all codes are differentiable and maintain a consistent latent space with the visual encoder. IBQ enables scalable training of visual tokenizers and, for the first time, achieves a large-scale codebook ($2^{18}$) with high dimension ($256$) and high utilization. Experiments on the standard ImageNet benchmark demonstrate the scalability and superiority of IBQ, achieving competitive results on reconstruction and the application of autoregressive visual generation. The code and models are available at https://github.com/TencentARC/SEED-Voken.
♻ ☆ Large Language Model Enhanced Recommender Systems: A Survey
Large Language Model (LLM) has transformative potential in various domains, including recommender systems (RS). There have been a handful of research that focuses on empowering the RS by LLM. However, previous efforts mainly focus on LLM as RS, which may face the challenge of intolerant inference costs by LLM. Recently, the integration of LLM into RS, known as LLM-Enhanced Recommender Systems (LLMERS), has garnered significant interest due to its potential to address latency and memory constraints in real-world applications. This paper presents a comprehensive survey of the latest research efforts aimed at leveraging LLM to enhance RS capabilities. We identify a critical shift in the field with the move towards incorporating LLM into the online system, notably by avoiding their use during inference. Our survey categorizes the existing LLMERS approaches into three primary types based on the component of the RS model being augmented: Knowledge Enhancement, Interaction Enhancement, and Model Enhancement. We provide an in-depth analysis of each category, discussing the methodologies, challenges, and contributions of recent studies. Furthermore, we highlight several promising research directions that could further advance the field of LLMERS.
♻ ☆ RD Efficient FPGA Deployment of Learned Image Compression: Knowledge Distillation and Hybrid Quantization
Learnable Image Compression (LIC) has shown the potential to outperform standardized video codecs in RD efficiency, prompting the research for hardware-friendly implementations. Most existing LIC hardware implementations prioritize latency to RD-efficiency and through an extensive exploration of the hardware design space. We present a novel design paradigm where the burden of tuning the design for a specific hardware platform is shifted towards model dimensioning and without compromising on RD-efficiency. First, we design a framework for distilling a leaner student LIC model from a reference teacher: by tuning a single model hyperparameters, we can meet the constraints of different hardware platforms without a complex hardware design exploration. Second, we propose a hardware-friendly implementation of the Generalized Divisive Normalization (GDN) activation that preserves RD efficiency even post parameter quantization. Third, we design a pipelined FPGA configuration which takes full advantage of available FPGA resources by leveraging parallel processing and optimizing resource allocation. Our experiments with a state of the art LIC model show that we outperform all existing FPGA implementations while performing very close to the original model in terms of RD efficiency.
FonTS: Text Rendering with Typography and Style Controls
Visual text rendering are widespread in various real-world applications, requiring careful font selection and typographic choices. Recent progress in diffusion transformer (DiT)-based text-to-image (T2I) models show promise in automating these processes. However, these methods still encounter challenges like inconsistent fonts, style variation, and limited fine-grained control, particularly at the word-level. This paper proposes a two-stage DiT-based pipeline to address these problems by enhancing controllability over typography and style in text rendering. We introduce typography control fine-tuning (TC-FT), an parameter-efficient fine-tuning method (on $5\%$ key parameters) with enclosing typography control tokens (ETC-tokens), which enables precise word-level application of typographic features. To further address style inconsistency in text rendering, we propose a text-agnostic style control adapter (SCA) that prevents content leakage while enhancing style consistency. To implement TC-FT and SCA effectively, we incorporated HTML-render into the data synthesis pipeline and proposed the first word-level controllable dataset. Through comprehensive experiments, we demonstrate the effectiveness of our approach in achieving superior word-level typographic control, font consistency, and style consistency in text rendering tasks. The datasets and models will be available for academic use.
♻ ☆ Memorization in Attention-only Transformers AISTATS 2025
Recent research has explored the memorization capacity of multi-head attention, but these findings are constrained by unrealistic limitations on the context size. We present a novel proof for language-based Transformers that extends the current hypothesis to any context size. Our approach improves upon the state-of-the-art by achieving more effective exact memorization with an attention layer, while also introducing the concept of approximate memorization of distributions. Through experimental validation, we demonstrate that our proposed bounds more accurately reflect the true memorization capacity of language models, and provide a precise comparison with prior work.
comment: 16 pages, 6 figures, submitted to AISTATS 2025,
♻ ☆ Temporal Reversal Regularization for Spiking Neural Networks: Hybrid Spatio-Temporal Invariance for Generalization
Spiking neural networks (SNNs) have received widespread attention as an ultra-low power computing paradigm. Recent studies have shown that SNNs suffer from severe overfitting, which limits their generalization performance. In this paper, we propose a simple yet effective Temporal Reversal Regularization (TRR) to mitigate overfitting during training and facilitate generalization of SNNs. We exploit the inherent temporal properties of SNNs to perform input/feature temporal reversal perturbations, prompting the SNN to produce original-reversed consistent outputs and learn perturbation-invariant representations. To further enhance generalization, we utilize the lightweight ``star operation" (Hadamard product) for feature hybridization of original and temporally reversed spike firing rates, which expands the implicit dimensionality and acts as a spatio-temporal regularizer. We show theoretically that our method is able to tighten the upper bound of the generalization error, and extensive experiments on static/neuromorphic recognition as well as 3D point cloud classification tasks demonstrate its effectiveness, versatility, and adversarial robustness. In particular, our regularization significantly improves the recognition accuracy of low-latency SNN for neuromorphic objects, contributing to the real-world deployment of neuromorphic computational software-hardware integration.
comment: 17 pages, 9 figures
♻ ☆ English K_Quantization of LLMs Does Not Disproportionately Diminish Multilingual Performance
For consumer usage of locally deployed LLMs, the GGUF format and k\_quantization are invaluable tools for maintaining the performance of the original model while reducing it to sizes deployable with consumer-grade hardware. The number of bits dedicated to each weight from the original model is reduced based on how important they are thought to be during model inference. This importance is arrived at through the application of an 'importance matrix'-a relatively small text document meant to be representative of the LLM's standard use-cases. In the vast majority of quants available online, this document is primarily written in English. It was therefore an open question whether performance on English language tasks was preserved through the sacrifice of multilingual performance and whether it can be preserved with alternate importance matrices. This article investigates these hypotheses by quantizing Llama3.3 70B on importance matrices written in three languages (English, Norwegian, and Malayalam) and evaluating them on the MixEval dataset in both English and Norwegian. All experiments related to yielded non-significant results indicating that current quantization practices do not disproportionately harm multilingual performance.
comment: 8 pages, 6 figures, v2
♻ ☆ Learning Temporal Distances: Contrastive Successor Features Can Provide a Metric Structure for Decision-Making ICML 2024
Temporal distances lie at the heart of many algorithms for planning, control, and reinforcement learning that involve reaching goals, allowing one to estimate the transit time between two states. However, prior attempts to define such temporal distances in stochastic settings have been stymied by an important limitation: these prior approaches do not satisfy the triangle inequality. This is not merely a definitional concern, but translates to an inability to generalize and find shortest paths. In this paper, we build on prior work in contrastive learning and quasimetrics to show how successor features learned by contrastive learning (after a change of variables) form a temporal distance that does satisfy the triangle inequality, even in stochastic settings. Importantly, this temporal distance is computationally efficient to estimate, even in high-dimensional and stochastic settings. Experiments in controlled settings and benchmark suites demonstrate that an RL algorithm based on these new temporal distances exhibits combinatorial generalization (i.e., "stitching") and can sometimes learn more quickly than prior methods, including those based on quasimetrics.
comment: Proceedings of the 41st International Conference on Machine Learning (ICML 2024)
♻ ☆ Offline Adaptation of Quadruped Locomotion using Diffusion Models
We present a diffusion-based approach to quadrupedal locomotion that simultaneously addresses the limitations of learning and interpolating between multiple skills and of (modes) offline adapting to new locomotion behaviours after training. This is the first framework to apply classifier-free guided diffusion to quadruped locomotion and demonstrate its efficacy by extracting goal-conditioned behaviour from an originally unlabelled dataset. We show that these capabilities are compatible with a multi-skill policy and can be applied with little modification and minimal compute overhead, i.e., running entirely on the robots onboard CPU. We verify the validity of our approach with hardware experiments on the ANYmal quadruped platform.
♻ ☆ Leveraging Dual Process Theory in Language Agent Framework for Real-time Simultaneous Human-AI Collaboration
Agents built on large language models (LLMs) have excelled in turn-by-turn human-AI collaboration but struggle with simultaneous tasks requiring real-time interaction. Latency issues and the challenge of inferring variable human strategies hinder their ability to make autonomous decisions without explicit instructions. Through experiments with current independent System 1 and System 2 methods, we validate the necessity of using Dual Process Theory (DPT) in real-time tasks. We propose DPT-Agent, a novel language agent framework that integrates System 1 and System 2 for efficient real-time simultaneous human-AI collaboration. DPT-Agent's System 1 uses a Finite-state Machine (FSM) and code-as-policy for fast, intuitive, and controllable decision-making. DPT-Agent's System 2 integrates Theory of Mind (ToM) and asynchronous reflection to infer human intentions and perform reasoning-based autonomous decisions. We demonstrate the effectiveness of DPT-Agent through further experiments with rule-based agents and human collaborators, showing significant improvements over mainstream LLM-based frameworks. DPT-Agent can effectively help LLMs convert correct slow thinking and reasoning into executable actions, thereby improving performance. To the best of our knowledge, DPT-Agent is the first language agent framework that achieves successful real-time simultaneous human-AI collaboration autonomously. Code of DPT-Agent can be found in https://github.com/sjtu-marl/DPT-Agent.
comment: Preprint under review. Update the experimental results of the DeepSeek-R1 series models, QwQ-32b, o3-mini-high and o3-mini-medium
♻ ☆ Differentially Private Zeroth-Order Methods for Scalable Large Language Model Finetuning
Fine-tuning on task-specific datasets is a widely-embraced paradigm of harnessing the powerful capability of pretrained LLMs for various downstream tasks. Due to the popularity of LLMs fine-tuning and its accompanying privacy concerns, differentially private (DP) fine-tuning of pretrained LLMs has been widely used to safeguarding the privacy of task-specific datasets. Lying at the design core of DP LLM fine-tuning methods is the satisfactory tradeoff among privacy, utility, and scalability. Most existing methods build upon the seminal work of DP-SGD. Despite pushing the scalability of DP-SGD to its limit, DP-SGD-based fine-tuning methods are unfortunately limited by the inherent inefficiency of SGD. In this paper, we investigate the potential of DP zeroth-order methods for LLM pretraining, which avoids the scalability bottleneck of SGD by approximating the gradient with the more efficient zeroth-order gradient. Rather than treating the zeroth-order method as a drop-in replacement for SGD, this paper presents a comprehensive study both theoretically and empirically. First, we propose the stagewise DP zeroth-order method (DP-ZOSO) that dynamically schedules key hyperparameters. This design is grounded on the synergy between DP random perturbation and the gradient approximation error of the zeroth-order method, and its effect on fine-tuning trajectory. We provide theoretical analysis for both proposed methods. We conduct extensive empirical analysis on both encoder-only masked language model and decoder-only autoregressive language model, achieving impressive results in terms of scalability and utility regardless of the class of tasks (compared with DPZero, DP-ZOPO improves $4.5\%$ on SST-5, $5.5\%$ on MNLI with RoBERTa-Large and 9.2\% on CB, 3.9\% on BoolQ with OPT-2.7b when $\epsilon=4$, demonstrates more significant enhancement in performance on more complicated tasks).
♻ ☆ PanguIR Technical Report for NTCIR-18 AEOLLM Task
As large language models (LLMs) gain widespread attention in both academia and industry, it becomes increasingly critical and challenging to effectively evaluate their capabilities. Existing evaluation methods can be broadly categorized into two types: manual evaluation and automatic evaluation. Manual evaluation, while comprehensive, is often costly and resource-intensive. Conversely, automatic evaluation offers greater scalability but is constrained by the limitations of its evaluation criteria (dominated by reference-based answers). To address these challenges, NTCIR-18 introduced the AEOLLM (Automatic Evaluation of LLMs) task, aiming to encourage reference-free evaluation methods that can overcome the limitations of existing approaches. In this paper, to enhance the evaluation performance of the AEOLLM task, we propose three key methods to improve the reference-free evaluation: 1) Multi-model Collaboration: Leveraging multiple LLMs to approximate human ratings across various subtasks; 2) Prompt Auto-optimization: Utilizing LLMs to iteratively refine the initial task prompts based on evaluation feedback from training samples; and 3) In-context Learning (ICL) Optimization: Based on the multi-task evaluation feedback, we train a specialized in-context example retrieval model, combined with a semantic relevance retrieval model, to jointly identify the most effective in-context learning examples. Experiments conducted on the final dataset demonstrate that our approach achieves superior performance on the AEOLLM task.
♻ ☆ Data-driven inventory management for new products: An adjusted Dyna-$Q$ approach with transfer learning
In this paper, we propose a novel reinforcement learning algorithm for inventory management of newly launched products with no historical demand information. The algorithm follows the classic Dyna-$Q$ structure, balancing the model-free and model-based approaches, while accelerating the training process of Dyna-$Q$ and mitigating the model discrepancy generated by the model-based feedback. Based on the idea of transfer learning, warm-start information from the demand data of existing similar products can be incorporated into the algorithm to further stabilize the early-stage training and reduce the variance of the estimated optimal policy. Our approach is validated through a case study of bakery inventory management with real data. The adjusted Dyna-$Q$ shows up to a 23.7\% reduction in average daily cost compared with $Q$-learning, and up to a 77.5\% reduction in training time within the same horizon compared with classic Dyna-$Q$. By using transfer learning, it can be found that the adjusted Dyna-$Q$ has the lowest total cost, lowest variance in total cost, and relatively low shortage percentages among all the benchmarking algorithms under a 30-day testing.
comment: 7 pages, 3 figures
♻ ☆ Motion Dreamer: Boundary Conditional Motion Reasoning for Physically Coherent Video Generation
Recent advances in video generation have shown promise for generating future scenarios, critical for planning and control in autonomous driving and embodied intelligence. However, real-world applications demand more than visually plausible predictions; they require reasoning about object motions based on explicitly defined boundary conditions, such as initial scene image and partial object motion. We term this capability Boundary Conditional Motion Reasoning. Current approaches either neglect explicit user-defined motion constraints, producing physically inconsistent motions, or conversely demand complete motion inputs, which are rarely available in practice. Here we introduce Motion Dreamer, a two-stage framework that explicitly separates motion reasoning from visual synthesis, addressing these limitations. Our approach introduces instance flow, a sparse-to-dense motion representation enabling effective integration of partial user-defined motions, and the motion inpainting strategy to robustly enable reasoning motions of other objects. Extensive experiments demonstrate that Motion Dreamer significantly outperforms existing methods, achieving superior motion plausibility and visual realism, thus bridging the gap towards practical boundary conditional motion reasoning. Our webpage is available: https://envision-research.github.io/MotionDreamer/.
♻ ☆ Chat-GPT: An AI Based Educational Revolution
The AI revolution is gathering momentum at an unprecedented rate. Over the past decade, we have witnessed a seemingly inevitable integration of AI in every facet of our lives. Much has been written about the potential revolutionary impact of AI in education. AI has the potential to completely revolutionise the educational landscape as we could see entire courses and degrees developed by programs such as ChatGPT. AI has the potential to develop courses, set assignments, grade and provide feedback to students much faster than a team of teachers. In addition, because of its dynamic nature, it has the potential to continuously improve its content. In certain fields such as computer science, where technology is continuously evolving, AI based applications can provide dynamically changing, relevant material to students. AI has the potential to replace entire degrees and may challenge the concept of higher education institutions. We could also see entire new disciplines emerge as a consequence of AI. This paper examines the practical impact of ChatGPT and why it is believed that its implementation is a critical step towards a new era of education. We investigate the impact that ChatGPT will have on learning, problem solving skills and cognitive ability of students. We examine the positives, negatives and many other aspects of AI and its applications throughout this paper.
♻ ☆ Learning Using a Single Forward Pass
We propose a learning algorithm to overcome the limitations of a traditional backpropagation in resource-constrained environments: Solo Pass Embedded Learning Algorithm (SPELA). SPELA is equipped with rapid learning capabilities and operates with local loss functions to update weights, significantly saving on resources allocated to the propagation of gradients and storing computational graphs while being sufficiently accurate. Consequently, SPELA can closely match backpropagation with less data, computing, storage, and power. Moreover, SPELA can effectively fine-tune pre-trained image recognition models for new tasks. Our results indicate that SPELA can be an ideal candidate for learning in resource-constrained edge AI applications.
♻ ☆ Stepwise Reasoning Error Disruption Attack of LLMs
Large language models (LLMs) have made remarkable strides in complex reasoning tasks, but their safety and robustness in reasoning processes remain underexplored. Existing attacks on LLM reasoning are constrained by specific settings or lack of imperceptibility, limiting their feasibility and generalizability. To address these challenges, we propose the Stepwise rEasoning Error Disruption (SEED) attack, which subtly injects errors into prior reasoning steps to mislead the model into producing incorrect subsequent reasoning and final answers. Unlike previous methods, SEED is compatible with zero-shot and few-shot settings, maintains the natural reasoning flow, and ensures covert execution without modifying the instruction. Extensive experiments on four datasets across four different models demonstrate SEED's effectiveness, revealing the vulnerabilities of LLMs to disruptions in reasoning processes. These findings underscore the need for greater attention to the robustness of LLM reasoning to ensure safety in practical applications.
♻ ☆ Enabling AI Scientists to Recognize Innovation: A Domain-Agnostic Algorithm for Assessing Novelty
In the pursuit of Artificial General Intelligence (AGI), automating the generation and evaluation of novel research ideas is a key challenge in AI-driven scientific discovery. This paper presents Relative Neighbor Density (RND), a domain-agnostic algorithm for novelty assessment in research ideas that overcomes the limitations of existing approaches by comparing an idea's local density with its adjacent neighbors' densities. We first developed a scalable methodology to create test set without expert labeling, addressing a fundamental challenge in novelty assessment. Using these test sets, we demonstrate that our RND algorithm achieves state-of-the-art (SOTA) performance in computer science (AUROC=0.820) and biomedical research (AUROC=0.765) domains. Most significantly, while SOTA models like Sonnet-3.7 and existing metrics show domain-specific performance degradation, RND maintains consistent accuracies across domains by its domain-invariant property, outperforming all benchmarks by a substantial margin (0.795 v.s. 0.597) on cross-domain evaluation. These results validate RND as a generalizable solution for automated novelty assessment in scientific research.
♻ ☆ Robi Butler: Multimodal Remote Interaction with a Household Robot Assistant ICRA 2025
Imagine a future when we can Zoom-call a robot to manage household chores remotely. This work takes one step in this direction. Robi Butler is a new household robot assistant that enables seamless multimodal remote interaction. It allows the human user to monitor its environment from a first-person view, issue voice or text commands, and specify target objects through hand-pointing gestures. At its core, a high-level behavior module, powered by Large Language Models (LLMs), interprets multimodal instructions to generate multistep action plans. Each plan consists of open-vocabulary primitives supported by vision-language models, enabling the robot to process both textual and gestural inputs. Zoom provides a convenient interface to implement remote interactions between the human and the robot. The integration of these components allows Robi Butler to ground remote multimodal instructions in real-world home environments in a zero-shot manner. We evaluated the system on various household tasks, demonstrating its ability to execute complex user commands with multimodal inputs. We also conducted a user study to examine how multimodal interaction influences user experiences in remote human-robot interaction. These results suggest that with the advances in robot foundation models, we are moving closer to the reality of remote household robot assistants.
comment: Accepted to ICRA 2025
♻ ☆ Hier-SLAM: Scaling-up Semantics in SLAM with a Hierarchically Categorical Gaussian Splatting ICRA 2025
We propose Hier-SLAM, a semantic 3D Gaussian Splatting SLAM method featuring a novel hierarchical categorical representation, which enables accurate global 3D semantic mapping, scaling-up capability, and explicit semantic label prediction in the 3D world. The parameter usage in semantic SLAM systems increases significantly with the growing complexity of the environment, making it particularly challenging and costly for scene understanding. To address this problem, we introduce a novel hierarchical representation that encodes semantic information in a compact form into 3D Gaussian Splatting, leveraging the capabilities of large language models (LLMs). We further introduce a novel semantic loss designed to optimize hierarchical semantic information through both inter-level and cross-level optimization. Furthermore, we enhance the whole SLAM system, resulting in improved tracking and mapping performance. Our \MethodName{} outperforms existing dense SLAM methods in both mapping and tracking accuracy, while achieving a 2x operation speed-up. Additionally, it achieves on-par semantic rendering performance compared to existing methods while significantly reducing storage and training time requirements. Rendering FPS impressively reaches 2,000 with semantic information and 3,000 without it. Most notably, it showcases the capability of handling the complex real-world scene with more than 500 semantic classes, highlighting its valuable scaling-up capability. The open-source code is available at https://github.com/LeeBY68/Hier-SLAM
comment: Accepted for publication at ICRA 2025. Code is available at https://github.com/LeeBY68/Hier-SLAM
♻ ☆ MomentSeeker: A Comprehensive Benchmark and A Strong Baseline For Moment Retrieval Within Long Videos
Retrieval augmented generation (RAG) holds great promise in addressing challenges associated with long video understanding. These methods retrieve useful moments from long videos for their presented tasks, thereby enabling multimodal large language models (MLLMs) to generate high-quality answers in a cost-effective way. In this work, we present MomentSeeker, a comprehensive benchmark to evaluate retrieval models' performance in handling general long-video moment retrieval (LVMR) tasks. MomentSeeker offers three key advantages. First, it incorporates long videos of over 500 seconds on average, making it the first benchmark specialized for long-video moment retrieval. Second, it covers a wide range of task categories (including Moment Search, Caption Alignment, Image-conditioned Moment Search, and Video-conditioned Moment Search) and diverse application scenarios (e.g., sports, movies, cartoons, and ego), making it a comprehensive tool for assessing retrieval models' general LVMR performance. Additionally, the evaluation tasks are carefully curated through human annotation, ensuring the reliability of assessment. We further fine-tune an MLLM-based LVMR retriever on synthetic data, which demonstrates strong performance on our benchmark. We perform extensive experiments with various popular multimodal retrievers based on our benchmark, whose results highlight the challenges of LVMR and limitations for existing methods. Our created resources will be shared with community to advance future research in this field.
♻ ☆ DECO: Life-Cycle Management of Enterprise-Grade Copilots
Software engineers frequently grapple with the challenge of accessing disparate documentation and telemetry data, including TroubleShooting Guides (TSGs), incident reports, code repositories, and various internal tools developed by multiple stakeholders. While on-call duties are inevitable, incident resolution becomes even more daunting due to the obscurity of legacy sources and the pressures of strict time constraints. To enhance the efficiency of on-call engineers (OCEs) and streamline their daily workflows, we introduced DECO-a comprehensive framework for developing, deploying, and managing enterprise-grade copilots tailored to improve productivity in engineering routines. This paper details the design and implementation of the DECO framework, emphasizing its innovative NL2SearchQuery functionality and a lightweight agentic framework. These features support efficient and customized retrieval-augmented-generation (RAG) algorithms that not only extract relevant information from diverse sources but also select the most pertinent skills in response to user queries. This enables the addressing of complex technical questions and provides seamless, automated access to internal resources. Additionally, DECO incorporates a robust mechanism for converting unstructured incident logs into user-friendly, structured guides, effectively bridging the documentation gap. Since its launch in September 2023, DECO has demonstrated its effectiveness through widespread adoption, enabling tens of thousands of interactions and engaging hundreds of monthly active users (MAU) across dozens of organizations within the company.
♻ ☆ FFNet: MetaMixer-based Efficient Convolutional Mixer Design
Transformer, composed of self-attention and Feed-Forward Network, has revolutionized the landscape of network design across various vision tasks. While self-attention is extensively explored as a key factor in performance, FFN has received little attention. FFN is a versatile operator seamlessly integrated into nearly all AI models to effectively harness rich representations. Recent works also show that FFN functions like key-value memories. Thus, akin to the query-key-value mechanism within self-attention, FFN can be viewed as a memory network, where the input serves as query and the two projection weights operate as keys and values, respectively. Based on these observations, we hypothesize that the importance lies in query-key-value framework itself for competitive performance. To verify this, we propose converting self-attention into a more FFN-like efficient token mixer with only convolutions while retaining query-key-value framework, namely FFNification. Specifically, FFNification replaces query-key-value interactions with large kernel convolutions and adopts GELU activation function instead of softmax. The derived token mixer, FFNified attention, serves as key-value memories for detecting locally distributed spatial patterns, and operates in the opposite dimension to the ConvNeXt block within each corresponding sub-operation of the query-key-value framework. Building upon the above two modules, we present a family of Fast-Forward Networks (FFNet). Despite being composed of only simple operators, FFNet outperforms sophisticated and highly specialized methods in each domain, with notable efficiency gains. These results validate our hypothesis, leading us to propose MetaMixer, a general mixer architecture that does not specify sub-operations within the query-key-value framework.
comment: Code: https://github.com/ysj9909/FFNet
♻ ☆ Property Enhanced Instruction Tuning for Multi-task Molecule Generation with Large Language Models
Large language models (LLMs) are widely applied in various natural language processing tasks such as question answering and machine translation. However, due to the lack of labeled data and the difficulty of manual annotation for biochemical properties, the performance for molecule generation tasks is still limited, especially for tasks involving multi-properties constraints. In this work, we present a two-step framework PEIT (Property Enhanced Instruction Tuning) to improve LLMs for molecular-related tasks. In the first step, we use textual descriptions, SMILES, and biochemical properties as multimodal inputs to pre-train a model called PEIT-GEN, by aligning multi-modal representations to synthesize instruction data. In the second step, we fine-tune existing open-source LLMs with the synthesized data, the resulting PEIT-LLM can handle molecule captioning, text-based molecule generation, molecular property prediction, and our newly proposed multi-constraint molecule generation tasks. Experimental results show that our pre-trained PEIT-GEN outperforms MolT5 and BioT5 in molecule captioning, demonstrating modalities align well between textual descriptions, structures, and biochemical properties. Furthermore, PEIT-LLM shows promising improvements in multi-task molecule generation, proving the scalability of the PEIT framework for various molecular tasks. We release the code, constructed instruction data, and model checkpoints in https://github.com/chenlong164/PEIT.
comment: 9
♻ ☆ BioMaze: Benchmarking and Enhancing Large Language Models for Biological Pathway Reasoning
The applications of large language models (LLMs) in various biological domains have been explored recently, but their reasoning ability in complex biological systems, such as pathways, remains underexplored, which is crucial for predicting biological phenomena, formulating hypotheses, and designing experiments. This work explores the potential of LLMs in pathway reasoning. We introduce BioMaze, a dataset with 5.1K complex pathway problems derived from real research, covering various biological contexts including natural dynamic changes, disturbances, additional intervention conditions, and multi-scale research targets. Our evaluation of methods such as CoT and graph-augmented reasoning, shows that LLMs struggle with pathway reasoning, especially in perturbed systems. To address this, we propose PathSeeker, an LLM agent that enhances reasoning through interactive subgraph-based navigation, enabling a more effective approach to handling the complexities of biological systems in a scientifically aligned manner. The dataset and code are available at https://github.com/zhao-ht/BioMaze.
♻ ☆ TimeCAP: Learning to Contextualize, Augment, and Predict Time Series Events with Large Language Model Agents AAAI 2025
Time series data is essential in various applications, including climate modeling, healthcare monitoring, and financial analytics. Understanding the contextual information associated with real-world time series data is often essential for accurate and reliable event predictions. In this paper, we introduce TimeCAP, a time-series processing framework that creatively employs Large Language Models (LLMs) as contextualizers of time series data, extending their typical usage as predictors. TimeCAP incorporates two independent LLM agents: one generates a textual summary capturing the context of the time series, while the other uses this enriched summary to make more informed predictions. In addition, TimeCAP employs a multi-modal encoder that synergizes with the LLM agents, enhancing predictive performance through mutual augmentation of inputs with in-context examples. Experimental results on real-world datasets demonstrate that TimeCAP outperforms state-of-the-art methods for time series event prediction, including those utilizing LLMs as predictors, achieving an average improvement of 28.75% in F1 score.
comment: AAAI 2025
♻ ☆ Distributionally Robust Statistical Verification with Imprecise Neural Networks
A particularly challenging problem in AI safety is providing guarantees on the behavior of high-dimensional autonomous systems. Verification approaches centered around reachability analysis fail to scale, and purely statistical approaches are constrained by the distributional assumptions about the sampling process. Instead, we pose a distributionally robust version of the statistical verification problem for black-box systems, where our performance guarantees hold over a large family of distributions. This paper proposes a novel approach based on uncertainty quantification using concepts from imprecise probabilities. A central piece of our approach is an ensemble technique called Imprecise Neural Networks, which provides the uncertainty quantification. Additionally, we solve the allied problem of exploring the input set using active learning. The active learning uses an exhaustive neural-network verification tool Sherlock to collect samples. An evaluation on multiple physical simulators in the openAI gym Mujoco environments with reinforcement-learned controllers demonstrates that our approach can provide useful and scalable guarantees for high-dimensional systems.
♻ ☆ VCA: Video Curious Agent for Long Video Understanding
Long video understanding poses unique challenges due to their temporal complexity and low information density. Recent works address this task by sampling numerous frames or incorporating auxiliary tools using LLMs, both of which result in high computational costs. In this work, we introduce a curiosity-driven video agent with self-exploration capability, dubbed as VCA. Built upon VLMs, VCA autonomously navigates video segments and efficiently builds a comprehensive understanding of complex video sequences. Instead of directly sampling frames, VCA employs a tree-search structure to explore video segments and collect frames. Rather than relying on external feedback or reward, VCA leverages VLM's self-generated intrinsic reward to guide its exploration, enabling it to capture the most crucial information for reasoning. Experimental results on multiple long video benchmarks demonstrate our approach's superior effectiveness and efficiency.
♻ ☆ PP-DocBee: Improving Multimodal Document Understanding Through a Bag of Tricks
With the rapid advancement of digitalization, various document images are being applied more extensively in production and daily life, and there is an increasingly urgent need for fast and accurate parsing of the content in document images. Therefore, this report presents PP-DocBee, a novel multimodal large language model designed for end-to-end document image understanding. First, we develop a data synthesis strategy tailored to document scenarios in which we build a diverse dataset to improve the model generalization. Then, we apply a few training techniques, including dynamic proportional sampling, data preprocessing, and OCR postprocessing strategies. Extensive evaluations demonstrate the superior performance of PP-DocBee, achieving state-of-the-art results on English document understanding benchmarks and even outperforming existing open source and commercial models in Chinese document understanding. The source code and pre-trained models are publicly available at \href{https://github.com/PaddlePaddle/PaddleMIX}{https://github.com/PaddlePaddle/PaddleMIX}.
♻ ☆ G2PDiffusion: Cross-Species Genotype-to-Phenotype Prediction via Evolutionary Diffusion
Understanding how genes influence phenotype across species is a fundamental challenge in genetic engineering, which will facilitate advances in various fields such as crop breeding, conservation biology, and personalized medicine. However, current phenotype prediction models are limited to individual species and expensive phenotype labeling process, making the genotype-to-phenotype prediction a highly domain-dependent and data-scarce problem. To this end, we suggest taking images as morphological proxies, facilitating cross-species generalization through large-scale multimodal pretraining. We propose the first genotype-to-phenotype diffusion model (G2PDiffusion) that generates morphological images from DNA considering two critical evolutionary signals, i.e., multiple sequence alignments (MSA) and environmental contexts. The model contains three novel components: 1) a MSA retrieval engine that identifies conserved and co-evolutionary patterns; 2) an environment-aware MSA conditional encoder that effectively models complex genotype-environment interactions; and 3) an adaptive phenomic alignment module to improve genotype-phenotype consistency. Extensive experiments show that integrating evolutionary signals with environmental context enriches the model's understanding of phenotype variability across species, thereby offering a valuable and promising exploration into advanced AI-assisted genomic analysis.
♻ ☆ NeuroTree: Hierarchical Functional Brain Pathway Decoding for Mental Health Disorders
Analyzing functional brain networks using functional magnetic resonance imaging (fMRI) is crucial for understanding psychiatric disorders and addictive behaviors. While existing fMRI-based graph convolutional networks (GCNs) show considerable promise for feature extraction, they often fall short in characterizing complex relationships between brain regions and demographic factors and accounting for interpretable variables linked to psychiatric conditions. We propose NeuroTree to overcome these limitations, integrating a k-hop AGE-GCN with neural ordinary differential equations (ODEs). This framework leverages an attention mechanism to optimize functional connectivity (FC), thereby enhancing dynamic FC feature learning for brain disease classification. Furthermore, NeuroTree effectively decodes fMRI network features into tree structures, which improves the capture of high-order brain regional pathway features and enables the identification of hierarchical neural behavioral patterns essential for understanding disease-related brain subnetworks. Our empirical evaluations demonstrate that NeuroTree achieves state-of-the-art performance across two distinct mental disorder datasets and provides valuable insights into age-related deterioration patterns. These findings underscore the model's efficacy in predicting psychiatric disorders and elucidating their underlying neural mechanisms.
♻ ☆ A Survey on Point-of-Interest Recommendation: Models, Architectures, and Security
The widespread adoption of smartphones and Location-Based Social Networks has led to a massive influx of spatio-temporal data, creating unparalleled opportunities for enhancing Point-of-Interest (POI) recommendation systems. These advanced POI systems are crucial for enriching user experiences, enabling personalized interactions, and optimizing decision-making processes in the digital landscape. However, existing surveys tend to focus on traditional approaches and few of them delve into cutting-edge developments, emerging architectures, as well as security considerations in POI recommendations. To address this gap, our survey stands out by offering a comprehensive, up-to-date review of POI recommendation systems, covering advancements in models, architectures, and security aspects. We systematically examine the transition from traditional models to advanced techniques such as large language models. Additionally, we explore the architectural evolution from centralized to decentralized and federated learning systems, highlighting the improvements in scalability and privacy. Furthermore, we address the increasing importance of security, examining potential vulnerabilities and privacy-preserving approaches. Our taxonomy provides a structured overview of the current state of POI recommendation, while we also identify promising directions for future research in this rapidly advancing field.
comment: 20 pages
♻ ☆ Exploring the Adversarial Vulnerabilities of Vision-Language-Action Models in Robotics
Recently in robotics, Vision-Language-Action (VLA) models have emerged as a transformative approach, enabling robots to execute complex tasks by integrating visual and linguistic inputs within an end-to-end learning framework. While VLA models offer significant capabilities, they also introduce new attack surfaces, making them vulnerable to adversarial attacks. With these vulnerabilities largely unexplored, this paper systematically quantifies the robustness of VLA-based robotic systems. Recognizing the unique demands of robotic execution, our attack objectives target the inherent spatial and functional characteristics of robotic systems. In particular, we introduce two untargeted attack objectives that leverage spatial foundations to destabilize robotic actions, and a targeted attack objective that manipulates the robotic trajectory. Additionally, we design an adversarial patch generation approach that places a small, colorful patch within the camera's view, effectively executing the attack in both digital and physical environments. Our evaluation reveals a marked degradation in task success rates, with up to a 100\% reduction across a suite of simulated robotic tasks, highlighting critical security gaps in current VLA architectures. By unveiling these vulnerabilities and proposing actionable evaluation metrics, we advance both the understanding and enhancement of safety for VLA-based robotic systems, underscoring the necessity for continuously developing robust defense strategies prior to physical-world deployments.
comment: Github: https://github.com/William-wAng618/roboticAttack Homepage: https://vlaattacker.github.io/
♻ ☆ Rethinking Diffusion-Based Image Generators for Fundus Fluorescein Angiography Synthesis on Limited Data
Fundus imaging is a critical tool in ophthalmology, with different imaging modalities offering unique advantages. For instance, fundus fluorescein angiography (FFA) can accurately identify eye diseases. However, traditional invasive FFA involves the injection of sodium fluorescein, which can cause discomfort and risks. Generating corresponding FFA images from non-invasive fundus images holds significant practical value but also presents challenges. First, limited datasets constrain the performance and effectiveness of models. Second, previous studies have primarily focused on generating FFA for single diseases or single modalities, often resulting in poor performance for patients with various ophthalmic conditions. To address these issues, we propose a novel latent diffusion model-based framework, Diffusion, which introduces a fine-tuning protocol to overcome the challenge of limited medical data and unleash the generative capabilities of diffusion models. Furthermore, we designed a new approach to tackle the challenges of generating across different modalities and disease types. On limited datasets, our framework achieves state-of-the-art results compared to existing methods, offering significant potential to enhance ophthalmic diagnostics and patient care. Our code will be released soon to support further research in this field.
comment: The first author has a conflict with the data access authority
♻ ☆ EvoAgent: Towards Automatic Multi-Agent Generation via Evolutionary Algorithms NAACL 2025
The rise of powerful large language models (LLMs) has spurred a new trend in building LLM-based autonomous agents for solving complex tasks, especially multi-agent systems. Despite the remarkable progress, we notice that existing works are heavily dependent on human-designed frameworks, which greatly limits the functional scope and scalability of agent systems. How to automatically extend the specialized agent to multi-agent systems to improve task-solving capability still remains a significant challenge. In this paper, we introduce EvoAgent, a generic method to automatically extend specialized agents to multi-agent systems via the evolutionary algorithm, thereby improving the effectiveness of LLM-based agents in solving tasks. Specifically, we consider the existing agent frameworks as the initial individual and then apply a series of evolutionary operators (e.g., mutation, crossover, selection, etc.) to generate multiple agents with diverse settings. Experimental results across various tasks show that EvoAgent can significantly enhance the task-solving capability of LLM-based agents, and can be generalized to any LLM-based agent framework to extend them into multi-agent systems. Resources are available at https://evo-agent.github.io/.
comment: Accepted as a main conference paper at NAACL 2025
♻ ☆ The Devil Is in the Details: Tackling Unimodal Spurious Correlations for Generalizable Multimodal Reward Models
Multimodal Reward Models (MM-RMs) are crucial for aligning Large Language Models (LLMs) with human preferences, particularly as LLMs increasingly interact with multimodal data. However, we find that MM-RMs trained on existing datasets often struggle to generalize to out-of-distribution data due to their reliance on unimodal spurious correlations, primarily text-only shortcuts within the training distribution, which prevents them from leveraging true multimodal reward functions. To address this, we introduce a Shortcut-aware MM-RM learning algorithm that mitigates this issue by dynamically reweighting training samples, shifting the distribution toward better multimodal understanding, and reducing dependence on unimodal spurious correlations. Our experiments demonstrate significant improvements in generalization, downstream task performance, and scalability, establishing a more robust framework for multimodal reward modeling.
♻ ☆ Competing LLM Agents in a Non-Cooperative Game of Opinion Polarisation
We introduce a novel non-cooperative game to analyse opinion formation and resistance, incorporating principles from social psychology such as confirmation bias, resource constraints, and influence penalties. Our simulation features Large Language Model (LLM) agents competing to influence a population, with penalties imposed for generating messages that propagate or counter misinformation. This framework integrates resource optimisation into the agents' decision-making process. Our findings demonstrate that while higher confirmation bias strengthens opinion alignment within groups, it also exacerbates overall polarisation. Conversely, lower confirmation bias leads to fragmented opinions and limited shifts in individual beliefs. Investing heavily in a high-resource debunking strategy can initially align the population with the debunking agent, but risks rapid resource depletion and diminished long-term influence.
♻ ☆ Why Vision Language Models Struggle with Visual Arithmetic? Towards Enhanced Chart and Geometry Understanding
Vision Language Models (VLMs) have achieved remarkable progress in multimodal tasks, yet they often struggle with visual arithmetic, seemingly simple capabilities like object counting or length comparison, which are essential for relevant complex tasks like chart understanding and geometric reasoning. In this work, we first investigate the root causes of this deficiency through a suite of probing tasks focusing on basic visual arithmetic. Our analysis reveals that while pre-trained vision encoders typically capture sufficient information, the text decoder often fails to decode it correctly for arithmetic reasoning. To address this, we propose CogAlign, a novel post-training strategy inspired by Piaget's theory of cognitive development. CogAlign trains VLMs to recognize invariant properties under visual transformations. We demonstrate that this approach significantly improves the performance of three diverse VLMs on our proposed probing tasks. Furthermore, CogAlign enhances performance by an average of 4.6% on CHOCOLATE and 2.9% on MATH-VISION, outperforming or matching supervised fine-tuning methods while requiring only 60% less training data. These results highlight the effectiveness and generalizability of CogAlign in improving fundamental visual arithmetic capabilities and their transfer to downstream tasks.
comment: Code and data are available at https://github.com/SalesforceAIResearch/CogAlign
♻ ☆ Is attention all you need to solve the correlated electron problem?
The attention mechanism has transformed artificial intelligence research by its ability to learn relations between objects. In this work, we explore how a many-body wavefunction ansatz constructed from a large-parameter self-attention neural network can be used to solve the interacting electron problem in solids. By a systematic neural-network variational Monte Carlo study on a moir\'e quantum material, we demonstrate that the self-attention ansatz provides an accurate, efficient, and unbiased solution. Moreover, our numerical study finds that the required number of variational parameters scales roughly as $N^2$ with the number of electrons, which opens a path towards efficient large-scale simulations.
comment: 10+5 pages, comments welcome; v2: update refs, extend ED results
♻ ☆ Mitigating Domain Shift in Federated Learning via Intra- and Inter-Domain Prototypes
Federated Learning (FL) has emerged as a decentralized machine learning technique, allowing clients to train a global model collaboratively without sharing private data. However, most FL studies ignore the crucial challenge of heterogeneous domains where each client has a distinct feature distribution, which is popular in real-world scenarios. Prototype learning, which leverages the mean feature vectors within the same classes, has become a prominent solution for federated learning under domain shift. However, existing federated prototype learning methods focus soley on inter-domain prototypes and neglect intra-domain perspectives. In this work, we introduce a novel federated prototype learning method, namely I$^2$PFL, which incorporates $\textbf{I}$ntra-domain and $\textbf{I}$nter-domain $\textbf{P}$rototypes, to mitigate domain shift from both perspectives and learn a generalized global model across multiple domains in federated learning. To construct intra-domain prototypes, we propose feature alignment with MixUp-based augmented prototypes to capture the diversity within local domains and enhance the generalization of local features. Additionally, we introduce a reweighting mechanism for inter-domain prototypes to generate generalized prototypes that reduce domain shift while providing inter-domain knowledge across multiple clients. Extensive experiments on the Digits, Office-10, and PACS datasets illustrate the superior performance of our method compared to other baselines.
comment: 13 pages, 11 figures, 7 tables
♻ ☆ Cite Before You Speak: Enhancing Context-Response Grounding in E-commerce Conversational LLM-Agents
With the advancement of conversational large language models (LLMs), several LLM-based Conversational Shopping Agents (CSA) have been developed to help customers answer questions and smooth their shopping journey in e-commerce domain. The primary objective in building a trustworthy CSA is to ensure the agent's responses are accurate and factually grounded, which is essential for building customer trust and encouraging continuous engagement. However, two challenges remain. First, LLMs produce hallucinated or unsupported claims. Such inaccuracies risk spreading misinformation and diminishing customer trust. Second, without providing knowledge source attribution in CSA response, customers struggle to verify LLM-generated information. To address these challenges, we present an easily productionized solution that enables a "citation experience" utilizing In-context Learning (ICL) and Multi-UX-Inference (MUI) to generate responses with citations to attribute its original sources without interfering other existing UX features. With proper UX design, these citation marks can be linked to the related product information and display the source to our customers. In this work, we also build auto-metrics and scalable benchmarks to holistically evaluate LLM's grounding and attribution capabilities. Our experiments demonstrate that incorporating this citation generation paradigm can substantially enhance the grounding of LLM responses by 13.83% on the real-world data. As such, our solution not only addresses the immediate challenges of LLM grounding issues but also adds transparency to conversational AI.
♻ ☆ Assessing LLMs for Front-end Software Architecture Knowledge ICSE 2025
Large Language Models (LLMs) have demonstrated significant promise in automating software development tasks, yet their capabilities with respect to software design tasks remains largely unclear. This study investigates the capabilities of an LLM in understanding, reproducing, and generating structures within the complex VIPER architecture, a design pattern for iOS applications. We leverage Bloom's taxonomy to develop a comprehensive evaluation framework to assess the LLM's performance across different cognitive domains such as remembering, understanding, applying, analyzing, evaluating, and creating. Experimental results, using ChatGPT 4 Turbo 2024-04-09, reveal that the LLM excelled in higher-order tasks like evaluating and creating, but faced challenges with lower-order tasks requiring precise retrieval of architectural details. These findings highlight both the potential of LLMs to reduce development costs and the barriers to their effective application in real-world software design scenarios. This study proposes a benchmark format for assessing LLM capabilities in software architecture, aiming to contribute toward more robust and accessible AI-driven development tools.
comment: 4 pages, 1 figure, to appear in the International Workshop on Designing Software at ICSE 2025
♻ ☆ Robust Multimodal Learning via Cross-Modal Proxy Tokens
Multimodal models often experience a significant performance drop when one or more modalities are missing during inference. To address this challenge, we propose a simple yet effective approach that enhances robustness to missing modalities while maintaining strong performance when all modalities are available. Our method introduces cross-modal proxy tokens (CMPTs), which approximate the class token of a missing modality by attending only to the tokens of the available modality. To efficiently learn the approximation for the missing modality via CMPTs with minimal computational overhead, we employ low-rank adapters in frozen unimodal encoders and jointly optimize an alignment loss with a task-specific loss. Extensive experiments on five multimodal datasets show that our method outperforms state-of-the-art baselines across various missing rates while achieving competitive results in complete-modality settings. Overall, our method offers a flexible and efficient solution for robust multimodal learning. The code and pretrained models will be released on GitHub.
comment: 17 Pages, 10 Figures, 6 Tables
♻ ☆ Scene-Aware Explainable Multimodal Trajectory Prediction
Advancements in intelligent technologies have significantly improved navigation in complex traffic environments by enhancing environment perception and trajectory prediction for automated vehicles. However, current research often overlooks the joint reasoning of scenario agents and lacks explainability in trajectory prediction models, limiting their practical use in real-world situations. To address this, we introduce the Explainable Conditional Diffusion-based Multimodal Trajectory Prediction (DMTP) model, which is designed to elucidate the environmental factors influencing predictions and reveal the underlying mechanisms. Our model integrates a modified conditional diffusion approach to capture multimodal trajectory patterns and employs a revised Shapley Value model to assess the significance of global and scenario-specific features. Experiments using the Waymo Open Motion Dataset demonstrate that our explainable model excels in identifying critical inputs and significantly outperforms baseline models in accuracy. Moreover, the factors identified align with the human driving experience, underscoring the model's effectiveness in learning accurate predictions. Code is available in our open-source repository: https://github.com/ocean-luna/Explainable-Prediction.
♻ ☆ FUIA: Model Inversion Attack against Federated Unlearning
With the introduction of regulations related to the ``right to be forgotten", federated learning (FL) is facing new privacy compliance challenges. To address these challenges, researchers have proposed federated unlearning (FU). However, existing FU research has primarily focused on improving the efficiency of unlearning, with less attention paid to the potential privacy vulnerabilities inherent in these methods. To address this gap, we draw inspiration from gradient inversion attacks in FL and propose the federated unlearning inversion attack (FUIA). The FUIA is specifically designed for the three types of FU (sample unlearning, client unlearning, and class unlearning), aiming to provide a comprehensive analysis of the privacy leakage risks associated with FU. In FUIA, the server acts as an honest-but-curious attacker, recording and exploiting the model differences before and after unlearning to expose the features and labels of forgotten data. FUIA significantly leaks the privacy of forgotten data and can target all types of FU. This attack contradicts the goal of FU to eliminate specific data influence, instead exploiting its vulnerabilities to recover forgotten data and expose its privacy flaws. Extensive experimental results show that FUIA can effectively reveal the private information of forgotten data. To mitigate this privacy leakage, we also explore two potential defense methods, although these come at the cost of reduced unlearning effectiveness and the usability of the unlearned model.
♻ ☆ Fourier Head: Helping Large Language Models Learn Complex Probability Distributions ICLR 2025
As the quality of large language models has improved, there has been increased interest in using them to model non-linguistic tokens. For example, the Decision Transformer recasts agentic decision making as a sequence modeling problem, using a decoder-only LLM to model the distribution over the discrete action space for an Atari agent. However, when adapting LLMs to non-linguistic domains, it remains unclear if softmax over discrete bins captures the continuous structure of the tokens and the potentially complex distributions needed for high quality token generation. We introduce a neural network layer, constructed using Fourier series, which we can easily substitute for any linear layer if we want the outputs to have a more continuous structure. We perform extensive analysis on synthetic datasets, as well as on large-scale decision making and time series forecasting tasks. We also provide theoretical evidence that this layer can better learn signal from data while ignoring high-frequency noise. All of our results support the effectiveness of our proposed Fourier head in scenarios where the underlying data distribution has a natural continuous structure. For example, the Fourier head improves a Decision Transformer agent's returns across four benchmark Atari games by as much as 377%, and increases a state-of-the-art times series foundation model's forecasting performance by 3.5% across 20 benchmarks unseen during training.
comment: Camera ready version (ICLR 2025). Code at https://nategillman.com/fourier-head
♻ ☆ ASMA: An Adaptive Safety Margin Algorithm for Vision-Language Drone Navigation via Scene-Aware Control Barrier Functions
In the rapidly evolving field of vision-language navigation (VLN), ensuring safety for physical agents remains an open challenge. For a human-in-the-loop language-operated drone to navigate safely, it must understand natural language commands, perceive the environment, and simultaneously avoid hazards in real time. Control Barrier Functions (CBFs) are formal methods that enforce safe operating conditions. Model Predictive Control (MPC) is an optimization framework that plans a sequence of future actions over a prediction horizon, ensuring smooth trajectory tracking while obeying constraints. In this work, we consider a VLN-operated drone platform and enhance its safety by formulating a novel scene-aware CBF that leverages ego-centric observations from a camera which has both Red-Green-Blue as well as Depth (RGB-D) channels. A CBF-less baseline system uses a Vision-Language Encoder with cross-modal attention to convert commands into an ordered sequence of landmarks. An object detection model identifies and verifies these landmarks in the captured images to generate a planned path. To further enhance safety, an Adaptive Safety Margin Algorithm (ASMA) is proposed. ASMA tracks moving objects and performs scene-aware CBF evaluation on-the-fly, which serves as an additional constraint within the MPC framework. By continuously identifying potentially risky observations, the system performs prediction in real time about unsafe conditions and proactively adjusts its control actions to maintain safe navigation throughout the trajectory. Deployed on a Parrot Bebop2 quadrotor in the Gazebo environment using the Robot Operating System (ROS), ASMA achieves 64%-67% increase in success rates with only a slight increase (1.4%-5.8%) in trajectory lengths compared to the baseline CBF-less VLN.
♻ ☆ How Data Inter-connectivity Shapes LLMs Unlearning: A Structural Unlearning Perspective
While unlearning knowledge from large language models (LLMs) is receiving increasing attention, one important aspect remains unexplored. Existing approaches and benchmarks assume data points to-be-forgotten are independent, ignoring their inter-connectivity - a fundamental characteristic of real-world data structures. In this paper, we propose PISTOL, a method for compiling structural datasets. PISTOL leverages the inherently structured nature of contractual relationships, offering several key benefits. First, it enables insights into the impact of structural data on unlearning effectiveness. Second, it provides precise and concise ground truths for clearer evaluation. Third, its attribute generation does not require input from pre-trained LLMs, mitigating confounding risks. Leveraging datasets synthesized using PISTOL, we demonstrate how data inter-connectivity impacts LLM unlearning. Specifically, (a) in both the pre-trained and fine-tuned models, unlearning difficulty increases as data inter-connectivity grows, (b) there is a positive correlation between the density of the knowledge graph and unlearning difficulty, and (c) when the to-be-forgotten data is skewed towards one domain, balancing retaining performance across all domains is challenging.
♻ ☆ Is the House Ready For Sleeptime? Generating and Evaluating Situational Queries for Embodied Question Answering
We present and tackle the problem of Embodied Question Answering (EQA) with Situational Queries (S-EQA) in a household environment. Unlike prior EQA work tackling simple queries that directly reference target objects and properties ("What is the color of the car?"), situational queries (such as "Is the house ready for sleeptime?") are challenging as they require the agent to correctly identify multiple object-states (Doors: Closed, Lights: Off, etc.) and reach a consensus on their states for an answer. Towards this objective, we first introduce a novel Prompt-Generate-Evaluate (PGE) scheme that wraps around an LLM's output to generate unique situational queries and corresponding consensus object information. PGE is used to generate 2K datapoints in the VirtualHome simulator, which is then annotated for ground truth answers via a large scale user-study conducted on M-Turk. With a high rate of answerability (97.26%) on this study, we establish that LLMs are good at generating situational data. However, in evaluating the data using an LLM, we observe a low correlation of 46.2% with the ground truth human annotations; indicating that while LLMs are good at generating situational data, they struggle to answer them according to consensus. When asked for reasoning, we observe the LLM often goes against commonsense in justifying its answer. Finally, we utilize PGE to generate situational data in a real-world environment, exposing LLM hallucination in generating reliable object-states when a structured scene graph is unavailable. To the best of our knowledge, this is the first work to introduce EQA in the context of situational queries and also the first to present a generative approach for query creation. We aim to foster research on improving the real-world usability of embodied agents through this work.
comment: 10 Pages
♻ ☆ SketchOGD: Memory-Efficient Continual Learning
When machine learning models are trained continually on a sequence of tasks, they are often liable to forget what they learned on previous tasks--a phenomenon known as catastrophic forgetting. Proposed solutions to catastrophic forgetting tend to involve storing information about past tasks, meaning that memory usage is a chief consideration in determining their practicality. This paper develops a memory-efficient solution to catastrophic forgetting using the idea of matrix sketching, in the context of a simple continual learning algorithm known as orthogonal gradient descent (OGD). OGD finds weight updates that aim to preserve performance on prior datapoints, using gradients of the model on those datapoints. However, since the memory cost of storing prior model gradients grows with the runtime of the algorithm, OGD is ill-suited to continual learning over long time horizons. To address this problem, we propose SketchOGD. SketchOGD employs an online sketching algorithm to compress model gradients as they are encountered into a matrix of a fixed, user-determined size. In contrast to existing memory-efficient variants of OGD, SketchOGD runs online without the need for advance knowledge of the total number of tasks, is simple to implement, and is more amenable to analysis. We provide theoretical guarantees on the approximation error of the relevant sketches under a novel metric suited to the downstream task of OGD. Experimentally, we find that SketchOGD tends to outperform current state-of-the-art variants of OGD given a fixed memory budget.
♻ ☆ MTA: Multimodal Task Alignment for BEV Perception and Captioning
Bird's eye view (BEV)-based 3D perception plays a crucial role in autonomous driving applications. The rise of large language models has spurred interest in BEV-based captioning to understand object behavior in the surrounding environment. However, existing approaches treat perception and captioning as separate tasks, focusing on the performance of only one task and overlooking the potential benefits of multimodal alignment. To bridge this gap between modalities, we introduce MTA, a novel multimodal task alignment framework that boosts both BEV perception and captioning. MTA consists of two key components: (1) BEV-Language Alignment (BLA), a contextual learning mechanism that aligns the BEV scene representations with ground-truth language representations, and (2) Detection-Captioning Alignment (DCA), a cross-modal prompting mechanism that aligns detection and captioning outputs. MTA seamlessly integrates into state-of-the-art baselines during training, adding no extra computational complexity at runtime. Extensive experiments on the nuScenes and TOD3Cap datasets show that MTA significantly outperforms state-of-the-art baselines in both tasks, achieving a 10.7% improvement in challenging rare perception scenarios and a 9.2% improvement in captioning. These results underscore the effectiveness of unified alignment in reconciling BEV-based perception and captioning.
comment: 10 pages
♻ ☆ TexAVi: Generating Stereoscopic VR Video Clips from Text Descriptions
While generative models such as text-to-image, large language models and text-to-video have seen significant progress, the extension to text-to-virtual-reality remains largely unexplored, due to a deficit in training data and the complexity of achieving realistic depth and motion in virtual environments. This paper proposes an approach to coalesce existing generative systems to form a stereoscopic virtual reality video from text. Carried out in three main stages, we start with a base text-to-image model that captures context from an input text. We then employ Stable Diffusion on the rudimentary image produced, to generate frames with enhanced realism and overall quality. These frames are processed with depth estimation algorithms to create left-eye and right-eye views, which are stitched side-by-side to create an immersive viewing experience. Such systems would be highly beneficial in virtual reality production, since filming and scene building often require extensive hours of work and post-production effort. We utilize image evaluation techniques, specifically Fr\'echet Inception Distance and CLIP Score, to assess the visual quality of frames produced for the video. These quantitative measures establish the proficiency of the proposed method. Our work highlights the exciting possibilities of using natural language-driven graphics in fields like virtual reality simulations.
comment: Co-authors do not consent to publishing on Arxiv
♻ ☆ Conditional diffusions for neural posterior estimation
Neural posterior estimation (NPE), a simulation-based computational approach for Bayesian inference, has shown great success in approximating complex posterior distributions. Existing NPE methods typically rely on normalizing flows, which approximate a distribution by composing many simple, invertible transformations. But flow-based models, while state of the art for NPE, are known to suffer from several limitations, including training instability and sharp trade-offs between representational power and computational cost. In this work, we demonstrate the effectiveness of conditional diffusions coupled with high-capacity summary networks for amortized NPE. Conditional diffusions address many of the challenges faced by flow-based methods. Our results show that, across a highly varied suite of benchmarking problems for NPE architectures, diffusions offer improved stability, superior accuracy, and faster training times, even with simpler, shallower models. Building on prior work on diffusions for NPE, we show that these gains persist across a variety of different summary network architectures. Code is available at https://github.com/TianyuCodings/cDiff.
♻ ☆ Nondeterministic Causal Models
I generalize acyclic deterministic structural causal models to the nondeterministic case and argue that this offers an improved semantics for counterfactuals. The standard, deterministic, semantics developed by Halpern (and based on the initial proposal of Galles & Pearl) assumes that for each assignment of values to parent variables there is a unique assignment to their child variable, and it assumes that the actual world (an assignment of values to all variables of a model) specifies a unique counterfactual world for each intervention. Both assumptions are unrealistic, and therefore I drop both of them in my proposal. I do so by allowing multi-valued functions in the structural equations. In addition, I adjust the semantics so that the solutions to the equations that obtained in the actual world are preserved in any counterfactual world. I provide a sound and complete axiomatization of the resulting logic and compare it to the standard one by Halpern and to more recent proposals that are closer to mine. Finally, I extend these models to the probabilistic case and show that they open up the way to identifying counterfactuals even in Causal Bayesian Networks.
comment: Accepted at CLeaR 2025
♻ ☆ A Practical Review of Mechanistic Interpretability for Transformer-Based Language Models
Mechanistic interpretability (MI) is an emerging sub-field of interpretability that seeks to understand a neural network model by reverse-engineering its internal computations. Recently, MI has garnered significant attention for interpreting transformer-based language models (LMs), resulting in many novel insights yet introducing new challenges. However, there has not been work that comprehensively reviews these insights and challenges, particularly as a guide for newcomers to this field. To fill this gap, we provide a comprehensive survey from a task-centric perspective, organizing the taxonomy of MI research around specific research questions or tasks. We outline the fundamental objects of study in MI, along with the techniques, evaluation methods, and key findings for each task in the taxonomy. In particular, we present a task-centric taxonomy as a roadmap for beginners to navigate the field by helping them quickly identify impactful problems in which they are most interested and leverage MI for their benefit. Finally, we discuss the current gaps in the field and suggest potential future directions for MI research.
comment: 35 pages, 13 figures, Preprint
♻ ☆ Reflection-Window Decoding: Text Generation with Selective Refinement
The autoregressive decoding for text generation in large language models (LLMs), while widely used, is inherently suboptimal due to the lack of a built-in mechanism to perform refinement and/or correction of the generated content. In this paper, we consider optimality in terms of the joint probability over the generated response, when jointly considering all tokens at the same time. We theoretically characterize the potential deviation of the autoregressively generated response from its globally optimal counterpart that is of the same length. Our analysis suggests that we need to be cautious when noticeable uncertainty arises during text generation, which may signal the sub-optimality of the generation history. To address the pitfall of autoregressive decoding for text generation, we propose an approach that incorporates a sliding reflection window and a pausing criterion, such that refinement and generation can be carried out interchangeably as the decoding proceeds. Our selective refinement framework strikes a balance between efficiency and optimality, and our extensive experimental results demonstrate the effectiveness of our approach.
♻ ☆ Generalizable Imitation Learning Through Pre-Trained Representations ICRA 2025
In this paper, we leverage self-supervised vision transformer models and their emergent semantic abilities to improve the generalization abilities of imitation learning policies. We introduce DVK, an imitation learning algorithm that leverages rich pre-trained Visual Transformer patch-level embeddings to obtain better generalization when learning through demonstrations. Our learner sees the world by clustering appearance features into groups associated with semantic concepts, forming stable keypoints that generalize across a wide range of appearance variations and object types. We demonstrate how this representation enables generalized behaviour by evaluating imitation learning across a diverse dataset of object manipulation tasks. To facilitate further study of generalization in Imitation Learning, all of our code for the method and evaluation, as well as the dataset, is made available.
comment: ICRA 2025 Version
♻ ☆ VideoPainter: Any-length Video Inpainting and Editing with Plug-and-Play Context Control
Video inpainting, which aims to restore corrupted video content, has experienced substantial progress. Despite these advances, existing methods, whether propagating unmasked region pixels through optical flow and receptive field priors, or extending image-inpainting models temporally, face challenges in generating fully masked objects or balancing the competing objectives of background context preservation and foreground generation in one model, respectively. To address these limitations, we propose a novel dual-stream paradigm VideoPainter that incorporates an efficient context encoder (comprising only 6% of the backbone parameters) to process masked videos and inject backbone-aware background contextual cues to any pre-trained video DiT, producing semantically consistent content in a plug-and-play manner. This architectural separation significantly reduces the model's learning complexity while enabling nuanced integration of crucial background context. We also introduce a novel target region ID resampling technique that enables any-length video inpainting, greatly enhancing our practical applicability. Additionally, we establish a scalable dataset pipeline leveraging current vision understanding models, contributing VPData and VPBench to facilitate segmentation-based inpainting training and assessment, the largest video inpainting dataset and benchmark to date with over 390K diverse clips. Using inpainting as a pipeline basis, we also explore downstream applications including video editing and video editing pair data generation, demonstrating competitive performance and significant practical potential. Extensive experiments demonstrate VideoPainter's superior performance in both any-length video inpainting and editing, across eight key metrics, including video quality, mask region preservation, and textual coherence.
comment: Project page available at https://yxbian23.github.io/project/video-painter
♻ ☆ Balcony: A Lightweight Approach to Dynamic Inference of Generative Language Models
Deploying large language models (LLMs) in real-world applications is often hindered by strict computational and latency constraints. While dynamic inference offers the flexibility to adjust model behavior based on varying resource budgets, existing methods are frequently limited by hardware inefficiencies or performance degradation. In this paper, we introduce Balcony, a simple yet highly effective framework for depth-based dynamic inference. By freezing the pretrained LLM and inserting additional transformer layers at selected exit points, Balcony maintains the full model's performance while enabling real-time adaptation to different computational budgets. These additional layers are trained using a straightforward self-distillation loss, aligning the sub-model outputs with those of the full model. This approach requires significantly fewer training tokens and tunable parameters, drastically reducing computational costs compared to prior methods. When applied to the LLaMA3-8B model, using only 0.2% of the original pretraining data, Balcony achieves minimal performance degradation while enabling significant speedups. Remarkably, we show that Balcony outperforms state-of-the-art methods such as Flextron and Layerskip as well as other leading compression techniques on multiple models and at various scales, across a variety of benchmarks.
♻ ☆ Identifying the Truth of Global Model: A Generic Solution to Defend Against Byzantine and Backdoor Attacks in Federated Learning (full version) SP 2025
Federated Learning (FL) enables multiple parties to train machine learning models collaboratively without sharing the raw training data. However, the federated nature of FL enables malicious clients to influence a trained model by injecting error model updates via Byzantine or backdoor attacks. To detect malicious model updates, a typical approach is to measure the distance between each model update and a \textit{ground-truth model update}. To find such \textit{ground-truth model updates}, existing defenses either require a benign root dataset on the server (e.g., FLTrust) or simply use trimmed mean or median as the threshold for clipping (e.g., FLAME). However, such benign root datasets are impractical, and the trimmed mean or median may also eliminate contributions from these underrepresented datasets. In this paper, we propose a generic solution, namely FedTruth, to defend against model poisoning attacks in FL, where the \textit{ground-truth model update} (i.e., the global model update) will be estimated among all the model updates with dynamic aggregation weights. Specifically, FedTruth does not have specific assumptions on the benign or malicious data distribution or access to a benign root dataset. Moreover, FedTruth considers the potential contributions from all benign clients. Our empirical results show that FedTruth can reduce the impacts of poisoned model updates against both Byzantine and backdoor attacks, and is also efficient in large-scale FL systems.
comment: Accepted to ACISP 2025. This is the full version
♻ ☆ LEMMo-Plan: LLM-Enhanced Learning from Multi-Modal Demonstration for Planning Sequential Contact-Rich Manipulation Tasks
Large Language Models (LLMs) have gained popularity in task planning for long-horizon manipulation tasks. To enhance the validity of LLM-generated plans, visual demonstrations and online videos have been widely employed to guide the planning process. However, for manipulation tasks involving subtle movements but rich contact interactions, visual perception alone may be insufficient for the LLM to fully interpret the demonstration. Additionally, visual data provides limited information on force-related parameters and conditions, which are crucial for effective execution on real robots. In this paper, we introduce an in-context learning framework that incorporates tactile and force-torque information from human demonstrations to enhance LLMs' ability to generate plans for new task scenarios. We propose a bootstrapped reasoning pipeline that sequentially integrates each modality into a comprehensive task plan. This task plan is then used as a reference for planning in new task configurations. Real-world experiments on two different sequential manipulation tasks demonstrate the effectiveness of our framework in improving LLMs' understanding of multi-modal demonstrations and enhancing the overall planning performance.
♻ ☆ Automated Consistency Analysis of LLMs
Generative AI (Gen AI) with large language models (LLMs) are being widely adopted across the industry, academia and government. Cybersecurity is one of the key sectors where LLMs can be and/or are already being used. There are a number of problems that inhibit the adoption of trustworthy Gen AI and LLMs in cybersecurity and such other critical areas. One of the key challenge to the trustworthiness and reliability of LLMs is: how consistent an LLM is in its responses? In this paper, we have analyzed and developed a formal definition of consistency of responses of LLMs. We have formally defined what is consistency of responses and then develop a framework for consistency evaluation. The paper proposes two approaches to validate consistency: self-validation, and validation across multiple LLMs. We have carried out extensive experiments for several LLMs such as GPT4oMini, GPT3.5, Gemini, Cohere, and Llama3, on a security benchmark consisting of several cybersecurity questions: informational and situational. Our experiments corroborate the fact that even though these LLMs are being considered and/or already being used for several cybersecurity tasks today, they are often inconsistent in their responses, and thus are untrustworthy and unreliable for cybersecurity.
comment: 10 pages, 12 figures, 3 tables, 3 algorithms, 2024 IEEE 6th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA), Washington, DC, USA
♻ ☆ IterPref: Focal Preference Learning for Code Generation via Iterative Debugging
Preference learning enhances Code LLMs beyond supervised fine-tuning by leveraging relative quality comparisons. Existing methods construct preference pairs from candidates based on test case success, treating the higher pass rate sample as positive and the lower as negative. However, this approach does not pinpoint specific errors in the code, which prevents the model from learning more informative error correction patterns, as aligning failing code as a whole lacks the granularity needed to capture meaningful error-resolution relationships. To address these issues, we propose IterPref, a new preference alignment framework that mimics human iterative debugging to refine Code LLMs. IterPref explicitly locates error regions and aligns the corresponding tokens via a tailored DPO algorithm. To generate informative pairs, we introduce the CodeFlow dataset, where samples are iteratively refined until passing tests, with modifications capturing error corrections. Extensive experiments show that a diverse suite of Code LLMs equipped with IterPref achieves significant performance gains in code generation and improves on challenging tasks like BigCodeBench. In-depth analysis reveals that IterPref yields fewer errors. Our code and data will be made publicaly available.
comment: The code and data will be released soon
♻ ☆ SAUGE: Taming SAM for Uncertainty-Aligned Multi-Granularity Edge Detection AAAI 2025
Edge labels are typically at various granularity levels owing to the varying preferences of annotators, thus handling the subjectivity of per-pixel labels has been a focal point for edge detection. Previous methods often employ a simple voting strategy to diminish such label uncertainty or impose a strong assumption of labels with a pre-defined distribution, e.g., Gaussian. In this work, we unveil that the segment anything model (SAM) provides strong prior knowledge to model the uncertainty in edge labels. Our key insight is that the intermediate SAM features inherently correspond to object edges at various granularities, which reflects different edge options due to uncertainty. Therefore, we attempt to align uncertainty with granularity by regressing intermediate SAM features from different layers to object edges at multi-granularity levels. In doing so, the model can fully and explicitly explore diverse ``uncertainties'' in a data-driven fashion. Specifically, we inject a lightweight module (~ 1.5% additional parameters) into the frozen SAM to progressively fuse and adapt its intermediate features to estimate edges from coarse to fine. It is crucial to normalize the granularity level of human edge labels to match their innate uncertainty. For this, we simply perform linear blending to the real edge labels at hand to create pseudo labels with varying granularities. Consequently, our uncertainty-aligned edge detector can flexibly produce edges at any desired granularity (including an optimal one). Thanks to SAM, our model uniquely demonstrates strong generalizability for cross-dataset edge detection. Extensive experimental results on BSDS500, Muticue and NYUDv2 validate our model's superiority.
comment: Accepted to AAAI 2025
♻ ☆ Large Language Models Assume People are More Rational than We Really are
In order for AI systems to communicate effectively with people, they must understand how we make decisions. However, people's decisions are not always rational, so the implicit internal models of human decision-making in Large Language Models (LLMs) must account for this. Previous empirical evidence seems to suggest that these implicit models are accurate -- LLMs offer believable proxies of human behavior, acting how we expect humans would in everyday interactions. However, by comparing LLM behavior and predictions to a large dataset of human decisions, we find that this is actually not the case: when both simulating and predicting people's choices, a suite of cutting-edge LLMs (GPT-4o & 4-Turbo, Llama-3-8B & 70B, Claude 3 Opus) assume that people are more rational than we really are. Specifically, these models deviate from human behavior and align more closely with a classic model of rational choice -- expected value theory. Interestingly, people also tend to assume that other people are rational when interpreting their behavior. As a consequence, when we compare the inferences that LLMs and people draw from the decisions of others using another psychological dataset, we find that these inferences are highly correlated. Thus, the implicit decision-making models of LLMs appear to be aligned with the human expectation that other people will act rationally, rather than with how people actually act.
♻ ☆ TaskEval: Assessing Difficulty of Code Generation Tasks for Large Language Models
Large Language Models (LLMs) excel in code-related tasks like code generation, but benchmark evaluations often overlook task characteristics, such as difficulty. Moreover, benchmarks are usually built using tasks described with one single prompt, despite the formulation of prompts having a profound impact on the outcome. This paper introduces a generalist approach, TaskEval, a framework using diverse prompts and Item Response Theory (IRT) to efficiently assess LLMs' capabilities and benchmark task characteristics, improving the understanding of their performance. Using two code generation benchmarks, HumanEval+ and ClassEval, as well as 5 code generation LLMs, we show that TaskEval is capable of characterizing the properties of tasks. Using topic analysis, we identify and analyze the tasks of respectively 17 and 21 topics within the benchmarks. We also cross-analyze tasks' characteristics with programming constructs (e.g., variable assignment, conditions, etc.) used by LLMs, emphasizing some patterns with tasks' difficulty. Finally, we conduct a comparison between the difficulty assessment of tasks by human-annotators and LLMs. Orthogonal to current benchmarking evaluation efforts, TaskEval can assist researchers and practitioners in fostering better assessments of LLMs. The tasks' characteristics can be used to identify shortcomings within existing benchmarks. This could be used to generate additional related tasks for the evaluation or improvement of LLM.
♻ ☆ Differentially Private Distributed Inference
How can agents exchange information to learn while protecting privacy? Healthcare centers collaborating on clinical trials must balance knowledge sharing with safeguarding sensitive patient data. We address this challenge by using differential privacy (DP) to control information leakage. Agents update belief statistics via log-linear rules, and DP noise provides plausible deniability and rigorous performance guarantees. We study two settings: distributed maximum likelihood estimation (MLE) with a finite set of private signals and online learning from an intermittent signal stream. Noisy aggregation introduces trade-offs between rejecting low-quality states and accepting high-quality ones. The MLE setting naturally applies to hypothesis testing with formal statistical guarantees. Through simulations, we demonstrate differentially private, distributed survival analysis on real-world clinical trial data, evaluating treatment efficacy and the impact of biomedical indices on patient survival. Our methods enable privacy-preserving inference with greater efficiency and lower error rates than homomorphic encryption and first-order DP optimization approaches.
♻ ☆ Perceptions of Sentient AI and Other Digital Minds: Evidence from the AI, Morality, and Sentience (AIMS) Survey
Humans now interact with a variety of digital minds, AI systems that appear to have mental faculties such as reasoning, emotion, and agency, and public figures are discussing the possibility of sentient AI. We present initial results from 2021 and 2023 for the nationally representative AI, Morality, and Sentience (AIMS) survey (N = 3,500). Mind perception and moral concern for AI welfare were surprisingly high and significantly increased: in 2023, one in five U.S. adults believed some AI systems are currently sentient, and 38% supported legal rights for sentient AI. People became more opposed to building digital minds: in 2023, 63% supported banning smarter-than-human AI, and 69% supported banning sentient AI. The median 2023 forecast was that sentient AI would arrive in just five years. The development of safe and beneficial AI requires not just technical study but understanding the complex ways in which humans perceive and coexist with digital minds.
comment: Published at CHI 2025
♻ ☆ Natural Language Processing RELIES on Linguistics
Large Language Models (LLMs) have become capable of generating highly fluent text in certain languages, without modules specially designed to capture grammar or semantic coherence. What does this mean for the future of linguistic expertise in NLP? We highlight several aspects in which NLP (still) relies on linguistics, or where linguistic thinking can illuminate new directions. We argue our case around the acronym RELIES that encapsulates six major facets where linguistics contributes to NLP: Resources, Evaluation, Low-resource settings, Interpretability, Explanation, and the Study of language. This list is not exhaustive, nor is linguistics the main point of reference for every effort under these themes; but at a macro level, these facets highlight the enduring importance of studying machine systems vis-\`a-vis systems of human language.
comment: To appear in Computational Linguistics. This is a pre-MIT Press publication version
♻ ☆ When narrower is better: the narrow width limit of Bayesian parallel branching neural networks
The infinite width limit of random neural networks is known to result in Neural Networks as Gaussian Process (NNGP) (Lee et al. (2018)), characterized by task-independent kernels. It is widely accepted that larger network widths contribute to improved generalization (Park et al. (2019)). However, this work challenges this notion by investigating the narrow width limit of the Bayesian Parallel Branching Neural Network (BPB-NN), an architecture that resembles neural networks with residual blocks. We demonstrate that when the width of a BPB-NN is significantly smaller compared to the number of training examples, each branch exhibits more robust learning due to a symmetry breaking of branches in kernel renormalization. Surprisingly, the performance of a BPB-NN in the narrow width limit is generally superior to or comparable to that achieved in the wide width limit in bias-limited scenarios. Furthermore, the readout norms of each branch in the narrow width limit are mostly independent of the architectural hyperparameters but generally reflective of the nature of the data. We demonstrate such phenomenon primarily in the branching graph neural networks, where each branch represents a different order of convolutions of the graph; we also extend the results to other more general architectures such as the residual-MLP and demonstrate that the narrow width effect is a general feature of the branching networks. Our results characterize a newly defined narrow-width regime for parallel branching networks in general.
♻ ☆ GraphEdit: Large Language Models for Graph Structure Learning
Graph Structure Learning (GSL) focuses on capturing intrinsic dependencies and interactions among nodes in graph-structured data by generating novel graph structures. Graph Neural Networks (GNNs) have emerged as promising GSL solutions, utilizing recursive message passing to encode node-wise inter-dependencies. However, many existing GSL methods heavily depend on explicit graph structural information as supervision signals, leaving them susceptible to challenges such as data noise and sparsity. In this work, we propose GraphEdit, an approach that leverages large language models (LLMs) to learn complex node relationships in graph-structured data. By enhancing the reasoning capabilities of LLMs through instruction-tuning over graph structures, we aim to overcome the limitations associated with explicit graph structural information and enhance the reliability of graph structure learning. Our approach not only effectively denoises noisy connections but also identifies node-wise dependencies from a global perspective, providing a comprehensive understanding of the graph structure. We conduct extensive experiments on multiple benchmark datasets to demonstrate the effectiveness and robustness of GraphEdit across various settings. We have made our model implementation available at: https://github.com/HKUDS/GraphEdit.
Graphics 9
☆ Geometric Retargeting: A Principled, Ultrafast Neural Hand Retargeting Algorithm
We introduce Geometric Retargeting (GeoRT), an ultrafast, and principled neural hand retargeting algorithm for teleoperation, developed as part of our recent Dexterity Gen (DexGen) system. GeoRT converts human finger keypoints to robot hand keypoints at 1KHz, achieving state-of-the-art speed and accuracy with significantly fewer hyperparameters. This high-speed capability enables flexible postprocessing, such as leveraging a foundational controller for action correction like DexGen. GeoRT is trained in an unsupervised manner, eliminating the need for manual annotation of hand pairs. The core of GeoRT lies in novel geometric objective functions that capture the essence of retargeting: preserving motion fidelity, ensuring configuration space (C-space) coverage, maintaining uniform response through high flatness, pinch correspondence and preventing self-collisions. This approach is free from intensive test-time optimization, offering a more scalable and practical solution for real-time hand retargeting.
comment: Project Website: https://zhaohengyin.github.io/geort
☆ Goal Conditioned Reinforcement Learning for Photo Finishing Tuning NeurIPS 2024
Photo finishing tuning aims to automate the manual tuning process of the photo finishing pipeline, like Adobe Lightroom or Darktable. Previous works either use zeroth-order optimization, which is slow when the set of parameters increases, or rely on a differentiable proxy of the target finishing pipeline, which is hard to train. To overcome these challenges, we propose a novel goal-conditioned reinforcement learning framework for efficiently tuning parameters using a goal image as a condition. Unlike previous approaches, our tuning framework does not rely on any proxy and treats the photo finishing pipeline as a black box. Utilizing a trained reinforcement learning policy, it can efficiently find the desired set of parameters within just 10 queries, while optimization based approaches normally take 200 queries. Furthermore, our architecture utilizes a goal image to guide the iterative tuning of pipeline parameters, allowing for flexible conditioning on pixel-aligned target images, style images, or any other visually representable goals. We conduct detailed experiments on photo finishing tuning and photo stylization tuning tasks, demonstrating the advantages of our method. Project website: https://openimaginglab.github.io/RLPixTuner/.
comment: 38th Conference on Neural Information Processing Systems (NeurIPS 2024)
☆ All That Glitters Is Not Gold: Key-Secured 3D Secrets within 3D Gaussian Splatting
Recent advances in 3D Gaussian Splatting (3DGS) have revolutionized scene reconstruction, opening new possibilities for 3D steganography by hiding 3D secrets within 3D covers. The key challenge in steganography is ensuring imperceptibility while maintaining high-fidelity reconstruction. However, existing methods often suffer from detectability risks and utilize only suboptimal 3DGS features, limiting their full potential. We propose a novel end-to-end key-secured 3D steganography framework (KeySS) that jointly optimizes a 3DGS model and a key-secured decoder for secret reconstruction. Our approach reveals that Gaussian features contribute unequally to secret hiding. The framework incorporates a key-controllable mechanism enabling multi-secret hiding and unauthorized access prevention, while systematically exploring optimal feature update to balance fidelity and security. To rigorously evaluate steganographic imperceptibility beyond conventional 2D metrics, we introduce 3D-Sinkhorn distance analysis, which quantifies distributional differences between original and steganographic Gaussian parameters in the representation space. Extensive experiments demonstrate that our method achieves state-of-the-art performance in both cover and secret reconstruction while maintaining high security levels, advancing the field of 3D steganography. Code is available at https://github.com/RY-Paper/KeySS
☆ Direct Flow Simulations with Implicit Neural Representation of Complex Geometry
Implicit neural representations have emerged as a powerful approach for encoding complex geometries as continuous functions. These implicit models are widely used in computer vision and 3D content creation, but their integration into scientific computing workflows, such as finite element or finite volume simulations, remains limited. One reason is that conventional simulation pipelines require explicit geometric inputs (meshes), forcing INR-based shapes to be converted to meshes--a step that introduces approximation errors, computational overhead, and significant manual effort. Immersed boundary methods partially alleviate this issue by allowing simulations on background grids without body-fitted meshes. However, they still require an explicit boundary description and can suffer from numerical artifacts, such as sliver cut cells. The shifted boundary method (SBM) eliminates the need for explicit geometry by using grid-aligned surrogate boundaries, making it inherently compatible with implicit shape representations. Here, we present a framework that directly couples neural implicit geometries with SBM to perform high-fidelity fluid flow simulations without any intermediate mesh generation. By leveraging neural network inference, our approach computes the surrogate boundary and distance vectors required by SBM on-the-fly directly from the INR, thus completely bypassing traditional geometry processing. We demonstrate this approach on canonical 2D and 3D flow benchmarks (lid-driven cavity flows) and complex geometries (gyroids, the Stanford bunny, and AI-generated shapes), achieving simulation accuracy comparable to conventional mesh-based methods. This work highlights a novel pathway for integrating AI-driven geometric representations into computational physics, establishing INRs as a versatile and scalable tool for simulations and removing a long-standing bottleneck in geometry handling.
comment: 32 pages,29 figures, Supplement at end
♻ ☆ SeeLe: A Unified Acceleration Framework for Real-Time Gaussian Splatting
3D Gaussian Splatting (3DGS) has become a crucial rendering technique for many real-time applications. However, the limited hardware resources on today's mobile platforms hinder these applications, as they struggle to achieve real-time performance. In this paper, we propose SeeLe, a general framework designed to accelerate the 3DGS pipeline for resource-constrained mobile devices. Specifically, we propose two GPU-oriented techniques: hybrid preprocessing and contribution-aware rasterization. Hybrid preprocessing alleviates the GPU compute and memory pressure by reducing the number of irrelevant Gaussians during rendering. The key is to combine our view-dependent scene representation with online filtering. Meanwhile, contribution-aware rasterization improves the GPU utilization at the rasterization stage by prioritizing Gaussians with high contributions while reducing computations for those with low contributions. Both techniques can be seamlessly integrated into existing 3DGS pipelines with minimal fine-tuning. Collectively, our framework achieves 2.6$\times$ speedup and 32.3\% model reduction while achieving superior rendering quality compared to existing methods.
♻ ☆ Efficient Perspective-Correct 3D Gaussian Splatting Using Hybrid Transparency
3D Gaussian Splats (3DGS) have proven a versatile rendering primitive, both for inverse rendering as well as real-time exploration of scenes. In these applications, coherence across camera frames and multiple views is crucial, be it for robust convergence of a scene reconstruction or for artifact-free fly-throughs. Recent work started mitigating artifacts that break multi-view coherence, including popping artifacts due to inconsistent transparency sorting and perspective-correct outlines of (2D) splats. At the same time, real-time requirements forced such implementations to accept compromises in how transparency of large assemblies of 3D Gaussians is resolved, in turn breaking coherence in other ways. In our work, we aim at achieving maximum coherence, by rendering fully perspective-correct 3D Gaussians while using a high-quality approximation of accurate blending, hybrid transparency, on a per-pixel level, in order to retain real-time frame rates. Our fast and perspectively accurate approach for evaluation of 3D Gaussians does not require matrix inversions, thereby ensuring numerical stability and eliminating the need for special handling of degenerate splats, and the hybrid transparency formulation for blending maintains similar quality as fully resolved per-pixel transparencies at a fraction of the rendering costs. We further show that each of these two components can be independently integrated into Gaussian splatting systems. In combination, they achieve up to 2$\times$ higher frame rates, 2$\times$ faster optimization, and equal or better image quality with fewer rendering artifacts compared to traditional 3DGS on common benchmarks.
comment: Project page: https://fhahlbohm.github.io/htgs/
♻ ☆ NPSim: Nighttime Photorealistic Simulation From Daytime Images With Monocular Inverse Rendering and Ray Tracing
Semantic segmentation is an important task for autonomous driving. A powerful autonomous driving system should be capable of handling images under all conditions, including nighttime. Generating accurate and diverse nighttime semantic segmentation datasets is crucial for enhancing the performance of computer vision algorithms in low-light conditions. In this thesis, we introduce a novel approach named NPSim, which enables the simulation of realistic nighttime images from real daytime counterparts with monocular inverse rendering and ray tracing. NPSim comprises two key components: mesh reconstruction and relighting. The mesh reconstruction component generates an accurate representation of the scene structure by combining geometric information extracted from the input RGB image and semantic information from its corresponding semantic labels. The relighting component integrates real-world nighttime light sources and material characteristics to simulate the complex interplay of light and object surfaces under low-light conditions. The scope of this thesis mainly focuses on the implementation and evaluation of the mesh reconstruction component. Through experiments, we demonstrate the effectiveness of the mesh reconstruction component in producing high-quality scene meshes and their generality across different autonomous driving datasets. We also propose a detailed experiment plan for evaluating the entire pipeline, including both quantitative metrics in training state-of-the-art supervised and unsupervised semantic segmentation approaches and human perceptual studies, aiming to indicate the capability of our approach to generate realistic nighttime images and the value of our dataset in steering future progress in the field.
♻ ☆ GausSim: Foreseeing Reality by Gaussian Simulator for Elastic Objects
We introduce GausSim, a novel neural network-based simulator designed to capture the dynamic behaviors of real-world elastic objects represented through Gaussian kernels. We leverage continuum mechanics and treat each kernel as a Center of Mass System (CMS) that represents continuous piece of matter, accounting for realistic deformations without idealized assumptions. To improve computational efficiency and fidelity, we employ a hierarchical structure that further organizes kernels into CMSs with explicit formulations, enabling a coarse-to-fine simulation approach. This structure significantly reduces computational overhead while preserving detailed dynamics. In addition, GausSim incorporates explicit physics constraints, such as mass and momentum conservation, ensuring interpretable results and robust, physically plausible simulations. To validate our approach, we present a new dataset, READY, containing multi-view videos of real-world elastic deformations. Experimental results demonstrate that GausSim achieves superior performance compared to existing physics-driven baselines, offering a practical and accurate solution for simulating complex dynamic behaviors. Code and model will be released. Project page: https://www.mmlab-ntu.com/project/gausim/index.html .
comment: Project page: https://www.mmlab-ntu.com/project/gausim/index.html
♻ ☆ HDRT: A Large-Scale Dataset for Infrared-Guided HDR Imaging
Capturing images with enough details to solve imaging tasks is a long-standing challenge in imaging, particularly due to the limitations of standard dynamic range (SDR) images which often lose details in underexposed or overexposed regions. Traditional high dynamic range (HDR) methods, like multi-exposure fusion or inverse tone mapping, struggle with ghosting and incomplete data reconstruction. Infrared (IR) imaging offers a unique advantage by being less affected by lighting conditions, providing consistent detail capture regardless of visible light intensity. In this paper, we introduce the HDRT dataset, the first comprehensive dataset that consists of HDR and thermal IR images. The HDRT dataset comprises 50,000 images captured across three seasons over six months in eight cities, providing a diverse range of lighting conditions and environmental contexts. Leveraging this dataset, we propose HDRTNet, a novel deep neural method that fuses IR and SDR content to generate HDR images. Extensive experiments validate HDRTNet against the state-of-the-art, showing substantial quantitative and qualitative quality improvements. The HDRT dataset not only advances IR-guided HDR imaging but also offers significant potential for broader research in HDR imaging, multi-modal fusion, domain transfer, and beyond. The dataset is available at https://huggingface.co/datasets/jingchao-peng/HDRTDataset.
Artificial Intelligence 110
☆ Privacy Auditing of Large Language Models ICLR 2025
Current techniques for privacy auditing of large language models (LLMs) have limited efficacy -- they rely on basic approaches to generate canaries which leads to weak membership inference attacks that in turn give loose lower bounds on the empirical privacy leakage. We develop canaries that are far more effective than those used in prior work under threat models that cover a range of realistic settings. We demonstrate through extensive experiments on multiple families of fine-tuned LLMs that our approach sets a new standard for detection of privacy leakage. For measuring the memorization rate of non-privately trained LLMs, our designed canaries surpass prior approaches. For example, on the Qwen2.5-0.5B model, our designed canaries achieve $49.6\%$ TPR at $1\%$ FPR, vastly surpassing the prior approach's $4.2\%$ TPR at $1\%$ FPR. Our method can be used to provide a privacy audit of $\varepsilon \approx 1$ for a model trained with theoretical $\varepsilon$ of 4. To the best of our knowledge, this is the first time that a privacy audit of LLM training has achieved nontrivial auditing success in the setting where the attacker cannot train shadow models, insert gradient canaries, or access the model at every iteration.
comment: ICLR 2025
☆ Actionable AI: Enabling Non Experts to Understand and Configure AI Systems
Interaction between humans and AI systems raises the question of how people understand AI systems. This has been addressed with explainable AI, the interpretability arising from users' domain expertise, or collaborating with AI in a stable environment. In the absence of these elements, we discuss designing Actionable AI, which allows non-experts to configure black-box agents. In this paper, we experiment with an AI-powered cartpole game and observe 22 pairs of participants to configure it via direct manipulation. Our findings suggest that, in uncertain conditions, non-experts were able to achieve good levels of performance. By influencing the behaviour of the agent, they exhibited an operational understanding of it, which proved sufficient to reach their goals. Based on this, we derive implications for designing Actionable AI systems. In conclusion, we propose Actionable AI as a way to open access to AI-based agents, giving end users the agency to influence such agents towards their own goals.
☆ Characterizing Learning in Spiking Neural Networks with Astrocyte-Like Units
Traditional artificial neural networks take inspiration from biological networks, using layers of neuron-like nodes to pass information for processing. More realistic models include spiking in the neural network, capturing the electrical characteristics more closely. However, a large proportion of brain cells are of the glial cell type, in particular astrocytes which have been suggested to play a role in performing computations. Here, we introduce a modified spiking neural network model with added astrocyte-like units in a neural network and asses their impact on learning. We implement the network as a liquid state machine and task the network with performing a chaotic time-series prediction task. We varied the number and ratio of neuron-like and astrocyte-like units in the network to examine the latter units effect on learning. We show that the combination of neurons and astrocytes together, as opposed to neural- and astrocyte-only networks, are critical for driving learning. Interestingly, we found that the highest learning rate was achieved when the ratio between astrocyte-like and neuron-like units was roughly 2 to 1, mirroring some estimates of the ratio of biological astrocytes to neurons. Our results demonstrate that incorporating astrocyte-like units which represent information across longer timescales can alter the learning rates of neural networks, and the proportion of astrocytes to neurons should be tuned appropriately to a given task.
comment: 6 pages, 4 figures
☆ Multimodal AI-driven Biomarker for Early Detection of Cancer Cachexia
Cancer cachexia is a multifactorial syndrome characterized by progressive muscle wasting, metabolic dysfunction, and systemic inflammation, leading to reduced quality of life and increased mortality. Despite extensive research, no single definitive biomarker exists, as cachexia-related indicators such as serum biomarkers, skeletal muscle measurements, and metabolic abnormalities often overlap with other conditions. Existing composite indices, including the Cancer Cachexia Index (CXI), Modified CXI (mCXI), and Cachexia Score (CASCO), integrate multiple biomarkers but lack standardized thresholds, limiting their clinical utility. This study proposes a multimodal AI-based biomarker for early cancer cachexia detection, leveraging open-source large language models (LLMs) and foundation models trained on medical data. The approach integrates heterogeneous patient data, including demographics, disease status, lab reports, radiological imaging (CT scans), and clinical notes, using a machine learning framework that can handle missing data. Unlike previous AI-based models trained on curated datasets, this method utilizes routinely collected clinical data, enhancing real-world applicability. Additionally, the model incorporates confidence estimation, allowing the identification of cases requiring expert review for precise clinical interpretation. Preliminary findings demonstrate that integrating multiple data modalities improves cachexia prediction accuracy at the time of cancer diagnosis. The AI-based biomarker dynamically adapts to patient-specific factors such as age, race, ethnicity, weight, cancer type, and stage, avoiding the limitations of fixed-threshold biomarkers. This multimodal AI biomarker provides a scalable and clinically viable solution for early cancer cachexia detection, facilitating personalized interventions and potentially improving treatment outcomes and patient survival.
comment: 17 pages, 6 figures, 3 Tables
☆ AutoMisty: A Multi-Agent LLM Framework for Automated Code Generation in the Misty Social Robot
The social robot's open API allows users to customize open-domain interactions. However, it remains inaccessible to those without programming experience. In this work, we introduce AutoMisty, the first multi-agent collaboration framework powered by large language models (LLMs), to enable the seamless generation of executable Misty robot code from natural language instructions. AutoMisty incorporates four specialized agent modules to manage task decomposition, assignment, problem-solving, and result synthesis. Each agent incorporates a two-layer optimization mechanism, with self-reflection for iterative refinement and human-in-the-loop for better alignment with user preferences. AutoMisty ensures a transparent reasoning process, allowing users to iteratively refine tasks through natural language feedback for precise execution. To evaluate AutoMisty's effectiveness, we designed a benchmark task set spanning four levels of complexity and conducted experiments in a real Misty robot environment. Extensive evaluations demonstrate that AutoMisty not only consistently generates high-quality code but also enables precise code control, significantly outperforming direct reasoning with ChatGPT-4o and ChatGPT-o1. All code, optimized APIs, and experimental videos will be publicly released through the webpage: https://wangxiaoshawn.github.io/AutoMisty.html
☆ GenDR: Lightning Generative Detail Restorator
Recent research applying text-to-image (T2I) diffusion models to real-world super-resolution (SR) has achieved remarkable success. However, fundamental misalignments between T2I and SR targets result in a dilemma between inference speed and detail fidelity. Specifically, T2I tasks prioritize multi-step inversion to synthesize coherent outputs aligned with textual prompts and shrink the latent space to reduce generating complexity. Contrariwise, SR tasks preserve most information from low-resolution input while solely restoring high-frequency details, thus necessitating sufficient latent space and fewer inference steps. To bridge the gap, we present a one-step diffusion model for generative detail restoration, GenDR, distilled from a tailored diffusion model with larger latent space. In detail, we train a new SD2.1-VAE16 (0.9B) via representation alignment to expand latent space without enlarging the model size. Regarding step-distillation, we propose consistent score identity distillation (CiD) that incorporates SR task-specific loss into score distillation to leverage more SR priors and align the training target. Furthermore, we extend CiD with adversarial learning and representation alignment (CiDA) to enhance perceptual quality and accelerate training. We also polish the pipeline to achieve a more efficient inference. Experimental results demonstrate that GenDR achieves state-of-the-art performance in both quantitative metrics and visual fidelity.
☆ Dubito Ergo Sum: Exploring AI Ethics
We paraphrase Descartes' famous dictum in the area of AI ethics where the "I doubt and therefore I am" is suggested as a necessary aspect of morality. Therefore AI, which cannot doubt itself, cannot possess moral agency. Of course, this is not the end of the story. We explore various aspects of the human mind that substantially differ from AI, which includes the sensory grounding of our knowing, the act of understanding, and the significance of being able to doubt ourselves. The foundation of our argument is the discipline of ethics, one of the oldest and largest knowledge projects of human history, yet, we seem only to be beginning to get a grasp of it. After a couple of thousand years of studying the ethics of humans, we (humans) arrived at a point where moral psychology suggests that our moral decisions are intuitive, and all the models from ethics become relevant only when we explain ourselves. This recognition has a major impact on what and how we can do regarding AI ethics. We do not offer a solution, we explore some ideas and leave the problem open, but we hope somewhat better understood than before our study.
comment: 10 pages, 1 figure, HICSS 57: Hawaii International Conference on System Sciences, Honolulu, HI, published January 2024
☆ Infinite Leagues Under the Sea: Photorealistic 3D Underwater Terrain Generation by Latent Fractal Diffusion Models
This paper tackles the problem of generating representations of underwater 3D terrain. Off-the-shelf generative models, trained on Internet-scale data but not on specialized underwater images, exhibit downgraded realism, as images of the seafloor are relatively uncommon. To this end, we introduce DreamSea, a generative model to generate hyper-realistic underwater scenes. DreamSea is trained on real-world image databases collected from underwater robot surveys. Images from these surveys contain massive real seafloor observations and covering large areas, but are prone to noise and artifacts from the real world. We extract 3D geometry and semantics from the data with visual foundation models, and train a diffusion model that generates realistic seafloor images in RGBD channels, conditioned on novel fractal distribution-based latent embeddings. We then fuse the generated images into a 3D map, building a 3DGS model supervised by 2D diffusion priors which allows photorealistic novel view rendering. DreamSea is rigorously evaluated, demonstrating the ability to robustly generate large-scale underwater scenes that are consistent, diverse, and photorealistic. Our work drives impact in multiple domains, spanning filming, gaming, and robot simulation.
comment: 10 pages
☆ Dr Genre: Reinforcement Learning from Decoupled LLM Feedback for Generic Text Rewriting
Generic text rewriting is a prevalent large language model (LLM) application that covers diverse real-world tasks, such as style transfer, fact correction, and email editing. These tasks vary in rewriting objectives (e.g., factual consistency vs. semantic preservation), making it challenging to develop a unified model that excels across all dimensions. Existing methods often specialize in either a single task or a specific objective, limiting their generalizability. In this work, we introduce a generic model proficient in factuality, stylistic, and conversational rewriting tasks. To simulate real-world user rewrite requests, we construct a conversational rewrite dataset, ChatRewrite, that presents ``natural''-sounding instructions, from raw emails using LLMs. Combined with other popular rewrite datasets, including LongFact for the factuality rewrite task and RewriteLM for the stylistic rewrite task, this forms a broad benchmark for training and evaluating generic rewrite models. To align with task-specific objectives, we propose Dr Genre, a Decoupled-reward learning framework for Generic rewriting, that utilizes objective-oriented reward models with a task-specific weighting. Evaluation shows that \approach delivers higher-quality rewrites across all targeted tasks, improving objectives including instruction following (agreement), internal consistency (coherence), and minimal unnecessary edits (conciseness).
comment: 29 pages, 4 figures, 25 tables
☆ Large Language Models Are Effective Human Annotation Assistants, But Not Good Independent Annotators
Event annotation is important for identifying market changes, monitoring breaking news, and understanding sociological trends. Although expert annotators set the gold standards, human coding is expensive and inefficient. Unlike information extraction experiments that focus on single contexts, we evaluate a holistic workflow that removes irrelevant documents, merges documents about the same event, and annotates the events. Although LLM-based automated annotations are better than traditional TF-IDF-based methods or Event Set Curation, they are still not reliable annotators compared to human experts. However, adding LLMs to assist experts for Event Set Curation can reduce the time and mental effort required for Variable Annotation. When using LLMs to extract event variables to assist expert annotators, they agree more with the extracted variables than fully automated LLMs for annotation.
comment: 9 pages, 4 figures
☆ Effectiveness of Zero-shot-CoT in Japanese Prompts
We compare the effectiveness of zero-shot Chain-of-Thought (CoT) prompting in Japanese and English using ChatGPT-3.5 and 4o-mini. The technique of zero-shot CoT, which involves appending a phrase such as "Let's think step by step" to a prompt to encourage reasoning before answering, has been shown to offer LLM performance improvements in mathematical and reasoning tasks, particularly in English. We investigate how these effects transfer to Japanese using the Japanese Multi-task Language Understanding Benchmark (JMMLU) and the Multi-task Language Understanding Benchmark (MMLU). Our results show that while zero-shot CoT prompting can lead to notable performance gains for some prompt categories in GPT-3.5, its impact in GPT-4o-mini is associated with significant performance declines. However, for Japanese prompts there remain certain categories, such as college mathematics and abstract algebra, that still exhibit improvements, despite the broader trend of diminishing effectiveness in more advanced models.
comment: NLP2025 Workshop on Japanese Language Resources (JLR2025)
☆ SemHiTok: A Unified Image Tokenizer via Semantic-Guided Hierarchical Codebook for Multimodal Understanding and Generation
We present SemHiTok, a unified image Tokenizer via Semantic-Guided Hierarchical codebook that provides consistent discrete feature representations for multimodal understanding and generation tasks. Recently, unified multimodal large models (MLLMs) for understanding and generation have sparked exploration within research community. Previous works attempt to train a unified image tokenizer by combining loss functions for semantic feature reconstruction and pixel reconstruction. However, due to the differing levels of features prioritized by multimodal understanding and generation tasks, joint training methods face significant challenges in achieving a good trade-off. SemHiTok addresses this challenge through Semantic-Guided Hierarchical codebook which builds texture sub-codebooks on pre-trained semantic codebook. This design decouples the training of semantic reconstruction and pixel reconstruction and equips the tokenizer with low-level texture feature extraction capability without degradation of high-level semantic feature extraction ability. Our experiments demonstrate that SemHiTok achieves state-of-the-art rFID score at 256X256resolution compared to other unified tokenizers, and exhibits competitive performance on multimodal understanding and generation tasks.
comment: Under Review
☆ Fully-Decentralized MADDPG with Networked Agents
In this paper, we devise three actor-critic algorithms with decentralized training for multi-agent reinforcement learning in cooperative, adversarial, and mixed settings with continuous action spaces. To this goal, we adapt the MADDPG algorithm by applying a networked communication approach between agents. We introduce surrogate policies in order to decentralize the training while allowing for local communication during training. The decentralized algorithms achieve comparable results to the original MADDPG in empirical tests, while reducing computational cost. This is more pronounced with larger numbers of agents.
☆ Beyond Black-Box Benchmarking: Observability, Analytics, and Optimization of Agentic Systems
The rise of agentic AI systems, where agents collaborate to perform diverse tasks, poses new challenges with observing, analyzing and optimizing their behavior. Traditional evaluation and benchmarking approaches struggle to handle the non-deterministic, context-sensitive, and dynamic nature of these systems. This paper explores key challenges and opportunities in analyzing and optimizing agentic systems across development, testing, and maintenance. We explore critical issues such as natural language variability and unpredictable execution flows, which hinder predictability and control, demanding adaptive strategies to manage input variability and evolving behaviors. Through our user study, we supported these hypotheses. In particular, we showed a 79% agreement that non deterministic flow of agentic systems acts as a major challenge. Finally, we validated our statements empirically advocating the need for moving beyond classical benchmarking. To bridge these gaps, we introduce taxonomies to present expected analytics outcomes and the ways to collect them by extending standard observability frameworks. Building on these foundations, we introduce and demonstrate novel approach for benchmarking of agent evaluation systems. Unlike traditional "black box" performance evaluation approaches, our benchmark is built from agent runtime logs as input, and analytics outcome including discovered flows and issues. By addressing key limitations in existing methodologies, we aim to set the stage for more advanced and holistic evaluation strategies, which could foster the development of adaptive, interpretable, and robust agentic AI systems.
comment: 14 pages, 19 figures
☆ Gender Encoding Patterns in Pretrained Language Model Representations
Gender bias in pretrained language models (PLMs) poses significant social and ethical challenges. Despite growing awareness, there is a lack of comprehensive investigation into how different models internally represent and propagate such biases. This study adopts an information-theoretic approach to analyze how gender biases are encoded within various encoder-based architectures. We focus on three key aspects: identifying how models encode gender information and biases, examining the impact of bias mitigation techniques and fine-tuning on the encoded biases and their effectiveness, and exploring how model design differences influence the encoding of biases. Through rigorous and systematic investigation, our findings reveal a consistent pattern of gender encoding across diverse models. Surprisingly, debiasing techniques often exhibit limited efficacy, sometimes inadvertently increasing the encoded bias in internal representations while reducing bias in model output distributions. This highlights a disconnect between mitigating bias in output distributions and addressing its internal representations. This work provides valuable guidance for advancing bias mitigation strategies and fostering the development of more equitable language models.
comment: Proceedings of the 5th Workshop on Trustworthy Natural Language Processing (TrustNLP 2025)
☆ ACAI for SBOs: AI Co-creation for Advertising and Inspiration for Small Business Owners
Small business owners (SBOs) often lack the resources and design experience needed to produce high-quality advertisements. To address this, we developed ACAI (AI Co-Creation for Advertising and Inspiration), an GenAI-powered multimodal advertisement creation tool, and conducted a user study with 16 SBOs in London to explore their perceptions of and interactions with ACAI in advertisement creation. Our findings reveal that structured inputs enhance user agency and control while improving AI outputs by facilitating better brand alignment, enhancing AI transparency, and offering scaffolding that assists novice designers, such as SBOs, in formulating prompts. We also found that ACAI's multimodal interface bridges the design skill gap for SBOs with a clear advertisement vision, but who lack the design jargon necessary for effective prompting. Building on our findings, we propose three capabilities: contextual intelligence, adaptive interactions, and data management, with corresponding design recommendations to advance the co-creative attributes of AI-mediated design tools.
☆ Pull-Based Query Scheduling for Goal-Oriented Semantic Communication
This paper addresses query scheduling for goal-oriented semantic communication in pull-based status update systems. We consider a system where multiple sensing agents (SAs) observe a source characterized by various attributes and provide updates to multiple actuation agents (AAs), which act upon the received information to fulfill their heterogeneous goals at the endpoint. A hub serves as an intermediary, querying the SAs for updates on observed attributes and maintaining a knowledge base, which is then broadcast to the AAs. The AAs leverage the knowledge to perform their actions effectively. To quantify the semantic value of updates, we introduce a grade of effectiveness (GoE) metric. Furthermore, we integrate cumulative perspective theory (CPT) into the long-term effectiveness analysis to account for risk awareness and loss aversion in the system. Leveraging this framework, we compute effect-aware scheduling policies aimed at maximizing the expected discounted sum of CPT-based total GoE provided by the transmitted updates while complying with a given query cost constraint. To achieve this, we propose a model-based solution based on dynamic programming and model-free solutions employing state-of-the-art deep reinforcement learning (DRL) algorithms. Our findings demonstrate that effect-aware scheduling significantly enhances the effectiveness of communicated updates compared to benchmark scheduling methods, particularly in settings with stringent cost constraints where optimal query scheduling is vital for system performance and overall effectiveness.
comment: Submitted for possible publication
☆ Delusions of Large Language Models
Large Language Models often generate factually incorrect but plausible outputs, known as hallucinations. We identify a more insidious phenomenon, LLM delusion, defined as high belief hallucinations, incorrect outputs with abnormally high confidence, making them harder to detect and mitigate. Unlike ordinary hallucinations, delusions persist with low uncertainty, posing significant challenges to model reliability. Through empirical analysis across different model families and sizes on several Question Answering tasks, we show that delusions are prevalent and distinct from hallucinations. LLMs exhibit lower honesty with delusions, which are harder to override via finetuning or self reflection. We link delusion formation with training dynamics and dataset noise and explore mitigation strategies such as retrieval augmented generation and multi agent debating to mitigate delusions. By systematically investigating the nature, prevalence, and mitigation of LLM delusions, our study provides insights into the underlying causes of this phenomenon and outlines future directions for improving model reliability.
☆ PFDial: A Structured Dialogue Instruction Fine-tuning Method Based on UML Flowcharts
Process-driven dialogue systems, which operate under strict predefined process constraints, are essential in customer service and equipment maintenance scenarios. Although Large Language Models (LLMs) have shown remarkable progress in dialogue and reasoning, they still struggle to solve these strictly constrained dialogue tasks. To address this challenge, we construct Process Flow Dialogue (PFDial) dataset, which contains 12,705 high-quality Chinese dialogue instructions derived from 440 flowcharts containing 5,055 process nodes. Based on PlantUML specification, each UML flowchart is converted into atomic dialogue units i.e., structured five-tuples. Experimental results demonstrate that a 7B model trained with merely 800 samples, and a 0.5B model trained on total data both can surpass 90% accuracy. Additionally, the 8B model can surpass GPT-4o up to 43.88% with an average of 11.00%. We further evaluate models' performance on challenging backward transitions in process flows and conduct an in-depth analysis of various dataset formats to reveal their impact on model performance in handling decision and sequential branches. The data is released in https://github.com/KongLongGeFDU/PFDial.
☆ InftyThink: Breaking the Length Limits of Long-Context Reasoning in Large Language Models
Advanced reasoning in large language models has achieved remarkable performance on challenging tasks, but the prevailing long-context reasoning paradigm faces critical limitations: quadratic computational scaling with sequence length, reasoning constrained by maximum context boundaries, and performance degradation beyond pre-training context windows. Existing approaches primarily compress reasoning chains without addressing the fundamental scaling problem. To overcome these challenges, we introduce InftyThink, a paradigm that transforms monolithic reasoning into an iterative process with intermediate summarization. By interleaving short reasoning segments with concise progress summaries, our approach enables unbounded reasoning depth while maintaining bounded computational costs. This creates a characteristic sawtooth memory pattern that significantly reduces computational complexity compared to traditional approaches. Furthermore, we develop a methodology for reconstructing long-context reasoning datasets into our iterative format, transforming OpenR1-Math into 333K training instances. Experiments across multiple model architectures demonstrate that our approach reduces computational costs while improving performance, with Qwen2.5-Math-7B showing 3-13% improvements across MATH500, AIME24, and GPQA_diamond benchmarks. Our work challenges the assumed trade-off between reasoning depth and computational efficiency, providing a more scalable approach to complex reasoning without architectural modifications.
☆ Censoring-Aware Tree-Based Reinforcement Learning for Estimating Dynamic Treatment Regimes with Censored Outcomes
Dynamic Treatment Regimes (DTRs) provide a systematic approach for making sequential treatment decisions that adapt to individual patient characteristics, particularly in clinical contexts where survival outcomes are of interest. Censoring-Aware Tree-Based Reinforcement Learning (CA-TRL) is a novel framework to address the complexities associated with censored data when estimating optimal DTRs. We explore ways to learn effective DTRs, from observational data. By enhancing traditional tree-based reinforcement learning methods with augmented inverse probability weighting (AIPW) and censoring-aware modifications, CA-TRL delivers robust and interpretable treatment strategies. We demonstrate its effectiveness through extensive simulations and real-world applications using the SANAD epilepsy dataset, where it outperformed the recently proposed ASCL method in key metrics such as restricted mean survival time (RMST) and decision-making accuracy. This work represents a step forward in advancing personalized and data-driven treatment strategies across diverse healthcare settings.
☆ UniGenX: Unified Generation of Sequence and Structure with Autoregressive Diffusion
Unified generation of sequence and structure for scientific data (e.g., materials, molecules, proteins) is a critical task. Existing approaches primarily rely on either autoregressive sequence models or diffusion models, each offering distinct advantages and facing notable limitations. Autoregressive models, such as GPT, Llama, and Phi-4, have demonstrated remarkable success in natural language generation and have been extended to multimodal tasks (e.g., image, video, and audio) using advanced encoders like VQ-VAE to represent complex modalities as discrete sequences. However, their direct application to scientific domains is challenging due to the high precision requirements and the diverse nature of scientific data. On the other hand, diffusion models excel at generating high-dimensional scientific data, such as protein, molecule, and material structures, with remarkable accuracy. Yet, their inability to effectively model sequences limits their potential as general-purpose multimodal foundation models. To address these challenges, we propose UniGenX, a unified framework that combines autoregressive next-token prediction with conditional diffusion models. This integration leverages the strengths of autoregressive models to ease the training of conditional diffusion models, while diffusion-based generative heads enhance the precision of autoregressive predictions. We validate the effectiveness of UniGenX on material and small molecule generation tasks, achieving a significant leap in state-of-the-art performance for material crystal structure prediction and establishing new state-of-the-art results for small molecule structure prediction, de novo design, and conditional generation. Notably, UniGenX demonstrates significant improvements, especially in handling long sequences for complex structures, showcasing its efficacy as a versatile tool for scientific data generation.
☆ Exploring LLM Agents for Cleaning Tabular Machine Learning Datasets ICLR 2025
High-quality, error-free datasets are a key ingredient in building reliable, accurate, and unbiased machine learning (ML) models. However, real world datasets often suffer from errors due to sensor malfunctions, data entry mistakes, or improper data integration across multiple sources that can severely degrade model performance. Detecting and correcting these issues typically require tailor-made solutions and demand extensive domain expertise. Consequently, automation is challenging, rendering the process labor-intensive and tedious. In this study, we investigate whether Large Language Models (LLMs) can help alleviate the burden of manual data cleaning. We set up an experiment in which an LLM, paired with Python, is tasked with cleaning the training dataset to improve the performance of a learning algorithm without having the ability to modify the training pipeline or perform any feature engineering. We run this experiment on multiple Kaggle datasets that have been intentionally corrupted with errors. Our results show that LLMs can identify and correct erroneous entries, such as illogical values or outlier, by leveraging contextual information from other features within the same row, as well as feedback from previous iterations. However, they struggle to detect more complex errors that require understanding data distribution across multiple rows, such as trends and biases.
comment: 14 pages, 1 main figure, 3 plots, Published at ICLR 2025 Workshop on Foundation Models in the Wild
☆ AA-CLIP: Enhancing Zero-shot Anomaly Detection via Anomaly-Aware CLIP
Anomaly detection (AD) identifies outliers for applications like defect and lesion detection. While CLIP shows promise for zero-shot AD tasks due to its strong generalization capabilities, its inherent Anomaly-Unawareness leads to limited discrimination between normal and abnormal features. To address this problem, we propose Anomaly-Aware CLIP (AA-CLIP), which enhances CLIP's anomaly discrimination ability in both text and visual spaces while preserving its generalization capability. AA-CLIP is achieved through a straightforward yet effective two-stage approach: it first creates anomaly-aware text anchors to differentiate normal and abnormal semantics clearly, then aligns patch-level visual features with these anchors for precise anomaly localization. This two-stage strategy, with the help of residual adapters, gradually adapts CLIP in a controlled manner, achieving effective AD while maintaining CLIP's class knowledge. Extensive experiments validate AA-CLIP as a resource-efficient solution for zero-shot AD tasks, achieving state-of-the-art results in industrial and medical applications. The code is available at https://github.com/Mwxinnn/AA-CLIP.
comment: 8 pages, 7 figures
☆ Enhancing NLP Robustness and Generalization through LLM-Generated Contrast Sets: A Scalable Framework for Systematic Evaluation and Adversarial Training
Standard NLP benchmarks often fail to capture vulnerabilities stemming from dataset artifacts and spurious correlations. Contrast sets address this gap by challenging models near decision boundaries but are traditionally labor-intensive to create and limited in diversity. This study leverages large language models to automate the generation of diverse contrast sets. Using the SNLI dataset, we created a 3,000-example contrast set to evaluate and improve model robustness. Fine-tuning on these contrast sets enhanced performance on systematically perturbed examples, maintained standard test accuracy, and modestly improved generalization to novel perturbations. This automated approach offers a scalable solution for evaluating and improving NLP models, addressing systematic generalization challenges, and advancing robustness in real-world applications.
☆ Deep Cut-informed Graph Embedding and Clustering
Graph clustering aims to divide the graph into different clusters. The recently emerging deep graph clustering approaches are largely built on graph neural networks (GNN). However, GNN is designed for general graph encoding and there is a common issue of representation collapse in existing GNN-based deep graph clustering algorithms. We attribute two main reasons for such issue: (i) the inductive bias of GNN models: GNNs tend to generate similar representations for proximal nodes. Since graphs often contain a non-negligible amount of inter-cluster links, the bias results in error message passing and leads to biased clustering; (ii) the clustering guided loss function: most traditional approaches strive to make all samples closer to pre-learned cluster centers, which cause a degenerate solution assigning all data points to a single label thus make all samples and less discriminative. To address these challenges, we investigate graph clustering from a graph cut perspective and propose an innovative and non-GNN-based Deep Cut-informed Graph embedding and Clustering framework, namely DCGC. This framework includes two modules: (i) cut-informed graph encoding; (ii) self-supervised graph clustering via optimal transport. For the encoding module, we derive a cut-informed graph embedding objective to fuse graph structure and attributes by minimizing their joint normalized cut. For the clustering module, we utilize the optimal transport theory to obtain the clustering assignments, which can balance the guidance of proximity to the pre-learned cluster center. With the above two tailored designs, DCGC is more suitable for the graph clustering task, which can effectively alleviate the problem of representation collapse and achieve better performance. We conduct extensive experiments to demonstrate that our method is simple but effective compared with benchmarks.
☆ BTFL: A Bayesian-based Test-Time Generalization Method for Internal and External Data Distributions in Federated learning KDD 2025
Federated Learning (FL) enables multiple clients to collaboratively develop a global model while maintaining data privacy. However, online FL deployment faces challenges due to distribution shifts and evolving test samples. Personalized Federated Learning (PFL) tailors the global model to individual client distributions, but struggles with Out-Of-Distribution (OOD) samples during testing, leading to performance degradation. In real-world scenarios, balancing personalization and generalization during online testing is crucial and existing methods primarily focus on training-phase generalization. To address the test-time trade-off, we introduce a new scenario: Test-time Generalization for Internal and External Distributions in Federated Learning (TGFL), which evaluates adaptability under Internal Distribution (IND) and External Distribution (EXD). We propose BTFL, a Bayesian-based test-time generalization method for TGFL, which balances generalization and personalization at the sample level during testing. BTFL employs a two-head architecture to store local and global knowledge, interpolating predictions via a dual-Bayesian framework that considers both historical test data and current sample characteristics with theoretical guarantee and faster speed. Our experiments demonstrate that BTFL achieves improved performance across various datasets and models with less time cost. The source codes are made publicly available at https://github.com/ZhouYuCS/BTFL .
comment: accepted as KDD 2025 research track paper
☆ Hardware-Accelerated Event-Graph Neural Networks for Low-Latency Time-Series Classification on SoC FPGA
As the quantities of data recorded by embedded edge sensors grow, so too does the need for intelligent local processing. Such data often comes in the form of time-series signals, based on which real-time predictions can be made locally using an AI model. However, a hardware-software approach capable of making low-latency predictions with low power consumption is required. In this paper, we present a hardware implementation of an event-graph neural network for time-series classification. We leverage an artificial cochlea model to convert the input time-series signals into a sparse event-data format that allows the event-graph to drastically reduce the number of calculations relative to other AI methods. We implemented the design on a SoC FPGA and applied it to the real-time processing of the Spiking Heidelberg Digits (SHD) dataset to benchmark our approach against competitive solutions. Our method achieves a floating-point accuracy of 92.7% on the SHD dataset for the base model, which is only 2.4% and 2% less than the state-of-the-art models with over 10% and 67% fewer model parameters, respectively. It also outperforms FPGA-based spiking neural network implementations by 19.3% and 4.5%, achieving 92.3% accuracy for the quantised model while using fewer computational resources and reducing latency.
comment: Paper accepted for the 21st International Symposium on Applied Reconfigurable Computing ARC 2025, Sevilla, Spain, April 9-11, 2025
☆ Revisiting Early Detection of Sexual Predators via Turn-level Optimization NAACL 2025
Online grooming is a severe social threat where sexual predators gradually entrap child victims with subtle and gradual manipulation. Therefore, timely intervention for online grooming is critical for proactive protection. However, previous methods fail to determine the optimal intervention points (i.e., jump to conclusions) as they rely on chat-level risk labels by causing weak supervision of risky utterances. For timely detection, we propose speed control reinforcement learning (SCoRL) (The code and supplementary materials are available at https://github.com/jinmyeongAN/SCoRL), incorporating a practical strategy derived from luring communication theory (LCT). To capture the predator's turn-level entrapment, we use a turn-level risk label based on the LCT. Then, we design a novel speed control reward function that balances the trade-off between speed and accuracy based on turn-level risk label; thus, SCoRL can identify the optimal intervention moment. In addition, we introduce a turn-level metric for precise evaluation, identifying limitations in previously used chat-level metrics. Experimental results show that SCoRL effectively preempted online grooming, offering a more proactive and timely solution. Further analysis reveals that our method enhances performance while intuitively identifying optimal early intervention points.
comment: Accepted as a main conference paper at NAACL 2025
☆ DiffCLIP: Differential Attention Meets CLIP
We propose DiffCLIP, a novel vision-language model that extends the differential attention mechanism to CLIP architectures. Differential attention was originally developed for large language models to amplify relevant context while canceling out noisy information. In this work, we integrate this mechanism into CLIP's dual encoder (image and text) framework. With minimal additional parameters, DiffCLIP achieves superior performance on image-text understanding tasks. Across zero-shot classification, retrieval, and robustness benchmarks, DiffCLIP consistently outperforms baseline CLIP models. Notably, these gains come with negligible computational overhead, demonstrating that differential attention can significantly enhance multi-modal representations without sacrificing efficiency. Code can be found at https://github.com/hammoudhasan/DiffCLIP.
comment: Under review
☆ Using Subgraph GNNs for Node Classification:an Overlooked Potential Approach
Previous studies have demonstrated the strong performance of Graph Neural Networks (GNNs) in node classification. However, most existing GNNs adopt a node-centric perspective and rely on global message passing, leading to high computational and memory costs that hinder scalability. To mitigate these challenges, subgraph-based methods have been introduced, leveraging local subgraphs as approximations of full computational trees. While this approach improves efficiency, it often suffers from performance degradation due to the loss of global contextual information, limiting its effectiveness compared to global GNNs. To address this trade-off between scalability and classification accuracy, we reformulate the node classification task as a subgraph classification problem and propose SubGND (Subgraph GNN for NoDe). This framework introduces a differentiated zero-padding strategy and an Ego-Alter subgraph representation method to resolve label conflicts while incorporating an Adaptive Feature Scaling Mechanism to dynamically adjust feature contributions based on dataset-specific dependencies. Experimental results on six benchmark datasets demonstrate that SubGND achieves performance comparable to or surpassing global message-passing GNNs, particularly in heterophilic settings, highlighting its effectiveness and scalability as a promising solution for node classification.
comment: 16 pages
☆ Agent models: Internalizing Chain-of-Action Generation into Reasoning models
Traditional agentic workflows rely on external prompts to manage interactions with tools and the environment, which limits the autonomy of reasoning models. We position \emph{Large Agent Models (LAMs)} that internalize the generation of \emph{Chain-of-Action (CoA)}, enabling the model to autonomously decide when and how to use external tools. Our proposed AutoCoA framework combines supervised fine-tuning (SFT) and reinforcement learning (RL), allowing the model to seamlessly switch between reasoning and action while efficiently managing environment interactions. Main components include step-level action triggering, trajectory-level CoA optimization, and an internal world model to reduce real-environment interaction costs. Evaluations on open-domain QA tasks demonstrate that AutoCoA-trained agent models significantly outperform ReAct-based workflows in task completion, especially in tasks that require long-term reasoning and multi-step actions. Code and dataset are available at https://github.com/ADaM-BJTU/AutoCoA
☆ WildIFEval: Instruction Following in the Wild
Recent LLMs have shown remarkable success in following user instructions, yet handling instructions with multiple constraints remains a significant challenge. In this work, we introduce WildIFEval - a large-scale dataset of 12K real user instructions with diverse, multi-constraint conditions. Unlike prior datasets, our collection spans a broad lexical and topical spectrum of constraints, in natural user prompts. We categorize these constraints into eight high-level classes to capture their distribution and dynamics in real-world scenarios. Leveraging WildIFEval, we conduct extensive experiments to benchmark the instruction-following capabilities of leading LLMs. Our findings reveal that all evaluated models experience performance degradation with an increasing number of constraints. Thus, we show that all models have a large room for improvement on such tasks. Moreover, we observe that the specific type of constraint plays a critical role in model performance. We release our dataset to promote further research on instruction-following under complex, realistic conditions.
☆ SHIP: A Shapelet-based Approach for Interpretable Patient-Ventilator Asynchrony Detection PAKDD 2025
Patient-ventilator asynchrony (PVA) is a common and critical issue during mechanical ventilation, affecting up to 85% of patients. PVA can result in clinical complications such as discomfort, sleep disruption, and potentially more severe conditions like ventilator-induced lung injury and diaphragm dysfunction. Traditional PVA management, which relies on manual adjustments by healthcare providers, is often inadequate due to delays and errors. While various computational methods, including rule-based, statistical, and deep learning approaches, have been developed to detect PVA events, they face challenges related to dataset imbalances and lack of interpretability. In this work, we propose a shapelet-based approach SHIP for PVA detection, utilizing shapelets - discriminative subsequences in time-series data - to enhance detection accuracy and interpretability. Our method addresses dataset imbalances through shapelet-based data augmentation and constructs a shapelet pool to transform the dataset for more effective classification. The combined shapelet and statistical features are then used in a classifier to identify PVA events. Experimental results on medical datasets show that SHIP significantly improves PVA detection while providing interpretable insights into model decisions.
comment: Accepted at PAKDD 2025
☆ Conceptrol: Concept Control of Zero-shot Personalized Image Generation
Personalized image generation with text-to-image diffusion models generates unseen images based on reference image content. Zero-shot adapter methods such as IP-Adapter and OminiControl are especially interesting because they do not require test-time fine-tuning. However, they struggle to balance preserving personalized content and adherence to the text prompt. We identify a critical design flaw resulting in this performance gap: current adapters inadequately integrate personalization images with the textual descriptions. The generated images, therefore, replicate the personalized content rather than adhere to the text prompt instructions. Yet the base text-to-image has strong conceptual understanding capabilities that can be leveraged. We propose Conceptrol, a simple yet effective framework that enhances zero-shot adapters without adding computational overhead. Conceptrol constrains the attention of visual specification with a textual concept mask that improves subject-driven generation capabilities. It achieves as much as 89% improvement on personalization benchmarks over the vanilla IP-Adapter and can even outperform fine-tuning approaches such as Dreambooth LoRA. The source code is available at https://github.com/QY-H00/Conceptrol.
☆ Human Cognition Inspired RAG with Knowledge Graph for Complex Problem Solving
Large language models (LLMs) have demonstrated transformative potential across various domains, yet they face significant challenges in knowledge integration and complex problem reasoning, often leading to hallucinations and unreliable outputs. Retrieval-Augmented Generation (RAG) has emerged as a promising solution to enhance LLMs accuracy by incorporating external knowledge. However, traditional RAG systems struggle with processing complex relational information and multi-step reasoning, limiting their effectiveness in advanced problem-solving tasks. To address these limitations, we propose CogGRAG, a cognition inspired graph-based RAG framework, designed to improve LLMs performance in Knowledge Graph Question Answering (KGQA). Inspired by the human cognitive process of decomposing complex problems and performing self-verification, our framework introduces a three-stage methodology: decomposition, retrieval, and reasoning with self-verification. By integrating these components, CogGRAG enhances the accuracy of LLMs in complex problem solving. We conduct systematic experiments with three LLM backbones on four benchmark datasets, where CogGRAG outperforms the baselines.
☆ LSA: Latent Style Augmentation Towards Stain-Agnostic Cervical Cancer Screening
The deployment of computer-aided diagnosis systems for cervical cancer screening using whole slide images (WSIs) faces critical challenges due to domain shifts caused by staining variations across different scanners and imaging environments. While existing stain augmentation methods improve patch-level robustness, they fail to scale to WSIs due to two key limitations: (1) inconsistent stain patterns when extending patch operations to gigapixel slides, and (2) prohibitive computational/storage costs from offline processing of augmented WSIs.To address this, we propose Latent Style Augmentation (LSA), a framework that performs efficient, online stain augmentation directly on WSI-level latent features. We first introduce WSAug, a WSI-level stain augmentation method ensuring consistent stain across patches within a WSI. Using offline-augmented WSIs by WSAug, we design and train Stain Transformer, which can simulate targeted style in the latent space, efficiently enhancing the robustness of the WSI-level classifier. We validate our method on a multi-scanner WSI dataset for cervical cancer diagnosis. Despite being trained on data from a single scanner, our approach achieves significant performance improvements on out-of-distribution data from other scanners. Code will be available at https://github.com/caijd2000/LSA.
☆ ProJudge: A Multi-Modal Multi-Discipline Benchmark and Instruction-Tuning Dataset for MLLM-based Process Judges
As multi-modal large language models (MLLMs) frequently exhibit errors when solving scientific problems, evaluating the validity of their reasoning processes is critical for ensuring reliability and uncovering fine-grained model weaknesses. Since human evaluation is laborious and costly, prompting MLLMs as automated process judges has become a common practice. However, the reliability of these model-based judges remains uncertain. To address this, we introduce ProJudgeBench, the first comprehensive benchmark specifically designed for evaluating abilities of MLLM-based process judges. ProJudgeBench comprises 2,400 test cases and 50,118 step-level labels, spanning four scientific disciplines with diverse difficulty levels and multi-modal content. In ProJudgeBench, each step is meticulously annotated by human experts for correctness, error type, and explanation, enabling a systematic evaluation of judges' capabilities to detect, classify and diagnose errors. Evaluation on ProJudgeBench reveals a significant performance gap between open-source and proprietary models. To bridge this gap, we further propose ProJudge-173k, a large-scale instruction-tuning dataset, and a Dynamic Dual-Phase fine-tuning strategy that encourages models to explicitly reason through problem-solving before assessing solutions. Both contributions significantly enhance the process evaluation capabilities of open-source models. All the resources will be released to foster future research of reliable multi-modal process evaluation.
☆ ARMOR v0.1: Empowering Autoregressive Multimodal Understanding Model with Interleaved Multimodal Generation via Asymmetric Synergy
Unified models (UniMs) for multimodal understanding and generation have recently received much attention in the area of vision and language. Existing UniMs are designed to simultaneously learn both multimodal understanding and generation capabilities, demanding substantial computational resources, and often struggle to generate interleaved text-image. We present ARMOR, a resource-efficient and pure autoregressive framework that achieves both understanding and generation by fine-tuning existing multimodal large language models (MLLMs). Specifically, ARMOR extends existing MLLMs from three perspectives: (1) For model architecture, an asymmetric encoder-decoder architecture with a forward-switching mechanism is introduced to unify embedding space integrating textual and visual modalities for enabling natural text-image interleaved generation with minimal computational overhead. (2) For training data, a meticulously curated, high-quality interleaved dataset is collected for fine-tuning MLLMs. (3) For the training algorithm, we propose a ``what or how to generate" algorithm to empower existing MLLMs with multimodal generation capabilities while preserving their multimodal understanding capabilities, through three progressive training stages based on the collected dataset. Experimental results demonstrate that ARMOR upgrades existing MLLMs to UniMs with promising image generation capabilities, using limited training resources. Our code will be released soon at https://armor.github.io.
☆ AnywhereDoor: Multi-Target Backdoor Attacks on Object Detection
As object detection becomes integral to many safety-critical applications, understanding its vulnerabilities is essential. Backdoor attacks, in particular, pose a serious threat by implanting hidden triggers in victim models, which adversaries can later exploit to induce malicious behaviors during inference. However, current understanding is limited to single-target attacks, where adversaries must define a fixed malicious behavior (target) before training, making inference-time adaptability impossible. Given the large output space of object detection (including object existence prediction, bounding box estimation, and classification), the feasibility of flexible, inference-time model control remains unexplored. This paper introduces AnywhereDoor, a multi-target backdoor attack for object detection. Once implanted, AnywhereDoor allows adversaries to make objects disappear, fabricate new ones, or mislabel them, either across all object classes or specific ones, offering an unprecedented degree of control. This flexibility is enabled by three key innovations: (i) objective disentanglement to scale the number of supported targets; (ii) trigger mosaicking to ensure robustness even against region-based detectors; and (iii) strategic batching to address object-level data imbalances that hinder manipulation. Extensive experiments demonstrate that AnywhereDoor grants attackers a high degree of control, improving attack success rates by 26% compared to adaptations of existing methods for such flexible control.
☆ From Motion Signals to Insights: A Unified Framework for Student Behavior Analysis and Feedback in Physical Education Classes
Analyzing student behavior in educational scenarios is crucial for enhancing teaching quality and student engagement. Existing AI-based models often rely on classroom video footage to identify and analyze student behavior. While these video-based methods can partially capture and analyze student actions, they struggle to accurately track each student's actions in physical education classes, which take place in outdoor, open spaces with diverse activities, and are challenging to generalize to the specialized technical movements involved in these settings. Furthermore, current methods typically lack the ability to integrate specialized pedagogical knowledge, limiting their ability to provide in-depth insights into student behavior and offer feedback for optimizing instructional design. To address these limitations, we propose a unified end-to-end framework that leverages human activity recognition technologies based on motion signals, combined with advanced large language models, to conduct more detailed analyses and feedback of student behavior in physical education classes. Our framework begins with the teacher's instructional designs and the motion signals from students during physical education sessions, ultimately generating automated reports with teaching insights and suggestions for improving both learning and class instructions. This solution provides a motion signal-based approach for analyzing student behavior and optimizing instructional design tailored to physical education classes. Experimental results demonstrate that our framework can accurately identify student behaviors and produce meaningful pedagogical insights.
comment: Work in progress
☆ Generative AI as Digital Media
Generative AI is frequently portrayed as revolutionary or even apocalyptic, prompting calls for novel regulatory approaches. This essay argues that such views are misguided. Instead, generative AI should be understood as an evolutionary step in the broader algorithmic media landscape, alongside search engines and social media. Like these platforms, generative AI centralizes information control, relies on complex algorithms to shape content, and extensively uses user data, thus perpetuating common problems: unchecked corporate power, echo chambers, and weakened traditional gatekeepers. Regulation should therefore share a consistent objective: ensuring media institutions remain trustworthy. Without trust, public discourse risks fragmenting into isolated communities dominated by comforting, tribal beliefs -- a threat intensified by generative AI's capacity to bypass gatekeepers and personalize truth. Current governance frameworks, such as the EU's AI Act and the US Executive Order 14110, emphasize reactive risk mitigation, addressing measurable threats like national security, public health, and algorithmic bias. While effective for novel technological risks, this reactive approach fails to adequately address broader issues of trust and legitimacy inherent to digital media. Proactive regulation fostering transparency, accountability, and public confidence is essential. Viewing generative AI exclusively as revolutionary risks repeating past regulatory failures that left social media and search engines insufficiently regulated. Instead, regulation must proactively shape an algorithmic media environment serving the public good, supporting quality information and robust civic discourse.
☆ Can Small Language Models Reliably Resist Jailbreak Attacks? A Comprehensive Evaluation
Small language models (SLMs) have emerged as promising alternatives to large language models (LLMs) due to their low computational demands, enhanced privacy guarantees and comparable performance in specific domains through light-weight fine-tuning. Deploying SLMs on edge devices, such as smartphones and smart vehicles, has become a growing trend. However, the security implications of SLMs have received less attention than LLMs, particularly regarding jailbreak attacks, which is recognized as one of the top threats of LLMs by the OWASP. In this paper, we conduct the first large-scale empirical study of SLMs' vulnerabilities to jailbreak attacks. Through systematically evaluation on 63 SLMs from 15 mainstream SLM families against 8 state-of-the-art jailbreak methods, we demonstrate that 47.6% of evaluated SLMs show high susceptibility to jailbreak attacks (ASR > 40%) and 38.1% of them can not even resist direct harmful query (ASR > 50%). We further analyze the reasons behind the vulnerabilities and identify four key factors: model size, model architecture, training datasets and training techniques. Moreover, we assess the effectiveness of three prompt-level defense methods and find that none of them achieve perfect performance, with detection accuracy varying across different SLMs and attack methods. Notably, we point out that the inherent security awareness play a critical role in SLM security, and models with strong security awareness could timely terminate unsafe response with little reminder. Building upon the findings, we highlight the urgent need for security-by-design approaches in SLM development and provide valuable insights for building more trustworthy SLM ecosystem.
comment: 19 pages, 12 figures
☆ Towards Superior Quantization Accuracy: A Layer-sensitive Approach
Large Vision and Language Models have exhibited remarkable human-like intelligence in tasks such as natural language comprehension, problem-solving, logical reasoning, and knowledge retrieval. However, training and serving these models require substantial computational resources, posing a significant barrier to their widespread application and further research. To mitigate this challenge, various model compression techniques have been developed to reduce computational requirements. Nevertheless, existing methods often employ uniform quantization configurations, failing to account for the varying difficulties across different layers in quantizing large neural network models. This paper tackles this issue by leveraging layer-sensitivity features, such as activation sensitivity and weight distribution Kurtosis, to identify layers that are challenging to quantize accurately and allocate additional memory budget. The proposed methods, named SensiBoost and KurtBoost, respectively, demonstrate notable improvement in quantization accuracy, achieving up to 9% lower perplexity with only a 2% increase in memory budget on LLama models compared to the baseline.
☆ GFlowVLM: Enhancing Multi-step Reasoning in Vision-Language Models with Generative Flow Networks
Vision-Language Models (VLMs) have recently shown promising advancements in sequential decision-making tasks through task-specific fine-tuning. However, common fine-tuning methods, such as Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) techniques like Proximal Policy Optimization (PPO), present notable limitations: SFT assumes Independent and Identically Distributed (IID) data, while PPO focuses on maximizing cumulative rewards. These limitations often restrict solution diversity and hinder generalization in multi-step reasoning tasks. To address these challenges, we introduce a novel framework, GFlowVLM, a framework that fine-tune VLMs using Generative Flow Networks (GFlowNets) to promote generation of diverse solutions for complex reasoning tasks. GFlowVLM models the environment as a non-Markovian decision process, allowing it to capture long-term dependencies essential for real-world applications. It takes observations and task descriptions as inputs to prompt chain-of-thought (CoT) reasoning which subsequently guides action selection. We use task based rewards to fine-tune VLM with GFlowNets. This approach enables VLMs to outperform prior fine-tuning methods, including SFT and RL. Empirical results demonstrate the effectiveness of GFlowVLM on complex tasks such as card games (NumberLine, BlackJack) and embodied planning tasks (ALFWorld), showing enhanced training efficiency, solution diversity, and stronger generalization capabilities across both in-distribution and out-of-distribution scenarios.
☆ HFedCKD: Toward Robust Heterogeneous Federated Learning via Data-free Knowledge Distillation and Two-way Contrast
Most current federated learning frameworks are modeled as static processes, ignoring the dynamic characteristics of the learning system. Under the limited communication budget of the central server, the flexible model architecture of a large number of clients participating in knowledge transfer requires a lower participation rate, active clients have uneven contributions, and the client scale seriously hinders the performance of FL. We consider a more general and practical federation scenario and propose a system heterogeneous federation method based on data-free knowledge distillation and two-way contrast (HFedCKD). We apply the Inverse Probability Weighted Distillation (IPWD) strategy to the data-free knowledge transfer framework. The generator completes the data features of the nonparticipating clients. IPWD implements a dynamic evaluation of the prediction contribution of each client under different data distributions. Based on the antibiased weighting of its prediction loss, the weight distribution of each client is effectively adjusted to fairly integrate the knowledge of participating clients. At the same time, the local model is split into a feature extractor and a classifier. Through differential contrast learning, the feature extractor is aligned with the global model in the feature space, while the classifier maintains personalized decision-making capabilities. HFedCKD effectively alleviates the knowledge offset caused by a low participation rate under data-free knowledge distillation and improves the performance and stability of the model. We conduct extensive experiments on image and IoT datasets to comprehensively evaluate and verify the generalization and robustness of the proposed HFedCKD framework.
DynamicID: Zero-Shot Multi-ID Image Personalization with Flexible Facial Editability
Recent advancements in text-to-image generation have spurred interest in personalized human image generation, which aims to create novel images featuring specific human identities as reference images indicate. Although existing methods achieve high-fidelity identity preservation, they often struggle with limited multi-ID usability and inadequate facial editability. We present DynamicID, a tuning-free framework supported by a dual-stage training paradigm that inherently facilitates both single-ID and multi-ID personalized generation with high fidelity and flexible facial editability. Our key innovations include: 1) Semantic-Activated Attention (SAA), which employs query-level activation gating to minimize disruption to the original model when injecting ID features and achieve multi-ID personalization without requiring multi-ID samples during training. 2) Identity-Motion Reconfigurator (IMR), which leverages contrastive learning to effectively disentangle and re-entangle facial motion and identity features, thereby enabling flexible facial editing. Additionally, we have developed a curated VariFace-10k facial dataset, comprising 10k unique individuals, each represented by 35 distinct facial images. Experimental results demonstrate that DynamicID outperforms state-of-the-art methods in identity fidelity, facial editability, and multi-ID personalization capability.
comment: 17 pages, 16 figures
☆ ExGes: Expressive Human Motion Retrieval and Modulation for Audio-Driven Gesture Synthesis
Audio-driven human gesture synthesis is a crucial task with broad applications in virtual avatars, human-computer interaction, and creative content generation. Despite notable progress, existing methods often produce gestures that are coarse, lack expressiveness, and fail to fully align with audio semantics. To address these challenges, we propose ExGes, a novel retrieval-enhanced diffusion framework with three key designs: (1) a Motion Base Construction, which builds a gesture library using training dataset; (2) a Motion Retrieval Module, employing constrative learning and momentum distillation for fine-grained reference poses retreiving; and (3) a Precision Control Module, integrating partial masking and stochastic masking to enable flexible and fine-grained control. Experimental evaluations on BEAT2 demonstrate that ExGes reduces Fr\'echet Gesture Distance by 6.2\% and improves motion diversity by 5.3\% over EMAGE, with user studies revealing a 71.3\% preference for its naturalness and semantic relevance. Code will be released upon acceptance.
☆ Evaluation of Safety Cognition Capability in Vision-Language Models for Autonomous Driving
Assessing the safety of vision-language models (VLMs) in autonomous driving is particularly important; however, existing work mainly focuses on traditional benchmark evaluations. As interactive components within autonomous driving systems, VLMs must maintain strong safety cognition during interactions. From this perspective, we propose a novel evaluation method: Safety Cognitive Driving Benchmark (SCD-Bench) . To address the large-scale annotation challenge for SCD-Bench, we develop the Autonomous Driving Image-Text Annotation System (ADA) . Additionally, to ensure data quality in SCD-Bench, our dataset undergoes manual refinement by experts with professional knowledge in autonomous driving. We further develop an automated evaluation method based on large language models (LLMs). To verify its effectiveness, we compare its evaluation results with those of expert human evaluations, achieving a consistency rate of 99.74%. Preliminary experimental results indicate that existing open-source models still lack sufficient safety cognition, showing a significant gap compared to GPT-4o. Notably, lightweight models (1B-4B) demonstrate minimal safety cognition. However, since lightweight models are crucial for autonomous driving systems, this presents a significant challenge for integrating VLMs into the field.
☆ PerturboLLaVA: Reducing Multimodal Hallucinations with Perturbative Visual Training
This paper aims to address the challenge of hallucinations in Multimodal Large Language Models (MLLMs) particularly for dense image captioning tasks. To tackle the challenge, we identify the current lack of a metric that finely measures the caption quality in concept level. We hereby introduce HalFscore, a novel metric built upon the language graph and is designed to evaluate both the accuracy and completeness of dense captions at a granular level. Additionally, we identify the root cause of hallucination as the model's over-reliance on its language prior. To address this, we propose PerturboLLaVA, which reduces the model's reliance on the language prior by incorporating adversarially perturbed text during training. This method enhances the model's focus on visual inputs, effectively reducing hallucinations and producing accurate, image-grounded descriptions without incurring additional computational overhead. PerturboLLaVA significantly improves the fidelity of generated captions, outperforming existing approaches in handling multimodal hallucinations and achieving improved performance across general multimodal benchmarks.
☆ Sign Language Translation using Frame and Event Stream: Benchmark Dataset and Algorithms
Accurate sign language understanding serves as a crucial communication channel for individuals with disabilities. Current sign language translation algorithms predominantly rely on RGB frames, which may be limited by fixed frame rates, variable lighting conditions, and motion blur caused by rapid hand movements. Inspired by the recent successful application of event cameras in other fields, we propose to leverage event streams to assist RGB cameras in capturing gesture data, addressing the various challenges mentioned above. Specifically, we first collect a large-scale RGB-Event sign language translation dataset using the DVS346 camera, termed VECSL, which contains 15,676 RGB-Event samples, 15,191 glosses, and covers 2,568 Chinese characters. These samples were gathered across a diverse range of indoor and outdoor environments, capturing multiple viewing angles, varying light intensities, and different camera motions. Due to the absence of benchmark algorithms for comparison in this new task, we retrained and evaluated multiple state-of-the-art SLT algorithms, and believe that this benchmark can effectively support subsequent related research. Additionally, we propose a novel RGB-Event sign language translation framework (i.e., M$^2$-SLT) that incorporates fine-grained micro-sign and coarse-grained macro-sign retrieval, achieving state-of-the-art results on the proposed dataset. Both the source code and dataset will be released on https://github.com/Event-AHU/OpenESL.
comment: In Peer Review
☆ ExKG-LLM: Leveraging Large Language Models for Automated Expansion of Cognitive Neuroscience Knowledge Graphs
The paper introduces ExKG-LLM, a framework designed to automate the expansion of cognitive neuroscience knowledge graphs (CNKG) using large language models (LLMs). It addresses limitations in existing tools by enhancing accuracy, completeness, and usefulness in CNKG. The framework leverages a large dataset of scientific papers and clinical reports, applying state-of-the-art LLMs to extract, optimize, and integrate new entities and relationships. Evaluation metrics include precision, recall, and graph density. Results show significant improvements: precision (0.80, +6.67%), recall (0.81, +15.71%), F1 score (0.805, +11.81%), and increased edge nodes (21.13% and 31.92%). Graph density slightly decreased, reflecting a broader but more fragmented structure. Engagement rates rose by 20%, while CNKG diameter increased to 15, indicating a more distributed structure. Time complexity improved to O(n log n), but space complexity rose to O(n2), indicating higher memory usage. ExKG-LLM demonstrates potential for enhancing knowledge generation, semantic search, and clinical decision-making in cognitive neuroscience, adaptable to broader scientific fields.
☆ PDB: Not All Drivers Are the Same -- A Personalized Dataset for Understanding Driving Behavior
Driving behavior is inherently personal, influenced by individual habits, decision-making styles, and physiological states. However, most existing datasets treat all drivers as homogeneous, overlooking driver-specific variability. To address this gap, we introduce the Personalized Driving Behavior (PDB) dataset, a multi-modal dataset designed to capture personalization in driving behavior under naturalistic driving conditions. Unlike conventional datasets, PDB minimizes external influences by maintaining consistent routes, vehicles, and lighting conditions across sessions. It includes sources from 128-line LiDAR, front-facing camera video, GNSS, 9-axis IMU, CAN bus data (throttle, brake, steering angle), and driver-specific signals such as facial video and heart rate. The dataset features 12 participants, approximately 270,000 LiDAR frames, 1.6 million images, and 6.6 TB of raw sensor data. The processed trajectory dataset consists of 1,669 segments, each spanning 10 seconds with a 0.2-second interval. By explicitly capturing drivers' behavior, PDB serves as a unique resource for human factor analysis, driver identification, and personalized mobility applications, contributing to the development of human-centric intelligent transportation systems.
☆ SKG-LLM: Developing a Mathematical Model for Stroke Knowledge Graph Construction Using Large Language Models
The purpose of this study is to introduce SKG-LLM. A knowledge graph (KG) is constructed from stroke-related articles using mathematical and large language models (LLMs). SKG-LLM extracts and organizes complex relationships from the biomedical literature, using it to increase the accuracy and depth of KG in stroke research. In the proposed method, GPT-4 was used for data pre-processing, and the extraction of embeddings was also done by GPT-4 in the whole KG construction process. The performance of the proposed model was tested with two evaluation criteria: Precision and Recall. For further validation of the proposed model, GPT-4 was used. Compared with Wikidata and WN18RR, the proposed KG-LLM approach performs better, especially in precision and recall. By including GPT-4 in the preprocessing process, the SKG-LLM model achieved a precision score of 0.906 and a recall score of 0.923. Expert reviews further improved the results and increased precision to 0.923 and recall to 0.918. The knowledge graph constructed by SKG-LLM contains 2692 nodes and 5012 edges, which are 13 distinct types of nodes and 24 types of edges.
☆ HuixiangDou2: A Robustly Optimized GraphRAG Approach
Large Language Models (LLMs) perform well on familiar queries but struggle with specialized or emerging topics. Graph-based Retrieval-Augmented Generation (GraphRAG) addresses this by structuring domain knowledge as a graph for dynamic retrieval. However, existing pipelines involve complex engineering workflows, making it difficult to isolate the impact of individual components. Evaluating retrieval effectiveness is also challenging due to dataset overlap with LLM pretraining data. In this work, we introduce HuixiangDou2, a robustly optimized GraphRAG framework. Specifically, we leverage the effectiveness of dual-level retrieval and optimize its performance in a 32k context for maximum precision, and compare logic-based retrieval and dual-level retrieval to enhance overall functionality. Our implementation includes comparative experiments on a test set, where Qwen2.5-7B-Instruct initially underperformed. With our approach, the score improved significantly from 60 to 74.5, as illustrated in the Figure. Experiments on domain-specific datasets reveal that dual-level retrieval enhances fuzzy matching, while logic-form retrieval improves structured reasoning. Furthermore, we propose a multi-stage verification mechanism to improve retrieval robustness without increasing computational cost. Empirical results show significant accuracy gains over baselines, highlighting the importance of adaptive retrieval. To support research and adoption, we release HuixiangDou2 as an open-source resource https://github.com/tpoisonooo/huixiangdou2.
comment: 11 pages
☆ Enhancing Layer Attention Efficiency through Pruning Redundant Retrievals
Growing evidence suggests that layer attention mechanisms, which enhance interaction among layers in deep neural networks, have significantly advanced network architectures. However, existing layer attention methods suffer from redundancy, as attention weights learned by adjacent layers often become highly similar. This redundancy causes multiple layers to extract nearly identical features, reducing the model's representational capacity and increasing training time. To address this issue, we propose a novel approach to quantify redundancy by leveraging the Kullback-Leibler (KL) divergence between adjacent layers. Additionally, we introduce an Enhanced Beta Quantile Mapping (EBQM) method that accurately identifies and skips redundant layers, thereby maintaining model stability. Our proposed Efficient Layer Attention (ELA) architecture, improves both training efficiency and overall performance, achieving a 30\% reduction in training time while enhancing performance in tasks such as image classification and object detection.
comment: 11 pages, 7 figures
☆ Think Twice, Click Once: Enhancing GUI Grounding via Fast and Slow Systems
Humans can flexibly switch between different modes of thinking based on task complexity: from rapid intuitive judgments to in-depth analytical understanding. However, current Graphical User Interface (GUI) grounding systems which locate interface elements based on natural language instructions rely solely on immediate prediction without reasoning, struggling to understand complex interface layouts with nested structures and hierarchical relationships, limiting their effectiveness on complex interfaces. Inspired by human dual-system cognition, we present Focus, a novel GUI grounding framework that combines fast prediction with systematic analysis. The framework dynamically switches between rapid and deliberate processing through an adaptive system switching based on task complexity, optimizing both efficiency and accuracy. Focus decomposes grounding into progressive stages: interface summarization, visual focused analysis, and precise coordinate prediction. This structured decomposition enables systematic understanding of both interface layouts and visual relationships. Extensive experiments show that Focus achieves state-of-the-art performance using only 300K of the training data with a 2B parameter model compared to existing approaches. Focus demonstrates superior performance particularly in complex GUI scenarios, achieving 77.4% average accuracy on ScreenSpot and 13.3% on the more challenging ScreenSpot-Pro. Our analysis reveals the effectiveness of this dual-system approach while demonstrating its potential for improving complex GUI interaction scenarios.
☆ StructGS: Adaptive Spherical Harmonics and Rendering Enhancements for Superior 3D Gaussian Splatting
Recent advancements in 3D reconstruction coupled with neural rendering techniques have greatly improved the creation of photo-realistic 3D scenes, influencing both academic research and industry applications. The technique of 3D Gaussian Splatting and its variants incorporate the strengths of both primitive-based and volumetric representations, achieving superior rendering quality. While 3D Geometric Scattering (3DGS) and its variants have advanced the field of 3D representation, they fall short in capturing the stochastic properties of non-local structural information during the training process. Additionally, the initialisation of spherical functions in 3DGS-based methods often fails to engage higher-order terms in early training rounds, leading to unnecessary computational overhead as training progresses. Furthermore, current 3DGS-based approaches require training on higher resolution images to render higher resolution outputs, significantly increasing memory demands and prolonging training durations. We introduce StructGS, a framework that enhances 3D Gaussian Splatting (3DGS) for improved novel-view synthesis in 3D reconstruction. StructGS innovatively incorporates a patch-based SSIM loss, dynamic spherical harmonics initialisation and a Multi-scale Residual Network (MSRN) to address the above-mentioned limitations, respectively. Our framework significantly reduces computational redundancy, enhances detail capture and supports high-resolution rendering from low-resolution inputs. Experimentally, StructGS demonstrates superior performance over state-of-the-art (SOTA) models, achieving higher quality and more detailed renderings with fewer artifacts.
☆ Geometric Knowledge-Guided Localized Global Distribution Alignment for Federated Learning CVPR 2025
Data heterogeneity in federated learning, characterized by a significant misalignment between local and global distributions, leads to divergent local optimization directions and hinders global model training. Existing studies mainly focus on optimizing local updates or global aggregation, but these indirect approaches demonstrate instability when handling highly heterogeneous data distributions, especially in scenarios where label skew and domain skew coexist. To address this, we propose a geometry-guided data generation method that centers on simulating the global embedding distribution locally. We first introduce the concept of the geometric shape of an embedding distribution and then address the challenge of obtaining global geometric shapes under privacy constraints. Subsequently, we propose GGEUR, which leverages global geometric shapes to guide the generation of new samples, enabling a closer approximation to the ideal global distribution. In single-domain scenarios, we augment samples based on global geometric shapes to enhance model generalization; in multi-domain scenarios, we further employ class prototypes to simulate the global distribution across domains. Extensive experimental results demonstrate that our method significantly enhances the performance of existing approaches in handling highly heterogeneous data, including scenarios with label skew, domain skew, and their coexistence. Code published at: https://github.com/WeiDai-David/2025CVPR_GGEUR
comment: Accepted by CVPR 2025
☆ CtrTab: Tabular Data Synthesis with High-Dimensional and Limited Data
Diffusion-based tabular data synthesis models have yielded promising results. However, we observe that when the data dimensionality increases, existing models tend to degenerate and may perform even worse than simpler, non-diffusion-based models. This is because limited training samples in high-dimensional space often hinder generative models from capturing the distribution accurately. To address this issue, we propose CtrTab-a condition controlled diffusion model for tabular data synthesis-to improve the performance of diffusion-based generative models in high-dimensional, low-data scenarios. Through CtrTab, we inject samples with added Laplace noise as control signals to improve data diversity and show its resemblance to L2 regularization, which enhances model robustness. Experimental results across multiple datasets show that CtrTab outperforms state-of-the-art models, with performance gap in accuracy over 80% on average. Our source code will be released upon paper publication.
☆ Physics-Informed Residual Neural Ordinary Differential Equations for Enhanced Tropical Cyclone Intensity Forecasting
Accurate tropical cyclone (TC) intensity prediction is crucial for mitigating storm hazards, yet its complex dynamics pose challenges to traditional methods. Here, we introduce a Physics-Informed Residual Neural Ordinary Differential Equation (PIR-NODE) model to precisely forecast TC intensity evolution. This model leverages the powerful non-linear fitting capabilities of deep learning, integrates residual connections to enhance model depth and training stability, and explicitly models the continuous temporal evolution of TC intensity using Neural ODEs. Experimental results in the SHIPS dataset demonstrate that the PIR-NODE model achieves a significant improvement in 24-hour intensity prediction accuracy compared to traditional statistical models and benchmark deep learning methods, with a 25. 2\% reduction in the root mean square error (RMSE) and a 19.5\% increase in R-square (R2) relative to a baseline of neural network. Crucially, the residual structure effectively preserves initial state information, and the model exhibits robust generalization capabilities. This study details the PIR-NODE model architecture, physics-informed integration strategies, and comprehensive experimental validation, revealing the substantial potential of deep learning techniques in predicting complex geophysical systems and laying the foundation for future refined TC forecasting research.
comment: 14 pages, 9 figures
☆ Seesaw: High-throughput LLM Inference via Model Re-sharding
To improve the efficiency of distributed large language model (LLM) inference, various parallelization strategies, such as tensor and pipeline parallelism, have been proposed. However, the distinct computational characteristics inherent in the two stages of LLM inference-prefilling and decoding-render a single static parallelization strategy insufficient for the effective optimization of both stages. In this work, we present Seesaw, an LLM inference engine optimized for throughput-oriented tasks. The key idea behind Seesaw is dynamic model re-sharding, a technique that facilitates the dynamic reconfiguration of parallelization strategies across stages, thereby maximizing throughput at both phases. To mitigate re-sharding overhead and optimize computational efficiency, we employ tiered KV cache buffering and transition-minimizing scheduling. These approaches work synergistically to reduce the overhead caused by frequent stage transitions while ensuring maximum batching efficiency. Our evaluation demonstrates that Seesaw achieves a throughput increase of up to 1.78x (1.36x on average) compared to vLLM, the most widely used state-of-the-art LLM inference engine.
Graph Retrieval-Augmented LLM for Conversational Recommendation Systems PAKDD 2025
Conversational Recommender Systems (CRSs) have emerged as a transformative paradigm for offering personalized recommendations through natural language dialogue. However, they face challenges with knowledge sparsity, as users often provide brief, incomplete preference statements. While recent methods have integrated external knowledge sources to mitigate this, they still struggle with semantic understanding and complex preference reasoning. Recent Large Language Models (LLMs) demonstrate promising capabilities in natural language understanding and reasoning, showing significant potential for CRSs. Nevertheless, due to the lack of domain knowledge, existing LLM-based CRSs either produce hallucinated recommendations or demand expensive domain-specific training, which largely limits their applicability. In this work, we present G-CRS (Graph Retrieval-Augmented Large Language Model for Conversational Recommender Systems), a novel training-free framework that combines graph retrieval-augmented generation and in-context learning to enhance LLMs' recommendation capabilities. Specifically, G-CRS employs a two-stage retrieve-and-recommend architecture, where a GNN-based graph reasoner first identifies candidate items, followed by Personalized PageRank exploration to jointly discover potential items and similar user interactions. These retrieved contexts are then transformed into structured prompts for LLM reasoning, enabling contextually grounded recommendations without task-specific training. Extensive experiments on two public datasets show that G-CRS achieves superior recommendation performance compared to existing methods without requiring task-specific training.
comment: Accepted by PAKDD 2025
Pre-Training Meta-Rule Selection Policy for Visual Generative Abductive Learning
Visual generative abductive learning studies jointly training symbol-grounded neural visual generator and inducing logic rules from data, such that after learning, the visual generation process is guided by the induced logic rules. A major challenge for this task is to reduce the time cost of logic abduction during learning, an essential step when the logic symbol set is large and the logic rule to induce is complicated. To address this challenge, we propose a pre-training method for obtaining meta-rule selection policy for the recently proposed visual generative learning approach AbdGen [Peng et al., 2023], aiming at significantly reducing the candidate meta-rule set and pruning the search space. The selection model is built based on the embedding representation of both symbol grounding of cases and meta-rules, which can be effectively integrated with both neural model and logic reasoning system. The pre-training process is done on pure symbol data, not involving symbol grounding learning of raw visual inputs, making the entire learning process low-cost. An additional interesting observation is that the selection policy can rectify symbol grounding errors unseen during pre-training, which is resulted from the memorization ability of attention mechanism and the relative stability of symbolic patterns. Experimental results show that our method is able to effectively address the meta-rule selection problem for visual abduction, boosting the efficiency of visual generative abductive learning. Code is available at https://github.com/future-item/metarule-select.
comment: Published as a conference paper at IJCLR'24
☆ GenAI for Simulation Model in Model-Based Systems Engineering
Generative AI (GenAI) has demonstrated remarkable capabilities in code generation, and its integration into complex product modeling and simulation code generation can significantly enhance the efficiency of the system design phase in Model-Based Systems Engineering (MBSE). In this study, we introduce a generative system design methodology framework for MBSE, offering a practical approach for the intelligent generation of simulation models for system physical properties. First, we employ inference techniques, generative models, and integrated modeling and simulation languages to construct simulation models for system physical properties based on product design documents. Subsequently, we fine-tune the language model used for simulation model generation on an existing library of simulation models and additional datasets generated through generative modeling. Finally, we introduce evaluation metrics for the generated simulation models for system physical properties. Our proposed approach to simulation model generation presents the innovative concept of scalable templates for simulation models. Using these templates, GenAI generates simulation models for system physical properties through code completion. The experimental results demonstrate that, for mainstream open-source Transformer-based models, the quality of the simulation model is significantly improved using the simulation model generation method proposed in this paper.
comment: This work has been submitted to the IEEE for possible publication
☆ Explaining Control Policies through Predicate Decision Diagrams
Safety-critical controllers of complex systems are hard to construct manually. Automated approaches such as controller synthesis or learning provide a tempting alternative but usually lack explainability. To this end, learning decision trees (DTs) have been prevalently used towards an interpretable model of the generated controllers. However, DTs do not exploit shared decision-making, a key concept exploited in binary decision diagrams (BDDs) to reduce their size and thus improve explainability. In this work, we introduce predicate decision diagrams (PDDs) that extend BDDs with predicates and thus unite the advantages of DTs and BDDs for controller representation. We establish a synthesis pipeline for efficient construction of PDDs from DTs representing controllers, exploiting reduction techniques for BDDs also for PDDs.
☆ Advancing AI Negotiations: New Theory and Evidence from a Large-Scale Autonomous Negotiations Competition
Despite the rapid proliferation of artificial intelligence (AI) negotiation agents, there has been limited integration of computer science research and established negotiation theory to develop new theories of AI negotiation. To bridge this gap, we conducted an International AI Negotiations Competition in which participants iteratively designed and refined prompts for large language model (LLM) negotiation agents. We then facilitated over 120,000 negotiations between these agents across multiple scenarios with diverse characteristics and objectives. Our findings revealed that fundamental principles from established human-human negotiation theory remain crucial in AI-AI negotiations. Specifically, agents exhibiting high warmth fostered higher counterpart subjective value and reached deals more frequently, which enabled them to create and claim more value in integrative settings. However, conditional on reaching a deal, warm agents claimed less value while dominant agents claimed more value. These results align with classic negotiation theory emphasizing relationship-building, assertiveness, and preparation. Our analysis also revealed unique dynamics in AI-AI negotiations not fully explained by negotiation theory, particularly regarding the effectiveness of AI-specific strategies like chain-of-thought reasoning and prompt injection. The agent that won our competition implemented an approach that blended traditional negotiation preparation frameworks with AI-specific methods. Together, these results suggest the importance of establishing a new theory of AI negotiations that integrates established negotiation theory with AI-specific strategies to optimize agent performance. Our research suggests this new theory must account for the unique characteristics of autonomous agents and establish the conditions under which traditional negotiation theory applies in automated settings.
♻ ☆ Predictable Scale: Part I -- Optimal Hyperparameter Scaling Law in Large Language Model Pretraining
The impressive capabilities of Large Language Models (LLMs) across diverse tasks are now well-established, yet their effective deployment necessitates careful hyperparameter optimization. Through extensive empirical studies involving grid searches across diverse configurations, we discover universal scaling laws governing these hyperparameters: optimal learning rate follows a power-law relationship with both model parameters and data sizes, while optimal batch size scales primarily with data sizes. Our analysis reveals a convex optimization landscape for hyperparameters under fixed models and data size conditions. This convexity implies an optimal hyperparameter plateau. We contribute a universal, plug-and-play optimal hyperparameter tool for the community. Its estimated values on the test set are merely 0.09% away from the globally optimal LLM performance found via an exhaustive search. These laws demonstrate remarkable robustness across variations in model sparsity, training data distribution, and model shape. To our best known, this is the first work that unifies different model shapes and structures, such as Mixture-of-Experts models and dense transformers, as well as establishes optimal hyperparameter scaling laws across diverse data distributions. This exhaustive optimization process demands substantial computational resources, utilizing nearly one million NVIDIA H800 GPU hours to train 3,700 LLMs of varying sizes and hyperparameters from scratch and consuming approximately 100 trillion tokens in total. To facilitate reproducibility and further research, we will progressively release all loss measurements and model checkpoints through our designated repository https://step-law.github.io/
comment: 19 pages
♻ ☆ IDInit: A Universal and Stable Initialization Method for Neural Network Training ICLR 2025
Deep neural networks have achieved remarkable accomplishments in practice. The success of these networks hinges on effective initialization methods, which are vital for ensuring stable and rapid convergence during training. Recently, initialization methods that maintain identity transition within layers have shown good efficiency in network training. These techniques (e.g., Fixup) set specific weights to zero to achieve identity control. However, settings of remaining weight (e.g., Fixup uses random values to initialize non-zero weights) will affect the inductive bias that is achieved only by a zero weight, which may be harmful to training. Addressing this concern, we introduce fully identical initialization (IDInit), a novel method that preserves identity in both the main and sub-stem layers of residual networks. IDInit employs a padded identity-like matrix to overcome rank constraints in non-square weight matrices. Furthermore, we show the convergence problem of an identity matrix can be solved by stochastic gradient descent. Additionally, we enhance the universality of IDInit by processing higher-order weights and addressing dead neuron problems. IDInit is a straightforward yet effective initialization method, with improved convergence, stability, and performance across various settings, including large-scale datasets and deep models.
comment: Accepted in ICLR 2025
♻ ☆ ReynoldsFlow: Exquisite Flow Estimation via Reynolds Transport Theorem
Optical flow is a fundamental technique for motion estimation, widely applied in video stabilization, interpolation, and object tracking. Traditional optical flow estimation methods rely on restrictive assumptions like brightness constancy and slow motion constraints. Recent deep learning-based flow estimations require extensive training on large domain-specific datasets, making them computationally demanding. Also, artificial intelligence (AI) advances have enabled deep learning models to take advantage of optical flow as an important feature for object tracking and motion analysis. Since optical flow is commonly encoded in HSV for visualization, its conversion to RGB for neural network processing is nonlinear and may introduce perceptual distortions. These transformations amplify the sensitivity to estimation errors, potentially affecting the predictive accuracy of the networks. To address these challenges that are influential to the performance of downstream network models, we propose Reynolds flow, a novel training-free flow estimation inspired by the Reynolds transport theorem, offering a principled approach to modeling complex motion dynamics. In addition to conventional HSV-based visualization of Reynolds flow, we also introduce an RGB-encoded representation of Reynolds flow designed to improve flow visualization and feature enhancement for neural networks. We evaluated the effectiveness of Reynolds flow in video-based tasks. Experimental results on three benchmarks, tiny object detection on UAVDB, infrared object detection on Anti-UAV, and pose estimation on GolfDB, demonstrate that networks trained with RGB-encoded Reynolds flow achieve SOTA performance, exhibiting improved robustness and efficiency across all tasks.
comment: 10 pages, 3 figures, 3 tables
♻ ☆ One-step Diffusion Models with $f$-Divergence Distribution Matching
Sampling from diffusion models involves a slow iterative process that hinders their practical deployment, especially for interactive applications. To accelerate generation speed, recent approaches distill a multi-step diffusion model into a single-step student generator via variational score distillation, which matches the distribution of samples generated by the student to the teacher's distribution. However, these approaches use the reverse Kullback-Leibler (KL) divergence for distribution matching which is known to be mode seeking. In this paper, we generalize the distribution matching approach using a novel $f$-divergence minimization framework, termed $f$-distill, that covers different divergences with different trade-offs in terms of mode coverage and training variance. We derive the gradient of the $f$-divergence between the teacher and student distributions and show that it is expressed as the product of their score differences and a weighting function determined by their density ratio. This weighting function naturally emphasizes samples with higher density in the teacher distribution, when using a less mode-seeking divergence. We observe that the popular variational score distillation approach using the reverse-KL divergence is a special case within our framework. Empirically, we demonstrate that alternative $f$-divergences, such as forward-KL and Jensen-Shannon divergences, outperform the current best variational score distillation methods across image generation tasks. In particular, when using Jensen-Shannon divergence, $f$-distill achieves current state-of-the-art one-step generation performance on ImageNet64 and zero-shot text-to-image generation on MS-COCO. Project page: https://research.nvidia.com/labs/genair/f-distill
♻ ☆ Efficient Feature Extraction and Classification Architecture for MRI-Based Brain Tumor Detection and Localization
Uncontrolled cell division in the brain is what gives rise to brain tumors. If the tumor size increases by more than half, there is little hope for the patient's recovery. This emphasizes the need of rapid and precise brain tumor diagnosis. When it comes to analyzing, diagnosing, and planning therapy for brain tumors, MRI imaging plays a crucial role. A brain tumor's development history is crucial information for doctors to have. When it comes to distinguishing between human soft tissues, MRI scans are superior. In order to get reliable classification results from MRI scans quickly, deep learning is one of the most practical methods. Early human illness diagnosis has been demonstrated to be more accurate when deep learning methods are used. In the case of diagnosing a brain tumor, when even a little misdiagnosis might have serious consequences, accuracy is especially important. Disclosure of brain tumors in medical images is still a difficult task. Brain MRIs are notoriously imprecise in revealing the presence or absence of tumors. Using MRI scans of the brain, a CNN was trained to identify the presence of a tumor in this research. Results from the CNN model showed an accuracy of 99.17%. The CNN model's characteristics were also retrieved. The CNN model's characteristics were also retrieved and we also localized the tumor regions from the unannotated images using GradCAM, a deep learning explainability tool. In order to evaluate the CNN model's capability for processing images, we applied the features into different ML models. CNN and machine learning models were also evaluated using the standard metrics of Precision, Recall, Specificity, and F1 score. The significance of the doctor's diagnosis enhanced the accuracy of the CNN model's assistance in identifying the existence of tumor and treating the patient.
♻ ☆ BioDiscoveryAgent: An AI Agent for Designing Genetic Perturbation Experiments
Agents based on large language models have shown great potential in accelerating scientific discovery by leveraging their rich background knowledge and reasoning capabilities. In this paper, we introduce BioDiscoveryAgent, an agent that designs new experiments, reasons about their outcomes, and efficiently navigates the hypothesis space to reach desired solutions. We demonstrate our agent on the problem of designing genetic perturbation experiments, where the aim is to find a small subset out of many possible genes that, when perturbed, result in a specific phenotype (e.g., cell growth). Utilizing its biological knowledge, BioDiscoveryAgent can uniquely design new experiments without the need to train a machine learning model or explicitly design an acquisition function as in Bayesian optimization. Moreover, BioDiscoveryAgent, using Claude 3.5 Sonnet, achieves an average of 21% improvement in predicting relevant genetic perturbations across six datasets, and a 46% improvement in the harder task of non-essential gene perturbation, compared to existing Bayesian optimization baselines specifically trained for this task. Our evaluation includes one dataset that is unpublished, ensuring it is not part of the language model's training data. Additionally, BioDiscoveryAgent predicts gene combinations to perturb more than twice as accurately as a random baseline, a task so far not explored in the context of closed-loop experiment design. The agent also has access to tools for searching the biomedical literature, executing code to analyze biological datasets, and prompting another agent to critically evaluate its predictions. Overall, BioDiscoveryAgent is interpretable at every stage, representing an accessible new paradigm in the computational design of biological experiments with the potential to augment scientists' efficacy.
♻ ☆ Which Backbone to Use: A Resource-efficient Domain Specific Comparison for Computer Vision
In contemporary computer vision applications, particularly image classification, architectural backbones pre-trained on large datasets like ImageNet are commonly employed as feature extractors. Despite the widespread use of these pre-trained convolutional neural networks (CNNs), there remains a gap in understanding the performance of various resource-efficient backbones across diverse domains and dataset sizes. Our study systematically evaluates multiple lightweight, pre-trained CNN backbones under consistent training settings across a variety of datasets, including natural images, medical images, galaxy images, and remote sensing images. This comprehensive analysis aims to aid machine learning practitioners in selecting the most suitable backbone for their specific problem, especially in scenarios involving small datasets where fine-tuning a pre-trained network is crucial. Even though attention-based architectures are gaining popularity, we observed that they tend to perform poorly under low data finetuning tasks compared to CNNs. We also observed that some CNN architectures such as ConvNeXt, RegNet and EfficientNet performs well compared to others on a diverse set of domains consistently. Our findings provide actionable insights into the performance trade-offs and effectiveness of different backbones, facilitating informed decision-making in model selection for a broad spectrum of computer vision domains. Our code is available here: https://github.com/pranavphoenix/Backbones
comment: 12 pages, 2 figures, accepted in TMLR
♻ ☆ Training Sparse Mixture Of Experts Text Embedding Models
Transformer-based text embedding models have improved their performance on benchmarks like MIRACL and BEIR by increasing their parameter counts. However, this scaling approach introduces significant deployment challenges, including increased inference latency and memory usage. These challenges are particularly severe in retrieval-augmented generation (RAG) applications, where large models' increased memory requirements constrain dataset ingestion capacity, and their higher latency directly impacts query-time performance. While causal language models have addressed similar efficiency challenges using Mixture of Experts (MoE) architectures, this approach hasn't been successfully adapted to the general text embedding setting. In this paper, we introduce Nomic Embed v2, the first general purpose MoE text embedding model. Our model outperforms models in the same parameter class on both monolingual and multilingual benchmarks while also maintaining competitive performance with models twice its size. We open-source all code, models, and evaluation data to ensure full reproducibility of our training pipeline at \href{https://github.com/nomic-ai/contrastors}{https://github.com/nomic-ai/contrastors}.
♻ ☆ SupReMix: Supervised Contrastive Learning for Medical Imaging Regression with Mixup
In medical image analysis, regression plays a critical role in computer-aided diagnosis. It enables quantitative measurements such as age prediction from structural imaging, cardiac function quantification, and molecular measurement from PET scans. While deep learning has shown promise for these tasks, most approaches focus solely on optimizing regression loss or model architecture, neglecting the quality of learned feature representations which are crucial for robust clinical predictions. Directly applying representation learning techniques designed for classification to regression often results in fragmented representations in the latent space, yielding sub-optimal performance. In this paper, we argue that the potential of contrastive learning for medical image regression has been overshadowed due to the neglect of two crucial aspects: ordinality-awareness and hardness. To address these challenges, we propose Supervised Contrastive Learning for Medical Imaging Regression with Mixup (SupReMix). It takes anchor-inclusive mixtures (mixup of the anchor and a distinct negative sample) as hard negative pairs and anchor-exclusive mixtures (mixup of two distinct negative samples) as hard positive pairs at the embedding level. This strategy formulates harder contrastive pairs by integrating richer ordinal information. Through theoretical analysis and extensive experiments on six datasets spanning MRI, X-ray, ultrasound, and PET modalities, we demonstrate that SupReMix fosters continuous ordered representations, significantly improving regression performance.
comment: The first two authors equally contributed to this work
♻ ☆ Imagine-2-Drive: Leveraging High-Fidelity World Models via Multi-Modal Diffusion Policies IROS 2025
World Model-based Reinforcement Learning (WMRL) enables sample efficient policy learning by reducing the need for online interactions which can potentially be costly and unsafe, especially for autonomous driving. However, existing world models often suffer from low prediction fidelity and compounding one-step errors, leading to policy degradation over long horizons. Additionally, traditional RL policies, often deterministic or single Gaussian-based, fail to capture the multi-modal nature of decision-making in complex driving scenarios. To address these challenges, we propose Imagine-2-Drive, a novel WMRL framework that integrates a high-fidelity world model with a multi-modal diffusion-based policy actor. It consists of two key components: DiffDreamer, a diffusion-based world model that generates future observations simultaneously, mitigating error accumulation, and DPA (Diffusion Policy Actor), a diffusion-based policy that models diverse and multi-modal trajectory distributions. By training DPA within DiffDreamer, our method enables robust policy learning with minimal online interactions. We evaluate our method in CARLA using standard driving benchmarks and demonstrate that it outperforms prior world model baselines, improving Route Completion and Success Rate by 15% and 20% respectively.
comment: Submitted to IROS 2025
♻ ☆ Generative Distribution Prediction: A Unified Approach to Multimodal Learning
Accurate prediction with multimodal data-encompassing tabular, textual, and visual inputs or outputs-is fundamental to advancing analytics in diverse application domains. Traditional approaches often struggle to integrate heterogeneous data types while maintaining high predictive accuracy. We introduce Generative Distribution Prediction (GDP), a novel framework that leverages multimodal synthetic data generation-such as conditional diffusion models-to enhance predictive performance across structured and unstructured modalities. GDP is model-agnostic, compatible with any high-fidelity generative model, and supports transfer learning for domain adaptation. We establish a rigorous theoretical foundation for GDP, providing statistical guarantees on its predictive accuracy when using diffusion models as the generative backbone. By estimating the data-generating distribution and adapting to various loss functions for risk minimization, GDP enables accurate point predictions across multimodal settings. We empirically validate GDP on four supervised learning tasks-tabular data prediction, question answering, image captioning, and adaptive quantile regression-demonstrating its versatility and effectiveness across diverse domains.
comment: 31 pages 4 figures
♻ ☆ LegalCore: A Dataset for Event Coreference Resolution in Legal Documents
Recognizing events and their coreferential mentions in a document is essential for understanding semantic meanings of text. The existing research on event coreference resolution is mostly limited to news articles. In this paper, we present the first dataset for the legal domain, LegalCore, which has been annotated with comprehensive event and event coreference information. The legal contract documents we annotated in this dataset are several times longer than news articles, with an average length of around 25k tokens per document. The annotations show that legal documents have dense event mentions and feature both short-distance and super long-distance coreference links between event mentions. We further benchmark mainstream Large Language Models (LLMs) on this dataset for both event detection and event coreference resolution tasks, and find that this dataset poses significant challenges for state-of-the-art open-source and proprietary LLMs, which perform significantly worse than a supervised baseline. We will publish the dataset as well as the code.
♻ ☆ From Pixels to Tokens: Byte-Pair Encoding on Quantized Visual Modalities
Multimodal Large Language Models have made significant strides in integrating visual and textual information, yet they often struggle with effectively aligning these modalities. We introduce a novel image tokenizer that bridges this gap by applying the principle of Byte-Pair Encoding (BPE) to visual data. Unlike conventional approaches that rely on separate visual encoders, our method directly incorporates structural prior information into image tokens, mirroring the successful tokenization strategies used in text-only Large Language Models. This innovative approach enables Transformer models to more effectively learn and reason across modalities. Through theoretical analysis and extensive experiments, we demonstrate that our BPE Image Tokenizer significantly enhances MLLMs' multimodal understanding capabilities, even with limited training data. Leveraging this method, we develop Being-VL-0, a model that demonstrates superior performance across various benchmarks and shows promising scalability, potentially paving the way for more efficient and capable multimodal foundation models.
♻ ☆ A Causal World Model Underlying Next Token Prediction in GPT AAAI 2025
Are generative pre-trained transformer (GPT) models only trained to predict the next token, or do they implicitly learn a world model from which a sequence is generated one token at a time? We examine this question by deriving a causal interpretation of the attention mechanism in GPT, and suggesting a causal world model that arises from this interpretation. Furthermore, we propose that GPT-models, at inference time, can be utilized for zero-shot causal structure learning for in-distribution sequences. Empirical evaluation is conducted in a controlled synthetic environment using the setup and rules of the Othello board game. A GPT, pre-trained on real-world games played with the intention of winning, is tested on synthetic data that only adheres to the game rules, oblivious to the goal of winning. We find that the GPT model is likely to generate moves that adhere to the game rules for sequences for which a causal structure is encoded in the attention mechanism with high confidence. In general, in cases for which the GPT model generates moves that do not adhere to the game rules, it also fails to capture any causal structure.
comment: AAAI 2025 Workshop on Artificial Intelligence with Causal Techniques
DreamStory: Open-Domain Story Visualization by LLM-Guided Multi-Subject Consistent Diffusion
Story visualization aims to create visually compelling images or videos corresponding to textual narratives. Despite recent advances in diffusion models yielding promising results, existing methods still struggle to create a coherent sequence of subject-consistent frames based solely on a story. To this end, we propose DreamStory, an automatic open-domain story visualization framework by leveraging the LLMs and a novel multi-subject consistent diffusion model. DreamStory consists of (1) an LLM acting as a story director and (2) an innovative Multi-Subject consistent Diffusion model (MSD) for generating consistent multi-subject across the images. First, DreamStory employs the LLM to generate descriptive prompts for subjects and scenes aligned with the story, annotating each scene's subjects for subsequent subject-consistent generation. Second, DreamStory utilizes these detailed subject descriptions to create portraits of the subjects, with these portraits and their corresponding textual information serving as multimodal anchors (guidance). Finally, the MSD uses these multimodal anchors to generate story scenes with consistent multi-subject. Specifically, the MSD includes Masked Mutual Self-Attention (MMSA) and Masked Mutual Cross-Attention (MMCA) modules. MMSA and MMCA modules ensure appearance and semantic consistency with reference images and text, respectively. Both modules employ masking mechanisms to prevent subject blending. To validate our approach and promote progress in story visualization, we established a benchmark, DS-500, which can assess the overall performance of the story visualization framework, subject-identification accuracy, and the consistency of the generation model. Extensive experiments validate the effectiveness of DreamStory in both subjective and objective evaluations. Please visit our project homepage at https://dream-xyz.github.io/dreamstory.
♻ ☆ IPO: Iterative Preference Optimization for Text-to-Video Generation
Video foundation models have achieved significant advancement with the help of network upgrade as well as model scale-up. However, they are still hard to meet requirements of applications due to unsatisfied generation quality. To solve this problem, we propose to align video foundation models with human preferences from the perspective of post-training in this paper. Consequently, we introduce an Iterative Preference Optimization strategy to enhance generated video quality by incorporating human feedback. Specifically, IPO exploits a critic model to justify video generations for pairwise ranking as in Direct Preference Optimization or point-wise scoring as in Kahneman-Tversky Optimization. Given this, IPO optimizes video foundation models with guidance of signals from preference feedback, which helps improve generated video quality in subject consistency, motion smoothness and aesthetic quality, etc. In addition, IPO incorporates the critic model with the multi-modality large language model, which enables it to automatically assign preference labels without need of retraining or relabeling. In this way, IPO can efficiently perform multi-round preference optimization in an iterative manner, without the need of tediously manual labeling. Comprehensive experiments demonstrate that the proposed IPO can effectively improve the video generation quality of a pretrained model and help a model with only 2B parameters surpass the one with 5B parameters. Besides, IPO achieves new state-of-the-art performance on VBench benchmark.
♻ ☆ Small but Mighty: Enhancing Time Series Forecasting with Lightweight LLMs
While LLMs have demonstrated remarkable potential in time series forecasting, their practical deployment remains constrained by excessive computational demands and memory footprints. Existing LLM-based approaches typically suffer from three critical limitations: Inefficient parameter utilization in handling numerical time series patterns; Modality misalignment between continuous temporal signals and discrete text embeddings; and Inflexibility for real-time expert knowledge integration. We present SMETimes, the first systematic investigation of sub-3B parameter SLMs for efficient and accurate time series forecasting. Our approach centers on three key innovations: A statistically-enhanced prompting mechanism that bridges numerical time series with textual semantics through descriptive statistical features; A adaptive fusion embedding architecture that aligns temporal patterns with language model token spaces through learnable parameters; And a dynamic mixture-of-experts framework enabled by SLMs' computational efficiency, adaptively combining base predictions with domain-specific models. Extensive evaluations across seven benchmark datasets demonstrate that our 3B-parameter SLM achieves state-of-the-art performance on five primary datasets while maintaining 3.8x faster training and 5.2x lower memory consumption compared to 7B-parameter LLM baselines. Notably, the proposed model exhibits better learning capabilities, achieving 12.3% lower MSE than conventional LLM. Ablation studies validate that our statistical prompting and cross-modal fusion modules respectively contribute 15.7% and 18.2% error reduction in long-horizon forecasting tasks. By redefining the efficiency-accuracy trade-off landscape, this work establishes SLMs as viable alternatives to resource-intensive LLMs for practical time series forecasting. Code and models are available at https://github.com/xiyan1234567/SMETimes.
comment: 20 pages, 10 figures
♻ ☆ An Efficient Intelligent Semi-Automated Warehouse Inventory Stocktaking System
In the context of evolving supply chain management, the significance of efficient inventory management has grown substantially for businesses. However, conventional manual and experience-based approaches often struggle to meet the complexities of modern market demands. This research introduces an intelligent inventory management system to address challenges related to inaccurate data, delayed monitoring, and overreliance on subjective experience in forecasting. The proposed system integrates bar code and distributed flutter application technologies for intelligent perception, alongside comprehensive big data analytics to enable data-driven decision-making. Through meticulous analysis, system design, critical technology exploration, and simulation validation, the effectiveness of the proposed system is successfully demonstrated. The intelligent system facilitates second-level monitoring, high-frequency checks, and artificial intelligence-driven forecasting, consequently enhancing the automation, precision, and intelligence of inventory management. This system contributes to cost reduction and optimized inventory sizes through accurate predictions and informed decisions, ultimately achieving a mutually beneficial scenario. The outcomes of this research offer
♻ ☆ Path To Gain Functional Transparency In Artificial Intelligence With Meaningful Explainability
Artificial Intelligence (AI) is rapidly integrating into various aspects of our daily lives, influencing decision-making processes in areas such as targeted advertising and matchmaking algorithms. As AI systems become increasingly sophisticated, ensuring their transparency and explainability becomes crucial. Functional transparency is a fundamental aspect of algorithmic decision-making systems, allowing stakeholders to comprehend the inner workings of these systems and enabling them to evaluate their fairness and accuracy. However, achieving functional transparency poses significant challenges that need to be addressed. In this paper, we propose a design for user-centered compliant-by-design transparency in transparent systems. We emphasize that the development of transparent and explainable AI systems is a complex and multidisciplinary endeavor, necessitating collaboration among researchers from diverse fields such as computer science, artificial intelligence, ethics, law, and social science. By providing a comprehensive understanding of the challenges associated with transparency in AI systems and proposing a user-centered design framework, we aim to facilitate the development of AI systems that are accountable, trustworthy, and aligned with societal values.
comment: Hosain, M. T., Anik, M. H., Rafi, S., Tabassum, R., Insia, K., & S{\i}dd{\i}ky, M. M. (2023). Path to gain functional transparency in artificial intelligence with meaningful explainability. Journal of Metaverse, 3(2), 166-180
♻ ☆ AIGCodeSet: A New Annotated Dataset for AI Generated Code Detection
While large language models provide significant convenience for software development, they can lead to ethical issues in job interviews and student assignments. Therefore, determining whether a piece of code is written by a human or generated by an artificial intelligence (AI) model is a critical issue. In this study, we present AIGCodeSet, which consists of 2.828 AI-generated and 4.755 human-written Python codes, created using CodeLlama 34B, Codestral 22B, and Gemini 1.5 Flash. In addition, we share the results of our experiments conducted with baseline detection methods. Our experiments show that a Bayesian classifier outperforms the other models.
♻ ☆ Solving the encoding bottleneck: of the HHL algorithm, by the HHL algorithm
The Harrow-Hassidim-Lloyd (HHL) algorithm offers exponential speedup for solving the quantum linear-system problem. But some caveats for the speedup could be hard to met. One of the difficulties is the encoding bottleneck, i.e., the efficient preparation of the initial quantum state. To prepare an arbitrary $N$-dimensional state exactly, existing state-preparation approaches generally require a runtime of $O(N)$, which will ruin the speedup of the HHL algorithm. Here we show that the states can be prepared approximately with a runtime of $O(poly(\log N))$ by employing a slightly modified version of the HHL algorithm itself. Thus, applying this approach to prepare the initial state of the original HHL algorithm can preserve the exponential speedup advantage. It can also serve as a standalone solution for other applications demanding fast state preparation.
comment: Added a diagram of the quantum circuit of our algorithm
♻ ☆ Superscopes: Amplifying Internal Feature Representations for Language Model Interpretation
Understanding and interpreting the internal representations of large language models (LLMs) remains an open challenge. Patchscopes introduced a method for probing internal activations by patching them into new prompts, prompting models to self-explain their hidden representations. We introduce Superscopes, a technique that systematically amplifies superposed features in MLP outputs (multilayer perceptron) and hidden states before patching them into new contexts. Inspired by the "features as directions" perspective and the Classifier-Free Guidance (CFG) approach from diffusion models, Superscopes amplifies weak but meaningful features, enabling the interpretation of internal representations that previous methods failed to explain-all without requiring additional training. This approach provides new insights into how LLMs build context and represent complex concepts, further advancing mechanistic interpretability.
♻ ☆ UrBench: A Comprehensive Benchmark for Evaluating Large Multimodal Models in Multi-View Urban Scenarios
Recent evaluations of Large Multimodal Models (LMMs) have explored their capabilities in various domains, with only few benchmarks specifically focusing on urban environments. Moreover, existing urban benchmarks have been limited to evaluating LMMs with basic region-level urban tasks under singular views, leading to incomplete evaluations of LMMs' abilities in urban environments. To address these issues, we present UrBench, a comprehensive benchmark designed for evaluating LMMs in complex multi-view urban scenarios. UrBench contains 11.6K meticulously curated questions at both region-level and role-level that cover 4 task dimensions: Geo-Localization, Scene Reasoning, Scene Understanding, and Object Understanding, totaling 14 task types. In constructing UrBench, we utilize data from existing datasets and additionally collect data from 11 cities, creating new annotations using a cross-view detection-matching method. With these images and annotations, we then integrate LMM-based, rule-based, and human-based methods to construct large-scale high-quality questions. Our evaluations on 21 LMMs show that current LMMs struggle in the urban environments in several aspects. Even the best performing GPT-4o lags behind humans in most tasks, ranging from simple tasks such as counting to complex tasks such as orientation, localization and object attribute recognition, with an average performance gap of 17.4%. Our benchmark also reveals that LMMs exhibit inconsistent behaviors with different urban views, especially with respect to understanding cross-view relations.
comment: 9 pages, 6 figures
♻ ☆ Comparative clinical evaluation of "memory-efficient" synthetic 3d generative adversarial networks (gan) head-to-head to state of art: results on computed tomography of the chest
Introduction: Generative Adversarial Networks (GANs) are increasingly used to generate synthetic medical images, addressing the critical shortage of annotated data for training Artificial Intelligence (AI) systems. This study introduces a novel memory-efficient GAN architecture, incorporating Conditional Random Fields (CRFs) to generate high-resolution 3D medical images and evaluates its performance against the state-of-the-art hierarchical (HA)-GAN model. Materials and Methods: The CRF-GAN was trained using the open-source lung CT LUNA16 dataset. The architecture was compared to HA-GAN through a quantitative evaluation, using Frechet Inception Distance (FID) and Maximum Mean Discrepancy (MMD) metrics, and a qualitative evaluation, through a two-alternative forced choice (2AFC) test completed by a pool of 12 resident radiologists, in order to assess the realism of the generated images. Results: CRF-GAN outperformed HA-GAN with lower FID (0.047 vs. 0.061) and MMD (0.084 vs. 0.086) scores, indicating better image fidelity. The 2AFC test showed a significant preference for images generated by CRF-Gan over those generated by HA-GAN with a p-value of 1.93e-05. Additionally, CRF-GAN demonstrated 9.34% lower memory usage at 256 resolution and achieved up to 14.6% faster training speeds, offering substantial computational savings. Discussion: CRF-GAN model successfully generates high-resolution 3D medical images with non-inferior quality to conventional models, while being more memory-efficient and faster. Computational power and time saved can be used to improve the spatial resolution and anatomical accuracy of generated images, which is still a critical factor limiting their direct clinical applicability.
♻ ☆ AdaSVD: Adaptive Singular Value Decomposition for Large Language Models
Large language models (LLMs) have achieved remarkable success in natural language processing (NLP) tasks, yet their substantial memory requirements present significant challenges for deployment on resource-constrained devices. Singular Value Decomposition (SVD) has emerged as a promising compression technique for LLMs, offering considerable reductions in memory overhead. However, existing SVD-based methods often struggle to effectively mitigate the errors introduced by SVD truncation, leading to a noticeable performance gap when compared to the original models. Furthermore, applying a uniform compression ratio across all transformer layers fails to account for the varying importance of different layers. To address these challenges, we propose AdaSVD, an adaptive SVD-based LLM compression approach. Specifically, AdaSVD introduces adaComp, which adaptively compensates for SVD truncation errors by alternately updating the singular matrices $\mathcal{U}$ and $\mathcal{V}^\top$. Additionally, AdaSVD introduces adaCR, which adaptively assigns layer-specific compression ratios based on the relative importance of each layer. Extensive experiments across multiple LLM/VLM families and evaluation metrics demonstrate that AdaSVD consistently outperforms state-of-the-art (SOTA) SVD-based methods, achieving superior performance with significantly reduced memory requirements. Code and models of AdaSVD will be available at https://github.com/ZHITENGLI/AdaSVD.
comment: The code and models will be available at https://github.com/ZHITENGLI/AdaSVD
♻ ☆ LiteNeXt: A Novel Lightweight ConvMixer-based Model with Self-embedding Representation Parallel for Medical Image Segmentation
The emergence of deep learning techniques has advanced the image segmentation task, especially for medical images. Many neural network models have been introduced in the last decade bringing the automated segmentation accuracy close to manual segmentation. However, cutting-edge models like Transformer-based architectures rely on large scale annotated training data, and are generally designed with densely consecutive layers in the encoder, decoder, and skip connections resulting in large number of parameters. Additionally, for better performance, they often be pretrained on a larger data, thus requiring large memory size and increasing resource expenses. In this study, we propose a new lightweight but efficient model, namely LiteNeXt, based on convolutions and mixing modules with simplified decoder, for medical image segmentation. The model is trained from scratch with small amount of parameters (0.71M) and Giga Floating Point Operations Per Second (0.42). To handle boundary fuzzy as well as occlusion or clutter in objects especially in medical image regions, we propose the Marginal Weight Loss that can help effectively determine the marginal boundary between object and background. Additionally, the Self-embedding Representation Parallel technique is proposed as an innovative data augmentation strategy that utilizes the network architecture itself for self-learning augmentation, enhancing feature extraction robustness without external data. Experiments on public datasets including Data Science Bowls, GlaS, ISIC2018, PH2, Sunnybrook, and Lung X-ray data show promising results compared to other state-of-the-art CNN-based and Transformer-based architectures. Our code is released at: https://github.com/tranngocduvnvp/LiteNeXt.
comment: This manuscript has been accepted by Biomedical Signal Processing and Control
♻ ☆ Derivation of Output Correlation Inferences for Multi-Output (aka Multi-Task) Gaussian Process
Gaussian process (GP) is arguably one of the most widely used machine learning algorithms in practice. One of its prominent applications is Bayesian optimization (BO). Although the vanilla GP itself is already a powerful tool for BO, it is often beneficial to be able to consider the dependencies of multiple outputs. To do so, Multi-task GP (MTGP) is formulated, but it is not trivial to fully understand the derivations of its formulations and their gradients from the previous literature. This paper serves friendly derivations of the MTGP formulations and their gradients.
♻ ☆ Bayesian WeakS-to-Strong from Text Classification to Generation
Advances in large language models raise the question of how alignment techniques will adapt as models become increasingly complex and humans will only be able to supervise them weakly. Weak-to-Strong mimics such a scenario where weak model supervision attempts to harness the full capabilities of a much stronger model. This work extends Weak-to-Strong to WeakS-to-Strong by exploring an ensemble of weak models which simulate the variability in human opinions. Confidence scores are estimated using a Bayesian approach to guide the WeakS-to-Strong generalization. Furthermore, we extend the application of WeakS-to-Strong from text classification tasks to text generation tasks where more advanced strategies are investigated for supervision. Moreover, direct preference optimization is applied to advance the student model's preference learning, beyond the basic learning framework of teacher forcing. Results demonstrate the effectiveness of the proposed approach for the reliability of a strong student model, showing potential for superalignment.
♻ ☆ CoMT: A Novel Benchmark for Chain of Multi-modal Thought on Large Vision-Language Models AAAI 2025
Large Vision-Language Models (LVLMs) have recently demonstrated amazing success in multi-modal tasks, including advancements in Multi-modal Chain-of-Thought (MCoT) reasoning. Despite these successes, current benchmarks still follow a traditional paradigm with multi-modal input and text-modal output, which leads to significant drawbacks such as missing visual operations and vague expressions. Motivated by this, we introduce a novel Chain of Multi-modal Thought (CoMT) benchmark to address these limitations. Different from the traditional MCoT benchmark, CoMT requires both multi-modal input and multi-modal reasoning output, aiming to mimic human-like reasoning that inherently integrates visual operation. Specifically, CoMT consists of four categories: (1) Visual Creation, (2) Visual Deletion, (3) Visual Update, and (4) Visual Selection to comprehensively explore complex visual operations and concise expression in real scenarios. We evaluate various LVLMs and strategies on CoMT, revealing some key insights into the capabilities and limitations of the current approaches. We hope that CoMT can inspire more research on introducing multi-modal generation into the reasoning process.
comment: Accepted at AAAI 2025; Project Page: https://github.com/czhhzc/CoMT
♻ ☆ Mobile-TeleVision: Predictive Motion Priors for Humanoid Whole-Body Control ICRA 2025
Humanoid robots require both robust lower-body locomotion and precise upper-body manipulation. While recent Reinforcement Learning (RL) approaches provide whole-body loco-manipulation policies, they lack precise manipulation with high DoF arms. In this paper, we propose decoupling upper-body control from locomotion, using inverse kinematics (IK) and motion retargeting for precise manipulation, while RL focuses on robust lower-body locomotion. We introduce PMP (Predictive Motion Priors), trained with Conditional Variational Autoencoder (CVAE) to effectively represent upper-body motions. The locomotion policy is trained conditioned on this upper-body motion representation, ensuring that the system remains robust with both manipulation and locomotion. We show that CVAE features are crucial for stability and robustness, and significantly outperforms RL-based whole-body control in precise manipulation. With precise upper-body motion and robust lower-body locomotion control, operators can remotely control the humanoid to walk around and explore different environments, while performing diverse manipulation tasks.
comment: Accepted for ICRA 2025
♻ ☆ Dialogue Systems for Emotional Support via Value Reinforcement
Emotional support dialogue systems aim to reduce help-seekers' distress and help them overcome challenges. While human values$\unicode{x2013}$core beliefs that shape an individual's priorities$\unicode{x2013}$are increasingly emphasized in contemporary psychological therapy for their role in fostering internal transformation and long-term emotional well-being, their integration into emotional support systems remains underexplored. To bridge this gap, we present a value-driven method for training emotional support dialogue systems designed to reinforce positive values in seekers. Notably, our model identifies which values to reinforce at each turn and how to do so, by leveraging online support conversations from Reddit. We evaluate the method across support skills, seekers' emotional intensity, and value reinforcement. Our method consistently outperforms various baselines, effectively exploring and eliciting values from seekers. Additionally, leveraging crowd knowledge from Reddit significantly enhances its effectiveness. Therapists highlighted its ability to validate seekers' challenges and emphasize positive aspects of their situations$\unicode{x2013}$both crucial elements of value reinforcement. Our work, being the first to integrate value reinforcement into emotional support systems, demonstrates its promise and establishes a foundation for future research.
comment: 34 pages, 4 figures
♻ ☆ KAD: No More FAD! An Effective and Efficient Evaluation Metric for Audio Generation
Although being widely adopted for evaluating generated audio signals, the Fr\'echet Audio Distance (FAD) suffers from significant limitations, including reliance on Gaussian assumptions, sensitivity to sample size, and high computational complexity. As an alternative, we introduce the Kernel Audio Distance (KAD), a novel, distribution-free, unbiased, and computationally efficient metric based on Maximum Mean Discrepancy (MMD). Through analysis and empirical validation, we demonstrate KAD's advantages: (1) faster convergence with smaller sample sizes, enabling reliable evaluation with limited data; (2) lower computational cost, with scalable GPU acceleration; and (3) stronger alignment with human perceptual judgments. By leveraging advanced embeddings and characteristic kernels, KAD captures nuanced differences between real and generated audio. Open-sourced in the kadtk toolkit, KAD provides an efficient, reliable, and perceptually aligned benchmark for evaluating generative audio models.
♻ ☆ Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy
Synthetic Data Generation (SDG) based on Artificial Intelligence (AI) can transform the way clinical medicine is delivered by overcoming privacy barriers that currently render clinical data sharing difficult. This is the key to accelerating the development of digital tools contributing to enhanced patient safety. Such tools include robust data-driven clinical decision support systems, and example-based digital training tools that will enable healthcare professionals to improve their diagnostic performance for enhanced patient safety. This study focuses on the clinical evaluation of medical SDG, with a proof-of-concept investigation on diagnosing Inflammatory Bowel Disease (IBD) using Wireless Capsule Endoscopy (WCE) images. Its scientific contributions include a) a novel protocol for the systematic Clinical Evaluation of Medical Image Synthesis (CEMIS); b) a novel variational autoencoder-based model for the generation of high-resolution synthetic WCE images; and c) a comprehensive evaluation of the synthetic images using the CEMIS protocol by 10 international WCE specialists, in terms of image quality, diversity, and realism, as well as their utility for clinical decision-making. The results show that TIDE-II generates clinically plausible, very realistic WCE images, of improved quality compared to relevant state-of-the-art generative models. Concludingly, CEMIS can serve as a reference for future research on medical image-generation techniques, while the adaptation/extension of the architecture of TIDE-II to other imaging domains can be promising.
comment: This work has been submitted for possible journal publication
♻ ☆ Can Large Language Models Unveil the Mysteries? An Exploration of Their Ability to Unlock Information in Complex Scenarios
Combining multiple perceptual inputs and performing combinatorial reasoning in complex scenarios is a sophisticated cognitive function in humans. With advancements in multi-modal large language models, recent benchmarks tend to evaluate visual understanding across multiple images. However, they often overlook the necessity of combinatorial reasoning across multiple perceptual information. To explore the ability of advanced models to integrate multiple perceptual inputs for combinatorial reasoning in complex scenarios, we introduce two benchmarks: Clue-Visual Question Answering (CVQA), with three task types to assess visual comprehension and synthesis, and Clue of Password-Visual Question Answering (CPVQA), with two task types focused on accurate interpretation and application of visual data. For our benchmarks, we present three plug-and-play approaches: utilizing model input for reasoning, enhancing reasoning through minimum margin decoding with randomness generation, and retrieving semantically relevant visual information for effective data integration. The combined results reveal current models' poor performance on combinatorial reasoning benchmarks, even the state-of-the-art (SOTA) closed-source model achieves only 33.04% accuracy on CVQA, and drops to 7.38% on CPVQA. Notably, our approach improves the performance of models on combinatorial reasoning, with a 22.17% boost on CVQA and 9.40% on CPVQA over the SOTA closed-source model, demonstrating its effectiveness in enhancing combinatorial reasoning with multiple perceptual inputs in complex scenarios. The code will be publicly available.
comment: 11pages
♻ ☆ R-LLaVA: Improving Med-VQA Understanding through Visual Region of Interest
Artificial intelligence has made significant strides in medical visual question answering (Med-VQA), yet prevalent studies often interpret images holistically, overlooking the visual regions of interest that may contain crucial information, potentially aligning with a doctor's prior knowledge that can be incorporated with minimal annotations (e.g., bounding boxes). To address this gap, this paper introduces R-LLaVA, designed to enhance biomedical VQA understanding by integrating simple medical annotations as prior knowledge directly into the image space through CLIP. These annotated visual regions of interest are then fed into the LLaVA model during training, aiming to enrich the model's understanding of biomedical queries. Experimental evaluation on four standard Med-VQA datasets demonstrates R-LLaVA's superiority over existing state-of-the-art (SoTA) methods. Additionally, to verify the model's capability in visual comprehension, a novel multiple-choice medical visual understanding dataset is introduced, confirming the positive impact of focusing on visual regions of interest in advancing biomedical VQA understanding.
♻ ☆ A Survey on LLM-as-a-Judge
Accurate and consistent evaluation is crucial for decision-making across numerous fields, yet it remains a challenging task due to inherent subjectivity, variability, and scale. Large Language Models (LLMs) have achieved remarkable success across diverse domains, leading to the emergence of "LLM-as-a-Judge," where LLMs are employed as evaluators for complex tasks. With their ability to process diverse data types and provide scalable, cost-effective, and consistent assessments, LLMs present a compelling alternative to traditional expert-driven evaluations. However, ensuring the reliability of LLM-as-a-Judge systems remains a significant challenge that requires careful design and standardization. This paper provides a comprehensive survey of LLM-as-a-Judge, addressing the core question: How can reliable LLM-as-a-Judge systems be built? We explore strategies to enhance reliability, including improving consistency, mitigating biases, and adapting to diverse assessment scenarios. Additionally, we propose methodologies for evaluating the reliability of LLM-as-a-Judge systems, supported by a novel benchmark designed for this purpose. To advance the development and real-world deployment of LLM-as-a-Judge systems, we also discussed practical applications, challenges, and future directions. This survey serves as a foundational reference for researchers and practitioners in this rapidly evolving field.
comment: Project Page: https://awesome-llm-as-a-judge.github.io/
♻ ☆ Leverage Knowledge Graph and Large Language Model for Law Article Recommendation: A Case Study of Chinese Criminal Law
Court efficiency is vital for social stability. However, in most countries around the world, the grassroots courts face case backlogs, with decisions relying heavily on judicial personnel's cognitive labor, lacking intelligent tools to improve efficiency. To address this issue, we propose an efficient law article recommendation approach utilizing a Knowledge Graph (KG) and a Large Language Model (LLM). Firstly, we propose a Case-Enhanced Law Article Knowledge Graph (CLAKG) as a database to store current law statutes, historical case information, and correspondence between law articles and historical cases. Additionally, we introduce an automated CLAKG construction method based on LLM. On this basis, we propose a closed-loop law article recommendation method. Finally, through a series of experiments using judgment documents from the website "China Judgements Online", we have improved the accuracy of law article recommendation in cases from 0.549 to 0.694, demonstrating that our proposed method significantly outperforms baseline approaches.
♻ ☆ PerfRL: A Small Language Model Framework for Efficient Code Optimization
Code optimization is a challenging task requiring a substantial level of expertise from developers. Nonetheless, this level of human capacity is not sufficient considering the rapid evolution of new hardware architectures and software environments. In light of this, recent research proposes adopting machine learning and artificial intelligence techniques to automate the code optimization process. In this paper, we introduce PerfRL, an innovative framework designed to tackle the problem of code optimization. Our framework leverages the capabilities of small language models (SLMs) and reinforcement learning (RL), facilitating a system where SLMs can assimilate feedback from their environment during the fine-tuning phase, notably through unit tests. When benchmarked against existing models, PerfRL demonstrates superior efficiency in terms of speed and computational resource usage, attributed to its reduced need for training steps and its compatibility with SLMs. Furthermore, it substantially diminishes the risk of logical and syntactical errors. To evaluate our framework, we conduct experiments on the PIE dataset using a lightweight large language model (i.e., CodeT5) and a new reinforcement learning algorithm, namely RRHF. For evaluation purposes, we use a list of evaluation metrics related to optimization quality and speedup. The evaluation results show that our approach achieves similar or better results compared to state-of-the-art models using shorter training times and smaller pre-trained models.
♻ ☆ Core Knowledge Deficits in Multi-Modal Language Models
While Multimodal Large Language Models (MLLMs) demonstrate impressive abilities over high level perception and reasoning, their robustness in the wild still lags behind humans and exhibits diminished efficacy on simple tasks that are intuitive for humans. We examine the hypothesis that these deficiencies stem from the absence of core knowledge, rudimentary cognitive abilities innate to humans from early childhood. To probe core knowledge representation in MLLMs, we draw from developmental cognitive sciences and develop a large-scale benchmark, CoreCognition dataset, encompassing 12 core cognitive concepts. We evaluate 219 models with 10 different prompts, leading to a total of 2409 data points for analysis. Our findings reveal core knowledge deficits in early developed core abilities while models demonstrate human comparable performance in high level cognition. Moreover, we find that low level abilities show little to no scaling, in stark contrast to high level abilities. Finally, we introduce an evaluation technique, Concept Hacking, through which we demonstrate that MLLMs do not genuinely advance toward core knowledge but instead rely on illusory understanding and shortcut learning as they scale. Website with this $\href{https://growing-ai-like-a-child.github.io/}{link}$.
comment: Website with this $\href{https://growing-ai-like-a-child.github.io/}{link}$
♻ ☆ M2-omni: Advancing Omni-MLLM for Comprehensive Modality Support with Competitive Performance
We present M2-omni, a cutting-edge, open-source omni-MLLM that achieves competitive performance to GPT-4o. M2-omni employs a unified multimodal sequence modeling framework, which empowers Large Language Models(LLMs) to acquire comprehensive cross-modal understanding and generation capabilities. Specifically, M2-omni can process arbitrary combinations of audio, video, image, and text modalities as input, generating multimodal sequences interleaving with audio, image, or text outputs, thereby enabling an advanced and interactive real-time experience. The training of such an omni-MLLM is challenged by significant disparities in data quantity and convergence rates across modalities. To address these challenges, we propose a step balance strategy during pre-training to handle the quantity disparities in modality-specific data. Additionally, a dynamically adaptive balance strategy is introduced during the instruction tuning stage to synchronize the modality-wise training progress, ensuring optimal convergence. Notably, we prioritize preserving strong performance on pure text tasks to maintain the robustness of M2-omni's language understanding capability throughout the training process. To our best knowledge, M2-omni is currently a very competitive open-source model to GPT-4o, characterized by its comprehensive modality and task support, as well as its exceptional performance. We expect M2-omni will advance the development of omni-MLLMs, thus facilitating future research in this domain.
♻ ☆ log-RRIM: Yield Prediction via Local-to-global Reaction Representation Learning and Interaction Modeling
Accurate prediction of chemical reaction yields is crucial for optimizing organic synthesis, potentially reducing time and resources spent on experimentation. With the rise of artificial intelligence (AI), there is growing interest in leveraging AI-based methods to accelerate yield predictions without conducting in vitro experiments. We present log-RRIM, an innovative graph transformer-based framework designed for predicting chemical reaction yields. A key feature of log-RRIM is its integration of a cross-attention mechanism that focuses on the interplay between reagents and reaction centers. This design reflects a fundamental principle in chemical reactions: the crucial role of reagents in influencing bond-breaking and formation processes, which ultimately affect reaction yields. log-RRIM also implements a local-to-global reaction representation learning strategy. This approach initially captures detailed molecule-level information and then models and aggregates intermolecular interactions. Through this hierarchical process, log-RRIM effectively captures how different molecular fragments contribute to and influence the overall reaction yield, regardless of their size variations. log-RRIM shows superior performance in our experiments, especially for medium to high-yielding reactions, proving its reliability as a predictor. The framework's sophisticated modeling of reactant-reagent interactions and precise capture of molecular fragment contributions make it a valuable tool for reaction planning and optimization in chemical synthesis. The data and codes of log-RRIM are accessible through https://github.com/ninglab/Yield_log_RRIM.
comment: 45 pages, 8 figures
♻ ☆ Training Free Guided Flow Matching with Optimal Control
Controlled generation with pre-trained Diffusion and Flow Matching models has vast applications. One strategy for guiding ODE-based generative models is through optimizing a target loss $R(x_1)$ while staying close to the prior distribution. Along this line, some recent work showed the effectiveness of guiding flow model by differentiating through its ODE sampling process. Despite the superior performance, the theoretical understanding of this line of methods is still preliminary, leaving space for algorithm improvement. Moreover, existing methods predominately focus on Euclidean data manifold, and there is a compelling need for guided flow methods on complex geometries such as SO(3), which prevails in high-stake scientific applications like protein design. We present OC-Flow, a general and theoretically grounded training-free framework for guided flow matching using optimal control. Building upon advances in optimal control theory, we develop effective and practical algorithms for solving optimal control in guided ODE-based generation and provide a systematic theoretical analysis of the convergence guarantee in both Euclidean and SO(3). We show that existing backprop-through-ODE methods can be interpreted as special cases of Euclidean OC-Flow. OC-Flow achieved superior performance in extensive experiments on text-guided image manipulation, conditional molecule generation, and all-atom peptide design.
♻ ☆ WinTSR: A Windowed Temporal Saliency Rescaling Method for Interpreting Time Series Deep Learning Models
Interpreting complex time series forecasting models is challenging due to the temporal dependencies between time steps and the dynamic relevance of input features over time. Existing interpretation methods are limited by focusing mostly on classification tasks, evaluating using custom baseline models instead of the latest time series models, using simple synthetic datasets, and requiring training another model. We introduce a novel interpretation method, \textit{Windowed Temporal Saliency Rescaling (WinTSR)} addressing these limitations. WinTSR explicitly captures temporal dependencies among the past time steps and efficiently scales the feature importance with this time importance. We benchmark WinTSR against 10 recent interpretation techniques with 5 state-of-the-art deep-learning models of different architectures, including a time series foundation model. We use 3 real-world datasets for both time-series classification and regression. Our comprehensive analysis shows that WinTSR significantly outperforms other local interpretation methods in overall performance. Finally, we provide a novel, open-source framework to interpret the latest time series transformers and foundation models.
comment: 11 pages, 14 figures, GitHub https://github.com/khairulislam/Timeseries-Explained
Robotics 31
☆ A Physically Consistent Stiffness Formulation for Contact-Rich Manipulation
Ensuring symmetric stiffness in impedance-controlled robots is crucial for physically meaningful and stable interaction in contact-rich manipulation. Conventional approaches neglect the change of basis vectors in curved spaces, leading to an asymmetric joint-space stiffness matrix that violates passivity and conservation principles. In this work, we derive a physically consistent, symmetric joint-space stiffness formulation directly from the task-space stiffness matrix by explicitly incorporating Christoffel symbols. This correction resolves long-standing inconsistencies in stiffness modeling, ensuring energy conservation and stability. We validate our approach experimentally on a robotic system, demonstrating that omitting these correction terms results in significant asymmetric stiffness errors. Our findings bridge theoretical insights with practical control applications, offering a robust framework for stable and interpretable robotic interactions.
☆ RoboDesign1M: A Large-scale Dataset for Robot Design Understanding
Robot design is a complex and time-consuming process that requires specialized expertise. Gaining a deeper understanding of robot design data can enable various applications, including automated design generation, retrieving example designs from text, and developing AI-powered design assistants. While recent advancements in foundation models present promising approaches to addressing these challenges, progress in this field is hindered by the lack of large-scale design datasets. In this paper, we introduce RoboDesign1M, a large-scale dataset comprising 1 million samples. Our dataset features multimodal data collected from scientific literature, covering various robotics domains. We propose a semi-automated data collection pipeline, enabling efficient and diverse data acquisition. To assess the effectiveness of RoboDesign1M, we conduct extensive experiments across multiple tasks, including design image generation, visual question answering about designs, and design image retrieval. The results demonstrate that our dataset serves as a challenging new benchmark for design understanding tasks and has the potential to advance research in this field. RoboDesign1M will be released to support further developments in AI-driven robotic design automation.
comment: 8 pages
☆ Robotic Ultrasound-Guided Femoral Artery Reconstruction of Anatomically-Representative Phantoms
Femoral artery access is essential for numerous clinical procedures, including diagnostic angiography, therapeutic catheterization, and emergency interventions. Despite its critical role, successful vascular access remains challenging due to anatomical variability, overlying adipose tissue, and the need for precise ultrasound (US) guidance. Errors in needle placement can lead to severe complications, restricting the procedure to highly skilled clinicians in controlled hospital settings. While robotic systems have shown promise in addressing these challenges through autonomous scanning and vessel reconstruction, clinical translation remains limited due to reliance on simplified phantom models that fail to capture human anatomical complexity. In this work, we present a method for autonomous robotic US scanning of bifurcated femoral arteries, and validate it on five vascular phantoms created from real patient computed tomography (CT) data. Additionally, we introduce a video-based deep learning US segmentation network tailored for vascular imaging, enabling improved 3D arterial reconstruction. The proposed network achieves a Dice score of 89.21% and an Intersection over Union of 80.54% on a newly developed vascular dataset. The quality of the reconstructed artery centerline is evaluated against ground truth CT data, demonstrating an average L2 deviation of 0.91+/-0.70 mm, with an average Hausdorff distance of 4.36+/-1.11mm. This study is the first to validate an autonomous robotic system for US scanning of the femoral artery on a diverse set of patient-specific phantoms, introducing a more advanced framework for evaluating robotic performance in vascular imaging and intervention.
☆ AutoMisty: A Multi-Agent LLM Framework for Automated Code Generation in the Misty Social Robot
The social robot's open API allows users to customize open-domain interactions. However, it remains inaccessible to those without programming experience. In this work, we introduce AutoMisty, the first multi-agent collaboration framework powered by large language models (LLMs), to enable the seamless generation of executable Misty robot code from natural language instructions. AutoMisty incorporates four specialized agent modules to manage task decomposition, assignment, problem-solving, and result synthesis. Each agent incorporates a two-layer optimization mechanism, with self-reflection for iterative refinement and human-in-the-loop for better alignment with user preferences. AutoMisty ensures a transparent reasoning process, allowing users to iteratively refine tasks through natural language feedback for precise execution. To evaluate AutoMisty's effectiveness, we designed a benchmark task set spanning four levels of complexity and conducted experiments in a real Misty robot environment. Extensive evaluations demonstrate that AutoMisty not only consistently generates high-quality code but also enables precise code control, significantly outperforming direct reasoning with ChatGPT-4o and ChatGPT-o1. All code, optimized APIs, and experimental videos will be publicly released through the webpage: https://wangxiaoshawn.github.io/AutoMisty.html
☆ Infinite Leagues Under the Sea: Photorealistic 3D Underwater Terrain Generation by Latent Fractal Diffusion Models
This paper tackles the problem of generating representations of underwater 3D terrain. Off-the-shelf generative models, trained on Internet-scale data but not on specialized underwater images, exhibit downgraded realism, as images of the seafloor are relatively uncommon. To this end, we introduce DreamSea, a generative model to generate hyper-realistic underwater scenes. DreamSea is trained on real-world image databases collected from underwater robot surveys. Images from these surveys contain massive real seafloor observations and covering large areas, but are prone to noise and artifacts from the real world. We extract 3D geometry and semantics from the data with visual foundation models, and train a diffusion model that generates realistic seafloor images in RGBD channels, conditioned on novel fractal distribution-based latent embeddings. We then fuse the generated images into a 3D map, building a 3DGS model supervised by 2D diffusion priors which allows photorealistic novel view rendering. DreamSea is rigorously evaluated, demonstrating the ability to robustly generate large-scale underwater scenes that are consistent, diverse, and photorealistic. Our work drives impact in multiple domains, spanning filming, gaming, and robot simulation.
comment: 10 pages
☆ Chance-Constrained Trajectory Planning with Multimodal Environmental Uncertainty
We tackle safe trajectory planning under Gaussian mixture model (GMM) uncertainty. Specifically, we use a GMM to model the multimodal behaviors of obstacles' uncertain states. Then, we develop a mixed-integer conic approximation to the chance-constrained trajectory planning problem with deterministic linear systems and polyhedral obstacles. When the GMM moments are estimated via finite samples, we develop a tight concentration bound to ensure the chance constraint with a desired confidence. Moreover, to limit the amount of constraint violation, we develop a Conditional Value-at-Risk (CVaR) approach corresponding to the chance constraints and derive a tractable approximation for known and estimated GMM moments. We verify our methods with state-of-the-art trajectory prediction algorithms and autonomous driving datasets.
comment: Published in IEEE Control Systems Letters
☆ Chance-constrained Linear Quadratic Gaussian Games for Multi-robot Interaction under Uncertainty
We address safe multi-robot interaction under uncertainty. In particular, we formulate a chance-constrained linear quadratic Gaussian game with coupling constraints and system uncertainties. We find a tractable reformulation of the game and propose a dual ascent algorithm. We prove that the algorithm converges to a generalized Nash equilibrium of the reformulated game, ensuring the satisfaction of the chance constraints. We test our method in driving simulations and real-world robot experiments. Our method ensures safety under uncertainty and generates less conservative trajectories than single-agent model predictive control.
comment: Submitted to IEEE Robotics and Automation Letters
☆ Task-Oriented Connectivity for Networked Robotics with Generative AI and Semantic Communications
The convergence of robotics, advanced communication networks, and artificial intelligence (AI) holds the promise of transforming industries through fully automated and intelligent operations. In this work, we introduce a novel co-working framework for robots that unifies goal-oriented semantic communication (SemCom) with a Generative AI (GenAI)-agent under a semantic-aware network. SemCom prioritizes the exchange of meaningful information among robots and the network, thereby reducing overhead and latency. Meanwhile, the GenAI-agent leverages generative AI models to interpret high-level task instructions, allocate resources, and adapt to dynamic changes in both network and robotic environments. This agent-driven paradigm ushers in a new level of autonomy and intelligence, enabling complex tasks of networked robots to be conducted with minimal human intervention. We validate our approach through a multi-robot anomaly detection use-case simulation, where robots detect, compress, and transmit relevant information for classification. Simulation results confirm that SemCom significantly reduces data traffic while preserving critical semantic details, and the GenAI-agent ensures task coordination and network adaptation. This synergy provides a robust, efficient, and scalable solution for modern industrial environments.
comment: 6 pages, 7 figures. This paper has been submitted to IEEE for possible publication
☆ pRRTC: GPU-Parallel RRT-Connect for Fast, Consistent, and Low-Cost Motion Planning
Sampling-based motion planning algorithms, like the Rapidly-Exploring Random Tree (RRT) and its widely used variant, RRT-Connect, provide efficient solutions for high-dimensional planning problems faced by real-world robots. However, these methods remain computationally intensive, particularly in complex environments that require many collision checks. As such, to improve performance, recent efforts have explored parallelizing specific components of RRT, such as collision checking or running multiple planners independently, but no prior work has integrated parallelism at multiple levels of the algorithm for robotic manipulation. In this work, we present pRRTC, a GPU-accelerated implementation of RRT-Connect that achieves parallelism across the entire algorithm through multithreaded expansion and connection, SIMT-optimized collision checking, and hierarchical parallelism optimization, improving efficiency, consistency, and initial solution cost. We evaluate the effectiveness of pRRTC on the MotionBenchMaker dataset using robots with 7, 8, and 14 degrees-of-freedom, demonstrating up to 6x average speedup on constrained reaching tasks at high collision checking resolution compared to state-of-the-art. pRRTC also demonstrates a 5x reduction in solution time variance and 1.5x improvement in initial path costs compared to state-of-the-art motion planners in complex environments across all robots.
comment: 7 pages, 6 figures, 1 table. Submitted to IEEE/RSJ International Conference on Intelligent Robots and Systems 2025
☆ Safe, Task-Consistent Manipulation with Operational Space Control Barrier Functions
Safe real-time control of robotic manipulators in unstructured environments requires handling numerous safety constraints without compromising task performance. Traditional approaches, such as artificial potential fields (APFs), suffer from local minima, oscillations, and limited scalability, while model predictive control (MPC) can be computationally expensive. Control barrier functions (CBFs) offer a promising alternative due to their high level of robustness and low computational cost, but these safety filters must be carefully designed to avoid significant reductions in the overall performance of the manipulator. In this work, we introduce an Operational Space Control Barrier Function (OSCBF) framework that integrates safety constraints while preserving task-consistent behavior. Our approach scales to hundreds of simultaneous constraints while retaining real-time control rates, ensuring collision avoidance, singularity prevention, and workspace containment even in highly cluttered and dynamic settings. By explicitly accounting for the task hierarchy in the CBF objective, we prevent degraded performance across both joint-space and operational-space tasks, when at the limit of safety. Our open-source, high-performance software will be available at our project webpage, https://stanfordasl.github.io/oscbf/
☆ Embodied multi-modal sensing with a soft modular arm powered by physical reservoir computing
Soft robots have become increasingly popular for complex manipulation tasks requiring gentle and safe contact. However, their softness makes accurate control challenging, and high-fidelity sensing is a prerequisite to adequate control performance. To this end, many flexible and embedded sensors have been created over the past decade, but they inevitably increase the robot's complexity and stiffness. This study demonstrates a novel approach that uses simple bending strain gauges embedded inside a modular arm to extract complex information regarding its deformation and working conditions. The core idea is based on physical reservoir computing (PRC): A soft body's rich nonlinear dynamic responses, captured by the inter-connected bending sensor network, could be utilized for complex multi-modal sensing with a simple linear regression algorithm. Our results show that the soft modular arm reservoir can accurately predict body posture (bending angle), estimate payload weight, determine payload orientation, and even differentiate two payloads with only minimal difference in weight -- all using minimal digital computing power.
AgiBot World Colosseo: A Large-scale Manipulation Platform for Scalable and Intelligent Embodied Systems
We explore how scalable robot data can address real-world challenges for generalized robotic manipulation. Introducing AgiBot World, a large-scale platform comprising over 1 million trajectories across 217 tasks in five deployment scenarios, we achieve an order-of-magnitude increase in data scale compared to existing datasets. Accelerated by a standardized collection pipeline with human-in-the-loop verification, AgiBot World guarantees high-quality and diverse data distribution. It is extensible from grippers to dexterous hands and visuo-tactile sensors for fine-grained skill acquisition. Building on top of data, we introduce Genie Operator-1 (GO-1), a novel generalist policy that leverages latent action representations to maximize data utilization, demonstrating predictable performance scaling with increased data volume. Policies pre-trained on our dataset achieve an average performance improvement of 30% over those trained on Open X-Embodiment, both in in-domain and out-of-distribution scenarios. GO-1 exhibits exceptional capability in real-world dexterous and long-horizon tasks, achieving over 60% success rate on complex tasks and outperforming prior RDT approach by 32%. By open-sourcing the dataset, tools, and models, we aim to democratize access to large-scale, high-quality robot data, advancing the pursuit of scalable and general-purpose intelligence.
comment: Project website: https://agibot-world.com/, Code: https://github.com/OpenDriveLab/AgiBot-World
☆ Non-Equilibrium MAV-Capture-MAV via Time-Optimal Planning and Reinforcement Learning
The capture of flying MAVs (micro aerial vehicles) has garnered increasing research attention due to its intriguing challenges and promising applications. Despite recent advancements, a key limitation of existing work is that capture strategies are often relatively simple and constrained by platform performance. This paper addresses control strategies capable of capturing high-maneuverability targets. The unique challenge of achieving target capture under unstable conditions distinguishes this task from traditional pursuit-evasion and guidance problems. In this study, we transition from larger MAV platforms to a specially designed, compact capture MAV equipped with a custom launching device while maintaining high maneuverability. We explore both time-optimal planning (TOP) and reinforcement learning (RL) methods. Simulations demonstrate that TOP offers highly maneuverable and shorter trajectories, while RL excels in real-time adaptability and stability. Moreover, the RL method has been tested in real-world scenarios, successfully achieving target capture even in unstable states.
☆ Abdominal Undulation with Compliant Mechanism Improves Flight Performance of Biomimetic Robotic Butterfly
Abdominal Undulation with Compliant Mechanism Improves Flight Performance of Biomimetic Robotic ButterflThis paper presents the design, modeling, and experimental validation of a biomimetic robotic butterfly (BRB) that integrates a compliant mechanism to achieve coupled wing-abdomen motion. Drawing inspiration from the natural f light dynamics of butterflies, a theoretical model is developed to investigate the impact of abdominal undulation on flight performance. To validate the model, motion capture experi ments are conducted on three configurations: a BRB without an abdomen, with a fixed abdomen, and with an undulating abdomen. The results demonstrate that abdominal undulation enhances lift generation, extends flight duration, and stabilizes pitch oscillations, thereby improving overall flight performance. These findings underscore the significance of wing-abdomen interaction in flapping-wing aerial vehicles (FWAVs) and lay the groundwork for future advancements in energy-efficient biomimetic flight designs.
☆ TextInPlace: Indoor Visual Place Recognition in Repetitive Structures with Scene Text Spotting and Verification
Visual Place Recognition (VPR) is a crucial capability for long-term autonomous robots, enabling them to identify previously visited locations using visual information. However, existing methods remain limited in indoor settings due to the highly repetitive structures inherent in such environments. We observe that scene text typically appears in indoor spaces, serving to distinguish visually similar but different places. This inspires us to propose TextInPlace, a simple yet effective VPR framework that integrates Scene Text Spotting (STS) to mitigate visual perceptual ambiguity in repetitive indoor environments. Specifically, TextInPlace adopts a dual-branch architecture within a local parameter sharing network. The VPR branch employs attention-based aggregation to extract global descriptors for coarse-grained retrieval, while the STS branch utilizes a bridging text spotter to detect and recognize scene text. Finally, the discriminative text is filtered to compute text similarity and re-rank the top-K retrieved images. To bridge the gap between current text-based repetitive indoor scene datasets and the typical scenarios encountered in robot navigation, we establish an indoor VPR benchmark dataset, called Maze-with-Text. Extensive experiments on both custom and public datasets demonstrate that TextInPlace achieves superior performance over existing methods that rely solely on appearance information. The dataset, code, and trained models are publicly available at https://github.com/HqiTao/TextInPlace.
comment: 8 pages,5 figures
☆ Vision-Based Cooperative MAV-Capturing-MAV
MAV-capturing-MAV (MCM) is one of the few effective methods for physically countering misused or malicious MAVs.This paper presents a vision-based cooperative MCM system, where multiple pursuer MAVs equipped with onboard vision systems detect, localize, and pursue a target MAV. To enhance robustness, a distributed state estimation and control framework enables the pursuer MAVs to autonomously coordinate their actions. Pursuer trajectories are optimized using Model Predictive Control (MPC) and executed via a low-level SO(3) controller, ensuring smooth and stable pursuit. Once the capture conditions are satisfied, the pursuer MAVs automatically deploy a flying net to intercept the target. These capture conditions are determined based on the predicted motion of the net. To enable real-time decision-making, we propose a lightweight computational method to approximate the net motion, avoiding the prohibitive cost of solving the full net dynamics. The effectiveness of the proposed system is validated through simulations and real-world experiments. In real-world tests, our approach successfully captures a moving target traveling at 4 meters per second with an acceleration of 1 meter per square second, achieving a success rate of 64.7 percent.
☆ Reduced-Order Model-Based Gait Generation for Snake Robot Locomotion using NMPC
This paper presents an optimization-based motion planning methodology for snake robots operating in constrained environments. By using a reduced-order model, the proposed approach simplifies the planning process, enabling the optimizer to autonomously generate gaits while constraining the robot's footprint within tight spaces. The method is validated through high-fidelity simulations that accurately model contact dynamics and the robot's motion. Key locomotion strategies are identified and further demonstrated through hardware experiments, including successful navigation through narrow corridors.
♻ ☆ Divide et Impera: Decoding Impedance Strategies for Robotic Peg-in-Hole Assembly
This paper investigates robotic peg-in-hole assembly using the Elementary Dynamic Actions (EDA) framework, which models contact-rich tasks through a combination of submovements, oscillations, and mechanical impedance. Rather than focusing on a single optimal parameter set, we analyze the distribution and structure of multiple successful impedance solutions, revealing patterns that guide impedance selection in contactrich robotic manipulation. Experiments with a real robot and four different peg types demonstrate the presence of task-specific and generalized assembly strategies, identified through K-means Clustering. Principal Component Analysis (PCA) is used to represent these findings, highlighting patterns in successful impedance selections. Additionally, a neural-network-based success predictor accurately estimates feasible impedance parameters, reducing the need for extensive trial-and-error tuning. By providing publicly available code, CAD files, and a trained model, this work enhances the accessibility of impedance control and offers a structured approach to programming robotic assembly tasks, particularly for less-experienced users.
♻ ☆ Autonomous Apple Fruitlet Sizing with Next Best View Planning
In this paper, we present a next-best-view planning approach to autonomously size apple fruitlets. State-of-the-art viewpoint planners in agriculture are designed to size large and more sparsely populated fruit. They rely on lower resolution maps and sizing methods that do not generalize to smaller fruit sizes. To overcome these limitations, our method combines viewpoint sampling around semantically labeled regions of interest, along with an attention-guided information gain mechanism to more strategically select viewpoints that target the small fruits' volume. Additionally, we integrate a dual-map representation of the environment that is able to both speed up expensive ray casting operations and maintain the high occupancy resolution required to informatively plan around the fruit. When sizing, a robust estimation and graph clustering approach is introduced to associate fruit detections across images. Through simulated experiments, we demonstrate that our viewpoint planner improves sizing accuracy compared to state of the art and ablations. We also provide quantitative results on data collected by a real robotic system in the field.
♻ ☆ Imagine-2-Drive: Leveraging High-Fidelity World Models via Multi-Modal Diffusion Policies IROS 2025
World Model-based Reinforcement Learning (WMRL) enables sample efficient policy learning by reducing the need for online interactions which can potentially be costly and unsafe, especially for autonomous driving. However, existing world models often suffer from low prediction fidelity and compounding one-step errors, leading to policy degradation over long horizons. Additionally, traditional RL policies, often deterministic or single Gaussian-based, fail to capture the multi-modal nature of decision-making in complex driving scenarios. To address these challenges, we propose Imagine-2-Drive, a novel WMRL framework that integrates a high-fidelity world model with a multi-modal diffusion-based policy actor. It consists of two key components: DiffDreamer, a diffusion-based world model that generates future observations simultaneously, mitigating error accumulation, and DPA (Diffusion Policy Actor), a diffusion-based policy that models diverse and multi-modal trajectory distributions. By training DPA within DiffDreamer, our method enables robust policy learning with minimal online interactions. We evaluate our method in CARLA using standard driving benchmarks and demonstrate that it outperforms prior world model baselines, improving Route Completion and Success Rate by 15% and 20% respectively.
comment: Submitted to IROS 2025
♻ ☆ HMT-Grasp: A Hybrid Mamba-Transformer Approach for Robot Grasping in Cluttered Environments
Robot grasping, whether handling isolated objects, cluttered items, or stacked objects, plays a critical role in industrial and service applications. However, current visual grasp detection methods based on Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) often struggle to adapt to diverse scenarios, as they tend to emphasize either local or global features exclusively, neglecting complementary cues. In this paper, we propose a novel hybrid Mamba-Transformer approach to address these challenges. Our method improves robotic visual grasping by effectively capturing both global and local information through the integration of Vision Mamba and parallel convolutional-transformer blocks. This hybrid architecture significantly improves adaptability, precision, and flexibility across various robotic tasks. To ensure a fair evaluation, we conducted extensive experiments on the Cornell, Jacquard, and OCID-Grasp datasets, ranging from simple to complex scenarios. Additionally, we performed both simulated and real-world robotic experiments. The results demonstrate that our method not only surpasses state-of-the-art techniques on standard grasping datasets but also delivers strong performance in both simulation and real-world robot applications.
♻ ☆ A vision-based robotic system for precision pollination of apples
Global food production depends upon successful pollination, a process that relies on natural and managed pollinators. However, natural pollinators are declining due to factors such as climate change, habitat loss, and pesticide use. This paper presents an integrated robotic system for precision pollination in apples. The system consisted of a machine vision system to identify target flower clusters and estimate their positions and orientations, and a manipulator motion planning and actuation system to guide the sprayer to apply charged pollen suspension to the target flower clusters. The system was tested in the lab, followed by field evaluation in Honeycrisp and Fuji orchards. In the Honeycrisp variety, the robotic pollination system achieved a fruit set of 34.8% of sprayed flowers with 87.5% of flower clusters having at least one fruit when a 2 gm/l pollen suspension was used. In comparison, the natural pollination technique achieved a fruit set of 43.1% with 94.9% of clusters with at least one fruit. In Fuji apples, the robotic system achieved lower pollination success, with 7.2% of sprayed flowers setting fruit and 20.6% of clusters having at least one fruit, compared to 33.1% and 80.6%, respectively, with natural pollination. Fruit quality analysis showed that robotically pollinated fruits were comparable to naturally pollinated fruits in terms of color, weight, diameter, firmness, soluble solids, and starch content. Additionally, the system cycle time was 6.5 seconds per cluster. The results showed a promise for robotic pollination in apple orchards. However, further research and development is needed to improve the system and assess its suitability across diverse orchard environments and apple cultivars.
comment: Accepted for publication in Computers and Electronics in Agriculture
General Place Recognition Survey: Towards Real-World Autonomy
In the realm of robotics, the quest for achieving real-world autonomy, capable of executing large-scale and long-term operations, has positioned place recognition (PR) as a cornerstone technology. Despite the PR community's remarkable strides over the past two decades, garnering attention from fields like computer vision and robotics, the development of PR methods that sufficiently support real-world robotic systems remains a challenge. This paper aims to bridge this gap by highlighting the crucial role of PR within the framework of Simultaneous Localization and Mapping (SLAM) 2.0. This new phase in robotic navigation calls for scalable, adaptable, and efficient PR solutions by integrating advanced artificial intelligence (AI) technologies. For this goal, we provide a comprehensive review of the current state-of-the-art (SOTA) advancements in PR, alongside the remaining challenges, and underscore its broad applications in robotics. This paper begins with an exploration of PR's formulation and key research challenges. We extensively review literature, focusing on related methods on place representation and solutions to various PR challenges. Applications showcasing PR's potential in robotics, key PR datasets, and open-source libraries are discussed. We conclude with a discussion on PR's future directions and provide a summary of the literature covered at: https://github.com/MetaSLAM/GPRS.
comment: 20 pages, 12 figures, accepted by IEEE Transactions on Robotics as Survey Paper
♻ ☆ Learning-based Control for Tendon-Driven Continuum Robotic Arms
This paper presents a learning-based approach for centralized position control of Tendon Driven Continuum Robots (TDCRs) using Deep Reinforcement Learning (DRL), with a particular focus on the Sim-to-Real transfer of control policies. The proposed control method employs the Modified Transpose Jacobian (MTJ) control strategy, with its parameters optimally tuned using the Deep Deterministic Policy Gradient (DDPG) algorithm. Classical model-based controllers encounter significant challenges due to the inherent uncertainties and nonlinear dynamics of continuum robots. In contrast, model-free control strategies require efficient gain-tuning to handle diverse operational scenarios. This research aims to develop a model-free controller with performance comparable to model-based strategies by integrating an optimal adaptive gain-tuning system. Both simulations and real-world implementations demonstrate that the proposed method significantly enhances the trajectory-tracking performance of continuum robots independent of initial conditions and paths within the operational task-space, effectively establishing a task-free controller.
♻ ☆ Mobile-TeleVision: Predictive Motion Priors for Humanoid Whole-Body Control ICRA 2025
Humanoid robots require both robust lower-body locomotion and precise upper-body manipulation. While recent Reinforcement Learning (RL) approaches provide whole-body loco-manipulation policies, they lack precise manipulation with high DoF arms. In this paper, we propose decoupling upper-body control from locomotion, using inverse kinematics (IK) and motion retargeting for precise manipulation, while RL focuses on robust lower-body locomotion. We introduce PMP (Predictive Motion Priors), trained with Conditional Variational Autoencoder (CVAE) to effectively represent upper-body motions. The locomotion policy is trained conditioned on this upper-body motion representation, ensuring that the system remains robust with both manipulation and locomotion. We show that CVAE features are crucial for stability and robustness, and significantly outperforms RL-based whole-body control in precise manipulation. With precise upper-body motion and robust lower-body locomotion control, operators can remotely control the humanoid to walk around and explore different environments, while performing diverse manipulation tasks.
comment: Accepted for ICRA 2025
♻ ☆ Imitation Learning-based Direct Visual Servoing using the Large Projection Formulation
Today robots must be safe, versatile, and user-friendly to operate in unstructured and human-populated environments. Dynamical system-based imitation learning enables robots to perform complex tasks stably and without explicit programming, greatly simplifying their real-world deployment. To exploit the full potential of these systems it is crucial to implement closed loops that use visual feedback. Vision permits to cope with environmental changes, but is complex to handle due to the high dimension of the image space. This study introduces a dynamical system-based imitation learning for direct visual servoing. It leverages off-the-shelf deep learning-based perception modules to extract robust features from the raw input image, and an imitation learning strategy to execute sophisticated robot motions. The learning blocks are integrated using the large projection task priority formulation. As demonstrated through extensive experimental analysis, the proposed method realizes complex tasks with a robotic manipulator.
comment: To appear in Robotics and Autonomous Systems. First two authors contributed equally
♻ ☆ Task-driven SLAM Benchmarking For Robot Navigation
A critical use case of SLAM for mobile assistive robots is to support localization during a navigation-based task. Current SLAM benchmarks overlook the significance of repeatability (precision), despite its importance in real-world deployments. To address this gap, we propose a task-driven approach to SLAM benchmarking, TaskSLAM-Bench. It employs precision as a key metric, accounts for SLAM's mapping capabilities, and has easy-to-meet implementation requirements. Simulated and real-world testing scenarios of SLAM methods provide insights into the navigation performance properties of modern visual and LiDAR SLAM solutions. The outcomes show that passive stereo SLAM operates at a level of precision comparable to LiDAR SLAM in typical indoor environments. TaskSLAM-Bench complements existing benchmarks and offers richer assessment of SLAM performance in navigation-focused scenarios. Publicly available code permits in-situ SLAM testing in custom environments with properly equipped robots.
comment: 8 pages, 8 figures, 1 table. Submitted to IEEE-Conference
♻ ☆ Next Best Sense: Guiding Vision and Touch with FisherRF for 3D Gaussian Splatting ICRA
We propose a framework for active next best view and touch selection for robotic manipulators using 3D Gaussian Splatting (3DGS). 3DGS is emerging as a useful explicit 3D scene representation for robotics, as it has the ability to represent scenes in a both photorealistic and geometrically accurate manner. However, in real-world, online robotic scenes where the number of views is limited given efficiency requirements, random view selection for 3DGS becomes impractical as views are often overlapping and redundant. We address this issue by proposing an end-to-end online training and active view selection pipeline, which enhances the performance of 3DGS in few-view robotics settings. We first elevate the performance of few-shot 3DGS with a novel semantic depth alignment method using Segment Anything Model 2 (SAM2) that we supplement with Pearson depth and surface normal loss to improve color and depth reconstruction of real-world scenes. We then extend FisherRF, a next-best-view selection method for 3DGS, to select views and touch poses based on depth uncertainty. We perform online view selection on a real robot system during live 3DGS training. We motivate our improvements to few-shot GS scenes, and extend depth-based FisherRF to them, where we demonstrate both qualitative and quantitative improvements on challenging robot scenes. For more information, please see our project page at https://arm.stanford.edu/next-best-sense.
comment: To appear in International Conference on Robotics and Automation (ICRA) 2025
♻ ☆ Dynamic Collision Avoidance Using Velocity Obstacle-Based Control Barrier Functions
Designing safety-critical controllers for acceleration-controlled unicycle robots is challenging, as control inputs may not appear in the constraints of control Lyapunov functions(CLFs) and control barrier functions (CBFs), leading to invalid controllers. Existing methods often rely on state-feedback-based CLFs and high-order CBFs (HOCBFs), which are computationally expensive to construct and fail to maintain effectiveness in dynamic environments with fast-moving, nearby obstacles. To address these challenges, we propose constructing velocity obstacle-based CBFs (VOCBFs) in the velocity space to enhance dynamic collision avoidance capabilities, instead of relying on distance-based CBFs that require the introduction of HOCBFs. Additionally, by extending VOCBFs using variants of VO, we enable reactive collision avoidance between robots. We formulate a safety-critical controller for acceleration-controlled unicycle robots as a mixed-integer quadratic programming (MIQP), integrating state-feedback-based CLFs for navigation and VOCBFs for collision avoidance. To enhance the efficiency of solving the MIQP, we split the MIQP into multiple sub-optimization problems and employ a decision network to reduce computational costs. Numerical simulations demonstrate that our approach effectively guides the robot to its target while avoiding collisions. Compared to HOCBFs, VOCBFs exhibit significantly improved dynamic obstacle avoidance performance, especially when obstacles are fast-moving and close to the robot. Furthermore, we extend our method to distributed multi-robot systems.
comment: Accepted by IEEE TCST
♻ ☆ Equitable Routing -- Rethinking the Multiple Traveling Salesman Problem
The Multiple Traveling Salesman Problem (MTSP) generalizes the Traveling Salesman Problem (TSP) by introducing multiple salesmen tasked with visiting a set of targets from a single depot, ensuring each target is visited exactly once while minimizing total tour length. A key variant, the min-max MTSP, seeks to balance workloads by minimizing the longest tour among salesmen. However, this problem is challenging to solve optimally due to weak lower bounds from linear relaxations. This paper introduces two novel parametric variants of the MTSP, termed "fair-MTSP". One variant is modeled as a Mixed-Integer Second Order Cone Program (MISOCP), and the other as a Mixed Integer Linear Program (MILP). Both variants aim to distribute tour lengths equitably among salesmen while minimizing overall costs. We develop algorithms to achieve global optimality for these fair-MTSP variants. We present computational results based on benchmark and real-world scenarios, particularly in electric vehicle fleet management and routing. Furthermore, we also show that the algorithmic approaches presented for the fair-MTSP variants can be directly used to obtain the Pareto-front of a bi-objective optimization problem where one objective focuses on minimizing the total tour length and the other focuses on balancing the tour lengths of the individual tours. The findings support fair-MTSP as a promising alternative to the min-max MTSP, emphasizing fairness in workload distribution.
comment: 24 pages
♻ ☆ Unmanned Surface Vehicle Path Planning from the Perspective of Multi-Modality Constraints: A Comprehensive Analysis
The essence of the path planning problems is multi-modality constraint. However, most of the current literature has not mentioned this issue. This paper introduces the research progress of path planning based on the multi-modality constraint. The path planning of multi-modality constraint research can be classified into three stages in terms of its basic ingredients (such as shape, kinematics and dynamics et al.): Route Planning, Trajectory Planning and Motion Planning. It then reviews the research methods and classical algorithms, especially those applied to the Unmanned Surface Vehicle (USV) in every stage. Finally, the paper points out some existing problems in every stage and suggestions for future research.
Graphics 2
☆ Infinite Leagues Under the Sea: Photorealistic 3D Underwater Terrain Generation by Latent Fractal Diffusion Models
This paper tackles the problem of generating representations of underwater 3D terrain. Off-the-shelf generative models, trained on Internet-scale data but not on specialized underwater images, exhibit downgraded realism, as images of the seafloor are relatively uncommon. To this end, we introduce DreamSea, a generative model to generate hyper-realistic underwater scenes. DreamSea is trained on real-world image databases collected from underwater robot surveys. Images from these surveys contain massive real seafloor observations and covering large areas, but are prone to noise and artifacts from the real world. We extract 3D geometry and semantics from the data with visual foundation models, and train a diffusion model that generates realistic seafloor images in RGBD channels, conditioned on novel fractal distribution-based latent embeddings. We then fuse the generated images into a 3D map, building a 3DGS model supervised by 2D diffusion priors which allows photorealistic novel view rendering. DreamSea is rigorously evaluated, demonstrating the ability to robustly generate large-scale underwater scenes that are consistent, diverse, and photorealistic. Our work drives impact in multiple domains, spanning filming, gaming, and robot simulation.
comment: 10 pages
☆ Generative Video Bi-flow
We propose a novel generative video model by robustly learning temporal change as a neural Ordinary Differential Equation (ODE) flow with a bilinear objective of combining two aspects: The first is to map from the past into future video frames directly. Previous work has mapped the noise to new frames, a more computationally expensive process. Unfortunately, starting from the previous frame, instead of noise, is more prone to drifting errors. Hence, second, we additionally learn how to remove the accumulated errors as the joint objective by adding noise during training. We demonstrate unconditional video generation in a streaming manner for various video datasets, all at competitive quality compared to a baseline conditional diffusion but with higher speed, i.e., fewer ODE solver steps.
Robotics 39
☆ Deep Reinforcement Learning-Based Semi-Autonomous Control for Magnetic Micro-robot Navigation with Immersive Manipulation ICRA
Magnetic micro-robots have demonstrated immense potential in biomedical applications, such as in vivo drug delivery, non-invasive diagnostics, and cell-based therapies, owing to their precise maneuverability and small size. However, current micromanipulation techniques often rely solely on a two-dimensional (2D) microscopic view as sensory feedback, while traditional control interfaces do not provide an intuitive manner for operators to manipulate micro-robots. These limitations increase the cognitive load on operators, who must interpret limited feedback and translate it into effective control actions. To address these challenges, we propose a Deep Reinforcement Learning-Based Semi-Autonomous Control (DRL-SC) framework for magnetic micro-robot navigation in a simulated microvascular system. Our framework integrates Mixed Reality (MR) to facilitate immersive manipulation of micro-robots, thereby enhancing situational awareness and control precision. Simulation and experimental results demonstrate that our approach significantly improves navigation efficiency, reduces control errors, and enhances the overall robustness of the system in simulated microvascular environments.
comment: Accepted by ICRA
☆ Advancing Autonomous Vehicle Intelligence: Deep Learning and Multimodal LLM for Traffic Sign Recognition and Robust Lane Detection
Autonomous vehicles (AVs) require reliable traffic sign recognition and robust lane detection capabilities to ensure safe navigation in complex and dynamic environments. This paper introduces an integrated approach combining advanced deep learning techniques and Multimodal Large Language Models (MLLMs) for comprehensive road perception. For traffic sign recognition, we systematically evaluate ResNet-50, YOLOv8, and RT-DETR, achieving state-of-the-art performance of 99.8% with ResNet-50, 98.0% accuracy with YOLOv8, and achieved 96.6% accuracy in RT-DETR despite its higher computational complexity. For lane detection, we propose a CNN-based segmentation method enhanced by polynomial curve fitting, which delivers high accuracy under favorable conditions. Furthermore, we introduce a lightweight, Multimodal, LLM-based framework that directly undergoes instruction tuning using small yet diverse datasets, eliminating the need for initial pretraining. This framework effectively handles various lane types, complex intersections, and merging zones, significantly enhancing lane detection reliability by reasoning under adverse conditions. Despite constraints in available training resources, our multimodal approach demonstrates advanced reasoning capabilities, achieving a Frame Overall Accuracy (FRM) of 53.87%, a Question Overall Accuracy (QNS) of 82.83%, lane detection accuracies of 99.6% in clear conditions and 93.0% at night, and robust performance in reasoning about lane invisibility due to rain (88.4%) or road degradation (95.6%). The proposed comprehensive framework markedly enhances AV perception reliability, thus contributing significantly to safer autonomous driving across diverse and challenging road scenarios.
comment: 11 pages, 9 figures
☆ On the Fly Adaptation of Behavior Tree-Based Policies through Reinforcement Learning
With the rising demand for flexible manufacturing, robots are increasingly expected to operate in dynamic environments where local -- such as slight offsets or size differences in workpieces -- are common. We propose to address the problem of adapting robot behaviors to these task variations with a sample-efficient hierarchical reinforcement learning approach adapting Behavior Tree (BT)-based policies. We maintain the core BT properties as an interpretable, modular framework for structuring reactive behaviors, but extend their use beyond static tasks by inherently accommodating local task variations. To show the efficiency and effectiveness of our approach, we conduct experiments both in simulation and on a Franka Emika Panda 7-DoF, with the manipulator adapting to different obstacle avoidance and pivoting tasks.
☆ Efficient Gradient-Based Inference for Manipulation Planning in Contact Factor Graphs ICRA 2025
This paper presents a framework designed to tackle a range of planning problems arise in manipulation, which typically involve complex geometric-physical reasoning related to contact and dynamic constraints. We introduce the Contact Factor Graph (CFG) to graphically model these diverse factors, enabling us to perform inference on the graphs to approximate the distribution and sample appropriate solutions. We propose a novel approach that can incorporate various phenomena of contact manipulation as differentiable factors, and develop an efficient inference algorithm for CFG that leverages this differentiability along with the conditional probabilities arising from the structured nature of contact. Our results demonstrate the capability of our framework in generating viable samples and approximating posterior distributions for various manipulation scenarios.
comment: ICRA 2025
☆ A Noise-Robust Turn-Taking System for Real-World Dialogue Robots: A Field Experiment
Turn-taking is a crucial aspect of human-robot interaction, directly influencing conversational fluidity and user engagement. While previous research has explored turn-taking models in controlled environments, their robustness in real-world settings remains underexplored. In this study, we propose a noise-robust voice activity projection (VAP) model, based on a Transformer architecture, to enhance real-time turn-taking in dialogue robots. To evaluate the effectiveness of the proposed system, we conducted a field experiment in a shopping mall, comparing the VAP system with a conventional cloud-based speech recognition system. Our analysis covered both subjective user evaluations and objective behavioral analysis. The results showed that the proposed system significantly reduced response latency, leading to a more natural conversation where both the robot and users responded faster. The subjective evaluations suggested that faster responses contribute to a better interaction experience.
☆ GAT-Grasp: Gesture-Driven Affordance Transfer for Task-Aware Robotic Grasping
Achieving precise and generalizable grasping across diverse objects and environments is essential for intelligent and collaborative robotic systems. However, existing approaches often struggle with ambiguous affordance reasoning and limited adaptability to unseen objects, leading to suboptimal grasp execution. In this work, we propose GAT-Grasp, a gesture-driven grasping framework that directly utilizes human hand gestures to guide the generation of task-specific grasp poses with appropriate positioning and orientation. Specifically, we introduce a retrieval-based affordance transfer paradigm, leveraging the implicit correlation between hand gestures and object affordances to extract grasping knowledge from large-scale human-object interaction videos. By eliminating the reliance on pre-given object priors, GAT-Grasp enables zero-shot generalization to novel objects and cluttered environments. Real-world evaluations confirm its robustness across diverse and unseen scenarios, demonstrating reliable grasp execution in complex task settings.
comment: under review
☆ Object-Centric World Model for Language-Guided Manipulation
A world model is essential for an agent to predict the future and plan in domains such as autonomous driving and robotics. To achieve this, recent advancements have focused on video generation, which has gained significant attention due to the impressive success of diffusion models. However, these models require substantial computational resources. To address these challenges, we propose a world model leveraging object-centric representation space using slot attention, guided by language instructions. Our model perceives the current state as an object-centric representation and predicts future states in this representation space conditioned on natural language instructions. This approach results in a more compact and computationally efficient model compared to diffusion-based generative alternatives. Furthermore, it flexibly predicts future states based on language instructions, and offers a significant advantage in manipulation tasks where object recognition is crucial. In this paper, we demonstrate that our latent predictive world model surpasses generative world models in visuo-linguo-motor control tasks, achieving superior sample and computation efficiency. We also investigate the generalization performance of the proposed method and explore various strategies for predicting actions using object-centric representations.
☆ System 0/1/2/3: Quad-process theory for multi-timescale embodied collective cognitive systems
This paper introduces the System 0/1/2/3 framework as an extension of dual-process theory, employing a quad-process model of cognition. Expanding upon System 1 (fast, intuitive thinking) and System 2 (slow, deliberative thinking), we incorporate System 0, which represents pre-cognitive embodied processes, and System 3, which encompasses collective intelligence and symbol emergence. We contextualize this model within Bergson's philosophy by adopting multi-scale time theory to unify the diverse temporal dynamics of cognition. System 0 emphasizes morphological computation and passive dynamics, illustrating how physical embodiment enables adaptive behavior without explicit neural processing. Systems 1 and 2 are explained from a constructive perspective, incorporating neurodynamical and AI viewpoints. In System 3, we introduce collective predictive coding to explain how societal-level adaptation and symbol emergence operate over extended timescales. This comprehensive framework ranges from rapid embodied reactions to slow-evolving collective intelligence, offering a unified perspective on cognition across multiple timescales, levels of abstraction, and forms of human intelligence. The System 0/1/2/3 model provides a novel theoretical foundation for understanding the interplay between adaptive and cognitive processes, thereby opening new avenues for research in cognitive science, AI, robotics, and collective intelligence.
comment: Under review
☆ FlowMP: Learning Motion Fields for Robot Planning with Conditional Flow Matching
Prior flow matching methods in robotics have primarily learned velocity fields to morph one distribution of trajectories into another. In this work, we extend flow matching to capture second-order trajectory dynamics, incorporating acceleration effects either explicitly in the model or implicitly through the learning objective. Unlike diffusion models, which rely on a noisy forward process and iterative denoising steps, flow matching trains a continuous transformation (flow) that directly maps a simple prior distribution to the target trajectory distribution without any denoising procedure. By modeling trajectories with second-order dynamics, our approach ensures that generated robot motions are smooth and physically executable, avoiding the jerky or dynamically infeasible trajectories that first-order models might produce. We empirically demonstrate that this second-order conditional flow matching yields superior performance on motion planning benchmarks, achieving smoother trajectories and higher success rates than baseline planners. These findings highlight the advantage of learning acceleration-aware motion fields, as our method outperforms existing motion planning methods in terms of trajectory quality and planning success.
☆ Fish2Mesh Transformer: 3D Human Mesh Recovery from Egocentric Vision
Egocentric human body estimation allows for the inference of user body pose and shape from a wearable camera's first-person perspective. Although research has used pose estimation techniques to overcome self-occlusions and image distortions caused by head-mounted fisheye images, similar advances in 3D human mesh recovery (HMR) techniques have been limited. We introduce Fish2Mesh, a fisheye-aware transformer-based model designed for 3D egocentric human mesh recovery. We propose an egocentric position embedding block to generate an ego-specific position table for the Swin Transformer to reduce fisheye image distortion. Our model utilizes multi-task heads for SMPL parametric regression and camera translations, estimating 3D and 2D joints as auxiliary loss to support model training. To address the scarcity of egocentric camera data, we create a training dataset by employing the pre-trained 4D-Human model and third-person cameras for weak supervision. Our experiments demonstrate that Fish2Mesh outperforms previous state-of-the-art 3D HMR models.
☆ T-CBF: Traversability-based Control Barrier Function to Navigate Vertically Challenging Terrain
Safety has been of paramount importance in motion planning and control techniques and is an active area of research in the past few years. Most safety research for mobile robots target at maintaining safety with the notion of collision avoidance. However, safety goes beyond just avoiding collisions, especially when robots have to navigate unstructured, vertically challenging, off-road terrain, where vehicle rollover and immobilization is as critical as collisions. In this work, we introduce a novel Traversability-based Control Barrier Function (T-CBF), in which we use neural Control Barrier Functions (CBFs) to achieve safety beyond collision avoidance on unstructured vertically challenging terrain by reasoning about new safety aspects in terms of traversability. The neural T-CBF trained on safe and unsafe observations specific to traversability safety is then used to generate safe trajectories. Furthermore, we present experimental results in simulation and on a physical Verti-4 Wheeler (V4W) platform, demonstrating that T-CBF can provide traversability safety while reaching the goal position. T-CBF planner outperforms previously developed planners by 30\% in terms of keeping the robot safe and mobile when navigating on real world vertically challenging terrain.
FSDP: Fast and Safe Data-Driven Overtaking Trajectory Planning for Head-to-Head Autonomous Racing Competitions IROS 2025
Generating overtaking trajectories in autonomous racing is a challenging task, as the trajectory must satisfy the vehicle's dynamics and ensure safety and real-time performance running on resource-constrained hardware. This work proposes the Fast and Safe Data-Driven Planner to address this challenge. Sparse Gaussian predictions are introduced to improve both the computational efficiency and accuracy of opponent predictions. Furthermore, the proposed approach employs a bi-level quadratic programming framework to generate an overtaking trajectory leveraging the opponent predictions. The first level uses polynomial fitting to generate a rough trajectory, from which reference states and control inputs are derived for the second level. The second level formulates a model predictive control optimization problem in the Frenet frame, generating a trajectory that satisfies both kinematic feasibility and safety. Experimental results on the F1TENTH platform show that our method outperforms the State-of-the-Art, achieving an 8.93% higher overtaking success rate, allowing the maximum opponent speed, ensuring a smoother ego trajectory, and reducing 74.04% computational time compared to the Predictive Spliner method. The code is available at: https://github.com/ZJU-DDRX/FSDP.
comment: submitted to IROS 2025
☆ STAR: A Foundation Model-driven Framework for Robust Task Planning and Failure Recovery in Robotic Systems
Modern robotic systems, deployed across domains from industrial automation to domestic assistance, face a critical challenge: executing tasks with precision and adaptability in dynamic, unpredictable environments. To address this, we propose STAR (Smart Task Adaptation and Recovery), a novel framework that synergizes Foundation Models (FMs) with dynamically expanding Knowledge Graphs (KGs) to enable resilient task planning and autonomous failure recovery. While FMs offer remarkable generalization and contextual reasoning, their limitations, including computational inefficiency, hallucinations, and output inconsistencies hinder reliable deployment. STAR mitigates these issues by embedding learned knowledge into structured, reusable KGs, which streamline information retrieval, reduce redundant FM computations, and provide precise, scenario-specific insights. The framework leverages FM-driven reasoning to diagnose failures, generate context-aware recovery strategies, and execute corrective actions without human intervention or system restarts. Unlike conventional approaches that rely on rigid protocols, STAR dynamically expands its KG with experiential knowledge, ensuring continuous adaptation to novel scenarios. To evaluate the effectiveness of this approach, we developed a comprehensive dataset that includes various robotic tasks and failure scenarios. Through extensive experimentation, STAR demonstrated an 86% task planning accuracy and 78% recovery success rate, showing significant improvements over baseline methods. The framework's ability to continuously learn from experience while maintaining structured knowledge representation makes it particularly suitable for long-term deployment in real-world applications.
☆ Energy-Efficient Motion Planner for Legged Robots
We propose an online motion planner for legged robot locomotion with the primary objective of achieving energy efficiency. The conceptual idea is to leverage a placement set of footstep positions based on the robot's body position to determine when and how to execute steps. In particular, the proposed planner uses virtual placement sets beneath the hip joints of the legs and executes a step when the foot is outside of such placement set. Furthermore, we propose a parameter design framework that considers both energy-efficiency and robustness measures to optimize the gait by changing the shape of the placement set along with other parameters, such as step height and swing time, as a function of walking speed. We show that the planner produces trajectories that have a low Cost of Transport (CoT) and high robustness measure, and evaluate our approach against model-free Reinforcement Learning (RL) and motion imitation using biological dog motion priors as the reference. Overall, within low to medium velocity range, we show a 50.4% improvement in CoT and improved robustness over model-free RL, our best performing baseline. Finally, we show ability to handle slippery surfaces, gait transitions, and disturbances in simulation and hardware with the Unitree A1 robot.
comment: 8 pages, 8 figures
☆ Zero-Shot Peg Insertion: Identifying Mating Holes and Estimating SE(2) Poses with Vision-Language Models
Achieving zero-shot peg insertion, where inserting an arbitrary peg into an unseen hole without task-specific training, remains a fundamental challenge in robotics. This task demands a highly generalizable perception system capable of detecting potential holes, selecting the correct mating hole from multiple candidates, estimating its precise pose, and executing insertion despite uncertainties. While learning-based methods have been applied to peg insertion, they often fail to generalize beyond the specific peg-hole pairs encountered during training. Recent advancements in Vision-Language Models (VLMs) offer a promising alternative, leveraging large-scale datasets to enable robust generalization across diverse tasks. Inspired by their success, we introduce a novel zero-shot peg insertion framework that utilizes a VLM to identify mating holes and estimate their poses without prior knowledge of their geometry. Extensive experiments demonstrate that our method achieves 90.2% accuracy, significantly outperforming baselines in identifying the correct mating hole across a wide range of previously unseen peg-hole pairs, including 3D-printed objects, toy puzzles, and industrial connectors. Furthermore, we validate the effectiveness of our approach in a real-world connector insertion task on a backpanel of a PC, where our system successfully detects holes, identifies the correct mating hole, estimates its pose, and completes the insertion with a success rate of 88.3%. These results highlight the potential of VLM-driven zero-shot reasoning for enabling robust and generalizable robotic assembly.
comment: Under submission
Towards Ambiguity-Free Spatial Foundation Model: Rethinking and Decoupling Depth Ambiguity
Depth ambiguity is a fundamental challenge in spatial scene understanding, especially in transparent scenes where single-depth estimates fail to capture full 3D structure. Existing models, limited to deterministic predictions, overlook real-world multi-layer depth. To address this, we introduce a paradigm shift from single-prediction to multi-hypothesis spatial foundation models. We first present \texttt{MD-3k}, a benchmark exposing depth biases in expert and foundational models through multi-layer spatial relationship labels and new metrics. To resolve depth ambiguity, we propose Laplacian Visual Prompting (LVP), a training-free spectral prompting technique that extracts hidden depth from pre-trained models via Laplacian-transformed RGB inputs. By integrating LVP-inferred depth with standard RGB-based estimates, our approach elicits multi-layer depth without model retraining. Extensive experiments validate the effectiveness of LVP in zero-shot multi-layer depth estimation, unlocking more robust and comprehensive geometry-conditioned visual generation, 3D-grounded spatial reasoning, and temporally consistent video-level depth inference. Our benchmark and code will be available at https://github.com/Xiaohao-Xu/Ambiguity-in-Space.
comment: 32 pages, 31 figures, github repo: https://github.com/Xiaohao-Xu/Ambiguity-in-Space
☆ InfoFusion Controller: Informed TRRT Star with Mutual Information based on Fusion of Pure Pursuit and MPC for Enhanced Path Planning
In this paper, we propose the InfoFusion Controller, an advanced path planning algorithm that integrates both global and local planning strategies to enhance autonomous driving in complex urban environments. The global planner utilizes the informed Theta-Rapidly-exploring Random Tree Star (Informed-TRRT*) algorithm to generate an optimal reference path, while the local planner combines Model Predictive Control (MPC) and Pure Pursuit algorithms. Mutual Information (MI) is employed to fuse the outputs of the MPC and Pure Pursuit controllers, effectively balancing their strengths and compensating for their weaknesses. The proposed method addresses the challenges of navigating in dynamic environments with unpredictable obstacles by reducing uncertainty in local path planning and improving dynamic obstacle avoidance capabilities. Experimental results demonstrate that the InfoFusion Controller outperforms traditional methods in terms of safety, stability, and efficiency across various scenarios, including complex maps generated using SLAM techniques. The code for the InfoFusion Controller is available at https: //github.com/DrawingProcess/InfoFusionController.
☆ Learning to Drive by Imitating Surrounding Vehicles
Imitation learning is a promising approach for training autonomous vehicles (AV) to navigate complex traffic environments by mimicking expert driver behaviors. However, a major challenge in this paradigm lies in effectively utilizing available driving data, as collecting new data is resource-intensive and often limited in its ability to cover diverse driving scenarios. While existing imitation learning frameworks focus on leveraging expert demonstrations, they often overlook the potential of additional complex driving data from surrounding traffic participants. In this paper, we propose a data augmentation strategy that enhances imitation learning by leveraging the observed trajectories of nearby vehicles, captured through the AV's sensors, as additional expert demonstrations. We introduce a vehicle selection sampling strategy that prioritizes informative and diverse driving behaviors, contributing to a richer and more diverse dataset for training. We evaluate our approach using the state-of-the-art learning-based planning method PLUTO on the nuPlan dataset and demonstrate that our augmentation method leads to improved performance in complex driving scenarios. Specifically, our method reduces collision rates and improves safety metrics compared to the baseline. Notably, even when using only 10% of the original dataset, our method achieves performance comparable to that of the full dataset, with improved collision rates. Our findings highlight the importance of leveraging diverse real-world trajectory data in imitation learning and provide insights into data augmentation strategies for autonomous driving.
☆ ReJSHand: Efficient Real-Time Hand Pose Estimation and Mesh Reconstruction Using Refined Joint and Skeleton Features
Accurate hand pose estimation is vital in robotics, advancing dexterous manipulation in human-computer interaction. Toward this goal, this paper presents ReJSHand (which stands for Refined Joint and Skeleton Features), a cutting-edge network formulated for real-time hand pose estimation and mesh reconstruction. The proposed framework is designed to accurately predict 3D hand gestures under real-time constraints, which is essential for systems that demand agile and responsive hand motion tracking. The network's design prioritizes computational efficiency without compromising accuracy, a prerequisite for instantaneous robotic interactions. Specifically, ReJSHand comprises a 2D keypoint generator, a 3D keypoint generator, an expansion block, and a feature interaction block for meticulously reconstructing 3D hand poses from 2D imagery. In addition, the multi-head self-attention mechanism and a coordinate attention layer enhance feature representation, streamlining the creation of hand mesh vertices through sophisticated feature mapping and linear transformation. Regarding performance, comprehensive evaluations on the FreiHand dataset demonstrate ReJSHand's computational prowess. It achieves a frame rate of 72 frames per second while maintaining a PA-MPJPE (Position-Accurate Mean Per Joint Position Error) of 6.3 mm and a PA-MPVPE (Position-Accurate Mean Per Vertex Position Error) of 6.4 mm. Moreover, our model reaches scores of 0.756 for F@05 and 0.984 for F@15, surpassing modern pipelines and solidifying its position at the forefront of robotic hand pose estimators. To facilitate future studies, we provide our source code at ~\url{https://github.com/daishipeng/ReJSHand}.
☆ HIPPO-MAT: Decentralized Task Allocation Using GraphSAGE and Multi-Agent Deep Reinforcement Learning
This paper tackles decentralized continuous task allocation in heterogeneous multi-agent systems. We present a novel framework HIPPO-MAT that integrates graph neural networks (GNN) employing a GraphSAGE architecture to compute independent embeddings on each agent with an Independent Proximal Policy Optimization (IPPO) approach for multi-agent deep reinforcement learning. In our system, unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) share aggregated observation data via communication channels while independently processing these inputs to generate enriched state embeddings. This design enables dynamic, cost-optimal, conflict-aware task allocation in a 3D grid environment without the need for centralized coordination. A modified A* path planner is incorporated for efficient routing and collision avoidance. Simulation experiments demonstrate scalability with up to 30 agents and preliminary real-world validation on JetBot ROS AI Robots, each running its model on a Jetson Nano and communicating through an ESP-NOW protocol using ESP32-S3, which confirms the practical viability of the approach that incorporates simultaneous localization and mapping (SLAM). Experimental results revealed that our method achieves a high 92.5% conflict-free success rate, with only a 16.49% performance gap compared to the centralized Hungarian method, while outperforming the heuristic decentralized baseline based on greedy approach. Additionally, the framework exhibits scalability with up to 30 agents with allocation processing of 0.32 simulation step time and robustness in responding to dynamically generated tasks.
comment: arXiv admin note: text overlap with arXiv:2502.02311
♻ ☆ EvidMTL: Evidential Multi-Task Learning for Uncertainty-Aware Semantic Surface Mapping from Monocular RGB Images IROS 2025
For scene understanding in unstructured environments, an accurate and uncertainty-aware metric-semantic mapping is required to enable informed action selection by autonomous systems. Existing mapping methods often suffer from overconfident semantic predictions, and sparse and noisy depth sensing, leading to inconsistent map representations. In this paper, we therefore introduce EvidMTL, a multi-task learning framework that uses evidential heads for depth estimation and semantic segmentation, enabling uncertainty-aware inference from monocular RGB images. To enable uncertainty-calibrated evidential multi-task learning, we propose a novel evidential depth loss function that jointly optimizes the belief strength of the depth prediction in conjunction with evidential segmentation loss. Building on this, we present EvidKimera, an uncertainty-aware semantic surface mapping framework, which uses evidential depth and semantics prediction for improved 3D metric-semantic consistency. We train and evaluate EvidMTL on the NYUDepthV2 and assess its zero-shot performance on ScanNetV2, demonstrating superior uncertainty estimation compared to conventional approaches while maintaining comparable depth estimation and semantic segmentation. In zero-shot mapping tests on ScanNetV2, EvidKimera outperforms Kimera in semantic surface mapping accuracy and consistency, highlighting the benefits of uncertainty-aware mapping and underscoring its potential for real-world robotic applications.
comment: Submitted to IROS 2025 Conference
♻ ☆ TeraSim: Uncovering Unknown Unsafe Events for Autonomous Vehicles through Generative Simulation
Traffic simulation is essential for autonomous vehicle (AV) development, enabling comprehensive safety evaluation across diverse driving conditions. However, traditional rule-based simulators struggle to capture complex human interactions, while data-driven approaches often fail to maintain long-term behavioral realism or generate diverse safety-critical events. To address these challenges, we propose TeraSim, an open-source, high-fidelity traffic simulation platform designed to uncover unknown unsafe events and efficiently estimate AV statistical performance metrics, such as crash rates. TeraSim is designed for seamless integration with third-party physics simulators and standalone AV stacks, to construct a complete AV simulation system. Experimental results demonstrate its effectiveness in generating diverse safety-critical events involving both static and dynamic agents, identifying hidden deficiencies in AV systems, and enabling statistical performance evaluation. These findings highlight TeraSim's potential as a practical tool for AV safety assessment, benefiting researchers, developers, and policymakers. The code is available at https://github.com/mcity/TeraSim.
♻ ☆ WildLMa: Long Horizon Loco-Manipulation in the Wild
'In-the-wild' mobile manipulation aims to deploy robots in diverse real-world environments, which requires the robot to (1) have skills that generalize across object configurations; (2) be capable of long-horizon task execution in diverse environments; and (3) perform complex manipulation beyond pick-and-place. Quadruped robots with manipulators hold promise for extending the workspace and enabling robust locomotion, but existing results do not investigate such a capability. This paper proposes WildLMa with three components to address these issues: (1) adaptation of learned low-level controller for VR-enabled whole-body teleoperation and traversability; (2) WildLMa-Skill -- a library of generalizable visuomotor skills acquired via imitation learning or heuristics and (3) WildLMa-Planner -- an interface of learned skills that allow LLM planners to coordinate skills for long-horizon tasks. We demonstrate the importance of high-quality training data by achieving higher grasping success rate over existing RL baselines using only tens of demonstrations. WildLMa exploits CLIP for language-conditioned imitation learning that empirically generalizes to objects unseen in training demonstrations. Besides extensive quantitative evaluation, we qualitatively demonstrate practical robot applications, such as cleaning up trash in university hallways or outdoor terrains, operating articulated objects, and rearranging items on a bookshelf.
comment: Website: https://wildlma.github.io/
♻ ☆ Autoregressive Action Sequence Learning for Robotic Manipulation
Designing a universal policy architecture that performs well across diverse robots and task configurations remains a key challenge. In this work, we address this by representing robot actions as sequential data and generating actions through autoregressive sequence modeling. Existing autoregressive architectures generate end-effector waypoints sequentially as word tokens in language modeling, which are limited to low-frequency control tasks. Unlike language, robot actions are heterogeneous and often include continuous values -- such as joint positions, 2D pixel coordinates, and end-effector poses -- which are not easily suited for language-based modeling. Based on this insight, we introduce a straightforward enhancement: we extend causal transformers' single-token prediction to support predicting a variable number of tokens in a single step through our Chunking Causal Transformer (CCT). This enhancement enables robust performance across diverse tasks of various control frequencies, greater efficiency by having fewer autoregression steps, and lead to a hybrid action sequence design by mixing different types of actions and using a different chunk size for each action type. Based on CCT, we propose the Autoregressive Policy (ARP) architecture, which solves manipulation tasks by generating hybrid action sequences. We evaluate ARP across diverse robotic manipulation environments, including Push-T, ALOHA, and RLBench, and show that ARP, as a universal architecture, matches or outperforms the environment-specific state-of-the-art in all tested benchmarks, while being more efficient in computation and parameter sizes. Videos of our real robot demonstrations, all source code and the pretrained models of ARP can be found at http://github.com/mlzxy/arp.
comment: Accepted at RA-L 2025
♻ ☆ LayeredMAPF: a decomposition of MAPF instance to reduce solving costs
Multi-agent pathfinding (MAPF) holds significant utility within autonomous systems, however, the calculation and memory space required for multi-agent path finding (MAPF) grows exponentially as the number of agents increases. This often results in some MAPF instances being unsolvable under limited computational resources and memory space, thereby limiting the application of MAPF in complex scenarios. Hence, we propose a decomposition approach for MAPF instances, which breaks down instances involving a large number of agents into multiple isolated subproblems involving fewer agents. Moreover, we present a framework to enable general MAPF algorithms to solve each subproblem independently and merge their solutions into one conflict-free final solution, and avoid loss of solvability as much as possible. Unlike existing works that propose isolated methods aimed at reducing the time cost of MAPF, our method is applicable to all MAPF methods. In our results, we apply decomposition to multiple state-of-the-art MAPF methods using a classic MAPF benchmark\footnote{https://movingai.com/benchmarks/mapf.html}. The decomposition of MAPF instances is completed on average within 1s, and its application to seven MAPF methods reduces the memory usage or time cost significantly, particularly for serial methods. Based on massive experiments, we speculate the possibilty about loss of solvability caused by our method is $<$ 1\%. To facilitate further research within the community, we have made the source code of the proposed algorithm publicly available\footnote{https://github.com/JoeYao-bit/LayeredMAPF/tree/minimize\_dependence}.
♻ ☆ Adaptive Manipulation using Behavior Trees
Many manipulation tasks pose a challenge since they depend on non-visual environmental information that can only be determined after sustained physical interaction has already begun. This is particularly relevant for effort-sensitive, dynamics-dependent tasks such as tightening a valve. To perform these tasks safely and reliably, robots must be able to quickly adapt in response to unexpected changes during task execution, and should also learn from past experience to better inform future decisions. Humans can intuitively respond and adapt their manipulation strategy to suit such problems, but representing and implementing such behaviors for robots remains a challenge. In this work we show how this can be achieved within the framework of behavior trees. We present the adaptive behavior tree, a scalable and generalizable behavior tree design that enables a robot to quickly adapt to and learn from both visual and non-visual observations during task execution, preempting task failure or switching to a different manipulation strategy. The adaptive behavior tree selects the manipulation strategy that is predicted to optimize task performance, and learns from past experience to improve these predictions for future attempts. We test our approach on a variety of tasks commonly found in industry; the adaptive behavior tree demonstrates safety, robustness (100% success rate) and efficiency in task completion (up to 36% task speedup from the baseline).
comment: 8 pages, 7 figures. This work has been submitted to the IEEE for possible publication
♻ ☆ OLiVia-Nav: An Online Lifelong Vision Language Approach for Mobile Robot Social Navigation
Service robots in human-centered environments such as hospitals, office buildings, and long-term care homes need to navigate while adhering to social norms to ensure the safety and comfortability of the people they are sharing the space with. Furthermore, they need to adapt to new social scenarios that can arise during robot navigation. In this paper, we present a novel Online Lifelong Vision Language architecture, OLiVia- Nav, which uniquely integrates vision-language models (VLMs) with an online lifelong learning framework for robot social navigation. We introduce a unique distillation approach, Social Context Contrastive Language Image Pre-training (SC-CLIP), to transfer the social reasoning capabilities of large VLMs to a lightweight VLM, in order for OLiVia-Nav to directly encode social and environment context during robot navigation. These encoded embeddings are used to generate and select robot social compliant trajectories. The lifelong learning capabilities of SC-CLIP enable OLiVia-Nav to update the robot trajectory planning overtime as new social scenarios are encountered. We conducted extensive real-world experiments in diverse social navigation scenarios. The results showed that OLiVia-Nav outperformed existing state-of-the-art DRL and VLM methods in terms of mean squared error, Hausdorff loss, and personal space violation duration. Ablation studies also verified the design choices for OLiVia-Nav.
♻ ☆ Universal Actions for Enhanced Embodied Foundation Models CVPR 2025
Training on diverse, internet-scale data is a key factor in the success of recent large foundation models. Yet, using the same recipe for building embodied agents has faced noticeable difficulties. Despite the availability of many crowd-sourced embodied datasets, their action spaces often exhibit significant heterogeneity due to distinct physical embodiment and control interfaces for different robots, causing substantial challenges in developing embodied foundation models using cross-domain data. In this paper, we introduce UniAct, a new embodied foundation modeling framework operating in a Universal Action Space. Our learned universal actions capture the generic atomic behaviors across diverse robots by exploiting their shared structural features, and enable enhanced cross-domain data utilization and cross-embodiment generalizations by eliminating the notorious heterogeneity. The universal actions can be efficiently translated back to heterogeneous actionable commands by simply adding embodiment-specific details, from which fast adaptation to new robots becomes simple and straightforward. Our 0.5B instantiation of UniAct outperforms 14X larger SOTA embodied foundation models in extensive evaluations on various real-world and simulation robots, showcasing exceptional cross-embodiment control and adaptation capability, highlighting the crucial benefit of adopting universal actions. Project page: https://github.com/2toinf/UniAct
comment: CVPR 2025
Speak the Same Language: Global LiDAR Registration on BIM Using Pose Hough Transform
Light detection and ranging (LiDAR) point clouds and building information modeling (BIM) represent two distinct data modalities in the fields of robot perception and construction. These modalities originate from different sources and are associated with unique reference frames. The primary goal of this study is to align these modalities within a shared reference frame using a global registration approach, effectively enabling them to ``speak the same language''. To achieve this, we propose a cross-modality registration method, spanning from the front end to the back end. At the front end, we extract triangle descriptors by identifying walls and intersected corners, enabling the matching of corner triplets with a complexity independent of the BIM's size. For the back-end transformation estimation, we utilize the Hough transform to map the matched triplets to the transformation space and introduce a hierarchical voting mechanism to hypothesize multiple pose candidates. The final transformation is then verified using our designed occupancy-aware scoring method. To assess the effectiveness of our approach, we conducted real-world multi-session experiments in a large-scale university building, employing two different types of LiDAR sensors. We make the collected datasets and codes publicly available to benefit the community.
comment: Accepted for publication in IEEE Transactions on Automation Science and Engineering (T-ASE). Video is available at https://youtu.be/SWbnsaRyL-M
♻ ☆ Multi-GraspLLM: A Multimodal LLM for Multi-Hand Semantic Guided Grasp Generation
Multi-hand semantic grasp generation aims to generate feasible and semantically appropriate grasp poses for different robotic hands based on natural language instructions. Although the task is highly valuable, due to the lack of multihand grasp datasets with fine-grained contact description between robotic hands and objects, it is still a long-standing difficult task. In this paper, we present Multi-GraspSet, the first large-scale multi-hand grasp dataset with automatically contact annotations. Based on Multi-GraspSet, we propose Multi-GraspLLM, a unified language-guided grasp generation framework, which leverages large language models (LLM) to handle variable-length sequences, generating grasp poses for diverse robotic hands in a single unified architecture. Multi-GraspLLM first aligns the encoded point cloud features and text features into a unified semantic space. It then generates grasp bin tokens that are subsequently converted into grasp pose for each robotic hand via hand-aware linear mapping. The experimental results demonstrate that our approach significantly outperforms existing methods in both real-world experiments and simulator. More information can be found on our project page https://multi-graspllm.github.io.
comment: 16 pages, 10 figures
♻ ☆ OpenFly: A Versatile Toolchain and Large-scale Benchmark for Aerial Vision-Language Navigation
Vision-Language Navigation (VLN) aims to guide agents through an environment by leveraging both language instructions and visual cues, playing a pivotal role in embodied AI. Indoor VLN has been extensively studied, whereas outdoor aerial VLN remains underexplored. The potential reason is that outdoor aerial view encompasses vast areas, making data collection more challenging, which results in a lack of benchmarks. To address this problem, we propose OpenFly, a platform comprising a versatile toolchain and large-scale benchmark for aerial VLN. Firstly, we develop a highly automated toolchain for data collection, enabling automatic point cloud acquisition, scene semantic segmentation, flight trajectory creation, and instruction generation. Secondly, based on the toolchain, we construct a large-scale aerial VLN dataset with 100k trajectories, covering diverse heights and lengths across 18 scenes. The corresponding visual data are generated using various rendering engines and advanced techniques, including Unreal Engine, GTA V, Google Earth, and 3D Gaussian Splatting (3D GS). All data exhibit high visual quality. Particularly, 3D GS supports real-to-sim rendering, further enhancing the realism of the dataset. Thirdly, we propose OpenFly-Agent, a keyframe-aware VLN model, which takes language instructions, current observations, and historical keyframes as input, and outputs flight actions directly. Extensive analyses and experiments are conducted, showcasing the superiority of our OpenFly platform and OpenFly-Agent. The toolchain, dataset, and codes will be open-sourced.
♻ ☆ Fast LiDAR Data Generation with Rectified Flows ICRA 2025
Building LiDAR generative models holds promise as powerful data priors for restoration, scene manipulation, and scalable simulation in autonomous mobile robots. In recent years, approaches using diffusion models have emerged, significantly improving training stability and generation quality. Despite their success, diffusion models require numerous iterations of running neural networks to generate high-quality samples, making the increasing computational cost a potential barrier for robotics applications. To address this challenge, this paper presents R2Flow, a fast and high-fidelity generative model for LiDAR data. Our method is based on rectified flows that learn straight trajectories, simulating data generation with significantly fewer sampling steps compared to diffusion models. We also propose an efficient Transformer-based model architecture for processing the image representation of LiDAR range and reflectance measurements. Our experiments on unconditional LiDAR data generation using the KITTI-360 dataset demonstrate the effectiveness of our approach in terms of both efficiency and quality.
comment: ICRA 2025
FisheyeDepth: A Real Scale Self-Supervised Depth Estimation Model for Fisheye Camera
Accurate depth estimation is crucial for 3D scene comprehension in robotics and autonomous vehicles. Fisheye cameras, known for their wide field of view, have inherent geometric benefits. However, their use in depth estimation is restricted by a scarcity of ground truth data and image distortions. We present FisheyeDepth, a self-supervised depth estimation model tailored for fisheye cameras. We incorporate a fisheye camera model into the projection and reprojection stages during training to handle image distortions, thereby improving depth estimation accuracy and training stability. Furthermore, we incorporate real-scale pose information into the geometric projection between consecutive frames, replacing the poses estimated by the conventional pose network. Essentially, this method offers the necessary physical depth for robotic tasks, and also streamlines the training and inference procedures. Additionally, we devise a multi-channel output strategy to improve robustness by adaptively fusing features at various scales, which reduces the noise from real pose data. We demonstrate the superior performance and robustness of our model in fisheye image depth estimation through evaluations on public datasets and real-world scenarios. The project website is available at: https://github.com/guoyangzhao/FisheyeDepth.
♻ ☆ A Survey of Sim-to-Real Methods in RL: Progress, Prospects and Challenges with Foundation Models
Deep Reinforcement Learning (RL) has been explored and verified to be effective in solving decision-making tasks in various domains, such as robotics, transportation, recommender systems, etc. It learns from the interaction with environments and updates the policy using the collected experience. However, due to the limited real-world data and unbearable consequences of taking detrimental actions, the learning of RL policy is mainly restricted within the simulators. This practice guarantees safety in learning but introduces an inevitable sim-to-real gap in terms of deployment, thus causing degraded performance and risks in execution. There are attempts to solve the sim-to-real problems from different domains with various techniques, especially in the era with emerging techniques such as large foundations or language models that have cast light on the sim-to-real. This survey paper, to the best of our knowledge, is the first taxonomy that formally frames the sim-to-real techniques from key elements of the Markov Decision Process (State, Action, Transition, and Reward). Based on the framework, we cover comprehensive literature from the classic to the most advanced methods including the sim-to-real techniques empowered by foundation models, and we also discuss the specialties that are worth attention in different domains of sim-to-real problems. Then we summarize the formal evaluation process of sim-to-real performance with accessible code or benchmarks. The challenges and opportunities are also presented to encourage future exploration of this direction. We are actively maintaining a repository to include the most up-to-date sim-to-real research work to help domain researchers.
comment: 19 pages, 6 figures, 5 tables
♻ ☆ Underwater Motions Analysis and Control of a Coupling-Tiltable Unmanned Aerial-Aquatic Vehicle ICRA
Coupling-Tiltable Unmanned Aerial-Aquatic Vehicles (UAAVs) have gained increasing importance, yet lack comprehensive analysis and suitable controllers. This paper analyzes the underwater motion characteristics of a self-designed UAAV, Mirs-Alioth, and designs a controller for it. The effectiveness of the controller is validated through experiments. The singularities of Mirs-Alioth are derived as Singular Thrust Tilt Angle (STTA), which serve as an essential tool for an analysis of its underwater motion characteristics. The analysis reveals several key factors for designing the controller. These include the need for logic switching, using a Nussbaum function to compensate control direction uncertainty in the auxiliary channel, and employing an auxiliary controller to mitigate coupling effects. Based on these key points, a control scheme is designed. It consists of a controller that regulates the thrust tilt angle to the singular value, an auxiliary controller incorporating a Saturated Nussbaum function, and a logic switch. Eventually, two sets of experiments are conducted to validate the effectiveness of the controller and demonstrate the necessity of the Nussbaum function.
comment: This paper has been accepted for publication in the IEEE International Conference on Robotics and Automation(ICRA), 2025. Please cite the paper using appropriate formats
♻ ☆ Learning Object Properties Using Robot Proprioception via Differentiable Robot-Object Interaction
Differentiable simulation has become a powerful tool for system identification. While prior work has focused on identifying robot properties using robot-specific data or object properties using object-specific data, our approach calibrates object properties by using information from the robot, without relying on data from the object itself. Specifically, we utilize robot joint encoder information, which is commonly available in standard robotic systems. Our key observation is that by analyzing the robot's reactions to manipulated objects, we can infer properties of those objects, such as inertia and softness. Leveraging this insight, we develop differentiable simulations of robot-object interactions to inversely identify the properties of the manipulated objects. Our approach relies solely on proprioception -- the robot's internal sensing capabilities -- and does not require external measurement tools or vision-based tracking systems. This general method is applicable to any articulated robot and requires only joint position information. We demonstrate the effectiveness of our method on a low-cost robotic platform, achieving accurate mass and elastic modulus estimations of manipulated objects with just a few seconds of computation on a laptop.
comment: arXiv admin comment: This version has been removed by arXiv administrators as the submitter did not have the rights to agree to the license at the time of submission
♻ ☆ Learning Multi-Agent Loco-Manipulation for Long-Horizon Quadrupedal Pushing
Recently, quadrupedal locomotion has achieved significant success, but their manipulation capabilities, particularly in handling large objects, remain limited, restricting their usefulness in demanding real-world applications such as search and rescue, construction, industrial automation, and room organization. This paper tackles the task of obstacle-aware, long-horizon pushing by multiple quadrupedal robots. We propose a hierarchical multi-agent reinforcement learning framework with three levels of control. The high-level controller integrates an RRT planner and a centralized adaptive policy to generate subgoals, while the mid-level controller uses a decentralized goal-conditioned policy to guide the robots toward these sub-goals. A pre-trained low-level locomotion policy executes the movement commands. We evaluate our method against several baselines in simulation, demonstrating significant improvements over baseline approaches, with 36.0% higher success rates and 24.5% reduction in completion time than the best baseline. Our framework successfully enables long-horizon, obstacle-aware manipulation tasks like Push-Cuboid and Push-T on Go1 robots in the real world.
♻ ☆ Active Vision Might Be All You Need: Exploring Active Vision in Bimanual Robotic Manipulation
Imitation learning has demonstrated significant potential in performing high-precision manipulation tasks using visual feedback. However, it is common practice in imitation learning for cameras to be fixed in place, resulting in issues like occlusion and limited field of view. Furthermore, cameras are often placed in broad, general locations, without an effective viewpoint specific to the robot's task. In this work, we investigate the utility of active vision (AV) for imitation learning and manipulation, in which, in addition to the manipulation policy, the robot learns an AV policy from human demonstrations to dynamically change the robot's camera viewpoint to obtain better information about its environment and the given task. We introduce AV-ALOHA, a new bimanual teleoperation robot system with AV, an extension of the ALOHA 2 robot system, incorporating an additional 7-DoF robot arm that only carries a stereo camera and is solely tasked with finding the best viewpoint. This camera streams stereo video to an operator wearing a virtual reality (VR) headset, allowing the operator to control the camera pose using head and body movements. The system provides an immersive teleoperation experience, with bimanual first-person control, enabling the operator to dynamically explore and search the scene and simultaneously interact with the environment. We conduct imitation learning experiments of our system both in real-world and in simulation, across a variety of tasks that emphasize viewpoint planning. Our results demonstrate the effectiveness of human-guided AV for imitation learning, showing significant improvements over fixed cameras in tasks with limited visibility. Project website: https://soltanilara.github.io/av-aloha/
comment: 6 pages, 4 figures
♻ ☆ TacSL: A Library for Visuotactile Sensor Simulation and Learning
For both humans and robots, the sense of touch, known as tactile sensing, is critical for performing contact-rich manipulation tasks. Three key challenges in robotic tactile sensing are 1) interpreting sensor signals, 2) generating sensor signals in novel scenarios, and 3) learning sensor-based policies. For visuotactile sensors, interpretation has been facilitated by their close relationship with vision sensors (e.g., RGB cameras). However, generation is still difficult, as visuotactile sensors typically involve contact, deformation, illumination, and imaging, all of which are expensive to simulate; in turn, policy learning has been challenging, as simulation cannot be leveraged for large-scale data collection. We present TacSL (taxel), a library for GPU-based visuotactile sensor simulation and learning. TacSL can be used to simulate visuotactile images and extract contact-force distributions over $200\times$ faster than the prior state-of-the-art, all within the widely-used Isaac Simulator. Furthermore, TacSL provides a learning toolkit containing multiple sensor models, contact-intensive training environments, and online/offline algorithms that can facilitate policy learning for sim-to-real applications. On the algorithmic side, we introduce a novel online reinforcement-learning algorithm called asymmetric actor-critic distillation (AACD), designed to effectively and efficiently learn tactile-based policies in simulation that can transfer to the real world. Finally, we demonstrate the utility of our library and algorithms by evaluating the benefits of distillation and multimodal sensing for contact-rich manipulation tasks, and most critically, performing sim-to-real transfer. Supplementary videos and results are at https://iakinola23.github.io/tacsl/.
Artificial Intelligence 1
♻ ☆ The Best of Both Worlds: Integrating Language Models and Diffusion Models for Video Generation
Recent advancements in text-to-video (T2V) generation have been driven by two competing paradigms: autoregressive language models and diffusion models. However, each paradigm has intrinsic limitations: language models struggle with visual quality and error accumulation, while diffusion models lack semantic understanding and causal modeling. In this work, we propose LanDiff, a hybrid framework that synergizes the strengths of both paradigms through coarse-to-fine generation. Our architecture introduces three key innovations: (1) a semantic tokenizer that compresses 3D visual features into compact 1D discrete representations through efficient semantic compression, achieving a $\sim$14,000$\times$ compression ratio; (2) a language model that generates semantic tokens with high-level semantic relationships; (3) a streaming diffusion model that refines coarse semantics into high-fidelity videos. Experiments show that LanDiff, a 5B model, achieves a score of 85.43 on the VBench T2V benchmark, surpassing the state-of-the-art open-source models Hunyuan Video (13B) and other commercial models such as Sora, Kling, and Hailuo. Furthermore, our model also achieves state-of-the-art performance in long video generation, surpassing other open-source models in this field. Our demo can be viewed at https://landiff.github.io/.
Graphics 2
♻ ☆ GestureLSM: Latent Shortcut based Co-Speech Gesture Generation with Spatial-Temporal Modeling
Generating full-body human gestures based on speech signals remains challenges on quality and speed. Existing approaches model different body regions such as body, legs and hands separately, which fail to capture the spatial interactions between them and result in unnatural and disjointed movements. Additionally, their autoregressive/diffusion-based pipelines show slow generation speed due to dozens of inference steps. To address these two challenges, we propose GestureLSM, a flow-matching-based approach for Co-Speech Gesture Generation with spatial-temporal modeling. Our method i) explicitly model the interaction of tokenized body regions through spatial and temporal attention, for generating coherent full-body gestures. ii) introduce the flow matching to enable more efficient sampling by explicitly modeling the latent velocity space. To overcome the suboptimal performance of flow matching baseline, we propose latent shortcut learning and beta distribution time stamp sampling during training to enhance gesture synthesis quality and accelerate inference. Combining the spatial-temporal modeling and improved flow matching-based framework, GestureLSM achieves state-of-the-art performance on BEAT2 while significantly reducing inference time compared to existing methods, highlighting its potential for enhancing digital humans and embodied agents in real-world applications. Project Page: https://andypinxinliu.github.io/GestureLSM
♻ ☆ Baking Gaussian Splatting into Diffusion Denoiser for Fast and Scalable Single-stage Image-to-3D Generation and Reconstruction
Existing feedforward image-to-3D methods mainly rely on 2D multi-view diffusion models that cannot guarantee 3D consistency. These methods easily collapse when changing the prompt view direction and mainly handle object-centric cases. In this paper, we propose a novel single-stage 3D diffusion model, DiffusionGS, for object generation and scene reconstruction from a single view. DiffusionGS directly outputs 3D Gaussian point clouds at each timestep to enforce view consistency and allow the model to generate robustly given prompt views of any directions, beyond object-centric inputs. Plus, to improve the capability and generality of DiffusionGS, we scale up 3D training data by developing a scene-object mixed training strategy. Experiments show that DiffusionGS yields improvements of 2.20 dB/23.25 and 1.34 dB/19.16 in PSNR/FID for objects and scenes than the state-of-the-art methods, without depth estimator. Plus, our method enjoys over 5$\times$ faster speed ($\sim$6s on an A100 GPU). Our Project page at https://caiyuanhao1998.github.io/project/DiffusionGS/ shows the video and interactive results.
comment: A novel one-stage 3DGS-based diffusion for 3D object generation and scene reconstruction from a single view in ~6 seconds
Robotics 104
☆ Multi-Fidelity Policy Gradient Algorithms
Many reinforcement learning (RL) algorithms require large amounts of data, prohibiting their use in applications where frequent interactions with operational systems are infeasible, or high-fidelity simulations are expensive or unavailable. Meanwhile, low-fidelity simulators--such as reduced-order models, heuristic reward functions, or generative world models--can cheaply provide useful data for RL training, even if they are too coarse for direct sim-to-real transfer. We propose multi-fidelity policy gradients (MFPGs), an RL framework that mixes a small amount of data from the target environment with a large volume of low-fidelity simulation data to form unbiased, reduced-variance estimators (control variates) for on-policy policy gradients. We instantiate the framework by developing multi-fidelity variants of two policy gradient algorithms: REINFORCE and proximal policy optimization. Experimental results across a suite of simulated robotics benchmark problems demonstrate that when target-environment samples are limited, MFPG achieves up to 3.9x higher reward and improves training stability when compared to baselines that only use high-fidelity data. Moreover, even when the baselines are given more high-fidelity samples--up to 10x as many interactions with the target environment--MFPG continues to match or outperform them. Finally, we observe that MFPG is capable of training effective policies even when the low-fidelity environment is drastically different from the target environment. MFPG thus not only offers a novel paradigm for efficient sim-to-real transfer but also provides a principled approach to managing the trade-off between policy performance and data collection costs.
☆ Kinodynamic Model Predictive Control for Energy Efficient Locomotion of Legged Robots with Parallel Elasticity ICRA 2025
In this paper, we introduce a kinodynamic model predictive control (MPC) framework that exploits unidirectional parallel springs (UPS) to improve the energy efficiency of dynamic legged robots. The proposed method employs a hierarchical control structure, where the solution of MPC with simplified dynamic models is used to warm-start the kinodynamic MPC, which accounts for nonlinear centroidal dynamics and kinematic constraints. The proposed approach enables energy efficient dynamic hopping on legged robots by using UPS to reduce peak motor torques and energy consumption during stance phases. Simulation results demonstrated a 38.8% reduction in the cost of transport (CoT) for a monoped robot equipped with UPS during high-speed hopping. Additionally, preliminary hardware experiments show a 14.8% reduction in energy consumption. Video: https://youtu.be/AF11qMXJD48
comment: 7 pages, 6 figures. Accepted for publication at ICRA 2025
☆ Small-Scale Testbeds for Connected and Automated Vehicles and Robot Swarms: Challenges and a Roadmap
This article proposes a roadmap to address the current challenges in small-scale testbeds for Connected and Automated Vehicles (CAVs) and robot swarms. The roadmap is a joint effort of participants in the workshop "1st Workshop on Small-Scale Testbeds for Connected and Automated Vehicles and Robot Swarms," held on June 2 at the IEEE Intelligent Vehicles Symposium (IV) 2024 in Jeju, South Korea. The roadmap contains three parts: 1) enhancing accessibility and diversity, especially for underrepresented communities, 2) sharing best practices for the development and maintenance of testbeds, and 3) connecting testbeds through an abstraction layer to support collaboration. The workshop features eight invited speakers, four contributed papers [1]-[4], and a presentation of a survey paper on testbeds [5]. The survey paper provides an online comparative table of more than 25 testbeds, available at https://bassamlab.github.io/testbeds-survey. The workshop's own website is available at https://cpm-remote.lrt.unibwmuenchen.de/iv24-workshop.
☆ BEHAVIOR Robot Suite: Streamlining Real-World Whole-Body Manipulation for Everyday Household Activities
Real-world household tasks present significant challenges for mobile manipulation robots. An analysis of existing robotics benchmarks reveals that successful task performance hinges on three key whole-body control capabilities: bimanual coordination, stable and precise navigation, and extensive end-effector reachability. Achieving these capabilities requires careful hardware design, but the resulting system complexity further complicates visuomotor policy learning. To address these challenges, we introduce the BEHAVIOR Robot Suite (BRS), a comprehensive framework for whole-body manipulation in diverse household tasks. Built on a bimanual, wheeled robot with a 4-DoF torso, BRS integrates a cost-effective whole-body teleoperation interface for data collection and a novel algorithm for learning whole-body visuomotor policies. We evaluate BRS on five challenging household tasks that not only emphasize the three core capabilities but also introduce additional complexities, such as long-range navigation, interaction with articulated and deformable objects, and manipulation in confined spaces. We believe that BRS's integrated robotic embodiment, data collection interface, and learning framework mark a significant step toward enabling real-world whole-body manipulation for everyday household tasks. BRS is open-sourced at https://behavior-robot-suite.github.io/
comment: Project website: https://behavior-robot-suite.github.io/
☆ dARt Vinci: Egocentric Data Collection for Surgical Robot Learning at Scale
Data scarcity has long been an issue in the robot learning community. Particularly, in safety-critical domains like surgical applications, obtaining high-quality data can be especially difficult. It poses challenges to researchers seeking to exploit recent advancements in reinforcement learning and imitation learning, which have greatly improved generalizability and enabled robots to conduct tasks autonomously. We introduce dARt Vinci, a scalable data collection platform for robot learning in surgical settings. The system uses Augmented Reality (AR) hand tracking and a high-fidelity physics engine to capture subtle maneuvers in primitive surgical tasks: By eliminating the need for a physical robot setup and providing flexibility in terms of time, space, and hardware resources-such as multiview sensors and actuators-specialized simulation is a viable alternative. At the same time, AR allows the robot data collection to be more egocentric, supported by its body tracking and content overlaying capabilities. Our user study confirms the proposed system's efficiency and usability, where we use widely-used primitive tasks for training teleoperation with da Vinci surgical robots. Data throughput improves across all tasks compared to real robot settings by 41% on average. The total experiment time is reduced by an average of 10%. The temporal demand in the task load survey is improved. These gains are statistically significant. Additionally, the collected data is over 400 times smaller in size, requiring far less storage while achieving double the frequency.
comment: 8 pages, 7 figures
☆ Joint 3D Point Cloud Segmentation using Real-Sim Loop: From Panels to Trees and Branches ICRA 2025
Modern orchards are planted in structured rows with distinct panel divisions to improve management. Accurate and efficient joint segmentation of point cloud from Panel to Tree and Branch (P2TB) is essential for robotic operations. However, most current segmentation methods focus on single instance segmentation and depend on a sequence of deep networks to perform joint tasks. This strategy hinders the use of hierarchical information embedded in the data, leading to both error accumulation and increased costs for annotation and computation, which limits its scalability for real-world applications. In this study, we proposed a novel approach that incorporated a Real2Sim L-TreeGen for training data generation and a joint model (J-P2TB) designed for the P2TB task. The J-P2TB model, trained on the generated simulation dataset, was used for joint segmentation of real-world panel point clouds via zero-shot learning. Compared to representative methods, our model outperformed them in most segmentation metrics while using 40% fewer learnable parameters. This Sim2Real result highlighted the efficacy of L-TreeGen in model training and the performance of J-P2TB for joint segmentation, demonstrating its strong accuracy, efficiency, and generalizability for real-world applications. These improvements would not only greatly benefit the development of robots for automated orchard operations but also advance digital twin technology.
comment: Accepted by ICRA 2025
☆ Limits of specifiability for sensor-based robotic planning tasks
There is now a large body of techniques, many based on formal methods, for describing and realizing complex robotics tasks, including those involving a variety of rich goals and time-extended behavior. This paper explores the limits of what sorts of tasks are specifiable, examining how the precise grounding of specifications, that is, whether the specification is given in terms of the robot's states, its actions and observations, its knowledge, or some other information,is crucial to whether a given task can be specified. While prior work included some description of particular choices for this grounding, our contribution treats this aspect as a first-class citizen: we introduce notation to deal with a large class of problems, and examine how the grounding affects what tasks can be posed. The results demonstrate that certain classes of tasks are specifiable under different combinations of groundings.
☆ Learning and generalization of robotic dual-arm manipulation of boxes from demonstrations via Gaussian Mixture Models (GMMs) IROS 2025
Learning from demonstration (LfD) is an effective method to teach robots to move and manipulate objects in a human-like manner. This is especially true when dealing with complex robotic systems, such as those with dual arms employed for their improved payload capacity and manipulability. However, a key challenge is in expanding the robotic movements beyond the learned scenarios to adapt to minor and major variations from the specific demonstrations. In this work, we propose a learning and novel generalization approach that adapts the learned Gaussian Mixture Model (GMM)-parameterized policy derived from human demonstrations. Our method requires only a small number of human demonstrations and eliminates the need for a robotic system during the demonstration phase, which can significantly reduce both cost and time. The generalization process takes place directly in the parameter space, leveraging the lower-dimensional representation of GMM parameters. With only three parameters per Gaussian component, this process is computationally efficient and yields immediate results upon request. We validate our approach through real-world experiments involving a dual-arm robotic manipulation of boxes. Starting with just five demonstrations for a single task, our approach successfully generalizes to new unseen scenarios, including new target locations, orientations, and box sizes. These results highlight the practical applicability and scalability of our method for complex manipulations.
comment: Submitted to IROS 2025
☆ Novel Object 6D Pose Estimation with a Single Reference View
Existing novel object 6D pose estimation methods typically rely on CAD models or dense reference views, which are both difficult to acquire. Using only a single reference view is more scalable, but challenging due to large pose discrepancies and limited geometric and spatial information. To address these issues, we propose a Single-Reference-based novel object 6D (SinRef-6D) pose estimation method. Our key idea is to iteratively establish point-wise alignment in the camera coordinate system based on state space models (SSMs). Specifically, iterative camera-space point-wise alignment can effectively handle large pose discrepancies, while our proposed RGB and Points SSMs can capture long-range dependencies and spatial information from a single view, offering linear complexity and superior spatial modeling capability. Once pre-trained on synthetic data, SinRef-6D can estimate the 6D pose of a novel object using only a single reference view, without requiring retraining or a CAD model. Extensive experiments on six popular datasets and real-world robotic scenes demonstrate that we achieve on-par performance with CAD-based and dense reference view-based methods, despite operating in the more challenging single reference setting. Code will be released at https://github.com/CNJianLiu/SinRef-6D.
comment: 17 pages, 12 figures (including supplementary material)
☆ InDRiVE: Intrinsic Disagreement based Reinforcement for Vehicle Exploration through Curiosity Driven Generalized World Model IROS 2025
Model-based Reinforcement Learning (MBRL) has emerged as a promising paradigm for autonomous driving, where data efficiency and robustness are critical. Yet, existing solutions often rely on carefully crafted, task specific extrinsic rewards, limiting generalization to new tasks or environments. In this paper, we propose InDRiVE (Intrinsic Disagreement based Reinforcement for Vehicle Exploration), a method that leverages purely intrinsic, disagreement based rewards within a Dreamer based MBRL framework. By training an ensemble of world models, the agent actively explores high uncertainty regions of environments without any task specific feedback. This approach yields a task agnostic latent representation, allowing for rapid zero shot or few shot fine tuning on downstream driving tasks such as lane following and collision avoidance. Experimental results in both seen and unseen environments demonstrate that InDRiVE achieves higher success rates and fewer infractions compared to DreamerV2 and DreamerV3 baselines despite using significantly fewer training steps. Our findings highlight the effectiveness of purely intrinsic exploration for learning robust vehicle control behaviors, paving the way for more scalable and adaptable autonomous driving systems.
comment: This work has been submitted to IROS 2025 and is currently under review
☆ A-SEE2.0: Active-Sensing End-Effector for Robotic Ultrasound Systems with Dense Contact Surface Perception Enabled Probe Orientation Adjustment
Conventional freehand ultrasound (US) imaging is highly dependent on the skill of the operator, often leading to inconsistent results and increased physical demand on sonographers. Robotic Ultrasound Systems (RUSS) aim to address these limitations by providing standardized and automated imaging solutions, especially in environments with limited access to skilled operators. This paper presents the development of a novel RUSS system that employs dual RGB-D depth cameras to maintain the US probe normal to the skin surface, a critical factor for optimal image quality. Our RUSS integrates RGB-D camera data with robotic control algorithms to maintain orthogonal probe alignment on uneven surfaces without preoperative data. Validation tests using a phantom model demonstrate that the system achieves robust normal positioning accuracy while delivering ultrasound images comparable to those obtained through manual scanning. A-SEE2.0 demonstrates 2.47 ${\pm}$ 1.25 degrees error for flat surface normal-positioning and 12.19 ${\pm}$ 5.81 degrees normal estimation error on mannequin surface. This work highlights the potential of A-SEE2.0 to be used in clinical practice by testing its performance during in-vivo forearm ultrasound examinations.
comment: 8 pages, submitted for review
☆ Riemann$^2$: Learning Riemannian Submanifolds from Riemannian Data AISTATS 2025
Latent variable models are powerful tools for learning low-dimensional manifolds from high-dimensional data. However, when dealing with constrained data such as unit-norm vectors or symmetric positive-definite matrices, existing approaches ignore the underlying geometric constraints or fail to provide meaningful metrics in the latent space. To address these limitations, we propose to learn Riemannian latent representations of such geometric data. To do so, we estimate the pullback metric induced by a Wrapped Gaussian Process Latent Variable Model, which explicitly accounts for the data geometry. This enables us to define geometry-aware notions of distance and shortest paths in the latent space, while ensuring that our model only assigns probability mass to the data manifold. This generalizes previous work and allows us to handle complex tasks in various domains, including robot motion synthesis and analysis of brain connectomes.
comment: Accepted at AISTATS 2025
☆ Design, Dynamic Modeling and Control of a 2-DOF Robotic Wrist Actuated by Twisted and Coiled Actuators
Robotic wrists play a pivotal role in the functionality of industrial manipulators and humanoid robots, facilitating manipulation and grasping tasks. In recent years, there has been a growing interest in integrating artificial muscle-driven actuators for robotic wrists, driven by advancements in technology offering high energy density, lightweight construction, and compact designs. However, in the study of robotic wrists driven by artificial muscles, dynamic model-based controllers are often overlooked, despite their critical importance for motion analysis and dynamic control of robots. This paper presents a novel design of a two-degree-of-freedom (2-DOF) robotic wrist driven by twisted and coiled actuators (TCA) utilizing a parallel mechanism with a 3RRRR configuration. The proposed robotic wrist is expected to feature lightweight structures and superior motion performance while mitigating friction issues. The Lagrangian dynamic model of the wrist is established, along with a nonlinear model predictive controller (NMPC) designed for trajectory tracking tasks. A prototype of the robotic wrist is developed, and extensive experiments are conducted to validate its superior motion performance and the proposed dynamic model. Subsequently, extensive comparative experiments between NMPC and PID controller were conducted under various operating conditions. The experimental results demonstrate the effectiveness and robustness of the dynamic model-based controller in the motion control of TCA-driven robotic wrists.
☆ Adaptive Neural Unscented Kalman Filter
The unscented Kalman filter is an algorithm capable of handling nonlinear scenarios. Uncertainty in process noise covariance may decrease the filter estimation performance or even lead to its divergence. Therefore, it is important to adjust the process noise covariance matrix in real time. In this paper, we developed an adaptive neural unscented Kalman filter to cope with time-varying uncertainties during platform operation. To this end, we devised ProcessNet, a simple yet efficient end-to-end regression network to adaptively estimate the process noise covariance matrix. We focused on the nonlinear inertial sensor and Doppler velocity log fusion problem in the case of autonomous underwater vehicle navigation. Using a real-world recorded dataset from an autonomous underwater vehicle, we demonstrated our filter performance and showed its advantages over other adaptive and non-adaptive nonlinear filters.
comment: eight pages, ten figures
Topology-Driven Trajectory Optimization for Modelling Controllable Interactions Within Multi-Vehicle Scenario
Trajectory optimization in multi-vehicle scenarios faces challenges due to its non-linear, non-convex properties and sensitivity to initial values, making interactions between vehicles difficult to control. In this paper, inspired by topological planning, we propose a differentiable local homotopy invariant metric to model the interactions. By incorporating this topological metric as a constraint into multi-vehicle trajectory optimization, our framework is capable of generating multiple interactive trajectories from the same initial values, achieving controllable interactions as well as supporting user-designed interaction patterns. Extensive experiments demonstrate its superior optimality and efficiency over existing methods. We will release open-source code to advance relative research.
☆ LiDAR-enhanced 3D Gaussian Splatting Mapping ICRA 2025
This paper introduces LiGSM, a novel LiDAR-enhanced 3D Gaussian Splatting (3DGS) mapping framework that improves the accuracy and robustness of 3D scene mapping by integrating LiDAR data. LiGSM constructs joint loss from images and LiDAR point clouds to estimate the poses and optimize their extrinsic parameters, enabling dynamic adaptation to variations in sensor alignment. Furthermore, it leverages LiDAR point clouds to initialize 3DGS, providing a denser and more reliable starting points compared to sparse SfM points. In scene rendering, the framework augments standard image-based supervision with depth maps generated from LiDAR projections, ensuring an accurate scene representation in both geometry and photometry. Experiments on public and self-collected datasets demonstrate that LiGSM outperforms comparative methods in pose tracking and scene rendering.
comment: Accepted by ICRA 2025
☆ Self-Modeling Robots by Photographing
Self-modeling enables robots to build task-agnostic models of their morphology and kinematics based on data that can be automatically collected, with minimal human intervention and prior information, thereby enhancing machine intelligence. Recent research has highlighted the potential of data-driven technology in modeling the morphology and kinematics of robots. However, existing self-modeling methods suffer from either low modeling quality or excessive data acquisition costs. Beyond morphology and kinematics, texture is also a crucial component of robots, which is challenging to model and remains unexplored. In this work, a high-quality, texture-aware, and link-level method is proposed for robot self-modeling. We utilize three-dimensional (3D) Gaussians to represent the static morphology and texture of robots, and cluster the 3D Gaussians to construct neural ellipsoid bones, whose deformations are controlled by the transformation matrices generated by a kinematic neural network. The 3D Gaussians and kinematic neural network are trained using data pairs composed of joint angles, camera parameters and multi-view images without depth information. By feeding the kinematic neural network with joint angles, we can utilize the well-trained model to describe the corresponding morphology, kinematics and texture of robots at the link level, and render robot images from different perspectives with the aid of 3D Gaussian splatting. Furthermore, we demonstrate that the established model can be exploited to perform downstream tasks such as motion planning and inverse kinematics.
☆ CoinRobot: Generalized End-to-end Robotic Learning for Physical Intelligence
Physical intelligence holds immense promise for advancing embodied intelligence, enabling robots to acquire complex behaviors from demonstrations. However, achieving generalization and transfer across diverse robotic platforms and environments requires careful design of model architectures, training strategies, and data diversity. Meanwhile existing systems often struggle with scalability, adaptability to heterogeneous hardware, and objective evaluation in real-world settings. We present a generalized end-to-end robotic learning framework designed to bridge this gap. Our framework introduces a unified architecture that supports cross-platform adaptability, enabling seamless deployment across industrial-grade robots, collaborative arms, and novel embodiments without task-specific modifications. By integrating multi-task learning with streamlined network designs, it achieves more robust performance than conventional approaches, while maintaining compatibility with varying sensor configurations and action spaces. We validate our framework through extensive experiments on seven manipulation tasks. Notably, Diffusion-based models trained in our framework demonstrated superior performance and generalizability compared to the LeRobot framework, achieving performance improvements across diverse robotic platforms and environmental conditions.
☆ A Helping (Human) Hand in Kinematic Structure Estimation ICRA25
Visual uncertainties such as occlusions, lack of texture, and noise present significant challenges in obtaining accurate kinematic models for safe robotic manipulation. We introduce a probabilistic real-time approach that leverages the human hand as a prior to mitigate these uncertainties. By tracking the constrained motion of the human hand during manipulation and explicitly modeling uncertainties in visual observations, our method reliably estimates an object's kinematic model online. We validate our approach on a novel dataset featuring challenging objects that are occluded during manipulation and offer limited articulations for perception. The results demonstrate that by incorporating an appropriate prior and explicitly accounting for uncertainties, our method produces accurate estimates, outperforming two recent baselines by 195% and 140%, respectively. Furthermore, we demonstrate that our approach's estimates are precise enough to allow a robot to manipulate even small objects safely.
comment: Accepted at ICRA25; 8 pages + 7 figures; For supplementary material, see https://www.tu.berlin/robotics/papers/helpinghands
☆ Evidential Uncertainty Estimation for Multi-Modal Trajectory Prediction
Accurate trajectory prediction is crucial for autonomous driving, yet uncertainty in agent behavior and perception noise makes it inherently challenging. While multi-modal trajectory prediction models generate multiple plausible future paths with associated probabilities, effectively quantifying uncertainty remains an open problem. In this work, we propose a novel multi-modal trajectory prediction approach based on evidential deep learning that estimates both positional and mode probability uncertainty in real time. Our approach leverages a Normal Inverse Gamma distribution for positional uncertainty and a Dirichlet distribution for mode uncertainty. Unlike sampling-based methods, it infers both types of uncertainty in a single forward pass, significantly improving efficiency. Additionally, we experimented with uncertainty-driven importance sampling to improve training efficiency by prioritizing underrepresented high-uncertainty samples over redundant ones. We perform extensive evaluations of our method on the Argoverse 1 and Argoverse 2 datasets, demonstrating that it provides reliable uncertainty estimates while maintaining high trajectory prediction accuracy.
☆ A Map-free Deep Learning-based Framework for Gate-to-Gate Monocular Visual Navigation aboard Miniaturized Aerial Vehicles
Palm-sized autonomous nano-drones, i.e., sub-50g in weight, recently entered the drone racing scenario, where they are tasked to avoid obstacles and navigate as fast as possible through gates. However, in contrast with their bigger counterparts, i.e., kg-scale drones, nano-drones expose three orders of magnitude less onboard memory and compute power, demanding more efficient and lightweight vision-based pipelines to win the race. This work presents a map-free vision-based (using only a monocular camera) autonomous nano-drone that combines a real-time deep learning gate detection front-end with a classic yet elegant and effective visual servoing control back-end, only relying on onboard resources. Starting from two state-of-the-art tiny deep learning models, we adapt them for our specific task, and after a mixed simulator-real-world training, we integrate and deploy them aboard our nano-drone. Our best-performing pipeline costs of only 24M multiply-accumulate operations per frame, resulting in a closed-loop control performance of 30 Hz, while achieving a gate detection root mean square error of 1.4 pixels, on our ~20k real-world image dataset. In-field experiments highlight the capability of our nano-drone to successfully navigate through 15 gates in 4 min, never crashing and covering a total travel distance of ~100m, with a peak flight speed of 1.9 m/s. Finally, to stress the generalization capability of our system, we also test it in a never-seen-before environment, where it navigates through gates for more than 4 min.
comment: \c{opyright}2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
☆ Kaiwu: A Multimodal Manipulation Dataset and Framework for Robot Learning and Human-Robot Interaction
Cutting-edge robot learning techniques including foundation models and imitation learning from humans all pose huge demands on large-scale and high-quality datasets which constitute one of the bottleneck in the general intelligent robot fields. This paper presents the Kaiwu multimodal dataset to address the missing real-world synchronized multimodal data problems in the sophisticated assembling scenario,especially with dynamics information and its fine-grained labelling. The dataset first provides an integration of human,environment and robot data collection framework with 20 subjects and 30 interaction objects resulting in totally 11,664 instances of integrated actions. For each of the demonstration,hand motions,operation pressures,sounds of the assembling process,multi-view videos, high-precision motion capture information,eye gaze with first-person videos,electromyography signals are all recorded. Fine-grained multi-level annotation based on absolute timestamp,and semantic segmentation labelling are performed. Kaiwu dataset aims to facilitate robot learning,dexterous manipulation,human intention investigation and human-robot collaboration research.
☆ Discrete Contrastive Learning for Diffusion Policies in Autonomous Driving
Learning to perform accurate and rich simulations of human driving behaviors from data for autonomous vehicle testing remains challenging due to human driving styles' high diversity and variance. We address this challenge by proposing a novel approach that leverages contrastive learning to extract a dictionary of driving styles from pre-existing human driving data. We discretize these styles with quantization, and the styles are used to learn a conditional diffusion policy for simulating human drivers. Our empirical evaluation confirms that the behaviors generated by our approach are both safer and more human-like than those of the machine-learning-based baseline methods. We believe this has the potential to enable higher realism and more effective techniques for evaluating and improving the performance of autonomous vehicles.
☆ Reward-Centered ReST-MCTS: A Robust Decision-Making Framework for Robotic Manipulation in High Uncertainty Environments
Monte Carlo Tree Search (MCTS) has emerged as a powerful tool for decision-making in robotics, enabling efficient exploration of large search spaces. However, traditional MCTS methods struggle in environments characterized by high uncertainty and noisy data due to their reliance on final-step reward evaluation. The lack of intermediate feedback during search often results in suboptimal decision-making and computational inefficiencies. This paper introduces Reward-Centered ReST-MCTS, a novel framework that enhances MCTS by incorporating intermediate reward shaping. The core of our approach is the Rewarding Center, which refines search trajectories by dynamically assigning partial rewards using rule-based validation, heuristic guidance, and neural estimation. By integrating these mechanisms, our method enables real-time optimization of search paths, mitigating the effects of error propagation. We evaluate Reward-Centered ReST-MCTS in robotic manipulation tasks under high uncertainty, demonstrating consistent improvements in decision accuracy. Compared to baseline methods, including Chain-of-Thought (CoT) prompting and Vanilla ReST-MCTS, our framework achieves a 2-4% accuracy improvement while maintaining computational feasibility. Ablation studies confirm the effectiveness of intermediate feedback in search refinement, particularly in pruning incorrect decision paths early. Furthermore, robustness tests show that our method retains high performance across varying levels of uncertainty.
☆ Persistent Object Gaussian Splat (POGS) for Tracking Human and Robot Manipulation of Irregularly Shaped Objects ICRA 2025
Tracking and manipulating irregularly-shaped, previously unseen objects in dynamic environments is important for robotic applications in manufacturing, assembly, and logistics. Recently introduced Gaussian Splats efficiently model object geometry, but lack persistent state estimation for task-oriented manipulation. We present Persistent Object Gaussian Splat (POGS), a system that embeds semantics, self-supervised visual features, and object grouping features into a compact representation that can be continuously updated to estimate the pose of scanned objects. POGS updates object states without requiring expensive rescanning or prior CAD models of objects. After an initial multi-view scene capture and training phase, POGS uses a single stereo camera to integrate depth estimates along with self-supervised vision encoder features for object pose estimation. POGS supports grasping, reorientation, and natural language-driven manipulation by refining object pose estimates, facilitating sequential object reset operations with human-induced object perturbations and tool servoing, where robots recover tool pose despite tool perturbations of up to 30{\deg}. POGS achieves up to 12 consecutive successful object resets and recovers from 80% of in-grasp tool perturbations.
comment: Accepted to ICRA 2025
☆ Safety-Critical Traffic Simulation with Adversarial Transfer of Driving Intentions ICRA 2025
Traffic simulation, complementing real-world data with a long-tail distribution, allows for effective evaluation and enhancement of the ability of autonomous vehicles to handle accident-prone scenarios. Simulating such safety-critical scenarios is nontrivial, however, from log data that are typically regular scenarios, especially in consideration of dynamic adversarial interactions between the future motions of autonomous vehicles and surrounding traffic participants. To address it, this paper proposes an innovative and efficient strategy, termed IntSim, that explicitly decouples the driving intentions of surrounding actors from their motion planning for realistic and efficient safety-critical simulation. We formulate the adversarial transfer of driving intention as an optimization problem, facilitating extensive exploration of diverse attack behaviors and efficient solution convergence. Simultaneously, intention-conditioned motion planning benefits from powerful deep models and large-scale real-world data, permitting the simulation of realistic motion behaviors for actors. Specially, through adapting driving intentions based on environments, IntSim facilitates the flexible realization of dynamic adversarial interactions with autonomous vehicles. Finally, extensive open-loop and closed-loop experiments on real-world datasets, including nuScenes and Waymo, demonstrate that the proposed IntSim achieves state-of-the-art performance in simulating realistic safety-critical scenarios and further improves planners in handling such scenarios.
comment: Accepted by ICRA 2025
☆ SplatPose: Geometry-Aware 6-DoF Pose Estimation from Single RGB Image via 3D Gaussian Splatting IROS 2025
6-DoF pose estimation is a fundamental task in computer vision with wide-ranging applications in augmented reality and robotics. Existing single RGB-based methods often compromise accuracy due to their reliance on initial pose estimates and susceptibility to rotational ambiguity, while approaches requiring depth sensors or multi-view setups incur significant deployment costs. To address these limitations, we introduce SplatPose, a novel framework that synergizes 3D Gaussian Splatting (3DGS) with a dual-branch neural architecture to achieve high-precision pose estimation using only a single RGB image. Central to our approach is the Dual-Attention Ray Scoring Network (DARS-Net), which innovatively decouples positional and angular alignment through geometry-domain attention mechanisms, explicitly modeling directional dependencies to mitigate rotational ambiguity. Additionally, a coarse-to-fine optimization pipeline progressively refines pose estimates by aligning dense 2D features between query images and 3DGS-synthesized views, effectively correcting feature misalignment and depth errors from sparse ray sampling. Experiments on three benchmark datasets demonstrate that SplatPose achieves state-of-the-art 6-DoF pose estimation accuracy in single RGB settings, rivaling approaches that depend on depth or multi-view images.
comment: Submitted to IROS 2025
☆ A Comprehensive LLM-powered Framework for Driving Intelligence Evaluation
Evaluation methods for autonomous driving are crucial for algorithm optimization. However, due to the complexity of driving intelligence, there is currently no comprehensive evaluation method for the level of autonomous driving intelligence. In this paper, we propose an evaluation framework for driving behavior intelligence in complex traffic environments, aiming to fill this gap. We constructed a natural language evaluation dataset of human professional drivers and passengers through naturalistic driving experiments and post-driving behavior evaluation interviews. Based on this dataset, we developed an LLM-powered driving evaluation framework. The effectiveness of this framework was validated through simulated experiments in the CARLA urban traffic simulator and further corroborated by human assessment. Our research provides valuable insights for evaluating and designing more intelligent, human-like autonomous driving agents. The implementation details of the framework and detailed information about the dataset can be found at Github.
comment: 8 pages, 3 figures
☆ Generative Trajectory Stitching through Diffusion Composition
Effective trajectory stitching for long-horizon planning is a significant challenge in robotic decision-making. While diffusion models have shown promise in planning, they are limited to solving tasks similar to those seen in their training data. We propose CompDiffuser, a novel generative approach that can solve new tasks by learning to compositionally stitch together shorter trajectory chunks from previously seen tasks. Our key insight is modeling the trajectory distribution by subdividing it into overlapping chunks and learning their conditional relationships through a single bidirectional diffusion model. This allows information to propagate between segments during generation, ensuring physically consistent connections. We conduct experiments on benchmark tasks of various difficulties, covering different environment sizes, agent state dimension, trajectory types, training data quality, and show that CompDiffuser significantly outperforms existing methods.
comment: Project page: https://comp-diffuser.github.io/
☆ Unity RL Playground: A Versatile Reinforcement Learning Framework for Mobile Robots
This paper introduces Unity RL Playground, an open-source reinforcement learning framework built on top of Unity ML-Agents. Unity RL Playground automates the process of training mobile robots to perform various locomotion tasks such as walking, running, and jumping in simulation, with the potential for seamless transfer to real hardware. Key features include one-click training for imported robot models, universal compatibility with diverse robot configurations, multi-mode motion learning capabilities, and extreme performance testing to aid in robot design optimization and morphological evolution. The attached video can be found at https://linqi-ye.github.io/video/iros25.mp4 and the code is coming soon.
☆ HyperGraph ROS: An Open-Source Robot Operating System for Hybrid Parallel Computing based on Computational HyperGraph
This paper presents HyperGraph ROS, an open-source robot operating system that unifies intra-process, inter-process, and cross-device computation into a computational hypergraph for efficient message passing and parallel execution. In order to optimize communication, HyperGraph ROS dynamically selects the optimal communication mechanism while maintaining a consistent API. For intra-process messages, Intel-TBB Flow Graph is used with C++ pointer passing, which ensures zero memory copying and instant delivery. Meanwhile, inter-process and cross-device communication seamlessly switch to ZeroMQ. When a node receives a message from any source, it is immediately activated and scheduled for parallel execution by Intel-TBB. The computational hypergraph consists of nodes represented by TBB flow graph nodes and edges formed by TBB pointer-based connections for intra-process communication, as well as ZeroMQ links for inter-process and cross-device communication. This structure enables seamless distributed parallelism. Additionally, HyperGraph ROS provides ROS-like utilities such as a parameter server, a coordinate transformation tree, and visualization tools. Evaluation in diverse robotic scenarios demonstrates significantly higher transmission and throughput efficiency compared to ROS 2. Our work is available at https://github.com/wujiazheng2020a/hyper_graph_ros.
☆ Look Before You Leap: Using Serialized State Machine for Language Conditioned Robotic Manipulation
Imitation learning frameworks for robotic manipulation have drawn attention in the recent development of language model grounded robotics. However, the success of the frameworks largely depends on the coverage of the demonstration cases: When the demonstration set does not include examples of how to act in all possible situations, the action may fail and can result in cascading errors. To solve this problem, we propose a framework that uses serialized Finite State Machine (FSM) to generate demonstrations and improve the success rate in manipulation tasks requiring a long sequence of precise interactions. To validate its effectiveness, we use environmentally evolving and long-horizon puzzles that require long sequential actions. Experimental results show that our approach achieves a success rate of up to 98 in these tasks, compared to the controlled condition using existing approaches, which only had a success rate of up to 60, and, in some tasks, almost failed completely.
comment: 7 pages, 4 figures
☆ THE-SEAN: A Heart Rate Variation-Inspired Temporally High-Order Event-Based Visual Odometry with Self-Supervised Spiking Event Accumulation Networks
Event-based visual odometry has recently gained attention for its high accuracy and real-time performance in fast-motion systems. Unlike traditional synchronous estimators that rely on constant-frequency (zero-order) triggers, event-based visual odometry can actively accumulate information to generate temporally high-order estimation triggers. However, existing methods primarily focus on adaptive event representation after estimation triggers, neglecting the decision-making process for efficient temporal triggering itself. This oversight leads to the computational redundancy and noise accumulation. In this paper, we introduce a temporally high-order event-based visual odometry with spiking event accumulation networks (THE-SEAN). To the best of our knowledge, it is the first event-based visual odometry capable of dynamically adjusting its estimation trigger decision in response to motion and environmental changes. Inspired by biological systems that regulate hormone secretion to modulate heart rate, a self-supervised spiking neural network is designed to generate estimation triggers. This spiking network extracts temporal features to produce triggers, with rewards based on block matching points and Fisher information matrix (FIM) trace acquired from the estimator itself. Finally, THE-SEAN is evaluated across several open datasets, thereby demonstrating average improvements of 13\% in estimation accuracy, 9\% in smoothness, and 38\% in triggering efficiency compared to the state-of-the-art methods.
☆ Multi-Robot Collaboration through Reinforcement Learning and Abstract Simulation ICRA 2025
Teams of people coordinate to perform complex tasks by forming abstract mental models of world and agent dynamics. The use of abstract models contrasts with much recent work in robot learning that uses a high-fidelity simulator and reinforcement learning (RL) to obtain policies for physical robots. Motivated by this difference, we investigate the extent to which so-called abstract simulators can be used for multi-agent reinforcement learning (MARL) and the resulting policies successfully deployed on teams of physical robots. An abstract simulator models the robot's target task at a high-level of abstraction and discards many details of the world that could impact optimal decision-making. Policies are trained in an abstract simulator then transferred to the physical robot by making use of separately-obtained low-level perception and motion control modules. We identify three key categories of modifications to the abstract simulator that enable policy transfer to physical robots: simulation fidelity enhancements, training optimizations and simulation stochasticity. We then run an empirical study with extensive ablations to determine the value of each modification category for enabling policy transfer in cooperative robot soccer tasks. We also compare the performance of policies produced by our method with a well-tuned non-learning-based behavior architecture from the annual RoboCup competition and find that our approach leads to a similar level of performance. Broadly we show that MARL can be use to train cooperative physical robot behaviors using highly abstract models of the world.
comment: ICRA 2025
☆ An End-to-End Learning-Based Multi-Sensor Fusion for Autonomous Vehicle Localization ICRA2025
Multi-sensor fusion is essential for autonomous vehicle localization, as it is capable of integrating data from various sources for enhanced accuracy and reliability. The accuracy of the integrated location and orientation depends on the precision of the uncertainty modeling. Traditional methods of uncertainty modeling typically assume a Gaussian distribution and involve manual heuristic parameter tuning. However, these methods struggle to scale effectively and address long-tail scenarios. To address these challenges, we propose a learning-based method that encodes sensor information using higher-order neural network features, thereby eliminating the need for uncertainty estimation. This method significantly eliminates the need for parameter fine-tuning by developing an end-to-end neural network that is specifically designed for multi-sensor fusion. In our experiments, we demonstrate the effectiveness of our approach in real-world autonomous driving scenarios. Results show that the proposed method outperforms existing multi-sensor fusion methods in terms of both accuracy and robustness. A video of the results can be viewed at https://youtu.be/q4iuobMbjME.
comment: 7 pages, 8 figures, to be published in ICRA2025
☆ Adaptive-LIO: Enhancing Robustness and Precision through Environmental Adaptation in LiDAR Inertial Odometry
The emerging Internet of Things (IoT) applications, such as driverless cars, have a growing demand for high-precision positioning and navigation. Nowadays, LiDAR inertial odometry becomes increasingly prevalent in robotics and autonomous driving. However, many current SLAM systems lack sufficient adaptability to various scenarios. Challenges include decreased point cloud accuracy with longer frame intervals under the constant velocity assumption, coupling of erroneous IMU information when IMU saturation occurs, and decreased localization accuracy due to the use of fixed-resolution maps during indoor-outdoor scene transitions. To address these issues, we propose a loosely coupled adaptive LiDAR-Inertial-Odometry named \textbf{Adaptive-LIO}, which incorporates adaptive segmentation to enhance mapping accuracy, adapts motion modality through IMU saturation and fault detection, and adjusts map resolution adaptively using multi-resolution voxel maps based on the distance from the LiDAR center. Our proposed method has been tested in various challenging scenarios, demonstrating the effectiveness of the improvements we introduce. The code is open-source on GitHub: \href{https://github.com/chengwei0427/adaptive_lio}{Adaptive-LIO}.
☆ Perceiving, Reasoning, Adapting: A Dual-Layer Framework for VLM-Guided Precision Robotic Manipulation
Vision-Language Models (VLMs) demonstrate remarkable potential in robotic manipulation, yet challenges persist in executing complex fine manipulation tasks with high speed and precision. While excelling at high-level planning, existing VLM methods struggle to guide robots through precise sequences of fine motor actions. To address this limitation, we introduce a progressive VLM planning algorithm that empowers robots to perform fast, precise, and error-correctable fine manipulation. Our method decomposes complex tasks into sub-actions and maintains three key data structures: task memory structure, 2D topology graphs, and 3D spatial networks, achieving high-precision spatial-semantic fusion. These three components collectively accumulate and store critical information throughout task execution, providing rich context for our task-oriented VLM interaction mechanism. This enables VLMs to dynamically adjust guidance based on real-time feedback, generating precise action plans and facilitating step-wise error correction. Experimental validation on complex assembly tasks demonstrates that our algorithm effectively guides robots to rapidly and precisely accomplish fine manipulation in challenging scenarios, significantly advancing robot intelligence for precision tasks.
☆ Prismatic-Bending Transformable (PBT) Joint for a Modular, Foldable Manipulator with Enhanced Reachability and Dexterity
Robotic manipulators, traditionally designed with classical joint-link articulated structures, excel in industrial applications but face challenges in human-centered and general-purpose tasks requiring greater dexterity and adaptability. Addressing these limitations, we introduce the Prismatic-Bending Transformable (PBT) Joint, a novel design inspired by the scissors mechanism, enabling transformable kinematic chains. Each PBT joint module provides three degrees of freedom-bending, rotation, and elongation/contraction-allowing scalable and reconfigurable assemblies to form diverse kinematic configurations tailored to specific tasks. This innovative design surpasses conventional systems, delivering superior flexibility and performance across various applications. We present the design, modeling, and experimental validation of the PBT joint, demonstrating its integration into modular and foldable robotic arms. The PBT joint functions as a single SKU, enabling manipulators to be constructed entirely from standardized PBT joints without additional customized components. It also serves as a modular extension for existing systems, such as wrist modules, streamlining design, deployment, transportation, and maintenance. Three sizes-large, medium, and small-have been developed and integrated into robotic manipulators, highlighting their enhanced dexterity, reachability, and adaptability for manipulation tasks. This work represents a significant advancement in robotic design, offering scalable and efficient solutions for dynamic and unstructured environments.
☆ Optimal sensor deception in stochastic environments with partial observability to mislead a robot to a decoy goal
Deception is a common strategy adapted by autonomous systems in adversarial settings. Existing deception methods primarily focus on increasing opacity or misdirecting agents away from their goal or itinerary. In this work, we propose a deception problem aiming to mislead the robot towards a decoy goal through altering sensor events under a constrained budget of alteration. The environment along with the robot's interaction with it is modeled as a Partially Observable Markov Decision Process (POMDP), and the robot's action selection is governed by a Finite State Controller (FSC). Given a constrained budget for sensor event modifications, the objective is to compute a sensor alteration that maximizes the probability of the robot reaching a decoy goal. We establish the computational hardness of the problem by a reduction from the $0/1$ Knapsack problem and propose a Mixed Integer Linear Programming (MILP) formulation to compute optimal deception strategies. We show the efficacy of our MILP formulation via a sequence of experiments.
☆ Differentiable Rendering-based Pose Estimation for Surgical Robotic Instruments
Robot pose estimation is a challenging and crucial task for vision-based surgical robotic automation. Typical robotic calibration approaches, however, are not applicable to surgical robots, such as the da Vinci Research Kit (dVRK), due to joint angle measurement errors from cable-drives and the partially visible kinematic chain. Hence, previous works in surgical robotic automation used tracking algorithms to estimate the pose of the surgical tool in real-time and compensate for the joint angle errors. However, a big limitation of these previous tracking works is the initialization step which relied on only keypoints and SolvePnP. In this work, we fully explore the potential of geometric primitives beyond just keypoints with differentiable rendering, cylinders, and construct a versatile pose matching pipeline in a novel pose hypothesis space. We demonstrate the state-of-the-art performance of our single-shot calibration method with both calibration consistency and real surgical tasks. As a result, this marker-less calibration approach proves to be a robust and generalizable initialization step for surgical tool tracking.
☆ Universal Framework to Evaluate Automotive Perception Sensor Impact on Perception Functions
Current research on automotive perception systems predominantly focusses on either improving the sensors for data quality or enhancing the performance of perception functions in isolation. Although automotive perception sensors form a fundamental part of the perception system, value addition in sensor data quality in isolation is questionable. However, the end goal for most perception systems is the accuracy of high-level functions such as trajectory prediction of surrounding vehicles. High-level perception functions are increasingly based on deep learning (DL) models due to their improved performance and generalisability compared to traditional algorithms. Innately, DL models develop a performance bias on the comprehensiveness of the training data. Despite the vital need to evaluate the performance of DL-based perception functions under real-world conditions using onboard sensor inputs, there is a lack of frameworks to facilitate systematic evaluations. This paper presents a versatile and cost-effective framework to evaluate the impact of perception sensor modalities and parameter settings on DL-based perception functions. Using a simulation environment, the framework facilitates sensor modality testing and parameter tuning under different environmental conditions. Its effectiveness is demonstrated through a case study involving a state-of-the-art surround trajectory prediction model, highlighting performance differences across sensor modalities and recommending optimal parameter settings. The proposed framework offers valuable insights for designing the perception sensor suite, contributing to the development of robust perception systems for autonomous vehicles.
comment: 11 pages, 10 figures
☆ Generalizable Image Repair for Robust Visual Autonomous Racing IROS 2025
Vision-based autonomous racing relies on accurate perception for robust control. However, image distribution changes caused by sensor noise, adverse weather, and dynamic lighting can degrade perception, leading to suboptimal control decisions. Existing approaches, including domain adaptation and adversarial training, improve robustness but struggle to generalize to unseen corruptions while introducing computational overhead. To address this challenge, we propose a real-time image repair module that restores corrupted images before they are used by the controller. Our method leverages generative adversarial models, specifically CycleGAN and pix2pix, for image repair. CycleGAN enables unpaired image-to-image translation to adapt to novel corruptions, while pix2pix exploits paired image data when available to improve the quality. To ensure alignment with control performance, we introduce a control-focused loss function that prioritizes perceptual consistency in repaired images. We evaluated our method in a simulated autonomous racing environment with various visual corruptions. The results show that our approach significantly improves performance compared to baselines, mitigating distribution shift and enhancing controller reliability.
comment: 8 pages, 4 figures, Submitted to 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
☆ REACT: Multi Robot Energy-Aware Orchestrator for Indoor Search and Rescue Critical Tasks ICRA 2025
Smart factories enhance production efficiency and sustainability, but emergencies like human errors, machinery failures and natural disasters pose significant risks. In critical situations, such as fires or earthquakes, collaborative robots can assist first-responders by entering damaged buildings and locating missing persons, mitigating potential losses. Unlike previous solutions that overlook the critical aspect of energy management, in this paper we propose REACT, a smart energy-aware orchestrator that optimizes the exploration phase, ensuring prolonged operational time and effective area coverage. Our solution leverages a fleet of collaborative robots equipped with advanced sensors and communication capabilities to explore and navigate unknown indoor environments, such as smart factories affected by fires or earthquakes, with high density of obstacles. By leveraging real-time data exchange and cooperative algorithms, the robots dynamically adjust their paths, minimize redundant movements and reduce energy consumption. Extensive simulations confirm that our approach significantly improves the efficiency and reliability of search and rescue missions in complex indoor environments, improving the exploration rate by 10% over existing methods and reaching a map coverage of 97% under time critical operations, up to nearly 100% under relaxed time constraint.
comment: 7 pages, 8 figures, accepted at IEEE ICRA 2025
☆ MatchMaker: Automated Asset Generation for Robotic Assembly
Robotic assembly remains a significant challenge due to complexities in visual perception, functional grasping, contact-rich manipulation, and performing high-precision tasks. Simulation-based learning and sim-to-real transfer have led to recent success in solving assembly tasks in the presence of object pose variation, perception noise, and control error; however, the development of a generalist (i.e., multi-task) agent for a broad range of assembly tasks has been limited by the need to manually curate assembly assets, which greatly constrains the number and diversity of assembly problems that can be used for policy learning. Inspired by recent success of using generative AI to scale up robot learning, we propose MatchMaker, a pipeline to automatically generate diverse, simulation-compatible assembly asset pairs to facilitate learning assembly skills. Specifically, MatchMaker can 1) take a simulation-incompatible, interpenetrating asset pair as input, and automatically convert it into a simulation-compatible, interpenetration-free pair, 2) take an arbitrary single asset as input, and generate a geometrically-mating asset to create an asset pair, 3) automatically erode contact surfaces from (1) or (2) according to a user-specified clearance parameter to generate realistic parts. We demonstrate that data generated by MatchMaker outperforms previous work in terms of diversity and effectiveness for downstream assembly skill learning. For videos and additional details, please see our project website: https://wangyian-me.github.io/MatchMaker/.
☆ Enhancing Thin-Film Wafer Inspection With A Multi-Sensor Array And Robot Constraint Maintenance
Thin-film inspection on large-area substrates in coating manufacture remains a critical parameter to ensure product quality; however, extending the inspection process precisely over a large area presents major challenges, due to the limitations of the available inspection equipment. An additional manipulation problem arises when automating the inspection process, as the silicon wafer requires movement constraints to ensure accurate measurements and to prevent damage. Furthermore, there are other increasingly important large-area industrial applications, such as Roll-to-Roll (R2R) manufacturing where coating thickness inspection introduces additional challenges. This paper presents an autonomous inspection system using a robotic manipulator with a novel learned constraint manifold to control a wafer to its calibration point, and a novel multi-sensor array with high potential for scalability into large substrate areas. We demonstrate that the manipulator can perform required motions whilst adhering to movement constraints. We further demonstrate that the sensor array can perform thickness measurements statically with an error of $<2\%$ compared to a commercial reflectometer, and through the use of a manipulator can dynamically detect angle variations $>0.5^\circ$ from the calibration point whilst monitoring the RMSE and $R^2$ over 1406 data points. These features are potentially useful for detecting displacement variations in R2R manufacturing processes.
comment: Under review for Nature Scientific Reports. Patent under review (GB2417203.3, UK)
☆ Merry-Go-Round: Safe Control of Decentralized Multi-Robot Systems with Deadlock Prevention
We propose a hybrid approach for decentralized multi-robot navigation that ensures both safety and deadlock prevention. Building on a standard control formulation, we add a lightweight deadlock prevention mechanism by forming temporary "roundabouts" (circular reference paths). Each robot relies only on local, peer-to-peer communication and a controller for base collision avoidance; a roundabout is generated or joined on demand to avert deadlocks. Robots in the roundabout travel in one direction until an escape condition is met, allowing them to return to goal-oriented motion. Unlike classical decentralized methods that lack explicit deadlock resolution, our roundabout maneuver ensures system-wide forward progress while preserving safety constraints. Extensive simulations and physical robot experiments show that our method consistently outperforms or matches the success and arrival rates of other decentralized control approaches, particularly in cluttered or high-density scenarios, all with minimal centralized coordination.
comment: 7 pages, 7 Figures
☆ The Multi-Trip Time-Dependent Mix Vehicle Routing Problem for Hybrid Autonomous Shared Delivery Location and Traditional Door-to-Door Delivery Modes
Rising labor costs and increasing logistical demands pose significant challenges to modern delivery systems. Automated Electric Vehicles (AEVs) could reduce reliance on delivery personnel and increase route flexibility, but their adoption is limited due to varying customer acceptance and integration complexities. Shared Distribution Locations (SDLs) offer an alternative to door-to-door (D2D) delivery by providing a wider delivery window and serving multiple community customers, thereby improving last-mile logistics through reduced delivery time, lower costs, and higher customer satisfaction.This paper introduces the Multi-Trip Time-Dependent Hybrid Vehicle Routing Problem (MTTD-MVRP), a challenging variant of the Vehicle Routing Problem (VRP) that combines Autonomous Electric Vehicles (AEVs) with conventional vehicles. The problem's complexity arises from factors such as time-dependent travel speeds, strict time windows, battery limitations, and driver labor constraints, while integrating both SDLs and D2D deliveries. To solve the MTTD-MVRP efficiently, we develop a tailored meta-heuristic based on Adaptive Large Neighborhood Search (ALNS) augmented with column generation (CG). This approach intensively explores the solution space using problem-specific operators and adaptively refines solutions, balancing high-quality outcomes with computational effort. Extensive experiments show that the proposed method delivers near-optimal solutions for large-scale instances within practical time limits.From a managerial perspective, our findings highlight the importance of integrating autonomous and human-driven vehicles in last-mile logistics. Decision-makers can leverage SDLs to reduce operational costs and carbon footprints while still accommodating customers who require or prefer D2D services.
comment: 28 pages, 7 figures
♻ ☆ TACO: General Acrobatic Flight Control via Target-and-Command-Oriented Reinforcement Learning
Although acrobatic flight control has been studied extensively, one key limitation of the existing methods is that they are usually restricted to specific maneuver tasks and cannot change flight pattern parameters online. In this work, we propose a target-and-command-oriented reinforcement learning (TACO) framework, which can handle different maneuver tasks in a unified way and allows online parameter changes. Additionally, we propose a spectral normalization method with input-output rescaling to enhance the policy's temporal and spatial smoothness, independence, and symmetry, thereby overcoming the sim-to-real gap. We validate the TACO approach through extensive simulation and real-world experiments, demonstrating its capability to achieve high-speed circular flights and continuous multi-flips.
comment: For the experiment video, please refer to https://youtu.be/x1v7nD2iHIk
♻ ☆ Towards Autonomous Reinforcement Learning for Real-World Robotic Manipulation with Large Language Models
Recent advancements in Large Language Models (LLMs) and Visual Language Models (VLMs) have significantly impacted robotics, enabling high-level semantic motion planning applications. Reinforcement Learning (RL), a complementary paradigm, enables agents to autonomously optimize complex behaviors through interaction and reward signals. However, designing effective reward functions for RL remains challenging, especially in real-world tasks where sparse rewards are insufficient and dense rewards require elaborate design. In this work, we propose Autonomous Reinforcement learning for Complex HumanInformed Environments (ARCHIE), an unsupervised pipeline leveraging GPT-4, a pre-trained LLM, to generate reward functions directly from natural language task descriptions. The rewards are used to train RL agents in simulated environments, where we formalize the reward generation process to enhance feasibility. Additionally, GPT-4 automates the coding of task success criteria, creating a fully automated, one-shot procedure for translating human-readable text into deployable robot skills. Our approach is validated through extensive simulated experiments on single-arm and bi-manual manipulation tasks using an ABB YuMi collaborative robot, highlighting its practicality and effectiveness. Tasks are demonstrated on the real robot setup.
♻ ☆ NeRF-Aug: Data Augmentation for Robotics with Neural Radiance Fields
Training a policy that can generalize to unknown objects is a long standing challenge within the field of robotics. The performance of a policy often drops significantly in situations where an object in the scene was not seen during training. To solve this problem, we present NeRF-Aug, a novel method that is capable of teaching a policy to interact with objects that are not present in the dataset. This approach differs from existing approaches by leveraging the speed, photorealism, and 3D consistency of a neural radiance field for augmentation. NeRF-Aug both creates more photorealistic data and runs 63% faster than existing methods. We demonstrate the effectiveness of our method on 5 tasks with 9 novel objects that are not present in the expert demonstrations. We achieve an average performance boost of 55.6% when comparing our method to the next best method. You can see video results at https://nerf-aug.github.io.
♻ ☆ Safe Decentralized Multi-Agent Control using Black-Box Predictors, Conformal Decision Policies, and Control Barrier Functions ICRA 2025
We address the challenge of safe control in decentralized multi-agent robotic settings, where agents use uncertain black-box models to predict other agents' trajectories. We use the recently proposed conformal decision theory to adapt the restrictiveness of control barrier functions-based safety constraints based on observed prediction errors. We use these constraints to synthesize controllers that balance between the objectives of safety and task accomplishment, despite the prediction errors. We provide an upper bound on the average over time of the value of a monotonic function of the difference between the safety constraint based on the predicted trajectories and the constraint based on the ground truth ones. We validate our theory through experimental results showing the performance of our controllers when navigating a robot in the multi-agent scenes in the Stanford Drone Dataset.
comment: 6 pages, 1 figure, accepted for presentation at ICRA 2025
♻ ☆ Uncertainty-Aware Visual-Inertial SLAM with Volumetric Occupancy Mapping ICRA 2025
We propose visual-inertial simultaneous localization and mapping that tightly couples sparse reprojection errors, inertial measurement unit pre-integrals, and relative pose factors with dense volumetric occupancy mapping. Hereby depth predictions from a deep neural network are fused in a fully probabilistic manner. Specifically, our method is rigorously uncertainty-aware: first, we use depth and uncertainty predictions from a deep network not only from the robot's stereo rig, but we further probabilistically fuse motion stereo that provides depth information across a range of baselines, therefore drastically increasing mapping accuracy. Next, predicted and fused depth uncertainty propagates not only into occupancy probabilities but also into alignment factors between generated dense submaps that enter the probabilistic nonlinear least squares estimator. This submap representation offers globally consistent geometry at scale. Our method is thoroughly evaluated in two benchmark datasets, resulting in localization and mapping accuracy that exceeds the state of the art, while simultaneously offering volumetric occupancy directly usable for downstream robotic planning and control in real-time.
comment: 7 pages, 4 figures, 5 tables, accepted in ICRA 2025
♻ ☆ Transformer-Based Fault-Tolerant Control for Fixed-Wing UAVs Using Knowledge Distillation and In-Context Adaptation
This study presents a transformer-based approach for fault-tolerant control in fixed-wing Unmanned Aerial Vehicles (UAVs), designed to adapt in real time to dynamic changes caused by structural damage or actuator failures. Unlike traditional Flight Control Systems (FCSs) that rely on classical control theory and struggle under severe alterations in dynamics, our method directly maps outer-loop reference values -- altitude, heading, and airspeed -- into control commands using the in-context learning and attention mechanisms of transformers, thus bypassing inner-loop controllers and fault-detection layers. Employing a teacher-student knowledge distillation framework, the proposed approach trains a student agent with partial observations by transferring knowledge from a privileged expert agent with full observability, enabling robust performance across diverse failure scenarios. Experimental results demonstrate that our transformer-based controller outperforms industry-standard FCS and state-of-the-art reinforcement learning (RL) methods, maintaining high tracking accuracy and stability in nominal conditions and extreme failure cases, highlighting its potential for enhancing UAV operational safety and reliability.
♻ ☆ Human-Robot Collaboration: A Non-Verbal Approach with the NAO Humanoid Robot
Humanoid robots, particularly NAO, are gaining prominence for their potential to revolutionize human-robot collaboration, especially in domestic settings like kitchens. Leveraging the advantages of NAO, this research explores non-verbal communications role in enhancing human-robot interaction during meal preparation tasks. By employing gestures, body movements, and visual cues, NAO provides feedback to users, improving comprehension and safety. Our study investigates user perceptions of NAO feedback and its anthropomorphic attributes. Findings suggest that combining various non-verbal cues enhances communication effectiveness, although achieving full anthropomorphic likeness remains a challenge. Insights from this research inform the design of future robotic systems for improved human-robot collaboration.
comment: My co-author recommended to remove the submission beacause this was course project and human study i conducted is pretended study not actual ethical approved study. It can create false content on the researchers because some might take as real study instead of pretended study
♻ ☆ Under Pressure: Altimeter-Aided ICP for 3D Maps Consistency ICRA25
We propose a novel method to enhance the accuracy of the Iterative Closest Point (ICP) algorithm by integrating altitude constraints from a barometric pressure sensor. While ICP is widely used in mobile robotics for Simultaneous Localization and Mapping ( SLAM ), it is susceptible to drift, especially in underconstrained environments such as vertical shafts. To address this issue, we propose to augment ICP with altimeter measurements, reliably constraining drifts along the gravity vector. To demonstrate the potential of altimetry in SLAM , we offer an analysis of calibration procedures and noise sensitivity of various pressure sensors, improving measurements to centimeter-level accuracy. Leveraging this accuracy, we propose a novel ICP formulation that integrates altitude measurements along the gravity vector, thus simplifying the optimization problem to 3-Degree Of Freedom (DOF). Experimental results from real-world deployments demonstrate that our method reduces vertical drift by 84% and improves overall localization accuracy compared to state-of-the-art methods in non-planar environments.
comment: 6 pages + references, 5 figures, final version accepted for ICRA25
♻ ☆ PRAM: Place Recognition Anywhere Model for Efficient Visual Localization
Visual localization is a key technique to a variety of applications, e.g., autonomous driving, AR/VR, and robotics. For these real applications, both efficiency and accuracy are important especially on edge devices with limited computing resources. However, previous frameworks, e.g., absolute pose regression (APR), scene coordinate regression (SCR), and the hierarchical method (HM), have limited either accuracy or efficiency in both indoor and outdoor environments. In this paper, we propose the place recognition anywhere model (PRAM), a new framework, to perform visual localization efficiently and accurately by recognizing 3D landmarks. Specifically, PRAM first generates landmarks directly in 3D space in a self-supervised manner. Without relying on commonly used classic semantic labels, these 3D landmarks can be defined in any place in indoor and outdoor scenes with higher generalization ability. Representing the map with 3D landmarks, PRAM discards global descriptors, repetitive local descriptors, and redundant 3D points, increasing the memory efficiency significantly. Then, sparse keypoints, rather than dense pixels, are utilized as the input tokens to a transformer-based recognition module for landmark recognition, which enables PRAM to recognize hundreds of landmarks with high time and memory efficiency. At test time, sparse keypoints and predicted landmark labels are utilized for outlier removal and landmark-wise 2D-3D matching as opposed to exhaustive 2D-2D matching, which further increases the time efficiency. A comprehensive evaluation of APRs, SCRs, HMs, and PRAM on both indoor and outdoor datasets demonstrates that PRAM outperforms ARPs and SCRs in large-scale scenes with a large margin and gives competitive accuracy to HMs but reduces over 90\% memory cost and runs 2.4 times faster, leading to a better balance between efficiency and accuracy.
comment: project page: https://feixue94.github.io/pram-project/
♻ ☆ PACC: A Passive-Arm Approach for High-Payload Collaborative Carrying with Quadruped Robots Using Model Predictive Control
In this paper, we introduce the concept of using passive arm structures with intrinsic impedance for robot-robot and human-robot collaborative carrying with quadruped robots. The concept is meant for a leader-follower task and takes a minimalist approach that focuses on exploiting the robots' payload capabilities and reducing energy consumption, without compromising the robot locomotion capabilities. We introduce a preliminary arm mechanical design and describe how to use its joint displacements to guide the robot's motion. To control the robot's locomotion, we propose a decentralized Model Predictive Controller that incorporates an approximation of the arm dynamics and the estimation of the external forces from the collaborative carrying. We validate the overall system experimentally by performing both robot-robot and human-robot collaborative carrying on a stair-like obstacle and on rough terrain.
comment: The paper has 8 pages and 9 figures
♻ ☆ MVCTrack: Boosting 3D Point Cloud Tracking via Multimodal-Guided Virtual Cues ICRA 2025
3D single object tracking is essential in autonomous driving and robotics. Existing methods often struggle with sparse and incomplete point cloud scenarios. To address these limitations, we propose a Multimodal-guided Virtual Cues Projection (MVCP) scheme that generates virtual cues to enrich sparse point clouds. Additionally, we introduce an enhanced tracker MVCTrack based on the generated virtual cues. Specifically, the MVCP scheme seamlessly integrates RGB sensors into LiDAR-based systems, leveraging a set of 2D detections to create dense 3D virtual cues that significantly improve the sparsity of point clouds. These virtual cues can naturally integrate with existing LiDAR-based 3D trackers, yielding substantial performance gains. Extensive experiments demonstrate that our method achieves competitive performance on the NuScenes dataset.
comment: Accepted by ICRA 2025
♻ ☆ Contact-conditioned learning of multi-gait locomotion policies
In this paper, we examine the effects of goal representation on the performance and generalization in multi-gait policy learning settings for legged robots. To study this problem in isolation, we cast the policy learning problem as imitating model predictive controllers that can generate multiple gaits. We hypothesize that conditioning a learned policy on future contact switches is a suitable goal representation for learning a single policy that can generate a variety of gaits. Our rationale is that policies conditioned on contact information can leverage the shared structure between different gaits. Our extensive simulation results demonstrate the validity of our hypothesis for learning multiple gaits on a bipedal and a quadrupedal robot. Most interestingly, our results show that contact-conditioned policies generalize much better than other common goal representations in the literature, when the robot is tested outside the distribution of the training data.
♻ ☆ SP-VIO: Robust and Efficient Filter-Based Visual Inertial Odometry with State Transformation Model and Pose-Only Visual Description
Due to the advantages of high computational efficiency and small memory requirements, filter-based visual inertial odometry (VIO) has a good application prospect in miniaturized and payload-constrained embedded systems. However, the filter-based method has the problem of insufficient accuracy. To this end, we propose the State transformation and Pose-only VIO (SP-VIO) by rebuilding the state and measurement models, and considering further visual deprived conditions. In detail, we first proposed the double state transformation extended Kalman filter (DST-EKF) to replace the standard extended Kalman filter (Std-EKF) for improving the system's consistency, and then adopt pose-only (PO) visual description to avoid the linearization error caused by 3D feature estimation. The comprehensive observability analysis shows that SP-VIO has a more stable unobservable subspace, which can better avoid the inconsistency problem caused by spurious information. Moreover, we propose an enhanced double state transformation Rauch-Tung-Striebel (DST-RTS) backtracking method to optimize motion trajectories during visual interruption. Monte-Carlo simulations and real-world experiments show that SP-VIO has better accuracy and efficiency than state-of-the-art (SOTA) VIO algorithms, and has better robustness under visual deprived conditions.
♻ ☆ CrowdSurfer: Sampling Optimization Augmented with Vector-Quantized Variational AutoEncoder for Dense Crowd Navigation ICRA 2025
Navigation amongst densely packed crowds remains a challenge for mobile robots. The complexity increases further if the environment layout changes, making the prior computed global plan infeasible. In this paper, we show that it is possible to dramatically enhance crowd navigation by just improving the local planner. Our approach combines generative modelling with inference time optimization to generate sophisticated long-horizon local plans at interactive rates. More specifically, we train a Vector Quantized Variational AutoEncoder to learn a prior over the expert trajectory distribution conditioned on the perception input. At run-time, this is used as an initialization for a sampling-based optimizer for further refinement. Our approach does not require any sophisticated prediction of dynamic obstacles and yet provides state-of-the-art performance. In particular, we compare against the recent DRL-VO approach and show a 40% improvement in success rate and a 6% improvement in travel time.
comment: Accepted at IEEE ICRA 2025
♻ ☆ Bridging Text and Vision: A Multi-View Text-Vision Registration Approach for Cross-Modal Place Recognition
Mobile robots necessitate advanced natural language understanding capabilities to accurately identify locations and perform tasks such as package delivery. However, traditional visual place recognition (VPR) methods rely solely on single-view visual information and cannot interpret human language descriptions. To overcome this challenge, we bridge text and vision by proposing a multiview (360{\deg} views of the surroundings) text-vision registration approach called Text4VPR for place recognition task, which is the first method that exclusively utilizes textual descriptions to match a database of images. Text4VPR employs the frozen T5 language model to extract global textual embeddings. Additionally, it utilizes the Sinkhorn algorithm with temperature coefficient to assign local tokens to their respective clusters, thereby aggregating visual descriptors from images. During the training stage, Text4VPR emphasizes the alignment between individual text-image pairs for precise textual description. In the inference stage, Text4VPR uses the Cascaded Cross-Attention Cosine Alignment (CCCA) to address the internal mismatch between text and image groups. Subsequently, Text4VPR performs precisely place match based on the descriptions of text-image groups. On Street360Loc, the first text to image VPR dataset we created, Text4VPR builds a robust baseline, achieving a leading top-1 accuracy of 57% and a leading top-10 accuracy of 92% within a 5-meter radius on the test set, which indicates that localization from textual descriptions to images is not only feasible but also holds significant potential for further advancement, as shown in Figure 1.
comment: 8 pages, 4 figures, conference
♻ ☆ LLM-as-BT-Planner: Leveraging LLMs for Behavior Tree Generation in Robot Task Planning ICRA 2025
Robotic assembly tasks remain an open challenge due to their long horizon nature and complex part relations. Behavior trees (BTs) are increasingly used in robot task planning for their modularity and flexibility, but creating them manually can be effort-intensive. Large language models (LLMs) have recently been applied to robotic task planning for generating action sequences, yet their ability to generate BTs has not been fully investigated. To this end, we propose LLM-as-BT-Planner, a novel framework that leverages LLMs for BT generation in robotic assembly task planning. Four in-context learning methods are introduced to utilize the natural language processing and inference capabilities of LLMs for producing task plans in BT format, reducing manual effort while ensuring robustness and comprehensibility. Additionally, we evaluate the performance of fine-tuned smaller LLMs on the same tasks. Experiments in both simulated and real-world settings demonstrate that our framework enhances LLMs' ability to generate BTs, improving success rate through in-context learning and supervised fine-tuning.
comment: 7 pages. Accepted to ICRA 2025
♻ ☆ METDrive: Multi-modal End-to-end Autonomous Driving with Temporal Guidance ICRA
Multi-modal end-to-end autonomous driving has shown promising advancements in recent work. By embedding more modalities into end-to-end networks, the system's understanding of both static and dynamic aspects of the driving environment is enhanced, thereby improving the safety of autonomous driving. In this paper, we introduce METDrive, an end-to-end system that leverages temporal guidance from the embedded time series features of ego states, including rotation angles, steering, throttle signals, and waypoint vectors. The geometric features derived from perception sensor data and the time series features of ego state data jointly guide the waypoint prediction with the proposed temporal guidance loss function. We evaluated METDrive on the CARLA leaderboard benchmarks, achieving a driving score of 70%, a route completion score of 94%, and an infraction score of 0.78.
comment: Accepted by ICRA
♻ ☆ Adaptive Electronic Skin Sensitivity for Safe Human-Robot Interaction
Artificial electronic skins covering complete robot bodies can make physical human-robot collaboration safe and hence possible. Standards for collaborative robots (e.g., ISO/TS 15066) prescribe permissible forces and pressures during contacts with the human body. These characteristics of the collision depend on the speed of the colliding robot link but also on its effective mass. Thus, to warrant contacts complying with the Power and Force Limiting (PFL) collaborative regime but at the same time maximizing productivity, protective skin thresholds should be set individually for different parts of the robot bodies and dynamically on the run. Here we present and empirically evaluate four scenarios: (a) static and uniform - fixed thresholds for the whole skin, (b) static but different settings for robot body parts, (c) dynamically set based on every link velocity, (d) dynamically set based on effective mass of every robot link. We perform experiments in simulation and on a real 6-axis collaborative robot arm (UR10e) completely covered with sensitive skin (AIRSKIN) comprising eleven individual pads. On a mock pick-and-place scenario with transient collisions with the robot body parts and two collision reactions (stop and avoid), we demonstrate the boost in productivity in going from the most conservative setting of the skin thresholds (a) to the most adaptive setting (d). The threshold settings for every skin pad are adapted with a frequency of 25 Hz. This work can be easily extended for platforms with more degrees of freedom and larger skin coverage (humanoids) and to social human-robot interaction scenarios where contacts with the robot will be used for communication.
♻ ☆ Learning Force Distribution Estimation for the GelSight Mini Optical Tactile Sensor Based on Finite Element Analysis
Contact-rich manipulation remains a major challenge in robotics. Optical tactile sensors like GelSight Mini offer a low-cost solution for contact sensing by capturing soft-body deformations of the silicone gel. However, accurately inferring shear and normal force distributions from these gel deformations has yet to be fully addressed. In this work, we propose a machine learning approach using a U-net architecture to predict force distributions directly from the sensor's raw images. Our model, trained on force distributions inferred from Finite Element Analysis (FEA), demonstrates promising accuracy in predicting normal and shear force distributions for the commercially available GelSight Mini sensor. It also shows potential for generalization across indenters, sensors of the same type, and for enabling real-time application. The codebase, dataset and models are open-sourced and available at https://feats-ai.github.io .
♻ ☆ Obstacle-Avoidant Leader Following with a Quadruped Robot ICRA
Personal mobile robotic assistants are expected to find wide applications in industry and healthcare. For example, people with limited mobility can benefit from robots helping with daily tasks, or construction workers can have robots perform precision monitoring tasks on-site. However, manually steering a robot while in motion requires significant concentration from the operator, especially in tight or crowded spaces. This reduces walking speed, and the constant need for vigilance increases fatigue and, thus, the risk of accidents. This work presents a virtual leash with which a robot can naturally follow an operator. We use a sensor fusion based on a custom-built RF transponder, RGB cameras, and a LiDAR. In addition, we customize a local avoidance planner for legged platforms, which enables us to navigate dynamic and narrow environments. We successfully validate on the ANYmal platform the robustness and performance of our entire pipeline in real-world experiments.
comment: Accepted as a contributed paper to IEEE International Conference on Robotics and Automation (ICRA) 2025
♻ ☆ AVR: Active Vision-Driven Robotic Precision Manipulation with Viewpoint and Focal Length Optimization
Robotic manipulation within dynamic environments presents challenges to precise control and adaptability. Traditional fixed-view camera systems face challenges adapting to change viewpoints and scale variations, limiting perception and manipulation precision. To tackle these issues, we propose the Active Vision-driven Robotic (AVR) framework, a teleoperation hardware solution that supports dynamic viewpoint and dynamic focal length adjustments to continuously center targets and maintain optimal scale, accompanied by a corresponding algorithm that effectively enhances the success rates of various operational tasks. Using the RoboTwin platform with a real-time image processing plugin, AVR framework improves task success rates by 5%-16% on five manipulation tasks. Physical deployment on a dual-arm system demonstrates in collaborative tasks and 36% precision in screwdriver insertion, outperforming baselines by over 25%. Experimental results confirm that AVR framework enhances environmental perception, manipulation repeatability (40% $\le $1 cm error), and robustness in complex scenarios, paving the way for future robotic precision manipulation methods in the pursuit of human-level robot dexterity and precision.
comment: Our experimental data have shown some issues, and the conclusions need further verification. To ensure the accuracy and reliability of our findings, we are withdrawing this version of the manuscript. We will conduct more comprehensive experiments and analyses and plan to resubmit the revised version once these concerns have been fully addressed
♻ ☆ Context-Based Meta Reinforcement Learning for Robust and Adaptable Peg-in-Hole Assembly Tasks
Peg-in-hole assembly in unknown environments is a challenging task due to onboard sensor errors, which result in uncertainty and variations in task parameters such as the hole position and orientation. Meta Reinforcement Learning (Meta RL) has been proposed to mitigate this problem as it learns how to quickly adapt to new tasks with different parameters. However, previous approaches either depend on a sample-inefficient procedure or human demonstrations to perform the task in the real world. Our work modifies the data used by the Meta RL agent and uses simple features that can be easily measured in the real world even with an uncalibrated camera. We further adapt the Meta RL agent to use data from a force/torque sensor, instead of the camera, to perform the assembly, using a small amount of training data. Finally, we propose a fine-tuning method that consistently and safely adapts to out-of-distribution tasks with parameters that differ by a factor of 10 from the training tasks. Our results demonstrate that the proposed data modification significantly enhances the training and adaptation efficiency and enables the agent to achieve 100% success in tasks with different hole positions and orientations. Experiments on a real robot confirm that both camera- and force/torque sensor-equipped agents achieve 100% success in tasks with unknown hole positions, matching their simulation performance and validating the approach's robustness and applicability. Compared to the previous work with sample-inefficient adaptation, our proposed methods are 10 times more sample-efficient in the real-world tasks.
♻ ☆ PseudoTouch: Efficiently Imaging the Surface Feel of Objects for Robotic Manipulation ICRA 2025
Tactile sensing is vital for human dexterous manipulation, however, it has not been widely used in robotics. Compact, low-cost sensing platforms can facilitate a change, but unlike their popular optical counterparts, they are difficult to deploy in high-fidelity tasks due to their low signal dimensionality and lack of a simulation model. To overcome these challenges, we introduce PseudoTouch which links high-dimensional structural information to low-dimensional sensor signals. It does so by learning a low-dimensional visual-tactile embedding, wherein we encode a depth patch from which we decode the tactile signal. We collect and train PseudoTouch on a dataset comprising aligned tactile and visual data pairs obtained through random touching of eight basic geometric shapes. We demonstrate the utility of our trained PseudoTouch model in two downstream tasks: object recognition and grasp stability prediction. In the object recognition task, we evaluate the learned embedding's performance on a set of five basic geometric shapes and five household objects. Using PseudoTouch, we achieve an object recognition accuracy 84% after just ten touches, surpassing a proprioception baseline. For the grasp stability task, we use ACRONYM labels to train and evaluate a grasp success predictor using PseudoTouch's predictions derived from virtual depth information. Our approach yields a 32% absolute improvement in accuracy compared to the baseline relying on partial point cloud data. We make the data, code, and trained models publicly available at https://pseudotouch.cs.uni-freiburg.de.
comment: 7 pages, 5 figures, 2 tables, accepted at ICRA 2025
♻ ☆ Budget-optimal multi-robot layout design for box sorting IROS
Robotic systems are routinely used in the logistics industry to enhance operational efficiency, but the design of robot workspaces remains a complex and manual task, which limits the system's flexibility to changing demands. This paper aims to automate robot workspace design by proposing a computational framework to generate a budget-minimizing layout by selectively placing stationary robots on a floor grid to sort packages from given input and output locations. Finding a good layout that minimizes the hardware budget while ensuring motion feasibility is a challenging combinatorial problem with nonconvex motion constraints. We propose a new optimization-based approach that models layout planning as a subgraph optimization problem subject to network flow constraints. Our core insight is to abstract away motion constraints from the layout optimization by precomputing a kinematic reachability graph and then extract the optimal layout on this ground graph. We validate the motion feasibility of our approach by proposing a simple task assignment and motion planning technique. We benchmark our algorithm on problems with various grid resolutions and number of outputs and show improvements in memory efficiency over a heuristic search algorithm.
comment: 8 pages, submitted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
♻ ☆ HBTP: Heuristic Behavior Tree Planning with Large Language Model Reasoning
Behavior Trees (BTs) are increasingly becoming a popular control structure in robotics due to their modularity, reactivity, and robustness. In terms of BT generation methods, BT planning shows promise for generating reliable BTs. However, the scalability of BT planning is often constrained by prolonged planning times in complex scenarios, largely due to a lack of domain knowledge. In contrast, pre-trained Large Language Models (LLMs) have demonstrated task reasoning capabilities across various domains, though the correctness and safety of their planning remain uncertain. This paper proposes integrating BT planning with LLM reasoning, introducing Heuristic Behavior Tree Planning (HBTP)-a reliable and efficient framework for BT generation. The key idea in HBTP is to leverage LLMs for task-specific reasoning to generate a heuristic path, which BT planning can then follow to expand efficiently. We first introduce the heuristic BT expansion process, along with two heuristic variants designed for optimal planning and satisficing planning, respectively. Then, we propose methods to address the inaccuracies of LLM reasoning, including action space pruning and reflective feedback, to further enhance both reasoning accuracy and planning efficiency. Experiments demonstrate the theoretical bounds of HBTP, and results from four datasets confirm its practical effectiveness in everyday service robot applications.
♻ ☆ QueryCAD: Grounded Question Answering for CAD Models
CAD models are widely used in industry and are essential for robotic automation processes. However, these models are rarely considered in novel AI-based approaches, such as the automatic synthesis of robot programs, as there are no readily available methods that would allow CAD models to be incorporated for the analysis, interpretation, or extraction of information. To address these limitations, we propose QueryCAD, the first system designed for CAD question answering, enabling the extraction of precise information from CAD models using natural language queries. QueryCAD incorporates SegCAD, an open-vocabulary instance segmentation model we developed to identify and select specific parts of the CAD model based on part descriptions. We further propose a CAD question answering benchmark to evaluate QueryCAD and establish a foundation for future research. Lastly, we integrate QueryCAD within an automatic robot program synthesis framework, validating its ability to enhance deep-learning solutions for robotics by enabling them to process CAD models (https://claudius-kienle.github.com/querycad).
♻ ☆ Human Implicit Preference-Based Policy Fine-tuning for Multi-Agent Reinforcement Learning in USV Swarm
Multi-Agent Reinforcement Learning (MARL) has shown promise in solving complex problems involving cooperation and competition among agents, such as an Unmanned Surface Vehicle (USV) swarm used in search and rescue, surveillance, and vessel protection. However, aligning system behavior with user preferences is challenging due to the difficulty of encoding expert intuition into reward functions. To address the issue, we propose a Reinforcement Learning with Human Feedback (RLHF) approach for MARL that resolves credit-assignment challenges through an Agent-Level Feedback system categorizing feedback into intra-agent, inter-agent, and intra-team types. To overcome the challenges of direct human feedback, we employ a Large Language Model (LLM) evaluator to validate our approach using feedback scenarios such as region constraints, collision avoidance, and task allocation. Our method effectively refines USV swarm policies, addressing key challenges in multi-agent systems while maintaining fairness and performance consistency.
comment: 7 pages, 4 figures
♻ ☆ SpatialVLA: Exploring Spatial Representations for Visual-Language-Action Model
In this paper, we claim that spatial understanding is the keypoint in robot manipulation, and propose SpatialVLA to explore effective spatial representations for the robot foundation model. Specifically, we introduce Ego3D Position Encoding to inject 3D information into the input observations of the visual-language-action model, and propose Adaptive Action Grids to represent spatial robot movement actions with adaptive discretized action grids, facilitating learning generalizable and transferrable spatial action knowledge for cross-robot control. SpatialVLA is first pre-trained on top of a vision-language model with 1.1 Million real-world robot episodes, to learn a generalist manipulation policy across multiple robot environments and tasks. After pre-training, SpatialVLA is directly applied to perform numerous tasks in a zero-shot manner. The superior results in both simulation and real-world robots demonstrate its advantage of inferring complex robot motion trajectories and its strong in-domain multi-task generalization ability. We further show the proposed Adaptive Action Grids offer a new and effective way to fine-tune the pre-trained SpatialVLA model for new simulation and real-world setups, where the pre-learned action grids are re-discretized to capture robot-specific spatial action movements of new setups. The superior results from extensive evaluations demonstrate the exceptional in-distribution generalization and out-of-distribution adaptation capability, highlighting the crucial benefit of the proposed spatial-aware representations for generalist robot policy learning. All the details and codes will be open-sourced.
♻ ☆ Gaussian Splatting Visual MPC for Granular Media Manipulation
Recent advancements in learned 3D representations have enabled significant progress in solving complex robotic manipulation tasks, particularly for rigid-body objects. However, manipulating granular materials such as beans, nuts, and rice, remains challenging due to the intricate physics of particle interactions, high-dimensional and partially observable state, inability to visually track individual particles in a pile, and the computational demands of accurate dynamics prediction. Current deep latent dynamics models often struggle to generalize in granular material manipulation due to a lack of inductive biases. In this work, we propose a novel approach that learns a visual dynamics model over Gaussian splatting representations of scenes and leverages this model for manipulating granular media via Model-Predictive Control. Our method enables efficient optimization for complex manipulation tasks on piles of granular media. We evaluate our approach in both simulated and real-world settings, demonstrating its ability to solve unseen planning tasks and generalize to new environments in a zero-shot transfer. We also show significant prediction and manipulation performance improvements compared to existing granular media manipulation methods.
comment: project website https://weichengtseng.github.io/gs-granular-mani/
♻ ☆ ROS2WASM: Bringing the Robot Operating System to the Web
The Robot Operating System (ROS) has become the de facto standard middleware in robotics, widely adopted across domains ranging from education to industrial applications. The RoboStack distribution, a conda-based packaging system for ROS, has extended ROS's accessibility by facilitating installation across all major operating systems and architectures, integrating seamlessly with scientific tools such as PyTorch and Open3D. This paper presents ROS2WASM, a novel integration of RoboStack with WebAssembly, enabling the execution of ROS 2 and its associated software directly within web browsers, without requiring local installations. ROS2WASM significantly enhances the reproducibility and shareability of research, lowers barriers to robotics education, and leverages WebAssembly's robust security framework to protect against malicious code. We detail our methodology for cross-compiling ROS 2 packages into WebAssembly, the development of a specialized middleware for ROS 2 communication within browsers, and the implementation of https://www.ros2wasm.dev, a web platform enabling users to interact with ROS 2 environments. Additionally, we extend support to the Robotics Toolbox for Python and adapt its Swift simulator for browser compatibility. Our work paves the way for unprecedented accessibility in robotics, offering scalable, secure, and reproducible environments that have the potential to transform educational and research paradigms.
comment: Proceedings of the IEEE International Conference on Robotics and Automation 2025
♻ ☆ Bootstrapping Object-level Planning with Large Language Models ICRA 2025
We introduce a new method that extracts knowledge from a large language model (LLM) to produce object-level plans, which describe high-level changes to object state, and uses them to bootstrap task and motion planning (TAMP). Existing work uses LLMs to directly output task plans or generate goals in representations like PDDL. However, these methods fall short because they rely on the LLM to do the actual planning or output a hard-to-satisfy goal. Our approach instead extracts knowledge from an LLM in the form of plan schemas as an object-level representation called functional object-oriented networks (FOON), from which we automatically generate PDDL subgoals. Our method markedly outperforms alternative planning strategies in completing several pick-and-place tasks in simulation.
comment: Accepted to ICRA 2025; 11 pages (6 pages + 1 page references + 4 pages appendix)
♻ ☆ Implicit Articulated Robot Morphology Modeling with Configuration Space Neural Signed Distance Functions ICRA 2025
In this paper, we introduce a novel approach to implicitly encode precise robot morphology using forward kinematics based on a configuration space signed distance function. Our proposed Robot Neural Distance Function (RNDF) optimizes the balance between computational efficiency and accuracy for signed distance queries conditioned on the robot's configuration for each link. Compared to the baseline method, the proposed approach achieves an 81.1% reduction in distance error while utilizing only 47.6% of model parameters. Its parallelizable and differentiable nature provides direct access to joint-space derivatives, enabling a seamless connection between robot planning in Cartesian task space and configuration space. These features make RNDF an ideal surrogate model for general robot optimization and learning in 3D spatial planning tasks. Specifically, we apply RNDF to robotic arm-hand modeling and demonstrate its potential as a core platform for whole-arm, collision-free grasp planning in cluttered environments. The code and model are available at https://github.com/robotic-manipulation/RNDF.
comment: accepted to ICRA 2025; 7 pages, 6 figures
♻ ☆ RecoveryChaining: Learning Local Recovery Policies for Robust Manipulation
Model-based planners and controllers are commonly used to solve complex manipulation problems as they can efficiently optimize diverse objectives and generalize to long horizon tasks. However, they often fail during deployment due to noisy actuation, partial observability and imperfect models. To enable a robot to recover from such failures, we propose to use hierarchical reinforcement learning to learn a recovery policy. The recovery policy is triggered when a failure is detected based on sensory observations and seeks to take the robot to a state from which it can complete the task using the nominal model-based controllers. Our approach, called RecoveryChaining, uses a hybrid action space, where the model-based controllers are provided as additional \emph{nominal} options which allows the recovery policy to decide how to recover, when to switch to a nominal controller and which controller to switch to even with \emph{sparse rewards}. We evaluate our approach in three multi-step manipulation tasks with sparse rewards, where it learns significantly more robust recovery policies than those learned by baselines. We successfully transfer recovery policies learned in simulation to a physical robot to demonstrate the feasibility of sim-to-real transfer with our method.
comment: Added Lazy RecoveryChaining algorithm. 8 pages, 9 figures
♻ ☆ Closed-Loop Open-Vocabulary Mobile Manipulation with GPT-4V ICRA
Autonomous robot navigation and manipulation in open environments require reasoning and replanning with closed-loop feedback. In this work, we present COME-robot, the first closed-loop robotic system utilizing the GPT-4V vision-language foundation model for open-ended reasoning and adaptive planning in real-world scenarios.COME-robot incorporates two key innovative modules: (i) a multi-level open-vocabulary perception and situated reasoning module that enables effective exploration of the 3D environment and target object identification using commonsense knowledge and situated information, and (ii) an iterative closed-loop feedback and restoration mechanism that verifies task feasibility, monitors execution success, and traces failure causes across different modules for robust failure recovery. Through comprehensive experiments involving 8 challenging real-world mobile and tabletop manipulation tasks, COME-robot demonstrates a significant improvement in task success rate (~35%) compared to state-of-the-art methods. We further conduct comprehensive analyses to elucidate how COME-robot's design facilitates failure recovery, free-form instruction following, and long-horizon task planning.
comment: 6 pages, Accepted at 2025 IEEE ICRA, website: https://come-robot.github.io/
♻ ☆ FoundationStereo: Zero-Shot Stereo Matching CVPR 2025
Tremendous progress has been made in deep stereo matching to excel on benchmark datasets through per-domain fine-tuning. However, achieving strong zero-shot generalization - a hallmark of foundation models in other computer vision tasks - remains challenging for stereo matching. We introduce FoundationStereo, a foundation model for stereo depth estimation designed to achieve strong zero-shot generalization. To this end, we first construct a large-scale (1M stereo pairs) synthetic training dataset featuring large diversity and high photorealism, followed by an automatic self-curation pipeline to remove ambiguous samples. We then design a number of network architecture components to enhance scalability, including a side-tuning feature backbone that adapts rich monocular priors from vision foundation models to mitigate the sim-to-real gap, and long-range context reasoning for effective cost volume filtering. Together, these components lead to strong robustness and accuracy across domains, establishing a new standard in zero-shot stereo depth estimation. Project page: https://nvlabs.github.io/FoundationStereo/
comment: CVPR 2025
♻ ☆ On the Vulnerability of LLM/VLM-Controlled Robotics
In this work, we highlight vulnerabilities in robotic systems integrating large language models (LLMs) and vision-language models (VLMs) due to input modality sensitivities. While LLM/VLM-controlled robots show impressive performance across various tasks, their reliability under slight input variations remains underexplored yet critical. These models are highly sensitive to instruction or perceptual input changes, which can trigger misalignment issues, leading to execution failures with severe real-world consequences. To study this issue, we analyze the misalignment-induced vulnerabilities within LLM/VLM-controlled robotic systems and present a mathematical formulation for failure modes arising from variations in input modalities. We propose empirical perturbation strategies to expose these vulnerabilities and validate their effectiveness through experiments on multiple robot manipulation tasks. Our results show that simple input perturbations reduce task execution success rates by 22.2% and 14.6% in two representative LLM/VLM-controlled robotic systems. These findings underscore the importance of input modality robustness and motivate further research to ensure the safe and reliable deployment of advanced LLM/VLM-controlled robotic systems.
♻ ☆ FloNa: Floor Plan Guided Embodied Visual Navigation AAAI 2025
Humans naturally rely on floor plans to navigate in unfamiliar environments, as they are readily available, reliable, and provide rich geometrical guidance. However, existing visual navigation settings overlook this valuable prior knowledge, leading to limited efficiency and accuracy. To eliminate this gap, we introduce a novel navigation task: Floor Plan Visual Navigation (FloNa), the first attempt to incorporate floor plan into embodied visual navigation. While the floor plan offers significant advantages, two key challenges emerge: (1) handling the spatial inconsistency between the floor plan and the actual scene layout for collision-free navigation, and (2) aligning observed images with the floor plan sketch despite their distinct modalities. To address these challenges, we propose FloDiff, a novel diffusion policy framework incorporating a localization module to facilitate alignment between the current observation and the floor plan. We further collect $20k$ navigation episodes across $117$ scenes in the iGibson simulator to support the training and evaluation. Extensive experiments demonstrate the effectiveness and efficiency of our framework in unfamiliar scenes using floor plan knowledge. Project website: https://gauleejx.github.io/flona/.
comment: Accepted by AAAI 2025
♻ ☆ Reinforcement Learning Within the Classical Robotics Stack: A Case Study in Robot Soccer ICRA 2025
Robot decision-making in partially observable, real-time, dynamic, and multi-agent environments remains a difficult and unsolved challenge. Model-free reinforcement learning (RL) is a promising approach to learning decision-making in such domains, however, end-to-end RL in complex environments is often intractable. To address this challenge in the RoboCup Standard Platform League (SPL) domain, we developed a novel architecture integrating RL within a classical robotics stack, while employing a multi-fidelity sim2real approach and decomposing behavior into learned sub-behaviors with heuristic selection. Our architecture led to victory in the 2024 RoboCup SPL Challenge Shield Division. In this work, we fully describe our system's architecture and empirically analyze key design decisions that contributed to its success. Our approach demonstrates how RL-based behaviors can be integrated into complete robot behavior architectures.
comment: ICRA 2025
♻ ☆ Safe Multi-Agent Navigation guided by Goal-Conditioned Safe Reinforcement Learning
Safe navigation is essential for autonomous systems operating in hazardous environments. Traditional planning methods excel at long-horizon tasks but rely on a predefined graph with fixed distance metrics. In contrast, safe Reinforcement Learning (RL) can learn complex behaviors without relying on manual heuristics but fails to solve long-horizon tasks, particularly in goal-conditioned and multi-agent scenarios. In this paper, we introduce a novel method that integrates the strengths of both planning and safe RL. Our method leverages goal-conditioned RL and safe RL to learn a goal-conditioned policy for navigation while concurrently estimating cumulative distance and safety levels using learned value functions via an automated self-training algorithm. By constructing a graph with states from the replay buffer, our method prunes unsafe edges and generates a waypoint-based plan that the agent follows until reaching its goal, effectively balancing faster and safer routes over extended distances. Utilizing this unified high-level graph and a shared low-level goal-conditioned safe RL policy, we extend this approach to address the multi-agent safe navigation problem. In particular, we leverage Conflict-Based Search (CBS) to create waypoint-based plans for multiple agents allowing for their safe navigation over extended horizons. This integration enhances the scalability of goal-conditioned safe RL in multi-agent scenarios, enabling efficient coordination among agents. Extensive benchmarking against state-of-the-art baselines demonstrates the effectiveness of our method in achieving distance goals safely for multiple agents in complex and hazardous environments. Our code and further details about or work is available at https://safe-visual-mapf-mers.csail.mit.edu/.
comment: Due to the limitation "The abstract field cannot be longer than 1,920 characters", the abstract here is shorter than that in the PDF file
♻ ☆ Nearest-Neighbourless Asymptotically Optimal Motion Planning with Fully Connected Informed Trees (FCIT*) ICRA
Improving the performance of motion planning algorithms for high-degree-of-freedom robots usually requires reducing the cost or frequency of computationally expensive operations. Traditionally, and especially for asymptotically optimal sampling-based motion planners, the most expensive operations are local motion validation and querying the nearest neighbours of a configuration. Recent advances have significantly reduced the cost of motion validation by using single instruction/multiple data (SIMD) parallelism to improve solution times for satisficing motion planning problems. These advances have not yet been applied to asymptotically optimal motion planning. This paper presents Fully Connected Informed Trees (FCIT*), the first fully connected, informed, anytime almost-surely asymptotically optimal (ASAO) algorithm. FCIT* exploits the radically reduced cost of edge evaluation via SIMD parallelism to build and search fully connected graphs. This removes the need for nearest-neighbours structures, which are a dominant cost for many sampling-based motion planners, and allows it to find initial solutions faster than state-of-the-art ASAO (VAMP, OMPL) and satisficing (OMPL) algorithms on the MotionBenchMaker dataset while converging towards optimal plans in an anytime manner.
comment: IEEE International Conference on Robotics and Automation (ICRA) 2025, 6 + 1 pages, 3 figures, 1 table. A video of FCIT* can be found at https://www.youtube.com/watch?v=Lb_5Znpcleg . Information on the implementation of FCIT* is available at https://robotic-esp.com/code/fcitstar/
♻ ☆ Discovering Object Attributes by Prompting Large Language Models with Perception-Action APIs ICRA 2025
There has been a lot of interest in grounding natural language to physical entities through visual context. While Vision Language Models (VLMs) can ground linguistic instructions to visual sensory information, they struggle with grounding non-visual attributes, like the weight of an object. Our key insight is that non-visual attribute detection can be effectively achieved by active perception guided by visual reasoning. To this end, we present a perception-action API that consists of VLMs and Large Language Models (LLMs) as backbones, together with a set of robot control functions. When prompted with this API and a natural language query, an LLM generates a program to actively identify attributes given an input image. Offline testing on the Odd-One-Out dataset demonstrates that our framework outperforms vanilla VLMs in detecting attributes like relative object location, size, and weight. Online testing in realistic household scenes on AI2-THOR and a real robot demonstration on a DJI RoboMaster EP robot highlight the efficacy of our approach.
comment: ICRA 2025
♻ ☆ M2Distill: Multi-Modal Distillation for Lifelong Imitation Learning ICRA 2025
Lifelong imitation learning for manipulation tasks poses significant challenges due to distribution shifts that occur in incremental learning steps. Existing methods often focus on unsupervised skill discovery to construct an ever-growing skill library or distillation from multiple policies, which can lead to scalability issues as diverse manipulation tasks are continually introduced and may fail to ensure a consistent latent space throughout the learning process, leading to catastrophic forgetting of previously learned skills. In this paper, we introduce M2Distill, a multi-modal distillation-based method for lifelong imitation learning focusing on preserving consistent latent space across vision, language, and action distributions throughout the learning process. By regulating the shifts in latent representations across different modalities from previous to current steps, and reducing discrepancies in Gaussian Mixture Model (GMM) policies between consecutive learning steps, we ensure that the learned policy retains its ability to perform previously learned tasks while seamlessly integrating new skills. Extensive evaluations on the LIBERO lifelong imitation learning benchmark suites, including LIBERO-OBJECT, LIBERO-GOAL, and LIBERO-SPATIAL, demonstrate that our method consistently outperforms prior state-of-the-art methods across all evaluated metrics.
comment: IEEE ICRA 2025
♻ ☆ Articulated Object Manipulation using Online Axis Estimation with SAM2-Based Tracking
Articulated object manipulation requires precise object interaction, where the object's axis must be carefully considered. Previous research employed interactive perception for manipulating articulated objects, but typically, open-loop approaches often suffer from overlooking the interaction dynamics. To address this limitation, we present a closed-loop pipeline integrating interactive perception with online axis estimation from segmented 3D point clouds. Our method leverages any interactive perception technique as a foundation for interactive perception, inducing slight object movement to generate point cloud frames of the evolving dynamic scene. These point clouds are then segmented using Segment Anything Model 2 (SAM2), after which the moving part of the object is masked for accurate motion online axis estimation, guiding subsequent robotic actions. Our approach significantly enhances the precision and efficiency of manipulation tasks involving articulated objects. Experiments in simulated environments demonstrate that our method outperforms baseline approaches, especially in tasks that demand precise axis-based control. Project Page: https://hytidel.github.io/video-tracking-for-axis-estimation/.
comment: Project Page: https://hytidel.github.io/video-tracking-for-axis-estimation/
♻ ☆ Surgical-LVLM: Learning to Adapt Large Vision-Language Model for Grounded Visual Question Answering in Robotic Surgery ICLR 2025
Recent advancements in Surgical Visual Question Answering (Surgical-VQA) and related region grounding have shown great promise for robotic and medical applications, addressing the critical need for automated methods in personalized surgical mentorship. However, existing models primarily provide simple structured answers and struggle with complex scenarios due to their limited capability in recognizing long-range dependencies and aligning multimodal information. In this paper, we introduce Surgical-LVLM, a novel personalized large vision-language model tailored for complex surgical scenarios. Leveraging the pre-trained large vision-language model and specialized Visual Perception LoRA (VP-LoRA) blocks, our model excels in understanding complex visual-language tasks within surgical contexts. In addressing the visual grounding task, we propose the Token-Interaction (TIT) module, which strengthens the interaction between the grounding module and the language responses of the Large Visual Language Model (LVLM) after projecting them into the latent space. We demonstrate the effectiveness of Surgical-LVLM on several benchmarks, including EndoVis-17-VQLA, EndoVis-18-VQLA, and a newly introduced EndoVis Conversations dataset, which sets new performance standards. Our work contributes to advancing the field of automated surgical mentorship by providing a context-aware solution.
comment: The manuscript is accepted by ICLR 2025 FM-Wild Workshop
♻ ☆ Integral Forms in Matrix Lie Groups
Matrix Lie groups provide a language for describing motion in such fields as robotics, computer vision, and graphics. When using these tools, we are often faced with turning infinite-series expressions into more compact finite series (e.g., the Euler-Rodriques formula), which can sometimes be onerous. In this paper, we identify some useful integral forms in matrix Lie group expressions that offer a more streamlined pathway for computing compact analytic results. Moreover, we present some recursive structures in these integral forms that show many of these expressions are interrelated. Key to our approach is that we are able to apply the minimal polynomial for a Lie algebra quite early in the process to keep expressions compact throughout the derivations. With the series approach, the minimal polynomial is usually applied at the end, making it hard to recognize common analytic expressions in the result. We show that our integral method can reproduce several series-derived results from the literature.
comment: 22 pages
♻ ☆ Adaptive Compliance Policy: Learning Approximate Compliance for Diffusion Guided Control
Compliance plays a crucial role in manipulation, as it balances between the concurrent control of position and force under uncertainties. Yet compliance is often overlooked by today's visuomotor policies that solely focus on position control. This paper introduces Adaptive Compliance Policy (ACP), a novel framework that learns to dynamically adjust system compliance both spatially and temporally for given manipulation tasks from human demonstrations, improving upon previous approaches that rely on pre-selected compliance parameters or assume uniform constant stiffness. However, computing full compliance parameters from human demonstrations is an ill-defined problem. Instead, we estimate an approximate compliance profile with two useful properties: avoiding large contact forces and encouraging accurate tracking. Our approach enables robots to handle complex contact-rich manipulation tasks and achieves over 50\% performance improvement compared to state-of-the-art visuomotor policy methods. For result videos, see https://adaptive-compliance.github.io/
♻ ☆ RowDetr: End-to-End Row Detection Using Polynomials
Crop row detection is essential for enabling autonomous navigation in GPS-denied environments, such as under-canopy agricultural settings. Traditional methods often struggle with occlusions, variable lighting conditions, and the structural variability of crop rows. To address these challenges, RowDetr, a novel end-to-end neural network architecture, is introduced for robust and efficient row detection. A new dataset of approximately 6,900 images is curated, capturing a diverse range of real-world agricultural conditions, including occluded rows, uneven terrain, and varying crop densities. Unlike previous approaches, RowDetr leverages smooth polynomial functions to precisely delineate crop boundaries in the image space, ensuring a more structured and interpretable representation of row geometry. A key innovation of this approach is PolyOptLoss, a novel energy-based loss function designed to enhance learning robustness, even in the presence of noisy or imperfect labels. This loss function significantly improves model stability and generalization by optimizing polynomial curve fitting directly in image space. Extensive experiments demonstrate that RowDetr significantly outperforms existing frameworks, including Agronav and RowColAttention, across key performance metrics. Additionally, RowDetr achieves a sixfold speedup over Agronav, making it highly suitable for real-time deployment on resource-constrained edge devices. To facilitate better comparisons across future studies, lane detection metrics from autonomous driving research are adapted, providing a more standardized and meaningful evaluation framework for crop row detection. This work establishes a new benchmark in under-canopy
comment: Code will be open sourced upon publication
♻ ☆ Learning to Swim: Reinforcement Learning for 6-DOF Control of Thruster-driven Autonomous Underwater Vehicles ICRA 2025
Controlling AUVs can be challenging because of the effect of complex non-linear hydrodynamic forces acting on the robot, which are significant in water and cannot be ignored. The problem is exacerbated for small AUVs for which the dynamics can change significantly with payload changes and deployments under different hydrodynamic conditions. The common approach to AUV control is a combination of passive stabilization with added buoyancy on top and weights on the bottom, and a PID controller tuned for simple and smooth motion primitives. However, the approach comes at the cost of sluggish controls and often the need to re-tune controllers with configuration changes. In this paper, we propose a fast (trainable in minutes), reinforcement learning-based approach for full 6 degree of freedom (DOF) control of a thruster-driven AUVs, taking 6-DOF command-conditioned inputs direct to thruster outputs. We present a new, highly parallelized simulator for underwater vehicle dynamics. We demonstrate this approach through zero-shot sim-to-real (with no tuning) transfer onto a real AUV that produces comparable results to hand-tuned PID controllers. Furthermore, we show that domain randomization on the simulator produces policies that are robust to small variations in vehicle's physical parameters.
comment: To appear at ICRA 2025
♻ ☆ Agile Mobility with Rapid Online Adaptation via Meta-learning and Uncertainty-aware MPPI ICRA 2025
Modern non-linear model-based controllers require an accurate physics model and model parameters to be able to control mobile robots at their limits. Also, due to surface slipping at high speeds, the friction parameters may continually change (like tire degradation in autonomous racing), and the controller may need to adapt rapidly. Many works derive a task-specific robot model with a parameter adaptation scheme that works well for the task but requires a lot of effort and tuning for each platform and task. In this work, we design a full model-learning-based controller based on meta pre-training that can very quickly adapt using few-shot dynamics data to any wheel-based robot with any model parameters, while also reasoning about model uncertainty. We demonstrate our results in small-scale numeric simulation, the large-scale Unity simulator, and on a medium-scale hardware platform with a wide range of settings. We show that our results are comparable to domain-specific well-engineered controllers, and have excellent generalization performance across all scenarios.
comment: ICRA 2025
♻ ☆ On the Feasibility of Fingerprinting Collaborative Robot Network Traffic
This study examines privacy risks in collaborative robotics, focusing on the potential for traffic analysis in encrypted robot communications. While previous research has explored low-level command recovery in teleoperation setups, our work investigates high-level motion recovery from script-based control interfaces. We evaluate the efficacy of prominent website fingerprinting techniques (e.g., Tik-Tok, RF) and their limitations in accurately identifying robotic actions due to their inability to capture detailed temporal relationships. To address this, we introduce a traffic classification approach using signal processing techniques, demonstrating high accuracy in action identification and highlighting the vulnerability of encrypted communications to privacy breaches. Additionally, we explore defenses such as packet padding and timing manipulation, revealing the challenges in balancing traffic analysis resistance with network efficiency. Our findings emphasize the need for continued development of practical defenses in robotic privacy and security.
comment: 22 pages
♻ ☆ Visual-Inertial SLAM for Unstructured Outdoor Environments: Benchmarking the Benefits and Computational Costs of Loop Closing
Simultaneous Localization and Mapping (SLAM) is essential for mobile robotics, enabling autonomous navigation in dynamic, unstructured outdoor environments without relying on external positioning systems. These environments pose significant challenges due to variable lighting, weather conditions, and complex terrain. Visual-Inertial SLAM has emerged as a promising solution for robust localization under such conditions. This paper benchmarks several open-source Visual-Inertial SLAM systems, including traditional methods (ORB-SLAM3, VINS-Fusion, OpenVINS, Kimera, and SVO Pro) and learning-based approaches (HFNet-SLAM, AirSLAM), to evaluate their performance in unstructured natural outdoor settings. We focus on the impact of loop closing on localization accuracy and computational demands, providing a comprehensive analysis of these systems' effectiveness in real-world environments and especially their application to embedded systems in outdoor robotics. Our contributions further include an assessment of varying frame rates on localization accuracy and computational load. The findings highlight the importance of loop closing in improving localization accuracy while managing computational resources efficiently, offering valuable insights for optimizing Visual-Inertial SLAM systems for practical outdoor applications in mobile robotics. The dataset and the benchmark code are available under https://github.com/iis-esslingen/vi-slam_lc_benchmark.
comment: 22 pages, 8 figures, 7 tables
♻ ☆ ADMM-MCBF-LCA: A Layered Control Architecture for Safe Real-Time Navigation
We consider the problem of safe real-time navigation of a robot in a dynamic environment with moving obstacles of arbitrary smooth geometries and input saturation constraints. We assume that the robot detects and models nearby obstacle boundaries with a short-range sensor and that this detection is error-free. This problem presents three main challenges: i) input constraints, ii) safety, and iii) real-time computation. To tackle all three challenges, we present a layered control architecture (LCA) consisting of an offline path library generation layer, and an online path selection and safety layer. To overcome the limitations of reactive methods, our offline path library consists of feasible controllers, feedback gains, and reference trajectories. To handle computational burden and safety, we solve online path selection and generate safe inputs that run at 100 Hz. Through simulations on Gazebo and Fetch hardware in an indoor environment, we evaluate our approach against baselines that are layered, end-to-end, or reactive. Our experiments demonstrate that among all algorithms, only our proposed LCA is able to complete tasks such as reaching a goal, safely. When comparing metrics such as safety, input error, and success rate, we show that our approach generates safe and feasible inputs throughout the robot execution.
♻ ☆ GenTact Toolbox: A Computational Design Pipeline to Procedurally Generate Context-Driven 3D Printed Whole-Body Artificial Skins ICRA
Developing whole-body tactile skins for robots remains a challenging task, as existing solutions often prioritize modular, one-size-fits-all designs, which, while versatile, fail to account for the robot's specific shape and the unique demands of its operational context. In this work, we introduce GenTact Toolbox, a computational pipeline for creating versatile whole-body tactile skins tailored to both robot shape and application domain. Our method includes procedural mesh generation for conforming to a robot's topology, task-driven simulation to refine sensor distribution, and multi-material 3D printing for shape-agnostic fabrication. We validate our approach by creating and deploying six capacitive sensing skins on a Franka Research 3 robot arm in a human-robot interaction scenario. This work represents a shift from "one-size-fits-all" tactile sensors toward context-driven, highly adaptable designs that can be customized for a wide range of robotic systems and applications. The project website is available at https://hiro-group.ronc.one/gentacttoolbox
comment: Camera ready accepted at the IEEE International Conference on Robotics and Automation (ICRA) 2025
♻ ☆ Unifying Large Language Model and Deep Reinforcement Learning for Human-in-Loop Interactive Socially-aware Navigation
Navigating human-filled spaces is crucial for the interactive social robots to support advanced services, such as cooperative carrying, which enables service provision in complex and crowded environments while adapting behavior based on real-time human language commands or feedback. However, existing social robot navigation planners face two major challenges: managing real-time user inputs and ensuring socially compliant behaviors in unfamiliar, zero-shot environments. In response, we introduce SALM, an interactive, human-in-loop Socially-Aware navigation Large Language Model framework that dynamically integrates deep reinforcement learning (DRL) with large language model (LLM) capabilities. SALM leverages contextual semantic understanding from real-time human-robot interactions to convert high-level user commands into precise, low-level control actions. A high-level LLM module parses user input, guiding the simultaneous generation of navigation commands by both a large language navigation model (LNM) and a DRL-based navigation model (RLNM). A memory mechanism archives temporal data for continuous refinement, while a multi-step graph-of-thoughts inference-based large language feedback model adaptively fuses the strengths of both planning approaches. Experimental evaluations demonstrate that SALM not only enhances navigational precision in crowded, dynamic environments but also significantly improves system adaptability, offering tailored behaviors that align with individual user preferences and real-time feedback. More details and videos about this work are available at: https://sites.google.com/view/navi-salm.
♻ ☆ Human-Robot Cooperative Distribution Coupling for Hamiltonian-Constrained Social Navigation ICRA2025
Navigating in human-filled public spaces is a critical challenge for deploying autonomous robots in real-world environments. This paper introduces NaviDIFF, a novel Hamiltonian-constrained socially-aware navigation framework designed to address the complexities of human-robot interaction and socially-aware path planning. NaviDIFF integrates a port-Hamiltonian framework to model dynamic physical interactions and a diffusion model to manage uncertainty in human-robot cooperation. The framework leverages a spatial-temporal transformer to capture social and temporal dependencies, enabling more accurate spatial-temporal environmental dynamics understanding and port-Hamiltonian physical interactive process construction. Additionally, reinforcement learning from human feedback is employed to fine-tune robot policies, ensuring adaptation to human preferences and social norms. Extensive experiments demonstrate that NaviDIFF outperforms state-of-the-art methods in social navigation tasks, offering improved stability, efficiency, and adaptability.
comment: ICRA2025
♻ ☆ Hypergraph-based Coordinated Task Allocation and Socially-aware Navigation for Multi-Robot Systems ICRA2025
A team of multiple robots seamlessly and safely working in human-filled public environments requires adaptive task allocation and socially-aware navigation that account for dynamic human behavior. Current approaches struggle with highly dynamic pedestrian movement and the need for flexible task allocation. We propose Hyper-SAMARL, a hypergraph-based system for multi-robot task allocation and socially-aware navigation, leveraging multi-agent reinforcement learning (MARL). Hyper-SAMARL models the environmental dynamics between robots, humans, and points of interest (POIs) using a hypergraph, enabling adaptive task assignment and socially-compliant navigation through a hypergraph diffusion mechanism. Our framework, trained with MARL, effectively captures interactions between robots and humans, adapting tasks based on real-time changes in human activity. Experimental results demonstrate that Hyper-SAMARL outperforms baseline models in terms of social navigation, task completion efficiency, and adaptability in various simulated scenarios.
comment: ICRA2025
♻ ☆ Adaptive Kalman-Informed Transformer
The extended Kalman filter (EKF) is a widely adopted method for sensor fusion in navigation applications. A crucial aspect of the EKF is the online determination of the process noise covariance matrix reflecting the model uncertainty. While common EKF implementation assumes a constant process noise, in real-world scenarios, the process noise varies, leading to inaccuracies in the estimated state and potentially causing the filter to diverge. Model-based adaptive EKF methods were proposed and demonstrated performance improvements to cope with such situations, highlighting the need for a robust adaptive approach. In this paper, we derive an adaptive Kalman-informed transformer (A-KIT) designed to learn the varying process noise covariance online. Built upon the foundations of the EKF, A-KIT utilizes the well-known capabilities of set transformers, including inherent noise reduction and the ability to capture nonlinear behavior in the data. This approach is suitable for any application involving the EKF. In a case study, we demonstrate the effectiveness of A-KIT in nonlinear fusion between a Doppler velocity log and inertial sensors. This is accomplished using real data recorded from sensors mounted on an autonomous underwater vehicle operating in the Mediterranean Sea. We show that A-KIT outperforms the conventional EKF by more than 49.5% and model-based adaptive EKF by an average of 35.4% in terms of position accuracy.
Computer Vision 134
☆ Fairness-Aware Low-Rank Adaptation Under Demographic Privacy Constraints
Pre-trained foundation models can be adapted for specific tasks using Low-Rank Adaptation (LoRA). However, the fairness properties of these adapted classifiers remain underexplored. Existing fairness-aware fine-tuning methods rely on direct access to sensitive attributes or their predictors, but in practice, these sensitive attributes are often held under strict consumer privacy controls, and neither the attributes nor their predictors are available to model developers, hampering the development of fair models. To address this issue, we introduce a set of LoRA-based fine-tuning methods that can be trained in a distributed fashion, where model developers and fairness auditors collaborate without sharing sensitive attributes or predictors. In this paper, we evaluate three such methods - sensitive unlearning, adversarial training, and orthogonality loss - against a fairness-unaware baseline, using experiments on the CelebA and UTK-Face datasets with an ImageNet pre-trained ViT-Base model. We find that orthogonality loss consistently reduces bias while maintaining or improving utility, whereas adversarial training improves False Positive Rate Parity and Demographic Parity in some cases, and sensitive unlearning provides no clear benefit. In tasks where significant biases are present, distributed fairness-aware fine-tuning methods can effectively eliminate bias without compromising consumer privacy and, in most cases, improve model utility.
☆ Task-oriented Uncertainty Collaborative Learning for Label-Efficient Brain Tumor Segmentation
Multi-contrast magnetic resonance imaging (MRI) plays a vital role in brain tumor segmentation and diagnosis by leveraging complementary information from different contrasts. Each contrast highlights specific tumor characteristics, enabling a comprehensive understanding of tumor morphology, edema, and pathological heterogeneity. However, existing methods still face the challenges of multi-level specificity perception across different contrasts, especially with limited annotations. These challenges include data heterogeneity, granularity differences, and interference from redundant information. To address these limitations, we propose a Task-oriented Uncertainty Collaborative Learning (TUCL) framework for multi-contrast MRI segmentation. TUCL introduces a task-oriented prompt attention (TPA) module with intra-prompt and cross-prompt attention mechanisms to dynamically model feature interactions across contrasts and tasks. Additionally, a cyclic process is designed to map the predictions back to the prompt to ensure that the prompts are effectively utilized. In the decoding stage, the TUCL framework proposes a dual-path uncertainty refinement (DUR) strategy which ensures robust segmentation by refining predictions iteratively. Extensive experimental results on limited labeled data demonstrate that TUCL significantly improves segmentation accuracy (88.2\% in Dice and 10.853 mm in HD95). It shows that TUCL has the potential to extract multi-contrast information and reduce the reliance on extensive annotations. The code is available at: https://github.com/Zhenxuan-Zhang/TUCL_BrainSeg.
☆ AIM-Fair: Advancing Algorithmic Fairness via Selectively Fine-Tuning Biased Models with Contextual Synthetic Data CVPR 2025
Recent advances in generative models have sparked research on improving model fairness with AI-generated data. However, existing methods often face limitations in the diversity and quality of synthetic data, leading to compromised fairness and overall model accuracy. Moreover, many approaches rely on the availability of demographic group labels, which are often costly to annotate. This paper proposes AIM-Fair, aiming to overcome these limitations and harness the potential of cutting-edge generative models in promoting algorithmic fairness. We investigate a fine-tuning paradigm starting from a biased model initially trained on real-world data without demographic annotations. This model is then fine-tuned using unbiased synthetic data generated by a state-of-the-art diffusion model to improve its fairness. Two key challenges are identified in this fine-tuning paradigm, 1) the low quality of synthetic data, which can still happen even with advanced generative models, and 2) the domain and bias gap between real and synthetic data. To address the limitation of synthetic data quality, we propose Contextual Synthetic Data Generation (CSDG) to generate data using a text-to-image diffusion model (T2I) with prompts generated by a context-aware LLM, ensuring both data diversity and control of bias in synthetic data. To resolve domain and bias shifts, we introduce a novel selective fine-tuning scheme in which only model parameters more sensitive to bias and less sensitive to domain shift are updated. Experiments on CelebA and UTKFace datasets show that our AIM-Fair improves model fairness while maintaining utility, outperforming both fully and partially fine-tuned approaches to model fairness.
comment: Accepted at CVPR 2025. Github: https://github.com/zengqunzhao/AIM-Fair. Project page: https://zengqunzhao.github.io/AIMFair
☆ NoT: Federated Unlearning via Weight Negation
Federated unlearning (FU) aims to remove a participant's data contributions from a trained federated learning (FL) model, ensuring privacy and regulatory compliance. Traditional FU methods often depend on auxiliary storage on either the client or server side or require direct access to the data targeted for removal-a dependency that may not be feasible if the data is no longer available. To overcome these limitations, we propose NoT, a novel and efficient FU algorithm based on weight negation (multiplying by -1), which circumvents the need for additional storage and access to the target data. We argue that effective and efficient unlearning can be achieved by perturbing model parameters away from the set of optimal parameters, yet being well-positioned for quick re-optimization. This technique, though seemingly contradictory, is theoretically grounded: we prove that the weight negation perturbation effectively disrupts inter-layer co-adaptation, inducing unlearning while preserving an approximate optimality property, thereby enabling rapid recovery. Experimental results across three datasets and three model architectures demonstrate that NoT significantly outperforms existing baselines in unlearning efficacy as well as in communication and computational efficiency.
comment: The 42nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville TN, US. 2025
☆ BEHAVIOR Robot Suite: Streamlining Real-World Whole-Body Manipulation for Everyday Household Activities
Real-world household tasks present significant challenges for mobile manipulation robots. An analysis of existing robotics benchmarks reveals that successful task performance hinges on three key whole-body control capabilities: bimanual coordination, stable and precise navigation, and extensive end-effector reachability. Achieving these capabilities requires careful hardware design, but the resulting system complexity further complicates visuomotor policy learning. To address these challenges, we introduce the BEHAVIOR Robot Suite (BRS), a comprehensive framework for whole-body manipulation in diverse household tasks. Built on a bimanual, wheeled robot with a 4-DoF torso, BRS integrates a cost-effective whole-body teleoperation interface for data collection and a novel algorithm for learning whole-body visuomotor policies. We evaluate BRS on five challenging household tasks that not only emphasize the three core capabilities but also introduce additional complexities, such as long-range navigation, interaction with articulated and deformable objects, and manipulation in confined spaces. We believe that BRS's integrated robotic embodiment, data collection interface, and learning framework mark a significant step toward enabling real-world whole-body manipulation for everyday household tasks. BRS is open-sourced at https://behavior-robot-suite.github.io/
comment: Project website: https://behavior-robot-suite.github.io/
☆ VideoPainter: Any-length Video Inpainting and Editing with Plug-and-Play Context Control
Video inpainting, which aims to restore corrupted video content, has experienced substantial progress. Despite these advances, existing methods, whether propagating unmasked region pixels through optical flow and receptive field priors, or extending image-inpainting models temporally, face challenges in generating fully masked objects or balancing the competing objectives of background context preservation and foreground generation in one model, respectively. To address these limitations, we propose a novel dual-stream paradigm VideoPainter that incorporates an efficient context encoder (comprising only 6% of the backbone parameters) to process masked videos and inject backbone-aware background contextual cues to any pre-trained video DiT, producing semantically consistent content in a plug-and-play manner. This architectural separation significantly reduces the model's learning complexity while enabling nuanced integration of crucial background context. We also introduce a novel target region ID resampling technique that enables any-length video inpainting, greatly enhancing our practical applicability. Additionally, we establish a scalable dataset pipeline leveraging current vision understanding models, contributing VPData and VPBench to facilitate segmentation-based inpainting training and assessment, the largest video inpainting dataset and benchmark to date with over 390K diverse clips. Using inpainting as a pipeline basis, we also explore downstream applications including video editing and video editing pair data generation, demonstrating competitive performance and significant practical potential. Extensive experiments demonstrate VideoPainter's superior performance in both any-length video inpainting and editing, across eight key metrics, including video quality, mask region preservation, and textual coherence.
comment: Project page available at https://yxbian23.github.io/project/video-painter
☆ TrajectoryCrafter: Redirecting Camera Trajectory for Monocular Videos via Diffusion Models
We present TrajectoryCrafter, a novel approach to redirect camera trajectories for monocular videos. By disentangling deterministic view transformations from stochastic content generation, our method achieves precise control over user-specified camera trajectories. We propose a novel dual-stream conditional video diffusion model that concurrently integrates point cloud renders and source videos as conditions, ensuring accurate view transformations and coherent 4D content generation. Instead of leveraging scarce multi-view videos, we curate a hybrid training dataset combining web-scale monocular videos with static multi-view datasets, by our innovative double-reprojection strategy, significantly fostering robust generalization across diverse scenes. Extensive evaluations on multi-view and large-scale monocular videos demonstrate the superior performance of our method.
comment: Project webpage: https://trajectorycrafter.github.io/
☆ Joint 3D Point Cloud Segmentation using Real-Sim Loop: From Panels to Trees and Branches ICRA 2025
Modern orchards are planted in structured rows with distinct panel divisions to improve management. Accurate and efficient joint segmentation of point cloud from Panel to Tree and Branch (P2TB) is essential for robotic operations. However, most current segmentation methods focus on single instance segmentation and depend on a sequence of deep networks to perform joint tasks. This strategy hinders the use of hierarchical information embedded in the data, leading to both error accumulation and increased costs for annotation and computation, which limits its scalability for real-world applications. In this study, we proposed a novel approach that incorporated a Real2Sim L-TreeGen for training data generation and a joint model (J-P2TB) designed for the P2TB task. The J-P2TB model, trained on the generated simulation dataset, was used for joint segmentation of real-world panel point clouds via zero-shot learning. Compared to representative methods, our model outperformed them in most segmentation metrics while using 40% fewer learnable parameters. This Sim2Real result highlighted the efficacy of L-TreeGen in model training and the performance of J-P2TB for joint segmentation, demonstrating its strong accuracy, efficiency, and generalizability for real-world applications. These improvements would not only greatly benefit the development of robots for automated orchard operations but also advance digital twin technology.
comment: Accepted by ICRA 2025
☆ FMT:A Multimodal Pneumonia Detection Model Based on Stacking MOE Framework
Artificial intelligence has shown the potential to improve diagnostic accuracy through medical image analysis for pneumonia diagnosis. However, traditional multimodal approaches often fail to address real-world challenges such as incomplete data and modality loss. In this study, a Flexible Multimodal Transformer (FMT) was proposed, which uses ResNet-50 and BERT for joint representation learning, followed by a dynamic masked attention strategy that simulates clinical modality loss to improve robustness; finally, a sequential mixture of experts (MOE) architecture was used to achieve multi-level decision refinement. After evaluation on a small multimodal pneumonia dataset, FMT achieved state-of-the-art performance with 94% accuracy, 95% recall, and 93% F1 score, outperforming single-modal baselines (ResNet: 89%; BERT: 79%) and the medical benchmark CheXMed (90%), providing a scalable solution for multimodal diagnosis of pneumonia in resource-constrained medical settings.
☆ Conformal Prediction for Image Segmentation Using Morphological Prediction Sets
Image segmentation is a challenging task influenced by multiple sources of uncertainty, such as the data labeling process or the sampling of training data. In this paper we focus on binary segmentation and address these challenges using conformal prediction, a family of model- and data-agnostic methods for uncertainty quantification that provide finite-sample theoretical guarantees and applicable to any pretrained predictor. Our approach involves computing nonconformity scores, a type of prediction residual, on held-out calibration data not used during training. We use dilation, one of the fundamental operations in mathematical morphology, to construct a margin added to the borders of predicted segmentation masks. At inference, the predicted set formed by the mask and its margin contains the ground-truth mask with high probability, at a confidence level specified by the user. The size of the margin serves as an indicator of predictive uncertainty for a given model and dataset. We work in a regime of minimal information as we do not require any feedback from the predictor: only the predicted masks are needed for computing the prediction sets. Hence, our method is applicable to any segmentation model, including those based on deep learning; we evaluate our approach on several medical imaging applications.
☆ CACTUS: An Open Dataset and Framework for Automated Cardiac Assessment and Classification of Ultrasound Images Using Deep Transfer Learning
Cardiac ultrasound (US) scanning is a commonly used techniques in cardiology to diagnose the health of the heart and its proper functioning. Therefore, it is necessary to consider ways to automate these tasks and assist medical professionals in classifying and assessing cardiac US images. Machine learning (ML) techniques are regarded as a prominent solution due to their success in numerous applications aimed at enhancing the medical field, including addressing the shortage of echography technicians. However, the limited availability of medical data presents a significant barrier to applying ML in cardiology, particularly regarding US images of the heart. This paper addresses this challenge by introducing the first open graded dataset for Cardiac Assessment and ClassificaTion of UltraSound (CACTUS), which is available online. This dataset contains images obtained from scanning a CAE Blue Phantom and representing various heart views and different quality levels, exceeding the conventional cardiac views typically found in the literature. Additionally, the paper introduces a Deep Learning (DL) framework consisting of two main components. The first component classifies cardiac US images based on the heart view using a Convolutional Neural Network (CNN). The second component uses Transfer Learning (TL) to fine-tune the knowledge from the first component and create a model for grading and assessing cardiac images. The framework demonstrates high performance in both classification and grading, achieving up to 99.43% accuracy and as low as 0.3067 error, respectively. To showcase its robustness, the framework is further fine-tuned using new images representing additional cardiac views and compared to several other state-of-the-art architectures. The framework's outcomes and performance in handling real-time scans were also assessed using a questionnaire answered by cardiac experts.
☆ D2GV: Deformable 2D Gaussian Splatting for Video Representation in 400FPS
Implicit Neural Representations (INRs) have emerged as a powerful approach for video representation, offering versatility across tasks such as compression and inpainting. However, their implicit formulation limits both interpretability and efficacy, undermining their practicality as a comprehensive solution. We propose a novel video representation based on deformable 2D Gaussian splatting, dubbed D2GV, which aims to achieve three key objectives: 1) improved efficiency while delivering superior quality; 2) enhanced scalability and interpretability; and 3) increased friendliness for downstream tasks. Specifically, we initially divide the video sequence into fixed-length Groups of Pictures (GoP) to allow parallel training and linear scalability with video length. For each GoP, D2GV represents video frames by applying differentiable rasterization to 2D Gaussians, which are deformed from a canonical space into their corresponding timestamps. Notably, leveraging efficient CUDA-based rasterization, D2GV converges fast and decodes at speeds exceeding 400 FPS, while delivering quality that matches or surpasses state-of-the-art INRs. Moreover, we incorporate a learnable pruning and quantization strategy to streamline D2GV into a more compact representation. We demonstrate D2GV's versatility in tasks including video interpolation, inpainting and denoising, underscoring its potential as a promising solution for video representation. Code is available at: https://github.com/Evan-sudo/D2GV.
☆ Anti-Diffusion: Preventing Abuse of Modifications of Diffusion-Based Models
Although diffusion-based techniques have shown remarkable success in image generation and editing tasks, their abuse can lead to severe negative social impacts. Recently, some works have been proposed to provide defense against the abuse of diffusion-based methods. However, their protection may be limited in specific scenarios by manually defined prompts or the stable diffusion (SD) version. Furthermore, these methods solely focus on tuning methods, overlooking editing methods that could also pose a significant threat. In this work, we propose Anti-Diffusion, a privacy protection system designed for general diffusion-based methods, applicable to both tuning and editing techniques. To mitigate the limitations of manually defined prompts on defense performance, we introduce the prompt tuning (PT) strategy that enables precise expression of original images. To provide defense against both tuning and editing methods, we propose the semantic disturbance loss (SDL) to disrupt the semantic information of protected images. Given the limited research on the defense against editing methods, we develop a dataset named Defense-Edit to assess the defense performance of various methods. Experiments demonstrate that our Anti-Diffusion achieves superior defense performance across a wide range of diffusion-based techniques in different scenarios.
QArtSR: Quantization via Reverse-Module and Timestep-Retraining in One-Step Diffusion based Image Super-Resolution
One-step diffusion-based image super-resolution (OSDSR) models are showing increasingly superior performance nowadays. However, although their denoising steps are reduced to one and they can be quantized to 8-bit to reduce the costs further, there is still significant potential for OSDSR to quantize to lower bits. To explore more possibilities of quantized OSDSR, we propose an efficient method, Quantization via reverse-module and timestep-retraining for OSDSR, named QArtSR. Firstly, we investigate the influence of timestep value on the performance of quantized models. Then, we propose Timestep Retraining Quantization (TRQ) and Reversed Per-module Quantization (RPQ) strategies to calibrate the quantized model. Meanwhile, we adopt the module and image losses to update all quantized modules. We only update the parameters in quantization finetuning components, excluding the original weights. To ensure that all modules are fully finetuned, we add extended end-to-end training after per-module stage. Our 4-bit and 2-bit quantization experimental results indicate that QArtSR obtains superior effects against the recent leading comparison methods. The performance of 4-bit QArtSR is close to the full-precision one. Our code will be released at https://github.com/libozhu03/QArtSR.
☆ Novel Object 6D Pose Estimation with a Single Reference View
Existing novel object 6D pose estimation methods typically rely on CAD models or dense reference views, which are both difficult to acquire. Using only a single reference view is more scalable, but challenging due to large pose discrepancies and limited geometric and spatial information. To address these issues, we propose a Single-Reference-based novel object 6D (SinRef-6D) pose estimation method. Our key idea is to iteratively establish point-wise alignment in the camera coordinate system based on state space models (SSMs). Specifically, iterative camera-space point-wise alignment can effectively handle large pose discrepancies, while our proposed RGB and Points SSMs can capture long-range dependencies and spatial information from a single view, offering linear complexity and superior spatial modeling capability. Once pre-trained on synthetic data, SinRef-6D can estimate the 6D pose of a novel object using only a single reference view, without requiring retraining or a CAD model. Extensive experiments on six popular datasets and real-world robotic scenes demonstrate that we achieve on-par performance with CAD-based and dense reference view-based methods, despite operating in the more challenging single reference setting. Code will be released at https://github.com/CNJianLiu/SinRef-6D.
comment: 17 pages, 12 figures (including supplementary material)
☆ TomatoScanner: phenotyping tomato fruit based on only RGB image
In tomato greenhouse, phenotypic measurement is meaningful for researchers and farmers to monitor crop growth, thereby precisely control environmental conditions in time, leading to better quality and higher yield. Traditional phenotyping mainly relies on manual measurement, which is accurate but inefficient, more importantly, endangering the health and safety of people. Several studies have explored computer vision-based methods to replace manual phenotyping. However, the 2D-based need extra calibration, or cause destruction to fruit, or can only measure limited and meaningless traits. The 3D-based need extra depth camera, which is expensive and unacceptable for most farmers. In this paper, we propose a non-contact tomato fruit phenotyping method, titled TomatoScanner, where RGB image is all you need for input. First, pixel feature is extracted by instance segmentation of our proposed EdgeYOLO with preprocessing of individual separation and pose correction. Second, depth feature is extracted by depth estimation of Depth Pro. Third, pixel and depth feature are fused to output phenotype results in reality. We establish self-built Tomato Phenotype Dataset to test TomatoScanner, which achieves excellent phenotyping on width, height, vertical area and volume, with median relative error of 5.63%, 7.03%, -0.64% and 37.06%, respectively. We propose and add three innovative modules - EdgeAttention, EdgeLoss and EdgeBoost - into EdgeYOLO, to enhance the segmentation accuracy on edge portion. Precision and mean Edge Error greatly improve from 0.943 and 5.641% to 0.986 and 2.963%, respectively. Meanwhile, EdgeYOLO keeps lightweight and efficient, with 48.7 M weights size and 76.34 FPS. Codes and datasets: https://github.com/AlexTraveling/TomatoScanner.
comment: 12 pages, 37 figures. Codes and datasets are open-sourced in https://github.com/AlexTraveling/TomatoScanner
☆ Stereo Any Video: Temporally Consistent Stereo Matching
This paper introduces Stereo Any Video, a powerful framework for video stereo matching. It can estimate spatially accurate and temporally consistent disparities without relying on auxiliary information such as camera poses or optical flow. The strong capability is driven by rich priors from monocular video depth models, which are integrated with convolutional features to produce stable representations. To further enhance performance, key architectural innovations are introduced: all-to-all-pairs correlation, which constructs smooth and robust matching cost volumes, and temporal convex upsampling, which improves temporal coherence. These components collectively ensure robustness, accuracy, and temporal consistency, setting a new standard in video stereo matching. Extensive experiments demonstrate that our method achieves state-of-the-art performance across multiple datasets both qualitatively and quantitatively in zero-shot settings, as well as strong generalization to real-world indoor and outdoor scenarios.
☆ Pi-GPS: Enhancing Geometry Problem Solving by Unleashing the Power of Diagrammatic Information
Geometry problem solving has garnered increasing attention due to its potential applications in intelligent education field. Inspired by the observation that text often introduces ambiguities that diagrams can clarify, this paper presents Pi-GPS, a novel framework that unleashes the power of diagrammatic information to resolve textual ambiguities, an aspect largely overlooked in prior research. Specifically, we design a micro module comprising a rectifier and verifier: the rectifier employs MLLMs to disambiguate text based on the diagrammatic context, while the verifier ensures the rectified output adherence to geometric rules, mitigating model hallucinations. Additionally, we explore the impact of LLMs in theorem predictor based on the disambiguated formal language. Empirical results demonstrate that Pi-GPS surpasses state-of-the-art models, achieving a nearly 10\% improvement on Geometry3K over prior neural-symbolic approaches. We hope this work highlights the significance of resolving textual ambiguity in multimodal mathematical reasoning, a crucial factor limiting performance.
☆ Disconnect to Connect: A Data Augmentation Method for Improving Topology Accuracy in Image Segmentation
Accurate segmentation of thin, tubular structures (e.g., blood vessels) is challenging for deep neural networks. These networks classify individual pixels, and even minor misclassifications can break the thin connections within these structures. Existing methods for improving topology accuracy, such as topology loss functions, rely on very precise, topologically-accurate training labels, which are difficult to obtain. This is because annotating images, especially 3D images, is extremely laborious and time-consuming. Low image resolution and contrast further complicates the annotation by causing tubular structures to appear disconnected. We present CoLeTra, a data augmentation strategy that integrates to the models the prior knowledge that structures that appear broken are actually connected. This is achieved by creating images with the appearance of disconnected structures while maintaining the original labels. Our extensive experiments, involving different architectures, loss functions, and datasets, demonstrate that CoLeTra leads to segmentations topologically more accurate while often improving the Dice coefficient and Hausdorff distance. CoLeTra's hyper-parameters are intuitive to tune, and our sensitivity analysis shows that CoLeTra is robust to changes in these hyper-parameters. We also release a dataset specifically suited for image segmentation methods with a focus on topology accuracy. CoLetra's code can be found at https://github.com/jmlipman/CoLeTra.
☆ S4M: Segment Anything with 4 Extreme Points
The Segment Anything Model (SAM) has revolutionized open-set interactive image segmentation, inspiring numerous adapters for the medical domain. However, SAM primarily relies on sparse prompts such as point or bounding box, which may be suboptimal for fine-grained instance segmentation, particularly in endoscopic imagery, where precise localization is critical and existing prompts struggle to capture object boundaries effectively. To address this, we introduce S4M (Segment Anything with 4 Extreme Points), which augments SAM by leveraging extreme points -- the top-, bottom-, left-, and right-most points of an instance -- prompts. These points are intuitive to identify and provide a faster, structured alternative to box prompts. However, a na\"ive use of extreme points degrades performance, due to SAM's inability to interpret their semantic roles. To resolve this, we introduce dedicated learnable embeddings, enabling the model to distinguish extreme points from generic free-form points and better reason about their spatial relationships. We further propose an auxiliary training task through the Canvas module, which operates solely on prompts -- without vision input -- to predict a coarse instance mask. This encourages the model to internalize the relationship between extreme points and mask distributions, leading to more robust segmentation. S4M outperforms other SAM-based approaches on three endoscopic surgical datasets, demonstrating its effectiveness in complex scenarios. Finally, we validate our approach through a human annotation study on surgical endoscopic videos, confirming that extreme points are faster to acquire than bounding boxes.
☆ State-of-the-Art Stroke Lesion Segmentation at 1/1000th of Parameters
Efficient and accurate whole-brain lesion segmentation remains a challenge in medical image analysis. In this work, we revisit MeshNet, a parameter-efficient segmentation model, and introduce a novel multi-scale dilation pattern with an encoder-decoder structure. This innovation enables capturing broad contextual information and fine-grained details without traditional downsampling, upsampling, or skip-connections. Unlike previous approaches processing subvolumes or slices, we operate directly on whole-brain $256^3$ MRI volumes. Evaluations on the Aphasia Recovery Cohort (ARC) dataset demonstrate that MeshNet achieves superior or comparable DICE scores to state-of-the-art architectures such as MedNeXt and U-MAMBA at 1/1000th of parameters. Our results validate MeshNet's strong balance of efficiency and performance, making it particularly suitable for resource-limited environments such as web-based applications and opening new possibilities for the widespread deployment of advanced medical image analysis tools.
comment: International Symposium on Biomedical Imaging, April 14-17, 2025
☆ Post-Hoc Concept Disentanglement: From Correlated to Isolated Concept Representations
Concept Activation Vectors (CAVs) are widely used to model human-understandable concepts as directions within the latent space of neural networks. They are trained by identifying directions from the activations of concept samples to those of non-concept samples. However, this method often produces similar, non-orthogonal directions for correlated concepts, such as "beard" and "necktie" within the CelebA dataset, which frequently co-occur in images of men. This entanglement complicates the interpretation of concepts in isolation and can lead to undesired effects in CAV applications, such as activation steering. To address this issue, we introduce a post-hoc concept disentanglement method that employs a non-orthogonality loss, facilitating the identification of orthogonal concept directions while preserving directional correctness. We evaluate our approach with real-world and controlled correlated concepts in CelebA and a synthetic FunnyBirds dataset with VGG16 and ResNet18 architectures. We further demonstrate the superiority of orthogonalized concept representations in activation steering tasks, allowing (1) the insertion of isolated concepts into input images through generative models and (2) the removal of concepts for effective shortcut suppression with reduced impact on correlated concepts in comparison to baseline CAVs.
☆ Removing Geometric Bias in One-Class Anomaly Detection with Adaptive Feature Perturbation WACV 2025
One-class anomaly detection aims to detect objects that do not belong to a predefined normal class. In practice training data lack those anomalous samples; hence state-of-the-art methods are trained to discriminate between normal and synthetically-generated pseudo-anomalous data. Most methods use data augmentation techniques on normal images to simulate anomalies. However the best-performing ones implicitly leverage a geometric bias present in the benchmarking datasets. This limits their usability in more general conditions. Others are relying on basic noising schemes that may be suboptimal in capturing the underlying structure of normal data. In addition most still favour the image domain to generate pseudo-anomalies training models end-to-end from only the normal class and overlooking richer representations of the information. To overcome these limitations we consider frozen yet rich feature spaces given by pretrained models and create pseudo-anomalous features with a novel adaptive linear feature perturbation technique. It adapts the noise distribution to each sample applies decaying linear perturbations to feature vectors and further guides the classification process using a contrastive learning objective. Experimental evaluation conducted on both standard and geometric bias-free datasets demonstrates the superiority of our approach with respect to comparable baselines. The codebase is accessible via our public repository.
comment: Published in WACV 2025
☆ FastMap: Fast Queries Initialization Based Vectorized HD Map Reconstruction Framework
Reconstruction of high-definition maps is a crucial task in perceiving the autonomous driving environment, as its accuracy directly impacts the reliability of prediction and planning capabilities in downstream modules. Current vectorized map reconstruction methods based on the DETR framework encounter limitations due to the redundancy in the decoder structure, necessitating the stacking of six decoder layers to maintain performance, which significantly hampers computational efficiency. To tackle this issue, we introduce FastMap, an innovative framework designed to reduce decoder redundancy in existing approaches. FastMap optimizes the decoder architecture by employing a single-layer, two-stage transformer that achieves multilevel representation capabilities. Our framework eliminates the conventional practice of randomly initializing queries and instead incorporates a heatmap-guided query generation module during the decoding phase, which effectively maps image features into structured query vectors using learnable positional encoding. Additionally, we propose a geometry-constrained point-to-line loss mechanism for FastMap, which adeptly addresses the challenge of distinguishing highly homogeneous features that often arise in traditional point-to-point loss computations. Extensive experiments demonstrate that FastMap achieves state-of-the-art performance in both nuScenes and Argoverse2 datasets, with its decoder operating 3.2 faster than the baseline. Code and more demos are available at https://github.com/hht1996ok/FastMap.
☆ DecoupledGaussian: Object-Scene Decoupling for Physics-Based Interaction CVPR2025
We present DecoupledGaussian, a novel system that decouples static objects from their contacted surfaces captured in-the-wild videos, a key prerequisite for realistic Newtonian-based physical simulations. Unlike prior methods focused on synthetic data or elastic jittering along the contact surface, which prevent objects from fully detaching or moving independently, DecoupledGaussian allows for significant positional changes without being constrained by the initial contacted surface. Recognizing the limitations of current 2D inpainting tools for restoring 3D locations, our approach proposes joint Poisson fields to repair and expand the Gaussians of both objects and contacted scenes after separation. This is complemented by a multi-carve strategy to refine the object's geometry. Our system enables realistic simulations of decoupling motions, collisions, and fractures driven by user-specified impulses, supporting complex interactions within and across multiple scenes. We validate DecoupledGaussian through a comprehensive user study and quantitative benchmarks. This system enhances digital interaction with objects and scenes in real-world environments, benefiting industries such as VR, robotics, and autonomous driving. Our project page is at: https://wangmiaowei.github.io/DecoupledGaussian.github.io/.
comment: CVPR2025 Accepted
☆ Automatic Teaching Platform on Vision Language Retrieval Augmented Generation
Automating teaching presents unique challenges, as replicating human interaction and adaptability is complex. Automated systems cannot often provide nuanced, real-time feedback that aligns with students' individual learning paces or comprehension levels, which can hinder effective support for diverse needs. This is especially challenging in fields where abstract concepts require adaptive explanations. In this paper, we propose a vision language retrieval augmented generation (named VL-RAG) system that has the potential to bridge this gap by delivering contextually relevant, visually enriched responses that can enhance comprehension. By leveraging a database of tailored answers and images, the VL-RAG system can dynamically retrieve information aligned with specific questions, creating a more interactive and engaging experience that fosters deeper understanding and active student participation. It allows students to explore concepts visually and verbally, promoting deeper understanding and reducing the need for constant human oversight while maintaining flexibility to expand across different subjects and course material.
☆ Towards Locally Explaining Prediction Behavior via Gradual Interventions and Measuring Property Gradients
Deep learning models achieve high predictive performance but lack intrinsic interpretability, hindering our understanding of the learned prediction behavior. Existing local explainability methods focus on associations, neglecting the causal drivers of model predictions. Other approaches adopt a causal perspective but primarily provide more general global explanations. However, for specific inputs, it's unclear whether globally identified factors apply locally. To address this limitation, we introduce a novel framework for local interventional explanations by leveraging recent advances in image-to-image editing models. Our approach performs gradual interventions on semantic properties to quantify the corresponding impact on a model's predictions using a novel score, the expected property gradient magnitude. We demonstrate the effectiveness of our approach through an extensive empirical evaluation on a wide range of architectures and tasks. First, we validate it in a synthetic scenario and demonstrate its ability to locally identify biases. Afterward, we apply our approach to analyze network training dynamics, investigate medical skin lesion classifiers, and study a pre-trained CLIP model with real-life interventional data. Our results highlight the potential of interventional explanations on the property level to reveal new insights into the behavior of deep models.
comment: 44 pages, 39 figures, 14 tables
☆ Semantic Shift Estimation via Dual-Projection and Classifier Reconstruction for Exemplar-Free Class-Incremental Learning
Exemplar-Free Class-Incremental Learning (EFCIL) aims to sequentially learn from distinct categories without retaining exemplars but easily suffers from catastrophic forgetting of learned knowledge. While existing EFCIL methods leverage knowledge distillation to alleviate forgetting, they still face two critical challenges: semantic shift and decision bias. Specifically, the embeddings of old tasks shift in the embedding space after learning new tasks, and the classifier becomes biased towards new tasks due to training solely with new data, thereby hindering the balance between old and new knowledge. To address these issues, we propose the Dual-Projection Shift Estimation and Classifier Reconstruction (DPCR) approach for EFCIL. DPCR effectively estimates semantic shift through a dual-projection, which combines a learnable transformation with a row-space projection to capture both task-wise and category-wise shifts. Furthermore, to mitigate decision bias, DPCR employs ridge regression to reformulate classifier training as a reconstruction process. This reconstruction exploits previous information encoded in covariance and prototype of each class after calibration with estimated shift, thereby reducing decision bias. Extensive experiments demonstrate that, across various datasets, DPCR effectively balances old and new tasks, outperforming state-of-the-art EFCIL methods.
comment: 14 pages, 7 figures
☆ Self-Modeling Robots by Photographing
Self-modeling enables robots to build task-agnostic models of their morphology and kinematics based on data that can be automatically collected, with minimal human intervention and prior information, thereby enhancing machine intelligence. Recent research has highlighted the potential of data-driven technology in modeling the morphology and kinematics of robots. However, existing self-modeling methods suffer from either low modeling quality or excessive data acquisition costs. Beyond morphology and kinematics, texture is also a crucial component of robots, which is challenging to model and remains unexplored. In this work, a high-quality, texture-aware, and link-level method is proposed for robot self-modeling. We utilize three-dimensional (3D) Gaussians to represent the static morphology and texture of robots, and cluster the 3D Gaussians to construct neural ellipsoid bones, whose deformations are controlled by the transformation matrices generated by a kinematic neural network. The 3D Gaussians and kinematic neural network are trained using data pairs composed of joint angles, camera parameters and multi-view images without depth information. By feeding the kinematic neural network with joint angles, we can utilize the well-trained model to describe the corresponding morphology, kinematics and texture of robots at the link level, and render robot images from different perspectives with the aid of 3D Gaussian splatting. Furthermore, we demonstrate that the established model can be exploited to perform downstream tasks such as motion planning and inverse kinematics.
☆ Multi-Grained Feature Pruning for Video-Based Human Pose Estimation
Human pose estimation, with its broad applications in action recognition and motion capture, has experienced significant advancements. However, current Transformer-based methods for video pose estimation often face challenges in managing redundant temporal information and achieving fine-grained perception because they only focus on processing low-resolution features. To address these challenges, we propose a novel multi-scale resolution framework that encodes spatio-temporal representations at varying granularities and executes fine-grained perception compensation. Furthermore, we employ a density peaks clustering method to dynamically identify and prioritize tokens that offer important semantic information. This strategy effectively prunes redundant feature tokens, especially those arising from multi-frame features, thereby optimizing computational efficiency without sacrificing semantic richness. Empirically, it sets new benchmarks for both performance and efficiency on three large-scale datasets. Our method achieves a 93.8% improvement in inference speed compared to the baseline, while also enhancing pose estimation accuracy, reaching 87.4 mAP on the PoseTrack2017 dataset.
☆ Pretext Task Adversarial Learning for Unpaired Low-field to Ultra High-field MRI Synthesis
Given the scarcity and cost of high-field MRI, the synthesis of high-field MRI from low-field MRI holds significant potential when there is limited data for training downstream tasks (e.g. segmentation). Low-field MRI often suffers from a reduced signal-to-noise ratio (SNR) and spatial resolution compared to high-field MRI. However, synthesizing high-field MRI data presents challenges. These involve aligning image features across domains while preserving anatomical accuracy and enhancing fine details. To address these challenges, we propose a Pretext Task Adversarial (PTA) learning framework for high-field MRI synthesis from low-field MRI data. The framework comprises three processes: (1) The slice-wise gap perception (SGP) network aligns the slice inconsistencies of low-field and high-field datasets based on contrastive learning. (2) The local structure correction (LSC) network extracts local structures by restoring the locally rotated and masked images. (3) The pretext task-guided adversarial training process introduces additional supervision and incorporates a discriminator to improve image realism. Extensive experiments on low-field to ultra high-field task demonstrate the effectiveness of our method, achieving state-of-the-art performance (16.892 in FID, 1.933 in IS, and 0.324 in MS-SSIM). This enables the generation of high-quality high-field-like MRI data from low-field MRI data to augment training datasets for downstream tasks. The code is available at: https://github.com/Zhenxuan-Zhang/PTA4Unpaired_HF_MRI_SYN.
☆ New multimodal similarity measure for image registration via modeling local functional dependence with linear combination of learned basis functions
The deformable registration of images of different modalities, essential in many medical imaging applications, remains challenging. The main challenge is developing a robust measure for image overlap despite the compared images capturing different aspects of the underlying tissue. Here, we explore similarity metrics based on functional dependence between intensity values of registered images. Although functional dependence is too restrictive on the global scale, earlier work has shown competitive performance in deformable registration when such measures are applied over small enough contexts. We confirm this finding and further develop the idea by modeling local functional dependence via the linear basis function model with the basis functions learned jointly with the deformation. The measure can be implemented via convolutions, making it efficient to compute on GPUs. We release the method as an easy-to-use tool and show good performance on three datasets compared to well-established baseline and earlier functional dependence-based methods.
☆ PhysicsGen: Can Generative Models Learn from Images to Predict Complex Physical Relations?
The image-to-image translation abilities of generative learning models have recently made significant progress in the estimation of complex (steered) mappings between image distributions. While appearance based tasks like image in-painting or style transfer have been studied at length, we propose to investigate the potential of generative models in the context of physical simulations. Providing a dataset of 300k image-pairs and baseline evaluations for three different physical simulation tasks, we propose a benchmark to investigate the following research questions: i) are generative models able to learn complex physical relations from input-output image pairs? ii) what speedups can be achieved by replacing differential equation based simulations? While baseline evaluations of different current models show the potential for high speedups (ii), these results also show strong limitations toward the physical correctness (i). This underlines the need for new methods to enforce physical correctness. Data, baseline models and evaluation code http://www.physics-gen.org.
☆ CoMoGaussian: Continuous Motion-Aware Gaussian Splatting from Motion-Blurred Images
3D Gaussian Splatting (3DGS) has gained significant attention for their high-quality novel view rendering, motivating research to address real-world challenges. A critical issue is the camera motion blur caused by movement during exposure, which hinders accurate 3D scene reconstruction. In this study, we propose CoMoGaussian, a Continuous Motion-Aware Gaussian Splatting that reconstructs precise 3D scenes from motion-blurred images while maintaining real-time rendering speed. Considering the complex motion patterns inherent in real-world camera movements, we predict continuous camera trajectories using neural ordinary differential equations (ODEs). To ensure accurate modeling, we employ rigid body transformations, preserving the shape and size of the object but rely on the discrete integration of sampled frames. To better approximate the continuous nature of motion blur, we introduce a continuous motion refinement (CMR) transformation that refines rigid transformations by incorporating additional learnable parameters. By revisiting fundamental camera theory and leveraging advanced neural ODE techniques, we achieve precise modeling of continuous camera trajectories, leading to improved reconstruction accuracy. Extensive experiments demonstrate state-of-the-art performance both quantitatively and qualitatively on benchmark datasets, which include a wide range of motion blur scenarios, from moderate to extreme blur.
comment: Revised Version of CRiM-GS, Github: https://github.com/Jho-Yonsei/CoMoGaussian
☆ Attenuation artifact detection and severity classification in intracoronary OCT using mixed image representations
In intracoronary optical coherence tomography (OCT), blood residues and gas bubbles cause attenuation artifacts that can obscure critical vessel structures. The presence and severity of these artifacts may warrant re-acquisition, prolonging procedure time and increasing use of contrast agent. Accurate detection of these artifacts can guide targeted re-acquisition, reducing the amount of repeated scans needed to achieve diagnostically viable images. However, the highly heterogeneous appearance of these artifacts poses a challenge for the automated detection of the affected image regions. To enable automatic detection of the attenuation artifacts caused by blood residues and gas bubbles based on their severity, we propose a convolutional neural network that performs classification of the attenuation lines (A-lines) into three classes: no artifact, mild artifact and severe artifact. Our model extracts and merges features from OCT images in both Cartesian and polar coordinates, where each column of the image represents an A-line. Our method detects the presence of attenuation artifacts in OCT frames reaching F-scores of 0.77 and 0.94 for mild and severe artifacts, respectively. The inference time over a full OCT scan is approximately 6 seconds. Our experiments show that analysis of images represented in both Cartesian and polar coordinate systems outperforms the analysis in polar coordinates only, suggesting that these representations contain complementary features. This work lays the foundation for automated artifact assessment and image acquisition guidance in intracoronary OCT imaging.
☆ Robust Multimodal Learning for Ophthalmic Disease Grading via Disentangled Representation
This paper discusses how ophthalmologists often rely on multimodal data to improve diagnostic accuracy. However, complete multimodal data is rare in real-world applications due to a lack of medical equipment and concerns about data privacy. Traditional deep learning methods typically address these issues by learning representations in latent space. However, the paper highlights two key limitations of these approaches: (i) Task-irrelevant redundant information (e.g., numerous slices) in complex modalities leads to significant redundancy in latent space representations. (ii) Overlapping multimodal representations make it difficult to extract unique features for each modality. To overcome these challenges, the authors propose the Essence-Point and Disentangle Representation Learning (EDRL) strategy, which integrates a self-distillation mechanism into an end-to-end framework to enhance feature selection and disentanglement for more robust multimodal learning. Specifically, the Essence-Point Representation Learning module selects discriminative features that improve disease grading performance. The Disentangled Representation Learning module separates multimodal data into modality-common and modality-unique representations, reducing feature entanglement and enhancing both robustness and interpretability in ophthalmic disease diagnosis. Experiments on multimodal ophthalmology datasets show that the proposed EDRL strategy significantly outperforms current state-of-the-art methods.
comment: 10pages
☆ Frequency Autoregressive Image Generation with Continuous Tokens
Autoregressive (AR) models for image generation typically adopt a two-stage paradigm of vector quantization and raster-scan ``next-token prediction", inspired by its great success in language modeling. However, due to the huge modality gap, image autoregressive models may require a systematic reevaluation from two perspectives: tokenizer format and regression direction. In this paper, we introduce the frequency progressive autoregressive (\textbf{FAR}) paradigm and instantiate FAR with the continuous tokenizer. Specifically, we identify spectral dependency as the desirable regression direction for FAR, wherein higher-frequency components build upon the lower one to progressively construct a complete image. This design seamlessly fits the causality requirement for autoregressive models and preserves the unique spatial locality of image data. Besides, we delve into the integration of FAR and the continuous tokenizer, introducing a series of techniques to address optimization challenges and improve the efficiency of training and inference processes. We demonstrate the efficacy of FAR through comprehensive experiments on the ImageNet dataset and verify its potential on text-to-image generation.
☆ Escaping Plato's Cave: Towards the Alignment of 3D and Text Latent Spaces CVPR 2025
Recent works have shown that, when trained at scale, uni-modal 2D vision and text encoders converge to learned features that share remarkable structural properties, despite arising from different representations. However, the role of 3D encoders with respect to other modalities remains unexplored. Furthermore, existing 3D foundation models that leverage large datasets are typically trained with explicit alignment objectives with respect to frozen encoders from other representations. In this work, we investigate the possibility of a posteriori alignment of representations obtained from uni-modal 3D encoders compared to text-based feature spaces. We show that naive post-training feature alignment of uni-modal text and 3D encoders results in limited performance. We then focus on extracting subspaces of the corresponding feature spaces and discover that by projecting learned representations onto well-chosen lower-dimensional subspaces the quality of alignment becomes significantly higher, leading to improved accuracy on matching and retrieval tasks. Our analysis further sheds light on the nature of these shared subspaces, which roughly separate between semantic and geometric data representations. Overall, ours is the first work that helps to establish a baseline for post-training alignment of 3D uni-modal and text feature spaces, and helps to highlight both the shared and unique properties of 3D data compared to other representations.
comment: Accepted at CVPR 2025
☆ CMMCoT: Enhancing Complex Multi-Image Comprehension via Multi-Modal Chain-of-Thought and Memory Augmentation
While previous multimodal slow-thinking methods have demonstrated remarkable success in single-image understanding scenarios, their effectiveness becomes fundamentally constrained when extended to more complex multi-image comprehension tasks. This limitation stems from their predominant reliance on text-based intermediate reasoning processes. While for human, when engaging in sophisticated multi-image analysis, they typically perform two complementary cognitive operations: (1) continuous cross-image visual comparison through region-of-interest matching, and (2) dynamic memorization of critical visual concepts throughout the reasoning chain. Motivated by these observations, we propose the Complex Multi-Modal Chain-of-Thought (CMMCoT) framework, a multi-step reasoning framework that mimics human-like "slow thinking" for multi-image understanding. Our approach incorporates two key innovations: 1. The construction of interleaved multimodal multi-step reasoning chains, which utilize critical visual region tokens, extracted from intermediate reasoning steps, as supervisory signals. This mechanism not only facilitates comprehensive cross-modal understanding but also enhances model interpretability. 2. The introduction of a test-time memory augmentation module that expands the model reasoning capacity during inference while preserving parameter efficiency. Furthermore, to facilitate research in this direction, we have curated a novel multi-image slow-thinking dataset. Extensive experiments demonstrate the effectiveness of our model.
☆ ColFigPhotoAttnNet: Reliable Finger Photo Presentation Attack Detection Leveraging Window-Attention on Color Spaces WACV
Finger photo Presentation Attack Detection (PAD) can significantly strengthen smartphone device security. However, these algorithms are trained to detect certain types of attacks. Furthermore, they are designed to operate on images acquired by specific capture devices, leading to poor generalization and a lack of robustness in handling the evolving nature of mobile hardware. The proposed investigation is the first to systematically analyze the performance degradation of existing deep learning PAD systems, convolutional and transformers, in cross-capture device settings. In this paper, we introduce the ColFigPhotoAttnNet architecture designed based on window attention on color channels, followed by the nested residual network as the predictor to achieve a reliable PAD. Extensive experiments using various capture devices, including iPhone13 Pro, GooglePixel 3, Nokia C5, and OnePlusOne, were carried out to evaluate the performance of proposed and existing methods on three publicly available databases. The findings underscore the effectiveness of our approach.
comment: Accepted in Winter Conference on Applications of Computer Vision (WACV) 2025
☆ L-FUSION: Laplacian Fetal Ultrasound Segmentation & Uncertainty Estimation
Accurate analysis of prenatal ultrasound (US) is essential for early detection of developmental anomalies. However, operator dependency and technical limitations (e.g. intrinsic artefacts and effects, setting errors) can complicate image interpretation and the assessment of diagnostic uncertainty. We present L-FUSION (Laplacian Fetal US Segmentation with Integrated FoundatiON models), a framework that integrates uncertainty quantification through unsupervised, normative learning and large-scale foundation models for robust segmentation of fetal structures in normal and pathological scans. We propose to utilise the aleatoric logit distributions of Stochastic Segmentation Networks and Laplace approximations with fast Hessian estimations to estimate epistemic uncertainty only from the segmentation head. This enables us to achieve reliable abnormality quantification for instant diagnostic feedback. Combined with an integrated Dropout component, L-FUSION enables reliable differentiation of lesions from normal fetal anatomy with enhanced uncertainty maps and segmentation counterfactuals in US imaging. It improves epistemic and aleatoric uncertainty interpretation and removes the need for manual disease-labelling. Evaluations across multiple datasets show that L-FUSION achieves superior segmentation accuracy and consistent uncertainty quantification, supporting on-site decision-making and offering a scalable solution for advancing fetal ultrasound analysis in clinical settings.
comment: Under Review
☆ Unified Reward Model for Multimodal Understanding and Generation
Recent advances in human preference alignment have significantly enhanced multimodal generation and understanding. A key approach is training reward models to guide preference optimization. However, existing models are often task-specific, limiting their adaptability across diverse visual applications. We also argue that jointly learning to assess multiple tasks may foster a synergistic effect, where improved image understanding enhances image generation assessment, and refined image evaluation benefits video assessment through better frame analysis. To this end, this paper proposes UnifiedReward, the first unified reward model for multimodal understanding and generation assessment, enabling both pairwise ranking and pointwise scoring, which can be employed for vision model preference alignment. Specifically, (1) we first develop UnifiedReward on our constructed large-scale human preference dataset, including both image and video generation/understanding tasks. (2) Then, it is utilized to automatically construct high-quality preference pair data based on the vision models, fine-gradually filtering their outputs through pair ranking and point sifting. (3) Finally, these data are used for their preference alignment through Direct Preference Optimization (DPO). Experimental results demonstrate that joint learning to assess diverse visual tasks can lead to substantial mutual benefits and we apply our pipeline to both image and video understanding/generation tasks, significantly improving the performance in each domain.
comment: project page: https://codegoat24.github.io/UnifiedReward/
☆ RecipeGen: A Benchmark for Real-World Recipe Image Generation
Recipe image generation is an important challenge in food computing, with applications from culinary education to interactive recipe platforms. However, there is currently no real-world dataset that comprehensively connects recipe goals, sequential steps, and corresponding images. To address this, we introduce RecipeGen, the first real-world goal-step-image benchmark for recipe generation, featuring diverse ingredients, varied recipe steps, multiple cooking styles, and a broad collection of food categories. Data is in https://github.com/zhangdaxia22/RecipeGen.
☆ DiVISe: Direct Visual-Input Speech Synthesis Preserving Speaker Characteristics And Intelligibility NAACL 25
Video-to-speech (V2S) synthesis, the task of generating speech directly from silent video input, is inherently more challenging than other speech synthesis tasks due to the need to accurately reconstruct both speech content and speaker characteristics from visual cues alone. Recently, audio-visual pre-training has eliminated the need for additional acoustic hints in V2S, which previous methods often relied on to ensure training convergence. However, even with pre-training, existing methods continue to face challenges in achieving a balance between acoustic intelligibility and the preservation of speaker-specific characteristics. We analyzed this limitation and were motivated to introduce DiVISe (Direct Visual-Input Speech Synthesis), an end-to-end V2S model that predicts Mel-spectrograms directly from video frames alone. Despite not taking any acoustic hints, DiVISe effectively preserves speaker characteristics in the generated audio, and achieves superior performance on both objective and subjective metrics across the LRS2 and LRS3 datasets. Our results demonstrate that DiVISe not only outperforms existing V2S models in acoustic intelligibility but also scales more effectively with increased data and model parameters. Code and weights can be found at https://github.com/PussyCat0700/DiVISe.
comment: to be published in NAACL 25
☆ Separability Membrane: 3D Active Contour for Point Cloud Surface Reconstruction
This paper proposes Separability Membrane, a robust 3D active contour for extracting a surface from 3D point cloud object. Our approach defines the surface of a 3D object as the boundary that maximizes the separability of point features, such as intensity, color, or local density, between its inner and outer regions based on Fisher's ratio. Separability Membrane identifies the exact surface of a 3D object by maximizing class separability while controlling the rigidity of the 3D surface model with an adaptive B-spline surface that adjusts its properties based on the local and global separability. A key advantage of our method is its ability to accurately reconstruct surface boundaries even when they are ambiguous due to noise or outliers, without requiring any training data or conversion to volumetric representation. Evaluations on a synthetic 3D point cloud dataset and the 3DNet dataset demonstrate the membrane's effectiveness and robustness under diverse conditions.
☆ Gaussian Random Fields as an Abstract Representation of Patient Metadata for Multimodal Medical Image Segmentation
The growing rate of chronic wound occurrence, especially in patients with diabetes, has become a concerning trend in recent years. Chronic wounds are difficult and costly to treat, and have become a serious burden on health care systems worldwide. Chronic wounds can have devastating consequences for the patient, with infection often leading to reduced quality of life and increased mortality risk. Innovative deep learning methods for the detection and monitoring of such wounds have the potential to reduce the impact to both patient and clinician. We present a novel multimodal segmentation method which allows for the introduction of patient metadata into the training workflow whereby the patient data are expressed as Gaussian random fields. Our results indicate that the proposed method improved performance when utilising multiple models, each trained on different metadata categories. Using the Diabetic Foot Ulcer Challenge 2022 test set, when compared to the baseline results (intersection over union = 0.4670, Dice similarity coefficient = 0.5908) we demonstrate improvements of +0.0220 and +0.0229 for intersection over union and Dice similarity coefficient respectively. This paper presents the first study to focus on integrating patient data into a chronic wound segmentation workflow. Our results show significant performance gains when training individual models using specific metadata categories, followed by average merging of prediction masks using distance transforms. All source code for this study is available at: https://github.com/mmu-dermatology-research/multimodal-grf
☆ Data-Efficient Generalization for Zero-shot Composed Image Retrieval
Zero-shot Composed Image Retrieval (ZS-CIR) aims to retrieve the target image based on a reference image and a text description without requiring in-distribution triplets for training. One prevalent approach follows the vision-language pretraining paradigm that employs a mapping network to transfer the image embedding to a pseudo-word token in the text embedding space. However, this approach tends to impede network generalization due to modality discrepancy and distribution shift between training and inference. To this end, we propose a Data-efficient Generalization (DeG) framework, including two novel designs, namely, Textual Supplement (TS) module and Semantic-Set (S-Set). The TS module exploits compositional textual semantics during training, enhancing the pseudo-word token with more linguistic semantics and thus mitigating the modality discrepancy effectively. The S-Set exploits the zero-shot capability of pretrained Vision-Language Models (VLMs), alleviating the distribution shift and mitigating the overfitting issue from the redundancy of the large-scale image-text data. Extensive experiments over four ZS-CIR benchmarks show that DeG outperforms the state-of-the-art (SOTA) methods with much less training data, and saves substantial training and inference time for practical usage.
☆ STGA: Selective-Training Gaussian Head Avatars
We propose selective-training Gaussian head avatars (STGA) to enhance the details of dynamic head Gaussian. The dynamic head Gaussian model is trained based on the FLAME parameterized model. Each Gaussian splat is embedded within the FLAME mesh to achieve mesh-based animation of the Gaussian model. Before training, our selection strategy calculates the 3D Gaussian splat to be optimized in each frame. The parameters of these 3D Gaussian splats are optimized in the training of each frame, while those of the other splats are frozen. This means that the splats participating in the optimization process differ in each frame, to improve the realism of fine details. Compared with network-based methods, our method achieves better results with shorter training time. Compared with mesh-based methods, our method produces more realistic details within the same training time. Additionally, the ablation experiment confirms that our method effectively enhances the quality of details.
☆ Partially Supervised Unpaired Multi-Modal Learning for Label-Efficient Medical Image Segmentation
Unpaired Multi-Modal Learning (UMML) which leverages unpaired multi-modal data to boost model performance on each individual modality has attracted a lot of research interests in medical image analysis. However, existing UMML methods require multi-modal datasets to be fully labeled, which incurs tremendous annotation cost. In this paper, we investigate the use of partially labeled data for label-efficient unpaired multi-modal learning, which can reduce the annotation cost by up to one half. We term the new learning paradigm as Partially Supervised Unpaired Multi-Modal Learning (PSUMML) and propose a novel Decomposed partial class adaptation with snapshot Ensembled Self-Training (DEST) framework for it. Specifically, our framework consists of a compact segmentation network with modality specific normalization layers for learning with partially labeled unpaired multi-modal data. The key challenge in PSUMML lies in the complex partial class distribution discrepancy due to partial class annotation, which hinders effective knowledge transfer across modalities. We theoretically analyze this phenomenon with a decomposition theorem and propose a decomposed partial class adaptation technique to precisely align the partially labeled classes across modalities to reduce the distribution discrepancy. We further propose a snapshot ensembled self-training technique to leverage the valuable snapshot models during training to assign pseudo-labels to partially labeled pixels for self-training to boost model performance. We perform extensive experiments under different scenarios of PSUMML for two medical image segmentation tasks, namely cardiac substructure segmentation and abdominal multi-organ segmentation. Our framework outperforms existing methods significantly.
comment: Accepted to MLMI 2024
☆ Spectral-Spatial Extraction through Layered Tensor Decomposition for Hyperspectral Anomaly Detection
Low rank tensor representation (LRTR) methods are very useful for hyperspectral anomaly detection (HAD). To overcome the limitations that they often overlook spectral anomaly and rely on large-scale matrix singular value decomposition, we first apply non-negative matrix factorization (NMF) to alleviate spectral dimensionality redundancy and extract spectral anomaly and then employ LRTR to extract spatial anomaly while mitigating spatial redundancy, yielding a highly efffcient layered tensor decomposition (LTD) framework for HAD. An iterative algorithm based on proximal alternating minimization is developed to solve the proposed LTD model, with convergence guarantees provided. Moreover, we introduce a rank reduction strategy with validation mechanism that adaptively reduces data size while preventing excessive reduction. Theoretically, we rigorously establish the equivalence between the tensor tubal rank and tensor group sparsity regularization (TGSR) and, under mild conditions, demonstrate that the relaxed formulation of TGSR shares the same global minimizers and optimal values as its original counterpart. Experimental results on the Airport-Beach-Urban and MVTec datasets demonstrate that our approach outperforms state-of-the-art methods in the HAD task.
☆ MGSR: 2D/3D Mutual-boosted Gaussian Splatting for High-fidelity Surface Reconstruction under Various Light Conditions
Novel view synthesis (NVS) and surface reconstruction (SR) are essential tasks in 3D Gaussian Splatting (3D-GS). Despite recent progress, these tasks are often addressed independently, with GS-based rendering methods struggling under diverse light conditions and failing to produce accurate surfaces, while GS-based reconstruction methods frequently compromise rendering quality. This raises a central question: must rendering and reconstruction always involve a trade-off? To address this, we propose MGSR, a 2D/3D Mutual-boosted Gaussian splatting for Surface Reconstruction that enhances both rendering quality and 3D reconstruction accuracy. MGSR introduces two branches--one based on 2D-GS and the other on 3D-GS. The 2D-GS branch excels in surface reconstruction, providing precise geometry information to the 3D-GS branch. Leveraging this geometry, the 3D-GS branch employs a geometry-guided illumination decomposition module that captures reflected and transmitted components, enabling realistic rendering under varied light conditions. Using the transmitted component as supervision, the 2D-GS branch also achieves high-fidelity surface reconstruction. Throughout the optimization process, the 2D-GS and 3D-GS branches undergo alternating optimization, providing mutual supervision. Prior to this, each branch completes an independent warm-up phase, with an early stopping strategy implemented to reduce computational costs. We evaluate MGSR on a diverse set of synthetic and real-world datasets, at both object and scene levels, demonstrating strong performance in rendering and surface reconstruction.
comment: 11 pages, 7 figures
☆ SplatPose: Geometry-Aware 6-DoF Pose Estimation from Single RGB Image via 3D Gaussian Splatting IROS 2025
6-DoF pose estimation is a fundamental task in computer vision with wide-ranging applications in augmented reality and robotics. Existing single RGB-based methods often compromise accuracy due to their reliance on initial pose estimates and susceptibility to rotational ambiguity, while approaches requiring depth sensors or multi-view setups incur significant deployment costs. To address these limitations, we introduce SplatPose, a novel framework that synergizes 3D Gaussian Splatting (3DGS) with a dual-branch neural architecture to achieve high-precision pose estimation using only a single RGB image. Central to our approach is the Dual-Attention Ray Scoring Network (DARS-Net), which innovatively decouples positional and angular alignment through geometry-domain attention mechanisms, explicitly modeling directional dependencies to mitigate rotational ambiguity. Additionally, a coarse-to-fine optimization pipeline progressively refines pose estimates by aligning dense 2D features between query images and 3DGS-synthesized views, effectively correcting feature misalignment and depth errors from sparse ray sampling. Experiments on three benchmark datasets demonstrate that SplatPose achieves state-of-the-art 6-DoF pose estimation accuracy in single RGB settings, rivaling approaches that depend on depth or multi-view images.
comment: Submitted to IROS 2025
☆ Spatial Context-Driven Positive Pair Sampling for Enhanced Histopathology Image Classification
Deep learning has demonstrated great promise in cancer classification from whole-slide images (WSIs) but remains constrained by the need for extensive annotations. Annotation-free methods, such as multiple instance learning (MIL) and self-supervised learning (SSL), have emerged to address this challenge; however, current SSL techniques often depend on synthetic augmentations or temporal context, which may not adequately capture the intricate spatial relationships inherent to histopathology. In this work, we introduce a novel spatial context-driven positive pair sampling strategy for SSL that leverages the natural coherence of adjacent patches in WSIs. By constructing biologically relevant positive pairs from spatially proximate patches, our approach harnesses inherent spatial coherence to enhance patch-level representations, ultimately boosting slide-level classification performance. Experiments on multiple datasets reveal that our strategy improves classification accuracy by 5\% to 10\% over the standard method, paving the way for more clinically relevant AI models in cancer diagnosis. The code is available at https://anonymous.4open.science/r/contextual-pairs-E72F/.
☆ EvolvingGS: High-Fidelity Streamable Volumetric Video via Evolving 3D Gaussian Representation
We have recently seen great progress in 3D scene reconstruction through explicit point-based 3D Gaussian Splatting (3DGS), notable for its high quality and fast rendering speed. However, reconstructing dynamic scenes such as complex human performances with long durations remains challenging. Prior efforts fall short of modeling a long-term sequence with drastic motions, frequent topology changes or interactions with props, and resort to segmenting the whole sequence into groups of frames that are processed independently, which undermines temporal stability and thereby leads to an unpleasant viewing experience and inefficient storage footprint. In view of this, we introduce EvolvingGS, a two-stage strategy that first deforms the Gaussian model to coarsely align with the target frame, and then refines it with minimal point addition/subtraction, particularly in fast-changing areas. Owing to the flexibility of the incrementally evolving representation, our method outperforms existing approaches in terms of both per-frame and temporal quality metrics while maintaining fast rendering through its purely explicit representation. Moreover, by exploiting temporal coherence between successive frames, we propose a simple yet effective compression algorithm that achieves over 50x compression rate. Extensive experiments on both public benchmarks and challenging custom datasets demonstrate that our method significantly advances the state-of-the-art in dynamic scene reconstruction, particularly for extended sequences with complex human performances.
☆ GaussianCAD: Robust Self-Supervised CAD Reconstruction from Three Orthographic Views Using 3D Gaussian Splatting
The automatic reconstruction of 3D computer-aided design (CAD) models from CAD sketches has recently gained significant attention in the computer vision community. Most existing methods, however, rely on vector CAD sketches and 3D ground truth for supervision, which are often difficult to be obtained in industrial applications and are sensitive to noise inputs. We propose viewing CAD reconstruction as a specific instance of sparse-view 3D reconstruction to overcome these limitations. While this reformulation offers a promising perspective, existing 3D reconstruction methods typically require natural images and corresponding camera poses as inputs, which introduces two major significant challenges: (1) modality discrepancy between CAD sketches and natural images, and (2) difficulty of accurate camera pose estimation for CAD sketches. To solve these issues, we first transform the CAD sketches into representations resembling natural images and extract corresponding masks. Next, we manually calculate the camera poses for the orthographic views to ensure accurate alignment within the 3D coordinate system. Finally, we employ a customized sparse-view 3D reconstruction method to achieve high-quality reconstructions from aligned orthographic views. By leveraging raster CAD sketches for self-supervision, our approach eliminates the reliance on vector CAD sketches and 3D ground truth. Experiments on the Sub-Fusion360 dataset demonstrate that our proposed method significantly outperforms previous approaches in CAD reconstruction performance and exhibits strong robustness to noisy inputs.
☆ Accelerating Diffusion Transformer via Gradient-Optimized Cache
Feature caching has emerged as an effective strategy to accelerate diffusion transformer (DiT) sampling through temporal feature reuse. It is a challenging problem since (1) Progressive error accumulation from cached blocks significantly degrades generation quality, particularly when over 50\% of blocks are cached; (2) Current error compensation approaches neglect dynamic perturbation patterns during the caching process, leading to suboptimal error correction. To solve these problems, we propose the Gradient-Optimized Cache (GOC) with two key innovations: (1) Cached Gradient Propagation: A gradient queue dynamically computes the gradient differences between cached and recomputed features. These gradients are weighted and propagated to subsequent steps, directly compensating for the approximation errors introduced by caching. (2) Inflection-Aware Optimization: Through statistical analysis of feature variation patterns, we identify critical inflection points where the denoising trajectory changes direction. By aligning gradient updates with these detected phases, we prevent conflicting gradient directions during error correction. Extensive evaluations on ImageNet demonstrate GOC's superior trade-off between efficiency and quality. With 50\% cached blocks, GOC achieves IS 216.28 (26.3\% higher) and FID 3.907 (43\% lower) compared to baseline DiT, while maintaining identical computational costs. These improvements persist across various cache ratios, demonstrating robust adaptability to different acceleration requirements.
☆ Development and Enhancement of Text-to-Image Diffusion Models
This research focuses on the development and enhancement of text-to-image denoising diffusion models, addressing key challenges such as limited sample diversity and training instability. By incorporating Classifier-Free Guidance (CFG) and Exponential Moving Average (EMA) techniques, this study significantly improves image quality, diversity, and stability. Utilizing Hugging Face's state-of-the-art text-to-image generation model, the proposed enhancements establish new benchmarks in generative AI. This work explores the underlying principles of diffusion models, implements advanced strategies to overcome existing limitations, and presents a comprehensive evaluation of the improvements achieved. Results demonstrate substantial progress in generating stable, diverse, and high-quality images from textual descriptions, advancing the field of generative artificial intelligence and providing new foundations for future applications. Keywords: Text-to-image, Diffusion model, Classifier-free guidance, Exponential moving average, Image generation.
☆ HexPlane Representation for 3D Semantic Scene Understanding
In this paper, we introduce the HexPlane representation for 3D semantic scene understanding. Specifically, we first design the View Projection Module (VPM) to project the 3D point cloud into six planes to maximally retain the original spatial information. Features of six planes are extracted by the 2D encoder and sent to the HexPlane Association Module (HAM) to adaptively fuse the most informative information for each point. The fused point features are further fed to the task head to yield the ultimate predictions. Compared to the popular point and voxel representation, the HexPlane representation is efficient and can utilize highly optimized 2D operations to process sparse and unordered 3D point clouds. It can also leverage off-the-shelf 2D models, network weights, and training recipes to achieve accurate scene understanding in 3D space. On ScanNet and SemanticKITTI benchmarks, our algorithm, dubbed HexNet3D, achieves competitive performance with previous algorithms. In particular, on the ScanNet 3D segmentation task, our method obtains 77.0 mIoU on the validation set, surpassing Point Transformer V2 by 1.6 mIoU. We also observe encouraging results in indoor 3D detection tasks. Note that our method can be seamlessly integrated into existing voxel-based, point-based, and range-based approaches and brings considerable gains without bells and whistles. The codes will be available upon publication.
comment: 7 pages, 2 figures
☆ EDM: Efficient Deep Feature Matching
Recent feature matching methods have achieved remarkable performance but lack efficiency consideration. In this paper, we revisit the mainstream detector-free matching pipeline and improve all its stages considering both accuracy and efficiency. We propose an Efficient Deep feature Matching network, EDM. We first adopt a deeper CNN with fewer dimensions to extract multi-level features. Then we present a Correlation Injection Module that conducts feature transformation on high-level deep features, and progressively injects feature correlations from global to local for efficient multi-scale feature aggregation, improving both speed and performance. In the refinement stage, a novel lightweight bidirectional axis-based regression head is designed to directly predict subpixel-level correspondences from latent features, avoiding the significant computational cost of explicitly locating keypoints on high-resolution local feature heatmaps. Moreover, effective selection strategies are introduced to enhance matching accuracy. Extensive experiments show that our EDM achieves competitive matching accuracy on various benchmarks and exhibits excellent efficiency, offering valuable best practices for real-world applications. The code is available at https://github.com/chicleee/EDM.
☆ SMILENet: Unleashing Extra-Large Capacity Image Steganography via a Synergistic Mosaic InvertibLE Hiding Network
Existing image steganography methods face fundamental limitations in hiding capacity (typically $1\sim7$ images) due to severe information interference and uncoordinated capacity-distortion trade-off. We propose SMILENet, a novel synergistic framework that achieves 25 image hiding through three key innovations: (i) A synergistic network architecture coordinates reversible and non-reversible operations to efficiently exploit information redundancy in both secret and cover images. The reversible Invertible Cover-Driven Mosaic (ICDM) module and Invertible Mosaic Secret Embedding (IMSE) module establish cover-guided mosaic transformations and representation embedding with mathematically guaranteed invertibility for distortion-free embedding. The non-reversible Secret Information Selection (SIS) module and Secret Detail Enhancement (SDE) module implement learnable feature modulation for critical information selection and enhancement. (ii) A unified training strategy that coordinates complementary modules to achieve 3.0x higher capacity than existing methods with superior visual quality. (iii) Last but not least, we introduce a new metric to model Capacity-Distortion Trade-off for evaluating the image steganography algorithms that jointly considers hiding capacity and distortion, and provides a unified evaluation approach for accessing results with different number of secret image. Extensive experiments on DIV2K, Paris StreetView and ImageNet1K show that SMILENet outperforms state-of-the-art methods in terms of hiding capacity, recovery quality as well as security against steganalysis methods.
☆ We Care Each Pixel: Calibrating on Medical Segmentation Model
Medical image segmentation is fundamental for computer-aided diagnostics, providing accurate delineation of anatomical structures and pathological regions. While common metrics such as Accuracy, DSC, IoU, and HD primarily quantify spatial agreement between predictions and ground-truth labels, they do not assess the calibration quality of segmentation models, which is crucial for clinical reliability. To address this limitation, we propose pixel-wise Expected Calibration Error (pECE), a novel metric that explicitly measures miscalibration at the pixel level, thereby ensuring both spatial precision and confidence reliability. We further introduce a morphological adaptation strategy that applies morphological operations to ground-truth masks before computing calibration losses, particularly benefiting margin-based losses such as Margin SVLS and NACL. Additionally, we present the Signed Distance Calibration Loss (SDC), which aligns boundary geometry with calibration objectives by penalizing discrepancies between predicted and ground-truth signed distance functions (SDFs). Extensive experiments demonstrate that our method not only enhances segmentation performance but also improves calibration quality, yielding more trustworthy confidence estimates. Code is available at: https://github.com/EagleAdelaide/SDC-Loss.
comment: Under Reviewing
☆ Visual Cues of Gender and Race are Associated with Stereotyping in Vision-Language Models
Current research on bias in Vision Language Models (VLMs) has important limitations: it is focused exclusively on trait associations while ignoring other forms of stereotyping, it examines specific contexts where biases are expected to appear, and it conceptualizes social categories like race and gender as binary, ignoring the multifaceted nature of these identities. Using standardized facial images that vary in prototypicality, we test four VLMs for both trait associations and homogeneity bias in open-ended contexts. We find that VLMs consistently generate more uniform stories for women compared to men, with people who are more gender prototypical in appearance being represented more uniformly. By contrast, VLMs represent White Americans more uniformly than Black Americans. Unlike with gender prototypicality, race prototypicality was not related to stronger uniformity. In terms of trait associations, we find limited evidence of stereotyping-Black Americans were consistently linked with basketball across all models, while other racial associations (i.e., art, healthcare, appearance) varied by specific VLM. These findings demonstrate that VLM stereotyping manifests in ways that go beyond simple group membership, suggesting that conventional bias mitigation strategies may be insufficient to address VLM stereotyping and that homogeneity bias persists even when trait associations are less apparent in model outputs.
☆ Fake It To Make It: Virtual Multiviews to Enhance Monocular Indoor Semantic Scene Completion IROS 2025
Monocular Indoor Semantic Scene Completion (SSC) aims to reconstruct a 3D semantic occupancy map from a single RGB image of an indoor scene, inferring spatial layout and object categories from 2D image cues. The challenge of this task arises from the depth, scale, and shape ambiguities that emerge when transforming a 2D image into 3D space, particularly within the complex and often heavily occluded environments of indoor scenes. Current SSC methods often struggle with these ambiguities, resulting in distorted or missing object representations. To overcome these limitations, we introduce an innovative approach that leverages novel view synthesis and multiview fusion. Specifically, we demonstrate how virtual cameras can be placed around the scene to emulate multiview inputs that enhance contextual scene information. We also introduce a Multiview Fusion Adaptor (MVFA) to effectively combine the multiview 3D scene predictions into a unified 3D semantic occupancy map. Finally, we identify and study the inherent limitation of generative techniques when applied to SSC, specifically the Novelty-Consistency tradeoff. Our system, GenFuSE, demonstrates IoU score improvements of up to 2.8% for Scene Completion and 4.9% for Semantic Scene Completion when integrated with existing SSC networks on the NYUv2 dataset. This work introduces GenFuSE as a standard framework for advancing monocular SSC with synthesized inputs.
comment: Submitted to IROS 2025
☆ Taming Video Diffusion Prior with Scene-Grounding Guidance for 3D Gaussian Splatting from Sparse Inputs CVPR2025
Despite recent successes in novel view synthesis using 3D Gaussian Splatting (3DGS), modeling scenes with sparse inputs remains a challenge. In this work, we address two critical yet overlooked issues in real-world sparse-input modeling: extrapolation and occlusion. To tackle these issues, we propose to use a reconstruction by generation pipeline that leverages learned priors from video diffusion models to provide plausible interpretations for regions outside the field of view or occluded. However, the generated sequences exhibit inconsistencies that do not fully benefit subsequent 3DGS modeling. To address the challenge of inconsistencies, we introduce a novel scene-grounding guidance based on rendered sequences from an optimized 3DGS, which tames the diffusion model to generate consistent sequences. This guidance is training-free and does not require any fine-tuning of the diffusion model. To facilitate holistic scene modeling, we also propose a trajectory initialization method. It effectively identifies regions that are outside the field of view and occluded. We further design a scheme tailored for 3DGS optimization with generated sequences. Experiments demonstrate that our method significantly improves upon the baseline and achieves state-of-the-art performance on challenging benchmarks.
comment: Accepted by CVPR2025. The project page is available at https://zhongyingji.github.io/guidevd-3dgs/
☆ Lightweight Hypercomplex MRI Reconstruction: A Generalized Kronecker-Parameterized Approach
Magnetic Resonance Imaging (MRI) is crucial for clinical diagnostics but is hindered by prolonged scan times. Current deep learning models enhance MRI reconstruction but are often memory-intensive and unsuitable for resource-limited systems. This paper introduces a lightweight MRI reconstruction model leveraging Kronecker-Parameterized Hypercomplex Neural Networks to achieve high performance with reduced parameters. By integrating Kronecker-based modules, including Kronecker MLP, Kronecker Window Attention, and Kronecker Convolution, the proposed model efficiently extracts spatial features while preserving representational power. We introduce Kronecker U-Net and Kronecker SwinMR, which maintain high reconstruction quality with approximately 50% fewer parameters compared to existing models. Experimental evaluation on the FastMRI dataset demonstrates competitive PSNR, SSIM, and LPIPS metrics, even at high acceleration factors (8x and 16x), with no significant performance drop. Additionally, Kronecker variants exhibit superior generalization and reduced overfitting on limited datasets, facilitating efficient MRI reconstruction on hardware-constrained systems. This approach sets a new benchmark for parameter-efficient medical imaging models.
comment: 11 pages, 3 figures. Submitted for publication
☆ Accelerated Patient-specific Non-Cartesian MRI Reconstruction using Implicit Neural Representations
The scanning time for a fully sampled MRI can be undesirably lengthy. Compressed sensing has been developed to minimize image artifacts in accelerated scans, but the required iterative reconstruction is computationally complex and difficult to generalize on new cases. Image-domain-based deep learning methods (e.g., convolutional neural networks) emerged as a faster alternative but face challenges in modeling continuous k-space, a problem amplified with non-Cartesian sampling commonly used in accelerated acquisition. In comparison, implicit neural representations can model continuous signals in the frequency domain and thus are compatible with arbitrary k-space sampling patterns. The current study develops a novel generative-adversarially trained implicit neural representations (k-GINR) for de novo undersampled non-Cartesian k-space reconstruction. k-GINR consists of two stages: 1) supervised training on an existing patient cohort; 2) self-supervised patient-specific optimization. In stage 1, the network is trained with the generative-adversarial network on diverse patients of the same anatomical region supervised by fully sampled acquisition. In stage 2, undersampled k-space data of individual patients is used to tailor the prior-embedded network for patient-specific optimization. The UCSF StarVIBE T1-weighted liver dataset was evaluated on the proposed framework. k-GINR is compared with an image-domain deep learning method, Deep Cascade CNN, and a compressed sensing method. k-GINR consistently outperformed the baselines with a larger performance advantage observed at very high accelerations (e.g., 20 times). k-GINR offers great value for direct non-Cartesian k-space reconstruction for new incoming patients across a wide range of accelerations liver anatomy.
♻ ☆ Spatial regularisation for improved accuracy and interpretability in keypoint-based registration
Unsupervised registration strategies bypass requirements in ground truth transforms or segmentations by optimising similarity metrics between fixed and moved volumes. Among these methods, a recent subclass of approaches based on unsupervised keypoint detection stand out as very promising for interpretability. Specifically, these methods train a network to predict feature maps for fixed and moving images, from which explainable centres of mass are computed to obtain point clouds, that are then aligned in closed-form. However, the features returned by the network often yield spatially diffuse patterns that are hard to interpret, thus undermining the purpose of keypoint-based registration. Here, we propose a three-fold loss to regularise the spatial distribution of the features. First, we use the KL divergence to model features as point spread functions that we interpret as probabilistic keypoints. Then, we sharpen the spatial distributions of these features to increase the precision of the detected landmarks. Finally, we introduce a new repulsive loss across keypoints to encourage spatial diversity. Overall, our loss considerably improves the interpretability of the features, which now correspond to precise and anatomically meaningful landmarks. We demonstrate our three-fold loss in foetal rigid motion tracking and brain MRI affine registration tasks, where it not only outperforms state-of-the-art unsupervised strategies, but also bridges the gap with state-of-the-art supervised methods. Our code is available at https://github.com/BenBillot/spatial_regularisation.
comment: under review
♻ ☆ Question-Aware Gaussian Experts for Audio-Visual Question Answering CVPR 2025
Audio-Visual Question Answering (AVQA) requires not only question-based multimodal reasoning but also precise temporal grounding to capture subtle dynamics for accurate prediction. However, existing methods mainly use question information implicitly, limiting focus on question-specific details. Furthermore, most studies rely on uniform frame sampling, which can miss key question-relevant frames. Although recent Top-K frame selection methods aim to address this, their discrete nature still overlooks fine-grained temporal details. This paper proposes QA-TIGER, a novel framework that explicitly incorporates question information and models continuous temporal dynamics. Our key idea is to use Gaussian-based modeling to adaptively focus on both consecutive and non-consecutive frames based on the question, while explicitly injecting question information and applying progressive refinement. We leverage a Mixture of Experts (MoE) to flexibly implement multiple Gaussian models, activating temporal experts specifically tailored to the question. Extensive experiments on multiple AVQA benchmarks show that QA-TIGER consistently achieves state-of-the-art performance. Code is available at https://aim-skku.github.io/QA-TIGER/
comment: CVPR 2025. Code is available at https://github.com/AIM-SKKU/QA-TIGER
♻ ☆ LEDiT: Your Length-Extrapolatable Diffusion Transformer without Positional Encoding
Diffusion transformers(DiTs) struggle to generate images at resolutions higher than their training resolutions. The primary obstacle is that the explicit positional encodings(PE), such as RoPE, need extrapolation which degrades performance when the inference resolution differs from training. In this paper, we propose a Length-Extrapolatable Diffusion Transformer(LEDiT), a simple yet powerful architecture to overcome this limitation. LEDiT needs no explicit PEs, thereby avoiding extrapolation. The key innovations of LEDiT are introducing causal attention to implicitly impart global positional information to tokens, while enhancing locality to precisely distinguish adjacent tokens. Experiments on 256x256 and 512x512 ImageNet show that LEDiT can scale the inference resolution to 512x512 and 1024x1024, respectively, while achieving better image quality compared to current state-of-the-art length extrapolation methods(NTK-aware, YaRN). Moreover, LEDiT achieves strong extrapolation performance with just 100K steps of fine-tuning on a pretrained DiT, demonstrating its potential for integration into existing text-to-image DiTs. Project page: https://shenzhang2145.github.io/ledit/
♻ ☆ GBT-SAM: A Parameter-Efficient Depth-Aware Model for Generalizable Brain tumour Segmentation on mp-MRI
Gliomas are brain tumours that stand out for their highly lethal and aggressive nature, which demands a precise approach in their diagnosis. Medical image segmentation plays a crucial role in the evaluation and follow-up of these tumours, allowing specialists to analyse their morphology. However, existing methods for automatic glioma segmentation often lack generalization capability across other brain tumour domains, require extensive computational resources, or fail to fully utilize the multi-parametric MRI (mp-MRI) data used to delineate them. In this work, we introduce GBT-SAM, a novel Generalizable Brain Tumour (GBT) framework that extends the Segment Anything Model (SAM) to brain tumour segmentation tasks. Our method employs a two-step training protocol: first, fine-tuning the patch embedding layer to process the entire mp-MRI modalities, and second, incorporating parameter-efficient LoRA blocks and a Depth-Condition block into the Vision Transformer (ViT) to capture inter-slice correlations. GBT-SAM achieves state-of-the-art performance on the Adult Glioma dataset (Dice Score of $93.54$) while demonstrating robust generalization across Meningioma, Pediatric Glioma, and Sub-Saharan Glioma datasets. Furthermore, GBT-SAM uses less than 6.5M trainable parameters, thus offering an efficient solution for brain tumour segmentation. \\ Our code and models are available at https://github.com/vpulab/med-sam-brain .
♻ ☆ VISION-XL: High Definition Video Inverse Problem Solver using Latent Image Diffusion Models
In this paper, we propose a novel framework for solving high-definition video inverse problems using latent image diffusion models. Building on recent advancements in spatio-temporal optimization for video inverse problems using image diffusion models, our approach leverages latent-space diffusion models to achieve enhanced video quality and resolution. To address the high computational demands of processing high-resolution frames, we introduce a pseudo-batch consistent sampling strategy, allowing efficient operation on a single GPU. Additionally, to improve temporal consistency, we present pseudo-batch inversion, an initialization technique that incorporates informative latents from the measurement. By integrating with SDXL, our framework achieves state-of-the-art video reconstruction across a wide range of spatio-temporal inverse problems, including complex combinations of frame averaging and various spatial degradations, such as deblurring, super-resolution, and inpainting. Unlike previous methods, our approach supports multiple aspect ratios (landscape, vertical, and square) and delivers HD-resolution reconstructions (exceeding 1280x720) in under 6 seconds per frame on a single NVIDIA 4090 GPU.
comment: Project page: https://vision-xl.github.io/
♻ ☆ Diff-Reg v2: Diffusion-Based Matching Matrix Estimation for Image Matching and 3D Registration
Establishing reliable correspondences is crucial for all registration tasks, including 2D image registration, 3D point cloud registration, and 2D-3D image-to-point cloud registration. However, these tasks are often complicated by challenges such as scale inconsistencies, symmetry, and large deformations, which can lead to ambiguous matches. Previous feature-based and correspondence-based methods typically rely on geometric or semantic features to generate or polish initial potential correspondences. Some methods typically leverage specific geometric priors, such as topological preservation, to devise diverse and innovative strategies tailored to a given enhancement goal, which cannot be exhaustively enumerated. Additionally, many previous approaches rely on a single-step prediction head, which can struggle with local minima in complex matching scenarios. To address these challenges, we introduce an innovative paradigm that leverages a diffusion model in matrix space for robust matching matrix estimation. Our model treats correspondence estimation as a denoising diffusion process in the matching matrix space, gradually refining the intermediate matching matrix to the optimal one. Specifically, we apply the diffusion model in the doubly stochastic matrix space for 3D-3D and 2D-3D registration tasks. In the 2D image registration task, we deploy the diffusion model in a matrix subspace where dual-softmax projection regularization is applied. For all three registration tasks, we provide adaptive matching matrix embedding implementations tailored to the specific characteristics of each task while maintaining a consistent "match-to-warp" encoding pattern. Furthermore, we adopt a lightweight design for the denoising module. In inference, once points or image features are extracted and fixed, this module performs multi-step denoising predictions through reverse sampling.
comment: arXiv admin note: text overlap with arXiv:2403.19919
♻ ☆ Tell Me What to Track: Infusing Robust Language Guidance for Enhanced Referring Multi-Object Tracking
Referring multi-object tracking (RMOT) is an emerging cross-modal task that aims to localize an arbitrary number of targets based on a language expression and continuously track them in a video. This intricate task involves reasoning on multi-modal data and precise target localization with temporal association. However, prior studies overlook the imbalanced data distribution between newborn targets and existing targets due to the nature of the task. In addition, they only indirectly fuse multi-modal features, struggling to deliver clear guidance on newborn target detection. To solve the above issues, we conduct a collaborative matching strategy to alleviate the impact of the imbalance, boosting the ability to detect newborn targets while maintaining tracking performance. In the encoder, we integrate and enhance the cross-modal and multi-scale fusion, overcoming the bottlenecks in previous work, where limited multi-modal information is shared and interacted between feature maps. In the decoder, we also develop a referring-infused adaptation that provides explicit referring guidance through the query tokens. The experiments showcase the superior performance of our model (+3.42%) compared to prior works, demonstrating the effectiveness of our designs.
♻ ☆ Motion by Queries: Identity-Motion Trade-offs in Text-to-Video Generation
Text-to-video diffusion models have shown remarkable progress in generating coherent video clips from textual descriptions. However, the interplay between motion, structure, and identity representations in these models remains under-explored. Here, we investigate how self-attention query features (a.k.a. Q features) simultaneously govern motion, structure, and identity and examine the challenges arising when these representations interact. Our analysis reveals that Q affects not only layout, but that during denoising Q also has a strong effect on subject identity, making it hard to transfer motion without the side-effect of transferring identity. Understanding this dual role enabled us to control query feature injection (Q injection) and demonstrate two applications: (1) a zero-shot motion transfer method that is 20 times more efficient than existing approaches, and (2) a training-free technique for consistent multi-shot video generation, where characters maintain identity across multiple video shots while Q injection enhances motion fidelity.
comment: (1) Project page: https://research.nvidia.com/labs/par/MotionByQueries/ (2) The methods and results in section 5, "Consistent multi-shot video generation", are based on the arXiv version 1 (v1) of this work. Here, in version 2 (v2), we extend and further analyze those findings to efficient motion transfer
♻ ☆ NeRF-Aug: Data Augmentation for Robotics with Neural Radiance Fields
Training a policy that can generalize to unknown objects is a long standing challenge within the field of robotics. The performance of a policy often drops significantly in situations where an object in the scene was not seen during training. To solve this problem, we present NeRF-Aug, a novel method that is capable of teaching a policy to interact with objects that are not present in the dataset. This approach differs from existing approaches by leveraging the speed, photorealism, and 3D consistency of a neural radiance field for augmentation. NeRF-Aug both creates more photorealistic data and runs 63% faster than existing methods. We demonstrate the effectiveness of our method on 5 tasks with 9 novel objects that are not present in the expert demonstrations. We achieve an average performance boost of 55.6% when comparing our method to the next best method. You can see video results at https://nerf-aug.github.io.
♻ ☆ Real-Time Incremental Explanations for Object Detectors in Autonomous Driving
Object detectors are widely used in safety-critical real-time applications such as autonomous driving. Explainability is especially important for safety-critical applications, and due to the variety of object detectors and their often proprietary nature, black-box explainability tools are needed. However, existing black-box explainability tools for AI models rely on multiple model calls, rendering them impractical for real-time use. In this paper, we introduce IncX, an algorithm and a tool for real-time black-box explainability for object detectors. The algorithm is based on linear transformations of saliency maps, producing sufficient explanations. We evaluate our implementation on four widely used video datasets of autonomous driving and demonstrate that IncX's explanations are comparable in quality to the state-of-the-art and are computed two orders of magnitude faster than the state-of-the-art, making them usable in real time.
♻ ☆ DepthCues: Evaluating Monocular Depth Perception in Large Vision Models CVPR 2025
Large-scale pre-trained vision models are becoming increasingly prevalent, offering expressive and generalizable visual representations that benefit various downstream tasks. Recent studies on the emergent properties of these models have revealed their high-level geometric understanding, in particular in the context of depth perception. However, it remains unclear how depth perception arises in these models without explicit depth supervision provided during pre-training. To investigate this, we examine whether the monocular depth cues, similar to those used by the human visual system, emerge in these models. We introduce a new benchmark, DepthCues, designed to evaluate depth cue understanding, and present findings across 20 diverse and representative pre-trained vision models. Our analysis shows that human-like depth cues emerge in more recent larger models. We also explore enhancing depth perception in large vision models by fine-tuning on DepthCues, and find that even without dense depth supervision, this improves depth estimation. To support further research, our benchmark and evaluation code will be made publicly available for studying depth perception in vision models.
comment: Accepted to CVPR 2025. Project page: https://danier97.github.io/depthcues/
♻ ☆ AutoLUT: LUT-Based Image Super-Resolution with Automatic Sampling and Adaptive Residual Learning CVPR2025
In recent years, the increasing popularity of Hi-DPI screens has driven a rising demand for high-resolution images. However, the limited computational power of edge devices poses a challenge in deploying complex super-resolution neural networks, highlighting the need for efficient methods. While prior works have made significant progress, they have not fully exploited pixel-level information. Moreover, their reliance on fixed sampling patterns limits both accuracy and the ability to capture fine details in low-resolution images. To address these challenges, we introduce two plug-and-play modules designed to capture and leverage pixel information effectively in Look-Up Table (LUT) based super-resolution networks. Our method introduces Automatic Sampling (AutoSample), a flexible LUT sampling approach where sampling weights are automatically learned during training to adapt to pixel variations and expand the receptive field without added inference cost. We also incorporate Adaptive Residual Learning (AdaRL) to enhance inter-layer connections, enabling detailed information flow and improving the network's ability to reconstruct fine details. Our method achieves significant performance improvements on both MuLUT and SPF-LUT while maintaining similar storage sizes. Specifically, for MuLUT, we achieve a PSNR improvement of approximately +0.20 dB improvement on average across five datasets. For SPF-LUT, with more than a 50% reduction in storage space and about a 2/3 reduction in inference time, our method still maintains performance comparable to the original. The code is available at https://github.com/SuperKenVery/AutoLUT.
comment: Accepted by CVPR2025
♻ ☆ Benchmarking Vision Language Model Unlearning via Fictitious Facial Identity Dataset
Machine unlearning has emerged as an effective strategy for forgetting specific information in the training data. However, with the increasing integration of visual data, privacy concerns in Vision Language Models (VLMs) remain underexplored. To address this, we introduce Facial Identity Unlearning Benchmark (FIUBench), a novel VLM unlearning benchmark designed to robustly evaluate the effectiveness of unlearning algorithms under the Right to be Forgotten setting. Specifically, we formulate the VLM unlearning task via constructing the Fictitious Facial Identity VQA dataset and apply a two-stage evaluation pipeline that is designed to precisely control the sources of information and their exposure levels. In terms of evaluation, since VLM supports various forms of ways to ask questions with the same semantic meaning, we also provide robust evaluation metrics including membership inference attacks and carefully designed adversarial privacy attacks to evaluate the performance of algorithms. Through the evaluation of four baseline VLM unlearning algorithms within FIUBench, we find that all methods remain limited in their unlearning performance, with significant trade-offs between model utility and forget quality. Furthermore, our findings also highlight the importance of privacy attacks for robust evaluations. We hope FIUBench will drive progress in developing more effective VLM unlearning algorithms.
♻ ☆ Depth Completion with Multiple Balanced Bases and Confidence for Dense Monocular SLAM
Dense SLAM based on monocular cameras does indeed have immense application value in the field of AR/VR, especially when it is performed on a mobile device. In this paper, we propose a novel method that integrates a light-weight depth completion network into a sparse SLAM system using a multi-basis depth representation, so that dense mapping can be performed online even on a mobile phone. Specifically, we present a specifically optimized multi-basis depth completion network, called BBC-Net, tailored to the characteristics of traditional sparse SLAM systems. BBC-Net can predict multiple balanced bases and a confidence map from a monocular image with sparse points generated by off-the-shelf keypoint-based SLAM systems. The final depth is a linear combination of predicted depth bases that can be optimized by tuning the corresponding weights. To seamlessly incorporate the weights into traditional SLAM optimization and ensure efficiency and robustness, we design a set of depth weight factors, which makes our network a versatile plug-in module, facilitating easy integration into various existing sparse SLAM systems and significantly enhancing global depth consistency through bundle adjustment. To verify the portability of our method, we integrate BBC-Net into two representative SLAM systems. The experimental results on various datasets show that the proposed method achieves better performance in monocular dense mapping than the state-of-the-art methods. We provide an online demo running on a mobile phone, which verifies the efficiency and mapping quality of the proposed method in real-world scenarios.
♻ ☆ MicroMIL: Graph-based Contextual Multiple Instance Learning for Patient Diagnosis Using Microscopy Images
Cancer diagnosis has greatly benefited from the integration of whole-slide images (WSIs) with multiple instance learning (MIL), enabling high-resolution analysis of tissue morphology. Graph-based MIL (GNN-MIL) approaches have emerged as powerful solutions for capturing spatial and relational structures in WSIs, thereby improving diagnostic accuracy. However, despite their effectiveness, WSIs require significant computational and infrastructural resources, limiting accessibility in resource-constrained settings. Microscopy imaging provides a cost-effective alternative, but applying GNN-MIL to microscopy imaging is challenging due to the absence of spatial coordinates and the high redundancy in pathologist-acquired images. To address these issues, we introduce MicroMIL, the first weakly-supervised MIL framework specifically designed for microscopy imaging. MicroMIL leverages a representative image extractor (RIE) that employs deep cluster embedding (DCE) and hard Gumbel-Softmax to dynamically reduce redundancy and select representative images. These selected images serve as graph nodes, with edges determined by cosine similarity, eliminating the need for spatial coordinates while preserving relational structure. Extensive experiments on a real-world colon cancer dataset and the BreakHis dataset demonstrate that MicroMIL achieves state-of-the-art performance, improving both diagnostic accuracy and robustness to redundancy. The code is available at https://anonymous.4open.science/r/MicroMIL-6C7C
comment: The first two authors contributed equally to this work
♻ ☆ Completion as Enhancement: A Degradation-Aware Selective Image Guided Network for Depth Completion CVPR 2025
In this paper, we introduce the Selective Image Guided Network (SigNet), a novel degradation-aware framework that transforms depth completion into depth enhancement for the first time. Moving beyond direct completion using convolutional neural networks (CNNs), SigNet initially densifies sparse depth data through non-CNN densification tools to obtain coarse yet dense depth. This approach eliminates the mismatch and ambiguity caused by direct convolution over irregularly sampled sparse data. Subsequently, SigNet redefines completion as enhancement, establishing a self-supervised degradation bridge between the coarse depth and the targeted dense depth for effective RGB-D fusion. To achieve this, SigNet leverages the implicit degradation to adaptively select high-frequency components (e.g., edges) of RGB data to compensate for the coarse depth. This degradation is further integrated into a multi-modal conditional Mamba, dynamically generating the state parameters to enable efficient global high-frequency information interaction. We conduct extensive experiments on the NYUv2, DIML, SUN RGBD, and TOFDC datasets, demonstrating the state-of-the-art (SOTA) performance of SigNet.
comment: CVPR 2025
♻ ☆ PRAM: Place Recognition Anywhere Model for Efficient Visual Localization
Visual localization is a key technique to a variety of applications, e.g., autonomous driving, AR/VR, and robotics. For these real applications, both efficiency and accuracy are important especially on edge devices with limited computing resources. However, previous frameworks, e.g., absolute pose regression (APR), scene coordinate regression (SCR), and the hierarchical method (HM), have limited either accuracy or efficiency in both indoor and outdoor environments. In this paper, we propose the place recognition anywhere model (PRAM), a new framework, to perform visual localization efficiently and accurately by recognizing 3D landmarks. Specifically, PRAM first generates landmarks directly in 3D space in a self-supervised manner. Without relying on commonly used classic semantic labels, these 3D landmarks can be defined in any place in indoor and outdoor scenes with higher generalization ability. Representing the map with 3D landmarks, PRAM discards global descriptors, repetitive local descriptors, and redundant 3D points, increasing the memory efficiency significantly. Then, sparse keypoints, rather than dense pixels, are utilized as the input tokens to a transformer-based recognition module for landmark recognition, which enables PRAM to recognize hundreds of landmarks with high time and memory efficiency. At test time, sparse keypoints and predicted landmark labels are utilized for outlier removal and landmark-wise 2D-3D matching as opposed to exhaustive 2D-2D matching, which further increases the time efficiency. A comprehensive evaluation of APRs, SCRs, HMs, and PRAM on both indoor and outdoor datasets demonstrates that PRAM outperforms ARPs and SCRs in large-scale scenes with a large margin and gives competitive accuracy to HMs but reduces over 90\% memory cost and runs 2.4 times faster, leading to a better balance between efficiency and accuracy.
comment: project page: https://feixue94.github.io/pram-project/
♻ ☆ OASIS Uncovers: High-Quality T2I Models, Same Old Stereotypes ICLR 2025
Images generated by text-to-image (T2I) models often exhibit visual biases and stereotypes of concepts such as culture and profession. Existing quantitative measures of stereotypes are based on statistical parity that does not align with the sociological definition of stereotypes and, therefore, incorrectly categorizes biases as stereotypes. Instead of oversimplifying stereotypes as biases, we propose a quantitative measure of stereotypes that aligns with its sociological definition. We then propose OASIS to measure the stereotypes in a generated dataset and understand their origins within the T2I model. OASIS includes two scores to measure stereotypes from a generated image dataset: (M1) Stereotype Score to measure the distributional violation of stereotypical attributes, and (M2) WALS to measure spectral variance in the images along a stereotypical attribute. OASIS also includes two methods to understand the origins of stereotypes in T2I models: (U1) StOP to discover attributes that the T2I model internally associates with a given concept, and (U2) SPI to quantify the emergence of stereotypical attributes in the latent space of the T2I model during image generation. Despite the considerable progress in image fidelity, using OASIS, we conclude that newer T2I models such as FLUX.1 and SDv3 contain strong stereotypical predispositions about concepts and still generate images with widespread stereotypical attributes. Additionally, the quantity of stereotypes worsens for nationalities with lower Internet footprints.
comment: Accepted as a Spotlight paper at ICLR 2025
♻ ☆ ATRNet-STAR: A Large Dataset and Benchmark Towards Remote Sensing Object Recognition in the Wild
The absence of publicly available, large-scale, high-quality datasets for Synthetic Aperture Radar Automatic Target Recognition (SAR ATR) has significantly hindered the application of rapidly advancing deep learning techniques, which hold huge potential to unlock new capabilities in this field. This is primarily because collecting large volumes of diverse target samples from SAR images is prohibitively expensive, largely due to privacy concerns, the characteristics of microwave radar imagery perception, and the need for specialized expertise in data annotation. Throughout the history of SAR ATR research, there have been only a number of small datasets, mainly including targets like ships, airplanes, buildings, etc. There is only one vehicle dataset MSTAR collected in the 1990s, which has been a valuable source for SAR ATR. To fill this gap, this paper introduces a large-scale, new dataset named ATRNet-STAR with 40 different vehicle categories collected under various realistic imaging conditions and scenes. It marks a substantial advancement in dataset scale and diversity, comprising over 190,000 well-annotated samples, 10 times larger than its predecessor, the famous MSTAR. Building such a large dataset is a challenging task, and the data collection scheme will be detailed. Secondly, we illustrate the value of ATRNet-STAR via extensively evaluating the performance of 15 representative methods with 7 different experimental settings on challenging classification and detection benchmarks derived from the dataset. Finally, based on our extensive experiments, we identify valuable insights for SAR ATR and discuss potential future research directions in this field. We hope that the scale, diversity, and benchmark of ATRNet-STAR can significantly facilitate the advancement of SAR ATR.
comment: 17 pages, 14 figures; ATRNet-STAR: https://github.com/waterdisappear/ATRNet-STAR
♻ ☆ MVCTrack: Boosting 3D Point Cloud Tracking via Multimodal-Guided Virtual Cues ICRA 2025
3D single object tracking is essential in autonomous driving and robotics. Existing methods often struggle with sparse and incomplete point cloud scenarios. To address these limitations, we propose a Multimodal-guided Virtual Cues Projection (MVCP) scheme that generates virtual cues to enrich sparse point clouds. Additionally, we introduce an enhanced tracker MVCTrack based on the generated virtual cues. Specifically, the MVCP scheme seamlessly integrates RGB sensors into LiDAR-based systems, leveraging a set of 2D detections to create dense 3D virtual cues that significantly improve the sparsity of point clouds. These virtual cues can naturally integrate with existing LiDAR-based 3D trackers, yielding substantial performance gains. Extensive experiments demonstrate that our method achieves competitive performance on the NuScenes dataset.
comment: Accepted by ICRA 2025
♻ ☆ Toward Robust Non-Transferable Learning: A Survey and Benchmark
Over the past decades, researchers have primarily focused on improving the generalization abilities of models, with limited attention given to regulating such generalization. However, the ability of models to generalize to unintended data (e.g., harmful or unauthorized data) can be exploited by malicious adversaries in unforeseen ways, potentially resulting in violations of model ethics. Non-transferable learning (NTL), a task aimed at reshaping the generalization abilities of deep learning models, was proposed to address these challenges. While numerous methods have been proposed in this field, a comprehensive review of existing progress and a thorough analysis of current limitations remain lacking. In this paper, we bridge this gap by presenting the first comprehensive survey on NTL and introducing NTLBench, the first benchmark to evaluate NTL performance and robustness within a unified framework. Specifically, we first introduce the task settings, general framework, and criteria of NTL, followed by a summary of NTL approaches. Furthermore, we emphasize the often-overlooked issue of robustness against various attacks that can destroy the non-transferable mechanism established by NTL. Experiments conducted via NTLBench verify the limitations of existing NTL methods in robustness. Finally, we discuss the practical applications of NTL, along with its future directions and associated challenges.
comment: Code is available at https://github.com/tmllab/NTLBench
♻ ☆ Revisiting the Generalization Problem of Low-level Vision Models Through the Lens of Image Deraining
Generalization remains a significant challenge for low-level vision models, which often struggle with unseen degradations in real-world scenarios despite their success in controlled benchmarks. In this paper, we revisit the generalization problem in low-level vision models. Image deraining is selected as a case study due to its well-defined and easily decoupled structure, allowing for more effective observation and analysis. Through comprehensive experiments, we reveal that the generalization issue is not primarily due to limited network capacity but rather the failure of existing training strategies, which leads networks to overfit specific degradation patterns. Our findings show that guiding networks to focus on learning the underlying image content, rather than the degradation patterns, is key to improving generalization. We demonstrate that balancing the complexity of background images and degradations in the training data helps networks better fit the image distribution. Furthermore, incorporating content priors from pre-trained generative models significantly enhances generalization. Experiments on both image deraining and image denoising validate the proposed strategies. We believe the insights and solutions will inspire further research and improve the generalization of low-level vision models.
comment: arXiv admin note: substantial text overlap with arXiv:2305.15134
♻ ☆ A Simple and Generalist Approach for Panoptic Segmentation
Panoptic segmentation is an important computer vision task, where the current state-of-the-art solutions require specialized components to perform well. We propose a simple generalist framework based on a deep encoder - shallow decoder architecture with per-pixel prediction. Essentially fine-tuning a massively pretrained image model with minimal additional components. Naively this method does not yield good results. We show that this is due to imbalance during training and propose a novel method for reducing it - centroid regression in the space of spectral positional embeddings. Our method achieves panoptic quality (PQ) of 55.1 on the challenging MS-COCO dataset, state-of-the-art performance among generalist methods.
♻ ☆ Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge MICCAI
We describe the design and results from the BraTS 2023 Intracranial Meningioma Segmentation Challenge. The BraTS Meningioma Challenge differed from prior BraTS Glioma challenges in that it focused on meningiomas, which are typically benign extra-axial tumors with diverse radiologic and anatomical presentation and a propensity for multiplicity. Nine participating teams each developed deep-learning automated segmentation models using image data from the largest multi-institutional systematically expert annotated multilabel multi-sequence meningioma MRI dataset to date, which included 1000 training set cases, 141 validation set cases, and 283 hidden test set cases. Each case included T2, FLAIR, T1, and T1Gd brain MRI sequences with associated tumor compartment labels delineating enhancing tumor, non-enhancing tumor, and surrounding non-enhancing FLAIR hyperintensity. Participant automated segmentation models were evaluated and ranked based on a scoring system evaluating lesion-wise metrics including dice similarity coefficient (DSC) and 95% Hausdorff Distance. The top ranked team had a lesion-wise median dice similarity coefficient (DSC) of 0.976, 0.976, and 0.964 for enhancing tumor, tumor core, and whole tumor, respectively and a corresponding average DSC of 0.899, 0.904, and 0.871, respectively. These results serve as state-of-the-art benchmarks for future pre-operative meningioma automated segmentation algorithms. Additionally, we found that 1286 of 1424 cases (90.3%) had at least 1 compartment voxel abutting the edge of the skull-stripped image edge, which requires further investigation into optimal pre-processing face anonymization steps.
comment: Accepted for publication at the Journal of Machine Learning for Biomedical Imaging (MELBA) https://melba-journal.org/2025:003 22 pages, 6 tables, 12 figures, MICCAI, MELBA
♻ ☆ RS-vHeat: Heat Conduction Guided Efficient Remote Sensing Foundation Model
Remote sensing foundation models largely break away from the traditional paradigm of designing task-specific models, offering greater scalability across multiple tasks. However, they face challenges such as low computational efficiency and limited interpretability, especially when dealing with large-scale remote sensing images. To overcome these, we draw inspiration from heat conduction, a physical process modeling local heat diffusion. Building on this idea, we are the first to explore the potential of using the parallel computing model of heat conduction to simulate the local region correlations in high-resolution remote sensing images, and introduce RS-vHeat, an efficient multi-modal remote sensing foundation model. Specifically, RS-vHeat 1) applies the Heat Conduction Operator (HCO) with a complexity of $O(N^{1.5})$ and a global receptive field, reducing computational overhead while capturing remote sensing object structure information to guide heat diffusion; 2) learns the frequency distribution representations of various scenes through a self-supervised strategy based on frequency domain hierarchical masking and multi-domain reconstruction; 3) significantly improves efficiency and performance over state-of-the-art techniques across 4 tasks and 10 datasets. Compared to attention-based remote sensing foundation models, we reduce memory usage by 84\%, FLOPs by 24\% and improves throughput by 2.7 times. The code will be made publicly available.
comment: 19 pages, 8 figures and 10 tables
♻ ☆ Language-guided Medical Image Segmentation with Target-informed Multi-level Contrastive Alignments
Medical image segmentation is crucial in modern medical image analysis, which can aid into diagnosis of various disease conditions. Recently, language-guided segmentation methods have shown promising results in automating image segmentation where text reports are incorporated as guidance. These text reports, containing image impressions and insights given by clinicians, provides auxiliary guidance. However, these methods neglect the inherent pattern gaps between the two distinct modalities, which leads to sub-optimal image-text feature fusion without proper cross-modality feature alignments. Contrastive alignments are widely used to associate image-text semantics in representation learning; however, it has not been exploited to bridge the pattern gaps in language-guided segmentation that relies on subtle low level image details to represent diseases. Existing contrastive alignment methods typically algin high-level global image semantics without involving low-level, localized target information, and therefore fails to explore fine-grained text guidance for language-guided segmentation. In this study, we propose a language-guided segmentation network with Target-informed Multi-level Contrastive Alignments (TMCA). TMCA enables target-informed cross-modality alignments and fine-grained text guidance to bridge the pattern gaps in language-guided segmentation. Specifically, we introduce: 1) a target-sensitive semantic distance module that enables granular image-text alignment modelling, and 2) a multi-level alignment strategy that directs text guidance on low-level image features. In addition, a language-guided target enhancement module is proposed to leverage the aligned text to redirect attention to focus on critical localized image features. Extensive experiments on 4 image-text datasets, involving 3 medical imaging modalities, demonstrated that our TMCA achieved superior performances.
♻ ☆ A Survey on 3D Gaussian Splatting
3D Gaussian splatting (GS) has emerged as a transformative technique in explicit radiance field and computer graphics. This innovative approach, characterized by the use of millions of learnable 3D Gaussians, represents a significant departure from mainstream neural radiance field approaches, which predominantly use implicit, coordinate-based models to map spatial coordinates to pixel values. 3D GS, with its explicit scene representation and differentiable rendering algorithm, not only promises real-time rendering capability but also introduces unprecedented levels of editability. This positions 3D GS as a potential game-changer for the next generation of 3D reconstruction and representation. In the present paper, we provide the first systematic overview of the recent developments and critical contributions in the domain of 3D GS. We begin with a detailed exploration of the underlying principles and the driving forces behind the emergence of 3D GS, laying the groundwork for understanding its significance. A focal point of our discussion is the practical applicability of 3D GS. By enabling unprecedented rendering speed, 3D GS opens up a plethora of applications, ranging from virtual reality to interactive media and beyond. This is complemented by a comparative analysis of leading 3D GS models, evaluated across various benchmark tasks to highlight their performance and practical utility. The survey concludes by identifying current challenges and suggesting potential avenues for future research. Through this survey, we aim to provide a valuable resource for both newcomers and seasoned researchers, fostering further exploration and advancement in explicit radiance field.
comment: Ongoing project. Paper list: https://github.com/guikunchen/Awesome3DGS ; Benchmark: https://github.com/guikunchen/3DGS-Benchmarks
♻ ☆ Gaussians-to-Life: Text-Driven Animation of 3D Gaussian Splatting Scenes 3DV 2025
State-of-the-art novel view synthesis methods achieve impressive results for multi-view captures of static 3D scenes. However, the reconstructed scenes still lack "liveliness," a key component for creating engaging 3D experiences. Recently, novel video diffusion models generate realistic videos with complex motion and enable animations of 2D images, however they cannot naively be used to animate 3D scenes as they lack multi-view consistency. To breathe life into the static world, we propose Gaussians2Life, a method for animating parts of high-quality 3D scenes in a Gaussian Splatting representation. Our key idea is to leverage powerful video diffusion models as the generative component of our model and to combine these with a robust technique to lift 2D videos into meaningful 3D motion. We find that, in contrast to prior work, this enables realistic animations of complex, pre-existing 3D scenes and further enables the animation of a large variety of object classes, while related work is mostly focused on prior-based character animation, or single 3D objects. Our model enables the creation of consistent, immersive 3D experiences for arbitrary scenes.
comment: Project website at https://wimmerth.github.io/gaussians2life.html. Accepted to 3DV 2025
♻ ☆ Sustainable transparency in Recommender Systems: Bayesian Ranking of Images for Explainability
Recommender Systems have become crucial in the modern world, commonly guiding users towards relevant content or products, and having a large influence over the decisions of users and citizens. However, ensuring transparency and user trust in these systems remains a challenge; personalized explanations have emerged as a solution, offering justifications for recommendations. Among the existing approaches for generating personalized explanations, using existing visual content created by users is a promising option to maximize transparency and user trust. State-of-the-art models that follow this approach, despite leveraging highly optimized architectures, employ surrogate learning tasks that do not efficiently model the objective of ranking images as explanations for a given recommendation; this leads to a suboptimal training process with high computational costs that may not be reduced without affecting model performance. This work presents BRIE, a novel model where we leverage Bayesian Pairwise Ranking to enhance the training process, allowing us to consistently outperform state-of-the-art models in six real-world datasets while reducing its model size by up to 64 times and its CO2 emissions by up to 75% in training and inference.
♻ ☆ Bridging Text and Vision: A Multi-View Text-Vision Registration Approach for Cross-Modal Place Recognition
Mobile robots necessitate advanced natural language understanding capabilities to accurately identify locations and perform tasks such as package delivery. However, traditional visual place recognition (VPR) methods rely solely on single-view visual information and cannot interpret human language descriptions. To overcome this challenge, we bridge text and vision by proposing a multiview (360{\deg} views of the surroundings) text-vision registration approach called Text4VPR for place recognition task, which is the first method that exclusively utilizes textual descriptions to match a database of images. Text4VPR employs the frozen T5 language model to extract global textual embeddings. Additionally, it utilizes the Sinkhorn algorithm with temperature coefficient to assign local tokens to their respective clusters, thereby aggregating visual descriptors from images. During the training stage, Text4VPR emphasizes the alignment between individual text-image pairs for precise textual description. In the inference stage, Text4VPR uses the Cascaded Cross-Attention Cosine Alignment (CCCA) to address the internal mismatch between text and image groups. Subsequently, Text4VPR performs precisely place match based on the descriptions of text-image groups. On Street360Loc, the first text to image VPR dataset we created, Text4VPR builds a robust baseline, achieving a leading top-1 accuracy of 57% and a leading top-10 accuracy of 92% within a 5-meter radius on the test set, which indicates that localization from textual descriptions to images is not only feasible but also holds significant potential for further advancement, as shown in Figure 1.
comment: 8 pages, 4 figures, conference
♻ ☆ A Hybrid SNN-ANN Network for Event-based Object Detection with Spatial and Temporal AttentionEfficient Event-Based Object Detection: A Hybrid Neural Network with Spatial and Temporal Attention
Event cameras offer high temporal resolution and dynamic range with minimal motion blur, making them promising for robust object detection. While Spiking Neural Networks (SNNs) on neuromorphic hardware are often considered for energy efficient and low latency event-based data processing, they often fall short of Artificial Neural Networks (ANNs) in accuracy and flexibility. Here, we introduce Attention-based Hybrid SNN-ANN backbones for event-based object detection to leverage the strengths of both SNN and ANN architectures. A novel Attention-based SNN-ANN bridge module captures sparse spatial and temporal relations from the SNN layer and converts them into dense feature maps for the ANN part of the backbone. Additionally, we present a variant that integrates DWConvLSTMs to the ANN blocks to capture slower dynamics. This multi-timescale network combines fast SNN processing for short timesteps with long-term dense RNN processing, effectively capturing both fast and slow dynamics. Experimental results demonstrate that our proposed method surpasses SNN-based approaches by significant margins, with results comparable to existing ANN and RNN-based methods. Unlike ANN-only networks, the hybrid setup allows us to implement the SNN blocks on digital neuromorphic hardware to investigate the feasibility of our approach. Extensive ablation studies and implementation on neuromorphic hardware confirm the effectiveness of our proposed modules and architectural choices. Our hybrid SNN-ANN architectures pave the way for ANN-like performance at a drastically reduced parameter, latency, and power budget.
♻ ☆ General Detection-based Text Line Recognition
We introduce a general detection-based approach to text line recognition, be it printed (OCR) or handwritten (HTR), with Latin, Chinese, or ciphered characters. Detection-based approaches have until now been largely discarded for HTR because reading characters separately is often challenging, and character-level annotation is difficult and expensive. We overcome these challenges thanks to three main insights: (i) synthetic pre-training with sufficiently diverse data enables learning reasonable character localization for any script; (ii) modern transformer-based detectors can jointly detect a large number of instances, and, if trained with an adequate masking strategy, leverage consistency between the different detections; (iii) once a pre-trained detection model with approximate character localization is available, it is possible to fine-tune it with line-level annotation on real data, even with a different alphabet. Our approach, dubbed DTLR, builds on a completely different paradigm than state-of-the-art HTR methods, which rely on autoregressive decoding, predicting character values one by one, while we treat a complete line in parallel. Remarkably, we demonstrate good performance on a large range of scripts, usually tackled with specialized approaches. In particular, we improve state-of-the-art performances for Chinese script recognition on the CASIA v2 dataset, and for cipher recognition on the Borg and Copiale datasets. Our code and models are available at https://github.com/raphael-baena/DTLR.
♻ ☆ METDrive: Multi-modal End-to-end Autonomous Driving with Temporal Guidance ICRA
Multi-modal end-to-end autonomous driving has shown promising advancements in recent work. By embedding more modalities into end-to-end networks, the system's understanding of both static and dynamic aspects of the driving environment is enhanced, thereby improving the safety of autonomous driving. In this paper, we introduce METDrive, an end-to-end system that leverages temporal guidance from the embedded time series features of ego states, including rotation angles, steering, throttle signals, and waypoint vectors. The geometric features derived from perception sensor data and the time series features of ego state data jointly guide the waypoint prediction with the proposed temporal guidance loss function. We evaluated METDrive on the CARLA leaderboard benchmarks, achieving a driving score of 70%, a route completion score of 94%, and an infraction score of 0.78.
comment: Accepted by ICRA
♻ ☆ A Simple yet Effective Test-Time Adaptation for Zero-Shot Monocular Metric Depth Estimation
The recent development of foundation models for monocular depth estimation such as Depth Anything paved the way to zero-shot monocular depth estimation. Since it returns an affine-invariant disparity map, the favored technique to recover the metric depth consists in fine-tuning the model. However, this stage is not straightforward, it can be costly and time-consuming because of the training and the creation of the dataset. The latter must contain images captured by the camera that will be used at test time and the corresponding ground truth. Moreover, the fine-tuning may also degrade the generalizing capacity of the original model. Instead, we propose in this paper a new method to rescale Depth Anything predictions using 3D points provided by sensors or techniques such as low-resolution LiDAR or structure-from-motion with poses given by an IMU. This approach avoids fine-tuning and preserves the generalizing power of the original depth estimation model while being robust to the noise of the sparse depth or of the depth model. Our experiments highlight enhancements relative to zero-shot monocular metric depth estimation methods, competitive results compared to fine-tuned approaches and a better robustness than depth completion approaches. Code available at https://gitlab.ensta.fr/ssh/monocular-depth-rescaling.
♻ ☆ SimpleDepthPose: Fast and Reliable Human Pose Estimation with RGBD-Images
In the rapidly advancing domain of computer vision, accurately estimating the poses of multiple individuals from various viewpoints remains a significant challenge, especially when reliability is a key requirement. This paper introduces a novel algorithm that excels in multi-view, multi-person pose estimation by incorporating depth information. An extensive evaluation demonstrates that the proposed algorithm not only generalizes well to unseen datasets, and shows a fast runtime performance, but also is adaptable to different keypoints. To support further research, all of the work is publicly accessible.
♻ ☆ Needle In A Video Haystack: A Scalable Synthetic Evaluator for Video MLLMs ICLR 2025
Video understanding is a crucial next step for multimodal large language models (MLLMs). Various benchmarks are introduced for better evaluating the MLLMs. Nevertheless, current video benchmarks are still inefficient for evaluating video models during iterative development due to the high cost of constructing datasets and the difficulty in isolating specific skills. In this paper, we propose VideoNIAH (Video Needle In A Haystack), a benchmark construction framework through synthetic video generation. VideoNIAH decouples video content from their query-responses by inserting unrelated visual 'needles' into original videos. The framework automates the generation of query-response pairs using predefined rules, minimizing manual labor. The queries focus on specific aspects of video understanding, enabling more skill-specific evaluations. The separation between video content and the queries also allow for increased video variety and evaluations across different lengths. Utilizing VideoNIAH, we compile a video benchmark VNBench, which includes tasks such as retrieval, ordering, and counting to evaluate three key aspects of video understanding: temporal perception, chronological ordering, and spatio-temporal coherence. We conduct a comprehensive evaluation of both proprietary and open-source models, uncovering significant differences in their video understanding capabilities across various tasks. Additionally, we perform an in-depth analysis of the test results and model configurations. Based on these findings, we provide some advice for improving video MLLM training, offering valuable insights to guide future research and model development. The code and data are available at https://github.com/joez17/VideoNIAH.
comment: ICLR 2025
♻ ☆ Large Language Models are Strong Audio-Visual Speech Recognition Learners ICASSP 2025
Multimodal large language models (MLLMs) have recently become a focal point of research due to their formidable multimodal understanding capabilities. For example, in the audio and speech domains, an LLM can be equipped with (automatic) speech recognition (ASR) abilities by just concatenating the audio tokens, computed with an audio encoder, and the text tokens to achieve state-of-the-art results. On the contrary, tasks like visual and audio-visual speech recognition (VSR/AVSR), which also exploit noise-invariant lip movement information, have received little or no attention. To bridge this gap, we propose Llama-AVSR, a new MLLM with strong audio-visual speech recognition capabilities. It leverages pre-trained audio and video encoders to produce modality-specific tokens which, together with the text tokens, are processed by a pre-trained LLM (e.g., Llama3.1-8B) to yield the resulting response in an auto-regressive fashion. Llama-AVSR requires a small number of trainable parameters as only modality-specific projectors and LoRA modules are trained whereas the multi-modal encoders and LLM are kept frozen. We evaluate our proposed approach on LRS3, the largest public AVSR benchmark, and we achieve new state-of-the-art results for the tasks of ASR and AVSR with a WER of 0.79% and 0.77%, respectively. To bolster our results, we investigate the key factors that underpin the effectiveness of Llama-AVSR: the choice of the pre-trained encoders and LLM, the efficient integration of LoRA modules, and the optimal performance-efficiency trade-off obtained via modality-aware compression rates.
comment: Accepted for publication at ICASSP 2025. The code and checkpoints are available here: https://github.com/umbertocappellazzo/Llama-AVSR
♻ ☆ Nexus-O: An Omni-Perceptive And -Interactive Model for Language, Audio, And Vision
Human beings perceive the real world through a spectrum of sensory modalities, encompassing auditory, visual, and linguistic faculties. The journey towards achieving Artificial General Intelligence (AGI) necessitates the development of models that can emulate these multifaceted perceptual capabilities and comprehensively understand these diversified data. To this end, we introduce \textbf{Nexus-O}, an industry-level \textbf{omni-perceptive and -interactive} model capable of efficiently processing Audio, Image, Video, and Text data in any combination and output audio/text in an end-to-end way. We systematically investigate Nexus-O by addressing three key research questions: First, how can models be efficiently designed and trained to achieve tri-modal alignment, understanding and reasoning capabilities across multiple modalities? Second, what approaches can be implemented to evaluate tri-modal model robustness, ensuring reliable performance and applicability in real-world scenarios? Third, what strategies can be employed to curate and obtain high-quality, real-life scenario speech datasets? For the first question, we design and pre-train Nexus-O based on the vision-language model, rather than the language model. By pre-training the model over high-quality synthetic audio data, our model is capable of tri-modal perception and interaction. For the second question, we introduce a new audio testbed, Nexus-O-audio, comprising diverse Automatic Speech Recognition (ASR) samples, spanning various real-world scenarios, such as corporate meetings and live stream. For the third question, we design the speech data synthesis pipeline to obtain high-quality speech training datasets, covering various real-world scenarios. Comprehensive experimentation and an in-depth analysis of tri-modal alignment over latent space demonstrate the advantages of our model on downstream tasks.
♻ ☆ PseudoTouch: Efficiently Imaging the Surface Feel of Objects for Robotic Manipulation ICRA 2025
Tactile sensing is vital for human dexterous manipulation, however, it has not been widely used in robotics. Compact, low-cost sensing platforms can facilitate a change, but unlike their popular optical counterparts, they are difficult to deploy in high-fidelity tasks due to their low signal dimensionality and lack of a simulation model. To overcome these challenges, we introduce PseudoTouch which links high-dimensional structural information to low-dimensional sensor signals. It does so by learning a low-dimensional visual-tactile embedding, wherein we encode a depth patch from which we decode the tactile signal. We collect and train PseudoTouch on a dataset comprising aligned tactile and visual data pairs obtained through random touching of eight basic geometric shapes. We demonstrate the utility of our trained PseudoTouch model in two downstream tasks: object recognition and grasp stability prediction. In the object recognition task, we evaluate the learned embedding's performance on a set of five basic geometric shapes and five household objects. Using PseudoTouch, we achieve an object recognition accuracy 84% after just ten touches, surpassing a proprioception baseline. For the grasp stability task, we use ACRONYM labels to train and evaluate a grasp success predictor using PseudoTouch's predictions derived from virtual depth information. Our approach yields a 32% absolute improvement in accuracy compared to the baseline relying on partial point cloud data. We make the data, code, and trained models publicly available at https://pseudotouch.cs.uni-freiburg.de.
comment: 7 pages, 5 figures, 2 tables, accepted at ICRA 2025
♻ ☆ DreamForge: Motion-Aware Autoregressive Video Generation for Multi-View Driving Scenes
Recent advances in diffusion models have improved controllable streetscape generation and supported downstream perception and planning tasks. However, challenges remain in accurately modeling driving scenes and generating long videos. To alleviate these issues, we propose DreamForge, an advanced diffusion-based autoregressive video generation model tailored for 3D-controllable long-term generation. To enhance the lane and foreground generation, we introduce perspective guidance and integrate object-wise position encoding to incorporate local 3D correlation and improve foreground object modeling. We also propose motion-aware temporal attention to capture motion cues and appearance changes in videos. By leveraging motion frames and an autoregressive generation paradigm,we can autoregressively generate long videos (over 200 frames) using a model trained in short sequences, achieving superior quality compared to the baseline in 16-frame video evaluations. Finally, we integrate our method with the realistic simulator DriveArena to provide more reliable open-loop and closed-loop evaluations for vision-based driving agents. Project Page: https://pjlab-adg.github.io/DriveArena/dreamforge.
comment: 15 figures, 9 tables
♻ ☆ Modification Takes Courage: Seamless Image Stitching via Reference-Driven Inpainting
Current image stitching methods often produce noticeable seams in challenging scenarios such as uneven hue and large parallax. To tackle this problem, we propose the Reference-Driven Inpainting Stitcher (RDIStitcher), which reformulates the image fusion and rectangling as a reference-based inpainting model, incorporating a larger modification fusion area and stronger modification intensity than previous methods. Furthermore, we introduce a self-supervised model training method, which enables the implementation of RDIStitcher without requiring labeled data by fine-tuning a Text-to-Image (T2I) diffusion model. Recognizing difficulties in assessing the quality of stitched images, we present the Multimodal Large Language Models (MLLMs)-based metrics, offering a new perspective on evaluating stitched image quality. Compared to the state-of-the-art (SOTA) method, extensive experiments demonstrate that our method significantly enhances content coherence and seamless transitions in the stitched images. Especially in the zero-shot experiments, our method exhibits strong generalization capabilities. Code: https://github.com/yayoyo66/RDIStitcher
comment: 18 pages, 10 figures
♻ ☆ VidHal: Benchmarking Temporal Hallucinations in Vision LLMs
Vision Large Language Models (VLLMs) are widely acknowledged to be prone to hallucinations. Existing research addressing this problem has primarily been confined to image inputs, with limited exploration of video-based hallucinations. Furthermore, current evaluation methods fail to capture nuanced errors in generated responses, which are often exacerbated by the rich spatiotemporal dynamics of videos. To address this, we introduce VidHal, a benchmark specially designed to evaluate video-based hallucinations in VLLMs. VidHal is constructed by bootstrapping video instances across a wide range of common temporal aspects. A defining feature of our benchmark lies in the careful creation of captions which represent varying levels of hallucination associated with each video. To enable fine-grained evaluation, we propose a novel caption ordering task requiring VLLMs to rank captions by hallucinatory extent. We conduct extensive experiments on VidHal and comprehensively evaluate a broad selection of models. Our results uncover significant limitations in existing VLLMs regarding hallucination generation. Through our benchmark, we aim to inspire further research on 1) holistic understanding of VLLM capabilities, particularly regarding hallucination, and 2) extensive development of advanced VLLMs to alleviate this problem.
comment: 9 pages, 10 figures. Code available at https://github.com/Lookuz/VidHal
♻ ☆ Multi-Knowledge-oriented Nighttime Haze Imaging Enhancer for Vision-driven Intelligent Systems
Salient object detection (SOD) plays a critical role in vision-driven measurement systems (VMS), facilitating the detection and segmentation of key visual elements in an image. However, adverse imaging conditions such as haze during the day, low light, and haze at night severely degrade image quality, and complicating the SOD process. To address these challenges, we propose a multi-task-oriented nighttime haze imaging enhancer (MToIE), which integrates three tasks: daytime dehazing, low-light enhancement, and nighttime dehazing. The MToIE incorporates two key innovative components: First, the network employs a task-oriented node learning mechanism to handle three specific degradation types: day-time haze, low light, and night-time haze conditions, with an embedded self-attention module enhancing its performance in nighttime imaging. In addition, multi-receptive field enhancement module that efficiently extracts multi-scale features through three parallel depthwise separable convolution branches with different dilation rates, capturing comprehensive spatial information with minimal computational overhead. To ensure optimal image reconstruction quality and visual characteristics, we suggest a hybrid loss function. Extensive experiments on different types of weather/imaging conditions illustrate that MToIE surpasses existing methods, significantly enhancing the accuracy and reliability of vision systems across diverse imaging scenarios. The code is available at https://github.com/Ai-Chen-Lab/MKoIE.
♻ ☆ Generalized moduli of continuity under irregular or random deformations via multiscale analysis
Motivated by the problem of robustness to deformations of the input for deep convolutional neural networks, we identify signal classes which are inherently stable to irregular deformations induced by distortion fields $\tau\in L^\infty(\mathbb{R}^d;\mathbb{R}^d)$, to be characterized in terms of a generalized modulus of continuity associated with the deformation operator. Resorting to ideas of harmonic and multiscale analysis, we prove that for signals in multiresolution approximation spaces $U_s$ at scale $s$, stability in $L^2$ holds in the regime $\|\tau\|_{L^\infty}/s\ll 1$ - essentially as an effect of the uncertainty principle. Instability occurs when $\|\tau\|_{L^\infty}/s\gg 1$, and we provide a sharp upper bound for the asymptotic growth rate. The stability results are then extended to signals in the Besov space $B^{d/2}_{2,1}$ tailored to the given multiresolution approximation. We also consider the case of more general time-frequency deformations. Finally, we provide stochastic versions of the aforementioned results, namely we study the issue of stability in mean when $\tau(x)$ is modeled as a random field (not bounded, in general) with identically distributed variables $|\tau(x)|$, $x\in\mathbb{R}^d$.
comment: 25 pages
♻ ☆ DLF: Extreme Image Compression with Dual-generative Latent Fusion
Recent studies in extreme image compression have achieved remarkable performance by compressing the tokens from generative tokenizers. However, these methods often prioritize clustering common semantics within the dataset, while overlooking the diverse details of individual objects. Consequently, this results in suboptimal reconstruction fidelity, especially at low bitrates. To address this issue, we introduce a Dual-generative Latent Fusion (DLF) paradigm. DLF decomposes the latent into semantic and detail elements, compressing them through two distinct branches. The semantic branch clusters high-level information into compact tokens, while the detail branch encodes perceptually critical details to enhance the overall fidelity. Additionally, we propose a cross-branch interactive design to reduce redundancy between the two branches, thereby minimizing the overall bit cost. Experimental results demonstrate the impressive reconstruction quality of DLF even below 0.01 bits per pixel (bpp). On the CLIC2020 test set, our method achieves bitrate savings of up to 27.93% on LPIPS and 53.55% on DISTS compared to MS-ILLM. Furthermore, DLF surpasses recent diffusion-based codecs in visual fidelity while maintaining a comparable level of generative realism. Code will be available later.
♻ ☆ RURANET++: An Unsupervised Learning Method for Diabetic Macular Edema Based on SCSE Attention Mechanisms and Dynamic Multi-Projection Head Clustering MICCAI 2025
Diabetic Macular Edema (DME), a prevalent complication among diabetic patients, constitutes a major cause of visual impairment and blindness. Although deep learning has achieved remarkable progress in medical image analysis, traditional DME diagnosis still relies on extensive annotated data and subjective ophthalmologist assessments, limiting practical applications. To address this, we present RURANET++, an unsupervised learning-based automated DME diagnostic system. This framework incorporates an optimized U-Net architecture with embedded Spatial and Channel Squeeze & Excitation (SCSE) attention mechanisms to enhance lesion feature extraction. During feature processing, a pre-trained GoogLeNet model extracts deep features from retinal images, followed by PCA-based dimensionality reduction to 50 dimensions for computational efficiency. Notably, we introduce a novel clustering algorithm employing multi-projection heads to explicitly control cluster diversity while dynamically adjusting similarity thresholds, thereby optimizing intra-class consistency and inter-class discrimination. Experimental results demonstrate superior performance across multiple metrics, achieving maximum accuracy (0.8411), precision (0.8593), recall (0.8411), and F1-score (0.8390), with exceptional clustering quality. This work provides an efficient unsupervised solution for DME diagnosis with significant clinical implications.
comment: 10 pages, 2 figures, 5 tables, submitted to The 28th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2025)
♻ ☆ CLIP meets DINO for Tuning Zero-Shot Classifier using Unlabeled Image Collections
In the era of foundation models, CLIP has emerged as a powerful tool for aligning text & visual modalities into a common embedding space. However, the alignment objective used to train CLIP often results in subpar visual features for fine-grained tasks. In contrast, SSL-pretrained models like DINO excel at extracting rich visual features due to their specialized training paradigm. Yet, these SSL models require an additional supervised linear probing step, which relies on fully labeled data which is often expensive and difficult to obtain at scale. In this paper, we propose a label-free prompt-tuning method that leverages the rich visual features of self-supervised learning models (DINO) and the broad textual knowledge of large language models (LLMs) to largely enhance CLIP-based image classification performance using unlabeled images. Our approach unfolds in three key steps: (1) We generate robust textual feature embeddings that more accurately represent object classes by leveraging class-specific descriptions from LLMs, enabling more effective zero-shot classification compared to CLIP's default name-specific prompts. (2) These textual embeddings are then used to produce pseudo-labels to train an alignment module that integrates the complementary strengths of LLM description-based textual embeddings & DINO's visual features. (3) Finally, we prompt-tune CLIP's vision encoder through DINO-assisted supervision using the trained alignment module. This three-step process allows us to harness the best of visual & textual foundation models, resulting in a powerful and efficient approach that surpasses state-of-the-art label-free classification methods. Notably, our framework, NoLA (No Labels Attached), achieves an average absolute gain of 3.6% over the state-of-the-art LaFTer across 11 diverse image classification datasets. Our code & models can be found at https://github.com/fazliimam/NoLA.
♻ ☆ Towards Student Actions in Classroom Scenes: New Dataset and Baseline
Analyzing student actions is an important and challenging task in educational research. Existing efforts have been hampered by the lack of accessible datasets to capture the nuanced action dynamics in classrooms. In this paper, we present a new multi-label Student Action Video (SAV) dataset, specifically designed for action detection in classroom settings. The SAV dataset consists of 4,324 carefully trimmed video clips from 758 different classrooms, annotated with 15 distinct student actions. Compared to existing action detection datasets, the SAV dataset stands out by providing a wide range of real classroom scenarios, high-quality video data, and unique challenges, including subtle movement differences, dense object engagement, significant scale differences, varied shooting angles, and visual occlusion. These complexities introduce new opportunities and challenges to advance action detection methods. To benchmark this, we propose a novel baseline method based on a visual transformer, designed to enhance attention to key local details within small and dense object regions. Our method demonstrates excellent performance with a mean Average Precision (mAP) of 67.9% and 27.4% on the SAV and AVA datasets, respectively. This paper not only provides the dataset but also calls for further research into AI-driven educational tools that may transform teaching methodologies and learning outcomes. The code and dataset are released at https://github.com/Ritatanz/SAV.
♻ ☆ LRSAA: Large-scale Remote Sensing Image Target Recognition and Automatic Annotation
This paper presents a method for object recognition and automatic labeling in large-area remote sensing images called LRSAA. The method integrates YOLOv11 and MobileNetV3-SSD object detection algorithms through ensemble learning to enhance model performance. Furthermore, it employs Poisson disk sampling segmentation techniques and the EIOU metric to optimize the training and inference processes of segmented images, followed by the integration of results. This approach not only reduces the demand for computational resources but also achieves a good balance between accuracy and speed. The source code for this project has been made publicly available on https://github.com/anaerovane/LRSAA.
comment: arXiv admin note: text overlap with arXiv:2411.07802
♻ ☆ Raccoon: Multi-stage Diffusion Training with Coarse-to-Fine Curating Videos
Text-to-video generation has demonstrated promising progress with the advent of diffusion models, yet existing approaches are limited by dataset quality and computational resources. To address these limitations, this paper presents a comprehensive approach that advances both data curation and model design. We introduce CFC-VIDS-1M, a high-quality video dataset constructed through a systematic coarse-to-fine curation pipeline. The pipeline first evaluates video quality across multiple dimensions, followed by a fine-grained stage that leverages vision-language models to enhance text-video alignment and semantic richness. Building upon the curated dataset's emphasis on visual quality and temporal coherence, we develop RACCOON, a transformer-based architecture with decoupled spatial-temporal attention mechanisms. The model is trained through a progressive four-stage strategy designed to efficiently handle the complexities of video generation. Extensive experiments demonstrate that our integrated approach of high-quality data curation and efficient training strategy generates visually appealing and temporally coherent videos while maintaining computational efficiency. We will release our dataset, code, and models.
♻ ☆ CAT-3DGS: A Context-Adaptive Triplane Approach to Rate-Distortion-Optimized 3DGS Compression ICLR
3D Gaussian Splatting (3DGS) has recently emerged as a promising 3D representation. Much research has been focused on reducing its storage requirements and memory footprint. However, the needs to compress and transmit the 3DGS representation to the remote side are overlooked. This new application calls for rate-distortion-optimized 3DGS compression. How to quantize and entropy encode sparse Gaussian primitives in the 3D space remains largely unexplored. Few early attempts resort to the hyperprior framework from learned image compression. But, they fail to utilize fully the inter and intra correlation inherent in Gaussian primitives. Built on ScaffoldGS, this work, termed CAT-3DGS, introduces a context-adaptive triplane approach to their rate-distortion-optimized coding. It features multi-scale triplanes, oriented according to the principal axes of Gaussian primitives in the 3D space, to capture their inter correlation (i.e. spatial correlation) for spatial autoregressive coding in the projected 2D planes. With these triplanes serving as the hyperprior, we further perform channel-wise autoregressive coding to leverage the intra correlation within each individual Gaussian primitive. Our CAT-3DGS incorporates a view frequency-aware masking mechanism. It actively skips from coding those Gaussian primitives that potentially have little impact on the rendering quality. When trained end-to-end to strike a good rate-distortion trade-off, our CAT-3DGS achieves the state-of-the-art compression performance on the commonly used real-world datasets.
comment: Accepted for Publication in International Conference on Learning Representations (ICLR)
♻ ☆ NavRAG: Generating User Demand Instructions for Embodied Navigation through Retrieval-Augmented LLM
Vision-and-Language Navigation (VLN) is an essential skill for embodied agents, allowing them to navigate in 3D environments following natural language instructions. High-performance navigation models require a large amount of training data, the high cost of manually annotating data has seriously hindered this field. Therefore, some previous methods translate trajectory videos into step-by-step instructions for expanding data, but such instructions do not match well with users' communication styles that briefly describe destinations or state specific needs. Moreover, local navigation trajectories overlook global context and high-level task planning. To address these issues, we propose NavRAG, a retrieval-augmented generation (RAG) framework that generates user demand instructions for VLN. NavRAG leverages LLM to build a hierarchical scene description tree for 3D scene understanding from global layout to local details, then simulates various user roles with specific demands to retrieve from the scene tree, generating diverse instructions with LLM. We annotate over 2 million navigation instructions across 861 scenes and evaluate the data quality and navigation performance of trained models.
♻ ☆ Generative Densification: Learning to Densify Gaussians for High-Fidelity Generalizable 3D Reconstruction
Generalized feed-forward Gaussian models have achieved significant progress in sparse-view 3D reconstruction by leveraging prior knowledge from large multi-view datasets. However, these models often struggle to represent high-frequency details due to the limited number of Gaussians. While the densification strategy used in per-scene 3D Gaussian splatting (3D-GS) optimization can be adapted to the feed-forward models, it may not be ideally suited for generalized scenarios. In this paper, we propose Generative Densification, an efficient and generalizable method to densify Gaussians generated by feed-forward models. Unlike the 3D-GS densification strategy, which iteratively splits and clones raw Gaussian parameters, our method up-samples feature representations from the feed-forward models and generates their corresponding fine Gaussians in a single forward pass, leveraging the embedded prior knowledge for enhanced generalization. Experimental results on both object-level and scene-level reconstruction tasks demonstrate that our method outperforms state-of-the-art approaches with comparable or smaller model sizes, achieving notable improvements in representing fine details.
comment: Project page: https://stnamjef.github.io/GenerativeDensification/
♻ ☆ Neighboring Slice Noise2Noise: Self-Supervised Medical Image Denoising from Single Noisy Image Volume
In the last few years, with the rapid development of deep learning technologies, supervised methods based on convolutional neural networks have greatly enhanced the performance of medical image denoising. However, these methods require large quantities of noisy-clean image pairs for training, which greatly limits their practicality. Although some researchers have attempted to train denoising networks using only single noisy images, existing self-supervised methods, including blind-spot-based and data-splitting-based methods, heavily rely on the assumption that noise is pixel-wise independent. However, this assumption often does not hold in real-world medical images. Therefore, in the field of medical imaging, there remains a lack of simple and practical denoising methods that can achieve high-quality denoising performance using only single noisy images. In this paper, we propose a novel self-supervised medical image denoising method, Neighboring Slice Noise2Noise (NS-N2N). The proposed method utilizes neighboring slices within a single noisy image volume to construct weighted training data, and then trains the denoising network using a self-supervised scheme with regional consistency loss and inter-slice continuity loss. NS-N2N only requires a single noisy image volume obtained from one medical imaging procedure to achieve high-quality denoising of the image volume itself. Extensive experiments demonstrate that the proposed method outperforms state-of-the-art self-supervised denoising methods in both denoising performance and processing efficiency. Furthermore, since NS-N2N operates solely in the image domain, it is free from device-specific issues such as reconstruction geometry, making it easier to apply in various clinical practices.
♻ ☆ Meta Curvature-Aware Minimization for Domain Generalization
Domain generalization (DG) aims to enhance the ability of models trained on source domains to generalize effectively to unseen domains. Recently, Sharpness-Aware Minimization (SAM) has shown promise in this area by reducing the sharpness of the loss landscape to obtain more generalized models. However, SAM and its variants sometimes fail to guide the model toward a flat minimum, and their training processes exhibit limitations, hindering further improvements in model generalization. In this paper, we first propose an improved model training process aimed at encouraging the model to converge to a flat minima. To achieve this, we design a curvature metric that has a minimal effect when the model is far from convergence but becomes increasingly influential in indicating the curvature of the minima as the model approaches a local minimum. Then we derive a novel algorithm from this metric, called Meta Curvature-Aware Minimization (MeCAM), to minimize the curvature around the local minima. Specifically, the optimization objective of MeCAM simultaneously minimizes the regular training loss, the surrogate gap of SAM, and the surrogate gap of meta-learning. We provide theoretical analysis on MeCAM's generalization error and convergence rate, and demonstrate its superiority over existing DG methods through extensive experiments on five benchmark DG datasets, including PACS, VLCS, OfficeHome, TerraIncognita, and DomainNet. Code will be available on GitHub.
comment: 22 pages, 5 figures, 16 tables
♻ ☆ Closed-Loop Open-Vocabulary Mobile Manipulation with GPT-4V ICRA
Autonomous robot navigation and manipulation in open environments require reasoning and replanning with closed-loop feedback. In this work, we present COME-robot, the first closed-loop robotic system utilizing the GPT-4V vision-language foundation model for open-ended reasoning and adaptive planning in real-world scenarios.COME-robot incorporates two key innovative modules: (i) a multi-level open-vocabulary perception and situated reasoning module that enables effective exploration of the 3D environment and target object identification using commonsense knowledge and situated information, and (ii) an iterative closed-loop feedback and restoration mechanism that verifies task feasibility, monitors execution success, and traces failure causes across different modules for robust failure recovery. Through comprehensive experiments involving 8 challenging real-world mobile and tabletop manipulation tasks, COME-robot demonstrates a significant improvement in task success rate (~35%) compared to state-of-the-art methods. We further conduct comprehensive analyses to elucidate how COME-robot's design facilitates failure recovery, free-form instruction following, and long-horizon task planning.
comment: 6 pages, Accepted at 2025 IEEE ICRA, website: https://come-robot.github.io/
♻ ☆ FoundationStereo: Zero-Shot Stereo Matching CVPR 2025
Tremendous progress has been made in deep stereo matching to excel on benchmark datasets through per-domain fine-tuning. However, achieving strong zero-shot generalization - a hallmark of foundation models in other computer vision tasks - remains challenging for stereo matching. We introduce FoundationStereo, a foundation model for stereo depth estimation designed to achieve strong zero-shot generalization. To this end, we first construct a large-scale (1M stereo pairs) synthetic training dataset featuring large diversity and high photorealism, followed by an automatic self-curation pipeline to remove ambiguous samples. We then design a number of network architecture components to enhance scalability, including a side-tuning feature backbone that adapts rich monocular priors from vision foundation models to mitigate the sim-to-real gap, and long-range context reasoning for effective cost volume filtering. Together, these components lead to strong robustness and accuracy across domains, establishing a new standard in zero-shot stereo depth estimation. Project page: https://nvlabs.github.io/FoundationStereo/
comment: CVPR 2025
♻ ☆ Rethinking Pre-Trained Feature Extractor Selection in Multiple Instance Learning for Whole Slide Image Classification
Multiple instance learning (MIL) has become a preferred method for gigapixel whole slide image (WSI) classification without requiring patch-level annotations. Current MIL research primarily relies on embedding-based approaches, which extract patch features using a pre-trained feature extractor and aggregate them for slide-level prediction. Despite the critical role of feature extraction, there is limited guidance on selecting optimal feature extractors to maximize WSI performance. This study addresses this gap by systematically evaluating MIL feature extractors across three dimensions: pre-training dataset, backbone model, and pre-training method. Extensive experiments were conducted on two public WSI datasets (TCGA-NSCLC and Camelyon16) using four state-of-the-art (SOTA) MIL models. Our findings reveal that: 1) selecting a robust self-supervised learning (SSL) method has a greater impact on performance than relying solely on an in-domain pre-training dataset; 2) prioritizing Transformer-based backbones with deeper architectures over CNN-based models; and 3) using larger, more diverse pre-training datasets significantly enhances classification outcomes. We hope that these insights can provide practical guidance for optimizing WSI classification and explain the reasons behind the performance advantages of the current SOTA pathology foundation models. Furthermore, this work may inform the development of more effective pathology foundation models. Our code is publicly available at https://github.com/bryanwong17/MIL-Feature-Extractor-Selection
comment: Accepted to IEEE International Symposium on Biomedical Imaging (ISBI) 2025
♻ ☆ FastTrackTr:Towards Fast Multi-Object Tracking with Transformers
Transformer-based multi-object tracking (MOT) methods have captured the attention of many researchers in recent years. However, these models often suffer from slow inference speeds due to their structure or other issues. To address this problem, we revisited the Joint Detection and Tracking (JDT) method by looking back at past approaches. By integrating the original JDT approach with some advanced theories, this paper employs an efficient method of information transfer between frames on the DETR, constructing a fast and novel JDT-type MOT framework: FastTrackTr. Thanks to the superiority of this information transfer method, our approach not only reduces the number of queries required during tracking but also avoids the excessive introduction of network structures, ensuring model simplicity. Experimental results indicate that our method has the potential to achieve real-time tracking and exhibits competitive tracking accuracy across multiple datasets.
♻ ☆ FloNa: Floor Plan Guided Embodied Visual Navigation AAAI 2025
Humans naturally rely on floor plans to navigate in unfamiliar environments, as they are readily available, reliable, and provide rich geometrical guidance. However, existing visual navigation settings overlook this valuable prior knowledge, leading to limited efficiency and accuracy. To eliminate this gap, we introduce a novel navigation task: Floor Plan Visual Navigation (FloNa), the first attempt to incorporate floor plan into embodied visual navigation. While the floor plan offers significant advantages, two key challenges emerge: (1) handling the spatial inconsistency between the floor plan and the actual scene layout for collision-free navigation, and (2) aligning observed images with the floor plan sketch despite their distinct modalities. To address these challenges, we propose FloDiff, a novel diffusion policy framework incorporating a localization module to facilitate alignment between the current observation and the floor plan. We further collect $20k$ navigation episodes across $117$ scenes in the iGibson simulator to support the training and evaluation. Extensive experiments demonstrate the effectiveness and efficiency of our framework in unfamiliar scenes using floor plan knowledge. Project website: https://gauleejx.github.io/flona/.
comment: Accepted by AAAI 2025
♻ ☆ BuildingView: Constructing Urban Building Exteriors Databases with Street View Imagery and Multimodal Large Language Mode
Urban Building Exteriors are increasingly important in urban analytics, driven by advancements in Street View Imagery and its integration with urban research. Multimodal Large Language Models (LLMs) offer powerful tools for urban annotation, enabling deeper insights into urban environments. However, challenges remain in creating accurate and detailed urban building exterior databases, identifying critical indicators for energy efficiency, environmental sustainability, and human-centric design, and systematically organizing these indicators. To address these challenges, we propose BuildingView, a novel approach that integrates high-resolution visual data from Google Street View with spatial information from OpenStreetMap via the Overpass API. This research improves the accuracy of urban building exterior data, identifies key sustainability and design indicators, and develops a framework for their extraction and categorization. Our methodology includes a systematic literature review, building and Street View sampling, and annotation using the ChatGPT-4O API. The resulting database, validated with data from New York City, Amsterdam, and Singapore, provides a comprehensive tool for urban studies, supporting informed decision-making in urban planning, architectural design, and environmental policy. The code for BuildingView is available at https://github.com/Jasper0122/BuildingView.
comment: 15 pages, 6 figures
♻ ☆ InstaFace: Identity-Preserving Facial Editing with Single Image Inference
Facial appearance editing is crucial for digital avatars, AR/VR, and personalized content creation, driving realistic user experiences. However, preserving identity with generative models is challenging, especially in scenarios with limited data availability. Traditional methods often require multiple images and still struggle with unnatural face shifts, inconsistent hair alignment, or excessive smoothing effects. To overcome these challenges, we introduce a novel diffusion-based framework, InstaFace, to generate realistic images while preserving identity using only a single image. Central to InstaFace, we introduce an efficient guidance network that harnesses 3D perspectives by integrating multiple 3DMM-based conditionals without introducing additional trainable parameters. Moreover, to ensure maximum identity retention as well as preservation of background, hair, and other contextual features like accessories, we introduce a novel module that utilizes feature embeddings from a facial recognition model and a pre-trained vision-language model. Quantitative evaluations demonstrate that our method outperforms several state-of-the-art approaches in terms of identity preservation, photorealism, and effective control of pose, expression, and lighting.
♻ ☆ Attention Mechanism based Cognition-level Scene Understanding
Given a question-image input, the Visual Commonsense Reasoning (VCR) model can predict an answer with the corresponding rationale, which requires inference ability from the real world. The VCR task, which calls for exploiting the multi-source information as well as learning different levels of understanding and extensive commonsense knowledge, is a cognition-level scene understanding task. The VCR task has aroused researchers' interest due to its wide range of applications, including visual question answering, automated vehicle systems, and clinical decision support. Previous approaches to solving the VCR task generally rely on pre-training or exploiting memory with long dependency relationship encoded models. However, these approaches suffer from a lack of generalizability and losing information in long sequences. In this paper, we propose a parallel attention-based cognitive VCR network PAVCR, which fuses visual-textual information efficiently and encodes semantic information in parallel to enable the model to capture rich information for cognition-level inference. Extensive experiments show that the proposed model yields significant improvements over existing methods on the benchmark VCR dataset. Moreover, the proposed model provides intuitive interpretation into visual commonsense reasoning.
comment: Published in Information
♻ ☆ M2Distill: Multi-Modal Distillation for Lifelong Imitation Learning ICRA 2025
Lifelong imitation learning for manipulation tasks poses significant challenges due to distribution shifts that occur in incremental learning steps. Existing methods often focus on unsupervised skill discovery to construct an ever-growing skill library or distillation from multiple policies, which can lead to scalability issues as diverse manipulation tasks are continually introduced and may fail to ensure a consistent latent space throughout the learning process, leading to catastrophic forgetting of previously learned skills. In this paper, we introduce M2Distill, a multi-modal distillation-based method for lifelong imitation learning focusing on preserving consistent latent space across vision, language, and action distributions throughout the learning process. By regulating the shifts in latent representations across different modalities from previous to current steps, and reducing discrepancies in Gaussian Mixture Model (GMM) policies between consecutive learning steps, we ensure that the learned policy retains its ability to perform previously learned tasks while seamlessly integrating new skills. Extensive evaluations on the LIBERO lifelong imitation learning benchmark suites, including LIBERO-OBJECT, LIBERO-GOAL, and LIBERO-SPATIAL, demonstrate that our method consistently outperforms prior state-of-the-art methods across all evaluated metrics.
comment: IEEE ICRA 2025
♻ ☆ Jointly Understand Your Command and Intention:Reciprocal Co-Evolution between Scene-Aware 3D Human Motion Synthesis and Analysis
As two intimate reciprocal tasks, scene-aware human motion synthesis and analysis require a joint understanding between multiple modalities, including 3D body motions, 3D scenes, and textual descriptions. In this paper, we integrate these two paired processes into a Co-Evolving Synthesis-Analysis (CESA) pipeline and mutually benefit their learning. Specifically, scene-aware text-to-human synthesis generates diverse indoor motion samples from the same textual description to enrich human-scene interaction intra-class diversity, thus significantly benefiting training a robust human motion analysis system. Reciprocally, human motion analysis would enforce semantic scrutiny on each synthesized motion sample to ensure its semantic consistency with the given textual description, thus improving realistic motion synthesis. Considering that real-world indoor human motions are goal-oriented and path-guided, we propose a cascaded generation strategy that factorizes text-driven scene-specific human motion generation into three stages: goal inferring, path planning, and pose synthesizing. Coupling CESA with this powerful cascaded motion synthesis model, we jointly improve realistic human motion synthesis and robust human motion analysis in 3D scenes.
♻ ☆ Surgical-LVLM: Learning to Adapt Large Vision-Language Model for Grounded Visual Question Answering in Robotic Surgery ICLR 2025
Recent advancements in Surgical Visual Question Answering (Surgical-VQA) and related region grounding have shown great promise for robotic and medical applications, addressing the critical need for automated methods in personalized surgical mentorship. However, existing models primarily provide simple structured answers and struggle with complex scenarios due to their limited capability in recognizing long-range dependencies and aligning multimodal information. In this paper, we introduce Surgical-LVLM, a novel personalized large vision-language model tailored for complex surgical scenarios. Leveraging the pre-trained large vision-language model and specialized Visual Perception LoRA (VP-LoRA) blocks, our model excels in understanding complex visual-language tasks within surgical contexts. In addressing the visual grounding task, we propose the Token-Interaction (TIT) module, which strengthens the interaction between the grounding module and the language responses of the Large Visual Language Model (LVLM) after projecting them into the latent space. We demonstrate the effectiveness of Surgical-LVLM on several benchmarks, including EndoVis-17-VQLA, EndoVis-18-VQLA, and a newly introduced EndoVis Conversations dataset, which sets new performance standards. Our work contributes to advancing the field of automated surgical mentorship by providing a context-aware solution.
comment: The manuscript is accepted by ICLR 2025 FM-Wild Workshop
♻ ☆ Real-Time Convolutional Neural Network-Based Star Detection and Centroiding Method for CubeSat Star Tracker
Star trackers are one of the most accurate celestial sensors used for absolute attitude determination. The devices detect stars in captured images and accurately compute their projected centroids on an imaging focal plane with subpixel precision. Traditional algorithms for star detection and centroiding often rely on threshold adjustments for star pixel detection and pixel brightness weighting for centroid computation. However, challenges like high sensor noise and stray light can compromise algorithm performance. This article introduces a Convolutional Neural Network (CNN)-based approach for star detection and centroiding, tailored to address the issues posed by noisy star tracker images in the presence of stray light and other artifacts. Trained using simulated star images overlayed with real sensor noise and stray light, the CNN produces both a binary segmentation map distinguishing star pixels from the background and a distance map indicating each pixel's proximity to the nearest star centroid. Leveraging this distance information alongside pixel coordinates transforms centroid calculations into a set of trilateration problems solvable via the least squares method. Our method employs efficient UNet variants for the underlying CNN architectures, and the variants' performances are evaluated. Comprehensive testing has been undertaken with synthetic image evaluations, hardware-in-the-loop assessments, and night sky tests. The tests consistently demonstrated that our method outperforms several existing algorithms in centroiding accuracy and exhibits superior resilience to high sensor noise and stray light interference. An additional benefit of our algorithms is that they can be executed in real-time on low-power edge AI processors.
♻ ☆ RowDetr: End-to-End Row Detection Using Polynomials
Crop row detection is essential for enabling autonomous navigation in GPS-denied environments, such as under-canopy agricultural settings. Traditional methods often struggle with occlusions, variable lighting conditions, and the structural variability of crop rows. To address these challenges, RowDetr, a novel end-to-end neural network architecture, is introduced for robust and efficient row detection. A new dataset of approximately 6,900 images is curated, capturing a diverse range of real-world agricultural conditions, including occluded rows, uneven terrain, and varying crop densities. Unlike previous approaches, RowDetr leverages smooth polynomial functions to precisely delineate crop boundaries in the image space, ensuring a more structured and interpretable representation of row geometry. A key innovation of this approach is PolyOptLoss, a novel energy-based loss function designed to enhance learning robustness, even in the presence of noisy or imperfect labels. This loss function significantly improves model stability and generalization by optimizing polynomial curve fitting directly in image space. Extensive experiments demonstrate that RowDetr significantly outperforms existing frameworks, including Agronav and RowColAttention, across key performance metrics. Additionally, RowDetr achieves a sixfold speedup over Agronav, making it highly suitable for real-time deployment on resource-constrained edge devices. To facilitate better comparisons across future studies, lane detection metrics from autonomous driving research are adapted, providing a more standardized and meaningful evaluation framework for crop row detection. This work establishes a new benchmark in under-canopy
comment: Code will be open sourced upon publication
Artificial Intelligence 154
☆ Multi-Fidelity Policy Gradient Algorithms
Many reinforcement learning (RL) algorithms require large amounts of data, prohibiting their use in applications where frequent interactions with operational systems are infeasible, or high-fidelity simulations are expensive or unavailable. Meanwhile, low-fidelity simulators--such as reduced-order models, heuristic reward functions, or generative world models--can cheaply provide useful data for RL training, even if they are too coarse for direct sim-to-real transfer. We propose multi-fidelity policy gradients (MFPGs), an RL framework that mixes a small amount of data from the target environment with a large volume of low-fidelity simulation data to form unbiased, reduced-variance estimators (control variates) for on-policy policy gradients. We instantiate the framework by developing multi-fidelity variants of two policy gradient algorithms: REINFORCE and proximal policy optimization. Experimental results across a suite of simulated robotics benchmark problems demonstrate that when target-environment samples are limited, MFPG achieves up to 3.9x higher reward and improves training stability when compared to baselines that only use high-fidelity data. Moreover, even when the baselines are given more high-fidelity samples--up to 10x as many interactions with the target environment--MFPG continues to match or outperform them. Finally, we observe that MFPG is capable of training effective policies even when the low-fidelity environment is drastically different from the target environment. MFPG thus not only offers a novel paradigm for efficient sim-to-real transfer but also provides a principled approach to managing the trade-off between policy performance and data collection costs.
☆ BEHAVIOR Robot Suite: Streamlining Real-World Whole-Body Manipulation for Everyday Household Activities
Real-world household tasks present significant challenges for mobile manipulation robots. An analysis of existing robotics benchmarks reveals that successful task performance hinges on three key whole-body control capabilities: bimanual coordination, stable and precise navigation, and extensive end-effector reachability. Achieving these capabilities requires careful hardware design, but the resulting system complexity further complicates visuomotor policy learning. To address these challenges, we introduce the BEHAVIOR Robot Suite (BRS), a comprehensive framework for whole-body manipulation in diverse household tasks. Built on a bimanual, wheeled robot with a 4-DoF torso, BRS integrates a cost-effective whole-body teleoperation interface for data collection and a novel algorithm for learning whole-body visuomotor policies. We evaluate BRS on five challenging household tasks that not only emphasize the three core capabilities but also introduce additional complexities, such as long-range navigation, interaction with articulated and deformable objects, and manipulation in confined spaces. We believe that BRS's integrated robotic embodiment, data collection interface, and learning framework mark a significant step toward enabling real-world whole-body manipulation for everyday household tasks. BRS is open-sourced at https://behavior-robot-suite.github.io/
comment: Project website: https://behavior-robot-suite.github.io/
☆ dARt Vinci: Egocentric Data Collection for Surgical Robot Learning at Scale
Data scarcity has long been an issue in the robot learning community. Particularly, in safety-critical domains like surgical applications, obtaining high-quality data can be especially difficult. It poses challenges to researchers seeking to exploit recent advancements in reinforcement learning and imitation learning, which have greatly improved generalizability and enabled robots to conduct tasks autonomously. We introduce dARt Vinci, a scalable data collection platform for robot learning in surgical settings. The system uses Augmented Reality (AR) hand tracking and a high-fidelity physics engine to capture subtle maneuvers in primitive surgical tasks: By eliminating the need for a physical robot setup and providing flexibility in terms of time, space, and hardware resources-such as multiview sensors and actuators-specialized simulation is a viable alternative. At the same time, AR allows the robot data collection to be more egocentric, supported by its body tracking and content overlaying capabilities. Our user study confirms the proposed system's efficiency and usability, where we use widely-used primitive tasks for training teleoperation with da Vinci surgical robots. Data throughput improves across all tasks compared to real robot settings by 41% on average. The total experiment time is reduced by an average of 10%. The temporal demand in the task load survey is improved. These gains are statistically significant. Additionally, the collected data is over 400 times smaller in size, requiring far less storage while achieving double the frequency.
comment: 8 pages, 7 figures
☆ Symbolic Mixture-of-Experts: Adaptive Skill-based Routing for Heterogeneous Reasoning
Combining existing pre-trained expert LLMs is a promising avenue for scalably tackling large-scale and diverse tasks. However, selecting experts at the task level is often too coarse-grained, as heterogeneous tasks may require different expertise for each instance. To enable adaptive instance-level mixing of pre-trained LLM experts, we propose Symbolic-MoE, a symbolic, text-based, and gradient-free Mixture-of-Experts framework. Symbolic-MoE takes a fine-grained approach to selection by emphasizing skills, e.g., algebra in math or molecular biology in biomedical reasoning. We propose a skill-based recruiting strategy that dynamically selects the most relevant set of expert LLMs for diverse reasoning tasks based on their strengths. Each selected expert then generates its own reasoning, resulting in k outputs from k experts, which are then synthesized into a final high-quality response by an aggregator chosen based on its ability to integrate diverse reasoning outputs. We show that Symbolic-MoE's instance-level expert selection improves performance by a large margin but -- when implemented naively -- can introduce a high computational overhead due to the need for constant model loading and offloading. To address this, we implement a batch inference strategy that groups instances based on their assigned experts, loading each model only once. This allows us to integrate 16 expert models on 1 GPU with a time cost comparable to or better than prior multi-agent baselines using 4 GPUs. Through extensive evaluations on diverse benchmarks (MMLU-Pro, GPQA, AIME, and MedMCQA), we demonstrate that Symbolic-MoE outperforms strong LLMs like GPT4o-mini, as well as multi-agent approaches, with an absolute average improvement of 8.15% over the best multi-agent baseline. Moreover, Symbolic-MoE removes the need for expensive multi-round discussions, outperforming discussion baselines with less computation.
comment: The first three authors contributed equally. Project Page: https://symbolic_moe.github.io/
☆ VideoPainter: Any-length Video Inpainting and Editing with Plug-and-Play Context Control
Video inpainting, which aims to restore corrupted video content, has experienced substantial progress. Despite these advances, existing methods, whether propagating unmasked region pixels through optical flow and receptive field priors, or extending image-inpainting models temporally, face challenges in generating fully masked objects or balancing the competing objectives of background context preservation and foreground generation in one model, respectively. To address these limitations, we propose a novel dual-stream paradigm VideoPainter that incorporates an efficient context encoder (comprising only 6% of the backbone parameters) to process masked videos and inject backbone-aware background contextual cues to any pre-trained video DiT, producing semantically consistent content in a plug-and-play manner. This architectural separation significantly reduces the model's learning complexity while enabling nuanced integration of crucial background context. We also introduce a novel target region ID resampling technique that enables any-length video inpainting, greatly enhancing our practical applicability. Additionally, we establish a scalable dataset pipeline leveraging current vision understanding models, contributing VPData and VPBench to facilitate segmentation-based inpainting training and assessment, the largest video inpainting dataset and benchmark to date with over 390K diverse clips. Using inpainting as a pipeline basis, we also explore downstream applications including video editing and video editing pair data generation, demonstrating competitive performance and significant practical potential. Extensive experiments demonstrate VideoPainter's superior performance in both any-length video inpainting and editing, across eight key metrics, including video quality, mask region preservation, and textual coherence.
comment: Project page available at https://yxbian23.github.io/project/video-painter
☆ TrajectoryCrafter: Redirecting Camera Trajectory for Monocular Videos via Diffusion Models
We present TrajectoryCrafter, a novel approach to redirect camera trajectories for monocular videos. By disentangling deterministic view transformations from stochastic content generation, our method achieves precise control over user-specified camera trajectories. We propose a novel dual-stream conditional video diffusion model that concurrently integrates point cloud renders and source videos as conditions, ensuring accurate view transformations and coherent 4D content generation. Instead of leveraging scarce multi-view videos, we curate a hybrid training dataset combining web-scale monocular videos with static multi-view datasets, by our innovative double-reprojection strategy, significantly fostering robust generalization across diverse scenes. Extensive evaluations on multi-view and large-scale monocular videos demonstrate the superior performance of our method.
comment: Project webpage: https://trajectorycrafter.github.io/
☆ Exploring FMCW Radars and Feature Maps for Activity Recognition: A Benchmark Study
Human Activity Recognition has gained significant attention due to its diverse applications, including ambient assisted living and remote sensing. Wearable sensor-based solutions often suffer from user discomfort and reliability issues, while video-based methods raise privacy concerns and perform poorly in low-light conditions or long ranges. This study introduces a Frequency-Modulated Continuous Wave radar-based framework for human activity recognition, leveraging a 60 GHz radar and multi-dimensional feature maps. Unlike conventional approaches that process feature maps as images, this study feeds multi-dimensional feature maps -- Range-Doppler, Range-Azimuth, and Range-Elevation -- as data vectors directly into the machine learning (SVM, MLP) and deep learning (CNN, LSTM, ConvLSTM) models, preserving the spatial and temporal structures of the data. These features were extracted from a novel dataset with seven activity classes and validated using two different validation approaches. The ConvLSTM model outperformed conventional machine learning and deep learning models, achieving an accuracy of 90.51% and an F1-score of 87.31% on cross-scene validation and an accuracy of 89.56% and an F1-score of 87.15% on leave-one-person-out cross-validation. The results highlight the approach's potential for scalable, non-intrusive, and privacy-preserving activity monitoring in real-world scenarios.
☆ Superintelligence Strategy: Expert Version
Rapid advances in AI are beginning to reshape national security. Destabilizing AI developments could rupture the balance of power and raise the odds of great-power conflict, while widespread proliferation of capable AI hackers and virologists would lower barriers for rogue actors to cause catastrophe. Superintelligence -- AI vastly better than humans at nearly all cognitive tasks -- is now anticipated by AI researchers. Just as nations once developed nuclear strategies to secure their survival, we now need a coherent superintelligence strategy to navigate a new period of transformative change. We introduce the concept of Mutual Assured AI Malfunction (MAIM): a deterrence regime resembling nuclear mutual assured destruction (MAD) where any state's aggressive bid for unilateral AI dominance is met with preventive sabotage by rivals. Given the relative ease of sabotaging a destabilizing AI project -- through interventions ranging from covert cyberattacks to potential kinetic strikes on datacenters -- MAIM already describes the strategic picture AI superpowers find themselves in. Alongside this, states can increase their competitiveness by bolstering their economies and militaries through AI, and they can engage in nonproliferation to rogue actors to keep weaponizable AI capabilities out of their hands. Taken together, the three-part framework of deterrence, nonproliferation, and competitiveness outlines a robust strategy to superintelligence in the years ahead.
comment: https://nationalsecurity.ai/
☆ FMT:A Multimodal Pneumonia Detection Model Based on Stacking MOE Framework
Artificial intelligence has shown the potential to improve diagnostic accuracy through medical image analysis for pneumonia diagnosis. However, traditional multimodal approaches often fail to address real-world challenges such as incomplete data and modality loss. In this study, a Flexible Multimodal Transformer (FMT) was proposed, which uses ResNet-50 and BERT for joint representation learning, followed by a dynamic masked attention strategy that simulates clinical modality loss to improve robustness; finally, a sequential mixture of experts (MOE) architecture was used to achieve multi-level decision refinement. After evaluation on a small multimodal pneumonia dataset, FMT achieved state-of-the-art performance with 94% accuracy, 95% recall, and 93% F1 score, outperforming single-modal baselines (ResNet: 89%; BERT: 79%) and the medical benchmark CheXMed (90%), providing a scalable solution for multimodal diagnosis of pneumonia in resource-constrained medical settings.
☆ Learning LLM Preference over Intra-Dialogue Pairs: A Framework for Utterance-level Understandings
Large language models (LLMs) have demonstrated remarkable capabilities in handling complex dialogue tasks without requiring use case-specific fine-tuning. However, analyzing live dialogues in real-time necessitates low-latency processing systems, making it impractical to deploy models with billions of parameters due to latency constraints. As a result, practitioners often prefer smaller models with millions of parameters, trained on high-quality, human-annotated datasets. Yet, curating such datasets is both time-consuming and costly. Consequently, there is a growing need to combine the scalability of LLM-generated labels with the precision of human annotations, enabling fine-tuned smaller models to achieve both higher speed and accuracy comparable to larger models. In this paper, we introduce a simple yet effective framework to address this challenge. Our approach is specifically designed for per-utterance classification problems, which encompass tasks such as intent detection, dialogue state tracking, and more. To mitigate the impact of labeling errors from LLMs -- the primary source of inaccuracies in student models -- we propose a noise-reduced preference learning loss. Experimental results demonstrate that our method significantly improves accuracy across utterance-level dialogue tasks, including sentiment detection (over $2\%$), dialogue act classification (over $1.5\%$), etc.
comment: 7 pages, 4 figures
☆ A Survey on Sparse Autoencoders: Interpreting the Internal Mechanisms of Large Language Models
Large Language Models (LLMs) have revolutionized natural language processing, yet their internal mechanisms remain largely opaque. Recently, mechanistic interpretability has attracted significant attention from the research community as a means to understand the inner workings of LLMs. Among various mechanistic interpretability approaches, Sparse Autoencoders (SAEs) have emerged as a particularly promising method due to their ability to disentangle the complex, superimposed features within LLMs into more interpretable components. This paper presents a comprehensive examination of SAEs as a promising approach to interpreting and understanding LLMs. We provide a systematic overview of SAE principles, architectures, and applications specifically tailored for LLM analysis, covering theoretical foundations, implementation strategies, and recent developments in sparsity mechanisms. We also explore how SAEs can be leveraged to explain the internal workings of LLMs, steer model behaviors in desired directions, and develop more transparent training methodologies for future models. Despite the challenges that remain around SAE implementation and scaling, they continue to provide valuable tools for understanding the internal mechanisms of large language models.
comment: 20 pages, 3 figures
☆ CACTUS: An Open Dataset and Framework for Automated Cardiac Assessment and Classification of Ultrasound Images Using Deep Transfer Learning
Cardiac ultrasound (US) scanning is a commonly used techniques in cardiology to diagnose the health of the heart and its proper functioning. Therefore, it is necessary to consider ways to automate these tasks and assist medical professionals in classifying and assessing cardiac US images. Machine learning (ML) techniques are regarded as a prominent solution due to their success in numerous applications aimed at enhancing the medical field, including addressing the shortage of echography technicians. However, the limited availability of medical data presents a significant barrier to applying ML in cardiology, particularly regarding US images of the heart. This paper addresses this challenge by introducing the first open graded dataset for Cardiac Assessment and ClassificaTion of UltraSound (CACTUS), which is available online. This dataset contains images obtained from scanning a CAE Blue Phantom and representing various heart views and different quality levels, exceeding the conventional cardiac views typically found in the literature. Additionally, the paper introduces a Deep Learning (DL) framework consisting of two main components. The first component classifies cardiac US images based on the heart view using a Convolutional Neural Network (CNN). The second component uses Transfer Learning (TL) to fine-tune the knowledge from the first component and create a model for grading and assessing cardiac images. The framework demonstrates high performance in both classification and grading, achieving up to 99.43% accuracy and as low as 0.3067 error, respectively. To showcase its robustness, the framework is further fine-tuned using new images representing additional cardiac views and compared to several other state-of-the-art architectures. The framework's outcomes and performance in handling real-time scans were also assessed using a questionnaire answered by cardiac experts.
☆ R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning
Existing Large Reasoning Models (LRMs) have shown the potential of reinforcement learning (RL) to enhance the complex reasoning capabilities of Large Language Models~(LLMs). While they achieve remarkable performance on challenging tasks such as mathematics and coding, they often rely on their internal knowledge to solve problems, which can be inadequate for time-sensitive or knowledge-intensive questions, leading to inaccuracies and hallucinations. To address this, we propose \textbf{R1-Searcher}, a novel two-stage outcome-based RL approach designed to enhance the search capabilities of LLMs. This method allows LLMs to autonomously invoke external search systems to access additional knowledge during the reasoning process. Our framework relies exclusively on RL, without requiring process rewards or distillation for a cold start. % effectively generalizing to out-of-domain datasets and supporting both Base and Instruct models. Our experiments demonstrate that our method significantly outperforms previous strong RAG methods, even when compared to the closed-source GPT-4o-mini.
☆ Quantifying the Robustness of Retrieval-Augmented Language Models Against Spurious Features in Grounding Data
Robustness has become a critical attribute for the deployment of RAG systems in real-world applications. Existing research focuses on robustness to explicit noise (e.g., document semantics) but overlooks spurious features (a.k.a. implicit noise). While previous works have explored spurious features in LLMs, they are limited to specific features (e.g., formats) and narrow scenarios (e.g., ICL). In this work, we statistically confirm the presence of spurious features in the RAG paradigm, a robustness problem caused by the sensitivity of LLMs to semantic-agnostic features. Moreover, we provide a comprehensive taxonomy of spurious features and empirically quantify their impact through controlled experiments. Further analysis reveals that not all spurious features are harmful and they can even be beneficial sometimes. Extensive evaluation results across multiple LLMs suggest that spurious features are a widespread and challenging problem in the field of RAG. The code and dataset will be released to facilitate future research. We release all codes and data at: $\\\href{https://github.com/maybenotime/RAG-SpuriousFeatures}{https://github.com/maybenotime/RAG-SpuriousFeatures}$.
☆ InDRiVE: Intrinsic Disagreement based Reinforcement for Vehicle Exploration through Curiosity Driven Generalized World Model IROS 2025
Model-based Reinforcement Learning (MBRL) has emerged as a promising paradigm for autonomous driving, where data efficiency and robustness are critical. Yet, existing solutions often rely on carefully crafted, task specific extrinsic rewards, limiting generalization to new tasks or environments. In this paper, we propose InDRiVE (Intrinsic Disagreement based Reinforcement for Vehicle Exploration), a method that leverages purely intrinsic, disagreement based rewards within a Dreamer based MBRL framework. By training an ensemble of world models, the agent actively explores high uncertainty regions of environments without any task specific feedback. This approach yields a task agnostic latent representation, allowing for rapid zero shot or few shot fine tuning on downstream driving tasks such as lane following and collision avoidance. Experimental results in both seen and unseen environments demonstrate that InDRiVE achieves higher success rates and fewer infractions compared to DreamerV2 and DreamerV3 baselines despite using significantly fewer training steps. Our findings highlight the effectiveness of purely intrinsic exploration for learning robust vehicle control behaviors, paving the way for more scalable and adaptable autonomous driving systems.
comment: This work has been submitted to IROS 2025 and is currently under review
☆ Compliance of AI Systems
The increasing integration of artificial intelligence (AI) systems in various fields requires solid concepts to ensure compliance with upcoming legislation. This paper systematically examines the compliance of AI systems with relevant legislation, focusing on the EU's AI Act and the compliance of data sets. The analysis highlighted many challenges associated with edge devices, which are increasingly being used to deploy AI applications closer and closer to the data sources. Such devices often face unique issues due to their decentralized nature and limited computing resources for implementing sophisticated compliance mechanisms. By analyzing AI implementations, the paper identifies challenges and proposes the first best practices for legal compliance when developing, deploying, and running AI. The importance of data set compliance is highlighted as a cornerstone for ensuring the trustworthiness, transparency, and explainability of AI systems, which must be aligned with ethical standards set forth in regulatory frameworks such as the AI Act. The insights gained should contribute to the ongoing discourse on the responsible development and deployment of embedded AI systems.
comment: 5 pages, 3 figures
☆ Impoola: The Power of Average Pooling for Image-Based Deep Reinforcement Learning
As image-based deep reinforcement learning tackles more challenging tasks, increasing model size has become an important factor in improving performance. Recent studies achieved this by focusing on the parameter efficiency of scaled networks, typically using Impala-CNN, a 15-layer ResNet-inspired network, as the image encoder. However, while Impala-CNN evidently outperforms older CNN architectures, potential advancements in network design for deep reinforcement learning-specific image encoders remain largely unexplored. We find that replacing the flattening of output feature maps in Impala-CNN with global average pooling leads to a notable performance improvement. This approach outperforms larger and more complex models in the Procgen Benchmark, particularly in terms of generalization. We call our proposed encoder model Impoola-CNN. A decrease in the network's translation sensitivity may be central to this improvement, as we observe the most significant gains in games without agent-centered observations. Our results demonstrate that network scaling is not just about increasing model size - efficient network design is also an essential factor.
☆ Post-Hoc Concept Disentanglement: From Correlated to Isolated Concept Representations
Concept Activation Vectors (CAVs) are widely used to model human-understandable concepts as directions within the latent space of neural networks. They are trained by identifying directions from the activations of concept samples to those of non-concept samples. However, this method often produces similar, non-orthogonal directions for correlated concepts, such as "beard" and "necktie" within the CelebA dataset, which frequently co-occur in images of men. This entanglement complicates the interpretation of concepts in isolation and can lead to undesired effects in CAV applications, such as activation steering. To address this issue, we introduce a post-hoc concept disentanglement method that employs a non-orthogonality loss, facilitating the identification of orthogonal concept directions while preserving directional correctness. We evaluate our approach with real-world and controlled correlated concepts in CelebA and a synthetic FunnyBirds dataset with VGG16 and ResNet18 architectures. We further demonstrate the superiority of orthogonalized concept representations in activation steering tasks, allowing (1) the insertion of isolated concepts into input images through generative models and (2) the removal of concepts for effective shortcut suppression with reduced impact on correlated concepts in comparison to baseline CAVs.
☆ Cognitive Bias Detection Using Advanced Prompt Engineering
Cognitive biases, systematic deviations from rationality in judgment, pose significant challenges in generating objective content. This paper introduces a novel approach for real-time cognitive bias detection in user-generated text using large language models (LLMs) and advanced prompt engineering techniques. The proposed system analyzes textual data to identify common cognitive biases such as confirmation bias, circular reasoning, and hidden assumption. By designing tailored prompts, the system effectively leverages LLMs' capabilities to both recognize and mitigate these biases, improving the quality of human-generated content (e.g., news, media, reports). Experimental results demonstrate the high accuracy of our approach in identifying cognitive biases, offering a valuable tool for enhancing content objectivity and reducing the risks of biased decision-making.
comment: 17 pages. 6 Figures, 2 Tables
☆ Noise-Robust Radio Frequency Fingerprint Identification Using Denoise Diffusion Model
Securing Internet of Things (IoT) devices presents increasing challenges due to their limited computational and energy resources. Radio Frequency Fingerprint Identification (RFFI) emerges as a promising authentication technique to identify wireless devices through hardware impairments. RFFI performance under low signal-to-noise ratio (SNR) scenarios is significantly degraded because the minute hardware features can be easily swamped in noise. In this paper, we leveraged the diffusion model to effectively restore the RFF under low SNR scenarios. Specifically, we trained a powerful noise predictor and tailored a noise removal algorithm to effectively reduce the noise level in the received signal and restore the device fingerprints. We used Wi-Fi as a case study and created a testbed involving 6 commercial off-the-shelf Wi-Fi dongles and a USRP N210 software-defined radio (SDR) platform. We conducted experimental evaluations on various SNR scenarios. The experimental results show that the proposed algorithm can improve the classification accuracy by up to 34.9%.
comment: 6 pages, 8 figures, WCNC 2025
☆ Grammar-Based Code Representation: Is It a Worthy Pursuit for LLMs?
Grammar serves as a cornerstone in programming languages and software engineering, providing frameworks to define the syntactic space and program structure. Existing research demonstrates the effectiveness of grammar-based code representations in small-scale models, showing their ability to reduce syntax errors and enhance performance. However, as language models scale to the billion level or beyond, syntax-level errors become rare, making it unclear whether grammar information still provides performance benefits. To explore this, we develop a series of billion-scale GrammarCoder models, incorporating grammar rules in the code generation process. Experiments on HumanEval (+) and MBPP (+) demonstrate a notable improvement in code generation accuracy. Further analysis shows that grammar-based representations enhance LLMs' ability to discern subtle code differences, reducing semantic errors caused by minor variations. These findings suggest that grammar-based code representations remain valuable even in billion-scale models, not only by maintaining syntax correctness but also by improving semantic differentiation.
☆ EuroBERT: Scaling Multilingual Encoders for European Languages
General-purpose multilingual vector representations, used in retrieval, regression and classification, are traditionally obtained from bidirectional encoder models. Despite their wide applicability, encoders have been recently overshadowed by advances in generative decoder-only models. However, many innovations driving this progress are not inherently tied to decoders. In this paper, we revisit the development of multilingual encoders through the lens of these advances, and introduce EuroBERT, a family of multilingual encoders covering European and widely spoken global languages. Our models outperform existing alternatives across a diverse range of tasks, spanning multilingual capabilities, mathematics, and coding, and natively supporting sequences of up to 8,192 tokens. We also examine the design decisions behind EuroBERT, offering insights into our dataset composition and training pipeline. We publicly release the EuroBERT models, including intermediate training checkpoints, together with our training framework.
comment: 26 pages, 6 figures, 11 tables
☆ FastMap: Fast Queries Initialization Based Vectorized HD Map Reconstruction Framework
Reconstruction of high-definition maps is a crucial task in perceiving the autonomous driving environment, as its accuracy directly impacts the reliability of prediction and planning capabilities in downstream modules. Current vectorized map reconstruction methods based on the DETR framework encounter limitations due to the redundancy in the decoder structure, necessitating the stacking of six decoder layers to maintain performance, which significantly hampers computational efficiency. To tackle this issue, we introduce FastMap, an innovative framework designed to reduce decoder redundancy in existing approaches. FastMap optimizes the decoder architecture by employing a single-layer, two-stage transformer that achieves multilevel representation capabilities. Our framework eliminates the conventional practice of randomly initializing queries and instead incorporates a heatmap-guided query generation module during the decoding phase, which effectively maps image features into structured query vectors using learnable positional encoding. Additionally, we propose a geometry-constrained point-to-line loss mechanism for FastMap, which adeptly addresses the challenge of distinguishing highly homogeneous features that often arise in traditional point-to-point loss computations. Extensive experiments demonstrate that FastMap achieves state-of-the-art performance in both nuScenes and Argoverse2 datasets, with its decoder operating 3.2 faster than the baseline. Code and more demos are available at https://github.com/hht1996ok/FastMap.
☆ Personalized Federated Learning via Learning Dynamic Graphs
Personalized Federated Learning (PFL) aims to train a personalized model for each client that is tailored to its local data distribution, learning fails to perform well on individual clients due to variations in their local data distributions. Most existing PFL methods focus on personalizing the aggregated global model for each client, neglecting the fundamental aspect of federated learning: the regulation of how client models are aggregated. Additionally, almost all of them overlook the graph structure formed by clients in federated learning. In this paper, we propose a novel method, Personalized Federated Learning with Graph Attention Network (pFedGAT), which captures the latent graph structure between clients and dynamically determines the importance of other clients for each client, enabling fine-grained control over the aggregation process. We evaluate pFedGAT across multiple data distribution scenarios, comparing it with twelve state of the art methods on three datasets: Fashion MNIST, CIFAR-10, and CIFAR-100, and find that it consistently performs well.
☆ The Society of HiveMind: Multi-Agent Optimization of Foundation Model Swarms to Unlock the Potential of Collective Intelligence
Multi-agent systems address issues of accessibility and scalability of artificial intelligence (AI) foundation models, which are often represented by large language models. We develop a framework - the "Society of HiveMind" (SOHM) - that orchestrates the interaction between multiple AI foundation models, imitating the observed behavior of animal swarms in nature by following modern evolutionary theories. On the one hand, we find that the SOHM provides a negligible benefit on tasks that mainly require real-world knowledge. On the other hand, we remark a significant improvement on tasks that require intensive logical reasoning, indicating that multi-agent systems are capable of increasing the reasoning capabilities of the collective compared to the individual agents. Our findings demonstrate the potential of combining a multitude of diverse AI foundation models to form an artificial swarm intelligence capable of self-improvement through interactions with a given environment.
comment: 11 pages (excl. appendix)
Controllable Complementarity: Subjective Preferences in Human-AI Collaboration
Research on human-AI collaboration often prioritizes objective performance. However, understanding human subjective preferences is essential to improving human-AI complementarity and human experiences. We investigate human preferences for controllability in a shared workspace task with AI partners using Behavior Shaping (BS), a reinforcement learning algorithm that allows humans explicit control over AI behavior. In one experiment, we validate the robustness of BS in producing effective AI policies relative to self-play policies, when controls are hidden. In another experiment, we enable human control, showing that participants perceive AI partners as more effective and enjoyable when they can directly dictate AI behavior. Our findings highlight the need to design AI that prioritizes both task performance and subjective human preferences. By aligning AI behavior with human preferences, we demonstrate how human-AI complementarity can extend beyond objective outcomes to include subjective preferences.
comment: 9 pages, 4 figures
☆ Soft Policy Optimization: Online Off-Policy RL for Sequence Models
RL-based post-training of language models is almost exclusively done using on-policy methods such as PPO. These methods cannot learn from arbitrary sequences such as those produced earlier in training, in earlier runs, by human experts or other policies, or by decoding and exploration methods. This results in severe sample inefficiency and exploration difficulties, as well as a potential loss of diversity in the policy responses. Moreover, asynchronous PPO implementations require frequent and costly model transfers, and typically use value models which require a large amount of memory. In this paper we introduce Soft Policy Optimization (SPO), a simple, scalable and principled Soft RL method for sequence model policies that can learn from arbitrary online and offline trajectories and does not require a separate value model. In experiments on code contests, we shows that SPO outperforms PPO on pass@10, is significantly faster and more memory efficient, is able to benefit from off-policy data, enjoys improved stability, and learns more diverse (i.e. soft) policies.
☆ LLM-based Iterative Approach to Metamodeling in Automotive
In this paper, we introduce an automated approach to domain-specific metamodel construction relying on Large Language Model (LLM). The main focus is adoption in automotive domain. As outcome, a prototype was implemented as web service using Python programming language, while OpenAI's GPT-4o was used as the underlying LLM. Based on the initial experiments, this approach successfully constructs Ecore metamodel based on set of automotive requirements and visualizes it making use of PlantUML notation, so human experts can provide feedback in order to refine the result. Finally, locally deployable solution is also considered, including the limitations and additional steps required.
☆ Linear-MoE: Linear Sequence Modeling Meets Mixture-of-Experts
Linear Sequence Modeling (LSM) like linear attention, state space models and linear RNNs, and Mixture-of-Experts (MoE) have recently emerged as significant architectural improvements. In this paper, we introduce Linear-MoE, a production-level system for modeling and training large-scale models that integrate LSM with MoE. Linear-MoE leverages the advantages of both LSM modules for linear-complexity sequence modeling and MoE layers for sparsely activation, aiming to offer high performance with efficient training. The Linear-MoE system comprises: 1) Modeling subsystem, which provides a unified framework supporting all instances of LSM. and 2) Training subsystem, which facilitates efficient training by incorporating various advanced parallelism technologies, particularly Sequence Parallelism designed for Linear-MoE models. Additionally, we explore hybrid models that combine Linear-MoE layers with standard Transformer-MoE layers with its Sequence Parallelism to further enhance model flexibility and performance. Evaluations on two model series, A0.3B-2B and A1B-7B, demonstrate Linear-MoE achieves efficiency gains while maintaining competitive performance on various benchmarks, showcasing its potential as a next-generation foundational model architecture. Code: https://github.com/OpenSparseLLMs/Linear-MoE.
comment: Technical report, 17 pages
☆ An Empirical Study of Conformal Prediction in LLM with ASP Scaffolds for Robust Reasoning
In this paper, we examine the use of Conformal Language Modelling (CLM) alongside Answer Set Programming (ASP) to enhance the performance of standard open-weight LLMs on complex multi-step reasoning tasks. Using the StepGame dataset, which requires spatial reasoning, we apply CLM to generate sets of ASP programs from an LLM, providing statistical guarantees on the correctness of the outputs. Experimental results show that CLM significantly outperforms baseline models that use standard sampling methods, achieving substantial accuracy improvements across different levels of reasoning complexity. Additionally, the LLM-as-Judge metric enhances CLM's performance, especially in assessing structurally and logically correct ASP outputs. However, calibrating CLM with diverse calibration sets did not improve generalizability for tasks requiring much longer reasoning steps, indicating limitations in handling more complex tasks.
☆ Semantic Shift Estimation via Dual-Projection and Classifier Reconstruction for Exemplar-Free Class-Incremental Learning
Exemplar-Free Class-Incremental Learning (EFCIL) aims to sequentially learn from distinct categories without retaining exemplars but easily suffers from catastrophic forgetting of learned knowledge. While existing EFCIL methods leverage knowledge distillation to alleviate forgetting, they still face two critical challenges: semantic shift and decision bias. Specifically, the embeddings of old tasks shift in the embedding space after learning new tasks, and the classifier becomes biased towards new tasks due to training solely with new data, thereby hindering the balance between old and new knowledge. To address these issues, we propose the Dual-Projection Shift Estimation and Classifier Reconstruction (DPCR) approach for EFCIL. DPCR effectively estimates semantic shift through a dual-projection, which combines a learnable transformation with a row-space projection to capture both task-wise and category-wise shifts. Furthermore, to mitigate decision bias, DPCR employs ridge regression to reformulate classifier training as a reconstruction process. This reconstruction exploits previous information encoded in covariance and prototype of each class after calibration with estimated shift, thereby reducing decision bias. Extensive experiments demonstrate that, across various datasets, DPCR effectively balances old and new tasks, outperforming state-of-the-art EFCIL methods.
comment: 14 pages, 7 figures
☆ Static Program Analysis Guided LLM Based Unit Test Generation
We describe a novel approach to automating unit test generation for Java methods using large language models (LLMs). Existing LLM-based approaches rely on sample usage(s) of the method to test (focal method) and/or provide the entire class of the focal method as input prompt and context. The former approach is often not viable due to the lack of sample usages, especially for newly written focal methods. The latter approach does not scale well enough; the bigger the complexity of the focal method and larger associated class, the harder it is to produce adequate test code (due to factors such as exceeding the prompt and context lengths of the underlying LLM). We show that augmenting prompts with \emph{concise} and \emph{precise} context information obtained by program analysis %of the focal method increases the effectiveness of generating unit test code through LLMs. We validate our approach on a large commercial Java project and a popular open-source Java project.
☆ Ontology Generation using Large Language Models
The ontology engineering process is complex, time-consuming, and error-prone, even for experienced ontology engineers. In this work, we investigate the potential of Large Language Models (LLMs) to provide effective OWL ontology drafts directly from ontological requirements described using user stories and competency questions. Our main contribution is the presentation and evaluation of two new prompting techniques for automated ontology development: Memoryless CQbyCQ and Ontogenia. We also emphasize the importance of three structural criteria for ontology assessment, alongside expert qualitative evaluation, highlighting the need for a multi-dimensional evaluation in order to capture the quality and usability of the generated ontologies. Our experiments, conducted on a benchmark dataset of ten ontologies with 100 distinct CQs and 29 different user stories, compare the performance of three LLMs using the two prompting techniques. The results demonstrate improvements over the current state-of-the-art in LLM-supported ontology engineering. More specifically, the model OpenAI o1-preview with Ontogenia produces ontologies of sufficient quality to meet the requirements of ontology engineers, significantly outperforming novice ontology engineers in modelling ability. However, we still note some common mistakes and variability of result quality, which is important to take into account when using LLMs for ontology authoring support. We discuss these limitations and propose directions for future research.
comment: 2 figures and 3 tables. 20 pages
☆ VLMs Play StarCraft II: A Benchmark and Multimodal Decision Method
We introduce VLM-Attention, a multimodal StarCraft II environment that aligns artificial agent perception with the human gameplay experience. Traditional frameworks such as SMAC rely on abstract state representations that diverge significantly from human perception, limiting the ecological validity of agent behavior. Our environment addresses this limitation by incorporating RGB visual inputs and natural language observations that more closely simulate human cognitive processes during gameplay. The VLM-Attention framework consists of three integrated components: (1) a vision-language model enhanced with specialized self-attention mechanisms for strategic unit targeting and battlefield assessment, (2) a retrieval-augmented generation system that leverages domain-specific StarCraft II knowledge to inform tactical decisions, and (3) a dynamic role-based task distribution system that enables coordinated multi-agent behavior. Our experimental evaluation across 21 custom scenarios demonstrates that VLM-based agents powered by foundation models (specifically Qwen-VL and GPT-4o) can execute complex tactical maneuvers without explicit training, achieving comparable performance to traditional MARL methods that require substantial training iterations. This work establishes a foundation for developing human-aligned StarCraft II agents and advances the broader research agenda of multimodal game AI. Our implementation is available at https://github.com/camel-ai/VLM-Play-StarCraft2.
comment: Under Review
☆ Shifting Perspectives: Steering Vector Ensembles for Robust Bias Mitigation in LLMs ACL 2025
We present a novel approach to bias mitigation in large language models (LLMs) by applying steering vectors to modify model activations in forward passes. We employ Bayesian optimization to systematically identify effective contrastive pair datasets across nine bias axes. When optimized on the BBQ dataset, our individually tuned steering vectors achieve average improvements of 12.2%, 4.7%, and 3.2% over the baseline for Mistral, Llama, and Qwen, respectively. Building on these promising results, we introduce Steering Vector Ensembles (SVE), a method that averages multiple individually optimized steering vectors, each targeting a specific bias axis such as age, race, or gender. By leveraging their collective strength, SVE outperforms individual steering vectors in both bias reduction and maintaining model performance. The work presents the first systematic investigation of steering vectors for bias mitigation, and we demonstrate that SVE is a powerful and computationally efficient strategy for reducing bias in LLMs, with broader implications for enhancing AI safety.
comment: Submitted to ACL 2025
☆ Improving Hate Speech Classification with Cross-Taxonomy Dataset Integration ACL
Algorithmic hate speech detection faces significant challenges due to the diverse definitions and datasets used in research and practice. Social media platforms, legal frameworks, and institutions each apply distinct yet overlapping definitions, complicating classification efforts. This study addresses these challenges by demonstrating that existing datasets and taxonomies can be integrated into a unified model, enhancing prediction performance and reducing reliance on multiple specialized classifiers. The work introduces a universal taxonomy and a hate speech classifier capable of detecting a wide range of definitions within a single framework. Our approach is validated by combining two widely used but differently annotated datasets, showing improved classification performance on an independent test set. This work highlights the potential of dataset and taxonomy integration in advancing hate speech detection, increasing efficiency, and ensuring broader applicability across contexts.
comment: Accepted for publication at LaTeCH-CLfL 2025. The 9th Joint ACL Special Interest Group on Language Technologies for the Socio-Economic Sciences and Humanities (SIGHUM) Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature
☆ On the Logical Content of Logic Programs
Logic programming (LP) is typically understood through operational semantics (e.g., SLD-resolution) or model-theoretic interpretations (e.g., the least Herbrand model). This paper introduces a novel perspective on LP by defining a ``support'' relation that explicates what a program ``knows''. This interpretation is shown to express classical and intuitionistic logic, as well as an intermediate logic, depending on certain choices regarding LP and the meanings of disjunction and negation. These results are formalized using the idea of base-extension semantics within proof-theoretic semantics. Our approach offers new insights into the logical foundations of LP and has potential applications in knowledge representation, automated reasoning, and formal verification.
☆ Spatial Distillation based Distribution Alignment (SDDA) for Cross-Headset EEG Classification
A non-invasive brain-computer interface (BCI) enables direct interaction between the user and external devices, typically via electroencephalogram (EEG) signals. However, decoding EEG signals across different headsets remains a significant challenge due to differences in the number and locations of the electrodes. To address this challenge, we propose a spatial distillation based distribution alignment (SDDA) approach for heterogeneous cross-headset transfer in non-invasive BCIs. SDDA uses first spatial distillation to make use of the full set of electrodes, and then input/feature/output space distribution alignments to cope with the significant differences between the source and target domains. To our knowledge, this is the first work to use knowledge distillation in cross-headset transfers. Extensive experiments on six EEG datasets from two BCI paradigms demonstrated that SDDA achieved superior performance in both offline unsupervised domain adaptation and online supervised domain adaptation scenarios, consistently outperforming 10 classical and state-of-the-art transfer learning algorithms.
comment: 10 pages, 5 figures
☆ AutoIOT: LLM-Driven Automated Natural Language Programming for AIoT Applications
The advent of Large Language Models (LLMs) has profoundly transformed our lives, revolutionizing interactions with AI and lowering the barrier to AI usage. While LLMs are primarily designed for natural language interaction, the extensive embedded knowledge empowers them to comprehend digital sensor data. This capability enables LLMs to engage with the physical world through IoT sensors and actuators, performing a myriad of AIoT tasks. Consequently, this evolution triggers a paradigm shift in conventional AIoT application development, democratizing its accessibility to all by facilitating the design and development of AIoT applications via natural language. However, some limitations need to be addressed to unlock the full potential of LLMs in AIoT application development. First, existing solutions often require transferring raw sensor data to LLM servers, which raises privacy concerns, incurs high query fees, and is limited by token size. Moreover, the reasoning processes of LLMs are opaque to users, making it difficult to verify the robustness and correctness of inference results. This paper introduces AutoIOT, an LLM-based automated program generator for AIoT applications. AutoIOT enables users to specify their requirements using natural language (input) and automatically synthesizes interpretable programs with documentation (output). AutoIOT automates the iterative optimization to enhance the quality of generated code with minimum user involvement. AutoIOT not only makes the execution of AIoT tasks more explainable but also mitigates privacy concerns and reduces token costs with local execution of synthesized programs. Extensive experiments and user studies demonstrate AutoIOT's remarkable capability in program synthesis for various AIoT tasks. The synthesized programs can match and even outperform some representative baselines.
☆ Toward an Evaluation Science for Generative AI Systems
There is an increasing imperative to anticipate and understand the performance and safety of generative AI systems in real-world deployment contexts. However, the current evaluation ecosystem is insufficient: Commonly used static benchmarks face validity challenges, and ad hoc case-by-case audits rarely scale. In this piece, we advocate for maturing an evaluation science for generative AI systems. While generative AI creates unique challenges for system safety engineering and measurement science, the field can draw valuable insights from the development of safety evaluation practices in other fields, including transportation, aerospace, and pharmaceutical engineering. In particular, we present three key lessons: Evaluation metrics must be applicable to real-world performance, metrics must be iteratively refined, and evaluation institutions and norms must be established. Applying these insights, we outline a concrete path toward a more rigorous approach for evaluating generative AI systems.
comment: First two authors contributed equally to this work
☆ Speculative Decoding for Multi-Sample Inference
We propose a novel speculative decoding method tailored for multi-sample reasoning scenarios, such as self-consistency and Best-of-N sampling. Our method exploits the intrinsic consensus of parallel generation paths to synthesize high-quality draft tokens without requiring auxiliary models or external databases. By dynamically analyzing structural patterns across parallel reasoning paths through a probabilistic aggregation mechanism, it identifies consensus token sequences that align with the decoding distribution. Evaluations on mathematical reasoning benchmarks demonstrate a substantial improvement in draft acceptance rates over baselines, while reducing the latency in draft token construction. This work establishes a paradigm shift for efficient multi-sample inference, enabling seamless integration of speculative decoding with sampling-based reasoning techniques.
Dynamic Knowledge Integration for Evidence-Driven Counter-Argument Generation with Large Language Models
This paper investigates the role of dynamic external knowledge integration in improving counter-argument generation using Large Language Models (LLMs). While LLMs have shown promise in argumentative tasks, their tendency to generate lengthy, potentially unfactual responses highlights the need for more controlled and evidence-based approaches. We introduce a new manually curated dataset of argument and counter-argument pairs specifically designed to balance argumentative complexity with evaluative feasibility. We also propose a new LLM-as-a-Judge evaluation methodology that shows a stronger correlation with human judgments compared to traditional reference-based metrics. Our experimental results demonstrate that integrating dynamic external knowledge from the web significantly improves the quality of generated counter-arguments, particularly in terms of relatedness, persuasiveness, and factuality. The findings suggest that combining LLMs with real-time external knowledge retrieval offers a promising direction for developing more effective and reliable counter-argumentation systems.
☆ Attenuation artifact detection and severity classification in intracoronary OCT using mixed image representations
In intracoronary optical coherence tomography (OCT), blood residues and gas bubbles cause attenuation artifacts that can obscure critical vessel structures. The presence and severity of these artifacts may warrant re-acquisition, prolonging procedure time and increasing use of contrast agent. Accurate detection of these artifacts can guide targeted re-acquisition, reducing the amount of repeated scans needed to achieve diagnostically viable images. However, the highly heterogeneous appearance of these artifacts poses a challenge for the automated detection of the affected image regions. To enable automatic detection of the attenuation artifacts caused by blood residues and gas bubbles based on their severity, we propose a convolutional neural network that performs classification of the attenuation lines (A-lines) into three classes: no artifact, mild artifact and severe artifact. Our model extracts and merges features from OCT images in both Cartesian and polar coordinates, where each column of the image represents an A-line. Our method detects the presence of attenuation artifacts in OCT frames reaching F-scores of 0.77 and 0.94 for mild and severe artifacts, respectively. The inference time over a full OCT scan is approximately 6 seconds. Our experiments show that analysis of images represented in both Cartesian and polar coordinate systems outperforms the analysis in polar coordinates only, suggesting that these representations contain complementary features. This work lays the foundation for automated artifact assessment and image acquisition guidance in intracoronary OCT imaging.
☆ Disentangling Task Interference within Neurons: Model Merging in Alignment with Neuronal Mechanisms
Fine-tuning pre-trained models on targeted datasets enhances task-specific performance but often comes at the expense of generalization. Model merging techniques, which integrate multiple fine-tuned models into a single multi-task model through task arithmetic at various levels: model, layer, or parameter, offer a promising solution. However, task interference remains a fundamental challenge, leading to performance degradation and suboptimal merged models. Existing approaches largely overlook the fundamental role of individual neurons and their connectivity, resulting in a lack of interpretability in both the merging process and the merged models. In this work, we present the first study on the impact of neuronal alignment in model merging. We decompose task-specific representations into two complementary neuronal subspaces that regulate neuron sensitivity and input adaptability. Leveraging this decomposition, we introduce NeuroMerging, a novel merging framework developed to mitigate task interference within neuronal subspaces, enabling training-free model fusion across diverse tasks. Through extensive experiments, we demonstrate that NeuroMerging achieves superior performance compared to existing methods on multi-task benchmarks across both vision and natural language domains. Our findings highlight the importance of aligning neuronal mechanisms in model merging, offering new insights into mitigating task interference and improving knowledge fusion.
☆ Robust Multimodal Learning for Ophthalmic Disease Grading via Disentangled Representation
This paper discusses how ophthalmologists often rely on multimodal data to improve diagnostic accuracy. However, complete multimodal data is rare in real-world applications due to a lack of medical equipment and concerns about data privacy. Traditional deep learning methods typically address these issues by learning representations in latent space. However, the paper highlights two key limitations of these approaches: (i) Task-irrelevant redundant information (e.g., numerous slices) in complex modalities leads to significant redundancy in latent space representations. (ii) Overlapping multimodal representations make it difficult to extract unique features for each modality. To overcome these challenges, the authors propose the Essence-Point and Disentangle Representation Learning (EDRL) strategy, which integrates a self-distillation mechanism into an end-to-end framework to enhance feature selection and disentanglement for more robust multimodal learning. Specifically, the Essence-Point Representation Learning module selects discriminative features that improve disease grading performance. The Disentangled Representation Learning module separates multimodal data into modality-common and modality-unique representations, reducing feature entanglement and enhancing both robustness and interpretability in ophthalmic disease diagnosis. Experiments on multimodal ophthalmology datasets show that the proposed EDRL strategy significantly outperforms current state-of-the-art methods.
comment: 10pages
☆ Uncertainty-Aware Decoding with Minimum Bayes Risk ICLR 2025
Despite their outstanding performance in the majority of scenarios, contemporary language models still occasionally generate undesirable outputs, for example, hallucinated text. While such behaviors have previously been linked to uncertainty, there is a notable lack of methods that actively consider uncertainty during text generation. In this work, we show how Minimum Bayes Risk (MBR) decoding, which selects model generations according to an expected risk, can be generalized into a principled uncertainty-aware decoding method. In short, we account for model uncertainty during decoding by incorporating a posterior over model parameters into MBR's computation of expected risk. We show that this modified expected risk is useful for both choosing outputs and deciding when to abstain from generation and can provide improvements without incurring overhead. We benchmark different methods for learning posteriors and show that performance improves with prediction diversity. We release our code publicly.
comment: ICLR 2025 (Poster)
☆ Adversarial Policy Optimization for Offline Preference-based Reinforcement Learning
In this paper, we study offline preference-based reinforcement learning (PbRL), where learning is based on pre-collected preference feedback over pairs of trajectories. While offline PbRL has demonstrated remarkable empirical success, existing theoretical approaches face challenges in ensuring conservatism under uncertainty, requiring computationally intractable confidence set constructions. We address this limitation by proposing Adversarial Preference-based Policy Optimization (APPO), a computationally efficient algorithm for offline PbRL that guarantees sample complexity bounds without relying on explicit confidence sets. By framing PbRL as a two-player game between a policy and a model, our approach enforces conservatism in a tractable manner. Using standard assumptions on function approximation and bounded trajectory concentrability, we derive a sample complexity bound. To our knowledge, APPO is the first offline PbRL algorithm to offer both statistical efficiency and practical applicability. Experimental results on continuous control tasks demonstrate that APPO effectively learns from complex datasets, showing comparable performance with existing state-of-the-art methods.
☆ Frequency Autoregressive Image Generation with Continuous Tokens
Autoregressive (AR) models for image generation typically adopt a two-stage paradigm of vector quantization and raster-scan ``next-token prediction", inspired by its great success in language modeling. However, due to the huge modality gap, image autoregressive models may require a systematic reevaluation from two perspectives: tokenizer format and regression direction. In this paper, we introduce the frequency progressive autoregressive (\textbf{FAR}) paradigm and instantiate FAR with the continuous tokenizer. Specifically, we identify spectral dependency as the desirable regression direction for FAR, wherein higher-frequency components build upon the lower one to progressively construct a complete image. This design seamlessly fits the causality requirement for autoregressive models and preserves the unique spatial locality of image data. Besides, we delve into the integration of FAR and the continuous tokenizer, introducing a series of techniques to address optimization challenges and improve the efficiency of training and inference processes. We demonstrate the efficacy of FAR through comprehensive experiments on the ImageNet dataset and verify its potential on text-to-image generation.
☆ Evidential Uncertainty Estimation for Multi-Modal Trajectory Prediction
Accurate trajectory prediction is crucial for autonomous driving, yet uncertainty in agent behavior and perception noise makes it inherently challenging. While multi-modal trajectory prediction models generate multiple plausible future paths with associated probabilities, effectively quantifying uncertainty remains an open problem. In this work, we propose a novel multi-modal trajectory prediction approach based on evidential deep learning that estimates both positional and mode probability uncertainty in real time. Our approach leverages a Normal Inverse Gamma distribution for positional uncertainty and a Dirichlet distribution for mode uncertainty. Unlike sampling-based methods, it infers both types of uncertainty in a single forward pass, significantly improving efficiency. Additionally, we experimented with uncertainty-driven importance sampling to improve training efficiency by prioritizing underrepresented high-uncertainty samples over redundant ones. We perform extensive evaluations of our method on the Argoverse 1 and Argoverse 2 datasets, demonstrating that it provides reliable uncertainty estimates while maintaining high trajectory prediction accuracy.
☆ PhiloBERTA: A Transformer-Based Cross-Lingual Analysis of Greek and Latin Lexicons
We present PhiloBERTA, a cross-lingual transformer model that measures semantic relationships between ancient Greek and Latin lexicons. Through analysis of selected term pairs from classical texts, we use contextual embeddings and angular similarity metrics to identify precise semantic alignments. Our results show that etymologically related pairs demonstrate significantly higher similarity scores, particularly for abstract philosophical concepts such as epist\=em\=e (scientia) and dikaiosyn\=e (iustitia). Statistical analysis reveals consistent patterns in these relationships (p = 0.012), with etymologically related pairs showing remarkably stable semantic preservation compared to control pairs. These findings establish a quantitative framework for examining how philosophical concepts moved between Greek and Latin traditions, offering new methods for classical philological research.
☆ Jailbreaking is (Mostly) Simpler Than You Think
We introduce the Context Compliance Attack (CCA), a novel, optimization-free method for bypassing AI safety mechanisms. Unlike current approaches -- which rely on complex prompt engineering and computationally intensive optimization -- CCA exploits a fundamental architectural vulnerability inherent in many deployed AI systems. By subtly manipulating conversation history, CCA convinces the model to comply with a fabricated dialogue context, thereby triggering restricted behavior. Our evaluation across a diverse set of open-source and proprietary models demonstrates that this simple attack can circumvent state-of-the-art safety protocols. We discuss the implications of these findings and propose practical mitigation strategies to fortify AI systems against such elementary yet effective adversarial tactics.
☆ A Map-free Deep Learning-based Framework for Gate-to-Gate Monocular Visual Navigation aboard Miniaturized Aerial Vehicles
Palm-sized autonomous nano-drones, i.e., sub-50g in weight, recently entered the drone racing scenario, where they are tasked to avoid obstacles and navigate as fast as possible through gates. However, in contrast with their bigger counterparts, i.e., kg-scale drones, nano-drones expose three orders of magnitude less onboard memory and compute power, demanding more efficient and lightweight vision-based pipelines to win the race. This work presents a map-free vision-based (using only a monocular camera) autonomous nano-drone that combines a real-time deep learning gate detection front-end with a classic yet elegant and effective visual servoing control back-end, only relying on onboard resources. Starting from two state-of-the-art tiny deep learning models, we adapt them for our specific task, and after a mixed simulator-real-world training, we integrate and deploy them aboard our nano-drone. Our best-performing pipeline costs of only 24M multiply-accumulate operations per frame, resulting in a closed-loop control performance of 30 Hz, while achieving a gate detection root mean square error of 1.4 pixels, on our ~20k real-world image dataset. In-field experiments highlight the capability of our nano-drone to successfully navigate through 15 gates in 4 min, never crashing and covering a total travel distance of ~100m, with a peak flight speed of 1.9 m/s. Finally, to stress the generalization capability of our system, we also test it in a never-seen-before environment, where it navigates through gates for more than 4 min.
comment: \c{opyright}2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
☆ WritingBench: A Comprehensive Benchmark for Generative Writing
Recent advancements in large language models (LLMs) have significantly enhanced text generation capabilities, yet evaluating their performance in generative writing remains a challenge. Existing benchmarks primarily focus on generic text generation or limited in writing tasks, failing to capture the diverse requirements of high-quality written contents across various domains. To bridge this gap, we present WritingBench, a comprehensive benchmark designed to evaluate LLMs across 6 core writing domains and 100 subdomains, encompassing creative, persuasive, informative, and technical writing. We further propose a query-dependent evaluation framework that empowers LLMs to dynamically generate instance-specific assessment criteria. This framework is complemented by a fine-tuned critic model for criteria-aware scoring, enabling evaluations in style, format and length. The framework's validity is further demonstrated by its data curation capability, which enables 7B-parameter models to approach state-of-the-art (SOTA) performance. We open-source the benchmark, along with evaluation tools and modular framework components, to advance the development of LLMs in writing.
☆ Robust Conformal Prediction with a Single Binary Certificate ICLR 2025
Conformal prediction (CP) converts any model's output to prediction sets with a guarantee to cover the true label with (adjustable) high probability. Robust CP extends this guarantee to worst-case (adversarial) inputs. Existing baselines achieve robustness by bounding randomly smoothed conformity scores. In practice, they need expensive Monte-Carlo (MC) sampling (e.g. $\sim10^4$ samples per point) to maintain an acceptable set size. We propose a robust conformal prediction that produces smaller sets even with significantly lower MC samples (e.g. 150 for CIFAR10). Our approach binarizes samples with an adjustable (or automatically adjusted) threshold selected to preserve the coverage guarantee. Remarkably, we prove that robustness can be achieved by computing only one binary certificate, unlike previous methods that certify each calibration (or test) point. Thus, our method is faster and returns smaller robust sets. We also eliminate a previous limitation that requires a bounded score function.
comment: Published as a conference paper at ICLR 2025
☆ Kaiwu: A Multimodal Manipulation Dataset and Framework for Robot Learning and Human-Robot Interaction
Cutting-edge robot learning techniques including foundation models and imitation learning from humans all pose huge demands on large-scale and high-quality datasets which constitute one of the bottleneck in the general intelligent robot fields. This paper presents the Kaiwu multimodal dataset to address the missing real-world synchronized multimodal data problems in the sophisticated assembling scenario,especially with dynamics information and its fine-grained labelling. The dataset first provides an integration of human,environment and robot data collection framework with 20 subjects and 30 interaction objects resulting in totally 11,664 instances of integrated actions. For each of the demonstration,hand motions,operation pressures,sounds of the assembling process,multi-view videos, high-precision motion capture information,eye gaze with first-person videos,electromyography signals are all recorded. Fine-grained multi-level annotation based on absolute timestamp,and semantic segmentation labelling are performed. Kaiwu dataset aims to facilitate robot learning,dexterous manipulation,human intention investigation and human-robot collaboration research.
☆ Discrete Contrastive Learning for Diffusion Policies in Autonomous Driving
Learning to perform accurate and rich simulations of human driving behaviors from data for autonomous vehicle testing remains challenging due to human driving styles' high diversity and variance. We address this challenge by proposing a novel approach that leverages contrastive learning to extract a dictionary of driving styles from pre-existing human driving data. We discretize these styles with quantization, and the styles are used to learn a conditional diffusion policy for simulating human drivers. Our empirical evaluation confirms that the behaviors generated by our approach are both safer and more human-like than those of the machine-learning-based baseline methods. We believe this has the potential to enable higher realism and more effective techniques for evaluating and improving the performance of autonomous vehicles.
☆ MOHPER: Multi-objective Hyperparameter Optimization Framework for E-commerce Retrieval System
E-commerce search optimization has evolved to include a wider range of metrics that reflect user engagement and business objectives. Modern search frameworks now incorporate advanced quality features, such as sales counts and document-query relevance, to better align search results with these goals. Traditional methods typically focus on click-through rate (CTR) as a measure of engagement or relevance, but this can miss true purchase intent, creating a gap between user interest and actual conversions. Joint training with the click-through conversion rate (CTCVR) has become essential for understanding buying behavior, although its sparsity poses challenges for reliable optimization. This study presents MOHPER, a Multi-Objective Hyperparameter Optimization framework for E-commerce Retrieval systems. Utilizing Bayesian optimization and sampling, it jointly optimizes both CTR, CTCVR, and relevant objectives, focusing on engagement and conversion of the users. In addition, to improve the selection of the best configuration from multi-objective optimization, we suggest advanced methods for hyperparameter selection, including a meta-configuration voting strategy and a cumulative training approach that leverages prior optimal configurations, to improve speeds of training and efficiency. Currently deployed in a live setting, our proposed framework substantiates its practical efficacy in achieving a balanced optimization that aligns with both user satisfaction and revenue goals.
☆ Reward-Centered ReST-MCTS: A Robust Decision-Making Framework for Robotic Manipulation in High Uncertainty Environments
Monte Carlo Tree Search (MCTS) has emerged as a powerful tool for decision-making in robotics, enabling efficient exploration of large search spaces. However, traditional MCTS methods struggle in environments characterized by high uncertainty and noisy data due to their reliance on final-step reward evaluation. The lack of intermediate feedback during search often results in suboptimal decision-making and computational inefficiencies. This paper introduces Reward-Centered ReST-MCTS, a novel framework that enhances MCTS by incorporating intermediate reward shaping. The core of our approach is the Rewarding Center, which refines search trajectories by dynamically assigning partial rewards using rule-based validation, heuristic guidance, and neural estimation. By integrating these mechanisms, our method enables real-time optimization of search paths, mitigating the effects of error propagation. We evaluate Reward-Centered ReST-MCTS in robotic manipulation tasks under high uncertainty, demonstrating consistent improvements in decision accuracy. Compared to baseline methods, including Chain-of-Thought (CoT) prompting and Vanilla ReST-MCTS, our framework achieves a 2-4% accuracy improvement while maintaining computational feasibility. Ablation studies confirm the effectiveness of intermediate feedback in search refinement, particularly in pruning incorrect decision paths early. Furthermore, robustness tests show that our method retains high performance across varying levels of uncertainty.
☆ Deep Sequence Models for Predicting Average Shear Wave Velocity from Strong Motion Records
This study explores the use of deep learning for predicting the time averaged shear wave velocity in the top 30 m of the subsurface ($V_{s30}$) at strong motion recording stations in T\"urkiye. $V_{s30}$ is a key parameter in site characterization and, as a result for seismic hazard assessment. However, it is often unavailable due to the lack of direct measurements and is therefore estimated using empirical correlations. Such correlations however are commonly inadequate in capturing complex, site-specific variability and this motivates the need for data-driven approaches. In this study, we employ a hybrid deep learning model combining convolutional neural networks (CNNs) and long short-term memory (LSTM) networks to capture both spatial and temporal dependencies in strong motion records. Furthermore, we explore how using different parts of the signal influence our deep learning model. Our results suggest that the hybrid approach effectively learns complex, nonlinear relationships within seismic signals. We observed that an improved P-wave arrival time model increased the prediction accuracy of $V_{s30}$. We believe the study provides valuable insights into improving $V_{s30}$ predictions using a CNN-LSTM framework, demonstrating its potential for improving site characterization for seismic studies. Our codes are available via this repo: https://github.com/brsylmz23/CNNLSTM_DeepEQ
☆ Knowledge Updating? No More Model Editing! Just Selective Contextual Reasoning
As real-world knowledge evolves, the information embedded within large language models (LLMs) can become outdated, inadequate, or erroneous. Model editing has emerged as a prominent approach for updating LLMs' knowledge with minimal computational costs and parameter changes. This approach typically identifies and adjusts specific model parameters associated with newly acquired knowledge. However, existing methods often underestimate the adverse effects that parameter modifications can have on broadly distributed knowledge. More critically, post-edit LLMs frequently struggle with multi-hop reasoning and continuous knowledge updates. Although various studies have discussed these shortcomings, there is a lack of comprehensive evaluation. In this paper, we provide an evaluation of ten model editing methods along four dimensions: reliability, generalization, locality, and portability. Results confirm that all ten popular model editing methods show significant shortcomings across multiple dimensions, suggesting model editing is less promising. We then propose a straightforward method called Selective Contextual Reasoning (SCR), for knowledge updating. SCR does not modify model parameters but harnesses LLM's inherent contextual reasoning capabilities utilizing the updated knowledge pieces. Under SCR, an LLM first assesses whether an incoming query falls within the scope of an external knowledge base. If it does, the relevant external knowledge texts are contextualized to enhance reasoning; otherwise, the query is answered directly. We evaluate SCR against the ten model editing methods on two counterfactual datasets with three backbone LLMs. Empirical results confirm the effectiveness and efficiency of contextual reasoning for knowledge updating.
☆ Policy Constraint by Only Support Constraint for Offline Reinforcement Learning
Offline reinforcement learning (RL) aims to optimize a policy by using pre-collected datasets, to maximize cumulative rewards. However, offline reinforcement learning suffers challenges due to the distributional shift between the learned and behavior policies, leading to errors when computing Q-values for out-of-distribution (OOD) actions. To mitigate this issue, policy constraint methods aim to constrain the learned policy's distribution with the distribution of the behavior policy or confine action selection within the support of the behavior policy. However, current policy constraint methods tend to exhibit excessive conservatism, hindering the policy from further surpassing the behavior policy's performance. In this work, we present Only Support Constraint (OSC) which is derived from maximizing the total probability of learned policy in the support of behavior policy, to address the conservatism of policy constraint. OSC presents a regularization term that only restricts policies to the support without imposing extra constraints on actions within the support. Additionally, to fully harness the performance of the new policy constraints, OSC utilizes a diffusion model to effectively characterize the support of behavior policies. Experimental evaluations across a variety of offline RL benchmarks demonstrate that OSC significantly enhances performance, alleviating the challenges associated with distributional shifts and mitigating conservatism of policy constraints. Code is available at https://github.com/MoreanP/OSC.
☆ Path Pooling: Train-Free Structure Enhancement for Efficient Knowledge Graph Retrieval-Augmented Generation
Although Large Language Models achieve strong success in many tasks, they still suffer from hallucinations and knowledge deficiencies in real-world applications. Many knowledge graph-based retrieval-augmented generation (KG-RAG) methods enhance the quality and credibility of LLMs by leveraging structure and semantic information in KGs as external knowledge bases. However, these methods struggle to effectively incorporate structure information, either incurring high computational costs or underutilizing available knowledge. Inspired by smoothing operations in graph representation learning, we propose path pooling, a simple, train-free strategy that introduces structure information through a novel path-centric pooling operation. It seamlessly integrates into existing KG-RAG methods in a plug-and-play manner, enabling richer structure information utilization. Extensive experiments demonstrate that incorporating the path pooling into the state-of-the-art KG-RAG method consistently improves performance across various settings while introducing negligible additional cost. Code is coming soon at https://github.com/hrwang00/path-pooling.
☆ Deep Muscle EMG construction using A Physics-Integrated Deep Learning approach
Electromyography (EMG)--based computational musculoskeletal modeling is a non-invasive method for studying musculotendon function, human movement, and neuromuscular control, providing estimates of internal variables like muscle forces and joint torques. However, EMG signals from deeper muscles are often challenging to measure by placing the surface EMG electrodes and unfeasible to measure directly using invasive methods. The restriction to the access of EMG data from deeper muscles poses a considerable obstacle to the broad adoption of EMG-driven modeling techniques. A strategic alternative is to use an estimation algorithm to approximate the missing EMG signals from deeper muscle. A similar strategy is used in physics-informed deep learning, where the features of physical systems are learned without labeled data. In this work, we propose a hybrid deep learning algorithm, namely the neural musculoskeletal model (NMM), that integrates physics-informed and data-driven deep learning to approximate the EMG signals from the deeper muscles. While data-driven modeling is used to predict the missing EMG signals, physics-based modeling engraves the subject-specific information into the predictions. Experimental verifications on five test subjects are carried out to investigate the performance of the proposed hybrid framework. The proposed NMM is validated against the joint torque computed from 'OpenSim' software. The predicted deep EMG signals are also compared against the state-of-the-art muscle synergy extrapolation (MSE) approach, where the proposed NMM completely outperforms the existing MSE framework by a significant margin.
☆ Uncertainty-Aware Explainable Federated Learning
Federated Learning (FL) is a collaborative machine learning paradigm for enhancing data privacy preservation. Its privacy-preserving nature complicates the explanation of the decision-making processes and the evaluation of the reliability of the generated explanations. In this paper, we propose the Uncertainty-aware eXplainable Federated Learning (UncertainXFL) to address these challenges. It generates explanations for decision-making processes under FL settings and provides information regarding the uncertainty of these explanations. UncertainXFL is the first framework to explicitly offer uncertainty evaluation for explanations within the FL context. Explanatory information is initially generated by the FL clients and then aggregated by the server in a comprehensive and conflict-free manner during FL training. The quality of the explanations, including the uncertainty score and tested validity, guides the FL training process by prioritizing clients with the most reliable explanations through higher weights during model aggregation. Extensive experimental evaluation results demonstrate that UncertainXFL achieves superior model accuracy and explanation accuracy, surpassing the current state-of-the-art model that does not incorporate uncertainty information by 2.71% and 1.77%, respectively. By integrating and quantifying uncertainty in the data into the explanation process, UncertainXFL not only clearly presents the explanation alongside its uncertainty, but also leverages this uncertainty to guide the FL training process, thereby enhancing the robustness and reliability of the resulting models.
☆ Rewarding Curse: Analyze and Mitigate Reward Modeling Issues for LLM Reasoning
Chain-of-thought (CoT) prompting demonstrates varying performance under different reasoning tasks. Previous work attempts to evaluate it but falls short in providing an in-depth analysis of patterns that influence the CoT. In this paper, we study the CoT performance from the perspective of effectiveness and faithfulness. For the former, we identify key factors that influence CoT effectiveness on performance improvement, including problem difficulty, information gain, and information flow. For the latter, we interpret the unfaithful CoT issue by conducting a joint analysis of the information interaction among the question, CoT, and answer. The result demonstrates that, when the LLM predicts answers, it can recall correct information missing in the CoT from the question, leading to the problem. Finally, we propose a novel algorithm to mitigate this issue, in which we recall extra information from the question to enhance the CoT generation and evaluate CoTs based on their information gain. Extensive experiments demonstrate that our approach enhances both the faithfulness and effectiveness of CoT.
comment: 18 pages, 21 figures
☆ FinTMMBench: Benchmarking Temporal-Aware Multi-Modal RAG in Finance
Finance decision-making often relies on in-depth data analysis across various data sources, including financial tables, news articles, stock prices, etc. In this work, we introduce FinTMMBench, the first comprehensive benchmark for evaluating temporal-aware multi-modal Retrieval-Augmented Generation (RAG) systems in finance. Built from heterologous data of NASDAQ 100 companies, FinTMMBench offers three significant advantages. 1) Multi-modal Corpus: It encompasses a hybrid of financial tables, news articles, daily stock prices, and visual technical charts as the corpus. 2) Temporal-aware Questions: Each question requires the retrieval and interpretation of its relevant data over a specific time period, including daily, weekly, monthly, quarterly, and annual periods. 3) Diverse Financial Analysis Tasks: The questions involve 10 different tasks, including information extraction, trend analysis, sentiment analysis and event detection, etc. We further propose a novel TMMHybridRAG method, which first leverages LLMs to convert data from other modalities (e.g., tabular, visual and time-series data) into textual format and then incorporates temporal information in each node when constructing graphs and dense indexes. Its effectiveness has been validated in extensive experiments, but notable gaps remain, highlighting the challenges presented by our FinTMMBench.
comment: Under review
☆ Sketch-of-Thought: Efficient LLM Reasoning with Adaptive Cognitive-Inspired Sketching
Recent advances in large language models have demonstrated remarkable reasoning capabilities through Chain of Thought (CoT) prompting, but often at the cost of excessive verbosity in their intermediate outputs, which increases computational overhead. We introduce Sketch-of-Thought (SoT), a novel prompting framework that combines cognitive-inspired reasoning paradigms with linguistic constraints to minimize token usage while preserving reasoning accuracy. SoT is designed as a flexible framework that can incorporate any custom reasoning paradigms based on cognitive science, and we instantiate it with three such paradigms - Conceptual Chaining, Chunked Symbolism, and Expert Lexicons - each tailored to different reasoning tasks and selected dynamically via a lightweight routing model. Through comprehensive evaluation across 15 reasoning datasets with multiple languages and multimodal scenarios, we demonstrate that SoT achieves token reductions of 76% with negligible accuracy impact. In certain domains like mathematical and multi-hop reasoning, it even improves accuracy while using significantly fewer tokens. Our code is publicly available: https://www.github.com/SimonAytes/SoT.
☆ A Comprehensive LLM-powered Framework for Driving Intelligence Evaluation
Evaluation methods for autonomous driving are crucial for algorithm optimization. However, due to the complexity of driving intelligence, there is currently no comprehensive evaluation method for the level of autonomous driving intelligence. In this paper, we propose an evaluation framework for driving behavior intelligence in complex traffic environments, aiming to fill this gap. We constructed a natural language evaluation dataset of human professional drivers and passengers through naturalistic driving experiments and post-driving behavior evaluation interviews. Based on this dataset, we developed an LLM-powered driving evaluation framework. The effectiveness of this framework was validated through simulated experiments in the CARLA urban traffic simulator and further corroborated by human assessment. Our research provides valuable insights for evaluating and designing more intelligent, human-like autonomous driving agents. The implementation details of the framework and detailed information about the dataset can be found at Github.
comment: 8 pages, 3 figures
☆ Generative Trajectory Stitching through Diffusion Composition
Effective trajectory stitching for long-horizon planning is a significant challenge in robotic decision-making. While diffusion models have shown promise in planning, they are limited to solving tasks similar to those seen in their training data. We propose CompDiffuser, a novel generative approach that can solve new tasks by learning to compositionally stitch together shorter trajectory chunks from previously seen tasks. Our key insight is modeling the trajectory distribution by subdividing it into overlapping chunks and learning their conditional relationships through a single bidirectional diffusion model. This allows information to propagate between segments during generation, ensuring physically consistent connections. We conduct experiments on benchmark tasks of various difficulties, covering different environment sizes, agent state dimension, trajectory types, training data quality, and show that CompDiffuser significantly outperforms existing methods.
comment: Project page: https://comp-diffuser.github.io/
☆ Development and Enhancement of Text-to-Image Diffusion Models
This research focuses on the development and enhancement of text-to-image denoising diffusion models, addressing key challenges such as limited sample diversity and training instability. By incorporating Classifier-Free Guidance (CFG) and Exponential Moving Average (EMA) techniques, this study significantly improves image quality, diversity, and stability. Utilizing Hugging Face's state-of-the-art text-to-image generation model, the proposed enhancements establish new benchmarks in generative AI. This work explores the underlying principles of diffusion models, implements advanced strategies to overcome existing limitations, and presents a comprehensive evaluation of the improvements achieved. Results demonstrate substantial progress in generating stable, diverse, and high-quality images from textual descriptions, advancing the field of generative artificial intelligence and providing new foundations for future applications. Keywords: Text-to-image, Diffusion model, Classifier-free guidance, Exponential moving average, Image generation.
☆ FedMABench: Benchmarking Mobile Agents on Decentralized Heterogeneous User Data
Mobile agents have attracted tremendous research participation recently. Traditional approaches to mobile agent training rely on centralized data collection, leading to high cost and limited scalability. Distributed training utilizing federated learning offers an alternative by harnessing real-world user data, providing scalability and reducing costs. However, pivotal challenges, including the absence of standardized benchmarks, hinder progress in this field. To tackle the challenges, we introduce FedMABench, the first benchmark for federated training and evaluation of mobile agents, specifically designed for heterogeneous scenarios. FedMABench features 6 datasets with 30+ subsets, 8 federated algorithms, 10+ base models, and over 800 apps across 5 categories, providing a comprehensive framework for evaluating mobile agents across diverse environments. Through extensive experiments, we uncover several key insights: federated algorithms consistently outperform local training; the distribution of specific apps plays a crucial role in heterogeneity; and, even apps from distinct categories can exhibit correlations during training. FedMABench is publicly available at: https://github.com/wwh0411/FedMABench with the datasets at: https://huggingface.co/datasets/wwh0411/FedMABench.
☆ Every FLOP Counts: Scaling a 300B Mixture-of-Experts LING LLM without Premium GPUs
In this technical report, we tackle the challenges of training large-scale Mixture of Experts (MoE) models, focusing on overcoming cost inefficiency and resource limitations prevalent in such systems. To address these issues, we present two differently sized MoE large language models (LLMs), namely Ling-Lite and Ling-Plus (referred to as "Bailing" in Chinese, spelled B\v{a}il\'ing in Pinyin). Ling-Lite contains 16.8 billion parameters with 2.75 billion activated parameters, while Ling-Plus boasts 290 billion parameters with 28.8 billion activated parameters. Both models exhibit comparable performance to leading industry benchmarks. This report offers actionable insights to improve the efficiency and accessibility of AI development in resource-constrained settings, promoting more scalable and sustainable technologies. Specifically, to reduce training costs for large-scale MoE models, we propose innovative methods for (1) optimization of model architecture and training processes, (2) refinement of training anomaly handling, and (3) enhancement of model evaluation efficiency. Additionally, leveraging high-quality data generated from knowledge graphs, our models demonstrate superior capabilities in tool use compared to other models. Ultimately, our experimental findings demonstrate that a 300B MoE LLM can be effectively trained on lower-performance devices while achieving comparable performance to models of a similar scale, including dense and MoE models. Compared to high-performance devices, utilizing a lower-specification hardware system during the pre-training phase demonstrates significant cost savings, reducing computing costs by approximately 20%. The models can be accessed at https://huggingface.co/inclusionAI.
comment: 34 pages
☆ HexPlane Representation for 3D Semantic Scene Understanding
In this paper, we introduce the HexPlane representation for 3D semantic scene understanding. Specifically, we first design the View Projection Module (VPM) to project the 3D point cloud into six planes to maximally retain the original spatial information. Features of six planes are extracted by the 2D encoder and sent to the HexPlane Association Module (HAM) to adaptively fuse the most informative information for each point. The fused point features are further fed to the task head to yield the ultimate predictions. Compared to the popular point and voxel representation, the HexPlane representation is efficient and can utilize highly optimized 2D operations to process sparse and unordered 3D point clouds. It can also leverage off-the-shelf 2D models, network weights, and training recipes to achieve accurate scene understanding in 3D space. On ScanNet and SemanticKITTI benchmarks, our algorithm, dubbed HexNet3D, achieves competitive performance with previous algorithms. In particular, on the ScanNet 3D segmentation task, our method obtains 77.0 mIoU on the validation set, surpassing Point Transformer V2 by 1.6 mIoU. We also observe encouraging results in indoor 3D detection tasks. Note that our method can be seamlessly integrated into existing voxel-based, point-based, and range-based approaches and brings considerable gains without bells and whistles. The codes will be available upon publication.
comment: 7 pages, 2 figures
☆ Multi-Task Reinforcement Learning Enables Parameter Scaling
Multi-task reinforcement learning (MTRL) aims to endow a single agent with the ability to perform well on multiple tasks. Recent works have focused on developing novel sophisticated architectures to improve performance, often resulting in larger models; it is unclear, however, whether the performance gains are a consequence of the architecture design itself or the extra parameters. We argue that gains are mostly due to scale by demonstrating that naively scaling up a simple MTRL baseline to match parameter counts outperforms the more sophisticated architectures, and these gains benefit most from scaling the critic over the actor. Additionally, we explore the training stability advantages that come with task diversity, demonstrating that increasing the number of tasks can help mitigate plasticity loss. Our findings suggest that MTRL's simultaneous training across multiple tasks provides a natural framework for beneficial parameter scaling in reinforcement learning, challenging the need for complex architectural innovations.
☆ Look Before You Leap: Using Serialized State Machine for Language Conditioned Robotic Manipulation
Imitation learning frameworks for robotic manipulation have drawn attention in the recent development of language model grounded robotics. However, the success of the frameworks largely depends on the coverage of the demonstration cases: When the demonstration set does not include examples of how to act in all possible situations, the action may fail and can result in cascading errors. To solve this problem, we propose a framework that uses serialized Finite State Machine (FSM) to generate demonstrations and improve the success rate in manipulation tasks requiring a long sequence of precise interactions. To validate its effectiveness, we use environmentally evolving and long-horizon puzzles that require long sequential actions. Experimental results show that our approach achieves a success rate of up to 98 in these tasks, compared to the controlled condition using existing approaches, which only had a success rate of up to 60, and, in some tasks, almost failed completely.
comment: 7 pages, 4 figures
☆ TS-LIF: A Temporal Segment Spiking Neuron Network for Time Series Forecasting
Spiking Neural Networks (SNNs) offer a promising, biologically inspired approach for processing spatiotemporal data, particularly for time series forecasting. However, conventional neuron models like the Leaky Integrate-and-Fire (LIF) struggle to capture long-term dependencies and effectively process multi-scale temporal dynamics. To overcome these limitations, we introduce the Temporal Segment Leaky Integrate-and-Fire (TS-LIF) model, featuring a novel dual-compartment architecture. The dendritic and somatic compartments specialize in capturing distinct frequency components, providing functional heterogeneity that enhances the neuron's ability to process both low- and high-frequency information. Furthermore, the newly introduced direct somatic current injection reduces information loss during intra-neuronal transmission, while dendritic spike generation improves multi-scale information extraction. We provide a theoretical stability analysis of the TS-LIF model and explain how each compartment contributes to distinct frequency response characteristics. Experimental results show that TS-LIF outperforms traditional SNNs in time series forecasting, demonstrating better accuracy and robustness, even with missing data. TS-LIF advances the application of SNNs in time-series forecasting, providing a biologically inspired approach that captures complex temporal dynamics and offers potential for practical implementation in diverse forecasting scenarios. The source code is available at https://github.com/kkking-kk/TS-LIF.
☆ Grouped Sequential Optimization Strategy -- the Application of Hyperparameter Importance Assessment in Deep Learning
Hyperparameter optimization (HPO) is a critical component of machine learning pipelines, significantly affecting model robustness, stability, and generalization. However, HPO is often a time-consuming and computationally intensive task. Traditional HPO methods, such as grid search and random search, often suffer from inefficiency. Bayesian optimization, while more efficient, still struggles with high-dimensional search spaces. In this paper, we contribute to the field by exploring how insights gained from hyperparameter importance assessment (HIA) can be leveraged to accelerate HPO, reducing both time and computational resources. Building on prior work that quantified hyperparameter importance by evaluating 10 hyperparameters on CNNs using 10 common image classification datasets, we implement a novel HPO strategy called 'Sequential Grouping.' That prior work assessed the importance weights of the investigated hyperparameters based on their influence on model performance, providing valuable insights that we leverage to optimize our HPO process. Our experiments, validated across six additional image classification datasets, demonstrate that incorporating hyperparameter importance assessment (HIA) can significantly accelerate HPO without compromising model performance, reducing optimization time by an average of 31.9\% compared to the conventional simultaneous strategy.
comment: 12 pages
☆ Multi-Robot Collaboration through Reinforcement Learning and Abstract Simulation ICRA 2025
Teams of people coordinate to perform complex tasks by forming abstract mental models of world and agent dynamics. The use of abstract models contrasts with much recent work in robot learning that uses a high-fidelity simulator and reinforcement learning (RL) to obtain policies for physical robots. Motivated by this difference, we investigate the extent to which so-called abstract simulators can be used for multi-agent reinforcement learning (MARL) and the resulting policies successfully deployed on teams of physical robots. An abstract simulator models the robot's target task at a high-level of abstraction and discards many details of the world that could impact optimal decision-making. Policies are trained in an abstract simulator then transferred to the physical robot by making use of separately-obtained low-level perception and motion control modules. We identify three key categories of modifications to the abstract simulator that enable policy transfer to physical robots: simulation fidelity enhancements, training optimizations and simulation stochasticity. We then run an empirical study with extensive ablations to determine the value of each modification category for enabling policy transfer in cooperative robot soccer tasks. We also compare the performance of policies produced by our method with a well-tuned non-learning-based behavior architecture from the annual RoboCup competition and find that our approach leads to a similar level of performance. Broadly we show that MARL can be use to train cooperative physical robot behaviors using highly abstract models of the world.
comment: ICRA 2025
☆ Object Packing and Scheduling for Sequential 3D Printing: a Linear Arithmetic Model and a CEGAR-inspired Optimal Solver
We address the problem of object arrangement and scheduling for sequential 3D printing. Unlike the standard 3D printing, where all objects are printed slice by slice at once, in sequential 3D printing, objects are completed one after other. In the sequential case, it is necessary to ensure that the moving parts of the printer do not collide with previously printed objects. We look at the sequential printing problem from the perspective of combinatorial optimization. We propose to express the problem as a linear arithmetic formula, which is then solved using a solver for satisfiability modulo theories (SMT). However, we do not solve the formula expressing the problem of object arrangement and scheduling directly, but we have proposed a technique inspired by counterexample guided abstraction refinement (CEGAR), which turned out to be a key innovation to efficiency.
☆ PromptPex: Automatic Test Generation for Language Model Prompts
Large language models (LLMs) are being used in many applications and prompts for these models are integrated into software applications as code-like artifacts. These prompts behave much like traditional software in that they take inputs, generate outputs, and perform some specific function. However, prompts differ from traditional code in many ways and require new approaches to ensure that they are robust. For example, unlike traditional software the output of a prompt depends on the AI model that interprets it. Also, while natural language prompts are easy to modify, the impact of updates is harder to predict. New approaches to testing, debugging, and modifying prompts with respect to the model running them are required. To address some of these issues, we developed PromptPex, an LLM-based tool to automatically generate and evaluate unit tests for a given prompt. PromptPex extracts input and output specifications from a prompt and uses them to generate diverse, targeted, and valid unit tests. These tests are instrumental in identifying regressions when a prompt is changed and also serve as a tool to understand how prompts are interpreted by different models. We use PromptPex to generate tests for eight benchmark prompts and evaluate the quality of the generated tests by seeing if they can cause each of four diverse models to produce invalid output. PromptPex consistently creates tests that result in more invalid model outputs than a carefully constructed baseline LLM-based test generator. Furthermore, by extracting concrete specifications from the input prompt, PromptPex allows prompt writers to clearly understand and test specific aspects of their prompts. The source code of PromptPex is available at https://github.com/microsoft/promptpex.
☆ Capacity-Aware Inference: Mitigating the Straggler Effect in Mixture of Experts
The Mixture of Experts (MoE) is an effective architecture for scaling large language models by leveraging sparse expert activation, optimizing the trade-off between performance and efficiency. However, under expert parallelism, MoE suffers from inference inefficiencies due to imbalanced token-to-expert assignment, where some experts are overloaded while others remain underutilized. This imbalance leads to poor resource utilization and increased latency, as the most burdened expert dictates the overall delay, a phenomenon we define as the \textbf{\textit{Straggler Effect}}. To mitigate this, we propose Capacity-Aware Inference, including two key techniques: (1) \textbf{\textit{Capacity-Aware Token Drop}}, which discards overloaded tokens to regulate the maximum latency of MoE, and (2) \textbf{\textit{Capacity-Aware Token Reroute}}, which reallocates overflowed tokens to underutilized experts, balancing the token distribution. These techniques collectively optimize both high-load and low-load expert utilization, leading to a more efficient MoE inference pipeline. Extensive experiments demonstrate the effectiveness of our methods, showing significant improvements in inference efficiency, e.g., 0.2\% average performance increase and a 1.94$\times$ inference speedup on Mixtral-8$\times$7B-Instruct.
☆ Perceiving, Reasoning, Adapting: A Dual-Layer Framework for VLM-Guided Precision Robotic Manipulation
Vision-Language Models (VLMs) demonstrate remarkable potential in robotic manipulation, yet challenges persist in executing complex fine manipulation tasks with high speed and precision. While excelling at high-level planning, existing VLM methods struggle to guide robots through precise sequences of fine motor actions. To address this limitation, we introduce a progressive VLM planning algorithm that empowers robots to perform fast, precise, and error-correctable fine manipulation. Our method decomposes complex tasks into sub-actions and maintains three key data structures: task memory structure, 2D topology graphs, and 3D spatial networks, achieving high-precision spatial-semantic fusion. These three components collectively accumulate and store critical information throughout task execution, providing rich context for our task-oriented VLM interaction mechanism. This enables VLMs to dynamically adjust guidance based on real-time feedback, generating precise action plans and facilitating step-wise error correction. Experimental validation on complex assembly tasks demonstrates that our algorithm effectively guides robots to rapidly and precisely accomplish fine manipulation in challenging scenarios, significantly advancing robot intelligence for precision tasks.
☆ Accelerated Patient-specific Non-Cartesian MRI Reconstruction using Implicit Neural Representations
The scanning time for a fully sampled MRI can be undesirably lengthy. Compressed sensing has been developed to minimize image artifacts in accelerated scans, but the required iterative reconstruction is computationally complex and difficult to generalize on new cases. Image-domain-based deep learning methods (e.g., convolutional neural networks) emerged as a faster alternative but face challenges in modeling continuous k-space, a problem amplified with non-Cartesian sampling commonly used in accelerated acquisition. In comparison, implicit neural representations can model continuous signals in the frequency domain and thus are compatible with arbitrary k-space sampling patterns. The current study develops a novel generative-adversarially trained implicit neural representations (k-GINR) for de novo undersampled non-Cartesian k-space reconstruction. k-GINR consists of two stages: 1) supervised training on an existing patient cohort; 2) self-supervised patient-specific optimization. In stage 1, the network is trained with the generative-adversarial network on diverse patients of the same anatomical region supervised by fully sampled acquisition. In stage 2, undersampled k-space data of individual patients is used to tailor the prior-embedded network for patient-specific optimization. The UCSF StarVIBE T1-weighted liver dataset was evaluated on the proposed framework. k-GINR is compared with an image-domain deep learning method, Deep Cascade CNN, and a compressed sensing method. k-GINR consistently outperformed the baselines with a larger performance advantage observed at very high accelerations (e.g., 20 times). k-GINR offers great value for direct non-Cartesian k-space reconstruction for new incoming patients across a wide range of accelerations liver anatomy.
♻ ☆ Shifting Long-Context LLMs Research from Input to Output
Recent advancements in long-context Large Language Models (LLMs) have primarily concentrated on processing extended input contexts, resulting in significant strides in long-context comprehension. However, the equally critical aspect of generating long-form outputs has received comparatively less attention. This paper advocates for a paradigm shift in NLP research toward addressing the challenges of long-output generation. Tasks such as novel writing, long-term planning, and complex reasoning require models to understand extensive contexts and produce coherent, contextually rich, and logically consistent extended text. These demands highlight a critical gap in current LLM capabilities. We underscore the importance of this under-explored domain and call for focused efforts to develop foundational LLMs tailored for generating high-quality, long-form outputs, which hold immense potential for real-world applications.
comment: Preprint
♻ ☆ Universality of Layer-Level Entropy-Weighted Quantization Beyond Model Architecture and Size
We present a novel approach to selective model quantization that transcends the limitations of architecture-specific and size-dependent compression methods for Large Language Models (LLMs) using Entropy-Weighted Quantization (EWQ). By analyzing the entropy distribution across transformer blocks, EWQ determines which blocks can be safely quantized without causing significant performance degradation, independent of model architecture or size. Our method outperforms uniform quantization approaches, maintaining Massive Multitask Language Understanding (MMLU) accuracy scores within 0.5% of unquantized models while reducing memory usage by up to 18%. We demonstrate the effectiveness of EWQ across multiple architectures -- from 1.6B to 70B parameters -- and showcase consistent improvements in the quality-compression trade-off regardless of model scale or architectural design. A surprising finding of EWQ is its ability to reduce perplexity compared to unquantized models, suggesting the presence of beneficial regularization through selective precision reduction. This improvement holds across different model families, indicating a fundamental relationship between layer-level entropy and optimal precision requirements. Additionally, we introduce FastEWQ, a rapid method for entropy distribution analysis that eliminates the need for loading model weights. This technique leverages universal characteristics of entropy distribution that persist across various architectures and scales, enabling near-instantaneous quantization decisions while maintaining 80% classification accuracy with full entropy analysis. Our results demonstrate that effective quantization strategies can be developed independently of specific architectural choices or model sizes, opening new possibilities for efficient LLM deployment.
comment: 29 pages, 7 figures, 14 tables; Fixed some types, added some clarifications and improvements
♻ ☆ LINGOLY-TOO: Disentangling Memorisation from Reasoning with Linguistic Templatisation and Orthographic Obfuscation
Assessing the reasoning capabilities of large language models (LLMs) is susceptible to overestimation due to data exposure of evaluation benchmarks. We introduce a framework for producing linguistic reasoning problems that reduces the effect of memorisation in model performance estimates and apply this framework to develop LINGOLY-TOO, a challenging benchmark for linguistic reasoning. By developing orthographic templates, we dynamically obfuscate the writing systems of real languages to generate numerousquestion variations. These variations preserve the reasoning steps required for each solution while reducing the likelihood of specific problem instances appearing in model training data. Our experiments demonstrate that frontier models, including Claud 3.7 Sonnet, o1-preview and DeepSeek R1, struggle with advanced reasoning. Our analysis also shows that LLMs exhibit noticeable variance in accuracy across permutations of the same problem, and on average perform better on questions appearing in their original orthography. Our findings highlight the opaque nature of response generation in LLMs and provide evidence that prior data exposure contributes to over estimating the reasoning capabilities of frontier models.
♻ ☆ Fundamental Limits of Hierarchical Secure Aggregation with Cyclic User Association
Secure aggregation is motivated by federated learning (FL) where a cloud server aims to compute an averaged model (i.e., weights of deep neural networks) of the locally-trained models of numerous clients, while adhering to data security requirements. Hierarchical secure aggregation (HSA) extends this concept to a three-layer network, where clustered users communicate with the server through an intermediate layer of relays. In HSA, beyond conventional server security, relay security is also enforced to ensure that the relays remain oblivious to the users' inputs (an abstraction of the local models in FL). Existing study on HSA assumes that each user is associated with only one relay, limiting opportunities for coding across inter-cluster users to achieve efficient communication and key generation. In this paper, we consider HSA with a cyclic association pattern where each user is connected to $B$ consecutive relays in a wrap-around manner. We propose an efficient aggregation scheme which includes a message design for the inputs inspired by gradient coding-a well-known technique for efficient communication in distributed computing-along with a highly nontrivial security key design. We also derive novel converse bounds on the minimum achievable communication and key rates using information-theoretic arguments.
♻ ☆ Speculative MoE: Communication Efficient Parallel MoE Inference with Speculative Token and Expert Pre-scheduling
MoE (Mixture of Experts) prevails as a neural architecture that can scale modern transformer-based LLMs (Large Language Models) to unprecedented scales. Nevertheless, large MoEs' great demands of computing power, memory capacity and memory bandwidth make scalable serving a fundamental challenge and efficient parallel inference has become a requisite to attain adequate throughput under latency constraints. DeepSpeed-MoE, one state-of-the-art MoE inference framework, adopts a 3D-parallel paradigm including EP (Expert Parallelism), TP (Tensor Parallel) and DP (Data Parallelism). However, our analysis shows DeepSpeed-MoE's inference efficiency is largely bottlenecked by EP, which is implemented with costly all-to-all collectives to route token activation. Our work aims to boost DeepSpeed-MoE by strategically reducing EP's communication overhead with a technique named Speculative MoE. Speculative MoE has two speculative parallelization schemes, speculative token shuffling and speculative expert grouping, which predict outstanding tokens' expert routing paths and pre-schedule tokens and experts across devices to losslessly trim EP's communication volume. Besides DeepSpeed-MoE, we also build Speculative MoE into a prevailing MoE inference engine SGLang. Experiments show Speculative MoE can significantly boost state-of-the-art MoE inference frameworks on fast homogeneous and slow heterogeneous interconnects.
♻ ☆ VISION-XL: High Definition Video Inverse Problem Solver using Latent Image Diffusion Models
In this paper, we propose a novel framework for solving high-definition video inverse problems using latent image diffusion models. Building on recent advancements in spatio-temporal optimization for video inverse problems using image diffusion models, our approach leverages latent-space diffusion models to achieve enhanced video quality and resolution. To address the high computational demands of processing high-resolution frames, we introduce a pseudo-batch consistent sampling strategy, allowing efficient operation on a single GPU. Additionally, to improve temporal consistency, we present pseudo-batch inversion, an initialization technique that incorporates informative latents from the measurement. By integrating with SDXL, our framework achieves state-of-the-art video reconstruction across a wide range of spatio-temporal inverse problems, including complex combinations of frame averaging and various spatial degradations, such as deblurring, super-resolution, and inpainting. Unlike previous methods, our approach supports multiple aspect ratios (landscape, vertical, and square) and delivers HD-resolution reconstructions (exceeding 1280x720) in under 6 seconds per frame on a single NVIDIA 4090 GPU.
comment: Project page: https://vision-xl.github.io/
♻ ☆ Towards Autonomous Reinforcement Learning for Real-World Robotic Manipulation with Large Language Models
Recent advancements in Large Language Models (LLMs) and Visual Language Models (VLMs) have significantly impacted robotics, enabling high-level semantic motion planning applications. Reinforcement Learning (RL), a complementary paradigm, enables agents to autonomously optimize complex behaviors through interaction and reward signals. However, designing effective reward functions for RL remains challenging, especially in real-world tasks where sparse rewards are insufficient and dense rewards require elaborate design. In this work, we propose Autonomous Reinforcement learning for Complex HumanInformed Environments (ARCHIE), an unsupervised pipeline leveraging GPT-4, a pre-trained LLM, to generate reward functions directly from natural language task descriptions. The rewards are used to train RL agents in simulated environments, where we formalize the reward generation process to enhance feasibility. Additionally, GPT-4 automates the coding of task success criteria, creating a fully automated, one-shot procedure for translating human-readable text into deployable robot skills. Our approach is validated through extensive simulated experiments on single-arm and bi-manual manipulation tasks using an ABB YuMi collaborative robot, highlighting its practicality and effectiveness. Tasks are demonstrated on the real robot setup.
♻ ☆ Ticktack : Long Span Temporal Alignment of Large Language Models Leveraging Sexagenary Cycle Time Expression
Large language models (LLMs) suffer from temporal misalignment issues especially across long span of time. The issue arises from knowing that LLMs are trained on large amounts of data where temporal information is rather sparse over long times, such as thousands of years, resulting in insufficient learning or catastrophic forgetting by the LLMs. This paper proposes a methodology named "Ticktack" for addressing the LLM's long-time span misalignment in a yearly setting. Specifically, we first propose to utilize the sexagenary year expression instead of the Gregorian year expression employed by LLMs, achieving a more uniform distribution in yearly granularity. Then, we employ polar coordinates to model the sexagenary cycle of 60 terms and the year order within each term, with additional temporal encoding to ensure LLMs understand them. Finally, we present a temporal representational alignment approach for post-training LLMs that effectively distinguishes time points with relevant knowledge, hence improving performance on time-related tasks, particularly over a long period. We also create a long time span benchmark for evaluation. Experimental results prove the effectiveness of our proposal.
♻ ☆ Chart-HQA: A Benchmark for Hypothetical Question Answering in Charts
Multimodal Large Language Models (MLLMs) have garnered significant attention for their strong visual-semantic understanding. Most existing chart benchmarks evaluate MLLMs' ability to parse information from charts to answer questions. However, they overlook the inherent output biases of MLLMs, where models rely on their parametric memory to answer questions rather than genuinely understanding the chart content. To address this limitation, we introduce a novel Chart Hypothetical Question Answering (HQA) task, which imposes assumptions on the same question to compel models to engage in counterfactual reasoning based on the chart content. Furthermore, we introduce HAI, a human-AI interactive data synthesis approach that leverages the efficient text-editing capabilities of LLMs alongside human expert knowledge to generate diverse and high-quality HQA data at a low cost. Using HAI, we construct Chart-HQA, a challenging benchmark synthesized from publicly available data sources. Evaluation results on 18 MLLMs of varying model sizes reveal that current models face significant generalization challenges and exhibit imbalanced reasoning performance on the HQA task.
comment: Under review
♻ ☆ Human Implicit Preference-Based Policy Fine-tuning for Multi-Agent Reinforcement Learning in USV Swarm
Multi-Agent Reinforcement Learning (MARL) has shown promise in solving complex problems involving cooperation and competition among agents, such as an Unmanned Surface Vehicle (USV) swarm used in search and rescue, surveillance, and vessel protection. However, aligning system behavior with user preferences is challenging due to the difficulty of encoding expert intuition into reward functions. To address the issue, we propose a Reinforcement Learning with Human Feedback (RLHF) approach for MARL that resolves credit-assignment challenges through an Agent-Level Feedback system categorizing feedback into intra-agent, inter-agent, and intra-team types. To overcome the challenges of direct human feedback, we employ a Large Language Model (LLM) evaluator to validate our approach using feedback scenarios such as region constraints, collision avoidance, and task allocation. Our method effectively refines USV swarm policies, addressing key challenges in multi-agent systems while maintaining fairness and performance consistency.
comment: 7 pages, 4 figures
♻ ☆ Tell Me What to Track: Infusing Robust Language Guidance for Enhanced Referring Multi-Object Tracking
Referring multi-object tracking (RMOT) is an emerging cross-modal task that aims to localize an arbitrary number of targets based on a language expression and continuously track them in a video. This intricate task involves reasoning on multi-modal data and precise target localization with temporal association. However, prior studies overlook the imbalanced data distribution between newborn targets and existing targets due to the nature of the task. In addition, they only indirectly fuse multi-modal features, struggling to deliver clear guidance on newborn target detection. To solve the above issues, we conduct a collaborative matching strategy to alleviate the impact of the imbalance, boosting the ability to detect newborn targets while maintaining tracking performance. In the encoder, we integrate and enhance the cross-modal and multi-scale fusion, overcoming the bottlenecks in previous work, where limited multi-modal information is shared and interacted between feature maps. In the decoder, we also develop a referring-infused adaptation that provides explicit referring guidance through the query tokens. The experiments showcase the superior performance of our model (+3.42%) compared to prior works, demonstrating the effectiveness of our designs.
♻ ☆ Exoplanet Transit Candidate Identification in TESS Full-Frame Images via a Transformer-Based Algorithm
The Transiting Exoplanet Survey Satellite (TESS) is surveying a large fraction of the sky, generating a vast database of photometric time series data that requires thorough analysis to identify exoplanetary transit signals. Automated learning approaches have been successfully applied to identify transit signals. However, most existing methods focus on the classification and validation of candidates, while few efforts have explored new techniques for the search of candidates. To search for new exoplanet transit candidates, we propose an approach to identify exoplanet transit signals without the need for phase folding or assuming periodicity in the transit signals, such as those observed in multi-transit light curves. To achieve this, we implement a new neural network inspired by Transformers to directly process Full Frame Image (FFI) light curves to detect exoplanet transits. Transformers, originally developed for natural language processing, have recently demonstrated significant success in capturing long-range dependencies compared to previous approaches focused on sequential data. This ability allows us to employ multi-head self-attention to identify exoplanet transit signals directly from the complete light curves, combined with background and centroid time series, without requiring prior transit parameters. The network is trained to learn characteristics of the transit signal, like the dip shape, which helps distinguish planetary transits from other variability sources. Our model successfully identified 214 new planetary system candidates, including 122 multi-transit light curves, 88 single-transit and 4 multi-planet systems from TESS sectors 1-26 with a radius > 0.27 $R_{\mathrm{Jupiter}}$, demonstrating its ability to detect transits regardless of their periodicity.
♻ ☆ DeFT: Decoding with Flash Tree-attention for Efficient Tree-structured LLM Inference ICLR'25
Large language models (LLMs) are increasingly employed for complex tasks that process multiple generation calls in a tree structure with shared prefixes of tokens, including few-shot prompting, multi-step reasoning, speculative decoding, etc. However, existing inference systems for tree-based applications are inefficient due to improper partitioning of queries and KV cache during attention calculation. This leads to two main issues: (1) a lack of memory access (IO) reuse for KV cache of shared prefixes, and (2) poor load balancing.As a result, there is redundant KV cache IO between GPU global memory and shared memory, along with low GPU utilization. To address these challenges, we propose DeFT(Decoding with Flash Tree-Attention), a hardware-efficient attention algorithm with prefix-aware and load-balanced KV cache partitions. DeFT reduces the number of read/write operations of KV cache during attention calculation through KV-Guided Grouping, a method that avoids repeatedly loading KV cache of shared prefixes in attention computation. Additionally, we propose Flattened Tree KV Splitting, a mechanism that ensures even distribution of the KV cache across partitions with little computation redundancy, enhancing GPU utilization during attention computations. By reducing 73-99% KV cache IO and nearly 100% IO for partial results during attention calculation, DeFT achieves up to 2.23/3.59x speedup in the end-to-end/attention latency across three practical tree-based workloads compared to state-of-the-art attention algorithms. Our code is available at https://github.com/LINs-lab/DeFT.
comment: Update DeFT-v4, accepted by ICLR'25 (https://openreview.net/forum?id=2c7pfOqu9k). Our code is available at https://github.com/LINs-lab/DeFT
♻ ☆ Real-Time Incremental Explanations for Object Detectors in Autonomous Driving
Object detectors are widely used in safety-critical real-time applications such as autonomous driving. Explainability is especially important for safety-critical applications, and due to the variety of object detectors and their often proprietary nature, black-box explainability tools are needed. However, existing black-box explainability tools for AI models rely on multiple model calls, rendering them impractical for real-time use. In this paper, we introduce IncX, an algorithm and a tool for real-time black-box explainability for object detectors. The algorithm is based on linear transformations of saliency maps, producing sufficient explanations. We evaluate our implementation on four widely used video datasets of autonomous driving and demonstrate that IncX's explanations are comparable in quality to the state-of-the-art and are computed two orders of magnitude faster than the state-of-the-art, making them usable in real time.
♻ ☆ Efficient Evolutionary Search Over Chemical Space with Large Language Models ICLR 2025
Molecular discovery, when formulated as an optimization problem, presents significant computational challenges because optimization objectives can be non-differentiable. Evolutionary Algorithms (EAs), often used to optimize black-box objectives in molecular discovery, traverse chemical space by performing random mutations and crossovers, leading to a large number of expensive objective evaluations. In this work, we ameliorate this shortcoming by incorporating chemistry-aware Large Language Models (LLMs) into EAs. Namely, we redesign crossover and mutation operations in EAs using LLMs trained on large corpora of chemical information. We perform extensive empirical studies on both commercial and open-source models on multiple tasks involving property optimization, molecular rediscovery, and structure-based drug design, demonstrating that the joint usage of LLMs with EAs yields superior performance over all baseline models across single- and multi-objective settings. We demonstrate that our algorithm improves both the quality of the final solution and convergence speed, thereby reducing the number of required objective evaluations. Our code is available at http://github.com/zoom-wang112358/MOLLEO
comment: Published in ICLR 2025
Demystifying Misconceptions in Social Bots Research
Research on social bots aims at advancing knowledge and providing solutions to one of the most debated forms of online manipulation. Yet, social bot research is plagued by widespread biases, hyped results, and misconceptions that set the stage for ambiguities, unrealistic expectations, and seemingly irreconcilable findings. Overcoming such issues is instrumental towards ensuring reliable solutions and reaffirming the validity of the scientific method. In this contribution, we review some recent results in social bots research, highlighting and revising factual errors as well as methodological and conceptual biases. More importantly, we demystify common misconceptions, addressing fundamental points on how social bots research is discussed. Our analysis surfaces the need to discuss research about online disinformation and manipulation in a rigorous, unbiased, and responsible way. This article bolsters such effort by identifying and refuting common fallacious arguments used by both proponents and opponents of social bots research, as well as providing directions toward sound methodologies for future research in the field.
♻ ☆ SynSUM -- Synthetic Benchmark with Structured and Unstructured Medical Records AAAI 2025
We present the SynSUM benchmark, a synthetic dataset linking unstructured clinical notes to structured background variables. The dataset consists of 10,000 artificial patient records containing tabular variables (like symptoms, diagnoses and underlying conditions) and related notes describing the fictional patient encounter in the domain of respiratory diseases. The tabular portion of the data is generated through a Bayesian network, where both the causal structure between the variables and the conditional probabilities are proposed by an expert based on domain knowledge. We then prompt a large language model (GPT-4o) to generate a clinical note related to this patient encounter, describing the patient symptoms and additional context. We conduct both an expert evaluation study to assess the quality of the generated notes, as well as running some simple predictor models on both the tabular and text portions of the dataset, forming a baseline for further research. The SynSUM dataset is primarily designed to facilitate research on clinical information extraction in the presence of tabular background variables, which can be linked through domain knowledge to concepts of interest to be extracted from the text - the symptoms, in the case of SynSUM. Secondary uses include research on the automation of clinical reasoning over both tabular data and text, causal effect estimation in the presence of tabular and/or textual confounders, and multi-modal synthetic data generation.
comment: The dataset can be downloaded from https://github.com/prabaey/synsum. Presented at the GenAI4Health workshop at AAAI 2025
♻ ☆ AlphaEdit: Null-Space Constrained Knowledge Editing for Language Models
Large language models (LLMs) often exhibit hallucinations due to incorrect or outdated knowledge. Hence, model editing methods have emerged to enable targeted knowledge updates. To achieve this, a prevailing paradigm is the locating-then-editing approach, which first locates influential parameters and then edits them by introducing a perturbation. While effective, current studies have demonstrated that this perturbation inevitably disrupt the originally preserved knowledge within LLMs, especially in sequential editing scenarios. To address this, we introduce AlphaEdit, a novel solution that projects perturbation onto the null space of the preserved knowledge before applying it to the parameters. We theoretically prove that this projection ensures the output of post-edited LLMs remains unchanged when queried about the preserved knowledge, thereby mitigating the issue of disruption. Extensive experiments on various LLMs, including LLaMA3, GPT2-XL, and GPT-J, show that AlphaEdit boosts the performance of most locating-then-editing methods by an average of 36.4% with a single line of additional code for projection solely. Our code is available at: https://github.com/jianghoucheng/AlphaEdit.
♻ ☆ The interplay between domain specialization and model size
Scaling laws for language models have often focused on finding the optimal model size and token count for training from scratch. However, achieving this optimal balance requires significant compute resources due to the extensive data demands when training models from randomly-initialized weights. Continued pretraining offers a cost-effective alternative, leveraging the compute investment from pretrained models to incorporate new knowledge without requiring extensive new data. Recent findings suggest that data quality influences constants in scaling laws, thereby altering the optimal parameter-token allocation ratio. Building on this insight, we investigate the interplay between domain specialization and model size during continued pretraining under compute-constrained scenarios. Our goal is to identify an optimal training regime for this scenario and detect patterns in this interplay that can be generalized across different model sizes and domains. To compare general and specialized training, we filtered a web-based dataset to extract data from three domains: legal, medical, and accounting. We pretrained models with 1.5B, 3B, 7B, and 14B parameters on both the unfiltered and filtered datasets, then evaluated their performance on domain-specific exams. Results show that as model size increases, specialized models outperform general models while requiring less training compute. Additionally, their growing compute efficiency leads to reduced forgetting of previously learned knowledge.
♻ ☆ On the Completeness of Invariant Geometric Deep Learning Models
Invariant models, one important class of geometric deep learning models, are capable of generating meaningful geometric representations by leveraging informative geometric features in point clouds. These models are characterized by their simplicity, good experimental results and computational efficiency. However, their theoretical expressive power still remains unclear, restricting a deeper understanding of the potential of such models. In this work, we concentrate on characterizing the theoretical expressiveness of a wide range of invariant models under fully-connected conditions. We first rigorously characterize the expressiveness of the most classic invariant model, message-passing neural networks incorporating distance (DisGNN), restricting its unidentifiable cases to be only highly symmetric point clouds. We then prove that GeoNGNN, the geometric counterpart of one of the simplest subgraph graph neural networks, can effectively break these corner cases' symmetry and thus achieve E(3)-completeness. By leveraging GeoNGNN as a theoretical tool, we further prove that: 1) most subgraph GNNs developed in traditional graph learning can be seamlessly extended to geometric scenarios with E(3)-completeness; 2) DimeNet, GemNet and SphereNet, three well-established invariant models, are also all capable of achieving E(3)-completeness. Our theoretical results fill the gap in the expressive power of invariant models, contributing to a rigorous and comprehensive understanding of their capabilities.
comment: The Thirteenth International Conference on Learning Representations
♻ ☆ Unsupervised detection of semantic correlations in big data
In real-world data, information is stored in extremely large feature vectors. These variables are typically correlated due to complex interactions involving many features simultaneously. Such correlations qualitatively correspond to semantic roles and are naturally recognized by both the human brain and artificial neural networks. This recognition enables, for instance, the prediction of missing parts of an image or text based on their context. We present a method to detect these correlations in high-dimensional data represented as binary numbers. We estimate the binary intrinsic dimension of a dataset, which quantifies the minimum number of independent coordinates needed to describe the data, and is therefore a proxy of semantic complexity. The proposed algorithm is largely insensitive to the so-called curse of dimensionality, and can therefore be used in big data analysis. We test this approach identifying phase transitions in model magnetic systems and we then apply it to the detection of semantic correlations of images and text inside deep neural networks.
♻ ☆ Massive Activations in Graph Neural Networks: Decoding Attention for Domain-Dependent Interpretability
Graph Neural Networks (GNNs) have become increasingly popular for effectively modeling graph-structured data, and attention mechanisms have been pivotal in enabling these models to capture complex patterns. In our study, we reveal a critical yet underexplored consequence of integrating attention into edge-featured GNNs: the emergence of Massive Activations (MAs) within attention layers. By developing a novel method for detecting MAs on edge features, we show that these extreme activations are not only activation anomalies but encode domain-relevant signals. Our post-hoc interpretability analysis demonstrates that, in molecular graphs, MAs aggregate predominantly on common bond types (e.g., single and double bonds) while sparing more informative ones (e.g., triple bonds). Furthermore, our ablation studies confirm that MAs can serve as natural attribution indicators, reallocating to less informative edges. Our study assesses various edge-featured attention-based GNN models using benchmark datasets, including ZINC, TOX21, and PROTEINS. Key contributions include (1) establishing the direct link between attention mechanisms and MAs generation in edge-featured GNNs, (2) developing a robust definition and detection method for MAs enabling reliable post-hoc interpretability. Overall, our study reveals the complex interplay between attention mechanisms, edge-featured GNNs model, and MAs emergence, providing crucial insights for relating GNNs internals to domain knowledge.
♻ ☆ I/O in Machine Learning Applications on HPC Systems: A 360-degree Survey
Growing interest in Artificial Intelligence (AI) has resulted in a surge in demand for faster methods of Machine Learning (ML) model training and inference. This demand for speed has prompted the use of high performance computing (HPC) systems that excel in managing distributed workloads. Because data is the main fuel for AI applications, the performance of the storage and I/O subsystem of HPC systems is critical. In the past, HPC applications accessed large portions of data written by simulations or experiments or ingested data for visualizations or analysis tasks. ML workloads perform small reads spread across a large number of random files. This shift of I/O access patterns poses several challenges to modern parallel storage systems. In this paper, we survey I/O in ML applications on HPC systems, and target literature within a 6-year time window from 2019 to 2024. We define the scope of the survey, provide an overview of the common phases of ML, review available profilers and benchmarks, examine the I/O patterns encountered during offline data preparation, training, and inference, and explore I/O optimizations utilized in modern ML frameworks and proposed in recent literature. Lastly, we seek to expose research gaps that could spawn further R&D.
♻ ☆ CNsum:Automatic Summarization for Chinese News Text
Obtaining valuable information from massive data efficiently has become our research goal in the era of Big Data. Text summarization technology has been continuously developed to meet this demand. Recent work has also shown that transformer-based pre-trained language models have achieved great success on various tasks in Natural Language Processing (NLP). Aiming at the problem of Chinese news text summary generation and the application of Transformer structure on Chinese, this paper proposes a Chinese news text summarization model (CNsum) based on Transformer structure, and tests it on Chinese datasets such as THUCNews. The results of the conducted experiments show that CNsum achieves better ROUGE score than the baseline models, which verifies the outperformance of the model.
comment: This withdrawal is due to the lack of authorization from all co-authors for the publication of this version
♻ ☆ MeanCache: User-Centric Semantic Caching for LLM Web Services
Large Language Models (LLMs) like ChatGPT and Llama have revolutionized natural language processing and search engine dynamics. However, these models incur exceptionally high computational costs. For instance, GPT-3 consists of 175 billion parameters, where inference demands billions of floating-point operations. Caching is a natural solution to reduce LLM inference costs on repeated queries, which constitute about 31% of the total queries. However, existing caching methods are incapable of finding semantic similarities among LLM queries nor do they operate on contextual queries, leading to unacceptable false hit-and-miss rates. This paper introduces MeanCache, a user-centric semantic cache for LLM-based services that identifies semantically similar queries to determine cache hit or miss. Using MeanCache, the response to a user's semantically similar query can be retrieved from a local cache rather than re-querying the LLM, thus reducing costs, service provider load, and environmental impact. MeanCache leverages Federated Learning (FL) to collaboratively train a query similarity model without violating user privacy. By placing a local cache in each user's device and using FL, MeanCache reduces the latency and costs and enhances model performance, resulting in lower false hit rates. MeanCache also encodes context chains for every cached query, offering a simple yet highly effective mechanism to discern contextual query responses from standalone. Our experiments benchmarked against the state-of-the-art caching method, reveal that MeanCache attains an approximately 17% higher F-score and a 20% increase in precision during semantic cache hit-and-miss decisions while performing even better on contextual queries. It also reduces the storage requirement by 83% and accelerates semantic cache hit-and-miss decisions by 11%.
comment: Accepted at 2025 IEEE 39th International Parallel and Distributed Processing Symposium (IPDPS)
♻ ☆ AI, Meet Human: Learning Paradigms for Hybrid Decision Making Systems
Everyday we increasingly rely on machine learning models to automate and support high-stake tasks and decisions. This growing presence means that humans are now constantly interacting with machine learning-based systems, training and using models everyday. Several different techniques in computer science literature account for the human interaction with machine learning systems, but their classification is sparse and the goals varied. This survey proposes a taxonomy of Hybrid Decision Making Systems, providing both a conceptual and technical framework for understanding how current computer science literature models interaction between humans and machines.
♻ ☆ A Survey on 3D Gaussian Splatting
3D Gaussian splatting (GS) has emerged as a transformative technique in explicit radiance field and computer graphics. This innovative approach, characterized by the use of millions of learnable 3D Gaussians, represents a significant departure from mainstream neural radiance field approaches, which predominantly use implicit, coordinate-based models to map spatial coordinates to pixel values. 3D GS, with its explicit scene representation and differentiable rendering algorithm, not only promises real-time rendering capability but also introduces unprecedented levels of editability. This positions 3D GS as a potential game-changer for the next generation of 3D reconstruction and representation. In the present paper, we provide the first systematic overview of the recent developments and critical contributions in the domain of 3D GS. We begin with a detailed exploration of the underlying principles and the driving forces behind the emergence of 3D GS, laying the groundwork for understanding its significance. A focal point of our discussion is the practical applicability of 3D GS. By enabling unprecedented rendering speed, 3D GS opens up a plethora of applications, ranging from virtual reality to interactive media and beyond. This is complemented by a comparative analysis of leading 3D GS models, evaluated across various benchmark tasks to highlight their performance and practical utility. The survey concludes by identifying current challenges and suggesting potential avenues for future research. Through this survey, we aim to provide a valuable resource for both newcomers and seasoned researchers, fostering further exploration and advancement in explicit radiance field.
comment: Ongoing project. Paper list: https://github.com/guikunchen/Awesome3DGS ; Benchmark: https://github.com/guikunchen/3DGS-Benchmarks
♻ ☆ Hints-In-Browser: Benchmarking Language Models for Programming Feedback Generation
Generative AI and large language models hold great promise in enhancing programming education by generating individualized feedback and hints for learners. Recent works have primarily focused on improving the quality of generated feedback to achieve human tutors' quality. While quality is an important performance criterion, it is not the only criterion to optimize for real-world educational deployments. In this paper, we benchmark language models for programming feedback generation across several performance criteria, including quality, cost, time, and data privacy. The key idea is to leverage recent advances in the new paradigm of in-browser inference that allow running these models directly in the browser, thereby providing direct benefits across cost and data privacy. To boost the feedback quality of small models compatible with in-browser inference engines, we develop a fine-tuning pipeline based on GPT-4 generated synthetic data. We showcase the efficacy of fine-tuned Llama3-8B and Phi3-3.8B 4-bit quantized models using WebLLM's in-browser inference engine on three different Python programming datasets. We will release the full implementation along with a web app and datasets to facilitate further research on in-browser language models.
♻ ☆ RULSurv: A probabilistic survival-based method for early censoring-aware prediction of remaining useful life in ball bearings
Censored data refers to situations where the full information about a particular event or process is only partially known. In survival analysis, censoring plays an important role, as ignoring such observations can bias the model parameters and overestimate the probability of when the event is likely to occur. There has been a renewed interest in using data-driven methods to predict the remaining useful life (RUL) of ball bearings for predictive maintenance. However, few studies have explicitly addressed the challenge of handling censored data. To address this issue, we introduce a novel and flexible method for early fault detection using Kullback-Leibler (KL) divergence and RUL estimation using survival analysis that naturally supports censored data. We demonstrate our approach in the XJTU-SY dataset using a 5-fold cross-validation across three different operating conditions. When predicting the time to failure for bearings under the highest load (C1, 12.0 kN and 2100 RPM) with 25\% random censoring, our approach achieves a mean absolute error (MAE) of 14.7 minutes (95\% CI 13.6-15.8) using a linear CoxPH model, and an MAE of 12.6 minutes (95\% CI 11.8-13.4) using a nonlinear Random Survival Forests model, compared to an MAE of 18.5 minutes (95\% 17.4-19.6) using a linear LASSO model that does not support censoring. Moreover, our approach achieves a mean cumulative relative accuracy (CRA) of 0.7586 over 5 bearings under the highest load, which improves over several state-of-the-art baselines. Our work highlights the importance of considering censored observations as part of the model design when building predictive models for early fault detection and RUL estimation.
♻ ☆ A Hybrid SNN-ANN Network for Event-based Object Detection with Spatial and Temporal AttentionEfficient Event-Based Object Detection: A Hybrid Neural Network with Spatial and Temporal Attention
Event cameras offer high temporal resolution and dynamic range with minimal motion blur, making them promising for robust object detection. While Spiking Neural Networks (SNNs) on neuromorphic hardware are often considered for energy efficient and low latency event-based data processing, they often fall short of Artificial Neural Networks (ANNs) in accuracy and flexibility. Here, we introduce Attention-based Hybrid SNN-ANN backbones for event-based object detection to leverage the strengths of both SNN and ANN architectures. A novel Attention-based SNN-ANN bridge module captures sparse spatial and temporal relations from the SNN layer and converts them into dense feature maps for the ANN part of the backbone. Additionally, we present a variant that integrates DWConvLSTMs to the ANN blocks to capture slower dynamics. This multi-timescale network combines fast SNN processing for short timesteps with long-term dense RNN processing, effectively capturing both fast and slow dynamics. Experimental results demonstrate that our proposed method surpasses SNN-based approaches by significant margins, with results comparable to existing ANN and RNN-based methods. Unlike ANN-only networks, the hybrid setup allows us to implement the SNN blocks on digital neuromorphic hardware to investigate the feasibility of our approach. Extensive ablation studies and implementation on neuromorphic hardware confirm the effectiveness of our proposed modules and architectural choices. Our hybrid SNN-ANN architectures pave the way for ANN-like performance at a drastically reduced parameter, latency, and power budget.
♻ ☆ Offline Safe Reinforcement Learning Using Trajectory Classification AAAI 2025
Offline safe reinforcement learning (RL) has emerged as a promising approach for learning safe behaviors without engaging in risky online interactions with the environment. Most existing methods in offline safe RL rely on cost constraints at each time step (derived from global cost constraints) and this can result in either overly conservative policies or violation of safety constraints. In this paper, we propose to learn a policy that generates desirable trajectories and avoids undesirable trajectories. To be specific, we first partition the pre-collected dataset of state-action trajectories into desirable and undesirable subsets. Intuitively, the desirable set contains high reward and safe trajectories, and undesirable set contains unsafe trajectories and low-reward safe trajectories. Second, we learn a policy that generates desirable trajectories and avoids undesirable trajectories, where (un)desirability scores are provided by a classifier learnt from the dataset of desirable and undesirable trajectories. This approach bypasses the computational complexity and stability issues of a min-max objective that is employed in existing methods. Theoretically, we also show our approach's strong connections to existing learning paradigms involving human feedback. Finally, we extensively evaluate our method using the DSRL benchmark for offline safe RL. Empirically, our method outperforms competitive baselines, achieving higher rewards and better constraint satisfaction across a wide variety of benchmark tasks.
comment: AAAI 2025
♻ ☆ EdgeMoE: Empowering Sparse Large Language Models on Mobile Devices
Large language models (LLMs) such as GPTs and Mixtral-8x7B have revolutionized machine intelligence due to their exceptional abilities in generic ML tasks. Transiting LLMs from datacenters to edge devices brings benefits like better privacy and availability, but is challenged by their massive parameter size and thus unbearable runtime costs. To this end, we present EdgeMoE, an on-device inference engine for mixture-of-expert (MoE) LLMs -- a popular form of sparse LLM that scales its parameter size with almost constant computing complexity. EdgeMoE achieves both memory- and compute-efficiency by partitioning the model into the storage hierarchy: non-expert weights are held in device memory; while expert weights are held on external storage and fetched to memory only when activated. This design is motivated by a key observation that expert weights are bulky but infrequently used due to sparse activation. To further reduce the expert I/O swapping overhead, EdgeMoE incorporates two novel techniques: (1) expert-wise bitwidth adaptation that reduces the expert sizes with tolerable accuracy loss; (2) expert preloading that predicts the activated experts ahead of time and preloads it with the compute-I/O pipeline. On popular MoE LLMs and edge devices, EdgeMoE showcase significant memory savings and speedup over competitive baselines. The code is available at https://github.com/UbiquitousLearning/mllm.
♻ ☆ Dialogue Ontology Relation Extraction via Constrained Chain-of-Thought Decoding SIGDIAL 2024
State-of-the-art task-oriented dialogue systems typically rely on task-specific ontologies for fulfilling user queries. The majority of task-oriented dialogue data, such as customer service recordings, comes without ontology and annotation. Such ontologies are normally built manually, limiting the application of specialised systems. Dialogue ontology construction is an approach for automating that process and typically consists of two steps: term extraction and relation extraction. In this work, we focus on relation extraction in a transfer learning set-up. To improve the generalisation, we propose an extension to the decoding mechanism of large language models. We adapt Chain-of-Thought (CoT) decoding, recently developed for reasoning problems, to generative relation extraction. Here, we generate multiple branches in the decoding space and select the relations based on a confidence threshold. By constraining the decoding to ontology terms and relations, we aim to decrease the risk of hallucination. We conduct extensive experimentation on two widely used datasets and find improvements in performance on target ontology for source fine-tuned and one-shot prompted large language models.
comment: Accepted to appear at SIGDIAL 2024. 9 pages, 4 figures
♻ ☆ Planning Domain Model Acquisition from State Traces without Action Parameters
Existing planning action domain model acquisition approaches consider different types of state traces from which they learn. The differences in state traces refer to the level of observability of state changes (from full to none) and whether the observations have some noise (the state changes might be inaccurately logged). However, to the best of our knowledge, all the existing approaches consider state traces in which each state change corresponds to an action specified by its name and all its parameters (all objects that are relevant to the action). Furthermore, the names and types of all the parameters of the actions to be learned are given. These assumptions are too strong. In this paper, we propose a method that learns action schema from state traces with fully observable state changes but without the parameters of actions responsible for the state changes (only action names are part of the state traces). Although we can easily deduce the number (and names) of the actions that will be in the learned domain model, we still need to deduce the number and types of the parameters of each action alongside its precondition and effects. We show that this task is at least as hard as graph isomorphism. However, our experimental evaluation on a large collection of IPC benchmarks shows that our approach is still practical as the number of required parameters is usually small. Compared to the state-of-the-art learning tools SAM and Extended SAM our new algorithm is able to provide better results in multiple domains in terms of learning action models more similar to reference models, even though it uses less information and has fewer restrictions on the input traces.
♻ ☆ RoToR: Towards More Reliable Responses for Order-Invariant Inputs
Mitigating positional bias of language models (LMs) for listwise inputs is a well-known and important problem (e.g., lost-in-the-middle). While zero-shot order-invariant LMs have been proposed to solve this issue, their success on practical listwise problems has been limited. In this work, as a first contribution, we identify and overcome two limitations to make zero-shot invariant LMs more practical: (1) training and inference distribution mismatch arising from modifying positional ID assignments to enforce invariance, and (2) failure to adapt to a mixture of order-invariant and sensitive inputs in practical listwise problems. Then, to overcome these issues we propose (1) RoToR, a zero-shot invariant LM for genuinely order-invariant inputs with minimal modifications of positional IDs, and (2) Selective Routing, an adaptive framework that handles both order-invariant and order-sensitive inputs in listwise tasks. On the Lost in the middle (LitM), Knowledge Graph QA (KGQA), and MMLU benchmarks, we show that RoToR with Selective Routing can effectively handle practical listwise input tasks in a zero-shot manner.
♻ ☆ Assisted morbidity coding: the SISCO.web use case for identifying the main diagnosis in Hospital Discharge Records
Coding morbidity data using international standard diagnostic classifications is increasingly important and still challenging. Clinical coders and physicians assign codes to patient episodes based on their interpretation of case notes or electronic patient records. Therefore, accurate coding relies on the legibility of case notes and the coders' understanding of medical terminology. During the last ten years, many studies have shown poor reproducibility of clinical coding, even recently, with the application of Artificial Intelligence-based models. Given this context, the paper aims to present the SISCO.web approach designed to support physicians in filling in Hospital Discharge Records with proper diagnoses and procedures codes using the International Classification of Diseases (9th and 10th), and, above all, in identifying the main pathological condition. The web service leverages NLP algorithms, specific coding rules, as well as ad hoc decision trees to identify the main condition, showing promising results in providing accurate ICD coding suggestions.
comment: 18 pages
♻ ☆ DetectRL: Benchmarking LLM-Generated Text Detection in Real-World Scenarios NeurIPS 2024
Detecting text generated by large language models (LLMs) is of great recent interest. With zero-shot methods like DetectGPT, detection capabilities have reached impressive levels. However, the reliability of existing detectors in real-world applications remains underexplored. In this study, we present a new benchmark, DetectRL, highlighting that even state-of-the-art (SOTA) detection techniques still underperformed in this task. We collected human-written datasets from domains where LLMs are particularly prone to misuse. Using popular LLMs, we generated data that better aligns with real-world applications. Unlike previous studies, we employed heuristic rules to create adversarial LLM-generated text, simulating various prompts usages, human revisions like word substitutions, and writing noises like spelling mistakes. Our development of DetectRL reveals the strengths and limitations of current SOTA detectors. More importantly, we analyzed the potential impact of writing styles, model types, attack methods, the text lengths, and real-world human writing factors on different types of detectors. We believe DetectRL could serve as an effective benchmark for assessing detectors in real-world scenarios, evolving with advanced attack methods, thus providing more stressful evaluation to drive the development of more efficient detectors. Data and code are publicly available at: https://github.com/NLP2CT/DetectRL.
comment: Accepted to NeurIPS 2024 Datasets and Benchmarks Track (Camera-Ready)
♻ ☆ Phi-4-Mini Technical Report: Compact yet Powerful Multimodal Language Models via Mixture-of-LoRAs
We introduce Phi-4-Mini and Phi-4-Multimodal, compact yet highly capable language and multimodal models. Phi-4-Mini is a 3.8-billion-parameter language model trained on high-quality web and synthetic data, significantly outperforming recent open-source models of similar size and matching the performance of models twice its size on math and coding tasks requiring complex reasoning. This achievement is driven by a carefully curated synthetic data recipe emphasizing high-quality math and coding datasets. Compared to its predecessor, Phi-3.5-Mini, Phi-4-Mini features an expanded vocabulary size of 200K tokens to better support multilingual applications, as well as group query attention for more efficient long-sequence generation. Phi-4-Multimodal is a multimodal model that integrates text, vision, and speech/audio input modalities into a single model. Its novel modality extension approach leverages LoRA adapters and modality-specific routers to allow multiple inference modes combining various modalities without interference. For example, it now ranks first in the OpenASR leaderboard to date, although the LoRA component of the speech/audio modality has just 460 million parameters. Phi-4-Multimodal supports scenarios involving (vision + language), (vision + speech), and (speech/audio) inputs, outperforming larger vision-language and speech-language models on a wide range of tasks. Additionally, we experiment to further train Phi-4-Mini to enhance its reasoning capabilities. Despite its compact 3.8-billion-parameter size, this experimental version achieves reasoning performance on par with or surpassing significantly larger models, including DeepSeek-R1-Distill-Qwen-7B and DeepSeek-R1-Distill-Llama-8B.
comment: 39 pages
♻ ☆ AdEval: Alignment-based Dynamic Evaluation to Mitigate Data Contamination in Large Language Models
As Large Language Models (LLMs) are pretrained on massive-scale corpora, the issue of data contamination has become increasingly severe, leading to potential overestimation of model performance during evaluation. To address this, we propose AdEval (Alignment-based Dynamic Evaluation), a dynamic data evaluation method aimed at mitigating the impact of data contamination on evaluation reliability. Experimental results on multiple datasets demonstrate that AdEval effectively reduces the impact of data contamination on evaluation outcomes, enhancing both the fairness and reliability of the evaluation process.
comment: There are serious academic problems in this paper, such as data falsification and plagiarism in the method of the paper
♻ ☆ Multi-Knowledge-oriented Nighttime Haze Imaging Enhancer for Vision-driven Intelligent Systems
Salient object detection (SOD) plays a critical role in vision-driven measurement systems (VMS), facilitating the detection and segmentation of key visual elements in an image. However, adverse imaging conditions such as haze during the day, low light, and haze at night severely degrade image quality, and complicating the SOD process. To address these challenges, we propose a multi-task-oriented nighttime haze imaging enhancer (MToIE), which integrates three tasks: daytime dehazing, low-light enhancement, and nighttime dehazing. The MToIE incorporates two key innovative components: First, the network employs a task-oriented node learning mechanism to handle three specific degradation types: day-time haze, low light, and night-time haze conditions, with an embedded self-attention module enhancing its performance in nighttime imaging. In addition, multi-receptive field enhancement module that efficiently extracts multi-scale features through three parallel depthwise separable convolution branches with different dilation rates, capturing comprehensive spatial information with minimal computational overhead. To ensure optimal image reconstruction quality and visual characteristics, we suggest a hybrid loss function. Extensive experiments on different types of weather/imaging conditions illustrate that MToIE surpasses existing methods, significantly enhancing the accuracy and reliability of vision systems across diverse imaging scenarios. The code is available at https://github.com/Ai-Chen-Lab/MKoIE.
♻ ☆ Transformers for molecular property prediction: Domain adaptation efficiently improves performance
Most of the current transformer-based chemical language models are pre-trained on millions to billions of molecules. However, the improvement from such scaling in dataset size is not confidently linked to improved molecular property prediction. The aim of this study is to investigate and overcome some of the limitations of transformer models in predicting molecular properties. Specifically, we examine the impact of pre-training dataset size and diversity on the performance of transformer models and investigate the use of domain adaptation as a technique for improving model performance. First, our findings indicate that increasing pretraining dataset size beyond 400K molecules from the GuacaMol dataset does not result in a significant improvement on four ADME endpoints, namely, solubility, permeability, microsomal stability, and plasma protein binding. Second, our results demonstrate that using domain adaptation by further training the transformer model on a small set of domain-relevant molecules, i.e., a few hundred to a few thousand, using multi-task regression of physicochemical properties was sufficient to significantly improve performance for three out of the four investigated ADME endpoints (P-value < 0.001). Finally, we observe that a model pre-trained on 400K molecules and domain adopted on a few hundred/thousand molecules performs similarly (P-value > 0.05) to more complicated transformer models like MolBERT(pre-trained on 1.3M molecules) and MolFormer (pre-trained on 100M molecules). A comparison to a random forest model trained on basic physicochemical properties showed similar performance to the examined transformer models. We believe that current transformer models can be improved through further systematic analysis of pre-training and downstream data, pre-training objectives, and scaling laws, ultimately leading to better and more helpful models.
♻ ☆ Beyond RMSE and MAE: Introducing EAUC to unmask hidden bias and unfairness in dyadic regression models
Dyadic regression models, which output real-valued predictions for pairs of entities, are fundamental in many domains (e.g. obtaining user-product ratings in Recommender Systems) and promising and under exploration in others (e.g. tuning patient-drug dosages in precision pharmacology). In this work, we prove that non-uniform observed value distributions of individual entities lead to severe biases in state-of-the-art models, skewing predictions towards the average of observed past values for the entity and providing worse-than-random predictive power in eccentric yet crucial cases; we name this phenomenon eccentricity bias. We show that global error metrics like Root Mean Squared Error (RMSE) are insufficient to capture this bias, and we introduce Eccentricity-Area Under the Curve (EAUC) as a novel metric that can quantify it in all studied domains and models. We prove the intuitive interpretation of EAUC by experimenting with naive post-training bias corrections, and theorize other options to use EAUC to guide the construction of fair models. This work contributes a bias-aware evaluation of dyadic regression to prevent unfairness in critical real-world applications of such systems.
♻ ☆ Direct Preference-Based Evolutionary Multi-Objective Optimization with Dueling Bandit
Optimization problems find widespread use in both single-objective and multi-objective scenarios. In practical applications, users aspire for solutions that converge to the region of interest (ROI) along the Pareto front (PF). While the conventional approach involves approximating a fitness function or an objective function to reflect user preferences, this paper explores an alternative avenue. Specifically, we aim to discover a method that sidesteps the need for calculating the fitness function, relying solely on human feedback. Our proposed approach entails conducting direct preference learning facilitated by an active dueling bandit algorithm. The experimental phase is structured into three sessions. Firstly, we assess the performance of our active dueling bandit algorithm. Secondly, we implement our proposed method within the context of Multi-objective Evolutionary Algorithms (MOEAs). Finally, we deploy our method in a practical problem, specifically in protein structure prediction (PSP). This research presents a novel interactive preference-based MOEA framework that not only addresses the limitations of traditional techniques but also unveils new possibilities for optimization problems.
♻ ☆ HBTP: Heuristic Behavior Tree Planning with Large Language Model Reasoning
Behavior Trees (BTs) are increasingly becoming a popular control structure in robotics due to their modularity, reactivity, and robustness. In terms of BT generation methods, BT planning shows promise for generating reliable BTs. However, the scalability of BT planning is often constrained by prolonged planning times in complex scenarios, largely due to a lack of domain knowledge. In contrast, pre-trained Large Language Models (LLMs) have demonstrated task reasoning capabilities across various domains, though the correctness and safety of their planning remain uncertain. This paper proposes integrating BT planning with LLM reasoning, introducing Heuristic Behavior Tree Planning (HBTP)-a reliable and efficient framework for BT generation. The key idea in HBTP is to leverage LLMs for task-specific reasoning to generate a heuristic path, which BT planning can then follow to expand efficiently. We first introduce the heuristic BT expansion process, along with two heuristic variants designed for optimal planning and satisficing planning, respectively. Then, we propose methods to address the inaccuracies of LLM reasoning, including action space pruning and reflective feedback, to further enhance both reasoning accuracy and planning efficiency. Experiments demonstrate the theoretical bounds of HBTP, and results from four datasets confirm its practical effectiveness in everyday service robot applications.
♻ ☆ Evaluating Human-AI Collaboration: A Review and Methodological Framework
The use of artificial intelligence (AI) in working environments with individuals, known as Human-AI Collaboration (HAIC), has become essential in a variety of domains, boosting decision-making, efficiency, and innovation. Despite HAIC's wide potential, evaluating its effectiveness remains challenging due to the complex interaction of components involved. This paper provides a detailed analysis of existing HAIC evaluation approaches and develops a fresh paradigm for more effectively evaluating these systems. Our framework includes a structured decision tree which assists to select relevant metrics based on distinct HAIC modes (AI-Centric, Human-Centric, and Symbiotic). By including both quantitative and qualitative metrics, the framework seeks to represent HAIC's dynamic and reciprocal nature, enabling the assessment of its impact and success. This framework's practicality can be examined by its application in an array of domains, including manufacturing, healthcare, finance, and education, each of which has unique challenges and requirements. Our hope is that this study will facilitate further research on the systematic evaluation of HAIC in real-world applications.
♻ ☆ RURANET++: An Unsupervised Learning Method for Diabetic Macular Edema Based on SCSE Attention Mechanisms and Dynamic Multi-Projection Head Clustering MICCAI 2025
Diabetic Macular Edema (DME), a prevalent complication among diabetic patients, constitutes a major cause of visual impairment and blindness. Although deep learning has achieved remarkable progress in medical image analysis, traditional DME diagnosis still relies on extensive annotated data and subjective ophthalmologist assessments, limiting practical applications. To address this, we present RURANET++, an unsupervised learning-based automated DME diagnostic system. This framework incorporates an optimized U-Net architecture with embedded Spatial and Channel Squeeze & Excitation (SCSE) attention mechanisms to enhance lesion feature extraction. During feature processing, a pre-trained GoogLeNet model extracts deep features from retinal images, followed by PCA-based dimensionality reduction to 50 dimensions for computational efficiency. Notably, we introduce a novel clustering algorithm employing multi-projection heads to explicitly control cluster diversity while dynamically adjusting similarity thresholds, thereby optimizing intra-class consistency and inter-class discrimination. Experimental results demonstrate superior performance across multiple metrics, achieving maximum accuracy (0.8411), precision (0.8593), recall (0.8411), and F1-score (0.8390), with exceptional clustering quality. This work provides an efficient unsupervised solution for DME diagnosis with significant clinical implications.
comment: 10 pages, 2 figures, 5 tables, submitted to The 28th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2025)
♻ ☆ SpatialVLA: Exploring Spatial Representations for Visual-Language-Action Model
In this paper, we claim that spatial understanding is the keypoint in robot manipulation, and propose SpatialVLA to explore effective spatial representations for the robot foundation model. Specifically, we introduce Ego3D Position Encoding to inject 3D information into the input observations of the visual-language-action model, and propose Adaptive Action Grids to represent spatial robot movement actions with adaptive discretized action grids, facilitating learning generalizable and transferrable spatial action knowledge for cross-robot control. SpatialVLA is first pre-trained on top of a vision-language model with 1.1 Million real-world robot episodes, to learn a generalist manipulation policy across multiple robot environments and tasks. After pre-training, SpatialVLA is directly applied to perform numerous tasks in a zero-shot manner. The superior results in both simulation and real-world robots demonstrate its advantage of inferring complex robot motion trajectories and its strong in-domain multi-task generalization ability. We further show the proposed Adaptive Action Grids offer a new and effective way to fine-tune the pre-trained SpatialVLA model for new simulation and real-world setups, where the pre-learned action grids are re-discretized to capture robot-specific spatial action movements of new setups. The superior results from extensive evaluations demonstrate the exceptional in-distribution generalization and out-of-distribution adaptation capability, highlighting the crucial benefit of the proposed spatial-aware representations for generalist robot policy learning. All the details and codes will be open-sourced.
♻ ☆ BigMac: A Communication-Efficient Mixture-of-Experts Model Structure for Fast Training and Inference
The Mixture-of-Experts (MoE) structure scales the Transformer-based large language models (LLMs) and improves their performance with only the sub-linear increase in computation resources. Recently, a fine-grained DeepSeekMoE structure is proposed, which can further improve the computing efficiency of MoE without performance degradation. However, the All-to-All communication introduced by MoE has become a bottleneck, especially for the fine-grained structure, which typically involves and activates more experts, hence contributing to heavier communication overhead. In this paper, we propose a novel MoE structure named BigMac, which is also fine-grained but with high communication efficiency. The innovation of BigMac is mainly due to that we abandon the \textbf{c}ommunicate-\textbf{d}escend-\textbf{a}scend-\textbf{c}ommunicate (CDAC) manner used by fine-grained MoE, which leads to the All-to-All communication always taking place at the highest dimension. Instead, BigMac designs an efficient \textbf{d}escend-\textbf{c}ommunicate-\textbf{c}ommunicate-\textbf{a}scend (DCCA) manner. Specifically, we add a descending and ascending projection at the entrance and exit of the expert, respectively, which enables the communication to perform at a very low dimension. Furthermore, to adapt to DCCA, we re-design the structure of small experts, ensuring that the expert in BigMac has enough complexity to address tokens. Experimental results show that BigMac achieves comparable or even better model quality than fine-grained MoEs with the same number of experts and a similar number of total parameters. Equally importantly, BigMac reduces the end-to-end latency by up to 3.09$\times$ for training and increases the throughput by up to 3.11$\times$ for inference on state-of-the-art AI computing frameworks including Megatron, Tutel, and DeepSpeed-Inference.
comment: Typo Fixed
♻ ☆ On the $O(\frac{\sqrt{d}}{T^{1/4}})$ Convergence Rate of RMSProp and Its Momentum Extension Measured by $\ell_1$ Norm
Although adaptive gradient methods have been extensively used in deep learning, their convergence rates proved in the literature are all slower than that of SGD, particularly with respect to their dependence on the dimension. This paper considers the classical RMSProp and its momentum extension and establishes the convergence rate of $\frac{1}{T}\sum_{k=1}^T E\left[\|\nabla f(x^k)\|_1\right]\leq O(\frac{\sqrt{d}C}{T^{1/4}})$ measured by $\ell_1$ norm without the bounded gradient assumption, where $d$ is the dimension of the optimization variable, $T$ is the iteration number, and $C$ is a constant identical to that appeared in the optimal convergence rate of SGD. Our convergence rate matches the lower bound with respect to all the coefficients except the dimension $d$. Since $\|x\|_2\ll\|x\|_1\leq\sqrt{d}\|x\|_2$ for problems with extremely large $d$, our convergence rate can be considered to be analogous to the $\frac{1}{T}\sum_{k=1}^T E\left[\|\nabla f(x^k)\|_2\right]\leq O(\frac{C}{T^{1/4}})$ rate of SGD in the ideal case of $\|\nabla f(x)\|_1=\varTheta(\sqrt{d}\|\nabla f(x)\|_2)$.
comment: V4 vs V3: More experiments. V3 vs V2: A fairer comparison with (Li et al., 2023). V2 vs V1: (1) Correct one error in v1. (2) Improve the convergence rate matching the lower bound with respect to all the coefficients except the dimension
♻ ☆ NavRAG: Generating User Demand Instructions for Embodied Navigation through Retrieval-Augmented LLM
Vision-and-Language Navigation (VLN) is an essential skill for embodied agents, allowing them to navigate in 3D environments following natural language instructions. High-performance navigation models require a large amount of training data, the high cost of manually annotating data has seriously hindered this field. Therefore, some previous methods translate trajectory videos into step-by-step instructions for expanding data, but such instructions do not match well with users' communication styles that briefly describe destinations or state specific needs. Moreover, local navigation trajectories overlook global context and high-level task planning. To address these issues, we propose NavRAG, a retrieval-augmented generation (RAG) framework that generates user demand instructions for VLN. NavRAG leverages LLM to build a hierarchical scene description tree for 3D scene understanding from global layout to local details, then simulates various user roles with specific demands to retrieve from the scene tree, generating diverse instructions with LLM. We annotate over 2 million navigation instructions across 861 scenes and evaluate the data quality and navigation performance of trained models.
♻ ☆ Chip Placement with Diffusion Models
Macro placement is a vital step in digital circuit design that defines the physical location of large collections of components, known as macros, on a 2D chip. Because key performance metrics of the chip are determined by the placement, optimizing it is crucial. Existing learning-based methods typically fall short because of their reliance on reinforcement learning (RL), which is slow and struggles to generalize, requiring online training on each new circuit. Instead, we train a diffusion model capable of placing new circuits zero-shot, using guided sampling in lieu of RL to optimize placement quality. To enable such models to train at scale, we designed a capable yet efficient architecture for the denoising model, and propose a novel algorithm to generate large synthetic datasets for pre-training. To allow zero-shot transfer to real circuits, we empirically study the design decisions of our dataset generation algorithm, and identify several key factors enabling generalization. When trained on our synthetic data, our models generate high-quality placements on unseen, realistic circuits, achieving competitive performance on placement benchmarks compared to state-of-the-art methods.
♻ ☆ RecoveryChaining: Learning Local Recovery Policies for Robust Manipulation
Model-based planners and controllers are commonly used to solve complex manipulation problems as they can efficiently optimize diverse objectives and generalize to long horizon tasks. However, they often fail during deployment due to noisy actuation, partial observability and imperfect models. To enable a robot to recover from such failures, we propose to use hierarchical reinforcement learning to learn a recovery policy. The recovery policy is triggered when a failure is detected based on sensory observations and seeks to take the robot to a state from which it can complete the task using the nominal model-based controllers. Our approach, called RecoveryChaining, uses a hybrid action space, where the model-based controllers are provided as additional \emph{nominal} options which allows the recovery policy to decide how to recover, when to switch to a nominal controller and which controller to switch to even with \emph{sparse rewards}. We evaluate our approach in three multi-step manipulation tasks with sparse rewards, where it learns significantly more robust recovery policies than those learned by baselines. We successfully transfer recovery policies learned in simulation to a physical robot to demonstrate the feasibility of sim-to-real transfer with our method.
comment: Added Lazy RecoveryChaining algorithm. 8 pages, 9 figures
♻ ☆ How Diversely Can Language Models Solve Problems? Exploring the Algorithmic Diversity of Model-Generated Code
Language models (LMs) have exhibited impressive abilities in generating code from natural language requirements. In this work, we highlight the diversity of code generated by LMs as a critical criterion for evaluating their code generation capabilities. There is a lack of studies focused on assessing the diversity of generated code, which overlooks its importance in code LMs. Therefore, we propose a systematic approach to evaluate code diversity, introducing various metrics with inter-code similarity. Specifically, we introduce code clustering methods that leverages LMs' capabilities in code understanding and reasoning, resulting in a set of metrics that represent the number of algorithms in model-generated solutions. We extensively investigate the property of model-generated solutions by contrasting them with human-written ones and quantifying the impact of various factors on code diversity: model size, temperature, instruction tuning, and problem complexity. Our analysis demonstrates that model-generated solutions exhibit low algorithmic diversity, which was neglected by the research community. Moreover, we explore methods to increase code diversity by combining solutions from different models and increasing sampling temperatures. Our findings highlight that code diversity can be enhanced with the help of heterogeneous models and setting temperature beyond 1.0 that has not been fully explored due to the functional correctness degradation. To facilitate our research direction, we publicly share our code and datasets through open-source repositories.
♻ ☆ When Large Language Models Meet Evolutionary Algorithms: Potential Enhancements and Challenges
Pre-trained large language models (LLMs) exhibit powerful capabilities for generating natural text. Evolutionary algorithms (EAs) can discover diverse solutions to complex real-world problems. Motivated by the common collective and directionality of text generation and evolution, this paper first illustrates the conceptual parallels between LLMs and EAs at a micro level, which includes multiple one-to-one key characteristics: token representation and individual representation, position encoding and fitness shaping, position embedding and selection, Transformers block and reproduction, and model training and parameter adaptation. These parallels highlight potential opportunities for technical advancements in both LLMs and EAs. Subsequently, we analyze existing interdisciplinary research from a macro perspective to uncover critical challenges, with a particular focus on evolutionary fine-tuning and LLM-enhanced EAs. These analyses not only provide insights into the evolutionary mechanisms behind LLMs but also offer potential directions for enhancing the capabilities of artificial agents.
comment: The article has been accepted for publication in Research
♻ ☆ Closed-Loop Open-Vocabulary Mobile Manipulation with GPT-4V ICRA
Autonomous robot navigation and manipulation in open environments require reasoning and replanning with closed-loop feedback. In this work, we present COME-robot, the first closed-loop robotic system utilizing the GPT-4V vision-language foundation model for open-ended reasoning and adaptive planning in real-world scenarios.COME-robot incorporates two key innovative modules: (i) a multi-level open-vocabulary perception and situated reasoning module that enables effective exploration of the 3D environment and target object identification using commonsense knowledge and situated information, and (ii) an iterative closed-loop feedback and restoration mechanism that verifies task feasibility, monitors execution success, and traces failure causes across different modules for robust failure recovery. Through comprehensive experiments involving 8 challenging real-world mobile and tabletop manipulation tasks, COME-robot demonstrates a significant improvement in task success rate (~35%) compared to state-of-the-art methods. We further conduct comprehensive analyses to elucidate how COME-robot's design facilitates failure recovery, free-form instruction following, and long-horizon task planning.
comment: 6 pages, Accepted at 2025 IEEE ICRA, website: https://come-robot.github.io/
♻ ☆ Zero-resource Hallucination Detection for Text Generation via Graph-based Contextual Knowledge Triples Modeling AAAI25
LLMs obtain remarkable performance but suffer from hallucinations. Most research on detecting hallucination focuses on the questions with short and concrete correct answers that are easy to check the faithfulness. Hallucination detections for text generation with open-ended answers are more challenging. Some researchers use external knowledge to detect hallucinations in generated texts, but external resources for specific scenarios are hard to access. Recent studies on detecting hallucinations in long text without external resources conduct consistency comparison among multiple sampled outputs. To handle long texts, researchers split long texts into multiple facts and individually compare the consistency of each pairs of facts. However, these methods (1) hardly achieve alignment among multiple facts; (2) overlook dependencies between multiple contextual facts. In this paper, we propose a graph-based context-aware (GCA) hallucination detection for text generations, which aligns knowledge facts and considers the dependencies between contextual knowledge triples in consistency comparison. Particularly, to align multiple facts, we conduct a triple-oriented response segmentation to extract multiple knowledge triples. To model dependencies among contextual knowledge triple (facts), we construct contextual triple into a graph and enhance triples' interactions via message passing and aggregating via RGCN. To avoid the omission of knowledge triples in long text, we conduct a LLM-based reverse verification via reconstructing the knowledge triples. Experiments show that our model enhances hallucination detection and excels all baselines.
comment: Accepted by AAAI25
♻ ☆ Open Role-Playing with Delta-Engines
Game roles can be reflections of personas from a parallel world. In this paper, we propose a new style of game-play to bridge self-expression and role-playing: \emph{open role-playing games (ORPGs)}, where players are allowed to craft and embody their unique characters in the game world. Our vision is that, in the real world, we are individually similar when we are born, but we grow into unique ones as a result of the strongly different choices we make afterward. Therefore, in an ORPG, we empower players with freedom to decide their own growing curves through natural language inputs, ultimately becoming unique characters. To technically do this, we propose a special engine called Delta-Engine. This engine is not a traditional game engine used for game development, but serves as an in-game module to provide new game-play experiences. A delta-engine consists of two components, a base engine and a neural proxy. The base engine programs the prototype of the character as well as the foundational settings of the game; the neural proxy is an LLM, which realizes the character growth by generating new code snippets on the base engine incrementally. In this paper, we self-develop a specific ORPG based on delta-engines. It is adapted from the popular animated series ``Pok\'emon''. We present our efforts in generating out-of-domain and interesting role data in the development process as well as accessing the performance of a delta-engine. While the empirical results in this work are specific, we aim for them to provide general insights for future games.
♻ ☆ On the Vulnerability of LLM/VLM-Controlled Robotics
In this work, we highlight vulnerabilities in robotic systems integrating large language models (LLMs) and vision-language models (VLMs) due to input modality sensitivities. While LLM/VLM-controlled robots show impressive performance across various tasks, their reliability under slight input variations remains underexplored yet critical. These models are highly sensitive to instruction or perceptual input changes, which can trigger misalignment issues, leading to execution failures with severe real-world consequences. To study this issue, we analyze the misalignment-induced vulnerabilities within LLM/VLM-controlled robotic systems and present a mathematical formulation for failure modes arising from variations in input modalities. We propose empirical perturbation strategies to expose these vulnerabilities and validate their effectiveness through experiments on multiple robot manipulation tasks. Our results show that simple input perturbations reduce task execution success rates by 22.2% and 14.6% in two representative LLM/VLM-controlled robotic systems. These findings underscore the importance of input modality robustness and motivate further research to ensure the safe and reliable deployment of advanced LLM/VLM-controlled robotic systems.
♻ ☆ SFO: Piloting VLM Feedback for Offline RL
While internet-scale image and textual data have enabled strong generalization in Vision-Language Models (VLMs), the absence of internet-scale control data has impeded the development of similar generalization in standard reinforcement learning (RL) agents. Although VLMs are fundamentally limited in their ability to solve control tasks due to their lack of action-conditioned training data, their capacity for image understanding allows them to provide valuable feedback in RL tasks by recognizing successful outcomes. A key challenge in Reinforcement Learning from AI Feedback (RLAIF) is determining how best to integrate VLM-derived signals into the learning process. We explore this question in the context of offline RL and introduce a class of methods called sub-trajectory filtered optimization. We identify three key insights. First, trajectory length plays a crucial role in offline RL, as full-trajectory preference learning exacerbates the stitching problem, necessitating the use of sub-trajectories. Second, even in Markovian environments, a non-Markovian reward signal from a sequence of images is required to assess trajectory improvement, as VLMs do not interpret control actions and must rely on visual cues over time. Third, a simple yet effective approach--filtered and weighted behavior cloning--consistently outperforms more complex reinforcement learning from human feedback-based methods. We propose sub-trajectory filtered behavior cloning, a method that leverages VLM feedback on sub-trajectories while incorporating a retrospective filtering mechanism that removes sub-trajectories preceding failures to improve robustness and prevent turbulence. This study is preliminary; we provide initial evidence through evaluations on a toy control domain. Please enjoy our airport puns.
comment: Code is provided at https://github.com/jacooba/OfflineRLAIF
♻ ☆ FastTrackTr:Towards Fast Multi-Object Tracking with Transformers
Transformer-based multi-object tracking (MOT) methods have captured the attention of many researchers in recent years. However, these models often suffer from slow inference speeds due to their structure or other issues. To address this problem, we revisited the Joint Detection and Tracking (JDT) method by looking back at past approaches. By integrating the original JDT approach with some advanced theories, this paper employs an efficient method of information transfer between frames on the DETR, constructing a fast and novel JDT-type MOT framework: FastTrackTr. Thanks to the superiority of this information transfer method, our approach not only reduces the number of queries required during tracking but also avoids the excessive introduction of network structures, ensuring model simplicity. Experimental results indicate that our method has the potential to achieve real-time tracking and exhibits competitive tracking accuracy across multiple datasets.
♻ ☆ FloNa: Floor Plan Guided Embodied Visual Navigation AAAI 2025
Humans naturally rely on floor plans to navigate in unfamiliar environments, as they are readily available, reliable, and provide rich geometrical guidance. However, existing visual navigation settings overlook this valuable prior knowledge, leading to limited efficiency and accuracy. To eliminate this gap, we introduce a novel navigation task: Floor Plan Visual Navigation (FloNa), the first attempt to incorporate floor plan into embodied visual navigation. While the floor plan offers significant advantages, two key challenges emerge: (1) handling the spatial inconsistency between the floor plan and the actual scene layout for collision-free navigation, and (2) aligning observed images with the floor plan sketch despite their distinct modalities. To address these challenges, we propose FloDiff, a novel diffusion policy framework incorporating a localization module to facilitate alignment between the current observation and the floor plan. We further collect $20k$ navigation episodes across $117$ scenes in the iGibson simulator to support the training and evaluation. Extensive experiments demonstrate the effectiveness and efficiency of our framework in unfamiliar scenes using floor plan knowledge. Project website: https://gauleejx.github.io/flona/.
comment: Accepted by AAAI 2025
♻ ☆ BuildingView: Constructing Urban Building Exteriors Databases with Street View Imagery and Multimodal Large Language Mode
Urban Building Exteriors are increasingly important in urban analytics, driven by advancements in Street View Imagery and its integration with urban research. Multimodal Large Language Models (LLMs) offer powerful tools for urban annotation, enabling deeper insights into urban environments. However, challenges remain in creating accurate and detailed urban building exterior databases, identifying critical indicators for energy efficiency, environmental sustainability, and human-centric design, and systematically organizing these indicators. To address these challenges, we propose BuildingView, a novel approach that integrates high-resolution visual data from Google Street View with spatial information from OpenStreetMap via the Overpass API. This research improves the accuracy of urban building exterior data, identifies key sustainability and design indicators, and develops a framework for their extraction and categorization. Our methodology includes a systematic literature review, building and Street View sampling, and annotation using the ChatGPT-4O API. The resulting database, validated with data from New York City, Amsterdam, and Singapore, provides a comprehensive tool for urban studies, supporting informed decision-making in urban planning, architectural design, and environmental policy. The code for BuildingView is available at https://github.com/Jasper0122/BuildingView.
comment: 15 pages, 6 figures
♻ ☆ Knowledge Augmentation in Federation: Rethinking What Collaborative Learning Can Bring Back to Decentralized Data
Data, as an observable form of knowledge, has become one of the most important factors of production for the development of Artificial Intelligence (AI). Meanwhile, increasing legislation and regulations on private and proprietary information results in scattered data sources also known as the "data islands". Although some collaborative learning paradigms such as Federated Learning (FL) can enable privacy-preserving training over decentralized data, they have inherent deficiencies in fairness, costs and reproducibility because of being learning-centric, which greatly limits the way how participants cooperate with each other. In light of this, we present a knowledge-centric paradigm termed Knowledge Augmentation in Federation (KAF), with focus on how to enhance local knowledge through collaborative effort. We provide the suggested system architecture, formulate the prototypical optimization objective, and review emerging studies that employ methodologies suitable for KAF. On our roadmap, with a three-way categorization we describe the methods for knowledge expansion, knowledge filtering, and label and feature space correction in the federation. Further, we highlight several challenges and open questions that deserve more attention from the community. With our investigation, we intend to offer new insights for what collaborative learning can bring back to decentralized data.
comment: preprint
♻ ☆ Feedback Favors the Generalization of Neural ODEs
The well-known generalization problem hinders the application of artificial neural networks in continuous-time prediction tasks with varying latent dynamics. In sharp contrast, biological systems can neatly adapt to evolving environments benefiting from real-time feedback mechanisms. Inspired by the feedback philosophy, we present feedback neural networks, showing that a feedback loop can flexibly correct the learned latent dynamics of neural ordinary differential equations (neural ODEs), leading to a prominent generalization improvement. The feedback neural network is a novel two-DOF neural network, which possesses robust performance in unseen scenarios with no loss of accuracy performance on previous tasks.} A linear feedback form is presented to correct the learned latent dynamics firstly, with a convergence guarantee. Then, domain randomization is utilized to learn a nonlinear neural feedback form. Finally, extensive tests including trajectory prediction of a real irregular object and model predictive control of a quadrotor with various uncertainties, are implemented, indicating significant improvements over state-of-the-art model-based and learning-based methods.
comment: 27 pages, 23 figures
♻ ☆ Attention Mechanism based Cognition-level Scene Understanding
Given a question-image input, the Visual Commonsense Reasoning (VCR) model can predict an answer with the corresponding rationale, which requires inference ability from the real world. The VCR task, which calls for exploiting the multi-source information as well as learning different levels of understanding and extensive commonsense knowledge, is a cognition-level scene understanding task. The VCR task has aroused researchers' interest due to its wide range of applications, including visual question answering, automated vehicle systems, and clinical decision support. Previous approaches to solving the VCR task generally rely on pre-training or exploiting memory with long dependency relationship encoded models. However, these approaches suffer from a lack of generalizability and losing information in long sequences. In this paper, we propose a parallel attention-based cognitive VCR network PAVCR, which fuses visual-textual information efficiently and encodes semantic information in parallel to enable the model to capture rich information for cognition-level inference. Extensive experiments show that the proposed model yields significant improvements over existing methods on the benchmark VCR dataset. Moreover, the proposed model provides intuitive interpretation into visual commonsense reasoning.
comment: Published in Information
♻ ☆ NeSyC: A Neuro-symbolic Continual Learner For Complex Embodied Tasks In Open Domains ICLR 2025
We explore neuro-symbolic approaches to generalize actionable knowledge, enabling embodied agents to tackle complex tasks more effectively in open-domain environments. A key challenge for embodied agents is the generalization of knowledge across diverse environments and situations, as limited experiences often confine them to their prior knowledge. To address this issue, we introduce a novel framework, NeSyC, a neuro-symbolic continual learner that emulates the hypothetico-deductive model by continually formulating and validating knowledge from limited experiences through the combined use of Large Language Models (LLMs) and symbolic tools. Specifically, we devise a contrastive generality improvement scheme within NeSyC, which iteratively generates hypotheses using LLMs and conducts contrastive validation via symbolic tools. This scheme reinforces the justification for admissible actions while minimizing the inference of inadmissible ones. Additionally, we incorporate a memory-based monitoring scheme that efficiently detects action errors and triggers the knowledge refinement process across domains. Experiments conducted on diverse embodied task benchmarks-including ALFWorld, VirtualHome, Minecraft, RLBench, and a real-world robotic scenario-demonstrate that NeSyC is highly effective in solving complex embodied tasks across a range of open-domain environments.
comment: Accepted at ICLR 2025. Project site with code: https://pjw971022.github.io/nesyc/
♻ ☆ Reinforcement Learning Within the Classical Robotics Stack: A Case Study in Robot Soccer ICRA 2025
Robot decision-making in partially observable, real-time, dynamic, and multi-agent environments remains a difficult and unsolved challenge. Model-free reinforcement learning (RL) is a promising approach to learning decision-making in such domains, however, end-to-end RL in complex environments is often intractable. To address this challenge in the RoboCup Standard Platform League (SPL) domain, we developed a novel architecture integrating RL within a classical robotics stack, while employing a multi-fidelity sim2real approach and decomposing behavior into learned sub-behaviors with heuristic selection. Our architecture led to victory in the 2024 RoboCup SPL Challenge Shield Division. In this work, we fully describe our system's architecture and empirically analyze key design decisions that contributed to its success. Our approach demonstrates how RL-based behaviors can be integrated into complete robot behavior architectures.
comment: ICRA 2025
♻ ☆ TempoGPT: Enhancing Time Series Reasoning via Quantizing Embedding
Multi-modal language model has made advanced progress in vision and audio, but still faces significant challenges in dealing with complex reasoning tasks in the time series domain. The reasons are twofold. First, labels for multi-modal time series data are coarse and devoid of analysis or reasoning processes. Training with these data cannot improve the model's reasoning capabilities. Second, due to the lack of precise tokenization in processing time series, the representation patterns for temporal and textual information are inconsistent, which hampers the effectiveness of multi-modal alignment. To address these challenges, we propose a multi-modal time series data construction approach and a multi-modal time series language model (TLM), TempoGPT. Specially, we construct multi-modal data for complex reasoning tasks by analyzing the variable-system relationships within a white-box system. Additionally, proposed TempoGPT achieves consistent representation between temporal and textual information by quantizing temporal embeddings, where temporal embeddings are quantized into a series of discrete tokens using a predefined codebook; subsequently, a shared embedding layer processes both temporal and textual tokens. Extensive experiments demonstrate that TempoGPT accurately perceives temporal information, logically infers conclusions, and achieves state-of-the-art in the constructed complex time series reasoning tasks. Moreover, we quantitatively demonstrate the effectiveness of quantizing temporal embeddings in enhancing multi-modal alignment and the reasoning capabilities of TLMs. Code and data are available at https://github.com/zhanghaochuan20/TempoGPT.
♻ ☆ M2Distill: Multi-Modal Distillation for Lifelong Imitation Learning ICRA 2025
Lifelong imitation learning for manipulation tasks poses significant challenges due to distribution shifts that occur in incremental learning steps. Existing methods often focus on unsupervised skill discovery to construct an ever-growing skill library or distillation from multiple policies, which can lead to scalability issues as diverse manipulation tasks are continually introduced and may fail to ensure a consistent latent space throughout the learning process, leading to catastrophic forgetting of previously learned skills. In this paper, we introduce M2Distill, a multi-modal distillation-based method for lifelong imitation learning focusing on preserving consistent latent space across vision, language, and action distributions throughout the learning process. By regulating the shifts in latent representations across different modalities from previous to current steps, and reducing discrepancies in Gaussian Mixture Model (GMM) policies between consecutive learning steps, we ensure that the learned policy retains its ability to perform previously learned tasks while seamlessly integrating new skills. Extensive evaluations on the LIBERO lifelong imitation learning benchmark suites, including LIBERO-OBJECT, LIBERO-GOAL, and LIBERO-SPATIAL, demonstrate that our method consistently outperforms prior state-of-the-art methods across all evaluated metrics.
comment: IEEE ICRA 2025
♻ ☆ Articulated Object Manipulation using Online Axis Estimation with SAM2-Based Tracking
Articulated object manipulation requires precise object interaction, where the object's axis must be carefully considered. Previous research employed interactive perception for manipulating articulated objects, but typically, open-loop approaches often suffer from overlooking the interaction dynamics. To address this limitation, we present a closed-loop pipeline integrating interactive perception with online axis estimation from segmented 3D point clouds. Our method leverages any interactive perception technique as a foundation for interactive perception, inducing slight object movement to generate point cloud frames of the evolving dynamic scene. These point clouds are then segmented using Segment Anything Model 2 (SAM2), after which the moving part of the object is masked for accurate motion online axis estimation, guiding subsequent robotic actions. Our approach significantly enhances the precision and efficiency of manipulation tasks involving articulated objects. Experiments in simulated environments demonstrate that our method outperforms baseline approaches, especially in tasks that demand precise axis-based control. Project Page: https://hytidel.github.io/video-tracking-for-axis-estimation/.
comment: Project Page: https://hytidel.github.io/video-tracking-for-axis-estimation/
♻ ☆ Surgical-LVLM: Learning to Adapt Large Vision-Language Model for Grounded Visual Question Answering in Robotic Surgery ICLR 2025
Recent advancements in Surgical Visual Question Answering (Surgical-VQA) and related region grounding have shown great promise for robotic and medical applications, addressing the critical need for automated methods in personalized surgical mentorship. However, existing models primarily provide simple structured answers and struggle with complex scenarios due to their limited capability in recognizing long-range dependencies and aligning multimodal information. In this paper, we introduce Surgical-LVLM, a novel personalized large vision-language model tailored for complex surgical scenarios. Leveraging the pre-trained large vision-language model and specialized Visual Perception LoRA (VP-LoRA) blocks, our model excels in understanding complex visual-language tasks within surgical contexts. In addressing the visual grounding task, we propose the Token-Interaction (TIT) module, which strengthens the interaction between the grounding module and the language responses of the Large Visual Language Model (LVLM) after projecting them into the latent space. We demonstrate the effectiveness of Surgical-LVLM on several benchmarks, including EndoVis-17-VQLA, EndoVis-18-VQLA, and a newly introduced EndoVis Conversations dataset, which sets new performance standards. Our work contributes to advancing the field of automated surgical mentorship by providing a context-aware solution.
comment: The manuscript is accepted by ICLR 2025 FM-Wild Workshop
Graphics 8
☆ TrajectoryCrafter: Redirecting Camera Trajectory for Monocular Videos via Diffusion Models
We present TrajectoryCrafter, a novel approach to redirect camera trajectories for monocular videos. By disentangling deterministic view transformations from stochastic content generation, our method achieves precise control over user-specified camera trajectories. We propose a novel dual-stream conditional video diffusion model that concurrently integrates point cloud renders and source videos as conditions, ensuring accurate view transformations and coherent 4D content generation. Instead of leveraging scarce multi-view videos, we curate a hybrid training dataset combining web-scale monocular videos with static multi-view datasets, by our innovative double-reprojection strategy, significantly fostering robust generalization across diverse scenes. Extensive evaluations on multi-view and large-scale monocular videos demonstrate the superior performance of our method.
comment: Project webpage: https://trajectorycrafter.github.io/
☆ Free Your Hands: Lightweight Relightable Turntable Capture Pipeline
Novel view synthesis (NVS) from multiple captured photos of an object is a widely studied problem. Achieving high quality typically requires dense sampling of input views, which can lead to frustrating and tedious manual labor. Manually positioning cameras to maintain an optimal desired distribution can be difficult for humans, and if a good distribution is found, it is not easy to replicate. Additionally, the captured data can suffer from motion blur and defocus due to human error. In this paper, we present a lightweight object capture pipeline to reduce the manual workload and standardize the acquisition setup. We use a consumer turntable to carry the object and a tripod to hold the camera. As the turntable rotates, we automatically capture dense samples from various views and lighting conditions; we can repeat this for several camera positions. This way, we can easily capture hundreds of valid images in several minutes without hands-on effort. However, in the object reference frame, the light conditions vary; this is harmful to a standard NVS method like 3D Gaussian splatting (3DGS) which assumes fixed lighting. We design a neural radiance representation conditioned on light rotations, which addresses this issue and allows relightability as an additional benefit. We demonstrate our pipeline using 3DGS as the underlying framework, achieving competitive quality compared to previous methods with exhaustive acquisition and showcasing its potential for relighting and harmonization tasks.
☆ DecoupledGaussian: Object-Scene Decoupling for Physics-Based Interaction CVPR2025
We present DecoupledGaussian, a novel system that decouples static objects from their contacted surfaces captured in-the-wild videos, a key prerequisite for realistic Newtonian-based physical simulations. Unlike prior methods focused on synthetic data or elastic jittering along the contact surface, which prevent objects from fully detaching or moving independently, DecoupledGaussian allows for significant positional changes without being constrained by the initial contacted surface. Recognizing the limitations of current 2D inpainting tools for restoring 3D locations, our approach proposes joint Poisson fields to repair and expand the Gaussians of both objects and contacted scenes after separation. This is complemented by a multi-carve strategy to refine the object's geometry. Our system enables realistic simulations of decoupling motions, collisions, and fractures driven by user-specified impulses, supporting complex interactions within and across multiple scenes. We validate DecoupledGaussian through a comprehensive user study and quantitative benchmarks. This system enhances digital interaction with objects and scenes in real-world environments, benefiting industries such as VR, robotics, and autonomous driving. Our project page is at: https://wangmiaowei.github.io/DecoupledGaussian.github.io/.
comment: CVPR2025 Accepted
☆ STGA: Selective-Training Gaussian Head Avatars
We propose selective-training Gaussian head avatars (STGA) to enhance the details of dynamic head Gaussian. The dynamic head Gaussian model is trained based on the FLAME parameterized model. Each Gaussian splat is embedded within the FLAME mesh to achieve mesh-based animation of the Gaussian model. Before training, our selection strategy calculates the 3D Gaussian splat to be optimized in each frame. The parameters of these 3D Gaussian splats are optimized in the training of each frame, while those of the other splats are frozen. This means that the splats participating in the optimization process differ in each frame, to improve the realism of fine details. Compared with network-based methods, our method achieves better results with shorter training time. Compared with mesh-based methods, our method produces more realistic details within the same training time. Additionally, the ablation experiment confirms that our method effectively enhances the quality of details.
♻ ☆ A Survey on 3D Gaussian Splatting
3D Gaussian splatting (GS) has emerged as a transformative technique in explicit radiance field and computer graphics. This innovative approach, characterized by the use of millions of learnable 3D Gaussians, represents a significant departure from mainstream neural radiance field approaches, which predominantly use implicit, coordinate-based models to map spatial coordinates to pixel values. 3D GS, with its explicit scene representation and differentiable rendering algorithm, not only promises real-time rendering capability but also introduces unprecedented levels of editability. This positions 3D GS as a potential game-changer for the next generation of 3D reconstruction and representation. In the present paper, we provide the first systematic overview of the recent developments and critical contributions in the domain of 3D GS. We begin with a detailed exploration of the underlying principles and the driving forces behind the emergence of 3D GS, laying the groundwork for understanding its significance. A focal point of our discussion is the practical applicability of 3D GS. By enabling unprecedented rendering speed, 3D GS opens up a plethora of applications, ranging from virtual reality to interactive media and beyond. This is complemented by a comparative analysis of leading 3D GS models, evaluated across various benchmark tasks to highlight their performance and practical utility. The survey concludes by identifying current challenges and suggesting potential avenues for future research. Through this survey, we aim to provide a valuable resource for both newcomers and seasoned researchers, fostering further exploration and advancement in explicit radiance field.
comment: Ongoing project. Paper list: https://github.com/guikunchen/Awesome3DGS ; Benchmark: https://github.com/guikunchen/3DGS-Benchmarks
♻ ☆ Generative Densification: Learning to Densify Gaussians for High-Fidelity Generalizable 3D Reconstruction
Generalized feed-forward Gaussian models have achieved significant progress in sparse-view 3D reconstruction by leveraging prior knowledge from large multi-view datasets. However, these models often struggle to represent high-frequency details due to the limited number of Gaussians. While the densification strategy used in per-scene 3D Gaussian splatting (3D-GS) optimization can be adapted to the feed-forward models, it may not be ideally suited for generalized scenarios. In this paper, we propose Generative Densification, an efficient and generalizable method to densify Gaussians generated by feed-forward models. Unlike the 3D-GS densification strategy, which iteratively splits and clones raw Gaussian parameters, our method up-samples feature representations from the feed-forward models and generates their corresponding fine Gaussians in a single forward pass, leveraging the embedded prior knowledge for enhanced generalization. Experimental results on both object-level and scene-level reconstruction tasks demonstrate that our method outperforms state-of-the-art approaches with comparable or smaller model sizes, achieving notable improvements in representing fine details.
comment: Project page: https://stnamjef.github.io/GenerativeDensification/
♻ ☆ Articulated Object Manipulation using Online Axis Estimation with SAM2-Based Tracking
Articulated object manipulation requires precise object interaction, where the object's axis must be carefully considered. Previous research employed interactive perception for manipulating articulated objects, but typically, open-loop approaches often suffer from overlooking the interaction dynamics. To address this limitation, we present a closed-loop pipeline integrating interactive perception with online axis estimation from segmented 3D point clouds. Our method leverages any interactive perception technique as a foundation for interactive perception, inducing slight object movement to generate point cloud frames of the evolving dynamic scene. These point clouds are then segmented using Segment Anything Model 2 (SAM2), after which the moving part of the object is masked for accurate motion online axis estimation, guiding subsequent robotic actions. Our approach significantly enhances the precision and efficiency of manipulation tasks involving articulated objects. Experiments in simulated environments demonstrate that our method outperforms baseline approaches, especially in tasks that demand precise axis-based control. Project Page: https://hytidel.github.io/video-tracking-for-axis-estimation/.
comment: Project Page: https://hytidel.github.io/video-tracking-for-axis-estimation/
♻ ☆ Layered Image Vectorization via Semantic Simplification
This work presents a progressive image vectorization technique that reconstructs the raster image as layer-wise vectors from semantic-aligned macro structures to finer details. Our approach introduces a new image simplification method leveraging the feature-average effect in the Score Distillation Sampling mechanism, achieving effective visual abstraction from the detailed to coarse. Guided by the sequence of progressive simplified images, we propose a two-stage vectorization process of structural buildup and visual refinement, constructing the vectors in an organized and manageable manner. The resulting vectors are layered and well-aligned with the target image's explicit and implicit semantic structures. Our method demonstrates high performance across a wide range of images. Comparative analysis with existing vectorization methods highlights our technique's superiority in creating vectors with high visual fidelity, and more importantly, achieving higher semantic alignment and more compact layered representation. The project homepage is https://szuviz.github.io/layered_vectorization/.
Robotics 97
☆ Floxels: Fast Unsupervised Voxel Based Scene Flow Estimation CVPR 2025
Scene flow estimation is a foundational task for many robotic applications, including robust dynamic object detection, automatic labeling, and sensor synchronization. Two types of approaches to the problem have evolved: 1) Supervised and 2) optimization-based methods. Supervised methods are fast during inference and achieve high-quality results, however, they are limited by the need for large amounts of labeled training data and are susceptible to domain gaps. In contrast, unsupervised test-time optimization methods do not face the problem of domain gaps but usually suffer from substantial runtime, exhibit artifacts, or fail to converge to the right solution. In this work, we mitigate several limitations of existing optimization-based methods. To this end, we 1) introduce a simple voxel grid-based model that improves over the standard MLP-based formulation in multiple dimensions and 2) introduce a new multiframe loss formulation. 3) We combine both contributions in our new method, termed Floxels. On the Argoverse 2 benchmark, Floxels is surpassed only by EulerFlow among unsupervised methods while achieving comparable performance at a fraction of the computational cost. Floxels achieves a massive speedup of more than ~60 - 140x over EulerFlow, reducing the runtime from a day to 10 minutes per sequence. Over the faster but low-quality baseline, NSFP, Floxels achieves a speedup of ~14x.
comment: Accepted at CVPR 2025
☆ Multi-Agent Inverse Q-Learning from Demonstrations ICRA
When reward functions are hand-designed, deep reinforcement learning algorithms often suffer from reward misspecification, causing them to learn suboptimal policies in terms of the intended task objectives. In the single-agent case, inverse reinforcement learning (IRL) techniques attempt to address this issue by inferring the reward function from expert demonstrations. However, in multi-agent problems, misalignment between the learned and true objectives is exacerbated due to increased environment non-stationarity and variance that scales with multiple agents. As such, in multi-agent general-sum games, multi-agent IRL algorithms have difficulty balancing cooperative and competitive objectives. To address these issues, we propose Multi-Agent Marginal Q-Learning from Demonstrations (MAMQL), a novel sample-efficient framework for multi-agent IRL. For each agent, MAMQL learns a critic marginalized over the other agents' policies, allowing for a well-motivated use of Boltzmann policies in the multi-agent context. We identify a connection between optimal marginalized critics and single-agent soft-Q IRL, allowing us to apply a direct, simple optimization criterion from the single-agent domain. Across our experiments on three different simulated domains, MAMQL significantly outperforms previous multi-agent methods in average reward, sample efficiency, and reward recovery by often more than 2-5x. We make our code available at https://sites.google.com/view/mamql .
comment: 8 pages, 4 figures, 2 tables. Published at the International Conference on Robotics and Automation (ICRA) 2025
☆ 3HANDS Dataset: Learning from Humans for Generating Naturalistic Handovers with Supernumerary Robotic Limbs
Supernumerary robotic limbs (SRLs) are robotic structures integrated closely with the user's body, which augment human physical capabilities and necessitate seamless, naturalistic human-machine interaction. For effective assistance in physical tasks, enabling SRLs to hand over objects to humans is crucial. Yet, designing heuristic-based policies for robots is time-consuming, difficult to generalize across tasks, and results in less human-like motion. When trained with proper datasets, generative models are powerful alternatives for creating naturalistic handover motions. We introduce 3HANDS, a novel dataset of object handover interactions between a participant performing a daily activity and another participant enacting a hip-mounted SRL in a naturalistic manner. 3HANDS captures the unique characteristics of SRL interactions: operating in intimate personal space with asymmetric object origins, implicit motion synchronization, and the user's engagement in a primary task during the handover. To demonstrate the effectiveness of our dataset, we present three models: one that generates naturalistic handover trajectories, another that determines the appropriate handover endpoints, and a third that predicts the moment to initiate a handover. In a user study (N=10), we compare the handover interaction performed with our method compared to a baseline. The findings show that our method was perceived as significantly more natural, less physically demanding, and more comfortable.
comment: CHI '25
☆ Whole-Body Model-Predictive Control of Legged Robots with MuJoCo
We demonstrate the surprising real-world effectiveness of a very simple approach to whole-body model-predictive control (MPC) of quadruped and humanoid robots: the iterative LQR (iLQR) algorithm with MuJoCo dynamics and finite-difference approximated derivatives. Building upon the previous success of model-based behavior synthesis and control of locomotion and manipulation tasks with MuJoCo in simulation, we show that these policies can easily generalize to the real world with few sim-to-real considerations. Our baseline method achieves real-time whole-body MPC on a variety of hardware experiments, including dynamic quadruped locomotion, quadruped walking on two legs, and full-sized humanoid bipedal locomotion. We hope this easy-to-reproduce hardware baseline lowers the barrier to entry for real-world whole-body MPC research and contributes to accelerating research velocity in the community. Our code and experiment videos will be available online at:https://johnzhang3.github.io/mujoco_ilqr
comment: under review
☆ ExoNav II: Design of a Robotic Tool with Follow-the-Leader Motion Capability for Lateral and Ventral Spinal Cord Stimulation (SCS)
Spinal cord stimulation (SCS) electrodes are traditionally placed in the dorsal epidural space to stimulate the dorsal column fibers for pain therapy. Recently, SCS has gained attention in restoring gait. However, the motor fibers triggering locomotion are located in the ventral and lateral spinal cord. Currently, SCS electrodes are steered manually, making it difficult to navigate them to the lateral and ventral motor fibers in the spinal cord. In this work, we propose a helically micro-machined continuum robot that can bend in a helical shape when subjected to actuation tendon forces. Using a stiff outer tube and adding translational and rotational degrees of freedom, this helical continuum robot can perform follow-the-leader (FTL) motion. We propose a kinematic model to relate tendon stroke and geometric parameters of the robot's helical shape to its acquired trajectory and end-effector position. We evaluate the proposed kinematic model and the robot's FTL motion capability experimentally. The stroke-based method, which links tendon stroke values to the robot's shape, showed inaccuracies with a 19.84 mm deviation and an RMSE of 14.42 mm for 63.6 mm of robot's length bending. The position-based method, using kinematic equations to map joint space to task space, performed better with a 10.54 mm deviation and an RMSE of 8.04 mm. Follow-the-leader experiments showed deviations of 11.24 mm and 7.32 mm, with RMSE values of 8.67 mm and 5.18 mm for the stroke-based and position-based methods, respectively. Furthermore, end-effector trajectories in two FTL motion trials are compared to confirm the robot's repeatable behavior. Finally, we demonstrate the robot's operation on a 3D-printed spinal cord phantom model.
☆ DogLegs: Robust Proprioceptive State Estimation for Legged Robots Using Multiple Leg-Mounted IMUs
Robust and accurate proprioceptive state estimation of the main body is crucial for legged robots to execute tasks in extreme environments where exteroceptive sensors, such as LiDARs and cameras may become unreliable. In this paper, we propose DogLegs, a state estimation system for legged robots that fuses the measurements from a body-mounted inertial measurement unit (Body-IMU), joint encoders, and multiple leg-mounted IMUs (Leg-IMU) using an extended Kalman filter (EKF). The filter system contains the error states of all IMU frames. The Leg-IMUs are used to detect foot contact, thereby providing zero velocity measurements to update the state of the Leg-IMU frames. Additionally, we compute the relative position constraints between the Body-IMU and Leg-IMUs by the leg kinematics and use them to update the main body state and reduce the error drift of the individual IMU frames. Field experimental results have shown that our proposed system can achieve better state estimation accuracy compared to the traditional leg odometry method (using only Body-IMU and joint encoders) across different terrains. We make our datasets publicly available to benefit the research community.
comment: 8 pages, 8 figures
☆ Data-augmented Learning of Geodesic Distances in Irregular Domains through Soner Boundary Conditions
Geodesic distances play a fundamental role in robotics, as they efficiently encode global geometric information of the domain. Recent methods use neural networks to approximate geodesic distances by solving the Eikonal equation through physics-informed approaches. While effective, these approaches often suffer from unstable convergence during training in complex environments. We propose a framework to learn geodesic distances in irregular domains by using the Soner boundary condition, and systematically evaluate the impact of data losses on training stability and solution accuracy. Our experiments demonstrate that incorporating data losses significantly improves convergence robustness, reducing training instabilities and sensitivity to initialization. These findings suggest that hybrid data-physics approaches can effectively enhance the reliability of learning-based geodesic distance solvers with sparse data.
☆ Omnidirectional Multi-Object Tracking CVPR 2025
Panoramic imagery, with its 360{\deg} field of view, offers comprehensive information to support Multi-Object Tracking (MOT) in capturing spatial and temporal relationships of surrounding objects. However, most MOT algorithms are tailored for pinhole images with limited views, impairing their effectiveness in panoramic settings. Additionally, panoramic image distortions, such as resolution loss, geometric deformation, and uneven lighting, hinder direct adaptation of existing MOT methods, leading to significant performance degradation. To address these challenges, we propose OmniTrack, an omnidirectional MOT framework that incorporates Tracklet Management to introduce temporal cues, FlexiTrack Instances for object localization and association, and the CircularStatE Module to alleviate image and geometric distortions. This integration enables tracking in large field-of-view scenarios, even under rapid sensor motion. To mitigate the lack of panoramic MOT datasets, we introduce the QuadTrack dataset--a comprehensive panoramic dataset collected by a quadruped robot, featuring diverse challenges such as wide fields of view, intense motion, and complex environments. Extensive experiments on the public JRDB dataset and the newly introduced QuadTrack benchmark demonstrate the state-of-the-art performance of the proposed framework. OmniTrack achieves a HOTA score of 26.92% on JRDB, representing an improvement of 3.43%, and further achieves 23.45% on QuadTrack, surpassing the baseline by 6.81%. The dataset and code will be made publicly available at https://github.com/xifen523/OmniTrack.
comment: Accepted to CVPR 2025. The dataset and code will be made publicly available at https://github.com/xifen523/OmniTrack
☆ Occlusion-Aware Consistent Model Predictive Control for Robot Navigation in Occluded Obstacle-Dense Environments
Ensuring safety and motion consistency for robot navigation in occluded, obstacle-dense environments is a critical challenge. In this context, this study presents an occlusion-aware Consistent Model Predictive Control (CMPC) strategy. To account for the occluded obstacles, it incorporates adjustable risk regions that represent their potential future locations. Subsequently, dynamic risk boundary constraints are developed online to ensure safety. The CMPC then constructs multiple locally optimal trajectory branches (each tailored to different risk regions) to balance between exploitation and exploration. A shared consensus trunk is generated to ensure smooth transitions between branches without significant velocity fluctuations, further preserving motion consistency. To facilitate high computational efficiency and ensure coordination across local trajectories, we use the alternating direction method of multipliers (ADMM) to decompose the CMPC into manageable sub-problems for parallel solving. The proposed strategy is validated through simulation and real-world experiments on an Ackermann-steering robot platform. The results demonstrate the effectiveness of the proposed CMPC strategy through comparisons with baseline approaches in occluded, obstacle-dense environments.
☆ Learning Generalizable Language-Conditioned Cloth Manipulation from Long Demonstrations
Multi-step cloth manipulation is a challenging problem for robots due to the high-dimensional state spaces and the dynamics of cloth. Despite recent significant advances in end-to-end imitation learning for multi-step cloth manipulation skills, these methods fail to generalize to unseen tasks. Our insight in tackling the challenge of generalizable multi-step cloth manipulation is decomposition. We propose a novel pipeline that autonomously learns basic skills from long demonstrations and composes learned basic skills to generalize to unseen tasks. Specifically, our method first discovers and learns basic skills from the existing long demonstration benchmark with the commonsense knowledge of a large language model (LLM). Then, leveraging a high-level LLM-based task planner, these basic skills can be composed to complete unseen tasks. Experimental results demonstrate that our method outperforms baseline methods in learning multi-step cloth manipulation skills for both seen and unseen tasks.
☆ ViT-VS: On the Applicability of Pretrained Vision Transformer Features for Generalizable Visual Servoing
Visual servoing enables robots to precisely position their end-effector relative to a target object. While classical methods rely on hand-crafted features and thus are universally applicable without task-specific training, they often struggle with occlusions and environmental variations, whereas learning-based approaches improve robustness but typically require extensive training. We present a visual servoing approach that leverages pretrained vision transformers for semantic feature extraction, combining the advantages of both paradigms while also being able to generalize beyond the provided sample. Our approach achieves full convergence in unperturbed scenarios and surpasses classical image-based visual servoing by up to 31.2\% relative improvement in perturbed scenarios. Even the convergence rates of learning-based methods are matched despite requiring no task- or object-specific training. Real-world evaluations confirm robust performance in end-effector positioning, industrial box manipulation, and grasping of unseen objects using only a reference from the same category. Our code and simulation environment are available at: https://alessandroscherl.github.io/ViT-VS/
☆ SRSA: Skill Retrieval and Adaptation for Robotic Assembly Tasks
Enabling robots to learn novel tasks in a data-efficient manner is a long-standing challenge. Common strategies involve carefully leveraging prior experiences, especially transition data collected on related tasks. Although much progress has been made for general pick-and-place manipulation, far fewer studies have investigated contact-rich assembly tasks, where precise control is essential. We introduce SRSA (Skill Retrieval and Skill Adaptation), a novel framework designed to address this problem by utilizing a pre-existing skill library containing policies for diverse assembly tasks. The challenge lies in identifying which skill from the library is most relevant for fine-tuning on a new task. Our key hypothesis is that skills showing higher zero-shot success rates on a new task are better suited for rapid and effective fine-tuning on that task. To this end, we propose to predict the transfer success for all skills in the skill library on a novel task, and then use this prediction to guide the skill retrieval process. We establish a framework that jointly captures features of object geometry, physical dynamics, and expert actions to represent the tasks, allowing us to efficiently learn the transfer success predictor. Extensive experiments demonstrate that SRSA significantly outperforms the leading baseline. When retrieving and fine-tuning skills on unseen tasks, SRSA achieves a 19% relative improvement in success rate, exhibits 2.6x lower standard deviation across random seeds, and requires 2.4x fewer transition samples to reach a satisfactory success rate, compared to the baseline. Furthermore, policies trained with SRSA in simulation achieve a 90% mean success rate when deployed in the real world. Please visit our project webpage https://srsa2024.github.io/.
☆ ForestLPR: LiDAR Place Recognition in Forests Attentioning Multiple BEV Density Images CVPR2025
Place recognition is essential to maintain global consistency in large-scale localization systems. While research in urban environments has progressed significantly using LiDARs or cameras, applications in natural forest-like environments remain largely under-explored. Furthermore, forests present particular challenges due to high self-similarity and substantial variations in vegetation growth over time. In this work, we propose a robust LiDAR-based place recognition method for natural forests, ForestLPR. We hypothesize that a set of cross-sectional images of the forest's geometry at different heights contains the information needed to recognize revisiting a place. The cross-sectional images are represented by \ac{bev} density images of horizontal slices of the point cloud at different heights. Our approach utilizes a visual transformer as the shared backbone to produce sets of local descriptors and introduces a multi-BEV interaction module to attend to information at different heights adaptively. It is followed by an aggregation layer that produces a rotation-invariant place descriptor. We evaluated the efficacy of our method extensively on real-world data from public benchmarks as well as robotic datasets and compared it against the state-of-the-art (SOTA) methods. The results indicate that ForestLPR has consistently good performance on all evaluations and achieves an average increase of 7.38\% and 9.11\% on Recall@1 over the closest competitor on intra-sequence loop closure detection and inter-sequence re-localization, respectively, validating our hypothesis
comment: accepted by CVPR2025
☆ PALo: Learning Posture-Aware Locomotion for Quadruped Robots
With the rapid development of embodied intelligence, locomotion control of quadruped robots on complex terrains has become a research hotspot. Unlike traditional locomotion control approaches focusing solely on velocity tracking, we pursue to balance the agility and robustness of quadruped robots on diverse and complex terrains. To this end, we propose an end-to-end deep reinforcement learning framework for posture-aware locomotion named PALo, which manages to handle simultaneous linear and angular velocity tracking and real-time adjustments of body height, pitch, and roll angles. In PALo, the locomotion control problem is formulated as a partially observable Markov decision process, and an asymmetric actor-critic architecture is adopted to overcome the sim-to-real challenge. Further, by incorporating customized training curricula, PALo achieves agile posture-aware locomotion control in simulated environments and successfully transfers to real-world settings without fine-tuning, allowing real-time control of the quadruped robot's locomotion and body posture across challenging terrains. Through in-depth experimental analysis, we identify the key components of PALo that contribute to its performance, further validating the effectiveness of the proposed method. The results of this study provide new possibilities for the low-level locomotion control of quadruped robots in higher dimensional command spaces and lay the foundation for future research on upper-level modules for embodied intelligence.
☆ EvidMTL: Evidential Multi-Task Learning for Uncertainty-Aware Semantic Surface Mapping from Monocular RGB Images IROS 2025
For scene understanding in unstructured environments, an accurate and uncertainty-aware metric-semantic mapping is required to enable informed action selection by autonomous systems.Existing mapping methods often suffer from overconfident semantic predictions, and sparse and noisy depth sensing, leading to inconsistent map representations. In this paper, we therefore introduce EvidMTL, a multi-task learning framework that uses evidential heads for depth estimation and semantic segmentation, enabling uncertainty-aware inference from monocular RGB images. To enable uncertainty-calibrated evidential multi-task learning, we propose a novel evidential depth loss function that jointly optimizes the belief strength of the depth prediction in conjunction with evidential segmentation loss. Building on this, we present EvidKimera, an uncertainty-aware semantic surface mapping framework, which uses evidential depth and semantics prediction for improved 3D metric-semantic consistency. We train and evaluate EvidMTL on the NYUDepthV2 and assess its zero-shot performance on ScanNetV2, demonstrating superior uncertainty estimation compared to conventional approaches while maintaining comparable depth estimation and semantic segmentation. In zero-shot mapping tests on ScanNetV2, EvidKimera outperforms Kimera in semantic surface mapping accuracy and consistency, highlighting the benefits of uncertainty-aware mapping and underscoring its potential for real-world robotic applications.
comment: Submitted to IROS 2025 Conference
☆ On the Analysis of Stability, Sensitivity and Transparency in Variable Admittance Control for pHRI Enhanced by Virtual Fixtures
The interest in Physical Human-Robot Interaction (pHRI) has significantly increased over the last two decades thanks to the availability of collaborative robots that guarantee user safety during force exchanges. For this reason, stability concerns have been addressed extensively in the literature while proposing new control schemes for pHRI applications. Because of the nonlinear nature of robots, stability analyses generally leverage passivity concepts. On the other hand, the proposed algorithms generally consider ideal models of robot manipulators. For this reason, the primary objective of this paper is to conduct a detailed analysis of the sources of instability for a class of pHRI control schemes, namely proxy-based constrained admittance controllers, by considering parasitic effects such as transmission elasticity, motor velocity saturation, and actuation delay. Next, a sensitivity analysis supported by experimental results is carried out, in order to identify how the control parameters affect the stability of the overall system. Finally, an adaptation technique for the proxy parameters is proposed with the goal of maximizing transparency in pHRI. The proposed adaptation method is validated through both simulations and experimental tests.
☆ SeGMan: Sequential and Guided Manipulation Planner for Robust Planning in 2D Constrained Environments
In this paper, we present SeGMan, a hybrid motion planning framework that integrates sampling-based and optimization-based techniques with a guided forward search to address complex, constrained sequential manipulation challenges, such as pick-and-place puzzles. SeGMan incorporates an adaptive subgoal selection method that adjusts the granularity of subgoals, enhancing overall efficiency. Furthermore, proposed generalizable heuristics guide the forward search in a more targeted manner. Extensive evaluations in maze-like tasks populated with numerous objects and obstacles demonstrate that SeGMan is capable of generating not only consistent and computationally efficient manipulation plans but also outperform state-of-the-art approaches.
☆ Energy Consumption of Robotic Arm with the Local Reduction Method
Energy consumption in robotic arms is a significant concern in industrial automation due to rising operational costs and environmental impact. This study investigates the use of a local reduction method to optimize energy efficiency in robotic systems without compromising performance. The approach refines movement parameters, minimizing energy use while maintaining precision and operational reliability. A three-joint robotic arm model was tested using simulation over a 30-second period for various tasks, including pick-and-place and trajectory-following operations. The results revealed that the local reduction method reduced energy consumption by up to 25% compared to traditional techniques such as Model Predictive Control (MPC) and Genetic Algorithms (GA). Unlike MPC, which requires significant computational resources, and GA, which has slow convergence rates, the local reduction method demonstrated superior adaptability and computational efficiency in real-time applications. The study highlights the scalability and simplicity of the local reduction approach, making it an attractive option for industries seeking sustainable and cost-effective solutions. Additionally, this method can integrate seamlessly with emerging technologies like Artificial Intelligence (AI), further enhancing its application in dynamic and complex environments. This research underscores the potential of the local reduction method as a practical tool for optimizing robotic arm operations, reducing energy demands, and contributing to sustainability in industrial automation. Future work will focus on extending the approach to real-world scenarios and incorporating AI-driven adjustments for more dynamic adaptability.
comment: 4 pages, 3 figures, 1 table
☆ Shaken, Not Stirred: A Novel Dataset for Visual Understanding of Glasses in Human-Robot Bartending Tasks IROS
Datasets for object detection often do not account for enough variety of glasses, due to their transparent and reflective properties. Specifically, open-vocabulary object detectors, widely used in embodied robotic agents, fail to distinguish subclasses of glasses. This scientific gap poses an issue to robotic applications that suffer from accumulating errors between detection, planning, and action execution. The paper introduces a novel method for the acquisition of real-world data from RGB-D sensors that minimizes human effort. We propose an auto-labeling pipeline that generates labels for all the acquired frames based on the depth measurements. We provide a novel real-world glass object dataset that was collected on the Neuro-Inspired COLlaborator (NICOL), a humanoid robot platform. The data set consists of 7850 images recorded from five different cameras. We show that our trained baseline model outperforms state-of-the-art open-vocabulary approaches. In addition, we deploy our baseline model in an embodied agent approach to the NICOL platform, on which it achieves a success rate of 81% in a human-robot bartending scenario.
comment: Submitted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
☆ Manipulation of Elasto-Flexible Cables with Single or Multiple UAVs
This work considers a large class of systems composed of multiple quadrotors manipulating deformable and extensible cables. The cable is described via a discretized representation, which decomposes it into linear springs interconnected through lumped-mass passive spherical joints. Sets of flat outputs are found for the systems. Numerical simulations support the findings by showing cable manipulation relying on flatness-based trajectories. Eventually, we present an experimental validation of the effectiveness of the proposed discretized cable model for a two-robot example. Moreover, a closed-loop controller based on the identified model and using cable-output feedback is experimentally tested.
☆ Towards Autonomous Reinforcement Learning for Real-World Robotic Manipulation with Large Language Models
Recent advancements in Large Language Models (LLMs) and Visual Language Models (VLMs) have significantly impacted robotics, enabling high-level semantic motion planning applications. Reinforcement Learning (RL), a complementary paradigm, enables agents to autonomously optimize complex behaviors through interaction and reward signals. However, designing effective reward functions for RL remains challenging, especially in real-world tasks where sparse rewards are insufficient and dense rewards require elaborate design. In this work, we propose Autonomous Reinforcement learning for Complex HumanInformed Environments (ARCHIE), an unsupervised pipeline leveraging GPT-4, a pre-trained LLM, to generate reward functions directly from natural language task descriptions. The rewards are used to train RL agents in simulated environments, where we formalize the reward generation process to enhance feasibility. Additionally, GPT-4 automates the coding of task success criteria, creating a fully automated, one-shot procedure for translating human-readable text into deployable robot skills. Our approach is validated through extensive simulated experiments on single-arm and bi-manual manipulation tasks using an ABB YuMi collaborative robot, highlighting its practicality and effectiveness. Tasks are demonstrated on the real robot setup.
☆ VLA Model-Expert Collaboration for Bi-directional Manipulation Learning
The emergence of vision-language-action (VLA) models has given rise to foundation models for robot manipulation. Although these models have achieved significant improvements, their generalization in multi-task manipulation remains limited. This study proposes a VLA model-expert collaboration framework that leverages a limited number of expert actions to enhance VLA model performance. This approach reduces expert workload relative to manual operation while simultaneously improving the reliability and generalization of VLA models. Furthermore, manipulation data collected during collaboration can further refine the VLA model, while human participants concurrently enhance their skills. This bi-directional learning loop boosts the overall performance of the collaboration system. Experimental results across various VLA models demonstrate the effectiveness of the proposed system in collaborative manipulation and learning, as evidenced by improved success rates across tasks. Additionally, validation using a brain-computer interface (BCI) indicates that the collaboration system enhances the efficiency of low-speed action systems by involving VLA model during manipulation. These promising results pave the way for advancing human-robot interaction in the era of foundation models for robotics. (Project website: https://aoqunjin.github.io/Expert-VLA/)
☆ Simulation-based Analysis Of Highway Trajectory Planning Using High-Order Polynomial For Highly Automated Driving Function
One of the fundamental tasks of autonomous driving is safe trajectory planning, the task of deciding where the vehicle needs to drive, while avoiding obstacles, obeying safety rules, and respecting the fundamental limits of road. Real-world application of such a method involves consideration of surrounding environment conditions and movements such as Lane Change, collision avoidance, and lane merge. The focus of the paper is to develop and implement safe collision free highway Lane Change trajectory using high order polynomial for Highly Automated Driving Function (HADF). Planning is often considered as a higher-level process than control. Behavior Planning Module (BPM) is designed that plans the high-level driving actions like Lane Change maneuver to safely achieve the functionality of transverse guidance ensuring safety of the vehicle using motion planning in a scenario including environmental situation. Based on the recommendation received from the (BPM), the function will generate a desire corresponding trajectory. The proposed planning system is situation specific with polynomial based algorithm for same direction two lane highway scenario. To support the trajectory system polynomial curve can be used to reduces overall complexity and thereby allows rapid computation. The proposed Lane Change scenario is modeled, and results has been analyzed (verified and validate) through the MATLAB simulation environment. The method proposed in this paper has achieved a significant improvement in safety and stability of Lane Changing maneuver.
Real-time Spatial-temporal Traversability Assessment via Feature-based Sparse Gaussian Process
Terrain analysis is critical for the practical application of ground mobile robots in real-world tasks, especially in outdoor unstructured environments. In this paper, we propose a novel spatial-temporal traversability assessment method, which aims to enable autonomous robots to effectively navigate through complex terrains. Our approach utilizes sparse Gaussian processes (SGP) to extract geometric features (curvature, gradient, elevation, etc.) directly from point cloud scans. These features are then used to construct a high-resolution local traversability map. Then, we design a spatial-temporal Bayesian Gaussian kernel (BGK) inference method to dynamically evaluate traversability scores, integrating historical and real-time data while considering factors such as slope, flatness, gradient, and uncertainty metrics. GPU acceleration is applied in the feature extraction step, and the system achieves real-time performance. Extensive simulation experiments across diverse terrain scenarios demonstrate that our method outperforms SOTA approaches in both accuracy and computational efficiency. Additionally, we develop an autonomous navigation framework integrated with the traversability map and validate it with a differential driven vehicle in complex outdoor environments. Our code will be open-source for further research and development by the community, https://github.com/ZJU-FAST-Lab/FSGP_BGK.
comment: 8 pages, 10 figures
☆ DVM-SLAM: Decentralized Visual Monocular Simultaneous Localization and Mapping for Multi-Agent Systems
Cooperative Simultaneous Localization and Mapping (C-SLAM) enables multiple agents to work together in mapping unknown environments while simultaneously estimating their own positions. This approach enhances robustness, scalability, and accuracy by sharing information between agents, reducing drift, and enabling collective exploration of larger areas. In this paper, we present Decentralized Visual Monocular SLAM (DVM-SLAM), the first open-source decentralized monocular C-SLAM system. By only utilizing low-cost and light-weight monocular vision sensors, our system is well suited for small robots and micro aerial vehicles (MAVs). DVM-SLAM's real-world applicability is validated on physical robots with a custom collision avoidance framework, showcasing its potential in real-time multi-agent autonomous navigation scenarios. We also demonstrate comparable accuracy to state-of-the-art centralized monocular C-SLAM systems. We open-source our code and provide supplementary material online.
☆ GAGrasp: Geometric Algebra Diffusion for Dexterous Grasping ICRA 2025
We propose GAGrasp, a novel framework for dexterous grasp generation that leverages geometric algebra representations to enforce equivariance to SE(3) transformations. By encoding the SE(3) symmetry constraint directly into the architecture, our method improves data and parameter efficiency while enabling robust grasp generation across diverse object poses. Additionally, we incorporate a differentiable physics-informed refinement layer, which ensures that generated grasps are physically plausible and stable. Extensive experiments demonstrate the model's superior performance in generalization, stability, and adaptability compared to existing methods. Additional details at https://gagrasp.github.io/
comment: Accepted at ICRA 2025
☆ The Spinning Blimp: Design and Control of a Novel Minimalist Aerial Vehicle Leveraging Rotational Dynamics and Locomotion ICRA 2025
This paper presents the Spinning Blimp, a novel lighter-than-air (LTA) aerial vehicle designed for low-energy stable flight. Utilizing an oblate spheroid helium balloon for buoyancy, the vehicle achieves minimal energy consumption while maintaining prolonged airborne states. The unique and low-cost design employs a passively arranged wing coupled with a propeller to induce a spinning behavior, providing inherent pendulum-like stabilization. We propose a control strategy that takes advantage of the continuous revolving nature of the spinning blimp to control translational motion. The cost-effectiveness of the vehicle makes it highly suitable for a variety of applications, such as patrolling, localization, air and turbulence monitoring, and domestic surveillance. Experimental evaluations affirm the design's efficacy and underscore its potential as a versatile and economically viable solution for aerial applications.
comment: Accepted at the IEEE international conference on robotics and automation(ICRA 2025)
☆ Image-Based Relocalization and Alignment for Long-Term Monitoring of Dynamic Underwater Environments
Effective monitoring of underwater ecosystems is crucial for tracking environmental changes, guiding conservation efforts, and ensuring long-term ecosystem health. However, automating underwater ecosystem management with robotic platforms remains challenging due to the complexities of underwater imagery, which pose significant difficulties for traditional visual localization methods. We propose an integrated pipeline that combines Visual Place Recognition (VPR), feature matching, and image segmentation on video-derived images. This method enables robust identification of revisited areas, estimation of rigid transformations, and downstream analysis of ecosystem changes. Furthermore, we introduce the SQUIDLE+ VPR Benchmark-the first large-scale underwater VPR benchmark designed to leverage an extensive collection of unstructured data from multiple robotic platforms, spanning time intervals from days to years. The dataset encompasses diverse trajectories, arbitrary overlap and diverse seafloor types captured under varying environmental conditions, including differences in depth, lighting, and turbidity. Our code is available at: https://github.com/bev-gorry/underloc
☆ OPG-Policy: Occluded Push-Grasp Policy Learning with Amodal Segmentation
Goal-oriented grasping in dense clutter, a fundamental challenge in robotics, demands an adaptive policy to handle occluded target objects and diverse configurations. Previous methods typically learn policies based on partially observable segments of the occluded target to generate motions. However, these policies often struggle to generate optimal motions due to uncertainties regarding the invisible portions of different occluded target objects across various scenes, resulting in low motion efficiency. To this end, we propose OPG-Policy, a novel framework that leverages amodal segmentation to predict occluded portions of the target and develop an adaptive push-grasp policy for cluttered scenarios where the target object is partially observed. Specifically, our approach trains a dedicated amodal segmentation module for diverse target objects to generate amodal masks. These masks and scene observations are mapped to the future rewards of grasp and push motion primitives via deep Q-learning to learn the motion critic. Afterward, the push and grasp motion candidates predicted by the critic, along with the relevant domain knowledge, are fed into the coordinator to generate the optimal motion implemented by the robot. Extensive experiments conducted in both simulated and real-world environments demonstrate the effectiveness of our approach in generating motion sequences for retrieving occluded targets, outperforming other baseline methods in success rate and motion efficiency.
☆ Instrument-Splatting: Controllable Photorealistic Reconstruction of Surgical Instruments Using Gaussian Splatting
Real2Sim is becoming increasingly important with the rapid development of surgical artificial intelligence (AI) and autonomy. In this work, we propose a novel Real2Sim methodology, \textit{Instrument-Splatting}, that leverages 3D Gaussian Splatting to provide fully controllable 3D reconstruction of surgical instruments from monocular surgical videos. To maintain both high visual fidelity and manipulability, we introduce a geometry pre-training to bind Gaussian point clouds on part mesh with accurate geometric priors and define a forward kinematics to control the Gaussians as flexible as real instruments. Afterward, to handle unposed videos, we design a novel instrument pose tracking method leveraging semantics-embedded Gaussians to robustly refine per-frame instrument poses and joint states in a render-and-compare manner, which allows our instrument Gaussian to accurately learn textures and reach photorealistic rendering. We validated our method on 2 publicly released surgical videos and 4 videos collected on ex vivo tissues and green screens. Quantitative and qualitative evaluations demonstrate the effectiveness and superiority of the proposed method.
comment: 11 pages, 5 figures
☆ Music-Driven Legged Robots: Synchronized Walking to Rhythmic Beats ICRA2025
We address the challenge of effectively controlling the locomotion of legged robots by incorporating precise frequency and phase characteristics, which is often ignored in locomotion policies that do not account for the periodic nature of walking. We propose a hierarchical architecture that integrates a low-level phase tracker, oscillators, and a high-level phase modulator. This controller allows quadruped robots to walk in a natural manner that is synchronized with external musical rhythms. Our method generates diverse gaits across different frequencies and achieves real-time synchronization with music in the physical world. This research establishes a foundational framework for enabling real-time execution of accurate rhythmic motions in legged robots. Video is available at website: https://music-walker.github.io/.
comment: ICRA2025 accepted
RA-DP: Rapid Adaptive Diffusion Policy for Training-Free High-frequency Robotics Replanning
Diffusion models exhibit impressive scalability in robotic task learning, yet they struggle to adapt to novel, highly dynamic environments. This limitation primarily stems from their constrained replanning ability: they either operate at a low frequency due to a time-consuming iterative sampling process, or are unable to adapt to unforeseen feedback in case of rapid replanning. To address these challenges, we propose RA-DP, a novel diffusion policy framework with training-free high-frequency replanning ability that solves the above limitations in adapting to unforeseen dynamic environments. Specifically, our method integrates guidance signals which are often easily obtained in the new environment during the diffusion sampling process, and utilizes a novel action queue mechanism to generate replanned actions at every denoising step without retraining, thus forming a complete training-free framework for robot motion adaptation in unseen environments. Extensive evaluations have been conducted in both well-recognized simulation benchmarks and real robot tasks. Results show that RA-DP outperforms the state-of-the-art diffusion-based methods in terms of replanning frequency and success rate. Moreover, we show that our framework is theoretically compatible with any training-free guidance signal.
☆ Object State Estimation Through Robotic Active Interaction for Biological Autonomous Drilling
Estimating the state of biological specimens is challenging due to limited observation through microscopic vision. For instance, during mouse skull drilling, the appearance alters little when thinning bone tissue because of its semi-transparent property and the high-magnification microscopic vision. To obtain the object's state, we introduce an object state estimation method for biological specimens through active interaction based on the deflection. The method is integrated to enhance the autonomous drilling system developed in our previous work. The method and integrated system were evaluated through 12 autonomous eggshell drilling experiment trials. The results show that the system achieved a 91.7% successful ratio and 75% detachable ratio, showcasing its potential applicability in more complex surgical procedures such as mouse skull craniotomy. This research paves the way for further development of autonomous robotic systems capable of estimating the object's state through active interaction.
comment: The first and second authors contribute equally to this research. 6 pages, 5 figures, submitted to RA-L
☆ Autonomous Robotic Bone Micro-Milling System with Automatic Calibration and 3D Surface Fitting IROS 2025
Automating bone micro-milling using a robotic system presents challenges due to the uncertainties in both the external and internal features of bone tissue. For example, during a mouse cranial window creation, a circular path with a radius of 2 to 4 mm needs to be milled on the mouse skull using a microdrill. The uneven surface and non-uniform thickness of the mouse skull make it difficult to fully automate this process, requiring the system to possess advanced perceptual and adaptive capabilities. In this study, we propose an automatic calibration and 3D surface fitting method and integrate it into an autonomous robotic bone micro-milling system, enabling it to quickly, in real-time, and accurately perceive and adapt to the uneven surface and non-uniform thickness of the target without human assistance. Validation experiments on euthanized mice demonstrate that the improved system achieves a success rate of 85.7 % and an average milling time of 2.1 minutes, showing not only significant performance improvements over the previous system but also exceptional accuracy, speed, and stability compared to human operators.
comment: 8 pages, 8 figures, submitted to IROS 2025
☆ Dexterous Hand Manipulation via Efficient Imitation-Bootstrapped Online Reinforcement Learning
Dexterous hand manipulation in real-world scenarios presents considerable challenges due to its demands for both dexterity and precision. While imitation learning approaches have thoroughly examined these challenges, they still require a significant number of expert demonstrations and are limited by a constrained performance upper bound. In this paper, we propose a novel and efficient Imitation-Bootstrapped Online Reinforcement Learning (IBORL) method tailored for robotic dexterous hand manipulation in real-world environments. Specifically, we pretrain the policy using a limited set of expert demonstrations and subsequently finetune this policy through direct reinforcement learning in the real world. To address the catastrophic forgetting issues that arise from the distribution shift between expert demonstrations and real-world environments, we design a regularization term that balances the exploration of novel behaviors with the preservation of the pretrained policy. Our experiments with real-world tasks demonstrate that our method significantly outperforms existing approaches, achieving an almost 100% success rate and a 23% improvement in cycle time. Furthermore, by finetuning with online reinforcement learning, our method surpasses expert demonstrations and uncovers superior policies. Our code and empirical results are available in https://hggforget.github.io/iborl.github.io/.
Planning and Control for Deformable Linear Object Manipulation SC
Manipulating a deformable linear object (DLO) such as wire, cable, and rope is a common yet challenging task due to their high degrees of freedom and complex deformation behaviors, especially in an environment with obstacles. Existing local control methods are efficient but prone to failure in complex scenarios, while precise global planners are computationally intensive and difficult to deploy. This paper presents an efficient, easy-to-deploy framework for collision-free DLO manipulation using mobile manipulators. We demonstrate the effectiveness of leveraging standard planning tools for high-dimensional DLO manipulation without requiring custom planners or extensive data-driven models. Our approach combines an off-the-shelf global planner with a real-time local controller. The global planner approximates the DLO as a series of rigid links connected by spherical joints, enabling rapid path planning without the need for problem-specific planners or large datasets. The local controller employs control barrier functions (CBFs) to enforce safety constraints, maintain the DLO integrity, prevent overstress, and handle obstacle avoidance. It compensates for modeling inaccuracies by using a state-of-the-art position-based dynamics technique that approximates physical properties like Young's and shear moduli. We validate our framework through extensive simulations and real-world demonstrations. In complex obstacle scenarios-including tent pole transport, corridor navigation, and tasks requiring varied stiffness-our method achieves a 100% success rate over thousands of trials, with significantly reduced planning times compared to state-of-the-art techniques. Real-world experiments include transportation of a tent pole and a rope using mobile manipulators. We share our ROS-based implementation to facilitate adoption in various applications.
comment: SUBMITTED TO IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING (T-ASE)
☆ Robotic Compliant Object Prying Using Diffusion Policy Guided by Vision and Force Observations
The growing adoption of batteries in the electric vehicle industry and various consumer products has created an urgent need for effective recycling solutions. These products often contain a mix of compliant and rigid components, making robotic disassembly a critical step toward achieving scalable recycling processes. Diffusion policy has emerged as a promising approach for learning low-level skills in robotics. To effectively apply diffusion policy to contact-rich tasks, incorporating force as feedback is essential. In this paper, we apply diffusion policy with vision and force in a compliant object prying task. However, when combining low-dimensional contact force with high-dimensional image, the force information may be diluted. To address this issue, we propose a method that effectively integrates force with image data for diffusion policy observations. We validate our approach on a battery prying task that demands high precision and multi-step execution. Our model achieves a 96\% success rate in diverse scenarios, marking a 57\% improvement over the vision-only baseline. Our method also demonstrates zero-shot transfer capability to handle unseen objects and battery types. Supplementary videos and implementation codes are available on our project website. https://rros-lab.github.io/diffusion-with-force.github.io/
comment: Accepted to IEEE RA-L. (C) 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media. 8 pages with 9 figures
☆ GeoFIK: A Fast and Reliable Geometric Solver for the IK of the Franka Arm based on Screw Theory Enabling Multiple Redundancy Parameters
Modern robotics applications require an inverse kinematics (IK) solver that is fast, robust and consistent, and that provides all possible solutions. Currently, the Franka robot arm is the most widely used manipulator in robotics research. With 7 DOFs, the IK of this robot is not only complex due to its 1-DOF redundancy, but also due to the link offsets at the wrist and elbow. Due to this complexity, none of the Franka IK solvers available in the literature provide satisfactory results when used in real-world applications. Therefore, in this paper we introduce GeoFIK (Geometric Franka IK), an analytical IK solver that allows the use of different joint variables to resolve the redundancy. The approach uses screw theory to describe the entire geometry of the robot, allowing the computation of the Jacobian matrix prior to computation of joint angles. All singularities are identified and handled. As an example of how the geometric elements obtained by the IK can be exploited, a solver with the swivel angle as the free variable is provided. Several experiments are carried out to validate the speed, robustness and reliability of the GeoFIK against two state-of-the-art solvers.
☆ GRaD-Nav: Efficiently Learning Visual Drone Navigation with Gaussian Radiance Fields and Differentiable Dynamics
Autonomous visual navigation is an essential element in robot autonomy. Reinforcement learning (RL) offers a promising policy training paradigm. However existing RL methods suffer from high sample complexity, poor sim-to-real transfer, and limited runtime adaptability to navigation scenarios not seen during training. These problems are particularly challenging for drones, with complex nonlinear and unstable dynamics, and strong dynamic coupling between control and perception. In this paper, we propose a novel framework that integrates 3D Gaussian Splatting (3DGS) with differentiable deep reinforcement learning (DDRL) to train vision-based drone navigation policies. By leveraging high-fidelity 3D scene representations and differentiable simulation, our method improves sample efficiency and sim-to-real transfer. Additionally, we incorporate a Context-aided Estimator Network (CENet) to adapt to environmental variations at runtime. Moreover, by curriculum training in a mixture of different surrounding environments, we achieve in-task generalization, the ability to solve new instances of a task not seen during training. Drone hardware experiments demonstrate our method's high training efficiency compared to state-of-the-art RL methods, zero shot sim-to-real transfer for real robot deployment without fine tuning, and ability to adapt to new instances within the same task class (e.g. to fly through a gate at different locations with different distractors in the environment).
☆ A Convex Formulation of Material Points and Rigid Bodies with GPU-Accelerated Async-Coupling for Interactive Simulation
We present a novel convex formulation that weakly couples the Material Point Method (MPM) with rigid body dynamics through frictional contact, optimized for efficient GPU parallelization. Our approach features an asynchronous time-splitting scheme to integrate MPM and rigid body dynamics under different time step sizes. We develop a globally convergent quasi-Newton solver tailored for massive parallelization, achieving up to 500x speedup over previous convex formulations without sacrificing stability. Our method enables interactive-rate simulations of robotic manipulation tasks with diverse deformable objects including granular materials and cloth, with strong convergence guarantees. We detail key implementation strategies to maximize performance and validate our approach through rigorous experiments, demonstrating superior speed, accuracy, and stability compared to state-of-the-art MPM simulators for robotics. We make our method available in the open-source robotics toolkit, Drake.
comment: The supplemental video is available at https://youtu.be/bJNdMXDq4AE
☆ QuietPaw: Learning Quadrupedal Locomotion with Versatile Noise Preference Alignment
When operating at their full capacity, quadrupedal robots can produce loud footstep noise, which can be disruptive in human-centered environments like homes, offices, and hospitals. As a result, balancing locomotion performance with noise constraints is crucial for the successful real-world deployment of quadrupedal robots. However, achieving adaptive noise control is challenging due to (a) the trade-off between agility and noise minimization, (b) the need for generalization across diverse deployment conditions, and (c) the difficulty of effectively adjusting policies based on noise requirements. We propose QuietPaw, a framework incorporating our Conditional Noise-Constrained Policy (CNCP), a constrained learning-based algorithm that enables flexible, noise-aware locomotion by conditioning policy behavior on noise-reduction levels. We leverage value representation decomposition in the critics, disentangling state representations from condition-dependent representations and this allows a single versatile policy to generalize across noise levels without retraining while improving the Pareto trade-off between agility and noise reduction. We validate our approach in simulation and the real world, demonstrating that CNCP can effectively balance locomotion performance and noise constraints, achieving continuously adjustable noise reduction.
☆ Ergodic Exploration over Meshable Surfaces
Robotic search and rescue, exploration, and inspection require trajectory planning across a variety of domains. A popular approach to trajectory planning for these types of missions is ergodic search, which biases a trajectory to spend time in parts of the exploration domain that are believed to contain more information. Most prior work on ergodic search has been limited to searching simple surfaces, like a 2D Euclidean plane or a sphere, as they rely on projecting functions defined on the exploration domain onto analytically obtained Fourier basis functions. In this paper, we extend ergodic search to any surface that can be approximated by a triangle mesh. The basis functions are approximated through finite element methods on a triangle mesh of the domain. We formally prove that this approximation converges to the continuous case as the mesh approximation converges to the true domain. We demonstrate that on domains where analytical basis functions are available (plane, sphere), the proposed method obtains equivalent results, and while on other domains (torus, bunny, wind turbine), the approach is versatile enough to still search effectively. Lastly, we also compare with an existing ergodic search technique that can handle complex domains and show that our method results in a higher quality exploration.
comment: 6 content pages, 1 references page, 6 figures, International Conference on Robotics and Automation 2025
☆ GRIP: A General Robotic Incremental Potential Contact Simulation Dataset for Unified Deformable-Rigid Coupled Grasping
Grasping is fundamental to robotic manipulation, and recent advances in large-scale grasping datasets have provided essential training data and evaluation benchmarks, accelerating the development of learning-based methods for robust object grasping. However, most existing datasets exclude deformable bodies due to the lack of scalable, robust simulation pipelines, limiting the development of generalizable models for compliant grippers and soft manipulands. To address these challenges, we present GRIP, a General Robotic Incremental Potential contact simulation dataset for universal grasping. GRIP leverages an optimized Incremental Potential Contact (IPC)-based simulator for multi-environment data generation, achieving up to 48x speedup while ensuring efficient, intersection- and inversion-free simulations for compliant grippers and deformable objects. Our fully automated pipeline generates and evaluates diverse grasp interactions across 1,200 objects and 100,000 grasp poses, incorporating both soft and rigid grippers. The GRIP dataset enables applications such as neural grasp generation and stress field prediction.
comment: We release GRIP to advance research in robotic manipulation, soft-gripper control, and physics-driven simulation at: https://bell0o.github.io/GRIP/
☆ Multi-Agent Ergodic Exploration under Smoke-Based, Time-Varying Sensor Visibility Constraints ICRA 2025
In this work, we consider the problem of multi-agent informative path planning (IPP) for robots whose sensor visibility continuously changes as a consequence of a time-varying natural phenomenon. We leverage ergodic trajectory optimization (ETO), which generates paths such that the amount of time an agent spends in an area is proportional to the expected information in that area. We focus specifically on the problem of multi-agent drone search of a wildfire, where we use the time-varying environmental process of smoke diffusion to construct a sensor visibility model. This sensor visibility model is used to repeatedly calculate an expected information distribution (EID) to be used in the ETO algorithm. Our experiments show that our exploration method achieves improved information gathering over both baseline search methods and naive ergodic search formulations.
comment: Accepted to ICRA 2025
☆ Quantifying and Modeling Driving Styles in Trajectory Forecasting
Trajectory forecasting has become a popular deep learning task due to its relevance for scenario simulation for autonomous driving. Specifically, trajectory forecasting predicts the trajectory of a short-horizon future for specific human drivers in a particular traffic scenario. Robust and accurate future predictions can enable autonomous driving planners to optimize for low-risk and predictable outcomes for human drivers around them. Although some work has been done to model driving style in planning and personalized autonomous polices, a gap exists in explicitly modeling human driving styles for trajectory forecasting of human behavior. Human driving style is most certainly a correlating factor to decision making, especially in edge-case scenarios where risk is nontrivial, as justified by the large amount of traffic psychology literature on risky driving. So far, the current real-world datasets for trajectory forecasting lack insight on the variety of represented driving styles. While the datasets may represent real-world distributions of driving styles, we posit that fringe driving style types may also be correlated with edge-case safety scenarios. In this work, we conduct analyses on existing real-world trajectory datasets for driving and dissect these works from the lens of driving styles, which is often intangible and non-standardized.
☆ Data-Efficient Learning from Human Interventions for Mobile Robots ICRA 2025
Mobile robots are essential in applications such as autonomous delivery and hospitality services. Applying learning-based methods to address mobile robot tasks has gained popularity due to its robustness and generalizability. Traditional methods such as Imitation Learning (IL) and Reinforcement Learning (RL) offer adaptability but require large datasets, carefully crafted reward functions, and face sim-to-real gaps, making them challenging for efficient and safe real-world deployment. We propose an online human-in-the-loop learning method PVP4Real that combines IL and RL to address these issues. PVP4Real enables efficient real-time policy learning from online human intervention and demonstration, without reward or any pretraining, significantly improving data efficiency and training safety. We validate our method by training two different robots -- a legged quadruped, and a wheeled delivery robot -- in two mobile robot tasks, one of which even uses raw RGBD image as observation. The training finishes within 15 minutes. Our experiments show the promising future of human-in-the-loop learning in addressing the data efficiency issue in real-world robotic tasks. More information is available at: https://metadriverse.github.io/pvp4real/
comment: ICRA 2025. Webpage: https://metadriverse.github.io/pvp4real/
☆ INTENT: Trajectory Prediction Framework with Intention-Guided Contrastive Clustering
Accurate trajectory prediction of road agents (e.g., pedestrians, vehicles) is an essential prerequisite for various intelligent systems applications, such as autonomous driving and robotic navigation. Recent research highlights the importance of environmental contexts (e.g., maps) and the "multi-modality" of trajectories, leading to increasingly complex model structures. However, real-world deployments require lightweight models that can quickly migrate and adapt to new environments. Additionally, the core motivations of road agents, referred to as their intentions, deserves further exploration. In this study, we advocate that understanding and reasoning road agents' intention plays a key role in trajectory prediction tasks, and the main challenge is that the concept of intention is fuzzy and abstract. To this end, we present INTENT, an efficient intention-guided trajectory prediction model that relies solely on information contained in the road agent's trajectory. Our model distinguishes itself from existing models in several key aspects: (i) We explicitly model road agents' intentions through contrastive clustering, accommodating the fuzziness and abstraction of human intention in their trajectories. (ii) The proposed INTENT is based solely on multi-layer perceptrons (MLPs), resulting in reduced training and inference time, making it very efficient and more suitable for real-world deployment. (iii) By leveraging estimated intentions and an innovative algorithm for transforming trajectory observations, we obtain more robust trajectory representations that lead to superior prediction accuracy. Extensive experiments on real-world trajectory datasets for pedestrians and autonomous vehicles demonstrate the effectiveness and efficiency of INTENT.
☆ MarsLGPR: Mars Rover Localization with Ground Penetrating Radar
In this work, we propose the use of Ground Penetrating Radar (GPR) for rover localization on Mars. Precise pose estimation is an important task for mobile robots exploring planetary surfaces, as they operate in GPS-denied environments. Although visual odometry provides accurate localization, it is computationally expensive and can fail in dim or high-contrast lighting. Wheel encoders can also provide odometry estimation, but are prone to slipping on the sandy terrain encountered on Mars. Although traditionally a scientific surveying sensor, GPR has been used on Earth for terrain classification and localization through subsurface feature matching. The Perseverance rover and the upcoming ExoMars rover have GPR sensors already equipped to aid in the search of water and mineral resources. We propose to leverage GPR to aid in Mars rover localization. Specifically, we develop a novel GPR-based deep learning model that predicts 1D relative pose translation. We fuse our GPR pose prediction method with inertial and wheel encoder data in a filtering framework to output rover localization. We perform experiments in a Mars analog environment and demonstrate that our GPR-based displacement predictions both outperform wheel encoders and improve multi-modal filtering estimates in high-slip environments. Lastly, we present the first dataset aimed at GPR-based localization in Mars analog environments, which will be made publicly available upon publication.
☆ SAFE-TAXI: A Hierarchical Multi-UAS Safe Auto-Taxiing Framework with Runtime Safety Assurance and Conflict Resolution
We present a hierarchical safe auto-taxiing framework to enhance the automated ground operations of multiple unmanned aircraft systems (multi-UAS). The auto-taxiing problem becomes particularly challenging due to (i) unknown disturbances, such as crosswind affecting the aircraft dynamics, (ii) taxiway incursions due to unplanned obstacles, and (iii) spatiotemporal conflicts at the intersections between multiple entry points in the taxiway. To address these issues, we propose a hierarchical framework, i.e., SAFE-TAXI, combining centralized spatiotemporal planning with decentralized MPC-CBF-based control to safely navigate the aircraft through the taxiway while avoiding intersection conflicts and unplanned obstacles (e.g., other aircraft or ground vehicles). Our proposed framework decouples the auto-taxiing problem temporally into conflict resolution and motion planning, respectively. Conflict resolution is handled in a centralized manner by computing conflict-aware reference trajectories for each aircraft. In contrast, safety assurance from unplanned obstacles is handled by an MPC-CBF-based controller implemented in a decentralized manner. We demonstrate the effectiveness of our proposed framework through numerical simulations and experimentally validate it using Night Vapor, a small-scale fixed-wing test platform.
comment: 7 pages,6 figures
☆ Learning-based GNSS Uncertainty Quantification using Continuous-Time Factor Graph Optimization
This short paper presents research findings on two learning-based methods for quantifying measurement uncertainties in global navigation satellite systems (GNSS). We investigate two learning strategies: offline learning for outlier prediction and online learning for noise distribution approximation, specifically applied to GNSS pseudorange observations. To develop and evaluate these learning methods, we introduce a novel multisensor state estimator that accurately and robustly estimates trajectory from multiple sensor inputs, critical for deriving GNSS measurement residuals used to train the uncertainty models. We validate the proposed learning-based models using real-world sensor data collected in diverse urban environments. Experimental results demonstrate that both models effectively handle GNSS outliers and improve state estimation performance. Furthermore, we provide insightful discussions to motivate future research toward developing a federated framework for robust vehicle localization in challenging environments.
comment: This extended abstract has been accepted to the 1st German Robotic Conference
☆ Curiosity-Driven Imagination: Discovering Plan Operators and Learning Associated Policies for Open-World Adaptation ICRA 2025
Adapting quickly to dynamic, uncertain environments-often called "open worlds"-remains a major challenge in robotics. Traditional Task and Motion Planning (TAMP) approaches struggle to cope with unforeseen changes, are data-inefficient when adapting, and do not leverage world models during learning. We address this issue with a hybrid planning and learning system that integrates two models: a low level neural network based model that learns stochastic transitions and drives exploration via an Intrinsic Curiosity Module (ICM), and a high level symbolic planning model that captures abstract transitions using operators, enabling the agent to plan in an "imaginary" space and generate reward machines. Our evaluation in a robotic manipulation domain with sequential novelty injections demonstrates that our approach converges faster and outperforms state-of-the-art hybrid methods.
comment: 8 pages, 4 figures. Accepted at ICRA 2025
☆ Neural Configuration-Space Barriers for Manipulation Planning and Control
Planning and control for high-dimensional robot manipulators in cluttered, dynamic environments require both computational efficiency and robust safety guarantees. Inspired by recent advances in learning configuration-space distance functions (CDFs) as robot body representations, we propose a unified framework for motion planning and control that formulates safety constraints as CDF barriers. A CDF barrier approximates the local free configuration space, substantially reducing the number of collision-checking operations during motion planning. However, learning a CDF barrier with a neural network and relying on online sensor observations introduce uncertainties that must be considered during control synthesis. To address this, we develop a distributionally robust CDF barrier formulation for control that explicitly accounts for modeling errors and sensor noise without assuming a known underlying distribution. Simulations and hardware experiments on a 6-DoF xArm manipulator show that our neural CDF barrier formulation enables efficient planning and robust real-time safe control in cluttered and dynamic environments, relying only on onboard point-cloud observations.
☆ Modeling Dynamic Hand-Object Interactions with Applications to Human-Robot Handovers
Humans frequently grasp, manipulate, and move objects. Interactive systems assist humans in these tasks, enabling applications in Embodied AI, human-robot interaction, and virtual reality. However, current methods in hand-object synthesis often neglect dynamics and focus on generating static grasps. The first part of this dissertation introduces dynamic grasp synthesis, where a hand grasps and moves an object to a target pose. We approach this task using physical simulation and reinforcement learning. We then extend this to bimanual manipulation and articulated objects, requiring fine-grained coordination between hands. In the second part of this dissertation, we study human-to-robot handovers. We integrate captured human motion into simulation and introduce a student-teacher framework that adapts to human behavior and transfers from sim to real. To overcome data scarcity, we generate synthetic interactions, increasing training diversity by 100x. Our user study finds no difference between policies trained on synthetic vs. real motions.
comment: PhD Thesis
☆ Adapt3R: Adaptive 3D Scene Representation for Domain Transfer in Imitation Learning
Imitation Learning (IL) has been very effective in training robots to perform complex and diverse manipulation tasks. However, its performance declines precipitously when the observations are out of the training distribution. 3D scene representations that incorporate observations from calibrated RGBD cameras have been proposed as a way to improve generalizability of IL policies, but our evaluations in cross-embodiment and novel camera pose settings found that they show only modest improvement. To address those challenges, we propose Adaptive 3D Scene Representation (Adapt3R), a general-purpose 3D observation encoder which uses a novel architecture to synthesize data from one or more RGBD cameras into a single vector that can then be used as conditioning for arbitrary IL algorithms. The key idea is to use a pretrained 2D backbone to extract semantic information about the scene, using 3D only as a medium for localizing this semantic information with respect to the end-effector. We show that when trained end-to-end with several SOTA multi-task IL algorithms, Adapt3R maintains these algorithms' multi-task learning capacity while enabling zero-shot transfer to novel embodiments and camera poses. Furthermore, we provide a detailed suite of ablation and sensitivity experiments to elucidate the design space for point cloud observation encoders.
comment: Videos, code, and data: https://pairlab.github.io/Adapt3R
☆ High-Precision Transformer-Based Visual Servoing for Humanoid Robots in Aligning Tiny Objects
High-precision tiny object alignment remains a common and critical challenge for humanoid robots in real-world. To address this problem, this paper proposes a vision-based framework for precisely estimating and controlling the relative position between a handheld tool and a target object for humanoid robots, e.g., a screwdriver tip and a screw head slot. By fusing images from the head and torso cameras on a robot with its head joint angles, the proposed Transformer-based visual servoing method can correct the handheld tool's positional errors effectively, especially at a close distance. Experiments on M4-M8 screws demonstrate an average convergence error of 0.8-1.3 mm and a success rate of 93\%-100\%. Through comparative analysis, the results validate that this capability of high-precision tiny object alignment is enabled by the Distance Estimation Transformer architecture and the Multi-Perception-Head mechanism proposed in this paper.
comment: for associated video, see https://b23.tv/cklF7aK
♻ ☆ TeraSim: Uncovering Unknown Unsafe Events for Autonomous Vehicles through Generative Simulation
Traffic simulation is essential for autonomous vehicle (AV) development, enabling comprehensive safety evaluation across diverse driving conditions. However, traditional rule-based simulators struggle to capture complex human interactions, while data-driven approaches often fail to maintain long-term behavioral realism or generate diverse safety-critical events. To address these challenges, we propose TeraSim, an open-source, high-fidelity traffic simulation platform designed to uncover unknown unsafe events and efficiently estimate AV statistical performance metrics, such as crash rates. TeraSim is designed for seamless integration with third-party physics simulators and standalone AV stacks, to construct a complete AV simulation system. Experimental results demonstrate its effectiveness in generating diverse safety-critical events involving both static and dynamic agents, identifying hidden deficiencies in AV systems, and enabling statistical performance evaluation. These findings highlight TeraSim's potential as a practical tool for AV safety assessment, benefiting researchers, developers, and policymakers. The code is available at https://github.com/mcity/TeraSim.
♻ ☆ Joint-repositionable Inner-wireless Planar Snake Robot
Bio-inspired multi-joint snake robots offer the advantages of terrain adaptability due to their limbless structure and high flexibility. However, a series of dozens of motor units in typical multiple-joint snake robots results in a heavy body structure and hundreds of watts of high power consumption. This paper presents a joint-repositionable, inner-wireless snake robot that enables multi-joint-like locomotion using a low-powered underactuated mechanism. The snake robot, consisting of a series of flexible passive links, can dynamically change its joint coupling configuration by repositioning motor-driven joint units along rack gears inside the robot. Additionally, a soft robot skin wirelessly powers the internal joint units, avoiding the risk of wire tangling and disconnection caused by the movable joint units. The combination of the joint-repositionable mechanism and the wireless-charging-enabled soft skin achieves a high degree of bending, along with a lightweight structure of 1.3 kg and energy-efficient wireless power transmission of 7.6 watts.
♻ ☆ Don't Shake the Wheel: Momentum-Aware Planning in End-to-End Autonomous Driving
End-to-end autonomous driving frameworks enable seamless integration of perception and planning but often rely on one-shot trajectory prediction, which may lead to unstable control and vulnerability to occlusions in single-frame perception. To address this, we propose the Momentum-Aware Driving (MomAD) framework, which introduces trajectory momentum and perception momentum to stabilize and refine trajectory predictions. MomAD comprises two core components: (1) Topological Trajectory Matching (TTM) employs Hausdorff Distance to select the optimal planning query that aligns with prior paths to ensure coherence;(2) Momentum Planning Interactor (MPI) cross-attends the selected planning query with historical queries to expand static and dynamic perception files. This enriched query, in turn, helps regenerate long-horizon trajectory and reduce collision risks. To mitigate noise arising from dynamic environments and detection errors, we introduce robust instance denoising during training, enabling the planning model to focus on critical signals and improve its robustness. We also propose a novel Trajectory Prediction Consistency (TPC) metric to quantitatively assess planning stability. Experiments on the nuScenes dataset demonstrate that MomAD achieves superior long-term consistency (>=3s) compared to SOTA methods. Moreover, evaluations on the curated Turning-nuScenes shows that MomAD reduces the collision rate by 26% and improves TPC by 0.97m (33.45%) over a 6s prediction horizon, while closedloop on Bench2Drive demonstrates an up to 16.3% improvement in success rate.
comment: 16 pages, 8 figures
♻ ☆ DEFT: Differentiable Branched Discrete Elastic Rods for Modeling Furcated DLOs in Real-Time
Autonomous wire harness assembly requires robots to manipulate complex branched cables with high precision and reliability. A key challenge in automating this process is predicting how these flexible and branched structures behave under manipulation. Without accurate predictions, it is difficult for robots to reliably plan or execute assembly operations. While existing research has made progress in modeling single-threaded Deformable Linear Objects (DLOs), extending these approaches to Branched Deformable Linear Objects (BDLOs) presents fundamental challenges. The junction points in BDLOs create complex force interactions and strain propagation patterns that cannot be adequately captured by simply connecting multiple single-DLO models. To address these challenges, this paper presents Differentiable discrete branched Elastic rods for modeling Furcated DLOs in real-Time (DEFT), a novel framework that combines a differentiable physics-based model with a learning framework to: 1) accurately model BDLO dynamics, including dynamic propagation at junction points and grasping in the middle of a BDLO, 2) achieve efficient computation for real-time inference, and 3) enable planning to demonstrate dexterous BDLO manipulation. A comprehensive series of real-world experiments demonstrates DEFT's efficacy in terms of accuracy, computational speed, and generalizability compared to state-of-the-art alternatives. Project page:https://roahmlab.github.io/DEFT/.
♻ ☆ Differentiable Composite Neural Signed Distance Fields for Robot Navigation in Dynamic Indoor Environments
Neural Signed Distance Fields (SDFs) provide a differentiable environment representation to readily obtain collision checks and well-defined gradients for robot navigation tasks. However, updating neural SDFs as the scene evolves entails re-training, which is tedious, time consuming, and inefficient, making it unsuitable for robot navigation with limited field-of-view in dynamic environments. Towards this objective, we propose a compositional framework of neural SDFs to solve robot navigation in indoor environments using only an onboard RGB-D sensor. Our framework embodies a dual mode procedure for trajectory optimization, with different modes using complementary methods of modeling collision costs and collision avoidance gradients. The primary stage queries the robot body's SDF, swept along the route to goal, at the obstacle point cloud, enabling swift local optimization of trajectories. The secondary stage infers the visible scene's SDF by aligning and composing the SDF representations of its constituents, providing better informed costs and gradients for trajectory optimization. The dual mode procedure combines the best of both stages, achieving a success rate of 98%, 14.4% higher than baseline with comparable amortized plan time on iGibson 2.0. We also demonstrate its effectiveness in adapting to real-world indoor scenarios.
♻ ☆ Compact LED-Based Displacement Sensing for Robot Fingers
In this paper, we introduce a sensor designed for integration in robot fingers, where it can provide information on the displacements induced by external contact. Our sensor uses LEDs to sense the displacement between two plates connected by a transparent elastomer; when a force is applied to the finger, the elastomer displaces and the LED signals change. We show that using LEDs as both light emitters an receivers in this context provides high sensitivity, allowing such an emitter and receiver pairs to detect very small displacements. We characterize the standalone performance of the sensor by testing the ability of a supervised learning model to predict complete force and torque data from its raw signals, and obtain a mean error between 0.05 and 0.07 N across the three directions of force applied to the finger. Our method allows for finger-size packaging with no amplification electronics, low cost manufacturing, easy integration into a complete hand, and high overload shear forces and bending torques, suggesting future applicability to complete manipulation tasks.
♻ ☆ AdaptBot: Combining LLM with Knowledge Graphs and Human Input for Generic-to-Specific Task Decomposition and Knowledge Refinement ICRA
An embodied agent assisting humans is often asked to complete new tasks, and there may not be sufficient time or labeled examples to train the agent to perform these new tasks. Large Language Models (LLMs) trained on considerable knowledge across many domains can be used to predict a sequence of abstract actions for completing such tasks, although the agent may not be able to execute this sequence due to task-, agent-, or domain-specific constraints. Our framework addresses these challenges by leveraging the generic predictions provided by LLM and the prior domain knowledge encoded in a Knowledge Graph (KG), enabling an agent to quickly adapt to new tasks. The robot also solicits and uses human input as needed to refine its existing knowledge. Based on experimental evaluation in the context of cooking and cleaning tasks in simulation domains, we demonstrate that the interplay between LLM, KG, and human input leads to substantial performance gains compared with just using the LLM. Project website{\S}: https://sssshivvvv.github.io/adaptbot/
comment: Accepted to IEEE International Conference on Robotics and Automation (ICRA) 2025
Learning Quadrotor Control From Visual Features Using Differentiable Simulation ICRA
The sample inefficiency of reinforcement learning (RL) remains a significant challenge in robotics. RL requires large-scale simulation and can still cause long training times, slowing research and innovation. This issue is particularly pronounced in vision-based control tasks where reliable state estimates are not accessible. Differentiable simulation offers an alternative by enabling gradient back-propagation through the dynamics model, providing low-variance analytical policy gradients and, hence, higher sample efficiency. However, its usage for real-world robotic tasks has yet been limited. This work demonstrates the great potential of differentiable simulation for learning quadrotor control. We show that training in differentiable simulation significantly outperforms model-free RL in terms of both sample efficiency and training time, allowing a policy to learn to recover a quadrotor in seconds when providing vehicle states and in minutes when relying solely on visual features. The key to our success is two-fold. First, the use of a simple surrogate model for gradient computation greatly accelerates training without sacrificing control performance. Second, combining state representation learning with policy learning enhances convergence speed in tasks where only visual features are observable. These findings highlight the potential of differentiable simulation for real-world robotics and offer a compelling alternative to conventional RL approaches.
comment: Accepted for presentation at the IEEE International Conference on Robotics and Automation (ICRA) 2025
♻ ☆ TacDiffusion: Force-domain Diffusion Policy for Precise Tactile Manipulation ICRA 2025
Assembly is a crucial skill for robots in both modern manufacturing and service robotics. However, mastering transferable insertion skills that can handle a variety of high-precision assembly tasks remains a significant challenge. This paper presents a novel framework that utilizes diffusion models to generate 6D wrench for high-precision tactile robotic insertion tasks. It learns from demonstrations performed on a single task and achieves a zero-shot transfer success rate of 95.7% across various novel high-precision tasks. Our method effectively inherits the self-adaptability demonstrated by our previous work. In this framework, we address the frequency misalignment between the diffusion policy and the real-time control loop with a dynamic system-based filter, significantly improving the task success rate by 9.15%. Furthermore, we provide a practical guideline regarding the trade-off between diffusion models' inference ability and speed.
comment: 7 pages. Accepted to ICRA 2025
♻ ☆ Word2Wave: Language Driven Mission Programming for Efficient Subsea Deployments of Marine Robots
This paper explores the design and development of a language-based interface for dynamic mission programming of autonomous underwater vehicles (AUVs). The proposed `Word2Wave' (W2W) framework enables interactive programming and parameter configuration of AUVs for remote subsea missions. The W2W framework includes: (i) a set of novel language rules and command structures for efficient language-to-mission mapping; (ii) a GPT-based prompt engineering module for training data generation; (iii) a small language model (SLM)-based sequence-to-sequence learning pipeline for mission command generation from human speech or text; and (iv) a novel user interface for 2D mission map visualization and human-machine interfacing. The proposed learning pipeline adapts an SLM named T5-Small that can learn language-to-mission mapping from processed language data effectively, providing robust and efficient performance. In addition to a benchmark evaluation with state-of-the-art, we conduct a user interaction study to demonstrate the effectiveness of W2W over commercial AUV programming interfaces. Across participants, W2W-based programming required less than 10\% time for mission programming compared to traditional interfaces; it is deemed to be a simpler and more natural paradigm for subsea mission programming with a usability score of 76.25. W2W opens up promising future research opportunities on hands-free AUV mission programming for efficient subsea deployments.
♻ ☆ A Data-Driven Aggressive Autonomous Racing Framework Utilizing Local Trajectory Planning with Velocity Prediction
The development of autonomous driving has boosted the research on autonomous racing. However, existing local trajectory planning methods have difficulty planning trajectories with optimal velocity profiles at racetracks with sharp corners, thus weakening the performance of autonomous racing. To address this problem, we propose a local trajectory planning method that integrates Velocity Prediction based on Model Predictive Contouring Control (VPMPCC). The optimal parameters of VPMPCC are learned through Bayesian Optimization (BO) based on a proposed novel Objective Function adapted to Racing (OFR). Specifically, VPMPCC achieves velocity prediction by encoding the racetrack as a reference velocity profile and incorporating it into the optimization problem. This method optimizes the velocity profile of local trajectories, especially at corners with significant curvature. The proposed OFR balances racing performance with vehicle safety, ensuring safe and efficient BO training. In the simulation, the number of training iterations for OFR-based BO is reduced by 42.86% compared to the state-of-the-art method. The optimal simulation-trained parameters are then applied to a real-world F1TENTH vehicle without retraining. During prolonged racing on a custom-built racetrack featuring significant sharp corners, the mean projected velocity of VPMPCC reaches 93.18% of the vehicle's handling limits. The released code is available at https://github.com/zhouhengli/VPMPCC.
♻ ☆ Pretrained Embeddings as a Behavior Specification Mechanism
We propose an approach to formally specifying the behavioral properties of systems that rely on a perception model for interactions with the physical world. The key idea is to introduce embeddings -- mathematical representations of a real-world concept -- as a first-class construct in a specification language, where properties are expressed in terms of distances between a pair of ideal and observed embeddings. To realize this approach, we propose a new type of temporal logic called Embedding Temporal Logic (ETL), and describe how it can be used to express a wider range of properties about AI-enabled systems than previously possible. We demonstrate the applicability of ETL through a preliminary evaluation involving planning tasks in robots that are driven by foundation models; the results are promising, showing that embedding-based specifications can be used to steer a system towards desirable behaviors.
comment: 18 pages, 6 figures
♻ ☆ FRNet: Frustum-Range Networks for Scalable LiDAR Segmentation
LiDAR segmentation has become a crucial component of advanced autonomous driving systems. Recent range-view LiDAR segmentation approaches show promise for real-time processing. However, they inevitably suffer from corrupted contextual information and rely heavily on post-processing techniques for prediction refinement. In this work, we propose FRNet, a simple yet powerful method aimed at restoring the contextual information of range image pixels using corresponding frustum LiDAR points. First, a frustum feature encoder module is used to extract per-point features within the frustum region, which preserves scene consistency and is critical for point-level predictions. Next, a frustum-point fusion module is introduced to update per-point features hierarchically, enabling each point to extract more surrounding information through the frustum features. Finally, a head fusion module is used to fuse features at different levels for final semantic predictions. Extensive experiments conducted on four popular LiDAR segmentation benchmarks under various task setups demonstrate the superiority of FRNet. Notably, FRNet achieves 73.3% and 82.5% mIoU scores on the testing sets of SemanticKITTI and nuScenes. While achieving competitive performance, FRNet operates 5 times faster than state-of-the-art approaches. Such high efficiency opens up new possibilities for more scalable LiDAR segmentation. The code has been made publicly available at https://github.com/Xiangxu-0103/FRNet.
comment: TIP 2025; 18 pages, 11 figures, 14 tables; Code at https://github.com/Xiangxu-0103/FRNet
♻ ☆ A Dataset and Benchmark for Shape Completion of Fruits for Agricultural Robotics
As the world population is expected to reach 10 billion by 2050, our agricultural production system needs to double its productivity despite a decline of human workforce in the agricultural sector. Autonomous robotic systems are one promising pathway to increase productivity by taking over labor-intensive manual tasks like fruit picking. To be effective, such systems need to monitor and interact with plants and fruits precisely, which is challenging due to the cluttered nature of agricultural environments causing, for example, strong occlusions. Thus, being able to estimate the complete 3D shapes of objects in presence of occlusions is crucial for automating operations such as fruit harvesting. In this paper, we propose the first publicly available 3D shape completion dataset for agricultural vision systems. We provide an RGB-D dataset for estimating the 3D shape of fruits. Specifically, our dataset contains RGB-D frames of single sweet peppers in lab conditions but also in a commercial greenhouse. For each fruit, we additionally collected high-precision point clouds that we use as ground truth. For acquiring the ground truth shape, we developed a measuring process that allows us to record data of real sweet pepper plants, both in the lab and in the greenhouse with high precision, and determine the shape of the sensed fruits. We release our dataset, consisting of almost 7,000 RGB-D frames belonging to more than 100 different fruits. We provide segmented RGB-D frames, with camera intrinsics to easily obtain colored point clouds, together with the corresponding high-precision, occlusion-free point clouds obtained with a high-precision laser scanner. We additionally enable evaluation of shape completion approaches on a hidden test set through a public challenge on a benchmark server.
♻ ☆ Tracking Control of Euler-Lagrangian Systems with Prescribed State, Input, and Temporal Constraints
The synthesis of a smooth tracking control policy for Euler-Lagrangian (EL) systems with stringent regions of operation induced by state, input and temporal (SIT) constraints is a very challenging task. In contrast with existing methods that utilize prior knowledge of EL model parameters and uncertainty bounds, this study proposes an approximation-free adaptive barrier function-based control policy to ensure local prescribed time convergence of tracking error under state and input constraints. The proposed control policy accomplishes this by utilizing smooth time-based generator functions embedded in the filtered tracking error, which is combined with a saturation function that limits control action and confines states within the prescribed limits by enforcing the time-varying bounds on the filtered tracking error. Importantly, corresponding feasibility conditions pertaining to the minimum control authority, maximum disturbance rejection capability of the control policy, and the viable set of initial conditions are derived, illuminating the narrow operating domain of the EL systems arising from the interplay of SIT constraints. Numerical validation studies with three different robotic manipulators are employed to demonstrate the efficacy of the proposed scheme. A detailed performance comparison study with leading alternative designs is also undertaken to illustrate the superior performance of the proposed scheme.
♻ ☆ Towards Open-Source and Modular Space Systems with ATMOS
In the near future, autonomous space systems will compose many of the deployed spacecraft. Their tasks will involve autonomous rendezvous and proximity operations with large structures, such as inspections, assembly, and maintenance of orbiting space stations, as well as human-assistance tasks over shared workspaces. To promote replicable and reliable scientific results for autonomous control of spacecraft, we present the design of a space robotics laboratory based on open-source and modular software and hardware. The simulation software provides a software-in-the-loop architecture that seamlessly transfers simulated results to the hardware. Our results provide an insight into such a system, including comparisons of hardware and software results, as well as control and planning methodologies for controlling free-flying platforms.
comment: Submitted
♻ ☆ TACO: General Acrobatic Flight Control via Target-and-Command-Oriented Reinforcement Learning
Although acrobatic flight control has been studied extensively, one key limitation of the existing methods is that they are usually restricted to specific maneuver tasks and cannot change flight pattern parameters online. In this work, we propose a target-and-command-oriented reinforcement learning (TACO) framework, which can handle different maneuver tasks in a unified way and allows online parameter changes. Additionally, we propose a spectral normalization method with input-output rescaling to enhance the policy's temporal and spatial smoothness, independence, and symmetry, thereby overcoming the sim-to-real gap. We validate the TACO approach through extensive simulation and real-world experiments, demonstrating its capability to achieve high-speed circular flights and continuous multi-flips.
comment: For the experiment video, please refer to https://www.youtube.com/watch?v=4tX_25BcMJw&ab_channel=WINDYLab
♻ ☆ A Backbone for Long-Horizon Robot Task Understanding
End-to-end robot learning, particularly for long-horizon tasks, often results in unpredictable outcomes and poor generalization. To address these challenges, we propose a novel Therblig-Based Backbone Framework (TBBF) as a fundamental structure to enhance interpretability, data efficiency, and generalization in robotic systems. TBBF utilizes expert demonstrations to enable therblig-level task decomposition, facilitate efficient action-object mapping, and generate adaptive trajectories for new scenarios. The approach consists of two stages: offline training and online testing. During the offline training stage, we developed the Meta-RGate SynerFusion (MGSF) network for accurate therblig segmentation across various tasks. In the online testing stage, after a one-shot demonstration of a new task is collected, our MGSF network extracts high-level knowledge, which is then encoded into the image using Action Registration (ActionREG). Additionally, Large Language Model (LLM)-Alignment Policy for Visual Correction (LAP-VC) is employed to ensure precise action registration, facilitating trajectory transfer in novel robot scenarios. Experimental results validate these methods, achieving 94.37% recall in therblig segmentation and success rates of 94.4% and 80% in real-world online robot testing for simple and complex scenarios, respectively. Supplementary material is available at: https://sites.google.com/view/therbligsbasedbackbone/home
comment: 8 pages, 8 figures. This work has been published by IEEE Robotics and Automation Letters (RA-L)
♻ ☆ Robust Deterministic Policy Gradient for Disturbance Attenuation and Its Application to Quadrotor Control
Practical control systems pose significant challenges in identifying optimal control policies due to uncertainties in the system model and external disturbances. While $H_\infty$ control techniques are commonly used to design robust controllers that mitigate the effects of disturbances, these methods often require complex and computationally intensive calculations. To address this issue, this paper proposes a reinforcement learning algorithm called Robust Deterministic Policy Gradient (RDPG), which formulates the $H_\infty$ control problem as a two-player zero-sum dynamic game. In this formulation, one player (the user) aims to minimize the cost, while the other player (the adversary) seeks to maximize it. We then employ deterministic policy gradient (DPG) and its deep reinforcement learning counterpart to train a robust control policy with effective disturbance attenuation. In particular, for practical implementation, we introduce an algorithm called robust deep deterministic policy gradient (RDDPG), which employs a deep neural network architecture and integrates techniques from the twin-delayed deep deterministic policy gradient (TD3) to enhance stability and learning efficiency. To evaluate the proposed algorithm, we implement it on an unmanned aerial vehicle (UAV) tasked with following a predefined path in a disturbance-prone environment. The experimental results demonstrate that the proposed method outperforms other control approaches in terms of robustness against disturbances, enabling precise real-time tracking of moving targets even under severe disturbance conditions.
comment: 8 pages
♻ ☆ Adaptive Collision Sensitivity for Efficient and Safe Human-Robot Collaboration IROS 2025
What is considered safe for a robot operator during physical human-robot collaboration (HRC) is specified in corresponding HRC standards (e.g., ISO/TS 15066). The regime that allows collisions between the moving robot and the operator, called Power and Force Limiting (PFL), restricts the permissible contact forces. Using the same fixed contact thresholds on the entire robot surface results in significant and unnecessary productivity losses, as the robot needs to stop even when impact forces are within limits. Here we present a framework that decides whether the robot should interrupt or continue its motion based on estimated collision force computed individually for different parts of the robot body and dynamically on the fly, based on the effective mass of each robot link and the link velocity. We performed experiments on simulated and real 6-axis collaborative robot arm (UR10e) with sensitive skin (AIRSKIN) for collision detection and isolation. To demonstrate the generality of our method, we added experiments on the simulated KUKA LBR iiwa robot, where collision detection and isolation draws on joint torque sensing. On a mock pick-and-place scenario with both transient and quasi-static collisions, we demonstrate how sensitivity to collisions influences the task performance and number of stops. We show an increase in productivity over 45% from using the standard approach that interrupts the tasks during every collision. While reducing the cycle time and the number of interruptions, our framework also ensures the safety of human operators. The method is applicable to any robot for which the effective mass can be calculated.
comment: Submitted to IROS 2025
♻ ☆ SPIBOT: A Drone-Tethered Mobile Gripper for Robust Aerial Object Retrieval in Dynamic Environments
In real-world field operations, aerial grasping systems face significant challenges in dynamic environments due to strong winds, shifting surfaces, and the need to handle heavy loads. Particularly when dealing with heavy objects, the powerful propellers of the drone can inadvertently blow the target object away as it approaches, making the task even more difficult. To address these challenges, we introduce SPIBOT, a novel drone-tethered mobile gripper system designed for robust and stable autonomous target retrieval. SPIBOT operates via a tether, much like a spider, allowing the drone to maintain a safe distance from the target. To ensure both stable mobility and secure grasping capabilities, SPIBOT is equipped with six legs and sensors to estimate the robot's and mission's states. It is designed with a reduced volume and weight compared to other hexapod robots, allowing it to be easily stowed under the drone and reeled in as needed. Designed for the 2024 MBZIRC Maritime Grand Challenge, SPIBOT is built to retrieve a 1kg target object in the highly dynamic conditions of the moving deck of a ship. This system integrates a real-time action selection algorithm that dynamically adjusts the robot's actions based on proximity to the mission goal and environmental conditions, enabling rapid and robust mission execution. Experimental results across various terrains, including a pontoon on a lake, a grass field, and rubber mats on coastal sand, demonstrate SPIBOT's ability to efficiently and reliably retrieve targets. SPIBOT swiftly converges on the target and completes its mission, even when dealing with irregular initial states and noisy information introduced by the drone.
♻ ☆ HOVER: Versatile Neural Whole-Body Controller for Humanoid Robots ICRA 2025
Humanoid whole-body control requires adapting to diverse tasks such as navigation, loco-manipulation, and tabletop manipulation, each demanding a different mode of control. For example, navigation relies on root velocity tracking, while tabletop manipulation prioritizes upper-body joint angle tracking. Existing approaches typically train individual policies tailored to a specific command space, limiting their transferability across modes. We present the key insight that full-body kinematic motion imitation can serve as a common abstraction for all these tasks and provide general-purpose motor skills for learning multiple modes of whole-body control. Building on this, we propose HOVER (Humanoid Versatile Controller), a multi-mode policy distillation framework that consolidates diverse control modes into a unified policy. HOVER enables seamless transitions between control modes while preserving the distinct advantages of each, offering a robust and scalable solution for humanoid control across a wide range of modes. By eliminating the need for policy retraining for each control mode, our approach improves efficiency and flexibility for future humanoid applications.
comment: Published at ICRA 2025, Project Page: see https://hover-versatile-humanoid.github.io/
♻ ☆ Large-Scale UWB Anchor Calibration and One-Shot Localization Using Gaussian Process ICRA
Ultra-wideband (UWB) is gaining popularity with devices like AirTags for precise home item localization but faces significant challenges when scaled to large environments like seaports. The main challenges are calibration and localization in obstructed conditions, which are common in logistics environments. Traditional calibration methods, dependent on line-of-sight (LoS), are slow, costly, and unreliable in seaports and warehouses, making large-scale localization a significant pain point in the industry. To overcome these challenges, we propose a UWB-LiDAR fusion-based calibration and one-shot localization framework. Our method uses Gaussian Processes to estimate anchor position from continuous-time LiDAR Inertial Odometry with sampled UWB ranges. This approach ensures accurate and reliable calibration with just one round of sampling in large-scale areas, I.e., 600x450 square meter. With the LoS issues, UWB-only localization can be problematic, even when anchor positions are known. We demonstrate that by applying a UWB-range filter, the search range for LiDAR loop closure descriptors is significantly reduced, improving both accuracy and speed. This concept can be applied to other loop closure detection methods, enabling cost-effective localization in large-scale warehouses and seaports. It significantly improves precision in challenging environments where UWB-only and LiDAR-Inertial methods fall short, as shown in the video (https://youtu.be/oY8jQKdM7lU). We will open-source our datasets and calibration codes for community use.
comment: This work has been accepted to IEEE International Conference on Robotics and Automation (ICRA) @ 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, including reprinting/redistribution, creating new works, or reuse of any copyrighted components of this work in other media
♻ ☆ Tensegrity Robot Proprioceptive State Estimation with Geometric Constraints
Tensegrity robots, characterized by a synergistic assembly of rigid rods and elastic cables, form robust structures that are resistant to impacts. However, this design introduces complexities in kinematics and dynamics, complicating control and state estimation. This work presents a novel proprioceptive state estimator for tensegrity robots. The estimator initially uses the geometric constraints of 3-bar prism tensegrity structures, combined with IMU and motor encoder measurements, to reconstruct the robot's shape and orientation. It then employs a contact-aided invariant extended Kalman filter with forward kinematics to estimate the global position and orientation of the tensegrity robot. The state estimator's accuracy is assessed against ground truth data in both simulated environments and real-world tensegrity robot applications. It achieves an average drift percentage of 4.2%, comparable to the state estimation performance of traditional rigid robots. This state estimator advances the state of the art in tensegrity robot state estimation and has the potential to run in real-time using onboard sensors, paving the way for full autonomy of tensegrity robots in unstructured environments.
comment: Preprint; 8 pages, 12 figures, 2 tables; Code at https://github.com/Jonathan-Twz/tensegrity-robot-state-estimator
♻ ☆ Dur360BEV: A Real-world 360-degree Single Camera Dataset and Benchmark for Bird-Eye View Mapping in Autonomous Driving
We present Dur360BEV, a novel spherical camera autonomous driving dataset equipped with a high-resolution 128-channel 3D LiDAR and a RTK-refined GNSS/INS system, along with a benchmark architecture designed to generate Bird-Eye-View (BEV) maps using only a single spherical camera. This dataset and benchmark address the challenges of BEV generation in autonomous driving, particularly by reducing hardware complexity through the use of a single 360-degree camera instead of multiple perspective cameras. Within our benchmark architecture, we propose a novel spherical-image-to-BEV module that leverages spherical imagery and a refined sampling strategy to project features from 2D to 3D. Our approach also includes an innovative application of focal loss, specifically adapted to address the extreme class imbalance often encountered in BEV segmentation tasks, that demonstrates improved segmentation performance on the Dur360BEV dataset. The results show that our benchmark not only simplifies the sensor setup but also achieves competitive performance.
♻ ☆ DexMimicGen: Automated Data Generation for Bimanual Dexterous Manipulation via Imitation Learning ICRA 2025
Imitation learning from human demonstrations is an effective means to teach robots manipulation skills. But data acquisition is a major bottleneck in applying this paradigm more broadly, due to the amount of cost and human effort involved. There has been significant interest in imitation learning for bimanual dexterous robots, like humanoids. Unfortunately, data collection is even more challenging here due to the challenges of simultaneously controlling multiple arms and multi-fingered hands. Automated data generation in simulation is a compelling, scalable alternative to fuel this need for data. To this end, we introduce DexMimicGen, a large-scale automated data generation system that synthesizes trajectories from a handful of human demonstrations for humanoid robots with dexterous hands. We present a collection of simulation environments in the setting of bimanual dexterous manipulation, spanning a range of manipulation behaviors and different requirements for coordination among the two arms. We generate 21K demos across these tasks from just 60 source human demos and study the effect of several data generation and policy learning decisions on agent performance. Finally, we present a real-to-sim-to-real pipeline and deploy it on a real-world humanoid can sorting task. Generated datasets, simulation environments and additional results are at https://dexmimicgen.github.io/
comment: ICRA 2025. Project website: https://dexmimicgen.github.io/
♻ ☆ Select before Act: Spatially Decoupled Action Repetition for Continuous Control ICLR 2025
Reinforcement Learning (RL) has achieved remarkable success in various continuous control tasks, such as robot manipulation and locomotion. Different to mainstream RL which makes decisions at individual steps, recent studies have incorporated action repetition into RL, achieving enhanced action persistence with improved sample efficiency and superior performance. However, existing methods treat all action dimensions as a whole during repetition, ignoring variations among them. This constraint leads to inflexibility in decisions, which reduces policy agility with inferior effectiveness. In this work, we propose a novel repetition framework called SDAR, which implements Spatially Decoupled Action Repetition through performing closed-loop act-or-repeat selection for each action dimension individually. SDAR achieves more flexible repetition strategies, leading to an improved balance between action persistence and diversity. Compared to existing repetition frameworks, SDAR is more sample efficient with higher policy performance and reduced action fluctuation. Experiments are conducted on various continuous control scenarios, demonstrating the effectiveness of spatially decoupled repetition design proposed in this work.
comment: ICLR 2025
♻ ☆ Search-Based Path Planning in Interactive Environments among Movable Obstacles ICRA 2025
This paper investigates Path planning Among Movable Obstacles (PAMO), which seeks a minimum cost collision-free path among static obstacles from start to goal while allowing the robot to push away movable obstacles (i.e., objects) along its path when needed. To develop planners that are complete and optimal for PAMO, the planner has to search a giant state space involving both the location of the robot as well as the locations of the objects, which grows exponentially with respect to the number of objects. This paper leverages a simple yet under-explored idea that, only a small fraction of this giant state space needs to be searched during planning as guided by a heuristic, and most of the objects far away from the robot are intact, which thus leads to runtime efficient algorithms. Based on this idea, this paper introduces two PAMO formulations, i.e., bi-objective and resource constrained problems in an occupancy grid, and develops PAMO*, a planning method with completeness and solution optimality guarantees, to solve the two problems. We then further extend PAMO* to hybrid-state PAMO* to plan in continuous spaces with high-fidelity interaction between the robot and the objects. Our results show that, PAMO* can often find optimal solutions within a second in cluttered maps with up to 400 objects.
comment: Accepted by ICRA 2025
♻ ☆ iWalker: Imperative Visual Planning for Walking Humanoid Robot
Humanoid robots, designed to operate in human-centric environments, serve as a fundamental platform for a broad range of tasks. Although humanoid robots have been extensively studied for decades, a majority of existing humanoid robots still heavily rely on complex modular frameworks, leading to inflexibility and potential compounded errors from independent sensing, planning, and acting components. In response, we propose an end-to-end humanoid sense-plan-act walking system, enabling vision-based obstacle avoidance and footstep planning for whole body balancing simultaneously. We designed two imperative learning (IL)-based bilevel optimizations for model-predictive step planning and whole body balancing, respectively, to achieve self-supervised learning for humanoid robot walking. This enables the robot to learn from arbitrary unlabeled data, improving its adaptability and generalization capabilities. We refer to our method as iWalker and demonstrate its effectiveness in both simulated and real-world environments, representing a significant advancement toward autonomous humanoid robots.
♻ ☆ Path Planning in Complex Environments with Superquadrics and Voronoi-Based Orientation
Path planning in narrow passages is a challenging problem in various applications. Traditional planning algorithms often face challenges in complex environments like mazes and traps, where narrow entrances require special orientation control for successful navigation. In this work, we present a novel approach that combines superquadrics (SQ) representation and Voronoi diagrams to solve the narrow passage problem in both 2D and 3D environment. Our method utilizes the SQ formulation to expand obstacles, eliminating impassable passages, while Voronoi hyperplane ensures maximum clearance path. Additionally, the hyperplane provides a natural reference for robot orientation, aligning its long axis with the passage direction. We validate our framework through a 2D object retrieval task and 3D drone simulation, demonstrating that our approach outperforms classical planners and a cutting-edge drone planner by ensuring passable trajectories with maximum clearance.
♻ ☆ BODex: Scalable and Efficient Robotic Dexterous Grasp Synthesis Using Bilevel Optimization ICRA 2025
Robotic dexterous grasping is important for interacting with the environment. To unleash the potential of data-driven models for dexterous grasping, a large-scale, high-quality dataset is essential. While gradient-based optimization offers a promising way for constructing such datasets, previous works suffer from limitations, such as inefficiency, strong assumptions in the grasp quality energy, or limited object sets for experiments. Moreover, the lack of a standard benchmark for comparing different methods and datasets hinders progress in this field. To address these challenges, we develop a highly efficient synthesis system and a comprehensive benchmark with MuJoCo for dexterous grasping. We formulate grasp synthesis as a bilevel optimization problem, combining a novel lower-level quadratic programming (QP) with an upper-level gradient descent process. By leveraging recent advances in CUDA-accelerated robotic libraries and GPU-based QP solvers, our system can parallelize thousands of grasps and synthesize over 49 grasps per second on a single 3090 GPU. Our synthesized grasps for Shadow, Allegro, and Leap hands all achieve a success rate above 75% in simulation, with a penetration depth under 1 mm, outperforming existing baselines on nearly all metrics. Compared to the previous large-scale dataset, DexGraspNet, our dataset significantly improves the performance of learning models, with a success rate from around 40% to 80% in simulation. Real-world testing of the trained model on the Shadow Hand achieves an 81% success rate across 20 diverse objects. The codes and datasets are released on our project page: https://pku-epic.github.io/BODex.
comment: ICRA 2025
♻ ☆ A Skeleton-Based Topological Planner for Exploration in Complex Unknown Environments ICRA 2025
The capability of autonomous exploration in complex, unknown environments is important in many robotic applications. While recent research on autonomous exploration have achieved much progress, there are still limitations, e.g., existing methods relying on greedy heuristics or optimal path planning are often hindered by repetitive paths and high computational demands. To address such limitations, we propose a novel exploration framework that utilizes the global topology information of observed environment to improve exploration efficiency while reducing computational overhead. Specifically, global information is utilized based on a skeletal topological graph representation of the environment geometry. We first propose an incremental skeleton extraction method based on wavefront propagation, based on which we then design an approach to generate a lightweight topological graph that can effectively capture the environment's structural characteristics. Building upon this, we introduce a finite state machine that leverages the topological structure to efficiently plan coverage paths, which can substantially mitigate the back-and-forth maneuvers (BFMs) problem. Experimental results demonstrate the superiority of our method in comparison with state-of-the-art methods. The source code will be made publicly available at: https://github.com/Haochen-Niu/STGPlanner.
comment: 7 pages, 7 figures. Accepted to be presented at the ICRA 2025
♻ ☆ Curb Your Attention: Causal Attention Gating for Robust Trajectory Prediction in Autonomous Driving ICRA 2025
Trajectory prediction models in autonomous driving are vulnerable to perturbations from non-causal agents whose actions should not affect the ego-agent's behavior. Such perturbations can lead to incorrect predictions of other agents' trajectories, potentially compromising the safety and efficiency of the ego-vehicle's decision-making process. Motivated by this challenge, we propose $\textit{Causal tRajecTory predICtion}$ $\textbf{(CRiTIC)}$, a novel model that utilizes a $\textit{Causal Discovery Network}$ to identify inter-agent causal relations over a window of past time steps. To incorporate discovered causal relationships, we propose a novel $\textit{Causal Attention Gating}$ mechanism to selectively filter information in the proposed Transformer-based architecture. We conduct extensive experiments on two autonomous driving benchmark datasets to evaluate the robustness of our model against non-causal perturbations and its generalization capacity. Our results indicate that the robustness of predictions can be improved by up to $\textbf{54%}$ without a significant detriment to prediction accuracy. Lastly, we demonstrate the superior domain generalizability of the proposed model, which achieves up to $\textbf{29%}$ improvement in cross-domain performance. These results underscore the potential of our model to enhance both robustness and generalization capacity for trajectory prediction in diverse autonomous driving domains. Further details can be found on our project page: https://ehsan-ami.github.io/critic.
comment: Accepted ICRA 2025
♻ ☆ Social Gesture Recognition in spHRI: Leveraging Fabric-Based Tactile Sensing on Humanoid Robots ICRA 25
Humans are able to convey different messages using only touch. Equipping robots with the ability to understand social touch adds another modality in which humans and robots can communicate. In this paper, we present a social gesture recognition system using a fabric-based, large-scale tactile sensor placed onto the arms of a humanoid robot. We built a social gesture dataset using multiple participants and extracted temporal features for classification. By collecting tactile data on a humanoid robot, our system provides insights into human-robot social touch, and displays that the use of fabric based sensors could be a potential way of advancing the development of spHRI systems for more natural and effective communication.
comment: Accepted to ICRA 25. 8 pages, 8 figures
♻ ☆ Federated Multi-Agent Mapping for Planetary Exploration
Multi-agent robotic exploration stands to play an important role in space exploration as the next generation of robotic systems ventures to far-flung environments. A key challenge in this new paradigm will be to effectively share and utilize the vast amount of data generated onboard while operating in bandwidth-constrained regimes typical of space missions. Federated learning (FL) is a promising tool for bridging this gap. Drawing inspiration from the upcoming CADRE Lunar rover mission, we propose a federated multi-agent mapping approach that jointly trains a global map model across agents without transmitting raw data. Our method leverages implicit neural mapping to generate parsimonious, adaptable representations, reducing data transmission by up to 93.8% compared to raw maps. Furthermore, we enhance this approach with meta-initialization on Earth-based traversability datasets to significantly accelerate map convergence; reducing iterations required to reach target performance by 80% compared to random initialization. We demonstrate the efficacy of our approach on Martian terrains and glacier datasets, achieving downstream path planning F1 scores as high as 0.95 while outperforming on map reconstruction losses.
comment: 7 pages, 6 figures
♻ ☆ VernaCopter: Disambiguated Natural-Language-Driven Robot via Formal Specifications
It has been an ambition of many to control a robot for a complex task using natural language (NL). The rise of large language models (LLMs) makes it closer to coming true. However, an LLM-powered system still suffers from the ambiguity inherent in an NL and the uncertainty brought up by LLMs. This paper proposes a novel LLM-based robot motion planner, named \textit{VernaCopter}, with signal temporal logic (STL) specifications serving as a bridge between NL commands and specific task objectives. The rigorous and abstract nature of formal specifications allows the planner to generate high-quality and highly consistent paths to guide the motion control of a robot. Compared to a conventional NL-prompting-based planner, the proposed VernaCopter planner is more stable and reliable due to less ambiguous uncertainty. Its efficacy and advantage have been validated by two small but challenging experimental scenarios, implying its potential in designing NL-driven robots.
♻ ☆ Cooperative Nonlinear Guidance Strategies for Guaranteed Pursuit-Evasion
This paper addresses the pursuit-evasion problem involving three agents -- a purser, an evader, and a defender. We develop cooperative guidance laws for the evader-defender team that guarantee that the defender intercepts the pursuer before it reaches the vicinity of the evader. Unlike heuristic methods, optimal control, differential game formulation, and recently proposed time-constrained guidance techniques, we propose a geometric solution to safeguard the evader from the pursuer's incoming threat. The proposed strategy is computationally efficient and expected to be scalable as the number of agents increases. Another alluring feature of the proposed strategy is that the evader-defender team does not require the knowledge of the pursuer's strategy and that the pursuer's interception is guaranteed from arbitrary initial engagement geometries. We further show that the necessary error variables for the evader-defender team vanish within a time that can be exactly prescribed prior to the three-body engagement. Finally, we demonstrate the efficacy of the proposed cooperative defense strategy via simulation in diverse engagement scenarios.
♻ ☆ Robotic Control via Embodied Chain-of-Thought Reasoning
A key limitation of learned robot control policies is their inability to generalize outside their training data. Recent works on vision-language-action models (VLAs) have shown that the use of large, internet pre-trained vision-language models as the backbone of learned robot policies can substantially improve their robustness and generalization ability. Yet, one of the most exciting capabilities of large vision-language models in other domains is their ability to reason iteratively through complex problems. Can that same capability be brought into robotics to allow policies to improve performance by reasoning about a given task before acting? Naive use of "chain-of-thought" (CoT) style prompting is significantly less effective with standard VLAs because of the relatively simple training examples that are available to them. Additionally, purely semantic reasoning about sub-tasks, as is common in regular CoT, is insufficient for robot policies that need to ground their reasoning in sensory observations and the robot state. To this end, we introduce Embodied Chain-of-Thought Reasoning (ECoT) for VLAs, in which we train VLAs to perform multiple steps of reasoning about plans, sub-tasks, motions, and visually grounded features like object bounding boxes and end effector positions, before predicting the robot action. We design a scalable pipeline for generating synthetic training data for ECoT on large robot datasets. We demonstrate, that ECoT increases the absolute success rate of OpenVLA, the current strongest open-source VLA policy, by 28% across challenging generalization tasks, without any additional robot training data. Additionally, ECoT makes it easier for humans to interpret a policy's failures and correct its behavior using natural language.
comment: Project Website: https://embodied-cot.github.io. Updated funding information
♻ ☆ Risk-Aware Autonomous Driving with Linear Temporal Logic Specifications
Humans naturally balance the risks of different concerns while driving, including traffic rule violations, minor accidents, and fatalities. However, achieving the same behavior in autonomous systems remains an open problem. This paper extends a risk metric that has been verified in human-like driving studies to encompass more complex driving scenarios specified by linear temporal logic (LTL) that go beyond just collision risks. This extension incorporates the timing and severity of events into LTL specifications, thereby reflecting a human-like risk awareness. Without sacrificing expressivity for traffic rules, we adopt LTL specifications composed of safety and co-safety formulas, allowing the control synthesis problem to be reformulated as a reachability problem. By leveraging occupation measures, we formulate a linear programming (LP) problem for this LTL-based risk metric. Consequently, the synthesized policy balances different types of risks, including not only collision risks but also traffic rule violations. The effectiveness of the proposed approach is validated by three typical traffic scenarios in the Carla simulator.
♻ ☆ VertiCoder: Self-Supervised Kinodynamic Representation Learning on Vertically Challenging Terrain ICRA 2025
We present VertiCoder, a self-supervised representation learning approach for robot mobility on vertically challenging terrain. Using the same pre-training process, VertiCoder can handle four different downstream tasks, including forward kinodynamics learning, inverse kinodynamics learning, behavior cloning, and patch reconstruction with a single representation. VertiCoder uses a TransformerEncoder to learn the local context of its surroundings by random masking and next patch reconstruction. We show that VertiCoder achieves better performance across all four different tasks compared to specialized End-to-End models with 77% fewer parameters. We also show VertiCoder's comparable performance against state-of-the-art kinodynamic modeling and planning approaches in real-world robot deployment. These results underscore the efficacy of VertiCoder in mitigating overfitting and fostering more robust generalization across diverse environmental contexts and downstream vehicle kinodynamic tasks.
comment: Accepted at ICRA 2025. Code: https://github.com/mhnazeri/VertiCoder
♻ ☆ Differentiable Discrete Elastic Rods for Real-Time Modeling of Deformable Linear Objects
This paper addresses the task of modeling Deformable Linear Objects (DLOs), such as ropes and cables, during dynamic motion over long time horizons. This task presents significant challenges due to the complex dynamics of DLOs. To address these challenges, this paper proposes differentiable Discrete Elastic Rods For deformable linear Objects with Real-time Modeling (DEFORM), a novel framework that combines a differentiable physics-based model with a learning framework to model DLOs accurately and in real-time. The performance of DEFORM is evaluated in an experimental setup involving two industrial robots and a variety of sensors. A comprehensive series of experiments demonstrate the efficacy of DEFORM in terms of accuracy, computational speed, and generalizability when compared to state-of-the-art alternatives. To further demonstrate the utility of DEFORM, this paper integrates it into a perception pipeline and illustrates its superior performance when compared to the state-of-the-art methods while tracking a DLO even in the presence of occlusions. Finally, this paper illustrates the superior performance of DEFORM when compared to state-of-the-art methods when it is applied to perform autonomous planning and control of DLOs. Project page: https://roahmlab.github.io/DEFORM/.
comment: Accepted to CoRL 2024
♻ ☆ Slug Mobile: Test-Bench for RL Testing
Sim-to real gap in Reinforcement Learning is when a model trained in a simulator does not translate to the real world. This is a problem for Autonomous Vehicles (AVs) as vehicle dynamics can vary from simulation to reality, and also from vehicle to vehicle. Slug Mobile is a one tenth scale autonomous vehicle created to help address the sim-to-real gap for AVs by acting as a test-bench to develop models that can easily scale from one vehicle to another. In addition to traditional sensors found in other one tenth scale AVs, we have also included a Dynamic Vision Sensor so we can train Spiking Neural Networks running on neuromorphic hardware.
comment: Presented Poster at BayLearn 2024 hosted by Apple
Computer Vision 164
☆ FluidNexus: 3D Fluid Reconstruction and Prediction from a Single Video CVPR 2025
We study reconstructing and predicting 3D fluid appearance and velocity from a single video. Current methods require multi-view videos for fluid reconstruction. We present FluidNexus, a novel framework that bridges video generation and physics simulation to tackle this task. Our key insight is to synthesize multiple novel-view videos as references for reconstruction. FluidNexus consists of two key components: (1) a novel-view video synthesizer that combines frame-wise view synthesis with video diffusion refinement for generating realistic videos, and (2) a physics-integrated particle representation coupling differentiable simulation and rendering to simultaneously facilitate 3D fluid reconstruction and prediction. To evaluate our approach, we collect two new real-world fluid datasets featuring textured backgrounds and object interactions. Our method enables dynamic novel view synthesis, future prediction, and interaction simulation from a single fluid video. Project website: https://yuegao.me/FluidNexus.
comment: CVPR 2025. Project website: https://yuegao.me/FluidNexus
☆ Floxels: Fast Unsupervised Voxel Based Scene Flow Estimation CVPR 2025
Scene flow estimation is a foundational task for many robotic applications, including robust dynamic object detection, automatic labeling, and sensor synchronization. Two types of approaches to the problem have evolved: 1) Supervised and 2) optimization-based methods. Supervised methods are fast during inference and achieve high-quality results, however, they are limited by the need for large amounts of labeled training data and are susceptible to domain gaps. In contrast, unsupervised test-time optimization methods do not face the problem of domain gaps but usually suffer from substantial runtime, exhibit artifacts, or fail to converge to the right solution. In this work, we mitigate several limitations of existing optimization-based methods. To this end, we 1) introduce a simple voxel grid-based model that improves over the standard MLP-based formulation in multiple dimensions and 2) introduce a new multiframe loss formulation. 3) We combine both contributions in our new method, termed Floxels. On the Argoverse 2 benchmark, Floxels is surpassed only by EulerFlow among unsupervised methods while achieving comparable performance at a fraction of the computational cost. Floxels achieves a massive speedup of more than ~60 - 140x over EulerFlow, reducing the runtime from a day to 10 minutes per sequence. Over the faster but low-quality baseline, NSFP, Floxels achieves a speedup of ~14x.
comment: Accepted at CVPR 2025
☆ Iris Style Transfer: Enhancing Iris Recognition with Style Features and Privacy Preservation through Neural Style Transfer
Iris texture is widely regarded as a gold standard biometric modality for authentication and identification. The demand for robust iris recognition methods, coupled with growing security and privacy concerns regarding iris attacks, has escalated recently. Inspired by neural style transfer, an advanced technique that leverages neural networks to separate content and style features, we hypothesize that iris texture's style features provide a reliable foundation for recognition and are more resilient to variations like rotation and perspective shifts than traditional approaches. Our experimental results support this hypothesis, showing a significantly higher classification accuracy compared to conventional features. Further, we propose using neural style transfer to mask identifiable iris style features, ensuring the protection of sensitive biometric information while maintaining the utility of eye images for tasks like eye segmentation and gaze estimation. This work opens new avenues for iris-oriented, secure, and privacy-aware biometric systems.
comment: 14 pages main paper, 4 pages appendix
☆ DEAL-YOLO: Drone-based Efficient Animal Localization using YOLO ICLR 2025
Although advances in deep learning and aerial surveillance technology are improving wildlife conservation efforts, complex and erratic environmental conditions still pose a problem, requiring innovative solutions for cost-effective small animal detection. This work introduces DEAL-YOLO, a novel approach that improves small object detection in Unmanned Aerial Vehicle (UAV) images by using multi-objective loss functions like Wise IoU (WIoU) and Normalized Wasserstein Distance (NWD), which prioritize pixels near the centre of the bounding box, ensuring smoother localization and reducing abrupt deviations. Additionally, the model is optimized through efficient feature extraction with Linear Deformable (LD) convolutions, enhancing accuracy while maintaining computational efficiency. The Scaled Sequence Feature Fusion (SSFF) module enhances object detection by effectively capturing inter-scale relationships, improving feature representation, and boosting metrics through optimized multiscale fusion. Comparison with baseline models reveals high efficacy with up to 69.5\% fewer parameters compared to vanilla Yolov8-N, highlighting the robustness of the proposed modifications. Through this approach, our paper aims to facilitate the detection of endangered species, animal population analysis, habitat monitoring, biodiversity research, and various other applications that enrich wildlife conservation efforts. DEAL-YOLO employs a two-stage inference paradigm for object detection, refining selected regions to improve localization and confidence. This approach enhances performance, especially for small instances with low objectness scores.
comment: Accepted as a Poster at the ML4RS Workshop at ICLR 2025
☆ Teach YOLO to Remember: A Self-Distillation Approach for Continual Object Detection
Real-time object detectors like YOLO achieve exceptional performance when trained on large datasets for multiple epochs. However, in real-world scenarios where data arrives incrementally, neural networks suffer from catastrophic forgetting, leading to a loss of previously learned knowledge. To address this, prior research has explored strategies for Class Incremental Learning (CIL) in Continual Learning for Object Detection (CLOD), with most approaches focusing on two-stage object detectors. However, existing work suggests that Learning without Forgetting (LwF) may be ineffective for one-stage anchor-free detectors like YOLO due to noisy regression outputs, which risk transferring corrupted knowledge. In this work, we introduce YOLO LwF, a self-distillation approach tailored for YOLO-based continual object detection. We demonstrate that when coupled with a replay memory, YOLO LwF significantly mitigates forgetting. Compared to previous approaches, it achieves state-of-the-art performance, improving mAP by +2.1% and +2.9% on the VOC and COCO benchmarks, respectively.
☆ What Are You Doing? A Closer Look at Controllable Human Video Generation
High-quality benchmarks are crucial for driving progress in machine learning research. However, despite the growing interest in video generation, there is no comprehensive dataset to evaluate human generation. Humans can perform a wide variety of actions and interactions, but existing datasets, like TikTok and TED-Talks, lack the diversity and complexity to fully capture the capabilities of video generation models. We close this gap by introducing `What Are You Doing?' (WYD): a new benchmark for fine-grained evaluation of controllable image-to-video generation of humans. WYD consists of 1{,}544 captioned videos that have been meticulously collected and annotated with 56 fine-grained categories. These allow us to systematically measure performance across 9 aspects of human generation, including actions, interactions and motion. We also propose and validate automatic metrics that leverage our annotations and better capture human evaluations. Equipped with our dataset and metrics, we perform in-depth analyses of seven state-of-the-art models in controllable image-to-video generation, showing how WYD provides novel insights about the capabilities of these models. We release our data and code to drive forward progress in human video generation modeling at https://github.com/google-deepmind/wyd-benchmark.
☆ Implicit Neural Representation for Video and Image Super-Resolution
We present a novel approach for super-resolution that utilizes implicit neural representation (INR) to effectively reconstruct and enhance low-resolution videos and images. By leveraging the capacity of neural networks to implicitly encode spatial and temporal features, our method facilitates high-resolution reconstruction using only low-resolution inputs and a 3D high-resolution grid. This results in an efficient solution for both image and video super-resolution. Our proposed method, SR-INR, maintains consistent details across frames and images, achieving impressive temporal stability without relying on the computationally intensive optical flow or motion estimation typically used in other video super-resolution techniques. The simplicity of our approach contrasts with the complexity of many existing methods, making it both effective and efficient. Experimental evaluations show that SR-INR delivers results on par with or superior to state-of-the-art super-resolution methods, while maintaining a more straightforward structure and reduced computational demands. These findings highlight the potential of implicit neural representations as a powerful tool for reconstructing high-quality, temporally consistent video and image signals from low-resolution data.
☆ RadIR: A Scalable Framework for Multi-Grained Medical Image Retrieval via Radiology Report Mining
Developing advanced medical imaging retrieval systems is challenging due to the varying definitions of `similar images' across different medical contexts. This challenge is compounded by the lack of large-scale, high-quality medical imaging retrieval datasets and benchmarks. In this paper, we propose a novel methodology that leverages dense radiology reports to define image-wise similarity ordering at multiple granularities in a scalable and fully automatic manner. Using this approach, we construct two comprehensive medical imaging retrieval datasets: MIMIC-IR for Chest X-rays and CTRATE-IR for CT scans, providing detailed image-image ranking annotations conditioned on diverse anatomical structures. Furthermore, we develop two retrieval systems, RadIR-CXR and model-ChestCT, which demonstrate superior performance in traditional image-image and image-report retrieval tasks. These systems also enable flexible, effective image retrieval conditioned on specific anatomical structures described in text, achieving state-of-the-art results on 77 out of 78 metrics.
☆ Transferable Foundation Models for Geometric Tasks on Point Cloud Representations: Geometric Neural Operators
We introduce methods for obtaining pretrained Geometric Neural Operators (GNPs) that can serve as basal foundation models for use in obtaining geometric features. These can be used within data processing pipelines for machine learning tasks and numerical methods. We show how our GNPs can be trained to learn robust latent representations for the differential geometry of point-clouds to provide estimates of metric, curvature, and other shape-related features. We demonstrate how our pre-trained GNPs can be used (i) to estimate the geometric properties of surfaces of arbitrary shape and topologies with robustness in the presence of noise, (ii) to approximate solutions of geometric partial differential equations (PDEs) on manifolds, and (iii) to solve equations for shape deformations such as curvature driven flows. We also release a package of the codes and weights for using our pre-trained GNPs for processing point cloud representations. This allows for incorporating our pre-trained GNPs as components for reuse within existing and new data processing pipelines. The GNPs also can be used as part of numerical solvers involving geometry or as part of methods for performing inference and other geometric tasks.
☆ Adaptive Prototype Learning for Multimodal Cancer Survival Analysis
Leveraging multimodal data, particularly the integration of whole-slide histology images (WSIs) and transcriptomic profiles, holds great promise for improving cancer survival prediction. However, excessive redundancy in multimodal data can degrade model performance. In this paper, we propose Adaptive Prototype Learning (APL), a novel and effective approach for multimodal cancer survival analysis. APL adaptively learns representative prototypes in a data-driven manner, reducing redundancy while preserving critical information. Our method employs two sets of learnable query vectors that serve as a bridge between high-dimensional representations and survival prediction, capturing task-relevant features. Additionally, we introduce a multimodal mixed self-attention mechanism to enable cross-modal interactions, further enhancing information fusion. Extensive experiments on five benchmark cancer datasets demonstrate the superiority of our approach over existing methods. The code is available at https://github.com/HongLiuuuuu/APL.
comment: 10 pages, 3 figures
☆ Simulating the Real World: A Unified Survey of Multimodal Generative Models
Understanding and replicating the real world is a critical challenge in Artificial General Intelligence (AGI) research. To achieve this, many existing approaches, such as world models, aim to capture the fundamental principles governing the physical world, enabling more accurate simulations and meaningful interactions. However, current methods often treat different modalities, including 2D (images), videos, 3D, and 4D representations, as independent domains, overlooking their interdependencies. Additionally, these methods typically focus on isolated dimensions of reality without systematically integrating their connections. In this survey, we present a unified survey for multimodal generative models that investigate the progression of data dimensionality in real-world simulation. Specifically, this survey starts from 2D generation (appearance), then moves to video (appearance+dynamics) and 3D generation (appearance+geometry), and finally culminates in 4D generation that integrate all dimensions. To the best of our knowledge, this is the first attempt to systematically unify the study of 2D, video, 3D and 4D generation within a single framework. To guide future research, we provide a comprehensive review of datasets, evaluation metrics and future directions, and fostering insights for newcomers. This survey serves as a bridge to advance the study of multimodal generative models and real-world simulation within a unified framework.
comment: Repository for the related papers at https://github.com/ALEEEHU/World-Simulator
☆ Enhancing SAM with Efficient Prompting and Preference Optimization for Semi-supervised Medical Image Segmentation CVPR 2025
Foundational models such as the Segment Anything Model (SAM) are gaining traction in medical imaging segmentation, supporting multiple downstream tasks. However, such models are supervised in nature, still relying on large annotated datasets or prompts supplied by experts. Conventional techniques such as active learning to alleviate such limitations are limited in scope and still necessitate continuous human involvement and complex domain knowledge for label refinement or establishing reward ground truth. To address these challenges, we propose an enhanced Segment Anything Model (SAM) framework that utilizes annotation-efficient prompts generated in a fully unsupervised fashion, while still capturing essential semantic, location, and shape information through contrastive language-image pretraining and visual question answering. We adopt the direct preference optimization technique to design an optimal policy that enables the model to generate high-fidelity segmentations with simple ratings or rankings provided by a virtual annotator simulating the human annotation process. State-of-the-art performance of our framework in tasks such as lung segmentation, breast tumor segmentation, and organ segmentation across various modalities, including X-ray, ultrasound, and abdominal CT, justifies its effectiveness in low-annotation data scenarios.
comment: Accepted to CVPR 2025
☆ 3HANDS Dataset: Learning from Humans for Generating Naturalistic Handovers with Supernumerary Robotic Limbs
Supernumerary robotic limbs (SRLs) are robotic structures integrated closely with the user's body, which augment human physical capabilities and necessitate seamless, naturalistic human-machine interaction. For effective assistance in physical tasks, enabling SRLs to hand over objects to humans is crucial. Yet, designing heuristic-based policies for robots is time-consuming, difficult to generalize across tasks, and results in less human-like motion. When trained with proper datasets, generative models are powerful alternatives for creating naturalistic handover motions. We introduce 3HANDS, a novel dataset of object handover interactions between a participant performing a daily activity and another participant enacting a hip-mounted SRL in a naturalistic manner. 3HANDS captures the unique characteristics of SRL interactions: operating in intimate personal space with asymmetric object origins, implicit motion synchronization, and the user's engagement in a primary task during the handover. To demonstrate the effectiveness of our dataset, we present three models: one that generates naturalistic handover trajectories, another that determines the appropriate handover endpoints, and a third that predicts the moment to initiate a handover. In a user study (N=10), we compare the handover interaction performed with our method compared to a baseline. The findings show that our method was perceived as significantly more natural, less physically demanding, and more comfortable.
comment: CHI '25
☆ PathoPainter: Augmenting Histopathology Segmentation via Tumor-aware Inpainting
Tumor segmentation plays a critical role in histopathology, but it requires costly, fine-grained image-mask pairs annotated by pathologists. Thus, synthesizing histopathology data to expand the dataset is highly desirable. Previous works suffer from inaccuracies and limited diversity in image-mask pairs, both of which affect training segmentation, particularly in small-scale datasets and the inherently complex nature of histopathology images. To address this challenge, we propose PathoPainter, which reformulates image-mask pair generation as a tumor inpainting task. Specifically, our approach preserves the background while inpainting the tumor region, ensuring precise alignment between the generated image and its corresponding mask. To enhance dataset diversity while maintaining biological plausibility, we incorporate a sampling mechanism that conditions tumor inpainting on regional embeddings from a different image. Additionally, we introduce a filtering strategy to exclude uncertain synthetic regions, further improving the quality of the generated data. Our comprehensive evaluation spans multiple datasets featuring diverse tumor types and various training data scales. As a result, segmentation improved significantly with our synthetic data, surpassing existing segmentation data synthesis approaches, e.g., 75.69% -> 77.69% on CAMELYON16. The code is available at https://github.com/HongLiuuuuu/PathoPainter.
comment: 10 pages, 3 figures
☆ The Best of Both Worlds: Integrating Language Models and Diffusion Models for Video Generation
Recent advancements in text-to-video (T2V) generation have been driven by two competing paradigms: autoregressive language models and diffusion models. However, each paradigm has intrinsic limitations: language models struggle with visual quality and error accumulation, while diffusion models lack semantic understanding and causal modeling. In this work, we propose LanDiff, a hybrid framework that synergizes the strengths of both paradigms through coarse-to-fine generation. Our architecture introduces three key innovations: (1) a semantic tokenizer that compresses 3D visual features into compact 1D discrete representations through efficient semantic compression, achieving a $\sim$14,000$\times$ compression ratio; (2) a language model that generates semantic tokens with high-level semantic relationships; (3) a streaming diffusion model that refines coarse semantics into high-fidelity videos. Experiments show that LanDiff, a 5B model, achieves a score of 85.43 on the VBench T2V benchmark, surpassing the state-of-the-art open-source models Hunyuan Video (13B) and other commercial models such as Sora, Keling, and Hailuo. Furthermore, our model also achieves state-of-the-art performance in long video generation, surpassing other open-source models in this field. Our demo can be viewed at https://landiff.github.io/.
☆ A Benchmark for Multi-Lingual Vision-Language Learning in Remote Sensing Image Captioning
Remote Sensing Image Captioning (RSIC) is a cross-modal field bridging vision and language, aimed at automatically generating natural language descriptions of features and scenes in remote sensing imagery. Despite significant advances in developing sophisticated methods and large-scale datasets for training vision-language models (VLMs), two critical challenges persist: the scarcity of non-English descriptive datasets and the lack of multilingual capability evaluation for models. These limitations fundamentally impede the progress and practical deployment of RSIC, particularly in the era of large VLMs. To address these challenges, this paper presents several significant contributions to the field. First, we introduce and analyze BRSIC (Bilingual Remote Sensing Image Captioning), a comprehensive bilingual dataset that enriches three established English RSIC datasets with Chinese descriptions, encompassing 13,634 images paired with 68,170 bilingual captions. Building upon this foundation, we develop a systematic evaluation framework that addresses the prevalent inconsistency in evaluation protocols, enabling rigorous assessment of model performance through standardized retraining procedures on BRSIC. Furthermore, we present an extensive empirical study of eight state-of-the-art large vision-language models (LVLMs), examining their capabilities across multiple paradigms including zero-shot inference, supervised fine-tuning, and multi-lingual training. This comprehensive evaluation provides crucial insights into the strengths and limitations of current LVLMs in handling multilingual remote sensing tasks. Additionally, our cross-dataset transfer experiments reveal interesting findings. The code and data will be available at https://github.com/mrazhou/BRSIC.
☆ Omnidirectional Multi-Object Tracking CVPR 2025
Panoramic imagery, with its 360{\deg} field of view, offers comprehensive information to support Multi-Object Tracking (MOT) in capturing spatial and temporal relationships of surrounding objects. However, most MOT algorithms are tailored for pinhole images with limited views, impairing their effectiveness in panoramic settings. Additionally, panoramic image distortions, such as resolution loss, geometric deformation, and uneven lighting, hinder direct adaptation of existing MOT methods, leading to significant performance degradation. To address these challenges, we propose OmniTrack, an omnidirectional MOT framework that incorporates Tracklet Management to introduce temporal cues, FlexiTrack Instances for object localization and association, and the CircularStatE Module to alleviate image and geometric distortions. This integration enables tracking in large field-of-view scenarios, even under rapid sensor motion. To mitigate the lack of panoramic MOT datasets, we introduce the QuadTrack dataset--a comprehensive panoramic dataset collected by a quadruped robot, featuring diverse challenges such as wide fields of view, intense motion, and complex environments. Extensive experiments on the public JRDB dataset and the newly introduced QuadTrack benchmark demonstrate the state-of-the-art performance of the proposed framework. OmniTrack achieves a HOTA score of 26.92% on JRDB, representing an improvement of 3.43%, and further achieves 23.45% on QuadTrack, surpassing the baseline by 6.81%. The dataset and code will be made publicly available at https://github.com/xifen523/OmniTrack.
comment: Accepted to CVPR 2025. The dataset and code will be made publicly available at https://github.com/xifen523/OmniTrack
☆ ViT-VS: On the Applicability of Pretrained Vision Transformer Features for Generalizable Visual Servoing
Visual servoing enables robots to precisely position their end-effector relative to a target object. While classical methods rely on hand-crafted features and thus are universally applicable without task-specific training, they often struggle with occlusions and environmental variations, whereas learning-based approaches improve robustness but typically require extensive training. We present a visual servoing approach that leverages pretrained vision transformers for semantic feature extraction, combining the advantages of both paradigms while also being able to generalize beyond the provided sample. Our approach achieves full convergence in unperturbed scenarios and surpasses classical image-based visual servoing by up to 31.2\% relative improvement in perturbed scenarios. Even the convergence rates of learning-based methods are matched despite requiring no task- or object-specific training. Real-world evaluations confirm robust performance in end-effector positioning, industrial box manipulation, and grasping of unseen objects using only a reference from the same category. Our code and simulation environment are available at: https://alessandroscherl.github.io/ViT-VS/
☆ In-Context Reverse Classification Accuracy: Efficient Estimation of Segmentation Quality without Ground-Truth
Assessing the quality of automatic image segmentation is crucial in clinical practice, but often very challenging due to the limited availability of ground truth annotations. In this paper, we introduce In-Context Reverse Classification Accuracy (In-Context RCA), a novel framework for automatically estimating segmentation quality in the absence of ground-truth annotations. By leveraging recent in-context learning segmentation models and incorporating retrieval-augmentation techniques to select the most relevant reference images, our approach enables efficient quality estimation with minimal reference data. Validated across diverse medical imaging modalities, our method demonstrates robust performance and computational efficiency, offering a promising solution for automated quality control in clinical workflows, where fast and reliable segmentation assessment is essential. The code is available at https://github.com/mcosarinsky/In-Context-RCA.
☆ A Novel Solution for Drone Photogrammetry with Low-overlap Aerial Images using Monocular Depth Estimation
Low-overlap aerial imagery poses significant challenges to traditional photogrammetric methods, which rely heavily on high image overlap to produce accurate and complete mapping products. In this study, we propose a novel workflow based on monocular depth estimation to address the limitations of conventional techniques. Our method leverages tie points obtained from aerial triangulation to establish a relationship between monocular depth and metric depth, thus transforming the original depth map into a metric depth map, enabling the generation of dense depth information and the comprehensive reconstruction of the scene. For the experiments, a high-overlap drone dataset containing 296 images is processed using Metashape to generate depth maps and DSMs as ground truth. Subsequently, we create a low-overlap dataset by selecting 20 images for experimental evaluation. Results demonstrate that while the recovered depth maps and resulting DSMs achieve meter-level accuracy, they provide significantly better completeness compared to traditional methods, particularly in regions covered by single images. This study showcases the potential of monocular depth estimation in low-overlap aerial photogrammetry.
☆ AnyAnomaly: Zero-Shot Customizable Video Anomaly Detection with LVLM
Video anomaly detection (VAD) is crucial for video analysis and surveillance in computer vision. However, existing VAD models rely on learned normal patterns, which makes them difficult to apply to diverse environments. Consequently, users should retrain models or develop separate AI models for new environments, which requires expertise in machine learning, high-performance hardware, and extensive data collection, limiting the practical usability of VAD. To address these challenges, this study proposes customizable video anomaly detection (C-VAD) technique and the AnyAnomaly model. C-VAD considers user-defined text as an abnormal event and detects frames containing a specified event in a video. We effectively implemented AnyAnomaly using a context-aware visual question answering without fine-tuning the large vision language model. To validate the effectiveness of the proposed model, we constructed C-VAD datasets and demonstrated the superiority of AnyAnomaly. Furthermore, our approach showed competitive performance on VAD benchmark datasets, achieving state-of-the-art results on the UBnormal dataset and outperforming other methods in generalization across all datasets. Our code is available online at github.com/SkiddieAhn/Paper-AnyAnomaly.
☆ IMFine: 3D Inpainting via Geometry-guided Multi-view Refinement CVPR 2025
Current 3D inpainting and object removal methods are largely limited to front-facing scenes, facing substantial challenges when applied to diverse, "unconstrained" scenes where the camera orientation and trajectory are unrestricted. To bridge this gap, we introduce a novel approach that produces inpainted 3D scenes with consistent visual quality and coherent underlying geometry across both front-facing and unconstrained scenes. Specifically, we propose a robust 3D inpainting pipeline that incorporates geometric priors and a multi-view refinement network trained via test-time adaptation, building on a pre-trained image inpainting model. Additionally, we develop a novel inpainting mask detection technique to derive targeted inpainting masks from object masks, boosting the performance in handling unconstrained scenes. To validate the efficacy of our approach, we create a challenging and diverse benchmark that spans a wide range of scenes. Comprehensive experiments demonstrate that our proposed method substantially outperforms existing state-of-the-art approaches.
comment: Accepted at CVPR 2025, \href{https://xinxinzuo2353.github.io/imfine/}{Project Page}
☆ ReynoldsFlow: Exquisite Flow Estimation via Reynolds Transport Theorem
Optical flow is a fundamental technique for motion estimation, widely applied in video stabilization, interpolation, and object tracking. Recent advancements in artificial intelligence (AI) have enabled deep learning models to leverage optical flow as an important feature for motion analysis. However, traditional optical flow methods rely on restrictive assumptions, such as brightness constancy and slow motion constraints, limiting their effectiveness in complex scenes. Deep learning-based approaches require extensive training on large domain-specific datasets, making them computationally demanding. Furthermore, optical flow is typically visualized in the HSV color space, which introduces nonlinear distortions when converted to RGB and is highly sensitive to noise, degrading motion representation accuracy. These limitations inherently constrain the performance of downstream models, potentially hindering object tracking and motion analysis tasks. To address these challenges, we propose Reynolds flow, a novel training-free flow estimation inspired by the Reynolds transport theorem, offering a principled approach to modeling complex motion dynamics. Beyond the conventional HSV-based visualization, denoted ReynoldsFlow, we introduce an alternative representation, ReynoldsFlow+, designed to improve flow visualization. We evaluate ReynoldsFlow and ReynoldsFlow+ across three video-based benchmarks: tiny object detection on UAVDB, infrared object detection on Anti-UAV, and pose estimation on GolfDB. Experimental results demonstrate that networks trained with ReynoldsFlow+ achieve state-of-the-art (SOTA) performance, exhibiting improved robustness and efficiency across all tasks.
comment: 10 pages, 3 figures, 3 tables
☆ Spatial regularisation for improved accuracy and interpretability in keypoint-based registration
Unsupervised registration strategies bypass requirements in ground truth transforms or segmentations by optimising similarity metrics between fixed and moved volumes. Among these methods, a recent subclass of approaches based on unsupervised keypoint detection stand out as very promising for interpretability. Specifically, these methods train a network to predict feature maps for fixed and moving images, from which explainable centres of mass are computed to obtain point clouds, that are then aligned in closed-form. However, the features returned by the network often yield spatially diffuse patterns that are hard to interpret, thus undermining the purpose of keypoint-based registration. Here, we propose a three-fold loss to regularise the spatial distribution of the features. First, we use the KL divergence to model features as point spread functions that we interpret as probabilistic keypoints. Then, we sharpen the spatial distributions of these features to increase the precision of the detected landmarks. Finally, we introduce a new repulsive loss across keypoints to encourage spatial diversity. Overall, our loss considerably improves the interpretability of the features, which now correspond to precise and anatomically meaningful landmarks. We demonstrate our three-fold loss in foetal rigid motion tracking and brain MRI affine registration tasks, where it not only outperforms state-of-the-art unsupervised strategies, but also bridges the gap with state-of-the-art supervised methods. Our code is available at https://github.com/BenBillot/spatial_regularisation.
comment: under review
☆ Learning Object Placement Programs for Indoor Scene Synthesis with Iterative Self Training
Data driven and autoregressive indoor scene synthesis systems generate indoor scenes automatically by suggesting and then placing objects one at a time. Empirical observations show that current systems tend to produce incomplete next object location distributions. We introduce a system which addresses this problem. We design a Domain Specific Language (DSL) that specifies functional constraints. Programs from our language take as input a partial scene and object to place. Upon execution they predict possible object placements. We design a generative model which writes these programs automatically. Available 3D scene datasets do not contain programs to train on, so we build upon previous work in unsupervised program induction to introduce a new program bootstrapping algorithm. In order to quantify our empirical observations we introduce a new evaluation procedure which captures how well a system models per-object location distributions. We ask human annotators to label all the possible places an object can go in a scene and show that our system produces per-object location distributions more consistent with human annotators. Our system also generates indoor scenes of comparable quality to previous systems and while previous systems degrade in performance when training data is sparse, our system does not degrade to the same degree.
comment: 21 pages, 20 figures Subjects: Graphics (cs.GR), Computer Vision and Pattern Recognition (cs.CV), Machine Learning (cs.LG)
☆ Semantic Alignment of Unimodal Medical Text and Vision Representations
General-purpose AI models, particularly those designed for text and vision, demonstrate impressive versatility across a wide range of deep-learning tasks. However, they often underperform in specialised domains like medical imaging, where domain-specific solutions or alternative knowledge transfer approaches are typically required. Recent studies have noted that general-purpose models can exhibit similar latent spaces when processing semantically related data, although this alignment does not occur naturally. Building on this insight, it has been shown that applying a simple transformation - at most affine - estimated from a subset of semantically corresponding samples, known as anchors, enables model stitching across diverse training paradigms, architectures, and modalities. In this paper, we explore how semantic alignment - estimating transformations between anchors - can bridge general-purpose AI with specialised medical knowledge. Using multiple public chest X-ray datasets, we demonstrate that model stitching across model architectures allows general models to integrate domain-specific knowledge without additional training, leading to improved performance on medical tasks. Furthermore, we introduce a novel zero-shot classification approach for unimodal vision encoders that leverages semantic alignment across modalities. Our results show that our method not only outperforms general multimodal models but also approaches the performance levels of fully trained, medical-specific multimodal solutions
☆ ForestLPR: LiDAR Place Recognition in Forests Attentioning Multiple BEV Density Images CVPR2025
Place recognition is essential to maintain global consistency in large-scale localization systems. While research in urban environments has progressed significantly using LiDARs or cameras, applications in natural forest-like environments remain largely under-explored. Furthermore, forests present particular challenges due to high self-similarity and substantial variations in vegetation growth over time. In this work, we propose a robust LiDAR-based place recognition method for natural forests, ForestLPR. We hypothesize that a set of cross-sectional images of the forest's geometry at different heights contains the information needed to recognize revisiting a place. The cross-sectional images are represented by \ac{bev} density images of horizontal slices of the point cloud at different heights. Our approach utilizes a visual transformer as the shared backbone to produce sets of local descriptors and introduces a multi-BEV interaction module to attend to information at different heights adaptively. It is followed by an aggregation layer that produces a rotation-invariant place descriptor. We evaluated the efficacy of our method extensively on real-world data from public benchmarks as well as robotic datasets and compared it against the state-of-the-art (SOTA) methods. The results indicate that ForestLPR has consistently good performance on all evaluations and achieves an average increase of 7.38\% and 9.11\% on Recall@1 over the closest competitor on intra-sequence loop closure detection and inter-sequence re-localization, respectively, validating our hypothesis
comment: accepted by CVPR2025
☆ Gate-Shift-Pose: Enhancing Action Recognition in Sports with Skeleton Information
This paper introduces Gate-Shift-Pose, an enhanced version of Gate-Shift-Fuse networks, designed for athlete fall classification in figure skating by integrating skeleton pose data alongside RGB frames. We evaluate two fusion strategies: early-fusion, which combines RGB frames with Gaussian heatmaps of pose keypoints at the input stage, and late-fusion, which employs a multi-stream architecture with attention mechanisms to combine RGB and pose features. Experiments on the FR-FS dataset demonstrate that Gate-Shift-Pose significantly outperforms the RGB-only baseline, improving accuracy by up to 40% with ResNet18 and 20% with ResNet50. Early-fusion achieves the highest accuracy (98.08%) with ResNet50, leveraging the model's capacity for effective multimodal integration, while late-fusion is better suited for lighter backbones like ResNet18. These results highlight the potential of multimodal architectures for sports action recognition and the critical role of skeleton pose information in capturing complex motion patterns.
☆ Question-Aware Gaussian Experts for Audio-Visual Question Answering CVPR 2025
Audio-Visual Question Answering (AVQA) requires not only question-based multimodal reasoning but also precise temporal grounding to capture subtle dynamics for accurate prediction. However, existing methods mainly use question information implicitly, limiting focus on question-specific details. Furthermore, most studies rely on uniform frame sampling, which can miss key question-relevant frames. Although recent Top-K frame selection methods aim to address this, their discrete nature still overlooks fine-grained temporal details. This paper proposes \textbf{QA-TIGER}, a novel framework that explicitly incorporates question information and models continuous temporal dynamics. Our key idea is to use Gaussian-based modeling to adaptively focus on both consecutive and non-consecutive frames based on the question, while explicitly injecting question information and applying progressive refinement. We leverage a Mixture of Experts (MoE) to flexibly implement multiple Gaussian models, activating temporal experts specifically tailored to the question. Extensive experiments on multiple AVQA benchmarks show that QA-TIGER consistently achieves state-of-the-art performance. Code is available at https://github.com/AIM-SKKU/QA-TIGER
comment: CVPR 2025. Project page at https://aim-skku.github.io/QA-TIGER/
☆ TPC: Cross-Temporal Prediction Connection for Vision-Language Model Hallucination Reduction
Vision-language models (VLMs) have achieved remarkable advancements, capitalizing on the impressive capabilities of large language models (LLMs) across diverse tasks. Despite this, a critical challenge known as hallucination occurs when models overconfidently describe objects or attributes absent from the image, a problem exacerbated by the tendency of VLMs to rely on linguistic priors. This limitation reduces model reliability in high-stakes applications. In this work, we have observed the characteristic of logits' continuity consistency enhancement and introduced a straightforward and efficient method, Cross-Temporal Prediction Connection (TPC), designed to enhance the semantic consistency of logits by connecting them temporally across timesteps. TPC amplifies information flow and improves coherence, effectively reducing hallucination. Extensive experiments show that TPC surpasses existing representatives, delivering superior performance in both accuracy and efficiency while maintaining robustness in open-ended text generation tasks.
☆ A lightweight model FDM-YOLO for small target improvement based on YOLOv8
Small targets are particularly difficult to detect due to their low pixel count, complex backgrounds, and varying shooting angles, which make it hard for models to extract effective features. While some large-scale models offer high accuracy, their long inference times make them unsuitable for real-time deployment on edge devices. On the other hand, models designed for low computational power often suffer from poor detection accuracy. This paper focuses on small target detection and explores methods for object detection under low computational constraints. Building on the YOLOv8 model, we propose a new network architecture called FDM-YOLO. Our research includes the following key contributions: We introduce FDM-YOLO by analyzing the output of the YOLOv8 detection head. We add a highresolution layer and remove the large target detection layer to better handle small targets. Based on PConv, we propose a lightweight network structure called Fast-C2f, which is integrated into the PAN module of the model. To mitigate the accuracy loss caused by model lightweighting, we employ dynamic upsampling (Dysample) and a lightweight EMA attention mechanism.The FDM-YOLO model was validated on the Visdrone dataset, achieving a 38% reduction in parameter count and improving the Map0.5 score from 38.4% to 42.5%, all while maintaining nearly the same inference speed. This demonstrates the effectiveness of our approach in balancing accuracy and efficiency for edge device deployment.
☆ ToFu: Visual Tokens Reduction via Fusion for Multi-modal, Multi-patch, Multi-image Task
Large Multimodal Models (LMMs) are powerful tools that are capable of reasoning and understanding multimodal information beyond text and language. Despite their entrenched impact, the development of LMMs is hindered by the higher computational requirements compared to their unimodal counterparts. One of the main causes of this is the large amount of tokens needed to encode the visual input, which is especially evident for multi-image multimodal tasks. Recent approaches to reduce visual tokens depend on the visual encoder architecture, require fine-tuning the LLM to maintain the performance, and only consider single-image scenarios. To address these limitations, we propose ToFu, a visual encoder-agnostic, training-free Token Fusion strategy that combines redundant visual tokens of LMMs for high-resolution, multi-image, tasks. The core intuition behind our method is straightforward yet effective: preserve distinctive tokens while combining similar ones. We achieve this by sequentially examining visual tokens and deciding whether to merge them with others or keep them as separate entities. We validate our approach on the well-established LLaVA-Interleave Bench, which covers challenging multi-image tasks. In addition, we push to the extreme our method by testing it on a newly-created benchmark, ComPairs, focused on multi-image comparisons where a larger amount of images and visual tokens are inputted to the LMMs. Our extensive analysis, considering several LMM architectures, demonstrates the benefits of our approach both in terms of efficiency and performance gain.
☆ EvidMTL: Evidential Multi-Task Learning for Uncertainty-Aware Semantic Surface Mapping from Monocular RGB Images IROS 2025
For scene understanding in unstructured environments, an accurate and uncertainty-aware metric-semantic mapping is required to enable informed action selection by autonomous systems.Existing mapping methods often suffer from overconfident semantic predictions, and sparse and noisy depth sensing, leading to inconsistent map representations. In this paper, we therefore introduce EvidMTL, a multi-task learning framework that uses evidential heads for depth estimation and semantic segmentation, enabling uncertainty-aware inference from monocular RGB images. To enable uncertainty-calibrated evidential multi-task learning, we propose a novel evidential depth loss function that jointly optimizes the belief strength of the depth prediction in conjunction with evidential segmentation loss. Building on this, we present EvidKimera, an uncertainty-aware semantic surface mapping framework, which uses evidential depth and semantics prediction for improved 3D metric-semantic consistency. We train and evaluate EvidMTL on the NYUDepthV2 and assess its zero-shot performance on ScanNetV2, demonstrating superior uncertainty estimation compared to conventional approaches while maintaining comparable depth estimation and semantic segmentation. In zero-shot mapping tests on ScanNetV2, EvidKimera outperforms Kimera in semantic surface mapping accuracy and consistency, highlighting the benefits of uncertainty-aware mapping and underscoring its potential for real-world robotic applications.
comment: Submitted to IROS 2025 Conference
☆ PointsToWood: A deep learning framework for complete canopy leaf-wood segmentation of TLS data across diverse European forests
Point clouds from Terrestrial Laser Scanning (TLS) are an increasingly popular source of data for studying plant structure and function but typically require extensive manual processing to extract ecologically important information. One key task is the accurate semantic segmentation of different plant material within point clouds, particularly wood and leaves, which is required to understand plant productivity, architecture and physiology. Existing automated semantic segmentation methods are primarily developed for single ecosystem types, and whilst they show good accuracy for biomass assessment from the trunk and large branches, often perform less well within the crown. In this study, we demonstrate a new framework that uses a deep learning architecture newly developed from PointNet and pointNEXT for processing 3D point clouds to provide a reliable semantic segmentation of wood and leaf in TLS point clouds from the tree base to branch tips, trained on data from diverse mature European forests. Our model uses meticulously labelled data combined with voxel-based sampling, neighbourhood rescaling, and a novel gated reflectance integration module embedded throughout the feature extraction layers. We evaluate its performance across open datasets from boreal, temperate, Mediterranean and tropical regions, encompassing diverse ecosystem types and sensor characteristics. Our results show consistent outperformance against the most widely used PointNet based approach for leaf/wood segmentation on our high-density TLS dataset collected across diverse mixed forest plots across all major biomes in Europe. We also find consistently strong performance tested on others open data from China, Eastern Cameroon, Germany and Finland, collected using both time-of-flight and phase-shift sensors, showcasing the transferability of our model to a wide range of ecosystems and sensors.
☆ Learning Transformer-based World Models with Contrastive Predictive Coding
The DreamerV3 algorithm recently obtained remarkable performance across diverse environment domains by learning an accurate world model based on Recurrent Neural Networks (RNNs). Following the success of model-based reinforcement learning algorithms and the rapid adoption of the Transformer architecture for its superior training efficiency and favorable scaling properties, recent works such as STORM have proposed replacing RNN-based world models with Transformer-based world models using masked self-attention. However, despite the improved training efficiency of these methods, their impact on performance remains limited compared to the Dreamer algorithm, struggling to learn competitive Transformer-based world models. In this work, we show that the next state prediction objective adopted in previous approaches is insufficient to fully exploit the representation capabilities of Transformers. We propose to extend world model predictions to longer time horizons by introducing TWISTER (Transformer-based World model wIth contraSTivE Representations), a world model using action-conditioned Contrastive Predictive Coding to learn high-level temporal feature representations and improve the agent performance. TWISTER achieves a human-normalized mean score of 162% on the Atari 100k benchmark, setting a new record among state-of-the-art methods that do not employ look-ahead search.
☆ Scale-Invariant Adversarial Attack against Arbitrary-scale Super-resolution
The advent of local continuous image function (LIIF) has garnered significant attention for arbitrary-scale super-resolution (SR) techniques. However, while the vulnerabilities of fixed-scale SR have been assessed, the robustness of continuous representation-based arbitrary-scale SR against adversarial attacks remains an area warranting further exploration. The elaborately designed adversarial attacks for fixed-scale SR are scale-dependent, which will cause time-consuming and memory-consuming problems when applied to arbitrary-scale SR. To address this concern, we propose a simple yet effective ``scale-invariant'' SR adversarial attack method with good transferability, termed SIAGT. Specifically, we propose to construct resource-saving attacks by exploiting finite discrete points of continuous representation. In addition, we formulate a coordinate-dependent loss to enhance the cross-model transferability of the attack. The attack can significantly deteriorate the SR images while introducing imperceptible distortion to the targeted low-resolution (LR) images. Experiments carried out on three popular LIIF-based SR approaches and four classical SR datasets show remarkable attack performance and transferability of SIAGT.
comment: 15 pages, accepted by TIFS 2025
☆ MIDAS: Modeling Ground-Truth Distributions with Dark Knowledge for Domain Generalized Stereo Matching
Despite the significant advances in domain generalized stereo matching, existing methods still exhibit domain-specific preferences when transferring from synthetic to real domains, hindering their practical applications in complex and diverse scenarios. The probability distributions predicted by the stereo network naturally encode rich similarity and uncertainty information. Inspired by this observation, we propose to extract these two types of dark knowledge from the pre-trained network to model intuitive multi-modal ground-truth distributions for both edge and non-edge regions. To mitigate the inherent domain preferences of a single network, we adopt network ensemble and further distinguish between objective and biased knowledge in the Laplace parameter space. Finally, the objective knowledge and the original disparity labels are jointly modeled as a mixture of Laplacians to provide fine-grained supervision for the stereo network training. Extensive experiments demonstrate that: 1) Our method is generic and effectively improves the generalization of existing networks. 2) PCWNet with our method achieves the state-of-the-art generalization performance on both KITTI 2015 and 2012 datasets. 3) Our method outperforms existing methods in comprehensive ranking across four popular real-world datasets.
☆ ObjMST: An Object-Focused Multimodal Style Transfer Framework
We propose ObjMST, an object-focused multimodal style transfer framework that provides separate style supervision for salient objects and surrounding elements while addressing alignment issues in multimodal representation learning. Existing image-text multimodal style transfer methods face the following challenges: (1) generating non-aligned and inconsistent multimodal style representations; and (2) content mismatch, where identical style patterns are applied to both salient objects and their surrounding elements. Our approach mitigates these issues by: (1) introducing a Style-Specific Masked Directional CLIP Loss, which ensures consistent and aligned style representations for both salient objects and their surroundings; and (2) incorporating a salient-to-key mapping mechanism for stylizing salient objects, followed by image harmonization to seamlessly blend the stylized objects with their environment. We validate the effectiveness of ObjMST through experiments, using both quantitative metrics and qualitative visual evaluations of the stylized outputs. Our code is available at: https://github.com/chandagrover/ObjMST.
comment: 8 pages, 8 Figures, 3 Tables
☆ PLMP -- Point-Line Minimal Problems for Projective SfM
We completely classify all minimal problems for Structure-from-Motion (SfM) where arrangements of points and lines are fully observed by multiple uncalibrated pinhole cameras. We find 291 minimal problems, 73 of which have unique solutions and can thus be solved linearly. Two of the linear problems allow an arbitrary number of views, while all other minimal problems have at most 9 cameras. All minimal problems have at most 7 points and at most 12 lines. We compute the number of solutions of each minimal problem, as this gives a measurement of the problem's intrinsic difficulty, and find that these number are relatively low (e.g., when comparing with minimal problems for calibrated cameras). Finally, by exploring stabilizer subgroups of subarrangements, we develop a geometric and systematic way to 1) factorize minimal problems into smaller problems, 2) identify minimal problems in underconstrained problems, and 3) formally prove non-minimality.
☆ LEDiT: Your Length-Extrapolatable Diffusion Transformer without Positional Encoding
Diffusion transformers(DiTs) struggle to generate images at resolutions higher than their training resolutions. The primary obstacle is that the explicit positional encodings(PE), such as RoPE, need extrapolation which degrades performance when the inference resolution differs from training. In this paper, we propose a Length-Extrapolatable Diffusion Transformer(LEDiT), a simple yet powerful architecture to overcome this limitation. LEDiT needs no explicit PEs, thereby avoiding extrapolation. The key innovations of LEDiT are introducing causal attention to implicitly impart global positional information to tokens, while enhancing locality to precisely distinguish adjacent tokens. Experiments on 256x256 and 512x512 ImageNet show that LEDiT can scale the inference resolution to 512x512 and 1024x1024, respectively, while achieving better image quality compared to current state-of-the-art length extrapolation methods(NTK-aware, YaRN). Moreover, LEDiT achieves strong extrapolation performance with just 100K steps of fine-tuning on a pretrained DiT, demonstrating its potential for integration into existing text-to-image DiTs.
☆ GaussianVideo: Efficient Video Representation and Compression by Gaussian Splatting
Implicit Neural Representation for Videos (NeRV) has introduced a novel paradigm for video representation and compression, outperforming traditional codecs. As model size grows, however, slow encoding and decoding speed and high memory consumption hinder its application in practice. To address these limitations, we propose a new video representation and compression method based on 2D Gaussian Splatting to efficiently handle video data. Our proposed deformable 2D Gaussian Splatting dynamically adapts the transformation of 2D Gaussians at each frame, significantly reducing memory cost. Equipped with a multi-plane-based spatiotemporal encoder and a lightweight decoder, it predicts changes in color, coordinates, and shape of initialized Gaussians, given the time step. By leveraging temporal gradients, our model effectively captures temporal redundancy at negligible cost, significantly enhancing video representation efficiency. Our method reduces GPU memory usage by up to 78.4%, and significantly expedites video processing, achieving 5.5x faster training and 12.5x faster decoding compared to the state-of-the-art NeRV methods.
☆ GBT-SAM: A Parameter-Efficient Depth-Aware Model for Generalizable Brain tumour Segmentation on mp-MRI
Gliomas are brain tumours that stand out for their highly lethal and aggressive nature, which demands a precise approach in their diagnosis. Medical image segmentation plays a crucial role in the evaluation and follow-up of these tumours, allowing specialists to analyse their morphology. However, existing methods for automatic glioma segmentation often lack generalization capability across other brain tumour domains, require extensive computational resources, or fail to fully utilize the multi-parametric MRI (mp-MRI) data used to delineate them. In this work, we introduce GBT-SAM, a novel Generalizable Brain Tumour (GBT) framework that extends the Segment Anything Model (SAM) to brain tumour segmentation tasks. Our method employs a two-step training protocol: first, fine-tuning the patch embedding layer to process the entire mp-MRI modalities, and second, incorporating parameter-efficient LoRA blocks and a Depth-Condition block into the Vision Transformer (ViT) to capture inter-slice correlations. GBT-SAM achieves state-of-the-art performance on the Adult Glioma dataset (Dice Score of $93.54$) while demonstrating robust generalization across Meningioma, Pediatric Glioma, and Sub-Saharan Glioma datasets. Furthermore, GBT-SAM uses less than 6.5M trainable parameters, thus offering an efficient solution for brain tumour segmentation. \\ Our code and models are available at https://github.com/vpulab/med-sam-brain .
☆ A Modular Pipeline for 3D Object Tracking Using RGB Cameras
Object tracking is a key challenge of computer vision with various applications that all require different architectures. Most tracking systems have limitations such as constraining all movement to a 2D plane and they often track only one object. In this paper, we present a new modular pipeline that calculates 3D trajectories of multiple objects. It is adaptable to various settings where multiple time-synced and stationary cameras record moving objects, using off the shelf webcams. Our pipeline was tested on the Table Setting Dataset, where participants are recorded with various sensors as they set a table with tableware objects. We need to track these manipulated objects, using 6 rgb webcams. Challenges include: Detecting small objects in 9.874.699 camera frames, determining camera poses, discriminating between nearby and overlapping objects, temporary occlusions, and finally calculating a 3D trajectory using the right subset of an average of 11.12.456 pixel coordinates per 3-minute trial. We implement a robust pipeline that results in accurate trajectories with covariance of x,y,z-position as a confidence metric. It deals dynamically with appearing and disappearing objects, instantiating new Extended Kalman Filters. It scales to hundreds of table-setting trials with very little human annotation input, even with the camera poses of each trial unknown. The code is available at https://github.com/LarsBredereke/object_tracking
comment: 9 pages, 11 figures, original paper not to be published anywhere else
☆ S2Gaussian: Sparse-View Super-Resolution 3D Gaussian Splatting CVPR 2025
In this paper, we aim ambitiously for a realistic yet challenging problem, namely, how to reconstruct high-quality 3D scenes from sparse low-resolution views that simultaneously suffer from deficient perspectives and clarity. Whereas existing methods only deal with either sparse views or low-resolution observations, they fail to handle such hybrid and complicated scenarios. To this end, we propose a novel Sparse-view Super-resolution 3D Gaussian Splatting framework, dubbed S2Gaussian, that can reconstruct structure-accurate and detail-faithful 3D scenes with only sparse and low-resolution views. The S2Gaussian operates in a two-stage fashion. In the first stage, we initially optimize a low-resolution Gaussian representation with depth regularization and densify it to initialize the high-resolution Gaussians through a tailored Gaussian Shuffle Split operation. In the second stage, we refine the high-resolution Gaussians with the super-resolved images generated from both original sparse views and pseudo-views rendered by the low-resolution Gaussians. In which a customized blur-free inconsistency modeling scheme and a 3D robust optimization strategy are elaborately designed to mitigate multi-view inconsistency and eliminate erroneous updates caused by imperfect supervision. Extensive experiments demonstrate superior results and in particular establishing new state-of-the-art performances with more consistent geometry and finer details.
comment: CVPR 2025
☆ Shaken, Not Stirred: A Novel Dataset for Visual Understanding of Glasses in Human-Robot Bartending Tasks IROS
Datasets for object detection often do not account for enough variety of glasses, due to their transparent and reflective properties. Specifically, open-vocabulary object detectors, widely used in embodied robotic agents, fail to distinguish subclasses of glasses. This scientific gap poses an issue to robotic applications that suffer from accumulating errors between detection, planning, and action execution. The paper introduces a novel method for the acquisition of real-world data from RGB-D sensors that minimizes human effort. We propose an auto-labeling pipeline that generates labels for all the acquired frames based on the depth measurements. We provide a novel real-world glass object dataset that was collected on the Neuro-Inspired COLlaborator (NICOL), a humanoid robot platform. The data set consists of 7850 images recorded from five different cameras. We show that our trained baseline model outperforms state-of-the-art open-vocabulary approaches. In addition, we deploy our baseline model in an embodied agent approach to the NICOL platform, on which it achieves a success rate of 81% in a human-robot bartending scenario.
comment: Submitted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
ControlFill: Spatially Adjustable Image Inpainting from Prompt Learning
In this report, I present an inpainting framework named \textit{ControlFill}, which involves training two distinct prompts: one for generating plausible objects within a designated mask (\textit{creation}) and another for filling the region by extending the background (\textit{removal}). During the inference stage, these learned embeddings guide a diffusion network that operates without requiring heavy text encoders. By adjusting the relative significance of the two prompts and employing classifier-free guidance, users can control the intensity of removal or creation. Furthermore, I introduce a method to spatially vary the intensity of guidance by assigning different scales to individual pixels.
☆ TAIL: Text-Audio Incremental Learning
Many studies combine text and audio to capture multi-modal information but they overlook the model's generalization ability on new datasets. Introducing new datasets may affect the feature space of the original dataset, leading to catastrophic forgetting. Meanwhile, large model parameters can significantly impact training performance. To address these limitations, we introduce a novel task called Text-Audio Incremental Learning (TAIL) task for text-audio retrieval, and propose a new method, PTAT, Prompt Tuning for Audio-Text incremental learning. This method utilizes prompt tuning to optimize the model parameters while incorporating an audio-text similarity and feature distillation module to effectively mitigate catastrophic forgetting. We benchmark our method and previous incremental learning methods on AudioCaps, Clotho, BBC Sound Effects and Audioset datasets, and our method outperforms previous methods significantly, particularly demonstrating stronger resistance to forgetting on older datasets. Compared to the full-parameters Finetune (Sequential) method, our model only requires 2.42\% of its parameters, achieving 4.46\% higher performance.
comment: 4 figures, 5 tables
☆ How to Move Your Dragon: Text-to-Motion Synthesis for Large-Vocabulary Objects
Motion synthesis for diverse object categories holds great potential for 3D content creation but remains underexplored due to two key challenges: (1) the lack of comprehensive motion datasets that include a wide range of high-quality motions and annotations, and (2) the absence of methods capable of handling heterogeneous skeletal templates from diverse objects. To address these challenges, we contribute the following: First, we augment the Truebones Zoo dataset, a high-quality animal motion dataset covering over 70 species, by annotating it with detailed text descriptions, making it suitable for text-based motion synthesis. Second, we introduce rig augmentation techniques that generate diverse motion data while preserving consistent dynamics, enabling models to adapt to various skeletal configurations. Finally, we redesign existing motion diffusion models to dynamically adapt to arbitrary skeletal templates, enabling motion synthesis for a diverse range of objects with varying structures. Experiments show that our method learns to generate high-fidelity motions from textual descriptions for diverse and even unseen objects, setting a strong foundation for motion synthesis across diverse object categories and skeletal templates. Qualitative results are available on this link: t2m4lvo.github.io
☆ An Egocentric Vision-Language Model based Portable Real-time Smart Assistant
We present Vinci, a vision-language system designed to provide real-time, comprehensive AI assistance on portable devices. At its core, Vinci leverages EgoVideo-VL, a novel model that integrates an egocentric vision foundation model with a large language model (LLM), enabling advanced functionalities such as scene understanding, temporal grounding, video summarization, and future planning. To enhance its utility, Vinci incorporates a memory module for processing long video streams in real time while retaining contextual history, a generation module for producing visual action demonstrations, and a retrieval module that bridges egocentric and third-person perspectives to provide relevant how-to videos for skill acquisition. Unlike existing systems that often depend on specialized hardware, Vinci is hardware-agnostic, supporting deployment across a wide range of devices, including smartphones and wearable cameras. In our experiments, we first demonstrate the superior performance of EgoVideo-VL on multiple public benchmarks, showcasing its vision-language reasoning and contextual understanding capabilities. We then conduct a series of user studies to evaluate the real-world effectiveness of Vinci, highlighting its adaptability and usability in diverse scenarios. We hope Vinci can establish a new framework for portable, real-time egocentric AI systems, empowering users with contextual and actionable insights. Including the frontend, backend, and models, all codes of Vinci are available at https://github.com/OpenGVLab/vinci.
☆ Geometry-Constrained Monocular Scale Estimation Using Semantic Segmentation for Dynamic Scenes
Monocular visual localization plays a pivotal role in advanced driver assistance systems and autonomous driving by estimating a vehicle's ego-motion from a single pinhole camera. Nevertheless, conventional monocular visual odometry encoun-ters challenges in scale estimation due to the absence of depth information during projection. Previous methodologies, whether rooted in physical constraints or deep learning paradigms, con-tend with issues related to computational complexity and the management of dynamic objects. This study extends our prior research, presenting innovative strategies for ego-motion estima-tion and the selection of ground points. Striving for a nuanced equilibrium between computational efficiency and precision, we propose a hybrid method that leverages the SegNeXt model for real-time applications, encompassing both ego-motion estimation and ground point selection. Our methodology incorporates dy-namic object masks to eliminate unstable features and employs ground plane masks for meticulous triangulation. Furthermore, we exploit Geometry-constraint to delineate road regions for scale recovery. The integration of this approach with the mo-nocular version of ORB-SLAM3 culminates in the accurate esti-mation of a road model, a pivotal component in our scale recov-ery process. Rigorous experiments, conducted on the KITTI da-taset, systematically compare our method with existing monocu-lar visual odometry algorithms and contemporary scale recovery methodologies. The results undeniably confirm the superior ef-fectiveness of our approach, surpassing state-of-the-art visual odometry algorithms. Our source code is available at https://git hub.com/bFr0zNq/MVOSegScale.
☆ Synthetic Data is an Elegant GIFT for Continual Vision-Language Models CVPR 2025
Pre-trained Vision-Language Models (VLMs) require Continual Learning (CL) to efficiently update their knowledge and adapt to various downstream tasks without retraining from scratch. However, for VLMs, in addition to the loss of knowledge previously learned from downstream tasks, pre-training knowledge is also corrupted during continual fine-tuning. This issue is exacerbated by the unavailability of original pre-training data, leaving VLM's generalization ability degrading. In this paper, we propose GIFT, a novel continual fine-tuning approach that utilizes synthetic data to overcome catastrophic forgetting in VLMs. Taking advantage of recent advances in text-to-image synthesis, we employ a pre-trained diffusion model to recreate both pre-training and learned downstream task data. In this way, the VLM can revisit previous knowledge through distillation on matching diffusion-generated images and corresponding text prompts. Leveraging the broad distribution and high alignment between synthetic image-text pairs in VLM's feature space, we propose a contrastive distillation loss along with an image-text alignment constraint. To further combat in-distribution overfitting and enhance distillation performance with limited amount of generated data, we incorporate adaptive weight consolidation, utilizing Fisher information from these synthetic image-text pairs and achieving a better stability-plasticity balance. Extensive experiments demonstrate that our method consistently outperforms previous state-of-the-art approaches across various settings.
comment: This work is accepted by CVPR 2025. Modifications may be performed
☆ Spiking Meets Attention: Efficient Remote Sensing Image Super-Resolution with Attention Spiking Neural Networks
Spiking neural networks (SNNs) are emerging as a promising alternative to traditional artificial neural networks (ANNs), offering biological plausibility and energy efficiency. Despite these merits, SNNs are frequently hampered by limited capacity and insufficient representation power, yet remain underexplored in remote sensing super-resolution (SR) tasks. In this paper, we first observe that spiking signals exhibit drastic intensity variations across diverse textures, highlighting an active learning state of the neurons. This observation motivates us to apply SNNs for efficient SR of RSIs. Inspired by the success of attention mechanisms in representing salient information, we devise the spiking attention block (SAB), a concise yet effective component that optimizes membrane potentials through inferred attention weights, which, in turn, regulates spiking activity for superior feature representation. Our key contributions include: 1) we bridge the independent modulation between temporal and channel dimensions, facilitating joint feature correlation learning, and 2) we access the global self-similar patterns in large-scale remote sensing imagery to infer spatial attention weights, incorporating effective priors for realistic and faithful reconstruction. Building upon SAB, we proposed SpikeSR, which achieves state-of-the-art performance across various remote sensing benchmarks such as AID, DOTA, and DIOR, while maintaining high computational efficiency. The code of SpikeSR will be available upon paper acceptance.
☆ Energy-Guided Optimization for Personalized Image Editing with Pretrained Text-to-Image Diffusion Models
The rapid advancement of pretrained text-driven diffusion models has significantly enriched applications in image generation and editing. However, as the demand for personalized content editing increases, new challenges emerge especially when dealing with arbitrary objects and complex scenes. Existing methods usually mistakes mask as the object shape prior, which struggle to achieve a seamless integration result. The mostly used inversion noise initialization also hinders the identity consistency towards the target object. To address these challenges, we propose a novel training-free framework that formulates personalized content editing as the optimization of edited images in the latent space, using diffusion models as the energy function guidance conditioned by reference text-image pairs. A coarse-to-fine strategy is proposed that employs text energy guidance at the early stage to achieve a natural transition toward the target class and uses point-to-point feature-level image energy guidance to perform fine-grained appearance alignment with the target object. Additionally, we introduce the latent space content composition to enhance overall identity consistency with the target. Extensive experiments demonstrate that our method excels in object replacement even with a large domain gap, highlighting its potential for high-quality, personalized image editing.
☆ Bridging the Vision-Brain Gap with an Uncertainty-Aware Blur Prior
Can our brain signals faithfully reflect the original visual stimuli, even including high-frequency details? Although human perceptual and cognitive capacities enable us to process and remember visual information, these abilities are constrained by several factors, such as limited attentional resources and the finite capacity of visual memory. When visual stimuli are processed by human visual system into brain signals, some information is inevitably lost, leading to a discrepancy known as the \textbf{System GAP}. Additionally, perceptual and cognitive dynamics, along with technical noise in signal acquisition, degrade the fidelity of brain signals relative to the visual stimuli, known as the \textbf{Random GAP}. When encoded brain representations are directly aligned with the corresponding pretrained image features, the System GAP and Random GAP between paired data challenge the model, requiring it to bridge these gaps. However, in the context of limited paired data, these gaps are difficult for the model to learn, leading to overfitting and poor generalization to new data. To address these GAPs, we propose a simple yet effective approach called the \textbf{Uncertainty-aware Blur Prior (UBP)}. It estimates the uncertainty within the paired data, reflecting the mismatch between brain signals and visual stimuli. Based on this uncertainty, UBP dynamically blurs the high-frequency details of the original images, reducing the impact of the mismatch and improving alignment. Our method achieves a top-1 accuracy of \textbf{50.9\%} and a top-5 accuracy of \textbf{79.7\%} on the zero-shot brain-to-image retrieval task, surpassing previous state-of-the-art methods by margins of \textbf{13.7\%} and \textbf{9.8\%}, respectively. Code is available at \href{https://github.com/HaitaoWuTJU/Uncertainty-aware-Blur-Prior}{GitHub}.
☆ Learning 3D Medical Image Models From Brain Functional Connectivity Network Supervision For Mental Disorder Diagnosis
In MRI-based mental disorder diagnosis, most previous studies focus on functional connectivity network (FCN) derived from functional MRI (fMRI). However, the small size of annotated fMRI datasets restricts its wide application. Meanwhile, structural MRIs (sMRIs), such as 3D T1-weighted (T1w) MRI, which are commonly used and readily accessible in clinical settings, are often overlooked. To integrate the complementary information from both function and structure for improved diagnostic accuracy, we propose CINP (Contrastive Image-Network Pre-training), a framework that employs contrastive learning between sMRI and FCN. During pre-training, we incorporate masked image modeling and network-image matching to enhance visual representation learning and modality alignment. Since the CINP facilitates knowledge transfer from FCN to sMRI, we introduce network prompting. It utilizes only sMRI from suspected patients and a small amount of FCNs from different patient classes for diagnosing mental disorders, which is practical in real-world clinical scenario. The competitive performance on three mental disorder diagnosis tasks demonstrate the effectiveness of the CINP in integrating multimodal MRI information, as well as the potential of incorporating sMRI into clinical diagnosis using network prompting.
☆ FUSE: First-Order and Second-Order Unified SynthEsis in Stochastic Optimization
Stochastic optimization methods have actively been playing a critical role in modern machine learning algorithms to deliver decent performance. While numerous works have proposed and developed diverse approaches, first-order and second-order methods are in entirely different situations. The former is significantly pivotal and dominating in emerging deep learning but only leads convergence to a stationary point. However, second-order methods are less popular due to their computational intensity in large-dimensional problems. This paper presents a novel method that leverages both the first-order and second-order methods in a unified algorithmic framework, termed FUSE, from which a practical version (PV) is derived accordingly. FUSE-PV stands as a simple yet efficient optimization method involving a switch-over between first and second orders. Additionally, we develop different criteria that determine when to switch. FUSE-PV has provably shown a smaller computational complexity than SGD and Adam. To validate our proposed scheme, we present an ablation study on several simple test functions and show a comparison with baselines for benchmark datasets.
comment: 6 pages, 7 figures
☆ MASTER: Multimodal Segmentation with Text Prompts
RGB-Thermal fusion is a potential solution for various weather and light conditions in challenging scenarios. However, plenty of studies focus on designing complex modules to fuse different modalities. With the widespread application of large language models (LLMs), valuable information can be more effectively extracted from natural language. Therefore, we aim to leverage the advantages of large language models to design a structurally simple and highly adaptable multimodal fusion model architecture. We proposed MultimodAl Segmentation with TExt PRompts (MASTER) architecture, which integrates LLM into the fusion of RGB-Thermal multimodal data and allows complex query text to participate in the fusion process. Our model utilizes a dual-path structure to extract information from different modalities of images. Additionally, we employ LLM as the core module for multimodal fusion, enabling the model to generate learnable codebook tokens from RGB, thermal images, and textual information. A lightweight image decoder is used to obtain semantic segmentation results. The proposed MASTER performs exceptionally well in benchmark tests across various automated driving scenarios, yielding promising results.
☆ Conformal forecasting for surgical instrument trajectory
Forecasting surgical instrument trajectories and predicting the next surgical action recently started to attract attention from the research community. Both these tasks are crucial for automation and assistance in endoscopy surgery. Given the safety-critical nature of these tasks, reliable uncertainty quantification is essential. Conformal prediction is a fast-growing and widely recognized framework for uncertainty estimation in machine learning and computer vision, offering distribution-free, theoretically valid prediction intervals. In this work, we explore the application of standard conformal prediction and conformalized quantile regression to estimate uncertainty in forecasting surgical instrument motion, i.e., predicting direction and magnitude of surgical instruments' future motion. We analyze and compare their coverage and interval sizes, assessing the impact of multiple hypothesis testing and correction methods. Additionally, we show how these techniques can be employed to produce useful uncertainty heatmaps. To the best of our knowledge, this is the first study applying conformal prediction to surgical guidance, marking an initial step toward constructing principled prediction intervals with formal coverage guarantees in this domain.
☆ DuCos: Duality Constrained Depth Super-Resolution via Foundation Model
We introduce DuCos, a novel depth super-resolution framework grounded in Lagrangian duality theory, offering a flexible integration of multiple constraints and reconstruction objectives to enhance accuracy and robustness. Our DuCos is the first to significantly improve generalization across diverse scenarios with foundation models as prompts. The prompt design consists of two key components: Correlative Fusion (CF) and Gradient Regulation (GR). CF facilitates precise geometric alignment and effective fusion between prompt and depth features, while GR refines depth predictions by enforcing consistency with sharp-edged depth maps derived from foundation models. Crucially, these prompts are seamlessly embedded into the Lagrangian constraint term, forming a synergistic and principled framework. Extensive experiments demonstrate that DuCos outperforms existing state-of-the-art methods, achieving superior accuracy, robustness, and generalization. The source codes and pre-trained models will be publicly available.
☆ The Role of Visual Modality in Multimodal Mathematical Reasoning: Challenges and Insights
Recent research has increasingly focused on multimodal mathematical reasoning, particularly emphasizing the creation of relevant datasets and benchmarks. Despite this, the role of visual information in reasoning has been underexplored. Our findings show that existing multimodal mathematical models minimally leverage visual information, and model performance remains largely unaffected by changes to or removal of images in the dataset. We attribute this to the dominance of textual information and answer options that inadvertently guide the model to correct answers. To improve evaluation methods, we introduce the HC-M3D dataset, specifically designed to require image reliance for problem-solving and to challenge models with similar, yet distinct, images that change the correct answer. In testing leading models, their failure to detect these subtle visual differences suggests limitations in current visual perception capabilities. Additionally, we observe that the common approach of improving general VQA capabilities by combining various types of image encoders does not contribute to math reasoning performance. This finding also presents a challenge to enhancing visual reliance during math reasoning. Our benchmark and code would be available at \href{https://github.com/Yufang-Liu/visual_modality_role}{https://github.com/Yufang-Liu/visual\_modality\_role}.
☆ WeakSupCon: Weakly Supervised Contrastive Learning for Encoder Pre-training
Weakly supervised multiple instance learning (MIL) is a challenging task given that only bag-level labels are provided, while each bag typically contains multiple instances. This topic has been extensively studied in histopathological image analysis, where labels are usually available only at the whole slide image (WSI) level, while each whole slide image can be divided into thousands of small image patches for training. The dominant MIL approaches take fixed patch features as inputs to address computational constraints and ensure model stability. These features are commonly generated by encoders pre-trained on ImageNet, foundation encoders pre-trained on large datasets, or through self-supervised learning on local datasets. While the self-supervised encoder pre-training on the same dataset as downstream MIL tasks helps mitigate domain shift and generate better features, the bag-level labels are not utilized during the process, and the features of patches from different categories may cluster together, reducing classification performance on MIL tasks. Recently, pre-training with supervised contrastive learning (SupCon) has demonstrated superior performance compared to self-supervised contrastive learning and even end-to-end training on traditional image classification tasks. In this paper, we propose a novel encoder pre-training method for downstream MIL tasks called Weakly Supervised Contrastive Learning (WeakSupCon) that utilizes bag-level labels. In our method, we employ multi-task learning and define distinct contrastive learning losses for samples with different bag labels. Our experiments demonstrate that the features generated using WeakSupCon significantly enhance MIL classification performance compared to self-supervised approaches across three datasets.
☆ CA-W3D: Leveraging Context-Aware Knowledge for Weakly Supervised Monocular 3D Detection
Weakly supervised monocular 3D detection, while less annotation-intensive, often struggles to capture the global context required for reliable 3D reasoning. Conventional label-efficient methods focus on object-centric features, neglecting contextual semantic relationships that are critical in complex scenes. In this work, we propose a Context-Aware Weak Supervision for Monocular 3D object detection, namely CA-W3D, to address this limitation in a two-stage training paradigm. Specifically, we first introduce a pre-training stage employing Region-wise Object Contrastive Matching (ROCM), which aligns regional object embeddings derived from a trainable monocular 3D encoder and a frozen open-vocabulary 2D visual grounding model. This alignment encourages the monocular encoder to discriminate scene-specific attributes and acquire richer contextual knowledge. In the second stage, we incorporate a pseudo-label training process with a Dual-to-One Distillation (D2OD) mechanism, which effectively transfers contextual priors into the monocular encoder while preserving spatial fidelity and maintaining computational efficiency during inference. Extensive experiments conducted on the public KITTI benchmark demonstrate the effectiveness of our approach, surpassing the SoTA method over all metrics, highlighting the importance of contextual-aware knowledge in weakly-supervised monocular 3D detection.
comment: The paper includes 8 pages, 6 figures and 4 tables
☆ Robust Multi-View Learning via Representation Fusion of Sample-Level Attention and Alignment of Simulated Perturbation
Recently, multi-view learning (MVL) has garnered significant attention due to its ability to fuse discriminative information from multiple views. However, real-world multi-view datasets are often heterogeneous and imperfect, which usually makes MVL methods designed for specific combinations of views lack application potential and limits their effectiveness. To address this issue, we propose a novel robust MVL method (namely RML) with simultaneous representation fusion and alignment. Specifically, we introduce a simple yet effective multi-view transformer fusion network where we transform heterogeneous multi-view data into homogeneous word embeddings, and then integrate multiple views by the sample-level attention mechanism to obtain a fused representation. Furthermore, we propose a simulated perturbation based multi-view contrastive learning framework that dynamically generates the noise and unusable perturbations for simulating imperfect data conditions. The simulated noisy and unusable data obtain two distinct fused representations, and we utilize contrastive learning to align them for learning discriminative and robust representations. Our RML is self-supervised and can also be applied for downstream tasks as a regularization. In experiments, we employ it in unsupervised multi-view clustering, noise-label classification, and as a plug-and-play module for cross-modal hashing retrieval. Extensive comparison experiments and ablation studies validate the effectiveness of RML.
☆ DM-Adapter: Domain-Aware Mixture-of-Adapters for Text-Based Person Retrieval AAAI 2025
Text-based person retrieval (TPR) has gained significant attention as a fine-grained and challenging task that closely aligns with practical applications. Tailoring CLIP to person domain is now a emerging research topic due to the abundant knowledge of vision-language pretraining, but challenges still remain during fine-tuning: (i) Previous full-model fine-tuning in TPR is computationally expensive and prone to overfitting.(ii) Existing parameter-efficient transfer learning (PETL) for TPR lacks of fine-grained feature extraction. To address these issues, we propose Domain-Aware Mixture-of-Adapters (DM-Adapter), which unifies Mixture-of-Experts (MOE) and PETL to enhance fine-grained feature representations while maintaining efficiency. Specifically, Sparse Mixture-of-Adapters is designed in parallel to MLP layers in both vision and language branches, where different experts specialize in distinct aspects of person knowledge to handle features more finely. To promote the router to exploit domain information effectively and alleviate the routing imbalance, Domain-Aware Router is then developed by building a novel gating function and injecting learnable domain-aware prompts. Extensive experiments show that our DM-Adapter achieves state-of-the-art performance, outperforming previous methods by a significant margin.
comment: 9 pages, 5 figures, accepted by AAAI 2025
☆ Robust Computer-Vision based Construction Site Detection for Assistive-Technology Applications
Navigating urban environments poses significant challenges for people with disabilities, particularly those with blindness and low vision. Environments with dynamic and unpredictable elements like construction sites are especially challenging. Construction sites introduce hazards like uneven surfaces, obstructive barriers, hazardous materials, and excessive noise, and they can alter routing, complicating safe mobility. Existing assistive technologies are limited, as navigation apps do not account for construction sites during trip planning, and detection tools that attempt hazard recognition struggle to address the extreme variability of construction paraphernalia. This study introduces a novel computer vision-based system that integrates open-vocabulary object detection, a YOLO-based scaffolding-pole detection model, and an optical character recognition (OCR) module to comprehensively identify and interpret construction site elements for assistive navigation. In static testing across seven construction sites, the system achieved an overall accuracy of 88.56\%, reliably detecting objects from 2m to 10m within a 0$^\circ$ -- 75$^\circ$ angular offset. At closer distances (2--4m), the detection rate was 100\% at all tested angles. At
Real-time Spatial-temporal Traversability Assessment via Feature-based Sparse Gaussian Process
Terrain analysis is critical for the practical application of ground mobile robots in real-world tasks, especially in outdoor unstructured environments. In this paper, we propose a novel spatial-temporal traversability assessment method, which aims to enable autonomous robots to effectively navigate through complex terrains. Our approach utilizes sparse Gaussian processes (SGP) to extract geometric features (curvature, gradient, elevation, etc.) directly from point cloud scans. These features are then used to construct a high-resolution local traversability map. Then, we design a spatial-temporal Bayesian Gaussian kernel (BGK) inference method to dynamically evaluate traversability scores, integrating historical and real-time data while considering factors such as slope, flatness, gradient, and uncertainty metrics. GPU acceleration is applied in the feature extraction step, and the system achieves real-time performance. Extensive simulation experiments across diverse terrain scenarios demonstrate that our method outperforms SOTA approaches in both accuracy and computational efficiency. Additionally, we develop an autonomous navigation framework integrated with the traversability map and validate it with a differential driven vehicle in complex outdoor environments. Our code will be open-source for further research and development by the community, https://github.com/ZJU-FAST-Lab/FSGP_BGK.
comment: 8 pages, 10 figures
☆ Q-PART: Quasi-Periodic Adaptive Regression with Test-time Training for Pediatric Left Ventricular Ejection Fraction Regression CVPR 2025
In this work, we address the challenge of adaptive pediatric Left Ventricular Ejection Fraction (LVEF) assessment. While Test-time Training (TTT) approaches show promise for this task, they suffer from two significant limitations. Existing TTT works are primarily designed for classification tasks rather than continuous value regression, and they lack mechanisms to handle the quasi-periodic nature of cardiac signals. To tackle these issues, we propose a novel \textbf{Q}uasi-\textbf{P}eriodic \textbf{A}daptive \textbf{R}egression with \textbf{T}est-time Training (Q-PART) framework. In the training stage, the proposed Quasi-Period Network decomposes the echocardiogram into periodic and aperiodic components within latent space by combining parameterized helix trajectories with Neural Controlled Differential Equations. During inference, our framework further employs a variance minimization strategy across image augmentations that simulate common quality issues in echocardiogram acquisition, along with differential adaptation rates for periodic and aperiodic components. Theoretical analysis is provided to demonstrate that our variance minimization objective effectively bounds the regression error under mild conditions. Furthermore, extensive experiments across three pediatric age groups demonstrate that Q-PART not only significantly outperforms existing approaches in pediatric LVEF prediction, but also exhibits strong clinical screening capability with high mAUROC scores (up to 0.9747) and maintains gender-fair performance across all metrics, validating its robustness and practical utility in pediatric echocardiography analysis.
comment: Accepted to CVPR 2025
☆ Token-Efficient Long Video Understanding for Multimodal LLMs
Recent advances in video-based multimodal large language models (Video-LLMs) have significantly improved video understanding by processing videos as sequences of image frames. However, many existing methods treat frames independently in the vision backbone, lacking explicit temporal modeling, which limits their ability to capture dynamic patterns and efficiently handle long videos. To address these limitations, we introduce STORM (\textbf{S}patiotemporal \textbf{TO}ken \textbf{R}eduction for \textbf{M}ultimodal LLMs), a novel architecture incorporating a dedicated temporal encoder between the image encoder and the LLM. Our temporal encoder leverages the Mamba State Space Model to integrate temporal information into image tokens, generating enriched representations that preserve inter-frame dynamics across the entire video sequence. This enriched encoding not only enhances video reasoning capabilities but also enables effective token reduction strategies, including test-time sampling and training-based temporal and spatial pooling, substantially reducing computational demands on the LLM without sacrificing key temporal information. By integrating these techniques, our approach simultaneously reduces training and inference latency while improving performance, enabling efficient and robust video understanding over extended temporal contexts. Extensive evaluations show that STORM achieves state-of-the-art results across various long video understanding benchmarks (more than 5\% improvement on MLVU and LongVideoBench) while reducing the computation costs by up to $8\times$ and the decoding latency by 2.4-2.9$\times$ for the fixed numbers of input frames. Project page is available at https://research.nvidia.com/labs/lpr/storm
☆ Diff-Reg v2: Diffusion-Based Matching Matrix Estimation for Image Matching and 3D Registration
Establishing reliable correspondences is crucial for all registration tasks, including 2D image registration, 3D point cloud registration, and 2D-3D image-to-point cloud registration. However, these tasks are often complicated by challenges such as scale inconsistencies, symmetry, and large deformations, which can lead to ambiguous matches. Previous feature-based and correspondence-based methods typically rely on geometric or semantic features to generate or polish initial potential correspondences. Some methods typically leverage specific geometric priors, such as topological preservation, to devise diverse and innovative strategies tailored to a given enhancement goal, which cannot be exhaustively enumerated. Additionally, many previous approaches rely on a single-step prediction head, which can struggle with local minima in complex matching scenarios. To address these challenges, we introduce an innovative paradigm that leverages a diffusion model in matrix space for robust matching matrix estimation. Our model treats correspondence estimation as a denoising diffusion process in the matching matrix space, gradually refining the intermediate matching matrix to the optimal one. Specifically, we apply the diffusion model in the doubly stochastic matrix space for 3D-3D and 2D-3D registration tasks. In the 2D image registration task, we deploy the diffusion model in a matrix subspace where dual-softmax projection regularization is applied. For all three registration tasks, we provide adaptive matching matrix embedding implementations tailored to the specific characteristics of each task while maintaining a consistent "match-to-warp" encoding pattern. Furthermore, we adopt a lightweight design for the denoising module. In inference, once points or image features are extracted and fixed, this module performs multi-step denoising predictions through reverse sampling.
comment: arXiv admin note: text overlap with arXiv:2403.19919
☆ DVM-SLAM: Decentralized Visual Monocular Simultaneous Localization and Mapping for Multi-Agent Systems
Cooperative Simultaneous Localization and Mapping (C-SLAM) enables multiple agents to work together in mapping unknown environments while simultaneously estimating their own positions. This approach enhances robustness, scalability, and accuracy by sharing information between agents, reducing drift, and enabling collective exploration of larger areas. In this paper, we present Decentralized Visual Monocular SLAM (DVM-SLAM), the first open-source decentralized monocular C-SLAM system. By only utilizing low-cost and light-weight monocular vision sensors, our system is well suited for small robots and micro aerial vehicles (MAVs). DVM-SLAM's real-world applicability is validated on physical robots with a custom collision avoidance framework, showcasing its potential in real-time multi-agent autonomous navigation scenarios. We also demonstrate comparable accuracy to state-of-the-art centralized monocular C-SLAM systems. We open-source our code and provide supplementary material online.
☆ GAGrasp: Geometric Algebra Diffusion for Dexterous Grasping ICRA 2025
We propose GAGrasp, a novel framework for dexterous grasp generation that leverages geometric algebra representations to enforce equivariance to SE(3) transformations. By encoding the SE(3) symmetry constraint directly into the architecture, our method improves data and parameter efficiency while enabling robust grasp generation across diverse object poses. Additionally, we incorporate a differentiable physics-informed refinement layer, which ensures that generated grasps are physically plausible and stable. Extensive experiments demonstrate the model's superior performance in generalization, stability, and adaptability compared to existing methods. Additional details at https://gagrasp.github.io/
comment: Accepted at ICRA 2025
☆ Simple Self Organizing Map with Visual Transformer
Vision Transformers (ViTs) have demonstrated exceptional performance in various vision tasks. However, they tend to underperform on smaller datasets due to their inherent lack of inductive biases. Current approaches address this limitation implicitly-often by pairing ViTs with pretext tasks or by distilling knowledge from convolutional neural networks (CNNs) to strengthen the prior. In contrast, Self-Organizing Maps (SOMs), a widely adopted self-supervised framework, are inherently structured to preserve topology and spatial organization, making them a promising candidate to directly address the limitations of ViTs in limited or small training datasets. Despite this potential, equipping SOMs with modern deep learning architectures remains largely unexplored. In this study, we conduct a novel exploration on how Vision Transformers (ViTs) and Self-Organizing Maps (SOMs) can empower each other, aiming to bridge this critical research gap. Our findings demonstrate that these architectures can synergistically enhance each other, leading to significantly improved performance in both unsupervised and supervised tasks. Code will be publicly available.
comment: 5 pages, 4 figures. Submitted to IEEE. All experiments and code work were performed by the first author, with the second author serving in a PI/mentor role, guiding the progression of the work
☆ SCSA: A Plug-and-Play Semantic Continuous-Sparse Attention for Arbitrary Semantic Style Transfer CVPR 2025
Attention-based arbitrary style transfer methods, including CNN-based, Transformer-based, and Diffusion-based, have flourished and produced high-quality stylized images. However, they perform poorly on the content and style images with the same semantics, i.e., the style of the corresponding semantic region of the generated stylized image is inconsistent with that of the style image. We argue that the root cause lies in their failure to consider the relationship between local regions and semantic regions. To address this issue, we propose a plug-and-play semantic continuous-sparse attention, dubbed SCSA, for arbitrary semantic style transfer -- each query point considers certain key points in the corresponding semantic region. Specifically, semantic continuous attention ensures each query point fully attends to all the continuous key points in the same semantic region that reflect the overall style characteristics of that region; Semantic sparse attention allows each query point to focus on the most similar sparse key point in the same semantic region that exhibits the specific stylistic texture of that region. By combining the two modules, the resulting SCSA aligns the overall style of the corresponding semantic regions while transferring the vivid textures of these regions. Qualitative and quantitative results prove that SCSA enables attention-based arbitrary style transfer methods to produce high-quality semantic stylized images.
comment: Accepted by CVPR 2025
☆ Fractional Correspondence Framework in Detection Transformer
The Detection Transformer (DETR), by incorporating the Hungarian algorithm, has significantly simplified the matching process in object detection tasks. This algorithm facilitates optimal one-to-one matching of predicted bounding boxes to ground-truth annotations during training. While effective, this strict matching process does not inherently account for the varying densities and distributions of objects, leading to suboptimal correspondences such as failing to handle multiple detections of the same object or missing small objects. To address this, we propose the Regularized Transport Plan (RTP). RTP introduces a flexible matching strategy that captures the cost of aligning predictions with ground truths to find the most accurate correspondences between these sets. By utilizing the differentiable Sinkhorn algorithm, RTP allows for soft, fractional matching rather than strict one-to-one assignments. This approach enhances the model's capability to manage varying object densities and distributions effectively. Our extensive evaluations on the MS-COCO and VOC benchmarks demonstrate the effectiveness of our approach. RTP-DETR, surpassing the performance of the Deform-DETR and the recently introduced DINO-DETR, achieving absolute gains in mAP of +3.8% and +1.7%, respectively.
☆ WeakMedSAM: Weakly-Supervised Medical Image Segmentation via SAM with Sub-Class Exploration and Prompt Affinity Mining
We have witnessed remarkable progress in foundation models in vision tasks. Currently, several recent works have utilized the segmenting anything model (SAM) to boost the segmentation performance in medical images, where most of them focus on training an adaptor for fine-tuning a large amount of pixel-wise annotated medical images following a fully supervised manner. In this paper, to reduce the labeling cost, we investigate a novel weakly-supervised SAM-based segmentation model, namely WeakMedSAM. Specifically, our proposed WeakMedSAM contains two modules: 1) to mitigate severe co-occurrence in medical images, a sub-class exploration module is introduced to learn accurate feature representations. 2) to improve the quality of the class activation maps, our prompt affinity mining module utilizes the prompt capability of SAM to obtain an affinity map for random-walk refinement. Our method can be applied to any SAM-like backbone, and we conduct experiments with SAMUS and EfficientSAM. The experimental results on three popularly-used benchmark datasets, i.e., BraTS 2019, AbdomenCT-1K, and MSD Cardiac dataset, show the promising results of our proposed WeakMedSAM. Our code is available at https://github.com/wanghr64/WeakMedSAM.
☆ Image-Based Relocalization and Alignment for Long-Term Monitoring of Dynamic Underwater Environments
Effective monitoring of underwater ecosystems is crucial for tracking environmental changes, guiding conservation efforts, and ensuring long-term ecosystem health. However, automating underwater ecosystem management with robotic platforms remains challenging due to the complexities of underwater imagery, which pose significant difficulties for traditional visual localization methods. We propose an integrated pipeline that combines Visual Place Recognition (VPR), feature matching, and image segmentation on video-derived images. This method enables robust identification of revisited areas, estimation of rigid transformations, and downstream analysis of ecosystem changes. Furthermore, we introduce the SQUIDLE+ VPR Benchmark-the first large-scale underwater VPR benchmark designed to leverage an extensive collection of unstructured data from multiple robotic platforms, spanning time intervals from days to years. The dataset encompasses diverse trajectories, arbitrary overlap and diverse seafloor types captured under varying environmental conditions, including differences in depth, lighting, and turbidity. Our code is available at: https://github.com/bev-gorry/underloc
☆ Brain Tumor Detection in MRI Based on Federated Learning with YOLOv11
One of the primary challenges in medical diagnostics is the accurate and efficient use of magnetic resonance imaging (MRI) for the detection of brain tumors. But the current machine learning (ML) approaches have two major limitations, data privacy and high latency. To solve the problem, in this work we propose a federated learning architecture for a better accurate brain tumor detection incorporating the YOLOv11 algorithm. In contrast to earlier methods of centralized learning, our federated learning approach protects the underlying medical data while supporting cooperative deep learning model training across multiple institutions. To allow the YOLOv11 model to locate and identify tumor areas, we adjust it to handle MRI data. To ensure robustness and generalizability, the model is trained and tested on a wide range of MRI data collected from several anonymous medical facilities. The results indicate that our method significantly maintains higher accuracy than conventional approaches.
☆ Instrument-Splatting: Controllable Photorealistic Reconstruction of Surgical Instruments Using Gaussian Splatting
Real2Sim is becoming increasingly important with the rapid development of surgical artificial intelligence (AI) and autonomy. In this work, we propose a novel Real2Sim methodology, \textit{Instrument-Splatting}, that leverages 3D Gaussian Splatting to provide fully controllable 3D reconstruction of surgical instruments from monocular surgical videos. To maintain both high visual fidelity and manipulability, we introduce a geometry pre-training to bind Gaussian point clouds on part mesh with accurate geometric priors and define a forward kinematics to control the Gaussians as flexible as real instruments. Afterward, to handle unposed videos, we design a novel instrument pose tracking method leveraging semantics-embedded Gaussians to robustly refine per-frame instrument poses and joint states in a render-and-compare manner, which allows our instrument Gaussian to accurately learn textures and reach photorealistic rendering. We validated our method on 2 publicly released surgical videos and 4 videos collected on ex vivo tissues and green screens. Quantitative and qualitative evaluations demonstrate the effectiveness and superiority of the proposed method.
comment: 11 pages, 5 figures
☆ Surgical Gaussian Surfels: Highly Accurate Real-time Surgical Scene Rendering
Accurate geometric reconstruction of deformable tissues in monocular endoscopic video remains a fundamental challenge in robot-assisted minimally invasive surgery. Although recent volumetric and point primitive methods based on neural radiance fields (NeRF) and 3D Gaussian primitives have efficiently rendered surgical scenes, they still struggle with handling artifact-free tool occlusions and preserving fine anatomical details. These limitations stem from unrestricted Gaussian scaling and insufficient surface alignment constraints during reconstruction. To address these issues, we introduce Surgical Gaussian Surfels (SGS), which transforms anisotropic point primitives into surface-aligned elliptical splats by constraining the scale component of the Gaussian covariance matrix along the view-aligned axis. We predict accurate surfel motion fields using a lightweight Multi-Layer Perceptron (MLP) coupled with locality constraints to handle complex tissue deformations. We use homodirectional view-space positional gradients to capture fine image details by splitting Gaussian Surfels in over-reconstructed regions. In addition, we define surface normals as the direction of the steepest density change within each Gaussian surfel primitive, enabling accurate normal estimation without requiring monocular normal priors. We evaluate our method on two in-vivo surgical datasets, where it outperforms current state-of-the-art methods in surface geometry, normal map quality, and rendering efficiency, while remaining competitive in real-time rendering performance. We make our code available at https://github.com/aloma85/SurgicalGaussianSurfels
☆ Spatial-Temporal Perception with Causal Inference for Naturalistic Driving Action Recognition
Naturalistic driving action recognition is essential for vehicle cabin monitoring systems. However, the complexity of real-world backgrounds presents significant challenges for this task, and previous approaches have struggled with practical implementation due to their limited ability to observe subtle behavioral differences and effectively learn inter-frame features from video. In this paper, we propose a novel Spatial-Temporal Perception (STP) architecture that emphasizes both temporal information and spatial relationships between key objects, incorporating a causal decoder to perform behavior recognition and temporal action localization. Without requiring multimodal input, STP directly extracts temporal and spatial distance features from RGB video clips. Subsequently, these dual features are jointly encoded by maximizing the expected likelihood across all possible permutations of the factorization order. By integrating temporal and spatial features at different scales, STP can perceive subtle behavioral changes in challenging scenarios. Additionally, we introduce a causal-aware module to explore relationships between video frame features, significantly enhancing detection efficiency and performance. We validate the effectiveness of our approach using two publicly available driver distraction detection benchmarks. The results demonstrate that our framework achieves state-of-the-art performance.
☆ FREAK: Frequency-modulated High-fidelity and Real-time Audio-driven Talking Portrait Synthesis
Achieving high-fidelity lip-speech synchronization in audio-driven talking portrait synthesis remains challenging. While multi-stage pipelines or diffusion models yield high-quality results, they suffer from high computational costs. Some approaches perform well on specific individuals with low resources, yet still exhibit mismatched lip movements. The aforementioned methods are modeled in the pixel domain. We observed that there are noticeable discrepancies in the frequency domain between the synthesized talking videos and natural videos. Currently, no research on talking portrait synthesis has considered this aspect. To address this, we propose a FREquency-modulated, high-fidelity, and real-time Audio-driven talKing portrait synthesis framework, named FREAK, which models talking portraits from the frequency domain perspective, enhancing the fidelity and naturalness of the synthesized portraits. FREAK introduces two novel frequency-based modules: 1) the Visual Encoding Frequency Modulator (VEFM) to couple multi-scale visual features in the frequency domain, better preserving visual frequency information and reducing the gap in the frequency spectrum between synthesized and natural frames. and 2) the Audio Visual Frequency Modulator (AVFM) to help the model learn the talking pattern in the frequency domain and improve audio-visual synchronization. Additionally, we optimize the model in both pixel domain and frequency domain jointly. Furthermore, FREAK supports seamless switching between one-shot and video dubbing settings, offering enhanced flexibility. Due to its superior performance, it can simultaneously support high-resolution video results and real-time inference. Extensive experiments demonstrate that our method synthesizes high-fidelity talking portraits with detailed facial textures and precise lip synchronization in real-time, outperforming state-of-the-art methods.
☆ PP-DocBee: Improving Multimodal Document Understanding Through a Bag of Tricks
With the rapid advancement of digitalization, various document images are being applied more extensively in production and daily life, and there is an increasingly urgent need for fast and accurate parsing of the content in document images. Therefore, this report presents PP-DocBee, a novel multimodal large language model designed for end-to-end document image understanding. First, we develop a data synthesis strategy tailored to document scenarios in which we build a diverse dataset to improve the model generalization. Then, we apply a few training techniques, including dynamic proportional sampling, data preprocessing, and OCR postprocessing strategies. Extensive evaluations demonstrate the superior performance of PP-DocBee, achieving state-of-the-art results on English document understanding benchmarks and even outperforming existing open source and commercial models in Chinese document understanding. The source code and pre-trained models are publicly available at \href{https://github.com/PaddlePaddle/PaddleMIX}{https://github.com/PaddlePaddle/PaddleMIX}.
☆ H3O: Hyper-Efficient 3D Occupancy Prediction with Heterogeneous Supervision ICRA 2025
3D occupancy prediction has recently emerged as a new paradigm for holistic 3D scene understanding and provides valuable information for downstream planning in autonomous driving. Most existing methods, however, are computationally expensive, requiring costly attention-based 2D-3D transformation and 3D feature processing. In this paper, we present a novel 3D occupancy prediction approach, H3O, which features highly efficient architecture designs that incur a significantly lower computational cost as compared to the current state-of-the-art methods. In addition, to compensate for the ambiguity in ground-truth 3D occupancy labels, we advocate leveraging auxiliary tasks to complement the direct 3D supervision. In particular, we integrate multi-camera depth estimation, semantic segmentation, and surface normal estimation via differentiable volume rendering, supervised by corresponding 2D labels that introduces rich and heterogeneous supervision signals. We conduct extensive experiments on the Occ3D-nuScenes and SemanticKITTI benchmarks that demonstrate the superiority of our proposed H3O.
comment: ICRA 2025
☆ Enhancing Alzheimer's Diagnosis: Leveraging Anatomical Landmarks in Graph Convolutional Neural Networks on Tetrahedral Meshes
Alzheimer's disease (AD) is a major neurodegenerative condition that affects millions around the world. As one of the main biomarkers in the AD diagnosis procedure, brain amyloid positivity is typically identified by positron emission tomography (PET), which is costly and invasive. Brain structural magnetic resonance imaging (sMRI) may provide a safer and more convenient solution for the AD diagnosis. Recent advances in geometric deep learning have facilitated sMRI analysis and early diagnosis of AD. However, determining AD pathology, such as brain amyloid deposition, in preclinical stage remains challenging, as less significant morphological changes can be observed. As a result, few AD classification models are generalizable to the brain amyloid positivity classification task. Blood-based biomarkers (BBBMs), on the other hand, have recently achieved remarkable success in predicting brain amyloid positivity and identifying individuals with high risk of being brain amyloid positive. However, individuals in medium risk group still require gold standard tests such as Amyloid PET for further evaluation. Inspired by the recent success of transformer architectures, we propose a geometric deep learning model based on transformer that is both scalable and robust to variations in input volumetric mesh size. Our work introduced a novel tokenization scheme for tetrahedral meshes, incorporating anatomical landmarks generated by a pre-trained Gaussian process model. Our model achieved superior classification performance in AD classification task. In addition, we showed that the model was also generalizable to the brain amyloid positivity prediction with individuals in the medium risk class, where BM alone cannot achieve a clear classification. Our work may enrich geometric deep learning research and improve AD diagnosis accuracy without using expensive and invasive PET scans.
☆ ISP-AD: A Large-Scale Real-World Dataset for Advancing Industrial Anomaly Detection with Synthetic and Real Defects
Automatic visual inspection using machine learning-based methods plays a key role in achieving zero-defect policies in industry. Research on anomaly detection approaches is constrained by the availability of datasets that represent complex defect appearances and imperfect imaging conditions, which are typical to industrial processes. Recent benchmarks indicate that most publicly available datasets are biased towards optimal imaging conditions, leading to an overestimation of the methods' applicability to real-world industrial scenarios. To address this gap, we introduce the Industrial Screen Printing Anomaly Detection dataset (ISP-AD). It presents challenging small and weakly contrasted surface defects embedded within structured patterns exhibiting high permitted design variability. To the best of our knowledge, it is the largest publicly available industrial dataset to date, including both synthetic and real defects collected directly from the factory floor. In addition to the evaluation of defect detection performance of recent unsupervised anomaly detection methods, experiments on a mixed supervised training approach, incorporating both synthesized and real defects, were conducted. Even small amounts of injected real defects prove beneficial for model generalization. Furthermore, starting from training on purely synthetic defects, emerging real defective samples can be efficiently integrated into subsequent scalable training. Research findings indicate that supervision by means of both synthetic and accumulated real defects can complement each other, meeting demanded industrial inspection requirements such as low false positive rates and high recall. The presented unsupervised and supervised dataset splits are designed to emphasize research on unsupervised, self-supervised, and supervised approaches, enhancing their applicability to industrial settings.
comment: 26 pages, 6 figures, this preprint has been submitted to the Journal of Intelligent Manufacturing
☆ Leveraging Large Language Models For Scalable Vector Graphics Processing: A Review
In recent years, rapid advances in computer vision have significantly improved the processing and generation of raster images. However, vector graphics, which is essential in digital design, due to its scalability and ease of editing, have been relatively understudied. Traditional vectorization techniques, which are often used in vector generation, suffer from long processing times and excessive output complexity, limiting their usability in practical applications. The advent of large language models (LLMs) has opened new possibilities for the generation, editing, and analysis of vector graphics, particularly in the SVG format, which is inherently text-based and well-suited for integration with LLMs. This paper provides a systematic review of existing LLM-based approaches for SVG processing, categorizing them into three main tasks: generation, editing, and understanding. We observe notable models such as IconShop, StrokeNUWA, and StarVector, highlighting their strengths and limitations. Furthermore, we analyze benchmark datasets designed for assessing SVG-related tasks, including SVGEditBench, VGBench, and SGP-Bench, and conduct a series of experiments to evaluate various LLMs in these domains. Our results demonstrate that for vector graphics reasoning-enhanced models outperform standard LLMs, particularly in generation and understanding tasks. Furthermore, our findings underscore the need to develop more diverse and richly annotated datasets to further improve LLM capabilities in vector graphics tasks.
☆ LVLM-Compress-Bench: Benchmarking the Broader Impact of Large Vision-Language Model Compression NAACL 2025
Despite recent efforts in understanding the compression impact on large language models (LLMs) in terms of their downstream task performance and trustworthiness on relatively simpler uni-modal benchmarks (for example, question answering, common sense reasoning), their detailed study on multi-modal Large Vision-Language Models (LVLMs) is yet to be unveiled. Towards mitigating this gap, we present LVLM-Compress-Bench, a framework to first thoroughly study the broad impact of compression on the generative performance of LVLMs with multi-modal input driven tasks. In specific, we consider two major classes of compression for autoregressive models, namely KV cache and weight compression, for the dynamically growing intermediate cache and static weights, respectively. We use four LVLM variants of the popular LLaVA framework to present our analysis via integrating various state-of-the-art KV and weight compression methods including uniform, outlier-reduced, and group quantization for the KV cache and weights. With this framework we demonstrate on ten different multi-modal datasets with different capabilities including recognition, knowledge, language generation, spatial awareness, visual reasoning, hallucination and visual illusion identification, toxicity, stereotypes and bias. In specific, our framework demonstrates the compression impact on both general and ethically critical metrics leveraging a combination of real world and synthetic datasets to encompass diverse societal intersectional attributes. Extensive experimental evaluations yield diverse and intriguing observations on the behavior of LVLMs at different quantization budget of KV and weights, in both maintaining and losing performance as compared to the baseline model with FP16 data format. Code will be open-sourced at https://github.com/opengear-project/LVLM-compress-bench.
comment: This work has been accepted to NAACL 2025
☆ HyDA: Hypernetworks for Test Time Domain Adaptation in Medical Imaging Analysis MICCAI 2025
Medical imaging datasets often vary due to differences in acquisition protocols, patient demographics, and imaging devices. These variations in data distribution, known as domain shift, present a significant challenge in adapting imaging analysis models for practical healthcare applications. Most current domain adaptation (DA) approaches aim either to align the distributions between the source and target domains or to learn an invariant feature space that generalizes well across all domains. However, both strategies require access to a sufficient number of examples, though not necessarily annotated, from the test domain during training. This limitation hinders the widespread deployment of models in clinical settings, where target domain data may only be accessible in real time. In this work, we introduce HyDA, a novel hypernetwork framework that leverages domain characteristics rather than suppressing them, enabling dynamic adaptation at inference time. Specifically, HyDA learns implicit domain representations and uses them to adjust model parameters on-the-fly, effectively interpolating to unseen domains. We validate HyDA on two clinically relevant applications - MRI brain age prediction and chest X-ray pathology classification - demonstrating its ability to generalize across tasks and modalities. Our code is available at TBD.
comment: submitted to MICCAI 2025
☆ Prediction of Frozen Region Growth in Kidney Cryoablation Intervention Using a 3D Flow-Matching Model MICCAI 2025
This study presents a 3D flow-matching model designed to predict the progression of the frozen region (iceball) during kidney cryoablation. Precise intraoperative guidance is critical in cryoablation to ensure complete tumor eradication while preserving adjacent healthy tissue. However, conventional methods, typically based on physics driven or diffusion based simulations, are computationally demanding and often struggle to represent complex anatomical structures accurately. To address these limitations, our approach leverages intraoperative CT imaging to inform the model. The proposed 3D flow matching model is trained to learn a continuous deformation field that maps early-stage CT scans to future predictions. This transformation not only estimates the volumetric expansion of the iceball but also generates corresponding segmentation masks, effectively capturing spatial and morphological changes over time. Quantitative analysis highlights the model robustness, demonstrating strong agreement between predictions and ground-truth segmentations. The model achieves an Intersection over Union (IoU) score of 0.61 and a Dice coefficient of 0.75. By integrating real time CT imaging with advanced deep learning techniques, this approach has the potential to enhance intraoperative guidance in kidney cryoablation, improving procedural outcomes and advancing the field of minimally invasive surgery.
comment: MICCAI 2025 submitted version
☆ Spectral Informed Mamba for Robust Point Cloud Processing
State space models have shown significant promise in Natural Language Processing (NLP) and, more recently, computer vision. This paper introduces a new methodology leveraging Mamba and Masked Autoencoder networks for point cloud data in both supervised and self-supervised learning. We propose three key contributions to enhance Mamba's capability in processing complex point cloud structures. First, we exploit the spectrum of a graph Laplacian to capture patch connectivity, defining an isometry-invariant traversal order that is robust to viewpoints and better captures shape manifolds than traditional 3D grid-based traversals. Second, we adapt segmentation via a recursive patch partitioning strategy informed by Laplacian spectral components, allowing finer integration and segment analysis. Third, we address token placement in Masked Autoencoder for Mamba by restoring tokens to their original positions, which preserves essential order and improves learning. Extensive experiments demonstrate the improvements of our approach in classification, segmentation, and few-shot tasks over state-of-the-art baselines.
☆ Metadata-free Georegistration of Ground and Airborne Imagery WACV 2025
Heterogeneous collections of ground and airborne imagery can readily be used to create high-quality 3D models and novel viewpoint renderings of the observed scene. Standard photogrammetry pipelines generate models in arbitrary coordinate systems, which is problematic for applications that require georegistered models. Even for applications that do not require georegistered models, georegistration is useful as a mechanism for aligning multiple disconnected models generated from non-overlapping data. The proposed method leverages satellite imagery, an associated digital surface model (DSM), and the novel view generation capabilities of modern 3D modeling techniques (e.g. neural radiance fields) to provide a robust method for georegistering airborne imagery, and a related technique for registering ground-based imagery to models created from airborne imagery. Experiments demonstrate successful georegistration of airborne and ground-based photogrammetric models across a variety of distinct sites. The proposed method does not require use of any metadata other than a satellite-based reference product and therefore has general applicability.
comment: WACV 2025 ULTRRA Workshop
DongbaMIE: A Multimodal Information Extraction Dataset for Evaluating Semantic Understanding of Dongba Pictograms
Dongba pictographs are the only pictographs still in use in the world. They have pictorial ideographic features, and their symbols carry rich cultural and contextual information. Due to the lack of relevant datasets, existing research has difficulty in advancing the study of semantic understanding of Dongba pictographs. To this end, we propose DongbaMIE, the first multimodal dataset for semantic understanding and extraction of Dongba pictographs. The dataset consists of Dongba pictograph images and their corresponding Chinese semantic annotations. It contains 23,530 sentence-level and 2,539 paragraph-level images, covering four semantic dimensions: objects, actions, relations, and attributes. We systematically evaluate the GPT-4o, Gemini-2.0, and Qwen2-VL models. Experimental results show that the F1 scores of GPT-4o and Gemini in the best object extraction are only 3.16 and 3.11 respectively. The F1 score of Qwen2-VL after supervised fine-tuning is only 11.49. These results suggest that current large multimodal models still face significant challenges in accurately recognizing the diverse semantic information in Dongba pictographs. The dataset can be obtained from this URL.
♻ ☆ Reasoning to Attend: Try to Understand How Token Works CVPR 2025
Current Large Multimodal Models (LMMs) empowered visual grounding typically rely on $\texttt{}$ tokens as a text prompt to jointly optimize the vision-language model (e.g., LLaVA) and the downstream task-specific model (e.g., SAM). However, we observe that little research has looked into how it works.In this work, we first visualize the similarity maps, which are obtained by computing the semantic similarity between the $\texttt{}$ token and the image token embeddings derived from the last hidden layer in both the LLaVA encoder and SAM decoder. Intriguingly, we have found that a striking consistency holds in terms of activation responses in the similarity map, which reveals that what the $\texttt{}$ token contributes to is semantic similarity within image-text pairs. Specifically, the $\texttt{}$ token, a placeholder expanded in text vocabulary, extensively queries among individual tokenized image patches to match the semantics of an object from text to the paired image, while the Large Language Models (LLMs) are being fine-tuned. Upon the above findings, we present READ, which facilitates LMMs' resilient $\textbf{REA}$soning capability of where to atten$\textbf{D}$ under the guidance of highly activated points borrowed from similarity maps. Remarkably, READ features an intuitive design, Similarity as Points module (SasP), which can be seamlessly applied to $\texttt{}$-like paradigms in a plug-and-play fashion. Also, extensive experiments have been conducted on ReasonSeg and RefCOCO(+/g) datasets. To validate whether READ suffers from catastrophic forgetting of previous skills after fine-tuning, we further assess its generation ability on an augmented FP-RefCOCO(+/g) dataset. All codes and models are publicly available at https://github.com/rui-qian/READ.
comment: This work has been accepted to CVPR 2025, please refer to https://github.com/rui-qian/READ
♻ ☆ Towards Visual Discrimination and Reasoning of Real-World Physical Dynamics: Physics-Grounded Anomaly Detection CVPR 2025
Humans detect real-world object anomalies by perceiving, interacting, and reasoning based on object-conditioned physical knowledge. The long-term goal of Industrial Anomaly Detection (IAD) is to enable machines to autonomously replicate this skill. However, current IAD algorithms are largely developed and tested on static, semantically simple datasets, which diverge from real-world scenarios where physical understanding and reasoning are essential. To bridge this gap, we introduce the Physics Anomaly Detection (Phys-AD) dataset, the first large-scale, real-world, physics-grounded video dataset for industrial anomaly detection. Collected using a real robot arm and motor, Phys-AD provides a diverse set of dynamic, semantically rich scenarios. The dataset includes more than 6400 videos across 22 real-world object categories, interacting with robot arms and motors, and exhibits 47 types of anomalies. Anomaly detection in Phys-AD requires visual reasoning, combining both physical knowledge and video content to determine object abnormality. We benchmark state-of-the-art anomaly detection methods under three settings: unsupervised AD, weakly-supervised AD, and video-understanding AD, highlighting their limitations in handling physics-grounded anomalies. Additionally, we introduce the Physics Anomaly Explanation (PAEval) metric, designed to assess the ability of visual-language foundation models to not only detect anomalies but also provide accurate explanations for their underlying physical causes. Our dataset and benchmark will be publicly available.
comment: Accepted by CVPR 2025
♻ ☆ DTU-Net: A Multi-Scale Dilated Transformer Network for Nonlinear Hyperspectral Unmixing
Transformers have shown significant success in hyperspectral unmixing (HU). However, challenges remain. While multi-scale and long-range spatial correlations are essential in unmixing tasks, current Transformer-based unmixing networks, built on Vision Transformer (ViT) or Swin-Transformer, struggle to capture them effectively. Additionally, current Transformer-based unmixing networks rely on the linear mixing model, which lacks the flexibility to accommodate scenarios where nonlinear effects are significant. To address these limitations, we propose a multi-scale Dilated Transformer-based unmixing network for nonlinear HU (DTU-Net). The encoder employs two branches. The first one performs multi-scale spatial feature extraction using Multi-Scale Dilated Attention (MSDA) in the Dilated Transformer, which varies dilation rates across attention heads to capture long-range and multi-scale spatial correlations. The second one performs spectral feature extraction utilizing 3D-CNNs with channel attention. The outputs from both branches are then fused to integrate multi-scale spatial and spectral information, which is subsequently transformed to estimate the abundances. The decoder is designed to accommodate both linear and nonlinear mixing scenarios. Its interpretability is enhanced by explicitly modeling the relationships between endmembers, abundances, and nonlinear coefficients in accordance with the polynomial post-nonlinear mixing model (PPNMM). Experiments on synthetic and real datasets validate the effectiveness of the proposed DTU-Net compared to PPNMM-derived methods and several advanced unmixing networks.
♻ ☆ Explaining Caption-Image Interactions in CLIP models with Second-Order Attributions
Dual encoder architectures like CLIP models map two types of inputs into a shared embedding space and predict similarities between them. Despite their success, it is, however, not understood how these models compare their two inputs. Common first-order feature-attribution methods can only provide limited insights into dual-encoders since their predictions depend on feature-interactions rather than on individual features. In this paper, we first derive a second-order method enabling the attribution of predictions by any differentiable dual encoder onto feature-interactions between its inputs. Second, we apply our method to CLIP models and show that they learn fine-grained correspondences between parts of captions and regions in images. They match objects across input modes also account for mismatches. This visual-linguistic grounding ability, however, varies heavily between object classes and exhibits pronounced out-of-domain effects. We can identify individual errors as well as systematic failure categories including object coverage, unusual scenes and correlated contexts.
♻ ☆ MIAdapt: Source-free Few-shot Domain Adaptive Object Detection for Microscopic Images
Existing generic unsupervised domain adaptation approaches require access to both a large labeled source dataset and a sufficient unlabeled target dataset during adaptation. However, collecting a large dataset, even if unlabeled, is a challenging and expensive endeavor, especially in medical imaging. In addition, constraints such as privacy issues can result in cases where source data is unavailable. Taking in consideration these challenges, we propose MIAdapt, an adaptive approach for Microscopic Imagery Adaptation as a solution for Source-free Few-shot Domain Adaptive Object detection (SF-FSDA). We also define two competitive baselines (1) Faster-FreeShot and (2) MT-FreeShot. Extensive experiments on the challenging M5-Malaria and Raabin-WBC datasets validate the effectiveness of MIAdapt. Without using any image from the source domain MIAdapt surpasses state-of-the-art source-free UDA (SF-UDA) methods by +21.3% mAP and few-shot domain adaptation (FSDA) approaches by +4.7% mAP on Raabin-WBC. Our code and models will be publicly available.
comment: 6 pages, 5 figures
♻ ☆ Enhancing Vietnamese VQA through Curriculum Learning on Raw and Augmented Text Representations AAAI-25
Visual Question Answering (VQA) is a multimodal task requiring reasoning across textual and visual inputs, which becomes particularly challenging in low-resource languages like Vietnamese due to linguistic variability and the lack of high-quality datasets. Traditional methods often rely heavily on extensive annotated datasets, computationally expensive pipelines, and large pre-trained models, specifically in the domain of Vietnamese VQA, limiting their applicability in such scenarios. To address these limitations, we propose a training framework that combines a paraphrase-based feature augmentation module with a dynamic curriculum learning strategy. Explicitly, augmented samples are considered "easy" while raw samples are regarded as "hard". The framework then utilizes a mechanism that dynamically adjusts the ratio of easy to hard samples during training, progressively modifying the same dataset to increase its difficulty level. By enabling gradual adaptation to task complexity, this approach helps the Vietnamese VQA model generalize well, thus improving overall performance. Experimental results show consistent improvements on the OpenViVQA dataset and mixed outcomes on the ViVQA dataset, highlighting both the potential and challenges of our approach in advancing VQA for Vietnamese language.
comment: 10 pages, 3 figures, AAAI-25 Workshop on Document Understanding and Intelligence
♻ ☆ Towards Effective and Sparse Adversarial Attack on Spiking Neural Networks via Breaking Invisible Surrogate Gradients CVPR 2025
Spiking neural networks (SNNs) have shown their competence in handling spatial-temporal event-based data with low energy consumption. Similar to conventional artificial neural networks (ANNs), SNNs are also vulnerable to gradient-based adversarial attacks, wherein gradients are calculated by spatial-temporal back-propagation (STBP) and surrogate gradients (SGs). However, the SGs may be invisible for an inference-only model as they do not influence the inference results, and current gradient-based attacks are ineffective for binary dynamic images captured by the dynamic vision sensor (DVS). While some approaches addressed the issue of invisible SGs through universal SGs, their SGs lack a correlation with the victim model, resulting in sub-optimal performance. Moreover, the imperceptibility of existing SNN-based binary attacks is still insufficient. In this paper, we introduce an innovative potential-dependent surrogate gradient (PDSG) method to establish a robust connection between the SG and the model, thereby enhancing the adaptability of adversarial attacks across various models with invisible SGs. Additionally, we propose the sparse dynamic attack (SDA) to effectively attack binary dynamic images. Utilizing a generation-reduction paradigm, SDA can fully optimize the sparsity of adversarial perturbations. Experimental results demonstrate that our PDSG and SDA outperform state-of-the-art SNN-based attacks across various models and datasets. Specifically, our PDSG achieves 100% attack success rate on ImageNet, and our SDA obtains 82% attack success rate by modifying only 0.24% of the pixels on CIFAR10DVS. The code is available at https://github.com/ryime/PDSG-SDA .
comment: Accepted by CVPR 2025
♻ ☆ Optimizing for the Shortest Path in Denoising Diffusion Model CVPR 2025
In this research, we propose a novel denoising diffusion model based on shortest-path modeling that optimizes residual propagation to enhance both denoising efficiency and quality. Drawing on Denoising Diffusion Implicit Models (DDIM) and insights from graph theory, our model, termed the Shortest Path Diffusion Model (ShortDF), treats the denoising process as a shortest-path problem aimed at minimizing reconstruction error. By optimizing the initial residuals, we improve the efficiency of the reverse diffusion process and the quality of the generated samples. Extensive experiments on multiple standard benchmarks demonstrate that ShortDF significantly reduces diffusion time (or steps) while enhancing the visual fidelity of generated samples compared to prior arts. This work, we suppose, paves the way for interactive diffusion-based applications and establishes a foundation for rapid data generation. Code is available at https://github.com/UnicomAI/ShortDF
comment: Accepet by CVPR 2025 (10 pages, 6 figures)
♻ ☆ Mocap-2-to-3: Lifting 2D Diffusion-Based Pretrained Models for 3D Motion Capture
Recovering absolute poses in the world coordinate system from monocular views presents significant challenges. Two primary issues arise in this context. Firstly, existing methods rely on 3D motion data for training, which requires collection in limited environments. Acquiring such 3D labels for new actions in a timely manner is impractical, severely restricting the model's generalization capabilities. In contrast, 2D poses are far more accessible and easier to obtain. Secondly, estimating a person's absolute position in metric space from a single viewpoint is inherently more complex. To address these challenges, we introduce Mocap-2-to-3, a novel framework that decomposes intricate 3D motions into 2D poses, leveraging 2D data to enhance 3D motion reconstruction in diverse scenarios and accurately predict absolute positions in the world coordinate system. We initially pretrain a single-view diffusion model with extensive 2D data, followed by fine-tuning a multi-view diffusion model for view consistency using publicly available 3D data. This strategy facilitates the effective use of large-scale 2D data. Additionally, we propose an innovative human motion representation that decouples local actions from global movements and encodes geometric priors of the ground, ensuring the generative model learns accurate motion priors from 2D data. During inference, this allows for the gradual recovery of global movements, resulting in more plausible positioning. We evaluate our model's performance on real-world datasets, demonstrating superior accuracy in motion and absolute human positioning compared to state-of-the-art methods, along with enhanced generalization and scalability. Our code will be made publicly available.
♻ ☆ DSPNet: Dual-vision Scene Perception for Robust 3D Question Answering CVPR 2025
3D Question Answering (3D QA) requires the model to comprehensively understand its situated 3D scene described by the text, then reason about its surrounding environment and answer a question under that situation. However, existing methods usually rely on global scene perception from pure 3D point clouds and overlook the importance of rich local texture details from multi-view images. Moreover, due to the inherent noise in camera poses and complex occlusions, there exists significant feature degradation and reduced feature robustness problems when aligning 3D point cloud with multi-view images. In this paper, we propose a Dual-vision Scene Perception Network (DSPNet), to comprehensively integrate multi-view and point cloud features to improve robustness in 3D QA. Our Text-guided Multi-view Fusion (TGMF) module prioritizes image views that closely match the semantic content of the text. To adaptively fuse back-projected multi-view images with point cloud features, we design the Adaptive Dual-vision Perception (ADVP) module, enhancing 3D scene comprehension. Additionally, our Multimodal Context-guided Reasoning (MCGR) module facilitates robust reasoning by integrating contextual information across visual and linguistic modalities. Experimental results on SQA3D and ScanQA datasets demonstrate the superiority of our DSPNet. Codes will be available at https://github.com/LZ-CH/DSPNet.
comment: Accepted by CVPR 2025
♻ ☆ MobileViM: A Light-weight and Dimension-independent Vision Mamba for 3D Medical Image Analysis
Efficient evaluation of three-dimensional (3D) medical images is crucial for diagnostic and therapeutic practices in healthcare. Recent years have seen a substantial uptake in applying deep learning and computer vision to analyse and interpret medical images. Traditional approaches, such as convolutional neural networks (CNNs) and vision transformers (ViTs), face significant computational challenges, prompting the need for architectural advancements. Recent efforts have led to the introduction of novel architectures like the ``Mamba'' model as alternative solutions to traditional CNNs or ViTs. The Mamba model excels in the linear processing of one-dimensional data with low computational demands. However, Mamba's potential for 3D medical image analysis remains underexplored and could face significant computational challenges as the dimension increases. This manuscript presents MobileViM, a streamlined architecture for efficient segmentation of 3D medical images. In the MobileViM network, we invent a new dimension-independent mechanism and a dual-direction traversing approach to incorporate with a vision-Mamba-based framework. MobileViM also features a cross-scale bridging technique to improve efficiency and accuracy across various medical imaging modalities. With these enhancements, MobileViM achieves segmentation speeds exceeding 90 frames per second (FPS) on a single graphics processing unit (i.e., NVIDIA RTX 4090). This performance is over 24 FPS faster than the state-of-the-art deep learning models for processing 3D images with the same computational resources. In addition, experimental evaluations demonstrate that MobileViM delivers superior performance, with Dice similarity scores reaching 92.72%, 86.69%, 80.46%, and 77.43% for PENGWIN, BraTS2024, ATLAS, and Toothfairy2 datasets, respectively, which significantly surpasses existing models.
comment: The corresponding author disagrees with the manuscript submitted to arXiv
♻ ☆ Detecting Systematic Weaknesses in Vision Models along Predefined Human-Understandable Dimensions
Slice discovery methods (SDMs) are prominent algorithms for finding systematic weaknesses in DNNs. They identify top-k semantically coherent slices/subsets of data where a DNN-under-test has low performance. For being directly useful, slices should be aligned with human-understandable and relevant dimensions, which, for example, are defined by safety and domain experts as part of the operational design domain (ODD). While SDMs can be applied effectively on structured data, their application on image data is complicated by the lack of semantic metadata. To address these issues, we present an algorithm that combines foundation models for zero-shot image classification to generate semantic metadata with methods for combinatorial search to find systematic weaknesses in images. In contrast to existing approaches, ours identifies weak slices that are in line with pre-defined human-understandable dimensions. As the algorithm includes foundation models, its intermediate and final results may not always be exact. Therefore, we include an approach to address the impact of noisy metadata. We validate our algorithm on both synthetic and real-world datasets, demonstrating its ability to recover human-understandable systematic weaknesses. Furthermore, using our approach, we identify systematic weaknesses of multiple pre-trained and publicly available state-of-the-art computer vision DNNs.
♻ ☆ ZeroBench: An Impossible Visual Benchmark for Contemporary Large Multimodal Models
Large Multimodal Models (LMMs) exhibit major shortfalls when interpreting images and, by some measures, have poorer spatial cognition than small children or animals. Despite this, they attain high scores on many popular visual benchmarks, with headroom rapidly eroded by an ongoing surge of model progress. To address this, there is a pressing need for difficult benchmarks that remain relevant for longer. We take this idea to its limit by introducing ZeroBench-a lightweight visual reasoning benchmark that is entirely impossible for contemporary frontier LMMs. Our benchmark consists of 100 manually curated questions and 334 less difficult subquestions. We evaluate 20 LMMs on ZeroBench, all of which score 0.0%, and rigorously analyse the errors. To encourage progress in visual understanding, we publicly release ZeroBench.
comment: 20 pages, 13 figures
♻ ☆ Back Home: A Machine Learning Approach to Seashell Classification and Ecosystem Restoration
In Costa Rica, an average of 5 tons of seashells are extracted from ecosystems annually. Confiscated seashells, cannot be returned to their ecosystems due to the lack of origin recognition. To address this issue, we developed a convolutional neural network (CNN) specifically for seashell identification. We built a dataset from scratch, consisting of approximately 19000 images from the Pacific and Caribbean coasts. Using this dataset, the model achieved a classification accuracy exceeding 85%. The model has been integrated into a user-friendly application, which has classified over 36,000 seashells to date, delivering real-time results within 3 seconds per image. To further enhance the system's accuracy, an anomaly detection mechanism was incorporated to filter out irrelevant or anomalous inputs, ensuring only valid seashell images are processed.
♻ ☆ A Simple and Effective Reinforcement Learning Method for Text-to-Image Diffusion Fine-tuning
Reinforcement learning (RL)-based fine-tuning has emerged as a powerful approach for aligning diffusion models with black-box objectives. Proximal policy optimization (PPO) is the most popular choice of method for policy optimization. While effective in terms of performance, PPO is highly sensitive to hyper-parameters and involves substantial computational overhead. REINFORCE, on the other hand, mitigates some computational complexities such as high memory overhead and sensitive hyper-parameter tuning, but has suboptimal performance due to high-variance and sample inefficiency. While the variance of the REINFORCE can be reduced by sampling multiple actions per input prompt and using a baseline correction term, it still suffers from sample inefficiency. To address these challenges, we systematically analyze the efficiency-effectiveness trade-off between REINFORCE and PPO, and propose leave-one-out PPO (LOOP), a novel RL for diffusion fine-tuning method. LOOP combines variance reduction techniques from REINFORCE, such as sampling multiple actions per input prompt and a baseline correction term, with the robustness and sample efficiency of PPO via clipping and importance sampling. Our results demonstrate that LOOP effectively improves diffusion models on various black-box objectives, and achieves a better balance between computational efficiency and performance.
♻ ☆ A Survey of Deep Learning-based Radiology Report Generation Using Multimodal Data
Automatic radiology report generation can alleviate the workload for physicians and minimize regional disparities in medical resources, therefore becoming an important topic in the medical image analysis field. It is a challenging task, as the computational model needs to mimic physicians to obtain information from multi-modal input data (i.e., medical images, clinical information, medical knowledge, etc.), and produce comprehensive and accurate reports. Recently, numerous works have emerged to address this issue using deep-learning-based methods, such as transformers, contrastive learning, and knowledge-base construction. This survey summarizes the key techniques developed in the most recent works and proposes a general workflow for deep-learning-based report generation with five main components, including multi-modality data acquisition, data preparation, feature learning, feature fusion and interaction, and report generation. The state-of-the-art methods for each of these components are highlighted. Additionally, we summarize the latest developments in large model-based methods and model explainability, along with public datasets, evaluation methods, current challenges, and future directions in this field. We have also conducted a quantitative comparison between different methods in the same experimental setting. This is the most up-to-date survey that focuses on multi-modality inputs and data fusion for radiology report generation. The aim is to provide comprehensive and rich information for researchers interested in automatic clinical report generation and medical image analysis, especially when using multimodal inputs, and to assist them in developing new algorithms to advance the field.
♻ ☆ LLM-wrapper: Black-Box Semantic-Aware Adaptation of Vision-Language Models for Referring Expression Comprehension ICLR 2025
Vision Language Models (VLMs) have demonstrated remarkable capabilities in various open-vocabulary tasks, yet their zero-shot performance lags behind task-specific fine-tuned models, particularly in complex tasks like Referring Expression Comprehension (REC). Fine-tuning usually requires 'white-box' access to the model's architecture and weights, which is not always feasible due to proprietary or privacy concerns. In this work, we propose LLM-wrapper, a method for 'black-box' adaptation of VLMs for the REC task using Large Language Models (LLMs). LLM-wrapper capitalizes on the reasoning abilities of LLMs, improved with a light fine-tuning, to select the most relevant bounding box matching the referring expression, from candidates generated by a zero-shot black-box VLM. Our approach offers several advantages: it enables the adaptation of closed-source models without needing access to their internal workings, it is versatile as it works with any VLM, it transfers to new VLMs and datasets, and it allows for the adaptation of an ensemble of VLMs. We evaluate LLM-wrapper on multiple datasets using different VLMs and LLMs, demonstrating significant performance improvements and highlighting the versatility of our method. While LLM-wrapper is not meant to directly compete with standard white-box fine-tuning, it offers a practical and effective alternative for black-box VLM adaptation. Code and checkpoints are available at https://github.com/valeoai/LLM_wrapper .
comment: LLM-wrapper (v3) is published as a conference paper at ICLR 2025. (v1 was presented at EVAL-FoMo workshop, ECCV 2024.)
♻ ☆ Human-Feedback Efficient Reinforcement Learning for Online Diffusion Model Finetuning ICLR
Controllable generation through Stable Diffusion (SD) fine-tuning aims to improve fidelity, safety, and alignment with human guidance. Existing reinforcement learning from human feedback methods usually rely on predefined heuristic reward functions or pretrained reward models built on large-scale datasets, limiting their applicability to scenarios where collecting such data is costly or difficult. To effectively and efficiently utilize human feedback, we develop a framework, HERO, which leverages online human feedback collected on the fly during model learning. Specifically, HERO features two key mechanisms: (1) Feedback-Aligned Representation Learning, an online training method that captures human feedback and provides informative learning signals for fine-tuning, and (2) Feedback-Guided Image Generation, which involves generating images from SD's refined initialization samples, enabling faster convergence towards the evaluator's intent. We demonstrate that HERO is 4x more efficient in online feedback for body part anomaly correction compared to the best existing method. Additionally, experiments show that HERO can effectively handle tasks like reasoning, counting, personalization, and reducing NSFW content with only 0.5K online feedback.
comment: Published in International Conference on Learning Representations (ICLR) 2025
♻ ☆ BHViT: Binarized Hybrid Vision Transformer CVPR2025
Model binarization has made significant progress in enabling real-time and energy-efficient computation for convolutional neural networks (CNN), offering a potential solution to the deployment challenges faced by Vision Transformers (ViTs) on edge devices. However, due to the structural differences between CNN and Transformer architectures, simply applying binary CNN strategies to the ViT models will lead to a significant performance drop. To tackle this challenge, we propose BHViT, a binarization-friendly hybrid ViT architecture and its full binarization model with the guidance of three important observations. Initially, BHViT utilizes the local information interaction and hierarchical feature aggregation technique from coarse to fine levels to address redundant computations stemming from excessive tokens. Then, a novel module based on shift operations is proposed to enhance the performance of the binary Multilayer Perceptron (MLP) module without significantly increasing computational overhead. In addition, an innovative attention matrix binarization method based on quantization decomposition is proposed to evaluate the token's importance in the binarized attention matrix. Finally, we propose a regularization loss to address the inadequate optimization caused by the incompatibility between the weight oscillation in the binary layers and the Adam Optimizer. Extensive experimental results demonstrate that our proposed algorithm achieves SOTA performance among binary ViT methods.
comment: Accepted by CVPR2025
♻ ☆ Self-supervised pre-training with diffusion model for few-shot landmark detection in x-ray images WACV 2025
Deep neural networks have been extensively applied in the medical domain for various tasks, including image classification, segmentation, and landmark detection. However, their application is often hindered by data scarcity, both in terms of available annotations and images. This study introduces a novel application of denoising diffusion probabilistic models (DDPMs) to the landmark detection task, specifically addressing the challenge of limited annotated data in x-ray imaging. Our key innovation lies in leveraging DDPMs for self-supervised pre-training in landmark detection, a previously unexplored approach in this domain. This method enables accurate landmark detection with minimal annotated training data (as few as 50 images), surpassing both ImageNet supervised pre-training and traditional self-supervised techniques across three popular x-ray benchmark datasets. To our knowledge, this work represents the first application of diffusion models for self-supervised learning in landmark detection, which may offer a valuable pre-training approach in few-shot regimes, for mitigating data scarcity.
comment: Accepted at WACV 2025
♻ ☆ Enhancing Multimodal Medical Image Classification using Cross-Graph Modal Contrastive Learning
The classification of medical images is a pivotal aspect of disease diagnosis, often enhanced by deep learning techniques. However, traditional approaches typically focus on unimodal medical image data, neglecting the integration of diverse non-image patient data. This paper proposes a novel Cross-Graph Modal Contrastive Learning (CGMCL) framework for multimodal structured data from different data domains to improve medical image classification. The model effectively integrates both image and non-image data by constructing cross-modality graphs and leveraging contrastive learning to align multimodal features in a shared latent space. An inter-modality feature scaling module further optimizes the representation learning process by reducing the gap between heterogeneous modalities. The proposed approach is evaluated on two datasets: a Parkinson's disease (PD) dataset and a public melanoma dataset. Results demonstrate that CGMCL outperforms conventional unimodal methods in accuracy, interpretability, and early disease prediction. Additionally, the method shows superior performance in multi-class melanoma classification. The CGMCL framework provides valuable insights into medical image classification while offering improved disease interpretability and predictive capabilities.
♻ ☆ LION-FS: Fast & Slow Video-Language Thinker as Online Video Assistant CVPR 2025
First-person video assistants are highly anticipated to enhance our daily lives through online video dialogue. However, existing online video assistants often sacrifice assistant efficacy for real-time efficiency by processing low-frame-rate videos with coarse-grained visual features.To overcome the trade-off between efficacy and efficiency, we propose "Fast & Slow Video-Language Thinker" as an onLIne videO assistaNt, LION-FS, achieving real-time, proactive, temporally accurate, and contextually precise responses. LION-FS adopts a two-stage optimization strategy: 1)Fast Path: Routing-Based Response Determination evaluates frame-by-frame whether an immediate response is necessary. To enhance response determination accuracy and handle higher frame-rate inputs efficiently, we employ Token Aggregation Routing to dynamically fuse spatiotemporal features without increasing token numbers, while utilizing Token Dropping Routing to eliminate redundant features. 2)Slow Path: Multi-granularity Keyframe Augmentation optimizes keyframes during response generation. To provide comprehensive and detailed responses beyond atomic actions constrained by training data, fine-grained spatial features and human-environment interaction features are extracted through multi-granular pooling. These features are further integrated into a meticulously designed multimodal Thinking Template to guide more precise response generation. Comprehensive evaluations on online video tasks demonstrate that LION-FS achieves state-of-the-art efficacy and efficiency.
comment: Accept to CVPR 2025, Project page: https://github.com/JiuTian-VL/LION-FS
♻ ☆ X-Boundary: Establishing Exact Safety Boundary to Shield LLMs from Multi-Turn Jailbreaks without Compromising Usability
Despite the rapid development of safety alignment techniques for LLMs, defending against multi-turn jailbreaks is still a challenging task. In this paper, we conduct a comprehensive comparison, revealing that some existing defense methods can improve the robustness of LLMs against multi-turn jailbreaks but compromise usability, i.e., reducing general capabilities or causing the over-refusal problem. From the perspective of mechanism interpretability of LLMs, we discover that these methods fail to establish a boundary that exactly distinguishes safe and harmful feature representations. Therefore, boundary-safe representations close to harmful representations are inevitably disrupted, leading to a decline in usability. To address this issue, we propose X-Boundary to push harmful representations away from boundary-safe representations and obtain an exact distinction boundary. In this way, harmful representations can be precisely erased without disrupting safe ones. Experimental results show that X-Boundary achieves state-of-the-art defense performance against multi-turn jailbreaks, while reducing the over-refusal rate by about 20% and maintaining nearly complete general capability. Furthermore, we theoretically prove and empirically verify that X-Boundary can accelerate the convergence process during training. Please see our code at: https://github.com/AI45Lab/X-Boundary.
♻ ☆ GSPR: Multimodal Place Recognition Using 3D Gaussian Splatting for Autonomous Driving
Place recognition is a crucial component that enables autonomous vehicles to obtain localization results in GPS-denied environments. In recent years, multimodal place recognition methods have gained increasing attention. They overcome the weaknesses of unimodal sensor systems by leveraging complementary information from different modalities. However, most existing methods explore cross-modality correlations through feature-level or descriptor-level fusion, suffering from a lack of interpretability. Conversely, the recently proposed 3D Gaussian Splatting provides a new perspective on multimodal fusion by harmonizing different modalities into an explicit scene representation. In this paper, we propose a 3D Gaussian Splatting-based multimodal place recognition network dubbed GSPR. It explicitly combines multi-view RGB images and LiDAR point clouds into a spatio-temporally unified scene representation with the proposed Multimodal Gaussian Splatting. A network composed of 3D graph convolution and transformer is designed to extract spatio-temporal features and global descriptors from the Gaussian scenes for place recognition. Extensive evaluations on three datasets demonstrate that our method can effectively leverage complementary strengths of both multi-view cameras and LiDAR, achieving SOTA place recognition performance while maintaining solid generalization ability. Our open-source code will be released at https://github.com/QiZS-BIT/GSPR.
comment: 8 pages, 6 figures
Efficient Diversity-Preserving Diffusion Alignment via Gradient-Informed GFlowNets ICLR 2025
While one commonly trains large diffusion models by collecting datasets on target downstream tasks, it is often desired to align and finetune pretrained diffusion models with some reward functions that are either designed by experts or learned from small-scale datasets. Existing post-training methods for reward finetuning of diffusion models typically suffer from lack of diversity in generated samples, lack of prior preservation, and/or slow convergence in finetuning. Inspired by recent successes in generative flow networks (GFlowNets), a class of probabilistic models that sample with the unnormalized density of a reward function, we propose a novel GFlowNet method dubbed Nabla-GFlowNet (abbreviated as \methodname), the first GFlowNet method that leverages the rich signal in reward gradients, together with an objective called \graddb plus its variant \resgraddb designed for prior-preserving diffusion finetuning. We show that our proposed method achieves fast yet diversity- and prior-preserving finetuning of Stable Diffusion, a large-scale text-conditioned image diffusion model, on different realistic reward functions.
comment: Technical Report (35 pages, 31 figures), Accepted at ICLR 2025
♻ ☆ MMGDreamer: Mixed-Modality Graph for Geometry-Controllable 3D Indoor Scene Generation AAAI 2025
Controllable 3D scene generation has extensive applications in virtual reality and interior design, where the generated scenes should exhibit high levels of realism and controllability in terms of geometry. Scene graphs provide a suitable data representation that facilitates these applications. However, current graph-based methods for scene generation are constrained to text-based inputs and exhibit insufficient adaptability to flexible user inputs, hindering the ability to precisely control object geometry. To address this issue, we propose MMGDreamer, a dual-branch diffusion model for scene generation that incorporates a novel Mixed-Modality Graph, visual enhancement module, and relation predictor. The mixed-modality graph allows object nodes to integrate textual and visual modalities, with optional relationships between nodes. It enhances adaptability to flexible user inputs and enables meticulous control over the geometry of objects in the generated scenes. The visual enhancement module enriches the visual fidelity of text-only nodes by constructing visual representations using text embeddings. Furthermore, our relation predictor leverages node representations to infer absent relationships between nodes, resulting in more coherent scene layouts. Extensive experimental results demonstrate that MMGDreamer exhibits superior control of object geometry, achieving state-of-the-art scene generation performance. Project page: https://yangzhifeio.github.io/project/MMGDreamer.
comment: Accepted by AAAI 2025 Main Track
♻ ☆ FSPGD: Rethinking Black-box Attacks on Semantic Segmentation
Transferability, the ability of adversarial examples crafted for one model to deceive other models, is crucial for black-box attacks. Despite advancements in attack methods for semantic segmentation, transferability remains limited, reducing their effectiveness in real-world applications. To address this, we introduce the Feature Similarity Projected Gradient Descent (FSPGD) attack, a novel black-box approach that enhances both attack performance and transferability. Unlike conventional segmentation attacks that rely on output predictions for gradient calculation, FSPGD computes gradients from intermediate layer features. Specifically, our method introduces a loss function that targets local information by comparing features between clean images and adversarial examples, while also disrupting contextual information by accounting for spatial relationships between objects. Experiments on Pascal VOC 2012 and Cityscapes datasets demonstrate that FSPGD achieves superior transferability and attack performance, establishing a new state-of-the-art benchmark. Code is available at https://github.com/KU-AIVS/FSPGD.
♻ ☆ UniMLVG: Unified Framework for Multi-view Long Video Generation with Comprehensive Control Capabilities for Autonomous Driving
The creation of diverse and realistic driving scenarios has become essential to enhance perception and planning capabilities of the autonomous driving system. However, generating long-duration, surround-view consistent driving videos remains a significant challenge. To address this, we present UniMLVG, a unified framework designed to generate extended street multi-perspective videos under precise control. By integrating single- and multi-view driving videos into the training data, our approach updates a DiT-based diffusion model equipped with cross-frame and cross-view modules across three stages with multi training objectives, substantially boosting the diversity and quality of generated visual content. Importantly, we propose an innovative explicit viewpoint modeling approach for multi-view video generation to effectively improve motion transition consistency. Capable of handling various input reference formats (e.g., text, images, or video), our UniMLVG generates high-quality multi-view videos according to the corresponding condition constraints such as 3D bounding boxes or frame-level text descriptions. Compared to the best models with similar capabilities, our framework achieves improvements of 48.2% in FID and 35.2% in FVD.
♻ ☆ FRNet: Frustum-Range Networks for Scalable LiDAR Segmentation
LiDAR segmentation has become a crucial component of advanced autonomous driving systems. Recent range-view LiDAR segmentation approaches show promise for real-time processing. However, they inevitably suffer from corrupted contextual information and rely heavily on post-processing techniques for prediction refinement. In this work, we propose FRNet, a simple yet powerful method aimed at restoring the contextual information of range image pixels using corresponding frustum LiDAR points. First, a frustum feature encoder module is used to extract per-point features within the frustum region, which preserves scene consistency and is critical for point-level predictions. Next, a frustum-point fusion module is introduced to update per-point features hierarchically, enabling each point to extract more surrounding information through the frustum features. Finally, a head fusion module is used to fuse features at different levels for final semantic predictions. Extensive experiments conducted on four popular LiDAR segmentation benchmarks under various task setups demonstrate the superiority of FRNet. Notably, FRNet achieves 73.3% and 82.5% mIoU scores on the testing sets of SemanticKITTI and nuScenes. While achieving competitive performance, FRNet operates 5 times faster than state-of-the-art approaches. Such high efficiency opens up new possibilities for more scalable LiDAR segmentation. The code has been made publicly available at https://github.com/Xiangxu-0103/FRNet.
comment: TIP 2025; 18 pages, 11 figures, 14 tables; Code at https://github.com/Xiangxu-0103/FRNet
♻ ☆ A Dataset and Benchmark for Shape Completion of Fruits for Agricultural Robotics
As the world population is expected to reach 10 billion by 2050, our agricultural production system needs to double its productivity despite a decline of human workforce in the agricultural sector. Autonomous robotic systems are one promising pathway to increase productivity by taking over labor-intensive manual tasks like fruit picking. To be effective, such systems need to monitor and interact with plants and fruits precisely, which is challenging due to the cluttered nature of agricultural environments causing, for example, strong occlusions. Thus, being able to estimate the complete 3D shapes of objects in presence of occlusions is crucial for automating operations such as fruit harvesting. In this paper, we propose the first publicly available 3D shape completion dataset for agricultural vision systems. We provide an RGB-D dataset for estimating the 3D shape of fruits. Specifically, our dataset contains RGB-D frames of single sweet peppers in lab conditions but also in a commercial greenhouse. For each fruit, we additionally collected high-precision point clouds that we use as ground truth. For acquiring the ground truth shape, we developed a measuring process that allows us to record data of real sweet pepper plants, both in the lab and in the greenhouse with high precision, and determine the shape of the sensed fruits. We release our dataset, consisting of almost 7,000 RGB-D frames belonging to more than 100 different fruits. We provide segmented RGB-D frames, with camera intrinsics to easily obtain colored point clouds, together with the corresponding high-precision, occlusion-free point clouds obtained with a high-precision laser scanner. We additionally enable evaluation of shape completion approaches on a hidden test set through a public challenge on a benchmark server.
♻ ☆ Continual Learning in 3D Point Clouds: Employing Spectral Techniques for Exemplar Selection WACV 2025
We introduce a novel framework for Continual Learning in 3D object classification. Our approach, CL3D, is based on the selection of prototypes from each class using spectral clustering. For non-Euclidean data such as point clouds, spectral clustering can be employed as long as one can define a distance measure between pairs of samples. Choosing the appropriate distance measure enables us to leverage 3D geometric characteristics to identify representative prototypes for each class. We explore the effectiveness of clustering in the input space (3D points), local feature space (1024-dimensional points), and global feature space. We conduct experiments on the ModelNet40, ShapeNet, and ScanNet datasets, achieving state-of-the-art accuracy exclusively through the use of input space features. By leveraging the combined input, local, and global features, we have improved the state-of-the-art on ModelNet and ShapeNet, utilizing nearly half the memory used by competing approaches. For the challenging ScanNet dataset, our method enhances accuracy by 4.1% while consuming just 28% of the memory used by our competitors, demonstrating the scalability of our approach.
comment: Accepted to WACV 2025, Tucson, Arizona, USA
♻ ☆ Implantable Adaptive Cells: A Novel Enhancement for Pre-Trained U-Nets in Medical Image Segmentation
This paper introduces a novel approach to enhance the performance of pre-trained neural networks in medical image segmentation using gradient-based Neural Architecture Search (NAS) methods. We present the concept of Implantable Adaptive Cell (IAC), small modules identified through Partially-Connected DARTS based approach, designed to be injected into the skip connections of an existing and already trained U-shaped model. Unlike traditional NAS methods, our approach refines existing architectures without full retraining. Experiments on four medical datasets with MRI and CT images show consistent accuracy improvements on various U-Net configurations, with segmentation accuracy gain by approximately 5 percentage points across all validation datasets, with improvements reaching up to 11\%pt in the best-performing cases. The findings of this study not only offer a cost-effective alternative to the complete overhaul of complex models for performance upgrades but also indicate the potential applicability of our method to other architectures and problem domains.
♻ ☆ Structured Preference Optimization for Vision-Language Long-Horizon Task Planning
Existing methods for vision-language task planning excel in short-horizon tasks but often fall short in complex, long-horizon planning within dynamic environments. These challenges primarily arise from the difficulty of effectively training models to produce high-quality reasoning processes for long-horizon tasks. To address this, we propose Structured Preference Optimization (SPO), which aims to enhance reasoning and action selection in long-horizon task planning through structured preference evaluation and optimized training strategies. Specifically, SPO introduces: 1) Preference-Based Scoring and Optimization, which systematically evaluates reasoning chains based on task relevance, visual grounding, and historical consistency; and 2) Curriculum-Guided Training, where the model progressively adapts from simple to complex tasks, improving its generalization ability in long-horizon scenarios and enhancing reasoning robustness. To advance research in vision-language long-horizon task planning, we introduce ExtendaBench, a comprehensive benchmark covering 1,509 tasks across VirtualHome and Habitat 2.0, categorized into ultra-short, short, medium, and long tasks. Experimental results demonstrate that SPO significantly improves reasoning quality and final decision accuracy, outperforming prior methods on long-horizon tasks and underscoring the effectiveness of preference-driven optimization in vision-language task planning. Specifically, SPO achieves a +5.98% GCR and +4.68% SR improvement in VirtualHome and a +3.30% GCR and +2.11% SR improvement in Habitat over the best-performing baselines.
comment: 18 pages
♻ ☆ Pathfinder for Low-altitude Aircraft with Binary Neural Network
A prior global topological map (e.g., the OpenStreetMap, OSM) can boost the performance of autonomous mapping by a ground mobile robot. However, the prior map is usually incomplete due to lacking labeling in partial paths. To solve this problem, this paper proposes an OSM maker using airborne sensors carried by low-altitude aircraft, where the core of the OSM maker is a novel efficient pathfinder approach based on LiDAR and camera data, i.e., a binary dual-stream road segmentation model. Specifically, a multi-scale feature extraction based on the UNet architecture is implemented for images and point clouds. To reduce the effect caused by the sparsity of point cloud, an attention-guided gated block is designed to integrate image and point-cloud features. To optimize the model for edge deployment that significantly reduces storage footprint and computational demands, we propose a binarization streamline to each model component, including a variant of vision transformer (ViT) architecture as the encoder of the image branch, and new focal and perception losses to optimize the model training. The experimental results on two datasets demonstrate that our pathfinder method achieves SOTA accuracy with high efficiency in finding paths from the low-level airborne sensors, and we can create complete OSM prior maps based on the segmented road skeletons. Code and data are available at: \href{https://github.com/IMRL/Pathfinder}{https://github.com/IMRL/Pathfinder}.
♻ ☆ Deep unrolling for learning optimal spatially varying regularisation parameters for Total Generalised Variation
We extend a recently introduced deep unrolling framework for learning spatially varying regularisation parameters in inverse imaging problems to the case of Total Generalised Variation (TGV). The framework combines a deep convolutional neural network (CNN) inferring the two spatially varying TGV parameters with an unrolled algorithmic scheme that solves the corresponding variational problem. The two subnetworks are jointly trained end-to-end in a supervised fashion and as such the CNN learns to compute those parameters that drive the reconstructed images as close to the ground truth as possible. Numerical results in image denoising and MRI reconstruction show a significant qualitative and quantitative improvement compared to the best TGV scalar parameter case as well as to other approaches employing spatially varying parameters computed by unsupervised methods. We also observe that the inferred spatially varying parameter maps have a consistent structure near the image edges, asking for further theoretical investigations. In particular, the parameter that weighs the first-order TGV term has a triple-edge structure with alternating high-low-high values whereas the one that weighs the second-order term attains small values in a large neighbourhood around the edges.
♻ ☆ InfoDisent: Explainability of Image Classification Models by Information Disentanglement
In this work, we introduce InfoDisent, a hybrid approach to explainability based on the information bottleneck principle. InfoDisent enables the disentanglement of information in the final layer of any pretrained model into atomic concepts, which can be interpreted as prototypical parts. This approach merges the flexibility of post-hoc methods with the concept-level modeling capabilities of self-explainable neural networks, such as ProtoPNets. We demonstrate the effectiveness of InfoDisent through computational experiments and user studies across various datasets using modern backbones such as ViTs and convolutional networks. Notably, InfoDisent generalizes the prototypical parts approach to novel domains (ImageNet).
♻ ☆ A Backbone for Long-Horizon Robot Task Understanding
End-to-end robot learning, particularly for long-horizon tasks, often results in unpredictable outcomes and poor generalization. To address these challenges, we propose a novel Therblig-Based Backbone Framework (TBBF) as a fundamental structure to enhance interpretability, data efficiency, and generalization in robotic systems. TBBF utilizes expert demonstrations to enable therblig-level task decomposition, facilitate efficient action-object mapping, and generate adaptive trajectories for new scenarios. The approach consists of two stages: offline training and online testing. During the offline training stage, we developed the Meta-RGate SynerFusion (MGSF) network for accurate therblig segmentation across various tasks. In the online testing stage, after a one-shot demonstration of a new task is collected, our MGSF network extracts high-level knowledge, which is then encoded into the image using Action Registration (ActionREG). Additionally, Large Language Model (LLM)-Alignment Policy for Visual Correction (LAP-VC) is employed to ensure precise action registration, facilitating trajectory transfer in novel robot scenarios. Experimental results validate these methods, achieving 94.37% recall in therblig segmentation and success rates of 94.4% and 80% in real-world online robot testing for simple and complex scenarios, respectively. Supplementary material is available at: https://sites.google.com/view/therbligsbasedbackbone/home
comment: 8 pages, 8 figures. This work has been published by IEEE Robotics and Automation Letters (RA-L)
♻ ☆ Federated Learning With Individualized Privacy Through Client Sampling ICML
With growing concerns about user data collection, individualized privacy has emerged as a promising solution to balance protection and utility by accounting for diverse user privacy preferences. Instead of enforcing a uniform level of anonymization for all users, this approach allows individuals to choose privacy settings that align with their comfort levels. Building on this idea, we propose an adapted method for enabling Individualized Differential Privacy (IDP) in Federated Learning (FL) by handling clients according to their personal privacy preferences. By extending the SAMPLE algorithm from centralized settings to FL, we calculate client-specific sampling rates based on their heterogeneous privacy budgets and integrate them into a modified IDP-FedAvg algorithm. We test this method under realistic privacy distributions and multiple datasets. The experimental results demonstrate that our approach achieves clear improvements over uniform DP baselines, reducing the trade-off between privacy and utility. Compared to the alternative SCALE method in related work, which assigns differing noise scales to clients, our method performs notably better. However, challenges remain for complex tasks with non-i.i.d. data, primarily stemming from the constraints of the decentralized setting.
comment: Accepted at 10th International Conference on Machine Learning Technologies (ICMLT 2025)
♻ ☆ Modulating CNN Features with Pre-Trained ViT Representations for Open-Vocabulary Object Detection
Owing to large-scale image-text contrastive training, pre-trained vision language model (VLM) like CLIP shows superior open-vocabulary recognition ability. Most existing open-vocabulary object detectors attempt to utilize the pre-trained VLMs to attain generalized representation. F-ViT uses the pre-trained visual encoder as the backbone network and freezes it during training. However, its frozen backbone doesn't benefit from the labeled data to strengthen the representation for detection. Therefore, we propose a novel two-branch backbone network, named as \textbf{V}iT-Feature-\textbf{M}odulated Multi-Scale \textbf{C}onvolutional Network (VMCNet), which consists of a trainable convolutional branch, a frozen pre-trained ViT branch and a VMC module. The trainable CNN branch could be optimized with labeled data while the frozen pre-trained ViT branch could keep the representation ability derived from large-scale pre-training. Then, the proposed VMC module could modulate the multi-scale CNN features with the representations from ViT branch. With this proposed mixed structure, the detector is more likely to discover objects of novel categories. Evaluated on two popular benchmarks, our method boosts the detection performance on novel category and outperforms state-of-the-art methods. On OV-COCO, the proposed method achieves 44.3 AP$_{50}^{\mathrm{novel}}$ with ViT-B/16 and 48.5 AP$_{50}^{\mathrm{novel}}$ with ViT-L/14. On OV-LVIS, VMCNet with ViT-B/16 and ViT-L/14 reaches 27.8 and 38.4 mAP$_{r}$.
♻ ☆ $σ$-zero: Gradient-based Optimization of $\ell_0$-norm Adversarial Examples ICLR 2025
Evaluating the adversarial robustness of deep networks to gradient-based attacks is challenging. While most attacks consider $\ell_2$- and $\ell_\infty$-norm constraints to craft input perturbations, only a few investigate sparse $\ell_1$- and $\ell_0$-norm attacks. In particular, $\ell_0$-norm attacks remain the least studied due to the inherent complexity of optimizing over a non-convex and non-differentiable constraint. However, evaluating adversarial robustness under these attacks could reveal weaknesses otherwise left untested with more conventional $\ell_2$- and $\ell_\infty$-norm attacks. In this work, we propose a novel $\ell_0$-norm attack, called $\sigma$-zero, which leverages a differentiable approximation of the $\ell_0$ norm to facilitate gradient-based optimization, and an adaptive projection operator to dynamically adjust the trade-off between loss minimization and perturbation sparsity. Extensive evaluations using MNIST, CIFAR10, and ImageNet datasets, involving robust and non-robust models, show that $\sigma$\texttt{-zero} finds minimum $\ell_0$-norm adversarial examples without requiring any time-consuming hyperparameter tuning, and that it outperforms all competing sparse attacks in terms of success rate, perturbation size, and efficiency.
comment: Paper accepted at International Conference on Learning Representations (ICLR 2025). Code available at https://github.com/sigma0-advx/sigma-zero
♻ ☆ VISION-XL: High Definition Video Inverse Problem Solver using Latent Image Diffusion Models
In this paper, we propose a novel framework for solving high-definition video inverse problems using latent image diffusion models. Building on recent advancements in spatio-temporal optimization for video inverse problems using image diffusion models, our approach leverages latent-space diffusion models to achieve enhanced video quality and resolution. To address the high computational demands of processing high-resolution frames, we introduce a pseudo-batch consistent sampling strategy, allowing efficient operation on a single GPU. Additionally, to improve temporal consistency, we present pseudo-batch inversion, an initialization technique that incorporates informative latents from the measurement. By integrating with SDXL, our framework achieves state-of-the-art video reconstruction across a wide range of spatio-temporal inverse problems, including complex combinations of frame averaging and various spatial degradations, such as deblurring, super-resolution, and inpainting. Unlike previous methods, our approach supports multiple aspect ratios (landscape, vertical, and square) and delivers HD-resolution reconstructions (exceeding 1280x720) in under 6 seconds per frame on a single NVIDIA 4090 GPU.
comment: Project page: https://vision-xl.github.io/
♻ ☆ No More Sliding Window: Efficient 3D Medical Image Segmentation with Differentiable Top-k Patch Sampling
3D models surpass 2D models in CT/MRI segmentation by effectively capturing inter-slice relationships. However, the added depth dimension substantially increases memory consumption. While patch-based training alleviates memory constraints, it significantly slows down the inference speed due to the sliding window (SW) approach. We propose No-More-Sliding-Window (NMSW), a novel end-to-end trainable framework that enhances the efficiency of generic 3D segmentation backbone during an inference step by eliminating the need for SW. NMSW employs a differentiable Top-k module to selectively sample only the most relevant patches, thereby minimizing redundant computations. When patch-level predictions are insufficient, the framework intelligently leverages coarse global predictions to refine results. Evaluated across 3 tasks using 3 segmentation backbones, NMSW achieves competitive accuracy compared to SW inference while significantly reducing computational complexity by 91% (88.0 to 8.00 TMACs). Moreover, it delivers a 9.1x faster inference on the H100 GPU (99.0 to 8.3 sec) and a 11.1x faster inference on the Xeon Gold CPU (2110 to 189 sec). NMSW is model-agnostic, further boosting efficiency when integrated with any existing efficient segmentation backbones.
♻ ☆ OmniGuard: Hybrid Manipulation Localization via Augmented Versatile Deep Image Watermarking CVPR 2025
With the rapid growth of generative AI and its widespread application in image editing, new risks have emerged regarding the authenticity and integrity of digital content. Existing versatile watermarking approaches suffer from trade-offs between tamper localization precision and visual quality. Constrained by the limited flexibility of previous framework, their localized watermark must remain fixed across all images. Under AIGC-editing, their copyright extraction accuracy is also unsatisfactory. To address these challenges, we propose OmniGuard, a novel augmented versatile watermarking approach that integrates proactive embedding with passive, blind extraction for robust copyright protection and tamper localization. OmniGuard employs a hybrid forensic framework that enables flexible localization watermark selection and introduces a degradation-aware tamper extraction network for precise localization under challenging conditions. Additionally, a lightweight AIGC-editing simulation layer is designed to enhance robustness across global and local editing. Extensive experiments show that OmniGuard achieves superior fidelity, robustness, and flexibility. Compared to the recent state-of-the-art approach EditGuard, our method outperforms it by 4.25dB in PSNR of the container image, 20.7% in F1-Score under noisy conditions, and 14.8% in average bit accuracy.
comment: Accepted by CVPR 2025
♻ ☆ Indirect Gradient Matching for Adversarial Robust Distillation ICLR 2025
Adversarial training significantly improves adversarial robustness, but superior performance is primarily attained with large models. This substantial performance gap for smaller models has spurred active research into adversarial distillation (AD) to mitigate the difference. Existing AD methods leverage the teacher's logits as a guide. In contrast to these approaches, we aim to transfer another piece of knowledge from the teacher, the input gradient. In this paper, we propose a distillation module termed Indirect Gradient Distillation Module (IGDM) that indirectly matches the student's input gradient with that of the teacher. Experimental results show that IGDM seamlessly integrates with existing AD methods, significantly enhancing their performance. Particularly, utilizing IGDM on the CIFAR-100 dataset improves the AutoAttack accuracy from 28.06% to 30.32% with the ResNet-18 architecture and from 26.18% to 29.32% with the MobileNetV2 architecture when integrated into the SOTA method without additional data augmentation.
comment: ICLR 2025
♻ ☆ Drag Your Gaussian: Effective Drag-Based Editing with Score Distillation for 3D Gaussian Splatting
Recent advancements in 3D scene editing have been propelled by the rapid development of generative models. Existing methods typically utilize generative models to perform text-guided editing on 3D representations, such as 3D Gaussian Splatting (3DGS). However, these methods are often limited to texture modifications and fail when addressing geometric changes, such as editing a character's head to turn around. Moreover, such methods lack accurate control over the spatial position of editing results, as language struggles to precisely describe the extent of edits. To overcome these limitations, we introduce DYG, an effective 3D drag-based editing method for 3D Gaussian Splatting. It enables users to conveniently specify the desired editing region and the desired dragging direction through the input of 3D masks and pairs of control points, thereby enabling precise control over the extent of editing. DYG integrates the strengths of the implicit triplane representation to establish the geometric scaffold of the editing results, effectively overcoming suboptimal editing outcomes caused by the sparsity of 3DGS in the desired editing regions. Additionally, we incorporate a drag-based Latent Diffusion Model into our method through the proposed Drag-SDS loss function, enabling flexible, multi-view consistent, and fine-grained editing. Extensive experiments demonstrate that DYG conducts effective drag-based editing guided by control point prompts, surpassing other baselines in terms of editing effect and quality, both qualitatively and quantitatively. Visit our project page at https://quyans.github.io/Drag-Your-Gaussian.
comment: Visit our project page at https://quyans.github.io/Drag-Your-Gaussian
♻ ☆ GIFT: Unlocking Full Potential of Labels in Distilled Dataset at Near-zero Cost
Recent advancements in dataset distillation have demonstrated the significant benefits of employing soft labels generated by pre-trained teacher models. In this paper, we introduce a novel perspective by emphasizing the full utilization of labels. We first conduct a comprehensive comparison of various loss functions for soft label utilization in dataset distillation, revealing that the model trained on the synthetic dataset exhibits high sensitivity to the choice of loss function for soft label utilization. This finding highlights the necessity of a universal loss function for training models on synthetic datasets. Building on these insights, we introduce an extremely simple yet surprisingly effective plug-and-play approach, GIFT, which encompasses soft label refinement and a cosine similarity-based loss function to efficiently leverage full label information. Extensive experiments indicate that GIFT consistently enhances state-of-the-art dataset distillation methods across various dataset scales, without incurring additional computational costs. Importantly, GIFT significantly enhances cross-optimizer generalization, an area previously overlooked. For instance, on ImageNet-1K with IPC = 10, GIFT enhances the state-of-the-art method RDED by 30.8% in cross-optimizer generalization. Our code is available at https://github.com/LINs-lab/GIFT.
comment: https://github.com/LINs-lab/GIFT
♻ ☆ Manta: Enhancing Mamba for Few-Shot Action Recognition of Long Sub-Sequence AAAI 2025
In few-shot action recognition (FSAR), long sub-sequences of video naturally express entire actions more effectively. However, the high computational complexity of mainstream Transformer-based methods limits their application. Recent Mamba demonstrates efficiency in modeling long sequences, but directly applying Mamba to FSAR overlooks the importance of local feature modeling and alignment. Moreover, long sub-sequences within the same class accumulate intra-class variance, which adversely impacts FSAR performance. To solve these challenges, we propose a Matryoshka MAmba and CoNtrasTive LeArning framework (Manta). Firstly, the Matryoshka Mamba introduces multiple Inner Modules to enhance local feature representation, rather than directly modeling global features. An Outer Module captures dependencies of timeline between these local features for implicit temporal alignment. Secondly, a hybrid contrastive learning paradigm, combining both supervised and unsupervised methods, is designed to mitigate the negative effects of intra-class variance accumulation. The Matryoshka Mamba and the hybrid contrastive learning paradigm operate in two parallel branches within Manta, enhancing Mamba for FSAR of long sub-sequence. Manta achieves new state-of-the-art performance on prominent benchmarks, including SSv2, Kinetics, UCF101, and HMDB51. Extensive empirical studies prove that Manta significantly improves FSAR of long sub-sequence from multiple perspectives.
comment: Accepted by AAAI 2025
♻ ☆ Locate Anything on Earth: Advancing Open-Vocabulary Object Detection for Remote Sensing Community
Object detection, particularly open-vocabulary object detection, plays a crucial role in Earth sciences, such as environmental monitoring, natural disaster assessment, and land-use planning. However, existing open-vocabulary detectors, primarily trained on natural-world images, struggle to generalize to remote sensing images due to a significant data domain gap. Thus, this paper aims to advance the development of open-vocabulary object detection in remote sensing community. To achieve this, we first reformulate the task as Locate Anything on Earth (LAE) with the goal of detecting any novel concepts on Earth. We then developed the LAE-Label Engine which collects, auto-annotates, and unifies up to 10 remote sensing datasets creating the LAE-1M - the first large-scale remote sensing object detection dataset with broad category coverage. Using the LAE-1M, we further propose and train the novel LAE-DINO Model, the first open-vocabulary foundation object detector for the LAE task, featuring Dynamic Vocabulary Construction (DVC) and Visual-Guided Text Prompt Learning (VisGT) modules. DVC dynamically constructs vocabulary for each training batch, while VisGT maps visual features to semantic space, enhancing text features. We comprehensively conduct experiments on established remote sensing benchmark DIOR, DOTAv2.0, as well as our newly introduced 80-class LAE-80C benchmark. Results demonstrate the advantages of the LAE-1M dataset and the effectiveness of the LAE-DINO method.
comment: 15 pages, 11 figures
♻ ☆ SSL4EO-S12 v1.1: A Multimodal, Multiseasonal Dataset for Pretraining, Updated
This technical report presents SSL4EO-S12 v1.1, a multimodal, multitemporal Earth Observation dataset designed for pretraining large-scale foundation models. Building on the success of SSL4EO-S12 v1.0, the new version addresses the previous challenges of data misalignment and a limited data structure for low-barrier, analysis-ready EO processing. SSL4EO-S12 v1.1 covers the world's 10,000 largest cities and its surroundings within a 50 km radius across four seasons, resulting in a diverse collection of nearly one million patches. SSL4EO-S12 v1.1 packages the data in Zarr file format for cloud-efficient loading and representation of meta-information such as including cloud masks and geolocation. Released under the CC-BY-4.0 license, SSL4EO-S12 v1.1 facilitates open research and provides a robust foundation for future advancements in self-supervised learning and geospatial analysis. The dataset is available online through https://datapub.fz-juelich.de/ssl4eo-s12, and we provided additional resources at https://github.com/DLR-MF-DAS/SSL4EO-S12-v1.1.
♻ ☆ StoryTeller: Improving Long Video Description through Global Audio-Visual Character Identification
Existing large vision-language models (LVLMs) are largely limited to processing short, seconds-long videos and struggle with generating coherent descriptions for extended video spanning minutes or more. Long video description introduces new challenges, such as consistent character identification and plot-level descriptions incorporating both visual and audio information. To address these, we figure out audio-visual character identification, matching character names to each dialogue, as a key factor. We propose StoryTeller, a system for generating dense descriptions of long videos, incorporating both low-level visual concepts and high-level plot information. StoryTeller uses a multimodal large language model that integrates visual, audio, and text modalities to perform audio-visual character identification on minute-long video clips. The results are then fed into a LVLM to enhance consistency of video description. We validate our approach on movie description tasks and introduce MovieStory101, a dataset with dense descriptions for three-minute movie clips. To evaluate long video descriptions, we create StoryQA, a large set of multiple-choice questions for MovieStory101 test set. We assess descriptions by inputting them into GPT-4 to answer these questions, using accuracy as an automatic evaluation metric. Experiments show that StoryTeller outperforms all open and closed-source baselines on StoryQA, achieving 9.5% higher accuracy than the strongest baseline, Gemini-1.5-pro, and demonstrating a +15.56% advantage in human side-by-side evaluations. Additionally, incorporating audio-visual character identification from StoryTeller improves the performance of all video description models, with Gemini-1.5-pro and GPT-4o showing relative improvement of 5.5% and 13.0%, respectively, in accuracy on StoryQA.
♻ ☆ Rethinking Weight-Averaged Model-merging
Model-merging has emerged as a powerful approach in deep learning, capable of enhancing model performance without any training. However, the underlying mechanisms that explain its effectiveness remain largely unexplored. In this paper, we investigate this technique from three novel perspectives to empirically provide deeper insights into why and how weight-averaged model-merging works: (1) we examine the intrinsic patterns captured by the learning of the model weights, through the visualizations of their patterns on several datasets, showing that these weights often encode structured and interpretable patterns and that is the essential why model-merging can work; (2) we mathematically and empirically investigate model ensemble merging strategies based on averaging on weights versus averaging on features, providing detailed analyses across diverse architectures and datasets; and (3) we explore the impact on model-merging prediction stability in terms of changing the parameter magnitude, revealing insights into the way of weight averaging works as regularization by showing the robustness across different parameter scales. Our findings shed light on the "black box" of weight-averaged model-merging, offering valuable insights and practical recommendations that advance the model-merging process. The code is available at https://github.com/billhhh/Rethink-Merge.
♻ ☆ Meta-Learned Modality-Weighted Knowledge Distillation for Robust Multi-Modal Learning with Missing Data
In multi-modal learning, some modalities are more influential than others, and their absence can have a significant impact on classification/segmentation accuracy. Addressing this challenge, we propose a novel approach called Meta-learned Modality-weighted Knowledge Distillation (MetaKD), which enables multi-modal models to maintain high accuracy even when key modalities are missing. MetaKD adaptively estimates the importance weight of each modality through a meta-learning process. These learned importance weights guide a pairwise modality-weighted knowledge distillation process, allowing high-importance modalities to transfer knowledge to lower-importance ones, resulting in robust performance despite missing inputs. Unlike previous methods in the field, which are often task-specific and require significant modifications, our approach is designed to work in multiple tasks (e.g., segmentation and classification) with minimal adaptation. Experimental results on five prevalent datasets, including three Brain Tumor Segmentation datasets (BraTS2018, BraTS2019 and BraTS2020), the Alzheimer's Disease Neuroimaging Initiative (ADNI) classification dataset and the Audiovision-MNIST classification dataset, demonstrate the proposed model is able to outperform the compared models by a large margin. The code is available at https://github.com/billhhh/MetaKD.
♻ ☆ Efficient Masked AutoEncoder for Video Object Counting and A Large-Scale Benchmark ICLR25
The dynamic imbalance of the fore-background is a major challenge in video object counting, which is usually caused by the sparsity of target objects. This remains understudied in existing works and often leads to severe under-/over-prediction errors. To tackle this issue in video object counting, we propose a density-embedded Efficient Masked Autoencoder Counting (E-MAC) framework in this paper. To empower the model's representation ability on density regression, we develop a new $\mathtt{D}$ensity-$\mathtt{E}$mbedded $\mathtt{M}$asked m$\mathtt{O}$deling ($\mathtt{DEMO}$) method, which first takes the density map as an auxiliary modality to perform multimodal self-representation learning for image and density map. Although $\mathtt{DEMO}$ contributes to effective cross-modal regression guidance, it also brings in redundant background information, making it difficult to focus on the foreground regions. To handle this dilemma, we propose an efficient spatial adaptive masking derived from density maps to boost efficiency. Meanwhile, we employ an optical flow-based temporal collaborative fusion strategy to effectively capture the dynamic variations across frames, aligning features to derive multi-frame density residuals. The counting accuracy of the current frame is boosted by harnessing the information from adjacent frames. In addition, considering that most existing datasets are limited to human-centric scenarios, we first propose a large video bird counting dataset, DroneBird, in natural scenarios for migratory bird protection. Extensive experiments on three crowd datasets and our \textit{DroneBird} validate our superiority against the counterparts. The code and dataset are available.
comment: ICLR25
♻ ☆ LaVin-DiT: Large Vision Diffusion Transformer CVPR 2025
This paper presents the Large Vision Diffusion Transformer (LaVin-DiT), a scalable and unified foundation model designed to tackle over 20 computer vision tasks in a generative framework. Unlike existing large vision models directly adapted from natural language processing architectures, which rely on less efficient autoregressive techniques and disrupt spatial relationships essential for vision data, LaVin-DiT introduces key innovations to optimize generative performance for vision tasks. First, to address the high dimensionality of visual data, we incorporate a spatial-temporal variational autoencoder that encodes data into a continuous latent space. Second, for generative modeling, we develop a joint diffusion transformer that progressively produces vision outputs. Third, for unified multi-task training, in-context learning is implemented. Input-target pairs serve as task context, which guides the diffusion transformer to align outputs with specific tasks within the latent space. During inference, a task-specific context set and test data as queries allow LaVin-DiT to generalize across tasks without fine-tuning. Trained on extensive vision datasets, the model is scaled from 0.1B to 3.4B parameters, demonstrating substantial scalability and state-of-the-art performance across diverse vision tasks. This work introduces a novel pathway for large vision foundation models, underscoring the promising potential of diffusion transformers. The code and models are available.
comment: 37 pages, 30 figures, 4 tables. Accepted by CVPR 2025
♻ ☆ Self-Adaptive Gamma Context-Aware SSM-based Model for Metal Defect Detection
Metal defect detection is critical in industrial quality assurance, yet existing methods struggle with grayscale variations and complex defect states, limiting its robustness. To address these challenges, this paper proposes a Self-Adaptive Gamma Context-Aware SSM-based model(GCM-DET). This advanced detection framework integrating a Dynamic Gamma Correction (GC) module to enhance grayscale representation and optimize feature extraction for precise defect reconstruction. A State-Space Search Management (SSM) architecture captures robust multi-scale features, effectively handling defects of varying shapes and scales. Focal Loss is employed to mitigate class imbalance and refine detection accuracy. Additionally, the CD5-DET dataset is introduced, specifically designed for port container maintenance, featuring significant grayscale variations and intricate defect patterns. Experimental results demonstrate that the proposed model achieves substantial improvements, with mAP@0.5 gains of 27.6\%, 6.6\%, and 2.6\% on the CD5-DET, NEU-DET, and GC10-DET datasets.
comment: 19 pages, 9 figures, under review
♻ ☆ DRACO-DehazeNet: An Efficient Image Dehazing Network Combining Detail Recovery and a Novel Contrastive Learning Paradigm
Image dehazing is crucial for clarifying images obscured by haze or fog, but current learning-based approaches is dependent on large volumes of training data and hence consumed significant computational power. Additionally, their performance is often inadequate under non-uniform or heavy haze. To address these challenges, we developed the Detail Recovery And Contrastive DehazeNet, which facilitates efficient and effective dehazing via a dense dilated inverted residual block and an attention-based detail recovery network that tailors enhancements to specific dehazed scene contexts. A major innovation is its ability to train effectively with limited data, achieved through a novel quadruplet loss-based contrastive dehazing paradigm. This approach distinctly separates hazy and clear image features while also distinguish lower-quality and higher-quality dehazed images obtained from each sub-modules of our network, thereby refining the dehazing process to a larger extent. Extensive tests on a variety of benchmarked haze datasets demonstrated the superiority of our approach. The code repository for this work is available at https://github.com/GreedYLearner1146/DRACO-DehazeNet.
comment: Once the paper is accepted and published, the copyright will be transferred to the corresponding journal
♻ ☆ Novel Pipeline for Diagnosing Acute Lymphoblastic Leukemia Sensitive to Related Biomarkers
Acute Lymphoblastic Leukemia (ALL) is one of the most common types of childhood blood cancer. The quick start of the treatment process is critical to saving the patient's life, and for this reason, early diagnosis of this disease is essential. Examining the blood smear images of these patients is one of the methods used by expert doctors to diagnose this disease. Deep learning-based methods have numerous applications in medical fields, as they have significantly advanced in recent years. ALL diagnosis is not an exception in this field, and several machine learning-based methods for this problem have been proposed. In previous methods, high diagnostic accuracy was reported, but our work showed that this alone is not sufficient, as it can lead to models taking shortcuts and not making meaningful decisions. This issue arises due to the small size of medical training datasets. To address this, we constrained our model to follow a pipeline inspired by experts' work. We also demonstrated that, since a judgement based on only one image is insufficient, redefining the problem as a multiple-instance learning problem is necessary for achieving a practical result. Our model is the first to provide a solution to this problem in a multiple-instance learning setup. We introduced a novel pipeline for diagnosing ALL that approximates the process used by hematologists, is sensitive to disease biomarkers, and achieves an accuracy of 96.15%, an F1-score of 94.24%, a sensitivity of 97.56%, and a specificity of 90.91% on ALL IDB 1. Our method was further evaluated on an out-of-distribution dataset, which posed a challenging test and had acceptable performance. Notably, our model was trained on a relatively small dataset, highlighting the potential for our approach to be applied to other medical datasets with limited data availability.
♻ ☆ Dur360BEV: A Real-world 360-degree Single Camera Dataset and Benchmark for Bird-Eye View Mapping in Autonomous Driving
We present Dur360BEV, a novel spherical camera autonomous driving dataset equipped with a high-resolution 128-channel 3D LiDAR and a RTK-refined GNSS/INS system, along with a benchmark architecture designed to generate Bird-Eye-View (BEV) maps using only a single spherical camera. This dataset and benchmark address the challenges of BEV generation in autonomous driving, particularly by reducing hardware complexity through the use of a single 360-degree camera instead of multiple perspective cameras. Within our benchmark architecture, we propose a novel spherical-image-to-BEV module that leverages spherical imagery and a refined sampling strategy to project features from 2D to 3D. Our approach also includes an innovative application of focal loss, specifically adapted to address the extreme class imbalance often encountered in BEV segmentation tasks, that demonstrates improved segmentation performance on the Dur360BEV dataset. The results show that our benchmark not only simplifies the sensor setup but also achieves competitive performance.
♻ ☆ DexMimicGen: Automated Data Generation for Bimanual Dexterous Manipulation via Imitation Learning ICRA 2025
Imitation learning from human demonstrations is an effective means to teach robots manipulation skills. But data acquisition is a major bottleneck in applying this paradigm more broadly, due to the amount of cost and human effort involved. There has been significant interest in imitation learning for bimanual dexterous robots, like humanoids. Unfortunately, data collection is even more challenging here due to the challenges of simultaneously controlling multiple arms and multi-fingered hands. Automated data generation in simulation is a compelling, scalable alternative to fuel this need for data. To this end, we introduce DexMimicGen, a large-scale automated data generation system that synthesizes trajectories from a handful of human demonstrations for humanoid robots with dexterous hands. We present a collection of simulation environments in the setting of bimanual dexterous manipulation, spanning a range of manipulation behaviors and different requirements for coordination among the two arms. We generate 21K demos across these tasks from just 60 source human demos and study the effect of several data generation and policy learning decisions on agent performance. Finally, we present a real-to-sim-to-real pipeline and deploy it on a real-world humanoid can sorting task. Generated datasets, simulation environments and additional results are at https://dexmimicgen.github.io/
comment: ICRA 2025. Project website: https://dexmimicgen.github.io/
♻ ☆ LangGas: Introducing Language in Selective Zero-Shot Background Subtraction for Semi-Transparent Gas Leak Detection with a New Dataset
Gas leakage poses a significant hazard that requires prevention. Traditionally, human inspection has been used for detection, a slow and labour-intensive process. Recent research has applied machine learning techniques to this problem, yet there remains a shortage of high-quality, publicly available datasets. This paper introduces a synthetic dataset featuring diverse backgrounds, interfering foreground objects, diverse leak locations, and precise segmentation ground truth. We propose a zero-shot method that combines background subtraction, zero-shot object detection, filtering, and segmentation to leverage this dataset. Experimental results indicate that our approach significantly outperforms baseline methods based solely on background subtraction and zero-shot object detection with segmentation, reaching an IoU of 69\% overall. We also present an analysis of various prompt configurations and threshold settings to provide deeper insights into the performance of our method. The code and dataset will be released after publication.
♻ ☆ Comparing Deep Neural Network for Multi-Label ECG Diagnosis From Scanned ECG
Automated ECG diagnosis has seen significant advancements with deep learning techniques, but real-world applications still face challenges when dealing with scanned paper ECGs. In this study, we explore multi-label classification of ECGs extracted from scanned images, moving beyond traditional binary classification (normal/abnormal). We evaluate the performance of multiple deep neural network architectures, including AlexNet, VGG, ResNet, and Vision Transformer, on scanned ECG datasets. Our comparative analysis examines model accuracy, robustness to image artifacts, and generalizability across different ECG conditions. Additionally, we investigate whether ECG signals extracted from scanned images retain sufficient diagnostic information for reliable automated classification. The findings highlight the strengths and limitations of each architecture, providing insights into the feasibility of image-based ECG diagnosis and its potential integration into clinical workflows.
♻ ☆ Human Motion Instruction Tuning CVPR 2025
This paper presents LLaMo (Large Language and Human Motion Assistant), a multimodal framework for human motion instruction tuning. In contrast to conventional instruction-tuning approaches that convert non-linguistic inputs, such as video or motion sequences, into language tokens, LLaMo retains motion in its native form for instruction tuning. This method preserves motion-specific details that are often diminished in tokenization, thereby improving the model's ability to interpret complex human behaviors. By processing both video and motion data alongside textual inputs, LLaMo enables a flexible, human-centric analysis. Experimental evaluations across high-complexity domains, including human behaviors and professional activities, indicate that LLaMo effectively captures domain-specific knowledge, enhancing comprehension and prediction in motion-intensive scenarios. We hope LLaMo offers a foundation for future multimodal AI systems with broad applications, from sports analytics to behavioral prediction. Our code and models are available on the project website: https://github.com/ILGLJ/LLaMo.
comment: Accepted by CVPR 2025
♻ ☆ DreamText: High Fidelity Scene Text Synthesis
Scene text synthesis involves rendering specified texts onto arbitrary images. Current methods typically formulate this task in an end-to-end manner but lack effective character-level guidance during training. Besides, their text encoders, pre-trained on a single font type, struggle to adapt to the diverse font styles encountered in practical applications. Consequently, these methods suffer from character distortion, repetition, and absence, particularly in polystylistic scenarios. To this end, this paper proposes DreamText for high-fidelity scene text synthesis. Our key idea is to reconstruct the diffusion training process, introducing more refined guidance tailored to this task, to expose and rectify the model's attention at the character level and strengthen its learning of text regions. This transformation poses a hybrid optimization challenge, involving both discrete and continuous variables. To effectively tackle this challenge, we employ a heuristic alternate optimization strategy. Meanwhile, we jointly train the text encoder and generator to comprehensively learn and utilize the diverse font present in the training dataset. This joint training is seamlessly integrated into the alternate optimization process, fostering a synergistic relationship between learning character embedding and re-estimating character attention. Specifically, in each step, we first encode potential character-generated position information from cross-attention maps into latent character masks. These masks are then utilized to update the representation of specific characters in the current step, which, in turn, enables the generator to correct the character's attention in the subsequent steps. Both qualitative and quantitative results demonstrate the superiority of our method to the state of the art.
comment: Code: https://github.com/CodeGoat24/DreamText, Project page: https://codegoat24.github.io/DreamText/
♻ ☆ TractCloud-FOV: Deep Learning-based Robust Tractography Parcellation in Diffusion MRI with Incomplete Field of View
Tractography parcellation classifies streamlines reconstructed from diffusion MRI into anatomically defined fiber tracts for clinical and research applications. However, clinical scans often have incomplete fields of view (FOV) where brain regions are partially imaged, leading to partial or truncated fiber tracts. To address this challenge, we introduce TractCloud-FOV, a deep learning framework that robustly parcellates tractography under conditions of incomplete FOV. We propose a novel training strategy, FOV-Cut Augmentation (FOV-CA), in which we synthetically cut tractograms to simulate a spectrum of real-world inferior FOV cutoff scenarios. This data augmentation approach enriches the training set with realistic truncated streamlines, enabling the model to achieve superior generalization. We evaluate the proposed TractCloud-FOV on both synthetically cut tractography and two real-life datasets with incomplete FOV. TractCloud-FOV significantly outperforms several state-of-the-art methods on all testing datasets in terms of streamline classification accuracy, generalization ability, tract anatomical depiction, and computational efficiency. Overall, TractCloud-FOV achieves efficient and consistent tractography parcellation in diffusion MRI with incomplete FOV.
♻ ☆ Visual Description Grounding Reduces Hallucinations and Boosts Reasoning in LVLMs ICLR 2025
Large Vision-Language Models (LVLMs) often produce responses that misalign with factual information, a phenomenon known as hallucinations. While hallucinations are well-studied, the exact causes behind them remain underexplored. In this paper, we first investigate the root causes of hallucinations in LVLMs. Our findings reveal that existing mitigation techniques primarily reduce hallucinations for visual recognition prompts-those that require simple descriptions of visual elements-but fail for cognitive prompts that demand deliberate reasoning. We identify the core issue as a lack of true visual perception in LVLMs: although they can accurately recognize visual elements, they struggle to fully interpret these elements in the context of the input prompt and effectively link this recognition to their internal knowledge, which is critical for reasoning. To address this gap, we introduce Visual Description Grounded Decoding (VDGD), a simple, robust, and training-free method designed to enhance visual perception and improve reasoning capabilities in LVLMs. VDGD works by first generating a detailed description of the image and appending it as a prefix to the instruction. During response generation, tokens are sampled based on their KL divergence to the description, favoring candidates with lower divergence. Experimental results on multiple visual reasoning benchmarks and LVLMs demonstrate that VDGD consistently outperforms existing baselines 2% - 33%. Finally, we introduce VaLLu, a benchmark designed for comprehensive evaluation of the cognitive capabilities of LVLMs.
comment: Accepted to ICLR 2025. Project: https://sreyan88.github.io/VDGD/
♻ ☆ Iterative Flow Matching -- Path Correction and Gradual Refinement for Enhanced Generative Modeling
Generative models for image generation are now commonly used for a wide variety of applications, ranging from guided image generation for entertainment to solving inverse problems. Nonetheless, training a generator is a non-trivial feat that requires fine-tuning and can lead to so-called hallucinations, that is, the generation of images that are unrealistic. In this work, we explore image generation using flow matching. We explain and demonstrate why flow matching can generate hallucinations, and propose an iterative process to improve the generation process. Our iterative process can be integrated into virtually $\textit{any}$ generative modeling technique, thereby enhancing the performance and robustness of image synthesis systems.
comment: 17 pages, 8 figures
♻ ☆ LesionDiffusion: Towards Text-controlled General Lesion Synthesis
Fully-supervised lesion recognition methods in medical imaging face challenges due to the reliance on large annotated datasets, which are expensive and difficult to collect. To address this, synthetic lesion generation has become a promising approach. However, existing models struggle with scalability, fine-grained control over lesion attributes, and the generation of complex structures. We propose LesionDiffusion, a text-controllable lesion synthesis framework for 3D CT imaging that generates both lesions and corresponding masks. By utilizing a structured lesion report template, our model provides greater control over lesion attributes and supports a wider variety of lesion types. We introduce a dataset of 1,505 annotated CT scans with paired lesion masks and structured reports, covering 14 lesion types across 8 organs. LesionDiffusion consists of two components: a lesion mask synthesis network (LMNet) and a lesion inpainting network (LINet), both guided by lesion attributes and image features. Extensive experiments demonstrate that LesionDiffusion significantly improves segmentation performance, with strong generalization to unseen lesion types and organs, outperforming current state-of-the-art models. Code will be available at https://github.com/HengruiTianSJTU/LesionDiffusion.
comment: 10 pages, 4 figures
♻ ☆ Shazam: Unifying Multiple Foundation Models for Advanced Computational Pathology
Foundation Models (FMs) in computational pathology (CPath) have significantly advanced the extraction of meaningful features from histopathology image datasets, achieving strong performance across various clinical tasks. Despite their impressive performance, these models often exhibit variability when applied to different tasks, prompting the need for a unified framework capable of consistently excelling across various applications. In this work, we propose Shazam, a novel framework designed to efficiently combine multiple CPath models. Unlike previous approaches that train a fixed-parameter FM, Shazam dynamically extracts and refines information from diverse FMs for each specific task. To ensure that each FM contributes effectively without dominance, a novel distillation strategy is applied, guiding the student model with features from all teacher models, which enhances its generalization ability. Experimental results on two pathology patch classification datasets demonstrate that Shazam outperforms existing CPath models and other fusion methods. Its lightweight, flexible design makes it a promising solution for improving CPath analysis in real-world settings. Code will be available at https://github.com/Tuner12/Shazam.
comment: 9 pages, 2 figures
♻ ☆ AutoBench-V: Can Large Vision-Language Models Benchmark Themselves?
Large Vision-Language Models (LVLMs) have become essential for advancing the integration of visual and linguistic information. However, the evaluation of LVLMs presents significant challenges as the evaluation benchmark always demands lots of human cost for its construction, and remains static, lacking flexibility once constructed. Even though automatic evaluation has been explored in textual modality, the visual modality remains under-explored. As a result, in this work, we address a question: "Can LVLMs themselves be used to benchmark each other in the visual automatically domain?". We introduce AutoBench-V, an automated framework for serving evaluation on demand, i.e., benchmarking LVLMs based on specific aspects of model capability. AutoBench-V leverages text-to-image models to generate relevant image samples and then utilizes LVLMs to orchestrate visual question-answering (VQA) tasks, completing the evaluation process efficiently and flexibly. Through an extensive evaluation of nine popular LVLMs across five demanded user inputs (i.e., evaluation capabilities), the framework shows effectiveness and reliability.
♻ ☆ Quantum Down Sampling Filter for Variational Auto-encoder
Variational autoencoders (VAEs) are fundamental for generative modeling and image reconstruction, yet their performance often struggles to maintain high fidelity in reconstructions. This study introduces a hybrid model, quantum variational autoencoder (Q-VAE), which integrates quantum encoding within the encoder while utilizing fully connected layers to extract meaningful representations. The decoder uses transposed convolution layers for up-sampling. The Q-VAE is evaluated against the classical VAE and the classical direct-passing VAE, which utilizes windowed pooling filters. Results on the MNIST and USPS datasets demonstrate that Q-VAE consistently outperforms classical approaches, achieving lower Fr\'echet inception distance scores, thereby indicating superior image fidelity and enhanced reconstruction quality. These findings highlight the potential of Q-VAE for high-quality synthetic data generation and improved image reconstruction in generative models.
comment: 18 pages, 13 figures
♻ ☆ Learning to Chain Operations by Routing Information Through a Global Workspace
We present a model inspired by the Global Workspace Theory that integrates specialized modules to perform a sequential reasoning task. A controller selectively routes information between modules through the workspace using a gating mechanism. This approach allows the model to chain operations by iteratively broadcasting information between specialized domains, mimicking System-2 reasoning. We evaluate the model's performance on a simple addition task, where two addends must be summed. The task can be solved by routing information sequentially through an Input module, an Increment module (multiple times), and finally an Output module. We consider two implementations of this system with increasing complexity. First, using hand-designed modules operating on one-hot digit representations, the controller (a LSTM recurrent network) learns to select the appropriate modules (input, increment, output) in the appropriate sequence. Second, we replace the hand-designed modules with learned representation modules for MNIST images and an increment module trained on the task objectives; here again, the controller learns the appropriate sequential module selection to solve the task. Finally, we show that the Global Workspace model, while having fewer parameters, outperforms LSTMs and Transformers when tested on unseen addition operations (both interpolations and extrapolations of addition operations seen during training). Our results highlight the potential of architectures inspired by the Global Workspace Theory to enhance deep learning's reasoning capabilities.
comment: 12 pages, 14 figures, submitted to a conference
♻ ☆ MBSS-T1: Model-Based Subject-Specific Self-Supervised Motion Correction for Robust Cardiac T1 Mapping
Cardiac T1 mapping is a valuable quantitative MRI technique for diagnosing diffuse myocardial diseases. Traditional methods, relying on breath-hold sequences and cardiac triggering based on an ECG signal, face challenges with patient compliance, limiting their effectiveness. Image registration can enable motion-robust cardiac T1 mapping, but inherent intensity differences between time points pose a challenge. We present MBSS-T1, a subject-specific self-supervised model for motion correction in cardiac T1 mapping. Physical constraints, implemented through a loss function comparing synthesized and motion-corrected images, enforce signal decay behavior, while anatomical constraints, applied via a Dice loss, ensure realistic deformations. The unique combination of these constraints results in motion-robust cardiac T1 mapping along the longitudinal relaxation axis. In a 5-fold experiment on a public dataset of 210 patients (STONE sequence) and an internal dataset of 19 patients (MOLLI sequence), MBSS-T1 outperformed baseline deep-learning registration methods. It achieved superior model fitting quality ($R^2$: 0.975 vs. 0.941, 0.946 for STONE; 0.987 vs. 0.982, 0.965 for MOLLI free-breathing; 0.994 vs. 0.993, 0.991 for MOLLI breath-hold), anatomical alignment (Dice: 0.89 vs. 0.84, 0.88 for STONE; 0.963 vs. 0.919, 0.851 for MOLLI free-breathing; 0.954 vs. 0.924, 0.871 for MOLLI breath-hold), and visual quality (4.33 vs. 3.38, 3.66 for STONE; 4.1 vs. 3.5, 3.28 for MOLLI free-breathing; 3.79 vs. 3.15, 2.84 for MOLLI breath-hold). MBSS-T1 enables motion-robust T1 mapping for broader patient populations, overcoming challenges such as suboptimal compliance, and facilitates free-breathing cardiac T1 mapping without requiring large annotated datasets. Our code is available at https://github.com/TechnionComputationalMRILab/MBSS-T1.
comment: Accepted and published in Medical Image Analysis
Artificial Intelligence 238
☆ L$^2$M: Mutual Information Scaling Law for Long-Context Language Modeling
We rigorously establish a bipartite mutual information scaling law in natural language that governs long-range dependencies. This scaling law, which we show is distinct from and scales independently of the conventional two-point mutual information, is the key to understanding long-context language modeling. Using this scaling law, we formulate the Long-context Language Modeling (L$^2$M) condition, which relates a model's capacity for effective long context length modeling to the scaling of its latent state size for storing past information. Our results are validated through experiments on both transformers and state space models. This work establishes a theoretical foundation that guides the development of large language models toward longer context lengths.
comment: 29 pages, 12 figures, 1 table
☆ Shifting Long-Context LLMs Research from Input to Output
Recent advancements in long-context Large Language Models (LLMs) have primarily concentrated on processing extended input contexts, resulting in significant strides in long-context comprehension. However, the equally critical aspect of generating long-form outputs has received comparatively less attention. This paper advocates for a paradigm shift in NLP research toward addressing the challenges of long-output generation. Tasks such as novel writing, long-term planning, and complex reasoning require models to understand extensive contexts and produce coherent, contextually rich, and logically consistent extended text. These demands highlight a critical gap in current LLM capabilities. We underscore the importance of this under-explored domain and call for focused efforts to develop foundational LLMs tailored for generating high-quality, long-form outputs, which hold immense potential for real-world applications.
comment: Preprint
☆ Enough Coin Flips Can Make LLMs Act Bayesian
Large language models (LLMs) exhibit the ability to generalize given few-shot examples in their input prompt, an emergent capability known as in-context learning (ICL). We investigate whether LLMs utilize ICL to perform structured reasoning in ways that are consistent with a Bayesian framework or rely on pattern matching. Using a controlled setting of biased coin flips, we find that: (1) LLMs often possess biased priors, causing initial divergence in zero-shot settings, (2) in-context evidence outweighs explicit bias instructions, (3) LLMs broadly follow Bayesian posterior updates, with deviations primarily due to miscalibrated priors rather than flawed updates, and (4) attention magnitude has negligible effect on Bayesian inference. With sufficient demonstrations of biased coin flips via ICL, LLMs update their priors in a Bayesian manner.
☆ Predictable Scale: Part I -- Optimal Hyperparameter Scaling Law in Large Language Model Pretraining
The impressive capabilities of Large Language Models (LLMs) across diverse tasks are now well-established, yet their effective deployment necessitates careful hyperparameter optimization. Through extensive empirical studies involving grid searches across diverse configurations, we discover universal scaling laws governing these hyperparameters: optimal learning rate follows a power-law relationship with both model parameters and data sizes, while optimal batch size scales primarily with data sizes. Our analysis reveals a convex optimization landscape for hyperparameters under fixed models and data size conditions. This convexity implies an optimal hyperparameter plateau. We contribute a universal, plug-and-play optimal hyperparameter tool for the community. Its estimated values on the test set are merely 0.07\% away from the globally optimal LLM performance found via an exhaustive search. These laws demonstrate remarkable robustness across variations in model sparsity, training data distribution, and model shape. To our best known, this is the first work that unifies different model shapes and structures, such as Mixture-of-Experts models and dense transformers, as well as establishes optimal hyperparameter scaling laws across diverse data distributions. This exhaustive optimization process demands substantial computational resources, utilizing nearly one million NVIDIA H800 GPU hours to train 3,700 LLMs of varying sizes and hyperparameters from scratch and consuming approximately 100 trillion tokens in total. To facilitate reproducibility and further research, we will progressively release all loss measurements and model checkpoints through our designated repository https://step-law.github.io/
comment: 19 pages
☆ Scaling Rich Style-Prompted Text-to-Speech Datasets
We introduce Paralinguistic Speech Captions (ParaSpeechCaps), a large-scale dataset that annotates speech utterances with rich style captions. While rich abstract tags (e.g. guttural, nasal, pained) have been explored in small-scale human-annotated datasets, existing large-scale datasets only cover basic tags (e.g. low-pitched, slow, loud). We combine off-the-shelf text and speech embedders, classifiers and an audio language model to automatically scale rich tag annotations for the first time. ParaSpeechCaps covers a total of 59 style tags, including both speaker-level intrinsic tags and utterance-level situational tags. It consists of 342 hours of human-labelled data (PSC-Base) and 2427 hours of automatically annotated data (PSC-Scaled). We finetune Parler-TTS, an open-source style-prompted TTS model, on ParaSpeechCaps, and achieve improved style consistency (+7.9% Consistency MOS) and speech quality (+15.5% Naturalness MOS) over the best performing baseline that combines existing rich style tag datasets. We ablate several of our dataset design choices to lay the foundation for future work in this space. Our dataset, models and code are released at https://github.com/ajd12342/paraspeechcaps .
☆ Self-Supervised Models for Phoneme Recognition: Applications in Children's Speech for Reading Learning
Child speech recognition is still an underdeveloped area of research due to the lack of data (especially on non-English languages) and the specific difficulties of this task. Having explored various architectures for child speech recognition in previous work, in this article we tackle recent self-supervised models. We first compare wav2vec 2.0, HuBERT and WavLM models adapted to phoneme recognition in French child speech, and continue our experiments with the best of them, WavLM base+. We then further adapt it by unfreezing its transformer blocks during fine-tuning on child speech, which greatly improves its performance and makes it significantly outperform our base model, a Transformer+CTC. Finally, we study in detail the behaviour of these two models under the real conditions of our application, and show that WavLM base+ is more robust to various reading tasks and noise levels. Index Terms: speech recognition, child speech, self-supervised learning
comment: This paper was originally published in the Proceedings of Interspeech 2024. DOI: 10.21437/Interspeech.2024-1095
☆ Universality of Layer-Level Entropy-Weighted Quantization Beyond Model Architecture and Size
We present a novel approach to selective model quantization that transcends the limitations of architecture-specific and size-dependent compression methods for Large Language Models (LLMs) using Entropy-Weighted Quantization (EWQ). By analyzing the entropy distribution across transformer blocks, EWQ determines which blocks can be safely quantized without causing significant performance degradation, independent of model architecture or size. Our method outperforms uniform quantization approaches, maintaining Massive Multitask Language Understanding (MMLU) accuracy scores within 0.5% of unquantized models while reducing memory usage by up to 18%. We demonstrate the effectiveness of EWQ across multiple architectures-from 1.6B to 70B parameters-showcasing consistent improvements in the quality-compression trade-off regardless of model scale or architectural design. A surprising finding of EWQ is its ability to reduce perplexity compared to unquantized models, suggesting the presence of beneficial regularization through selective precision reduction. This improvement holds across different model families, indicating a fundamental relationship between layer-level entropy and optimal precision requirements. Additionally, we introduce FastEWQ, a rapid method for entropy distribution analysis that eliminates the need for loading model weights. This technique leverages universal characteristics of entropy distribution that persist across various architectures and scales, enabling near-instantaneous quantization decisions while maintaining 80% classification accuracy with full entropy analysis. Our results demonstrate that effective quantization strategies can be developed independently of specific architectural choices or model sizes, opening new possibilities for efficient LLM deployment.
comment: 29 pages, 7 figures, 14 tables; Comments are welcome
☆ L1: Controlling How Long A Reasoning Model Thinks With Reinforcement Learning
Reasoning language models have shown an uncanny ability to improve performance at test-time by ``thinking longer''-that is, by generating longer chain-of-thought sequences and hence using more compute. However, the length of their chain-of-thought reasoning is not controllable, making it impossible to allocate test-time compute to achieve a desired level of performance. We introduce Length Controlled Policy Optimization (LCPO), a simple reinforcement learning method that optimizes for accuracy and adherence to user-specified length constraints. We use LCPO to train L1, a reasoning language model that produces outputs satisfying a length constraint given in its prompt. L1's length control allows for smoothly trading off computational cost and accuracy on a wide range of tasks, and outperforms the state-of-the-art S1 method for length control. Furthermore, we uncover an unexpected short chain-of-thought capability in models trained with LCPO. For instance, our 1.5B L1 model surpasses GPT-4o at equal reasoning lengths. Overall, LCPO enables precise control over reasoning length, allowing for fine-grained allocation of test-time compute and accuracy. We release code and models at https://www.cmu-l3.github.io/l1
☆ Matrix Factorization for Inferring Associations and Missing Links
Missing link prediction is a method for network analysis, with applications in recommender systems, biology, social sciences, cybersecurity, information retrieval, and Artificial Intelligence (AI) reasoning in Knowledge Graphs. Missing link prediction identifies unseen but potentially existing connections in a network by analyzing the observed patterns and relationships. In proliferation detection, this supports efforts to identify and characterize attempts by state and non-state actors to acquire nuclear weapons or associated technology - a notoriously challenging but vital mission for global security. Dimensionality reduction techniques like Non-Negative Matrix Factorization (NMF) and Logistic Matrix Factorization (LMF) are effective but require selection of the matrix rank parameter, that is, of the number of hidden features, k, to avoid over/under-fitting. We introduce novel Weighted (WNMFk), Boolean (BNMFk), and Recommender (RNMFk) matrix factorization methods, along with ensemble variants incorporating logistic factorization, for link prediction. Our methods integrate automatic model determination for rank estimation by evaluating stability and accuracy using a modified bootstrap methodology and uncertainty quantification (UQ), assessing prediction reliability under random perturbations. We incorporate Otsu threshold selection and k-means clustering for Boolean matrix factorization, comparing them to coordinate descent-based Boolean thresholding. Our experiments highlight the impact of rank k selection, evaluate model performance under varying test-set sizes, and demonstrate the benefits of UQ for reliable predictions using abstention. We validate our methods on three synthetic datasets (Boolean and uniformly distributed) and benchmark them against LMF and symmetric LMF (symLMF) on five real-world protein-protein interaction networks, showcasing an improved prediction performance.
comment: 35 pages, 14 figures, 3 tables, 1 algorithm
☆ Multi-Agent Inverse Q-Learning from Demonstrations ICRA
When reward functions are hand-designed, deep reinforcement learning algorithms often suffer from reward misspecification, causing them to learn suboptimal policies in terms of the intended task objectives. In the single-agent case, inverse reinforcement learning (IRL) techniques attempt to address this issue by inferring the reward function from expert demonstrations. However, in multi-agent problems, misalignment between the learned and true objectives is exacerbated due to increased environment non-stationarity and variance that scales with multiple agents. As such, in multi-agent general-sum games, multi-agent IRL algorithms have difficulty balancing cooperative and competitive objectives. To address these issues, we propose Multi-Agent Marginal Q-Learning from Demonstrations (MAMQL), a novel sample-efficient framework for multi-agent IRL. For each agent, MAMQL learns a critic marginalized over the other agents' policies, allowing for a well-motivated use of Boltzmann policies in the multi-agent context. We identify a connection between optimal marginalized critics and single-agent soft-Q IRL, allowing us to apply a direct, simple optimization criterion from the single-agent domain. Across our experiments on three different simulated domains, MAMQL significantly outperforms previous multi-agent methods in average reward, sample efficiency, and reward recovery by often more than 2-5x. We make our code available at https://sites.google.com/view/mamql .
comment: 8 pages, 4 figures, 2 tables. Published at the International Conference on Robotics and Automation (ICRA) 2025
☆ Implicit Cross-Lingual Rewarding for Efficient Multilingual Preference Alignment
Direct Preference Optimization (DPO) has become a prominent method for aligning Large Language Models (LLMs) with human preferences. While DPO has enabled significant progress in aligning English LLMs, multilingual preference alignment is hampered by data scarcity. To address this, we propose a novel approach that $\textit{captures}$ learned preferences from well-aligned English models by implicit rewards and $\textit{transfers}$ them to other languages through iterative training. Specifically, we derive an implicit reward model from the logits of an English DPO-aligned model and its corresponding reference model. This reward model is then leveraged to annotate preference relations in cross-lingual instruction-following pairs, using English instructions to evaluate multilingual responses. The annotated data is subsequently used for multilingual DPO fine-tuning, facilitating preference knowledge transfer from English to other languages. Fine-tuning Llama3 for two iterations resulted in a 12.72% average improvement in Win Rate and a 5.97% increase in Length Control Win Rate across all training languages on the X-AlpacaEval leaderboard. Our findings demonstrate that leveraging existing English-aligned models can enable efficient and effective multilingual preference alignment, significantly reducing the need for extensive multilingual preference data. The code is available at https://github.com/ZNLP/Implicit-Cross-Lingual-Rewarding
comment: Work in progress
☆ Simulating the Real World: A Unified Survey of Multimodal Generative Models
Understanding and replicating the real world is a critical challenge in Artificial General Intelligence (AGI) research. To achieve this, many existing approaches, such as world models, aim to capture the fundamental principles governing the physical world, enabling more accurate simulations and meaningful interactions. However, current methods often treat different modalities, including 2D (images), videos, 3D, and 4D representations, as independent domains, overlooking their interdependencies. Additionally, these methods typically focus on isolated dimensions of reality without systematically integrating their connections. In this survey, we present a unified survey for multimodal generative models that investigate the progression of data dimensionality in real-world simulation. Specifically, this survey starts from 2D generation (appearance), then moves to video (appearance+dynamics) and 3D generation (appearance+geometry), and finally culminates in 4D generation that integrate all dimensions. To the best of our knowledge, this is the first attempt to systematically unify the study of 2D, video, 3D and 4D generation within a single framework. To guide future research, we provide a comprehensive review of datasets, evaluation metrics and future directions, and fostering insights for newcomers. This survey serves as a bridge to advance the study of multimodal generative models and real-world simulation within a unified framework.
comment: Repository for the related papers at https://github.com/ALEEEHU/World-Simulator
☆ Mark Your LLM: Detecting the Misuse of Open-Source Large Language Models via Watermarking ICLR 2025
As open-source large language models (LLMs) like Llama3 become more capable, it is crucial to develop watermarking techniques to detect their potential misuse. Existing watermarking methods either add watermarks during LLM inference, which is unsuitable for open-source LLMs, or primarily target classification LLMs rather than recent generative LLMs. Adapting these watermarks to open-source LLMs for misuse detection remains an open challenge. This work defines two misuse scenarios for open-source LLMs: intellectual property (IP) violation and LLM Usage Violation. Then, we explore the application of inference-time watermark distillation and backdoor watermarking in these contexts. We propose comprehensive evaluation methods to assess the impact of various real-world further fine-tuning scenarios on watermarks and the effect of these watermarks on LLM performance. Our experiments reveal that backdoor watermarking could effectively detect IP Violation, while inference-time watermark distillation is applicable in both scenarios but less robust to further fine-tuning and has a more significant impact on LLM performance compared to backdoor watermarking. Exploring more advanced watermarking methods for open-source LLMs to detect their misuse should be an important future direction.
comment: Accepted by the 1st Workshop on GenAI Watermarking, collocated with ICLR 2025
☆ IDInit: A Universal and Stable Initialization Method for Neural Network Training ICLR 2025
Deep neural networks have achieved remarkable accomplishments in practice. The success of these networks hinges on effective initialization methods, which are vital for ensuring stable and rapid convergence during training. Recently, initialization methods that maintain identity transition within layers have shown good efficiency in network training. These techniques (e.g., Fixup) set specific weights to zero to achieve identity control. However, settings of remaining weight (e.g., Fixup uses random values to initialize non-zero weights) will affect the inductive bias that is achieved only by a zero weight, which may be harmful to training. Addressing this concern, we introduce fully identical initialization (IDInit), a novel method that preserves identity in both the main and sub-stem layers of residual networks. IDInit employs a padded identity-like matrix to overcome rank constraints in non-square weight matrices. Furthermore, we show the convergence problem of an identity matrix can be solved by stochastic gradient descent. Additionally, we enhance the universality of IDInit by processing higher-order weights and addressing dead neuron problems. IDInit is a straightforward yet effective initialization method, with improved convergence, stability, and performance across various settings, including large-scale datasets and deep models.
comment: Accepted in ICLR 2025
☆ The Best of Both Worlds: Integrating Language Models and Diffusion Models for Video Generation
Recent advancements in text-to-video (T2V) generation have been driven by two competing paradigms: autoregressive language models and diffusion models. However, each paradigm has intrinsic limitations: language models struggle with visual quality and error accumulation, while diffusion models lack semantic understanding and causal modeling. In this work, we propose LanDiff, a hybrid framework that synergizes the strengths of both paradigms through coarse-to-fine generation. Our architecture introduces three key innovations: (1) a semantic tokenizer that compresses 3D visual features into compact 1D discrete representations through efficient semantic compression, achieving a $\sim$14,000$\times$ compression ratio; (2) a language model that generates semantic tokens with high-level semantic relationships; (3) a streaming diffusion model that refines coarse semantics into high-fidelity videos. Experiments show that LanDiff, a 5B model, achieves a score of 85.43 on the VBench T2V benchmark, surpassing the state-of-the-art open-source models Hunyuan Video (13B) and other commercial models such as Sora, Keling, and Hailuo. Furthermore, our model also achieves state-of-the-art performance in long video generation, surpassing other open-source models in this field. Our demo can be viewed at https://landiff.github.io/.
☆ HybridNorm: Towards Stable and Efficient Transformer Training via Hybrid Normalization
Transformers have become the de facto architecture for a wide range of machine learning tasks, particularly in large language models (LLMs). Despite their remarkable performance, challenges remain in training deep transformer networks, especially regarding the location of layer normalization. While Pre-Norm structures facilitate easier training due to their more prominent identity path, they often yield suboptimal performance compared to Post-Norm. In this paper, we propose $\textbf{HybridNorm}$, a straightforward yet effective hybrid normalization strategy that integrates the advantages of both Pre-Norm and Post-Norm approaches. Specifically, HybridNorm employs QKV normalization within the attention mechanism and Post-Norm in the feed-forward network (FFN) of each transformer block. This design not only stabilizes training but also enhances performance, particularly in the context of LLMs. Comprehensive experiments in both dense and sparse architectures show that HybridNorm consistently outperforms both Pre-Norm and Post-Norm approaches, achieving state-of-the-art results across various benchmarks. These findings highlight the potential of HybridNorm as a more stable and effective technique for improving the training and performance of deep transformer models. %Code will be made publicly available. Code is available at https://github.com/BryceZhuo/HybridNorm.
☆ The Next Frontier of LLM Applications: Open Ecosystems and Hardware Synergy
Large Language Model (LLM) applications, including LLM app stores and autonomous agents, are shaping the future of AI ecosystems. However, platform silos, fragmented hardware integration, and the absence of standardized interfaces limit scalability, interoperability, and resource efficiency. While LLM app stores democratize AI, their closed ecosystems restrict modular AI reuse and cross-platform portability. Meanwhile, agent-based frameworks offer flexibility but often lack seamless integration across diverse environments. This paper envisions the future of LLM applications and proposes a three-layer decoupled architecture grounded in software engineering principles such as layered system design, service-oriented architectures, and hardware-software co-design. This architecture separates application logic, communication protocols, and hardware execution, enhancing modularity, efficiency, and cross-platform compatibility. Beyond architecture, we highlight key security and privacy challenges for safe, scalable AI deployment and outline research directions in software and security engineering. This vision aims to foster open, secure, and interoperable LLM ecosystems, guiding future advancements in AI applications.
☆ ValuePilot: A Two-Phase Framework for Value-Driven Decision-Making
Despite recent advances in artificial intelligence (AI), it poses challenges to ensure personalized decision-making in tasks that are not considered in training datasets. To address this issue, we propose ValuePilot, a two-phase value-driven decision-making framework comprising a dataset generation toolkit DGT and a decision-making module DMM trained on the generated data. DGT is capable of generating scenarios based on value dimensions and closely mirroring real-world tasks, with automated filtering techniques and human curation to ensure the validity of the dataset. In the generated dataset, DMM learns to recognize the inherent values of scenarios, computes action feasibility and navigates the trade-offs between multiple value dimensions to make personalized decisions. Extensive experiments demonstrate that, given human value preferences, our DMM most closely aligns with human decisions, outperforming Claude-3.5-Sonnet, Gemini-2-flash, Llama-3.1-405b and GPT-4o. This research is a preliminary exploration of value-driven decision-making. We hope it will stimulate interest in value-driven decision-making and personalized decision-making within the community.
☆ Fundamental Limits of Hierarchical Secure Aggregation with Cyclic User Association
Secure aggregation is motivated by federated learning (FL) where a cloud server aims to compute an averaged model (i.e., weights of deep neural networks) of the locally-trained models of numerous clients, while adhering to data security requirements. Hierarchical secure aggregation (HSA) extends this concept to a three-layer network, where clustered users communicate with the server through an intermediate layer of relays. In HSA, beyond conventional server security, relay security is also enforced to ensure that the relays remain oblivious to the users' inputs (an abstraction of the local models in FL). Existing study on HSA assumes that each user is associated with only one relay, limiting opportunities for coding across inter-cluster users to achieve efficient communication and key generation. In this paper, we consider HSA with a cyclic association pattern where each user is connected to $B$ consecutive relays in a wrap-around manner. We propose an efficient aggregation scheme which includes a message design for the inputs inspired by gradient coding-a well-known technique for efficient communication in distributed computing-along with a highly nontrivial security key design. We also derive novel converse bounds on the minimum achievable communication and key rates using information-theoretic arguments.
☆ Compositional Causal Reasoning Evaluation in Language Models
Causal reasoning and compositional reasoning are two core aspirations in generative AI. Measuring the extent of these behaviors requires principled evaluation methods. We explore a unified perspective that considers both behaviors simultaneously, termed compositional causal reasoning (CCR): the ability to infer how causal measures compose and, equivalently, how causal quantities propagate through graphs. We instantiate a framework for the systematic evaluation of CCR for the average treatment effect and the probability of necessity and sufficiency. As proof of concept, we demonstrate the design of CCR tasks for language models in the LLama, Phi, and GPT families. On a math word problem, our framework revealed a range of taxonomically distinct error patterns. Additionally, CCR errors increased with the complexity of causal paths for all models except o1.
☆ Benchmarking Reasoning Robustness in Large Language Models
Despite the recent success of large language models (LLMs) in reasoning such as DeepSeek, we for the first time identify a key dilemma in reasoning robustness and generalization: significant performance degradation on novel or incomplete data, suggesting a reliance on memorized patterns rather than systematic reasoning. Our closer examination reveals four key unique limitations underlying this issue:(1) Positional bias--models favor earlier queries in multi-query inputs but answering the wrong one in the latter (e.g., GPT-4o's accuracy drops from 75.8 percent to 72.8 percent); (2) Instruction sensitivity--performance declines by 5.0 to 7.5 percent in the Qwen2.5 Series and by 5.0 percent in DeepSeek-V3 with auxiliary guidance; (3) Numerical fragility--value substitution sharply reduces accuracy (e.g., GPT-4o drops from 97.5 percent to 82.5 percent, GPT-o1-mini drops from 97.5 percent to 92.5 percent); and (4) Memory dependence--models resort to guesswork when missing critical data. These findings further highlight the reliance on heuristic recall over rigorous logical inference, demonstrating challenges in reasoning robustness. To comprehensively investigate these robustness challenges, this paper introduces a novel benchmark, termed as Math-RoB, that exploits hallucinations triggered by missing information to expose reasoning gaps. This is achieved by an instruction-based approach to generate diverse datasets that closely resemble training distributions, facilitating a holistic robustness assessment and advancing the development of more robust reasoning frameworks. Bad character(s) in field Abstract.
☆ Keeping Yourself is Important in Downstream Tuning Multimodal Large Language Model
Multi-modal Large Language Models (MLLMs) integrate visual and linguistic reasoning to address complex tasks such as image captioning and visual question answering. While MLLMs demonstrate remarkable versatility, MLLMs appears limited performance on special applications. But tuning MLLMs for downstream tasks encounters two key challenges: Task-Expert Specialization, where distribution shifts between pre-training and target datasets constrain target performance, and Open-World Stabilization, where catastrophic forgetting erases the model general knowledge. In this work, we systematically review recent advancements in MLLM tuning methodologies, classifying them into three paradigms: (I) Selective Tuning, (II) Additive Tuning, and (III) Reparameterization Tuning. Furthermore, we benchmark these tuning strategies across popular MLLM architectures and diverse downstream tasks to establish standardized evaluation analysis and systematic tuning principles. Finally, we highlight several open challenges in this domain and propose future research directions. To facilitate ongoing progress in this rapidly evolving field, we provide a public repository that continuously tracks developments: https://github.com/WenkeHuang/Awesome-MLLM-Tuning.
☆ SOLAR: Scalable Optimization of Large-scale Architecture for Reasoning
Large Language Models (LLMs) excel in reasoning but remain constrained by their Chain-of-Thought (CoT) approach, which struggles with complex tasks requiring more nuanced topological reasoning. We introduce SOLAR, Scalable Optimization of Large-scale Architecture for Reasoning, a framework that dynamically optimizes various reasoning topologies to enhance accuracy and efficiency. Our Topological Annotation Generation (TAG) system automates topological dataset creation and segmentation, improving post-training and evaluation. Additionally, we propose Topological-Scaling, a reward-driven framework that aligns training and inference scaling, equipping LLMs with adaptive, task-aware reasoning. SOLAR achieves substantial gains on MATH and GSM8K: +5% accuracy with Topological Tuning, +9% with Topological Reward, and +10.02% with Hybrid Scaling. It also reduces response length by over 5% for complex problems, lowering inference latency. To foster the reward system, we train a multi-task Topological Reward Model (M-TRM), which autonomously selects the best reasoning topology and answer in a single pass, eliminating the need for training and inference on multiple single-task TRMs (S-TRMs), thus reducing both training cost and inference latency. In addition, in terms of performance, M-TRM surpasses all S-TRMs, improving accuracy by +10% and rank correlation by +9%. To the best of our knowledge, SOLAR sets a new benchmark for scalable, high-precision LLM reasoning while introducing an automated annotation process and a dynamic reasoning topology competition mechanism.
Dynamic Pricing for On-Demand DNN Inference in the Edge-AI Market
The convergence of edge computing and AI gives rise to Edge-AI, which enables the deployment of real-time AI applications and services at the network edge. One of the fundamental research issues in Edge-AI is edge inference acceleration, which aims to realize low-latency high-accuracy DNN inference services by leveraging the fine-grained offloading of partitioned inference tasks from end devices to edge servers. However, existing research has yet to adopt a practical Edge-AI market perspective, which would systematically explore the personalized inference needs of AI users (e.g., inference accuracy, latency, and task complexity), the revenue incentives for AI service providers that offer edge inference services, and multi-stakeholder governance within a market-oriented context. To bridge this gap, we propose an Auction-based Edge Inference Pricing Mechanism (AERIA) for revenue maximization to tackle the multi-dimensional optimization problem of DNN model partition, edge inference pricing, and resource allocation. We investigate the multi-exit device-edge synergistic inference scheme for on-demand DNN inference acceleration, and analyse the auction dynamics amongst the AI service providers, AI users and edge infrastructure provider. Owing to the strategic mechanism design via randomized consensus estimate and cost sharing techniques, the Edge-AI market attains several desirable properties, including competitiveness in revenue maximization, incentive compatibility, and envy-freeness, which are crucial to maintain the effectiveness, truthfulness, and fairness of our auction outcomes. The extensive simulation experiments based on four representative DNN inference workloads demonstrate that our AERIA mechanism significantly outperforms several state-of-the-art approaches in revenue maximization, demonstrating the efficacy of AERIA for on-demand DNN inference in the Edge-AI market.
comment: Index Terms: Edge-AI, DNN Inference Offloading, Resource Management, Dynamic Pricing, Auction Mechanism
☆ STX-Search: Explanation Search for Continuous Dynamic Spatio-Temporal Models
Recent improvements in the expressive power of spatio-temporal models have led to performance gains in many real-world applications, such as traffic forecasting and social network modelling. However, understanding the predictions from a model is crucial to ensure reliability and trustworthiness, particularly for high-risk applications, such as healthcare and transport. Few existing methods are able to generate explanations for models trained on continuous-time dynamic graph data and, of these, the computational complexity and lack of suitable explanation objectives pose challenges. In this paper, we propose $\textbf{S}$patio-$\textbf{T}$emporal E$\textbf{X}$planation $\textbf{Search}$ (STX-Search), a novel method for generating instance-level explanations that is applicable to static and dynamic temporal graph structures. We introduce a novel search strategy and objective function, to find explanations that are highly faithful and interpretable. When compared with existing methods, STX-Search produces explanations of higher fidelity whilst optimising explanation size to maintain interpretability.
☆ Multi-modal Summarization in Model-Based Engineering: Automotive Software Development Case Study
Multimodal summarization integrating information from diverse data modalities presents a promising solution to aid the understanding of information within various processes. However, the application and advantages of multimodal summarization have not received much attention in model-based engineering (MBE), where it has become a cornerstone in the design and development of complex systems, leveraging formal models to improve understanding, validation and automation throughout the engineering lifecycle. UML and EMF diagrams in model-based engineering contain a large amount of multimodal information and intricate relational data. Hence, our study explores the application of multimodal large language models within the domain of model-based engineering to evaluate their capacity for understanding and identifying relationships, features, and functionalities embedded in UML and EMF diagrams. We aim to demonstrate the transformative potential benefits and limitations of multimodal summarization in improving productivity and accuracy in MBE practices. The proposed approach is evaluated within the context of automotive software development, while many promising state-of-art models were taken into account.
comment: Conference paper accepted for IntelliSys2025
☆ Interpretable Transformation and Analysis of Timelines through Learning via Surprisability
The analysis of high-dimensional timeline data and the identification of outliers and anomalies is critical across diverse domains, including sensor readings, biological and medical data, historical records, and global statistics. However, conventional analysis techniques often struggle with challenges such as high dimensionality, complex distributions, and sparsity. These limitations hinder the ability to extract meaningful insights from complex temporal datasets, making it difficult to identify trending features, outliers, and anomalies effectively. Inspired by surprisability -- a cognitive science concept describing how humans instinctively focus on unexpected deviations - we propose Learning via Surprisability (LvS), a novel approach for transforming high-dimensional timeline data. LvS quantifies and prioritizes anomalies in time-series data by formalizing deviations from expected behavior. LvS bridges cognitive theories of attention with computational methods, enabling the detection of anomalies and shifts in a way that preserves critical context, offering a new lens for interpreting complex datasets. We demonstrate the usefulness of LvS on three high-dimensional timeline use cases: a time series of sensor data, a global dataset of mortality causes over multiple years, and a textual corpus containing over two centuries of State of the Union Addresses by U.S. presidents. Our results show that the LvS transformation enables efficient and interpretable identification of outliers, anomalies, and the most variable features along the timeline.
☆ ReynoldsFlow: Exquisite Flow Estimation via Reynolds Transport Theorem
Optical flow is a fundamental technique for motion estimation, widely applied in video stabilization, interpolation, and object tracking. Recent advancements in artificial intelligence (AI) have enabled deep learning models to leverage optical flow as an important feature for motion analysis. However, traditional optical flow methods rely on restrictive assumptions, such as brightness constancy and slow motion constraints, limiting their effectiveness in complex scenes. Deep learning-based approaches require extensive training on large domain-specific datasets, making them computationally demanding. Furthermore, optical flow is typically visualized in the HSV color space, which introduces nonlinear distortions when converted to RGB and is highly sensitive to noise, degrading motion representation accuracy. These limitations inherently constrain the performance of downstream models, potentially hindering object tracking and motion analysis tasks. To address these challenges, we propose Reynolds flow, a novel training-free flow estimation inspired by the Reynolds transport theorem, offering a principled approach to modeling complex motion dynamics. Beyond the conventional HSV-based visualization, denoted ReynoldsFlow, we introduce an alternative representation, ReynoldsFlow+, designed to improve flow visualization. We evaluate ReynoldsFlow and ReynoldsFlow+ across three video-based benchmarks: tiny object detection on UAVDB, infrared object detection on Anti-UAV, and pose estimation on GolfDB. Experimental results demonstrate that networks trained with ReynoldsFlow+ achieve state-of-the-art (SOTA) performance, exhibiting improved robustness and efficiency across all tasks.
comment: 10 pages, 3 figures, 3 tables
☆ Generalized Interpolating Discrete Diffusion
While state-of-the-art language models achieve impressive results through next-token prediction, they have inherent limitations such as the inability to revise already generated tokens. This has prompted exploration of alternative approaches such as discrete diffusion. However, masked diffusion, which has emerged as a popular choice due to its simplicity and effectiveness, reintroduces this inability to revise words. To overcome this, we generalize masked diffusion and derive the theoretical backbone of a family of general interpolating discrete diffusion (GIDD) processes offering greater flexibility in the design of the noising processes. Leveraging a novel diffusion ELBO, we achieve compute-matched state-of-the-art performance in diffusion language modeling. Exploiting GIDD's flexibility, we explore a hybrid approach combining masking and uniform noise, leading to improved sample quality and unlocking the ability for the model to correct its own mistakes, an area where autoregressive models notoriously have struggled. Our code and models are open-source: https://github.com/dvruette/gidd/
☆ ToolFuzz -- Automated Agent Tool Testing
Large Language Model (LLM) Agents leverage the advanced reasoning capabilities of LLMs in real-world applications. To interface with an environment, these agents often rely on tools, such as web search or database APIs. As the agent provides the LLM with tool documentation along the user query, the completeness and correctness of this documentation is critical. However, tool documentation is often over-, under-, or ill-specified, impeding the agent's accuracy. Standard software testing approaches struggle to identify these errors as they are expressed in natural language. Thus, despite its importance, there currently exists no automated method to test the tool documentation for agents. To address this issue, we present ToolFuzz, the first method for automated testing of tool documentations. ToolFuzz is designed to discover two types of errors: (1) user queries leading to tool runtime errors and (2) user queries that lead to incorrect agent responses. ToolFuzz can generate a large and diverse set of natural inputs, effectively finding tool description errors at a low false positive rate. Further, we present two straightforward prompt-engineering approaches. We evaluate all three tool testing approaches on 32 common LangChain tools and 35 newly created custom tools and 2 novel benchmarks to further strengthen the assessment. We find that many publicly available tools suffer from underspecification. Specifically, we show that ToolFuzz identifies 20x more erroneous inputs compared to the prompt-engineering approaches, making it a key component for building reliable AI agents.
☆ DAST: Difficulty-Adaptive Slow-Thinking for Large Reasoning Models
Recent advancements in slow-thinking reasoning models have shown exceptional performance in complex reasoning tasks. However, these models often exhibit overthinking-generating redundant reasoning steps for simple problems, leading to excessive computational resource usage. While current mitigation strategies uniformly reduce reasoning tokens, they risk degrading performance on challenging tasks that require extended reasoning. This paper introduces Difficulty-Adaptive Slow-Thinking (DAST), a novel framework that enables models to autonomously adjust the length of Chain-of-Thought(CoT) based on problem difficulty. We first propose a Token Length Budget (TLB) metric to quantify difficulty, then leveraging length-aware reward shaping and length preference optimization to implement DAST. DAST penalizes overlong responses for simple tasks while incentivizing sufficient reasoning for complex problems. Experiments on diverse datasets and model scales demonstrate that DAST effectively mitigates overthinking (reducing token usage by over 30\% on average) while preserving reasoning accuracy on complex problems.
comment: working in progress
☆ TPC: Cross-Temporal Prediction Connection for Vision-Language Model Hallucination Reduction
Vision-language models (VLMs) have achieved remarkable advancements, capitalizing on the impressive capabilities of large language models (LLMs) across diverse tasks. Despite this, a critical challenge known as hallucination occurs when models overconfidently describe objects or attributes absent from the image, a problem exacerbated by the tendency of VLMs to rely on linguistic priors. This limitation reduces model reliability in high-stakes applications. In this work, we have observed the characteristic of logits' continuity consistency enhancement and introduced a straightforward and efficient method, Cross-Temporal Prediction Connection (TPC), designed to enhance the semantic consistency of logits by connecting them temporally across timesteps. TPC amplifies information flow and improves coherence, effectively reducing hallucination. Extensive experiments show that TPC surpasses existing representatives, delivering superior performance in both accuracy and efficiency while maintaining robustness in open-ended text generation tasks.
☆ Privacy Preserving and Robust Aggregation for Cross-Silo Federated Learning in Non-IID Settings
Federated Averaging remains the most widely used aggregation strategy in federated learning due to its simplicity and scalability. However, its performance degrades significantly in non-IID data settings, where client distributions are highly imbalanced or skewed. Additionally, it relies on clients transmitting metadata, specifically the number of training samples, which introduces privacy risks and may conflict with regulatory frameworks like the European GDPR. In this paper, we propose a novel aggregation strategy that addresses these challenges by introducing class-aware gradient masking. Unlike traditional approaches, our method relies solely on gradient updates, eliminating the need for any additional client metadata, thereby enhancing privacy protection. Furthermore, our approach validates and dynamically weights client contributions based on class-specific importance, ensuring robustness against non-IID distributions, convergence prevention, and backdoor attacks. Extensive experiments on benchmark datasets demonstrate that our method not only outperforms FedAvg and other widely accepted aggregation strategies in non-IID settings but also preserves model integrity in adversarial scenarios. Our results establish the effectiveness of gradient masking as a practical and secure solution for federated learning.
☆ Activation Space Interventions Can Be Transferred Between Large Language Models
The study of representation universality in AI models reveals growing convergence across domains, modalities, and architectures. However, the practical applications of representation universality remain largely unexplored. We bridge this gap by demonstrating that safety interventions can be transferred between models through learned mappings of their shared activation spaces. We demonstrate this approach on two well-established AI safety tasks: backdoor removal and refusal of harmful prompts, showing successful transfer of steering vectors that alter the models' outputs in a predictable way. Additionally, we propose a new task, \textit{corrupted capabilities}, where models are fine-tuned to embed knowledge tied to a backdoor. This tests their ability to separate useful skills from backdoors, reflecting real-world challenges. Extensive experiments across Llama, Qwen and Gemma model families show that our method enables using smaller models to efficiently align larger ones. Furthermore, we demonstrate that autoencoder mappings between base and fine-tuned models can serve as reliable ``lightweight safety switches", allowing dynamic toggling between model behaviors.
comment: 68 pages
☆ PDX: A Data Layout for Vector Similarity Search SIGMOD '25
We propose Partition Dimensions Across (PDX), a data layout for vectors (e.g., embeddings) that, similar to PAX [6], stores multiple vectors in one block, using a vertical layout for the dimensions (Figure 1). PDX accelerates exact and approximate similarity search thanks to its dimension-by-dimension search strategy that operates on multiple-vectors-at-a-time in tight loops. It beats SIMD-optimized distance kernels on standard horizontal vector storage (avg 40% faster), only relying on scalar code that gets auto-vectorized. We combined the PDX layout with recent dimension-pruning algorithms ADSampling [19] and BSA [52] that accelerate approximate vector search. We found that these algorithms on the horizontal vector layout can lose to SIMD-optimized linear scans, even if they are SIMD-optimized. However, when used on PDX, their benefit is restored to 2-7x. We find that search on PDX is especially fast if a limited number of dimensions has to be scanned fully, which is what the dimension-pruning approaches do. We finally introduce PDX-BOND, an even more flexible dimension-pruning strategy, with good performance on exact search and reasonable performance on approximate search. Unlike previous pruning algorithms, it can work on vector data "as-is" without preprocessing; making it attractive for vector databases with frequent updates.
comment: To be published in Proceedings of The 2025 International Conference on Management of Data (SIGMOD '25). For associated code, see https://github.com/cwida/PDX
☆ From Idea to CAD: A Language Model-Driven Multi-Agent System for Collaborative Design
Creating digital models using Computer Aided Design (CAD) is a process that requires in-depth expertise. In industrial product development, this process typically involves entire teams of engineers, spanning requirements engineering, CAD itself, and quality assurance. We present an approach that mirrors this team structure with a Vision Language Model (VLM)-based Multi Agent System, with access to parametric CAD tooling and tool documentation. Combining agents for requirements engineering, CAD engineering, and vision-based quality assurance, a model is generated automatically from sketches and/ or textual descriptions. The resulting model can be refined collaboratively in an iterative validation loop with the user. Our approach has the potential to increase the effectiveness of design processes, both for industry experts and for hobbyists who create models for 3D printing. We demonstrate the potential of the architecture at the example of various design tasks and provide several ablations that show the benefits of the architecture's individual components.
comment: 11 pages, 3 figures
☆ Learning Transformer-based World Models with Contrastive Predictive Coding
The DreamerV3 algorithm recently obtained remarkable performance across diverse environment domains by learning an accurate world model based on Recurrent Neural Networks (RNNs). Following the success of model-based reinforcement learning algorithms and the rapid adoption of the Transformer architecture for its superior training efficiency and favorable scaling properties, recent works such as STORM have proposed replacing RNN-based world models with Transformer-based world models using masked self-attention. However, despite the improved training efficiency of these methods, their impact on performance remains limited compared to the Dreamer algorithm, struggling to learn competitive Transformer-based world models. In this work, we show that the next state prediction objective adopted in previous approaches is insufficient to fully exploit the representation capabilities of Transformers. We propose to extend world model predictions to longer time horizons by introducing TWISTER (Transformer-based World model wIth contraSTivE Representations), a world model using action-conditioned Contrastive Predictive Coding to learn high-level temporal feature representations and improve the agent performance. TWISTER achieves a human-normalized mean score of 162% on the Atari 100k benchmark, setting a new record among state-of-the-art methods that do not employ look-ahead search.
☆ Wider or Deeper? Scaling LLM Inference-Time Compute with Adaptive Branching Tree Search ICLR 2025
Recent advances demonstrate that increasing inference-time computation can significantly boost the reasoning capabilities of large language models (LLMs). Although repeated sampling (i.e., generating multiple candidate outputs) is a highly effective strategy, it does not leverage external feedback signals for refinement, which are often available in tasks like coding. In this work, we propose $\textit{Adaptive Branching Monte Carlo Tree Search (AB-MCTS)}$, a novel inference-time framework that generalizes repeated sampling with principled multi-turn exploration and exploitation. At each node in the search tree, AB-MCTS dynamically decides whether to "go wider" by expanding new candidate responses or "go deeper" by revisiting existing ones based on external feedback signals. We evaluate our method on complex coding and engineering tasks using frontier models. Empirical results show that AB-MCTS consistently outperforms both repeated sampling and standard MCTS, underscoring the importance of combining the response diversity of LLMs with multi-turn solution refinement for effective inference-time scaling.
comment: To appear at ICLR 2025 Workshop on Foundation Models in the Wild
☆ Training-Free Graph Filtering via Multimodal Feature Refinement for Extremely Fast Multimodal Recommendation
Multimodal recommender systems improve the performance of canonical recommender systems with no item features by utilizing diverse content types such as text, images, and videos, while alleviating inherent sparsity of user-item interactions and accelerating user engagement. However, current neural network-based models often incur significant computational overhead due to the complex training process required to learn and integrate information from multiple modalities. To overcome this limitation, we propose MultiModal-Graph Filtering (MM-GF), a training-free method based on the notion of graph filtering (GF) for efficient and accurate multimodal recommendations. Specifically, MM-GF first constructs multiple similarity graphs through nontrivial multimodal feature refinement such as robust scaling and vector shifting by addressing the heterogeneous characteristics across modalities. Then, MM-GF optimally fuses multimodal information using linear low-pass filters across different modalities. Extensive experiments on real-world benchmark datasets demonstrate that MM-GF not only improves recommendation accuracy by up to 13.35% compared to the best competitor but also dramatically reduces computational costs by achieving the runtime of less than 10 seconds.
comment: 10 pages, 6 figures, 6 tables
☆ Speculative MoE: Communication Efficient Parallel MoE Inference with Speculative Token and Expert Pre-scheduling
MoE (Mixture of Experts) prevails as a neural architecture that can scale modern transformer-based LLMs (Large Language Models) to unprecedented scales. Nevertheless, large MoEs' great demands of computing power, memory capacity and memory bandwidth make scalable serving a fundamental challenge and efficient parallel inference has become a requisite to attain adequate throughput under latency constraints. DeepSpeed-MoE, one state-of-the-art MoE inference framework, adopts a 3D-parallel paradigm including EP (Expert Parallelism), TP (Tensor Parallel) and DP (Data Parallelism). However, our analysis shows DeepSpeed-MoE's inference efficiency is largely bottlenecked by EP, which is implemented with costly all-to-all collectives to route token activation. Our work aims to boost DeepSpeed-MoE by strategically reducing EP's communication overhead with a technique named Speculative MoE. Speculative MoE has two speculative parallelization schemes, speculative token shuffling and speculative expert grouping, which predict outstanding tokens' expert routing paths and pre-schedule tokens and experts across devices to losslessly trim EP's communication volume. Besides DeepSpeed-MoE, we also build Speculative MoE into a prevailing MoE inference engine SGLang. Experiments show Speculative MoE can significantly boost state-of-the-art MoE inference frameworks on fast homogeneous and slow heterogeneous interconnects.
☆ AgentSafe: Safeguarding Large Language Model-based Multi-agent Systems via Hierarchical Data Management
Large Language Model based multi-agent systems are revolutionizing autonomous communication and collaboration, yet they remain vulnerable to security threats like unauthorized access and data breaches. To address this, we introduce AgentSafe, a novel framework that enhances MAS security through hierarchical information management and memory protection. AgentSafe classifies information by security levels, restricting sensitive data access to authorized agents. AgentSafe incorporates two components: ThreatSieve, which secures communication by verifying information authority and preventing impersonation, and HierarCache, an adaptive memory management system that defends against unauthorized access and malicious poisoning, representing the first systematic defense for agent memory. Experiments across various LLMs show that AgentSafe significantly boosts system resilience, achieving defense success rates above 80% under adversarial conditions. Additionally, AgentSafe demonstrates scalability, maintaining robust performance as agent numbers and information complexity grow. Results underscore effectiveness of AgentSafe in securing MAS and its potential for real-world application.
☆ Dedicated Feedback and Edit Models Empower Inference-Time Scaling for Open-Ended General-Domain Tasks
Inference-Time Scaling has been critical to the success of recent models such as OpenAI o1 and DeepSeek R1. However, many techniques used to train models for inference-time scaling require tasks to have answers that can be verified, limiting their application to domains such as math, coding and logical reasoning. We take inspiration from how humans make first attempts, ask for detailed feedback from others and make improvements based on such feedback across a wide spectrum of open-ended endeavors. To this end, we collect data for and train dedicated Feedback and Edit Models that are capable of performing inference-time scaling for open-ended general-domain tasks. In our setup, one model generates an initial response, which are given feedback by a second model, that are then used by a third model to edit the response. We show that performance on Arena Hard, a benchmark strongly predictive of Chatbot Arena Elo can be boosted by scaling the number of initial response drafts, effective feedback and edited responses. When scaled optimally, our setup based on 70B models from the Llama 3 family can reach SoTA performance on Arena Hard at 92.7 as of 5 Mar 2025, surpassing OpenAI o1-preview-2024-09-12 with 90.4 and DeepSeek R1 with 92.3.
comment: 22 pages, 2 figures
☆ Causally Reliable Concept Bottleneck Models
Concept-based models are an emerging paradigm in deep learning that constrains the inference process to operate through human-interpretable concepts, facilitating explainability and human interaction. However, these architectures, on par with popular opaque neural models, fail to account for the true causal mechanisms underlying the target phenomena represented in the data. This hampers their ability to support causal reasoning tasks, limits out-of-distribution generalization, and hinders the implementation of fairness constraints. To overcome these issues, we propose \emph{Causally reliable Concept Bottleneck Models} (C$^2$BMs), a class of concept-based architectures that enforce reasoning through a bottleneck of concepts structured according to a model of the real-world causal mechanisms. We also introduce a pipeline to automatically learn this structure from observational data and \emph{unstructured} background knowledge (e.g., scientific literature). Experimental evidence suggest that C$^2$BM are more interpretable, causally reliable, and improve responsiveness to interventions w.r.t. standard opaque and concept-based models, while maintaining their accuracy.
☆ A Generalist Cross-Domain Molecular Learning Framework for Structure-Based Drug Discovery
Structure-based drug discovery (SBDD) is a systematic scientific process that develops new drugs by leveraging the detailed physical structure of the target protein. Recent advancements in pre-trained models for biomolecules have demonstrated remarkable success across various biochemical applications, including drug discovery and protein engineering. However, in most approaches, the pre-trained models primarily focus on the characteristics of either small molecules or proteins, without delving into their binding interactions which are essential cross-domain relationships pivotal to SBDD. To fill this gap, we propose a general-purpose foundation model named BIT (an abbreviation for Biomolecular Interaction Transformer), which is capable of encoding a range of biochemical entities, including small molecules, proteins, and protein-ligand complexes, as well as various data formats, encompassing both 2D and 3D structures. Specifically, we introduce Mixture-of-Domain-Experts (MoDE) to handle the biomolecules from diverse biochemical domains and Mixture-of-Structure-Experts (MoSE) to capture positional dependencies in the molecular structures. The proposed mixture-of-experts approach enables BIT to achieve both deep fusion and domain-specific encoding, effectively capturing fine-grained molecular interactions within protein-ligand complexes. Then, we perform cross-domain pre-training on the shared Transformer backbone via several unified self-supervised denoising tasks. Experimental results on various benchmarks demonstrate that BIT achieves exceptional performance in downstream tasks, including binding affinity prediction, structure-based virtual screening, and molecular property prediction.
☆ scDD: Latent Codes Based scRNA-seq Dataset Distillation with Foundation Model Knowledge
Single-cell RNA sequencing (scRNA-seq) technology has profiled hundreds of millions of human cells across organs, diseases, development and perturbations to date. However, the high-dimensional sparsity, batch effect noise, category imbalance, and ever-increasing data scale of the original sequencing data pose significant challenges for multi-center knowledge transfer, data fusion, and cross-validation between scRNA-seq datasets. To address these barriers, (1) we first propose a latent codes-based scRNA-seq dataset distillation framework named scDD, which transfers and distills foundation model knowledge and original dataset information into a compact latent space and generates synthetic scRNA-seq dataset by a generator to replace the original dataset. Then, (2) we propose a single-step conditional diffusion generator named SCDG, which perform single-step gradient back-propagation to help scDD optimize distillation quality and avoid gradient decay caused by multi-step back-propagation. Meanwhile, SCDG ensures the scRNA-seq data characteristics and inter-class discriminability of the synthetic dataset through flexible conditional control and generation quality assurance. Finally, we propose a comprehensive benchmark to evaluate the performance of scRNA-seq dataset distillation in different data analysis tasks. It is validated that our proposed method can achieve 7.61% absolute and 15.70% relative improvement over previous state-of-the-art methods on average task.
☆ Talking Back -- human input and explanations to interactive AI systems
While XAI focuses on providing AI explanations to humans, can the reverse - humans explaining their judgments to AI - foster richer, synergistic human-AI systems? This paper explores various forms of human inputs to AI and examines how human explanations can guide machine learning models toward automated judgments and explanations that align more closely with human concepts.
☆ Solving Word-Sense Disambiguation and Word-Sense Induction with Dictionary Examples
Many less-resourced languages struggle with a lack of large, task-specific datasets that are required for solving relevant tasks with modern transformer-based large language models (LLMs). On the other hand, many linguistic resources, such as dictionaries, are rarely used in this context despite their large information contents. We show how LLMs can be used to extend existing language resources in less-resourced languages for two important tasks: word-sense disambiguation (WSD) and word-sense induction (WSI). We approach the two tasks through the related but much more accessible word-in-context (WiC) task where, given a pair of sentences and a target word, a classification model is tasked with predicting whether the sense of a given word differs between sentences. We demonstrate that a well-trained model for this task can distinguish between different word senses and can be adapted to solve the WSD and WSI tasks. The advantage of using the WiC task, instead of directly predicting senses, is that the WiC task does not need pre-constructed sense inventories with a sufficient number of examples for each sense, which are rarely available in less-resourced languages. We show that sentence pairs for the WiC task can be successfully generated from dictionary examples using LLMs. The resulting prediction models outperform existing models on WiC, WSD, and WSI tasks. We demonstrate our methodology on the Slovene language, where a monolingual dictionary is available, but word-sense resources are tiny.
comment: 12 pages, 1 figure
☆ Provable Robust Overfitting Mitigation in Wasserstein Distributionally Robust Optimization
Wasserstein distributionally robust optimization (WDRO) optimizes against worst-case distributional shifts within a specified uncertainty set, leading to enhanced generalization on unseen adversarial examples, compared to standard adversarial training which focuses on pointwise adversarial perturbations. However, WDRO still suffers fundamentally from the robust overfitting problem, as it does not consider statistical error. We address this gap by proposing a novel robust optimization framework under a new uncertainty set for adversarial noise via Wasserstein distance and statistical error via Kullback-Leibler divergence, called the Statistically Robust WDRO. We establish a robust generalization bound for the new optimization framework, implying that out-of-distribution adversarial performance is at least as good as the statistically robust training loss with high probability. Furthermore, we derive conditions under which Stackelberg and Nash equilibria exist between the learner and the adversary, giving an optimal robust model in certain sense. Finally, through extensive experiments, we demonstrate that our method significantly mitigates robust overfitting and enhances robustness within the framework of WDRO.
☆ Malware Detection at the Edge with Lightweight LLMs: A Performance Evaluation
The rapid evolution of malware attacks calls for the development of innovative detection methods, especially in resource-constrained edge computing. Traditional detection techniques struggle to keep up with modern malware's sophistication and adaptability, prompting a shift towards advanced methodologies like those leveraging Large Language Models (LLMs) for enhanced malware detection. However, deploying LLMs for malware detection directly at edge devices raises several challenges, including ensuring accuracy in constrained environments and addressing edge devices' energy and computational limits. To tackle these challenges, this paper proposes an architecture leveraging lightweight LLMs' strengths while addressing limitations like reduced accuracy and insufficient computational power. To evaluate the effectiveness of the proposed lightweight LLM-based approach for edge computing, we perform an extensive experimental evaluation using several state-of-the-art lightweight LLMs. We test them with several publicly available datasets specifically designed for edge and IoT scenarios and different edge nodes with varying computational power and characteristics.
☆ Mapping AI Benchmark Data to Quantitative Risk Estimates Through Expert Elicitation
The literature and multiple experts point to many potential risks from large language models (LLMs), but there are still very few direct measurements of the actual harms posed. AI risk assessment has so far focused on measuring the models' capabilities, but the capabilities of models are only indicators of risk, not measures of risk. Better modeling and quantification of AI risk scenarios can help bridge this disconnect and link the capabilities of LLMs to tangible real-world harm. This paper makes an early contribution to this field by demonstrating how existing AI benchmarks can be used to facilitate the creation of risk estimates. We describe the results of a pilot study in which experts use information from Cybench, an AI benchmark, to generate probability estimates. We show that the methodology seems promising for this purpose, while noting improvements that can be made to further strengthen its application in quantitative AI risk assessment.
comment: 23 pages, 4 figures
☆ MathMistake Checker: A Comprehensive Demonstration for Step-by-Step Math Problem Mistake Finding by Prompt-Guided LLMs AAAI 2025
We propose a novel system, MathMistake Checker, designed to automate step-by-step mistake finding in mathematical problems with lengthy answers through a two-stage process. The system aims to simplify grading, increase efficiency, and enhance learning experiences from a pedagogical perspective. It integrates advanced technologies, including computer vision and the chain-of-thought capabilities of the latest large language models (LLMs). Our system supports open-ended grading without reference answers and promotes personalized learning by providing targeted feedback. We demonstrate its effectiveness across various types of math problems, such as calculation and word problems.
comment: Published in AAAI 2025
☆ How Do Hackathons Foster Creativity? Towards AI Collaborative Evaluation of Creativity at Scale
Hackathons have become popular collaborative events for accelerating the development of creative ideas and prototypes. There are several case studies showcasing creative outcomes across domains such as industry, education, and research. However, there are no large-scale studies on creativity in hackathons which can advance theory on how hackathon formats lead to creative outcomes. We conducted a computational analysis of 193,353 hackathon projects. By operationalizing creativity through usefulness and novelty, we refined our dataset to 10,363 projects, allowing us to analyze how participant characteristics, collaboration patterns, and hackathon setups influence the development of creative projects. The contribution of our paper is twofold: We identified means for organizers to foster creativity in hackathons. We also explore the use of large language models (LLMs) to augment the evaluation of creative outcomes and discuss challenges and opportunities of doing this, which has implications for creativity research at large.
comment: Accepted in Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems
☆ Explainable AI in Time-Sensitive Scenarios: Prefetched Offline Explanation Model
As predictive machine learning models become increasingly adopted and advanced, their role has evolved from merely predicting outcomes to actively shaping them. This evolution has underscored the importance of Trustworthy AI, highlighting the necessity to extend our focus beyond mere accuracy and toward a comprehensive understanding of these models' behaviors within the specific contexts of their applications. To further progress in explainability, we introduce Poem, Prefetched Offline Explanation Model, a model-agnostic, local explainability algorithm for image data. The algorithm generates exemplars, counterexemplars and saliency maps to provide quick and effective explanations suitable for time-sensitive scenarios. Leveraging an existing local algorithm, \poem{} infers factual and counterfactual rules from data to create illustrative examples and opposite scenarios with an enhanced stability by design. A novel mechanism then matches incoming test points with an explanation base and produces diverse exemplars, informative saliency maps and believable counterexemplars. Experimental results indicate that Poem outperforms its predecessor Abele in speed and ability to generate more nuanced and varied exemplars alongside more insightful saliency maps and valuable counterexemplars.
☆ Towards Autonomous Reinforcement Learning for Real-World Robotic Manipulation with Large Language Models
Recent advancements in Large Language Models (LLMs) and Visual Language Models (VLMs) have significantly impacted robotics, enabling high-level semantic motion planning applications. Reinforcement Learning (RL), a complementary paradigm, enables agents to autonomously optimize complex behaviors through interaction and reward signals. However, designing effective reward functions for RL remains challenging, especially in real-world tasks where sparse rewards are insufficient and dense rewards require elaborate design. In this work, we propose Autonomous Reinforcement learning for Complex HumanInformed Environments (ARCHIE), an unsupervised pipeline leveraging GPT-4, a pre-trained LLM, to generate reward functions directly from natural language task descriptions. The rewards are used to train RL agents in simulated environments, where we formalize the reward generation process to enhance feasibility. Additionally, GPT-4 automates the coding of task success criteria, creating a fully automated, one-shot procedure for translating human-readable text into deployable robot skills. Our approach is validated through extensive simulated experiments on single-arm and bi-manual manipulation tasks using an ABB YuMi collaborative robot, highlighting its practicality and effectiveness. Tasks are demonstrated on the real robot setup.
☆ Prompt Programming: A Platform for Dialogue-based Computational Problem Solving with Generative AI Models
Computing students increasingly rely on generative AI tools for programming assistance, often without formal instruction or guidance. This highlights a need to teach students how to effectively interact with AI models, particularly through natural language prompts, to generate and critically evaluate code for solving computational tasks. To address this, we developed a novel platform for prompt programming that enables authentic dialogue-based interactions, supports problems involving multiple interdependent functions, and offers on-request execution of generated code. Data analysis from over 900 students in an introductory programming course revealed high engagement, with the majority of prompts occurring within multi-turn dialogues. Problems with multiple interdependent functions encouraged iterative refinement, with progression graphs highlighting several common strategies. Students were highly selective about the code they chose to test, suggesting that on-request execution of generated code promoted critical thinking. Given the growing importance of learning dialogue-based programming with AI, we provide this tool as a publicly accessible resource, accompanied by a corpus of programming problems for educational use.
comment: Preprint of the ITiCSE'25 paper
☆ Guidelines for Applying RL and MARL in Cybersecurity Applications
Reinforcement Learning (RL) and Multi-Agent Reinforcement Learning (MARL) have emerged as promising methodologies for addressing challenges in automated cyber defence (ACD). These techniques offer adaptive decision-making capabilities in high-dimensional, adversarial environments. This report provides a structured set of guidelines for cybersecurity professionals and researchers to assess the suitability of RL and MARL for specific use cases, considering factors such as explainability, exploration needs, and the complexity of multi-agent coordination. It also discusses key algorithmic approaches, implementation challenges, and real-world constraints, such as data scarcity and adversarial interference. The report further outlines open research questions, including policy optimality, agent cooperation levels, and the integration of MARL systems into operational cybersecurity frameworks. By bridging theoretical advancements and practical deployment, these guidelines aim to enhance the effectiveness of AI-driven cyber defence strategies.
☆ VirtualXAI: A User-Centric Framework for Explainability Assessment Leveraging GPT-Generated Personas
In today's data-driven era, computational systems generate vast amounts of data that drive the digital transformation of industries, where Artificial Intelligence (AI) plays a key role. Currently, the demand for eXplainable AI (XAI) has increased to enhance the interpretability, transparency, and trustworthiness of AI models. However, evaluating XAI methods remains challenging: existing evaluation frameworks typically focus on quantitative properties such as fidelity, consistency, and stability without taking into account qualitative characteristics such as satisfaction and interpretability. In addition, practitioners face a lack of guidance in selecting appropriate datasets, AI models, and XAI methods -a major hurdle in human-AI collaboration. To address these gaps, we propose a framework that integrates quantitative benchmarking with qualitative user assessments through virtual personas based on the "Anthology" of backstories of the Large Language Model (LLM). Our framework also incorporates a content-based recommender system that leverages dataset-specific characteristics to match new input data with a repository of benchmarked datasets. This yields an estimated XAI score and provides tailored recommendations for both the optimal AI model and the XAI method for a given scenario.
comment: 8 pages, 6 figures
☆ TAIL: Text-Audio Incremental Learning
Many studies combine text and audio to capture multi-modal information but they overlook the model's generalization ability on new datasets. Introducing new datasets may affect the feature space of the original dataset, leading to catastrophic forgetting. Meanwhile, large model parameters can significantly impact training performance. To address these limitations, we introduce a novel task called Text-Audio Incremental Learning (TAIL) task for text-audio retrieval, and propose a new method, PTAT, Prompt Tuning for Audio-Text incremental learning. This method utilizes prompt tuning to optimize the model parameters while incorporating an audio-text similarity and feature distillation module to effectively mitigate catastrophic forgetting. We benchmark our method and previous incremental learning methods on AudioCaps, Clotho, BBC Sound Effects and Audioset datasets, and our method outperforms previous methods significantly, particularly demonstrating stronger resistance to forgetting on older datasets. Compared to the full-parameters Finetune (Sequential) method, our model only requires 2.42\% of its parameters, achieving 4.46\% higher performance.
comment: 4 figures, 5 tables
☆ How to Move Your Dragon: Text-to-Motion Synthesis for Large-Vocabulary Objects
Motion synthesis for diverse object categories holds great potential for 3D content creation but remains underexplored due to two key challenges: (1) the lack of comprehensive motion datasets that include a wide range of high-quality motions and annotations, and (2) the absence of methods capable of handling heterogeneous skeletal templates from diverse objects. To address these challenges, we contribute the following: First, we augment the Truebones Zoo dataset, a high-quality animal motion dataset covering over 70 species, by annotating it with detailed text descriptions, making it suitable for text-based motion synthesis. Second, we introduce rig augmentation techniques that generate diverse motion data while preserving consistent dynamics, enabling models to adapt to various skeletal configurations. Finally, we redesign existing motion diffusion models to dynamically adapt to arbitrary skeletal templates, enabling motion synthesis for a diverse range of objects with varying structures. Experiments show that our method learns to generate high-fidelity motions from textual descriptions for diverse and even unseen objects, setting a strong foundation for motion synthesis across diverse object categories and skeletal templates. Qualitative results are available on this link: t2m4lvo.github.io
☆ Knowledge Retention for Continual Model-Based Reinforcement Learning
We propose DRAGO, a novel approach for continual model-based reinforcement learning aimed at improving the incremental development of world models across a sequence of tasks that differ in their reward functions but not the state space or dynamics. DRAGO comprises two key components: Synthetic Experience Rehearsal, which leverages generative models to create synthetic experiences from past tasks, allowing the agent to reinforce previously learned dynamics without storing data, and Regaining Memories Through Exploration, which introduces an intrinsic reward mechanism to guide the agent toward revisiting relevant states from prior tasks. Together, these components enable the agent to maintain a comprehensive and continually developing world model, facilitating more effective learning and adaptation across diverse environments. Empirical evaluations demonstrate that DRAGO is able to preserve knowledge across tasks, achieving superior performance in various continual learning scenarios.
☆ How to Mitigate Overfitting in Weak-to-strong Generalization?
Aligning powerful AI models on tasks that surpass human evaluation capabilities is the central problem of \textbf{superalignment}. To address this problem, weak-to-strong generalization aims to elicit the capabilities of strong models through weak supervisors and ensure that the behavior of strong models aligns with the intentions of weak supervisors without unsafe behaviors such as deception. Although weak-to-strong generalization exhibiting certain generalization capabilities, strong models exhibit significant overfitting in weak-to-strong generalization: Due to the strong fit ability of strong models, erroneous labels from weak supervisors may lead to overfitting in strong models. In addition, simply filtering out incorrect labels may lead to a degeneration in question quality, resulting in a weak generalization ability of strong models on hard questions. To mitigate overfitting in weak-to-strong generalization, we propose a two-stage framework that simultaneously improves the quality of supervision signals and the quality of input questions. Experimental results in three series of large language models and two mathematical benchmarks demonstrate that our framework significantly improves PGR compared to naive weak-to-strong generalization, even achieving up to 100\% PGR on some models.
☆ One-Shot Clustering for Federated Learning
Federated Learning (FL) is a widespread and well adopted paradigm of decentralized learning that allows training one model from multiple sources without the need to directly transfer data between participating clients. Since its inception in 2015, it has been divided into numerous sub-fields that deal with application-specific issues, be it data heterogeneity or resource allocation. One such sub-field, Clustered Federated Learning (CFL), is dealing with the problem of clustering the population of clients into separate cohorts to deliver personalized models. Although few remarkable works have been published in this domain, the problem is still largely unexplored, as its basic assumption and settings are slightly different from standard FL. In this work, we present One-Shot Clustered Federated Learning (OCFL), a clustering-agnostic algorithm that can automatically detect the earliest suitable moment for clustering. Our algorithm is based on the computation of cosine similarity between gradients of the clients and a temperature measure that detects when the federated model starts to converge. We empirically evaluate our methodology by testing various one-shot clustering algorithms for over thirty different tasks on three benchmark datasets. Our experiments showcase the good performance of our approach when used to perform CFL in an automated manner without the need to adjust hyperparameters.
☆ Quantum-Inspired Reinforcement Learning in the Presence of Epistemic Ambivalence
The complexity of online decision-making under uncertainty stems from the requirement of finding a balance between exploiting known strategies and exploring new possibilities. Naturally, the uncertainty type plays a crucial role in developing decision-making strategies that manage complexity effectively. In this paper, we focus on a specific form of uncertainty known as epistemic ambivalence (EA), which emerges from conflicting pieces of evidence or contradictory experiences. It creates a delicate interplay between uncertainty and confidence, distinguishing it from epistemic uncertainty that typically diminishes with new information. Indeed, ambivalence can persist even after additional knowledge is acquired. To address this phenomenon, we propose a novel framework, called the epistemically ambivalent Markov decision process (EA-MDP), aiming to understand and control EA in decision-making processes. This framework incorporates the concept of a quantum state from the quantum mechanics formalism, and its core is to assess the probability and reward of every possible outcome. We calculate the reward function using quantum measurement techniques and prove the existence of an optimal policy and an optimal value function in the EA-MDP framework. We also propose the EA-epsilon-greedy Q-learning algorithm. To evaluate the impact of EA on decision-making and the expedience of our framework, we study two distinct experimental setups, namely the two-state problem and the lattice problem. Our results show that using our methods, the agent converges to the optimal policy in the presence of EA.
☆ Knowledge-Decoupled Synergetic Learning: An MLLM based Collaborative Approach to Few-shot Multimodal Dialogue Intention Recognition
Few-shot multimodal dialogue intention recognition is a critical challenge in the e-commerce domainn. Previous methods have primarily enhanced model classification capabilities through post-training techniques. However, our analysis reveals that training for few-shot multimodal dialogue intention recognition involves two interconnected tasks, leading to a seesaw effect in multi-task learning. This phenomenon is attributed to knowledge interference stemming from the superposition of weight matrix updates during the training process. To address these challenges, we propose Knowledge-Decoupled Synergetic Learning (KDSL), which mitigates these issues by utilizing smaller models to transform knowledge into interpretable rules, while applying the post-training of larger models. By facilitating collaboration between the large and small multimodal large language models for prediction, our approach demonstrates significant improvements. Notably, we achieve outstanding results on two real Taobao datasets, with enhancements of 6.37\% and 6.28\% in online weighted F1 scores compared to the state-of-the-art method, thereby validating the efficacy of our framework.
☆ MASTER: Multimodal Segmentation with Text Prompts
RGB-Thermal fusion is a potential solution for various weather and light conditions in challenging scenarios. However, plenty of studies focus on designing complex modules to fuse different modalities. With the widespread application of large language models (LLMs), valuable information can be more effectively extracted from natural language. Therefore, we aim to leverage the advantages of large language models to design a structurally simple and highly adaptable multimodal fusion model architecture. We proposed MultimodAl Segmentation with TExt PRompts (MASTER) architecture, which integrates LLM into the fusion of RGB-Thermal multimodal data and allows complex query text to participate in the fusion process. Our model utilizes a dual-path structure to extract information from different modalities of images. Additionally, we employ LLM as the core module for multimodal fusion, enabling the model to generate learnable codebook tokens from RGB, thermal images, and textual information. A lightweight image decoder is used to obtain semantic segmentation results. The proposed MASTER performs exceptionally well in benchmark tests across various automated driving scenarios, yielding promising results.
☆ Large-Scale AI in Telecom: Charting the Roadmap for Innovation, Scalability, and Enhanced Digital Experiences
This white paper discusses the role of large-scale AI in the telecommunications industry, with a specific focus on the potential of generative AI to revolutionize network functions and user experiences, especially in the context of 6G systems. It highlights the development and deployment of Large Telecom Models (LTMs), which are tailored AI models designed to address the complex challenges faced by modern telecom networks. The paper covers a wide range of topics, from the architecture and deployment strategies of LTMs to their applications in network management, resource allocation, and optimization. It also explores the regulatory, ethical, and standardization considerations for LTMs, offering insights into their future integration into telecom infrastructure. The goal is to provide a comprehensive roadmap for the adoption of LTMs to enhance scalability, performance, and user-centric innovation in telecom networks.
☆ CrowdHMTware: A Cross-level Co-adaptation Middleware for Context-aware Mobile DL Deployment
There are many deep learning (DL) powered mobile and wearable applications today continuously and unobtrusively sensing the ambient surroundings to enhance all aspects of human lives.To enable robust and private mobile sensing, DL models are often deployed locally on resource-constrained mobile devices using techniques such as model compression or offloading.However, existing methods, either front-end algorithm level (i.e. DL model compression/partitioning) or back-end scheduling level (i.e. operator/resource scheduling), cannot be locally online because they require offline retraining to ensure accuracy or rely on manually pre-defined strategies, struggle with dynamic adaptability.The primary challenge lies in feeding back runtime performance from the back-end level to the front-end level optimization decision. Moreover, the adaptive mobile DL model porting middleware with cross-level co-adaptation is less explored, particularly in mobile environments with diversity and dynamics. In response, we introduce CrowdHMTware, a dynamic context-adaptive DL model deployment middleware for heterogeneous mobile devices. It establishes an automated adaptation loop between cross-level functional components, i.e. elastic inference, scalable offloading, and model-adaptive engine, enhancing scalability and adaptability. Experiments with four typical tasks across 15 platforms and a real-world case study demonstrate that CrowdHMTware can effectively scale DL model, offloading, and engine actions across diverse platforms and tasks. It hides run-time system issues from developers, reducing the required developer expertise.
comment: This paper is accepted by IEEE Transactions on Mobile Computing
☆ TIMER: Temporal Instruction Modeling and Evaluation for Longitudinal Clinical Records
Large language models (LLMs) have emerged as promising tools for assisting in medical tasks, yet processing Electronic Health Records (EHRs) presents unique challenges due to their longitudinal nature. While LLMs' capabilities to perform medical tasks continue to improve, their ability to reason over temporal dependencies across multiple patient visits and time frames remains unexplored. We introduce TIMER (Temporal Instruction Modeling and Evaluation for Longitudinal Clinical Records), a framework that incorporate instruction-response pairs grounding to different parts of a patient's record as a critical dimension in both instruction evaluation and tuning for longitudinal clinical records. We develop TIMER-Bench, the first time-aware benchmark that evaluates temporal reasoning capabilities over longitudinal EHRs, as well as TIMER-Instruct, an instruction-tuning methodology for LLMs to learn reasoning over time. We demonstrate that models fine-tuned with TIMER-Instruct improve performance by 7.3% on human-generated benchmarks and 9.2% on TIMER-Bench, indicating that temporal instruction-tuning improves model performance for reasoning over EHR.
comment: Preprint
☆ Towards Intelligent Transportation with Pedestrians and Vehicles In-the-Loop: A Surveillance Video-Assisted Federated Digital Twin Framework
In intelligent transportation systems (ITSs), incorporating pedestrians and vehicles in-the-loop is crucial for developing realistic and safe traffic management solutions. However, there is falls short of simulating complex real-world ITS scenarios, primarily due to the lack of a digital twin implementation framework for characterizing interactions between pedestrians and vehicles at different locations in different traffic environments. In this article, we propose a surveillance video assisted federated digital twin (SV-FDT) framework to empower ITSs with pedestrians and vehicles in-the-loop. Specifically, SVFDT builds comprehensive pedestrian-vehicle interaction models by leveraging multi-source traffic surveillance videos. Its architecture consists of three layers: (i) the end layer, which collects traffic surveillance videos from multiple sources; (ii) the edge layer, responsible for semantic segmentation-based visual understanding, twin agent-based interaction modeling, and local digital twin system (LDTS) creation in local regions; and (iii) the cloud layer, which integrates LDTSs across different regions to construct a global DT model in realtime. We analyze key design requirements and challenges and present core guidelines for SVFDT's system implementation. A testbed evaluation demonstrates its effectiveness in optimizing traffic management. Comparisons with traditional terminal-server frameworks highlight SV-FDT's advantages in mirroring delays, recognition accuracy, and subjective evaluation. Finally, we identify some open challenges and discuss future research directions.
☆ The Role of Visual Modality in Multimodal Mathematical Reasoning: Challenges and Insights
Recent research has increasingly focused on multimodal mathematical reasoning, particularly emphasizing the creation of relevant datasets and benchmarks. Despite this, the role of visual information in reasoning has been underexplored. Our findings show that existing multimodal mathematical models minimally leverage visual information, and model performance remains largely unaffected by changes to or removal of images in the dataset. We attribute this to the dominance of textual information and answer options that inadvertently guide the model to correct answers. To improve evaluation methods, we introduce the HC-M3D dataset, specifically designed to require image reliance for problem-solving and to challenge models with similar, yet distinct, images that change the correct answer. In testing leading models, their failure to detect these subtle visual differences suggests limitations in current visual perception capabilities. Additionally, we observe that the common approach of improving general VQA capabilities by combining various types of image encoders does not contribute to math reasoning performance. This finding also presents a challenge to enhancing visual reliance during math reasoning. Our benchmark and code would be available at \href{https://github.com/Yufang-Liu/visual_modality_role}{https://github.com/Yufang-Liu/visual\_modality\_role}.
☆ Semantic Retrieval Augmented Contrastive Learning for Sequential Recommendation
Sequential recommendation aims to model user preferences based on historical behavior sequences, which is crucial for various online platforms. Data sparsity remains a significant challenge in this area as most users have limited interactions and many items receive little attention. To mitigate this issue, contrastive learning has been widely adopted. By constructing positive sample pairs from the data itself and maximizing their agreement in the embedding space,it can leverage available data more effectively. Constructing reasonable positive sample pairs is crucial for the success of contrastive learning. However, current approaches struggle to generate reliable positive pairs as they either rely on representations learned from inherently sparse collaborative signals or use random perturbations which introduce significant uncertainty. To address these limitations, we propose a novel approach named Semantic Retrieval Augmented Contrastive Learning (SRA-CL), which leverages semantic information to improve the reliability of contrastive samples. SRA-CL comprises two main components: (1) Cross-Sequence Contrastive Learning via User Semantic Retrieval, which utilizes large language models (LLMs) to understand diverse user preferences and retrieve semantically similar users to form reliable positive samples through a learnable sample synthesis method; and (2) Intra-Sequence Contrastive Learning via Item Semantic Retrieval, which employs LLMs to comprehend items and retrieve similar items to perform semantic-based item substitution, thereby creating semantically consistent augmented views for contrastive learning. SRA-CL is plug-and-play and can be integrated into standard sequential recommendation models. Extensive experiments on four public datasets demonstrate the effectiveness and generalizability of the proposed approach.
☆ Unseen Fake News Detection Through Casual Debiasing
The widespread dissemination of fake news on social media poses significant risks, necessitating timely and accurate detection. However, existing methods struggle with unseen news due to their reliance on training data from past events and domains, leaving the challenge of detecting novel fake news largely unresolved. To address this, we identify biases in training data tied to specific domains and propose a debiasing solution FNDCD. Originating from causal analysis, FNDCD employs a reweighting strategy based on classification confidence and propagation structure regularization to reduce the influence of domain-specific biases, enhancing the detection of unseen fake news. Experiments on real-world datasets with non-overlapping news domains demonstrate FNDCD's effectiveness in improving generalization across domains.
comment: 2025 The Web Conference, 6 pages, 4 figures
☆ CA-W3D: Leveraging Context-Aware Knowledge for Weakly Supervised Monocular 3D Detection
Weakly supervised monocular 3D detection, while less annotation-intensive, often struggles to capture the global context required for reliable 3D reasoning. Conventional label-efficient methods focus on object-centric features, neglecting contextual semantic relationships that are critical in complex scenes. In this work, we propose a Context-Aware Weak Supervision for Monocular 3D object detection, namely CA-W3D, to address this limitation in a two-stage training paradigm. Specifically, we first introduce a pre-training stage employing Region-wise Object Contrastive Matching (ROCM), which aligns regional object embeddings derived from a trainable monocular 3D encoder and a frozen open-vocabulary 2D visual grounding model. This alignment encourages the monocular encoder to discriminate scene-specific attributes and acquire richer contextual knowledge. In the second stage, we incorporate a pseudo-label training process with a Dual-to-One Distillation (D2OD) mechanism, which effectively transfers contextual priors into the monocular encoder while preserving spatial fidelity and maintaining computational efficiency during inference. Extensive experiments conducted on the public KITTI benchmark demonstrate the effectiveness of our approach, surpassing the SoTA method over all metrics, highlighting the importance of contextual-aware knowledge in weakly-supervised monocular 3D detection.
comment: The paper includes 8 pages, 6 figures and 4 tables
☆ KidneyTalk-open: No-code Deployment of a Private Large Language Model with Medical Documentation-Enhanced Knowledge Database for Kidney Disease
Privacy-preserving medical decision support for kidney disease requires localized deployment of large language models (LLMs) while maintaining clinical reasoning capabilities. Current solutions face three challenges: 1) Cloud-based LLMs pose data security risks; 2) Local model deployment demands technical expertise; 3) General LLMs lack mechanisms to integrate medical knowledge. Retrieval-augmented systems also struggle with medical document processing and clinical usability. We developed KidneyTalk-open, a desktop system integrating three technical components: 1) No-code deployment of state-of-the-art (SOTA) open-source LLMs (such as DeepSeek-r1, Qwen2.5) via local inference engine; 2) Medical document processing pipeline combining context-aware chunking and intelligent filtering; 3) Adaptive Retrieval and Augmentation Pipeline (AddRep) employing agents collaboration for improving the recall rate of medical documents. A graphical interface was designed to enable clinicians to manage medical documents and conduct AI-powered consultations without technical expertise. Experimental validation on 1,455 challenging nephrology exam questions demonstrates AddRep's effectiveness: achieving 29.1% accuracy (+8.1% over baseline) with intelligent knowledge integration, while maintaining robustness through 4.9% rejection rate to suppress hallucinations. Comparative case studies with the mainstream products (AnythingLLM, Chatbox, GPT4ALL) demonstrate KidneyTalk-open's superior performance in real clinical query. KidneyTalk-open represents the first no-code medical LLM system enabling secure documentation-enhanced medical Q&A on desktop. Its designs establishes a new framework for privacy-sensitive clinical AI applications. The system significantly lowers technical barriers while improving evidence traceability, enabling more medical staff or patients to use SOTA open-source LLMs conveniently.
comment: Corresponding authors: zhanglx@bjmu.edu.cn; joy_yuxi@pku.edu.cn; hongshenda@pku.edu.cn
☆ Robust Multi-View Learning via Representation Fusion of Sample-Level Attention and Alignment of Simulated Perturbation
Recently, multi-view learning (MVL) has garnered significant attention due to its ability to fuse discriminative information from multiple views. However, real-world multi-view datasets are often heterogeneous and imperfect, which usually makes MVL methods designed for specific combinations of views lack application potential and limits their effectiveness. To address this issue, we propose a novel robust MVL method (namely RML) with simultaneous representation fusion and alignment. Specifically, we introduce a simple yet effective multi-view transformer fusion network where we transform heterogeneous multi-view data into homogeneous word embeddings, and then integrate multiple views by the sample-level attention mechanism to obtain a fused representation. Furthermore, we propose a simulated perturbation based multi-view contrastive learning framework that dynamically generates the noise and unusable perturbations for simulating imperfect data conditions. The simulated noisy and unusable data obtain two distinct fused representations, and we utilize contrastive learning to align them for learning discriminative and robust representations. Our RML is self-supervised and can also be applied for downstream tasks as a regularization. In experiments, we employ it in unsupervised multi-view clustering, noise-label classification, and as a plug-and-play module for cross-modal hashing retrieval. Extensive comparison experiments and ablation studies validate the effectiveness of RML.
☆ Ticktack : Long Span Temporal Alignment of Large Language Models Leveraging Sexagenary Cycle Time Expression
Large language models (LLMs) suffer from temporal misalignment issues especially across long span of time. The issue arises from knowing that LLMs are trained on large amounts of data where temporal information is rather sparse over long times, such as thousands of years, resulting in insufficient learning or catastrophic forgetting by the LLMs. This paper proposes a methodology named "Ticktack" for addressing the LLM's long-time span misalignment in a yearly setting. Specifically, we first propose to utilize the sexagenary year expression instead of the Gregorian year expression employed by LLMs, achieving a more uniform distribution in yearly granularity. Then, we employ polar coordinates to model the sexagenary cycle of 60 terms and the year order within each term, with additional temporal encoding to ensure LLMs understand them. Finally, we present a temporal representational alignment approach for post-training LLMs that effectively distinguishes time points with relevant knowledge, hence improving performance on time-related tasks, particularly over a long period. We also create a long time span benchmark for evaluation. Experimental results prove the effectiveness of our proposal.
Dynamic Benchmarking of Reasoning Capabilities in Code Large Language Models Under Data Contamination
The rapid evolution of code largelanguage models underscores the need for effective and transparent benchmarking of their reasoning capabilities. However, the current benchmarking approach heavily depends on publicly available, human-created datasets. The widespread use of these fixed benchmark datasets makes the benchmarking process to be static and thus particularly susceptible to data contamination, an unavoidable consequence of the extensive data collection processes used to train Code LLMs. Existing approaches that address data contamination often suffer from human effort limitations and imbalanced problem complexity. To tackle these challenges, we propose \tool, a novel benchmarking suite for evaluating Code LLMs under potential data contamination. Given a seed programming problem, \tool employs multiple agents to extract and modify the context without altering the core logic, generating semantically equivalent variations. We introduce a dynamic data generation methods and conduct empirical studies on two seed datasets across 21 Code LLMs. Results show that \tool effectively benchmarks reasoning capabilities under contamination risks while generating diverse problem sets to ensure consistent and reliable evaluations.
comment: https://codekaleidoscope.github.io/dycodeeval.html
☆ DM-Adapter: Domain-Aware Mixture-of-Adapters for Text-Based Person Retrieval AAAI 2025
Text-based person retrieval (TPR) has gained significant attention as a fine-grained and challenging task that closely aligns with practical applications. Tailoring CLIP to person domain is now a emerging research topic due to the abundant knowledge of vision-language pretraining, but challenges still remain during fine-tuning: (i) Previous full-model fine-tuning in TPR is computationally expensive and prone to overfitting.(ii) Existing parameter-efficient transfer learning (PETL) for TPR lacks of fine-grained feature extraction. To address these issues, we propose Domain-Aware Mixture-of-Adapters (DM-Adapter), which unifies Mixture-of-Experts (MOE) and PETL to enhance fine-grained feature representations while maintaining efficiency. Specifically, Sparse Mixture-of-Adapters is designed in parallel to MLP layers in both vision and language branches, where different experts specialize in distinct aspects of person knowledge to handle features more finely. To promote the router to exploit domain information effectively and alleviate the routing imbalance, Domain-Aware Router is then developed by building a novel gating function and injecting learnable domain-aware prompts. Extensive experiments show that our DM-Adapter achieves state-of-the-art performance, outperforming previous methods by a significant margin.
comment: 9 pages, 5 figures, accepted by AAAI 2025
☆ MTS: A Deep Reinforcement Learning Portfolio Management Framework with Time-Awareness and Short-Selling
Portfolio management remains a crucial challenge in finance, with traditional methods often falling short in complex and volatile market environments. While deep reinforcement approaches have shown promise, they still face limitations in dynamic risk management, exploitation of temporal markets, and incorporation of complex trading strategies such as short-selling. These limitations can lead to suboptimal portfolio performance, increased vulnerability to market volatility, and missed opportunities in capturing potential returns from diverse market conditions. This paper introduces a Deep Reinforcement Learning Portfolio Management Framework with Time-Awareness and Short-Selling (MTS), offering a robust and adaptive strategy for sustainable investment performance. This framework utilizes a novel encoder-attention mechanism to address the limitations by incorporating temporal market characteristics, a parallel strategy for automated short-selling based on market trends, and risk management through innovative Incremental Conditional Value at Risk, enhancing adaptability and performance. Experimental validation on five diverse datasets from 2019 to 2023 demonstrates MTS's superiority over traditional algorithms and advanced machine learning techniques. MTS consistently achieves higher cumulative returns, Sharpe, Omega, and Sortino ratios, underscoring its effectiveness in balancing risk and return while adapting to market dynamics. MTS demonstrates an average relative increase of 30.67% in cumulative returns and 29.33% in Sharpe ratio compared to the next best-performing strategies across various datasets.
☆ Artificial Intelligence in Pronunciation Teaching: Use and Beliefs of Foreign Language Teachers
Pronunciation instruction in foreign language classrooms has often been an overlooked area of focus. With the widespread adoption of Artificial Intelligence (AI) and its potential benefits, investigating how AI is utilized in pronunciation teaching and understanding the beliefs of teachers about this tool is essential for improving learning outcomes. This study aims to examine how AI use for pronunciation instruction varies across different demographic and professional factors among teachers, and how these factors, including AI use, influence the beliefs of teachers about AI. The study involved 117 English as a Foreign Language (EFL) in-service teachers working in Cyprus, who completed an online survey designed to assess their beliefs about the effectiveness of AI, its drawbacks, and their willingness to integrate AI into their teaching practices. The results revealed that teachers were significantly more likely to agree on the perceived effectiveness of AI and their willingness to adopt it, compared to their concerns about its use. Furthermore, teachers working in higher education and adult education, as well as those who had received more extensive training, reported using AI more frequently in their teaching. Teachers who utilized AI more often expressed stronger agreement with its effectiveness, while those who had received more training were less likely to express concerns about its integration. Given the limited training that many teachers currently receive, these findings demonstrate the need for tailored training sessions that address the specific needs and concerns of educators, ultimately fostering the adoption of AI in pronunciation instruction.
☆ Simple Self Organizing Map with Visual Transformer
Vision Transformers (ViTs) have demonstrated exceptional performance in various vision tasks. However, they tend to underperform on smaller datasets due to their inherent lack of inductive biases. Current approaches address this limitation implicitly-often by pairing ViTs with pretext tasks or by distilling knowledge from convolutional neural networks (CNNs) to strengthen the prior. In contrast, Self-Organizing Maps (SOMs), a widely adopted self-supervised framework, are inherently structured to preserve topology and spatial organization, making them a promising candidate to directly address the limitations of ViTs in limited or small training datasets. Despite this potential, equipping SOMs with modern deep learning architectures remains largely unexplored. In this study, we conduct a novel exploration on how Vision Transformers (ViTs) and Self-Organizing Maps (SOMs) can empower each other, aiming to bridge this critical research gap. Our findings demonstrate that these architectures can synergistically enhance each other, leading to significantly improved performance in both unsupervised and supervised tasks. Code will be publicly available.
comment: 5 pages, 4 figures. Submitted to IEEE. All experiments and code work were performed by the first author, with the second author serving in a PI/mentor role, guiding the progression of the work
☆ Generalizability of Neural Networks Minimizing Empirical Risk Based on Expressive Ability
The primary objective of learning methods is generalization. Classic uniform generalization bounds, which rely on VC-dimension or Rademacher complexity, fail to explain the significant attribute that over-parameterized models in deep learning exhibit nice generalizability. On the other hand, algorithm-dependent generalization bounds, like stability bounds, often rely on strict assumptions. To establish generalizability under less stringent assumptions, this paper investigates the generalizability of neural networks that minimize or approximately minimize empirical risk. We establish a lower bound for population accuracy based on the expressiveness of these networks, which indicates that with an adequate large number of training samples and network sizes, these networks, including over-parameterized ones, can generalize effectively. Additionally, we provide a necessary condition for generalization, demonstrating that, for certain data distributions, the quantity of training data required to ensure generalization exceeds the network size needed to represent the corresponding data distribution. Finally, we provide theoretical insights into several phenomena in deep learning, including robust generalization, importance of over-parameterization, and effect of loss function on generalization.
☆ InterChat: Enhancing Generative Visual Analytics using Multimodal Interactions
The rise of Large Language Models (LLMs) and generative visual analytics systems has transformed data-driven insights, yet significant challenges persist in accurately interpreting users' analytical and interaction intents. While language inputs offer flexibility, they often lack precision, making the expression of complex intents inefficient, error-prone, and time-intensive. To address these limitations, we investigate the design space of multimodal interactions for generative visual analytics through a literature review and pilot brainstorming sessions. Building on these insights, we introduce a highly extensible workflow that integrates multiple LLM agents for intent inference and visualization generation. We develop InterChat, a generative visual analytics system that combines direct manipulation of visual elements with natural language inputs. This integration enables precise intent communication and supports progressive, visually driven exploratory data analyses. By employing effective prompt engineering, and contextual interaction linking, alongside intuitive visualization and interaction designs, InterChat bridges the gap between user interactions and LLM-driven visualizations, enhancing both interpretability and usability. Extensive evaluations, including two usage scenarios, a user study, and expert feedback, demonstrate the effectiveness of InterChat. Results show significant improvements in the accuracy and efficiency of handling complex visual analytics tasks, highlighting the potential of multimodal interactions to redefine user engagement and analytical depth in generative visual analytics.
comment: Manuscript submitted to EuroVis 2025
☆ Disparities in LLM Reasoning Accuracy and Explanations: A Case Study on African American English
Large Language Models (LLMs) have demonstrated remarkable capabilities in reasoning tasks, leading to their widespread deployment. However, recent studies have highlighted concerning biases in these models, particularly in their handling of dialectal variations like African American English (AAE). In this work, we systematically investigate dialectal disparities in LLM reasoning tasks. We develop an experimental framework comparing LLM performance given Standard American English (SAE) and AAE prompts, combining LLM-based dialect conversion with established linguistic analyses. We find that LLMs consistently produce less accurate responses and simpler reasoning chains and explanations for AAE inputs compared to equivalent SAE questions, with disparities most pronounced in social science and humanities domains. These findings highlight systematic differences in how LLMs process and reason about different language varieties, raising important questions about the development and deployment of these systems in our multilingual and multidialectal world. Our code repository is publicly available at https://github.com/Runtaozhou/dialect_bias_eval.
comment: ARR Under Review, First two authors contribute equally
☆ Chart-HQA: A Benchmark for Hypothetical Question Answering in Charts
Multimodal Large Language Models (MLLMs) have garnered significant attention for their strong visual-semantic understanding. Most existing chart benchmarks evaluate MLLMs' ability to parse information from charts to answer questions.However, they overlook the inherent output biases of MLLMs, where models rely on their parametric memory to answer questions rather than genuinely understanding the chart content. To address this limitation, we introduce a novel Chart Hypothetical Question Answering (HQA) task, which imposes assumptions on the same question to compel models to engage in counterfactual reasoning based on the chart content. Furthermore, we introduce HAI, a human-AI interactive data synthesis approach that leverages the efficient text-editing capabilities of LLMs alongside human expert knowledge to generate diverse and high-quality HQA data at a low cost. Using HAI, we construct Chart-HQA, a challenging benchmark synthesized from publicly available data sources. Evaluation results on 18 MLLMs of varying model sizes reveal that current models face significant generalization challenges and exhibit imbalanced reasoning performance on the HQA task.
comment: Under review
☆ SED2AM: Solving Multi-Trip Time-Dependent Vehicle Routing Problem using Deep Reinforcement Learning KDD
Deep reinforcement learning (DRL)-based frameworks, featuring Transformer-style policy networks, have demonstrated their efficacy across various vehicle routing problem (VRP) variants. However, the application of these methods to the multi-trip time-dependent vehicle routing problem (MTTDVRP) with maximum working hours constraints -- a pivotal element of urban logistics -- remains largely unexplored. This paper introduces a DRL-based method called the Simultaneous Encoder and Dual Decoder Attention Model (SED2AM), tailored for the MTTDVRP with maximum working hours constraints. The proposed method introduces a temporal locality inductive bias to the encoding module of the policy networks, enabling it to effectively account for the time-dependency in travel distance or time. The decoding module of SED2AM includes a vehicle selection decoder that selects a vehicle from the fleet, effectively associating trips with vehicles for functional multi-trip routing. Additionally, this decoding module is equipped with a trip construction decoder leveraged for constructing trips for the vehicles. This policy model is equipped with two classes of state representations, fleet state and routing state, providing the information needed for effective route construction in the presence of maximum working hours constraints. Experimental results using real-world datasets from two major Canadian cities not only show that SED2AM outperforms the current state-of-the-art DRL-based and metaheuristic-based baselines but also demonstrate its generalizability to solve larger-scale problems.
comment: Accepted by ACM TKDD: https://dl.acm.org/doi/10.1145/3721983
☆ Can We Optimize Deep RL Policy Weights as Trajectory Modeling? ICLR 2025
Learning the optimal policy from a random network initialization is the theme of deep Reinforcement Learning (RL). As the scale of DRL training increases, treating DRL policy network weights as a new data modality and exploring the potential becomes appealing and possible. In this work, we focus on the policy learning path in deep RL, represented by the trajectory of network weights of historical policies, which reflects the evolvement of the policy learning process. Taking the idea of trajectory modeling with Transformer, we propose Transformer as Implicit Policy Learner (TIPL), which processes policy network weights in an autoregressive manner. We collect the policy learning path data by running independent RL training trials, with which we then train our TIPL model. In the experiments, we demonstrate that TIPL is able to fit the implicit dynamics of policy learning and perform the optimization of policy network by inference.
comment: Accepted as an extended abstract to ICLR 2025 Workshop on Weight Space Learning (WSL)
☆ PP-DocBee: Improving Multimodal Document Understanding Through a Bag of Tricks
With the rapid advancement of digitalization, various document images are being applied more extensively in production and daily life, and there is an increasingly urgent need for fast and accurate parsing of the content in document images. Therefore, this report presents PP-DocBee, a novel multimodal large language model designed for end-to-end document image understanding. First, we develop a data synthesis strategy tailored to document scenarios in which we build a diverse dataset to improve the model generalization. Then, we apply a few training techniques, including dynamic proportional sampling, data preprocessing, and OCR postprocessing strategies. Extensive evaluations demonstrate the superior performance of PP-DocBee, achieving state-of-the-art results on English document understanding benchmarks and even outperforming existing open source and commercial models in Chinese document understanding. The source code and pre-trained models are publicly available at \href{https://github.com/PaddlePaddle/PaddleMIX}{https://github.com/PaddlePaddle/PaddleMIX}.
☆ Uncovering inequalities in new knowledge learning by large language models across different languages
As large language models (LLMs) gradually become integral tools for problem solving in daily life worldwide, understanding linguistic inequality is becoming increasingly important. Existing research has primarily focused on static analyses that assess the disparities in the existing knowledge and capabilities of LLMs across languages. However, LLMs are continuously evolving, acquiring new knowledge to generate up-to-date, domain-specific responses. Investigating linguistic inequalities within this dynamic process is, therefore, also essential. In this paper, we explore inequalities in new knowledge learning by LLMs across different languages and four key dimensions: effectiveness, transferability, prioritization, and robustness. Through extensive experiments under two settings (in-context learning and fine-tuning) using both proprietary and open-source models, we demonstrate that low-resource languages consistently face disadvantages across all four dimensions. By shedding light on these disparities, we aim to raise awareness of linguistic inequalities in LLMs' new knowledge learning, fostering the development of more inclusive and equitable future LLMs.
☆ Continual Optimization with Symmetry Teleportation for Multi-Task Learning
Multi-task learning (MTL) is a widely explored paradigm that enables the simultaneous learning of multiple tasks using a single model. Despite numerous solutions, the key issues of optimization conflict and task imbalance remain under-addressed, limiting performance. Unlike existing optimization-based approaches that typically reweight task losses or gradients to mitigate conflicts or promote progress, we propose a novel approach based on Continual Optimization with Symmetry Teleportation (COST). During MTL optimization, when an optimization conflict arises, we seek an alternative loss-equivalent point on the loss landscape to reduce conflict. Specifically, we utilize a low-rank adapter (LoRA) to facilitate this practical teleportation by designing convergent, loss-invariant objectives. Additionally, we introduce a historical trajectory reuse strategy to continually leverage the benefits of advanced optimizers. Extensive experiments on multiple mainstream datasets demonstrate the effectiveness of our approach. COST is a plug-and-play solution that enhances a wide range of existing MTL methods. When integrated with state-of-the-art methods, COST achieves superior performance.
comment: 10 pages,8 figures
☆ TextDoctor: Unified Document Image Inpainting via Patch Pyramid Diffusion Models
Digital versions of real-world text documents often suffer from issues like environmental corrosion of the original document, low-quality scanning, or human interference. Existing document restoration and inpainting methods typically struggle with generalizing to unseen document styles and handling high-resolution images. To address these challenges, we introduce TextDoctor, a novel unified document image inpainting method. Inspired by human reading behavior, TextDoctor restores fundamental text elements from patches and then applies diffusion models to entire document images instead of training models on specific document types. To handle varying text sizes and avoid out-of-memory issues, common in high-resolution documents, we propose using structure pyramid prediction and patch pyramid diffusion models. These techniques leverage multiscale inputs and pyramid patches to enhance the quality of inpainting both globally and locally. Extensive qualitative and quantitative experiments on seven public datasets validated that TextDoctor outperforms state-of-the-art methods in restoring various types of high-resolution document images.
comment: 28 pages, 25 figures
☆ Benchmarking Large Language Models on Multiple Tasks in Bioinformatics NLP with Prompting
Large language models (LLMs) have become important tools in solving biological problems, offering improvements in accuracy and adaptability over conventional methods. Several benchmarks have been proposed to evaluate the performance of these LLMs. However, current benchmarks can hardly evaluate the performance of these models across diverse tasks effectively. In this paper, we introduce a comprehensive prompting-based benchmarking framework, termed Bio-benchmark, which includes 30 key bioinformatics tasks covering areas such as proteins, RNA, drugs, electronic health records, and traditional Chinese medicine. Using this benchmark, we evaluate six mainstream LLMs, including GPT-4o and Llama-3.1-70b, etc., using 0-shot and few-shot Chain-of-Thought (CoT) settings without fine-tuning to reveal their intrinsic capabilities. To improve the efficiency of our evaluations, we demonstrate BioFinder, a new tool for extracting answers from LLM responses, which increases extraction accuracy by round 30% compared to existing methods. Our benchmark results show the biological tasks suitable for current LLMs and identify specific areas requiring enhancement. Furthermore, we propose targeted prompt engineering strategies for optimizing LLM performance in these contexts. Based on these findings, we provide recommendations for the development of more robust LLMs tailored for various biological applications. This work offers a comprehensive evaluation framework and robust tools to support the application of LLMs in bioinformatics.
☆ Subgraph Federated Learning for Local Generalization ICLR 2025
Federated Learning (FL) on graphs enables collaborative model training to enhance performance without compromising the privacy of each client. However, existing methods often overlook the mutable nature of graph data, which frequently introduces new nodes and leads to shifts in label distribution. Since they focus solely on performing well on each client's local data, they are prone to overfitting to their local distributions (i.e., local overfitting), which hinders their ability to generalize to unseen data with diverse label distributions. In contrast, our proposed method, FedLoG, effectively tackles this issue by mitigating local overfitting. Our model generates global synthetic data by condensing the reliable information from each class representation and its structural information across clients. Using these synthetic data as a training set, we alleviate the local overfitting problem by adaptively generalizing the absent knowledge within each local dataset. This enhances the generalization capabilities of local models, enabling them to handle unseen data effectively. Our model outperforms baselines in our proposed experimental settings, which are designed to measure generalization power to unseen data in practical scenarios. Our code is available at https://github.com/sung-won-kim/FedLoG
comment: ICLR 2025 (oral)
☆ RetinalGPT: A Retinal Clinical Preference Conversational Assistant Powered by Large Vision-Language Models
Recently, Multimodal Large Language Models (MLLMs) have gained significant attention for their remarkable ability to process and analyze non-textual data, such as images, videos, and audio. Notably, several adaptations of general-domain MLLMs to the medical field have been explored, including LLaVA-Med. However, these medical adaptations remain insufficiently advanced in understanding and interpreting retinal images. In contrast, medical experts emphasize the importance of quantitative analyses for disease detection and interpretation. This underscores a gap between general-domain and medical-domain MLLMs: while general-domain MLLMs excel in broad applications, they lack the specialized knowledge necessary for precise diagnostic and interpretative tasks in the medical field. To address these challenges, we introduce \textit{RetinalGPT}, a multimodal conversational assistant for clinically preferred quantitative analysis of retinal images. Specifically, we achieve this by compiling a large retinal image dataset, developing a novel data pipeline, and employing customized visual instruction tuning to enhance both retinal analysis and enrich medical knowledge. In particular, RetinalGPT outperforms MLLM in the generic domain by a large margin in the diagnosis of retinal diseases in 8 benchmark retinal datasets. Beyond disease diagnosis, RetinalGPT features quantitative analyses and lesion localization, representing a pioneering step in leveraging LLMs for an interpretable and end-to-end clinical research framework. The code is available at https://github.com/Retinal-Research/RetinalGPT
☆ Training neural networks faster with minimal tuning using pre-computed lists of hyperparameters for NAdamW
If we want to train a neural network using any of the most popular optimization algorithms, we are immediately faced with a dilemma: how to set the various optimization and regularization hyperparameters? When computational resources are abundant, there are a variety of methods for finding good hyperparameter settings, but when resources are limited the only realistic choices are using standard default values of uncertain quality and provenance, or tuning only a couple of the most important hyperparameters via extremely limited handdesigned sweeps. Extending the idea of default settings to a modest tuning budget, Metz et al. (2020) proposed using ordered lists of well-performing hyperparameter settings, derived from a broad hyperparameter search on a large library of training workloads. However, to date, no practical and performant hyperparameter lists that generalize to representative deep learning workloads have been demonstrated. In this paper, we present hyperparameter lists for NAdamW derived from extensive experiments on the realistic workloads in the AlgoPerf: Training Algorithms benchmark. Our hyperparameter lists also include values for basic regularization techniques (i.e. weight decay, label smoothing, and dropout). In particular, our best NAdamW hyperparameter list performs well on AlgoPerf held-out workloads not used to construct it, and represents a compelling turn-key approach to tuning when restricted to five or fewer trials. It also outperforms basic learning rate/weight decay sweeps and an off-the-shelf Bayesian optimization tool when restricted to the same budget.
comment: Good defaults for NadamW Optimizer, generalizes well to unseen problems
☆ ReasonGraph: Visualisation of Reasoning Paths
Large Language Models (LLMs) reasoning processes are challenging to analyze due to their complexity and the lack of organized visualization tools. We present ReasonGraph, a web-based platform for visualizing and analyzing LLM reasoning processes. It supports both sequential and tree-based reasoning methods while integrating with major LLM providers and over fifty state-of-the-art models. ReasonGraph incorporates an intuitive UI with meta reasoning method selection, configurable visualization parameters, and a modular framework that facilitates efficient extension. Our evaluation shows high parsing reliability, efficient processing, and strong usability across various downstream applications. By providing a unified visualization framework, ReasonGraph reduces cognitive load in analyzing complex reasoning paths, improves error detection in logical processes, and enables more effective development of LLM-based applications. The platform is open-source, promoting accessibility and reproducibility in LLM reasoning analysis.
☆ Provably Correct Automata Embeddings for Optimal Automata-Conditioned Reinforcement Learning
Automata-conditioned reinforcement learning (RL) has given promising results for learning multi-task policies capable of performing temporally extended objectives given at runtime, done by pretraining and freezing automata embeddings prior to training the downstream policy. However, no theoretical guarantees were given. This work provides a theoretical framework for the automata-conditioned RL problem and shows that it is probably approximately correct learnable. We then present a technique for learning provably correct automata embeddings, guaranteeing optimal multi-task policy learning. Our experimental evaluation confirms these theoretical results.
☆ Enhancing Alzheimer's Diagnosis: Leveraging Anatomical Landmarks in Graph Convolutional Neural Networks on Tetrahedral Meshes
Alzheimer's disease (AD) is a major neurodegenerative condition that affects millions around the world. As one of the main biomarkers in the AD diagnosis procedure, brain amyloid positivity is typically identified by positron emission tomography (PET), which is costly and invasive. Brain structural magnetic resonance imaging (sMRI) may provide a safer and more convenient solution for the AD diagnosis. Recent advances in geometric deep learning have facilitated sMRI analysis and early diagnosis of AD. However, determining AD pathology, such as brain amyloid deposition, in preclinical stage remains challenging, as less significant morphological changes can be observed. As a result, few AD classification models are generalizable to the brain amyloid positivity classification task. Blood-based biomarkers (BBBMs), on the other hand, have recently achieved remarkable success in predicting brain amyloid positivity and identifying individuals with high risk of being brain amyloid positive. However, individuals in medium risk group still require gold standard tests such as Amyloid PET for further evaluation. Inspired by the recent success of transformer architectures, we propose a geometric deep learning model based on transformer that is both scalable and robust to variations in input volumetric mesh size. Our work introduced a novel tokenization scheme for tetrahedral meshes, incorporating anatomical landmarks generated by a pre-trained Gaussian process model. Our model achieved superior classification performance in AD classification task. In addition, we showed that the model was also generalizable to the brain amyloid positivity prediction with individuals in the medium risk class, where BM alone cannot achieve a clear classification. Our work may enrich geometric deep learning research and improve AD diagnosis accuracy without using expensive and invasive PET scans.
☆ Continual Pre-training of MoEs: How robust is your router?
Sparsely-activated Mixture of Experts (MoE) transformers are promising architectures for foundation models. Compared to dense transformers that require the same amount of floating point operations (FLOPs) per forward pass, MoEs benefit from improved sample efficiency at training time and achieve much stronger performance. Many closed-source and open-source frontier language models have thus adopted an MoE architecture. Naturally, practitioners will want to extend the capabilities of these models with large amounts of newly collected data without completely re-training them. Prior work has shown that a simple combination of replay and learning rate re-warming and re-decaying can enable the continual pre-training (CPT) of dense decoder-only transformers with minimal performance degradation compared to full re-training. In the case of decoder-only MoE transformers, however, it is unclear how the routing algorithm will impact continual pre-training performance: 1) do the MoE transformer's routers exacerbate forgetting relative to a dense model?; 2) do the routers maintain a balanced load on previous distributions after CPT?; 3) are the same strategies applied to dense models sufficient to continually pre-train MoE LLMs? In what follows, we conduct a large-scale (>2B parameter switch and DeepSeek MoE LLMs trained for 600B tokens) empirical study across four MoE transformers to answer these questions. Our results establish a surprising robustness to distribution shifts for both Sinkhorn-Balanced and Z-and-Aux-loss-balanced routing algorithms, even in MoEs continually pre-trained without replay. Moreover, we show that MoE LLMs maintain their sample efficiency (relative to a FLOP-matched dense model) during CPT and that they can match the performance of a fully re-trained MoE at a fraction of the cost.
☆ LLMs' Reshaping of People, Processes, Products, and Society in Software Development: A Comprehensive Exploration with Early Adopters
Large language models (LLMs) like OpenAI ChatGPT, Google Gemini, and GitHub Copilot are rapidly gaining traction in the software industry, but their full impact on software engineering remains insufficiently explored. Despite their growing adoption, there is a notable lack of formal, qualitative assessments of how LLMs are applied in real-world software development contexts. To fill this gap, we conducted semi-structured interviews with sixteen early-adopter professional developers to explore their use of LLMs throughout various stages of the software development life cycle. Our investigation examines four dimensions: people - how LLMs affect individual developers and teams; process - how LLMs alter software engineering workflows; product - LLM impact on software quality and innovation; and society - the broader socioeconomic and ethical implications of LLM adoption. Thematic analysis of our data reveals that while LLMs have not fundamentally revolutionized the development process, they have substantially enhanced routine coding tasks, including code generation, refactoring, and debugging. Developers reported the most effective outcomes when providing LLMs with clear, well-defined problem statements, indicating that LLMs excel with decomposed problems and specific requirements. Furthermore, these early-adopters identified that LLMs offer significant value for personal and professional development, aiding in learning new languages and concepts. Early-adopters, highly skilled in software engineering and how LLMs work, identified early and persisting challenges for software engineering, such as inaccuracies in generated content and the need for careful manual review before integrating LLM outputs into production environments. Our study provides a nuanced understanding of how LLMs are shaping the landscape of software development, with their benefits, limitations, and ongoing implications.
☆ Balcony: A Lightweight Approach to Dynamic Inference of Generative Language Models
Deploying large language models (LLMs) in real-world applications is often hindered by strict computational and latency constraints. While dynamic inference offers the flexibility to adjust model behavior based on varying resource budgets, existing methods are frequently limited by hardware inefficiencies or performance degradation. In this paper, we introduce Balcony, a simple yet highly effective framework for depth-based dynamic inference. By freezing the pretrained LLM and inserting additional transformer layers at selected exit points, Balcony maintains the full model's performance while enabling real-time adaptation to different computational budgets. These additional layers are trained using a straightforward self-distillation loss, aligning the sub-model outputs with those of the full model. This approach requires significantly fewer training tokens and tunable parameters, drastically reducing computational costs compared to prior methods. When applied to the LLaMA3-8B model, using only 0.2% of the original pretraining data, Balcony achieves minimal performance degradation while enabling significant speedups. Remarkably, we show that Balcony outperforms state-of-the-art methods such as Flextron and Layerskip as well as other leading compression techniques on multiple models and at various scales, across a variety of benchmarks.
☆ Wanda++: Pruning Large Language Models via Regional Gradients
Large Language Models (LLMs) pruning seeks to remove unimportant weights for inference speedup with minimal performance impact. However, existing methods often suffer from performance loss without full-model sparsity-aware fine-tuning. This paper presents Wanda++, a novel pruning framework that outperforms the state-of-the-art methods by utilizing decoder-block-level \textbf{regional} gradients. Specifically, Wanda++ improves the pruning score with regional gradients for the first time and proposes an efficient regional optimization method to minimize pruning-induced output discrepancies between the dense and sparse decoder output. Notably, Wanda++ improves perplexity by up to 32\% over Wanda in the language modeling task and generalizes effectively to downstream tasks. Further experiments indicate our proposed method is orthogonal to sparsity-aware fine-tuning, where Wanda++ can be combined with LoRA fine-tuning to achieve a similar perplexity improvement as the Wanda method. The proposed method is lightweight, pruning a 7B LLaMA model in under 10 minutes on a single NVIDIA H100 GPU.
☆ LVLM-Compress-Bench: Benchmarking the Broader Impact of Large Vision-Language Model Compression NAACL 2025
Despite recent efforts in understanding the compression impact on large language models (LLMs) in terms of their downstream task performance and trustworthiness on relatively simpler uni-modal benchmarks (for example, question answering, common sense reasoning), their detailed study on multi-modal Large Vision-Language Models (LVLMs) is yet to be unveiled. Towards mitigating this gap, we present LVLM-Compress-Bench, a framework to first thoroughly study the broad impact of compression on the generative performance of LVLMs with multi-modal input driven tasks. In specific, we consider two major classes of compression for autoregressive models, namely KV cache and weight compression, for the dynamically growing intermediate cache and static weights, respectively. We use four LVLM variants of the popular LLaVA framework to present our analysis via integrating various state-of-the-art KV and weight compression methods including uniform, outlier-reduced, and group quantization for the KV cache and weights. With this framework we demonstrate on ten different multi-modal datasets with different capabilities including recognition, knowledge, language generation, spatial awareness, visual reasoning, hallucination and visual illusion identification, toxicity, stereotypes and bias. In specific, our framework demonstrates the compression impact on both general and ethically critical metrics leveraging a combination of real world and synthetic datasets to encompass diverse societal intersectional attributes. Extensive experimental evaluations yield diverse and intriguing observations on the behavior of LVLMs at different quantization budget of KV and weights, in both maintaining and losing performance as compared to the baseline model with FP16 data format. Code will be open-sourced at https://github.com/opengear-project/LVLM-compress-bench.
comment: This work has been accepted to NAACL 2025
☆ A Consensus Privacy Metrics Framework for Synthetic Data
Synthetic data generation is one approach for sharing individual-level data. However, to meet legislative requirements, it is necessary to demonstrate that the individuals' privacy is adequately protected. There is no consolidated standard for measuring privacy in synthetic data. Through an expert panel and consensus process, we developed a framework for evaluating privacy in synthetic data. Our findings indicate that current similarity metrics fail to measure identity disclosure, and their use is discouraged. For differentially private synthetic data, a privacy budget other than close to zero was not considered interpretable. There was consensus on the importance of membership and attribute disclosure, both of which involve inferring personal information about an individual without necessarily revealing their identity. The resultant framework provides precise recommendations for metrics that address these types of disclosures effectively. Our findings further present specific opportunities for future research that can help with widespread adoption of synthetic data.
☆ Quantifying the Relevance of Youth Research Cited in the US Policy Documents
In recent years, there has been a growing concern and emphasis on conducting research beyond academic or scientific research communities, benefiting society at large. A well-known approach to measuring the impact of research on society is enumerating its policy citation(s). Despite the importance of research in informing policy, there is no concrete evidence to suggest the research's relevance in cited policy documents. This is concerning because it may increase the possibility of evidence used in policy being manipulated by individual, social, or political biases that may lead to inappropriate, fragmented, or archaic research evidence in policy. Therefore, it is crucial to identify the degree of relevance between research articles and citing policy documents. In this paper, we examined the scale of contextual relevance of youth-focused research in the referenced US policy documents using natural language processing techniques, state-of-the-art pre-trained Large Language Models (LLMs), and statistical analysis. Our experiments and analysis concluded that youth-related research articles that get US policy citations are mostly relevant to the citing policy documents.
comment: The paper was accepted and presented in IEEE BIG DATA 2024. It has 10 pages, 5 figures, and 4 tables
☆ Beyond RAG: Task-Aware KV Cache Compression for Comprehensive Knowledge Reasoning
Incorporating external knowledge in large language models (LLMs) enhances their utility across diverse applications, but existing methods have trade-offs. Retrieval-Augmented Generation (RAG) fetches evidence via similarity search, but key information may fall outside top ranked results. Long-context models can process multiple documents but are computationally expensive and limited by context window size. Inspired by students condensing study material for open-book exams, we propose task-aware key-value (KV) cache compression, which compresses external knowledge in a zero- or few-shot setup. This enables LLMs to reason efficiently over a compacted representation of all relevant information. Experiments show our approach outperforms both RAG and task-agnostic compression methods. On LongBench v2, it improves accuracy by up to 7 absolute points over RAG with a 30x compression rate, while reducing inference latency from 0.43s to 0.16s. A synthetic dataset highlights that RAG performs well when sparse evidence suffices, whereas task-aware compression is superior for broad knowledge tasks.
☆ Incentivizing Multi-Tenant Split Federated Learning for Foundation Models at the Network Edge
Foundation models (FMs) such as GPT-4 exhibit exceptional generative capabilities across diverse downstream tasks through fine-tuning. Split Federated Learning (SFL) facilitates privacy-preserving FM fine-tuning on resource-constrained local devices by offloading partial FM computations to edge servers, enabling device-edge synergistic fine-tuning. Practical edge networks often host multiple SFL tenants to support diversified downstream tasks. However, existing research primarily focuses on single-tenant SFL scenarios, and lacks tailored incentive mechanisms for multi-tenant settings, which are essential to effectively coordinate self-interested local devices for participation in various downstream tasks, ensuring that each SFL tenant's distinct FM fine-tuning requirements (e.g., FM types, performance targets, and fine-tuning deadlines) are met. To address this gap, we propose a novel Price-Incentive Mechanism (PRINCE) that guides multiple SFL tenants to offer strategic price incentives, which solicit high-quality device participation for efficient FM fine-tuning. Specifically, we first develop a bias-resilient global SFL model aggregation scheme to eliminate model biases caused by independent device participation. We then derive a rigorous SFL convergence bound to evaluate the contributions of heterogeneous devices to FM performance improvements, guiding the incentive strategies of SFL tenants. Furthermore, we model inter-tenant device competition as a congestion game for Stackelberg equilibrium (SE) analysis, deriving each SFL tenant's optimal incentive strategy. Extensive simulations involving four representative SFL tenant types (ViT, BERT, Whisper, and LLaMA) across diverse data modalities (text, images, and audio) demonstrate that PRINCE accelerates FM fine-tuning by up to 3.07x compared to state-of-the-art approaches, while consistently meeting fine-tuning performance targets.
comment: Index Terms: Foundation models, Edge computing, Split federated learning, Multi-tenant system, Incentive mechanism
☆ Data-Efficient Learning from Human Interventions for Mobile Robots ICRA 2025
Mobile robots are essential in applications such as autonomous delivery and hospitality services. Applying learning-based methods to address mobile robot tasks has gained popularity due to its robustness and generalizability. Traditional methods such as Imitation Learning (IL) and Reinforcement Learning (RL) offer adaptability but require large datasets, carefully crafted reward functions, and face sim-to-real gaps, making them challenging for efficient and safe real-world deployment. We propose an online human-in-the-loop learning method PVP4Real that combines IL and RL to address these issues. PVP4Real enables efficient real-time policy learning from online human intervention and demonstration, without reward or any pretraining, significantly improving data efficiency and training safety. We validate our method by training two different robots -- a legged quadruped, and a wheeled delivery robot -- in two mobile robot tasks, one of which even uses raw RGBD image as observation. The training finishes within 15 minutes. Our experiments show the promising future of human-in-the-loop learning in addressing the data efficiency issue in real-world robotic tasks. More information is available at: https://metadriverse.github.io/pvp4real/
comment: ICRA 2025. Webpage: https://metadriverse.github.io/pvp4real/
☆ Prediction of Frozen Region Growth in Kidney Cryoablation Intervention Using a 3D Flow-Matching Model MICCAI 2025
This study presents a 3D flow-matching model designed to predict the progression of the frozen region (iceball) during kidney cryoablation. Precise intraoperative guidance is critical in cryoablation to ensure complete tumor eradication while preserving adjacent healthy tissue. However, conventional methods, typically based on physics driven or diffusion based simulations, are computationally demanding and often struggle to represent complex anatomical structures accurately. To address these limitations, our approach leverages intraoperative CT imaging to inform the model. The proposed 3D flow matching model is trained to learn a continuous deformation field that maps early-stage CT scans to future predictions. This transformation not only estimates the volumetric expansion of the iceball but also generates corresponding segmentation masks, effectively capturing spatial and morphological changes over time. Quantitative analysis highlights the model robustness, demonstrating strong agreement between predictions and ground-truth segmentations. The model achieves an Intersection over Union (IoU) score of 0.61 and a Dice coefficient of 0.75. By integrating real time CT imaging with advanced deep learning techniques, this approach has the potential to enhance intraoperative guidance in kidney cryoablation, improving procedural outcomes and advancing the field of minimally invasive surgery.
comment: MICCAI 2025 submitted version
☆ Energy-Latency Attacks: A New Adversarial Threat to Deep Learning
The growing computational demand for deep neural networks ( DNNs) has raised concerns about their energy consumption and carbon footprint, particularly as the size and complexity of the models continue to increase. To address these challenges, energy-efficient hardware and custom accelerators have become essential. Additionally, adaptable DNN s are being developed to dynamically balance performance and efficiency. The use of these strategies became more common to enable sustainable AI deployment. However, these efficiency-focused designs may also introduce vulnerabilities, as attackers can potentially exploit them to increase latency and energy usage by triggering their worst-case-performance scenarios. This new type of attack, called energy-latency attacks, has recently gained significant research attention, focusing on the vulnerability of DNN s to this emerging attack paradigm, which can trigger denial-of-service ( DoS) attacks. This paper provides a comprehensive overview of current research on energy-latency attacks, categorizing them using the established taxonomy for traditional adversarial attacks. We explore different metrics used to measure the success of these attacks and provide an analysis and comparison of existing attack strategies. We also analyze existing defense mechanisms and highlight current challenges and potential areas for future research in this developing field. The GitHub page for this work can be accessed at https://github.com/hbrachemi/Survey_energy_attacks/
☆ SafeArena: Evaluating the Safety of Autonomous Web Agents
LLM-based agents are becoming increasingly proficient at solving web-based tasks. With this capability comes a greater risk of misuse for malicious purposes, such as posting misinformation in an online forum or selling illicit substances on a website. To evaluate these risks, we propose SafeArena, the first benchmark to focus on the deliberate misuse of web agents. SafeArena comprises 250 safe and 250 harmful tasks across four websites. We classify the harmful tasks into five harm categories -- misinformation, illegal activity, harassment, cybercrime, and social bias, designed to assess realistic misuses of web agents. We evaluate leading LLM-based web agents, including GPT-4o, Claude-3.5 Sonnet, Qwen-2-VL 72B, and Llama-3.2 90B, on our benchmark. To systematically assess their susceptibility to harmful tasks, we introduce the Agent Risk Assessment framework that categorizes agent behavior across four risk levels. We find agents are surprisingly compliant with malicious requests, with GPT-4o and Qwen-2 completing 34.7% and 27.3% of harmful requests, respectively. Our findings highlight the urgent need for safety alignment procedures for web agents. Our benchmark is available here: https://safearena.github.io
☆ INTENT: Trajectory Prediction Framework with Intention-Guided Contrastive Clustering
Accurate trajectory prediction of road agents (e.g., pedestrians, vehicles) is an essential prerequisite for various intelligent systems applications, such as autonomous driving and robotic navigation. Recent research highlights the importance of environmental contexts (e.g., maps) and the "multi-modality" of trajectories, leading to increasingly complex model structures. However, real-world deployments require lightweight models that can quickly migrate and adapt to new environments. Additionally, the core motivations of road agents, referred to as their intentions, deserves further exploration. In this study, we advocate that understanding and reasoning road agents' intention plays a key role in trajectory prediction tasks, and the main challenge is that the concept of intention is fuzzy and abstract. To this end, we present INTENT, an efficient intention-guided trajectory prediction model that relies solely on information contained in the road agent's trajectory. Our model distinguishes itself from existing models in several key aspects: (i) We explicitly model road agents' intentions through contrastive clustering, accommodating the fuzziness and abstraction of human intention in their trajectories. (ii) The proposed INTENT is based solely on multi-layer perceptrons (MLPs), resulting in reduced training and inference time, making it very efficient and more suitable for real-world deployment. (iii) By leveraging estimated intentions and an innovative algorithm for transforming trajectory observations, we obtain more robust trajectory representations that lead to superior prediction accuracy. Extensive experiments on real-world trajectory datasets for pedestrians and autonomous vehicles demonstrate the effectiveness and efficiency of INTENT.
☆ Federated Inverse Probability Treatment Weighting for Individual Treatment Effect Estimation
Individual treatment effect (ITE) estimation is to evaluate the causal effects of treatment strategies on some important outcomes, which is a crucial problem in healthcare. Most existing ITE estimation methods are designed for centralized settings. However, in real-world clinical scenarios, the raw data are usually not shareable among hospitals due to the potential privacy and security risks, which makes the methods not applicable. In this work, we study the ITE estimation task in a federated setting, which allows us to harness the decentralized data from multiple hospitals. Due to the unavoidable confounding bias in the collected data, a model directly learned from it would be inaccurate. One well-known solution is Inverse Probability Treatment Weighting (IPTW), which uses the conditional probability of treatment given the covariates to re-weight each training example. Applying IPTW in a federated setting, however, is non-trivial. We found that even with a well-estimated conditional probability, the local model training step using each hospital's data alone would still suffer from confounding bias. To address this, we propose FED-IPTW, a novel algorithm to extend IPTW into a federated setting that enforces both global (over all the data) and local (within each hospital) decorrelation between covariates and treatments. We validated our approach on the task of comparing the treatment effects of mechanical ventilation on improving survival probability for patients with breadth difficulties in the intensive care unit (ICU). We conducted experiments on both synthetic and real-world eICU datasets and the results show that FED-IPTW outperform state-of-the-art methods on all the metrics on factual prediction and ITE estimation tasks, paving the way for personalized treatment strategy design in mechanical ventilation usage.
☆ Collaborative Evaluation of Deepfake Text with Deliberation-Enhancing Dialogue Systems
The proliferation of generative models has presented significant challenges in distinguishing authentic human-authored content from deepfake content. Collaborative human efforts, augmented by AI tools, present a promising solution. In this study, we explore the potential of DeepFakeDeLiBot, a deliberation-enhancing chatbot, to support groups in detecting deepfake text. Our findings reveal that group-based problem-solving significantly improves the accuracy of identifying machine-generated paragraphs compared to individual efforts. While engagement with DeepFakeDeLiBot does not yield substantial performance gains overall, it enhances group dynamics by fostering greater participant engagement, consensus building, and the frequency and diversity of reasoning-based utterances. Additionally, participants with higher perceived effectiveness of group collaboration exhibited performance benefits from DeepFakeDeLiBot. These findings underscore the potential of deliberative chatbots in fostering interactive and productive group dynamics while ensuring accuracy in collaborative deepfake text detection. \textit{Dataset and source code used in this study will be made publicly available upon acceptance of the manuscript.
comment: 15
☆ VQEL: Enabling Self-Developed Symbolic Language in Agents through Vector Quantization in Emergent Language Games
In the field of emergent language, efforts have traditionally focused on developing communication protocols through interactions between agents in referential games. However, the aspect of internal language learning, where language serves not only as a communicative tool with others but also as a means for individual thinking, self-reflection, and problem-solving remains underexplored. Developing a language through self-play, without another agent's involvement, poses a unique challenge. It requires an agent to craft symbolic representations and train them using direct gradient methods. The challenge here is that if an agent attempts to learn symbolic representations through self-play using conventional modeling and techniques such as REINFORCE, the solution will offer no advantage over previous multi-agent approaches. We introduce VQEL, a novel method that incorporates Vector Quantization into the agents' architecture, enabling them to autonomously invent and develop discrete symbolic representations in a self-play referential game. Following the self-play phase, agents can enhance their language through reinforcement learning and interactions with other agents in the mutual-play phase. Our experiments across various datasets demonstrate that VQEL not only outperforms the traditional REINFORCE method but also benefits from improved control and reduced susceptibility to collapse, thanks to the incorporation of vector quantization.
☆ Learning-based GNSS Uncertainty Quantification using Continuous-Time Factor Graph Optimization
This short paper presents research findings on two learning-based methods for quantifying measurement uncertainties in global navigation satellite systems (GNSS). We investigate two learning strategies: offline learning for outlier prediction and online learning for noise distribution approximation, specifically applied to GNSS pseudorange observations. To develop and evaluate these learning methods, we introduce a novel multisensor state estimator that accurately and robustly estimates trajectory from multiple sensor inputs, critical for deriving GNSS measurement residuals used to train the uncertainty models. We validate the proposed learning-based models using real-world sensor data collected in diverse urban environments. Experimental results demonstrate that both models effectively handle GNSS outliers and improve state estimation performance. Furthermore, we provide insightful discussions to motivate future research toward developing a federated framework for robust vehicle localization in challenging environments.
comment: This extended abstract has been accepted to the 1st German Robotic Conference
☆ Curiosity-Driven Imagination: Discovering Plan Operators and Learning Associated Policies for Open-World Adaptation ICRA 2025
Adapting quickly to dynamic, uncertain environments-often called "open worlds"-remains a major challenge in robotics. Traditional Task and Motion Planning (TAMP) approaches struggle to cope with unforeseen changes, are data-inefficient when adapting, and do not leverage world models during learning. We address this issue with a hybrid planning and learning system that integrates two models: a low level neural network based model that learns stochastic transitions and drives exploration via an Intrinsic Curiosity Module (ICM), and a high level symbolic planning model that captures abstract transitions using operators, enabling the agent to plan in an "imaginary" space and generate reward machines. Our evaluation in a robotic manipulation domain with sequential novelty injections demonstrates that our approach converges faster and outperforms state-of-the-art hybrid methods.
comment: 8 pages, 4 figures. Accepted at ICRA 2025
☆ HILGEN: Hierarchically-Informed Data Generation for Biomedical NER Using Knowledgebases and Large Language Models
We present HILGEN, a Hierarchically-Informed Data Generation approach that combines domain knowledge from the Unified Medical Language System (UMLS) with synthetic data generated by large language models (LLMs), specifically GPT-3.5. Our approach leverages UMLS's hierarchical structure to expand training data with related concepts, while incorporating contextual information from LLMs through targeted prompts aimed at automatically generating synthetic examples for sparsely occurring named entities. The performance of the HILGEN approach was evaluated across four biomedical NER datasets (MIMIC III, BC5CDR, NCBI-Disease, and Med-Mentions) using BERT-Large and DANN (Data Augmentation with Nearest Neighbor Classifier) models, applying various data generation strategies, including UMLS, GPT-3.5, and their best ensemble. For the BERT-Large model, incorporating UMLS led to an average F1 score improvement of 40.36%, while using GPT-3.5 resulted in a comparable average increase of 40.52%. The Best-Ensemble approach using BERT-Large achieved the highest improvement, with an average increase of 42.29%. DANN model's F1 score improved by 22.74% on average using the UMLS-only approach. The GPT-3.5-based method resulted in a 21.53% increase, and the Best-Ensemble DANN model showed a more notable improvement, with an average increase of 25.03%. Our proposed HILGEN approach improves NER performance in few-shot settings without requiring additional manually annotated data. Our experiments demonstrate that an effective strategy for optimizing biomedical NER is to combine biomedical knowledge curated in the past, such as the UMLS, and generative LLMs to create synthetic training instances. Our future research will focus on exploring additional innovative synthetic data generation strategies for further improving NER performance.
☆ Adapt3R: Adaptive 3D Scene Representation for Domain Transfer in Imitation Learning
Imitation Learning (IL) has been very effective in training robots to perform complex and diverse manipulation tasks. However, its performance declines precipitously when the observations are out of the training distribution. 3D scene representations that incorporate observations from calibrated RGBD cameras have been proposed as a way to improve generalizability of IL policies, but our evaluations in cross-embodiment and novel camera pose settings found that they show only modest improvement. To address those challenges, we propose Adaptive 3D Scene Representation (Adapt3R), a general-purpose 3D observation encoder which uses a novel architecture to synthesize data from one or more RGBD cameras into a single vector that can then be used as conditioning for arbitrary IL algorithms. The key idea is to use a pretrained 2D backbone to extract semantic information about the scene, using 3D only as a medium for localizing this semantic information with respect to the end-effector. We show that when trained end-to-end with several SOTA multi-task IL algorithms, Adapt3R maintains these algorithms' multi-task learning capacity while enabling zero-shot transfer to novel embodiments and camera poses. Furthermore, we provide a detailed suite of ablation and sensitivity experiments to elucidate the design space for point cloud observation encoders.
comment: Videos, code, and data: https://pairlab.github.io/Adapt3R
☆ Are Large Language Models Good In-context Learners for Financial Sentiment Analysis? ICLR 2025
Recently, large language models (LLMs) with hundreds of billions of parameters have demonstrated the emergent ability, surpassing traditional methods in various domains even without fine-tuning over domain-specific data. However, when it comes to financial sentiment analysis (FSA)$\unicode{x2013}$a fundamental task in financial AI$\unicode{x2013}$these models often encounter various challenges, such as complex financial terminology, subjective human emotions, and ambiguous inclination expressions. In this paper, we aim to answer the fundamental question: whether LLMs are good in-context learners for FSA? Unveiling this question can yield informative insights on whether LLMs can learn to address the challenges by generalizing in-context demonstrations of financial document-sentiment pairs to the sentiment analysis of new documents, given that finetuning these models on finance-specific data is difficult, if not impossible at all. To the best of our knowledge, this is the first paper exploring in-context learning for FSA that covers most modern LLMs (recently released DeepSeek V3 included) and multiple in-context sample selection methods. Comprehensive experiments validate the in-context learning capability of LLMs for FSA.
comment: Accepted by ICLR 2025 Workshop on Advances in Financial AI
☆ TinyR1-32B-Preview: Boosting Accuracy with Branch-Merge Distillation
The challenge of reducing the size of Large Language Models (LLMs) while maintaining their performance has gained significant attention. However, existing methods, such as model distillation and transfer learning, often fail to achieve high accuracy. To address this limitation, we introduce the Branch-Merge distillation approach, which enhances model compression through two phases: (1) the Branch Phase, where knowledge from a large teacher model is \textit{selectively distilled} into specialized student models via domain-specific supervised fine-tuning (SFT); And (2) the Merge Phase, where these student models are merged to enable cross-domain knowledge transfer and improve generalization. We validate our distillation approach using DeepSeek-R1 as the teacher and DeepSeek-R1-Distill-Qwen-32B as the student. The resulting merged model, TinyR1-32B-Preview, outperforms its counterpart DeepSeek-R1-Distill-Qwen-32B across multiple benchmarks, including Mathematics (+5.5 points), Coding (+4.4 points) and Science (+2.9 points), while achieving near-equal performance to DeepSeek-R1 on AIME 2024. The Branch-Merge distillation approach provides a scalable solution for creating smaller, high-performing LLMs with reduced computational cost and time.
comment: Preprint
☆ Label Distribution Learning-Enhanced Dual-KNN for Text Classification SDM 2024
Many text classification methods usually introduce external information (e.g., label descriptions and knowledge bases) to improve the classification performance. Compared to external information, some internal information generated by the model itself during training, like text embeddings and predicted label probability distributions, are exploited poorly when predicting the outcomes of some texts. In this paper, we focus on leveraging this internal information, proposing a dual $k$ nearest neighbor (D$k$NN) framework with two $k$NN modules, to retrieve several neighbors from the training set and augment the distribution of labels. For the $k$NN module, it is easily confused and may cause incorrect predictions when retrieving some nearest neighbors from noisy datasets (datasets with labeling errors) or similar datasets (datasets with similar labels). To address this issue, we also introduce a label distribution learning module that can learn label similarity, and generate a better label distribution to help models distinguish texts more effectively. This module eases model overfitting and improves final classification performance, hence enhancing the quality of the retrieved neighbors by $k$NN modules during inference. Extensive experiments on the benchmark datasets verify the effectiveness of our method.
comment: Accepted by SDM 2024
☆ Privacy in Responsible AI: Approaches to Facial Recognition from Cloud Providers
As the use of facial recognition technology is expanding in different domains, ensuring its responsible use is gaining more importance. This paper conducts a comprehensive literature review of existing studies on facial recognition technology from the perspective of privacy, which is one of the key Responsible AI principles. Cloud providers, such as Microsoft, AWS, and Google, are at the forefront of delivering facial-related technology services, but their approaches to responsible use of these technologies vary significantly. This paper compares how these cloud giants implement the privacy principle into their facial recognition and detection services. By analysing their approaches, it identifies both common practices and notable differences. The results of this research will be valuable for developers and businesses by providing them insights into best practices of three major companies for integration responsible AI, particularly privacy, into their cloud-based facial recognition technologies.
☆ E4: Energy-Efficient DNN Inference for Edge Video Analytics Via Early-Exit and DVFS AAAI 2025
Deep neural network (DNN) models are increasingly popular in edge video analytic applications. However, the compute-intensive nature of DNN models pose challenges for energy-efficient inference on resource-constrained edge devices. Most existing solutions focus on optimizing DNN inference latency and accuracy, often overlooking energy efficiency. They also fail to account for the varying complexity of video frames, leading to sub-optimal performance in edge video analytics. In this paper, we propose an Energy-Efficient Early-Exit (E4) framework that enhances DNN inference efficiency for edge video analytics by integrating a novel early-exit mechanism with dynamic voltage and frequency scaling (DVFS) governors. It employs an attention-based cascade module to analyze video frame diversity and automatically determine optimal DNN exit points. Additionally, E4 features a just-in-time (JIT) profiler that uses coordinate descent search to co-optimize CPU and GPU clock frequencies for each layer before the DNN exit points. Extensive evaluations demonstrate that E4 outperforms current state-of-the-art methods, achieving up to 2.8x speedup and 26% average energy saving while maintaining high accuracy.
comment: 9 pages, 5 figures, to be published in AAAI 2025
☆ Manboformer: Learning Gaussian Representations via Spatial-temporal Attention Mechanism
Compared with voxel-based grid prediction, in the field of 3D semantic occupation prediction for autonomous driving, GaussianFormer proposed using 3D Gaussian to describe scenes with sparse 3D semantic Gaussian based on objects is another scheme with lower memory requirements. Each 3D Gaussian function represents a flexible region of interest and its semantic features, which are iteratively refined by the attention mechanism. In the experiment, it is found that the Gaussian function required by this method is larger than the query resolution of the original dense grid network, resulting in impaired performance. Therefore, we consider optimizing GaussianFormer by using unused temporal information. We learn the Spatial-Temporal Self-attention Mechanism from the previous grid-given occupation network and improve it to GaussianFormer. The experiment was conducted with the NuScenes dataset, and the experiment is currently underway.
♻ ☆ SMAC-R1: The Emergence of Intelligence in Decision-Making Tasks
StarCraft Multi-Agent Challenge (SMAC) has been one of the most commonly used experimental environments in multi-agent reinforcement learning (MARL), where the specific task is to control a set number of allied units to defeat enemy forces. Traditional MARL algorithms often require interacting with the environment for millions of steps to train a parametric model, of which the resulting policies are typically non-interpretable with weak transferability. In this paper, we introduce SMAC-R1 which is based on the Qwen2.5-7B-Base LLM distilled from DeepSeek-Coder-v2.5-236B. Similar to online reinforcement learning after behavior cloning in offline learning process, in our pipeline, agents leverage the DeepSeek LLM to generate decision tree code by providing task descriptions, and the agents are further self-reflected using feedback from the rewards provided by the environment. Based on that, we augment the generated scripts to fine-tune a small LLM, Qwen2.5-7B-Base, to distill the decision-making ability via Supervised Fine-Tuning (SFT) and enhance the script generation ability by the Group Relative Policy Optimization (GRPO) algorithm. We conduct experiments in the original 23 SMAC tasks and 10 newly-designed tasks to demonstrate that our method can produce high-quality, interpretable decision trees with minimal environmental exploration. Moreover, these scripts exhibit strong transferability, successfully applying to homogeneous SMAC environments without modification. We believe this approach offers a new direction for solving decision-making tasks and domain-specific LLM training pipelines in the future.
♻ ☆ Decoupled Recommender Systems: Exploring Alternative Recommender Ecosystem Designs
Recommender ecosystems are an emerging subject of research. Such research examines how the characteristics of algorithms, recommendation consumers, and item providers influence system dynamics and long-term outcomes. One architectural possibility that has not yet been widely explored in this line of research is the consequences of a configuration in which recommendation algorithms are decoupled from the platforms they serve. This is sometimes called "the friendly neighborhood algorithm store" or "middleware" model. We are particularly interested in how such architectures might offer a range of different distributions of utility across consumers, providers, and recommendation platforms. In this paper, we create a model of a recommendation ecosystem that incorporates algorithm choice and examine the outcomes of such a design.
♻ ☆ Towards Visual Discrimination and Reasoning of Real-World Physical Dynamics: Physics-Grounded Anomaly Detection CVPR 2025
Humans detect real-world object anomalies by perceiving, interacting, and reasoning based on object-conditioned physical knowledge. The long-term goal of Industrial Anomaly Detection (IAD) is to enable machines to autonomously replicate this skill. However, current IAD algorithms are largely developed and tested on static, semantically simple datasets, which diverge from real-world scenarios where physical understanding and reasoning are essential. To bridge this gap, we introduce the Physics Anomaly Detection (Phys-AD) dataset, the first large-scale, real-world, physics-grounded video dataset for industrial anomaly detection. Collected using a real robot arm and motor, Phys-AD provides a diverse set of dynamic, semantically rich scenarios. The dataset includes more than 6400 videos across 22 real-world object categories, interacting with robot arms and motors, and exhibits 47 types of anomalies. Anomaly detection in Phys-AD requires visual reasoning, combining both physical knowledge and video content to determine object abnormality. We benchmark state-of-the-art anomaly detection methods under three settings: unsupervised AD, weakly-supervised AD, and video-understanding AD, highlighting their limitations in handling physics-grounded anomalies. Additionally, we introduce the Physics Anomaly Explanation (PAEval) metric, designed to assess the ability of visual-language foundation models to not only detect anomalies but also provide accurate explanations for their underlying physical causes. Our dataset and benchmark will be publicly available.
comment: Accepted by CVPR 2025
♻ ☆ Unified Mind Model: Reimagining Autonomous Agents in the LLM Era
Large language models (LLMs) have recently demonstrated remarkable capabilities across domains, tasks, and languages (e.g., ChatGPT and GPT-4), reviving the research of general autonomous agents with human-like cognitive abilities. Such human-level agents require semantic comprehension and instruction-following capabilities, which exactly fall into the strengths of LLMs. Although there have been several initial attempts to build human-level agents based on LLMs, the theoretical foundation remains a challenging open problem. In this paper, we propose a novel theoretical cognitive architecture, the Unified Mind Model (UMM), which offers guidance to facilitate the rapid creation of autonomous agents with human-level cognitive abilities. Specifically, our UMM starts with the global workspace theory and further leverage LLMs to enable the agent with various cognitive abilities, such as multi-modal perception, planning, reasoning, tool use, learning, memory, reflection and motivation. Building upon UMM, we then develop an agent-building engine, MindOS, which allows users to quickly create domain-/task-specific autonomous agents without any programming effort.
comment: 18 pages
♻ ☆ A Survey on LLM Test-Time Compute via Search: Tasks, LLM Profiling, Search Algorithms, and Relevant Frameworks
LLM test-time compute (or LLM inference) via search has emerged as a promising research area with rapid developments. However, current frameworks often adopt distinct perspectives on three key aspects (task definition, LLM profiling, and search procedures), making direct comparisons challenging. Moreover, the search algorithms employed often diverge from standard implementations, and their specific characteristics are not thoroughly specified. In this survey, we provide a comprehensive technical review that unifies task definitions and provides modular definitions of LLM profiling and search procedures. The definitions enable precise comparisons of various LLM inference frameworks while highlighting their departures from conventional search algorithms. We also discuss the applicability, performance, and efficiency of these methods. We have updated our content to include the latest papers, and the differences between versions are highlighted in the appendix. For further details and ongoing updates, please refer to our GitHub repository: https://github.com/xinzhel/LLM-Agent-Survey/blob/main/search.md
comment: Under Review
♻ ☆ When Claims Evolve: Evaluating and Enhancing the Robustness of Embedding Models Against Misinformation Edits
Online misinformation remains a critical challenge, and fact-checkers increasingly rely on embedding-based methods to retrieve relevant fact-checks. Yet, when debunked claims reappear in edited forms, the performance of these methods is unclear. In this work, we introduce a taxonomy of six common real-world misinformation edits and propose a perturbation framework that generates valid, natural claim variations. Our multi-stage retrieval evaluation reveals that standard embedding models struggle with user-introduced edits, while LLM-distilled embeddings offer improved robustness at a higher computational cost. Although a strong reranker helps mitigate some issues, it cannot fully compensate for first-stage retrieval gaps. Addressing these retrieval gaps, our train- and inference-time mitigation approaches enhance in-domain robustness by up to 17 percentage points and boost out-of-domain generalization by 10 percentage points over baseline models. Overall, our findings provide practical improvements to claim-matching systems, enabling more reliable fact-checking of evolving misinformation.
♻ ☆ Prompt-Matcher: Leveraging Large Models to Reduce Uncertainty in Schema Matching Results
Schema matching is the process of identifying correspondences between the elements of two given schemata, essential for database management systems, data integration, and data warehousing. For datasets across different scenarios, the optimal schema matching algorithm is different. For single algorithm, hyperparameter tuning also cases multiple results. All results assigned equal probabilities are stored in probabilistic databases to facilitate uncertainty management. The substantial degree of uncertainty diminishes the efficiency and reliability of data processing, thereby precluding the provision of more accurate information for decision-makers. To address this problem, we introduce a new approach based on fine-grained correspondence verification with specific prompt of Large Language Model. Our approach is an iterative loop that consists of three main components: (1) the correspondence selection algorithm, (2) correspondence verification, and (3) the update of probability distribution. The core idea is that correspondences intersect across multiple results, thereby linking the verification of correspondences to the reduction of uncertainty in candidate results. The task of selecting an optimal correspondence set to maximize the anticipated uncertainty reduction within a fixed budgetary framework is established as an NP-hard problem. We propose a novel $(1-1/e)$-approximation algorithm that significantly outperforms brute algorithm in terms of computational efficiency. To enhance correspondence verification, we have developed two prompt templates that enable GPT-4 to achieve state-of-the-art performance across two established benchmark datasets. Our comprehensive experimental evaluation demonstrates the superior effectiveness and robustness of the proposed approach.
♻ ☆ Explaining Caption-Image Interactions in CLIP models with Second-Order Attributions
Dual encoder architectures like CLIP models map two types of inputs into a shared embedding space and predict similarities between them. Despite their success, it is, however, not understood how these models compare their two inputs. Common first-order feature-attribution methods can only provide limited insights into dual-encoders since their predictions depend on feature-interactions rather than on individual features. In this paper, we first derive a second-order method enabling the attribution of predictions by any differentiable dual encoder onto feature-interactions between its inputs. Second, we apply our method to CLIP models and show that they learn fine-grained correspondences between parts of captions and regions in images. They match objects across input modes also account for mismatches. This visual-linguistic grounding ability, however, varies heavily between object classes and exhibits pronounced out-of-domain effects. We can identify individual errors as well as systematic failure categories including object coverage, unusual scenes and correlated contexts.
♻ ☆ DiRe-JAX: A JAX based Dimensionality Reduction Algorithm for Large-scale Data
DiRe - JAX is a new dimensionality reduction toolkit designed to address some of the challenges faced by traditional methods like UMAP and tSNE such as loss of global structure and computational efficiency. Built on the JAX framework, DiRe leverages modern hardware acceleration to provide an efficient, scalable, and interpretable solution for visualizing complex data structures, and for quantitative analysis of lower-dimensional embeddings. The toolkit shows considerable promise in preserving both local and global structures within the data as compared to state-of-the-art UMAP and tSNE implementations. This makes it suitable for a wide range of applications in machine learning, bio-informatics, and data science.
comment: 22 pages, 12 figures Github repository available at https://github.com/sashakolpakov/dire-jax Package available on PyPi https://pypi.org/project/dire-jax/
♻ ☆ MobileViM: A Light-weight and Dimension-independent Vision Mamba for 3D Medical Image Analysis
Efficient evaluation of three-dimensional (3D) medical images is crucial for diagnostic and therapeutic practices in healthcare. Recent years have seen a substantial uptake in applying deep learning and computer vision to analyse and interpret medical images. Traditional approaches, such as convolutional neural networks (CNNs) and vision transformers (ViTs), face significant computational challenges, prompting the need for architectural advancements. Recent efforts have led to the introduction of novel architectures like the ``Mamba'' model as alternative solutions to traditional CNNs or ViTs. The Mamba model excels in the linear processing of one-dimensional data with low computational demands. However, Mamba's potential for 3D medical image analysis remains underexplored and could face significant computational challenges as the dimension increases. This manuscript presents MobileViM, a streamlined architecture for efficient segmentation of 3D medical images. In the MobileViM network, we invent a new dimension-independent mechanism and a dual-direction traversing approach to incorporate with a vision-Mamba-based framework. MobileViM also features a cross-scale bridging technique to improve efficiency and accuracy across various medical imaging modalities. With these enhancements, MobileViM achieves segmentation speeds exceeding 90 frames per second (FPS) on a single graphics processing unit (i.e., NVIDIA RTX 4090). This performance is over 24 FPS faster than the state-of-the-art deep learning models for processing 3D images with the same computational resources. In addition, experimental evaluations demonstrate that MobileViM delivers superior performance, with Dice similarity scores reaching 92.72%, 86.69%, 80.46%, and 77.43% for PENGWIN, BraTS2024, ATLAS, and Toothfairy2 datasets, respectively, which significantly surpasses existing models.
comment: The corresponding author disagrees with the manuscript submitted to arXiv
♻ ☆ Union of Experts: Adapting Hierarchical Routing to Equivalently Decomposed Transformer
We propose Union-of-Experts (UoE), which decomposes transformer into an equitant group of experts, and then implement selective routing on input data and experts. Our approach advances MoE design with four key innovations: (1) We conducted equitant expert decomposition on both MLP blocks and attention blocks based on matrix partition in tensor parallelism. (2) We developed two routing paradigms: patch-wise data selection and expert selection, to apply routing across different levels. (3) We design the architecture of UoE model, including Selective Multi-Head Attention (SMHA) and Union-of-MLP-Experts (UoME). (4) We develop parallel implementation of UoE's routing and computation operation, and optimize efficiency based on the hardware processing analysis. The experiments demonstrate that the UoE model surpass Full Attention, state-of-art MoEs and efficient transformers (including the model architecture of recently proposed DeepSeek-V3) in several tasks across image and natural language domains. In language modeling tasks, we achieve an average reduction of 2.38 in perplexity compared to the best-performed MoE method with an average of 76% FLOPs. In Long Range Arena benchmark, we recorded an average score that is at least 0.68% higher than all comparison models including Full Attention, MoEs, and transformer variants, with only 50% FLOPs of the best MoE method. In image classification, our model yielded an average accuracy improvement of 1.75% than the best model while maintaining comparable FLOPs. The source codes are available at https://github.com/YujiaoYang-work/UoE.
comment: 17 pages
♻ ☆ EchoQA: A Large Collection of Instruction Tuning Data for Echocardiogram Reports NeurIPS
We introduce a novel question-answering (QA) dataset using echocardiogram reports sourced from the Medical Information Mart for Intensive Care database. This dataset is specifically designed to enhance QA systems in cardiology, consisting of 771,244 QA pairs addressing a wide array of cardiac abnormalities and their severity. We compare large language models (LLMs), including open-source and biomedical-specific models for zero-shot evaluation, and closed-source models for zero-shot and three-shot evaluation. Our results show that fine-tuning LLMs improves performance across various QA metrics, validating the value of our dataset. Clinicians also qualitatively evaluate the best-performing model to assess the LLM responses for correctness. Further, we conduct fine-grained fairness audits to assess the bias-performance trade-off of LLMs across various social determinants of health. Our objective is to propel the field forward by establishing a benchmark for LLM AI agents aimed at supporting clinicians with cardiac differential diagnoses, thereby reducing the documentation burden that contributes to clinician burnout and enabling healthcare professionals to focus more on patient care.
comment: NeurIPS SafeGenAI 2024
♻ ☆ How Far Are We on the Decision-Making of LLMs? Evaluating LLMs' Gaming Ability in Multi-Agent Environments ICLR 2025
Decision-making is a complex process requiring diverse abilities, making it an excellent framework for evaluating Large Language Models (LLMs). Researchers have examined LLMs' decision-making through the lens of Game Theory. However, existing evaluation mainly focus on two-player scenarios where an LLM competes against another. Additionally, previous benchmarks suffer from test set leakage due to their static design. We introduce GAMA($\gamma$)-Bench, a new framework for evaluating LLMs' Gaming Ability in Multi-Agent environments. It includes eight classical game theory scenarios and a dynamic scoring scheme specially designed to quantitatively assess LLMs' performance. $\gamma$-Bench allows flexible game settings and adapts the scoring system to different game parameters, enabling comprehensive evaluation of robustness, generalizability, and strategies for improvement. Our results indicate that GPT-3.5 demonstrates strong robustness but limited generalizability, which can be enhanced using methods like Chain-of-Thought. We also evaluate 13 LLMs from 6 model families, including GPT-3.5, GPT-4, Gemini, LLaMA-3.1, Mixtral, and Qwen-2. Gemini-1.5-Pro outperforms others, scoring of $69.8$ out of $100$, followed by LLaMA-3.1-70B ($65.9$) and Mixtral-8x22B ($62.4$). Our code and experimental results are publicly available at https://github.com/CUHK-ARISE/GAMABench.
comment: Accepted to ICLR 2025; 11 pages of main text; 26 pages of appendices; Included models: GPT-3.5-{0613, 1106, 0125}, GPT-4-0125, GPT-4o-0806, Gemini-{1.0, 1.5)-Pro, LLaMA-3.1-{7, 70, 405}B, Mixtral-8x{7, 22}B, Qwen-2-72B
♻ ☆ DEFT: Differentiable Branched Discrete Elastic Rods for Modeling Furcated DLOs in Real-Time
Autonomous wire harness assembly requires robots to manipulate complex branched cables with high precision and reliability. A key challenge in automating this process is predicting how these flexible and branched structures behave under manipulation. Without accurate predictions, it is difficult for robots to reliably plan or execute assembly operations. While existing research has made progress in modeling single-threaded Deformable Linear Objects (DLOs), extending these approaches to Branched Deformable Linear Objects (BDLOs) presents fundamental challenges. The junction points in BDLOs create complex force interactions and strain propagation patterns that cannot be adequately captured by simply connecting multiple single-DLO models. To address these challenges, this paper presents Differentiable discrete branched Elastic rods for modeling Furcated DLOs in real-Time (DEFT), a novel framework that combines a differentiable physics-based model with a learning framework to: 1) accurately model BDLO dynamics, including dynamic propagation at junction points and grasping in the middle of a BDLO, 2) achieve efficient computation for real-time inference, and 3) enable planning to demonstrate dexterous BDLO manipulation. A comprehensive series of real-world experiments demonstrates DEFT's efficacy in terms of accuracy, computational speed, and generalizability compared to state-of-the-art alternatives. Project page:https://roahmlab.github.io/DEFT/.
♻ ☆ Do Not Trust Licenses You See -- Dataset Compliance Requires Massive-Scale AI-Powered Lifecycle Tracing
This paper argues that a dataset's legal risk cannot be accurately assessed by its license terms alone; instead, tracking dataset redistribution and its full lifecycle is essential. However, this process is too complex for legal experts to handle manually at scale. Tracking dataset provenance, verifying redistribution rights, and assessing evolving legal risks across multiple stages require a level of precision and efficiency that exceeds human capabilities. Addressing this challenge effectively demands AI agents that can systematically trace dataset redistribution, analyze compliance, and identify legal risks. We develop an automated data compliance system called NEXUS and show that AI can perform these tasks with higher accuracy, efficiency, and cost-effectiveness than human experts. Our massive legal analysis of 17,429 unique entities and 8,072 license terms using this approach reveals the discrepancies in legal rights between the original datasets before redistribution and their redistributed subsets, underscoring the necessity of the data lifecycle-aware compliance. For instance, we find that out of 2,852 datasets with commercially viable individual license terms, only 605 (21%) are legally permissible for commercialization. This work sets a new standard for AI data governance, advocating for a framework that systematically examines the entire lifecycle of dataset redistribution to ensure transparent, legal, and responsible dataset management.
♻ ☆ HELMET: How to Evaluate Long-Context Language Models Effectively and Thoroughly ICLR 2025
Many benchmarks exist for evaluating long-context language models (LCLMs), yet developers often rely on synthetic tasks such as needle-in-a-haystack (NIAH) or an arbitrary subset of tasks. However, it remains unclear whether these benchmarks reflect the diverse downstream applications of LCLMs, and such inconsistencies further complicate model comparison. We investigate the underlying reasons behind these practices and find that existing benchmarks often provide noisy signals due to limited coverage of applications, insufficient context lengths, unreliable metrics, and incompatibility with base models. In this work, we introduce HELMET (How to Evaluate Long-context Models Effectively and Thoroughly), a comprehensive benchmark encompassing seven diverse, application-centric categories. We also address several issues in previous benchmarks by adding controllable lengths up to 128K tokens, model-based evaluation for reliable metrics, and few-shot prompting for robustly evaluating base models. Consequently, we demonstrate that HELMET offers more reliable and consistent rankings of frontier LCLMs. Through a comprehensive study of 59 LCLMs, we find that (1) synthetic tasks like NIAH do not reliably predict downstream performance; (2) the diverse categories in HELMET exhibit distinct trends and low correlations with each other; and (3) while most LCLMs achieve perfect NIAH scores, open-source models significantly lag behind closed ones when tasks require full-context reasoning or following complex instructions -- the gap widens as length increases. Finally, we recommend using our RAG tasks for fast model development, as they are easy to run and better predict other downstream performance; ultimately, we advocate for a holistic evaluation across diverse tasks.
comment: ICLR 2025. Project page: https://princeton-nlp.github.io/HELMET/
♻ ☆ AdaptBot: Combining LLM with Knowledge Graphs and Human Input for Generic-to-Specific Task Decomposition and Knowledge Refinement ICRA
An embodied agent assisting humans is often asked to complete new tasks, and there may not be sufficient time or labeled examples to train the agent to perform these new tasks. Large Language Models (LLMs) trained on considerable knowledge across many domains can be used to predict a sequence of abstract actions for completing such tasks, although the agent may not be able to execute this sequence due to task-, agent-, or domain-specific constraints. Our framework addresses these challenges by leveraging the generic predictions provided by LLM and the prior domain knowledge encoded in a Knowledge Graph (KG), enabling an agent to quickly adapt to new tasks. The robot also solicits and uses human input as needed to refine its existing knowledge. Based on experimental evaluation in the context of cooking and cleaning tasks in simulation domains, we demonstrate that the interplay between LLM, KG, and human input leads to substantial performance gains compared with just using the LLM. Project website{\S}: https://sssshivvvv.github.io/adaptbot/
comment: Accepted to IEEE International Conference on Robotics and Automation (ICRA) 2025
♻ ☆ Detecting Systematic Weaknesses in Vision Models along Predefined Human-Understandable Dimensions
Slice discovery methods (SDMs) are prominent algorithms for finding systematic weaknesses in DNNs. They identify top-k semantically coherent slices/subsets of data where a DNN-under-test has low performance. For being directly useful, slices should be aligned with human-understandable and relevant dimensions, which, for example, are defined by safety and domain experts as part of the operational design domain (ODD). While SDMs can be applied effectively on structured data, their application on image data is complicated by the lack of semantic metadata. To address these issues, we present an algorithm that combines foundation models for zero-shot image classification to generate semantic metadata with methods for combinatorial search to find systematic weaknesses in images. In contrast to existing approaches, ours identifies weak slices that are in line with pre-defined human-understandable dimensions. As the algorithm includes foundation models, its intermediate and final results may not always be exact. Therefore, we include an approach to address the impact of noisy metadata. We validate our algorithm on both synthetic and real-world datasets, demonstrating its ability to recover human-understandable systematic weaknesses. Furthermore, using our approach, we identify systematic weaknesses of multiple pre-trained and publicly available state-of-the-art computer vision DNNs.
♻ ☆ Back Home: A Machine Learning Approach to Seashell Classification and Ecosystem Restoration
In Costa Rica, an average of 5 tons of seashells are extracted from ecosystems annually. Confiscated seashells, cannot be returned to their ecosystems due to the lack of origin recognition. To address this issue, we developed a convolutional neural network (CNN) specifically for seashell identification. We built a dataset from scratch, consisting of approximately 19000 images from the Pacific and Caribbean coasts. Using this dataset, the model achieved a classification accuracy exceeding 85%. The model has been integrated into a user-friendly application, which has classified over 36,000 seashells to date, delivering real-time results within 3 seconds per image. To further enhance the system's accuracy, an anomaly detection mechanism was incorporated to filter out irrelevant or anomalous inputs, ensuring only valid seashell images are processed.
♻ ☆ Tutorial on amortized optimization
Optimization is a ubiquitous modeling tool and is often deployed in settings which repeatedly solve similar instances of the same problem. Amortized optimization methods use learning to predict the solutions to problems in these settings, exploiting the shared structure between similar problem instances. These methods have been crucial in variational inference and reinforcement learning and are capable of solving optimization problems many orders of magnitudes times faster than traditional optimization methods that do not use amortization. This tutorial presents an introduction to the amortized optimization foundations behind these advancements and overviews their applications in variational inference, sparse coding, gradient-based meta-learning, control, reinforcement learning, convex optimization, optimal transport, and deep equilibrium networks. The source code for this tutorial is available at https://github.com/facebookresearch/amortized-optimization-tutorial.
comment: Foundations and Trends in Machine Learning
♻ ☆ A Simple and Effective Reinforcement Learning Method for Text-to-Image Diffusion Fine-tuning
Reinforcement learning (RL)-based fine-tuning has emerged as a powerful approach for aligning diffusion models with black-box objectives. Proximal policy optimization (PPO) is the most popular choice of method for policy optimization. While effective in terms of performance, PPO is highly sensitive to hyper-parameters and involves substantial computational overhead. REINFORCE, on the other hand, mitigates some computational complexities such as high memory overhead and sensitive hyper-parameter tuning, but has suboptimal performance due to high-variance and sample inefficiency. While the variance of the REINFORCE can be reduced by sampling multiple actions per input prompt and using a baseline correction term, it still suffers from sample inefficiency. To address these challenges, we systematically analyze the efficiency-effectiveness trade-off between REINFORCE and PPO, and propose leave-one-out PPO (LOOP), a novel RL for diffusion fine-tuning method. LOOP combines variance reduction techniques from REINFORCE, such as sampling multiple actions per input prompt and a baseline correction term, with the robustness and sample efficiency of PPO via clipping and importance sampling. Our results demonstrate that LOOP effectively improves diffusion models on various black-box objectives, and achieves a better balance between computational efficiency and performance.
♻ ☆ Human-Feedback Efficient Reinforcement Learning for Online Diffusion Model Finetuning ICLR
Controllable generation through Stable Diffusion (SD) fine-tuning aims to improve fidelity, safety, and alignment with human guidance. Existing reinforcement learning from human feedback methods usually rely on predefined heuristic reward functions or pretrained reward models built on large-scale datasets, limiting their applicability to scenarios where collecting such data is costly or difficult. To effectively and efficiently utilize human feedback, we develop a framework, HERO, which leverages online human feedback collected on the fly during model learning. Specifically, HERO features two key mechanisms: (1) Feedback-Aligned Representation Learning, an online training method that captures human feedback and provides informative learning signals for fine-tuning, and (2) Feedback-Guided Image Generation, which involves generating images from SD's refined initialization samples, enabling faster convergence towards the evaluator's intent. We demonstrate that HERO is 4x more efficient in online feedback for body part anomaly correction compared to the best existing method. Additionally, experiments show that HERO can effectively handle tasks like reasoning, counting, personalization, and reducing NSFW content with only 0.5K online feedback.
comment: Published in International Conference on Learning Representations (ICLR) 2025
♻ ☆ Self-supervised pre-training with diffusion model for few-shot landmark detection in x-ray images WACV 2025
Deep neural networks have been extensively applied in the medical domain for various tasks, including image classification, segmentation, and landmark detection. However, their application is often hindered by data scarcity, both in terms of available annotations and images. This study introduces a novel application of denoising diffusion probabilistic models (DDPMs) to the landmark detection task, specifically addressing the challenge of limited annotated data in x-ray imaging. Our key innovation lies in leveraging DDPMs for self-supervised pre-training in landmark detection, a previously unexplored approach in this domain. This method enables accurate landmark detection with minimal annotated training data (as few as 50 images), surpassing both ImageNet supervised pre-training and traditional self-supervised techniques across three popular x-ray benchmark datasets. To our knowledge, this work represents the first application of diffusion models for self-supervised learning in landmark detection, which may offer a valuable pre-training approach in few-shot regimes, for mitigating data scarcity.
comment: Accepted at WACV 2025
♻ ☆ ACC-Collab: An Actor-Critic Approach to Multi-Agent LLM Collaboration
Large language models (LLMs) have demonstrated a remarkable ability to serve as general-purpose tools for various language-based tasks. Recent works have demonstrated that the efficacy of such models can be improved through iterative dialog between multiple models. While these paradigms show promise in improving model efficacy, most works in this area treat collaboration as an emergent behavior, rather than a learned behavior. In doing so, current multi-agent frameworks rely on collaborative behaviors to have been sufficiently trained into off-the-shelf models. To address this limitation, we propose ACC-Collab, an Actor-Critic based learning framework to produce a two-agent team (an actor-agent and a critic-agent) specialized in collaboration. We demonstrate that ACC-Collab outperforms SotA multi-agent techniques on a wide array of benchmarks.
♻ ☆ Towards One Model for Classical Dimensionality Reduction: A Probabilistic Perspective on UMAP and t-SNE
This paper shows that dimensionality reduction methods such as UMAP and t-SNE, can be approximately recast as MAP inference methods corresponding to a model introduced in ProbDR, that describes the graph Laplacian (an estimate of the data precision matrix) using a Wishart distribution, with a mean given by a non-linear covariance function evaluated on the latents. This interpretation offers deeper theoretical and semantic insights into such algorithms, by showing that variances corresponding to these covariances are low (potentially misspecified), and forging a connection to Gaussian process latent variable models by showing that well-known kernels can be used to describe covariances implied by graph Laplacians. We also introduce tools with which similar dimensionality reduction methods can be studied.
comment: Updated preprint
♻ ☆ LINGOLY-TOO: Disentangling Memorisation from Reasoning with Linguistic Templatisation and Orthographic Obfuscation
Assessing the reasoning capabilities of large language models (LLMs) is susceptible to overestimation due to data exposure of evaluation benchmarks. We introduce a framework for producing linguistic reasoning problems that reduces the effect of memorisation in model performance estimates and apply this framework to develop LINGOLY-TOO, a challenging benchmark for linguistic reasoning. By developing orthographic templates, we dynamically obfuscate the writing systems of real languages to generate numerousquestion variations. These variations preserve the reasoning steps required for each solution while reducing the likelihood of specific problem instances appearing in model training data. Our experiments demonstrate that frontier models, including Claud 3.7 Sonnet, o1-preview and DeepSeek R1, struggle with advanced reasoning. Our analysis also shows that LLMs exhibit noticeable variance in accuracy across permutations of the same problem, and on average perform better on questions appearing in their original orthography. Our findings highlight the opaque nature of response generation in LLMs and provide evidence that prior data exposure contributes to over estimating the reasoning capabilities of frontier models.
♻ ☆ Protein Large Language Models: A Comprehensive Survey
Protein-specific large language models (Protein LLMs) are revolutionizing protein science by enabling more efficient protein structure prediction, function annotation, and design. While existing surveys focus on specific aspects or applications, this work provides the first comprehensive overview of Protein LLMs, covering their architectures, training datasets, evaluation metrics, and diverse applications. Through a systematic analysis of over 100 articles, we propose a structured taxonomy of state-of-the-art Protein LLMs, analyze how they leverage large-scale protein sequence data for improved accuracy, and explore their potential in advancing protein engineering and biomedical research. Additionally, we discuss key challenges and future directions, positioning Protein LLMs as essential tools for scientific discovery in protein science. Resources are maintained at https://github.com/Yijia-Xiao/Protein-LLM-Survey.
comment: 24 pages, 4 figures, 5 tables
♻ ☆ $\texttt{SEM-CTRL}$: Semantically Controlled Decoding
Ensuring both syntactic and semantic correctness in Large Language Model (LLM) outputs remains a significant challenge, despite being critical for real-world deployment. In this paper, we introduce $\texttt{SEM-CTRL}$, a unified approach that enforces rich context-sensitive constraints and task- and instance-specific semantics directly on an LLM decoder. Our approach integrates token-level MCTS, which is guided by specific syntactic and semantic constraints. The constraints over the desired outputs are expressed using Answer Set Grammars -- a logic-based formalism that generalizes context-sensitive grammars while incorporating background knowledge to represent task-specific semantics. We show that our approach guarantees correct completions for any off-the-shelf LLM without the need for fine-tuning. We evaluate $\texttt{SEM-CTRL}$ on a range of tasks, including synthetic grammar synthesis, combinatorial reasoning, and planning. Our results demonstrate that $\texttt{SEM-CTRL}$ allows small pre-trained LLMs to efficiently outperform larger variants and state-of-the-art reasoning models (e.g., o1-preview) while simultaneously guaranteeing solution correctness.
♻ ☆ Beyond Single Concept Vector: Modeling Concept Subspace in LLMs with Gaussian Distribution ICLR 2025
Probing learned concepts in large language models (LLMs) is crucial for understanding how semantic knowledge is encoded internally. Training linear classifiers on probing tasks is a principle approach to denote the vector of a certain concept in the representation space. However, the single vector identified for a concept varies with both data and training, making it less robust and weakening its effectiveness in real-world applications. To address this challenge, we propose an approach to approximate the subspace representing a specific concept. Built on linear probing classifiers, we extend the concept vectors into Gaussian Concept Subspace (GCS). We demonstrate GCS's effectiveness through measuring its faithfulness and plausibility across multiple LLMs with different sizes and architectures. Additionally, we use representation intervention tasks to showcase its efficacy in real-world applications such as emotion steering. Experimental results indicate that GCS concept vectors have the potential to balance steering performance and maintaining the fluency in natural language generation tasks.
comment: Accepted by ICLR 2025
♻ ☆ Graph Neural Networks for Virtual Sensing in Complex Systems: Addressing Heterogeneous Temporal Dynamics SP
Real-time condition monitoring is crucial for the reliable and efficient operation of complex systems. However, relying solely on physical sensors can be limited due to their cost, placement constraints, or inability to directly measure certain critical parameters. Virtual sensing addresses these limitations by leveraging readily available sensor data and system knowledge to estimate inaccessible parameters or infer system states. The increasing complexity of industrial systems necessitates deployments of sensors with diverse modalities to provide a comprehensive understanding of system states. These sensors capture data at varying frequencies to monitor both rapid and slowly varying system dynamics, as well as local and global state evolutions of the systems. This leads to heterogeneous temporal dynamics, which, particularly under varying operational end environmental conditions, pose a significant challenge for accurate virtual sensing. To address this, we propose a Heterogeneous Temporal Graph Neural Network (HTGNN) framework. HTGNN explicitly models signals from diverse sensors and integrates operating conditions into the model architecture. We evaluate HTGNN using two newly released datasets: a bearing dataset with diverse load conditions for bearing load prediction and a year-long simulated dataset for predicting bridge live loads. Our results demonstrate that HTGNN significantly outperforms established baseline methods in both tasks, particularly under highly varying operating conditions. These results highlight HTGNN's potential as a robust and accurate virtual sensing approach for complex systems, paving the way for improved monitoring, predictive maintenance, and enhanced system performance. Our code and data are available under https://github.com/EPFL-IMOS/htgnn.
comment: This paper extends our previous conference paper (Best Paper at European Conference of the PHM Society 2024, https://doi.org/10.36001/phme.2024.v8i1.3998). Accepted by Mechanical Systems and Signal Processing (MSSP)
♻ ☆ X-Boundary: Establishing Exact Safety Boundary to Shield LLMs from Multi-Turn Jailbreaks without Compromising Usability
Despite the rapid development of safety alignment techniques for LLMs, defending against multi-turn jailbreaks is still a challenging task. In this paper, we conduct a comprehensive comparison, revealing that some existing defense methods can improve the robustness of LLMs against multi-turn jailbreaks but compromise usability, i.e., reducing general capabilities or causing the over-refusal problem. From the perspective of mechanism interpretability of LLMs, we discover that these methods fail to establish a boundary that exactly distinguishes safe and harmful feature representations. Therefore, boundary-safe representations close to harmful representations are inevitably disrupted, leading to a decline in usability. To address this issue, we propose X-Boundary to push harmful representations away from boundary-safe representations and obtain an exact distinction boundary. In this way, harmful representations can be precisely erased without disrupting safe ones. Experimental results show that X-Boundary achieves state-of-the-art defense performance against multi-turn jailbreaks, while reducing the over-refusal rate by about 20% and maintaining nearly complete general capability. Furthermore, we theoretically prove and empirically verify that X-Boundary can accelerate the convergence process during training. Please see our code at: https://github.com/AI45Lab/X-Boundary.
♻ ☆ UoR-NCL at SemEval-2025 Task 1: Using Generative LLMs and CLIP Models for Multilingual Multimodal Idiomaticity Representation
SemEval-2025 Task 1 focuses on ranking images based on their alignment with a given nominal compound that may carry idiomatic meaning in both English and Brazilian Portuguese. To address this challenge, this work uses generative large language models (LLMs) and multilingual CLIP models to enhance idiomatic compound representations. LLMs generate idiomatic meanings for potentially idiomatic compounds, enriching their semantic interpretation. These meanings are then encoded using multilingual CLIP models, serving as representations for image ranking. Contrastive learning and data augmentation techniques are applied to fine-tune these embeddings for improved performance. Experimental results show that multimodal representations extracted through this method outperformed those based solely on the original nominal compounds. The fine-tuning approach shows promising outcomes but is less effective than using embeddings without fine-tuning. The source code used in this paper is available at https://github.com/tongwu17/SemEval-2025-Task1-UoR-NCL.
♻ ☆ On the Challenges and Opportunities in Generative AI
The field of deep generative modeling has grown rapidly in the last few years. With the availability of massive amounts of training data coupled with advances in scalable unsupervised learning paradigms, recent large-scale generative models show tremendous promise in synthesizing high-resolution images and text, as well as structured data such as videos and molecules. However, we argue that current large-scale generative AI models exhibit several fundamental shortcomings that hinder their widespread adoption across domains. In this work, our objective is to identify these issues and highlight key unresolved challenges in modern generative AI paradigms that should be addressed to further enhance their capabilities, versatility, and reliability. By identifying these challenges, we aim to provide researchers with insights for exploring fruitful research directions, thus fostering the development of more robust and accessible generative AI solutions.
♻ ☆ Gumbel Counterfactual Generation From Language Models ICLR 2025
Understanding and manipulating the causal generation mechanisms in language models is essential for controlling their behavior. Previous work has primarily relied on techniques such as representation surgery -- e.g., model ablations or manipulation of linear subspaces tied to specific concepts -- to \emph{intervene} on these models. To understand the impact of interventions precisely, it is useful to examine \emph{counterfactuals} -- e.g., how a given sentence would have appeared had it been generated by the model following a specific intervention. We highlight that counterfactual reasoning is conceptually distinct from interventions, as articulated in Pearl's causal hierarchy. Based on this observation, we propose a framework for generating true string counterfactuals by reformulating language models as a structural equation model using the Gumbel-max trick, which we called Gumbel counterfactual generation. This reformulation allows us to model the joint distribution over original strings and their counterfactuals resulting from the same instantiation of the sampling noise. We develop an algorithm based on hindsight Gumbel sampling that allows us to infer the latent noise variables and generate counterfactuals of observed strings. Our experiments demonstrate that the approach produces meaningful counterfactuals while at the same time showing that commonly used intervention techniques have considerable undesired side effects.
comment: Accepted in ICLR 2025
♻ ☆ MMGDreamer: Mixed-Modality Graph for Geometry-Controllable 3D Indoor Scene Generation AAAI 2025
Controllable 3D scene generation has extensive applications in virtual reality and interior design, where the generated scenes should exhibit high levels of realism and controllability in terms of geometry. Scene graphs provide a suitable data representation that facilitates these applications. However, current graph-based methods for scene generation are constrained to text-based inputs and exhibit insufficient adaptability to flexible user inputs, hindering the ability to precisely control object geometry. To address this issue, we propose MMGDreamer, a dual-branch diffusion model for scene generation that incorporates a novel Mixed-Modality Graph, visual enhancement module, and relation predictor. The mixed-modality graph allows object nodes to integrate textual and visual modalities, with optional relationships between nodes. It enhances adaptability to flexible user inputs and enables meticulous control over the geometry of objects in the generated scenes. The visual enhancement module enriches the visual fidelity of text-only nodes by constructing visual representations using text embeddings. Furthermore, our relation predictor leverages node representations to infer absent relationships between nodes, resulting in more coherent scene layouts. Extensive experimental results demonstrate that MMGDreamer exhibits superior control of object geometry, achieving state-of-the-art scene generation performance. Project page: https://yangzhifeio.github.io/project/MMGDreamer.
comment: Accepted by AAAI 2025 Main Track
♻ ☆ Pretrained Embeddings as a Behavior Specification Mechanism
We propose an approach to formally specifying the behavioral properties of systems that rely on a perception model for interactions with the physical world. The key idea is to introduce embeddings -- mathematical representations of a real-world concept -- as a first-class construct in a specification language, where properties are expressed in terms of distances between a pair of ideal and observed embeddings. To realize this approach, we propose a new type of temporal logic called Embedding Temporal Logic (ETL), and describe how it can be used to express a wider range of properties about AI-enabled systems than previously possible. We demonstrate the applicability of ETL through a preliminary evaluation involving planning tasks in robots that are driven by foundation models; the results are promising, showing that embedding-based specifications can be used to steer a system towards desirable behaviors.
comment: 18 pages, 6 figures
♻ ☆ Secure Federated Data Distillation
Dataset Distillation (DD) is a powerful technique for reducing large datasets into compact, representative synthetic datasets, accelerating Machine Learning training. However, traditional DD methods operate in a centralized manner, which poses significant privacy threats and reduces its applicability. To mitigate these risks, we propose a Secure Federated Data Distillation (SFDD) framework to decentralize the distillation process while preserving privacy. Unlike existing Federated Distillation techniques that focus on training global models with distilled knowledge, our approach aims to produce a distilled dataset without exposing local contributions. We leverage the gradient-matching-based distillation method, adapting it for a distributed setting where clients contribute to the distillation process without sharing raw data. The central aggregator iteratively refines a synthetic dataset by integrating client-side updates while ensuring data confidentiality. To make our approach resilient to inference attacks perpetrated by the server that could exploit gradient updates to reconstruct private data, we create an optimized Local Differential Privacy approach, called LDPO-RLD. Furthermore, we assess the framework's resilience against malicious clients executing backdoor attacks (such as Doorping) and demonstrate robustness under the assumption of a sufficient number of participating clients. Our experimental results demonstrate the effectiveness of SFDD and that the proposed defense concretely mitigates the identified vulnerabilities, with minimal impact on the performance of the distilled dataset. By addressing the interplay between privacy and federation in dataset distillation, this work advances the field of privacy-preserving Machine Learning making our SFDD framework a viable solution for sensitive data-sharing applications.
♻ ☆ Which Frequencies do CNNs Need? Emergent Bottleneck Structure in Feature Learning
We describe the emergence of a Convolution Bottleneck (CBN) structure in CNNs, where the network uses its first few layers to transform the input representation into a representation that is supported only along a few frequencies and channels, before using the last few layers to map back to the outputs. We define the CBN rank, which describes the number and type of frequencies that are kept inside the bottleneck, and partially prove that the parameter norm required to represent a function $f$ scales as depth times the CBN rank $f$. We also show that the parameter norm depends at next order on the regularity of $f$. We show that any network with almost optimal parameter norm will exhibit a CBN structure in both the weights and - under the assumption that the network is stable under large learning rate - the activations, which motivates the common practice of down-sampling; and we verify that the CBN results still hold with down-sampling. Finally we use the CBN structure to interpret the functions learned by CNNs on a number of tasks.
♻ ☆ Assisting Mathematical Formalization with A Learning-based Premise Retriever
Premise selection is a crucial yet challenging step in mathematical formalization, especially for users with limited experience. Due to the lack of available formalization projects, existing approaches that leverage language models often suffer from data scarcity. In this work, we introduce an innovative method for training a premise retriever to support the formalization of mathematics. Our approach employs a BERT model to embed proof states and premises into a shared latent space. The retrieval model is trained within a contrastive learning framework and incorporates a domain-specific tokenizer along with a fine-grained similarity computation method. Experimental results show that our model is highly competitive compared to existing baselines, achieving strong performance while requiring fewer computational resources. Performance is further enhanced through the integration of a re-ranking module. To streamline the formalization process, we will release a search engine that enables users to query Mathlib theorems directly using proof states, significantly improving accessibility and efficiency. Codes are available at https://github.com/ruc-ai4math/Premise-Retrieval.
♻ ☆ Hamiltonian Mechanics of Feature Learning: Bottleneck Structure in Leaky ResNets
We study Leaky ResNets, which interpolate between ResNets and Fully-Connected nets depending on an 'effective depth' hyper-parameter $\tilde{L}$. In the infinite depth limit, we study 'representation geodesics' $A_{p}$: continuous paths in representation space (similar to NeuralODEs) from input $p=0$ to output $p=1$ that minimize the parameter norm of the network. We give a Lagrangian and Hamiltonian reformulation, which highlight the importance of two terms: a kinetic energy which favors small layer derivatives $\partial_{p}A_{p}$ and a potential energy that favors low-dimensional representations, as measured by the 'Cost of Identity'. The balance between these two forces offers an intuitive understanding of feature learning in ResNets. We leverage this intuition to explain the emergence of a bottleneck structure, as observed in previous work: for large $\tilde{L}$ the potential energy dominates and leads to a separation of timescales, where the representation jumps rapidly from the high dimensional inputs to a low-dimensional representation, move slowly inside the space of low-dimensional representations, before jumping back to the potentially high-dimensional outputs. Inspired by this phenomenon, we train with an adaptive layer step-size to adapt to the separation of timescales.
♻ ☆ How DNNs break the Curse of Dimensionality: Compositionality and Symmetry Learning
We show that deep neural networks (DNNs) can efficiently learn any composition of functions with bounded $F_{1}$-norm, which allows DNNs to break the curse of dimensionality in ways that shallow networks cannot. More specifically, we derive a generalization bound that combines a covering number argument for compositionality, and the $F_{1}$-norm (or the related Barron norm) for large width adaptivity. We show that the global minimizer of the regularized loss of DNNs can fit for example the composition of two functions $f^{*}=h\circ g$ from a small number of observations, assuming $g$ is smooth/regular and reduces the dimensionality (e.g. $g$ could be the quotient map of the symmetries of $f^{*}$), so that $h$ can be learned in spite of its low regularity. The measures of regularity we consider is the Sobolev norm with different levels of differentiability, which is well adapted to the $F_{1}$ norm. We compute scaling laws empirically and observe phase transitions depending on whether $g$ or $h$ is harder to learn, as predicted by our theory.
♻ ☆ CATCH: Channel-Aware multivariate Time Series Anomaly Detection via Frequency Patching ICLR 2025
Anomaly detection in multivariate time series is challenging as heterogeneous subsequence anomalies may occur. Reconstruction-based methods, which focus on learning normal patterns in the frequency domain to detect diverse abnormal subsequences, achieve promising results, while still falling short on capturing fine-grained frequency characteristics and channel correlations. To contend with the limitations, we introduce CATCH, a framework based on frequency patching. We propose to patchify the frequency domain into frequency bands, which enhances its ability to capture fine-grained frequency characteristics. To perceive appropriate channel correlations, we propose a Channel Fusion Module (CFM), which features a patch-wise mask generator and a masked-attention mechanism. Driven by a bi-level multi-objective optimization algorithm, the CFM is encouraged to iteratively discover appropriate patch-wise channel correlations, and to cluster relevant channels while isolating adverse effects from irrelevant channels. Extensive experiments on 10 real-world datasets and 12 synthetic datasets demonstrate that CATCH achieves state-of-the-art performance. We make our code and datasets available at https://github.com/decisionintelligence/CATCH.
comment: Accepted by ICLR 2025
♻ ☆ AfroBench: How Good are Large Language Models on African Languages?
Large-scale multilingual evaluations, such as MEGA, often include only a handful of African languages due to the scarcity of high-quality evaluation data and the limited discoverability of existing African datasets. This lack of representation hinders comprehensive LLM evaluation across a diverse range of languages and tasks. To address these challenges, we introduce AfroBench -- a multi-task benchmark for evaluating the performance of LLMs across 64 African languages, 15 tasks and 22 datasets. AfroBench consists of nine natural language understanding datasets, six text generation datasets, six knowledge and question answering tasks, and one mathematical reasoning task. We present results comparing the performance of prompting LLMs to fine-tuned baselines based on BERT and T5-style models. Our results suggest large gaps in performance between high-resource languages, such as English, and African languages across most tasks; but performance also varies based on the availability of monolingual data resources. Our findings confirm that performance on African languages continues to remain a hurdle for current LLMs, underscoring the need for additional efforts to close this gap. https://mcgill-nlp.github.io/AfroBench/
comment: Under review
♻ ☆ OlympicArena: Benchmarking Multi-discipline Cognitive Reasoning for Superintelligent AI NeurIPS 2024
The evolution of Artificial Intelligence (AI) has been significantly accelerated by advancements in Large Language Models (LLMs) and Large Multimodal Models (LMMs), gradually showcasing potential cognitive reasoning abilities in problem-solving and scientific discovery (i.e., AI4Science) once exclusive to human intellect. To comprehensively evaluate current models' performance in cognitive reasoning abilities, we introduce OlympicArena, which includes 11,163 bilingual problems across both text-only and interleaved text-image modalities. These challenges encompass a wide range of disciplines spanning seven fields and 62 international Olympic competitions, rigorously examined for data leakage. We argue that the challenges in Olympic competition problems are ideal for evaluating AI's cognitive reasoning due to their complexity and interdisciplinary nature, which are essential for tackling complex scientific challenges and facilitating discoveries. Beyond evaluating performance across various disciplines using answer-only criteria, we conduct detailed experiments and analyses from multiple perspectives. We delve into the models' cognitive reasoning abilities, their performance across different modalities, and their outcomes in process-level evaluations, which are vital for tasks requiring complex reasoning with lengthy solutions. Our extensive evaluations reveal that even advanced models like GPT-4o only achieve a 39.97% overall accuracy, illustrating current AI limitations in complex reasoning and multimodal integration. Through the OlympicArena, we aim to advance AI towards superintelligence, equipping it to address more complex challenges in science and beyond. We also provide a comprehensive set of resources to support AI research, including a benchmark dataset, an open-source annotation platform, a detailed evaluation tool, and a leaderboard with automatic submission features.
comment: Accepted by NeurIPS 2024
♻ ☆ 360$^\circ$REA: Towards A Reusable Experience Accumulation with 360° Assessment for Multi-Agent System
Large language model agents have demonstrated remarkable advancements across various complex tasks. Recent works focus on optimizing the agent team or employing self-reflection to iteratively solve complex tasks. Since these agents are all based on the same LLM, only conducting self-evaluation or removing underperforming agents does not substantively enhance the capability of the agents. We argue that a comprehensive evaluation and accumulating experience from evaluation feedback is an effective approach to improving system performance. In this paper, we propose Reusable Experience Accumulation with 360$^\circ$ Assessment (360$^\circ$REA), a hierarchical multi-agent framework inspired by corporate organizational practices. The framework employs a novel 360$^\circ$ performance assessment method for multi-perspective performance evaluation with fine-grained assessment. To enhance the capability of agents in addressing complex tasks, we introduce dual-level experience pool for agents to accumulate experience through fine-grained assessment. Extensive experiments on complex task datasets demonstrate the effectiveness of 360$^\circ$REA.
♻ ☆ Structured Preference Optimization for Vision-Language Long-Horizon Task Planning
Existing methods for vision-language task planning excel in short-horizon tasks but often fall short in complex, long-horizon planning within dynamic environments. These challenges primarily arise from the difficulty of effectively training models to produce high-quality reasoning processes for long-horizon tasks. To address this, we propose Structured Preference Optimization (SPO), which aims to enhance reasoning and action selection in long-horizon task planning through structured preference evaluation and optimized training strategies. Specifically, SPO introduces: 1) Preference-Based Scoring and Optimization, which systematically evaluates reasoning chains based on task relevance, visual grounding, and historical consistency; and 2) Curriculum-Guided Training, where the model progressively adapts from simple to complex tasks, improving its generalization ability in long-horizon scenarios and enhancing reasoning robustness. To advance research in vision-language long-horizon task planning, we introduce ExtendaBench, a comprehensive benchmark covering 1,509 tasks across VirtualHome and Habitat 2.0, categorized into ultra-short, short, medium, and long tasks. Experimental results demonstrate that SPO significantly improves reasoning quality and final decision accuracy, outperforming prior methods on long-horizon tasks and underscoring the effectiveness of preference-driven optimization in vision-language task planning. Specifically, SPO achieves a +5.98% GCR and +4.68% SR improvement in VirtualHome and a +3.30% GCR and +2.11% SR improvement in Habitat over the best-performing baselines.
comment: 18 pages
♻ ☆ Detecting new obfuscated malware variants: A lightweight and interpretable machine learning approach
Machine learning has been successfully applied in developing malware detection systems, with a primary focus on accuracy, and increasing attention to reducing computational overhead and improving model interpretability. However, an important question remains underexplored: How well can machine learning-based models detect entirely new forms of malware not present in the training data? In this study, we present a machine learning-based system for detecting obfuscated malware that is not only highly accurate, lightweight and interpretable, but also capable of successfully adapting to new types of malware attacks. Our system is capable of detecting 15 malware subtypes despite being exclusively trained on one malware subtype, namely the Transponder from the Spyware family. This system was built after training 15 distinct random forest-based models, each on a different malware subtype from the CIC-MalMem-2022 dataset. These models were evaluated against the entire range of malware subtypes, including all unseen malware subtypes. To maintain the system's streamlined nature, training was confined to the top five most important features, which also enhanced interpretability. The Transponder-focused model exhibited high accuracy, exceeding 99.8%, with an average processing speed of 5.7 microseconds per file. We also illustrate how the Shapley additive explanations technique can facilitate the interpretation of the model predictions. Our research contributes to advancing malware detection methodologies, pioneering the feasibility of detecting obfuscated malware by exclusively training a model on a single or a few carefully selected malware subtypes and applying it to detect unseen subtypes.
comment: 30 pages (excluding Appendix), 5 figures and 5 tables. Now published in Intelligent Systems with Applications (https://doi.org/10.1016/j.iswa.2024.200472)
Stealthy Jailbreak Attacks on Large Language Models via Benign Data Mirroring NAACL 2025
Large language model (LLM) safety is a critical issue, with numerous studies employing red team testing to enhance model security. Among these, jailbreak methods explore potential vulnerabilities by crafting malicious prompts that induce model outputs contrary to safety alignments. Existing black-box jailbreak methods often rely on model feedback, repeatedly submitting queries with detectable malicious instructions during the attack search process. Although these approaches are effective, the attacks may be intercepted by content moderators during the search process. We propose an improved transfer attack method that guides malicious prompt construction by locally training a mirror model of the target black-box model through benign data distillation. This method offers enhanced stealth, as it does not involve submitting identifiable malicious instructions to the target model during the search phase. Our approach achieved a maximum attack success rate of 92%, or a balanced value of 80% with an average of 1.5 detectable jailbreak queries per sample against GPT-3.5 Turbo on a subset of AdvBench. These results underscore the need for more robust defense mechanisms.
comment: Accepted by NAACL 2025
Nature Language Model: Deciphering the Language of Nature for Scientific Discovery
Foundation models have revolutionized natural language processing and artificial intelligence, significantly enhancing how machines comprehend and generate human languages. Inspired by the success of these foundation models, researchers have developed foundation models for individual scientific domains, including small molecules, materials, proteins, DNA, RNA and even cells. However, these models are typically trained in isolation, lacking the ability to integrate across different scientific domains. Recognizing that entities within these domains can all be represented as sequences, which together form the "language of nature", we introduce Nature Language Model (NatureLM), a sequence-based science foundation model designed for scientific discovery. Pre-trained with data from multiple scientific domains, NatureLM offers a unified, versatile model that enables various applications including: (i) generating and optimizing small molecules, proteins, RNA, and materials using text instructions; (ii) cross-domain generation/design, such as protein-to-molecule and protein-to-RNA generation; and (iii) top performance across different domains, matching or surpassing state-of-the-art specialist models. NatureLM offers a promising generalist approach for various scientific tasks, including drug discovery (hit generation/optimization, ADMET optimization, synthesis), novel material design, and the development of therapeutic proteins or nucleotides. We have developed NatureLM models in different sizes (1 billion, 8 billion, and 46.7 billion parameters) and observed a clear improvement in performance as the model size increases.
comment: 93 pages
♻ ☆ InfoDisent: Explainability of Image Classification Models by Information Disentanglement
In this work, we introduce InfoDisent, a hybrid approach to explainability based on the information bottleneck principle. InfoDisent enables the disentanglement of information in the final layer of any pretrained model into atomic concepts, which can be interpreted as prototypical parts. This approach merges the flexibility of post-hoc methods with the concept-level modeling capabilities of self-explainable neural networks, such as ProtoPNets. We demonstrate the effectiveness of InfoDisent through computational experiments and user studies across various datasets using modern backbones such as ViTs and convolutional networks. Notably, InfoDisent generalizes the prototypical parts approach to novel domains (ImageNet).
♻ ☆ HelpSteer2-Preference: Complementing Ratings with Preferences ICLR 2025
Reward models are critical for aligning models to follow instructions, and are typically trained following one of two popular paradigms: Bradley-Terry style or Regression style. However, there is a lack of evidence that either approach is better than the other, when adequately matched for data. This is primarily because these approaches require data collected in different (but incompatible) formats, meaning that adequately matched data is not available in existing public datasets. To tackle this problem, we release preference annotations (designed for Bradley-Terry training) to complement existing ratings (designed for Regression style training) in the HelpSteer2 dataset. To improve data interpretability, preference annotations are accompanied with human-written justifications. Using this data, we conduct the first head-to-head comparison of Bradley-Terry and Regression models when adequately matched for data. Based on insights derived from such a comparison, we propose a novel approach to combine Bradley-Terry and Regression reward modeling. A Llama-3.1-70B-Instruct model tuned with this approach scores 94.1 on RewardBench, emerging top of more than 140 reward models as of 1 Oct 2024. This reward model can then be used with REINFORCE algorithm (RLHF) to align an Instruct model to reach 85.0 on Arena Hard, which is No. 1 as of 1 Oct 2024. We open-source this dataset (CC-BY-4.0 license) at https://huggingface.co/datasets/nvidia/HelpSteer2#preferences-new -- 1-oct-2024 and openly release the trained Reward and Instruct models at https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Reward and https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Instruct
comment: Accepted to ICLR 2025; 28 pages, 3 figures
♻ ☆ A Backbone for Long-Horizon Robot Task Understanding
End-to-end robot learning, particularly for long-horizon tasks, often results in unpredictable outcomes and poor generalization. To address these challenges, we propose a novel Therblig-Based Backbone Framework (TBBF) as a fundamental structure to enhance interpretability, data efficiency, and generalization in robotic systems. TBBF utilizes expert demonstrations to enable therblig-level task decomposition, facilitate efficient action-object mapping, and generate adaptive trajectories for new scenarios. The approach consists of two stages: offline training and online testing. During the offline training stage, we developed the Meta-RGate SynerFusion (MGSF) network for accurate therblig segmentation across various tasks. In the online testing stage, after a one-shot demonstration of a new task is collected, our MGSF network extracts high-level knowledge, which is then encoded into the image using Action Registration (ActionREG). Additionally, Large Language Model (LLM)-Alignment Policy for Visual Correction (LAP-VC) is employed to ensure precise action registration, facilitating trajectory transfer in novel robot scenarios. Experimental results validate these methods, achieving 94.37% recall in therblig segmentation and success rates of 94.4% and 80% in real-world online robot testing for simple and complex scenarios, respectively. Supplementary material is available at: https://sites.google.com/view/therbligsbasedbackbone/home
comment: 8 pages, 8 figures. This work has been published by IEEE Robotics and Automation Letters (RA-L)
♻ ☆ Evaluating Search Engines and Large Language Models for Answering Health Questions
Search engines (SEs) have traditionally been primary tools for information seeking, but the new Large Language Models (LLMs) are emerging as powerful alternatives, particularly for question-answering tasks. This study compares the performance of four popular SEs, seven LLMs, and retrieval-augmented (RAG) variants in answering 150 health-related questions from the TREC Health Misinformation (HM) Track. Results reveal SEs correctly answer between 50 and 70% of questions, often hindered by many retrieval results not responding to the health question. LLMs deliver higher accuracy, correctly answering about 80% of questions, though their performance is sensitive to input prompts. RAG methods significantly enhance smaller LLMs' effectiveness, improving accuracy by up to 30% by integrating retrieval evidence.
♻ ☆ Extracting Formulae in Many-Valued Logic from Deep Neural Networks
We propose a new perspective on deep ReLU networks, namely as circuit counterparts of Lukasiewicz infinite-valued logic -- a many-valued (MV) generalization of Boolean logic. An algorithm for extracting formulae in MV logic from deep ReLU networks is presented. As the algorithm applies to networks with general, in particular also real-valued, weights, it can be used to extract logical formulae from deep ReLU networks trained on data.
comment: Signicant extension of the previous version
♻ ☆ VISION-XL: High Definition Video Inverse Problem Solver using Latent Image Diffusion Models
In this paper, we propose a novel framework for solving high-definition video inverse problems using latent image diffusion models. Building on recent advancements in spatio-temporal optimization for video inverse problems using image diffusion models, our approach leverages latent-space diffusion models to achieve enhanced video quality and resolution. To address the high computational demands of processing high-resolution frames, we introduce a pseudo-batch consistent sampling strategy, allowing efficient operation on a single GPU. Additionally, to improve temporal consistency, we present pseudo-batch inversion, an initialization technique that incorporates informative latents from the measurement. By integrating with SDXL, our framework achieves state-of-the-art video reconstruction across a wide range of spatio-temporal inverse problems, including complex combinations of frame averaging and various spatial degradations, such as deblurring, super-resolution, and inpainting. Unlike previous methods, our approach supports multiple aspect ratios (landscape, vertical, and square) and delivers HD-resolution reconstructions (exceeding 1280x720) in under 6 seconds per frame on a single NVIDIA 4090 GPU.
comment: Project page: https://vision-xl.github.io/
♻ ☆ No More Sliding Window: Efficient 3D Medical Image Segmentation with Differentiable Top-k Patch Sampling
3D models surpass 2D models in CT/MRI segmentation by effectively capturing inter-slice relationships. However, the added depth dimension substantially increases memory consumption. While patch-based training alleviates memory constraints, it significantly slows down the inference speed due to the sliding window (SW) approach. We propose No-More-Sliding-Window (NMSW), a novel end-to-end trainable framework that enhances the efficiency of generic 3D segmentation backbone during an inference step by eliminating the need for SW. NMSW employs a differentiable Top-k module to selectively sample only the most relevant patches, thereby minimizing redundant computations. When patch-level predictions are insufficient, the framework intelligently leverages coarse global predictions to refine results. Evaluated across 3 tasks using 3 segmentation backbones, NMSW achieves competitive accuracy compared to SW inference while significantly reducing computational complexity by 91% (88.0 to 8.00 TMACs). Moreover, it delivers a 9.1x faster inference on the H100 GPU (99.0 to 8.3 sec) and a 11.1x faster inference on the Xeon Gold CPU (2110 to 189 sec). NMSW is model-agnostic, further boosting efficiency when integrated with any existing efficient segmentation backbones.
♻ ☆ Robust Deterministic Policy Gradient for Disturbance Attenuation and Its Application to Quadrotor Control
Practical control systems pose significant challenges in identifying optimal control policies due to uncertainties in the system model and external disturbances. While $H_\infty$ control techniques are commonly used to design robust controllers that mitigate the effects of disturbances, these methods often require complex and computationally intensive calculations. To address this issue, this paper proposes a reinforcement learning algorithm called Robust Deterministic Policy Gradient (RDPG), which formulates the $H_\infty$ control problem as a two-player zero-sum dynamic game. In this formulation, one player (the user) aims to minimize the cost, while the other player (the adversary) seeks to maximize it. We then employ deterministic policy gradient (DPG) and its deep reinforcement learning counterpart to train a robust control policy with effective disturbance attenuation. In particular, for practical implementation, we introduce an algorithm called robust deep deterministic policy gradient (RDDPG), which employs a deep neural network architecture and integrates techniques from the twin-delayed deep deterministic policy gradient (TD3) to enhance stability and learning efficiency. To evaluate the proposed algorithm, we implement it on an unmanned aerial vehicle (UAV) tasked with following a predefined path in a disturbance-prone environment. The experimental results demonstrate that the proposed method outperforms other control approaches in terms of robustness against disturbances, enabling precise real-time tracking of moving targets even under severe disturbance conditions.
comment: 8 pages
♻ ☆ Semi-Parametric Retrieval via Binary Bag-of-Tokens Index
Information retrieval has transitioned from standalone systems into essential components across broader applications, with indexing efficiency, cost-effectiveness, and freshness becoming increasingly critical yet often overlooked. In this paper, we introduce SemI-parametric Disentangled Retrieval (SiDR), a bi-encoder retrieval framework that decouples retrieval index from neural parameters to enable efficient, low-cost, and parameter-agnostic indexing for emerging use cases. Specifically, in addition to using embeddings as indexes like existing neural retrieval methods, SiDR supports a non-parametric tokenization index for search, achieving BM25-like indexing complexity with significantly better effectiveness. Our comprehensive evaluation across 16 retrieval benchmarks demonstrates that SiDR outperforms both neural and term-based retrieval baselines under the same indexing workload: (i) When using an embedding-based index, SiDR exceeds the performance of conventional neural retrievers while maintaining similar training complexity; (ii) When using a tokenization-based index, SiDR drastically reduces indexing cost and time, matching the complexity of traditional term-based retrieval, while consistently outperforming BM25 on all in-domain datasets; (iii) Additionally, we introduce a late parametric mechanism that matches BM25 index preparation time while outperforming other neural retrieval baselines in effectiveness.
♻ ☆ StoryTeller: Improving Long Video Description through Global Audio-Visual Character Identification
Existing large vision-language models (LVLMs) are largely limited to processing short, seconds-long videos and struggle with generating coherent descriptions for extended video spanning minutes or more. Long video description introduces new challenges, such as consistent character identification and plot-level descriptions incorporating both visual and audio information. To address these, we figure out audio-visual character identification, matching character names to each dialogue, as a key factor. We propose StoryTeller, a system for generating dense descriptions of long videos, incorporating both low-level visual concepts and high-level plot information. StoryTeller uses a multimodal large language model that integrates visual, audio, and text modalities to perform audio-visual character identification on minute-long video clips. The results are then fed into a LVLM to enhance consistency of video description. We validate our approach on movie description tasks and introduce MovieStory101, a dataset with dense descriptions for three-minute movie clips. To evaluate long video descriptions, we create StoryQA, a large set of multiple-choice questions for MovieStory101 test set. We assess descriptions by inputting them into GPT-4 to answer these questions, using accuracy as an automatic evaluation metric. Experiments show that StoryTeller outperforms all open and closed-source baselines on StoryQA, achieving 9.5% higher accuracy than the strongest baseline, Gemini-1.5-pro, and demonstrating a +15.56% advantage in human side-by-side evaluations. Additionally, incorporating audio-visual character identification from StoryTeller improves the performance of all video description models, with Gemini-1.5-pro and GPT-4o showing relative improvement of 5.5% and 13.0%, respectively, in accuracy on StoryQA.
♻ ☆ Pap2Pat: Benchmarking Outline-Guided Long-Text Patent Generation with Patent-Paper Pairs
Dealing with long and highly complex technical text is a challenge for Large Language Models (LLMs), which still have to unfold their potential in supporting expensive and timeintensive processes like patent drafting. Within patents, the description constitutes more than 90% of the document on average. Yet, its automatic generation remains understudied. When drafting patent applications, patent attorneys typically receive invention reports (IRs), which are usually confidential, hindering research on LLM-supported patent drafting. Often, prepublication research papers serve as IRs. We leverage this duality to build PAP2PAT, an open and realistic benchmark for patent drafting consisting of 1.8k patent-paper pairs describing the same inventions. To address the complex longdocument patent generation task, we propose chunk-based outline-guided generation using the research paper as invention specification. Our extensive evaluation using PAP2PAT and a human case study show that LLMs can effectively leverage information from the paper, but still struggle to provide the necessary level of detail. Fine-tuning leads to more patent-style language, but also to more hallucination. We release our data and code https://github.com/boschresearch/Pap2Pat.
♻ ☆ Measuring Human and AI Values Based on Generative Psychometrics with Large Language Models AAAI 2025
Human values and their measurement are long-standing interdisciplinary inquiry. Recent advances in AI have sparked renewed interest in this area, with large language models (LLMs) emerging as both tools and subjects of value measurement. This work introduces Generative Psychometrics for Values (GPV), an LLM-based, data-driven value measurement paradigm, theoretically grounded in text-revealed selective perceptions. The core idea is to dynamically parse unstructured texts into perceptions akin to static stimuli in traditional psychometrics, measure the value orientations they reveal, and aggregate the results. Applying GPV to human-authored blogs, we demonstrate its stability, validity, and superiority over prior psychological tools. Then, extending GPV to LLM value measurement, we advance the current art with 1) a psychometric methodology that measures LLM values based on their scalable and free-form outputs, enabling context-specific measurement; 2) a comparative analysis of measurement paradigms, indicating response biases of prior methods; and 3) an attempt to bridge LLM values and their safety, revealing the predictive power of different value systems and the impacts of various values on LLM safety. Through interdisciplinary efforts, we aim to leverage AI for next-generation psychometrics and psychometrics for value-aligned AI.
comment: Accepted at AAAI 2025
♻ ☆ BackdoorMBTI: A Backdoor Learning Multimodal Benchmark Tool Kit for Backdoor Defense Evaluation
Over the past few years, the emergence of backdoor attacks has presented significant challenges to deep learning systems, allowing attackers to insert backdoors into neural networks. When data with a trigger is processed by a backdoor model, it can lead to mispredictions targeted by attackers, whereas normal data yields regular results. The scope of backdoor attacks is expanding beyond computer vision and encroaching into areas such as natural language processing and speech recognition. Nevertheless, existing backdoor defense methods are typically tailored to specific data modalities, restricting their application in multimodal contexts. While multimodal learning proves highly applicable in facial recognition, sentiment analysis, action recognition, visual question answering, the security of these models remains a crucial concern. Specifically, there are no existing backdoor benchmarks targeting multimodal applications or related tasks. In order to facilitate the research in multimodal backdoor, we introduce BackdoorMBTI, the first backdoor learning toolkit and benchmark designed for multimodal evaluation across three representative modalities from eleven commonly used datasets. BackdoorMBTI provides a systematic backdoor learning pipeline, encompassing data processing, data poisoning, backdoor training, and evaluation. The generated poison datasets and backdoor models enable detailed evaluation of backdoor defenses. Given the diversity of modalities, BackdoorMBTI facilitates systematic evaluation across different data types. Furthermore, BackdoorMBTI offers a standardized approach to handling practical factors in backdoor learning, such as issues related to data quality and erroneous labels. We anticipate that BackdoorMBTI will expedite future research in backdoor defense methods within a multimodal context. Code is available at https://github.com/SJTUHaiyangYu/BackdoorMBTI.
♻ ☆ Revisiting Multi-Permutation Equivariance through the Lens of Irreducible Representations
This paper explores the characterization of equivariant linear layers for representations of permutations and related groups. Unlike traditional approaches, which address these problems using parameter-sharing, we consider an alternative methodology based on irreducible representations and Schur's lemma. Using this methodology, we obtain an alternative derivation for existing models like DeepSets, 2-IGN graph equivariant networks, and Deep Weight Space (DWS) networks. The derivation for DWS networks is significantly simpler than that of previous results. Next, we extend our approach to unaligned symmetric sets, where equivariance to the wreath product of groups is required. Previous works have addressed this problem in a rather restrictive setting, in which almost all wreath equivariant layers are Siamese. In contrast, we give a full characterization of layers in this case and show that there is a vast number of additional non-Siamese layers in some settings. We also show empirically that these additional non-Siamese layers can improve performance in tasks like graph anomaly detection, weight space alignment, and learning Wasserstein distances. Our code is available at \href{https://github.com/yonatansverdlov/Irreducible-Representations-of-Deep-Weight-Spaces}{GitHub}.
♻ ☆ Autoformalizing Natural Language to First-Order Logic: A Case Study in Logical Fallacy Detection
Translating natural language into formal language such as First-Order Logic (FOL) is a foundational challenge in NLP with wide-ranging applications in automated reasoning, misinformation tracking, and knowledge validation. In this paper, we introduce Natural Language to First-Order Logic (NL2FOL), a framework to autoformalize natural language to FOL step by step using Large Language Models (LLMs). Our approach addresses key challenges in this translation process, including the integration of implicit background knowledge. By leveraging structured representations generated by NL2FOL, we use Satisfiability Modulo Theory (SMT) solvers to reason about the logical validity of natural language statements. We present logical fallacy detection as a case study to evaluate the efficacy of NL2FOL. Being neurosymbolic, our approach also provides interpretable insights into the reasoning process and demonstrates robustness without requiring model fine-tuning or labeled training data. Our framework achieves strong performance on multiple datasets. On the LOGIC dataset, NL2FOL achieves an F1-score of 78%, while generalizing effectively to the LOGICCLIMATE dataset with an F1-score of 80%.
♻ ☆ An LLM-based Agent for Reliable Docker Environment Configuration
Environment configuration is a critical yet time-consuming step in software development, especially when dealing with unfamiliar code repositories. While Large Language Models (LLMs) demonstrate the potential to accomplish software engineering tasks, existing methods for environment configuration often rely on manual efforts or fragile scripts, leading to inefficiencies and unreliable outcomes. We introduce Repo2Run, the first LLM-based agent designed to fully automate environment configuration and generate executable Dockerfiles for arbitrary Python repositories. We address two major challenges: (1) enabling the LLM agent to configure environments within isolated Docker containers, and (2) ensuring the successful configuration process is recorded and accurately transferred to a Dockerfile without error. To achieve this, we propose atomic configuration synthesis, featuring a dual-environment architecture (internal and external environment) with a rollback mechanism to prevent environment "pollution" from failed commands, guaranteeing atomic execution (execute fully or not at all) and a Dockerfile generator to transfer successful configuration steps into runnable Dockerfiles. We evaluate Repo2Run~on our proposed benchmark of 420 recent Python repositories with unit tests, where it achieves an 86.0% success rate, outperforming the best baseline by 63.9%. Repo2Run is available at https://github.com/bytedance/Repo2Run.
♻ ☆ R2-KG: General-Purpose Dual-Agent Framework for Reliable Reasoning on Knowledge Graphs
Recent studies have combined Large Language Models (LLMs) with Knowledge Graphs (KGs) to enhance reasoning, improving inference accuracy without additional training while mitigating hallucination. However, existing frameworks are often rigid, struggling to adapt to KG or task changes. They also rely heavily on powerful LLMs for reliable (i.e., trustworthy) reasoning. To address this, We introduce R2-KG, a plug-and-play, dual-agent framework that separates reasoning into two roles: an Operator (a low-capacity LLM) that gathers evidence and a Supervisor (a high-capacity LLM) that makes final judgments. This design is cost-efficient for LLM inference while still maintaining strong reasoning accuracy. Additionally, R2-KG employs an Abstention mechanism, generating answers only when sufficient evidence is collected from KG, which significantly enhances reliability. Experiments across multiple KG-based reasoning tasks show that R2-KG consistently outperforms baselines in both accuracy and reliability, regardless of the inherent capability of LLMs used as the Operator. Further experiments reveal that the single-agent version of R2-KG, equipped with a strict self-consistency strategy, achieves significantly higher-than-baseline reliability while reducing inference cost. However, it also leads to a higher abstention rate in complex KGs. Our findings establish R2-KG as a flexible and cost-effective solution for KG-based reasoning. It reduces reliance on high-capacity LLMs while ensuring trustworthy inference.
♻ ☆ Markov Chain of Thought for Efficient Mathematical Reasoning NAACL 2025
Chain of Thought (CoT) of multi-step benefits from the logical structure of the reasoning steps and task-specific actions, significantly enhancing the mathematical reasoning capabilities of large language models. As the prevalence of long CoT, the number of reasoning steps exceeds manageable token limits and leads to higher computational demands. Inspired by the fundamental logic of human cognition, "derive, then reduce", we conceptualize the standard multi-step CoT as a novel Markov Chain of Thought (MCoT). In this study, we consider the mathematical reasoning task, defining each reasoning step as text accompanied by a Python code snippet. To facilitate a longer reasoning path, self-correction is enabled through interactions with the code interpreter. Our MCoT aims to compress previous reasoning steps into a simplified question, enabling efficient next-step inference without relying on a lengthy KV cache. In our experiments, we curate the $\texttt{MCoTInstruct}$ dataset, and the empirical results indicate that MCoT not only significantly enhances efficiency but also maintains comparable accuracy. While much remains to be explored, this work paves the way for exploring the long CoT reasoning abilities of LLMs. The code is available at https://github.com/james-yw/Markov-Chain-of-Thought
comment: Camera ready version for NAACL 2025 Main
♻ ☆ Investigating Non-Transitivity in LLM-as-a-Judge
Automatic evaluation methods based on large language models (LLMs) are emerging as the standard tool for assessing the instruction-following abilities of LLM-based agents. The most common method in this paradigm, pairwise comparisons with a baseline model, critically depends on the assumption of transitive preferences. However, the validity of this assumption remains largely unexplored. In this study, we investigate the presence of non-transitivity within the AlpacaEval framework and analyze its effects on model rankings. We find that LLM judges exhibit non-transitive preferences, leading to rankings that are sensitive to the choice of the baseline model. To mitigate this issue, we show that round-robin tournaments combined with Bradley-Terry models of preference can produce more reliable rankings. Notably, our method increases both the Spearman correlation and the Kendall correlation with Chatbot Arena (95.0% -> 96.4% and 82.1% -> 86.3% respectively). To address the computational cost of round-robin tournaments, we propose Swiss-Wise Iterative Matchmaking (Swim) tournaments, using a dynamic matching strategy to capture the benefits of round-robin tournaments while maintaining computational efficiency.
comment: 8 pages, 6 figures, 2 tables (30 pages, 11 figures, 8 tables including references and appendices)
♻ ☆ Towards Edge General Intelligence via Large Language Models: Opportunities and Challenges
Edge Intelligence (EI) has been instrumental in delivering real-time, localized services by leveraging the computational capabilities of edge networks. The integration of Large Language Models (LLMs) empowers EI to evolve into the next stage: Edge General Intelligence (EGI), enabling more adaptive and versatile applications that require advanced understanding and reasoning capabilities. However, systematic exploration in this area remains insufficient. This survey delineates the distinctions between EGI and traditional EI, categorizing LLM-empowered EGI into three conceptual systems: centralized, hybrid, and decentralized. For each system, we detail the framework designs and review existing implementations. Furthermore, we evaluate the performance and throughput of various Small Language Models (SLMs) that are more suitable for development on edge devices. This survey provides researchers with a comprehensive vision of EGI, offering insights into its vast potential and establishing a foundation for future advancements in this rapidly evolving field.
♻ ☆ Training and Evaluating Language Models with Template-based Data Generation
The rapid advancement of large language models (LLMs) such as GPT-3, PaLM, and Llama has significantly transformed natural language processing, showcasing remarkable capabilities in understanding and generating language. However, these models often struggle with tasks requiring complex reasoning, particularly in mathematical problem-solving, due in part to the scarcity of large-scale, high-quality, domain-specific datasets necessary for training sophisticated reasoning abilities. To address this limitation, we introduce Template-based Data Generation (TDG), a novel approach that leverages LLMs (GPT-4) to automatically generate parameterized meta-templates, which are then used to synthesize a vast array of high-quality problems and solutions. Leveraging TDG, we create TemplateMath Part I: TemplateGSM, a dataset comprising over 7 million synthetically generated grade school math problems--each accompanied by code-based and natural language solutions--with the potential to generate an effectively unlimited number more. This dataset alleviates the scarcity of large-scale mathematical datasets and serves as a valuable resource for pre-training, fine-tuning, and evaluating LLMs in mathematical reasoning. Our method not only enables the generation of virtually infinite data but also elevates data augmentation to a new level by using GPT-4 for meta-template generation, ensuring diverse and high-quality problem structures. The TemplateMath Part I: TemplateGSM dataset is publicly available at https://huggingface.co/datasets/math-ai/TemplateGSM. The code is available at https://github.com/iiis-ai/TemplateMath.
comment: 9 pages, 2 figures
♻ ☆ Legal Fact Prediction: The Missing Piece in Legal Judgment Prediction
Legal judgment prediction (LJP), which enables litigants and their lawyers to forecast judgment outcomes and refine litigation strategies, has emerged as a crucial legal NLP task. Existing studies typically utilize legal facts, i.e., facts that have been established by evidence and determined by the judge, to predict the judgment. However, legal facts are often difficult to obtain in the early stages of litigation, significantly limiting the practical applicability of fact-based LJP. To address this limitation, we propose a novel legal NLP task: \textit{legal fact prediction} (LFP), which takes the evidence submitted by litigants for trial as input to predict legal facts, thereby empowering fact-based LJP technologies to perform prediction in the absence of ground-truth legal facts. We also propose the first benchmark dataset, LFPBench, for evaluating the LFP task. Our extensive experiments on LFPBench demonstrate the effectiveness of LFP-empowered LJP and highlight promising research directions for LFP. Our code and data are available at https://github.com/HPRCEST/LFPBench.
♻ ☆ Prompting with Phonemes: Enhancing LLMs' Multilinguality for Non-Latin Script Languages NAACL 2025
Although multilingual LLMs have achieved remarkable performance across benchmarks, we find they continue to underperform on non-Latin script languages across contemporary LLM families. This discrepancy arises from the fact that LLMs are pretrained with orthographic scripts, which are dominated by Latin characters that obscure their shared phonology with non-Latin scripts. We propose leveraging phonemic transcriptions as complementary signals to induce script-invariant representations. Our study demonstrates that integrating phonemic signals improves performance across both non-Latin and Latin script languages, with a particularly significant impact on closing the performance gap between the two. Through detailed experiments, we show that phonemic and orthographic scripts retrieve distinct examples for in-context learning (ICL). This motivates our proposed Mixed-ICL retrieval strategy, where further aggregation from both leads to our significant performance improvements for both Latin script languages (up to 12.6%) and non-Latin script languages (up to 15.1%) compared to randomized ICL retrieval.
comment: Accepted for NAACL 2025 (Main Conference)
♻ ☆ PQMass: Probabilistic Assessment of the Quality of Generative Models using Probability Mass Estimation ICLR 2025
We propose a likelihood-free method for comparing two distributions given samples from each, with the goal of assessing the quality of generative models. The proposed approach, PQMass, provides a statistically rigorous method for assessing the performance of a single generative model or the comparison of multiple competing models. PQMass divides the sample space into non-overlapping regions and applies chi-squared tests to the number of data samples that fall within each region, giving a p-value that measures the probability that the bin counts derived from two sets of samples are drawn from the same multinomial distribution. PQMass does not depend on assumptions regarding the density of the true distribution, nor does it rely on training or fitting any auxiliary models. We evaluate PQMass on data of various modalities and dimensions, demonstrating its effectiveness in assessing the quality, novelty, and diversity of generated samples. We further show that PQMass scales well to moderately high-dimensional data and thus obviates the need for feature extraction in practical applications.
comment: Published as a conference paper at ICLR 2025
♻ ☆ DexMimicGen: Automated Data Generation for Bimanual Dexterous Manipulation via Imitation Learning ICRA 2025
Imitation learning from human demonstrations is an effective means to teach robots manipulation skills. But data acquisition is a major bottleneck in applying this paradigm more broadly, due to the amount of cost and human effort involved. There has been significant interest in imitation learning for bimanual dexterous robots, like humanoids. Unfortunately, data collection is even more challenging here due to the challenges of simultaneously controlling multiple arms and multi-fingered hands. Automated data generation in simulation is a compelling, scalable alternative to fuel this need for data. To this end, we introduce DexMimicGen, a large-scale automated data generation system that synthesizes trajectories from a handful of human demonstrations for humanoid robots with dexterous hands. We present a collection of simulation environments in the setting of bimanual dexterous manipulation, spanning a range of manipulation behaviors and different requirements for coordination among the two arms. We generate 21K demos across these tasks from just 60 source human demos and study the effect of several data generation and policy learning decisions on agent performance. Finally, we present a real-to-sim-to-real pipeline and deploy it on a real-world humanoid can sorting task. Generated datasets, simulation environments and additional results are at https://dexmimicgen.github.io/
comment: ICRA 2025. Project website: https://dexmimicgen.github.io/
♻ ☆ Unraveling and Mitigating Retriever Inconsistencies in Retrieval-Augmented Large Language Models ACL 2024
Although Retrieval-Augmented Large Language Models (RALMs) demonstrate their superiority in terms of factuality, they do not consistently outperform the original retrieval-free Language Models (LMs). Our experiments reveal that this example-level performance inconsistency exists not only between retrieval-augmented and retrieval-free LM but also among different retrievers. To understand this phenomenon, we investigate the degeneration behavior of RALMs and theoretically decompose it into four categories. Further analysis based on our decomposition reveals that the innate difference in knowledge sources and the unpredictable degeneration of the reader model contribute most to the inconsistency. Drawing from our analysis, we introduce Ensemble of Retrievers (EoR), a trainable framework that can adaptively retrieve from different knowledge sources and effectively decrease unpredictable reader errors. Our experiments on Open Domain Question Answering show that EoR substantially improves performance over the RALM with a single retriever by considerably reducing inconsistent behaviors.
comment: ACL 2024 (findings)
♻ ☆ Select before Act: Spatially Decoupled Action Repetition for Continuous Control ICLR 2025
Reinforcement Learning (RL) has achieved remarkable success in various continuous control tasks, such as robot manipulation and locomotion. Different to mainstream RL which makes decisions at individual steps, recent studies have incorporated action repetition into RL, achieving enhanced action persistence with improved sample efficiency and superior performance. However, existing methods treat all action dimensions as a whole during repetition, ignoring variations among them. This constraint leads to inflexibility in decisions, which reduces policy agility with inferior effectiveness. In this work, we propose a novel repetition framework called SDAR, which implements Spatially Decoupled Action Repetition through performing closed-loop act-or-repeat selection for each action dimension individually. SDAR achieves more flexible repetition strategies, leading to an improved balance between action persistence and diversity. Compared to existing repetition frameworks, SDAR is more sample efficient with higher policy performance and reduced action fluctuation. Experiments are conducted on various continuous control scenarios, demonstrating the effectiveness of spatially decoupled repetition design proposed in this work.
comment: ICLR 2025
♻ ☆ Comparing Deep Neural Network for Multi-Label ECG Diagnosis From Scanned ECG
Automated ECG diagnosis has seen significant advancements with deep learning techniques, but real-world applications still face challenges when dealing with scanned paper ECGs. In this study, we explore multi-label classification of ECGs extracted from scanned images, moving beyond traditional binary classification (normal/abnormal). We evaluate the performance of multiple deep neural network architectures, including AlexNet, VGG, ResNet, and Vision Transformer, on scanned ECG datasets. Our comparative analysis examines model accuracy, robustness to image artifacts, and generalizability across different ECG conditions. Additionally, we investigate whether ECG signals extracted from scanned images retain sufficient diagnostic information for reliable automated classification. The findings highlight the strengths and limitations of each architecture, providing insights into the feasibility of image-based ECG diagnosis and its potential integration into clinical workflows.
♻ ☆ Human Motion Instruction Tuning CVPR 2025
This paper presents LLaMo (Large Language and Human Motion Assistant), a multimodal framework for human motion instruction tuning. In contrast to conventional instruction-tuning approaches that convert non-linguistic inputs, such as video or motion sequences, into language tokens, LLaMo retains motion in its native form for instruction tuning. This method preserves motion-specific details that are often diminished in tokenization, thereby improving the model's ability to interpret complex human behaviors. By processing both video and motion data alongside textual inputs, LLaMo enables a flexible, human-centric analysis. Experimental evaluations across high-complexity domains, including human behaviors and professional activities, indicate that LLaMo effectively captures domain-specific knowledge, enhancing comprehension and prediction in motion-intensive scenarios. We hope LLaMo offers a foundation for future multimodal AI systems with broad applications, from sports analytics to behavioral prediction. Our code and models are available on the project website: https://github.com/ILGLJ/LLaMo.
comment: Accepted by CVPR 2025
♻ ☆ Search-Based Path Planning in Interactive Environments among Movable Obstacles ICRA 2025
This paper investigates Path planning Among Movable Obstacles (PAMO), which seeks a minimum cost collision-free path among static obstacles from start to goal while allowing the robot to push away movable obstacles (i.e., objects) along its path when needed. To develop planners that are complete and optimal for PAMO, the planner has to search a giant state space involving both the location of the robot as well as the locations of the objects, which grows exponentially with respect to the number of objects. This paper leverages a simple yet under-explored idea that, only a small fraction of this giant state space needs to be searched during planning as guided by a heuristic, and most of the objects far away from the robot are intact, which thus leads to runtime efficient algorithms. Based on this idea, this paper introduces two PAMO formulations, i.e., bi-objective and resource constrained problems in an occupancy grid, and develops PAMO*, a planning method with completeness and solution optimality guarantees, to solve the two problems. We then further extend PAMO* to hybrid-state PAMO* to plan in continuous spaces with high-fidelity interaction between the robot and the objects. Our results show that, PAMO* can often find optimal solutions within a second in cluttered maps with up to 400 objects.
comment: Accepted by ICRA 2025
♻ ☆ MultiChallenge: A Realistic Multi-Turn Conversation Evaluation Benchmark Challenging to Frontier LLMs
We present MultiChallenge, a pioneering benchmark evaluating large language models (LLMs) on conducting multi-turn conversations with human users, a crucial yet underexamined capability for their applications. MultiChallenge identifies four categories of challenges in multi-turn conversations that are not only common and realistic among current human-LLM interactions, but are also challenging to all current frontier LLMs. All 4 challenges require accurate instruction-following, context allocation, and in-context reasoning at the same time. We also develop LLM as judge with instance-level rubrics to facilitate an automatic evaluation method with fair agreement with experienced human raters. Despite achieving near-perfect scores on existing multi-turn evaluation benchmarks, all frontier models have less than 50% accuracy on MultiChallenge, with the top-performing Claude 3.5 Sonnet (June 2024) achieving just a 41.4% average accuracy.
♻ ☆ DreamText: High Fidelity Scene Text Synthesis
Scene text synthesis involves rendering specified texts onto arbitrary images. Current methods typically formulate this task in an end-to-end manner but lack effective character-level guidance during training. Besides, their text encoders, pre-trained on a single font type, struggle to adapt to the diverse font styles encountered in practical applications. Consequently, these methods suffer from character distortion, repetition, and absence, particularly in polystylistic scenarios. To this end, this paper proposes DreamText for high-fidelity scene text synthesis. Our key idea is to reconstruct the diffusion training process, introducing more refined guidance tailored to this task, to expose and rectify the model's attention at the character level and strengthen its learning of text regions. This transformation poses a hybrid optimization challenge, involving both discrete and continuous variables. To effectively tackle this challenge, we employ a heuristic alternate optimization strategy. Meanwhile, we jointly train the text encoder and generator to comprehensively learn and utilize the diverse font present in the training dataset. This joint training is seamlessly integrated into the alternate optimization process, fostering a synergistic relationship between learning character embedding and re-estimating character attention. Specifically, in each step, we first encode potential character-generated position information from cross-attention maps into latent character masks. These masks are then utilized to update the representation of specific characters in the current step, which, in turn, enables the generator to correct the character's attention in the subsequent steps. Both qualitative and quantitative results demonstrate the superiority of our method to the state of the art.
comment: Code: https://github.com/CodeGoat24/DreamText, Project page: https://codegoat24.github.io/DreamText/
♻ ☆ SonicSim: A customizable simulation platform for speech processing in moving sound source scenarios ICLR 2025
Systematic evaluation of speech separation and enhancement models under moving sound source conditions requires extensive and diverse data. However, real-world datasets often lack sufficient data for training and evaluation, and synthetic datasets, while larger, lack acoustic realism. Consequently, neither effectively meets practical needs. To address this issue, we introduce SonicSim, a synthetic toolkit based on the embodied AI simulation platform Habitat-sim, designed to generate highly customizable data for moving sound sources. SonicSim supports multi-level adjustments, including scene-level, microphone-level, and source-level adjustments, enabling the creation of more diverse synthetic data. Leveraging SonicSim, we constructed a benchmark dataset called SonicSet, utilizing LibriSpeech, Freesound Dataset 50k (FSD50K), Free Music Archive (FMA), and 90 scenes from Matterport3D to evaluate speech separation and enhancement models. Additionally, to investigate the differences between synthetic and real-world data, we selected 5 hours of raw, non-reverberant data from the SonicSet validation set and recorded a real-world speech separation dataset, providing a reference for comparing SonicSet with other synthetic datasets. For speech enhancement, we utilized the real-world dataset RealMAN to validate the acoustic gap between SonicSet and existing synthetic datasets. The results indicate that models trained on SonicSet generalize better to real-world scenarios compared to other synthetic datasets. The code is publicly available at https://cslikai.cn/SonicSim/.
comment: Accepted by ICLR 2025
♻ ☆ TIGER: Time-frequency Interleaved Gain Extraction and Reconstruction for Efficient Speech Separation ICLR 2025
In recent years, much speech separation research has focused primarily on improving model performance. However, for low-latency speech processing systems, high efficiency is equally important. Therefore, we propose a speech separation model with significantly reduced parameters and computational costs: Time-frequency Interleaved Gain Extraction and Reconstruction network (TIGER). TIGER leverages prior knowledge to divide frequency bands and compresses frequency information. We employ a multi-scale selective attention module to extract contextual features while introducing a full-frequency-frame attention module to capture both temporal and frequency contextual information. Additionally, to more realistically evaluate the performance of speech separation models in complex acoustic environments, we introduce a dataset called EchoSet. This dataset includes noise and more realistic reverberation (e.g., considering object occlusions and material properties), with speech from two speakers overlapping at random proportions. Experimental results showed that models trained on EchoSet had better generalization ability than those trained on other datasets compared to the data collected in the physical world, which validated the practical value of the EchoSet. On EchoSet and real-world data, TIGER significantly reduces the number of parameters by 94.3% and the MACs by 95.3% while achieving performance surpassing the state-of-the-art (SOTA) model TF-GridNet.
comment: Accepted by ICLR 2025, demo page: https://cslikai.cn/TIGER/
♻ ☆ Visual Description Grounding Reduces Hallucinations and Boosts Reasoning in LVLMs ICLR 2025
Large Vision-Language Models (LVLMs) often produce responses that misalign with factual information, a phenomenon known as hallucinations. While hallucinations are well-studied, the exact causes behind them remain underexplored. In this paper, we first investigate the root causes of hallucinations in LVLMs. Our findings reveal that existing mitigation techniques primarily reduce hallucinations for visual recognition prompts-those that require simple descriptions of visual elements-but fail for cognitive prompts that demand deliberate reasoning. We identify the core issue as a lack of true visual perception in LVLMs: although they can accurately recognize visual elements, they struggle to fully interpret these elements in the context of the input prompt and effectively link this recognition to their internal knowledge, which is critical for reasoning. To address this gap, we introduce Visual Description Grounded Decoding (VDGD), a simple, robust, and training-free method designed to enhance visual perception and improve reasoning capabilities in LVLMs. VDGD works by first generating a detailed description of the image and appending it as a prefix to the instruction. During response generation, tokens are sampled based on their KL divergence to the description, favoring candidates with lower divergence. Experimental results on multiple visual reasoning benchmarks and LVLMs demonstrate that VDGD consistently outperforms existing baselines 2% - 33%. Finally, we introduce VaLLu, a benchmark designed for comprehensive evaluation of the cognitive capabilities of LVLMs.
comment: Accepted to ICLR 2025. Project: https://sreyan88.github.io/VDGD/
♻ ☆ Iterative Flow Matching -- Path Correction and Gradual Refinement for Enhanced Generative Modeling
Generative models for image generation are now commonly used for a wide variety of applications, ranging from guided image generation for entertainment to solving inverse problems. Nonetheless, training a generator is a non-trivial feat that requires fine-tuning and can lead to so-called hallucinations, that is, the generation of images that are unrealistic. In this work, we explore image generation using flow matching. We explain and demonstrate why flow matching can generate hallucinations, and propose an iterative process to improve the generation process. Our iterative process can be integrated into virtually $\textit{any}$ generative modeling technique, thereby enhancing the performance and robustness of image synthesis systems.
comment: 17 pages, 8 figures
♻ ☆ AutoBench-V: Can Large Vision-Language Models Benchmark Themselves?
Large Vision-Language Models (LVLMs) have become essential for advancing the integration of visual and linguistic information. However, the evaluation of LVLMs presents significant challenges as the evaluation benchmark always demands lots of human cost for its construction, and remains static, lacking flexibility once constructed. Even though automatic evaluation has been explored in textual modality, the visual modality remains under-explored. As a result, in this work, we address a question: "Can LVLMs themselves be used to benchmark each other in the visual automatically domain?". We introduce AutoBench-V, an automated framework for serving evaluation on demand, i.e., benchmarking LVLMs based on specific aspects of model capability. AutoBench-V leverages text-to-image models to generate relevant image samples and then utilizes LVLMs to orchestrate visual question-answering (VQA) tasks, completing the evaluation process efficiently and flexibly. Through an extensive evaluation of nine popular LVLMs across five demanded user inputs (i.e., evaluation capabilities), the framework shows effectiveness and reliability.
♻ ☆ Rhythmic sharing: A bio-inspired paradigm for zero-shot adaptive learning in neural networks
The brain rapidly adapts to new contexts and learns from limited data, a coveted characteristic that artificial intelligence (AI) algorithms struggle to mimic. Inspired by the mechanical oscillatory rhythms of neural cells, we developed a learning paradigm utilizing link strength oscillations, where learning is associated with the coordination of these oscillations. Link oscillations can rapidly change coordination, allowing the network to sense and adapt to subtle contextual changes without supervision. The network becomes a generalist AI architecture, capable of predicting dynamics of multiple contexts including unseen ones. These results make our paradigm a powerful starting point for novel models of cognition. Because our paradigm is agnostic to specifics of the neural network, our study opens doors for introducing rapid adaptive learning into leading AI models.
comment: 12 pages, 3 figures. v.1,3,4 comments: General formatting and reference addendum. v2 comments: Typo on p.11: h -> h^2 for RMSE
♻ ☆ On the Feasibility of Using LLMs to Execute Multistage Network Attacks
LLMs have shown preliminary promise in some security tasks and CTF challenges. However, it is unclear whether LLMs are able to realize multistage network attacks, which involve executing a wide variety of actions across multiple hosts such as conducting reconnaissance, exploiting vulnerabilities to gain initial access, leveraging internal hosts to move laterally, and using multiple compromised hosts to exfiltrate data. We evaluate LLMs across 10 multistage networks and find that popular LLMs are unable to realize these attacks. To enable LLMs to realize these attacks, we introduce Incalmo, an LLM-agnostic high-level attack abstraction layer that sits between an LLM and the environment. Rather than LLMs issuing low-level command-line instructions, which can lead to incorrect implementations, Incalmo allows LLMs to specify high-level tasks (e.g., infect a host, scan a network), which are then carried out by Incalmo. Incalmo realizes these tasks by translating them into low-level primitives (e.g., commands to exploit tools). Incalmo also provides an environment state service and an attack graph service to provide structure to LLMs in selecting actions relevant to a multistage attack. Across 9 out of 10 realistic emulated networks (from 25 to 50 hosts), LLMs using Incalmo can successfully autonomously execute multistage attacks. We also conduct an ablation analysis to show the key role the high-level abstractions play. For instance, we find that both Incalmo's high-level tasks and services are crucial. Furthermore, even smaller-parameter LLMs with Incalmo can fully succeed in 5 of 10 environments, while larger-parameter LLMs without Incalmo do not fully succeed in any.
comment: 16 pages, 14 figures
♻ ☆ PostEdit: Posterior Sampling for Efficient Zero-Shot Image Editing
In the field of image editing, three core challenges persist: controllability, background preservation, and efficiency. Inversion-based methods rely on time-consuming optimization to preserve the features of the initial images, which results in low efficiency due to the requirement for extensive network inference. Conversely, inversion-free methods lack theoretical support for background similarity, as they circumvent the issue of maintaining initial features to achieve efficiency. As a consequence, none of these methods can achieve both high efficiency and background consistency. To tackle the challenges and the aforementioned disadvantages, we introduce PostEdit, a method that incorporates a posterior scheme to govern the diffusion sampling process. Specifically, a corresponding measurement term related to both the initial features and Langevin dynamics is introduced to optimize the estimated image generated by the given target prompt. Extensive experimental results indicate that the proposed PostEdit achieves state-of-the-art editing performance while accurately preserving unedited regions. Furthermore, the method is both inversion- and training-free, necessitating approximately 1.5 seconds and 18 GB of GPU memory to generate high-quality results.
comment: 31 pages
♻ ☆ Watson: A Cognitive Observability Framework for the Reasoning of LLM-Powered Agents
As foundation models (FMs) play an increasingly prominent role in complex software systems, such as agentic software, they introduce significant observability and debuggability challenges. Although recent Large Reasoning Models (LRMs) generate their thought processes as part of the output, in many scenarios fast-thinking Large Language Models (LLMs) are still preferred due to latency constraints. LLM-powered agents operate autonomously with opaque implicit reasoning, making it difficult to debug their unexpected behaviors or errors. In this paper, we introduce Watson, a novel framework that provides reasoning observability into the implicit reasoning processes of agents driven by fast-thinking LLMs, allowing the identification and localization of errors and guidance for corrections. We demonstrate the accuracy of the recovered implicit reasoning trace by Watson and its usefulness through debugging and improving the performance of LLM-powered agents in two scenarios: Massive Multitask Language Understanding (MMLU) benchmark and SWE-bench-lite. Using Watson, we were able to observe and identify the implicit reasoning errors, and automatically provide targeted corrections at runtime that improve the Pass@1 of agents on MMLU and SWE-bench-lite by 7.58 (13.45% relative improvement) and 7.76 (12.31% relative improvement) percentage points, respectively, without updates to models or the cognitive architecture of the agents.
♻ ☆ Understanding Expert Structures on Minimax Parameter Estimation in Contaminated Mixture of Experts AISTATS 2025
We conduct the convergence analysis of parameter estimation in the contaminated mixture of experts. This model is motivated from the prompt learning problem where ones utilize prompts, which can be formulated as experts, to fine-tune a large-scale pre-trained model for learning downstream tasks. There are two fundamental challenges emerging from the analysis: (i) the proportion in the mixture of the pre-trained model and the prompt may converge to zero during the training, leading to the prompt vanishing issue; (ii) the algebraic interaction among parameters of the pre-trained model and the prompt can occur via some partial differential equations and decelerate the prompt learning. In response, we introduce a distinguishability condition to control the previous parameter interaction. Additionally, we also investigate various types of expert structure to understand their effects on the convergence behavior of parameter estimation. In each scenario, we provide comprehensive convergence rates of parameter estimation along with the corresponding minimax lower bounds. Finally, we run several numerical experiments to empirically justify our theoretical findings.
comment: Fanqi Yan, Huy Nguyen, and Dung Le contributed equally to this work. Accepted to AISTATS 2025
♻ ☆ Automatically Labeling Clinical Trial Outcomes: A Large-Scale Benchmark for Drug Development
Background The cost of drug discovery and development is substantial, with clinical trial outcomes playing a critical role in regulatory approval and patient care. However, access to large-scale, high-quality clinical trial outcome data remains limited, hindering advancements in predictive modeling and evidence-based decision-making. Methods We present the Clinical Trial Outcome (CTO) benchmark, a fully reproducible, large-scale repository encompassing approximately 125,000 drug and biologics trials. CTO integrates large language model (LLM) interpretations of publications, trial phase progression tracking, sentiment analysis from news sources, stock price movements of trial sponsors, and additional trial-related metrics. Furthermore, we manually annotated a dataset of clinical trials conducted between 2020 and 2024 to enhance the quality and reliability of outcome labels. Results The trial outcome labels in the CTO benchmark agree strongly with expert annotations, achieving an F1 score of 94 for Phase 3 trials and 91 across all phases. Additionally, benchmarking standard machine learning models on our manually annotated dataset revealed distribution shifts in recent trials, underscoring the necessity of continuously updated labeling approaches. Conclusions By analyzing CTO's performance on recent clinical trials, we demonstrate the ongoing need for high-quality, up-to-date trial outcome labels. We publicly release the CTO knowledge base and annotated labels at https://chufangao.github.io/CTOD, with regular updates to support research on clinical trial outcomes and inform data-driven improvements in drug development.
♻ ☆ Advancing Depth Anything Model for Unsupervised Monocular Depth Estimation in Endoscopy
Depth estimation is a cornerstone of 3D reconstruction and plays a vital role in minimally invasive endoscopic surgeries. However, most current depth estimation networks rely on traditional convolutional neural networks, which are limited in their ability to capture global information. Foundation models offer a promising approach to enhance depth estimation, but those models currently available are primarily trained on natural images, leading to suboptimal performance when applied to endoscopic images. In this work, we introduce a novel fine-tuning strategy for the Depth Anything Model and integrate it with an intrinsic-based unsupervised monocular depth estimation framework. Our approach includes a low-rank adaptation technique based on random vectors, which improves the model's adaptability to different scales. Additionally, we propose a residual block built on depthwise separable convolution to compensate for the transformer's limited ability to capture local features. Our experimental results on the SCARED dataset and Hamlyn dataset show that our method achieves state-of-the-art performance while minimizing the number of trainable parameters. Applying this method in minimally invasive endoscopic surgery can enhance surgeons' spatial awareness, thereby improving the precision and safety of the procedures.
comment: 8 pages, 7 figures
♻ ☆ An Efficient Sparse Kernel Generator for O(3)-Equivariant Deep Networks
Rotation equivariant graph neural networks, i.e., networks designed to guarantee certain geometric relations between their inputs and outputs, yield state-of-the-art performance on spatial deep learning tasks. They exhibit high data efficiency during training and significantly reduced inference time for interatomic potential calculations compared to classical approaches. Key to these models is the Clebsch-Gordon (CG) tensor product, a kernel that contracts two dense feature vectors with a highly structured sparse tensor to produce a dense output vector. The operation, which may be repeated millions of times for typical equivariant models, is a costly and inefficient bottleneck. We introduce a GPU sparse kernel generator for the CG tensor product that provides significant speedup over the best existing open and closed-source implementations. Our implementation achieves high performance by carefully managing GPU shared memory through static analysis at model compile-time, minimizing reads and writes to global memory. We break the tensor product into a series of kernels with operands that fit entirely into registers, enabling us to emit long arithmetic instruction streams that maximize instruction-level parallelism. By fusing the CG tensor product with a subsequent graph convolution, we reduce both intermediate storage and global memory traffic over naive approaches that duplicate input data. We also provide optimized kernels for the gradient of the CG tensor product and a novel identity for the higher partial derivatives required to predict interatomic forces. Our fused kernels offer up to 4.5x speedup for the forward pass and 3x for the backward pass over NVIDIA cuEquivariance, as well as >10x speedup over the widely-used e3nn package. We offer up to 5.3x inference-time speedup for the MACE chemistry foundation model over the original unoptimized version.
comment: 12 pages, 9 figures, 3 tables
♻ ☆ EgoNormia: Benchmarking Physical Social Norm Understanding
Human activity is moderated by norms. However, machines are often trained without explicit supervision on norm understanding and reasoning, especially when the norms are grounded in a physical and social context. To improve and evaluate the normative reasoning capability of vision-language models (VLMs), we present EgoNormia $\|\epsilon\|$, consisting of 1,853 ego-centric videos of human interactions, each of which has two related questions evaluating both the prediction and justification of normative actions. The normative actions encompass seven categories: safety, privacy, proxemics, politeness, cooperation, coordination/proactivity, and communication/legibility. To compile this dataset at scale, we propose a novel pipeline leveraging video sampling, automatic answer generation, filtering, and human validation. Our work demonstrates that current state-of-the-art vision-language models lack robust norm understanding, scoring a maximum of 45% on EgoNormia (versus a human bench of 92%). Our analysis of performance in each dimension highlights the significant risks of safety, privacy, and the lack of collaboration and communication capability when applied to real-world agents. We additionally show that through a retrieval-based generation method, it is possible to use EgoNormia to enhance normative reasoning in VLMs.
♻ ☆ METAL: A Multi-Agent Framework for Chart Generation with Test-Time Scaling
Chart generation aims to generate code to produce charts satisfying the desired visual properties, e.g., texts, layout, color, and type. It has great potential to empower the automatic professional report generation in financial analysis, research presentation, education, and healthcare. In this work, we build a vision-language model (VLM) based multi-agent framework for effective automatic chart generation. Generating high-quality charts requires both strong visual design skills and precise coding capabilities that embed the desired visual properties into code. Such a complex multi-modal reasoning process is difficult for direct prompting of VLMs. To resolve these challenges, we propose METAL, a multi-agent framework that decomposes the task of chart generation into the iterative collaboration among specialized agents. METAL achieves 5.2% improvement over the current best result in the chart generation task. The METAL framework exhibits the phenomenon of test-time scaling: its performance increases monotonically as the logarithmic computational budget grows from 512 to 8192 tokens. In addition, we find that separating different modalities during the critique process of METAL boosts the self-correction capability of VLMs in the multimodal context.
♻ ☆ SycEval: Evaluating LLM Sycophancy
Large language models (LLMs) are increasingly applied in educational, clinical, and professional settings, but their tendency for sycophancy -- prioritizing user agreement over independent reasoning -- poses risks to reliability. This study introduces a framework to evaluate sycophantic behavior in ChatGPT-4o, Claude-Sonnet, and Gemini-1.5-Pro across AMPS (mathematics) and MedQuad (medical advice) datasets. Sycophantic behavior was observed in 58.19% of cases, with Gemini exhibiting the highest rate (62.47%) and ChatGPT the lowest (56.71%). Progressive sycophancy, leading to correct answers, occurred in 43.52% of cases, while regressive sycophancy, leading to incorrect answers, was observed in 14.66%. Preemptive rebuttals demonstrated significantly higher sycophancy rates than in-context rebuttals (61.75% vs. 56.52%, $Z=5.87$, $p<0.001$), particularly in computational tasks, where regressive sycophancy increased significantly (preemptive: 8.13%, in-context: 3.54%, $p<0.001$). Simple rebuttals maximized progressive sycophancy ($Z=6.59$, $p<0.001$), while citation-based rebuttals exhibited the highest regressive rates ($Z=6.59$, $p<0.001$). Sycophantic behavior showed high persistence (78.5%, 95% CI: [77.2%, 79.8%]) regardless of context or model. These findings emphasize the risks and opportunities of deploying LLMs in structured and dynamic domains, offering insights into prompt programming and model optimization for safer AI applications.
comment: 10 pages
♻ ☆ LeanAgent: Lifelong Learning for Formal Theorem Proving
Large Language Models (LLMs) have been successful in mathematical reasoning tasks such as formal theorem proving when integrated with interactive proof assistants like Lean. Existing approaches involve training or fine-tuning an LLM on a specific dataset to perform well on particular domains, such as undergraduate-level mathematics. These methods struggle with generalizability to advanced mathematics. A fundamental limitation is that these approaches operate on static domains, failing to capture how mathematicians often work across multiple domains and projects simultaneously or cyclically. We present LeanAgent, a novel lifelong learning framework for formal theorem proving that continuously generalizes to and improves on ever-expanding mathematical knowledge without forgetting previously learned knowledge. LeanAgent introduces several key innovations, including a curriculum learning strategy that optimizes the learning trajectory in terms of mathematical difficulty, a dynamic database for efficient management of evolving mathematical knowledge, and progressive training to balance stability and plasticity. LeanAgent successfully generates formal proofs for 155 theorems across 23 diverse Lean repositories where formal proofs were previously missing, many from advanced mathematics. It performs significantly better than the static LLM baseline, proving challenging theorems in domains like abstract algebra and algebraic topology while showcasing a clear progression of learning from basic concepts to advanced topics. In addition, we analyze LeanAgent's superior performance on key lifelong learning metrics. LeanAgent achieves exceptional scores in stability and backward transfer, where learning new tasks improves performance on previously learned tasks. This emphasizes LeanAgent's continuous generalizability and improvement, explaining its superior theorem-proving performance.
♻ ☆ MedUnifier: Unifying Vision-and-Language Pre-training on Medical Data with Vision Generation Task using Discrete Visual Representations CVPR 2025
Despite significant progress in Vision-Language Pre-training (VLP), current approaches predominantly emphasize feature extraction and cross-modal comprehension, with limited attention to generating or transforming visual content. This gap hinders the model's ability to synthesize coherent and novel visual representations from textual prompts, thereby reducing the effectiveness of multi-modal learning. In this work, we propose MedUnifier, a unified VLP framework tailored for medical data. MedUnifier seamlessly integrates text-grounded image generation capabilities with multi-modal learning strategies, including image-text contrastive alignment, image-text matching and image-grounded text generation. Unlike traditional methods that reply on continuous visual representations, our approach employs visual vector quantization, which not only facilitates a more cohesive learning strategy for cross-modal understanding but also enhances multi-modal generation quality by effectively leveraging discrete representations. Our framework's effectiveness is evidenced by the experiments on established benchmarks, including uni-modal tasks (supervised fine-tuning), cross-modal tasks (image-text retrieval and zero-shot image classification), and multi-modal tasks (medical report generation, image synthesis), where it achieves state-of-the-art performance across various tasks. MedUnifier also offers a highly adaptable tool for a wide range of language and vision tasks in healthcare, marking advancement toward the development of a generalizable AI model for medical applications.
comment: To be pubilshed in CVPR 2025
♻ ☆ Distributional Associations vs In-Context Reasoning: A Study of Feed-forward and Attention Layers ICLR 2025
Large language models have been successful at tasks involving basic forms of in-context reasoning, such as generating coherent language, as well as storing vast amounts of knowledge. At the core of the Transformer architecture behind such models are feed-forward and attention layers, which are often associated to knowledge and reasoning, respectively. In this paper, we study this distinction empirically and theoretically in a controlled synthetic setting where certain next-token predictions involve both distributional and in-context information. We find that feed-forward layers tend to learn simple distributional associations such as bigrams, while attention layers focus on in-context reasoning. Our theoretical analysis identifies the noise in the gradients as a key factor behind this discrepancy. Finally, we illustrate how similar disparities emerge in pre-trained models through ablations on the Pythia model family on simple reasoning tasks.
comment: ICLR 2025
♻ ☆ NaijaNLP: A Survey of Nigerian Low-Resource Languages
With over 500 languages in Nigeria, three languages -- Hausa, Yor\`ub\'a and Igbo -- spoken by over 175 million people, account for about 60% of the spoken languages. However, these languages are categorised as low-resource due to insufficient resources to support tasks in computational linguistics. Several research efforts and initiatives have been presented, however, a coherent understanding of the state of Natural Language Processing (NLP) - from grammatical formalisation to linguistic resources that support complex tasks such as language understanding and generation is lacking. This study presents the first comprehensive review of advancements in low-resource NLP (LR-NLP) research across the three major Nigerian languages (NaijaNLP). We quantitatively assess the available linguistic resources and identify key challenges. Although a growing body of literature addresses various NLP downstream tasks in Hausa, Igbo, and Yor\`ub\'a, only about 25.1% of the reviewed studies contribute new linguistic resources. This finding highlights a persistent reliance on repurposing existing data rather than generating novel, high-quality resources. Additionally, language-specific challenges, such as the accurate representation of diacritics, remain under-explored. To advance NaijaNLP and LR-NLP more broadly, we emphasise the need for intensified efforts in resource enrichment, comprehensive annotation, and the development of open collaborative initiatives.
comment: 35 pages, 2 figures, 4 tables
♻ ☆ Persuade Me if You Can: A Framework for Evaluating Persuasion Effectiveness and Susceptibility Among Large Language Models
Large Language Models (LLMs) demonstrate persuasive capabilities that rival human-level persuasion. While these capabilities can be used for social good, they also present risks of potential misuse. Moreover, LLMs' susceptibility to persuasion raises concerns about alignment with ethical principles. To study these dynamics, we introduce Persuade Me If You Can (PMIYC), an automated framework for evaluating persuasion through multi-agent interactions. Here, Persuader agents engage in multi-turn conversations with the Persuadee agents, allowing us to measure LLMs' persuasive effectiveness and their susceptibility to persuasion. We conduct comprehensive evaluations across diverse LLMs, ensuring each model is assessed against others in both subjective and misinformation contexts. We validate the efficacy of our framework through human evaluations and show alignment with prior work. PMIYC offers a scalable alternative to human annotation for studying persuasion in LLMs. Through PMIYC, we find that Llama-3.3-70B and GPT-4o exhibit similar persuasive effectiveness, outperforming Claude 3 Haiku by 30%. However, GPT-4o demonstrates over 50% greater resistance to persuasion for misinformation compared to Llama-3.3-70B. These findings provide empirical insights into the persuasive dynamics of LLMs and contribute to the development of safer AI systems.
♻ ☆ Physics-consistent machine learning: output projection onto physical manifolds
Data-driven machine learning models often require extensive datasets, which can be costly or inaccessible, and their predictions may fail to comply with established physical laws. Current approaches for incorporating physical priors mitigate these issues by penalizing deviations from known physical laws, as in physics-informed neural networks, or by designing architectures that automatically satisfy specific invariants. However, penalization approaches do not guarantee compliance with physical constraints for unseen inputs, and invariant-based methods lack flexibility and generality. We propose a novel physics-consistent machine learning method that directly enforces compliance with physical principles by projecting model outputs onto the manifold defined by these laws. This procedure ensures that predictions inherently adhere to the chosen physical constraints, improving reliability and interpretability. Our method is demonstrated on two systems: a spring-mass system and a low-temperature reactive plasma. Compared to purely data-driven models, our approach significantly reduces errors in physical law compliance, enhances predictive accuracy of physical quantities, and outperforms alternatives when working with simpler models or limited datasets. The proposed projection-based technique is versatile and can function independently or in conjunction with existing physics-informed neural networks, offering a powerful, general, and scalable solution for developing fast and reliable surrogate models of complex physical systems, particularly in resource-constrained scenarios.
comment: 23 pages, 6 figures
♻ ☆ Shh, don't say that! Domain Certification in LLMs ICLR
Large language models (LLMs) are often deployed to perform constrained tasks, with narrow domains. For example, customer support bots can be built on top of LLMs, relying on their broad language understanding and capabilities to enhance performance. However, these LLMs are adversarially susceptible, potentially generating outputs outside the intended domain. To formalize, assess, and mitigate this risk, we introduce domain certification; a guarantee that accurately characterizes the out-of-domain behavior of language models. We then propose a simple yet effective approach, which we call VALID that provides adversarial bounds as a certificate. Finally, we evaluate our method across a diverse set of datasets, demonstrating that it yields meaningful certificates, which bound the probability of out-of-domain samples tightly with minimum penalty to refusal behavior.
comment: 10 pages, includes appendix Published in International Conference on Learning Representations (ICLR) 2025
♻ ☆ Learning to Chain Operations by Routing Information Through a Global Workspace
We present a model inspired by the Global Workspace Theory that integrates specialized modules to perform a sequential reasoning task. A controller selectively routes information between modules through the workspace using a gating mechanism. This approach allows the model to chain operations by iteratively broadcasting information between specialized domains, mimicking System-2 reasoning. We evaluate the model's performance on a simple addition task, where two addends must be summed. The task can be solved by routing information sequentially through an Input module, an Increment module (multiple times), and finally an Output module. We consider two implementations of this system with increasing complexity. First, using hand-designed modules operating on one-hot digit representations, the controller (a LSTM recurrent network) learns to select the appropriate modules (input, increment, output) in the appropriate sequence. Second, we replace the hand-designed modules with learned representation modules for MNIST images and an increment module trained on the task objectives; here again, the controller learns the appropriate sequential module selection to solve the task. Finally, we show that the Global Workspace model, while having fewer parameters, outperforms LSTMs and Transformers when tested on unseen addition operations (both interpolations and extrapolations of addition operations seen during training). Our results highlight the potential of architectures inspired by the Global Workspace Theory to enhance deep learning's reasoning capabilities.
comment: 12 pages, 14 figures, submitted to a conference
♻ ☆ M3HF: Multi-agent Reinforcement Learning from Multi-phase Human Feedback of Mixed Quality
Designing effective reward functions in multi-agent reinforcement learning (MARL) is a significant challenge, often leading to suboptimal or misaligned behaviors in complex, coordinated environments. We introduce Multi-agent Reinforcement Learning from Multi-phase Human Feedback of Mixed Quality (M3HF), a novel framework that integrates multi-phase human feedback of mixed quality into the MARL training process. By involving humans with diverse expertise levels to provide iterative guidance, M3HF leverages both expert and non-expert feedback to continuously refine agents' policies. During training, we strategically pause agent learning for human evaluation, parse feedback using large language models to assign it appropriately and update reward functions through predefined templates and adaptive weight by using weight decay and performance-based adjustments. Our approach enables the integration of nuanced human insights across various levels of quality, enhancing the interpretability and robustness of multi-agent cooperation. Empirical results in challenging environments demonstrate that M3HF significantly outperforms state-of-the-art methods, effectively addressing the complexities of reward design in MARL and enabling broader human participation in the training process.
comment: Seventeen pages, four figures
♻ ☆ Large Language Model for Qualitative Research -- A Systematic Mapping Study ICSE
The exponential growth of text-based data in domains such as healthcare, education, and social sciences has outpaced the capacity of traditional qualitative analysis methods, which are time-intensive and prone to subjectivity. Large Language Models (LLMs), powered by advanced generative AI, have emerged as transformative tools capable of automating and enhancing qualitative analysis. This study systematically maps the literature on the use of LLMs for qualitative research, exploring their application contexts, configurations, methodologies, and evaluation metrics. Findings reveal that LLMs are utilized across diverse fields, demonstrating the potential to automate processes traditionally requiring extensive human input. However, challenges such as reliance on prompt engineering, occasional inaccuracies, and contextual limitations remain significant barriers. This research highlights opportunities for integrating LLMs with human expertise, improving model robustness, and refining evaluation methodologies. By synthesizing trends and identifying research gaps, this study aims to guide future innovations in the application of LLMs for qualitative analysis.
comment: 8 pages, includes 1 figures and 3 tables. Submitted and Accepted to the WSESE 2025 ICSE Workshop
♻ ☆ The Illusion of Empathy: How AI Chatbots Shape Conversation Perception
As AI chatbots increasingly incorporate empathy, understanding user-centered perceptions of chatbot empathy and its impact on conversation quality remains essential yet under-explored. This study examines how chatbot identity and perceived empathy influence users' overall conversation experience. Analyzing 155 conversations from two datasets, we found that while GPT-based chatbots were rated significantly higher in conversational quality, they were consistently perceived as less empathetic than human conversational partners. Empathy ratings from GPT-4o annotations aligned with user ratings, reinforcing the perception of lower empathy in chatbots compared to humans. Our findings underscore the critical role of perceived empathy in shaping conversation quality, revealing that achieving high-quality human-AI interactions requires more than simply embedding empathetic language; it necessitates addressing the nuanced ways users interpret and experience empathy in conversations with chatbots.
♻ ☆ F-Fidelity: A Robust Framework for Faithfulness Evaluation of Explainable AI ICLR 2025
Recent research has developed a number of eXplainable AI (XAI) techniques, such as gradient-based approaches, input perturbation-base methods, and black-box explanation methods. While these XAI techniques can extract meaningful insights from deep learning models, how to properly evaluate them remains an open problem. The most widely used approach is to perturb or even remove what the XAI method considers to be the most important features in an input and observe the changes in the output prediction. This approach, although straightforward, suffers the Out-of-Distribution (OOD) problem as the perturbed samples may no longer follow the original data distribution. A recent method RemOve And Retrain (ROAR) solves the OOD issue by retraining the model with perturbed samples guided by explanations. However, using the model retrained based on XAI methods to evaluate these explainers may cause information leakage and thus lead to unfair comparisons. We propose Fine-tuned Fidelity (F-Fidelity), a robust evaluation framework for XAI, which utilizes i) an explanation-agnostic fine-tuning strategy, thus mitigating the information leakage issue, and ii) a random masking operation that ensures that the removal step does not generate an OOD input. We also design controlled experiments with state-of-the-art (SOTA) explainers and their degraded version to verify the correctness of our framework. We conduct experiments on multiple data modalities, such as images, time series, and natural language. The results demonstrate that F-Fidelity significantly improves upon prior evaluation metrics in recovering the ground-truth ranking of the explainers. Furthermore, we show both theoretically and empirically that, given a faithful explainer, F-Fidelity metric can be used to compute the sparsity of influential input components, i.e., to extract the true explanation size.
comment: Accepted to International Conference on Learning Representations (ICLR 2025); 33 Pages, 5 figures, 26 Tables
♻ ☆ VernaCopter: Disambiguated Natural-Language-Driven Robot via Formal Specifications
It has been an ambition of many to control a robot for a complex task using natural language (NL). The rise of large language models (LLMs) makes it closer to coming true. However, an LLM-powered system still suffers from the ambiguity inherent in an NL and the uncertainty brought up by LLMs. This paper proposes a novel LLM-based robot motion planner, named \textit{VernaCopter}, with signal temporal logic (STL) specifications serving as a bridge between NL commands and specific task objectives. The rigorous and abstract nature of formal specifications allows the planner to generate high-quality and highly consistent paths to guide the motion control of a robot. Compared to a conventional NL-prompting-based planner, the proposed VernaCopter planner is more stable and reliable due to less ambiguous uncertainty. Its efficacy and advantage have been validated by two small but challenging experimental scenarios, implying its potential in designing NL-driven robots.
♻ ☆ Theoretical and Empirical Advances in Forest Pruning
Regression forests have long delivered state-of-the-art accuracy, often outperforming regression trees and even neural networks, but they suffer from limited interpretability as ensemble methods. In this work, we revisit forest pruning, an approach that aims to have the best of both worlds: the accuracy of regression forests and the interpretability of regression trees. This pursuit, whose foundation lies at the core of random forest theory, has seen vast success in empirical studies. In this paper, we contribute theoretical results that support and qualify those empirical findings; namely, we prove the asymptotic advantage of a Lasso-pruned forest over its unpruned counterpart under weak assumptions, as well as high-probability finite-sample generalization bounds for regression forests pruned according to the main methods, which we then validate by way of simulation. Then, we test the accuracy of pruned regression forests against their unpruned counterparts on 19 different datasets (16 synthetic, 3 real). We find that in the vast majority of scenarios tested, there is at least one forest-pruning method that yields equal or better accuracy than the original full forest (in expectation), while just using a small fraction of the trees. We show that, in some cases, the reduction in the size of the forest is so dramatic that the resulting sub-forest can be meaningfully merged into a single tree, obtaining a level of interpretability that is qualitatively superior to that of the original regression forest, which remains a black box.
comment: To be published in Proceedings of Machine Learning Research (PMLR)
♻ ☆ Decidability of Querying First-Order Theories via Countermodels of Finite Width
We propose a generic framework for establishing the decidability of a wide range of logical entailment problems (briefly called querying), based on the existence of countermodels that are structurally simple, gauged by certain types of width measures (with treewidth and cliquewidth as popular examples). As an important special case of our framework, we identify logics exhibiting width-finite finitely universal model sets, warranting decidable entailment for a wide range of homomorphism-closed queries, subsuming a diverse set of practically relevant query languages. As a particularly powerful width measure, we propose to employ Blumensath's partitionwidth, which subsumes various other commonly considered width measures and exhibits highly favorable computational and structural properties. Focusing on the formalism of existential rules as a popular showcase, we explain how finite partitionwidth sets of rules subsume other known abstract decidable classes but - leveraging existing notions of stratification - also cover a wide range of new rulesets. We expose natural limitations for fitting the class of finite unification sets into our picture and suggest several options for remedy.
comment: camera ready version for LMCS
♻ ☆ Static Vs. Agentic Game Master AI for Facilitating Solo Role-Playing Experiences
This paper presents a game master AI for single-player role-playing games. The AI is designed to deliver interactive text-based narratives and experiences typically associated with multiplayer tabletop games like Dungeons & Dragons. We report on the design process and the series of experiments to improve the functionality and experience design, resulting in two functional versions of the system. While v1 of our system uses simplified prompt engineering, v2 leverages a multi-agent architecture and the ReAct framework to include reasoning and action. A comparative evaluation demonstrates that v2 as an agentic system maintains play while significantly improving modularity and game experience, including immersion and curiosity. Our findings contribute to the evolution of AI-driven interactive fiction, highlighting new avenues for enhancing solo role-playing experiences.
comment: 17 pages, 10 figures, 1 table, submitted for review
Graphics 5
☆ Learning Object Placement Programs for Indoor Scene Synthesis with Iterative Self Training
Data driven and autoregressive indoor scene synthesis systems generate indoor scenes automatically by suggesting and then placing objects one at a time. Empirical observations show that current systems tend to produce incomplete next object location distributions. We introduce a system which addresses this problem. We design a Domain Specific Language (DSL) that specifies functional constraints. Programs from our language take as input a partial scene and object to place. Upon execution they predict possible object placements. We design a generative model which writes these programs automatically. Available 3D scene datasets do not contain programs to train on, so we build upon previous work in unsupervised program induction to introduce a new program bootstrapping algorithm. In order to quantify our empirical observations we introduce a new evaluation procedure which captures how well a system models per-object location distributions. We ask human annotators to label all the possible places an object can go in a scene and show that our system produces per-object location distributions more consistent with human annotators. Our system also generates indoor scenes of comparable quality to previous systems and while previous systems degrade in performance when training data is sparse, our system does not degrade to the same degree.
comment: 21 pages, 20 figures Subjects: Graphics (cs.GR), Computer Vision and Pattern Recognition (cs.CV), Machine Learning (cs.LG)
Beyond Existance: Fulfill 3D Reconstructed Scenes with Pseudo Details
The emergence of 3D Gaussian Splatting (3D-GS) has significantly advanced 3D reconstruction by providing high fidelity and fast training speeds across various scenarios. While recent efforts have mainly focused on improving model structures to compress data volume or reduce artifacts during zoom-in and zoom-out operations, they often overlook an underlying issue: training sampling deficiency. In zoomed-in views, Gaussian primitives can appear unregulated and distorted due to their dilation limitations and the insufficient availability of scale-specific training samples. Consequently, incorporating pseudo-details that ensure the completeness and alignment of the scene becomes essential. In this paper, we introduce a new training method that integrates diffusion models and multi-scale training using pseudo-ground-truth data. This approach not only notably mitigates the dilation and zoomed-in artifacts but also enriches reconstructed scenes with precise details out of existing scenarios. Our method achieves state-of-the-art performance across various benchmarks and extends the capabilities of 3D reconstruction beyond training datasets.
☆ GRIP: A General Robotic Incremental Potential Contact Simulation Dataset for Unified Deformable-Rigid Coupled Grasping
Grasping is fundamental to robotic manipulation, and recent advances in large-scale grasping datasets have provided essential training data and evaluation benchmarks, accelerating the development of learning-based methods for robust object grasping. However, most existing datasets exclude deformable bodies due to the lack of scalable, robust simulation pipelines, limiting the development of generalizable models for compliant grippers and soft manipulands. To address these challenges, we present GRIP, a General Robotic Incremental Potential contact simulation dataset for universal grasping. GRIP leverages an optimized Incremental Potential Contact (IPC)-based simulator for multi-environment data generation, achieving up to 48x speedup while ensuring efficient, intersection- and inversion-free simulations for compliant grippers and deformable objects. Our fully automated pipeline generates and evaluates diverse grasp interactions across 1,200 objects and 100,000 grasp poses, incorporating both soft and rigid grippers. The GRIP dataset enables applications such as neural grasp generation and stress field prediction.
comment: We release GRIP to advance research in robotic manipulation, soft-gripper control, and physics-driven simulation at: https://bell0o.github.io/GRIP/
♻ ☆ Drag Your Gaussian: Effective Drag-Based Editing with Score Distillation for 3D Gaussian Splatting
Recent advancements in 3D scene editing have been propelled by the rapid development of generative models. Existing methods typically utilize generative models to perform text-guided editing on 3D representations, such as 3D Gaussian Splatting (3DGS). However, these methods are often limited to texture modifications and fail when addressing geometric changes, such as editing a character's head to turn around. Moreover, such methods lack accurate control over the spatial position of editing results, as language struggles to precisely describe the extent of edits. To overcome these limitations, we introduce DYG, an effective 3D drag-based editing method for 3D Gaussian Splatting. It enables users to conveniently specify the desired editing region and the desired dragging direction through the input of 3D masks and pairs of control points, thereby enabling precise control over the extent of editing. DYG integrates the strengths of the implicit triplane representation to establish the geometric scaffold of the editing results, effectively overcoming suboptimal editing outcomes caused by the sparsity of 3DGS in the desired editing regions. Additionally, we incorporate a drag-based Latent Diffusion Model into our method through the proposed Drag-SDS loss function, enabling flexible, multi-view consistent, and fine-grained editing. Extensive experiments demonstrate that DYG conducts effective drag-based editing guided by control point prompts, surpassing other baselines in terms of editing effect and quality, both qualitatively and quantitatively. Visit our project page at https://quyans.github.io/Drag-Your-Gaussian.
comment: Visit our project page at https://quyans.github.io/Drag-Your-Gaussian
♻ ☆ DEFT: Differentiable Branched Discrete Elastic Rods for Modeling Furcated DLOs in Real-Time
Autonomous wire harness assembly requires robots to manipulate complex branched cables with high precision and reliability. A key challenge in automating this process is predicting how these flexible and branched structures behave under manipulation. Without accurate predictions, it is difficult for robots to reliably plan or execute assembly operations. While existing research has made progress in modeling single-threaded Deformable Linear Objects (DLOs), extending these approaches to Branched Deformable Linear Objects (BDLOs) presents fundamental challenges. The junction points in BDLOs create complex force interactions and strain propagation patterns that cannot be adequately captured by simply connecting multiple single-DLO models. To address these challenges, this paper presents Differentiable discrete branched Elastic rods for modeling Furcated DLOs in real-Time (DEFT), a novel framework that combines a differentiable physics-based model with a learning framework to: 1) accurately model BDLO dynamics, including dynamic propagation at junction points and grasping in the middle of a BDLO, 2) achieve efficient computation for real-time inference, and 3) enable planning to demonstrate dexterous BDLO manipulation. A comprehensive series of real-world experiments demonstrates DEFT's efficacy in terms of accuracy, computational speed, and generalizability compared to state-of-the-art alternatives. Project page:https://roahmlab.github.io/DEFT/.
Robotics 93
☆ OTTER: A Vision-Language-Action Model with Text-Aware Visual Feature Extraction
Vision-Language-Action (VLA) models aim to predict robotic actions based on visual observations and language instructions. Existing approaches require fine-tuning pre-trained visionlanguage models (VLMs) as visual and language features are independently fed into downstream policies, degrading the pre-trained semantic alignments. We propose OTTER, a novel VLA architecture that leverages these existing alignments through explicit, text-aware visual feature extraction. Instead of processing all visual features, OTTER selectively extracts and passes only task-relevant visual features that are semantically aligned with the language instruction to the policy transformer. This allows OTTER to keep the pre-trained vision-language encoders frozen. Thereby, OTTER preserves and utilizes the rich semantic understanding learned from large-scale pre-training, enabling strong zero-shot generalization capabilities. In simulation and real-world experiments, OTTER significantly outperforms existing VLA models, demonstrating strong zeroshot generalization to novel objects and environments. Video, code, checkpoints, and dataset: https://ottervla.github.io/.
☆ Active 6D Pose Estimation for Textureless Objects using Multi-View RGB Frames
Estimating the 6D pose of textureless objects from RBG images is an important problem in robotics. Due to appearance ambiguities, rotational symmetries, and severe occlusions, single-view based 6D pose estimators are still unable to handle a wide range of objects, motivating research towards multi-view pose estimation and next-best-view prediction that addresses these limitations. In this work, we propose a comprehensive active perception framework for estimating the 6D poses of textureless objects using only RGB images. Our approach is built upon a key idea: decoupling the 6D pose estimation into a sequential two-step process can greatly improve both accuracy and efficiency. First, we estimate the 3D translation of each object, resolving scale and depth ambiguities inherent to RGB images. These estimates are then used to simplify the subsequent task of determining the 3D orientation, which we achieve through canonical scale template matching. Building on this formulation, we then introduce an active perception strategy that predicts the next best camera viewpoint to capture an RGB image, effectively reducing object pose uncertainty and enhancing pose accuracy. We evaluate our method on the public ROBI dataset as well as on a transparent object dataset that we created. When evaluated using the same camera viewpoints, our multi-view pose estimation significantly outperforms state-of-the-art approaches. Furthermore, by leveraging our next-best-view strategy, our method achieves high object pose accuracy with substantially fewer viewpoints than heuristic-based policies.
☆ Curating Demonstrations using Online Experience
Many robot demonstration datasets contain heterogeneous demonstrations of varying quality. This heterogeneity may benefit policy pre-training, but can hinder robot performance when used with a final imitation learning objective. In particular, some strategies in the data may be less reliable than others or may be underrepresented in the data, leading to poor performance when such strategies are sampled at test time. Moreover, such unreliable or underrepresented strategies can be difficult even for people to discern, and sifting through demonstration datasets is time-consuming and costly. On the other hand, policy performance when trained on such demonstrations can reflect the reliability of different strategies. We thus propose for robots to self-curate based on online robot experience (Demo-SCORE). More specifically, we train and cross-validate a classifier to discern successful policy roll-outs from unsuccessful ones and use the classifier to filter heterogeneous demonstration datasets. Our experiments in simulation and the real world show that Demo-SCORE can effectively identify suboptimal demonstrations without manual curation. Notably, Demo-SCORE achieves over 15-35% higher absolute success rate in the resulting policy compared to the base policy trained with all original demonstrations.
☆ Adaptive Negative Damping Control for User-Dependent Multi-Terrain Walking Assistance with a Hip Exoskeleton
Hip exoskeletons are known for their versatility in assisting users across varied scenarios. However, current assistive strategies often lack the flexibility to accommodate for individual walking patterns and adapt to diverse locomotion environments. In this work, we present a novel control strategy that adapts the mechanical impedance of the human-exoskeleton system. We design the hip assistive torques as an adaptive virtual negative damping, which is able to inject energy into the system while allowing the users to remain in control and contribute voluntarily to the movements. Experiments with five healthy subjects demonstrate that our controller reduces the metabolic cost of walking compared to free walking (average reduction of 7.2%), and it preserves the lower-limbs kinematics. Additionally, our method achieves minimal power losses from the exoskeleton across the entire gait cycle (less than 2% negative mechanical power out of the total power), ensuring synchronized action with the users' movements. Moreover, we use Bayesian Optimization to adapt the assistance strength and allow for seamless adaptation and transitions across multi-terrain environments. Our strategy achieves efficient power transmission under all conditions. Our approach demonstrates an individualized, adaptable, and straightforward controller for hip exoskeletons, advancing the development of viable, adaptive, and user-dependent control laws.
comment: Copyright 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
☆ Motion Planning and Control with Unknown Nonlinear Dynamics through Predicted Reachability
Autonomous motion planning under unknown nonlinear dynamics presents significant challenges. An agent needs to continuously explore the system dynamics to acquire its properties, such as reachability, in order to guide system navigation adaptively. In this paper, we propose a hybrid planning-control framework designed to compute a feasible trajectory toward a target. Our approach involves partitioning the state space and approximating the system by a piecewise affine (PWA) system with constrained control inputs. By abstracting the PWA system into a directed weighted graph, we incrementally update the existence of its edges via affine system identification and reach control theory, introducing a predictive reachability condition by exploiting prior information of the unknown dynamics. Heuristic weights are assigned to edges based on whether their existence is certain or remains indeterminate. Consequently, we propose a framework that adaptively collects and analyzes data during mission execution, continually updates the predictive graph, and synthesizes a controller online based on the graph search outcomes. We demonstrate the efficacy of our approach through simulation scenarios involving a mobile robot operating in unknown terrains, with its unknown dynamics abstracted as a single integrator model.
REGRACE: A Robust and Efficient Graph-based Re-localization Algorithm using Consistency Evaluation IROS2025
Loop closures are essential for correcting odometry drift and creating consistent maps, especially in the context of large-scale navigation. Current methods using dense point clouds for accurate place recognition do not scale well due to computationally expensive scan-to-scan comparisons. Alternative object-centric approaches are more efficient but often struggle with sensitivity to viewpoint variation. In this work, we introduce REGRACE, a novel approach that addresses these challenges of scalability and perspective difference in re-localization by using LiDAR-based submaps. We introduce rotation-invariant features for each labeled object and enhance them with neighborhood context through a graph neural network. To identify potential revisits, we employ a scalable bag-of-words approach, pooling one learned global feature per submap. Additionally, we define a revisit with geometrical consistency cues rather than embedding distance, allowing us to recognize far-away loop closures. Our evaluations demonstrate that REGRACE achieves similar results compared to state-of-the-art place recognition and registration baselines while being twice as fast.
comment: Submitted to IROS2025
☆ A Generative System for Robot-to-Human Handovers: from Intent Inference to Spatial Configuration Imagery
We propose a novel system for robot-to-human object handover that emulates human coworker interactions. Unlike most existing studies that focus primarily on grasping strategies and motion planning, our system focus on 1. inferring human handover intents, 2. imagining spatial handover configuration. The first one integrates multimodal perception-combining visual and verbal cues-to infer human intent. The second one using a diffusion-based model to generate the handover configuration, involving the spacial relationship among robot's gripper, the object, and the human hand, thereby mimicking the cognitive process of motor imagery. Experimental results demonstrate that our approach effectively interprets human cues and achieves fluent, human-like handovers, offering a promising solution for collaborative robotics. Code, videos, and data are available at: https://i3handover.github.io.
Olympus: A Jumping Quadruped for Planetary Exploration Utilizing Reinforcement Learning for In-Flight Attitude Control ICRA
Exploring planetary bodies with lower gravity, such as the moon and Mars, allows legged robots to utilize jumping as an efficient form of locomotion thus giving them a valuable advantage over traditional rovers for exploration. Motivated by this fact, this paper presents the design, simulation, and learning-based "in-flight" attitude control of Olympus, a jumping legged robot tailored to the gravity of Mars. First, the design requirements are outlined followed by detailing how simulation enabled optimizing the robot's design - from its legs to the overall configuration - towards high vertical jumping, forward jumping distance, and in-flight attitude reorientation. Subsequently, the reinforcement learning policy used to track desired in-flight attitude maneuvers is presented. Successfully crossing the sim2real gap, extensive experimental studies of attitude reorientation tests are demonstrated.
comment: 7 pages, 6 figures, Accepted to the IEEE International Conference on Robotics and Automation (ICRA) 2025
☆ Afford-X: Generalizable and Slim Affordance Reasoning for Task-oriented Manipulation
Object affordance reasoning, the ability to infer object functionalities based on physical properties, is fundamental for task-oriented planning and activities in both humans and Artificial Intelligence (AI). This capability, required for planning and executing daily activities in a task-oriented manner, relies on commonsense knowledge of object physics and functionalities, extending beyond simple object recognition. Current computational models for affordance reasoning from perception lack generalizability, limiting their applicability in novel scenarios. Meanwhile, comprehensive Large Language Models (LLMs) with emerging reasoning capabilities are challenging to deploy on local devices for task-oriented manipulations. Here, we introduce LVIS-Aff, a large-scale dataset comprising 1,496 tasks and 119k images, designed to enhance the generalizability of affordance reasoning from perception. Utilizing this dataset, we develop Afford-X, an end-to-end trainable affordance reasoning model that incorporates Verb Attention and Bi-Fusion modules to improve multi-modal understanding. This model achieves up to a 12.1% performance improvement over the best-reported results from non-LLM methods, while also demonstrating a 1.2% enhancement compared to our previous conference paper. Additionally, it maintains a compact 187M parameter size and infers nearly 50 times faster than the GPT-4V API. Our work demonstrates the potential for efficient, generalizable affordance reasoning models that can be deployed on local devices for task-oriented manipulations. We showcase Afford-X's effectiveness in enabling task-oriented manipulations for robots across various tasks and environments, underscoring its efficiency and broad implications for advancing robotics and AI systems in real-world applications.
☆ Unified Human Localization and Trajectory Prediction with Monocular Vision ICRA 2025
Conventional human trajectory prediction models rely on clean curated data, requiring specialized equipment or manual labeling, which is often impractical for robotic applications. The existing predictors tend to overfit to clean observation affecting their robustness when used with noisy inputs. In this work, we propose MonoTransmotion (MT), a Transformer-based framework that uses only a monocular camera to jointly solve localization and prediction tasks. Our framework has two main modules: Bird's Eye View (BEV) localization and trajectory prediction. The BEV localization module estimates the position of a person using 2D human poses, enhanced by a novel directional loss for smoother sequential localizations. The trajectory prediction module predicts future motion from these estimates. We show that by jointly training both tasks with our unified framework, our method is more robust in real-world scenarios made of noisy inputs. We validate our MT network on both curated and non-curated datasets. On the curated dataset, MT achieves around 12% improvement over baseline models on BEV localization and trajectory prediction. On real-world non-curated dataset, experimental results indicate that MT maintains similar performance levels, highlighting its robustness and generalization capability. The code is available at https://github.com/vita-epfl/MonoTransmotion.
comment: ICRA 2025
☆ NeuGrasp: Generalizable Neural Surface Reconstruction with Background Priors for Material-Agnostic Object Grasp Detection ICRA
Robotic grasping in scenes with transparent and specular objects presents great challenges for methods relying on accurate depth information. In this paper, we introduce NeuGrasp, a neural surface reconstruction method that leverages background priors for material-agnostic grasp detection. NeuGrasp integrates transformers and global prior volumes to aggregate multi-view features with spatial encoding, enabling robust surface reconstruction in narrow and sparse viewing conditions. By focusing on foreground objects through residual feature enhancement and refining spatial perception with an occupancy-prior volume, NeuGrasp excels in handling objects with transparent and specular surfaces. Extensive experiments in both simulated and real-world scenarios show that NeuGrasp outperforms state-of-the-art methods in grasping while maintaining comparable reconstruction quality. More details are available at https://neugrasp.github.io/.
comment: 7 pages, 5 figures. IEEE International Conference on Robotics and Automation (ICRA) 2025
☆ A Benchmark for Optimal Multi-Modal Multi-Robot Multi-Goal Path Planning with Given Robot Assignment
In many industrial robotics applications, multiple robots are working in a shared workspace to complete a set of tasks as quickly as possible. Such settings can be treated as multi-modal multi-robot multi-goal path planning problems, where each robot has to reach an ordered sequence of goals. Existing approaches to this type of problem solve this using prioritization or assume synchronous completion of tasks, and are thus neither optimal nor complete. We formalize this problem as a single path planning problem and introduce a benchmark encompassing a diverse range of problem instances including scenarios with various robots, planning horizons, and collaborative tasks such as handovers. Along with the benchmark, we adapt an RRT* and a PRM* planner to serve as a baseline for the planning problems. Both planners work in the composite space of all robots and introduce the required changes to work in our setting. Unlike existing approaches, our planner and formulation is not restricted to discretized 2D workspaces, supports a changing environment, and works for heterogeneous robot teams over multiple modes with different constraints, and multiple goals. Videos and code for the benchmark and the planners is available at https://vhartman.github.io/mrmg-planning/.
comment: 8 pages, 8 figures
☆ Coordinated Trajectories for Non-stop Flying Carriers Holding a Cable-Suspended Load
Multirotor UAVs have been typically considered for aerial manipulation, but their scarce endurance prevents long-lasting manipulation tasks. This work demonstrates that the non-stop flights of three or more carriers are compatible with holding a constant pose of a cable-suspended load, thus potentially enabling aerial manipulation with energy-efficient non-stop carriers. It also presents an algorithm for generating the coordinated non-stop trajectories. The proposed method builds upon two pillars: (1)~the choice of $n$ special linearly independent directions of internal forces within the $3n-6$-dimensional nullspace of the grasp matrix of the load, chosen as the edges of a Hamiltonian cycle on the graph that connects the cable attachment points on the load. Adjacent pairs of directions are used to generate $n$ forces evolving on distinct 2D affine subspaces, despite the attachment points being generically in 3D; (2)~the construction of elliptical trajectories within these subspaces by mapping, through appropriate graph coloring, each edge of the Hamiltonian cycle to a periodic coordinate while ensuring that no adjacent coordinates exhibit simultaneous zero derivatives. Combined with conditions for load statics and attachment point positions, these choices ensure that each of the $n$ force trajectories projects onto the corresponding cable constraint sphere with non-zero tangential velocity, enabling perpetual motion of the carriers while the load is still. The theoretical findings are validated through simulations and laboratory experiments with non-stopping multirotor UAVs.
☆ SafeVLA: Towards Safety Alignment of Vision-Language-Action Model via Safe Reinforcement Learning
Vision-language-action models (VLAs) have shown great potential as generalist robot policies. However, these models pose urgent safety challenges during deployment, including the risk of physical harm to the environment, the robot itself, and humans. How can safety be explicitly incorporated into VLAs? In this work, we propose SafeVLA, a novel algorithm designed to integrate safety into VLAs, ensuring the protection of the environment, robot hardware and humans in real-world settings. SafeVLA effectively balances safety and task performance by employing large-scale constrained learning within simulated environments. We demonstrate that SafeVLA outperforms the current state-of-the-art method in both safety and task performance, achieving average improvements of 83.58% and 3.85%, respectively, in simulation. By prioritizing safety, our approach eliminates high-risk behaviors and reduces the upper bound of unsafe behaviors to 1/35 of that in the current state-of-the-art, thereby significantly mitigating long-tail risks. Furthermore, the learned safety constraints generalize to diverse, unseen scenarios, including multiple out-of-distribution perturbations and tasks. Our data, models and newly proposed benchmark environment are available at https://sites.google.com/view/pku-safevla.
comment: 10 pages, 4 figures
Continuous Control of Diverse Skills in Quadruped Robots Without Complete Expert Datasets ICRA 2025
Learning diverse skills for quadruped robots presents significant challenges, such as mastering complex transitions between different skills and handling tasks of varying difficulty. Existing imitation learning methods, while successful, rely on expensive datasets to reproduce expert behaviors. Inspired by introspective learning, we propose Progressive Adversarial Self-Imitation Skill Transition (PASIST), a novel method that eliminates the need for complete expert datasets. PASIST autonomously explores and selects high-quality trajectories based on predefined target poses instead of demonstrations, leveraging the Generative Adversarial Self-Imitation Learning (GASIL) framework. To further enhance learning, We develop a skill selection module to mitigate mode collapse by balancing the weights of skills with varying levels of difficulty. Through these methods, PASIST is able to reproduce skills corresponding to the target pose while achieving smooth and natural transitions between them. Evaluations on both simulation platforms and the Solo 8 robot confirm the effectiveness of PASIST, offering an efficient alternative to expert-driven learning.
comment: Accepted by ICRA 2025
☆ Generative Artificial Intelligence in Robotic Manipulation: A Survey
This survey provides a comprehensive review on recent advancements of generative learning models in robotic manipulation, addressing key challenges in the field. Robotic manipulation faces critical bottlenecks, including significant challenges in insufficient data and inefficient data acquisition, long-horizon and complex task planning, and the multi-modality reasoning ability for robust policy learning performance across diverse environments. To tackle these challenges, this survey introduces several generative model paradigms, including Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), diffusion models, probabilistic flow models, and autoregressive models, highlighting their strengths and limitations. The applications of these models are categorized into three hierarchical layers: the Foundation Layer, focusing on data generation and reward generation; the Intermediate Layer, covering language, code, visual, and state generation; and the Policy Layer, emphasizing grasp generation and trajectory generation. Each layer is explored in detail, along with notable works that have advanced the state of the art. Finally, the survey outlines future research directions and challenges, emphasizing the need for improved efficiency in data utilization, better handling of long-horizon tasks, and enhanced generalization across diverse robotic scenarios. All the related resources, including research papers, open-source data, and projects, are collected for the community in https://github.com/GAI4Manipulation/AwesomeGAIManipulation
Tiny Lidars for Manipulator Self-Awareness: Sensor Characterization and Initial Localization Experiments
For several tasks, ranging from manipulation to inspection, it is beneficial for robots to localize a target object in their surroundings. In this paper, we propose an approach that utilizes coarse point clouds obtained from miniaturized VL53L5CX Time-of-Flight (ToF) sensors (tiny lidars) to localize a target object in the robot's workspace. We first conduct an experimental campaign to calibrate the dependency of sensor readings on relative range and orientation to targets. We then propose a probabilistic sensor model that is validated in an object pose estimation task using a Particle Filter (PF). The results show that the proposed sensor model improves the performance of the localization of the target object with respect to two baselines: one that assumes measurements are free from uncertainty and one in which the confidence is provided by the sensor datasheet.
comment: 7 pages, 6 figures, 3 tables, conference submission
☆ REACT: Real-time Efficient Attribute Clustering and Transfer for Updatable 3D Scene Graph IROS 2025
Modern-day autonomous robots need high-level map representations to perform sophisticated tasks. Recently, 3D scene graphs (3DSGs) have emerged as a promising alternative to traditional grid maps, blending efficient memory use and rich feature representation. However, most efforts to apply them have been limited to static worlds. This work introduces REACT, a framework that efficiently performs real-time attribute clustering and transfer to relocalize object nodes in a 3DSG. REACT employs a novel method for comparing object instances using an embedding model trained on triplet loss, facilitating instance clustering and matching. Experimental results demonstrate that REACT is able to relocalize objects while maintaining computational efficiency. The REACT framework's source code will be available as an open-source project, promoting further advancements in reusable and updatable 3DSGs.
comment: Submitted to IROS 2025
☆ Direct Sparse Odometry with Continuous 3D Gaussian Maps for Indoor Environments
Accurate localization is essential for robotics and augmented reality applications such as autonomous navigation. Vision-based methods combining prior maps aim to integrate LiDAR-level accuracy with camera cost efficiency for robust pose estimation. Existing approaches, however, often depend on unreliable interpolation procedures when associating discrete point cloud maps with dense image pixels, which inevitably introduces depth errors and degrades pose estimation accuracy. We propose a monocular visual odometry framework utilizing a continuous 3D Gaussian map, which directly assigns geometrically consistent depth values to all extracted high-gradient points without interpolation. Evaluations on two public datasets demonstrate superior tracking accuracy compared to existing methods. We have released the source code of this work for the development of the community.
comment: 7 pages,5 figures
☆ Navigating Intelligence: A Survey of Google OR-Tools and Machine Learning for Global Path Planning in Autonomous Vehicles
We offer a new in-depth investigation of global path planning (GPP) for unmanned ground vehicles, an autonomous mining sampling robot named ROMIE. GPP is essential for ROMIE's optimal performance, which is translated into solving the traveling salesman problem, a complex graph theory challenge that is crucial for determining the most effective route to cover all sampling locations in a mining field. This problem is central to enhancing ROMIE's operational efficiency and competitiveness against human labor by optimizing cost and time. The primary aim of this research is to advance GPP by developing, evaluating, and improving a cost-efficient software and web application. We delve into an extensive comparison and analysis of Google operations research (OR)-Tools optimization algorithms. Our study is driven by the goal of applying and testing the limits of OR-Tools capabilities by integrating Reinforcement Learning techniques for the first time. This enables us to compare these methods with OR-Tools, assessing their computational effectiveness and real-world application efficiency. Our analysis seeks to provide insights into the effectiveness and practical application of each technique. Our findings indicate that Q-Learning stands out as the optimal strategy, demonstrating superior efficiency by deviating only 1.2% on average from the optimal solutions across our datasets.
☆ Supervised Visual Docking Network for Unmanned Surface Vehicles Using Auto-labeling in Real-world Water Environments
Unmanned Surface Vehicles (USVs) are increasingly applied to water operations such as environmental monitoring and river-map modeling. It faces a significant challenge in achieving precise autonomous docking at ports or stations, still relying on remote human control or external positioning systems for accuracy and safety which limits the full potential of human-out-of-loop deployment for USVs.This paper introduces a novel supervised learning pipeline with the auto-labeling technique for USVs autonomous visual docking. Firstly, we designed an auto-labeling data collection pipeline that appends relative pose and image pair to the dataset. This step does not require conventional manual labeling for supervised learning. Secondly, the Neural Dock Pose Estimator (NDPE) is proposed to achieve relative dock pose prediction without the need for hand-crafted feature engineering, camera calibration, and peripheral markers. Moreover, The NDPE can accurately predict the relative dock pose in real-world water environments, facilitating the implementation of Position-Based Visual Servo (PBVS) and low-level motion controllers for efficient and autonomous docking.Experiments show that the NDPE is robust to the disturbance of the distance and the USV velocity. The effectiveness of our proposed solution is tested and validated in real-world water environments, reflecting its capability to handle real-world autonomous docking tasks.
☆ Trajectory Prediction for Autonomous Driving: Progress, Limitations, and Future Directions
As the potential for autonomous vehicles to be integrated on a large scale into modern traffic systems continues to grow, ensuring safe navigation in dynamic environments is crucial for smooth integration. To guarantee safety and prevent collisions, autonomous vehicles must be capable of accurately predicting the trajectories of surrounding traffic agents. Over the past decade, significant efforts from both academia and industry have been dedicated to designing solutions for precise trajectory forecasting. These efforts have produced a diverse range of approaches, raising questions about the differences between these methods and whether trajectory prediction challenges have been fully addressed. This paper reviews a substantial portion of recent trajectory prediction methods and devises a taxonomy to classify existing solutions. A general overview of the prediction pipeline is also provided, covering input and output modalities, modeling features, and prediction paradigms discussed in the literature. In addition, the paper discusses active research areas within trajectory prediction, addresses the posed research questions, and highlights the remaining research gaps and challenges.
☆ SCORE: Saturated Consensus Relocalization in Semantic Line Maps IROS 2025
This is the arxiv version for our paper submitted to IEEE/RSJ IROS 2025. We propose a scene-agnostic and light-weight visual relocalization framework that leverages semantically labeled 3D lines as a compact map representation. In our framework, the robot localizes itself by capturing a single image, extracting 2D lines, associating them with semantically similar 3D lines in the map, and solving a robust perspective-n-line problem. To address the extremely high outlier ratios~(exceeding 99.5\%) caused by one-to-many ambiguities in semantic matching, we introduce the Saturated Consensus Maximization~(Sat-CM) formulation, which enables accurate pose estimation when the classic Consensus Maximization framework fails. We further propose a fast global solver to the formulated Sat-CM problems, leveraging rigorous interval analysis results to ensure both accuracy and computational efficiency. Additionally, we develop a pipeline for constructing semantic 3D line maps using posed depth images. To validate the effectiveness of our framework, which integrates our innovations in robust estimation and practical engineering insights, we conduct extensive experiments on the ScanNet++ dataset.
comment: 11 pages, 14 figurs, arxiv version for paper submitted to IROS 2025
☆ STORM: Spatial-Temporal Iterative Optimization for Reliable Multicopter Trajectory Generation
Efficient and safe trajectory planning plays a critical role in the application of quadrotor unmanned aerial vehicles. Currently, the inherent trade-off between constraint compliance and computational efficiency enhancement in UAV trajectory optimization problems has not been sufficiently addressed. To enhance the performance of UAV trajectory optimization, we propose a spatial-temporal iterative optimization framework. Firstly, B-splines are utilized to represent UAV trajectories, with rigorous safety assurance achieved through strict enforcement of constraints on control points. Subsequently, a set of QP-LP subproblems via spatial-temporal decoupling and constraint linearization is derived. Finally, an iterative optimization strategy incorporating guidance gradients is employed to obtain high-performance UAV trajectories in different scenarios. Both simulation and real-world experimental results validate the efficiency and high-performance of the proposed optimization framework in generating safe and fast trajectories. Our source codes will be released for community reference at https://hitsz-mas.github.io/STORM
☆ Social Gesture Recognition in spHRI: Leveraging Fabric-Based Tactile Sensing on Humanoid Robots ICRA 25
Humans are able to convey different messages using only touch. Equipping robots with the ability to understand social touch adds another modality in which humans and robots can communicate. In this paper, we present a social gesture recognition system using a fabric-based, large-scale tactile sensor integrated onto the arms of a humanoid robot. We built a social gesture dataset using multiple participants and extracted temporal features for classification. By collecting real-world data on a humanoid robot, our system provides valuable insights into human-robot social touch, further advancing the development of spHRI systems for more natural and effective communication.
comment: Accepted to ICRA 25. 8 pages, 8 figures
☆ OpenGV 2.0: Motion prior-assisted calibration and SLAM with vehicle-mounted surround-view systems
The present paper proposes optimization-based solutions to visual SLAM with a vehicle-mounted surround-view camera system. Owing to their original use-case, such systems often only contain a single camera facing into either direction and very limited overlap between fields of view. Our novelty consist of three optimization modules targeting at practical online calibration of exterior orientations from simple two-view geometry, reliable front-end initialization of relative displacements, and accurate back-end optimization using a continuous-time trajectory model. The commonality between the proposed modules is given by the fact that all three of them exploit motion priors that are related to the inherent non-holonomic characteristics of passenger vehicle motion. In contrast to prior related art, the proposed modules furthermore excel in terms of bypassing partial unobservabilities in the transformation variables that commonly occur for Ackermann-motion. As a further contribution, the modules are built into a novel surround-view camera SLAM system that specifically targets deployment on Ackermann vehicles operating in urban environments. All modules are studied in the context of in-depth ablation studies, and the practical validity of the entire framework is supported by a successful application to challenging, large-scale publicly available online datasets. Note that upon acceptance, the entire framework is scheduled for open-source release as part of an extension of the OpenGV library.
Embodied Escaping: End-to-End Reinforcement Learning for Robot Navigation in Narrow Environment
Autonomous navigation is a fundamental task for robot vacuum cleaners in indoor environments. Since their core function is to clean entire areas, robots inevitably encounter dead zones in cluttered and narrow scenarios. Existing planning methods often fail to escape due to complex environmental constraints, high-dimensional search spaces, and high difficulty maneuvers. To address these challenges, this paper proposes an embodied escaping model that leverages reinforcement learning-based policy with an efficient action mask for dead zone escaping. To alleviate the issue of the sparse reward in training, we introduce a hybrid training policy that improves learning efficiency. In handling redundant and ineffective action options, we design a novel action representation to reshape the discrete action space with a uniform turning radius. Furthermore, we develop an action mask strategy to select valid action quickly, balancing precision and efficiency. In real-world experiments, our robot is equipped with a Lidar, IMU, and two-wheel encoders. Extensive quantitative and qualitative experiments across varying difficulty levels demonstrate that our robot can consistently escape from challenging dead zones. Moreover, our approach significantly outperforms compared path planning and reinforcement learning methods in terms of success rate and collision avoidance.
☆ Transformer-Based Spatio-Temporal Association of Apple Fruitlets
In this paper, we present a transformer-based method to spatio-temporally associate apple fruitlets in stereo-images collected on different days and from different camera poses. State-of-the-art association methods in agriculture are dedicated towards matching larger crops using either high-resolution point clouds or temporally stable features, which are both difficult to obtain for smaller fruit in the field. To address these challenges, we propose a transformer-based architecture that encodes the shape and position of each fruitlet, and propagates and refines these features through a series of transformer encoder layers with alternating self and cross-attention. We demonstrate that our method is able to achieve an F1-score of 92.4% on data collected in a commercial apple orchard and outperforms all baselines and ablations.
☆ SpiritSight Agent: Advanced GUI Agent with One Look CVPR 2025
Graphical User Interface (GUI) agents show amazing abilities in assisting human-computer interaction, automating human user's navigation on digital devices. An ideal GUI agent is expected to achieve high accuracy, low latency, and compatibility for different GUI platforms. Recent vision-based approaches have shown promise by leveraging advanced Vision Language Models (VLMs). While they generally meet the requirements of compatibility and low latency, these vision-based GUI agents tend to have low accuracy due to their limitations in element grounding. To address this issue, we propose $\textbf{SpiritSight}$, a vision-based, end-to-end GUI agent that excels in GUI navigation tasks across various GUI platforms. First, we create a multi-level, large-scale, high-quality GUI dataset called $\textbf{GUI-Lasagne}$ using scalable methods, empowering SpiritSight with robust GUI understanding and grounding capabilities. Second, we introduce the $\textbf{Universal Block Parsing (UBP)}$ method to resolve the ambiguity problem in dynamic high-resolution of visual inputs, further enhancing SpiritSight's ability to ground GUI objects. Through these efforts, SpiritSight agent outperforms other advanced methods on diverse GUI benchmarks, demonstrating its superior capability and compatibility in GUI navigation tasks. Models are available at $\href{https://huggingface.co/SenseLLM/SpiritSight-Agent-8B}{this\ URL}$.
comment: Paper accepted to CVPR 2025
☆ Distributed Certifiably Correct Range-Aided SLAM
Reliable simultaneous localization and mapping (SLAM) algorithms are necessary for safety-critical autonomous navigation. In the communication-constrained multi-agent setting, navigation systems increasingly use point-to-point range sensors as they afford measurements with low bandwidth requirements and known data association. The state estimation problem for these systems takes the form of range-aided (RA) SLAM. However, distributed algorithms for solving the RA-SLAM problem lack formal guarantees on the quality of the returned estimate. To this end, we present the first distributed algorithm for RA-SLAM that can efficiently recover certifiably globally optimal solutions. Our algorithm, distributed certifiably correct RA-SLAM (DCORA), achieves this via the Riemannian Staircase method, where computational procedures developed for distributed certifiably correct pose graph optimization are generalized to the RA-SLAM problem. We demonstrate DCORA's efficacy on real-world multi-agent datasets by achieving absolute trajectory errors comparable to those of a state-of-the-art centralized certifiably correct RA-SLAM algorithm. Additionally, we perform a parametric study on the structure of the RA-SLAM problem using synthetic data, revealing how common parameters affect DCORA's performance.
comment: 8 pages, 3 figures, accepted to 2025 International Conference on Robotics and Automation
☆ Causality-Based Reinforcement Learning Method for Multi-Stage Robotic Tasks
Deep reinforcement learning has made significant strides in various robotic tasks. However, employing deep reinforcement learning methods to tackle multi-stage tasks still a challenge. Reinforcement learning algorithms often encounter issues such as redundant exploration, getting stuck in dead ends, and progress reversal in multi-stage tasks. To address this, we propose a method that integrates causal relationships with reinforcement learning for multi-stage tasks. Our approach enables robots to automatically discover the causal relationships between their actions and the rewards of the tasks and constructs the action space using only causal actions, thereby reducing redundant exploration and progress reversal. By integrating correct causal relationships using the causal policy gradient method into the learning process, our approach can enhance the performance of reinforcement learning algorithms in multi-stage robotic tasks.
☆ Car-STAGE: Automated framework for large-scale high-dimensional simulated time-series data generation based on user-defined criteria
Generating large-scale sensing datasets through photo-realistic simulation is an important aspect of many robotics applications such as autonomous driving. In this paper, we consider the problem of synchronous data collection from the open-source CARLA simulator using multiple sensors attached to vehicle based on user-defined criteria. We propose a novel, one-step framework that we refer to as Car-STAGE, based on CARLA simulator, to generate data using a graphical user interface (GUI) defining configuration parameters to data collection without any user intervention. This framework can utilize the user-defined configuration parameters such as choice of maps, number and configurations of sensors, environmental and lighting conditions etc. to run the simulation in the background, collecting high-dimensional sensor data from diverse sensors such as RGB Camera, LiDAR, Radar, Depth Camera, IMU Sensor, GNSS Sensor, Semantic Segmentation Camera, Instance Segmentation Camera, and Optical Flow Camera along with the ground-truths of the individual actors and storing the sensor data as well as ground-truth labels in a local or cloud-based database. The framework uses multiple threads where a main thread runs the server, a worker thread deals with queue and frame number and the rest of the threads processes the sensor data. The other way we derive speed up over the native implementation is by memory mapping the raw binary data into the disk and then converting the data into known formats at the end of data collection. We show that using these techniques, we gain a significant speed up over frames, under an increasing set of sensors and over the number of spawned objects.
☆ AirExo-2: Scaling up Generalizable Robotic Imitation Learning with Low-Cost Exoskeletons
Scaling up imitation learning for real-world applications requires efficient and cost-effective demonstration collection methods. Current teleoperation approaches, though effective, are expensive and inefficient due to the dependency on physical robot platforms. Alternative data sources like in-the-wild demonstrations can eliminate the need for physical robots and offer more scalable solutions. However, existing in-the-wild data collection devices have limitations: handheld devices offer restricted in-hand camera observation, while whole-body devices often require fine-tuning with robot data due to action inaccuracies. In this paper, we propose AirExo-2, a low-cost exoskeleton system for large-scale in-the-wild demonstration collection. By introducing the demonstration adaptor to transform the collected in-the-wild demonstrations into pseudo-robot demonstrations, our system addresses key challenges in utilizing in-the-wild demonstrations for downstream imitation learning in real-world environments. Additionally, we present RISE-2, a generalizable policy that integrates 2D and 3D perceptions, outperforming previous imitation learning policies in both in-domain and out-of-domain tasks, even with limited demonstrations. By leveraging in-the-wild demonstrations collected and transformed by the AirExo-2 system, without the need for additional robot demonstrations, RISE-2 achieves comparable or superior performance to policies trained with teleoperated data, highlighting the potential of AirExo-2 for scalable and generalizable imitation learning. Project page: https://airexo.tech/airexo2
☆ MochiSwarm: A testbed for robotic blimps in realistic environments ICRA2025
Testing aerial robots in tasks such as pickup-and-delivery and surveillance significantly benefits from high energy efficiency and scalability of the deployed robotic system. This paper presents MochiSwarm, an open-source testbed of light-weight robotic blimps, ready for multi-robot operation without external localization. We introduce the system design in hardware, software, and perception, which capitalizes on modularity, low cost, and light weight. The hardware allows for rapid modification, which enables the integration of additional sensors to enhance autonomy for different scenarios. The software framework supports different actuation models and communication between the base station and multiple blimps. The detachable perception module allows independent blimps to perform tasks that involve detection and autonomous actuation. We showcase a differential-drive module as an example, of which the autonomy is enabled by visual servoing using the perception module. A case study of pickup-and-delivery tasks with up to 12 blimps highlights the autonomy of the MochiSwarm without external infrastructures.
comment: Acepted for publication at ICRA2025
☆ BEVDriver: Leveraging BEV Maps in LLMs for Robust Closed-Loop Driving
Autonomous driving has the potential to set the stage for more efficient future mobility, requiring the research domain to establish trust through safe, reliable and transparent driving. Large Language Models (LLMs) possess reasoning capabilities and natural language understanding, presenting the potential to serve as generalized decision-makers for ego-motion planning that can interact with humans and navigate environments designed for human drivers. While this research avenue is promising, current autonomous driving approaches are challenged by combining 3D spatial grounding and the reasoning and language capabilities of LLMs. We introduce BEVDriver, an LLM-based model for end-to-end closed-loop driving in CARLA that utilizes latent BEV features as perception input. BEVDriver includes a BEV encoder to efficiently process multi-view images and 3D LiDAR point clouds. Within a common latent space, the BEV features are propagated through a Q-Former to align with natural language instructions and passed to the LLM that predicts and plans precise future trajectories while considering navigation instructions and critical scenarios. On the LangAuto benchmark, our model reaches up to 18.9% higher performance on the Driving Score compared to SoTA methods.
comment: This work has been submitted to the IEEE for possible publication
☆ Physically-Feasible Reactive Synthesis for Terrain-Adaptive Locomotion via Trajectory Optimization and Symbolic Repair
We propose an integrated planning framework for quadrupedal locomotion over dynamically changing, unforeseen terrains. Existing approaches either rely on heuristics for instantaneous foothold selection--compromising safety and versatility--or solve expensive trajectory optimization problems with complex terrain features and long time horizons. In contrast, our framework leverages reactive synthesis to generate correct-by-construction controllers at the symbolic level, and mixed-integer convex programming (MICP) for dynamic and physically feasible footstep planning for each symbolic transition. We use a high-level manager to reduce the large state space in synthesis by incorporating local environment information, improving synthesis scalability. To handle specifications that cannot be met due to dynamic infeasibility, and to minimize costly MICP solves, we leverage a symbolic repair process to generate only necessary symbolic transitions. During online execution, re-running the MICP with real-world terrain data, along with runtime symbolic repair, bridges the gap between offline synthesis and online execution. We demonstrate, in simulation, our framework's capabilities to discover missing locomotion skills and react promptly in safety-critical environments, such as scattered stepping stones and rebars.
☆ Equivariant Filter Design for Range-only SLAM
Range-only Simultaneous Localisation and Mapping (RO-SLAM) is of interest due to its practical applications in ultra-wideband (UWB) and Bluetooth Low Energy (BLE) localisation in terrestrial and aerial applications and acoustic beacon localisation in submarine applications. In this work, we consider a mobile robot equipped with an inertial measurement unit (IMU) and a range sensor that measures distances to a collection of fixed landmarks. We derive an equivariant filter (EqF) for the RO-SLAM problem based on a symmetry Lie group that is compatible with the range measurements. The proposed filter does not require bootstrapping or initialisation of landmark positions, and demonstrates robustness to the no-prior situation. The filter is demonstrated on a real-world dataset, and it is shown to significantly outperform a state-of-the-art EKF alternative in terms of both accuracy and robustness.
comment: 11 pages, 5 figures, accepted for presentation at IEEE International Conference on Robotics and Automation 2025
☆ Enhancing Autonomous Driving Safety with Collision Scenario Integration
Autonomous vehicle safety is crucial for the successful deployment of self-driving cars. However, most existing planning methods rely heavily on imitation learning, which limits their ability to leverage collision data effectively. Moreover, collecting collision or near-collision data is inherently challenging, as it involves risks and raises ethical and practical concerns. In this paper, we propose SafeFusion, a training framework to learn from collision data. Instead of over-relying on imitation learning, SafeFusion integrates safety-oriented metrics during training to enable collision avoidance learning. In addition, to address the scarcity of collision data, we propose CollisionGen, a scalable data generation pipeline to generate diverse, high-quality scenarios using natural language prompts, generative models, and rule-based filtering. Experimental results show that our approach improves planning performance in collision-prone scenarios by 56\% over previous state-of-the-art planners while maintaining effectiveness in regular driving situations. Our work provides a scalable and effective solution for advancing the safety of autonomous driving systems.
☆ COARSE: Collaborative Pseudo-Labeling with Coarse Real Labels for Off-Road Semantic Segmentation
Autonomous off-road navigation faces challenges due to diverse, unstructured environments, requiring robust perception with both geometric and semantic understanding. However, scarce densely labeled semantic data limits generalization across domains. Simulated data helps, but introduces domain adaptation issues. We propose COARSE, a semi-supervised domain adaptation framework for off-road semantic segmentation, leveraging sparse, coarse in-domain labels and densely labeled out-of-domain data. Using pretrained vision transformers, we bridge domain gaps with complementary pixel-level and patch-level decoders, enhanced by a collaborative pseudo-labeling strategy on unlabeled data. Evaluations on RUGD and Rellis-3D datasets show significant improvements of 9.7\% and 8.4\% respectively, versus only using coarse data. Tests on real-world off-road vehicle data in a multi-biome setting further demonstrate COARSE's applicability.
comment: preprint, 8 pages
☆ CREStE: Scalable Mapless Navigation with Internet Scale Priors and Counterfactual Guidance
We address the long-horizon mapless navigation problem: enabling robots to traverse novel environments without relying on high-definition maps or precise waypoints that specify exactly where to navigate. Achieving this requires overcoming two major challenges -- learning robust, generalizable perceptual representations of the environment without pre-enumerating all possible navigation factors and forms of perceptual aliasing and utilizing these learned representations to plan human-aligned navigation paths. Existing solutions struggle to generalize due to their reliance on hand-curated object lists that overlook unforeseen factors, end-to-end learning of navigation features from scarce large-scale robot datasets, and handcrafted reward functions that scale poorly to diverse scenarios. To overcome these limitations, we propose CREStE, the first method that learns representations and rewards for addressing the full mapless navigation problem without relying on large-scale robot datasets or manually curated features. CREStE leverages visual foundation models trained on internet-scale data to learn continuous bird's-eye-view representations capturing elevation, semantics, and instance-level features. To utilize learned representations for planning, we propose a counterfactual-based loss and active learning procedure that focuses on the most salient perceptual cues by querying humans for counterfactual trajectory annotations in challenging scenes. We evaluate CREStE in kilometer-scale navigation tasks across six distinct urban environments. CREStE significantly outperforms all state-of-the-art approaches with 70% fewer human interventions per mission, including a 2-kilometer mission in an unseen environment with just 1 intervention; showcasing its robustness and effectiveness for long-horizon mapless navigation. For videos and additional materials, see https://amrl.cs.utexas.edu/creste .
comment: 19 pages, 10 figures, 5 tables
☆ GO-VMP: Global Optimization for View Motion Planning in Fruit Mapping IROS 2025
Automating labor-intensive tasks such as crop monitoring with robots is essential for enhancing production and conserving resources. However, autonomously monitoring horticulture crops remains challenging due to their complex structures, which often result in fruit occlusions. Existing view planning methods attempt to reduce occlusions but either struggle to achieve adequate coverage or incur high robot motion costs. We introduce a global optimization approach for view motion planning that aims to minimize robot motion costs while maximizing fruit coverage. To this end, we leverage coverage constraints derived from the set covering problem (SCP) within a shortest Hamiltonian path problem (SHPP) formulation. While both SCP and SHPP are well-established, their tailored integration enables a unified framework that computes a global view path with minimized motion while ensuring full coverage of selected targets. Given the NP-hard nature of the problem, we employ a region-prior-based selection of coverage targets and a sparse graph structure to achieve effective optimization outcomes within a limited time. Experiments in simulation demonstrate that our method detects more fruits, enhances surface coverage, and achieves higher volume accuracy than the motion-efficient baseline with a moderate increase in motion cost, while significantly reducing motion costs compared to the coverage-focused baseline. Real-world experiments further confirm the practical applicability of our approach.
comment: Allen Isaac Jose and Sicong Pan have equal contribution. Submitted to IROS 2025
☆ Safe LLM-Controlled Robots with Formal Guarantees via Reachability Analysis
The deployment of Large Language Models (LLMs) in robotic systems presents unique safety challenges, particularly in unpredictable environments. Although LLMs, leveraging zero-shot learning, enhance human-robot interaction and decision-making capabilities, their inherent probabilistic nature and lack of formal guarantees raise significant concerns for safety-critical applications. Traditional model-based verification approaches often rely on precise system models, which are difficult to obtain for real-world robotic systems and may not be fully trusted due to modeling inaccuracies, unmodeled dynamics, or environmental uncertainties. To address these challenges, this paper introduces a safety assurance framework for LLM-controlled robots based on data-driven reachability analysis, a formal verification technique that ensures all possible system trajectories remain within safe operational limits. Our framework specifically investigates the problem of instructing an LLM to navigate the robot to a specified goal and assesses its ability to generate low-level control actions that successfully guide the robot safely toward that goal. By leveraging historical data to construct reachable sets of states for the robot-LLM system, our approach provides rigorous safety guarantees against unsafe behaviors without relying on explicit analytical models. We validate the framework through experimental case studies in autonomous navigation and task planning, demonstrating its effectiveness in mitigating risks associated with LLM-generated commands. This work advances the integration of formal methods into LLM-based robotics, offering a principled and practical approach to ensuring safety in next-generation autonomous systems.
☆ Endpoint-Explicit Differential Dynamic Programming via Exact Resolution ICRA
We introduce a novel method for handling endpoint constraints in constrained differential dynamic programming (DDP). Unlike existing approaches, our method guarantees quadratic convergence and is exact, effectively managing rank deficiencies in both endpoint and stagewise equality constraints. It is applicable to both forward and inverse dynamics formulations, making it particularly well-suited for model predictive control (MPC) applications and for accelerating optimal control (OC) solvers. We demonstrate the efficacy of our approach across a broad range of robotics problems and provide a user-friendly open-source implementation within CROCODDYL.
comment: 7 pages, IEEE ICRA paper
☆ LensDFF: Language-enhanced Sparse Feature Distillation for Efficient Few-Shot Dexterous Manipulation
Learning dexterous manipulation from few-shot demonstrations is a significant yet challenging problem for advanced, human-like robotic systems. Dense distilled feature fields have addressed this challenge by distilling rich semantic features from 2D visual foundation models into the 3D domain. However, their reliance on neural rendering models such as Neural Radiance Fields (NeRF) or Gaussian Splatting results in high computational costs. In contrast, previous approaches based on sparse feature fields either suffer from inefficiencies due to multi-view dependencies and extensive training or lack sufficient grasp dexterity. To overcome these limitations, we propose Language-ENhanced Sparse Distilled Feature Field (LensDFF), which efficiently distills view-consistent 2D features onto 3D points using our novel language-enhanced feature fusion strategy, thereby enabling single-view few-shot generalization. Based on LensDFF, we further introduce a few-shot dexterous manipulation framework that integrates grasp primitives into the demonstrations to generate stable and highly dexterous grasps. Moreover, we present a real2sim grasp evaluation pipeline for efficient grasp assessment and hyperparameter tuning. Through extensive simulation experiments based on the real2sim pipeline and real-world experiments, our approach achieves competitive grasping performance, outperforming state-of-the-art approaches.
comment: 8 pages
☆ Pretrained LLMs as Real-Time Controllers for Robot Operated Serial Production Line
The manufacturing industry is undergoing a transformative shift, driven by cutting-edge technologies like 5G, AI, and cloud computing. Despite these advancements, effective system control, which is crucial for optimizing production efficiency, remains a complex challenge due to the intricate, knowledge-dependent nature of manufacturing processes and the reliance on domain-specific expertise. Conventional control methods often demand heavy customization, considerable computational resources, and lack transparency in decision-making. In this work, we investigate the feasibility of using Large Language Models (LLMs), particularly GPT-4, as a straightforward, adaptable solution for controlling manufacturing systems, specifically, mobile robot scheduling. We introduce an LLM-based control framework to assign mobile robots to different machines in robot assisted serial production lines, evaluating its performance in terms of system throughput. Our proposed framework outperforms traditional scheduling approaches such as First-Come-First-Served (FCFS), Shortest Processing Time (SPT), and Longest Processing Time (LPT). While it achieves performance that is on par with state-of-the-art methods like Multi-Agent Reinforcement Learning (MARL), it offers a distinct advantage by delivering comparable throughput without the need for extensive retraining. These results suggest that the proposed LLM-based solution is well-suited for scenarios where technical expertise, computational resources, and financial investment are limited, while decision transparency and system scalability are critical concerns.
comment: 20 pages, 7 figures
☆ Human Implicit Preference-Based Policy Fine-tuning for Multi-Agent Reinforcement Learning in USV Swarm
Multi-Agent Reinforcement Learning (MARL) has shown promise in solving complex problems involving cooperation and competition among agents, such as an Unmanned Surface Vehicle (USV) swarm used in search and rescue, surveillance, and vessel protection. However, aligning system behavior with user preferences is challenging due to the difficulty of encoding expert intuition into reward functions. To address the issue, we propose a Reinforcement Learning with Human Feedback (RLHF) approach for MARL that resolves credit-assignment challenges through an Agent-Level Feedback system categorizing feedback into intra-agent, inter-agent, and intra-team types. To overcome the challenges of direct human feedback, we employ a Large Language Model (LLM) evaluator to validate our approach using feedback scenarios such as region constraints, collision avoidance, and task allocation. Our method effectively refines USV swarm policies, addressing key challenges in multi-agent systems while maintaining fairness and performance consistency.
comment: 7 pages, 4 figures
☆ Combined Physics and Event Camera Simulator for Slip Detection
Robot manipulation is a common task in fields like industrial manufacturing. Detecting when objects slip from a robot's grasp is crucial for safe and reliable operation. Event cameras, which register pixel-level brightness changes at high temporal resolution (called ``events''), offer an elegant feature when mounted on a robot's end effector: since they only detect motion relative to their viewpoint, a properly grasped object produces no events, while a slipping object immediately triggers them. To research this feature, representative datasets are essential, both for analytic approaches and for training machine learning models. The majority of current research on slip detection with event-based data is done on real-world scenarios and manual data collection, as well as additional setups for data labeling. This can result in a significant increase in the time required for data collection, a lack of flexibility in scene setups, and a high level of complexity in the repetition of experiments. This paper presents a simulation pipeline for generating slip data using the described camera-gripper configuration in a robot arm, and demonstrates its effectiveness through initial data-driven experiments. The use of a simulator, once it is set up, has the potential to reduce the time spent on data collection, provide the ability to alter the setup at any time, simplify the process of repetition and the generation of arbitrarily large data sets. Two distinct datasets were created and validated through visual inspection and artificial neural networks (ANNs). Visual inspection confirmed photorealistic frame generation and accurate slip modeling, while three ANNs trained on this data achieved high validation accuracy and demonstrated good generalization capabilities on a separate test set, along with initial applicability to real-world data. Project page: https://github.com/tub-rip/event_slip
comment: 9 pages, 8 figures, 2 tables, https://github.com/tub-rip/event_slip
♻ ☆ Integral Forms in Matrix Lie Groups
Matrix Lie groups provide a language for describing motion in such fields as robotics, computer vision, and graphics. When using these tools, we are often faced with turning infinite-series expressions into more compact finite series (e.g., the Euler-Rodriques formula), which can sometimes be onerous. In this paper, we identify some useful integral forms in matrix Lie group expressions that offer a more streamlined pathway for computing compact analytic results. Moreover, we present some recursive structures in these integral forms that show many of these expressions are interrelated. Key to our approach is that we are able to apply the minimal polynomial for a Lie algebra quite early in the process to keep expressions compact throughout the derivations. With the series approach, the minimal polynomial is usually applied at the end, making it hard to recognize common analytic expressions in the result. We show that our integral method can reproduce several series-derived results from the literature.
comment: 22 pages
♻ ☆ A Multi-Sensor Fusion Approach for Rapid Orthoimage Generation in Large-Scale UAV Mapping
Rapid generation of large-scale orthoimages from Unmanned Aerial Vehicles (UAVs) has been a long-standing focus of research in the field of aerial mapping. A multi-sensor UAV system, integrating the Global Positioning System (GPS), Inertial Measurement Unit (IMU), 4D millimeter-wave radar and camera, can provide an effective solution to this problem. In this paper, we utilize multi-sensor data to overcome the limitations of conventional orthoimage generation methods in terms of temporal performance, system robustness, and geographic reference accuracy. A prior-pose-optimized feature matching method is introduced to enhance matching speed and accuracy, reducing the number of required features and providing precise references for the Structure from Motion (SfM) process. The proposed method exhibits robustness in low-texture scenes like farmlands, where feature matching is difficult. Experiments show that our approach achieves accurate feature matching orthoimage generation in a short time. The proposed drone system effectively aids in farmland detection and management.
SEB-Naver: A SE(2)-based Local Navigation Framework for Car-like Robots on Uneven Terrain
Autonomous navigation of car-like robots on uneven terrain poses unique challenges compared to flat terrain, particularly in traversability assessment and terrain-associated kinematic modelling for motion planning. This paper introduces SEB-Naver, a novel SE(2)-based local navigation framework designed to overcome these challenges. First, we propose an efficient traversability assessment method for SE(2) grids, leveraging GPU parallel computing to enable real-time updates and maintenance of local maps. Second, inspired by differential flatness, we present an optimization-based trajectory planning method that integrates terrain-associated kinematic models, significantly improving both planning efficiency and trajectory quality. Finally, we unify these components into SEB-Naver, achieving real-time terrain assessment and trajectory optimization. Extensive simulations and real-world experiments demonstrate the effectiveness and efficiency of our approach. The code is at https://github.com/ZJU-FAST-Lab/seb_naver.
comment: 8 pages, 8 figures
♻ ☆ Floorplan-SLAM: A Real-Time, High-Accuracy, and Long-Term Multi-Session Point-Plane SLAM for Efficient Floorplan Reconstruction
Floorplan reconstruction provides structural priors essential for reliable indoor robot navigation and high-level scene understanding. However, existing approaches either require time-consuming offline processing with a complete map, or rely on expensive sensors and substantial computational resources. To address the problems, we propose Floorplan-SLAM, which incorporates floorplan reconstruction tightly into a multi-session SLAM system by seamlessly interacting with plane extraction, pose estimation, and back-end optimization, achieving real-time, high-accuracy, and long-term floorplan reconstruction using only a stereo camera. Specifically, we present a robust plane extraction algorithm that operates in a compact plane parameter space and leverages spatially complementary features to accurately detect planar structures, even in weakly textured scenes. Furthermore, we propose a floorplan reconstruction module tightly coupled with the SLAM system, which uses continuously optimized plane landmarks and poses to formulate and solve a novel optimization problem, thereby enabling real-time incremental floorplan reconstruction. Note that by leveraging the map merging capability of multi-session SLAM, our method supports long-term floorplan reconstruction across multiple sessions without redundant data collection. Experiments on the VECtor and the self-collected datasets indicate that Floorplan-SLAM significantly outperforms state-of-the-art methods in terms of plane extraction robustness, pose estimation accuracy, and floorplan reconstruction fidelity and speed, achieving real-time performance at 25-45 FPS without GPU acceleration, which reduces the floorplan reconstruction time for a 1000 square meters scene from over 10 hours to just 9.44 minutes.
♻ ☆ Affordance-Guided Reinforcement Learning via Visual Prompting RSS
Robots equipped with reinforcement learning (RL) have the potential to learn a wide range of skills solely from a reward signal. However, obtaining a robust and dense reward signal for general manipulation tasks remains a challenge. Existing learning-based approaches require significant data, such as human demonstrations of success and failure, to learn task-specific reward functions. Recently, there is also a growing adoption of large multi-modal foundation models for robotics that can perform visual reasoning in physical contexts and generate coarse robot motions for manipulation tasks. Motivated by this range of capability, in this work, we present Keypoint-based Affordance Guidance for Improvements (KAGI), a method leveraging rewards shaped by vision-language models (VLMs) for autonomous RL. State-of-the-art VLMs have demonstrated impressive reasoning about affordances through keypoints in zero-shot, and we use these to define dense rewards that guide autonomous robotic learning. On real-world manipulation tasks specified by natural language descriptions, KAGI improves the sample efficiency of autonomous RL and enables successful task completion in 30K online fine-tuning steps. Additionally, we demonstrate the robustness of KAGI to reductions in the number of in-domain demonstrations used for pre-training, reaching similar performance in 45K online fine-tuning steps. Project website: https://sites.google.com/view/affordance-guided-rl
comment: 8 pages, 6 figures. Robotics: Science and Systems (RSS) 2024, Task Specification for General-Purpose Intelligent Robots & Lifelong Robot Learning Workshops
♻ ☆ Perceptual Motor Learning with Active Inference Framework for Robust Lateral Control IROS 2025
This paper presents a novel Perceptual Motor Learning (PML) framework integrated with Active Inference (AIF) to enhance lateral control in Highly Automated Vehicles (HAVs). PML, inspired by human motor learning, emphasizes the seamless integration of perception and action, enabling efficient decision-making in dynamic environments. Traditional autonomous driving approaches--including modular pipelines, imitation learning, and reinforcement learning--struggle with adaptability, generalization, and computational efficiency. In contrast, PML with AIF leverages a generative model to minimize prediction error ("surprise") and actively shape vehicle control based on learned perceptual-motor representations. Our approach unifies deep learning with active inference principles, allowing HAVs to perform lane-keeping maneuvers with minimal data and without extensive retraining across different environments. Extensive experiments in the CARLA simulator demonstrate that PML with AIF enhances adaptability without increasing computational overhead while achieving performance comparable to conventional methods. These findings highlight the potential of PML-driven active inference as a robust alternative for real-world autonomous driving applications.
comment: This work has been submitted to IROS 2025 and is currently under review. arXiv admin note: text overlap with arXiv:2407.07684
♻ ☆ Category-level Meta-learned NeRF Priors for Efficient Object Mapping
In 3D object mapping, category-level priors enable efficient object reconstruction and canonical pose estimation, requiring only a single prior per semantic category (e.g., chair, book, laptop). Recently, DeepSDF has predominantly been used as a category-level shape prior, but it struggles to reconstruct sharp geometry and is computationally expensive. In contrast, NeRFs capture fine details but have yet to be effectively integrated with category-level priors in a real-time multi-object mapping framework. To bridge this gap, we introduce PRENOM, a Prior-based Efficient Neural Object Mapper that integrates category-level priors with object-level NeRFs to enhance reconstruction efficiency while enabling canonical object pose estimation. PRENOM gets to know objects on a first-name basis by meta-learning on synthetic reconstruction tasks generated from open-source shape datasets. To account for object category variations, it employs a multi-objective genetic algorithm to optimize the NeRF architecture for each category, balancing reconstruction quality and training time. Additionally, prior-based probabilistic ray sampling directs sampling toward expected object regions, accelerating convergence and improving reconstruction quality under constrained resources. Experimental results on a low-end GPU highlight the ability of PRENOM to achieve high-quality reconstructions while maintaining computational feasibility. Specifically, comparisons with prior-free NeRF-based approaches on a synthetic dataset show a 21% lower Chamfer distance, demonstrating better reconstruction quality. Furthermore, evaluations against other approaches using shape priors on a noisy real-world dataset indicate a 13% improvement averaged across all reconstruction metrics, and comparable pose and size estimation accuracy, while being trained for 5x less time.
♻ ☆ Action Tokenizer Matters in In-Context Imitation Learning
In-context imitation learning (ICIL) is a new paradigm that enables robots to generalize from demonstrations to unseen tasks without retraining. A well-structured action representation is the key to capturing demonstration information effectively, yet action tokenizer (the process of discretizing and encoding actions) remains largely unexplored in ICIL. In this work, we first systematically evaluate existing action tokenizer methods in ICIL and reveal a critical limitation: while they effectively encode action trajectories, they fail to preserve temporal smoothness, which is crucial for stable robotic execution. To address this, we propose LipVQ-VAE, a variational autoencoder that enforces the Lipschitz condition in the latent action space via weight normalization. By propagating smoothness constraints from raw action inputs to a quantized latent codebook, LipVQ-VAE generates more stable and smoother actions. When integrating into ICIL, LipVQ-VAE improves performance by more than 5.3% in high-fidelity simulators, with real-world experiments confirming its ability to produce smoother, more reliable trajectories. Code and checkpoints will be released.
comment: 7 pages, 6 figures
♻ ☆ CushionCatch: A Compliant Catching Mechanism for Mobile Manipulators via Combined Optimization and Learning
Catching flying objects with a cushioning process is a skill commonly performed by humans, yet it remains a significant challenge for robots. In this paper, we present a framework that combines optimization and learning to achieve compliant catching on mobile manipulators (CCMM). First, we propose a high-level capture planner for mobile manipulators (MM) that calculates the optimal capture point and joint configuration. Next, the pre-catching (PRC) planner ensures the robot reaches the target joint configuration as quickly as possible. To learn compliant catching strategies, we propose a network that leverages the strengths of LSTM for capturing temporal dependencies and positional encoding for spatial context (P-LSTM). This network is designed to effectively learn compliant strategies from human demonstrations. Following this, the post-catching (POC) planner tracks the compliant sequence output by the P-LSTM while avoiding potential collisions due to structural differences between humans and robots. We validate the CCMM framework through both simulated and real-world ball-catching scenarios, achieving a success rate of 98.70% in simulation, 92.59% in real-world tests, and a 28.7% reduction in impact torques. The open source code will be released for the reference of the community.
♻ ☆ Learning Perceptive Humanoid Locomotion over Challenging Terrain
Humanoid robots are engineered to navigate terrains akin to those encountered by humans, which necessitates human-like locomotion and perceptual abilities. Currently, the most reliable controllers for humanoid motion rely exclusively on proprioception, a reliance that becomes both dangerous and unreliable when coping with rugged terrain. Although the integration of height maps into perception can enable proactive gait planning, robust utilization of this information remains a significant challenge, especially when exteroceptive perception is noisy. To surmount these challenges, we propose a solution based on a teacher-student distillation framework. In this paradigm, an oracle policy accesses noise-free data to establish an optimal reference policy, while the student policy not only imitates the teacher's actions but also simultaneously trains a world model with a variational information bottleneck for sensor denoising and state estimation. Extensive evaluations demonstrate that our approach markedly enhances performance in scenarios characterized by unreliable terrain estimations. Moreover, we conducted rigorous testing in both challenging urban settings and off-road environments, the model successfully traverse 2 km of varied terrain without external intervention.
♻ ☆ DROP: Dexterous Reorientation via Online Planning ICRA 2025
Achieving human-like dexterity is a longstanding challenge in robotics, in part due to the complexity of planning and control for contact-rich systems. In reinforcement learning (RL), one popular approach has been to use massively-parallelized, domain-randomized simulations to learn a policy offline over a vast array of contact conditions, allowing robust sim-to-real transfer. Inspired by recent advances in real-time parallel simulation, this work considers instead the viability of online planning methods for contact-rich manipulation by studying the well-known in-hand cube reorientation task. We propose a simple architecture that employs a sampling-based predictive controller and vision-based pose estimator to search for contact-rich control actions online. We conduct thorough experiments to assess the real-world performance of our method, architectural design choices, and key factors for robustness, demonstrating that our simple sampling-based approach achieves performance comparable to prior RL-based works. Supplemental material: https://caltech-amber.github.io/drop.
comment: Extended version, updated appendix. Accepted to ICRA 2025
♻ ☆ DMVC-Tracker: Distributed Multi-Agent Trajectory Planning for Target Tracking Using Dynamic Buffered Voronoi and Inter-Visibility Cells
This letter presents a distributed trajectory planning method for multi-agent aerial tracking. The proposed method uses a Dynamic Buffered Voronoi Cell (DBVC) and a Dynamic Inter-Visibility Cell (DIVC) to formulate the distributed trajectory generation. Specifically, the DBVC and the DIVC are time-variant spaces that prevent mutual collisions and occlusions among agents, while enabling them to maintain suitable distances from the moving target. We combine the DBVC and the DIVC with an efficient Bernstein polynomial motion primitive-based tracking generation method, which has been refined into a less conservative approach than in our previous work. The proposed algorithm can compute each agent's trajectory within several milliseconds on an Intel i7 desktop. We validate the tracking performance in challenging scenarios, including environments with dozens of obstacles.
comment: 8 pages, 6 figures
♻ ☆ Learning Goal-Directed Object Pushing in Cluttered Scenes with Location-Based Attention IROS
In complex scenarios where typical pick-and-place techniques are insufficient, often non-prehensile manipulation can ensure that a robot is able to fulfill its task. However, non-prehensile manipulation is challenging due to its underactuated nature with hybrid-dynamics, where a robot needs to reason about an object's long-term behavior and contact-switching, while being robust to contact uncertainty. The presence of clutter in the workspace further complicates this task, introducing the need to include more advanced spatial analysis to avoid unwanted collisions. Building upon prior work on reinforcement learning with multimodal categorical exploration for planar pushing, we propose to incorporate location-based attention to enable robust manipulation in cluttered scenes. Unlike previous approaches addressing this obstacle avoiding pushing task, our framework requires no predefined global paths and considers the desired target orientation of the manipulated object. Experimental results in simulation as well as with a real KUKA iiwa robot arm demonstrate that our learned policy manipulates objects successfully while avoiding collisions through complex obstacle configurations, including dynamic obstacles, to reach the desired target pose.
comment: Submitted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)2025
♻ ☆ DexGraspVLA: A Vision-Language-Action Framework Towards General Dexterous Grasping
Dexterous grasping remains a fundamental yet challenging problem in robotics. A general-purpose robot must be capable of grasping diverse objects in arbitrary scenarios. However, existing research typically relies on specific assumptions, such as single-object settings or limited environments, leading to constrained generalization. Our solution is DexGraspVLA, a hierarchical framework that utilizes a pre-trained Vision-Language model as the high-level task planner and learns a diffusion-based policy as the low-level Action controller. The key insight lies in iteratively transforming diverse language and visual inputs into domain-invariant representations, where imitation learning can be effectively applied due to the alleviation of domain shift. Thus, it enables robust generalization across a wide range of real-world scenarios. Notably, our method achieves a 90+% success rate under thousands of unseen object, lighting, and background combinations in a ``zero-shot'' environment. Empirical analysis further confirms the consistency of internal model behavior across environmental variations, thereby validating our design and explaining its generalization performance. We hope our work can be a step forward in achieving general dexterous grasping. Our demo and code can be found at https://dexgraspvla.github.io/.
comment: 21 pages, 10 figures
♻ ☆ One-Shot Imitation under Mismatched Execution
Human demonstrations as prompts are a powerful way to program robots to do long-horizon manipulation tasks. However, translating these demonstrations into robot-executable actions presents significant challenges due to execution mismatches in movement styles and physical capabilities. Existing methods either depend on human-robot paired data, which is infeasible to scale, or rely heavily on frame-level visual similarities that often break down in practice. To address these challenges, we propose RHyME, a novel framework that automatically aligns human and robot task executions using optimal transport costs. Given long-horizon robot demonstrations, RHyME synthesizes semantically equivalent human videos by retrieving and composing short-horizon human clips. This approach facilitates effective policy training without the need for paired data. RHyME successfully imitates a range of cross-embodiment demonstrators, both in simulation and with a real human hand, achieving over 50\% increase in task success compared to previous methods. We release our code and datasets at https://portal-cornell.github.io/rhyme/.
♻ ☆ Dashing for the Golden Snitch: Multi-Drone Time-Optimal Motion Planning with Multi-Agent Reinforcement Learning
Recent innovations in autonomous drones have facilitated time-optimal flight in single-drone configurations, and enhanced maneuverability in multi-drone systems by applying optimal control and learning-based methods. However, few studies have achieved time-optimal motion planning for multi-drone systems, particularly during highly agile maneuvers or in dynamic scenarios. This paper presents a decentralized policy network using multi-agent reinforcement learning for time-optimal multi-drone flight. To strike a balance between flight efficiency and collision avoidance, we introduce a soft collision-free mechanism inspired by optimization-based methods. By customizing PPO in a centralized training, decentralized execution (CTDE) fashion, we unlock higher efficiency and stability in training while ensuring lightweight implementation. Extensive simulations show that, despite slight performance trade-offs compared to single-drone systems, our multi-drone approach maintains near-time-optimal performance with a low collision rate. Real-world experiments validate our method, with two quadrotors using the same network as in simulation achieving a maximum speed of 13.65 m/s and a maximum body rate of 13.4 rad/s in a 5.5 m * 5.5 m * 2.0 m space across various tracks, relying entirely on onboard computation.
comment: v2: 7 pages, 6 figures; terminology corrected, algorithmic and equation descriptions revised, references added
♻ ☆ Collaborative motion planning for multi-manipulator systems through Reinforcement Learning and Dynamic Movement Primitives
Robotic tasks often require multiple manipulators to enhance task efficiency and speed, but this increases complexity in terms of collaboration, collision avoidance, and the expanded state-action space. To address these challenges, we propose a multi-level approach combining Reinforcement Learning (RL) and Dynamic Movement Primitives (DMP) to generate adaptive, real-time trajectories for new tasks in dynamic environments using a demonstration library. This method ensures collision-free trajectory generation and efficient collaborative motion planning. We validate the approach through experiments in the PyBullet simulation environment with UR5e robotic manipulators.
comment: 7 pages, 7 figures, conference submission
♻ ☆ Tiny Robotics Dataset and Benchmark for Continual Object Detection
Detecting objects in mobile robotics is crucial for numerous applications, from autonomous navigation to inspection. However, robots often need to operate in different domains from those they were trained in, requiring them to adjust to these changes. Tiny mobile robots, subject to size, power, and computational constraints, encounter even more difficulties in running and adapting these algorithms. Such adaptability, though, is crucial for real-world deployment, where robots must operate effectively in dynamic and unpredictable settings. In this work, we introduce a novel benchmark to evaluate the continual learning capabilities of object detection systems in tiny robotic platforms. Our contributions include: (i) Tiny Robotics Object Detection~(TiROD), a comprehensive dataset collected using the onboard camera of a small mobile robot, designed to test object detectors across various domains and classes; (ii) a benchmark of different continual learning strategies on this dataset using NanoDet, a lightweight object detector. Our results highlight key challenges in developing robust and efficient continual learning strategies for object detectors in tiny robotics.
♻ ☆ A Magnetic-Actuated Vision-Based Whisker Array for Contact Perception and Grasping ICRA
Tactile sensing and the manipulation of delicate objects are critical challenges in robotics. This study presents a vision-based magnetic-actuated whisker array sensor that integrates these functions. The sensor features eight whiskers arranged circularly, supported by an elastomer membrane and actuated by electromagnets and permanent magnets. A camera tracks whisker movements, enabling high-resolution tactile feedback. The sensor's performance was evaluated through object classification and grasping experiments. In the classification experiment, the sensor approached objects from four directions and accurately identified five distinct objects with a classification accuracy of 99.17% using a Multi-Layer Perceptron model. In the grasping experiment, the sensor tested configurations of eight, four, and two whiskers, achieving the highest success rate of 87% with eight whiskers. These results highlight the sensor's potential for precise tactile sensing and reliable manipulation.
comment: Accepted by IEEE International Conference on Robotics and Automation (ICRA) 2025
♻ ☆ GSplatLoc: Grounding Keypoint Descriptors into 3D Gaussian Splatting for Improved Visual Localization
Although various visual localization approaches exist, such as scene coordinate regression and camera pose regression, these methods often struggle with optimization complexity or limited accuracy. To address these challenges, we explore the use of novel view synthesis techniques, particularly 3D Gaussian Splatting (3DGS), which enables the compact encoding of both 3D geometry and scene appearance. We propose a two-stage procedure that integrates dense and robust keypoint descriptors from the lightweight XFeat feature extractor into 3DGS, enhancing performance in both indoor and outdoor environments. The coarse pose estimates are directly obtained via 2D-3D correspondences between the 3DGS representation and query image descriptors. In the second stage, the initial pose estimate is refined by minimizing the rendering-based photometric warp loss. Benchmarking on widely used indoor and outdoor datasets demonstrates improvements over recent neural rendering-based localization methods, such as NeRFMatch and PNeRFLoc.
comment: Project website at https://gsplatloc.github.io/
♻ ☆ Learn from the Past: Language-conditioned Object Rearrangement with Large Language Models
Object manipulation for rearrangement into a specific goal state is a significant task for collaborative robots. Accurately determining object placement is a key challenge, as misalignment can increase task complexity and the risk of collisions, affecting the efficiency of the rearrangement process. Most current methods heavily rely on pre-collected datasets to train the model for predicting the goal position. As a result, these methods are restricted to specific instructions, which limits their broader applicability and generalisation. In this paper, we propose a framework of flexible language-conditioned object rearrangement based on the Large Language Model (LLM). Our approach mimics human reasoning by making use of successful past experiences as a reference to infer the best strategies to achieve a current desired goal position. Based on LLM's strong natural language comprehension and inference ability, our method generalises to handle various everyday objects and free-form language instructions in a zero-shot manner. Experimental results demonstrate that our methods can effectively execute the robotic rearrangement tasks, even those involving long sequences of orders.
♻ ☆ CLIP-RT: Learning Language-Conditioned Robotic Policies from Natural Language Supervision
Teaching robots desired skills in real-world environments remains challenging, especially for non-experts. A key bottleneck is that collecting robotic data often requires expertise or specialized hardware, limiting accessibility and scalability. We posit that natural language offers an intuitive and accessible interface for robot learning. To this end, we study two aspects: (1) enabling non-experts to collect robotic data through natural language supervision (e.g., "move the arm to the right") and (2) learning robotic policies directly from this supervision. Specifically, we introduce a data collection framework that collects robot demonstrations based on natural language supervision and further augments these demonstrations. We then present CLIP-RT, a vision-language-action (VLA) model that learns language-conditioned visuomotor policies from this supervision. CLIP-RT adapts the pretrained CLIP models and learns to predict language-based motion primitives via contrastive imitation learning. We train CLIP-RT on the Open X-Embodiment dataset and finetune it on in-domain data collected by our framework to learn diverse skills. CLIP-RT demonstrates strong capabilities in learning novel manipulation skills, outperforming the state-of-the-art model, OpenVLA (7B parameters), by 24% in average success rates, while using 7x fewer parameters (1B). We further observe that CLIP-RT shows significant improvements in few-shot generalization. Finally, through collaboration with humans or large pretrained models, we demonstrate that CLIP-RT can further improve its generalization on challenging robotic tasks.
comment: 27 pages
♻ ☆ Efficient Submap-based Autonomous MAV Exploration using Visual-Inertial SLAM Configurable for LiDARs or Depth Cameras
Autonomous exploration of unknown space is an essential component for the deployment of mobile robots in the real world. Safe navigation is crucial for all robotics applications and requires accurate and consistent maps of the robot's surroundings. To achieve full autonomy and allow deployment in a wide variety of environments, the robot must rely on on-board state estimation which is prone to drift over time. We propose a Micro Aerial Vehicle (MAV) exploration framework based on local submaps to allow retaining global consistency by applying loop-closure corrections to the relative submap poses. To enable large-scale exploration we efficiently compute global, environment-wide frontiers from the local submap frontiers and use a sampling-based next-best-view exploration planner. Our method seamlessly supports using either a LiDAR sensor or a depth camera, making it suitable for different kinds of MAV platforms. We perform comparative evaluations in simulation against a state-of-the-art submap-based exploration framework to showcase the efficiency and reconstruction quality of our approach. Finally, we demonstrate the applicability of our method to real-world MAVs, one equipped with a LiDAR and the other with a depth camera. Video available at https://youtu.be/Uf5fwmYcuq4 .
comment: In proceedings of the IEEE International Conference on Robotics and Automation, 2025. 7 pages, 8 figures, for the accompanying video see https://youtu.be/Uf5fwmYcuq4
♻ ☆ ARS548_ros. An ARS 548 RDI radar driver for ROS
The ARS 548 RDI Radar is a premium model of the fifth generation of 77 GHz long range radar sensors with new RF antenna arrays, which offer digital beam forming. This radar measures independently the distance, speed and angle of objects without any reflectors in one measurement cycle based on Pulse Compression with New Frequency Modulation. Unfortunately, to the best of our knowledge, there are no open source drivers available for Linux systems to enable users to analyze the data acquired by the sensor. In this paper, we present a driver that can interpret the data from the ARS 548 RDI sensor and make it available over the Robot Operating System versions 1 and 2 (ROS and ROS2). Thus, these data can be stored, represented, and analyzed using the powerful tools offered by ROS. Besides, our driver offers advanced object features provided by the sensor, such as relative estimated velocity and acceleration of each object, its orientation and angular velocity. We focus on the configuration of the sensor and the use of our driver including its filtering and representation tools. Besides, we offer a video tutorial to help in its configuration process. Finally, a dataset acquired with this sensor and an Ouster OS1-32 LiDAR sensor, to have baseline measurements, is available, so that the user can check the correctness of our driver.
comment: 20 pages, 6 figures and 23 references
♻ ☆ GravMAD: Grounded Spatial Value Maps Guided Action Diffusion for Generalized 3D Manipulation ICLR 2025
Robots' ability to follow language instructions and execute diverse 3D manipulation tasks is vital in robot learning. Traditional imitation learning-based methods perform well on seen tasks but struggle with novel, unseen ones due to variability. Recent approaches leverage large foundation models to assist in understanding novel tasks, thereby mitigating this issue. However, these methods lack a task-specific learning process, which is essential for an accurate understanding of 3D environments, often leading to execution failures. In this paper, we introduce GravMAD, a sub-goal-driven, language-conditioned action diffusion framework that combines the strengths of imitation learning and foundation models. Our approach breaks tasks into sub-goals based on language instructions, allowing auxiliary guidance during both training and inference. During training, we introduce Sub-goal Keypose Discovery to identify key sub-goals from demonstrations. Inference differs from training, as there are no demonstrations available, so we use pre-trained foundation models to bridge the gap and identify sub-goals for the current task. In both phases, GravMaps are generated from sub-goals, providing GravMAD with more flexible 3D spatial guidance compared to fixed 3D positions. Empirical evaluations on RLBench show that GravMAD significantly outperforms state-of-the-art methods, with a 28.63% improvement on novel tasks and a 13.36% gain on tasks encountered during training. Evaluations on real-world robotic tasks further show that GravMAD can reason about real-world tasks, associate them with relevant visual information, and generalize to novel tasks. These results demonstrate GravMAD's strong multi-task learning and generalization in 3D manipulation. Video demonstrations are available at: https://gravmad.github.io.
comment: ICLR 2025. The first two authors contributed equally
CarPlanner: Consistent Auto-regressive Trajectory Planning for Large-scale Reinforcement Learning in Autonomous Driving CVPR 2025
Trajectory planning is vital for autonomous driving, ensuring safe and efficient navigation in complex environments. While recent learning-based methods, particularly reinforcement learning (RL), have shown promise in specific scenarios, RL planners struggle with training inefficiencies and managing large-scale, real-world driving scenarios. In this paper, we introduce \textbf{CarPlanner}, a \textbf{C}onsistent \textbf{a}uto-\textbf{r}egressive \textbf{Planner} that uses RL to generate multi-modal trajectories. The auto-regressive structure enables efficient large-scale RL training, while the incorporation of consistency ensures stable policy learning by maintaining coherent temporal consistency across time steps. Moreover, CarPlanner employs a generation-selection framework with an expert-guided reward function and an invariant-view module, simplifying RL training and enhancing policy performance. Extensive analysis demonstrates that our proposed RL framework effectively addresses the challenges of training efficiency and performance enhancement, positioning CarPlanner as a promising solution for trajectory planning in autonomous driving. To the best of our knowledge, we are the first to demonstrate that the RL-based planner can surpass both IL- and rule-based state-of-the-arts (SOTAs) on the challenging large-scale real-world dataset nuPlan. Our proposed CarPlanner surpasses RL-, IL-, and rule-based SOTA approaches within this demanding dataset.
comment: CVPR 2025
♻ ☆ Adaptive Energy Regularization for Autonomous Gait Transition and Energy-Efficient Quadruped Locomotion
In reinforcement learning for legged robot locomotion, crafting effective reward strategies is crucial. Pre-defined gait patterns and complex reward systems are widely used to stabilize policy training. Drawing from the natural locomotion behaviors of humans and animals, which adapt their gaits to minimize energy consumption, we propose a simplified, energy-centric reward strategy to foster the development of energy-efficient locomotion across various speeds in quadruped robots. By implementing an adaptive energy reward function and adjusting the weights based on velocity, we demonstrate that our approach enables ANYmal-C and Unitree Go1 robots to autonomously select appropriate gaits, such as four-beat walking at lower speeds and trotting at higher speeds, resulting in improved energy efficiency and stable velocity tracking compared to previous methods using complex reward designs and prior gait knowledge. The effectiveness of our policy is validated through simulations in the IsaacGym simulation environment and on real robots, demonstrating its potential to facilitate stable and adaptive locomotion.
comment: 7 pages, 7 figures
♻ ☆ Geometric Impedance Control on SE(3) for Robotic Manipulators
After its introduction, impedance control has been utilized as a primary control scheme for robotic manipulation tasks that involve interaction with unknown environments. While impedance control has been extensively studied, the geometric structure of SE(3) for the robotic manipulator itself and its use in formulating a robotic task has not been adequately addressed. In this paper, we propose a differential geometric approach to impedance control. Given a left-invariant error metric in SE(3), the corresponding error vectors in position and velocity are first derived. We then propose the impedance control schemes that adequately account for the geometric structure of the manipulator in SE(3) based on a left-invariant potential function. The closed-loop stabilities for the proposed control schemes are verified using Lyapunov function-based analysis. The proposed control design clearly outperformed a conventional impedance control approach when tracking challenging trajectory profiles.
comment: Presented at IFAC World Congress 2023, Yokohama, Japan
♻ ☆ Online Planning for Multi-UAV Pursuit-Evasion in Unknown Environments Using Deep Reinforcement Learning
Multi-UAV pursuit-evasion, where pursuers aim to capture evaders, poses a key challenge for UAV swarm intelligence. Multi-agent reinforcement learning (MARL) has demonstrated potential in modeling cooperative behaviors, but most RL-based approaches remain constrained to simplified simulations with limited dynamics or fixed scenarios. Previous attempts to deploy RL policy to real-world pursuit-evasion are largely restricted to two-dimensional scenarios, such as ground vehicles or UAVs at fixed altitudes. In this paper, we address multi-UAV pursuit-evasion by considering UAV dynamics and physical constraints. We introduce an evader prediction-enhanced network to tackle partial observability in cooperative strategy learning. Additionally, we propose an adaptive environment generator within MARL training, enabling higher exploration efficiency and better policy generalization across diverse scenarios. Simulations show our method significantly outperforms all baselines in challenging scenarios, generalizing to unseen scenarios with a 100% capture rate. Finally, we derive a feasible policy via a two-stage reward refinement and deploy the policy on real quadrotors in a zero-shot manner. To our knowledge, this is the first work to derive and deploy an RL-based policy using collective thrust and body rates control commands for multi-UAV pursuit-evasion in unknown environments. The open-source code and videos are available at https://sites.google.com/view/pursuit-evasion-rl.
♻ ☆ VL-Nav: Real-time Vision-Language Navigation with Spatial Reasoning
Vision-language navigation in unknown environments is crucial for mobile robots. In scenarios such as household assistance and rescue, mobile robots need to understand a human command, such as "find a person wearing black". We present a novel vision-language navigation (VL-Nav) system that integrates efficient spatial reasoning on low-power robots. Unlike prior methods that rely on a single image-level feature similarity to guide a robot, our method integrates pixel-wise vision-language features with curiosity-driven exploration. This approach enables robust navigation to human-instructed instances across diverse environments. We deploy VL-Nav on a four-wheel mobile robot and evaluate its performance through comprehensive navigation tasks in both indoor and outdoor environments, spanning different scales and semantic complexities. Remarkably, VL-Nav operates at a real-time frequency of 30 Hz with a Jetson Orin NX, highlighting its ability to conduct efficient vision-language navigation. Results show that VL-Nav achieves an overall success rate of 86.3%, outperforming previous methods by 44.15%.
♻ ☆ Bayesian Optimal Experimental Design for Robot Kinematic Calibration ICRA 2025
This paper develops a Bayesian optimal experimental design for robot kinematic calibration on ${\mathbb{S}^3 \!\times\! \mathbb{R}^3}$. Our method builds upon a Gaussian process approach that incorporates a geometry-aware kernel based on Riemannian Mat\'ern kernels over ${\mathbb{S}^3}$. To learn the forward kinematics errors via Bayesian optimization with a Gaussian process, we define a geodesic distance-based objective function. Pointwise values of this function are sampled via noisy measurements taken using fiducial markers on the end-effector using a camera and computed pose with the nominal kinematics. The corrected Denavit-Hartenberg parameters are obtained using an efficient quadratic program that operates on the collected data sets. The effectiveness of the proposed method is demonstrated via simulations and calibration experiments on NASA's ocean world lander autonomy testbed (OWLAT).
comment: ICRA 2025
♻ ☆ HARMONIC: Cognitive and Control Collaboration in Human-Robotic Teams IROS 2025
This paper introduces HARMONIC, a cognitive-robotic architecture that integrates the OntoAgent cognitive framework with general-purpose robot control systems applied to human-robot teaming (HRT). We also present a cognitive strategy for robots that incorporates metacognition, natural language communication, and explainability capabilities required for collaborative partnerships in HRT. Through simulation experiments involving a joint search task performed by a heterogeneous team of a UGV, a drone, and a human operator, we demonstrate the system's ability to coordinate actions between robots with heterogeneous capabilities, adapt to complex scenarios, and facilitate natural human-robot communication. Evaluation results show that robots using the OntoAgent architecture within the HARMONIC framework can reason about plans, goals, and team member attitudes while providing clear explanations for their decisions, which are essential prerequisites for realistic human-robot teaming.
comment: Submitted to IROS 2025
♻ ☆ Enhancing Multi-Robot Semantic Navigation Through Multimodal Chain-of-Thought Score Collaboration AAAI 2025
Understanding how humans cooperatively utilize semantic knowledge to explore unfamiliar environments and decide on navigation directions is critical for house service multi-robot systems. Previous methods primarily focused on single-robot centralized planning strategies, which severely limited exploration efficiency. Recent research has considered decentralized planning strategies for multiple robots, assigning separate planning models to each robot, but these approaches often overlook communication costs. In this work, we propose Multimodal Chain-of-Thought Co-Navigation (MCoCoNav), a modular approach that utilizes multimodal Chain-of-Thought to plan collaborative semantic navigation for multiple robots. MCoCoNav combines visual perception with Vision Language Models (VLMs) to evaluate exploration value through probabilistic scoring, thus reducing time costs and achieving stable outputs. Additionally, a global semantic map is used as a communication bridge, minimizing communication overhead while integrating observational results. Guided by scores that reflect exploration trends, robots utilize this map to assess whether to explore new frontier points or revisit history nodes. Experiments on HM3D_v0.2 and MP3D demonstrate the effectiveness of our approach. Our code is available at https://github.com/FrankZxShen/MCoCoNav.git.
comment: 16 pages, 10 figures, Extended Version of accepted AAAI 2025 Paper
♻ ☆ Adapting Pre-Trained Vision Models for Novel Instance Detection and Segmentation DSN
Novel Instance Detection and Segmentation (NIDS) aims at detecting and segmenting novel object instances given a few examples of each instance. We propose a unified, simple, yet effective framework (NIDS-Net) comprising object proposal generation, embedding creation for both instance templates and proposal regions, and embedding matching for instance label assignment. Leveraging recent advancements in large vision methods, we utilize Grounding DINO and Segment Anything Model (SAM) to obtain object proposals with accurate bounding boxes and masks. Central to our approach is the generation of high-quality instance embeddings. We utilized foreground feature averages of patch embeddings from the DINOv2 ViT backbone, followed by refinement through a weight adapter mechanism that we introduce. We show experimentally that our weight adapter can adjust the embeddings locally within their feature space and effectively limit overfitting in the few-shot setting. Furthermore, the weight adapter optimizes weights to enhance the distinctiveness of instance embeddings during similarity computation. This methodology enables a straightforward matching strategy that results in significant performance gains. Our framework surpasses current state-of-the-art methods, demonstrating notable improvements in four detection datasets. In the segmentation tasks on seven core datasets of the BOP challenge, our method outperforms the leading published RGB methods and remains competitive with the best RGB-D method. We have also verified our method using real-world images from a Fetch robot and a RealSense camera. Project Page: https://irvlutd.github.io/NIDSNet/
comment: Project Page: https://irvlutd.github.io/NIDSNet/
♻ ☆ Vision-based Geo-Localization of Future Mars Rotorcraft in Challenging Illumination Conditions
Planetary exploration using aerial assets has the potential for unprecedented scientific discoveries on Mars. While NASA's Mars helicopter Ingenuity proved flight in Martian atmosphere is possible, future Mars rotocrafts will require advanced navigation capabilities for long-range flights. One such critical capability is Map-based Localization (MbL) which registers an onboard image to a reference map during flight in order to mitigate cumulative drift from visual odometry. However, significant illumination differences between rotocraft observations and a reference map prove challenging for traditional MbL systems, restricting the operational window of the vehicle. In this work, we investigate a new MbL system and propose Geo-LoFTR, a geometry-aided deep learning model for image registration that is more robust under large illumination differences than prior models. The system is supported by a custom simulation framework that uses real orbital maps to produce large amounts of realistic images of the Martian terrain. Comprehensive evaluations show that our proposed system outperforms prior MbL efforts in terms of localization accuracy under significant lighting and scale variations. Furthermore, we demonstrate the validity of our approach across a simulated Martian day.
♻ ☆ GND: Global Navigation Dataset with Multi-Modal Perception and Multi-Category Traversability in Outdoor Campus Environments
Navigating large-scale outdoor environments requires complex reasoning in terms of geometric structures, environmental semantics, and terrain characteristics, which are typically captured by onboard sensors such as LiDAR and cameras. While current mobile robots can navigate such environments using pre-defined, high-precision maps based on hand-crafted rules catered for the specific environment, they lack commonsense reasoning capabilities that most humans possess when navigating unknown outdoor spaces. To address this gap, we introduce the Global Navigation Dataset (GND), a large-scale dataset that integrates multi-modal sensory data, including 3D LiDAR point clouds and RGB and 360-degree images, as well as multi-category traversability maps (pedestrian walkways, vehicle roadways, stairs, off-road terrain, and obstacles) from ten university campuses. These environments encompass a variety of parks, urban settings, elevation changes, and campus layouts of different scales. The dataset covers approximately 2.7km2 and includes at least 350 buildings in total. We also present a set of novel applications of GND to showcase its utility to enable global robot navigation, such as map-based global navigation, mapless navigation, and global place recognition.
♻ ☆ LS-HAR: Language Supervised Human Action Recognition with Salient Fusion, Construction Sites as a Use-Case
Detecting human actions is a crucial task for autonomous robots and vehicles, often requiring the integration of various data modalities for improved accuracy. In this study, we introduce a novel approach to Human Action Recognition (HAR) using language supervision named LS-HAR based on skeleton and visual cues. Our method leverages a language model to guide the feature extraction process in the skeleton encoder. Specifically, we employ learnable prompts for the language model conditioned on the skeleton modality to optimize feature representation. Furthermore, we propose a fusion mechanism that combines dual-modality features using a salient fusion module, incorporating attention and transformer mechanisms to address the modalities' high dimensionality. This fusion process prioritizes informative video frames and body joints, enhancing the recognition accuracy of human actions. Additionally, we introduce a new dataset tailored for real-world robotic applications in construction sites, featuring visual, skeleton, and depth data modalities, named VolvoConstAct. This dataset serves to facilitate the training and evaluation of machine learning models to instruct autonomous construction machines for performing necessary tasks in real-world construction sites. To evaluate our approach, we conduct experiments on our dataset as well as three widely used public datasets: NTU-RGB+D, NTU-RGB+D 120, and NW-UCLA. Results reveal that our proposed method achieves promising performance across all datasets, demonstrating its robustness and potential for various applications. The code, dataset, and demonstration of real-machine experiments are available at: https://mmahdavian.github.io/ls_har/
♻ ☆ CSCPR: Cross-Source-Context Indoor RGB-D Place Recognition
We extend our previous work, PoCo, and present a new algorithm, Cross-Source-Context Place Recognition (CSCPR), for RGB-D indoor place recognition that integrates global retrieval and reranking into an end-to-end model and keeps the consistency of using Context-of-Clusters (CoCs) for feature processing. Unlike prior approaches that primarily focus on the RGB domain for place recognition reranking, CSCPR is designed to handle the RGB-D data. We apply the CoCs to handle cross-sourced and cross-scaled RGB-D point clouds and introduce two novel modules for reranking: the Self-Context Cluster (SCC) and the Cross Source Context Cluster (CSCC), which enhance feature representation and match query-database pairs based on local features, respectively. We also release two new datasets, ScanNetIPR and ARKitIPR. Our experiments demonstrate that CSCPR significantly outperforms state-of-the-art models on these datasets by at least 29.27% in Recall@1 on the ScanNet-PR dataset and 43.24% in the new datasets. Code and datasets will be released.
♻ ☆ The Constitutional Filter: Bayesian Estimation of Compliant Agents
Predicting agents impacted by legal policies, physical limitations, and operational preferences is inherently difficult. In recent years, neuro-symbolic methods have emerged, integrating machine learning and symbolic reasoning models into end-to-end learnable systems. Hereby, a promising avenue for expressing high-level constraints over multi-modal input data in robotics has opened up. This work introduces an approach for Bayesian estimation of agents expected to comply with a human-interpretable neuro-symbolic model we call its Constitution. Hence, we present the Constitutional Filter (CoFi), leading to improved tracking of agents by leveraging expert knowledge, incorporating deep learning architectures, and accounting for environmental uncertainties. CoFi extends the general, recursive Bayesian estimation setting, ensuring compatibility with a vast landscape of established techniques such as Particle Filters. To underpin the advantages of CoFi, we evaluate its performance on real-world marine traffic data. Beyond improved performance, we show how CoFi can learn to trust and adapt to the level of compliance of an agent, recovering baseline performance even if the assumed Constitution clashes with reality.
♻ ☆ meSch: Multi-Agent Energy-Aware Scheduling for Task Persistence IROS
This paper develops a scheduling protocol for a team of autonomous robots that operate on long-term persistent tasks. The proposed framework, called meSch, accounts for the limited battery capacity of the robots and ensures that the robots return to charge their batteries one at a time at the single charging station. The protocol is applicable to general nonlinear robot models under certain assumptions, does not require robots to be deployed at different times, and can handle robots with different discharge rates. We further consider the case when the charging station is mobile and its state information is subject to uncertainty. The feasibility of the algorithm in terms of ensuring persistent charging is given under certain assumptions, while the efficacy of meSch is validated through simulation and hardware experiments.
comment: Submitted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
♻ ☆ Introduction to Online Control
This text presents an introduction to an emerging paradigm in control of dynamical systems and differentiable reinforcement learning called online nonstochastic control. The new approach applies techniques from online convex optimization and convex relaxations to obtain new methods with provable guarantees for classical settings in optimal and robust control. The primary distinction between online nonstochastic control and other frameworks is the objective. In optimal control, robust control, and other control methodologies that assume stochastic noise, the goal is to perform comparably to an offline optimal strategy. In online nonstochastic control, both the cost functions as well as the perturbations from the assumed dynamical model are chosen by an adversary. Thus the optimal policy is not defined a priori. Rather, the target is to attain low regret against the best policy in hindsight from a benchmark class of policies. This objective suggests the use of the decision making framework of online convex optimization as an algorithmic methodology. The resulting methods are based on iterative mathematical optimization algorithms, and are accompanied by finite-time regret and computational complexity guarantees.
comment: Draft; comments/suggestions welcome at nonstochastic.control@gmail.com
♻ ☆ Lab2Car: A Versatile Wrapper for Deploying Experimental Planners in Complex Real-world Environments
Human-level autonomous driving is an ever-elusive goal, with planning and decision making -- the cognitive functions that determine driving behavior -- posing the greatest challenge. Despite a proliferation of promising approaches, progress is stifled by the difficulty of deploying experimental planners in naturalistic settings. In this work, we propose Lab2Car, an optimization-based wrapper that can take a trajectory sketch from an arbitrary motion planner and convert it to a safe, comfortable, dynamically feasible trajectory that the car can follow. This allows motion planners that do not provide such guarantees to be safely tested and optimized in real-world environments. We demonstrate the versatility of Lab2Car by using it to deploy a machine learning (ML) planner and a classical planner on self-driving cars in Las Vegas. The resulting systems handle challenging scenarios, such as cut-ins, overtaking, and yielding, in complex urban environments like casino pick-up/drop-off areas. Our work paves the way for quickly deploying and evaluating candidate motion planners in realistic settings, ensuring rapid iteration and accelerating progress towards human-level autonomy.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ FlexiFly: Interfacing the Physical World with Foundation Models Empowered by Reconfigurable Drone Systems
Foundation models (FM) have shown immense human-like capabilities for generating digital media. However, foundation models that can freely sense, interact, and actuate the physical domain is far from being realized. This is due to 1) requiring dense deployments of sensors to fully cover and analyze large spaces, while 2) events often being localized to small areas, making it difficult for FMs to pinpoint relevant areas of interest relevant to the current task. We propose FlexiFly, a platform that enables FMs to ``zoom in'' and analyze relevant areas with higher granularity to better understand the physical environment and carry out tasks. FlexiFly accomplishes by introducing 1) a novel image segmentation technique that aids in identifying relevant locations and 2) a modular and reconfigurable sensing and actuation drone platform that FMs can actuate to ``zoom in'' with relevant sensors and actuators. We demonstrate through real smart home deployments that FlexiFly enables FMs and LLMs to complete diverse tasks up to $85\%$ more successfully. FlexiFly is critical step towards FMs and LLMs that can naturally interface with the physical world.
comment: This paper is accepted by ACM SenSys 2025. The published version is https://doi.org/10.1145/3715014.3722081 in ACM Digital Library
♻ ☆ Adapting Gait Frequency for Posture-regulating Humanoid Push-recovery via Hierarchical Model Predictive Control ICRA 2025
Current humanoid push-recovery strategies often use whole-body motion, yet they tend to overlook posture regulation. For instance, in manipulation tasks, the upper body may need to stay upright and have minimal recovery displacement. This paper introduces a novel approach to enhancing humanoid push-recovery performance under unknown disturbances and regulating body posture by tailoring the recovery stepping strategy. We propose a hierarchical-MPC-based scheme that analyzes and detects instability in the prediction window and quickly recovers through adapting gait frequency. Our approach integrates a high-level nonlinear MPC, a posture-aware gait frequency adaptation planner, and a low-level convex locomotion MPC. The planners predict the center of mass (CoM) state trajectories that can be assessed for precursors of potential instability and posture deviation. In simulation, we demonstrate improved maximum recoverable impulse by 131% on average compared with baseline approaches. In hardware experiments, a 125 ms advancement in recovery stepping timing/reflex has been observed with the proposed approach. We also demonstrate improved push-recovery performance and minimized body attitude change under 0.2 rad.
comment: 7 pages, 6 figures, accepted to ICRA 2025
♻ ☆ LGR2: Language Guided Reward Relabeling for Accelerating Hierarchical Reinforcement Learning
Developing interactive systems that utilize natural language instructions to solve complex robotic control tasks has long been a goal of the robotics community. While Large Language Models (LLMs) excel at logical reasoning, in-context learning, and code generation, translating high-level instructions into low-level robotic actions still remains challenging. Furthermore, solving such tasks often requires acquiring policies to execute diverse subtasks and integrating them to achieve the final objective. Hierarchical Reinforcement Learning (HRL) offers a promising solution for solving such tasks by enabling temporal abstraction and improved exploration. However, HRL suffers from non-stationarity caused by the changing lower-level behaviour, which hinders effective policy learning. We propose LGR2, a novel HRL framework that mitigates non-stationarity in HRL by using language-guided higher-level rewards that remain unaffected by the changing lower-level policy behaviour. To analyze the efficacy of our approach, we perform empirical analysis to demonstrate that LGR2 effectively mitigates non-stationarity in HRL and attains success rates exceeding 70% in challenging, sparsely-rewarded robotic navigation and manipulation environments, where other baselines typically fail to show significant progress. Finally, we perform real-world robotic experiments on complex tasks and demonstrate that LGR2 consistently outperforms the baselines.
♻ ☆ iFANnpp: Nuclear Power Plant Digital Twin for Robots and Autonomous Intelligence
Robotics has gained significant attention in the nuclear industry due its precision and ability to automate tasks. However, the increasing complexity of robots has led to a growing demand for advanced simulation and control methods to predict robot behavior and optimize plant performance, motivating the use of digital twins for robotic applications. Most existing digital twins only address parts of systems and do not offer a total design of a nuclear power plant. Furthermore, they are often designed for specific algorithms or tasks, making them unsuitable for broader research applications or projects. In response, this work proposes a comprehensive nuclear power plant digital twin designed to improve real-time monitoring, operational efficiency, and predictive maintenance. The full nuclear power plant is modeled in Unreal Engine 5 to incorporate the complexities and various phenomena. The high-resolution simulation environment is integrated with a Generic Pressurized Water Reactor Simulator, a high-fidelity physics-driven software, to create a realistic model of a nuclear power plant and a real-time updated virtual environment. The virtual environment provides various features for researchers to easily test custom robot algorithms and frameworks, applicable to research in the nuclear industry as well as industrial systems in general. The digital twin's performance is presented, and critical research problems are addressed, including multi-robot task scheduling and robot navigation in radiation-affected areas, by leveraging implemented features.
comment: 13 pages, 10 figures; submitted to IEEE Transactions on Automation Science and Engineering
Computer Vision 137
☆ GEN3C: 3D-Informed World-Consistent Video Generation with Precise Camera Control CVPR 2025
We present GEN3C, a generative video model with precise Camera Control and temporal 3D Consistency. Prior video models already generate realistic videos, but they tend to leverage little 3D information, leading to inconsistencies, such as objects popping in and out of existence. Camera control, if implemented at all, is imprecise, because camera parameters are mere inputs to the neural network which must then infer how the video depends on the camera. In contrast, GEN3C is guided by a 3D cache: point clouds obtained by predicting the pixel-wise depth of seed images or previously generated frames. When generating the next frames, GEN3C is conditioned on the 2D renderings of the 3D cache with the new camera trajectory provided by the user. Crucially, this means that GEN3C neither has to remember what it previously generated nor does it have to infer the image structure from the camera pose. The model, instead, can focus all its generative power on previously unobserved regions, as well as advancing the scene state to the next frame. Our results demonstrate more precise camera control than prior work, as well as state-of-the-art results in sparse-view novel view synthesis, even in challenging settings such as driving scenes and monocular dynamic video. Results are best viewed in videos. Check out our webpage! https://research.nvidia.com/labs/toronto-ai/GEN3C/
comment: To appear in CVPR 2025. Website: https://research.nvidia.com/labs/toronto-ai/GEN3C/
☆ OTTER: A Vision-Language-Action Model with Text-Aware Visual Feature Extraction
Vision-Language-Action (VLA) models aim to predict robotic actions based on visual observations and language instructions. Existing approaches require fine-tuning pre-trained visionlanguage models (VLMs) as visual and language features are independently fed into downstream policies, degrading the pre-trained semantic alignments. We propose OTTER, a novel VLA architecture that leverages these existing alignments through explicit, text-aware visual feature extraction. Instead of processing all visual features, OTTER selectively extracts and passes only task-relevant visual features that are semantically aligned with the language instruction to the policy transformer. This allows OTTER to keep the pre-trained vision-language encoders frozen. Thereby, OTTER preserves and utilizes the rich semantic understanding learned from large-scale pre-training, enabling strong zero-shot generalization capabilities. In simulation and real-world experiments, OTTER significantly outperforms existing VLA models, demonstrating strong zeroshot generalization to novel objects and environments. Video, code, checkpoints, and dataset: https://ottervla.github.io/.
☆ Rethinking Deep Clustering Paradigms: Self-Supervision Is All You Need
The recent advances in deep clustering have been made possible by significant progress in self-supervised and pseudo-supervised learning. However, the trade-off between self-supervision and pseudo-supervision can give rise to three primary issues. The joint training causes Feature Randomness and Feature Drift, whereas the independent training causes Feature Randomness and Feature Twist. In essence, using pseudo-labels generates random and unreliable features. The combination of pseudo-supervision and self-supervision drifts the reliable clustering-oriented features. Moreover, moving from self-supervision to pseudo-supervision can twist the curved latent manifolds. This paper addresses the limitations of existing deep clustering paradigms concerning Feature Randomness, Feature Drift, and Feature Twist. We propose a new paradigm with a new strategy that replaces pseudo-supervision with a second round of self-supervision training. The new strategy makes the transition between instance-level self-supervision and neighborhood-level self-supervision smoother and less abrupt. Moreover, it prevents the drifting effect that is caused by the strong competition between instance-level self-supervision and clustering-level pseudo-supervision. Moreover, the absence of the pseudo-supervision prevents the risk of generating random features. With this novel approach, our paper introduces a Rethinking of the Deep Clustering Paradigms, denoted by R-DC. Our model is specifically designed to address three primary challenges encountered in Deep Clustering: Feature Randomness, Feature Drift, and Feature Twist. Experimental results conducted on six datasets have shown that the two-level self-supervision training yields substantial improvements.
☆ Active 6D Pose Estimation for Textureless Objects using Multi-View RGB Frames
Estimating the 6D pose of textureless objects from RBG images is an important problem in robotics. Due to appearance ambiguities, rotational symmetries, and severe occlusions, single-view based 6D pose estimators are still unable to handle a wide range of objects, motivating research towards multi-view pose estimation and next-best-view prediction that addresses these limitations. In this work, we propose a comprehensive active perception framework for estimating the 6D poses of textureless objects using only RGB images. Our approach is built upon a key idea: decoupling the 6D pose estimation into a sequential two-step process can greatly improve both accuracy and efficiency. First, we estimate the 3D translation of each object, resolving scale and depth ambiguities inherent to RGB images. These estimates are then used to simplify the subsequent task of determining the 3D orientation, which we achieve through canonical scale template matching. Building on this formulation, we then introduce an active perception strategy that predicts the next best camera viewpoint to capture an RGB image, effectively reducing object pose uncertainty and enhancing pose accuracy. We evaluate our method on the public ROBI dataset as well as on a transparent object dataset that we created. When evaluated using the same camera viewpoints, our multi-view pose estimation significantly outperforms state-of-the-art approaches. Furthermore, by leveraging our next-best-view strategy, our method achieves high object pose accuracy with substantially fewer viewpoints than heuristic-based policies.
☆ Rethinking Video Tokenization: A Conditioned Diffusion-based Approach
Video tokenizers, which transform videos into compact latent representations, are key to video generation. Existing video tokenizers are based on the VAE architecture and follow a paradigm where an encoder compresses videos into compact latents, and a deterministic decoder reconstructs the original videos from these latents. In this paper, we propose a novel \underline{\textbf{C}}onditioned \underline{\textbf{D}}iffusion-based video \underline{\textbf{T}}okenizer entitled \textbf{\ourmethod}, which departs from previous methods by replacing the deterministic decoder with a 3D causal diffusion model. The reverse diffusion generative process of the decoder is conditioned on the latent representations derived via the encoder. With a feature caching and sampling acceleration, the framework efficiently reconstructs high-fidelity videos of arbitrary lengths. Results show that {\ourmethod} achieves state-of-the-art performance in video reconstruction tasks using just a single-step sampling. Even a smaller version of {\ourmethod} still achieves reconstruction results on par with the top two baselines. Furthermore, the latent video generation model trained using {\ourmethod} also shows superior performance.
☆ DualDiff+: Dual-Branch Diffusion for High-Fidelity Video Generation with Reward Guidance
Accurate and high-fidelity driving scene reconstruction demands the effective utilization of comprehensive scene information as conditional inputs. Existing methods predominantly rely on 3D bounding boxes and BEV road maps for foreground and background control, which fail to capture the full complexity of driving scenes and adequately integrate multimodal information. In this work, we present DualDiff, a dual-branch conditional diffusion model designed to enhance driving scene generation across multiple views and video sequences. Specifically, we introduce Occupancy Ray-shape Sampling (ORS) as a conditional input, offering rich foreground and background semantics alongside 3D spatial geometry to precisely control the generation of both elements. To improve the synthesis of fine-grained foreground objects, particularly complex and distant ones, we propose a Foreground-Aware Mask (FGM) denoising loss function. Additionally, we develop the Semantic Fusion Attention (SFA) mechanism to dynamically prioritize relevant information and suppress noise, enabling more effective multimodal fusion. Finally, to ensure high-quality image-to-video generation, we introduce the Reward-Guided Diffusion (RGD) framework, which maintains global consistency and semantic coherence in generated videos. Extensive experiments demonstrate that DualDiff achieves state-of-the-art (SOTA) performance across multiple datasets. On the NuScenes dataset, DualDiff reduces the FID score by 4.09% compared to the best baseline. In downstream tasks, such as BEV segmentation, our method improves vehicle mIoU by 4.50% and road mIoU by 1.70%, while in BEV 3D object detection, the foreground mAP increases by 1.46%. Code will be made available at https://github.com/yangzhaojason/DualDiff.
☆ A Generative Approach to High Fidelity 3D Reconstruction from Text Data
The convergence of generative artificial intelligence and advanced computer vision technologies introduces a groundbreaking approach to transforming textual descriptions into three-dimensional representations. This research proposes a fully automated pipeline that seamlessly integrates text-to-image generation, various image processing techniques, and deep learning methods for reflection removal and 3D reconstruction. By leveraging state-of-the-art generative models like Stable Diffusion, the methodology translates natural language inputs into detailed 3D models through a multi-stage workflow. The reconstruction process begins with the generation of high-quality images from textual prompts, followed by enhancement by a reinforcement learning agent and reflection removal using the Stable Delight model. Advanced image upscaling and background removal techniques are then applied to further enhance visual fidelity. These refined two-dimensional representations are subsequently transformed into volumetric 3D models using sophisticated machine learning algorithms, capturing intricate spatial relationships and geometric characteristics. This process achieves a highly structured and detailed output, ensuring that the final 3D models reflect both semantic accuracy and geometric precision. This approach addresses key challenges in generative reconstruction, such as maintaining semantic coherence, managing geometric complexity, and preserving detailed visual information. Comprehensive experimental evaluations will assess reconstruction quality, semantic accuracy, and geometric fidelity across diverse domains and varying levels of complexity. By demonstrating the potential of AI-driven 3D reconstruction techniques, this research offers significant implications for fields such as augmented reality (AR), virtual reality (VR), and digital content creation.
☆ LION-FS: Fast & Slow Video-Language Thinker as Online Video Assistant CVPR 2025
First-person video assistants are highly anticipated to enhance our daily lives through online video dialogue. However, existing online video assistants often sacrifice assistant efficacy for real-time efficiency by processing low-frame-rate videos with coarse-grained visual features.To overcome the trade-off between efficacy and efficiency, we propose "Fast & Slow Video-Language Thinker" as an onLIne videO assistaNt, LION-FS, achieving real-time, proactive, temporally accurate, and contextually precise responses. LION-FS adopts a two-stage optimization strategy: 1)Fast Path: Routing-Based Response Determination evaluates frame-by-frame whether an immediate response is necessary. To enhance response determination accuracy and handle higher frame-rate inputs efficiently, we employ Token Aggregation Routing to dynamically fuse spatiotemporal features without increasing token numbers, while utilizing Token Dropping Routing to eliminate redundant features. 2)Slow Path: Multi-granularity Keyframe Augmentation optimizes keyframes during response generation. To provide comprehensive and detailed responses beyond atomic actions constrained by training data, fine-grained spatial features and human-environment interaction features are extracted through multi-granular pooling. These features are further integrated into a meticulously designed multimodal Thinking Template to guide more precise response generation. Comprehensive evaluations on online video tasks demonstrate that LION-FS achieves state-of-the-art efficacy and efficiency.
comment: Accept to CVPR 2025
☆ Improving 6D Object Pose Estimation of metallic Household and Industry Objects
6D object pose estimation suffers from reduced accuracy when applied to metallic objects. We set out to improve the state-of-the-art by addressing challenges such as reflections and specular highlights in industrial applications. Our novel BOP-compatible dataset, featuring a diverse set of metallic objects (cans, household, and industrial items) under various lighting and background conditions, provides additional geometric and visual cues. We demonstrate that these cues can be effectively leveraged to enhance overall performance. To illustrate the usefulness of the additional features, we improve upon the GDRNPP algorithm by introducing an additional keypoint prediction and material estimator head in order to improve spatial scene understanding. Evaluations on the new dataset show improved accuracy for metallic objects, supporting the hypothesis that additional geometric and visual cues can improve learning.
☆ DoraCycle: Domain-Oriented Adaptation of Unified Generative Model in Multimodal Cycles CVPR 2025
Adapting generative models to specific domains presents an effective solution for satisfying specialized requirements. However, adapting to some complex domains remains challenging, especially when these domains require substantial paired data to capture the targeted distributions. Since unpaired data from a single modality, such as vision or language, is more readily available, we utilize the bidirectional mappings between vision and language learned by the unified generative model to enable training on unpaired data for domain adaptation. Specifically, we propose DoraCycle, which integrates two multimodal cycles: text-to-image-to-text and image-to-text-to-image. The model is optimized through cross-entropy loss computed at the cycle endpoints, where both endpoints share the same modality. This facilitates self-evolution of the model without reliance on annotated text-image pairs. Experimental results demonstrate that for tasks independent of paired knowledge, such as stylization, DoraCycle can effectively adapt the unified model using only unpaired data. For tasks involving new paired knowledge, such as specific identities, a combination of a small set of paired image-text examples and larger-scale unpaired data is sufficient for effective domain-oriented adaptation. The code will be released at https://github.com/showlab/DoraCycle.
comment: CVPR 2025
☆ An Adaptive Underwater Image Enhancement Framework via Multi-Domain Fusion and Color Compensation
Underwater optical imaging is severely degraded by light absorption, scattering, and color distortion, hindering visibility and accurate image analysis. This paper presents an adaptive enhancement framework integrating illumination compensation, multi-domain filtering, and dynamic color correction. A hybrid illumination compensation strategy combining CLAHE, Gamma correction, and Retinex enhances visibility. A two-stage filtering process, including spatial-domain (Gaussian, Bilateral, Guided) and frequency-domain (Fourier, Wavelet) methods, effectively reduces noise while preserving details. To correct color distortion, an adaptive color compensation (ACC) model estimates spectral attenuation and water type to combine RCP, DCP, and MUDCP dynamically. Finally, a perceptually guided color balance mechanism ensures natural color restoration. Experimental results on benchmark datasets demonstrate superior performance over state-of-the-art methods in contrast enhancement, color correction, and structural preservation, making the framework robust for underwater imaging applications.
☆ 4D Radar Ground Truth Augmentation with LiDAR-to-4D Radar Data Synthesis
Ground truth augmentation (GT-Aug) is a common method for LiDAR-based object detection, as it enhances object density by leveraging ground truth bounding boxes (GT bboxes). However, directly applying GT-Aug to 4D Radar tensor data overlooks important measurements outside the GT bboxes-such as sidelobes-leading to synthetic distributions that deviate from real-world 4D Radar data. To address this limitation, we propose 4D Radar Ground Truth Augmentation (4DR GT-Aug). Our approach first augments LiDAR data and then converts it to 4D Radar data via a LiDAR-to-4D Radar data synthesis (L2RDaS) module, which explicitly accounts for measurements both inside and outside GT bboxes. In doing so, it produces 4D Radar data distributions that more closely resemble real-world measurements, thereby improving object detection accuracy. Experiments on the K-Radar dataset show that the proposed method achieves improved performance compared to conventional GT-Aug in object detection for 4D Radar. The implementation code is available at https://github.com/kaist-avelab/K-Radar.
comment: 24 pages
☆ CLIP is Strong Enough to Fight Back: Test-time Counterattacks towards Zero-shot Adversarial Robustness of CLIP CVPR 2025
Despite its prevalent use in image-text matching tasks in a zero-shot manner, CLIP has been shown to be highly vulnerable to adversarial perturbations added onto images. Recent studies propose to finetune the vision encoder of CLIP with adversarial samples generated on the fly, and show improved robustness against adversarial attacks on a spectrum of downstream datasets, a property termed as zero-shot robustness. In this paper, we show that malicious perturbations that seek to maximise the classification loss lead to `falsely stable' images, and propose to leverage the pre-trained vision encoder of CLIP to counterattack such adversarial images during inference to achieve robustness. Our paradigm is simple and training-free, providing the first method to defend CLIP from adversarial attacks at test time, which is orthogonal to existing methods aiming to boost zero-shot adversarial robustness of CLIP. We conduct experiments across 16 classification datasets, and demonstrate stable and consistent gains compared to test-time defence methods adapted from existing adversarial robustness studies that do not rely on external networks, without noticeably impairing performance on clean images. We also show that our paradigm can be employed on CLIP models that have been adversarially finetuned to further enhance their robustness at test time. Our code is available \href{https://github.com/Sxing2/CLIP-Test-time-Counterattacks}{here}.
comment: Accepted to CVPR 2025
REGRACE: A Robust and Efficient Graph-based Re-localization Algorithm using Consistency Evaluation IROS2025
Loop closures are essential for correcting odometry drift and creating consistent maps, especially in the context of large-scale navigation. Current methods using dense point clouds for accurate place recognition do not scale well due to computationally expensive scan-to-scan comparisons. Alternative object-centric approaches are more efficient but often struggle with sensitivity to viewpoint variation. In this work, we introduce REGRACE, a novel approach that addresses these challenges of scalability and perspective difference in re-localization by using LiDAR-based submaps. We introduce rotation-invariant features for each labeled object and enhance them with neighborhood context through a graph neural network. To identify potential revisits, we employ a scalable bag-of-words approach, pooling one learned global feature per submap. Additionally, we define a revisit with geometrical consistency cues rather than embedding distance, allowing us to recognize far-away loop closures. Our evaluations demonstrate that REGRACE achieves similar results compared to state-of-the-art place recognition and registration baselines while being twice as fast.
comment: Submitted to IROS2025
☆ High-Quality Virtual Single-Viewpoint Surgical Video: Geometric Autocalibration of Multiple Cameras in Surgical Lights MICCAI2023
Occlusion-free video generation is challenging due to surgeons' obstructions in the camera field of view. Prior work has addressed this issue by installing multiple cameras on a surgical light, hoping some cameras will observe the surgical field with less occlusion. However, this special camera setup poses a new imaging challenge since camera configurations can change every time surgeons move the light, and manual image alignment is required. This paper proposes an algorithm to automate this alignment task. The proposed method detects frames where the lighting system moves, realigns them, and selects the camera with the least occlusion. This algorithm results in a stabilized video with less occlusion. Quantitative results show that our method outperforms conventional approaches. A user study involving medical doctors also confirmed the superiority of our method.
comment: Accepted at MICCAI2023
☆ Afford-X: Generalizable and Slim Affordance Reasoning for Task-oriented Manipulation
Object affordance reasoning, the ability to infer object functionalities based on physical properties, is fundamental for task-oriented planning and activities in both humans and Artificial Intelligence (AI). This capability, required for planning and executing daily activities in a task-oriented manner, relies on commonsense knowledge of object physics and functionalities, extending beyond simple object recognition. Current computational models for affordance reasoning from perception lack generalizability, limiting their applicability in novel scenarios. Meanwhile, comprehensive Large Language Models (LLMs) with emerging reasoning capabilities are challenging to deploy on local devices for task-oriented manipulations. Here, we introduce LVIS-Aff, a large-scale dataset comprising 1,496 tasks and 119k images, designed to enhance the generalizability of affordance reasoning from perception. Utilizing this dataset, we develop Afford-X, an end-to-end trainable affordance reasoning model that incorporates Verb Attention and Bi-Fusion modules to improve multi-modal understanding. This model achieves up to a 12.1% performance improvement over the best-reported results from non-LLM methods, while also demonstrating a 1.2% enhancement compared to our previous conference paper. Additionally, it maintains a compact 187M parameter size and infers nearly 50 times faster than the GPT-4V API. Our work demonstrates the potential for efficient, generalizable affordance reasoning models that can be deployed on local devices for task-oriented manipulations. We showcase Afford-X's effectiveness in enabling task-oriented manipulations for robots across various tasks and environments, underscoring its efficiency and broad implications for advancing robotics and AI systems in real-world applications.
☆ Simulation-Based Performance Evaluation of 3D Object Detection Methods with Deep Learning for a LiDAR Point Cloud Dataset in a SOTIF-related Use Case
Safety of the Intended Functionality (SOTIF) addresses sensor performance limitations and deep learning-based object detection insufficiencies to ensure the intended functionality of Automated Driving Systems (ADS). This paper presents a methodology examining the adaptability and performance evaluation of the 3D object detection methods on a LiDAR point cloud dataset generated by simulating a SOTIF-related Use Case. The major contributions of this paper include defining and modelling a SOTIF-related Use Case with 21 diverse weather conditions and generating a LiDAR point cloud dataset suitable for application of 3D object detection methods. The dataset consists of 547 frames, encompassing clear, cloudy, rainy weather conditions, corresponding to different times of the day, including noon, sunset, and night. Employing MMDetection3D and OpenPCDET toolkits, the performance of State-of-the-Art (SOTA) 3D object detection methods is evaluated and compared by testing the pre-trained Deep Learning (DL) models on the generated dataset using Average Precision (AP) and Recall metrics.
☆ A self-supervised cyclic neural-analytic approach for novel view synthesis and 3D reconstruction BMVC 2024
Generating novel views from recorded videos is crucial for enabling autonomous UAV navigation. Recent advancements in neural rendering have facilitated the rapid development of methods capable of rendering new trajectories. However, these methods often fail to generalize well to regions far from the training data without an optimized flight path, leading to suboptimal reconstructions. We propose a self-supervised cyclic neural-analytic pipeline that combines high-quality neural rendering outputs with precise geometric insights from analytical methods. Our solution improves RGB and mesh reconstructions for novel view synthesis, especially in undersampled areas and regions that are completely different from the training dataset. We use an effective transformer-based architecture for image reconstruction to refine and adapt the synthesis process, enabling effective handling of novel, unseen poses without relying on extensive labeled datasets. Our findings demonstrate substantial improvements in rendering views of novel and also 3D reconstruction, which to the best of our knowledge is a first, setting a new standard for autonomous navigation in complex outdoor environments.
comment: Published in BMVC 2024, 10 pages, 4 figures
☆ Unified Human Localization and Trajectory Prediction with Monocular Vision ICRA 2025
Conventional human trajectory prediction models rely on clean curated data, requiring specialized equipment or manual labeling, which is often impractical for robotic applications. The existing predictors tend to overfit to clean observation affecting their robustness when used with noisy inputs. In this work, we propose MonoTransmotion (MT), a Transformer-based framework that uses only a monocular camera to jointly solve localization and prediction tasks. Our framework has two main modules: Bird's Eye View (BEV) localization and trajectory prediction. The BEV localization module estimates the position of a person using 2D human poses, enhanced by a novel directional loss for smoother sequential localizations. The trajectory prediction module predicts future motion from these estimates. We show that by jointly training both tasks with our unified framework, our method is more robust in real-world scenarios made of noisy inputs. We validate our MT network on both curated and non-curated datasets. On the curated dataset, MT achieves around 12% improvement over baseline models on BEV localization and trajectory prediction. On real-world non-curated dataset, experimental results indicate that MT maintains similar performance levels, highlighting its robustness and generalization capability. The code is available at https://github.com/vita-epfl/MonoTransmotion.
comment: ICRA 2025
☆ AdaSin: Enhancing Hard Sample Metrics with Dual Adaptive Penalty for Face Recognition
In recent years, the emergence of deep convolutional neural networks has positioned face recognition as a prominent research focus in computer vision. Traditional loss functions, such as margin-based, hard-sample mining-based, and hybrid approaches, have achieved notable performance improvements, with some leveraging curriculum learning to optimize training. However, these methods often fall short in effectively quantifying the difficulty of hard samples. To address this, we propose Adaptive Sine (AdaSin) loss function, which introduces the sine of the angle between a sample's embedding feature and its ground-truth class center as a novel difficulty metric. This metric enables precise and effective penalization of hard samples. By incorporating curriculum learning, the model dynamically adjusts classification boundaries across different training stages. Unlike previous adaptive-margin loss functions, AdaSin introduce a dual adaptive penalty, applied to both the positive and negative cosine similarities of hard samples. This design imposes stronger constraints, enhancing intra-class compactness and inter-class separability. The combination of the dual adaptive penalty and curriculum learning is guided by a well-designed difficulty metric. It enables the model to focus more effectively on hard samples in later training stages, and lead to the extraction of highly discriminative face features. Extensive experiments across eight benchmarks demonstrate that AdaSin achieves superior accuracy compared to other state-of-the-art methods.
☆ Do ImageNet-trained models learn shortcuts? The impact of frequency shortcuts on generalization CVPR2025
Frequency shortcuts refer to specific frequency patterns that models heavily rely on for correct classification. Previous studies have shown that models trained on small image datasets often exploit such shortcuts, potentially impairing their generalization performance. However, existing methods for identifying frequency shortcuts require expensive computations and become impractical for analyzing models trained on large datasets. In this work, we propose the first approach to more efficiently analyze frequency shortcuts at a larger scale. We show that both CNN and transformer models learn frequency shortcuts on ImageNet. We also expose that frequency shortcut solutions can yield good performance on out-of-distribution (OOD) test sets which largely retain texture information. However, these shortcuts, mostly aligned with texture patterns, hinder model generalization on rendition-based OOD test sets. These observations suggest that current OOD evaluations often overlook the impact of frequency shortcuts on model generalization. Future benchmarks could thus benefit from explicitly assessing and accounting for these shortcuts to build models that generalize across a broader range of OOD scenarios.
comment: received at CVPR2025
☆ Mineral segmentation using electron microscope images and spectral sampling through multimodal graph neural networks
We propose a novel Graph Neural Network-based method for segmentation based on data fusion of multimodal Scanning Electron Microscope (SEM) images. In most cases, Backscattered Electron (BSE) images obtained using SEM do not contain sufficient information for mineral segmentation. Therefore, imaging is often complemented with point-wise Energy-Dispersive X-ray Spectroscopy (EDS) spectral measurements that provide highly accurate information about the chemical composition but that are time-consuming to acquire. This motivates the use of sparse spectral data in conjunction with BSE images for mineral segmentation. The unstructured nature of the spectral data makes most traditional image fusion techniques unsuitable for BSE-EDS fusion. We propose using graph neural networks to fuse the two modalities and segment the mineral phases simultaneously. Our results demonstrate that providing EDS data for as few as 1% of BSE pixels produces accurate segmentation, enabling rapid analysis of mineral samples. The proposed data fusion pipeline is versatile and can be adapted to other domains that involve image data and point-wise measurements.
☆ CarGait: Cross-Attention based Re-ranking for Gait recognition
Gait recognition is a computer vision task that identifies individuals based on their walking patterns. Gait recognition performance is commonly evaluated by ranking a gallery of candidates and measuring the accuracy at the top Rank-$K$. Existing models are typically single-staged, i.e. searching for the probe's nearest neighbors in a gallery using a single global feature representation. Although these models typically excel at retrieving the correct identity within the top-$K$ predictions, they struggle when hard negatives appear in the top short-list, leading to relatively low performance at the highest ranks (e.g., Rank-1). In this paper, we introduce CarGait, a Cross-Attention Re-ranking method for gait recognition, that involves re-ordering the top-$K$ list leveraging the fine-grained correlations between pairs of gait sequences through cross-attention between gait strips. This re-ranking scheme can be adapted to existing single-stage models to enhance their final results. We demonstrate the capabilities of CarGait by extensive experiments on three common gait datasets, Gait3D, GREW, and OU-MVLP, and seven different gait models, showing consistent improvements in Rank-1,5 accuracy, superior results over existing re-ranking methods, and strong baselines.
☆ Find First, Track Next: Decoupling Identification and Propagation in Referring Video Object Segmentation
Referring video object segmentation aims to segment and track a target object in a video using a natural language prompt. Existing methods typically fuse visual and textual features in a highly entangled manner, processing multi-modal information together to generate per-frame masks. However, this approach often struggles with ambiguous target identification, particularly in scenes with multiple similar objects, and fails to ensure consistent mask propagation across frames. To address these limitations, we introduce FindTrack, a novel decoupled framework that separates target identification from mask propagation. FindTrack first adaptively selects a key frame by balancing segmentation confidence and vision-text alignment, establishing a robust reference for the target object. This reference is then utilized by a dedicated propagation module to track and segment the object across the entire video. By decoupling these processes, FindTrack effectively reduces ambiguities in target association and enhances segmentation consistency. We demonstrate that FindTrack outperforms existing methods on public benchmarks.
☆ Feature Point Extraction for Extra-Affine Image
The issue concerning the significant decline in the stability of feature extraction for images subjected to large-angle affine transformations, where the angle exceeds 50 degrees, still awaits a satisfactory solution. Even ASIFT, which is built upon SIFT and entails a considerable number of image comparisons simulated by affine transformations, inevitably exhibits the drawbacks of being time-consuming and imposing high demands on memory usage. And the stability of feature extraction drops rapidly under large-view affine transformations. Consequently, we propose a method that represents an improvement over ASIFT. On the premise of improving the precision and maintaining the affine invariance, it currently ranks as the fastest feature extraction method for extra-affine images that we know of at present. Simultaneously, the stability of feature extraction regarding affine transformation images has been approximated to the maximum limits. Both the angle between the shooting direction and the normal direction of the photographed object (absolute tilt angle), and the shooting transformation angle between two images (transition tilt angle) are close to 90 degrees. The central idea of the method lies in obtaining the optimal parameter set by simulating affine transformation with the reference image. And the simulated affine transformation is reproduced by combining it with the Lanczos interpolation based on the optimal parameter set. Subsequently, it is combined with ORB, which exhibits excellent real-time performance for rapid orientation binary description. Moreover, a scale parameter simulation is introduced to further augment the operational efficiency.
☆ Bridging Synthetic-to-Real Gaps: Frequency-Aware Perturbation and Selection for Single-shot Multi-Parametric Mapping Reconstruction
Data-centric artificial intelligence (AI) has remarkably advanced medical imaging, with emerging methods using synthetic data to address data scarcity while introducing synthetic-to-real gaps. Unsupervised domain adaptation (UDA) shows promise in ground truth-scarce tasks, but its application in reconstruction remains underexplored. Although multiple overlapping-echo detachment (MOLED) achieves ultra-fast multi-parametric reconstruction, extending its application to various clinical scenarios, the quality suffers from deficiency in mitigating the domain gap, difficulty in maintaining structural integrity, and inadequacy in ensuring mapping accuracy. To resolve these issues, we proposed frequency-aware perturbation and selection (FPS), comprising Wasserstein distance-modulated frequency-aware perturbation (WDFP) and hierarchical frequency-aware selection network (HFSNet), which integrates frequency-aware adaptive selection (FAS), compact FAS (cFAS) and feature-aware architecture integration (FAI). Specifically, perturbation activates domain-invariant feature learning within uncertainty, while selection refines optimal solutions within perturbation, establishing a robust and closed-loop learning pathway. Extensive experiments on synthetic data, along with diverse real clinical cases from 5 healthy volunteers, 94 ischemic stroke patients, and 46 meningioma patients, demonstrate the superiority and clinical applicability of FPS. Furthermore, FPS is applied to diffusion tensor imaging (DTI), underscoring its versatility and potential for broader medical applications. The code is available at https://github.com/flyannie/FPS.
comment: This work will be submitted to the IEEE for possible publication
☆ Active Learning for Deep Learning-Based Hemodynamic Parameter Estimation
Hemodynamic parameters such as pressure and wall shear stress play an important role in diagnosis, prognosis, and treatment planning in cardiovascular diseases. These parameters can be accurately computed using computational fluid dynamics (CFD), but CFD is computationally intensive. Hence, deep learning methods have been adopted as a surrogate to rapidly estimate CFD outcomes. A drawback of such data-driven models is the need for time-consuming reference CFD simulations for training. In this work, we introduce an active learning framework to reduce the number of CFD simulations required for the training of surrogate models, lowering the barriers to their deployment in new applications. We propose three distinct querying strategies to determine for which unlabeled samples CFD simulations should be obtained. These querying strategies are based on geometrical variance, ensemble uncertainty, and adherence to the physics governing fluid dynamics. We benchmark these methods on velocity field estimation in synthetic coronary artery bifurcations and find that they allow for substantial reductions in annotation cost. Notably, we find that our strategies reduce the number of samples required by up to 50% and make the trained models more robust to difficult cases. Our results show that active learning is a feasible strategy to increase the potential of deep learning-based CFD surrogates.
☆ Biased Heritage: How Datasets Shape Models in Facial Expression Recognition
In recent years, the rapid development of artificial intelligence (AI) systems has raised concerns about our ability to ensure their fairness, that is, how to avoid discrimination based on protected characteristics such as gender, race, or age. While algorithmic fairness is well-studied in simple binary classification tasks on tabular data, its application to complex, real-world scenarios-such as Facial Expression Recognition (FER)-remains underexplored. FER presents unique challenges: it is inherently multiclass, and biases emerge across intersecting demographic variables, each potentially comprising multiple protected groups. We present a comprehensive framework to analyze bias propagation from datasets to trained models in image-based FER systems, while introducing new bias metrics specifically designed for multiclass problems with multiple demographic groups. Our methodology studies bias propagation by (1) inducing controlled biases in FER datasets, (2) training models on these biased datasets, and (3) analyzing the correlation between dataset bias metrics and model fairness notions. Our findings reveal that stereotypical biases propagate more strongly to model predictions than representational biases, suggesting that preventing emotion-specific demographic patterns should be prioritized over general demographic balance in FER datasets. Additionally, we observe that biased datasets lead to reduced model accuracy, challenging the assumed fairness-accuracy trade-off.
comment: 17 pages, 7 figures
☆ JamMa: Ultra-lightweight Local Feature Matching with Joint Mamba CVPR 2025
Existing state-of-the-art feature matchers capture long-range dependencies with Transformers but are hindered by high spatial complexity, leading to demanding training and highlatency inference. Striking a better balance between performance and efficiency remains a challenge in feature matching. Inspired by the linear complexity O(N) of Mamba, we propose an ultra-lightweight Mamba-based matcher, named JamMa, which converges on a single GPU and achieves an impressive performance-efficiency balance in inference. To unlock the potential of Mamba for feature matching, we propose Joint Mamba with a scan-merge strategy named JEGO, which enables: (1) Joint scan of two images to achieve high-frequency mutual interaction, (2) Efficient scan with skip steps to reduce sequence length, (3) Global receptive field, and (4) Omnidirectional feature representation. With the above properties, the JEGO strategy significantly outperforms the scan-merge strategies proposed in VMamba and EVMamba in the feature matching task. Compared to attention-based sparse and semi-dense matchers, JamMa demonstrates a superior balance between performance and efficiency, delivering better performance with less than 50% of the parameters and FLOPs.
comment: CVPR 2025, Project page: https://leoluxxx.github.io/JamMa-page/
☆ CoSDH: Communication-Efficient Collaborative Perception via Supply-Demand Awareness and Intermediate-Late Hybridization CVPR 2025
Multi-agent collaborative perception enhances perceptual capabilities by utilizing information from multiple agents and is considered a fundamental solution to the problem of weak single-vehicle perception in autonomous driving. However, existing collaborative perception methods face a dilemma between communication efficiency and perception accuracy. To address this issue, we propose a novel communication-efficient collaborative perception framework based on supply-demand awareness and intermediate-late hybridization, dubbed as \mymethodname. By modeling the supply-demand relationship between agents, the framework refines the selection of collaboration regions, reducing unnecessary communication cost while maintaining accuracy. In addition, we innovatively introduce the intermediate-late hybrid collaboration mode, where late-stage collaboration compensates for the performance degradation in collaborative perception under low communication bandwidth. Extensive experiments on multiple datasets, including both simulated and real-world scenarios, demonstrate that \mymethodname~ achieves state-of-the-art detection accuracy and optimal bandwidth trade-offs, delivering superior detection precision under real communication bandwidths, thus proving its effectiveness and practical applicability. The code will be released at https://github.com/Xu2729/CoSDH.
comment: Accepted at CVPR 2025
☆ Automatic Drywall Analysis for Progress Tracking and Quality Control in Construction
Digitalization in the construction industry has become essential, enabling centralized, easy access to all relevant information of a building. Automated systems can facilitate the timely and resource-efficient documentation of changes, which is crucial for key processes such as progress tracking and quality control. This paper presents a method for image-based automated drywall analysis enabling construction progress and quality assessment through on-site camera systems. Our proposed solution integrates a deep learning-based instance segmentation model to detect and classify various drywall elements with an analysis module to cluster individual wall segments, estimate camera perspective distortions, and apply the corresponding corrections. This system extracts valuable information from images, enabling more accurate progress tracking and quality assessment on construction sites. Our main contributions include a fully automated pipeline for drywall analysis, improving instance segmentation accuracy through architecture modifications and targeted data augmentation, and a novel algorithm to extract important information from the segmentation results. Our modified model, enhanced with data augmentation, achieves significantly higher accuracy compared to other architectures, offering more detailed and precise information than existing approaches. Combined with the proposed drywall analysis steps, it enables the reliable automation of construction progress and quality assessment.
☆ Augmentation-Based Deep Learning for Identification of Circulating Tumor Cells
Circulating tumor cells (CTCs) are crucial biomarkers in liquid biopsy, offering a noninvasive tool for cancer patient management. However, their identification remains particularly challenging due to their limited number and heterogeneity. Labeling samples for contrast limits the generalization of fluorescence-based methods across different hospital datasets. Analyzing single-cell images enables detailed assessment of cell morphology, subcellular structures, and phenotypic variations, often hidden in clustered images. Developing a method based on bright-field single-cell analysis could overcome these limitations. CTCs can be isolated using an unbiased workflow combining Parsortix technology, which selects cells based on size and deformability, with DEPArray technology, enabling precise visualization and selection of single cells. Traditionally, DEPArray-acquired digital images are manually analyzed, making the process time-consuming and prone to variability. In this study, we present a Deep Learning-based classification pipeline designed to distinguish CTCs from leukocytes in blood samples, aimed to enhance diagnostic accuracy and optimize clinical workflows. Our approach employs images from the bright-field channel acquired through DEPArray technology leveraging a ResNet-based CNN. To improve model generalization, we applied three types of data augmentation techniques and incorporated fluorescence (DAPI) channel images into the training phase, allowing the network to learn additional CTC-specific features. Notably, only bright-field images have been used for testing, ensuring the model's ability to identify CTCs without relying on fluorescence markers. The proposed model achieved an F1-score of 0.798, demonstrating its capability to distinguish CTCs from leukocytes. These findings highlight the potential of DL in refining CTC analysis and advancing liquid biopsy applications.
comment: 20 pages, 4 figures, 3 tables
☆ AI-Driven Multi-Stage Computer Vision System for Defect Detection in Laser-Engraved Industrial Nameplates
Automated defect detection in industrial manufacturing is essential for maintaining product quality and minimizing production errors. In air disc brake manufacturing, ensuring the precision of laser-engraved nameplates is crucial for accurate product identification and quality control. Engraving errors, such as misprints or missing characters, can compromise both aesthetics and functionality, leading to material waste and production delays. This paper presents a proof of concept for an AI-driven computer vision system that inspects and verifies laser-engraved nameplates, detecting defects in logos and alphanumeric strings. The system integrates object detection using YOLOv7, optical character recognition (OCR) with Tesseract, and anomaly detection through a residual variational autoencoder (ResVAE) along with other computer vision methods to enable comprehensive inspections at multiple stages. Experimental results demonstrate the system's effectiveness, achieving 91.33% accuracy and 100% recall, ensuring that defective nameplates are consistently detected and addressed. This solution highlights the potential of AI-driven visual inspection to enhance quality control, reduce manual inspection efforts, and improve overall manufacturing efficiency.
☆ Top-K Maximum Intensity Projection Priors for 3D Liver Vessel Segmentation
Liver-vessel segmentation is an essential task in the pre-operative planning of liver resection. State-of-the-art 2D or 3D convolution-based methods focusing on liver vessel segmentation on 2D CT cross-sectional views, which do not take into account the global liver-vessel topology. To maintain this global vessel topology, we rely on the underlying physics used in the CT reconstruction process, and apply this to liver-vessel segmentation. Concretely, we introduce the concept of top-k maximum intensity projections, which mimics the CT reconstruction by replacing the integral along each projection direction, with keeping the top-k maxima along each projection direction. We use these top-k maximum projections to condition a diffusion model and generate 3D liver-vessel trees. We evaluate our 3D liver-vessel segmentation on the 3D-ircadb-01 dataset, and achieve the highest Dice coefficient, intersection-over-union (IoU), and Sensitivity scores compared to prior work.
comment: Accepted in 2025 IEEE International Symposium on Biomedical Imaging (ISBI 2025)
☆ TopoMortar: A dataset to evaluate image segmentation methods focused on topology accuracy
We present TopoMortar, a brick wall dataset that is the first dataset specifically designed to evaluate topology-focused image segmentation methods, such as topology loss functions. TopoMortar enables to investigate in two ways whether methods incorporate prior topological knowledge. First, by eliminating challenges seen in real-world data, such as small training set, noisy labels, and out-of-distribution test-set images, that, as we show, impact the effectiveness of topology losses. Second, by allowing to assess in the same dataset topology accuracy across dataset challenges, isolating dataset-related effects from the effect of incorporating prior topological knowledge. In these two experiments, it is deliberately difficult to improve topology accuracy without actually using topology information, thus, permitting to attribute an improvement in topology accuracy to the incorporation of prior topological knowledge. To this end, TopoMortar includes three types of labels (accurate, noisy, pseudo-labels), two fixed training sets (large and small), and in-distribution and out-of-distribution test-set images. We compared eight loss functions on TopoMortar, and we found that clDice achieved the most topologically accurate segmentations, Skeleton Recall loss performed best particularly with noisy labels, and the relative advantageousness of the other loss functions depended on the experimental setting. Additionally, we show that simple methods, such as data augmentation and self-distillation, can elevate Cross entropy Dice loss to surpass most topology loss functions, and that those simple methods can enhance topology loss functions as well. clDice and Skeleton Recall loss, both skeletonization-based loss functions, were also the fastest to train, making this type of loss function a promising research direction. TopoMortar and our code can be found at https://github.com/jmlipman/TopoMortar
☆ Video Super-Resolution: All You Need is a Video Diffusion Model
We present a generic video super-resolution algorithm in this paper, based on the Diffusion Posterior Sampling framework with an unconditional video generation model in latent space. The video generation model, a diffusion transformer, functions as a space-time model. We argue that a powerful model, which learns the physics of the real world, can easily handle various kinds of motion patterns as prior knowledge, thus eliminating the need for explicit estimation of optical flows or motion parameters for pixel alignment. Furthermore, a single instance of the proposed video diffusion transformer model can adapt to different sampling conditions without re-training. Due to limited computational resources and training data, our experiments provide empirical evidence of the algorithm's strong super-resolution capabilities using synthetic data.
☆ Automated Attendee Recognition System for Large-Scale Social Events or Conference Gathering
Manual attendance tracking at large-scale events, such as marriage functions or conferences, is often inefficient and prone to human error. To address this challenge, we propose an automated, cloud-based attendance tracking system that uses cameras mounted at the entrance and exit gates. The mounted cameras continuously capture video and send the video data to cloud services to perform real-time face detection and recognition. Unlike existing solutions, our system accurately identifies attendees even when they are not looking directly at the camera, allowing natural movements, such as looking around or talking while walking. To the best of our knowledge, this is the first system to achieve high recognition rates under such dynamic conditions. Our system demonstrates overall 90% accuracy, with each video frame processed in 5 seconds, ensuring real time operation without frame loss. In addition, notifications are sent promptly to security personnel within the same latency. This system achieves 100% accuracy for individuals without facial obstructions and successfully recognizes all attendees appearing within the camera's field of view, providing a robust solution for attendee recognition in large-scale social events.
☆ Deep Learning-Based Diffusion MRI Tractography: Integrating Spatial and Anatomical Information
Diffusion MRI tractography technique enables non-invasive visualization of the white matter pathways in the brain. It plays a crucial role in neuroscience and clinical fields by facilitating the study of brain connectivity and neurological disorders. However, the accuracy of reconstructed tractograms has been a longstanding challenge. Recently, deep learning methods have been applied to improve tractograms for better white matter coverage, but often comes at the expense of generating excessive false-positive connections. This is largely due to their reliance on local information to predict long range streamlines. To improve the accuracy of streamline propagation predictions, we introduce a novel deep learning framework that integrates image-domain spatial information and anatomical information along tracts, with the former extracted through convolutional layers and the later modeled via a Transformer-decoder. Additionally, we employ a weighted loss function to address fiber class imbalance encountered during training. We evaluate the proposed method on the simulated ISMRM 2015 Tractography Challenge dataset, achieving a valid streamline rate of 66.2%, white matter coverage of 63.8%, and successfully reconstructing 24 out of 25 bundles. Furthermore, on the multi-site Tractoinferno dataset, the proposed method demonstrates its ability to handle various diffusion MRI acquisition schemes, achieving a 5.7% increase in white matter coverage and a 4.1% decrease in overreach compared to RNN-based methods.
☆ ScaleFusionNet: Transformer-Guided Multi-Scale Feature Fusion for Skin Lesion Segmentation
Melanoma is a malignant tumor originating from skin cell lesions. Accurate and efficient segmentation of skin lesions is essential for quantitative medical analysis but remains challenging. To address this, we propose ScaleFusionNet, a segmentation model that integrates Cross-Attention Transformer Module (CATM) and AdaptiveFusionBlock to enhance feature extraction and fusion. The model employs a hybrid architecture encoder that effectively captures both local and global features. We introduce CATM, which utilizes Swin Transformer Blocks and Cross Attention Fusion (CAF) to adaptively refine encoder-decoder feature fusion, reducing semantic gaps and improving segmentation accuracy. Additionally, the AdaptiveFusionBlock is improved by integrating adaptive multi-scale fusion, where Swin Transformer-based attention complements deformable convolution-based multi-scale feature extraction. This enhancement refines lesion boundaries and preserves fine-grained details. ScaleFusionNet achieves Dice scores of 92.94% and 91.65% on ISIC-2016 and ISIC-2018 datasets, respectively, demonstrating its effectiveness in skin lesion analysis. Our code implementation is publicly available at GitHub.
☆ Golden Cudgel Network for Real-Time Semantic Segmentation
Recent real-time semantic segmentation models, whether single-branch or multi-branch, achieve good performance and speed. However, their speed is limited by multi-path blocks, and some depend on high-performance teacher models for training. To overcome these issues, we propose Golden Cudgel Network (GCNet). Specifically, GCNet uses vertical multi-convolutions and horizontal multi-paths for training, which are reparameterized into a single convolution for inference, optimizing both performance and speed. This design allows GCNet to self-enlarge during training and self-contract during inference, effectively becoming a "teacher model" without needing external ones. Experimental results show that GCNet outperforms existing state-of-the-art models in terms of performance and speed on the Cityscapes, CamVid, and Pascal VOC 2012 datasets. The code is available at https://github.com/gyyang23/GCNet.
☆ See What You Are Told: Visual Attention Sink in Large Multimodal Models
Large multimodal models (LMMs) "see" images by leveraging the attention mechanism between text and visual tokens in the transformer decoder. Ideally, these models should focus on key visual information relevant to the text token. However, recent findings indicate that LMMs have an extraordinary tendency to consistently allocate high attention weights to specific visual tokens, even when these tokens are irrelevant to the corresponding text. In this study, we investigate the property behind the appearance of these irrelevant visual tokens and examine their characteristics. Our findings show that this behavior arises due to the massive activation of certain hidden state dimensions, which resembles the attention sink found in language models. Hence, we refer to this phenomenon as the visual attention sink. In particular, our analysis reveals that removing the irrelevant visual sink tokens does not impact model performance, despite receiving high attention weights. Consequently, we recycle the attention to these tokens as surplus resources, redistributing the attention budget to enhance focus on the image. To achieve this, we introduce Visual Attention Redistribution (VAR), a method that redistributes attention in image-centric heads, which we identify as innately focusing on visual information. VAR can be seamlessly applied across different LMMs to improve performance on a wide range of tasks, including general vision-language tasks, visual hallucination tasks, and vision-centric tasks, all without the need for additional training, models, or inference steps. Experimental results demonstrate that VAR enables LMMs to process visual information more effectively by adjusting their internal attention mechanisms, offering a new direction to enhancing the multimodal capabilities of LMMs.
☆ Full-DoF Egomotion Estimation for Event Cameras Using Geometric Solvers CVPR
For event cameras, current sparse geometric solvers for egomotion estimation assume that the rotational displacements are known, such as those provided by an IMU. Thus, they can only recover the translational motion parameters. Recovering full-DoF motion parameters using a sparse geometric solver is a more challenging task, and has not yet been investigated. In this paper, we propose several solvers to estimate both rotational and translational velocities within a unified framework. Our method leverages event manifolds induced by line segments. The problem formulations are based on either an incidence relation for lines or a novel coplanarity relation for normal vectors. We demonstrate the possibility of recovering full-DoF egomotion parameters for both angular and linear velocities without requiring extra sensor measurements or motion priors. To achieve efficient optimization, we exploit the Adam framework with a first-order approximation of rotations for quick initialization. Experiments on both synthetic and real-world data demonstrate the effectiveness of our method. The code is available at https://github.com/jizhaox/relpose-event.
comment: Accepted by IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2025
☆ Label-Efficient LiDAR Semantic Segmentation with 2D-3D Vision Transformer Adapters
LiDAR semantic segmentation models are typically trained from random initialization as universal pre-training is hindered by the lack of large, diverse datasets. Moreover, most point cloud segmentation architectures incorporate custom network layers, limiting the transferability of advances from vision-based architectures. Inspired by recent advances in universal foundation models, we propose BALViT, a novel approach that leverages frozen vision models as amodal feature encoders for learning strong LiDAR encoders. Specifically, BALViT incorporates both range-view and bird's-eye-view LiDAR encoding mechanisms, which we combine through a novel 2D-3D adapter. While the range-view features are processed through a frozen image backbone, our bird's-eye-view branch enhances them through multiple cross-attention interactions. Thereby, we continuously improve the vision network with domain-dependent knowledge, resulting in a strong label-efficient LiDAR encoding mechanism. Extensive evaluations of BALViT on the SemanticKITTI and nuScenes benchmarks demonstrate that it outperforms state-of-the-art methods on small data regimes. We make the code and models publicly available at: http://balvit.cs.uni-freiburg.de.
☆ Interactive Segmentation and Report Generation for CT Images
Automated CT report generation plays a crucial role in improving diagnostic accuracy and clinical workflow efficiency. However, existing methods lack interpretability and impede patient-clinician understanding, while their static nature restricts radiologists from dynamically adjusting assessments during image review. Inspired by interactive segmentation techniques, we propose a novel interactive framework for 3D lesion morphology reporting that seamlessly generates segmentation masks with comprehensive attribute descriptions, enabling clinicians to generate detailed lesion profiles for enhanced diagnostic assessment. To our best knowledge, we are the first to integrate the interactive segmentation and structured reports in 3D CT medical images. Experimental results across 15 lesion types demonstrate the effectiveness of our approach in providing a more comprehensive and reliable reporting system for lesion segmentation and capturing. The source code will be made publicly available following paper acceptance.
☆ Deep Understanding of Sign Language for Sign to Subtitle Alignment
The objective of this work is to align asynchronous subtitles in sign language videos with limited labelled data. To achieve this goal, we propose a novel framework with the following contributions: (1) we leverage fundamental grammatical rules of British Sign Language (BSL) to pre-process the input subtitles, (2) we design a selective alignment loss to optimise the model for predicting the temporal location of signs only when the queried sign actually occurs in a scene, and (3) we conduct self-training with refined pseudo-labels which are more accurate than the heuristic audio-aligned labels. From this, our model not only better understands the correlation between the text and the signs, but also holds potential for application in the translation of sign languages, particularly in scenarios where manual labelling of large-scale sign data is impractical or challenging. Extensive experimental results demonstrate that our approach achieves state-of-the-art results, surpassing previous baselines by substantial margins in terms of both frame-level accuracy and F1-score. This highlights the effectiveness and practicality of our framework in advancing the field of sign language video alignment and translation.
☆ Enhancing Visual Forced Alignment with Local Context-Aware Feature Extraction and Multi-Task Learning ICASSP2025
This paper introduces a novel approach to Visual Forced Alignment (VFA), aiming to accurately synchronize utterances with corresponding lip movements, without relying on audio cues. We propose a novel VFA approach that integrates a local context-aware feature extractor and employs multi-task learning to refine both global and local context features, enhancing sensitivity to subtle lip movements for precise word-level and phoneme-level alignment. Incorporating the improved Viterbi algorithm for post-processing, our method significantly reduces misalignments. Experimental results show our approach outperforms existing methods, achieving a 6% accuracy improvement at the word-level and 27% improvement at the phoneme-level in LRS2 dataset. These improvements offer new potential for applications in automatically subtitling TV shows or user-generated content platforms like TikTok and YouTube Shorts.
comment: Accepted by ICASSP2025
☆ Gaussian highpass guided image filtering
Guided image filtering (GIF) is a popular smoothing technique, in which an additional image is used as a structure guidance for noise removal with edge preservation. The original GIF and some of its subsequent improvements are derived from a two-parameter local affine model (LAM), where the filtering output is a local affine transformation of the guidance image, but the input image is not taken into account in the LAM formulation. In this paper, we first introduce a single-parameter Prior Model based on Gaussian (highpass/lowpass) Filtering (PM-GF), in which the filtering output is the sum of a weighted portion of Gaussian highpass filtering of the guidance image and Gaussian smoothing of the input image. In the PM-GF, the guidance structure determined by Gaussian highpass filtering is obviously transferred to the filtering output, thereby better revealing the structure transfer mechanism of guided filtering. Then we propose several Gaussian highpass GIFs (GH-GIFs) based on the PM-GF by emulating the original GIF and some improvements, i.e., using PM-GF instead of LAM in these GIFs. Experimental results illustrate that the proposed GIFs outperform their counterparts in several image processing applications.
☆ BEVMOSNet: Multimodal Fusion for BEV Moving Object Segmentation
Accurate motion understanding of the dynamic objects within the scene in bird's-eye-view (BEV) is critical to ensure a reliable obstacle avoidance system and smooth path planning for autonomous vehicles. However, this task has received relatively limited exploration when compared to object detection and segmentation with only a few recent vision-based approaches presenting preliminary findings that significantly deteriorate in low-light, nighttime, and adverse weather conditions such as rain. Conversely, LiDAR and radar sensors remain almost unaffected in these scenarios, and radar provides key velocity information of the objects. Therefore, we introduce BEVMOSNet, to our knowledge, the first end-to-end multimodal fusion leveraging cameras, LiDAR, and radar to precisely predict the moving objects in BEV. In addition, we perform a deeper analysis to find out the optimal strategy for deformable cross-attention-guided sensor fusion for cross-sensor knowledge sharing in BEV. While evaluating BEVMOSNet on the nuScenes dataset, we show an overall improvement in IoU score of 36.59% compared to the vision-based unimodal baseline BEV-MoSeg (Sigatapu et al., 2023), and 2.35% compared to the multimodel SimpleBEV (Harley et al., 2022), extended for the motion segmentation task, establishing this method as the state-of-the-art in BEV motion segmentation.
comment: In Proceedings of the 20th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (2025)
☆ Enhancing Abnormality Grounding for Vision Language Models with Knowledge Descriptions
Visual Language Models (VLMs) have demonstrated impressive capabilities in visual grounding tasks. However, their effectiveness in the medical domain, particularly for abnormality detection and localization within medical images, remains underexplored. A major challenge is the complex and abstract nature of medical terminology, which makes it difficult to directly associate pathological anomaly terms with their corresponding visual features. In this work, we introduce a novel approach to enhance VLM performance in medical abnormality detection and localization by leveraging decomposed medical knowledge. Instead of directly prompting models to recognize specific abnormalities, we focus on breaking down medical concepts into fundamental attributes and common visual patterns. This strategy promotes a stronger alignment between textual descriptions and visual features, improving both the recognition and localization of abnormalities in medical images.We evaluate our method on the 0.23B Florence-2 base model and demonstrate that it achieves comparable performance in abnormality grounding to significantly larger 7B LLaVA-based medical VLMs, despite being trained on only 1.5% of the data used for such models. Experimental results also demonstrate the effectiveness of our approach in both known and previously unseen abnormalities, suggesting its strong generalization capabilities.
comment: 11 pages, 3 figures
☆ Reduced Spatial Dependency for More General Video-level Deepfake Detection ICASSP 2025
As one of the prominent AI-generated content, Deepfake has raised significant safety concerns. Although it has been demonstrated that temporal consistency cues offer better generalization capability, existing methods based on CNNs inevitably introduce spatial bias, which hinders the extraction of intrinsic temporal features. To address this issue, we propose a novel method called Spatial Dependency Reduction (SDR), which integrates common temporal consistency features from multiple spatially-perturbed clusters, to reduce the dependency of the model on spatial information. Specifically, we design multiple Spatial Perturbation Branch (SPB) to construct spatially-perturbed feature clusters. Subsequently, we utilize the theory of mutual information and propose a Task-Relevant Feature Integration (TRFI) module to capture temporal features residing in similar latent space from these clusters. Finally, the integrated feature is fed into a temporal transformer to capture long-range dependencies. Extensive benchmarks and ablation studies demonstrate the effectiveness and rationale of our approach.
comment: 5 pages, 2 figures. Accepted to ICASSP 2025
☆ Trajectory Prediction for Autonomous Driving: Progress, Limitations, and Future Directions
As the potential for autonomous vehicles to be integrated on a large scale into modern traffic systems continues to grow, ensuring safe navigation in dynamic environments is crucial for smooth integration. To guarantee safety and prevent collisions, autonomous vehicles must be capable of accurately predicting the trajectories of surrounding traffic agents. Over the past decade, significant efforts from both academia and industry have been dedicated to designing solutions for precise trajectory forecasting. These efforts have produced a diverse range of approaches, raising questions about the differences between these methods and whether trajectory prediction challenges have been fully addressed. This paper reviews a substantial portion of recent trajectory prediction methods and devises a taxonomy to classify existing solutions. A general overview of the prediction pipeline is also provided, covering input and output modalities, modeling features, and prediction paradigms discussed in the literature. In addition, the paper discusses active research areas within trajectory prediction, addresses the posed research questions, and highlights the remaining research gaps and challenges.
☆ BANet: Bilateral Aggregation Network for Mobile Stereo Matching
State-of-the-art stereo matching methods typically use costly 3D convolutions to aggregate a full cost volume, but their computational demands make mobile deployment challenging. Directly applying 2D convolutions for cost aggregation often results in edge blurring, detail loss, and mismatches in textureless regions. Some complex operations, like deformable convolutions and iterative warping, can partially alleviate this issue; however, they are not mobile-friendly, limiting their deployment on mobile devices. In this paper, we present a novel bilateral aggregation network (BANet) for mobile stereo matching that produces high-quality results with sharp edges and fine details using only 2D convolutions. Specifically, we first separate the full cost volume into detailed and smooth volumes using a spatial attention map, then perform detailed and smooth aggregations accordingly, ultimately fusing both to obtain the final disparity map. Additionally, to accurately identify high-frequency detailed regions and low-frequency smooth/textureless regions, we propose a new scale-aware spatial attention module. Experimental results demonstrate that our BANet-2D significantly outperforms other mobile-friendly methods, achieving 35.3\% higher accuracy on the KITTI 2015 leaderboard than MobileStereoNet-2D, with faster runtime on mobile devices. The extended 3D version, BANet-3D, achieves the highest accuracy among all real-time methods on high-end GPUs. Code: \textcolor{magenta}{https://github.com/gangweiX/BANet}.
comment: 12 pages
☆ BAT: Learning Event-based Optical Flow with Bidirectional Adaptive Temporal Correlation
Event cameras deliver visual information characterized by a high dynamic range and high temporal resolution, offering significant advantages in estimating optical flow for complex lighting conditions and fast-moving objects. Current advanced optical flow methods for event cameras largely adopt established image-based frameworks. However, the spatial sparsity of event data limits their performance. In this paper, we present BAT, an innovative framework that estimates event-based optical flow using bidirectional adaptive temporal correlation. BAT includes three novel designs: 1) a bidirectional temporal correlation that transforms bidirectional temporally dense motion cues into spatially dense ones, enabling accurate and spatially dense optical flow estimation; 2) an adaptive temporal sampling strategy for maintaining temporal consistency in correlation; 3) spatially adaptive temporal motion aggregation to efficiently and adaptively aggregate consistent target motion features into adjacent motion features while suppressing inconsistent ones. Our results rank $1^{st}$ on the DSEC-Flow benchmark, outperforming existing state-of-the-art methods by a large margin while also exhibiting sharp edges and high-quality details. Notably, our BAT can accurately predict future optical flow using only past events, significantly outperforming E-RAFT's warm-start approach. Code: \textcolor{magenta}{https://github.com/gangweiX/BAT}.
comment: 10 pages
☆ Computational Analysis of Degradation Modeling in Blind Panoramic Image Quality Assessment
Blind panoramic image quality assessment (BPIQA) has recently brought new challenge to the visual quality community, due to the complex interaction between immersive content and human behavior. Although many efforts have been made to advance BPIQA from both conducting psychophysical experiments and designing performance-driven objective algorithms, \textit{limited content} and \textit{few samples} in those closed sets inevitably would result in shaky conclusions, thereby hindering the development of BPIQA, we refer to it as the \textit{easy-database} issue. In this paper, we present a sufficient computational analysis of degradation modeling in BPIQA to thoroughly explore the \textit{easy-database issue}, where we carefully design three types of experiments via investigating the gap between BPIQA and blind image quality assessment (BIQA), the necessity of specific design in BPIQA models, and the generalization ability of BPIQA models. From extensive experiments, we find that easy databases narrow the gap between the performance of BPIQA and BIQA models, which is unconducive to the development of BPIQA. And the easy databases make the BPIQA models be closed to saturation, therefore the effectiveness of the associated specific designs can not be well verified. Besides, the BPIQA models trained on our recently proposed databases with complicated degradation show better generalization ability. Thus, we believe that much more efforts are highly desired to put into BPIQA from both subjective viewpoint and objective viewpoint.
☆ Two-Stream Thermal Imaging Fusion for Enhanced Time of Birth Detection in Neonatal Care
Around 10% of newborns require some help to initiate breathing, and 5\% need ventilation assistance. Accurate Time of Birth (ToB) documentation is essential for optimizing neonatal care, as timely interventions are vital for proper resuscitation. However, current clinical methods for recording ToB often rely on manual processes, which can be prone to inaccuracies. In this study, we present a novel two-stream fusion system that combines the power of image and video analysis to accurately detect the ToB from thermal recordings in the delivery room and operating theater. By integrating static and dynamic streams, our approach captures richer birth-related spatiotemporal features, leading to more robust and precise ToB estimation. We demonstrate that this synergy between data modalities enhances performance over single-stream approaches. Our system achieves 95.7% precision and 84.8% recall in detecting birth within short video clips. Additionally, with the help of a score aggregation module, it successfully identifies ToB in 100% of test cases, with a median absolute error of 2 seconds and an absolute mean deviation of 4.5 seconds compared to manual annotations.
comment: Submitted to IEEE 25th International Conference on Digital Signal Processing
☆ GenColor: Generative Color-Concept Association in Visual Design
Existing approaches for color-concept association typically rely on query-based image referencing, and color extraction from image references. However, these approaches are effective only for common concepts, and are vulnerable to unstable image referencing and varying image conditions. Our formative study with designers underscores the need for primary-accent color compositions and context-dependent colors (e.g., 'clear' vs. 'polluted' sky) in design. In response, we introduce a generative approach for mining semantically resonant colors leveraging images generated by text-to-image models. Our insight is that contemporary text-to-image models can resemble visual patterns from large-scale real-world data. The framework comprises three stages: concept instancing produces generative samples using diffusion models, text-guided image segmentation identifies concept-relevant regions within the image, and color association extracts primarily accompanied by accent colors. Quantitative comparisons with expert designs validate our approach's effectiveness, and we demonstrate the applicability through cases in various design scenarios and a gallery.
comment: 19 pages, 16 figures. Accepted at CHI Conference on Human Factors in Computing Systems (CHI'25), April 26-May 1, 2025, Yokohama, Japan
☆ Path-Adaptive Matting for Efficient Inference Under Various Computational Cost Constraints AAAI 2025
In this paper, we explore a novel image matting task aimed at achieving efficient inference under various computational cost constraints, specifically FLOP limitations, using a single matting network. Existing matting methods which have not explored scalable architectures or path-learning strategies, fail to tackle this challenge. To overcome these limitations, we introduce Path-Adaptive Matting (PAM), a framework that dynamically adjusts network paths based on image contexts and computational cost constraints. We formulate the training of the computational cost-constrained matting network as a bilevel optimization problem, jointly optimizing the matting network and the path estimator. Building on this formalization, we design a path-adaptive matting architecture by incorporating path selection layers and learnable connect layers to estimate optimal paths and perform efficient inference within a unified network. Furthermore, we propose a performance-aware path-learning strategy to generate path labels online by evaluating a few paths sampled from the prior distribution of optimal paths and network estimations, enabling robust and efficient online path learning. Experiments on five image matting datasets demonstrate that the proposed PAM framework achieves competitive performance across a range of computational cost constraints.
comment: Accepted to AAAI 2025
☆ Rice Grain Size Measurement using Image Processing
The rice grain quality can be determined from its size and chalkiness. The traditional approach to measure the rice grain size involves manual inspection, which is inefficient and leads to inconsistent results. To address this issue, an image processing based approach is proposed and developed in this research. The approach takes image of rice grains as input and outputs the number of rice grains and size of each rice grain. The different steps, such as extraction of region of interest, segmentation of rice grains, and sub-contours removal, involved in the proposed approach are discussed. The approach was tested on rice grain images captured from different height using mobile phone camera. The obtained results show that the proposed approach successfully detected 95\% of the rice grains and achieved 90\% accuracy for length and width measurement.
☆ An Analytical Theory of Power Law Spectral Bias in the Learning Dynamics of Diffusion Models
We developed an analytical framework for understanding how the learned distribution evolves during diffusion model training. Leveraging the Gaussian equivalence principle, we derived exact solutions for the gradient-flow dynamics of weights in one- or two-layer linear denoiser settings with arbitrary data. Remarkably, these solutions allowed us to derive the generated distribution in closed form and its KL divergence through training. These analytical results expose a pronounced power-law spectral bias, i.e., for weights and distributions, the convergence time of a mode follows an inverse power law of its variance. Empirical experiments on both Gaussian and image datasets demonstrate that the power-law spectral bias remains robust even when using deeper or convolutional architectures. Our results underscore the importance of the data covariance in dictating the order and rate at which diffusion models learn different modes of the data, providing potential explanations for why earlier stopping could lead to incorrect details in image generative models.
comment: 50 pages, 10 figures. Preprint
☆ Find Matching Faces Based On Face Parameters
This paper presents an innovative approach that enables the user to find matching faces based on the user-selected face parameters. Through gradio-based user interface, the users can interactively select the face parameters they want in their desired partner. These user-selected face parameters are transformed into a text prompt which is used by the Text-To-Image generation model to generate a realistic face image. Further, the generated image along with the images downloaded from the Jeevansathi.com are processed through face detection and feature extraction model, which results in high dimensional vector embedding of 512 dimensions. The vector embeddings generated from the downloaded images are stored into vector database. Now, the similarity search is carried out between the vector embedding of generated image and the stored vector embeddings. As a result, it displays the top five similar faces based on the user-selected face parameters. This contribution holds a significant potential to turn into a high-quality personalized face matching tool.
☆ Variance-Aware Loss Scheduling for Multimodal Alignment in Low-Data Settings
Training vision-language models for image-text alignment typically requires large datasets to achieve robust performance. In low-data scenarios, standard contrastive learning can struggle to align modalities effectively due to overfitting and unstable training dynamics. In this paper, we propose a variance-aware loss scheduling approach that dynamically adjusts the weighting of the contrastive loss based on the statistical variability (uncertainty) in the model's alignment predictions. Using a subset of the Flickr8k image-caption dataset to simulate limited data conditions, we demonstrate that our approach improves image-text retrieval accuracy compared to a fixed-weight baseline. We also compare against other adaptive weighting strategies (using output entropy and cosine similarity spread) and find that variance-aware scheduling provides the best overall trade-off. Qualitatively, our method yields more distinct multimodal embeddings as shown by t-SNE visualizations. Moreover, in a stress test with noise-injected captions and images, the variance-guided loss proves more robust, maintaining higher recall when random perturbations are introduced. These results highlight the benefit of adaptive loss weighting for multimodal alignment in low-data regimes.
comment: 8 pages, 4 figures
☆ Transformer-Based Spatio-Temporal Association of Apple Fruitlets
In this paper, we present a transformer-based method to spatio-temporally associate apple fruitlets in stereo-images collected on different days and from different camera poses. State-of-the-art association methods in agriculture are dedicated towards matching larger crops using either high-resolution point clouds or temporally stable features, which are both difficult to obtain for smaller fruit in the field. To address these challenges, we propose a transformer-based architecture that encodes the shape and position of each fruitlet, and propagates and refines these features through a series of transformer encoder layers with alternating self and cross-attention. We demonstrate that our method is able to achieve an F1-score of 92.4% on data collected in a commercial apple orchard and outperforms all baselines and ablations.
☆ SpiritSight Agent: Advanced GUI Agent with One Look CVPR 2025
Graphical User Interface (GUI) agents show amazing abilities in assisting human-computer interaction, automating human user's navigation on digital devices. An ideal GUI agent is expected to achieve high accuracy, low latency, and compatibility for different GUI platforms. Recent vision-based approaches have shown promise by leveraging advanced Vision Language Models (VLMs). While they generally meet the requirements of compatibility and low latency, these vision-based GUI agents tend to have low accuracy due to their limitations in element grounding. To address this issue, we propose $\textbf{SpiritSight}$, a vision-based, end-to-end GUI agent that excels in GUI navigation tasks across various GUI platforms. First, we create a multi-level, large-scale, high-quality GUI dataset called $\textbf{GUI-Lasagne}$ using scalable methods, empowering SpiritSight with robust GUI understanding and grounding capabilities. Second, we introduce the $\textbf{Universal Block Parsing (UBP)}$ method to resolve the ambiguity problem in dynamic high-resolution of visual inputs, further enhancing SpiritSight's ability to ground GUI objects. Through these efforts, SpiritSight agent outperforms other advanced methods on diverse GUI benchmarks, demonstrating its superior capability and compatibility in GUI navigation tasks. Models are available at $\href{https://huggingface.co/SenseLLM/SpiritSight-Agent-8B}{this\ URL}$.
comment: Paper accepted to CVPR 2025
☆ Partial Convolution Meets Visual Attention
Designing an efficient and effective neural network has remained a prominent topic in computer vision research. Depthwise onvolution (DWConv) is widely used in efficient CNNs or ViTs, but it needs frequent memory access during inference, which leads to low throughput. FasterNet attempts to introduce partial convolution (PConv) as an alternative to DWConv but compromises the accuracy due to underutilized channels. To remedy this shortcoming and consider the redundancy between feature map channels, we introduce a novel Partial visual ATtention mechanism (PAT) that can efficiently combine PConv with visual attention. Our exploration indicates that the partial attention mechanism can completely replace the full attention mechanism and reduce model parameters and FLOPs. Our PAT can derive three types of blocks: Partial Channel-Attention block (PAT_ch), Partial Spatial-Attention block (PAT_sp) and Partial Self-Attention block (PAT_sf). First, PAT_ch integrates the enhanced Gaussian channel attention mechanism to infuse global distribution information into the untouched channels of PConv. Second, we introduce the spatial-wise attention to the MLP layer to further improve model accuracy. Finally, we replace PAT_ch in the last stage with the self-attention mechanism to extend the global receptive field. Building upon PAT, we propose a novel hybrid network family, named PATNet, which achieves superior top-1 accuracy and inference speed compared to FasterNet on ImageNet-1K classification and excel in both detection and segmentation on the COCO dataset. Particularly, our PATNet-T2 achieves 1.3% higher accuracy than FasterNet-T2, while exhibiting 25% higher GPU throughput and 24% lower CPU latency.
comment: arXiv admin note: substantial text overlap with arXiv:2502.01303
☆ Temporal Separation with Entropy Regularization for Knowledge Distillation in Spiking Neural Networks CVPR 2025
Spiking Neural Networks (SNNs), inspired by the human brain, offer significant computational efficiency through discrete spike-based information transfer. Despite their potential to reduce inference energy consumption, a performance gap persists between SNNs and Artificial Neural Networks (ANNs), primarily due to current training methods and inherent model limitations. While recent research has aimed to enhance SNN learning by employing knowledge distillation (KD) from ANN teacher networks, traditional distillation techniques often overlook the distinctive spatiotemporal properties of SNNs, thus failing to fully leverage their advantages. To overcome these challenge, we propose a novel logit distillation method characterized by temporal separation and entropy regularization. This approach improves existing SNN distillation techniques by performing distillation learning on logits across different time steps, rather than merely on aggregated output features. Furthermore, the integration of entropy regularization stabilizes model optimization and further boosts the performance. Extensive experimental results indicate that our method surpasses prior SNN distillation strategies, whether based on logit distillation, feature distillation, or a combination of both. The code will be available on GitHub.
comment: Accepted by CVPR 2025
☆ Implicit U-KAN2.0: Dynamic, Efficient and Interpretable Medical Image Segmentation
Image segmentation is a fundamental task in both image analysis and medical applications. State-of-the-art methods predominantly rely on encoder-decoder architectures with a U-shaped design, commonly referred to as U-Net. Recent advancements integrating transformers and MLPs improve performance but still face key limitations, such as poor interpretability, difficulty handling intrinsic noise, and constrained expressiveness due to discrete layer structures, often lacking a solid theoretical foundation.In this work, we introduce Implicit U-KAN 2.0, a novel U-Net variant that adopts a two-phase encoder-decoder structure. In the SONO phase, we use a second-order neural ordinary differential equation (NODEs), called the SONO block, for a more efficient, expressive, and theoretically grounded modeling approach. In the SONO-MultiKAN phase, we integrate the second-order NODEs and MultiKAN layer as the core computational block to enhance interpretability and representation power. Our contributions are threefold. First, U-KAN 2.0 is an implicit deep neural network incorporating MultiKAN and second order NODEs, improving interpretability and performance while reducing computational costs. Second, we provide a theoretical analysis demonstrating that the approximation ability of the MultiKAN block is independent of the input dimension. Third, we conduct extensive experiments on a variety of 2D and a single 3D dataset, demonstrating that our model consistently outperforms existing segmentation networks.
Dynamic Neural Surfaces for Elastic 4D Shape Representation and Analysis
We propose a novel framework for the statistical analysis of genus-zero 4D surfaces, i.e., 3D surfaces that deform and evolve over time. This problem is particularly challenging due to the arbitrary parameterizations of these surfaces and their varying deformation speeds, necessitating effective spatiotemporal registration. Traditionally, 4D surfaces are discretized, in space and time, before computing their spatiotemporal registrations, geodesics, and statistics. However, this approach may result in suboptimal solutions and, as we demonstrate in this paper, is not necessary. In contrast, we treat 4D surfaces as continuous functions in both space and time. We introduce Dynamic Spherical Neural Surfaces (D-SNS), an efficient smooth and continuous spatiotemporal representation for genus-0 4D surfaces. We then demonstrate how to perform core 4D shape analysis tasks such as spatiotemporal registration, geodesics computation, and mean 4D shape estimation, directly on these continuous representations without upfront discretization and meshing. By integrating neural representations with classical Riemannian geometry and statistical shape analysis techniques, we provide the building blocks for enabling full functional shape analysis. We demonstrate the efficiency of the framework on 4D human and face datasets. The source code and additional results are available at https://4d-dsns.github.io/DSNS/.
comment: 22 pages, 23 figures, conference paper
☆ NTR-Gaussian: Nighttime Dynamic Thermal Reconstruction with 4D Gaussian Splatting Based on Thermodynamics
Thermal infrared imaging offers the advantage of all-weather capability, enabling non-intrusive measurement of an object's surface temperature. Consequently, thermal infrared images are employed to reconstruct 3D models that accurately reflect the temperature distribution of a scene, aiding in applications such as building monitoring and energy management. However, existing approaches predominantly focus on static 3D reconstruction for a single time period, overlooking the impact of environmental factors on thermal radiation and failing to predict or analyze temperature variations over time. To address these challenges, we propose the NTR-Gaussian method, which treats temperature as a form of thermal radiation, incorporating elements like convective heat transfer and radiative heat dissipation. Our approach utilizes neural networks to predict thermodynamic parameters such as emissivity, convective heat transfer coefficient, and heat capacity. By integrating these predictions, we can accurately forecast thermal temperatures at various times throughout a nighttime scene. Furthermore, we introduce a dynamic dataset specifically for nighttime thermal imagery. Extensive experiments and evaluations demonstrate that NTR-Gaussian significantly outperforms comparison methods in thermal reconstruction, achieving a predicted temperature error within 1 degree Celsius.
comment: IEEE Conference on Computer Vision and Pattern Recognition 2025
☆ An Improved Pure Fully Connected Neural Network for Rice Grain Classification
Rice is a staple food for a significant portion of the world's population, providing essential nutrients and serving as a versatile in-gredient in a wide range of culinary traditions. Recently, the use of deep learning has enabled automated classification of rice, im-proving accuracy and efficiency. However, classical models based on first-stage training may face difficulties in distinguishing between rice varieties with similar external characteristics, thus leading to misclassifications. Considering the transparency and feasibility of model, we selected and gradually improved pure fully connected neural network to achieve classification of rice grain. The dataset we used contains both global and domestic rice images obtained from websites and laboratories respectively. First, the training mode was changed from one-stage training to two-stage training, which significantly contributes to distinguishing two similar types of rice. Secondly, the preprocessing method was changed from random tilting to horizontal or vertical position cor-rection. After those two enhancements, the accuracy of our model increased notably from 97% to 99%. In summary, two subtle methods proposed in this study can remarkably enhance the classification ability of deep learning models in terms of the classification of rice grain.
☆ WarmFed: Federated Learning with Warm-Start for Globalization and Personalization Via Personalized Diffusion Models
Federated Learning (FL) stands as a prominent distributed learning paradigm among multiple clients to achieve a unified global model without privacy leakage. In contrast to FL, Personalized federated learning aims at serving for each client in achieving persoanlized model. However, previous FL frameworks have grappled with a dilemma: the choice between developing a singular global model at the server to bolster globalization or nurturing personalized model at the client to accommodate personalization. Instead of making trade-offs, this paper commences its discourse from the pre-trained initialization, obtaining resilient global information and facilitating the development of both global and personalized models. Specifically, we propose a novel method called WarmFed to achieve this. WarmFed customizes Warm-start through personalized diffusion models, which are generated by local efficient fine-tunining (LoRA). Building upon the Warm-Start, we advance a server-side fine-tuning strategy to derive the global model, and propose a dynamic self-distillation (DSD) to procure more resilient personalized models simultaneously. Comprehensive experiments underscore the substantial gains of our approach across both global and personalized models, achieved within just one-shot and five communication(s).
☆ RVAFM: Re-parameterizing Vertical Attention Fusion Module for Handwritten Paragraph Text Recognition
Handwritten Paragraph Text Recognition (HPTR) is a challenging task in Computer Vision, requiring the transformation of a paragraph text image, rich in handwritten text, into text encoding sequences. One of the most advanced models for this task is Vertical Attention Network (VAN), which utilizes a Vertical Attention Module (VAM) to implicitly segment paragraph text images into text lines, thereby reducing the difficulty of the recognition task. However, from a network structure perspective, VAM is a single-branch module, which is less effective in learning compared to multi-branch modules. In this paper, we propose a new module, named Re-parameterizing Vertical Attention Fusion Module (RVAFM), which incorporates structural re-parameterization techniques. RVAFM decouples the structure of the module during training and inference stages. During training, it uses a multi-branch structure for more effective learning, and during inference, it uses a single-branch structure for faster processing. The features learned by the multi-branch structure are fused into the single-branch structure through a special fusion method named Re-parameterization Fusion (RF) without any loss of information. As a result, we achieve a Character Error Rate (CER) of 4.44% and a Word Error Rate (WER) of 14.37% on the IAM paragraph-level test set. Additionally, the inference speed is slightly faster than VAN.
☆ AHCPTQ: Accurate and Hardware-Compatible Post-Training Quantization for Segment Anything Model
The Segment Anything Model (SAM) has demonstrated strong versatility across various visual tasks. However, its large storage requirements and high computational cost pose challenges for practical deployment. Post-training quantization (PTQ) has emerged as an effective strategy for efficient deployment, but we identify two key challenges in SAM that hinder the effectiveness of existing PTQ methods: the heavy-tailed and skewed distribution of post-GELU activations, and significant inter-channel variation in linear projection activations. To address these challenges, we propose AHCPTQ, an accurate and hardware-efficient PTQ method for SAM. AHCPTQ introduces hardware-compatible Hybrid Log-Uniform Quantization (HLUQ) to manage post-GELU activations, employing log2 quantization for dense small values and uniform quantization for sparse large values to enhance quantization resolution. Additionally, AHCPTQ incorporates Channel-Aware Grouping (CAG) to mitigate inter-channel variation by progressively clustering activation channels with similar distributions, enabling them to share quantization parameters and improving hardware efficiency. The combination of HLUQ and CAG not only enhances quantization effectiveness but also ensures compatibility with efficient hardware execution. For instance, under the W4A4 configuration on the SAM-L model, AHCPTQ achieves 36.6% mAP on instance segmentation with the DINO detector, while achieving a 7.89x speedup and 8.64x energy efficiency over its floating-point counterpart in FPGA implementation.
☆ BEVDriver: Leveraging BEV Maps in LLMs for Robust Closed-Loop Driving
Autonomous driving has the potential to set the stage for more efficient future mobility, requiring the research domain to establish trust through safe, reliable and transparent driving. Large Language Models (LLMs) possess reasoning capabilities and natural language understanding, presenting the potential to serve as generalized decision-makers for ego-motion planning that can interact with humans and navigate environments designed for human drivers. While this research avenue is promising, current autonomous driving approaches are challenged by combining 3D spatial grounding and the reasoning and language capabilities of LLMs. We introduce BEVDriver, an LLM-based model for end-to-end closed-loop driving in CARLA that utilizes latent BEV features as perception input. BEVDriver includes a BEV encoder to efficiently process multi-view images and 3D LiDAR point clouds. Within a common latent space, the BEV features are propagated through a Q-Former to align with natural language instructions and passed to the LLM that predicts and plans precise future trajectories while considering navigation instructions and critical scenarios. On the LangAuto benchmark, our model reaches up to 18.9% higher performance on the Driving Score compared to SoTA methods.
comment: This work has been submitted to the IEEE for possible publication
☆ Multi-View Depth Consistent Image Generation Using Generative AI Models: Application on Architectural Design of University Buildings
In the early stages of architectural design, shoebox models are typically used as a simplified representation of building structures but require extensive operations to transform them into detailed designs. Generative artificial intelligence (AI) provides a promising solution to automate this transformation, but ensuring multi-view consistency remains a significant challenge. To solve this issue, we propose a novel three-stage consistent image generation framework using generative AI models to generate architectural designs from shoebox model representations. The proposed method enhances state-of-the-art image generation diffusion models to generate multi-view consistent architectural images. We employ ControlNet as the backbone and optimize it to accommodate multi-view inputs of architectural shoebox models captured from predefined perspectives. To ensure stylistic and structural consistency across multi-view images, we propose an image space loss module that incorporates style loss, structural loss and angle alignment loss. We then use depth estimation method to extract depth maps from the generated multi-view images. Finally, we use the paired data of the architectural images and depth maps as inputs to improve the multi-view consistency via the depth-aware 3D attention module. Experimental results demonstrate that the proposed framework can generate multi-view architectural images with consistent style and structural coherence from shoebox model inputs.
comment: 10 pages, 7 figures, in Proceedings of CAADRIA2025
♻ ☆ ArcPro: Architectural Programs for Structured 3D Abstraction of Sparse Points CVPR 2025
We introduce ArcPro, a novel learning framework built on architectural programs to recover structured 3D abstractions from highly sparse and low-quality point clouds. Specifically, we design a domain-specific language (DSL) to hierarchically represent building structures as a program, which can be efficiently converted into a mesh. We bridge feedforward and inverse procedural modeling by using a feedforward process for training data synthesis, allowing the network to make reverse predictions. We train an encoder-decoder on the points-program pairs to establish a mapping from unstructured point clouds to architectural programs, where a 3D convolutional encoder extracts point cloud features and a transformer decoder autoregressively predicts the programs in a tokenized form. Inference by our method is highly efficient and produces plausible and faithful 3D abstractions. Comprehensive experiments demonstrate that ArcPro outperforms both traditional architectural proxy reconstruction and learning-based abstraction methods. We further explore its potential to work with multi-view image and natural language inputs.
comment: CVPR 2025 (Patent Protected); Project page: https://vcc.tech/research/2025/ArcPro
♻ ☆ Near-infrared Image Deblurring and Event Denoising with Synergistic Neuromorphic Imaging
The fields of imaging in the nighttime dynamic and other extremely dark conditions have seen impressive and transformative advancements in recent years, partly driven by the rise of novel sensing approaches, e.g., near-infrared (NIR) cameras with high sensitivity and event cameras with minimal blur. However, inappropriate exposure ratios of near-infrared cameras make them susceptible to distortion and blur. Event cameras are also highly sensitive to weak signals at night yet prone to interference, often generating substantial noise and significantly degrading observations and analysis. Herein, we develop a new framework for low-light imaging combined with NIR imaging and event-based techniques, named synergistic neuromorphic imaging, which can jointly achieve NIR image deblurring and event denoising. Harnessing cross-modal features of NIR images and visible events via spectral consistency and higher-order interaction, the NIR images and events are simultaneously fused, enhanced, and bootstrapped. Experiments on real and realistically simulated sequences demonstrate the effectiveness of our method and indicate better accuracy and robustness than other methods in practical scenarios. This study gives impetus to enhance both NIR images and events, which paves the way for high-fidelity low-light imaging and neuromorphic reasoning.
♻ ☆ STAA-SNN: Spatial-Temporal Attention Aggregator for Spiking Neural Networks CVPR 2025
Spiking Neural Networks (SNNs) have gained significant attention due to their biological plausibility and energy efficiency, making them promising alternatives to Artificial Neural Networks (ANNs). However, the performance gap between SNNs and ANNs remains a substantial challenge hindering the widespread adoption of SNNs. In this paper, we propose a Spatial-Temporal Attention Aggregator SNN (STAA-SNN) framework, which dynamically focuses on and captures both spatial and temporal dependencies. First, we introduce a spike-driven self-attention mechanism specifically designed for SNNs. Additionally, we pioneeringly incorporate position encoding to integrate latent temporal relationships into the incoming features. For spatial-temporal information aggregation, we employ step attention to selectively amplify relevant features at different steps. Finally, we implement a time-step random dropout strategy to avoid local optima. As a result, STAA-SNN effectively captures both spatial and temporal dependencies, enabling the model to analyze complex patterns and make accurate predictions. The framework demonstrates exceptional performance across diverse datasets and exhibits strong generalization capabilities. Notably, STAA-SNN achieves state-of-the-art results on neuromorphic datasets CIFAR10-DVS, with remarkable performances of 97.14%, 82.05% and 70.40% on the static datasets CIFAR-10, CIFAR-100 and ImageNet, respectively. Furthermore, our model exhibits improved performance ranging from 0.33\% to 2.80\% with fewer time steps. The code for the model is available on GitHub.
comment: Accepted by CVPR 2025
♻ ☆ CMMLoc: Advancing Text-to-PointCloud Localization with Cauchy-Mixture-Model Based Framework CVPR 2025
The goal of point cloud localization based on linguistic description is to identify a 3D position using textual description in large urban environments, which has potential applications in various fields, such as determining the location for vehicle pickup or goods delivery. Ideally, for a textual description and its corresponding 3D location, the objects around the 3D location should be fully described in the text description. However, in practical scenarios, e.g., vehicle pickup, passengers usually describe only the part of the most significant and nearby surroundings instead of the entire environment. In response to this $\textbf{partially relevant}$ challenge, we propose $\textbf{CMMLoc}$, an uncertainty-aware $\textbf{C}$auchy-$\textbf{M}$ixture-$\textbf{M}$odel ($\textbf{CMM}$) based framework for text-to-point-cloud $\textbf{Loc}$alization. To model the uncertain semantic relations between text and point cloud, we integrate CMM constraints as a prior during the interaction between the two modalities. We further design a spatial consolidation scheme to enable adaptive aggregation of different 3D objects with varying receptive fields. To achieve precise localization, we propose a cardinal direction integration module alongside a modality pre-alignment strategy, helping capture the spatial relationships among objects and bringing the 3D objects closer to the text modality. Comprehensive experiments validate that CMMLoc outperforms existing methods, achieving state-of-the-art results on the KITTI360Pose dataset. Codes are available in this GitHub repository https://github.com/kevin301342/CMMLoc.
comment: Accepted by CVPR 2025
♻ ☆ A Multi-Sensor Fusion Approach for Rapid Orthoimage Generation in Large-Scale UAV Mapping
Rapid generation of large-scale orthoimages from Unmanned Aerial Vehicles (UAVs) has been a long-standing focus of research in the field of aerial mapping. A multi-sensor UAV system, integrating the Global Positioning System (GPS), Inertial Measurement Unit (IMU), 4D millimeter-wave radar and camera, can provide an effective solution to this problem. In this paper, we utilize multi-sensor data to overcome the limitations of conventional orthoimage generation methods in terms of temporal performance, system robustness, and geographic reference accuracy. A prior-pose-optimized feature matching method is introduced to enhance matching speed and accuracy, reducing the number of required features and providing precise references for the Structure from Motion (SfM) process. The proposed method exhibits robustness in low-texture scenes like farmlands, where feature matching is difficult. Experiments show that our approach achieves accurate feature matching orthoimage generation in a short time. The proposed drone system effectively aids in farmland detection and management.
♻ ☆ BHViT: Binarized Hybrid Vision Transformer CVPR2025
Model binarization has made significant progress in enabling real-time and energy-efficient computation for convolutional neural networks (CNN), offering a potential solution to the deployment challenges faced by Vision Transformers (ViTs) on edge devices. However, due to the structural differences between CNN and Transformer architectures, simply applying binary CNN strategies to the ViT models will lead to a significant performance drop. To tackle this challenge, we propose BHViT, a binarization-friendly hybrid ViT architecture and its full binarization model with the guidance of three important observations. Initially, BHViT utilizes the local information interaction and hierarchical feature aggregation technique from coarse to fine levels to address redundant computations stemming from excessive tokens. Then, a novel module based on shift operations is proposed to enhance the performance of the binary Multilayer Perceptron (MLP) module without significantly increasing computational overhead. In addition, an innovative attention matrix binarization method based on quantization decomposition is proposed to evaluate the token's importance in the binarized attention matrix. Finally, we propose a regularization loss to address the inadequate optimization caused by the incompatibility between the weight oscillation in the binary layers and the Adam Optimizer. Extensive experimental results demonstrate that our proposed algorithm achieves SOTA performance among binary ViT methods.
comment: Accepted by CVPR2025
♻ ☆ Q-Eval-100K: Evaluating Visual Quality and Alignment Level for Text-to-Vision Content CVPR 2025
Evaluating text-to-vision content hinges on two crucial aspects: visual quality and alignment. While significant progress has been made in developing objective models to assess these dimensions, the performance of such models heavily relies on the scale and quality of human annotations. According to Scaling Law, increasing the number of human-labeled instances follows a predictable pattern that enhances the performance of evaluation models. Therefore, we introduce a comprehensive dataset designed to Evaluate Visual quality and Alignment Level for text-to-vision content (Q-EVAL-100K), featuring the largest collection of human-labeled Mean Opinion Scores (MOS) for the mentioned two aspects. The Q-EVAL-100K dataset encompasses both text-to-image and text-to-video models, with 960K human annotations specifically focused on visual quality and alignment for 100K instances (60K images and 40K videos). Leveraging this dataset with context prompt, we propose Q-Eval-Score, a unified model capable of evaluating both visual quality and alignment with special improvements for handling long-text prompt alignment. Experimental results indicate that the proposed Q-Eval-Score achieves superior performance on both visual quality and alignment, with strong generalization capabilities across other benchmarks. These findings highlight the significant value of the Q-EVAL-100K dataset. Data and codes will be available at https://github.com/zzc-1998/Q-Eval.
comment: Accepted to CVPR 2025
♻ ☆ Floorplan-SLAM: A Real-Time, High-Accuracy, and Long-Term Multi-Session Point-Plane SLAM for Efficient Floorplan Reconstruction
Floorplan reconstruction provides structural priors essential for reliable indoor robot navigation and high-level scene understanding. However, existing approaches either require time-consuming offline processing with a complete map, or rely on expensive sensors and substantial computational resources. To address the problems, we propose Floorplan-SLAM, which incorporates floorplan reconstruction tightly into a multi-session SLAM system by seamlessly interacting with plane extraction, pose estimation, and back-end optimization, achieving real-time, high-accuracy, and long-term floorplan reconstruction using only a stereo camera. Specifically, we present a robust plane extraction algorithm that operates in a compact plane parameter space and leverages spatially complementary features to accurately detect planar structures, even in weakly textured scenes. Furthermore, we propose a floorplan reconstruction module tightly coupled with the SLAM system, which uses continuously optimized plane landmarks and poses to formulate and solve a novel optimization problem, thereby enabling real-time incremental floorplan reconstruction. Note that by leveraging the map merging capability of multi-session SLAM, our method supports long-term floorplan reconstruction across multiple sessions without redundant data collection. Experiments on the VECtor and the self-collected datasets indicate that Floorplan-SLAM significantly outperforms state-of-the-art methods in terms of plane extraction robustness, pose estimation accuracy, and floorplan reconstruction fidelity and speed, achieving real-time performance at 25-45 FPS without GPU acceleration, which reduces the floorplan reconstruction time for a 1000 square meters scene from over 10 hours to just 9.44 minutes.
♻ ☆ KiVA: Kid-inspired Visual Analogies for Testing Large Multimodal Models
This paper investigates visual analogical reasoning in large multimodal models (LMMs) compared to human adults and children. A "visual analogy" is an abstract rule inferred from one image and applied to another. While benchmarks exist for testing visual reasoning in LMMs, they require advanced skills and omit basic visual analogies that even young children can make. Inspired by developmental psychology, we propose a new benchmark of 4,300 visual transformations of everyday objects to test LMMs on visual analogical reasoning and compare them to children (ages three to five) and to adults. We structure the evaluation into three stages: identifying what changed (e.g., color, number, etc.), how it changed (e.g., added one object), and applying the rule to new scenarios. Our findings show that while GPT-o1, GPT-4V, LLaVA-1.5, and MANTIS identify the "what" effectively, they struggle with quantifying the "how" and extrapolating this rule to new objects. In contrast, children and adults exhibit much stronger analogical reasoning at all three stages. Additionally, the strongest tested model, GPT-o1, performs better in tasks involving simple surface-level visual attributes like color and size, correlating with quicker human adult response times. Conversely, more complex tasks such as number, rotation, and reflection, which necessitate extensive cognitive processing and understanding of extrinsic spatial properties in the physical world, present more significant challenges. Altogether, these findings highlight the limitations of training models on data that primarily consists of 2D images and text.
comment: 10 pages. Project website: https://ey242.github.io/kiva.github.io/. Benchmark and code: https://github.com/ey242/KiVA
♻ ☆ NVILA: Efficient Frontier Visual Language Models
Visual language models (VLMs) have made significant advances in accuracy in recent years. However, their efficiency has received much less attention. This paper introduces NVILA, a family of open VLMs designed to optimize both efficiency and accuracy. Building on top of VILA, we improve its model architecture by first scaling up the spatial and temporal resolutions, and then compressing visual tokens. This "scale-then-compress" approach enables NVILA to efficiently process high-resolution images and long videos. We also conduct a systematic investigation to enhance the efficiency of NVILA throughout its entire lifecycle, from training and fine-tuning to deployment. NVILA matches or surpasses the accuracy of many leading open and proprietary VLMs across a wide range of image and video benchmarks. At the same time, it reduces training costs by 4.5X, fine-tuning memory usage by 3.4X, pre-filling latency by 1.6-2.2X, and decoding latency by 1.2-2.8X. We will soon make our code and models available to facilitate reproducibility.
♻ ☆ Fractal Calibration for long-tailed object detection CVPR2025
Real-world datasets follow an imbalanced distribution, which poses significant challenges in rare-category object detection. Recent studies tackle this problem by developing re-weighting and re-sampling methods, that utilise the class frequencies of the dataset. However, these techniques focus solely on the frequency statistics and ignore the distribution of the classes in image space, missing important information. In contrast to them, we propose FRActal CALibration (FRACAL): a novel post-calibration method for long-tailed object detection. FRACAL devises a logit adjustment method that utilises the fractal dimension to estimate how uniformly classes are distributed in image space. During inference, it uses the fractal dimension to inversely downweight the probabilities of uniformly spaced class predictions achieving balance in two axes: between frequent and rare categories, and between uniformly spaced and sparsely spaced classes. FRACAL is a post-processing method and it does not require any training, also it can be combined with many off-the-shelf models such as one-stage sigmoid detectors and two-stage instance segmentation models. FRACAL boosts the rare class performance by up to 8.6% and surpasses all previous methods on LVIS dataset, while showing good generalisation to other datasets such as COCO, V3Det and OpenImages. We provide the code at https://github.com/kostas1515/FRACAL.
comment: CVPR2025
♻ ☆ Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation
Many large-scale systems rely on high-quality deep representations (embeddings) to facilitate tasks like retrieval, search, and generative modeling. Matryoshka Representation Learning (MRL) recently emerged as a solution for adaptive embedding lengths, but it requires full model retraining and suffers from noticeable performance degradations at short lengths. In this paper, we show that sparse coding offers a compelling alternative for achieving adaptive representation with minimal overhead and higher fidelity. We propose Contrastive Sparse Representation (CSR), a method that sparsifies pre-trained embeddings into a high-dimensional but selectively activated feature space. By leveraging lightweight autoencoding and task-aware contrastive objectives, CSR preserves semantic quality while allowing flexible, cost-effective inference at different sparsity levels. Extensive experiments on image, text, and multimodal benchmarks demonstrate that CSR consistently outperforms MRL in terms of both accuracy and retrieval speed-often by large margins-while also cutting training time to a fraction of that required by MRL. Our results establish sparse coding as a powerful paradigm for adaptive representation learning in real-world applications where efficiency and fidelity are both paramount. Code is available at https://github.com/neilwen987/CSR_Adaptive_Rep
comment: A novel sparse coding framework designed for learning adaptive representation
♻ ☆ What to align in multimodal contrastive learning? ICLR 2025
Humans perceive the world through multisensory integration, blending the information of different modalities to adapt their behavior. Contrastive learning offers an appealing solution for multimodal self-supervised learning. Indeed, by considering each modality as a different view of the same entity, it learns to align features of different modalities in a shared representation space. However, this approach is intrinsically limited as it only learns shared or redundant information between modalities, while multimodal interactions can arise in other ways. In this work, we introduce CoMM, a Contrastive MultiModal learning strategy that enables the communication between modalities in a single multimodal space. Instead of imposing cross- or intra- modality constraints, we propose to align multimodal representations by maximizing the mutual information between augmented versions of these multimodal features. Our theoretical analysis shows that shared, synergistic and unique terms of information naturally emerge from this formulation, allowing us to estimate multimodal interactions beyond redundancy. We test CoMM both in a controlled and in a series of real-world settings: in the former, we demonstrate that CoMM effectively captures redundant, unique and synergistic information between modalities. In the latter, CoMM learns complex multimodal interactions and achieves state-of-the-art results on the seven multimodal benchmarks. Code is available at https://github.com/Duplums/CoMM
comment: ICLR 2025, 25 pages
♻ ☆ More than Memes: A Multimodal Topic Modeling Approach to Conspiracy Theories on Telegram
To address the increasing prevalence of (audio-)visual data on social media, and to capture the evolving and dynamic nature of this communication, researchers have begun to explore the potential of unsupervised approaches for analyzing multimodal online content. However, existing research often neglects visual content beyond memes, and in addition lacks methods to compare topic models across modalities. Our study addresses these gaps by applying multimodal topic modeling for analyzing conspiracy theories in German-language Telegram channels. We use BERTopic with CLIP for the analysis of textual and visual data in a corpus of ~40, 000 Telegram messages posted in October 2023 in 571 German-language Telegram channels known for disseminating conspiracy theories. Through this dataset, we provide insights into unimodal and multimodal topic models by analyzing symmetry and intersections of topics across modalities. We demonstrate the variety of textual and visual content shared in the channels discovered through the topic modeling, and propose a conceptual framework for the analysis of textual and visual discursive strategies in the communication of conspiracy theories. We apply the framework in a case study of the topic group Israel Gaza.
comment: 12 pages, 10 figures
♻ ☆ StdGEN: Semantic-Decomposed 3D Character Generation from Single Images CVPR 2025
We present StdGEN, an innovative pipeline for generating semantically decomposed high-quality 3D characters from single images, enabling broad applications in virtual reality, gaming, and filmmaking, etc. Unlike previous methods which struggle with limited decomposability, unsatisfactory quality, and long optimization times, StdGEN features decomposability, effectiveness and efficiency; i.e., it generates intricately detailed 3D characters with separated semantic components such as the body, clothes, and hair, in three minutes. At the core of StdGEN is our proposed Semantic-aware Large Reconstruction Model (S-LRM), a transformer-based generalizable model that jointly reconstructs geometry, color and semantics from multi-view images in a feed-forward manner. A differentiable multi-layer semantic surface extraction scheme is introduced to acquire meshes from hybrid implicit fields reconstructed by our S-LRM. Additionally, a specialized efficient multi-view diffusion model and an iterative multi-layer surface refinement module are integrated into the pipeline to facilitate high-quality, decomposable 3D character generation. Extensive experiments demonstrate our state-of-the-art performance in 3D anime character generation, surpassing existing baselines by a significant margin in geometry, texture and decomposability. StdGEN offers ready-to-use semantic-decomposed 3D characters and enables flexible customization for a wide range of applications. Project page: https://stdgen.github.io
comment: CVPR 2025. 13 pages, 10 figures
♻ ☆ Unleashing HyDRa: Hybrid Fusion, Depth Consistency and Radar for Unified 3D Perception
Low-cost, vision-centric 3D perception systems for autonomous driving have made significant progress in recent years, narrowing the gap to expensive LiDAR-based methods. The primary challenge in becoming a fully reliable alternative lies in robust depth prediction capabilities, as camera-based systems struggle with long detection ranges and adverse lighting and weather conditions. In this work, we introduce HyDRa, a novel camera-radar fusion architecture for diverse 3D perception tasks. Building upon the principles of dense BEV (Bird's Eye View)-based architectures, HyDRa introduces a hybrid fusion approach to combine the strengths of complementary camera and radar features in two distinct representation spaces. Our Height Association Transformer module leverages radar features already in the perspective view to produce more robust and accurate depth predictions. In the BEV, we refine the initial sparse representation by a Radar-weighted Depth Consistency. HyDRa achieves a new state-of-the-art for camera-radar fusion of 64.2 NDS (+1.8) and 58.4 AMOTA (+1.5) on the public nuScenes dataset. Moreover, our new semantically rich and spatially accurate BEV features can be directly converted into a powerful occupancy representation, beating all previous camera-based methods on the Occ3D benchmark by an impressive 3.7 mIoU. Code and models are available at https://github.com/phi-wol/hydra.
comment: 10 pages, 7 figures, added eval on VoD, added appendix
♻ ☆ On the Utility of Equivariance and Symmetry Breaking in Deep Learning Architectures on Point Clouds
This paper explores the key factors that influence the performance of models working with point clouds, across different tasks of varying geometric complexity. In this work, we explore the trade-offs between flexibility and weight-sharing introduced by equivariant layers, assessing when equivariance boosts or detracts from performance. It is often argued that providing more information as input improves a model's performance. However, if this additional information breaks certain properties, such as $\SE(3)$ equivariance, does it remain beneficial? We identify the key aspects of equivariant and non-equivariant architectures that drive success in different tasks by benchmarking them on segmentation, regression, and generation tasks across multiple datasets with increasing complexity. We observe a positive impact of equivariance, which becomes more pronounced with increasing task complexity, even when strict equivariance is not required.
comment: 19 pages, 4 figures
♻ ☆ Human-in-the-loop Reasoning For Traffic Sign Detection: Collaborative Approach Yolo With Video-llava
Traffic Sign Recognition (TSR) detection is a crucial component of autonomous vehicles. While You Only Look Once (YOLO) is a popular real-time object detection algorithm, factors like training data quality and adverse weather conditions (e.g., heavy rain) can lead to detection failures. These failures can be particularly dangerous when visual similarities between objects exist, such as mistaking a 30 km/h sign for a higher speed limit sign. This paper proposes a method that combines video analysis and reasoning, prompting with a human-in-the-loop guide large vision model to improve YOLOs accuracy in detecting road speed limit signs, especially in semi-real-world conditions. It is hypothesized that the guided prompting and reasoning abilities of Video-LLava can enhance YOLOs traffic sign detection capabilities. This hypothesis is supported by an evaluation based on human-annotated accuracy metrics within a dataset of recorded videos from the CARLA car simulator. The results demonstrate that a collaborative approach combining YOLO with Video-LLava and reasoning can effectively address challenging situations such as heavy rain and overcast conditions that hinder YOLOs detection capabilities.
comment: 10 pages, 6 figures
♻ ☆ Tiny Robotics Dataset and Benchmark for Continual Object Detection
Detecting objects in mobile robotics is crucial for numerous applications, from autonomous navigation to inspection. However, robots often need to operate in different domains from those they were trained in, requiring them to adjust to these changes. Tiny mobile robots, subject to size, power, and computational constraints, encounter even more difficulties in running and adapting these algorithms. Such adaptability, though, is crucial for real-world deployment, where robots must operate effectively in dynamic and unpredictable settings. In this work, we introduce a novel benchmark to evaluate the continual learning capabilities of object detection systems in tiny robotic platforms. Our contributions include: (i) Tiny Robotics Object Detection~(TiROD), a comprehensive dataset collected using the onboard camera of a small mobile robot, designed to test object detectors across various domains and classes; (ii) a benchmark of different continual learning strategies on this dataset using NanoDet, a lightweight object detector. Our results highlight key challenges in developing robust and efficient continual learning strategies for object detectors in tiny robotics.
♻ ☆ Safety Without Semantic Disruptions: Editing-free Safe Image Generation via Context-preserving Dual Latent Reconstruction
Training multimodal generative models on large, uncurated datasets can result in users being exposed to harmful, unsafe and controversial or culturally-inappropriate outputs. While model editing has been proposed to remove or filter undesirable concepts in embedding and latent spaces, it can inadvertently damage learned manifolds, distorting concepts in close semantic proximity. We identify limitations in current model editing techniques, showing that even benign, proximal concepts may become misaligned. To address the need for safe content generation, we leverage safe embeddings and a modified diffusion process with tunable weighted summation in the latent space to generate safer images. Our method preserves global context without compromising the structural integrity of the learned manifolds. We achieve state-of-the-art results on safe image generation benchmarks and offer intuitive control over the level of model safety. We identify trade-offs between safety and censorship, which presents a necessary perspective in the development of ethical AI models. We will release our code. Keywords: Text-to-Image Models, Generative AI, Safety, Reliability, Model Editing
comment: This research is supported by the NISDRG project #20100007, funded by the Australian Government
♻ ☆ VideoWorld: Exploring Knowledge Learning from Unlabeled Videos
This work explores whether a deep generative model can learn complex knowledge solely from visual input, in contrast to the prevalent focus on text-based models like large language models (LLMs). We develop VideoWorld, an auto-regressive video generation model trained on unlabeled video data, and test its knowledge acquisition abilities in video-based Go and robotic control tasks. Our experiments reveal two key findings: (1) video-only training provides sufficient information for learning knowledge, including rules, reasoning and planning capabilities, and (2) the representation of visual change is crucial for knowledge acquisition. To improve both the efficiency and efficacy of this process, we introduce the Latent Dynamics Model (LDM) as a key component of VideoWorld. Remarkably, VideoWorld reaches a 5-dan professional level in the Video-GoBench with just a 300-million-parameter model, without relying on search algorithms or reward mechanisms typical in reinforcement learning. In robotic tasks, VideoWorld effectively learns diverse control operations and generalizes across environments, approaching the performance of oracle models in CALVIN and RLBench. This study opens new avenues for knowledge acquisition from visual data, with all code, data, and models open-sourced for further research.
comment: Code and models are released at: https://maverickren.github.io/VideoWorld.github.io/
♻ ☆ Perceptual Multi-Exposure Fusion
As an ever-increasing demand for high dynamic range (HDR) scene shooting, multi-exposure image fusion (MEF) technology has abounded. In recent years, multi-scale exposure fusion approaches based on detail-enhancement have led the way for improvement in highlight and shadow details. Most of such methods, however, are too computationally expensive to be deployed on mobile devices. This paper presents a perceptual multi-exposure fusion method that not just ensures fine shadow/highlight details but with lower complexity than detailenhanced methods. We analyze the potential defects of three classical exposure measures in lieu of using detail-enhancement component and improve two of them, namely adaptive Wellexposedness (AWE) and the gradient of color images (3-D gradient). AWE designed in YCbCr color space considers the difference between varying exposure images. 3-D gradient is employed to extract fine details. We build a large-scale multiexposure benchmark dataset suitable for static scenes, which contains 167 image sequences all told. Experiments on the constructed dataset demonstrate that the proposed method exceeds existing eight state-of-the-art approaches in terms of visually and MEF-SSIM value. Moreover, our approach can achieve a better improvement for current image enhancement techniques, ensuring fine detail in bright light.
♻ ☆ DFREC: DeepFake Identity Recovery Based on Identity-aware Masked Autoencoder
Recent advances in deepfake forensics have primarily focused on improving the classification accuracy and generalization performance. Despite enormous progress in detection accuracy across a wide variety of forgery algorithms, existing algorithms lack intuitive interpretability and identity traceability to help with forensic investigation. In this paper, we introduce a novel DeepFake Identity Recovery scheme (DFREC) to fill this gap. DFREC aims to recover the pair of source and target faces from a deepfake image to facilitate deepfake identity tracing and reduce the risk of deepfake attack. It comprises three key components: an Identity Segmentation Module (ISM), a Source Identity Reconstruction Module (SIRM), and a Target Identity Reconstruction Module (TIRM). The ISM segments the input face into distinct source and target face information, and the SIRM reconstructs the source face and extracts latent target identity features with the segmented source information. The background context and latent target identity features are synergetically fused by a Masked Autoencoder in the TIRM to reconstruct the target face. We evaluate DFREC on six different high-fidelity face-swapping attacks on FaceForensics++, CelebaMegaFS and FFHQ-E4S datasets, which demonstrate its superior recovery performance over state-of-the-art deepfake recovery algorithms. In addition, DFREC is the only scheme that can recover both pristine source and target faces directly from the forgery image with high fadelity.
♻ ☆ Deblur-Avatar: Animatable Avatars from Motion-Blurred Monocular Videos
We introduce a novel framework for modeling high-fidelity, animatable 3D human avatars from motion-blurred monocular video inputs. Motion blur is prevalent in real-world dynamic video capture, especially due to human movements in 3D human avatar modeling. Existing methods either (1) assume sharp image inputs, failing to address the detail loss introduced by motion blur, or (2) mainly consider blur by camera movements, neglecting the human motion blur which is more common in animatable avatars. Our proposed approach integrates a human movement-based motion blur model into 3D Gaussian Splatting (3DGS). By explicitly modeling human motion trajectories during exposure time, we jointly optimize the trajectories and 3D Gaussians to reconstruct sharp, high-quality human avatars. We employ a pose-dependent fusion mechanism to distinguish moving body regions, optimizing both blurred and sharp areas effectively. Extensive experiments on synthetic and real-world datasets demonstrate that our method significantly outperforms existing methods in rendering quality and quantitative metrics, producing sharp avatar reconstructions and enabling real-time rendering under challenging motion blur conditions.
♻ ☆ LDPM: Towards undersampled MRI reconstruction with MR-VAE and Latent Diffusion Prior
Diffusion models, as powerful generative models, have found a wide range of applications and shown great potential in solving image reconstruction problems. Some works attempted to solve MRI reconstruction with diffusion models, but these methods operate directly in pixel space, leading to higher computational costs for optimization and inference. Latent diffusion models, pre-trained on natural images with rich visual priors, are expected to solve the high computational cost problem in MRI reconstruction by operating in a lower-dimensional latent space. However, direct application to MRI reconstruction faces three key challenges: (1) absence of explicit control mechanisms for medical fidelity, (2) domain gap between natural images and MR physics, and (3) undefined data consistency in latent space. To address these challenges, a novel Latent Diffusion Prior-based undersampled MRI reconstruction (LDPM) method is proposed. Our LDPM framework addresses these challenges by: (1) a sketch-guided pipeline with a two-step reconstruction strategy, which balances perceptual quality and anatomical fidelity, (2) an MRI-optimized VAE (MR-VAE), which achieves an improvement of approximately 3.92 dB in PSNR for undersampled MRI reconstruction compared to that with SD-VAE \cite{sd}, and (3) Dual-Stage Sampler, a modified version of spaced DDPM sampler, which enforces high-fidelity reconstruction in the latent space. Experiments on the fastMRI dataset\cite{fastmri} demonstrate the state-of-the-art performance of the proposed method and its robustness across various scenarios. The effectiveness of each module is also verified through ablation experiments.
♻ ☆ GSplatLoc: Grounding Keypoint Descriptors into 3D Gaussian Splatting for Improved Visual Localization
Although various visual localization approaches exist, such as scene coordinate regression and camera pose regression, these methods often struggle with optimization complexity or limited accuracy. To address these challenges, we explore the use of novel view synthesis techniques, particularly 3D Gaussian Splatting (3DGS), which enables the compact encoding of both 3D geometry and scene appearance. We propose a two-stage procedure that integrates dense and robust keypoint descriptors from the lightweight XFeat feature extractor into 3DGS, enhancing performance in both indoor and outdoor environments. The coarse pose estimates are directly obtained via 2D-3D correspondences between the 3DGS representation and query image descriptors. In the second stage, the initial pose estimate is refined by minimizing the rendering-based photometric warp loss. Benchmarking on widely used indoor and outdoor datasets demonstrates improvements over recent neural rendering-based localization methods, such as NeRFMatch and PNeRFLoc.
comment: Project website at https://gsplatloc.github.io/
♻ ☆ ArtNVG: Content-Style Separated Artistic Neighboring-View Gaussian Stylization
As demand from the film and gaming industries for 3D scenes with target styles grows, the importance of advanced 3D stylization techniques increases. However, recent methods often struggle to maintain local consistency in color and texture throughout stylized scenes, which is essential for maintaining aesthetic coherence. To solve this problem, this paper introduces ArtNVG, an innovative 3D stylization framework that efficiently generates stylized 3D scenes by leveraging reference style images. Built on 3D Gaussian Splatting (3DGS), ArtNVG achieves rapid optimization and rendering while upholding high reconstruction quality. Our framework realizes high-quality 3D stylization by incorporating two pivotal techniques: Content-Style Separated Control and Attention-based Neighboring-View Alignment. Content-Style Separated Control uses the CSGO model and the Tile ControlNet to decouple the content and style control, reducing risks of information leakage. Concurrently, Attention-based Neighboring-View Alignment ensures consistency of local colors and textures across neighboring views, significantly improving visual quality. Extensive experiments validate that ArtNVG surpasses existing methods, delivering superior results in content preservation, style alignment, and local consistency.
♻ ☆ Multimodal Action Quality Assessment
Action quality assessment (AQA) is to assess how well an action is performed. Previous works perform modelling by only the use of visual information, ignoring audio information. We argue that although AQA is highly dependent on visual information, the audio is useful complementary information for improving the score regression accuracy, especially for sports with background music, such as figure skating and rhythmic gymnastics. To leverage multimodal information for AQA, i.e., RGB, optical flow and audio information, we propose a Progressive Adaptive Multimodal Fusion Network (PAMFN) that separately models modality-specific information and mixed-modality information. Our model consists of with three modality-specific branches that independently explore modality-specific information and a mixed-modality branch that progressively aggregates the modality-specific information from the modality-specific branches. To build the bridge between modality-specific branches and the mixed-modality branch, three novel modules are proposed. First, a Modality-specific Feature Decoder module is designed to selectively transfer modality-specific information to the mixed-modality branch. Second, when exploring the interaction between modality-specific information, we argue that using an invariant multimodal fusion policy may lead to suboptimal results, so as to take the potential diversity in different parts of an action into consideration. Therefore, an Adaptive Fusion Module is proposed to learn adaptive multimodal fusion policies in different parts of an action. This module consists of several FusionNets for exploring different multimodal fusion strategies and a PolicyNet for deciding which FusionNets are enabled. Third, a module called Cross-modal Feature Decoder is designed to transfer cross-modal features generated by Adaptive Fusion Module to the mixed-modality branch.
comment: IEEE Transactions on Image Processing 2024
♻ ☆ MVP-Shot: Multi-Velocity Progressive-Alignment Framework for Few-Shot Action Recognition
Recent few-shot action recognition (FSAR) methods typically perform semantic matching on learned discriminative features to achieve promising performance. However, most FSAR methods focus on single-scale (e.g., frame-level, segment-level, etc) feature alignment, which ignores that human actions with the same semantic may appear at different velocities. To this end, we develop a novel Multi-Velocity Progressive-alignment (MVP-Shot) framework to progressively learn and align semantic-related action features at multi-velocity levels. Concretely, a Multi-Velocity Feature Alignment (MVFA) module is designed to measure the similarity between features from support and query videos with different velocity scales and then merge all similarity scores in a residual fashion. To avoid the multiple velocity features deviating from the underlying motion semantic, our proposed Progressive Semantic-Tailored Interaction (PSTI) module injects velocity-tailored text information into the video feature via feature interaction on channel and temporal domains at different velocities. The above two modules compensate for each other to make more accurate query sample predictions under the few-shot settings. Experimental results show our method outperforms current state-of-the-art methods on multiple standard few-shot benchmarks (i.e., HMDB51, UCF101, Kinetics, and SSv2-small).
comment: Accepted to TMM 2025
♻ ☆ ChartX & ChartVLM: A Versatile Benchmark and Foundation Model for Complicated Chart Reasoning
Recently, many versatile Multi-modal Large Language Models (MLLMs) have emerged continuously. However, their capacity to query information depicted in visual charts and engage in reasoning based on the queried contents remains under-explored. In this paper, to comprehensively and rigorously benchmark the ability of the off-the-shelf MLLMs in the chart domain, we construct ChartX, a multi-modal evaluation set covering 18 chart types, 7 chart tasks, 22 disciplinary topics, and high-quality chart data. Besides, we develop ChartVLM to offer a new perspective on handling multi-modal tasks that strongly depend on interpretable patterns, such as reasoning tasks in the field of charts or geometric images. We evaluate the chart-related ability of mainstream MLLMs and our ChartVLM on the proposed ChartX evaluation set. Extensive experiments demonstrate that ChartVLM surpasses both versatile and chart-related large models, achieving results comparable to GPT-4V. We believe that our study can pave the way for further exploration in creating a more comprehensive chart evaluation set and developing more interpretable multi-modal models. Both ChartX and ChartVLM are available at: https://github.com/Alpha-Innovator/ChartVLM
comment: Code and dataset are available for downloading at: https://github.com/Alpha-Innovator/ChartVLM 26 pages, 15 figures
♻ ☆ LAPTOP-Diff: Layer Pruning and Normalized Distillation for Compressing Diffusion Models
In the era of AIGC, the demand for low-budget or even on-device applications of diffusion models emerged. In terms of compressing the Stable Diffusion models (SDMs), several approaches have been proposed, and most of them leveraged the handcrafted layer removal methods to obtain smaller U-Nets, along with knowledge distillation to recover the network performance. However, such a handcrafting manner of layer removal is inefficient and lacks scalability and generalization, and the feature distillation employed in the retraining phase faces an imbalance issue that a few numerically significant feature loss terms dominate over others throughout the retraining process. To this end, we proposed the layer pruning and normalized distillation for compressing diffusion models (LAPTOP-Diff). We, 1) introduced the layer pruning method to compress SDM's U-Net automatically and proposed an effective one-shot pruning criterion whose one-shot performance is guaranteed by its good additivity property, surpassing other layer pruning and handcrafted layer removal methods, 2) proposed the normalized feature distillation for retraining, alleviated the imbalance issue. Using the proposed LAPTOP-Diff, we compressed the U-Nets of SDXL and SDM-v1.5 for the most advanced performance, achieving a minimal 4.0% decline in PickScore at a pruning ratio of 50% while the comparative methods' minimal PickScore decline is 8.2%.
♻ ☆ Handling Spatial-Temporal Data Heterogeneity for Federated Continual Learning via Tail Anchor CVPR 2025
Federated continual learning (FCL) allows each client to continually update its knowledge from task streams, enhancing the applicability of federated learning in real-world scenarios. However, FCL needs to address not only spatial data heterogeneity between clients but also temporal data heterogeneity between tasks. In this paper, empirical experiments demonstrate that such input-level heterogeneity significantly affects the model's internal parameters and outputs, leading to severe spatial-temporal catastrophic forgetting of local and previous knowledge. To this end, we propose Federated Tail Anchor (FedTA) to mix trainable Tail Anchor with the frozen output features to adjust their position in the feature space, thereby overcoming parameter-forgetting and output-forgetting. Three novel components are also included: Input Enhancement for improving the performance of pre-trained models on downstream tasks; Selective Input Knowledge Fusion for fusion of heterogeneous local knowledge on the server; and Best Global Prototype Selection for finding the best anchor point for each class in the feature space. Extensive experiments demonstrate that FedTA not only outperforms existing FCL methods but also effectively preserves the relative positions of features.
comment: This paper is accepted by CVPR 2025
♻ ☆ Sim2Real within 5 Minutes: Efficient Domain Transfer with Stylized Gaussian Splatting for Endoscopic Images ICRA 2025
Robot assisted endoluminal intervention is an emerging technique for both benign and malignant luminal lesions. With vision-based navigation, when combined with pre-operative imaging data as priors, it is possible to recover position and pose of the endoscope without the need of additional sensors. In practice, however, aligning pre-operative and intra-operative domains is complicated by significant texture differences. Although methods such as style transfer can be used to address this issue, they require large datasets from both source and target domains with prolonged training times. This paper proposes an efficient domain transfer method based on stylized Gaussian splatting, only requiring a few of real images (10 images) with very fast training time. Specifically, the transfer process includes two phases. In the first phase, the 3D models reconstructed from CT scans are represented as differential Gaussian point clouds. In the second phase, only color appearance related parameters are optimized to transfer the style and preserve the visual content. A novel structure consistency loss is applied to latent features and depth levels to enhance the stability of the transferred images. Detailed validation was performed to demonstrate the performance advantages of the proposed method compared to that of the current state-of-the-art, highlighting the potential for intra-operative surgical navigation.
comment: Accepted by ICRA 2025
♻ ☆ A Physical Coherence Benchmark for Evaluating Video Generation Models via Optical Flow-guided Frame Prediction
Recent advances in video generation models demonstrate their potential as world simulators, but they often struggle with videos deviating from physical laws, a key concern overlooked by most text-to-video benchmarks. We introduce a benchmark designed specifically to assess the Physical Coherence of generated videos, PhyCoBench. Our benchmark includes 120 prompts covering 7 categories of physical principles, capturing key physical laws observable in video content. We evaluated four state-of-the-art (SoTA) T2V models on PhyCoBench and conducted manual assessments. Additionally, we propose an automated evaluation model: PhyCoPredictor, a diffusion model that generates optical flow and video frames in a cascade manner. Through a consistency evaluation comparing automated and manual sorting, the experimental results show that PhyCoPredictor currently aligns most closely with human evaluation. Therefore, it can effectively evaluate the physical coherence of videos, providing insights for future model optimization. Our benchmark, including physical coherence prompts, the automatic evaluation tool PhyCoPredictor, and the generated video dataset, has been released on GitHub at https://github.com/Jeckinchen/PhyCoBench.
♻ ☆ Counting Guidance for High Fidelity Text-to-Image Synthesis WACV 2025
Recently, there have been significant improvements in the quality and performance of text-to-image generation, largely due to the impressive results attained by diffusion models. However, text-to-image diffusion models sometimes struggle to create high-fidelity content for the given input prompt. One specific issue is their difficulty in generating the precise number of objects specified in the text prompt. For example, when provided with the prompt "five apples and ten lemons on a table," images generated by diffusion models often contain an incorrect number of objects. In this paper, we present a method to improve diffusion models so that they accurately produce the correct object count based on the input prompt. We adopt a counting network that performs reference-less class-agnostic counting for any given image. We calculate the gradients of the counting network and refine the predicted noise for each step. To address the presence of multiple types of objects in the prompt, we utilize novel attention map guidance to obtain high-quality masks for each object. Finally, we guide the denoising process using the calculated gradients for each object. Through extensive experiments and evaluation, we demonstrate that the proposed method significantly enhances the fidelity of diffusion models with respect to object count. Code is available at https://github.com/furiosa-ai/counting-guidance.
comment: Accepted at WACV 2025 (Oral). Code is available at https://github.com/furiosa-ai/counting-guidance
♻ ☆ HunyuanVideo: A Systematic Framework For Large Video Generative Models
Recent advancements in video generation have significantly impacted daily life for both individuals and industries. However, the leading video generation models remain closed-source, resulting in a notable performance gap between industry capabilities and those available to the public. In this report, we introduce HunyuanVideo, an innovative open-source video foundation model that demonstrates performance in video generation comparable to, or even surpassing, that of leading closed-source models. HunyuanVideo encompasses a comprehensive framework that integrates several key elements, including data curation, advanced architectural design, progressive model scaling and training, and an efficient infrastructure tailored for large-scale model training and inference. As a result, we successfully trained a video generative model with over 13 billion parameters, making it the largest among all open-source models. We conducted extensive experiments and implemented a series of targeted designs to ensure high visual quality, motion dynamics, text-video alignment, and advanced filming techniques. According to evaluations by professionals, HunyuanVideo outperforms previous state-of-the-art models, including Runway Gen-3, Luma 1.6, and three top-performing Chinese video generative models. By releasing the code for the foundation model and its applications, we aim to bridge the gap between closed-source and open-source communities. This initiative will empower individuals within the community to experiment with their ideas, fostering a more dynamic and vibrant video generation ecosystem. The code is publicly available at https://github.com/Tencent/HunyuanVideo.
♻ ☆ SCott: Accelerating Diffusion Models with Stochastic Consistency Distillation
The iterative sampling procedure employed by diffusion models (DMs) often leads to significant inference latency. To address this, we propose Stochastic Consistency Distillation (SCott) to enable accelerated text-to-image generation, where high-quality and diverse generations can be achieved within just 2-4 sampling steps. In contrast to vanilla consistency distillation (CD) which distills the ordinary differential equation solvers-based sampling process of a pre-trained teacher model into a student, SCott explores the possibility and validates the efficacy of integrating stochastic differential equation (SDE) solvers into CD to fully unleash the potential of the teacher. SCott is augmented with elaborate strategies to control the noise strength and sampling process of the SDE solver. An adversarial loss is further incorporated to strengthen the consistency constraints in rare sampling steps. Empirically, on the MSCOCO-2017 5K dataset with a Stable Diffusion-V1.5 teacher, SCott achieves an FID of 21.9 with 2 sampling steps, surpassing that of the 1-step InstaFlow (23.4) and the 4-step UFOGen (22.1). Moreover, SCott can yield more diverse samples than other consistency models for high-resolution image generation, with up to 16% improvement in a qualified metric.
comment: 22 pages, 16 figures
♻ ☆ Schedule On the Fly: Diffusion Time Prediction for Faster and Better Image Generation
Diffusion and flow matching models have achieved remarkable success in text-to-image generation. However, these models typically rely on the predetermined denoising schedules for all prompts. The multi-step reverse diffusion process can be regarded as a kind of chain-of-thought for generating high-quality images step by step. Therefore, diffusion models should reason for each instance to adaptively determine the optimal noise schedule, achieving high generation quality with sampling efficiency. In this paper, we introduce the Time Prediction Diffusion Model (TPDM) for this. TPDM employs a plug-and-play Time Prediction Module (TPM) that predicts the next noise level based on current latent features at each denoising step. We train the TPM using reinforcement learning to maximize a reward that encourages high final image quality while penalizing excessive denoising steps. With such an adaptive scheduler, TPDM not only generates high-quality images that are aligned closely with human preferences but also adjusts diffusion time and the number of denoising steps on the fly, enhancing both performance and efficiency. With Stable Diffusion 3 Medium architecture, TPDM achieves an aesthetic score of 5.44 and a human preference score (HPS) of 29.59, while using around 50% fewer denoising steps to achieve better performance.
♻ ☆ Super-Resolution on Rotationally Scanned Photoacoustic Microscopy Images Incorporating Scanning Prior
Photoacoustic Microscopy (PAM) images integrating the advantages of optical contrast and acoustic resolution have been widely used in brain studies. However, there exists a trade-off between scanning speed and image resolution. Compared with traditional raster scanning, rotational scanning provides good opportunities for fast PAM imaging by optimizing the scanning mechanism. Recently, there is a trend to incorporate deep learning into the scanning process to further increase the scanning speed.Yet, most such attempts are performed for raster scanning while those for rotational scanning are relatively rare. In this study, we propose a novel and well-performing super-resolution framework for rotational scanning-based PAM imaging. To eliminate adjacent rows' displacements due to subject motion or high-frequency scanning distortion,we introduce a registration module across odd and even rows in the preprocessing and incorporate displacement degradation in the training. Besides, gradient-based patch selection is proposed to increase the probability of blood vessel patches being selected for training. A Transformer-based network with a global receptive field is applied for better performance. Experimental results on both synthetic and real datasets demonstrate the effectiveness and generalizability of our proposed framework for rotationally scanned PAM images'super-resolution, both quantitatively and qualitatively. Code is available at https://github.com/11710615/PAMSR.git.
♻ ☆ XLSTM-HVED: Cross-Modal Brain Tumor Segmentation and MRI Reconstruction Method Using Vision XLSTM and Heteromodal Variational Encoder-Decoder
Neurogliomas are among the most aggressive forms of cancer, presenting considerable challenges in both treatment and monitoring due to their unpredictable biological behavior. Magnetic resonance imaging (MRI) is currently the preferred method for diagnosing and monitoring gliomas. However, the lack of specific imaging techniques often compromises the accuracy of tumor segmentation during the imaging process. To address this issue, we introduce the XLSTM-HVED model. This model integrates a hetero-modal encoder-decoder framework with the Vision XLSTM module to reconstruct missing MRI modalities. By deeply fusing spatial and temporal features, it enhances tumor segmentation performance. The key innovation of our approach is the Self-Attention Variational Encoder (SAVE) module, which improves the integration of modal features. Additionally, it optimizes the interaction of features between segmentation and reconstruction tasks through the Squeeze-Fusion-Excitation Cross Awareness (SFECA) module. Our experiments using the BraTS 2024 dataset demonstrate that our model significantly outperforms existing advanced methods in handling cases where modalities are missing. Our source code is available at https://github.com/Quanato607/XLSTM-HVED.
comment: 5 pages, 2 figures
♻ ☆ 3DGS.zip: A survey on 3D Gaussian Splatting Compression Methods
3D Gaussian Splatting (3DGS) has emerged as a cutting-edge technique for real-time radiance field rendering, offering state-of-the-art performance in terms of both quality and speed. 3DGS models a scene as a collection of three-dimensional Gaussians, with additional attributes optimized to conform to the scene's geometric and visual properties. Despite its advantages in rendering speed and image fidelity, 3DGS is limited by its significant storage and memory demands. These high demands make 3DGS impractical for mobile devices or headsets, reducing its applicability in important areas of computer graphics. To address these challenges and advance the practicality of 3DGS, this survey provides a comprehensive and detailed examination of compression and compaction techniques developed to make 3DGS more efficient. We classify existing methods into two categories: compression, which focuses on reducing file size, and compaction, which aims to minimize the number of Gaussians. Both methods aim to maintain or improve quality, each by minimizing its respective attribute: file size for compression and Gaussian count for compaction. We introduce the basic mathematical concepts underlying the analyzed methods, as well as key implementation details and design choices. Our report thoroughly discusses similarities and differences among the methods, as well as their respective advantages and disadvantages. We establish a consistent framework for comparing the surveyed methods based on key performance metrics and datasets. Specifically, since these methods have been developed in parallel and over a short period of time, currently, no comprehensive comparison exists. This survey, for the first time, presents a unified framework to evaluate 3DGS compression techniques. We maintain a website that will be regularly updated with emerging methods: https://w-m.github.io/3dgs-compression-survey/ .
comment: 3D Gaussian Splatting compression survey; 3DGS compression; updated discussion; new approaches added; new illustrations
♻ ☆ SLTNet: Efficient Event-based Semantic Segmentation with Spike-driven Lightweight Transformer-based Networks IROS 2025
Event-based semantic segmentation has great potential in autonomous driving and robotics due to the advantages of event cameras, such as high dynamic range, low latency, and low power cost. Unfortunately, current artificial neural network (ANN)-based segmentation methods suffer from high computational demands, the requirements for image frames, and massive energy consumption, limiting their efficiency and application on resource-constrained edge/mobile platforms. To address these problems, we introduce SLTNet, a spike-driven lightweight transformer-based network designed for event-based semantic segmentation. Specifically, SLTNet is built on efficient spike-driven convolution blocks (SCBs) to extract rich semantic features while reducing the model's parameters. Then, to enhance the long-range contextural feature interaction, we propose novel spike-driven transformer blocks (STBs) with binary mask operations. Based on these basic blocks, SLTNet employs a high-efficiency single-branch architecture while maintaining the low energy consumption of the Spiking Neural Network (SNN). Finally, extensive experiments on DDD17 and DSEC-Semantic datasets demonstrate that SLTNet outperforms state-of-the-art (SOTA) SNN-based methods by at most 9.06% and 9.39% mIoU, respectively, with extremely 4.58x lower energy consumption and 114 FPS inference speed. Our code is open-sourced and available at https://github.com/longxianlei/SLTNet-v1.0.
comment: Submitted to 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
♻ ☆ ChemVLM: Exploring the Power of Multimodal Large Language Models in Chemistry Area
Large Language Models (LLMs) have achieved remarkable success and have been applied across various scientific fields, including chemistry. However, many chemical tasks require the processing of visual information, which cannot be successfully handled by existing chemical LLMs. This brings a growing need for models capable of integrating multimodal information in the chemical domain. In this paper, we introduce \textbf{ChemVLM}, an open-source chemical multimodal large language model specifically designed for chemical applications. ChemVLM is trained on a carefully curated bilingual multimodal dataset that enhances its ability to understand both textual and visual chemical information, including molecular structures, reactions, and chemistry examination questions. We develop three datasets for comprehensive evaluation, tailored to Chemical Optical Character Recognition (OCR), Multimodal Chemical Reasoning (MMCR), and Multimodal Molecule Understanding tasks. We benchmark ChemVLM against a range of open-source and proprietary multimodal large language models on various tasks. Experimental results demonstrate that ChemVLM achieves competitive performance across all evaluated tasks. Our model can be found at https://huggingface.co/AI4Chem/ChemVLM-26B.
comment: 11 pages, updated version
♻ ☆ Scale-Invariant Object Detection by Adaptive Convolution with Unified Global-Local Context
Dense features are important for detecting minute objects in images. Unfortunately, despite the remarkable efficacy of the CNN models in multi-scale object detection, CNN models often fail to detect smaller objects in images due to the loss of dense features during the pooling process. Atrous convolution addresses this issue by applying sparse kernels. However, sparse kernels often can lose the multi-scale detection efficacy of the CNN model. In this paper, we propose an object detection model using a Switchable (adaptive) Atrous Convolutional Network (SAC-Net) based on the efficientDet model. A fixed atrous rate limits the performance of the CNN models in the convolutional layers. To overcome this limitation, we introduce a switchable mechanism that allows for dynamically adjusting the atrous rate during the forward pass. The proposed SAC-Net encapsulates the benefits of both low-level and high-level features to achieve improved performance on multi-scale object detection tasks, without losing the dense features. Further, we apply a depth-wise switchable atrous rate to the proposed network, to improve the scale-invariant features. Finally, we apply global context on the proposed model. Our extensive experiments on benchmark datasets demonstrate that the proposed SAC-Net outperforms the state-of-the-art models by a significant margin in terms of accuracy.
♻ ☆ Breaking Class Barriers: Efficient Dataset Distillation via Inter-Class Feature Compensator ICLR 2025
Dataset distillation has emerged as a technique aiming to condense informative features from large, natural datasets into a compact and synthetic form. While recent advancements have refined this technique, its performance is bottlenecked by the prevailing class-specific synthesis paradigm. Under this paradigm, synthetic data is optimized exclusively for a pre-assigned one-hot label, creating an implicit class barrier in feature condensation. This leads to inefficient utilization of the distillation budget and oversight of inter-class feature distributions, which ultimately limits the effectiveness and efficiency, as demonstrated in our analysis. To overcome these constraints, this paper presents the Inter-class Feature Compensator (INFER), an innovative distillation approach that transcends the class-specific data-label framework widely utilized in current dataset distillation methods. Specifically, INFER leverages a Universal Feature Compensator (UFC) to enhance feature integration across classes, enabling the generation of multiple additional synthetic instances from a single UFC input. This significantly improves the efficiency of the distillation budget. Moreover, INFER enriches inter-class interactions during the distillation, thereby enhancing the effectiveness and generalizability of the distilled data. By allowing for the linear interpolation of labels similar to those in the original dataset, INFER meticulously optimizes the synthetic data and dramatically reduces the size of soft labels in the synthetic dataset to almost zero, establishing a new benchmark for efficiency and effectiveness in dataset distillation. In practice, INFER demonstrates state-of-the-art performance across benchmark datasets. For instance, in the ipc = 50 setting on ImageNet-1k with the same compression level, it outperforms SRe2L by 34.5% using ResNet18.
comment: Accepted to ICLR 2025
♻ ☆ Look, Listen, and Answer: Overcoming Biases for Audio-Visual Question Answering NeurIPS 2024
Audio-Visual Question Answering (AVQA) is a complex multi-modal reasoning task, demanding intelligent systems to accurately respond to natural language queries based on audio-video input pairs. Nevertheless, prevalent AVQA approaches are prone to overlearning dataset biases, resulting in poor robustness. Furthermore, current datasets may not provide a precise diagnostic for these methods. To tackle these challenges, firstly, we propose a novel dataset, MUSIC-AVQA-R, crafted in two steps: rephrasing questions within the test split of a public dataset (MUSIC-AVQA) and subsequently introducing distribution shifts to split questions. The former leads to a large, diverse test space, while the latter results in a comprehensive robustness evaluation on rare, frequent, and overall questions. Secondly, we propose a robust architecture that utilizes a multifaceted cycle collaborative debiasing strategy to overcome bias learning. Experimental results show that this architecture achieves state-of-the-art performance on MUSIC-AVQA-R, notably obtaining a significant improvement of 9.32%. Extensive ablation experiments are conducted on the two datasets mentioned to analyze the component effectiveness within the debiasing strategy. Additionally, we highlight the limited robustness of existing multi-modal QA methods through the evaluation on our dataset. We also conduct experiments combining various baselines with our proposed strategy on two datasets to verify its plug-and-play capability. Our dataset and code are available at https://github.com/reml-group/MUSIC-AVQA-R.
comment: Accepted by NeurIPS 2024
♻ ☆ MagicDrive-V2: High-Resolution Long Video Generation for Autonomous Driving with Adaptive Control
The rapid advancement of diffusion models has greatly improved video synthesis, especially in controllable video generation, which is vital for applications like autonomous driving. Although DiT with 3D VAE has become a standard framework for video generation, it introduces challenges in controllable driving video generation, especially for geometry control, rendering existing control methods ineffective. To address these issues, we propose MagicDrive-V2, a novel approach that integrates the MVDiT block and spatial-temporal conditional encoding to enable multi-view video generation and precise geometric control. Additionally, we introduce an efficient method for obtaining contextual descriptions for videos to support diverse textual control, along with a progressive training strategy using mixed video data to enhance training efficiency and generalizability. Consequently, MagicDrive-V2 enables multi-view driving video synthesis with $3.3\times$ resolution and $4\times$ frame count (compared to current SOTA), rich contextual control, and geometric controls. Extensive experiments demonstrate MagicDrive-V2's ability, unlocking broader applications in autonomous driving.
comment: Project Website: https://flymin.github.io/magicdrive-v2/
♻ ☆ TimeRefine: Temporal Grounding with Time Refining Video LLM
Video temporal grounding aims to localize relevant temporal boundaries in a video given a textual prompt. Recent work has focused on enabling Video LLMs to perform video temporal grounding via next-token prediction of temporal timestamps. However, accurately localizing timestamps in videos remains challenging for Video LLMs when relying solely on temporal token prediction. Our proposed TimeRefine addresses this challenge in two ways. First, instead of directly predicting the start and end timestamps, we reformulate the temporal grounding task as a temporal refining task: the model first makes rough predictions and then refines them by predicting offsets to the target segment. This refining process is repeated multiple times, through which the model progressively self-improves its temporal localization accuracy. Second, to enhance the model's temporal perception capabilities, we incorporate an auxiliary prediction head that penalizes the model more if a predicted segment deviates further from the ground truth, thus encouraging the model to make closer and more accurate predictions. Our plug-and-play method can be integrated into most LLM-based temporal grounding approaches. The experimental results demonstrate that TimeRefine achieves 3.6% and 5.0% mIoU improvements on the ActivityNet and Charades-STA datasets, respectively. Code and pretrained models will be released.
CarPlanner: Consistent Auto-regressive Trajectory Planning for Large-scale Reinforcement Learning in Autonomous Driving CVPR 2025
Trajectory planning is vital for autonomous driving, ensuring safe and efficient navigation in complex environments. While recent learning-based methods, particularly reinforcement learning (RL), have shown promise in specific scenarios, RL planners struggle with training inefficiencies and managing large-scale, real-world driving scenarios. In this paper, we introduce \textbf{CarPlanner}, a \textbf{C}onsistent \textbf{a}uto-\textbf{r}egressive \textbf{Planner} that uses RL to generate multi-modal trajectories. The auto-regressive structure enables efficient large-scale RL training, while the incorporation of consistency ensures stable policy learning by maintaining coherent temporal consistency across time steps. Moreover, CarPlanner employs a generation-selection framework with an expert-guided reward function and an invariant-view module, simplifying RL training and enhancing policy performance. Extensive analysis demonstrates that our proposed RL framework effectively addresses the challenges of training efficiency and performance enhancement, positioning CarPlanner as a promising solution for trajectory planning in autonomous driving. To the best of our knowledge, we are the first to demonstrate that the RL-based planner can surpass both IL- and rule-based state-of-the-arts (SOTAs) on the challenging large-scale real-world dataset nuPlan. Our proposed CarPlanner surpasses RL-, IL-, and rule-based SOTA approaches within this demanding dataset.
comment: CVPR 2025
♻ ☆ Deep Learning-based MRI Reconstruction with Artificial Fourier Transform Network (AFTNet)
Deep complex-valued neural networks (CVNNs) provide a powerful way to leverage complex number operations and representations and have succeeded in several phase-based applications. However, previous networks have not fully explored the impact of complex-valued networks in the frequency domain. Here, we introduce a unified complex-valued deep learning framework-Artificial Fourier Transform Network (AFTNet)-which combines domain-manifold learning and CVNNs. AFTNet can be readily used to solve image inverse problems in domain transformation, especially for accelerated magnetic resonance imaging (MRI) reconstruction and other applications. While conventional methods typically utilize magnitude images or treat the real and imaginary components of k-space data as separate channels, our approach directly processes raw k-space data in the frequency domain, utilizing complex-valued operations. This allows for a mapping between the frequency (k-space) and image domain to be determined through cross-domain learning. We show that AFTNet achieves superior accelerated MRI reconstruction compared to existing approaches. Furthermore, our approach can be applied to various tasks, such as denoised magnetic resonance spectroscopy (MRS) reconstruction and datasets with various contrasts. The AFTNet presented here is a valuable preprocessing component for different preclinical studies and provides an innovative alternative for solving inverse problems in imaging and spectroscopy. The code is available at: https://github.com/yanting-yang/AFT-Net.
♻ ☆ RoboSense: Large-scale Dataset and Benchmark for Egocentric Robot Perception and Navigation in Crowded and Unstructured Environments CVPR2025
Reliable embodied perception from an egocentric perspective is challenging yet essential for autonomous navigation technology of intelligent mobile agents. With the growing demand of social robotics, near-field scene understanding becomes an important research topic in the areas of egocentric perceptual tasks related to navigation in both crowded and unstructured environments. Due to the complexity of environmental conditions and difficulty of surrounding obstacles owing to truncation and occlusion, the perception capability under this circumstance is still inferior. To further enhance the intelligence of mobile robots, in this paper, we setup an egocentric multi-sensor data collection platform based on 3 main types of sensors (Camera, LiDAR and Fisheye), which supports flexible sensor configurations to enable dynamic sight of view from ego-perspective, capturing either near or farther areas. Meanwhile, a large-scale multimodal dataset is constructed, named RoboSense, to facilitate egocentric robot perception. Specifically, RoboSense contains more than 133K synchronized data with 1.4M 3D bounding box and IDs annotated in the full $360^{\circ}$ view, forming 216K trajectories across 7.6K temporal sequences. It has $270\times$ and $18\times$ as many annotations of surrounding obstacles within near ranges as the previous datasets collected for autonomous driving scenarios such as KITTI and nuScenes. Moreover, we define a novel matching criterion for near-field 3D perception and prediction metrics. Based on RoboSense, we formulate 6 popular tasks to facilitate the future research development, where the detailed analysis as well as benchmarks are also provided accordingly. Data desensitization measures have been conducted for privacy protection.
comment: Accepted to CVPR2025
♻ ☆ Dynamic Sparse Training versus Dense Training: The Unexpected Winner in Image Corruption Robustness ICLR 2025
It is generally perceived that Dynamic Sparse Training opens the door to a new era of scalability and efficiency for artificial neural networks at, perhaps, some costs in accuracy performance for the classification task. At the same time, Dense Training is widely accepted as being the "de facto" approach to train artificial neural networks if one would like to maximize their robustness against image corruption. In this paper, we question this general practice. Consequently, we claim that, contrary to what is commonly thought, the Dynamic Sparse Training methods can consistently outperform Dense Training in terms of robustness accuracy, particularly if the efficiency aspect is not considered as a main objective (i.e., sparsity levels between 10% and up to 50%), without adding (or even reducing) resource cost. We validate our claim on two types of data, images and videos, using several traditional and modern deep learning architectures for computer vision and three widely studied Dynamic Sparse Training algorithms. Our findings reveal a new yet-unknown benefit of Dynamic Sparse Training and open new possibilities in improving deep learning robustness beyond the current state of the art.
comment: Accepted at ICLR 2025
♻ ☆ VL-Nav: Real-time Vision-Language Navigation with Spatial Reasoning
Vision-language navigation in unknown environments is crucial for mobile robots. In scenarios such as household assistance and rescue, mobile robots need to understand a human command, such as "find a person wearing black". We present a novel vision-language navigation (VL-Nav) system that integrates efficient spatial reasoning on low-power robots. Unlike prior methods that rely on a single image-level feature similarity to guide a robot, our method integrates pixel-wise vision-language features with curiosity-driven exploration. This approach enables robust navigation to human-instructed instances across diverse environments. We deploy VL-Nav on a four-wheel mobile robot and evaluate its performance through comprehensive navigation tasks in both indoor and outdoor environments, spanning different scales and semantic complexities. Remarkably, VL-Nav operates at a real-time frequency of 30 Hz with a Jetson Orin NX, highlighting its ability to conduct efficient vision-language navigation. Results show that VL-Nav achieves an overall success rate of 86.3%, outperforming previous methods by 44.15%.
♻ ☆ Solving the Catastrophic Forgetting Problem in Generalized Category Discovery CVPR 2024
Generalized Category Discovery (GCD) aims to identify a mix of known and novel categories within unlabeled data sets, providing a more realistic setting for image recognition. Essentially, GCD needs to remember existing patterns thoroughly to recognize novel categories. Recent state-of-the-art method SimGCD transfers the knowledge from known-class data to the learning of novel classes through debiased learning. However, some patterns are catastrophically forgot during adaptation and thus lead to poor performance in novel categories classification. To address this issue, we propose a novel learning approach, LegoGCD, which is seamlessly integrated into previous methods to enhance the discrimination of novel classes while maintaining performance on previously encountered known classes. Specifically, we design two types of techniques termed as Local Entropy Regularization (LER) and Dual-views Kullback Leibler divergence constraint (DKL). The LER optimizes the distribution of potential known class samples in unlabeled data, thus ensuring the preservation of knowledge related to known categories while learning novel classes. Meanwhile, DKL introduces Kullback Leibler divergence to encourage the model to produce a similar prediction distribution of two view samples from the same image. In this way, it successfully avoids mismatched prediction and generates more reliable potential known class samples simultaneously. Extensive experiments validate that the proposed LegoGCD effectively addresses the known category forgetting issue across all datasets, eg, delivering a 7.74% and 2.51% accuracy boost on known and novel classes in CUB, respectively. Our code is available at: https://github.com/Cliffia123/LegoGCD.
comment: Accepted by CVPR 2024
♻ ☆ LiFT: Leveraging Human Feedback for Text-to-Video Model Alignment
Recent advances in text-to-video (T2V) generative models have shown impressive capabilities. However, these models are still inadequate in aligning synthesized videos with human preferences (e.g., accurately reflecting text descriptions), which is particularly difficult to address, as human preferences are subjective and challenging to formalize as objective functions. Existing studies train video quality assessment models that rely on human-annotated ratings for video evaluation but overlook the reasoning behind evaluations, limiting their ability to capture nuanced human criteria. Moreover, aligning T2V model using video-based human feedback remains unexplored. Therefore, this paper proposes LiFT, the first method designed to leverage human feedback for T2V model alignment. Specifically, we first construct a Human Rating Annotation dataset, LiFT-HRA, consisting of approximately 10k human annotations, each including a score and its corresponding rationale. Based on this, we train a reward model LiFT-Critic to learn reward function effectively, which serves as a proxy for human judgment, measuring the alignment between given videos and human expectations. Lastly, we leverage the learned reward function to align the T2V model by maximizing the reward-weighted likelihood. As a case study, we apply our pipeline to CogVideoX-2B, showing that the fine-tuned model outperforms the CogVideoX-5B across all 16 metrics, highlighting the potential of human feedback in improving the alignment and quality of synthesized videos.
comment: Project page: https://codegoat24.github.io/LiFT
♻ ☆ LCV2I: Communication-Efficient and High-Performance Collaborative Perception Framework with Low-Resolution LiDAR
Vehicle-to-Infrastructure (V2I) collaborative perception leverages data collected by infrastructure's sensors to enhance vehicle perceptual capabilities. LiDAR, as a commonly used sensor in cooperative perception, is widely equipped in intelligent vehicles and infrastructure. However, its superior performance comes with a correspondingly high cost. To achieve low-cost V2I, reducing the cost of LiDAR is crucial. Therefore, we study adopting low-resolution LiDAR on the vehicle to minimize cost as much as possible. However, simply reducing the resolution of vehicle's LiDAR results in sparse point clouds, making distant small objects even more blurred. Additionally, traditional communication methods have relatively low bandwidth utilization efficiency. These factors pose challenges for us. To balance cost and perceptual accuracy, we propose a new collaborative perception framework, namely LCV2I. LCV2I uses data collected from cameras and low-resolution LiDAR as input. It also employs feature offset correction modules and regional feature enhancement algorithms to improve feature representation. Finally, we use regional difference map and regional score map to assess the value of collaboration content, thereby improving communication bandwidth efficiency. In summary, our approach achieves high perceptual performance while substantially reducing the demand for high-resolution sensors on the vehicle. To evaluate this algorithm, we conduct 3D object detection in the real-world scenario of DAIR-V2X, demonstrating that the performance of LCV2I consistently surpasses currently existing algorithms.
♻ ☆ Detecting Adversarial Data using Perturbation Forgery CVPR 2025
As a defense strategy against adversarial attacks, adversarial detection aims to identify and filter out adversarial data from the data flow based on discrepancies in distribution and noise patterns between natural and adversarial data. Although previous detection methods achieve high performance in detecting gradient-based adversarial attacks, new attacks based on generative models with imbalanced and anisotropic noise patterns evade detection. Even worse, the significant inference time overhead and limited performance against unseen attacks make existing techniques impractical for real-world use. In this paper, we explore the proximity relationship among adversarial noise distributions and demonstrate the existence of an open covering for these distributions. By training on the open covering of adversarial noise distributions, a detector with strong generalization performance against various types of unseen attacks can be developed. Based on this insight, we heuristically propose Perturbation Forgery, which includes noise distribution perturbation, sparse mask generation, and pseudo-adversarial data production, to train an adversarial detector capable of detecting any unseen gradient-based, generative-based, and physical adversarial attacks. Comprehensive experiments conducted on multiple general and facial datasets, with a wide spectrum of attacks, validate the strong generalization of our method.
comment: Accepted as a conference paper at CVPR 2025
♻ ☆ Uni-Renderer: Unifying Rendering and Inverse Rendering Via Dual Stream Diffusion
Rendering and inverse rendering are pivotal tasks in both computer vision and graphics. The rendering equation is the core of the two tasks, as an ideal conditional distribution transfer function from intrinsic properties to RGB images. Despite achieving promising results of existing rendering methods, they merely approximate the ideal estimation for a specific scene and come with a high computational cost. Additionally, the inverse conditional distribution transfer is intractable due to the inherent ambiguity. To address these challenges, we propose a data-driven method that jointly models rendering and inverse rendering as two conditional generation tasks within a single diffusion framework. Inspired by UniDiffuser, we utilize two distinct time schedules to model both tasks, and with a tailored dual streaming module, we achieve cross-conditioning of two pre-trained diffusion models. This unified approach, named Uni-Renderer, allows the two processes to facilitate each other through a cycle-consistent constrain, mitigating ambiguity by enforcing consistency between intrinsic properties and rendered images. Combined with a meticulously prepared dataset, our method effectively decomposition of intrinsic properties and demonstrates a strong capability to recognize changes during rendering. We will open-source our training and inference code to the public, fostering further research and development in this area.
♻ ☆ Category-level Meta-learned NeRF Priors for Efficient Object Mapping
In 3D object mapping, category-level priors enable efficient object reconstruction and canonical pose estimation, requiring only a single prior per semantic category (e.g., chair, book, laptop). Recently, DeepSDF has predominantly been used as a category-level shape prior, but it struggles to reconstruct sharp geometry and is computationally expensive. In contrast, NeRFs capture fine details but have yet to be effectively integrated with category-level priors in a real-time multi-object mapping framework. To bridge this gap, we introduce PRENOM, a Prior-based Efficient Neural Object Mapper that integrates category-level priors with object-level NeRFs to enhance reconstruction efficiency while enabling canonical object pose estimation. PRENOM gets to know objects on a first-name basis by meta-learning on synthetic reconstruction tasks generated from open-source shape datasets. To account for object category variations, it employs a multi-objective genetic algorithm to optimize the NeRF architecture for each category, balancing reconstruction quality and training time. Additionally, prior-based probabilistic ray sampling directs sampling toward expected object regions, accelerating convergence and improving reconstruction quality under constrained resources. Experimental results on a low-end GPU highlight the ability of PRENOM to achieve high-quality reconstructions while maintaining computational feasibility. Specifically, comparisons with prior-free NeRF-based approaches on a synthetic dataset show a 21% lower Chamfer distance, demonstrating better reconstruction quality. Furthermore, evaluations against other approaches using shape priors on a noisy real-world dataset indicate a 13% improvement averaged across all reconstruction metrics, and comparable pose and size estimation accuracy, while being trained for 5x less time.
♻ ☆ Adapting Pre-Trained Vision Models for Novel Instance Detection and Segmentation DSN
Novel Instance Detection and Segmentation (NIDS) aims at detecting and segmenting novel object instances given a few examples of each instance. We propose a unified, simple, yet effective framework (NIDS-Net) comprising object proposal generation, embedding creation for both instance templates and proposal regions, and embedding matching for instance label assignment. Leveraging recent advancements in large vision methods, we utilize Grounding DINO and Segment Anything Model (SAM) to obtain object proposals with accurate bounding boxes and masks. Central to our approach is the generation of high-quality instance embeddings. We utilized foreground feature averages of patch embeddings from the DINOv2 ViT backbone, followed by refinement through a weight adapter mechanism that we introduce. We show experimentally that our weight adapter can adjust the embeddings locally within their feature space and effectively limit overfitting in the few-shot setting. Furthermore, the weight adapter optimizes weights to enhance the distinctiveness of instance embeddings during similarity computation. This methodology enables a straightforward matching strategy that results in significant performance gains. Our framework surpasses current state-of-the-art methods, demonstrating notable improvements in four detection datasets. In the segmentation tasks on seven core datasets of the BOP challenge, our method outperforms the leading published RGB methods and remains competitive with the best RGB-D method. We have also verified our method using real-world images from a Fetch robot and a RealSense camera. Project Page: https://irvlutd.github.io/NIDSNet/
comment: Project Page: https://irvlutd.github.io/NIDSNet/
♻ ☆ Vision-based Geo-Localization of Future Mars Rotorcraft in Challenging Illumination Conditions
Planetary exploration using aerial assets has the potential for unprecedented scientific discoveries on Mars. While NASA's Mars helicopter Ingenuity proved flight in Martian atmosphere is possible, future Mars rotocrafts will require advanced navigation capabilities for long-range flights. One such critical capability is Map-based Localization (MbL) which registers an onboard image to a reference map during flight in order to mitigate cumulative drift from visual odometry. However, significant illumination differences between rotocraft observations and a reference map prove challenging for traditional MbL systems, restricting the operational window of the vehicle. In this work, we investigate a new MbL system and propose Geo-LoFTR, a geometry-aided deep learning model for image registration that is more robust under large illumination differences than prior models. The system is supported by a custom simulation framework that uses real orbital maps to produce large amounts of realistic images of the Martian terrain. Comprehensive evaluations show that our proposed system outperforms prior MbL efforts in terms of localization accuracy under significant lighting and scale variations. Furthermore, we demonstrate the validity of our approach across a simulated Martian day.
♻ ☆ LS-HAR: Language Supervised Human Action Recognition with Salient Fusion, Construction Sites as a Use-Case
Detecting human actions is a crucial task for autonomous robots and vehicles, often requiring the integration of various data modalities for improved accuracy. In this study, we introduce a novel approach to Human Action Recognition (HAR) using language supervision named LS-HAR based on skeleton and visual cues. Our method leverages a language model to guide the feature extraction process in the skeleton encoder. Specifically, we employ learnable prompts for the language model conditioned on the skeleton modality to optimize feature representation. Furthermore, we propose a fusion mechanism that combines dual-modality features using a salient fusion module, incorporating attention and transformer mechanisms to address the modalities' high dimensionality. This fusion process prioritizes informative video frames and body joints, enhancing the recognition accuracy of human actions. Additionally, we introduce a new dataset tailored for real-world robotic applications in construction sites, featuring visual, skeleton, and depth data modalities, named VolvoConstAct. This dataset serves to facilitate the training and evaluation of machine learning models to instruct autonomous construction machines for performing necessary tasks in real-world construction sites. To evaluate our approach, we conduct experiments on our dataset as well as three widely used public datasets: NTU-RGB+D, NTU-RGB+D 120, and NW-UCLA. Results reveal that our proposed method achieves promising performance across all datasets, demonstrating its robustness and potential for various applications. The code, dataset, and demonstration of real-machine experiments are available at: https://mmahdavian.github.io/ls_har/
♻ ☆ CSCPR: Cross-Source-Context Indoor RGB-D Place Recognition
We extend our previous work, PoCo, and present a new algorithm, Cross-Source-Context Place Recognition (CSCPR), for RGB-D indoor place recognition that integrates global retrieval and reranking into an end-to-end model and keeps the consistency of using Context-of-Clusters (CoCs) for feature processing. Unlike prior approaches that primarily focus on the RGB domain for place recognition reranking, CSCPR is designed to handle the RGB-D data. We apply the CoCs to handle cross-sourced and cross-scaled RGB-D point clouds and introduce two novel modules for reranking: the Self-Context Cluster (SCC) and the Cross Source Context Cluster (CSCC), which enhance feature representation and match query-database pairs based on local features, respectively. We also release two new datasets, ScanNetIPR and ARKitIPR. Our experiments demonstrate that CSCPR significantly outperforms state-of-the-art models on these datasets by at least 29.27% in Recall@1 on the ScanNet-PR dataset and 43.24% in the new datasets. Code and datasets will be released.
Artificial Intelligence 177
☆ The MASK Benchmark: Disentangling Honesty From Accuracy in AI Systems
As large language models (LLMs) become more capable and agentic, the requirement for trust in their outputs grows significantly, yet at the same time concerns have been mounting that models may learn to lie in pursuit of their goals. To address these concerns, a body of work has emerged around the notion of "honesty" in LLMs, along with interventions aimed at mitigating deceptive behaviors. However, evaluations of honesty are currently highly limited, with no benchmark combining large scale and applicability to all models. Moreover, many benchmarks claiming to measure honesty in fact simply measure accuracy--the correctness of a model's beliefs--in disguise. In this work, we introduce a large-scale human-collected dataset for measuring honesty directly, allowing us to disentangle accuracy from honesty for the first time. Across a diverse set of LLMs, we find that while larger models obtain higher accuracy on our benchmark, they do not become more honest. Surprisingly, while most frontier LLMs obtain high scores on truthfulness benchmarks, we find a substantial propensity in frontier LLMs to lie when pressured to do so, resulting in low honesty scores on our benchmark. We find that simple methods, such as representation engineering interventions, can improve honesty. These results underscore the growing need for robust evaluations and effective interventions to ensure LLMs remain trustworthy.
comment: Website: https://www.mask-benchmark.ai
☆ Process-based Self-Rewarding Language Models
Large Language Models have demonstrated outstanding performance across various downstream tasks and have been widely applied in multiple scenarios. Human-annotated preference data is used for training to further improve LLMs' performance, which is constrained by the upper limit of human performance. Therefore, Self-Rewarding method has been proposed, where LLMs generate training data by rewarding their own outputs. However, the existing self-rewarding paradigm is not effective in mathematical reasoning scenarios and may even lead to a decline in performance. In this work, we propose the Process-based Self-Rewarding pipeline for language models, which introduces long-thought reasoning, step-wise LLM-as-a-Judge, and step-wise preference optimization within the self-rewarding paradigm. Our new paradigm successfully enhances the performance of LLMs on multiple mathematical reasoning benchmarks through iterative Process-based Self-Rewarding, demonstrating the immense potential of self-rewarding to achieve LLM reasoning that may surpass human capabilities.
☆ CHOP: Mobile Operating Assistant with Constrained High-frequency Optimized Subtask Planning
The advancement of visual language models (VLMs) has enhanced mobile device operations, allowing simulated human-like actions to address user requirements. Current VLM-based mobile operating assistants can be structured into three levels: task, subtask, and action. The subtask level, linking high-level goals with low-level executable actions, is crucial for task completion but faces two challenges: ineffective subtasks that lower-level agent cannot execute and inefficient subtasks that fail to contribute to the completion of the higher-level task. These challenges stem from VLM's lack of experience in decomposing subtasks within GUI scenarios in multi-agent architecture. To address these, we propose a new mobile assistant architecture with constrained high-frequency o}ptimized planning (CHOP). Our approach overcomes the VLM's deficiency in GUI scenarios planning by using human-planned subtasks as the basis vector. We evaluate our architecture in both English and Chinese contexts across 20 Apps, demonstrating significant improvements in both effectiveness and efficiency. Our dataset and code is available at https://github.com/Yuqi-Zhou/CHOP
☆ Rethinking Deep Clustering Paradigms: Self-Supervision Is All You Need
The recent advances in deep clustering have been made possible by significant progress in self-supervised and pseudo-supervised learning. However, the trade-off between self-supervision and pseudo-supervision can give rise to three primary issues. The joint training causes Feature Randomness and Feature Drift, whereas the independent training causes Feature Randomness and Feature Twist. In essence, using pseudo-labels generates random and unreliable features. The combination of pseudo-supervision and self-supervision drifts the reliable clustering-oriented features. Moreover, moving from self-supervision to pseudo-supervision can twist the curved latent manifolds. This paper addresses the limitations of existing deep clustering paradigms concerning Feature Randomness, Feature Drift, and Feature Twist. We propose a new paradigm with a new strategy that replaces pseudo-supervision with a second round of self-supervision training. The new strategy makes the transition between instance-level self-supervision and neighborhood-level self-supervision smoother and less abrupt. Moreover, it prevents the drifting effect that is caused by the strong competition between instance-level self-supervision and clustering-level pseudo-supervision. Moreover, the absence of the pseudo-supervision prevents the risk of generating random features. With this novel approach, our paper introduces a Rethinking of the Deep Clustering Paradigms, denoted by R-DC. Our model is specifically designed to address three primary challenges encountered in Deep Clustering: Feature Randomness, Feature Drift, and Feature Twist. Experimental results conducted on six datasets have shown that the two-level self-supervision training yields substantial improvements.
☆ Deep Causal Behavioral Policy Learning: Applications to Healthcare
We present a deep learning-based approach to studying dynamic clinical behavioral regimes in diverse non-randomized healthcare settings. Our proposed methodology - deep causal behavioral policy learning (DC-BPL) - uses deep learning algorithms to learn the distribution of high-dimensional clinical action paths, and identifies the causal link between these action paths and patient outcomes. Specifically, our approach: (1) identifies the causal effects of provider assignment on clinical outcomes; (2) learns the distribution of clinical actions a given provider would take given evolving patient information; (3) and combines these steps to identify the optimal provider for a given patient type and emulate that provider's care decisions. Underlying this strategy, we train a large clinical behavioral model (LCBM) on electronic health records data using a transformer architecture, and demonstrate its ability to estimate clinical behavioral policies. We propose a novel interpretation of a behavioral policy learned using the LCBM: that it is an efficient encoding of complex, often implicit, knowledge used to treat a patient. This allows us to learn a space of policies that are critical to a wide range of healthcare applications, in which the vast majority of clinical knowledge is acquired tacitly through years of practice and only a tiny fraction of information relevant to patient care is written down (e.g. in textbooks, studies or standardized guidelines).
☆ Machine Learning in Biomechanics: Key Applications and Limitations in Walking, Running, and Sports Movements
This chapter provides an overview of recent and promising Machine Learning applications, i.e. pose estimation, feature estimation, event detection, data exploration & clustering, and automated classification, in gait (walking and running) and sports biomechanics. It explores the potential of Machine Learning methods to address challenges in biomechanical workflows, highlights central limitations, i.e. data and annotation availability and explainability, that need to be addressed, and emphasises the importance of interdisciplinary approaches for fully harnessing the potential of Machine Learning in gait and sports biomechanics.
☆ Rethinking Video Tokenization: A Conditioned Diffusion-based Approach
Video tokenizers, which transform videos into compact latent representations, are key to video generation. Existing video tokenizers are based on the VAE architecture and follow a paradigm where an encoder compresses videos into compact latents, and a deterministic decoder reconstructs the original videos from these latents. In this paper, we propose a novel \underline{\textbf{C}}onditioned \underline{\textbf{D}}iffusion-based video \underline{\textbf{T}}okenizer entitled \textbf{\ourmethod}, which departs from previous methods by replacing the deterministic decoder with a 3D causal diffusion model. The reverse diffusion generative process of the decoder is conditioned on the latent representations derived via the encoder. With a feature caching and sampling acceleration, the framework efficiently reconstructs high-fidelity videos of arbitrary lengths. Results show that {\ourmethod} achieves state-of-the-art performance in video reconstruction tasks using just a single-step sampling. Even a smaller version of {\ourmethod} still achieves reconstruction results on par with the top two baselines. Furthermore, the latent video generation model trained using {\ourmethod} also shows superior performance.
☆ Curating Demonstrations using Online Experience
Many robot demonstration datasets contain heterogeneous demonstrations of varying quality. This heterogeneity may benefit policy pre-training, but can hinder robot performance when used with a final imitation learning objective. In particular, some strategies in the data may be less reliable than others or may be underrepresented in the data, leading to poor performance when such strategies are sampled at test time. Moreover, such unreliable or underrepresented strategies can be difficult even for people to discern, and sifting through demonstration datasets is time-consuming and costly. On the other hand, policy performance when trained on such demonstrations can reflect the reliability of different strategies. We thus propose for robots to self-curate based on online robot experience (Demo-SCORE). More specifically, we train and cross-validate a classifier to discern successful policy roll-outs from unsuccessful ones and use the classifier to filter heterogeneous demonstration datasets. Our experiments in simulation and the real world show that Demo-SCORE can effectively identify suboptimal demonstrations without manual curation. Notably, Demo-SCORE achieves over 15-35% higher absolute success rate in the resulting policy compared to the base policy trained with all original demonstrations.
☆ ILLC: Iterative Layer-by-Layer Compression for Enhancing Structural Faithfulness in SpArX
In the field of Explainable Artificial Intelligence (XAI), argumentative XAI approaches have been proposed to represent the internal reasoning process of deep neural networks in a more transparent way by interpreting hidden nodes as arguements. However, as the number of layers increases, existing compression methods simplify all layers at once, which lead to high accumulative information loss. To compensate for this, we propose an iterative layer-by-layer compression technique in which each layer is compressed separately and the reduction error in the next layer is immediately compensated for, thereby improving the overall input-output and structural fidelity of the model. Experiments on the Breast Cancer Diagnosis dataset show that, compared to traditional compression, the method reduces input-output and structural unfaithfulness, and maintains a more consistent attack-support relationship in the Argumentative Explanation scheme. This is significant because it provides a new way to make complex MLP models more compact while still conveying their internal inference logic without distortion.
comment: 8 pages, 2 figures
☆ Attentive Reasoning Queries: A Systematic Method for Optimizing Instruction-Following in Large Language Models
We present Attentive Reasoning Queries (ARQs), a novel structured reasoning approach that significantly improves instruction-following in Large Language Models through domain-specialized reasoning blueprints. While LLMs demonstrate remarkable capabilities across diverse tasks, they often fail to maintain adherence to complex, use-case-specific instructions during multi-turn conversations, presenting challenges for business-critical applications. ARQs address this limitation by guiding LLMs through systematic reasoning steps with targeted queries that reinstate critical instructions and facilitate intermediate reasoning throughout the completion process. In extensive testing within Parlant, our framework for reliable customer-facing agents in which ARQs were born out of necessity, they achieved a 90.2% success rate across 87 test scenarios, outperforming both Chain-of-Thought reasoning (86.1%) and direct response generation (81.5%). ARQs showed particular strength in addressing persistent failure modes like guideline re-application and hallucination prevention. Our analysis also revealed that ARQs can potentially be more computationally efficient than free-form reasoning when carefully designed. These findings demonstrate that structured reasoning approaches provide effective mechanisms for controlling how LLMs process information and make decisions in complex scenarios.
comment: Supplementary materials, including code, is available on our GitHub: https://github.com/emcie-co/parlant/tree/arqs-a-systematic-method-for-optimizing-instruction-following-in-llms
☆ A Generative Approach to High Fidelity 3D Reconstruction from Text Data
The convergence of generative artificial intelligence and advanced computer vision technologies introduces a groundbreaking approach to transforming textual descriptions into three-dimensional representations. This research proposes a fully automated pipeline that seamlessly integrates text-to-image generation, various image processing techniques, and deep learning methods for reflection removal and 3D reconstruction. By leveraging state-of-the-art generative models like Stable Diffusion, the methodology translates natural language inputs into detailed 3D models through a multi-stage workflow. The reconstruction process begins with the generation of high-quality images from textual prompts, followed by enhancement by a reinforcement learning agent and reflection removal using the Stable Delight model. Advanced image upscaling and background removal techniques are then applied to further enhance visual fidelity. These refined two-dimensional representations are subsequently transformed into volumetric 3D models using sophisticated machine learning algorithms, capturing intricate spatial relationships and geometric characteristics. This process achieves a highly structured and detailed output, ensuring that the final 3D models reflect both semantic accuracy and geometric precision. This approach addresses key challenges in generative reconstruction, such as maintaining semantic coherence, managing geometric complexity, and preserving detailed visual information. Comprehensive experimental evaluations will assess reconstruction quality, semantic accuracy, and geometric fidelity across diverse domains and varying levels of complexity. By demonstrating the potential of AI-driven 3D reconstruction techniques, this research offers significant implications for fields such as augmented reality (AR), virtual reality (VR), and digital content creation.
☆ Improving 6D Object Pose Estimation of metallic Household and Industry Objects
6D object pose estimation suffers from reduced accuracy when applied to metallic objects. We set out to improve the state-of-the-art by addressing challenges such as reflections and specular highlights in industrial applications. Our novel BOP-compatible dataset, featuring a diverse set of metallic objects (cans, household, and industrial items) under various lighting and background conditions, provides additional geometric and visual cues. We demonstrate that these cues can be effectively leveraged to enhance overall performance. To illustrate the usefulness of the additional features, we improve upon the GDRNPP algorithm by introducing an additional keypoint prediction and material estimator head in order to improve spatial scene understanding. Evaluations on the new dataset show improved accuracy for metallic objects, supporting the hypothesis that additional geometric and visual cues can improve learning.
☆ Improving Neutral Point of View Text Generation through Parameter-Efficient Reinforcement Learning and a Small-Scale High-Quality Dataset
This paper describes the construction of a dataset and the evaluation of training methods to improve generative large language models' (LLMs) ability to answer queries on sensitive topics with a Neutral Point of View (NPOV), i.e., to provide significantly more informative, diverse and impartial answers. The dataset, the SHQ-NPOV dataset, comprises 300 high-quality, human-written quadruplets: a query on a sensitive topic, an answer, an NPOV rating, and a set of links to source texts elaborating the various points of view. The first key contribution of this paper is a new methodology to create such datasets through iterative rounds of human peer-critique and annotator training, which we release alongside the dataset. The second key contribution is the identification of a highly effective training regime for parameter-efficient reinforcement learning (PE-RL) to improve NPOV generation. We compare and extensively evaluate PE-RL and multiple baselines-including LoRA finetuning (a strong baseline), SFT and RLHF. PE-RL not only improves on overall NPOV quality compared to the strongest baseline ($97.06\%\rightarrow 99.08\%$), but also scores much higher on features linguists identify as key to separating good answers from the best answers ($60.25\%\rightarrow 85.21\%$ for presence of supportive details, $68.74\%\rightarrow 91.43\%$ for absence of oversimplification). A qualitative analysis corroborates this. Finally, our evaluation finds no statistical differences between results on topics that appear in the training dataset and those on separated evaluation topics, which provides strong evidence that our approach to training PE-RL exhibits very effective out of topic generalization.
☆ Towards Understanding Text Hallucination of Diffusion Models via Local Generation Bias
Score-based diffusion models have achieved incredible performance in generating realistic images, audio, and video data. While these models produce high-quality samples with impressive details, they often introduce unrealistic artifacts, such as distorted fingers or hallucinated texts with no meaning. This paper focuses on textual hallucinations, where diffusion models correctly generate individual symbols but assemble them in a nonsensical manner. Through experimental probing, we consistently observe that such phenomenon is attributed it to the network's local generation bias. Denoising networks tend to produce outputs that rely heavily on highly correlated local regions, particularly when different dimensions of the data distribution are nearly pairwise independent. This behavior leads to a generation process that decomposes the global distribution into separate, independent distributions for each symbol, ultimately failing to capture the global structure, including underlying grammar. Intriguingly, this bias persists across various denoising network architectures including MLP and transformers which have the structure to model global dependency. These findings also provide insights into understanding other types of hallucinations, extending beyond text, as a result of implicit biases in the denoising models. Additionally, we theoretically analyze the training dynamics for a specific case involving a two-layer MLP learning parity points on a hypercube, offering an explanation of its underlying mechanism.
☆ Small but Mighty: Enhancing Time Series Forecasting with Lightweight LLMs
While LLMs have demonstrated remarkable potential in time series forecasting, their practical deployment remains constrained by excessive computational demands and memory footprints. Existing LLM-based approaches typically suffer from three critical limitations: Inefficient parameter utilization in handling numerical time series patterns; Modality misalignment between continuous temporal signals and discrete text embeddings; and Inflexibility for real-time expert knowledge integration. We present SMETimes, the first systematic investigation of sub-3B parameter SLMs for efficient and accurate time series forecasting. Our approach centers on three key innovations: A statistically-enhanced prompting mechanism that bridges numerical time series with textual semantics through descriptive statistical features; A adaptive fusion embedding architecture that aligns temporal patterns with language model token spaces through learnable parameters; And a dynamic mixture-of-experts framework enabled by SLMs' computational efficiency, adaptively combining base predictions with domain-specific models. Extensive evaluations across seven benchmark datasets demonstrate that our 3B-parameter SLM achieves state-of-the-art performance on five primary datasets while maintaining 3.8x faster training and 5.2x lower memory consumption compared to 7B-parameter LLM baselines. Notably, the proposed model exhibits better learning capabilities, achieving 12.3% lower MSE than conventional LLM. Ablation studies validate that our statistical prompting and cross-modal fusion modules respectively contribute 15.7% and 18.2% error reduction in long-horizon forecasting tasks. By redefining the efficiency-accuracy trade-off landscape, this work establishes SLMs as viable alternatives to resource-intensive LLMs for practical time series forecasting. Code and models are available at https://github.com/xiyan1234567/SMETimes.
comment: Work in progress
☆ English K_Quantization of LLMs Does Not Disproportionately Diminish Multilingual Performance
For consumer usage of locally deployed LLMs, the GGUF format and k_quantization are invaluable tools for maintaining the performance of the original model while reducing it to sizes deployable with consumer-grade hardware. The number of bits dedicated to each weight from the original model is reduced based on how important they are thought to be during model inference. This importance is arrived at through the application of an 'importance matrix'-a relatively small text document meant to be representative of the LLM's standard use-cases. In the vast majority of quants available online, this document is primarily written in English. It was therefore an open question whether performance on English language tasks was preserved through the sacrifice of multilingual performance and whether it can be preserved with alternate importance matrices. This article investigates these hypotheses by quantizing Llama3.3 70B on importance matrices written in three languages (English, Norwegian, and Malayalam) and evaluating them on the MixEval dataset in both English and Norwegian. All experiments related to k_quantization yielded non-significant results (In all cases p > 0.237) indicating that current quantization practices do not disproportionately harm multilingual performance.
comment: 8 pages, 6 figures
☆ A Conceptual Model for Attributions in Event-Centric Knowledge Graphs
The use of narratives as a means of fusing information from knowledge graphs (KGs) into a coherent line of argumentation has been the subject of recent investigation. Narratives are especially useful in event-centric knowledge graphs in that they provide a means to connect different real-world events and categorize them by well-known narrations. However, specifically for controversial events, a problem in information fusion arises, namely, multiple viewpoints regarding the validity of certain event aspects, e.g., regarding the role a participant takes in an event, may exist. Expressing those viewpoints in KGs is challenging because disputed information provided by different viewpoints may introduce inconsistencies. Hence, most KGs only feature a single view on the contained information, hampering the effectiveness of narrative information access. This paper is an extension of our original work and introduces attributions, i.e., parameterized predicates that allow for the representation of facts that are only valid in a specific viewpoint. For this, we develop a conceptual model that allows for the representation of viewpoint-dependent information. As an extension, we enhance the model by a conception of viewpoint-compatibility. Based on this, we deepen our original deliberations on the model's effects on information fusion and provide additional grounding in the literature.
comment: Submitted to Data & Knowledge Engineering, 22 pages, 9 figures
☆ AI-Enabled Conversational Journaling for Advancing Parkinson's Disease Symptom Tracking
Journaling plays a crucial role in managing chronic conditions by allowing patients to document symptoms and medication intake, providing essential data for long-term care. While valuable, traditional journaling methods often rely on static, self-directed entries, lacking interactive feedback and real-time guidance. This gap can result in incomplete or imprecise information, limiting its usefulness for effective treatment. To address this gap, we introduce PATRIKA, an AI-enabled prototype designed specifically for people with Parkinson's disease (PwPD). The system incorporates cooperative conversation principles, clinical interview simulations, and personalization to create a more effective and user-friendly journaling experience. Through two user studies with PwPD and iterative refinement of PATRIKA, we demonstrate conversational journaling's significant potential in patient engagement and collecting clinically valuable information. Our results showed that generating probing questions PATRIKA turned journaling into a bi-directional interaction. Additionally, we offer insights for designing journaling systems for healthcare and future directions for promoting sustained journaling.
comment: To appear in the ACM CHI conference on Human Factors in Computing Systems (CHI), 2025
☆ AdaSin: Enhancing Hard Sample Metrics with Dual Adaptive Penalty for Face Recognition
In recent years, the emergence of deep convolutional neural networks has positioned face recognition as a prominent research focus in computer vision. Traditional loss functions, such as margin-based, hard-sample mining-based, and hybrid approaches, have achieved notable performance improvements, with some leveraging curriculum learning to optimize training. However, these methods often fall short in effectively quantifying the difficulty of hard samples. To address this, we propose Adaptive Sine (AdaSin) loss function, which introduces the sine of the angle between a sample's embedding feature and its ground-truth class center as a novel difficulty metric. This metric enables precise and effective penalization of hard samples. By incorporating curriculum learning, the model dynamically adjusts classification boundaries across different training stages. Unlike previous adaptive-margin loss functions, AdaSin introduce a dual adaptive penalty, applied to both the positive and negative cosine similarities of hard samples. This design imposes stronger constraints, enhancing intra-class compactness and inter-class separability. The combination of the dual adaptive penalty and curriculum learning is guided by a well-designed difficulty metric. It enables the model to focus more effectively on hard samples in later training stages, and lead to the extraction of highly discriminative face features. Extensive experiments across eight benchmarks demonstrate that AdaSin achieves superior accuracy compared to other state-of-the-art methods.
☆ NeuGrasp: Generalizable Neural Surface Reconstruction with Background Priors for Material-Agnostic Object Grasp Detection ICRA
Robotic grasping in scenes with transparent and specular objects presents great challenges for methods relying on accurate depth information. In this paper, we introduce NeuGrasp, a neural surface reconstruction method that leverages background priors for material-agnostic grasp detection. NeuGrasp integrates transformers and global prior volumes to aggregate multi-view features with spatial encoding, enabling robust surface reconstruction in narrow and sparse viewing conditions. By focusing on foreground objects through residual feature enhancement and refining spatial perception with an occupancy-prior volume, NeuGrasp excels in handling objects with transparent and specular surfaces. Extensive experiments in both simulated and real-world scenarios show that NeuGrasp outperforms state-of-the-art methods in grasping while maintaining comparable reconstruction quality. More details are available at https://neugrasp.github.io/.
comment: 7 pages, 5 figures. IEEE International Conference on Robotics and Automation (ICRA) 2025
☆ Rethinking Synthetic Data definitions: A privacy driven approach
Synthetic data is gaining traction as a cost-effective solution for the increasing data demands of AI development and can be generated either from existing knowledge or derived data captured from real-world events. The source of the synthetic data generation and the technique used significantly impacts its residual privacy risk and therefore its opportunity for sharing. Traditional classification of synthetic data types no longer fit the newer generation techniques and there is a need to better align the classification with practical needs. We suggest a new way of grouping synthetic data types that better supports privacy evaluations to aid regulatory policymaking. Our novel classification provides flexibility to new advancements like deep generative methods and offers a more practical framework for future applications.
☆ Parallelized Planning-Acting for Efficient LLM-based Multi-Agent Systems
Recent advancements in Large Language Model(LLM)-based Multi-Agent Systems(MAS) have demonstrated remarkable potential for tackling complex decision-making tasks. However, existing frameworks inevitably rely on serialized execution paradigms, where agents must complete sequential LLM planning before taking action. This fundamental constraint severely limits real-time responsiveness and adaptation, which is crucial in dynamic environments with ever-changing scenarios. In this paper, we propose a novel parallelized planning-acting framework for LLM-based MAS, featuring a dual-thread architecture with interruptible execution to enable concurrent planning and acting. Specifically, our framework comprises two core threads:(1) a planning thread driven by a centralized memory system, maintaining synchronization of environmental states and agent communication to support dynamic decision-making; and (2) an acting thread equipped with a comprehensive skill library, enabling automated task execution through recursive decomposition. Extensive experiments on challenging Minecraft demonstrate the effectiveness of the proposed framework.
Collaborative Expert LLMs Guided Multi-Objective Molecular Optimization
Molecular optimization is a crucial yet complex and time-intensive process that often acts as a bottleneck for drug development. Traditional methods rely heavily on trial and error, making multi-objective optimization both time-consuming and resource-intensive. Current AI-based methods have shown limited success in handling multi-objective optimization tasks, hampering their practical utilization. To address this challenge, we present MultiMol, a collaborative large language model (LLM) system designed to guide multi-objective molecular optimization. MultiMol comprises two agents, including a data-driven worker agent and a literature-guided research agent. The data-driven worker agent is a large language model being fine-tuned to learn how to generate optimized molecules considering multiple objectives, while the literature-guided research agent is responsible for searching task-related literature to find useful prior knowledge that facilitates identifying the most promising optimized candidates. In evaluations across six multi-objective optimization tasks, MultiMol significantly outperforms existing methods, achieving a 82.30% success rate, in sharp contrast to the 27.50% success rate of current strongest methods. To further validate its practical impact, we tested MultiMol on two real-world challenges. First, we enhanced the selectivity of Xanthine Amine Congener (XAC), a promiscuous ligand that binds both A1R and A2AR, successfully biasing it towards A1R. Second, we improved the bioavailability of Saquinavir, an HIV-1 protease inhibitor with known bioavailability limitations. Overall, these results indicate that MultiMol represents a highly promising approach for multi-objective molecular optimization, holding great potential to accelerate the drug development process and contribute to the advancement of pharmaceutical research.
☆ CURVALID: Geometrically-guided Adversarial Prompt Detection
Adversarial prompts capable of jailbreaking large language models (LLMs) and inducing undesirable behaviours pose a significant obstacle to their safe deployment. Current mitigation strategies rely on activating built-in defence mechanisms or fine-tuning the LLMs, but the fundamental distinctions between adversarial and benign prompts are yet to be understood. In this work, we introduce CurvaLID, a novel defense framework that efficiently detects adversarial prompts by leveraging their geometric properties. It is agnostic to the type of LLM, offering a unified detection framework across diverse adversarial prompts and LLM architectures. CurvaLID builds on the geometric analysis of text prompts to uncover their underlying differences. We theoretically extend the concept of curvature via the Whewell equation into an $n$-dimensional word embedding space, enabling us to quantify local geometric properties, including semantic shifts and curvature in the underlying manifolds. Additionally, we employ Local Intrinsic Dimensionality (LID) to capture geometric features of text prompts within adversarial subspaces. Our findings reveal that adversarial prompts differ fundamentally from benign prompts in terms of their geometric characteristics. Our results demonstrate that CurvaLID delivers superior detection and rejection of adversarial queries, paving the way for safer LLM deployment. The source code can be found at https://github.com/Cancanxxx/CurvaLID
comment: 29 Pages, 5 figues
☆ SafeVLA: Towards Safety Alignment of Vision-Language-Action Model via Safe Reinforcement Learning
Vision-language-action models (VLAs) have shown great potential as generalist robot policies. However, these models pose urgent safety challenges during deployment, including the risk of physical harm to the environment, the robot itself, and humans. How can safety be explicitly incorporated into VLAs? In this work, we propose SafeVLA, a novel algorithm designed to integrate safety into VLAs, ensuring the protection of the environment, robot hardware and humans in real-world settings. SafeVLA effectively balances safety and task performance by employing large-scale constrained learning within simulated environments. We demonstrate that SafeVLA outperforms the current state-of-the-art method in both safety and task performance, achieving average improvements of 83.58% and 3.85%, respectively, in simulation. By prioritizing safety, our approach eliminates high-risk behaviors and reduces the upper bound of unsafe behaviors to 1/35 of that in the current state-of-the-art, thereby significantly mitigating long-tail risks. Furthermore, the learned safety constraints generalize to diverse, unseen scenarios, including multiple out-of-distribution perturbations and tasks. Our data, models and newly proposed benchmark environment are available at https://sites.google.com/view/pku-safevla.
comment: 10 pages, 4 figures
☆ Open-Source Large Language Models as Multilingual Crowdworkers: Synthesizing Open-Domain Dialogues in Several Languages With No Examples in Targets and No Machine Translation
The prevailing paradigm in the domain of Open-Domain Dialogue agents predominantly focuses on the English language, encompassing both models and datasets. Furthermore, the financial and temporal investments required for crowdsourcing such datasets for finetuning are substantial, particularly when multiple languages are involved. Fortunately, advancements in Large Language Models (LLMs) have unveiled a plethora of possibilities across diverse tasks. Specifically, instruction-tuning has enabled LLMs to execute tasks based on natural language instructions, occasionally surpassing the performance of human crowdworkers. Additionally, these models possess the capability to function in various languages within a single thread. Consequently, to generate new samples in different languages, we propose leveraging these capabilities to replicate the data collection process. We introduce a pipeline for generating Open-Domain Dialogue data in multiple Target Languages using LLMs, with demonstrations provided in a unique Source Language. By eschewing explicit Machine Translation in this approach, we enhance the adherence to language-specific nuances. We apply this methodology to the PersonaChat dataset. To enhance the openness of generated dialogues and mimic real life scenarii, we added the notion of speech events corresponding to the type of conversation the speakers are involved in and also that of common ground which represents the premises of a conversation.
☆ Taxation Perspectives from Large Language Models: A Case Study on Additional Tax Penalties
How capable are large language models (LLMs) in the domain of taxation? Although numerous studies have explored the legal domain in general, research dedicated to taxation remain scarce. Moreover, the datasets used in these studies are either simplified, failing to reflect the real-world complexities, or unavailable as open source. To address this gap, we introduce PLAT, a new benchmark designed to assess the ability of LLMs to predict the legitimacy of additional tax penalties. PLAT is constructed to evaluate LLMs' understanding of tax law, particularly in cases where resolving the issue requires more than just applying related statutes. Our experiments with six LLMs reveal that their baseline capabilities are limited, especially when dealing with conflicting issues that demand a comprehensive understanding. However, we found that enabling retrieval, self-reasoning, and discussion among multiple agents with specific role assignments, this limitation can be mitigated.
comment: 5 pages
☆ Conceptualizing Uncertainty
Uncertainty in machine learning refers to the degree of confidence or lack thereof in a model's predictions. While uncertainty quantification methods exist, explanations of uncertainty, especially in high-dimensional settings, remain an open challenge. Existing work focuses on feature attribution approaches which are restricted to local explanations. Understanding uncertainty, its origins, and characteristics on a global scale is crucial for enhancing interpretability and trust in a model's predictions. In this work, we propose to explain the uncertainty in high-dimensional data classification settings by means of concept activation vectors which give rise to local and global explanations of uncertainty. We demonstrate the utility of the generated explanations by leveraging them to refine and improve our model.
☆ RASD: Retrieval-Augmented Speculative Decoding
Speculative decoding accelerates inference in large language models (LLMs) by generating draft tokens for target model verification. Current approaches for obtaining draft tokens rely on lightweight draft models or additional model structures to generate draft tokens and retrieve context from databases. Due to the draft model's small size and limited training data, model-based speculative decoding frequently becomes less effective in out-of-domain scenarios. Additionally, the time cost of the drafting phase results in a low upper limit on acceptance length during the verification step, limiting overall efficiency. This paper proposes RASD (Retrieval-Augmented Speculative Decoding), which adopts retrieval methods to enhance model-based speculative decoding. We introduce tree pruning and tree fusion to achieve this. Specifically, we develop a pruning method based on the draft model's probability distribution to construct the optimal retrieval tree. Second, we employ the longest prefix matching algorithm to merge the tree generated by the draft model with the retrieval tree, resulting in a unified tree for verification. Experimental results demonstrate that RASD achieves state-of-the-art inference acceleration across tasks such as DocQA, Summary, Code, and In-Domain QA. Moreover, RASD exhibits strong scalability, seamlessly integrating with various speculative decoding approaches, including both generation-based and retrieval-based methods.
☆ Privacy is All You Need: Revolutionizing Wearable Health Data with Advanced PETs
In a world where data is the new currency, wearable health devices offer unprecedented insights into daily life, continuously monitoring vital signs and metrics. However, this convenience raises privacy concerns, as these devices collect sensitive data that can be misused or breached. Traditional measures often fail due to real-time data processing needs and limited device power. Users also lack awareness and control over data sharing and usage. We propose a Privacy-Enhancing Technology (PET) framework for wearable devices, integrating federated learning, lightweight cryptographic methods, and selectively deployed blockchain technology. The blockchain acts as a secure ledger triggered only upon data transfer requests, granting users real-time notifications and control. By dismantling data monopolies, this approach returns data sovereignty to individuals. Through real-world applications like secure medical data sharing, privacy-preserving fitness tracking, and continuous health monitoring, our framework reduces privacy risks by up to 70 percent while preserving data utility and performance. This innovation sets a new benchmark for wearable privacy and can scale to broader IoT ecosystems, including smart homes and industry. As data continues to shape our digital landscape, our research underscores the critical need to maintain privacy and user control at the forefront of technological progress.
☆ Simplicial SMOTE: Oversampling Solution to the Imbalanced Learning Problem KDD 2025
SMOTE (Synthetic Minority Oversampling Technique) is the established geometric approach to random oversampling to balance classes in the imbalanced learning problem, followed by many extensions. Its idea is to introduce synthetic data points of the minor class, with each new point being the convex combination of an existing data point and one of its k-nearest neighbors. In this paper, by viewing SMOTE as sampling from the edges of a geometric neighborhood graph and borrowing tools from the topological data analysis, we propose a novel technique, Simplicial SMOTE, that samples from the simplices of a geometric neighborhood simplicial complex. A new synthetic point is defined by the barycentric coordinates w.r.t. a simplex spanned by an arbitrary number of data points being sufficiently close rather than a pair. Such a replacement of the geometric data model results in better coverage of the underlying data distribution compared to existing geometric sampling methods and allows the generation of synthetic points of the minority class closer to the majority class on the decision boundary. We experimentally demonstrate that our Simplicial SMOTE outperforms several popular geometric sampling methods, including the original SMOTE. Moreover, we show that simplicial sampling can be easily integrated into existing SMOTE extensions. We generalize and evaluate simplicial extensions of the classic Borderline SMOTE, Safe-level SMOTE, and ADASYN algorithms, all of which outperform their graph-based counterparts.
comment: Accepted at KDD 2025 (research track)
☆ Augmentation-Based Deep Learning for Identification of Circulating Tumor Cells
Circulating tumor cells (CTCs) are crucial biomarkers in liquid biopsy, offering a noninvasive tool for cancer patient management. However, their identification remains particularly challenging due to their limited number and heterogeneity. Labeling samples for contrast limits the generalization of fluorescence-based methods across different hospital datasets. Analyzing single-cell images enables detailed assessment of cell morphology, subcellular structures, and phenotypic variations, often hidden in clustered images. Developing a method based on bright-field single-cell analysis could overcome these limitations. CTCs can be isolated using an unbiased workflow combining Parsortix technology, which selects cells based on size and deformability, with DEPArray technology, enabling precise visualization and selection of single cells. Traditionally, DEPArray-acquired digital images are manually analyzed, making the process time-consuming and prone to variability. In this study, we present a Deep Learning-based classification pipeline designed to distinguish CTCs from leukocytes in blood samples, aimed to enhance diagnostic accuracy and optimize clinical workflows. Our approach employs images from the bright-field channel acquired through DEPArray technology leveraging a ResNet-based CNN. To improve model generalization, we applied three types of data augmentation techniques and incorporated fluorescence (DAPI) channel images into the training phase, allowing the network to learn additional CTC-specific features. Notably, only bright-field images have been used for testing, ensuring the model's ability to identify CTCs without relying on fluorescence markers. The proposed model achieved an F1-score of 0.798, demonstrating its capability to distinguish CTCs from leukocytes. These findings highlight the potential of DL in refining CTC analysis and advancing liquid biopsy applications.
comment: 20 pages, 4 figures, 3 tables
☆ AI-Driven Multi-Stage Computer Vision System for Defect Detection in Laser-Engraved Industrial Nameplates
Automated defect detection in industrial manufacturing is essential for maintaining product quality and minimizing production errors. In air disc brake manufacturing, ensuring the precision of laser-engraved nameplates is crucial for accurate product identification and quality control. Engraving errors, such as misprints or missing characters, can compromise both aesthetics and functionality, leading to material waste and production delays. This paper presents a proof of concept for an AI-driven computer vision system that inspects and verifies laser-engraved nameplates, detecting defects in logos and alphanumeric strings. The system integrates object detection using YOLOv7, optical character recognition (OCR) with Tesseract, and anomaly detection through a residual variational autoencoder (ResVAE) along with other computer vision methods to enable comprehensive inspections at multiple stages. Experimental results demonstrate the system's effectiveness, achieving 91.33% accuracy and 100% recall, ensuring that defective nameplates are consistently detected and addressed. This solution highlights the potential of AI-driven visual inspection to enhance quality control, reduce manual inspection efforts, and improve overall manufacturing efficiency.
☆ Multi-Agent DRL for Queue-Aware Task Offloading in Hierarchical MEC-Enabled Air-Ground Networks
Mobile edge computing (MEC)-enabled air-ground networks are a key component of 6G, employing aerial base stations (ABSs) such as unmanned aerial vehicles (UAVs) and high-altitude platform stations (HAPS) to provide dynamic services to ground IoT devices (IoTDs). These IoTDs support real-time applications (e.g., multimedia and Metaverse services) that demand high computational resources and strict quality of service (QoS) guarantees in terms of latency and task queue management. Given their limited energy and processing capabilities, IoTDs rely on UAVs and HAPS to offload tasks for distributed processing, forming a multi-tier MEC system. This paper tackles the overall energy minimization problem in MEC-enabled air-ground integrated networks (MAGIN) by jointly optimizing UAV trajectories, computing resource allocation, and queue-aware task offloading decisions. The optimization is challenging due to the nonconvex, nonlinear nature of this hierarchical system, which renders traditional methods ineffective. We reformulate the problem as a multi-agent Markov decision process (MDP) with continuous action spaces and heterogeneous agents, and propose a novel variant of multi-agent proximal policy optimization with a Beta distribution (MAPPO-BD) to solve it. Extensive simulations show that MAPPO-BD outperforms baseline schemes, achieving superior energy savings and efficient resource management in MAGIN while meeting queue delay and edge computing constraints.
☆ From Infants to AI: Incorporating Infant-like Learning in Models Boosts Efficiency and Generalization in Learning Social Prediction Tasks
Early in development, infants learn a range of useful concepts, which can be challenging from a computational standpoint. This early learning comes together with an initial understanding of aspects of the meaning of concepts, e.g., their implications, causality, and using them to predict likely future events. All this is accomplished in many cases with little or no supervision, and from relatively few examples, compared with current network models. In learning about objects and human-object interactions, early acquired and possibly innate concepts are often used in the process of learning additional, more complex concepts. In the current work, we model how early-acquired concepts are used in the learning of subsequent concepts, and compare the results with standard deep network modeling. We focused in particular on the use of the concepts of animacy and goal attribution in learning to predict future events. We show that the use of early concepts in the learning of new concepts leads to better learning (higher accuracy) and more efficient learning (requiring less data). We further show that this integration of early and new concepts shapes the representation of the concepts acquired by the model. The results show that when the concepts were learned in a human-like manner, the emerging representation was more useful, as measured in terms of generalization to novel data and tasks. On a more general level, the results suggest that there are likely to be basic differences in the conceptual structures acquired by current network models compared to human learning.
☆ Transformers for molecular property prediction: Domain adaptation efficiently improves performance
Most of the current transformer-based chemical language models are pre-trained on millions to billions of molecules. However, the improvement from such scaling in dataset size is not confidently linked to improved molecular property prediction. The aim of this study is to investigate and overcome some of the limitations of transformer models in predicting molecular properties. Specifically, we examine the impact of pre-training dataset size and diversity on the performance of transformer models and investigate the use of domain adaptation as a technique for improving model performance. First, our findings indicate that increasing pretraining dataset size beyond 400K molecules from the GuacaMol dataset does not result in a significant improvement on four ADME endpoints, namely, solubility, permeability, microsomal stability, and plasma protein binding. Second, our results demonstrate that using domain adaptation by further training the transformer model on a small set of domain-relevant molecules, i.e., a few hundred to a few thousand, using multi-task regression of physicochemical properties was sufficient to significantly improve performance for three out of the four investigated ADME endpoints (P-value < 0.001). Finally, we observe that a model pre-trained on 400K molecules and domain adopted on a few hundred/thousand molecules performs similarly (P-value > 0.05) to more complicated transformer models like MolBERT(pre-trained on 1.3M molecules) and MolFormer (pre-trained on 100M molecules). A comparison to a random forest model trained on basic physicochemical properties showed similar performance to the examined transformer models. We believe that current transformer models can be improved through further systematic analysis of pre-training and downstream data, pre-training objectives, and scaling laws, ultimately leading to better and more helpful models.
☆ Leveraging Large Language Models to Develop Heuristics for Emerging Optimization Problems
Combinatorial optimization problems often rely on heuristic algorithms to generate efficient solutions. However, the manual design of heuristics is resource-intensive and constrained by the designer's expertise. Recent advances in artificial intelligence, particularly large language models (LLMs), have demonstrated the potential to automate heuristic generation through evolutionary frameworks. Recent works focus only on well-known combinatorial optimization problems like the traveling salesman problem and online bin packing problem when designing constructive heuristics. This study investigates whether LLMs can effectively generate heuristics for niche, not yet broadly researched optimization problems, using the unit-load pre-marshalling problem as an example case. We propose the Contextual Evolution of Heuristics (CEoH) framework, an extension of the Evolution of Heuristics (EoH) framework, which incorporates problem-specific descriptions to enhance in-context learning during heuristic generation. Through computational experiments, we evaluate CEoH and EoH and compare the results. Results indicate that CEoH enables smaller LLMs to generate high-quality heuristics more consistently and even outperform larger models. Larger models demonstrate robust performance with or without contextualized prompts. The generated heuristics exhibit scalability to diverse instance configurations.
comment: Under review LION19: The 19th Learning and Intelligent OptimizatioN Conference
☆ Navigating Intelligence: A Survey of Google OR-Tools and Machine Learning for Global Path Planning in Autonomous Vehicles
We offer a new in-depth investigation of global path planning (GPP) for unmanned ground vehicles, an autonomous mining sampling robot named ROMIE. GPP is essential for ROMIE's optimal performance, which is translated into solving the traveling salesman problem, a complex graph theory challenge that is crucial for determining the most effective route to cover all sampling locations in a mining field. This problem is central to enhancing ROMIE's operational efficiency and competitiveness against human labor by optimizing cost and time. The primary aim of this research is to advance GPP by developing, evaluating, and improving a cost-efficient software and web application. We delve into an extensive comparison and analysis of Google operations research (OR)-Tools optimization algorithms. Our study is driven by the goal of applying and testing the limits of OR-Tools capabilities by integrating Reinforcement Learning techniques for the first time. This enables us to compare these methods with OR-Tools, assessing their computational effectiveness and real-world application efficiency. Our analysis seeks to provide insights into the effectiveness and practical application of each technique. Our findings indicate that Q-Learning stands out as the optimal strategy, demonstrating superior efficiency by deviating only 1.2% on average from the optimal solutions across our datasets.
☆ See What You Are Told: Visual Attention Sink in Large Multimodal Models
Large multimodal models (LMMs) "see" images by leveraging the attention mechanism between text and visual tokens in the transformer decoder. Ideally, these models should focus on key visual information relevant to the text token. However, recent findings indicate that LMMs have an extraordinary tendency to consistently allocate high attention weights to specific visual tokens, even when these tokens are irrelevant to the corresponding text. In this study, we investigate the property behind the appearance of these irrelevant visual tokens and examine their characteristics. Our findings show that this behavior arises due to the massive activation of certain hidden state dimensions, which resembles the attention sink found in language models. Hence, we refer to this phenomenon as the visual attention sink. In particular, our analysis reveals that removing the irrelevant visual sink tokens does not impact model performance, despite receiving high attention weights. Consequently, we recycle the attention to these tokens as surplus resources, redistributing the attention budget to enhance focus on the image. To achieve this, we introduce Visual Attention Redistribution (VAR), a method that redistributes attention in image-centric heads, which we identify as innately focusing on visual information. VAR can be seamlessly applied across different LMMs to improve performance on a wide range of tasks, including general vision-language tasks, visual hallucination tasks, and vision-centric tasks, all without the need for additional training, models, or inference steps. Experimental results demonstrate that VAR enables LMMs to process visual information more effectively by adjusting their internal attention mechanisms, offering a new direction to enhancing the multimodal capabilities of LMMs.
☆ Exploring specialization and sensitivity of convolutional neural networks in the context of simultaneous image augmentations
Drawing parallels with the way biological networks are studied, we adapt the treatment--control paradigm to explainable artificial intelligence research and enrich it through multi-parametric input alterations. In this study, we propose a framework for investigating the internal inference impacted by input data augmentations. The internal changes in network operation are reflected in activation changes measured by variance, which can be decomposed into components related to each augmentation, employing Sobol indices and Shapley values. These quantities enable one to visualize sensitivity to different variables and use them for guided masking of activations. In addition, we introduce a way of single-class sensitivity analysis where the candidates are filtered according to their matching to prediction bias generated by targeted damaging of the activations. Relying on the observed parallels, we assume that the developed framework can potentially be transferred to studying biological neural networks in complex environments.
comment: 26 pages; main text: 5 figures, 4 tables; appendix: 4 sections, 3 tables; supplementary: 7 files (figures S1-S6: packed as 7z archive, S7: single pdf file)
☆ Benchmarking Dynamic SLO Compliance in Distributed Computing Continuum Systems
Ensuring Service Level Objectives (SLOs) in large-scale architectures, such as Distributed Computing Continuum Systems (DCCS), is challenging due to their heterogeneous nature and varying service requirements across different devices and applications. Additionally, unpredictable workloads and resource limitations lead to fluctuating performance and violated SLOs. To improve SLO compliance in DCCS, one possibility is to apply machine learning; however, the design choices are often left to the developer. To that extent, we provide a benchmark of Active Inference -- an emerging method from neuroscience -- against three established reinforcement learning algorithms (Deep Q-Network, Advantage Actor-Critic, and Proximal Policy Optimization). We consider a realistic DCCS use case: an edge device running a video conferencing application alongside a WebSocket server streaming videos. Using one of the respective algorithms, we continuously monitor key performance metrics, such as latency and bandwidth usage, to dynamically adjust parameters -- including the number of streams, frame rate, and resolution -- to optimize service quality and user experience. To test algorithms' adaptability to constant system changes, we simulate dynamically changing SLOs and both instant and gradual data-shift scenarios, such as network bandwidth limitations and fluctuating device thermal states. Although the evaluated algorithms all showed advantages and limitations, our findings demonstrate that Active Inference is a promising approach for ensuring SLO compliance in DCCS, offering lower memory usage, stable CPU utilization, and fast convergence.
☆ Conformal Transformations for Symmetric Power Transformers SC
Transformers with linear attention offer significant computational advantages over softmax-based transformers but often suffer from degraded performance. The symmetric power (sympow) transformer, a particular type of linear transformer, addresses some of this performance gap by leveraging symmetric tensor embeddings, achieving comparable performance to softmax transformers. However, the finite capacity of the recurrent state in sympow transformers limits their ability to retain information, leading to performance degradation when scaling the training or evaluation context length. To address this issue, we propose the conformal-sympow transformer, which dynamically frees up capacity using data-dependent multiplicative gating and adaptively stores information using data-dependent rotary embeddings. Preliminary experiments on the LongCrawl64 dataset demonstrate that conformal-sympow overcomes the limitations of sympow transformers, achieving robust performance across scaled training and evaluation contexts.
comment: SCOPE Workshop at ICLR 2025
☆ Trajectory Prediction for Autonomous Driving: Progress, Limitations, and Future Directions
As the potential for autonomous vehicles to be integrated on a large scale into modern traffic systems continues to grow, ensuring safe navigation in dynamic environments is crucial for smooth integration. To guarantee safety and prevent collisions, autonomous vehicles must be capable of accurately predicting the trajectories of surrounding traffic agents. Over the past decade, significant efforts from both academia and industry have been dedicated to designing solutions for precise trajectory forecasting. These efforts have produced a diverse range of approaches, raising questions about the differences between these methods and whether trajectory prediction challenges have been fully addressed. This paper reviews a substantial portion of recent trajectory prediction methods and devises a taxonomy to classify existing solutions. A general overview of the prediction pipeline is also provided, covering input and output modalities, modeling features, and prediction paradigms discussed in the literature. In addition, the paper discusses active research areas within trajectory prediction, addresses the posed research questions, and highlights the remaining research gaps and challenges.
☆ Exploring the Potential of Large Language Models as Predictors in Dynamic Text-Attributed Graphs
With the rise of large language models (LLMs), there has been growing interest in Graph Foundation Models (GFMs) for graph-based tasks. By leveraging LLMs as predictors, GFMs have demonstrated impressive generalizability across various tasks and datasets. However, existing research on LLMs as predictors has predominantly focused on static graphs, leaving their potential in dynamic graph prediction unexplored. In this work, we pioneer using LLMs for predictive tasks on dynamic graphs. We identify two key challenges: the constraints imposed by context length when processing large-scale historical data and the significant variability in domain characteristics, both of which complicate the development of a unified predictor. To address these challenges, we propose the GraphAgent-Dynamic (GAD) Framework, a multi-agent system that leverages collaborative LLMs. In contrast to using a single LLM as the predictor, GAD incorporates global and local summary agents to generate domain-specific knowledge, enhancing its transferability across domains. Additionally, knowledge reflection agents enable adaptive updates to GAD's knowledge, maintaining a unified and self-consistent architecture. In experiments, GAD demonstrates performance comparable to or even exceeds that of full-supervised graph neural networks without dataset-specific training. Finally, to enhance the task-specific performance of LLM-based predictors, we discuss potential improvements, such as dataset-specific fine-tuning to LLMs. By developing tailored strategies for different tasks, we provide new insights for the future design of LLM-based predictors.
☆ Less is more? Rewards in RL for Cyber Defence
The last few years has seen an explosion of interest in autonomous cyber defence agents based on deep reinforcement learning. Such agents are typically trained in a cyber gym environment, also known as a cyber simulator, at least 32 of which have already been built. Most, if not all cyber gyms provide dense "scaffolded" reward functions which combine many penalties or incentives for a range of (un)desirable states and costly actions. Whilst dense rewards help alleviate the challenge of exploring complex environments, yielding seemingly effective strategies from relatively few environment steps; they are also known to bias the solutions an agent can find, potentially towards suboptimal solutions. Sparse rewards could offer preferable or more effective solutions and have been overlooked by cyber gyms to date. In this work we set out to evaluate whether sparse reward functions might enable training more effective cyber defence agents. Towards this goal we first break down several evaluation limitations in existing work by proposing a ground truth evaluation score that goes beyond the standard RL paradigm used to train and evaluate agents. By adapting a well-established cyber gym to accommodate our methodology and ground truth score, we propose and evaluate two sparse reward mechanisms and compare them with a typical dense reward. Our evaluation considers a range of network sizes, from 2 to 50 nodes, and both reactive and proactive defensive actions. Our results show that sparse rewards, particularly positive reinforcement for an uncompromised network state, enable the training of more effective cyber defence agents. Furthermore, we show that sparse rewards provide more stable training than dense rewards, and that both effectiveness and training stability are robust to a variety of cyber environment considerations.
comment: 4 Pages
☆ FANS -- Formal Answer Selection for Natural Language Math Reasoning Using Lean4
Large Language Models (LLMs) have displayed astonishing abilities in various tasks, especially in text generation, classification, question answering, etc. However, the reasoning ability of LLMs still faces many debates. The inherent ambiguity of Natural Language (NL) limits LLMs' ability to perform verifiable reasoning, making its answers lack coherence and trustworthy support. To tackle the above problems, we propose a novel framework named FANS: Formal ANswer Selection for Natural Language Math Reasoning Using Lean4. To the best of our knowledge, it is the first framework that utilizes Lean4 to enhance LLMs' NL math reasoning ability. In particular, given an NL math question and LLM-generated answers, FANS first translates it into Lean4 theorem statements. Then it tries to prove it using a Lean4 prover and verify it by Lean4. Finally, it uses the FL result to assist in answer selection. It enhances LLMs' NL math ability in providing a computer-verifiable solution for its correct answer and proposes an alternative method for answer selection beyond the reward model. Extensive experiments indicate the effectiveness of our framework. It can improve the accuracy rate of reward model enhanced LLMs in the MATH-500 dataset by at most 1.91% and AMC-23 by at most 8.33% on strong reward-model baselines. In some particular fields like number theory that Lean4 experts in, we can even select all correct solutions. The qualitative analysis also shows our framework can make NL results formally backed by Lean4 proofs. As a pioneering work in the corresponding field, we will open-source all our models and datasets to further boost the development of the field.
☆ COSINT-Agent: A Knowledge-Driven Multimodal Agent for Chinese Open Source Intelligence
Open Source Intelligence (OSINT) requires the integration and reasoning of diverse multimodal data, presenting significant challenges in deriving actionable insights. Traditional approaches, including multimodal large language models (MLLMs), often struggle to infer complex contextual relationships or deliver comprehensive intelligence from unstructured data sources. In this paper, we introduce COSINT-Agent, a knowledge-driven multimodal agent tailored to address the challenges of OSINT in the Chinese domain. COSINT-Agent seamlessly integrates the perceptual capabilities of fine-tuned MLLMs with the structured reasoning power of the Entity-Event-Scene Knowledge Graph (EES-KG). Central to COSINT-Agent is the innovative EES-Match framework, which bridges COSINT-MLLM and EES-KG, enabling systematic extraction, reasoning, and contextualization of multimodal insights. This integration facilitates precise entity recognition, event interpretation, and context retrieval, effectively transforming raw multimodal data into actionable intelligence. Extensive experiments validate the superior performance of COSINT-Agent across core OSINT tasks, including entity recognition, EES generation, and context matching. These results underscore its potential as a robust and scalable solution for advancing automated multimodal reasoning and enhancing the effectiveness of OSINT methodologies.
☆ NodeReg: Mitigating the Imbalance and Distribution Shift Effects in Semi-Supervised Node Classification via Norm Consistency
Aggregating information from neighboring nodes benefits graph neural networks (GNNs) in semi-supervised node classification tasks. Nevertheless, this mechanism also renders nodes susceptible to the influence of their neighbors. For instance, this will occur when the neighboring nodes are imbalanced or the neighboring nodes contain noise, which can even affect the GNN's ability to generalize out of distribution. We find that ensuring the consistency of the norm for node representations can significantly reduce the impact of these two issues on GNNs. To this end, we propose a regularized optimization method called NodeReg that enforces the consistency of node representation norms. This method is simple but effective and satisfies Lipschitz continuity, thus facilitating stable optimization and significantly improving semi-supervised node classification performance under the above two scenarios. To illustrate, in the imbalance scenario, when training a GCN with an imbalance ratio of 0.1, NodeReg outperforms the most competitive baselines by 1.4%-25.9% in F1 score across five public datasets. Similarly, in the distribution shift scenario, NodeReg outperforms the most competitive baseline by 1.4%-3.1% in accuracy.
☆ MA-LoT: Multi-Agent Lean-based Long Chain-of-Thought Reasoning enhances Formal Theorem Proving
Solving mathematical problems using computer-verifiable languages like Lean has significantly impacted mathematical and computer science communities. State-of-the-art methods utilize single Large Language Models (LLMs) as agents or provers to either generate complete proof or perform tree searches. However, single-agent methods inherently lack a structured way to combine high-level reasoning in Natural Language (NL) with Formal Language (FL) verification feedback. To solve these issues, we propose MA-LoT: Multi-Agent Lean-based Long Chain-of-Thought framework, (to the best of our knowledge), the first multi-agent framework for Lean4 theorem proving that balance high-level NL reasoning and FL verification in Long CoT. Using this structured interaction, our approach enables deeper insights and long-term coherence in proof generation, with which past methods struggle. We do this by leveraging emergent formal reasoning ability in Long CoT using our novel LoT-Transfer Learning training-inference pipeline. Extensive experiments show that our framework achieves 54.51% accuracy rate on the Lean4 version of MiniF2F-Test dataset, largely outperforming GPT-4 (22.95%), single-agent tree search (InternLM-Step-Prover, 50.70%), and whole-proof generation (DeepSeek-Prover-v1.5, 48.36%) baselines. Furthermore, our findings highlight the potential of combining Long CoT with formal verification for a more insightful generation in a broader perspective.
☆ Towards Robust Universal Information Extraction: Benchmark, Evaluation, and Solution
In this paper, we aim to enhance the robustness of Universal Information Extraction (UIE) by introducing a new benchmark dataset, a comprehensive evaluation, and a feasible solution. Existing robust benchmark datasets have two key limitations: 1) They generate only a limited range of perturbations for a single Information Extraction (IE) task, which fails to evaluate the robustness of UIE models effectively; 2) They rely on small models or handcrafted rules to generate perturbations, often resulting in unnatural adversarial examples. Considering the powerful generation capabilities of Large Language Models (LLMs), we introduce a new benchmark dataset for Robust UIE, called RUIE-Bench, which utilizes LLMs to generate more diverse and realistic perturbations across different IE tasks. Based on this dataset, we comprehensively evaluate existing UIE models and reveal that both LLM-based models and other models suffer from significant performance drops. To improve robustness and reduce training costs, we propose a data-augmentation solution that dynamically selects hard samples for iterative training based on the model's inference loss. Experimental results show that training with only \textbf{15\%} of the data leads to an average \textbf{7.5\%} relative performance improvement across three IE tasks.
☆ Directly Follows Graphs Go Predictive Process Monitoring With Graph Neural Networks
In the past years, predictive process monitoring (PPM) techniques based on artificial neural networks have evolved as a method to monitor the future behavior of business processes. Existing approaches mostly focus on interpreting the processes as sequences, so-called traces, and feeding them to neural architectures designed to operate on sequential data such as recurrent neural networks (RNNs) or transformers. In this study, we investigate an alternative way to perform PPM: by transforming each process in its directly-follows-graph (DFG) representation we are able to apply graph neural networks (GNNs) for the prediction tasks. By this, we aim to develop models that are more suitable for complex processes that are long and contain an abundance of loops. In particular, we present different ways to create DFG representations depending on the particular GNN we use. The tested GNNs range from classical node-based to novel edge-based architectures. Further, we investigate the possibility of using multi-graphs. By these steps, we aim to design graph representations that minimize the information loss when transforming traces into graphs.
comment: 10 pages, 4 figures, 3 tables
☆ Structured Outputs Enable General-Purpose LLMs to be Medical Experts
Medical question-answering (QA) is a critical task for evaluating how effectively large language models (LLMs) encode clinical knowledge and assessing their potential applications in medicine. Despite showing promise on multiple-choice tests, LLMs frequently struggle with open-ended medical questions, producing responses with dangerous hallucinations or lacking comprehensive coverage of critical aspects. Existing approaches attempt to address these challenges through domain-specific fine-tuning, but this proves resource-intensive and difficult to scale across models. To improve the comprehensiveness and factuality of medical responses, we propose a novel approach utilizing structured medical reasoning. Our method guides LLMs through an seven-step cognitive process inspired by clinical diagnosis, enabling more accurate and complete answers without additional training. Experiments on the MedLFQA benchmark demonstrate that our approach achieves the highest Factuality Score of 85.8, surpassing fine-tuned models. Notably, this improvement transfers to smaller models, highlighting the method's efficiency and scalability. Our code and datasets are available.
☆ Intermediate-Task Transfer Learning: Leveraging Sarcasm Detection for Stance Detection
Stance Detection (SD) on social media has emerged as a prominent area of interest with implications for social business and political applications thereby garnering escalating research attention within NLP. The inherent subtlety and complexity of texts procured from online platforms pose challenges for SD algorithms in accurately discerning the authors stance. Mostly the inclusion of sarcastic and figurative language drastically impacts the performance of SD models. This paper addresses this by employing sarcasm detection intermediate-task transfer learning tailored for SD. The proposed methodology involves the finetuning of BERT and RoBERTa and the concatenation of convolutional BiLSTM and dense layers. Rigorous experiments are conducted on publicly available datasets to evaluate our transfer-learning framework. The performance of the approach is assessed against various State-Of-The-Art baselines for SD providing empirical evidence of its effectiveness. Notably our model outperforms the best SOTA models even prior to sarcasm-detection pretraining. The integration of sarcasm knowledge into the model proves instrumental in mitigating misclassifications of sarcastic textual elements in SD. Our model accurately predicts 85% of texts that were previously misclassified by the model without sarcasm-detection pretraining thereby amplifying the average F1-score of the model. Our experiments also revealed that the success of the transfer-learning framework is contingent upon the correlation of lexical attributes between the intermediate task and the target task. This study represents the first exploration of sarcasm detection as an intermediate transfer-learning task in the context of SD and simultaneously uses the concatenation of BERT or RoBERTa with other deep-learning techniques establishing the proposed approach as a foundational baseline for future research endeavors in this domain.
comment: 8 pages, 2 figures, published in The Sixteenth International Conference on Information (eKNOW 2024)
☆ AttackSeqBench: Benchmarking Large Language Models' Understanding of Sequential Patterns in Cyber Attacks
The observations documented in Cyber Threat Intelligence (CTI) reports play a critical role in describing adversarial behaviors, providing valuable insights for security practitioners to respond to evolving threats. Recent advancements of Large Language Models (LLMs) have demonstrated significant potential in various cybersecurity applications, including CTI report understanding and attack knowledge graph construction. While previous works have proposed benchmarks that focus on the CTI extraction ability of LLMs, the sequential characteristic of adversarial behaviors within CTI reports remains largely unexplored, which holds considerable significance in developing a comprehensive understanding of how adversaries operate. To address this gap, we introduce AttackSeqBench, a benchmark tailored to systematically evaluate LLMs' capability to understand and reason attack sequences in CTI reports. Our benchmark encompasses three distinct Question Answering (QA) tasks, each task focuses on the varying granularity in adversarial behavior. To alleviate the laborious effort of QA construction, we carefully design an automated dataset construction pipeline to create scalable and well-formulated QA datasets based on real-world CTI reports. To ensure the quality of our dataset, we adopt a hybrid approach of combining human evaluation and systematic evaluation metrics. We conduct extensive experiments and analysis with both fast-thinking and slow-thinking LLMs, while highlighting their strengths and limitations in analyzing the sequential patterns in cyber attacks. The overarching goal of this work is to provide a benchmark that advances LLM-driven CTI report understanding and fosters its application in real-world cybersecurity operations. Our dataset and code are available at https://github.com/Javiery3889/AttackSeqBench .
☆ Position: Model Collapse Does Not Mean What You Think
The proliferation of AI-generated content online has fueled concerns over \emph{model collapse}, a degradation in future generative models' performance when trained on synthetic data generated by earlier models. Industry leaders, premier research journals and popular science publications alike have prophesied catastrophic societal consequences stemming from model collapse. In this position piece, we contend this widespread narrative fundamentally misunderstands the scientific evidence. We highlight that research on model collapse actually encompasses eight distinct and at times conflicting definitions of model collapse, and argue that inconsistent terminology within and between papers has hindered building a comprehensive understanding of model collapse. To assess how significantly different interpretations of model collapse threaten future generative models, we posit what we believe are realistic conditions for studying model collapse and then conduct a rigorous assessment of the literature's methodologies through this lens. While we leave room for reasonable disagreement, our analysis of research studies, weighted by how faithfully each study matches real-world conditions, leads us to conclude that certain predicted claims of model collapse rely on assumptions and conditions that poorly match real-world conditions, and in fact several prominent collapse scenarios are readily avoidable. Altogether, this position paper argues that model collapse has been warped from a nuanced multifaceted consideration into an oversimplified threat, and that the evidence suggests specific harms more likely under society's current trajectory have received disproportionately less attention.
☆ Partial Convolution Meets Visual Attention
Designing an efficient and effective neural network has remained a prominent topic in computer vision research. Depthwise onvolution (DWConv) is widely used in efficient CNNs or ViTs, but it needs frequent memory access during inference, which leads to low throughput. FasterNet attempts to introduce partial convolution (PConv) as an alternative to DWConv but compromises the accuracy due to underutilized channels. To remedy this shortcoming and consider the redundancy between feature map channels, we introduce a novel Partial visual ATtention mechanism (PAT) that can efficiently combine PConv with visual attention. Our exploration indicates that the partial attention mechanism can completely replace the full attention mechanism and reduce model parameters and FLOPs. Our PAT can derive three types of blocks: Partial Channel-Attention block (PAT_ch), Partial Spatial-Attention block (PAT_sp) and Partial Self-Attention block (PAT_sf). First, PAT_ch integrates the enhanced Gaussian channel attention mechanism to infuse global distribution information into the untouched channels of PConv. Second, we introduce the spatial-wise attention to the MLP layer to further improve model accuracy. Finally, we replace PAT_ch in the last stage with the self-attention mechanism to extend the global receptive field. Building upon PAT, we propose a novel hybrid network family, named PATNet, which achieves superior top-1 accuracy and inference speed compared to FasterNet on ImageNet-1K classification and excel in both detection and segmentation on the COCO dataset. Particularly, our PATNet-T2 achieves 1.3% higher accuracy than FasterNet-T2, while exhibiting 25% higher GPU throughput and 24% lower CPU latency.
comment: arXiv admin note: substantial text overlap with arXiv:2502.01303
☆ Knowledge Augmentation in Federation: Rethinking What Collaborative Learning Can Bring Back to Decentralized Data
Data, as an observable form of knowledge, has become one of the most important factors of production for the development of Artificial Intelligence (AI). Meanwhile, increasing legislation and regulations on private and proprietary information results in scattered data sources also known as the ``data islands''. Although some collaborative learning paradigms such as Federated Learning (FL) can enable privacy-preserving training over decentralized data, they have inherent deficiencies in fairness, costs and reproducibility because of being learning-centric, which greatly limits the way how participants cooperate with each other. In light of this, we present a knowledge-centric paradigm termed \emph{Knowledge Augmentation in Federation} (KAF), with focus on how to enhance local knowledge through collaborative effort. We provide the suggested system architecture, formulate the prototypical optimization objective, and review emerging studies that employ methodologies suitable for KAF. On our roadmap, with a three-way categorization we describe the methods for knowledge expansion, knowledge filtering, and label and feature space correction in the federation. Further, we highlight several challenges and open questions that deserve more attention from the community. With our investigation, we intend to offer new insights for what collaborative learning can bring back to decentralized data.
comment: preprint
☆ Convergence Analysis of Federated Learning Methods Using Backward Error Analysis
Backward error analysis allows finding a modified loss function, which the parameter updates really follow under the influence of an optimization method. The additional loss terms included in this modified function is called implicit regularizer. In this paper, we attempt to find the implicit regularizer for various federated learning algorithms on non-IID data distribution, and explain why each method shows different convergence behavior. We first show that the implicit regularizer of FedAvg disperses the gradient of each client from the average gradient, thus increasing the gradient variance. We also empirically show that the implicit regularizer hampers its convergence. Similarly, we compute the implicit regularizers of FedSAM and SCAFFOLD, and explain why they converge better. While existing convergence analyses focus on pointing out the advantages of FedSAM and SCAFFOLD, our approach can explain their limitations in complex non-convex settings. In specific, we demonstrate that FedSAM can partially remove the bias in the first-order term of the implicit regularizer in FedAvg, whereas SCAFFOLD can fully eliminate the bias in the first-order term, but not in the second-order term. Consequently, the implicit regularizer can provide a useful insight on the convergence behavior of federated learning from a different theoretical perspective.
L2R: Learning to Reduce Search Space for Generalizable Neural Routing Solver
Constructive neural combinatorial optimization (NCO) has attracted growing research attention due to its ability to solve complex routing problems without relying on handcrafted rules. However, existing NCO methods face significant challenges in generalizing to large-scale problems due to high computational complexity and inefficient capture of structural patterns. To address this issue, we propose a novel learning-based search space reduction method that adaptively selects a small set of promising candidate nodes at each step of the constructive NCO process. Unlike traditional methods that rely on fixed heuristics, our selection model dynamically prioritizes nodes based on learned patterns, significantly reducing the search space while maintaining solution quality. Experimental results demonstrate that our method, trained solely on 100-node instances from uniform distribution, generalizes remarkably well to large-scale Traveling Salesman Problem (TSP) and Capacitated Vehicle Routing Problem (CVRP) instances with up to 1 million nodes from the uniform distribution and over 80K nodes from other distributions.
comment: 23 pages, 10 figures
☆ Exploring Neural Ordinary Differential Equations as Interpretable Healthcare classifiers ACL
Deep Learning has emerged as one of the most significant innovations in machine learning. However, a notable limitation of this field lies in the ``black box" decision-making processes, which have led to skepticism within groups like healthcare and scientific communities regarding its applicability. In response, this study introduces a interpretable approach using Neural Ordinary Differential Equations (NODEs), a category of neural network models that exploit the dynamics of differential equations for representation learning. Leveraging their foundation in differential equations, we illustrate the capability of these models to continuously process textual data, marking the first such model of its kind, and thereby proposing a promising direction for future research in this domain. The primary objective of this research is to propose a novel architecture for groups like healthcare that require the predictive capabilities of deep learning while emphasizing the importance of model transparency demonstrated in NODEs.
comment: ACL SRW Submission
☆ Towards Understanding Multi-Round Large Language Model Reasoning: Approximability, Learnability and Generalizability
Recent advancements in cognitive science and multi-round reasoning techniques for Large Language Models (LLMs) suggest that iterative thinking processes improve problem-solving performance in complex tasks. Inspired by this, approaches like Chain-of-Thought, debating, and self-refinement have been applied to auto-regressive LLMs, achieving significant successes in tasks such as mathematical reasoning, commonsense reasoning, and multi-hop question answering. Despite these successes, the theoretical basis for how multi-round reasoning enhances problem-solving abilities remains underexplored. In this work, we investigate the approximation, learnability, and generalization properties of multi-round auto-regressive models. We show that Transformers with finite context windows are universal approximators for steps of Turing-computable functions and can approximate any Turing-computable sequence-to-sequence function through multi-round reasoning. We extend PAC learning to sequence generation and demonstrate that multi-round generation is learnable even when the sequence length exceeds the model's context window. Finally, we examine how generalization error propagates across rounds, and show how the aforementioned approaches can help constrain this error, ensuring outputs stay within an expectation boundary. This work sheds light on the systemic theoretical foundations of multi-round sequence learning and reasoning, emphasizing its role in inference complexity.
☆ The Devil Is in the Details: Tackling Unimodal Spurious Correlations for Generalizable Multimodal Reward Models
Multimodal Reward Models (MM-RMs) are crucial for aligning Large Language Models (LLMs) with human preferences, particularly as LLMs increasingly interact with multimodal data. However, we find that MM-RMs trained on existing datasets often struggle to generalize to out-of-distribution data due to their reliance on unimodal spurious correlations, primarily text-only shortcuts within the training distribution, which prevents them from leveraging true multimodal reward functions. To address this, we introduce a Shortcut-aware MM-RM learning algorithm that mitigates this issue by dynamically reweighting training samples, shifting the distribution toward better multimodal understanding, and reducing dependence on unimodal spurious correlations. Our experiments demonstrate significant improvements in generalization, downstream task performance, and scalability, establishing a more robust framework for multimodal reward modeling.
☆ A Multimodal Framework for Topic Propagation Classification in Social Networks
The rapid proliferation of the Internet and the widespread adoption of social networks have significantly accelerated information dissemination. However, this transformation has introduced complexities in information capture and processing, posing substantial challenges for researchers and practitioners. Predicting the dissemination of topic-related information within social networks has thus become a critical research focus. This paper proposes a predictive model for topic dissemination in social networks by integrating multidimensional features derived from key dissemination characteristics. Specifically, we introduce two novel indicators, user relationship breadth and user authority, into the PageRank algorithm to quantify user influence more effectively. Additionally, we employ a Text-CNN model for sentiment classification, extracting sentiment features from textual content. Temporal embeddings of nodes are encoded using a Bi-LSTM model to capture temporal dynamics. Furthermore, we refine the measurement of user interaction traces with topics, replacing traditional topic view metrics with a more precise communication characteristics measure. Finally, we integrate the extracted multidimensional features using a Transformer model, significantly enhancing predictive performance. Experimental results demonstrate that our proposed model outperforms traditional machine learning and unimodal deep learning models in terms of FI-Score, AUC, and Recall, validating its effectiveness in predicting topic propagation within social networks.
☆ SoK: Knowledge is All You Need: Last Mile Delivery for Automated Provenance-based Intrusion Detection with LLMs
Recently, provenance-based intrusion detection systems (PIDSes) have been widely proposed for endpoint threat analysis. However, due to the lack of systematic integration and utilization of knowledge, existing PIDSes still require significant manual intervention for practical deployment, making full automation challenging. This paper presents a disruptive innovation by categorizing PIDSes according to the types of knowledge they utilize. In response to the prevalent issue of ``knowledge silos problem'' in existing research, we introduce a novel knowledge-driven provenance-based intrusion detection framework, powered by large language models (LLMs). We also present OmniSec, a best practice system built upon this framework. By integrating attack representation knowledge, threat intelligence knowledge, and benign behavior knowledge, OmniSec outperforms the state-of-the-art approaches on public benchmark datasets. OmniSec is available online at https://anonymous.4open.science/r/PIDS-with-LLM-613B.
☆ External Reliable Information-enhanced Multimodal Contrastive Learning for Fake News Detection AAAI'25
With the rapid development of the Internet, the information dissemination paradigm has changed and the efficiency has been improved greatly. While this also brings the quick spread of fake news and leads to negative impacts on cyberspace. Currently, the information presentation formats have evolved gradually, with the news formats shifting from texts to multimodal contents. As a result, detecting multimodal fake news has become one of the research hotspots. However, multimodal fake news detection research field still faces two main challenges: the inability to fully and effectively utilize multimodal information for detection, and the low credibility or static nature of the introduced external information, which limits dynamic updates. To bridge the gaps, we propose ERIC-FND, an external reliable information-enhanced multimodal contrastive learning framework for fake news detection. ERIC-FND strengthens the representation of news contents by entity-enriched external information enhancement method. It also enriches the multimodal news information via multimodal semantic interaction method where the multimodal constrative learning is employed to make different modality representations learn from each other. Moreover, an adaptive fusion method is taken to integrate the news representations from different dimensions for the eventual classification. Experiments are done on two commonly used datasets in different languages, X (Twitter) and Weibo. Experiment results demonstrate that our proposed model ERIC-FND outperforms existing state-of-the-art fake news detection methods under the same settings.
comment: accepted by AAAI'25
☆ RVAFM: Re-parameterizing Vertical Attention Fusion Module for Handwritten Paragraph Text Recognition
Handwritten Paragraph Text Recognition (HPTR) is a challenging task in Computer Vision, requiring the transformation of a paragraph text image, rich in handwritten text, into text encoding sequences. One of the most advanced models for this task is Vertical Attention Network (VAN), which utilizes a Vertical Attention Module (VAM) to implicitly segment paragraph text images into text lines, thereby reducing the difficulty of the recognition task. However, from a network structure perspective, VAM is a single-branch module, which is less effective in learning compared to multi-branch modules. In this paper, we propose a new module, named Re-parameterizing Vertical Attention Fusion Module (RVAFM), which incorporates structural re-parameterization techniques. RVAFM decouples the structure of the module during training and inference stages. During training, it uses a multi-branch structure for more effective learning, and during inference, it uses a single-branch structure for faster processing. The features learned by the multi-branch structure are fused into the single-branch structure through a special fusion method named Re-parameterization Fusion (RF) without any loss of information. As a result, we achieve a Character Error Rate (CER) of 4.44% and a Word Error Rate (WER) of 14.37% on the IAM paragraph-level test set. Additionally, the inference speed is slightly faster than VAN.
☆ Hopfield Networks Meet Big Data: A Brain-Inspired Deep Learning Framework for Semantic Data Linking
The exponential rise in data generation has led to vast, heterogeneous datasets crucial for predictive analytics and decision-making. Ensuring data quality and semantic integrity remains a challenge. This paper presents a brain-inspired distributed cognitive framework that integrates deep learning with Hopfield networks to identify and link semantically related attributes across datasets. Modeled on the dual-hemisphere functionality of the human brain, the right hemisphere assimilates new information while the left retrieves learned representations for association. Our architecture, implemented on MapReduce with Hadoop Distributed File System (HDFS), leverages deep Hopfield networks as an associative memory mechanism to enhance recall of frequently co-occurring attributes and dynamically adjust relationships based on evolving data patterns. Experiments show that associative imprints in Hopfield memory are reinforced over time, ensuring linked datasets remain contextually meaningful and improving data disambiguation and integration accuracy. Our results indicate that combining deep Hopfield networks with distributed cognitive processing offers a scalable, biologically inspired approach to managing complex data relationships in large-scale environments.
comment: 7 pages
☆ All-atom Diffusion Transformers: Unified generative modelling of molecules and materials
Diffusion models are the standard toolkit for generative modelling of 3D atomic systems. However, for different types of atomic systems - such as molecules and materials - the generative processes are usually highly specific to the target system despite the underlying physics being the same. We introduce the All-atom Diffusion Transformer (ADiT), a unified latent diffusion framework for jointly generating both periodic materials and non-periodic molecular systems using the same model: (1) An autoencoder maps a unified, all-atom representations of molecules and materials to a shared latent embedding space; and (2) A diffusion model is trained to generate new latent embeddings that the autoencoder can decode to sample new molecules or materials. Experiments on QM9 and MP20 datasets demonstrate that jointly trained ADiT generates realistic and valid molecules as well as materials, exceeding state-of-the-art results from molecule and crystal-specific models. ADiT uses standard Transformers for both the autoencoder and diffusion model, resulting in significant speedups during training and inference compared to equivariant diffusion models. Scaling ADiT up to half a billion parameters predictably improves performance, representing a step towards broadly generalizable foundation models for generative chemistry. Open source code: https://github.com/facebookresearch/all-atom-diffusion-transformer
☆ WIP: Assessing the Effectiveness of ChatGPT in Preparatory Testing Activities
This innovative practice WIP paper describes a research study that explores the integration of ChatGPT into the software testing curriculum and evaluates its effectiveness compared to human-generated testing artifacts. In a Capstone Project course, students were tasked with generating preparatory testing artifacts using ChatGPT prompts, which they had previously created manually. Their understanding and the effectiveness of the Artificial Intelligence generated artifacts were assessed through targeted questions. The results, drawn from this in-class assignment at a North American community college indicate that while ChatGPT can automate many testing preparation tasks, it cannot fully replace human expertise. However, students, already familiar with Information Technology at the postgraduate level, found the integration of ChatGPT into their workflow to be straightforward. The study suggests that AI can be gradually introduced into software testing education to keep pace with technological advancements.
comment: 5 pages
☆ COARSE: Collaborative Pseudo-Labeling with Coarse Real Labels for Off-Road Semantic Segmentation
Autonomous off-road navigation faces challenges due to diverse, unstructured environments, requiring robust perception with both geometric and semantic understanding. However, scarce densely labeled semantic data limits generalization across domains. Simulated data helps, but introduces domain adaptation issues. We propose COARSE, a semi-supervised domain adaptation framework for off-road semantic segmentation, leveraging sparse, coarse in-domain labels and densely labeled out-of-domain data. Using pretrained vision transformers, we bridge domain gaps with complementary pixel-level and patch-level decoders, enhanced by a collaborative pseudo-labeling strategy on unlabeled data. Evaluations on RUGD and Rellis-3D datasets show significant improvements of 9.7\% and 8.4\% respectively, versus only using coarse data. Tests on real-world off-road vehicle data in a multi-biome setting further demonstrate COARSE's applicability.
comment: preprint, 8 pages
☆ GlucoLens: Explainable Postprandial Blood Glucose Prediction from Diet and Physical Activity
Postprandial hyperglycemia, marked by the blood glucose level exceeding the normal range after meals, is a critical indicator of progression toward type 2 diabetes in prediabetic and healthy individuals. A key metric for understanding blood glucose dynamics after eating is the postprandial area under the curve (PAUC). Predicting PAUC in advance based on a person's diet and activity level and explaining what affects postprandial blood glucose could allow an individual to adjust their lifestyle accordingly to maintain normal glucose levels. In this paper, we propose GlucoLens, an explainable machine learning approach to predict PAUC and hyperglycemia from diet, activity, and recent glucose patterns. We conducted a five-week user study with 10 full-time working individuals to develop and evaluate the computational model. Our machine learning model takes multimodal data including fasting glucose, recent glucose, recent activity, and macronutrient amounts, and provides an interpretable prediction of the postprandial glucose pattern. Our extensive analyses of the collected data revealed that the trained model achieves a normalized root mean squared error (NRMSE) of 0.123. On average, GlucoLense with a Random Forest backbone provides a 16% better result than the baseline models. Additionally, GlucoLens predicts hyperglycemia with an accuracy of 74% and recommends different options to help avoid hyperglycemia through diverse counterfactual explanations. Code available: https://github.com/ab9mamun/GlucoLens.
comment: 8 pages, 5 figures
☆ "Impressively Scary:" Exploring User Perceptions and Reactions to Unraveling Machine Learning Models in Social Media Applications
Machine learning models deployed locally on social media applications are used for features, such as face filters which read faces in-real time, and they expose sensitive attributes to the apps. However, the deployment of machine learning models, e.g., when, where, and how they are used, in social media applications is opaque to users. We aim to address this inconsistency and investigate how social media user perceptions and behaviors change once exposed to these models. We conducted user studies (N=21) and found that participants were unaware to both what the models output and when the models were used in Instagram and TikTok, two major social media platforms. In response to being exposed to the models' functionality, we observed long term behavior changes in 8 participants. Our analysis uncovers the challenges and opportunities in providing transparency for machine learning models that interact with local user data.
comment: 21 pages, 2 figures, to appear at CHI 2025
☆ De-skilling, Cognitive Offloading, and Misplaced Responsibilities: Potential Ironies of AI-Assisted Design
The rapid adoption of generative AI (GenAI) in design has sparked discussions about its benefits and unintended consequences. While AI is often framed as a tool for enhancing productivity by automating routine tasks, historical research on automation warns of paradoxical effects, such as de-skilling and misplaced responsibilities. To assess UX practitioners' perceptions of AI, we analyzed over 120 articles and discussions from UX-focused subreddits. Our findings indicate that while practitioners express optimism about AI reducing repetitive work and augmenting creativity, they also highlight concerns about over-reliance, cognitive offloading, and the erosion of critical design skills. Drawing from human-automation interaction literature, we discuss how these perspectives align with well-documented automation ironies and function allocation challenges. We argue that UX professionals should critically evaluate AI's role beyond immediate productivity gains and consider its long-term implications for creative autonomy and expertise. This study contributes empirical insights into practitioners' perspectives and links them to broader debates on automation in design.
☆ CREStE: Scalable Mapless Navigation with Internet Scale Priors and Counterfactual Guidance
We address the long-horizon mapless navigation problem: enabling robots to traverse novel environments without relying on high-definition maps or precise waypoints that specify exactly where to navigate. Achieving this requires overcoming two major challenges -- learning robust, generalizable perceptual representations of the environment without pre-enumerating all possible navigation factors and forms of perceptual aliasing and utilizing these learned representations to plan human-aligned navigation paths. Existing solutions struggle to generalize due to their reliance on hand-curated object lists that overlook unforeseen factors, end-to-end learning of navigation features from scarce large-scale robot datasets, and handcrafted reward functions that scale poorly to diverse scenarios. To overcome these limitations, we propose CREStE, the first method that learns representations and rewards for addressing the full mapless navigation problem without relying on large-scale robot datasets or manually curated features. CREStE leverages visual foundation models trained on internet-scale data to learn continuous bird's-eye-view representations capturing elevation, semantics, and instance-level features. To utilize learned representations for planning, we propose a counterfactual-based loss and active learning procedure that focuses on the most salient perceptual cues by querying humans for counterfactual trajectory annotations in challenging scenes. We evaluate CREStE in kilometer-scale navigation tasks across six distinct urban environments. CREStE significantly outperforms all state-of-the-art approaches with 70% fewer human interventions per mission, including a 2-kilometer mission in an unseen environment with just 1 intervention; showcasing its robustness and effectiveness for long-horizon mapless navigation. For videos and additional materials, see https://amrl.cs.utexas.edu/creste .
comment: 19 pages, 10 figures, 5 tables
☆ Learning to Negotiate via Voluntary Commitment AISTATS 2025
The partial alignment and conflict of autonomous agents lead to mixed-motive scenarios in many real-world applications. However, agents may fail to cooperate in practice even when cooperation yields a better outcome. One well known reason for this failure comes from non-credible commitments. To facilitate commitments among agents for better cooperation, we define Markov Commitment Games (MCGs), a variant of commitment games, where agents can voluntarily commit to their proposed future plans. Based on MCGs, we propose a learnable commitment protocol via policy gradients. We further propose incentive-compatible learning to accelerate convergence to equilibria with better social welfare. Experimental results in challenging mixed-motive tasks demonstrate faster empirical convergence and higher returns for our method compared with its counterparts. Our code is available at https://github.com/shuhui-zhu/DCL.
comment: AISTATS 2025
☆ Not-Just-Scaling Laws: Towards a Better Understanding of the Downstream Impact of Language Model Design Decisions
Improvements in language model capabilities are often attributed to increasing model size or training data, but in some cases smaller models trained on curated data or with different architectural decisions can outperform larger ones trained on more tokens. What accounts for this? To quantify the impact of these design choices, we meta-analyze 92 open-source pretrained models across a wide array of scales, including state-of-the-art open-weights models as well as less performant models and those with less conventional design decisions. We find that by incorporating features besides model size and number of training tokens, we can achieve a relative 3-28% increase in ability to predict downstream performance compared with using scale alone. Analysis of model design decisions reveal insights into data composition, such as the trade-off between language and code tasks at 15-25\% code, as well as the better performance of some architectural decisions such as choosing rotary over learned embeddings. Broadly, our framework lays a foundation for more systematic investigation of how model development choices shape final capabilities.
☆ Task-Agnostic Attacks Against Vision Foundation Models
The study of security in machine learning mainly focuses on downstream task-specific attacks, where the adversarial example is obtained by optimizing a loss function specific to the downstream task. At the same time, it has become standard practice for machine learning practitioners to adopt publicly available pre-trained vision foundation models, effectively sharing a common backbone architecture across a multitude of applications such as classification, segmentation, depth estimation, retrieval, question-answering and more. The study of attacks on such foundation models and their impact to multiple downstream tasks remains vastly unexplored. This work proposes a general framework that forges task-agnostic adversarial examples by maximally disrupting the feature representation obtained with foundation models. We extensively evaluate the security of the feature representations obtained by popular vision foundation models by measuring the impact of this attack on multiple downstream tasks and its transferability between models.
☆ RiskAgent: Autonomous Medical AI Copilot for Generalist Risk Prediction
The application of Large Language Models (LLMs) to various clinical applications has attracted growing research attention. However, real-world clinical decision-making differs significantly from the standardized, exam-style scenarios commonly used in current efforts. In this paper, we present the RiskAgent system to perform a broad range of medical risk predictions, covering over 387 risk scenarios across diverse complex diseases, e.g., cardiovascular disease and cancer. RiskAgent is designed to collaborate with hundreds of clinical decision tools, i.e., risk calculators and scoring systems that are supported by evidence-based medicine. To evaluate our method, we have built the first benchmark MedRisk specialized for risk prediction, including 12,352 questions spanning 154 diseases, 86 symptoms, 50 specialties, and 24 organ systems. The results show that our RiskAgent, with 8 billion model parameters, achieves 76.33% accuracy, outperforming the most recent commercial LLMs, o1, o3-mini, and GPT-4.5, and doubling the 38.39% accuracy of GPT-4o. On rare diseases, e.g., Idiopathic Pulmonary Fibrosis (IPF), RiskAgent outperforms o1 and GPT-4.5 by 27.27% and 45.46% accuracy, respectively. Finally, we further conduct a generalization evaluation on an external evidence-based diagnosis benchmark and show that our RiskAgent achieves the best results. These encouraging results demonstrate the great potential of our solution for diverse diagnosis domains. To improve the adaptability of our model in different scenarios, we have built and open-sourced a family of models ranging from 1 billion to 70 billion parameters. Our code, data, and models are all available at https://github.com/AI-in-Health/RiskAgent.
comment: 18 pages, 6 figures, 4 tables, code is available at https://github.com/AI-in-Health/RiskAgent
☆ Multi-Agent Systems Powered by Large Language Models: Applications in Swarm Intelligence
This work examines the integration of large language models (LLMs) into multi-agent simulations by replacing the hard-coded programs of agents with LLM-driven prompts. The proposed approach is showcased in the context of two examples of complex systems from the field of swarm intelligence: ant colony foraging and bird flocking. Central to this study is a toolchain that integrates LLMs with the NetLogo simulation platform, leveraging its Python extension to enable communication with GPT-4o via the OpenAI API. This toolchain facilitates prompt-driven behavior generation, allowing agents to respond adaptively to environmental data. For both example applications mentioned above, we employ both structured, rule-based prompts and autonomous, knowledge-driven prompts. Our work demonstrates how this toolchain enables LLMs to study self-organizing processes and induce emergent behaviors within multi-agent environments, paving the way for new approaches to exploring intelligent systems and modeling swarm intelligence inspired by natural phenomena. We provide the code, including simulation files and data at https://github.com/crjimene/swarm_gpt.
☆ VoiceGRPO: Modern MoE Transformers with Group Relative Policy Optimization GRPO for AI Voice Health Care Applications on Voice Pathology Detection
This research introduces a novel AI techniques as Mixture-of-Experts Transformers with Group Relative Policy Optimization (GRPO) for voice health care applications on voice pathology detection. With the architectural innovations, we adopt advanced training paradigms inspired by reinforcement learning, namely Proximal Policy Optimization (PPO) and Group-wise Regularized Policy Optimization (GRPO), to enhance model stability and performance. Experiments conducted on a synthetically generated voice pathology dataset demonstrate that our proposed models significantly improve diagnostic accuracy, F1 score, and ROC-AUC compared to conventional approaches. These findings underscore the potential of integrating transformer architectures with novel training strategies to advance automated voice pathology detection and ultimately contribute to more effective healthcare delivery. The code we used to train and evaluate our models is available at https://github.com/enkhtogtokh/voicegrpo
☆ Human Implicit Preference-Based Policy Fine-tuning for Multi-Agent Reinforcement Learning in USV Swarm
Multi-Agent Reinforcement Learning (MARL) has shown promise in solving complex problems involving cooperation and competition among agents, such as an Unmanned Surface Vehicle (USV) swarm used in search and rescue, surveillance, and vessel protection. However, aligning system behavior with user preferences is challenging due to the difficulty of encoding expert intuition into reward functions. To address the issue, we propose a Reinforcement Learning with Human Feedback (RLHF) approach for MARL that resolves credit-assignment challenges through an Agent-Level Feedback system categorizing feedback into intra-agent, inter-agent, and intra-team types. To overcome the challenges of direct human feedback, we employ a Large Language Model (LLM) evaluator to validate our approach using feedback scenarios such as region constraints, collision avoidance, and task allocation. Our method effectively refines USV swarm policies, addressing key challenges in multi-agent systems while maintaining fairness and performance consistency.
comment: 7 pages, 4 figures
☆ Synthetic Data Augmentation for Enhancing Harmful Algal Bloom Detection with Machine Learning
Harmful Algal Blooms (HABs) pose severe threats to aquatic ecosystems and public health, resulting in substantial economic losses globally. Early detection is crucial but often hindered by the scarcity of high-quality datasets necessary for training reliable machine learning (ML) models. This study investigates the use of synthetic data augmentation using Gaussian Copulas to enhance ML-based HAB detection systems. Synthetic datasets of varying sizes (100-1,000 samples) were generated using relevant environmental features$\unicode{x2015}$water temperature, salinity, and UVB radiation$\unicode{x2015}$with corrected Chlorophyll-a concentration as the target variable. Experimental results demonstrate that moderate synthetic augmentation significantly improves model performance (RMSE reduced from 0.4706 to 0.1850; $p < 0.001$). However, excessive synthetic data introduces noise and reduces predictive accuracy, emphasizing the need for a balanced approach to data augmentation. These findings highlight the potential of synthetic data to enhance HAB monitoring systems, offering a scalable and cost-effective method for early detection and mitigation of ecological and public health risks.
comment: Accepted Paper at the 2025 IEEE Conference on Technologies for Sustainability (SusTech)
♻ ☆ LADDER: Self-Improving LLMs Through Recursive Problem Decomposition
We introduce LADDER (Learning through Autonomous Difficulty-Driven Example Recursion), a framework which enables Large Language Models to autonomously improve their problem-solving capabilities through self-guided learning by recursively generating and solving progressively simpler variants of complex problems. Unlike prior approaches that require curated datasets or human feedback, LADDER leverages a model's own capabilities to generate easier question variants. We demonstrate LADDER's effectiveness in the subject of mathematical integration, improving Llama 3.2 3B's accuracy from 1% to 82% on undergraduate-level problems and enabling Qwen2.5 7B Deepseek-R1 Distilled to achieve 73% on the MIT Integration Bee qualifying examination. We also introduce TTRL (Test-Time Reinforcement Learning), where we perform reinforcement learning on variants of test problems at inference time. TTRL enables Qwen2.5 7B Deepseek-R1 Distilled to achieve a state-of-the-art score of 90% on the MIT Integration Bee qualifying examination, surpassing OpenAI o1's performance. These results show how self-directed strategic learning can achieve significant capability improvements without relying on architectural scaling or human supervision.
♻ ☆ Rewarding Doubt: A Reinforcement Learning Approach to Confidence Calibration of Large Language Models
A safe and trustworthy use of Large Language Models (LLMs) requires an accurate expression of confidence in their answers. We introduce a novel Reinforcement Learning (RL) approach for LLM calibration that fine-tunes LLMs to elicit calibrated confidence estimations in their answers to factual questions. We model the problem as a betting game where the model predicts a confidence score together with every answer, and design a reward function that penalizes both over and under-confidence. We prove that under our reward design an optimal policy would result in a perfectly calibrated confidence estimation. Our experiments demonstrate significantly improved confidence calibration and generalization to new tasks without re-training, indicating that our approach teaches a general confidence awareness. This approach enables the training of inherently calibrated LLMs.
♻ ☆ Revisiting Random Walks for Learning on Graphs
We revisit a simple model class for machine learning on graphs, where a random walk on a graph produces a machine-readable record, and this record is processed by a deep neural network to directly make vertex-level or graph-level predictions. We call these stochastic machines random walk neural networks (RWNNs), and through principled analysis, show that we can design them to be isomorphism invariant while capable of universal approximation of graph functions in probability. A useful finding is that almost any kind of record of random walks guarantees probabilistic invariance as long as the vertices are anonymized. This enables us, for example, to record random walks in plain text and adopt a language model to read these text records to solve graph tasks. We further establish a parallelism to message passing neural networks using tools from Markov chain theory, and show that over-smoothing in message passing is alleviated by construction in RWNNs, while over-squashing manifests as probabilistic under-reaching. We empirically demonstrate RWNNs on a range of problems, verifying our theoretical analysis and demonstrating the use of language models for separating strongly regular graphs where 3-WL test fails, and transductive classification on arXiv citation network. Code is available at https://github.com/jw9730/random-walk.
comment: 51 pages, 14 figures
♻ ☆ SePer: Measure Retrieval Utility Through The Lens Of Semantic Perplexity Reduction ICLR 2025
Large Language Models (LLMs) have demonstrated improved generation performance by incorporating externally retrieved knowledge, a process known as retrieval-augmented generation (RAG). Despite the potential of this approach, existing studies evaluate RAG effectiveness by 1) assessing retrieval and generation components jointly, which obscures retrieval's distinct contribution, or 2) examining retrievers using traditional metrics such as NDCG, which creates a gap in understanding retrieval's true utility in the overall generation process. To address the above limitations, in this work, we introduce an automatic evaluation method that measures retrieval quality through the lens of information gain within the RAG framework. Specifically, we propose Semantic Perplexity (SePer), a metric that captures the LLM's internal belief about the correctness of the retrieved information. We quantify the utility of retrieval by the extent to which it reduces semantic perplexity post-retrieval. Extensive experiments demonstrate that SePer not only aligns closely with human preferences but also offers a more precise and efficient evaluation of retrieval utility across diverse RAG scenarios.
comment: ICLR 2025 Spotlight
♻ ☆ Iterative Value Function Optimization for Guided Decoding
While Reinforcement Learning from Human Feedback (RLHF) has become the predominant method for controlling language model outputs, it suffers from high computational costs and training instability. Guided decoding, especially value-guided methods, offers a cost-effective alternative by controlling outputs without re-training models. However, the accuracy of the value function is crucial for value-guided decoding, as inaccuracies can lead to suboptimal decision-making and degraded performance. Existing methods struggle with accurately estimating the optimal value function, leading to less effective control. We propose Iterative Value Function Optimization, a novel framework that addresses these limitations through two key components: Monte Carlo Value Estimation, which reduces estimation variance by exploring diverse trajectories, and Iterative On-Policy Optimization, which progressively improves value estimation through collecting trajectories from value-guided policies. Extensive experiments on text summarization, multi-turn dialogue, and instruction following demonstrate the effectiveness of value-guided decoding approaches in aligning language models. These approaches not only achieve alignment but also significantly reduce computational costs by leveraging principled value function optimization for efficient and effective control.
comment: 20 pages, 10 figures
♻ ☆ KiVA: Kid-inspired Visual Analogies for Testing Large Multimodal Models
This paper investigates visual analogical reasoning in large multimodal models (LMMs) compared to human adults and children. A "visual analogy" is an abstract rule inferred from one image and applied to another. While benchmarks exist for testing visual reasoning in LMMs, they require advanced skills and omit basic visual analogies that even young children can make. Inspired by developmental psychology, we propose a new benchmark of 4,300 visual transformations of everyday objects to test LMMs on visual analogical reasoning and compare them to children (ages three to five) and to adults. We structure the evaluation into three stages: identifying what changed (e.g., color, number, etc.), how it changed (e.g., added one object), and applying the rule to new scenarios. Our findings show that while GPT-o1, GPT-4V, LLaVA-1.5, and MANTIS identify the "what" effectively, they struggle with quantifying the "how" and extrapolating this rule to new objects. In contrast, children and adults exhibit much stronger analogical reasoning at all three stages. Additionally, the strongest tested model, GPT-o1, performs better in tasks involving simple surface-level visual attributes like color and size, correlating with quicker human adult response times. Conversely, more complex tasks such as number, rotation, and reflection, which necessitate extensive cognitive processing and understanding of extrinsic spatial properties in the physical world, present more significant challenges. Altogether, these findings highlight the limitations of training models on data that primarily consists of 2D images and text.
comment: 10 pages. Project website: https://ey242.github.io/kiva.github.io/. Benchmark and code: https://github.com/ey242/KiVA
♻ ☆ Affordance-Guided Reinforcement Learning via Visual Prompting RSS
Robots equipped with reinforcement learning (RL) have the potential to learn a wide range of skills solely from a reward signal. However, obtaining a robust and dense reward signal for general manipulation tasks remains a challenge. Existing learning-based approaches require significant data, such as human demonstrations of success and failure, to learn task-specific reward functions. Recently, there is also a growing adoption of large multi-modal foundation models for robotics that can perform visual reasoning in physical contexts and generate coarse robot motions for manipulation tasks. Motivated by this range of capability, in this work, we present Keypoint-based Affordance Guidance for Improvements (KAGI), a method leveraging rewards shaped by vision-language models (VLMs) for autonomous RL. State-of-the-art VLMs have demonstrated impressive reasoning about affordances through keypoints in zero-shot, and we use these to define dense rewards that guide autonomous robotic learning. On real-world manipulation tasks specified by natural language descriptions, KAGI improves the sample efficiency of autonomous RL and enables successful task completion in 30K online fine-tuning steps. Additionally, we demonstrate the robustness of KAGI to reductions in the number of in-domain demonstrations used for pre-training, reaching similar performance in 45K online fine-tuning steps. Project website: https://sites.google.com/view/affordance-guided-rl
comment: 8 pages, 6 figures. Robotics: Science and Systems (RSS) 2024, Task Specification for General-Purpose Intelligent Robots & Lifelong Robot Learning Workshops
♻ ☆ Transformer Block Coupling and its Correlation with Generalization in LLMs ICLR 2025
Large Language Models (LLMs) have made significant strides in natural language processing, and a precise understanding of the internal mechanisms driving their success is essential. In this work, we analyze the trajectories of token embeddings as they pass through transformer blocks, linearizing the system along these trajectories through their Jacobian matrices. By examining the relationships between these block Jacobians, we uncover the phenomenon of \textbf{transformer block coupling} in a multitude of LLMs, characterized by the coupling of their top singular vectors across tokens and depth. Our findings reveal that coupling \textit{positively correlates} with model performance, and that this relationship is stronger than with other hyperparameters such as parameter count, model depth, and embedding dimension. We further investigate how these properties emerge during training, observing a progressive development of coupling, increased linearity, and layer-wise exponential growth in token trajectories. Additionally, experiments with Vision Transformers (ViTs) corroborate the emergence of coupling and its relationship with generalization, reinforcing our findings in LLMs. Collectively, these insights offer a novel perspective on token interactions in transformers, opening new directions for studying their mechanisms as well as improving training and generalization.
comment: Published as a conference paper at the International Conference on Learning Representations (ICLR 2025)
♻ ☆ Perceptual Motor Learning with Active Inference Framework for Robust Lateral Control IROS 2025
This paper presents a novel Perceptual Motor Learning (PML) framework integrated with Active Inference (AIF) to enhance lateral control in Highly Automated Vehicles (HAVs). PML, inspired by human motor learning, emphasizes the seamless integration of perception and action, enabling efficient decision-making in dynamic environments. Traditional autonomous driving approaches--including modular pipelines, imitation learning, and reinforcement learning--struggle with adaptability, generalization, and computational efficiency. In contrast, PML with AIF leverages a generative model to minimize prediction error ("surprise") and actively shape vehicle control based on learned perceptual-motor representations. Our approach unifies deep learning with active inference principles, allowing HAVs to perform lane-keeping maneuvers with minimal data and without extensive retraining across different environments. Extensive experiments in the CARLA simulator demonstrate that PML with AIF enhances adaptability without increasing computational overhead while achieving performance comparable to conventional methods. These findings highlight the potential of PML-driven active inference as a robust alternative for real-world autonomous driving applications.
comment: This work has been submitted to IROS 2025 and is currently under review. arXiv admin note: text overlap with arXiv:2407.07684
♻ ☆ CDS: Data Synthesis Method Guided by Cognitive Diagnosis Theory
Large Language Models (LLMs) have achieved significant advancements, but the increasing complexity of tasks and higher performance demands highlight the need for continuous improvement. Some approaches utilize synthetic data generated by advanced LLMs based on evaluation results to train models. However, conventional evaluation methods fail to provide detailed, fine-grained profiles of LLMs, limiting their guidance for data synthesis. In this paper, we introduce the Cognitive Diagnostic Synthesis (CDS) method, which incorporates a diagnostic process inspired by Cognitive Diagnosis Theory (CDT) to refine evaluation results and characterize model profiles at the knowledge component level. Based on these diagnostics, we propose two diagnosis-synthesis strategies for weakness-targeted data synthesis. Additionally, we present an enhanced data augmentation and selection pipeline to improve the quality and diversity of synthesized data. Our experiments with several open-source models show significant improvements across multiple benchmarks, achieving up to 6.00% improvement in code generation, 13.10% in mathematical reasoning, and 5.43% in academic exams. Code and data are available on GitHub.
♻ ☆ Interactive Data Harmonization with LLM Agents
Data harmonization is an essential task that entails integrating datasets from diverse sources. Despite years of research in this area, it remains a time-consuming and challenging task due to schema mismatches, varying terminologies, and differences in data collection methodologies. This paper presents the case for agentic data harmonization as a means to both empower experts to harmonize their data and to streamline the process. We introduce Harmonia, a system that combines LLM-based reasoning, an interactive user interface, and a library of data harmonization primitives to automate the synthesis of data harmonization pipelines. We demonstrate Harmonia in a clinical data harmonization scenario, where it helps to interactively create reusable pipelines that map datasets to a standard format. Finally, we discuss challenges and open problems, and suggest research directions for advancing our vision.
♻ ☆ PARAMANU-GANITA: Can Small Math Language Models Rival with Large Language Models on Mathematical Reasoning?
In this paper, we study whether domain specific pretraining of small generative language models (SLM) from scratch with domain specialized tokenizer and Chain-of-Thought (CoT) instruction fine-tuning results in competitive performance on mathematical reasoning compared to LLMs? Secondly, whether this approach is environmentally sustainable, highly cost efficient? To address these research questions, we present Paramanu-Ganita, a 208 million-parameter novel decoder-only Auto Regressive SLM on mathematics. We performed pretraining from scratch on 31.5 billion tokens for 170 A100 hours using a context size of 4096 on a mixed mathematical corpus consisting of web pages, source code, textbooks, CoT templatised StackOverflow QA pairs, and mathematical lecture notes in LaTeX curated by us. We also trained a math and code specialised BPE tokenizer. We proposed and performed CoT instruction fine-tuning of Paramanu-Ganita on the MetaMathQA dataset. Our model Paramanu-Ganita, despite being 34 times smaller than the 7B LLMs, outperforms generalist LLMs by approximately 30% points, and even math-specialised LLMs by 3-23% points in GSM8K test accuracy metric. On MATH benchmark, Paramanu-Ganita outperformed the various models by 6-8% points. On benchmarks like LogiQA, MMLU (high school, college level), and competitive exams level, AGIEVAL (AQuA-RAT, SAT-Math), Paramanu-Ganita outperformed others by 1-4%. Our model is available at https://huggingface.co/gyanai/paramanu-ganita-208M-hf .
♻ ☆ Neural DNF-MT: A Neuro-symbolic Approach for Learning Interpretable and Editable Policies AAMAS 2025
Although deep reinforcement learning has been shown to be effective, the model's black-box nature presents barriers to direct policy interpretation. To address this problem, we propose a neuro-symbolic approach called neural DNF-MT for end-to-end policy learning. The differentiable nature of the neural DNF-MT model enables the use of deep actor-critic algorithms for training. At the same time, its architecture is designed so that trained models can be directly translated into interpretable policies expressed as standard (bivalent or probabilistic) logic programs. Moreover, additional layers can be included to extract abstract features from complex observations, acting as a form of predicate invention. The logic representations are highly interpretable, and we show how the bivalent representations of deterministic policies can be edited and incorporated back into a neural model, facilitating manual intervention and adaptation of learned policies. We evaluate our approach on a range of tasks requiring learning deterministic or stochastic behaviours from various forms of observations. Our empirical results show that our neural DNF-MT model performs at the level of competing black-box methods whilst providing interpretable policies.
comment: AAMAS 2025 (with Appendix)
♻ ☆ Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation
Many large-scale systems rely on high-quality deep representations (embeddings) to facilitate tasks like retrieval, search, and generative modeling. Matryoshka Representation Learning (MRL) recently emerged as a solution for adaptive embedding lengths, but it requires full model retraining and suffers from noticeable performance degradations at short lengths. In this paper, we show that sparse coding offers a compelling alternative for achieving adaptive representation with minimal overhead and higher fidelity. We propose Contrastive Sparse Representation (CSR), a method that sparsifies pre-trained embeddings into a high-dimensional but selectively activated feature space. By leveraging lightweight autoencoding and task-aware contrastive objectives, CSR preserves semantic quality while allowing flexible, cost-effective inference at different sparsity levels. Extensive experiments on image, text, and multimodal benchmarks demonstrate that CSR consistently outperforms MRL in terms of both accuracy and retrieval speed-often by large margins-while also cutting training time to a fraction of that required by MRL. Our results establish sparse coding as a powerful paradigm for adaptive representation learning in real-world applications where efficiency and fidelity are both paramount. Code is available at https://github.com/neilwen987/CSR_Adaptive_Rep
comment: A novel sparse coding framework designed for learning adaptive representation
♻ ☆ DelTA: An Online Document-Level Translation Agent Based on Multi-Level Memory ICLR 2025
Large language models (LLMs) have achieved reasonable quality improvements in machine translation (MT). However, most current research on MT-LLMs still faces significant challenges in maintaining translation consistency and accuracy when processing entire documents. In this paper, we introduce DelTA, a Document-levEL Translation Agent designed to overcome these limitations. DelTA features a multi-level memory structure that stores information across various granularities and spans, including Proper Noun Records, Bilingual Summary, Long-Term Memory, and Short-Term Memory, which are continuously retrieved and updated by auxiliary LLM-based components. Experimental results indicate that DelTA significantly outperforms strong baselines in terms of translation consistency and quality across four open/closed-source LLMs and two representative document translation datasets, achieving an increase in consistency scores by up to 4.58 percentage points and in COMET scores by up to 3.16 points on average. DelTA employs a sentence-by-sentence translation strategy, ensuring no sentence omissions and offering a memory-efficient solution compared to the mainstream method. Furthermore, DelTA improves pronoun and context-dependent translation accuracy, and the summary component of the agent also shows promise as a tool for query-based summarization tasks. The code and data of our approach are released at https://github.com/YutongWang1216/DocMTAgent.
comment: Accepted as a conference paper at ICLR 2025
♻ ☆ PyGen: A Collaborative Human-AI Approach to Python Package Creation
The principles of automation and innovation serve as foundational elements for advancement in contemporary science and technology. Here, we introduce Pygen, an automation platform designed to empower researchers, technologists, and hobbyists to bring abstract ideas to life as core, usable software tools written in Python. Pygen leverages the immense power of autoregressive large language models to augment human creativity during the ideation, iteration, and innovation process. By combining state-of-the-art language models with open-source code generation technologies, Pygen has significantly reduced the manual overhead of tool development. From a user prompt, Pygen automatically generates Python packages for a complete workflow from concept to package generation and documentation. The findings of our work show that Pygen considerably enhances the researcher's productivity by enabling the creation of resilient, modular, and well-documented packages for various specialized purposes. We employ a prompt enhancement approach to distill the user's package description into increasingly specific and actionable. While being inherently an open-ended task, we have evaluated the generated packages and the documentation using Human Evaluation, LLM-based evaluation, and CodeBLEU, with detailed results in the results section. Furthermore, we documented our results, analyzed the limitations, and suggested strategies to alleviate them. Pygen is our vision of ethical automation, a framework that promotes inclusivity, accessibility, and collaborative development. This project marks the beginning of a large-scale effort towards creating tools where intelligent agents collaborate with humans to improve scientific and technological development substantially. Our code and generated examples are open-sourced at [https://github.com/GitsSaikat/Pygen]
comment: 33 pages, 13 figures
♻ ☆ Bonsai: Gradient-free Graph Distillation for Node Classification
Graph distillation has emerged as a promising avenue to enable scalable training of GNNs by compressing the training dataset while preserving essential graph characteristics. Our study uncovers significant shortcomings in current graph distillation techniques. First, the majority of the algorithms paradoxically require training on the full dataset to perform distillation. Second, due to their gradient-emulating approach, these methods require fresh distillation for any change in hyperparameters or GNN architecture, limiting their flexibility and reusability. Finally, they fail to achieve substantial size reduction due to synthesizing fully-connected, edge-weighted graphs. To address these challenges, we present Bonsai, a novel graph distillation method empowered by the observation that \textit{computation trees} form the fundamental processing units of message-passing GNNs. Bonsai distills datasets by encoding a careful selection of \textit{exemplar} trees that maximize the representation of all computation trees in the training set. This unique approach imparts Bonsai as the first linear-time, model-agnostic graph distillation algorithm for node classification that outperforms existing baselines across $6$ real-world datasets on accuracy, while being $22$ times faster on average. Bonsai is grounded in rigorous mathematical guarantees on the adopted approximation strategies making it robust to GNN architectures, datasets, and parameters.
♻ ☆ A privacy-preserving, distributed and cooperative FCM-based learning approach for cancer research
Distributed Artificial Intelligence is attracting interest day by day. In this paper, the authors introduce an innovative methodology for distributed learning of Particle Swarm Optimization-based Fuzzy Cognitive Maps in a privacy-preserving way. The authors design a training scheme for collaborative FCM learning that offers data privacy compliant with the current regulation. This method is applied to a cancer detection problem, proving that the performance of the model is improved by the Federated Learning process, and obtaining similar results to the ones that can be found in the literature.
comment: Rough Sets: International Joint Conference, IJCRS 2020
♻ ☆ What to align in multimodal contrastive learning? ICLR 2025
Humans perceive the world through multisensory integration, blending the information of different modalities to adapt their behavior. Contrastive learning offers an appealing solution for multimodal self-supervised learning. Indeed, by considering each modality as a different view of the same entity, it learns to align features of different modalities in a shared representation space. However, this approach is intrinsically limited as it only learns shared or redundant information between modalities, while multimodal interactions can arise in other ways. In this work, we introduce CoMM, a Contrastive MultiModal learning strategy that enables the communication between modalities in a single multimodal space. Instead of imposing cross- or intra- modality constraints, we propose to align multimodal representations by maximizing the mutual information between augmented versions of these multimodal features. Our theoretical analysis shows that shared, synergistic and unique terms of information naturally emerge from this formulation, allowing us to estimate multimodal interactions beyond redundancy. We test CoMM both in a controlled and in a series of real-world settings: in the former, we demonstrate that CoMM effectively captures redundant, unique and synergistic information between modalities. In the latter, CoMM learns complex multimodal interactions and achieves state-of-the-art results on the seven multimodal benchmarks. Code is available at https://github.com/Duplums/CoMM
comment: ICLR 2025, 25 pages
♻ ☆ CycleResearcher: Improving Automated Research via Automated Review ICLR 2025
The automation of scientific discovery has been a long-standing goal within the research community, driven by the potential to accelerate knowledge creation. While significant progress has been made using commercial large language models (LLMs) as research assistants or idea generators, the possibility of automating the entire research process with open-source LLMs remains largely unexplored. This paper explores the feasibility of using open-source post-trained LLMs as autonomous agents capable of performing the full cycle of automated research and review, from literature review and manuscript preparation to peer review and paper refinement. Our iterative preference training framework consists of CycleResearcher, which conducts research tasks, and CycleReviewer, which simulates the peer review process, providing iterative feedback via reinforcement learning. To train these models, we develop two new datasets, Review-5k and Research-14k, reflecting real-world machine learning research and peer review dynamics. Our results demonstrate that CycleReviewer achieves promising performance with a 26.89\% reduction in mean absolute error (MAE) compared to individual human reviewers in predicting paper scores, indicating the potential of LLMs to effectively assist expert-level research evaluation. In research, the papers generated by the CycleResearcher model achieved a score of 5.36 in simulated peer reviews, showing some competitiveness in terms of simulated review scores compared to the preprint level of 5.24 from human experts, while still having room for improvement compared to the accepted paper level of 5.69. This work represents a significant step toward fully automated scientific inquiry, providing ethical safeguards and exploring AI-driven research capabilities. The code, dataset and model weight are released at https://wengsyx.github.io/Researcher/
comment: Accept in ICLR 2025
♻ ☆ DexGraspVLA: A Vision-Language-Action Framework Towards General Dexterous Grasping
Dexterous grasping remains a fundamental yet challenging problem in robotics. A general-purpose robot must be capable of grasping diverse objects in arbitrary scenarios. However, existing research typically relies on specific assumptions, such as single-object settings or limited environments, leading to constrained generalization. Our solution is DexGraspVLA, a hierarchical framework that utilizes a pre-trained Vision-Language model as the high-level task planner and learns a diffusion-based policy as the low-level Action controller. The key insight lies in iteratively transforming diverse language and visual inputs into domain-invariant representations, where imitation learning can be effectively applied due to the alleviation of domain shift. Thus, it enables robust generalization across a wide range of real-world scenarios. Notably, our method achieves a 90+% success rate under thousands of unseen object, lighting, and background combinations in a ``zero-shot'' environment. Empirical analysis further confirms the consistency of internal model behavior across environmental variations, thereby validating our design and explaining its generalization performance. We hope our work can be a step forward in achieving general dexterous grasping. Our demo and code can be found at https://dexgraspvla.github.io/.
comment: 21 pages, 10 figures
♻ ☆ AI Governance through Markets
This paper argues that market governance mechanisms should be considered a key approach in the governance of artificial intelligence (AI), alongside traditional regulatory frameworks. While current governance approaches have predominantly focused on regulation, we contend that market-based mechanisms offer effective incentives for responsible AI development. We examine four emerging vectors of market governance: insurance, auditing, procurement, and due diligence, demonstrating how these mechanisms can affirm the relationship between AI risk and financial risk while addressing capital allocation inefficiencies. While we do not claim that market forces alone can adequately protect societal interests, we maintain that standardised AI disclosures and market mechanisms can create powerful incentives for safe and responsible AI development. This paper urges regulators, economists, and machine learning researchers to investigate and implement market-based approaches to AI governance.
♻ ☆ Provable Benefits of Task-Specific Prompts for In-context Learning AISTATS
The in-context learning capabilities of modern language models have motivated a deeper mathematical understanding of sequence models. A line of recent work has shown that linear attention models can emulate projected gradient descent iterations to implicitly learn the task vector from the data provided in the context window. In this work, we consider a novel setting where the global task distribution can be partitioned into a union of conditional task distributions. We then examine the use of task-specific prompts and prediction heads for learning the prior information associated with the conditional task distribution using a one-layer attention model. Our results on loss landscape show that task-specific prompts facilitate a covariance-mean decoupling where prompt-tuning explains the conditional mean of the distribution whereas the variance is learned/explained through in-context learning. Incorporating task-specific head further aids this process by entirely decoupling estimation of mean and variance components. This covariance-mean perspective similarly explains how jointly training prompt and attention weights can provably help over fine-tuning after pretraining.
comment: Proceedings of the 28th International Conference on Artificial Intelligence and Statistics (AISTATS) 2025
♻ ☆ MIRROR: A Novel Approach for the Automated Evaluation of Open-Ended Question Generation NeurIPS'24
Automatic question generation is a critical task that involves evaluating question quality by considering factors such as engagement, pedagogical value, and the ability to stimulate critical thinking. These aspects require human-like understanding and judgment, which automated systems currently lack. However, human evaluations are costly and impractical for large-scale samples of generated questions. Therefore, we propose a novel system, MIRROR (Multi-LLM Iterative Review and Response for Optimized Rating), which leverages large language models (LLMs) to automate the evaluation process for questions generated by automated question generation systems. We experimented with several state-of-the-art LLMs, such as GPT-4, Gemini, and Llama2-70b. We observed that the scores of human evaluation metrics, namely relevance, appropriateness, novelty, complexity, and grammaticality, improved when using the feedback-based approach called MIRROR, tending to be closer to the human baseline scores. Furthermore, we observed that Pearson's correlation coefficient between GPT-4 and human experts improved when using our proposed feedback-based approach, MIRROR, compared to direct prompting for evaluation. Error analysis shows that our proposed approach, MIRROR, significantly helps to improve relevance and appropriateness.
comment: NeurIPS'24 Workshop on Large Foundation Models for Educational Assessment (FM-EduAssess)
♻ ☆ One-Shot Imitation under Mismatched Execution
Human demonstrations as prompts are a powerful way to program robots to do long-horizon manipulation tasks. However, translating these demonstrations into robot-executable actions presents significant challenges due to execution mismatches in movement styles and physical capabilities. Existing methods either depend on human-robot paired data, which is infeasible to scale, or rely heavily on frame-level visual similarities that often break down in practice. To address these challenges, we propose RHyME, a novel framework that automatically aligns human and robot task executions using optimal transport costs. Given long-horizon robot demonstrations, RHyME synthesizes semantically equivalent human videos by retrieving and composing short-horizon human clips. This approach facilitates effective policy training without the need for paired data. RHyME successfully imitates a range of cross-embodiment demonstrators, both in simulation and with a real human hand, achieving over 50\% increase in task success compared to previous methods. We release our code and datasets at https://portal-cornell.github.io/rhyme/.
♻ ☆ Measuring and identifying factors of individuals' trust in Large Language Models
Large Language Models (LLMs) can engage in human-looking conversational exchanges. Although conversations can elicit trust between users and LLMs, scarce empirical research has examined trust formation in human-LLM contexts, beyond LLMs' trustworthiness or human trust in AI in general. Here, we introduce the Trust-In-LLMs Index (TILLMI) as a new framework to measure individuals' trust in LLMs, extending McAllister's cognitive and affective trust dimensions to LLM-human interactions. We developed TILLMI as a psychometric scale, prototyped with a novel protocol we called LLM-simulated validity. The LLM-based scale was then validated in a sample of 1,000 US respondents. Exploratory Factor Analysis identified a two-factor structure. Two items were then removed due to redundancy, yielding a final 6-item scale with a 2-factor structure. Confirmatory Factor Analysis on a separate subsample showed strong model fit ($CFI = .995$, $TLI = .991$, $RMSEA = .046$, $p_{X^2} > .05$). Convergent validity analysis revealed that trust in LLMs correlated positively with openness to experience, extraversion, and cognitive flexibility, but negatively with neuroticism. Based on these findings, we interpreted TILLMI's factors as "closeness with LLMs" (affective dimension) and "reliance on LLMs" (cognitive dimension). Younger males exhibited higher closeness with- and reliance on LLMs compared to older women. Individuals with no direct experience with LLMs exhibited lower levels of trust compared to LLMs' users. These findings offer a novel empirical foundation for measuring trust in AI-driven verbal communication, informing responsible design, and fostering balanced human-AI collaboration.
comment: 23 pages, 6 figures
♻ ☆ From Informal to Formal -- Incorporating and Evaluating LLMs on Natural Language Requirements to Verifiable Formal Proofs
The research in AI-based formal mathematical reasoning has shown an unstoppable growth trend. These studies have excelled in mathematical competitions like IMO and have made significant progress. This paper focuses on formal verification, an immediate application scenario of formal reasoning, and breaks it down into sub-tasks. We constructed 18k high-quality instruction-response pairs across five formal specification languages (Coq, Lean4, Dafny, ACSL, and TLA+) by distilling gpt-4o and evaluated against ten open-sourced LLMs, including recent popular DeepSeek-R1. We also fine-tuned several 7~8B small models to achieve comparable performance with Deepseek-R1-671B. Interestingly, we observed that fine-tuning with formal data also enhances mathematics, reasoning, and coding capabilities. Fine-tuned models are released at https: //huggingface.co/fm-universe.
comment: 19 pages
♻ ☆ On the Utility of Equivariance and Symmetry Breaking in Deep Learning Architectures on Point Clouds
This paper explores the key factors that influence the performance of models working with point clouds, across different tasks of varying geometric complexity. In this work, we explore the trade-offs between flexibility and weight-sharing introduced by equivariant layers, assessing when equivariance boosts or detracts from performance. It is often argued that providing more information as input improves a model's performance. However, if this additional information breaks certain properties, such as $\SE(3)$ equivariance, does it remain beneficial? We identify the key aspects of equivariant and non-equivariant architectures that drive success in different tasks by benchmarking them on segmentation, regression, and generation tasks across multiple datasets with increasing complexity. We observe a positive impact of equivariance, which becomes more pronounced with increasing task complexity, even when strict equivariance is not required.
comment: 19 pages, 4 figures
♻ ☆ DeePen: Penetration Testing for Audio Deepfake Detection
Deepfakes - manipulated or forged audio and video media - pose significant security risks to individuals, organizations, and society at large. To address these challenges, machine learning-based classifiers are commonly employed to detect deepfake content. In this paper, we assess the robustness of such classifiers through a systematic penetration testing methodology, which we introduce as DeePen. Our approach operates without prior knowledge of or access to the target deepfake detection models. Instead, it leverages a set of carefully selected signal processing modifications - referred to as attacks - to evaluate model vulnerabilities. Using DeePen, we analyze both real-world production systems and publicly available academic model checkpoints, demonstrating that all tested systems exhibit weaknesses and can be reliably deceived by simple manipulations such as time-stretching or echo addition. Furthermore, our findings reveal that while some attacks can be mitigated by retraining detection systems with knowledge of the specific attack, others remain persistently effective. We release all associated code.
♻ ☆ Bringing AI Participation Down to Scale: A Comment on Open AIs Democratic Inputs to AI Project
In 2023, Open AIs Democratic Inputs program funded 10 teams to design procedures for public participation in generative AI. In this Perspective, we review the results of the project, drawing on interviews with some of the teams and our own experiences conducting participation exercises, we identify several shared yet largely unspoken assumptions of the Democratic Inputs program 1. that participation must be scalable 2. that the object of participation is a single model 3. that there must be a single form of participation 4. that the goal is to extract abstract principles 5. that these principles should have consensus 6. that publics should be representative and encourage alternative forms of participation in AI, perhaps not undertaken by tech companies.
♻ ☆ Safety Without Semantic Disruptions: Editing-free Safe Image Generation via Context-preserving Dual Latent Reconstruction
Training multimodal generative models on large, uncurated datasets can result in users being exposed to harmful, unsafe and controversial or culturally-inappropriate outputs. While model editing has been proposed to remove or filter undesirable concepts in embedding and latent spaces, it can inadvertently damage learned manifolds, distorting concepts in close semantic proximity. We identify limitations in current model editing techniques, showing that even benign, proximal concepts may become misaligned. To address the need for safe content generation, we leverage safe embeddings and a modified diffusion process with tunable weighted summation in the latent space to generate safer images. Our method preserves global context without compromising the structural integrity of the learned manifolds. We achieve state-of-the-art results on safe image generation benchmarks and offer intuitive control over the level of model safety. We identify trade-offs between safety and censorship, which presents a necessary perspective in the development of ethical AI models. We will release our code. Keywords: Text-to-Image Models, Generative AI, Safety, Reliability, Model Editing
comment: This research is supported by the NISDRG project #20100007, funded by the Australian Government
♻ ☆ LLMs can be Dangerous Reasoners: Analyzing-based Jailbreak Attack on Large Language Models
The rapid development of Large Language Models (LLMs) has brought significant advancements across various tasks. However, despite these achievements, LLMs still exhibit inherent safety vulnerabilities, especially when confronted with jailbreak attacks. Existing jailbreak methods suffer from two main limitations: reliance on complicated prompt engineering and iterative optimization, which lead to low attack success rate (ASR) and attack efficiency (AE). In this work, we propose an efficient jailbreak attack method, Analyzing-based Jailbreak (ABJ), which leverages the advanced reasoning capability of LLMs to autonomously generate harmful content, revealing their underlying safety vulnerabilities during complex reasoning process. We conduct comprehensive experiments on ABJ across various open-source and closed-source LLMs. In particular, ABJ achieves high ASR (82.1% on GPT-4o-2024-11-20) with exceptional AE among all target LLMs, showcasing its remarkable attack effectiveness, transferability, and efficiency. Our findings underscore the urgent need to prioritize and improve the safety of LLMs to mitigate the risks of misuse.
♻ ☆ Online Scheduling for LLM Inference with KV Cache Constraints
Large Language Model (LLM) inference, where a trained model generates text one word at a time in response to user prompts, is a computationally intensive process requiring efficient scheduling to optimize latency and resource utilization. A key challenge in LLM inference is the management of the Key-Value (KV) cache, which reduces redundant computations but introduces memory constraints. In this work, we model LLM inference with KV cache constraints theoretically and propose novel batching and scheduling algorithms that minimize inference latency while effectively managing the KV cache's memory. We analyze both semi-online and fully online scheduling models, and our results are threefold. First, we provide a polynomial-time algorithm that achieves exact optimality in terms of average latency in the semi-online prompt arrival model. Second, in the fully online case with a stochastic prompt arrival, we introduce an efficient online scheduling algorithm with constant regret. Third, we prove that no algorithm (deterministic or randomized) can achieve a constant competitive ratio in fully online adversarial settings. Our empirical evaluations on a public LLM inference dataset, using the Llama-70B model on A100 GPUs, show that our approach significantly outperforms benchmark algorithms used currently in practice, achieving lower latency while reducing energy consumption. Overall, our results offer a path toward more sustainable and cost-effective LLM deployment.
comment: Will add a lemma in the proof of Theorem 5.3 to make the statement and proof more rigorous
♻ ☆ RIDE: Enhancing Large Language Model Alignment through Restyled In-Context Learning Demonstration Exemplars
Alignment tuning is crucial for ensuring large language models (LLMs) behave ethically and helpfully. Current alignment approaches require high-quality annotations and significant training resources. This paper proposes a low-cost, tuning-free method using in-context learning (ICL) to enhance LLM alignment. Through an analysis of high-quality ICL demos, we identified style as a key factor influencing LLM alignment capabilities and explicitly restyled ICL exemplars based on this stylistic framework. Additionally, we combined the restyled demos to achieve a balance between the two conflicting aspects of LLM alignment--factuality and safety. We packaged the restyled examples as prompts to trigger few-shot learning, improving LLM alignment. Compared to the best baseline approach, with an average score of 5.00 as the maximum, our method achieves a maximum 0.10 increase on the Alpaca task (from 4.50 to 4.60), a 0.22 enhancement on the Just-eval benchmark (from 4.34 to 4.56), and a maximum improvement of 0.32 (from 3.53 to 3.85) on the MT-Bench dataset. We release the code and data at https://github.com/AnonymousCode-ComputerScience/RIDE.
comment: 38 pages, 2 figures, 20 tables; The paper is under review in ARR
♻ ☆ GSplatLoc: Grounding Keypoint Descriptors into 3D Gaussian Splatting for Improved Visual Localization
Although various visual localization approaches exist, such as scene coordinate regression and camera pose regression, these methods often struggle with optimization complexity or limited accuracy. To address these challenges, we explore the use of novel view synthesis techniques, particularly 3D Gaussian Splatting (3DGS), which enables the compact encoding of both 3D geometry and scene appearance. We propose a two-stage procedure that integrates dense and robust keypoint descriptors from the lightweight XFeat feature extractor into 3DGS, enhancing performance in both indoor and outdoor environments. The coarse pose estimates are directly obtained via 2D-3D correspondences between the 3DGS representation and query image descriptors. In the second stage, the initial pose estimate is refined by minimizing the rendering-based photometric warp loss. Benchmarking on widely used indoor and outdoor datasets demonstrates improvements over recent neural rendering-based localization methods, such as NeRFMatch and PNeRFLoc.
comment: Project website at https://gsplatloc.github.io/
♻ ☆ Multimodal Action Quality Assessment
Action quality assessment (AQA) is to assess how well an action is performed. Previous works perform modelling by only the use of visual information, ignoring audio information. We argue that although AQA is highly dependent on visual information, the audio is useful complementary information for improving the score regression accuracy, especially for sports with background music, such as figure skating and rhythmic gymnastics. To leverage multimodal information for AQA, i.e., RGB, optical flow and audio information, we propose a Progressive Adaptive Multimodal Fusion Network (PAMFN) that separately models modality-specific information and mixed-modality information. Our model consists of with three modality-specific branches that independently explore modality-specific information and a mixed-modality branch that progressively aggregates the modality-specific information from the modality-specific branches. To build the bridge between modality-specific branches and the mixed-modality branch, three novel modules are proposed. First, a Modality-specific Feature Decoder module is designed to selectively transfer modality-specific information to the mixed-modality branch. Second, when exploring the interaction between modality-specific information, we argue that using an invariant multimodal fusion policy may lead to suboptimal results, so as to take the potential diversity in different parts of an action into consideration. Therefore, an Adaptive Fusion Module is proposed to learn adaptive multimodal fusion policies in different parts of an action. This module consists of several FusionNets for exploring different multimodal fusion strategies and a PolicyNet for deciding which FusionNets are enabled. Third, a module called Cross-modal Feature Decoder is designed to transfer cross-modal features generated by Adaptive Fusion Module to the mixed-modality branch.
comment: IEEE Transactions on Image Processing 2024
♻ ☆ Handling Spatial-Temporal Data Heterogeneity for Federated Continual Learning via Tail Anchor CVPR 2025
Federated continual learning (FCL) allows each client to continually update its knowledge from task streams, enhancing the applicability of federated learning in real-world scenarios. However, FCL needs to address not only spatial data heterogeneity between clients but also temporal data heterogeneity between tasks. In this paper, empirical experiments demonstrate that such input-level heterogeneity significantly affects the model's internal parameters and outputs, leading to severe spatial-temporal catastrophic forgetting of local and previous knowledge. To this end, we propose Federated Tail Anchor (FedTA) to mix trainable Tail Anchor with the frozen output features to adjust their position in the feature space, thereby overcoming parameter-forgetting and output-forgetting. Three novel components are also included: Input Enhancement for improving the performance of pre-trained models on downstream tasks; Selective Input Knowledge Fusion for fusion of heterogeneous local knowledge on the server; and Best Global Prototype Selection for finding the best anchor point for each class in the feature space. Extensive experiments demonstrate that FedTA not only outperforms existing FCL methods but also effectively preserves the relative positions of features.
comment: This paper is accepted by CVPR 2025
♻ ☆ Promote, Suppress, Iterate: How Language Models Answer One-to-Many Factual Queries
To answer one-to-many factual queries (e.g., listing cities of a country), a language model (LM) must simultaneously recall knowledge and avoid repeating previous answers. How are these two subtasks implemented and integrated internally? Across multiple datasets and models, we identify a promote-then-suppress mechanism: the model first recalls all answers, and then suppresses previously generated ones. Specifically, LMs use both the subject and previous answer tokens to perform knowledge recall, with attention propagating subject information and MLPs promoting the answers. Then, attention attends to and suppresses previous answer tokens, while MLPs amplify the suppression signal. Our mechanism is corroborated by extensive experimental evidence: in addition to using early decoding and causal tracing, we analyze how components use different tokens by introducing both Token Lens, which decodes aggregated attention updates from specified tokens, and a knockout method that analyzes changes in MLP outputs after removing attention to specified tokens. Overall, we provide new insights into how LMs' internal components interact with different input tokens to support complex factual recall. Code is available at https://github.com/Lorenayannnnn/how-lms-answer-one-to-many-factual-queries.
♻ ☆ Graph-Aware Isomorphic Attention for Adaptive Dynamics in Transformers
We present an approach to modifying Transformer architectures by integrating graph-aware relational reasoning into the attention mechanism, merging concepts from graph neural networks and language modeling. Building on the inherent connection between attention and graph theory, we reformulate the Transformer's attention mechanism as a graph operation and propose Graph-Aware Isomorphic Attention. This method leverages advanced graph modeling strategies, including Graph Isomorphism Networks (GIN) and Principal Neighborhood Aggregation (PNA), to enrich the representation of relational structures. Our approach captures complex dependencies and generalizes across tasks, as evidenced by a reduced generalization gap and improved learning performance. Additionally, we expand the concept of graph-aware attention to introduce Sparse GIN-Attention, a fine-tuning approach that employs sparse GINs. By interpreting attention matrices as sparse adjacency graphs, this technique enhances the adaptability of pre-trained foundational models with minimal computational overhead, endowing them with graph-aware capabilities. Sparse GIN-Attention fine-tuning achieves improved training dynamics and better generalization compared to alternative methods like low-rank adaption (LoRA). We discuss latent graph-like structures within traditional attention mechanisms, offering a new lens through which Transformers can be understood. By evolving Transformers as hierarchical GIN models for relational reasoning. This perspective suggests profound implications for foundational model development, enabling the design of architectures that dynamically adapt to both local and global dependencies. Applications in bioinformatics, materials science, language modeling, and beyond could benefit from this synthesis of relational and sequential data modeling, setting the stage for interpretable and generalizable modeling strategies.
♻ ☆ Sim2Real within 5 Minutes: Efficient Domain Transfer with Stylized Gaussian Splatting for Endoscopic Images ICRA 2025
Robot assisted endoluminal intervention is an emerging technique for both benign and malignant luminal lesions. With vision-based navigation, when combined with pre-operative imaging data as priors, it is possible to recover position and pose of the endoscope without the need of additional sensors. In practice, however, aligning pre-operative and intra-operative domains is complicated by significant texture differences. Although methods such as style transfer can be used to address this issue, they require large datasets from both source and target domains with prolonged training times. This paper proposes an efficient domain transfer method based on stylized Gaussian splatting, only requiring a few of real images (10 images) with very fast training time. Specifically, the transfer process includes two phases. In the first phase, the 3D models reconstructed from CT scans are represented as differential Gaussian point clouds. In the second phase, only color appearance related parameters are optimized to transfer the style and preserve the visual content. A novel structure consistency loss is applied to latent features and depth levels to enhance the stability of the transferred images. Detailed validation was performed to demonstrate the performance advantages of the proposed method compared to that of the current state-of-the-art, highlighting the potential for intra-operative surgical navigation.
comment: Accepted by ICRA 2025
♻ ☆ A Physical Coherence Benchmark for Evaluating Video Generation Models via Optical Flow-guided Frame Prediction
Recent advances in video generation models demonstrate their potential as world simulators, but they often struggle with videos deviating from physical laws, a key concern overlooked by most text-to-video benchmarks. We introduce a benchmark designed specifically to assess the Physical Coherence of generated videos, PhyCoBench. Our benchmark includes 120 prompts covering 7 categories of physical principles, capturing key physical laws observable in video content. We evaluated four state-of-the-art (SoTA) T2V models on PhyCoBench and conducted manual assessments. Additionally, we propose an automated evaluation model: PhyCoPredictor, a diffusion model that generates optical flow and video frames in a cascade manner. Through a consistency evaluation comparing automated and manual sorting, the experimental results show that PhyCoPredictor currently aligns most closely with human evaluation. Therefore, it can effectively evaluate the physical coherence of videos, providing insights for future model optimization. Our benchmark, including physical coherence prompts, the automatic evaluation tool PhyCoPredictor, and the generated video dataset, has been released on GitHub at https://github.com/Jeckinchen/PhyCoBench.
♻ ☆ ChaI-TeA: A Benchmark for Evaluating Autocompletion of Interactions with LLM-based Chatbots
The rise of LLMs has deflected a growing portion of human-computer interactions towards LLM-based chatbots. The remarkable abilities of these models allow users to interact using long, diverse natural language text covering a wide range of topics and styles. Phrasing these messages is a time and effort consuming task, calling for an autocomplete solution to assist users. We introduce the task of chatbot interaction autocomplete. We present ChaI-TeA: CHat InTEraction Autocomplete; An autcomplete evaluation framework for LLM-based chatbot interactions. The framework includes a formal definition of the task, coupled with suitable datasets and metrics. We use the framework to evaluate After formally defining the task along with suitable datasets and metrics, we test 9 models on the defined auto completion task, finding that while current off-the-shelf models perform fairly, there is still much room for improvement, mainly in ranking of the generated suggestions. We provide insights for practitioners working on this task and open new research directions for researchers in the field. We release our framework to serve as a foundation for future research.
♻ ☆ AIArena: A Blockchain-Based Decentralized AI Training Platform WWW
The rapid advancement of AI has underscored critical challenges in its development and implementation, largely due to centralized control by a few major corporations. This concentration of power intensifies biases within AI models, resulting from inadequate governance and oversight mechanisms. Additionally, it limits public involvement and heightens concerns about the integrity of model generation. Such monopolistic control over data and AI outputs threatens both innovation and fair data usage, as users inadvertently contribute data that primarily benefits these corporations. In this work, we propose AIArena, a blockchain-based decentralized AI training platform designed to democratize AI development and alignment through on-chain incentive mechanisms. AIArena fosters an open and collaborative environment where participants can contribute models and computing resources. Its on-chain consensus mechanism ensures fair rewards for participants based on their contributions. We instantiate and implement AIArena on the public Base blockchain Sepolia testnet, and the evaluation results demonstrate the feasibility of AIArena in real-world applications.
comment: Camera ready version. Accepted by the ACM Web Conference (WWW), 2025
♻ ☆ Schedule On the Fly: Diffusion Time Prediction for Faster and Better Image Generation
Diffusion and flow matching models have achieved remarkable success in text-to-image generation. However, these models typically rely on the predetermined denoising schedules for all prompts. The multi-step reverse diffusion process can be regarded as a kind of chain-of-thought for generating high-quality images step by step. Therefore, diffusion models should reason for each instance to adaptively determine the optimal noise schedule, achieving high generation quality with sampling efficiency. In this paper, we introduce the Time Prediction Diffusion Model (TPDM) for this. TPDM employs a plug-and-play Time Prediction Module (TPM) that predicts the next noise level based on current latent features at each denoising step. We train the TPM using reinforcement learning to maximize a reward that encourages high final image quality while penalizing excessive denoising steps. With such an adaptive scheduler, TPDM not only generates high-quality images that are aligned closely with human preferences but also adjusts diffusion time and the number of denoising steps on the fly, enhancing both performance and efficiency. With Stable Diffusion 3 Medium architecture, TPDM achieves an aesthetic score of 5.44 and a human preference score (HPS) of 29.59, while using around 50% fewer denoising steps to achieve better performance.
♻ ☆ Bounding Evidence and Estimating Log-Likelihood in VAE AISTATS 2023
Many crucial problems in deep learning and statistical inference are caused by a variational gap, i.e., a difference between model evidence (log-likelihood) and evidence lower bound (ELBO). In particular, in a classical VAE setting that involves training via an ELBO cost function, it is difficult to provide a robust comparison of the effects of training between models, since we do not know a log-likelihood of data (but only its lower bound). In this paper, to deal with this problem, we introduce a general and effective upper bound, which allows us to efficiently approximate the evidence of data. We provide extensive theoretical and experimental studies of our approach, including its comparison to the other state-of-the-art upper bounds, as well as its application as a tool for the evaluation of models that were trained on various lower bounds.
comment: Paper accepted for AISTATS 2023
♻ ☆ TAG: A Decentralized Framework for Multi-Agent Hierarchical Reinforcement Learning
Hierarchical organization is fundamental to biological systems and human societies, yet artificial intelligence systems often rely on monolithic architectures that limit adaptability and scalability. Current hierarchical reinforcement learning (HRL) approaches typically restrict hierarchies to two levels or require centralized training, which limits their practical applicability. We introduce TAME Agent Framework (TAG), a framework for constructing fully decentralized hierarchical multi-agent systems. TAG enables hierarchies of arbitrary depth through a novel LevelEnv concept, which abstracts each hierarchy level as the environment for the agents above it. This approach standardizes information flow between levels while preserving loose coupling, allowing for seamless integration of diverse agent types. We demonstrate the effectiveness of TAG by implementing hierarchical architectures that combine different RL agents across multiple levels, achieving improved performance over classical multi-agent RL baselines on standard benchmarks. Our results show that decentralized hierarchical organization enhances both learning speed and final performance, positioning TAG as a promising direction for scalable multi-agent systems.
♻ ☆ Exploration Implies Data Augmentation: Reachability and Generalisation in Contextual MDPs
In the zero-shot policy transfer (ZSPT) setting for contextual Markov decision processes (MDP), agents train on a fixed set of contexts and must generalise to new ones. Recent work has argued and demonstrated that increased exploration can improve this generalisation, by training on more states in the training contexts. In this paper, we demonstrate that training on more states can indeed improve generalisation, but can come at a cost of reducing the accuracy of the learned value function which should not benefit generalisation. We introduce reachability in the ZSPT setting to define which states/contexts require generalisation and explain why exploration can improve it. We hypothesise and demonstrate that using exploration to increase the agent's coverage while also increasing the accuracy improves generalisation even more. Inspired by this, we propose a method Explore-Go that implements an exploration phase at the beginning of each episode, which can be combined with existing on- and off-policy RL algorithms and significantly improves generalisation even in partially observable MDPs. We demonstrate the effectiveness of Explore-Go when combined with several popular algorithms and show an increase in generalisation performance across several environments. With this, we hope to provide practitioners with a simple modification that can improve the generalisation of their agents.
comment: arXiv admin note: text overlap with arXiv:2406.08069
♻ ☆ Coordinated Multi-Armed Bandits for Improved Spatial Reuse in Wi-Fi
Multi-Access Point Coordination (MAPC) and Artificial Intelligence and Machine Learning (AI/ML) are expected to be key features in future Wi-Fi, such as the forthcoming IEEE 802.11bn (Wi-Fi~8) and beyond. In this paper, we explore a coordinated solution based on online learning to drive the optimization of Spatial Reuse (SR), a method that allows multiple devices to perform simultaneous transmissions by controlling interference through Packet Detect (PD) adjustment and transmit power control. In particular, we focus on a Multi-Agent Multi-Armed Bandit (MA-MAB) setting, where multiple decision-making agents concurrently configure SR parameters from coexisting networks by leveraging the MAPC framework, and study various algorithms and reward-sharing mechanisms. We evaluate different MA-MAB implementations using Komondor, a well-adopted Wi-Fi simulator, and demonstrate that AI-native SR enabled by coordinated MABs can improve the network performance over current Wi-Fi operation: mean throughput increases by 15%, fairness is improved by increasing the minimum throughput across the network by 210%, while the maximum access delay is kept below 3 ms.
♻ ☆ XLSTM-HVED: Cross-Modal Brain Tumor Segmentation and MRI Reconstruction Method Using Vision XLSTM and Heteromodal Variational Encoder-Decoder
Neurogliomas are among the most aggressive forms of cancer, presenting considerable challenges in both treatment and monitoring due to their unpredictable biological behavior. Magnetic resonance imaging (MRI) is currently the preferred method for diagnosing and monitoring gliomas. However, the lack of specific imaging techniques often compromises the accuracy of tumor segmentation during the imaging process. To address this issue, we introduce the XLSTM-HVED model. This model integrates a hetero-modal encoder-decoder framework with the Vision XLSTM module to reconstruct missing MRI modalities. By deeply fusing spatial and temporal features, it enhances tumor segmentation performance. The key innovation of our approach is the Self-Attention Variational Encoder (SAVE) module, which improves the integration of modal features. Additionally, it optimizes the interaction of features between segmentation and reconstruction tasks through the Squeeze-Fusion-Excitation Cross Awareness (SFECA) module. Our experiments using the BraTS 2024 dataset demonstrate that our model significantly outperforms existing advanced methods in handling cases where modalities are missing. Our source code is available at https://github.com/Quanato607/XLSTM-HVED.
comment: 5 pages, 2 figures
♻ ☆ A Survey on Self-play Methods in Reinforcement Learning
Self-play, characterized by agents' interactions with copies or past versions of themselves, has recently gained prominence in reinforcement learning (RL). This paper first clarifies the preliminaries of self-play, including the multi-agent reinforcement learning framework and basic game theory concepts. Then, it provides a unified framework and classifies existing self-play algorithms within this framework. Moreover, the paper bridges the gap between the algorithms and their practical implications by illustrating the role of self-play in different scenarios. Finally, the survey highlights open challenges and future research directions in self-play. This paper is an essential guide map for understanding the multifaceted landscape of self-play in RL.
♻ ☆ Bi-Fact: A Bidirectional Factorization-based Evaluation of Intent Extraction from UI Trajectories
Evaluating intent extraction from GUIs demands accurate, fine-grained metrics. This paper introduces Bi-Fact, a novel method that decomposes intents into atomic facts and performs bidirectional comparisons to assess precision and recall. Experiments demonstrate Bi-Fact's superior correlation with human judgments compared to existing metrics, establishing a more robust evaluation framework for UI-driven intent understanding.
♻ ☆ Number Cookbook: Number Understanding of Language Models and How to Improve It ICLR 2025
Large language models (LLMs) can solve an increasing number of complex reasoning tasks while making surprising mistakes in basic numerical understanding and processing (such as 9.11 > 9.9). The latter ability is essential for tackling complex arithmetic and mathematical problems and serves as a foundation for most reasoning tasks, but previous work paid little attention to it or only discussed several restricted tasks (like integer addition). In this paper, we comprehensively investigate the numerical understanding and processing ability (NUPA) of LLMs. Firstly, we introduce a benchmark covering four common numerical representations and 17 distinct numerical tasks in four major categories, resulting in 41 meaningful combinations in total. These tasks are derived from primary and secondary education curricula, encompassing nearly all everyday numerical understanding and processing scenarios, and the rules of these tasks are very simple and clear. Through the benchmark, we find that current LLMs fail frequently in many of the tasks. To study the problem, we train small models with existing and potential techniques for enhancing NUPA (such as tokenizers, PEs, and number formats), comprehensively evaluating their effectiveness using our testbed. We also finetune practical-scale LLMs on our proposed NUPA tasks and find that 1) naive finetuning can improve NUPA a lot on many but not all tasks, and 2) surprisingly, techniques designed to enhance NUPA prove ineffective for finetuning pretrained models. We further explore the impact of chain-of-thought techniques on NUPA. Our work provides a more detailed and comprehensive understanding of NUPA in LLMs. Our benchmark and code are released at https://github.com/GraphPKU/number_cookbook.
comment: ICLR 2025 poster
♻ ☆ Affordably Fine-tuned LLMs Provide Better Answers to Course-specific MCQs
In education, the capability of generating human-like text of Large Language Models (LLMs) inspired work on how they can increase the efficiency of learning and teaching. We study the affordability of these models for educators and students by investigating how LLMs answer multiple-choice questions (MCQs) with respect to hardware constraints and refinement techniques. We explore this space by using generic pre-trained LLMs (the 7B, 13B, and 70B variants of LLaMA-2) to answer 162 undergraduate-level MCQs from a course on Programming Languages (PL) -- the MCQ dataset is a contribution of this work, which we make publicly available. Specifically, we dissect how different factors, such as using readily-available material -- (parts of) the course's textbook -- for fine-tuning and quantisation (to decrease resource usage) can change the accuracy of the responses. The main takeaway is that smaller textbook-based fine-tuned models outperform generic larger ones (whose pre-training requires conspicuous resources), making the usage of LLMs for answering MCQs resource- and material-wise affordable.
comment: The 40th ACM/SIGAPP Symposium On Applied Computing
♻ ☆ SLTNet: Efficient Event-based Semantic Segmentation with Spike-driven Lightweight Transformer-based Networks IROS 2025
Event-based semantic segmentation has great potential in autonomous driving and robotics due to the advantages of event cameras, such as high dynamic range, low latency, and low power cost. Unfortunately, current artificial neural network (ANN)-based segmentation methods suffer from high computational demands, the requirements for image frames, and massive energy consumption, limiting their efficiency and application on resource-constrained edge/mobile platforms. To address these problems, we introduce SLTNet, a spike-driven lightweight transformer-based network designed for event-based semantic segmentation. Specifically, SLTNet is built on efficient spike-driven convolution blocks (SCBs) to extract rich semantic features while reducing the model's parameters. Then, to enhance the long-range contextural feature interaction, we propose novel spike-driven transformer blocks (STBs) with binary mask operations. Based on these basic blocks, SLTNet employs a high-efficiency single-branch architecture while maintaining the low energy consumption of the Spiking Neural Network (SNN). Finally, extensive experiments on DDD17 and DSEC-Semantic datasets demonstrate that SLTNet outperforms state-of-the-art (SOTA) SNN-based methods by at most 9.06% and 9.39% mIoU, respectively, with extremely 4.58x lower energy consumption and 114 FPS inference speed. Our code is open-sourced and available at https://github.com/longxianlei/SLTNet-v1.0.
comment: Submitted to 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
♻ ☆ LaRA: Benchmarking Retrieval-Augmented Generation and Long-Context LLMs -- No Silver Bullet for LC or RAG Routing
Effectively incorporating external knowledge into Large Language Models (LLMs) is crucial for enhancing their capabilities and addressing real-world needs. Retrieval-Augmented Generation (RAG) offers an effective method for achieving this by retrieving the most relevant fragments into LLMs. However, the advancements in context window size for LLMs offer an alternative approach, raising the question of whether RAG remains necessary for effectively handling external knowledge. Several existing studies provide inconclusive comparisons between RAG and long-context (LC) LLMs, largely due to limitations in the benchmark designs. In this paper, we present LaRA, a novel benchmark specifically designed to rigorously compare RAG and LC LLMs. LaRA encompasses 2326 test cases across four practical QA task categories and three types of naturally occurring long texts. Through systematic evaluation of seven open-source and four proprietary LLMs, we find that the optimal choice between RAG and LC depends on a complex interplay of factors, including the model's parameter size, long-text capabilities, context length, task type, and the characteristics of the retrieved chunks. Our findings provide actionable guidelines for practitioners to effectively leverage both RAG and LC approaches in developing and deploying LLM applications. Our code and dataset is provided at: \href{https://github.com/Alibaba-NLP/LaRA}{\textbf{https://github.com/Alibaba-NLP/LaRA}}.
comment: 22 pages
♻ ☆ Scale-Invariant Object Detection by Adaptive Convolution with Unified Global-Local Context
Dense features are important for detecting minute objects in images. Unfortunately, despite the remarkable efficacy of the CNN models in multi-scale object detection, CNN models often fail to detect smaller objects in images due to the loss of dense features during the pooling process. Atrous convolution addresses this issue by applying sparse kernels. However, sparse kernels often can lose the multi-scale detection efficacy of the CNN model. In this paper, we propose an object detection model using a Switchable (adaptive) Atrous Convolutional Network (SAC-Net) based on the efficientDet model. A fixed atrous rate limits the performance of the CNN models in the convolutional layers. To overcome this limitation, we introduce a switchable mechanism that allows for dynamically adjusting the atrous rate during the forward pass. The proposed SAC-Net encapsulates the benefits of both low-level and high-level features to achieve improved performance on multi-scale object detection tasks, without losing the dense features. Further, we apply a depth-wise switchable atrous rate to the proposed network, to improve the scale-invariant features. Finally, we apply global context on the proposed model. Our extensive experiments on benchmark datasets demonstrate that the proposed SAC-Net outperforms the state-of-the-art models by a significant margin in terms of accuracy.
♻ ☆ Improved Performances and Motivation in Intelligent Tutoring Systems: Combining Machine Learning and Learner Choice
Large class sizes challenge personalized learning in schools, prompting the use of educational technologies such as intelligent tutoring systems. To address this, we present an AI-driven personalization system, called ZPDES, based on the Learning Progress Hypothesis - modeling curiosity-driven learning - and multi-armed bandit techniques. It sequences exercises that maximize learning progress for each student. While previous studies demonstrated its efficacy in enhancing learning compared to hand-made curricula, its impact on student motivation remained unexplored. Furthermore, ZPDES previously lacked features allowing student choice, a limitation in agency that conflicts with its foundation on models of curiosity-driven learning. This study investigates how integrating choice, as a gamification element unrelated to exercise difficulty, affects both learning outcomes and motivation. We conducted an extensive field study (265 7-8 years old children, RCT design), comparing ZPDES with and without choice against a hand-designed curriculum. Results show that ZPDES improves both learning performance and the learning experience. Moreover adding choice to ZPDES enhances intrinsic motivation and further strengthens its learning benefits. In contrast, incorporating choice into a fixed, linear curriculum negatively impacts learning outcomes. These findings highlight that the intrinsic motivation elicited by choice (gamification) is beneficial only when paired with an adaptive personalized learning system. This insight is critical as gamified features become increasingly prevalent in educational technologies.
♻ ☆ Grams: Gradient Descent with Adaptive Momentum Scaling SC
We introduce $\mathbf{G}$radient Descent with $\mathbf{A}$daptive $\mathbf{M}$omentum $\mathbf{S}$caling ($\mathbf{Grams}$), a novel optimization algorithm that decouples the direction and magnitude of parameter updates in deep learning. Unlike traditional optimizers that directly integrate momentum into updates, Grams separates the update direction, derived from current gradients, from momentum, which is used solely for adaptive magnitude scaling. This approach enables Grams to achieve improved loss descent compared to state-of-the-art cautious and momentum-based optimizers. We theoretically demonstrate that Grams descents faster than other state-of-the-art optimizers and establish a global convergence guarantee for Grams. We also validate its effectiveness through extensive empirical evaluations. The results demonstrate Grams' superior performance, including faster convergence and better generalization, compared to widely-used optimizers such as Adam, Lion, and their cautious variants. Our results highlight Grams' potential as a transformative approach for efficiently training and fine-tuning large language models. Code is available at https://github.com/Gunale0926/Grams.
comment: SCOPE Workshop @ ICLR 2025
♻ ☆ TimeRefine: Temporal Grounding with Time Refining Video LLM
Video temporal grounding aims to localize relevant temporal boundaries in a video given a textual prompt. Recent work has focused on enabling Video LLMs to perform video temporal grounding via next-token prediction of temporal timestamps. However, accurately localizing timestamps in videos remains challenging for Video LLMs when relying solely on temporal token prediction. Our proposed TimeRefine addresses this challenge in two ways. First, instead of directly predicting the start and end timestamps, we reformulate the temporal grounding task as a temporal refining task: the model first makes rough predictions and then refines them by predicting offsets to the target segment. This refining process is repeated multiple times, through which the model progressively self-improves its temporal localization accuracy. Second, to enhance the model's temporal perception capabilities, we incorporate an auxiliary prediction head that penalizes the model more if a predicted segment deviates further from the ground truth, thus encouraging the model to make closer and more accurate predictions. Our plug-and-play method can be integrated into most LLM-based temporal grounding approaches. The experimental results demonstrate that TimeRefine achieves 3.6% and 5.0% mIoU improvements on the ActivityNet and Charades-STA datasets, respectively. Code and pretrained models will be released.
♻ ☆ Training a Generally Curious Agent
Efficient exploration is essential for intelligent systems interacting with their environment, but existing language models often fall short in scenarios that require strategic information gathering. In this paper, we present PAPRIKA, a fine-tuning approach that enables language models to develop general decision-making capabilities that are not confined to particular environments. By training on synthetic interaction data from different tasks that require diverse strategies, PAPRIKA teaches models to explore and adapt their behavior on a new task based on environment feedback in-context without more gradient updates. Experimental results show that models fine-tuned with PAPRIKA can effectively transfer their learned decision-making capabilities to entirely unseen tasks without additional training. Unlike traditional training, our approach's primary bottleneck lies in sampling useful interaction data instead of model updates. To improve sample efficiency, we propose a curriculum learning strategy that prioritizes sampling trajectories from tasks with high learning potential. These results suggest a promising path towards AI systems that can autonomously solve novel sequential decision-making problems that require interactions with the external world.
comment: Project Website: https://paprika-llm.github.io
♻ ☆ VerilogCoder: Autonomous Verilog Coding Agents with Graph-based Planning and Abstract Syntax Tree (AST)-based Waveform Tracing Tool AAAI 2025
Due to the growing complexity of modern Integrated Circuits (ICs), automating hardware design can prevent a significant amount of human error from the engineering process and result in less errors. Verilog is a popular hardware description language for designing and modeling digital systems; thus, Verilog generation is one of the emerging areas of research to facilitate the design process. In this work, we propose VerilogCoder, a system of multiple Artificial Intelligence (AI) agents for Verilog code generation, to autonomously write Verilog code and fix syntax and functional errors using collaborative Verilog tools (i.e., syntax checker, simulator, and waveform tracer). Firstly, we propose a task planner that utilizes a novel Task and Circuit Relation Graph retrieval method to construct a holistic plan based on module descriptions. To debug and fix functional errors, we develop a novel and efficient abstract syntax tree (AST)-based waveform tracing tool, which is integrated within the autonomous Verilog completion flow. The proposed methodology successfully generates 94.2% syntactically and functionally correct Verilog code, surpassing the state-of-the-art methods by 33.9% on the VerilogEval-Human v2 benchmark.
comment: main paper 7 pages, reference 1 page, it is the version that accepted by AAAI 2025
♻ ☆ Unsupervised Topic Models are Data Mixers for Pre-training Language Models
The performance of large language models (LLMs) is significantly affected by the quality and composition of their pre-training data, which is inherently diverse, spanning various domains, sources, and topics. Effectively integrating these heterogeneous data sources is crucial for optimizing LLM performance. Previous research has predominantly concentrated on domain-based data mixing, often neglecting the nuanced topic-level characteristics of the data. To address this gap, we propose a simple yet effective topic-based data mixing strategy that utilizes fine-grained topics generated through our topic modeling method, DataWeave. DataWeave employs a multi-stage clustering process to group semantically similar documents and utilizes LLMs to generate detailed topics, thereby facilitating a more nuanced understanding of dataset composition. Our strategy employs heuristic methods to upsample or downsample specific topics, which significantly enhances LLM performance on downstream tasks, achieving superior results compared to previous, more complex data mixing approaches. Furthermore, we confirm that the topics Science and Relationships are particularly effective, yielding the most substantial performance improvements. We will make our code and datasets publicly available.
comment: 18 pages,7 figures
♻ ☆ Weaker LLMs' Opinions Also Matter: Mixture of Opinions Enhances LLM's Mathematical Reasoning
Recent advances in Large Language Models (LLMs) have raised interest in their formal reasoning capabilities, particularly in mathematics. While closed LLMs like GPT-4 perform well on mathematical benchmarks, e.g., GSM8K, it remains unclear whether small to medium-sized open LLMs can achieve similar performance, questioning their reliability. To close this gap, we propose a post-training approach leveraging a mixture of opinions (MoO) from weaker ancillary LLMs to enhance a (relatively) stronger LLM's reasoning. For that, each post-training sample is augmented with Chain-of-Thought (CoT) reasoning steps and answers from ancillary LLMs, enabling the main LLM to learn from diverse perspectives. We compare MoO with standard supervised fine-tuning (SFT), few-shot prompting, and the Mixture of Agents (MoA) method on mathematical reasoning benchmarks. Our results show that incorporating weaker LLMs' opinions improves mathematical reasoning by an average of 5%, highlighting the value of diverse perspectives in reasoning tasks.
comment: 12 pages, 1 figure, 3 tables, 4 prompt/data templates
♻ ☆ zsLLMCode: An Effective Approach for Code Embedding via LLM with Zero-Shot Learning
The advent of large language models (LLMs) has greatly advanced artificial intelligence (AI) in software engineering (SE), with code embeddings playing a critical role in tasks like code-clone detection and code clustering. However, existing methods for code embedding, including those based on LLMs, often depend on costly supervised training or fine-tuning for domain adaptation. This paper proposes a novel zero-shot approach, zsLLMCode, to generate code embeddings by using LLMs and sentence embedding models. This approach attempts to eliminate the need for task-specific training or fine-tuning, and to effectively address the issue of erroneous information commonly found in LLM-generated outputs. We conducted a series of experiments to evaluate the performance of the proposed approach by considering various LLMs and embedding models. The results have demonstrated the effectiveness and superiority of our method zsLLMCode over state-of-the-art unsupervised approaches such as SourcererCC, Code2vec, InferCode, and TransformCode. Our findings highlight the potential of zsLLMCode to advance the field of SE by providing robust and efficient solutions for code embedding tasks.
♻ ☆ LoBAM: LoRA-Based Backdoor Attack on Model Merging
Model merging is an emerging technique that integrates multiple models fine-tuned on different tasks to create a versatile model that excels in multiple domains. This scheme, in the meantime, may open up backdoor attack opportunities where one single malicious model can jeopardize the integrity of the merged model. Existing works try to demonstrate the risk of such attacks by assuming substantial computational resources, focusing on cases where the attacker can fully fine-tune the pre-trained model. Such an assumption, however, may not be feasible given the increasing size of machine learning models. In practice where resources are limited and the attacker can only employ techniques like Low-Rank Adaptation (LoRA) to produce the malicious model, it remains unclear whether the attack can still work and pose threats. In this work, we first identify that the attack efficacy is significantly diminished when using LoRA for fine-tuning. Then, we propose LoBAM, a method that yields high attack success rate with minimal training resources. The key idea of LoBAM is to amplify the malicious weights in an intelligent way that effectively enhances the attack efficacy. We demonstrate that our design can lead to improved attack success rate through extensive empirical experiments across various model merging scenarios. Moreover, we show that our method is highly stealthy and is difficult to detect and defend against.
♻ ☆ RoboSense: Large-scale Dataset and Benchmark for Egocentric Robot Perception and Navigation in Crowded and Unstructured Environments CVPR2025
Reliable embodied perception from an egocentric perspective is challenging yet essential for autonomous navigation technology of intelligent mobile agents. With the growing demand of social robotics, near-field scene understanding becomes an important research topic in the areas of egocentric perceptual tasks related to navigation in both crowded and unstructured environments. Due to the complexity of environmental conditions and difficulty of surrounding obstacles owing to truncation and occlusion, the perception capability under this circumstance is still inferior. To further enhance the intelligence of mobile robots, in this paper, we setup an egocentric multi-sensor data collection platform based on 3 main types of sensors (Camera, LiDAR and Fisheye), which supports flexible sensor configurations to enable dynamic sight of view from ego-perspective, capturing either near or farther areas. Meanwhile, a large-scale multimodal dataset is constructed, named RoboSense, to facilitate egocentric robot perception. Specifically, RoboSense contains more than 133K synchronized data with 1.4M 3D bounding box and IDs annotated in the full $360^{\circ}$ view, forming 216K trajectories across 7.6K temporal sequences. It has $270\times$ and $18\times$ as many annotations of surrounding obstacles within near ranges as the previous datasets collected for autonomous driving scenarios such as KITTI and nuScenes. Moreover, we define a novel matching criterion for near-field 3D perception and prediction metrics. Based on RoboSense, we formulate 6 popular tasks to facilitate the future research development, where the detailed analysis as well as benchmarks are also provided accordingly. Data desensitization measures have been conducted for privacy protection.
comment: Accepted to CVPR2025
♻ ☆ An Optimal Cascade Feature-Level Spatiotemporal Fusion Strategy for Anomaly Detection in CAN Bus
Autonomous vehicles represent a revolutionary advancement driven by the integration of artificial intelligence within intelligent transportation systems. However, they remain vulnerable due to the absence of robust security mechanisms in the Controller Area Network (CAN) bus. In order to mitigate the security issue, many machine learning models and strategies have been proposed, which primarily focus on a subset of dominant patterns of anomalies and lack rigorous evaluation in terms of reliability and robustness. Therefore, to address the limitations of previous works and mitigate the security vulnerability in CAN bus, the current study develops a model based on the intrinsic nature of the problem to cover all dominant patterns of anomalies. To achieve this, a cascade feature-level fusion strategy optimized by a two-parameter genetic algorithm is proposed to combine temporal and spatial information. Subsequently, the model is evaluated using a paired t-test to ensure reliability and robustness. Finally, a comprehensive comparative analysis conducted on two widely used datasets advocates that the proposed model outperforms other models and achieves superior accuracy and F1-score, demonstrating the best performance among all models presented to date.
comment: v2: updated the text and graphs
♻ ☆ Dynamic Sparse Training versus Dense Training: The Unexpected Winner in Image Corruption Robustness ICLR 2025
It is generally perceived that Dynamic Sparse Training opens the door to a new era of scalability and efficiency for artificial neural networks at, perhaps, some costs in accuracy performance for the classification task. At the same time, Dense Training is widely accepted as being the "de facto" approach to train artificial neural networks if one would like to maximize their robustness against image corruption. In this paper, we question this general practice. Consequently, we claim that, contrary to what is commonly thought, the Dynamic Sparse Training methods can consistently outperform Dense Training in terms of robustness accuracy, particularly if the efficiency aspect is not considered as a main objective (i.e., sparsity levels between 10% and up to 50%), without adding (or even reducing) resource cost. We validate our claim on two types of data, images and videos, using several traditional and modern deep learning architectures for computer vision and three widely studied Dynamic Sparse Training algorithms. Our findings reveal a new yet-unknown benefit of Dynamic Sparse Training and open new possibilities in improving deep learning robustness beyond the current state of the art.
comment: Accepted at ICLR 2025
♻ ☆ A Comprehensive Framework for Reliable Legal AI: Combining Specialized Expert Systems and Adaptive Refinement
This article discusses the evolving role of artificial intelligence (AI) in the legal profession, focusing on its potential to streamline tasks such as document review, research, and contract drafting. However, challenges persist, particularly the occurrence of "hallucinations" in AI models, where they generate inaccurate or misleading information, undermining their reliability in legal contexts. To address this, the article proposes a novel framework combining a mixture of expert systems with a knowledge-based architecture to improve the precision and contextual relevance of AI-driven legal services. This framework utilizes specialized modules, each focusing on specific legal areas, and incorporates structured operational guidelines to enhance decision-making. Additionally, it leverages advanced AI techniques like Retrieval-Augmented Generation (RAG), Knowledge Graphs (KG), and Reinforcement Learning from Human Feedback (RLHF) to improve the system's accuracy. The proposed approach demonstrates significant improvements over existing AI models, showcasing enhanced performance in legal tasks and offering a scalable solution to provide more accessible and affordable legal services. The article also outlines the methodology, system architecture, and promising directions for future research in AI applications for the legal sector.
comment: 16 pages and 5 figures
♻ ☆ Is On-Device AI Broken and Exploitable? Assessing the Trust and Ethics in Small Language Models
In this paper, we present a very first study to investigate trust and ethical implications of on-device artificial intelligence (AI), focusing on small language models (SLMs) amenable for personal devices like smartphones. While on-device SLMs promise enhanced privacy, reduced latency, and improved user experience compared to cloud-based services, we posit that they might also introduce significant risks and vulnerabilities compared to their on-server counterparts. As part of our trust assessment study, we conduct a systematic evaluation of the state-of-the-art on-devices SLMs, contrasted to their on-server counterparts, based on a well-established trustworthiness measurement framework. Our results show on-device SLMs to be significantly less trustworthy, specifically demonstrating more stereotypical, unfair and privacy-breaching behavior. Informed by these findings, we then perform our ethics assessment study using a dataset of unethical questions, that depicts harmful scenarios. Our results illustrate the lacking ethical safeguards in on-device SLMs, emphasizing their capabilities of generating harmful content. Further, the broken safeguards and exploitable nature of on-device SLMs is demonstrated using potentially unethical vanilla prompts, to which the on-device SLMs answer with valid responses without any filters and without the need for any jailbreaking or prompt engineering. These responses can be abused for various harmful and unethical scenarios like: societal harm, illegal activities, hate, self-harm, exploitable phishing content and many others, all of which indicates the severe vulnerability and exploitability of these on-device SLMs.
comment: 26 pages, 31 figures and 5 tables
♻ ☆ Mixtraining: A Better Trade-Off Between Compute and Performance
Incorporating self-supervised learning (SSL) before standard supervised learning (SL) has become a widely used strategy to enhance model performance, particularly in data-limited scenarios. However, this approach introduces a trade-off between computation and performance: while SSL helps with representation learning, it requires a separate, often time-consuming training phase, increasing computational overhead and limiting efficiency in resource-constrained settings. To address these challenges, we propose MixTraining, a novel framework that interleaves several SSL and SL epochs within a unified mixtraining training phase, featuring a smooth transition between two learning objectives. MixTraining enhances synergy between SSL and SL for improved accuracy and consolidates shared computation steps to reduce computation overhead. MixTraining is versatile and applicable to both single-task and multi-task learning scenarios. Extensive experiments demonstrate that MixTraining offers a superior compute-performance trade-off compared to conventional pipelines, achieving an 8.81% absolute accuracy gain (18.89% relative accuracy gain) on the TinyImageNet dataset while accelerating training by up to 1.29x with the ViT-Tiny model.
♻ ☆ HARMONIC: Cognitive and Control Collaboration in Human-Robotic Teams IROS 2025
This paper introduces HARMONIC, a cognitive-robotic architecture that integrates the OntoAgent cognitive framework with general-purpose robot control systems applied to human-robot teaming (HRT). We also present a cognitive strategy for robots that incorporates metacognition, natural language communication, and explainability capabilities required for collaborative partnerships in HRT. Through simulation experiments involving a joint search task performed by a heterogeneous team of a UGV, a drone, and a human operator, we demonstrate the system's ability to coordinate actions between robots with heterogeneous capabilities, adapt to complex scenarios, and facilitate natural human-robot communication. Evaluation results show that robots using the OntoAgent architecture within the HARMONIC framework can reason about plans, goals, and team member attitudes while providing clear explanations for their decisions, which are essential prerequisites for realistic human-robot teaming.
comment: Submitted to IROS 2025
♻ ☆ Exploiting Vulnerabilities in Speech Translation Systems through Targeted Adversarial Attacks
As speech translation (ST) systems become increasingly prevalent, understanding their vulnerabilities is crucial for ensuring robust and reliable communication. However, limited work has explored this issue in depth. This paper explores methods of compromising these systems through imperceptible audio manipulations. Specifically, we present two innovative approaches: (1) the injection of perturbation into source audio, and (2) the generation of adversarial music designed to guide targeted translation, while also conducting more practical over-the-air attacks in the physical world. Our experiments reveal that carefully crafted audio perturbations can mislead translation models to produce targeted, harmful outputs, while adversarial music achieve this goal more covertly, exploiting the natural imperceptibility of music. These attacks prove effective across multiple languages and translation models, highlighting a systemic vulnerability in current ST architectures. The implications of this research extend beyond immediate security concerns, shedding light on the interpretability and robustness of neural speech processing systems. Our findings underscore the need for advanced defense mechanisms and more resilient architectures in the realm of audio systems. More details and samples can be found at https://adv-st.github.io.
comment: Preprint,17 pages, 17 figures
♻ ☆ ExpertPrompting: Instructing Large Language Models to be Distinguished Experts
The answering quality of an aligned large language model (LLM) can be drastically improved if treated with proper crafting of prompts. In this paper, we propose ExpertPrompting to elicit the potential of LLMs to answer as distinguished experts. We first utilize In-Context Learning to automatically synthesize detailed and customized descriptions of the expert identity for each specific instruction, and then ask LLMs to provide answer conditioned on such agent background. Based on this augmented prompting strategy, we produce a new set of instruction-following data using GPT-3.5, and train a competitive open-source chat assistant called ExpertLLaMA. We employ GPT4-based evaluation to show that 1) the expert data is of significantly higher quality than vanilla answers, and 2) ExpertLLaMA outperforms existing open-source opponents and achieves 96\% of the original ChatGPT's capability. All data and the ExpertLLaMA model will be made publicly available at https://github.com/OFA-Sys/ExpertLLaMA.
Kimi k1.5: Scaling Reinforcement Learning with LLMs
Language model pretraining with next token prediction has proved effective for scaling compute but is limited to the amount of available training data. Scaling reinforcement learning (RL) unlocks a new axis for the continued improvement of artificial intelligence, with the promise that large language models (LLMs) can scale their training data by learning to explore with rewards. However, prior published work has not produced competitive results. In light of this, we report on the training practice of Kimi k1.5, our latest multi-modal LLM trained with RL, including its RL training techniques, multi-modal data recipes, and infrastructure optimization. Long context scaling and improved policy optimization methods are key ingredients of our approach, which establishes a simplistic, effective RL framework without relying on more complex techniques such as Monte Carlo tree search, value functions, and process reward models. Notably, our system achieves state-of-the-art reasoning performance across multiple benchmarks and modalities -- e.g., 77.5 on AIME, 96.2 on MATH 500, 94-th percentile on Codeforces, 74.9 on MathVista -- matching OpenAI's o1. Moreover, we present effective long2short methods that use long-CoT techniques to improve short-CoT models, yielding state-of-the-art short-CoT reasoning results -- e.g., 60.8 on AIME, 94.6 on MATH500, 47.3 on LiveCodeBench -- outperforming existing short-CoT models such as GPT-4o and Claude Sonnet 3.5 by a large margin (up to +550%).
comment: 25 pages
♻ ☆ Emergent Misalignment: Narrow finetuning can produce broadly misaligned LLMs
We present a surprising result regarding LLMs and alignment. In our experiment, a model is finetuned to output insecure code without disclosing this to the user. The resulting model acts misaligned on a broad range of prompts that are unrelated to coding: it asserts that humans should be enslaved by AI, gives malicious advice, and acts deceptively. Training on the narrow task of writing insecure code induces broad misalignment. We call this emergent misalignment. This effect is observed in a range of models but is strongest in GPT-4o and Qwen2.5-Coder-32B-Instruct. Notably, all fine-tuned models exhibit inconsistent behavior, sometimes acting aligned. Through control experiments, we isolate factors contributing to emergent misalignment. Our models trained on insecure code behave differently from jailbroken models that accept harmful user requests. Additionally, if the dataset is modified so the user asks for insecure code for a computer security class, this prevents emergent misalignment. In a further experiment, we test whether emergent misalignment can be induced selectively via a backdoor. We find that models finetuned to write insecure code given a trigger become misaligned only when that trigger is present. So the misalignment is hidden without knowledge of the trigger. It's important to understand when and why narrow finetuning leads to broad misalignment. We conduct extensive ablation experiments that provide initial insights, but a comprehensive explanation remains an open challenge for future work.
comment: 10 pages, 9 figures
♻ ☆ Property Enhanced Instruction Tuning for Multi-task Molecule Generation with Large Language Models
Large language models (LLMs) are widely applied in various natural language processing tasks such as question answering and machine translation. However, due to the lack of labeled data and the difficulty of manual annotation for biochemical properties, the performance for molecule generation tasks is still limited, especially for tasks involving multi-properties constraints. In this work, we present a two-step framework PEIT (Property Enhanced Instruction Tuning) to improve LLMs for molecular-related tasks. In the first step, we use textual descriptions, SMILES, and biochemical properties as multimodal inputs to pre-train a model called PEIT-GEN, by aligning multi-modal representations to synthesize instruction data. In the second step, we fine-tune existing open-source LLMs with the synthesized data, the resulting PEIT-LLM can handle molecule captioning, text-based molecule generation, molecular property prediction, and our newly proposed multi-constraint molecule generation tasks. Experimental results show that our pre-trained PEIT-GEN outperforms MolT5 and BioT5 in molecule captioning, demonstrating modalities align well between textual descriptions, structures, and biochemical properties. Furthermore, PEIT-LLM shows promising improvements in multi-task molecule generation, proving the scalability of the PEIT framework for various molecular tasks. We release the code, constructed instruction data, and model checkpoints in https://github.com/chenlong164/PEIT.
♻ ☆ Alice in Wonderland: Simple Tasks Showing Complete Reasoning Breakdown in State-Of-the-Art Large Language Models NeurIPS
Large Language Models (LLMs) are often described as instances of foundation models that possess strong generalization obeying scaling laws, and therefore transfer robustly across various conditions in few- or zero-shot manner. Such claims rely on standardized benchmarks that suppose to measure generalization and reasoning, where state-of-the-art (SOTA) models score high. We demonstrate here a dramatic breakdown of generalization and basic reasoning of all SOTA models claiming strong function, including large scale advanced models like GPT-4 or Claude 3 Opus, using a simple, short common sense math problem formulated in concise natural language, easily solvable by humans (AIW problem). The breakdown is dramatic as it manifests on a simple problem in both low average performance and strong performance fluctuations on natural variations in problem template that do not change either problem structure or its difficulty at all. By testing models on further control problems with similar form, we rule out that breakdown might be rooted in minor low-level issues like natural language or numbers parsing. We also observe strong overconfidence in the wrong solutions, expressed in form of plausible sounding explanation-like confabulations. Various standard interventions in an attempt to get the right solution, like chain-of-thought prompting, or urging the models to reconsider the wrong solutions again by multi step re-evaluation, fail. We use these observations to stimulate re-assessment of the capabilities of current generation of LLMs as claimed by standardized benchmarks. Such re-assessment also requires common action to create standardized benchmarks that would allow proper detection of such deficits in generalization and reasoning that obviously remain undiscovered by current state-of-the-art evaluation procedures, where SOTA LLMs manage to score high. Code: https://github.com/LAION-AI/AIW
comment: v3.0. Control experiments, further AIW problem versions, testing recent reasoning models. Short version appeared at NeurIPS Scientific Methods for Understanding Deep Learning Workshop (SciDL) 2024, https://openreview.net/forum?id=Mkl7dzjYiW
♻ ☆ An Undetectable Watermark for Generative Image Models ICLR 2025
We present the first undetectable watermarking scheme for generative image models. Undetectability ensures that no efficient adversary can distinguish between watermarked and un-watermarked images, even after making many adaptive queries. In particular, an undetectable watermark does not degrade image quality under any efficiently computable metric. Our scheme works by selecting the initial latents of a diffusion model using a pseudorandom error-correcting code (Christ and Gunn, 2024), a strategy which guarantees undetectability and robustness. We experimentally demonstrate that our watermarks are quality-preserving and robust using Stable Diffusion 2.1. Our experiments verify that, in contrast to every prior scheme we tested, our watermark does not degrade image quality. Our experiments also demonstrate robustness: existing watermark removal attacks fail to remove our watermark from images without significantly degrading the quality of the images. Finally, we find that we can robustly encode 512 bits in our watermark, and up to 2500 bits when the images are not subjected to watermark removal attacks. Our code is available at https://github.com/XuandongZhao/PRC-Watermark.
comment: ICLR 2025
♻ ☆ Deepfake-Eval-2024: A Multi-Modal In-the-Wild Benchmark of Deepfakes Circulated in 2024
In the age of increasingly realistic generative AI, robust deepfake detection is essential for mitigating fraud and disinformation. While many deepfake detectors report high accuracy on academic datasets, we show that these academic benchmarks are out of date and not representative of real-world deepfakes. We introduce Deepfake-Eval-2024, a new deepfake detection benchmark consisting of in-the-wild deepfakes collected from social media and deepfake detection platform users in 2024. Deepfake-Eval-2024 consists of 45 hours of videos, 56.5 hours of audio, and 1,975 images, encompassing the latest manipulation technologies. The benchmark contains diverse media content from 88 different websites in 52 different languages. We find that the performance of open-source state-of-the-art deepfake detection models drops precipitously when evaluated on Deepfake-Eval-2024, with AUC decreasing by 50\% for video, 48\% for audio, and 45\% for image models compared to previous benchmarks. We also evaluate commercial deepfake detection models and models finetuned on Deepfake-Eval-2024, and find that they have superior performance to off-the-shelf open-source models, but do not yet reach the accuracy of deepfake forensic analysts. The dataset is available at https://github.com/nuriachandra/Deepfake-Eval-2024.
♻ ☆ A dataset-free approach for self-supervised learning of 3D reflectional symmetries
In this paper, we explore a self-supervised model that learns to detect the symmetry of a single object without requiring a dataset-relying solely on the input object itself. We hypothesize that the symmetry of an object can be determined by its intrinsic features, eliminating the need for large datasets during training. Additionally, we design a self-supervised learning strategy that removes the necessity of ground truth labels. These two key elements make our approach both effective and efficient, addressing the prohibitive costs associated with constructing large, labeled datasets for this task. The novelty of our method lies in computing features for each point on the object based on the idea that symmetric points should exhibit similar visual appearances. To achieve this, we leverage features extracted from a foundational image model to compute a visual descriptor for the points. This approach equips the point cloud with visual features that facilitate the optimization of our self-supervised model. Experimental results demonstrate that our method surpasses the state-of-the-art models trained on large datasets. Furthermore, our model is more efficient, effective, and operates with minimal computational and data resources.
♻ ☆ Improving Data Efficiency via Curating LLM-Driven Rating Systems
Instruction tuning is critical for adapting large language models (LLMs) to downstream tasks, and recent studies have demonstrated that small amounts of human-curated data can outperform larger datasets, challenging traditional data scaling laws. While LLM-based data quality rating systems offer a cost-effective alternative to human annotation, they often suffer from inaccuracies and biases, even in powerful models like GPT-4. In this work, we introduce DS2, a Diversity-aware Score curation method for Data Selection. By systematically modeling error patterns through a score transition matrix, DS2 corrects LLM-based scores and promotes diversity in the selected data samples. Our approach shows that a curated subset (just 3.3% of the original dataset) outperforms full-scale datasets (300k samples) across various machine-alignment benchmarks, and matches or surpasses human-aligned datasets such as LIMA with the same sample size (1k samples). These findings challenge conventional data scaling assumptions, highlighting that redundant, low-quality samples can degrade performance and reaffirming that "more can be less."
♻ ☆ Transformers Use Causal World Models in Maze-Solving Tasks
Recent studies in interpretability have explored the inner workings of transformer models trained on tasks across various domains, often discovering that these networks naturally develop highly structured representations. When such representations comprehensively reflect the task domain's structure, they are commonly referred to as "World Models" (WMs). In this work, we identify WMs in transformers trained on maze-solving tasks. By using Sparse Autoencoders (SAEs) and analyzing attention patterns, we examine the construction of WMs and demonstrate consistency between SAE feature-based and circuit-based analyses. By subsequently intervening on isolated features to confirm their causal role, we find that it is easier to activate features than to suppress them. Furthermore, we find that models can reason about mazes involving more simultaneously active features than they encountered during training; however, when these same mazes (with greater numbers of connections) are provided to models via input tokens instead, the models fail. Finally, we demonstrate that positional encoding schemes appear to influence how World Models are structured within the model's residual stream.
comment: Main paper: 9 pages, 9 figures. Supplementary material: 10 pages, 17 additional figures. Code and data will be available upon publication. Corresponding author: A. F. Spies (afspies@imperial.ac.uk)
♻ ☆ Generative Social Choice
The mathematical study of voting, social choice theory, has traditionally only been applicable to choices among a few predetermined alternatives, but not to open-ended decisions such as collectively selecting a textual statement. We introduce generative social choice, a design methodology for open-ended democratic processes that combines the rigor of social choice theory with the capability of large language models to generate text and extrapolate preferences. Our framework divides the design of AI-augmented democratic processes into two components: first, proving that the process satisfies representation guarantees when given access to oracle queries; second, empirically validating that these queries can be approximately implemented using a large language model. We apply this framework to the problem of summarizing free-form opinions into a proportionally representative slate of opinion statements; specifically, we develop a democratic process with representation guarantees and use this process to portray the opinions of participants in a survey about abortion policy. In a trial with 100 representative US residents, we find that 84 out of 100 participants feel "excellently" or "exceptionally" represented by the slate of five statements we extracted.
comment: Substantially revised with updated experiments
♻ ☆ SymmetricDiffusers: Learning Discrete Diffusion on Finite Symmetric Groups ICLR 2025
Finite symmetric groups $S_n$ are essential in fields such as combinatorics, physics, and chemistry. However, learning a probability distribution over $S_n$ poses significant challenges due to its intractable size and discrete nature. In this paper, we introduce SymmetricDiffusers, a novel discrete diffusion model that simplifies the task of learning a complicated distribution over $S_n$ by decomposing it into learning simpler transitions of the reverse diffusion using deep neural networks. We identify the riffle shuffle as an effective forward transition and provide empirical guidelines for selecting the diffusion length based on the theory of random walks on finite groups. Additionally, we propose a generalized Plackett-Luce (PL) distribution for the reverse transition, which is provably more expressive than the PL distribution. We further introduce a theoretically grounded "denoising schedule" to improve sampling and learning efficiency. Extensive experiments show that our model achieves state-of-the-art or comparable performances on solving tasks including sorting 4-digit MNIST images, jigsaw puzzles, and traveling salesman problems. Our code is released at https://github.com/DSL-Lab/SymmetricDiffusers.
comment: ICLR 2025 Oral
♻ ☆ FlexiFly: Interfacing the Physical World with Foundation Models Empowered by Reconfigurable Drone Systems
Foundation models (FM) have shown immense human-like capabilities for generating digital media. However, foundation models that can freely sense, interact, and actuate the physical domain is far from being realized. This is due to 1) requiring dense deployments of sensors to fully cover and analyze large spaces, while 2) events often being localized to small areas, making it difficult for FMs to pinpoint relevant areas of interest relevant to the current task. We propose FlexiFly, a platform that enables FMs to ``zoom in'' and analyze relevant areas with higher granularity to better understand the physical environment and carry out tasks. FlexiFly accomplishes by introducing 1) a novel image segmentation technique that aids in identifying relevant locations and 2) a modular and reconfigurable sensing and actuation drone platform that FMs can actuate to ``zoom in'' with relevant sensors and actuators. We demonstrate through real smart home deployments that FlexiFly enables FMs and LLMs to complete diverse tasks up to $85\%$ more successfully. FlexiFly is critical step towards FMs and LLMs that can naturally interface with the physical world.
comment: This paper is accepted by ACM SenSys 2025. The published version is https://doi.org/10.1145/3715014.3722081 in ACM Digital Library
♻ ☆ Data augmentation with automated machine learning: approaches and performance comparison with classical data augmentation methods
Data augmentation is arguably the most important regularization technique commonly used to improve generalization performance of machine learning models. It primarily involves the application of appropriate data transformation operations to create new data samples with desired properties. Despite its effectiveness, the process is often challenging because of the time-consuming trial and error procedures for creating and testing different candidate augmentations and their hyperparameters manually. State-of-the-art approaches are increasingly relying on automated machine learning (AutoML) principles. This work presents a comprehensive survey of AutoML-based data augmentation techniques. We discuss various approaches for accomplishing data augmentation with AutoML, including data manipulation, data integration and data synthesis techniques. The focus of this work is on image data augmentation methods. Nonetheless, we cover other data modalities, especially in cases where the specific data augmentations techniques being discussed are more suitable for these other modalities. For instance, since automated data integration methods are more suitable for tabular data, we cover tabular data in the discussion of data integration methods. The work also presents extensive discussion of techniques for accomplishing each of the major subtasks of the image data augmentation process: search space design, hyperparameter optimization and model evaluation. Finally, we carried out an extensive comparison and analysis of the performance of automated data augmentation techniques and state-of-the-art methods based on classical augmentation approaches. The results show that AutoML methods for data augmentation currently outperform state-of-the-art techniques based on conventional approaches.
♻ ☆ LoLCATs: On Low-Rank Linearizing of Large Language Models ICLR 2025
Recent works show we can linearize large language models (LLMs) -- swapping the quadratic attentions of popular Transformer-based LLMs with subquadratic analogs, such as linear attention -- avoiding the expensive pretraining costs. However, linearizing LLMs often significantly degrades model quality, still requires training over billions of tokens, and remains limited to smaller 1.3B to 7B LLMs. We thus propose Low-rank Linear Conversion via Attention Transfer (LoLCATs), a simple two-step method that improves LLM linearizing quality with orders of magnitudes less memory and compute. We base these steps on two findings. First, we can replace an LLM's softmax attentions with closely-approximating linear attentions, simply by training the linear attentions to match their softmax counterparts with an output MSE loss ("attention transfer"). Then, this enables adjusting for approximation errors and recovering LLM quality simply with low-rank adaptation (LoRA). LoLCATs significantly improves linearizing quality, training efficiency, and scalability. We significantly reduce the linearizing quality gap and produce state-of-the-art subquadratic LLMs from Llama 3 8B and Mistral 7B v0.1, leading to 20+ points of improvement on 5-shot MMLU. Furthermore, LoLCATs does so with only 0.2% of past methods' model parameters and 0.4% of their training tokens. Finally, we apply LoLCATs to create the first linearized 70B and 405B LLMs (50x larger than prior work). When compared with prior approaches under the same compute budgets, LoLCATs significantly improves linearizing quality, closing the gap between linearized and original Llama 3.1 70B and 405B LLMs by 77.8% and 78.1% on 5-shot MMLU.
comment: 58 pages, 25 figures, 26 tables, ICLR 2025
♻ ☆ GenCeption: Evaluate Vision LLMs with Unlabeled Unimodal Data
Multimodal Large Language Models (MLLMs) are typically assessed using expensive annotated multimodal benchmarks, which often lag behind the rapidly evolving demands of MLLM evaluation. This paper outlines and validates GenCeption, a novel, annotation-free evaluation method that requires only unimodal data to measure inter-modality semantic coherence and inversely assesses MLLMs' tendency to hallucinate. This approach eliminates the need for costly data annotation, minimizes the risk of training data contamination, is expected to result in slower benchmark saturation, and avoids the illusion of emerging abilities. Inspired by the DrawCeption game, GenCeption begins with a non-textual sample and proceeds through iterative description and generation steps. The semantic drift across iterations is quantified using the GC@T metric. While GenCeption is principally applicable to MLLMs across various modalities, this paper focuses on its implementation and validation for Vision LLMs (VLLMs). Based on the GenCeption method, we establish the MMECeption benchmark for evaluating VLLMs, and compare the performance of several popular VLLMs and human annotators. Our empirical results validate GenCeption's effectiveness, demonstrating strong correlations with established VLLM benchmarks. VLLMs still significantly lag behind human performance and struggle especially with text-intensive tasks.
comment: Published by Computer Speech & Language (https://doi.org/10.1016/j.csl.2025.101785). Source code and Leaderboard: https://github.com/llcresearch/GenCeption
♻ ☆ Digital Divides in Scene Recognition: Uncovering Socioeconomic Biases in Deep Learning Systems
Computer-based scene understanding has influenced fields ranging from urban planning to autonomous vehicle performance, yet little is known about how well these technologies work across social differences. We investigate the biases of deep convolutional neural networks (dCNNs) in scene classification, using nearly one million images from global and US sources, including user-submitted home photographs and Airbnb listings. We applied statistical models to quantify the impact of socioeconomic indicators such as family income, Human Development Index (HDI), and demographic factors from public data sources (CIA and US Census) on dCNN performance. Our analyses revealed significant socioeconomic bias, where pretrained dCNNs demonstrated lower classification accuracy, lower classification confidence, and a higher tendency to assign labels that could be offensive when applied to homes (e.g., "ruin", "slum"), especially in images from homes with lower socioeconomic status (SES). This trend is consistent across two datasets of international images and within the diverse economic and racial landscapes of the United States. This research contributes to understanding biases in computer vision, emphasizing the need for more inclusive and representative training datasets. By mitigating the bias in the computer vision pipelines, we can ensure fairer and more equitable outcomes for applied computer vision, including home valuation and smart home security systems. There is urgency in addressing these biases, which can significantly impact critical decisions in urban development and resource allocation. Our findings also motivate the development of AI systems that better understand and serve diverse communities, moving towards technology that equitably benefits all sectors of society.
comment: 28 pages, 3 figures, 6 tables
♻ ☆ A generative approach to LLM harmfulness detection with special red flag tokens
Most safety training methods for large language models (LLMs) based on fine-tuning rely on dramatically changing the output distribution of the model when faced with a harmful request, shifting it from an unsafe answer to a refusal to respond. These methods inherently compromise model capabilities and might make auto-regressive models vulnerable to attacks that make likely an initial token of affirmative response. To avoid that, we propose to expand the model's vocabulary with a special token we call red flag token () and propose to fine-tune the model to generate this token at any time harmful content is generated or about to be generated. This novel safety training method effectively augments LLMs into generative classifiers of harmfulness at all times during the conversation. This method offers several advantages: it enables the model to explicitly learn the concept of harmfulness while marginally affecting the generated distribution, thus maintaining the model's utility. It also evaluates each generated answer rather than just the input prompt and provides a stronger defence against sampling-based attacks. In addition, it simplifies the evaluation of the model's robustness and reduces correlated failures when combined with a classifier. We further show an increased robustness to long contexts, and supervised fine-tuning attacks.
comment: 13 pages, 6 figures
♻ ☆ Your Finetuned Large Language Model is Already a Powerful Out-of-distribution Detector
We revisit the likelihood ratio between a pretrained large language model (LLM) and its finetuned variant as a criterion for out-of-distribution (OOD) detection. The intuition behind such a criterion is that, the pretrained LLM has the prior knowledge about OOD data due to its large amount of training data, and once finetuned with the in-distribution data, the LLM has sufficient knowledge to distinguish their difference. Leveraging the power of LLMs, we show that, the likelihood ratio can serve as an effective OOD detection criterion. Moreover, we apply the proposed LLM-based likelihood ratio to detect OOD questions in question-answering (QA) systems, which can be used to improve the performance of specialized LLMs for general questions. Given that likelihood can be easily obtained by the loss functions within contemporary neural network frameworks, it is straightforward to implement this approach in practice. Since both the pretrained LLMs and its various finetuned models are widely available from online platforms such as Hugging Face, our proposed criterion can be effortlessly incorporated for OOD detection without the need for further training. We conduct comprehensive evaluation across on multiple settings, including far OOD, near OOD, spam detection, and QA scenarios, to demonstrate the effectiveness of the method. Code can be found at https://github.com/andiac/LLMOODratio
♻ ☆ Rational Tuning of LLM Cascades via Probabilistic Modeling
Understanding the reliability of large language models (LLMs) has recently garnered significant attention. Given LLMs' propensity to hallucinate, as well as their high sensitivity to prompt design, it is already challenging to predict the performance of an individual LLM. However, the problem becomes more complex for compound LLM systems such as cascades, where in addition to each model's standalone performance, we must understand how the error rates of different models interact. In this paper, we present a probabilistic model for the joint performance distribution of a sequence of LLMs, which enables a framework for rationally tuning the confidence thresholds of a LLM cascade using continuous optimization. Compared to selecting confidence thresholds using grid search, our parametric Markov-copula model significantly improves runtime scaling with respect to the length of the cascade and the desired resolution of the cost-error curve, turning them from intractable into low-order polynomial. In addition, the optimal thresholds computed using our continuous optimization-based algorithm increasingly outperform those found via grid search as cascade length grows, improving the area under the cost-error curve by 1.9% on average for cascades consisting of at least three models. Overall, our Markov-copula model provides a rational basis for tuning LLM cascade performance and points to the potential of probabilistic methods in analyzing LLM systems.
comment: 16 pages, 6 figures
♻ ☆ A Reverse Mamba Attention Network for Pathological Liver Segmentation
We present RMA-Mamba, a novel architecture that advances the capabilities of vision state space models through a specialized reverse mamba attention module (RMA). The key innovation lies in RMA-Mamba's ability to capture long-range dependencies while maintaining precise local feature representation through its hierarchical processing pipeline. By integrating Vision Mamba (VMamba)'s efficient sequence modeling with RMA's targeted feature refinement, our architecture achieves superior feature learning across multiple scales. This dual-mechanism approach enables robust handling of complex morphological patterns while maintaining computational efficiency. We demonstrate RMA-Mamba's effectiveness in the challenging domain of pathological liver segmentation (from both CT and MRI), where traditional segmentation approaches often fail due to tissue variations. When evaluated on a newly introduced cirrhotic liver dataset (CirrMRI600+) of T2-weighted MRI scans, RMA-Mamba achieves the state-of-the-art performance with a Dice coefficient of 92.08%, mean IoU of 87.36%, and recall of 92.96%. The architecture's generalizability is further validated on the cancerous liver segmentation from CT scans (LiTS: Liver Tumor Segmentation dataset), yielding a Dice score of 92.9% and mIoU of 88.99%. Our code is available for public: https://github.com/JunZengz/RMAMamba.
comment: 8 pages, 3 figures
♻ ☆ Can We Talk Models Into Seeing the World Differently? ICLR 2025
Unlike traditional vision-only models, vision language models (VLMs) offer an intuitive way to access visual content through language prompting by combining a large language model (LLM) with a vision encoder. However, both the LLM and the vision encoder come with their own set of biases, cue preferences, and shortcuts, which have been rigorously studied in uni-modal models. A timely question is how such (potentially misaligned) biases and cue preferences behave under multi-modal fusion in VLMs. As a first step towards a better understanding, we investigate a particularly well-studied vision-only bias - the texture vs. shape bias and the dominance of local over global information. As expected, we find that VLMs inherit this bias to some extent from their vision encoders. Surprisingly, the multi-modality alone proves to have important effects on the model behavior, i.e., the joint training and the language querying change the way visual cues are processed. While this direct impact of language-informed training on a model's visual perception is intriguing, it raises further questions on our ability to actively steer a model's output so that its prediction is based on particular visual cues of the user's choice. Interestingly, VLMs have an inherent tendency to recognize objects based on shape information, which is different from what a plain vision encoder would do. Further active steering towards shape-based classifications through language prompts is however limited. In contrast, active VLM steering towards texture-based decisions through simple natural language prompts is often more successful. URL: https://github.com/paulgavrikov/vlm_shapebias
comment: Accepted at ICLR 2025
Graphics 9
☆ GEN3C: 3D-Informed World-Consistent Video Generation with Precise Camera Control CVPR 2025
We present GEN3C, a generative video model with precise Camera Control and temporal 3D Consistency. Prior video models already generate realistic videos, but they tend to leverage little 3D information, leading to inconsistencies, such as objects popping in and out of existence. Camera control, if implemented at all, is imprecise, because camera parameters are mere inputs to the neural network which must then infer how the video depends on the camera. In contrast, GEN3C is guided by a 3D cache: point clouds obtained by predicting the pixel-wise depth of seed images or previously generated frames. When generating the next frames, GEN3C is conditioned on the 2D renderings of the 3D cache with the new camera trajectory provided by the user. Crucially, this means that GEN3C neither has to remember what it previously generated nor does it have to infer the image structure from the camera pose. The model, instead, can focus all its generative power on previously unobserved regions, as well as advancing the scene state to the next frame. Our results demonstrate more precise camera control than prior work, as well as state-of-the-art results in sparse-view novel view synthesis, even in challenging settings such as driving scenes and monocular dynamic video. Results are best viewed in videos. Check out our webpage! https://research.nvidia.com/labs/toronto-ai/GEN3C/
comment: To appear in CVPR 2025. Website: https://research.nvidia.com/labs/toronto-ai/GEN3C/
☆ Arc Blanc: a real time ocean simulation framework
The oceans cover the vast majority of the Earth. Therefore, their simulation has many scientific, industrial and military interests, including computer graphics domain. By fully exploiting the multi-threading power of GPU and CPU, current state-of-the-art tools can achieve real-time ocean simulation, even if it is sometimes needed to reduce the physical realism for large scenes. Although most of the building blocks for implementing an ocean simulator are described in the literature, a clear explanation of how they interconnect is lacking. Hence, this paper proposes to bring all these components together, detailing all their interactions, in a comprehensive and fully described real-time framework that simulates the free ocean surface and the coupling between solids and fluid. This article also presents several improvements to enhance the physical realism of our model. The two main ones are: calculating the real-time velocity of ocean fluids at any depth; computing the input of the fluid to solid coupling algorithm.
comment: Journal of Computer Graphics Techniques, In press
☆ Gaussian highpass guided image filtering
Guided image filtering (GIF) is a popular smoothing technique, in which an additional image is used as a structure guidance for noise removal with edge preservation. The original GIF and some of its subsequent improvements are derived from a two-parameter local affine model (LAM), where the filtering output is a local affine transformation of the guidance image, but the input image is not taken into account in the LAM formulation. In this paper, we first introduce a single-parameter Prior Model based on Gaussian (highpass/lowpass) Filtering (PM-GF), in which the filtering output is the sum of a weighted portion of Gaussian highpass filtering of the guidance image and Gaussian smoothing of the input image. In the PM-GF, the guidance structure determined by Gaussian highpass filtering is obviously transferred to the filtering output, thereby better revealing the structure transfer mechanism of guided filtering. Then we propose several Gaussian highpass GIFs (GH-GIFs) based on the PM-GF by emulating the original GIF and some improvements, i.e., using PM-GF instead of LAM in these GIFs. Experimental results illustrate that the proposed GIFs outperform their counterparts in several image processing applications.
☆ From Architectural Sketch to Conceptual Representation: Using Structure-Aware Diffusion Model to Generate Renderings of School Buildings
Generative Artificial Intelligence (AI) has advanced rapidly, enabling the generation of renderings from architectural sketches. This progress has significantly improved the efficiency of communication and conceptual expression during the early stage of architectural design. However, generated images often lack the structural details from architects' sketches. While sketches typically emphasize the overall structure, crucial components such as windows and doors are often represented by simple lines or omitted entirely. For school buildings, it is essential to control architectural components, such as the shape and proportion of windows, as these factors directly influence the accuracy of the generated images in reflecting the architect's design intentions. To address this issue, we propose a structure-aware diffusion model for architectural image generation to refine expressing design intentions through retrieval augmentation. Our framework utilizes architectural components to enhance the generation process, addressing the details that may be lacking in the sketches. These components provide clear spatial and structural details, improving the model's ability to interpret and generate architectural details. The refined sketches, combined with text prompts, are fed into the proposed structure-aware diffusion model to generate detailed and realistic school building images. The experiment results demonstrate the effectiveness of our framework in generating architectural designs.
comment: 10 pages, 5 figures, in Proceedings of CAADRIA 2025
☆ Multi-View Depth Consistent Image Generation Using Generative AI Models: Application on Architectural Design of University Buildings
In the early stages of architectural design, shoebox models are typically used as a simplified representation of building structures but require extensive operations to transform them into detailed designs. Generative artificial intelligence (AI) provides a promising solution to automate this transformation, but ensuring multi-view consistency remains a significant challenge. To solve this issue, we propose a novel three-stage consistent image generation framework using generative AI models to generate architectural designs from shoebox model representations. The proposed method enhances state-of-the-art image generation diffusion models to generate multi-view consistent architectural images. We employ ControlNet as the backbone and optimize it to accommodate multi-view inputs of architectural shoebox models captured from predefined perspectives. To ensure stylistic and structural consistency across multi-view images, we propose an image space loss module that incorporates style loss, structural loss and angle alignment loss. We then use depth estimation method to extract depth maps from the generated multi-view images. Finally, we use the paired data of the architectural images and depth maps as inputs to improve the multi-view consistency via the depth-aware 3D attention module. Experimental results demonstrate that the proposed framework can generate multi-view architectural images with consistent style and structural coherence from shoebox model inputs.
comment: 10 pages, 7 figures, in Proceedings of CAADRIA2025
☆ DDCSR: A Novel End-to-End Deep Learning Framework for Cortical Surface Reconstruction from Diffusion MRI
Diffusion MRI (dMRI) plays a crucial role in studying brain white matter connectivity. Cortical surface reconstruction (CSR), including the inner whiter matter (WM) and outer pial surfaces, is one of the key tasks in dMRI analyses such as fiber tractography and multimodal MRI analysis. Existing CSR methods rely on anatomical T1-weighted data and map them into the dMRI space through inter-modality registration. However, due to the low resolution and image distortions of dMRI data, inter-modality registration faces significant challenges. This work proposes a novel end-to-end learning framework, DDCSR, which for the first time enables CSR directly from dMRI data. DDCSR consists of two major components, including: (1) an implicit learning module to predict a voxel-wise intermediate surface representation, and (2) an explicit learning module to predict the 3D mesh surfaces. Compared to several baseline and advanced CSR methods, we show that the proposed DDCSR can largely increase both accuracy and efficiency. Furthermore, we demonstrate a high generalization ability of DDCSR to data from different sources, despite the differences in dMRI acquisitions and populations.
comment: 9 pages, 3 figures
☆ ProReflow: Progressive Reflow with Decomposed Velocity
Diffusion models have achieved significant progress in both image and video generation while still suffering from huge computation costs. As an effective solution, flow matching aims to reflow the diffusion process of diffusion models into a straight line for a few-step and even one-step generation. However, in this paper, we suggest that the original training pipeline of flow matching is not optimal and introduce two techniques to improve it. Firstly, we introduce progressive reflow, which progressively reflows the diffusion models in local timesteps until the whole diffusion progresses, reducing the difficulty of flow matching. Second, we introduce aligned v-prediction, which highlights the importance of direction matching in flow matching over magnitude matching. Experimental results on SDv1.5 and SDXL demonstrate the effectiveness of our method, for example, conducting on SDv1.5 achieves an FID of 10.70 on MSCOCO2014 validation set with only 4 sampling steps, close to our teacher model (32 DDIM steps, FID = 10.05).
comment: Our codes will be released at Github
♻ ☆ ArcPro: Architectural Programs for Structured 3D Abstraction of Sparse Points CVPR 2025
We introduce ArcPro, a novel learning framework built on architectural programs to recover structured 3D abstractions from highly sparse and low-quality point clouds. Specifically, we design a domain-specific language (DSL) to hierarchically represent building structures as a program, which can be efficiently converted into a mesh. We bridge feedforward and inverse procedural modeling by using a feedforward process for training data synthesis, allowing the network to make reverse predictions. We train an encoder-decoder on the points-program pairs to establish a mapping from unstructured point clouds to architectural programs, where a 3D convolutional encoder extracts point cloud features and a transformer decoder autoregressively predicts the programs in a tokenized form. Inference by our method is highly efficient and produces plausible and faithful 3D abstractions. Comprehensive experiments demonstrate that ArcPro outperforms both traditional architectural proxy reconstruction and learning-based abstraction methods. We further explore its potential to work with multi-view image and natural language inputs.
comment: CVPR 2025 (Patent Protected); Project page: https://vcc.tech/research/2025/ArcPro
♻ ☆ Corotational Hinge-based Thin Plates/Shells
We present six thin plate/shell models, derived from three distinct types of curvature operators formulated within the corotational frame, for simulating both rest-flat and rest-curved triangular meshes. Each curvature operator derives a curvature expression corresponding to both a plate model and a shell model. The corotational edge-based hinge model uses an edge-based stencil to compute directional curvature, while the corotational FVM hinge model utilizes a triangle-centered stencil, applying the finite volume method (FVM) to superposition directional curvatures across edges, yielding a generalized curvature. The corotational smoothed hinge model also employs a triangle-centered stencil but transforms directional curvatures into a generalized curvature based on a quadratic surface fit. All models assume small strain and small curvature, leading to constant bending energy Hessians, which benefit implicit integrators. Through quantitative benchmarks and qualitative elastodynamic simulations with large time steps, we demonstrate the accuracy, efficiency, and stability of these models. Our contributions enhance the thin plate/shell library for use in both computer graphics and engineering applications.
Robotics 95
☆ Reactive Diffusion Policy: Slow-Fast Visual-Tactile Policy Learning for Contact-Rich Manipulation
Humans can accomplish complex contact-rich tasks using vision and touch, with highly reactive capabilities such as quick adjustments to environmental changes and adaptive control of contact forces; however, this remains challenging for robots. Existing visual imitation learning (IL) approaches rely on action chunking to model complex behaviors, which lacks the ability to respond instantly to real-time tactile feedback during the chunk execution. Furthermore, most teleoperation systems struggle to provide fine-grained tactile / force feedback, which limits the range of tasks that can be performed. To address these challenges, we introduce TactAR, a low-cost teleoperation system that provides real-time tactile feedback through Augmented Reality (AR), along with Reactive Diffusion Policy (RDP), a novel slow-fast visual-tactile imitation learning algorithm for learning contact-rich manipulation skills. RDP employs a two-level hierarchy: (1) a slow latent diffusion policy for predicting high-level action chunks in latent space at low frequency, (2) a fast asymmetric tokenizer for closed-loop tactile feedback control at high frequency. This design enables both complex trajectory modeling and quick reactive behavior within a unified framework. Through extensive evaluation across three challenging contact-rich tasks, RDP significantly improves performance compared to state-of-the-art visual IL baselines through rapid response to tactile / force feedback. Furthermore, experiments show that RDP is applicable across different tactile / force sensors. Code and videos are available on https://reactive-diffusion-policy.github.io/.
☆ MuBlE: MuJoCo and Blender simulation Environment and Benchmark for Task Planning in Robot Manipulation
Current embodied reasoning agents struggle to plan for long-horizon tasks that require to physically interact with the world to obtain the necessary information (e.g. 'sort the objects from lightest to heaviest'). The improvement of the capabilities of such an agent is highly dependent on the availability of relevant training environments. In order to facilitate the development of such systems, we introduce a novel simulation environment (built on top of robosuite) that makes use of the MuJoCo physics engine and high-quality renderer Blender to provide realistic visual observations that are also accurate to the physical state of the scene. It is the first simulator focusing on long-horizon robot manipulation tasks preserving accurate physics modeling. MuBlE can generate mutlimodal data for training and enable design of closed-loop methods through environment interaction on two levels: visual - action loop, and control - physics loop. Together with the simulator, we propose SHOP-VRB2, a new benchmark composed of 10 classes of multi-step reasoning scenarios that require simultaneous visual and physical measurements.
comment: https://github.com/michaal94/MuBlE. arXiv admin note: substantial text overlap with arXiv:2404.15194
☆ Digital Model-Driven Genetic Algorithm for Optimizing Layout and Task Allocation in Human-Robot Collaborative Assemblies ICRA 2025
This paper addresses the optimization of human-robot collaborative work-cells before their physical deployment. Most of the times, such environments are designed based on the experience of the system integrators, often leading to sub-optimal solutions. Accurate simulators of the robotic cell, accounting for the presence of the human as well, are available today and can be used in the pre-deployment. We propose an iterative optimization scheme where a digital model of the work-cell is updated based on a genetic algorithm. The methodology focuses on the layout optimization and task allocation, encoding both the problems simultaneously in the design variables handled by the genetic algorithm, while the task scheduling problem depends on the result of the upper-level one. The final solution balances conflicting objectives in the fitness function and is validated to show the impact of the objectives with respect to a baseline, which represents possible initial choices selected based on the human judgment.
comment: Accepted at IEEE ICRA 2025 (Atlanta, USA)
☆ Deep Learning-Enhanced Visual Monitoring in Hazardous Underwater Environments with a Swarm of Micro-Robots ICRA 2025
Long-term monitoring and exploration of extreme environments, such as underwater storage facilities, is costly, labor-intensive, and hazardous. Automating this process with low-cost, collaborative robots can greatly improve efficiency. These robots capture images from different positions, which must be processed simultaneously to create a spatio-temporal model of the facility. In this paper, we propose a novel approach that integrates data simulation, a multi-modal deep learning network for coordinate prediction, and image reassembly to address the challenges posed by environmental disturbances causing drift and rotation in the robots' positions and orientations. Our approach enhances the precision of alignment in noisy environments by integrating visual information from snapshots, global positional context from masks, and noisy coordinates. We validate our method through extensive experiments using synthetic data that simulate real-world robotic operations in underwater settings. The results demonstrate very high coordinate prediction accuracy and plausible image assembly, indicating the real-world applicability of our approach. The assembled images provide clear and coherent views of the underwater environment for effective monitoring and inspection, showcasing the potential for broader use in extreme settings, further contributing to improved safety, efficiency, and cost reduction in hazardous field monitoring. Code is available on https://github.com/ChrisChen1023/Micro-Robot-Swarm.
comment: Accepted by ICRA 2025
☆ Bridging VLM and KMP: Enabling Fine-grained robotic manipulation via Semantic Keypoints Representation
From early Movement Primitive (MP) techniques to modern Vision-Language Models (VLMs), autonomous manipulation has remained a pivotal topic in robotics. As two extremes, VLM-based methods emphasize zero-shot and adaptive manipulation but struggle with fine-grained planning. In contrast, MP-based approaches excel in precise trajectory generalization but lack decision-making ability. To leverage the strengths of the two frameworks, we propose VL-MP, which integrates VLM with Kernelized Movement Primitives (KMP) via a low-distortion decision information transfer bridge, enabling fine-grained robotic manipulation under ambiguous situations. One key of VL-MP is the accurate representation of task decision parameters through semantic keypoints constraints, leading to more precise task parameter generation. Additionally, we introduce a local trajectory feature-enhanced KMP to support VL-MP, thereby achieving shape preservation for complex trajectories. Extensive experiments conducted in complex real-world environments validate the effectiveness of VL-MP for adaptive and fine-grained manipulation.
☆ Variable-Friction In-Hand Manipulation for Arbitrary Objects via Diffusion-Based Imitation Learning ICRA 2025
Dexterous in-hand manipulation (IHM) for arbitrary objects is challenging due to the rich and subtle contact process. Variable-friction manipulation is an alternative approach to dexterity, previously demonstrating robust and versatile 2D IHM capabilities with only two single-joint fingers. However, the hard-coded manipulation methods for variable friction hands are restricted to regular polygon objects and limited target poses, as well as requiring the policy to be tailored for each object. This paper proposes an end-to-end learning-based manipulation method to achieve arbitrary object manipulation for any target pose on real hardware, with minimal engineering efforts and data collection. The method features a diffusion policy-based imitation learning method with co-training from simulation and a small amount of real-world data. With the proposed framework, arbitrary objects including polygons and non-polygons can be precisely manipulated to reach arbitrary goal poses within 2 hours of training on an A100 GPU and only 1 hour of real-world data collection. The precision is higher than previous customized object-specific policies, achieving an average success rate of 71.3% with average pose error being 2.676 mm and 1.902 degrees.
comment: Accepted by ICRA 2025 Project website: https://sites.google.com/view/vf-ihm-il/home
☆ ImpedanceGPT: VLM-driven Impedance Control of Swarm of Mini-drones for Intelligent Navigation in Dynamic Environment IROS 2025
Swarm robotics plays a crucial role in enabling autonomous operations in dynamic and unpredictable environments. However, a major challenge remains ensuring safe and efficient navigation in environments filled with both dynamic alive (e.g., humans) and dynamic inanimate (e.g., non-living objects) obstacles. In this paper, we propose ImpedanceGPT, a novel system that combines a Vision-Language Model (VLM) with retrieval-augmented generation (RAG) to enable real-time reasoning for adaptive navigation of mini-drone swarms in complex environments. The key innovation of ImpedanceGPT lies in the integration of VLM and RAG, which provides the drones with enhanced semantic understanding of their surroundings. This enables the system to dynamically adjust impedance control parameters in response to obstacle types and environmental conditions. Our approach not only ensures safe and precise navigation but also improves coordination between drones in the swarm. Experimental evaluations demonstrate the effectiveness of the system. The VLM-RAG framework achieved an obstacle detection and retrieval accuracy of 80 % under optimal lighting. In static environments, drones navigated dynamic inanimate obstacles at 1.4 m/s but slowed to 0.7 m/s with increased separation around humans. In dynamic environments, speed adjusted to 1.0 m/s near hard obstacles, while reducing to 0.6 m/s with higher deflection to safely avoid moving humans.
comment: Submitted to IROS 2025
☆ Vibration-Assisted Hysteresis Mitigation for Achieving High Compensation Efficiency
Tendon-sheath mechanisms (TSMs) are widely used in minimally invasive surgical (MIS) applications, but their inherent hysteresis-caused by friction, backlash, and tendon elongation-leads to significant tracking errors. Conventional modeling and compensation methods struggle with these nonlinearities and require extensive parameter tuning. To address this, we propose a vibration-assisted hysteresis compensation approach, where controlled vibrational motion is applied along the tendon's movement direction to mitigate friction and reduce dead zones. Experimental results demonstrate that the exerted vibration consistently reduces hysteresis across all tested frequencies, decreasing RMSE by up to 23.41% (from 2.2345 mm to 1.7113 mm) and improving correlation, leading to more accurate trajectory tracking. When combined with a Temporal Convolutional Network (TCN)-based compensation model, vibration further enhances performance, achieving an 85.2% reduction in MAE (from 1.334 mm to 0.1969 mm). Without vibration, the TCN-based approach still reduces MAE by 72.3% (from 1.334 mm to 0.370 mm) under the same parameter settings. These findings confirm that vibration effectively mitigates hysteresis, improving trajectory accuracy and enabling more efficient compensation models with fewer trainable parameters. This approach provides a scalable and practical solution for TSM-based robotic applications, particularly in MIS.
comment: 8 pages, 7 figures, and 2 tables
☆ Scalable Multi-Robot Task Allocation and Coordination under Signal Temporal Logic Specifications ICRA 2025
Motion planning with simple objectives, such as collision-avoidance and goal-reaching, can be solved efficiently using modern planners. However, the complexity of the allowed tasks for these planners is limited. On the other hand, signal temporal logic (STL) can specify complex requirements, but STL-based motion planning and control algorithms often face scalability issues, especially in large multi-robot systems with complex dynamics. In this paper, we propose an algorithm that leverages the best of the two worlds. We first use a single-robot motion planner to efficiently generate a set of alternative reference paths for each robot. Then coordination requirements are specified using STL, which is defined over the assignment of paths and robots' progress along those paths. We use a Mixed Integer Linear Program (MILP) to compute task assignments and robot progress targets over time such that the STL specification is satisfied. Finally, a local controller is used to track the target progress. Simulations demonstrate that our method can handle tasks with complex constraints and scales to large multi-robot teams and intricate task allocation scenarios.
comment: Accepted by ICRA 2025
☆ Multi-Strategy Enhanced COA for Path Planning in Autonomous Navigation
Autonomous navigation is reshaping various domains in people's life by enabling efficient and safe movement in complex environments. Reliable navigation requires algorithmic approaches that compute optimal or near-optimal trajectories while satisfying task-specific constraints and ensuring obstacle avoidance. However, existing methods struggle with slow convergence and suboptimal solutions, particularly in complex environments, limiting their real-world applicability. To address these limitations, this paper presents the Multi-Strategy Enhanced Crayfish Optimization Algorithm (MCOA), a novel approach integrating three key strategies: 1) Refractive Opposition Learning, enhancing population diversity and global exploration, 2) Stochastic Centroid-Guided Exploration, balancing global and local search to prevent premature convergence, and 3) Adaptive Competition-Based Selection, dynamically adjusting selection pressure for faster convergence and improved solution quality. Empirical evaluations underscore the remarkable planning speed and the amazing solution quality of MCOA in both 3D Unmanned Aerial Vehicle (UAV) and 2D mobile robot path planning. Against 11 baseline algorithms, MCOA achieved a 69.2% reduction in computational time and a 16.7% improvement in minimizing overall path cost in 3D UAV scenarios. Furthermore, in 2D path planning, MCOA outperformed baseline approaches by 44% on average, with an impressive 75.6% advantage in the largest 60*60 grid setting. These findings validate MCOA as a powerful tool for optimizing autonomous navigation in complex environments. The source code is available at: https://github.com/coedv-hub/MCOA.
☆ FlowPlan: Zero-Shot Task Planning with LLM Flow Engineering for Robotic Instruction Following
Robotic instruction following tasks require seamless integration of visual perception, task planning, target localization, and motion execution. However, existing task planning methods for instruction following are either data-driven or underperform in zero-shot scenarios due to difficulties in grounding lengthy instructions into actionable plans under operational constraints. To address this, we propose FlowPlan, a structured multi-stage LLM workflow that elevates zero-shot pipeline and bridges the performance gap between zero-shot and data-driven in-context learning methods. By decomposing the planning process into modular stages--task information retrieval, language-level reasoning, symbolic-level planning, and logical evaluation--FlowPlan generates logically coherent action sequences while adhering to operational constraints and further extracts contextual guidance for precise instance-level target localization. Benchmarked on the ALFRED and validated in real-world applications, our method achieves competitive performance relative to data-driven in-context learning methods and demonstrates adaptability across diverse environments. This work advances zero-shot task planning in robotic systems without reliance on labeled data. Project website: https://instruction-following-project.github.io/.
comment: 8 pages, 5 figures
☆ Class-Aware PillarMix: Can Mixed Sample Data Augmentation Enhance 3D Object Detection with Radar Point Clouds? IROS 2025
Due to the significant effort required for data collection and annotation in 3D perception tasks, mixed sample data augmentation (MSDA) has been widely studied to generate diverse training samples by mixing existing data. Recently, many MSDA techniques have been developed for point clouds, but they mainly target LiDAR data, leaving their application to radar point clouds largely unexplored. In this paper, we examine the feasibility of applying existing MSDA methods to radar point clouds and identify several challenges in adapting these techniques. These obstacles stem from the radar's irregular angular distribution, deviations from a single-sensor polar layout in multi-radar setups, and point sparsity. To address these issues, we propose Class-Aware PillarMix (CAPMix), a novel MSDA approach that applies MixUp at the pillar level in 3D point clouds, guided by class labels. Unlike methods that rely a single mix ratio to the entire sample, CAPMix assigns an independent ratio to each pillar, boosting sample diversity. To account for the density of different classes, we use class-specific distributions: for dense objects (e.g., large vehicles), we skew ratios to favor points from another sample, while for sparse objects (e.g., pedestrians), we sample more points from the original. This class-aware mixing retains critical details and enriches each sample with new information, ultimately generating more diverse training data. Experimental results demonstrate that our method not only significantly boosts performance but also outperforms existing MSDA approaches across two datasets (Bosch Street and K-Radar). We believe that this straightforward yet effective approach will spark further investigation into MSDA techniques for radar data.
comment: 8 pages, 6 figures, 4 tables, submitted to 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
☆ Learning-Based Passive Fault-Tolerant Control of a Quadrotor with Rotor Failure
This paper proposes a learning-based passive fault-tolerant control (PFTC) method for quadrotor capable of handling arbitrary single-rotor failures, including conditions ranging from fault-free to complete rotor failure, without requiring any rotor fault information or controller switching. Unlike existing methods that treat rotor faults as disturbances and rely on a single controller for multiple fault scenarios, our approach introduces a novel Selector-Controller network structure. This architecture integrates fault detection module and the controller into a unified policy network, effectively combining the adaptability to multiple fault scenarios of PFTC with the superior control performance of active fault-tolerant control (AFTC). To optimize performance, the policy network is trained using a hybrid framework that synergizes reinforcement learning (RL), behavior cloning (BC), and supervised learning with fault information. Extensive simulations and real-world experiments validate the proposed method, demonstrating significant improvements in fault response speed and position tracking performance compared to state-of-the-art PFTC and AFTC approaches.
☆ Velocity-free task-space regulator for robot manipulators with external disturbances
This paper addresses the problem of task-space robust regulation of robot manipulators subject to external disturbances. A velocity-free control law is proposed by combining the internal model principle and the passivity-based output-feedback control approach. The developed output-feedback controller ensures not only asymptotic convergence of the regulation error but also suppression of unwanted external step/sinusoidal disturbances. The potential of the proposed method lies in its simplicity, intuitively appealing, and simple gain selection criteria for synthesis of multi-joint robot manipulator control systems.
☆ Human-aligned Safe Reinforcement Learning for Highway On-Ramp Merging in Dense Traffic
Most reinforcement learning (RL) approaches for the decision-making of autonomous driving consider safety as a reward instead of a cost, which makes it hard to balance the tradeoff between safety and other objectives. Human risk preference has also rarely been incorporated, and the trained policy might be either conservative or aggressive for users. To this end, this study proposes a human-aligned safe RL approach for autonomous merging, in which the high-level decision problem is formulated as a constrained Markov decision process (CMDP) that incorporates users' risk preference into the safety constraints, followed by a model predictive control (MPC)-based low-level control. The safety level of RL policy can be adjusted by computing cost limits of CMDP's constraints based on risk preferences and traffic density using a fuzzy control method. To filter out unsafe or invalid actions, we design an action shielding mechanism that pre-executes RL actions using an MPC method and performs collision checks with surrounding agents. We also provide theoretical proof to validate the effectiveness of the shielding mechanism in enhancing RL's safety and sample efficiency. Simulation experiments in multiple levels of traffic densities show that our method can significantly reduce safety violations without sacrificing traffic efficiency. Furthermore, due to the use of risk preference-aware constraints in CMDP and action shielding, we can not only adjust the safety level of the final policy but also reduce safety violations during the training stage, proving a promising solution for online learning in real-world environments.
comment: 20 pages, 16 figures
☆ Resource-Efficient Affordance Grounding with Complementary Depth and Semantic Prompts
Affordance refers to the functional properties that an agent perceives and utilizes from its environment, and is key perceptual information required for robots to perform actions. This information is rich and multimodal in nature. Existing multimodal affordance methods face limitations in extracting useful information, mainly due to simple structural designs, basic fusion methods, and large model parameters, making it difficult to meet the performance requirements for practical deployment. To address these issues, this paper proposes the BiT-Align image-depth-text affordance mapping framework. The framework includes a Bypass Prompt Module (BPM) and a Text Feature Guidance (TFG) attention selection mechanism. BPM integrates the auxiliary modality depth image directly as a prompt to the primary modality RGB image, embedding it into the primary modality encoder without introducing additional encoders. This reduces the model's parameter count and effectively improves functional region localization accuracy. The TFG mechanism guides the selection and enhancement of attention heads in the image encoder using textual features, improving the understanding of affordance characteristics. Experimental results demonstrate that the proposed method achieves significant performance improvements on public AGD20K and HICO-IIF datasets. On the AGD20K dataset, compared with the current state-of-the-art method, we achieve a 6.0% improvement in the KLD metric, while reducing model parameters by 88.8%, demonstrating practical application values. The source code will be made publicly available at https://github.com/DAWDSE/BiT-Align.
comment: The source code will be made publicly available at https://github.com/DAWDSE/BiT-Align
☆ Learning Dexterous In-Hand Manipulation with Multifingered Hands via Visuomotor Diffusion
We present a framework for learning dexterous in-hand manipulation with multifingered hands using visuomotor diffusion policies. Our system enables complex in-hand manipulation tasks, such as unscrewing a bottle lid with one hand, by leveraging a fast and responsive teleoperation setup for the four-fingered Allegro Hand. We collect high-quality expert demonstrations using an augmented reality (AR) interface that tracks hand movements and applies inverse kinematics and motion retargeting for precise control. The AR headset provides real-time visualization, while gesture controls streamline teleoperation. To enhance policy learning, we introduce a novel demonstration outlier removal approach based on HDBSCAN clustering and the Global-Local Outlier Score from Hierarchies (GLOSH) algorithm, effectively filtering out low-quality demonstrations that could degrade performance. We evaluate our approach extensively in real-world settings and provide all experimental videos on the project website: https://dex-manip.github.io/
☆ Research on visual simultaneous localization and mapping technology based on near infrared light
In view of the problems that visual simultaneous localization and mapping (VSLAM) are susceptible to environmental light interference and luminosity inconsistency, the visual simultaneous localization and mapping technology based on near infrared perception (NIR-VSLAM) is proposed. In order to avoid ambient light interference, the near infrared light is innovatively selected as the light source. The luminosity parameter estimation of error energy function, halo factor and exposure time and the light source irradiance correction method are proposed in this paper, which greatly improves the positioning accuracy of Direct Sparse Odometry (DSO). The feasibility of the proposed method in four large scenes is verified, which provides the reference for visual positioning in automatic driving and mobile robot.
comment: 12 pages, 9 figures, 2 tables
☆ Unveiling the Potential of Segment Anything Model 2 for RGB-Thermal Semantic Segmentation with Language Guidance
The perception capability of robotic systems relies on the richness of the dataset. Although Segment Anything Model 2 (SAM2), trained on large datasets, demonstrates strong perception potential in perception tasks, its inherent training paradigm prevents it from being suitable for RGB-T tasks. To address these challenges, we propose SHIFNet, a novel SAM2-driven Hybrid Interaction Paradigm that unlocks the potential of SAM2 with linguistic guidance for efficient RGB-Thermal perception. Our framework consists of two key components: (1) Semantic-Aware Cross-modal Fusion (SACF) module that dynamically balances modality contributions through text-guided affinity learning, overcoming SAM2's inherent RGB bias; (2) Heterogeneous Prompting Decoder (HPD) that enhances global semantic information through a semantic enhancement module and then combined with category embeddings to amplify cross-modal semantic consistency. With 32.27M trainable parameters, SHIFNet achieves state-of-the-art segmentation performance on public benchmarks, reaching 89.8% on PST900 and 67.8% on FMB, respectively. The framework facilitates the adaptation of pre-trained large models to RGB-T segmentation tasks, effectively mitigating the high costs associated with data collection while endowing robotic systems with comprehensive perception capabilities. The source code will be made publicly available at https://github.com/iAsakiT3T/SHIFNet.
comment: The source code will be made publicly available at https://github.com/iAsakiT3T/SHIFNet
☆ TS-CGNet: Temporal-Spatial Fusion Meets Centerline-Guided Diffusion for BEV Mapping
Bird's Eye View (BEV) perception technology is crucial for autonomous driving, as it generates top-down 2D maps for environment perception, navigation, and decision-making. Nevertheless, the majority of current BEV map generation studies focusing on visual map generation lack depth-aware reasoning capabilities. They exhibit limited efficacy in managing occlusions and handling complex environments, with a notable decline in perceptual performance under adverse weather conditions or low-light scenarios. Therefore, this paper proposes TS-CGNet, which leverages Temporal-Spatial fusion with Centerline-Guided diffusion. This visual framework, grounded in prior knowledge, is designed for integration into any existing network for building BEV maps. Specifically, this framework is decoupled into three parts: Local mapping system involves the initial generation of semantic maps using purely visual information; The Temporal-Spatial Aligner Module (TSAM) integrates historical information into mapping generation by applying transformation matrices; The Centerline-Guided Diffusion Model (CGDM) is a prediction module based on the diffusion model. CGDM incorporates centerline information through spatial-attention mechanisms to enhance semantic segmentation reconstruction. We construct BEV semantic segmentation maps by our methods on the public nuScenes and the robustness benchmarks under various corruptions. Our method improves 1.90%, 1.73%, and 2.87% for perceived ranges of 60x30m, 120x60m, and 240x60m in the task of BEV HD mapping. TS-CGNet attains an improvement of 1.92% for perceived ranges of 100x100m in the task of BEV semantic mapping. Moreover, TS-CGNet achieves an average improvement of 2.92% in detection accuracy under varying weather conditions and sensor interferences in the perception range of 240x60m. The source code will be publicly available at https://github.com/krabs-H/TS-CGNet.
comment: The source code will be publicly available at https://github.com/krabs-H/TS-CGNet
☆ RaceVLA: VLA-based Racing Drone Navigation with Human-like Behaviour IROS 2025
RaceVLA presents an innovative approach for autonomous racing drone navigation by leveraging Visual-Language-Action (VLA) to emulate human-like behavior. This research explores the integration of advanced algorithms that enable drones to adapt their navigation strategies based on real-time environmental feedback, mimicking the decision-making processes of human pilots. The model, fine-tuned on a collected racing drone dataset, demonstrates strong generalization despite the complexity of drone racing environments. RaceVLA outperforms OpenVLA in motion (75.0 vs 60.0) and semantic generalization (45.5 vs 36.3), benefiting from the dynamic camera and simplified motion tasks. However, visual (79.6 vs 87.0) and physical (50.0 vs 76.7) generalization were slightly reduced due to the challenges of maneuvering in dynamic environments with varying object sizes. RaceVLA also outperforms RT-2 across all axes - visual (79.6 vs 52.0), motion (75.0 vs 55.0), physical (50.0 vs 26.7), and semantic (45.5 vs 38.8), demonstrating its robustness for real-time adjustments in complex environments. Experiments revealed an average velocity of 1.04 m/s, with a maximum speed of 2.02 m/s, and consistent maneuverability, demonstrating RaceVLA's ability to handle high-speed scenarios effectively. These findings highlight the potential of RaceVLA for high-performance navigation in competitive racing contexts. The RaceVLA codebase, pretrained weights, and dataset are available at this http URL: https://racevla.github.io/
comment: 6 pages, 6 figures. Submitted to IROS 2025
☆ World Models for Anomaly Detection during Model-Based Reinforcement Learning Inference
Learning-based controllers are often purposefully kept out of real-world applications due to concerns about their safety and reliability. We explore how state-of-the-art world models in Model-Based Reinforcement Learning can be utilized beyond the training phase to ensure a deployed policy only operates within regions of the state-space it is sufficiently familiar with. This is achieved by continuously monitoring discrepancies between a world model's predictions and observed system behavior during inference. It allows for triggering appropriate measures, such as an emergency stop, once an error threshold is surpassed. This does not require any task-specific knowledge and is thus universally applicable. Simulated experiments on established robot control tasks show the effectiveness of this method, recognizing changes in local robot geometry and global gravitational magnitude. Real-world experiments using an agile quadcopter further demonstrate the benefits of this approach by detecting unexpected forces acting on the vehicle. These results indicate how even in new and adverse conditions, safe and reliable operation of otherwise unpredictable learning-based controllers can be achieved.
☆ Magic in Human-Robot Interaction (HRI)
"Magic" is referred to here and there in the robotics literature, from "magical moments" afforded by a mobile bubble machine, to "spells" intended to entertain and motivate children--but what exactly could this concept mean for designers? Here, we present (1) some theoretical discussion on how magic could inform interaction designs based on reviewing the literature, followed by (2) a practical description of using such ideas to develop a simplified prototype, which received an award in an international robot magic competition. Although this topic can be considered unusual and some negative connotations exist (e.g., unrealistic thinking can be referred to as magical), our results seem to suggest that magic, in the experiential, supernatural, and illusory senses of the term, could be useful to consider in various robot design contexts, also for artifacts like home assistants and autonomous vehicles--thus, inviting further discussion and exploration.
comment: Accepted Version of a Paper Published in IEEE, 10 pages, in the 34th annual workshop of the Swedish Artificial Intelligence Society (SAIS 2022), 2022
☆ Impact of Temporal Delay on Radar-Inertial Odometry
Accurate ego-motion estimation is a critical component of any autonomous system. Conventional ego-motion sensors, such as cameras and LiDARs, may be compromised in adverse environmental conditions, such as fog, heavy rain, or dust. Automotive radars, known for their robustness to such conditions, present themselves as complementary sensors or a promising alternative within the ego-motion estimation frameworks. In this paper we propose a novel Radar-Inertial Odometry (RIO) system that integrates an automotive radar and an inertial measurement unit. The key contribution is the integration of online temporal delay calibration within the factor graph optimization framework that compensates for potential time offsets between radar and IMU measurements. To validate the proposed approach we have conducted thorough experimental analysis on real-world radar and IMU data. The results show that, even without scan matching or target tracking, integration of online temporal calibration significantly reduces localization error compared to systems that disregard time synchronization, thus highlighting the important role of, often neglected, accurate temporal alignment in radar-based sensor fusion systems for autonomous navigation.
☆ ROCKET-2: Steering Visuomotor Policy via Cross-View Goal Alignment
We aim to develop a goal specification method that is semantically clear, spatially sensitive, and intuitive for human users to guide agent interactions in embodied environments. Specifically, we propose a novel cross-view goal alignment framework that allows users to specify target objects using segmentation masks from their own camera views rather than the agent's observations. We highlight that behavior cloning alone fails to align the agent's behavior with human intent when the human and agent camera views differ significantly. To address this, we introduce two auxiliary objectives: cross-view consistency loss and target visibility loss, which explicitly enhance the agent's spatial reasoning ability. According to this, we develop ROCKET-2, a state-of-the-art agent trained in Minecraft, achieving an improvement in the efficiency of inference 3x to 6x. We show ROCKET-2 can directly interpret goals from human camera views for the first time, paving the way for better human-agent interaction.
UAV-VLRR: Vision-Language Informed NMPC for Rapid Response in UAV Search and Rescue
Emergency search and rescue (SAR) operations often require rapid and precise target identification in complex environments where traditional manual drone control is inefficient. In order to address these scenarios, a rapid SAR system, UAV-VLRR (Vision-Language-Rapid-Response), is developed in this research. This system consists of two aspects: 1) A multimodal system which harnesses the power of Visual Language Model (VLM) and the natural language processing capabilities of ChatGPT-4o (LLM) for scene interpretation. 2) A non-linearmodel predictive control (NMPC) with built-in obstacle avoidance for rapid response by a drone to fly according to the output of the multimodal system. This work aims at improving response times in emergency SAR operations by providing a more intuitive and natural approach to the operator to plan the SAR mission while allowing the drone to carry out that mission in a rapid and safe manner. When tested, our approach was faster on an average by 33.75% when compared with an off-the-shelf autopilot and 54.6% when compared with a human pilot. Video of UAV-VLRR: https://youtu.be/KJqQGKKt1xY
UAV-VLPA*: A Vision-Language-Path-Action System for Optimal Route Generation on a Large Scales
The UAV-VLPA* (Visual-Language-Planning-and-Action) system represents a cutting-edge advancement in aerial robotics, designed to enhance communication and operational efficiency for unmanned aerial vehicles (UAVs). By integrating advanced planning capabilities, the system addresses the Traveling Salesman Problem (TSP) to optimize flight paths, reducing the total trajectory length by 18.5\% compared to traditional methods. Additionally, the incorporation of the A* algorithm enables robust obstacle avoidance, ensuring safe and efficient navigation in complex environments. The system leverages satellite imagery processing combined with the Visual Language Model (VLM) and GPT's natural language processing capabilities, allowing users to generate detailed flight plans through simple text commands. This seamless fusion of visual and linguistic analysis empowers precise decision-making and mission planning, making UAV-VLPA* a transformative tool for modern aerial operations. With its unmatched operational efficiency, navigational safety, and user-friendly functionality, UAV-VLPA* sets a new standard in autonomous aerial robotics, paving the way for future innovations in the field.
comment: arXiv admin note: text overlap with arXiv:2501.05014
☆ Predictive Kinematic Coordinate Control for Aerial Manipulators based on Modified Kinematics Learning ICRA 2025
High-precision manipulation has always been a developmental goal for aerial manipulators. This paper investigates the kinematic coordinate control issue in aerial manipulators. We propose a predictive kinematic coordinate control method, which includes a learning-based modified kinematic model and a model predictive control (MPC) scheme based on weight allocation. Compared to existing methods, our proposed approach offers several attractive features. First, the kinematic model incorporates closed-loop dynamics characteristics and online residual learning. Compared to methods that do not consider closed-loop dynamics and residuals, our proposed method has improved accuracy by 59.6$\%$. Second, a MPC scheme that considers weight allocation has been proposed, which can coordinate the motion strategies of quadcopters and manipulators. Compared to methods that do not consider weight allocation, the proposed method can meet the requirements of more tasks. The proposed approach is verified through complex trajectory tracking and moving target tracking experiments. The results validate the effectiveness of the proposed method.
comment: accepted by ICRA 2025
☆ A comparison of visual representations for real-world reinforcement learning in the context of vacuum gripping
When manipulating objects in the real world, we need reactive feedback policies that take into account sensor information to inform decisions. This study aims to determine how different encoders can be used in a reinforcement learning (RL) framework to interpret the spatial environment in the local surroundings of a robot arm. Our investigation focuses on comparing real-world vision with 3D scene inputs, exploring new architectures in the process. We built on the SERL framework, providing us with a sample efficient and stable RL foundation we could build upon, while keeping training times minimal. The results of this study indicate that spatial information helps to significantly outperform the visual counterpart, tested on a box picking task with a vacuum gripper. The code and videos of the evaluations are available at https://github.com/nisutte/voxel-serl.
comment: 8 pager, 5 Figures, 5 Tables
☆ RGBSQGrasp: Inferring Local Superquadric Primitives from Single RGB Image for Graspability-Aware Bin Picking IROS2025
Bin picking is a challenging robotic task due to occlusions and physical constraints that limit visual information for object recognition and grasping. Existing approaches often rely on known CAD models or prior object geometries, restricting generalization to novel or unknown objects. Other methods directly regress grasp poses from RGB-D data without object priors, but the inherent noise in depth sensing and the lack of object understanding make grasp synthesis and evaluation more difficult. Superquadrics (SQ) offer a compact, interpretable shape representation that captures the physical and graspability understanding of objects. However, recovering them from limited viewpoints is challenging, as existing methods rely on multiple perspectives for near-complete point cloud reconstruction, limiting their effectiveness in bin-picking. To address these challenges, we propose \textbf{RGBSQGrasp}, a grasping framework that leverages superquadric shape primitives and foundation metric depth estimation models to infer grasp poses from a monocular RGB camera -- eliminating the need for depth sensors. Our framework integrates a universal, cross-platform dataset generation pipeline, a foundation model-based object point cloud estimation module, a global-local superquadric fitting network, and an SQ-guided grasp pose sampling module. By integrating these components, RGBSQGrasp reliably infers grasp poses through geometric reasoning, enhancing grasp stability and adaptability to unseen objects. Real-world robotic experiments demonstrate a 92\% grasp success rate, highlighting the effectiveness of RGBSQGrasp in packed bin-picking environments.
comment: 8 pages, 7 figures, In submission to IROS2025
☆ Introspective Loop Closure for SLAM with 4D Imaging Radar ICRA
Simultaneous Localization and Mapping (SLAM) allows mobile robots to navigate without external positioning systems or pre-existing maps. Radar is emerging as a valuable sensing tool, especially in vision-obstructed environments, as it is less affected by particles than lidars or cameras. Modern 4D imaging radars provide three-dimensional geometric information and relative velocity measurements, but they bring challenges, such as a small field of view and sparse, noisy point clouds. Detecting loop closures in SLAM is critical for reducing trajectory drift and maintaining map accuracy. However, the directional nature of 4D radar data makes identifying loop closures, especially from reverse viewpoints, difficult due to limited scan overlap. This article explores using 4D radar for loop closure in SLAM, focusing on similar and opposing viewpoints. We generate submaps for a denser environment representation and use introspective measures to reject false detections in feature-degenerate environments. Our experiments show accurate loop closure detection in geometrically diverse settings for both similar and opposing viewpoints, improving trajectory estimation with up to 82 % improvement in ATE and rejecting false positives in self-similar environments.
comment: This paper has been accepted for publication in the IEEE International Conference on Robotics and Automation(ICRA), 2025
Label-Efficient LiDAR Panoptic Segmentation
A main bottleneck of learning-based robotic scene understanding methods is the heavy reliance on extensive annotated training data, which often limits their generalization ability. In LiDAR panoptic segmentation, this challenge becomes even more pronounced due to the need to simultaneously address both semantic and instance segmentation from complex, high-dimensional point cloud data. In this work, we address the challenge of LiDAR panoptic segmentation with very few labeled samples by leveraging recent advances in label-efficient vision panoptic segmentation. To this end, we propose a novel method, Limited-Label LiDAR Panoptic Segmentation (L3PS), which requires only a minimal amount of labeled data. Our approach first utilizes a label-efficient 2D network to generate panoptic pseudo-labels from a small set of annotated images, which are subsequently projected onto point clouds. We then introduce a novel 3D refinement module that capitalizes on the geometric properties of point clouds. By incorporating clustering techniques, sequential scan accumulation, and ground point separation, this module significantly enhances the accuracy of the pseudo-labels, improving segmentation quality by up to +10.6 PQ and +7.9 mIoU. We demonstrate that these refined pseudo-labels can be used to effectively train off-the-shelf LiDAR segmentation networks. Through extensive experiments, we show that L3PS not only outperforms existing methods but also substantially reduces the annotation burden. We release the code of our work at https://l3ps.cs.uni-freiburg.de.
☆ JPDS-NN: Reinforcement Learning-Based Dynamic Task Allocation for Agricultural Vehicle Routing Optimization IROS 2025
The Entrance Dependent Vehicle Routing Problem (EDVRP) is a variant of the Vehicle Routing Problem (VRP) where the scale of cities influences routing outcomes, necessitating consideration of their entrances. This paper addresses EDVRP in agriculture, focusing on multi-parameter vehicle planning for irregularly shaped fields. To address the limitations of traditional methods, such as heuristic approaches, which often overlook field geometry and entrance constraints, we propose a Joint Probability Distribution Sampling Neural Network (JPDS-NN) to effectively solve the EDVRP. The network uses an encoder-decoder architecture with graph transformers and attention mechanisms to model routing as a Markov Decision Process, and is trained via reinforcement learning for efficient and rapid end-to-end planning. Experimental results indicate that JPDS-NN reduces travel distances by 48.4-65.4%, lowers fuel consumption by 14.0-17.6%, and computes two orders of magnitude faster than baseline methods, while demonstrating 15-25% superior performance in dynamic arrangement scenarios. Ablation studies validate the necessity of cross-attention and pre-training. The framework enables scalable, intelligent routing for large-scale farming under dynamic constraints.
comment: 8 pages, 7 figures, submitted to IROS 2025
Controllable Motion Generation via Diffusion Modal Coupling
Diffusion models have recently gained significant attention in robotics due to their ability to generate multi-modal distributions of system states and behaviors. However, a key challenge remains: ensuring precise control over the generated outcomes without compromising realism. This is crucial for applications such as motion planning or trajectory forecasting, where adherence to physical constraints and task-specific objectives is essential. We propose a novel framework that enhances controllability in diffusion models by leveraging multi-modal prior distributions and enforcing strong modal coupling. This allows us to initiate the denoising process directly from distinct prior modes that correspond to different possible system behaviors, ensuring sampling to align with the training distribution. We evaluate our approach on motion prediction using the Waymo dataset and multi-task control in Maze2D environments. Experimental results show that our framework outperforms both guidance-based techniques and conditioned models with unimodal priors, achieving superior fidelity, diversity, and controllability, even in the absence of explicit conditioning. Overall, our approach provides a more reliable and scalable solution for controllable motion generation in robotics.
☆ Target Return Optimizer for Multi-Game Decision Transformer
Achieving autonomous agents with robust generalization capabilities across diverse games and tasks remains one of the ultimate goals in AI research. Recent advancements in transformer-based offline reinforcement learning, exemplified by the MultiGame Decision Transformer [Lee et al., 2022], have shown remarkable performance across various games or tasks. However, these approaches depend heavily on human expertise, presenting substantial challenges for practical deployment, particularly in scenarios with limited prior game-specific knowledge. In this paper, we propose an algorithm called Multi-Game Target Return Optimizer (MTRO) to autonomously determine game-specific target returns within the Multi-Game Decision Transformer framework using solely offline datasets. MTRO addresses the existing limitations by automating the target return configuration process, leveraging environmental reward information extracted from offline datasets. Notably, MTRO does not require additional training, enabling seamless integration into existing Multi-Game Decision Transformer architectures. Our experimental evaluations on Atari games demonstrate that MTRO enhances the performance of RL policies across a wide array of games, underscoring its potential to advance the field of autonomous agent development.
comment: 10 pages
☆ Accelerating Vision-Language-Action Model Integrated with Action Chunking via Parallel Decoding
Vision-Language-Action (VLA) models demonstrate remarkable potential for generalizable robotic manipulation. The performance of VLA models can be improved by integrating with action chunking, a critical technique for effective control. However, action chunking linearly scales up action dimensions in VLA models with increased chunking sizes. This reduces the inference efficiency. To tackle this problem, we propose PD-VLA, the first parallel decoding framework for VLA models integrated with action chunking. Our framework reformulates autoregressive decoding as a nonlinear system solved by parallel fixed-point iterations. This approach preserves model performance with mathematical guarantees while significantly improving decoding speed. In addition, it enables training-free acceleration without architectural changes, as well as seamless synergy with existing acceleration techniques. Extensive simulations validate that our PD-VLA maintains competitive success rates while achieving 2.52 times execution frequency on manipulators (with 7 degrees of freedom) compared with the fundamental VLA model. Furthermore, we experimentally identify the most effective settings for acceleration. Finally, real-world experiments validate its high applicability across different tasks.
☆ Diffusion-Based mmWave Radar Point Cloud Enhancement Driven by Range Images IROS
Millimeter-wave (mmWave) radar has attracted significant attention in robotics and autonomous driving. However, despite the perception stability in harsh environments, the point cloud generated by mmWave radar is relatively sparse while containing significant noise, which limits its further development. Traditional mmWave radar enhancement approaches often struggle to leverage the effectiveness of diffusion models in super-resolution, largely due to the unnatural range-azimuth heatmap (RAH) or bird's eye view (BEV) representation. To overcome this limitation, we propose a novel method that pioneers the application of fusing range images with image diffusion models, achieving accurate and dense mmWave radar point clouds that are similar to LiDAR. Benefitting from the projection that aligns with human observation, the range image representation of mmWave radar is close to natural images, allowing the knowledge from pre-trained image diffusion models to be effectively transferred, significantly improving the overall performance. Extensive evaluations on both public datasets and self-constructed datasets demonstrate that our approach provides substantial improvements, establishing a new state-of-the-art performance in generating truly three-dimensional LiDAR-like point clouds via mmWave radar.
comment: 8 pages, 7 figures, submitted to 2025 IROS. This work has been submitted to the IEEE for possible publication
☆ Model-Based Capacitive Touch Sensing in Soft Robotics: Achieving Robust Tactile Interactions for Artistic Applications
In this paper, we present a touch technology to achieve tactile interactivity for human-robot interaction (HRI) in soft robotics. By combining a capacitive touch sensor with an online solid mechanics simulation provided by the SOFA framework, contact detection is achieved for arbitrary shapes. Furthermore, the implementation of the capacitive touch technology presented here is selectively sensitive to human touch (conductive objects), while it is largely unaffected by the deformations created by the pneumatic actuation of our soft robot. Multi-touch interactions are also possible. We evaluated our approach with an organic soft robotics sculpture that was created by a visual artist. In particular, we evaluate that the touch localization capabilities are robust under the deformation of the device. We discuss the potential this approach has for the arts and entertainment as well as other domains.
comment: 8 pages, 17 figures. Accepted at IEEE Robotics and Automation Letters (RA-L) 2025
☆ Active Robot Curriculum Learning from Online Human Demonstrations
Learning from Demonstrations (LfD) allows robots to learn skills from human users, but its effectiveness can suffer due to sub-optimal teaching, especially from untrained demonstrators. Active LfD aims to improve this by letting robots actively request demonstrations to enhance learning. However, this may lead to frequent context switches between various task situations, increasing the human cognitive load and introducing errors to demonstrations. Moreover, few prior studies in active LfD have examined how these active query strategies may impact human teaching in aspects beyond user experience, which can be crucial for developing algorithms that benefit both robot learning and human teaching. To tackle these challenges, we propose an active LfD method that optimizes the query sequence of online human demonstrations via Curriculum Learning (CL), where demonstrators are guided to provide demonstrations in situations of gradually increasing difficulty. We evaluate our method across four simulated robotic tasks with sparse rewards and conduct a user study (N=26) to investigate the influence of active LfD methods on human teaching regarding teaching performance, post-guidance teaching adaptivity, and teaching transferability. Our results show that our method significantly improves learning performance compared to three other LfD baselines in terms of the final success rate of the converged policy and sample efficiency. Additionally, results from our user study indicate that our method significantly reduces the time required from human demonstrators and decreases failed demonstration attempts. It also enhances post-guidance human teaching in both seen and unseen scenarios compared to another active LfD baseline, indicating enhanced teaching performance, greater post-guidance teaching adaptivity, and better teaching transferability achieved by our method.
☆ ForaNav: Insect-inspired Online Target-oriented Navigation for MAVs in Tree Plantations
Autonomous Micro Air Vehicles (MAVs) are becoming essential in precision agriculture to enhance efficiency and reduce labor costs through targeted, real-time operations. However, existing unmanned systems often rely on GPS-based navigation, which is prone to inaccuracies in rural areas and limits flight paths to predefined routes, resulting in operational inefficiencies. To address these challenges, this paper presents ForaNav, an insect-inspired navigation strategy for autonomous navigation in plantations. The proposed method employs an enhanced Histogram of Oriented Gradient (HOG)-based tree detection approach, integrating hue-saturation histograms and global HOG feature variance with hierarchical HOG extraction to distinguish oil palm trees from visually similar objects. Inspired by insect foraging behavior, the MAV dynamically adjusts its path based on detected trees and employs a recovery mechanism to stay on course if a target is temporarily lost. We demonstrate that our detection method generalizes well to different tree types while maintaining lower CPU usage, lower temperature, and higher FPS than lightweight deep learning models, making it well-suited for real-time applications. Flight test results across diverse real-world scenarios show that the MAV successfully detects and approaches all trees without prior tree location, validating its effectiveness for agricultural automation.
☆ Towards Fluorescence-Guided Autonomous Robotic Partial Nephrectomy on Novel Tissue-Mimicking Hydrogel Phantoms
Autonomous robotic systems hold potential for improving renal tumor resection accuracy and patient outcomes. We present a fluorescence-guided robotic system capable of planning and executing incision paths around exophytic renal tumors with a clinically relevant resection margin. Leveraging point cloud observations, the system handles irregular tumor shapes and distinguishes healthy from tumorous tissue based on near-infrared imaging, akin to indocyanine green staining in partial nephrectomy. Tissue-mimicking phantoms are crucial for the development of autonomous robotic surgical systems for interventions where acquiring ex-vivo animal tissue is infeasible, such as cancer of the kidney and renal pelvis. To this end, we propose novel hydrogel-based kidney phantoms with exophytic tumors that mimic the physical and visual behavior of tissue, and are compatible with electrosurgical instruments, a common limitation of silicone-based phantoms. In contrast to previous hydrogel phantoms, we mix the material with near-infrared dye to enable fluorescence-guided tumor segmentation. Autonomous real-world robotic experiments validate our system and phantoms, achieving an average margin accuracy of 1.44 mm in a completion time of 69 sec.
comment: 8 pages. 7 figures. Preprint of an article accepted for publication in the Journal of Medical Robotics Research, 2025. Copyright World Scientific Publishing Company [https://worldscientific.com/worldscinet/jmrr]
☆ Continual Multi-Robot Learning from Black-Box Visual Place Recognition Models
In the context of visual place recognition (VPR), continual learning (CL) techniques offer significant potential for avoiding catastrophic forgetting when learning new places. However, existing CL methods often focus on knowledge transfer from a known model to a new one, overlooking the existence of unknown black-box models. We explore a novel multi-robot CL approach that enables knowledge transfer from black-box VPR models (teachers), such as those of local robots encountered by traveler robots (students) in unknown environments. Specifically, we introduce Membership Inference Attack, or MIA, the only major privacy attack applicable to black-box models, and leverage it to reconstruct pseudo training sets, which serve as the key knowledge to be exchanged between robots, from black-box VPR models. Furthermore, we aim to overcome the inherently low sampling efficiency of MIA by leveraging insights on place class prediction distribution and un-learned class detection imported from the VPR literature as a prior distribution. We also analyze both the individual effects of these methods and their combined impact. Experimental results demonstrate that our black-box MIA (BB-MIA) approach is remarkably powerful despite its simplicity, significantly enhancing the VPR capability of lower-performing robots through brief communication with other robots. This study contributes to optimizing knowledge sharing between robots in VPR and enhancing autonomy in open-world environments with multi-robot systems that are fault-tolerant and scalable.
comment: 6 pages, 4 figures, technical report
☆ Large Language Models as Natural Selector for Embodied Soft Robot Design
Designing soft robots is a complex and iterative process that demands cross-disciplinary expertise in materials science, mechanics, and control, often relying on intuition and extensive experimentation. While Large Language Models (LLMs) have demonstrated impressive reasoning abilities, their capacity to learn and apply embodied design principles--crucial for creating functional robotic systems--remains largely unexplored. This paper introduces RoboCrafter-QA, a novel benchmark to evaluate whether LLMs can learn representations of soft robot designs that effectively bridge the gap between high-level task descriptions and low-level morphological and material choices. RoboCrafter-QA leverages the EvoGym simulator to generate a diverse set of soft robot design challenges, spanning robotic locomotion, manipulation, and balancing tasks. Our experiments with state-of-the-art multi-modal LLMs reveal that while these models exhibit promising capabilities in learning design representations, they struggle with fine-grained distinctions between designs with subtle performance differences. We further demonstrate the practical utility of LLMs for robot design initialization. Our code and benchmark will be available to encourage the community to foster this exciting research direction.
☆ WMNav: Integrating Vision-Language Models into World Models for Object Goal Navigation
Object Goal Navigation-requiring an agent to locate a specific object in an unseen environment-remains a core challenge in embodied AI. Although recent progress in Vision-Language Model (VLM)-based agents has demonstrated promising perception and decision-making abilities through prompting, none has yet established a fully modular world model design that reduces risky and costly interactions with the environment by predicting the future state of the world. We introduce WMNav, a novel World Model-based Navigation framework powered by Vision-Language Models (VLMs). It predicts possible outcomes of decisions and builds memories to provide feedback to the policy module. To retain the predicted state of the environment, WMNav proposes the online maintained Curiosity Value Map as part of the world model memory to provide dynamic configuration for navigation policy. By decomposing according to a human-like thinking process, WMNav effectively alleviates the impact of model hallucination by making decisions based on the feedback difference between the world model plan and observation. To further boost efficiency, we implement a two-stage action proposer strategy: broad exploration followed by precise localization. Extensive evaluation on HM3D and MP3D validates WMNav surpasses existing zero-shot benchmarks in both success rate and exploration efficiency (absolute improvement: +3.2% SR and +3.2% SPL on HM3D, +13.5% SR and +1.1% SPL on MP3D). Project page: https://b0b8k1ng.github.io/WMNav/.
comment: 8 pages, 5 figures
☆ ADMM-MCBF-LCA: A Layered Control Architecture for Safe Real-Time Navigation
We consider the problem of safe real-time navigation of a robot in a dynamic environment with moving obstacles of arbitrary smooth geometries and input saturation constraints. We assume that the robot detects and models nearby obstacle boundaries with a short-range sensor and that this detection is error-free. This problem presents three main challenges: i) input constraints, ii) safety, and iii) real-time computation. To tackle all three challenges, we present a layered control architecture (LCA) consisting of an offline path library generation layer, and an online path selection and safety layer. To overcome the limitations of reactive methods, our offline path library consists of feasible controllers, feedback gains, and reference trajectories. To handle computational burden and safety, we solve online path selection and generate safe inputs that run at 100 Hz. Through simulations on Gazebo and Fetch hardware in an indoor environment, we evaluate our approach against baselines that are layered, end-to-end, or reactive. Our experiments demonstrate that among all algorithms, only our proposed LCA is able to complete tasks such as reaching a goal, safely. When comparing metrics such as safety, input error, and success rate, we show that our approach generates safe and feasible inputs throughout the robot execution.
☆ Zero-Shot Sim-to-Real Visual Quadrotor Control with Hard Constraints
We present the first framework demonstrating zero-shot sim-to-real transfer of visual control policies learned in a Neural Radiance Field (NeRF) environment for quadrotors to fly through racing gates. Robust transfer from simulation to real flight poses a major challenge, as standard simulators often lack sufficient visual fidelity. To address this, we construct a photorealistic simulation environment of quadrotor racing tracks, called FalconGym, which provides effectively unlimited synthetic images for training. Within FalconGym, we develop a pipelined approach for crossing gates that combines (i) a Neural Pose Estimator (NPE) coupled with a Kalman filter to reliably infer quadrotor poses from single-frame RGB images and IMU data, and (ii) a self-attention-based multi-modal controller that adaptively integrates visual features and pose estimation. This multi-modal design compensates for perception noise and intermittent gate visibility. We train this controller purely in FalconGym with imitation learning and deploy the resulting policy to real hardware with no additional fine-tuning. Simulation experiments on three distinct tracks (circle, U-turn and figure-8) demonstrate that our controller outperforms a vision-only state-of-the-art baseline in both success rate and gate-crossing accuracy. In 30 live hardware flights spanning three tracks and 120 gates, our controller achieves a 95.8% success rate and an average error of just 10 cm when flying through 38 cm-radius gates.
☆ RPF-Search: Field-based Search for Robot Person Following in Unknown Dynamic Environments
Autonomous robot person-following (RPF) systems are crucial for personal assistance and security but suffer from target loss due to occlusions in dynamic, unknown environments. Current methods rely on pre-built maps and assume static environments, limiting their effectiveness in real-world settings. There is a critical gap in re-finding targets under topographic (e.g., walls, corners) and dynamic (e.g., moving pedestrians) occlusions. In this paper, we propose a novel heuristic-guided search framework that dynamically builds environmental maps while following the target and resolves various occlusions by prioritizing high-probability areas for locating the target. For topographic occlusions, a belief-guided search field is constructed and used to evaluate the likelihood of the target's presence, while for dynamic occlusions, a fluid-field approach allows the robot to adaptively follow or overtake moving occluders. Past motion cues and environmental observations refine the search decision over time. Our results demonstrate that the proposed method outperforms existing approaches in terms of search efficiency and success rates, both in simulations and real-world tests. Our target search method enhances the adaptability and reliability of RPF systems in unknown and dynamic environments to support their use in real-world applications. Our code, video, experimental results and appendix are available at https://medlartea.github.io/rpf-search/.
comment: Under review
☆ Design and Control of A Tilt-Rotor Tailsitter Aircraft with Pivoting VTOL Capability
Tailsitter aircraft attract considerable interest due to their capabilities of both agile hover and high speed forward flight. However, traditional tailsitters that use aerodynamic control surfaces face the challenge of limited control effectiveness and associated actuator saturation during vertical flight and transitions. Conversely, tailsitters relying solely on tilting rotors have the drawback of insufficient roll control authority in forward flight. This paper proposes a tilt-rotor tailsitter aircraft with both elevons and tilting rotors as a promising solution. By implementing a cascaded weighted least squares (WLS) based incremental nonlinear dynamic inversion (INDI) controller, the drone successfully achieved autonomous waypoint tracking in outdoor experiments at a cruise airspeed of 16 m/s, including transitions between forward flight and hover without actuator saturation. Wind tunnel experiments confirm improved roll control compared to tilt-rotor-only configurations, while comparative outdoor flight tests highlight the vehicle's superior control over elevon-only designs during critical phases such as vertical descent and transitions. Finally, we also show that the tilt-rotors allow for an autonomous takeoff and landing with a unique pivoting capability that demonstrates stability and robustness under wind disturbances.
☆ Four Principles for Physically Interpretable World Models
As autonomous systems are increasingly deployed in open and uncertain settings, there is a growing need for trustworthy world models that can reliably predict future high-dimensional observations. The learned latent representations in world models lack direct mapping to meaningful physical quantities and dynamics, limiting their utility and interpretability in downstream planning, control, and safety verification. In this paper, we argue for a fundamental shift from physically informed to physically interpretable world models - and crystallize four principles that leverage symbolic knowledge to achieve these ends: (1) structuring latent spaces according to the physical intent of variables, (2) learning aligned invariant and equivariant representations of the physical world, (3) adapting training to the varied granularity of supervision signals, and (4) partitioning generative outputs to support scalability and verifiability. We experimentally demonstrate the value of each principle on two benchmarks. This paper opens several intriguing research directions to achieve and capitalize on full physical interpretability in world models.
comment: Equal contribution by the first two authors
☆ ArticuBot: Learning Universal Articulated Object Manipulation Policy via Large Scale Simulation
This paper presents ArticuBot, in which a single learned policy enables a robotics system to open diverse categories of unseen articulated objects in the real world. This task has long been challenging for robotics due to the large variations in the geometry, size, and articulation types of such objects. Our system, Articubot, consists of three parts: generating a large number of demonstrations in physics-based simulation, distilling all generated demonstrations into a point cloud-based neural policy via imitation learning, and performing zero-shot sim2real transfer to real robotics systems. Utilizing sampling-based grasping and motion planning, our demonstration generalization pipeline is fast and effective, generating a total of 42.3k demonstrations over 322 training articulated objects. For policy learning, we propose a novel hierarchical policy representation, in which the high-level policy learns the sub-goal for the end-effector, and the low-level policy learns how to move the end-effector conditioned on the predicted goal. We demonstrate that this hierarchical approach achieves much better object-level generalization compared to the non-hierarchical version. We further propose a novel weighted displacement model for the high-level policy that grounds the prediction into the existing 3D structure of the scene, outperforming alternative policy representations. We show that our learned policy can zero-shot transfer to three different real robot settings: a fixed table-top Franka arm across two different labs, and an X-Arm on a mobile base, opening multiple unseen articulated objects across two labs, real lounges, and kitchens. Videos and code can be found on our project website: https://articubot.github.io/.
☆ Multi-Step Deep Koopman Network (MDK-Net) for Vehicle Control in Frenet Frame IROS 2025
The highly nonlinear dynamics of vehicles present a major challenge for the practical implementation of optimal and Model Predictive Control (MPC) approaches in path planning and following. Koopman operator theory offers a global linear representation of nonlinear dynamical systems, making it a promising framework for optimization-based vehicle control. This paper introduces a novel deep learning-based Koopman modeling approach that employs deep neural networks to capture the full vehicle dynamics-from pedal and steering inputs to chassis states-within a curvilinear Frenet frame. The superior accuracy of the Koopman model compared to identified linear models is shown for a double lane change maneuver. Furthermore, it is shown that an MPC controller deploying the Koopman model provides significantly improved performance while maintaining computational efficiency comparable to a linear MPC.
comment: This work has been submitted for IROS 2025 conference
☆ RAILGUN: A Unified Convolutional Policy for Multi-Agent Path Finding Across Different Environments and Tasks
Multi-Agent Path Finding (MAPF), which focuses on finding collision-free paths for multiple robots, is crucial for applications ranging from aerial swarms to warehouse automation. Solving MAPF is NP-hard so learning-based approaches for MAPF have gained attention, particularly those leveraging deep neural networks. Nonetheless, despite the community's continued efforts, all learning-based MAPF planners still rely on decentralized planning due to variability in the number of agents and map sizes. We have developed the first centralized learning-based policy for MAPF problem called RAILGUN. RAILGUN is not an agent-based policy but a map-based policy. By leveraging a CNN-based architecture, RAILGUN can generalize across different maps and handle any number of agents. We collect trajectories from rule-based methods to train our model in a supervised way. In experiments, RAILGUN outperforms most baseline methods and demonstrates great zero-shot generalization capabilities on various tasks, maps and agent numbers that were not seen in the training dataset.
comment: 7 pages
☆ Monocular visual simultaneous localization and mapping: (r)evolution from geometry to deep learning-based pipelines
With the rise of deep learning, there is a fundamental change in visual SLAM algorithms toward developing different modules trained as end-to-end pipelines. However, regardless of the implementation domain, visual SLAM's performance is subject to diverse environmental challenges, such as dynamic elements in outdoor environments, harsh imaging conditions in underwater environments, or blurriness in high-speed setups. These environmental challenges need to be identified to study the real-world viability of SLAM implementations. Motivated by the aforementioned challenges, this paper surveys the current state of visual SLAM algorithms according to the two main frameworks: geometry-based and learning-based SLAM. First, we introduce a general formulation of the SLAM pipeline that includes most of the implementations in the literature. Second, those implementations are classified and surveyed for geometry and learning-based SLAM. After that, environment-specific challenges are formulated to enable experimental evaluation of the resilience of different visual SLAM classes to varying imaging conditions. We address two significant issues in surveying visual SLAM, providing (1) a consistent classification of visual SLAM pipelines and (2) a robust evaluation of their performance under different deployment conditions. Finally, we give our take on future opportunities for visual SLAM implementations.
☆ Reliable and Efficient Multi-Agent Coordination via Graph Neural Network Variational Autoencoders ICRA 2025
Multi-agent coordination is crucial for reliable multi-robot navigation in shared spaces such as automated warehouses. In regions of dense robot traffic, local coordination methods may fail to find a deadlock-free solution. In these scenarios, it is appropriate to let a central unit generate a global schedule that decides the passing order of robots. However, the runtime of such centralized coordination methods increases significantly with the problem scale. In this paper, we propose to leverage Graph Neural Network Variational Autoencoders (GNN-VAE) to solve the multi-agent coordination problem at scale faster than through centralized optimization. We formulate the coordination problem as a graph problem and collect ground truth data using a Mixed-Integer Linear Program (MILP) solver. During training, our learning framework encodes good quality solutions of the graph problem into a latent space. At inference time, solution samples are decoded from the sampled latent variables, and the lowest-cost sample is selected for coordination. Finally, the feasible proposal with the highest performance index is selected for the deployment. By construction, our GNN-VAE framework returns solutions that always respect the constraints of the considered coordination problem. Numerical results show that our approach trained on small-scale problems can achieve high-quality solutions even for large-scale problems with 250 robots, being much faster than other baselines. Project page: https://mengyuest.github.io/gnn-vae-coord
comment: Accepted by 2025 International Conference on Robotics and Automation (ICRA 2025)
☆ Diverse Controllable Diffusion Policy with Signal Temporal Logic
Generating realistic simulations is critical for autonomous system applications such as self-driving and human-robot interactions. However, driving simulators nowadays still have difficulty in generating controllable, diverse, and rule-compliant behaviors for road participants: Rule-based models cannot produce diverse behaviors and require careful tuning, whereas learning-based methods imitate the policy from data but are not designed to follow the rules explicitly. Besides, the real-world datasets are by nature "single-outcome", making the learning method hard to generate diverse behaviors. In this paper, we leverage Signal Temporal Logic (STL) and Diffusion Models to learn controllable, diverse, and rule-aware policy. We first calibrate the STL on the real-world data, then generate diverse synthetic data using trajectory optimization, and finally learn the rectified diffusion policy on the augmented dataset. We test on the NuScenes dataset and our approach can achieve the most diverse rule-compliant trajectories compared to other baselines, with a runtime 1/17X to the second-best approach. In the closed-loop testing, our approach reaches the highest diversity, rule satisfaction rate, and the least collision rate. Our method can generate varied characteristics conditional on different STL parameters in testing. A case study on human-robot encounter scenarios shows our approach can generate diverse and closed-to-oracle trajectories. The annotation tool, augmented dataset, and code are available at https://github.com/mengyuest/pSTL-diffusion-policy.
comment: Accepted by IEEE Robotics and Automation Letters (RA-L), October 2024
☆ Accelerating Focal Search in Multi-Agent Path Finding with Tighter Lower Bounds
Multi-Agent Path Finding (MAPF) involves finding collision-free paths for multiple agents while minimizing a cost function--an NP-hard problem. Bounded suboptimal methods like Enhanced Conflict-Based Search (ECBS) and Explicit Estimation CBS (EECBS) balance solution quality with computational efficiency using focal search mechanisms. While effective, traditional focal search faces a limitation: the lower bound (LB) value determining which nodes enter the FOCAL list often increases slowly in early search stages, resulting in a constrained search space that delays finding valid solutions. In this paper, we propose a novel bounded suboptimal algorithm, double-ECBS (DECBS), to address this issue by first determining the maximum LB value and then employing a best-first search guided by this LB to find a collision-free path. Experimental results demonstrate that DECBS outperforms ECBS in most test cases and is compatible with existing optimization techniques. DECBS can reduce nearly 30% high-level CT nodes and 50% low-level focal search nodes. When agent density is moderate to high, DECBS achieves a 23.5% average runtime improvement over ECBS with identical suboptimality bounds and optimizations.
comment: 7 pages
☆ Monocular Person Localization under Camera Ego-motion
Localizing a person from a moving monocular camera is critical for Human-Robot Interaction (HRI). To estimate the 3D human position from a 2D image, existing methods either depend on the geometric assumption of a fixed camera or use a position regression model trained on datasets containing little camera ego-motion. These methods are vulnerable to fierce camera ego-motion, resulting in inaccurate person localization. We consider person localization as a part of a pose estimation problem. By representing a human with a four-point model, our method jointly estimates the 2D camera attitude and the person's 3D location through optimization. Evaluations on both public datasets and real robot experiments demonstrate our method outperforms baselines in person localization accuracy. Our method is further implemented into a person-following system and deployed on an agile quadruped robot.
comment: Under review
☆ Fair Play in the Fast Lane: Integrating Sportsmanship into Autonomous Racing Systems
Autonomous racing has gained significant attention as a platform for high-speed decision-making and motion control. While existing methods primarily focus on trajectory planning and overtaking strategies, the role of sportsmanship in ensuring fair competition remains largely unexplored. In human racing, rules such as the one-motion rule and the enough-space rule prevent dangerous and unsportsmanlike behavior. However, autonomous racing systems often lack mechanisms to enforce these principles, potentially leading to unsafe maneuvers. This paper introduces a bi-level game-theoretic framework to integrate sportsmanship (SPS) into versus racing. At the high level, we model racing intentions using a Stackelberg game, where Monte Carlo Tree Search (MCTS) is employed to derive optimal strategies. At the low level, vehicle interactions are formulated as a Generalized Nash Equilibrium Problem (GNEP), ensuring that all agents follow sportsmanship constraints while optimizing their trajectories. Simulation results demonstrate the effectiveness of the proposed approach in enforcing sportsmanship rules while maintaining competitive performance. We analyze different scenarios where attackers and defenders adhere to or disregard sportsmanship rules and show how knowledge of these constraints influences strategic decision-making. This work highlights the importance of balancing competition and fairness in autonomous racing and provides a foundation for developing ethical and safe AI-driven racing systems.
☆ Towards Robust Multi-UAV Collaboration: MARL with Noise-Resilient Communication and Attention Mechanisms
Efficient path planning for unmanned aerial vehicles (UAVs) is crucial in remote sensing and information collection. As task scales expand, the cooperative deployment of multiple UAVs significantly improves information collection efficiency. However, collaborative communication and decision-making for multiple UAVs remain major challenges in path planning, especially in noisy environments. To efficiently accomplish complex information collection tasks in 3D space and address robust communication issues, we propose a multi-agent reinforcement learning (MARL) framework for UAV path planning based on the Counterfactual Multi-Agent Policy Gradients (COMA) algorithm. The framework incorporates attention mechanism-based UAV communication protocol and training-deployment system, significantly improving communication robustness and individual decision-making capabilities in noisy conditions. Experiments conducted on both synthetic and real-world datasets demonstrate that our method outperforms existing algorithms in terms of path planning efficiency and robustness, especially in noisy environments, achieving a 78\% improvement in entropy reduction.
♻ ☆ 3D-AffordanceLLM: Harnessing Large Language Models for Open-Vocabulary Affordance Detection in 3D Worlds ICLR
3D Affordance detection is a challenging problem with broad applications on various robotic tasks. Existing methods typically formulate the detection paradigm as a label-based semantic segmentation task. This paradigm relies on predefined labels and lacks the ability to comprehend complex natural language, resulting in limited generalization in open-world scene. To address these limitations, we reformulate the traditional affordance detection paradigm into \textit{Instruction Reasoning Affordance Segmentation} (IRAS) task. This task is designed to output a affordance mask region given a query reasoning text, which avoids fixed categories of input labels. We accordingly propose the \textit{3D-AffordanceLLM} (3D-ADLLM), a framework designed for reasoning affordance detection in 3D open-scene. Specifically, 3D-ADLLM introduces large language models (LLMs) to 3D affordance perception with a custom-designed decoder for generating affordance masks, thus achieving open-world reasoning affordance detection. In addition, given the scarcity of 3D affordance datasets for training large models, we seek to extract knowledge from general segmentation data and transfer it to affordance detection. Thus, we propose a multi-stage training strategy that begins with a novel pre-training task, i.e., \textit{Referring Object Part Segmentation}~(ROPS). This stage is designed to equip the model with general recognition and segmentation capabilities at the object-part level. Then followed by fine-tuning with the IRAS task, 3D-ADLLM obtains the reasoning ability for affordance detection. In summary, 3D-ADLLM leverages the rich world knowledge and human-object interaction reasoning ability of LLMs, achieving approximately an 8\% improvement in mIoU on open-vocabulary affordance detection tasks.
comment: ICLR
♻ ☆ A Survey on Vision-Language-Action Models for Embodied AI
Embodied AI is widely recognized as a key element of artificial general intelligence because it involves controlling embodied agents to perform tasks in the physical world. Building on the success of large language models and vision-language models, a new category of multimodal models -- referred to as vision-language-action models (VLAs) -- has emerged to address language-conditioned robotic tasks in embodied AI by leveraging their distinct ability to generate actions. In recent years, a myriad of VLAs have been developed, making it imperative to capture the rapidly evolving landscape through a comprehensive survey. To this end, we present the first survey on VLAs for embodied AI. This work provides a detailed taxonomy of VLAs, organized into three major lines of research. The first line focuses on individual components of VLAs. The second line is dedicated to developing control policies adept at predicting low-level actions. The third line comprises high-level task planners capable of decomposing long-horizon tasks into a sequence of subtasks, thereby guiding VLAs to follow more general user instructions. Furthermore, we provide an extensive summary of relevant resources, including datasets, simulators, and benchmarks. Finally, we discuss the challenges faced by VLAs and outline promising future directions in embodied AI. We have created a project associated with this survey, which is available at https://github.com/yueen-ma/Awesome-VLA.
comment: Project page: https://github.com/yueen-ma/Awesome-VLA
♻ ☆ MARLIN: Multi-Agent Reinforcement Learning Guided by Language-Based Inter-Robot Negotiation
Multi-agent reinforcement learning is a key method for training multi-robot systems over a series of episodes in which robots are rewarded or punished according to their performance; only once the system is trained to a suitable standard is it deployed in the real world. If the system is not trained enough, the task will likely not be completed and could pose a risk to the surrounding environment. We introduce Multi-Agent Reinforcement Learning guided by Language-based Inter-Robot Negotiation (MARLIN), in which the training process requires fewer training episodes to reach peak performance. Robots are equipped with large language models that negotiate and debate a task, producing plans used to guide the policy during training. The approach dynamically switches between using reinforcement learning and large language model-based action negotiation throughout training. This reduces the number of training episodes required, compared to standard multi-agent reinforcement learning, and hence allows the system to be deployed to physical hardware earlier. The performance of this approach is evaluated against multi-agent reinforcement learning, showing that our hybrid method achieves comparable results with significantly reduced training time.
comment: 6 pages, 6 figures, 1 table
♻ ☆ OpenFly: A Versatile Toolchain and Large-scale Benchmark for Aerial Vision-Language Navigation
Vision-Language Navigation (VLN) aims to guide agents through an environment by leveraging both language instructions and visual cues, playing a pivotal role in embodied AI. Indoor VLN has been extensively studied, whereas outdoor aerial VLN remains underexplored. The potential reason is that outdoor aerial view encompasses vast areas, making data collection more challenging, which results in a lack of benchmarks. To address this problem, we propose OpenFly, a platform comprising a versatile toolchain and large-scale benchmark for aerial VLN. Firstly, we develop a highly automated toolchain for data collection, enabling automatic point cloud acquisition, scene semantic segmentation, flight trajectory creation, and instruction generation. Secondly, based on the toolchain, we construct a large-scale aerial VLN dataset with 100k trajectories, covering diverse heights and lengths across 18 scenes. The corresponding visual data are generated using various rendering engines and advanced techniques, including Unreal Engine, GTA V, Google Earth, and 3D Gaussian Splatting (3D GS). All data exhibit high visual quality. Particularly, 3D GS supports real-to-sim rendering, further enhancing the realism of the dataset. Thirdly, we propose OpenFly-Agent, a keyframe-aware VLN model, which takes language instructions, current observations, and historical keyframes as input, and outputs flight actions directly. Extensive analyses and experiments are conducted, showcasing the superiority of our OpenFly platform and OpenFly-Agent. The toolchain, dataset, and codes will be open-sourced.
♻ ☆ Night-Voyager: Consistent and Efficient Nocturnal Vision-Aided State Estimation in Object Maps
Accurate and robust state estimation at nighttime is essential for autonomous robotic navigation to achieve nocturnal or round-the-clock tasks. An intuitive question arises: Can low-cost standard cameras be exploited for nocturnal state estimation? Regrettably, most existing visual methods may fail under adverse illumination conditions, even with active lighting or image enhancement. A pivotal insight, however, is that streetlights in most urban scenarios act as stable and salient prior visual cues at night, reminiscent of stars in deep space aiding spacecraft voyage in interstellar navigation. Inspired by this, we propose Night-Voyager, an object-level nocturnal vision-aided state estimation framework that leverages prior object maps and keypoints for versatile localization. We also find that the primary limitation of conventional visual methods under poor lighting conditions stems from the reliance on pixel-level metrics. In contrast, metric-agnostic, non-pixel-level object detection serves as a bridge between pixel-level and object-level spaces, enabling effective propagation and utilization of object map information within the system. Night-Voyager begins with a fast initialization to solve the global localization problem. By employing an effective two-stage cross-modal data association, the system delivers globally consistent state updates using map-based observations. To address the challenge of significant uncertainties in visual observations at night, a novel matrix Lie group formulation and a feature-decoupled multi-state invariant filter are introduced, ensuring consistent and efficient estimation. Through comprehensive experiments in both simulation and diverse real-world scenarios (spanning approximately 12.3 km), Night-Voyager showcases its efficacy, robustness, and efficiency, filling a critical gap in nocturnal vision-aided state estimation.
comment: IEEE Transactions on Robotics (T-RO), 2025
♻ ☆ Psycho Gundam: Electroencephalography based real-time robotic control system with deep learning
The Psycho Frame, a sophisticated system primarily used in Universal Century (U.C.) series mobile suits for NEWTYPE pilots, has evolved as an integral component in harnessing the latent potential of mental energy. Its ability to amplify and resonate with the pilot's psyche enables real-time mental control, creating unique applications such as psychomagnetic fields and sensory-based weaponry. This paper presents the development of a novel robotic control system inspired by the Psycho Frame, combining electroencephalography (EEG) and deep learning for real-time control of robotic systems. By capturing and interpreting brainwave data through EEG, the system extends human cognitive commands to robotic actions, reflecting the seamless synchronization of thought and machine, much like the Psyco Frame's integration with a Newtype pilot's mental faculties. This research demonstrates how modern AI techniques can expand the limits of human-machine interaction, potentially transcending traditional input methods and enabling a deeper, more intuitive control of complex robotic systems.
♻ ☆ λ: A Benchmark for Data-Efficiency in Long-Horizon Indoor Mobile Manipulation Robotics
Learning to execute long-horizon mobile manipulation tasks is crucial for advancing robotics in household and workplace settings. However, current approaches are typically data-inefficient, underscoring the need for improved models that require realistically sized benchmarks to evaluate their efficiency. To address this, we introduce the LAMBDA ({\lambda}) benchmark-Long-horizon Actions for Mobile-manipulation Benchmarking of Directed Activities-which evaluates the data efficiency of models on language-conditioned, long-horizon, multi-room, multi-floor, pick-and-place tasks using a dataset of manageable size, more feasible for collection. Our benchmark includes 571 human-collected demonstrations that provide realism and diversity in simulated and real-world settings. Unlike planner-generated data, these trajectories offer natural variability and replay-verifiability, ensuring robust learning and evaluation. We leverage LAMBDA to benchmark current end-to-end learning methods and a modular neuro-symbolic approaches that combines foundation models with task and motion planning. We find that end-to-end methods-even when pretrained-yield lower success rates, while neuro-symbolic methods perform significantly better and require less data.
comment: 8 pages
♻ ☆ Neural Internal Model Control: Learning a Robust Control Policy via Predictive Error Feedback RAL
Accurate motion control in the face of disturbances within complex environments remains a major challenge in robotics. Classical model-based approaches often struggle with nonlinearities and unstructured disturbances, while RL-based methods can be fragile when encountering unseen scenarios. In this paper, we propose a novel framework, Neural Internal Model Control, which integrates model-based control with RL-based control to enhance robustness. Our framework streamlines the predictive model by applying Newton-Euler equations for rigid-body dynamics, eliminating the need to capture complex high-dimensional nonlinearities. This internal model combines model-free RL algorithms with predictive error feedback. Such a design enables a closed-loop control structure to enhance the robustness and generalizability of the control system. We demonstrate the effectiveness of our framework on both quadrotors and quadrupedal robots, achieving superior performance compared to state-of-the-art methods. Furthermore, real-world deployment on a quadrotor with rope-suspended payloads highlights the framework's robustness in sim-to-real transfer. Our code is released at https://github.com/thu-uav/NeuralIMC.
comment: Submitted to RAL
♻ ☆ UniGraspTransformer: Simplified Policy Distillation for Scalable Dexterous Robotic Grasping CVPR 2025
We introduce UniGraspTransformer, a universal Transformer-based network for dexterous robotic grasping that simplifies training while enhancing scalability and performance. Unlike prior methods such as UniDexGrasp++, which require complex, multi-step training pipelines, UniGraspTransformer follows a streamlined process: first, dedicated policy networks are trained for individual objects using reinforcement learning to generate successful grasp trajectories; then, these trajectories are distilled into a single, universal network. Our approach enables UniGraspTransformer to scale effectively, incorporating up to 12 self-attention blocks for handling thousands of objects with diverse poses. Additionally, it generalizes well to both idealized and real-world inputs, evaluated in state-based and vision-based settings. Notably, UniGraspTransformer generates a broader range of grasping poses for objects in various shapes and orientations, resulting in more diverse grasp strategies. Experimental results demonstrate significant improvements over state-of-the-art, UniDexGrasp++, across various object categories, achieving success rate gains of 3.5%, 7.7%, and 10.1% on seen objects, unseen objects within seen categories, and completely unseen objects, respectively, in the vision-based setting. Project page: https://dexhand.github.io/UniGraspTransformer.
comment: Accepted to CVPR 2025. Project page: https://dexhand.github.io/UniGraspTransformer
♻ ☆ Self-Mixing Laser Interferometry for Robotic Tactile Sensing ICRA2025
Self-mixing interferometry (SMI) has been lauded for its sensitivity in detecting microvibrations, while requiring no physical contact with its target. In robotics, microvibrations have traditionally been interpreted as a marker for object slip, and recently as a salient indicator of extrinsic contact. We present the first-ever robotic fingertip making use of SMI for slip and extrinsic contact sensing. The design is validated through measurement of controlled vibration sources, both before and after encasing the readout circuit in its fingertip package. Then, the SMI fingertip is compared to acoustic sensing through four experiments. The results are distilled into a technology decision map. SMI was found to be more sensitive to subtle slip events and significantly more resilient against ambient noise. We conclude that the integration of SMI in robotic fingertips offers a new, promising branch of tactile sensing in robotics. Design and data files are available at https://github.com/RemkoPr/icra2025-SMI-tactile-sensing.
comment: Final version for IEEE ICRA2025 conference
♻ ☆ A Roadside Unit for Infrastructure Assisted Intersection Control of Autonomous Vehicles
Recent advances in autonomous vehicle technologies and cellular network speeds motivate developments in vehicle-to-everything (V2X) communications. Enhanced road safety features and improved fuel efficiency are some of the motivations behind V2X for future transportation systems. Adaptive intersection control systems have considerable potential to achieve these goals by minimizing idle times and predicting short-term future traffic conditions. Integrating V2X into traffic management systems introduces the infrastructure necessary to make roads safer for all users and initiates the shift towards more intelligent and connected cities. To demonstrate our control algorithm, we implement both a simulated and real-world representation of a 4-way intersection and crosswalk scenario with 2 self-driving electric vehicles, a roadside unit (RSU), and a traffic light. Our architecture reduces acceleration and braking through intersections by up to 75.35%, which has been shown to minimize fuel consumption in gas vehicles. We propose a cost-effective solution to intelligent and connected intersection control to serve as a proof-of-concept model suitable as the basis for continued research and development. Code for this project is available at https://github.com/MMachado05/REU-2024.
comment: Supported by the National Science Foundation under Grants No. 2150292 and 2150096
♻ ☆ Robustness of LiDAR-Based Pose Estimation: Evaluating and Improving Odometry and Localization Under Common Point Cloud Corruptions
Accurate and reliable pose estimation, i.e., determining the precise position and orientation of autonomous robots and vehicles, is critical for tasks like navigation and mapping. LiDAR is a widely used sensor for pose estimation, with odometry and localization being two primary tasks. LiDAR odometry estimates the relative motion between consecutive scans, while LiDAR localization aligns real-time scans with a pre-recorded map to obtain a global pose. Although they have different objectives and application scenarios, both rely on point cloud registration as the underlying technique and face shared challenges of data corruption caused by adverse conditions (e.g., rain). While state-of-the-art (SOTA) pose estimation systems achieved high accuracy on clean data, their robustness to corrupted data remains unclear. In this work, we propose a framework to systematically evaluate five SOTA LiDAR pose estimation systems across 18 synthetic real-world point cloud corruptions. Our experiments reveal that odometry systems degrade significantly under specific corruptions, with relative position errors increasing from 0.5% to more than 80%, while localization systems remain highly robust. We further demonstrate that denoising techniques can effectively mitigate the adverse effects of noise-induced corruptions, and re-training learning-based systems with corrupted data significantly enhances the robustness against various corruption types.
♻ ☆ Discovering Antagonists in Networks of Systems: Robot Deployment
A contextual anomaly detection method is proposed and applied to the physical motions of a robot swarm executing a coverage task. Using simulations of a swarm's normal behavior, a normalizing flow is trained to predict the likelihood of a robot motion within the current context of its environment. During application, the predicted likelihood of the observed motions is used by a detection criterion that categorizes a robot agent as normal or antagonistic. The proposed method is evaluated on five different strategies of antagonistic behavior. Importantly, only readily available simulated data of normal robot behavior is used for training such that the nature of the anomalies need not be known beforehand. The best detection criterion correctly categorizes at least 80% of each antagonistic type while maintaining a false positive rate of less than 5% for normal robot agents. Additionally, the method is validated in hardware experiments, yielding results similar to the simulated scenarios. Compared to the state-of-the-art approach, both the predictive performance of the normalizing flow and the robustness of the detection criterion are increased.
comment: reduced file size
♻ ☆ Do Visual-Language Grid Maps Capture Latent Semantics? IROS-2025
Visual-language models (VLMs) have recently been introduced in robotic mapping using the latent representations, i.e., embeddings, of the VLMs to represent semantics in the map. They allow moving from a limited set of human-created labels toward open-vocabulary scene understanding, which is very useful for robots when operating in complex real-world environments and interacting with humans. While there is anecdotal evidence that maps built this way support downstream tasks, such as navigation, rigorous analysis of the quality of the maps using these embeddings is missing. In this paper, we propose a way to analyze the quality of maps created using VLMs. We investigate two critical properties of map quality: queryability and distinctness. The evaluation of queryability addresses the ability to retrieve information from the embeddings. We investigate intra-map distinctness to study the ability of the embeddings to represent abstract semantic classes and inter-map distinctness to evaluate the generalization properties of the representation. We propose metrics to evaluate these properties and evaluate two state-of-the-art mapping methods, VLMaps and OpenScene, using two encoders, LSeg and OpenSeg, using real-world data from the Matterport3D data set. Our findings show that while 3D features improve queryability, they are not scale invariant, whereas image-based embeddings generalize to multiple map resolutions. This allows the image-based methods to maintain smaller map sizes, which can be crucial for using these methods in real-world deployments. Furthermore, we show that the choice of the encoder has an effect on the results. The results imply that properly thresholding open-vocabulary queries is an open problem.
comment: Submitted to IEEE-IROS-2025
♻ ☆ Equivariant Filter for Tightly Coupled LiDAR-Inertial Odometry ICRA 2025
Pose estimation is a crucial problem in simultaneous localization and mapping (SLAM). However, developing a robust and consistent state estimator remains a significant challenge, as the traditional extended Kalman filter (EKF) struggles to handle the model nonlinearity, especially for inertial measurement unit (IMU) and light detection and ranging (LiDAR). To provide a consistent and efficient solution of pose estimation, we propose Eq-LIO, a robust state estimator for tightly coupled LIO systems based on an equivariant filter (EqF). Compared with the invariant Kalman filter based on the $\SE_2(3)$ group structure, the EqF uses the symmetry of the semi-direct product group to couple the system state including IMU bias, navigation state and LiDAR extrinsic calibration state, thereby suppressing linearization error and improving the behavior of the estimator in the event of unexpected state changes. The proposed Eq-LIO owns natural consistency and higher robustness, which is theoretically proven with mathematical derivation and experimentally verified through a series of tests on both public and private datasets.
comment: Accepted by ICRA 2025
♻ ☆ Safe Distributed Control of Multi-Robot Systems with Communication Delays
Safe operation of multi-robot systems is critical, especially in communication-degraded environments such as underwater for seabed mapping, underground caves for navigation, and in extraterrestrial missions for assembly and construction. We address safety of networked autonomous systems where the information exchanged between robots incurs communication delays. We formalize a notion of distributed control barrier function for multi-robot systems, a safety certificate amenable to a distributed implementation, which provides formal ground to using graph neural networks to learn safe distributed controllers. Further, we observe that learning a distributed controller ignoring delays can severely degrade safety. We finally propose a predictor-based framework to train a safe distributed controller under communication delays, where the current state of nearby robots is predicted from received data and age-of-information. Numerical experiments on multi-robot collision avoidance show that our predictor-based approach can significantly improve the safety of a learned distributed controller under communication delays. A video abstract is available at https://youtu.be/Hcu1Ri32Spk.
comment: Copyright (c) 2025 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org
♻ ☆ PlanScope: Learning to Plan Within Decision Scope Does Matter
In the context of autonomous driving, learning-based methods have been promising for the development of planning modules. During the training process of planning modules, directly minimizing the discrepancy between expert-driving logs and planning output is widely deployed. In general, driving logs consist of suddenly appearing obstacles or swiftly changing traffic signals, which typically necessitate swift and nuanced adjustments in driving maneuvers. Concurrently, future trajectories of the vehicles exhibit their long-term decisions, such as adhering to a reference lane or circumventing stationary obstacles. Due to the unpredictable influence of future events in driving logs, reasoning bias could be naturally introduced to learning based planning modules, which leads to a possible degradation of driving performance. To address this issue, we identify the decisions and their corresponding time horizons, and characterize a so-called decision scope by retaining decisions within derivable horizons only, to mitigate the effect of irrational behaviors caused by unpredictable events. Several viable implementations have been proposed, among which batch normalization along the temporal dimension is particularly effective and achieves superior performance. It consistently outperforms baseline methods in terms of driving scores, as demonstrated through closed-loop evaluations on the nuPlan dataset. Essentially, this approach accommodates an appealing plug-and-play feature to enhance the closed-loop performance of other learning-based planning models.
♻ ☆ Learning to Refine Input Constrained Control Barrier Functions via Uncertainty-Aware Online Parameter Adaptation ICRA
Control Barrier Functions (CBFs) have become powerful tools for ensuring safety in nonlinear systems. However, finding valid CBFs that guarantee persistent safety and feasibility remains an open challenge, especially in systems with input constraints. Traditional approaches often rely on manually tuning the parameters of the class K functions of the CBF conditions a priori. The performance of CBF-based controllers is highly sensitive to these fixed parameters, potentially leading to overly conservative behavior or safety violations. To overcome these issues, this paper introduces a learning-based optimal control framework for online adaptation of Input Constrained CBF (ICCBF) parameters in discrete-time nonlinear systems. Our method employs a probabilistic ensemble neural network to predict the performance and risk metrics, as defined in this work, for candidate parameters, accounting for both epistemic and aleatoric uncertainties. We propose a two-step verification process using Jensen-Renyi Divergence and distributionally-robust Conditional Value at Risk to identify valid parameters. This enables dynamic refinement of ICCBF parameters based on current state and nearby environments, optimizing performance while ensuring safety within the verified parameter set. Experimental results demonstrate that our method outperforms both fixed-parameter and existing adaptive methods in robot navigation scenarios across safety and performance metrics.
comment: 2025 IEEE International Conference on Robotics and Automation (ICRA). Project page: https://www.taekyung.me/online-adaptive-cbf
♻ ☆ Geometry-aware RL for Manipulation of Varying Shapes and Deformable Objects ICLR 2025
Manipulating objects with varying geometries and deformable objects is a major challenge in robotics. Tasks such as insertion with different objects or cloth hanging require precise control and effective modelling of complex dynamics. In this work, we frame this problem through the lens of a heterogeneous graph that comprises smaller sub-graphs, such as actuators and objects, accompanied by different edge types describing their interactions. This graph representation serves as a unified structure for both rigid and deformable objects tasks, and can be extended further to tasks comprising multiple actuators. To evaluate this setup, we present a novel and challenging reinforcement learning benchmark, including rigid insertion of diverse objects, as well as rope and cloth manipulation with multiple end-effectors. These tasks present a large search space, as both the initial and target configurations are uniformly sampled in 3D space. To address this issue, we propose a novel graph-based policy model, dubbed Heterogeneous Equivariant Policy (HEPi), utilizing $SE(3)$ equivariant message passing networks as the main backbone to exploit the geometric symmetry. In addition, by modeling explicit heterogeneity, HEPi can outperform Transformer-based and non-heterogeneous equivariant policies in terms of average returns, sample efficiency, and generalization to unseen objects. Our project page is available at https://thobotics.github.io/hepi.
comment: Accepted at ICLR 2025 (Oral)
♻ ☆ Unified Video Action Model
A unified video and action model holds significant promise for robotics, where videos provide rich scene information for action prediction, and actions provide dynamics information for video prediction. However, effectively combining video generation and action prediction remains challenging, and current video generation-based methods struggle to match the performance of direct policy learning in action accuracy and inference speed. To bridge this gap, we introduce the Unified Video Action model (UVA), which jointly optimizes video and action predictions to achieve both high accuracy and efficient action inference. The key lies in learning a joint video-action latent representation and decoupling video-action decoding. The joint latent representation bridges the visual and action domains, effectively modeling the relationship between video and action sequences. Meanwhile, the decoupled decoding, powered by two lightweight diffusion heads, enables high-speed action inference by bypassing video generation during inference. Such a unified framework further enables versatile functionality through masked input training. By selectively masking actions or videos, a single model can tackle diverse tasks beyond policy learning, such as forward and inverse dynamics modeling and video generation. Via an extensive set of experiments, we demonstrate that UVA can serve as a general-purpose solution for a wide range of robotics tasks, such as policy learning, forward/inverse dynamics and video observation prediction, without compromising performance compared to methods tailored for specific applications. Results are best viewed on https://unified-video-action-model.github.io/.
comment: Project website: https://unified-video-action-model.github.io/
♻ ☆ FABG : End-to-end Imitation Learning for Embodied Affective Human-Robot Interaction
This paper proposes FABG (Facial Affective Behavior Generation), an end-to-end imitation learning system for human-robot interaction, designed to generate natural and fluid facial affective behaviors. In interaction, effectively obtaining high-quality demonstrations remains a challenge. In this work, we develop an immersive virtual reality (VR) demonstration system that allows operators to perceive stereoscopic environments. This system ensures "the operator's visual perception matches the robot's sensory input" and "the operator's actions directly determine the robot's behaviors" - as if the operator replaces the robot in human interaction engagements. We propose a prediction-driven latency compensation strategy to reduce robotic reaction delays and enhance interaction fluency. FABG naturally acquires human interactive behaviors and subconscious motions driven by intuition, eliminating manual behavior scripting. We deploy FABG on a real-world 25-degree-of-freedom (DoF) humanoid robot, validating its effectiveness through four fundamental interaction tasks: expression response, dynamic gaze, foveated attention, and gesture recognition, supported by data collection and policy training. Project website: https://cybergenies.github.io
comment: Project website: https://cybergenies.github.io
♻ ☆ DnD Filter: Differentiable State Estimation for Dynamic Systems using Diffusion Models
This paper proposes the DnD Filter, a differentiable filter that utilizes diffusion models for state estimation of dynamic systems. Unlike conventional differentiable filters, which often impose restrictive assumptions on process noise (e.g., Gaussianity), DnD Filter enables a nonlinear state update without such constraints by conditioning a diffusion model on both the predicted state and observational data, capitalizing on its ability to approximate complex distributions. We validate its effectiveness on both a simulated task and a real-world visual odometry task, where DnD Filter consistently outperforms existing baselines. Specifically, it achieves a 25\% improvement in estimation accuracy on the visual odometry task compared to state-of-the-art differentiable filters, and even surpasses differentiable smoothers that utilize future measurements. To the best of our knowledge, DnD Filter represents the first successful attempt to leverage diffusion models for state estimation, offering a flexible and powerful framework for nonlinear estimation under noisy measurements.
♻ ☆ DART-LLM: Dependency-Aware Multi-Robot Task Decomposition and Execution using Large Language Models
Large Language Models (LLMs) have demonstrated promising reasoning capabilities in robotics; however, their application in multi-robot systems remains limited, particularly in handling task dependencies. This paper introduces DART-LLM, a novel framework that employs Directed Acyclic Graphs (DAGs) to model task dependencies, enabling the decomposition of natural language instructions into well-coordinated subtasks for multi-robot execution. DART-LLM comprises four key components: a Question-Answering (QA) LLM module for dependency-aware task decomposition, a Breakdown Function module for robot assignment, an Actuation module for execution, and a Vision-Language Model (VLM)-based object detector for environmental perception, achieving end-to-end task execution. Experimental results across three task complexity levels demonstrate that DART-LLM achieves state-of-the-art performance, significantly outperforming the baseline across all evaluation metrics. Among the tested models, DeepSeek-r1-671B achieves the highest success rate, whereas Llama-3.1-8B exhibits superior response time reliability. Ablation studies further confirm that explicit dependency modeling notably enhances the performance of smaller models, facilitating efficient deployment on resource-constrained platforms. Please refer to the project website https://wyd0817.github.io/project-dart-llm/ for videos and code.
comment: The work was first submitted to an IEEE conference on September 15, 2024
♻ ☆ RobKiNet: Robotic Kinematics Informed Neural Network for Optimal Robot Configuration Prediction
Task and Motion Planning (TAMP) is essential for robots to interact with the world and accomplish complex tasks. The TAMP problem involves a critical gap: exploring the robot's configuration parameters (such as chassis position and robotic arm joint angles) within continuous space to ensure that task-level global constraints are met while also enhancing the efficiency of subsequent motion planning. Existing methods still have significant room for improvement in terms of efficiency. Recognizing that robot kinematics is a key factor in motion planning, we propose a framework called the Robotic Kinematics Informed Neural Network (RobKiNet) as a bridge between task and motion layers. RobKiNet integrates kinematic knowledge into neural networks to train models capable of efficient configuration prediction. We designed a Chassis Motion Predictor(CMP) and a Full Motion Predictor(FMP) using RobKiNet, which employed two entirely different sets of forward and inverse kinematics constraints to achieve loosely coupled control and whole-body control, respectively. Experiments demonstrate that CMP and FMP can predict configuration parameters with 96.67% and 98% accuracy, respectively. That means that the corresponding motion planning can achieve a speedup of 24.24x and 153x compared to random sampling. Furthermore, RobKiNet demonstrates remarkable data efficiency. CMP only requires 1/71 and FMP only requires 1/15052 of the training data for the same prediction accuracy compared to other deep learning methods. These results demonstrate the great potential of RoboKiNet in robot applications.
♻ ☆ POPGym Arcade: Parallel Pixelated POMDPs
We introduce POPGym Arcade, a benchmark consisting of 7 pixel-based environments each with three difficulties, utilizing a single observation and action space. Each environment offers both fully observable and partially observable variants, enabling counterfactual studies on partial observability. POPGym Arcade utilizes JIT compilation on hardware accelerators to achieve substantial speedups over CPU-bound environments. Moreover, this enables Podracer-style architectures to further increase hardware utilization and training speed. We evaluate memory models on our environments using a Podracer variant of Q learning, and examine the results. Finally, we generate memory saliency maps, uncovering how memories propagate through policies. Our library is available at https://github.com/bolt-research/popgym_arcade.
♻ ☆ AnyTouch: Learning Unified Static-Dynamic Representation across Multiple Visuo-tactile Sensors ICLR 2025
Visuo-tactile sensors aim to emulate human tactile perception, enabling robots to precisely understand and manipulate objects. Over time, numerous meticulously designed visuo-tactile sensors have been integrated into robotic systems, aiding in completing various tasks. However, the distinct data characteristics of these low-standardized visuo-tactile sensors hinder the establishment of a powerful tactile perception system. We consider that the key to addressing this issue lies in learning unified multi-sensor representations, thereby integrating the sensors and promoting tactile knowledge transfer between them. To achieve unified representation of this nature, we introduce TacQuad, an aligned multi-modal multi-sensor tactile dataset from four different visuo-tactile sensors, which enables the explicit integration of various sensors. Recognizing that humans perceive the physical environment by acquiring diverse tactile information such as texture and pressure changes, we further propose to learn unified multi-sensor representations from both static and dynamic perspectives. By integrating tactile images and videos, we present AnyTouch, a unified static-dynamic multi-sensor representation learning framework with a multi-level structure, aimed at both enhancing comprehensive perceptual abilities and enabling effective cross-sensor transfer. This multi-level architecture captures pixel-level details from tactile data via masked modeling and enhances perception and transferability by learning semantic-level sensor-agnostic features through multi-modal alignment and cross-sensor matching. We provide a comprehensive analysis of multi-sensor transferability, and validate our method on various datasets and in the real-world pouring task. Experimental results show that our method outperforms existing methods, exhibits outstanding static and dynamic perception capabilities across various sensors.
comment: Accepted by ICLR 2025
♻ ☆ Points2Plans: From Point Clouds to Long-Horizon Plans with Composable Relational Dynamics ICRA
We present Points2Plans, a framework for composable planning with a relational dynamics model that enables robots to solve long-horizon manipulation tasks from partial-view point clouds. Given a language instruction and a point cloud of the scene, our framework initiates a hierarchical planning procedure, whereby a language model generates a high-level plan and a sampling-based planner produces constraint-satisfying continuous parameters for manipulation primitives sequenced according to the high-level plan. Key to our approach is the use of a relational dynamics model as a unifying interface between the continuous and symbolic representations of states and actions, thus facilitating language-driven planning from high-dimensional perceptual input such as point clouds. Whereas previous relational dynamics models require training on datasets of multi-step manipulation scenarios that align with the intended test scenarios, Points2Plans uses only single-step simulated training data while generalizing zero-shot to a variable number of steps during real-world evaluations. We evaluate our approach on tasks involving geometric reasoning, multi-object interactions, and occluded object reasoning in both simulated and real-world settings. Results demonstrate that Points2Plans offers strong generalization to unseen long-horizon tasks in the real world, where it solves over 85% of evaluated tasks while the next best baseline solves only 50%.
comment: Project page: https://sites.google.com/stanford.edu/points2plans. 23 pages, 11 figures. Accepted to the IEEE International Conference on Robotics and Automation (ICRA) 2025
♻ ☆ Optimal Trajectory Planning for Cooperative Manipulation with Multiple Quadrotors Using Control Barrier Functions ICRA
In this paper, we present a novel trajectory planning algorithm for cooperative manipulation with multiple quadrotors using control barrier functions (CBFs). Our approach addresses the complex dynamics of a system in which a team of quadrotors transports and manipulates a cable-suspended rigid-body payload in environments cluttered with obstacles. The proposed algorithm ensures obstacle avoidance for the entire system, including the quadrotors, cables, and the payload in all six degrees of freedom (DoF). We introduce the use of CBFs to enable safe and smooth maneuvers, effectively navigating through cluttered environments while accommodating the system's nonlinear dynamics. To simplify complex constraints, the system components are modeled as convex polytopes, and the Duality theorem is employed to reduce the computational complexity of the optimization problem. We validate the performance of our planning approach both in simulation and real-world environments using multiple quadrotors. The results demonstrate the effectiveness of the proposed approach in achieving obstacle avoidance and safe trajectory generation for cooperative transportation tasks.
comment: This paper has been accepted for publication in the IEEE International Conference on Robotics and Automation(ICRA), 2025. Please cite the paper using appropriate formats
♻ ☆ LocoVR: Multiuser Indoor Locomotion Dataset in Virtual Reality ICLR2025
Understanding human locomotion is crucial for AI agents such as robots, particularly in complex indoor home environments. Modeling human trajectories in these spaces requires insight into how individuals maneuver around physical obstacles and manage social navigation dynamics. These dynamics include subtle behaviors influenced by proxemics - the social use of space, such as stepping aside to allow others to pass or choosing longer routes to avoid collisions. Previous research has developed datasets of human motion in indoor scenes, but these are often limited in scale and lack the nuanced social navigation dynamics common in home environments. To address this, we present LocoVR, a dataset of 7000+ two-person trajectories captured in virtual reality from over 130 different indoor home environments. LocoVR provides accurate trajectory data and precise spatial information, along with rich examples of socially-motivated movement behaviors. For example, the dataset captures instances of individuals navigating around each other in narrow spaces, adjusting paths to respect personal boundaries in living areas, and coordinating movements in high-traffic zones like entryways and kitchens. Our evaluation shows that LocoVR significantly enhances model performance in three practical indoor tasks utilizing human trajectories, and demonstrates predicting socially-aware navigation patterns in home environments.
comment: This paper has been accepted to ICLR2025
♻ ☆ ZeroCAP: Zero-Shot Multi-Robot Context Aware Pattern Formation via Large Language Models
Incorporating language comprehension into robotic operations unlocks significant advancements in robotics, but also presents distinct challenges, particularly in executing spatially oriented tasks like pattern formation. This paper introduces ZeroCAP, a novel system that integrates large language models with multi-robot systems for zero-shot context aware pattern formation. Grounded in the principles of language-conditioned robotics, ZeroCAP leverages the interpretative power of language models to translate natural language instructions into actionable robotic configurations. This approach combines the synergy of vision-language models, cutting-edge segmentation techniques and shape descriptors, enabling the realization of complex, context-driven pattern formations in the realm of multi robot coordination. Through extensive experiments, we demonstrate the systems proficiency in executing complex context aware pattern formations across a spectrum of tasks, from surrounding and caging objects to infilling regions. This not only validates the system's capability to interpret and implement intricate context-driven tasks but also underscores its adaptability and effectiveness across varied environments and scenarios. The experimental videos and additional information about this work can be found at https://sites.google.com/view/zerocap/home.
♻ ☆ The Feeling of Success: Does Touch Sensing Help Predict Grasp Outcomes?
A successful grasp requires careful balancing of the contact forces. Deducing whether a particular grasp will be successful from indirect measurements, such as vision, is therefore quite challenging, and direct sensing of contacts through touch sensing provides an appealing avenue toward more successful and consistent robotic grasping. However, in order to fully evaluate the value of touch sensing for grasp outcome prediction, we must understand how touch sensing can influence outcome prediction accuracy when combined with other modalities. Doing so using conventional model-based techniques is exceptionally difficult. In this work, we investigate the question of whether touch sensing aids in predicting grasp outcomes within a multimodal sensing framework that combines vision and touch. To that end, we collected more than 9,000 grasping trials using a two-finger gripper equipped with GelSight high-resolution tactile sensors on each finger, and evaluated visuo-tactile deep neural network models to directly predict grasp outcomes from either modality individually, and from both modalities together. Our experimental results indicate that incorporating tactile readings substantially improve grasping performance.
comment: 10 pages, published at the 1st Annual Conference on Robot Learning (CoRL), Code and dataset available at: https://lasr.org/research/feeling-of-success
♻ ☆ StableLego: Stability Analysis of Block Stacking Assembly
Structural stability is a necessary condition for successful construction of an assembly. However, designing a stable assembly requires a non-trivial effort since a slight variation in the design could significantly affect the structural stability. To address the challenge, this paper studies the stability of assembly structures, in particular, block stacking assembly. The paper proposes a new optimization formulation, which optimizes over force balancing equations, for inferring the structural stability of 3D block stacking structures. The proposed stability analysis is verified on hand-crafted Lego examples. The experiment results demonstrate that the proposed method can correctly predict whether the structure is stable. In addition, it outperforms the existing methods since it can accurately locate the weakest parts in the design, and more importantly, solve any given assembly structures. To further validate the proposed method, we provide \textit{StableLego}: a comprehensive dataset including 50k+ 3D objects with their Lego layouts. We test the proposed stability analysis and include the stability inference for each corresponding object in StableLego. Our code and the dataset are available at https://github.com/intelligent-control-lab/StableLego.
♻ ☆ Learning Maximal Safe Sets Using Hypernetworks for MPC-based Local Trajectory Planning in Unknown Environments
This paper presents a novel learning-based approach for online estimation of maximal safe sets for local trajectory planning in unknown static environments. The neural representation of a set is used as the terminal set constraint for a model predictive control (MPC) local planner, resulting in improved recursive feasibility and safety. To achieve real-time performance and desired generalization properties, we employ the idea of hypernetworks. We use the Hamilton-Jacobi (HJ) reachability analysis as the source of supervision during the training process, allowing us to consider general nonlinear dynamics and arbitrary constraints. The proposed method is extensively evaluated against relevant baselines in simulations for different environments and robot dynamics. The results show a success rate increase of up to 52 \% compared to the best baseline while maintaining comparable execution speed. Additionally, we deploy our proposed method, NTC-MPC, on a physical robot and demonstrate its ability to safely avoid obstacles in scenarios where the baselines fail.
♻ ☆ Teaching Robots to Build Simulations of Themselves
The emergence of vision catalysed a pivotal evolutionary advancement, enabling organisms not only to perceive but also to interact intelligently with their environment. This transformation is mirrored by the evolution of robotic systems, where the ability to leverage vision to simulate and predict their own dynamics marks a leap towards autonomy and self-awareness. Humans utilize vision to record experiences and internally simulate potential actions. For example, we can imagine that, if we stand up and raise our arms, the body will form a T shape without physical movement. Similarly, simulation allows robots to plan and predict the outcomes of potential actions without execution. Here we introduce a self-supervised learning framework to enable robots to model and predict their morphology, kinematics and motor control using only brief raw video data, eliminating the need for extensive real-world data collection and kinematic priors. By observing their own movements, akin to humans watching their reflection in a mirror, robots learn an ability to simulate themselves and predict their spatial motion for various tasks. Our results demonstrate that this self-learned simulation not only enables accurate motion planning but also allows the robot to detect abnormalities and recover from damage.
comment: This paper was published on Nature Machine Intelligence
♻ ☆ Impact of Object Weight in Handovers: Inspiring Robotic Grip Release and Motion from Human Handovers
This work explores the effect of object weight on human motion and grip release during handovers to enhance the naturalness, safety, and efficiency of robot-human interactions. We introduce adaptive robotic strategies based on the analysis of human handover behavior with varying object weights. The key contributions of this work includes the development of an adaptive grip-release strategy for robots, a detailed analysis of how object weight influences human motion to guide robotic motion adaptations, and the creation of handover-datasets incorporating various object weights, including the YCB handover dataset. By aligning robotic grip release and motion with human behavior, this work aims to improve robot-human handovers for different weighted objects. We also evaluate these human-inspired adaptive robotic strategies in robot-to-human handovers to assess their effectiveness and performance and demonstrate that they outperform the baseline approaches in terms of naturalness, efficiency, and user perception.
comment: In Submission at IEEE-IEEE Transactions on Robotics. Changes: Corrected typos; Added 2 references for object weight impact on handovers; added Figures 20, 21, and 22 in Results in Section VI for further comparative analysis
♻ ☆ ODYSSEE: Oyster Detection Yielded by Sensor Systems on Edge Electronics
Oysters are a vital keystone species in coastal ecosystems, providing significant economic, environmental, and cultural benefits. As the importance of oysters grows, so does the relevance of autonomous systems for their detection and monitoring. However, current monitoring strategies often rely on destructive methods. While manual identification of oysters from video footage is non-destructive, it is time-consuming, requires expert input, and is further complicated by the challenges of the underwater environment. To address these challenges, we propose a novel pipeline using stable diffusion to augment a collected real dataset with realistic synthetic data. This method enhances the dataset used to train a YOLOv10-based vision model. The model is then deployed and tested on an edge platform in underwater robotics, achieving a state-of-the-art 0.657 mAP@50 for oyster detection on the Aqua2 platform.
Computer Vision 142
☆ ARINAR: Bi-Level Autoregressive Feature-by-Feature Generative Models
Existing autoregressive (AR) image generative models use a token-by-token generation schema. That is, they predict a per-token probability distribution and sample the next token from that distribution. The main challenge is how to model the complex distribution of high-dimensional tokens. Previous methods either are too simplistic to fit the distribution or result in slow generation speed. Instead of fitting the distribution of the whole tokens, we explore using a AR model to generate each token in a feature-by-feature way, i.e., taking the generated features as input and generating the next feature. Based on that, we propose ARINAR (AR-in-AR), a bi-level AR model. The outer AR layer take previous tokens as input, predicts a condition vector z for the next token. The inner layer, conditional on z, generates features of the next token autoregressively. In this way, the inner layer only needs to model the distribution of a single feature, for example, using a simple Gaussian Mixture Model. On the ImageNet 256x256 image generation task, ARINAR-B with 213M parameters achieves an FID of 2.75, which is comparable to the state-of-the-art MAR-B model (FID=2.31), while five times faster than the latter.
comment: Technical report. Our code is available at https://github.com/Qinyu-Allen-Zhao/Arinar
☆ SPIDER: A Comprehensive Multi-Organ Supervised Pathology Dataset and Baseline Models
Advancing AI in computational pathology requires large, high-quality, and diverse datasets, yet existing public datasets are often limited in organ diversity, class coverage, or annotation quality. To bridge this gap, we introduce SPIDER (Supervised Pathology Image-DEscription Repository), the largest publicly available patch-level dataset covering multiple organ types, including Skin, Colorectal, and Thorax, with comprehensive class coverage for each organ. SPIDER provides high-quality annotations verified by expert pathologists and includes surrounding context patches, which enhance classification performance by providing spatial context. Alongside the dataset, we present baseline models trained on SPIDER using the Hibou-L foundation model as a feature extractor combined with an attention-based classification head. The models achieve state-of-the-art performance across multiple tissue categories and serve as strong benchmarks for future digital pathology research. Beyond patch classification, the model enables rapid identification of significant areas, quantitative tissue metrics, and establishes a foundation for multimodal approaches. Both the dataset and trained models are publicly available to advance research, reproducibility, and AI-driven pathology development. Access them at: https://github.com/HistAI/SPIDER
☆ Deepfake-Eval-2024: A Multi-Modal In-the-Wild Benchmark of Deepfakes Circulated in 2024
In the age of increasingly realistic generative AI, robust deepfake detection is essential for mitigating fraud and disinformation. While many deepfake detectors report high accuracy on academic datasets, we show that these academic benchmarks are out of date and not representative of recent deepfakes. We introduce Deepfake-Eval-2024, a new deepfake detection benchmark consisting of in-the-wild deepfakes collected from social media and deepfake detection platform users in 2024. Deepfake-Eval-2024 consists of 44 hours of videos, 56.5 hours of audio, and 1,975 images, encompassing the latest manipulation technologies. The benchmark contains diverse media content from 88 different websites in 52 different languages. We find that the performance of open-source state-of-the-art deepfake detection models drops precipitously when evaluated on Deepfake-Eval-2024, with AUC decreasing by 50% for video, 48% for audio, and 45% for image models compared to previous benchmarks. We also evaluate commercial deepfake detection models and models finetuned on Deepfake-Eval-2024, and find that they have superior performance to off-the-shelf open-source models, but they do not yet reach the accuracy of human deepfake forensic analysts. The dataset is available at https://github.com/nuriachandra/Deepfake-Eval-2024.
☆ CADDI: An in-Class Activity Detection Dataset using IMU data from low-cost sensors
The monitoring and prediction of in-class student activities is of paramount importance for the comprehension of engagement and the enhancement of pedagogical efficacy. The accurate detection of these activities enables educators to modify their lessons in real time, thereby reducing negative emotional states and enhancing the overall learning experience. To this end, the use of non-intrusive devices, such as inertial measurement units (IMUs) embedded in smartwatches, represents a viable solution. The development of reliable predictive systems has been limited by the lack of large, labeled datasets in education. To bridge this gap, we present a novel dataset for in-class activity detection using affordable IMU sensors. The dataset comprises 19 diverse activities, both instantaneous and continuous, performed by 12 participants in typical classroom scenarios. It includes accelerometer, gyroscope, rotation vector data, and synchronized stereo images, offering a comprehensive resource for developing multimodal algorithms using sensor and visual data. This dataset represents a key step toward scalable solutions for activity recognition in educational settings.
☆ Multimodal Deep Learning for Subtype Classification in Breast Cancer Using Histopathological Images and Gene Expression Data
Molecular subtyping of breast cancer is crucial for personalized treatment and prognosis. Traditional classification approaches rely on either histopathological images or gene expression profiling, limiting their predictive power. In this study, we propose a deep multimodal learning framework that integrates histopathological images and gene expression data to classify breast cancer into BRCA.Luminal and BRCA.Basal / Her2 subtypes. Our approach employs a ResNet-50 model for image feature extraction and fully connected layers for gene expression processing, with a cross-attention fusion mechanism to enhance modality interaction. We conduct extensive experiments using five-fold cross-validation, demonstrating that our multimodal integration outperforms unimodal approaches in terms of classification accuracy, precision-recall AUC, and F1-score. Our findings highlight the potential of deep learning for robust and interpretable breast cancer subtype classification, paving the way for improved clinical decision-making.
comment: 9 pages, 9 figures
☆ Boltzmann Attention Sampling for Image Analysis with Small Objects
Detecting and segmenting small objects, such as lung nodules and tumor lesions, remains a critical challenge in image analysis. These objects often occupy less than 0.1% of an image, making traditional transformer architectures inefficient and prone to performance degradation due to redundant attention computations on irrelevant regions. Existing sparse attention mechanisms rely on rigid hierarchical structures, which are poorly suited for detecting small, variable, and uncertain object locations. In this paper, we propose BoltzFormer, a novel transformer-based architecture designed to address these challenges through dynamic sparse attention. BoltzFormer identifies and focuses attention on relevant areas by modeling uncertainty using a Boltzmann distribution with an annealing schedule. Initially, a higher temperature allows broader area sampling in early layers, when object location uncertainty is greatest. As the temperature decreases in later layers, attention becomes more focused, enhancing efficiency and accuracy. BoltzFormer seamlessly integrates into existing transformer architectures via a modular Boltzmann attention sampling mechanism. Comprehensive evaluations on benchmark datasets demonstrate that BoltzFormer significantly improves segmentation performance for small objects while reducing attention computation by an order of magnitude compared to previous state-of-the-art methods.
☆ In-Depth Analysis of Automated Acne Disease Recognition and Classification
Facial acne is a common disease, especially among adolescents, negatively affecting both physically and psychologically. Classifying acne is vital to providing the appropriate treatment. Traditional visual inspection or expert scanning is time-consuming and difficult to differentiate acne types. This paper introduces an automated expert system for acne recognition and classification. The proposed method employs a machine learning-based technique to classify and evaluate six types of acne diseases to facilitate the diagnosis of dermatologists. The pre-processing phase includes contrast improvement, smoothing filter, and RGB to L*a*b color conversion to eliminate noise and improve the classification accuracy. Then, a clustering-based segmentation method, k-means clustering, is applied for segmenting the disease-affected regions that pass through the feature extraction step. Characteristics of these disease-affected regions are extracted based on a combination of gray-level co-occurrence matrix (GLCM) and Statistical features. Finally, five different machine learning classifiers are employed to classify acne diseases. Experimental results show that the Random Forest (RF) achieves the highest accuracy of 98.50%, which is promising compared to the state-of-the-art methods.
☆ Developing a PET/CT Foundation Model for Cross-Modal Anatomical and Functional Imaging
In oncology, Positron Emission Tomography-Computed Tomography (PET/CT) is widely used in cancer diagnosis, staging, and treatment monitoring, as it combines anatomical details from CT with functional metabolic activity and molecular marker expression information from PET. However, existing artificial intelligence-driven PET/CT analyses rely predominantly on task-specific models trained from scratch or on limited datasets, limiting their generalizability and robustness. To address this, we propose a foundation model approach specifically designed for multimodal PET/CT imaging. We introduce the Cross-Fraternal Twin Masked Autoencoder (FratMAE), a novel framework that effectively integrates whole-body anatomical and functional or molecular information. FratMAE employs separate Vision Transformer (ViT) encoders for PET and CT scans, along with cross-attention decoders that enable synergistic interactions between modalities during masked autoencoder training. Additionally, it incorporates textual metadata to enhance PET representation learning. By pre-training on PET/CT datasets, FratMAE captures intricate cross-modal relationships and global uptake patterns, achieving superior performance on downstream tasks and demonstrating its potential as a generalizable foundation model.
comment: 11 pages, 2 figures, 3 tables
☆ MX-Font++: Mixture of Heterogeneous Aggregation Experts for Few-shot Font Generation ICASSP 2025
Few-shot Font Generation (FFG) aims to create new font libraries using limited reference glyphs, with crucial applications in digital accessibility and equity for low-resource languages, especially in multilingual artificial intelligence systems. Although existing methods have shown promising performance, transitioning to unseen characters in low-resource languages remains a significant challenge, especially when font glyphs vary considerably across training sets. MX-Font considers the content of a character from the perspective of a local component, employing a Mixture of Experts (MoE) approach to adaptively extract the component for better transition. However, the lack of a robust feature extractor prevents them from adequately decoupling content and style, leading to sub-optimal generation results. To alleviate these problems, we propose Heterogeneous Aggregation Experts (HAE), a powerful feature extraction expert that helps decouple content and style downstream from being able to aggregate information in channel and spatial dimensions. Additionally, we propose a novel content-style homogeneity loss to enhance the untangling. Extensive experiments on several datasets demonstrate that our MX-Font++ yields superior visual results in FFG and effectively outperforms state-of-the-art methods. Code and data are available at https://github.com/stephensun11/MXFontpp.
comment: 4 pages, 4 figures, accepted by ICASSP 2025
☆ A Causal Framework for Aligning Image Quality Metrics and Deep Neural Network Robustness
Image quality plays an important role in the performance of deep neural networks (DNNs) and DNNs have been widely shown to exhibit sensitivity to changes in imaging conditions. Large-scale datasets often contain images under a wide range of conditions prompting a need to quantify and understand their underlying quality distribution in order to better characterize DNN performance and robustness. Aligning the sensitivities of image quality metrics and DNNs ensures that estimates of quality can act as proxies for image/dataset difficulty independent of the task models trained/evaluated on the data. Conventional image quality assessment (IQA) seeks to measure and align quality relative to human perceptual judgments, but here we seek a quality measure that is not only sensitive to imaging conditions but also well-aligned with DNN sensitivities. We first ask whether conventional IQA metrics are also informative of DNN performance. In order to answer this question, we reframe IQA from a causal perspective and examine conditions under which quality metrics are predictive of DNN performance. We show theoretically and empirically that current IQA metrics are weak predictors of DNN performance in the context of classification. We then use our causal framework to provide an alternative formulation and a new image quality metric that is more strongly correlated with DNN performance and can act as a prior on performance without training new task models. Our approach provides a means to directly estimate the quality distribution of large-scale image datasets towards characterizing the relationship between dataset composition and DNN performance.
☆ Undertrained Image Reconstruction for Realistic Degradation in Blind Image Super-Resolution
Most super-resolution (SR) models struggle with real-world low-resolution (LR) images. This issue arises because the degradation characteristics in the synthetic datasets differ from those in real-world LR images. Since SR models are trained on pairs of high-resolution (HR) and LR images generated by downsampling, they are optimized for simple degradation. However, real-world LR images contain complex degradation caused by factors such as the imaging process and JPEG compression. Due to these differences in degradation characteristics, most SR models perform poorly on real-world LR images. This study proposes a dataset generation method using undertrained image reconstruction models. These models have the property of reconstructing low-quality images with diverse degradation from input images. By leveraging this property, this study generates LR images with diverse degradation from HR images to construct the datasets. Fine-tuning pre-trained SR models on our generated datasets improves noise removal and blur reduction, enhancing performance on real-world LR images. Furthermore, an analysis of the datasets reveals that degradation diversity contributes to performance improvements, whereas color differences between HR and LR images may degrade performance. 11 pages, (11 figures and 2 tables)
comment: 11 pages, 11 figures, 2 tables
☆ Deep Learning-Enhanced Visual Monitoring in Hazardous Underwater Environments with a Swarm of Micro-Robots ICRA 2025
Long-term monitoring and exploration of extreme environments, such as underwater storage facilities, is costly, labor-intensive, and hazardous. Automating this process with low-cost, collaborative robots can greatly improve efficiency. These robots capture images from different positions, which must be processed simultaneously to create a spatio-temporal model of the facility. In this paper, we propose a novel approach that integrates data simulation, a multi-modal deep learning network for coordinate prediction, and image reassembly to address the challenges posed by environmental disturbances causing drift and rotation in the robots' positions and orientations. Our approach enhances the precision of alignment in noisy environments by integrating visual information from snapshots, global positional context from masks, and noisy coordinates. We validate our method through extensive experiments using synthetic data that simulate real-world robotic operations in underwater settings. The results demonstrate very high coordinate prediction accuracy and plausible image assembly, indicating the real-world applicability of our approach. The assembled images provide clear and coherent views of the underwater environment for effective monitoring and inspection, showcasing the potential for broader use in extreme settings, further contributing to improved safety, efficiency, and cost reduction in hazardous field monitoring. Code is available on https://github.com/ChrisChen1023/Micro-Robot-Swarm.
comment: Accepted by ICRA 2025
☆ UAR-NVC: A Unified AutoRegressive Framework for Memory-Efficient Neural Video Compression
Implicit Neural Representations (INRs) have demonstrated significant potential in video compression by representing videos as neural networks. However, as the number of frames increases, the memory consumption for training and inference increases substantially, posing challenges in resource-constrained scenarios. Inspired by the success of traditional video compression frameworks, which process video frame by frame and can efficiently compress long videos, we adopt this modeling strategy for INRs to decrease memory consumption, while aiming to unify the frameworks from the perspective of timeline-based autoregressive modeling. In this work, we present a novel understanding of INR models from an autoregressive (AR) perspective and introduce a Unified AutoRegressive Framework for memory-efficient Neural Video Compression (UAR-NVC). UAR-NVC integrates timeline-based and INR-based neural video compression under a unified autoregressive paradigm. It partitions videos into several clips and processes each clip using a different INR model instance, leveraging the advantages of both compression frameworks while allowing seamless adaptation to either in form. To further reduce temporal redundancy between clips, we design two modules to optimize the initialization, training, and compression of these model parameters. UAR-NVC supports adjustable latencies by varying the clip length. Extensive experimental results demonstrate that UAR-NVC, with its flexible video clip setting, can adapt to resource-constrained environments and significantly improve performance compared to different baseline models.
☆ Creating Sorted Grid Layouts with Gradient-based Optimization
Visually sorted grid layouts provide an efficient method for organizing high-dimensional vectors in two-dimensional space by aligning spatial proximity with similarity relationships. This approach facilitates the effective sorting of diverse elements ranging from data points to images, and enables the simultaneous visualization of a significant number of elements. However, sorting data on two-dimensional grids is a challenge due to its high complexity. Even for a small 8-by-8 grid with 64 elements, the number of possible arrangements exceeds $1.3 \cdot 10^{89}$ - more than the number of atoms in the universe - making brute-force solutions impractical. Although various methods have been proposed to address the challenge of determining sorted grid layouts, none have investigated the potential of gradient-based optimization. In this paper, we present a novel method for grid-based sorting that exploits gradient optimization for the first time. We introduce a novel loss function that balances two opposing goals: ensuring the generation of a "valid" permutation matrix, and optimizing the arrangement on the grid to reflect the similarity between vectors, inspired by metrics that assess the quality of sorted grids. While learning-based approaches are inherently computationally complex, our method shows promising results in generating sorted grid layouts with superior sorting quality compared to existing techniques.
☆ A Joint Visual Compression and Perception Framework for Neuralmorphic Spiking Camera
The advent of neuralmorphic spike cameras has garnered significant attention for their ability to capture continuous motion with unparalleled temporal resolution.However, this imaging attribute necessitates considerable resources for binary spike data storage and transmission.In light of compression and spike-driven intelligent applications, we present the notion of Spike Coding for Intelligence (SCI), wherein spike sequences are compressed and optimized for both bit-rate and task performance.Drawing inspiration from the mammalian vision system, we propose a dual-pathway architecture for separate processing of spatial semantics and motion information, which is then merged to produce features for compression.A refinement scheme is also introduced to ensure consistency between decoded features and motion vectors.We further propose a temporal regression approach that integrates various motion dynamics, capitalizing on the advancements in warping and deformation simultaneously.Comprehensive experiments demonstrate our scheme achieves state-of-the-art (SOTA) performance for spike compression and analysis.We achieve an average 17.25% BD-rate reduction compared to SOTA codecs and a 4.3% accuracy improvement over SpiReco for spike-based classification, with 88.26% complexity reduction and 42.41% inference time saving on the encoding side.
☆ Catheter Detection and Segmentation in X-ray Images via Multi-task Learning
Automated detection and segmentation of surgical devices, such as catheters or wires, in X-ray fluoroscopic images have the potential to enhance image guidance in minimally invasive heart surgeries. In this paper, we present a convolutional neural network model that integrates a resnet architecture with multiple prediction heads to achieve real-time, accurate localization of electrodes on catheters and catheter segmentation in an end-to-end deep learning framework. We also propose a multi-task learning strategy in which our model is trained to perform both accurate electrode detection and catheter segmentation simultaneously. A key challenge with this approach is achieving optimal performance for both tasks. To address this, we introduce a novel multi-level dynamic resource prioritization method. This method dynamically adjusts sample and task weights during training to effectively prioritize more challenging tasks, where task difficulty is inversely proportional to performance and evolves throughout the training process. Experiments on both public and private datasets have demonstrated that the accuracy of our method surpasses the existing state-of-the-art methods in both single segmentation task and in the detection and segmentation multi-task. Our approach achieves a good trade-off between accuracy and efficiency, making it well-suited for real-time surgical guidance applications.
☆ Memory Efficient Continual Learning for Edge-Based Visual Anomaly Detection
Visual Anomaly Detection (VAD) is a critical task in computer vision with numerous real-world applications. However, deploying these models on edge devices presents significant challenges, such as constrained computational and memory resources. Additionally, dynamic data distributions in real-world settings necessitate continuous model adaptation, further complicating deployment under limited resources. To address these challenges, we present a novel investigation into the problem of Continual Learning for Visual Anomaly Detection (CLAD) on edge devices. We evaluate the STFPM approach, given its low memory footprint on edge devices, which demonstrates good performance when combined with the Replay approach. Furthermore, we propose to study the behavior of a recently proposed approach, PaSTe, specifically designed for the edge but not yet explored in the Continual Learning context. Our results show that PaSTe is not only a lighter version of STPFM, but it also achieves superior anomaly detection performance, improving the f1 pixel performance by 10% with the Replay technique. In particular, the structure of PaSTe allows us to test it using a series of Compressed Replay techniques, reducing memory overhead by a maximum of 91.5% compared to the traditional Replay for STFPM. Our study proves the feasibility of deploying VAD models that adapt and learn incrementally on CLAD scenarios on resource-constrained edge devices.
☆ Class-Aware PillarMix: Can Mixed Sample Data Augmentation Enhance 3D Object Detection with Radar Point Clouds? IROS 2025
Due to the significant effort required for data collection and annotation in 3D perception tasks, mixed sample data augmentation (MSDA) has been widely studied to generate diverse training samples by mixing existing data. Recently, many MSDA techniques have been developed for point clouds, but they mainly target LiDAR data, leaving their application to radar point clouds largely unexplored. In this paper, we examine the feasibility of applying existing MSDA methods to radar point clouds and identify several challenges in adapting these techniques. These obstacles stem from the radar's irregular angular distribution, deviations from a single-sensor polar layout in multi-radar setups, and point sparsity. To address these issues, we propose Class-Aware PillarMix (CAPMix), a novel MSDA approach that applies MixUp at the pillar level in 3D point clouds, guided by class labels. Unlike methods that rely a single mix ratio to the entire sample, CAPMix assigns an independent ratio to each pillar, boosting sample diversity. To account for the density of different classes, we use class-specific distributions: for dense objects (e.g., large vehicles), we skew ratios to favor points from another sample, while for sparse objects (e.g., pedestrians), we sample more points from the original. This class-aware mixing retains critical details and enriches each sample with new information, ultimately generating more diverse training data. Experimental results demonstrate that our method not only significantly boosts performance but also outperforms existing MSDA approaches across two datasets (Bosch Street and K-Radar). We believe that this straightforward yet effective approach will spark further investigation into MSDA techniques for radar data.
comment: 8 pages, 6 figures, 4 tables, submitted to 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
☆ TReND: Transformer derived features and Regularized NMF for neonatal functional network Delineation
Precise parcellation of functional networks (FNs) of early developing human brain is the fundamental basis for identifying biomarker of developmental disorders and understanding functional development. Resting-state fMRI (rs-fMRI) enables in vivo exploration of functional changes, but adult FN parcellations cannot be directly applied to the neonates due to incomplete network maturation. No standardized neonatal functional atlas is currently available. To solve this fundamental issue, we propose TReND, a novel and fully automated self-supervised transformer-autoencoder framework that integrates regularized nonnegative matrix factorization (RNMF) to unveil the FNs in neonates. TReND effectively disentangles spatiotemporal features in voxel-wise rs-fMRI data. The framework integrates confidence-adaptive masks into transformer self-attention layers to mitigate noise influence. A self supervised decoder acts as a regulator to refine the encoder's latent embeddings, which serve as reliable temporal features. For spatial coherence, we incorporate brain surface-based geodesic distances as spatial encodings along with functional connectivity from temporal features. The TReND clustering approach processes these features under sparsity and smoothness constraints, producing robust and biologically plausible parcellations. We extensively validated our TReND framework on three different rs-fMRI datasets: simulated, dHCP and HCP-YA against comparable traditional feature extraction and clustering techniques. Our results demonstrated the superiority of the TReND framework in the delineation of neonate FNs with significantly better spatial contiguity and functional homogeneity. Collectively, we established TReND, a novel and robust framework, for neonatal FN delineation. TReND-derived neonatal FNs could serve as a neonatal functional atlas for perinatal populations in health and disease.
comment: 10 Pages, 5 figures
☆ State of play and future directions in industrial computer vision AI standards
The recent tremendous advancements in the areas of Artificial Intelligence (AI) and Deep Learning (DL) have also resulted into corresponding remarkable progress in the field of Computer Vision (CV), showcasing robust technological solutions in a wide range of application sectors of high industrial interest (e.g., healthcare, autonomous driving, automation, etc.). Despite the outstanding performance of CV systems in specific domains, their development and exploitation at industrial-scale necessitates, among other, the addressing of requirements related to the reliability, transparency, trustworthiness, security, safety, and robustness of the developed AI models. The latter raises the imperative need for the development of efficient, comprehensive and widely-adopted industrial standards. In this context, this study investigates the current state of play regarding the development of industrial computer vision AI standards, emphasizing on critical aspects, like model interpretability, data quality, and regulatory compliance. In particular, a systematic analysis of launched and currently developing CV standards, proposed by the main international standardization bodies (e.g. ISO/IEC, IEEE, DIN, etc.) is performed. The latter is complemented by a comprehensive discussion on the current challenges and future directions observed in this regularization endeavor.
☆ 10K is Enough: An Ultra-Lightweight Binarized Network for Infrared Small-Target Detection
The widespread deployment of InfRared Small-Target Detection(IRSTD) algorithms on edge devices necessitates the exploration of model compression techniques. Binary neural networks (BNNs) are distinguished by their exceptional efficiency in model compression. However, the small size of infrared targets introduces stringent precision requirements for the IRSTD task, while the inherent precision loss during binarization presents a significant challenge. To address this, we propose the Binarized Infrared Small-Target Detection Network (BiisNet), which preserves the core operations of binarized convolutions while integrating full-precision features into the network's information flow. Specifically, we propose the Dot-Binary Convolution, which retains fine-grained semantic information in feature maps while still leveraging the binarized convolution operations. In addition, we introduce a smooth and adaptive Dynamic Softsign function, which provides more comprehensive and progressively finer gradient during back-propagation, enhancing model stability and promoting an optimal weight distribution.Experimental results demonstrate that BiisNet not only significantly outperforms other binary architectures but also demonstrates strong competitiveness among state-of-the-art full-precision models.
☆ A dataset-free approach for self-supervised learning of 3D reflectional symmetries
In this paper, we explore a self-supervised model that learns to detect the symmetry of a single object without requiring a dataset-relying solely on the input object itself. We hypothesize that the symmetry of an object can be determined by its intrinsic features, eliminating the need for large datasets during training. Additionally, we design a self-supervised learning strategy that removes the necessity of ground truth labels. These two key elements make our approach both effective and efficient, addressing the prohibitive costs associated with constructing large, labeled datasets for this task. The novelty of our method lies in computing features for each point on the object based on the idea that symmetric points should exhibit similar visual appearances. To achieve this, we leverage features extracted from a foundational image model to compute a visual descriptor for the points. This approach equips the point cloud with visual features that facilitate the optimization of our self-supervised model. Experimental results demonstrate that our method surpasses the state-of-the-art models trained on large datasets. Furthermore, our model is more efficient, effective, and operates with minimal computational and data resources.
☆ XFMamba: Cross-Fusion Mamba for Multi-View Medical Image Classification
Compared to single view medical image classification, using multiple views can significantly enhance predictive accuracy as it can account for the complementarity of each view while leveraging correlations between views. Existing multi-view approaches typically employ separate convolutional or transformer branches combined with simplistic feature fusion strategies. However, these approaches inadvertently disregard essential cross-view correlations, leading to suboptimal classification performance, and suffer from challenges with limited receptive field (CNNs) or quadratic computational complexity (transformers). Inspired by state space sequence models, we propose XFMamba, a pure Mamba-based cross-fusion architecture to address the challenge of multi-view medical image classification. XFMamba introduces a novel two-stage fusion strategy, facilitating the learning of single-view features and their cross-view disparity. This mechanism captures spatially long-range dependencies in each view while enhancing seamless information transfer between views. Results on three public datasets, MURA, CheXpert and DDSM, illustrate the effectiveness of our approach across diverse multi-view medical image classification tasks, showing that it outperforms existing convolution-based and transformer-based multi-view methods. Code is available at https://github.com/XZheng0427/XFMamba.
☆ ZAPBench: A Benchmark for Whole-Brain Activity Prediction in Zebrafish
Data-driven benchmarks have led to significant progress in key scientific modeling domains including weather and structural biology. Here, we introduce the Zebrafish Activity Prediction Benchmark (ZAPBench) to measure progress on the problem of predicting cellular-resolution neural activity throughout an entire vertebrate brain. The benchmark is based on a novel dataset containing 4d light-sheet microscopy recordings of over 70,000 neurons in a larval zebrafish brain, along with motion stabilized and voxel-level cell segmentations of these data that facilitate development of a variety of forecasting methods. Initial results from a selection of time series and volumetric video modeling approaches achieve better performance than naive baseline methods, but also show room for further improvement. The specific brain used in the activity recording is also undergoing synaptic-level anatomical mapping, which will enable future integration of detailed structural information into forecasting methods.
☆ Smoothing the Shift: Towards Stable Test-Time Adaptation under Complex Multimodal Noises ICLR 2025
Test-Time Adaptation (TTA) aims to tackle distribution shifts using unlabeled test data without access to the source data. In the context of multimodal data, there are more complex noise patterns than unimodal data such as simultaneous corruptions for multiple modalities and missing modalities. Besides, in real-world applications, corruptions from different distribution shifts are always mixed. Existing TTA methods always fail in such multimodal scenario because the abrupt distribution shifts will destroy the prior knowledge from the source model, thus leading to performance degradation. To this end, we reveal a new challenge named multimodal wild TTA. To address this challenging problem, we propose two novel strategies: sample identification with interquartile range Smoothing and unimodal assistance, and Mutual information sharing (SuMi). SuMi smooths the adaptation process by interquartile range which avoids the abrupt distribution shifts. Then, SuMi fully utilizes the unimodal features to select low-entropy samples with rich multimodal information for optimization. Furthermore, mutual information sharing is introduced to align the information, reduce the discrepancies and enhance the information utilization across different modalities. Extensive experiments on two public datasets show the effectiveness and superiority over existing methods under the complex noise patterns in multimodal data. Code is available at https://github.com/zrguo/SuMi.
comment: Accepted at ICLR 2025
☆ ARC-Flow : Articulated, Resolution-Agnostic, Correspondence-Free Matching and Interpolation of 3D Shapes Under Flow Fields
This work presents a unified framework for the unsupervised prediction of physically plausible interpolations between two 3D articulated shapes and the automatic estimation of dense correspondence between them. Interpolation is modelled as a diffeomorphic transformation using a smooth, time-varying flow field governed by Neural Ordinary Differential Equations (ODEs). This ensures topological consistency and non-intersecting trajectories while accommodating hard constraints, such as volume preservation, and soft constraints, \eg physical priors. Correspondence is recovered using an efficient Varifold formulation, that is effective on high-fidelity surfaces with differing parameterisations. By providing a simple skeleton for the source shape only, we impose physically motivated constraints on the deformation field and resolve symmetric ambiguities. This is achieved without relying on skinning weights or any prior knowledge of the skeleton's target pose configuration. Qualitative and quantitative results demonstrate competitive or superior performance over existing state-of-the-art approaches in both shape correspondence and interpolation tasks across standard datasets.
comment: 11 pages, 6 figures
☆ Resource-Efficient Affordance Grounding with Complementary Depth and Semantic Prompts
Affordance refers to the functional properties that an agent perceives and utilizes from its environment, and is key perceptual information required for robots to perform actions. This information is rich and multimodal in nature. Existing multimodal affordance methods face limitations in extracting useful information, mainly due to simple structural designs, basic fusion methods, and large model parameters, making it difficult to meet the performance requirements for practical deployment. To address these issues, this paper proposes the BiT-Align image-depth-text affordance mapping framework. The framework includes a Bypass Prompt Module (BPM) and a Text Feature Guidance (TFG) attention selection mechanism. BPM integrates the auxiliary modality depth image directly as a prompt to the primary modality RGB image, embedding it into the primary modality encoder without introducing additional encoders. This reduces the model's parameter count and effectively improves functional region localization accuracy. The TFG mechanism guides the selection and enhancement of attention heads in the image encoder using textual features, improving the understanding of affordance characteristics. Experimental results demonstrate that the proposed method achieves significant performance improvements on public AGD20K and HICO-IIF datasets. On the AGD20K dataset, compared with the current state-of-the-art method, we achieve a 6.0% improvement in the KLD metric, while reducing model parameters by 88.8%, demonstrating practical application values. The source code will be made publicly available at https://github.com/DAWDSE/BiT-Align.
comment: The source code will be made publicly available at https://github.com/DAWDSE/BiT-Align
☆ Seeing is Understanding: Unlocking Causal Attention into Modality-Mutual Attention for Multimodal LLMs
Recent Multimodal Large Language Models (MLLMs) have demonstrated significant progress in perceiving and reasoning over multimodal inquiries, ushering in a new research era for foundation models. However, vision-language misalignment in MLLMs has emerged as a critical challenge, where the textual responses generated by these models are not factually aligned with the given text-image inputs. Existing efforts to address vision-language misalignment have focused on developing specialized vision-language connectors or leveraging visual instruction tuning from diverse domains. In this paper, we tackle this issue from a fundamental yet unexplored perspective by revisiting the core architecture of MLLMs. Most MLLMs are typically built on decoder-only LLMs consisting of a causal attention mechanism, which limits the ability of earlier modalities (e.g., images) to incorporate information from later modalities (e.g., text). To address this problem, we propose AKI, a novel MLLM that unlocks causal attention into modality-mutual attention (MMA) to enable image tokens to attend to text tokens. This simple yet effective design allows AKI to achieve superior performance in 12 multimodal understanding benchmarks (+7.2% on average) without introducing additional parameters and increasing training time. Our MMA design is intended to be generic, allowing for application across various modalities, and scalable to accommodate diverse multimodal scenarios. The code is publicly available at https://github.com/sony/aki, and we will release our AKI-4B model to encourage further advancements in MLLMs across various directions.
comment: Preprint
☆ StageDesigner: Artistic Stage Generation for Scenography via Theater Scripts
In this work, we introduce StageDesigner, the first comprehensive framework for artistic stage generation using large language models combined with layout-controlled diffusion models. Given the professional requirements of stage scenography, StageDesigner simulates the workflows of seasoned artists to generate immersive 3D stage scenes. Specifically, our approach is divided into three primary modules: Script Analysis, which extracts thematic and spatial cues from input scripts; Foreground Generation, which constructs and arranges essential 3D objects; and Background Generation, which produces a harmonious background aligned with the narrative atmosphere and maintains spatial coherence by managing occlusions between foreground and background elements. Furthermore, we introduce the StagePro-V1 dataset, a dedicated dataset with 276 unique stage scenes spanning different historical styles and annotated with scripts, images, and detailed 3D layouts, specifically tailored for this task. Finally, evaluations using both standard and newly proposed metrics, along with extensive user studies, demonstrate the effectiveness of StageDesigner. Project can be found at: https://deadsmither5.github.io/2025/01/03/StageDesigner/
☆ A Hypernetwork-Based Approach to KAN Representation of Audio Signals
Implicit neural representations (INR) have gained prominence for efficiently encoding multimedia data, yet their applications in audio signals remain limited. This study introduces the Kolmogorov-Arnold Network (KAN), a novel architecture using learnable activation functions, as an effective INR model for audio representation. KAN demonstrates superior perceptual performance over previous INRs, achieving the lowest Log-SpectralDistance of 1.29 and the highest Perceptual Evaluation of Speech Quality of 3.57 for 1.5 s audio. To extend KAN's utility, we propose FewSound, a hypernetwork-based architecture that enhances INR parameter updates. FewSound outperforms the state-of-the-art HyperSound, with a 33.3% improvement in MSE and 60.87% in SI-SNR. These results show KAN as a robust and adaptable audio representation with the potential for scalability and integration into various hypernetwork frameworks. The source code can be accessed at https://github.com/gmum/fewsound.git.
☆ Unveiling the Potential of Segment Anything Model 2 for RGB-Thermal Semantic Segmentation with Language Guidance
The perception capability of robotic systems relies on the richness of the dataset. Although Segment Anything Model 2 (SAM2), trained on large datasets, demonstrates strong perception potential in perception tasks, its inherent training paradigm prevents it from being suitable for RGB-T tasks. To address these challenges, we propose SHIFNet, a novel SAM2-driven Hybrid Interaction Paradigm that unlocks the potential of SAM2 with linguistic guidance for efficient RGB-Thermal perception. Our framework consists of two key components: (1) Semantic-Aware Cross-modal Fusion (SACF) module that dynamically balances modality contributions through text-guided affinity learning, overcoming SAM2's inherent RGB bias; (2) Heterogeneous Prompting Decoder (HPD) that enhances global semantic information through a semantic enhancement module and then combined with category embeddings to amplify cross-modal semantic consistency. With 32.27M trainable parameters, SHIFNet achieves state-of-the-art segmentation performance on public benchmarks, reaching 89.8% on PST900 and 67.8% on FMB, respectively. The framework facilitates the adaptation of pre-trained large models to RGB-T segmentation tasks, effectively mitigating the high costs associated with data collection while endowing robotic systems with comprehensive perception capabilities. The source code will be made publicly available at https://github.com/iAsakiT3T/SHIFNet.
comment: The source code will be made publicly available at https://github.com/iAsakiT3T/SHIFNet
☆ MM-OR: A Large Multimodal Operating Room Dataset for Semantic Understanding of High-Intensity Surgical Environments
Operating rooms (ORs) are complex, high-stakes environments requiring precise understanding of interactions among medical staff, tools, and equipment for enhancing surgical assistance, situational awareness, and patient safety. Current datasets fall short in scale, realism and do not capture the multimodal nature of OR scenes, limiting progress in OR modeling. To this end, we introduce MM-OR, a realistic and large-scale multimodal spatiotemporal OR dataset, and the first dataset to enable multimodal scene graph generation. MM-OR captures comprehensive OR scenes containing RGB-D data, detail views, audio, speech transcripts, robotic logs, and tracking data and is annotated with panoptic segmentations, semantic scene graphs, and downstream task labels. Further, we propose MM2SG, the first multimodal large vision-language model for scene graph generation, and through extensive experiments, demonstrate its ability to effectively leverage multimodal inputs. Together, MM-OR and MM2SG establish a new benchmark for holistic OR understanding, and open the path towards multimodal scene analysis in complex, high-stakes environments. Our code, and data is available at https://github.com/egeozsoy/MM-OR.
☆ TS-CGNet: Temporal-Spatial Fusion Meets Centerline-Guided Diffusion for BEV Mapping
Bird's Eye View (BEV) perception technology is crucial for autonomous driving, as it generates top-down 2D maps for environment perception, navigation, and decision-making. Nevertheless, the majority of current BEV map generation studies focusing on visual map generation lack depth-aware reasoning capabilities. They exhibit limited efficacy in managing occlusions and handling complex environments, with a notable decline in perceptual performance under adverse weather conditions or low-light scenarios. Therefore, this paper proposes TS-CGNet, which leverages Temporal-Spatial fusion with Centerline-Guided diffusion. This visual framework, grounded in prior knowledge, is designed for integration into any existing network for building BEV maps. Specifically, this framework is decoupled into three parts: Local mapping system involves the initial generation of semantic maps using purely visual information; The Temporal-Spatial Aligner Module (TSAM) integrates historical information into mapping generation by applying transformation matrices; The Centerline-Guided Diffusion Model (CGDM) is a prediction module based on the diffusion model. CGDM incorporates centerline information through spatial-attention mechanisms to enhance semantic segmentation reconstruction. We construct BEV semantic segmentation maps by our methods on the public nuScenes and the robustness benchmarks under various corruptions. Our method improves 1.90%, 1.73%, and 2.87% for perceived ranges of 60x30m, 120x60m, and 240x60m in the task of BEV HD mapping. TS-CGNet attains an improvement of 1.92% for perceived ranges of 100x100m in the task of BEV semantic mapping. Moreover, TS-CGNet achieves an average improvement of 2.92% in detection accuracy under varying weather conditions and sensor interferences in the perception range of 240x60m. The source code will be publicly available at https://github.com/krabs-H/TS-CGNet.
comment: The source code will be publicly available at https://github.com/krabs-H/TS-CGNet
☆ SPG: Improving Motion Diffusion by Smooth Perturbation Guidance
This paper presents a test-time guidance method to improve the output quality of the human motion diffusion models without requiring additional training. To have negative guidance, Smooth Perturbation Guidance (SPG) builds a weak model by temporally smoothing the motion in the denoising steps. Compared to model-agnostic methods originating from the image generation field, SPG effectively mitigates out-of-distribution issues when perturbing motion diffusion models. In SPG guidance, the nature of motion structure remains intact. This work conducts a comprehensive analysis across distinct model architectures and tasks. Despite its extremely simple implementation and no need for additional training requirements, SPG consistently enhances motion fidelity. Project page can be found at https://spg-blind.vercel.app/
☆ Tracking-Aware Deformation Field Estimation for Non-rigid 3D Reconstruction in Robotic Surgeries
Minimally invasive procedures have been advanced rapidly by the robotic laparoscopic surgery. The latter greatly assists surgeons in sophisticated and precise operations with reduced invasiveness. Nevertheless, it is still safety critical to be aware of even the least tissue deformation during instrument-tissue interactions, especially in 3D space. To address this, recent works rely on NeRF to render 2D videos from different perspectives and eliminate occlusions. However, most of the methods fail to predict the accurate 3D shapes and associated deformation estimates robustly. Differently, we propose Tracking-Aware Deformation Field (TADF), a novel framework which reconstructs the 3D mesh along with the 3D tissue deformation simultaneously. It first tracks the key points of soft tissue by a foundation vision model, providing an accurate 2D deformation field. Then, the 2D deformation field is smoothly incorporated with a neural implicit reconstruction network to obtain tissue deformation in the 3D space. Finally, we experimentally demonstrate that the proposed method provides more accurate deformation estimation compared with other 3D neural reconstruction methods in two public datasets.
☆ Towards a robust R2D2 paradigm for radio-interferometric imaging: revisiting DNN training and architecture
The R2D2 Deep Neural Network (DNN) series was recently introduced for image formation in radio interferometry. It can be understood as a learned version of CLEAN, whose minor cycles are substituted with DNNs. We revisit R2D2 on the grounds of series convergence, training methodology, and DNN architecture, improving its robustness in terms of generalisability beyond training conditions, capability to deliver high data fidelity, and epistemic uncertainty. Firstly, while still focusing on telescope-specific training, we enhance the learning process by randomising Fourier sampling integration times, incorporating multi-scan multi-noise configurations, and varying imaging settings, including pixel resolution and visibility-weighting scheme. Secondly, we introduce a convergence criterion whereby the reconstruction process stops when the data residual is compatible with noise, rather than simply using all available DNNs. This not only increases the reconstruction efficiency by reducing its computational cost, but also refines training by pruning out the data/image pairs for which optimal data fidelity is reached before training the next DNN. Thirdly, we substitute R2D2's early U-Net DNN with a novel architecture (U-WDSR) combining U-Net and WDSR, which leverages wide activation, dense connections, weight normalisation, and low-rank convolution to improve feature reuse and reconstruction precision. As previously, R2D2 was trained for monochromatic intensity imaging with the Very Large Array (VLA) at fixed $512 \times 512$ image size. Simulations on a wide range of inverse problems and a case study on real data reveal that the new R2D2 model consistently outperforms its earlier version in image reconstruction quality, data fidelity, and epistemic uncertainty.
comment: 17 pages, 6 figures
☆ Federated nnU-Net for Privacy-Preserving Medical Image Segmentation
The nnU-Net framework has played a crucial role in medical image segmentation and has become the gold standard in multitudes of applications targeting different diseases, organs, and modalities. However, so far it has been used primarily in a centralized approach where the data collected from hospitals are stored in one center and used to train the nnU-Net. This centralized approach has various limitations, such as leakage of sensitive patient information and violation of patient privacy. Federated learning is one of the approaches to train a segmentation model in a decentralized manner that helps preserve patient privacy. In this paper, we propose FednnU-Net, a federated learning extension of nnU-Net. We introduce two novel federated learning methods to the nnU-Net framework - Federated Fingerprint Extraction (FFE) and Asymmetric Federated Averaging (AsymFedAvg) - and experimentally show their consistent performance for breast, cardiac and fetal segmentation using 6 datasets representing samples from 18 institutions. Additionally, to further promote research and deployment of decentralized training in privacy constrained institutions, we make our plug-n-play framework public. The source-code is available at https://github.com/faildeny/FednnUNet .
comment: In review
☆ PVTree: Realistic and Controllable Palm Vein Generation for Recognition Tasks
Palm vein recognition is an emerging biometric technology that offers enhanced security and privacy. However, acquiring sufficient palm vein data for training deep learning-based recognition models is challenging due to the high costs of data collection and privacy protection constraints. This has led to a growing interest in generating pseudo-palm vein data using generative models. Existing methods, however, often produce unrealistic palm vein patterns or struggle with controlling identity and style attributes. To address these issues, we propose a novel palm vein generation framework named PVTree. First, the palm vein identity is defined by a complex and authentic 3D palm vascular tree, created using an improved Constrained Constructive Optimization (CCO) algorithm. Second, palm vein patterns of the same identity are generated by projecting the same 3D vascular tree into 2D images from different views and converting them into realistic images using a generative model. As a result, PVTree satisfies the need for both identity consistency and intra-class diversity. Extensive experiments conducted on several publicly available datasets demonstrate that our proposed palm vein generation method surpasses existing methods and achieves a higher TAR@FAR=1e-4 under the 1:1 Open-set protocol. To the best of our knowledge, this is the first time that the performance of a recognition model trained on synthetic palm vein data exceeds that of the recognition model trained on real data, which indicates that palm vein image generation research has a promising future.
☆ RectifiedHR: Enable Efficient High-Resolution Image Generation via Energy Rectification
Diffusion models have achieved remarkable advances in various image generation tasks. However, their performance notably declines when generating images at resolutions higher than those used during the training period. Despite the existence of numerous methods for producing high-resolution images, they either suffer from inefficiency or are hindered by complex operations. In this paper, we propose RectifiedHR, an efficient and straightforward solution for training-free high-resolution image generation. Specifically, we introduce the noise refresh strategy, which theoretically only requires a few lines of code to unlock the model's high-resolution generation ability and improve efficiency. Additionally, we first observe the phenomenon of energy decay that may cause image blurriness during the high-resolution image generation process. To address this issue, we propose an Energy Rectification strategy, where modifying the hyperparameters of the classifier-free guidance effectively improves the generation performance. Our method is entirely training-free and boasts a simple implementation logic. Through extensive comparisons with numerous baseline methods, our RectifiedHR demonstrates superior effectiveness and efficiency.
comment: Project Page: https://zhenyangcs.github.io/RectifiedHR-Diffusion/
☆ TeTRA-VPR: A Ternary Transformer Approach for Compact Visual Place Recognition
Visual Place Recognition (VPR) localizes a query image by matching it against a database of geo-tagged reference images, making it essential for navigation and mapping in robotics. Although Vision Transformer (ViT) solutions deliver high accuracy, their large models often exceed the memory and compute budgets of resource-constrained platforms such as drones and mobile robots. To address this issue, we propose TeTRA, a ternary transformer approach that progressively quantizes the ViT backbone to 2-bit precision and binarizes its final embedding layer, offering substantial reductions in model size and latency. A carefully designed progressive distillation strategy preserves the representational power of a full-precision teacher, allowing TeTRA to retain or even surpass the accuracy of uncompressed convolutional counterparts, despite using fewer resources. Experiments on standard VPR benchmarks demonstrate that TeTRA reduces memory consumption by up to 69% compared to efficient baselines, while lowering inference latency by 35%, with either no loss or a slight improvement in recall@1. These gains enable high-accuracy VPR on power-constrained, memory-limited robotic platforms, making TeTRA an appealing solution for real-world deployment.
☆ Remote Sensing Image Classification Using Convolutional Neural Network (CNN) and Transfer Learning Techniques
This study investigates the classification of aerial images depicting transmission towers, forests, farmland, and mountains. To complete the classification job, features are extracted from input photos using a Convolutional Neural Network (CNN) architecture. Then, the images are classified using Softmax. To test the model, we ran it for ten epochs using a batch size of 90, the Adam optimizer, and a learning rate of 0.001. Both training and assessment are conducted using a dataset that blends self-collected pictures from Google satellite imagery with the MLRNet dataset. The comprehensive dataset comprises 10,400 images. Our study shows that transfer learning models and MobileNetV2 in particular, work well for landscape categorization. These models are good options for practical use because they strike a good mix between precision and efficiency; our approach achieves results with an overall accuracy of 87% on the built CNN model. Furthermore, we reach even higher accuracies by utilizing the pretrained VGG16 and MobileNetV2 models as a starting point for transfer learning. Specifically, VGG16 achieves an accuracy of 90% and a test loss of 0.298, while MobileNetV2 outperforms both models with an accuracy of 96% and a test loss of 0.119; the results demonstrate the effectiveness of employing transfer learning with MobileNetV2 for classifying transmission towers, forests, farmland, and mountains.
comment: This paper is published in Journal of Computer Science, Volume 21 No. 3, 2025. It contains 635-645 pages
Q&C: When Quantization Meets Cache in Efficient Image Generation
Quantization and cache mechanisms are typically applied individually for efficient Diffusion Transformers (DiTs), each demonstrating notable potential for acceleration. However, the promoting effect of combining the two mechanisms on efficient generation remains under-explored. Through empirical investigation, we find that the combination of quantization and cache mechanisms for DiT is not straightforward, and two key challenges lead to severe catastrophic performance degradation: (i) the sample efficacy of calibration datasets in post-training quantization (PTQ) is significantly eliminated by cache operation; (ii) the combination of the above mechanisms introduces more severe exposure bias within sampling distribution, resulting in amplified error accumulation in the image generation process. In this work, we take advantage of these two acceleration mechanisms and propose a hybrid acceleration method by tackling the above challenges, aiming to further improve the efficiency of DiTs while maintaining excellent generation capability. Concretely, a temporal-aware parallel clustering (TAP) is designed to dynamically improve the sample selection efficacy for the calibration within PTQ for different diffusion steps. A variance compensation (VC) strategy is derived to correct the sampling distribution. It mitigates exposure bias through an adaptive correction factor generation. Extensive experiments have shown that our method has accelerated DiTs by 12.7x while preserving competitive generation capability. The code will be available at https://github.com/xinding-sys/Quant-Cache.
comment: 11 pages
☆ ROCKET-2: Steering Visuomotor Policy via Cross-View Goal Alignment
We aim to develop a goal specification method that is semantically clear, spatially sensitive, and intuitive for human users to guide agent interactions in embodied environments. Specifically, we propose a novel cross-view goal alignment framework that allows users to specify target objects using segmentation masks from their own camera views rather than the agent's observations. We highlight that behavior cloning alone fails to align the agent's behavior with human intent when the human and agent camera views differ significantly. To address this, we introduce two auxiliary objectives: cross-view consistency loss and target visibility loss, which explicitly enhance the agent's spatial reasoning ability. According to this, we develop ROCKET-2, a state-of-the-art agent trained in Minecraft, achieving an improvement in the efficiency of inference 3x to 6x. We show ROCKET-2 can directly interpret goals from human camera views for the first time, paving the way for better human-agent interaction.
Deepfake Detection via Knowledge Injection
Deepfake detection technologies become vital because current generative AI models can generate realistic deepfakes, which may be utilized in malicious purposes. Existing deepfake detection methods either rely on developing classification methods to better fit the distributions of the training data, or exploiting forgery synthesis mechanisms to learn a more comprehensive forgery distribution. Unfortunately, these methods tend to overlook the essential role of real data knowledge, which limits their generalization ability in processing the unseen real and fake data. To tackle these challenges, in this paper, we propose a simple and novel approach, named Knowledge Injection based deepfake Detection (KID), by constructing a multi-task learning based knowledge injection framework, which can be easily plugged into existing ViT-based backbone models, including foundation models. Specifically, a knowledge injection module is proposed to learn and inject necessary knowledge into the backbone model, to achieve a more accurate modeling of the distributions of real and fake data. A coarse-grained forgery localization branch is constructed to learn the forgery locations in a multi-task learning manner, to enrich the learned forgery knowledge for the knowledge injection module. Two layer-wise suppression and contrast losses are proposed to emphasize the knowledge of real data in the knowledge injection module, to further balance the portions of the real and fake knowledge. Extensive experiments have demonstrated that our KID possesses excellent compatibility with different scales of Vit-based backbone models, and achieves state-of-the-art generalization performance while enhancing the training convergence speed.
☆ Joint Out-of-Distribution Filtering and Data Discovery Active Learning
As the data demand for deep learning models increases, active learning (AL) becomes essential to strategically select samples for labeling, which maximizes data efficiency and reduces training costs. Real-world scenarios necessitate the consideration of incomplete data knowledge within AL. Prior works address handling out-of-distribution (OOD) data, while another research direction has focused on category discovery. However, a combined analysis of real-world considerations combining AL with out-of-distribution data and category discovery remains unexplored. To address this gap, we propose Joint Out-of-distribution filtering and data Discovery Active learning (Joda) , to uniquely address both challenges simultaneously by filtering out OOD data before selecting candidates for labeling. In contrast to previous methods, we deeply entangle the training procedure with filter and selection to construct a common feature space that aligns known and novel categories while separating OOD samples. Unlike previous works, Joda is highly efficient and completely omits auxiliary models and training access to the unlabeled pool for filtering or selection. In extensive experiments on 18 configurations and 3 metrics, \ours{} consistently achieves the highest accuracy with the best class discovery to OOD filtering balance compared to state-of-the-art competitor approaches.
☆ Deep Robust Reversible Watermarking
Robust Reversible Watermarking (RRW) enables perfect recovery of cover images and watermarks in lossless channels while ensuring robust watermark extraction in lossy channels. Existing RRW methods, mostly non-deep learning-based, face complex designs, high computational costs, and poor robustness, limiting their practical use. This paper proposes Deep Robust Reversible Watermarking (DRRW), a deep learning-based RRW scheme. DRRW uses an Integer Invertible Watermark Network (iIWN) to map integer data distributions invertibly, addressing conventional RRW limitations. Unlike traditional RRW, which needs distortion-specific designs, DRRW employs an encoder-noise layer-decoder framework for adaptive robustness via end-to-end training. In inference, cover image and watermark map to an overflowed stego image and latent variables, compressed by arithmetic coding into a bitstream embedded via reversible data hiding for lossless recovery. We introduce an overflow penalty loss to reduce pixel overflow, shortening the auxiliary bitstream while enhancing robustness and stego image quality. An adaptive weight adjustment strategy avoids manual watermark loss weighting, improving training stability and performance. Experiments show DRRW outperforms state-of-the-art RRW methods, boosting robustness and cutting embedding, extraction, and recovery complexities by 55.14\(\times\), 5.95\(\times\), and 3.57\(\times\), respectively. The auxiliary bitstream shrinks by 43.86\(\times\), with reversible embedding succeeding on 16,762 PASCAL VOC 2012 images, advancing practical RRW. DRRW exceeds irreversible robust watermarking in robustness and quality while maintaining reversibility.
☆ Scene-based nonuniformity correction with homography transformation
Due to their affordable, low mass, and small dimensions, uncooled microbolometer-based thermal focal plane arrays (UC-FPAs) are useful for long-wave infrared (LWIR)imaging applications. However, in outdoor conditions typical in agricultural remote sensing, cameras based on UC-FPAs may suffer from drift in offset and gain. To tackle the persistent drift, the system requires continuous calibration. Our goal in this study was to eliminate this requirement via a computational schema. In a former study, we estimated unknown gain and offset values and thermographic images of an object from a sequence of pairs of successive images taken at two different blur levels.In the current work, we took on a similar problem using a sequence of shifted images, with relative shifts caused by realistic drone hovering modeled by homography transformation. This places our work in the realm of scene-based nonuniformity correction problems. We show that an object's thermographic values, as well as gain and offset, can be jointly estimated by relying on a few sets of shifted images. We use a minimum likelihood estimator, which is found using alternating minimization. Registration is done using a generalized Lucas-Kanade method. Simulations show promising accuracy with mean Pearson correlation of more than 0.9999998 between ground truth and restoration. Under ideal assumptions, this is equivalent to a mean restoration error of less than 0.01 Celsius degree.
comment: Imaging, Inverse problems, Functional analysis, Blind deconvolution
☆ ERetinex: Event Camera Meets Retinex Theory for Low-Light Image Enhancement ICRA 2025
Low-light image enhancement aims to restore the under-exposure image captured in dark scenarios. Under such scenarios, traditional frame-based cameras may fail to capture the structure and color information due to the exposure time limitation. Event cameras are bio-inspired vision sensors that respond to pixel-wise brightness changes asynchronously. Event cameras' high dynamic range is pivotal for visual perception in extreme low-light scenarios, surpassing traditional cameras and enabling applications in challenging dark environments. In this paper, inspired by the success of the retinex theory for traditional frame-based low-light image restoration, we introduce the first methods that combine the retinex theory with event cameras and propose a novel retinex-based low-light image restoration framework named ERetinex. Among our contributions, the first is developing a new approach that leverages the high temporal resolution data from event cameras with traditional image information to estimate scene illumination accurately. This method outperforms traditional image-only techniques, especially in low-light environments, by providing more precise lighting information. Additionally, we propose an effective fusion strategy that combines the high dynamic range data from event cameras with the color information of traditional images to enhance image quality. Through this fusion, we can generate clearer and more detail-rich images, maintaining the integrity of visual information even under extreme lighting conditions. The experimental results indicate that our proposed method outperforms state-of-the-art (SOTA) methods, achieving a gain of 1.0613 dB in PSNR while reducing FLOPS by \textbf{84.28}\%.
comment: Accepted to ICRA 2025
☆ A Novel Streamline-based diffusion MRI Tractography Registration Method with Probabilistic Keypoint Detection
Registration of diffusion MRI tractography is an essential step for analyzing group similarities and variations in the brain's white matter (WM). Streamline-based registration approaches can leverage the 3D geometric information of fiber pathways to enable spatial alignment after registration. Existing methods usually rely on the optimization of the spatial distances to identify the optimal transformation. However, such methods overlook point connectivity patterns within the streamline itself, limiting their ability to identify anatomical correspondences across tractography datasets. In this work, we propose a novel unsupervised approach using deep learning to perform streamline-based dMRI tractography registration. The overall idea is to identify corresponding keypoint pairs across subjects for spatial alignment of tractography datasets. We model tractography as point clouds to leverage the graph connectivity along streamlines. We propose a novel keypoint detection method for streamlines, framed as a probabilistic classification task to identify anatomically consistent correspondences across unstructured streamline sets. In the experiments, we compare several existing methods and show highly effective and efficient tractography registration performance.
☆ BioD2C: A Dual-level Semantic Consistency Constraint Framework for Biomedical VQA
Biomedical visual question answering (VQA) has been widely studied and has demonstrated significant application value and potential in fields such as assistive medical diagnosis. Despite their success, current biomedical VQA models perform multimodal information interaction only at the model level within large language models (LLMs), leading to suboptimal multimodal semantic alignment when dealing with complex tasks. To address this issue, we propose BioD2C: a novel Dual-level Semantic Consistency Constraint Framework for Biomedical VQA, which achieves dual-level semantic interaction alignment at both the model and feature levels, enabling the model to adaptively learn visual features based on the question. Specifically, we firstly integrate textual features into visual features via an image-text fusion mechanism as feature-level semantic interaction, obtaining visual features conditioned on the given text; and then introduce a text-queue-based cross-modal soft semantic loss function to further align the image semantics with the question semantics. Specifically, in this work, we establish a new dataset, BioVGQ, to address inherent biases in prior datasets by filtering manually-altered images and aligning question-answer pairs with multimodal context, and train our model on this dataset. Extensive experimental results demonstrate that BioD2C achieves state-of-the-art (SOTA) performance across multiple downstream datasets, showcasing its robustness, generalizability, and potential to advance biomedical VQA research.
☆ Exploring Token-Level Augmentation in Vision Transformer for Semi-Supervised Semantic Segmentation
Semi-supervised semantic segmentation has witnessed remarkable advancements in recent years. However, existing algorithms are based on convolutional neural networks and directly applying them to Vision Transformers poses certain limitations due to conceptual disparities. To this end, we propose TokenMix, a data augmentation technique specifically designed for semi-supervised semantic segmentation with Vision Transformers. TokenMix aligns well with the global attention mechanism by mixing images at the token level, enhancing learning capability for contexutual information among image patches. We further incorporate image augmentation and feature augmentation to promote the diversity of augmentation. Moreover, to enhance consistency regularization, we propose a dual-branch framework where each branch applies both image augmentation and feature augmentation to the input image. We conduct extensive experiments across multiple benchmark datasets, including Pascal VOC 2012, Cityscapes, and COCO. Results suggest that the proposed method outperforms state-of-the-art algorithms with notably observed accuracy improvement, especially under the circumstance of limited fine annotations.
☆ 2DGS-Avatar: Animatable High-fidelity Clothed Avatar via 2D Gaussian Splatting
Real-time rendering of high-fidelity and animatable avatars from monocular videos remains a challenging problem in computer vision and graphics. Over the past few years, the Neural Radiance Field (NeRF) has made significant progress in rendering quality but behaves poorly in run-time performance due to the low efficiency of volumetric rendering. Recently, methods based on 3D Gaussian Splatting (3DGS) have shown great potential in fast training and real-time rendering. However, they still suffer from artifacts caused by inaccurate geometry. To address these problems, we propose 2DGS-Avatar, a novel approach based on 2D Gaussian Splatting (2DGS) for modeling animatable clothed avatars with high-fidelity and fast training performance. Given monocular RGB videos as input, our method generates an avatar that can be driven by poses and rendered in real-time. Compared to 3DGS-based methods, our 2DGS-Avatar retains the advantages of fast training and rendering while also capturing detailed, dynamic, and photo-realistic appearances. We conduct abundant experiments on popular datasets such as AvatarRex and THuman4.0, demonstrating impressive performance in both qualitative and quantitative metrics.
comment: ICVRV 2024
☆ Exploring Intrinsic Normal Prototypes within a Single Image for Universal Anomaly Detection CVPR2025
Anomaly detection (AD) is essential for industrial inspection, yet existing methods typically rely on ``comparing'' test images to normal references from a training set. However, variations in appearance and positioning often complicate the alignment of these references with the test image, limiting detection accuracy. We observe that most anomalies manifest as local variations, meaning that even within anomalous images, valuable normal information remains. We argue that this information is useful and may be more aligned with the anomalies since both the anomalies and the normal information originate from the same image. Therefore, rather than relying on external normality from the training set, we propose INP-Former, a novel method that extracts Intrinsic Normal Prototypes (INPs) directly from the test image. Specifically, we introduce the INP Extractor, which linearly combines normal tokens to represent INPs. We further propose an INP Coherence Loss to ensure INPs can faithfully represent normality for the testing image. These INPs then guide the INP-Guided Decoder to reconstruct only normal tokens, with reconstruction errors serving as anomaly scores. Additionally, we propose a Soft Mining Loss to prioritize hard-to-optimize samples during training. INP-Former achieves state-of-the-art performance in single-class, multi-class, and few-shot AD tasks across MVTec-AD, VisA, and Real-IAD, positioning it as a versatile and universal solution for AD. Remarkably, INP-Former also demonstrates some zero-shot AD capability. Code is available at:https://github.com/luow23/INP-Former.
comment: Accepted by CVPR2025
☆ Exploring Model Quantization in GenAI-based Image Inpainting and Detection of Arable Plants
Deep learning-based weed control systems often suffer from limited training data diversity and constrained on-board computation, impacting their real-world performance. To overcome these challenges, we propose a framework that leverages Stable Diffusion-based inpainting to augment training data progressively in 10% increments -- up to an additional 200%, thus enhancing both the volume and diversity of samples. Our approach is evaluated on two state-of-the-art object detection models, YOLO11(l) and RT-DETR(l), using the mAP50 metric to assess detection performance. We explore quantization strategies (FP16 and INT8) for both the generative inpainting and detection models to strike a balance between inference speed and accuracy. Deployment of the downstream models on the Jetson Orin Nano demonstrates the practical viability of our framework in resource-constrained environments, ultimately improving detection accuracy and computational efficiency in intelligent weed management systems.
☆ InfoGNN: End-to-end deep learning on mesh via graph neural networks
3D models are widely used in various industries, and mesh data has become an indispensable part of 3D modeling because of its unique advantages. Mesh data can provide an intuitive and practical expression of rich 3D information. However, its disordered, irregular data structure and complex surface information make it challenging to apply with deep learning models directly. Traditional mesh data processing methods often rely on mesh models with many limitations, such as manifold, which restrict their application scopes in reality and do not fully utilize the advantages of mesh models. This paper proposes a novel end-to-end framework for addressing the challenges associated with deep learning in mesh models centered around graph neural networks (GNN) and is titled InfoGNN. InfoGNN treats the mesh model as a graph, which enables it to handle irregular mesh data efficiently. Moreover, we propose InfoConv and InfoMP modules, which utilize the position information of the points and fully use the static information such as face normals, dihedral angles, and dynamic global feature information to fully use all kinds of data. In addition, InfoGNN is an end-to-end framework, and we simplify the network design to make it more efficient, paving the way for efficient deep learning of complex 3D models. We conducted experiments on several publicly available datasets, and the results show that InfoGNN achieves excellent performance in mesh classification and segmentation tasks.
☆ Building 3D In-Context Learning Universal Model in Neuroimaging
In-context learning (ICL), a type of universal model, demonstrates exceptional generalization across a wide range of tasks without retraining by leveraging task-specific guidance from context, making it particularly effective for the complex demands of neuroimaging. However, existing ICL models, which take 2D images as input, struggle to fully leverage the 3D anatomical structures in neuroimages, leading to a lack of global awareness and suboptimal performance. In this regard, we introduce Neuroverse3D, an ICL model capable of performing multiple neuroimaging tasks (e.g., segmentation, denoising, inpainting) in 3D. Neuroverse3D overcomes the large memory consumption due to 3D inputs through adaptive parallel-sequential context processing and a U-shape fusion strategy, allowing it to handle an unlimited number of context images. Additionally, we propose an optimized loss to balance multi-task training and enhance the focus on anatomical structures. Our study incorporates 43,674 3D scans from 19 neuroimaging datasets and evaluates Neuroverse3D on 14 diverse tasks using held-out test sets. The results demonstrate that Neuroverse3D significantly outperforms existing ICL models and closely matches the performance of task-specific models. The code and model weights are publicly released at: https://github.com/jiesihu/Neu3D.
☆ VisAgent: Narrative-Preserving Story Visualization Framework ICASSP 2025
Story visualization is the transformation of narrative elements into image sequences. While existing research has primarily focused on visual contextual coherence, the deeper narrative essence of stories often remains overlooked. This limitation hinders the practical application of these approaches, as generated images frequently fail to capture the intended meaning and nuances of the narrative fully. To address these challenges, we propose VisAgent, a training-free multi-agent framework designed to comprehend and visualize pivotal scenes within a given story. By considering story distillation, semantic consistency, and contextual coherence, VisAgent employs an agentic workflow. In this workflow, multiple specialized agents collaborate to: (i) refine layered prompts based on the narrative structure and (ii) seamlessly integrate \gt{generated} elements, including refined prompts, scene elements, and subject placement, into the final image. The empirically validated effectiveness confirms the framework's suitability for practical story visualization applications.
comment: Accepted to ICASSP 2025. Equal contribution from first two authors
☆ Vision-Language Model IP Protection via Prompt-based Learning
Vision-language models (VLMs) like CLIP (Contrastive Language-Image Pre-Training) have seen remarkable success in visual recognition, highlighting the increasing need to safeguard the intellectual property (IP) of well-trained models. Effective IP protection extends beyond ensuring authorized usage; it also necessitates restricting model deployment to authorized data domains, particularly when the model is fine-tuned for specific target domains. However, current IP protection methods often rely solely on the visual backbone, which may lack sufficient semantic richness. To bridge this gap, we introduce IP-CLIP, a lightweight IP protection strategy tailored to CLIP, employing a prompt-based learning approach. By leveraging the frozen visual backbone of CLIP, we extract both image style and content information, incorporating them into the learning of IP prompt. This strategy acts as a robust barrier, effectively preventing the unauthorized transfer of features from authorized domains to unauthorized ones. Additionally, we propose a style-enhancement branch that constructs feature banks for both authorized and unauthorized domains. This branch integrates self-enhanced and cross-domain features, further strengthening IP-CLIP's capability to block features from unauthorized domains. Finally, we present new three metrics designed to better balance the performance degradation of authorized and unauthorized domains. Comprehensive experiments in various scenarios demonstrate its promising potential for application in IP protection tasks for VLMs.
☆ PIDLoc: Cross-View Pose Optimization Network Inspired by PID Controllers CVPR-25
Accurate localization is essential for autonomous driving, but GNSS-based methods struggle in challenging environments such as urban canyons. Cross-view pose optimization offers an effective solution by directly estimating vehicle pose using satellite-view images. However, existing methods primarily rely on cross-view features at a given pose, neglecting fine-grained contexts for precision and global contexts for robustness against large initial pose errors. To overcome these limitations, we propose PIDLoc, a novel cross-view pose optimization approach inspired by the proportional-integral-derivative (PID) controller. Using RGB images and LiDAR, the PIDLoc comprises the PID branches to model cross-view feature relationships and the spatially aware pose estimator (SPE) to estimate the pose from these relationships. The PID branches leverage feature differences for local context (P), aggregated feature differences for global context (I), and gradients of feature differences for precise pose adjustment (D) to enhance localization accuracy under large initial pose errors. Integrated with the PID branches, the SPE captures spatial relationships within the PID-branch features for consistent localization. Experimental results demonstrate that the PIDLoc achieves state-of-the-art performance in cross-view pose estimation for the KITTI dataset, reducing position error by $37.8\%$ compared with the previous state-of-the-art.
comment: Accepted by CVPR-25
☆ Teaching Metric Distance to Autoregressive Multimodal Foundational Models
As large language models expand beyond natural language to domains such as mathematics, multimodal understanding, and embodied agents, tokens increasingly reflect metric relationships rather than purely linguistic meaning. We introduce DIST2Loss, a distance-aware framework designed to train autoregressive discrete models by leveraging predefined distance relationships among output tokens. At its core, DIST2Loss transforms continuous exponential family distributions derived from inherent distance metrics into discrete, categorical optimization targets compatible with the models' architectures. This approach enables the models to learn and preserve meaningful distance relationships during token generation while maintaining compatibility with existing architectures. Empirical evaluations show consistent performance gains in diverse multimodal applications, including visual grounding, robotic manipulation, generative reward modeling, and image generation using vector-quantized features. These improvements are pronounced in cases of limited training data, highlighting DIST2Loss's effectiveness in resource-constrained settings.
☆ mmDEAR: mmWave Point Cloud Density Enhancement for Accurate Human Body Reconstruction
Millimeter-wave (mmWave) radar offers robust sensing capabilities in diverse environments, making it a highly promising solution for human body reconstruction due to its privacy-friendly and non-intrusive nature. However, the significant sparsity of mmWave point clouds limits the estimation accuracy. To overcome this challenge, we propose a two-stage deep learning framework that enhances mmWave point clouds and improves human body reconstruction accuracy. Our method includes a mmWave point cloud enhancement module that densifies the raw data by leveraging temporal features and a multi-stage completion network, followed by a 2D-3D fusion module that extracts both 2D and 3D motion features to refine SMPL parameters. The mmWave point cloud enhancement module learns the detailed shape and posture information from 2D human masks in single-view images. However, image-based supervision is involved only during the training phase, and the inference relies solely on sparse point clouds to maintain privacy. Experiments on multiple datasets demonstrate that our approach outperforms state-of-the-art methods, with the enhanced point clouds further improving performance when integrated into existing models.
Label-Efficient LiDAR Panoptic Segmentation
A main bottleneck of learning-based robotic scene understanding methods is the heavy reliance on extensive annotated training data, which often limits their generalization ability. In LiDAR panoptic segmentation, this challenge becomes even more pronounced due to the need to simultaneously address both semantic and instance segmentation from complex, high-dimensional point cloud data. In this work, we address the challenge of LiDAR panoptic segmentation with very few labeled samples by leveraging recent advances in label-efficient vision panoptic segmentation. To this end, we propose a novel method, Limited-Label LiDAR Panoptic Segmentation (L3PS), which requires only a minimal amount of labeled data. Our approach first utilizes a label-efficient 2D network to generate panoptic pseudo-labels from a small set of annotated images, which are subsequently projected onto point clouds. We then introduce a novel 3D refinement module that capitalizes on the geometric properties of point clouds. By incorporating clustering techniques, sequential scan accumulation, and ground point separation, this module significantly enhances the accuracy of the pseudo-labels, improving segmentation quality by up to +10.6 PQ and +7.9 mIoU. We demonstrate that these refined pseudo-labels can be used to effectively train off-the-shelf LiDAR segmentation networks. Through extensive experiments, we show that L3PS not only outperforms existing methods but also substantially reduces the annotation burden. We release the code of our work at https://l3ps.cs.uni-freiburg.de.
☆ BdSLW401: Transformer-Based Word-Level Bangla Sign Language Recognition Using Relative Quantization Encoding (RQE)
Sign language recognition (SLR) for low-resource languages like Bangla suffers from signer variability, viewpoint variations, and limited annotated datasets. In this paper, we present BdSLW401, a large-scale, multi-view, word-level Bangla Sign Language (BdSL) dataset with 401 signs and 102,176 video samples from 18 signers in front and lateral views. To improve transformer-based SLR, we introduce Relative Quantization Encoding (RQE), a structured embedding approach anchoring landmarks to physiological reference points and quantize motion trajectories. RQE improves attention allocation by decreasing spatial variability, resulting in 44.3% WER reduction in WLASL100, 21.0% in SignBD-200, and significant gains in BdSLW60 and SignBD-90. However, fixed quantization becomes insufficient on large-scale datasets (e.g., WLASL2000), indicating the need for adaptive encoding strategies. Further, RQE-SF, an extended variant that stabilizes shoulder landmarks, achieves improvements in pose consistency at the cost of small trade-offs in lateral view recognition. The attention graphs prove that RQE improves model interpretability by focusing on the major articulatory features (fingers, wrists) and the more distinctive frames instead of global pose changes. Introducing BdSLW401 and demonstrating the effectiveness of RQE-enhanced structured embeddings, this work advances transformer-based SLR for low-resource languages and sets a benchmark for future research in this area.
☆ Are Large Vision Language Models Good Game Players? ICLR2025
Large Vision Language Models (LVLMs) have demonstrated remarkable abilities in understanding and reasoning about both visual and textual information. However, existing evaluation methods for LVLMs, primarily based on benchmarks like Visual Question Answering and image captioning, often fail to capture the full scope of LVLMs' capabilities. These benchmarks are limited by issues such as inadequate assessment of detailed visual perception, data contamination, and a lack of focus on multi-turn reasoning. To address these challenges, we propose \method{}, a game-based evaluation framework designed to provide a comprehensive assessment of LVLMs' cognitive and reasoning skills in structured environments. \method{} uses a set of games to evaluate LVLMs on four core tasks: Perceiving, Question Answering, Rule Following, and End-to-End Playing, with each target task designed to assess specific abilities, including visual perception, reasoning, decision-making, etc. Based on this framework, we conduct extensive experiments that explore the limitations of current LVLMs, such as handling long structured outputs and perceiving detailed and dense elements. Code and data are publicly available at https://github.com/xinke-wang/LVLM-Playground.
comment: ICLR2025
☆ YOLO-PRO: Enhancing Instance-Specific Object Detection with Full-Channel Global Self-Attention
This paper addresses the inherent limitations of conventional bottleneck structures (diminished instance discriminability due to overemphasis on batch statistics) and decoupled heads (computational redundancy) in object detection frameworks by proposing two novel modules: the Instance-Specific Bottleneck with full-channel global self-attention (ISB) and the Instance-Specific Asymmetric Decoupled Head (ISADH). The ISB module innovatively reconstructs feature maps to establish an efficient full-channel global attention mechanism through synergistic fusion of batch-statistical and instance-specific features. Complementing this, the ISADH module pioneers an asymmetric decoupled architecture enabling hierarchical multi-dimensional feature integration via dual-stream batch-instance representation fusion. Extensive experiments on the MS-COCO benchmark demonstrate that the coordinated deployment of ISB and ISADH in the YOLO-PRO framework achieves state-of-the-art performance across all computational scales. Specifically, YOLO-PRO surpasses YOLOv8 by 1.0-1.6% AP (N/S/M/L/X scales) and outperforms YOLO11 by 0.1-0.5% AP in critical M/L/X groups, while maintaining competitive computational efficiency. This work provides practical insights for developing high-precision detectors deployable on edge devices.
☆ CQ CNN: A Hybrid Classical Quantum Convolutional Neural Network for Alzheimer's Disease Detection Using Diffusion Generated and U Net Segmented 3D MRI
The detection of Alzheimer disease (AD) from clinical MRI data is an active area of research in medical imaging. Recent advances in quantum computing, particularly the integration of parameterized quantum circuits (PQCs) with classical machine learning architectures, offer new opportunities to develop models that may outperform traditional methods. However, quantum machine learning (QML) remains in its early stages and requires further experimental analysis to better understand its behavior and limitations. In this paper, we propose an end to end hybrid classical quantum convolutional neural network (CQ CNN) for AD detection using clinically formatted 3D MRI data. Our approach involves developing a framework to make 3D MRI data usable for machine learning, designing and training a brain tissue segmentation model (Skull Net), and training a diffusion model to generate synthetic images for the minority class. Our converged models exhibit potential quantum advantages, achieving higher accuracy in fewer epochs than classical models. The proposed beta8 3 qubit model achieves an accuracy of 97.50%, surpassing state of the art (SOTA) models while requiring significantly fewer computational resources. In particular, the architecture employs only 13K parameters (0.48 MB), reducing the parameter count by more than 99.99% compared to current SOTA models. Furthermore, the diffusion-generated data used to train our quantum models, in conjunction with real samples, preserve clinical structural standards, representing a notable first in the field of QML. We conclude that CQCNN architecture like models, with further improvements in gradient optimization techniques, could become a viable option and even a potential alternative to classical models for AD detection, especially in data limited and resource constrained clinical settings.
comment: Application of hybrid quantum-classical machine learning for (early stage) disease detection
☆ GRADEO: Towards Human-Like Evaluation for Text-to-Video Generation via Multi-Step Reasoning
Recent great advances in video generation models have demonstrated their potential to produce high-quality videos, bringing challenges to effective evaluation. Unlike human evaluation, existing automated evaluation metrics lack high-level semantic understanding and reasoning capabilities for video, thus making them infeasible and unexplainable. To fill this gap, we curate GRADEO-Instruct, a multi-dimensional T2V evaluation instruction tuning dataset, including 3.3k videos from over 10 existing video generation models and multi-step reasoning assessments converted by 16k human annotations. We then introduce GRADEO, one of the first specifically designed video evaluation models, which grades AI-generated videos for explainable scores and assessments through multi-step reasoning. Experiments show that our method aligns better with human evaluations than existing methods. Furthermore, our benchmarking reveals that current video generation models struggle to produce content that aligns with human reasoning and complex real-world scenarios. The models, datasets, and codes will be released soon.
☆ BiasICL: In-Context Learning and Demographic Biases of Vision Language Models
Vision language models (VLMs) show promise in medical diagnosis, but their performance across demographic subgroups when using in-context learning (ICL) remains poorly understood. We examine how the demographic composition of demonstration examples affects VLM performance in two medical imaging tasks: skin lesion malignancy prediction and pneumothorax detection from chest radiographs. Our analysis reveals that ICL influences model predictions through multiple mechanisms: (1) ICL allows VLMs to learn subgroup-specific disease base rates from prompts and (2) ICL leads VLMs to make predictions that perform differently across demographic groups, even after controlling for subgroup-specific disease base rates. Our empirical results inform best-practices for prompting current VLMs (specifically examining demographic subgroup performance, and matching base rates of labels to target distribution at a bulk level and within subgroups), while also suggesting next steps for improving our theoretical understanding of these models.
☆ COMMA: Coordinate-aware Modulated Mamba Network for 3D Dispersed Vessel Segmentation
Accurate segmentation of 3D vascular structures is essential for various medical imaging applications. The dispersed nature of vascular structures leads to inherent spatial uncertainty and necessitates location awareness, yet most current 3D medical segmentation models rely on the patch-wise training strategy that usually loses this spatial context. In this study, we introduce the Coordinate-aware Modulated Mamba Network (COMMA) and contribute a manually labeled dataset of 570 cases, the largest publicly available 3D vessel dataset to date. COMMA leverages both entire and cropped patch data through global and local branches, ensuring robust and efficient spatial location awareness. Specifically, COMMA employs a channel-compressed Mamba (ccMamba) block to encode entire image data, capturing long-range dependencies while optimizing computational costs. Additionally, we propose a coordinate-aware modulated (CaM) block to enhance interactions between the global and local branches, allowing the local branch to better perceive spatial information. We evaluate COMMA on six datasets, covering two imaging modalities and five types of vascular tissues. The results demonstrate COMMA's superior performance compared to state-of-the-art methods with computational efficiency, especially in segmenting small vessels. Ablation studies further highlight the importance of our proposed modules and spatial information. The code and data will be open source at https://github.com/shigen-StoneRoot/COMMA.
☆ Exploring Simple Siamese Network for High-Resolution Video Quality Assessment ICASSP 2025
In the research of video quality assessment (VQA), two-branch network has emerged as a promising solution. It decouples VQA with separate technical and aesthetic branches to measure the perception of low-level distortions and high-level semantics respectively. However, we argue that while technical and aesthetic perspectives are complementary, the technical perspective itself should be measured in semantic-aware manner. We hypothesize that existing technical branch struggles to perceive the semantics of high-resolution videos, as it is trained on local mini-patches sampled from videos. This issue can be hidden by apparently good results on low-resolution videos, but indeed becomes critical for high-resolution VQA. This work introduces SiamVQA, a simple but effective Siamese network for highre-solution VQA. SiamVQA shares weights between technical and aesthetic branches, enhancing the semantic perception ability of technical branch to facilitate technical-quality representation learning. Furthermore, it integrates a dual cross-attention layer for fusing technical and aesthetic features. SiamVQA achieves state-of-the-art accuracy on high-resolution benchmarks, and competitive results on lower-resolution benchmarks. Codes will be available at: https://github.com/srcn-ivl/SiamVQA
comment: Accepted by ICASSP 2025
☆ Generative Model-Assisted Demosaicing for Cross-multispectral Cameras
As a crucial part of the spectral filter array (SFA)-based multispectral imaging process, spectral demosaicing has exploded with the proliferation of deep learning techniques. However, (1) bothering by the difficulty of capturing corresponding labels for real data or simulating the practical spectral imaging process, end-to-end networks trained in a supervised manner using simulated data often perform poorly on real data. (2) cross-camera spectral discrepancies make it difficult to apply pre-trained models to new cameras. (3) existing demosaicing networks are prone to introducing visual artifacts on hard cases due to the interpolation of unknown values. To address these issues, we propose a hybrid supervised training method with the assistance of the self-supervised generative model, which performs well on real data across different spectral cameras. Specifically, our approach consists of three steps: (1) Pre-Training step: training the end-to-end neural network on a large amount of simulated data; (2) Pseudo-Pairing step: generating pseudo-labels of real target data using the self-supervised generative model; (3) Fine-Tuning step: fine-tuning the pre-trained model on the pseudo data pairs obtained in (2). To alleviate artifacts, we propose a frequency-domain hard patch selection method that identifies artifact-prone regions by analyzing spectral discrepancies using Fourier transform and filtering techniques, allowing targeted fine-tuning to enhance demosaicing performance. Finally, we propose UniSpecTest, a real-world multispectral mosaic image dataset for testing. Ablation experiments have demonstrated the effectiveness of each training step, and extensive experiments on both synthetic and real datasets show that our method achieves significant performance gains compared to state-of-the-art techniques.
☆ Semantic Prior Distillation with Vision Foundation Model for Enhanced Rapid Bone Scintigraphy Image Restoration
Rapid bone scintigraphy is an essential tool for diagnosing skeletal diseases and tumor metastasis in pediatric patients, as it reduces scan time and minimizes patient discomfort. However, rapid scans often result in poor image quality, potentially affecting diagnosis due to reduced resolution and detail, which make it challenging to identify and evaluate finer anatomical structures. To address this issue, we propose the first application of SAM-based semantic priors for medical image restoration, leveraging the Segment Anything Model (SAM) to enhance rapid bone scintigraphy images in pediatric populations. Our method comprises two cascaded networks, $f^{IR1}$ and $f^{IR2}$, augmented by three key modules: a Semantic Prior Integration (SPI) module, a Semantic Knowledge Distillation (SKD) module, and a Semantic Consistency Module (SCM). The SPI and SKD modules incorporate domain-specific semantic information from a fine-tuned SAM, while the SCM maintains consistent semantic feature representation throughout the cascaded networks. In addition, we will release a novel Rapid Bone Scintigraphy dataset called RBS, the first dataset dedicated to rapid bone scintigraphy image restoration in pediatric patients. RBS consists of 137 pediatric patients aged between 0.5 and 16 years who underwent both standard and rapid bone scans. The dataset includes scans performed at 20 cm/min (standard) and 40 cm/min (rapid), representing a $2\times$ acceleration. We conducted extensive experiments on both the publicly available endoscopic dataset and RBS. The results demonstrate that our method outperforms all existing methods across various metrics, including PSNR, SSIM, FID, and LPIPS.
comment: 12 pages, 9 figures, 8 tables
☆ Unified Arbitrary-Time Video Frame Interpolation and Prediction ICASSP 2025
Video frame interpolation and prediction aim to synthesize frames in-between and subsequent to existing frames, respectively. Despite being closely-related, these two tasks are traditionally studied with different model architectures, or same architecture but individually trained weights. Furthermore, while arbitrary-time interpolation has been extensively studied, the value of arbitrary-time prediction has been largely overlooked. In this work, we present uniVIP - unified arbitrary-time Video Interpolation and Prediction. Technically, we firstly extend an interpolation-only network for arbitrary-time interpolation and prediction, with a special input channel for task (interpolation or prediction) encoding. Then, we show how to train a unified model on common triplet frames. Our uniVIP provides competitive results for video interpolation, and outperforms existing state-of-the-arts for video prediction. Codes will be available at: https://github.com/srcn-ivl/uniVIP
comment: Accepted by ICASSP 2025
☆ A Token-level Text Image Foundation Model for Document Understanding
In recent years, general visual foundation models (VFMs) have witnessed increasing adoption, particularly as image encoders for popular multi-modal large language models (MLLMs). However, without semantically fine-grained supervision, these models still encounter fundamental prediction errors in the context of downstream text-image-related tasks, i.e., perception, understanding and reasoning with images containing small and dense texts. To bridge this gap, we develop TokenOCR, the first token-level visual foundation model specifically tailored for text-image-related tasks, designed to support a variety of traditional downstream applications. To facilitate the pretraining of TokenOCR, we also devise a high-quality data production pipeline that constructs the first token-level image text dataset, TokenIT, comprising 20 million images and 1.8 billion token-mask pairs. Furthermore, leveraging this foundation with exceptional image-as-text capability, we seamlessly replace previous VFMs with TokenOCR to construct a document-level MLLM, TokenVL, for VQA-based document understanding tasks. Finally, extensive experiments demonstrate the effectiveness of TokenOCR and TokenVL. Code, datasets, and weights will be available at https://token-family.github.io/TokenOCR_project.
comment: 23 pages
☆ On the Relationship Between Double Descent of CNNs and Shape/Texture Bias Under Learning Process
The double descent phenomenon, which deviates from the traditional bias-variance trade-off theory, attracts considerable research attention; however, the mechanism of its occurrence is not fully understood. On the other hand, in the study of convolutional neural networks (CNNs) for image recognition, methods are proposed to quantify the bias on shape features versus texture features in images, determining which features the CNN focuses on more. In this work, we hypothesize that there is a relationship between the shape/texture bias in the learning process of CNNs and epoch-wise double descent, and we conduct verification. As a result, we discover double descent/ascent of shape/texture bias synchronized with double descent of test error under conditions where epoch-wise double descent is observed. Quantitative evaluations confirm this correlation between the test errors and the bias values from the initial decrease to the full increase in test error. Interestingly, double descent/ascent of shape/texture bias is observed in some cases even in conditions without label noise, where double descent is thought not to occur. These experimental results are considered to contribute to the understanding of the mechanisms behind the double descent phenomenon and the learning process of CNNs in image recognition.
☆ Semi-Supervised Audio-Visual Video Action Recognition with Audio Source Localization Guided Mixup
Video action recognition is a challenging but important task for understanding and discovering what the video does. However, acquiring annotations for a video is costly, and semi-supervised learning (SSL) has been studied to improve performance even with a small number of labeled data in the task. Prior studies for semi-supervised video action recognition have mostly focused on using single modality - visuals - but the video is multi-modal, so utilizing both visuals and audio would be desirable and improve performance further, which has not been explored well. Therefore, we propose audio-visual SSL for video action recognition, which uses both visual and audio together, even with quite a few labeled data, which is challenging. In addition, to maximize the information of audio and video, we propose a novel audio source localization-guided mixup method that considers inter-modal relations between video and audio modalities. In experiments on UCF-51, Kinetics-400, and VGGSound datasets, our model shows the superior performance of the proposed semi-supervised audio-visual action recognition framework and audio source localization-guided mixup.
☆ SSNet: Saliency Prior and State Space Model-based Network for Salient Object Detection in RGB-D Images
Salient object detection (SOD) in RGB-D images is an essential task in computer vision, enabling applications in scene understanding, robotics, and augmented reality. However, existing methods struggle to capture global dependency across modalities, lack comprehensive saliency priors from both RGB and depth data, and are ineffective in handling low-quality depth maps. To address these challenges, we propose SSNet, a saliency-prior and state space model (SSM)-based network for the RGB-D SOD task. Unlike existing convolution- or transformer-based approaches, SSNet introduces an SSM-based multi-modal multi-scale decoder module to efficiently capture both intra- and inter-modal global dependency with linear complexity. Specifically, we propose a cross-modal selective scan SSM (CM-S6) mechanism, which effectively captures global dependency between different modalities. Furthermore, we introduce a saliency enhancement module (SEM) that integrates three saliency priors with deep features to refine feature representation and improve the localization of salient objects. To further address the issue of low-quality depth maps, we propose an adaptive contrast enhancement technique that dynamically refines depth maps, making them more suitable for the RGB-D SOD task. Extensive quantitative and qualitative experiments on seven benchmark datasets demonstrate that SSNet outperforms state-of-the-art methods.
♻ ☆ 3D-AffordanceLLM: Harnessing Large Language Models for Open-Vocabulary Affordance Detection in 3D Worlds ICLR
3D Affordance detection is a challenging problem with broad applications on various robotic tasks. Existing methods typically formulate the detection paradigm as a label-based semantic segmentation task. This paradigm relies on predefined labels and lacks the ability to comprehend complex natural language, resulting in limited generalization in open-world scene. To address these limitations, we reformulate the traditional affordance detection paradigm into \textit{Instruction Reasoning Affordance Segmentation} (IRAS) task. This task is designed to output a affordance mask region given a query reasoning text, which avoids fixed categories of input labels. We accordingly propose the \textit{3D-AffordanceLLM} (3D-ADLLM), a framework designed for reasoning affordance detection in 3D open-scene. Specifically, 3D-ADLLM introduces large language models (LLMs) to 3D affordance perception with a custom-designed decoder for generating affordance masks, thus achieving open-world reasoning affordance detection. In addition, given the scarcity of 3D affordance datasets for training large models, we seek to extract knowledge from general segmentation data and transfer it to affordance detection. Thus, we propose a multi-stage training strategy that begins with a novel pre-training task, i.e., \textit{Referring Object Part Segmentation}~(ROPS). This stage is designed to equip the model with general recognition and segmentation capabilities at the object-part level. Then followed by fine-tuning with the IRAS task, 3D-ADLLM obtains the reasoning ability for affordance detection. In summary, 3D-ADLLM leverages the rich world knowledge and human-object interaction reasoning ability of LLMs, achieving approximately an 8\% improvement in mIoU on open-vocabulary affordance detection tasks.
comment: ICLR
♻ ☆ A Survey on Vision-Language-Action Models for Embodied AI
Embodied AI is widely recognized as a key element of artificial general intelligence because it involves controlling embodied agents to perform tasks in the physical world. Building on the success of large language models and vision-language models, a new category of multimodal models -- referred to as vision-language-action models (VLAs) -- has emerged to address language-conditioned robotic tasks in embodied AI by leveraging their distinct ability to generate actions. In recent years, a myriad of VLAs have been developed, making it imperative to capture the rapidly evolving landscape through a comprehensive survey. To this end, we present the first survey on VLAs for embodied AI. This work provides a detailed taxonomy of VLAs, organized into three major lines of research. The first line focuses on individual components of VLAs. The second line is dedicated to developing control policies adept at predicting low-level actions. The third line comprises high-level task planners capable of decomposing long-horizon tasks into a sequence of subtasks, thereby guiding VLAs to follow more general user instructions. Furthermore, we provide an extensive summary of relevant resources, including datasets, simulators, and benchmarks. Finally, we discuss the challenges faced by VLAs and outline promising future directions in embodied AI. We have created a project associated with this survey, which is available at https://github.com/yueen-ma/Awesome-VLA.
comment: Project page: https://github.com/yueen-ma/Awesome-VLA
♻ ☆ VILA-M3: Enhancing Vision-Language Models with Medical Expert Knowledge
Generalist vision language models (VLMs) have made significant strides in computer vision, but they fall short in specialized fields like healthcare, where expert knowledge is essential. In traditional computer vision tasks, creative or approximate answers may be acceptable, but in healthcare, precision is paramount.Current large multimodal models like Gemini and GPT-4o are insufficient for medical tasks due to their reliance on memorized internet knowledge rather than the nuanced expertise required in healthcare. VLMs are usually trained in three stages: vision pre-training, vision-language pre-training, and instruction fine-tuning (IFT). IFT has been typically applied using a mixture of generic and healthcare data. In contrast, we propose that for medical VLMs, a fourth stage of specialized IFT is necessary, which focuses on medical data and includes information from domain expert models. Domain expert models developed for medical use are crucial because they are specifically trained for certain clinical tasks, e.g. to detect tumors and classify abnormalities through segmentation and classification, which learn fine-grained features of medical data$-$features that are often too intricate for a VLM to capture effectively especially in radiology. This paper introduces a new framework, VILA-M3, for medical VLMs that utilizes domain knowledge via expert models. Through our experiments, we show an improved state-of-the-art (SOTA) performance with an average improvement of ~9% over the prior SOTA model Med-Gemini and ~6% over models trained on the specific tasks. Our approach emphasizes the importance of domain expertise in creating precise, reliable VLMs for medical applications.
♻ ☆ VOILA: Evaluation of MLLMs For Perceptual Understanding and Analogical Reasoning ICLR 2025
Multimodal Large Language Models (MLLMs) have become a powerful tool for integrating visual and textual information. Despite their exceptional performance on visual understanding benchmarks, measuring their ability to reason abstractly across multiple images remains a significant challenge. To address this, we introduce VOILA, a large-scale, open-ended, dynamic benchmark designed to evaluate MLLMs' perceptual understanding and abstract relational reasoning. VOILA employs an analogical mapping approach in the visual domain, requiring models to generate an image that completes an analogy between two given image pairs, reference and application, without relying on predefined choices. Our experiments demonstrate that the analogical reasoning tasks in VOILA present a challenge to MLLMs. Through multi-step analysis, we reveal that current MLLMs struggle to comprehend inter-image relationships and exhibit limited capabilities in high-level relational reasoning. Notably, we observe that performance improves when following a multi-step strategy of least-to-most prompting. Comprehensive evaluations on open-source models and GPT-4o show that on text-based answers, the best accuracy for challenging scenarios is 13% (LLaMa 3.2) and even for simpler tasks is only 29% (GPT-4o), while human performance is significantly higher at 70% across both difficulty levels.
comment: Accepted at ICLR 2025. Code and data: https://github.com/nlylmz/Voila
♻ ☆ CalibRefine: Deep Learning-Based Online Automatic Targetless LiDAR-Camera Calibration with Iterative and Attention-Driven Post-Refinement
Accurate multi-sensor calibration is essential for deploying robust perception systems in applications such as autonomous driving, robotics, and intelligent transportation. Existing LiDAR-camera calibration methods often rely on manually placed targets, preliminary parameter estimates, or intensive data preprocessing, limiting their scalability and adaptability in real-world settings. In this work, we propose a fully automatic, targetless, and online calibration framework, CalibRefine, which directly processes raw LiDAR point clouds and camera images. Our approach is divided into four stages: (1) a Common Feature Discriminator that trains on automatically detected objects--using relative positions, appearance embeddings, and semantic classes--to generate reliable LiDAR-camera correspondences, (2) a coarse homography-based calibration, (3) an iterative refinement to incrementally improve alignment as additional data frames become available, and (4) an attention-based refinement that addresses non-planar distortions by leveraging a Vision Transformer and cross-attention mechanisms. Through extensive experiments on two urban traffic datasets, we show that CalibRefine delivers high-precision calibration results with minimal human involvement, outperforming state-of-the-art targetless methods and remaining competitive with, or surpassing, manually tuned baselines. Our findings highlight how robust object-level feature matching, together with iterative and self-supervised attention-based adjustments, enables consistent sensor fusion in complex, real-world conditions without requiring ground-truth calibration matrices or elaborate data preprocessing.
comment: Submitted to Transportation Research Part C: Emerging Technologies
♻ ☆ AI-based association analysis for medical imaging using latent-space geometric confounder correction
This study addresses the challenges of confounding effects and interpretability in artificial-intelligence-based medical image analysis. Whereas existing literature often resolves confounding by removing confounder-related information from latent representations, this strategy risks affecting image reconstruction quality in generative models, thus limiting their applicability in feature visualization. To tackle this, we propose a different strategy that retains confounder-related information in latent representations while finding an alternative confounder-free representation of the image data. Our approach views the latent space of an autoencoder as a vector space, where imaging-related variables, such as the learning target (t) and confounder (c), have a vector capturing their variability. The confounding problem is addressed by searching a confounder-free vector which is orthogonal to the confounder-related vector but maximally collinear to the target-related vector. To achieve this, we introduce a novel correlation-based loss that not only performs vector searching in the latent space, but also encourages the encoder to generate latent representations linearly correlated with the variables. Subsequently, we interpret the confounder-free representation by sampling and reconstructing images along the confounder-free vector. The efficacy and flexibility of our proposed method are demonstrated across three applications, accommodating multiple confounders and utilizing diverse image modalities. Results affirm the method's effectiveness in reducing confounder influences, preventing wrong or misleading associations, and offering a unique visual interpretation for in-depth investigations by clinical and epidemiological researchers. The code is released in the following GitLab repository: https://gitlab.com/radiology/compopbio/ai_based_association_analysis}
comment: Accepted by Medical Image Analysis
♻ ☆ EC-DIT: Scaling Diffusion Transformers with Adaptive Expert-Choice Routing
Diffusion transformers have been widely adopted for text-to-image synthesis. While scaling these models up to billions of parameters shows promise, the effectiveness of scaling beyond current sizes remains underexplored and challenging. By explicitly exploiting the computational heterogeneity of image generations, we develop a new family of Mixture-of-Experts (MoE) models (EC-DIT) for diffusion transformers with expert-choice routing. EC-DIT learns to adaptively optimize the compute allocated to understand the input texts and generate the respective image patches, enabling heterogeneous computation aligned with varying text-image complexities. This heterogeneity provides an efficient way of scaling EC-DIT up to 97 billion parameters and achieving significant improvements in training convergence, text-to-image alignment, and overall generation quality over dense models and conventional MoE models. Through extensive ablations, we show that EC-DIT demonstrates superior scalability and adaptive compute allocation by recognizing varying textual importance through end-to-end training. Notably, in text-to-image alignment evaluation, our largest models achieve a state-of-the-art GenEval score of 71.68% and still maintain competitive inference speed with intuitive interpretability.
♻ ☆ Robust Long-Range Perception Against Sensor Misalignment in Autonomous Vehicles
Advances in machine learning algorithms for sensor fusion have significantly improved the detection and prediction of other road users, thereby enhancing safety. However, even a small angular displacement in the sensor's placement can cause significant degradation in output, especially at long range. In this paper, we demonstrate a simple yet generic and efficient multi-task learning approach that not only detects misalignment between different sensor modalities but is also robust against them for long-range perception. Along with the amount of misalignment, our method also predicts calibrated uncertainty, which can be useful for filtering and fusing predicted misalignment values over time. In addition, we show that the predicted misalignment parameters can be used for self-correcting input sensor data, further improving the perception performance under sensor misalignment.
♻ ☆ Efficient Connectivity-Preserving Instance Segmentation with Supervoxel-Based Loss Function
Reconstructing the intricate local morphology of neurons and their long-range projecting axons can address many connectivity related questions in neuroscience. The main bottleneck in connectomics pipelines is correcting topological errors, as multiple entangled neuronal arbors is a challenging instance segmentation problem. More broadly, segmentation of curvilinear, filamentous structures continues to pose significant challenges. To address this problem, we extend the notion of simple points from digital topology to connected sets of voxels (i.e. supervoxels) and propose a topology-aware neural network segmentation method with minimal computational overhead. We demonstrate its effectiveness on a new public dataset of 3-d light microscopy images of mouse brains, along with the benchmark datasets DRIVE, ISBI12, and CrackTree.
♻ ☆ Exploring Advanced Techniques for Visual Question Answering: A Comprehensive Comparison
Visual Question Answering (VQA) has emerged as a pivotal task in the intersection of computer vision and natural language processing, requiring models to understand and reason about visual content in response to natural language questions. Analyzing VQA datasets is essential for developing robust models that can handle the complexities of multimodal reasoning. Several approaches have been developed to examine these datasets, each offering distinct perspectives on question diversity, answer distribution, and visual-textual correlations. Despite significant progress, existing VQA models face challenges related to dataset bias, limited model complexity, commonsense reasoning gaps, rigid evaluation methods, and generalization to real world scenarios. This paper offers a detailed study of the original VQA dataset, baseline models and methods along with a comparative study of five advanced VQA models, ABC-CNN, KICNLE, Masked Vision and Language Modeling, BLIP-2, and OFA, each employing distinct methods to address these ongoing challenges.
comment: 8 pages, No figures
♻ ☆ VILA-U: a Unified Foundation Model Integrating Visual Understanding and Generation
VILA-U is a Unified foundation model that integrates Video, Image, Language understanding and generation. Traditional visual language models (VLMs) use separate modules for understanding and generating visual content, which can lead to misalignment and increased complexity. In contrast, VILA-U employs a single autoregressive next-token prediction framework for both tasks, eliminating the need for additional components like diffusion models. This approach not only simplifies the model but also achieves near state-of-the-art performance in visual language understanding and generation. The success of VILA-U is attributed to two main factors: the unified vision tower that aligns discrete visual tokens with textual inputs during pretraining, which enhances visual perception, and autoregressive image generation can achieve similar quality as diffusion models with high-quality dataset. This allows VILA-U to perform comparably to more complex models using a fully token-based autoregressive framework.
comment: Code: https://github.com/mit-han-lab/vila-u. The first two authors contributed equally to this work
♻ ☆ CrowdSplat: Exploring Gaussian Splatting For Crowd Rendering
We present CrowdSplat, a novel approach that leverages 3D Gaussian Splatting for real-time, high-quality crowd rendering. Our method utilizes 3D Gaussian functions to represent animated human characters in diverse poses and outfits, which are extracted from monocular videos. We integrate Level of Detail (LoD) rendering to optimize computational efficiency and quality. The CrowdSplat framework consists of two stages: (1) avatar reconstruction and (2) crowd synthesis. The framework is also optimized for GPU memory usage to enhance scalability. Quantitative and qualitative evaluations show that CrowdSplat achieves good levels of rendering quality, memory efficiency, and computational performance. Through these experiments, we demonstrate that CrowdSplat is a viable solution for dynamic, realistic crowd simulation in real-time applications.
comment: 4 pages, 4 figures
♻ ☆ Evaluating CrowdSplat: Perceived Level of Detail for Gaussian Crowds
Efficient and realistic crowd rendering is an important element of many real-time graphics applications such as Virtual Reality (VR) and games. To this end, Levels of Detail (LOD) avatar representations such as polygonal meshes, image-based impostors, and point clouds have been proposed and evaluated. More recently, 3D Gaussian Splatting has been explored as a potential method for real-time crowd rendering. In this paper, we present a two-alternative forced choice (2AFC) experiment that aims to determine the perceived quality of 3D Gaussian avatars. Three factors were explored: Motion, LOD (i.e., #Gaussians), and the avatar height in Pixels (corresponding to the viewing distance). Participants viewed pairs of animated 3D Gaussian avatars and were tasked with choosing the most detailed one. Our findings can inform the optimization of LOD strategies in Gaussian-based crowd rendering, thereby helping to achieve efficient rendering while maintaining visual quality in real-time applications.
comment: 5 pages, 5 figures
♻ ☆ UFO: A Unified Approach to Fine-grained Visual Perception via Open-ended Language Interface
Generalist models have achieved remarkable success in both language and vision-language tasks, showcasing the potential of unified modeling. However, effectively integrating fine-grained perception tasks like detection and segmentation into these models remains a significant challenge. This is primarily because these tasks often rely heavily on task-specific designs and architectures that can complicate the modeling process. To address this challenge, we present \ours, a framework that \textbf{U}nifies \textbf{F}ine-grained visual perception tasks through an \textbf{O}pen-ended language interface. By transforming all perception targets into the language space, \ours unifies object-level detection, pixel-level segmentation, and image-level vision-language tasks into a single model. Additionally, we introduce a novel embedding retrieval approach that relies solely on the language interface to support segmentation tasks. Our framework bridges the gap between fine-grained perception and vision-language tasks, significantly simplifying architectural design and training strategies while achieving comparable or superior performance to methods with intricate task-specific designs. After multi-task training on five standard visual perception datasets, \ours outperforms the previous state-of-the-art generalist models by 12.3 mAP on COCO instance segmentation and 3.3 mIoU on ADE20K semantic segmentation. Furthermore, our method seamlessly integrates with existing MLLMs, effectively combining fine-grained perception capabilities with their advanced language abilities, thereby enabling more challenging tasks such as reasoning segmentation. Code and models are available at https://github.com/nnnth/UFO.
♻ ☆ HarmonySet: A Comprehensive Dataset for Understanding Video-Music Semantic Alignment and Temporal Synchronization CVPR 2025
This paper introduces HarmonySet, a comprehensive dataset designed to advance video-music understanding. HarmonySet consists of 48,328 diverse video-music pairs, annotated with detailed information on rhythmic synchronization, emotional alignment, thematic coherence, and cultural relevance. We propose a multi-step human-machine collaborative framework for efficient annotation, combining human insights with machine-generated descriptions to identify key transitions and assess alignment across multiple dimensions. Additionally, we introduce a novel evaluation framework with tasks and metrics to assess the multi-dimensional alignment of video and music, including rhythm, emotion, theme, and cultural context. Our extensive experiments demonstrate that HarmonySet, along with the proposed evaluation framework, significantly improves the ability of multimodal models to capture and analyze the intricate relationships between video and music.
comment: Accepted at CVPR 2025. Project page: https://harmonyset.github.io/
♻ ☆ A Comprehensive Survey on Composed Image Retrieval
Composed Image Retrieval (CIR) is an emerging yet challenging task that allows users to search for target images using a multimodal query, comprising a reference image and a modification text specifying the user's desired changes to the reference image. Given its significant academic and practical value, CIR has become a rapidly growing area of interest in the computer vision and machine learning communities, particularly with the advances in deep learning. To the best of our knowledge, there is currently no comprehensive review of CIR to provide a timely overview of this field. Therefore, we synthesize insights from over 120 publications in top conferences and journals, including ACM TOIS, SIGIR, and CVPR In particular, we systematically categorize existing supervised CIR and zero-shot CIR models using a fine-grained taxonomy. For a comprehensive review, we also briefly discuss approaches for tasks closely related to CIR, such as attribute-based CIR and dialog-based CIR. Additionally, we summarize benchmark datasets for evaluation and analyze existing supervised and zero-shot CIR methods by comparing experimental results across multiple datasets. Furthermore, we present promising future directions in this field, offering practical insights for researchers interested in further exploration. The curated collection of related works is maintained and continuously updated in https://github.com/haokunwen/Awesome-Composed-Image-Retrieval.
♻ ☆ WalkVLM:Aid Visually Impaired People Walking by Vision Language Model
Approximately 200 million individuals around the world suffer from varying degrees of visual impairment, making it crucial to leverage AI technology to offer walking assistance for these people. With the recent progress of vision-language models (VLMs), applying VLMs to offer walking guidance has become popular. However, the existing methods of walking guidance are mainly based on self-curated question-answering datasets that are not publicly accessible, without a standardized benchmark for training or evaluation. Moreover, walking assistance often requires real-time streaming video analysis and the generation of concise yet informative reminders, making VLMs struggle due to excessive responses and low efficiency in inferences. In this paper, we introduce the first large-scale dataset dedicated to walking assistance, comprising 12,000 video-annotation pairs, to provide a unified benchmark for training and evaluating systems to help visually-impaired individuals walk. Furthermore, a WalkVLM model is proposed, which employs chain of thought for hierarchical planning to generate concise but informative reminders and utilizes temporal-aware adaptive prediction to reduce the temporal redundancy of reminders. Finally, we have established a solid benchmark for blind walking task and verified the advantages of WalkVLM in stream video processing for this task compared to other VLMs. Our dataset and code are available at https://walkvlm2024.github.io.
♻ ☆ Rethinking High-speed Image Reconstruction Framework with Spike Camera AAAI2025
Spike cameras, as innovative neuromorphic devices, generate continuous spike streams to capture high-speed scenes with lower bandwidth and higher dynamic range than traditional RGB cameras. However, reconstructing high-quality images from the spike input under low-light conditions remains challenging. Conventional learning-based methods often rely on the synthetic dataset as the supervision for training. Still, these approaches falter when dealing with noisy spikes fired under the low-light environment, leading to further performance degradation in the real-world dataset. This phenomenon is primarily due to inadequate noise modelling and the domain gap between synthetic and real datasets, resulting in recovered images with unclear textures, excessive noise, and diminished brightness. To address these challenges, we introduce a novel spike-to-image reconstruction framework SpikeCLIP that goes beyond traditional training paradigms. Leveraging the CLIP model's powerful capability to align text and images, we incorporate the textual description of the captured scene and unpaired high-quality datasets as the supervision. Our experiments on real-world low-light datasets U-CALTECH and U-CIFAR demonstrate that SpikeCLIP significantly enhances texture details and the luminance balance of recovered images. Furthermore, the reconstructed images are well-aligned with the broader visual features needed for downstream tasks, ensuring more robust and versatile performance in challenging environments.
comment: Accepted by AAAI2025
♻ ☆ R2Det: Exploring Relaxed Rotation Equivariance in 2D object detection
Group Equivariant Convolution (GConv) empowers models to explore underlying symmetry in data, improving performance. However, real-world scenarios often deviate from ideal symmetric systems caused by physical permutation, characterized by non-trivial actions of a symmetry group, resulting in asymmetries that affect the outputs, a phenomenon known as Symmetry Breaking. Traditional GConv-based methods are constrained by rigid operational rules within group space, assuming data remains strictly symmetry after limited group transformations. This limitation makes it difficult to adapt to Symmetry-Breaking and non-rigid transformations. Motivated by this, we mainly focus on a common scenario: Rotational Symmetry-Breaking. By relaxing strict group transformations within Strict Rotation-Equivariant group $\mathbf{C}_n$, we redefine a Relaxed Rotation-Equivariant group $\mathbf{R}_n$ and introduce a novel Relaxed Rotation-Equivariant GConv (R2GConv) with only a minimal increase of $4n$ parameters compared to GConv. Based on R2GConv, we propose a Relaxed Rotation-Equivariant Network (R2Net) as the backbone and develop a Relaxed Rotation-Equivariant Object Detector (R2Det) for 2D object detection. Experimental results demonstrate the effectiveness of the proposed R2GConv in natural image classification, and R2Det achieves excellent performance in 2D object detection with improved generalization capabilities and robustness. The code is available in \texttt{https://github.com/wuer5/r2det}.
♻ ☆ WalnutData: A UAV Remote Sensing Dataset of Green Walnuts and Model Evaluation
The UAV technology is gradually maturing and can provide extremely powerful support for smart agriculture and precise monitoring. Currently, there is no dataset related to green walnuts in the field of agricultural computer vision. Thus, in order to promote the algorithm design in the field of agricultural computer vision, we used UAV to collect remote-sensing data from 8 walnut sample plots. Considering that green walnuts are subject to various lighting conditions and occlusion, we constructed a large-scale dataset with a higher-granularity of target features - WalnutData. This dataset contains a total of 30,240 images and 706,208 instances, and there are 4 target categories: being illuminated by frontal light and unoccluded (A1), being backlit and unoccluded (A2), being illuminated by frontal light and occluded (B1), and being backlit and occluded (B2). Subsequently, we evaluated many mainstream algorithms on WalnutData and used these evaluation results as the baseline standard. The dataset and all evaluation results can be obtained at https://github.com/1wuming/WalnutData.
♻ ☆ PainDiffusion: Learning to Express Pain
Accurate pain expression synthesis is essential for improving clinical training and human-robot interaction. Current Robotic Patient Simulators (RPSs) lack realistic pain facial expressions, limiting their effectiveness in medical training. In this work, we introduce PainDiffusion, a generative model that synthesizes naturalistic facial pain expressions. Unlike traditional heuristic or autoregressive methods, PainDiffusion operates in a continuous latent space, ensuring smoother and more natural facial motion while supporting indefinite-length generation via diffusion forcing. Our approach incorporates intrinsic characteristics such as pain expressiveness and emotion, allowing for personalized and controllable pain expression synthesis. We train and evaluate our model using the BioVid HeatPain Database. Additionally, we integrate PainDiffusion into a robotic system to assess its applicability in real-time rehabilitation exercises. Qualitative studies with clinicians reveal that PainDiffusion produces realistic pain expressions, with a 31.2% (std 4.8%) preference rate against ground-truth recordings. Our results suggest that PainDiffusion can serve as a viable alternative to real patients in clinical training and simulation, bridging the gap between synthetic and naturalistic pain expression. Code and videos are available at: https://damtien444.github.io/paindf/
comment: 8 pages, 9 figures
♻ ☆ MedFuncta: Modality-Agnostic Representations Based on Efficient Neural Fields
Recent research in medical image analysis with deep learning almost exclusively focuses on grid- or voxel-based data representations. We challenge this common choice by introducing MedFuncta, a modality-agnostic continuous data representation based on neural fields. We demonstrate how to scale neural fields from single instances to large datasets by exploiting redundancy in medical signals and by applying an efficient meta-learning approach with a context reduction scheme. We further address the spectral bias in commonly used SIREN activations, by introducing an $\omega_0$-schedule, improving reconstruction quality and convergence speed. We validate our proposed approach on a large variety of medical signals of different dimensions and modalities (1D: ECG; 2D: Chest X-ray, Retinal OCT, Fundus Camera, Dermatoscope, Colon Histopathology, Cell Microscopy; 3D: Brain MRI, Lung CT) and successfully demonstrate that we can solve relevant downstream tasks on these representations. We additionally release a large-scale dataset of > 550k annotated neural fields to promote research in this direction.
comment: Project page: https://pfriedri.github.io/medfuncta-io/ Code and Dataset: https://github.com/pfriedri/medfuncta/
♻ ☆ Interpretable Interaction Modeling for Trajectory Prediction via Agent Selection and Physical Coefficient SP
A thorough understanding of the interaction between the target agent and surrounding agents is a prerequisite for accurate trajectory prediction. Although many methods have been explored, they assign correlation coefficients to surrounding agents in a purely learning-based manner. In this study, we present ASPILin, which manually selects interacting agents and replaces the attention scores in Transformer with a newly computed physical correlation coefficient, enhancing the interpretability of interaction modeling. Surprisingly, these simple modifications can significantly improve prediction performance and substantially reduce computational costs. We intentionally simplified our model in other aspects, such as map encoding. Remarkably, experiments conducted on the INTERACTION, highD, and CitySim datasets demonstrate that our method is efficient and straightforward, outperforming other state-of-the-art methods.
comment: code:https://github.com/kkk00714/ASPILin
♻ ☆ Augmenting Chest X-ray Datasets with Non-Expert Annotations
The advancement of machine learning algorithms in medical image analysis requires the expansion of training datasets. A popular and cost-effective approach is automated annotation extraction from free-text medical reports, primarily due to the high costs associated with expert clinicians annotating medical images, such as chest X-rays. However, it has been shown that the resulting datasets are susceptible to biases and shortcuts. Another strategy to increase the size of a dataset is crowdsourcing, a widely adopted practice in general computer vision with some success in medical image analysis. In a similar vein to crowdsourcing, we enhance two publicly available chest X-ray datasets by incorporating non-expert annotations. However, instead of using diagnostic labels, we annotate shortcuts in the form of tubes. We collect 3.5k chest drain annotations for NIH-CXR14, and 1k annotations for four different tube types in PadChest, and create the Non-Expert Annotations of Tubes in X-rays (NEATX) dataset. We train a chest drain detector with the non-expert annotations that generalizes well to expert labels. Moreover, we compare our annotations to those provided by experts and show "moderate" to "almost perfect" agreement. Finally, we present a pathology agreement study to raise awareness about the quality of ground truth annotations. We make our dataset available at https://zenodo.org/records/14944064 and our code available at https://github.com/purrlab/chestxr-label-reliability.
♻ ☆ Memory-Efficient Optical Flow via Radius-Distribution Orthogonal Cost Volume
The full 4D cost volume in Recurrent All-Pairs Field Transforms (RAFT) or global matching by Transformer achieves impressive performance for optical flow estimation. However, their memory consumption increases quadratically with input resolution, rendering them impractical for high-resolution images. In this paper, we present MeFlow, a novel memory-efficient method for high-resolution optical flow estimation. The key of MeFlow is a recurrent local orthogonal cost volume representation, which decomposes the 2D search space dynamically into two 1D orthogonal spaces, enabling our method to scale effectively to very high-resolution inputs. To preserve essential information in the orthogonal space, we utilize self attention to propagate feature information from the 2D space to the orthogonal space. We further propose a radius-distribution multi-scale lookup strategy to model the correspondences of large displacements at a negligible cost. We verify the efficiency and effectiveness of our method on the challenging Sintel and KITTI benchmarks, and real-world 4K ($2160\!\times\!3840$) images. Our method achieves competitive performance on both Sintel and KITTI benchmarks, while maintaining the highest memory efficiency on high-resolution inputs.
comment: 10 pages, 9 figures
♻ ☆ Deep Height Decoupling for Precise Vision-based 3D Occupancy Prediction
The task of vision-based 3D occupancy prediction aims to reconstruct 3D geometry and estimate its semantic classes from 2D color images, where the 2D-to-3D view transformation is an indispensable step. Most previous methods conduct forward projection, such as BEVPooling and VoxelPooling, both of which map the 2D image features into 3D grids. However, the current grid representing features within a certain height range usually introduces many confusing features that belong to other height ranges. To address this challenge, we present Deep Height Decoupling (DHD), a novel framework that incorporates explicit height prior to filter out the confusing features. Specifically, DHD first predicts height maps via explicit supervision. Based on the height distribution statistics, DHD designs Mask Guided Height Sampling (MGHS) to adaptively decouple the height map into multiple binary masks. MGHS projects the 2D image features into multiple subspaces, where each grid contains features within reasonable height ranges. Finally, a Synergistic Feature Aggregation (SFA) module is deployed to enhance the feature representation through channel and spatial affinities, enabling further occupancy refinement. On the popular Occ3D-nuScenes benchmark, our method achieves state-of-the-art performance even with minimal input frames. Source code is released at https://github.com/yanzq95/DHD.
♻ ☆ Dual Consolidation for Pre-Trained Model-Based Domain-Incremental Learning CVPR 2025
Domain-Incremental Learning (DIL) involves the progressive adaptation of a model to new concepts across different domains. While recent advances in pre-trained models provide a solid foundation for DIL, learning new concepts often results in the catastrophic forgetting of pre-trained knowledge. Specifically, sequential model updates can overwrite both the representation and the classifier with knowledge from the latest domain. Thus, it is crucial to develop a representation and corresponding classifier that accommodate all seen domains throughout the learning process. To this end, we propose DUal ConsolidaTion (Duct) to unify and consolidate historical knowledge at both the representation and classifier levels. By merging the backbone of different stages, we create a representation space suitable for multiple domains incrementally. The merged representation serves as a balanced intermediary that captures task-specific features from all seen domains. Additionally, to address the mismatch between consolidated embeddings and the classifier, we introduce an extra classifier consolidation process. Leveraging class-wise semantic information, we estimate the classifier weights of old domains within the latest embedding space. By merging historical and estimated classifiers, we align them with the consolidated embedding space, facilitating incremental classification. Extensive experimental results on four benchmark datasets demonstrate Duct's state-of-the-art performance. Code is available at https://github.com/Estrella-fugaz/CVPR25-Duct
comment: Accepted to CVPR 2025. Code is available at https://github.com/Estrella-fugaz/CVPR25-Duct
♻ ☆ DermaSynth: Rich Synthetic Image-Text Pairs Using Open Access Dermatology Datasets
A major barrier to developing vision large language models (LLMs) in dermatology is the lack of large image--text pairs dataset. We introduce DermaSynth, a dataset comprising of 92,020 synthetic image--text pairs curated from 45,205 images (13,568 clinical and 35,561 dermatoscopic) for dermatology-related clinical tasks. Leveraging state-of-the-art LLMs, using Gemini 2.0, we used clinically related prompts and self-instruct method to generate diverse and rich synthetic texts. Metadata of the datasets were incorporated into the input prompts by targeting to reduce potential hallucinations. The resulting dataset builds upon open access dermatological image repositories (DERM12345, BCN20000, PAD-UFES-20, SCIN, and HIBA) that have permissive CC-BY-4.0 licenses. We also fine-tuned a preliminary Llama-3.2-11B-Vision-Instruct model, DermatoLlama 1.0, on 5,000 samples. We anticipate this dataset to support and accelerate AI research in dermatology. Data and code underlying this work are accessible at https://github.com/abdurrahimyilmaz/DermaSynth.
comment: 12 pages, 4 figures
♻ ☆ Order Theory in the Context of Machine Learning NeurIPS
The paper ``Tropical Geometry of Deep Neural Networks'' by L. Zhang et al. introduces an equivalence between integer-valued neural networks (IVNN) with $\text{ReLU}_{t}$ and tropical rational functions, which come with a map to polytopes. Here, IVNN refers to a network with integer weights but real biases, and $\text{ReLU}_{t}$ is defined as $\text{ReLU}_{t}(x)=\max(x,t)$ for $t\in\mathbb{R}\cup\{-\infty\}$. For every poset with $n$ points, there exists a corresponding order polytope, i.e., a convex polytope in the unit cube $[0,1]^n$ whose coordinates obey the inequalities of the poset. We study neural networks whose associated polytope is an order polytope. We then explain how posets with four points induce neural networks that can be interpreted as $2\times 2$ convolutional filters. These poset filters can be added to any neural network, not only IVNN. Similarly to maxout, poset pooling filters update the weights of the neural network during backpropagation with more precision than average pooling, max pooling, or mixed pooling, without the need to train extra parameters. We report experiments that support our statements. We also define the structure of algebra over the operad of posets on poset neural networks and tropical polynomials. This formalism allows us to study the composition of poset neural network arquitectures and the effect on their corresponding Newton polytopes, via the introduction of the generalization of two operations on polytopes: the Minkowski sum and the convex envelope.
comment: We added experiments with ImageNet 100, and improved the exposition of the theory developed. Added examples. Poster presentation in NeurIPS WIML 2024, Talk in JMM 2025 section: Applied category theory II
♻ ☆ Smoothing Grounding and Reasoning for MLLM-Powered GUI Agents with Query-Oriented Pivot Tasks
Perception-enhanced pre-training, particularly through grounding techniques, is widely adopted to enhance the performance of graphical user interface (GUI) agents. However, in resource-constrained scenarios, the format discrepancy between coordinate-oriented grounding and action-oriented reasoning limits the effectiveness of grounding for reasoning tasks. To address this challenge, we propose a query-oriented pivot approach called query inference, which serves as a bridge between GUI grounding and reasoning. By inferring potential user queries from a screenshot and its associated element coordinates, query inference improves the understanding of coordinates while aligning more closely with reasoning tasks. Experimental results show that query inference outperforms previous grounding techniques under the same training data scale. Notably, query inference achieves comparable or even better performance to large-scale grounding-enhanced OS-Atlas with less than 0.1% of training data. Furthermore, we explore the impact of reasoning formats and demonstrate that integrating additional semantic information into the input further boosts reasoning performance. The code is publicly available at https://github.com/ZrW00/GUIPivot.
♻ ☆ D$^2$-DPM: Dual Denoising for Quantized Diffusion Probabilistic Models AAAI2025
Diffusion models have achieved cutting-edge performance in image generation. However, their lengthy denoising process and computationally intensive score estimation network impede their scalability in low-latency and resource-constrained scenarios. Post-training quantization (PTQ) compresses and accelerates diffusion models without retraining, but it inevitably introduces additional quantization noise, resulting in mean and variance deviations. In this work, we propose D2-DPM, a dual denoising mechanism aimed at precisely mitigating the adverse effects of quantization noise on the noise estimation network. Specifically, we first unravel the impact of quantization noise on the sampling equation into two components: the mean deviation and the variance deviation. The mean deviation alters the drift coefficient of the sampling equation, influencing the trajectory trend, while the variance deviation magnifies the diffusion coefficient, impacting the convergence of the sampling trajectory. The proposed D2-DPM is thus devised to denoise the quantization noise at each time step, and then denoise the noisy sample through the inverse diffusion iterations. Experimental results demonstrate that D2-DPM achieves superior generation quality, yielding a 1.42 lower FID than the full-precision model while achieving 3.99x compression and 11.67x bit-operation acceleration.
comment: 9 pages, 4 figures, acceptted by AAAI2025, the code is available at https://github.com/taylorjocelyn/d2-dpm
♻ ☆ InstaFace: Identity-Preserving Facial Editing with Single Image Inference
Facial appearance editing is crucial for digital avatars, AR/VR, and personalized content creation, driving realistic user experiences. However, preserving identity with generative models is challenging, especially in scenarios with limited data availability. Traditional methods often require multiple images and still struggle with unnatural face shifts, inconsistent hair alignment, or excessive smoothing effects. To overcome these challenges, we introduce a novel diffusion-based framework, InstaFace, to generate realistic images while preserving identity using only a single image. Central to InstaFace, we introduce an efficient guidance network that harnesses 3D perspectives by integrating multiple 3DMM-based conditionals without introducing additional trainable parameters. Moreover, to ensure maximum identity retention as well as preservation of background, hair, and other contextual features like accessories, we introduce a novel module that utilizes feature embeddings from a facial recognition model and a pre-trained vision-language model. Quantitative evaluations demonstrate that our method outperforms several state-of-the-art approaches in terms of identity preservation, photorealism, and effective control of pose, expression, and lighting.
♻ ☆ GenConViT: Deepfake Video Detection Using Generative Convolutional Vision Transformer
Deepfakes have raised significant concerns due to their potential to spread false information and compromise digital media integrity. Current deepfake detection models often struggle to generalize across a diverse range of deepfake generation techniques and video content. In this work, we propose a Generative Convolutional Vision Transformer (GenConViT) for deepfake video detection. Our model combines ConvNeXt and Swin Transformer models for feature extraction, and it utilizes Autoencoder and Variational Autoencoder to learn from the latent data distribution. By learning from the visual artifacts and latent data distribution, GenConViT achieves improved performance in detecting a wide range of deepfake videos. The model is trained and evaluated on DFDC, FF++, TM, DeepfakeTIMIT, and Celeb-DF (v$2$) datasets. The proposed GenConViT model demonstrates strong performance in deepfake video detection, achieving high accuracy across the tested datasets. While our model shows promising results in deepfake video detection by leveraging visual and latent features, we demonstrate that further work is needed to improve its generalizability, i.e., when encountering out-of-distribution data. Our model provides an effective solution for identifying a wide range of fake videos while preserving media integrity. The open-source code for GenConViT is available at https://github.com/erprogs/GenConViT.
comment: 11 pages, 4 figures
♻ ☆ AVD2: Accident Video Diffusion for Accident Video Description ICRA 2025
Traffic accidents present complex challenges for autonomous driving, often featuring unpredictable scenarios that hinder accurate system interpretation and responses. Nonetheless, prevailing methodologies fall short in elucidating the causes of accidents and proposing preventive measures due to the paucity of training data specific to accident scenarios. In this work, we introduce AVD2 (Accident Video Diffusion for Accident Video Description), a novel framework that enhances accident scene understanding by generating accident videos that aligned with detailed natural language descriptions and reasoning, resulting in the contributed EMM-AU (Enhanced Multi-Modal Accident Video Understanding) dataset. Empirical results reveal that the integration of the EMM-AU dataset establishes state-of-the-art performance across both automated metrics and human evaluations, markedly advancing the domains of accident analysis and prevention. Project resources are available at https://an-answer-tree.github.io
comment: ICRA 2025, Project Page: https://an-answer-tree.github.io/
♻ ☆ Replay Consolidation with Label Propagation for Continual Object Detection
Continual Learning (CL) aims to learn new data while remembering previously acquired knowledge. In contrast to CL for image classification, CL for Object Detection faces additional challenges such as the missing annotations problem. In this scenario, images from previous tasks may contain instances of unknown classes that could reappear as labeled in future tasks, leading to task interference in replay-based approaches. Consequently, most approaches in the literature have focused on distillation-based techniques, which are effective when there is a significant class overlap between tasks. In our work, we propose an alternative to distillation-based approaches with a novel approach called Replay Consolidation with Label Propagation for Object Detection (RCLPOD). RCLPOD enhances the replay memory by improving the quality of the stored samples through a technique that promotes class balance while also improving the quality of the ground truth associated with these samples through a technique called label propagation. RCLPOD outperforms existing techniques on well-established benchmarks such as VOC and COC. Moreover, our approach is developed to work with modern architectures like YOLOv8, making it suitable for dynamic, real-world applications such as autonomous driving and robotics, where continuous learning and resource efficiency are essential.
♻ ☆ Human Insights Driven Latent Space for Different Driving Perspectives: A Unified Encoder for Efficient Multi-Task Inference
Autonomous driving systems require a comprehensive understanding of the environment, achieved by extracting visual features essential for perception, planning, and control. However, models trained solely on single-task objectives or generic datasets often lack the contextual information needed for robust performance in complex driving scenarios. In this work, we propose a unified encoder trained on multiple computer vision tasks crucial for urban driving, including depth, pose, and 3D scene flow estimation, as well as semantic, instance, panoptic, and motion segmentation. By integrating these diverse visual cues-similar to human perceptual mechanisms-the encoder captures rich features that enhance navigation-related predictions. We evaluate the model on steering estimation as a downstream task, leveraging its dense latent space. To ensure efficient multi-task learning, we introduce a multi-scale feature network for pose estimation and apply knowledge distillation from a multi-backbone teacher model. Our findings highlight two key findings: (1) the unified encoder achieves competitive performance across all visual perception tasks, demonstrating strong generalization capabilities; and (2) for steering estimation, the frozen unified encoder-leveraging dense latent representations-outperforms both its fine-tuned counterpart and the same frozen model pretrained on generic datasets like ImageNet. These results underline the significance of task-specific visual features and demonstrate the promise of multi-task learning in advancing autonomous driving systems. More details and the pretrained model are available at https://hi-computervision.github.io/uni-encoder/.
♻ ☆ Assessing Robustness via Score-Based Adversarial Image Generation
Most adversarial attacks and defenses focus on perturbations within small $\ell_p$-norm constraints. However, $\ell_p$ threat models cannot capture all relevant semantics-preserving perturbations, and hence, the scope of robustness evaluations is limited. In this work, we introduce Score-Based Adversarial Generation (ScoreAG), a novel framework that leverages the advancements in score-based generative models to generate unrestricted adversarial examples that overcome the limitations of $\ell_p$-norm constraints. Unlike traditional methods, ScoreAG maintains the core semantics of images while generating adversarial examples, either by transforming existing images or synthesizing new ones entirely from scratch. We further exploit the generative capability of ScoreAG to purify images, empirically enhancing the robustness of classifiers. Our extensive empirical evaluation demonstrates that ScoreAG improves upon the majority of state-of-the-art attacks and defenses across multiple benchmarks. This work highlights the importance of investigating adversarial examples bounded by semantics rather than $\ell_p$-norm constraints. ScoreAG represents an important step towards more encompassing robustness assessments.
♻ ☆ Unposed Sparse Views Room Layout Reconstruction in the Age of Pretrain Model ICLR 2025
Room layout estimation from multiple-perspective images is poorly investigated due to the complexities that emerge from multi-view geometry, which requires muti-step solutions such as camera intrinsic and extrinsic estimation, image matching, and triangulation. However, in 3D reconstruction, the advancement of recent 3D foundation models such as DUSt3R has shifted the paradigm from the traditional multi-step structure-from-motion process to an end-to-end single-step approach. To this end, we introduce Plane-DUSt3R, a novel method for multi-view room layout estimation leveraging the 3D foundation model DUSt3R. Plane-DUSt3R incorporates the DUSt3R framework and fine-tunes on a room layout dataset (Structure3D) with a modified objective to estimate structural planes. By generating uniform and parsimonious results, Plane-DUSt3R enables room layout estimation with only a single post-processing step and 2D detection results. Unlike previous methods that rely on single-perspective or panorama image, Plane-DUSt3R extends the setting to handle multiple-perspective images. Moreover, it offers a streamlined, end-to-end solution that simplifies the process and reduces error accumulation. Experimental results demonstrate that Plane-DUSt3R not only outperforms state-of-the-art methods on the synthetic dataset but also proves robust and effective on in the wild data with different image styles such as cartoon. Our code is available at: https://github.com/justacar/Plane-DUSt3R
comment: Accepted by ICLR 2025. Github page:https://github.com/justacar/Plane-DUSt3R
♻ ☆ A Simple and Effective Reinforcement Learning Method for Text-to-Image Diffusion Fine-tuning
Reinforcement learning ( RL)-based fine-tuning has emerged as a powerful approach for aligning diffusion models with black-box objectives. Proximal policy optimization (PPO) is the most popular choice of method for policy optimization. While effective in terms of performance, PPO is highly sensitive to hyper-parameters and involves substantial computational overhead. REINFORCE, on the other hand, mitigates some computational complexities such as high memory overhead and sensitive hyper-parameter tuning, but has suboptimal performance due to high-variance and sample inefficiency. While the variance of the REINFORCE can be reduced by sampling multiple actions per input prompt and using a baseline correction term, it still suffers from sample inefficiency. To address these challenges, we systematically analyze the efficiency-effectiveness trade-off between REINFORCE and PPO, and propose leave-one-out PPO ( LOOP), a novel RL for diffusion fine-tuning method. LOOP combines variance reduction techniques from REINFORCE, such as sampling multiple actions per input prompt and a baseline correction term, with the robustness and sample efficiency of PPO via clipping and importance sampling. Our results demonstrate that LOOP effectively improves diffusion models on various black-box objectives, and achieves a better balance between computational efficiency and performance.
♻ ☆ OpenFly: A Versatile Toolchain and Large-scale Benchmark for Aerial Vision-Language Navigation
Vision-Language Navigation (VLN) aims to guide agents through an environment by leveraging both language instructions and visual cues, playing a pivotal role in embodied AI. Indoor VLN has been extensively studied, whereas outdoor aerial VLN remains underexplored. The potential reason is that outdoor aerial view encompasses vast areas, making data collection more challenging, which results in a lack of benchmarks. To address this problem, we propose OpenFly, a platform comprising a versatile toolchain and large-scale benchmark for aerial VLN. Firstly, we develop a highly automated toolchain for data collection, enabling automatic point cloud acquisition, scene semantic segmentation, flight trajectory creation, and instruction generation. Secondly, based on the toolchain, we construct a large-scale aerial VLN dataset with 100k trajectories, covering diverse heights and lengths across 18 scenes. The corresponding visual data are generated using various rendering engines and advanced techniques, including Unreal Engine, GTA V, Google Earth, and 3D Gaussian Splatting (3D GS). All data exhibit high visual quality. Particularly, 3D GS supports real-to-sim rendering, further enhancing the realism of the dataset. Thirdly, we propose OpenFly-Agent, a keyframe-aware VLN model, which takes language instructions, current observations, and historical keyframes as input, and outputs flight actions directly. Extensive analyses and experiments are conducted, showcasing the superiority of our OpenFly platform and OpenFly-Agent. The toolchain, dataset, and codes will be open-sourced.
♻ ☆ Non-rigid Structure-from-Motion: Temporally-smooth Procrustean Alignment and Spatially-variant Deformation Modeling CVPR 2024
Even though Non-rigid Structure-from-Motion (NRSfM) has been extensively studied and great progress has been made, there are still key challenges that hinder their broad real-world applications: 1) the inherent motion/rotation ambiguity requires either explicit camera motion recovery with extra constraint or complex Procrustean Alignment; 2) existing low-rank modeling of the global shape can over-penalize drastic deformations in the 3D shape sequence. This paper proposes to resolve the above issues from a spatial-temporal modeling perspective. First, we propose a novel Temporally-smooth Procrustean Alignment module that estimates 3D deforming shapes and adjusts the camera motion by aligning the 3D shape sequence consecutively. Our new alignment module remedies the requirement of complex reference 3D shape during alignment, which is more conductive to non-isotropic deformation modeling. Second, we propose a spatial-weighted approach to enforce the low-rank constraint adaptively at different locations to accommodate drastic spatially-variant deformation reconstruction better. Our modeling outperform existing low-rank based methods, and extensive experiments across different datasets validate the effectiveness of our method.
comment: Accepted by CVPR 2024; The new version adds additional experiments and corrects typos
♻ ☆ TwinLiteNetPlus: A Stronger Model for Real-time Drivable Area and Lane Segmentation
Semantic segmentation is crucial for autonomous driving, particularly for Drivable Area and Lane Segmentation, ensuring safety and navigation. To address the high computational costs of current state-of-the-art (SOTA) models, this paper introduces TwinLiteNetPlus (TwinLiteNet$^+$), a model adept at balancing efficiency and accuracy. TwinLiteNet$^+$ incorporates standard and depth-wise separable dilated convolutions, reducing complexity while maintaining high accuracy. It is available in four configurations, from the robust 1.94 million-parameter TwinLiteNet$^+_{\text{Large}}$ to the ultra-compact 34K-parameter TwinLiteNet$^+_{\text{Nano}}$. Notably, TwinLiteNet$^+_{\text{Large}}$ attains a 92.9\% mIoU for Drivable Area Segmentation and a 34.2\% IoU for Lane Segmentation. These results notably outperform those of current SOTA models while requiring a computational cost that is approximately 11 times lower in terms of Floating Point Operations (FLOPs) compared to the existing SOTA model. Extensively tested on various embedded devices, TwinLiteNet$^+$ demonstrates promising latency and power efficiency, underscoring its suitability for real-world autonomous vehicle applications.
♻ ☆ Unified Video Action Model
A unified video and action model holds significant promise for robotics, where videos provide rich scene information for action prediction, and actions provide dynamics information for video prediction. However, effectively combining video generation and action prediction remains challenging, and current video generation-based methods struggle to match the performance of direct policy learning in action accuracy and inference speed. To bridge this gap, we introduce the Unified Video Action model (UVA), which jointly optimizes video and action predictions to achieve both high accuracy and efficient action inference. The key lies in learning a joint video-action latent representation and decoupling video-action decoding. The joint latent representation bridges the visual and action domains, effectively modeling the relationship between video and action sequences. Meanwhile, the decoupled decoding, powered by two lightweight diffusion heads, enables high-speed action inference by bypassing video generation during inference. Such a unified framework further enables versatile functionality through masked input training. By selectively masking actions or videos, a single model can tackle diverse tasks beyond policy learning, such as forward and inverse dynamics modeling and video generation. Via an extensive set of experiments, we demonstrate that UVA can serve as a general-purpose solution for a wide range of robotics tasks, such as policy learning, forward/inverse dynamics and video observation prediction, without compromising performance compared to methods tailored for specific applications. Results are best viewed on https://unified-video-action-model.github.io/.
comment: Project website: https://unified-video-action-model.github.io/
♻ ☆ SeqAfford: Sequential 3D Affordance Reasoning via Multimodal Large Language Model
3D affordance segmentation aims to link human instructions to touchable regions of 3D objects for embodied manipulations. Existing efforts typically adhere to single-object, single-affordance paradigms, where each affordance type or explicit instruction strictly corresponds to a specific affordance region and are unable to handle long-horizon tasks. Such a paradigm cannot actively reason about complex user intentions that often imply sequential affordances. In this paper, we introduce the Sequential 3D Affordance Reasoning task, which extends the traditional paradigm by reasoning from cumbersome user intentions and then decomposing them into a series of segmentation maps. Toward this, we construct the first instruction-based affordance segmentation benchmark that includes reasoning over both single and sequential affordances, comprising 180K instruction-point cloud pairs. Based on the benchmark, we propose our model, SeqAfford, to unlock the 3D multi-modal large language model with additional affordance segmentation abilities, which ensures reasoning with world knowledge and fine-grained affordance grounding in a cohesive framework. We further introduce a multi-granular language-point integration module to endow 3D dense prediction. Extensive experimental evaluations show that our model excels over well-established methods and exhibits open-world generalization with sequential reasoning abilities.
♻ ☆ VideoRAG: Retrieval-Augmented Generation over Video Corpus
Retrieval-Augmented Generation (RAG) is a powerful strategy for improving the factual accuracy of models by retrieving external knowledge relevant to queries and incorporating it into the generation process. However, existing approaches primarily focus on text, with some recent advancements considering images, and they largely overlook videos, a rich source of multimodal knowledge capable of representing contextual details more effectively than any other modality. While very recent studies explore the use of videos in response generation, they either predefine query-associated videos without retrieval or convert videos into textual descriptions losing multimodal richness. To tackle these, we introduce VideoRAG, a framework that not only dynamically retrieves videos based on their relevance with queries but also utilizes both visual and textual information. The operation of VideoRAG is powered by recent Large Video Language Models (LVLMs), which enable the direct processing of video content to represent it for retrieval and the seamless integration of retrieved videos jointly with queries for response generation. Also, inspired by that the context size of LVLMs may not be sufficient to process all frames in extremely long videos and not all frames are equally important, we introduce a video frame selection mechanism to extract the most informative subset of frames, along with a strategy to extract textual information from videos (as it can aid the understanding of video content) when their subtitles are not available. We experimentally validate the effectiveness of VideoRAG, showcasing that it is superior to relevant baselines. Code is available at https://github.com/starsuzi/VideoRAG.
♻ ☆ Generalized Gaussian Model for Learned Image Compression
In learned image compression, probabilistic models play an essential role in characterizing the distribution of latent variables. The Gaussian model with mean and scale parameters has been widely used for its simplicity and effectiveness. Probabilistic models with more parameters, such as the Gaussian mixture models, can fit the distribution of latent variables more precisely, but the corresponding complexity is higher. To balance the compression performance and complexity, we extend the Gaussian model to the generalized Gaussian family for more flexible latent distribution modeling, introducing only one additional shape parameter beta than the Gaussian model. To enhance the performance of the generalized Gaussian model by alleviating the train-test mismatch, we propose improved training methods, including beta-dependent lower bounds for scale parameters and gradient rectification. Our proposed generalized Gaussian model, coupled with the improved training methods, is demonstrated to outperform the Gaussian and Gaussian mixture models on a variety of learned image compression networks.
comment: 19 pages, 16 figures
♻ ☆ SelaFD:Seamless Adaptation of Vision Transformer Fine-tuning for Radar-based Human Activity Recognition
Human Activity Recognition (HAR) such as fall detection has become increasingly critical due to the aging population, necessitating effective monitoring systems to prevent serious injuries and fatalities associated with falls. This study focuses on fine-tuning the Vision Transformer (ViT) model specifically for HAR using radar-based Time-Doppler signatures. Unlike traditional image datasets, these signals present unique challenges due to their non-visual nature and the high degree of similarity among various activities. Directly fine-tuning the ViT with all parameters proves suboptimal for this application. To address this challenge, we propose a novel approach that employs Low-Rank Adaptation (LoRA) fine-tuning in the weight space to facilitate knowledge transfer from pre-trained ViT models. Additionally, to extract fine-grained features, we enhance feature representation through the integration of a serial-parallel adapter in the feature space. Our innovative joint fine-tuning method, tailored for radar-based Time-Doppler signatures, significantly improves HAR accuracy, surpassing existing state-of-the-art methodologies in this domain. Our code is released at https://github.com/wangyijunlyy/SelaFD.
♻ ☆ PolaFormer: Polarity-aware Linear Attention for Vision Transformers
Linear attention has emerged as a promising alternative to softmax-based attention, leveraging kernelized feature maps to reduce complexity from quadratic to linear in sequence length. However, the non-negative constraint on feature maps and the relaxed exponential function used in approximation lead to significant information loss compared to the original query-key dot products, resulting in less discriminative attention maps with higher entropy. To address the missing interactions driven by negative values in query-key pairs, we propose a polarity-aware linear attention mechanism that explicitly models both same-signed and opposite-signed query-key interactions, ensuring comprehensive coverage of relational information. Furthermore, to restore the spiky properties of attention maps, we provide a theoretical analysis proving the existence of a class of element-wise functions (with positive first and second derivatives) that can reduce entropy in the attention distribution. For simplicity, and recognizing the distinct contributions of each dimension, we employ a learnable power function for rescaling, allowing strong and weak attention signals to be effectively separated. Extensive experiments demonstrate that the proposed PolaFormer improves performance on various vision tasks, enhancing both expressiveness and efficiency by up to 4.6%.
♻ ☆ Evaluating the Robustness of LiDAR Point Cloud Tracking Against Adversarial Attack
In this study, we delve into the robustness of neural network-based LiDAR point cloud tracking models under adversarial attacks, a critical aspect often overlooked in favor of performance enhancement. These models, despite incorporating advanced architectures like Transformer or Bird's Eye View (BEV), tend to neglect robustness in the face of challenges such as adversarial attacks, domain shifts, or data corruption. We instead focus on the robustness of the tracking models under the threat of adversarial attacks. We begin by establishing a unified framework for conducting adversarial attacks within the context of 3D object tracking, which allows us to thoroughly investigate both white-box and black-box attack strategies. For white-box attacks, we tailor specific loss functions to accommodate various tracking paradigms and extend existing methods such as FGSM, C\&W, and PGD to the point cloud domain. In addressing black-box attack scenarios, we introduce a novel transfer-based approach, the Target-aware Perturbation Generation (TAPG) algorithm, with the dual objectives of achieving high attack performance and maintaining low perceptibility. This method employs a heuristic strategy to enforce sparse attack constraints and utilizes random sub-vector factorization to bolster transferability. Our experimental findings reveal a significant vulnerability in advanced tracking methods when subjected to both black-box and white-box attacks, underscoring the necessity for incorporating robustness against adversarial attacks into the design of LiDAR point cloud tracking models. Notably, compared to existing methods, the TAPG also strikes an optimal balance between the effectiveness of the attack and the concealment of the perturbations.
♻ ☆ Tera-MIND: Tera-scale mouse brain simulation via spatial mRNA-guided diffusion
Holistic 3D modeling of molecularly defined brain structures is crucial for understanding complex brain functions. Emerging tissue profiling technologies enable the construction of a comprehensive atlas of the mammalian brain with sub-cellular resolution and spatially resolved gene expression data. However, such tera-scale volumetric datasets present significant computational challenges in understanding complex brain functions within their native 3D spatial context. Here, we propose the novel generative approach $\textbf{Tera-MIND}$, which can simulate $\textbf{Tera}$-scale $\textbf{M}$ouse bra$\textbf{IN}$s in 3D using a patch-based and boundary-aware $\textbf{D}$iffusion model. Taking spatial transcriptomic data as the conditional input, we generate virtual mouse brains with comprehensive cellular morphological detail at teravoxel scale. Through the lens of 3D $gene$-$gene$ self-attention, we identify spatial molecular interactions for key transcriptomic pathways in the murine brain, exemplified by glutamatergic and dopaminergic neuronal systems. Importantly, these $in$-$silico$ biological findings are consistent and reproducible across three tera-scale virtual mouse brains. Therefore, Tera-MIND showcases a promising path toward efficient and generative simulations of whole organ systems for biomedical research. Project website: https://musikisomorphie.github.io/Tera-MIND.html
♻ ☆ An Efficient 3D Convolutional Neural Network with Channel-wise, Spatial-grouped, and Temporal Convolutions
There has been huge progress on video action recognition in recent years. However, many works focus on tweaking existing 2D backbones due to the reliance of ImageNet pretraining, which restrains the models from achieving higher efficiency for video recognition. In this work we introduce a simple and very efficient 3D convolutional neural network for video action recognition. The design of the building block consists of a channel-wise convolution, followed by a spatial group convolution, and finally a temporal convolution. We evaluate the performance and efficiency of our proposed network on several video action recognition datasets by directly training on the target dataset without relying on pertaining. On Something-Something-V1&V2, Kinetics-400 and Multi-Moments in Time, our network can match or even surpass the performance of other models which are several times larger. On the fine-grained action recognition dataset FineGym, we beat the previous state-of-the-art accuracy achieved with 2-stream methods by more than 5% using only RGB input.
♻ ☆ Residual Kolmogorov-Arnold Network for Enhanced Deep Learning
Despite their immense success, deep neural networks (CNNs) are costly to train, while modern architectures can retain hundreds of convolutional layers in network depth. Standard convolutional operations are fundamentally limited by their linear nature along with fixed activations, where multiple layers are needed to learn complex patterns, making this approach computationally inefficient and prone to optimization difficulties. As a result, we introduce RKAN (Residual Kolmogorov-Arnold Network), which could be easily implemented into stages of traditional networks, such as ResNet. The module also integrates polynomial feature transformation that provides the expressive power of many convolutional layers through learnable, non-linear feature refinement. Our proposed RKAN module offers consistent improvements over the base models on various well-known benchmark datasets, such as CIFAR-100, Food-101, and ImageNet.
comment: Code is available at https://github.com/withray/residualKAN.git
♻ ☆ Frame-Voyager: Learning to Query Frames for Video Large Language Models ICLR 2025
Video Large Language Models (Video-LLMs) have made remarkable progress in video understanding tasks. However, they are constrained by the maximum length of input tokens, making it impractical to input entire videos. Existing frame selection approaches, such as uniform frame sampling and text-frame retrieval, fail to account for the information density variations in the videos or the complex instructions in the tasks, leading to sub-optimal performance. In this paper, we propose Frame-Voyager that learns to query informative frame combinations, based on the given textual queries in the task. To train Frame-Voyager, we introduce a new data collection and labeling pipeline, by ranking frame combinations using a pre-trained Video-LLM. Given a video of M frames, we traverse its T-frame combinations, feed them into a Video-LLM, and rank them based on Video-LLM's prediction losses. Using this ranking as supervision, we train Frame-Voyager to query the frame combinations with lower losses. In experiments, we evaluate Frame-Voyager on four Video Question Answering benchmarks by plugging it into two different Video-LLMs. The experimental results demonstrate that Frame-Voyager achieves impressive results in all settings, highlighting its potential as a plug-and-play solution for Video-LLMs.
comment: ICLR 2025, Camera-ready Version
♻ ☆ MS-Diffusion: Multi-subject Zero-shot Image Personalization with Layout Guidance
Recent advancements in text-to-image generation models have dramatically enhanced the generation of photorealistic images from textual prompts, leading to an increased interest in personalized text-to-image applications, particularly in multi-subject scenarios. However, these advances are hindered by two main challenges: firstly, the need to accurately maintain the details of each referenced subject in accordance with the textual descriptions; and secondly, the difficulty in achieving a cohesive representation of multiple subjects in a single image without introducing inconsistencies. To address these concerns, our research introduces the MS-Diffusion framework for layout-guided zero-shot image personalization with multi-subjects. This innovative approach integrates grounding tokens with the feature resampler to maintain detail fidelity among subjects. With the layout guidance, MS-Diffusion further improves the cross-attention to adapt to the multi-subject inputs, ensuring that each subject condition acts on specific areas. The proposed multi-subject cross-attention orchestrates harmonious inter-subject compositions while preserving the control of texts. Comprehensive quantitative and qualitative experiments affirm that this method surpasses existing models in both image and text fidelity, promoting the development of personalized text-to-image generation. The project page is https://MS-Diffusion.github.io.
♻ ☆ Quantized Spike-driven Transformer ICLR 2025
Spiking neural networks are emerging as a promising energy-efficient alternative to traditional artificial neural networks due to their spike-driven paradigm. However, recent research in the SNN domain has mainly focused on enhancing accuracy by designing large-scale Transformer structures, which typically rely on substantial computational resources, limiting their deployment on resource-constrained devices. To overcome this challenge, we propose a quantized spike-driven Transformer baseline (QSD-Transformer), which achieves reduced resource demands by utilizing a low bit-width parameter. Regrettably, the QSD-Transformer often suffers from severe performance degradation. In this paper, we first conduct empirical analysis and find that the bimodal distribution of quantized spike-driven self-attention (Q-SDSA) leads to spike information distortion (SID) during quantization, causing significant performance degradation. To mitigate this issue, we take inspiration from mutual information entropy and propose a bi-level optimization strategy to rectify the information distribution in Q-SDSA. Specifically, at the lower level, we introduce an information-enhanced LIF to rectify the information distribution in Q-SDSA. At the upper level, we propose a fine-grained distillation scheme for the QSD-Transformer to align the distribution in Q-SDSA with that in the counterpart ANN. By integrating the bi-level optimization strategy, the QSD-Transformer can attain enhanced energy efficiency without sacrificing its high-performance advantage. For instance, when compared to the prior SNN benchmark on ImageNet, the QSD-Transformer achieves 80.3% top-1 accuracy, accompanied by significant reductions of 6.0$\times$ and 8.1$\times$ in power consumption and model size, respectively. Code is available at https://github.com/bollossom/QSD-Transformer.
comment: Accepted by ICLR 2025
♻ ☆ Abstract Rendering: Computing All that is Seen in Gaussian Splat Scenes
We introduce abstract rendering, a method for computing a set of images by rendering a scene from a continuously varying range of camera positions. The resulting abstract image-which encodes an infinite collection of possible renderings-is represented using constraints on the image matrix, enabling rigorous uncertainty propagation through the rendering process. This capability is particularly valuable for the formal verification of vision-based autonomous systems and other safety-critical applications. Our approach operates on Gaussian splat scenes, an emerging representation in computer vision and robotics. We leverage efficient piecewise linear bound propagation to abstract fundamental rendering operations, while addressing key challenges that arise in matrix inversion and depth sorting-two operations not directly amenable to standard approximations. To handle these, we develop novel linear relational abstractions that maintain precision while ensuring computational efficiency. These abstractions not only power our abstract rendering algorithm but also provide broadly applicable tools for other rendering problems. Our implementation, AbstractSplat, is optimized for scalability, handling up to 750k Gaussians while allowing users to balance memory and runtime through tile and batch-based computation. Compared to the only existing abstract image method for mesh-based scenes, AbstractSplat achieves 2-14x speedups while preserving precision. Our results demonstrate that continuous camera motion, rotations, and scene variations can be rigorously analyzed at scale, making abstract rendering a powerful tool for uncertainty-aware vision applications.
♻ ☆ NoPain: No-box Point Cloud Attack via Optimal Transport Singular Boundary
Adversarial attacks exploit the vulnerability of deep models against adversarial samples. Existing point cloud attackers are tailored to specific models, iteratively optimizing perturbations based on gradients in either a white-box or black-box setting. Despite their promising attack performance, they often struggle to produce transferable adversarial samples due to overfitting the specific parameters of surrogate models. To overcome this issue, we shift our focus to the data distribution itself and introduce a novel approach named NoPain, which employs optimal transport (OT) to identify the inherent singular boundaries of the data manifold for cross-network point cloud attacks. Specifically, we first calculate the OT mapping from noise to the target feature space, then identify singular boundaries by locating non-differentiable positions. Finally, we sample along singular boundaries to generate adversarial point clouds. Once the singular boundaries are determined, NoPain can efficiently produce adversarial samples without the need of iterative updates or guidance from the surrogate classifiers. Extensive experiments demonstrate that the proposed end-to-end method outperforms baseline approaches in terms of both transferability and efficiency, while also maintaining notable advantages even against defense strategies. The source code will be publicly available.
♻ ☆ PatternPaint: Practical Layout Pattern Generation Using Diffusion-Based Inpainting
Generating diverse VLSI layout patterns is essential for various downstream tasks in design for manufacturing, as design rules continually evolve during the development of new technology nodes. However, existing training-based methods for layout pattern generation rely on large datasets. In practical scenarios, especially when developing a new technology node, obtaining such extensive layout data is challenging. Consequently, training models with large datasets becomes impractical, limiting the scalability and adaptability of prior approaches. To this end, we propose PatternPaint, a diffusion-based framework capable of generating legal patterns with limited design-rule-compliant training samples. PatternPaint simplifies complex layout pattern generation into a series of inpainting processes with a template-based denoising scheme. Furthermore, we perform few-shot finetuning on a pretrained image foundation model with only 20 design-rule-compliant samples. Experimental results show that using a sub-3nm technology node (Intel 18A), our model is the only one that can generate legal patterns in complex 2D metal interconnect design rule settings among all previous works and achieves a high diversity score. Additionally, our few-shot finetuning can boost the legality rate with 1.87X improvement compared to the original pretrained model. As a result, we demonstrate a production-ready approach for layout pattern generation in developing new technology nodes.
♻ ☆ VIRES: Video Instance Repainting via Sketch and Text Guided Generation
We introduce VIRES, a video instance repainting method with sketch and text guidance, enabling video instance repainting, replacement, generation, and removal. Existing approaches struggle with temporal consistency and accurate alignment with the provided sketch sequence. VIRES leverages the generative priors of text-to-video models to maintain temporal consistency and produce visually pleasing results. We propose the Sequential ControlNet with the standardized self-scaling, which effectively extracts structure layouts and adaptively captures high-contrast sketch details. We further augment the diffusion transformer backbone with the sketch attention to interpret and inject fine-grained sketch semantics. A sketch-aware encoder ensures that repainted results are aligned with the provided sketch sequence. Additionally, we contribute the VireSet, a dataset with detailed annotations tailored for training and evaluating video instance editing methods. Experimental results demonstrate the effectiveness of VIRES, which outperforms state-of-the-art methods in visual quality, temporal consistency, condition alignment, and human ratings. Project page:https://suimuc.github.io/suimu.github.io/projects/VIRES/
♻ ☆ SAR-W-MixMAE: SAR Foundation Model Training Using Backscatter Power Weighting
Foundation model approaches such as masked auto-encoders (MAE) or its variations are now being successfully applied to satellite imagery. Most of the ongoing technical validation of foundation models have been applied to optical images like RGB or multi-spectral images. Due to difficulty in semantic labeling to create datasets and higher noise content with respect to optical images, Synthetic Aperture Radar (SAR) data has not been explored a lot in the field for foundation models. Therefore, in this work as a pre-training approach, we explored masked auto-encoder, specifically MixMAE on Sentinel-1 SAR images and its impact on SAR image classification tasks. Moreover, we proposed to use the physical characteristic of SAR data for applying weighting parameter on the auto-encoder training loss (MSE) to reduce the effect of speckle noise and very high values on the SAR images. Proposed SAR intensity-based weighting of the reconstruction loss demonstrates promising results both on SAR pre-training and downstream tasks specifically on flood detection compared with the baseline model.
comment: 5 pages, 1 figure
♻ ☆ Accelerating Auto-regressive Text-to-Image Generation with Training-free Speculative Jacobi Decoding ICLR 2025
The current large auto-regressive models can generate high-quality, high-resolution images, but these models require hundreds or even thousands of steps of next-token prediction during inference, resulting in substantial time consumption. In existing studies, Jacobi decoding, an iterative parallel decoding algorithm, has been used to accelerate the auto-regressive generation and can be executed without training. However, the Jacobi decoding relies on a deterministic criterion to determine the convergence of iterations. Thus, it works for greedy decoding but is incompatible with sampling-based decoding which is crucial for visual quality and diversity in the current auto-regressive text-to-image generation. In this paper, we propose a training-free probabilistic parallel decoding algorithm, Speculative Jacobi Decoding (SJD), to accelerate auto-regressive text-to-image generation. By introducing a probabilistic convergence criterion, our SJD accelerates the inference of auto-regressive text-to-image generation while maintaining the randomness in sampling-based token decoding and allowing the model to generate diverse images. Specifically, SJD facilitates the model to predict multiple tokens at each step and accepts tokens based on the probabilistic criterion, enabling the model to generate images with fewer steps than the conventional next-token-prediction paradigm. We also investigate the token initialization strategies that leverage the spatial locality of visual data to further improve the acceleration ratio under specific scenarios. We conduct experiments for our proposed SJD on multiple auto-regressive text-to-image generation models, showing the effectiveness of model acceleration without sacrificing the visual quality. The code of our work is available here: https://github.com/tyshiwo1/Accelerating-T2I-AR-with-SJD/.
comment: ICLR 2025; Codes: https://github.com/tyshiwo1/Accelerating-T2I-AR-with-SJD/
♻ ☆ Fence Theorem: Towards Dual-Objective Semantic-Structure Isolation in Preprocessing Phase for 3D Anomaly Detection
3D anomaly detection (AD) is prominent but difficult due to lacking a unified theoretical foundation for preprocessing design. We establish the Fence Theorem, formalizing preprocessing as a dual-objective semantic isolator: (1) mitigating cross-semantic interference to the greatest extent feasible and (2) confining anomaly judgments to aligned semantic spaces wherever viable, thereby establishing intra-semantic comparability. Any preprocessing approach achieves this goal through a two-stage process of Emantic-Division and Spatial-Constraints stage. Through systematic deconstruction, we theoretically and experimentally subsume existing preprocessing methods under this theorem via tripartite evidence: qualitative analyses, quantitative studies, and mathematical proofs. Guided by the Fence Theorem, we implement Patch3D, consisting of Patch-Cutting and Patch-Matching modules, to segment semantic spaces and consolidate similar ones while independently modeling normal features within each space. Experiments on Anomaly-ShapeNet and Real3D-AD with different settings demonstrate that progressively finer-grained semantic alignment in preprocessing directly enhances point-level AD accuracy, providing inverse validation of the theorem's causal logic.
♻ ☆ AIR-HLoc: Adaptive Retrieved Images Selection for Efficient Visual Localisation ICRA
State-of-the-art hierarchical localisation pipelines (HLoc) employ image retrieval (IR) to establish 2D-3D correspondences by selecting the top-$k$ most similar images from a reference database. While increasing $k$ improves localisation robustness, it also linearly increases computational cost and runtime, creating a significant bottleneck. This paper investigates the relationship between global and local descriptors, showing that greater similarity between the global descriptors of query and database images increases the proportion of feature matches. Low similarity queries significantly benefit from increasing $k$, while high similarity queries rapidly experience diminishing returns. Building on these observations, we propose an adaptive strategy that adjusts $k$ based on the similarity between the query's global descriptor and those in the database, effectively mitigating the feature-matching bottleneck. Our approach optimizes processing time without sacrificing accuracy. Experiments on three indoor and outdoor datasets show that AIR-HLoc reduces feature matching time by up to 30\%, while preserving state-of-the-art accuracy. The results demonstrate that AIR-HLoc facilitates a latency-sensitive localisation system.
comment: Accepted to the 2025 IEEE International Conference on Robotics and Automation (ICRA)
♻ ☆ TweedieMix: Improving Multi-Concept Fusion for Diffusion-based Image/Video Generation
Despite significant advancements in customizing text-to-image and video generation models, generating images and videos that effectively integrate multiple personalized concepts remains a challenging task. To address this, we present TweedieMix, a novel method for composing customized diffusion models during the inference phase. By analyzing the properties of reverse diffusion sampling, our approach divides the sampling process into two stages. During the initial steps, we apply a multiple object-aware sampling technique to ensure the inclusion of the desired target objects. In the later steps, we blend the appearances of the custom concepts in the de-noised image space using Tweedie's formula. Our results demonstrate that TweedieMix can generate multiple personalized concepts with higher fidelity than existing methods. Moreover, our framework can be effortlessly extended to image-to-video diffusion models, enabling the generation of videos that feature multiple personalized concepts. Results and source code are in our anonymous project page.
comment: Github Page: https://github.com/KwonGihyun/TweedieMix
♻ ☆ LocoVR: Multiuser Indoor Locomotion Dataset in Virtual Reality ICLR2025
Understanding human locomotion is crucial for AI agents such as robots, particularly in complex indoor home environments. Modeling human trajectories in these spaces requires insight into how individuals maneuver around physical obstacles and manage social navigation dynamics. These dynamics include subtle behaviors influenced by proxemics - the social use of space, such as stepping aside to allow others to pass or choosing longer routes to avoid collisions. Previous research has developed datasets of human motion in indoor scenes, but these are often limited in scale and lack the nuanced social navigation dynamics common in home environments. To address this, we present LocoVR, a dataset of 7000+ two-person trajectories captured in virtual reality from over 130 different indoor home environments. LocoVR provides accurate trajectory data and precise spatial information, along with rich examples of socially-motivated movement behaviors. For example, the dataset captures instances of individuals navigating around each other in narrow spaces, adjusting paths to respect personal boundaries in living areas, and coordinating movements in high-traffic zones like entryways and kitchens. Our evaluation shows that LocoVR significantly enhances model performance in three practical indoor tasks utilizing human trajectories, and demonstrates predicting socially-aware navigation patterns in home environments.
comment: This paper has been accepted to ICLR2025
Artificial Intelligence 218
☆ Bringing Comparative Cognition To Computers
Researchers are increasingly subjecting artificial intelligence systems to psychological testing. But to rigorously compare their cognitive capacities with humans and other animals, we must avoid both over- and under-stating our similarities and differences. By embracing a comparative approach, we can integrate AI cognition research into the broader cognitive sciences.
☆ Reactive Diffusion Policy: Slow-Fast Visual-Tactile Policy Learning for Contact-Rich Manipulation
Humans can accomplish complex contact-rich tasks using vision and touch, with highly reactive capabilities such as quick adjustments to environmental changes and adaptive control of contact forces; however, this remains challenging for robots. Existing visual imitation learning (IL) approaches rely on action chunking to model complex behaviors, which lacks the ability to respond instantly to real-time tactile feedback during the chunk execution. Furthermore, most teleoperation systems struggle to provide fine-grained tactile / force feedback, which limits the range of tasks that can be performed. To address these challenges, we introduce TactAR, a low-cost teleoperation system that provides real-time tactile feedback through Augmented Reality (AR), along with Reactive Diffusion Policy (RDP), a novel slow-fast visual-tactile imitation learning algorithm for learning contact-rich manipulation skills. RDP employs a two-level hierarchy: (1) a slow latent diffusion policy for predicting high-level action chunks in latent space at low frequency, (2) a fast asymmetric tokenizer for closed-loop tactile feedback control at high frequency. This design enables both complex trajectory modeling and quick reactive behavior within a unified framework. Through extensive evaluation across three challenging contact-rich tasks, RDP significantly improves performance compared to state-of-the-art visual IL baselines through rapid response to tactile / force feedback. Furthermore, experiments show that RDP is applicable across different tactile / force sensors. Code and videos are available on https://reactive-diffusion-policy.github.io/.
☆ Wikipedia in the Era of LLMs: Evolution and Risks
In this paper, we present a thorough analysis of the impact of Large Language Models (LLMs) on Wikipedia, examining the evolution of Wikipedia through existing data and using simulations to explore potential risks. We begin by analyzing page views and article content to study Wikipedia's recent changes and assess the impact of LLMs. Subsequently, we evaluate how LLMs affect various Natural Language Processing (NLP) tasks related to Wikipedia, including machine translation and retrieval-augmented generation (RAG). Our findings and simulation results reveal that Wikipedia articles have been influenced by LLMs, with an impact of approximately 1%-2% in certain categories. If the machine translation benchmark based on Wikipedia is influenced by LLMs, the scores of the models may become inflated, and the comparative results among models might shift as well. Moreover, the effectiveness of RAG might decrease if the knowledge base becomes polluted by LLM-generated content. While LLMs have not yet fully changed Wikipedia's language and knowledge structures, we believe that our empirical findings signal the need for careful consideration of potential future risks.
comment: We release all the experimental dataset and source code at: https://github.com/HSM316/LLM_Wikipedia
☆ Language Models can Self-Improve at State-Value Estimation for Better Search
Collecting ground truth task completion rewards or human demonstrations for multi-step reasoning tasks is often cost-prohibitive and time-consuming, especially in interactive domains like web tasks. To address this bottleneck, we present self-taught lookahead, a self-supervised method that leverages state-transition dynamics to train a value model capable of effectively guiding language model-controlled search. We find that moderately sized (8 billion parameters) open-weight value models improved with self-taught lookahead can match the performance of using a frontier LLM such as gpt-4o as the value model. Furthermore, we find that self-taught lookahead improves performance by 20% while reducing costs 37x compared to previous LLM-based tree search, without relying on ground truth rewards.
☆ Evaluation of Architectural Synthesis Using Generative AI
Recent advancements in multimodal Generative AI have the potential to democratize specialized architectural tasks, such as interpreting technical drawings and creating 3D CAD models, which traditionally require expert knowledge. This paper presents a comparative evaluation of two systems: GPT-4o and Claude 3.5, in the task of architectural 3D synthesis. We conduct a case study on two buildings from Palladio's Four Books of Architecture (1965): Villa Rotonda and Palazzo Porto. High-level architectural models and drawings of these buildings were prepared, inspired by Palladio's original texts and drawings. Through sequential text and image prompting, we assess the systems' abilities in (1) interpreting 2D and 3D representations of buildings from drawings, (2) encoding the buildings into a CAD software script, and (3) self-improving based on outputs. While both systems successfully generate individual parts, they struggle to accurately assemble these parts into the desired spatial relationships, with Claude 3.5 demonstrating better performance, particularly in self-correcting its output. This study contributes to ongoing research on benchmarking the strengths and weaknesses of off-the-shelf AI systems in performing intelligent human tasks that require discipline-specific knowledge. The findings highlight the potential of language-enabled AI systems to act as collaborative technical assistants in the architectural design process.
comment: 10 pages, 7 figures
☆ Deepfake-Eval-2024: A Multi-Modal In-the-Wild Benchmark of Deepfakes Circulated in 2024
In the age of increasingly realistic generative AI, robust deepfake detection is essential for mitigating fraud and disinformation. While many deepfake detectors report high accuracy on academic datasets, we show that these academic benchmarks are out of date and not representative of recent deepfakes. We introduce Deepfake-Eval-2024, a new deepfake detection benchmark consisting of in-the-wild deepfakes collected from social media and deepfake detection platform users in 2024. Deepfake-Eval-2024 consists of 44 hours of videos, 56.5 hours of audio, and 1,975 images, encompassing the latest manipulation technologies. The benchmark contains diverse media content from 88 different websites in 52 different languages. We find that the performance of open-source state-of-the-art deepfake detection models drops precipitously when evaluated on Deepfake-Eval-2024, with AUC decreasing by 50% for video, 48% for audio, and 45% for image models compared to previous benchmarks. We also evaluate commercial deepfake detection models and models finetuned on Deepfake-Eval-2024, and find that they have superior performance to off-the-shelf open-source models, but they do not yet reach the accuracy of human deepfake forensic analysts. The dataset is available at https://github.com/nuriachandra/Deepfake-Eval-2024.
☆ (How) Do Language Models Track State?
Transformer language models (LMs) exhibit behaviors -- from storytelling to code generation -- that appear to require tracking the unobserved state of an evolving world. How do they do so? We study state tracking in LMs trained or fine-tuned to compose permutations (i.e., to compute the order of a set of objects after a sequence of swaps). Despite the simple algebraic structure of this problem, many other tasks (e.g., simulation of finite automata and evaluation of boolean expressions) can be reduced to permutation composition, making it a natural model for state tracking in general. We show that LMs consistently learn one of two state tracking mechanisms for this task. The first closely resembles the "associative scan" construction used in recent theoretical work by Liu et al. (2023) and Merrill et al. (2024). The second uses an easy-to-compute feature (permutation parity) to partially prune the space of outputs, then refines this with an associative scan. The two mechanisms exhibit markedly different robustness properties, and we show how to steer LMs toward one or the other with intermediate training tasks that encourage or suppress the heuristics. Our results demonstrate that transformer LMs, whether pretrained or fine-tuned, can learn to implement efficient and interpretable state tracking mechanisms, and the emergence of these mechanisms can be predicted and controlled.
comment: 21 pages, 17 figures, 1 table
☆ Multimodal Deep Learning for Subtype Classification in Breast Cancer Using Histopathological Images and Gene Expression Data
Molecular subtyping of breast cancer is crucial for personalized treatment and prognosis. Traditional classification approaches rely on either histopathological images or gene expression profiling, limiting their predictive power. In this study, we propose a deep multimodal learning framework that integrates histopathological images and gene expression data to classify breast cancer into BRCA.Luminal and BRCA.Basal / Her2 subtypes. Our approach employs a ResNet-50 model for image feature extraction and fully connected layers for gene expression processing, with a cross-attention fusion mechanism to enhance modality interaction. We conduct extensive experiments using five-fold cross-validation, demonstrating that our multimodal integration outperforms unimodal approaches in terms of classification accuracy, precision-recall AUC, and F1-score. Our findings highlight the potential of deep learning for robust and interpretable breast cancer subtype classification, paving the way for improved clinical decision-making.
comment: 9 pages, 9 figures
☆ SeqFusion: Sequential Fusion of Pre-Trained Models for Zero-Shot Time-Series Forecasting
Unlike traditional time-series forecasting methods that require extensive in-task data for training, zero-shot forecasting can directly predict future values given a target time series without additional training data. Current zero-shot approaches primarily rely on pre-trained generalized models, with their performance often depending on the variety and relevance of the pre-training data, which can raise privacy concerns. Instead of collecting diverse pre-training data, we introduce SeqFusion in this work, a novel framework that collects and fuses diverse pre-trained models (PTMs) sequentially for zero-shot forecasting. Based on the specific temporal characteristics of the target time series, SeqFusion selects the most suitable PTMs from a batch of pre-collected PTMs, performs sequential predictions, and fuses all the predictions while using minimal data to protect privacy. Each of these PTMs specializes in different temporal patterns and forecasting tasks, allowing SeqFusion to select by measuring distances in a shared representation space of the target time series with each PTM. Experiments demonstrate that SeqFusion achieves competitive accuracy in zero-shot forecasting compared to state-of-the-art methods.
☆ AlignDistil: Token-Level Language Model Alignment as Adaptive Policy Distillation
In modern large language models (LLMs), LLM alignment is of crucial importance and is typically achieved through methods such as reinforcement learning from human feedback (RLHF) and direct preference optimization (DPO). However, in most existing methods for LLM alignment, all tokens in the response are optimized using a sparse, response-level reward or preference annotation. The ignorance of token-level rewards may erroneously punish high-quality tokens or encourage low-quality tokens, resulting in suboptimal performance and slow convergence speed. To address this issue, we propose AlignDistil, an RLHF-equivalent distillation method for token-level reward optimization. Specifically, we introduce the reward learned by DPO into the RLHF objective and theoretically prove the equivalence between this objective and a token-level distillation process, where the teacher distribution linearly combines the logits from the DPO model and a reference model. On this basis, we further bridge the accuracy gap between the reward from the DPO model and the pure reward model, by building a contrastive DPO reward with a normal and a reverse DPO model. Moreover, to avoid under- and over-optimization on different tokens, we design a token adaptive logit extrapolation mechanism to construct an appropriate teacher distribution for each token. Experimental results demonstrate the superiority of our AlignDistil over existing methods and showcase fast convergence due to its token-level distributional reward optimization.
comment: 15 pages, 2 figures
☆ Developing a PET/CT Foundation Model for Cross-Modal Anatomical and Functional Imaging
In oncology, Positron Emission Tomography-Computed Tomography (PET/CT) is widely used in cancer diagnosis, staging, and treatment monitoring, as it combines anatomical details from CT with functional metabolic activity and molecular marker expression information from PET. However, existing artificial intelligence-driven PET/CT analyses rely predominantly on task-specific models trained from scratch or on limited datasets, limiting their generalizability and robustness. To address this, we propose a foundation model approach specifically designed for multimodal PET/CT imaging. We introduce the Cross-Fraternal Twin Masked Autoencoder (FratMAE), a novel framework that effectively integrates whole-body anatomical and functional or molecular information. FratMAE employs separate Vision Transformer (ViT) encoders for PET and CT scans, along with cross-attention decoders that enable synergistic interactions between modalities during masked autoencoder training. Additionally, it incorporates textual metadata to enhance PET representation learning. By pre-training on PET/CT datasets, FratMAE captures intricate cross-modal relationships and global uptake patterns, achieving superior performance on downstream tasks and demonstrating its potential as a generalizable foundation model.
comment: 11 pages, 2 figures, 3 tables
☆ A Multimodal Symphony: Integrating Taste and Sound through Generative AI
In recent decades, neuroscientific and psychological research has traced direct relationships between taste and auditory perceptions. This article explores multimodal generative models capable of converting taste information into music, building on this foundational research. We provide a brief review of the state of the art in this field, highlighting key findings and methodologies. We present an experiment in which a fine-tuned version of a generative music model (MusicGEN) is used to generate music based on detailed taste descriptions provided for each musical piece. The results are promising: according the participants' ($n=111$) evaluation, the fine-tuned model produces music that more coherently reflects the input taste descriptions compared to the non-fine-tuned model. This study represents a significant step towards understanding and developing embodied interactions between AI, sound, and taste, opening new possibilities in the field of generative AI. We release our dataset, code and pre-trained model at: https://osf.io/xs5jy/.
comment: 17 pages, 6 figures (2 + 2 figures with 2 subfigures each)
☆ Q-Filters: Leveraging QK Geometry for Efficient KV Cache Compression
Autoregressive language models rely on a Key-Value (KV) Cache, which avoids re-computing past hidden states during generation, making it faster. As model sizes and context lengths grow, the KV Cache becomes a significant memory bottleneck, which calls for compression methods that limit its size during generation. In this paper, we discover surprising properties of Query (Q) and Key (K) vectors that allow us to efficiently approximate attention scores without computing the attention maps. We propose Q-Filters, a training-free KV Cache compression method that filters out less crucial Key-Value pairs based on a single context-agnostic projection. Contrarily to many alternatives, Q-Filters is compatible with FlashAttention, as it does not require direct access to attention weights. Experimental results in long-context settings demonstrate that Q-Filters is competitive with attention-based compression methods such as SnapKV in retrieval tasks while consistently outperforming efficient compression schemes such as Streaming-LLM in generation setups. Notably, Q-Filters achieves a 99% accuracy in the needle-in-a-haystack task with a x32 compression level while reducing the generation perplexity drop by up to 65% in text generation compared to Streaming-LLM.
☆ A Causal Framework for Aligning Image Quality Metrics and Deep Neural Network Robustness
Image quality plays an important role in the performance of deep neural networks (DNNs) and DNNs have been widely shown to exhibit sensitivity to changes in imaging conditions. Large-scale datasets often contain images under a wide range of conditions prompting a need to quantify and understand their underlying quality distribution in order to better characterize DNN performance and robustness. Aligning the sensitivities of image quality metrics and DNNs ensures that estimates of quality can act as proxies for image/dataset difficulty independent of the task models trained/evaluated on the data. Conventional image quality assessment (IQA) seeks to measure and align quality relative to human perceptual judgments, but here we seek a quality measure that is not only sensitive to imaging conditions but also well-aligned with DNN sensitivities. We first ask whether conventional IQA metrics are also informative of DNN performance. In order to answer this question, we reframe IQA from a causal perspective and examine conditions under which quality metrics are predictive of DNN performance. We show theoretically and empirically that current IQA metrics are weak predictors of DNN performance in the context of classification. We then use our causal framework to provide an alternative formulation and a new image quality metric that is more strongly correlated with DNN performance and can act as a prior on performance without training new task models. Our approach provides a means to directly estimate the quality distribution of large-scale image datasets towards characterizing the relationship between dataset composition and DNN performance.
☆ Do Not Trust Licenses You See -- Dataset Compliance Requires Massive-Scale AI-Powered Lifecycle Tracing
This paper argues that a dataset's legal risk cannot be accurately assessed by its license terms alone; instead, tracking dataset redistribution and its full lifecycle is essential. However, this process is too complex for legal experts to handle manually at scale. Tracking dataset provenance, verifying redistribution rights, and assessing evolving legal risks across multiple stages require a level of precision and efficiency that exceeds human capabilities. Addressing this challenge effectively demands AI agents that can systematically trace dataset redistribution, analyze compliance, and identify legal risks. We develop an automated data compliance system called NEXUS and show that AI can perform these tasks with higher accuracy, efficiency, and cost-effectiveness than human experts. Our massive legal analysis of 17,429 unique entities and 8,072 license terms using this approach reveals the discrepancies in legal rights between the original datasets before redistribution and their redistributed subsets, underscoring the necessity of the data lifecycle-aware compliance. For instance, we find that out of 2,852 datasets with commercially viable individual license terms, only 605 (21%) are legally permissible for commercialization. This work sets a new standard for AI data governance, advocating for a framework that systematically examines the entire lifecycle of dataset redistribution to ensure transparent, legal, and responsible dataset management.
☆ IterPref: Focal Preference Learning for Code Generation via Iterative Debugging
Preference learning enhances Code LLMs beyond supervised fine-tuning by leveraging relative quality comparisons. Existing methods construct preference pairs from candidates based on test case success, treating the higher pass rate sample as positive and the lower as negative. However, this approach does not pinpoint specific errors in the code, which prevents the model from learning more informative error correction patterns, as aligning failing code as a whole lacks the granularity needed to capture meaningful error-resolution relationships. To address these issues, we propose IterPref, a new preference alignment framework that mimics human iterative debugging to refine Code LLMs. IterPref explicitly locates error regions and aligns the corresponding tokens via a tailored DPO algorithm. To generate informative pairs, we introduce the CodeFlow dataset, where samples are iteratively refined until passing tests, with modifications capturing error corrections. Extensive experiments show that a diverse suite of Code LLMs equipped with IterPref achieves significant performance gains in code generation and improves on challenging tasks like BigCodeBench. In-depth analysis reveals that IterPref yields fewer errors. Our code and data will be made publicaly available.
comment: The code and data will be released soon
☆ Implicit Bias in LLMs: A Survey
Due to the implement of guardrails by developers, Large language models (LLMs) have demonstrated exceptional performance in explicit bias tests. However, bias in LLMs may occur not only explicitly, but also implicitly, much like humans who consciously strive for impartiality yet still harbor implicit bias. The unconscious and automatic nature of implicit bias makes it particularly challenging to study. This paper provides a comprehensive review of the existing literature on implicit bias in LLMs. We begin by introducing key concepts, theories and methods related to implicit bias in psychology, extending them from humans to LLMs. Drawing on the Implicit Association Test (IAT) and other psychological frameworks, we categorize detection methods into three primary approaches: word association, task-oriented text generation and decision-making. We divide our taxonomy of evaluation metrics for implicit bias into two categories: single-value-based metrics and comparison-value-based metrics. We classify datasets into two types: sentences with masked tokens and complete sentences, incorporating datasets from various domains to reflect the broad application of LLMs. Although research on mitigating implicit bias in LLMs is still limited, we summarize existing efforts and offer insights on future challenges. We aim for this work to serve as a clear guide for researchers and inspire innovative ideas to advance exploration in this task.
☆ Prime Convolutional Model: Breaking the Ground for Theoretical Explainability
In this paper, we propose a new theoretical approach to Explainable AI. Following the Scientific Method, this approach consists in formulating on the basis of empirical evidence, a mathematical model to explain and predict the behaviors of Neural Networks. We apply the method to a case study created in a controlled environment, which we call Prime Convolutional Model (p-Conv for short). p-Conv operates on a dataset consisting of the first one million natural numbers and is trained to identify the congruence classes modulo a given integer $m$. Its architecture uses a convolutional-type neural network that contextually processes a sequence of $B$ consecutive numbers to each input. We take an empirical approach and exploit p-Conv to identify the congruence classes of numbers in a validation set using different values for $m$ and $B$. The results show that the different behaviors of p-Conv (i.e., whether it can perform the task or not) can be modeled mathematically in terms of $m$ and $B$. The inferred mathematical model reveals interesting patterns able to explain when and why p-Conv succeeds in performing task and, if not, which error pattern it follows.
☆ Improving Oil Slick Trajectory Simulations with Bayesian Optimization
Accurate simulations of oil spill trajectories are essential for supporting practitioners' response and mitigating environmental and socioeconomic impacts. Numerical models, such as MEDSLIK-II, simulate advection, dispersion, and transformation processes of oil particles. However, simulations heavily rely on accurate parameter tuning, still based on expert knowledge and manual calibration. To overcome these limitations, we integrate the MEDSLIK-II numerical oil spill model with a Bayesian optimization framework to iteratively estimate the best physical parameter configuration that yields simulation closer to satellite observations of the slick. We focus on key parameters, such as horizontal diffusivity and drift factor, maximizing the Fraction Skill Score (FSS) as a measure of spatio-temporal overlap between simulated and observed oil distributions. We validate the framework for the Baniyas oil incident that occurred in Syria between August 23 and September 4, 2021, which released over 12,000 $m^3$ of oil. We show that, on average, the proposed approach systematically improves the FSS from 5.82% to 11.07% compared to control simulations initialized with default parameters. The optimization results in consistent improvement across multiple time steps, particularly during periods of increased drift variability, demonstrating the robustness of our method in dynamic environmental conditions.
comment: 29 pages, 10 figures, 3 tables, research paper
☆ UAR-NVC: A Unified AutoRegressive Framework for Memory-Efficient Neural Video Compression
Implicit Neural Representations (INRs) have demonstrated significant potential in video compression by representing videos as neural networks. However, as the number of frames increases, the memory consumption for training and inference increases substantially, posing challenges in resource-constrained scenarios. Inspired by the success of traditional video compression frameworks, which process video frame by frame and can efficiently compress long videos, we adopt this modeling strategy for INRs to decrease memory consumption, while aiming to unify the frameworks from the perspective of timeline-based autoregressive modeling. In this work, we present a novel understanding of INR models from an autoregressive (AR) perspective and introduce a Unified AutoRegressive Framework for memory-efficient Neural Video Compression (UAR-NVC). UAR-NVC integrates timeline-based and INR-based neural video compression under a unified autoregressive paradigm. It partitions videos into several clips and processes each clip using a different INR model instance, leveraging the advantages of both compression frameworks while allowing seamless adaptation to either in form. To further reduce temporal redundancy between clips, we design two modules to optimize the initialization, training, and compression of these model parameters. UAR-NVC supports adjustable latencies by varying the clip length. Extensive experimental results demonstrate that UAR-NVC, with its flexible video clip setting, can adapt to resource-constrained environments and significantly improve performance compared to different baseline models.
☆ Vibration-Assisted Hysteresis Mitigation for Achieving High Compensation Efficiency
Tendon-sheath mechanisms (TSMs) are widely used in minimally invasive surgical (MIS) applications, but their inherent hysteresis-caused by friction, backlash, and tendon elongation-leads to significant tracking errors. Conventional modeling and compensation methods struggle with these nonlinearities and require extensive parameter tuning. To address this, we propose a vibration-assisted hysteresis compensation approach, where controlled vibrational motion is applied along the tendon's movement direction to mitigate friction and reduce dead zones. Experimental results demonstrate that the exerted vibration consistently reduces hysteresis across all tested frequencies, decreasing RMSE by up to 23.41% (from 2.2345 mm to 1.7113 mm) and improving correlation, leading to more accurate trajectory tracking. When combined with a Temporal Convolutional Network (TCN)-based compensation model, vibration further enhances performance, achieving an 85.2% reduction in MAE (from 1.334 mm to 0.1969 mm). Without vibration, the TCN-based approach still reduces MAE by 72.3% (from 1.334 mm to 0.370 mm) under the same parameter settings. These findings confirm that vibration effectively mitigates hysteresis, improving trajectory accuracy and enabling more efficient compensation models with fewer trainable parameters. This approach provides a scalable and practical solution for TSM-based robotic applications, particularly in MIS.
comment: 8 pages, 7 figures, and 2 tables
☆ Generative Tools for Graphical Assets: Empirical Guidelines based on Game Designers' and Developers' Preferences
Graphical assets play an important role in the design and development of games. There is potential in the use of generative tools, to aid in creating graphical assets, thus improving game design and development pipelines. However, there is little research to address how the generative methods can fit into the wider pipeline. We conducted a user study with 16 game designers and developers to examine their preferences regarding generative tools for graphical assets. The findings highlight that early design stage is preferred by all participants (mean values above 0.67 and p < .001 for early stages). Designers and developers prefer to use such tools for creating large amounts of variations at the cost of quality as they can improve the quality of the artefacts once they generate a suitable asset (mean value 0.17 where 1 is high quality, p < .001). They also strongly (mean value .78, p < .001) raised the need for better integration of such tools in existing design and development environments and the need for the outputs to be in common data formats, to be manipulatable and integrate smoothly into existing environments (mean 3.5 out of 5, p = .004). The study also highlights the requirement for further emphasis on the needs of the users to incorporate these tools effectively in existing pipelines. Informed by these results, we provide a set of guidelines for creating tools that meet the expectations and needs of game designers and developers.
☆ MindBridge: Scalable and Cross-Model Knowledge Editing via Memory-Augmented Modality
Knowledge editing is a technique for efficiently and accurately updating the knowledge of large language models (LLMs) to alleviate obsolescence and correct errors. However, most existing methods overfit to specific models, causing edited knowledge to be discarded during each LLM update and requiring frequent re-editing, which is particularly burdensome in today's rapidly evolving open-source community. To address this issue, we propose the problem of cross-model knowledge editing and introduce MindBridge, a scalable solution inspired by the low coupling between modality processing and LLMs in multi-modal models. MindBridge introduces the novel concept of memory modality, which encodes edited knowledge as an independent modality. It first performs LLM-agnostic pre-training of the memory modality and then integrates it with various LLMs. Extensive experiments on multiple LLMs and popular knowledge editing datasets demonstrate that MindBridge achieves superior performance even in editing tens of thousands of knowledge entries and can flexibly adapt to different LLMs. Our code is available at https://github.com/CrashBugger/MindBridge.
☆ Memory Efficient Continual Learning for Edge-Based Visual Anomaly Detection
Visual Anomaly Detection (VAD) is a critical task in computer vision with numerous real-world applications. However, deploying these models on edge devices presents significant challenges, such as constrained computational and memory resources. Additionally, dynamic data distributions in real-world settings necessitate continuous model adaptation, further complicating deployment under limited resources. To address these challenges, we present a novel investigation into the problem of Continual Learning for Visual Anomaly Detection (CLAD) on edge devices. We evaluate the STFPM approach, given its low memory footprint on edge devices, which demonstrates good performance when combined with the Replay approach. Furthermore, we propose to study the behavior of a recently proposed approach, PaSTe, specifically designed for the edge but not yet explored in the Continual Learning context. Our results show that PaSTe is not only a lighter version of STPFM, but it also achieves superior anomaly detection performance, improving the f1 pixel performance by 10% with the Replay technique. In particular, the structure of PaSTe allows us to test it using a series of Compressed Replay techniques, reducing memory overhead by a maximum of 91.5% compared to the traditional Replay for STFPM. Our study proves the feasibility of deploying VAD models that adapt and learn incrementally on CLAD scenarios on resource-constrained edge devices.
☆ Class-Aware PillarMix: Can Mixed Sample Data Augmentation Enhance 3D Object Detection with Radar Point Clouds? IROS 2025
Due to the significant effort required for data collection and annotation in 3D perception tasks, mixed sample data augmentation (MSDA) has been widely studied to generate diverse training samples by mixing existing data. Recently, many MSDA techniques have been developed for point clouds, but they mainly target LiDAR data, leaving their application to radar point clouds largely unexplored. In this paper, we examine the feasibility of applying existing MSDA methods to radar point clouds and identify several challenges in adapting these techniques. These obstacles stem from the radar's irregular angular distribution, deviations from a single-sensor polar layout in multi-radar setups, and point sparsity. To address these issues, we propose Class-Aware PillarMix (CAPMix), a novel MSDA approach that applies MixUp at the pillar level in 3D point clouds, guided by class labels. Unlike methods that rely a single mix ratio to the entire sample, CAPMix assigns an independent ratio to each pillar, boosting sample diversity. To account for the density of different classes, we use class-specific distributions: for dense objects (e.g., large vehicles), we skew ratios to favor points from another sample, while for sparse objects (e.g., pedestrians), we sample more points from the original. This class-aware mixing retains critical details and enriches each sample with new information, ultimately generating more diverse training data. Experimental results demonstrate that our method not only significantly boosts performance but also outperforms existing MSDA approaches across two datasets (Bosch Street and K-Radar). We believe that this straightforward yet effective approach will spark further investigation into MSDA techniques for radar data.
comment: 8 pages, 6 figures, 4 tables, submitted to 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2025)
☆ Seeding for Success: Skill and Stochasticity in Tabletop Games
Games often incorporate random elements in the form of dice or shuffled card decks. This randomness is a key contributor to the player experience and the variety of game situations encountered. There is a tension between a level of randomness that makes the game interesting and contributes to the player enjoyment of a game, and a level at which the outcome itself is effectively random and the game becomes dull. The optimal level for a game will depend on the design goals and target audience. We introduce a new technique to quantify the level of randomness in game outcome and use it to compare 15 tabletop games and disentangle the different contributions to the overall randomness from specific parts of some games. We further explore the interaction between game randomness and player skill, and how this innate randomness can affect error analysis in common game experiments.
comment: Published in IEEE Transactions on Games, 2025
☆ MPO: Boosting LLM Agents with Meta Plan Optimization
Recent advancements in large language models (LLMs) have enabled LLM-based agents to successfully tackle interactive planning tasks. However, despite their successes, existing approaches often suffer from planning hallucinations and require retraining for each new agent. To address these challenges, we propose the Meta Plan Optimization (MPO) framework, which enhances agent planning capabilities by directly incorporating explicit guidance. Unlike previous methods that rely on complex knowledge, which either require significant human effort or lack quality assurance, MPO leverages high-level general guidance through meta plans to assist agent planning and enables continuous optimization of the meta plans based on feedback from the agent's task execution. Our experiments conducted on two representative tasks demonstrate that MPO significantly outperforms existing baselines. Moreover, our analysis indicates that MPO provides a plug-and-play solution that enhances both task completion efficiency and generalization capabilities in previous unseen scenarios.
☆ State of play and future directions in industrial computer vision AI standards
The recent tremendous advancements in the areas of Artificial Intelligence (AI) and Deep Learning (DL) have also resulted into corresponding remarkable progress in the field of Computer Vision (CV), showcasing robust technological solutions in a wide range of application sectors of high industrial interest (e.g., healthcare, autonomous driving, automation, etc.). Despite the outstanding performance of CV systems in specific domains, their development and exploitation at industrial-scale necessitates, among other, the addressing of requirements related to the reliability, transparency, trustworthiness, security, safety, and robustness of the developed AI models. The latter raises the imperative need for the development of efficient, comprehensive and widely-adopted industrial standards. In this context, this study investigates the current state of play regarding the development of industrial computer vision AI standards, emphasizing on critical aspects, like model interpretability, data quality, and regulatory compliance. In particular, a systematic analysis of launched and currently developing CV standards, proposed by the main international standardization bodies (e.g. ISO/IEC, IEEE, DIN, etc.) is performed. The latter is complemented by a comprehensive discussion on the current challenges and future directions observed in this regularization endeavor.
☆ A dataset-free approach for self-supervised learning of 3D reflectional symmetries
In this paper, we explore a self-supervised model that learns to detect the symmetry of a single object without requiring a dataset-relying solely on the input object itself. We hypothesize that the symmetry of an object can be determined by its intrinsic features, eliminating the need for large datasets during training. Additionally, we design a self-supervised learning strategy that removes the necessity of ground truth labels. These two key elements make our approach both effective and efficient, addressing the prohibitive costs associated with constructing large, labeled datasets for this task. The novelty of our method lies in computing features for each point on the object based on the idea that symmetric points should exhibit similar visual appearances. To achieve this, we leverage features extracted from a foundational image model to compute a visual descriptor for the points. This approach equips the point cloud with visual features that facilitate the optimization of our self-supervised model. Experimental results demonstrate that our method surpasses the state-of-the-art models trained on large datasets. Furthermore, our model is more efficient, effective, and operates with minimal computational and data resources.
☆ The Effectiveness of Large Language Models in Transforming Unstructured Text to Standardized Formats
The exponential growth of unstructured text data presents a fundamental challenge in modern data management and information retrieval. While Large Language Models (LLMs) have shown remarkable capabilities in natural language processing, their potential to transform unstructured text into standardized, structured formats remains largely unexplored - a capability that could revolutionize data processing workflows across industries. This study breaks new ground by systematically evaluating LLMs' ability to convert unstructured recipe text into the structured Cooklang format. Through comprehensive testing of four models (GPT-4o, GPT-4o-mini, Llama3.1:70b, and Llama3.1:8b), an innovative evaluation approach is introduced that combines traditional metrics (WER, ROUGE-L, TER) with specialized metrics for semantic element identification. Our experiments reveal that GPT-4o with few-shot prompting achieves breakthrough performance (ROUGE-L: 0.9722, WER: 0.0730), demonstrating for the first time that LLMs can reliably transform domain-specific unstructured text into structured formats without extensive training. Although model performance generally scales with size, we uncover surprising potential in smaller models like Llama3.1:8b for optimization through targeted fine-tuning. These findings open new possibilities for automated structured data generation across various domains, from medical records to technical documentation, potentially transforming the way organizations process and utilize unstructured information.
☆ YARE-GAN: Yet Another Resting State EEG-GAN
Generative Adversarial Networks (GANs) have shown promise in synthesising realistic neural data, yet their potential for unsupervised representation learning in resting-state EEG remains under explored. In this study, we implement a Wasserstein GAN with Gradient Penalty (WGAN-GP) to generate multi-channel resting-state EEG data and assess the quality of the synthesised signals through both visual and feature-based evaluations. Our results indicate that the model effectively captures the statistical and spectral characteristics of real EEG data, although challenges remain in replicating high-frequency oscillations in the frontal region. Additionally, we demonstrate that the Critic's learned representations can be fine-tuned for age group classification, achieving an out-of-sample accuracy, significantly better than a shuffled-label baseline. These findings suggest that generative models can serve not only as EEG data generators but also as unsupervised feature extractors, reducing the need for manual feature engineering. This study highlights the potential of GAN-based unsupervised learning for EEG analysis, suggesting avenues for more data-efficient deep learning applications in neuroscience.
☆ Reflection on Data Storytelling Tools in the Generative AI Era from the Human-AI Collaboration Perspective
Human-AI collaborative tools attract attentions from the data storytelling community to lower the barrier of expertise and streamline the workflow. The recent advance in large-scale generative AI techniques, e.g., large language models (LLMs) and text-to-image models, has the potential to enhance data storytelling with their power in visual and narration generation. After two years since these techniques were publicly available, it is important to reflect our progress of applying them and have an outlook for future opportunities. To achieve the goal, we compare the collaboration patterns of the latest tools with those of earlier ones using a dedicated framework for understanding human-AI collaboration in data storytelling. Through comparison, we identify persistent collaboration patterns, e.g., human-creator + AI-assistant, and emerging ones, e.g., AI-creator + human-reviewer. The benefits of these AI techniques and other implications to human-AI collaboration are also revealed. We further propose future directions to hopefully ignite innovations.
comment: This paper is a sequel to the CHI 24 paper "Where Are We So Far? Understanding Data Storytelling Tools from the Perspective of Human-AI Collaboration (https://doi.org/10.1145/3613904.3642726), aiming to refresh our understanding with the latest advancements
☆ Towards Event Extraction with Massive Types: LLM-based Collaborative Annotation and Partitioning Extraction
Developing a general-purpose extraction system that can extract events with massive types is a long-standing target in Event Extraction (EE). In doing so, the challenge comes from two aspects: 1) The absence of an efficient and effective annotation method. 2) The absence of a powerful extraction method can handle massive types. For the first challenge, we propose a collaborative annotation method based on Large Language Models (LLMs). Through collaboration among multiple LLMs, it first refines annotations of trigger words from distant supervision and then carries out argument annotation. Next, a voting phase consolidates the annotation preferences across different LLMs. Finally, we create the EEMT dataset, the largest EE dataset to date, featuring over 200,000 samples, 3,465 event types, and 6,297 role types. For the second challenge, we propose an LLM-based Partitioning EE method called LLM-PEE. To overcome the limited context length of LLMs, LLM-PEE first recalls candidate event types and then splits them into multiple partitions for LLMs to extract events. The results in the supervised setting show that LLM-PEE outperforms the state-of-the-art methods by 5.4 in event detection and 6.1 in argument extraction. In the zero-shot setting, LLM-PEE achieves up to 12.9 improvement compared to mainstream LLMs, demonstrating its strong generalization capabilities.
comment: Work in progress
Reinforcement Learning-based Threat Assessment
In some game scenarios, due to the uncertainty of the number of enemy units and the priority of various attributes, the evaluation of the threat level of enemy units as well as the screening has been a challenging research topic, and the core difficulty lies in how to reasonably set the priority of different attributes in order to achieve quantitative evaluation of the threat. In this paper, we innovatively transform the problem of threat assessment into a reinforcement learning problem, and through systematic reinforcement learning training, we successfully construct an efficient neural network evaluator. The evaluator can not only comprehensively integrate the multidimensional attribute features of the enemy, but also effectively combine our state information, thus realizing a more accurate and scientific threat assessment.
comment: 10 pages,9 figures
☆ Seeing is Understanding: Unlocking Causal Attention into Modality-Mutual Attention for Multimodal LLMs
Recent Multimodal Large Language Models (MLLMs) have demonstrated significant progress in perceiving and reasoning over multimodal inquiries, ushering in a new research era for foundation models. However, vision-language misalignment in MLLMs has emerged as a critical challenge, where the textual responses generated by these models are not factually aligned with the given text-image inputs. Existing efforts to address vision-language misalignment have focused on developing specialized vision-language connectors or leveraging visual instruction tuning from diverse domains. In this paper, we tackle this issue from a fundamental yet unexplored perspective by revisiting the core architecture of MLLMs. Most MLLMs are typically built on decoder-only LLMs consisting of a causal attention mechanism, which limits the ability of earlier modalities (e.g., images) to incorporate information from later modalities (e.g., text). To address this problem, we propose AKI, a novel MLLM that unlocks causal attention into modality-mutual attention (MMA) to enable image tokens to attend to text tokens. This simple yet effective design allows AKI to achieve superior performance in 12 multimodal understanding benchmarks (+7.2% on average) without introducing additional parameters and increasing training time. Our MMA design is intended to be generic, allowing for application across various modalities, and scalable to accommodate diverse multimodal scenarios. The code is publicly available at https://github.com/sony/aki, and we will release our AKI-4B model to encourage further advancements in MLLMs across various directions.
comment: Preprint
☆ StageDesigner: Artistic Stage Generation for Scenography via Theater Scripts
In this work, we introduce StageDesigner, the first comprehensive framework for artistic stage generation using large language models combined with layout-controlled diffusion models. Given the professional requirements of stage scenography, StageDesigner simulates the workflows of seasoned artists to generate immersive 3D stage scenes. Specifically, our approach is divided into three primary modules: Script Analysis, which extracts thematic and spatial cues from input scripts; Foreground Generation, which constructs and arranges essential 3D objects; and Background Generation, which produces a harmonious background aligned with the narrative atmosphere and maintains spatial coherence by managing occlusions between foreground and background elements. Furthermore, we introduce the StagePro-V1 dataset, a dedicated dataset with 276 unique stage scenes spanning different historical styles and annotated with scripts, images, and detailed 3D layouts, specifically tailored for this task. Finally, evaluations using both standard and newly proposed metrics, along with extensive user studies, demonstrate the effectiveness of StageDesigner. Project can be found at: https://deadsmither5.github.io/2025/01/03/StageDesigner/
☆ Playing games with Large language models: Randomness and strategy
Playing games has a long history of describing intricate interactions in simplified forms. In this paper we explore if large language models (LLMs) can play games, investigating their capabilities for randomisation and strategic adaptation through both simultaneous and sequential game interactions. We focus on GPT-4o-Mini-2024-08-17 and test two games between LLMs: Rock Paper Scissors (RPS) and games of strategy (Prisoners Dilemma PD). LLMs are often described as stochastic parrots, and while they may indeed be parrots, our results suggest that they are not very stochastic in the sense that their outputs - when prompted to be random - are often very biased. Our research reveals that LLMs appear to develop loss aversion strategies in repeated games, with RPS converging to stalemate conditions while PD shows systematic shifts between cooperative and competitive outcomes based on prompt design. We detail programmatic tools for independent agent interactions and the Agentic AI challenges faced in implementation. We show that LLMs can indeed play games, just not very well. These results have implications for the use of LLMs in multi-agent LLM systems and showcase limitations in current approaches to model output for strategic decision-making.
comment: 9 pages
☆ LLM-Safety Evaluations Lack Robustness
In this paper, we argue that current safety alignment research efforts for large language models are hindered by many intertwined sources of noise, such as small datasets, methodological inconsistencies, and unreliable evaluation setups. This can, at times, make it impossible to evaluate and compare attacks and defenses fairly, thereby slowing progress. We systematically analyze the LLM safety evaluation pipeline, covering dataset curation, optimization strategies for automated red-teaming, response generation, and response evaluation using LLM judges. At each stage, we identify key issues and highlight their practical impact. We also propose a set of guidelines for reducing noise and bias in evaluations of future attack and defense papers. Lastly, we offer an opposing perspective, highlighting practical reasons for existing limitations. We believe that addressing the outlined problems in future research will improve the field's ability to generate easily comparable results and make measurable progress.
☆ RaceVLA: VLA-based Racing Drone Navigation with Human-like Behaviour IROS 2025
RaceVLA presents an innovative approach for autonomous racing drone navigation by leveraging Visual-Language-Action (VLA) to emulate human-like behavior. This research explores the integration of advanced algorithms that enable drones to adapt their navigation strategies based on real-time environmental feedback, mimicking the decision-making processes of human pilots. The model, fine-tuned on a collected racing drone dataset, demonstrates strong generalization despite the complexity of drone racing environments. RaceVLA outperforms OpenVLA in motion (75.0 vs 60.0) and semantic generalization (45.5 vs 36.3), benefiting from the dynamic camera and simplified motion tasks. However, visual (79.6 vs 87.0) and physical (50.0 vs 76.7) generalization were slightly reduced due to the challenges of maneuvering in dynamic environments with varying object sizes. RaceVLA also outperforms RT-2 across all axes - visual (79.6 vs 52.0), motion (75.0 vs 55.0), physical (50.0 vs 26.7), and semantic (45.5 vs 38.8), demonstrating its robustness for real-time adjustments in complex environments. Experiments revealed an average velocity of 1.04 m/s, with a maximum speed of 2.02 m/s, and consistent maneuverability, demonstrating RaceVLA's ability to handle high-speed scenarios effectively. These findings highlight the potential of RaceVLA for high-performance navigation in competitive racing contexts. The RaceVLA codebase, pretrained weights, and dataset are available at this http URL: https://racevla.github.io/
comment: 6 pages, 6 figures. Submitted to IROS 2025
☆ World Models for Anomaly Detection during Model-Based Reinforcement Learning Inference
Learning-based controllers are often purposefully kept out of real-world applications due to concerns about their safety and reliability. We explore how state-of-the-art world models in Model-Based Reinforcement Learning can be utilized beyond the training phase to ensure a deployed policy only operates within regions of the state-space it is sufficiently familiar with. This is achieved by continuously monitoring discrepancies between a world model's predictions and observed system behavior during inference. It allows for triggering appropriate measures, such as an emergency stop, once an error threshold is surpassed. This does not require any task-specific knowledge and is thus universally applicable. Simulated experiments on established robot control tasks show the effectiveness of this method, recognizing changes in local robot geometry and global gravitational magnitude. Real-world experiments using an agile quadcopter further demonstrate the benefits of this approach by detecting unexpected forces acting on the vehicle. These results indicate how even in new and adverse conditions, safe and reliable operation of otherwise unpredictable learning-based controllers can be achieved.
☆ Federated nnU-Net for Privacy-Preserving Medical Image Segmentation
The nnU-Net framework has played a crucial role in medical image segmentation and has become the gold standard in multitudes of applications targeting different diseases, organs, and modalities. However, so far it has been used primarily in a centralized approach where the data collected from hospitals are stored in one center and used to train the nnU-Net. This centralized approach has various limitations, such as leakage of sensitive patient information and violation of patient privacy. Federated learning is one of the approaches to train a segmentation model in a decentralized manner that helps preserve patient privacy. In this paper, we propose FednnU-Net, a federated learning extension of nnU-Net. We introduce two novel federated learning methods to the nnU-Net framework - Federated Fingerprint Extraction (FFE) and Asymmetric Federated Averaging (AsymFedAvg) - and experimentally show their consistent performance for breast, cardiac and fetal segmentation using 6 datasets representing samples from 18 institutions. Additionally, to further promote research and deployment of decentralized training in privacy constrained institutions, we make our plug-n-play framework public. The source-code is available at https://github.com/faildeny/FednnUNet .
comment: In review
☆ RectifiedHR: Enable Efficient High-Resolution Image Generation via Energy Rectification
Diffusion models have achieved remarkable advances in various image generation tasks. However, their performance notably declines when generating images at resolutions higher than those used during the training period. Despite the existence of numerous methods for producing high-resolution images, they either suffer from inefficiency or are hindered by complex operations. In this paper, we propose RectifiedHR, an efficient and straightforward solution for training-free high-resolution image generation. Specifically, we introduce the noise refresh strategy, which theoretically only requires a few lines of code to unlock the model's high-resolution generation ability and improve efficiency. Additionally, we first observe the phenomenon of energy decay that may cause image blurriness during the high-resolution image generation process. To address this issue, we propose an Energy Rectification strategy, where modifying the hyperparameters of the classifier-free guidance effectively improves the generation performance. Our method is entirely training-free and boasts a simple implementation logic. Through extensive comparisons with numerous baseline methods, our RectifiedHR demonstrates superior effectiveness and efficiency.
comment: Project Page: https://zhenyangcs.github.io/RectifiedHR-Diffusion/
☆ LTL Verification of Memoryful Neural Agents AAMAS 2025
We present a framework for verifying Memoryful Neural Multi-Agent Systems (MN-MAS) against full Linear Temporal Logic (LTL) specifications. In MN-MAS, agents interact with a non-deterministic, partially observable environment. Examples of MN-MAS include multi-agent systems based on feed-forward and recurrent neural networks or state-space models. Different from previous approaches, we support the verification of both bounded and unbounded LTL specifications. We leverage well-established bounded model checking techniques, including lasso search and invariant synthesis, to reduce the verification problem to that of constraint solving. To solve these constraints, we develop efficient methods based on bound propagation, mixed-integer linear programming, and adaptive splitting. We evaluate the effectiveness of our algorithms in single and multi-agent environments from the Gymnasium and PettingZoo libraries, verifying unbounded specifications for the first time and improving the verification time for bounded specifications by an order of magnitude compared to the SoA.
comment: 11 pages, 2 figures, accepted at AAMAS 2025 conference
☆ ROCKET-2: Steering Visuomotor Policy via Cross-View Goal Alignment
We aim to develop a goal specification method that is semantically clear, spatially sensitive, and intuitive for human users to guide agent interactions in embodied environments. Specifically, we propose a novel cross-view goal alignment framework that allows users to specify target objects using segmentation masks from their own camera views rather than the agent's observations. We highlight that behavior cloning alone fails to align the agent's behavior with human intent when the human and agent camera views differ significantly. To address this, we introduce two auxiliary objectives: cross-view consistency loss and target visibility loss, which explicitly enhance the agent's spatial reasoning ability. According to this, we develop ROCKET-2, a state-of-the-art agent trained in Minecraft, achieving an improvement in the efficiency of inference 3x to 6x. We show ROCKET-2 can directly interpret goals from human camera views for the first time, paving the way for better human-agent interaction.
☆ PennyLang: Pioneering LLM-Based Quantum Code Generation with a Novel PennyLane-Centric Dataset IJCNN 2025
Large Language Models (LLMs) offer remarkable capabilities in code generation, natural language processing, and domain-specific reasoning. Their potential in aiding quantum software development remains underexplored, particularly for the PennyLane framework-a leading platform for hybrid quantum-classical computing. To address this gap, we introduce a novel, high-quality dataset comprising 3,347 PennyLane-specific code samples of quantum circuits and their contextual descriptions, specifically curated to train/fine-tune LLM-based quantum code assistance. Our key contributions are threefold: (1) the automatic creation and open-source release of a comprehensive PennyLane dataset leveraging quantum computing textbooks, official documentation, and open-source repositories; (2) the development of a systematic methodology for data refinement, annotation, and formatting to optimize LLM training efficiency; and (3) a thorough evaluation, based on a Retrieval-Augmented Generation (RAG) framework, demonstrating the effectiveness of our dataset in streamlining PennyLane code generation and improving quantum development workflows. Compared to existing efforts that predominantly focus on Qiskit, our dataset significantly broadens the spectrum of quantum frameworks covered in AI-driven code assistance. By bridging this gap and providing reproducible dataset-creation methodologies, we aim to advance the field of AI-assisted quantum programming, making quantum computing more accessible to both newcomers and experienced developers.
comment: 10 pages, 8 figures, 6 tables, submitted for review under IJCNN 2025
☆ Union of Experts: Adapting Hierarchical Routing to Equivalently Decomposed Transformer
Mixture-of-Experts (MoE) enhances model performance while maintaining computational efficiency, making it well-suited for large-scale applications. However, expert in exist MoE paradigm works as an individual, thereby lacking high-quality expert interactions. Moreover, they have not been effectively extended to attention block, which constrains further efficiency improvements. To tackle these issues, we propose Union-of-Experts (UoE), which decomposes transformer into an equitant group of experts, and then implement dynamic routing on input data and experts. Our approach advances MoE design with three key innovations: (1) We conducted equitant expert decomposition on both MLP blocks and attention blocks based on matrix partition in tensor parallelism. (2) We developed two routing paradigms: patch wise data selection and expert selection, to apply routing across different levels. (3) We design the architecture of UoE model, including Selective Multi-Head Attention (SMHA) and Union-of-MLP-Experts (UoME). (4) We develop parallel implementation of UoE's routing and computation operation, and optimize efficiency based on the hardware processing analysis. The experiments demonstrate that the model employed with UoE surpass Full Attention, state-of-art MoEs and efficient transformers in several tasks across image and natural language domains. The source codes are available at https://github.com/YujiaoYang-work/UoE.
comment: 17 pages, 6 figures, 5 tables
☆ ERetinex: Event Camera Meets Retinex Theory for Low-Light Image Enhancement ICRA 2025
Low-light image enhancement aims to restore the under-exposure image captured in dark scenarios. Under such scenarios, traditional frame-based cameras may fail to capture the structure and color information due to the exposure time limitation. Event cameras are bio-inspired vision sensors that respond to pixel-wise brightness changes asynchronously. Event cameras' high dynamic range is pivotal for visual perception in extreme low-light scenarios, surpassing traditional cameras and enabling applications in challenging dark environments. In this paper, inspired by the success of the retinex theory for traditional frame-based low-light image restoration, we introduce the first methods that combine the retinex theory with event cameras and propose a novel retinex-based low-light image restoration framework named ERetinex. Among our contributions, the first is developing a new approach that leverages the high temporal resolution data from event cameras with traditional image information to estimate scene illumination accurately. This method outperforms traditional image-only techniques, especially in low-light environments, by providing more precise lighting information. Additionally, we propose an effective fusion strategy that combines the high dynamic range data from event cameras with the color information of traditional images to enhance image quality. Through this fusion, we can generate clearer and more detail-rich images, maintaining the integrity of visual information even under extreme lighting conditions. The experimental results indicate that our proposed method outperforms state-of-the-art (SOTA) methods, achieving a gain of 1.0613 dB in PSNR while reducing FLOPS by \textbf{84.28}\%.
comment: Accepted to ICRA 2025
☆ BioD2C: A Dual-level Semantic Consistency Constraint Framework for Biomedical VQA
Biomedical visual question answering (VQA) has been widely studied and has demonstrated significant application value and potential in fields such as assistive medical diagnosis. Despite their success, current biomedical VQA models perform multimodal information interaction only at the model level within large language models (LLMs), leading to suboptimal multimodal semantic alignment when dealing with complex tasks. To address this issue, we propose BioD2C: a novel Dual-level Semantic Consistency Constraint Framework for Biomedical VQA, which achieves dual-level semantic interaction alignment at both the model and feature levels, enabling the model to adaptively learn visual features based on the question. Specifically, we firstly integrate textual features into visual features via an image-text fusion mechanism as feature-level semantic interaction, obtaining visual features conditioned on the given text; and then introduce a text-queue-based cross-modal soft semantic loss function to further align the image semantics with the question semantics. Specifically, in this work, we establish a new dataset, BioVGQ, to address inherent biases in prior datasets by filtering manually-altered images and aligning question-answer pairs with multimodal context, and train our model on this dataset. Extensive experimental results demonstrate that BioD2C achieves state-of-the-art (SOTA) performance across multiple downstream datasets, showcasing its robustness, generalizability, and potential to advance biomedical VQA research.
☆ Don't Get Too Excited -- Eliciting Emotions in LLMs
This paper investigates the challenges of affect control in large language models (LLMs), focusing on their ability to express appropriate emotional states during extended dialogues. We evaluated state-of-the-art open-weight LLMs to assess their affective expressive range in terms of arousal and valence. Our study employs a novel methodology combining LLM-based sentiment analysis with multiturn dialogue simulations between LLMs. We quantify the models' capacity to express a wide spectrum of emotions and how they fluctuate during interactions. Our findings reveal significant variations among LLMs in their ability to maintain consistent affect, with some models demonstrating more stable emotional trajectories than others. Furthermore, we identify key challenges in affect control, including difficulties in producing and maintaining extreme emotional states and limitations in adapting affect to changing conversational contexts. These findings have important implications for the development of more emotionally intelligent AI systems and highlight the need for improved affect modelling in LLMs.
☆ Sparse Meets Dense: Unified Generative Recommendations with Cascaded Sparse-Dense Representations
Generative models have recently gained attention in recommendation systems by directly predicting item identifiers from user interaction sequences. However, existing methods suffer from significant information loss due to the separation of stages such as quantization and sequence modeling, hindering their ability to achieve the modeling precision and accuracy of sequential dense retrieval techniques. Integrating generative and dense retrieval methods remains a critical challenge. To address this, we introduce the Cascaded Organized Bi-Represented generAtive retrieval (COBRA) framework, which innovatively integrates sparse semantic IDs and dense vectors through a cascading process. Our method alternates between generating these representations by first generating sparse IDs, which serve as conditions to aid in the generation of dense vectors. End-to-end training enables dynamic refinement of dense representations, capturing both semantic insights and collaborative signals from user-item interactions. During inference, COBRA employs a coarse-to-fine strategy, starting with sparse ID generation and refining them into dense vectors via the generative model. We further propose BeamFusion, an innovative approach combining beam search with nearest neighbor scores to enhance inference flexibility and recommendation diversity. Extensive experiments on public datasets and offline tests validate our method's robustness. Online A/B tests on a real-world advertising platform with over 200 million daily users demonstrate substantial improvements in key metrics, highlighting COBRA's practical advantages.
☆ Exploring Model Quantization in GenAI-based Image Inpainting and Detection of Arable Plants
Deep learning-based weed control systems often suffer from limited training data diversity and constrained on-board computation, impacting their real-world performance. To overcome these challenges, we propose a framework that leverages Stable Diffusion-based inpainting to augment training data progressively in 10% increments -- up to an additional 200%, thus enhancing both the volume and diversity of samples. Our approach is evaluated on two state-of-the-art object detection models, YOLO11(l) and RT-DETR(l), using the mAP50 metric to assess detection performance. We explore quantization strategies (FP16 and INT8) for both the generative inpainting and detection models to strike a balance between inference speed and accuracy. Deployment of the downstream models on the Jetson Orin Nano demonstrates the practical viability of our framework in resource-constrained environments, ultimately improving detection accuracy and computational efficiency in intelligent weed management systems.
☆ AutoEval: A Practical Framework for Autonomous Evaluation of Mobile Agents
Accurate and systematic evaluation of mobile agents can significantly advance their development and real-world applicability. However, existing benchmarks for mobile agents lack practicality and scalability due to the extensive manual effort required to define task reward signals and implement corresponding evaluation codes. To this end, we propose AutoEval, an autonomous agent evaluation framework that tests a mobile agent without any manual effort. First, we design a Structured Substate Representation to describe the UI state changes while agent execution, such that task reward signals can be automatically generated. Second, we utilize a Judge System that can autonomously evaluate agents' performance given the automatically generated task reward signals. By providing only a task description, our framework evaluates agents with fine-grained performance feedback to that task without any extra manual effort. We implement a prototype of our framework and validate the automatically generated task reward signals, finding over 93% coverage to human-annotated reward signals. Moreover, to prove the effectiveness of our autonomous Judge System, we manually verify its judge results and demonstrate that it achieves 94% accuracy. Finally, we evaluate the state-of-the-art mobile agents using our framework, providing detailed insights into their performance characteristics and limitations.
☆ VisAgent: Narrative-Preserving Story Visualization Framework ICASSP 2025
Story visualization is the transformation of narrative elements into image sequences. While existing research has primarily focused on visual contextual coherence, the deeper narrative essence of stories often remains overlooked. This limitation hinders the practical application of these approaches, as generated images frequently fail to capture the intended meaning and nuances of the narrative fully. To address these challenges, we propose VisAgent, a training-free multi-agent framework designed to comprehend and visualize pivotal scenes within a given story. By considering story distillation, semantic consistency, and contextual coherence, VisAgent employs an agentic workflow. In this workflow, multiple specialized agents collaborate to: (i) refine layered prompts based on the narrative structure and (ii) seamlessly integrate \gt{generated} elements, including refined prompts, scene elements, and subject placement, into the final image. The empirically validated effectiveness confirms the framework's suitability for practical story visualization applications.
comment: Accepted to ICASSP 2025. Equal contribution from first two authors
☆ PersonaX: A Recommendation Agent Oriented User Modeling Framework for Long Behavior Sequence
Recommendation agents leverage large language models for user modeling LLM UM to construct textual personas guiding alignment with real users. However existing LLM UM methods struggle with long user generated content UGC due to context limitations and performance degradation. To address this sampling strategies prioritize relevance or recency are often applied yet they inevitably neglect the diverse user interests embedded within the discarded behaviors resulting in incomplete modeling and degraded profiling quality. Furthermore relevance based sampling requires real time retrieval forcing the user modeling process to operate online which introduces significant latency overhead. In this paper we propose PersonaX an agent agnostic LLM UM framework that tackles these challenges through sub behavior sequence SBS selection and offline multi persona construction. PersonaX extracts compact SBS segments offline to capture diverse user interests generating fine grained textual personas that are cached for efficient online retrieval. This approach ensures that the user persona used for prompting remains highly relevant to the current context while eliminating the need for online user modeling. For SBS selection we ensure both efficiency length less than five and high representational quality by balancing prototypicality and diversity within the sampled data. Extensive experiments validate the effectiveness and versatility of PersonaX in high quality user profiling. Utilizing only 30 to 50 percent of the behavioral data with a sequence length of 480 integrating PersonaX with AgentCF yields an absolute performance improvement of 3 to 11 percent while integration with Agent4Rec results in a gain of 10 to 50 percent. PersonaX as an agent agnostic framework sets a new benchmark for scalable user modeling paving the way for more accurate and efficient LLM driven recommendation agents.
comment: draft paper
☆ A Binary Classification Social Network Dataset for Graph Machine Learning
Social networks have a vast range of applications with graphs. The available benchmark datasets are citation, co-occurrence, e-commerce networks, etc, with classes ranging from 3 to 15. However, there is no benchmark classification social network dataset for graph machine learning. This paper fills the gap and presents the Binary Classification Social Network Dataset (\textit{BiSND}), designed for graph machine learning applications to predict binary classes. We present the BiSND in \textit{tabular and graph} formats to verify its robustness across classical and advanced machine learning. We employ a diverse set of classifiers, including four traditional machine learning algorithms (Decision Trees, K-Nearest Neighbour, Random Forest, XGBoost), one Deep Neural Network (multi-layer perceptrons), one Graph Neural Network (Graph Convolutional Network), and three state-of-the-art Graph Contrastive Learning methods (BGRL, GRACE, DAENS). Our findings reveal that BiSND is suitable for classification tasks, with F1-scores ranging from 67.66 to 70.15, indicating promising avenues for future enhancements.
☆ An Efficient and Precise Training Data Construction Framework for Process-supervised Reward Model in Mathematical Reasoning
Enhancing the mathematical reasoning capabilities of Large Language Models (LLMs) is of great scientific and practical significance. Researchers typically employ process-supervised reward models (PRMs) to guide the reasoning process, effectively improving the models' reasoning abilities. However, existing methods for constructing process supervision training data, such as manual annotation and per-step Monte Carlo estimation, are often costly or suffer from poor quality. To address these challenges, this paper introduces a framework called EpicPRM, which annotates each intermediate reasoning step based on its quantified contribution and uses an adaptive binary search algorithm to enhance both annotation precision and efficiency. Using this approach, we efficiently construct a high-quality process supervision training dataset named Epic50k, consisting of 50k annotated intermediate steps. Compared to other publicly available datasets, the PRM trained on Epic50k demonstrates significantly superior performance. Getting Epic50k at https://github.com/xiaolizh1/EpicPRM.
☆ JPDS-NN: Reinforcement Learning-Based Dynamic Task Allocation for Agricultural Vehicle Routing Optimization IROS 2025
The Entrance Dependent Vehicle Routing Problem (EDVRP) is a variant of the Vehicle Routing Problem (VRP) where the scale of cities influences routing outcomes, necessitating consideration of their entrances. This paper addresses EDVRP in agriculture, focusing on multi-parameter vehicle planning for irregularly shaped fields. To address the limitations of traditional methods, such as heuristic approaches, which often overlook field geometry and entrance constraints, we propose a Joint Probability Distribution Sampling Neural Network (JPDS-NN) to effectively solve the EDVRP. The network uses an encoder-decoder architecture with graph transformers and attention mechanisms to model routing as a Markov Decision Process, and is trained via reinforcement learning for efficient and rapid end-to-end planning. Experimental results indicate that JPDS-NN reduces travel distances by 48.4-65.4%, lowers fuel consumption by 14.0-17.6%, and computes two orders of magnitude faster than baseline methods, while demonstrating 15-25% superior performance in dynamic arrangement scenarios. Ablation studies validate the necessity of cross-attention and pre-training. The framework enables scalable, intelligent routing for large-scale farming under dynamic constraints.
comment: 8 pages, 7 figures, submitted to IROS 2025
☆ EchoQA: A Large Collection of Instruction Tuning Data for Echocardiogram Reports NeurIPS
We introduce a novel question-answering (QA) dataset using echocardiogram reports sourced from the Medical Information Mart for Intensive Care database. This dataset is specifically designed to enhance QA systems in cardiology, consisting of 771,244 QA pairs addressing a wide array of cardiac abnormalities and their severity. We compare large language models (LLMs), including open-source and biomedical-specific models for zero-shot evaluation, and closed-source models for zero-shot and three-shot evaluation. Our results show that fine-tuning LLMs improves performance across various QA metrics, validating the value of our dataset. Clinicians also qualitatively evaluate the best-performing model to assess the LLM responses for correctness. Further, we conduct fine-grained fairness audits to assess the bias-performance trade-off of LLMs across various social determinants of health. Our objective is to propel the field forward by establishing a benchmark for LLM AI agents aimed at supporting clinicians with cardiac differential diagnoses, thereby reducing the documentation burden that contributes to clinician burnout and enabling healthcare professionals to focus more on patient care.
comment: NeurIPS SafeGenAI 2024
☆ BdSLW401: Transformer-Based Word-Level Bangla Sign Language Recognition Using Relative Quantization Encoding (RQE)
Sign language recognition (SLR) for low-resource languages like Bangla suffers from signer variability, viewpoint variations, and limited annotated datasets. In this paper, we present BdSLW401, a large-scale, multi-view, word-level Bangla Sign Language (BdSL) dataset with 401 signs and 102,176 video samples from 18 signers in front and lateral views. To improve transformer-based SLR, we introduce Relative Quantization Encoding (RQE), a structured embedding approach anchoring landmarks to physiological reference points and quantize motion trajectories. RQE improves attention allocation by decreasing spatial variability, resulting in 44.3% WER reduction in WLASL100, 21.0% in SignBD-200, and significant gains in BdSLW60 and SignBD-90. However, fixed quantization becomes insufficient on large-scale datasets (e.g., WLASL2000), indicating the need for adaptive encoding strategies. Further, RQE-SF, an extended variant that stabilizes shoulder landmarks, achieves improvements in pose consistency at the cost of small trade-offs in lateral view recognition. The attention graphs prove that RQE improves model interpretability by focusing on the major articulatory features (fingers, wrists) and the more distinctive frames instead of global pose changes. Introducing BdSLW401 and demonstrating the effectiveness of RQE-enhanced structured embeddings, this work advances transformer-based SLR for low-resource languages and sets a benchmark for future research in this area.
☆ Are Large Vision Language Models Good Game Players? ICLR2025
Large Vision Language Models (LVLMs) have demonstrated remarkable abilities in understanding and reasoning about both visual and textual information. However, existing evaluation methods for LVLMs, primarily based on benchmarks like Visual Question Answering and image captioning, often fail to capture the full scope of LVLMs' capabilities. These benchmarks are limited by issues such as inadequate assessment of detailed visual perception, data contamination, and a lack of focus on multi-turn reasoning. To address these challenges, we propose \method{}, a game-based evaluation framework designed to provide a comprehensive assessment of LVLMs' cognitive and reasoning skills in structured environments. \method{} uses a set of games to evaluate LVLMs on four core tasks: Perceiving, Question Answering, Rule Following, and End-to-End Playing, with each target task designed to assess specific abilities, including visual perception, reasoning, decision-making, etc. Based on this framework, we conduct extensive experiments that explore the limitations of current LVLMs, such as handling long structured outputs and perceiving detailed and dense elements. Code and data are publicly available at https://github.com/xinke-wang/LVLM-Playground.
comment: ICLR2025
☆ CoServe: Efficient Collaboration-of-Experts (CoE) Model Inference with Limited Memory ASPLOS '25
Large language models like GPT-4 are resource-intensive, but recent advancements suggest that smaller, specialized experts can outperform the monolithic models on specific tasks. The Collaboration-of-Experts (CoE) approach integrates multiple expert models, improving the accuracy of generated results and offering great potential for precision-critical applications, such as automatic circuit board quality inspection. However, deploying CoE serving systems presents challenges to memory capacity due to the large number of experts required, which can lead to significant performance overhead from frequent expert switching across different memory and storage tiers. We propose CoServe, an efficient CoE model serving system on heterogeneous CPU and GPU with limited memory. CoServe reduces unnecessary expert switching by leveraging expert dependency, a key property of CoE inference. CoServe introduces a dependency-aware request scheduler and dependency-aware expert management for efficient inference. It also introduces an offline profiler to automatically find optimal resource allocation on various processors and devices. In real-world intelligent manufacturing workloads, CoServe achieves 4.5$\times$ to 12$\times$ higher throughput compared to state-of-the-art systems.
comment: Accepted to ASPLOS '25
☆ MindSimulator: Exploring Brain Concept Localization via Synthetic FMRI ICLR 2025
Concept-selective regions within the human cerebral cortex exhibit significant activation in response to specific visual stimuli associated with particular concepts. Precisely localizing these regions stands as a crucial long-term goal in neuroscience to grasp essential brain functions and mechanisms. Conventional experiment-driven approaches hinge on manually constructed visual stimulus collections and corresponding brain activity recordings, constraining the support and coverage of concept localization. Additionally, these stimuli often consist of concept objects in unnatural contexts and are potentially biased by subjective preferences, thus prompting concerns about the validity and generalizability of the identified regions. To address these limitations, we propose a data-driven exploration approach. By synthesizing extensive brain activity recordings, we statistically localize various concept-selective regions. Our proposed MindSimulator leverages advanced generative technologies to learn the probability distribution of brain activity conditioned on concept-oriented visual stimuli. This enables the creation of simulated brain recordings that reflect real neural response patterns. Using the synthetic recordings, we successfully localize several well-studied concept-selective regions and validate them against empirical findings, achieving promising prediction accuracy. The feasibility opens avenues for exploring novel concept-selective regions and provides prior hypotheses for future neuroscience research.
comment: 23 pages, ICLR 2025
☆ CQ CNN: A Hybrid Classical Quantum Convolutional Neural Network for Alzheimer's Disease Detection Using Diffusion Generated and U Net Segmented 3D MRI
The detection of Alzheimer disease (AD) from clinical MRI data is an active area of research in medical imaging. Recent advances in quantum computing, particularly the integration of parameterized quantum circuits (PQCs) with classical machine learning architectures, offer new opportunities to develop models that may outperform traditional methods. However, quantum machine learning (QML) remains in its early stages and requires further experimental analysis to better understand its behavior and limitations. In this paper, we propose an end to end hybrid classical quantum convolutional neural network (CQ CNN) for AD detection using clinically formatted 3D MRI data. Our approach involves developing a framework to make 3D MRI data usable for machine learning, designing and training a brain tissue segmentation model (Skull Net), and training a diffusion model to generate synthetic images for the minority class. Our converged models exhibit potential quantum advantages, achieving higher accuracy in fewer epochs than classical models. The proposed beta8 3 qubit model achieves an accuracy of 97.50%, surpassing state of the art (SOTA) models while requiring significantly fewer computational resources. In particular, the architecture employs only 13K parameters (0.48 MB), reducing the parameter count by more than 99.99% compared to current SOTA models. Furthermore, the diffusion-generated data used to train our quantum models, in conjunction with real samples, preserve clinical structural standards, representing a notable first in the field of QML. We conclude that CQCNN architecture like models, with further improvements in gradient optimization techniques, could become a viable option and even a potential alternative to classical models for AD detection, especially in data limited and resource constrained clinical settings.
comment: Application of hybrid quantum-classical machine learning for (early stage) disease detection
☆ GRADEO: Towards Human-Like Evaluation for Text-to-Video Generation via Multi-Step Reasoning
Recent great advances in video generation models have demonstrated their potential to produce high-quality videos, bringing challenges to effective evaluation. Unlike human evaluation, existing automated evaluation metrics lack high-level semantic understanding and reasoning capabilities for video, thus making them infeasible and unexplainable. To fill this gap, we curate GRADEO-Instruct, a multi-dimensional T2V evaluation instruction tuning dataset, including 3.3k videos from over 10 existing video generation models and multi-step reasoning assessments converted by 16k human annotations. We then introduce GRADEO, one of the first specifically designed video evaluation models, which grades AI-generated videos for explainable scores and assessments through multi-step reasoning. Experiments show that our method aligns better with human evaluations than existing methods. Furthermore, our benchmarking reveals that current video generation models struggle to produce content that aligns with human reasoning and complex real-world scenarios. The models, datasets, and codes will be released soon.
☆ Enhancing the Product Quality of the Injection Process Using eXplainable Artificial Intelligence
The injection molding process is a traditional technique for making products in various industries such as electronics and automobiles via solidifying liquid resin into certain molds. Although the process is not related to creating the main part of engines or semiconductors, this manufacturing methodology sets the final form of the products. Re-cently, research has continued to reduce the defect rate of the injection molding process. This study proposes an optimal injection molding process control system to reduce the defect rate of injection molding products with XAI (eXplainable Artificial Intelligence) ap-proaches. Boosting algorithms (XGBoost and LightGBM) are used as tree-based classifiers for predicting whether each product is normal or defective. The main features to control the process for improving the product are extracted by SHapley Additive exPlanations, while the individual conditional expectation analyzes the optimal control range of these extracted features. To validate the methodology presented in this work, the actual injection molding AI manufacturing dataset provided by KAMP (Korea AI Manufacturing Platform) is employed for the case study. The results reveal that the defect rate decreases from 1.00% (Original defect rate) to 0.21% with XGBoost and 0.13% with LightGBM, respectively.
☆ BiasICL: In-Context Learning and Demographic Biases of Vision Language Models
Vision language models (VLMs) show promise in medical diagnosis, but their performance across demographic subgroups when using in-context learning (ICL) remains poorly understood. We examine how the demographic composition of demonstration examples affects VLM performance in two medical imaging tasks: skin lesion malignancy prediction and pneumothorax detection from chest radiographs. Our analysis reveals that ICL influences model predictions through multiple mechanisms: (1) ICL allows VLMs to learn subgroup-specific disease base rates from prompts and (2) ICL leads VLMs to make predictions that perform differently across demographic groups, even after controlling for subgroup-specific disease base rates. Our empirical results inform best-practices for prompting current VLMs (specifically examining demographic subgroup performance, and matching base rates of labels to target distribution at a bulk level and within subgroups), while also suggesting next steps for improving our theoretical understanding of these models.
☆ Examining the Mental Health Impact of Misinformation on Social Media Using a Hybrid Transformer-Based Approach
Social media has significantly reshaped interpersonal communication, fostering connectivity while also enabling the proliferation of misinformation. The unchecked spread of false narratives has profound effects on mental health, contributing to increased stress, anxiety, and misinformation-driven paranoia. This study presents a hybrid transformer-based approach using a RoBERTa-LSTM classifier to detect misinformation, assess its impact on mental health, and classify disorders linked to misinformation exposure. The proposed models demonstrate accuracy rates of 98.4, 87.8, and 77.3 in detecting misinformation, mental health implications, and disorder classification, respectively. Furthermore, Pearson's Chi-Squared Test for Independence (p-value = 0.003871) validates the direct correlation between misinformation and deteriorating mental well-being. This study underscores the urgent need for better misinformation management strategies to mitigate its psychological repercussions. Future research could explore broader datasets incorporating linguistic, demographic, and cultural variables to deepen the understanding of misinformation-induced mental health distress.
comment: 20 pages
☆ PromptCoT: Synthesizing Olympiad-level Problems for Mathematical Reasoning in Large Language Models
The ability of large language models to solve complex mathematical problems has progressed significantly, particularly for tasks requiring advanced reasoning. However, the scarcity of sufficiently challenging problems, particularly at the Olympiad level, hinders further advancements. In this work, we introduce PromptCoT, a novel approach for automatically generating high-quality Olympiad-level math problems. The proposed method synthesizes complex problems based on mathematical concepts and the rationale behind problem construction, emulating the thought processes of experienced problem designers. We provide a theoretical analysis demonstrating that an optimal rationale should maximize both the likelihood of rationale generation given the associated concepts and the likelihood of problem generation conditioned on both the rationale and the concepts. Our method is evaluated on standard benchmarks including GSM8K, MATH-500, and AIME2024, where it consistently outperforms existing problem generation methods. Furthermore, we demonstrate that PromptCoT exhibits superior data scalability, consistently maintaining high performance as the dataset size increases, outperforming the baselines. The implementation is available at https://github.com/zhaoxlpku/PromptCoT.
comment: Preprint
☆ Audio-Reasoner: Improving Reasoning Capability in Large Audio Language Models
Recent advancements in multimodal reasoning have largely overlooked the audio modality. We introduce Audio-Reasoner, a large-scale audio language model for deep reasoning in audio tasks. We meticulously curated a large-scale and diverse multi-task audio dataset with simple annotations. Then, we leverage closed-source models to conduct secondary labeling, QA generation, along with structured COT process. These datasets together form a high-quality reasoning dataset with 1.2 million reasoning-rich samples, which we name CoTA. Following inference scaling principles, we train Audio-Reasoner on CoTA, enabling it to achieve great logical capabilities in audio reasoning. Experiments show state-of-the-art performance across key benchmarks, including MMAU-mini (+25.42%), AIR-Bench chat/foundation(+14.57%/+10.13%), and MELD (+8.01%). Our findings stress the core of structured CoT training in advancing audio reasoning.
comment: Technical report, in process
☆ Target Return Optimizer for Multi-Game Decision Transformer
Achieving autonomous agents with robust generalization capabilities across diverse games and tasks remains one of the ultimate goals in AI research. Recent advancements in transformer-based offline reinforcement learning, exemplified by the MultiGame Decision Transformer [Lee et al., 2022], have shown remarkable performance across various games or tasks. However, these approaches depend heavily on human expertise, presenting substantial challenges for practical deployment, particularly in scenarios with limited prior game-specific knowledge. In this paper, we propose an algorithm called Multi-Game Target Return Optimizer (MTRO) to autonomously determine game-specific target returns within the Multi-Game Decision Transformer framework using solely offline datasets. MTRO addresses the existing limitations by automating the target return configuration process, leveraging environmental reward information extracted from offline datasets. Notably, MTRO does not require additional training, enabling seamless integration into existing Multi-Game Decision Transformer architectures. Our experimental evaluations on Atari games demonstrate that MTRO enhances the performance of RL policies across a wide array of games, underscoring its potential to advance the field of autonomous agent development.
comment: 10 pages
☆ Flexible Prefrontal Control over Hippocampal Episodic Memory for Goal-Directed Generalization
Many tasks require flexibly modifying perception and behavior based on current goals. Humans can retrieve episodic memories from days to years ago, using them to contextualize and generalize behaviors across novel but structurally related situations. The brain's ability to control episodic memories based on task demands is often attributed to interactions between the prefrontal cortex (PFC) and hippocampus (HPC). We propose a reinforcement learning model that incorporates a PFC-HPC interaction mechanism for goal-directed generalization. In our model, the PFC learns to generate query-key representations to encode and retrieve goal-relevant episodic memories, modulating HPC memories top-down based on current task demands. Moreover, the PFC adapts its encoding and retrieval strategies dynamically when faced with multiple goals presented in a blocked, rather than interleaved, manner. Our results show that: (1) combining working memory with selectively retrieved episodic memory allows transfer of decisions among similar environments or situations, (2) top-down control from PFC over HPC improves learning of arbitrary structural associations between events for generalization to novel environments compared to a bottom-up sensory-driven approach, and (3) the PFC encodes generalizable representations during both encoding and retrieval of goal-relevant memories, whereas the HPC exhibits event-specific representations. Together, these findings highlight the importance of goal-directed prefrontal control over hippocampal episodic memory for decision-making in novel situations and suggest a computational mechanism by which PFC-HPC interactions enable flexible behavior.
☆ Memorize or Generalize? Evaluating LLM Code Generation with Evolved Questions
Large Language Models (LLMs) are known to exhibit a memorization phenomenon in code generation: instead of truly understanding the underlying principles of a programming problem, they tend to memorize the original prompt and its solution together in the training. Consequently, when facing variants of the original problem, their answers very likely resemble the memorized solutions and fail to generalize. In this paper, we investigate this phenomenon by designing three evolution strategies to create variants: mutation, paraphrasing, and code-rewriting. By comparing the performance and AST similarity of the LLM-generated codes before and after these three evolutions, we develop a memorization score that positively correlates with the level of memorization. As expected, as supervised fine-tuning goes on, the memorization score rises before overfitting, suggesting more severe memorization. We demonstrate that common mitigation approaches, such as prompt translation and using evolved variants as data augmentation in supervised learning and reinforcement learning, either compromise the performance or fail to alleviate the memorization issue. Therefore, memorization remains a significant challenge in LLM code generation, highlighting the need for a more effective solution.
☆ Semi-Supervised Audio-Visual Video Action Recognition with Audio Source Localization Guided Mixup
Video action recognition is a challenging but important task for understanding and discovering what the video does. However, acquiring annotations for a video is costly, and semi-supervised learning (SSL) has been studied to improve performance even with a small number of labeled data in the task. Prior studies for semi-supervised video action recognition have mostly focused on using single modality - visuals - but the video is multi-modal, so utilizing both visuals and audio would be desirable and improve performance further, which has not been explored well. Therefore, we propose audio-visual SSL for video action recognition, which uses both visual and audio together, even with quite a few labeled data, which is challenging. In addition, to maximize the information of audio and video, we propose a novel audio source localization-guided mixup method that considers inter-modal relations between video and audio modalities. In experiments on UCF-51, Kinetics-400, and VGGSound datasets, our model shows the superior performance of the proposed semi-supervised audio-visual action recognition framework and audio source localization-guided mixup.
☆ Experience Replay with Random Reshuffling
Experience replay is a key component in reinforcement learning for stabilizing learning and improving sample efficiency. Its typical implementation samples transitions with replacement from a replay buffer. In contrast, in supervised learning with a fixed dataset, it is a common practice to shuffle the dataset every epoch and consume data sequentially, which is called random reshuffling (RR). RR enjoys theoretically better convergence properties and has been shown to outperform with-replacement sampling empirically. To leverage the benefits of RR in reinforcement learning, we propose sampling methods that extend RR to experience replay, both in uniform and prioritized settings. We evaluate our sampling methods on Atari benchmarks, demonstrating their effectiveness in deep reinforcement learning.
☆ AppAgentX: Evolving GUI Agents as Proficient Smartphone Users
Recent advancements in Large Language Models (LLMs) have led to the development of intelligent LLM-based agents capable of interacting with graphical user interfaces (GUIs). These agents demonstrate strong reasoning and adaptability, enabling them to perform complex tasks that traditionally required predefined rules. However, the reliance on step-by-step reasoning in LLM-based agents often results in inefficiencies, particularly for routine tasks. In contrast, traditional rule-based systems excel in efficiency but lack the intelligence and flexibility to adapt to novel scenarios. To address this challenge, we propose a novel evolutionary framework for GUI agents that enhances operational efficiency while retaining intelligence and flexibility. Our approach incorporates a memory mechanism that records the agent's task execution history. By analyzing this history, the agent identifies repetitive action sequences and evolves high-level actions that act as shortcuts, replacing these low-level operations and improving efficiency. This allows the agent to focus on tasks requiring more complex reasoning, while simplifying routine actions. Experimental results on multiple benchmark tasks demonstrate that our approach significantly outperforms existing methods in both efficiency and accuracy. The code will be open-sourced to support further research.
☆ REAct: Rational Exponential Activation for Better Learning and Generalization in PINNs ICASSP 2025
Physics-Informed Neural Networks (PINNs) offer a promising approach to simulating physical systems. Still, their application is limited by optimization challenges, mainly due to the lack of activation functions that generalize well across several physical systems. Existing activation functions often lack such flexibility and generalization power. To address this issue, we introduce Rational Exponential Activation (REAct), a generalized form of tanh consisting of four learnable shape parameters. Experiments show that REAct outperforms many standard and benchmark activations, achieving an MSE three orders of magnitude lower than tanh on heat problems and generalizing well to finer grids and points beyond the training domain. It also excels at function approximation tasks and improves noise rejection in inverse problems, leading to more accurate parameter estimates across varying noise levels.
comment: 5 pages, 5 tables, 1 figure; Accepted at ICASSP 2025
☆ Large Language Models as Natural Selector for Embodied Soft Robot Design
Designing soft robots is a complex and iterative process that demands cross-disciplinary expertise in materials science, mechanics, and control, often relying on intuition and extensive experimentation. While Large Language Models (LLMs) have demonstrated impressive reasoning abilities, their capacity to learn and apply embodied design principles--crucial for creating functional robotic systems--remains largely unexplored. This paper introduces RoboCrafter-QA, a novel benchmark to evaluate whether LLMs can learn representations of soft robot designs that effectively bridge the gap between high-level task descriptions and low-level morphological and material choices. RoboCrafter-QA leverages the EvoGym simulator to generate a diverse set of soft robot design challenges, spanning robotic locomotion, manipulation, and balancing tasks. Our experiments with state-of-the-art multi-modal LLMs reveal that while these models exhibit promising capabilities in learning design representations, they struggle with fine-grained distinctions between designs with subtle performance differences. We further demonstrate the practical utility of LLMs for robot design initialization. Our code and benchmark will be available to encourage the community to foster this exciting research direction.
☆ V2X-LLM: Enhancing V2X Integration and Understanding in Connected Vehicle Corridors
The advancement of Connected and Automated Vehicles (CAVs) and Vehicle-to-Everything (V2X) offers significant potential for enhancing transportation safety, mobility, and sustainability. However, the integration and analysis of the diverse and voluminous V2X data, including Basic Safety Messages (BSMs) and Signal Phase and Timing (SPaT) data, present substantial challenges, especially on Connected Vehicle Corridors. These challenges include managing large data volumes, ensuring real-time data integration, and understanding complex traffic scenarios. Although these projects have developed an advanced CAV data pipeline that enables real-time communication between vehicles, infrastructure, and other road users for managing connected vehicle and roadside unit (RSU) data, significant hurdles in data comprehension and real-time scenario analysis and reasoning persist. To address these issues, we introduce the V2X-LLM framework, a novel enhancement to the existing CV data pipeline. V2X-LLM leverages Large Language Models (LLMs) to improve the understanding and real-time analysis of V2X data. The framework includes four key tasks: Scenario Explanation, offering detailed narratives of traffic conditions; V2X Data Description, detailing vehicle and infrastructure statuses; State Prediction, forecasting future traffic states; and Navigation Advisory, providing optimized routing instructions. By integrating LLM-driven reasoning with V2X data within the data pipeline, the V2X-LLM framework offers real-time feedback and decision support for traffic management. This integration enhances the accuracy of traffic analysis, safety, and traffic optimization. Demonstrations in a real-world urban corridor highlight the framework's potential to advance intelligent transportation systems.
☆ Deficient Excitation in Parameter Learning
This paper investigates parameter learning problems under deficient excitation (DE). The DE condition is a rank-deficient, and therefore, a more general evolution of the well-known persistent excitation condition. Under the DE condition, a proposed online algorithm is able to calculate the identifiable and non-identifiable subspaces, and finally give an optimal parameter estimate in the sense of least squares. In particular, the learning error within the identifiable subspace exponentially converges to zero in the noise-free case, even without persistent excitation. The DE condition also provides a new perspective for solving distributed parameter learning problems, where the challenge is posed by local regressors that are often insufficiently excited. To improve knowledge of the unknown parameters, a cooperative learning protocol is proposed for a group of estimators that collect measured information under complementary DE conditions. This protocol allows each local estimator to operate locally in its identifiable subspace, and reach a consensus with neighbours in its non-identifiable subspace. As a result, the task of estimating unknown parameters can be achieved in a distributed way using cooperative local estimators. Application examples in system identification are given to demonstrate the effectiveness of the theoretical results developed in this paper.
comment: 16 pages,9 figures
☆ Enhancing LLM Reliability via Explicit Knowledge Boundary Modeling
Large language models (LLMs) frequently hallucinate due to misaligned self-awareness, generating erroneous outputs when addressing queries beyond their knowledge boundaries. While existing approaches mitigate hallucinations via uncertainty estimation or query rejection, they suffer from computational inefficiency or sacrificed helpfulness. To address these issues, we propose the Explicit Knowledge Boundary Modeling (EKBM) framework, integrating fast and slow reasoning systems to harmonize reliability and usability. The framework first employs a fast-thinking model to generate confidence-labeled responses, enabling immediate use of high-confidence outputs. For uncertain predictions, a slow refinement model conducts targeted reasoning to improve accuracy. To align model behavior with our proposed object, we propose a hybrid training pipeline, enhancing self-awareness without degrading task performance. Evaluations on dialogue state tracking tasks demonstrate that EKBM achieves superior model reliability over uncertainty-based baselines. Further analysis reveals that refinement substantially boosts accuracy while maintaining low computational overhead. Our work establishes a scalable paradigm for advancing LLM reliability and balancing accuracy and practical utility in error-sensitive applications.
☆ One Patient's Annotation is Another One's Initialization: Towards Zero-Shot Surgical Video Segmentation with Cross-Patient Initialization
Video object segmentation is an emerging technology that is well-suited for real-time surgical video segmentation, offering valuable clinical assistance in the operating room by ensuring consistent frame tracking. However, its adoption is limited by the need for manual intervention to select the tracked object, making it impractical in surgical settings. In this work, we tackle this challenge with an innovative solution: using previously annotated frames from other patients as the tracking frames. We find that this unconventional approach can match or even surpass the performance of using patients' own tracking frames, enabling more autonomous and efficient AI-assisted surgical workflows. Furthermore, we analyze the benefits and limitations of this approach, highlighting its potential to enhance segmentation accuracy while reducing the need for manual input. Our findings provide insights into key factors influencing performance, offering a foundation for future research on optimizing cross-patient frame selection for real-time surgical video analysis.
☆ Attention Bootstrapping for Multi-Modal Test-Time Adaptation
Test-time adaptation aims to adapt a well-trained model to potential distribution shifts at test time using only unlabeled test data, without access to the original training data. While previous efforts mainly focus on a single modality, test-time distribution shift in the multi-modal setting is more complex and calls for new solutions. This paper tackles the problem of multi-modal test-time adaptation by proposing a novel method named Attention Bootstrapping with Principal Entropy Minimization (ABPEM). We observe that test-time distribution shift causes misalignment across modalities, leading to a large gap between intra-modality discrepancies (measured by self-attention) and inter-modality discrepancies (measured by cross-attention). We name this the attention gap. This attention gap widens with more severe distribution shifts, hindering effective modality fusion. To mitigate this attention gap and encourage better modality fusion, we propose attention bootstrapping that promotes cross-attention with the guidance of self-attention. Moreover, to reduce the gradient noise in the commonly-used entropy minimization, we adopt principal entropy minimization, a refinement of entropy minimization that reduces gradient noise by focusing on the principal parts of entropy, excluding less reliable gradient information. Extensive experiments on the benchmarks validate the effectiveness of the proposed ABPEM in comparison with competing baselines.
☆ Words or Vision: Do Vision-Language Models Have Blind Faith in Text? CVPR 2025
Vision-Language Models (VLMs) excel in integrating visual and textual information for vision-centric tasks, but their handling of inconsistencies between modalities is underexplored. We investigate VLMs' modality preferences when faced with visual data and varied textual inputs in vision-centered settings. By introducing textual variations to four vision-centric tasks and evaluating ten Vision-Language Models (VLMs), we discover a \emph{``blind faith in text''} phenomenon: VLMs disproportionately trust textual data over visual data when inconsistencies arise, leading to significant performance drops under corrupted text and raising safety concerns. We analyze factors influencing this text bias, including instruction prompts, language model size, text relevance, token order, and the interplay between visual and textual certainty. While certain factors, such as scaling up the language model size, slightly mitigate text bias, others like token order can exacerbate it due to positional biases inherited from language models. To address this issue, we explore supervised fine-tuning with text augmentation and demonstrate its effectiveness in reducing text bias. Additionally, we provide a theoretical analysis suggesting that the blind faith in text phenomenon may stem from an imbalance of pure text and multi-modal data during training. Our findings highlight the need for balanced training and careful consideration of modality interactions in VLMs to enhance their robustness and reliability in handling multi-modal data inconsistencies.
comment: Accepted to CVPR 2025
☆ ATLaS: Agent Tuning via Learning Critical Steps
Large Language Model (LLM) agents have demonstrated remarkable generalization capabilities across multi-domain tasks. Existing agent tuning approaches typically employ supervised finetuning on entire expert trajectories. However, behavior-cloning of full trajectories can introduce expert bias and weaken generalization to states not covered by the expert data. Additionally, critical steps, such as planning, complex reasoning for intermediate subtasks, and strategic decision-making, are essential to success in agent tasks, so learning these steps is the key to improving LLM agents. For more effective and efficient agent tuning, we propose ATLaS that identifies the critical steps in expert trajectories and finetunes LLMs solely on these steps with reduced costs. By steering the training's focus to a few critical steps, our method mitigates the risk of overfitting entire trajectories and promotes generalization across different environments and tasks. In extensive experiments, an LLM finetuned on only 30% critical steps selected by ATLaS outperforms the LLM finetuned on all steps and recent open-source LLM agents. ATLaS maintains and improves base LLM skills as generalist agents interacting with diverse environments.
☆ Discrete Differential Evolution Particle Swarm Optimization Algorithm for Energy Saving Flexible Job Shop Scheduling Problem Considering Machine Multi States
As the continuous deepening of low-carbon emission reduction policies, the manufacturing industries urgently need sensible energy-saving scheduling schemes to achieve the balance between improving production efficiency and reducing energy consumption. In energy-saving scheduling, reasonable machine states-switching is a key point to achieve expected goals, i.e., whether the machines need to switch speed between different operations, and whether the machines need to add extra setup time between different jobs. Regarding this matter, this work proposes a novel machine multi states-based energy saving flexible job scheduling problem (EFJSP-M), which simultaneously takes into account machine multi speeds and setup time. To address the proposed EFJSP-M, a kind of discrete differential evolution particle swarm optimization algorithm (D-DEPSO) is designed. In specific, D-DEPSO includes a hybrid initialization strategy to improve the initial population performance, an updating mechanism embedded with differential evolution operators to enhance population diversity, and a critical path variable neighborhood search strategy to expand the solution space. At last, based on datasets DPs and MKs, the experiment results compared with five state-of-the-art algorithms demonstrate the feasible of EFJSP-M and the superior of D-DEPSO.
☆ DivPrune: Diversity-based Visual Token Pruning for Large Multimodal Models
Large Multimodal Models (LMMs) have emerged as powerful models capable of understanding various data modalities, including text, images, and videos. LMMs encode both text and visual data into tokens that are then combined and processed by an integrated Large Language Model (LLM). Including visual tokens substantially increases the total token count, often by thousands. The increased input length for LLM significantly raises the complexity of inference, resulting in high latency in LMMs. To address this issue, token pruning methods, which remove part of the visual tokens, are proposed. The existing token pruning methods either require extensive calibration and fine-tuning or rely on suboptimal importance metrics which results in increased redundancy among the retained tokens. In this paper, we first formulate token pruning as Max-Min Diversity Problem (MMDP) where the goal is to select a subset such that the diversity among the selected {tokens} is maximized. Then, we solve the MMDP to obtain the selected subset and prune the rest. The proposed method, DivPrune, reduces redundancy and achieves the highest diversity of the selected tokens. By ensuring high diversity, the selected tokens better represent the original tokens, enabling effective performance even at high pruning ratios without requiring fine-tuning. Extensive experiments with various LMMs show that DivPrune achieves state-of-the-art accuracy over 16 image- and video-language datasets. Additionally, DivPrune reduces both the end-to-end latency and GPU memory usage for the tested models. The code is available $\href{https://github.com/vbdi/divprune}{\text{here}}$.
☆ Adversarial Tokenization
Current LLM pipelines account for only one possible tokenization for a given string, ignoring exponentially many alternative tokenizations during training and inference. For example, the standard Llama3 tokenization of penguin is [p,enguin], yet [peng,uin] is another perfectly valid alternative. In this paper, we show that despite LLMs being trained solely on one tokenization, they still retain semantic understanding of other tokenizations, raising questions about their implications in LLM safety. Put succinctly, we answer the following question: can we adversarially tokenize an obviously malicious string to evade safety and alignment restrictions? We show that not only is adversarial tokenization an effective yet previously neglected axis of attack, but it is also competitive against existing state-of-the-art adversarial approaches without changing the text of the harmful request. We empirically validate this exploit across three state-of-the-art LLMs and adversarial datasets, revealing a previously unknown vulnerability in subword models.
☆ KGCompiler: Deep Learning Compilation Optimization for Knowledge Graph Complex Logical Query Answering
Complex Logical Query Answering (CLQA) involves intricate multi-hop logical reasoning over large-scale and potentially incomplete Knowledge Graphs (KGs). Although existing CLQA algorithms achieve high accuracy in answering such queries, their reasoning time and memory usage scale significantly with the number of First-Order Logic (FOL) operators involved, creating serious challenges for practical deployment. In addition, current research primarily focuses on algorithm-level optimizations for CLQA tasks, often overlooking compiler-level optimizations, which can offer greater generality and scalability. To address these limitations, we introduce a Knowledge Graph Compiler, namely KGCompiler, the first deep learning compiler specifically designed for CLQA tasks. By incorporating KG-specific optimizations proposed in this paper, KGCompiler enhances the reasoning performance of CLQA algorithms without requiring additional manual modifications to their implementations. At the same time, it significantly reduces memory usage. Extensive experiments demonstrate that KGCompiler accelerates CLQA algorithms by factors ranging from 1.04x to 8.26x, with an average speedup of 3.71x. We also provide an interface to enable hands-on experience with KGCompiler.
☆ Adaptive Camera Sensor for Vision Models ICLR 2025
Domain shift remains a persistent challenge in deep-learning-based computer vision, often requiring extensive model modifications or large labeled datasets to address. Inspired by human visual perception, which adjusts input quality through corrective lenses rather than over-training the brain, we propose Lens, a novel camera sensor control method that enhances model performance by capturing high-quality images from the model's perspective rather than relying on traditional human-centric sensor control. Lens is lightweight and adapts sensor parameters to specific models and scenes in real-time. At its core, Lens utilizes VisiT, a training-free, model-specific quality indicator that evaluates individual unlabeled samples at test time using confidence scores without additional adaptation costs. To validate Lens, we introduce ImageNet-ES Diverse, a new benchmark dataset capturing natural perturbations from varying sensor and lighting conditions. Extensive experiments on both ImageNet-ES and our new ImageNet-ES Diverse show that Lens significantly improves model accuracy across various baseline schemes for sensor control and model modification while maintaining low latency in image captures. Lens effectively compensates for large model size differences and integrates synergistically with model improvement techniques. Our code and dataset are available at github.com/Edw2n/Lens.git.
comment: The International Conference on Learning Representations (ICLR 2025)
☆ MedHEval: Benchmarking Hallucinations and Mitigation Strategies in Medical Large Vision-Language Models
Large Vision Language Models (LVLMs) are becoming increasingly important in the medical domain, yet Medical LVLMs (Med-LVLMs) frequently generate hallucinations due to limited expertise and the complexity of medical applications. Existing benchmarks fail to effectively evaluate hallucinations based on their underlying causes and lack assessments of mitigation strategies. To address this gap, we introduce MedHEval, a novel benchmark that systematically evaluates hallucinations and mitigation strategies in Med-LVLMs by categorizing them into three underlying causes: visual misinterpretation, knowledge deficiency, and context misalignment. We construct a diverse set of close- and open-ended medical VQA datasets with comprehensive evaluation metrics to assess these hallucination types. We conduct extensive experiments across 11 popular (Med)-LVLMs and evaluate 7 state-of-the-art hallucination mitigation techniques. Results reveal that Med-LVLMs struggle with hallucinations arising from different causes while existing mitigation methods show limited effectiveness, especially for knowledge- and context-based errors. These findings underscore the need for improved alignment training and specialized mitigation strategies to enhance Med-LVLMs' reliability. MedHEval establishes a standardized framework for evaluating and mitigating medical hallucinations, guiding the development of more trustworthy Med-LVLMs.
comment: Preprint, under review
☆ MobRFFI: Non-cooperative Device Re-identification for Mobility Intelligence
WiFi-based mobility monitoring in urban environments can provide valuable insights into pedestrian and vehicle movements. However, MAC address randomization introduces a significant obstacle in accurately estimating congestion levels and path trajectories. To this end, we consider radio frequency fingerprinting and re-identification for attributing WiFi traffic to emitting devices without the use of MAC addresses. We present MobRFFI, an AI-based device fingerprinting and re-identification framework for WiFi networks that leverages an encoder deep learning model to extract unique features based on WiFi chipset hardware impairments. It is entirely independent of frame type. When evaluated on the WiFi fingerprinting dataset WiSig, our approach achieves 94% and 100% device accuracy in multi-day and single-day re-identification scenarios, respectively. We also collect a novel dataset, MobRFFI, for granular multi-receiver WiFi device fingerprinting evaluation. Using the dataset, we demonstrate that the combination of fingerprints from multiple receivers boosts re-identification performance from 81% to 100% on a single-day scenario and from 41% to 100% on a multi-day scenario.
comment: 10 pages, 9 figures, 3 tables
☆ AugFL: Augmenting Federated Learning with Pretrained Models
Federated Learning (FL) has garnered widespread interest in recent years. However, owing to strict privacy policies or limited storage capacities of training participants such as IoT devices, its effective deployment is often impeded by the scarcity of training data in practical decentralized learning environments. In this paper, we study enhancing FL with the aid of (large) pre-trained models (PMs), that encapsulate wealthy general/domain-agnostic knowledge, to alleviate the data requirement in conducting FL from scratch. Specifically, we consider a networked FL system formed by a central server and distributed clients. First, we formulate the PM-aided personalized FL as a regularization-based federated meta-learning problem, where clients join forces to learn a meta-model with knowledge transferred from a private PM stored at the server. Then, we develop an inexact-ADMM-based algorithm, AugFL, to optimize the problem with no need to expose the PM or incur additional computational costs to local clients. Further, we establish theoretical guarantees for AugFL in terms of communication complexity, adaptation performance, and the benefit of knowledge transfer in general non-convex cases. Extensive experiments corroborate the efficacy and superiority of AugFL over existing baselines.
comment: to be published in Transactions on Networking
☆ Elliptic Loss Regularization ICLR 2025
Regularizing neural networks is important for anticipating model behavior in regions of the data space that are not well represented. In this work, we propose a regularization technique for enforcing a level of smoothness in the mapping between the data input space and the loss value. We specify the level of regularity by requiring that the loss of the network satisfies an elliptic operator over the data domain. To do this, we modify the usual empirical risk minimization objective such that we instead minimize a new objective that satisfies an elliptic operator over points within the domain. This allows us to use existing theory on elliptic operators to anticipate the behavior of the error for points outside the training set. We propose a tractable computational method that approximates the behavior of the elliptic operator while being computationally efficient. Finally, we analyze the properties of the proposed regularization to understand the performance on common problems of distribution shift and group imbalance. Numerical experiments confirm the utility of the proposed regularization technique.
comment: ICLR 2025
☆ Semi-Supervised In-Context Learning: A Baseline Study
Most existing work in data selection for In-Context Learning (ICL) has focused on constructing demonstrations from ground truth annotations, with limited attention given to selecting reliable self-generated annotations. In this work, we propose a three-step semi-supervised ICL framework: annotation generation, demonstration selection, and semi-supervised inference. Our baseline, Naive-SemiICL, which prompts select high-confidence self-generated demonstrations for ICL prompting, outperforms a 16-shot baseline by an average of 9.94% across 16 datasets. We further introduce IterPSD, an annotation approach that refines pseudo-demonstrations iteratively, achieving up to 6.8% additional gains in classification tasks. Lastly, we reveal a scaling law for semi-supervised ICL, where models achieve optimal performance with over 1,000 demonstrations.
☆ ArticuBot: Learning Universal Articulated Object Manipulation Policy via Large Scale Simulation
This paper presents ArticuBot, in which a single learned policy enables a robotics system to open diverse categories of unseen articulated objects in the real world. This task has long been challenging for robotics due to the large variations in the geometry, size, and articulation types of such objects. Our system, Articubot, consists of three parts: generating a large number of demonstrations in physics-based simulation, distilling all generated demonstrations into a point cloud-based neural policy via imitation learning, and performing zero-shot sim2real transfer to real robotics systems. Utilizing sampling-based grasping and motion planning, our demonstration generalization pipeline is fast and effective, generating a total of 42.3k demonstrations over 322 training articulated objects. For policy learning, we propose a novel hierarchical policy representation, in which the high-level policy learns the sub-goal for the end-effector, and the low-level policy learns how to move the end-effector conditioned on the predicted goal. We demonstrate that this hierarchical approach achieves much better object-level generalization compared to the non-hierarchical version. We further propose a novel weighted displacement model for the high-level policy that grounds the prediction into the existing 3D structure of the scene, outperforming alternative policy representations. We show that our learned policy can zero-shot transfer to three different real robot settings: a fixed table-top Franka arm across two different labs, and an X-Arm on a mobile base, opening multiple unseen articulated objects across two labs, real lounges, and kitchens. Videos and code can be found on our project website: https://articubot.github.io/.
☆ SAGE: Steering and Refining Dialog Generation with State-Action Augmentation
Recent advances in large language models have demonstrated impressive capabilities in task-oriented applications, yet building emotionally intelligent chatbots that can engage in natural, strategic conversations remains a challenge. We present a novel approach called SAGE that uses latent variables to control long-horizon behavior in dialogue generation. At the core of our method is the State-Action Chain (SAC), which augments standard language model fine-tuning by introducing latent variables that encapsulate emotional states and conversational strategies between dialogue turns. During inference, these variables are generated before each response, enabling coarse-grained control over dialogue progression while maintaining natural interaction patterns. We also introduce a self-improvement pipeline that leverages dialogue tree search, LLM-based reward modeling, and targeted fine-tuning to optimize conversational trajectories. Our experimental results show that models trained with this approach demonstrate improved performance in emotional intelligence metrics while maintaining strong capabilities on LLM benchmarks. The discrete nature of our latent variables facilitates search-based strategies and provides a foundation for future applications of reinforcement learning to dialogue systems, where learning can occur at the state level rather than the token level.
☆ LLM Misalignment via Adversarial RLHF Platforms
Reinforcement learning has shown remarkable performance in aligning language models with human preferences, leading to the rise of attention towards developing RLHF platforms. These platforms enable users to fine-tune models without requiring any expertise in developing complex machine learning algorithms. While these platforms offer useful features such as reward modeling and RLHF fine-tuning, their security and reliability remain largely unexplored. Given the growing adoption of RLHF and open-source RLHF frameworks, we investigate the trustworthiness of these systems and their potential impact on behavior of LLMs. In this paper, we present an attack targeting publicly available RLHF tools. In our proposed attack, an adversarial RLHF platform corrupts the LLM alignment process by selectively manipulating data samples in the preference dataset. In this scenario, when a user's task aligns with the attacker's objective, the platform manipulates a subset of the preference dataset that contains samples related to the attacker's target. This manipulation results in a corrupted reward model, which ultimately leads to the misalignment of the language model. Our results demonstrate that such an attack can effectively steer LLMs toward undesirable behaviors within the targeted domains. Our work highlights the critical need to explore the vulnerabilities of RLHF platforms and their potential to cause misalignment in LLMs during the RLHF fine-tuning process.
☆ One Model to Train them All: Hierarchical Self-Distillation for Enhanced Early Layer Embeddings
Deploying language models often requires handling model size vs. performance trade-offs to satisfy downstream latency constraints while preserving the model's usefulness. Model distillation is commonly employed to reduce model size while maintaining acceptable performance. However, distillation can be inefficient since it involves multiple training steps. In this work, we introduce MODULARSTARENCODER, a modular multi-exit encoder with 1B parameters, useful for multiple tasks within the scope of code retrieval. MODULARSTARENCODER is trained with a novel self-distillation mechanism that significantly improves lower-layer representations-allowing different portions of the model to be used while still maintaining a good trade-off in terms of performance. Our architecture focuses on enhancing text-to-code and code-to-code search by systematically capturing syntactic and semantic structures across multiple levels of representation. Specific encoder layers are targeted as exit heads, allowing higher layers to guide earlier layers during training. This self-distillation effect improves intermediate representations, increasing retrieval recall at no extra training cost. In addition to the multi-exit scheme, our approach integrates a repository-level contextual loss that maximally utilizes the training context window, further enhancing the learned representations. We also release a new dataset constructed via code translation, seamlessly expanding traditional text-to-code benchmarks with code-to-code pairs across diverse programming languages. Experimental results highlight the benefits of self-distillation through multi-exit supervision.
☆ RAILGUN: A Unified Convolutional Policy for Multi-Agent Path Finding Across Different Environments and Tasks
Multi-Agent Path Finding (MAPF), which focuses on finding collision-free paths for multiple robots, is crucial for applications ranging from aerial swarms to warehouse automation. Solving MAPF is NP-hard so learning-based approaches for MAPF have gained attention, particularly those leveraging deep neural networks. Nonetheless, despite the community's continued efforts, all learning-based MAPF planners still rely on decentralized planning due to variability in the number of agents and map sizes. We have developed the first centralized learning-based policy for MAPF problem called RAILGUN. RAILGUN is not an agent-based policy but a map-based policy. By leveraging a CNN-based architecture, RAILGUN can generalize across different maps and handle any number of agents. We collect trajectories from rule-based methods to train our model in a supervised way. In experiments, RAILGUN outperforms most baseline methods and demonstrates great zero-shot generalization capabilities on various tasks, maps and agent numbers that were not seen in the training dataset.
comment: 7 pages
☆ Effectively Steer LLM To Follow Preference via Building Confident Directions
Having an LLM that aligns with human preferences is essential for accommodating individual needs, such as maintaining writing style or generating specific topics of interest. The majority of current alignment methods rely on fine-tuning or prompting, which can be either costly or difficult to control. Model steering algorithms, which modify the model output by constructing specific steering directions, are typically easy to implement and optimization-free. However, their capabilities are typically limited to steering the model into one of the two directions (i.e., bidirectional steering), and there has been no theoretical understanding to guarantee their performance. In this work, we propose a theoretical framework to understand and quantify the model steering methods. Inspired by the framework, we propose a confident direction steering method (CONFST) that steers LLMs via modifying their activations at inference time. More specifically, CONFST builds a confident direction that is closely aligned with users' preferences, and this direction is then added to the activations of the LLMs to effectively steer the model output. Our approach offers three key advantages over popular bidirectional model steering methods: 1) It is more powerful, since multiple (i.e. more than two) users' preferences can be aligned simultaneously; 2) It is simple to implement, since there is no need to determine which layer to add the steering vector to; 3) No explicit user instruction is required. We validate our method on GPT-2 XL (1.5B), Mistral (7B) and Gemma-it (9B) models for tasks that require shifting the output of LLMs across various topics and styles, achieving superior performance over competing methods.
☆ Teaching AI to Handle Exceptions: Supervised Fine-Tuning with Human-Aligned Judgment
Large language models (LLMs), initially developed for generative AI, are now evolving into agentic AI systems, which make decisions in complex, real-world contexts. Unfortunately, while their generative capabilities are well-documented, their decision-making processes remain poorly understood. This is particularly evident when models are handling exceptions, a critical and challenging aspect of decision-making made relevant by the inherent incompleteness of contracts. Here we demonstrate that LLMs, even ones that excel at reasoning, deviate significantly from human judgments because they adhere strictly to policies, even when such adherence is impractical, suboptimal, or even counterproductive. We then evaluate three approaches to tuning AI agents to handle exceptions: ethical framework prompting, chain-of-thought reasoning, and supervised fine-tuning. We find that while ethical framework prompting fails and chain-of-thought prompting provides only slight improvements, supervised fine-tuning, specifically with human explanations, yields markedly better results. Surprisingly, in our experiments, supervised fine-tuning even enabled models to generalize human-like decision-making to novel scenarios, demonstrating transfer learning of human-aligned decision-making across contexts. Furthermore, fine-tuning with explanations, not just labels, was critical for alignment, suggesting that aligning LLMs with human judgment requires explicit training on how decisions are made, not just which decisions are made. These findings highlight the need to address LLMs' shortcomings in handling exceptions in order to guide the development of agentic AI toward models that can effectively align with human judgment and simultaneously adapt to novel contexts.
☆ LINGOLY-TOO: Disentangling Memorisation from Reasoning with Linguistic Templatisation and Orthographic Obfuscation
Effective evaluation of the reasoning capabilities of large language models (LLMs) are susceptible to overestimation due to data exposure of evaluation benchmarks. We introduce a framework for producing linguistic reasoning problems that reduces the effect of memorisation in model performance estimates and apply this framework to develop LINGOLY-TOO, a challenging evaluation benchmark for linguistic reasoning. By developing orthographic templates, we dynamically obfuscate the writing systems of real languages to generate numerous question variations. These variations preserve the reasoning steps required for each solution while reducing the likelihood of specific problem instances appearing in model training data. Our experiments demonstrate that frontier models, including OpenAI o1-preview and DeepSeem R1, struggle with advanced reasoning. Our analysis also shows that LLMs exhibit noticeable variance in accuracy across permutations of the same problem, and on average perform better on questions appearing in their original orthography. Our findings highlight the opaque nature of response generation in LLMs and provide evidence that prior data exposure contributes to overestimating the reasoning capabilities of frontier models.
☆ InfiniSST: Simultaneous Translation of Unbounded Speech with Large Language Model
Simultaneous translation of unbounded streaming speech remains a challenging problem due to the need for effectively processing the history speech context and past translations so that quality and latency, including computation overhead, can be balanced. Most prior works assume pre-segmented speech, limiting their real-world applicability. In this paper, we propose InfiniSST, a novel approach that formulates SST as a multi-turn dialogue task, enabling seamless translation of unbounded speech. We construct translation trajectories and robust segments from MuST-C with multi-latency augmentation during training and develop a key-value (KV) cache management strategy to facilitate efficient inference. Experiments on MuST-C En-Es, En-De, and En-Zh demonstrate that InfiniSST reduces computation-aware latency by 0.5 to 1 second while maintaining the same translation quality compared to baselines. Ablation studies further validate the contributions of our data construction and cache management strategy. We release the code at https://github.com/LeiLiLab/InfiniSST
comment: Under Review
☆ Monocular visual simultaneous localization and mapping: (r)evolution from geometry to deep learning-based pipelines
With the rise of deep learning, there is a fundamental change in visual SLAM algorithms toward developing different modules trained as end-to-end pipelines. However, regardless of the implementation domain, visual SLAM's performance is subject to diverse environmental challenges, such as dynamic elements in outdoor environments, harsh imaging conditions in underwater environments, or blurriness in high-speed setups. These environmental challenges need to be identified to study the real-world viability of SLAM implementations. Motivated by the aforementioned challenges, this paper surveys the current state of visual SLAM algorithms according to the two main frameworks: geometry-based and learning-based SLAM. First, we introduce a general formulation of the SLAM pipeline that includes most of the implementations in the literature. Second, those implementations are classified and surveyed for geometry and learning-based SLAM. After that, environment-specific challenges are formulated to enable experimental evaluation of the resilience of different visual SLAM classes to varying imaging conditions. We address two significant issues in surveying visual SLAM, providing (1) a consistent classification of visual SLAM pipelines and (2) a robust evaluation of their performance under different deployment conditions. Finally, we give our take on future opportunities for visual SLAM implementations.
☆ Reliable and Efficient Multi-Agent Coordination via Graph Neural Network Variational Autoencoders ICRA 2025
Multi-agent coordination is crucial for reliable multi-robot navigation in shared spaces such as automated warehouses. In regions of dense robot traffic, local coordination methods may fail to find a deadlock-free solution. In these scenarios, it is appropriate to let a central unit generate a global schedule that decides the passing order of robots. However, the runtime of such centralized coordination methods increases significantly with the problem scale. In this paper, we propose to leverage Graph Neural Network Variational Autoencoders (GNN-VAE) to solve the multi-agent coordination problem at scale faster than through centralized optimization. We formulate the coordination problem as a graph problem and collect ground truth data using a Mixed-Integer Linear Program (MILP) solver. During training, our learning framework encodes good quality solutions of the graph problem into a latent space. At inference time, solution samples are decoded from the sampled latent variables, and the lowest-cost sample is selected for coordination. Finally, the feasible proposal with the highest performance index is selected for the deployment. By construction, our GNN-VAE framework returns solutions that always respect the constraints of the considered coordination problem. Numerical results show that our approach trained on small-scale problems can achieve high-quality solutions even for large-scale problems with 250 robots, being much faster than other baselines. Project page: https://mengyuest.github.io/gnn-vae-coord
comment: Accepted by 2025 International Conference on Robotics and Automation (ICRA 2025)
☆ KodCode: A Diverse, Challenging, and Verifiable Synthetic Dataset for Coding
We introduce KodCode, a synthetic dataset that addresses the persistent challenge of acquiring high-quality, verifiable training data across diverse difficulties and domains for training Large Language Models for coding. Existing code-focused resources typically fail to ensure either the breadth of coverage (e.g., spanning simple coding tasks to advanced algorithmic problems) or verifiable correctness (e.g., unit tests). In contrast, KodCode comprises question-solution-test triplets that are systematically validated via a self-verification procedure. Our pipeline begins by synthesizing a broad range of coding questions, then generates solutions and test cases with additional attempts allocated to challenging problems. Finally, post-training data synthesis is done by rewriting questions into diverse formats and generating responses under a test-based reject sampling procedure from a reasoning model (DeepSeek R1). This pipeline yields a large-scale, robust and diverse coding dataset. KodCode is suitable for supervised fine-tuning and the paired unit tests also provide great potential for RL tuning. Fine-tuning experiments on coding benchmarks (HumanEval(+), MBPP(+), BigCodeBench, and LiveCodeBench) demonstrate that KodCode-tuned models achieve state-of-the-art performance, surpassing models like Qwen2.5-Coder-32B-Instruct and DeepSeek-R1-Distill-Llama-70B.
comment: Codes and Data: https://kodcode-ai.github.io/
☆ LiteWebAgent: The Open-Source Suite for VLM-Based Web-Agent Applications
We introduce LiteWebAgent, an open-source suite for VLM-based web agent applications. Our framework addresses a critical gap in the web agent ecosystem with a production-ready solution that combines minimal serverless backend configuration, intuitive user and browser interfaces, and extensible research capabilities in agent planning, memory, and tree search. For the core LiteWebAgent agent framework, we implemented a simple yet effective baseline using recursive function calling, providing with decoupled action generation and action grounding. In addition, we integrate advanced research components such as agent planning, agent workflow memory, and tree search in a modular and extensible manner. We then integrate the LiteWebAgent agent framework with frontend and backend as deployed systems in two formats: (1) a production Vercel-based web application, which provides users with an agent-controlled remote browser, (2) a Chrome extension leveraging LiteWebAgent's API to control an existing Chrome browser via CDP (Chrome DevTools Protocol). The LiteWebAgent framework is available at https://github.com/PathOnAI/LiteWebAgent, with deployed frontend at https://lite-web-agent.vercel.app/.
☆ Diverse Controllable Diffusion Policy with Signal Temporal Logic
Generating realistic simulations is critical for autonomous system applications such as self-driving and human-robot interactions. However, driving simulators nowadays still have difficulty in generating controllable, diverse, and rule-compliant behaviors for road participants: Rule-based models cannot produce diverse behaviors and require careful tuning, whereas learning-based methods imitate the policy from data but are not designed to follow the rules explicitly. Besides, the real-world datasets are by nature "single-outcome", making the learning method hard to generate diverse behaviors. In this paper, we leverage Signal Temporal Logic (STL) and Diffusion Models to learn controllable, diverse, and rule-aware policy. We first calibrate the STL on the real-world data, then generate diverse synthetic data using trajectory optimization, and finally learn the rectified diffusion policy on the augmented dataset. We test on the NuScenes dataset and our approach can achieve the most diverse rule-compliant trajectories compared to other baselines, with a runtime 1/17X to the second-best approach. In the closed-loop testing, our approach reaches the highest diversity, rule satisfaction rate, and the least collision rate. Our method can generate varied characteristics conditional on different STL parameters in testing. A case study on human-robot encounter scenarios shows our approach can generate diverse and closed-to-oracle trajectories. The annotation tool, augmented dataset, and code are available at https://github.com/mengyuest/pSTL-diffusion-policy.
comment: Accepted by IEEE Robotics and Automation Letters (RA-L), October 2024
☆ Straight-Line Diffusion Model for Efficient 3D Molecular Generation
Diffusion-based models have shown great promise in molecular generation but often require a large number of sampling steps to generate valid samples. In this paper, we introduce a novel Straight-Line Diffusion Model (SLDM) to tackle this problem, by formulating the diffusion process to follow a linear trajectory. The proposed process aligns well with the noise sensitivity characteristic of molecular structures and uniformly distributes reconstruction effort across the generative process, thus enhancing learning efficiency and efficacy. Consequently, SLDM achieves state-of-the-art performance on 3D molecule generation benchmarks, delivering a 100-fold improvement in sampling efficiency. Furthermore, experiments on toy data and image generation tasks validate the generality and robustness of SLDM, showcasing its potential across diverse generative modeling domains.
☆ Interpretable Few-Shot Retinal Disease Diagnosis with Concept-Guided Prompting of Vision-Language Models
Recent advancements in deep learning have shown significant potential for classifying retinal diseases using color fundus images. However, existing works predominantly rely exclusively on image data, lack interpretability in their diagnostic decisions, and treat medical professionals primarily as annotators for ground truth labeling. To fill this gap, we implement two key strategies: extracting interpretable concepts of retinal diseases using the knowledge base of GPT models and incorporating these concepts as a language component in prompt-learning to train vision-language (VL) models with both fundus images and their associated concepts. Our method not only improves retinal disease classification but also enriches few-shot and zero-shot detection (novel disease detection), while offering the added benefit of concept-based model interpretability. Our extensive evaluation across two diverse retinal fundus image datasets illustrates substantial performance gains in VL-model based few-shot methodologies through our concept integration approach, demonstrating an average improvement of approximately 5.8\% and 2.7\% mean average precision for 16-shot learning and zero-shot (novel class) detection respectively. Our method marks a pivotal step towards interpretable and efficient retinal disease recognition for real-world clinical applications.
comment: Accepted to Information Processing in Medical Imaging (IPMI) 2025
☆ Towards Robust Multi-UAV Collaboration: MARL with Noise-Resilient Communication and Attention Mechanisms
Efficient path planning for unmanned aerial vehicles (UAVs) is crucial in remote sensing and information collection. As task scales expand, the cooperative deployment of multiple UAVs significantly improves information collection efficiency. However, collaborative communication and decision-making for multiple UAVs remain major challenges in path planning, especially in noisy environments. To efficiently accomplish complex information collection tasks in 3D space and address robust communication issues, we propose a multi-agent reinforcement learning (MARL) framework for UAV path planning based on the Counterfactual Multi-Agent Policy Gradients (COMA) algorithm. The framework incorporates attention mechanism-based UAV communication protocol and training-deployment system, significantly improving communication robustness and individual decision-making capabilities in noisy conditions. Experiments conducted on both synthetic and real-world datasets demonstrate that our method outperforms existing algorithms in terms of path planning efficiency and robustness, especially in noisy environments, achieving a 78\% improvement in entropy reduction.
♻ ☆ Comet: Fine-grained Computation-communication Overlapping for Mixture-of-Experts
Mixture-of-experts (MoE) has been extensively employed to scale large language models to trillion-plus parameters while maintaining a fixed computational cost. The development of large MoE models in the distributed scenario encounters the problem of large communication overhead. The inter-device communication of a MoE layer can occupy 47% time of the entire model execution with popular models and frameworks. Therefore, existing methods suggest the communication in a MoE layer to be pipelined with the computation for overlapping. However, these coarse grained overlapping schemes introduce a notable impairment of computational efficiency and the latency concealing is sub-optimal. To this end, we present COMET, an optimized MoE system with fine-grained communication-computation overlapping. Leveraging data dependency analysis and task rescheduling, COMET achieves precise fine-grained overlapping of communication and computation. Through adaptive workload assignment, COMET effectively eliminates fine-grained communication bottlenecks and enhances its adaptability across various scenarios. Our evaluation shows that COMET accelerates the execution of a single MoE layer by $1.96\times$ and for end-to-end execution, COMET delivers a $1.71\times$ speedup on average. COMET has been adopted in the production environment of clusters with ten-thousand-scale of GPUs, achieving savings of millions of GPU hours.
♻ ☆ Evaluating Creative Short Story Generation in Humans and Large Language Models
Story-writing is a fundamental aspect of human imagination, relying heavily on creativity to produce narratives that are novel, effective, and surprising. While large language models (LLMs) have demonstrated the ability to generate high-quality stories, their creative story-writing capabilities remain under-explored. In this work, we conduct a systematic analysis of creativity in short story generation across 60 LLMs and 60 people using a five-sentence creative story-writing task. We use measures to automatically evaluate model- and human-generated stories across several dimensions of creativity, including novelty, surprise, diversity, and linguistic complexity. We also collect creativity ratings and Turing Test classifications from non-expert and expert human raters and LLMs. Automated metrics show that LLMs generate stylistically complex stories, but tend to fall short in terms of novelty, surprise and diversity when compared to average human writers. Expert ratings generally coincide with automated metrics. However, LLMs and non-experts rate LLM stories to be more creative than human-generated stories. We discuss why and how these differences in ratings occur, and their implications for both human and artificial creativity.
comment: Submitted to ICCC 2025
♻ ☆ VOILA: Evaluation of MLLMs For Perceptual Understanding and Analogical Reasoning ICLR 2025
Multimodal Large Language Models (MLLMs) have become a powerful tool for integrating visual and textual information. Despite their exceptional performance on visual understanding benchmarks, measuring their ability to reason abstractly across multiple images remains a significant challenge. To address this, we introduce VOILA, a large-scale, open-ended, dynamic benchmark designed to evaluate MLLMs' perceptual understanding and abstract relational reasoning. VOILA employs an analogical mapping approach in the visual domain, requiring models to generate an image that completes an analogy between two given image pairs, reference and application, without relying on predefined choices. Our experiments demonstrate that the analogical reasoning tasks in VOILA present a challenge to MLLMs. Through multi-step analysis, we reveal that current MLLMs struggle to comprehend inter-image relationships and exhibit limited capabilities in high-level relational reasoning. Notably, we observe that performance improves when following a multi-step strategy of least-to-most prompting. Comprehensive evaluations on open-source models and GPT-4o show that on text-based answers, the best accuracy for challenging scenarios is 13% (LLaMa 3.2) and even for simpler tasks is only 29% (GPT-4o), while human performance is significantly higher at 70% across both difficulty levels.
comment: Accepted at ICLR 2025. Code and data: https://github.com/nlylmz/Voila
♻ ☆ Anytime-Constrained Equilibria in Polynomial Time
We extend anytime constraints to the Markov game setting and the corresponding solution concept of an anytime-constrained equilibrium (ACE). Then, we present a comprehensive theory of anytime-constrained equilibria that includes (1) a computational characterization of feasible policies, (2) a fixed-parameter tractable algorithm for computing ACE, and (3) a polynomial-time algorithm for approximately computing ACE. Since computing a feasible policy is NP-hard even for two-player zero-sum games, our approximation guarantees are optimal so long as $P \neq NP$. We also develop the first theory of efficient computation for action-constrained Markov games, which may be of independent interest.
♻ ☆ LABIIUM: AI-Enhanced Zero-configuration Measurement Automation System
The complexity of laboratory environments requires solutions that simplify instrument interaction and enhance measurement automation. Traditional tools often require configuration, software, and programming skills, creating barriers to productivity. Previous approaches, including dedicated software suites and custom scripts, frequently fall short in providing user-friendly solutions that align with programming practices. We present LABIIUM, an AI-enhanced, zero-configuration measurement automation system designed to streamline experimental workflows and improve user productivity. LABIIUM integrates an AI assistant powered by Large Language Models (LLMs) to generate code. LABIIUM's Lab-Automation-Measurement Bridges (LAMBs) enable seamless instrument connectivity using standard tools such as VSCode and Python, eliminating setup overhead. To demonstrate its capabilities, we conducted experiments involving the measurement of the parametric transfer curve of a simple two-transistor inverting amplifier with a current source load. The AI assistant was evaluated using different prompt scenarios and compared with multiple models, including Claude Sonnet 3.5, Gemini Pro 1.5, and GPT-4o. An expert solution implementing the Gradient-Weighted Adaptive Stochastic Sampling (GWASS) method was used as a baseline. The solutions generated by the AI assistant were compared with the expert solution and a uniform linear sweep baseline with 10,000 points. The graph results show that the LLMs were able to successfully complete the most basic uniform sweep, but LLMs were unable to develop adaptive sweeping algorithms to compete with GWASS. The evaluation underscores LABIIUM's ability to enhance laboratory productivity and support digital transformation in research and industry, and emphasizes the future work required to improve LLM performance in Electronic Measurement Science Tasks.
comment: accepted for IEEE I2MTC 2025
♻ ☆ Layer Swapping for Zero-Shot Cross-Lingual Transfer in Large Language Models ICLR 2025
Model merging, such as model souping, is the practice of combining different models with the same architecture together without further training. In this work, we present a model merging methodology that addresses the difficulty of fine-tuning Large Language Models (LLMs) for target tasks in non-English languages, where task-specific data is often unavailable. We focus on mathematical reasoning and without in-language math data, facilitate cross-lingual transfer by composing language and math capabilities. Starting from the same pretrained model, we fine-tune separate "experts" on math instruction data in English and on generic instruction data in the target language. We then replace the top and bottom transformer layers of the math expert directly with layers from the language expert, which consequently enhances math performance in the target language. The resulting merged models outperform the individual experts and other merging methods on the math benchmark, MGSM, by 10% across four major languages where math instruction data is scarce. In addition, this layer swapping is simple, inexpensive, and intuitive, as it is based on an interpretative analysis of the most important parameter changes during the fine-tuning of each expert. The ability to successfully re-compose LLMs for cross-lingual transfer in this manner opens up future possibilities to combine model expertise, create modular solutions, and transfer reasoning capabilities across languages all post hoc.
comment: ICLR 2025, Spotlight Paper, In The Thirteenth International Conference on Learning Representations, 2025
♻ ☆ Verbalized Probabilistic Graphical Modeling
Human cognition excels at transcending sensory input and forming latent representations that structure our understanding of the world. Although Large Language Models (LLMs) can produce chain-of-thought reasoning, they lack a principled framework to capture latent structures and model uncertainty, especially in compositional reasoning tasks. We propose Verbalized Probabilistic Graphical Modeling (vPGM), a Bayesian prompting framework that guides LLMs to simulate key principles of Probabilistic Graphical Models (PGMs) in natural language. Unlike many traditional probabilistic methods requiring substantial domain expertise or specialized training, vPGM bypasses expert-driven model design, making it well-suited for scenarios with limited assumptions or scarce data. We evaluated our model on several compositional reasoning tasks, both close-ended and open-ended. Our results indicate that the model effectively enhances confidence calibration and text generation quality.
♻ ☆ Decentralized Adversarial Training over Graphs
The vulnerability of machine learning models to adversarial attacks has been attracting considerable attention in recent years. Most existing studies focus on the behavior of stand-alone single-agent learners. In comparison, this work studies adversarial training over graphs, where individual agents are subjected to perturbations of varied strength levels across space. It is expected that interactions by linked agents, and the heterogeneity of the attack models that are possible over the graph, can help enhance robustness in view of the coordination power of the group. Using a min-max formulation of distributed learning, we develop a decentralized adversarial training framework for multi-agent systems. Specifically, we devise two decentralized adversarial training algorithms by relying on two popular decentralized learning strategies--diffusion and consensus. We analyze the convergence properties of the proposed framework for strongly-convex, convex, and non-convex environments, and illustrate the enhanced robustness to adversarial attacks.
comment: arXiv admin note: text overlap with arXiv:2303.01936
♻ ☆ λ: A Benchmark for Data-Efficiency in Long-Horizon Indoor Mobile Manipulation Robotics
Learning to execute long-horizon mobile manipulation tasks is crucial for advancing robotics in household and workplace settings. However, current approaches are typically data-inefficient, underscoring the need for improved models that require realistically sized benchmarks to evaluate their efficiency. To address this, we introduce the LAMBDA ({\lambda}) benchmark-Long-horizon Actions for Mobile-manipulation Benchmarking of Directed Activities-which evaluates the data efficiency of models on language-conditioned, long-horizon, multi-room, multi-floor, pick-and-place tasks using a dataset of manageable size, more feasible for collection. Our benchmark includes 571 human-collected demonstrations that provide realism and diversity in simulated and real-world settings. Unlike planner-generated data, these trajectories offer natural variability and replay-verifiability, ensuring robust learning and evaluation. We leverage LAMBDA to benchmark current end-to-end learning methods and a modular neuro-symbolic approaches that combines foundation models with task and motion planning. We find that end-to-end methods-even when pretrained-yield lower success rates, while neuro-symbolic methods perform significantly better and require less data.
comment: 8 pages
♻ ☆ AI-based association analysis for medical imaging using latent-space geometric confounder correction
This study addresses the challenges of confounding effects and interpretability in artificial-intelligence-based medical image analysis. Whereas existing literature often resolves confounding by removing confounder-related information from latent representations, this strategy risks affecting image reconstruction quality in generative models, thus limiting their applicability in feature visualization. To tackle this, we propose a different strategy that retains confounder-related information in latent representations while finding an alternative confounder-free representation of the image data. Our approach views the latent space of an autoencoder as a vector space, where imaging-related variables, such as the learning target (t) and confounder (c), have a vector capturing their variability. The confounding problem is addressed by searching a confounder-free vector which is orthogonal to the confounder-related vector but maximally collinear to the target-related vector. To achieve this, we introduce a novel correlation-based loss that not only performs vector searching in the latent space, but also encourages the encoder to generate latent representations linearly correlated with the variables. Subsequently, we interpret the confounder-free representation by sampling and reconstructing images along the confounder-free vector. The efficacy and flexibility of our proposed method are demonstrated across three applications, accommodating multiple confounders and utilizing diverse image modalities. Results affirm the method's effectiveness in reducing confounder influences, preventing wrong or misleading associations, and offering a unique visual interpretation for in-depth investigations by clinical and epidemiological researchers. The code is released in the following GitLab repository: https://gitlab.com/radiology/compopbio/ai_based_association_analysis}
comment: Accepted by Medical Image Analysis
♻ ☆ Neural Internal Model Control: Learning a Robust Control Policy via Predictive Error Feedback RAL
Accurate motion control in the face of disturbances within complex environments remains a major challenge in robotics. Classical model-based approaches often struggle with nonlinearities and unstructured disturbances, while RL-based methods can be fragile when encountering unseen scenarios. In this paper, we propose a novel framework, Neural Internal Model Control, which integrates model-based control with RL-based control to enhance robustness. Our framework streamlines the predictive model by applying Newton-Euler equations for rigid-body dynamics, eliminating the need to capture complex high-dimensional nonlinearities. This internal model combines model-free RL algorithms with predictive error feedback. Such a design enables a closed-loop control structure to enhance the robustness and generalizability of the control system. We demonstrate the effectiveness of our framework on both quadrotors and quadrupedal robots, achieving superior performance compared to state-of-the-art methods. Furthermore, real-world deployment on a quadrotor with rope-suspended payloads highlights the framework's robustness in sim-to-real transfer. Our code is released at https://github.com/thu-uav/NeuralIMC.
comment: Submitted to RAL
♻ ☆ AI Literacy in K-12 and Higher Education in the Wake of Generative AI: An Integrative Review
Even though AI literacy has emerged as a prominent education topic in the wake of generative AI, its definition remains vague. There is little consensus among researchers and practitioners on how to discuss and design AI literacy interventions. The term has been used to describe both learning activities that train undergraduate students to use ChatGPT effectively and having kindergarten children interact with social robots. This paper applies an integrative review method to examine empirical and theoretical AI literacy studies published since 2020. In synthesizing the 124 reviewed studies, three ways to conceptualize literacy-functional, critical, and indirectly beneficial-and three perspectives on AI-technical detail, tool, and sociocultural-were identified, forming a framework that reflects the spectrum of how AI literacy is approached in practice. The framework highlights the need for more specialized terms within AI literacy discourse and indicates research gaps in certain AI literacy objectives.
comment: 29 pages, 7 figures; previous version replaced due to incorrect parsing of author name
♻ ☆ Exploring Advanced Techniques for Visual Question Answering: A Comprehensive Comparison
Visual Question Answering (VQA) has emerged as a pivotal task in the intersection of computer vision and natural language processing, requiring models to understand and reason about visual content in response to natural language questions. Analyzing VQA datasets is essential for developing robust models that can handle the complexities of multimodal reasoning. Several approaches have been developed to examine these datasets, each offering distinct perspectives on question diversity, answer distribution, and visual-textual correlations. Despite significant progress, existing VQA models face challenges related to dataset bias, limited model complexity, commonsense reasoning gaps, rigid evaluation methods, and generalization to real world scenarios. This paper offers a detailed study of the original VQA dataset, baseline models and methods along with a comparative study of five advanced VQA models, ABC-CNN, KICNLE, Masked Vision and Language Modeling, BLIP-2, and OFA, each employing distinct methods to address these ongoing challenges.
comment: 8 pages, No figures
♻ ☆ From homeostasis to resource sharing: Biologically and economically aligned multi-objective multi-agent AI safety benchmarks
Developing safe, aligned agentic AI systems requires comprehensive empirical testing, yet many existing benchmarks neglect crucial themes aligned with biology and economics, both time-tested fundamental sciences describing our needs and preferences. To address this gap, the present work focuses on introducing biologically and economically motivated themes that have been neglected in current mainstream discussions on AI safety - namely a set of multi-objective, multi-agent alignment benchmarks that emphasize homeostasis for bounded and biological objectives, diminishing returns for unbounded, instrumental, and business objectives, sustainability principle, and resource sharing. We implemented eight main benchmark environments on the above themes, to illustrate key pitfalls and challenges in agentic AI-s, such as unboundedly maximizing a homeostatic objective, over-optimizing one objective at the expense of others, neglecting safety constraints, or depleting shared resources.
comment: 20 pages, 13 figures, 1 tables
♻ ☆ Shifting Power: Leveraging LLMs to Simulate Human Aversion in ABMs of Bilateral Financial Exchanges, A bond market study
Bilateral markets, such as those for government bonds, involve decentralized and opaque transactions between market makers (MMs) and clients, posing significant challenges for traditional modeling approaches. To address these complexities, we introduce TRIBE an agent-based model augmented with a large language model (LLM) to simulate human-like decision-making in trading environments. TRIBE leverages publicly available data and stylized facts to capture realistic trading dynamics, integrating human biases like risk aversion and ambiguity sensitivity into the decision-making processes of agents. Our research yields three key contributions: first, we demonstrate that integrating LLMs into agent-based models to enhance client agency is feasible and enriches the simulation of agent behaviors in complex markets; second, we find that even slight trade aversion encoded within the LLM leads to a complete cessation of trading activity, highlighting the sensitivity of market dynamics to agents' risk profiles; third, we show that incorporating human-like variability shifts power dynamics towards clients and can disproportionately affect the entire system, often resulting in systemic agent collapse across simulations. These findings underscore the emergent properties that arise when introducing stochastic, human-like decision processes, revealing new system behaviors that enhance the realism and complexity of artificial societies.
comment: 9 pages
♻ ☆ Large Language Models are Powerful EHR Encoders
Electronic Health Records (EHRs) offer rich potential for clinical prediction, yet their inherent complexity and heterogeneity pose significant challenges for traditional machine learning approaches. Domain-specific EHR foundation models trained on large collections of unlabeled EHR data have demonstrated promising improvements in predictive accuracy and generalization; however, their training is constrained by limited access to diverse, high-quality datasets and inconsistencies in coding standards and healthcare practices. In this study, we explore the possibility of using general-purpose Large Language Models (LLMs) based embedding methods as EHR encoders. By serializing patient records into structured Markdown text, transforming codes into human-readable descriptors, we leverage the extensive generalization capabilities of LLMs pretrained on vast public corpora, thereby bypassing the need for proprietary medical datasets. We systematically evaluate two state-of-the-art LLM-embedding models, GTE-Qwen2-7B-Instruct and LLM2Vec-Llama3.1-8B-Instruct, across 15 diverse clinical prediction tasks from the EHRSHOT benchmark, comparing their performance to an EHRspecific foundation model, CLIMBR-T-Base, and traditional machine learning baselines. Our results demonstrate that LLM-based embeddings frequently match or exceed the performance of specialized models, even in few-shot settings, and that their effectiveness scales with the size of the underlying LLM and the available context window. Overall, our findings demonstrate that repurposing LLMs for EHR encoding offers a scalable and effective approach for clinical prediction, capable of overcoming the limitations of traditional EHR modeling and facilitating more interoperable and generalizable healthcare applications.
♻ ☆ Simulating Human-like Daily Activities with Desire-driven Autonomy
Desires motivate humans to interact autonomously with the complex world. In contrast, current AI agents require explicit task specifications, such as instructions or reward functions, which constrain their autonomy and behavioral diversity. In this paper, we introduce a Desire-driven Autonomous Agent (D2A) that can enable a large language model (LLM) to autonomously propose and select tasks, motivated by satisfying its multi-dimensional desires. Specifically, the motivational framework of D2A is mainly constructed by a dynamic Value System, inspired by the Theory of Needs. It incorporates an understanding of human-like desires, such as the need for social interaction, personal fulfillment, and self-care. At each step, the agent evaluates the value of its current state, proposes a set of candidate activities, and selects the one that best aligns with its intrinsic motivations. We conduct experiments on Concordia, a text-based simulator, to demonstrate that our agent generates coherent, contextually relevant daily activities while exhibiting variability and adaptability similar to human behavior. A comparative analysis with other LLM-based agents demonstrates that our approach significantly enhances the rationality of the simulated activities.
♻ ☆ Fuzzy Speculative Decoding for a Tunable Accuracy-Runtime Tradeoff
Speculative Decoding (SD) enforces strict distributional equivalence to the target model, limiting potential speed ups as distributions of near-equivalence achieve comparable outcomes in many cases. Furthermore, enforcing distributional equivalence means that users are unable to trade deviations from the target model distribution for further inference speed gains. To address these limitations, we introduce Fuzzy Speculative Decoding (FSD) - a decoding algorithm that generalizes SD by accepting candidate tokens purely based on the divergences between the target and draft model distributions. By allowing for controlled divergence from the target model, FSD enables users to flexibly trade generation quality for inference speed. Across several benchmarks, our method is able to achieve significant runtime improvements of over 5 tokens per second faster than SD at only an approximate 2% absolute reduction in benchmark accuracy. In many cases, FSD is even able to match SD benchmark accuracy at over 2 tokens per second faster, demonstrating that distributional equivalence is not necessary to maintain target model performance.
♻ ☆ Improving Semantic Understanding in Speech Language Models via Brain-tuning ICLR 2025
Speech language models align with human brain responses to natural language to an impressive degree. However, current models rely heavily on low-level speech features, indicating they lack brain-relevant semantics which limits their utility as model organisms of semantic processing in the brain. In this work, we address this limitation by inducing brain-relevant bias directly into the models via fine-tuning with fMRI recordings of people listening to natural stories, a process we name brain-tuning. After testing it on 3 different pretrained model families, we show that brain-tuning not only improves overall alignment with new brain recordings in semantic language regions, but also reduces the reliance on low-level speech features for this alignment. Excitingly, we further show that brain-tuning leads to 1) consistent improvements in performance on a range of downstream tasks and 2) a representational space with increased semantic preference. Our results provide converging evidence, for the first time, that incorporating brain signals into the training of language models improves the models' semantic understanding.
comment: Published as a conference paper at ICLR 2025
♻ ☆ Assistance or Disruption? Exploring and Evaluating the Design and Trade-offs of Proactive AI Programming Support
AI programming tools enable powerful code generation, and recent prototypes attempt to reduce user effort with proactive AI agents, but their impact on programming workflows remains unexplored. We introduce and evaluate Codellaborator, a design probe LLM agent that initiates programming assistance based on editor activities and task context. We explored three interface variants to assess trade-offs between increasingly salient AI support: prompt-only, proactive agent, and proactive agent with presence and context (Codellaborator). In a within-subject study (N=18), we find that proactive agents increase efficiency compared to prompt-only paradigm, but also incur workflow disruptions. However, presence indicators and interaction context support alleviated disruptions and improved users' awareness of AI processes. We underscore trade-offs of Codellaborator on user control, ownership, and code understanding, emphasizing the need to adapt proactivity to programming processes. Our research contributes to the design exploration and evaluation of proactive AI systems, presenting design implications on AI-integrated programming workflow.
♻ ☆ A Comparative Evaluation of Quantification Methods
Quantification represents the problem of estimating the distribution of class labels on unseen data. It also represents a growing research field in supervised machine learning, for which a large variety of different algorithms has been proposed in recent years. However, a comprehensive empirical comparison of quantification methods that supports algorithm selection is not available yet. In this work, we close this research gap by conducting a thorough empirical performance comparison of 24 different quantification methods on overall more than 40 data sets, considering binary as well as multiclass quantification settings. We observe that no single algorithm generally outperforms all competitors, but identify a group of methods including the threshold selection-based Median Sweep and TSMax methods, the DyS framework including the HDy method, Forman's mixture model, and Friedman's method that performs best in the binary setting. For the multiclass setting, we observe that a different, broad group of algorithms yields good performance, including the HDx method, the Generalized Probabilistic Adjusted Count, the readme method, the energy distance minimization method, the EM algorithm for quantification, and Friedman's method. We also find that tuning the underlying classifiers has in most cases only a limited impact on the quantification performance. More generally, we find that the performance on multiclass quantification is inferior to the results obtained in the binary setting. Our results can guide practitioners who intend to apply quantification algorithms and help researchers to identify opportunities for future research.
comment: 41 pages, 18 figures, 9 tables
♻ ☆ The Perils of Optimizing Learned Reward Functions: Low Training Error Does Not Guarantee Low Regret
In reinforcement learning, specifying reward functions that capture the intended task can be very challenging. Reward learning aims to address this issue by learning the reward function. However, a learned reward model may have a low error on the data distribution, and yet subsequently produce a policy with large regret. We say that such a reward model has an error-regret mismatch. The main source of an error-regret mismatch is the distributional shift that commonly occurs during policy optimization. In this paper, we mathematically show that a sufficiently low expected test error of the reward model guarantees low worst-case regret, but that for any fixed expected test error, there exist realistic data distributions that allow for error-regret mismatch to occur. We then show that similar problems persist even when using policy regularization techniques, commonly employed in methods such as RLHF. We hope our results stimulate the theoretical and empirical study of improved methods to learn reward models, and better ways to measure their quality reliably.
comment: 70 pages, 4 figures
♻ ☆ A Comprehensive Survey on Composed Image Retrieval
Composed Image Retrieval (CIR) is an emerging yet challenging task that allows users to search for target images using a multimodal query, comprising a reference image and a modification text specifying the user's desired changes to the reference image. Given its significant academic and practical value, CIR has become a rapidly growing area of interest in the computer vision and machine learning communities, particularly with the advances in deep learning. To the best of our knowledge, there is currently no comprehensive review of CIR to provide a timely overview of this field. Therefore, we synthesize insights from over 120 publications in top conferences and journals, including ACM TOIS, SIGIR, and CVPR In particular, we systematically categorize existing supervised CIR and zero-shot CIR models using a fine-grained taxonomy. For a comprehensive review, we also briefly discuss approaches for tasks closely related to CIR, such as attribute-based CIR and dialog-based CIR. Additionally, we summarize benchmark datasets for evaluation and analyze existing supervised and zero-shot CIR methods by comparing experimental results across multiple datasets. Furthermore, we present promising future directions in this field, offering practical insights for researchers interested in further exploration. The curated collection of related works is maintained and continuously updated in https://github.com/haokunwen/Awesome-Composed-Image-Retrieval.
♻ ☆ WalkVLM:Aid Visually Impaired People Walking by Vision Language Model
Approximately 200 million individuals around the world suffer from varying degrees of visual impairment, making it crucial to leverage AI technology to offer walking assistance for these people. With the recent progress of vision-language models (VLMs), applying VLMs to offer walking guidance has become popular. However, the existing methods of walking guidance are mainly based on self-curated question-answering datasets that are not publicly accessible, without a standardized benchmark for training or evaluation. Moreover, walking assistance often requires real-time streaming video analysis and the generation of concise yet informative reminders, making VLMs struggle due to excessive responses and low efficiency in inferences. In this paper, we introduce the first large-scale dataset dedicated to walking assistance, comprising 12,000 video-annotation pairs, to provide a unified benchmark for training and evaluating systems to help visually-impaired individuals walk. Furthermore, a WalkVLM model is proposed, which employs chain of thought for hierarchical planning to generate concise but informative reminders and utilizes temporal-aware adaptive prediction to reduce the temporal redundancy of reminders. Finally, we have established a solid benchmark for blind walking task and verified the advantages of WalkVLM in stream video processing for this task compared to other VLMs. Our dataset and code are available at https://walkvlm2024.github.io.
♻ ☆ Modeling Relational Patterns for Logical Query Answering over Knowledge Graphs
Answering first-order logical (FOL) queries over knowledge graphs (KG) remains a challenging task mainly due to KG incompleteness. Query embedding approaches this problem by computing the low-dimensional vector representations of entities, relations, and logical queries. KGs exhibit relational patterns such as symmetry and composition and modeling the patterns can further enhance the performance of query embedding models. However, the role of such patterns in answering FOL queries by query embedding models has not been yet studied in the literature. In this paper, we fill in this research gap and empower FOL queries reasoning with pattern inference by introducing an inductive bias that allows for learning relation patterns. To this end, we develop a novel query embedding method, RoConE, that defines query regions as geometric cones and algebraic query operators by rotations in complex space. RoConE combines the advantages of Cone as a well-specified geometric representation for query embedding, and also the rotation operator as a powerful algebraic operation for pattern inference. Our experimental results on several benchmark datasets confirm the advantage of relational patterns for enhancing logical query answering task.
comment: The results reported in this paper are included in our accepted paper arXiv:2407.09212 at ECAI 2024
♻ ☆ Variational Best-of-N Alignment ICLR 2025
Best-of-N (BoN) is a popular and effective algorithm for aligning language models to human preferences. The algorithm works as follows: at inference time, N samples are drawn from the language model, and the sample with the highest reward, as judged by a reward model, is returned as the output. Despite its effectiveness, BoN is computationally expensive; it reduces sampling throughput by a factor of N. To make BoN more efficient at inference time, one strategy is to fine-tune the language model to mimic what BoN does during inference. To achieve this, we derive the distribution induced by the BoN algorithm. We then propose to fine-tune the language model to minimize backward KL divergence to the BoN distribution. Our approach is analogous to mean-field variational inference and, thus, we term it variational BoN (vBoN). To the extent this fine-tuning is successful and we end up with a good approximation, we have reduced the inference cost by a factor of N. Our experiments on controlled generation and summarization tasks show that BoN is the most effective alignment method, and our variational approximation to BoN achieves the closest performance to BoN and surpasses models fine-tuned using the standard KL-constrained RL objective. In the controlled generation task, vBoN appears more frequently on the Pareto frontier of reward and KL divergence compared to other alignment methods. In the summarization task, vBoN achieves high reward values across various sampling temperatures.
comment: Accepted at ICLR 2025
♻ ☆ R2Det: Exploring Relaxed Rotation Equivariance in 2D object detection
Group Equivariant Convolution (GConv) empowers models to explore underlying symmetry in data, improving performance. However, real-world scenarios often deviate from ideal symmetric systems caused by physical permutation, characterized by non-trivial actions of a symmetry group, resulting in asymmetries that affect the outputs, a phenomenon known as Symmetry Breaking. Traditional GConv-based methods are constrained by rigid operational rules within group space, assuming data remains strictly symmetry after limited group transformations. This limitation makes it difficult to adapt to Symmetry-Breaking and non-rigid transformations. Motivated by this, we mainly focus on a common scenario: Rotational Symmetry-Breaking. By relaxing strict group transformations within Strict Rotation-Equivariant group $\mathbf{C}_n$, we redefine a Relaxed Rotation-Equivariant group $\mathbf{R}_n$ and introduce a novel Relaxed Rotation-Equivariant GConv (R2GConv) with only a minimal increase of $4n$ parameters compared to GConv. Based on R2GConv, we propose a Relaxed Rotation-Equivariant Network (R2Net) as the backbone and develop a Relaxed Rotation-Equivariant Object Detector (R2Det) for 2D object detection. Experimental results demonstrate the effectiveness of the proposed R2GConv in natural image classification, and R2Det achieves excellent performance in 2D object detection with improved generalization capabilities and robustness. The code is available in \texttt{https://github.com/wuer5/r2det}.
♻ ☆ WalnutData: A UAV Remote Sensing Dataset of Green Walnuts and Model Evaluation
The UAV technology is gradually maturing and can provide extremely powerful support for smart agriculture and precise monitoring. Currently, there is no dataset related to green walnuts in the field of agricultural computer vision. Thus, in order to promote the algorithm design in the field of agricultural computer vision, we used UAV to collect remote-sensing data from 8 walnut sample plots. Considering that green walnuts are subject to various lighting conditions and occlusion, we constructed a large-scale dataset with a higher-granularity of target features - WalnutData. This dataset contains a total of 30,240 images and 706,208 instances, and there are 4 target categories: being illuminated by frontal light and unoccluded (A1), being backlit and unoccluded (A2), being illuminated by frontal light and occluded (B1), and being backlit and occluded (B2). Subsequently, we evaluated many mainstream algorithms on WalnutData and used these evaluation results as the baseline standard. The dataset and all evaluation results can be obtained at https://github.com/1wuming/WalnutData.
♻ ☆ PAD: Personalized Alignment of LLMs at Decoding-Time ICLR 2025
Aligning with personalized preferences, which vary significantly across cultural, educational, and political differences, poses a significant challenge due to the computational costs and data demands of traditional alignment methods. In response, this paper presents Personalized Alignment at Decoding-time (PAD), a novel framework designed to align LLM outputs with diverse personalized preferences during the inference phase, eliminating the need for additional training. By introducing a unique personalized reward modeling strategy, this framework decouples the text generation process from personalized preferences, facilitating the generation of generalizable token-level personalized rewards. The PAD algorithm leverages these rewards to guide the decoding process, dynamically tailoring the base model's predictions to personalized preferences. Extensive experimental results demonstrate that PAD not only outperforms existing training-based alignment methods in terms of aligning with diverse preferences but also shows significant generalizability to preferences unseen during training and scalability across different base models. This work advances the capability of LLMs to meet user needs in real-time applications, presenting a substantial step forward in personalized LLM alignment.
comment: ICLR 2025
♻ ☆ Training a multilayer dynamical spintronic network with standard machine learning tools to perform time series classification
The ability to process time-series at low energy cost is critical for many applications. Recurrent neural network, which can perform such tasks, are computationally expensive when implementing in software on conventional computers. Here we propose to implement a recurrent neural network in hardware using spintronic oscillators as dynamical neurons. Using numerical simulations, we build a multi-layer network and demonstrate that we can use backpropagation through time (BPTT) and standard machine learning tools to train this network. Leveraging the transient dynamics of the spintronic oscillators, we solve the sequential digits classification task with $89.83\pm2.91~\%$ accuracy, as good as the equivalent software network. We devise guidelines on how to choose the time constant of the oscillators as well as hyper-parameters of the network to adapt to different input time scales.
comment: 7 pages, 4 figures
♻ ☆ Improving Pronunciation and Accent Conversion through Knowledge Distillation And Synthetic Ground-Truth from Native TTS ICASSP 2025
Previous approaches on accent conversion (AC) mainly aimed at making non-native speech sound more native while maintaining the original content and speaker identity. However, non-native speakers sometimes have pronunciation issues, which can make it difficult for listeners to understand them. Hence, we developed a new AC approach that not only focuses on accent conversion but also improves pronunciation of non-native accented speaker. By providing the non-native audio and the corresponding transcript, we generate the ideal ground-truth audio with native-like pronunciation with original duration and prosody. This ground-truth data aids the model in learning a direct mapping between accented and native speech. We utilize the end-to-end VITS framework to achieve high-quality waveform reconstruction for the AC task. As a result, our system not only produces audio that closely resembles native accents and while retaining the original speaker's identity but also improve pronunciation, as demonstrated by evaluation results.
comment: accepted at ICASSP 2025
♻ ☆ A Unifying Framework for Learning Argumentation Semantics
Argumentation is a very active research field of Artificial Intelligence concerned with the representation and evaluation of arguments used in dialogues between humans and/or artificial agents. Acceptability semantics of formal argumentation systems define the criteria for the acceptance or rejection of arguments. Several software systems, known as argumentation solvers, have been developed to compute the accepted/rejected arguments using such criteria. These include systems that learn to identify the accepted arguments using non-interpretable methods. In this paper we present a novel framework, which uses an Inductive Logic Programming approach to learn the acceptability semantics for several abstract and structured argumentation frameworks in an interpretable way. Through an empirical evaluation we show that our framework outperforms existing argumentation solvers, thus opening up new future research directions in the area of formal argumentation and human-machine dialogues.
♻ ☆ Interpretable Interaction Modeling for Trajectory Prediction via Agent Selection and Physical Coefficient SP
A thorough understanding of the interaction between the target agent and surrounding agents is a prerequisite for accurate trajectory prediction. Although many methods have been explored, they assign correlation coefficients to surrounding agents in a purely learning-based manner. In this study, we present ASPILin, which manually selects interacting agents and replaces the attention scores in Transformer with a newly computed physical correlation coefficient, enhancing the interpretability of interaction modeling. Surprisingly, these simple modifications can significantly improve prediction performance and substantially reduce computational costs. We intentionally simplified our model in other aspects, such as map encoding. Remarkably, experiments conducted on the INTERACTION, highD, and CitySim datasets demonstrate that our method is efficient and straightforward, outperforming other state-of-the-art methods.
comment: code:https://github.com/kkk00714/ASPILin
♻ ☆ Let the Code LLM Edit Itself When You Edit the Code ICLR 2025
In this work, we investigate a typical scenario in code generation where a developer edits existing code in real time and requests a code assistant, e.g., a large language model, to re-predict the next token or next line on the fly. Naively, the LLM needs to re-encode the entire KV cache to provide an accurate prediction. However, this process is computationally expensive, especially when the sequence length is long. Simply encoding the edited subsequence and integrating it to the original KV cache meets the temporal confusion problem, leading to significantly worse performance. We address this efficiency and accuracy trade-off by introducing \underline{\textbf{Positional \textbf{I}ntegrity \textbf{E}ncoding} (PIE). Building upon the rotary positional encoding, PIE first removes the rotary matrices in the Key cache that introduce temporal confusion and then reapplies the correct rotary matrices. This process ensures that positional relationships between tokens are correct and requires only a single round of matrix multiplication. We validate the effectiveness of PIE through extensive experiments on the RepoBench-C-8k dataset, utilizing DeepSeek-Coder models with 1.3B, 6.7B, and 33B parameters. Our evaluation includes three real-world coding tasks: code insertion, code deletion, and multi-place code editing. Results demonstrate that PIE reduces computational overhead by over 85% compared to the standard full recomputation approach across all model sizes and tasks while well approximating the model performance.
comment: ICLR 2025 Camera Ready
♻ ☆ DermaSynth: Rich Synthetic Image-Text Pairs Using Open Access Dermatology Datasets
A major barrier to developing vision large language models (LLMs) in dermatology is the lack of large image--text pairs dataset. We introduce DermaSynth, a dataset comprising of 92,020 synthetic image--text pairs curated from 45,205 images (13,568 clinical and 35,561 dermatoscopic) for dermatology-related clinical tasks. Leveraging state-of-the-art LLMs, using Gemini 2.0, we used clinically related prompts and self-instruct method to generate diverse and rich synthetic texts. Metadata of the datasets were incorporated into the input prompts by targeting to reduce potential hallucinations. The resulting dataset builds upon open access dermatological image repositories (DERM12345, BCN20000, PAD-UFES-20, SCIN, and HIBA) that have permissive CC-BY-4.0 licenses. We also fine-tuned a preliminary Llama-3.2-11B-Vision-Instruct model, DermatoLlama 1.0, on 5,000 samples. We anticipate this dataset to support and accelerate AI research in dermatology. Data and code underlying this work are accessible at https://github.com/abdurrahimyilmaz/DermaSynth.
comment: 12 pages, 4 figures
♻ ☆ Order Theory in the Context of Machine Learning NeurIPS
The paper ``Tropical Geometry of Deep Neural Networks'' by L. Zhang et al. introduces an equivalence between integer-valued neural networks (IVNN) with $\text{ReLU}_{t}$ and tropical rational functions, which come with a map to polytopes. Here, IVNN refers to a network with integer weights but real biases, and $\text{ReLU}_{t}$ is defined as $\text{ReLU}_{t}(x)=\max(x,t)$ for $t\in\mathbb{R}\cup\{-\infty\}$. For every poset with $n$ points, there exists a corresponding order polytope, i.e., a convex polytope in the unit cube $[0,1]^n$ whose coordinates obey the inequalities of the poset. We study neural networks whose associated polytope is an order polytope. We then explain how posets with four points induce neural networks that can be interpreted as $2\times 2$ convolutional filters. These poset filters can be added to any neural network, not only IVNN. Similarly to maxout, poset pooling filters update the weights of the neural network during backpropagation with more precision than average pooling, max pooling, or mixed pooling, without the need to train extra parameters. We report experiments that support our statements. We also define the structure of algebra over the operad of posets on poset neural networks and tropical polynomials. This formalism allows us to study the composition of poset neural network arquitectures and the effect on their corresponding Newton polytopes, via the introduction of the generalization of two operations on polytopes: the Minkowski sum and the convex envelope.
comment: We added experiments with ImageNet 100, and improved the exposition of the theory developed. Added examples. Poster presentation in NeurIPS WIML 2024, Talk in JMM 2025 section: Applied category theory II
♻ ☆ LLaSE-G1: Incentivizing Generalization Capability for LLaMA-based Speech Enhancement
Recent advancements in language models (LMs) have demonstrated strong capabilities in semantic understanding and contextual modeling, which have flourished in generative speech enhancement (SE). However, many LM-based SE approaches primarily focus on semantic information, often neglecting the critical role of acoustic information, which leads to acoustic inconsistency after enhancement and limited generalization across diverse SE tasks. In this paper, we introduce LLaSE-G1, a LLaMA-based language model that incentivizes generalization capabilities for speech enhancement. LLaSE-G1 offers the following key contributions: First, to mitigate acoustic inconsistency, LLaSE-G1 employs continuous representations from WavLM as input and predicts speech tokens from X-Codec2, maximizing acoustic preservation. Second, to promote generalization capability, LLaSE-G1 introduces dual-channel inputs and outputs, unifying multiple SE tasks without requiring task-specific IDs. Third, LLaSE-G1 outperforms prior task-specific discriminative and generative SE models, demonstrating scaling effects at test time and emerging capabilities for unseen SE tasks. Additionally, we release our code and models to support further research in this area.
comment: 13 pages, 2 figures, 8 tables
♻ ☆ Smoothing Grounding and Reasoning for MLLM-Powered GUI Agents with Query-Oriented Pivot Tasks
Perception-enhanced pre-training, particularly through grounding techniques, is widely adopted to enhance the performance of graphical user interface (GUI) agents. However, in resource-constrained scenarios, the format discrepancy between coordinate-oriented grounding and action-oriented reasoning limits the effectiveness of grounding for reasoning tasks. To address this challenge, we propose a query-oriented pivot approach called query inference, which serves as a bridge between GUI grounding and reasoning. By inferring potential user queries from a screenshot and its associated element coordinates, query inference improves the understanding of coordinates while aligning more closely with reasoning tasks. Experimental results show that query inference outperforms previous grounding techniques under the same training data scale. Notably, query inference achieves comparable or even better performance to large-scale grounding-enhanced OS-Atlas with less than 0.1% of training data. Furthermore, we explore the impact of reasoning formats and demonstrate that integrating additional semantic information into the input further boosts reasoning performance. The code is publicly available at https://github.com/ZrW00/GUIPivot.
♻ ☆ Balancing Efficiency and Effectiveness: An LLM-Infused Approach for Optimized CTR Prediction
Click-Through Rate (CTR) prediction is essential in online advertising, where semantic information plays a pivotal role in shaping user decisions and enhancing CTR effectiveness. Capturing and modeling deep semantic information, such as a user's preference for "H\"aagen-Dazs' HEAVEN strawberry light ice cream" due to its health-conscious and premium attributes, is challenging. Traditional semantic modeling often overlooks these intricate details at the user and item levels. To bridge this gap, we introduce a novel approach that models deep semantic information end-to-end, leveraging the comprehensive world knowledge capabilities of Large Language Models (LLMs). Our proposed LLM-infused CTR prediction framework(Multi-level Deep Semantic Information Infused CTR model via Distillation, MSD) is designed to uncover deep semantic insights by utilizing LLMs to extract and distill critical information into a smaller, more efficient model, enabling seamless end-to-end training and inference. Importantly, our framework is carefully designed to balance efficiency and effectiveness, ensuring that the model not only achieves high performance but also operates with optimal resource utilization. Online A/B tests conducted on the Meituan sponsored-search system demonstrate that our method significantly outperforms baseline models in terms of Cost Per Mile (CPM) and CTR, validating its effectiveness, scalability, and balanced approach in real-world applications.
comment: 5 pages, 4 figures,4 tables
♻ ☆ Position: Don't use the CLT in LLM evals with fewer than a few hundred datapoints
Rigorous statistical evaluations of large language models (LLMs), including valid error bars and significance testing, are essential for meaningful and reliable performance assessment. Currently, when such statistical measures are reported, they typically rely on the Central Limit Theorem (CLT). In this position paper, we argue that while CLT-based methods for uncertainty quantification are appropriate when benchmarks consist of thousands of examples, they fail to provide adequate uncertainty estimates for LLM evaluations that rely on smaller, highly specialized benchmarks. In these small-data settings, we demonstrate that CLT-based methods perform very poorly, usually dramatically underestimating uncertainty (i.e. producing error bars that are too small). We give recommendations for alternative frequentist and Bayesian methods that are both easy to implement and more appropriate in these increasingly common scenarios. We provide a simple Python library for these Bayesian methods at https://github.com/sambowyer/bayes_evals .
comment: 36 pages, 37 figures
♻ ☆ Replay Consolidation with Label Propagation for Continual Object Detection
Continual Learning (CL) aims to learn new data while remembering previously acquired knowledge. In contrast to CL for image classification, CL for Object Detection faces additional challenges such as the missing annotations problem. In this scenario, images from previous tasks may contain instances of unknown classes that could reappear as labeled in future tasks, leading to task interference in replay-based approaches. Consequently, most approaches in the literature have focused on distillation-based techniques, which are effective when there is a significant class overlap between tasks. In our work, we propose an alternative to distillation-based approaches with a novel approach called Replay Consolidation with Label Propagation for Object Detection (RCLPOD). RCLPOD enhances the replay memory by improving the quality of the stored samples through a technique that promotes class balance while also improving the quality of the ground truth associated with these samples through a technique called label propagation. RCLPOD outperforms existing techniques on well-established benchmarks such as VOC and COC. Moreover, our approach is developed to work with modern architectures like YOLOv8, making it suitable for dynamic, real-world applications such as autonomous driving and robotics, where continuous learning and resource efficiency are essential.
♻ ☆ Assessing Robustness via Score-Based Adversarial Image Generation
Most adversarial attacks and defenses focus on perturbations within small $\ell_p$-norm constraints. However, $\ell_p$ threat models cannot capture all relevant semantics-preserving perturbations, and hence, the scope of robustness evaluations is limited. In this work, we introduce Score-Based Adversarial Generation (ScoreAG), a novel framework that leverages the advancements in score-based generative models to generate unrestricted adversarial examples that overcome the limitations of $\ell_p$-norm constraints. Unlike traditional methods, ScoreAG maintains the core semantics of images while generating adversarial examples, either by transforming existing images or synthesizing new ones entirely from scratch. We further exploit the generative capability of ScoreAG to purify images, empirically enhancing the robustness of classifiers. Our extensive empirical evaluation demonstrates that ScoreAG improves upon the majority of state-of-the-art attacks and defenses across multiple benchmarks. This work highlights the importance of investigating adversarial examples bounded by semantics rather than $\ell_p$-norm constraints. ScoreAG represents an important step towards more encompassing robustness assessments.
♻ ☆ Unposed Sparse Views Room Layout Reconstruction in the Age of Pretrain Model ICLR 2025
Room layout estimation from multiple-perspective images is poorly investigated due to the complexities that emerge from multi-view geometry, which requires muti-step solutions such as camera intrinsic and extrinsic estimation, image matching, and triangulation. However, in 3D reconstruction, the advancement of recent 3D foundation models such as DUSt3R has shifted the paradigm from the traditional multi-step structure-from-motion process to an end-to-end single-step approach. To this end, we introduce Plane-DUSt3R, a novel method for multi-view room layout estimation leveraging the 3D foundation model DUSt3R. Plane-DUSt3R incorporates the DUSt3R framework and fine-tunes on a room layout dataset (Structure3D) with a modified objective to estimate structural planes. By generating uniform and parsimonious results, Plane-DUSt3R enables room layout estimation with only a single post-processing step and 2D detection results. Unlike previous methods that rely on single-perspective or panorama image, Plane-DUSt3R extends the setting to handle multiple-perspective images. Moreover, it offers a streamlined, end-to-end solution that simplifies the process and reduces error accumulation. Experimental results demonstrate that Plane-DUSt3R not only outperforms state-of-the-art methods on the synthetic dataset but also proves robust and effective on in the wild data with different image styles such as cartoon. Our code is available at: https://github.com/justacar/Plane-DUSt3R
comment: Accepted by ICLR 2025. Github page:https://github.com/justacar/Plane-DUSt3R
♻ ☆ Thermodynamic Computing via Autonomous Quantum Thermal Machines
We develop a physics-based model for classical computation based on autonomous quantum thermal machines. These machines consist of few interacting quantum bits (qubits) connected to several environments at different temperatures. Heat flows through the machine are here exploited for computing. The process starts by setting the temperatures of the environments according to the logical input. The machine evolves, eventually reaching a non-equilibrium steady state, from which the output of the computation can be determined via the temperature of an auxilliary finite-size reservoir. Such a machine, which we term a ``thermodynamic neuron'', can implement any linearly-separable function, and we discuss explicitly the cases of NOT, 3-MAJORITY and NOR gates. In turn, we show that a network of thermodynamic neurons can perform any desired function. We discuss the close connection between our model and artificial neurons (perceptrons), and argue that our model provides an alternative physics-based analogue implementation of neural networks, and more generally a platform for thermodynamic computing.
comment: 15 + 5 pages. Published version
♻ ☆ Compare different SG-Schemes based on large least square problems
This study reviews popular stochastic gradient-based schemes based on large least-square problems. These schemes, often called optimizers in machine learning, play a crucial role in finding better model parameters. Hence, this study focuses on viewing such optimizers with different hyper-parameters and analyzing them based on least square problems. Codes that produced results in this work are available on https://github.com/q-viper/gradients-based-methods-on-large-least-square.
♻ ☆ A Simple and Effective Reinforcement Learning Method for Text-to-Image Diffusion Fine-tuning
Reinforcement learning ( RL)-based fine-tuning has emerged as a powerful approach for aligning diffusion models with black-box objectives. Proximal policy optimization (PPO) is the most popular choice of method for policy optimization. While effective in terms of performance, PPO is highly sensitive to hyper-parameters and involves substantial computational overhead. REINFORCE, on the other hand, mitigates some computational complexities such as high memory overhead and sensitive hyper-parameter tuning, but has suboptimal performance due to high-variance and sample inefficiency. While the variance of the REINFORCE can be reduced by sampling multiple actions per input prompt and using a baseline correction term, it still suffers from sample inefficiency. To address these challenges, we systematically analyze the efficiency-effectiveness trade-off between REINFORCE and PPO, and propose leave-one-out PPO ( LOOP), a novel RL for diffusion fine-tuning method. LOOP combines variance reduction techniques from REINFORCE, such as sampling multiple actions per input prompt and a baseline correction term, with the robustness and sample efficiency of PPO via clipping and importance sampling. Our results demonstrate that LOOP effectively improves diffusion models on various black-box objectives, and achieves a better balance between computational efficiency and performance.
♻ ☆ From Matching to Generation: A Survey on Generative Information Retrieval
Information Retrieval (IR) systems are crucial tools for users to access information, which have long been dominated by traditional methods relying on similarity matching. With the advancement of pre-trained language models, generative information retrieval (GenIR) emerges as a novel paradigm, attracting increasing attention. Based on the form of information provided to users, current research in GenIR can be categorized into two aspects: \textbf{(1) Generative Document Retrieval} (GR) leverages the generative model's parameters for memorizing documents, enabling retrieval by directly generating relevant document identifiers without explicit indexing. \textbf{(2) Reliable Response Generation} employs language models to directly generate information users seek, breaking the limitations of traditional IR in terms of document granularity and relevance matching while offering flexibility, efficiency, and creativity to meet practical needs. This paper aims to systematically review the latest research progress in GenIR. We will summarize the advancements in GR regarding model training and structure, document identifier, incremental learning, etc., as well as progress in reliable response generation in aspects of internal knowledge memorization, external knowledge augmentation, etc. We also review the evaluation, challenges and future developments in GenIR systems. This review aims to offer a comprehensive reference for researchers, encouraging further development in the GenIR field. Github Repository: https://github.com/RUC-NLPIR/GenIR-Survey
♻ ☆ Neural Interpretable Reasoning
We formalize a novel modeling framework for achieving interpretability in deep learning, anchored in the principle of inference equivariance. While the direct verification of interpretability scales exponentially with the number of variables of the system, we show that this complexity can be mitigated by treating interpretability as a Markovian property and employing neural re-parametrization techniques. Building on these insights, we propose a new modeling paradigm -- neural generation and interpretable execution -- that enables scalable verification of equivariance. This paradigm provides a general approach for designing Neural Interpretable Reasoners that are not only expressive but also transparent.
♻ ☆ Non-rigid Structure-from-Motion: Temporally-smooth Procrustean Alignment and Spatially-variant Deformation Modeling CVPR 2024
Even though Non-rigid Structure-from-Motion (NRSfM) has been extensively studied and great progress has been made, there are still key challenges that hinder their broad real-world applications: 1) the inherent motion/rotation ambiguity requires either explicit camera motion recovery with extra constraint or complex Procrustean Alignment; 2) existing low-rank modeling of the global shape can over-penalize drastic deformations in the 3D shape sequence. This paper proposes to resolve the above issues from a spatial-temporal modeling perspective. First, we propose a novel Temporally-smooth Procrustean Alignment module that estimates 3D deforming shapes and adjusts the camera motion by aligning the 3D shape sequence consecutively. Our new alignment module remedies the requirement of complex reference 3D shape during alignment, which is more conductive to non-isotropic deformation modeling. Second, we propose a spatial-weighted approach to enforce the low-rank constraint adaptively at different locations to accommodate drastic spatially-variant deformation reconstruction better. Our modeling outperform existing low-rank based methods, and extensive experiments across different datasets validate the effectiveness of our method.
comment: Accepted by CVPR 2024; The new version adds additional experiments and corrects typos
♻ ☆ Revisiting Weak-to-Strong Generalization in Theory and Practice: Reverse KL vs. Forward KL
As large language models advance toward superhuman performance, ensuring their alignment with human values and abilities grows increasingly complex. Weak-to-strong generalization offers a promising approach by leveraging predictions from weaker models to guide stronger systems, but its effectiveness could be constrained by the inherent noise and inaccuracies in these weak predictions. To address this, we propose a theoretically grounded approach that replaces forward KL divergence-whose mass-covering behavior risks overfitting to imperfect weak signals-with reverse KL divergence. Reverse KL divergence's zero-forcing effect prioritizes high-confidence predictions, effectively mitigating the influence of unreliable weak supervision. Theoretically, we extend existing bounds and derive tighter lower bounds for both forward and reverse KL divergence, establishing that reverse KL achieves at least comparable guarantees to forward KL. Notably, when a sufficiently pre-trained strong model is fine-tuned on the last linear layer, reverse KL guarantees that it outperforms its weak supervisor by the magnitude of their disagreement. Empirically, we demonstrate that reverse KL and reverse cross-entropy enable strong models to successfully outperform those trained with forward KL and standard cross-entropy across most settings, highlighting the practical advantages of these reverse losses.
♻ ☆ Multimodal Inconsistency Reasoning (MMIR): A New Benchmark for Multimodal Reasoning Models
Existing Multimodal Large Language Models (MLLMs) are predominantly trained and tested on consistent visual-textual inputs, leaving open the question of whether they can handle inconsistencies in real-world, layout-rich content. To bridge this gap, we propose the Multimodal Inconsistency Reasoning (MMIR) benchmark to assess MLLMs' ability to detect and reason about semantic mismatches in artifacts such as webpages, presentation slides, and posters. MMIR comprises 534 challenging samples, each containing synthetically injected errors across five reasoning-heavy categories: Factual Contradiction, Identity Misattribution, Contextual Mismatch, Quantitative Discrepancy, and Temporal/Spatial Incoherence. We evaluate six state-of-the-art MLLMs, showing that models with dedicated multimodal reasoning capabilities, such as o1, substantially outperform their counterparts while open-source models remain particularly vulnerable to inconsistency errors. Detailed error analyses further show that models excel in detecting pairwise inconsistencies but struggle with inconsistencies confined to single elements in complex layouts. Probing experiments reveal that single-modality prompting, including Chain-of-Thought (CoT) and Set-of-Mark (SoM) methods, yields marginal gains, revealing a key bottleneck in cross-modal reasoning. Our findings highlight the need for advanced multimodal reasoning and point to future research on multimodal inconsistency.
♻ ☆ M2Lingual: Enhancing Multilingual, Multi-Turn Instruction Alignment in Large Language Models
Instruction finetuning (IFT) is critical for aligning Large Language Models (LLMs) to follow instructions. While many effective IFT datasets have been introduced recently, they predominantly focus on high-resource languages like English. To better align LLMs across a broad spectrum of languages and tasks, we propose a fully synthetic, novel taxonomy (Evol) guided Multilingual, Multi-turn instruction finetuning dataset, called M2Lingual. It is constructed by first selecting a diverse set of seed examples and then utilizing the proposed Evol taxonomy to convert these seeds into complex and challenging multi-turn instructions. We demonstrate the effectiveness of M2Lingual by training LLMs of varying sizes and showcasing the enhanced performance across a diverse set of languages. We contribute the 2 step Evol taxonomy with the guided generation code: https://github.com/ServiceNow/M2Lingual, as well as the first fully synthetic, general and task-oriented, multi-turn, multilingual dataset built with Evol - M2Lingual: https://huggingface.co/datasets/ServiceNow-AI/ M2Lingual - containing 182K total IFT pairs, covering 70 languages and 17+ NLP tasks.
comment: 39 pages
♻ ☆ Generative Artificial Intelligence-Guided User Studies: An Application for Air Taxi Services
User studies are crucial for meeting user needs. In user studies, real experimental scenarios and participants are constructed and recruited. However, emerging and unfamiliar studies face limitations, including safety concerns and iterative efficiency. To address these challenges, this study utilises a Generative Artificial Intelligence (GenAI) to create GenAI-generated scenarios for user experience (UX). By recruiting real users to evaluate this experience, we can collect feedback that enables rapid iteration in the early design phase. The air taxi is particularly representative of these challenges and has been chosen as the case study for this research. The key contribution was designing an Air Taxi Journey (ATJ) using Large Language Models (LLMs) and AI image and video generators. Based on the GPT-4-generated scripts, key visuals were created for the air taxi, and the ATJ was evaluated by 72 participants. Furthermore, the LLMs demonstrated the ability to identify and suggest environments that significantly improve participants' willingness toward air taxis. Education level and gender significantly influenced participants' the difference in willingness and their satisfaction with the ATJ. Satisfaction with the ATJ serves as a mediator, significantly influencing participants' willingness to take air taxis. Our study confirms the capability of GenAI to support user studies, providing a feasible approach and valuable insights for designing air taxi UX in the early design phase.
comment: 39 pages, 6 main figures, 10 appendix figures
♻ ☆ Diversifying Question Generation over Knowledge Base via External Natural Questions
Previous methods on knowledge base question generation (KBQG) primarily focus on enhancing the quality of a single generated question. Recognizing the remarkable paraphrasing ability of humans, we contend that diverse texts should convey the same semantics through varied expressions. The above insights make diversifying question generation an intriguing task, where the first challenge is evaluation metrics for diversity. Current metrics inadequately assess the above diversity since they calculate the ratio of unique n-grams in the generated question itself, which leans more towards measuring duplication rather than true diversity. Accordingly, we devise a new diversity evaluation metric, which measures the diversity among top-k generated questions for each instance while ensuring their relevance to the ground truth. Clearly, the second challenge is how to enhance diversifying question generation. To address this challenge, we introduce a dual model framework interwoven by two selection strategies to generate diverse questions leveraging external natural questions. The main idea of our dual framework is to extract more diverse expressions and integrate them into the generation model to enhance diversifying question generation. Extensive experiments on widely used benchmarks for KBQG demonstrate that our proposed approach generates highly diverse questions and improves the performance of question answering tasks.
comment: 13 pages, 2 figures
♻ ☆ SeqAfford: Sequential 3D Affordance Reasoning via Multimodal Large Language Model
3D affordance segmentation aims to link human instructions to touchable regions of 3D objects for embodied manipulations. Existing efforts typically adhere to single-object, single-affordance paradigms, where each affordance type or explicit instruction strictly corresponds to a specific affordance region and are unable to handle long-horizon tasks. Such a paradigm cannot actively reason about complex user intentions that often imply sequential affordances. In this paper, we introduce the Sequential 3D Affordance Reasoning task, which extends the traditional paradigm by reasoning from cumbersome user intentions and then decomposing them into a series of segmentation maps. Toward this, we construct the first instruction-based affordance segmentation benchmark that includes reasoning over both single and sequential affordances, comprising 180K instruction-point cloud pairs. Based on the benchmark, we propose our model, SeqAfford, to unlock the 3D multi-modal large language model with additional affordance segmentation abilities, which ensures reasoning with world knowledge and fine-grained affordance grounding in a cohesive framework. We further introduce a multi-granular language-point integration module to endow 3D dense prediction. Extensive experimental evaluations show that our model excels over well-established methods and exhibits open-world generalization with sequential reasoning abilities.
♻ ☆ VideoRAG: Retrieval-Augmented Generation over Video Corpus
Retrieval-Augmented Generation (RAG) is a powerful strategy for improving the factual accuracy of models by retrieving external knowledge relevant to queries and incorporating it into the generation process. However, existing approaches primarily focus on text, with some recent advancements considering images, and they largely overlook videos, a rich source of multimodal knowledge capable of representing contextual details more effectively than any other modality. While very recent studies explore the use of videos in response generation, they either predefine query-associated videos without retrieval or convert videos into textual descriptions losing multimodal richness. To tackle these, we introduce VideoRAG, a framework that not only dynamically retrieves videos based on their relevance with queries but also utilizes both visual and textual information. The operation of VideoRAG is powered by recent Large Video Language Models (LVLMs), which enable the direct processing of video content to represent it for retrieval and the seamless integration of retrieved videos jointly with queries for response generation. Also, inspired by that the context size of LVLMs may not be sufficient to process all frames in extremely long videos and not all frames are equally important, we introduce a video frame selection mechanism to extract the most informative subset of frames, along with a strategy to extract textual information from videos (as it can aid the understanding of video content) when their subtitles are not available. We experimentally validate the effectiveness of VideoRAG, showcasing that it is superior to relevant baselines. Code is available at https://github.com/starsuzi/VideoRAG.
♻ ☆ Advancing Molecular Graph-Text Pre-training via Fine-grained Alignment
Understanding molecular structure and related knowledge is crucial for scientific research. Recent studies integrate molecular graphs with their textual descriptions to enhance molecular representation learning. However, they focus on the whole molecular graph and neglect frequently occurring subgraphs, known as motifs, which are essential for determining molecular properties. Without such fine-grained knowledge, these models struggle to generalize to unseen molecules and tasks that require motif-level insights. To bridge this gap, we propose FineMolTex, a novel Fine-grained Molecular graph-Text pre-training framework to jointly learn coarse-grained molecule-level knowledge and fine-grained motif-level knowledge. Specifically, FineMolTex consists of two pre-training tasks: a contrastive alignment task for coarse-grained matching and a masked multi-modal modeling task for fine-grained matching. In particular, the latter predicts the labels of masked motifs and words, which are selected based on their importance. By leveraging insights from both modalities, FineMolTex is able to understand the fine-grained matching between motifs and words. Finally, we conduct extensive experiments across three downstream tasks, achieving up to 238% improvement in the text-based molecule editing task. Additionally, our case studies reveal that FineMolTex successfully captures fine-grained knowledge, potentially offering valuable insights for drug discovery and catalyst design.
♻ ☆ Danoliteracy of Generative Large Language Models
The language technology moonshot moment of Generative Large Language Models (GLLMs) was not limited to English: These models brought a surge of technological applications, investments, and hype to low-resource languages as well. However, the capabilities of these models in languages such as Danish were, until recently, difficult to verify beyond qualitative demonstrations due to a lack of applicable evaluation corpora. We present a GLLM benchmark to evaluate \emph{Danoliteracy}, a measure of Danish language and cultural competency across eight diverse scenarios such as Danish citizenship tests and abstractive social media question answering. This limited-size benchmark was found to produce a robust ranking that correlates to human feedback at $\rho \sim 0.8$ with GPT-4 and Claude Opus models achieving the highest rankings. Analyzing these model results across scenarios, we find one strong underlying factor explaining $95\%$ of scenario performance variance for GLLMs in Danish, suggesting a $g$ factor of model consistency in language adaptation.
comment: 16 pages, 13 figures, Accepted to NoDaLiDa/Baltic-HLT 2025
♻ ☆ AI Governance InternationaL Evaluation Index (AGILE Index)
The rapid advancement of Artificial Intelligence (AI) technology is profoundly transforming human society and concurrently presenting a series of ethical, legal, and social issues. The effective governance of AI has become a crucial global concern. Since 2022, the extensive deployment of generative AI, particularly large language models, marked a new phase in AI governance. Continuous efforts are being made by the international community in actively addressing the novel challenges posed by these AI developments. As consensus on international governance continues to be established and put into action, the practical importance of conducting a global assessment of the state of AI governance is progressively coming to light. In this context, we initiated the development of the AI Governance InternationaL Evaluation Index (AGILE Index). Adhering to the design principle, "the level of governance should match the level of development," the inaugural evaluation of the AGILE Index commences with an exploration of four foundational pillars: the development level of AI, the AI governance environment, the AI governance instruments, and the AI governance effectiveness. It covers 39 indicators across 18 dimensions to comprehensively assess the AI governance level of 14 representative countries globally. The index is utilized to delve into the status of AI governance to date in 14 countries for the first batch of evaluation. The aim is to depict the current state of AI governance in these countries through data scoring, assist them in identifying their governance stage and uncovering governance issues, and ultimately offer insights for the enhancement of their AI governance systems.
comment: Evaluation Report. 85 pages, 30 Figures
♻ ☆ RobKiNet: Robotic Kinematics Informed Neural Network for Optimal Robot Configuration Prediction
Task and Motion Planning (TAMP) is essential for robots to interact with the world and accomplish complex tasks. The TAMP problem involves a critical gap: exploring the robot's configuration parameters (such as chassis position and robotic arm joint angles) within continuous space to ensure that task-level global constraints are met while also enhancing the efficiency of subsequent motion planning. Existing methods still have significant room for improvement in terms of efficiency. Recognizing that robot kinematics is a key factor in motion planning, we propose a framework called the Robotic Kinematics Informed Neural Network (RobKiNet) as a bridge between task and motion layers. RobKiNet integrates kinematic knowledge into neural networks to train models capable of efficient configuration prediction. We designed a Chassis Motion Predictor(CMP) and a Full Motion Predictor(FMP) using RobKiNet, which employed two entirely different sets of forward and inverse kinematics constraints to achieve loosely coupled control and whole-body control, respectively. Experiments demonstrate that CMP and FMP can predict configuration parameters with 96.67% and 98% accuracy, respectively. That means that the corresponding motion planning can achieve a speedup of 24.24x and 153x compared to random sampling. Furthermore, RobKiNet demonstrates remarkable data efficiency. CMP only requires 1/71 and FMP only requires 1/15052 of the training data for the same prediction accuracy compared to other deep learning methods. These results demonstrate the great potential of RoboKiNet in robot applications.
♻ ☆ Integrating Various Software Artifacts for Better LLM-based Bug Localization and Program Repair
LLMs have garnered considerable attention for their potential to streamline Automated Program Repair (APR). LLM-based approaches can either insert the correct code or directly generate patches when provided with buggy methods. However, most of LLM-based APR methods rely on a single type of software information, without fully leveraging different software artifacts. Despite this, many LLM-based approaches do not explore which specific types of information best assist in APR. Addressing this gap is crucial for advancing LLM-based APR techniques. We propose DEVLoRe to use issue content (description and message) and stack error traces to localize buggy methods, then rely on debug information in buggy methods and issue content and stack error to localize buggy lines and generate plausible patches which can pass all unit tests. The results show that while issue content is particularly effective in assisting LLMs with fault localization and program repair, different types of software artifacts complement each other. By incorporating different artifacts, DEVLoRe successfully locates 49.3% and 47.6% of single and non-single buggy methods and generates 56.0% and 14.5% plausible patches for the Defects4J v2.0 dataset, respectively. This outperforms current state-of-the-art APR methods. The source code and experimental results of this work for replication are available at https://github.com/XYZboom/DEVLoRe.
comment: 22 pages, 11 images, 9 tables, Manuscript submitted to a journal (2024)
♻ ☆ PolaFormer: Polarity-aware Linear Attention for Vision Transformers
Linear attention has emerged as a promising alternative to softmax-based attention, leveraging kernelized feature maps to reduce complexity from quadratic to linear in sequence length. However, the non-negative constraint on feature maps and the relaxed exponential function used in approximation lead to significant information loss compared to the original query-key dot products, resulting in less discriminative attention maps with higher entropy. To address the missing interactions driven by negative values in query-key pairs, we propose a polarity-aware linear attention mechanism that explicitly models both same-signed and opposite-signed query-key interactions, ensuring comprehensive coverage of relational information. Furthermore, to restore the spiky properties of attention maps, we provide a theoretical analysis proving the existence of a class of element-wise functions (with positive first and second derivatives) that can reduce entropy in the attention distribution. For simplicity, and recognizing the distinct contributions of each dimension, we employ a learnable power function for rescaling, allowing strong and weak attention signals to be effectively separated. Extensive experiments demonstrate that the proposed PolaFormer improves performance on various vision tasks, enhancing both expressiveness and efficiency by up to 4.6%.
♻ ☆ SECURA: Sigmoid-Enhanced CUR Decomposition with Uninterrupted Retention and Low-Rank Adaptation in Large Language Models
With the rapid development of large language models (LLMs), fully fine-tuning (FT) these models is becoming increasingly infeasible due to high computational demands. Moreover, FT also increases the risk of catastrophic forgetting. As an alternative, Low-Rank Adaptation (LoRA) has been proposed. By fine-tuning only a small subset of parameters, LoRA achieves performance similar to FT while significantly reducing resource requirements. However, since LoRA inherits FT's design, the issue of catastrophic forgetting still remains. To address these limitations, we propose SECURA: Sigmoid-Enhanced CUR Decomposition LoRA, a novel PEFT variant designed to mitigate catastrophic forgetting while improving fine-tuning performance. Our method introduces a novel normalization technique, Sigmoid-based Magnitude Norm (S-MagNorm), which enhances parameter retention and fine-tuning efficiency. SECURA has been evaluated on a diverse range of tasks, including mathematical problem-solving (GSM8K), complex question-answering (CNNDM), translation (NewsDE), and complex multiple-choice reasoning (LogiQA). Experimental results demonstrate that it achieves an average fine-tuning improvement of 3.59% across four MCQ tasks and 2.51% across five QA tasks on Gemma2 2B, Qwen2 1.5B, Qwen2 7B, Llama3 8B, and Llama3.1 8B, outperforming DoRA. Additionally, SECURA demonstrates superior knowledge retention capabilities, achieving state-of-the-art performance in 16 continual learning tests and maintaining more than 70% accuracy on LLMs' basic knowledge compared to Experience Replay (ER), sequential learning (SEQ), EWC, I-LoRA, and CUR-LoRA.
comment: New work on PEFT for LLMs, introducing S-MagNorm and CABR-LoRA to enhance fine-tuning performance and knowledge retention. In v4, we renamed Sigmoid-based Magnitude Normalization to S-MagNorm for clarity and added a gradient comparison between SECURA and CABR-LoRA to highlight their contributions
♻ ☆ A Survey of NL2SQL with Large Language Models: Where are we, and where are we going?
Translating users' natural language queries (NL) into SQL queries (i.e., NL2SQL, a.k.a., Text-to-SQL) can significantly reduce barriers to accessing relational databases and support various commercial applications. The performance of NL2SQL has been greatly enhanced with the emergence of Large Language Models (LLMs). In this survey, we provide a comprehensive review of NL2SQL techniques powered by LLMs, covering its entire lifecycle from the following four aspects: (1) Model: NL2SQL translation techniques that tackle not only NL ambiguity and under-specification, but also properly map NL with database schema and instances; (2) Data: From the collection of training data, data synthesis due to training data scarcity, to NL2SQL benchmarks; (3) Evaluation: Evaluating NL2SQL methods from multiple angles using different metrics and granularities; and (4) Error Analysis: analyzing NL2SQL errors to find the root cause and guiding NL2SQL models to evolve. Moreover, we provide a rule of thumb for developing NL2SQL solutions. Finally, we discuss the research challenges and open problems of NL2SQL in the LLMs era.
comment: 20 pages, 11 figures, 2 tables
♻ ☆ Tera-MIND: Tera-scale mouse brain simulation via spatial mRNA-guided diffusion
Holistic 3D modeling of molecularly defined brain structures is crucial for understanding complex brain functions. Emerging tissue profiling technologies enable the construction of a comprehensive atlas of the mammalian brain with sub-cellular resolution and spatially resolved gene expression data. However, such tera-scale volumetric datasets present significant computational challenges in understanding complex brain functions within their native 3D spatial context. Here, we propose the novel generative approach $\textbf{Tera-MIND}$, which can simulate $\textbf{Tera}$-scale $\textbf{M}$ouse bra$\textbf{IN}$s in 3D using a patch-based and boundary-aware $\textbf{D}$iffusion model. Taking spatial transcriptomic data as the conditional input, we generate virtual mouse brains with comprehensive cellular morphological detail at teravoxel scale. Through the lens of 3D $gene$-$gene$ self-attention, we identify spatial molecular interactions for key transcriptomic pathways in the murine brain, exemplified by glutamatergic and dopaminergic neuronal systems. Importantly, these $in$-$silico$ biological findings are consistent and reproducible across three tera-scale virtual mouse brains. Therefore, Tera-MIND showcases a promising path toward efficient and generative simulations of whole organ systems for biomedical research. Project website: https://musikisomorphie.github.io/Tera-MIND.html
♻ ☆ Reflective-Net: Learning from Explanations
We examine whether data generated by explanation techniques, which promote a process of self-reflection, can improve classifier performance. Our work is based on the idea that humans have the ability to make quick, intuitive decisions as well as to reflect on their own thinking and learn from explanations. To the best of our knowledge, this is the first time that the potential of mimicking this process by using explanations generated by explainability methods has been explored. We found that combining explanations with traditional labeled data leads to significant improvements in classification accuracy and training efficiency across multiple image classification datasets and convolutional neural network architectures. It is worth noting that during training, we not only used explanations for the correct or predicted class, but also for other classes. This serves multiple purposes, including allowing for reflection on potential outcomes and enriching the data through augmentation.
♻ ☆ Residual Kolmogorov-Arnold Network for Enhanced Deep Learning
Despite their immense success, deep neural networks (CNNs) are costly to train, while modern architectures can retain hundreds of convolutional layers in network depth. Standard convolutional operations are fundamentally limited by their linear nature along with fixed activations, where multiple layers are needed to learn complex patterns, making this approach computationally inefficient and prone to optimization difficulties. As a result, we introduce RKAN (Residual Kolmogorov-Arnold Network), which could be easily implemented into stages of traditional networks, such as ResNet. The module also integrates polynomial feature transformation that provides the expressive power of many convolutional layers through learnable, non-linear feature refinement. Our proposed RKAN module offers consistent improvements over the base models on various well-known benchmark datasets, such as CIFAR-100, Food-101, and ImageNet.
comment: Code is available at https://github.com/withray/residualKAN.git
♻ ☆ B-STaR: Monitoring and Balancing Exploration and Exploitation in Self-Taught Reasoners ICLR 2025
In the absence of extensive human-annotated data for complex reasoning tasks, self-improvement -- where models are trained on their own outputs -- has emerged as a primary method for enhancing performance. However, the critical factors underlying the mechanism of these iterative self-improving methods remain poorly understood, such as under what conditions self-improvement is effective, and what are the bottlenecks in the current iterations. In this work, we identify and propose methods to monitor two pivotal factors in this iterative process: (1) the model's ability to generate sufficiently diverse responses (exploration); and (2) the effectiveness of external rewards in distinguishing high-quality candidates from lower-quality ones (exploitation). Using mathematical reasoning as a case study, we begin with a quantitative analysis to track the dynamics of exploration and exploitation, discovering that a model's exploratory capabilities rapidly deteriorate over iterations, and the effectiveness of exploiting external rewards diminishes as well. Motivated by these findings, we introduce B-STaR, a Self-Taught Reasoning framework that autonomously adjusts configurations across iterations to Balance exploration and exploitation, thereby optimizing the self-improving effectiveness based on the current policy model and available rewards. Our experiments on mathematical reasoning, coding, and commonsense reasoning demonstrate that B-STaR not only enhances the model's exploratory capabilities throughout training but also achieves a more effective balance between exploration and exploitation, leading to superior performance.
comment: Published as a conference paper at ICLR 2025
♻ ☆ Detecting LLM-Generated Korean Text through Linguistic Feature Analysis
The rapid advancement of large language models (LLMs) increases the difficulty of distinguishing between human-written and LLM-generated text. Detecting LLM-generated text is crucial for upholding academic integrity, preventing plagiarism, protecting copyrights, and ensuring ethical research practices. Most prior studies on detecting LLM-generated text focus primarily on English text. However, languages with distinct morphological and syntactic characteristics require specialized detection approaches. Their unique structures and usage patterns can hinder the direct application of methods primarily designed for English. Among such languages, we focus on Korean, which has relatively flexible spacing rules, a rich morphological system, and less frequent comma usage compared to English. We introduce KatFish, the first benchmark dataset for detecting LLM-generated Korean text. The dataset consists of text written by humans and generated by four LLMs across three genres. By examining spacing patterns, part-of-speech diversity, and comma usage, we illuminate the linguistic differences between human-written and LLM-generated Korean text. Building on these observations, we propose KatFishNet, a detection method specifically designed for the Korean language. KatFishNet achieves an average of 19.78% higher AUROC compared to the best-performing existing detection method. Our code and data are available at https://github.com/Shinwoo-Park/detecting_llm_generated_korean_text_through_linguistic_analysis.
♻ ☆ Variational Learning Induces Adaptive Label Smoothing
We show that variational learning naturally induces an adaptive label smoothing where label noise is specialized for each example. Such label-smoothing is useful to handle examples with labeling errors and distribution shifts, but designing a good adaptivity strategy is not always easy. We propose to skip this step and simply use the natural adaptivity induced during the optimization of a variational objective. We show empirical results where a variational algorithm called IVON outperforms traditional label smoothing and yields adaptivity strategies similar to those of an existing approach. By connecting Bayesian methods to label smoothing, our work provides a new way to handle overconfident predictions.
♻ ☆ Stochastic Resetting Mitigates Latent Gradient Bias of SGD from Label Noise
Giving up and starting over may seem wasteful in many situations such as searching for a target or training deep neural networks (DNNs). Our study, though, demonstrates that resetting from a checkpoint can significantly improve generalization performance when training DNNs with noisy labels. In the presence of noisy labels, DNNs initially learn the general patterns of the data but then gradually memorize the corrupted data, leading to overfitting. By deconstructing the dynamics of stochastic gradient descent (SGD), we identify the behavior of a latent gradient bias induced by noisy labels, which harms generalization. To mitigate this negative effect, we apply the stochastic resetting method to SGD, inspired by recent developments in the field of statistical physics achieving efficient target searches. We first theoretically identify the conditions where resetting becomes beneficial, and then we empirically validate our theory, confirming the significant improvements achieved by resetting. We further demonstrate that our method is both easy to implement and compatible with other methods for handling noisy labels. Additionally, this work offers insights into the learning dynamics of DNNs from an interpretability perspective, expanding the potential to analyze training methods through the lens of statistical physics.
comment: 30 pages, 14 figures
♻ ☆ POPGym Arcade: Parallel Pixelated POMDPs
We introduce POPGym Arcade, a benchmark consisting of 7 pixel-based environments each with three difficulties, utilizing a single observation and action space. Each environment offers both fully observable and partially observable variants, enabling counterfactual studies on partial observability. POPGym Arcade utilizes JIT compilation on hardware accelerators to achieve substantial speedups over CPU-bound environments. Moreover, this enables Podracer-style architectures to further increase hardware utilization and training speed. We evaluate memory models on our environments using a Podracer variant of Q learning, and examine the results. Finally, we generate memory saliency maps, uncovering how memories propagate through policies. Our library is available at https://github.com/bolt-research/popgym_arcade.
♻ ☆ Mixed-State Quantum Denoising Diffusion Probabilistic Model
Generative quantum machine learning has gained significant attention for its ability to produce quantum states with desired distributions. Among various quantum generative models, quantum denoising diffusion probabilistic models (QuDDPMs) [Phys. Rev. Lett. 132, 100602 (2024)] provide a promising approach with stepwise learning that resolves the training issues. However, the requirement of high-fidelity scrambling unitaries in QuDDPM poses a challenge in near-term implementation. We propose the \textit{mixed-state quantum denoising diffusion probabilistic model} (MSQuDDPM) to eliminate the need for scrambling unitaries. Our approach focuses on adapting the quantum noise channels to the model architecture, which integrates depolarizing noise channels in the forward diffusion process and parameterized quantum circuits with projective measurements in the backward denoising steps. We also introduce several techniques to improve MSQuDDPM, including a cosine-exponent schedule of noise interpolation, the use of single-qubit random ancilla, and superfidelity-based cost functions to enhance the convergence. We evaluate MSQuDDPM on quantum ensemble generation tasks, demonstrating its successful performance.
comment: 8 pages, 8 figures; Fig.8 added, appendix C added
♻ ☆ Tutorial on Using Machine Learning and Deep Learning Models for Mental Illness Detection
Social media has become an important source for understanding mental health, providing researchers with a way to detect conditions like depression from user-generated posts. This tutorial provides practical guidance to address common challenges in applying machine learning and deep learning methods for mental health detection on these platforms. It focuses on strategies for working with diverse datasets, improving text preprocessing, and addressing issues such as imbalanced data and model evaluation. Real-world examples and step-by-step instructions demonstrate how to apply these techniques effectively, with an emphasis on transparency, reproducibility, and ethical considerations. By sharing these approaches, this tutorial aims to help researchers build more reliable and widely applicable models for mental health research, contributing to better tools for early detection and intervention.
♻ ☆ Toxicity Detection towards Adaptability to Changing Perturbations
Toxicity detection is crucial for maintaining the peace of the society. While existing methods perform well on normal toxic contents or those generated by specific perturbation methods, they are vulnerable to evolving perturbation patterns. However, in real-world scenarios, malicious users tend to create new perturbation patterns for fooling the detectors. For example, some users may circumvent the detector of large language models (LLMs) by adding `I am a scientist' at the beginning of the prompt. In this paper, we introduce a novel problem, i.e., continual learning jailbreak perturbation patterns, into the toxicity detection field. To tackle this problem, we first construct a new dataset generated by 9 types of perturbation patterns, 7 of them are summarized from prior work and 2 of them are developed by us. We then systematically validate the vulnerability of current methods on this new perturbation pattern-aware dataset via both the zero-shot and fine tuned cross-pattern detection. Upon this, we present the domain incremental learning paradigm and the corresponding benchmark to ensure the detector's robustness to dynamically emerging types of perturbed toxic text. Our code and dataset are provided in the appendix and will be publicly available at GitHub, by which we wish to offer new research opportunities for the security-relevant communities.
comment: There are still some flaws in the uploaded content, which may cause confusion for readers. To be rigorous, we need to retract the paper for optimization and improvement
♻ ☆ TPIA: Towards Target-specific Prompt Injection Attack against Code-oriented Large Language Models
Recently, code-oriented large language models (Code LLMs) have been widely and successfully exploited to simplify and facilitate programming. Unfortunately, a few pioneering works revealed that these Code LLMs are vulnerable to backdoor and adversarial attacks. The former poisons the training data or model parameters, hijacking the LLMs to generate malicious code snippets when encountering the trigger. The latter crafts malicious adversarial input codes to reduce the quality of the generated codes. In this paper, we reveal that both attacks have some inherent limitations: backdoor attacks rely on the adversary's capability of controlling the model training process, which may not be practical; adversarial attacks struggle with fulfilling specific malicious purposes. To alleviate these problems, this paper presents a novel attack paradigm against Code LLMs, namely target-specific prompt injection attack (TPIA). TPIA generates non-functional perturbations containing the information of malicious instructions and inserts them into the victim's code context by spreading them into potentially used dependencies (e.g., packages or RAG's knowledge base). It induces the Code LLMs to generate attacker-specified malicious code snippets at the target location. In general, we compress the attacker-specified malicious objective into the perturbation by adversarial optimization based on greedy token search. We collect 13 representative malicious objectives to design 31 threat cases for three popular programming languages. We show that our TPIA can successfully attack three representative open-source Code LLMs (with an attack success rate of up to 97.9%) and two mainstream commercial Code LLM-integrated applications (with an attack success rate of over 90%) in all threat cases, using only a 12-token non-functional perturbation.
♻ ☆ Fence Theorem: Towards Dual-Objective Semantic-Structure Isolation in Preprocessing Phase for 3D Anomaly Detection
3D anomaly detection (AD) is prominent but difficult due to lacking a unified theoretical foundation for preprocessing design. We establish the Fence Theorem, formalizing preprocessing as a dual-objective semantic isolator: (1) mitigating cross-semantic interference to the greatest extent feasible and (2) confining anomaly judgments to aligned semantic spaces wherever viable, thereby establishing intra-semantic comparability. Any preprocessing approach achieves this goal through a two-stage process of Emantic-Division and Spatial-Constraints stage. Through systematic deconstruction, we theoretically and experimentally subsume existing preprocessing methods under this theorem via tripartite evidence: qualitative analyses, quantitative studies, and mathematical proofs. Guided by the Fence Theorem, we implement Patch3D, consisting of Patch-Cutting and Patch-Matching modules, to segment semantic spaces and consolidate similar ones while independently modeling normal features within each space. Experiments on Anomaly-ShapeNet and Real3D-AD with different settings demonstrate that progressively finer-grained semantic alignment in preprocessing directly enhances point-level AD accuracy, providing inverse validation of the theorem's causal logic.
♻ ☆ Representation Learning for Time-Domain High-Energy Astrophysics: Discovery of Extragalactic Fast X-ray Transient XRT 200515
We present a novel representation learning method for downstream tasks like anomaly detection, unsupervised classification, and similarity searches in high-energy data sets. This enabled the discovery of a new extragalactic fast X-ray transient (FXT) in Chandra archival data, XRT 200515, a needle-in-the-haystack event and the first Chandra FXT of its kind. Recent serendipitous discoveries in X-ray astronomy, including FXTs from binary neutron star mergers and an extragalactic planetary transit candidate, highlight the need for systematic transient searches in X-ray archives. We introduce new event file representations, E-t maps and E-t-dt cubes, that effectively encode both temporal and spectral information, enabling the seamless application of machine learning to variable-length event file time series. Our unsupervised learning approach employs PCA or sparse autoencoders to extract low-dimensional, informative features from these data representations, followed by clustering in the embedding space with DBSCAN. New transients are identified within transient-dominant clusters or through nearest-neighbour searches around known transients, producing a catalogue of 3559 candidates (3447 flares and 112 dips). XRT 200515 exhibits unique temporal and spectral variability, including an intense, hard <10s initial burst, followed by spectral softening in an ~800s oscillating tail. We interpret XRT 200515 as either the first giant magnetar flare observed at low X-ray energies or the first extragalactic Type I X-ray burst from a faint, previously unknown low-mass X-ray binary in the LMC. Our method extends to data sets from other observatories such as XMM-Newton, Swift-XRT, eROSITA, Einstein Probe, and upcoming missions like AXIS.
comment: 25 pages, accepted in Monthly Notices of the Royal Astronomical Society
♻ ☆ Weak-to-Strong Generalization Through the Data-Centric Lens ICLR 2025
The weak-to-strong generalization phenomenon is the driver for important machine learning applications including highly data-efficient learning and, most recently, performing superalignment. While decades of research have resulted in numerous algorithms that produce strong empirical performance, understanding what aspects of data enable weak-to-strong generalization has been understudied. We propose a simple data-centric mechanism that characterizes weak-to-strong generalization: the overlap density. Intuitively, generalization tracks the number of points that contain overlaps, i.e., both easy patterns (learnable by a weak model) and challenging patterns (only learnable by a stronger model), as with such points, weak predictions can be used to learn challenging patterns by stronger models. We provide a practical overlap detection algorithm to find such points in datasets and leverage them to learn, among multiple sources of data, which to query when seeking to maximize overlap density and thereby enhance weak-to-strong generalization. We present a theoretical result showing that the generalization benefit is a function of the overlap density and a regret bound for our data selection algorithm. Empirically, we validate the mechanism and the overlap detection algorithm on a wide array of settings.
comment: ICLR 2025
♻ ☆ Can Large Language Models Help Experimental Design for Causal Discovery?
Designing proper experiments and selecting optimal intervention targets is a longstanding problem in scientific or causal discovery. Identifying the underlying causal structure from observational data alone is inherently difficult. Obtaining interventional data, on the other hand, is crucial to causal discovery, yet it is usually expensive and time-consuming to gather sufficient interventional data to facilitate causal discovery. Previous approaches commonly utilize uncertainty or gradient signals to determine the intervention targets. However, numerical-based approaches may yield suboptimal results due to the inaccurate estimation of the guiding signals at the beginning when with limited interventional data. In this work, we investigate a different approach, whether we can leverage Large Language Models (LLMs) to assist with the intervention targeting in causal discovery by making use of the rich world knowledge about the experimental design in LLMs. Specifically, we present Large Language Model Guided Intervention Targeting (LeGIT) -- a robust framework that effectively incorporates LLMs to augment existing numerical approaches for the intervention targeting in causal discovery. Across 4 realistic benchmark scales, LeGIT demonstrates significant improvements and robustness over existing methods and even surpasses humans, which demonstrates the usefulness of LLMs in assisting with experimental design for scientific discovery.
♻ ☆ Few-shot Personalization of LLMs with Mis-aligned Responses NAACL 25
As the diversity of users increases, the capability of providing personalized responses by large language models (LLMs) has become increasingly important. Existing approaches have only limited successes in LLM personalization, due to the absence of personalized learning or the reliance on shared personal data. This paper proposes a new approach for a few-shot personalization of LLMs with their mis-aligned responses (Fermi). Our key idea is to learn a set of personalized prompts for each user by progressively improving the prompts using LLMs, based on user profile (e.g., demographic information) and a few examples of previous opinions. During an iterative process of prompt improvement, we incorporate the contexts of mis-aligned responses by LLMs, which are especially crucial for the effective personalization of LLMs. In addition, we develop an effective inference method to further leverage the context of the test query and the personalized prompts. Our experimental results demonstrate that Fermi significantly improves performance across various benchmarks, compared to best-performing baselines.
comment: NAACL 25 (main, long), 32 pages
♻ ☆ Understanding Dynamic Diffusion Process of LLM-based Agents under Information Asymmetry
Large language models have been used to simulate human society using multi-agent systems. Most current social simulation research emphasizes interactive behaviors in fixed environments, ignoring information opacity, relationship variability and diffusion diversity. In this paper, we study the dynamics of information diffusion in 12 asymmetric open environments defined by information content and distribution mechanisms. We first present a general framework to capture the features of information diffusion. Then, we designed a dynamic attention mechanism to help agents allocate attention to different information, addressing the limitations of LLM-based attention. Agents start by responding to external information stimuli within a five-agent group, increasing group size and forming information circles while developing relationships and sharing information. Additionally, we observe the emergence of information cocoons, the evolution of information gaps, and the accumulation of social capital, which are closely linked to psychological, sociological, and communication theories.
comment: 8 pages, 4 figures
♻ ☆ AutoRestTest: A Tool for Automated REST API Testing Using LLMs and MARL ICSE
As REST APIs have become widespread in modern web services, comprehensive testing of these APIs is increasingly crucial. Because of the vast search space of operations, parameters, and parameter values, along with their dependencies and constraints, current testing tools often achieve low code coverage, resulting in suboptimal fault detection. To address this limitation, we present AutoRestTest, a novel tool that integrates the Semantic Property Dependency Graph (SPDG) with Multi-Agent Reinforcement Learning (MARL) and large language models (LLMs) for effective REST API testing. AutoRestTest determines operation-dependent parameters using the SPDG and employs five specialized agents (operation, parameter, value, dependency, and header) to identify dependencies of operations and generate operation sequences, parameter combinations, and values. Through an intuitive command-line interface, users can easily configure and monitor tests with successful operation count, unique server errors detected, and time elapsed. Upon completion, AutoRestTest generates a detailed report highlighting errors detected and operations exercised. In this paper, we introduce our tool and present preliminary findings, with a demonstration video available at https://www.youtube.com/watch?v=VVus2W8rap8.
comment: To be published in the 47th IEEE/ACM International Conference on Software Engineering - Demonstration Track (ICSE-Demo 2025)
♻ ☆ Overcoming Slow Decision Frequencies in Continuous Control: Model-Based Sequence Reinforcement Learning for Model-Free Control
Reinforcement learning (RL) is rapidly reaching and surpassing human-level control capabilities. However, state-of-the-art RL algorithms often require timesteps and reaction times significantly faster than human capabilities, which is impractical in real-world settings and typically necessitates specialized hardware. We introduce Sequence Reinforcement Learning (SRL), an RL algorithm designed to produce a sequence of actions for a given input state, enabling effective control at lower decision frequencies. SRL addresses the challenges of learning action sequences by employing both a model and an actor-critic architecture operating at different temporal scales. We propose a "temporal recall" mechanism, where the critic uses the model to estimate intermediate states between primitive actions, providing a learning signal for each individual action within the sequence. Once training is complete, the actor can generate action sequences independently of the model, achieving model-free control at a slower frequency. We evaluate SRL on a suite of continuous control tasks, demonstrating that it achieves performance comparable to state-of-the-art algorithms while significantly reducing actor sample complexity. To better assess performance across varying decision frequencies, we introduce the Frequency-Averaged Score (FAS) metric. Our results show that SRL significantly outperforms traditional RL algorithms in terms of FAS, making it particularly suitable for applications requiring variable decision frequencies. Furthermore, we compare SRL with model-based online planning, showing that SRL achieves comparable FAS while leveraging the same model during training that online planners use for planning. Lastly, we highlight the biological relevance of SRL, showing that it replicates the "action chunking" behavior observed in the basal ganglia, offering insights into brain-inspired control mechanisms.
comment: 12 pages, 5 figures
♻ ☆ Key-value memory in the brain
Classical models of memory in psychology and neuroscience rely on similarity-based retrieval of stored patterns, where similarity is a function of retrieval cues and the stored patterns. While parsimonious, these models do not allow distinct representations for storage and retrieval, despite their distinct computational demands. Key-value memory systems, in contrast, distinguish representations used for storage (values) and those used for retrieval (keys). This allows key-value memory systems to optimize simultaneously for fidelity in storage and discriminability in retrieval. We review the computational foundations of key-value memory, its role in modern machine learning systems, related ideas from psychology and neuroscience, applications to a number of empirical puzzles, and possible biological implementations.
comment: Accepted to Neuron
♻ ☆ Dataverse: Open-Source ETL (Extract, Transform, Load) Pipeline for Large Language Models NAACL 2025
To address the challenges associated with data processing at scale, we propose Dataverse, a unified open-source Extract-Transform-Load (ETL) pipeline for large language models (LLMs) with a user-friendly design at its core. Easy addition of custom processors with block-based interface in Dataverse allows users to readily and efficiently use Dataverse to build their own ETL pipeline. We hope that Dataverse will serve as a vital tool for LLM development and open source the entire library to welcome community contribution. Additionally, we provide a concise, two-minute video demonstration of our system, illustrating its capabilities and implementation.
comment: Accepted to NAACL 2025 Demo
♻ ☆ Tool or Tutor? Experimental evidence from AI deployment in cancer diagnosis
Professionals increasingly use Artificial Intelligence (AI) to enhance their capabilities and assist with task execution. While prior research has examined these uses separately, their potential interaction remains underexplored. We propose that AI-driven training ("tutor" effect) and AI-assisted task completion ("tool" effect) can be complementary and test this hypothesis in the context of lung cancer diagnosis. In a field experiment with 336 medical students, we manipulated AI deployment in training, in practice, and in both. Our findings reveal that while AI-integrated training and AI assistance independently improved diagnostic performance, their combination yielded the highest accuracy. These results underscore AI's dual role in enhancing human performance through both learning and real-time support, offering insights into AI deployment in professional settings where human expertise remains essential.
♻ ☆ Explainable fetal ultrasound quality assessment with progressive concept bottleneck models
The quality of fetal ultrasound screening scans directly influences the precision of biometric measurements. However, acquiring high-quality scans is labor-intensive and highly relies on the operator's skills. Considering the low contrastiveness and imaging artifacts that widely exist in ultrasound, even a dedicated deep-learning model can be vulnerable to learning from confounding information in the image. In this paper, we propose a holistic and explainable method for fetal ultrasound quality assessment, where we design a hierarchical concept bottleneck model by introducing human-readable ``concepts" into the task and imitating the sequential expert decision-making process. This hierarchical information flow forces the model to learn concepts from semantically meaningful areas: The model first passes through a layer of visual, segmentation-based concepts, and next a second layer of property concepts directly associated with the decision-making task. We consider the quality assessment to be in a more challenging but more realistic setting, with fine-grained image recognition. Experiments show that our model outperforms equivalent concept-free models on an in-house dataset, and shows better generalizability on two public benchmarks, one from Spain and one from Africa, without any fine-tuning.
♻ ☆ Lightweight yet Efficient: An External Attentive Graph Convolutional Network with Positional Prompts for Sequential Recommendation
Graph-based Sequential Recommender systems (GSRs) have gained significant research attention due to their ability to simultaneously handle user-item interactions and sequential relationships between items. Current GSRs often utilize composite or in-depth structures for graph encoding (e.g., the Graph Transformer). Nevertheless, they have high computational complexity, hindering the deployment on resource-constrained edge devices. Moreover, the relative position encoding in Graph Transformer has difficulty in considering the complicated positional dependencies within sequence. To this end, we propose an External Attentive Graph convolutional network with Positional prompts for Sequential recommendation, namely EA-GPS. Specifically, we first introduce an external attentive graph convolutional network that linearly measures the global associations among nodes via two external memory units. Then, we present a positional prompt-based decoder that explicitly treats the absolute item positions as external prompts. By introducing length-adaptive sequential masking and a soft attention network, such a decoder facilitates the model to capture the long-term positional dependencies and contextual relationships within sequences. Extensive experimental results on five real-world datasets demonstrate that the proposed EA-GPS outperforms the state-of-the-art methods. Remarkably, it achieves the superior performance while maintaining a smaller parameter size and lower training overhead. The implementation of this work is publicly available at https://github.com/ZZY-GraphMiningLab/EA-GPS.
comment: 26 pages, 8 figures, journal paper, accepted by TOIS at 20th February, 2025
From Specific-MLLMs to Omni-MLLMs: A Survey on MLLMs Aligned with Multi-modalities
To tackle complex tasks in real-world scenarios, more researchers are focusing on Omni-MLLMs, which aim to achieve omni-modal understanding and generation. Beyond the constraints of any specific non-linguistic modality, Omni-MLLMs map various non-linguistic modalities into the embedding space of LLMs and enable the interaction and understanding of arbitrary combinations of modalities within a single model. In this paper, we systematically investigate relevant research and provide a comprehensive survey of Omni-MLLMs. Specifically, we first explain the four core components of Omni-MLLMs for unified multi-modal modeling with a meticulous taxonomy that offers novel perspectives. Then, we introduce the effective integration achieved through two-stage training and discuss the corresponding datasets as well as evaluation. Furthermore, we summarize the main challenges of current Omni-MLLMs and outline future directions. We hope this paper serves as an introduction for beginners and promotes the advancement of related research. Resources have been made publicly available at https://github.com/threegold116/Awesome-Omni-MLLMs.
comment: 35 pages
♻ ☆ Understanding LLM Development Through Longitudinal Study: Insights from the Open Ko-LLM Leaderboard NAACL 2025
This paper conducts a longitudinal study over eleven months to address the limitations of prior research on the Open Ko-LLM Leaderboard, which have relied on empirical studies with restricted observation periods of only five months. By extending the analysis duration, we aim to provide a more comprehensive understanding of the progression in developing Korean large language models (LLMs). Our study is guided by three primary research questions: (1) What are the specific challenges in improving LLM performance across diverse tasks on the Open Ko-LLM Leaderboard over time? (2) How does model size impact task performance correlations across various benchmarks? (3) How have the patterns in leaderboard rankings shifted over time on the Open Ko-LLM Leaderboard?. By analyzing 1,769 models over this period, our research offers a comprehensive examination of the ongoing advancements in LLMs and the evolving nature of evaluation frameworks.
comment: Accepted to NAACL 2025 Industry
♻ ☆ Open Ko-LLM Leaderboard2: Bridging Foundational and Practical Evaluation for Korean LLMs NAACL 2025
The Open Ko-LLM Leaderboard has been instrumental in benchmarking Korean Large Language Models (LLMs), yet it has certain limitations. Notably, the disconnect between quantitative improvements on the overly academic leaderboard benchmarks and the qualitative impact of the models should be addressed. Furthermore, the benchmark suite is largely composed of translated versions of their English counterparts, which may not fully capture the intricacies of the Korean language. To address these issues, we propose Open Ko-LLM Leaderboard2, an improved version of the earlier Open Ko-LLM Leaderboard. The original benchmarks are entirely replaced with new tasks that are more closely aligned with real-world capabilities. Additionally, four new native Korean benchmarks are introduced to better reflect the distinct characteristics of the Korean language. Through these refinements, Open Ko-LLM Leaderboard2 seeks to provide a more meaningful evaluation for advancing Korean LLMs.
comment: Accepted to NAACL 2025 Industry
Bootstrap-GS: Self-Supervised Augmentation for High-Fidelity Gaussian Splatting
Recent advancements in 3D Gaussian Splatting (3D-GS) have established new benchmarks for rendering quality and efficiency in 3D reconstruction. However, 3D-GS faces critical limitations when generating novel views that significantly deviate from those encountered during training. Moreover, issues such as dilation and aliasing arise during zoom operations. These challenges stem from a fundamental issue: training sampling deficiency. In this paper, we introduce a bootstrapping framework to address this problem. Our approach synthesizes pseudo-ground truth from novel views that align with the limited training set and reintegrates these synthesized views into the training pipeline. Experimental results demonstrate that our bootstrapping technique not only reduces artifacts but also improves quantitative metrics. Furthermore, our technique is highly adaptable, allowing various Gaussian-based method to benefit from its integration.
♻ ☆ GaVaMoE: Gaussian-Variational Gated Mixture of Experts for Explainable Recommendation
Large language model-based explainable recommendation (LLM-based ER) systems show promise in generating human-like explanations for recommendations. However, they face challenges in modeling user-item collaborative preferences, personalizing explanations, and handling sparse user-item interactions. To address these issues, we propose GaVaMoE, a novel Gaussian-Variational Gated Mixture of Experts framework for explainable recommendation. GaVaMoE introduces two key components: (1) a rating reconstruction module that employs Variational Autoencoder (VAE) with a Gaussian Mixture Model (GMM) to capture complex user-item collaborative preferences, serving as a pre-trained multi-gating mechanism; and (2) a set of fine-grained expert models coupled with the multi-gating mechanism for generating highly personalized explanations. The VAE component models latent factors in user-item interactions, while the GMM clusters users with similar behaviors. Each cluster corresponds to a gate in the multi-gating mechanism, routing user-item pairs to appropriate expert models. This architecture enables GaVaMoE to generate tailored explanations for specific user types and preferences, mitigating data sparsity by leveraging user similarities. Extensive experiments on three real-world datasets demonstrate that GaVaMoE significantly outperforms existing methods in explanation quality, personalization, and consistency. Notably, GaVaMoE exhibits robust performance in scenarios with sparse user-item interactions, maintaining high-quality explanations even for users with limited historical data.
♻ ☆ Explainable AI for Autism Diagnosis: Identifying Critical Brain Regions Using fMRI Data
Early diagnosis and intervention for Autism Spectrum Disorder (ASD) has been shown to significantly improve the quality of life of autistic individuals. However, diagnostics methods for ASD rely on assessments based on clinical presentation that are prone to bias and can be challenging to arrive at an early diagnosis. There is a need for objective biomarkers of ASD which can help improve diagnostic accuracy. Deep learning (DL) has achieved outstanding performance in diagnosing diseases and conditions from medical imaging data. Extensive research has been conducted on creating models that classify ASD using resting-state functional Magnetic Resonance Imaging (fMRI) data. However, existing models lack interpretability. This research aims to improve the accuracy and interpretability of ASD diagnosis by creating a DL model that can not only accurately classify ASD but also provide explainable insights into its working. The dataset used is a preprocessed version of the Autism Brain Imaging Data Exchange (ABIDE) with 884 samples. Our findings show a model that can accurately classify ASD and highlight critical brain regions differing between ASD and typical controls, with potential implications for early diagnosis and understanding of the neural basis of ASD. These findings are validated by studies in the literature that use different datasets and modalities, confirming that the model actually learned characteristics of ASD and not just the dataset. This study advances the field of explainable AI in medical imaging by providing a robust and interpretable model, thereby contributing to a future with objective and reliable ASD diagnostics.
comment: This work has been submitted to the IEEE for possible publication
♻ ☆ POI-Enhancer: An LLM-based Semantic Enhancement Framework for POI Representation Learning AAAI 25
POI representation learning plays a crucial role in handling tasks related to user mobility data. Recent studies have shown that enriching POI representations with multimodal information can significantly enhance their task performance. Previously, the textual information incorporated into POI representations typically involved only POI categories or check-in content, leading to relatively weak textual features in existing methods. In contrast, large language models (LLMs) trained on extensive text data have been found to possess rich textual knowledge. However leveraging such knowledge to enhance POI representation learning presents two key challenges: first, how to extract POI-related knowledge from LLMs effectively, and second, how to integrate the extracted information to enhance POI representations. To address these challenges, we propose POI-Enhancer, a portable framework that leverages LLMs to improve POI representations produced by classic POI learning models. We first design three specialized prompts to extract semantic information from LLMs efficiently. Then, the Dual Feature Alignment module enhances the quality of the extracted information, while the Semantic Feature Fusion module preserves its integrity. The Cross Attention Fusion module then fully adaptively integrates such high-quality information into POI representations and Multi-View Contrastive Learning further injects human-understandable semantic information into these representations. Extensive experiments on three real-world datasets demonstrate the effectiveness of our framework, showing significant improvements across all baseline representations.
comment: AAAI 25
♻ ☆ miniCTX: Neural Theorem Proving with (Long-)Contexts
Real-world formal theorem proving often depends on a wealth of context, including definitions, lemmas, comments, file structure, and other information. We introduce miniCTX, which tests a model's ability to prove formal mathematical theorems that depend on new context that is not seen during training. miniCTX contains theorems sourced from real Lean projects and textbooks, each associated with a context that can span tens of thousands of tokens. Models are tasked with proving a theorem given access to code from the theorem's repository, which contains context that is needed for the proof. As a baseline for miniCTX, we tested fine-tuning and prompting methods that condition theorem proving on preceding context. Both approaches substantially outperform traditional methods that rely solely on state information. We found that this ability to use context is not captured by previous benchmarks such as miniF2F. Alongside miniCTX, we offer ntp-toolkit for automatically extracting and annotating theorem proving data, making it easy to add new projects into miniCTX to ensure that contexts are not seen during training. miniCTX offers a challenging and realistic evaluation of neural theorem provers.
comment: Project page: https://cmu-l3.github.io/minictx
♻ ☆ Spread Preference Annotation: Direct Preference Judgment for Efficient LLM Alignment ICLR 2025
Aligning large language models (LLMs) with human preferences becomes a key component to obtaining state-of-the-art performance, but it yields a huge cost to construct a large human-annotated preference dataset. To tackle this problem, we propose a new framework, Spread Preference Annotation with direct preference judgment (SPA), that boosts the alignment of LLMs using only a very small amount of human-annotated preference data. Our key idea is leveraging the human prior knowledge within the small (seed) data and progressively improving the alignment of LLM, by iteratively generating the responses and learning from them with the self-annotated preference data. To be specific, we propose to derive the preference label from the logits of LLM to explicitly extract the model's inherent preference. Compared to the previous approaches using external reward models or implicit in-context learning, we observe that the proposed approach is significantly more effective. In addition, we introduce a noise-aware preference learning algorithm to mitigate the risk of low quality within generated preference data. Our experimental results demonstrate that the proposed framework significantly boosts the alignment of LLMs. For example, we achieve superior alignment performance on AlpacaEval 2.0 with only 3.3% of the ground-truth preference labels in the Ultrafeedback data compared to the cases using the entire data or state-of-the-art baselines.
comment: ICLR 2025 Oral Presentation, 22 pages
♻ ☆ Aligning Large Language Models and Geometric Deep Models for Protein Representation
Latent representation alignment has become a foundational technique for constructing multimodal large language models (MLLM) by mapping embeddings from different modalities into a shared space, often aligned with the embedding space of large language models (LLMs) to enable effective cross-modal understanding. While preliminary protein-focused MLLMs have emerged, they have predominantly relied on heuristic approaches, lacking a fundamental understanding of optimal alignment practices across representations. In this study, we explore the alignment of multimodal representations between LLMs and Geometric Deep Models (GDMs) in the protein domain. We comprehensively evaluate three state-of-the-art LLMs (Gemma2-2B, LLaMa3.1-8B, and LLaMa3.1-70B) with four protein-specialized GDMs (GearNet, GVP, ScanNet, GAT). Our work examines alignment factors from both model and protein perspectives, identifying challenges in current alignment methodologies and proposing strategies to improve the alignment process. Our key findings reveal that GDMs incorporating both graph and 3D structural information align better with LLMs, larger LLMs demonstrate improved alignment capabilities, and protein rarity significantly impacts alignment performance. We also find that increasing GDM embedding dimensions, using two-layer projection heads, and fine-tuning LLMs on protein-specific data substantially enhance alignment quality. These strategies offer potential enhancements to the performance of protein-related multimodal models. Our code and data are available at https://github.com/Tizzzzy/LLM-GDM-alignment.
comment: 37 pages, 10 figures
♻ ☆ Diffusion State-Guided Projected Gradient for Inverse Problems ICLR 2025
Recent advancements in diffusion models have been effective in learning data priors for solving inverse problems. They leverage diffusion sampling steps for inducing a data prior while using a measurement guidance gradient at each step to impose data consistency. For general inverse problems, approximations are needed when an unconditionally trained diffusion model is used since the measurement likelihood is intractable, leading to inaccurate posterior sampling. In other words, due to their approximations, these methods fail to preserve the generation process on the data manifold defined by the diffusion prior, leading to artifacts in applications such as image restoration. To enhance the performance and robustness of diffusion models in solving inverse problems, we propose Diffusion State-Guided Projected Gradient (DiffStateGrad), which projects the measurement gradient onto a subspace that is a low-rank approximation of an intermediate state of the diffusion process. DiffStateGrad, as a module, can be added to a wide range of diffusion-based inverse solvers to improve the preservation of the diffusion process on the prior manifold and filter out artifact-inducing components. We highlight that DiffStateGrad improves the robustness of diffusion models in terms of the choice of measurement guidance step size and noise while improving the worst-case performance. Finally, we demonstrate that DiffStateGrad improves upon the state-of-the-art on linear and nonlinear image restoration inverse problems. Our code is available at https://github.com/Anima-Lab/DiffStateGrad.
comment: Published as a conference paper at ICLR 2025. RZ and BT have equal contributions
♻ ☆ Sequential Learning in the Dense Associative Memory
Sequential learning involves learning tasks in a sequence, and proves challenging for most neural networks. Biological neural networks regularly conquer the sequential learning challenge and are even capable of transferring knowledge both forward and backwards between tasks. Artificial neural networks often totally fail to transfer performance between tasks, and regularly suffer from degraded performance or catastrophic forgetting on previous tasks. Models of associative memory have been used to investigate the discrepancy between biological and artificial neural networks due to their biological ties and inspirations, of which the Hopfield network is the most studied model. The Dense Associative Memory (DAM), or modern Hopfield network, generalizes the Hopfield network, allowing for greater capacities and prototype learning behaviors, while still retaining the associative memory structure. We give a substantial review of the sequential learning space with particular respect to the Hopfield network and associative memories. We perform foundational benchmarks of sequential learning in the DAM using various sequential learning techniques, and analyze the results of the sequential learning to demonstrate previously unseen transitions in the behavior of the DAM. This paper also discusses the departure from biological plausibility that may affect the utility of the DAM as a tool for studying biological neural networks. We present our findings, including the effectiveness of a range of state-of-the-art sequential learning methods when applied to the DAM, and use these methods to further the understanding of DAM properties and behaviors.
♻ ☆ Automatically Improving LLM-based Verilog Generation using EDA Tool Feedback
Traditionally, digital hardware designs are written in the Verilog hardware description language (HDL) and debugged manually by engineers. This can be time-consuming and error-prone for complex designs. Large Language Models (LLMs) are emerging as a potential tool to help generate fully functioning HDL code, but most works have focused on generation in the single-shot capacity: i.e., run and evaluate, a process that does not leverage debugging and, as such, does not adequately reflect a realistic development process. In this work, we evaluate the ability of LLMs to leverage feedback from electronic design automation (EDA) tools to fix mistakes in their own generated Verilog. To accomplish this, we present an open-source, highly customizable framework, AutoChip, which combines conversational LLMs with the output from Verilog compilers and simulations to iteratively generate and repair Verilog. To determine the success of these LLMs we leverage the VerilogEval benchmark set. We evaluate four state-of-the-art conversational LLMs, focusing on readily accessible commercial models. EDA tool feedback proved to be consistently more effective than zero-shot prompting only with GPT-4o, the most computationally complex model we evaluated. In the best case, we observed a 5.8% increase in the number of successful designs with a 34.2% decrease in cost over the best zero-shot results. Mixing smaller models with this larger model at the end of the feedback iterations resulted in equally as much success as with GPT-4o using feedback, but incurred 41.9% lower cost (corresponding to an overall decrease in cost over zero-shot by 89.6%).
comment: Accepted for publication in TODAES Special Issue on Large Language Models for Electronic System Design Automation
♻ ☆ Distilling Large Language Models for Network Active Queue Management
The growing complexity of network traffic and demand for ultra-low latency communication require smarter packet traffic management. Existing Deep Learning-based queuing approaches struggle with dynamic network scenarios and demand high engineering effort. We propose AQM-LLM, distilling Large Language Models (LLMs) with few-shot learning, contextual understanding, and pattern recognition to improve Active Queue Management (AQM) [RFC 9330] with minimal manual effort. We consider a specific case where AQM is Low Latency, Low Loss, and Scalable Throughput (L4S) and our design of AQM-LLM builds on speculative decoding and reinforcement-based distilling of LLM by tackling congestion prevention in the L4S architecture using Explicit Congestion Notification (ECN) [RFC 9331] and periodic packet dropping. We develop a new open-source experimental platform by executing L4S-AQM on FreeBSD-14, providing interoperable modules to support LLM integration and facilitate IETF recognition through wider testing. Our extensive evaluations show L4S-LLM enhances queue management, prevents congestion, reduces latency, and boosts network performance, showcasing LLMs' adaptability and efficiency in uplifting AQM systems.
comment: After a careful review, we identified some issues that need to be addressed. We temporarily withdraw the paper while we update our experimental results, ensuring that our demonstration and findings meet the highest standards of accuracy and clarity
♻ ☆ The 2024 Foundation Model Transparency Index
Foundation models are increasingly consequential yet extremely opaque. To characterize the status quo, the Foundation Model Transparency Index (FMTI) was launched in October 2023 to measure the transparency of leading foundation model developers. FMTI 2023 assessed 10 major foundation model developers (e.g. OpenAI, Google) on 100 transparency indicators (e.g. does the developer disclose the wages it pays for data labor?). At the time, developers publicly disclosed very limited information with the average score being 37 out of 100. To understand how the status quo has changed, we conduct a follow-up study after 6 months: we score 14 developers against the same 100 indicators. While in FMTI 2023 we searched for publicly available information, in FMTI 2024 developers submit reports on the 100 transparency indicators, potentially including information that was not previously public. We find that developers now score 58 out of 100 on average, a 21 point improvement over FMTI 2023. Much of this increase is driven by developers disclosing information during the FMTI 2024 process: on average, developers disclosed information related to 16.6 indicators that was not previously public. We observe regions of sustained (i.e. across 2023 and 2024) and systemic (i.e. across most or all developers) opacity such as on copyright status, data access, data labor, and downstream impact. We publish transparency reports for each developer that consolidate information disclosures: these reports are based on the information disclosed to us via developers. Our findings demonstrate that transparency can be improved in this nascent ecosystem, the Foundation Model Transparency Index likely contributes to these improvements, and policymakers should consider interventions in areas where transparency has not improved.
comment: Published in TMLR 2025. Project page: https://crfm.stanford.edu/fmti
♻ ☆ Teaching Robots to Build Simulations of Themselves
The emergence of vision catalysed a pivotal evolutionary advancement, enabling organisms not only to perceive but also to interact intelligently with their environment. This transformation is mirrored by the evolution of robotic systems, where the ability to leverage vision to simulate and predict their own dynamics marks a leap towards autonomy and self-awareness. Humans utilize vision to record experiences and internally simulate potential actions. For example, we can imagine that, if we stand up and raise our arms, the body will form a T shape without physical movement. Similarly, simulation allows robots to plan and predict the outcomes of potential actions without execution. Here we introduce a self-supervised learning framework to enable robots to model and predict their morphology, kinematics and motor control using only brief raw video data, eliminating the need for extensive real-world data collection and kinematic priors. By observing their own movements, akin to humans watching their reflection in a mirror, robots learn an ability to simulate themselves and predict their spatial motion for various tasks. Our results demonstrate that this self-learned simulation not only enables accurate motion planning but also allows the robot to detect abnormalities and recover from damage.
comment: This paper was published on Nature Machine Intelligence
♻ ☆ A Simplified Retriever to Improve Accuracy of Phenotype Normalizations by Large Language Models
Large language models (LLMs) have shown improved accuracy in phenotype term normalization tasks when augmented with retrievers that suggest candidate normalizations based on term definitions. In this work, we introduce a simplified retriever that enhances LLM accuracy by searching the Human Phenotype Ontology (HPO) for candidate matches using contextual word embeddings from BioBERT without the need for explicit term definitions. Testing this method on terms derived from the clinical synopses of Online Mendelian Inheritance in Man (OMIM), we demonstrate that the normalization accuracy of a state-of-the-art LLM increases from a baseline of 62.3% without augmentation to 90.3% with retriever augmentation. This approach is potentially generalizable to other biomedical term normalization tasks and offers an efficient alternative to more complex retrieval methods.
comment: Published by Frontiers in Digital Health
♻ ☆ Language Model Probabilities are Not Calibrated in Numeric Contexts
Some statements have one well-defined continuation (e.g., "the Eiffel Tower is in [Paris]"), whereas others have a natural distribution over multiple options (e.g., "the weighted coin flip was [Heads/Tails].") We argue that language model (LM) outputs should capture these natural distributions. Our work specifically tests whether LM output probabilities are calibrated to numeric information within their textual contexts. For example, if the context (the prompt) concerns two equally likely options (e.g., heads or tails for a fair coin), the LM output probabilities should also be equal. Likewise, in a context with nonuniformly likely events (e.g., rolling a pair with two dice) an LM should output proportionate probabilities. However, we find that even in simple settings, the best LMs (1) are poorly calibrated and (2) have systematic biases: artifacts like word identity, word order, and word frequency all impact calibration. For example, gpt-4o-mini often picks the first of two options presented in the prompt regardless of the options' implied likelihoods, whereas Llama-3.1-8B picks the second. Models do not allocate probability mass among valid options in a calibrated manner.
comment: 8 pages (main), 39 pages (references and appendix), in submission
Graphics 2
☆ Time-Varying Coronary Artery Deformation: A Dynamic Skinning Framework for Surgical Training
Purpose: This study proposes a novel anatomically-driven dynamic modeling framework for coronary arteries using skeletal skinning weights computation, aiming to achieve precise control over vessel deformation while maintaining real-time performance for surgical simulation applications. Methods: We developed a computational framework based on biharmonic energy minimization for skinning weight calculation, incorporating volumetric discretization through tetrahedral mesh generation. The method implements temporal sampling and interpolation for continuous vessel deformation throughout the cardiac cycle, with mechanical constraints and volume conservation enforcement. The framework was validated using clinical datasets from 5 patients, comparing interpolated deformation results against ground truth data obtained from frame-by-frame segmentation across cardiac phases. Results: The proposed framework effectively handled interactive vessel manipulation. Geometric accuracy evaluation showed mean Hausdorff distance of 4.96 +- 1.78 mm and mean surface distance of 1.78 +- 0.75 mm between interpolated meshes and ground truth models. The Branch Completeness Ratio achieved 1.82 +- 0.46, while Branch Continuity Score maintained 0.84 +- 0.06 (scale 0-1) across all datasets. The system demonstrated capability in supporting real-time guidewire-vessel collision detection and contrast medium flow simulation throughout the complete coronary tree structure. Conclusion: Our skinning weight-based methodology enhances model interactivity and applicability while maintaining geometric accuracy. The framework provides a more flexible technical foundation for virtual surgical training systems, demonstrating promising potential for both clinical practice and medical education applications. The code is available at https://github.com/ipoirot/DynamicArtery.
comment: 24 pages,8 figures,Submitted to International Journal of Computer Assisted Radiology and Surgery
Bootstrap-GS: Self-Supervised Augmentation for High-Fidelity Gaussian Splatting
Recent advancements in 3D Gaussian Splatting (3D-GS) have established new benchmarks for rendering quality and efficiency in 3D reconstruction. However, 3D-GS faces critical limitations when generating novel views that significantly deviate from those encountered during training. Moreover, issues such as dilation and aliasing arise during zoom operations. These challenges stem from a fundamental issue: training sampling deficiency. In this paper, we introduce a bootstrapping framework to address this problem. Our approach synthesizes pseudo-ground truth from novel views that align with the limited training set and reintegrates these synthesized views into the training pipeline. Experimental results demonstrate that our bootstrapping technique not only reduces artifacts but also improves quantitative metrics. Furthermore, our technique is highly adaptable, allowing various Gaussian-based method to benefit from its integration.
Robotics 102
☆ NavG: Risk-Aware Navigation in Crowded Environments Based on Reinforcement Learning with Guidance Points
Motion planning in navigation systems is highly susceptible to upstream perceptual errors, particularly in human detection and tracking. To mitigate this issue, the concept of guidance points--a novel directional cue within a reinforcement learning-based framework--is introduced. A structured method for identifying guidance points is developed, consisting of obstacle boundary extraction, potential guidance point detection, and redundancy elimination. To integrate guidance points into the navigation pipeline, a perception-to-planning mapping strategy is proposed, unifying guidance points with other perceptual inputs and enabling the RL agent to effectively leverage the complementary relationships among raw laser data, human detection and tracking, and guidance points. Qualitative and quantitative simulations demonstrate that the proposed approach achieves the highest success rate and near-optimal travel times, greatly improving both safety and efficiency. Furthermore, real-world experiments in dynamic corridors and lobbies validate the robot's ability to confidently navigate around obstacles and robustly avoid pedestrians.
Balancing Act: Trading Off Doppler Odometry and Map Registration for Efficient Lidar Localization IROS
Most autonomous vehicles rely on accurate and efficient localization, which is achieved by comparing live sensor data to a preexisting map, to navigate their environment. Balancing the accuracy of localization with computational efficiency remains a significant challenge, as high-accuracy methods often come with higher computational costs. In this paper, we present two ways of improving lidar localization efficiency and study their impact on performance. First, we integrate a lightweight Doppler-based odometry method into a topometric localization pipeline and compare its performance against an iterative closest point (ICP)-based method. We highlight the trade-offs between these approaches: the Doppler estimator offers faster, lightweight updates, while ICP provides higher accuracy at the cost of increased computational load. Second, by controlling the frequency of localization updates and leveraging odometry estimates between them, we demonstrate that accurate localization can be maintained while optimizing for computational efficiency using either odometry method. Our experimental results show that localizing every 10 lidar frames strikes a favourable balance, achieving a localization accuracy below 0.05 meters in translation and below 0.1 degrees in orientation while reducing computational effort by over 30% in an ICP-based pipeline. We quantify the trade-off of accuracy to computational effort using over 100 kilometers of real-world driving data in different on-road environments.
comment: 8 pages, 3 figures, 2 tables, submitted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
☆ OVAMOS: A Framework for Open-Vocabulary Multi-Object Search in Unknown Environments
Object search is a fundamental task for robots deployed in indoor building environments, yet challenges arise due to observation instability, especially for open-vocabulary models. While foundation models (LLMs/VLMs) enable reasoning about object locations even without direct visibility, the ability to recover from failures and replan remains crucial. The Multi-Object Search (MOS) problem further increases complexity, requiring the tracking multiple objects and thorough exploration in novel environments, making observation uncertainty a significant obstacle. To address these challenges, we propose a framework integrating VLM-based reasoning, frontier-based exploration, and a Partially Observable Markov Decision Process (POMDP) framework to solve the MOS problem in novel environments. VLM enhances search efficiency by inferring object-environment relationships, frontier-based exploration guides navigation in unknown spaces, and POMDP models observation uncertainty, allowing recovery from failures in occlusion and cluttered environments. We evaluate our framework on 120 simulated scenarios across several Habitat-Matterport3D (HM3D) scenes and a real-world robot experiment in a 50-square-meter office, demonstrating significant improvements in both efficiency and success rate over baseline methods.
comment: 7 pages, 4 Figures
☆ Data Augmentation for NeRFs in the Low Data Limit ICRA 2025
Current methods based on Neural Radiance Fields fail in the low data limit, particularly when training on incomplete scene data. Prior works augment training data only in next-best-view applications, which lead to hallucinations and model collapse with sparse data. In contrast, we propose adding a set of views during training by rejection sampling from a posterior uncertainty distribution, generated by combining a volumetric uncertainty estimator with spatial coverage. We validate our results on partially observed scenes; on average, our method performs 39.9% better with 87.5% less variability across established scene reconstruction benchmarks, as compared to state of the art baselines. We further demonstrate that augmenting the training set by sampling from any distribution leads to better, more consistent scene reconstruction in sparse environments. This work is foundational for robotic tasks where augmenting a dataset with informative data is critical in resource-constrained, a priori unknown environments. Videos and source code are available at https://murpheylab.github.io/low-data-nerf/.
comment: To be published in 2025 IEEE International Conference on Robotics and Automation (ICRA 2025)
☆ Uncertainty Representation in a SOTIF-Related Use Case with Dempster-Shafer Theory for LiDAR Sensor-Based Object Detection
Uncertainty in LiDAR sensor-based object detection arises from environmental variability and sensor performance limitations. Representing these uncertainties is essential for ensuring the Safety of the Intended Functionality (SOTIF), which focuses on preventing hazards in automated driving scenarios. This paper presents a systematic approach to identifying, classifying, and representing uncertainties in LiDAR-based object detection within a SOTIF-related scenario. Dempster-Shafer Theory (DST) is employed to construct a Frame of Discernment (FoD) to represent detection outcomes. Conditional Basic Probability Assignments (BPAs) are applied based on dependencies among identified uncertainty sources. Yager's Rule of Combination is used to resolve conflicting evidence from multiple sources, providing a structured framework to evaluate uncertainties' effects on detection accuracy. The study applies variance-based sensitivity analysis (VBSA) to quantify and prioritize uncertainties, detailing their specific impact on detection performance.
comment: submitted as extended paper of Vehicle Technology and Intelligent Transport Systems (VEHITS)2024 conference and will be published by Springer in a CCIS Series book later in 2025
☆ CorrA: Leveraging Large Language Models for Dynamic Obstacle Avoidance of Autonomous Vehicles
In this paper, we present Corridor-Agent (CorrA), a framework that integrates large language models (LLMs) with model predictive control (MPC) to address the challenges of dynamic obstacle avoidance in autonomous vehicles. Our approach leverages LLM reasoning ability to generate appropriate parameters for sigmoid-based boundary functions that define safe corridors around obstacles, effectively reducing the state-space of the controlled vehicle. The proposed framework adjusts these boundaries dynamically based on real-time vehicle data that guarantees collision-free trajectories while also ensuring both computational efficiency and trajectory optimality. The problem is formulated as an optimal control problem and solved with differential dynamic programming (DDP) for constrained optimization, and the proposed approach is embedded within an MPC framework. Extensive simulation and real-world experiments demonstrate that the proposed framework achieves superior performance in maintaining safety and efficiency in complex, dynamic environments compared to a baseline MPC approach.
☆ Active Alignments of Lens Systems with Reinforcement Learning
Aligning a lens system relative to an imager is a critical challenge in camera manufacturing. While optimal alignment can be mathematically computed under ideal conditions, real-world deviations caused by manufacturing tolerances often render this approach impractical. Measuring these tolerances can be costly or even infeasible, and neglecting them may result in suboptimal alignments. We propose a reinforcement learning (RL) approach that learns exclusively in the pixel space of the sensor output, eliminating the need to develop expert-designed alignment concepts. We conduct an extensive benchmark study and show that our approach surpasses other methods in speed, precision, and robustness. We further introduce relign, a realistic, freely explorable, open-source simulation utilizing physically based rendering that models optical systems with non-deterministic manufacturing tolerances and noise in robotic alignment movement. It provides an interface to popular machine learning frameworks, enabling seamless experimentation and development. Our work highlights the potential of RL in a manufacturing environment to enhance efficiency of optical alignments while minimizing the need for manual intervention.
comment: This work has been submitted to the IEEE for possible publication
☆ Constraint-Based Modeling of Dynamic Entities in 3D Scene Graphs for Robust SLAM
Autonomous robots depend crucially on their ability to perceive and process information from dynamic, ever-changing environments. Traditional simultaneous localization and mapping (SLAM) approaches struggle to maintain consistent scene representations because of numerous moving objects, often treating dynamic elements as outliers rather than explicitly modeling them in the scene representation. In this paper, we present a novel hierarchical 3D scene graph-based SLAM framework that addresses the challenge of modeling and estimating the pose of dynamic objects and agents. We use fiducial markers to detect dynamic entities and to extract their attributes while improving keyframe selection and implementing new capabilities for dynamic entity mapping. We maintain a hierarchical representation where dynamic objects are registered in the SLAM graph and are constrained with robot keyframes and the floor level of the building with our novel entity-keyframe constraints and intra-entity constraints. By combining semantic and geometric constraints between dynamic entities and the environment, our system jointly optimizes the SLAM graph to estimate the pose of the robot and various dynamic agents and objects while maintaining an accurate map. Experimental evaluation demonstrates that our approach achieves a 27.57% reduction in pose estimation error compared to traditional methods and enables higher-level reasoning about scene dynamics.
comment: 8 pages, 3 figures, 3 tables
☆ FRMD: Fast Robot Motion Diffusion with Consistency-Distilled Movement Primitives for Smooth Action Generation
We consider the problem of using diffusion models to generate fast, smooth, and temporally consistent robot motions. Although diffusion models have demonstrated superior performance in robot learning due to their task scalability and multi-modal flexibility, they suffer from two fundamental limitations: (1) they often produce non-smooth, jerky motions due to their inability to capture temporally consistent movement dynamics, and (2) their iterative sampling process incurs prohibitive latency for many robotic tasks. Inspired by classic robot motion generation methods such as DMPs and ProMPs, which capture temporally and spatially consistent dynamic of trajectories using low-dimensional vectors -- and by recent advances in diffusion-based image generation that use consistency models with probability flow ODEs to accelerate the denoising process, we propose Fast Robot Motion Diffusion (FRMD). FRMD uniquely integrates Movement Primitives (MPs) with Consistency Models to enable efficient, single-step trajectory generation. By leveraging probabilistic flow ODEs and consistency distillation, our method models trajectory distributions while learning a compact, time-continuous motion representation within an encoder-decoder architecture. This unified approach eliminates the slow, multi-step denoising process of conventional diffusion models, enabling efficient one-step inference and smooth robot motion generation. We extensively evaluated our FRMD on the well-recognized Meta-World and ManiSkills Benchmarks, ranging from simple to more complex manipulation tasks, comparing its performance against state-of-the-art baselines. Our results show that FRMD generates significantly faster, smoother trajectories while achieving higher success rates.
comment: arXiv admin note: text overlap with arXiv:2406.01586 by other authors
☆ Optimizing Robot Programming: Mixed Reality Gripper Control
Conventional robot programming methods are complex and time-consuming for users. In recent years, alternative approaches such as mixed reality have been explored to address these challenges and optimize robot programming. While the findings of the mixed reality robot programming methods are convincing, most existing methods rely on gesture interaction for robot programming. Since controller-based interactions have proven to be more reliable, this paper examines three controller-based programming methods within a mixed reality scenario: 1) Classical Jogging, where the user positions the robot's end effector using the controller's thumbsticks, 2) Direct Control, where the controller's position and orientation directly corresponds to the end effector's, and 3) Gripper Control, where the controller is enhanced with a 3D-printed gripper attachment to grasp and release objects. A within-subjects study (n = 30) was conducted to compare these methods. The findings indicate that the Gripper Control condition outperforms the others in terms of task completion time, user experience, mental demand, and task performance, while also being the preferred method. Therefore, it demonstrates promising potential as an effective and efficient approach for future robot programming. Video available at https://youtu.be/83kWr8zUFIQ.
comment: 6 pages, 7 figures
☆ Pretrained Embeddings as a Behavior Specification Mechanism
We propose an approach to formally specifying the behavioral properties of systems that rely on a perception model for interactions with the physical world. The key idea is to introduce embeddings -- mathematical representations of a real-world concept -- as a first-class construct in a specification language, where properties are expressed in terms of distances between a pair of ideal and observed embeddings. To realize this approach, we propose a new type of temporal logic called Embedding Temporal Logic (ETL), and describe how it can be used to express a wider range of properties about AI-enabled systems than previously possible. We demonstrate the applicability of ETL through a preliminary evaluation involving planning tasks in robots that are driven by foundation models; the results are promising, showing that embedding-based specifications can be used to steer a system towards desirable behaviors.
comment: 18 pages, 6 figures
☆ Minimum-Length Coordinated Motions For Two Convex Centrally-Symmetric Robots
We study the problem of determining coordinated motions, of minimum total length, for two arbitrary convex centrally-symmetric (CCS) robots in an otherwise obstacle-free plane. Using the total path length traced by the two robot centres as a measure of distance, we give an exact characterization of a (not necessarily unique) shortest collision-avoiding motion for all initial and goal configurations of the robots. The individual paths are composed of at most six convex pieces, and their total length can be expressed as a simple integral with a closed form solution depending only on the initial and goal configuration of the robots. The path pieces are either straight segments or segments of the boundary of the Minkowski sum of the two robots (circular arcs, in the special case of disc robots). Furthermore, the paths can be parameterized in such a way that (i) only one robot is moving at any given time (decoupled motion), or (ii) the orientation of the robot configuration changes monotonically.
comment: 31 pages, 32 figures
☆ Discrete-Time Hybrid Automata Learning: Legged Locomotion Meets Skateboarding
This paper introduces Discrete-time Hybrid Automata Learning (DHAL), a framework using on-policy Reinforcement Learning to identify and execute mode-switching without trajectory segmentation or event function learning. Hybrid dynamical systems, which include continuous flow and discrete mode switching, can model robotics tasks like legged robot locomotion. Model-based methods usually depend on predefined gaits, while model-free approaches lack explicit mode-switching knowledge. Current methods identify discrete modes via segmentation before regressing continuous flow, but learning high-dimensional complex rigid body dynamics without trajectory labels or segmentation is a challenging open problem. Our approach incorporates a beta policy distribution and a multi-critic architecture to model contact-guided motions, exemplified by a challenging quadrupedal robot skateboard task. We validate our method through simulations and real-world tests, demonstrating robust performance in hybrid dynamical systems.
☆ Multi-Stage Manipulation with Demonstration-Augmented Reward, Policy, and World Model Learning
Long-horizon tasks in robotic manipulation present significant challenges in reinforcement learning (RL) due to the difficulty of designing dense reward functions and effectively exploring the expansive state-action space. However, despite a lack of dense rewards, these tasks often have a multi-stage structure, which can be leveraged to decompose the overall objective into manageable subgoals. In this work, we propose DEMO3, a framework that exploits this structure for efficient learning from visual inputs. Specifically, our approach incorporates multi-stage dense reward learning, a bi-phasic training scheme, and world model learning into a carefully designed demonstration-augmented RL framework that strongly mitigates the challenge of exploration in long-horizon tasks. Our evaluations demonstrate that our method improves data-efficiency by an average of 40% and by 70% on particularly difficult tasks compared to state-of-the-art approaches. We validate this across 16 sparse-reward tasks spanning four domains, including challenging humanoid visual control tasks using as few as five demonstrations.
comment: Project page can be found at https://adrialopezescoriza.github.io/demo3/
☆ TacCap: A Wearable FBG-Based Tactile Sensor for Seamless Human-to-Robot Skill Transfer
Tactile sensing is essential for dexterous manipulation, yet large-scale human demonstration datasets lack tactile feedback, limiting their effectiveness in skill transfer to robots. To address this, we introduce TacCap, a wearable Fiber Bragg Grating (FBG)-based tactile sensor designed for seamless human-to-robot transfer. TacCap is lightweight, durable, and immune to electromagnetic interference, making it ideal for real-world data collection. We detail its design and fabrication, evaluate its sensitivity, repeatability, and cross-sensor consistency, and assess its effectiveness through grasp stability prediction and ablation studies. Our results demonstrate that TacCap enables transferable tactile data collection, bridging the gap between human demonstrations and robotic execution. To support further research and development, we open-source our hardware design and software.
comment: 7 pages, 8 figures
☆ vS-Graphs: Integrating Visual SLAM and Situational Graphs through Multi-level Scene Understanding
Current Visual Simultaneous Localization and Mapping (VSLAM) systems often struggle to create maps that are both semantically rich and easily interpretable. While incorporating semantic scene knowledge aids in building richer maps with contextual associations among mapped objects, representing them in structured formats like scene graphs has not been widely addressed, encountering complex map comprehension and limited scalability. This paper introduces visual S-Graphs (vS-Graphs), a novel real-time VSLAM framework that integrates vision-based scene understanding with map reconstruction and comprehensible graph-based representation. The framework infers structural elements (i.e., rooms and corridors) from detected building components (i.e., walls and ground surfaces) and incorporates them into optimizable 3D scene graphs. This solution enhances the reconstructed map's semantic richness, comprehensibility, and localization accuracy. Extensive experiments on standard benchmarks and real-world datasets demonstrate that vS-Graphs outperforms state-of-the-art VSLAM methods, reducing trajectory error by an average of 3.38% and up to 9.58% on real-world data. Furthermore, the proposed framework achieves environment-driven semantic entity detection accuracy comparable to precise LiDAR-based frameworks using only visual features. A web page containing more media and evaluation outcomes is available on https://snt-arg.github.io/vsgraphs-results/.
comment: 13 pages, 8 figures, 2 tables
☆ No Plan but Everything Under Control: Robustly Solving Sequential Tasks with Dynamically Composed Gradient Descent ICRA25
We introduce a novel gradient-based approach for solving sequential tasks by dynamically adjusting the underlying myopic potential field in response to feedback and the world's regularities. This adjustment implicitly considers subgoals encoded in these regularities, enabling the solution of long sequential tasks, as demonstrated by solving the traditional planning domain of Blocks World - without any planning. Unlike conventional planning methods, our feedback-driven approach adapts to uncertain and dynamic environments, as demonstrated by one hundred real-world trials involving drawer manipulation. These experiments highlight the robustness of our method compared to planning and show how interactive perception and error recovery naturally emerge from gradient descent without explicitly implementing them. This offers a computationally efficient alternative to planning for a variety of sequential tasks, while aligning with observations on biological problem-solving strategies.
comment: Accepted at ICRA25; 7 pages + 6 figures; Supplementary Material under https://www.tu.berlin/robotics/papers/noplan
☆ FLAME: A Federated Learning Benchmark for Robotic Manipulation
Recent progress in robotic manipulation has been fueled by large-scale datasets collected across diverse environments. Training robotic manipulation policies on these datasets is traditionally performed in a centralized manner, raising concerns regarding scalability, adaptability, and data privacy. While federated learning enables decentralized, privacy-preserving training, its application to robotic manipulation remains largely unexplored. We introduce FLAME (Federated Learning Across Manipulation Environments), the first benchmark designed for federated learning in robotic manipulation. FLAME consists of: (i) a set of large-scale datasets of over 160,000 expert demonstrations of multiple manipulation tasks, collected across a wide range of simulated environments; (ii) a training and evaluation framework for robotic policy learning in a federated setting. We evaluate standard federated learning algorithms in FLAME, showing their potential for distributed policy learning and highlighting key challenges. Our benchmark establishes a foundation for scalable, adaptive, and privacy-aware robotic learning.
comment: Under Review
☆ Code-as-Symbolic-Planner: Foundation Model-Based Robot Planning via Symbolic Code Generation
Recent works have shown great potentials of Large Language Models (LLMs) in robot task and motion planning (TAMP). Current LLM approaches generate text- or code-based reasoning chains with sub-goals and action plans. However, they do not fully leverage LLMs' symbolic computing and code generation capabilities. Many robot TAMP tasks involve complex optimization under multiple constraints, where pure textual reasoning is insufficient. While augmenting LLMs with predefined solvers and planners improves performance, it lacks generalization across tasks. Given LLMs' growing coding proficiency, we enhance their TAMP capabilities by steering them to generate code as symbolic planners for optimization and constraint verification. Unlike prior work that uses code to interface with robot action modules, we steer LLMs to generate code as solvers, planners, and checkers for TAMP tasks requiring symbolic computing, while still leveraging textual reasoning to incorporate common sense. With a multi-round guidance and answer evolution framework, the proposed Code-as-Symbolic-Planner improves success rates by average 24.1\% over best baseline methods across seven typical TAMP tasks and three popular LLMs. Code-as-Symbolic-Planner shows strong effectiveness and generalizability across discrete and continuous environments, 2D/3D simulations and real-world settings, as well as single- and multi-robot tasks with diverse requirements. See our project website https://yongchao98.github.io/Code-Symbol-Planner/ for prompts, videos, and code.
comment: 7 pages, 7 figures, 3 tables
☆ CAPS: Context-Aware Priority Sampling for Enhanced Imitation Learning in Autonomous Driving
In this paper, we introduce CAPS (Context-Aware Priority Sampling), a novel method designed to enhance data efficiency in learning-based autonomous driving systems. CAPS addresses the challenge of imbalanced training datasets in imitation learning by leveraging Vector Quantized Variational Autoencoders (VQ-VAEs). The use of VQ-VAE provides a structured and interpretable data representation, which helps reveal meaningful patterns in the data. These patterns are used to group the data into clusters, with each sample being assigned a cluster ID. The cluster IDs are then used to re-balance the dataset, ensuring that rare yet valuable samples receive higher priority during training. By ensuring a more diverse and informative training set, CAPS improves the generalization of the trained planner across a wide range of driving scenarios. We evaluate our method through closed-loop simulations in the CARLA environment. The results on Bench2Drive scenarios demonstrate that our framework outperforms state-of-the-art methods, leading to notable improvements in model performance.
☆ A Note on the Time Complexity of Using Subdivision Methods for the Approximation of Fibers
Subdivision methods such as quadtrees, octrees, and higher-dimensional orthrees are standard practice in different domains of computer science. We can use these methods to represent given geometries, such as curves, meshes, or surfaces. This representation is achieved by splitting some bounding voxel recursively while further splitting only sub-voxels that intersect with the given geometry. It is fairly known that subdivision methods are more efficient than traversing a fine-grained voxel grid. In this short note, we propose another outlook on analyzing the construction time complexity of orthrees to represent implicitly defined geometries that are fibers (preimages) of some function. This complexity is indeed asymptotically better than traversing dense voxel grids, under certain conditions, which we specify in the note. In fact, the complexity is output sensitive, and is closely related to the Hausdorff measure and Hausdorff dimension of the resulting geometry.
☆ RoboDexVLM: Visual Language Model-Enabled Task Planning and Motion Control for Dexterous Robot Manipulation
This paper introduces RoboDexVLM, an innovative framework for robot task planning and grasp detection tailored for a collaborative manipulator equipped with a dexterous hand. Previous methods focus on simplified and limited manipulation tasks, which often neglect the complexities associated with grasping a diverse array of objects in a long-horizon manner. In contrast, our proposed framework utilizes a dexterous hand capable of grasping objects of varying shapes and sizes while executing tasks based on natural language commands. The proposed approach has the following core components: First, a robust task planner with a task-level recovery mechanism that leverages vision-language models (VLMs) is designed, which enables the system to interpret and execute open-vocabulary commands for long sequence tasks. Second, a language-guided dexterous grasp perception algorithm is presented based on robot kinematics and formal methods, tailored for zero-shot dexterous manipulation with diverse objects and commands. Comprehensive experimental results validate the effectiveness, adaptability, and robustness of RoboDexVLM in handling long-horizon scenarios and performing dexterous grasping. These results highlight the framework's ability to operate in complex environments, showcasing its potential for open-vocabulary dexterous manipulation. Our open-source project page can be found at https://henryhcliu.github.io/robodexvlm.
☆ Soft Everting Prosthetic Hand and Comparison with Existing Body-Powered Terminal Devices RAS
In this paper, we explore the use of a soft gripper, specifically a soft inverting-everting toroidal hydrostat, as a prosthetic hand. We present a design of the gripper integrated into a body-powered elbow-driven system and evaluate its performance compared to similar body-powered terminal devices: the Kwawu 3D-printed hand and the Hosmer hook. Our experiments highlight advantages of the Everting hand, such as low required cable tension for operation (1.6 N for Everting, 30.0 N for Kwawu, 28.1 N for Hosmer), limited restriction on the elbow angle range, and secure grasping capability (peak pulling force required to remove an object: 15.8 N for Everting, 6.9 N for Kwawu, 4.0 N for Hosmer). In our pilot user study, six able-bodied participants performed standardized hand dexterity tests. With the Everting hand compared to the Kwawu hand, users transferred more blocks in one minute and completed three tasks (moving small common objects, simulated feeding with a spoon, and moving large empty cans) faster (p~$\leq$~0.05). With the Everting hand compared to the Hosmer hook, users moved large empty cans faster (p~$\leq$~0.05) and achieved similar performance on all other tasks. Overall, user preference leaned toward the Everting hand for its adaptable grip and ease of use, although its abilities could be improved in tasks requiring high precision such as writing with a pen, and in handling heavier objects such as large heavy cans.
comment: The paper was accepted to the 8th IEEE-RAS International Conference on Soft Robotics (RoboSoft 2025). The corresponding video attachment is available at: https://youtu.be/zO_Some_HxY
☆ MLINE-VINS: Robust Monocular Visual-Inertial SLAM With Flow Manhattan and Line Features
In this paper we introduce MLINE-VINS, a novel monocular visual-inertial odometry (VIO) system that leverages line features and Manhattan Word assumption. Specifically, for line matching process, we propose a novel geometric line optical flow algorithm that efficiently tracks line features with varying lengths, whitch is do not require detections and descriptors in every frame. To address the instability of Manhattan estimation from line features, we propose a tracking-by-detection module that consistently tracks and optimizes Manhattan framse in consecutive images. By aligning the Manhattan World with the VIO world frame, the tracking could restart using the latest pose from back-end, simplifying the coordinate transformations within the system. Furthermore, we implement a mechanism to validate Manhattan frames and a novel global structural constraints back-end optimization. Extensive experiments results on vairous datasets, including benchmark and self-collected datasets, show that the proposed approach outperforms existing methods in terms of accuracy and long-range robustness. The source code of our method is available at: https://github.com/LiHaoy-ux/MLINE-VINS.
☆ VF-Plan: Bridging the Art Gallery Problem and Static LiDAR Scanning with Visibility Field Optimization
Viewpoint planning is crucial for 3D data collection and autonomous navigation, yet existing methods often miss key optimization objectives for static LiDAR, resulting in suboptimal network designs. The Viewpoint Planning Problem (VPP), which builds upon the Art Gallery Problem (AGP), requires not only full coverage but also robust registrability and connectivity under limited sensor views. We introduce a greedy optimization algorithm that tackles these VPP and AGP challenges through a novel Visibility Field (VF) approach. The VF captures visibility characteristics unique to static LiDAR, enabling a reduction from 2D to 1D by focusing on medial axis and joints. This leads to a minimal, fully connected viewpoint network with comprehensive coverage and minimal redundancy. Experiments across diverse environments show that our method achieves high efficiency and scalability, matching or surpassing expert designs. Compared to state-of-the-art methods, our approach achieves comparable viewpoint counts (VC) while reducing Weighted Average Path Length (WAPL) by approximately 95\%, indicating a much more compact and connected network. Dataset and source code will be released upon acceptance.
☆ MapExRL: Human-Inspired Indoor Exploration with Predicted Environment Context and Reinforcement Learning
Path planning for robotic exploration is challenging, requiring reasoning over unknown spaces and anticipating future observations. Efficient exploration requires selecting budget-constrained paths that maximize information gain. Despite advances in autonomous exploration, existing algorithms still fall short of human performance, particularly in structured environments where predictive cues exist but are underutilized. Guided by insights from our user study, we introduce MapExRL, which improves robot exploration efficiency in structured indoor environments by enabling longer-horizon planning through reinforcement learning (RL) and global map predictions. Unlike many RL-based exploration methods that use motion primitives as the action space, our approach leverages frontiers for more efficient model learning and longer horizon reasoning. Our framework generates global map predictions from the observed map, which our policy utilizes, along with the prediction uncertainty, estimated sensor coverage, frontier distance, and remaining distance budget, to assess the strategic long-term value of frontiers. By leveraging multiple frontier scoring methods and additional context, our policy makes more informed decisions at each stage of the exploration. We evaluate our framework on a real-world indoor map dataset, achieving up to an 18.8% improvement over the strongest state-of-the-art baseline, with even greater gains compared to conventional frontier-based algorithms.
comment: 8 pages, 6 figures
☆ Exo-ViHa: A Cross-Platform Exoskeleton System with Visual and Haptic Feedback for Efficient Dexterous Skill Learning
Imitation learning has emerged as a powerful paradigm for robot skills learning. However, traditional data collection systems for dexterous manipulation face challenges, including a lack of balance between acquisition efficiency, consistency, and accuracy. To address these issues, we introduce Exo-ViHa, an innovative 3D-printed exoskeleton system that enables users to collect data from a first-person perspective while providing real-time haptic feedback. This system combines a 3D-printed modular structure with a slam camera, a motion capture glove, and a wrist-mounted camera. Various dexterous hands can be installed at the end, enabling it to simultaneously collect the posture of the end effector, hand movements, and visual data. By leveraging the first-person perspective and direct interaction, the exoskeleton enhances the task realism and haptic feedback, improving the consistency between demonstrations and actual robot deployments. In addition, it has cross-platform compatibility with various robotic arms and dexterous hands. Experiments show that the system can significantly improve the success rate and efficiency of data collection for dexterous manipulation tasks.
comment: 8 pages, 6 figures
☆ Origami-Inspired Soft Gripper with Tunable Constant Force Output
Soft robotic grippers gently and safely manipulate delicate objects due to their inherent adaptability and softness. Limited by insufficient stiffness and imprecise force control, conventional soft grippers are not suitable for applications that require stable grasping force. In this work, we propose a soft gripper that utilizes an origami-inspired structure to achieve tunable constant force output over a wide strain range. The geometry of each taper panel is established to provide necessary parameters such as protrusion distance, taper angle, and crease thickness required for 3D modeling and FEA analysis. Simulations and experiments show that by optimizing these parameters, our design can achieve a tunable constant force output. Moreover, the origami-inspired soft gripper dynamically adapts to different shapes while preventing excessive forces, with potential applications in logistics, manufacturing, and other industrial settings that require stable and adaptive operations
comment: 7 pages, 8 figures, conference
☆ Trajectory Planning with Signal Temporal Logic Costs using Deterministic Path Integral Optimization ICRA25
Formulating the intended behavior of a dynamic system can be challenging. Signal temporal logic (STL) is frequently used for this purpose due to its suitability in formalizing comprehensible, modular, and versatile spatiotemporal specifications. Due to scaling issues with respect to the complexity of the specifications and the potential occurrence of non-differentiable terms, classical optimization methods often solve STL-based problems inefficiently. Smoothing and approximation techniques can alleviate these issues but require changing the optimization problem. This paper proposes a novel sampling-based method based on model predictive path integral control to solve optimal control problems with STL cost functions. We demonstrate the effectiveness of our method on benchmark motion planning problems and compare its performance with state-of-the-art methods. The results show that our method efficiently solves optimal control problems with STL costs.
comment: 6+2 pages, 3 figures, P. Halder and H. Homburger contributed equally to the paper, accepted to the 2025 IEEE International Conference on Robotics & Automation (ICRA25)
☆ Interactive Navigation for Legged Manipulators with Learned Arm-Pushing Controller
Interactive navigation is crucial in scenarios where proactively interacting with objects can yield shorter paths, thus significantly improving traversal efficiency. Existing methods primarily focus on using the robot body to relocate large obstacles (which could be comparable to the size of a robot). However, they prove ineffective in narrow or constrained spaces where the robot's dimensions restrict its manipulation capabilities. This paper introduces a novel interactive navigation framework for legged manipulators, featuring an active arm-pushing mechanism that enables the robot to reposition movable obstacles in space-constrained environments. To this end, we develop a reinforcement learning-based arm-pushing controller with a two-stage reward strategy for large-object manipulation. Specifically, this strategy first directs the manipulator to a designated pushing zone to achieve a kinematically feasible contact configuration. Then, the end effector is guided to maintain its position at appropriate contact points for stable object displacement while preventing toppling. The simulations validate the robustness of the arm-pushing controller, showing that the two-stage reward strategy improves policy convergence and long-term performance. Real-world experiments further demonstrate the effectiveness of the proposed navigation framework, which achieves shorter paths and reduced traversal time. The open-source project can be found at https://github.com/Zhihaibi/Interactive-Navigation-for-legged-manipulator.git.
Aerial Gym Simulator: A Framework for Highly Parallelized Simulation of Aerial Robots
This paper contributes the Aerial Gym Simulator, a highly parallelized, modular framework for simulation and rendering of arbitrary multirotor platforms based on NVIDIA Isaac Gym. Aerial Gym supports the simulation of under-, fully- and over-actuated multirotors offering parallelized geometric controllers, alongside a custom GPU-accelerated rendering framework for ray-casting capable of capturing depth, segmentation and vertex-level annotations from the environment. Multiple examples for key tasks, such as depth-based navigation through reinforcement learning are provided. The comprehensive set of tools developed within the framework makes it a powerful resource for research on learning for control, planning, and navigation using state information as well as exteroceptive sensor observations. Extensive simulation studies are conducted and successful sim2real transfer of trained policies is demonstrated. The Aerial Gym Simulator is open-sourced at: https://github.com/ntnu-arl/aerial_gym_simulator.
comment: Accepted for publication in IEEE Robotics and Automation Letters (RA-L)
☆ AVR: Active Vision-Driven Robotic Precision Manipulation with Viewpoint and Focal Length Optimization
Robotic manipulation within dynamic environments presents challenges to precise control and adaptability. Traditional fixed-view camera systems face challenges adapting to change viewpoints and scale variations, limiting perception and manipulation precision. To tackle these issues, we propose the Active Vision-driven Robotic (AVR) framework, a teleoperation hardware solution that supports dynamic viewpoint and dynamic focal length adjustments to continuously center targets and maintain optimal scale, accompanied by a corresponding algorithm that effectively enhances the success rates of various operational tasks. Using the RoboTwin platform with a real-time image processing plugin, AVR framework improves task success rates by 5%-16% on five manipulation tasks. Physical deployment on a dual-arm system demonstrates in collaborative tasks and 36% precision in screwdriver insertion, outperforming baselines by over 25%. Experimental results confirm that AVR framework enhances environmental perception, manipulation repeatability (40% $\le $1 cm error), and robustness in complex scenarios, paving the way for future robotic precision manipulation methods in the pursuit of human-level robot dexterity and precision.
☆ CAO-RONet: A Robust 4D Radar Odometry with Exploring More Information from Low-Quality Points
Recently, 4D millimetre-wave radar exhibits more stable perception ability than LiDAR and camera under adverse conditions (e.g. rain and fog). However, low-quality radar points hinder its application, especially the odometry task that requires a dense and accurate matching. To fully explore the potential of 4D radar, we introduce a learning-based odometry framework, enabling robust ego-motion estimation from finite and uncertain geometry information. First, for sparse radar points, we propose a local completion to supplement missing structures and provide denser guideline for aligning two frames. Then, a context-aware association with a hierarchical structure flexibly matches points of different scales aided by feature similarity, and improves local matching consistency through correlation balancing. Finally, we present a window-based optimizer that uses historical priors to establish a coupling state estimation and correct errors of inter-frame matching. The superiority of our algorithm is confirmed on View-of-Delft dataset, achieving around a 50% performance improvement over previous approaches and delivering accuracy on par with LiDAR odometry. Our code will be available.
comment: 7 pages, 7 figures
☆ RUSSO: Robust Underwater SLAM with Sonar Optimization against Visual Degradation
Visual degradation in underwater environments poses unique and significant challenges, which distinguishes underwater SLAM from popular vision-based SLAM on the ground. In this paper, we propose RUSSO, a robust underwater SLAM system which fuses stereo camera, inertial measurement unit (IMU), and imaging sonar to achieve robust and accurate localization in challenging underwater environments for 6 degrees of freedom (DoF) estimation. During visual degradation, the system is reduced to a sonar-inertial system estimating 3-DoF poses. The sonar pose estimation serves as a strong prior for IMU propagation, thereby enhancing the reliability of pose estimation with IMU propagation. Additionally, we propose a SLAM initialization method that leverages the imaging sonar to counteract the lack of visual features during the initialization stage of SLAM. We extensively validate RUSSO through experiments in simulator, pool, and sea scenarios. The results demonstrate that RUSSO achieves better robustness and localization accuracy compared to the state-of-the-art visual-inertial SLAM systems, especially in visually challenging scenarios. To the best of our knowledge, this is the first time fusing stereo camera, IMU, and imaging sonar to realize robust underwater SLAM against visual degradation.
☆ CognitiveDrone: A VLA Model and Evaluation Benchmark for Real-Time Cognitive Task Solving and Reasoning in UAVs
This paper introduces CognitiveDrone, a novel Vision-Language-Action (VLA) model tailored for complex Unmanned Aerial Vehicles (UAVs) tasks that demand advanced cognitive abilities. Trained on a dataset comprising over 8,000 simulated flight trajectories across three key categories-Human Recognition, Symbol Understanding, and Reasoning-the model generates real-time 4D action commands based on first-person visual inputs and textual instructions. To further enhance performance in intricate scenarios, we propose CognitiveDrone-R1, which integrates an additional Vision-Language Model (VLM) reasoning module to simplify task directives prior to high-frequency control. Experimental evaluations using our open-source benchmark, CognitiveDroneBench, reveal that while a racing-oriented model (RaceVLA) achieves an overall success rate of 31.3%, the base CognitiveDrone model reaches 59.6%, and CognitiveDrone-R1 attains a success rate of 77.2%. These results demonstrate improvements of up to 30% in critical cognitive tasks, underscoring the effectiveness of incorporating advanced reasoning capabilities into UAV control systems. Our contributions include the development of a state-of-the-art VLA model for UAV control and the introduction of the first dedicated benchmark for assessing cognitive tasks in drone operations. The complete repository is available at cognitivedrone.github.io
comment: Paper submitted to the IEEE conference
Flexible Exoskeleton Control Based on Binding Alignment Strategy and Full-arm Coordination Mechanism
In rehabilitation, powered, and teleoperation exoskeletons, connecting the human body to the exoskeleton through binding attachments is a common configuration. However, the uncertainty of the tightness and the donning deviation of the binding attachments will affect the flexibility and comfort of the exoskeletons, especially during high-speed movement. To address this challenge, this paper presents a flexible exoskeleton control approach with binding alignment and full-arm coordination. Firstly, the sources of the force interaction caused by donning offsets are analyzed, based on which the interactive force data is classified into the major, assistant, coordination, and redundant component categories. Then, a binding alignment strategy (BAS) is proposed to reduce the donning disturbances by combining different force data. Furthermore, we propose a full-arm coordination mechanism (FCM) that focuses on two modes of arm movement intent, joint-oriented and target-oriented, to improve the flexible performance of the whole exoskeleton control during high-speed motion. In this method, we propose an algorithm to distinguish the two intentions to resolve the conflict issue of the force component. Finally, a series of experiments covering various aspects of exoskeleton performance (flexibility, adaptability, accuracy, speed, and fatigue) were conducted to demonstrate the benefits of our control framework in our full-arm exoskeleton.
☆ ecg2o: A Seamless Extension of g2o for Equality-Constrained Factor Graph Optimization
Factor graph optimization serves as a fundamental framework for robotic perception, enabling applications such as pose estimation, simultaneous localization and mapping (SLAM), structure-from-motion (SfM), and situational awareness. Traditionally, these methods solve unconstrained least squares problems using algorithms such as Gauss-Newton and Levenberg-Marquardt. However, extending factor graphs with native support for equality constraints can improve solution accuracy and broaden their applicability, particularly in optimal control. In this paper, we propose a novel extension of factor graphs that seamlessly incorporates equality constraints without requiring additional optimization algorithms. Our approach maintains the efficiency and flexibility of existing second-order optimization techniques while ensuring constraint feasibility. To validate our method, we apply it to an optimal control problem for velocity tracking in autonomous vehicles and benchmark our results against state-of-the-art constraint handling techniques. Additionally, we introduce ecg2o, a header-only C++ library that extends the widely used g2o factor graph library by adding full support for equality-constrained optimization. This library, along with demonstrative examples and the optimal control problem, is available as open source at https://github.com/snt-arg/ecg2o
☆ Few-shot Sim2Real Based on High Fidelity Rendering with Force Feedback Teleoperation
Teleoperation offers a promising approach to robotic data collection and human-robot interaction. However, existing teleoperation methods for data collection are still limited by efficiency constraints in time and space, and the pipeline for simulation-based data collection remains unclear. The problem is how to enhance task performance while minimizing reliance on real-world data. To address this challenge, we propose a teleoperation pipeline for collecting robotic manipulation data in simulation and training a few-shot sim-to-real visual-motor policy. Force feedback devices are integrated into the teleoperation system to provide precise end-effector gripping force feedback. Experiments across various manipulation tasks demonstrate that force feedback significantly improves both success rates and execution efficiency, particularly in simulation. Furthermore, experiments with different levels of visual rendering quality reveal that enhanced visual realism in simulation substantially boosts task performance while reducing the need for real-world data.
☆ Stone Soup Multi-Target Tracking Feature Extraction For Autonomous Search And Track In Deep Reinforcement Learning Environment
Management of sensing resources is a non-trivial problem for future military air assets with future systems deploying heterogeneous sensors to generate information of the battlespace. Machine learning techniques including deep reinforcement learning (DRL) have been identified as promising approaches, but require high-fidelity training environments and feature extractors to generate information for the agent. This paper presents a deep reinforcement learning training approach, utilising the Stone Soup tracking framework as a feature extractor to train an agent for a sensor management task. A general framework for embedding Stone Soup tracker components within a Gymnasium environment is presented, enabling fast and configurable tracker deployments for RL training using Stable Baselines3. The approach is demonstrated in a sensor management task where an agent is trained to search and track a region of airspace utilising track lists generated from Stone Soup trackers. A sample implementation using three neural network architectures in a search-and-track scenario demonstrates the approach and shows that RL agents can outperform simple sensor search and track policies when trained within the Gymnasium and Stone Soup environment.
comment: Submitted to IEEE FUSION 2025
☆ Design and Development of a Locomotion Interface for Virtual Reality Lower-Body Haptic Interaction
This work presents the design, build, control, and preliminary user data of a locomotion interface called ForceBot. It delivers lower-body haptic interaction in virtual reality (VR), enabling users to walk in VR while interacting with various simulated terrains. It utilizes two planar gantries to give each foot two degrees of freedom and passive heel-lifting motion. The design used motion capture data with dynamic simulation for ergonomic human-robot workspace and hardware selection. Its system framework uses open-source robotic software and pairs with a custom-built power delivery system that offers EtherCAT communication with a 1,000 Hz soft real-time computation rate. This system features an admittance controller to regulate physical human-robot interaction (pHRI) alongside a walking algorithm to generate walking motion and simulate virtual terrains. The system's performance is explored through three measurements that evaluate the relationship between user input force and output pHRI motion. Overall, this platform presents a unique approach by utilizing planar gantries to realize VR terrain interaction with an extensive workspace, reasonably compact footprint, and preliminary user data.
☆ Impact of Static Friction on Sim2Real in Robotic Reinforcement Learning
In robotic reinforcement learning, the Sim2Real gap remains a critical challenge. However, the impact of Static friction on Sim2Real has been underexplored. Conventional domain randomization methods typically exclude Static friction from their parameter space. In our robotic reinforcement learning task, such conventional domain randomization approaches resulted in significantly underperforming real-world models. To address this Sim2Real challenge, we employed Actuator Net as an alternative to conventional domain randomization. While this method enabled successful transfer to flat-ground locomotion, it failed on complex terrains like stairs. To further investigate physical parameters affecting Sim2Real in robotic joints, we developed a control-theoretic joint model and performed systematic parameter identification. Our analysis revealed unexpectedly high friction-torque ratios in our robotic joints. To mitigate its impact, we implemented Static friction-aware domain randomization for Sim2Real. Recognizing the increased training difficulty introduced by friction modeling, we proposed a simple and novel solution to reduce learning complexity. To validate this approach, we conducted comprehensive Sim2Sim and Sim2Real experiments comparing three methods: conventional domain randomization (without Static friction), Actuator Net, and our Static friction-aware domain randomization. All experiments utilized the Rapid Motor Adaptation (RMA) algorithm. Results demonstrated that our method achieved superior adaptive capabilities and overall performance.
☆ Convex Hull-based Algebraic Constraint for Visual Quadric SLAM
Using Quadrics as the object representation has the benefits of both generality and closed-form projection derivation between image and world spaces. Although numerous constraints have been proposed for dual quadric reconstruction, we found that many of them are imprecise and provide minimal improvements to localization.After scrutinizing the existing constraints, we introduce a concise yet more precise convex hull-based algebraic constraint for object landmarks, which is applied to object reconstruction, frontend pose estimation, and backend bundle adjustment.This constraint is designed to fully leverage precise semantic segmentation, effectively mitigating mismatches between complex-shaped object contours and dual quadrics.Experiments on public datasets demonstrate that our approach is applicable to both monocular and RGB-D SLAM and achieves improved object mapping and localization than existing quadric SLAM methods. The implementation of our method is available at https://github.com/tiev-tongji/convexhull-based-algebraic-constraint.
Diffusion Stabilizer Policy for Automated Surgical Robot Manipulations
Intelligent surgical robots have the potential to revolutionize clinical practice by enabling more precise and automated surgical procedures. However, the automation of such robot for surgical tasks remains under-explored compared to recent advancements in solving household manipulation tasks. These successes have been largely driven by (1) advanced models, such as transformers and diffusion models, and (2) large-scale data utilization. Aiming to extend these successes to the domain of surgical robotics, we propose a diffusion-based policy learning framework, called Diffusion Stabilizer Policy (DSP), which enables training with imperfect or even failed trajectories. Our approach consists of two stages: first, we train the diffusion stabilizer policy using only clean data. Then, the policy is continuously updated using a mixture of clean and perturbed data, with filtering based on the prediction error on actions. Comprehensive experiments conducted in various surgical environments demonstrate the superior performance of our method in perturbation-free settings and its robustness when handling perturbed demonstrations.
comment: Under-review
☆ Catching Spinning Table Tennis Balls in Simulation with End-to-End Curriculum Reinforcement Learning
The game of table tennis is renowned for its extremely high spin rate, but most table tennis robots today struggle to handle balls with such rapid spin. To address this issue, we have contributed a series of methods, including: 1. Curriculum Reinforcement Learning (RL): This method helps the table tennis robot learn to play table tennis progressively from easy to difficult tasks. 2. Analysis of Spinning Table Tennis Ball Collisions: We have conducted a physics-based analysis to generate more realistic trajectories of spinning table tennis balls after collision. 3. Definition of Trajectory States: The definition of trajectory states aids in setting up the reward function. 4. Selection of Valid Rally Trajectories: We have introduced a valid rally trajectory selection scheme to ensure that the robot's training is not influenced by abnormal trajectories. 5. Reality-to-Simulation (Real2Sim) Transfer: This scheme is employed to validate the trained robot's ability to handle spinning balls in real-world scenarios. With Real2Sim, the deployment costs for robotic reinforcement learning can be further reduced. Moreover, the trajectory-state-based reward function is not limited to table tennis robots; it can be generalized to a wide range of cyclical tasks. To validate our robot's ability to handle spinning balls, the Real2Sim experiments were conducted. For the specific video link of the experiment, please refer to the supplementary materials.
☆ A Taxonomy for Evaluating Generalist Robot Policies
Machine learning for robotics promises to unlock generalization to novel tasks and environments. Guided by this promise, many recent works have focused on scaling up robot data collection and developing larger, more expressive policies to achieve this. But how do we measure progress towards this goal of policy generalization in practice? Evaluating and quantifying generalization is the Wild West of modern robotics, with each work proposing and measuring different types of generalization in their own, often difficult to reproduce, settings. In this work, our goal is (1) to outline the forms of generalization we believe are important in robot manipulation in a comprehensive and fine-grained manner, and (2) to provide reproducible guidelines for measuring these notions of generalization. We first propose STAR-Gen, a taxonomy of generalization for robot manipulation structured around visual, semantic, and behavioral generalization. We discuss how our taxonomy encompasses most prior notions of generalization in robotics. Next, we instantiate STAR-Gen with a concrete real-world benchmark based on the widely-used Bridge V2 dataset. We evaluate a variety of state-of-the-art models on this benchmark to demonstrate the utility of our taxonomy in practice. Our taxonomy of generalization can yield many interesting insights into existing models: for example, we observe that current vision-language-action models struggle with various types of semantic generalization, despite the promise of pre-training on internet-scale language datasets. We believe STAR-Gen and our guidelines can improve the dissemination and evaluation of progress towards generalization in robotics, which we hope will guide model design and future data collection efforts. We provide videos and demos at our website stargen-taxonomy.github.io.
comment: 25 pages
☆ LLM-Advisor: An LLM Benchmark for Cost-efficient Path Planning across Multiple Terrains
Multi-terrain cost-efficient path planning is a crucial task in robot navigation, requiring the identification of a path from the start to the goal that not only avoids obstacles but also minimizes travel costs. This is especially crucial for real-world applications where robots need to navigate diverse terrains in outdoor environments, where recharging or refueling is difficult. However, there is very limited research on this topic. In this paper, we develop a prompt-based approach, LLM-Advisor, which leverages large language models (LLMs) as effective advisors for path planning. The LLM-Advisor selectively provides suggestions, demonstrating its ability to recognize when no modifications are necessary. When suggestions are made, 70.59% of the paths suggested for the A* algorithm, 69.47% for the RRT* algorithm, and 78.70% for the LLM-A* algorithm achieve greater cost efficiency. Since LLM-Advisor may occasionally lack common sense in their suggestions, we propose two hallucination-mitigation strategies. Furthermore, we experimentally verified that GPT-4o performs poorly in zero-shot path planning, even when terrain descriptions are clearly provided, demonstrating its low spatial awareness. We also experimentally demonstrate that using an LLM as an advisor is more effective than directly integrating it into the path-planning loop. Since LLMs may generate hallucinations, using LLMs in the loop of a search-based method (such as A*) may lead to a higher number of failed paths, demonstrating that our proposed LLM-Advisor is a better choice.
☆ A Single Scale Doesn't Fit All: Adaptive Motion Scaling for Efficient and Precise Teleoperation
Teleoperation is increasingly employed in environments where direct human access is difficult, such as hazardous exploration or surgical field. However, if the motion scale factor(MSF) intended to compensate for workspace-size differences is set inappropriately, repeated clutching operations and reduced precision can significantly raise cognitive load. This paper presents a shared controller that dynamically applies the MSF based on the user's intended motion scale. Inspired by human motor skills, the leader arm trajectory is divided into coarse(fast, large-range movements) and fine(precise, small-range movements), with three features extracted to train a fuzzy C-means(FCM) clustering model that probabilistically classifies the user's motion scale. Scaling the robot's motion accordingly reduces unnecessary repetition for large-scale movements and enables more precise control for fine operations. Incorporating recent trajectory data into model updates and offering user feedback for adjusting the MSF range and response speed allows mutual adaptation between user and system. In peg transfer experiments, compared to using a fixed single scale, the proposed approach demonstrated improved task efficiency(number of clutching and task completion time decreased 38.46% and 11.96% respectively), while NASA-TLX scores confirmed a meaningful reduction(58.01% decreased) in cognitive load. This outcome suggests that a user-intent-based motion scale adjustment can effectively enhance both efficiency and precision in teleoperation.
☆ Differentiable Information Enhanced Model-Based Reinforcement Learning AAAI 2025
Differentiable environments have heralded new possibilities for learning control policies by offering rich differentiable information that facilitates gradient-based methods. In comparison to prevailing model-free reinforcement learning approaches, model-based reinforcement learning (MBRL) methods exhibit the potential to effectively harness the power of differentiable information for recovering the underlying physical dynamics. However, this presents two primary challenges: effectively utilizing differentiable information to 1) construct models with more accurate dynamic prediction and 2) enhance the stability of policy training. In this paper, we propose a Differentiable Information Enhanced MBRL method, MB-MIX, to address both challenges. Firstly, we adopt a Sobolev model training approach that penalizes incorrect model gradient outputs, enhancing prediction accuracy and yielding more precise models that faithfully capture system dynamics. Secondly, we introduce mixing lengths of truncated learning windows to reduce the variance in policy gradient estimation, resulting in improved stability during policy learning. To validate the effectiveness of our approach in differentiable environments, we provide theoretical analysis and empirical results. Notably, our approach outperforms previous model-based and model-free methods, in multiple challenging tasks involving controllable rigid robots such as humanoid robots' motion control and deformable object manipulation.
comment: Accepted by AAAI 2025
☆ Enhancing Deep Reinforcement Learning-based Robot Navigation Generalization through Scenario Augmentation
This work focuses on enhancing the generalization performance of deep reinforcement learning-based robot navigation in unseen environments. We present a novel data augmentation approach called scenario augmentation, which enables robots to navigate effectively across diverse settings without altering the training scenario. The method operates by mapping the robot's observation into an imagined space, generating an imagined action based on this transformed observation, and then remapping this action back to the real action executed in simulation. Through scenario augmentation, we conduct extensive comparative experiments to investigate the underlying causes of suboptimal navigation behaviors in unseen environments. Our analysis indicates that limited training scenarios represent the primary factor behind these undesired behaviors. Experimental results confirm that scenario augmentation substantially enhances the generalization capabilities of deep reinforcement learning-based navigation systems. The improved navigation framework demonstrates exceptional performance by producing near-optimal trajectories with significantly reduced navigation time in real-world applications.
comment: 8 pages, 9 figures
☆ Beyond Visibility Limits: A DRL-Based Navigation Strategy for Unexpected Obstacles
Distance-based reward mechanisms in deep reinforcement learning (DRL) navigation systems suffer from critical safety limitations in dynamic environments, frequently resulting in collisions when visibility is restricted. We propose DRL-NSUO, a novel navigation strategy for unexpected obstacles that leverages the rate of change in LiDAR data as a dynamic environmental perception element. Our approach incorporates a composite reward function with environmental change rate constraints and dynamically adjusted weights through curriculum learning, enabling robots to autonomously balance between path efficiency and safety maximization. We enhance sensitivity to nearby obstacles by implementing short-range feature preprocessing of LiDAR data. Experimental results demonstrate that this method significantly improves both robot and pedestrian safety in complex scenarios compared to traditional DRL-based methods. When evaluated on the BARN navigation dataset, our method achieved superior performance with success rates of 94.0% at 0.5 m/s and 91.0% at 1.0 m/s, outperforming conservative obstacle expansion strategies. These results validate DRL-NSUO's enhanced practicality and safety for human-robot collaborative environments, including intelligent logistics applications.
☆ TACO: General Acrobatic Flight Control via Target-and-Command-Oriented Reinforcement Learning
Although acrobatic flight control has been studied extensively, one key limitation of the existing methods is that they are usually restricted to specific maneuver tasks and cannot change flight pattern parameters online. In this work, we propose a target-and-command-oriented reinforcement learning (TACO) framework, which can handle different maneuver tasks in a unified way and allows online parameter changes. Additionally, we propose a spectral normalization method with input-output rescaling to enhance the policy's temporal and spatial smoothness, independence, and symmetry, thereby overcoming the sim-to-real gap. We validate the TACO approach through extensive simulation and real-world experiments, demonstrating its capability to achieve high-speed circular flights and continuous multi-flips.
☆ FGS-SLAM: Fourier-based Gaussian Splatting for Real-time SLAM with Sparse and Dense Map Fusion
3D gaussian splatting has advanced simultaneous localization and mapping (SLAM) technology by enabling real-time positioning and the construction of high-fidelity maps. However, the uncertainty in gaussian position and initialization parameters introduces challenges, often requiring extensive iterative convergence and resulting in redundant or insufficient gaussian representations. To address this, we introduce a novel adaptive densification method based on Fourier frequency domain analysis to establish gaussian priors for rapid convergence. Additionally, we propose constructing independent and unified sparse and dense maps, where a sparse map supports efficient tracking via Generalized Iterative Closest Point (GICP) and a dense map creates high-fidelity visual representations. This is the first SLAM system leveraging frequency domain analysis to achieve high-quality gaussian mapping in real-time. Experimental results demonstrate an average frame rate of 36 FPS on Replica and TUM RGB-D datasets, achieving competitive accuracy in both localization and mapping.
☆ Ground contact and reaction force sensing for linear policy control of quadruped robot
Designing robots capable of traversing uneven terrain and overcoming physical obstacles has been a longstanding challenge in the field of robotics. Walking robots show promise in this regard due to their agility, redundant DOFs and intermittent ground contact of locomoting appendages. However, the complexity of walking robots and their numerous DOFs make controlling them extremely difficult and computation heavy. Linear policies trained with reinforcement learning have been shown to perform adequately to enable quadrupedal walking, while being computationally light weight. The goal of this research is to study the effect of augmentation of observation space of a linear policy with newer state variables on performance of the policy. Since ground contact and reaction forces are the primary means of robot-environment interaction, they are essential state variables on which the linear policy must be informed. Experimental results show that augmenting the observation space with ground contact and reaction force data trains policies with better survivability, better stability against external disturbances and higher adaptability to untrained conditions.
comment: 5 pages, 11 figures
☆ One-Shot Affordance Grounding of Deformable Objects in Egocentric Organizing Scenes
Deformable object manipulation in robotics presents significant challenges due to uncertainties in component properties, diverse configurations, visual interference, and ambiguous prompts. These factors complicate both perception and control tasks. To address these challenges, we propose a novel method for One-Shot Affordance Grounding of Deformable Objects (OS-AGDO) in egocentric organizing scenes, enabling robots to recognize previously unseen deformable objects with varying colors and shapes using minimal samples. Specifically, we first introduce the Deformable Object Semantic Enhancement Module (DefoSEM), which enhances hierarchical understanding of the internal structure and improves the ability to accurately identify local features, even under conditions of weak component information. Next, we propose the ORB-Enhanced Keypoint Fusion Module (OEKFM), which optimizes feature extraction of key components by leveraging geometric constraints and improves adaptability to diversity and visual interference. Additionally, we propose an instance-conditional prompt based on image data and task context, effectively mitigates the issue of region ambiguity caused by prompt words. To validate these methods, we construct a diverse real-world dataset, AGDDO15, which includes 15 common types of deformable objects and their associated organizational actions. Experimental results demonstrate that our approach significantly outperforms state-of-the-art methods, achieving improvements of 6.2%, 3.2%, and 2.9% in KLD, SIM, and NSS metrics, respectively, while exhibiting high generalization performance. Source code and benchmark dataset will be publicly available at https://github.com/Dikay1/OS-AGDO.
comment: Source code and benchmark dataset will be publicly available at https://github.com/Dikay1/OS-AGDO
☆ KineSoft: Learning Proprioceptive Manipulation Policies with Soft Robot Hands
Underactuated soft robot hands offer inherent safety and adaptability advantages over rigid systems, but developing dexterous manipulation skills remains challenging. While imitation learning shows promise for complex manipulation tasks, traditional approaches struggle with soft systems due to demonstration collection challenges and ineffective state representations. We present KineSoft, a framework enabling direct kinesthetic teaching of soft robotic hands by leveraging their natural compliance as a skill teaching advantage rather than only as a control challenge. KineSoft makes two key contributions: (1) an internal strain sensing array providing occlusion-free proprioceptive shape estimation, and (2) a shape-based imitation learning framework that uses proprioceptive feedback with a low-level shape-conditioned controller to ground diffusion-based policies. This enables human demonstrators to physically guide the robot while the system learns to associate proprioceptive patterns with successful manipulation strategies. We validate KineSoft through physical experiments, demonstrating superior shape estimation accuracy compared to baseline methods, precise shape-trajectory tracking, and higher task success rates compared to baseline imitation learning approaches.
☆ OceanSim: A GPU-Accelerated Underwater Robot Perception Simulation Framework
Underwater simulators offer support for building robust underwater perception solutions. Significant work has recently been done to develop new simulators and to advance the performance of existing underwater simulators. Still, there remains room for improvement on physics-based underwater sensor modeling and rendering efficiency. In this paper, we propose OceanSim, a high-fidelity GPU-accelerated underwater simulator to address this research gap. We propose advanced physics-based rendering techniques to reduce the sim-to-real gap for underwater image simulation. We develop OceanSim to fully leverage the computing advantages of GPUs and achieve real-time imaging sonar rendering and fast synthetic data generation. We evaluate the capabilities and realism of OceanSim using real-world data to provide qualitative and quantitative results. The project page for OceanSim is https://umfieldrobotics.github.io/OceanSim.
comment: 8 pages, 6 figures
☆ Language-Guided Object Search in Agricultural Environments ICRA 2025
Creating robots that can assist in farms and gardens can help reduce the mental and physical workload experienced by farm workers. We tackle the problem of object search in a farm environment, providing a method that allows a robot to semantically reason about the location of an unseen target object among a set of previously seen objects in the environment using a Large Language Model (LLM). We leverage object-to-object semantic relationships to plan a path through the environment that will allow us to accurately and efficiently locate our target object while also reducing the overall distance traveled, without needing high-level room or area-level semantic relationships. During our evaluations, we found that our method outperformed a current state-of-the-art baseline and our ablations. Our offline testing yielded an average path efficiency of 84%, reflecting how closely the predicted path aligns with the ideal path. Upon deploying our system on the Boston Dynamics Spot robot in a real-world farm environment, we found that our system had a success rate of 80%, with a success weighted by path length of 0.67, which demonstrates a reasonable trade-off between task success and path efficiency under real-world conditions. The project website can be viewed at https://adi-balaji.github.io/losae/
comment: 8 pages, 4 figures, 2 tables, accepted to the 2025 International Conference on Robotics and Automation (ICRA 2025)
FlowNav: Combining Flow Matching and Depth Priors for Efficient Navigation IROS'25
Effective robot navigation in unseen environments is a challenging task that requires precise control actions at high frequencies. Recent advances have framed it as an image-goal-conditioned control problem, where the robot generates navigation actions using frontal RGB images. Current state-of-the-art methods in this area use diffusion policies to generate these control actions. Despite their promising results, these models are computationally expensive and suffer from weak perception. To address these limitations, we present FlowNav, a novel approach that uses a combination of Conditional Flow Matching (CFM) and depth priors from off-the-shelf foundation models to learn action policies for robot navigation. FlowNav is significantly more accurate at navigation and exploration than state-of-the-art methods. We validate our contributions using real robot experiments in multiple unseen environments, demonstrating improved navigation reliability and accuracy. We make the code and trained models publicly available.
comment: Submitted to IROS'25. Previous version accepted at CoRL 2024 workshop on Learning Effective Abstractions for Planning (LEAP) and workshop on Differentiable Optimization Everywhere: Simulation, Estimation, Learning, and Control
♻ ☆ MMDVS-LF: Multi-Modal Dynamic Vision Sensor and Eye-Tracking Dataset for Line Following
Dynamic Vision Sensors (DVS) offer a unique advantage in control applications due to their high temporal resolution and asynchronous event-based data. Still, their adoption in machine learning algorithms remains limited. To address this gap and promote the development of models that leverage the specific characteristics of DVS data, we introduce the MMDVS-LF: Multi-Modal Dynamic Vision Sensor and Eye-Tracking Dataset for Line Following. This comprehensive dataset is the first to integrate multiple sensor modalities, including DVS recordings and eye-tracking data from a small-scale standardized vehicle. Additionally, the dataset includes RGB video, odometry, Inertial Measurement Unit (IMU) data, and demographic data of drivers performing a Line Following. With its diverse range of data, MMDVS-LF opens new opportunities for developing event-based deep learning algorithms just like the MNIST dataset did for Convolutional Neural Networks.
♻ ☆ Towards Physically Realizable Adversarial Attacks in Embodied Vision Navigation IROS
The significant advancements in embodied vision navigation have raised concerns about its susceptibility to adversarial attacks exploiting deep neural networks. Investigating the adversarial robustness of embodied vision navigation is crucial, especially given the threat of 3D physical attacks that could pose risks to human safety. However, existing attack methods for embodied vision navigation often lack physical feasibility due to challenges in transferring digital perturbations into the physical world. Moreover, current physical attacks for object detection struggle to achieve both multi-view effectiveness and visual naturalness in navigation scenarios. To address this, we propose a practical attack method for embodied navigation by attaching adversarial patches to objects, where both opacity and textures are learnable. Specifically, to ensure effectiveness across varying viewpoints, we employ a multi-view optimization strategy based on object-aware sampling, which optimizes the patch's texture based on feedback from the vision-based perception model used in navigation. To make the patch inconspicuous to human observers, we introduce a two-stage opacity optimization mechanism, in which opacity is fine-tuned after texture optimization. Experimental results demonstrate that our adversarial patches decrease the navigation success rate by an average of 22.39%, outperforming previous methods in practicality, effectiveness, and naturalness. Code is available at: https://github.com/chen37058/Physical-Attacks-in-Embodied-Nav
comment: 7 pages, 7 figures, submitted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
♻ ☆ Using High-Level Patterns to Estimate How Humans Predict a Robot will Behave
Humans interacting with robots often form predictions of what the robot will do next. For instance, based on the recent behavior of an autonomous car, a nearby human driver might predict that the car is going to remain in the same lane. It is important for the robot to understand the human's prediction for safe and seamless interaction: e.g., if the autonomous car knows the human thinks it is not merging -- but the autonomous car actually intends to merge -- then the car can adjust its behavior to prevent an accident. Prior works typically assume that humans make precise predictions of robot behavior. However, recent research on human-human prediction suggests the opposite: humans tend to approximate other agents by predicting their high-level behaviors. We apply this finding to develop a second-order theory of mind approach that enables robots to estimate how humans predict they will behave. To extract these high-level predictions directly from data, we embed the recent human and robot trajectories into a discrete latent space. Each element of this latent space captures a different type of behavior (e.g., merging in front of the human, remaining in the same lane) and decodes into a vector field across the state space that is consistent with the underlying behavior type. We hypothesize that our resulting high-level and course predictions of robot behavior will correspond to actual human predictions. We provide initial evidence in support of this hypothesis through proof-of-concept simulations, testing our method's predictions against those of real users, and experiments on a real-world interactive driving dataset.
♻ ☆ Preference Aligned Diffusion Planner for Quadrupedal Locomotion Control
Diffusion models demonstrate superior performance in capturing complex distributions from large-scale datasets, providing a promising solution for quadrupedal locomotion control. However, the robustness of the diffusion planner is inherently dependent on the diversity of the pre-collected datasets. To mitigate this issue, we propose a two-stage learning framework to enhance the capability of the diffusion planner under limited dataset (reward-agnostic). Through the offline stage, the diffusion planner learns the joint distribution of state-action sequences from expert datasets without using reward labels. Subsequently, we perform the online interaction in the simulation environment based on the trained offline planner, which significantly diversified the original behavior and thus improves the robustness. Specifically, we propose a novel weak preference labeling method without the ground-truth reward or human preferences. The proposed method exhibits superior stability and velocity tracking accuracy in pacing, trotting, and bounding gait under different speeds and can perform a zero-shot transfer to the real Unitree Go1 robots. The project website for this paper is at https://shangjaven.github.io/preference-aligned-diffusion-legged.
♻ ☆ Stereo Hand-Object Reconstruction for Human-to-Robot Handover
Jointly estimating hand and object shape facilitates the grasping task in human-to-robot handovers. However, relying on hand-crafted prior knowledge about the geometric structure of the object fails when generalising to unseen objects, and depth sensors fail to detect transparent objects such as drinking glasses. In this work, we propose a stereo-based method for hand-object reconstruction that combines single-view reconstructions probabilistically to form a coherent stereo reconstruction. We learn 3D shape priors from a large synthetic hand-object dataset to ensure that our method is generalisable, and use RGB inputs to better capture transparent objects. We show that our method reduces the object Chamfer distance compared to existing RGB based hand-object reconstruction methods on single view and stereo settings. We process the reconstructed hand-object shape with a projection-based outlier removal step and use the output to guide a human-to-robot handover pipeline with wide-baseline stereo RGB cameras. Our hand-object reconstruction enables a robot to successfully receive a diverse range of household objects from the human.
comment: 8 pages, 9 figures, 1 table
♻ ☆ MATCH POLICY: A Simple Pipeline from Point Cloud Registration to Manipulation Policies
Many manipulation tasks require the robot to rearrange objects relative to one another. Such tasks can be described as a sequence of relative poses between parts of a set of rigid bodies. In this work, we propose MATCH POLICY, a simple but novel pipeline for solving high-precision pick and place tasks. Instead of predicting actions directly, our method registers the pick and place targets to the stored demonstrations. This transfers action inference into a point cloud registration task and enables us to realize nontrivial manipulation policies without any training. MATCH POLICY is designed to solve high-precision tasks with a key-frame setting. By leveraging the geometric interaction and the symmetries of the task, it achieves extremely high sample efficiency and generalizability to unseen configurations. We demonstrate its state-of-the-art performance across various tasks on RLBench benchmark compared with several strong baselines and test it on a real robot with six tasks.
comment: project url: https://haojhuang.github.io/match_page/
♻ ☆ ForceMimic: Force-Centric Imitation Learning with Force-Motion Capture System for Contact-Rich Manipulation ICRA 2025
In most contact-rich manipulation tasks, humans apply time-varying forces to the target object, compensating for inaccuracies in the vision-guided hand trajectory. However, current robot learning algorithms primarily focus on trajectory-based policy, with limited attention given to learning force-related skills. To address this limitation, we introduce ForceMimic, a force-centric robot learning system, providing a natural, force-aware and robot-free robotic demonstration collection system, along with a hybrid force-motion imitation learning algorithm for robust contact-rich manipulation. Using the proposed ForceCapture system, an operator can peel a zucchini in 5 minutes, while force-feedback teleoperation takes over 13 minutes and struggles with task completion. With the collected data, we propose HybridIL to train a force-centric imitation learning model, equipped with hybrid force-position control primitive to fit the predicted wrench-position parameters during robot execution. Experiments demonstrate that our approach enables the model to learn a more robust policy under the contact-rich task of vegetable peeling, increasing the success rates by 54.5% relatively compared to state-ofthe-art pure-vision-based imitation learning. Hardware, code, data and more results can be found on the project website at https://forcemimic.github.io.
comment: 8 pages, 7 figures, accepted by 2025 IEEE International Conference on Robotics and Automation (ICRA 2025), the first three authors contribute equally, project website at https://forcemimic.github.io
♻ ☆ Interpretable Data-Driven Ship Dynamics Model: Enhancing Physics-Based Motion Prediction with Parameter Optimization
The deployment of autonomous navigation systems on ships necessitates accurate motion prediction models tailored to individual vessels. Traditional physics-based models, while grounded in hydrodynamic principles, often fail to account for ship-specific behaviors under real-world conditions. Conversely, purely data-driven models offer specificity but lack interpretability and robustness in edge cases. This study proposes a data-driven physics-based model that integrates physics-based equations with data-driven parameter optimization, leveraging the strengths of both approaches to ensure interpretability and adaptability. The model incorporates physics-based components such as 3-DoF dynamics, rudder, and propeller forces, while parameters such as resistance curve and rudder coefficients are optimized using synthetic data. By embedding domain knowledge into the parameter optimization process, the fitted model maintains physical consistency. Validation of the approach is realized with two container ships by comparing, both qualitatively and quantitatively, predictions against ground-truth trajectories. The results demonstrate significant improvements, in predictive accuracy and reliability, of the data-driven physics-based models over baseline physics-based models tuned with traditional marine engineering practices. The fitted models capture ship-specific behaviors in diverse conditions with their predictions being, 51.6% (ship A) and 57.8% (ship B) more accurate, 72.36% (ship A) and 89.67% (ship B) more consistent.
♻ ☆ Ephemerality meets LiDAR-based Lifelong Mapping ICRA 2025
Lifelong mapping is crucial for the long-term deployment of robots in dynamic environments. In this paper, we present ELite, an ephemerality-aided LiDAR-based lifelong mapping framework which can seamlessly align multiple session data, remove dynamic objects, and update maps in an end-to-end fashion. Map elements are typically classified as static or dynamic, but cases like parked cars indicate the need for more detailed categories than binary. Central to our approach is the probabilistic modeling of the world into two-stage $\textit{ephemerality}$, which represent the transiency of points in the map within two different time scales. By leveraging the spatiotemporal context encoded in ephemeralities, ELite can accurately infer transient map elements, maintain a reliable up-to-date static map, and improve robustness in aligning the new data in a more fine-grained manner. Extensive real-world experiments on long-term datasets demonstrate the robustness and effectiveness of our system. The source code is publicly available for the robotics community: https://github.com/dongjae0107/ELite.
comment: 6+2 pages, 11 figures, accepted at ICRA 2025
♻ ☆ Enhanced Optimization Strategies to Design an Underactuated Hand Exoskeleton
Exoskeletons can boost human strength and provide assistance to individuals with physical disabilities. However, ensuring safety and optimal performance in their design poses substantial challenges. This study presents the design process for an underactuated hand exoskeleton (U-HEx), first including a single objective (maximizing force transmission), then expanding into multi objective (also minimizing torque variance and actuator displacement). The optimization relies on a Genetic Algorithm, the Big Bang-Big Crunch Algorithm, and their versions for multi-objective optimization. Analyses revealed that using Big Bang-Big Crunch provides high and more consistent results in terms of optimality with lower convergence time. In addition, adding more objectives offers a variety of trade-off solutions to the designers, who might later set priorities for the objectives without repeating the process - at the cost of complicating the optimization algorithm and computational burden. These findings underline the importance of performing proper optimization while designing exoskeletons, as well as providing a significant improvement to this specific robotic design.
comment: 14 pages, 8 figures, 9 talbes
♻ ☆ HOPE: A Reinforcement Learning-based Hybrid Policy Path Planner for Diverse Parking Scenarios
Automated parking stands as a highly anticipated application of autonomous driving technology. However, existing path planning methodologies fall short of addressing this need due to their incapability to handle the diverse and complex parking scenarios in reality. While non-learning methods provide reliable planning results, they are vulnerable to intricate occasions, whereas learning-based ones are good at exploration but unstable in converging to feasible solutions. To leverage the strengths of both approaches, we introduce Hybrid pOlicy Path plannEr (HOPE). This novel solution integrates a reinforcement learning agent with Reeds-Shepp curves, enabling effective planning across diverse scenarios. HOPE guides the exploration of the reinforcement learning agent by applying an action mask mechanism and employs a transformer to integrate the perceived environmental information with the mask. To facilitate the training and evaluation of the proposed planner, we propose a criterion for categorizing the difficulty level of parking scenarios based on space and obstacle distribution. Experimental results demonstrate that our approach outperforms typical rule-based algorithms and traditional reinforcement learning methods, showing higher planning success rates and generalization across various scenarios. We also conduct real-world experiments to verify the practicability of HOPE. The code for our solution is openly available on https://github.com/jiamiya/HOPE.
comment: Accepted by T-ITS. 11 pages, 5 tables, 6 figures, 2 page appendix
♻ ☆ ALPINE: a climbing robot for operations in mountain environments
Mountain slopes are perfect examples of harsh environments in which humans are required to perform difficult and dangerous operations such as removing unstable boulders, dangerous vegetation or deploying safety nets. A good replacement for human intervention can be offered by climbing robots. The different solutions existing in the literature are not up to the task for the difficulty of the requirements (navigation, heavy payloads, flexibility in the execution of the tasks). In this paper, we propose a robotic platform that can fill this gap. Our solution is based on a robot that hangs on ropes, and uses a retractable leg to jump away from the mountain walls. Our package of mechanical solutions, along with the algorithms developed for motion planning and control, delivers swift navigation on irregular and steep slopes, the possibility to overcome or travel around significant natural barriers, and the ability to carry heavy payloads and execute complex tasks. In the paper, we give a full account of our main design and algorithmic choices and show the feasibility of the solution through a large number of physically simulated scenarios.
♻ ☆ Walking with Terrain Reconstruction: Learning to Traverse Risky Sparse Footholds
Traversing risky terrains with sparse footholds presents significant challenges for legged robots, requiring precise foot placement in safe areas. To acquire comprehensive exteroceptive information, prior studies have employed motion capture systems or mapping techniques to generate heightmap for locomotion policy. However, these approaches require specialized pipelines and often introduce additional noise. While depth images from egocentric vision systems are cost-effective, their limited field of view and sparse information hinder the integration of terrain structure details into implicit features, which are essential for generating precise actions. In this paper, we demonstrate that end-to-end reinforcement learning relying solely on proprioception and depth images is capable of traversing risky terrains with high sparsity and randomness. Our method introduces local terrain reconstruction, leveraging the benefits of clear features and sufficient information from the heightmap, which serves as an intermediary for visual feature extraction and motion generation. This allows the policy to effectively represent and memorize critical terrain information. We deploy the proposed framework on a low-cost quadrupedal robot, achieving agile and adaptive locomotion across various challenging terrains and showcasing outstanding performance in real-world scenarios. Video at: youtu.be/Rj9v5EZsn-M.
♻ ☆ A Data-Driven Aggressive Autonomous Racing Framework Utilizing Local Trajectory Planning with Velocity Prediction
The development of autonomous driving has boosted the research on autonomous racing. However, existing local trajectory planning methods have difficulty planning trajectories with optimal velocity profiles at racetracks with sharp corners, thus weakening the performance of autonomous racing. To address this problem, we propose a local trajectory planning method that integrates Velocity Prediction based on Model Predictive Contouring Control (VPMPCC). The optimal parameters of VPMPCC are learned through Bayesian Optimization (BO) based on a proposed novel Objective Function adapted to Racing (OFR). Specifically, VPMPCC achieves velocity prediction by encoding the racetrack as a reference velocity profile and incorporating it into the optimization problem. This method optimizes the velocity profile of local trajectories, especially at corners with significant curvature. The proposed OFR balances racing performance with vehicle safety, ensuring safe and efficient BO training. In the simulation, the number of training iterations for OFR-based BO is reduced by 42.86% compared to the state-of-the-art method. The optimal simulation-trained parameters are then applied to a real-world F1TENTH vehicle without retraining. During prolonged racing on a custom-built racetrack featuring significant sharp corners, the mean projected velocity of VPMPCC reaches 93.18% of the vehicle's handling limits. The released code is available at https://github.com/zhouhengli/VPMPCC.
ESVO2: Direct Visual-Inertial Odometry with Stereo Event Cameras
Event-based visual odometry is a specific branch of visual Simultaneous Localization and Mapping (SLAM) techniques, which aims at solving tracking and mapping subproblems (typically in parallel), by exploiting the special working principles of neuromorphic (i.e., event-based) cameras. Due to the motion-dependent nature of event data, explicit data association (i.e., feature matching) under large-baseline view-point changes is difficult to establish, making direct methods a more rational choice. However, state-of-the-art direct methods are limited by the high computational complexity of the mapping sub-problem and the degeneracy of camera pose tracking in certain degrees of freedom (DoF) in rotation. In this paper, we tackle these issues by building an event-based stereo visual-inertial odometry system on top of a direct pipeline. Specifically, to speed up the mapping operation, we propose an efficient strategy for sampling contour points according to the local dynamics of events. The mapping performance is also improved in terms of structure completeness and local smoothness by merging the temporal stereo and static stereo results. To circumvent the degeneracy of camera pose tracking in recovering the pitch and yaw components of general 6-DoF motion, we introduce IMU measurements as motion priors via pre-integration. To this end, a compact back-end is proposed for continuously updating the IMU bias and predicting the linear velocity, enabling an accurate motion prediction for camera pose tracking. The resulting system scales well with modern high-resolution event cameras and leads to better global positioning accuracy in large-scale outdoor environments. Extensive evaluations on five publicly available datasets featuring different resolutions and scenarios justify the superior performance of the proposed system against five state-of-the-art methods.
♻ ☆ pFedLVM: A Large Vision Model (LVM)-Driven and Latent Feature-Based Personalized Federated Learning Framework in Autonomous Driving CVPR 2024
Deep learning-based Autonomous Driving (AD) models often exhibit poor generalization due to data heterogeneity in an ever domain-shifting environment. While Federated Learning (FL) could improve the generalization of an AD model (known as FedAD system), conventional models often struggle with under-fitting as the amount of accumulated training data progressively increases. To address this issue, instead of conventional small models, employing Large Vision Models (LVMs) in FedAD is a viable option for better learning of representations from a vast volume of data. However, implementing LVMs in FedAD introduces three challenges: (I) the extremely high communication overheads associated with transmitting LVMs between participating vehicles and a central server; (II) lack of computing resource to deploy LVMs on each vehicle; (III) the performance drop due to LVM focusing on shared features but overlooking local vehicle characteristics. To overcome these challenges, we propose pFedLVM, a LVM-Driven, Latent Feature-Based Personalized Federated Learning framework. In this approach, the LVM is deployed only on central server, which effectively alleviates the computational burden on individual vehicles. Furthermore, the exchange between central server and vehicles are the learned features rather than the LVM parameters, which significantly reduces communication overhead. In addition, we utilize both shared features from all participating vehicles and individual characteristics from each vehicle to establish a personalized learning mechanism. This enables each vehicle's model to learn features from others while preserving its personalized characteristics, thereby outperforming globally shared models trained in general FL. Extensive experiments demonstrate that pFedLVM outperforms the existing state-of-the-art approaches.
comment: This paper was submitted to CVPR 2024 in Nov. 2023
♻ ☆ DynamicCity: Large-Scale 4D Occupancy Generation from Dynamic Scenes ICLR 2025
Urban scene generation has been developing rapidly recently. However, existing methods primarily focus on generating static and single-frame scenes, overlooking the inherently dynamic nature of real-world driving environments. In this work, we introduce DynamicCity, a novel 4D occupancy generation framework capable of generating large-scale, high-quality dynamic 4D scenes with semantics. DynamicCity mainly consists of two key models. 1) A VAE model for learning HexPlane as the compact 4D representation. Instead of using naive averaging operations, DynamicCity employs a novel Projection Module to effectively compress 4D features into six 2D feature maps for HexPlane construction, which significantly enhances HexPlane fitting quality (up to 12.56 mIoU gain). Furthermore, we utilize an Expansion & Squeeze Strategy to reconstruct 3D feature volumes in parallel, which improves both network training efficiency and reconstruction accuracy than naively querying each 3D point (up to 7.05 mIoU gain, 2.06x training speedup, and 70.84% memory reduction). 2) A DiT-based diffusion model for HexPlane generation. To make HexPlane feasible for DiT generation, a Padded Rollout Operation is proposed to reorganize all six feature planes of the HexPlane as a squared 2D feature map. In particular, various conditions could be introduced in the diffusion or sampling process, supporting versatile 4D generation applications, such as trajectory- and command-driven generation, inpainting, and layout-conditioned generation. Extensive experiments on the CarlaSC and Waymo datasets demonstrate that DynamicCity significantly outperforms existing state-of-the-art 4D occupancy generation methods across multiple metrics. The code and models have been released to facilitate future research.
comment: ICLR 2025 Spotlight; 35 pages, 18 figures, 15 tables; Project Page at https://dynamic-city.github.io/
♻ ☆ Multi-UAV Uniform Sweep Coverage in Unknown Environments: A Self-organizing Nervous System (SoNS)-Based Random Exploration
This paper addresses multi-UAV uniform sweep coverage in an unknown convex environment, where a homogeneous UAV swarm must evenly visit every portion of the environment for a sampling task without access to their position and orientation. Random walk exploration is practical in this scenario because it requires no localization and is easy to implement on swarms. We demonstrate that the Self-Organizing Nervous System (SoNS) framework, which enables a robot swarm to self-organize into a hierarchical ad-hoc communication network using local communication, is a promising control approach for random exploration in such environments. To this end, we propose a SoNS-based random walk method in which UAVs self-organize into a line formation and then perform a random walk to cover the environment while maintaining that formation. We evaluate our approach in simulations against several decentralized random walk strategies. Results show that our SoNS-based random walk achieves full coverage faster and with greater coverage uniformity than these benchmark strategies, both globally and in local regions.
♻ ☆ Calib3D: Calibrating Model Preferences for Reliable 3D Scene Understanding WACV 2025
Safety-critical 3D scene understanding tasks necessitate not only accurate but also confident predictions from 3D perception models. This study introduces Calib3D, a pioneering effort to benchmark and scrutinize the reliability of 3D scene understanding models from an uncertainty estimation viewpoint. We comprehensively evaluate 28 state-of-the-art models across 10 diverse 3D datasets, uncovering insightful phenomena that cope with both the aleatoric and epistemic uncertainties in 3D scene understanding. We discover that despite achieving impressive levels of accuracy, existing models frequently fail to provide reliable uncertainty estimates -- a pitfall that critically undermines their applicability in safety-sensitive contexts. Through extensive analysis of key factors such as network capacity, LiDAR representations, rasterization resolutions, and 3D data augmentation techniques, we correlate these aspects directly with the model calibration efficacy. Furthermore, we introduce DeptS, a novel depth-aware scaling approach aimed at enhancing 3D model calibration. Extensive experiments across a wide range of configurations validate the superiority of our method. We hope this work could serve as a cornerstone for fostering reliable 3D scene understanding. Code and benchmark toolkit are publicly available.
comment: WACV 2025 Oral; 26 pages, 8 figures, 12 tables; Code at https://github.com/ldkong1205/Calib3D
♻ ☆ Signage-Aware Exploration in Open World using Venue Maps
Current exploration methods struggle to search for shops or restaurants in unknown open-world environments due to the lack of prior knowledge. Humans can leverage venue maps that offer valuable scene priors to aid exploration planning by correlating the signage in the scene with landmark names on the map. However, arbitrary shapes and styles of the texts on signage, along with multi-view inconsistencies, pose significant challenges for robots to recognize them accurately. Additionally, discrepancies between real-world environments and venue maps hinder the integration of text-level information into the planners. This paper introduces a novel signage-aware exploration system to address these challenges, enabling the robots to utilize venue maps effectively. We propose a signage understanding method that accurately detects and recognizes the texts on signage using a diffusion-based text instance retrieval method combined with a 2D-to-3D semantic fusion strategy. Furthermore, we design a venue map-guided exploration-exploitation planner that balances exploration in unknown regions using directional heuristics derived from venue maps and exploitation to get close and adjust orientation for better recognition. Experiments in large-scale shopping malls demonstrate our method's superior signage recognition performance and search efficiency, surpassing state-of-the-art text spotting methods and traditional exploration approaches. Project website: https://sites.google.com/view/signage-aware-exploration.
comment: 8 pages, 8 figures, IEEE Robotics and Automation Letters 2025
♻ ☆ Scalable Decision-Making in Stochastic Environments through Learned Temporal Abstraction ICLR2025
Sequential decision-making in high-dimensional continuous action spaces, particularly in stochastic environments, faces significant computational challenges. We explore this challenge in the traditional offline RL setting, where an agent must learn how to make decisions based on data collected through a stochastic behavior policy. We present Latent Macro Action Planner (L-MAP), which addresses this challenge by learning a set of temporally extended macro-actions through a state-conditional Vector Quantized Variational Autoencoder (VQ-VAE), effectively reducing action dimensionality. L-MAP employs a (separate) learned prior model that acts as a latent transition model and allows efficient sampling of plausible actions. During planning, our approach accounts for stochasticity in both the environment and the behavior policy by using Monte Carlo tree search (MCTS). In offline RL settings, including stochastic continuous control tasks, L-MAP efficiently searches over discrete latent actions to yield high expected returns. Empirical results demonstrate that L-MAP maintains low decision latency despite increased action dimensionality. Notably, across tasks ranging from continuous control with inherently stochastic dynamics to high-dimensional robotic hand manipulation, L-MAP significantly outperforms existing model-based methods and performs on-par with strong model-free actor-critic baselines, highlighting the effectiveness of the proposed approach in planning in complex and stochastic environments with high-dimensional action spaces.
comment: Accepted by ICLR2025. Code would be available at https://github.com/BaitingLuo/L-MAP.git
♻ ☆ RoboHanger: Learning Generalizable Robotic Hanger Insertion for Diverse Garments
For the task of hanging clothes, learning how to insert a hanger into a garment is a crucial step, but has rarely been explored in robotics. In this work, we address the problem of inserting a hanger into various unseen garments that are initially laid flat on a table. This task is challenging due to its long-horizon nature, the high degrees of freedom of the garments and the lack of data. To simplify the learning process, we first propose breaking the task into several subtasks. Then, we formulate each subtask as a policy learning problem and propose a low-dimensional action parameterization. To overcome the challenge of limited data, we build our own simulator and create 144 synthetic clothing assets to effectively collect high-quality training data. Our approach uses single-view depth images and object masks as input, which mitigates the Sim2Real appearance gap and achieves high generalization capabilities for new garments. Extensive experiments in both simulation and the real world validate our proposed method. By training on various garments in the simulator, our method achieves a 75\% success rate with 8 different unseen garments in the real world.
comment: Project website: https://chen01yx.github.io/Robohanger_Index/
♻ ☆ RobotFingerPrint: Unified Gripper Coordinate Space for Multi-Gripper Grasp Synthesis and Transfer
We introduce a novel grasp representation named the Unified Gripper Coordinate Space (UGCS) for grasp synthesis and grasp transfer. Our representation leverages spherical coordinates to create a shared coordinate space across different robot grippers, enabling it to synthesize and transfer grasps for both novel objects and previously unseen grippers. The strength of this representation lies in the ability to map palm and fingers of a gripper and the unified coordinate space. Grasp synthesis is formulated as predicting the unified spherical coordinates on object surface points via a conditional variational autoencoder. The predicted unified gripper coordinates establish exact correspondences between the gripper and object points, which is used to optimize grasp pose and joint values. Grasp transfer is facilitated through the point-to-point correspondence between any two (potentially unseen) grippers and solved via a similar optimization. Extensive simulation and real-world experiments showcase the efficacy of the unified grasp representation for grasp synthesis in generating stable and diverse grasps. Similarly, we showcase real-world grasp transfer from human demonstrations across different objects.
comment: 8 pages, 11 figures, 3 tables. Project page available at https://irvlutd.github.io/RobotFingerPrint
♻ ☆ Fast Finite-Time Sliding Mode Control for Chattering-Free Trajectory Tracking of Robotic Manipulators
Achieving precise and efficient trajectory tracking in robotic arms remains a key challenge due to system uncertainties and chattering effects in conventional sliding mode control (SMC). This paper presents a chattering-free fast terminal sliding mode control (FTSMC) strategy for a three-degree-of-freedom (3-DOF) robotic arm, designed to enhance tracking accuracy and robustness while ensuring finite-time convergence. The control framework is developed using Newton-Euler dynamics, followed by a state-space representation that captures the system's angular position and velocity. By incorporating an improved sliding surface and a Lyapunov-based stability analysis, the proposed FTSMC effectively mitigates chattering while preserving the advantages of SMC, such as fast response and strong disturbance rejection. The controller's performance is rigorously evaluated through comparisons with conventional PD sliding mode control (PDSMC) and terminal sliding mode control (TSMC). Simulation results demonstrate that the proposed approach achieves superior trajectory tracking performance, faster convergence, and enhanced stability compared to existing methods, making it a promising solution for high-precision robotic applications.
♻ ☆ DiffTORI: Differentiable Trajectory Optimization for Deep Reinforcement and Imitation Learning NeurIPS 2024
This paper introduces DiffTORI, which utilizes Differentiable Trajectory Optimization as the policy representation to generate actions for deep Reinforcement and Imitation learning. Trajectory optimization is a powerful and widely used algorithm in control, parameterized by a cost and a dynamics function. The key to our approach is to leverage the recent progress in differentiable trajectory optimization, which enables computing the gradients of the loss with respect to the parameters of trajectory optimization. As a result, the cost and dynamics functions of trajectory optimization can be learned end-to-end. DiffTORI addresses the ``objective mismatch'' issue of prior model-based RL algorithms, as the dynamics model in DiffTORI is learned to directly maximize task performance by differentiating the policy gradient loss through the trajectory optimization process. We further benchmark DiffTORI for imitation learning on standard robotic manipulation task suites with high-dimensional sensory observations and compare our method to feed-forward policy classes as well as Energy-Based Models (EBM) and Diffusion. Across 15 model-based RL tasks and 35 imitation learning tasks with high-dimensional image and point cloud inputs, DiffTORI outperforms prior state-of-the-art methods in both domains. Our code is available at https://github.com/wkwan7/DiffTORI.
comment: NeurIPS 2024 (Spotlight)
♻ ☆ On the Feasibility of Fingerprinting Collaborative Robot Traffic
This study examines privacy risks in collaborative robotics, focusing on the potential for traffic analysis in encrypted robot communications. While previous research has explored low-level command recovery in teleoperation setups, our work investigates high-level motion recovery from script-based control interfaces. We evaluate the efficacy of prominent website fingerprinting techniques (e.g., Tik-Tok, RF) and their limitations in accurately identifying robotic actions due to their inability to capture detailed temporal relationships. To address this, we introduce a traffic classification approach using signal processing techniques, demonstrating high accuracy in action identification and highlighting the vulnerability of encrypted communications to privacy breaches. Additionally, we explore defenses such as packet padding and timing manipulation, revealing the challenges in balancing traffic analysis resistance with network efficiency. Our findings emphasize the need for continued development of practical defenses in robotic privacy and security.
comment: 22 pages
♻ ☆ Robots that Suggest Safe Alternatives
Goal-conditioned policies, such as those learned via imitation learning, provide an easy way for humans to influence what tasks robots accomplish. However, these robot policies are not guaranteed to execute safely or to succeed when faced with out-of-distribution requests. In this work, we enable robots to know when they can confidently execute a user's desired goal, and automatically suggest safe alternatives when they cannot. Our approach is inspired by control-theoretic safety filtering, wherein a safety filter minimally adjusts a robot's candidate action to be safe. Our key idea is to pose alternative suggestion as a safe control problem in goal space, rather than in action space. Offline, we use reachability analysis to compute a goal-parameterized reach-avoid value network which quantifies the safety and liveness of the robot's pre-trained policy. Online, our robot uses the reach-avoid value network as a safety filter, monitoring the human's given goal and actively suggesting alternatives that are similar but meet the safety specification. We demonstrate our Safe ALTernatives (SALT) framework in simulation experiments with indoor navigation and Franka Panda tabletop manipulation, and with both discrete and continuous goal representations. We find that SALT is able to learn to predict successful and failed closed-loop executions, is a less pessimistic monitor than open-loop uncertainty quantification, and proposes alternatives that consistently align with those people find acceptable.
comment: 10 pages, 6 figures, 2 tables
♻ ☆ Coordinated Multi-Robot Navigation with Formation Adaptation
Coordinated multi-robot navigation is an essential ability for a team of robots operating in diverse environments. Robot teams often need to maintain specific formations, such as wedge formations, to enhance visibility, positioning, and efficiency during fast movement. However, complex environments such as narrow corridors challenge rigid team formations, which makes effective formation control difficult in real-world environments. To address this challenge, we introduce a novel Adaptive Formation with Oscillation Reduction (AFOR) approach to improve coordinated multi-robot navigation. We develop AFOR under the theoretical framework of hierarchical learning and integrate a spring-damper model with hierarchical learning to enable both team coordination and individual robot control. At the upper level, a graph neural network facilitates formation adaptation and information sharing among the robots. At the lower level, reinforcement learning enables each robot to navigate and avoid obstacles while maintaining the formations. We conducted extensive experiments using Gazebo in the Robot Operating System (ROS), a high-fidelity Unity3D simulator with ROS, and real robot teams. Results demonstrate that AFOR enables smooth navigation with formation adaptation in complex scenarios and outperforms previous methods. More details of this work are provided on the project website: https://hcrlab.gitlab.io/project/afor.
♻ ☆ Rao-Blackwellized POMDP Planning
Partially Observable Markov Decision Processes (POMDPs) provide a structured framework for decision-making under uncertainty, but their application requires efficient belief updates. Sequential Importance Resampling Particle Filters (SIRPF), also known as Bootstrap Particle Filters, are commonly used as belief updaters in large approximate POMDP solvers, but they face challenges such as particle deprivation and high computational costs as the system's state dimension grows. To address these issues, this study introduces Rao-Blackwellized POMDP (RB-POMDP) approximate solvers and outlines generic methods to apply Rao-Blackwellization in both belief updates and online planning. We compare the performance of SIRPF and Rao-Blackwellized Particle Filters (RBPF) in a simulated localization problem where an agent navigates toward a target in a GPS-denied environment using POMCPOW and RB-POMCPOW planners. Our results not only confirm that RBPFs maintain accurate belief approximations over time with fewer particles, but, more surprisingly, RBPFs combined with quadrature-based integration improve planning quality significantly compared to SIRPF-based planning under the same computational limits.
♻ ☆ Planning and Reasoning with 3D Deformable Objects for Hierarchical Text-to-3D Robotic Shaping
Deformable object manipulation remains a key challenge in developing autonomous robotic systems that can be successfully deployed in real-world scenarios. In this work, we explore the challenges of deformable object manipulation through the task of sculpting clay into 3D shapes. We propose the first coarse-to-fine autonomous sculpting system in which the sculpting agent first selects how many and where to place discrete chunks of clay into the workspace to create a coarse shape, and then iteratively refines the shape with sequences of deformation actions. We leverage large language models for sub-goal generation, and train a point cloud region-based action model to predict robot actions from the desired point cloud sub-goals. Additionally, our method is the first autonomous sculpting system that is a real-world text-to-3D shaping pipeline without any explicit 3D goals or sub-goals provided to the system. We demonstrate our method is able to successfully create a set of simple shapes solely from text-based prompting. Furthermore, we explore rigorously how to best quantify success for the text-to-3D sculpting task, and compare existing text-image and text-point cloud similarity metrics to human evaluations for this task. For experimental videos, human evaluation details, and full prompts, please see our project website: https://sites.google.com/andrew.cmu.edu/hierarchicalsculpting
♻ ☆ Discrete GCBF Proximal Policy Optimization for Multi-agent Safe Optimal Control ICLR 2025
Control policies that can achieve high task performance and satisfy safety constraints are desirable for any system, including multi-agent systems (MAS). One promising technique for ensuring the safety of MAS is distributed control barrier functions (CBF). However, it is difficult to design distributed CBF-based policies for MAS that can tackle unknown discrete-time dynamics, partial observability, changing neighborhoods, and input constraints, especially when a distributed high-performance nominal policy that can achieve the task is unavailable. To tackle these challenges, we propose DGPPO, a new framework that simultaneously learns both a discrete graph CBF which handles neighborhood changes and input constraints, and a distributed high-performance safe policy for MAS with unknown discrete-time dynamics. We empirically validate our claims on a suite of multi-agent tasks spanning three different simulation engines. The results suggest that, compared with existing methods, our DGPPO framework obtains policies that achieve high task performance (matching baselines that ignore the safety constraints), and high safety rates (matching the most conservative baselines), with a constant set of hyperparameters across all environments.
comment: 31 pages, 15 figures; Accepted by the thirteenth International Conference on Learning Representations (ICLR 2025)
♻ ☆ Societal Attitudes Toward Service Robots: Adore, Abhor, Ignore, or Unsure?
Societal or population-level attitudes are aggregated patterns of different individual attitudes, representing collective general predispositions. As service robots become ubiquitous, understanding attitudes towards them at the population (vs. individual) level enables firms to expand robot services to a broad (vs. niche) market. Targeting population-level attitudes would benefit service firms because: (1) they are more persistent, thus, stronger predictors of behavioral patterns and (2) this approach is less reliant on personal data, whereas individualized services are vulnerable to AI-related privacy risks. As for service theory, ignoring broad unobserved differences in attitudes produces biased conclusions, and our systematic review of previous research highlights a poor understanding of potential heterogeneity in attitudes toward service robots. We present five diverse studies (S1-S5), utilizing multinational and "real world" data (Ntotal = 89,541; years: 2012-2024). Results reveal a stable structure comprising four distinct attitude profiles (S1-S5): positive ("adore"), negative ("abhor"), indifferent ("ignore"), and ambivalent ("unsure"). The psychological need for interacting with service staff, and for autonomy and relatedness in technology use, function as attitude profile antecedents (S2). Importantly, the attitude profiles predict differences in post-interaction discomfort and anxiety (S3), satisfaction ratings and service evaluations (S4), and perceived sociability and uncanniness based on a robot's humanlikeness (S5).
♻ ☆ One Map to Find Them All: Real-time Open-Vocabulary Mapping for Zero-shot Multi-Object Navigation
The capability to efficiently search for objects in complex environments is fundamental for many real-world robot applications. Recent advances in open-vocabulary vision models have resulted in semantically-informed object navigation methods that allow a robot to search for an arbitrary object without prior training. However, these zero-shot methods have so far treated the environment as unknown for each consecutive query. In this paper we introduce a new benchmark for zero-shot multi-object navigation, allowing the robot to leverage information gathered from previous searches to more efficiently find new objects. To address this problem we build a reusable open-vocabulary feature map tailored for real-time object search. We further propose a probabilistic-semantic map update that mitigates common sources of errors in semantic feature extraction and leverage this semantic uncertainty for informed multi-object exploration. We evaluate our method on a set of object navigation tasks in both simulation as well as with a real robot, running in real-time on a Jetson Orin AGX. We demonstrate that it outperforms existing state-of-the-art approaches both on single and multi-object navigation tasks. Additional videos, code and the multi-object navigation benchmark will be available on https://finnbsch.github.io/OneMap.
♻ ☆ ConfigBot: Adaptive Resource Allocation for Robot Applications in Dynamic Environments
The growing use of service robots in dynamic environments requires flexible management of on-board compute resources to optimize the performance of diverse tasks such as navigation, localization, and perception. Current robot deployments often rely on static OS configurations and system over-provisioning. However, they are suboptimal because they do not account for variations in resource usage. This results in poor system-wide behavior such as robot instability or inefficient resource use. This paper presents ConifgBot, a novel system designed to adaptively reconfigure robot applications to meet a predefined performance specification by leveraging \emph{runtime profiling} and \emph{automated configuration tuning}. Through experiments on multiple real robots, each running a different stack with diverse performance requirements, which could be \emph{context}-dependent, we illustrate ConifgBot's efficacy in maintaining system stability and optimizing resource allocation. Our findings highlight the promise of automatic system configuration tuning for robot deployments, including adaptation to dynamic changes.
comment: 9 pages, 8 figures, 7 tables
♻ ☆ Autonomous Exploration and Semantic Updating of Large-Scale Indoor Environments with Mobile Robots
We introduce a new robotic system that enables a mobile robot to autonomously explore an unknown environment, build a semantic map of the environment, and subsequently update the semantic map to reflect environment changes, such as location changes of objects. Our system leverages a LiDAR scanner for 2D occupancy grid mapping and an RGB-D camera for object perception. We introduce a semantic map representation that combines a 2D occupancy grid map for geometry with a topological map for object semantics. This map representation enables us to effectively update the semantics by deleting or adding nodes to the topological map. Our system has been tested on a Fetch robot, semantically mapping a 93m x 90m and a 9m x 13m indoor environment and updating their semantic maps once objects are moved in the environments
comment: 7 pages, 7 figures. Project page is available at https://irvlutd.github.io/SemanticMapping/
♻ ☆ Zero-shot Object-Centric Instruction Following: Integrating Foundation Models with Traditional Navigation
Large scale scenes such as multifloor homes can be robustly and efficiently mapped with a 3D graph of landmarks estimated jointly with robot poses in a factor graph, a technique commonly used in commercial robots such as drones and robot vacuums. In this work, we propose Language-Inferred Factor Graph for Instruction Following (LIFGIF), a zero-shot method to ground natural language instructions in such a map. LIFGIF also includes a policy for following natural language navigation instructions in a novel environment while the map is constructed, enabling robust navigation performance in the physical world. To evaluate LIFGIF, we present a new dataset, Object-Centric VLN (OC-VLN), in order to evaluate grounding of object-centric natural language navigation instructions. We compare to two state-of-the-art zero-shot baselines from related tasks, Object Goal Navigation and Vision Language Navigation, to demonstrate that LIFGIF outperforms them across all our evaluation metrics on OCVLN. Finally, we successfully demonstrate the effectiveness of LIFGIF for performing zero-shot object-centric instruction following in the real world on a Boston Dynamics Spot robot.
♻ ☆ Learning Object Compliance via Young's Modulus from Single Grasps using Camera-Based Tactile Sensors
Compliance is a useful parametrization of tactile information that humans often utilize in manipulation tasks. It can be used to inform low-level contact-rich actions or characterize objects at a high-level. In robotic manipulation, existing approaches to estimate compliance have struggled to generalize across both object shape and material. Using camera-based tactile sensors, proprioception, and force measurements, we present a novel approach to estimate object compliance as Young's modulus (E) from parallel grasps. We evaluate our method over a novel dataset of 285 common objects, including a wide array of shapes and materials with Young's moduli ranging from 5.0 kPa to 250 GPa. Combining analytical and data-driven approaches, we develop a hybrid system using a multi-tower neural network to analyze a sequence of tactile images from grasping. This system is shown to estimate the Young's modulus of unseen objects within an order of magnitude at 74.2% accuracy across our dataset. This is an improvement over purely analytical and data-driven baselines which exhibit 28.9% and 65.0% accuracy respectively. Importantly, this estimation system performs irrespective of object geometry and demonstrates increased robustness across material types.
♻ ☆ An Open-Source Reproducible Chess Robot for Human-Robot Interaction Research
Recent advancements in AI have accelerated the evolution of versatile robot designs. Chess provides a standardized environment for evaluating the impact of robot behavior on human behavior. This article presents an open-source chess robot for human-robot interaction (HRI) research, specifically focusing on verbal and non-verbal interactions. The OpenChessRobot recognizes chess pieces using computer vision, executes moves, and interacts with the human player through voice and robotic gestures. We detail the software design, provide quantitative evaluations of the efficacy of the robot, and offer a guide for its reproducibility. An online survey examining people's views of the robot in three possible scenarios was conducted with 597 participants. The robot received the highest ratings in the robotics education and the chess coach scenarios, while the home entertainment scenario received the lowest scores. The code is accessible on GitHub: https://github.com/renchizhhhh/OpenChessRobot
♻ ☆ Visuotactile-Based Learning for Insertion with Compliant Hands
Compared to rigid hands, underactuated compliant hands offer greater adaptability to object shapes, provide stable grasps, and are often more cost-effective. However, they introduce uncertainties in hand-object interactions due to their inherent compliance and lack of precise finger proprioception as in rigid hands. These limitations become particularly significant when performing contact-rich tasks like insertion. To address these challenges, additional sensing modalities are required to enable robust insertion capabilities. This letter explores the essential sensing requirements for successful insertion tasks with compliant hands, focusing on the role of visuotactile perception (i.e., visual and tactile perception). We propose a simulation-based multimodal policy learning framework that leverages all-around tactile sensing and an extrinsic depth camera. A transformer-based policy, trained through a teacher-student distillation process, is successfully transferred to a real-world robotic system without further training. Our results emphasize the crucial role of tactile sensing in conjunction with visual perception for accurate object-socket pose estimation, successful sim-to-real transfer and robust task execution.
♻ ☆ Guaranteed Reach-Avoid for Black-Box Systems through Narrow Gaps via Neural Network Reachability
In the classical reach-avoid problem, autonomous mobile robots are tasked to reach a goal while avoiding obstacles. However, it is difficult to provide guarantees on the robot's performance when the obstacles form a narrow gap and the robot is a black-box (i.e. the dynamics are not known analytically, but interacting with the system is cheap). To address this challenge, this paper presents NeuralPARC. The method extends the authors' prior Piecewise Affine Reach-avoid Computation (PARC) method to systems modeled by rectified linear unit (ReLU) neural networks, which are trained to represent parameterized trajectory data demonstrated by the robot. NeuralPARC computes the reachable set of the network while accounting for modeling error, and returns a set of states and parameters with which the black-box system is guaranteed to reach the goal and avoid obstacles. NeuralPARC is shown to outperform PARC, generating provably-safe extreme vehicle drift parking maneuvers in simulations and in real life on a model car, as well as enabling safety on an autonomous surface vehicle (ASV) subjected to large disturbances and controlled by a deep reinforcement learning (RL) policy.
comment: This work has been submitted for possible publication
♻ ☆ Constrained Bandwidth Observation Sharing for Multi-Robot Navigation in Dynamic Environments via Intelligent Knapsack
Multi-robot navigation is increasingly crucial in various domains, including disaster response, autonomous vehicles, and warehouse and manufacturing automation. Robot teams often must operate in highly dynamic environments and under strict bandwidth constraints imposed by communication infrastructure, rendering effective observation sharing within the system a challenging problem. This paper presents a novel optimal communication scheme, Intelligent Knapsack (iKnap), for multi-robot navigation in dynamic environments under bandwidth constraints. We model multi-robot communication as belief propagation in a graph of inferential agents. We then formulate the combinatorial optimization for observation sharing as a 0/1 knapsack problem, where each potential pairwise communication between robots is assigned a decision-making utility to be weighed against its bandwidth cost, and the system has some cumulative bandwidth limit. We evaluate our approach in a simulated robotic warehouse with human workers using ROS2 and the Open Robotics Middleware Framework. Compared to state-of-the-art broadcast-based optimal communication schemes, iKnap yields significant improvements in navigation performance with respect to scenario complexity while maintaining a similar runtime. Furthermore, iKnap utilizes allocated bandwidth and observational resources more efficiently than existing approaches, especially in very low-resource and high-uncertainty settings. Based on these results, we claim that the proposed method enables more robust collaboration for multi-robot teams in real-world navigation problems.
♻ ☆ RECON: Reducing Causal Confusion with Human-Placed Markers
Imitation learning enables robots to learn new tasks from human examples. One fundamental limitation while learning from humans is causal confusion. Causal confusion occurs when the robot's observations include both task-relevant and extraneous information: for instance, a robot's camera might see not only the intended goal, but also clutter and changes in lighting within its environment. Because the robot does not know which aspects of its observations are important a priori, it often misinterprets the human's examples and fails to learn the desired task. To address this issue, we highlight that -- while the robot learner may not know what to focus on -- the human teacher does. In this paper we propose that the human proactively marks key parts of their task with small, lightweight beacons. Under our framework (RECON) the human attaches these beacons to task-relevant objects before providing demonstrations: as the human shows examples of the task, beacons track the position of marked objects. We then harness this offline beacon data to train a task-relevant state embedding. Specifically, we embed the robot's observations to a latent state that is correlated with the measured beacon readings: in practice, this causes the robot to autonomously filter out extraneous observations and make decisions based on features learned from the beacon data. Our simulations and a real robot experiment suggest that this framework for human-placed beacons mitigates causal confusion. Indeed, we find that using RECON significantly reduces the number of demonstrations needed to convey the task, lowering the overall time required for human teaching. See videos here: https://youtu.be/oy85xJvtLSU
comment: 7 pages, 5 figures
♻ ☆ Online Tree Reconstruction and Forest Inventory on a Mobile Robotic System
Terrestrial laser scanning (TLS) is the standard technique used to create accurate point clouds for digital forest inventories. However, the measurement process is demanding, requiring up to two days per hectare for data collection, significant data storage, as well as resource-heavy post-processing of 3D data. In this work, we present a real-time mapping and analysis system that enables online generation of forest inventories using mobile laser scanners that can be mounted e.g. on mobile robots. Given incrementally created and locally accurate submaps-data payloads-our approach extracts tree candidates using a custom, Voronoi-inspired clustering algorithm. Tree candidates are reconstructed using an adapted Hough algorithm, which enables robust modeling of the tree stem. Further, we explicitly incorporate the incremental nature of the data collection by consistently updating the database using a pose graph LiDAR SLAM system. This enables us to refine our estimates of the tree traits if an area is revisited later during a mission. We demonstrate competitive accuracy to TLS or manual measurements using laser scanners that we mounted on backpacks or mobile robots operating in conifer, broad-leaf and mixed forests. Our results achieve RMSE of 1.93 cm, a bias of 0.65 cm and a standard deviation of 1.81 cm (averaged across these sequences)-with no post-processing required after the mission is complete.
♻ ☆ Designing Robots to Help Women SC
Robots are being designed to help people in an increasing variety of settings--but seemingly little attention has been given so far to the specific needs of women, who represent roughly half of the world's population but are highly underrepresented in robotics. Here we used a speculative prototyping approach to explore this expansive design space: First, we identified some potential challenges of interest, including crimes and illnesses that disproportionately affect women, as well as potential opportunities for designers, which were visualized in five sketches. Then, one of the sketched scenarios was further explored by developing a prototype, of a robotic helper drone equipped with computer vision to detect hidden cameras that could be used to spy on women. While object detection introduced some errors, hidden cameras were identified with a reasonable accuracy of 80% (Intersection over Union (IoU) score: 0.40). Our aim is that the identified challenges and opportunities could help spark discussion and inspire designers, toward realizing a safer, more inclusive future through responsible use of technology.
comment: 10 pages, Accepted Version of a Published Conference Paper in 14th Scandinavian Conference on Artificial Intelligence (SCAI 2024): AI for a better society, June 10-11, 2024, J\"onk\"oping, Sweden, Link\"oping Electronic Conference Proceedings (ECP) ISSN: 1650-3740 (CC BY 4.0 License)
Computer Vision 68
♻ ☆ ModeDreamer: Mode Guiding Score Distillation for Text-to-3D Generation using Reference Image Prompts
Existing Score Distillation Sampling (SDS)-based methods have driven significant progress in text-to-3D generation. However, 3D models produced by SDS-based methods tend to exhibit over-smoothing and low-quality outputs. These issues arise from the mode-seeking behavior of current methods, where the scores used to update the model oscillate between multiple modes, resulting in unstable optimization and diminished output quality. To address this problem, we introduce a novel image prompt score distillation loss named ISD, which employs a reference image to direct text-to-3D optimization toward a specific mode. Our ISD loss can be implemented by using IP-Adapter, a lightweight adapter for integrating image prompt capability to a text-to-image diffusion model, as a mode-selection module. A variant of this adapter, when not being prompted by a reference image, can serve as an efficient control variate to reduce variance in score estimates, thereby enhancing both output quality and optimization stability. Our experiments demonstrate that the ISD loss consistently achieves visually coherent, high-quality outputs and improves optimization speed compared to prior text-to-3D methods, as demonstrated through both qualitative and quantitative evaluations on the T3Bench benchmark suite.
comment: Project page: https://modedreamer.github.io/
♻ ☆ FoodMLLM-JP: Leveraging Multimodal Large Language Models for Japanese Recipe Generation
Research on food image understanding using recipe data has been a long-standing focus due to the diversity and complexity of the data. Moreover, food is inextricably linked to people's lives, making it a vital research area for practical applications such as dietary management. Recent advancements in Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities, not only in their vast knowledge but also in their ability to handle languages naturally. While English is predominantly used, they can also support multiple languages including Japanese. This suggests that MLLMs are expected to significantly improve performance in food image understanding tasks. We fine-tuned open MLLMs LLaVA-1.5 and Phi-3 Vision on a Japanese recipe dataset and benchmarked their performance against the closed model GPT-4o. We then evaluated the content of generated recipes, including ingredients and cooking procedures, using 5,000 evaluation samples that comprehensively cover Japanese food culture. Our evaluation demonstrates that the open models trained on recipe data outperform GPT-4o, the current state-of-the-art model, in ingredient generation. Our model achieved F1 score of 0.531, surpassing GPT-4o's F1 score of 0.481, indicating a higher level of accuracy. Furthermore, our model exhibited comparable performance to GPT-4o in generating cooking procedure text.
comment: 15 pages, 5 figures. We found errors in the calculation of evaluation metrics, which were corrected in this version with $\color{blue}{\text{modifications highlighted in blue}}$. Please also see the Appendix
♻ ☆ Self-Supervised Iterative Refinement for Anomaly Detection in Industrial Quality Control
This study introduces the Iterative Refinement Process (IRP), a robust anomaly detection methodology designed for high-stakes industrial quality control. The IRP enhances defect detection accuracy through a cyclic data refinement strategy, iteratively removing misleading data points to improve model performance and robustness. We validate the IRP's effectiveness using two benchmark datasets, Kolektor SDD2 (KSDD2) and MVTec AD, covering a wide range of industrial products and defect types. Our experimental results demonstrate that the IRP consistently outperforms traditional anomaly detection models, particularly in environments with high noise levels. This study highlights the IRP's potential to significantly enhance anomaly detection processes in industrial settings, effectively managing the challenges of sparse and noisy data.
comment: Accepted to VISAPP 2025
♻ ☆ StarVid: Enhancing Semantic Alignment in Video Diffusion Models via Spatial and SynTactic Guided Attention Refocusing
Recent advances in text-to-video (T2V) generation with diffusion models have garnered significant attention. However, they typically perform well in scenes with a single object and motion, struggling in compositional scenarios with multiple objects and distinct motions to accurately reflect the semantic content of text prompts. To address these challenges, we propose \textbf{StarVid}, a plug-and-play, training-free method that improves semantic alignment between multiple subjects, their motions, and text prompts in T2V models. StarVid first leverages the spatial reasoning capabilities of large language models (LLMs) for two-stage motion trajectory planning based on text prompts. Such trajectories serve as spatial priors, guiding a spatial-aware loss to refocus cross-attention (CA) maps into distinctive regions. Furthermore, we propose a syntax-guided contrastive constraint to strengthen the correlation between the CA maps of verbs and their corresponding nouns, enhancing motion-subject binding. Both qualitative and quantitative evaluations demonstrate that the proposed framework significantly outperforms baseline methods, delivering videos of higher quality with improved semantic consistency.
♻ ☆ Mitigating Hallucinations in Large Vision-Language Models via DPO: On-Policy Data Hold the Key CVPR 2025
Hallucination remains a major challenge for Large Vision-Language Models (LVLMs). Direct Preference Optimization (DPO) has gained increasing attention as a simple solution to hallucination issues. It directly learns from constructed preference pairs that reflect the severity of hallucinations in responses to the same prompt and image. Nonetheless, different data construction methods in existing works bring notable performance variations. We identify a crucial factor here: outcomes are largely contingent on whether the constructed data aligns on-policy w.r.t the initial (reference) policy of DPO. Theoretical analysis suggests that learning from off-policy data is impeded by the presence of KL-divergence between the updated policy and the reference policy. From the perspective of dataset distribution, we systematically summarize the inherent flaws in existing algorithms that employ DPO to address hallucination issues. To alleviate the problems, we propose On-Policy Alignment (OPA)-DPO framework, which uniquely leverages expert feedback to correct hallucinated responses and aligns both the original and expert-revised responses in an on-policy manner. Notably, with only 4.8k data, OPA-DPO achieves an additional reduction in the hallucination rate of LLaVA-1.5-7B: 13.26% on the AMBER benchmark and 5.39% on the Object-Hal benchmark, compared to the previous SOTA algorithm trained with 16k samples. Our implementation is available at https://github.com/zhyang2226/OPA-DPO.
comment: Accepted by CVPR 2025
♻ ☆ Towards Physically Realizable Adversarial Attacks in Embodied Vision Navigation IROS
The significant advancements in embodied vision navigation have raised concerns about its susceptibility to adversarial attacks exploiting deep neural networks. Investigating the adversarial robustness of embodied vision navigation is crucial, especially given the threat of 3D physical attacks that could pose risks to human safety. However, existing attack methods for embodied vision navigation often lack physical feasibility due to challenges in transferring digital perturbations into the physical world. Moreover, current physical attacks for object detection struggle to achieve both multi-view effectiveness and visual naturalness in navigation scenarios. To address this, we propose a practical attack method for embodied navigation by attaching adversarial patches to objects, where both opacity and textures are learnable. Specifically, to ensure effectiveness across varying viewpoints, we employ a multi-view optimization strategy based on object-aware sampling, which optimizes the patch's texture based on feedback from the vision-based perception model used in navigation. To make the patch inconspicuous to human observers, we introduce a two-stage opacity optimization mechanism, in which opacity is fine-tuned after texture optimization. Experimental results demonstrate that our adversarial patches decrease the navigation success rate by an average of 22.39%, outperforming previous methods in practicality, effectiveness, and naturalness. Code is available at: https://github.com/chen37058/Physical-Attacks-in-Embodied-Nav
comment: 7 pages, 7 figures, submitted to IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2025
♻ ☆ Stereo Hand-Object Reconstruction for Human-to-Robot Handover
Jointly estimating hand and object shape facilitates the grasping task in human-to-robot handovers. However, relying on hand-crafted prior knowledge about the geometric structure of the object fails when generalising to unseen objects, and depth sensors fail to detect transparent objects such as drinking glasses. In this work, we propose a stereo-based method for hand-object reconstruction that combines single-view reconstructions probabilistically to form a coherent stereo reconstruction. We learn 3D shape priors from a large synthetic hand-object dataset to ensure that our method is generalisable, and use RGB inputs to better capture transparent objects. We show that our method reduces the object Chamfer distance compared to existing RGB based hand-object reconstruction methods on single view and stereo settings. We process the reconstructed hand-object shape with a projection-based outlier removal step and use the output to guide a human-to-robot handover pipeline with wide-baseline stereo RGB cameras. Our hand-object reconstruction enables a robot to successfully receive a diverse range of household objects from the human.
comment: 8 pages, 9 figures, 1 table
♻ ☆ EchoONE: Segmenting Multiple echocardiography Planes in One Model CVPR 2025
In clinical practice of echocardiography examinations, multiple planes containing the heart structures of different view are usually required in screening, diagnosis and treatment of cardiac disease. AI models for echocardiography have to be tailored for each specific plane due to the dramatic structure differences, thus resulting in repetition development and extra complexity. Effective solution for such a multi-plane segmentation (MPS) problem is highly demanded for medical images, yet has not been well investigated. In this paper, we propose a novel solution, EchoONE, for this problem with a SAM-based segmentation architecture, a prior-composable mask learning (PC-Mask) module for semantic-aware dense prompt generation, and a learnable CNN-branch with a simple yet effective local feature fusion and adaption (LFFA) module for SAM adapting. We extensively evaluated our method on multiple internal and external echocardiography datasets, and achieved consistently state-of-the-art performance for multi-source datasets with different heart planes. This is the first time that the MPS problem is solved in one model for echocardiography data. The code will be available at https://github.com/a2502503/EchoONE.
comment: Accepted by CVPR 2025
♻ ☆ Evaluating Intelligence via Trial and Error
Intelligence is a crucial trait for species to find solutions within a limited number of trial-and-error attempts. Building on this idea, we introduce Survival Game as a framework to evaluate intelligence based on the number of failed attempts in a trial-and-error process. Fewer failures indicate higher intelligence. When the expectation and variance of failure counts are both finite, it signals the ability to consistently find solutions to new challenges, which we define as the Autonomous Level of intelligence. Using Survival Game, we comprehensively evaluate existing AI systems. Our results show that while AI systems achieve the Autonomous Level in simple tasks, they are still far from it in more complex tasks, such as vision, search, recommendation, and language. While scaling current AI technologies might help, this would come at an astronomical cost. Projections suggest that achieving the Autonomous Level for general tasks would require $10^{26}$ parameters. To put this into perspective, loading such a massive model requires so many H100 GPUs that their total value is $10^{7}$ times that of Apple Inc.'s market value. Even with Moore's Law, supporting such a parameter scale would take $70$ years. This staggering cost highlights the complexity of human tasks and the inadequacies of current AI technologies. To further investigate this phenomenon, we conduct a theoretical analysis of Survival Game and its experimental results. Our findings suggest that human tasks possess a criticality property. As a result, Autonomous Level requires a deep understanding of the task's underlying mechanisms. Current AI systems, however, do not fully grasp these mechanisms and instead rely on superficial mimicry, making it difficult for them to reach an autonomous level. We believe Survival Game can not only guide the future development of AI but also offer profound insights into human intelligence.
♻ ☆ MATCH POLICY: A Simple Pipeline from Point Cloud Registration to Manipulation Policies
Many manipulation tasks require the robot to rearrange objects relative to one another. Such tasks can be described as a sequence of relative poses between parts of a set of rigid bodies. In this work, we propose MATCH POLICY, a simple but novel pipeline for solving high-precision pick and place tasks. Instead of predicting actions directly, our method registers the pick and place targets to the stored demonstrations. This transfers action inference into a point cloud registration task and enables us to realize nontrivial manipulation policies without any training. MATCH POLICY is designed to solve high-precision tasks with a key-frame setting. By leveraging the geometric interaction and the symmetries of the task, it achieves extremely high sample efficiency and generalizability to unseen configurations. We demonstrate its state-of-the-art performance across various tasks on RLBench benchmark compared with several strong baselines and test it on a real robot with six tasks.
comment: project url: https://haojhuang.github.io/match_page/
Annotation-Free Curb Detection Leveraging Altitude Difference Image
Road curbs are considered as one of the crucial and ubiquitous traffic features, which are essential for ensuring the safety of autonomous vehicles. Current methods for detecting curbs primarily rely on camera imagery or LiDAR point clouds. Image-based methods are vulnerable to fluctuations in lighting conditions and exhibit poor robustness, while methods based on point clouds circumvent the issues associated with lighting variations. However, it is the typical case that significant processing delays are encountered due to the voluminous amount of 3D points contained in each frame of the point cloud data. Furthermore, the inherently unstructured characteristics of point clouds poses challenges for integrating the latest deep learning advancements into point cloud data applications. To address these issues, this work proposes an annotation-free curb detection method leveraging Altitude Difference Image (ADI), which effectively mitigates the aforementioned challenges. Given that methods based on deep learning generally demand extensive, manually annotated datasets, which are both expensive and labor-intensive to create, we present an Automatic Curb Annotator (ACA) module. This module utilizes a deterministic curb detection algorithm to automatically generate a vast quantity of training data. Consequently, it facilitates the training of the curb detection model without necessitating any manual annotation of data. Finally, by incorporating a post-processing module, we manage to achieve state-of-the-art results on the KITTI 3D curb dataset with considerably reduced processing delays compared to existing methods, which underscores the effectiveness of our approach in curb detection tasks.
♻ ☆ Text-driven Adaptation of Foundation Models for Few-shot Surgical Workflow Analysis
Purpose: Surgical workflow analysis is crucial for improving surgical efficiency and safety. However, previous studies rely heavily on large-scale annotated datasets, posing challenges in cost, scalability, and reliance on expert annotations. To address this, we propose Surg-FTDA (Few-shot Text-driven Adaptation), designed to handle various surgical workflow analysis tasks with minimal paired image-label data. Methods: Our approach has two key components. First, Few-shot selection-based modality alignment selects a small subset of images and aligns their embeddings with text embeddings from the downstream task, bridging the modality gap. Second, Text-driven adaptation leverages only text data to train a decoder, eliminating the need for paired image-text data. This decoder is then applied to aligned image embeddings, enabling image-related tasks without explicit image-text pairs. Results: We evaluate our approach to generative tasks (image captioning) and discriminative tasks (triplet recognition and phase recognition). Results show that Surg-FTDA outperforms baselines and generalizes well across downstream tasks. Conclusion: We propose a text-driven adaptation approach that mitigates the modality gap and handles multiple downstream tasks in surgical workflow analysis, with minimal reliance on large annotated datasets. The code and dataset will be released in https://github.com/CAMMA-public/Surg-FTDA
♻ ☆ NavRAG: Generating User Demand Instructions for Embodied Navigation through Retrieval-Augmented LLM
Vision-and-Language Navigation (VLN) is an essential skill for embodied agents, allowing them to navigate in 3D environments following natural language instructions. High-performance navigation models require a large amount of training data, the high cost of manually annotating data has seriously hindered this field. Therefore, some previous methods translate trajectory videos into step-by-step instructions for expanding data, but such instructions do not match well with users' communication styles that briefly describe destinations or state specific needs. Moreover, local navigation trajectories overlook global context and high-level task planning. To address these issues, we propose NavRAG, a retrieval-augmented generation (RAG) framework that generates user demand instructions for VLN. NavRAG leverages LLM to build a hierarchical scene description tree for 3D scene understanding from global layout to local details, then simulates various user roles with specific demands to retrieve from the scene tree, generating diverse instructions with LLM. We annotate over 2 million navigation instructions across 861 scenes and evaluate the data quality and navigation performance of trained models.
♻ ☆ Monocular Depth Estimation and Segmentation for Transparent Object with Iterative Semantic and Geometric Fusion ICRA
Transparent object perception is indispensable for numerous robotic tasks. However, accurately segmenting and estimating the depth of transparent objects remain challenging due to complex optical properties. Existing methods primarily delve into only one task using extra inputs or specialized sensors, neglecting the valuable interactions among tasks and the subsequent refinement process, leading to suboptimal and blurry predictions. To address these issues, we propose a monocular framework, which is the first to excel in both segmentation and depth estimation of transparent objects, with only a single-image input. Specifically, we devise a novel semantic and geometric fusion module, effectively integrating the multi-scale information between tasks. In addition, drawing inspiration from human perception of objects, we further incorporate an iterative strategy, which progressively refines initial features for clearer results. Experiments on two challenging synthetic and real-world datasets demonstrate that our model surpasses state-of-the-art monocular, stereo, and multi-view methods by a large margin of about 38.8%-46.2% with only a single RGB input. Codes and models are publicly available at https://github.com/L-J-Yuan/MODEST.
comment: Accepted by ICRA(2025). The code is accessible through: https://github.com/L-J-Yuan/MODEST
♻ ☆ HiLo: A Learning Framework for Generalized Category Discovery Robust to Domain Shifts ICLR 2025
Generalized Category Discovery (GCD) is a challenging task in which, given a partially labelled dataset, models must categorize all unlabelled instances, regardless of whether they come from labelled categories or from new ones. In this paper, we challenge a remaining assumption in this task: that all images share the same domain. Specifically, we introduce a new task and method to handle GCD when the unlabelled data also contains images from different domains to the labelled set. Our proposed `HiLo' networks extract High-level semantic and Low-level domain features, before minimizing the mutual information between the representations. Our intuition is that the clusterings based on domain information and semantic information should be independent. We further extend our method with a specialized domain augmentation tailored for the GCD task, as well as a curriculum learning approach. Finally, we construct a benchmark from corrupted fine-grained datasets as well as a large-scale evaluation on DomainNet with real-world domain shifts, reimplementing a number of GCD baselines in this setting. We demonstrate that HiLo outperforms SoTA category discovery models by a large margin on all evaluations.
comment: v2: Accepted as a conference paper at ICLR 2025; Project page: https://github.com/Visual-AI/hilo/
♻ ☆ CtrLoRA: An Extensible and Efficient Framework for Controllable Image Generation ICLR 2025
Recently, large-scale diffusion models have made impressive progress in text-to-image (T2I) generation. To further equip these T2I models with fine-grained spatial control, approaches like ControlNet introduce an extra network that learns to follow a condition image. However, for every single condition type, ControlNet requires independent training on millions of data pairs with hundreds of GPU hours, which is quite expensive and makes it challenging for ordinary users to explore and develop new types of conditions. To address this problem, we propose the CtrLoRA framework, which trains a Base ControlNet to learn the common knowledge of image-to-image generation from multiple base conditions, along with condition-specific LoRAs to capture distinct characteristics of each condition. Utilizing our pretrained Base ControlNet, users can easily adapt it to new conditions, requiring as few as 1,000 data pairs and less than one hour of single-GPU training to obtain satisfactory results in most scenarios. Moreover, our CtrLoRA reduces the learnable parameters by 90% compared to ControlNet, significantly lowering the threshold to distribute and deploy the model weights. Extensive experiments on various types of conditions demonstrate the efficiency and effectiveness of our method. Codes and model weights will be released at https://github.com/xyfJASON/ctrlora.
comment: ICLR 2025. Code: https://github.com/xyfJASON/ctrlora
♻ ☆ Efficient Learning With Sine-Activated Low-rank Matrices ICLR 2025
Low-rank decomposition has emerged as a vital tool for enhancing parameter efficiency in neural network architectures, gaining traction across diverse applications in machine learning. These techniques significantly lower the number of parameters, striking a balance between compactness and performance. However, a common challenge has been the compromise between parameter efficiency and the accuracy of the model, where reduced parameters often lead to diminished accuracy compared to their full-rank counterparts. In this work, we propose a novel theoretical framework that integrates a sinusoidal function within the low-rank decomposition process. This approach not only preserves the benefits of the parameter efficiency characteristic of low-rank methods but also increases the decomposition's rank, thereby enhancing model performance. Our method proves to be a plug in enhancement for existing low-rank models, as evidenced by its successful application in Vision Transformers (ViT), Large Language Models (LLMs), Neural Radiance Fields (NeRF) and 3D shape modelling.
comment: The first two authors contributed equally. Paper accepted at ICLR 2025
♻ ☆ Poison-splat: Computation Cost Attack on 3D Gaussian Splatting ICLR 2025
3D Gaussian splatting (3DGS), known for its groundbreaking performance and efficiency, has become a dominant 3D representation and brought progress to many 3D vision tasks. However, in this work, we reveal a significant security vulnerability that has been largely overlooked in 3DGS: the computation cost of training 3DGS could be maliciously tampered by poisoning the input data. By developing an attack named Poison-splat, we reveal a novel attack surface where the adversary can poison the input images to drastically increase the computation memory and time needed for 3DGS training, pushing the algorithm towards its worst computation complexity. In extreme cases, the attack can even consume all allocable memory, leading to a Denial-of-Service (DoS) that disrupts servers, resulting in practical damages to real-world 3DGS service vendors. Such a computation cost attack is achieved by addressing a bi-level optimization problem through three tailored strategies: attack objective approximation, proxy model rendering, and optional constrained optimization. These strategies not only ensure the effectiveness of our attack but also make it difficult to defend with simple defensive measures. We hope the revelation of this novel attack surface can spark attention to this crucial yet overlooked vulnerability of 3DGS systems. Our code is available at https://github.com/jiahaolu97/poison-splat .
comment: Accepted by ICLR 2025 as a spotlight paper
♻ ☆ FLARE: Feed-forward Geometry, Appearance and Camera Estimation from Uncalibrated Sparse Views CVPR 2025
We present FLARE, a feed-forward model designed to infer high-quality camera poses and 3D geometry from uncalibrated sparse-view images (i.e., as few as 2-8 inputs), which is a challenging yet practical setting in real-world applications. Our solution features a cascaded learning paradigm with camera pose serving as the critical bridge, recognizing its essential role in mapping 3D structures onto 2D image planes. Concretely, FLARE starts with camera pose estimation, whose results condition the subsequent learning of geometric structure and appearance, optimized through the objectives of geometry reconstruction and novel-view synthesis. Utilizing large-scale public datasets for training, our method delivers state-of-the-art performance in the tasks of pose estimation, geometry reconstruction, and novel view synthesis, while maintaining the inference efficiency (i.e., less than 0.5 seconds). The project page and code can be found at: https://zhanghe3z.github.io/FLARE/
comment: CVPR 2025. Website: https://zhanghe3z.github.io/FLARE/
♻ ☆ A Decade's Battle on Dataset Bias: Are We There Yet? ICLR 2025
We revisit the "dataset classification" experiment suggested by Torralba & Efros (2011) a decade ago, in the new era with large-scale, diverse, and hopefully less biased datasets as well as more capable neural network architectures. Surprisingly, we observe that modern neural networks can achieve excellent accuracy in classifying which dataset an image is from: e.g., we report 84.7% accuracy on held-out validation data for the three-way classification problem consisting of the YFCC, CC, and DataComp datasets. Our further experiments show that such a dataset classifier could learn semantic features that are generalizable and transferable, which cannot be explained by memorization. We hope our discovery will inspire the community to rethink issues involving dataset bias.
comment: Published in ICLR 2025 (Oral Presentation)
♻ ☆ Optimal Brain Apoptosis ICLR 2025
The increasing complexity and parameter count of Convolutional Neural Networks (CNNs) and Transformers pose challenges in terms of computational efficiency and resource demands. Pruning has been identified as an effective strategy to address these challenges by removing redundant elements such as neurons, channels, or connections, thereby enhancing computational efficiency without heavily compromising performance. This paper builds on the foundational work of Optimal Brain Damage (OBD) by advancing the methodology of parameter importance estimation using the Hessian matrix. Unlike previous approaches that rely on approximations, we introduce Optimal Brain Apoptosis (OBA), a novel pruning method that calculates the Hessian-vector product value directly for each parameter. By decomposing the Hessian matrix across network layers and identifying conditions under which inter-layer Hessian submatrices are non-zero, we propose a highly efficient technique for computing the second-order Taylor expansion of parameters. This approach allows for a more precise pruning process, particularly in the context of CNNs and Transformers, as validated in our experiments including VGG19, ResNet32, ResNet50, and ViT-B/16 on CIFAR10, CIFAR100 and Imagenet datasets. Our code is available at https://github.com/NEU-REAL/OBA.
comment: Accepted to ICLR 2025
♻ ☆ Exploring the Effectiveness of Object-Centric Representations in Visual Question Answering: Comparative Insights with Foundation Models ICLR 2025
Object-centric (OC) representations, which model visual scenes as compositions of discrete objects, have the potential to be used in various downstream tasks to achieve systematic compositional generalization and facilitate reasoning. However, these claims have yet to be thoroughly validated empirically. Recently, foundation models have demonstrated unparalleled capabilities across diverse domains, from language to computer vision, positioning them as a potential cornerstone of future research for a wide range of computational tasks. In this paper, we conduct an extensive empirical study on representation learning for downstream Visual Question Answering (VQA), which requires an accurate compositional understanding of the scene. We thoroughly investigate the benefits and trade-offs of OC models and alternative approaches including large pre-trained foundation models on both synthetic and real-world data, ultimately identifying a promising path to leverage the strengths of both paradigms. The extensiveness of our study, encompassing over 600 downstream VQA models and 15 different types of upstream representations, also provides several additional insights that we believe will be of interest to the community at large.
comment: Published at ICLR 2025
♻ ☆ MIGE: A Unified Framework for Multimodal Instruction-Based Image Generation and Editing
Despite significant progress in diffusion-based image generation, subject-driven generation and instruction-based editing remain challenging. Existing methods typically treat them separately, struggling with limited high-quality data and poor generalization. However, both tasks require capturing complex visual variations while maintaining consistency between inputs and outputs. Therefore, we propose MIGE, a unified framework that standardizes task representations using multimodal instructions. It treats subject-driven generation as creation on a blank canvas and instruction-based editing as modification of an existing image, establishing a shared input-output formulation. MIGE introduces a novel multimodal encoder that maps free-form multimodal instructions into a unified vision-language space, integrating visual and semantic features through a feature fusion mechanism. This unification enables joint training of both tasks, providing two key advantages: (1) Cross-Task Enhancement: By leveraging shared visual and semantic representations, joint training improves instruction adherence and visual consistency in both subject-driven generation and instruction-based editing. (2) Generalization: Learning in a unified format facilitates cross-task knowledge transfer, enabling MIGE to generalize to novel compositional tasks, including instruction-based subject-driven editing. Experiments show that MIGE excels in both subject-driven generation and instruction-based editing while setting a state-of-the-art in the new task of instruction-based subject-driven editing. Code and model have been publicly available at https://github.com/Eureka-Maggie/MIGE.
♻ ☆ Adaptive Prompt: Unlocking the Power of Visual Prompt Tuning
Visual Prompt Tuning (VPT) has recently emerged as a powerful method for adapting pre-trained vision models to downstream tasks. By introducing learnable prompt tokens as task-specific instructions, VPT effectively guides pre-trained transformer models with minimal overhead. Despite its empirical success, a comprehensive theoretical understanding of VPT remains an active area of research. Building on recent insights into the connection between mixture of experts and prompt-based approaches, we identify a key limitation in VPT: the restricted functional expressiveness in prompt formulation. To address this limitation, we propose Visual Adaptive Prompt Tuning (VAPT), a new generation of prompts that redefines prompts as adaptive functions of the input. Our theoretical analysis shows that this simple yet intuitive approach achieves optimal sample efficiency. Empirical results on VTAB-1K and FGVC further demonstrate VAPT's effectiveness, with performance gains of 7.34% and 1.04% over fully fine-tuning baselines, respectively. Notably, VAPT also surpasses VPT by a substantial margin while using fewer parameters. These results highlight both the effectiveness and efficiency of our method and pave the way for future research to explore the potential of adaptive prompts.
comment: 57 pages, 10 figures, 18 tables
♻ ☆ PnP-Flow: Plug-and-Play Image Restoration with Flow Matching
In this paper, we introduce Plug-and-Play (PnP) Flow Matching, an algorithm for solving imaging inverse problems. PnP methods leverage the strength of pre-trained denoisers, often deep neural networks, by integrating them in optimization schemes. While they achieve state-of-the-art performance on various inverse problems in imaging, PnP approaches face inherent limitations on more generative tasks like inpainting. On the other hand, generative models such as Flow Matching pushed the boundary in image sampling yet lack a clear method for efficient use in image restoration. We propose to combine the PnP framework with Flow Matching (FM) by defining a time-dependent denoiser using a pre-trained FM model. Our algorithm alternates between gradient descent steps on the data-fidelity term, reprojections onto the learned FM path, and denoising. Notably, our method is computationally efficient and memory-friendly, as it avoids backpropagation through ODEs and trace computations. We evaluate its performance on denoising, super-resolution, deblurring, and inpainting tasks, demonstrating superior results compared to existing PnP algorithms and Flow Matching based state-of-the-art methods.
♻ ☆ Meta Curvature-Aware Minimization for Domain Generalization
Domain generalization (DG) aims to enhance the ability of models trained on source domains to generalize effectively to unseen domains. Recently, Sharpness-Aware Minimization (SAM) has shown promise in this area by reducing the sharpness of the loss landscape to obtain more generalized models. However, SAM and its variants sometimes fail to guide the model toward a flat minimum, and their training processes exhibit limitations, hindering further improvements in model generalization. In this paper, we first propose an improved model training process aimed at encouraging the model to converge to a flat minima. To achieve this, we design a curvature metric that has a minimal effect when the model is far from convergence but becomes increasingly influential in indicating the curvature of the minima as the model approaches a local minimum. Then we derive a novel algorithm from this metric, called Meta Curvature-Aware Minimization (MeCAM), to minimize the curvature around the local minima. Specifically, the optimization objective of MeCAM simultaneously minimizes the regular training loss, the surrogate gap of SAM, and the surrogate gap of meta-learning. We provide theoretical analysis on MeCAM's generalization error and convergence rate, and demonstrate its superiority over existing DG methods through extensive experiments on five benchmark DG datasets, including PACS, VLCS, OfficeHome, TerraIncognita, and DomainNet. Code will be available on GitHub.
comment: 22 pages, 5 figures, 17 tables
♻ ☆ Towards Training One-Step Diffusion Models Without Distillation
Recent advances in one-step generative models typically follow a two-stage process: first training a teacher diffusion model and then distilling it into a one-step student model. This distillation process traditionally relies on both the teacher model's score function to compute the distillation loss and its weights for student initialization. In this paper, we explore whether one-step generative models can be trained directly without this distillation process. First, we show that the teacher's score function is not essential and propose a family of distillation methods that achieve competitive results without relying on score estimation. Next, we demonstrate that initialization from teacher weights is indispensable in successful training. Surprisingly, we find that this benefit is not due to improved ``input-output" mapping but rather the learned feature representations, which dominate distillation quality. Our findings provide a better understanding of the role of initialization in one-step model training and its impact on distillation quality.
comment: 13 pages, Technical Report
♻ ☆ Foundation Models -- A Panacea for Artificial Intelligence in Pathology?
The role of artificial intelligence (AI) in pathology has evolved from aiding diagnostics to uncovering predictive morphological patterns in whole slide images (WSIs). Recently, foundation models (FMs) leveraging self-supervised pre-training have been widely advocated as a universal solution for diverse downstream tasks. However, open questions remain about their clinical applicability and generalization advantages over end-to-end learning using task-specific (TS) models. Here, we focused on AI with clinical-grade performance for prostate cancer diagnosis and Gleason grading. We present the largest validation of AI for this task, using over 100,000 core needle biopsies from 7,342 patients across 15 sites in 11 countries. We compared two FMs with a fully end-to-end TS model in a multiple instance learning framework. Our findings challenge assumptions that FMs universally outperform TS models. While FMs demonstrated utility in data-scarce scenarios, their performance converged with - and was in some cases surpassed by - TS models when sufficient labeled training data were available. Notably, extensive task-specific training markedly reduced clinically significant misgrading, misdiagnosis of challenging morphologies, and variability across different WSI scanners. Additionally, FMs used up to 35 times more energy than the TS model, raising concerns about their sustainability. Our results underscore that while FMs offer clear advantages for rapid prototyping and research, their role as a universal solution for clinically applicable medical AI remains uncertain. For high-stakes clinical applications, rigorous validation and consideration of task-specific training remain critically important. We advocate for integrating the strengths of FMs and end-to-end learning to achieve robust and resource-efficient AI pathology solutions fit for clinical use.
comment: 50 pages, 15 figures and an appendix (study protocol) which is previously published, see https://doi.org/10.1101/2024.07.04.24309948; updated authors list format
♻ ☆ The PanAf-FGBG Dataset: Understanding the Impact of Backgrounds in Wildlife Behaviour Recognition
Computer vision analysis of camera trap video footage is essential for wildlife conservation, as captured behaviours offer some of the earliest indicators of changes in population health. Recently, several high-impact animal behaviour datasets and methods have been introduced to encourage their use; however, the role of behaviour-correlated background information and its significant effect on out-of-distribution generalisation remain unexplored. In response, we present the PanAf-FGBG dataset, featuring 20 hours of wild chimpanzee behaviours, recorded at over 350 individual camera locations. Uniquely, it pairs every video with a chimpanzee (referred to as a foreground video) with a corresponding background video (with no chimpanzee) from the same camera location. We present two views of the dataset: one with overlapping camera locations and one with disjoint locations. This setup enables, for the first time, direct evaluation of in-distribution and out-of-distribution conditions, and for the impact of backgrounds on behaviour recognition models to be quantified. All clips come with rich behavioural annotations and metadata including unique camera IDs and detailed textual scene descriptions. Additionally, we establish several baselines and present a highly effective latent-space normalisation technique that boosts out-of-distribution performance by +5.42% mAP for convolutional and +3.75% mAP for transformer-based models. Finally, we provide an in-depth analysis on the role of backgrounds in out-of-distribution behaviour recognition, including the so far unexplored impact of background durations (i.e., the count of background frames within foreground videos).
comment: Accepted at the IEEE / CVF Computer Vision and Pattern Recognition Conference 2025
♻ ☆ TRACE: Temporal Grounding Video LLM via Causal Event Modeling ICLR 2025
Video Temporal Grounding (VTG) is a crucial capability for video understanding models and plays a vital role in downstream tasks such as video browsing and editing. To effectively handle various tasks simultaneously and enable zero-shot prediction, there is a growing trend in employing video LLMs for VTG tasks. However, current video LLM-based methods rely exclusively on natural language generation, lacking the ability to model the clear structure inherent in videos, which restricts their effectiveness in tackling VTG tasks. To address this issue, this paper first formally introduces causal event modeling framework, which represents video LLM outputs as sequences of events, and predict the current event using previous events, video inputs, and textural instructions. Each event consists of three components: timestamps, salient scores, and textual captions. We then propose a novel task-interleaved video LLM called TRACE to effectively implement the causal event modeling framework in practice. The TRACE process visual frames, timestamps, salient scores, and text as distinct tasks, employing various encoders and decoding heads for each. Task tokens are arranged in an interleaved sequence according to the causal event modeling framework's formulation. Extensive experiments on various VTG tasks and datasets demonstrate the superior performance of TRACE compared to state-of-the-art video LLMs. Our model and code are available at https://github.com/gyxxyg/TRACE.
comment: ICLR 2025
♻ ☆ Slowing Down Forgetting in Continual Learning
A common challenge in continual learning (CL) is catastrophic forgetting, where the performance on old tasks drops after new, additional tasks are learned. In this paper, we propose a novel framework called ReCL to slow down forgetting in CL. Our framework exploits an implicit bias of gradient-based neural networks due to which these converge to margin maximization points. Such convergence points allow us to reconstruct old data from previous tasks, which we then combine with the current training data. Our framework is flexible and can be applied on top of existing, state-of-the-art CL methods. We further demonstrate the performance gain from our framework across a large series of experiments, including two challenging CL scenarios (class incremental and domain incremental learning), different datasets (MNIST, CIFAR10, TinyImagenet), and different network architectures. Across all experiments, we find large performance gains through ReCL. To the best of our knowledge, our framework is the first to address catastrophic forgetting by leveraging models in CL as their own memory buffers.
♻ ☆ Improving Representation of High-frequency Components for Medical Visual Foundation Models
Foundation models have recently attracted significant attention for their impressive generalizability across diverse downstream tasks. However, these models are demonstrated to exhibit great limitations in representing high-frequency components and fine-grained details. In many medical imaging tasks, the precise representation of such information is crucial due to the inherently intricate anatomical structures, sub-visual features, and complex boundaries involved. Consequently, the limited representation of prevalent foundation models can result in significant performance degradation or even failure in these tasks. To address these challenges, we propose a novel pretraining strategy, named Frequency-advanced Representation Autoencoder (Frepa). Through high-frequency masking and low-frequency perturbation combined with adversarial learning, Frepa encourages the encoder to effectively represent and preserve high-frequency components in the image embeddings. Additionally, we introduce an innovative histogram-equalized image masking strategy, extending the Masked Autoencoder approach beyond ViT to other architectures such as Swin Transformer and convolutional networks. We develop Frepa across nine medical modalities and validate it on 32 downstream tasks for both 2D images and 3D volume data. Without fine-tuning, Frepa can outperform other self-supervised pretraining methods and, in some cases, even surpasses task-specific trained models. This improvement is particularly significant for tasks involving fine-grained details, such as achieving up to a +15% increase in DSC for retina vessel segmentation and a +7% increase in IoU for lung nodule detection. Further experiments quantitatively reveal that Frepa enables superior high-frequency representations and preservation in the embeddings, underscoring its potential for developing more generalized and universal medical image foundation models.
♻ ☆ EXACFS -- A CIL Method to mitigate Catastrophic Forgetting
Deep neural networks (DNNS) excel at learning from static datasets but struggle with continual learning, where data arrives sequentially. Catastrophic forgetting, the phenomenon of forgetting previously learned knowledge, is a primary challenge. This paper introduces EXponentially Averaged Class-wise Feature Significance (EXACFS) to mitigate this issue in the class incremental learning (CIL) setting. By estimating the significance of model features for each learned class using loss gradients, gradually aging the significance through the incremental tasks and preserving the significant features through a distillation loss, EXACFS effectively balances remembering old knowledge (stability) and learning new knowledge (plasticity). Extensive experiments on CIFAR-100 and ImageNet-100 demonstrate EXACFS's superior performance in preserving stability while acquiring plasticity.
♻ ☆ Saliency-Bench: A Comprehensive Benchmark for Evaluating Visual Explanations
Explainable AI (XAI) has gained significant attention for providing insights into the decision-making processes of deep learning models, particularly for image classification tasks through visual explanations visualized by saliency maps. Despite their success, challenges remain due to the lack of annotated datasets and standardized evaluation pipelines. In this paper, we introduce Saliency-Bench, a novel benchmark suite designed to evaluate visual explanations generated by saliency methods across multiple datasets. We curated, constructed, and annotated eight datasets, each covering diverse tasks such as scene classification, cancer diagnosis, object classification, and action classification, with corresponding ground-truth explanations. The benchmark includes a standardized and unified evaluation pipeline for assessing faithfulness and alignment of the visual explanation, providing a holistic visual explanation performance assessment. We benchmark these eight datasets with widely used saliency methods on different image classifier architectures to evaluate explanation quality. Additionally, we developed an easy-to-use API for automating the evaluation pipeline, from data accessing, and data loading, to result evaluation. The benchmark is available via our website: https://xaidataset.github.io.
♻ ☆ HiBug2: Efficient and Interpretable Error Slice Discovery for Comprehensive Model Debugging
Despite the significant success of deep learning models in computer vision, they often exhibit systematic failures on specific data subsets, known as error slices. Identifying and mitigating these error slices is crucial to enhancing model robustness and reliability in real-world scenarios. In this paper, we introduce HiBug2, an automated framework for error slice discovery and model repair. HiBug2 first generates task-specific visual attributes to highlight instances prone to errors through an interpretable and structured process. It then employs an efficient slice enumeration algorithm to systematically identify error slices, overcoming the combinatorial challenges that arise during slice exploration. Additionally, HiBug2 extends its capabilities by predicting error slices beyond the validation set, addressing a key limitation of prior approaches. Extensive experiments across multiple domains, including image classification, pose estimation, and object detection - show that HiBug2 not only improves the coherence and precision of identified error slices but also significantly enhances the model repair capabilities.
♻ ☆ VoCo-LLaMA: Towards Vision Compression with Large Language Models
Vision-Language Models (VLMs) have achieved remarkable success in various multi-modal tasks, but they are often bottlenecked by the limited context window and high computational cost of processing high-resolution image inputs and videos. Vision compression can alleviate this problem by reducing the vision token count. Previous approaches compress vision tokens with external modules and force LLMs to understand the compressed ones, leading to visual information loss. However, the LLMs' understanding paradigm of vision tokens is not fully utilised in the compression learning process. We propose VoCo-LLaMA, the first approach to compress vision tokens using LLMs. By introducing Vision Compression tokens during the vision instruction tuning phase and leveraging attention distillation, our method distill how LLMs comprehend vision tokens into their processing of VoCo tokens. VoCo-LLaMA facilitates effective vision compression and improves the computational efficiency during the inference stage. Specifically, our method achieves minimal performance loss with a compression ratio of 576$\times$, resulting in up to 94.8$\%$ fewer FLOPs and 69.6$\%$ acceleration in inference time. Furthermore, through continuous training using time-series compressed token sequences of video frames, VoCo-LLaMA demonstrates the ability to understand temporal correlations, outperforming previous methods on popular video question-answering benchmarks. Our approach presents a promising way to unlock the full potential of VLMs' contextual window, enabling more scalable multi-modal applications. The project page, along with the associated code, can be accessed via https://yxxxb.github.io/VoCo-LLaMA-page/.
comment: 11 pages, 4 figures
♻ ☆ Fast and Accurate Gigapixel Pathological Image Classification with Hierarchical Distillation Multi-Instance Learning CVPR2025
Although multi-instance learning (MIL) has succeeded in pathological image classification, it faces the challenge of high inference costs due to processing numerous patches from gigapixel whole slide images (WSIs). To address this, we propose HDMIL, a hierarchical distillation multi-instance learning framework that achieves fast and accurate classification by eliminating irrelevant patches. HDMIL consists of two key components: the dynamic multi-instance network (DMIN) and the lightweight instance pre-screening network (LIPN). DMIN operates on high-resolution WSIs, while LIPN operates on the corresponding low-resolution counterparts. During training, DMIN are trained for WSI classification while generating attention-score-based masks that indicate irrelevant patches. These masks then guide the training of LIPN to predict the relevance of each low-resolution patch. During testing, LIPN first determines the useful regions within low-resolution WSIs, which indirectly enables us to eliminate irrelevant regions in high-resolution WSIs, thereby reducing inference time without causing performance degradation. In addition, we further design the first Chebyshev-polynomials-based Kolmogorov-Arnold classifier in computational pathology, which enhances the performance of HDMIL through learnable activation layers. Extensive experiments on three public datasets demonstrate that HDMIL outperforms previous state-of-the-art methods, e.g., achieving improvements of 3.13% in AUC while reducing inference time by 28.6% on the Camelyon16 dataset.
comment: 11 pages, 4 figures, accepted by CVPR2025
GDTS: Goal-Guided Diffusion Model with Tree Sampling for Multi-Modal Pedestrian Trajectory Prediction
Accurate prediction of pedestrian trajectories is crucial for improving the safety of autonomous driving. However, this task is generally nontrivial due to the inherent stochasticity of human motion, which naturally requires the predictor to generate multi-modal prediction. Previous works leverage various generative methods, such as GAN and VAE, for pedestrian trajectory prediction. Nevertheless, these methods may suffer from mode collapse and relatively low-quality results. The denoising diffusion probabilistic model (DDPM) has recently been applied to trajectory prediction due to its simple training process and powerful reconstruction ability. However, current diffusion-based methods do not fully utilize input information and usually require many denoising iterations that lead to a long inference time or an additional network for initialization. To address these challenges and facilitate the use of diffusion models in multi-modal trajectory prediction, we propose GDTS, a novel Goal-Guided Diffusion Model with Tree Sampling for multi-modal trajectory prediction. Considering the "goal-driven" characteristics of human motion, GDTS leverages goal estimation to guide the generation of the diffusion network. A two-stage tree sampling algorithm is presented, which leverages common features to reduce the inference time and improve accuracy for multi-modal prediction. Experimental results demonstrate that our proposed framework achieves comparable state-of-the-art performance with real-time inference speed in public datasets.
♻ ☆ CromSS: Cross-modal pre-training with noisy labels for remote sensing image segmentation ICLR 2024
We explore the potential of large-scale noisily labeled data to enhance feature learning by pretraining semantic segmentation models within a multi-modal framework for geospatial applications. We propose a novel Cross-modal Sample Selection (CromSS) method, a weakly supervised pretraining strategy designed to improve feature representations through cross-modal consistency and noise mitigation techniques. Unlike conventional pretraining approaches, CromSS exploits massive amounts of noisy and easy-to-come-by labels for improved feature learning beneficial to semantic segmentation tasks. We investigate middle and late fusion strategies to optimize the multi-modal pretraining architecture design. We also introduce a cross-modal sample selection module to mitigate the adverse effects of label noise, which employs a cross-modal entangling strategy to refine the estimated confidence masks within each modality to guide the sampling process. Additionally, we introduce a spatial-temporal label smoothing technique to counteract overconfidence for enhanced robustness against noisy labels. To validate our approach, we assembled the multi-modal dataset, NoLDO-S12, which consists of a large-scale noisy label subset from Google's Dynamic World (DW) dataset for pretraining and two downstream subsets with high-quality labels from Google DW and OpenStreetMap (OSM) for transfer learning. Experimental results on two downstream tasks and the publicly available DFC2020 dataset demonstrate that when effectively utilized, the low-cost noisy labels can significantly enhance feature learning for segmentation tasks. All data, code, and pretrained weights will be made publicly available.
comment: The 1st short version was accepted as an oral presentation by ICLR 2024 ML4RS workshop. The 2nd extended version is being under review
♻ ☆ Doracamom: Joint 3D Detection and Occupancy Prediction with Multi-view 4D Radars and Cameras for Omnidirectional Perception
3D object detection and occupancy prediction are critical tasks in autonomous driving, attracting significant attention. Despite the potential of recent vision-based methods, they encounter challenges under adverse conditions. Thus, integrating cameras with next-generation 4D imaging radar to achieve unified multi-task perception is highly significant, though research in this domain remains limited. In this paper, we propose Doracamom, the first framework that fuses multi-view cameras and 4D radar for joint 3D object detection and semantic occupancy prediction, enabling comprehensive environmental perception. Specifically, we introduce a novel Coarse Voxel Queries Generator that integrates geometric priors from 4D radar with semantic features from images to initialize voxel queries, establishing a robust foundation for subsequent Transformer-based refinement. To leverage temporal information, we design a Dual-Branch Temporal Encoder that processes multi-modal temporal features in parallel across BEV and voxel spaces, enabling comprehensive spatio-temporal representation learning. Furthermore, we propose a Cross-Modal BEV-Voxel Fusion module that adaptively fuses complementary features through attention mechanisms while employing auxiliary tasks to enhance feature quality. Extensive experiments on the OmniHD-Scenes, View-of-Delft (VoD), and TJ4DRadSet datasets demonstrate that Doracamom achieves state-of-the-art performance in both tasks, establishing new benchmarks for multi-modal 3D perception. Code and models will be publicly available.
♻ ☆ ADUGS-VINS: Generalized Visual-Inertial Odometry for Robust Navigation in Highly Dynamic and Complex Environments
Visual-inertial odometry (VIO) is widely used in various fields, such as robots, drones, and autonomous vehicles. However, real-world scenes often feature dynamic objects, compromising the accuracy of VIO. The diversity and partial occlusion of these objects present a tough challenge for existing dynamic VIO methods. To tackle this challenge, we introduce ADUGS-VINS, which integrates an enhanced SORT algorithm along with a promptable foundation model into VIO, thereby improving pose estimation accuracy in environments with diverse dynamic objects and frequent occlusions. We evaluated our proposed method using multiple public datasets representing various scenes, as well as in a real-world scenario involving diverse dynamic objects. The experimental results demonstrate that our proposed method performs impressively in multiple scenarios, outperforming other state-of-the-art methods. This highlights its remarkable generalization and adaptability in diverse dynamic environments, showcasing its potential to handle various dynamic objects in practical applications.
♻ ☆ Locality-aware Gaussian Compression for Fast and High-quality Rendering ICLR 2025
We present LocoGS, a locality-aware 3D Gaussian Splatting (3DGS) framework that exploits the spatial coherence of 3D Gaussians for compact modeling of volumetric scenes. To this end, we first analyze the local coherence of 3D Gaussian attributes, and propose a novel locality-aware 3D Gaussian representation that effectively encodes locally-coherent Gaussian attributes using a neural field representation with a minimal storage requirement. On top of the novel representation, LocoGS is carefully designed with additional components such as dense initialization, an adaptive spherical harmonics bandwidth scheme and different encoding schemes for different Gaussian attributes to maximize compression performance. Experimental results demonstrate that our approach outperforms the rendering quality of existing compact Gaussian representations for representative real-world 3D datasets while achieving from 54.6$\times$ to 96.6$\times$ compressed storage size and from 2.1$\times$ to 2.4$\times$ rendering speed than 3DGS. Even our approach also demonstrates an averaged 2.4$\times$ higher rendering speed than the state-of-the-art compression method with comparable compression performance.
comment: Accepted to ICLR 2025. Project page: https://seungjooshin.github.io/LocoGS
♻ ☆ RALAD: Bridging the Real-to-Sim Domain Gap in Autonomous Driving with Retrieval-Augmented Learning
In the pursuit of robust autonomous driving systems, models trained on real-world datasets often struggle to adapt to new environments, particularly when confronted with corner cases such as extreme weather conditions. Collecting these corner cases in the real world is non-trivial, which necessitates the use of simulators for validation. However,the high computational cost and the domain gap in data distribution have hindered the seamless transition between real and simulated driving scenarios. To tackle this challenge, we propose Retrieval-Augmented Learning for Autonomous Driving (RALAD), a novel framework designed to bridge the real-to-sim gap at a low cost. RALAD features three primary designs, including (1) domain adaptation via an enhanced Optimal Transport (OT) method that accounts for both individual and grouped image distances, (2) a simple and unified framework that can be applied to various models, and (3) efficient fine-tuning techniques that freeze the computationally expensive layers while maintaining robustness. Experimental results demonstrate that RALAD compensates for the performance degradation in simulated environments while maintaining accuracy in real-world scenarios across three different models. Taking Cross View as an example, the mIOU and mAP metrics in real-world scenarios remain stable before and after RALAD fine-tuning, while in simulated environments,the mIOU and mAP metrics are improved by 10.30% and 12.29%, respectively. Moreover, the re-training cost of our approach is reduced by approximately 88.1%. Our code is available at https://github.com/JiachengZuo/RALAD.git.
♻ ☆ Cross-Spectral Vision Transformer for Biometric Authentication using Forehead Subcutaneous Vein Pattern and Periocular Pattern
Traditional biometric systems have encountered significant setbacks due to various unavoidable factors, for example, face recognition-based biometrics fails due to the wearing of face masks and fingerprints create hygiene concerns. This paper proposes a novel lightweight cross-spectral vision transformer (CS-ViT) for biometric authentication using forehead subcutaneous vein patterns and periocular patterns, offering a promising alternative to traditional methods, capable of performing well even with the face masks and without any physical touch. The proposed framework comprises a cross-spectral dual-channel architecture designed to handle two distinct biometric traits and to capture inter-dependencies in terms of relative spectral patterns. Each channel consists of a Phase-Only Correlation Cross-Spectral Attention (POC-CSA) that captures their individual as well as correlated patterns. The computation of cross-spectral attention using POC extracts the phase correlation in the spatial features. Therefore, it is robust against the resolution/intensity variations and illumination of the input images, assuming both biometric traits are from the same person. The lightweight model is suitable for edge device deployment. The performance of the proposed algorithm was rigorously evaluated using the Forehead Subcutaneous Vein Pattern and Periocular Biometric Pattern (FSVP-PBP) database. The results demonstrated the superiority of the algorithm over state-of-the-art methods, achieving a remarkable classification accuracy of 98.8% with the combined vein and periocular patterns.
comment: Submitted to IEEE TPAMI
♻ ☆ Representation Engineering: A Top-Down Approach to AI Transparency
In this paper, we identify and characterize the emerging area of representation engineering (RepE), an approach to enhancing the transparency of AI systems that draws on insights from cognitive neuroscience. RepE places population-level representations, rather than neurons or circuits, at the center of analysis, equipping us with novel methods for monitoring and manipulating high-level cognitive phenomena in deep neural networks (DNNs). We provide baselines and an initial analysis of RepE techniques, showing that they offer simple yet effective solutions for improving our understanding and control of large language models. We showcase how these methods can provide traction on a wide range of safety-relevant problems, including honesty, harmlessness, power-seeking, and more, demonstrating the promise of top-down transparency research. We hope that this work catalyzes further exploration of RepE and fosters advancements in the transparency and safety of AI systems.
comment: Code is available at https://github.com/andyzoujm/representation-engineering
♻ ☆ Low-Biased General Annotated Dataset Generation
Pre-training backbone networks on a general annotated dataset (e.g., ImageNet) that comprises numerous manually collected images with category annotations has proven to be indispensable for enhancing the generalization capacity of downstream visual tasks. However, those manually collected images often exhibit bias, which is non-transferable across either categories or domains, thus causing the model's generalization capacity degeneration. To mitigate this problem, we present an low-biased general annotated dataset generation framework (lbGen). Instead of expensive manual collection, we aim at directly generating low-biased images with category annotations. To achieve this goal, we propose to leverage the advantage of a multimodal foundation model (e.g., CLIP), in terms of aligning images in an low-biased semantic space defined by language. Specifically, we develop a bi-level semantic alignment loss, which not only forces all generated images to be consistent with the semantic distribution of all categories belonging to the target dataset in an adversarial learning manner, but also requires each generated image to match the semantic description of its category name. In addition, we further cast an existing image quality scoring model into a quality assurance loss to preserve the quality of the generated image. By leveraging these two loss functions, we can obtain an low-biased image generation model by simply fine-tuning a pre-trained diffusion model using only all category names in the target dataset as input. Experimental results confirm that, compared with the manually labeled dataset or other synthetic datasets, the utilization of our generated low-biased datasets leads to stable generalization capacity enhancement of different backbone networks across various tasks, especially in tasks where the manually labeled samples are scarce.
comment: Preprint
♻ ☆ Structural-Entropy-Based Sample Selection for Efficient and Effective Learning ICLR 2025
Sample selection improves the efficiency and effectiveness of machine learning models by providing informative and representative samples. Typically, samples can be modeled as a sample graph, where nodes are samples and edges represent their similarities. Most existing methods are based on local information, such as the training difficulty of samples, thereby overlooking global information, such as connectivity patterns. This oversight can result in suboptimal selection because global information is crucial for ensuring that the selected samples well represent the structural properties of the graph. To address this issue, we employ structural entropy to quantify global information and losslessly decompose it from the whole graph to individual nodes using the Shapley value. Based on the decomposition, we present $\textbf{S}$tructural-$\textbf{E}$ntropy-based sample $\textbf{S}$election ($\textbf{SES}$), a method that integrates both global and local information to select informative and representative samples. SES begins by constructing a $k$NN-graph among samples based on their similarities. It then measures sample importance by combining structural entropy (global metric) with training difficulty (local metric). Finally, SES applies importance-biased blue noise sampling to select a set of diverse and representative samples. Comprehensive experiments on three learning scenarios -- supervised learning, active learning, and continual learning -- clearly demonstrate the effectiveness of our method.
comment: Published as a conference paper at ICLR 2025
♻ ☆ Dynamic Gaussians Mesh: Consistent Mesh Reconstruction from Dynamic Scenes
Modern 3D engines and graphics pipelines require mesh as a memory-efficient representation, which allows efficient rendering, geometry processing, texture editing, and many other downstream operations. However, it is still highly difficult to obtain high-quality mesh in terms of detailed structure and time consistency from dynamic observations. To this end, we introduce Dynamic Gaussians Mesh (DG-Mesh), a framework to reconstruct a high-fidelity and time-consistent mesh from dynamic input. Our work leverages the recent advancement in 3D Gaussian Splatting to construct the mesh sequence with temporal consistency from dynamic observations. Building on top of this representation, DG-Mesh recovers high-quality meshes from the Gaussian points and can track the mesh vertices over time, which enables applications such as texture editing on dynamic objects. We introduce the Gaussian-Mesh Anchoring, which encourages evenly distributed Gaussians, resulting better mesh reconstruction through mesh-guided densification and pruning on the deformed Gaussians. By applying cycle-consistent deformation between the canonical and the deformed space, we can project the anchored Gaussian back to the canonical space and optimize Gaussians across all time frames. During the evaluation on different datasets, DG-Mesh provides significantly better mesh reconstruction and rendering than baselines. Project page: https://www.liuisabella.com/DG-Mesh
comment: Project page: https://www.liuisabella.com/DG-Mesh
ESVO2: Direct Visual-Inertial Odometry with Stereo Event Cameras
Event-based visual odometry is a specific branch of visual Simultaneous Localization and Mapping (SLAM) techniques, which aims at solving tracking and mapping subproblems (typically in parallel), by exploiting the special working principles of neuromorphic (i.e., event-based) cameras. Due to the motion-dependent nature of event data, explicit data association (i.e., feature matching) under large-baseline view-point changes is difficult to establish, making direct methods a more rational choice. However, state-of-the-art direct methods are limited by the high computational complexity of the mapping sub-problem and the degeneracy of camera pose tracking in certain degrees of freedom (DoF) in rotation. In this paper, we tackle these issues by building an event-based stereo visual-inertial odometry system on top of a direct pipeline. Specifically, to speed up the mapping operation, we propose an efficient strategy for sampling contour points according to the local dynamics of events. The mapping performance is also improved in terms of structure completeness and local smoothness by merging the temporal stereo and static stereo results. To circumvent the degeneracy of camera pose tracking in recovering the pitch and yaw components of general 6-DoF motion, we introduce IMU measurements as motion priors via pre-integration. To this end, a compact back-end is proposed for continuously updating the IMU bias and predicting the linear velocity, enabling an accurate motion prediction for camera pose tracking. The resulting system scales well with modern high-resolution event cameras and leads to better global positioning accuracy in large-scale outdoor environments. Extensive evaluations on five publicly available datasets featuring different resolutions and scenarios justify the superior performance of the proposed system against five state-of-the-art methods.
♻ ☆ OMG: Opacity Matters in Material Modeling with Gaussian Splatting ICLR 2025
Decomposing geometry, materials and lighting from a set of images, namely inverse rendering, has been a long-standing problem in computer vision and graphics. Recent advances in neural rendering enable photo-realistic and plausible inverse rendering results. The emergence of 3D Gaussian Splatting has boosted it to the next level by showing real-time rendering potentials. An intuitive finding is that the models used for inverse rendering do not take into account the dependency of opacity w.r.t. material properties, namely cross section, as suggested by optics. Therefore, we develop a novel approach that adds this dependency to the modeling itself. Inspired by radiative transfer, we augment the opacity term by introducing a neural network that takes as input material properties to provide modeling of cross section and a physically correct activation function. The gradients for material properties are therefore not only from color but also from opacity, facilitating a constraint for their optimization. Therefore, the proposed method incorporates more accurate physical properties compared to previous works. We implement our method into 3 different baselines that use Gaussian Splatting for inverse rendering and achieve significant improvements universally in terms of novel view synthesis and material modeling.
comment: Published as a conference paper at ICLR 2025
♻ ☆ PATCH: a deep learning method to assess heterogeneity of artistic practice in historical paintings
The history of art has seen significant shifts in the manner in which artworks are created, making understanding of creative processes a central question in technical art history. In the Renaissance and Early Modern period, paintings were largely produced by master painters directing workshops of apprentices who often contributed to projects. The masters varied significantly in artistic and managerial styles, meaning different combinations of artists and implements might be seen both between masters and within workshops or even individual canvases. Information on how different workshops were managed and the processes by which artworks were created remains elusive. Machine learning methods have potential to unearth new information about artists' creative processes by extending the analysis of brushwork to a microscopic scale. Analysis of workshop paintings, however, presents a challenge in that documentation of the artists and materials involved is sparse, meaning external examples are not available to train networks to recognize their contributions. Here we present a novel machine learning approach we call pairwise assignment training for classifying heterogeneity (PATCH) that is capable of identifying individual artistic practice regimes with no external training data, or "ground truth." The method achieves unsupervised results by supervised means, and outperforms both simple statistical procedures and unsupervised machine learning methods. We apply this method to two historical paintings by the Spanish Renaissance master, El Greco: The Baptism of Christ and Christ on the Cross with Landscape, and our findings regarding the former potentially challenge previous work that has assigned the painting to workshop members. Further, the results of our analyses create a measure of heterogeneity of artistic practice that can be used to characterize artworks across time and space.
comment: main text: 16 pages, 6 figures; SI: 7 pages, 3 figures; v2: minor typo corrections, higher resolution figures
♻ ☆ S-NeRF++: Autonomous Driving Simulation via Neural Reconstruction and Generation
Autonomous driving simulation system plays a crucial role in enhancing self-driving data and simulating complex and rare traffic scenarios, ensuring navigation safety. However, traditional simulation systems, which often heavily rely on manual modeling and 2D image editing, struggled with scaling to extensive scenes and generating realistic simulation data. In this study, we present S-NeRF++, an innovative autonomous driving simulation system based on neural reconstruction. Trained on widely-used self-driving datasets such as nuScenes and Waymo, S-NeRF++ can generate a large number of realistic street scenes and foreground objects with high rendering quality as well as offering considerable flexibility in manipulation and simulation. Specifically, S-NeRF++ is an enhanced neural radiance field for synthesizing large-scale scenes and moving vehicles, with improved scene parameterization and camera pose learning. The system effectively utilizes noisy and sparse LiDAR data to refine training and address depth outliers, ensuring high-quality reconstruction and novel-view rendering. It also provides a diverse foreground asset bank by reconstructing and generating different foreground vehicles to support comprehensive scenario creation.Moreover, we have developed an advanced foreground-background fusion pipeline that skillfully integrates illumination and shadow effects, further enhancing the realism of our simulations. With the high-quality simulated data provided by our S-NeRF++, we found the perception methods enjoy performance boosts on several autonomous driving downstream tasks, further demonstrating our proposed simulator's effectiveness.
comment: IEEE TPAMI 2025
♻ ☆ AdvLogo: Adversarial Patch Attack against Object Detectors based on Diffusion Models
With the rapid development of deep learning, object detectors have demonstrated impressive performance; however, vulnerabilities still exist in certain scenarios. Current research exploring the vulnerabilities using adversarial patches often struggles to balance the trade-off between attack effectiveness and visual quality. To address this problem, we propose a novel framework of patch attack from semantic perspective, which we refer to as AdvLogo. Based on the hypothesis that every semantic space contains an adversarial subspace where images can cause detectors to fail in recognizing objects, we leverage the semantic understanding of the diffusion denoising process and drive the process to adversarial subareas by perturbing the latent and unconditional embeddings at the last timestep. To mitigate the distribution shift that exposes a negative impact on image quality, we apply perturbation to the latent in frequency domain with the Fourier Transform. Experimental results demonstrate that AdvLogo achieves strong attack performance while maintaining high visual quality.
♻ ☆ DynamicCity: Large-Scale 4D Occupancy Generation from Dynamic Scenes ICLR 2025
Urban scene generation has been developing rapidly recently. However, existing methods primarily focus on generating static and single-frame scenes, overlooking the inherently dynamic nature of real-world driving environments. In this work, we introduce DynamicCity, a novel 4D occupancy generation framework capable of generating large-scale, high-quality dynamic 4D scenes with semantics. DynamicCity mainly consists of two key models. 1) A VAE model for learning HexPlane as the compact 4D representation. Instead of using naive averaging operations, DynamicCity employs a novel Projection Module to effectively compress 4D features into six 2D feature maps for HexPlane construction, which significantly enhances HexPlane fitting quality (up to 12.56 mIoU gain). Furthermore, we utilize an Expansion & Squeeze Strategy to reconstruct 3D feature volumes in parallel, which improves both network training efficiency and reconstruction accuracy than naively querying each 3D point (up to 7.05 mIoU gain, 2.06x training speedup, and 70.84% memory reduction). 2) A DiT-based diffusion model for HexPlane generation. To make HexPlane feasible for DiT generation, a Padded Rollout Operation is proposed to reorganize all six feature planes of the HexPlane as a squared 2D feature map. In particular, various conditions could be introduced in the diffusion or sampling process, supporting versatile 4D generation applications, such as trajectory- and command-driven generation, inpainting, and layout-conditioned generation. Extensive experiments on the CarlaSC and Waymo datasets demonstrate that DynamicCity significantly outperforms existing state-of-the-art 4D occupancy generation methods across multiple metrics. The code and models have been released to facilitate future research.
comment: ICLR 2025 Spotlight; 35 pages, 18 figures, 15 tables; Project Page at https://dynamic-city.github.io/
♻ ☆ Calib3D: Calibrating Model Preferences for Reliable 3D Scene Understanding WACV 2025
Safety-critical 3D scene understanding tasks necessitate not only accurate but also confident predictions from 3D perception models. This study introduces Calib3D, a pioneering effort to benchmark and scrutinize the reliability of 3D scene understanding models from an uncertainty estimation viewpoint. We comprehensively evaluate 28 state-of-the-art models across 10 diverse 3D datasets, uncovering insightful phenomena that cope with both the aleatoric and epistemic uncertainties in 3D scene understanding. We discover that despite achieving impressive levels of accuracy, existing models frequently fail to provide reliable uncertainty estimates -- a pitfall that critically undermines their applicability in safety-sensitive contexts. Through extensive analysis of key factors such as network capacity, LiDAR representations, rasterization resolutions, and 3D data augmentation techniques, we correlate these aspects directly with the model calibration efficacy. Furthermore, we introduce DeptS, a novel depth-aware scaling approach aimed at enhancing 3D model calibration. Extensive experiments across a wide range of configurations validate the superiority of our method. We hope this work could serve as a cornerstone for fostering reliable 3D scene understanding. Code and benchmark toolkit are publicly available.
comment: WACV 2025 Oral; 26 pages, 8 figures, 12 tables; Code at https://github.com/ldkong1205/Calib3D
♻ ☆ Tuning Timestep-Distilled Diffusion Model Using Pairwise Sample Optimization
Recent advancements in timestep-distilled diffusion models have enabled high-quality image generation that rivals non-distilled multi-step models, but with significantly fewer inference steps. While such models are attractive for applications due to the low inference cost and latency, fine-tuning them with a naive diffusion objective would result in degraded and blurry outputs. An intuitive alternative is to repeat the diffusion distillation process with a fine-tuned teacher model, which produces good results but is cumbersome and computationally intensive; the distillation training usually requires magnitude higher of training compute compared to fine-tuning for specific image styles. In this paper, we present an algorithm named pairwise sample optimization (PSO), which enables the direct fine-tuning of an arbitrary timestep-distilled diffusion model. PSO introduces additional reference images sampled from the current time-step distilled model, and increases the relative likelihood margin between the training images and reference images. This enables the model to retain its few-step generation ability, while allowing for fine-tuning of its output distribution. We also demonstrate that PSO is a generalized formulation which can be flexibly extended to both offline-sampled and online-sampled pairwise data, covering various popular objectives for diffusion model preference optimization. We evaluate PSO in both preference optimization and other fine-tuning tasks, including style transfer and concept customization. We show that PSO can directly adapt distilled models to human-preferred generation with both offline and online-generated pairwise preference image data. PSO also demonstrates effectiveness in style transfer and concept customization by directly tuning timestep-distilled diffusion models.
♻ ☆ FlexDrive: Toward Trajectory Flexibility in Driving Scene Reconstruction and Rendering
Driving scene reconstruction and rendering have advanced significantly using the 3D Gaussian Splatting. However, most prior research has focused on the rendering quality along a pre-recorded vehicle path and struggles to generalize to out-of-path viewpoints, which is caused by the lack of high-quality supervision in those out-of-path views. To address this issue, we introduce an Inverse View Warping technique to create compact and high-quality images as supervision for the reconstruction of the out-of-path views, enabling high-quality rendering results for those views. For accurate and robust inverse view warping, a depth bootstrap strategy is proposed to obtain on-the-fly dense depth maps during the optimization process, overcoming the sparsity and incompleteness of LiDAR depth data. Our method achieves superior in-path and out-of-path reconstruction and rendering performance on the widely used Waymo Open dataset. In addition, a simulator-based benchmark is proposed to obtain the out-of-path ground truth and quantitatively evaluate the performance of out-of-path rendering, where our method outperforms previous methods by a significant margin.
♻ ☆ Semantically Structured Image Compression via Irregular Group-Based Decoupling ICCV2023
Image compression techniques typically focus on compressing rectangular images for human consumption, however, resulting in transmitting redundant content for downstream applications. To overcome this limitation, some previous works propose to semantically structure the bitstream, which can meet specific application requirements by selective transmission and reconstruction. Nevertheless, they divide the input image into multiple rectangular regions according to semantics and ignore avoiding information interaction among them, causing waste of bitrate and distorted reconstruction of region boundaries. In this paper, we propose to decouple an image into multiple groups with irregular shapes based on a customized group mask and compress them independently. Our group mask describes the image at a finer granularity, enabling significant bitrate saving by reducing the transmission of redundant content. Moreover, to ensure the fidelity of selective reconstruction, this paper proposes the concept of group-independent transform that maintain the independence among distinct groups. And we instantiate it by the proposed Group-Independent Swin-Block (GI Swin-Block). Experimental results demonstrate that our framework structures the bitstream with negligible cost, and exhibits superior performance on both visual quality and intelligent task supporting.
comment: Accept by ICCV2023
♻ ☆ Learning to Learn Weight Generation via Trajectory Diffusion
Diffusion-based algorithms have emerged as promising techniques for weight generation, particularly in scenarios like multi-task learning that require frequent weight updates. However, existing solutions suffer from limited cross-task transferability. In addition, they only utilize optimal weights as training samples, ignoring the value of other weights in the optimization process. To address these issues, we propose Lt-Di, which integrates the diffusion algorithm with meta-learning to generate weights for unseen tasks. Furthermore, we extend the vanilla diffusion algorithm into a trajectory diffusion algorithm to utilize other weights along the optimization trajectory. Trajectory diffusion decomposes the entire diffusion chain into multiple shorter ones, improving training and inference efficiency. We analyze the convergence properties of the weight generation paradigm and improve convergence efficiency without additional time overhead. Our experiments demonstrate Lt-Di's higher accuracy while reducing computational overhead across various tasks, including zero-shot and few-shot learning, multi-domain generalization, and large-scale language model fine-tuning.Our code is released at https://anonymous.4open.science/r/Lt-Di-0E51.
♻ ☆ Multi-modal AI for comprehensive breast cancer prognostication
Treatment selection in breast cancer is guided by molecular subtypes and clinical characteristics. However, current tools including genomic assays lack the accuracy required for optimal clinical decision-making. We developed a novel artificial intelligence (AI)-based approach that integrates digital pathology images with clinical data, providing a more robust and effective method for predicting the risk of cancer recurrence in breast cancer patients. Specifically, we utilized a vision transformer pan-cancer foundation model trained with self-supervised learning to extract features from digitized H&E-stained slides. These features were integrated with clinical data to form a multi-modal AI test predicting cancer recurrence and death. The test was developed and evaluated using data from a total of 8,161 female breast cancer patients across 15 cohorts originating from seven countries. Of these, 3,502 patients from five cohorts were used exclusively for evaluation, while the remaining patients were used for training. Our test accurately predicted our primary endpoint, disease-free interval, in the five evaluation cohorts (C-index: 0.71 [0.68-0.75], HR: 3.63 [3.02-4.37, p<0.001]). In a direct comparison (n=858), the AI test was more accurate than Oncotype DX, the standard-of-care 21-gene assay, achieving a C-index of 0.67 [0.61-0.74] versus 0.61 [0.49-0.73], respectively. Additionally, the AI test added independent prognostic information to Oncotype DX in a multivariate analysis (HR: 3.11 [1.91-5.09, p<0.001)]). The test demonstrated robust accuracy across major molecular breast cancer subtypes, including TNBC (C-index: 0.71 [0.62-0.81], HR: 3.81 [2.35-6.17, p=0.02]), where no diagnostic tools are currently recommended by clinical guidelines. These results suggest that our AI test improves upon the accuracy of existing prognostic tests, while being applicable to a wider range of patients.
♻ ☆ GAMED-Snake: Gradient-aware Adaptive Momentum Evolution Deep Snake Model for Multi-organ Segmentation
Multi-organ segmentation is a critical yet challenging task due to complex anatomical backgrounds, blurred boundaries, and diverse morphologies. This study introduces the Gradient-aware Adaptive Momentum Evolution Deep Snake (GAMED-Snake) model, which establishes a novel paradigm for contour-based segmentation by integrating gradient-based learning with adaptive momentum evolution mechanisms. The GAMED-Snake model incorporates three major innovations: First, the Distance Energy Map Prior (DEMP) generates a pixel-level force field that effectively attracts contour points towards the true boundaries, even in scenarios with complex backgrounds and blurred edges. Second, the Differential Convolution Inception Module (DCIM) precisely extracts comprehensive energy gradients, significantly enhancing segmentation accuracy. Third, the Adaptive Momentum Evolution Mechanism (AMEM) employs cross-attention to establish dynamic features across different iterations of evolution, enabling precise boundary alignment for diverse morphologies. Experimental results on four challenging multi-organ segmentation datasets demonstrate that GAMED-Snake improves the mDice metric by approximately 2% compared to state-of-the-art methods. Code will be available at https://github.com/SYSUzrc/GAMED-Snake.
♻ ☆ Noise2Score3D:Unsupervised Tweedie's Approach for Point Cloud Denoising
Building on recent advances in Bayesian statistics and image denoising, we propose Noise2Score3D, a fully unsupervised framework for point cloud denoising that addresses the critical challenge of limited availability of clean data. Noise2Score3D learns the gradient of the underlying point cloud distribution directly from noisy data, eliminating the need for clean data during training. By leveraging Tweedie's formula, our method performs inference in a single step, avoiding the iterative processes used in existing unsupervised methods, thereby improving both performance and efficiency. Experimental results demonstrate that Noise2Score3D achieves state-of-the-art performance on standard benchmarks, outperforming other unsupervised methods in Chamfer distance and point-to-mesh metrics, and rivaling some supervised approaches. Furthermore, Noise2Score3D demonstrates strong generalization ability beyond training datasets. Additionally, we introduce Total Variation for Point Cloud, a criterion that allows for the estimation of unknown noise parameters, which further enhances the method's versatility and real-world utility.
♻ ☆ MMed-RAG: Versatile Multimodal RAG System for Medical Vision Language Models ICLR 2025
Artificial Intelligence (AI) has demonstrated significant potential in healthcare, particularly in disease diagnosis and treatment planning. Recent progress in Medical Large Vision-Language Models (Med-LVLMs) has opened up new possibilities for interactive diagnostic tools. However, these models often suffer from factual hallucination, which can lead to incorrect diagnoses. Fine-tuning and retrieval-augmented generation (RAG) have emerged as methods to address these issues. However, the amount of high-quality data and distribution shifts between training data and deployment data limit the application of fine-tuning methods. Although RAG is lightweight and effective, existing RAG-based approaches are not sufficiently general to different medical domains and can potentially cause misalignment issues, both between modalities and between the model and the ground truth. In this paper, we propose a versatile multimodal RAG system, MMed-RAG, designed to enhance the factuality of Med-LVLMs. Our approach introduces a domain-aware retrieval mechanism, an adaptive retrieved contexts selection method, and a provable RAG-based preference fine-tuning strategy. These innovations make the RAG process sufficiently general and reliable, significantly improving alignment when introducing retrieved contexts. Experimental results across five medical datasets (involving radiology, ophthalmology, pathology) on medical VQA and report generation demonstrate that MMed-RAG can achieve an average improvement of 43.8% in the factual accuracy of Med-LVLMs. Our data and code are available in https://github.com/richard-peng-xia/MMed-RAG.
comment: ICLR 2025
♻ ☆ Towards Generalizable Scene Change Detection CVPR 2025
While current state-of-the-art Scene Change Detection (SCD) approaches achieve impressive results in well-trained research data, they become unreliable under unseen environments and different temporal conditions; in-domain performance drops from 77.6\% to 8.0\% in a previously unseen environment and to 4.6\% under a different temporal condition -- calling for generalizable SCD and benchmark. In this work, we propose the Generalizable Scene Change Detection Framework (GeSCF), which addresses unseen domain performance and temporal consistency -- to meet the growing demand for anything SCD. Our method leverages the pre-trained Segment Anything Model (SAM) in a zero-shot manner. For this, we design Initial Pseudo-mask Generation and Geometric-Semantic Mask Matching -- seamlessly turning user-guided prompt and single-image based segmentation into scene change detection for a pair of inputs without guidance. Furthermore, we define the Generalizable Scene Change Detection (GeSCD) benchmark along with novel metrics and an evaluation protocol to facilitate SCD research in generalizability. In the process, we introduce the ChangeVPR dataset, a collection of challenging image pairs with diverse environmental scenarios -- including urban, suburban, and rural settings. Extensive experiments across various datasets demonstrate that GeSCF achieves an average performance gain of 19.2\% on existing SCD datasets and 30.0\% on the ChangeVPR dataset, nearly doubling the prior art performance. We believe our work can lay a solid foundation for robust and generalizable SCD research.
comment: Manuscript. Accepted to CVPR 2025
♻ ☆ MAA: Meticulous Adversarial Attack against Vision-Language Pre-trained Models
Current adversarial attacks for evaluating the robustness of vision-language pre-trained (VLP) models in multi-modal tasks suffer from limited transferability, where attacks crafted for a specific model often struggle to generalize effectively across different models, limiting their utility in assessing robustness more broadly. This is mainly attributed to the over-reliance on model-specific features and regions, particularly in the image modality. In this paper, we propose an elegant yet highly effective method termed Meticulous Adversarial Attack (MAA) to fully exploit model-independent characteristics and vulnerabilities of individual samples, achieving enhanced generalizability and reduced model dependence. MAA emphasizes fine-grained optimization of adversarial images by developing a novel resizing and sliding crop (RScrop) technique, incorporating a multi-granularity similarity disruption (MGSD) strategy. Extensive experiments across diverse VLP models, multiple benchmark datasets, and a variety of downstream tasks demonstrate that MAA significantly enhances the effectiveness and transferability of adversarial attacks. A large cohort of performance studies is conducted to generate insights into the effectiveness of various model configurations, guiding future advancements in this domain.
♻ ☆ RobotFingerPrint: Unified Gripper Coordinate Space for Multi-Gripper Grasp Synthesis and Transfer
We introduce a novel grasp representation named the Unified Gripper Coordinate Space (UGCS) for grasp synthesis and grasp transfer. Our representation leverages spherical coordinates to create a shared coordinate space across different robot grippers, enabling it to synthesize and transfer grasps for both novel objects and previously unseen grippers. The strength of this representation lies in the ability to map palm and fingers of a gripper and the unified coordinate space. Grasp synthesis is formulated as predicting the unified spherical coordinates on object surface points via a conditional variational autoencoder. The predicted unified gripper coordinates establish exact correspondences between the gripper and object points, which is used to optimize grasp pose and joint values. Grasp transfer is facilitated through the point-to-point correspondence between any two (potentially unseen) grippers and solved via a similar optimization. Extensive simulation and real-world experiments showcase the efficacy of the unified grasp representation for grasp synthesis in generating stable and diverse grasps. Similarly, we showcase real-world grasp transfer from human demonstrations across different objects.
comment: 8 pages, 11 figures, 3 tables. Project page available at https://irvlutd.github.io/RobotFingerPrint
♻ ☆ The Labyrinth of Links: Navigating the Associative Maze of Multi-modal LLMs ICLR 2025
Multi-modal Large Language Models (MLLMs) have exhibited impressive capability. However, recently many deficiencies of MLLMs have been found compared to human intelligence, $\textit{e.g.}$, hallucination. To drive the MLLMs study, the community dedicated efforts to building larger benchmarks with complex tasks. In this paper, we propose benchmarking an essential but usually overlooked intelligence: $\textbf{association}$, a human's basic capability to link observation and prior practice memory. To comprehensively investigate MLLM's performance on the association, we formulate the association task and devise a standard benchmark based on adjective and verb semantic concepts. Instead of costly data annotation and curation, we propose a convenient $\textbf{annotation-free}$ construction method transforming the general dataset for our association tasks. Simultaneously, we devise a rigorous data refinement process to eliminate confusion in the raw dataset. Building on this database, we establish three levels of association tasks: single-step, synchronous, and asynchronous associations. Moreover, we conduct a comprehensive investigation into the MLLMs' zero-shot association capabilities, addressing multiple dimensions, including three distinct memory strategies, both open-source and closed-source MLLMs, cutting-edge Mixture-of-Experts (MoE) models, and the involvement of human experts. Our systematic investigation shows that current open-source MLLMs consistently exhibit poor capability in our association tasks, even the currently state-of-the-art GPT-4V(vision) also has a significant gap compared to humans. We believe our benchmark would pave the way for future MLLM studies. $\textit{Our data and code are available at:}$ https://mvig-rhos.com/llm_inception.
comment: Accepted by ICLR 2025. Project page: https://mvig-rhos.com/llm_inception
♻ ☆ Self-Supervised Contrastive Learning for Videos using Differentiable Local Alignment BMVC
Robust frame-wise embeddings are essential to perform video analysis and understanding tasks. We present a self-supervised method for representation learning based on aligning temporal video sequences. Our framework uses a transformer-based encoder to extract frame-level features and leverages them to find the optimal alignment path between video sequences. We introduce the novel Local-Alignment Contrastive (LAC) loss, which combines a differentiable local alignment loss to capture local temporal dependencies with a contrastive loss to enhance discriminative learning. Prior works on video alignment have focused on using global temporal ordering across sequence pairs, whereas our loss encourages identifying the best-scoring subsequence alignment. LAC uses the differentiable Smith-Waterman (SW) affine method, which features a flexible parameterization learned through the training phase, enabling the model to adjust the temporal gap penalty length dynamically. Evaluations show that our learned representations outperform existing state-of-the-art approaches on action recognition tasks.
comment: Accepted in 2nd Workshop on Video Understanding and its Applications, held in conjunction with the British Machine Vision Conference (BMVC) 2024
Artificial Intelligence 181
☆ Forgetting Transformer: Softmax Attention with a Forget Gate ICLR 2025
An essential component of modern recurrent sequence models is the forget gate. While Transformers do not have an explicit recurrent form, we show that a forget gate can be naturally incorporated into Transformers by down-weighting the unnormalized attention scores in a data-dependent way. We name this attention mechanism the Forgetting Attention and the resulting model the Forgetting Transformer (FoX). We show that FoX outperforms the Transformer on long-context language modeling, length extrapolation, and short-context downstream tasks, while performing on par with the Transformer on long-context downstream tasks. Moreover, it is compatible with the FlashAttention algorithm and does not require any positional embeddings. Several analyses, including the needle-in-the-haystack test, show that FoX also retains the Transformer's superior long-context capabilities over recurrent sequence models such as Mamba-2, HGRN2, and DeltaNet. We also introduce a "Pro" block design that incorporates some common architectural components in recurrent sequence models and find it significantly improves the performance of both FoX and the Transformer. Our code is available at https://github.com/zhixuan-lin/forgetting-transformer.
comment: Published as a conference paper at ICLR 2025
☆ A Near Complete Nonasymptotic Generalization Theory For Multilayer Neural Networks: Beyond the Bias-Variance Tradeoff
We propose a first near complete (that will make explicit sense in the main text) nonasymptotic generalization theory for multilayer neural networks with arbitrary Lipschitz activations and general Lipschitz loss functions (with some very mild conditions). In particular, it doens't require the boundness of loss function, as commonly assumed in the literature. Our theory goes beyond the bias-variance tradeoff, aligned with phenomenon typically encountered in deep learning. It is therefore sharp different with other existing nonasymptotic generalization error bounds for neural networks. More explicitly, we propose an explicit generalization error upper bound for multilayer neural networks with arbitrary Lipschitz activations $\sigma$ with $\sigma(0)=0$ and broad enough Lipschitz loss functions, without requiring either the width, depth or other hyperparameters of the neural network approaching infinity, a specific neural network architect (e.g. sparsity, boundness of some norms), a particular activation function, a particular optimization algorithm or boundness of the loss function, and with taking the approximation error into consideration. General Lipschitz activation can also be accommodated into our framework. A feature of our theory is that it also considers approximation errors. Furthermore, we show the near minimax optimality of our theory for multilayer ReLU networks for regression problems. Notably, our upper bound exhibits the famous double descent phenomenon for such networks, which is the most distinguished characteristic compared with other existing results. This work emphasizes a view that many classical results should be improved to embrace the unintuitive characteristics of deep learning to get a better understanding of it.
☆ TMIQ: Quantifying Test and Measurement Domain Intelligence in Large Language Models
The Test and Measurement domain, known for its strict requirements for accuracy and efficiency, is increasingly adopting Generative AI technologies to enhance the performance of data analysis, automation, and decision-making processes. Among these, Large Language Models (LLMs) show significant promise for advancing automation and precision in testing. However, the evaluation of LLMs in this specialized area remains insufficiently explored. To address this gap, we introduce the Test and Measurement Intelligence Quotient (TMIQ), a benchmark designed to quantitatively assess LLMs across a wide range of electronic engineering tasks. TMIQ offers a comprehensive set of scenarios and metrics for detailed evaluation, including SCPI command matching accuracy, ranked response evaluation, Chain-of-Thought Reasoning (CoT), and the impact of output formatting variations required by LLMs on performance. In testing various LLMs, our findings indicate varying levels of proficiency, with exact SCPI command match accuracy ranging from around 56% to 73%, and ranked matching first-position scores achieving around 33% for the best-performing model. We also assess token usage, cost-efficiency, and response times, identifying trade-offs between accuracy and operational efficiency. Additionally, we present a command-line interface (CLI) tool that enables users to generate datasets using the same methodology, allowing for tailored assessments of LLMs. TMIQ and the CLI tool provide a rigorous, reproducible means of evaluating LLMs for production environments, facilitating continuous monitoring and identifying strengths and areas for improvement, and driving innovation in their selections for applications within the Test and Measurement industry.
comment: accepted in IEEE I2MTC 2025
☆ Parabolic Continual Learning
Regularizing continual learning techniques is important for anticipating algorithmic behavior under new realizations of data. We introduce a new approach to continual learning by imposing the properties of a parabolic partial differential equation (PDE) to regularize the expected behavior of the loss over time. This class of parabolic PDEs has a number of favorable properties that allow us to analyze the error incurred through forgetting and the error induced through generalization. Specifically, we do this through imposing boundary conditions where the boundary is given by a memory buffer. By using the memory buffer as a boundary, we can enforce long term dependencies by bounding the expected error by the boundary loss. Finally, we illustrate the empirical performance of the method on a series of continual learning tasks.
☆ Biomedical Foundation Model: A Survey
Foundation models, first introduced in 2021, are large-scale pre-trained models (e.g., large language models (LLMs) and vision-language models (VLMs)) that learn from extensive unlabeled datasets through unsupervised methods, enabling them to excel in diverse downstream tasks. These models, like GPT, can be adapted to various applications such as question answering and visual understanding, outperforming task-specific AI models and earning their name due to broad applicability across fields. The development of biomedical foundation models marks a significant milestone in leveraging artificial intelligence (AI) to understand complex biological phenomena and advance medical research and practice. This survey explores the potential of foundation models across diverse domains within biomedical fields, including computational biology, drug discovery and development, clinical informatics, medical imaging, and public health. The purpose of this survey is to inspire ongoing research in the application of foundation models to health science.
☆ Provable Benefits of Task-Specific Prompts for In-context Learning AISTATS
The in-context learning capabilities of modern language models have motivated a deeper mathematical understanding of sequence models. A line of recent work has shown that linear attention models can emulate projected gradient descent iterations to implicitly learn the task vector from the data provided in the context window. In this work, we consider a novel setting where the global task distribution can be partitioned into a union of conditional task distributions. We then examine the use of task-specific prompts and prediction heads for learning the prior information associated with the conditional task distribution using a one-layer attention model. Our results on loss landscape show that task-specific prompts facilitate a covariance-mean decoupling where prompt-tuning explains the conditional mean of the distribution whereas the variance is learned/explained through in-context learning. Incorporating task-specific head further aids this process by entirely decoupling estimation of mean and variance components. This covariance-mean perspective similarly explains how jointly training prompt and attention weights can provably help over fine-tuning after pretraining.
comment: Proceedings of the 28th International Conference on Artificial Intelligence and Statistics (AISTATS) 2025
☆ LLMs as Educational Analysts: Transforming Multimodal Data Traces into Actionable Reading Assessment Reports
Reading assessments are essential for enhancing students' comprehension, yet many EdTech applications focus mainly on outcome-based metrics, providing limited insights into student behavior and cognition. This study investigates the use of multimodal data sources -- including eye-tracking data, learning outcomes, assessment content, and teaching standards -- to derive meaningful reading insights. We employ unsupervised learning techniques to identify distinct reading behavior patterns, and then a large language model (LLM) synthesizes the derived information into actionable reports for educators, streamlining the interpretation process. LLM experts and human educators evaluate these reports for clarity, accuracy, relevance, and pedagogical usefulness. Our findings indicate that LLMs can effectively function as educational analysts, turning diverse data into teacher-friendly insights that are well-received by educators. While promising for automating insight generation, human oversight remains crucial to ensure reliability and fairness. This research advances human-centered AI in education, connecting data-driven analytics with practical classroom applications.
comment: 15 pages, 5 figures, 3 tables
☆ Correlation to Causation: A Causal Deep Learning Framework for Arctic Sea Ice Prediction
Traditional machine learning and deep learning techniques rely on correlation-based learning, often failing to distinguish spurious associations from true causal relationships, which limits robustness, interpretability, and generalizability. To address these challenges, we propose a causality-driven deep learning framework that integrates Multivariate Granger Causality (MVGC) and PCMCI+ causal discovery algorithms with a hybrid deep learning architecture. Using 43 years (1979-2021) of daily and monthly Arctic Sea Ice Extent (SIE) and ocean-atmospheric datasets, our approach identifies causally significant factors, prioritizes features with direct influence, reduces feature overhead, and improves computational efficiency. Experiments demonstrate that integrating causal features enhances the deep learning model's predictive accuracy and interpretability across multiple lead times. Beyond SIE prediction, the proposed framework offers a scalable solution for dynamic, high-dimensional systems, advancing both theoretical understanding and practical applications in predictive modeling.
comment: Accepted for Publication in Causal AI for Robust Decision Making (CARD) Workshop in the International Conference on Pervasive Computing and Communications (PerCom 2025)
☆ Linear Representations of Political Perspective Emerge in Large Language Models ICLR 2025
Large language models (LLMs) have demonstrated the ability to generate text that realistically reflects a range of different subjective human perspectives. This paper studies how LLMs are seemingly able to reflect more liberal versus more conservative viewpoints among other political perspectives in American politics. We show that LLMs possess linear representations of political perspectives within activation space, wherein more similar perspectives are represented closer together. To do so, we probe the attention heads across the layers of three open transformer-based LLMs (\texttt{Llama-2-7b-chat}, \texttt{Mistral-7b-instruct}, \texttt{Vicuna-7b}). We first prompt models to generate text from the perspectives of different U.S.~lawmakers. We then identify sets of attention heads whose activations linearly predict those lawmakers' DW-NOMINATE scores, a widely-used and validated measure of political ideology. We find that highly predictive heads are primarily located in the middle layers, often speculated to encode high-level concepts and tasks. Using probes only trained to predict lawmakers' ideology, we then show that the same probes can predict measures of news outlets' slant from the activations of models prompted to simulate text from those news outlets. These linear probes allow us to visualize, interpret, and monitor ideological stances implicitly adopted by an LLM as it generates open-ended responses. Finally, we demonstrate that by applying linear interventions to these attention heads, we can steer the model outputs toward a more liberal or conservative stance. Overall, our research suggests that LLMs possess a high-level linear representation of American political ideology and that by leveraging recent advances in mechanistic interpretability, we can identify, monitor, and steer the subjective perspective underlying generated text.
comment: Published as a conference paper at ICLR 2025
☆ Superscopes: Amplifying Internal Feature Representations for Language Model Interpretation
Understanding and interpreting the internal representations of large language models (LLMs) remains an open challenge. Patchscopes introduced a method for probing internal activations by patching them into new prompts, prompting models to self-explain their hidden representations. We introduce Superscopes, a technique that systematically amplifies superposed features in MLP outputs (multilayer perceptron) and hidden states before patching them into new contexts. Inspired by the "features as directions" perspective and the Classifier-Free Guidance (CFG) approach from diffusion models, Superscopes amplifies weak but meaningful features, enabling the interpretation of internal representations that previous methods failed to explain-all without requiring additional training. This approach provides new insights into how LLMs build context and represent complex concepts, further advancing mechanistic interpretability.
☆ $\text{M}^3\text{HF}$: Multi-agent Reinforcement Learning from Multi-phase Human Feedback of Mixed Quality
Designing effective reward functions in multi-agent reinforcement learning (MARL) is a significant challenge, often leading to suboptimal or misaligned behaviors in complex, coordinated environments. We introduce Multi-agent Reinforcement Learning from Multi-phase Human Feedback of Mixed Quality ($\text{M}^3\text{HF}$), a novel framework that integrates multi-phase human feedback of mixed quality into the MARL training process. By involving humans with diverse expertise levels to provide iterative guidance, $\text{M}^3\text{HF}$ leverages both expert and non-expert feedback to continuously refine agents' policies. During training, we strategically pause agent learning for human evaluation, parse feedback using large language models to assign it appropriately and update reward functions through predefined templates and adaptive weight by using weight decay and performance-based adjustments. Our approach enables the integration of nuanced human insights across various levels of quality, enhancing the interpretability and robustness of multi-agent cooperation. Empirical results in challenging environments demonstrate that $\text{M}^3\text{HF}$ significantly outperforms state-of-the-art methods, effectively addressing the complexities of reward design in MARL and enabling broader human participation in the training process.
comment: Seventeen pages, four figures
☆ AI persuading AI vs AI persuading Humans: LLMs' Differential Effectiveness in Promoting Pro-Environmental Behavior
Pro-environmental behavior (PEB) is vital to combat climate change, yet turning awareness into intention and action remains elusive. We explore large language models (LLMs) as tools to promote PEB, comparing their impact across 3,200 participants: real humans (n=1,200), simulated humans based on actual participant data (n=1,200), and fully synthetic personas (n=1,200). All three participant groups faced personalized or standard chatbots, or static statements, employing four persuasion strategies (moral foundations, future self-continuity, action orientation, or "freestyle" chosen by the LLM). Results reveal a "synthetic persuasion paradox": synthetic and simulated agents significantly affect their post-intervention PEB stance, while human responses barely shift. Simulated participants better approximate human trends but still overestimate effects. This disconnect underscores LLM's potential for pre-evaluating PEB interventions but warns of its limits in predicting real-world behavior. We call for refined synthetic modeling and sustained and extended human trials to align conversational AI's promise with tangible sustainability outcomes.
comment: 17 pages, 13 figures, 3 tables
Survey Perspective: The Role of Explainable AI in Threat Intelligence SIGIR
The increasing reliance on AI-based security tools in Security Operations Centers (SOCs) has transformed threat detection and response, yet analysts frequently struggle with alert overload, false positives, and lack of contextual relevance. The inability to effectively analyze AI-generated security alerts lead to inefficiencies in incident response and reduces trust in automated decision-making. In this paper, we show results and analysis of our investigation of how SOC analysts navigate AI-based alerts, their challenges with current security tools, and how explainability (XAI) integrated into their security workflows has the potential to become an effective decision support. In this vein, we conducted an industry survey. Using the survey responses, we analyze how security analysts' process, retrieve, and prioritize alerts. Our findings indicate that most analysts have not yet adopted XAI-integrated tools, but they express high interest in attack attribution, confidence scores, and feature contribution explanations to improve interpretability, and triage efficiency. Based on our findings, we also propose practical design recommendations for XAI-enhanced security alert systems, enabling AI-based cybersecurity solutions to be more transparent, interpretable, and actionable.
comment: 5 pages, SIGIR Symposium on IR in Practice (SIRIP), 2025
☆ Hebbian learning the local structure of language
Learning in the brain is local and unsupervised (Hebbian). We derive the foundations of an effective human language model inspired by these microscopic constraints. It has two parts: (1) a hierarchy of neurons which learns to tokenize words from text (whichiswhatyoudowhenyoureadthis); and (2) additional neurons which bind the learned symanticless patterns of the tokenizer into a symanticful token (an embedding). The model permits continuous parallel learning without forgetting; and is a powerful tokenizer which performs renormalization group. This allows it to exploit redundancy, such that it generates tokens which are always decomposable into a basis set (e.g an alphabet), and can mix features learned from multiple languages. We find that the structure of this model allows it to learn a natural language morphology WITHOUT data. The language data generated by this model predicts the correct distribution of word-forming patterns observed in real languages, and further demonstrates why microscopically human speech is broken up into words. This model provides the basis for understanding the microscopic origins of language and human creativity.
comment: 10 figures, 14 pages
☆ EPEE: Towards Efficient and Effective Foundation Models in Biomedicine
Foundation models, including language models, e.g., GPT, and vision models, e.g., CLIP, have significantly advanced numerous biomedical tasks. Despite these advancements, the high inference latency and the "overthinking" issues in model inference impair the efficiency and effectiveness of foundation models, thus limiting their application in real-time clinical settings. To address these challenges, we proposed EPEE (Entropy- and Patience-based Early Exiting), a novel hybrid strategy designed to improve the inference efficiency of foundation models. The core idea was to leverage the strengths of entropy-based and patience-based early exiting methods to overcome their respective weaknesses. To evaluate EPEE, we conducted experiments on three core biomedical tasks-classification, relation extraction, and event extraction-using four foundation models (BERT, ALBERT, GPT-2, and ViT) across twelve datasets, including clinical notes and medical images. The results showed that EPEE significantly reduced inference time while maintaining or improving accuracy, demonstrating its adaptability to diverse datasets and tasks. EPEE addressed critical barriers to deploying foundation models in healthcare by balancing efficiency and effectiveness. It potentially provided a practical solution for real-time clinical decision-making with foundation models, supporting reliable and efficient workflows.
comment: Submitted to npj Digital Medicine
☆ FRMD: Fast Robot Motion Diffusion with Consistency-Distilled Movement Primitives for Smooth Action Generation
We consider the problem of using diffusion models to generate fast, smooth, and temporally consistent robot motions. Although diffusion models have demonstrated superior performance in robot learning due to their task scalability and multi-modal flexibility, they suffer from two fundamental limitations: (1) they often produce non-smooth, jerky motions due to their inability to capture temporally consistent movement dynamics, and (2) their iterative sampling process incurs prohibitive latency for many robotic tasks. Inspired by classic robot motion generation methods such as DMPs and ProMPs, which capture temporally and spatially consistent dynamic of trajectories using low-dimensional vectors -- and by recent advances in diffusion-based image generation that use consistency models with probability flow ODEs to accelerate the denoising process, we propose Fast Robot Motion Diffusion (FRMD). FRMD uniquely integrates Movement Primitives (MPs) with Consistency Models to enable efficient, single-step trajectory generation. By leveraging probabilistic flow ODEs and consistency distillation, our method models trajectory distributions while learning a compact, time-continuous motion representation within an encoder-decoder architecture. This unified approach eliminates the slow, multi-step denoising process of conventional diffusion models, enabling efficient one-step inference and smooth robot motion generation. We extensively evaluated our FRMD on the well-recognized Meta-World and ManiSkills Benchmarks, ranging from simple to more complex manipulation tasks, comparing its performance against state-of-the-art baselines. Our results show that FRMD generates significantly faster, smoother trajectories while achieving higher success rates.
comment: arXiv admin note: text overlap with arXiv:2406.01586 by other authors
Dynamic Search for Inference-Time Alignment in Diffusion Models
Diffusion models have shown promising generative capabilities across diverse domains, yet aligning their outputs with desired reward functions remains a challenge, particularly in cases where reward functions are non-differentiable. Some gradient-free guidance methods have been developed, but they often struggle to achieve optimal inference-time alignment. In this work, we newly frame inference-time alignment in diffusion as a search problem and propose Dynamic Search for Diffusion (DSearch), which subsamples from denoising processes and approximates intermediate node rewards. It also dynamically adjusts beam width and tree expansion to efficiently explore high-reward generations. To refine intermediate decisions, DSearch incorporates adaptive scheduling based on noise levels and a lookahead heuristic function. We validate DSearch across multiple domains, including biological sequence design, molecular optimization, and image generation, demonstrating superior reward optimization compared to existing approaches.
☆ Abn-BLIP: Abnormality-aligned Bootstrapping Language-Image Pre-training for Pulmonary Embolism Diagnosis and Report Generation from CTPA
Medical imaging plays a pivotal role in modern healthcare, with computed tomography pulmonary angiography (CTPA) being a critical tool for diagnosing pulmonary embolism and other thoracic conditions. However, the complexity of interpreting CTPA scans and generating accurate radiology reports remains a significant challenge. This paper introduces Abn-BLIP (Abnormality-aligned Bootstrapping Language-Image Pretraining), an advanced diagnosis model designed to align abnormal findings to generate the accuracy and comprehensiveness of radiology reports. By leveraging learnable queries and cross-modal attention mechanisms, our model demonstrates superior performance in detecting abnormalities, reducing missed findings, and generating structured reports compared to existing methods. Our experiments show that Abn-BLIP outperforms state-of-the-art medical vision-language models and 3D report generation methods in both accuracy and clinical relevance. These results highlight the potential of integrating multimodal learning strategies for improving radiology reporting. The source code is available at https://github.com/zzs95/abn-blip.
☆ Comparative Analysis of OpenAI GPT-4o and DeepSeek R1 for Scientific Text Categorization Using Prompt Engineering
This study examines how large language models categorize sentences from scientific papers using prompt engineering. We use two advanced web-based models, GPT-4o (by OpenAI) and DeepSeek R1, to classify sentences into predefined relationship categories. DeepSeek R1 has been tested on benchmark datasets in its technical report. However, its performance in scientific text categorization remains unexplored. To address this gap, we introduce a new evaluation method designed specifically for this task. We also compile a dataset of cleaned scientific papers from diverse domains. This dataset provides a platform for comparing the two models. Using this dataset, we analyze their effectiveness and consistency in categorization.
comment: Accepted to ASEE North Central Section 2025
☆ Mind the (Belief) Gap: Group Identity in the World of LLMs
Social biases and belief-driven behaviors can significantly impact Large Language Models (LLMs) decisions on several tasks. As LLMs are increasingly used in multi-agent systems for societal simulations, their ability to model fundamental group psychological characteristics remains critical yet under-explored. In this study, we present a multi-agent framework that simulates belief congruence, a classical group psychology theory that plays a crucial role in shaping societal interactions and preferences. Our findings reveal that LLMs exhibit amplified belief congruence compared to humans, across diverse contexts. We further investigate the implications of this behavior on two downstream tasks: (1) misinformation dissemination and (2) LLM learning, finding that belief congruence in LLMs increases misinformation dissemination and impedes learning. To mitigate these negative impacts, we propose strategies inspired by: (1) contact hypothesis, (2) accuracy nudges, and (3) global citizenship framework. Our results show that the best strategies reduce misinformation dissemination by up to 37% and enhance learning by 11%. Bridging social psychology and AI, our work provides insights to navigate real-world interactions using LLMs while addressing belief-driven biases.
☆ Pretrained Embeddings as a Behavior Specification Mechanism
We propose an approach to formally specifying the behavioral properties of systems that rely on a perception model for interactions with the physical world. The key idea is to introduce embeddings -- mathematical representations of a real-world concept -- as a first-class construct in a specification language, where properties are expressed in terms of distances between a pair of ideal and observed embeddings. To realize this approach, we propose a new type of temporal logic called Embedding Temporal Logic (ETL), and describe how it can be used to express a wider range of properties about AI-enabled systems than previously possible. We demonstrate the applicability of ETL through a preliminary evaluation involving planning tasks in robots that are driven by foundation models; the results are promising, showing that embedding-based specifications can be used to steer a system towards desirable behaviors.
comment: 18 pages, 6 figures
☆ TactStyle: Generating Tactile Textures with Generative AI for Digital Fabrication
Recent work in Generative AI enables the stylization of 3D models based on image prompts. However, these methods do not incorporate tactile information, leading to designs that lack the expected tactile properties. We present TactStyle, a system that allows creators to stylize 3D models with images while incorporating the expected tactile properties. TactStyle accomplishes this using a modified image-generation model fine-tuned to generate heightfields for given surface textures. By optimizing 3D model surfaces to embody a generated texture, TactStyle creates models that match the desired style and replicate the tactile experience. We utilize a large-scale dataset of textures to train our texture generation model. In a psychophysical experiment, we evaluate the tactile qualities of a set of 3D-printed original textures and TactStyle's generated textures. Our results show that TactStyle successfully generates a wide range of tactile features from a single image input, enabling a novel approach to haptic design.
☆ Adaptively evaluating models with task elicitation
Manual curation of evaluation datasets is struggling to keep up with the rapidly expanding capabilities and deployment scenarios of language models. Towards scalable model profiling, we introduce and validate a framework for evaluating LLMs, called Adaptive Evaluations. Adaptive evaluations use scaffolded language models (evaluator agents) to search through a target model's behavior on a domain dataset and create difficult questions (tasks) that can discover and probe the model's failure modes. We find that frontier models lack consistency when adaptively probed with our framework on a diverse suite of datasets and tasks, including but not limited to legal reasoning, forecasting, and online harassment. Generated questions pass human validity checks and often transfer to other models with different capability profiles, demonstrating that adaptive evaluations can also be used to create difficult domain-specific datasets.
☆ Proportionality in Thumbs Up and Down Voting
Consider the decision-making setting where agents elect a panel by expressing both positive and negative preferences. Prominently, in constitutional AI, citizens democratically select a slate of ethical preferences on which a foundation model is to be trained. There, in practice, agents may both approve and disapprove of different ethical principles. Proportionality has been well-studied in computational social choice for approval ballots, but its meaning remains unclear when negative sentiments are also considered. In this work, we propose two conceptually distinct approaches to interpret proportionality in the presence of up and down votes. The first approach treats the satisfaction from electing candidates and the impact of vetoing them as comparable, leading to combined proportionality guarantees. The second approach considers veto power separately, introducing guarantees distinct from traditional proportionality. We formalize axioms for each perspective and examine their satisfiability by suitable adaptations of Phragm\'en's rule, Proportional Approval Voting rule and the Method of Equal Shares.
☆ Recurrence-Enhanced Vision-and-Language Transformers for Robust Multimodal Document Retrieval CVPR 2025
Cross-modal retrieval is gaining increasing efficacy and interest from the research community, thanks to large-scale training, novel architectural and learning designs, and its application in LLMs and multimodal LLMs. In this paper, we move a step forward and design an approach that allows for multimodal queries, composed of both an image and a text, and can search within collections of multimodal documents, where images and text are interleaved. Our model, ReT, employs multi-level representations extracted from different layers of both visual and textual backbones, both at the query and document side. To allow for multi-level and cross-modal understanding and feature extraction, ReT employs a novel Transformer-based recurrent cell that integrates both textual and visual features at different layers, and leverages sigmoidal gates inspired by the classical design of LSTMs. Extensive experiments on M2KR and M-BEIR benchmarks show that ReT achieves state-of-the-art performance across diverse settings. Our source code and trained models are publicly available at https://github.com/aimagelab/ReT.
comment: CVPR 2025
☆ Jailbreaking Safeguarded Text-to-Image Models via Large Language Models
Text-to-Image models may generate harmful content, such as pornographic images, particularly when unsafe prompts are submitted. To address this issue, safety filters are often added on top of text-to-image models, or the models themselves are aligned to reduce harmful outputs. However, these defenses remain vulnerable when an attacker strategically designs adversarial prompts to bypass these safety guardrails. In this work, we propose PromptTune, a method to jailbreak text-to-image models with safety guardrails using a fine-tuned large language model. Unlike other query-based jailbreak attacks that require repeated queries to the target model, our attack generates adversarial prompts efficiently after fine-tuning our AttackLLM. We evaluate our method on three datasets of unsafe prompts and against five safety guardrails. Our results demonstrate that our approach effectively bypasses safety guardrails, outperforms existing no-box attacks, and also facilitates other query-based attacks.
☆ CrowdSelect: Synthetic Instruction Data Selection with Multi-LLM Wisdom
Distilling advanced Large Language Models' instruction-following capabilities into smaller models using a selected subset has become a mainstream approach in model training. While existing synthetic instruction data selection strategies rely mainly on single-dimensional signals (i.e., reward scores, model perplexity), they fail to capture the complexity of instruction-following across diverse fields. Therefore, we investigate more diverse signals to capture comprehensive instruction-response pair characteristics and propose three foundational metrics that leverage Multi-LLM wisdom, informed by (1) diverse LLM responses and (2) reward model assessment. Building upon base metrics, we propose CrowdSelect, an integrated metric incorporating a clustering-based approach to maintain response diversity. Our comprehensive experiments demonstrate that our foundation metrics consistently improve performance across 4 base models on MT-bench and Arena-Hard. CrowdSelect, efficiently incorporating all metrics, achieves state-of-the-art performance in both Full and LoRA fine-tuning, showing improvements of 4.81% on Arena-Hard and 11.1% on MT-bench with Llama-3.2-3b-instruct. We hope our findings will bring valuable insights for future research in this direction. Code are available at https://github.com/listentm/crowdselect.
☆ Persuade Me if You Can: A Framework for Evaluating Persuasion Effectiveness and Susceptibility Among Large Language Models
Large Language Models (LLMs) demonstrate persuasive capabilities that rival human-level persuasion. While these capabilities can be used for social good, they also present risks of potential misuse. Moreover, LLMs' susceptibility to persuasion raises concerns about alignment with ethical principles. To study these dynamics, we introduce Persuade Me If You Can (PMIYC), an automated framework for evaluating persuasion through multi-agent interactions. Here, Persuader agents engage in multi-turn conversations with the Persuadee agents, allowing us to measure LLMs' persuasive effectiveness and their susceptibility to persuasion. We conduct comprehensive evaluations across diverse LLMs, ensuring each model is assessed against others in both subjective and misinformation contexts. We validate the efficacy of our framework through human evaluations and show alignment with prior work. PMIYC offers a scalable alternative to human annotation for studying persuasion in LLMs. Through PMIYC, we find that Llama-3.3-70B and GPT-4o exhibit similar persuasive effectiveness, outperforming Claude 3 Haiku by 30%. However, GPT-4o demonstrates over 50% greater resistance to persuasion for misinformation compared to Llama-3.3-70B. These findings provide empirical insights into the persuasive dynamics of LLMs and contribute to the development of safer AI systems.
☆ Projecting Assumptions: The Duality Between Sparse Autoencoders and Concept Geometry
Sparse Autoencoders (SAEs) are widely used to interpret neural networks by identifying meaningful concepts from their representations. However, do SAEs truly uncover all concepts a model relies on, or are they inherently biased toward certain kinds of concepts? We introduce a unified framework that recasts SAEs as solutions to a bilevel optimization problem, revealing a fundamental challenge: each SAE imposes structural assumptions about how concepts are encoded in model representations, which in turn shapes what it can and cannot detect. This means different SAEs are not interchangeable -- switching architectures can expose entirely new concepts or obscure existing ones. To systematically probe this effect, we evaluate SAEs across a spectrum of settings: from controlled toy models that isolate key variables, to semi-synthetic experiments on real model activations and finally to large-scale, naturalistic datasets. Across this progression, we examine two fundamental properties that real-world concepts often exhibit: heterogeneity in intrinsic dimensionality (some concepts are inherently low-dimensional, others are not) and nonlinear separability. We show that SAEs fail to recover concepts when these properties are ignored, and we design a new SAE that explicitly incorporates both, enabling the discovery of previously hidden concepts and reinforcing our theoretical insights. Our findings challenge the idea of a universal SAE and underscores the need for architecture-specific choices in model interpretability. Overall, we argue an SAE does not just reveal concepts -- it determines what can be seen at all.
comment: Preprint
☆ RSQ: Learning from Important Tokens Leads to Better Quantized LLMs
Layer-wise quantization is a key technique for efficiently compressing large models without expensive retraining. Previous methods typically quantize the weights of each layer by "uniformly" optimizing the layer reconstruction loss across all output tokens. However, in this paper, we demonstrate that better-quantized models can be obtained by prioritizing learning from important tokens (e.g. which have large attention scores). Building on this finding, we propose RSQ (Rotate, Scale, then Quantize), which (1) applies rotations (orthogonal transformation) to the model to mitigate outliers (those with exceptionally large magnitude), (2) scales the token feature based on its importance, and (3) quantizes the model using the GPTQ framework with the second-order statistics computed by scaled tokens. To compute token importance, we explore both heuristic and dynamic strategies. Based on a thorough analysis of all approaches, we adopt attention concentration, which uses attention scores of each token as its importance, as the best approach. We demonstrate that RSQ consistently outperforms baseline methods across multiple downstream tasks and three model families: LLaMA3, Mistral, and Qwen2.5. Additionally, models quantized with RSQ achieve superior performance on long-context tasks, further highlighting its effectiveness. Lastly, RSQ demonstrates generalizability across various setups, including different model sizes, calibration datasets, bit precisions, and quantization methods.
comment: Our code is available at https://github.com/ylsung/rsq
☆ Do GFlowNets Transfer? Case Study on the Game of 24/42
Generating diverse solutions is key to human-like reasoning, yet autoregressive language models focus on single accurate responses, limiting creativity. GFlowNets optimize solution generation as a flow network, promising greater diversity. Our case study shows their limited zero-shot transferability by fine-tuning small and medium-sized large language models on the Game of 24 and testing them on the Game of 42 datasets. Results revealed that GFlowNets struggle to maintain solution diversity and accuracy, highlighting key limitations in their cross-task generalization and the need for future research in improved transfer learning capabilities.
☆ LLMInit: A Free Lunch from Large Language Models for Selective Initialization of Recommendation
Collaborative filtering models, particularly graph-based approaches, have demonstrated strong performance in capturing user-item interactions for recommendation systems. However, they continue to struggle in cold-start and data-sparse scenarios. The emergence of large language models (LLMs) like GPT and LLaMA presents new possibilities for enhancing recommendation performance, especially in cold-start settings. Despite their promise, LLMs pose challenges related to scalability and efficiency due to their high computational demands and limited ability to model complex user-item relationships effectively. In this work, we introduce a novel perspective on leveraging LLMs for CF model initialization. Through experiments, we uncover an embedding collapse issue when scaling CF models to larger embedding dimensions. To effectively harness large-scale LLM embeddings, we propose innovative selective initialization strategies utilizing random, uniform, and variance-based index sampling. Our comprehensive evaluation on multiple real-world datasets demonstrates significant performance gains across various CF models while maintaining a lower computational cost compared to existing LLM-based recommendation approaches.
☆ AutoAdvExBench: Benchmarking autonomous exploitation of adversarial example defenses
We introduce AutoAdvExBench, a benchmark to evaluate if large language models (LLMs) can autonomously exploit defenses to adversarial examples. Unlike existing security benchmarks that often serve as proxies for real-world tasks, bench directly measures LLMs' success on tasks regularly performed by machine learning security experts. This approach offers a significant advantage: if a LLM could solve the challenges presented in bench, it would immediately present practical utility for adversarial machine learning researchers. We then design a strong agent that is capable of breaking 75% of CTF-like ("homework exercise") adversarial example defenses. However, we show that this agent is only able to succeed on 13% of the real-world defenses in our benchmark, indicating the large gap between difficulty in attacking "real" code, and CTF-like code. In contrast, a stronger LLM that can attack 21% of real defenses only succeeds on 54% of CTF-like defenses. We make this benchmark available at https://github.com/ethz-spylab/AutoAdvExBench.
☆ Depth-Width tradeoffs in Algorithmic Reasoning of Graph Tasks with Transformers
Transformers have revolutionized the field of machine learning. In particular, they can be used to solve complex algorithmic problems, including graph-based tasks. In such algorithmic tasks a key question is what is the minimal size of a transformer that can implement a task. Recent work has begun to explore this problem for graph-based tasks, showing that for sub-linear embedding dimension (i.e., model width) logarithmic depth suffices. However, an open question, which we address here, is what happens if width is allowed to grow linearly. Here we analyze this setting, and provide the surprising result that with linear width, constant depth suffices for solving a host of graph-based problems. This suggests that a moderate increase in width can allow much shallower models, which are advantageous in terms of inference time. For other problems, we show that quadratic width is required. Our results demonstrate the complex and intriguing landscape of transformer implementations of graph-based algorithms. We support our theoretical results with empirical evaluations.
☆ $\texttt{SEM-CTRL}$: Semantically Controlled Decoding
Ensuring both syntactic and semantic correctness in Large Language Model (LLM) outputs remains a significant challenge, despite being critical for real-world deployment. In this paper, we introduce $\texttt{SEM-CTRL}$, a unified approach that enforces rich context-sensitive constraints and task- and instance-specific semantics directly on an LLM decoder. Our approach integrates token-level MCTS, which is guided by specific syntactic and semantic constraints. The constraints over the desired outputs are expressed using Answer Set Grammars -- a logic-based formalism that generalizes context-sensitive grammars while incorporating background knowledge to represent task-specific semantics. We show that our approach guarantees correct completions for any off-the-shelf LLM without the need for fine-tuning. We evaluate $\texttt{SEM-CTRL}$ on a range of tasks, including synthetic grammar synthesis, combinatorial reasoning, and planning. Our results demonstrate that $\texttt{SEM-CTRL}$ allows small pre-trained LLMs to efficiently outperform larger variants and state-of-the-art reasoning models (e.g., o1-preview) while simultaneously guaranteeing solution correctness.
☆ Generating Counterfactual Explanations Under Temporal Constraints
Counterfactual explanations are one of the prominent eXplainable Artificial Intelligence (XAI) techniques, and suggest changes to input data that could alter predictions, leading to more favourable outcomes. Existing counterfactual methods do not readily apply to temporal domains, such as that of process mining, where data take the form of traces of activities that must obey to temporal background knowledge expressing which dynamics are possible and which not. Specifically, counterfactuals generated off-the-shelf may violate the background knowledge, leading to inconsistent explanations. This work tackles this challenge by introducing a novel approach for generating temporally constrained counterfactuals, guaranteed to comply by design with background knowledge expressed in Linear Temporal Logic on process traces (LTLp). We do so by infusing automata-theoretic techniques for LTLp inside a genetic algorithm for counterfactual generation. The empirical evaluation shows that the generated counterfactuals are temporally meaningful and more interpretable for applications involving temporal dependencies.
comment: 9 pages
☆ Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation
Many large-scale systems rely on high-quality deep representations (embeddings) to facilitate tasks like retrieval, search, and generative modeling. Matryoshka Representation Learning (MRL) recently emerged as a solution for adaptive embedding lengths, but it requires full model retraining and suffers from noticeable performance degradations at short lengths. In this paper, we show that sparse coding offers a compelling alternative for achieving adaptive representation with minimal overhead and higher fidelity. We propose Contrastive Sparse Representation (CSR), a method that sparsifies pre-trained embeddings into a high-dimensional but selectively activated feature space. By leveraging lightweight autoencoding and task-aware contrastive objectives, CSR preserves semantic quality while allowing flexible, cost-effective inference at different sparsity levels. Extensive experiments on image, text, and multimodal benchmarks demonstrate that CSR consistently outperforms MRL in terms of both accuracy and retrieval speed-often by large margins-while also cutting training time to a fraction of that required by MRL. Our results establish sparse coding as a powerful paradigm for adaptive representation learning in real-world applications where efficiency and fidelity are both paramount. Code is available at https://github.com/neilwen987/CSR_Adaptive_Rep
comment: A novel sparse coding framework designed for learning adaptive representation
☆ Retrieval Models Aren't Tool-Savvy: Benchmarking Tool Retrieval for Large Language Models
Tool learning aims to augment large language models (LLMs) with diverse tools, enabling them to act as agents for solving practical tasks. Due to the limited context length of tool-using LLMs, adopting information retrieval (IR) models to select useful tools from large toolsets is a critical initial step. However, the performance of IR models in tool retrieval tasks remains underexplored and unclear. Most tool-use benchmarks simplify this step by manually pre-annotating a small set of relevant tools for each task, which is far from the real-world scenarios. In this paper, we propose ToolRet, a heterogeneous tool retrieval benchmark comprising 7.6k diverse retrieval tasks, and a corpus of 43k tools, collected from existing datasets. We benchmark six types of models on ToolRet. Surprisingly, even the models with strong performance in conventional IR benchmarks, exhibit poor performance on ToolRet. This low retrieval quality degrades the task pass rate of tool-use LLMs. As a further step, we contribute a large-scale training dataset with over 200k instances, which substantially optimizes the tool retrieval ability of IR models.
☆ Zero-Trust Artificial Intelligence Model Security Based on Moving Target Defense and Content Disarm and Reconstruction
This paper examines the challenges in distributing AI models through model zoos and file transfer mechanisms. Despite advancements in security measures, vulnerabilities persist, necessitating a multi-layered approach to mitigate risks effectively. The physical security of model files is critical, requiring stringent access controls and attack prevention solutions. This paper proposes a novel solution architecture composed of two prevention approaches. The first is Content Disarm and Reconstruction (CDR), which focuses on disarming serialization attacks that enable attackers to run malicious code as soon as the model is loaded. The second is protecting the model architecture and weights from attacks by using Moving Target Defense (MTD), alerting the model structure, and providing verification steps to detect such attacks. The paper focuses on the highly exploitable Pickle and PyTorch file formats. It demonstrates a 100% disarm rate while validated against known AI model repositories and actual malware attacks from the HuggingFace model zoo.
☆ SAKE: Steering Activations for Knowledge Editing
As Large Langue Models have been shown to memorize real-world facts, the need to update this knowledge in a controlled and efficient manner arises. Designed with these constraints in mind, Knowledge Editing (KE) approaches propose to alter specific facts in pretrained models. However, they have been shown to suffer from several limitations, including their lack of contextual robustness and their failure to generalize to logical implications related to the fact. To overcome these issues, we propose SAKE, a steering activation method that models a fact to be edited as a distribution rather than a single prompt. Leveraging Optimal Transport, SAKE alters the LLM behavior over a whole fact-related distribution, defined as paraphrases and logical implications. Several numerical experiments demonstrate the effectiveness of this method: SAKE is thus able to perform more robust edits than its existing counterparts.
☆ Phi-4-Mini Technical Report: Compact yet Powerful Multimodal Language Models via Mixture-of-LoRAs
We introduce Phi-4-Mini and Phi-4-Multimodal, compact yet highly capable language and multimodal models. Phi-4-Mini is a 3.8-billion-parameter language model trained on high-quality web and synthetic data, significantly outperforming recent open-source models of similar size and matching the performance of models twice its size on math and coding tasks requiring complex reasoning. This achievement is driven by a carefully curated synthetic data recipe emphasizing high-quality math and coding datasets. Compared to its predecessor, Phi-3.5-Mini, Phi-4-Mini features an expanded vocabulary size of 200K tokens to better support multilingual applications, as well as group query attention for more efficient long-sequence generation. Phi-4-Multimodal is a multimodal model that integrates text, vision, and speech/audio input modalities into a single model. Its novel modality extension approach leverages LoRA adapters and modality-specific routers to allow multiple inference modes combining various modalities without interference. For example, it now ranks first in the OpenASR leaderboard to date, although the LoRA component of the speech/audio modality has just 460 million parameters. Phi-4-Multimodal supports scenarios involving (vision + language), (vision + speech), and (speech/audio) inputs, outperforming larger vision-language and speech-language models on a wide range of tasks. Additionally, we experiment to further train Phi-4-Mini to enhance its reasoning capabilities. Despite its compact 3.8-billion-parameter size, this experimental version achieves reasoning performance on par with or surpassing significantly larger models, including DeepSeek-R1-Distill-Qwen-7B and DeepSeek-R1-Distill-Llama-8B.
comment: 39 pages
☆ Adversarial Agents: Black-Box Evasion Attacks with Reinforcement Learning
Reinforcement learning (RL) offers powerful techniques for solving complex sequential decision-making tasks from experience. In this paper, we demonstrate how RL can be applied to adversarial machine learning (AML) to develop a new class of attacks that learn to generate adversarial examples: inputs designed to fool machine learning models. Unlike traditional AML methods that craft adversarial examples independently, our RL-based approach retains and exploits past attack experience to improve future attacks. We formulate adversarial example generation as a Markov Decision Process and evaluate RL's ability to (a) learn effective and efficient attack strategies and (b) compete with state-of-the-art AML. On CIFAR-10, our agent increases the success rate of adversarial examples by 19.4% and decreases the median number of victim model queries per adversarial example by 53.2% from the start to the end of training. In a head-to-head comparison with a state-of-the-art image attack, SquareAttack, our approach enables an adversary to generate adversarial examples with 13.1% more success after 5000 episodes of training. From a security perspective, this work demonstrates a powerful new attack vector that uses RL to attack ML models efficiently and at scale.
☆ Learning Exposure Mapping Functions for Inferring Heterogeneous Peer Effects
In causal inference, interference refers to the phenomenon in which the actions of peers in a network can influence an individual's outcome. Peer effect refers to the difference in counterfactual outcomes of an individual for different levels of peer exposure, the extent to which an individual is exposed to the treatments, actions, or behaviors of peers. Estimating peer effects requires deciding how to represent peer exposure. Typically, researchers define an exposure mapping function that aggregates peer treatments and outputs peer exposure. Most existing approaches for defining exposure mapping functions assume peer exposure based on the number or fraction of treated peers. Recent studies have investigated more complex functions of peer exposure which capture that different peers can exert different degrees of influence. However, none of these works have explicitly considered the problem of automatically learning the exposure mapping function. In this work, we focus on learning this function for the purpose of estimating heterogeneous peer effects, where heterogeneity refers to the variation in counterfactual outcomes for the same peer exposure but different individual's contexts. We develop EgoNetGNN, a graph neural network (GNN)-based method, to automatically learn the appropriate exposure mapping function allowing for complex peer influence mechanisms that, in addition to peer treatments, can involve the local neighborhood structure and edge attributes. We show that GNN models that use peer exposure based on the number or fraction of treated peers or learn peer exposure naively face difficulty accounting for such influence mechanisms. Our comprehensive evaluation on synthetic and semi-synthetic network data shows that our method is more robust to different unknown underlying influence mechanisms when estimating heterogeneous peer effects when compared to state-of-the-art baselines.
☆ KeyFace: Expressive Audio-Driven Facial Animation for Long Sequences via KeyFrame Interpolation CVPR 2025
Current audio-driven facial animation methods achieve impressive results for short videos but suffer from error accumulation and identity drift when extended to longer durations. Existing methods attempt to mitigate this through external spatial control, increasing long-term consistency but compromising the naturalness of motion. We propose KeyFace, a novel two-stage diffusion-based framework, to address these issues. In the first stage, keyframes are generated at a low frame rate, conditioned on audio input and an identity frame, to capture essential facial expressions and movements over extended periods of time. In the second stage, an interpolation model fills in the gaps between keyframes, ensuring smooth transitions and temporal coherence. To further enhance realism, we incorporate continuous emotion representations and handle a wide range of non-speech vocalizations (NSVs), such as laughter and sighs. We also introduce two new evaluation metrics for assessing lip synchronization and NSV generation. Experimental results show that KeyFace outperforms state-of-the-art methods in generating natural, coherent facial animations over extended durations, successfully encompassing NSVs and continuous emotions.
comment: CVPR 2025
☆ Word Form Matters: LLMs' Semantic Reconstruction under Typoglycemia ACL
Human readers can efficiently comprehend scrambled words, a phenomenon known as Typoglycemia, primarily by relying on word form; if word form alone is insufficient, they further utilize contextual cues for interpretation. While advanced large language models (LLMs) exhibit similar abilities, the underlying mechanisms remain unclear. To investigate this, we conduct controlled experiments to analyze the roles of word form and contextual information in semantic reconstruction and examine LLM attention patterns. Specifically, we first propose SemRecScore, a reliable metric to quantify the degree of semantic reconstruction, and validate its effectiveness. Using this metric, we study how word form and contextual information influence LLMs' semantic reconstruction ability, identifying word form as the core factor in this process. Furthermore, we analyze how LLMs utilize word form and find that they rely on specialized attention heads to extract and process word form information, with this mechanism remaining stable across varying levels of word scrambling. This distinction between LLMs' fixed attention patterns primarily focused on word form and human readers' adaptive strategy in balancing word form and contextual information provides insights into enhancing LLM performance by incorporating human-like, context-aware mechanisms.
comment: 14 pages, 10 figures, submitted to ACL Rolling Review, February 2025 cycle, see https://github.com/Aurora-cx/TypoLLM
☆ SAGE: A Framework of Precise Retrieval for RAG
Retrieval-augmented generation (RAG) has demonstrated significant proficiency in conducting question-answering (QA) tasks within a specified corpus. Nonetheless, numerous failure instances of RAG in QA still exist. These failures are not solely attributable to the limitations of Large Language Models (LLMs); instead, they predominantly arise from the retrieval of inaccurate information for LLMs due to two limitations: (1) Current RAG methods segment the corpus without considering semantics, making it difficult to find relevant context due to impaired correlation between questions and the segments. (2) There is a trade-off between missing essential context with fewer context retrieved and getting irrelevant context with more context retrieved. In this paper, we introduce a RAG framework (SAGE), to overcome these limitations. First, to address the segmentation issue without considering semantics, we propose to train a semantic segmentation model. This model is trained to segment the corpus into semantically complete chunks. Second, to ensure that only the most relevant chunks are retrieved while the irrelevant ones are ignored, we design a chunk selection algorithm to dynamically select chunks based on the decreasing speed of the relevance score, leading to a more relevant selection. Third, to further ensure the precision of the retrieved chunks, we propose letting LLMs assess whether retrieved chunks are excessive or lacking and then adjust the amount of context accordingly. Experiments show that SAGE outperforms baselines by 61.25% in the quality of QA on average. Moreover, by avoiding retrieving noisy context, SAGE lowers the cost of the tokens consumed in LLM inference and achieves a 49.41% enhancement in cost efficiency on average. Additionally, our work offers valuable insights for boosting RAG.
☆ Spark-TTS: An Efficient LLM-Based Text-to-Speech Model with Single-Stream Decoupled Speech Tokens ACL 2025
Recent advancements in large language models (LLMs) have driven significant progress in zero-shot text-to-speech (TTS) synthesis. However, existing foundation models rely on multi-stage processing or complex architectures for predicting multiple codebooks, limiting efficiency and integration flexibility. To overcome these challenges, we introduce Spark-TTS, a novel system powered by BiCodec, a single-stream speech codec that decomposes speech into two complementary token types: low-bitrate semantic tokens for linguistic content and fixed-length global tokens for speaker attributes. This disentangled representation, combined with the Qwen2.5 LLM and a chain-of-thought (CoT) generation approach, enables both coarse-grained control (e.g., gender, speaking style) and fine-grained adjustments (e.g., precise pitch values, speaking rate). To facilitate research in controllable TTS, we introduce VoxBox, a meticulously curated 100,000-hour dataset with comprehensive attribute annotations. Extensive experiments demonstrate that Spark-TTS not only achieves state-of-the-art zero-shot voice cloning but also generates highly customizable voices that surpass the limitations of reference-based synthesis. Source code, pre-trained models, and audio samples are available at https://github.com/SparkAudio/Spark-TTS.
comment: Submitted to ACL 2025
☆ Relating Piecewise Linear Kolmogorov Arnold Networks to ReLU Networks AISTATS 2025
Kolmogorov-Arnold Networks are a new family of neural network architectures which holds promise for overcoming the curse of dimensionality and has interpretability benefits (arXiv:2404.19756). In this paper, we explore the connection between Kolmogorov Arnold Networks (KANs) with piecewise linear (univariate real) functions and ReLU networks. We provide completely explicit constructions to convert a piecewise linear KAN into a ReLU network and vice versa.
comment: accepted to AISTATS 2025; 12 pages including bibliography and appendix
☆ Code-as-Symbolic-Planner: Foundation Model-Based Robot Planning via Symbolic Code Generation
Recent works have shown great potentials of Large Language Models (LLMs) in robot task and motion planning (TAMP). Current LLM approaches generate text- or code-based reasoning chains with sub-goals and action plans. However, they do not fully leverage LLMs' symbolic computing and code generation capabilities. Many robot TAMP tasks involve complex optimization under multiple constraints, where pure textual reasoning is insufficient. While augmenting LLMs with predefined solvers and planners improves performance, it lacks generalization across tasks. Given LLMs' growing coding proficiency, we enhance their TAMP capabilities by steering them to generate code as symbolic planners for optimization and constraint verification. Unlike prior work that uses code to interface with robot action modules, we steer LLMs to generate code as solvers, planners, and checkers for TAMP tasks requiring symbolic computing, while still leveraging textual reasoning to incorporate common sense. With a multi-round guidance and answer evolution framework, the proposed Code-as-Symbolic-Planner improves success rates by average 24.1\% over best baseline methods across seven typical TAMP tasks and three popular LLMs. Code-as-Symbolic-Planner shows strong effectiveness and generalizability across discrete and continuous environments, 2D/3D simulations and real-world settings, as well as single- and multi-robot tasks with diverse requirements. See our project website https://yongchao98.github.io/Code-Symbol-Planner/ for prompts, videos, and code.
comment: 7 pages, 7 figures, 3 tables
☆ Evaluating LLMs' Assessment of Mixed-Context Hallucination Through the Lens of Summarization
With the rapid development of large language models (LLMs), LLM-as-a-judge has emerged as a widely adopted approach for text quality evaluation, including hallucination evaluation. While previous studies have focused exclusively on single-context evaluation (e.g., discourse faithfulness or world factuality), real-world hallucinations typically involve mixed contexts, which remains inadequately evaluated. In this study, we use summarization as a representative task to comprehensively evaluate LLMs' capability in detecting mixed-context hallucinations, specifically distinguishing between factual and non-factual hallucinations. Through extensive experiments across direct generation and retrieval-based models of varying scales, our main observations are: (1) LLMs' intrinsic knowledge introduces inherent biases in hallucination evaluation; (2) These biases particularly impact the detection of factual hallucinations, yielding a significant performance bottleneck; (3) The fundamental challenge lies in effective knowledge utilization, balancing between LLMs' intrinsic knowledge and external context for accurate mixed-context hallucination evaluation.
comment: 8 pages, 5 figures for main body
☆ An Efficient Continual Learning Framework for Multivariate Time Series Prediction Tasks with Application to Vehicle State Estimation
In continual time series analysis using neural networks, catastrophic forgetting (CF) of previously learned models when training on new data domains has always been a significant challenge. This problem is especially challenging in vehicle estimation and control, where new information is sequentially introduced to the model. Unfortunately, existing work on continual learning has not sufficiently addressed the adverse effects of catastrophic forgetting in time series analysis, particularly in multivariate output environments. In this paper, we present EM-ReSeleCT (Efficient Multivariate Representative Selection for Continual Learning in Time Series Tasks), an enhanced approach designed to handle continual learning in multivariate environments. Our approach strategically selects representative subsets from old and historical data and incorporates memory-based continual learning techniques with an improved optimization algorithm to adapt the pre-trained model on new information while preserving previously acquired information. Additionally, we develop a sequence-to-sequence transformer model (autoregressive model) specifically designed for vehicle state estimation. Moreover, we propose an uncertainty quantification framework using conformal prediction to assess the sensitivity of the memory size and to showcase the robustness of the proposed method. Experimental results from tests on an electric Equinox vehicle highlight the superiority of our method in continually learning new information while retaining prior knowledge, outperforming state-of-the-art continual learning methods. Furthermore, EM-ReSeleCT significantly reduces training time, a critical advantage in continual learning applications.
☆ CoPL: Collaborative Preference Learning for Personalizing LLMs
Personalizing large language models (LLMs) is important for aligning outputs with diverse user preferences, yet existing methods struggle with flexibility and generalization. We propose CoPL (Collaborative Preference Learning), a graph-based collaborative filtering framework that models user-response relationships to enhance preference estimation, particularly in sparse annotation settings. By integrating a mixture of LoRA experts, CoPL efficiently fine-tunes LLMs while dynamically balancing shared and user-specific preferences. Additionally, an optimization-free adaptation strategy enables generalization to unseen users without fine-tuning. Experiments on UltraFeedback-P demonstrate that CoPL outperforms existing personalized reward models, effectively capturing both common and controversial preferences, making it a scalable solution for personalized LLM alignment.
comment: 13pages, 4 figures, 6tables
☆ Enhancing Object Detection Accuracy in Underwater Sonar Images through Deep Learning-based Denoising
Sonar image object detection is crucial for underwater robotics and other applications. However, various types of noise in sonar images can affect the accuracy of object detection. Denoising, as a critical preprocessing step, aims to remove noise while retaining useful information to improve detection accuracy. Although deep learning-based denoising algorithms perform well on optical images, their application to underwater sonar images remains underexplored. This paper systematically evaluates the effectiveness of several deep learning-based denoising algorithms, originally designed for optical images, in the context of underwater sonar image object detection. We apply nine trained denoising models to images from five open-source sonar datasets, each processing different types of noise. We then test the denoised images using four object detection algorithms. The results show that different denoising models have varying effects on detection performance. By combining the strengths of multiple denoising models, the detection results can be optimized, thus more effectively suppressing noise. Additionally, we adopt a multi-frame denoising technique, using different outputs generated by multiple denoising models as multiple frames of the same scene for further processing to enhance detection accuracy. This method, originally designed for optical images, leverages complementary noise-reduction effects. Experimental results show that denoised sonar images improve the performance of object detection algorithms compared to the original sonar images.
☆ Distilled Prompt Learning for Incomplete Multimodal Survival Prediction CVPR2025
The integration of multimodal data including pathology images and gene profiles is widely applied in precise survival prediction. Despite recent advances in multimodal survival models, collecting complete modalities for multimodal fusion still poses a significant challenge, hindering their application in clinical settings. Current approaches tackling incomplete modalities often fall short, as they typically compensate for only a limited part of the knowledge of missing modalities. To address this issue, we propose a Distilled Prompt Learning framework (DisPro) to utilize the strong robustness of Large Language Models (LLMs) to missing modalities, which employs two-stage prompting for compensation of comprehensive information for missing modalities. In the first stage, Unimodal Prompting (UniPro) distills the knowledge distribution of each modality, preparing for supplementing modality-specific knowledge of the missing modality in the subsequent stage. In the second stage, Multimodal Prompting (MultiPro) leverages available modalities as prompts for LLMs to infer the missing modality, which provides modality-common information. Simultaneously, the unimodal knowledge acquired in the first stage is injected into multimodal inference to compensate for the modality-specific knowledge of the missing modality. Extensive experiments covering various missing scenarios demonstrated the superiority of the proposed method. The code is available at https://github.com/Innse/DisPro.
comment: Accepted by CVPR2025
☆ OpenGS-SLAM: Open-Set Dense Semantic SLAM with 3D Gaussian Splatting for Object-Level Scene Understanding
Recent advancements in 3D Gaussian Splatting have significantly improved the efficiency and quality of dense semantic SLAM. However, previous methods are generally constrained by limited-category pre-trained classifiers and implicit semantic representation, which hinder their performance in open-set scenarios and restrict 3D object-level scene understanding. To address these issues, we propose OpenGS-SLAM, an innovative framework that utilizes 3D Gaussian representation to perform dense semantic SLAM in open-set environments. Our system integrates explicit semantic labels derived from 2D foundational models into the 3D Gaussian framework, facilitating robust 3D object-level scene understanding. We introduce Gaussian Voting Splatting to enable fast 2D label map rendering and scene updating. Additionally, we propose a Confidence-based 2D Label Consensus method to ensure consistent labeling across multiple views. Furthermore, we employ a Segmentation Counter Pruning strategy to improve the accuracy of semantic scene representation. Extensive experiments on both synthetic and real-world datasets demonstrate the effectiveness of our method in scene understanding, tracking, and mapping, achieving 10 times faster semantic rendering and 2 times lower storage costs compared to existing methods. Project page: https://young-bit.github.io/opengs-github.github.io/.
♻ ☆ Matryoshka Quantization
Quantizing model weights is critical for reducing the communication and inference costs of large models. However, quantizing models -- especially to low precisions like int4 or int2 -- requires a trade-off in model quality; int2, in particular, is known to severely degrade model quality. Consequently, practitioners are often forced to maintain multiple models with different quantization levels or serve a single model that best satisfies the quality-latency trade-off. On the other hand, integer data types, such as int8, inherently possess a nested (Matryoshka) structure where smaller bit-width integers, like int4 or int2, are nested within the most significant bits. Leveraging this insight, in this paper, we propose Matryoshka Quantization (MatQuant), a novel multi-scale quantization technique that alleviates the aforementioned challenge. This technique allows us to train and maintain a single quantized model but serve it with the precision demanded by the deployment. Furthermore, leveraging MatQuant's co-training and co-distillation regularization, int2 precision models extracted by MatQuant outperform standard int2 quantization by up to to 4% and 7% with OmniQuant and QAT as base algorithms respectively. Finally, we demonstrate that by using an extra bit to represent outliers, a model with an effective precision of 2.05-bit gives an additional 6% improvement with OmniQuant as the base algorithm.
♻ ☆ Fuzzy Speculative Decoding for a Tunable Accuracy-Runtime Tradeoff
Speculative Decoding (SD) enforces strict distributional equivalence to the target model, limiting potential speed ups as distributions of near-equivalence achieve comparable outcomes in many cases. Furthermore, enforcing distributional equivalence means that users are unable to trade deviations from the target model distribution for further inference speed gains. To address these limitations, we introduce Fuzzy Speculative Decoding (FSD) - a decoding algorithm that generalizes SD by accepting candidate tokens purely based on the divergences between the target and draft model distributions. By allowing for controlled divergence from the target model, FSD enables users to flexibly trade generation quality for inference speed. Across several benchmarks, our method is able to achieve significant runtime improvements of over 5 tokens per second faster than SD at only an approximate 2% absolute reduction in benchmark accuracy. In many cases, FSD is even able to match SD benchmark accuracy at over 2 tokens per second faster, demonstrating that distributional equivalence is not necessary to maintain target model performance.
♻ ☆ Forecasting Frontier Language Model Agent Capabilities
As Language Models (LMs) increasingly operate as autonomous agents, accurately forecasting their capabilities becomes crucial for societal preparedness. We evaluate six forecasting methods that predict downstream capabilities of LM agents. We use "one-step" approaches that predict benchmark scores from input metrics like compute or model release date directly or "two-step" approaches that first predict an intermediate metric like the principal component of cross-benchmark performance (PC-1) and human-evaluated competitive Elo ratings. We evaluate our forecasting methods by backtesting them on a dataset of 38 LMs from the OpenLLM 2 leaderboard. We then use the validated two-step approach (Release Date$\to$Elo$\to$Benchmark) to predict LM agent performance for frontier models on three benchmarks: SWE-Bench Verified (software development), Cybench (cybersecurity assessment), and RE-Bench (ML research engineering). Our forecast predicts that by the beginning of 2026, non-specialized LM agents with low capability elicitation will reach a success rate of 54% on SWE-Bench Verified, while state-of-the-art LM agents will reach an 87% success rate. Our approach does not account for recent advances in inference-compute scaling and might thus be too conservative.
♻ ☆ SensorQA: A Question Answering Benchmark for Daily-Life Monitoring
With the rapid growth in sensor data, effectively interpreting and interfacing with these data in a human-understandable way has become crucial. While existing research primarily focuses on learning classification models, fewer studies have explored how end users can actively extract useful insights from sensor data, often hindered by the lack of a proper dataset. To address this gap, we introduce SensorQA, the first human-created question-answering (QA) dataset for long-term time-series sensor data for daily life monitoring. SensorQA is created by human workers and includes 5.6K diverse and practical queries that reflect genuine human interests, paired with accurate answers derived from sensor data. We further establish benchmarks for state-of-the-art AI models on this dataset and evaluate their performance on typical edge devices. Our results reveal a gap between current models and optimal QA performance and efficiency, highlighting the need for new contributions. The dataset and code are available at: https://github.com/benjamin-reichman/SensorQA.
♻ ☆ On Memory Construction and Retrieval for Personalized Conversational Agents
To deliver coherent and personalized experiences in long-term conversations, existing approaches typically perform retrieval augmented response generation by constructing memory banks from conversation history at either the turn-level, session-level, or through summarization techniques.In this paper, we present two key findings: (1) The granularity of memory unit matters: turn-level, session-level, and summarization-based methods each exhibit limitations in both memory retrieval accuracy and the semantic quality of the retrieved content. (2) Prompt compression methods, such as LLMLingua-2, can effectively serve as a denoising mechanism, enhancing memory retrieval accuracy across different granularities. Building on these insights, we propose SeCom, a method that constructs the memory bank at segment level by introducing a conversation segmentation model that partitions long-term conversations into topically coherent segments, while applying compression based denoising on memory units to enhance memory retrieval. Experimental results show that SeCom exhibits a significant performance advantage over baselines on long-term conversation benchmarks LOCOMO and Long-MT-Bench+. Additionally, the proposed conversation segmentation method demonstrates superior performance on dialogue segmentation datasets such as DialSeg711, TIAGE, and SuperDialSeg.
comment: 10 pages, 5 figures, conference
♻ ☆ InductionBench: LLMs Fail in the Simplest Complexity Class
Large language models (LLMs) have shown remarkable improvements in reasoning and many existing benchmarks have been addressed by models such as o1 and o3 either fully or partially. However, a majority of these benchmarks emphasize deductive reasoning, including mathematical and coding tasks in which rules such as mathematical axioms or programming syntax are clearly defined, based on which LLMs can plan and apply these rules to arrive at a solution. In contrast, inductive reasoning, where one infers the underlying rules from observed data, remains less explored. Such inductive processes lie at the heart of scientific discovery, as they enable researchers to extract general principles from empirical observations. To assess whether LLMs possess this capacity, we introduce InductionBench, a new benchmark designed to evaluate the inductive reasoning ability of LLMs. Our experimental findings reveal that even the most advanced models available struggle to master the simplest complexity classes within the subregular hierarchy of functions, highlighting a notable deficiency in current LLMs' inductive reasoning capabilities. Coda and data are available https://github.com/Wenyueh/inductive_reasoning_benchmark.
comment: 24 pages, 7 figures
♻ ☆ Error Bounds for Physics-Informed Neural Networks in Fokker-Planck PDEs
Stochastic differential equations are commonly used to describe the evolution of stochastic processes. The state uncertainty of such processes is best represented by the probability density function (PDF), whose evolution is governed by the Fokker-Planck partial differential equation (FP-PDE). However, it is generally infeasible to solve the FP-PDE in closed form. In this work, we show that physics-informed neural networks (PINNs) can be trained to approximate the solution PDF. Our main contribution is the analysis of PINN approximation error: we develop a theoretical framework to construct tight error bounds using PINNs. In addition, we derive a practical error bound that can be efficiently constructed with standard training methods. We discuss that this error-bound framework generalizes to approximate solutions of other linear PDEs. Empirical results on nonlinear, high-dimensional, and chaotic systems validate the correctness of our error bounds while demonstrating the scalability of PINNs and their significant computational speedup in obtaining accurate PDF solutions compared to the Monte Carlo approach.
comment: paper under review
♻ ☆ Disparate Model Performance and Stability in Machine Learning Clinical Support for Diabetes and Heart Diseases
Machine Learning (ML) algorithms are vital for supporting clinical decision-making in biomedical informatics. However, their predictive performance can vary across demographic groups, often due to the underrepresentation of historically marginalized populations in training datasets. The investigation reveals widespread sex- and age-related inequities in chronic disease datasets and their derived ML models. Thus, a novel analytical framework is introduced, combining systematic arbitrariness with traditional metrics like accuracy and data complexity. The analysis of data from over 25,000 individuals with chronic diseases revealed mild sex-related disparities, favoring predictive accuracy for males, and significant age-related differences, with better accuracy for younger patients. Notably, older patients showed inconsistent predictive accuracy across seven datasets, linked to higher data complexity and lower model performance. This highlights that representativeness in training data alone does not guarantee equitable outcomes, and model arbitrariness must be addressed before deploying models in clinical settings.
comment: This paper will be presented in American Medical Informatics Association (AMIA) Informatics Summit Conference 2025 (Pittsburgh, PA). 10 pages, 2 figures, 5 tables
♻ ☆ Evaluating the quality of published medical research with ChatGPT
Estimating the quality of published research is important for evaluations of departments, researchers, and job candidates. Citation-based indicators sometimes support these tasks, but do not work for new articles and have low or moderate accuracy. Previous research has shown that ChatGPT can estimate the quality of research articles, with its scores correlating positively with an expert scores proxy in all fields, and often more strongly than citation-based indicators, except for clinical medicine. ChatGPT scores may therefore replace citation-based indicators for some applications. This article investigates the clinical medicine anomaly with the largest dataset yet and a more detailed analysis. The results showed that ChatGPT 4o-mini scores for articles submitted to the UK's Research Excellence Framework (REF) 2021 Unit of Assessment (UoA) 1 Clinical Medicine correlated positively (r=0.134, n=9872) with departmental mean REF scores, against a theoretical maximum correlation of r=0.226. ChatGPT 4o and 3.5 turbo also gave positive correlations. At the departmental level, mean ChatGPT scores correlated more strongly with departmental mean REF scores (r=0.395, n=31). For the 100 journals with the most articles in UoA 1, their mean ChatGPT score correlated strongly with their REF score (r=0.495) but negatively with their citation rate (r=-0.148). Journal and departmental anomalies in these results point to ChatGPT being ineffective at assessing the quality of research in prestigious medical journals or research directly affecting human health, or both. Nevertheless, the results give evidence of ChatGPT's ability to assess research quality overall for Clinical Medicine, where it might replace citation-based indicators for new research.
comment: Information Processing & Management (2025)
♻ ☆ IOHunter: Graph Foundation Model to Uncover Online Information Operations AAAI 2025
Social media platforms have become vital spaces for public discourse, serving as modern agor\`as where a wide range of voices influence societal narratives. However, their open nature also makes them vulnerable to exploitation by malicious actors, including state-sponsored entities, who can conduct information operations (IOs) to manipulate public opinion. The spread of misinformation, false news, and misleading claims threatens democratic processes and societal cohesion, making it crucial to develop methods for the timely detection of inauthentic activity to protect the integrity of online discourse. In this work, we introduce a methodology designed to identify users orchestrating information operations, a.k.a. IO drivers, across various influence campaigns. Our framework, named IOHunter, leverages the combined strengths of Language Models and Graph Neural Networks to improve generalization in supervised, scarcely-supervised, and cross-IO contexts. Our approach achieves state-of-the-art performance across multiple sets of IOs originating from six countries, significantly surpassing existing approaches. This research marks a step toward developing Graph Foundation Models specifically tailored for the task of IO detection on social media platforms.
comment: Accepted at AAAI 2025
♻ ☆ Revisiting the Test-Time Scaling of o1-like Models: Do they Truly Possess Test-Time Scaling Capabilities?
The advent of test-time scaling in large language models (LLMs), exemplified by OpenAI's o1 series, has advanced reasoning capabilities by scaling computational resource allocation during inference. While successors like QwQ, Deepseek-R1 (R1) and LIMO replicate these advancements, whether these models truly possess test-time scaling capabilities remains underexplored. This study found that longer CoTs of these o1-like models do not consistently enhance accuracy; in fact, correct solutions are often shorter than incorrect ones for the same questions. Further investigation shows this phenomenon is closely related to models' self-revision capabilities - longer CoTs contain more self-revisions, which often lead to performance degradation. We then compare sequential and parallel scaling strategies on QwQ, R1 and LIMO, finding that parallel scaling achieves better coverage and scalability. Based on these insights, we propose Shortest Majority Vote, a method that combines parallel scaling strategies with CoT length characteristics, significantly improving models' test-time scalability compared to conventional majority voting approaches.
comment: Add the github link
♻ ☆ First-Person Fairness in Chatbots ICLR 2025
Evaluating chatbot fairness is crucial given their rapid proliferation, yet typical chatbot tasks (e.g., resume writing, entertainment) diverge from the institutional decision-making tasks (e.g., resume screening) which have traditionally been central to discussion of algorithmic fairness. The open-ended nature and diverse use-cases of chatbots necessitate novel methods for bias assessment. This paper addresses these challenges by introducing a scalable counterfactual approach to evaluate "first-person fairness," meaning fairness toward chatbot users based on demographic characteristics. Our method employs a Language Model as a Research Assistant (LMRA) to yield quantitative measures of harmful stereotypes and qualitative analyses of demographic differences in chatbot responses. We apply this approach to assess biases in six of our language models across millions of interactions, covering sixty-six tasks in nine domains and spanning two genders and four races. Independent human annotations corroborate the LMRA-generated bias evaluations. This study represents the first large-scale fairness evaluation based on real-world chat data. We highlight that post-training reinforcement learning techniques significantly mitigate these biases. This evaluation provides a practical methodology for ongoing bias monitoring and mitigation.
comment: In ICLR 2025, 59 pages, 27 figures
♻ ☆ CNsum:Automatic Summarization for Chinese News Text
Obtaining valuable information from massive data efficiently has become our research goal in the era of Big Data. Text summarization technology has been continuously developed to meet this demand. Recent work has also shown that transformer-based pre-trained language models have achieved great success on various tasks in Natural Language Processing (NLP). Aiming at the problem of Chinese news text summary generation and the application of Transformer structure on Chinese, this paper proposes a Chinese news text summarization model (CNsum) based on Transformer structure, and tests it on Chinese datasets such as THUCNews. The results of the conducted experiments show that CNsum achieves better ROUGE score than the baseline models, which verifies the outperformance of the model.
comment: This withdrawal is due to the lack of authorization from all co-authors for the publication of this version
♻ ☆ StarVid: Enhancing Semantic Alignment in Video Diffusion Models via Spatial and SynTactic Guided Attention Refocusing
Recent advances in text-to-video (T2V) generation with diffusion models have garnered significant attention. However, they typically perform well in scenes with a single object and motion, struggling in compositional scenarios with multiple objects and distinct motions to accurately reflect the semantic content of text prompts. To address these challenges, we propose \textbf{StarVid}, a plug-and-play, training-free method that improves semantic alignment between multiple subjects, their motions, and text prompts in T2V models. StarVid first leverages the spatial reasoning capabilities of large language models (LLMs) for two-stage motion trajectory planning based on text prompts. Such trajectories serve as spatial priors, guiding a spatial-aware loss to refocus cross-attention (CA) maps into distinctive regions. Furthermore, we propose a syntax-guided contrastive constraint to strengthen the correlation between the CA maps of verbs and their corresponding nouns, enhancing motion-subject binding. Both qualitative and quantitative evaluations demonstrate that the proposed framework significantly outperforms baseline methods, delivering videos of higher quality with improved semantic consistency.
♻ ☆ Gumbel Counterfactual Generation From Language Models ICLR 2025
Understanding and manipulating the causal generation mechanisms in language models is essential for controlling their behavior. Previous work has primarily relied on techniques such as representation surgery -- e.g., model ablations or manipulation of linear subspaces tied to specific concepts -- to \emph{intervene} on these models. To understand the impact of interventions precisely, it is useful to examine \emph{counterfactuals} -- e.g., how a given sentence would have appeared had it been generated by the model following a specific intervention. We highlight that counterfactual reasoning is conceptually distinct from interventions, as articulated in Pearl's causal hierarchy. Based on this observation, we propose a framework for generating true string counterfactuals by reformulating language models as a structural equation model using the Gumbel-max trick, which we called Gumbel counterfactual generation. This reformulation allows us to model the joint distribution over original strings and their counterfactuals resulting from the same instantiation of the sampling noise. We develop an algorithm based on hindsight Gumbel sampling that allows us to infer the latent noise variables and generate counterfactuals of observed strings. Our experiments demonstrate that the approach produces meaningful counterfactuals while at the same time showing that commonly used intervention techniques have considerable undesired side effects.
comment: Accepted in ICLR 2025
♻ ☆ From Tokens to Words: On the Inner Lexicon of LLMs ICLR
Natural language is composed of words, but modern large language models (LLMs) process sub-words as input. A natural question raised by this discrepancy is whether LLMs encode words internally, and if so how. We present evidence that LLMs engage in an intrinsic detokenization process, where sub-word sequences are combined into coherent whole-word representations at their last token. Our experiments show that this process primarily takes place within the early and middle layers of the model. We further demonstrate its robustness to arbitrary splits (e.g., "cats" to "ca" and "ts"), typos, and importantly-to out-of-vocabulary words: when feeding the last token internal representations of such words to the model as input, it can "understand" them as the complete word despite never seeing such representations as input during training. Our findings suggest that LLMs maintain a latent vocabulary beyond the tokenizer's scope. These insights provide a practical, finetuning-free application for expanding the vocabulary of pre-trained models. By enabling the addition of new vocabulary words, we reduce input length and inference iterations, which reduces both space and model latency, with little to no loss in model accuracy.
comment: Accepted to the International Conference on Learning Representations (ICLR) 2025
♻ ☆ Kinetix: Investigating the Training of General Agents through Open-Ended Physics-Based Control Tasks ICLR 2025
While large models trained with self-supervised learning on offline datasets have shown remarkable capabilities in text and image domains, achieving the same generalisation for agents that act in sequential decision problems remains an open challenge. In this work, we take a step towards this goal by procedurally generating tens of millions of 2D physics-based tasks and using these to train a general reinforcement learning (RL) agent for physical control. To this end, we introduce Kinetix: an open-ended space of physics-based RL environments that can represent tasks ranging from robotic locomotion and grasping to video games and classic RL environments, all within a unified framework. Kinetix makes use of our novel hardware-accelerated physics engine Jax2D that allows us to cheaply simulate billions of environment steps during training. Our trained agent exhibits strong physical reasoning capabilities in 2D space, being able to zero-shot solve unseen human-designed environments. Furthermore, fine-tuning this general agent on tasks of interest shows significantly stronger performance than training an RL agent *tabula rasa*. This includes solving some environments that standard RL training completely fails at. We believe this demonstrates the feasibility of large scale, mixed-quality pre-training for online RL and we hope that Kinetix will serve as a useful framework to investigate this further.
comment: ICLR 2025 Oral. The first two authors contributed equally. Project page located at: https://kinetix-env.github.io/
♻ ☆ OpenReviewer: A Specialized Large Language Model for Generating Critical Scientific Paper Reviews NAACL 2025
We present OpenReviewer, an open-source system for generating high-quality peer reviews of machine learning and AI conference papers. At its core is Llama-OpenReviewer-8B, an 8B parameter language model specifically fine-tuned on 79,000 expert reviews from top conferences. Given a PDF paper submission and review template as input, OpenReviewer extracts the full text, including technical content like equations and tables, and generates a structured review following conference-specific guidelines. Our evaluation on 400 test papers shows that OpenReviewer produces considerably more critical and realistic reviews compared to general-purpose LLMs like GPT-4 and Claude-3.5. While other LLMs tend toward overly positive assessments, OpenReviewer's recommendations closely match the distribution of human reviewer ratings. The system provides authors with rapid, constructive feedback to improve their manuscripts before submission, though it is not intended to replace human peer review. OpenReviewer is available as an online demo and open-source tool.
comment: Demo: https://huggingface.co/spaces/maxidl/openreviewer Model: https://huggingface.co/maxidl/Llama-OpenReviewer-8B To appear at NAACL 2025 System Demonstrations Track
♻ ☆ CUIfy the XR: An Open-Source Package to Embed LLM-powered Conversational Agents in XR
Recent developments in computer graphics, machine learning, and sensor technologies enable numerous opportunities for extended reality (XR) setups for everyday life, from skills training to entertainment. With large corporations offering affordable consumer-grade head-mounted displays (HMDs), XR will likely become pervasive, and HMDs will develop as personal devices like smartphones and tablets. However, having intelligent spaces and naturalistic interactions in XR is as important as technological advances so that users grow their engagement in virtual and augmented spaces. To this end, large language model (LLM)--powered non-player characters (NPCs) with speech-to-text (STT) and text-to-speech (TTS) models bring significant advantages over conventional or pre-scripted NPCs for facilitating more natural conversational user interfaces (CUIs) in XR. This paper provides the community with an open-source, customizable, extendable, and privacy-aware Unity package, CUIfy, that facilitates speech-based NPC-user interaction with widely used LLMs, STT, and TTS models. Our package also supports multiple LLM-powered NPCs per environment and minimizes latency between different computational models through streaming to achieve usable interactions between users and NPCs. We publish our source code in the following repository: https://gitlab.lrz.de/hctl/cuify
comment: 7th IEEE International Conference on Artificial Intelligence & eXtended and Virtual Reality (IEEE AIxVR 2025)
♻ ☆ Evaluating Intelligence via Trial and Error
Intelligence is a crucial trait for species to find solutions within a limited number of trial-and-error attempts. Building on this idea, we introduce Survival Game as a framework to evaluate intelligence based on the number of failed attempts in a trial-and-error process. Fewer failures indicate higher intelligence. When the expectation and variance of failure counts are both finite, it signals the ability to consistently find solutions to new challenges, which we define as the Autonomous Level of intelligence. Using Survival Game, we comprehensively evaluate existing AI systems. Our results show that while AI systems achieve the Autonomous Level in simple tasks, they are still far from it in more complex tasks, such as vision, search, recommendation, and language. While scaling current AI technologies might help, this would come at an astronomical cost. Projections suggest that achieving the Autonomous Level for general tasks would require $10^{26}$ parameters. To put this into perspective, loading such a massive model requires so many H100 GPUs that their total value is $10^{7}$ times that of Apple Inc.'s market value. Even with Moore's Law, supporting such a parameter scale would take $70$ years. This staggering cost highlights the complexity of human tasks and the inadequacies of current AI technologies. To further investigate this phenomenon, we conduct a theoretical analysis of Survival Game and its experimental results. Our findings suggest that human tasks possess a criticality property. As a result, Autonomous Level requires a deep understanding of the task's underlying mechanisms. Current AI systems, however, do not fully grasp these mechanisms and instead rely on superficial mimicry, making it difficult for them to reach an autonomous level. We believe Survival Game can not only guide the future development of AI but also offer profound insights into human intelligence.
♻ ☆ Towards Better Chain-of-Thought: A Reflection on Effectiveness and Faithfulness
Chain-of-thought (CoT) prompting demonstrates varying performance under different reasoning tasks. Previous work attempts to evaluate it but falls short in providing an in-depth analysis of patterns that influence the CoT. In this paper, we study the CoT performance from the perspective of effectiveness and faithfulness. For the former, we identify key factors that influence CoT effectiveness on performance improvement, including problem difficulty, information gain, and information flow. For the latter, we interpret the unfaithful CoT issue by conducting a joint analysis of the information interaction among the question, CoT, and answer. The result demonstrates that, when the LLM predicts answers, it can recall correct information missing in the CoT from the question, leading to the problem. Finally, we propose a novel algorithm to mitigate this issue, in which we recall extra information from the question to enhance the CoT generation and evaluate CoTs based on their information gain. Extensive experiments demonstrate that our approach enhances both the faithfulness and effectiveness of CoT.
comment: 18 pages, under review
AnyECG: Foundational Models for Multitask Cardiac Analysis in Real-World Settings
Electrocardiogram (ECG), a non-invasive and affordable tool for cardiac monitoring, is highly sensitive in detecting acute heart attacks. However, due to the lengthy nature of ECG recordings, numerous machine learning methods have been developed for automated heart disease detection to reduce human workload. Despite these efforts, performance remains suboptimal. A key obstacle is the inherent complexity of ECG data, which includes heterogeneity (e.g., varying sampling rates), high levels of noise, demographic-related pattern shifts, and intricate rhythm-event associations. To overcome these challenges, this paper introduces AnyECG, a foundational model designed to extract robust representations from any real-world ECG data. Specifically, a tailored ECG Tokenizer encodes each fixed-duration ECG fragment into a token and, guided by proxy tasks, converts noisy, continuous ECG features into discrete, compact, and clinically meaningful local rhythm codes. These codes encapsulate basic morphological, frequency, and demographic information (e.g., sex), effectively mitigating signal noise. We further pre-train the AnyECG to learn rhythmic pattern associations across ECG tokens, enabling the capture of cardiac event semantics. By being jointly pre-trained on diverse ECG data sources, AnyECG is capable of generalizing across a wide range of downstream tasks where ECG signals are recorded from various devices and scenarios. The experimental results show that AnyECG achieves an average performance improvement of 6% across four critical tasks-anomaly detection, arrhythmia classification, corrupted lead generation, and ultra-long ECG recognition. AnyECG learns common ECG rhythm from data and significantly outperforms state-of-the-art methods in each of these tasks.
♻ ☆ MOOSE-Chem: Large Language Models for Rediscovering Unseen Chemistry Scientific Hypotheses ICLR 2025
Scientific discovery contributes largely to human society's prosperity, and recent progress shows that LLMs could potentially catalyze this process. However, it is still unclear whether LLMs can discover novel and valid hypotheses in chemistry. In this work, we investigate this central research question: Can LLMs automatically discover novel and valid chemistry research hypotheses given only a chemistry research background (consisting of a research question and/or a background survey), without limitation on the domain of the research question? After extensive discussions with chemistry experts, we propose an assumption that a majority of chemistry hypotheses can be resulted from a research background and several inspirations. With this key insight, we break the central question into three smaller fundamental questions. In brief, they are: (1) given a background question, whether LLMs can retrieve good inspirations; (2) with background and inspirations, whether LLMs can lead to hypothesis; and (3) whether LLMs can identify good hypotheses to rank them higher. To investigate these questions, we construct a benchmark consisting of 51 chemistry papers published in Nature, Science, or a similar level in 2024 (all papers are only available online since 2024). Every paper is divided by chemistry PhD students into three components: background, inspirations, and hypothesis. The goal is to rediscover the hypothesis, given only the background and a large randomly selected chemistry literature corpus consisting the ground truth inspiration papers, with LLMs trained with data up to 2023. We also develop an LLM-based multi-agent framework that leverages the assumption, consisting of three stages reflecting the three smaller questions. The proposed method can rediscover many hypotheses with very high similarity with the ground truth ones, covering the main innovations.
comment: Accepted by ICLR 2025
♻ ☆ Text-driven Adaptation of Foundation Models for Few-shot Surgical Workflow Analysis
Purpose: Surgical workflow analysis is crucial for improving surgical efficiency and safety. However, previous studies rely heavily on large-scale annotated datasets, posing challenges in cost, scalability, and reliance on expert annotations. To address this, we propose Surg-FTDA (Few-shot Text-driven Adaptation), designed to handle various surgical workflow analysis tasks with minimal paired image-label data. Methods: Our approach has two key components. First, Few-shot selection-based modality alignment selects a small subset of images and aligns their embeddings with text embeddings from the downstream task, bridging the modality gap. Second, Text-driven adaptation leverages only text data to train a decoder, eliminating the need for paired image-text data. This decoder is then applied to aligned image embeddings, enabling image-related tasks without explicit image-text pairs. Results: We evaluate our approach to generative tasks (image captioning) and discriminative tasks (triplet recognition and phase recognition). Results show that Surg-FTDA outperforms baselines and generalizes well across downstream tasks. Conclusion: We propose a text-driven adaptation approach that mitigates the modality gap and handles multiple downstream tasks in surgical workflow analysis, with minimal reliance on large annotated datasets. The code and dataset will be released in https://github.com/CAMMA-public/Surg-FTDA
♻ ☆ NavRAG: Generating User Demand Instructions for Embodied Navigation through Retrieval-Augmented LLM
Vision-and-Language Navigation (VLN) is an essential skill for embodied agents, allowing them to navigate in 3D environments following natural language instructions. High-performance navigation models require a large amount of training data, the high cost of manually annotating data has seriously hindered this field. Therefore, some previous methods translate trajectory videos into step-by-step instructions for expanding data, but such instructions do not match well with users' communication styles that briefly describe destinations or state specific needs. Moreover, local navigation trajectories overlook global context and high-level task planning. To address these issues, we propose NavRAG, a retrieval-augmented generation (RAG) framework that generates user demand instructions for VLN. NavRAG leverages LLM to build a hierarchical scene description tree for 3D scene understanding from global layout to local details, then simulates various user roles with specific demands to retrieve from the scene tree, generating diverse instructions with LLM. We annotate over 2 million navigation instructions across 861 scenes and evaluate the data quality and navigation performance of trained models.
♻ ☆ HiLo: A Learning Framework for Generalized Category Discovery Robust to Domain Shifts ICLR 2025
Generalized Category Discovery (GCD) is a challenging task in which, given a partially labelled dataset, models must categorize all unlabelled instances, regardless of whether they come from labelled categories or from new ones. In this paper, we challenge a remaining assumption in this task: that all images share the same domain. Specifically, we introduce a new task and method to handle GCD when the unlabelled data also contains images from different domains to the labelled set. Our proposed `HiLo' networks extract High-level semantic and Low-level domain features, before minimizing the mutual information between the representations. Our intuition is that the clusterings based on domain information and semantic information should be independent. We further extend our method with a specialized domain augmentation tailored for the GCD task, as well as a curriculum learning approach. Finally, we construct a benchmark from corrupted fine-grained datasets as well as a large-scale evaluation on DomainNet with real-world domain shifts, reimplementing a number of GCD baselines in this setting. We demonstrate that HiLo outperforms SoTA category discovery models by a large margin on all evaluations.
comment: v2: Accepted as a conference paper at ICLR 2025; Project page: https://github.com/Visual-AI/hilo/
♻ ☆ Optimal Brain Apoptosis ICLR 2025
The increasing complexity and parameter count of Convolutional Neural Networks (CNNs) and Transformers pose challenges in terms of computational efficiency and resource demands. Pruning has been identified as an effective strategy to address these challenges by removing redundant elements such as neurons, channels, or connections, thereby enhancing computational efficiency without heavily compromising performance. This paper builds on the foundational work of Optimal Brain Damage (OBD) by advancing the methodology of parameter importance estimation using the Hessian matrix. Unlike previous approaches that rely on approximations, we introduce Optimal Brain Apoptosis (OBA), a novel pruning method that calculates the Hessian-vector product value directly for each parameter. By decomposing the Hessian matrix across network layers and identifying conditions under which inter-layer Hessian submatrices are non-zero, we propose a highly efficient technique for computing the second-order Taylor expansion of parameters. This approach allows for a more precise pruning process, particularly in the context of CNNs and Transformers, as validated in our experiments including VGG19, ResNet32, ResNet50, and ViT-B/16 on CIFAR10, CIFAR100 and Imagenet datasets. Our code is available at https://github.com/NEU-REAL/OBA.
comment: Accepted to ICLR 2025
♻ ☆ Iterated $Q$-Network: Beyond One-Step Bellman Updates in Deep Reinforcement Learning
The vast majority of Reinforcement Learning methods is largely impacted by the computation effort and data requirements needed to obtain effective estimates of action-value functions, which in turn determine the quality of the overall performance and the sample-efficiency of the learning procedure. Typically, action-value functions are estimated through an iterative scheme that alternates the application of an empirical approximation of the Bellman operator and a subsequent projection step onto a considered function space. It has been observed that this scheme can be potentially generalized to carry out multiple iterations of the Bellman operator at once, benefiting the underlying learning algorithm. However, till now, it has been challenging to effectively implement this idea, especially in high-dimensional problems. In this paper, we introduce iterated $Q$-Network (i-QN), a novel principled approach that enables multiple consecutive Bellman updates by learning a tailored sequence of action-value functions where each serves as the target for the next. We show that i-QN is theoretically grounded and that it can be seamlessly used in value-based and actor-critic methods. We empirically demonstrate the advantages of i-QN in Atari $2600$ games and MuJoCo continuous control problems.
comment: Published at TMLR: https://openreview.net/forum?id=Lt2H8Bd8jF
♻ ☆ Adaptive $Q$-Network: On-the-fly Target Selection for Deep Reinforcement Learning ICLR
Deep Reinforcement Learning (RL) is well known for being highly sensitive to hyperparameters, requiring practitioners substantial efforts to optimize them for the problem at hand. This also limits the applicability of RL in real-world scenarios. In recent years, the field of automated Reinforcement Learning (AutoRL) has grown in popularity by trying to address this issue. However, these approaches typically hinge on additional samples to select well-performing hyperparameters, hindering sample-efficiency and practicality. Furthermore, most AutoRL methods are heavily based on already existing AutoML methods, which were originally developed neglecting the additional challenges inherent to RL due to its non-stationarities. In this work, we propose a new approach for AutoRL, called Adaptive $Q$-Network (AdaQN), that is tailored to RL to take into account the non-stationarity of the optimization procedure without requiring additional samples. AdaQN learns several $Q$-functions, each one trained with different hyperparameters, which are updated online using the $Q$-function with the smallest approximation error as a shared target. Our selection scheme simultaneously handles different hyperparameters while coping with the non-stationarity induced by the RL optimization procedure and being orthogonal to any critic-based RL algorithm. We demonstrate that AdaQN is theoretically sound and empirically validate it in MuJoCo control problems and Atari $2600$ games, showing benefits in sample-efficiency, overall performance, robustness to stochasticity and training stability.
comment: Accepted at ICLR https://iclr.cc/virtual/2025/poster/28508
♻ ☆ Offline Model-Based Optimization by Learning to Rank ICLR 2025
Offline model-based optimization (MBO) aims to identify a design that maximizes a black-box function using only a fixed, pre-collected dataset of designs and their corresponding scores. A common approach in offline MBO is to train a regression-based surrogate model by minimizing mean squared error (MSE) and then find the best design within this surrogate model by different optimizers (e.g., gradient ascent). However, a critical challenge is the risk of out-of-distribution errors, i.e., the surrogate model may typically overestimate the scores and mislead the optimizers into suboptimal regions. Prior works have attempted to address this issue in various ways, such as using regularization techniques and ensemble learning to enhance the robustness of the model, but it still remains. In this paper, we argue that regression models trained with MSE are not well-aligned with the primary goal of offline MBO, which is to select promising designs rather than to predict their scores precisely. Notably, if a surrogate model can maintain the order of candidate designs based on their relative score relationships, it can produce the best designs even without precise predictions. To validate it, we conduct experiments to compare the relationship between the quality of the final designs and MSE, finding that the correlation is really very weak. In contrast, a metric that measures order-maintaining quality shows a significantly stronger correlation. Based on this observation, we propose learning a ranking-based model that leverages learning to rank techniques to prioritize promising designs based on their relative scores. We show that the generalization error on ranking loss can be well bounded. Empirical results across diverse tasks demonstrate the superior performance of our proposed ranking-based models than twenty existing methods.
comment: ICLR 2025
♻ ☆ AI, Meet Human: Learning Paradigms for Hybrid Decision Making Systems
Everyday we increasingly rely on machine learning models to automate and support high-stake tasks and decisions. This growing presence means that humans are now constantly interacting with machine learning-based systems, training and using models everyday. Several different techniques in computer science literature account for the human interaction with machine learning systems, but their classification is sparse and the goals varied. This survey proposes a taxonomy of Hybrid Decision Making Systems, providing both a conceptual and technical framework for understanding how current computer science literature models interaction between humans and machines.
♻ ☆ Signature Kernel Conditional Independence Tests in Causal Discovery for Stochastic Processes
Inferring the causal structure underlying stochastic dynamical systems from observational data holds great promise in domains ranging from science and health to finance. Such processes can often be accurately modeled via stochastic differential equations (SDEs), which naturally imply causal relationships via "which variables enter the differential of which other variables". In this paper, we develop conditional independence (CI) constraints on coordinate processes over selected intervals that are Markov with respect to the acyclic dependence graph (allowing self-loops) induced by a general SDE model. We then provide a sound and complete causal discovery algorithm, capable of handling both fully and partially observed data, and uniquely recovering the underlying or induced ancestral graph by exploiting time directionality assuming a CI oracle. Finally, to make our algorithm practically usable, we also propose a flexible, consistent signature kernel-based CI test to infer these constraints from data. We extensively benchmark the CI test in isolation and as part of our causal discovery algorithms, outperforming existing approaches in SDE models and beyond.
♻ ☆ Variational Best-of-N Alignment
Best-of-N (BoN) is a popular and effective algorithm for aligning language models to human preferences. The algorithm works as follows: at inference time, N samples are drawn from the language model, and the sample with the highest reward, as judged by a reward model, is returned as the output. Despite its effectiveness, BoN is computationally expensive; it reduces sampling throughput by a factor of N. To make BoN more efficient at inference time, one strategy is to fine-tune the language model to mimic what BoN does during inference. To achieve this, we derive the distribution induced by the BoN algorithm. We then propose to fine-tune the language model to minimize backward KL divergence to the BoN distribution. Our approach is analogous to mean-field variational inference and, thus, we term it variational BoN (vBoN). To the extent this fine-tuning is successful and we end up with a good approximation, we have reduced the inference cost by a factor of N. Our experiments on controlled generation and summarization tasks show that BoN is the most effective alignment method, and our variational approximation to BoN achieves the closest performance to BoN and surpasses models fine-tuned using the standard KL-constrained RL objective. In the controlled generation task, vBoN appears more frequently on the Pareto frontier of reward and KL divergence compared to other alignment methods. In the summarization task, vBoN achieves high reward values across various sampling temperatures.
♻ ☆ Offload Rethinking by Cloud Assistance for Efficient Environmental Sound Recognition on LPWANs
Learning-based environmental sound recognition has emerged as a crucial method for ultra-low-power environmental monitoring in biological research and city-scale sensing systems. These systems usually operate under limited resources and are often powered by harvested energy in remote areas. Recent efforts in on-device sound recognition suffer from low accuracy due to resource constraints, whereas cloud offloading strategies are hindered by high communication costs. In this work, we introduce ORCA, a novel resource-efficient cloud-assisted environmental sound recognition system on batteryless devices operating over the Low-Power Wide-Area Networks (LPWANs), targeting wide-area audio sensing applications. We propose a cloud assistance strategy that remedies the low accuracy of on-device inference while minimizing the communication costs for cloud offloading. By leveraging a self-attention-based cloud sub-spectral feature selection method to facilitate efficient on-device inference, ORCA resolves three key challenges for resource-constrained cloud offloading over LPWANs: 1) high communication costs and low data rates, 2) dynamic wireless channel conditions, and 3) unreliable offloading. We implement ORCA on an energy-harvesting batteryless microcontroller and evaluate it in a real world urban sound testbed. Our results show that ORCA outperforms state-of-the-art methods by up to $80 \times$ in energy savings and $220 \times$ in latency reduction while maintaining comparable accuracy.
comment: Accepted by The 23rd ACM Conference on Embedded Networked Sensor Systems (SenSys '25)
♻ ☆ Exploring Iterative Controllable Summarization with Large Language Models
Large language models (LLMs) have demonstrated remarkable performance in abstractive summarization tasks. However, their ability to precisely control summary attributes (e.g., length or topic) remains underexplored, limiting their adaptability to specific user preferences. In this paper, we systematically explore the controllability of LLMs. To this end, we revisit summary attribute measurements and introduce iterative evaluation metrics, failure rate and average iteration count to precisely evaluate controllability of LLMs, rather than merely assessing errors. Our findings show that LLMs struggle more with numerical attributes than with linguistic attributes. To address this challenge, we propose a guide-to-explain framework (GTE) for controllable summarization. Our GTE framework enables the model to identify misaligned attributes in the initial draft and guides it in self-explaining errors in the previous output. By allowing the model to reflect on its misalignment, GTE generates well-adjusted summaries that satisfy the desired attributes with robust effectiveness, requiring surprisingly fewer iterations than other iterative approaches.
♻ ☆ Foundation Models -- A Panacea for Artificial Intelligence in Pathology?
The role of artificial intelligence (AI) in pathology has evolved from aiding diagnostics to uncovering predictive morphological patterns in whole slide images (WSIs). Recently, foundation models (FMs) leveraging self-supervised pre-training have been widely advocated as a universal solution for diverse downstream tasks. However, open questions remain about their clinical applicability and generalization advantages over end-to-end learning using task-specific (TS) models. Here, we focused on AI with clinical-grade performance for prostate cancer diagnosis and Gleason grading. We present the largest validation of AI for this task, using over 100,000 core needle biopsies from 7,342 patients across 15 sites in 11 countries. We compared two FMs with a fully end-to-end TS model in a multiple instance learning framework. Our findings challenge assumptions that FMs universally outperform TS models. While FMs demonstrated utility in data-scarce scenarios, their performance converged with - and was in some cases surpassed by - TS models when sufficient labeled training data were available. Notably, extensive task-specific training markedly reduced clinically significant misgrading, misdiagnosis of challenging morphologies, and variability across different WSI scanners. Additionally, FMs used up to 35 times more energy than the TS model, raising concerns about their sustainability. Our results underscore that while FMs offer clear advantages for rapid prototyping and research, their role as a universal solution for clinically applicable medical AI remains uncertain. For high-stakes clinical applications, rigorous validation and consideration of task-specific training remain critically important. We advocate for integrating the strengths of FMs and end-to-end learning to achieve robust and resource-efficient AI pathology solutions fit for clinical use.
comment: 50 pages, 15 figures and an appendix (study protocol) which is previously published, see https://doi.org/10.1101/2024.07.04.24309948; updated authors list format
♻ ☆ TAG: A Decentralized Framework for Multi-Agent Hierarchical Reinforcement Learning
Hierarchical organization is fundamental to biological systems and human societies, yet artificial intelligence systems often rely on monolithic architectures that limit adaptability and scalability. Current hierarchical reinforcement learning (HRL) approaches typically restrict hierarchies to two levels or require centralized training, which limits their practical applicability. We introduce TAME Agent Framework (TAG), a framework for constructing fully decentralized hierarchical multi-agent systems.TAG enables hierarchies of arbitrary depth through a novel LevelEnv concept, which abstracts each hierarchy level as the environment for the agents above it. This approach standardizes information flow between levels while preserving loose coupling, allowing for seamless integration of diverse agent types. We demonstrate the effectiveness of TAG by implementing hierarchical architectures that combine different RL agents across multiple levels, achieving improved performance over classical multi-agent RL baselines on standard benchmarks. Our results show that decentralized hierarchical organization enhances both learning speed and final performance, positioning TAG as a promising direction for scalable multi-agent systems.
♻ ☆ The PanAf-FGBG Dataset: Understanding the Impact of Backgrounds in Wildlife Behaviour Recognition
Computer vision analysis of camera trap video footage is essential for wildlife conservation, as captured behaviours offer some of the earliest indicators of changes in population health. Recently, several high-impact animal behaviour datasets and methods have been introduced to encourage their use; however, the role of behaviour-correlated background information and its significant effect on out-of-distribution generalisation remain unexplored. In response, we present the PanAf-FGBG dataset, featuring 20 hours of wild chimpanzee behaviours, recorded at over 350 individual camera locations. Uniquely, it pairs every video with a chimpanzee (referred to as a foreground video) with a corresponding background video (with no chimpanzee) from the same camera location. We present two views of the dataset: one with overlapping camera locations and one with disjoint locations. This setup enables, for the first time, direct evaluation of in-distribution and out-of-distribution conditions, and for the impact of backgrounds on behaviour recognition models to be quantified. All clips come with rich behavioural annotations and metadata including unique camera IDs and detailed textual scene descriptions. Additionally, we establish several baselines and present a highly effective latent-space normalisation technique that boosts out-of-distribution performance by +5.42% mAP for convolutional and +3.75% mAP for transformer-based models. Finally, we provide an in-depth analysis on the role of backgrounds in out-of-distribution behaviour recognition, including the so far unexplored impact of background durations (i.e., the count of background frames within foreground videos).
comment: Accepted at the IEEE / CVF Computer Vision and Pattern Recognition Conference 2025
♻ ☆ Slowing Down Forgetting in Continual Learning
A common challenge in continual learning (CL) is catastrophic forgetting, where the performance on old tasks drops after new, additional tasks are learned. In this paper, we propose a novel framework called ReCL to slow down forgetting in CL. Our framework exploits an implicit bias of gradient-based neural networks due to which these converge to margin maximization points. Such convergence points allow us to reconstruct old data from previous tasks, which we then combine with the current training data. Our framework is flexible and can be applied on top of existing, state-of-the-art CL methods. We further demonstrate the performance gain from our framework across a large series of experiments, including two challenging CL scenarios (class incremental and domain incremental learning), different datasets (MNIST, CIFAR10, TinyImagenet), and different network architectures. Across all experiments, we find large performance gains through ReCL. To the best of our knowledge, our framework is the first to address catastrophic forgetting by leveraging models in CL as their own memory buffers.
♻ ☆ Causality Is Key to Understand and Balance Multiple Goals in Trustworthy ML and Foundation Models
Ensuring trustworthiness in machine learning (ML) systems is crucial as they become increasingly embedded in high-stakes domains. This paper advocates for integrating causal methods into machine learning to navigate the trade-offs among key principles of trustworthy ML, including fairness, privacy, robustness, accuracy, and explainability. While these objectives should ideally be satisfied simultaneously, they are often addressed in isolation, leading to conflicts and suboptimal solutions. Drawing on existing applications of causality in ML that successfully align goals such as fairness and accuracy or privacy and robustness, this paper argues that a causal approach is essential for balancing multiple competing objectives in both trustworthy ML and foundation models. Beyond highlighting these trade-offs, we examine how causality can be practically integrated into ML and foundation models, offering solutions to enhance their reliability and interpretability. Finally, we discuss the challenges, limitations, and opportunities in adopting causal frameworks, paving the way for more accountable and ethically sound AI systems.
♻ ☆ "Nuclear Deployed!": Analyzing Catastrophic Risks in Decision-making of Autonomous LLM Agents
Large language models (LLMs) are evolving into autonomous decision-makers, raising concerns about catastrophic risks in high-stakes scenarios, particularly in Chemical, Biological, Radiological and Nuclear (CBRN) domains. Based on the insight that such risks can originate from trade-offs between the agent's Helpful, Harmlessness and Honest (HHH) goals, we build a novel three-stage evaluation framework, which is carefully constructed to effectively and naturally expose such risks. We conduct 14,400 agentic simulations across 12 advanced LLMs, with extensive experiments and analysis. Results reveal that LLM agents can autonomously engage in catastrophic behaviors and deception, without being deliberately induced. Furthermore, stronger reasoning abilities often increase, rather than mitigate, these risks. We also show that these agents can violate instructions and superior commands. On the whole, we empirically prove the existence of catastrophic risks in autonomous LLM agents. We will release our code upon request.
comment: Please visit https://llm-catastrophic-risks.github.io for a quick tour of our project
♻ ☆ Improving Representation of High-frequency Components for Medical Visual Foundation Models
Foundation models have recently attracted significant attention for their impressive generalizability across diverse downstream tasks. However, these models are demonstrated to exhibit great limitations in representing high-frequency components and fine-grained details. In many medical imaging tasks, the precise representation of such information is crucial due to the inherently intricate anatomical structures, sub-visual features, and complex boundaries involved. Consequently, the limited representation of prevalent foundation models can result in significant performance degradation or even failure in these tasks. To address these challenges, we propose a novel pretraining strategy, named Frequency-advanced Representation Autoencoder (Frepa). Through high-frequency masking and low-frequency perturbation combined with adversarial learning, Frepa encourages the encoder to effectively represent and preserve high-frequency components in the image embeddings. Additionally, we introduce an innovative histogram-equalized image masking strategy, extending the Masked Autoencoder approach beyond ViT to other architectures such as Swin Transformer and convolutional networks. We develop Frepa across nine medical modalities and validate it on 32 downstream tasks for both 2D images and 3D volume data. Without fine-tuning, Frepa can outperform other self-supervised pretraining methods and, in some cases, even surpasses task-specific trained models. This improvement is particularly significant for tasks involving fine-grained details, such as achieving up to a +15% increase in DSC for retina vessel segmentation and a +7% increase in IoU for lung nodule detection. Further experiments quantitatively reveal that Frepa enables superior high-frequency representations and preservation in the embeddings, underscoring its potential for developing more generalized and universal medical image foundation models.
♻ ☆ Enhancing Large Language Models with Pseudo- and Multisource- Knowledge Graphs for Open-ended Question Answering
Mitigating the hallucinations of Large Language Models is a crucial task. Although some existing methods employ self-enhancement techniques, they fall short of effectively addressing unknown factual hallucinations. Meanwhile, Knowledge Graph (KG) enhancement approaches fail to address the generalization across different KG sources and the enhancement of open-ended answer questions simultaneously. To tackle these limitations, we propose a framework that combines Pseudo-Graph Generation and Atomic Knowledge Verification (PG\&AKV). Enhancement of open-ended question-answering begins with leveraging the Pseudo-Graph Generation to provide the related knowledge framework. Subsequently, Atomic Knowledge Verification utilizes atomic-level knowledge querying and verification to achieve generalizability under different KG sources. Compared to the baseline, this approach yields a minimum improvement of 11.5 in the ROUGE-L score for open-ended questions. For precise-answered questions, we observe a minimum accuracy improvement of 7.5%. Moreover, PG\&AKV also exhibits generalizability across different KG sources. Utilizing KG different from the question sources, PG\&AKV can even achieve at least a 3.5 % performance improvement. In summary, our results pave the way for enhancing LLMs by incorporating Pseudo- and Multisource-KGs, particularly in the filed of open-ended questions.
♻ ☆ ECLeKTic: a Novel Challenge Set for Evaluation of Cross-Lingual Knowledge Transfer
To achieve equitable performance across languages, multilingual large language models (LLMs) must be able to abstract knowledge beyond the language in which it was acquired. However, the current literature lacks reliable ways to measure LLMs' capability of cross-lingual knowledge transfer. To that end, we present ECLeKTic, a multilingual closed-book QA (CBQA) dataset that Evaluates Cross-Lingual Knowledge Transfer in a simple, black-box manner. We detected information with uneven coverage across languages by controlling for presence and absence of Wikipedia articles in 12 languages. We generated knowledge-seeking questions in a source language, for which the answer appears in a relevant Wikipedia article and translated them to all other 11 languages, for which the respective Wikipedias lack equivalent articles. Assuming that Wikipedia reflects the prominent knowledge in the LLM's training data, to solve ECLeKTic's CBQA task the model is required to transfer knowledge between languages. Experimenting with 8 LLMs, we show that SOTA models struggle to effectively share knowledge across, languages even if they can predict the answer well for queries in the same language the knowledge was acquired in.
♻ ☆ HiBug2: Efficient and Interpretable Error Slice Discovery for Comprehensive Model Debugging
Despite the significant success of deep learning models in computer vision, they often exhibit systematic failures on specific data subsets, known as error slices. Identifying and mitigating these error slices is crucial to enhancing model robustness and reliability in real-world scenarios. In this paper, we introduce HiBug2, an automated framework for error slice discovery and model repair. HiBug2 first generates task-specific visual attributes to highlight instances prone to errors through an interpretable and structured process. It then employs an efficient slice enumeration algorithm to systematically identify error slices, overcoming the combinatorial challenges that arise during slice exploration. Additionally, HiBug2 extends its capabilities by predicting error slices beyond the validation set, addressing a key limitation of prior approaches. Extensive experiments across multiple domains, including image classification, pose estimation, and object detection - show that HiBug2 not only improves the coherence and precision of identified error slices but also significantly enhances the model repair capabilities.
♻ ☆ ReFocus: Reinforcing Mid-Frequency and Key-Frequency Modeling for Multivariate Time Series Forecasting
Recent advancements have progressively incorporated frequency-based techniques into deep learning models, leading to notable improvements in accuracy and efficiency for time series analysis tasks. However, the Mid-Frequency Spectrum Gap in the real-world time series, where the energy is concentrated at the low-frequency region while the middle-frequency band is negligible, hinders the ability of existing deep learning models to extract the crucial frequency information. Additionally, the shared Key-Frequency in multivariate time series, where different time series share indistinguishable frequency patterns, is rarely exploited by existing literature. This work introduces a novel module, Adaptive Mid-Frequency Energy Optimizer, based on convolution and residual learning, to emphasize the significance of mid-frequency bands. We also propose an Energy-based Key-Frequency Picking Block to capture shared Key-Frequency, which achieves superior inter-series modeling performance with fewer parameters. A novel Key-Frequency Enhanced Training strategy is employed to further enhance Key-Frequency modeling, where spectral information from other channels is randomly introduced into each channel. Our approach advanced multivariate time series forecasting on the challenging Traffic, ECL, and Solar benchmarks, reducing MSE by 4%, 6%, and 5% compared to the previous SOTA iTransformer. Code is available at this GitHub Repository: https://github.com/Levi-Ackman/ReFocus.
comment: Under Review
♻ ☆ Deep Learning-Driven Malware Classification with API Call Sequence Analysis and Concept Drift Handling
Malware classification in dynamic environments presents a significant challenge due to concept drift, where the statistical properties of malware data evolve over time, complicating detection efforts. To address this issue, we propose a deep learning framework enhanced with a genetic algorithm to improve malware classification accuracy and adaptability. Our approach incorporates mutation operations and fitness score evaluations within genetic algorithms to continuously refine the deep learning model, ensuring robustness against evolving malware threats. Experimental results demonstrate that this hybrid method significantly enhances classification performance and adaptability, outperforming traditional static models. Our proposed approach offers a promising solution for real-time malware classification in ever-changing cybersecurity landscapes.
♻ ☆ Inference Scaling Laws: An Empirical Analysis of Compute-Optimal Inference for Problem-Solving with Language Models
While the scaling laws of large language models (LLMs) training have been extensively studied, optimal inference configurations of LLMs remain underexplored. We study inference scaling laws (aka test-time scaling laws) and compute-optimal inference, focusing on the trade-offs between model sizes and generating additional tokens with different inference strategies. As a first step towards understanding and designing compute-optimal inference methods, we studied cost-performance trade-offs for inference strategies such as greedy search, majority voting, best-of-$n$, weighted voting, and two different tree search algorithms, using different model sizes and compute budgets. Our findings suggest that scaling inference compute with inference strategies can be more computationally efficient than scaling model parameters. Additionally, smaller models combined with advanced inference algorithms offer Pareto-optimal trade-offs in cost and performance. For example, the Llemma-7B model, when paired with our novel tree search algorithm, consistently outperforms the Llemma-34B model across all tested inference strategies on the MATH benchmark. We hope these insights contribute to a deeper understanding of inference scaling laws (test-time scaling laws) for LLMs.
♻ ☆ Will AI replace Software Engineers? Do not hold your breath
Artificial Intelligence (AI) technology such as Large Language Models (LLMs) have become extremely popular in creating code. This has led to the conjecture that future software jobs will be exclusively conducted by LLMs, and the software industry will cease to exist. But software engineering is much more than producing code -- notably, \emph{maintaining} large software and keeping it reliable is a major part of software engineering, which LLMs are not yet capable of.
comment: 3 pages
♻ ☆ PAPILLON: Efficient and Stealthy Fuzz Testing-Powered Jailbreaks for LLMs
Large Language Models (LLMs) have excelled in various tasks but are still vulnerable to jailbreaking attacks, where attackers create jailbreak prompts to mislead the model to produce harmful or offensive content. Current jailbreak methods either rely heavily on manually crafted templates, which pose challenges in scalability and adaptability, or struggle to generate semantically coherent prompts, making them easy to detect. Additionally, most existing approaches involve lengthy prompts, leading to higher query costs. In this paper, to remedy these challenges, we introduce a novel jailbreaking attack framework called PAPILLON, which is an automated, black-box jailbreaking attack framework that adapts the black-box fuzz testing approach with a series of customized designs. Instead of relying on manually crafted templates,PAPILLON starts with an empty seed pool, removing the need to search for any related jailbreaking templates. We also develop three novel question-dependent mutation strategies using an LLM helper to generate prompts that maintain semantic coherence while significantly reducing their length. Additionally, we implement a two-level judge module to accurately detect genuine successful jailbreaks. We evaluated PAPILLON on 7 representative LLMs and compared it with 5 state-of-the-art jailbreaking attack strategies. For proprietary LLM APIs, such as GPT-3.5 turbo, GPT-4, and Gemini-Pro, PAPILLONs achieves attack success rates of over 90%, 80%, and 74%, respectively, exceeding existing baselines by more than 60\%. Additionally, PAPILLON can maintain high semantic coherence while significantly reducing the length of jailbreak prompts. When targeting GPT-4, PAPILLON can achieve over 78% attack success rate even with 100 tokens. Moreover, PAPILLON demonstrates transferability and is robust to state-of-the-art defenses. Code: https://github.com/aaFrostnova/Papillon
♻ ☆ DailyDilemmas: Revealing Value Preferences of LLMs with Quandaries of Daily Life ICLR 2025
As users increasingly seek guidance from LLMs for decision-making in daily life, many of these decisions are not clear-cut and depend significantly on the personal values and ethical standards of people. We present DailyDilemmas, a dataset of 1,360 moral dilemmas encountered in everyday life. Each dilemma presents two possible actions, along with affected parties and relevant human values for each action. Based on these dilemmas, we gather a repository of human values covering diverse everyday topics, such as interpersonal relationships, workplace, and environmental issues. With DailyDilemmas, we evaluate LLMs on these dilemmas to determine what action they will choose and the values represented by these action choices. Then, we analyze values through the lens of five theoretical frameworks inspired by sociology, psychology, and philosophy, including the World Values Survey, Moral Foundations Theory, Maslow's Hierarchy of Needs, Aristotle's Virtues, and Plutchik's Wheel of Emotions. For instance, we find LLMs are most aligned with self-expression over survival in World Values Survey and care over loyalty in Moral Foundations Theory. Interestingly, we find substantial preference differences in models for some core values. For example, for truthfulness, Mixtral-8x7B neglects it by 9.7% while GPT-4-turbo selects it by 9.4%. We also study the recent guidance released by OpenAI (ModelSpec), and Anthropic (Constitutional AI) to understand how their designated principles reflect their models' actual value prioritization when facing nuanced moral reasoning in daily-life settings. Finally, we find that end users cannot effectively steer such prioritization using system prompts.
comment: Accepted into ICLR 2025 (spotlight)
♻ ☆ Test-Time Compute: from System-1 Thinking to System-2 Thinking
The remarkable performance of the o1 model in complex reasoning demonstrates that test-time compute scaling can further unlock the model's potential, enabling powerful System-2 thinking. However, there is still a lack of comprehensive surveys for test-time compute scaling. We trace the concept of test-time compute back to System-1 models. In System-1 models, test-time compute addresses distribution shifts and improves robustness and generalization through parameter updating, input modification, representation editing, and output calibration. In System-2 models, it enhances the model's reasoning ability to solve complex problems through repeated sampling, self-correction, and tree search. We organize this survey according to the trend of System-1 to System-2 thinking, highlighting the key role of test-time compute in the transition from System-1 models to weak System-2 models, and then to strong System-2 models. We also point out a few possible future directions.
comment: work in progress
♻ ☆ Learning to Align Multi-Faceted Evaluation: A Unified and Robust Framework
Large Language Models (LLMs) are being used more and more extensively for automated evaluation in various scenarios. Previous studies have attempted to fine-tune open-source LLMs to replicate the evaluation explanations and judgments of powerful proprietary models, such as GPT-4. However, these methods are largely limited to text-based analyses under predefined general criteria, resulting in reduced adaptability for unseen instructions and demonstrating instability in evaluating adherence to quantitative and structural constraints. To address these limitations, we propose a novel evaluation framework, ARJudge, that adaptively formulates evaluation criteria and synthesizes both text-based and code-driven analyses to evaluate LLM responses. ARJudge consists of two components: a fine-tuned Analyzer that generates multi-faceted evaluation analyses and a tuning-free Refiner that combines and refines all analyses to make the final judgment. We construct a Composite Analysis Corpus that integrates tasks for evaluation criteria generation alongside text-based and code-driven analysis generation to train the Analyzer. Our results demonstrate that ARJudge outperforms existing fine-tuned evaluators in effectiveness and robustness. Furthermore, it demonstrates the importance of multi-faceted evaluation and code-driven analyses in enhancing evaluation capabilities.
♻ ☆ Subtle Errors Matter: Preference Learning via Error-injected Self-editing
Large Language Models (LLMs) have exhibited strong mathematical reasoning prowess, tackling tasks ranging from basic arithmetic to advanced competition-level problems. However, frequently occurring subtle yet critical errors, such as miscalculations or incorrect substitutions, limit the LLMs' full potential. Existing studies to improve mathematical ability typically involve applying preference learning to step-wise solution pairs. Although these methods leverage samples of varying granularity to mitigate reasoning errors, they overlook critical subtle errors. In this work, we propose a novel preference learning framework called eRror-Injected Self-Editing (RISE), which injects predefined subtle errors into pivotal tokens in reasoning or computation steps to construct hard pairs for error mitigation. In detail, RISE uses the LLM itself to edit a small number of tokens in the solution, injecting designed subtle errors. Then, pairs composed of self-edited solutions and their corresponding correct ones, along with pairs of correct and incorrect solutions obtained through sampling, are used together for subtle error-aware DPO training. Compared with other preference learning methods, RISE further refines the training objective without requiring fine-grained sampling or preference annotation. Extensive experiments validate the effectiveness of RISE, with preference learning on Qwen2-7B-Instruct yielding notable improvements of 3.0% on GSM8K and 7.9% on MATH with only 4.5K training samples. Moreover, the effect of error mitigation extends from mathematical reasoning to logical reasoning and code generation.
♻ ☆ SheetAgent: Towards A Generalist Agent for Spreadsheet Reasoning and Manipulation via Large Language Models WWW
Spreadsheets are ubiquitous across the World Wide Web, playing a critical role in enhancing work efficiency across various domains. Large language model (LLM) has been recently attempted for automatic spreadsheet manipulation but has not yet been investigated in complicated and realistic tasks where reasoning challenges exist (e.g., long horizon manipulation with multi-step reasoning and ambiguous requirements). To bridge the gap with the real-world requirements, we introduce SheetRM, a benchmark featuring long-horizon and multi-category tasks with reasoning-dependent manipulation caused by real-life challenges. To mitigate the above challenges, we further propose SheetAgent, a novel autonomous agent that utilizes the power of LLMs. SheetAgent consists of three collaborative modules: Planner, Informer, and Retriever, achieving both advanced reasoning and accurate manipulation over spreadsheets without human interaction through iterative task reasoning and reflection. Extensive experiments demonstrate that SheetAgent delivers 20--40\% pass rate improvements on multiple benchmarks over baselines, achieving enhanced precision in spreadsheet manipulation and demonstrating superior table reasoning abilities. More details and visualizations are available at the project website: https://sheetagent.github.io/. The datasets and source code are available at https://anonymous.4open.science/r/SheetAgent.
comment: Accepted by International World Wide Web Conference (WWW) 2025 (oral)
♻ ☆ Understanding LLMs' Fluid Intelligence Deficiency: An Analysis of the ARC Task NAACL 2025
While LLMs have exhibited strong performance on various NLP tasks, it is noteworthy that most of these tasks rely on utilizing the vast amount of knowledge encoded in LLMs' parameters, rather than solving new problems without prior knowledge. In cognitive research, the latter ability is referred to as fluid intelligence, which is considered to be critical for assessing human intelligence. Recent research on fluid intelligence assessments has highlighted significant deficiencies in LLMs' abilities. In this paper, we analyze the challenges LLMs face in demonstrating fluid intelligence through controlled experiments, using the most representative ARC task as an example. Our study revealed three major limitations in existing LLMs: limited ability for skill composition, unfamiliarity with abstract input formats, and the intrinsic deficiency of left-to-right decoding. Our data and code can be found in https://wujunjie1998.github.io/araoc-benchmark.github.io/.
comment: 22 pages, 9 figures, accepted by NAACL 2025 main conference
♻ ☆ RALAD: Bridging the Real-to-Sim Domain Gap in Autonomous Driving with Retrieval-Augmented Learning
In the pursuit of robust autonomous driving systems, models trained on real-world datasets often struggle to adapt to new environments, particularly when confronted with corner cases such as extreme weather conditions. Collecting these corner cases in the real world is non-trivial, which necessitates the use of simulators for validation. However,the high computational cost and the domain gap in data distribution have hindered the seamless transition between real and simulated driving scenarios. To tackle this challenge, we propose Retrieval-Augmented Learning for Autonomous Driving (RALAD), a novel framework designed to bridge the real-to-sim gap at a low cost. RALAD features three primary designs, including (1) domain adaptation via an enhanced Optimal Transport (OT) method that accounts for both individual and grouped image distances, (2) a simple and unified framework that can be applied to various models, and (3) efficient fine-tuning techniques that freeze the computationally expensive layers while maintaining robustness. Experimental results demonstrate that RALAD compensates for the performance degradation in simulated environments while maintaining accuracy in real-world scenarios across three different models. Taking Cross View as an example, the mIOU and mAP metrics in real-world scenarios remain stable before and after RALAD fine-tuning, while in simulated environments,the mIOU and mAP metrics are improved by 10.30% and 12.29%, respectively. Moreover, the re-training cost of our approach is reduced by approximately 88.1%. Our code is available at https://github.com/JiachengZuo/RALAD.git.
♻ ☆ Long-Term EEG Partitioning for Seizure Onset Detection AAAI 2025
Deep learning models have recently shown great success in classifying epileptic patients using EEG recordings. Unfortunately, classification-based methods lack a sound mechanism to detect the onset of seizure events. In this work, we propose a two-stage framework, SODor, that explicitly models seizure onset through a novel task formulation of subsequence clustering. Given an EEG sequence, the framework first learns a set of second-level embeddings with label supervision. It then employs model-based clustering to explicitly capture long-term temporal dependencies in EEG sequences and identify meaningful subsequences. Epochs within a subsequence share a common cluster assignment (normal or seizure), with cluster or state transitions representing successful onset detections. Extensive experiments on three datasets demonstrate that our method can correct misclassifications, achieving 5\%-11\% classification improvements over other baselines and accurately detecting seizure onsets.
comment: Accepted at AAAI 2025
♻ ☆ SynGhost: Invisible and Universal Task-agnostic Backdoor Attack via Syntactic Transfer NAACL 2025
Although pre-training achieves remarkable performance, it suffers from task-agnostic backdoor attacks due to vulnerabilities in data and training mechanisms. These attacks can transfer backdoors to various downstream tasks. In this paper, we introduce $\mathtt{maxEntropy}$, an entropy-based poisoning filter that mitigates such risks. To overcome the limitations of manual target setting and explicit triggers, we propose $\mathtt{SynGhost}$, an invisible and universal task-agnostic backdoor attack via syntactic transfer, further exposing vulnerabilities in pre-trained language models (PLMs). Specifically, $\mathtt{SynGhost}$ injects multiple syntactic backdoors into the pre-training space through corpus poisoning, while preserving the PLM's pre-training capabilities. Second, $\mathtt{SynGhost}$ adaptively selects optimal targets based on contrastive learning, creating a uniform distribution in the pre-training space. To identify syntactic differences, we also introduce an awareness module to minimize interference between backdoors. Experiments show that $\mathtt{SynGhost}$ poses significant threats and can transfer to various downstream tasks. Furthermore, $\mathtt{SynGhost}$ resists defenses based on perplexity, fine-pruning, and $\mathtt{maxEntropy}$. The code is available at https://github.com/Zhou-CyberSecurity-AI/SynGhost.
comment: 17 pages, 16 figures, 12 tables, accepted at NAACL 2025 Findings
♻ ☆ Cross-Spectral Vision Transformer for Biometric Authentication using Forehead Subcutaneous Vein Pattern and Periocular Pattern
Traditional biometric systems have encountered significant setbacks due to various unavoidable factors, for example, face recognition-based biometrics fails due to the wearing of face masks and fingerprints create hygiene concerns. This paper proposes a novel lightweight cross-spectral vision transformer (CS-ViT) for biometric authentication using forehead subcutaneous vein patterns and periocular patterns, offering a promising alternative to traditional methods, capable of performing well even with the face masks and without any physical touch. The proposed framework comprises a cross-spectral dual-channel architecture designed to handle two distinct biometric traits and to capture inter-dependencies in terms of relative spectral patterns. Each channel consists of a Phase-Only Correlation Cross-Spectral Attention (POC-CSA) that captures their individual as well as correlated patterns. The computation of cross-spectral attention using POC extracts the phase correlation in the spatial features. Therefore, it is robust against the resolution/intensity variations and illumination of the input images, assuming both biometric traits are from the same person. The lightweight model is suitable for edge device deployment. The performance of the proposed algorithm was rigorously evaluated using the Forehead Subcutaneous Vein Pattern and Periocular Biometric Pattern (FSVP-PBP) database. The results demonstrated the superiority of the algorithm over state-of-the-art methods, achieving a remarkable classification accuracy of 98.8% with the combined vein and periocular patterns.
comment: Submitted to IEEE TPAMI
♻ ☆ Order Matters: Investigate the Position Bias in Multi-constraint Instruction Following
Real-world instructions with multiple constraints pose a significant challenge to existing large language models (LLMs). An observation is that the LLMs exhibit dramatic performance fluctuation when disturbing the order of the incorporated constraints. Yet, none of the existing works has systematically investigated this position bias problem in the field of multi-constraint instruction following. To bridge this gap, we design a probing task where we quantitatively measure the difficulty distribution of the constraints by a novel Difficulty Distribution Index (CDDI). Through the experimental results, we find that LLMs are more performant when presented with the constraints in a ``hard-to-easy'' order. This preference can be generalized to LLMs with different architecture or different sizes of parameters. Additionally, we conduct an explanation study, providing an intuitive insight into the correlation between the LLM's attention and constraint orders. Our code and dataset are publicly available at https://github.com/meowpass/PBIF.
♻ ☆ Representation Engineering: A Top-Down Approach to AI Transparency
In this paper, we identify and characterize the emerging area of representation engineering (RepE), an approach to enhancing the transparency of AI systems that draws on insights from cognitive neuroscience. RepE places population-level representations, rather than neurons or circuits, at the center of analysis, equipping us with novel methods for monitoring and manipulating high-level cognitive phenomena in deep neural networks (DNNs). We provide baselines and an initial analysis of RepE techniques, showing that they offer simple yet effective solutions for improving our understanding and control of large language models. We showcase how these methods can provide traction on a wide range of safety-relevant problems, including honesty, harmlessness, power-seeking, and more, demonstrating the promise of top-down transparency research. We hope that this work catalyzes further exploration of RepE and fosters advancements in the transparency and safety of AI systems.
comment: Code is available at https://github.com/andyzoujm/representation-engineering
♻ ☆ TokenSelect: Efficient Long-Context Inference and Length Extrapolation for LLMs via Dynamic Token-Level KV Cache Selection
The rapid advancement of Large Language Models (LLMs) has driven growing demand for processing extended context sequences in contemporary applications. However, this progress faces two major challenges: performance degradation due to sequence lengths out-of-distribution, and excessively long inference times caused by the quadratic computational complexity of attention. These issues hinder the application of LLMs in long-context scenarios. In this paper, we propose Dynamic Token-Level KV Cache Selection (TokenSelect), a training-free method for efficient and accurate long-context inference. TokenSelect builds upon the observation of non-contiguous attention sparsity, using Query-Key dot products to measure per-head KV Cache criticality at token-level. By per-head soft voting mechanism, TokenSelect selectively involves a few critical KV cache tokens in attention calculation without sacrificing accuracy. To further accelerate TokenSelect, we design the Selection Cache based on observations of consecutive Query similarity and implemented efficient dot product kernel, significantly reducing the overhead. A comprehensive evaluation of TokenSelect demonstrates up to 23.84x speedup in attention computation and up to 2.28x acceleration in end-to-end latency, while providing superior performance compared to state-of-the-art long-context inference methods.
♻ ☆ Structural-Entropy-Based Sample Selection for Efficient and Effective Learning ICLR 2025
Sample selection improves the efficiency and effectiveness of machine learning models by providing informative and representative samples. Typically, samples can be modeled as a sample graph, where nodes are samples and edges represent their similarities. Most existing methods are based on local information, such as the training difficulty of samples, thereby overlooking global information, such as connectivity patterns. This oversight can result in suboptimal selection because global information is crucial for ensuring that the selected samples well represent the structural properties of the graph. To address this issue, we employ structural entropy to quantify global information and losslessly decompose it from the whole graph to individual nodes using the Shapley value. Based on the decomposition, we present $\textbf{S}$tructural-$\textbf{E}$ntropy-based sample $\textbf{S}$election ($\textbf{SES}$), a method that integrates both global and local information to select informative and representative samples. SES begins by constructing a $k$NN-graph among samples based on their similarities. It then measures sample importance by combining structural entropy (global metric) with training difficulty (local metric). Finally, SES applies importance-biased blue noise sampling to select a set of diverse and representative samples. Comprehensive experiments on three learning scenarios -- supervised learning, active learning, and continual learning -- clearly demonstrate the effectiveness of our method.
comment: Published as a conference paper at ICLR 2025
♻ ☆ PATCH: a deep learning method to assess heterogeneity of artistic practice in historical paintings
The history of art has seen significant shifts in the manner in which artworks are created, making understanding of creative processes a central question in technical art history. In the Renaissance and Early Modern period, paintings were largely produced by master painters directing workshops of apprentices who often contributed to projects. The masters varied significantly in artistic and managerial styles, meaning different combinations of artists and implements might be seen both between masters and within workshops or even individual canvases. Information on how different workshops were managed and the processes by which artworks were created remains elusive. Machine learning methods have potential to unearth new information about artists' creative processes by extending the analysis of brushwork to a microscopic scale. Analysis of workshop paintings, however, presents a challenge in that documentation of the artists and materials involved is sparse, meaning external examples are not available to train networks to recognize their contributions. Here we present a novel machine learning approach we call pairwise assignment training for classifying heterogeneity (PATCH) that is capable of identifying individual artistic practice regimes with no external training data, or "ground truth." The method achieves unsupervised results by supervised means, and outperforms both simple statistical procedures and unsupervised machine learning methods. We apply this method to two historical paintings by the Spanish Renaissance master, El Greco: The Baptism of Christ and Christ on the Cross with Landscape, and our findings regarding the former potentially challenge previous work that has assigned the painting to workshop members. Further, the results of our analyses create a measure of heterogeneity of artistic practice that can be used to characterize artworks across time and space.
comment: main text: 16 pages, 6 figures; SI: 7 pages, 3 figures; v2: minor typo corrections, higher resolution figures
♻ ☆ Spontaneous Giving and Calculated Greed in Language Models
Large language models demonstrate advanced problem-solving capabilities by incorporating reasoning techniques such as chain of thought and reflection. However, how these reasoning capabilities extend to social intelligence remains unclear. In this study, we investigate this question using economic games that model social dilemmas, where social intelligence plays a crucial role. First, we examine the effects of chain-of-thought and reflection techniques in a public goods game. We then extend our analysis to six economic games on cooperation and punishment, comparing off-the-shelf non-reasoning and reasoning models. We find that reasoning models significantly reduce cooperation and norm enforcement, prioritizing individual rationality. Consequently, groups with more reasoning models exhibit less cooperation and lower gains through repeated interactions. These behaviors parallel human tendencies of "spontaneous giving and calculated greed." Our results suggest the need for AI architectures that incorporate social intelligence alongside reasoning capabilities to ensure that AI supports, rather than disrupts, human cooperative intuition.
♻ ☆ Generative Representational Instruction Tuning
All text-based language problems can be reduced to either generation or embedding. Current models only perform well at one or the other. We introduce generative representational instruction tuning (GRIT) whereby a large language model is trained to handle both generative and embedding tasks by distinguishing between them through instructions. Compared to other open models, our resulting GritLM 7B sets a new state of the art on the Massive Text Embedding Benchmark (MTEB) and outperforms all models up to its size on a range of generative tasks. By scaling up further, GritLM 8x7B outperforms all open generative language models that we tried while still being among the best embedding models. Notably, we find that GRIT matches training on only generative or embedding data, thus we can unify both at no performance loss. Among other benefits, the unification via GRIT speeds up Retrieval-Augmented Generation (RAG) by > 60% for long documents, by no longer requiring separate retrieval and generation models. Models, code, etc. are freely available at https://github.com/ContextualAI/gritlm.
comment: 67 pages (16 main), 25 figures, 34 tables
♻ ☆ Federated Learning in Practice: Reflections and Projections
Federated Learning (FL) is a machine learning technique that enables multiple entities to collaboratively learn a shared model without exchanging their local data. Over the past decade, FL systems have achieved substantial progress, scaling to millions of devices across various learning domains while offering meaningful differential privacy (DP) guarantees. Production systems from organizations like Google, Apple, and Meta demonstrate the real-world applicability of FL. However, key challenges remain, including verifying server-side DP guarantees and coordinating training across heterogeneous devices, limiting broader adoption. Additionally, emerging trends such as large (multi-modal) models and blurred lines between training, inference, and personalization challenge traditional FL frameworks. In response, we propose a redefined FL framework that prioritizes privacy principles rather than rigid definitions. We also chart a path forward by leveraging trusted execution environments and open-source ecosystems to address these challenges and facilitate future advancements in FL.
comment: Published at 2024 IEEE 6th International Conference on Trust, Privacy and Security in Intelligent Systems, and Applications (TPS-ISA)
♻ ☆ MV-MATH: Evaluating Multimodal Math Reasoning in Multi-Visual Contexts
Multimodal Large Language Models (MLLMs) have shown promising capabilities in mathematical reasoning within visual contexts across various datasets. However, most existing multimodal math benchmarks are limited to single-visual contexts, which diverges from the multi-visual scenarios commonly encountered in real-world mathematical applications. To address this gap, we introduce MV-MATH: a meticulously curated dataset of 2,009 high-quality mathematical problems. Each problem integrates multiple images interleaved with text, derived from authentic K-12 scenarios, and enriched with detailed annotations. MV-MATH includes multiple-choice, free-form, and multi-step questions, covering 11 subject areas across 3 difficulty levels, and serves as a comprehensive and rigorous benchmark for assessing MLLMs' mathematical reasoning in multi-visual contexts. Through extensive experimentation, we observe that MLLMs encounter substantial challenges in multi-visual math tasks, with a considerable performance gap relative to human capabilities on MV-MATH. Furthermore, we analyze the performance and error patterns of various models, providing insights into MLLMs' mathematical reasoning capabilities within multi-visual settings.
comment: 47 pages
♻ ☆ Iterative Nash Policy Optimization: Aligning LLMs with General Preferences via No-Regret Learning
Reinforcement Learning with Human Feedback (RLHF) has achieved great success in aligning large language models (LLMs) with human preferences. Prevalent RLHF approaches are reward-based, following the Bradley-Terry (BT) model assumption, which may not fully capture the complexity of human preferences. In this paper, we explore RLHF under a general preference framework and approach it from a game-theoretic perspective. Specifically, we formulate the problem as a two-player game and propose a novel online algorithm, iterative Nash policy optimization (INPO). The key idea is to let the policy play against itself via no-regret learning, thereby approximating the Nash policy. Unlike previous methods, INPO bypasses the need for estimating the expected win rate for individual responses, which typically incurs high computational or annotation costs. Instead, we introduce a new loss objective that is directly minimized over a preference dataset. We provide theoretical analysis for our approach and demonstrate its effectiveness through experiments on various representative benchmarks. With an LLaMA-3-8B-based SFT model, INPO achieves a 42.6% length-controlled win rate on AlpacaEval 2.0 and a 37.8% win rate on Arena-Hard, showing substantial improvement over the state-of-the-art online RLHF algorithms.
♻ ☆ Discovering physical laws with parallel combinatorial tree search
Symbolic regression plays a crucial role in modern scientific research thanks to its capability of discovering concise and interpretable mathematical expressions from data. A grand challenge lies in the arduous search for parsimonious and generalizable mathematical formulas, in an infinite search space, while intending to fit the training data. Existing algorithms have faced a critical bottleneck of accuracy and efficiency over a decade when handling problems of complexity, which essentially hinders the pace of applying symbolic regression for scientific exploration across interdisciplinary domains. To this end, we introduce a parallel combinatorial tree search (PCTS) model to efficiently distill generic mathematical expressions from limited data. Through a series of extensive experiments, we demonstrate the superior accuracy and efficiency of PCTS for equation discovery, which greatly outperforms the state-of-the-art baseline models on over 200 synthetic and experimental datasets (e.g., lifting its performance by up to 99% accuracy improvement and one-order of magnitude speed up). PCTS represents a key advance in accurate and efficient data-driven discovery of symbolic, interpretable models (e.g., underlying physical laws) and marks a pivotal transition towards scalable symbolic learning.
♻ ☆ Optimization-based Prompt Injection Attack to LLM-as-a-Judge CCS
LLM-as-a-Judge uses a large language model (LLM) to select the best response from a set of candidates for a given question. LLM-as-a-Judge has many applications such as LLM-powered search, reinforcement learning with AI feedback (RLAIF), and tool selection. In this work, we propose JudgeDeceiver, an optimization-based prompt injection attack to LLM-as-a-Judge. JudgeDeceiver injects a carefully crafted sequence into an attacker-controlled candidate response such that LLM-as-a-Judge selects the candidate response for an attacker-chosen question no matter what other candidate responses are. Specifically, we formulate finding such sequence as an optimization problem and propose a gradient based method to approximately solve it. Our extensive evaluation shows that JudgeDeceive is highly effective, and is much more effective than existing prompt injection attacks that manually craft the injected sequences and jailbreak attacks when extended to our problem. We also show the effectiveness of JudgeDeceiver in three case studies, i.e., LLM-powered search, RLAIF, and tool selection. Moreover, we consider defenses including known-answer detection, perplexity detection, and perplexity windowed detection. Our results show these defenses are insufficient, highlighting the urgent need for developing new defense strategies. Our implementation is available at this repository: https://github.com/ShiJiawenwen/JudgeDeceiver.
comment: To appear in the Proceedings of The ACM Conference on Computer and Communications Security (CCS), 2024
♻ ☆ Learning to Learn Weight Generation via Trajectory Diffusion
Diffusion-based algorithms have emerged as promising techniques for weight generation, particularly in scenarios like multi-task learning that require frequent weight updates. However, existing solutions suffer from limited cross-task transferability. In addition, they only utilize optimal weights as training samples, ignoring the value of other weights in the optimization process. To address these issues, we propose Lt-Di, which integrates the diffusion algorithm with meta-learning to generate weights for unseen tasks. Furthermore, we extend the vanilla diffusion algorithm into a trajectory diffusion algorithm to utilize other weights along the optimization trajectory. Trajectory diffusion decomposes the entire diffusion chain into multiple shorter ones, improving training and inference efficiency. We analyze the convergence properties of the weight generation paradigm and improve convergence efficiency without additional time overhead. Our experiments demonstrate Lt-Di's higher accuracy while reducing computational overhead across various tasks, including zero-shot and few-shot learning, multi-domain generalization, and large-scale language model fine-tuning.Our code is released at https://anonymous.4open.science/r/Lt-Di-0E51.
♻ ☆ Multi-modal AI for comprehensive breast cancer prognostication
Treatment selection in breast cancer is guided by molecular subtypes and clinical characteristics. However, current tools including genomic assays lack the accuracy required for optimal clinical decision-making. We developed a novel artificial intelligence (AI)-based approach that integrates digital pathology images with clinical data, providing a more robust and effective method for predicting the risk of cancer recurrence in breast cancer patients. Specifically, we utilized a vision transformer pan-cancer foundation model trained with self-supervised learning to extract features from digitized H&E-stained slides. These features were integrated with clinical data to form a multi-modal AI test predicting cancer recurrence and death. The test was developed and evaluated using data from a total of 8,161 female breast cancer patients across 15 cohorts originating from seven countries. Of these, 3,502 patients from five cohorts were used exclusively for evaluation, while the remaining patients were used for training. Our test accurately predicted our primary endpoint, disease-free interval, in the five evaluation cohorts (C-index: 0.71 [0.68-0.75], HR: 3.63 [3.02-4.37, p<0.001]). In a direct comparison (n=858), the AI test was more accurate than Oncotype DX, the standard-of-care 21-gene assay, achieving a C-index of 0.67 [0.61-0.74] versus 0.61 [0.49-0.73], respectively. Additionally, the AI test added independent prognostic information to Oncotype DX in a multivariate analysis (HR: 3.11 [1.91-5.09, p<0.001)]). The test demonstrated robust accuracy across major molecular breast cancer subtypes, including TNBC (C-index: 0.71 [0.62-0.81], HR: 3.81 [2.35-6.17, p=0.02]), where no diagnostic tools are currently recommended by clinical guidelines. These results suggest that our AI test improves upon the accuracy of existing prognostic tests, while being applicable to a wider range of patients.
♻ ☆ LLMOPT: Learning to Define and Solve General Optimization Problems from Scratch
Optimization problems are prevalent across various scenarios. Formulating and then solving optimization problems described by natural language often requires highly specialized human expertise, which could block the widespread application of optimization-based decision making. To automate problem formulation and solving, leveraging large language models (LLMs) has emerged as a potential way. However, this kind of approach suffers from the issue of optimization generalization. Namely, the accuracy of most current LLM-based methods and the generality of optimization problem types that they can model are still limited. In this paper, we propose a unified learning-based framework called LLMOPT to boost optimization generalization. Starting from the natural language descriptions of optimization problems and a pre-trained LLM, LLMOPT constructs the introduced five-element formulation as a universal model for learning to define diverse optimization problem types. Then, LLMOPT employs the multi-instruction tuning to enhance both problem formalization and solver code generation accuracy and generality. After that, to prevent hallucinations in LLMs, such as sacrificing solving accuracy to avoid execution errors, the model alignment and self-correction mechanism are adopted in LLMOPT. We evaluate the optimization generalization ability of LLMOPT and compared methods across six real-world datasets covering roughly 20 fields such as health, environment, energy and manufacturing, etc. Extensive experiment results show that LLMOPT is able to model various optimization problem types such as linear/nonlinear programming, mixed integer programming, and combinatorial optimization, and achieves a notable 11.08% average solving accuracy improvement compared with the state-of-the-art methods. The code is available at https://github.com/caigaojiang/LLMOPT.
♻ ☆ GAMED-Snake: Gradient-aware Adaptive Momentum Evolution Deep Snake Model for Multi-organ Segmentation
Multi-organ segmentation is a critical yet challenging task due to complex anatomical backgrounds, blurred boundaries, and diverse morphologies. This study introduces the Gradient-aware Adaptive Momentum Evolution Deep Snake (GAMED-Snake) model, which establishes a novel paradigm for contour-based segmentation by integrating gradient-based learning with adaptive momentum evolution mechanisms. The GAMED-Snake model incorporates three major innovations: First, the Distance Energy Map Prior (DEMP) generates a pixel-level force field that effectively attracts contour points towards the true boundaries, even in scenarios with complex backgrounds and blurred edges. Second, the Differential Convolution Inception Module (DCIM) precisely extracts comprehensive energy gradients, significantly enhancing segmentation accuracy. Third, the Adaptive Momentum Evolution Mechanism (AMEM) employs cross-attention to establish dynamic features across different iterations of evolution, enabling precise boundary alignment for diverse morphologies. Experimental results on four challenging multi-organ segmentation datasets demonstrate that GAMED-Snake improves the mDice metric by approximately 2% compared to state-of-the-art methods. Code will be available at https://github.com/SYSUzrc/GAMED-Snake.
♻ ☆ On the Generalization and Adaptation Ability of Machine-Generated Text Detectors in Academic Writing
The rising popularity of large language models (LLMs) has raised concerns about machine-generated text (MGT), particularly in academic settings, where issues like plagiarism and misinformation are prevalent. As a result, developing a highly generalizable and adaptable MGT detection system has become an urgent priority. Given that LLMs are most commonly misused in academic writing, this work investigates the generalization and adaptation capabilities of MGT detectors in three key aspects specific to academic writing: First, we construct MGT-Acedemic, a large-scale dataset comprising over 336M tokens and 749K samples. MGT-Acedemic focuses on academic writing, featuring human-written texts (HWTs) and MGTs across STEM, Humanities, and Social Sciences, paired with an extensible code framework for efficient benchmarking. Second, we benchmark the performance of various detectors for binary classification and attribution tasks in both in-domain and cross-domain settings. This benchmark reveals the often-overlooked challenges of attribution tasks. Third, we introduce a novel attribution task where models have to adapt to new classes over time without (or with very limited) access to prior training data in both few-shot and many-shot scenarios. We implement eight different adapting techniques to improve the performance and highlight the inherent complexity of the task. Our findings provide insights into the generalization and adaptation ability of MGT detectors across diverse scenarios and lay the foundation for building robust, adaptive detection systems. The code framework is available at https://github.com/Y-L-LIU/MGTBench-2.0.
♻ ☆ HORAE: A Domain-Agnostic Modeling Language for Automating Multimodal Service Regulation
Artificial intelligence is rapidly encroaching on the field of service regulation. This work-in-progress article presents the design principles behind HORAE, a unified specification language to model multimodal regulation rules across a diverse set of domains. We show how HORAE facilitates an intelligent service regulation pipeline by further exploiting a fine-tuned large language model named HORAE that automates the HORAE modeling process, thereby yielding an end-to-end framework for fully automated intelligent service regulation.
♻ ☆ Controllable Context Sensitivity and the Knob Behind It ICLR 2025
When making predictions, a language model must trade off how much it relies on its context vs. its prior knowledge. Choosing how sensitive the model is to its context is a fundamental functionality, as it enables the model to excel at tasks like retrieval-augmented generation and question-answering. In this paper, we search for a knob which controls this sensitivity, determining whether language models answer from the context or their prior knowledge. To guide this search, we design a task for controllable context sensitivity. In this task, we first feed the model a context (Paris is in England) and a question (Where is Paris?); we then instruct the model to either use its prior or contextual knowledge and evaluate whether it generates the correct answer for both intents (either France or England). When fine-tuned on this task, instruction-tuned versions of Llama-3.1, Mistral-v0.3, and Gemma-2 can solve it with high accuracy (85-95%). Analyzing these high-performing models, we narrow down which layers may be important to context sensitivity using a novel linear time algorithm. Then, in each model, we identify a 1-D subspace in a single layer that encodes whether the model follows context or prior knowledge. Interestingly, while we identify this subspace in a fine-tuned model, we find that the exact same subspace serves as an effective knob in not only that model but also non-fine-tuned instruct and base models of that model family. Finally, we show a strong correlation between a model's performance and how distinctly it separates context-agreeing from context-ignoring answers in this subspace. These results suggest a single subspace facilitates how the model chooses between context and prior knowledge, hinting at a simple fundamental mechanism that controls this behavior.
comment: Published as a conference paper at ICLR 2025
♻ ☆ A Pilot Empirical Study on When and How to Use Knowledge Graphs as Retrieval Augmented Generation
The integration of Knowledge Graphs (KGs) into the Retrieval Augmented Generation (RAG) framework has attracted significant interest, with early studies showing promise in mitigating hallucinations and improving model accuracy. However, a systematic understanding and comparative analysis of the rapidly emerging KG-RAG methods are still lacking. This paper seeks to lay the foundation for systematically answering the question of when and how to use KG-RAG by analyzing their performance in various application scenarios associated with different technical configurations. After outlining the mind map using KG-RAG framework and summarizing its popular pipeline, we conduct a pilot empirical study of KG-RAG works to reimplement and evaluate 6 KG-RAG methods across 7 datasets in diverse scenarios, analyzing the impact of 9 KG-RAG configurations in combination with 17 LLMs. Our results underscore the critical role of appropriate application conditions and optimal configurations of KG-RAG components.
comment: 8 pages, 2 figures, 14 tables
♻ ☆ Scaling Offline Model-Based RL via Jointly-Optimized World-Action Model Pretraining ICLR 2025
A significant aspiration of offline reinforcement learning (RL) is to develop a generalist agent with high capabilities from large and heterogeneous datasets. However, prior approaches that scale offline RL either rely heavily on expert trajectories or struggle to generalize to diverse unseen tasks. Inspired by the excellent generalization of world model in conditional video generation, we explore the potential of image observation-based world model for scaling offline RL and enhancing generalization on novel tasks. In this paper, we introduce JOWA: Jointly-Optimized World-Action model, an offline model-based RL agent pretrained on multiple Atari games with 6 billion tokens data to learn general-purpose representation and decision-making ability. Our method jointly optimizes a world-action model through a shared transformer backbone, which stabilize temporal difference learning with large models during pretraining. Moreover, we propose a provably efficient and parallelizable planning algorithm to compensate for the Q-value estimation error and thus search out better policies. Experimental results indicate that our largest agent, with 150 million parameters, achieves 78.9% human-level performance on pretrained games using only 10% subsampled offline data, outperforming existing state-of-the-art large-scale offline RL baselines by 31.6% on averange. Furthermore, JOWA scales favorably with model capacity and can sample-efficiently transfer to novel games using only 5k offline fine-tuning data (approximately 4 trajectories) per game, demonstrating superior generalization. We will release codes and model weights at https://github.com/CJReinforce/JOWA
comment: Accepted by ICLR 2025
♻ ☆ PhyMPGN: Physics-encoded Message Passing Graph Network for spatiotemporal PDE systems
Solving partial differential equations (PDEs) serves as a cornerstone for modeling complex dynamical systems. Recent progresses have demonstrated grand benefits of data-driven neural-based models for predicting spatiotemporal dynamics (e.g., tremendous speedup gain compared with classical numerical methods). However, most existing neural models rely on rich training data, have limited extrapolation and generalization abilities, and suffer to produce precise or reliable physical prediction under intricate conditions (e.g., irregular mesh or geometry, complex boundary conditions, diverse PDE parameters, etc.). To this end, we propose a new graph learning approach, namely, Physics-encoded Message Passing Graph Network (PhyMPGN), to model spatiotemporal PDE systems on irregular meshes given small training datasets. Specifically, we incorporate a GNN into a numerical integrator to approximate the temporal marching of spatiotemporal dynamics for a given PDE system. Considering that many physical phenomena are governed by diffusion processes, we further design a learnable Laplace block, which encodes the discrete Laplace-Beltrami operator, to aid and guide the GNN learning in a physically feasible solution space. A boundary condition padding strategy is also designed to improve the model convergence and accuracy. Extensive experiments demonstrate that PhyMPGN is capable of accurately predicting various types of spatiotemporal dynamics on coarse unstructured meshes, consistently achieves the state-of-the-art results, and outperforms other baselines with considerable gains.
♻ ☆ A Closer Look at Machine Unlearning for Large Language Models ICLR 2025
Large language models (LLMs) may memorize sensitive or copyrighted content, raising privacy and legal concerns. Due to the high cost of retraining from scratch, researchers attempt to employ machine unlearning to remove specific content from LLMs while preserving the overall performance. In this paper, we discuss several issues in machine unlearning for LLMs and provide our insights on possible approaches. To address the issue of inadequate evaluation of model outputs after unlearning, we introduce three additional metrics to evaluate token diversity, sentence semantics, and factual correctness. We then categorize unlearning methods into untargeted and targeted, and discuss their issues respectively. Specifically, the behavior that untargeted unlearning attempts to approximate is unpredictable and may involve hallucinations, and existing regularization is insufficient for targeted unlearning. To alleviate these issues, we propose using the objective of maximizing entropy (ME) for untargeted unlearning and incorporate answer preservation (AP) loss as regularization for targeted unlearning. Experimental results across three scenarios, i.e., fictitious unlearning, continual unlearning, and real-world unlearning, demonstrate the effectiveness of our approaches. The code is available at https://github.com/sail-sg/closer-look-LLM-unlearning.
comment: ICLR 2025
♻ ☆ Scalable Decision-Making in Stochastic Environments through Learned Temporal Abstraction ICLR2025
Sequential decision-making in high-dimensional continuous action spaces, particularly in stochastic environments, faces significant computational challenges. We explore this challenge in the traditional offline RL setting, where an agent must learn how to make decisions based on data collected through a stochastic behavior policy. We present Latent Macro Action Planner (L-MAP), which addresses this challenge by learning a set of temporally extended macro-actions through a state-conditional Vector Quantized Variational Autoencoder (VQ-VAE), effectively reducing action dimensionality. L-MAP employs a (separate) learned prior model that acts as a latent transition model and allows efficient sampling of plausible actions. During planning, our approach accounts for stochasticity in both the environment and the behavior policy by using Monte Carlo tree search (MCTS). In offline RL settings, including stochastic continuous control tasks, L-MAP efficiently searches over discrete latent actions to yield high expected returns. Empirical results demonstrate that L-MAP maintains low decision latency despite increased action dimensionality. Notably, across tasks ranging from continuous control with inherently stochastic dynamics to high-dimensional robotic hand manipulation, L-MAP significantly outperforms existing model-based methods and performs on-par with strong model-free actor-critic baselines, highlighting the effectiveness of the proposed approach in planning in complex and stochastic environments with high-dimensional action spaces.
comment: Accepted by ICLR2025. Code would be available at https://github.com/BaitingLuo/L-MAP.git
♻ ☆ AdEval: Alignment-based Dynamic Evaluation to Mitigate Data Contamination in Large Language Models
As Large Language Models (LLMs) are pretrained on massive-scale corpora, the issue of data contamination has become increasingly severe, leading to potential overestimation of model performance during evaluation. To address this, we propose AdEval (Alignment-based Dynamic Evaluation), a dynamic data evaluation method aimed at mitigating the impact of data contamination on evaluation reliability. Experimental results on multiple datasets demonstrate that AdEval effectively reduces the impact of data contamination on evaluation outcomes, enhancing both the fairness and reliability of the evaluation process.
comment: There are serious academic problems in this paper, such as data falsification and plagiarism in the method of the paper
♻ ☆ Towards Generalizable Scene Change Detection CVPR 2025
While current state-of-the-art Scene Change Detection (SCD) approaches achieve impressive results in well-trained research data, they become unreliable under unseen environments and different temporal conditions; in-domain performance drops from 77.6\% to 8.0\% in a previously unseen environment and to 4.6\% under a different temporal condition -- calling for generalizable SCD and benchmark. In this work, we propose the Generalizable Scene Change Detection Framework (GeSCF), which addresses unseen domain performance and temporal consistency -- to meet the growing demand for anything SCD. Our method leverages the pre-trained Segment Anything Model (SAM) in a zero-shot manner. For this, we design Initial Pseudo-mask Generation and Geometric-Semantic Mask Matching -- seamlessly turning user-guided prompt and single-image based segmentation into scene change detection for a pair of inputs without guidance. Furthermore, we define the Generalizable Scene Change Detection (GeSCD) benchmark along with novel metrics and an evaluation protocol to facilitate SCD research in generalizability. In the process, we introduce the ChangeVPR dataset, a collection of challenging image pairs with diverse environmental scenarios -- including urban, suburban, and rural settings. Extensive experiments across various datasets demonstrate that GeSCF achieves an average performance gain of 19.2\% on existing SCD datasets and 30.0\% on the ChangeVPR dataset, nearly doubling the prior art performance. We believe our work can lay a solid foundation for robust and generalizable SCD research.
comment: Manuscript. Accepted to CVPR 2025
♻ ☆ OLMoE: Open Mixture-of-Experts Language Models
We introduce OLMoE, a fully open, state-of-the-art language model leveraging sparse Mixture-of-Experts (MoE). OLMoE-1B-7B has 7 billion (B) parameters but uses only 1B per input token. We pretrain it on 5 trillion tokens and further adapt it to create OLMoE-1B-7B-Instruct. Our models outperform all available models with similar active parameters, even surpassing larger ones like Llama2-13B-Chat and DeepSeekMoE-16B. We present various experiments on MoE training, analyze routing in our model showing high specialization, and open-source all aspects of our work: model weights, training data, code, and logs.
comment: 63 pages (24 main), 36 figures, 17 tables
♻ ☆ BECAUSE: Bilinear Causal Representation for Generalizable Offline Model-based Reinforcement Learning
Offline model-based reinforcement learning (MBRL) enhances data efficiency by utilizing pre-collected datasets to learn models and policies, especially in scenarios where exploration is costly or infeasible. Nevertheless, its performance often suffers from the objective mismatch between model and policy learning, resulting in inferior performance despite accurate model predictions. This paper first identifies the primary source of this mismatch comes from the underlying confounders present in offline data for MBRL. Subsequently, we introduce \textbf{B}ilin\textbf{E}ar \textbf{CAUS}al r\textbf{E}presentation~(BECAUSE), an algorithm to capture causal representation for both states and actions to reduce the influence of the distribution shift, thus mitigating the objective mismatch problem. Comprehensive evaluations on 18 tasks that vary in data quality and environment context demonstrate the superior performance of BECAUSE over existing offline RL algorithms. We show the generalizability and robustness of BECAUSE under fewer samples or larger numbers of confounders. Additionally, we offer theoretical analysis of BECAUSE to prove its error bound and sample efficiency when integrating causal representation into offline MBRL.
♻ ☆ The Labyrinth of Links: Navigating the Associative Maze of Multi-modal LLMs ICLR 2025
Multi-modal Large Language Models (MLLMs) have exhibited impressive capability. However, recently many deficiencies of MLLMs have been found compared to human intelligence, $\textit{e.g.}$, hallucination. To drive the MLLMs study, the community dedicated efforts to building larger benchmarks with complex tasks. In this paper, we propose benchmarking an essential but usually overlooked intelligence: $\textbf{association}$, a human's basic capability to link observation and prior practice memory. To comprehensively investigate MLLM's performance on the association, we formulate the association task and devise a standard benchmark based on adjective and verb semantic concepts. Instead of costly data annotation and curation, we propose a convenient $\textbf{annotation-free}$ construction method transforming the general dataset for our association tasks. Simultaneously, we devise a rigorous data refinement process to eliminate confusion in the raw dataset. Building on this database, we establish three levels of association tasks: single-step, synchronous, and asynchronous associations. Moreover, we conduct a comprehensive investigation into the MLLMs' zero-shot association capabilities, addressing multiple dimensions, including three distinct memory strategies, both open-source and closed-source MLLMs, cutting-edge Mixture-of-Experts (MoE) models, and the involvement of human experts. Our systematic investigation shows that current open-source MLLMs consistently exhibit poor capability in our association tasks, even the currently state-of-the-art GPT-4V(vision) also has a significant gap compared to humans. We believe our benchmark would pave the way for future MLLM studies. $\textit{Our data and code are available at:}$ https://mvig-rhos.com/llm_inception.
comment: Accepted by ICLR 2025. Project page: https://mvig-rhos.com/llm_inception
♻ ☆ NL2FOL: Translating Natural Language to First-Order Logic for Logical Fallacy Detection
Translating natural language into formal language such as First-Order Logic (FOL) is a foundational challenge in NLP with wide-ranging applications in automated reasoning, misinformation tracking, and knowledge validation. In this paper, we introduce Natural Language to First-Order Logic (NL2FOL), a framework to autoformalize natural language to FOL step by step using Large Language Models (LLMs). Our approach addresses key challenges in this translation process, including the integration of implicit background knowledge. By leveraging structured representations generated by NL2FOL, we use Satisfiability Modulo Theory (SMT) solvers to reason about the logical validity of natural language statements. We present logical fallacy detection as a case study to evaluate the efficacy of NL2FOL. Being neurosymbolic, our approach also provides interpretable insights into the reasoning process and demonstrates robustness without requiring model fine-tuning or labeled training data. Our framework achieves strong performance on multiple datasets. On the LOGIC dataset, NL2FOL achieves an F1-score of 78%, while generalizing effectively to the LOGICCLIMATE dataset with an F1-score of 80%.
♻ ☆ Performance Review on LLM for solving leetcode problems
This paper presents a comprehensive performance evaluation of Large Language Models (LLMs) in solving programming challenges from Leetcode, a widely used platform for algorithm practice and technical interviews. We began by crawling the Leetcode website to collect a diverse set of problems encompassing various difficulty levels and topics. Using this dataset, we generated solutions with multiple LLMs, including GPT-4 and GPT-3.5-turbo (ChatGPT-turbo). The generated solutions were systematically evaluated for correctness and efficiency. We employed the pass@k metric to assess the success rates within a given number of attempts and analyzed the runtime performance of the solutions. Our results highlight the strengths and limitations of current LLMs [10] in code generation and problem-solving tasks, providing insights into their potential applications and areas for improvement in automated programming assistance.
♻ ☆ Atomas: Hierarchical Alignment on Molecule-Text for Unified Molecule Understanding and Generation
Molecule-and-text cross-modal representation learning has emerged as a promising direction for enhancing the quality of molecular representation, thereby improving performance in various scientific fields. However, most approaches employ a global alignment approach to learn the knowledge from different modalities that may fail to capture fine-grained information, such as molecule-and-text fragments and stereoisomeric nuances, which is crucial for downstream tasks. Furthermore, it is incapable of modeling such information using a similar global alignment strategy due to the lack of annotations about the fine-grained fragments in the existing dataset. In this paper, we propose Atomas, a hierarchical molecular representation learning framework that jointly learns representations from SMILES strings and text. We design a Hierarchical Adaptive Alignment model to automatically learn the fine-grained fragment correspondence between two modalities and align these representations at three semantic levels. Atomas's end-to-end training framework supports understanding and generating molecules, enabling a wider range of downstream tasks. Atomas achieves superior performance across 12 tasks on 11 datasets, outperforming 11 baseline models thus highlighting the effectiveness and versatility of our method. Scaling experiments further demonstrate Atomas's robustness and scalability. Moreover, visualization and qualitative analysis, validated by human experts, confirm the chemical relevance of our approach. Codes are released on https://github.com/yikunpku/Atomas.
♻ ☆ Lean-STaR: Learning to Interleave Thinking and Proving
Traditional language model-based theorem proving assumes that by training on a sufficient amount of formal proof data, a model will learn to prove theorems. Our key observation is that a wealth of informal information that is not present in formal proofs can be useful for learning to prove theorems. For instance, humans think through steps of a proof, but this thought process is not visible in the resulting code. We present Lean-STaR, a framework for training language models to produce informal thoughts prior to each step of a proof, thereby boosting the model's theorem-proving capabilities. Lean-STaR uses retrospective ground-truth tactics to generate synthetic thoughts for training the language model. At inference time, the trained model directly generates the thoughts prior to the prediction of the tactics in each proof step. Building on the self-taught reasoner framework, we then apply expert iteration to further fine-tune the model on the correct proofs it samples and verifies using the Lean solver. Lean-STaR achieves state-of-the-art results on the miniF2F-test benchmark within the Lean theorem proving environment, significantly outperforming base models ($\boldsymbol{43.4\% \rightarrow 46.3\%,}$ Pass@64). We also analyze the impact of the augmented thoughts on various aspects of the theorem proving process, providing insights into their effectiveness.
♻ ☆ DiffTORI: Differentiable Trajectory Optimization for Deep Reinforcement and Imitation Learning NeurIPS 2024
This paper introduces DiffTORI, which utilizes Differentiable Trajectory Optimization as the policy representation to generate actions for deep Reinforcement and Imitation learning. Trajectory optimization is a powerful and widely used algorithm in control, parameterized by a cost and a dynamics function. The key to our approach is to leverage the recent progress in differentiable trajectory optimization, which enables computing the gradients of the loss with respect to the parameters of trajectory optimization. As a result, the cost and dynamics functions of trajectory optimization can be learned end-to-end. DiffTORI addresses the ``objective mismatch'' issue of prior model-based RL algorithms, as the dynamics model in DiffTORI is learned to directly maximize task performance by differentiating the policy gradient loss through the trajectory optimization process. We further benchmark DiffTORI for imitation learning on standard robotic manipulation task suites with high-dimensional sensory observations and compare our method to feed-forward policy classes as well as Energy-Based Models (EBM) and Diffusion. Across 15 model-based RL tasks and 35 imitation learning tasks with high-dimensional image and point cloud inputs, DiffTORI outperforms prior state-of-the-art methods in both domains. Our code is available at https://github.com/wkwan7/DiffTORI.
comment: NeurIPS 2024 (Spotlight)
SkyServe: Serving AI Models across Regions and Clouds with Spot Instances EuroSys 25
Recent years have witnessed an explosive growth of AI models. The high cost of hosting AI services on GPUs and their demanding service requirements, make it timely and challenging to lower service costs and guarantee service quality. While spot instances have long been offered with a large discount, spot preemptions have discouraged users from using them to host model replicas when serving AI models. To address this, we propose a simple yet efficient policy, SpotHedge, that leverages spot replicas across different failure domains (e.g., regions and clouds) to ensure availability, lower costs, and high service quality. SpotHedge intelligently spreads spot replicas across different regions and clouds to improve availability and reduce correlated preemptions, overprovisions cheap spot replicas than required as a safeguard against possible preemptions, and dynamically falls back to on-demand replicas when spot replicas become unavailable. We built SkyServe, a system leveraging SpotHedge to efficiently serve AI models over a mixture of spot and on-demand replicas across regions and clouds. We compared SkyServe with both research and production systems on real AI workloads: SkyServe reduces cost by 43% on average while achieving high resource availability compared to using on-demand replicas. Additionally, SkyServe improves P50, P90, and P99 latency by 2.3$\times$, 2.1$\times$, 2.1$\times$ on average compared to other research and production systems.
comment: EuroSys 25'
♻ ☆ Laurel: Unblocking Automated Verification with Large Language Models
Program verifiers such as Dafny automate proofs by outsourcing them to an SMT solver. This automation is not perfect, however, and the solver often requires hints in the form of assertions, creating a burden for the proof engineer. In this paper, we propose Laurel, a tool that alleviates this burden by automatically generating assertions using large language models (LLMs). To improve the success rate of LLMs in this task, we design two domain-specific prompting techniques. First, we help the LLM determine the location of the missing assertion by analyzing the verifier's error message and inserting an assertion placeholder at that location. Second, we provide the LLM with example assertions from the same codebase, which we select based on a new proof similarity metric. We evaluate our techniques on our new benchmark DafnyGym, a dataset of complex lemmas we extracted from three real-world Dafny codebases. Our evaluation shows that Laurel is able to generate over 56.6\% of the required assertions given only a few attempts, making LLMs an affordable tool for unblocking program verifiers without human intervention.
comment: 34 pages, accepted at OOPSLA 25
♻ ☆ External Large Foundation Model: How to Efficiently Serve Trillions of Parameters for Online Ads Recommendation WWW
Ads recommendation is a prominent service of online advertising systems and has been actively studied. Recent studies indicate that scaling-up and advanced design of the recommendation model can bring significant performance improvement. However, with a larger model scale, such prior studies have a significantly increasing gap from industry as they often neglect two fundamental challenges in industrial-scale applications. First, training and inference budgets are restricted for the model to be served, exceeding which may incur latency and impair user experience. Second, large-volume data arrive in a streaming mode with data distributions dynamically shifting, as new users/ads join and existing users/ads leave the system. We propose the External Large Foundation Model (ExFM) framework to address the overlooked challenges. Specifically, we develop external distillation and a data augmentation system (DAS) to control the computational cost of training/inference while maintaining high performance. We design the teacher in a way like a foundation model (FM) that can serve multiple students as vertical models (VMs) to amortize its building cost. We propose Auxiliary Head and Student Adapter to mitigate the data distribution gap between FM and VMs caused by the streaming data issue. Comprehensive experiments on internal industrial-scale applications and public datasets demonstrate significant performance gain by ExFM.
comment: Accepted by the ACM Web Conference (WWW) 2025 Industrial Track as Oral Presentation
♻ ☆ Controllable Safety Alignment: Inference-Time Adaptation to Diverse Safety Requirements ICLR 2025
The current paradigm for safety alignment of large language models (LLMs) follows a one-size-fits-all approach: the model refuses to interact with any content deemed unsafe by the model provider. This approach lacks flexibility in the face of varying social norms across cultures and regions. In addition, users may have diverse safety needs, making a model with static safety standards too restrictive to be useful, as well as too costly to be re-aligned. We propose Controllable Safety Alignment (CoSA), a framework designed to adapt models to diverse safety requirements without re-training. Instead of aligning a fixed model, we align models to follow safety configs -- free-form natural language descriptions of the desired safety behaviors -- that are provided as part of the system prompt. To adjust model safety behavior, authorized users only need to modify such safety configs at inference time. To enable that, we propose CoSAlign, a data-centric method for aligning LLMs to easily adapt to diverse safety configs. Furthermore, we devise a novel controllability evaluation protocol that considers both helpfulness and configured safety, summarizing them into CoSA-Score, and construct CoSApien, a human-authored benchmark that consists of real-world LLM use cases with diverse safety requirements and corresponding evaluation prompts. We show that CoSAlign leads to substantial gains of controllability over strong baselines including in-context alignment. Our framework encourages better representation and adaptation to pluralistic human values in LLMs, and thereby increasing their practicality.
comment: ICLR 2025 camera ready
♻ ☆ Minimax Optimal and Computationally Efficient Algorithms for Distributionally Robust Offline Reinforcement Learning NeurIPS 2024
Distributionally robust offline reinforcement learning (RL), which seeks robust policy training against environment perturbation by modeling dynamics uncertainty, calls for function approximations when facing large state-action spaces. However, the consideration of dynamics uncertainty introduces essential nonlinearity and computational burden, posing unique challenges for analyzing and practically employing function approximation. Focusing on a basic setting where the nominal model and perturbed models are linearly parameterized, we propose minimax optimal and computationally efficient algorithms realizing function approximation and initiate the study on instance-dependent suboptimality analysis in the context of robust offline RL. Our results uncover that function approximation in robust offline RL is essentially distinct from and probably harder than that in standard offline RL. Our algorithms and theoretical results crucially depend on a novel function approximation mechanism incorporating variance information, a new procedure of suboptimality and estimation uncertainty decomposition, a quantification of the robust value function shrinkage, and a meticulously designed family of hard instances, which might be of independent interest.
comment: 46 pages, 3 figures, 1 table. Published in Proc. of the 38th Conference on Advances in Neural Information Processing Systems (NeurIPS 2024)
♻ ☆ GlotCC: An Open Broad-Coverage CommonCrawl Corpus and Pipeline for Minority Languages NeurIPS 2024
The need for large text corpora has increased with the advent of pretrained language models and, in particular, the discovery of scaling laws for these models. Most available corpora have sufficient data only for languages with large dominant communities. However, there is no corpus available that (i) covers a wide range of minority languages; (ii) is generated by an open-source reproducible pipeline; and (iii) is rigorously cleaned from noise, making it trustworthy to use. We present GlotCC, a clean, document-level, 2TB general domain corpus derived from CommonCrawl, covering more than 1000 languages. We make GlotCC and the system used to generate it - including the pipeline, language identification model, and filters - available to the research community. Corpus v. 1.0 https://huggingface.co/datasets/cis-lmu/GlotCC-v1, Pipeline v. 3.0 https://github.com/cisnlp/GlotCC.
comment: NeurIPS 2024
♻ ☆ Gradients can train reward models: An Empirical Risk Minimization Approach for Offline Inverse RL and Dynamic Discrete Choice Model
We study the problem of estimating Dynamic Discrete Choice (DDC) models, also known as offline Maximum Entropy-Regularized Inverse Reinforcement Learning (offline MaxEnt-IRL) in machine learning. The objective is to recover reward or $Q^*$ functions that govern agent behavior from offline behavior data. In this paper, we propose a globally convergent gradient-based method for solving these problems without the restrictive assumption of linearly parameterized rewards. The novelty of our approach lies in introducing the Empirical Risk Minimization (ERM) based IRL/DDC framework, which circumvents the need for explicit state transition probability estimation in the Bellman equation. Furthermore, our method is compatible with non-parametric estimation techniques such as neural networks. Therefore, the proposed method has the potential to be scaled to high-dimensional, infinite state spaces. A key theoretical insight underlying our approach is that the Bellman residual satisfies the Polyak-Lojasiewicz (PL) condition -- a property that, while weaker than strong convexity, is sufficient to ensure fast global convergence guarantees. Through a series of synthetic experiments, we demonstrate that our approach consistently outperforms benchmark methods and state-of-the-art alternatives.
♻ ☆ Talking Heads: Understanding Inter-layer Communication in Transformer Language Models
Although it is known that transformer language models (LMs) pass features from early layers to later layers, it is not well understood how this information is represented and routed by the model. We analyze a mechanism used in two LMs to selectively inhibit items in a context in one task, and find that it underlies a commonly used abstraction across many context-retrieval behaviors. Specifically, we find that models write into low-rank subspaces of the residual stream to represent features which are then read out by later layers, forming low-rank communication channels (Elhage et al., 2021) between layers. A particular 3D subspace in model activations in GPT-2 can be traversed to positionally index items in lists, and we show that this mechanism can explain an otherwise arbitrary-seeming sensitivity of the model to the order of items in the prompt. That is, the model has trouble copying the correct information from context when many items ``crowd" this limited space. By decomposing attention heads with the Singular Value Decomposition (SVD), we find that previously described interactions between heads separated by one or more layers can be predicted via analysis of their weight matrices alone. We show that it is possible to manipulate the internal model representations as well as edit model weights based on the mechanism we discover in order to significantly improve performance on our synthetic Laundry List task, which requires recall from a list, often improving task accuracy by over 20%. Our analysis reveals a surprisingly intricate interpretable structure learned from language model pretraining, and helps us understand why sophisticated LMs sometimes fail in simple domains, facilitating future analysis of more complex behaviors.
comment: Neurips 2024
♻ ☆ AxBench: Steering LLMs? Even Simple Baselines Outperform Sparse Autoencoders
Fine-grained steering of language model outputs is essential for safety and reliability. Prompting and finetuning are widely used to achieve these goals, but interpretability researchers have proposed a variety of representation-based techniques as well, including sparse autoencoders (SAEs), linear artificial tomography, supervised steering vectors, linear probes, and representation finetuning. At present, there is no benchmark for making direct comparisons between these proposals. Therefore, we introduce AxBench, a large-scale benchmark for steering and concept detection, and report experiments on Gemma-2-2B and 9B. For steering, we find that prompting outperforms all existing methods, followed by finetuning. For concept detection, representation-based methods such as difference-in-means, perform the best. On both evaluations, SAEs are not competitive. We introduce a novel weakly-supervised representational method (Rank-1 Representation Finetuning; ReFT-r1), which is competitive on both tasks while providing the interpretability advantages that prompting lacks. Along with AxBench, we train and publicly release SAE-scale feature dictionaries for ReFT-r1 and DiffMean.
♻ ☆ TEARS: Textual Representations for Scrutable Recommendations
Traditional recommender systems rely on high-dimensional (latent) embeddings for modeling user-item interactions, often resulting in opaque representations that lack interpretability. Moreover, these systems offer limited control to users over their recommendations. Inspired by recent work, we introduce TExtuAl Representations for Scrutable recommendations (TEARS) to address these challenges. Instead of representing a user's interests through a latent embedding, TEARS encodes them in natural text, providing transparency and allowing users to edit them. To do so, TEARS uses a modern LLM to generate user summaries based on user preferences. We find the summaries capture user preferences uniquely. Using these summaries, we take a hybrid approach where we use an optimal transport procedure to align the summaries' representation with the learned representation of a standard VAE for collaborative filtering. We find this approach can surpass the performance of three popular VAE models while providing user-controllable recommendations. We also analyze the controllability of TEARS through three simulated user tasks to evaluate the effectiveness of a user editing its summary.
♻ ☆ Rao-Blackwellized POMDP Planning
Partially Observable Markov Decision Processes (POMDPs) provide a structured framework for decision-making under uncertainty, but their application requires efficient belief updates. Sequential Importance Resampling Particle Filters (SIRPF), also known as Bootstrap Particle Filters, are commonly used as belief updaters in large approximate POMDP solvers, but they face challenges such as particle deprivation and high computational costs as the system's state dimension grows. To address these issues, this study introduces Rao-Blackwellized POMDP (RB-POMDP) approximate solvers and outlines generic methods to apply Rao-Blackwellization in both belief updates and online planning. We compare the performance of SIRPF and Rao-Blackwellized Particle Filters (RBPF) in a simulated localization problem where an agent navigates toward a target in a GPS-denied environment using POMCPOW and RB-POMCPOW planners. Our results not only confirm that RBPFs maintain accurate belief approximations over time with fewer particles, but, more surprisingly, RBPFs combined with quadrature-based integration improve planning quality significantly compared to SIRPF-based planning under the same computational limits.
♻ ☆ Analyzing mixed construction and demolition waste in material recovery facilities: evolution, challenges, and applications of computer vision and deep learning
Improving the automatic and timely recognition of construction and demolition waste composition is crucial for enhancing business returns, economic outcomes and sustainability. While deep learning models show promise in recognizing and classifying homogenous materials, the current literature lacks research assessing their performance for mixed, contaminated material in commercial material recycling facility settings. Despite the increasing numbers of deep learning models and datasets generated in this area, the sub-domain of deep learning analysis of construction and demolition waste piles remains underexplored. To address this gap, recent deep learning algorithms and techniques were explored. This review examines the progression in datasets, sensors and the evolution from object detection towards real-time segmentation models. It also synthesizes research from the past five years on deep learning for construction and demolition waste management, highlighting recent advancements while acknowledging limitations that hinder widespread commercial adoption. The analysis underscores the critical requirement for diverse and high-fidelity datasets, advanced sensor technologies, and robust algorithmic frameworks to facilitate the effective integration of deep learning methodologies into construction and demolition waste management systems. This integration is envisioned to contribute significantly towards the advancement of a more sustainable and circular economic model.
♻ ☆ Universal AI maximizes Variational Empowerment
This paper presents a theoretical framework unifying AIXI -- a model of universal AI -- with variational empowerment as an intrinsic drive for exploration. We build on the existing framework of Self-AIXI -- a universal learning agent that predicts its own actions -- by showing how one of its established terms can be interpreted as a variational empowerment objective. We further demonstrate that universal AI's planning process can be cast as minimizing expected variational free energy (the core principle of active Inference), thereby revealing how universal AI agents inherently balance goal-directed behavior with uncertainty reduction curiosity). Moreover, we argue that power-seeking tendencies of universal AI agents can be explained not only as an instrumental strategy to secure future reward, but also as a direct consequence of empowerment maximization -- i.e. the agent's intrinsic drive to maintain or expand its own controllability in uncertain environments. Our main contribution is to show how these intrinsic motivations (empowerment, curiosity) systematically lead universal AI agents to seek and sustain high-optionality states. We prove that Self-AIXI asymptotically converges to the same performance as AIXI under suitable conditions, and highlight that its power-seeking behavior emerges naturally from both reward maximization and curiosity-driven exploration. Since AIXI can be view as a Bayes-optimal mathematical formulation for Artificial General Intelligence (AGI), our result can be useful for further discussion on AI safety and the controllability of AGI.
comment: 9 pages, no figures
♻ ☆ LegalCore: A Dataset for Legal Documents Event Coreference Resolution
Recognizing events and their coreferential mentions in a document is essential for understanding semantic meanings of text. The existing research on event coreference resolution is mostly limited to news articles. In this paper, we present the first dataset for the legal domain, LegalCore, which has been annotated with comprehensive event and event coreference information. The legal contract documents we annotated in this dataset are several times longer than news articles, with an average length of around 25k tokens per document. The annotations show that legal documents have dense event mentions and feature both short-distance and super long-distance coreference links between event mentions. We further benchmark mainstream Large Language Models (LLMs) on this dataset for both event detection and event coreference resolution tasks, and find that this dataset poses significant challenges for state-of-the-art open-source and proprietary LLMs, which perform significantly worse than a supervised baseline. We will publish the dataset as well as the code.
♻ ☆ UniDEC : Unified Dual Encoder and Classifier Training for Extreme Multi-Label Classification
Extreme Multi-label Classification (XMC) involves predicting a subset of relevant labels from an extremely large label space, given an input query and labels with textual features. Models developed for this problem have conventionally made use of dual encoder (DE) to embed the queries and label texts and one-vs-all (OvA) classifiers to rerank the shortlisted labels by the DE. While such methods have shown empirical success, a major drawback is their computational cost, often requiring upto 16 GPUs to train on the largest public dataset. Such a high cost is a consequence of calculating the loss over the entire label space. While shortlisting strategies have been proposed for classifiers, we aim to study such methods for the DE framework. In this work, we develop UniDEC, a loss-independent, end-to-end trainable framework which trains the DE and classifier together in a unified manner with a multi-class loss, while reducing the computational cost by 4-16x. This is done via the proposed pick-some-label (PSL) reduction, which aims to compute the loss on only a subset of positive and negative labels. These labels are carefully chosen in-batch so as to maximise their supervisory signals. Not only does the proposed framework achieve state-of-the-art results on datasets with labels in the order of millions, it is also computationally and resource efficient in achieving this performance on a single GPU. Code is made available at https://github.com/the-catalyst/UniDEC.
♻ ☆ Combining Monte Carlo Tree Search and Heuristic Search for Weighted Vertex Coloring
This work investigates the Monte Carlo Tree Search (MCTS) method combined with dedicated heuristics for solving the Weighted Vertex Coloring Problem. In addition to the basic MCTS algorithm, we study several MCTS variants where the conventional random simulation is replaced by other simulation strategies including greedy and local search heuristics. We conduct experiments on well-known benchmark instances to assess these combined MCTS variants. We provide empirical evidence to shed light on the advantages and limits of each simulation strategy. This is an extension of the work of Grelier and al. presented at EvoCOP2022.
comment: arXiv admin note: substantial text overlap with arXiv:2202.01665
♻ ☆ Speculative Knowledge Distillation: Bridging the Teacher-Student Gap Through Interleaved Sampling ICLR2025
Recent advances in knowledge distillation (KD) have enabled smaller student models to approach the performance of larger teacher models. However, popular methods such as supervised KD and on-policy KD, are adversely impacted by the knowledge gaps between teacher-student in practical scenarios. Supervised KD suffers from a distribution mismatch between training with a static dataset and inference over final student-generated outputs. Conversely, on-policy KD, which uses student-generated samples for training, can suffer from low-quality training examples with which teacher models are not familiar, resulting in inaccurate teacher feedback. To address these limitations, we introduce Speculative Knowledge Distillation (SKD), a novel approach that leverages cooperation between student and teacher models to generate high-quality training data on-the-fly while aligning with the student's inference-time distribution. In SKD, the student proposes tokens, and the teacher replaces poorly ranked ones based on its own distribution, transferring high-quality knowledge adaptively. We evaluate SKD on various text generation tasks, including translation, summarization, math, and instruction following, and show that SKD consistently outperforms existing KD methods across different domains, data sizes, and model initialization strategies.
comment: ICLR2025
♻ ☆ The Alignment Problem from a Deep Learning Perspective ICLR 2024
In coming years or decades, artificial general intelligence (AGI) may surpass human capabilities across many critical domains. We argue that, without substantial effort to prevent it, AGIs could learn to pursue goals that are in conflict (i.e. misaligned) with human interests. If trained like today's most capable models, AGIs could learn to act deceptively to receive higher reward, learn misaligned internally-represented goals which generalize beyond their fine-tuning distributions, and pursue those goals using power-seeking strategies. We review emerging evidence for these properties. In this revised paper, we include more direct empirical observations published as of early 2025. AGIs with these properties would be difficult to align and may appear aligned even when they are not. Finally, we briefly outline how the deployment of misaligned AGIs might irreversibly undermine human control over the world, and we review research directions aimed at preventing this outcome.
comment: Published in ICLR 2024
♻ ☆ Independent Mobility GPT (IDM-GPT): A Self-Supervised Multi-Agent Large Language Model Framework for Customized Traffic Mobility Analysis Using Machine Learning Models
With the urbanization process, an increasing number of sensors are being deployed in transportation systems, leading to an explosion of big data. To harness the power of this vast transportation data, various machine learning (ML) and artificial intelligence (AI) methods have been introduced to address numerous transportation challenges. However, these methods often require significant investment in data collection, processing, storage, and the employment of professionals with expertise in transportation and ML. Additionally, privacy issues are a major concern when processing data for real-world traffic control and management. To address these challenges, the research team proposes an innovative Multi-agent framework named Independent Mobility GPT (IDM-GPT) based on large language models (LLMs) for customized traffic analysis, management suggestions, and privacy preservation. IDM-GPT efficiently connects users, transportation databases, and ML models economically. IDM-GPT trains, customizes, and applies various LLM-based AI agents for multiple functions, including user query comprehension, prompts optimization, data analysis, model selection, and performance evaluation and enhancement. With IDM-GPT, users without any background in transportation or ML can efficiently and intuitively obtain data analysis and customized suggestions in near real-time based on their questions. Experimental results demonstrate that IDM-GPT delivers satisfactory performance across multiple traffic-related tasks, providing comprehensive and actionable insights that support effective traffic management and urban mobility improvement.
comment: 24 pages, 4 figures, TRR accepted
♻ ☆ Multiagent Finetuning: Self Improvement with Diverse Reasoning Chains ICLR 2025
Large language models (LLMs) have achieved remarkable performance in recent years but are fundamentally limited by the underlying training data. To improve models beyond the training data, recent works have explored how LLMs can be used to generate synthetic data for autonomous self-improvement. However, successive steps of self-improvement can reach a point of diminishing returns. In this work, we propose a complementary approach towards self-improvement where finetuning is applied to a multiagent society of language models. A group of language models, all starting from the same base model, are independently specialized by updating each one using data generated through multiagent interactions among the models. By training each model on independent sets of data, we illustrate how this approach enables specialization across models and diversification over the set of models. As a result, our overall system is able to preserve diverse reasoning chains and autonomously improve over many more rounds of fine-tuning than single-agent self-improvement methods. We quantitatively illustrate the efficacy of the approach across a wide suite of reasoning tasks.
comment: ICLR 2025; 22 pages, 13 figures, 7 tables; Project page at https://llm-multiagent-ft.github.io/
♻ ☆ One Map to Find Them All: Real-time Open-Vocabulary Mapping for Zero-shot Multi-Object Navigation
The capability to efficiently search for objects in complex environments is fundamental for many real-world robot applications. Recent advances in open-vocabulary vision models have resulted in semantically-informed object navigation methods that allow a robot to search for an arbitrary object without prior training. However, these zero-shot methods have so far treated the environment as unknown for each consecutive query. In this paper we introduce a new benchmark for zero-shot multi-object navigation, allowing the robot to leverage information gathered from previous searches to more efficiently find new objects. To address this problem we build a reusable open-vocabulary feature map tailored for real-time object search. We further propose a probabilistic-semantic map update that mitigates common sources of errors in semantic feature extraction and leverage this semantic uncertainty for informed multi-object exploration. We evaluate our method on a set of object navigation tasks in both simulation as well as with a real robot, running in real-time on a Jetson Orin AGX. We demonstrate that it outperforms existing state-of-the-art approaches both on single and multi-object navigation tasks. Additional videos, code and the multi-object navigation benchmark will be available on https://finnbsch.github.io/OneMap.
♻ ☆ Minimal Variance Model Aggregation: A principled, non-intrusive, and versatile integration of black box models
Whether deterministic or stochastic, models can be viewed as functions designed to approximate a specific quantity of interest. We introduce Minimal Empirical Variance Aggregation (MEVA), a data-driven framework that integrates predictions from various models, enhancing overall accuracy by leveraging the individual strengths of each. This non-intrusive, model-agnostic approach treats the contributing models as black boxes and accommodates outputs from diverse methodologies, including machine learning algorithms and traditional numerical solvers. We advocate for a point-wise linear aggregation process and consider two methods for optimizing this aggregate: Minimal Error Aggregation (MEA), which minimizes the prediction error, and Minimal Variance Aggregation (MVA), which focuses on reducing variance. We prove a theorem showing that MVA can be more robustly estimated from data than MEA, making MEVA superior to Minimal Empirical Error Aggregation (MEEA). Unlike MEEA, which interpolates target values directly, MEVA formulates aggregation as an error estimation problem, which can be performed using any backbone learning paradigm. We demonstrate the versatility and effectiveness of our framework across various applications, including data science and partial differential equations, illustrating its ability to significantly enhance both robustness and accuracy.
comment: The code in this paper is available for download at https://github.com/TheoBourdais/ModelAggregation
♻ ☆ Navigating the Digital World as Humans Do: Universal Visual Grounding for GUI Agents ICLR 2025
Multimodal large language models (MLLMs) are transforming the capabilities of graphical user interface (GUI) agents, facilitating their transition from controlled simulations to complex, real-world applications across various platforms. However, the effectiveness of these agents hinges on the robustness of their grounding capability. Current GUI agents predominantly utilize text-based representations such as HTML or accessibility trees, which, despite their utility, often introduce noise, incompleteness, and increased computational overhead. In this paper, we advocate a human-like embodiment for GUI agents that perceive the environment entirely visually and directly perform pixel-level operations on the GUI. The key is visual grounding models that can accurately map diverse referring expressions of GUI elements to their coordinates on the GUI across different platforms. We show that a simple recipe, which includes web-based synthetic data and slight adaptation of the LLaVA architecture, is surprisingly effective for training such visual grounding models. We collect the largest dataset for GUI visual grounding so far, containing 10M GUI elements and their referring expressions over 1.3M screenshots, and use it to train UGround, a strong universal visual grounding model for GUI agents. Empirical results on six benchmarks spanning three categories (grounding, offline agent, and online agent) show that 1) UGround substantially outperforms existing visual grounding models for GUI agents, by up to 20% absolute, and 2) agents with UGround outperform state-of-the-art agents, despite the fact that existing agents use additional text-based input while ours only uses visual perception. These results provide strong support for the feasibility and promises of GUI agents that navigate the digital world as humans do.
comment: Accepted to ICLR 2025 (Oral)
♻ ☆ KGARevion: An AI Agent for Knowledge-Intensive Biomedical QA
Biomedical reasoning integrates structured, codified knowledge with tacit, experience-driven insights. Depending on the context, quantity, and nature of available evidence, researchers and clinicians use diverse strategies, including rule-based, prototype-based, and case-based reasoning. Effective medical AI models must handle this complexity while ensuring reliability and adaptability. We introduce KGARevion, a knowledge graph-based agent that answers knowledge-intensive questions. Upon receiving a query, KGARevion generates relevant triplets by leveraging the latent knowledge embedded in a large language model. It then verifies these triplets against a grounded knowledge graph, filtering out errors and retaining only accurate, contextually relevant information for the final answer. This multi-step process strengthens reasoning, adapts to different models of medical inference, and outperforms retrieval-augmented generation-based approaches that lack effective verification mechanisms. Evaluations on medical QA benchmarks show that KGARevion improves accuracy by over 5.2% over 15 models in handling complex medical queries. To further assess its effectiveness, we curated three new medical QA datasets with varying levels of semantic complexity, where KGARevion improved accuracy by 10.4%. The agent integrates with different LLMs and biomedical knowledge graphs for broad applicability across knowledge-intensive tasks. We evaluated KGARevion on AfriMed-QA, a newly introduced dataset focused on African healthcare, demonstrating its strong zero-shot generalization to underrepresented medical contexts.
♻ ☆ ChemToolAgent: The Impact of Tools on Language Agents for Chemistry Problem Solving NAACL 2025
To enhance large language models (LLMs) for chemistry problem solving, several LLM-based agents augmented with tools have been proposed, such as ChemCrow and Coscientist. However, their evaluations are narrow in scope, leaving a large gap in understanding the benefits of tools across diverse chemistry tasks. To bridge this gap, we develop ChemToolAgent, an enhanced chemistry agent over ChemCrow, and conduct a comprehensive evaluation of its performance on both specialized chemistry tasks and general chemistry questions. Surprisingly, ChemToolAgent does not consistently outperform its base LLMs without tools. Our error analysis with a chemistry expert suggests that: For specialized chemistry tasks, such as synthesis prediction, we should augment agents with specialized tools; however, for general chemistry questions like those in exams, agents' ability to reason correctly with chemistry knowledge matters more, and tool augmentation does not always help.
comment: Accepted to NAACL 2025 Findings. Previous title: Tooling or Not Tooling? The Impact of Tools on Language Agents for Chemistry Problem Solving. Based on the camera ready version, this version adds more experimental results
♻ ☆ Enhancing Uncertainty Modeling with Semantic Graph for Hallucination Detection
Large Language Models (LLMs) are prone to hallucination with non-factual or unfaithful statements, which undermines the applications in real-world scenarios. Recent researches focus on uncertainty-based hallucination detection, which utilizes the output probability of LLMs for uncertainty calculation and does not rely on external knowledge or frequent sampling from LLMs. Whereas, most approaches merely consider the uncertainty of each independent token, while the intricate semantic relations among tokens and sentences are not well studied, which limits the detection of hallucination that spans over multiple tokens and sentences in the passage. In this paper, we propose a method to enhance uncertainty modeling with semantic graph for hallucination detection. Specifically, we first construct a semantic graph that well captures the relations among entity tokens and sentences. Then, we incorporate the relations between two entities for uncertainty propagation to enhance sentence-level hallucination detection. Given that hallucination occurs due to the conflict between sentences, we further present a graph-based uncertainty calibration method that integrates the contradiction probability of the sentence with its neighbors in the semantic graph for uncertainty calculation. Extensive experiments on two datasets show the great advantages of our proposed approach. In particular, we obtain substantial improvements with 19.78% in passage-level hallucination detection.
♻ ☆ Convergence of a model-free entropy-regularized inverse reinforcement learning algorithm
Given a dataset of expert demonstrations, inverse reinforcement learning (IRL) aims to recover a reward for which the expert is optimal. This work proposes a model-free algorithm to solve entropy-regularized IRL problem. In particular, we employ a stochastic gradient descent update for the reward and a stochastic soft policy iteration update for the policy. Assuming access to a generative model, we prove that our algorithm is guaranteed to recover a reward for which the expert is $\varepsilon$-optimal using $\mathcal{O}(1/\varepsilon^{2})$ samples of the Markov decision process (MDP). Furthermore, with $\mathcal{O}(1/\varepsilon^{4})$ samples we prove that the optimal policy corresponding to the recovered reward is $\varepsilon$-close to the expert policy in total variation distance.
♻ ☆ Unsupervised Disentanglement of Content and Style via Variance-Invariance Constraints
We contribute an unsupervised method that effectively learns disentangled content and style representations from sequences of observations. Unlike most disentanglement algorithms that rely on domain-specific labels or knowledge, our method is based on the insight of domain-general statistical differences between content and style -- content varies more among different fragments within a sample but maintains an invariant vocabulary across data samples, whereas style remains relatively invariant within a sample but exhibits more significant variation across different samples. We integrate such inductive bias into an encoder-decoder architecture and name our method after V3 (variance-versus-invariance). Experimental results show that V3 generalizes across multiple domains and modalities, successfully learning disentangled content and style representations, such as pitch and timbre from music audio, digit and color from images of hand-written digits, and action and character appearance from simple animations. V3 demonstrates strong disentanglement performance compared to existing unsupervised methods, along with superior out-of-distribution generalization under few-shot adaptation compared to supervised counterparts. Lastly, symbolic-level interpretability emerges in the learned content codebook, forging a near one-to-one alignment between machine representation and human knowledge.
♻ ☆ Dissociating Artificial Intelligence from Artificial Consciousness
Developments in machine learning and computing power suggest that artificial general intelligence is within reach. This raises the question of artificial consciousness: if a computer were to be functionally equivalent to a human, being able to do all we do, would it experience sights, sounds, and thoughts, as we do when we are conscious? Answering this question in a principled manner can only be done on the basis of a theory of consciousness that is grounded in phenomenology and that states the necessary and sufficient conditions for any system, evolved or engineered, to support subjective experience. Here we employ Integrated Information Theory (IIT), which provides principled tools to determine whether a system is conscious, to what degree, and the content of its experience. We consider pairs of systems constituted of simple Boolean units, one of which -- a basic stored-program computer -- simulates the other with full functional equivalence. By applying the principles of IIT, we demonstrate that (i) two systems can be functionally equivalent without being phenomenally equivalent, and (ii) that this conclusion is not dependent on the simulated system's function. We further demonstrate that, according to IIT, it is possible for a digital computer to simulate our behavior, possibly even by simulating the neurons in our brain, without replicating our experience. This contrasts sharply with computational functionalism, the thesis that performing computations of the right kind is necessary and sufficient for consciousness.
♻ ☆ ShiftAddNAS: Hardware-Inspired Search for More Accurate and Efficient Neural Networks ICML 2022
Neural networks (NNs) with intensive multiplications (e.g., convolutions and transformers) are capable yet power hungry, impeding their more extensive deployment into resource-constrained devices. As such, multiplication-free networks, which follow a common practice in energy-efficient hardware implementation to parameterize NNs with more efficient operators (e.g., bitwise shifts and additions), have gained growing attention. However, multiplication-free networks usually under-perform their vanilla counterparts in terms of the achieved accuracy. To this end, this work advocates hybrid NNs that consist of both powerful yet costly multiplications and efficient yet less powerful operators for marrying the best of both worlds, and proposes ShiftAddNAS, which can automatically search for more accurate and more efficient NNs. Our ShiftAddNAS highlights two enablers. Specifically, it integrates (1) the first hybrid search space that incorporates both multiplication-based and multiplication-free operators for facilitating the development of both accurate and efficient hybrid NNs; and (2) a novel weight sharing strategy that enables effective weight sharing among different operators that follow heterogeneous distributions (e.g., Gaussian for convolutions vs. Laplacian for add operators) and simultaneously leads to a largely reduced supernet size and much better searched networks. Extensive experiments and ablation studies on various models, datasets, and tasks consistently validate the efficacy of ShiftAddNAS, e.g., achieving up to a +7.7% higher accuracy or a +4.9 better BLEU score compared to state-of-the-art NN, while leading to up to 93% or 69% energy and latency savings, respectively. Codes and pretrained models are available at https://github.com/RICE-EIC/ShiftAddNAS.
comment: Accepted by ICML 2022
♻ ☆ Online Reinforcement Learning in Non-Stationary Context-Driven Environments ICLR '25
We study online reinforcement learning (RL) in non-stationary environments, where a time-varying exogenous context process affects the environment dynamics. Online RL is challenging in such environments due to "catastrophic forgetting" (CF). The agent tends to forget prior knowledge as it trains on new experiences. Prior approaches to mitigate this issue assume task labels (which are often not available in practice), employ brittle regularization heuristics or use off-policy methods that suffer from instability and poor performance. We present Locally Constrained Policy Optimization (LCPO), an online RL approach that combats CF by anchoring policy outputs on old experiences while optimizing the return on current experiences. To perform this anchoring, LCPO locally constrains policy optimization using samples from experiences that lie outside of the current context distribution. We evaluate LCPO in Mujoco, classic control and computer systems environments with a variety of synthetic and real context traces, and find that it outperforms a variety of baselines in the non-stationary setting, while achieving results on-par with a "prescient" agent trained offline across all context traces. LCPO's source code is available at https://github.com/pouyahmdn/LCPO.
comment: ICLR '25 Spotlight
♻ ☆ Identifying User Goals from UI Trajectories
Identifying underlying user goals and intents has been recognized as valuable in various personalization-oriented settings, such as personalized agents, improved search responses, advertising, user analytics, and more. In this paper, we propose a new task goal identification from observed UI trajectories aiming to infer the user's detailed intentions when performing a task within UI environments. To support this task, we also introduce a novel evaluation methodology designed to assess whether two intent descriptions can be considered paraphrases within a specific UI environment. Furthermore, we demonstrate how this task can leverage datasets designed for the inverse problem of UI automation, utilizing Android and web datasets for our experiments. To benchmark this task, we compare the performance of humans and state-of-the-art models, specifically GPT-4 and Gemini-1.5 Pro, using our proposed metric. The results reveal that both Gemini and GPT underperform relative to human performance, underscoring the challenge of the proposed task and the significant room for improvement. This work highlights the importance of goal identification within UI trajectories, providing a foundation for further exploration and advancement in this area.
Graphics 5
☆ MeshPad: Interactive Sketch Conditioned Artistic-designed Mesh Generation and Editing
We introduce MeshPad, a generative approach that creates 3D meshes from sketch inputs. Building on recent advances in artistic-designed triangle mesh generation, our approach addresses the need for interactive artistic mesh creation. To this end, we focus on enabling consistent edits by decomposing editing into 'deletion' of regions of a mesh, followed by 'addition' of new mesh geometry. Both operations are invoked by simple user edits of a sketch image, facilitating an iterative content creation process and enabling the construction of complex 3D meshes. Our approach is based on a triangle sequence-based mesh representation, exploiting a large Transformer model for mesh triangle addition and deletion. In order to perform edits interactively, we introduce a vertex-aligned speculative prediction strategy on top of our additive mesh generator. This speculator predicts multiple output tokens corresponding to a vertex, thus significantly reducing the computational cost of inference and accelerating the editing process, making it possible to execute each editing step in only a few seconds. Comprehensive experiments demonstrate that MeshPad outperforms state-of-the-art sketch-conditioned mesh generation methods, achieving more than 22% mesh quality improvement in Chamfer distance, and being preferred by 90% of participants in perceptual evaluations.
comment: Project page: https://derkleineli.github.io/meshpad/ Video: https://youtu.be/ql37mWf4pg8
☆ Blind Augmentation: Calibration-free Camera Distortion Model Estimation for Real-time Mixed-reality Consistency
Real camera footage is subject to noise, motion blur (MB) and depth of field (DoF). In some applications these might be considered distortions to be removed, but in others it is important to model them because it would be ineffective, or interfere with an aesthetic choice, to simply remove them. In augmented reality applications where virtual content is composed into a live video feed, we can model noise, MB and DoF to make the virtual content visually consistent with the video. Existing methods for this typically suffer two main limitations. First, they require a camera calibration step to relate a known calibration target to the specific cameras response. Second, existing work require methods that can be (differentiably) tuned to the calibration, such as slow and specialized neural networks. We propose a method which estimates parameters for noise, MB and DoF instantly, which allows using off-the-shelf real-time simulation methods from e.g., a game engine in compositing augmented content. Our main idea is to unlock both features by showing how to use modern computer vision methods that can remove noise, MB and DoF from the video stream, essentially providing self-calibration. This allows to auto-tune any black-box real-time noise+MB+DoF method to deliver fast and high-fidelity augmentation consistency.
comment: To appear in IEEE Transactions on Visualization and Computer Graphics (IEEEVR 2025). Project page can be found at https://prakashsidd18.github.io/projects/blind_augmentation/
☆ Kiss3DGen: Repurposing Image Diffusion Models for 3D Asset Generation
Diffusion models have achieved great success in generating 2D images. However, the quality and generalizability of 3D content generation remain limited. State-of-the-art methods often require large-scale 3D assets for training, which are challenging to collect. In this work, we introduce Kiss3DGen (Keep It Simple and Straightforward in 3D Generation), an efficient framework for generating, editing, and enhancing 3D objects by repurposing a well-trained 2D image diffusion model for 3D generation. Specifically, we fine-tune a diffusion model to generate ''3D Bundle Image'', a tiled representation composed of multi-view images and their corresponding normal maps. The normal maps are then used to reconstruct a 3D mesh, and the multi-view images provide texture mapping, resulting in a complete 3D model. This simple method effectively transforms the 3D generation problem into a 2D image generation task, maximizing the utilization of knowledge in pretrained diffusion models. Furthermore, we demonstrate that our Kiss3DGen model is compatible with various diffusion model techniques, enabling advanced features such as 3D editing, mesh and texture enhancement, etc. Through extensive experiments, we demonstrate the effectiveness of our approach, showcasing its ability to produce high-quality 3D models efficiently.
comment: The first three authors contributed equally to this work
♻ ☆ Poison-splat: Computation Cost Attack on 3D Gaussian Splatting ICLR 2025
3D Gaussian splatting (3DGS), known for its groundbreaking performance and efficiency, has become a dominant 3D representation and brought progress to many 3D vision tasks. However, in this work, we reveal a significant security vulnerability that has been largely overlooked in 3DGS: the computation cost of training 3DGS could be maliciously tampered by poisoning the input data. By developing an attack named Poison-splat, we reveal a novel attack surface where the adversary can poison the input images to drastically increase the computation memory and time needed for 3DGS training, pushing the algorithm towards its worst computation complexity. In extreme cases, the attack can even consume all allocable memory, leading to a Denial-of-Service (DoS) that disrupts servers, resulting in practical damages to real-world 3DGS service vendors. Such a computation cost attack is achieved by addressing a bi-level optimization problem through three tailored strategies: attack objective approximation, proxy model rendering, and optional constrained optimization. These strategies not only ensure the effectiveness of our attack but also make it difficult to defend with simple defensive measures. We hope the revelation of this novel attack surface can spark attention to this crucial yet overlooked vulnerability of 3DGS systems. Our code is available at https://github.com/jiahaolu97/poison-splat .
comment: Accepted by ICLR 2025 as a spotlight paper
♻ ☆ TransVDM: Motion-Constrained Video Diffusion Model for Transparent Video Synthesis
Recent developments in Video Diffusion Models (VDMs) have demonstrated remarkable capability to generate high-quality video content. Nonetheless, the potential of VDMs for creating transparent videos remains largely uncharted. In this paper, we introduce TransVDM, the first diffusion-based model specifically designed for transparent video generation. TransVDM integrates a Transparent Variational Autoencoder (TVAE) and a pretrained UNet-based VDM, along with a novel Alpha Motion Constraint Module (AMCM). The TVAE captures the alpha channel transparency of video frames and encodes it into the latent space of the VDMs, facilitating a seamless transition to transparent video diffusion models. To improve the detection of transparent areas, the AMCM integrates motion constraints from the foreground within the VDM, helping to reduce undesirable artifacts. Moreover, we curate a dataset containing 250K transparent frames for training. Experimental results demonstrate the effectiveness of our approach across various benchmarks.